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Abstract 

  Driving is a complex visuomotor task, and the study of eye movements can provide interesting 

and detailed insights into driving behaviour. The aim of this thesis was to understand (a) what 

methods are useful to assess driving behaviour, (b) the reasons we observe differences in eye 

movements when driving, and (c) offer a possible visual training method. The first experiment 

compared drivers’ eye movements and hazard perception performance in an active simulated 

driving task and a passive video driving task. A number of differences were found, including 

an extended horizontal and vertical visual search and faster response to the hazards in the video 

task. It was concluded that when measuring driving behaviour in an active task, vision, 

attention and action interact in a complex manner that is reflected in a specific pattern of eye 

movements that is different to when driving behaviour is measured using typical video 

paradigms. The second experiment investigated how cognitive functioning may influence eye 

movement behaviour when driving. It was found that those with better cognitive functioning 

exhibited more efficient eye movement behaviour than those with poorer cognitive functioning. 

The third experiment compared the eye movement and driving behaviour of an older adult 

population and a younger adult population. There were no differences in the eye movement 

behaviour. However, the older adults drove significantly slower, suggesting attentional 

compensation. The final experiment investigated the efficacy of using eye movement videos 

as a visual training tool for novice drivers. It was found that novice drivers improved their 

visual search strategy when driving after viewing videos of an expert driver’s eye movements. 

The results of this thesis helps to provide insights into how the visual system is used for a 

complex behaviour such as driving. It also furthers the understanding of what may contribute 

to, and what may prevent, road accidents. 
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Preface 

  Human factors research is concerned with the understanding of human behaviour when 

interacting with the environment, human-made systems or services. One of the most important 

aspects of human factors research is that of human safety, and this holds especially true for 

driving research. In his 50 years of driving research, Lee (2008) ultimately concludes that road 

accidents occur because drivers “fail to look at the right thing at the right time” (pp 525). In 

other words, a failure to scan the roadway will result in a collision. Having identified deficits 

in the visual attention system as a leading cause into driver error, this thesis aims to provide 

insights into three key questions in vision and driving research, namely 1) what are the most 

appropriate methods in which to investigate visual attention and driving behaviour together? 

2) What are the factors which influence visual attention when driving? 3) Can training tools be 

developed in order to accelerate the acquisition of appropriate visual behaviour? 

  For the first goal, an experiment is described that explores the differences in eye movement 

behaviour when driving occurs in a simulated environment compared to when watching driving 

videos. This experiment highlights some of the advantages (and disadvantages) of studying 

visual attention and driving behaviour in a more realistic setting. For the second goal, two key 

factors are explored in two different experiments. The first is the idea that an individual’s 

cognitive ability may influence the distribution of eye movements when driving and the second 

is the idea that age, and in particular, old age, may also influence visual behaviour. Together 

these studies provide further insights into the individual differences in visual attention we 

observe in drivers. For the final goal, an experiment is described which aims to investigate a 

novel method to train more appropriate eye movement behaviour in novice drivers. 

  This thesis will begin with a general introduction which covers the background theory for the 

key themes identified above. A general methods section will describe the basic experimental 

set up that was common for all experiments, before each of the key themes are explored in four 

separate experimental chapters. 
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Chapter 1 

 

General Introduction 

 

  This section will provide an overview of the areas of research concerned in this thesis. It will 

begin by discussing the field of eye movements, with particular focus on how studying eye 

movements in the context of ‘action’ may provide more useful insights into how and why 

people move their eyes when performing natural tasks. The development and importance of 

driving and hazard perception research will then be outlined. The overview will then explore 

both the fields of eye movements and driving together, with emphasis given to the development 

of eye movement behaviour between novice and experienced drivers, and the reasons why 

these differences occur. Some of the other individual differences that may contribute to 

differences in eye movement behaviour in driving will then be explored; focussing on 

differences in ‘attentional function’ and age. Finally, an overview of some of the literature that 

has addressed training driving and visual behaviour will be explored. 
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1.1 Eye movements and a case for active vision 

  In human vision, the fovea, which is the region of the visual field with the highest acuity, is 

surprisingly small. Its angular diameter is between 0.3o and 2o depending on how it is defined 

(Ransom-Hogg & Spillmann, 1980). The resolution of the visual field drops very rapidly away 

from the fovea. We must therefore move our eyes in order to see the environment in detail and 

maintain a homogenous percept of the world in which we live. There are a number of classes 

of eye movements, namely: saccadic and fixational movements, pursuit movements, vergence 

movements and stabilized fixations (Land, 2009). Of most interest to those researching 

cognition, and for this thesis, are saccadic and fixational eye movements. These eye movements 

allow us to measure and understand when someone has launched an eye movement, where the 

eye movement has landed and how long someone inspects the newly foveated area. In 

understanding these aspects of eye movements, we gain insights into visual attention – that is, 

the processing of information entering through the eyes (Carrasco, 2011; Chun & Wolfe, 2001). 

For example, fixation locations may provide details on what part of a scene a person is 

processing (Land, 2009; Land & Tatler, 2009) or measuring fixation durations as an indication 

of the processing effort where more complex scenes or tasks often illicit longer fixation 

durations (Rayner, 2009). Thus, in observing eye movements during tasks, one can begin to 

index the mental processes involved. 

 

1.1.1 The cortical control of eye movements: A brief summary 

  Any action, such as simply picking up a pen, or a more complicated task such as driving a 

car, requires the coordination of several systems in the brain. Specifically, a system to identify 

the task requirements, a system to orient gaze, a system for visual perception and a motor 

system to engage in the task. 
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  Initially, the visual attention and motor systems must be primed with information regarding 

the requirements of the task. It is likely that the pre-frontal cortex is involved in this planning 

control (Goel & Grafman, 1995; Goel et al., 2013; Mottaghy, 2006; Ruh, Rahm, Unterrainer, 

Weiller, & Kaller, 2012). A cognitive description of the processes involved is described by 

Baddeley within the ‘Central Executive’ aspect of his working memory model. It is a system 

that processes and organises the information required for the completion of the current goal. 

(see Baddeley, 2007, 2012). 

  This information is used by the gaze system in order to orient eye movements to the 

appropriate location. The frontal eye field (FEF), within the frontal cortex, is involved in the 

preparation and timing of the initiation of saccades (Pierrot-Deseilligny, Milea, & Müri, 2004; 

Pierrot-Deseilligny, Müri, Ploner, Gaymard, & Rivaud-Pechoux, 2003). One of the major 

outputs of the FEF is to the superior colliculus which is involved in the execution of saccades, 

including controlling the amplitude and speed (Everling, Dorris, Klein, & Munoz, 1999; 

Munoz, Pelisson, & Guitton, 1991). 

  After eye movements have been directed to the appropriate location or object, the motor 

system is then tasked with acting accordingly, whether it is to control grasping, or indeed, 

coordinating the turning of a steering wheel. In order for this to occur however, the visual 

system must provide the necessary perceptual information. For example, vision can confirm 

that the location/object is the correct one or provide the depth or distance information with 

which to control the hands. Visual input pass through the primary visual cortex (V1), or striate 

cortex, within the occipital lobe, before different aspects of this input are processed separately 

by other areas of the visual cortex e.g. V4 for colour perception (Heywood, Gadotti, & Cowey, 

1992; Motter, 1994) or area MT for motion perception (Born & Bradley, 2005; Rokers, 

Cormack, & Huk, 2009). This information is thought to be then processed by two broadly 

separated pathways (Baizer, Ungerleider, & Desimone, 1991; Milner & Goodale, 1995). The 

ventral pathway, which projects to temporal areas of the brain, is involved in perceptual 
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processes such as object recognition, colour and the perception of fine detail. The dorsal 

pathway is directed towards the parietal regions and is involved in the control of motor 

functions such as reaching and grasping (Glover, 2004). 

 

1.1.2 Vision for Action 

1.1.2.1 What drives eye movements? 

  One of the most prominent questions in eye movement research is: why do we look where we 

look? This question was raised in the widely cited and now classic studies by Buswell (1935) 

and Yarbus (1967). Yet even now researchers are still asking (e.g. Schütz, Braun, & 

Gegenfurtner, 2011; Tatler, 2009; Tatler, Hayhoe, Land, & Ballard, 2011), suggesting the 

answer is not so straightforward. 

  There are two different schools of thought in answering this question. The first is the idea that 

eye movements are driven from the bottom-up. That is, we move our eyes due to exogenous 

cues (cues originating from the external environment). The second is the idea that we move our 

eyes due to top-down processes i.e. due to influences from cognition. Although originally 

intended to describe attentional capture, one example in explaining bottom-up eye movement 

behaviour is the saliency map model (e.g. Itti & Koch, 2000, 2001; Zhao & Koch, 2011). This 

model is based on findings from the visual search literature suggesting that basic visual features 

can capture and guide attention (e.g. Treisman, 1982; Wolfe, 1998). The model attempts to 

predict eye fixation location based on the visual conspicuity of features in a scene. In essence, 

features which ‘stand out’, or are salient, relative to their background, are more likely to attract 

fixations than areas of less visual salience. This includes features defined by colour, luminance 

intensity or orientation. Research has shown that the saliency map hypothesis is capable of 

predicting eye movements, particularly initial fixations, better than chance when free viewing 

scenes (Henderson, Weeks, & Hollingworth, 1999; Parkhurst, Law, & Niebur, 2002). 
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  However, this model does not account for the influence that higher level processing has on 

eye movement behaviour. One major criticism is the argument that eye movements change as 

a result of the requirements of the task. Highlighting this, in Yarbus’ (1967) study, his 

participant had to inspect a picture, but each time a different question was asked. The eye 

movement patterns changed depending on what question was asked. For example, if the 

question related to the age of the people in the picture, faces were examined more often. If the 

question was related to objects in the room, a much broader search pattern was exhibited where 

fixations were distributed around the scene evenly. A number of studies have since shown that 

the requirements of the task strongly influences where and how we inspect a scene (e.g. 

Einhäuser, Rutishauser, & Koch, 2008; Foulsham & Underwood, 2007; Humphrey & 

Underwood, 2008; Underwood, Foulsham, van Loon, & Underwood, 2005). 

 

1.1.2.2. The link between vision and action  

  Although top down processing is now largely favoured in explaining where we look, much of 

the research investigating where we look during ‘natural’ scene viewing, is derived from simple 

‘passive’ tasks using static stimuli, such as picture viewing paradigms or visual search tasks. 

Many argue that the primary the role of vision is to guide action i.e. coordinating limb 

movements or steering an individual through the environment (e.g. Hayhoe & Ballard, 2005; 

Land, 2009; Land & Tatler, 2009; Tatler et al., 2011). As such, it has been argued that it is 

important to study eye movements in more naturalistic settings than those that comprise of 

passive viewing of static scenes. Such settings should typically involve active visuomotor 

behaviour. 

  When investigating eye movements during natural behaviour, many studies show there is an 

intrinsic link between where and when we look and the information required for the current 

motor act. One of the first studies to examine the relationship between eye movements and 

action was Ballard et al. (1992) with their block copying task. Participants had to produce a 
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copy of a model of coloured blocks using blocks from a separate pool as fast as possible. It was 

a computerised task which involved a number of repeated sequences of looking at the model, 

selecting the correct block and moving it to the right place (on a computer screen). A typical 

sequence of behaviour would generally take the form: fixate a block in the model area, 

remember its colour, fixate a block in the source area with the same colour, pick up the current 

block, fixate back to the same block in the model area, remember its location, move the block 

to the fixated location, drop the block at the location. One of the most important results of the 

study was the finding that this was not purely a memory task. This was demonstrated by the 

finding that separate fixations are used to gather information about colour and location. The 

task was seemingly completed through a series of elementary tasks involving the eye and hand. 

  Regarding the spatial relationship between vison and action, Ballard et al found that the eyes 

look directly at the objects currently being interacted with, and as a result, a large number of 

eye movements are required to complete the task. Ballard, Hayhoe, and Pelz (1995) termed this 

eye movement behaviour the 'do it where I'm looking' strategy. This is an important finding as 

given the relatively small angular size of the screen, one would not expect the need to move 

the eyes as much as what was observed when interacting with the objects. Ballard et al. (1995) 

found that this task could indeed be completed with fewer eye-movements (when gaze was 

held on a central fixation spot), however the task was completed around three times slower 

than when normal eye-movements were allowed. Thus, the 'do it where I'm looking' strategy 

appears to be necessary for fast and efficient execution of a task. 

  Temporally, the fixation that provides the information for an action immediately precedes the 

action, typically by up to a second. In this current task, when moving the block, the location of 

gaze preceded where the block was going to be dropped by around one second. Ballard et al. 

(1995) termed these 'just-in-time' strategies. These two fixation patterns emphasize the 

important link between moving the eyes to optimise vision, and then engaging in action. 
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  An argument can be made, and was indeed made by Ballard et al. (1992), that the block 

copying style of task does not accurately represent a wide variety of hand-eye tasks. Aspects 

such as gripping, body or vehicular navigation or even fine motor control do not occur during 

the block copying task. The tea making (Land, Mennie, & Rusted, 1999) and sandwich making 

(Hayhoe, Shrivastava, Mruczek, & Pelz, 2003) studies helps to provide more valid insights into 

the link between vision and action in natural tasks. The close spatial coupling is again observed 

where eye movements are directed towards task relevant objects only e.g. fixations on the kettle 

and tap in the case of tea making. Highlighting this further is the finding that before the 

sandwich making task had commenced, fixations were distributed equally among task relevant 

and irrelevant objects. When the task started however, only objects which were to be interacted 

with were fixated. This emphasises how goal directed behaviour influences target selection. 

The temporal link between vision and action is also observed where fixations towards objects 

typically lead the action by up to a second. This behaviour is consistently observed in a number 

of other tasks too, such as music reading (Furneaux & Land, 1999), walking (Patla & Vickers, 

2003), and indeed driving (Land & Lee, 1994; Land & Tatler, 2001). 

 

1.1.2.3 Comparing active vision and passive viewing  

  The importance of investigating eye movements in the context of ‘action’ is highlighted in a 

series of studies (namely: Epelboim, 1998; Epelboim et al., 1995; Epelboim et al., 1997) which 

are reviewed in Steinman (2003). They investigated the oculomotor strategies used to complete 

a tapping vs looking visual search and memory task. Participants had to either search for and 

look at a number of targets in a specified order (look-only condition), or search for and actively 

tap the targets in a similar sequence (tapping condition). Despite these tasks being similar, the 

oculomotor strategies employed by individuals were strikingly different. One of the main 

differences was the finding that the seemingly more complex tapping task, which involved 

action, was easier and took less time to complete than the seemingly simpler task of just looking 
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at the targets. Gaze-shift patterns (how individuals moved their eyes) were also different across 

these tasks, with individuals exhibiting increased gaze-shift velocity and shorter gaze-shift 

durations when actively tapping. Also, fewer head movements were observed when only eye 

movements were to be used, compared to when being actively engaged. When tapping, head 

movements made strong contributions in allocating gaze but not when simply looking at the 

targets. 

  Thus, the way in which the eye movement system is employed in response to a task which 

involves natural action is rather different to when simply moving the eyes around to complete 

a task. Steinman (2003) argues that we simply could not have predicted these differences in 

visual behaviour on the basis of prior experiments done under much less natural conditions – 

conditions where natural action is largely restricted. He asserts that measurements made from 

such impoverished conditions cannot apply to the way in which humans control vision and 

action under more ecologically relevant conditions. Steinman suggests that the action 

incorporated in the task discussed here resembles the active and purposeful tasks performed in 

every-day life. Of course, it is rare to encounter a situation where one has to search and tap 

items continuously, however differences in eye movements strategies have been found between 

other everyday activities and their passive viewing, laboratory based, analogies: e.g. visual 

search (Foulsham, Chapman, Nasiopoulos, & Kingstone, 2014) and social attention (Risko, 

Laidlaw, Freeth, Foulsham, & Kingstone, 2012). Foulsham, Walker, and Kingstone (2011), for 

example, showed that when actively engaged in a walking task, eye movements were closely 

focussed centrally above the horizon compared to passively viewing movies of someone else 

walking the same routes, where eye movements were distributed around the entire scene. 

Ultimately there is a strong case to suggest that tasks which involve passive viewing paradigms 

may not capture subtleties in eye movement behaviour when someone is actively engaged. 

  In Chapter 3, I explore how the idea of active and passive vision relates to the context of 

driving. Specifically, the chapter will discuss an experiment designed to investigate the eye 
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movement differences between active simulated driving and passively watching videos of 

others’ driving. 

 

1.1.2.4 Cognitive Ethology and final thoughts on active vision 

  The ideas described above can be encapsulated by the ‘Cognitive Ethology’ approach put 

forward by Kingstone, Smilek, and Eastwood (2008). With this approach, it is suggested that 

only by studying behaviour in the most naturalistic settings can we begin to put forward valid 

theories of human cognition. By ‘natural’, they are referring to an environment that exists in 

the real world, out-with the laboratory setting. They propose that lab based experiments do not 

always provide a valid proxy for studying everyday behaviour. Many of the studies described 

above, such as the tea making and sandwich making studies, provide very good examples of 

this, where one could not have predicted the intrinsic link between vision and action with less 

naturalistic conditions. It is also suggested that by maximising experimental control and 

reducing environmental complexity (as is typical in lab based studies), this can often lead to 

results that are true only if particular laboratory settings were met. 

  While it is difficult to argue with the cognitive ethology ethos, particularly when investigating 

driving behaviour, this is arguably an extreme approach and the usefulness of lab based studies 

should not be ignored. It is extreme in the sense that without any experimental control, it is 

often difficult to make any strong conclusions regarding causal relationships between one 

factor and another. Thus, In a more balanced approach, Crundall and Underwood (2008) 

suggest that, although there should be an effort towards more naturalistic settings, including 

more natural stimuli (stimuli that occur in the real world), it is not always feasible to move 

away from the lab. They provide a good example of when studying driving behaviour in the 

lab is arguably just as useful as when studying real life driving. This will be discussed in a later 

section in more detail, but to summarise, they highlight how there are similar differences in the 

patterns of eye movement behaviour made between novice and experienced drivers across both 
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video based hazard perception tasks and real life driving. This is important, particularly in such 

an applied field as driving research, because if one can identify ‘at risk’ drivers in the laboratory 

then this limits the need for expensive and potentially riskier experiments being conducted on 

real roads. 

  This balanced approach is favoured within this thesis, where the experiments described aim 

to investigate eye movement behaviour in the context of action, where participants are actively 

engaged in controlling a vehicle but still allowing for experimental control - with the use of 

laboratory based driving simulations.  

 

1.2 The Importance of driving research and hazard perception 

  With an estimated 38 million drivers in the United Kingdom alone (Royal Automobile Club, 

2015), driving is one of, if not, the most popular method of transportation. Yet, it is a complex 

visuomotor task, requiring not only on-line control of the vehicle being driven, but also 

attention to the environment itself, and changes within it; particularly given the possibility of 

encountering hazards. Driving is therefore not without its risks. There were 1,775 reported road 

deaths and 22,807 serious injuries in 2014 in the UK (Department for Transport, 2015). 

Somewhat encouragingly, this number represents a 45 per cent decrease in road fatalities since 

2005. It is important to understand the factors which contribute to road accidents - in order to 

develop suitable assessment and training tools, and to help develop government policies to help 

promote safe driving and prevent accidents. This thesis is concerned more about the different 

influential factors which affect eye movement behaviour during typical driving situations i.e. 

driving without encountering hazards. However, this section will explore the importance of 

‘hazard perception’ and situation awareness in driving, and detail the differences observed 

across experience groups in order to provide the reader with the potential links between hazard 

perception and vehicle accidents. 
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1.2.1 Hazard perception and the benefits of assessment 

  In many countries (but not all, e.g. Mexico), before an individual is legally allowed to drive, 

they must demonstrate they can drive safely. In the United Kingdom for example, one must be 

assessed in vehicle control and the practical application of driving in an on-road test. In 

addition, it is also a requirement to assess the ability of an individual to detect dangerous 

situations (Driver and Vehicle Standards Agency, 2014). This is known as hazard perception 

skill. A hazardous event is usually one which would cause a driver to either slow down, stop 

or change their path unexpectedly (Underwood, Crundall, & Chapman, 2011). For example, if 

driving in a typical urban environment and a bus has stopped ahead, there is a chance that the 

bus may pull out or pedestrians may step out in front of it, and therefore there is a risk of 

collision. A driver may therefore need to adjust their speed to suit the situation or may need to 

stop. Hazard perception is a very important aspect of driving safely. If someone is able to detect 

or indeed, predict, a dangerous situation, then it allows them to act accordingly to prevent a 

collision. Performance on hazard perception has been found to correlate (inversely) with crash 

risk (Horswill, Anstey, Hatherly, & Wood, 2010; Horswill, Hill, & Wetton, 2015; McKenna & 

Horswill, 1999; Pelz & Krupat, 1974; Wells, Tong, Sexton, Grayson, & Jones, 2008), where 

better hazard perception skill is associated with lower crash risks. 

  This skill can be assessed using a number of different methods. For example, measuring 

subjective ratings for the level of danger during video clips (e.g. Wallis & Horswill, 2007) or 

the more typically used method (favoured by the UK government) of assessing performance 

by having drivers anticipate hazards during video clips by pressing a button (e.g. Chapman & 

Underwood, 1998; Horswill & McKenna, 2004; Wallis & Horswill, 2007). Even during these 

types of un-naturalistic driving tasks (in the sense that individuals are not driving), hazard 

perception is a complex skill. It requires drivers to identify potentially dangerous situations, 

assess whether the danger will affect them and decide what behavioural response would be 
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required to avoid a collision (Wetton et al., 2010). Importantly, any one of these processes may 

influence response time. 

  Hazard perception skill is best explained and understood by the concept of ‘Situation 

Awareness’ (Endsley, 1995a, 1995b, 2004; Wickens, 2008b). Formally, situation awareness 

can be described as the ability to perceive the elements in the environment, understand their 

meaning and predict their influence. Essentially, it can be described informally as ‘knowing 

what is going on’. There are three levels of awareness in Endsley (1995b) model of situation 

awareness. At the lowest level, one must be able to notice the unexpected event in the 

environment. So, to re-use the bus stopping example, the lowest level of situation awareness 

would equate to a driver seeing that a bus has stopped ahead. Next, one must be able to 

comprehend the meaning of the event. For example, the driver must comprehend that this bus 

has stopped to let people off. Finally, the highest level of situation awareness constitutes the 

ability to predict the outcome of the situation. In this example, it may be that the bus may pull 

out, or pedestrians may step in front of the bus. It is this higher level of situation awareness that 

hazard perception tests attempt to assess. Intuitively then, it is unsurprising that drivers who 

have this level of awareness have a lower crash risk as it allows them to alter their behaviour 

before a collision occurs.  

 

1.2.2 The effects of driver experience on hazard perception performance 

  Younger drivers, between the ages of 17 and 24 are statistically over-represented in reported 

road accidents compared to drivers older than 25. A total of 1,713 people were killed or 

seriously injured on Britain’s roads in 2013. Of this, 1,290 were younger drivers (Department 

for Transport, 2015). There are likely age related factors, such as driver attitudes, that 

contribute to this increased accident involvement (Rundmo & Iversen, 2004; Shinar, 2007; 

Ulleberg & Rundmo, 2003). Although arguably one of the biggest contributing factors, and 

most studied, is experience related hazard perception skill. 
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  Both video based hazard perception tasks and simulated driving tasks have helped to provide 

insights into the difference in hazard perception skills between novice and experienced drivers. 

Research suggests that novice drivers have poorer hazard perception ability both in terms of 

detection accuracy (how many events they spot) and how fast they spot them (Castro et al., 

2014; Crundall et al., 2012; Horswill & McKenna, 2004; Lee et al., 2008; Scialfa et al., 2012; 

Scialfa et al., 2011). Interestingly, in video tasks, this increased latency has been found to be 

due to increased processing time of the hazard and not necessarily in seeing (first fixating) the 

hazard (Huestegge, Skottke, Anders, Müsseler, & Debus, 2010). This may suggest that novices 

have a lower level of situation awareness, where they can see the hazard but they don’t have 

the experience to be able to verify the hazard as one as fast. Through experience, one can built 

up a repertoire of possible road situations that could occur which allows them to respond more 

effectively. Supporting this are the findings related to differences in understanding hazardous 

situations. For example, when asked to predict the outcome of potentially hazardous events, 

Jackson, Chapman, and Crundall (2009) found that experienced drivers anticipated more 

correct hazardous outcomes than novices drivers. Similarly, Vlakveld (2014) found that, even 

when a potential hazardous event did not develop, experienced drivers were better at explaining 

what could happen. Importantly, the poorer hazard perception ability in novices has been linked 

to accident involvement. Learner drivers who fail a hazard perception task the first time, when 

acquiring a driver’s license, are more likely to be involved in an accident when they pass 

(Boufous, Ivers, Senserrick, & Stevenson, 2011; Horswill, Hill, et al., 2015). 

  It should be highlighted however, that although research has largely supported the fact that 

novices have poorer hazard perception skill, this has not always been found (e.g. Sagberg & 

Bjørnskau, 2006; Underwood, Ngai, & Underwood, 2013). One reason for this may be due to 

the varying types of hazards that can be encountered on the road and therefore used in hazard 

perception tasks. If hazards are largely attention capturing, i.e. a pedestrian immediately 
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stepping out on the road, then this may not be sensitive enough to discriminate between levels 

of experience (Underwood, Crundall, et al., 2011). 

 

  This section has provided the reader with a brief and general introduction into the importance 

of driving research and the assessment of hazard perception. Although hazard perception is 

important, and ultimately contributes to safer driving, the focus of this thesis is to primarily 

explore the factors that influence eye movement behaviour when driving normally, i.e. when 

no hazards are present. A review of this literature is the focus of the next sections. 

 

1.3 Eye movements and driving 

  Newly qualified drivers are at a considerably higher risk to be involved in a road accident 

relative to more experienced drivers (Department for Transport, 2015) and one likely 

contributing factor is linked to hazard perception skill. Driving is a highly visual task (Owsley 

& McGwin, 2010), requiring visual attention to be directed to the road in order to control the 

vehicle, attention to other road users and attention to other relevant sources of information e.g. 

road signs. Thus, arguably the way in which visual attention is deployed also contributes to 

accident involvement rather than hazard perception alone. Understanding how, where and 

when novices move their eyes is likely to provide insights into the increased accident liability 

cases we see. This section aims to begin bridging the previous two topics on eye movements 

and on driving and explores the importance of investigating the interaction between eye 

movements and driving performance. This is a larger introductory section, providing detail on 

some of the more key themes of the thesis. It will review what typical differences occur in 

visual attention across experience groups, in the form of eye movement differences. The 

purpose is to highlight to the reader what one would consider a more efficient or indeed 



16 

 

effective eye movement strategy when driving. This section will then explore the likely reasons 

why there are differences in the visuospatial deployment of attention. 

 

1.3.1 Visual control of steering 

  Although this thesis is largely concerned with what factors influence the differences in 

observed eye movement behaviour when driving, it is important to first discuss what visual 

information is important to help guide a driver through the environment. Gibson (1958) 

originally proposed that we utilise optic flow information in order to control locomotion. That 

is, the pattern of apparent motion caused by an observer moving through the environment. The 

origin from which these motion vectors flow is known as the focus of expansion, and it is this 

point that individuals align their direction of travel with in order to navigate successfully. While 

there is some evidence to support the importance of using optic flow (e.g. Britten & van Wezel, 

1998; Herlihey & Rushton, 2012; Smith, Wall, Williams, & Singh, 2006), it is not the only 

contributor in controlling locomotion (Harris & Bonas, 2002; Rushton, Harris, Lloyd, & Wann, 

1998). Two major criticisms of optic flow in guiding locomotion is that, 1) using optic flow to 

control locomotion is not particularly useful when we cannot move directly to the goal (e.g. 

when going around a bend) and 2) optic flow is disrupted when eye movements are made 

(Wilkie & Wann, 2003), and since we make many eye movements, it seems unlikely we would 

use optic flow in many circumstances e.g. driving. 

  One example of how we may use eye movements to control locomotion comes from Land 

and Lee (1994). They showed that when driving on a bend, drivers fixate on the ‘tangent point’ 

of the curve. This point can be described as the apex of the bend, at the point in which the 

curve’s direction appears to reverse. They suggest that individuals use this point as a reference 

point, or visual anchor, to control the steer. However, more recently, research has suggested 

that the tangent point is not as important as once thought. Mars and Navarro (2012) found that 

individuals did not need to fixate exactly on the tangent point in order to control steering in a 
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driving simulator. Kountouriotis, Floyd, Gardner, Merat, and Wilkie (2012) found that when 

the visual information of the inside road edge was degraded (the area in which the visual 

information of the tangent point is extracted), there was no impairment to steering. It was only 

when information to the outside edge of the lane was degraded that steering impairment was 

observed – information that is not required if drivers are using tangent point information. This 

suggests that the tangent point is not crucial in controlling steering when driving. 

  What is typically favoured now is the idea that in order to control steering, gaze is directed to 

points in the world we wish to pass, typically between 1-2 seconds before that point is reached 

(Robertshaw & Wilkie, 2008). Demonstrating this, Wilkie, Kountouriotis, Merat, and Wann 

(2010) instructed participants to steer in a virtual environment whilst driving either in the centre 

of the road, towards the outside of the road or towards the inside of the road. They found that 

gaze shifted depending on these instructions given, with gaze being directed towards the 

position participants were aiming for. Only when participants were told to take the fastest path 

around the bend, i.e. to cut the corner by following the ‘racing line’, the tangent point was used. 

But even so, this could be because it was a point in space they wished to pass and was not 

necessarily used as a visual anchoring point originally proposed by Land and Lee (1994). As 

described by Kountouriotis et al. (2013), the ‘future path’ strategy leads to a particular pattern 

of eye movements where an individual exhibits a series of initial saccades towards a point in 

space 1-2s ahead, followed by a smooth pursuit tracking movement to this point. 

  One argument against the future path hypothesis is that many of these studies were conducted 

in a simulated environment and thus the visual strategies employed may not represent driving 

in the real world (see Kandil, Rotter, & Lappe, 2009, 2010). However, visual strategies akin to 

the future path hypothesis have since been found on real roads (Lappi, Lehtonen, Pekkanen, & 

Itkonen, 2013; Lappi, Pekkanen, & Itkonen, 2013). In a review, Lappi (2014) suggests that 

fixations towards the tangent point on real roads can largely be explained by its relative salience 

or ease at which it can be identified, but do not help to explain in detail how steering is 
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controlled. Although, Lappi (2014) makes clear that it is possible that these two strategies may 

not be incompatible with each other. Particularly when considering the role of peripheral vision 

in steering, where, for example, one may fixate on the tangent point but still use peripheral 

vision to covertly use the visual information from the future path. 

  Importantly though, driving is of course more about just steering a vehicle. Fixating on one 

particularly point in space is likely not the best visual strategy when driving – particularly when 

considering the number of hazards that may appear on the road. Thus we must continually 

move our eyes when driving. This is the focus of the next sections. 

 

1.3.2. The transition from novice to experienced 

  When not solely focussing on steering, drivers typically fixate somewhere ahead of the car 

(Liu, 1998). Drivers will tend to look between the points in space where the car will be in the 

next few seconds and closer to the focus of expansion (Land & Horwood, 1995; Liu, 1998; 

Underwood, 2007; Underwood, Chapman, Brocklehurst, Underwood, & Crundall, 2003; 

Wong & Huang, 2013). These fixations are thought to be advantageous in that they provide the 

driver with the information to maintain lane position and to maximise the time to anticipate 

possible hazards. Although focal points are important, safe driving requires visual attention to 

be distributed to other parts of the roadway, particularly on more demanding road types. As 

described by Underwood (2007), when individuals are not fixating on the central focal points, 

fixations lie to the left and right to, for example, inspect pedestrians or prepare for lane 

changing manoeuvres. This creates a horizontal scanning window of fixations with fewer 

distributions of fixations vertically (Chapman & Underwood, 1998). However, the differences 

in the extent of this horizontal scanning can be different across experience groups, as discussed 

below. 
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In an early, widely cited, exploratory study, Mourant and Rockwell (1972) investigated the 

changes in eye movement behaviour that occurs as drivers gain experience. Eye movements 

were recorded as novice drivers drove neighbourhood and freeway type routes. Eye movements 

were compared to an experienced group of drivers, on the same routes, who had driven over 

8000 miles each year for five years. There were a number of findings, but only the general 

differences in eye movement behaviour between the novice drivers and experienced drivers 

will be discussed here. 

As measured by the variance in horizontal axis fixations, where a higher variance suggests 

increased scanning, it was found that the range of horizontal scanning was more limited in the 

novice drivers compared to the experts, particularly during the neighbourhood drive. 

Intuitively, it was thought that this increased scanning behaviour in experienced drivers is 

representative of someone acquiring more visual information to make informed decisions to 

avoid accidents, e.g. looking out for pedestrians. It was suggested therefore that novices were 

unable to appropriately sample the scene. Another important finding was that there were fewer 

mirror checks in the novice groups. Indeed some mirrors were never inspected at all. This is 

important because using the vehicle mirrors is also indicative of someone who is acquiring 

more information about the current surroundings in order to driver safer. One final important 

finding was that there were differences in average fixation location positions (in this case, 

median location positions). This fixation point is important because it likely indicates the most 

favourable point in space to obtain the visual information for which to control the vehicle. The 

average central direction of gaze for the novice drivers was closer to the front of the vehicle 

and slightly to the right. This was a result of more frequent glances to the roadside curb, where 

it was suggested by Mourant and Rockwell (1972) that this information was required in order 

to maintain lane positioning. The results of this study provided early insights into the 

differences in visual attention across driver experience groups, which in turn may have 
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provided insights into possible contributions to the increased accident liability cases for novice 

drivers. 

  Crundall and Underwood (1998) investigated the similarities and differences of novice 

drivers’ (mean experience 0.2 years) and experienced drivers’ (mean experience: 9.0 years) 

eye movements across different road types, namely rural, suburban and dual-carriageways. The 

main aim of the study was to investigate how the processing demands of the road (as reflected 

in the types of road) affects eye movement behaviour across the two experience groups. The 

influence of processing demands will be addressed in more detail in a later section, but what is 

important for now is the differences in the horizontal search eye movement behaviour that were 

found (again measured by the variance in horizontal fixation locations). Interestingly, the 

extent to which novices and experienced drivers scanned the roadway was similar during the 

rural and suburban sections of the drive. Importantly however, only the experienced drivers 

exhibited increased horizontal scanning behaviour (similar to Mourant and Rockwell (1972)) 

when driving on the dual-carriageway section. The novice drivers did not change the size of 

their visual search according to the road type. This is important given that a dual carriage way 

constitutes a number of extra hazardous areas that should ideally be attended to, such as an 

extra traffic lane and slip roads. It suggests that novice drivers are less able to adapt their visual 

strategies. Crundall and Underwood (1998) suggest this flexibility in visual search develops 

with experience, where initially the strategy is akin to viewing in less dynamic settings (i.e. as 

a pedestrian or even static picture viewing) before a visual search strategy more adapted to a 

dynamic real world settings is learnt. The more flexible visual strategy of the experience driver 

may offer insights into the lower accident liability cases we see in more experienced drivers. 

  This widened search strategy by experienced drivers has been observed in a number of studies 

since (e.g. Alberti, Shahar, & Crundall, 2014; Borowsky, Shinar, & Oron-Gilad, 2010; Falkmer 

& Gregersen, 2001; Falkmer & Gregersen, 2005; Konstantopoulos, Chapman, & Crundall, 

2010). For instance, Alberti, Shahar, et al. (2014) explored how extending the field of view in 
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a driving simulator influenced hazard perception, and importantly for this section, visual 

search. It was found that when more information is made available, by presenting a larger field 

of view with additional side screens, only the experienced drivers exhibited an increase in their 

horizontal scanning behaviour during normal driving conditions (i.e. no presence of hazards) 

and made better use of this wider field of view. Novice drivers still maintained fixations more 

centrally. Together, these findings suggests that drivers learn this horizontal scanning strategy 

through experience. 

  Perhaps the strongest evidence to highlight how this scanning behaviour improves with 

experience comes from studies which investigate not only experienced drivers but more 

specifically, expert drivers. That is to say, individuals who have more specific or advanced 

training in driving. Crundall, Chapman, Phelps, and Underwood (2003) present research 

comparing eye movements and hazard perception performance across 1) novice drivers, 2) 

expert police drivers who are trained in pursuit driving and 3) typical aged and experienced 

matched experienced drivers. One of the main purposes of this study was to determine how 

police drivers process different driving situations, namely, normal driving, emergency response 

driving and pursuit driving. After watching several video clips of these types of driving 

situations, they found that, overall, the trained expert drivers exhibited a further increase in 

their horizontal scanning behaviour relative to the novice drivers and to the matched controls. 

This finding would suggest that, visually, expert drivers were sampling even more of the scene 

than experienced drivers which provides further support to the idea that as experience 

increases, so does the horizontal search. This finding is important because police pursuit 

driving is of course very hazardous (high speeds, quicker response times required) and it shows 

how expert drivers better equip themselves for dealing with potential hazards by sampling even 

more of the scene. 

  This increase in scanning behaviour in experienced drivers is observed not only during 

‘straight road’ driving, but also when intersections are encountered. Borowsky et al. (2010) 
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demonstrated that when approaching an intersection, experienced drivers fixated on the 

adjoining roads more often to inspect potentially oncoming vehicles. The novice drivers tended 

to fixate straight ahead when approaching. Scott, Hall, Litchfield, and Westwood (2013) found 

that experienced drivers distribute their gaze evenly across the junction compared to novice 

drivers who exhibit less efficient ‘sweeping’ fixations at a junction, suggesting not all areas are 

inspected equally. 

  In addition to roadway scanning, mirror viewing behaviour is also different between novices 

and experienced drivers. Vehicle mirrors provide the driver with added information about the 

surroundings and the necessary safety information with which to make informed decisions 

about making manoeuvres. In the early study by Mourant and Rockwell (1972), novice drivers 

did not look in the rear-view mirror as much as experienced drivers and almost never inspected 

the side-mirror; particularly in neighbourhood areas. Similarly Underwood, Crundall, and 

Chapman (2002) found that experienced drivers used their exterior mirrors more than novices. 

Importantly, in that study, during portions of the drive that involved lane changing with fast-

moving traffic, the increase use of exterior mirrors was observed more in the experienced 

drivers. Konstantopoulos et al. (2010) also found a similar effect of experience when 

comparing driving instructor and novices' eye movements, where the highly experienced 

driving instructors fixated more often on the exterior mirrors than the learner drivers. Much 

like roadway scanning, these findings suggest that experienced drivers appear more equipped 

to identify potentially hazardous parts of the driving scene and appropriately allocate visual 

attention e.g. being able to identify overtaking vehicles at an early stage. 

  It is clear that the more skilled a driver is, the more widely they scan the scene. As mentioned, 

this scanning is typically measured by the variance, or ideally, standard deviation, of horizontal 

or x-axis fixation locations. However, as Underwood (2007) notes, this can be considered a 

rather crude measure, as it only indicates a very general pattern of eye movement behaviour. It 

certainly indicates that visual attention is directed to more of the area, however it can be argued 
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that it is unclear exactly what is being inspected. In other words, previous studies don’t 

necessarily capture all subtleties in eye movement behaviour. Underwood et al. (2003) 

attempted to overcome this limitation by using scanpath analyses to understand the content of 

the fixations observed across novices and experienced drivers. 

  Experienced and novice drivers drove on the same roads as was used in Crundall and 

Underwood (1998) (rural, suburban and dual-carriageway), and their eye movements were 

tracked. Importantly, two-fixation and three-fixation scanpaths analyses revealed certain eye 

movement differences across the groups. In general, analyses supported the idea that novices 

have a more restricted field of interest. It was found that novices favoured the road far ahead 

compared to the experienced drivers. Specifically, when fixations were directed towards other 

objects, such as other cars or mirrors, these patterns usually terminated with a fixation to the 

road far ahead. However novices had more of these types of transitions that resulted in far 

ahead fixations. One argument made for this is the idea that experienced drivers could make 

better use of peripheral vision to monitor events and therefore did not need to make these eye 

movement patterns as much. Novices showed this type of pattern for all three types of roads. 

The experienced drivers did not show this dominance in far ahead fixations, and were more 

likely to fixate to other parts of the road before fixating far ahead. What was also important 

from this study, was that it was actually rather difficult to characterise typical scan paths for 

experienced drivers compared to novice drivers, particularly for the dual carriageway routes. 

What this suggests is that the experienced drivers are more able to change their visual strategies 

to suit the current on-road situation. 

  So far, what has been discussed is largely about how extensively individuals scan the 

environment during driving, and this is seen as one of the most important differences in eye 

movement patterns across experience groups. However there a number of other important 

visual behaviours that should be considered that may give insights into the differences in 

processing and ultimately differences in driving performance. One of these is the idea that 
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before the horizontal scanning bias is learnt, novices in fact favour more of a vertical 

distribution of eye movements compared to experienced drivers where studies typically find a 

larger variance in vertical fixations locations (Chapman & Underwood, 1998; Renge, 1980; 

Underwood et al., 2003). It appears that the horizontal bias is learnt with experience, after 

learning the parts of the driving scene which are more likely to give rise to potential hazards 

(Underwood, 2007). 

  In addition, research has shown that there are typical fixation duration differences across 

experience groups. It is likely that these fixation duration differences indicate differences in 

the ability to efficiently process the driving scene, where longer fixations suggest longer 

processing times (Rayner, 2009). Crundall and Underwood (1998) found that for novice 

drivers, as the complexity of the road increases, novice drivers exhibited longer fixation 

durations compared to less demanding roads, suggesting novice drivers require longer to 

process the increased complexity of the scene. This is in concordance with current literature 

suggesting fixation durations increase with the perceptual and cognitive demands of a task. 

Interestingly, it was found that experienced drivers exhibited shorter fixation durations during 

the more complex routes compared to rural routes. Even though the scene is more demanding 

to process, it appears that experienced drivers compensate by reducing the time spent fixating 

in order to look around the scene more. Novices are unable to appropriately disengage visual 

attention due to the higher processing demands. We see this increase in processing time in 

Crundall et al. (2003) study using a video based task, where the police drivers spend less time 

fixating at specific locations compared to the novice and experienced matched controls. This 

again suggests increased efficiency in visual sampling for more experience drivers. 

 

  In summary, this section has provided the reader with insights into the typical differences in 

the patterns of eye movements we observe across novice and experienced drivers. It is clear 

that a more effective way to sample the driving scene is to exhibit a wider spread of visual 
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search and spend less time fixating at certain locations. It is likely that these visual behaviour 

differences contribute to the decreased accident liability cases we observe in more experienced 

drivers (Lee, 2008; Underwood, 2007). Although it is clear there are these eye movement 

differences, it is important to understand why there are these differences. This will be the focus 

of the next sections. In this thesis, two main contributing factors are explored, and below I 

devote a section to each. 

 

1.3.3. Explaining eye movement differences: A role for situation awareness 

  Previously, situation awareness has been discussed as one of the main factors influencing 

hazard perception skill. However, the level of situation awareness also has a likely role in 

influencing eye movements. To recap, in driving, situation awareness (Endsley, 1995a, 1995b; 

Endsley & Garland, 2000) describes the ability to perceive, comprehend and predict potential 

hazardous situations on the road. It may be that individuals lack a developed mental model of 

the possible situations which can be encountered on the road (Underwood, 2007; Underwood, 

Crundall, et al., 2002) thus, they fail to inspect the roadway and mirrors appropriately. Only 

through experience of driving on the road with exposure to a number of different situations and 

road users, are drivers able to build up a better understanding of the types of hazards that may 

arise on a given road type. With this increased situation awareness, they are able to allocate 

eye movements, and thus visual attention accordingly. 

  Borowsky et al. (2010) demonstrated that when approaching an intersection, experienced 

drivers fixated on the adjoining roads more often to inspect potentially oncoming vehicles. The 

novice drivers tended to fixate straight ahead when approaching. Pollatsek, Narayanaan, 

Pradhan, and Fisher (2006) found that when a hazard is obscured by another object, 

experienced drivers inspected the area around the object more often than novice drivers. 

Together these results suggest that novices have not built up the knowledge of where to look, 
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i.e. they are unaware of the likely locations that hazard may appear and thus do not allocate 

eye movements accordingly. 

  Highlighting this more clearly is research from Underwood, Chapman, Bowden, and Crundall 

(2002). They proposed that if the differences in the patterns of eye movements observed in 

Crundall and Underwood (1998) were simply due to the relatively higher cognitive demands 

of driving for novices, then we should not see the differences in visual scanning in a comparable 

video-based task. A task which removes the need to control a vehicle. If there are still eye 

movement behaviour differences between novice and expert drivers, then it would suggest 

differences in the cognitive processes involved in knowing where to look. Participants 

completed a hazard perception type task where they watched videos of a recorded drive (and 

included the roads used by Crundall and Underwood (1998)) and had to press a button when 

they thought they saw a hazardous occurrence. They found there was still an increase in 

horizontal scanning of the roadway for the experienced drivers compared to the novice drivers, 

particularly for the dual carriageways. These findings suggest that even in a video-based task, 

experienced and novice drivers think about driving scenes differently; a product of their 

differing situation awareness. This ultimately suggests that novices lack the knowledge of 

where and when to look. 

 

This idea of limited scanning due to an impoverished mental model is important to 

researchers. It is a potential area which can be targeted by those wishing to explore driver 

training. For example, one may be able to train drivers, particularly novice drivers, to either a) 

fixate certain locations to increase their knowledge of the potential threats that may occur when 

driving or b) the converse, train drivers situation awareness to influence scanning behaviour. 

Doing so may result in fewer accidents. Section 1.5 of this Introduction explores this idea in 

more detail and the experiment described in Chapter 6 tests a possible visual training paradigm 

that may be useful in training drivers to look more appropriately when driving. 
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1.3.4 Explaining eye movement differences: A role for attentional load 

  A second plausible reason for differences in eye movement behaviour is the idea that the 

attentional demands of driving limits the efficient distribution of eye movements. Before this 

idea is explained in detail, it is necessary at this point to explain several concepts related to 

‘attention’. Given its nature, the term attention is often difficult to fully explain. Yet, broadly 

speaking, attention can be defined as the selective processing of information (Pashler, 1998; 

Pashler & Sutherland, 1998; Posner, 1994). Whereas visual attention has been described in the 

context of this thesis as the processing of information entering the eyes, attention does not have 

to be this specific and can refer to information processing from any source. What is important 

in this section is specifically the idea that this attentional processing has limits and this in turn 

may influence eye movements. 

  Cognitive load is the term often used to infer the attentional demands of a task (Wickens, 

2002, 2008a), i.e. the mental difficulty of a task. It has been suggested that attentional 

processing during a task is largely affected by the level of cognitive load (Tomasi, Chang, 

Caparelli, & Ernst, 2007; Wickens & Hollands, 2000) where a higher cognitive load may limit 

the speed at which items are processed or limit the amount of information able to be processed. 

This idea is explained in a ‘multiple attentional resources’ type concept (e.g. Lavie, 2010; 

Wickens, 2002). In any given task, there is a finite capacity of attentional resources that can be 

allocated. Thus, if a task is cognitively demanding (high cognitive load), more attentional 

resources are required, which in-turn may limit the amount of resources that can be given to a 

secondary task (Lavie, 2010; Lavie, Hirst, De Fockert, & Viding, 2004). 

  These concepts relate back to the observed differences in eye movements in novice and 

experienced drivers. A novice driver may experience driving as more cognitively demanding 

as more attention may be required for vehicle control (e.g. dual task demands of steering and 

changing gears). Fewer resources are then available to move the eyes around and the scene and 

actively searching the road more for potential hazards or other features.  
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  Furthermore, we know that through practice and experience, task performance improves when 

actions become more automated. (Ackerman, 1988; Moors & De Houwer, 2006). By 

automatic, what is meant is idea that a process may be unconscious, fast, and importantly, 

requires few attentional resources (Moors & De Houwer, 2006). With driving, it may be the 

case that through experience, controlling the vehicle also becomes more automatic and this 

frees up resources to search to other parts of the scene. These ideas may help to explain some 

of the differences we see across novice and experienced drivers. 

  Regarding this idea of cognitive load influencing eye movements, research has consistently 

shown how increased cognitive load influences visual scanning. Recarte and Nunes (2000) and 

Recarte and Nunes (2003) demonstrated that when drivers had to perform several mental tasks 

while driving (e.g. simultaneous auditory, verbal or object detection type tasks), horizontal 

scanning behaviour was reduced compared to when driving as a standalone task. Similarly, 

Engström, Johansson, and Östlund (2005) also found increased gaze concentration towards the 

centre of the scene when a higher cognitive load was induced, both during real and simulated 

driving. In addition, Savage, Potter, and Tatler (2013) found increasing cognitive load (using a 

simultaneous riddle solving task) reduced horizontal scanning on video-based hazard 

perception tasks. Some research has suggested that increasing cognitive load reduces mirror 

inspection also. Harbluk, Noy, Trbovich, and Eizenman (2007) found that when performing 

complex mathematical problems whilst driving, the time spent inspecting the vehicle mirrors 

was less compared to when completing simple mathematical problems and driving. These 

results suggest that cognitive load may be a source for individual differences in drivers' eye 

movements, and possibly the differences between novices and experienced drivers’ eye 

movements. Importantly, this reduction in the distribution of eye movements due to cognitive 

load has been found to correlate with poorer hazard detection (e.g. Lee, Lee, & Boyle, 2007; 

Metz, Schömig, & Krüger, 2011; Reyes & Lee, 2008). 



29 

 

  These findings prompt an interesting question. If high cognitive load limits effective eye 

movement behaviour when driving, does this mean that those who have better attentional 

function exhibit more efficient eye movement behaviour? In other words, do those who can 

better handle the cognitive demands of the driving task, also look around the scene more? It is 

an interesting question that has not been tackled as of yet. The experiment described in Chapter 

4 investigates this possibility. 

  Before continuing, it is important to briefly define the term ‘attentional function’ (Mackie, 

Van Dam, & Fan, 2013). It is used typically to broadly describe an individual’s cognitive 

control ability i.e. an ability to perform a number of attention tasks. It incorporates not only 

executive function abilities (e.g. the ability to resolve cognitive conflict (Bush, Luu, & Posner, 

2000)) but also aspects of attention alerting and attention orienting. Respectively, these 

describe one’s level of attentional vigilance to impending stimuli and ability to select necessary 

information from various sensory inputs (Fan et al., 2009; Mackie et al., 2013; Posner & Fan, 

2008). Perhaps the best source of research to help answer the question of how attentional 

function ability relates to eye movement behaviour comes from the findings that better 

attentional function is related to better driver performance. 

  One related example of this is the Useful Field of View (UFOV) test (Ball, Roenker, & Bruni, 

1990). This test measures one’s ability to attend and process rapidly presented information. In 

general, it measures how much relevant information one can attend to without moving the eyes 

whilst ignoring distractor stimuli. It thus targets aspects of object identification, divided 

attention and selective attention (attending to briefly presented targets) (Clay et al., 2005). Ball, 

Owsley, and Beard (1990) found that those with poorer attentional ability, as measured by the 

UFOV, also report more problems with driving. Ball, Owsley, Sloane, Roenker, and Bruni 

(1993) found that poorer performance in the UFOV task correlates with more reported road 

accidents. A meta-analysis by Clay et al. (2005) supported the claim that poorer performance 
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in the UFOV task is associated with poorer driving performance – suggesting a direct link 

between attentional function and driving ability. 

  Since the UFOV was developed, there have been other successful attempts to demonstrate the 

relationship between attentional function and driving performance, many of which use 

variations of the visual attention tasks used in the original UFOV assessment (e.g. Aksan, 

Anderson, Dawson, Uc, & Rizzo, 2015; Anstey, Horswill, Wood, & Hatherly, 2012; Casutt, 

Martin, Keller, & Jäncke, 2014; Keay et al., 2009; Schuhfried, 2005). One recent assessment 

test used is the Attention Network Test (ANT) (Fan, McCandliss, Sommer, Raz, & Posner, 

2002). The ANT assessment tool is closely based on a known neurocognitive model of human 

attention which separately assesses the three components of attentional functioning mentioned 

above: executive control, attentional orienting and alerting networks. The executive control 

networks involve mechanisms to deal with cognitive conflict and ignoring irrelevant stimuli. 

The attentional orienting mechanisms are involved in selecting and guiding attention to 

potentially relevant areas of the scene. And the alerting networks are sensitive to changes in 

incoming stimuli, over both short and long periods of time (see Fan et al., 2002; Petersen & 

Posner, 2012; Posner, 2008). This is important as these attentional components are likely 

involved in successful driving. For example, one must be able to successfully attend to relevant 

hazardous areas whilst ignoring other stimuli (executive control), orient attention to potential 

hazardous cues (attentional orienting) and increase readiness to respond and sustain attention 

to the driving environment (alerting network). Importantly it has been found that better 

attentional function, as measured by the ANT test predicts better driving performance (Roca, 

Crundall, Moreno-Rios, Castro, & Lupianez, 2013; Weaver, Bédard, McAuliffe, & Parkkari, 

2009). 

  Therefore, since we know that better attentional function relates to better driving behaviour, 

the next step is to determine if this holds true for eye movement behaviour when driving. Does 

better attentional function predict more efficient visual behaviour? Using this section as 
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background, an experiment designed to answer this question is described in Chapter 4 of this 

thesis. 

 

1.4 The effects of age on driving performance and visual behaviour 

  Much like novice drivers, drivers who are aged 65 or above are at a higher risk of being 

injured or killed on the road (Evans, 2000). In the United States for example, in 2012, 5,560 

people who were over 65 were killed and another 214,000 were injured (U.S Department of 

Transportation, 2014). Age related-decline in perceptual, visuomotor and cognitive abilities 

have been well documented (Birren & Schaie, 2001; Salthouse, 2009; Shanmugaratnam, Kass, 

& Arruda, 2010), and it is likely that these impairments contribute to the increased number of 

accidents we observe in an older adult population (Anstey et al., 2012; Anstey, Wood, Lord, & 

Walker, 2005; McGwin & Brown, 1999). This section will provide a brief overview of the eye 

movements differences that are known to exist between older adult populations and younger 

adult populations of drivers, which will hopefully provide insights into what makes older 

drivers an ‘at-risk’ population. It will explore the hazard perception skill of older adults before 

exploring older adults’ attentional functioning and how this contributes to their driving 

performance. It will then discuss the research pertaining to older adults’ eye movements and 

driving. 

 

1.4.1 Older adults’ driving performance, hazard perception skill and cognitive ability 

  Throughout the literature, there are two key differences in driving behaviour that are 

consistently identified that are in-line with typical age-related deficits. The first is that older 

adults typically exhibit less safe driving. This includes driving slower, poorer lane positioning 

and making more driver errors (Aksan et al., 2012; Bunce, Young, Blane, & Khugputh, 2012; 

Dawson, Uc, Anderson, Johnson, & Rizzo, 2010; Raw, Kountouriotis, Mon-Williams, & 
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Wilkie, 2012). The second is that, although they are just as likely to inspect hazardous areas 

and hazards, older adults are typically slower to respond to them (Borowsky et al., 2010; 

Horswill et al., 2008; Horswill et al., 2009). It therefore makes sense that this population is at 

an increased risk for accident involvement. 

  What is it that contributes to the typical poorer patterns of behaviour identified? One of the 

main suggestions that has been explored relates, again, to cognitive and attentional function. 

Several studies have demonstrated how the cognitive demands of driving influence older 

adults’ driving performance. Chaparro, Wood, and Carberry (2004), found that inducing a 

higher cognitive load using verbal or visual tasks while driving negatively influenced older 

adults’ driving performance. Compared to young adults, they were less able to detect road signs 

and took longer to complete the drives. Schwarze, Ehrenpfordt, and Eggert (2014) found that 

the mental workload experienced, as measured by cardiac output, was higher for older drivers 

during difficult driving situations compared to younger adults (e.g. complex, multi-lane turns). 

Moreover, the UFOV task has been widely used to assess attentional performance in older 

adults. Performance in the UFOV is often poorer in older adults (Clay et al., 2005; Rogé, 

Ndiaye, & Vienne, 2014) and thus they have deficits in attentional function. Poorer 

performance on this task seems correlated with increased crash risk (Bruni & Roenker, 1993; 

Owsley, Ball, Sloane, Roenker, & Bruni, 1991) and general driving performance in older adults 

(Cushman, 1996; Roenker, Cissell, Ball, Wadley, & Edwards, 2003; Wood & Troutbeck, 

1995). It is likely that the impairment in attentional function is a direct factor leading to poorer 

driving ability, where, for example, older adults may not have the attentional capacity to attend 

to multiple objects at once or process hazard information as fast (Horswill et al., 2008). The 

opposite is also true. For example, older adults with better attentional function are better at 

anticipating hazardous events than older drivers with poorer functioning (Andrews & 

Westerman, 2012). But how does their cognitive and attentional capabilities relate to eye 

movement behaviour? 
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1.4.2 Older adults’ eye movements and driving 

  Given the limitations to older adults’ attentional functioning, are there eye movement 

differences in an older population compared to younger adults when driving? Surprisingly, 

there are few studies which address this in either a) a naturalistic driving setting which 

incorporates active control of a vehicle or b) under non-hazardous driving conditions. 

  An early study investigating eye movement differences in older adults comes from Maltz and 

Shinar (1999). In their second experiment, older adults and younger participants had to inspect 

static images of driving scenes as if they were the driver. They found evidence to suggest that 

older adults had a more impoverished visual search, including smaller saccades and increased 

number of fixations. They also found that the younger participants were better able to distribute 

eye movements more evenly across the scene and made less re-fixations to certain locations. 

However, since general visual search is typically impaired in older adults (Ball, Beard, 

Roenker, Miller, & Griggs, 1988), it can be argued that these findings are simply a product of 

a poorer general visual search capacity and may have little relevance to eye movements and 

driving in real life situations.  

  Older adults’ eye movements have since been tracked while they watch videos of driving 

scenes, but it is difficult to consistently identify general patterns of fixations made. Underwood, 

Phelps, Wright, Van Loon, and Galpin (2005) found that there was very little difference in scan 

patterns between younger and older drivers when watching video clips – both during non-

hazardous events and hazardous events. This included no differences in scanning of the 

roadway and inspection times. Thus, there were no observed effects of age-related decline in 

viewing driving clips. However, Yeung and Wong (2015) found the opposite during a similar 

video task, where older adults typically scanned the roadway less than younger adults. It would 

appear that more research is required to identify if there are age-related eye movement 

differences across populations. 



34 

 

  More promising evidence for highlighting the differences in eye movement behaviour comes 

from research investigating older adults’ eye movements during specific real or simulated 

driving events, namely; tackling intersections. Romoser and Fisher (2009) and Romoser, 

Pollatsek, Fisher, and Williams (2013) identified that during simulated driving, older drivers 

were less likely to scan the roadway (at least any more than once) and adjacent lanes when 

tackling intersections. Romoser et al. (2013) proposed that this inability to search appropriately 

is because older adults prioritise the need to monitor vehicle control. Supporting this, Min, 

Min, and Kim (2013) found that older drivers tended to fixate more on the direction of the turn 

rather than anywhere else compared to younger drivers. Dukic and Broberg (2012) found 

evidence that older drivers tended to fixate on road markings to help with positioning and 

manoeuvring when approaching intersections, whereas younger drivers were more likely to 

fixate on potential hazardous objects such as moving cars. In addition, they also found that 

older drivers took longer to make an initial fixation to the intersection and had longer average 

fixation durations during inspection. This also suggests an impairment in planning and 

processing the information at an intersection. Together, these findings highlight that 

impairment in attentional processing may in fact limit effective eye movement behaviour in 

older adult drivers – at least when navigating intersections. 

 

  However, it still remains to be seen if there are differences in eye movements during normal 

driving situations. Thus, an experiment is described in Chapter 5 which explores the possible 

differences in eye movement behaviour and driving performance between older adult drivers 

and young adult drivers. 
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1.5 Driving and Visual Training 

  In keeping in line with the last goal of this thesis, this final introductory section will discuss 

research that provides insights into driver training. A number of effective techniques have been 

identified in training driving performance, and in particular, hazard perception performance. 

The ‘commentary drive’ technique has been used, which involves individuals to give verbal 

descriptions of the current events of the drive. The idea is that this gets them to think about the 

driving environment and help them to predict possible hazardous events that may occur. This 

has been effective somewhat in training individuals to respond to hazardous situations more 

effectively (see Crundall, Andrews, Van Loon, & Chapman, 2010; Isler, Starkey, & 

Williamson, 2009). Although, see also Young, Chapman, and Crundall (2014) who found that 

commentary driving actually slowed the responses to hazards. One other typical and successful 

paradigm to train hazard perception involves getting people to predict what events may occur. 

A standard experiment may involve individuals watching a series of video clips and suddenly 

the video would either stop or turn black, and it is the participant’s task to predict what event 

may occur on the road (e.g. Horswill, Falconer, Pachana, Wetton, & Hill, 2015; Horswill, 

Taylor, Newnam, Wetton, & Hill, 2013; Meir, Borowsky, & Oron-Gilad, 2014). However, 

while there has been considerable research investigating how hazard perception performance 

can be trained, less is known about how visual behaviour can be trained. This is discussed 

below. 

 

1.5.1 Visual Training 

  As discussed in section 1.3, one of the reasons that individuals, particularly novice drivers, 

may not exhibit effective eye movement behaviour when driving is that they lack situation 

awareness, and therefore, the knowledge of where to look. Therefore, when investigating ways 

in which driving behaviour, and in particular, visual behaviour, can be trained, it makes sense 
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to try and develop tools which aim to address this lack of knowledge in directing visual 

behaviour. 

  There have been a number of attempts to influence scanning behaviour when driving. Many 

of which utilise augmented reality or visual cues to direct visual attention (e.g. Eyraud, Zibetti, 

& Baccino, 2015; Pomarjanschi, Dorr, Bex, & Barth, 2013; Rusch et al., 2013). These have 

proven successful in directing eye movements to particular areas of the scene e.g. slip roads on 

the side of the road, or points in space that help with making manoeuvres. However, it seems 

intuitive that unnatural stimuli appearing on screen while driving would direct visual attention, 

given their relative salience. It doesn’t necessarily answer the question of why individuals 

should look at these areas. In other words, the cueing of visual behaviour may be too explicit 

using these types of techniques to influence cognition. 

  In an early attempt to tackle this, Chapman, Underwood, and Roberts (2002) developed a 

training programme which targeted three main aspects of safe driving: knowledge of the road, 

scanning of the road and the ability to anticipate. Their programme utilised the commentary 

driving techniques to encourage individuals to think about where they are looking and the 

anticipatory ‘what will happen next’ type training. For the visual training aspect, drivers 

watched videos of potentially dangerous situations and a widened visual search was 

encouraged by having critical areas of the road circled. The videos were viewed at half speed 

in order to give participants time to process why the areas were highlighted. In addition, 

feedback was given as to why the areas were highlighted after viewing the clips. Participants 

were tested on real roads and a number of measures of driving performance and eye movements 

were recorded. Testing took place three times. The first was soon after novices had passed their 

driving test. The training was then administered and testing occurred again after three months 

and six months after passing their test. They found that those who received the in-depth training 

programme had a wider horizontal visual search both to non-hazardous and hazardous areas. 

This was found both after the training (at three months) and, encouragingly, after the 6 month 
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follow up. What was important, was that the training lasted less than an hour. This suggests 

that the successful training of visual behaviour need not necessarily be elaborate. However, an 

issue with this programme was that the effects of training did not appear to extend beyond 

visual behaviour. Participants still drove at the same speed and exhibited similar braking 

patterns. 

  In another similar attempt to train visual behaviour, a series of studies (Fisher, Pollatsek, & 

Pradhan, 2006; Pollatsek et al., 2006; Pradhan, Pollatsek, Knodler, & Fisher, 2009) was 

conducted in order to develop and validate a PC based hazard perception and awareness 

programme. Participants were presented with top down views of driving situations where a 

hazard could potentially develop. Feedback was given on where individuals should scan and 

the consequences for not doing so. The training proved effective in positively influencing 

scanning behaviour in both simulated and real road driving. Unfortunately, testing usually 

occurred soon after training. Therefore it is unclear if the effects were a product of this recency 

or if the training instilled a long lasting effect on visual behaviour. Further, these more 

developed training tools may also suffer from the same problem as the basic visual cueing 

methods, namely that cueing is still rather explicit, and may not be influencing cognition at a 

deeper level. 

  Therefore, there is still a requirement for research to provide the necessary understanding of 

why an individual should be directing eye movements to a particular part of the scene. 

Konstantopoulos, Chapman, and Crundall (2012) conducted a study which attempted to 

investigate whether showing the eye movements of drivers can provide the information on why 

it is important to look at certain areas of the scene. They showed slowed-down traces of drivers' 

eye movements to novice and experienced drivers (driver instructors). They proposed that if 

one can discriminate between “good” and “bad” eye movement patterns, then individuals 

should therefore have an understanding of why one visual strategy is better than another. 

Surprisingly however, the discrimination task proved to be somewhat difficult. For example, 
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the instructors were unable to correctly identify the differences between expert and novice 

patterns better than chance. However, novice and learner drivers were able to correctly identify 

novice patterns of eye movements beyond chance level. Though it would appear that the use 

of eye movements may be limited in training more appropriate visual behaviour when driving. 

This idea is explored further in Chapter 7. In an attempt to provide a more implicit learning 

tool, it was tested whether showing eye movements, and then observing people drive, can be 

an effective tool for visual training in driving. 
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1.6 Thesis Overview 

  This introduction has provided the background research for the following experimental 

chapters. Based on the theoretical ideas put forward in section 1.1, where eye movements are 

arguably best investigated under the context of action, the first experimental chapter (Chapter 

3) was conducted. It investigated if there were differences in the spatial deployment of eye 

movements when individuals watched video clips of hazard perception driving and when they 

performed a similar hazard perception task when actively driving in a simulated environment. 

The results provide insights into how the strategies adopted by the visual and attentional 

systems may change depending on the demands of the driving task. 

  Using the literature described in section 1.3, Chapter 4 aims to investigate the relationship 

between an individuals’ attentional function and their capacity for exhibiting efficient eye 

movement behaviour when driving. Individuals performed a series of visual attention tasks and 

performance was compared to their visual behaviour during simulated driving. The results 

provide insights into the individual differences that may influence eye movements when 

driving and offer implications for driver assessment and training. In another attempt to 

highlight some of the individual differences that may influence visual behaviour when driving, 

Chapter 5 explored the idea that older adults may adopt different visual strategies when driving 

compared to their younger counterparts. The results help to further the understanding of how 

the visual system changes with age and copes with the attentional demand of driving. 

  In the final experimental chapter (Chapter 6), the aim was to investigate if using the 

information gained from experienced driver’s eye movement patterns can implicitly train 

novice drivers to scan the road more. The results offer insights into a possible driver training 

intervention.  

 These experiments are described in full after a General Methods section. A final General 

Discussion section summarises, discusses and offers implications and limitations of the 
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experiments to ultimately provide the reader with a thorough, yet broad, account of eye 

movements and driving, with insights into methodology, individual differences and training. 
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Chapter 2 

 

General Methods 

 

  The exact methodologies that were used were different across each experiment. Thus, each 

data chapter will describe the methods used in more detail than what will be described here. In 

this chapter, the apparatus that was common across experiments will be described, along with 

the general aspects of the driving simulation apparatus used and the methods for collecting and 

analysing eye movement data. 
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2.1 Apparatus 

2.1.1 Experimental Computer 

  In order to run all software used in the investigations, a Hewlett Packard z210 desktop 

computer with a 3.3GHz processor and NVIDIA Quadro 600 graphics card was used.  

 

2.1.2 Steering wheels and pedals 

  For the first experiment (Chapter 3) a Thrustmaster 5 Axes RGT Force Feedback steering 

wheel, with left and right indicators, and pedal combination was used. For subsequent 

experiments, a Logitech Driving Force GT steering wheel and pedals combination was used to 

control the vehicle. 

 

2.1.3 Driving Simulations 

  In order to simulate a driving environment, two low-level widely available pieces of driving 

simulator software were purchased. Each are explained in detail separately below. In general, 

for each simulation, the environments were typical of everyday driving situations and contained 

a number of familiar stimuli such as pedestrians, multi-lane traffic, stop signs and speed limit 

signs. Participants were always instructed to drive as they normally would and to obey regular 

traffic rules and regulations. 

  Each course was chosen on a trial-and-error basis. The experimenter performed a number a 

test drives in order to select appropriate courses. In line with the simulated driving literature, a 

number of stimuli criteria were identified. The main criteria was that the courses had to 

represent the different types of driving environments encountered in the real world given the 

differences in eye movements that are typically exhibited across driving environments 

(Chapman & Underwood, 1998; Crundall & Underwood, 1998; Land & Tatler, 2009). Thus, 
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country, urban and suburban routes were selected. In addition, the number of complex events 

were kept to a minimum in each course. Specifically, complex intersections and junctions and 

roundabouts containing more than 3 exits were not included. This was to remove the possibility 

that any differences in eye movements could be due to differences in participants’ ability in 

tackling these types of events. It was also important to maintain uniformity within each course, 

in that the environment and the types of stimuli present should not change throughout the length 

of the course. In this way, eye movement measures could be averaged across the course. 

However, it is acknowledged that this judgement of uniformity is subjective. As such, although 

not investigated here, there may be eye movement differences across specific sections within 

the same course. See below for specific details about the driving simulator software used. 

 

2.1.3.1 Driving Simulator 2011 

  The driving simulator software Driving Simulator (2011) (Excalibur Publishing Limited, 

2011) was used for the first experiment investigating eye movement differences across video 

and active driving methods (Chapter 3). With this software, the physical properties of the 

vehicle could be programmed to mimic the feel of driving a car through a naturalistic 

environment. The properties were programmed using the software’s configuration files. The 

car driven was a typical ‘Sedan’ style car. It was set to a mass of 1450kg and the engine had a 

maximum motor torque (Newton Metres) of 240. A list of all vehicle parameters used, e.g. drag 

coefficient data, braking data, steering data, etc. can be viewed in Appendix 1.1. 

  Regarding the driving environments, this software simulated driving on the right, resembling, 

for example, driving in most North American or mainland European countries. Each route 

resembled typical road types that would be encountered in the real world. In total, four different 

virtual areas were used in the experiment. The first, named by the software as “Hohenkirchen: 

Bus Terminal” was a typical modern suburban environment, characterised by longer and 

straighter sections of road. The second, named “Mittstedt: Marketplace” was an urban style 
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environment with a more dense traffic network than the suburban route. The third area was 

named “Mittstedt: Residential Area” and, as the name implies, was an urban residential area. 

The final area was named “Mittstedt: Mount” and was characterized by a road in the country 

containing a number of curved bends. See Figure 2.1 for example static representations of each 

area. For each area, the level of traffic could be moderated, from no traffic to very dense traffic 

levels. Arial representations of the courses can be viewed in Figure 2.2 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.1 Example scenes within each of the four different general areas used when using 

Driving Simulator 2011. (a): suburban area, (b): urban area, (c): residential area, (d): country 

road. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.2. Arial representations of the routes used in Driving Simulator (2011). (a) suburban 

area, (b): urban area, (c): residential area, (d): country road. 

 

 

2.1.3.2 City Car Drive 

  The driving simulator software City Car Drive (Forward Development, 2014) was used for 

the experiments described in Chapters 4, 5 and 6. Like the previous software, the physical 

properties of the vehicle could be programmed to mimic the feel of driving a car through a 

naturalistic environment. The properties were again programmed using the software’s 

configuration files. The vehicle driven was a similar but larger sedan type car. It had a simulated 

mass of 1727kg. The full list of vehicle properties can be inspected in Appendix 1.2. 

  With this software, both a right hand and left hand driving environment could be simulated, 

allowing for the inclusion of drivers with experience of driving in the United Kingdom. For the 
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driving environment, three different general areas were used in the experiments. The first was 

a country highway. This was the least complex area that consisted of one large road with few 

intersections, containing single and dual lane carriageways (Figure 2.3a). The second area was 

a motorway type area. This contained multiple lanes of traffic and there was the presence of 

slip roads (Figure 2.3b). The third area was a typical urban area with a number of intersections 

and pedestrian crossings (Figure 2.3c). Each course contained a moderate amount of traffic. 

Arial representations of the courses can be viewed in Figure 2.4. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 2.3 Example scenes within each of the three different general areas used when using 

City Car Drive. (a): country highway, (b): motorway, (c): urban area. 

 

The urban route used within Chapter 6 was deemed inappropriate for consistent testing across 

participants because of the addition of traffic lights (see Chapter 6 for details). Therefore, this 

was changed for the experiments described in Chapters 4 and 5 (which were conducted after 

the experiment described within Chapter 6). The alternate route used in chapter 6 can be viewed 

in Figure 2.5) 
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(a) 

 

(b) 

 

(c) 

 

Figure 2.4. Arial representations of the routes used in City Car Drive. (a): country highway, 

(b): motorway, (c): urban area. 

 

 

Figure 2.5. Arial representation of the urban area route used for Chapter 6. 

 

2.2 Eye Movement Recording 

2.2.1 Eye movement data collection 

  For the first experiment (Chapter 3), an SR Eyelink 1000 eye tracker, with tower mount and 

chin rest apparatus was used to record eye movements, sampling at 1000 Hz. Fixations and 

saccades were determined using software provided with the eye tracker, which gave a 

displacement threshold of 0.1deg, a velocity threshold of 30o/s and an acceleration threshold 

of 8000o/s2 (SR Research Ltd, 2013). A 12 point calibration ensured that recordings had a mean 

spatial error of less than 0.8 deg. Calibration was performed using a standard procedure where 

participants were asked to fixate on the dots that would appear one at a time around the display 

screen. For subsequent experiments, an SR Research Eyelink II eye tracking system was used 

to record eye movements, sampling binocularly at 250Hz. Fixations and saccades were 
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determined using a displacement threshold of 0.1 deg, a velocity threshold of 30o/s and an 

acceleration threshold of 8000o/s2 (SR Research Ltd ,2013). Head movements were not 

restricted in these experiments. For the experiments described in Chapters 4 and 5, the Eyelink 

II Scene Camera hardware was used to capture eye movements and stimulus display. Refer to 

each individual data chapter for more detailed descriptions of how the eye tracking was 

implemented in the experiments. 

 

2.2.2 Eye movement data preparation and analysis 

  All eye movement data was processed by the Eyelink host computers and was prepared for 

analysis using SR Research Data Viewer. With this software, areas of interest (AOI) could be 

defined and created. Since the stimulus display was always from the viewpoint of a first person 

drive, static AOIs could be defined. These were created by using a screenshot of the 

environment (for each experiment) as a template to ‘draw’ AOIs around important regions of 

the scene, e.g. the roadway or vehicle mirrors. Each experiment had different AOIs (see 

individual chapters for details). All fixation and saccade information relating to these AOIs, 

for example, fixation location, fixation duration, average saccade velocities, were computed by 

the Data Viewer software and these values were reported in a spreadsheet style format. The 

values in these spreadsheets were used to statistically analyse differences in eye movements. 

 

2.2.3 Creating dynamic stimulus recordings and eye movement overlays 

  In addition to the static representation of eye movements, it was also important to capture a 

dynamic representation of when and where participants looked, in the form of video recordings. 

For the experiments described in Chapters 4 and 5, the Eyelink II scene camera was capable of 

producing this without the requirement for an additional computer programme. This was 

because the stimulus was projected onto a much larger field of view. However, for the 
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experiments described in Chapters 3 and 6, a computer monitor was used to display the 

stimulus, and the eye tracker was unable to produce a high resolution video recording of both 

the dynamic real time stimulus and corresponding eye movements. This limitation was 

overcome by creating a MatLab ® (MathWorks ®, 2015) script with the Psychtoolbox 

application (Kleiner et al., 2007). This, along with video capture software, allowed the eye 

movement data to be recorded synchronously along with a real time display capture. It was 

then possible to overlay the eye movements into the captured video using two methods. The 

first involved using a MatLab script and the second involved video editing software. The main 

procedures are summarised below. The full MatLab scripts used can be viewed in Appendix 2. 

 

2.2.3.1 Recording eye movements and screen capture simultaneously  

  Before eye movements were overlain onto the corresponding video file using either the 

MatLab or video editing software method, the initial stage of the procedure was to record a 

video of the experimental trial and the eye movements of the observer simultaneously using an 

intial MatLab script. The function initially opened a pre-experimental window which allowed 

for eye tracking calibration and defined a start and stop key (see Figure 2.6. Comments are in 

green). 
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Figure 2.6. Script used to create the pre-experimental window and to define start and stop 

keys 

 

  The function wRect created a rectangular window on the desired display screen which was 

defined by screenNumber; where screenNumber was usually 0,1 or 2 depending on the physical 

set up of the displays (i.e. single monitor or dual monitors set up). The script then called for 

the initialisation of the Eyelink using the inbuilt Eyelink Toolbox functions within 

Psychtoolbox (Figure 2.7) 

 

Figure 2.7. Script outlining the initialisation of the Eyelink Tracker to allow for calibration 
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  This script allowed MATLAB to open up the default calibration screen in the window as 

defined and controlled within the Eyelink Toolbox directory of Psychtoolbox (el = 

EyelinkInitDefualts (w)). EyelinkDoTrackerSetup(el) allowed for calibration and 

EyelinkDoDriftCorrection(el) allowed for a drift correction which again was controlled by the 

default scripts through the Eyelink Toolbox directory (Figure 2.7). 

 

 

Figure 2.8 The function which executes the opening of FRAPS video capture software and 

the stimulus software executable file. 

 

  The next stage of the procedure was the simultaneous recording of the stimuli and eye 

movements. This was accomplished through video screen capture executed by the MATLAB 

script, which also executed the function to allow the eye tracking software to record the eye 

movements. The screen capture was controlled by FRAPS video capture software. The function 

commanded FRAPS software to open along with the stimulus programme to be presented (e.g. 

Driving Simulator 2011). This was accomplished using the script outlined in Figure 2.8. The 

actxserver function allowed MatLab to call the video recording software FRAPS and then after 

a user defined waiting period, it called the desired experimental stimulus programme.  
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Figure 2.9. Script to execute the recording of the eye movements and the screen capture 

simultaneously 

 

  After the waiting period, MatLab executed a script to allow the eye tracker to begin tracking 

the eye movements and allowed FRAPS to record to the display screen. Importantly, there is a 

line placed here which told MatLab that the F9 key has been pressed [h.SendKeys ('(F9)')] 

which was the key used by FRAPS to begin recording the screen capture. This step allowed 

both the eye movements and the screen to be recorded simultaneously. 

 

 

Figure 2.10. The termination code to close the experiment whilst terminating the screen 

capture recording and eye movement recording 

 

  Finally, the complete function terminated the experiment, which in turn synchronised the 

termination of both the eye movement recording and video capture recording. This was 

accomplished with a simple check loop until the previously defined stop key was pressed. Upon 

manually pressing the stop key, this terminated the experiment and within a user defined time 
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frame, terminated the video recording. This was accomplished using the example code 

presented in Figure 2.10. 

 

2.2.3.2 Overlaying the recorded eye movement and video file using a 

Matlab script 

  This method was used in Chapter 3. However, this method was not developed by me, but 

another researcher (Paul Cox, acknowledged). Thus, it is difficult to describe the process in 

detail. The whole script can be viewed in Appendix 2.2. To summarise, the script took the raw 

eye movement data created from the Eyelink software and recorded the x and y coordinates of 

each fixation. It then used this information to draw a red coloured circle on the recorded video 

file at the corresponding time frame. It went through the video on a frame-by-frame basis 

continually drawing a red circle given the x and y coordinates of each fixation. It then pieced 

each of these frames together to produce a new video file of the recorded drive and the eye 

movements overlain. 

 

2.2.3.3 Overlaying the recorded eye movement and video file using video 

editing software 

  This method was used for each of the subsequent Chapters (Chapters 4, 5 & 6). The eye 

movement video trace was exported to an avi file directly from the Eyelink Data Viewer 

Software. This video file simply consisted of the eye movement pattern over time, presented 

as a coloured circle, on a black background. This video file was imported to Adobe Premiere 

Pro (Adobe Systems Software, 2014), along with the recorded video of the stimulus display. 

Using this video editing software programme, the eye movement file was overlain on top of 

the stimulus video. The black background of the eye movement video was filtered out by 

applying a chroma key compositing technique. A blend was applied until the black background 
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could not be seen but the contrasting hue of the eye movement gaze cursor could. This left the 

underlain stimulus recording with the overlain eye movement trace. 

 

  All other pieces of software or apparatus that was used in the experiments are described in 

more detail in each of the experimental chapters. 
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Chapter 3 

 

Eye Movements and Hazard Perception 

in Active and Passive Driving: Insights 

into Driving and Eye movement 

Methodology 

 

  This experimental chapter aims to explore the eye movement differences in driving between 

a passive video hazard perception task and an active simulated driving task. The aim was to 

provide insights into how the visual system adopts different strategies depending on the 

demands of the driving task. The results help to provide further understanding of how vision 

and action interact during natural activity and have implications for driver assessment and 

training tools. 
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3.1 Introduction 

  During natural activity, foveal attention must be directed towards informative areas, in both 

time and space, which aid task completion. As discussed quite extensively in section 1.1, 

current models of visual guidance in complex scenes are often based on data derived from 

simple tasks using static stimuli, such as picture viewing or visual search. Although recent 

progress has been made in this area (Borji, Sihite, & Itti, 2011; Borji, Sihite, & Itti, 2014; 

Johnson, Sullivan, Hayhoe, & Ballard, 2014), there exist few frameworks, computational or 

otherwise, that can successfully predict eye movements in complex, dynamic and naturalistic 

environments, such as driving. 

  A now more favoured method to model eye movement behaviour is by using movie based 

paradigms which, by definition, allows dynamic information to be presented. However, it is 

often difficult to generalise the findings to real world contexts. Hirose, Kennedy, and Tatler 

(2010) found that cuts in a movie resulted in disruptions to both memory and eye movement 

behaviour compared to normal scene perception. Dorr, Martinetz, Gegenfurtner, and Barth 

(2010) showed that the eye movement behaviour exhibited by individuals when viewing 

different movie types (stop motion, Holly-wood movies and natural movies) was rather 

variable and not representative of natural viewing behaviour. These studies suggest that using 

movies may have limited utility when investigating eye movement behaviour during everyday 

tasks. 

  Given the intrinsic link between vision and action (Ballard et al., 1992; Land, 2009; Tatler et 

al., 2011), Land and Tatler (2009) have argued that passive movie viewing paradigms do not 

capture the same visual behaviour that one would observe under more ecologically valid 

circumstances, i.e. tasks which incorporate visuomotor control. As mentioned in section 1.1, 

the neural substrates involved in vision for action and vision for perception are often considered 

separate (Baizer et al., 1991; Glover, 2004; Milner & Goodale, 1995) and eye movement 
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behaviour differences consistent with this separation have been found across passive viewing 

paradigms and their real life analogies. For example differences have been found in visual 

search (Foulsham et al., 2014) scene viewing (Foulsham et al., 2011) and social attention 

(Risko et al., 2012). Thus, there is a wide literature, drawing from a number of areas, suggesting 

that movie based paradigms may not accurately represent the specific goal directed visual 

behaviour we would observe in more active environments. 

  This therefore has relevance for driving research. As discussed throughout the General 

Introduction, there has been considerable research into driving and driving skill, particularly of 

hazard perception, with many studies involving participants either viewing pictures of driving 

scenarios (Underwood, Humphrey, & Van Loon, 2011) or using movie viewing based 

paradigms (Borowsky, Oron-Gilad, Meir, & Parmet, 2012; Chapman & Underwood, 1998; 

Savage et al., 2013; Underwood, Phelps, et al., 2005). These studies have allowed us to identify 

possible oculomotor strategies employed by drivers of differing experience. For instance, more 

exaggerated horizontal eye scanning patterns have been found in experts than in novice drivers 

(Crundall et al., 2003; Crundall & Underwood, 1998). But these studies did not incorporate 

visuomotor control of a vehicle, and thus, may measure something different from when 

participants actively control a car. 

  The interactivity of driving (be it real or in a simulated environment) is likely to place more 

of a demand upon the visual system than when observers are faced with a passive movie-

viewing environment. Certain locations which need to be fixated by the driver in order to 

control the car successfully may be more important in an active driving task. For example, 

tangent points (Land & Lee, 1994) or direction of heading points (Wilkie et al., 2010). These 

fixation patterns are less important in a movie based task. As a consequence, this may limit the 

visual search for hazards that could otherwise be accomplished when simply viewing videos; 

and as such, may be reflected in differences in eye movements. In addition, there will likely be 

increased attentional demands in an active driving task compared to passively viewing and we 
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know that increasing cognitive load when driving (by introducing a secondary task) limits 

visual scanning when driving (Engström et al., 2005; Recarte & Nunes, 2003; Savage et al., 

2013). 

 

3.1.1 Current Study 

  The primary purpose of this chapter therefore, was to identify and quantify differences in 

oculomotor behaviour and hazard perception performance across a passive, movie based 

hazard perception driving task, compared with an active, simulated hazard perception task. 

This was achieved by studying and comparing eye movement fixation patterns and hazard 

detection performance when driving in a simulated setting that incorporated active control of a 

vehicle, compared with passive movie viewing.  

  In the active driving condition, participants drove around a number of set routes using a 

driving simulator programme and responded (using a button press) to hazards. In the non-

driving condition, participants watched a series of video clips from the same driving software 

and responded to the hazards using a button press. Eye movements were recorded throughout, 

using foveal fixation location as a measure of attentional deployment. The main eye movement 

measure was the extent to which each individual scanned the roadway. Reaction times to detect 

hazards were recorded using a button press. Since distinctions have been drawn between 

processes of perceptual guidance and perceptual identification (see Godwin, Menneer, Riggs, 

Cave, & Donnelly, 2015; Huestegge et al., 2010), this overall reaction time was broken down 

into (1) latencies for individuals to fixate the hazards (measured as the time of first fixation) 

and (2) the latencies to verify the hazards as such (measured as the time between first fixation 

and the button press).  

  Although this experiment was largely exploratory, some predictions were made regarding the 

differences in visual behaviour and hazard perception. Specifically, the lower levels of 
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attentional demands in the video task may (1) allow individuals to search more extensively for 

hazards, resulting in a wider visual search pattern, and (2) result in faster processing of hazards 

which would result in faster overall reaction times. This experiment was, to the best of my 

knowledge, the first study to measure absolute behavioural comparisons across video based 

driving tasks and simulated driving tasks. This experiment has been published as a short article 

(Mackenzie & Harris, 2014) and as a larger extended article (Mackenzie & Harris, 2015). 

 

3.2 Methods 

3.2.1 Participants 

  Thirty-four participants took part in the study (five males) with an age range of 19–31 years 

(mean age 22.3 years). All participants had normal or corrected-to-normal vision and were 

recruited through the University of St. Andrews SONA experiment participation scheme. They 

were paid £5 for participation. All participants had held a drivers’ licence for at least one year 

and were from countries where driving on the right side of the road is standard. Driving 

experience did not significantly differ across conditions (mean years since licence received, 

Driving task, 3.1 years [3.4 SD]; Non-driving task experience 2.6 years [1.5 SD]). The study 

was approved by the University of St. Andrews University Teaching and Research Ethics 

Committee (UTREC). 

 

3.2.2 Stimuli and Apparatus 

3.2.2.1 Driving Simulation and hazards  

  The driving simulation used is described in the General Methods section 2.1, including the 

environment and the types of routes driven. The driving environment could be controlled and 

the locations of the hazards determined. The hazards used here were fully developed 
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obstructions on the roadway, involving other vehicles that, under normal circumstances, would 

cause an approaching car to slow down, stop or change direction. Specifically, drivers/viewers 

would encounter a vehicle collision that had already occurred. The term fully developed is used 

here to highlight that these hazards have occurred prior to encountering them (see Figure 3.1). 

  The hazards were created by re-programming the artificial intelligence of other (virtual) road 

users so that they would frequently collide with another road user and create an obstruction. 

When encountered, individuals would need to slow down to manoeuvre around the hazard. The 

onset of a hazard was defined as being when it first became visible on-screen. Information 

about distance to the hazard was not available from the software. On average, the time each 

hazard was available to respond to did not differ across driving and non-driving conditions. 

A 

 

B 

 

C 

 

D 

 

Figure 3.1. Examples of fully developed hazards used throughout both conditions. Note that in all, 

the collision has occurred prior to the driver encountering the hazard and would require the driver 

to slow down, stop or change position. 
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  A pilot study was conducted to confirm that these hazards could be detected easily. 

Participants viewed four movies showing hazardous situations (six total hazards) and four 

movies showing non-hazardous situations. When asked to detect the hazardous events by 

pressing a button, participants correctly identified the hazardous situations significantly more 

than non-hazardous driving situations (χ2(2, 36) = 41.17, p < .001, using chi squared). There 

was only one participant who did not respond to one of the hazards and only two false detection 

responses. These results are unsurprising given the nature of the hazards, nevertheless this pilot 

study provided evidence that the types of fully developed hazards used in the main experiment 

are easy to detect and are suitable to measure individuals’ hazard perception performance. 

 

3.2.2.2 Video and driving stimuli  

  Eight video clips were shown in the non-driving condition. They were pre-recorded driving 

scenes from the driving simulator software. The scenes were captured using FRAPS® video 

capturing software at a frame rate of 30 frames per second and a resolution of 1280 × 1024 

(with a 5:4 monitor aspect ratio). These videos took the form of a first person perspective driver 

view of a vehicle (Figure 3.2) driving around suburban and urban areas with varying amounts 

of traffic whilst adhering to the normal rules of the road i.e. by staying within the speed limit, 

stopping at stop signs, etc. Four of the course clips contained either one or two hazards (six in 

total). The other four course clips contained no hazardous events. 

  For the driving condition, participants drove a total of eight courses, which consisted of the 

same suburban and urban routes as the video condition with either no traffic, light traffic or 

dense traffic. Four of the courses contained either one or two hazards in the form of a collision 

(up to six to detect across the four courses). The other four courses contained no hazards. The 

courses used across the conditions were the same. Only the four courses without hazards were 

used in the eye movement analyses to minimize eye movement measurements associated with 

hazard specific events. In an attempt to eliminate differences in eye movements being due to 
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differences in visual motion or duration across conditions, the number of turns and distances 

driven were set to be, on average, equivalent across driving and non-driving conditions. The 

consistency between driving and non-driving tasks limited differences in steering performance. 

The average time for viewing the video clips in the non-driving condition was 143.5 s 

(minimum, 103 s; maximum 183 s). The average time for driving the courses was 151.8 s 

(minimum, 61 s; maximum 240 s). 

 

3.2.2.3 Eye movement recording 

  An SR Eyelink 1000 eye tracker, with tower mount apparatus was used to record eye 

movements, as described in the General Methods 2.2. A chin rest was used in this experiment 

which restricts naturalistic head movements, however given the relatively small visual field, 

head movements were not required in order to view the display screen. See figure 3.2 for the 

experimental set up and a representation of a participant’s viewpoint. 

  During the driving task, each participant’s drive was recorded using the FRAPS video 

recording software. The temporal and spatial attributes of the eye movement coordinates were 

overlain onto these video recordings using the method previously outlined in section 2.2.3.2 

and Appendix 2.2. The produced video consisted of the recorded drive and fixation locations 

in the form of a red dot. The programme was coded so that this dot turned green when the 

participant had pressed the button indicating they had detected the hazard. Similarly for the 

non-driving task, each participant’s eye movement data was overlain onto the pre-recorded 

videos. The eye movements were also represented as a red dot which turned green when the 

participant had detected the hazard by pressing the button. 
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(a) 

 

(b) 

 

Figure 3.2. Pictures showing the eye tracking and driving set-up (a) and (b) a representation 

of the typical participant view point 
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3.2.3 Measures 

3.2.3.1 Eye movement measures  

  Eye movement information (i.e. fixation coordinates) was recorded and collated using SR 

Research Data Viewer software. 

 Fixation locations/Spread of attention. The standard deviations of eye fixations across 

the horizontal and vertical axis (using x-axis and y-axis pixel coordinates) were measured to 

provide an indicator of the spread of eye movements. A larger standard deviation would suggest 

a wider distribution, and thus wider spread of visual attention. 

Average y-axis fixation location. The mean y-axis fixation was measured using the 

mean y-axis coordinate as an indicator of how far, on average, along the road participants 

fixated. Since this measure is converted from screen pixels, a smaller y-axis fixation value 

would suggest that individuals looked higher up in the image and thus further ahead along the 

road. 

 

3.2.3.2 Hazard detection 

  Response accuracy to the hazards was recorded. The overall probability of detecting the 

hazards was calculated by the percentage number of correct button presses when hazards were 

present. The probability for fixating the hazards was also recorded which was calculated by the 

percentage number of those hazards that were directly fixated (recorded by looking through 

each video). The probability to fixate the hazard without detecting was also recorded which 

was calculated as the percentage number of times individuals fixated the hazards but did not 

push the button to verify the hazard as one. 

  Using the button press, reaction times were also measured. The time between when the hazard 

first appeared on the screen and when the participant pressed the button was calculated as 

overall reaction time. This total reaction time measure was also split into two constituent time 
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periods: the time it took to see the hazard and the time it took to verify the hazard as a hazard. 

The “Time to See” the hazard was measured from the time the hazard appeared on the screen 

(the first frame the hazard was visible) to when a participant fixated on the hazardous area. The 

“Time to Verify” was measured from the time that the initial fixation occurred to when the 

button press was made—where the eye movement dot would turn green on the video file. 

Reaction time analyses and the judgements of the initial saccades were performed manually, 

offline by viewing the video files on a frame-by-frame basis and recording the timestamps at 

which these events occur. All timings were calculated using Apple Quick TimeTM video player. 

 

3.2.4 Procedures 

3.2.4.1 Driving task 

Participants were instructed they would be performing a hazard perception task whilst driving 

around a number of courses in a virtual environment. It was explained that they would be 

detecting hazards that were fully developed, and that such a hazard was one that would cause 

(the driver) to slow down or change direction in some way to avoid the hazard. The 

experimenter gave a full explanation accompanied by a demonstration in how to use the 

apparatus to control the vehicle in the virtual environment. Participants were shown how to use 

the gas, brake, how to steer and how to use the button press when they detected the hazard. 

They were also shown how to navigate through the virtual environment whilst obeying all 

traffic laws as they normally would if driving in the real world: such as stopping at red lights, 

approaching slowly at closed junctions and use of indicator signals etc. Each participant was 

given time for a test drive in order to use the set-up comfortably. Participants’ eye movements 

were calibrated before each course. 

  Participants then began to drive whilst their eye movements were recorded. The order of the 

eight courses driven was randomized. Throughout each course, the experimenter gave simple 
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navigation instructions such as “turn first right” or “follow the road”. These instructions were 

given at least five seconds in advance of any visible hazardous situation in order for the 

instruction to be fully processed before encountering the hazard. Participants pressed the button 

as soon as they saw a hazard. For the four courses containing hazards, the experimenter stopped 

recording the eye movements after the first or second hazardous event had occurred and the 

participant was asked to stop the vehicle. There were six hazards across the four courses. For 

the four courses that did not contain hazardous events, after a certain location (known to the 

experiment only) was reached in the drive, the experimenter stopped recording eye movements 

and asked the participant to stop the vehicle. The experiment lasted one hour. 

 

3.2.4.2 Non-driving task 

  Participants were instructed that they would be performing a hazard perception task where 

they would be watching a series of video clips of driving situations and would press the button 

on the steering wheel when they detected a hazardous event. The same definition of a fully 

developed hazard was given as that used for the active task. Eye movements were calibrated 

before each video. Participants were instructed to watch the video as if they were the driver. 

Although participants were instructed to view the clips as if they were a driver, it was not 

possible to measure if this was what they did, since they were not requested to commentate or 

report on the clips. Participants viewed the eight video clips, presented in a randomized order, 

whilst their eye movements were tracked. They were asked to press the button as soon as they 

saw a hazard. Four of the courses contained six hazards, each ending a short time after the first 

or second hazardous event occurred. The four non-hazardous courses were terminated at the 

same section of course as in the active driving condition. The experiment lasted one hour. 
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3.2.5 Design 

  For the eye movement and hazard perception performance analyses, the independent variable 

being manipulated was condition (Driving and Non-driving conditions). This is a between 

subjects variable where participants took part in either the Driving (n = 17) or Non-driving (n 

= 17) condition. Between subjects t-tests were used to determine significant differences in eye 

movement and reaction time measures. 

 

3.3 Results 

  For eye-movement analyses, only the four courses that did not contain hazards were 

considered, to avoid hazard specific artefacts. Hazard detection times are also reported, 

including response accuracy, the time to see the hazard and time to verify the hazards. All 

reaction time data was manually coded by viewing the recorded video files on a frame-by-

frame basis and recording the event related timestamps. 

 

3.3.1 Eye movement analyses 

  Eye movement data were averaged and collapsed across the four courses. The specific area 

of interest is that of the roadway (Figure 3.3) which excludes vehicle specific areas such as 

rear-view mirrors, wing mirrors and speedometer. Each measure was compared across the 

driving and non-driving conditions. 
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Figure 3.3. Illustration of the visual area of interest (roadway) highlighted in yellow. Screen 

dimensions: 1280 × 1024 pixels (41.9 × 33.4 cm; 38.5 × 31.1 deg). Interest area dimensions: 

1280 × 266 pixels (41.9 × 8.7 cm; 38.5 × 8.3 deg). 

 

 

(a) 

 

(b) 

 

Figure 3.4 Examples of individual participant density heatmaps showing the distribution of 

fixations for (a) the driving and (b) non-driving conditions. 

 

  First, to investigate road scanning behaviour, the standard deviations of the x-axis and y-axis 

fixation locations were measured within the roadway field of interest illustrated by Figure 3.3. 

A larger standard deviation of the distribution of fixation locations would equate to a larger 

spread in eye movements; suggesting increased scanning of the road. Figure 3.4 provides a 
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representation of the distribution of fixation locations for both driving and non-driving 

conditions in the form of density heat maps. 

 

(a)                                                                       (b)  

 

Figure 3.5. Mean standard deviations of (a) horizontal fixations, (b) vertical fixations across 

driving and non-driving conditions. Error bars show standard error of the mean. *, ** and 

*** denotes significance at the 0.05, 0.01 and <0.001 levels respectively. 

 

  Figure 3.5 shows the horizontal (a) and vertical (b) distribution of eye movements along the 

roadway for each condition. The distribution of fixations was larger for both the horizontal and 

vertical directions for the non-driving condition. Between-subjects t-tests revealed the 

difference to be significant (horizontal: t(32) = 4.29, p < .001, d = 1.52; vertical: t(32) = 3.19, 

p = .001, d = 1.13). 

  To investigate how far, on average, along the road participants fixated, the mean y-axis 

fixation was measured. This was measured as an angle (degrees), from the top of the screen (0 

deg) to the bottom (31.1deg). A larger value thus equates to individuals looking lower down in 

the display and thus closer to the front of the vehicle. 

 

*** *** 
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Figure 3.6. Mean y-axis fixation for driving and non-driving conditions. Error bars show 

standard error of the mean.  

 

  Figure 3.6 shows the differences in mean y-axis fixations for each of the driving condition. It 

was found that those in the driving condition fixated lower down in the scene than the non-

driving condition. This difference was statistically significant (t(32) = 7.48, p < .001, d = 2.54). 

 

  Although absolute differences may be modest, in terms of distance on the road, it is important 

to note that several metres of the simulated roadway will correspond to a relatively small visual 

angle. It was not possible to accurately calculate the absolute distances along the road because 

“ground truth” information concerning the simulated depth distances and dimensions of the 

road was not available. It is also important to note that although data were collapsed across 

courses, Multivariate analyses (MANOVA) revealed similar significant overall effects which 

suggest the effects are consistent across courses (horizontal scanning: V = 0.53, F(4,29) = 4.91, 

p < 0.001; vertical scanning: V = 0.57, F(4,29) = 9.46, p < 0.001; mean y-axis fixation: V = 0.7, 

F(4,29) = 16.83, p < 0.001). 

*** 
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  One other important point to note is that these eye movement measures were averaged across 

the whole course, and thus it is unclear whether the differences in eye movements were 

consistent across time. However, there was an attempt to control for this by using courses which 

remain uniform across time (see section 2.1.3). That is, the environment, road events and 

stimuli did not change throughout the course. As such, it was predicted that these differences 

would remain consistent across time, across different sections of the road. 

 

3.3.2 Hazard detection performance 

  Response accuracy to the hazards was recorded as the mean probabilities for detecting the 

hazards, the mean probabilities for fixating the hazards and the mean probabilities for fixating 

the hazard but not detecting it. This was recorded for the driving and non-driving conditions. 

The mean values can be viewed in Table 3.1. Response accuracy was high in both conditions 

(Table 3.1). This was likely due to the highly attention capturing hazards used. 

 

Table 1. Mean probabilities for hazard detection and standard deviations. 
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  Overall reaction times were measured using the button press. This reaction time was taken as 

the latency from the first frame of the video when the hazard appeared to when individuals 

pressed the button. 

 

 

Figure 3.7. Overall reaction time to the hazards for driving and non-driving conditions. Error 

bars show standard error of the mean 

 

  Figure 3.7 shows the differences in reaction time between driving and non-driving conditions. 

Hazards in the driving condition were responded to slower than those in the non-driving 

condition. This difference was significant (t(32) = 2.0, p = 0.042, d = 0.7). 

  Two hypotheses were proposed in explaining this increased latency for participants in the 

driving condition. The first is the idea that there is a longer latency in seeing the hazard. That 

is, participants do not fixate as quickly when driving. Alternatively, the latency may be the 

result of a processing, or verification issue, in that participants successfully fixate the hazard 

but it takes longer to acknowledge the hazard. Indeed, it may be possible that both of these 

factors result in the longer latencies observed. 

* 



73 

 

  As described in the Methods 3.2.3, the average time it takes to see the hazards (Time to See) 

was calculated as the time between when the hazard first appears to when participants first 

fixate on or near the hazard. Processing time (Time to Verify) was calculated as the time from 

the initial fixation to when participants responded using the button press. Figure 3.8 shows 

these measures plotted for the two conditions. If either the Time to See or Time to Verify 

accounts for the reaction time latency across the tasks, a statistical interaction between these 

two timing measures and the two driving conditions should be observed. 

 

 

Figure 3.8. The interaction of the average time taken to see and verify the hazard. Error bars 

show standard error of the means. 

 

  A 2x2 mixed measures ANOVA was conducted using driving condition (driving and non-

driving) and timing measure (Time to See and Time to Verify) as independent variables. There 

was a main effect of driving condition on the overall timings (F(1,32)=8.69, p=0.007), where 

those in the non-driving condition responded to the hazards faster overll. This is simply 

repeating the overall reaction time measure above. There was also a main effect of the timing 

measure (F(1,32)=8.6, p=0.008), where, independent of task, the time to verify took longer 
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than the time to see the hazards. This may be attributed to the largely contextually salient nature 

of the hazards which could be attracting eye movements more exogenously – which would 

require less processing time. 

  Importantly however, the ANOVA showed that there was no significant interaction between 

these variables (F(1,32)= 0.14, p=0.77) . It is inferred therefore, that both the Time to See the 

hazard and the Time to Verify the hazard contribute to the increased latency to respond to the 

hazard in the driving task. 

 

3.4 Discussion 

  Current models of visual guidance in complex scenes are often derived from relatively simple 

tasks using stimuli that do not represent a naturalistic setting. The primary aim here was to 

therefore measure and quantify, under controlled conditions, any differences in eye movement 

behaviour and hazard detection times between active driving and non-driving conditions. A 

number of differences were found. Namely that individuals scan the roadway more and are 

faster to respond to hazards during passive video driving tasks compared to simulated driving. 

  Before the results are discussed in more detail, it is important to briefly highlight the research 

by Underwood, Crundall, et al. (2011). They reviewed a number of studies to compare the 

visual behaviour between different experience groups across different methods of analyses, 

namely: video tasks, simulated tasks and real driving. They showed that there are clear 

similarities across these tasks. For example, inexperienced drivers may scan the roadway less 

than experienced drivers across both video and active driving task (e.g. Crundall & 

Underwood, 1998; Underwood, Chapman, et al., 2002). These similarities provide relative 

validity across tasks; where similar patterns of behaviour are observed across different testing 

conditions (Godley, Triggs, & Fildes, 2002). Relative validity is important, particularly if we 

are able to differentiate between safe and non-safe drivers using simpler methods in the 
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laboratory. Therefore the importance and usefulness of video based tasks should not be 

disputed. However, absolute measures, for example, exactly how much less inexperienced 

drivers scan than experienced drivers, may differ across video and active tasks. Such absolute 

comparisons of behaviour can only be made across driving methods if stimuli and 

environments are as similar as possible. 

  In this current experiment, video recordings of the driving simulator environment were used 

for the non-driving condition, making the stimuli the same across conditions allowing for 

absolute behavioural comparisons. In line with the predictions made, there were some 

differences found in the tasks measured, each of which are discussed below. The main eye 

movement and reaction time findings are discussed separately with possible explanations for 

the results before describing how these results contribute to our current understanding of 

driving and more generally, to models of eye movement behaviour during everyday tasks. 

 

3.4.1 Eye Movement Behaviour 

  There were a number of visual behaviour differences across driving and non-driving tasks. 

Overall, individuals searched less of the scene with their eyes when performing the driving task 

than the non-driving task; as indicated by the smaller distribution of fixations across both the 

horizontal and vertical planes (Figure 3.5). The main reason proposed here is that there is 

increased demand placed upon the visual and attentional systems by the interactive nature of 

the active task.  

  Perceptually, certain areas of the environment are likely more informative to an active driver 

than a passive viewer in order to successfully navigate the environment, and thus drivers may 

dedicate fewer resources to generally scanning the roadway in an active task. Specific locations 

within the scene may be important when driving. The focus of expansion (FoE) is the apparent 

point from which motion vectors flow, and normally corresponds to the direction of heading 
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(Gibson, 2014; Warren, Kay, Zosh, Duchon, & Sahuc, 2001). Some research suggests that the 

area on or near the FoE is typically favoured by drivers (Mourant & Rockwell, 1972; 

Underwood et al., 2003) because it provides information to the drivers about vehicle direction. 

However, this source of visual information is likely less favoured in complex driving where 

for example, the FoE may exist only beyond a bend, it may be too degraded to be of any use 

(as will likely be the case in low resolution simulated driving experiments), or it may not exist 

at all (such as approaching an intersection). More recently then, gaze has been found to be 

directed towards points in space one wishes to pass (Robertshaw & Wilkie, 2008; Wilkie et al., 

2010; Wong & Huang, 2013) typically around several seconds before the vehicle reaches the 

gaze point (Land, 2006; Underwood, 2007). For locomotor steering, a number of different 

sources of information, as described by Kountouriotis et al. (2013) are thought to influence 

control. These include visual direction (Rushton et al., 1998), the lane splay angle (Li & Chen, 

2010) and the visual appearance of lane markers (Wallis, Chatziastros, & Bülthoff, 2002). What 

is important here is the idea that these sources of information allow successful control and 

guidance through the driving environment and are therefore useful only for an active driving 

task. If one is not actively controlling the vehicle, there is little need to fixate on or near these 

sources of information, because direction information is less critical when not actively 

controlling the vehicle through an environment. It is possible that observers can dedicate eye 

movements to searching the environment more exhaustively for hazards when not driving. 

Such a hypothesis could explain the difference between conditions for the distribution of 

fixation locations presented here (Figure 3.5). 

  Cognitive attentional factors could have also influenced the pattern of results here. There is 

likely to be a cognitive load imbalance across the driving and non-driving tasks. Specifically, 

the driving task required allocation of attentional resources to drive, including steering, braking 

and lane positioning. As mentioned, increasing cognitive load during driving tasks results in a 

decrease in scanning behaviour (Engström et al., 2005; Recarte & Nunes, 2003; Savage et al., 
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2013). Thus it is likely that the increase in cognitive load when performing the active driving 

task here could reduce the range of scanning behaviour. 

  There is also a possibility that the observed scanning differences in eye movements was 

simply due to less visual motion in one condition relative to the other. This is unlikely because 

of the design. For the eye movement analyses, each of the four courses driven and viewed were 

identical across conditions and contained the same number of turns with no differences in the 

number of lane changes across conditions. On average, the active driving condition was 

completed slower than the non-driving task, where analyses found a mean difference of 8.3 s 

(refer to Methods 3.2.2). One could argue that driving slower in the active condition than the 

driving speed in the video condition could deliver different visual motion across the conditions. 

However, on average, the 8.3 s difference was around 5% of the total drive—a proportion 

which is likely not large enough to induce large differences in visual motion processing. 

  It was also found that individuals tended to fixate closer to the front of the vehicle, and thus 

less far ahead along the road, in the active driving condition than the non-driving condition. 

This could be due to different use of information (e.g. to maintain lane position in the driving 

condition) or it could reflect biases in the non-driving condition. For example, it is well known 

that static scenes framed in a display monitor typically elicit a bias to fixate the centre of the 

image, regardless of content (Tatler, 2007; Vincent, Baddeley, Correani, Troscianko, & 

Leonards, 2009). The same eye movement behaviour is also seen in movie viewing paradigms 

(Cristino & Baddeley, 2009). If our data for the non-driving condition reflects this bias, it could 

be argued that the interactivity of the visuomotor task allows the visual system to override this 

phenomenon and allows visual attention to be allocated towards more task relevant 

information. 

  These differences in fixation patterns provide evidence to suggest that less naturalistic settings 

do not fully capture important subtleties about where gaze is deployed during natural tasks. 

This could be because non-active tasks do not elicit the same specific goal directed visual 
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behaviour seen during more natural tasks where visuomotor control is incorporated. We 

propose that the different fixation patterns described here provide support for the claim that 

studying vision under the most naturalistic conditions delivers a different pattern of visual 

behaviour than for less naturalistic conditions. 

 

3.4.2 Hazard detection 

  From the results obtained in this experiment, it is clear that individuals are faster at detecting 

hazardous situations when taking part in a non-driving hazard perception task than when 

driving. Participants were around 1–1.5 seconds slower to respond to the hazards in the driving 

task than the non-driving task. One could argue that differences in reaction times between 

conditions are due to a delayed motor response in the active task since the button must be 

pushed whilst also driving. The set-up was designed to reduce this possibility, with the response 

button located where the right thumb would naturally be when holding the wheel. 

  Two explanations are proposed here to explain the increased latency. First, it was identified 

that individuals scanned the roadway less in an active driving task and look closer to the vehicle 

(Figure 3.5 and 3.6). Drivers may be slower to identify the hazards because of this more 

impoverished search. The second idea relates to the problem of cognitive load. The multiple 

procedures in driving are comparable to dual tasking; that is, performing two or more activities 

concurrently. When dual-tasking, attentional limitations occur where cognitive load is high 

and, as a result, task performance is poorer, particularly on a secondary task (e.g. Pashler, 1998; 

Moors & De Houwer, 2006; Sala, Baddeley, Papagno, & Spinnler, 1995). Therefore, one may 

expect to observe longer processing times in the driving task. Statistically, both the time to first 

fixate the hazards and the time to verify the hazards appeared to influence hazard perception 

times together (Figure 3.8). 
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  These reaction time findings again provide support for the idea that video-based methods of 

investigating driving behaviour are of limited utility, because they do not predict the slower 

reaction times that we find when participants are engaged in an active driving task. 

 

3.4.4 Conclusions 

  The aim of this chapter was to provide insights into driving and eye movement behaviour 

methodology. Based on the idea that investigating eye movement behaviour may be more 

useful when investigated under the context of action, this chapter sought to compare driving 

and non-driving conditions while performing a hazard perception task to make an absolute 

comparison between the two kinds of task. A number of visual and behavioural differences 

across these two typical driving experimental methods were identified and it can be concluded 

that the interactivity of simulated driving places more of a demand upon the visual and 

attentional systems than simply viewing first-person-view driving movies. Therefore, video 

based methods do not always provide a valid proxy for active driving. In addition, more 

evidence is provided that the generation of models of eye guidance should ideally originate 

from more naturalistic methods (Borji et al., 2014; Johnson et al., 2014). There may also be 

implications for providing more ecologically valid driver training and assessment tools – these 

are discussed in the General Discussion (Chapter 7). 
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Chapter 4 

 

Insights into individual differences in eye 

movements: A case for attentional 

function 

 

  This study explored how individual differences in visual cognition may correlate with ‘good’ 

visual scanning behaviour typically associated with ‘safer’ drivers. The competition for 

processing resources could limit efficient driving behaviour, both in terms of driving 

performance and eye movement behaviour. Therefore, those better able to deploy attention 

might show good visual scanning behaviour. An approach similar to that of ‘cognitive 

ethology’ (Kingstone et al., 2008) was taken, where the aim was to observe differences in eye 

movement behaviour occurring naturally, due to an individual's own underlying cognitive 

processes. This study also explored a range of visual cognition tasks to test the hypothesis that 

active visual attention tasks, requiring sustained attention and visuomotor control, will be the 

best predictor of visual scanning behaviour and driving performance. Before the study is 

described, some of the literature regarding eye movements and driving is recapped before 

exploring more specifically how an individual's visual attentional function might relate to 

visual behaviour and driving performance. 
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4.1 Introduction 

  As discussed in detail in section 1.3, an efficient visual strategy, as observed in experienced 

drivers, is to exhibit a wide horizontal visual search and to make use of the vehicle mirrors 

(Alberti, Shahar, et al., 2014; Crundall et al., 2003; Crundall & Underwood, 1998; Falkmer & 

Gregersen, 2005; Underwood, Chapman, et al., 2002). This type of visual behaviour is 

important because it is likely representative of someone who is scanning the road for potential 

hazards, e.g. looking to the side pavements for possible pedestrians stepping out, inspecting 

slip roads often for joining traffic, or looking around for possible undertaking or overtaking 

vehicles in demanding situations. It is important to understand why some individuals may 

exhibit less effective visual strategies when driving, particularly between experienced and 

novice drivers. If we can identify the reasons for the different visual strategies, this knowledge 

could lead to development of visual training and assessment tools for driving. 

  It was suggested in Section 1.3.3 that an individual’s ability to handle the cognitive demands 

of the driving task may be a likely source of the individual differences in eye movements that 

are observed. Studies show that by increasing the cognitive load when driving, by introducing 

a secondary mental task, overall scanning behaviour decreases (Engström et al., 2005; Recarte 

& Nunes, 2003; Savage et al., 2013). In Chapter 3, individuals’ eye movement behaviour 

during a passive video-based was compared to eye movement behaviour in an analogous active 

simulated driving task. It was found that those who performed the active driving task scanned 

the roadway less than those who performed the video watching task. Because the apparatus, 

visual stimuli and environment were identical across the two tasks, it was possible to infer that 

differences in eye movement behaviour were in part due to the additional attentional demands 

involved with actively controlling the vehicle. Thus it is plausible to suggest that the 

improvement in visual behaviour we see in experienced drivers is because the process of 

controlling the vehicle has become more of an automated process, freeing up resources to 

visually attend to other areas of the driving environment. Therefore, the question is proposed, 
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do those with better ‘attentional function’ distribute their eye movements more appropriately 

when driving? (see Section 1.3.3) 

  Although little is known about the link between attentional function and eye movement 

behaviour, tasks such as the Useful Field of View (UFOV), demonstrate the links between 

attentional function and driving performance. To recap, this task aims to assess aspects of 

attention such as perceptual span, visual processing speed and working memory function. 

Better performance on this task, thereby demonstrating higher level of attentional function, has 

been linked to better, and indeed, safer driving behaviour (Ball, Owsley, et al., 1990; Ball et 

al., 1993; Clay et al., 2005) (Section 1.3.3). 

 The limits of the UFOV should be highlighted here however. Bowers et al. (2011) noted that 

the UFOV task only measures selective and divided attention, it does not require sustained 

attention (attention over longer durations) to complete. In addition, the stimuli used are static. 

Compare this to real life driving, where sustained attention (attention over longer durations of 

time) to dynamic stimuli is crucial to driving safely. Bowers et al. (2011) explored how 

performance on a multiple object tracking (MOT) task, where attention must be directed to 

multiple moving objects whilst ignoring distractors, relates to driving performance. Those who 

performed worse on the MOT task also had higher error scores on a road test (Bowers et al., 

2011). In addition, MOT was also a stronger predictor than UFOV in predicting the ability to 

detect hazardous pedestrians during simulated driving in those with central visual field loss 

(Alberti, Horowitz, Bronstad, & Bowers, 2014). These results highlight not only the link 

between attentional function and driving but also suggest the importance of incorporating a 

dynamic assessment of sustained visual attention when studying driving performance – which 

is therefore included in this experiment. 
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4.1.1 Aims and hypotheses 

  There are two main aims in this study. The first is to identify if individuals who exhibit better 

attentional function also show better eye movements behaviour when driving. In other words, 

are differences in eye movement behaviour partly due to one's ability to successfully manage 

the attentional demands of driving? Participants were given three visual attention tasks to 

measure attentional function and then asked to drive a number of routes in a driving simulator 

programme, whilst eye movements were tracked. The attention tasks attempted to target a 

number of visual and attentional components used in driving, including divided and sustained 

attention, attention alertness, spatial awareness and visuomotor control. Performance on the 

attention tasks was compared with visual behaviour on the simulated driving task. It was 

hypothesised that those who performed better in the attention tasks, thereby demonstrating 

better general attentional function, would exhibit more effective or efficient visual behaviour 

while driving. 

  The second aim was to further the understanding of the tasks that may be useful to assess 

driving performance. Whilst maintaining the previously mentioned dynamic and sustained 

attentional properties of a task, it was investigated whether tasks incorporating active 

visuomotor control predict both driving performance and eye movement behaviour. 

Performance across a passive multiple object tracking task and two ‘object avoidance’ tasks, 

both of which incorporated a visuomotor control component, was compared. It was 

hypothesised that better performance on each of the two object avoidance tasks would more 

strongly predict more efficient visual behaviour and driving performance than the multiple 

object tracking task. This is because driving also involves active visuomotor control. Details 

of these tasks are explained in section 4.2 below. 
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4.2 Methods 

4.2.1 Participants 

  Twenty-seven participants took part in the study (12 males). Two participants were excluded 

due to poor eye movement calibration (>2 deg). This left a sample of twenty-five (11 males) 

with an age range of 18-51 years (mean age = 22.5 years; St. Dev = 6.6). All participants had 

normal or corrected-to-normal vision and were recruited through the University of St Andrews 

SONA experiment participation scheme. They were paid £10 for participation. All participants 

had held a drivers' licence for at least one year (mean = 4.3; St. Dev = 5.7) and were from 

countries where driving on the left (e.g. UK) is standard. Participants reported having no 

previous experience with a driving simulator. Given the possible similarities between the 

driving simulation and attentional tasks to a video game environment, participants were 

recruited with little or no video game experience. This experience did not differ significantly 

across the high and low performance groups. The study was approved by the University of St 

Andrews University Teaching and Research Ethics Committee (UTREC). 

 

4.2.2 Stimuli and Apparatus 

  All testing was conducted at the University of St. Andrews' Social Immersion suite. 

Participants performed both the driving simulation and attentional tasks on the same viewing 

screen. Images were projected using an NEC MT1065 video projector. Participants sat 338cm 

from the projection screen which had dimensions of 377cm (58.3 deg) x 212cm (34 deg). See 

Figure 4.1 for the basic apparatus set-up. 
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Figure 4.1. Photograph showing the basic experimental set-up. Participants sat 338cm from 

the projection screen. Screen dimensions: 377cm (58.3 deg) x 212cm (34.8 deg). 

 

4.2.2.1 Driving Simulation 

The driving simulator software used was City Car Drive (Forward Development, 2014) (see 

General Methods). Side mirrors, a rear-view mirror and speedometer were available to the 

participants on-screen (see Figure 4.2 for instrument layout). The simulated field of view was 

programmed to be 85 degrees, similar to that in a real car. A Logitech Driving Force GT 

steering wheel and pedals combination was used to control the vehicle. The virtual driving 

environments consisted of three courses; 1) a country highway 2) an urban driving scene and 

3) a motorway environment (Figure 4.2). Courses are ordered here by increasing road 

complexity. For example, the country highway consisted of only single and dual lane 

carriageways with no chance of encountering pedestrians. The urban environment contained a 

number of extra visual stimuli such as pedestrian crossings and contained sections with 

multiple lanes (up to three at times). Finally, the motorway consisted of fast moving traffic 

with multiple driving lanes and slip roads. Each course contained a medium-level amount of 

traffic. The driving simulator software also tracked driving performance using a points system 

(see Measures section for more details). 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.2. Screenshot images of the typically environments encountered in the (a) country 

highway, (b) urban area and (c) motorway. Note the speedometer is located in the top-left of 

the scene, with centre rear-view mirror below it, and passenger side mirror to the lower left 

 

4.2.2.2 Visual Attention Tasks 

Multiple Object Tracking. The MOT task was programmed using EventIDE software 

(OkazoLab Ltd). Ten stationary white circles (diameter = 2.2 deg, luminance = 21.93 cd/m2) 

appeared on a black background on the screen (58.3 deg x 34.8 deg). After 50ms, 5 flashed 

orange for 2 seconds. They returned to white and all ten circles then moved around the display 

at random for 7 seconds. Motion speeds ranged from 4 deg/s to 9 deg/s and directions followed 

a random walk. Circles did not overlap each other while moving. When the motion stopped, 

all ten circles remained stationary until the participant indicated which five had originally 

flashed, by clicking on each with a mouse (Figure 4.3). Immediate feedback was given to the 

participant indicating how many (out of 5) had been correctly selected. The percentage correct 

for each trial was taken as the performance measure, averaged across all 30 trials. 
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Figure 4.3. Multiple Object Tracking Task. Participants are presented with the stimuli (A) 

briefly before five dots begin to flash orange (B). All dots turn back to white and then move 

randomly around the scene for seven seconds (C). Motion stops and the participant must 

select the five dots which had flashed orange (D). In this example, the participant has 

correctly identified four out of a possible 5 targets. (Note, the final positions of the dots is 

not the same as the original location as pictured here– this is for illustrative purposes only). 

 

2-Dimensional Object Avoidance. Participants controlled a blue circle (diameter = 2.0 

deg, luminance = 2.86 cd/m2) on the screen using the mouse. The task was to move the circle 

left-right or up-down the screen (size 34.5 x 32.2 deg) to avoid it touching a number of moving 

red circles (diameter = 2.0 deg, luminance = 2.86 cd/m2). Initially, three red circles were 

present. After 14 seconds a new red circle appeared, and so on until the controlled blue circle 

collided with one of the red circles (Figure 4.4). The total time of each trial was taken as a 

measure of performance where a longer time indicates better performance. Times were 

averaged across three trials. (Note, software for this task used was freely available online and 

was accessed by www.funnygames.co.uk/avoid-the-balls.htm. It was not programmed by the 

experimenters and therefore, specific parameters of the task e.g. circle movement speed, could 

not be altered or recorded.) 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.4. A static representation of the 2D object avoidance task. The task starts with three 

red balls moving (a), then gets increasingly more difficult such as in (b) with five balls and 

in (c) with seven balls. 

 

3-Dimensional Object Avoidance. Using the right and left arrows on a keyboard, 

participants controlled the left-right motion of a small grey triangular object (size = 4.1 deg at 

base) through a virtual 'field' presented on screen that simulated self-motion in depth towards 

a clearly defined horizon (58.3 x 33 deg). The task was to avoid the red and yellow cubes that 

blocked the target’s path (maximum size = 5.1 x 5.1 deg, luminance = 7.6 cd/m2) (Figure 4.5). 

Participants could not control the speed of the object, only move the target triangle left or right 

to avoid the oncoming cubes. The software tracked the performance using a score system where 

the longer the participant was able to avoid the cubes, the higher the score. Scores were 

averaged across four trials. (Note: The task used was freely available online and was accessed 

by www.cubefield.org.uk. It was not programmed by the experimenters and thus, the specific 

parameters of the task, e.g. speed of forward motion could not be altered or recorded.) 
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(a) 

 

(b) 

 

 

Figure 4.5. Static representations of the 3D object avoidance task. In (a) the participant is 

navigating an area where the cubes are randomly located. In (b), the participant has reached 

an area where the cubes form a more unified tunnel through which to navigate. 

 

4.2.2.3 Eye movement recording 

  An SR Eyelink II eye tracking system was used to record eye movements as described in the 

General Methods. An initial 12 point screen calibration at a distance of 98cm (using a 

secondary screen) was done to ensure that recordings had a mean spatial error of less than 0.5 

deg. This screen was lowered away from the field of view during recording. A 9 point depth 

calibration was conducted on the stimulus display screen at a distance of 338cm to correct for 

depth parallax. Participants were free to move their head. 

 

4.2.3 Measures 

4.2.3.1 Task Performance Ranking 

  As an overall measure of attentional function, participants' performance on each of the three 

visual attentional tasks was recorded. An averaged rank system was used to split participants 

into low task performance and high task performance groups. Specifically, participants' task 

performance was ranked (out of 25 participants) for each of the individual tasks. The rank 

position was then averaged across all three tasks before a median split of the total average ranks 
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was used to separate high performers and low performers. For example, if an individual ranked 

2/25 in the MOT, 3/25 in the 2DOA task and 4/25 in the 3DOA task, then the averaged rank 

score would be 3; which would place this individual in the high task performance group. And 

conversely, for example, an individual who ranked 20/25 in the MOT, 21/25 in the 2DOA task 

and 22/25 in the 3DOA task, would deliver an averaged rank score of 21; which would place 

this individual in the low performance group. Eye movement behaviour and driving 

performance was compared across these two groups (see below). The median rank was 

calculated to be 14. 

 

4.2.3.2 Eye Movement Measures 

  All eye movement information was recorded and collated via SR Research Data Viewer 

software. Using this software, the driving scene was divided into four different interest areas 

(Figure 4.6): the rear-view mirror, driver-side mirror, passenger-side mirror and the roadway. 

Note, the passenger-side mirror was superimposed to the left of the screen as shown in Figure 

4.6. Speedometer fixations were not included in the analyses. 

 

Figure 4.6. Static illustrations of each interest area. 1) Rear-view mirror (16 deg x 5 deg); 2) 

Passenger-side mirror (12 deg x 5 deg); 3) Driver-side mirror (19 deg x 7 deg); 4) Roadway 

(58 deg x 27 deg at maximum length and height). 
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Fixation locations. The standard deviations of eye fixation locations along the vertical 

and horizontal axes (using x and y-axis pixel coordinates) were measured to provide an 

indicator of the spread of visual attention. These were converted from screen units into degrees. 

A larger standard deviation would suggest a larger distribution of fixations and thus a larger 

spread of visual attention. Only fixations located within the roadway were included in this 

analyses; mirror or speedometer fixations were excluded. 

Mirror Interest Area analyses. To measure how much individuals inspected the vehicle 

mirrors, the total average fixation count (as a percentage of the total fixations) and total average 

fixation dwell time (as a percentage of the total drive time) was calculated for the interior 

mirror, driver-side mirror and passenger-side mirror. 

Visual processing. Average saccade velocities were recorded to infer the efficiency at 

which the scene was sampled, where faster average saccades may suggest increased 

information processing. Average saccade sizes were also measured. Saccade analyses were 

performed for the overall scene (i.e. all interest areas) and for the roadway interest area 

separately. Fixation durations and the number of fixations were also recorded for the roadway 

and the overall scene as a measure of cognitive processing. Longer fixation durations and more 

fixations made would suggest longer processing times. 

 

4.2.3.3 Driving Performance 

  Driving performance was measured on a point system tracked by the simulator software. 500 

points were allocated to each 'minor' infringements such as driving 10kmph over the speed 

limit, not maintaining lane positioning, obstructing another vehicle causing it to break 

unexpectedly and not observing priority at junctions. More 'major' infringements were scored 

1000 points and were characterised as accidents or dangerous driving, for example, crashing 

into another vehicle or pedestrian or driving 20kmph over the speed limit. The total points 
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awarded provided a measure of driving performance where a larger number of points suggests 

poorer driving performance. A single total measure of driving score was recorded. 

 

4.2.4 Procedures 

  Participants were instructed they would be completing a two-part study on driving and visual 

attention, one part being the driving simulation and the other being completion of the visual 

attentional tasks. All participants first completed a questionnaire examining their level of vision 

and driving experience. Potential participants completed a Landolt C visual acuity test and were 

included if acuity was measured as <2.0 Minimal Angle Resolution. Thirteen participants 

performed the driving task first and twelve participants performed the attention tasks first. 

Breaks were given between tasks and at any point required by the participant. 

  For the driving task, participants were presented with the first person viewpoint of a car in a 

large car park on screen. They were instructed in how to use the car: including how to steer, 

use the pedals, turn signals and mirrors. They were then given five minutes to practice the 

simulated driving in the car park and informed they would be completing a number of set 

routes. Eye movements were calibrated using the Eyelink II at both the calibration distance and 

at the video screen distance. Calibration was done before each course and recording began at 

the start of each course just as participants began to drive. Each of the three courses was driven 

in a randomized order. For the country highway, participants were simply instructed to follow 

the road at the beginning of the drive. For the motorway course, participants were again 

instructed to follow the motorway until a certain exit was to be taken. For the urban district, 

participants were instructed to take three turns (a left turn, a right turn and another left turn) at 

certain point on the course. These instructions were given at least 10 seconds in advance of the 

turn to avoid awkward or dangerous manoeuvring of the vehicle by the participant. After a 

certain location was reached (known to the experimenter) in each of the courses, recording of 

the eye movements stopped and the participant was instructed to stop the vehicle. 
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  Either after the driving task or before, participants completed the three attention tasks. The 

order of the attention tasks was completed based on a Latin square design to guard against 

practice effects. Although not relevant for the purposes of this current study, eye movements 

were calibrated and tracked for each of the tasks. For the MOT task, participants were 

instructed they had to track, with their eyes, five circles on screen amongst a total of ten. They 

were told that they should pay attention to the five circles that flashed orange at the beginning 

of each trial and try to maintain attention on these circles as they moved around the screen. 

Five practice trials were given before they completed all thirty experimental trials. For the 

2DOA task, participants were instructed they were to control the blue ball on screen with the 

mouse and had to actively avoid the moving red balls. They were informed that more red balls 

would continue to appear as the trial went on. One practice trial was given before three 

experimental trials were completed. Each trial ended when the blue ball touched one of the red 

balls. For the 3DOA task, participants were instructed they would have to control the small 

grey triangle at the bottom of the display and navigate the 3D environment using the left and 

right arrow keys on a keyboard. They were instructed to try and avoid the red and yellow cubes 

which appeared. Each trial ended when one of these cubes was hit. The complete experiment 

lasted a maximum of two hours. Two practice trials were complete for four experimental trials. 

 

4.2.5 Design 

  For eye movement and driving performance analyses, the independent variable was the task 

performance group (high task performance and low task performance). This is a between 

subjects variable where, based on their averaged rank performance during the visual attention 

tasks, participants were either classed as low task performers or high task performers. Between 

measures t-test were used to test for significant differences in eye movement behaviour and 

driving performance across these two groups. Pearson correlations were also performed to 
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identify if performance in each of the individual visual attention tasks correlated with the main 

eye movement measures of horizontal visual scanning and driving score. 

 

4.3 Results 

4.3.1 Task performance analyses for eye movement measures and driving performance 

  Participants were split into either high or low task performance groups based on their average 

rank scores for the attentional tasks (section 4.2.3). Figure 4.7 shows the raw scores in each of 

the attention tasks for each participant. Dark bars indicate participants who were assigned to 

the high performance group, and light bars to those in the low performance group. 

 

Figure 4.7. Raw scores for each task and for each participant. (a) MOT task, (b) 2DOA task, 

(c) 3DOA task. 
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  A number of eye movement measures and driving performance were compared across these 

two group using between subjects t-tests. For most of the measures, the data across the three 

different courses were collapsed by averaging the data. 

 

 

Figure 4.8. Differences across high and low task performance groups for overall driving 

performance. Error bars show standard error of the mean. 

 

  Figure 4.8 shows how those who performed better in the attention tasks also exhibited better 

overall driving performance as indicated by the lower number of penalty points received (t(23) 

= 2.21, p = 0.038, d = 0.92).  

 

 

 

 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

High Low

D
ri

vi
n

g 
Po

in
ts

Performance Group

* 



96 

 

(a) 

 

(b) 

 

Figure 4.9 Showing the difference in (a) horizontal and (b) vertical visual scanning of the 

roadway. Error bars show standard error of the mean 

 

  Figure 4.9 shows the distribution of eye movements along the vertical and horizontal axes. 

There was a significant difference in horizontal scanning behaviour across task performance 

groups (Figure 4.9a). Those who performed better in the attention tasks exhibited an increase 

in their horizontal visual scanning of the roadway (t(23) = 2.60, p = 0.016, d = 1.08). There 

was no difference in vertical scanning (Figure 4.9b) (t(23) = 0.38, p = 0.7, d = 0.16). 
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(a) 

 

(b) 

 

Figure 4.10. Differences between task performance groups for (a) use of the mirrors as 

measured by total percentage of fixations (b) use of the mirrors as measured by the total 

percentage dwell time. Error bars show standard error of the mean. 

 

  Figure 4.10a shows the total number of fixations on the different mirrors and 4.10b the total 

dwell time. There were no significant differences found between the performance groups for 

the total number of fixation and dwell times for inspection of the rear-view and driver-side 

mirrors. There was however a significant difference between the performance groups when 

inspecting the passenger-side mirror where those in the high performance group inspected this 

mirror more than those in the low performance group, as measured by the percentage of 

fixations (t(23) = 2.20, p = 0.038, d = 0.92) and percentage dwell time (t(23) = 2.34, p = 0.028, 

d = 0.98). 
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(a) 

 

(b) 

 

Figure 4.11. Showing the differences between task performance groups for (a) average 

saccade velocity and (b) average saccade size for the roadway and overall scene. Error bars 

show standard error of the mean. 

 

  Figures 4.11a and 4.11b show the differences in average saccade velocities and average 

saccade sizes. Although not significant, there was a clear trend (< 0.015 above significance 

level; effect size > 0.8) in the differences in saccade velocities across task groups when 

inspecting the roadway (t(23) = 1.94, p = 0.064, d = 0.81). Where those in the high performance 

groups exhibited faster saccades. They also exhibited significantly faster saccades when 

sampling the overall scene (t(23) = 2.25, p = 0.034, d = 0.98). These effects are independent of 

saccadic amplitude, where there was no difference in average saccade sizes across the groups 

for inspection of the roadway (t(23)=1.54, p=0.14, d = 0.64) and the overall scene (t(23)=1.64, 

p=0.12, d = 0.68). This suggests that those with better attentional function were faster at 

distributing eye movements around the scene. 
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(a) 

 

(b) 

 

Figure 4.12. Fixation duration (a) and average number of fixations (b) for high and low 

attentional function groups for both the roadway and overall areas of the scene. 

 

  Figure 4.12a shows the differences in the average fixation durations for each group for both 

the roadway interest area and all interest areas combined. There was no significant difference 

between the attention groups when fixating the roadway (t(23) = 0.58, p = 0.57, d = 0.24) and 

the overall scene (t(23) = 0.40, p = 0.69, d = 0.24). Figure 4.12b shows the average number of 

fixations made by each group for the roadway and overall scene. There was no significant 

difference when fixating the roadway (t(23) = 0.49, p = 0.62, d = 0.2) and the overall scene 

(t(23) = 0.32, p = 0.75, d = 0.33). Together these results suggest that the efficiency of visual 

processing was similar between the groups when fixating. 

 

4.3.2 Scanning behaviour as a function of road complexity 

  It was found that those with higher attentional function scan the roadway more. Given 

Crundall & Underwood’s (1998) result that horizontal scanning differences occurred only for 
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a more cognitively demanding dual carriageway route (compared to suburban and rural routes), 

it was investigated whether the differences in scanning behaviour between attentional function 

groups occurred for all road types, or whether this effect was stronger for when the road 

complexity was higher. Figure 4.13 shows the differences in horizontal scanning behaviour 

across attentional function groups for each of the routes driven. 

 

 

Figure 4.13. Differences in horizontal scanning behaviour across each of the driving routes. 

Error bars show standard error of the mean. 

 

  Between subjects t-tests revealed significant differences in horizontal scanning behaviour 

between attentional function groups for the more complex urban (t(23) = 2.07, p = 0.05, d = 

0.86) and motorway environments (t(23) = 2.36, p = 0.027, d = 0.98) but not the less visually 

demanding country highway (t(23) = 1.91, p = 0.068, d = 0.80) (after Bonferonni corrections). 

 

4.3.3 Individual task predictions of scanning behaviour and driving performance 

  In line with the second aim of the study, in order to identify which tasks better predict certain 

behaviours, Pearson correlations between performance on the individual tasks and the main 

measures of horizontal scanning and driving performance were conducted. These can be 
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viewed in Figure 4.14. Performance in all three tasks significantly positively correlated with 

each other (data not shown in figure). This is unsurprising given they each attempt to tap into 

related attentional mechanisms 

 

 

 

Figure 4.14. Correlations between task performance and horizontal scanning (a, b and c) and 

driving performance (d, e and f). 

 

. Performance on the 2DOA and 3DOA tasks significantly positively correlated with a larger 

average horizontal spread of fixations (r(25) = 0.59, p = 0.001; r(25) = 0.613, p = 0.001) 

(Figures 4.14a; 4.14b), whereas performance on the MOT task did not (r(25) = 0.3, p = 0.08) 

(Figure 4.14c). However, in the case for the 3DOA task, it is likely that the outlying participant 
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is driving the significance. This is discussed below in the discussion below (section 4.4.4) For 

driving performance, performance on the 2DOA task significantly negatively correlated with 

driving penalty points (and therefore positively with driver performance [r(25) = -0.39, p = 

0.026]) (Figure 4.14d). The MOT also significantly negatively correlated with the number of 

driving penalty points (r(25) = -0.424, p = 0.017) (Figure 4.14e), but interestingly, the 3DOA 

task did not (r(25) = -0.25, p = 0.115) (Figure. 4.14f). Collectively, these results suggest that 

the 2DOA task is the better predictor for both visual and driving behaviour. 

 

4.4 Discussion 

  The main aim of this study was to use a specific set of cognitive tasks to test whether 

individual differences in eye movement behaviour when driving is partly due to one’s ability 

to manage attentional demands. The specific hypothesis was that those individuals who 

performed better on the attention tasks, and thus have better attentional function, would exhibit 

more effective, and safer, visual and driving behaviour. A number of results were found that 

support this. 

 

4.4.1 Comparing eye movement behaviour 

  Those who performed better on the attention tasks also exhibited more efficient visual 

behaviour (Figures 4.9; 4.10; 4.11), behaviour we would typically associate with more 

experienced or safer drivers. Competition for attentional resources during driving may limit 

scanning behaviour. Recarte and Nunes (2003) showed that when performing mental tasks 

while driving (thereby increasing the cognitive load), overall horizontal scanning of the scene 

decreased. Engström et al. (2005) also found increased gaze concentration towards the centre 

of the scene when a higher cognitive load was induced, both during real and simulated driving. 

In addition, Savage et al. (2013) found that increasing cognitive load (using a simultaneous 
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riddle solving task) reduced horizontal scanning on video-based hazard perception tasks. These 

results suggest that cognitive load may be a likely source for individual differences in drivers' 

eye movements. In this study, the levels of cognitive load when driving were not manipulated. 

Instead, attentional function was measured in a separate series of tasks. The evidence here 

suggests that those who have better control over attention resources in general are better able 

to distribute their eye movements to more relevant areas of the driving scene, as shown by 

increased horizontal scanning (Figure 4.9a). 

  This is evidenced further by the finding that this scanning effect appears to become more 

pronounced when road complexity increases. Previous research has found differences in eye 

movement strategies due to the different processing demands of the road type (Chapman & 

Underwood, 1998; Crundall & Underwood, 1998; Underwood, Chapman, et al., 2002). For 

example, Crundall and Underwood (1998) showed that the size of horizontal visual scanning 

on the roadway was similar for novices and experienced drivers on rural and suburban routes. 

However, on dual carriageways, where the layout is much more complex (e.g. presence of slip 

roads), only experienced drivers exhibited a wider horizontal visual scanning strategy. In this 

study, for the less demanding country highway, there was no difference in horizontal scanning 

behaviour between high and low attentional performance groups (Figure 4.13). Thus, even with 

poorer attentional function, the lower demands of the task allowed individuals to successfully 

distribute eye movements across the scene. Importantly however, when the scene became 

increasingly complex i.e. urban or motorway environments, there was evidence of increasing 

scanning behaviour in those with better attentional function. These more complex driving 

environments likely place a higher cognitive load on the visual and attentional systems and will 

limit scanning behaviour more in those with poorer attentional function. 

  These findings suggest that those with better attentional function are better equipped to search 

the road more for hazards. Inattention and failures to scan the roadway are often contributing 

factors to road accidents (Dingus et al., 2006; Klauer, Dingus, Neale, Sudweeks, & Ramsey, 
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2006; Lee, 2008; Lestina & Miller, 1994), and thus the findings may suggest that the reasons 

for these contributing factors is due to poor attentional function. 

  The finding that there was no difference in vertical scanning between groups (Figure 4.9b) is 

not surprising given that the vertical bias in allocating visual attention is lost, typically after 

three months of driving (Chapman & Underwood, 1998; Underwood, 2007; Underwood, 

Crundall, et al., 2011). 

  Some research has suggested that increasing cognitive load reduces mirror use (e.g. Harbluk 

et al., 2007; Recarte & Nunes, 2003). Harbluk et al. (2007) found that when performing 

complex mathematical problems whilst driving, the time spent inspecting the vehicle mirrors 

was shorter compared to when completing simple mathematical problems while driving. 

Related to this, it was found here that those with better attentional function used the passenger-

side mirror more (Figure 4.10). In this experiment, the passenger-side mirror appeared 

approximately 22 x 9 deg from the screen centre. The position of the rear-view and driver-side 

mirror were closer by comparison (17 x 3 deg; 15 x 4 deg respectively). It is speculated that 

those with better attentional function may be better able to allocate eye movements to this part 

of the driving scene more often – as it requires the most effort to deploy attention to (given its 

distance from the average fixation point on the road). The unnatural location of this mirror (see 

Figure 4.6) may have influenced inspection times, however each participant in both 

performance groups was made aware of its location before the drive. The lack of differences 

in rear view and driver side mirror glances between attentional function groups is not too 

surprising (Figure 4.10). Even if an individual has poorer attentional function, the rear view 

mirror and driver side mirror are still hugely important when driving since they provide the 

driver with added roadway information. As such, they should be inspected often. They also 

require the least amount of effort to inspect; where usually small head or eye movements are 

sufficient. 
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  The finding here may be linked to what we know about the importance of situation awareness 

in driving. Through experience, mental models are built in order to allow drivers to predict, 

perceive and respond to certain situations more appropriately (Endsley, 1995a, 1995b, 2004; 

Underwood, 2007; Underwood, Crundall, et al., 2011; Wickens, 2008b). Inspection of the 

passenger-side mirror will likely increase one’s situation awareness of the current environment, 

particularly on the multi-lane roads used in the current experiment as found in Shahar, Alberti, 

Clarke, and Crundall (2010). 

  In addition, there was some evidence to suggest individuals with better attentional function 

are more efficient at visually sampling the scene, as evidenced by the average faster saccade 

velocities (Figures 4.11). Average saccade velocity was independent of saccade size where we 

found no differences across the groups. This suggests that the increase in saccade speeds were 

not simply a product of a wider search. Mean saccade velocity has previously been used to 

infer information processing, where faster saccades have been associated with increased 

information processing (Galley & Andres, 1996) and the converse, where smaller velocities 

are associated with lower levels of vigilance (Galley, 1989; 1993). This finding may thus be an 

indicator of increased processing performance for those with better attentional function. 

However there were no differences found regarding fixation durations and the number of 

fixations made (Figure 12). Typically, longer fixation durations and more fixations are 

indicators that an individual is experiencing greater cognitive load (Land, 2009; Land & Tatler, 

2009; Rayner, 2009). Therefore, although those with better attentional function were more 

efficient at moving their eyes, the time and efficiency of processing the information when 

fixating were equivalent. This suggests that the lack of cognitive resources available when 

driving does not necessarily affect processing visual information when fixating, only when 

moving to the next fixation location. 
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4.4.2 Comparison with studies comparing expert and novice driving 

  The current study investigated individual differences in eye movements in a population with 

similar driving experience. However there are parallel conclusions that can be drawn with the 

literature concerning the differences in eye movement behaviour between novice and 

experienced drivers. The results are consistent with published data showing that there are 

differences in eye movement behaviour between novices and experts (e.g. increased horizontal 

scanning in experts). This provides implicit support for the idea that these differences may be 

due to competing attentional resources of controlling the vehicle and observing the roadway. 

As a novice, more attention may be required for aspects of the driving task itself; both 

cognitively (e.g. dual task demands of steering and changing gears). Fewer resources are then 

available to allocate visual attention to searching the road more for potential hazards or other 

features. We know that through practice and experience, task performance improves when 

actions become more automated and there is less of a requirement for conscious intervention 

(Ackerman, 1988; Moors & De Houwer, 2006). With driving, it may be the case that through 

experience, controlling the vehicle also becomes more automatic and this frees up resources to 

allocate visual attention to other parts of the scene. This may also explain the individual 

differences observed here: controlling the vehicle may require more attentional resources in 

some individuals, resulting in less attentional resources to give to scanning the road. These 

results suggest that some individuals may be better equipped for predicting, detecting and 

responding to hazards. Even if an individual has the knowledge of where to look, if total 

attentional resources limits their ability to scan certain areas of the roadway and mirrors, then 

this in turn may limit their hazard perception ability. 

 

4.4.3 Attentional function and driving ability 

  The Useful Field of View task (UFOV) (Ball, Roenker, et al., 1990) aims to assess visual 

processing speed and attentional function through responses to briefly presented targets in the 
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periphery. Ball, Owsley, et al. (1990) found that those with poorer attentional function, as 

measured by the UFOV also report more problems with driving. Ball et al. (1993) found that 

poorer performance in the UFOV task correlates with more reported road accidents. A meta-

analysis by Clay et al. (2005) supports the claim that poorer attentional function is associated 

with poorer driving performance – particularly in older drivers.  

  Since the UFOV was developed, there have been other successful attempts to demonstrate the 

relationship between attentional function and driving performance, many of which use 

variations of the visual attention tasks used in the original UFOV assessment (e.g. Aksan et al., 

2015; Anstey et al., 2012; Casutt, Martin, et al., 2014; Keay et al., 2009; Schuhfried, 2005). 

One assessment test used is the Attention Network Test (ANT) (Fan et al., 2002). The ANT 

assessment tool is more closely based on a known neurocognitive model of human attention 

which separately assesses the three components of attentional functioning mentioned earlier: 

executive control, attentional orienting and alerting networks. The executive control networks 

involve mechanisms to deal with cognitive conflict and ignore irrelevant stimuli. The 

attentional orienting mechanisms are involved in selecting and guiding attention to potentially 

relevant areas of the scene. And the alerting networks are sensitive to changes in incoming 

stimuli, over both short and long periods of time (see Fan et al., 2002; Petersen & Posner, 2012; 

Posner, 2008). This is important as these attentional components are likely involved in 

successful driving. It has been found that better attentional function, as measured by the ANT 

test predicts better driving performance (Roca et al., 2013; Weaver et al., 2009). 

  A similar result is found in this study where those who performed better in the visual attention 

tasks also demonstrated better driving ability (Figure 4.8). Here, the three attentional 

components (above) would have been engaged during the visual attention tasks. Within the 

MOT task, the goal is to attend to a certain number of moving objects amongst distractors; a 

task which likely targets executive control functions. The two object avoidance tasks, whilst 

they also require executive control to attend to multiple stimuli, may also use attentional 
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orienting mechanisms where one must allocate attention to parts of the scene in order to guide 

the object and predict the movement/positions of the obstacles. One must also be alert to the 

oncoming stimuli that appears during these two tasks, i.e. more balls appearing or cubes 

appearing, which likely tap into the alerting networks. These aspects are all likely involved in 

driving where drivers must 1) successfully attend to relevant hazardous areas whilst ignoring 

other stimuli (executive control), 2) orient their attention to potential hazardous cues (attention 

orienting) and 3) increase readiness to respond and sustain attention to the driving environment 

(alerting network). This may explain why better attentional function relates to better driving 

performance found here. 

 

4.4.4 A place for visuomotor assessment tools? 

  Bowers et al. (2011) discuss how the UFOV, and similar tasks, only measures selective and 

divided attention. It does not require sustained attention to complete. In other words, stimuli 

are only presented for up to several hundred milliseconds, and as such, only capture brief spans 

in attention. Driving is a more complex task and the attentional mechanisms involved in driving 

may not be accurately represented when performing the UFOV task. The MOT, which is a 

more dynamic and sustained assessment of executive control, was proposed and was found to 

correlate to driving performance (Alberti, Horowitz, et al., 2014; Bowers et al., 2011). In this 

current study, there is also evidence to support the claims that performance on the MOT 

predicts better driving performance (Figure 4.14f). 

  However, one of the aims was to provide further insights into the types of tasks which can be 

used to predict overall driving behaviour by investigating tasks which incorporate visuomotor 

control. Therefore 2D and 3D object avoidance tasks were used here to capture the active visual 

attention processes involved in driving. It was predicted they would better predict driving 

performance and scanning behaviour more than the MOT. It was found that performance on 

the 2DOA task supports this (Figure 4.14). An MOT type task is passive in nature, it does not 
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require active visuomotor control. As such, the eye movement strategies involved are likely 

different to a more active task, one which incorporates the vision and action link we see in 

many everyday tasks (Hayhoe & Ballard, 2005; Land et al., 1999). For example, the 2DOA 

task requires vision to initially select a point in space in which to move the ball to, which 

precedes the action of moving the ball. A visual strategy often used in MOT is to make fewer 

eye movements and use covert attention to group stimuli (Fehd & Seiffert, 2008; Oksama & 

Hyönä, 2016; Zelinsky & Neider, 2008). Indeed, there was evidence that individuals made 

significantly fewer fixations in the MOT task than the 2DOA task (MOT mean fixations per 

second: 2.3, 2DOA mean fixations per second: 2.7; t(20)=3.1, p=0.006) 1. This may explain 

why the MOT task does not significantly predict eye movement scanning behaviour in a more 

active task such as driving. 

  Contrary to the predictions, the 3DOA task does not predict both driving performance and 

visual scanning behaviour (Figure 4.14). This could be due to task difficulty where the speed 

at which the object moved through the environment was too fast to be successfully controlled. 

There is some evidence for this task difficulty problem in the data. In Figure 4.13b, it is clear 

that most performance scores are clustered towards the lower end, suggesting a floor effect in 

performance. Only one participant obtained a score above 200. Indeed, removing this outlier 

removes the significance in the correlation between performance and scanning behaviour 

originally found, and thus the 3DOA used here is arguably not a suitable predictor for visual 

behaviour and driving performance. This limitation could not be overcome in this study as it 

was not possible to manipulate the code to make the task easier. In summary, although there is 

evidence that visuomotor tasks better predict both scanning behaviour and driving 

performance, this may not hold true for all visuomotor tasks. Future investigations should aim 

to explore these issues further. 

                                                 
1 Eye movement recording was not possible for all 25 participants during the attention tasks due to calibration 

errors. Thus, the degrees of freedom are different from our main analyses. 
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4.4.6 Conclusions 

  It was found that there are individual differences in eye movement behaviour and driving 

performance even amongst those with similar driving experience. This study has provided 

evidence that one's attentional function is a contributing factor to these differences; where 

better control over attentional processes results in eye movement and driving behaviour 

typically associated with safer driving. This is demonstrated without explicitly inducing a high 

cognitive load in order to maintain a more naturalistic driving setting. There is evidence to 

suggest that tasks utilising a visuomotor component may provide better prediction tools for 

driving; where both visual scanning and driving performance are accounted for. The results 

ultimately provide further insights into how the visual and attentional systems interact during 

driving tasks. They may also have implications for future driver assessment protocols, which 

are discussed in the general discussion. 
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Chapter 5 

 

Insights into individual differences in eye 

movements: A case for age 

 

  With older adults considered an ‘at risk’ driving population, in terms of the number of 

accidents reported, the aim of this study was to explore the eye movement behaviour in drivers 

over the age of 59. The first experiment describes an experiment to observe the visual scanning 

behaviour of older adults when driving in a simulated environment. The second experiment 

described within was conducted in order to assess their attentional function and driving speed. 

The literature regarding eye movements and attentional function in older adults is recapped 

before these experiments are described in detail. The results provide further insights into the 

individual differences that may occur in driving due to age. 
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5.1 Introduction 

  As discussed in section 1.4, older adults (which are typically defined as being older than 65 

years (Aksan et al., 2015; Fisk & Rogers, 1997)) are more likely to be involved in road 

accidents (Evans, 2000). Much of these accidents are attributed to typical age-related decline 

factors which affect older adults e.g. poorer attentional processing (Anstey et al., 2005; Ball, 

Edwards, & Ross, 2007). For example, deficits in dividing attention to multiple stimuli or 

slower processing of hazardous events than younger drivers have been linked to poorer driving 

performance and increased crash rates (Aksan et al., 2015; Andrews & Westerman, 2012; Clay 

et al., 2005; Horswill et al., 2008). 

  Even though older adults typically exhibit poorer driving performance and increased crash 

risk, less is known about the eye movement behaviour that is exhibited by older adults. To 

recap, video studies show some conflicting results. Some have found no differences in scanning 

behaviour between older adults and a young adult population (Underwood, Phelps, et al., 

2005). Others have found that older adults scan the roadway less than their younger 

counterparts (Yeung & Wong, 2015). In Chapter 4, it was found that those with poorer 

attentional function were less able to distribute eye movements across the roadway. Thus, one 

might predict that the same might be observed in older adults, a population which typically 

exhibits poorer attentional function. There is some evidence of this, where older adults exhibit 

less efficient search patterns at road junctions by typically fixating on locations that help 

control the vehicle and do not search for potential hazards that may occur (Dukic & Broberg, 

2012; Min et al., 2013; Romoser & Fisher, 2009; Romoser et al., 2013). 

  Despite this, there is still much to understand about how older adults move their eyes when 

driving; namely, where do older adults look when driving during normal, typical, driving 

conditions. In this study, the main goal was to identify if there were any differences in eye 

movement behaviour between older adults and young adults. In Experiment 1, a group of older 
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adults performed the same simulated drives as was described in Chapter 4 whilst their eye 

movements were tracked. Their visual behaviour was compared to the group of younger adults 

used also from Chapter 4. It was predicted that, since it is known that older adults typically 

exhibit poorer attentional function, the older adults would exhibit less efficient visual 

behaviour.  

  The results of Experiment 1 were somewhat inconclusive, where similar eye movement 

behaviour was found across populations. Thus experiment 2 aimed to provide a possible 

explanation for these findings by measuring older adults’ attentional function (to confirm that 

it is poorer in older adults) and determine whether driving slower was a compensatory measure 

which allowed the efficient visual behaviour to be exhibited. 

 

5.2 Methods: Experiment 1 

5.2.1 Participants 

5.2.1.1 Older adult participants  

  Fifteen participants over the age of 59 took part in the study. Six participants were excluded 

due to either, poor visual acuity (> 2.0 MAR), poor eye movement calibration (> 2 deg) or 

experiencing motion sickness. This left a sample of 9 participants (5 males) with an age range 

of 60-80 years (mean age = 69.78; St. Dev = 6.16). All participants had normal or corrected-

to-normal vision. They were recruited through a number of methods which included, poster 

advertising at local health centres, libraries and the University. They were paid £10 for 

participation. All participants had held a drivers’ license for at least one year (mean = 48.8 

years, St. Dev = 6.5) and were from countries where driving on the left (e.g. U.K.) is standard. 

Participants reported having no previous experience with a driving simulator. The study was 

approved by the University of St Andrews University Teaching and Research Ethics 
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Committee (UTREC). This group of older adults’ eye movements were compared to the same 

group of younger adult participants used in Chapter 4. 

5.2.1.2 Younger adult participants  

  The twenty-five participants aged under 59 from Chapter 4 were used as the comparison group 

in this experiment. The age range was 18-51 years (mean age = 22.5 years; St.Dev = 6.6). The 

participants had held a drivers' licence for at least one year (mean = 4.3; St. Dev = 5.7) and 

were from countries where driving on the left (e.g. UK) is standard. The number of hours the 

older adults drove on average in a week was not significantly different to the younger adults 

after accounting for unequal variances across groups using a between measures t-test (t(10.34) 

= 1.62, p = 0.14). 

 

5.2.2 Stimuli and Apparatus 

  All apparatus and driving simulation was identical to the experiment outlined in the methods 

section in Chapter 4. 

 

5.2.3 Measures 

    All eye movement information was recorded and collated via SR Research Data Viewer 

software. Using this software, the driving scene was divided into four different interest areas 

(Figure 4.6): the rear-view mirror, driver-side mirror, passenger-side mirror and the roadway. 

Note, the passenger-side mirror was superimposed to the left of the screen as shown in Figure 

4.6. 

 Fixation locations. The standard deviation of eye fixations along the horizontal axes 

(using x-axis pixel coordinates) was measured to provide an indicator of the spread of visual 

attention. This was converted from screen units into degrees. A larger standard deviation would 
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suggest a larger distribution of fixations and thus a larger spread of visual attention. Only 

fixations located within the roadway were included in this analyses; mirror or speedometer 

fixations were excluded. The vertical spread of eye movements was not recorded in this 

experiment. Due to the nature of the older population, calibration often proved difficult e.g. 

some wore bi-focal glasses which reflected the infrared light used by the eye tracker. Therefore 

there was often vertical drift in the recording of eye movements, and as such, no accurate 

measure of vertical fixation location could be determined. 

Mirror Interest Area analyses. To measure how much individuals inspected the vehicle 

mirrors, the total average fixation count (as a percentage of the total fixations) and total average 

fixation dwell time (as a percentage of the total drive time) was calculated for the rear-view 

mirror, driver-side mirror and passenger-side mirror. 

Visual processing. Average saccade velocities were recorded to infer the efficiency at 

which the scene was sampled, where faster average saccades may suggest increased 

information processing. Average saccade sizes were also measured. Saccade analyses were 

performed for the overall scene (i.e. all interest areas) and for the roadway interest area 

separately. Fixation durations and the number of fixations were also recorded for the roadway 

and the overall scene as a measure of cognitive processing. Longer fixation durations and more 

fixations made would suggest less efficient processing. 

 Driving Performance. Driving performance was measured on a point system tracked 

by the simulator software. 500 points were allocated to each 'minor' infringements such as 

driving 10kmph over the speed limit, not maintaining lane positioning, obstructing another 

vehicle causing it to break unexpectedly and not observing priority at junctions. More 'major' 

infringements were scored 1000 points and were characterised as accidents or dangerous 

driving, for example, crashing into another vehicle or pedestrian or driving 20kmph over the 

speed limit. The total points awarded provided a measure of driving performance where a larger 
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number of points suggests poorer driving performance. A single total measure of driving score 

was recorded. 

 

5.2.4 Procedures 

  Participants completed the three simulated driving routes in the same manner as Chapter 4. 

All participants completed a Landolt C visual acuity test and were included if acuity was 

measured as < 2.0 Minimal Angle Resolution. Participants were instructed how to use the car, 

including how to steer, use the pedals, turn signals and mirrors and were given five minutes to 

practice the simulated driving in the car park. Eye movements were calibrated using the Eyelink 

II at both the calibration distance and at the video screen distance. Calibration was done before 

each course and recording began at the start of each course just as participants began to drive. 

Each of the three courses were driven in a randomized order. After a certain location was 

reached (known to the experimenter) in each of the courses, recording of the eye movements 

stopped and the participant was instructed to stop the vehicle. 

 

5.2.5 Design 

  The eye movement data and driving performance of the older adult and younger adult 

populations were compared. This is therefore a between subjects design. The data for the older 

adults were not normally distributed for the eye movement measures and group sizes were 

uneven, therefore non-parametric independent samples Mann-Whitney U tests were used to 

identify differences between older adults and young adults. 
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5.3 Results: Experiment 1 

  In the figures below, the boxplots represent the median, interquartile ranges and range of the 

data. Outliers are represented by either a O or a ◊ symbol depending the degree. A significance 

of <0.05 is denoted by a * in the figures. Data were collapsed across the three courses as with 

the previous experiment. 

 

 

Figure 5.1 Box plot showing the median differences in driving performance between young 

and old adults. 

 

  Figure 5.1 shows the median values for driving performance for the young and old groups. 

There was no significant difference between the two groups (U = 150, z = 1.45, p = 0.15), 

suggesting that, on average, both groups made the same amount of driving errors. 
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Figure 5.2 Box plot showing the median differences in horizontal visual scanning of the 

roadway. 

 

  Figure 5.2 shows the distribution of eye movements along the horizontal axes. There was no 

significant difference between the two groups (U = 122, z = 0.37, p = 0.73) suggesting the both 

age groups scanned the roadway equally. 
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(a)                                                               (b) 

 

Figure 5.3. Box plots showing the median differences between older and younger drivers in 

the use of the vehicle mirrors as measured by (a) total percentage of fixations and (b) total 

percentage dwell time. 

 

  Figure 5.3 show the total number of fixations on the different mirrors and total dwell time. 

There was no significant differences between age groups for inspection of the rear-view mirror 

(Fixation count: U = 106, z = 0.254, p = 0.82; Dwell time: U = 112, z = 0.02, p = 0.98), driver-

side mirror (Fixation count: U = 86, z= 1.03, p = 0.32; Dwell time: U = 92, z = 0.8, p = 0.44) 

and passenger-side mirror (Fixation count: U = 118, z = 0.22, p = 0.85; Dwell time: U = 98, z 

= 0.59, p = 0.57). This suggests each group used the mirrors equally. 
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(a)                                                          (b) 

 

Figure 5.4. Box plots showing the median differences in (a) the velocities of the saccades 

made and (b) sizes of the saccades made between older and younger drivers for the roadway 

interest area and the overall scene. 

 

  Figure 5.4 shows the differences in the sizes and velocities of the saccades made between 

older and younger drivers. There was no significant differences in the velocities of saccades 

between groups for the roadway (U=102, z=0.41, p=0.70) and the overall scene (U=71, z=1.62, 

p=0.11). There was no significant difference in the sizes of saccades made on the roadway 

(U=98, z=0.57, p=0.59), but there was a significant difference in the sizes of saccades made 

for the overall scene (all interest areas included) (U=49, z=2.48, p=0.01). The younger adults 

made, on average, larger saccade than the older adults when inspecting the overall scene. 
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  This overall difference in the sizes of saccades when inspecting the overall scene is interesting 

because inspection of the mirrors and roadway were equal across age groups. Although not 

considered in the original analyses, it therefore might be attributed to fixations directed towards 

the speedometer. Speedometer fixation counts and dwell times are plotted in Figure 5.5 below. 

There was a significant difference between older and younger drivers for inspection of the 

speedometer (Fixation count: U = 41, z = 2.79, p = 0.004; Dwell time: U = 48, z = 2.52, p = 

0.011). Younger adults inspected the speedometer more often and for longer than older adults 

(Figure 5.5). 

 

(a)                                                           (b) 

 

Figure 5.5. Boxplot showing the median differences in inspection of the speedometer 

between younger and older adults, as measured by (a) fixation counts and (b) dwell times. 
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  Figure 5.6 shows the differences in average fixation durations and the number of fixations 

made by older and younger adults for the roadway and the overall scene. There was no 

significant differences for average fixation durations (Roadway: U=99, z=0.53, p=0.62; 

Overall: U=119, z=0.25, p=0.82) and the number of fixations made (Roadway: U=157, 

z=1.737, p=0.09; Overall: U=106, z=0.25, p=0.82). This suggests that the ability to process 

visual information when fixating was equivalent across older and younger adults (Figure 5.6) 

 

(a)                                                             (b) 

 
Figure 5.6 Boxplot showing the median differences in (a) the average fixation durations and 

(b) the average number of fixations made by older and younger adults. 
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5.4 Discussion: Experiment 1 

  When driving, there was little difference in how an older adult moves their eyes around the 

scene compared to a younger adult. This supports the findings by Underwood, Phelps, et al. 

(2005), who found that scanning behaviour was equivalent for older and young adults when 

viewing hazard perception videos. Given what we know about the limitations of attentional 

function in older adults, it is possible no differences were found in that study due to the lack of 

vehicle control required; which thus reduced the cognitive load of the task. However, the lack 

of differences is surprising here, where vehicle control was required. 

  However, from observing each drive, it was clear that the older adults drove much slower than 

the young adults. Thus, although eye movement behaviour would appear as efficient as younger 

adults, it is possible that this was achieved only by compensating for the attentional demands 

of driving by driving slower. Therefore, Experiment 2 aims to 1) test the attentional function 

of the older adults to confirm that attentional functioning was poorer in the older adult 

population used in this study and then 2) statistically quantify the differences in the times it 

took to complete the courses between older and younger adults.  

 

5.5 Experiment 2 

  Given the research which shows that older adults typically have poorer attentional function 

than young adults (Ball et al., 1993; Owsley et al., 1991; Owsley & McGwin, 2010), this 

experiment aimed to determine if this was true for the population used here. The older adults 

completed the visual attention tasks used in Chapter 4 to measure attentional function. The next 

step was to determine if there was a significant difference in the time taken to complete the 

drives between older and younger adults. If attentional functioning is impaired in this sample 

and if the older adults drove slower, then this may indicate that driving slower is a 

compensatory process to allow older adults to handle the attentional demands involved in 
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driving. This may explain why the eye movement behaviour was as efficient as the younger 

adults. 

 

5.6 Methods: Experiment 2 

  The older adults completed the three attentional tasks as described in Chapter 4. This includes 

the Multiple Object Tracking test, the 2-Dimensional Object Avoidance task and the 3-

Dimensional Object Avoidance task (see section 4.2). However, it was observed that older 

adults were having particular difficulty with the Multiple Object Tracking task. Therefore the 

range of speed that the circles moved was changed to 2-6 deg/s (compared to the 4-9 deg/s 

speed used with the younger adults). 

 

5.7 Results: Experiment 2 

  The older adults’ performance on each of the three visual attention tasks was compared to the 

performance of the young adults used in Chapter 4. The medians and ranges are presented in 

Figure 5.7. 
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(a)                                       (b)                                     (c) 

 

Figure 5.7. Boxplot Showing the differences in performance in the visual attention tasks 

between younger and older adults for (a) 2DOA task, (b) 3DOA task and (c) MOT task. 

 

  Independent Mann-Whitney U tests revealed that there was a significant difference between 

age groups for each of the visual attention tasks (2DOA: U = 22, z = 3.54, p < 0.001; 3DOA: 

U = 22, z = 3.53, p<0.001; MOT: U = 7, z = 4.13, p < 0.001). For each of the tasks, older adults’ 

performance was poorer. This suggests that their overall attentional function was poorer than 

the young adults. 

  Next, the time taken to complete each course was recorded for both the older and younger 

adults and was averaged across all three courses. These medians can be viewed in Figure 5.8. 
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Figure 5.8. Box plot showing the median differences in the overall time it took to complete 

the drivers for older and younger adults. 

 

  There was a significant difference in the time it took to complete the drives on average (U = 

158, z = 2.44, p = 0.013). Younger adults completed the drives faster than the older adults, who 

were around 60 seconds slower (Figure 5.8). 

 

5.8 Experiment 2 Discussion 

  The aim of this experiment was to determine if the similar eye movement behaviour displayed 

by the older and younger adults was possibly due to the older adults’ compensating for their 

poorer attentional function by driving slower. It was confirmed that their visual attentional 

function was indeed poorer and that they drove significantly slower than the younger adults on 

average. Together this suggests that the eye movement behaviour that was exhibited, which 

* 



127 

 

was similar to younger adults, may have been achieved by compensating for the attentional 

demand of the task by driving slower. The overall findings are discussed below. 

 

5.9 Experiment 1 & 2 General Discussion 

  The overall aim of this experiment was to measure the eye movement behaviour of older 

adults while they drove in a simulated environment. Specifically, to investigate if there were 

any differences compared to a younger adult population. From the finding in the previous 

experiment, where poor attentional control was linked with a poor visual search strategy, it was 

predicted that the older adults would exhibit a limited visual search strategy. The results 

however did not support this. The extent to which the older adult scanned the roadway, used 

their mirrors and sampled the scene was similar to the young adult population. 

  Perhaps this is unsurprising to a certain extent. Both groups were considered experienced 

drivers, but the older adults were in fact more highly experienced. The average time that they 

had held a driver’s license was 45 years more than their younger counterparts (~ 48 years 

compared to ~ 4 years for the younger adults). It is the likely case that these drivers have 

become so experienced that they are experts. Experts have been found to fixate to locations on 

the road that even experienced counterparts do not, as they have developed extensive 

knowledge of where hazardous situations are likely to develop (Crundall et al., 2003; Falkmer 

& Gregersen, 2005). Thus with this expertise they are better able to distribute eye movements 

more widely. This may explain why older adults scanned the roadway at least as equivalent to 

the younger adult population. 

  Given that the older group are experienced drivers, the idea that they know where to look was 

not in doubt. However, given the well documented cognitive and attentional decline that is 

associated with old age, there may have been difficulty in being able to allocate eye 

movements. In other words, even though they know where to look or know how to scan the 
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roadway, the cognitive load of the driving task may have limited their ability in allocating 

visual attention. This was not found. This however may have been because of attentional 

compensation. The older adults were found to have poorer attentional function supporting the 

literature (Clay et al., 2005; Dawson et al., 2010; Mathias & Lucas, 2009; Wagner, Muri, Nef, 

& Mosimann, 2011), but they drove significantly slower. This may have freed the attentional 

resources required to distribute their eye movements around the scene. By driving slower, this 

may give the driver more time to focus the eyes and indeed, the mind, to react to driving 

situations (Posner, 1995). This suggests that the visual strategies adopted by older adults are 

similar to younger drivers, but that there is a cost. 

  The finding that older drivers drive slower is interesting. In this experiment, it lead to what 

would seem effective visual behaviour and indeed relatively safe driving performance, at least 

as equivalent to the younger controls (Figure 5.1). It is likely that driving slower gave the 

participants more time to plan and react to the events that would occur during the drives. This 

is consistent with reports of older adults typically exhibiting more risk adverse behaviour when 

driving (Anstey et al., 2005; McGwin & Brown, 1999). However, driving slow may not always 

be an appropriate substitute for poor skill or attentional limitations. Reaction times are still 

often slower when driving (Andrews & Westerman, 2012), vehicle control can still be poorer 

(Bunce et al., 2012) and importantly, crash rates are still high in older adult populations (Evans, 

2000). On real roads, it is not necessarily high speed that is a risk factor in accidents, but rather 

the differences in vehicle speeds on a road (Dellinger, Sehgal, Sleet, & Barrett‐Connor, 2001; 

Lowenstein, 1997; Sullman, Gras, Cunill, Planes, & Font-Mayolas, 2007), particularly if a 

driver is driving ‘too slow’. For instance, driving too slow may force a driver from behind to 

overtake on a section of road that they otherwise would not attempt had the driver in front been 

driving faster. This is often why minimum speed limits are introduced in areas (Department for 

US Transport, 2014), although this has not been enforced in the UK. The implications of these 

findings are discussed more broadly in the final chapter (Chapter 7). 
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5.10 Conclusions 

  This study aimed to observe if there were any differences in the spatiotemporal deployment 

of eye movements between older adult drivers and young adult drivers during a typical, non-

hazardous simulated drive. The results show that the eye movement strategies were similar 

across the two populations. It is likely that their driving experience provided them with the 

knowledge of where they should be looking. However, to account for the cognitive limitations 

measured, it was likely that the effective visual strategy was achieved by adopting a slower 

driving strategy. The results help to provide insights into the individual differences that may, 

or in this case, may not arise in different age populations when driving. The results may have 

implications for visual and attentional training, and indeed potential law enforcement policies. 

These are discussed in the General Discussion (Chapter 7). 
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Chapter 6 

 

Insights into eye movement training and 

driving 

 

  In this final experimental chapter, the aim was to develop and investigate the efficacy of a 

new method to train eye movement behaviour when driving. Showing eye movements to 

trainees has been found to be an effective implicit training technique in other tasks, particularly 

tasks of a more passive nature. Therefore, the aim was to investigate whether this technique is 

useful for a more active and dynamic task such as driving. The literature relating to driver 

training is recapped before focussing on, more broadly, eye movement training in other tasks, 

and how this may relate to visual training in driving. 
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6.1 Introduction 

  Within section 1.5 of the Introduction, it was discussed how there are a number of studies 

which attempt to train driving performance and hazard perception (e.g. Crundall et al., 2010; 

Horswill et al., 2013; Isler et al., 2009). However, little research has specifically investigated 

training visual behaviour. A common technique is to use visual cueing, where areas on the road 

are explicitly highlighted to the driver in attempts to cue eye movements to important areas of 

the driving scene (e.g. Eyraud et al., 2015; Pomarjanschi et al., 2013; Rusch et al., 2013). More 

thorough and effective training programmes have been developed (Chapman et al., 2002; 

Fisher et al., 2006; Pollatsek et al., 2006; Pradhan et al., 2009) which aim to improve the 

understanding of why an individual should look around more. As useful as these types of 

programmes have been, a number of limitations can be identified. Namely, testing often takes 

place immediately after training and therefore the longitudinal effects of training cannot be 

established. Also, training can often appear superficial, in that it can influence visual behaviour 

but does not often influence driving behaviour i.e. individuals do not drive more safe. 

  Perhaps another method which may prove useful in training visual behaviour could involve 

some form of implicit learning. Implicit learning, in its purest form, can be described as 

learning without conscious awareness (Seger, 1994; Stadler & Frensch, 1998). Although it is 

now largely accepted that attention is required in some capacity during implicit learning 

(Frensch & Rünger, 2003; Jiang & Chun, 2001). The acquisition of language can be viewed as 

an example of implicit learning (Dienes & Berry, 1997; Ellis, 1994). Importantly for this 

experiment, some research has proposed the benefits of implicit visual learning in guiding 

visual attention (Chun, 2000; Chun & Jiang, 1998, 1999). An example of this in driving comes 

from Thompson and Crundall (2011). They found that when participants were made to view 

and scan a horizontal array of letters in one task, this lead to increased scanning of the road 

when viewing videos of driving scenes. The scanning behaviour learnt in the word task was 

implicitly carried over to the unrelated driving task. It should be highlighted however that, 
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given the results from Chapter 3, the effects of scanning were possibly exaggerated due to the 

participants not needing to control a vehicle. 

  Another implicit visual learning method may be to use the information gathered from viewing 

eye movement scanning patterns (eye movement traces). Konstantopoulos et al. (2012) asked 

people to view the eye movement patterns of novice and expert (driving instructor) drivers, but 

demonstrated that both novices and expert drivers found discriminating between novice and 

experienced eye movement patterns rather difficult. If one is unable to distinguish between 

‘good’ and ‘bad’ patterns of eye movements, this would appear to limit the possible 

effectiveness of using eye movements as a visual training tool. 

  A slightly different approach is taken within this experiment in an attempt to show the 

usefulness of using eye movements in training paradigms. When looking at someone’s eyes, 

their gaze can influence and direct the observer’s eye movements to certain parts of a scene or 

stimuli (Kingstone, Smilek, Ristic, Friesen, & Eastwood, 2003; Ricciardelli, Bricolo, Aglioti, 

& Chelazzi, 2002; Tatler et al., 2007). With this information, studies have shown that, for 

certain tasks, eye movements can be directed by artificially following where somebody is 

looking, through viewing eye movement recordings. And this often improves task 

performance, such as the ability to detect lung nodules in x-ray viewing or solving complex 

physics problems (Litchfield & Ball, 2011; Litchfield, Ball, Donovan, Manning, & Crawford, 

2008; Nodine & Kundel, 1987). Sadasivan, Greenstein, Gramopadhye, and Duchowski (2005), 

conducted an experiment whereby videos of an expert aircraft-inspector’s eye movements, 

performing an aircraft inspection, were shown to novices. Performance accuracy on the 

inspection task improved as a result, (albeit, seemingly at a speed cost). Some research has 

went further and suggested that showing expert eye movement traces may influence how 

people think, (Grant & Spivey, 2003; Thomas & Lleras, 2007). For example, Litchfield and 

Ball (2011), argue that when individuals view the eye movement patterns of those who 

successfully solve Duncker and Lees (1945) classic radiation problem, they are not only cued 
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to a certain location of the problem, but are cued a particular thought process. They suggest 

that, after viewing the expert eye movement gaze patterns, the change in individuals’ eye 

movement behaviour that results when viewing the problem a second time, suggests a change 

in the way the individual is thinking (see Litchfield & Ball, 2011). 

 

6.1.1 Current Study 

  The research discussed in the previous paragraph investigated eye movement cueing 

paradigms in passive based tasks, where individuals are usually simply viewing scenes or 

inspecting static images. In this study therefore, the aim was to investigate if using eye 

movements as a training tool can be effective in guiding eye movements in a complex and 

dynamic task such as driving. The goal was to accelerate a novice driver’s adoption of an 

experienced eye movement patterns. Without being explicitly told to follow eye movements, 

if a novice driver sees an expert scan the roadway more or fixate on certain parts of the scene, 

then they may learn to also.  

  For this experiment, pre-license drivers performed a simple simulated drive much like that in 

earlier chapters. After one week, one group was shown recorded video clips of an expert drive 

with the corresponding eye movements overlain. The other group were not shown the videos, 

and both groups were asked to drive again. Eye movements of the drivers were compared 

before and after the video training. After six months, those who received the training were 

asked to drive once more and their eye movements were compared to their pre and post training 

sessions. For the purposes of this study, the primary interest was in fixation behaviour, 

specifically fixation location. Interactions between the training group and training sessions 

were predicted, where it was hypothesised that those who were given the eye movement 

training would exhibit increased horizontal scanning of the road and increased use of the 

mirrors compared to those who were not shown the video. 
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6.2 Methods 

6.2.1 Participants 

  23 participants took part in the study (9 males). 3 participants were excluded due to poor eye 

movement calibration. This left a sample of twenty (8 males) with an age range of 17-34 years 

(mean age = 22.2, St. Dev = 3.9). All participants had normal or corrected-to-normal vision. 

Each was paid for participation at a rate of £5 per hour. All participants did not have a driver’s 

license and had either never driven or were taking driving lessons at the time of testing. Of 

those who were taking lessons, they reported having no more than 10 hours of teaching. The 

simulation could be calibrated for both left and right-hand drivers so both types of road users 

were accepted into the study. Participants had no prior experience of simulated driving. Ten 

participants were given the eye movement training videos and the other ten were not. Only six 

participants from the eye movement training group were successfully recalled for the 6-month 

follow-up. It was not possible to recall enough participants in the control group to use in the 

follow-up. The study was approved by the University of St Andrews University Teaching and 

Research Ethics Committee (UTREC). 

 

6.2.2 Stimuli and Apparatus 

6.2.2.1 Driving Simulation 

  This study utilized the City Car Drive simulator software and the Logitech Driving Force GT 

steering wheel as described in the General Methods. The simulation was presented on a 22 inch 

LED monitor set at a resolution of 1920x1080. The virtual environment was viewed at a 

distance of 70cm (horizontal viewing angle of 40.03o). See Figure 6.1 for experimental set-up 

 



135 

 

 

Figure 6.1. Apparatus set-up. Participants sat on the seat on the right and viewed the driving 

simulation on the monitor and controlled the vehicle using the steering wheel. Note, the 

keyboard and mouse were used by the experimenter, these were not used during the driving 

task. 

 

6.2.2.2 Eye movement recording and measures  

  As described in the General Methods, an Eyelink II system was used to record eye 

movements. Head movements were allowed and tracked using the Eyelink screen markers on 

the monitor. For this study, the eye movement measure of most significance is fixation location. 

Similar to Chapter 4, there were four areas of interest: the rear-view mirror, the driver-side 

mirror, the passenger-side mirror and the roadway (Figure 4.6). Speedometer fixations, and 

saccades to and from, were not included in the analyses. The measures recorded were the 

horizontal and vertical spread of eye movements on the roadway and mirror fixation counts 

and dwell times. 

 

6.2.2.3 Experienced eye movement training videos  

  The eye movement training videos were created by recording the eye movements of the 

experimenter (myself) whilst driving in the simulated environment. The experimenter is an 
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experienced driver, holding a licence for 4 years, and driving most days, and was familiarised 

with the simulated environment before recording. The eye movements, in the form of a red dot 

(diameter 1.2cm), were synchronously overlain onto video recordings of the drivers via the 

video editing software method previously described (Chapter 2). Two videos were used in the 

experiment. The first video was that of a generic motorway drive that consisted of a long stretch 

of road with multiple lanes with traffic joining and exiting the motorway via side slip roads. 

The second video showed a drive on a winding country road with single and dual lanes. These 

videos were slowed to 60% of the original speed to allow participants to view and process the 

movement of the experienced driver’s eyes more effectively. Each video lasted 5 minutes. The 

routes driven were similar but not identical to those routes driven by the participants. 

 

6.2.3 Procedures 

6.2.3.1 Pre-training session 

  All participants were instructed they would be driving a number of routes in a driving 

simulator programme whilst their eye movements were being tracked. They were shown how 

to use the driving simulator software and set up. It was explained to them how to use the gas 

pedal to accelerate and the brake pedal to slow the car and they were instructed on how the 

wheel turned the vehicle. The turn signals were highlighted to the participants. It was also 

shown to participants where the mirrors and speedometer were depicted on the monitor. Each 

participant was given a short five minute test period where they drove around a large car park, 

with no other road users present, whilst avoiding a pre-programmed placement of traffic cones. 

This was to allow participants to acclimatise to the feel of the car and the environment they 

would be driving in. Participants were then asked to drive three routes. The three routes were 

driven in a random order. Participants were asked to adhere to simple traffic laws, such as 

staying within the speed limit, maintain proper lane position and stopping at red lights. For 

each drive, their eye movements were recorded along with a video of the drive. Given that each 
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individual drive was unique, the duration of the drives differed across participants. Across all 

participants, on average, each drive lasted 3 minutes 48 seconds minutes. The eye movement 

training group and the control group drove the same courses. 

 

6.2.3.2 Training session 

  The post-training session occurred one week after the first session. For the eye movement 

training group, participants were instructed that they were to watch two short video clips 

depicting an expert driver driving. They were told that there would be a red dot visible 

throughout the video and that this corresponded to the driver's eye movements – in other words, 

the red dot is where the driver is looking. They were not explicitly told to follow the dot. Eye 

movements were not tracked for these videos, however the experimenter closely monitored the 

physical movement of the eye on the eye tracker host computer to detect if any participants 

were not allocating attention toward the screen. The control group were not shown the video 

recordings. Participants, both the eye movement and control groups, were then instructed to 

drive three courses whilst their eye movements were tracked. The courses were the same as the 

first session but this was not mentioned to the participant. 

 

6.2.3.3 Six month follow-up 

  Only six participants from the eye movement training group were successfully recalled. After 

six months from the initial training, these participants were once again asked to drive in the 

simulated routes whilst their eye movements were tracked. Participants were fully debriefed 

afterwards. 
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6.2.4 Design 

  Regarding the initial pre and post training sessions, the independent variables being 

manipulated were the experimental group (eye movement group and control group) and the 

experimental session (pre-training and post-training). This study used a mixed design where 

all participants participated in the pre and post experimental sessions and half the participants 

were randomly selected for either the eye movement group or control group. A 2x2 mixed 

factorial ANOVA was conducted for each of the eye movement dependent measures described. 

Interactions were predicted, where an improvement for the trained group but not the control 

group is expected. For the follow-up analyses, the six participants’ eye movement data were 

compared to their pre and post eye movement data using one way ANOVA with three levels 

(pre training session, post training and follow-up). 

 

6.3 Results 

6.3.1 Pre-training and immediate post-training sessions 

  Data were collapsed and averaged across the three courses. Eye movements were compared 

across the two groups: those who received the eye movement training (eye movement training) 

and the group who did not (control), and across the pre training and post training session. 2x2 

mixed measures ANOVAs (session and training group) were used to analyse differences across 

these conditions. It is the possible interaction effects which are of most interest, where, ideally, 

improvement would be observed between pre and post sessions for the eye movement training 

group but not the control group. Bonferroni corrections were used when pairwise comparisons 

were conducted. 
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(a) 

 

(b) 

 

Figure 6.2. Standard deviation of fixations for (a) horizontal axis and (b) vertical axis. Error 

bars show standard error of the mean. 

 

  Figure 6.2 shows the differences in the spread of eye movements as measured by the standard 

deviation of x-axis and y-axis fixations for the trained and untrained groups during the pre-

training and post-training sessions. There were no significant main effects of session on the 

distribution of horizontal eye movements (F(1,18) = 3.63, p = 0.073, ηp
2 = 0.17) and vertical 

eye movements (F(1,18) = 0.51, p = 0.48, ηp
2 = 0.03). There were no significant main effects 

of group for both the horizontal (F(1,18) = 0.12, p = 0.74, ηp
2 = 0.01) and vertical (F(1,18) = 

1.64, p = 0.22, ηp
2 = 0.8) eye movement distributions. There was no interaction between session 

and group for horizontal eye movements (F(1,18) = 0.44, p = 0.52, ηp
2 = 0.02) and vertical eye 

movements (F(1,18) = 0.26, p = 0.62, ηp
2 = 0.01). This suggests there was no effect of training 

the scanning the roadway. 
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(a) 

 

 

 

(b) 

 

 

Figure 6.3. Inspection of the mirrors as measured by (a) fixation counts and (b) fixation dwell 

times. 

 

  Figure 6.3 shows the differences in mirror inspection for the trained and untrained groups 

during the pre-training and post-training sessions. There was a significant main effect of 

session on inspection of the rear-view mirror as measured by fixation counts (F(1,18) = 16.91, 

p = 0.001, ηp
2 = 0.48) and fixation dwell times (F(1,18) = 17.38, p = 0.001, ηp

2 = 0.49). There 
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were also significant main effects of group on rear-view mirror inspections for fixation counts 

(F(1,18) = 1,18, p = 0.04, ηp
2 = 0.21) and fixation dwell times: (F(1,18) = 5.19, p = 0.035, ηp

2 

= 0.22). Importantly, there was a significant interaction between session and group for fixation 

counts (F(1,18) = 12.36, p = 0.002, ηp
2 = 0.41) and fixation dwell times (F(1,18)=16, 70, p = 

0.001, ηp
2 = 0.48). Bonferonni adjusted comparisons revealed a significant increase in the use 

of the rear-view mirror for the trained group as measured by fixation counts (p < 0.001) and 

fixation dwell times (p < 0.001). There was no increase in the use of the rear-view mirror for 

the untrained group. This suggests that training improved use of the rear-view mirror. 

  There were significant main effects for session regarding the use of the driver-side mirror as 

measured by fixation counts (F(1,18) = 16.344, p = 0.001, ηp
2 = 0.48) and dwell times (F(1,18) 

= 11.83, p = 0.003, ηp
2 = 0.40). This suggests that both trained and untrained groups improved 

in their use of the driver-side mirror between sessions. There were no main effects of group for 

either the number of fixations (F(1,18) = 0.001, p = 0.97, ηp
2 = 0) or dwell times (F(1,18) = 

0.35 , p = 0.56, ηp
2 = 0.02). There was also no significant interaction between session and group 

for fixation counts (F(1,18) = 2.16, p = 0.16, ηp
2 = 0.11) and dwell times (F(1,18)=3.81, p = 

0.067, ηp
2 = 0.17).  

  There was no significant main effects for session regarding the use of the passenger-side 

mirror as measured by fixation counts (F(1,18) = 1.36, p = 0.26, ηp
2 = 0.07) and dwell times 

(F(1,18) = 3.27 , p = 0.087, ηp
2 = 0.20). There was a significant main effect of group for fixation 

counts (F(1,18) = 5.00, p = 0.038, ηp
2 = 0.22) and dwell times (F(1,18) = 11.85, p = 0.003, ηp

2 

= 0.40). From figure 6.3 there was a trend that those in the trained group used their driver-side 

mirror more than those in the untrained group and improved most after the training session, 

although this interaction was not significant for fixation counts (F(1,18) = 3.82, p = 0.066, ηp
2 

= 0.18) and dwell times (F(1,18) = 4.38, p = 0.051, ηp
2 = 0.2). 

  From these results, it appears that, overall, the eye movement training intervention was not 

successful in inducing more effective eye movement scanning patterns. However, it was 
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observed that there were large inconsistencies in the driving events that occurred in the urban 

route across participants in this experiment. Due to some random events that could not be 

controlled within the simulation software, each drive was not comparable. For example, some 

drivers had to stop at a red light, whereas others would not have had to stop as the traffic light 

was green. Those who had to stop would likely have had different eye movement patterns 

compared to those who did not. For this reason, the analyses were conducted again with the 

urban route omitted.  

 

(a) 

 

(b) 

 

Figure 6.4. Standard deviation of fixations along the (a) horizontal and (b) vertical axes with 

the urban environment omitted. Error bars show standard error of the mean. 

 

  For horizontal scanning behaviour (Figure 6.4), there was no main effect of session (F(1,18) 

= 1.0, p = 0.329, ηp
2 = 0.05) or group (F(1,18) = 0.74, p = 0.4, ηp

2 = 0.04). There was an 

interaction between session and group (F(1,18) = 6.08, p = 0.024, ηp
2 = 0.25). Pairwise 

comparisons were conducted and it was found that there was a very small, but significant 
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increase in the standard deviation of x-axis fixations for the eye movement trained group (p = 

0.025) but not for the control (p = 0.32). This means that those in the trained group searched 

the road slightly more than the control group after training. There was no main effect of session 

(F(1,18) = 1.18, p = 0.29, ηp
2 = 0.06), group (F(1,18) = 1.04, p = 0.32, ηp

2 = 0.06) or interaction 

(F(1,18) = 0.70, p = 0.41, ηp
2 = 0.04) for vertical distributions of eye movements. 
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(a) 

 

 

 

 

(b) 

 

 

Figure 6.5. Inspection of the mirrors as measured by (a) fixation counts and (b) fixation dwell 

times with the urban environment omitted. Error bars show standard of the mean. 

 

  For mirror analyses (Figure 6.5), there were significant main effects of session for the total 

percentage of fixations and the total percentage dwell time for fixating the rear-view mirror 

(F(1,18) = 14.8, p = 0.001, ηp
2 = 0.45; F(1,18) = 11.11, p = 0.004, ηp

2 = 0.38, respectively). 
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There were also main effects of group (F(1,18) = 4.92, p = 0.042, ηp
2 = 0.21; F(1,18) = 4.55, p 

= 0.047, ηp
2 = 0.2). Importantly there were significant interactions between group and session 

for fixation counts and dwell times for rear-view mirror fixations (F(1,18) = 11.0, p = 0.004, 

ηp
2 = 0.38; F(1,18) = 12.0, p = 0.003, ηp

2 = 0.4). Bonferonni adjusted comparisons revealed a 

significant increase in mirror fixation counts and fixation dwell times for the trained group (p 

= 0.009; p < 0.001) but not the control group (p = 0.71; p = 0.93). This suggests that training 

improves the use of the rear-view mirror. (Figure 6.5). 

  There were also similar effects for use of the passenger-side mirror. For fixation counts, there 

was no main effect of session (F(1,18) = 1.32, p = 0.27, ηp
2 = 0.07) or group (F(1,18) = 2,86, 

p = 0.12, ηp
2 = 0.14). There was also no significant interaction between session and group 

(F(1,18) = 3.23, p = 0.089, η2 = 0.15), however there was a clear trend (Figure 6.5) and thus 

pairwise comparisons were conducted. There was an increase in the number of fixations for 

the trained group (p = 0.05) but not the untrained group (p = 0.65). Similarly for fixation dwell 

times, there was a trending interaction (F(1,18) = 3.45, p = 0.078, ηp
2 = 0.16) and pairwise 

comparisons revealed a significant increase in dwell time for the trained group (p = 0.02) but 

not the untrained group (p = 0.936). These results indicate training improved the use of the 

passenger-side mirror (Figure 6.5). 

  Interestingly, for the driver-side mirror, there was a significant main effect of session where 

there was an increase in use for both groups as measured by the fixation counts (F(1,18) = 

22.20, p < 0.001, ηp
2 = 0.55) and fixation dwell times (F(1,18) = 16.10, p = 0.001, ηp

2 = 0.47). 

There were no main effects of group or interactions. 

 

6.3.2 Six month follow-up 

  Only six participants were successfully recruited back, all from the eye movement training 

group. The analyses here therefore lack statistical power somewhat, and thus, any strong 
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conclusions cannot be made. With this in mind, the aim was to determine whether the positive 

fixation location behaviour observed after immediate training is retained after six months for 

those six participants. A one-way ANOVA was conducted across pre, post and follow-up 

training stages with pairwise comparisons specifically comparing the eye movement 

behaviours between post-training and six month follow-up stages. 

 

 

Figure 6.6. Standard deviation of x-axis fixation locations for pre-, post- and follow-up 

drives for the 6 participants. 

 

  Figure 6.6 shows the horizontal scanning behaviour for pre, post and follow up sessions. There 

was no overall effect of session. (F(2,10) = 1.74, p = 0.224, ηp
2 = 0.26). Promisingly, planned 

comparisons revealed no significant difference between post and follow-up sessions (p=1.00), 

suggesting that the improvement in visual behaviour was retained for the 6 participants. 

However, given the smaller sample size, there was no significant effect between pre and post 

sessions (p = 0.77) and pre and follow-up sessions (p = 0.25) as previously found. Although 

there is a clear trend (Figure 6.6) 
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(a) 

 

(b) 

 

Figure 6.7. Fixation counts (a) and fixation dwell times (b) for pre- post- and follow-up 

drives. 

 

  Figure 6.7 shows the use of each of the three mirrors as measured by fixation counts (a) and 

dwell times (b). There was an overall effect of session for rear-view mirror fixation counts 

(F(2,10) = 8.39, p = 0.007, ηp
2 = 0.63) and rear-view mirror dwell times (F(2,10) = 10.01, p = 

0.004, ηp
2 = 0.67). Planned comparisons showed there was no significant difference between 

post and follow up sessions for fixation counts (p = 0.08) and fixations dwell times (p = 0.1). 

The significant positive effects previously observed between pre and post sessions was carried-
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over here in the smaller sample (Pre v Post fixations counts: p = 0.03 ; Pre v Post fixation dwell 

times: p = 0.02) 

 For the passenger-side mirror, there was an overall effect of session on fixation counts (F(2,10) 

= 6.09, p = 0.02, ηp
2 = 0.55) and fixation dwell times (F(2,10) = 15.68, p = 0.001, ηp

2 = 0.76). 

There was no significant increase between post and follow up sessions for fixation counts (p = 

1.0) but interestingly there was for fixation dwell times (p = 0.03). The improvement from pre 

to post, found before, was found to be trending for fixation counts (p = 0.07) and dwell times 

(p = 0.06) 

There was an overall effect of session for driver side mirror fixation counts (F(2,10) = 3.86, p 

= 0.05, ηp
2 = 0.44) and for fixation dwell times (F(2,10) = 4.76, p = 0.035, ηp

2 = 0.49). Pairwise 

comparisons revealed no significant difference between post and follow up sessions for fixation 

counts (p = 1.0) or fixation dwell times (p = 0.194). The improvement from pre and post was 

trending for fixation counts (p = 0.06) and fixation dwell times (p = 0.06). 

  Collectively, these results suggest that the visual behaviour that was learnt due to training was 

successfully retained at follow-up. However, it was clear that some of the improvement effects 

that were originally observed, had been lost due to the smaller sample size. 

 

6.4 Discussion 

  The aim of the present experiment was to investigate whether showing an expert driver’s eye 

movement scan pattern can directly influence a novice driver’s eye movements while driving. 

It was hypothesised that the eye movement training would induce an overall increase in 

scanning behaviour. There was some evidence for this when the differences in driving 

situations were controlled for. It was found that those who were given the two training videos 

exhibited a slight increase in scanning the roadway and use of the mirrors more than those who 

did not receive the training videos. These findings are consistent with eye movement training 
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studies in other areas such as x-ray viewing (Litchfield et al., 2008) problem solving (Litchfield 

& Ball, 2011) and aircraft inspection (Sadasivan et al., 2005), where after viewing experienced 

or more appropriate eye movement scan patterns, task performance improved. Although there 

was no task here per se, the novice drivers exhibited more appropriate eye movement patterns 

similar to experienced drivers after viewing the eye movements patterns of an experience 

driver. 

  It is encouraging that there was a slight increase in how much the novice driver scanned the 

road after training. Typically, experienced drivers scan the roadway more, particularly on more 

demanding road situations (Underwood & Crundall, 1998; Crundall et al. 2003; 

Konstantopoulos et al. 2013), suggesting they have an increased understanding of the road and 

the possible situations that may occur e.g. looking for oncoming traffic, looking for 

overtaking/undertaking vehicles etc. One interpretation for the results in this experiment is that 

the novice drivers have learned that, after viewing the scan patterns of experts, sampling more 

of the road may prove to be a more effective visual strategy when learning to drive. Although 

it is difficult to say for sure given the data recorded. 

  Vehicle mirrors provide the driver with the necessary information concerning current traffic 

conditions and also provides the visual information for the driver to make decision before 

conducting manoeuvres, e.g. changing lanes. It is known that experts and experienced drivers 

utilise their mirrors more than novice drivers (Konstantopoulos et al., 2010; Underwood, 

Crundall, et al., 2002). In this study, there was an increase in the use of all the mirrors for the 

trained group. The use of these mirrors is crucial for complex and demanding roads like the 

ones used in this experiment; roads which incorporate a number of lanes with fast moving 

traffic. Interestingly, in this experiment, both the trained group and untrained group exhibited 

an increase in the use of the driver-side mirror. One could speculate that this may be as a result 
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of practice effects, where individuals realised the importance of the mirror during the initial 

testing stage and changed their visual strategy during the second stage of driving. 

  Although one should be vigilant on all roads, arguably, this vigilance should be magnified on 

the types of roads used here - even when hazards are not present. One must continually: monitor 

traffic joining at junctions and slip roads or approaching from behind, over-taking vehicles and 

survey opportunities for lane changing. This study therefore yields promising results in offering 

potential driver safety training. Furthermore, the results suggest that the training may not need 

to be complex or lengthy, given the results were found only after two short (5 minute) video 

clips. 

  Where previous research has been successful in influencing visual behaviour (Chapman et al., 

2002; Pradhan et al. 2009; Rusch et al., 2013), questions remain (but still remain in this study 

also) regarding the superficiality of the change in visual behaviour (see Konstantopoulos et al. 

2012), where driving behaviour does not change. Explicitly highlighting areas of the driving 

scene may not be as effective in improving a novice driver's knowledge of the driving scene; 

i.e. they still may not know why they should be looking there. A more beneficial outcome of 

training would be to train a specific thought process, which may result not only in a change in 

eye movement behaviour but also driving behaviour. Although it is rather debatable, some 

research has suggested that different thought processes can be cued by viewing eye movement 

patterns (Litchfield & Ball, 2011; Frischen, Bayliss & Tipper, 2007). In this study, it is not 

known whether novice drivers did think about the scene different after training. However, 

although quite tenuous, it is plausible that the novice drivers did adopt a new thought process 

when driving, since there was some evidence of the positive learned visual behaviour being 

retained after six months. 

  There is a limitation in this study related to this point that should be highlighted here though. 

Driving performance was not recorded in this experiment due to a technical fault of the 
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simulator software. Ideally, changes in vehicle control and safe driving behaviour would have 

been quantified (as in Chapter 3 and 4) and cross-referenced. This would have given an 

indication of whether the eye movement training influenced not only visual behaviour, but also 

driving performance. This, in turn, would have provided clearer indication of whether 

individuals changed their thought processes when driving. 

  On saying this, with this study, there is at least the foundational evidence that we can 

positively influence eye movement behaviour while driving (at least in basic simulated 

driving). Thus, future research using eye movement training in driving should build on these 

results by considering some factors not directly investigated here. The first is of course, how 

this can transfer to real roads, with real traffic conditions and larger fields of view. If we can 

find similar results in field studies, then using laboratory eye movement training may be an 

effective tool to train visual behaviour, or indeed simply educate drivers, in a safer 

environment. In addition, although eye movement training can seemingly induce a broader 

scanning behaviour, it is not known how this relates directly to hazard perception. A failure to 

search the road may result in an accident (Lee, 2008), and as such, research would benefit 

directly investigating how and if a trained widened search coincides with increased hazard 

perception ability.  

 

6.4.1 Conclusions 

  This study, to my knowledge, is the first study to illustrate the potential benefits of using 

experts' eye movements for training in complex, dynamic environments. Although some effects 

are modest in size, it was found that individuals do indeed adopt a new visual strategy after 

viewing an experienced driver's scanning behaviour. Therefore, this preliminary work suggests 

the potential effectiveness of using this type of visual training for early stage drivers. Future 

research should ideally expand on the results by using more robust driving simulation 
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techniques or indeed field studies whilst also looking at how eye movement training can 

influence hazard detection and safer driving. General implications and the limitations of this 

study are explored in the General Discussion of this thesis. 
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Chapter 7 

 

General Discussion 

 

  This final chapter will offer further discussion of the results found in each of the experiments, 

with particular attention to the potential implications for the findings, possible future 

experimental directions and the limitations of the studies. This section, and with it, the thesis, 

will end with a general summary and conclusions for the thesis as a whole. 
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  Driving is a common every-day, yet, complex task. It requires attention to the road in order 

to control the vehicle, attention to other road users to avoid collisions and attention to other 

sources of information to aid navigation and safe driving e.g. road signs or speed limit signs. 

It therefore requires a high level of visual function and attention. Investigating the eye 

movements of drivers can provide insights into how the visual system is used for such complex 

behaviour. Given its complexity though, driving carries a number of safety risks. Being a highly 

visual task, it is reasonable to propose that one of the main factors which may lead to road 

accidents is deficits in visual attention. This is consistently found in research where inattention 

and failures to scan the roadway are continuously reported as factors which lead to accident 

involvement (Dingus et al., 2006; Lee, 2008; Lestina & Miller, 1994; Underwood, 2007). As 

such, investigating eye movements may also help to provide possible insights into what may 

contribute to accidents, and indeed, what contributes to the prevention of accidents. These 

themes were broadly explored in this thesis. 

  Three main questions were addressed. The first, in Chapter 3, what are the most valid tools 

for measuring and assessing eye movements and driving? The results helped to further the 

understanding of how vision and action interact during natural activity and also helped to 

provide insights into the usefulness of active hazard perception driving tasks. The second aim 

was to investigate some of the individual differences associated with eye movements and 

driving. Two experiments were described to investigate individual differences. The experiment 

in Chapter 4 explored how visual attentional function may contribute to effective eye 

movement behaviour for driving. The results helped to further the understanding of what 

contributes to better driving and also provided insights into the development of more effective 

driver assessment tools. The experiment in Chapter 5 explored another factor that may 

contribute to the differences in eye movements, that of age. The results provided insights into 

the visual and driving strategies adopted by older adults which may in turn have consequences 

for the higher older adult accident liability cases observed (e.g. Evans, 2000). The final aim 
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related to visual training, where the final experiment in Chapter 6 investigated a novel method 

with which to train more effective visual behaviour when driving. The results yielded 

promising results that could inspire a potential training tool that can be used by novice drivers 

when learning to drive. These experimental findings are discussed further below in turn, with 

particular focus on the theoretical and practical implications of the findings. In addition, many 

of the experimental limitations are outlined in order to provide critical evaluation for the studies 

conducted. 

 

7.1 The use of active driving tools 

  The first aim of this thesis was to investigate if there were any differences in the spatial 

deployment of eye movements when driving in a simulated environment (active) and a typical 

video based hazard perception task (passive). The broader goal was to determine the suitability 

of video tasks when investigating eye movements and driving. The main results from Chapter 

3 were that individuals scanned the roadway more and responded to hazards faster in a video 

based task compared to a task where they were asked to drive (Figure 3.5). Thus it was 

proposed that passive driving tools, such as video viewing paradigms, may not capture the 

subtleties in visual attention that on-road driving would. 

  Much like the results found within the active vision literature (e.g. Foulsham et al., 2014; 

Foulsham et al., 2011; Steinman, 2003; Tatler et al., 2011), these findings suggest that the way 

in which the eye movement system and attentional system are deployed in an active task is 

different than tasks of a passive nature e.g. visual search. The main explanations given were 

two-fold. Firstly, the visual search may be limited in an active driving task when one needs to 

fixate on certain parts of the roadway in order to control the vehicle. Secondly, there is a higher 

cognitive load associated with active control of the vehicle may also limit visual search. These 

may also explain the increased latency to respond to the hazards. 
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  Arguably, what is identified here is not only performance differences across video and 

simulated tasks, but also possible performance deficiencies in oculomotor behaviour and 

hazard perception while participants undertake the active driving task (i.e. less scanning, slower 

reaction times). This may have implications for assessment and training methods used in 

driving and particularly in hazard perception. If the scanning behaviour seen in a video-based 

non-driving task over-estimates how much an individual would scan the road when driving, 

then training of scanning behaviour may be more appropriate in a setting that incorporates both 

the visual and driving demands of the tasks. Encouragingly, such naturalistic approaches have 

been used to investigate eye movement control and its relation to improved driving (Chapman 

et al., 2002; Pollatsek et al., 2006; Rusch et al., 2013). Although, since there is no direct 

evidence here to suggest this may be the case, this is merely speculative at this point. 

  Hazard perception video training has proven to be very useful where it has been shown to 

increase situation awareness in early stage drivers (e.g. Horswill et al., 2013) and this training 

may be a contributing factor to the lower accident liability cases we have observed each year 

(Horswill, Falconer, et al., 2015). As such, this thesis certainly acknowledges the usefulness of 

these types of tests. However, when actively engaged in the driving hazard perception task 

here, individuals were slower to detect hazards than if searching for them when performing a 

standalone task. If one assumes that this is partly due to the increase in cognitive load associated 

with driving the vehicle, then this may have implications for attention in real life driving. 

Specifically, since inattention related road accidents make up a large proportion of cases (Chan, 

Pradhan, Pollatsek, Knodler, & Fisher, 2010; Lee, 2008), hazard perception video training tools 

are therefore removing one of the aspects of driving which relates to accident involvement – 

that of divided attention. Performance on complicated cognitive tasks improves with practice 

where actions become more automated requiring less conscious intervention (Moors & De 

Houwer, 2006; Underwood & Everatt, 1996). One may therefore argue that investigating 

hazard perception and how it can be trained, training that includes performing the tasks of 
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driving and hazard perception together, could be more effective. One good example of this is 

Casutt, Theill, Martin, Keller, and Jäncke (2014) who demonstrated that active driving 

simulator training improved on-road driving performance better than passive attention training 

(training which involved selective attention). It remains to be seen how this type of training 

influences eye movement behaviour. However, one could predict that driving simulator 

training would also improve eye movement behaviour too. 

 

7.2 Promoting visual cognitive training in driving 

  Chapter 4 presented the first of two investigations into the reasons we may observe individual 

differences in eye movement behaviour when driving. It explored how an individual’s 

cognitive control, specifically termed attentional function here, may be linked to effective eye 

movement behaviour when driving. There was evidence in Chapter 4 to suggest that individuals 

with better attentional function may make better drivers overall, both visually and driving 

safely. Specifically, individuals who were found to have better attentional function scanned the 

roadway more, used their passenger side mirror more and drove safer. It was suggested that 

better attentional function may be a factor which leads to better eye movements in experienced 

drivers, where driving becomes more automatic which frees up attentional resources to allocate 

eye movements more appropriately. However there may be further implications for these 

results, particularly when considering potential cognitive training.  It should be emphasised 

that these implications below go beyond the results found during this experiment and, although 

interesting, are largely theoretical at this point. 

  It is suggested here that attention tasks could be useful, not only as assessment tools, but as 

driver training tools. The benefits of training on performance, particularly on complex tasks, 

has been well documented (e.g. Anguera et al., 2013; Dux et al., 2009; Vance et al., 2007) and 

indeed, through training and learning, the brain can undergo a number of measureable 
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functional and structural changes (Draganski et al., 2004; Erickson et al., 2007; Scholz, Klein, 

Behrens, & Johansen-Berg, 2009; Voss et al., 2012). One can propose that there may be 

cognitive transfer benefits between tasks which activate the neural networks used in driving, 

but do not include driving per se. If so, then training on some non-driving tasks could result in 

a measurable level of improvement in driver safety. 

  The idea of using attentional tasks to train more complex everyday tasks is not a new one as 

there is evidence of computer based training positively influencing task performance in other 

real-world domains (e.g. Cassavaugh & Kramer, 2014; Giannotti et al., 2013; Gopher, Well, & 

Bareket, 1994). In driving, there have been attempts to use cognitive training in older adult 

populations (e.g. Roenker et al., 2003; Rogé et al., 2014). Ball, Edwards, Ross, and McGwin 

(2010) found that the number of accident liability cases were less in a group of older adults 

who were given several training sessions aimed to train speed of processing. Other research 

has yet to investigate the use of active visuomotor tasks, as used here, as cognitive training 

tools or how cognitive training influences eye movement behaviour when driving. 

  One potential line of research related to these unanswered questions is that of video-game 

training. We know that action video game players exhibit better attentional function than non-

gamers (Green & Bavelier, 2006; Boot, Kramer, Simons, Fabiani & Gratton, 2008), and this 

can often be trained (Green & Bavelier, 2008). We also see examples of transfer to everyday 

tasks, for example, Giannotti et al. (2013) showed how training using the Nintendo Wii aids 

laparoscopic surgery skills. Thus, future research should include studies showing how 

visuomotor training may provide reliable visual training and assessment tools in driving.  

 

7.3 Old age: End of the road? 

  In another attempt to highlight some of the individual differences in driving behaviour, 

Chapter 5 investigated the influence of age on driving and eye movement deployment whilst 
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driving. There has been widespread literature suggesting that there are perceptual, attentional 

and motor deficits associated with older age (Craik & Salthouse, 2011; Verhaeghen & Cerella, 

2002). Given the intrinsic link between the attention and eye movements systems, it is plausible 

that these deficits are represented by differences in eye movement behaviour compared to 

younger adult drivers. This however was not found in the experiment presented in Chapter 5. 

Older adults exhibited a similar level of scanning behaviour, utilised the mirrors as regularly 

and also exhibited similar visual processing behaviour as the younger adult population. In some 

way, this is unsurprising given that both groups of drivers were experienced participants. 

However it was found that the older adult population did indeed exhibit attentional limitations, 

where they performed poorer than the younger adult population on the Multiple Object 

Tracking and Object Avoidance tasks. It was thus suggested that there was a possible reason 

for the similar eye movement behaviour, despite the cognitive deficit. It was found that older 

drivers drove considerably slower than the younger group. Driving slower could allow the 

visual system to adapt to the demands of the road which may allow a more effective distribution 

of eye movements. 

  These results raise some important discussion points. Even though older adults exhibit less 

risky driving behaviour, performance deficits are still reported in other experiments, both in 

vehicle control (Aksan et al., 2015; Aksan et al., 2012; Bunce et al., 2012; Raw et al., 2012) or 

hazard perception (Borowsky et al., 2010; Horswill et al., 2008; Horswill et al., 2009). 

Importantly, this is reflected in the accident statistics where older adults are typically over-

represented (Adler & Rottunda, 2006; Aksan et al., 2012; Anstey et al., 2005; Bruni & Roenker, 

1993). Because of this, there has been considerable research into older adult training and 

assessment. As mentioned in the section above, experiments have attempted, with success, to 

cognitively train the attentional networks typically used in driving, by using tasks outside of 

driving (Ball et al., 2007; Ball et al., 2010; Floyer-Lea & Matthews, 2004; Kramer, Larish, & 

Strayer, 1995; Roenker et al., 2003; Rogé et al., 2014). Improvements have been observed in 
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speed of visual processing, dual tasking and visuomotor control. In addition to cognitive 

training, research has also seen success in older adult’s hazard perception training (e.g. 

Horswill, Falconer, et al., 2015). Again though, there is still a requirement for research to 

investigate how training influences older adults’ eye movements (e.g. Romoser & Fisher, 

2009). 

  With the (increasing) numbers of older adults driving on the road, driving assessment 

becomes more important. Currently in the UK, there is a legal requirement that drivers should 

exhibit a level of visual acuity suitable to driving. They must meet the minimum eyesight for 

driving which is a visual acuity score of 0.5 measured on the Snellen scale (with wearing either 

glasses or contact lenses if required) (Driving & Vehicle Standards Agency, 2015). In addition, 

individuals must inform the Driver and Vehicle Agency (DSA) about any medical condition 

that could impede driving performance. Beyond these basic requirements however, it is largely 

down to the judgement of the individual themselves whether they are fit to drive. This 

judgement is usually based on a number of self-reported criteria, including increased response 

times to events, increasing feelings of anxiety when driving and family influence (Adler & 

Rottunda, 2006; Dellinger et al., 2001; Johnson, 1998). From the results in this study, and 

others, more rigorous assessment for older adults is encouraged e.g. attentional function 

assessment. 

 

7.4 The advantages and disadvantages of visual training 

  The aim in Chapter 6 was to develop a potential visual training tool for drivers. There was an 

attempt to implicitly train visual behaviour when driving. Participants had to view videos of 

driving situations with expert eye movements overlain. The results appear promising. There 

was a clear improvement in overall scanning behaviour during country highway and motorway 

driving. Importantly, for those participants successfully recalled, this improvement was 
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retained at a 6-month follow-up. The results may help to develop a widespread and easily 

accessible training tool that could be used in conjunction with other tools currently available. 

For example, when learning to drive, it is common for individuals to study hazard perception 

videos before they attempt to take both the on-road and hazard perception assessments 

required. In addition to this, time spent viewing eye movement videos may prove fruitful in 

training visual behaviour at an early stage. Not much time is required: the training in this 

experiment comprised of two short five minute videos. Future research would benefit from 

investigating how extensive viewing of eye movement videos would have to be to influence 

visual behaviour more effectively than what was demonstrated here. 

  For horizontal scanning behaviour however, it is acknowledged that these effects are rather 

modest at best. This may highlight an important consideration for visual training. It is possible 

that, although participants are aware they should ideally scan the roadway more, they were 

constrained by the demands of the task. The participants used in this experiment were those 

who had not yet received a valid driver’s licence, with many of them taking driving lessons at 

the time of testing. As such, they are still adapting to the driving experience where they are 

learning the rules of the road, building up experiences of certain driving situations, and 

importantly, still learning how to control a car. Thus it is important to also consider the potential 

negative impact of visual training in a complex task such as driving. With novices, it is possible 

that the driver's restricted visual search is, in part, because of a need to fixate in certain locations 

to control the vehicle (Mourant & Rockwell, 1972). If eye movements are directed to parts of 

the environment that otherwise would not be attended to, then this may be at a cost of vehicle 

control.  

  Unfortunately, driving performance was not recorded accurately during the experiment, due 

to a technical issue. Thus, any loss of vehicle control or increase in unsafe driving could not be 

quantified. However, the recorded videos were inspected by the experimenter and participants’ 

pre and post video recordings were subjectively compared. No obvious differences in driving 
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performance was observed. Thus, it is still maintained that eye movement training is a 

promising tool for driver training. 

 

7.5 Experimental limitations 

  Each of the studies described herein have their limitations. Some of these are discussed below. 

Note that these limitations are largely aimed at experimental design choices that are specific to 

the experiments discussed here and not at the general idea that simulated driving is a limitation 

of itself. Indeed, the benefits of this type of research are highlighted in the next section (7.6). 

   For the experiment described in Chapter 3, one limitation concerns the videos used. Each 

participant in the passive condition viewed the same hazard perception clips. However, each 

drive would have been different in the active driving task, and as such, each hazard would have 

been experienced differently. This should not have been an issue for eye movement measures, 

given that eye movements for the hazardous courses were not considered in the analyses. 

However, for reaction times measures to hazards (necessarily measured for courses containing 

hazards), this may have been problematic. Even though there was an attempt at controlling 

these factors, those in the active condition may have been slower to respond to the hazards 

because, for example, the speed of approach to the hazards were different, the exact locations 

of the hazards were different or the hazard was less obvious in some cases. One potential way 

to control for this would have been to use the recorded videos from the active condition for the 

passive condition. In this way, although a different individual would be observing the clips, 

they would have at least been the same hazardous situations encountered in both conditions. 

  Regarding the experiments investigating attentional function and visual training (Chapters 4 

and 6), one obvious limitation was that hazard perception performance was not assessed. 

Throughout this thesis there has been the inference that scanning the road and using the mirrors 

more is indicative of a safer visual search; one that represents surveying the road conditions 
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for potential hazards. However, without directly assessing hazard perception performance, the 

link between visual behaviour and hazard perception ability cannot be made in these 

experiments. As a consequence, these experiments cannot directly link attentional function to 

hazard perception performance or demonstrate how trained visual behaviour influences hazard 

detection therefore. Although, for the experiment discussing attentional function (Chapter 4), 

it was inferred from the driving performance scores, that those with better attentional function 

may have had better hazard awareness since this score was linked to safe driving. 

  One final limitation that should be mentioned is the older adult population sample size 

(Chapter 5). Only nine participants were successfully tested. Although power analyses for the 

dependent variables revealed moderate to high values (values ranged from 0.7 to 0.95), there 

were observable non-normal distributions of data within the older adults. This is likely because 

it is difficult to obtain a normal distribution with such a small sample size. Several more 

participants were recruited, but due to the nature of the population, many could not take part 

because of: poor visual acuity (beyond the 2.0 MAR requirement), difficulty calibrating with 

the eye tracker and feeling unwell (see below) during testing. Despite this limitation, the results 

still provide useful insights into eye movement and driving behaviour in an older adult 

population. 

 

7.6 Notes on simulated driving 

  Within the first chapter, it was discussed how this thesis favours a more naturalistic approach 

to studying eye movements. This was accomplished using simulated driving environments 

rather than using driving videos. Indeed, the first chapter highlighted how using videos may 

not fully capture the visual attentional properties of a driving task. However, simulated 

environments fall short compared to on-road driving as the most useful method to investigate 

driving behaviour. The major limitation is that the eyes and the vestibular system are working 
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somewhat in opposition during simulated driving. When turning a corner, the eyes will signal 

that one is turning, yet the semicircular canals signal that the person is stationary (Land & 

Tatler, 2009). At best, this causes a slightly unnatural feeling and makes the individual aware 

that they are not driving in real life. As a consequence, the behaviour measured may not fully 

represent on-road driving behaviour. In more extreme cases, this can lead to people 

experiencing motion sickness (Domeyer, Cassavaugh, & Backs, 2013); something which is 

more common in older adults (Brooks et al., 2010). Indeed, although none of the younger adult 

population described in these experiments reported experiencing motion sickness, several older 

adults did. Some in fact showed serious symptoms of sickness including discoloration and loss 

of balance. The experiments were of course immediately stopped in these cases, but this 

highlights a problem with simulated driving experiments. 

  However, the benefits of using simulated driving are numerous. Apart from the obvious 

benefits of cost reduction and the removal of the risk associated with crashing, one of the main 

benefits is that experimenters can run a driving experiment in a controlled environment. 

Keeping consistency across participants: traffic levels can be programmed to be constant, the 

weather can be controlled, hazards can be programmed etc. This of course makes for better 

scientific practice. 

  Although they are useful, how valid are driving simulators? That is, how close do they mirror 

the behaviour in real on-road driving? This question has been tackled within the literature by a 

number of researchers. Meuleners and Fraser (2015) found no difference between performance 

during a simulated drive and an on-road drive. This included inspection of the mirrors, the 

speed at which individuals drove and rule following, such as stopping at stop signs. Similarly, 

(Chan et al., 2010) found that the hazard perception performance of novice drivers compared 

to experienced drivers in a simulator was similar and therefore comparable to an on-road 

driving assessment. Furthermore, there are similar patterns of visual behaviour between 

novices and experience drivers in both simulated and on road driving. For example, 
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experienced drivers scan the roadway more than novices during both these driving methods 

(Underwood, Crundall, et al., 2011). Given that driving performance, hazard perception ability 

and eye movements are similar across these methods, this helps to provide support for the 

validity of using driving simulators as an investigative tool. 

  Finally, the validity of the simulations used in these experiments should be discussed. 

Although these were not relevant to the main experimental chapters, and as such were not 

reported, there were two main findings that may help to provide some validation. The first is 

related to experience and hazard perception. It was not necessary to make the distinction 

between experienced and inexperienced drivers in the first experiment, only to make sure that 

the average experience was not different across groups. However, analyses revealed that there 

was a significant difference in the reaction times to hazards when participants were split into 

inexperienced drivers (< 3 year experience) and experienced drivers (> 3 year experience). 

Those with more experience responded faster than those with less experience, which has been 

found in other studies (Castro et al., 2014; Crundall et al., 2012; Horswill & McKenna, 2004; 

Lee et al., 2008; Scialfa et al., 2012; Scialfa et al., 2011). The second is the finding that eye 

movements changed as a function of road type. During on-road driving, compared to 

undemanding rural drives, individuals have been found to scan the road more during dual 

carriageways (Underwood, Chapman, et al., 2002) and even more in complex urban 

environments (Land, 2009; Land & Tatler, 2009). There is a similar pattern of results in this 

study which suggests that participants are treating the simulated drive much like they would a 

real drive. Together, these findings help to provide some validity for the simulated experiments 

used in these experiments. 
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7.7 Overall conclusions and summary 

  Driving is a highly complex visuomotor task, and the study of eye movements can provide 

interesting and detailed insights into driving behaviour. The overall aim of this thesis was to 

understand (a) what methods are useful assess driving behaviour, (b) the reasons we observe 

differences in eye movements when driving, and (c) offer a possible visual training method. 

Several general conclusions can be drawn.  

  The first is that when measuring driving behaviour in an active task, vision, attention and 

action interact in a complex manner that is reflected in a specific pattern of eye movements that 

is different to when driving behaviour is measured using typical video paradigms. 

  It is also concluded that one of the reasons that there are differences in eye movement 

behaviour across individuals is due to levels of individual cognitive function. Also in relation 

to individual differences, it can be concluded here that eye movements are similar across 

younger and older adult age groups. Yet there are differences in driving behaviour, where older 

adults drive slower in order to compensate for the attentional demands. 

  Finally, although the results were somewhat modest, it is concluded that eye movement 

training is a promising technique with which to train more effective visual behaviour in novice 

driver populations.  

  Collectively the experiments have provided further understanding into the fields of eye 

movements and driving. With driving still a source for so many injuries and death throughout 

the world, hopefully the results will aid other researchers, driving educators and policy makers 

to develop laws, road systems and assessment tools that will contribute to safe driving. 

 

(Of course, there is the very real possibility that self-driving cars may become a widespread 

reality which removes the risk associated with human error…but that’s a story for another 

thesis.)  
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Appendices 

1.0 Driving simulation vehicle properties 

1.1 Vehicle properties for “Driving Simulator, 2011” 

 

[General] 

Name    = Bonum C4 2.0i 

Group    = Sedan 

ExtModel   = Sedan 001.e.d3d 

IntModel   = Sedan 001.i.d3d 

MaterialScript   = Sedan.lua 

Price    = 34500 

 

[Camera] 

Position   = -0.29;0.35;-0.18 

 

[LeftSideMirror] 

Position   = -0.88;1.05;0.7 

Normal   = 0.0.0;0;-1 

 

[RightSideMirror] 

Position   = 0.88;1.05;0.7 

Normal   = -0.33;0;-1 

 

[RearViewMirror] 

Position   = 0.0;1.28;0.55 

Normal   = -0.30;-0.09;-1 

 

[Dashboard] 

MaxSpeedOnSpeedIndicator  = 220 

MaxSpeedIndicatorRadian  = 3.8 

MaxRPMOnRPMIndicator  = 6000 
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MaxRPMIndicatorRadian  = 2.07 

 

 

[MassInformations] 

Mass    = 5000 

CenterOfMassRelX  = 0.0 

CenterOfMassRelY  = -1.25 

CenterOfMassRelZ  = 0.0 

CustomInertiaEnabled  = true 

InertiaRadiusX  = 1.13 

InertiaRadiusY  = 1.10 

InertiaRadiusZ   = 0.6 

 

[Engine] 

IdleRPS   = 12.5 

MinMotorTorqueRPS  = 30 

MinMotorTorque  = 1150.0 

 

MaxMotorTorqueMinRPS = 50.0 

MaxMotorTorqueMaxRPS = 80.0 

MaxMotorTorque  = 1300.0 

 

MaxRPS    = 1000 

MotorTorqueMaxRPS  = 975.0 

 

MaxPowerRPS   = 500 

MaxPower    = 1000 

 

MaxMotorBrakeTorque  = 400.0 

 

ShiftDownRPS   = 18.0 

ShiftUpRPS    = 33.0 
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[SteeringValues] 

MinDynamicTransmission  = 500 

MaxDynamicTransmission  = 2000.0 

ActiveSteering    = true 

MinActiveSteerAngleSpeed = 5.5 

MaxActiveSteerAngleSpeed = 22.22 

MinSteerAngleTransmission = 0.2 

MaxSteerAngleTransmission = 10.0 

MaxSteeringWheelAngle = 300 

AckermannFactor  = 1.0 

 

[Gears] 

AxleDriveRatio_R   = 4.2 

GearRatio_R    = 4.84 

MouldingBodyCoefficient_R  = 1.47 

AxleDriveRatio_1   = 4.2 

GearRatio_1    = 3.43 

MouldingBodyCoefficient_1  = 1.47 

AxleDriveRatio_2   = 4.2 

GearRatio_2    = 1.95 

MouldingBodyCoefficient_2  = 1.16 

AxleDriveRatio_3   = 4.2 

GearRatio_3    = 1.21 

MouldingBodyCoefficient_3  = 1.09 

AxleDriveRatio_4   = 4.2 

GearRatio_4    = 0.93 

MouldingBodyCoefficient_4  = 1.06 

AxleDriveRatio_5   = 4.2 

GearRatio_5    = 0.73 

MouldingBodyCoefficient_5  = 1.05 

AxleDriveRatio_6   = 4.2 

GearRatio_6    = 0.59 

MouldingBodyCoefficient_6  = 1.04 
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[FrontWheels] 

Mass   = 60 

SuspensionTravel = 0.5 

SpringCoefficient = 26500.0 

DamperCoefficient = 450.0 

TargetValue  = -0.1 

HeightModifier = 0.0 

MotorRatio  = 0.0 

BrakeRatio  = 0.7 

HandBrakeRatio = 0.0 

 

[RearWheels] 

Mass   = 100 

SuspensionTravel = 0.5 

SpringCoefficient = 26500.0 

DamperCoefficient = 450.0 

TargetValue  = -0.1 

HeightModifier = 0.0 

MotorRatio  = 1.0 

BrakeRatio  = 0.3 

HandBrakeRatio = 1.0 

 

[Brakes] 

BrakeTorque  = 45000.0 

HandBrakeTorque = 95000.0 

 

[LongitudinalTireFunction] 

ExtremumValue  = 1.05 

AsymptoteValue  = 0.95 

 

[LateralTireFunction] 

ExtremumSlip   = 0.17 
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ExtremumValue  = 0.85 

AsymptoteSlip  = 0.255 

AsymptoteValue  = 0.65 

 

[Miscellaneous] 

DragCoefficient  = 0.38 

 

1.2 Vehicle properties for “City Car Drive” 

[Common] 

WheelRadiuses= 0.325000 ;0.325000 

WheelCenterShiftFromPhysicalCar = (front=-0.761985;-0.475861;-1.421122, back=-0.762013;-

0.475861;1.298885) 

RotateWheelsAroundZ = (left=true, right=false) 

PlayerCar = false 

HWDShift = 0; -0.28; -1.444 

Probability = 0.3 

Width = 1.746 

Heigth = 4.542 

DamagedCarParts = (FrontPart=0.28, BackPart=0.25, LeftPart=0.1, RightPart=0.1) 

VelocityMax = 190 

VelocityPrefer = 75 

VelocitySlow = 25 

VelocityMin = 3 

AccelerationMaxTableVel=0; 10; 20; 30; 40; 50; 60; 70; 80; 90;

 100; 110; 120; 130; 140; 150; 160; 170; 180; 190; 200; 210; 220; 230; 240; 250 

AccelerationMaxTableAcc=2.1; 2.6; 2.7; 2.93; 3.2; 3.25; 2.78; 1.75; 1.79; 1.79; 1.69; 

1.47; 0.88; 0.86; 0.75; 0.7; 0.52; 0.46; 0.1; 0.01; 0; 0; 0; 0; 0; 0 

AccelerationMax = 0.1 

AccelerationPrefer = 0.05 

AccelerationMin = 0.05 

BrakingMax = 9.541 

BrakingPrefer = 3 

BrakingMin = 1 

DistanceMax = 60 
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DistancePrefer = 4 

DistanceMin = 1.0 

FrontWheelRadius = 0.292 

useDevicePanelOnFlags = true 

TuningConfigPath = "cars/Car28/tuning.xml" 

SoundBankName = "oyota" 

 

 

[Cameras] 

 

CameraProfile="cars/Car28/cameras.xml" 

 

LookAtLeftAngle = 55.0 

LookAtRightAngle = 55.0 

LookAtBackAngle = 165.0 

 

[Mirrors] 

MirrorCenterFOV = 30.0 

MirrorLeftFOV = 30.0 

MirrorRightFOV = 30.0 

 

MirrorCenterPosition = 0; 0.5; 0.4 

MirrorCenterLookAt = -0.3; 0.5; 2.30 

 

MirrorLeftPosition = -0.9; 0.27; -0.7 

MirrorLeftLookAt = -1.6; 0.27; 2.28 

 

MirrorRightPosition = 0.9; 0.27; -0.7 

MirrorRightLookAt = 1.6; 0.27; 2.28 

 

[SpeedometerAndTachometer] 

SmtrDivValue = 20.0 

SmtrDivCount = 12 
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SmtrDivAngle = 0.34 

SmtrZeroOffset = 0.006 

 

TtmrDivValue = 5.0 

TtmrDivCount = 12 

TmtrDivAngle = 0.25 

TmtrZeroOffset = 0.008 

 

[Headlights] 

faraFrom_near_R = 0.542; 0.7; -1.8 

faraXangle_near_R = -25 

faraYangle_near_R = -5 

faraRange_near_R = 80 

faraColor_near_R = 0.6; 0.6; 0.5; 0 

 

faraFrom_near_L = -0.542; 0.7; -1.8 

faraXangle_near_L = -40 

faraYangle_near_L = 5 

faraRange_near_L = 20 

faraColor_near_L= 0.6; 0.6; 0.5; 0 

 

#------------------------------------- 

 

faraFrom_far_R = 0.542; 2.0; -1.0 

faraXangle_far_R = -30 

faraYangle_far_R = -0 

faraRange_far_R = 300 

faraColor_far_R = 0.6; 0.6; 0.5; 0 

 

faraFrom_far_L = -0.542; 2.0; -1.0 

faraXangle_far_L = -30 

faraYangle_far_L = -10 

faraRange_far_L = 100 
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faraColor_far_L= 0.6; 0.6; 0.5; 0 

 

 

[BodyColors] 

 

#from toyota.com 

#Barselona Red Metallic 

Color = (color = 68;10;11; 255 , Probability=0.025) 

#Color = (color = 136;19;21; 255 , Probability=0.025) 

 

#Black Sand Pearl 

Color = (color = 9;9;12; 255 , Probability=0.1) 

#Color = (color = 17;18;23; 255 , Probability=0.0) 

 

#Magnetic Gray Metallic 

Color = (color = 42;43;43; 255 , Probability=0.3) 

#Color = (color = 84;85;86; 255 , Probability=0.0) 

 

#Classic Silver Metallic 

Color = (color = 95;97;98; 255 , Probability=0.3) 

#Color = (color = 189;193;195; 255 , Probability=0.0) 

 

#Blue Streak Metallic 

Color = (color = 34;62;90; 255 , Probability=0.3) 

#Color = (color = 68;124;180; 255 , Probability=0.0) 

 

#Super White 

Color = (color = 119;119;119; 255 , Probability=0.2) 

#Color = (color = 238;238;238; 255 , Probability=0.0) 

 

#Desert Sand Mica 

Color = (color = 119;115;109; 255 , Probability=0.025) 

#Color = (color = 238;230;218; 255 , Probability=0.0) 
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#Capri Sea Metallic 

Color = (color = 25;44;44; 255 , Probability=0.025) 

#Color = (color = 50;88;87; 255 , Probability=0.0) 

 

#ñòàðûå öâåòà 

#×åðíûé àíòðàöèò 

#Color = (color = 20;20;20; 255 , Probability=0.1) 

#Color = (color = 40;40;40; 255 , Probability=0.0) 

 

#Áåëûé 

#Color = (color = 122;122;119; 255 , Probability=0.2) 

#Color = (color = 244;245;239; 255 , Probability=0.0) 

 

#Ñåðåáðèñòûé 

#Color = (color = 96;99;106; 255 , Probability=0.3) 

#Color = (color = 193;199;213; 255 , Probability=0.0) 

 

#Ïåïåëüíî-ñåðûé 

#Color = (color = 44;44;46; 255 , Probability=0.025) 

#Color = (color = 89;88;93; 255 , Probability=0.0) 

 

#Êðàñíûé 

#Color = (color = 84;17;17; 255 , Probability=0.025) 

#Color = (color = 168;34;35; 255 , Probability=0.0) 

 

#Ñâåòëî-ãîëóáîé 

#Color = (color = 109;113;115; 255 , Probability=0.3) 

#Color = (color = 219;227;230; 255 , Probability=0.0) 

 

#Òåìíî-ñèíèé 

#Color = (color = 22;26;38; 255 , Probability=0.025) 

#Color = (color = 45;53;76; 255 , Probability=0.0) 
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#Ñèíå-çåëåíûé 

#Color = (color = 16;33;30; 255 , Probability=0.025) 

#Color = (color = 33;67;60; 255 , Probability=0.0) 

 

 

 

 

 

[bodyDetail] 

bodyName = "body" 

lodName0 = "carLod0" 

lodName1 = "carLod1" 

lodName2 = "carLod2" 

lodName3 = "carLod3" 

 

saloonName = "saloon" 

saloonLeftName = "saloon_l" 

saloonRightName = "saloon_r" 

 

driverName = "driver" 

fairingName = "tuning/obtekatel/obtekatel" 

pipeName  = "tuning/glushitel/glushitel" 

spoylerName = "tuning/spoyler/spoyler" 

 

uName = "tuning/U/U" 

shadowPlaneName = "shadow_plane" 

 

 

[wheelDetail] 

carFrontRightWheelName = "tuning/wheel_front/wheel_front" 

carFrontLeftWheelName = "tuning/wheel_front/wheel_front" 

 



191 

 

carBackRightWheelName = "tuning/wheel_back/wheel_back" 

carBackLeftWheelName = "tuning/wheel_back/wheel_back" 

 

carMiddleRightWheelName = "tuning/wheel_middle/wheel_middle" 

carMiddleLeftWheelName = "tuning/wheel_middle/wheel_middle" 

 

wheelsCount = 4 

 

[licensePlateDetail] 

carLicensePlate = "license_plate" 

 

[lightDetail] 

#---Ïåðåäíèå ôàðû--- 

carHeadLightVisibleName = "head_light_visible" 

carHeadLightVisibleColor = 255; 255; 255 

 

carHeadLightsName = "head_light" 

carHeadLightsColor = 250; 250; 250 

 

carNearLightsName = "head_light" 

carNearLightsColor = 180; 180; 180 

 

#---Ïîâîðîòíèêè--- 

carLeftStrafeLightName = "left_strafe_light" 

carLeftStrafeLightColor = 255; 120; 30 

 

carLeftStrafeLightVisibleName = "left_strafe_light_visible" 

carLeftStrafeLightVisibleColor = 255; 255; 255 

 

carRightStrafeLightName = "right_strafe_light" 

carRightStrafeLightColor = 255; 120; 30 

 

carRightStrafeLightVisibleName = "right_strafe_light_visible" 
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carRightStrafeLightVisibleColor = 255; 255; 255 

 

#---Ñòîïàðè è ãàáàðèòêè--- 

carStopLightName = "hwd_back_light" 

carStopLightColor = 200; 50; 0 

 

carStopLightVisibleName = "stop_light_visible" 

carStopLightVisibleColor = 255; 255; 255 

 

carHwdsFrontName = "head_light" 

carHwdsFrontColor = 80; 90; 100 

 

carHwdsBackName = "hwd_back_light" 

carHwdsBackColor = 100; 25; 0 

 

carHwdsBackLightVisibleName = "hwd_back_light_visible" 

carHwdsBackLightVisibleColor = 255; 255; 255 

 

#---Çàäíèé õîä è ïëþøêè íà çåìëå--- 

carBackLightName = "back_light" 

carBackLightColor = 140; 150; 160 

 

carBackLightVisibleName = "back_light_visible" 

carBackLightVisibleColor = 255; 255; 255 

 

carFrontFallingLightName = "head_front_light_visible" 

carFrontFallingLightColor = 255; 255; 255 

 

carBackFallingLightName = "head_back_light_visible" 

carBackFallingLightColor = 255; 255; 255 

 

#---Ñèãíàëû â ñàëîíå--- 

carLeftSaloonLightName = "signal_left" 
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carLeftSaloonLightColor = 0; 255; 0 

 

carRightSaloonLightName = "signal_right" 

carRightSaloonLightColor = 0; 255; 0 

 

carBrakeLightName = "signal_brake" 

carBrakeLightColor = 255; 0; 0 

 

carFarLightName = "signal_farlight" 

carFarLightColor = 255; 255; 255 

 

carAccumLightName = "signal_discharge" 

carAccumLightColor = 255; 0; 0 

 

carReverseLightName = "R" 

carReverseLightColor = 255; 0; 0 

 

carNeutralLightName = "N" 

carNeutralLightColor = 255; 0; 0 

 

carParkLightName = "P" 

carParkLightColor = 255; 0; 0 

 

carDriveLightName = "D" 

carDriveLightColor = 255; 0; 0 

 

carDrive1LightName = "D1" 

carDrive1LightColor = 255; 0; 0 

 

carDrive2LightName = "D2" 

carDrive2LightColor = 255; 0; 0 

 

carDrive3LightName = "D3" 
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carDrive3LightColor = 255; 0; 0 

 

carManualLightName = "mechanic" 

carManualLightColor = 255; 0; 0 

 

 

[mirrorDetail] 

carMirrorLeftName = "mirror_left" 

carMirrorCenterName = "mirror_center" 

carMirrorRightName = "mirror_right" 

 

[saloonDetail] 

carSaloonName = "body" 

carSpeedometerArrowName = "speedometer_arrow" 

carTahometerArrowName = "tachometer_arrow" 

carOilArrowName = "oil_arrow" 

carFuelArrowName = "fuel_arrow" 

 

carWindShieldName = "glass_windshield" 

carWindShieldCleaner1Name = "cleaner_windshield_left" 

carWindShieldCleaner2Name = "cleaner_windshield_right" 

carWindShieldTopLeft = -0.7;  0.6; -0.3 

carWindShieldTopRight = 0.7;  0.6; -0.3 

carWindShieldBottomLeft = -0.7; 0.2; -1.2 

carWindShieldBottomRight = 0.7; 0.2; -1.2 

 

carLeftWindowName = "glass_left" 

carLeftWindowTopLeft = -0.6;  0.6; 1.1 

carLeftWindowTopRight = -0.6;  0.6; -0.8 

carLeftWindowBottomLeft = -0.8; 0.2; 1.1 

carLeftWindowBottomRight = -0.8; 0.2; -0.8 

 

carRightWindowName = "glass_right" 
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carRightWindowTopLeft = 0.6;  0.6; -0.8 

carRightWindowTopRight = 0.6;  0.6; 1.1 

carRightWindowBottomLeft = 0.8; 0.2; -0.8 

carRightWindowBottomRight = 0.8; 0.2; 1.1 

 

carBackWindowName = "glass_back" 

carBackWindowTopLeft = 0.6;  0.6; 1.1 

carBackWindowTopRight = -0.6;  0.6; 1.1 

carBackWindowBottomLeft = 0.6; 0.3; 1.8 

carBackWindowBottomRight = -0.6; 0.3; 1.8 

 

newbieSignName = "learner" 

beginnerSignName = "beginner" 

 

carSteeringWheelName = "driving_wheel" 

 

carIsLeftSaloon = true 

carIsRightSaloon = true 

SaloonTypeOppositeSideOfMovement = true 

 

 

[modelLodInfo] 

modelLodDistance1 = 10 

modelLodDistance2 = 120 

modelLodDistance3 = 200 

 

[Humans] 

DriverAnimatedModel = (Driver="cars/Car28/driver", Wheel="cars/Car28/wheel") 

 

AutoSeatingInRightSaloon = true 

Driver = (Shift = -0.393; -0.267; -0.192, Angle=0.) 

Passenger = (Shift = 0.383; -0.267; -0.192, Angle=0.) 

Passenger = (Shift = -0.378; -0.267; 0.750, Angle=0.) 
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Passenger = (Shift = 0.349; -0.267; 0.750, Angle=0.) 

 

Driver = (Shift = 0.393; -0.267; -0.192, Angle=0., Saloon = "right") 

Passenger = (Shift = -0.383; -0.267; -0.192, Angle=0., Saloon = "right") 

Passenger = (Shift = -0.378; -0.267; 0.750, Angle=0., Saloon = "right") 

Passenger = (Shift = 0.349; -0.267; 0.750, Angle=0., Saloon = "right") 

 

 

[Force Feedback.SteeringResistance] 

ff_SteeringResistance_enabled = true 

ff_SteeringResistanceAdd = 0.2 

ff_SteeringResistanceMax = 8000 

ff_SteeringResistancePoint=(Speed=5, Resistance=0.3) 

 

[Force Feedback.SideForce] 

ff_SideForce_enabled = true 

ff_SideForce_Transformation= (DeadZone=0.01, Curvature=1, ReflectCurve=true) 

ff_SideForce_AngleFactor = 0.5 

ff_SideForce_SpeedFactor = 0.5 

ff_SideForce_MaxSpeed = 60 

ff_SideForce_SteeringFactorDeadZone = 0.0 

ff_SideForce_SteeringFactorLimit = 0.1 

ff_SideForce_GasFactor = 0.2 

 

[Force Feedback.Crash] 

ff_Crash_enabled = true 

#type values: Square=0, Sine=1, Triangle=2, SawtoothUp=3, SawtoothDown 

ff_Crash_periodic = (type=1, Magnitude=1000, Period=10000, Phase=0, Offset=0) 

ff_Crash_duration = -1 

ff_Crash_envelope = (AttackLevel=2000, AttackTime=10000, FadeLevel=0, FadeTime=50000) 

 

[Force Feedback.GroundTrembling] 

ff_GroundTrembling_enabled = false 
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ff_GroundTrembling_periodic = (Magnitude=1000, Period=1000, Phase=0, Offset=1000) 

ff_GroundTrembling_duration = 10000 

 

[Force Feedback.SuspensionTrembling] 

ff_SuspensionTrembling_enabled = true 

ff_SuspensionTrembling_duration = 100000 

ff_SuspensionTrembling_magnitude_factor = 50000 

ff_SuspensionTrembling_delta = 0.01 

 

[Force Feedback.StartEngine] 

ff_StartEngine_enabled = true 

ff_StartEngine_periodic = (Magnitude=2000, Period=50000, Phase=0, Offset=0) 

ff_StartEngine_duration = -1 

ff_StartEngine_envelope = (AttackLevel= 0, AttackTime=200000, FadeLevel=1000, FadeTime=2000000) 

 

[Force Feedback.LowSpeedTrembling] 

ff_LowSpeedTrembling_enabled = false 

ff_LowSpeedTrembling_periodic = (Magnitude=1000, Period=1000, Phase=0, Offset=0) 

ff_LowSpeedTrembling_EndOfLowSpeed = 50 

ff_LowSpeedTrembling_StartDelay = 5500000 
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2.0 MATLAB Scripts 

2.1 MATLAB script for recording real time eye movements and display screen 

 

function ActiveStudy2(pid, filename) 

  
% Record video + record eye movemoents 
% 
% Paul Cox, prc23@st-andrews.ac.uk 
% Andrew Mackenzie, akm9@st-andrews.ac.uk 
% School of Psychology + Neuroscience, University of St Andrews 
% 
% Input arguments: 
%   pid         - participant id (String) 
%   filename    - name of driving scene to record (String) 

  
commandwindow; 

  
if nargin < 1 || isempty(pid) 
    % No partid given: Use our test id: 
    pid = 'actest'; 
end 
if nargin < 2 || isempty(filename) 
    % No moviename given: Use our default filename: 
    filename = 'ActiveTest'; 
end 

  
% Wait until user releases keys on keyboard: 
KbReleaseWait; 

  
try 
    AssertOpenGL; 

         
    % Get the list of screens and choose the one with the highest screen 

number. 
    screenNumber = 0%max(Screen('Screens')); 

     
    % Open a double buffered fullscreen window on monitor [screenNumber]. 
    %PsychDebugWindowConfiguration(0, 0.5); 
    [w, wRect] = Screen('OpenWindow', screenNumber); 

     
    % Set 'q' as stop key and 'space' as start. 
    KbName('UnifyKeyNames'); 
    stopkey  = KbName('q'); 
    startkey = KbName('space'); 

     
    % Set background colour as white. 
    white = WhiteIndex(w); 
    black = BlackIndex(w); 
    gray = GrayIndex(w); 
    bgcolor = black; 

     
    % Set font paramaters for text stamp messages. 
    Screen('TextFont', w, 'Arial'); 
    Screen('TextStyle', w, 0); 
    Screen('TextSize', w, 16); 
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    % Set output folder and create if it does not exist. 
    outputFolder = 'OutputStudy2'; 
    mkdir(outputFolder); 

     
    % Timestamp string. 
    date = datestr(now, 30); 

     
    % Hide mouse pointer and set priority to maximum. 
    HideCursor;     
    priorityLevel = MaxPriority(w); 
    Priority(priorityLevel); 

         
    % Initialize eyelink. 
    if EyelinkInit() ~= 1; 
        closeRoutine(); 
        return; 
    end 

     
    % Do eyelink stuff. 
    el = EyelinkInitDefaults(w); 

     
    %PsychEyelinkDispatchCallback(el); 
    %if Eyelink('Initialize', 'PsychEyelinkDispatchCallback') ~=0 
        %error('eyelink failed init') 
    %end 
    %result = Eyelink('StartSetup',1); 

     
    % Specify data samples to record and filename for Eyelink log file. 
    Eyelink('command', 'link_sample_data = LEFT, RIGHT, GAZE, AREA'); 
    Eyelink('openfile', 'driving.edf'); 

     
    %setup the proper calibration foreground and background colors 
    %el.backgroundcolour = [50 50 50]; 
    el.calibrationtargetcolour = [255 0 0]; 
    EyelinkUpdateDefaults(el); 

     
    % Calibrate Eyelink. 
    EyelinkDoTrackerSetup(el); 
    EyelinkDoDriftCorrection(el); 

     
    WaitSecs(0.1); 

     
    % Track left eye only. 
    eye_used = Eyelink('EyeAvailable'); 
    if eye_used == el.BINOCULAR    % If both eyes are tracked, 
        eye_used = el.LEFT_EYE;    % use left eye data only. 
    end 

     
    WaitSecs(0.1); 

     
    % Display friendly start message. 
    msgStart = 'Press the ''space'' key to start the experiment when ready.'; 
    Screen('FillRect', w, gray); 
    DrawFormattedText(w, msgStart, 'center', 'center', black); 
    Screen('Flip', w); 

     
    % Wait for keyboard input. 
    while 1 
        [keyIsDown, secs, keyCode] = KbCheck; 
        if keyCode(startkey) 
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            break; 
        end 
        if keyCode(stopkey) 
            closeRoutine(); 
            return; 
        end 
        WaitSecs(0.002); 
    end 

     
    h = actxserver('WScript.Shell') 
    h.Run('C:\Fraps\fraps.exe') 
    WaitSecs(2); 
    h.Run('"C:\Users\akm9\Desktop\City Car Driving Home Edition"') 
    WaitSecs(20); 

     
    Eyelink('StartRecording'); 
    Eyelink('Message', ['PARTICIPANT ', pid]); 
    Eyelink('Message', ['GAMEPLAY ', filename]); 
    Eyelink('Message', ['DATE ', date]); 
    h.SendKeys('F9') 
    Eyelink('Message', 'SYNCTIME') 

     
    joystickId = 0; 
    i = 0; 

     
     %Loop until quit key pressed. 
    while 1 
        [keyIsDown, secs, keyCode] = KbCheck; 
        if keyCode(stopkey) 
            break; 
        end 
        [jx, jy, jz, jbuttons] = WinJoystickMex(joystickId); 
        if jbuttons(4) 
            msg = 'PRESS'; 
            Eyelink('Message', msg); 
        end 
        WaitSecs(0.002); 
    end 

     
    h.SendKeys('F9') 
    closeRoutine(); 

     
    % Rename .edf file and move to Output directory. 
    outputFilename = ['OutputStudy2/', pid, '-', filename, '-', date, 

'.edf']; 
    movefile('driving.edf', outputFilename); 
    WaitSecs(2); 
    Convert(outputFilename); 
    return; 

     
catch 
    psychrethrow(psychlasterror); 
    sca; 
    ShowCursor; 
    Priority(0); 
end 
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2.2 MATLAB script for overlaying eye movements onto recorded video 

function Process(videoInFile, eyeFile, videoOutFile) 

  
% Play video + record eye movemoents 
% 
% Paul Cox, prc23@st-andrews.ac.uk 
% School of Psychology + Neuroscience, University of St Andrews 
% 
% Input arguments: 
%   videoInFile  - name of video used as stimulus 
%   eyeFile      - converted .asc file of eyetracker data 
%   videoOutFile - name of final video with eyetracker data overlay 

  
debug = 0; 
commandwindow; 

  
if nargin < 1 || isempty(videoInFile) 
    videoInFile = 'Output/actest-ActiveTest-20130117T134436.mp4'; 
end 
if nargin < 2 || isempty(eyeFile) 
    eyeFile = 'Output/actest-ActiveTest-20130117T134436.asc'; 
end 
if nargin < 3 || isempty(videoOutFile)  
    videoOutFile = 'Output/actest-ActiveTest-20130117T134436-

converted.mp4'; 
end 

  
% Wait until user releases keys on keyboard: 
KbReleaseWait; 

  
global GL; 

  
try 
    AssertOpenGL; 
    InitializeMatlabOpenGL; 

     
    % Get the list of screens and choose the one with the highest screen 

number. 
    screenNumber = 0%max(Screen('Screens')); 

     
    % Open a double buffered fullscreen window on monitor [screenNumber]. 
    [w, wRect] = Screen('OpenWindow', screenNumber); 

     
    % Set background colour as white. 
    black = BlackIndex(w); 
    bgcolor = black; 

         
    % Set font paramaters for text stamp messages. 
%     Screen('TextFont', w, 'Arial'); 
%     Screen('TextStyle', w, 0); 
%     Screen('TextSize', w, 12); 

     
    % Open eye tracker data file. 
    eyeFID  = fopen(eyeFile, 'r'); 
    line = fgetl(eyeFID); 

     
    % Skip through to start of recorded samples 
    while ~feof(eyeFID) 
        [token, remain] = strtok(line); 
        if isequal(token, 'MSG') 
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            [token, remain] = strtok(remain); 
            synctime = str2double(token); 
            [token, remain] = strtok(remain); 
            if isequal(token, 'SYNCTIME') 
                line = fgetl(eyeFID); 
                break 
            end 
        end 
        line = fgetl(eyeFID); 
    end 
    [token, remain] = strtok(line) 
    while isnan(str2double(token)) 
        line = fgetl(eyeFID); 
        [token, remain] = strtok(line); 
    end 

     
    % Open input movie file: 
    movie = Screen('OpenMovie', w, videoInFile); 
    readerobj = VideoReader(videoInFile); 
    frametime = 1 / readerobj.FrameRate * 1000;  

     
    % Create output movie file 
    writerobj = VideoWriter(videoOutFile);%, 'MPEG-4'); 
    writerobj.FrameRate = readerobj.FrameRate; 
    open(writerobj); 

     
    % Wait until all keys on keyboard are released. 
    KbReleaseWait; 

     
    i = 0; j = 0; 
    cx = 0; cy = 0; 

     
    % Loop until video ends or quit key pressed. 
    while i < readerobj.NumberOfFrames 
        i = i + 1; 
        pressed = 0; 

         
        % Get average fixation point for frame. 
        while str2double(token) < synctime + (frametime * i) 
            if ~isnan(str2double(token)) 
                j = j + 1; 
                [token, remain] = strtok(remain); 
                if ~isequal(token, '.') 
                    cx = cx + str2double(token); 
                end 
                [token, remain] = strtok(remain); 
                if ~isequal(token, '.') 
                    cy = cy + str2double(token); 
                end 
            end 

             

             
            % Look for msg or end of movie in next line 
            line = fgetl(eyeFID); 
            [token, remain] = strtok(line); 
%             [checka, remaina] = strtok(remain); 
%             [checkb, remainb] = strtok(remaina); 
%             [checkc, remainc] = strtok(remainb); 

             
%             if isequal('MOVIE', checkb) && isequal('END', checkc) 
%                 break 
%             end 
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            while isnan(str2double(token)) 
                if isequal(token, 'MSG') 
                    [token, remain] = strtok(remain); 
                    [token, remain] = strtok(remain); 
                    if isequal(token, 'PRESS') 
                        pressed = 1; 
                    end 
                end 
                line = fgetl(eyeFID); 
                [token, remain] = strtok(line); 
            end 
        end 

         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         
        if ~j 
            j = 1 
        end 

         
        cx = cx / j; 
        cy = cy / j; 
        j = 0; 

         
        Screen('BlendFunction', w, GL_ONE, GL_ZERO); 
        Screen('FillRect', w, bgcolor); 

             
        % Wait for next movie frame, retrieve texture handle to it 
        tex = Screen('GetMovieImage', w, movie); 

  
        % Valid texture returned? A negative value means end of movie 

reached: 
        if tex<=0 
            % We're done, break out of loop: 
            break; 
        end; 

  
        % Draw the new texture immediately to screen: 
        Screen('DrawTexture', w, tex); 

         
        % Change blending mode and draw the scotoma. 
        Screen('BlendFunction', w, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 

         
        % Draw fixation point and centre points. 
        if pressed 
            Screen('FillOval', w, [0, 255, 0, 128], [cx-32, cy-32, cx+32, 

cy+32]); 
        else 
            Screen('FillOval', w, [255, 0, 0, 128], [cx-32, cy-32, cx+32, 

cy+32]); 
        end 

         
        % Screenshot 
        imageArray = glReadPixels(0, 0, 1680, 1050, GL.RGB, 

GL.UNSIGNED_BYTE); 
        writeVideo(writerobj, imrotate(imageArray, 90)); 

     
        % Update display: 
        Screen('Flip', w); 

         
        % Release texture: 
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        Screen('Close', tex); 
    end 

     
    % Stop playback: 
    Screen('PlayMovie', movie, 0); 

  
    % Close movie: 
    Screen('CloseMovie', movie); 

  
    % Close Screen, we're done: 
    Screen('CloseAll'); 

  
    return; 

     
catch 
    psychrethrow(psychlasterror); 
    sca; 
    ShowCursor; 
    Priority(0); 
end 

  

 

 

 

  








