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Abstract

The growing complexity of emerging image and video compression standards

means additional demands on computational time and energy resources in a variety

of environments. Additionally, the steady increase in sensor resolution, display

resolution, and the demand for increasingly high-quality media in consumer and

professional applications also mean that there is an increasing quantity of media

being compressed.

This work focuses on a methodology for improving and understanding the qual-

ity of media compression algorithms using an empirical approach. Consequently, the

outcomes of this research can be deployed on existing standard compression algo-

rithms, but are also likely to be applicable to future standards without substantial

redevelopment, increasing productivity and decreasing time-to-market.

Using machine learning techniques, this thesis proposes a means of using past

information about how images and videos are compressed in terms of content, and

leveraging this information to guide and improve industry standard media compres-

sors in order to achieve the desired outcome in a time and energy efficient way.

The methodology is implemented and evaluated on JPEG, WebP and x265

codecs, allowing the system to automatically target multiple performance charac-

teristics like file size, image quality, compression time and efficiency, based on user

preferences. Compared to previous work, this system is able to achieve a predic-

tion error three times smaller for quality and size for JPEG, and a speed up of

compression of four times for WebP, targeting the same objectives. For x265 video

compression, the system allows multiple objectives to be considered simultaneously,

allowing speedier encoding for similar levels of quality.
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Chapter 1

Introduction

Improving the efficacy of image and video compression algorithms has been an

ongoing area of research for many decades. The challenges associated with image

and video compression remain important today due to the steady increase in sensor

resolution, display resolution, and the demand for increasingly high quality media

in consumer and professional applications. However, introducing a new compression

standard to meet these demands is difficult in practice, even with an improved

quality to size ratio, because modern infrastructure has been optimised specifically

for current standards. As a result, employing image and video codecs currently in

use is often thought preferable to making radical changes.

This work focuses on a methodology for improving and understanding the qual-

ity of media compression algorithms using an empirical approach. Consequently,

the outcomes of this research can be deployed on existing standard compression

algorithms, but are also likely to be applicable to future standards.

Processing modern large photographs and high-quality videos requires increased

storage capacities, network bandwidth and a considerable amount of time and en-

ergy. This means that the compression time associated with the use of traditional

codecs with modern images and videos has become a major concern. These chal-

lenges are compounded when we consider not just the increased size, quality and

resolution of modern images and videos, but the ever increasing volume and sheer

bulk of image data in existence.

The smartphone revolution of the last decade that has led to their now near

ubiquity in society and the development of video streaming services have substan-

tially changed not only how multimedia content is produced but how it is consumed.

According to Cisco, Internet video traffic makes up the majority of all IP traffic to-

day and is expected to grow dramatically in the near future [1, figure 13]. Moreover,

Cisco expect live video traffic to increase by 15 times in the next few years.

1



This rapidly growing global volume of multimedia data requires new strategies

for image and video compression that balance quality and file size, minimise com-

pression time and have the flexibility to allow optimisation for specific use cases. For

example, live steaming video can suffer from inconsistent quality because of strict

limits for compression time, as highly detailed scenes generally take longer to process.

The offline compression can be demanding as well. If a hypothetical medium-sized

multimedia company needs to compress thousands of images or videos per day, which

occupy few terabytes of disk space, that company will experience some non-trivial

requirements for server equipment and energy consumption.

However, there is an alternative to increasing the number of servers for data

compression. Large quantities of images and videos can actually be considered as an

advantage for applying methods of statistical optimisation such as machine learning.

This means that it may not be possible to decrease compression time for every singe

image, but at the scale of 1000 images the difference in time will be substantial in

comparison with using just built-in compressor options.

In reality, optimisation may not be possible in some cases. For example, com-

pressing images into smaller file sizes with the same quality using the same codec

is contradictory, unless of course, the codec has specific options that allow such

scenario at the cost of increased compression time. Overcoming limitations of a

particular codec will require changes in the compression algorithm.

But in many practical situations, there are alternative compression strategies

which can give better results in terms of speed. It is relevant for applications that

require a specific outcome of compression such as a given level of quality or fixed

file size; this thesis is focused on such use cases. This research proposes a new

methodology for predicting the outcome of compression allowing various prelimi-

nary optimisations of encoding strategy in order to save compression time and even

improve resulting quality or decrease size.

In view of the above, it is clear that compression time optimisations are impor-

tant from a practical point of view, and it becomes necessary to explain why they

are possible and indeed necessary. The main reason is unpredictability of modern

codecs.

1.1 Problem Examples

The result of compression is determined by a particular codec, which is assumed

to be a fixed choice, and the following factors:

– encoding parameters;
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– input resolution (and length for videos);

– actual content of the image or video.

Upon compressing various images or videos with the same options, the results

are different in terms of quality and size (figure 1.1). The problem is that there is no

easy way to tell anything about the outcome of compression beforehand because it

depends on the three above-listed factors, which influence result simultaneously in

a complex manner. This creates an obstacle for use cases aiming for specific quality

or file size as it is often unclear how to choose appropriate compression parameters.

The simplest way to deal with this problem is to perform several recompressions

with different parameters until the desired constraints are satisfied. Such approach

could be very expensive in terms of compression time.

(a) Original images

(b) Compressed images

Figure 1.1: Two ordinary photographs resized to 600×400 pixels (a)

and then compressed into WebP format with the same minimum

possible quality (b). The road image had size 3 kB and quality 0.7;

the sky image – 1 kB and 0.9 in the MSSIM quality metric

(mean structure similarity index [2]).

Example on the figure 1.1 demonstrates how compression results can vary in the

case of the same lowest quality option “-q 0”, same resolution, but different image
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content. This example case uses WebP codec to show explicit quality degradation

because WebP does not make an image unrecognisable at very low quality com-

pression. Image codecs are not very good at understanding content and connection

between its complexity and outcome of compression. Identical encoding parameters

do not imply either same quality or same size.

The need for compression time optimisations arises because modern image and

video codecs do not implement functionality for estimating compression result char-

acteristics such as quality and size. There are a couple of exceptions like fixed

bitrate video encoding that produces constrained size by definition and JPEG 2000

lossy compression, which aims for a given file size by design. However, in a ma-

jority of probable scenarios image/video codecs are still hard to predict. Although

there are no theoretical obstacles to perform estimations of quality and size inside a

codec based on the content of a particular image or video, it is pertinent to mention

that estimating compression time does not exist in any modern encoder due to an

objective reason – it may be possible only for a fixed hardware configuration.

In the case of video compression choosing optimal parameters could be even

more complicated because video content can vary significantly between the first and

the last frames of a single video, which makes any set of options more suitable for

some parts of the video and less appropriate for the others. Although many video

compressors can perform quality balancing across different segments of the video,

it is often not perfect and there are scenarios, where such balancing cannot work

properly.

For example, downsampling an entire video into a different resolution is a widely

used method of quality control in many popular video streaming services including

YouTube and Twitch. Figure 1.2a shows distribution of quality in a particular video

compressed in two resolutions: 1920×1080 and 1280×720 assuming that the display

resolution is Full HD, so 720p version is upscaled to 1080p upon playback.

Analysing the frame quality graph at figure 1.2a it is clear to the naked eye that

the quality level does not remain the same across the entire video in case of either

resolution. Moreover, there are disproportional quality drops in different parts of

the 720p video. The problem is that when the video codec tries to balance quality

for a lower resolution video, it is not aware that this video has already been com-

pressed through resampling. This can cause uneven quality drops. The resampling

procedure can be considered as a compression operation that blurs frames with high

detail. Figure 1.2b shows inconsistent quality degradation upon just resizing the

video from 1080p to 720p without actual compression. So, video compression with

resampling can be unpredictable and very challenging in terms of getting a desired

result.
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Figure 1.2: Frame quality in the mean SSIM metric for an ordinary

1080p video and its 720p version encoded with x265 (a) and without

any compression (b) at the 1920×1080 display resolution.

Considering the described examples of different image compression outcomes

and uneven video quality distribution it becomes clear that in order to obtain a

desired result with predefined characteristics a single compression is insufficient.

Instead, there is a need for multiple encoding runs with different parameters and

a subsequent selection of the best result. So, following the argumentation about

usefulness of the compression time optimisations, it is possible to conclude that there

are various practical use cases where obtaining a specific result is not straightforward

and can be improved.
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1.2 General Idea

This research proposes a universal method that helps to deal with the problem

of unpredictable compression. It is based on a simple idea – knowing the outcome of

compression without actual compression allows a saving in total computational time.

Considering the fact that conducting several recompressions will eventually lead to a

desired solution, it is possible to notice that such a procedure is redundant in terms

of the amount of produced information. Actual compressed files are discarded, only

their characteristics like quality and size are recorded for comparison. This fact

inspired the idea that the compression result can be estimated without performing

any compression but using statistical models.

The main factor that brings uncertainty into the problem of estimating a com-

pression outcome is how the content of various images and videos interacts with

different codec parameters to produce various compression results. However, it is

reasonable to assume that gathering enough statistics will help to identify some

trends and regularities, which in turn can facilitate prediction of the outcome char-

acteristics.

This concept should be applicable to a range of existing image and video com-

pressors due to the fact that they operate by the same basic principle – eliminating

redundancy in the low entropy data, which enforces correlations between the out-

comes of different codecs.

Based on the possibility of improvements with the statistical approach, it is

possible to put forward the Predictable Compression Hypothesis :

Regardless of a particular codec the desired compression result

can be obtained in a single encoding operation thus avoiding the

need for several recompressions and extra processing time.

The main problem on a path towards obtaining a desired compression result is

lack of functionality for estimating the compression outcome characteristics much

faster than doing actual compression. One of the key ideas of this research is to

build machine learning models that can predict such objectives as compressed file

size, resulting quality and encoding time for images and videos.

The problem of predicting image compression is present in the literature mostly

in the form of the JPEG transcoding – a concept of the controlled recompression of

already encoded JPEG images into lower quality. An example of such strategy can

be found in the work of Pigeon and Coulombe [3]. Their approach is conceptually

simpler than the methodology presented in this research but it has important draw-

backs – for example, its application is limited to a single image format. This thesis
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investigates a general scenario without any format constraints and demonstrates

superior accuracy in comparison with the transcoding method.

As for the video compression, the existing research does not address the prob-

lem of predicting compression results and barely considers optimisations, which are

external to the codec. Despite some indication of the growing interest in this area,

in particular by Netflix, no comparable research projects have been found. In this

research we do not just build a predictor for the x265 video codec, but also propose

a novel concept of the dynamic resolution video, which permits to surpass standard

codec capabilities and decrease total compression time in some use cases. The main

idea of the dynamic resolution is to use variable size for different segments of the

video according to their complexity.

So, the main goals of this work are:

– to investigate the connection between image/video content and the outcome

of compression with different parameters;

– to propose optimisation strategies for bypassing multiple recompressions.

The methodological basis of this research is an experiment-driven investigation,

which uses the following methods: gathering statistical data, modelling through

regression analysis, statistical comparison and heuristic-based decisions.

The scope of the research consists of investigating lossy compression for image

and video formats, which are suitable for photographical (natural) scenes. The

considered problems are related to processing only graphical information (pixel data)

in the images and videos. The metadata and audio streams were not studied. This

work does not propose new compression algorithms or any modifications to the

existing ones. Instead it introduces methods for obtaining a desired compression

result faster and in a predictable way using only real image and video codecs.

The investigation commences with the case of image compression and proceeds

into scenarios for video compression. Such approach allows a gradual increase the

problem complexity because images represent a fundamentally simpler data type in

comparison with videos. The problem of predicting image compression was tested

on a wide range of resolutions up to 24 megapixels.

An important aspect of this research is image and video quality because it plays

a significant role in practice by affecting viewers’ perception. Due to the lack of an

established consensus among the objective quality metrics for images and videos,

using real people to mark compressed graphics is often considered a reliable way

to estimate the quality loss upon compression. However, this research operates

with relatively large datasets consisting of thousands of images and videos, which

makes it impractical to involve actual human viewers in the process. Therefore, only
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objective quality metrics are used in this thesis with the main focus on the mean

structure similarity index (MSSIM) by Wang et al. [2]. It is a popular and flexible

quality metric independent from picture size and video length. Although it is not a

perfect metric, this research considers any quality estimation algorithm as a “black

box” proposing a universal methodology applicable to various quality metrics.

1.3 Contributions

The research contains the following contributions:

• A concept of content features for representing entropy of an image or video.

The content features presented in this work were designed specifically with an in-

tention to provide a computationally cheap metric for image and video complexity.

They were engineered manually based on the factors influencing compression result

as well as on the author’s own experience in image compression. This research uses

the most adequate set of features for the prediction problem in comparison with

related work, where the choices were barely explained. An extra effort was made

to tweak the features to be suitable for implementation with Intel AVX (advanced

vector extensions) instructions.

• A universal method for predicting outcome of compression. The method is

based on employing the machine learning models that use content features and val-

ues of compression parameters as input vectors for explicit predictions of quality,

size or computational time for images and videos before compression.

• The problem of predicting image compression was solved with reasonable ac-

curacy. The image compression with size and quality constraints was tested on a

range of resolutions including large photographs and has shown a relatively small

average error of 3% for the file size and 0.01 for quality in the MSSIM metric. Such

accuracy is sufficient for applying the proposed methodology in various practical

use cases. The necessity to analyse image content before compression increases to-

tal computational time for approximately 20–30% using the JPEG codec and 1–2%

for WebP in comparison with a single default compression.

• The problem of video compression with a given level of quality was solved with

a sufficient accuracy for practical use. Although the errors of the prediction models

for video compression were relatively high, in particular the average error of the file

size prediction model was about 30%, it was still possible to use such models for

compressing long videos with a given level of quality.

• A concept of the dynamic resolution video, interacting with compression pa-

rameters. The dynamic resolution is an idea for optimising video compression with-

out modifying the codec. Different parts of the video are allowed to be encoded
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in various resolutions according to their content complexity and the desired quality.

The video is then resampled to the display resolution upon playback. This approach

results in a decreased compression time and sometimes even smaller file size, while

the quality is maintained at approximately the same level. This thesis investigates

the efficacy of dynamic resolution video and its interaction with other compression

parameters.

1.4 Thesis Structure

The thesis includes a literature review (chapter 2) and two technical chapters

dedicated to image and video compression respectively:

– Predicting and optimising image compression (chapter 3), which describes the

methodology and demonstrates its universality by applying it to JPEG and WebP

image formats;

– Dynamic resolution and video compression with target quality (chapter 4)

introduces a concept of video compression with variable resolution across different

segments using x265 codec.

The main results from the third chapter “Predicting and Optimizing Image

Compression” were presented in the paper of the same title [4] at the ACM Multi-

media conference in 2016.

This work ends with a conclusion and three appendices.
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Chapter 2

Related Work

This chapter provides a summary of existing image and video compression stan-

dards, explains how classic compression algorithms require user-generated input pa-

rameters, like the quantizer factor, and gives a brief overview of the related research

that attempts to deal with this problem.

2.1 Modern Image and Video Codecs

There are few image and video formats widely used in practice, in particular,

on the Web. Existing implementations of media compression standards tend to

demonstrate a similar efficiency in terms of quality-to-size ratio, and it is difficult

to identify an universally best compressor.

2.1.1 Image compression standards

JPEG is one of the oldest image compression formats. The JPEG File Inter-

change Format (JFIF) specification was proposed in 1991. It is the most widely used

still image format, which became the de-facto standard for photographic images and

Internet graphics.

Today, JPEG is defined by the reference implementation from the Independent

JPEG Group [5], although a number of other implementations are more popularly

used, like libjpeg-turbo [6], which is optimised with CPU vector instructions.

JPEG has a relatively simple algorithm that consists of a discrete cosine trans-

form (DCT), quantization and Huffman encoding [7, chapter 11]. The main com-

pression parameter is quality factor in the range [0; 100]. The quality factor is the

main determiner of the output image quality.
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Google’s WebP format [8] was proposed in 2010 as an alternative to JPEG and

PNG (Portable Network Graphics) formats for Web applications. It relies mostly

on a discrete cosine transform, similar to JPEG, but also uses prediction techniques

and arithmetic compression.

WebP codec has more compression parameters than a typical JPEG encoder.

However, the main parameter is still quality factor in the same range [0; 100]. There

are a couple of options, which are of particular interest because they allow a user to

compress images into given file size or quality in PSNR (peak signal-to-noise ratio)

metric using multiple recompressions and a binary search. The availability of these

options has allowed a more direct comparison between the method proposed in this

thesis and the built-in functionality of the WebP codec.

JPEG 2000 was proposed as an alternative standard for replacing JPEG. It is

based on the discrete wavelet transform (DWT) instead of DCT. It was originally

designed to compress images into a given file size without multiple recompressions,

which is related to the problem investigated in this research. Such functionality was

implemented through progressive encoding from low- to high-frequency components

of the discrete wavelet spectrum, so that the redundant information, which does not

fit into specified file budget, is discarded. The details of the standard implementation

can be found in [9].

The JPEG 2000 codec was not considered in this thesis as the format is not

widely used today, and is generally not considered successful in comparison with

JPEG. It has been criticised, in particular, for blurring the smooth colour areas in

the image [10], which affects its applicability in practice.

2.1.2 Video compression standards

H.264 is a widespread video compression standard used by many streaming

services and supported by all popular browsers. It was first proposed in 2003 and

resulted in many software and hardware implementations. One of the well known

and efficient implementations is the x264 video codec.

H.265 is a more complex and improved version of the H.264 standard oriented

mainly at high resolution video [11]. Playing the videos encoded in this format is not

yet extensively supported, but is becoming more popular. Among the open source

software implementations, two should be noted: the highly efficient x265 codec that

offers many compression parameters and the Kvazaar codec, which has recently been

recognised as the best open source project at the ACM Multimedia conference [12].

Although Kvazaar is positioned as an H.265 implementation for academic purposes,

it does not target high performance, which is crucial for the evaluation of the work
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in this thesis. Currently, it has considerably fewer options and general functionality

than x265. The latter is used as the reference implementation for research in this

thesis due to its real-world use and emphasis on performance. Multiple comparisons

demonstrate the efficiency of the H.265 standard and x265 video codec in particular

[13, 14, 15].

VP9 video compression format was developed by Google as an alternative to

H.265 (supposedly due to the licensing issues). This standard is used by the YouTube

online video service along with H.264.

Thor video codec by Cisco is positioned as a free alternative to the licensed

standards. It is defined with its reference implementation [16] and openly published

description [17], which is relatively simple and easy to understand. For example, it

explicitly shows the role of the discrete cosine transform in regulating the quality

by compressing individual frames [17, fig. 1].

Daala is a relatively new codec [18], which is still under development sponsored

by Mozilla. It is presented as a potentially more efficient alternative to the existing

VP9 and H.265 formats based on more sophisticated techniques than a standard

DCT. The codec is in the experimental stage, not properly optimised and does not

use parallel processing.

2.2 DCT Quantizer as a Main Codec Parameter

The discrete cosine transform (DCT) is the most widely used method for audio-

visual data compression. Many popular image and video codecs employ it in order

to change the representation of the pixel data into a spectral form more suitable for

subsequent entropy encoding.

The DCT is a reversible orthonormal discrete spectral transformation, which is

usually implemented in practice as a set of 2-dimensional convolutions applied to the

levels of brightness in the pixels of an image. One of the most important properties

of the DCT is that removing the high-frequency components from its spectrum keeps

the reconstructed signal close to the original one in terms of the mean squared error.

This property was utilised in the process of spectrum quantization, which decreases

the amplitude of the spectrum components in specific proportions defined by the

value of quantizer. Changing the quantizer directly affects the amount of entropy in

the spectrum and its subsequent compressibility with arithmetic encoding or similar

algorithm. Large quantizer values, for example, smooth the signal and consequently

blur the image. More information about DCT specifics and quantization process

can be found in [7, chapter 11] or [19, chapter 3].
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Due to the fact that all popular image and video codecs are based on spectral

transformations, the quantizer plays a major role in regulating the level of compres-

sion and resulting quality of the image or video.

Most image and video codecs ask user to specify the value of quantizer or

conceptually similar parameter before compression. The problem is that although

such options can be considered and used as a measure of quality degradation, it

does not correspond to the subjectively perceived level of quality or objective quality

metrics like PSNR and SSIM. The situation with the compressed size is even worse

– it cannot be estimated based on the quantizer value.

As image and video codecs become more complicated, other compression options

are added in order to further tweak the compression process. This only complicated

the problem of getting a desired outcome without trying multiple combinations.

Modern video codecs operate with dozens of parameters, and it is very difficult for

a user to understand the implications of each of these parameters on a compression

process. This is why this research investigates the connection between compression

parameters and the resulting characteristics using statistical methods.

2.3 Predicting Image Compression

Chandra and Ellis (1999)

The problem of predicting image compression outcome and optimal codec pa-

rameters has already been discussed in few papers. Various authors consider only

the JPEG transcoding scenario – i.e. recompressing JPEG image into lower quality.

Probably the oldest paper that addresses the problem is the work of Chandra

et al. in [20], which explicitly states that predicting compressed JPEG file size is

impossible without taking into account the image content. The paper proposed an

approach to classify a transcoding operation according to the potential improvement

in file size. The idea of predicting explicit image characteristics was not developed.

The research of Chandra et al. is based on a simple fact that the value of

JPEG quality factor, which is used to scale quantization tables, correlates with the

compression ratio of the image. Therefore, having enough statistics it is possible to

estimate the compression ratio for another quantizer value. A considerable attention

was paid to the problem when the original JPEG image was compressed using dif-

ferent software with custom DCT quantization tables, and consequently its original

compression ratio may not correspond to the quantizer used in the test codec.

Although Chandra et al. do not perform explicit file size or quality estimation,
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they used some image characteristics as parameters for classification. They obtain

a couple of values from manipulating DCT coefficients of the compressed image, for

example, by calculating the percentage of high-amplitude DCT components. The

idea of using coefficients of image spectral transformations as a measure of entropy

has influenced design of the few image content features in this thesis.

Pigeon and Coulombe (2008 – 2014)

Another approach for transcoding JPEG images, which was extensively used

by Steven Pigeon and Stéphane Coulombe in several papers [3, 21, 22, 23, 24, 25,

26], consists of constructing a classifier for estimating only a relative change in the

compressed file size and quality in comparison with the input JPEG image. Such

an approach is similar to the work of Chandra and Ellis [20] but does not use any

features describing the image content.

For example, in [3] Pigeon et al. aim to predict the JPEG file size for transcoding

operations prior to recompression. They consider two compression options: qual-

ity factor and scale. The main parameter controlling the aggressiveness of JPEG

compression is the quality factor, which is used in the JPEG algorithm to scale

quantization tables. In addition, an external parameter is introduced – the scaling

factor for changing the output image resolution. Both quality factor and scale are

taken into account when predicting transcoding outcome.

Pigeon et al. use a dataset of 70 300 images for gathering statistics. Firstly,

they cluster original images with K-means algorithms considering original resolution

(width and height) and original quality factor as independent variables. Then for

each cluster they create a statistical table of 100 cells corresponding to all combi-

nations of the quality factors (10, 20, ..., 100) and ten scales (10%, 20%, ..., 100%).

Each cell represents an average relative change in the file size upon recompressing

with particular quality factor and resolution.

A new image that needs to be recompressed is mapped to one of the clusters

and subsequently to one of the cells in the corresponding table that represents a

desired change in the compressed file size. This allows to identify optimal quality

factor and target resolution for recompressing the image.

This approach has several areas with scope for improvement. Firstly, it requires

original image to be already encoded in a specific format. Secondly, the classifier

does not take into account the image content. The only features used are image

resolution and quality factor, which can be instantly extracted from a JPEG image.

One of the the advantages of this method is the lack of computational time overhead.
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Although the JPEG transcoding method does not explicitly rely on the image

content, it has such advantages as instant feature extraction and a possibility of a

partial recompression. These benefits may not be applicable to other image formats

like WebP. Moreover, Pigeon et al. did not consider cases if the original JPEG

image was compressed using different options (e.g. Huffman code optimisation) or

quantization tables (despite the fact it was previously done by Chandra et al. [20]),

which is likely to decrease accuracy of the classifier.

In [21] Pigeon and Coulombe added the MSSIM quality metric as a second ob-

jective to be predicted for JPEG transcoding. Using the same approach as in the

previous work [3] they show that it is possible to transcode images with a given qual-

ity relative to the original image. They also propose to apply multiple recompres-

sions in cases where a single transcoding did not fit the target objective. However,

they do not compare computational expenses between the multiple recompressions

with and without prediction as an extra a priori information. In addition, calculat-

ing quality metric relative to an already compressed JPEG image is not suitable for

scenarios where original image is not in the JPEG format – e.g. a raw data from

the camera sensor or an edited photo.

In their last paper [26] Pigeon et al. adopted the problem to transcoding mul-

tiple images and positioned it as an optimisation for the Multimedia Messaging

Service (MMS). Considering a set of images, the aim is to recompress them into

the same level of quality. A reasonable objective function is proposed – the product

of quality metric values for all images in the group, which encourages the uniform

quality distribution for multiple images. It is based on the fact that a product value

is maximum when its factors are identical. The paper is focused mostly on solving

this optimisation problem by maximising the product with dynamic programming.

Although the proposed method can be used in practice, the role of the MMS service

in particular looks secondary and artificially attached to the topic.

The work of Pigeon and Coulombe can be summarised into two different use

cases: recompressing (transcoding) one JPEG image with constraints and recom-

pressing a group of images with constraints. They use up to three main target

objectives: desired quality, compression ratio and resolution.

These papers discuss similar practical cases with methodologies which only differ

slightly, or iteratively. Although the work by Pigeon et al. only considers compressed

images and not uncompressed images, it is the most closely related to the problems

considered in this thesis. For this reason their core methods and experimental

techniques were repeated for comparison purposes.
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Tichonov et al. (2017)

The recent work by Tichonov et al. [27] is dedicated to the problem of pre-

dicting image quality when compressing images into JPEG format. In the paper

a classification approach is proposed, which is conceptually similar to the works of

Pigeon and Coulombe. The major difference is in the fact that Tichonov et al. use

a feature vector of several parameters, which are the colour depth and eight colour

features – statistical characteristics of an image after applying an edge filter to the

red, green and blue colour channels. Unfortunately, this choice has not been ex-

plained, but it can still be considered as the only explicitly formulated idea of the

image content features in the research literature.

Due to the fact that this thesis also proposes a different set of content features

specifically designed to predict compression outcome, it would be interesting to com-

pare them with those proposed by Tichonov et al. However, it was impractical due

to the fact that when Tichonov et al. published their paper after the work on im-

age compression for this thesis had been completed and published in 2016 [4]. This

circumstance made it inefficient to return to image compression experiments to repli-

cate and test another method. The intention behind this was to save time and disk

space in order to get more interesting results from video compression experiments,

because the latter was assumed the more perspective research direction.

Nevertheless, it is possible to make some general conclusions. For example,

considering how the features in [27] are calculated, it is clear that they were not

designed to capture local spacial complexity of the image relief. Instead, the statis-

tical calculations are applied to an image as a whole. Presumably, such an approach

is not an efficient mean of representing the diversity of image content especially for

large images. As a consequence, it should reduce the accuracy of a machine learning

model for predicting quality.

Tichonov et al. did not experiment with predicting compressed file size. The

reason given for this is that they considered file size more difficult to predict than

quality. This question of relative difficulty is discussed in the thesis in Chapter 3.

2.4 Video Compression Optimisation

Choi et al. (2016)

Recently published research by Choi et al. [28] presents a method for estimating

an appropriate target bitrate for each video frame that should result in the reduced

blockiness in the compressed video. Choi et al. rely on the fact that different frames
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in the video encoded with a fixed bitrate have variable amount of block artefacts.

Due to the fact that increasing the bitrate for the whole video may be too expensive,

they propose to deal specifically with the problematic frames.

For the experiments in [28] the reference implementation of the H.264 standard

was chosen. Six standard short test videos from the xiph.org database were used

as a dataset. The optimisation starts with recompressing a test video into multiple

target bitrates and recording the amount of blocking artefacts for all frames in every

scenario with a specially designed method.

Then using an optimisation procedure, based on the collected data, Choi et

al. choose which bitrate should be targeted for each particular frame so that the

amount of blockiness is minimal. Finally, they claim that the test video can be

compressed with the optimal bitrate for each frame. The problem is that they do

not explain how to perform this compression in practice. It appears to be impossible

to achieve this through standard encoding procedure without modifying the codec.

The reference codec manual [29] shows that the user can specify bitrate for the whole

video, but not for individual frames.

Although the research of Choi et al. discusses some similar issues, the context in

which the work is done is very different – it demonstrates what result can be obtained

theoretically using their proposed balancing technique, but not in a way which can

be put into practice in under current standards. Consequently, this research is not

directly comparable with the methods presented in the current thesis, which are

bound by the real world constraints of real formats.

Nevertheless, Choi et al. [28] proposed an interesting and original idea, which

demonstrates an example of how multiple recompression can be useful for quality

balancing inside a video. This thesis, conversely, investigates practical scenarios

that help to avoid compressing a video more than once in order to save time and

energy.

YouTube machine learning for video transcoding (2016)

Probably the most related investigation in comparison with the methods pre-

sented in this thesis was done by Covell et al. [30] – researchers from Google. They

considered the problem of multiple recompressions to achieve a desired quality level

for different video chunks upon transcoding videos uploaded to Youtube into the

H.264 format. The need to compress videos several times dramatically increases

energy consumption and computational time.
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Covell et al. proposed to predict an optimal compression parameter value that

leads to the desired quality level. The main idea was to extract general video fea-

tures like resolution, frame rate, original bitrate, as well as hundreds of more specific

ones like various motion compensation vectors. In order to get this information they

perform a preliminary compression pass with a relatively low quality to get a ref-

erence compression ratio. Then they calculate several hundred features (depending

on the approach modification) and use a neural network trained with the data from

9250 5-second video segments to predict the optimal CRF (constant rate factor)

parameter values in the x264 video codec.

Covell et al. did not estimate the computational complexity or potential time

savings upon using their method [30]. It would be an interesting question to inves-

tigate because using a video precompression stage requires a considerable amount

of time as well as calculating lots of features from the compressed file. It is also

unclear if the hundreds of features used, which depend on a particular video codec,

might be transferable to other codecs, making this approach much less general. Due

to the fact that the proposed system for predicting a single compression parameter

is quite complicated, it should add a substantial time overhead, thus reducing the

potential compression time benefits in comparison with multipass encoding.

Unfortunately, the original paper is relatively short and does not provide enough

information to replicate the proposed method to a reasonable extent for comparison

purposes. The general description of the method was also published in the YouTube

developers blog [31] but it also does not contain technical details.

Netflix Dynamic Optimizer (2017)

The video streaming company Netflix recently announced the development of a

tool called “Dynamic Optimizer” [32], which is expected to help with the problem of

video bufferization when using slow connections. It should improve the compressed

video quality or reduce bitrate in comparison with a typical scenario of the constant

bitrate encoding.

Although no specific technical details have been reported except the fact that

they use machine learning to balance the quality of all frames in the video, this topic

is still related to the thesis.

Three years ago a post in the Netflix Technology Blog [33] demonstrated some

results of an investigation into choosing optimal compression options according to

the content of different videos. A year later another post on the same site [34]

was dedicated to the problem of a reliable video quality metric. It presented the

VMAF video quality measurement tool based on a method that combines several
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objective quality metrics in order to approximate the mean subjective score of the

frame quality degradation.

Although the news about Dynamic Optimizer look more like marketing claims

to advertise the company services, it is possible to put forward an educated guess

about how it might be implemented based on the preceding research published in

the Netflix blog.

Firstly, it is reasonable to assume that one of the target objectives is the same

level of quality for all frames in the video. The visual quality perception for each

frame should be verified using VMAF tool considering the amount of work they

invested into it. Another aim of the Dynamic Optimizer should be the quality to

size ratio for each particular video. Considering the fact that compressed video is

viewed many times, the encoding time factor is less important than minimising file

size or improving the quality. Therefore, they can afford multiple recompressions of

every frame to obtain a specific level of quality.

Consequently, it is likely that the developers modified a video codec by replac-

ing the default heuristic for choosing quantizer at every frame with an exhaustive

search for an optimal quantizer value that yields a chosen level of quality for each

particular frame depending on its complexity. Despite the fact that there could be

problems with taking into account the motion compensation part of the algorithm,

such idea of per-frame quality balancing makes sense in terms of practically con-

stant perceived quality across the entire video. This is speculation, but there is no

scientific publication to refer to.

This thesis also considers the problem of targeting constant quality, although

at a different level. Instead of dealing with individual frames, the optimisation is

performed for video segments corresponding to separate scenes in a long video.

Ejembi and Bhatti (2014)

Video compression optimisations may be related not just to the obvious charac-

teristics like resulting quality, file size and compression time, but also to the decoding

complexity and its energy demands.

Ejembi and Bhatti [35] investigated the energy consumption when playing

videos of different resolutions using software and hardware decoders. Their results

indicate that with increasing resolution the raw energy requirements grow expo-

nentially as well as the processor load and memory allocation. Moreover, decoding

modern video formats like H.264, H265 and VP9 needs considerably more energy

than older, less complex formats.
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2.5 Objective Quality Metrics

The purpose of using an objective quality metric is to have a quick, deterministic

and reliable way to measure quality degradation of the compressed image or video

in comparison with the original.

Depending on the practical purpose of compressing an image or video, it can

be targeted for a subsequent algorithmic processing or for the human vision. Con-

sequently, the quality metrics used to estimate the amount of introduced noise may

be different. In the case if the image/video is a subject to further machine analy-

sis, the standard mean squared error is often considered sufficient. However, if the

compressed material will be viewed by people, there is no solid consensus on which

metric should be used as a replacement for subjective quality perception. Many

quality metric investigations like [36] suggest that it is still an open question.

There are two kinds of objective quality metrics. One is calculated by com-

paring the compressed image with the original. Another – referenceless metrics –

estimate the image quality without reference to any other source. Referenceless

metrics are usually aimed at detecting explicit compression artefacts like blur or

blockiness. For example, Tong et al. [37] propose to measure the amount of blur

using spectrum coefficients of the discrete Haar wavelet transform, while Chen et al.

[38] use conceptually similar method based on calculating the gradient at different

image resolutions. To detect blockinness Gunawan et al. [39] propose to use a Sobel

operator while taking into account the entropy of the image area. There seem to be

no established standards among the referenceless metrics.

This research uses only metrics calculated with respect to original image or video

(full-reference metrics). Probably the most popular quality estimation methods

today are PSNR (peak signal-to-noise ratio) and SSIM (structure similarity index).

The PSNR metric is a simplest one based on the mean squared error. It uses

a logarithmic scale in decibels to facilitate interpretation of the values. For two

images (discrete signals) x and y the PSNR metric is calculated as:

PSNR = 10 · log10

 L2

1

N
·
N∑
i=1

(xi − yi)2

 ,

where N is a number of discrete samples (pixels in the image); L = 255 is a dynamic

range of the brightness levels or maximum possible pixel value; xi and yi are values

of the corresponding image pixels.
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Although PSNR is still widely used today, it has been criticised for insufficient

correlation with the human vision system. For example, Huynh-Thu et al. [40]

empirically established that PSNR can reliably indicate quality levels only for a

single image or video. In case of different images and videos, the same values of this

metric do not correspond to the equal amount of the visible quality degradation.

The SSIM metric and, more importantly, its window version – MSSIM (mean

structure similarity) were designed from scratch by Wang et al. [2] based on several

basic assumptions about specifics and sensitivity of human vision. The MSSIM was

proposed as a more sophisticated alternative to a widely used PSNR. The authors’

aim was to improve the approximation of the human quality perception.

Between two images MSSIM is calculated as an average of the SSIM metric

values in all positions of 11×11 sliding window. According to Wang et al., this

approach is usually more reliable than simply calculating SSIM for the entire image

because of higher attention to the details in each window.

The SSIM in 11×11 pixels window is calculated as follows:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

µx =
N∑
i=1

wixi

σx =

√√√√ N∑
i=1

wi(xi − yi)2

σxy =
N∑
i=1

wi(xi − µx)(yi − µy),

where N = 121 is the number of pixels in the window; C1 = (0.01 · L)2; C2 =

(0.03 · L)2; L = 255 is a maximum luminance; xi and yi are corresponding pixel

values; wi represents a value from the 11×11 matrix of samples from the 2D Gaussian

with σ = 1.5 in the range [–5; +5].

The range of theoretically possible values of the SSIM metric is [–1; +1], where

1.0 means identical images. However, in practice the metric values do not drop

below zero.

Various comparisons between PSNR and SSIM metrics including the one made

by Wang et al. [2] in the original paper indicate that SSIM better correlates with

the subjective quality perception. For example, Hore et al. [41] compared relative

sensitivity of these two metrics on images compressed into JPEG and JPEG 2000

formats. The metrics are closely correlated in case of blurred images, but SSIM

is more sensitive to JPEG blockiness than PSNR. Kotevski et al. [42] compared
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PSNR and SSIM metrics for compressed videos and experimentally established that

SSIM is considerably more adequate than PSNR for measuring quality degradation

in video sequences. Kotevski et al. also note that SSIM is not a perfect metric and

has some issues too, mainly due to reduced sensitivity to changes in brightness and

contrast.

Butteraugli is a new image quality metric proposed by Google. It is defined by

its reference implementation [43] and unfortunately lacks a comprehensive explana-

tion of its mechanisms and basic principles. According to the information available,

the Butteraugli project aims to reach a sufficient approximation of the way the hu-

man visual system reacts to minor quality differences. It is a full-reference metric

that uses information from all colour channels to calculate a difference value. The

PSNR and SSIM metrics are typically calculated only for image luminance. The ref-

erence implementation of Butteraugli is relatively slow. It takes approximately 10

seconds for a Full HD frame in comparison with about 1 second for MSSIM metric

and only few milliseconds for PSNR.

The most reliable method to estimate quality degradation in images and videos

is to ask real people to rank them and calculate the mean opinion score (MOS).

However, this approach is not feasible in many research projects, including this

thesis. In the case of calculating quality of the compressed material as one of the

final stages of an experiment, obtaining MOS is a demonstration of a solid result.

However, if multiple quality measurements need to be conducted in real time to make

certain decisions, using an objective quality metric is the only practical choice.

Despite the fact that new alternative quality metrics are introduced, only PSNR

and SSIM/MSSIM remain widely used by multimedia research community. The

problem seems to be in the balance between the metric complexity and its corre-

lation with the human perception. When another more complex quality metric is

introduced, it becomes necessary to understand how reliable it is in the different

use cases. Even assuming that the new metric demonstrates better correlation with

mean subjective opinion than SSIM, it may not be the case in the alternative sce-

nario. For example, considering Butteraugli, its authors admit that it may not be a

reliable measure of significant image distortions.

Consequently, the researchers often prefer slightly less efficient metrics with

relatively simple and transparent implementations than more complicated ones with

lower reliability for general use.

Almost all quality measurements for compressed images and videos in this the-

sis were done in the MSSIM metric. One of the advantages is that due to its

window-based computation algorithm the metric is independent of image and frame
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resolution as well as length of the video.

It is important to emphasise that MSSIM is not an ideal quality metric. However

this thesis proposes methods which are independent from any particular metric by

design. The logic behind this decision is that although the results may slightly differ

upon using a different metric, the methodology remains the same.

2.6 Machine Learning in Image Compression

Although making compression algorithms or comparing their efficiency in terms

of quality to size ratio is not the focus of this research, it is important to know how

machine learning had been used for improving compression algorithms.

Hinton et al. (2006)

In recent years the idea of utilising the approximation capabilities of artificial

neural networks for image compression has been gaining popularity. In particular,

this relates to autoencoders – a type of multilayer network that replicates input

signals on the output using a relatively small number of neurons in the middle of

the network. The smaller transverse diameter in one of the central layers forces

generalisation of the input data upon transferring it through the network.

Hinton and Salakhutdinov [44] pointed out that this property of autoencoders

can be used for dimensionality reduction of the graphic and text data. Using au-

toencoder is conceptually similar to the principal component analysis (PCA) but in

a non-linear space. Lossy image compression is a suitable use case for such method-

ology.

Hinton et al. only presented a concept in an explicit form but did not conduct an

efficiency comparison with the existing image compression techniques. This makes

the paper interesting conceptually, but does not provide an evaluation that would

suggest it is better than existing implementations.

Toderici et al. (2016)

One of the recent interpretations of the way autoencoders can be used for im-

age compression was presented by Toderici et al. [45] from a research group in

Google. They proposed an efficient method to compress tiny images of 32×32 pixels

(thumbnails) using a single autoencoder network. The idea is to use a deep convo-

lutional/deconvolutional autoencoder with LSTM layers (LSTM or long short-term
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memory unit is a type of a neural network component with recurrent connections

that facilitates the vanishing gradient problem).

Toderici et al. use a single neural network, which works as both compressor

and decompressor, so the network structure was not considered as a part of the

compressed data. This means that such network had to be trained as a universal

encoder for any image content. It was achieved by using a dataset of more than 200

million images. Considering a small image size the raw data occupied approximately

600 GB.

One of the key features of this work is that Toderici et al. also addressed

an important problem related to autoencoders – a fixed compression ratio, which

is usually impossible to adjust without retraining the model. They proposed a

relatively simple idea of progressive encoding. Thus compression process consists of

several iterations that reduce input pixel data to a fixed number of bits. The input

for the first iteration is the original image, but each subsequent iteration compresses

a difference (error) between original and decoded image. Using this approach allows

to gradually reduce error over multiple encoding iterations whilst increasing the

number of compressed bits.

The proposed compression method [45] was compared with the existing image

formats like JPEG, JPEG 2000 and WebP. The results demonstrated a noticeable

superiority in image quality over all tested codecs at various compression levels.

Although the work by Toderici et al. proposes a relatively new approach to the

problem of image compression with autoencoders and demonstrates good results, it

has certain limitations. Besides an obvious one related to the tiny size of images,

the computational complexity of the proposed method has not been compared with

the existing codecs even approximately. Moreover, training the model on such a

large dataset would require some high-end equipment and a considerable amount of

time, which was not described in the paper.

Nevertheless, taking into account a considerably better performance of the de-

scribed autoencoder-based method over existing image formats, it is reasonable to

ask how it can be adopted to larger images. This can be done in two ways: simply

by increasing image resolution or by splitting a big image onto 32×32 blocks com-

pressed separately. The first way is likely not be feasible in practice due to enormous

computational complexity, but the second way was attempted by a slightly different

team of authors in the work described below.
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Toderici et al. (2017)

Considering a relative success of the autoencoder-based method described in

[45] the research was apparently continued in pursuit of better quality to size ratio

for bigger images. In their latest paper [46] Toderici, Vincent and others investigated

the idea of compressing a relatively large image (1280×720 pixels in particular) block

by block using similar approach.

However, the problem of compressing images block by block is not straightfor-

ward. There are couple of reasons why it is a considerably more complicated task

than compressing a single block.

Firstly, Toderici et al. note that the amount of details inside a small sample

taken from a large image is different from the case when it was obtained by resam-

pling a bigger image like it was done in [45]. Small versions of large images tend to

be more detailed. Indeed, consider an example of a road photo from figure 1.1. Its

resized version of 32×32 pixels is shown on figure 2.1 along with a random sample

of equal size copied from the same image. The content of the resampled original

has noticeably higher detaili. So, the training process had to be adopted to a wider

range of internal segment entropy.

(a) (b)

Figure 2.1: Level of detail comparison between an image resampled

to 32×32 pixels (a) and an unmodified random block from the

original image (b).

Secondly, a considerable amount of entropy in a large image is contained be-

tween the blocks, i.e. in the diversity of their content. A method that compresses

them individually cannot discover possible correlations or similarities for any group

of blocks. Toderici et al. deal with this problem by introducing an additional lossy

entropy encoding step similar to existing image codecs. Due to using the iterative

compression principle from the previous paper [45], the entropy coder keeps the

context between iterations.

Toderici et al. tested the efficiency of the proposed algorithm on a small Kodac

dataset using multiscale SSIM and PSNR-HVS (modified PSNR based on the human

25



visual system [47]) quality metrics. On average their method performs marginally

better than JPEG on a range of compression ratios up to 2 bits per pixel, which can

be considered a relative success. They admitted that no comparison with the WebP

codec had been conducted, although stated that it is in the plans after they adopt

the system to a variable block size method similar to the one used in WebP.

The results of this research were presented in Google blog [48], where engineers

pointed out a noticeable blur in the compressed images. This type of compression

artefacts is also present in the JPEG 2000 format, therefore, it would be natural to

compare the proposed system with a JPEG 2000 codec. However, the comparison

with JPEG 2000 appears to have been dropped between the two papers [45, 46].

Spectrum-based algorithms vs LSTM autoencoders

The papers from Google mentioned above [45, 46], propose a reasonable idea –

to use specifically recurrent neural networks for image compression.

One of the common features of the DCT- and DWT-based image compression

algorithms is that they perform lossy compression through quantizing the spectrum,

i.e. deliberately throwing out a part of information from the image. In particular, the

compression algorithms focus on removing relatively small details because deleting

or smoothing any large enough elements on the image relief will immediately cause

obvious distortions.

The problem is that there is a limited number of small details that can be

removed without making image unrecognisable. In the discrete spectral representa-

tion this means that there is a finite number of high-frequency spectrum components

that can be removed without destroying the image. The remaining low-frequency

components are always compressed with a lossless entropy coder. Any entropy coder

has a theoretical limit according to the Shannon theorem, unless a regular pattern is

compressed, which is not the case for natural images. Consequently, it is possible to

assume that compression algorithms based on the discrete spectral transformations

have a certain limit to the compression ratio that can be achieved in practice while

keeping image in a recognizable state.

However, using DCT with entropy encoder is not the only possible way to

compress images. One of the alternatives was fractal image compression, in which

the image compressibility is determined by the amount of similarities in its content.

The definition also does not require to remove any details. Theoretically it is an

excellent idea, but in practice it runs into difficulties, mainly due to the lack of

similarities that can be found using any existing methods [49].
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Assuming that a better image compression algorithm exists, but it is difficult

to discover or design manually, it is reasonable to employ machine learning for this

problem. In this light the idea of using recurrent neural networks looks promising

because Siegelmann and Sontag [50] proved that such network can implement a

Turing complete system. It is hard to imagine if a highly efficient image compression

algorithm can be learned from scratch in practice, but it seems a worthwhile direction

for future research.

Unfortunately, Toderici et al. did not discuss this advantage or give an expla-

nation to their choice of recurrent networks, which leads to an assumption that they

did not consider this fact and proposed to use LSTM for some other reason.

Romano et al. (2016)

Instead of developing an efficient encoder, it is possible to focus the efforts at

improving image quality upon decompression. One of the recent research works by

Romano et al. [51] proposes a new method – RAISR (Rapid and Accurate Image

Super-Resolution) for increasing image resolution in 2, 3 or 4 times.

Image upscaling (or interpolation) is one of the important areas in computer

graphics. The problem is that without any additional a priori information about

a set of discrete samples (pixel brightness levels), in a general case it is not possi-

ble to recover the intermediate signal values. In some cases, for example, knowing

frequency characteristics of the original signal it is possible to reconstruct it with cer-

tain accuracy according to the Nyquist-Shannon sampling theorem. However, when

dealing with images in practice, the main assumption is a smooth colour transition

between pixels in the image. Therefore, one of the widely used resampling tech-

niques is a bicubic interpolation, which represents any 4×4 area as a superposition

of cubic parabolas.

Romano et al. propose to store a priori information in the form of a table

with optimal filters for different types of image fragments. It seems to be the most

important feature of this work that differs it from the more complex alternatives

based on convolutional networks.

When image is upscaled with an ordinary algorithm like bilinear or bicubic

interpolation, the obtained result is different from the original high-resolution ver-

sion (which may not exist in real world scenario, but always present in tests for

comparison).

The RAISR approach is based on reconstructing not the whole image upon in-

creasing resolution but only the difference between the ground truth and an already
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resized version, which was obtained with bilinear or bicubic method. It was demon-

strated how this idea can help reduce complexity and improve accuracy of the image

enhancement.

In order to construct a “difference image”, the proposed method uses a table

with custom filters for different types of image patches. The filters were calculated

through minimising a specially designed objective function, which is based on the

statistical data collected upon resizing images from a training set.

In the proposed method an image is processed sequentially using overlapping

patches. Finding a corresponding filter in the table for a previously unseen image

patch is not a trivial task. The method employs a special hash function instead of

more obvious clustering approach to reduce computational complexity.

Romano et al. also propose to add a sharpening effect and combine the upscaled

result with bicubic interpolation for a visually better outcome. The emphasis of this

work however is not inventing the best image resizing technique but obtaining the

smallest computational complexity, which was achieved by design through time-

optimising all stages of the algorithm. Nevertheless, RAISR demonstrates a level of

quality compatible with the alternative methods.

Although the original paper does not deal specifically with image compression,

Google advertised it as a technique suitable for image compression and fast upscal-

ing, for example, in mobile devices [52]. The reason is that the process of resizing an

image to smaller resolution and back can be considered as a compression operation.

The problem of image resampling is related to the concept of dynamic resolution

video discussed in this thesis.

Jiang et al. (2017)

Jiang et al. [53] proposed a new approach for image compression that combines

several techniques:

– decreasing image resolution with subsequent upscaling;

– deep convolutional neural networks (CNN) for image resampling;

– the concept of autoencoder;

– using actual image codec as an intermediate compression stage.

The paper [53] describes an autoencoder system that includes three main com-

ponents: the convolutional network to downsample input image into the fixed size

of 64×64 pixels; an intermediate stage of compressing and decompressing the small

image version with any external image codec; and the deconvolutional network that

reconstructs an image in the original resolution. The compressed representation is
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the result of encoding a small image, say, with JPEG.

This method can be considered simply as an ordinary compression into JPEG

using smaller resolution with a subsequent advanced upscaling. This makes it closely

related, for example, to the RAISR paper [51].

One of the main challenges in creating such a system was to train the networks

responsible for changing image resolution. The problem is that due to using an

external image compressor, the complete autoencoder structure is not differentiable

between the original image at the input and the reconstructed image on the output.

Jiang et al. used a specific iterative approach to train the model by processing the

intermediate image compression stage externally. The non-differentiable part was

replaced by a mean squared error metric calculated for 64×64 before and after JPEG

compression. Training process consisted of only 50 epochs.

The most important part of the system is a deconvolutional network that up-

scales an image. Jiang et al. compared its efficiency with other image enhancing

techniques. Unfortunately, there was no RAISR among them or any other highly

efficient methods like SRCNN or A+ used for comparison with RAISR in [51].

For the role of intermediate compressor several image codecs were chosen:

JPEG, JPEG 2000 and BPG (Better Portable Graphics). The BPG is a highly

efficient custom implementation of the I-frame encoder from the H.265 video com-

pression standard [54]. These codecs were also used by themselves in the quality

comparison with the proposed method.

According to the presented results, the proposed system demonstrated the abil-

ity to provide a superior quality at the same compression ratio in comparison with

all three tested image codecs. However, only a relatively narrow range of 0.1–0.4

bits per pixel was considered. Such compression levels typically correspond to be-

low medium image quality. Due to involving image resampling, which is a relatively

coarse compression method by itself, it is not possible to obtain a high quality re-

sult. In this light it is strange that Jiang et al. positioned the performance of their

method as state of the art while being modestly silent about the lack of applicability

for high quality encoding with compression ratio at least 1 bit per pixel.

In general, the work presented an interesting idea that led to excellent results

at least for low quality compression. Among other limitations is that the method

is suitable only for relatively small fixed resolution images. It is impractical to use

for large images because even a big deconvolutional network cannot unroll a tiny

intermediate representation into, say, a 24 MPix photograph.
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What about video compression?

To the best of author’s knowledge, none of the available popular or experimental

video codecs explicitly use machine learning as a part of their algorithm specifically

to improve compressibility of the video while maintaining the quality.

There is, however, some related work on video quality balancing and predictabil-

ity of the video compression, which was described in the section 2.4.

2.7 Summary

Despite the fact that image and video compression have been the areas of active

research for decades, there is still a considerable attention to developing new image

compression algorithms from the scientific community.

As for the research related to the predictable compression, it is not numerous

yet but already quite diverse in its methods and even approaches to the problem.

In particular, there is a substantial amount of effort dedicated to various trans-

coding methods for specific image and video formats. Table 2.1, containing a short

comparative summary of the literature sources from sections 2.3 and 2.4, shows that

there are papers on JPEG image and H.264 video transcoding applications.

The papers related to image compression the table 2.1 focus on building statis-

tical models for explicit or implicit prediction of the JPEG compression. However,

there is no attention to the time predicting models. Presumably, this is the case

because compression time depends on a particular hardware and therefore is difficult

to measure reliably.

Predictable video compression methods according to the same table 2.1 heavily

rely on additional compression runs in order to obtain a certain result. This is one

of the important issues addressed by this thesis.

Another essential aspect of the thesis – a concept of the content features for

images and videos does not seem to be a popular approach. However, it is present

in distinct forms in different research works.

In general, none of the recent research on predictable compression considers

the problem from multiple perspectives taking into account both positive and neg-

ative aspects. Instead a typical situation is that a very narrow specific problem is

emphasised, while other related observations are often left behind the scenes.
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Chapter 3

Predicting and Optimising Image

Compression

This chapter introduces a general methodology for predicting the outcome of

compression and demonstrates potential improvements in some use cases as a result

of applying this methodology to practical scenarios related to JPEG and WebP

image compression.

In particular, the following problems are considered:

– how images can be compressed into WebP format with given constraints faster

than using built-in options;

– how to save file size when compressing into JPEG and keeping image quality

above a certain threshold.

3.1 Methodology

The main problem that needs to be solved in order to perform compression with

constraints is to find optimal compression parameters for a particular image, which

subsequently lead to a desired outcome.

The core idea of the proposed approach is to create a statistical model to predict

the characteristics of the result without performing actual compression. This allows

to quickly estimate outcome of compression with different parameters for every

individual image and find optimal settings faster than compressing multiple times.

In this chapter only one compression parameter is considered – the quality factor

(or just “quality”). Although image codecs can have more than a single option, the

quality factor is the one influencing the result to the most extent. It is present in both

libjpeg and libwebp codecs and has the equal meaning and range of values (0–100).
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Using this parameter, it is possible to apply the same algorithms for both image

codecs, thus demonstrating universality of the methodology. Multiple compression

parameters are used in the next chapter upon considering video compression.

The top square on figure 3.1 depicts a sketch of the statistical model that takes

uncompressed image data with codec parameters as input and calculates file size

or quality level values expected upon such compression. Raw image data in the

model is represented by ten content features, which are used mainly to reduce the

dimensionality of the input data in a relatively simple predefined way. The content

features are calculated from raw pixel values and serve as a measure of entropy in

the image.
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Predicted file 
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Figure 3.1: Sketch of the proposed method for compressing images

with the desired outcome.

Predicted size or quality is calculated from image resolution, set of content fea-

tures and compression options using regression function, which in turn is obtained

through machine learning process involving statistical data for thousands of train-

ing images. Predicted value should be compared with the target objective to decide

whether the chosen compression parameters are optimal in terms of satisfying given

conditions. If they are not, the function is evaluated again using different parame-
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ters. The choice of these parameters can be random or systematic – so it is possible

to perform different kinds of search in the space of compression options, for exam-

ple, binary search in case of monotonic dependencies between codec parameters and

result characteristics.

The regression function is a standard feed forward neural network, which is

cheap to evaluate and suitable for all problems considered in this research. It allows

us to search over a space of encoding options in less than a millisecond assuming that

we already have a set of content features for a particular image. The content features

depend only on the image pixel data and need to be calculated once. Although this

could be a relatively expensive operation, it was designed to be considerably faster

than a single compression.

The main advantage of the proposed method is a smaller total encoding time

in comparison with multiple recompressions. The statistical model is used as a

heuristic for discovering optimal parameters, while actual compression can be done

only once.

The accuracy of meeting a target objective in the described method depends

on the accuracy of the statistical model. It is reasonable to expect the difference

between, for example, target quality and the actual quality levels, to correspond

to the difference between target and predicted values. Therefore, it is important to

have content features accurately representing image content and minimise the errors

during training of the regression function.

In case of a single compression parameter (quality factor), it is possible to use

it directly as an output of the predictor, while having target objective as an input.

As image size and quality usually grow monotonically with increasing quality factor

(fig. 3.2), this can eliminate the necessity for parameter search. The drawback of

this approach is in using standard error functions when training such models due to

non-linearity of a quality factor scale. For an ordinary image the difference in file size

between quality factors 49 and 50 is tiny in comparison with the difference between

99 and 100. The mean squared error will treat these differences as equivalent.

3.2 Content Features Description

The need for features arises from the necessity to have a relatively simple rep-

resentation of the image content, which is independent from its resolution. Many

image features used in computer vision can work at different resolutions, but they

are oriented mostly at recognising objects rather than capturing general pixel-level

information. All modern image codecs operate specifically with raw pixel values
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Figure 3.2: Size/quality trends for an image compressed with JPEG

and WebP codecs using a range of quality factors (photo of the road

from figure 1.1a was used as an example for this graph).

aiming to find regularities between them. The actual meaning of the pixels during

compression is usually ignored. So, the independence from resolution in the current

context means not an ability to identify some objects in the images of different sizes,

but a way to extract the same amount of low-level information from an arbitrary

sized image.

Therefore, specifically for the problem of predicting compression results, a set

of ten image features was designed. These features were created manually based on

the assumption that highly detailed and noisy images are harder to compress. The

initial idea for a content feature was to use the average magnitude of the image gra-

dient as a measure of noise. The actual gradient length is expensive to calculate but

it inspired some simpler features used in this research. Another avenue explored for

possible features was the assumption that the amount of detail in an image correlates

with its high-frequency characteristics. In all popular spectral transformations like

discrete cosine transform, discrete Haar wavelet transform and the Walsh-Hadamard

transform [18, fig. 3] the high-frequency components are extracted by applying con-

volutions that look like a checkerboard pattern. This pattern was utilised in some

of the proposed features.

The first step in calculating a set of content features for an image is to divide

it into fragments of 8×8 pixels. This is not essential but a recommended operation.
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Firstly, it facilitates program implementation by using vector instructions, which

in turn reduces feature extraction time. Secondly, using a small constant size for

sample fragments allows to skip some of them at a cost of prediction accuracy in

cases when analysing entire image is too expensive, so only representative parts of

the image – randomly selected fragments – can be taken into account.

At the next step the raw pixel values in RGB format are converted to Y CbCr

color space following ITU-R BT.601 standard [55], but using full range for luminance

and chrominance components according to formulas:

Y = 0.299R + 0.587G+ 0.114B;

Cb = −0.169R− 0.331G+ 0.5B + 128;

Cr = 0.5R− 0.419G− 0.081B + 128.

The JPEG file format specification [56] uses these formulas too, so it is possi-

ble to integrate the proposed method directly into JPEG codec, avoid extra color

conversion during feature extraction and consequently reduce total encoding time.

However, in this work all feature extraction is done externally without any modifi-

cations to image codecs.

The last step is to calculate a vector of ten features for every 8×8 fragment and

take their absolute values, which are considered local content features. The general

content features for a particular image are obtained upon averaging these vectors

of absolute values across all fragments sampled from that image. This technique

ensures resolution independence.

Features f1–f9 are calculated only for luminance component Y . Feature f10

is calculated from both chrominance components Cb and Cr. The following is a

detailed description of the local features.

Feature f1 is a mean absolute neighbour pixel difference. In simple words, if a

and b are brightness levels of two adjacent pixels, then this feature is an arithmetic

average of |a−b|. In program implementation only some of the possible differences in

the fragment are considered to optimise for specific AVX instructions like horizontal

subtraction. Figure 3.3a shows selected differences in the 8×8 fragment with arrows.

Feature f2 is a mean absolute difference between neighbour blocks of 2×2 pixels.

It can be considered as a ”lower frequency” modification of the f1. Conceptually

f2 is the same as f1, but instead of pixels a and b it subtracts mean values for

adjacent blocks 2×2 (fig. 3.3b). Again, not all possible differences are considered

due to usage of AVX instructions.

Feature f3 is a mean absolute difference between neighbour blocks of 4×4 pixels.

f3 is an analogue of f1 and f2 (fig. 3.3c).
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(a) (b) (c)

(d) (e) (f)

+1

–1

averageabsolute 
difference

Figure 3.3: Differences between pixels and blocks for calculating

features: (a) f1 and f4, (b) f2 and f5, (c) f3 and f6; and

convolutions for features (d) f7, (e) f8, (f) f9.

Features f4, f5 and f6 are very similar to the described f1, f2, f3. They

only use squared differences instead of absolute, for example, f4 is a mean squared

neighbour pixel difference.

Features f7 and f9 are mean absolute values of “checkerboard” convolutions in

all non-overlapping blocks of 2×2 and 8×8 pixels respectively (fig. 3.3d and 3.3f).

By “checkerboard” convolution we mean the last high-frequency basis function in

2-dimensional Walsh-Hadamard transform (WHT) of the respective size [18, fig. 3].

Feature f8 is another WHT coefficient of lower frequency calculated in blocks of

4×4 pixels (fig. 3.3e).

f10 is the only feature extracted from chrominance components of the image.

Basically, f10 is exactly the same as f2, but it is calculated and averaged for both

colour components Cb and Cr instead of luminance Y .

The dynamic range of these features is quite large and the majority of values

are close to zero (but always > 0). To ensure even coverage of the feature space by

machine learning models all ten features are logarithmised: fi ← ln(fi + 1). Incre-
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ment is required to avoid ln(0). Logarithmising makes feature values distribution

close to normal (fig. 3.4).
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Figure 3.4: Histograms demonstrating how logarithmising influences

content feature values distribution (using feature f1 as an example).

3.3 Feature Extraction Program

The process of extracting features involves calculation of various differences

between neighbour pixels as well as convolutions in 2×2, 4×4 and 8×8 blocks.

There were two program implementations made for calculating feature vectors for

images and videos respectively. This section focuses on explaining the role of CPU

vector instructions in the program implementation.

Including feature extraction stage into the experiments with JPEG images al-

most doubled total compression time for a single image. In order to decrease the

computational expenses, the process of feature calculation was adopted for using

vector instructions and the program was optimised with AVX/AVX2 intrinsics.

One of the first procedures to utilise vector instructions was RGB to Y CbCr

colour space transformation. It was a relatively straightforward operation because

each pixel can be processed independently. However, calculating even simple pixel

differences was not trivial.
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Figure 3.5: Relative cost of arithmetical operations between eight

integers in the 256-bit vector.

The program implementation used integer arithmetic throughout all subrou-

tines. Although pixel brightness is expressed with 8 bits, the vectors of feature

accumulators for the entire image were made with 32-bit elements to be suitable

even for large images. The largest vector size supported by AVX instructions is 256

bits, which corresponds to eight 32-bit integer components. Consequently, before

extracting features the image was split into non-overlapping blocks 8×8 pixels, and

most calculations were done inside a single block independently from the others.

The problem with AVX instructions is that they are very limited in terms

of allowed arithmetical operations between different vector elements. Figure 3.5

shows that the cheap addition or subtraction is possible only in each of four 64-

bit components. Doing arithmetical operation between them would need an extra

shifting or permutation of vector elements. The two 128-bit components of an

YMM register are independent from each other, so in order to add or subtract their

elements they have to be copied into different locations, which increases the cost even

more than for 64-bit components. Therefore, aiming to minimise usage of expensive

arithmetic during feature extraction some of the pixel differences were excluded.

Figure 3.6 demonstrates which pixel differences are the cheapest to calculate inside

and between two 256-bit vectors. Removing some of the possible differences in this

particular scenario has a negligible effect on the result but saves a considerable

amount of time especially for large images that include millions of such vectors.

Figure 3.6: Horizontal and vertical pixel differences in two related

vectors that can be quickly calculated with AVX instructions.
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The AVX instructions were used only for calculating features in images and

video frames, while some other video features like interframe differences described

in the next chapter were implemented in C++ and not specifically optimised.

The program for feature extraction simply prints a vector of feature values with

an optional in-memory processing time:

./image-feature-extractor-8x8 -i road 600x400 original.png -time

2.076279,2.200178,2.349404,5.291269,5.455056,5.628005,1.369269,

1.412731,1.100775,0.498707

1 ms

3.4 Image Dataset

One of the important hypotheses this research aims to prove is that the proposed

methodology works for a wide range of resolutions. The image dataset was designed

to contain images from 600×400 pixels (0.24 MP) to 6000×4000 pixels (24 MP).

There are two reasons to have such a wide range – firstly, to demonstrate universality

of the methodology the proposed content features should be tested with both small

images and large photographs, and secondly, to reflect modern real world use. The

existing related research does not consider large images, but today 24 megapixels is

a common photo resolution.

In total there are 100 different image resolutions in the dataset, which are

logarithmically distributed by size in the range [0.24; 24] megapixels. This provides

an even coverage of different image sizes by design, so that accurate predictions can

be made for an image of any resolution from this range.

Every resolution is represented by a dedicated set of 5000 different images of that

size. This allows to calculate a reliable statistics for each resolution independently

from the others.

Consequently, the experimental dataset considered in this chapter consists of

100 · 5000 = 500 000 images. It was not a trivial task to collect so many different

images of the appropriate sizes, assuming that upscaling them to bigger resolutions

was not a reasonable option.

Initially only 100 000 distinct images were gathered from various image hosting

websites and personal archives. These files were mainly photographs and had large

resolutions from 24 MP to approximately 36 MP. All images were cropped to a

constant aspect ratio of 3:2 to facilitate creation of the dataset. This was done

under assumption that the aspect ratio does not have any significant effect on the

outcome of compression (except for images with very small width or height). Then
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every original photo was resampled into five smaller images of different resolutions

using Fant method [57], which is a geometrically accurate anti-aliasing technique.

The smaller versions can be considered different images without loss of generality

and despite the fact that they picture the same scene. Image codecs look at the

dependencies between pixels, and the pixel grid inevitably changes upon resizing.

Thus 500 000 images were obtained.

The majority of the original images were in JPEG format. Resampling proce-

dure destroyed JPEG blocking structure making the experimental images previously

not compressed (or uncompressed for short). It is purely a side effect of the way this

dataset was designed. On the one hand it is useful because uncompressed form is

used as input in the proposed method anyway, but on the other hand the statistical

models trained on such data may not be accurate for previously compressed images,

which have specific artefacts at the pixel level.

If resized images do not have the same resolution they are technically different.

Despite this fact some similarities may remain if an original image was resampled

into very close sizes, for example, 2.5 MP and 2.6 MP. So, to eliminate the possibility

of images, which contain the same scene, falling into both training and test sets they

are grouped together and assigned to either training, validation or test set. Every

twenty random original images were converted into hundred experimental images,

all having different sizes. Figure 3.7 shows an example of assembling a group. These

100 images form a fixed set, which is subsequently processed as an indivisible unit.

Such modular approach simplifies creation of a dataset with predefined image sizes.

1 202 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 14 2 819 28 7 10 8 4 2 6 20 8 118 22

Direction of increasing resolutionImage with minimum 
size 0.24 MP

Image with maximum 
size 24 MP

Constant group of 100 images with 100 different sizes

20 original images

Figure 3.7: Group of 100 different images is formed by randomly

resampling 20 large images into 5 smaller versions each.
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Duplicates and very similar images were not included in the dataset. This

was engineered by design and verified using an external tool – “Awesome Duplicate

Photo Finder” [58].

There are about 4% of grayscale images in the entire set. They naturally oc-

curred among those downloaded from the Internet.

3.5 Image Resampling Program

The dataset of images prepared for experiments consisted of the photos with

resolutions from 600×400 to 6000×4000 pixels, which were obtained from the high

resolution originals. In order to do so the large original images were resized to specific

predefined resolutions. As this procedure was a part of the experiment preparation

and not the actual tests, the only requirement for the resampling technique was to

preserve the quality and details of the images.

A range of image scaling algorithms can be used for this purpose. The most

popular are methods like bicubic and lanczos resizing based on a smooth curve

interpolation. Their main advantage is a low computational complexity. However,

the problem of reducing image resolution is conceptually similar to performing a

multi-sample anti-aliasing, while the interpolation techniques are used mainly for

enlarging images. In the multi-sampling approach approach the target pixel value

is an average of several samples.

1.0

1.0

0.70.70.5

0.7 1.0

1.00.7

target 
pixel
grid

original pixels

relative 
contributions 
of the 
original pixels

Figure 3.8: Resampling 8×8 pixels image into 3×3.
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For example, the graphical editor Paint.NET by default uses Fant method [57]

as a ’best quality’ strategy for decreasing resolution. It is a geometrically accurate

version of the multi-sample anti-aliasing technique that calculates the target pixel

value as a weighted average of the original pixels that overlap with the target one.

Although this method is slower than traditional widely used techniques, it was

assumed more accurate and implemented for resizing images during experiment

preparation. Figure 3.8 demonstrates overlapping pixel grids (assuming that pixels

are square) in 8×8 original image and 3×3 target one. Each target pixel is calculated

by averaging the fully contained original pixels and proportional fractions of the

partially overlapping ones.

Technically, the resampling could have been done with an existing image pro-

cessing tool. However, at the time of designing the experiments it was important

from the exploratory point of view to look closely at each particular aspect of the

investigation. It was unclear which direction could provide improvements or optimi-

sation possibilities. Therefore, some of the existing techniques were reimplemented

to see if adapting them specifically to the considered problems has any advantages.

Moreover, it was originally assumed that special image resampling techniques may

be an important part of the video compression experiemnts, which are described in

the next chapter, in particular those related to the dynamic resolution concept.

3.6 Image Quality Measuring Program

Before getting into the experimental details it is important to describe how

quality estimation was conducted in this chapter. The PNSR and MSSIM metrics

were used in various quality measurements for the compressed images. Other metrics

were not utilised mainly due to the issues with computational complexity and lack

of implementation details.

The PSNR is de-facto a standard among objective quality metrics and the

easiest one to implement. It is used in the WebP image codec as a target parameter,

so in this work it was implemented for comparison purposes.

In order to compare the JPEG transcoding by Pigeon et al. [3] with the pro-

posed machine learning techniques, an implementation of the MSSIM metric was

created strictly following the original paper [2, section III.C]. The algorithm operates

with the recommended 11×11 pixels sliding window and a 2-dimensional Gaussian

weighting kernel with the sum normalised to 1 (table 3.1). The computations were

performed according to the formulas in the section 2.5. The only difference from the

standard version is that in the current implementation the sliding window moves
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Table 3.1: Normalised weighting coefficients wi

for calculating SSIM in an 11×11 pixels window.

0.000001 0.000008 0.000037 0.000112 0.000219 0.000274 0.000219 0.000112 0.000037 0.000008 0.000001

0.000008 0.000058 0.000274 0.000831 0.001619 0.002021 0.001619 0.000831 0.000274 0.000058 0.000008

0.000037 0.000274 0.001296 0.003937 0.007668 0.009577 0.007668 0.003937 0.001296 0.000274 0.000037

0.000112 0.000831 0.003937 0.011960 0.023294 0.029091 0.023294 0.011960 0.003937 0.000831 0.000112

0.000219 0.001619 0.007668 0.023294 0.045371 0.056662 0.045371 0.023294 0.007668 0.001619 0.000219

0.000274 0.002021 0.009577 0.029091 0.056662 0.070762 0.056662 0.029091 0.009577 0.002021 0.000274

0.000219 0.001619 0.007668 0.023294 0.045371 0.056662 0.045371 0.023294 0.007668 0.001619 0.000219

0.000112 0.000831 0.003937 0.011960 0.023294 0.029091 0.023294 0.011960 0.003937 0.000831 0.000112

0.000037 0.000274 0.001296 0.003937 0.007668 0.009577 0.007668 0.003937 0.001296 0.000274 0.000037

0.000008 0.000058 0.000274 0.000831 0.001619 0.002021 0.001619 0.000831 0.000274 0.000058 0.000008

0.000001 0.000008 0.000037 0.000112 0.000219 0.000274 0.000219 0.000112 0.000037 0.000008 0.000001

with 2 pixels offset instead of 1 in both horizontal and vertical directions. This

has a negligible effect on the results but considerably decreases computation time.

Among other optimisations, the program used Intel AVX instructions to obtain a

reasonable processing time even for 24 MP images.

A standalone program implementation supporting both metrics was written in

C++ to serve as a command line tool for batch processing scripts.

The PSNR and MSSIM were originally designed for grayscale images, therefore

in the experiments they were calculated only for luminance component (Y ) assuming

that it contains most of the visual information and its quality degradation correlates

with chrominance channels. The luminance quality metrics are sometimes denoted

as Y-MSSIM and Y-PSNR, but the prefix was omitted for simplicity.

These metrics do not represent the best possible choice for image quality eval-

uation, however, they were used mainly for the purpose of comparison with the

alternative compression strategies that rely on them. The subjective quality evalu-

ation on people was not conducted due to the involvement of a large dataset in the

experiments. The proposed methodology does not depend on any particular quality

metric and operates with any of them in the same manner.

3.7 External Tools

In this work some external image compression libraries were used for encoding

images into JPEG and WebP formats in the experiments. This section gives a brief

description of these tools.
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3.7.1 JPEG compressors

There are two popular program implementations of the JPEG standard. The

classic reference implementation simply called libjpeg is maintained by the Indepen-

dent JPEG Group. It defines the standard API (application programming interface)

for compression and decompression procedures as well as the complete set of en-

coder and decoder programs written in C. An alternative unofficial implementation

is called libjpeg-turbo. This library provides the same API with some extensions for

the in-memory formats of the raw pixel data. The main feature of libjpeg-turbo

is the optimisations involving CPU vector instructions, which allow a considerable

decrease in the computational time for image encoding and decoding. Due to this

aspect the compressed images produced by libjpeg-turbo are practically the same

as in the libjpeg although not mathematically identical.

A relatively new project MozJPEG [59] aimed at improving JPEG compression

has been developed by Mozilla since 2014 [60]. The main focus of this tool is to

enhance the visual perception of the compressed image without increasing file size.

The means for achieving such result include adaptive quantization for different image

areas according to their content complexity and optimising the lossless Huffman

compression. The MozJPEG is based on libjpeg-turbo, however it is considerably

slower because of extra internal logic.

In 2017 Google also presented a tool for optimising JPEG compression called

Guetzli [61]. Similar to MozJPEG it is aimed to improve quality to size ratio but

with main focus on subjective quality perception. It uses Butteraugli image quality

metric [43], which works as a psychovisual model of human vision in the Guetzli

encoder. Due to the fact that Butteraugli metric is reliable only in cases of minor

quality degradation, the Guetzli tool does not support JPEG quality factors below

70. One of its disadvantages is a slow compression time – encoding a single image

can take few minutes. According to external testers [62] the codec attempts several

recompressions and quality measurements to reach a specific level of quality metric.

It is reasonable to assume that calculating Butteraugli is a main factor causing slow

compression because it is very computationally intensive by design.

Using a slow compressor is not an optimal choice for experiments involving

thousands of large images. Therefore, all tests in this work were based on the

libjpeg-turbo as the fastest software implementation of the JPEG standard used in

practice. For example, it is installed in the Ubuntu operating system as a default

library for JPEG support. In addition, usage of a fast image compressor in the

experiments allowed to demonstrate empirically that the time spent on the image

analysis is still considerably smaller than the actual compression.
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A typical JPEG library contains cjpeg and djpeg applications for encoding and

decoding images. However, these programs were rarely used in the experiments.

Instead, a specially designed application was written in C++ for compressing images

into JPEG. It utilised the standard API from the externally linked library mainly

with a purpose of precisely recording the compression time when the raw image data

is already loaded into memory.

The compression result produced with a custom program is equivalent to the

following example of the encoding command:

./cjpeg -optimize -quality 90 -outfile output.jpg input.tga

The --optimize flag corresponds to the Huffman code optimisation, which was

enabled in all experiments. The quality factor was specified with --quality <int>.

3.7.2 WebP compressor

Google’s WebP is a relatively new image format, which is still under develop-

ment and supports lossy and lossless image compression as well as alpha channel

(pixel transparency). The reference implementation is called libwebp. In the exper-

iments it was used only for lossy compression of the photographic images without

transparency.

The compression algorithm is more complicated than in JPEG. It includes two

passes over the image, which predict similarities in the neighbour blocks and convert

the subsequent differences with DCT or other spectral transformation. The coeffi-

cients are compressed with a modified arithmetic encoder, which is usually slower

but more efficient than Huffman compression in JPEG.

Due to the complicated compression algorithm it takes approximately ten times

longer to compress an image with WebP codec than using the ligjpeg-turbo. Image

codecs become slower with increasing complexity of the compression algorithms. So

it is reasonable to expect that the need to get a desired result without multiple

recompressions becomes more apparent.

The WebP codec supports quality factor parameter similar to JPEG implemen-

tations. Therefore, adding WebP into the tests did not require any major redevel-

opment of the experimental strategy or scripting. It was one of the reasons why it

was chosen over the JPEG 2000. The standard compression with a given quality

factor can be done using the cwebp tool. The following command line syntax is an

example of compressing image with quality factor 90:

./cwebp -q 90 input.png -o output.webp
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Instead of quality factor the codec supports compression into given size or qual-

ity in the PSNR metric, which can be specified with parameters -size <int> or

-psnr <float> respectively. According to the user manual [63] WebP encoder per-

forms multiple recompression passes in order to accurately fit a given constraint.

Up to ten passes can be specified with -pass <int> option. The accuracy increases

with the number of partial compressions performed. The following command is an

example of compressing an image with 100 kB target size using four passes:

./cwebp -size 100000 -pass 4 input.png -o output.webp

The cwebp tool was used for data collection in all experiments, and the com-

pression time measurement was performed externally. The WebP library API was

utilised only in the ACACIA application presented in the next chapter, which was

created after completing the experiments. Due to a relatively long compression time,

the milisecond precision was not necessary, but in order to minimise the overhead

for input/output operations, the images were copied to virtual disk in RAM prior

to compression.

Although the WebP codec supports multithreaded compression, all tests were

done in a single CPU thread because the feature extraction stage was implemented

without multicore parallelism using only AVX instructions.

3.8 Experimental Setup

The experiments in this chapter were conducted on an Intel Core i7 5820K @

4.0 GHz, 16 GB RAM running Ubuntu 14.04 64-bit with GCC 4.8 compiler. Impor-

tant calculations like feature extraction and training the models were performed in

double precision floating point format. The external image compression tools used

in the experiments were libjpeg-turbo-1.4.2 and libwebp-0.4.3.

3.9 Gathering Image Compression Statistics

Collecting quantitative data from the compressed images was an essential stage

of the experiments. In particular, such characteristics as file size, relative quality and

compression time were recorded. The goal was to prepare information for training

and testing of the machine learning models.

The statistical data was gathered for the entire dataset. It started with cal-

culating content features for all 500 000 images. Then every experimental image

was compressed once into both JPEG and WebP formats with integer quality fac-
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tors randomly selected from intervals [5; 100] and [0; 100] respectively. The JPEG

quality factors below 5 were not used in the experiments as they are not practical

because they create severe image distortions. Therefore, the focus was principally

on the useful parameters.

The resulting file size and quality were recorded for every image after compres-

sion. The encoding time was noted only for some of the images compressed with

the WebP codec in order to compare it with a multi-pass encoding in one of the

experiments. General time predicting models were not created for image codecs.

The main reason is that the image content and quality factor have a negligible in-

fluence on the compression time for JPEG codec (it is not the case for WebP, but

this format was tested only as an alternative validation of the proposed concept).

The time difference between images (especially small ones) is hard to measure reli-

ably because it is only few milliseconds, which is the level of a measurement error.

Another reason is related to difficulties in organising an unbiased compression time

recording for such a big dataset. The images should be processed sequentially in a

single CPU thread for the duration of several weeks, without any other calculations

running at the time, which was impractical when other experiments had been con-

ducted. Nevertheless, encoding time is an important objective that was taken into

consideration during tests.

In the context of compression time it is reasonable to note that, for the JPEG

codec, a parameter called Huffman codes optimisation was enabled in all experi-

ments. This option was chosen upon assumption that it is often used in practice

allowing a noticeable reduction in file size without affecting the quality but at the

cost of increased compression time. For example, for a 24 MP image the encoding

time needed is almost 200 ms in comparison with 120 ms using only default set-

tings. Assuming that compression time depends mostly on the image resolution,

the largest size was used as a reference for further comparisons because it is more

reliable for time measurements than the smaller ones.

All WebP codec parameters except quality factor were kept at their defaults

during experiments.

In general, the following steps were performed for every image:

– recording extracted features;

– compression with a random quality factor into JPEG or WebP;

– recording compression time and file size;

– decompression into a lossless format (*.bmp or *.png);

– measuring quality degradation in MSSIM or PSNR metric.

The process of calculating a vector of content features representing image com-
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plexity needed to be done only once for every image in the dataset regardless of how

many codecs were used and how many times the image was compressed. This is an

essential component of the proposed universal methodology for image compression.

The entire procedure of collecting the data was organized using standard bash

scripting language in the Ubuntu operating system.

The compression step was performed in a single CPU thread for all images. Due

to the lack of reliability, the encoding time was not measured during JPEG compres-

sion, therefore this particular case allowed to process several images simultaneously

in parallel using a special external tool – GNU Parallel [64].

Here is an example of how Parallel was used with a custom bash function that

compresses and records data for a single image:

#!/bin/bash

function processImage {
...

}
export -f processImage

parallel -a list of images.csv --jobs 12 processImage

The collected statistical information was subsequently used to train regression

models for predicting compression result characteristics.

3.10 Regression Models

The role of a regression model in the proposed methodology is to map image

features and quality factor to compression ratio or quality loss. The models are

obtained by utilising a standard machine learning approach – gathering enough

data about compressed images and using it for regression analysis, which yields a

model representing a functional dependency between input and output values.

After statistical data was recorded for all experimental images, they were split

onto training (10%), validation (10%) and testing (80%) sets (fig. 3.9). The majority

of images were dedicated to the test set for the purpose of obtaining more reliable

estimations of the proposed method’s accuracy. Having images already split into

groups of 100 (see fig. 3.7) ensured that all resolutions were equally represented in

all three subsets.

The regression analysis starts with choosing an optimal parametric model, which

is an important a priori assumption for any machine learning approach that uses
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50 000 50 000 400 000

Training set, 10%

Validation set, 10 % Testing set, 80%

Figure 3.9: Number of images in training, validation and testing sets.

explicitly parametrised model. It should be based on the types of dependent and

independent variables as well as on the basic assumptions about the geometric form

this functional dependency may have – e.g. linear, non-linear, discrete, periodic.

In the problem of predicting compressed size or quality all input and output

parameters are continuous numerical variables. The input vector corresponding to

every experimental image consists of twelve values: ten content features, image size

in megapixels and quality factor (different for JPEG and WebP).

Consider, for example, a model predicting compressed file size of the JPEG

images. It is necessary to investigate the correlations between input parameters and

the resulting size before putting forward an assumption about how the functional

dependency should look like. Figures 3.10 and 3.11 demonstrate apparent strong

correlations between one of the image features or the compression parameter and a

logarithm of the JPEG file size. Consequently it is reasonable to start with a linear

regression to build a predictor.

The file size values should be logarithmised for better accuracy according to

trends on the graphs. All content features already have a logarithmic scale by

definition. Image sizes in megapixels were logarithmised too as they have a suitable

distribution by design. A standard linear regression is performed through minimising

a root-mean-squared error (RMSE) [65]:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2.

However, because of the logarithmised file size such metric is not very informative

from the user perspective. So, this chapter uses an alternative error metric to

evaluate file size models – mean absolute percentage error:

mean abs percentage error =
1

n

n∑
i=1

∣∣∣∣sizepredicted − sizetargetsizetarget

∣∣∣∣ · 100%.

The percentage error allows to compensate for a wide distribution of the file size

values across several orders of magnitude by normalising the absolute error.
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Figure 3.10: Correlation between first content feature f1 and the

default JPEG size for 500 training images 600×400 pixels.
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Figure 3.11: Correlation between quality factor and file size of JPEG

images for 500 training images 600×400 pixels.
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The mean absolute error is used for models predicting quality metrics like

MSSIM and PSNR with relatively small range of values:

mean abs error =
1

n

n∑
i=1

|qualitypredicted − qualitytarget| .

The error of the trained linear model for predicting JPEG compressed size was

18.4% for the entire test set. This number implies the average deviation of the

predicted file size from the actual compressed image size. This is a relatively large

error, which may cause inaccurate results in some practical use cases. This model

utilised all twelve input parameters. In order to estimate the importance of content

features another model was trained based only on two inputs: image resolution and

quality factor, excluding all the features. The average error for 400 000 test images

was 51.8%, which means that content features are essential for the model’s accuracy.

A non-linear regression model was employed to reduce the error. It was com-

posed of a standard feed-forward neural network with a single hidden layer of ten

neurons, and it was used to train an alternative regression function using all twelve

input variables (fig. 3.12). After 10 000 iterations of the gradient descent with mo-

mentum the model’s error on the test set was 4.5%, which is considerably lower

than 18.4% with linear model. Supposedly, the neural network (or multilayer per-

ceptron, MLP) enabled more interactions between input features allowing such a

dramatic improvement. See Appendix A for alternative approaches that can be

used for solving this regression problem.

Prior to actual MLP training the input values were statistically standardised

to ensure that they have approximately the same influence on the error gradient in

the beginning of the training process, because it is unclear which variables are more

significant. A z-score standardization was used for this purpose [66, p. 524]:

standardised input value =
input value−mean
standard deviation

.

In comparison with simplicity of linear regression, the result of MLP training

depends on several parameters like the network configuration, initial weights, learn-

ing algorithm, number of training iterations etc. To increase probability of obtaining

a good model the network can be trained multiple times with different configurations

assuming that training is sufficiently long. The best model should be chosen based

on the error for the validation set, which does not participate in gradient calculation

during training process.

The pilot result of 4.5% error is not the best one that an MLP model is capable

of achieving. Table 3.2 contains results of a systematic approach towards discovering
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Figure 3.12: Sketch of the first trained feed-forward neural network.

a better model. There are five network configurations with ten to fifty neurons in

a hidden layer and three sets of training data representing from 5% to 20% of the

entire dataset, which all were tested in fifteen combinations, and each combination

contained ten models trained with different random initial states. The highlighted

line indicates the best model in each scenario according to the validation set error.

The last columns in each combination from table 3.2 named “relative correction

of prediction” were used only as an extra sanity check during models training, in

particular to indicate the worst cases. The correction of prediction is a percent-

age of the predicted value by which it should be adjusted to obtain exact target

value. However, this data was not used anywhere later because simpler metrics

were preferred mainly with intent to publish results in a conference paper.

Apparently there is not much difference between best models obtained with

different number of training images. Even 5% of the dataset (25 000 images) al-

lows to get results similar to the models trained on 20% of all images – training

and validation sets merged together. Initially planned purpose of the validation set

was to use it in a regularizing technique called early stopping [67, chapter 7], when

the best result is chosen by the smallest validation error across all training itera-

tions. Theoretically this allows to capture a point where overfitting starts, assuming

that training and validation sets equally represent the parameter space. However,

overfitting never occurred in these experiments because of the large number of train-
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ing points. So, the validation set error was used simply to choose the best model.

The lowest validation set error was achieved when using 10% training set and fifty

neurons in the hidden layer. It corresponds to 3.05% test set error.

Although having a large number of hidden neurons in a single network layer

is generally not recommended because it provokes overfitting, but due to a large

number of samples the MLP did not show signs of overfitting even after few million

training iterations. Each model from table 3.2 was trained for exactly one million

iterations.

A special application was written in C++ to train a large number neural net-

works efficiently. It used double precision floating point calculations throughout and

implemented gradient calculation in parallel threads allowing efficient utilisation of

multicore CPUs specifically for this problem. The learning algorithm was based

on backproparation implementation as described by Bishop [68, chapter 4] and the

gradient descent with momentum [69]. For example, training the best model took

almost 3 hours. See Appendix B for more details of this implementation.

In order to simplify the process of obtaining regression models for other objec-

tives and WebP codec, the same network topology of fifty hidden neurons was used

under assumption that it should have more than enough flexibility to predict WebP

file size and quality metrics for both codecs. Ten models were trained for every

objective and the best network was selected based on the validation set error. Table

3.3 contains testing errors of the best models for file size and two quality metrics:

MSSIM and PSNR.

Table 3.3: Test set errors for all JPEG and WebP regression models.

Codec File size mean absolute 
percentage error

Mean absolute errors for quality metrics
MSSIM PSNR

JPEG 3.05% 0.008 0.21 dB
WebP 4.75% 0.009 0.22 dB

It is worth to emphasise that in the following sections the reported errors have

a different meaning from those in the table. The predicted objectives do not par-

ticipate in error calculation when models are actually used for image compression

with constraints according to the proposed methodology. All subsequent errors in

this chapter are for target versus actual values (see fig. 3.1) – i.e. how different the

real compression result was from the user request.
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3.11 Results for JPEG

This section aims to estimate how useful the proposed method can be in some

practical use cases involving JPEG codec. The first one is compressing images

roughly into the given file size or quality, and the second case is compressing into a

fixed minimum level of quality.

There are two conditions that guided the choice of these particular scenarios.

Firstly, the proposed statistical approach does not always allow to fit the constraints

accurately; and this fact leaves for consideration only those tasks that can tolerate

some errors. Secondly, each of the scenarios has an alternative technique to com-

pare with, which allow to demonstrate usefulness of the proposed method. Thus,

the approximate fit to the given conditions can be compared with the transcoding

method, and the minimal desired quality case – with employing a constant quality

factor. The following two subsections are dedicated to these cases.

3.11.1 Comparison with JPEG transcoding

The accuracy of the proposed method for compressing images with constraints

was evaluated using the best trained models from table 3.3 and compared with the

efficiency of the existing JPEG transcoding method by Pigeon et al. [3]. The main

difference between compared techniques is the algorithm for finding optimal quality

factors. Authors of the transcoding method use simple classifiers while this work

utilises machine learning models based on content features and regression functions.

Each method was tested for satisfying two types of constraints: file size and

quality level. In the works of Pigeon and Coulombe the MSSIM metric is used

to estimate loss of quality after compression. Consequently, the same metric was

chosen for current comparison.

Our method consists of three main steps:

– calculating content features from the image data;

– searching for an optimal quality factor using the regression model;

– actual compression run using libjpeg functions.

The JPEG transcoding method was represented during comparison by our im-

plementation of a clustered quality factor prediction algorithm described in [3]. The

image scaling aspect was omitted because it is not used in this chapter. The

transcoding approach requires input images to be encoded in JPEG format al-

ready, so in order to make a set of images for this method all 500 000 images in

the dataset were pre-compressed with random quality factors QForiginal between

60 and 95. This procedure simulated a set of real world JPEG images of various
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sizes. The dataset was subsequently split into training, validation and test sets in

the same proportions that were used during training of the regression functions.

Then, following the original description, every image was assigned with a vector

(width; height; 1000QForiginal), where width×height is image resolution. Using K-

means clustering algorithm the training set was split into 200 clusters assuming these

3-component vectors as coordinates. A standard function kmeans from R language

was used for this classification. The training process concluded with calculating sta-

tistical tables for every cluster, which allow to choose an appropriate quality factor

based on the desired compression ratio or MSSIM value. Each table contains an

average expected change in compression ratio and quality for various target quality

factors. More information about this method can be found in [3] and [24].

Both encoding methods were evaluated in terms of fitting given file size or

quality level on the test set images using a single compression run. The target

objectives were selected from valid ranges for every test image. The deviations in

file size and quality of the images compressed with predicted quality factors were

recorded to calculate average errors and compare error distributions.

Upon using our proposed methodology to fit given file size the mean absolute

percentage error for the test set was 3.2%, which is expectedly similar to the error of

the respective regression model in table 3.3. The corresponding error of the JPEG

transcoding method was 10.3% (fig. 3.13), which implies considerably less accurate

predictions on average. The situation with compressing into desired quality was

similar – the mean absolute error for our machine learning approach was three times

smaller than for JPEG transcoding: 0.008 versus 0.023 in MSSIM metric. Hereafter

the graphs related to size and quality are implemented in two contrast colours –

blue and orange respectively.

Although the average error is an indicative characteristic by itself, it is im-

portant to compare error distributions as well to check for possible anomalies and

worst case scenarios. Figure 3.14 compares distributions for the transcoding method

and the proposed machine learning approach. In the first case the distribution is

considerably wider resulting in bigger average error. The proposed feature based

methodology allows to reduce the majority of errors close to zero. Considering a

small ±5% error allowance for the file size, there are three-quarters of all test im-

ages that fit into this interval if using our method and less than a half in case of

transcoding.

The distributions of figure 3.14 are not exactly normal. Especially it is related

to the proposed method, where the error function used during training was implying

a normal distribution of the logarithmised file size errors. Moreover, the predictor

rounds down the optimal quality factor by design to cause slight underestimation of
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Figure 3.13: Comparison of the proposed machine learning method

with JPEG transcoding through average errors between target and

actual objectives.

the file size, which is reflected in a skew towards negative percentage errors.

Figure 3.15 compares distributions of the errors in the expected quality. For

this objective the proposed methodology also demonstrated superiority over the

transcoding approach. The proportions of images with errors in a small interval of

±0.01 are about the same as in case of the file size distributions – more than 75% of

test images fall into ±0.01 allowance in MSSIM metric using the proposed method,

while for transcoding it is less than 50%.

Both predictors seem to overestimate quality mainly due to the fact that for

a wide range of quality factors many resulting levels in MSSIM metric have values

close to 1.0 (see trends on fig. 3.2), which deviates distribution of target values from

normal. However, such property may even be useful in practice.

So, the machine learning approach outperforms the JPEG transcoding method

significantly without having specific requirements to the input image format. Ap-

parently, the results show that image content is an important and reliable source

of information about “compressability” of the image. Actively utilising it allows

to achieve desired compression results with reasonable accuracy using just a single

compression.

However, performing analysis of the image content does not come for free. The

feature extraction step is faster than actual compression but still takes a consid-
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Figure 3.14: Distributions of the file size percentage errors for

transcoding method (a) and proposed machine learning approach (b),

where percentage error = sizeactual−sizetarget
sizetarget

· 100%.
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Figure 3.15: Distributions of quality deviations in MSSIM metric for

transcoding method (a) and proposed machine learning approach (b),

where quality error = qualityactual − qualitytarget.
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erable time. Table 3.4 shows how feature extraction is related to actual JPEG

compression in terms of time. It usually takes 40 ms if implemented with CPU vec-

tor instructions. The JPEG encoding takes three or five times longer (depending on

the Huffman codes optimisation) with libjpeg-turbo library, which also utilises SIMD

(single instruction, multiple data) commands. Time was measured for in-memory

operations exclusive of input/output procedures.

Table 3.4: Typical execution time for different operations on a 24 MP

image using libjpeg-turbo and vector instructions.

Operation Time, ms
Predicting optimal QF in the JPEG transcoding < 1
Predicting optimal QF in the proposed method < 1
Feature extraction in the proposed method 40
Default JPEG encoding/decoding 120
JPEG encoding with Huffman optimization 200

Evaluating a trained model in any of the compared methods takes negligible

amount of time. The proposed method needs one feature extraction operation and

at least one compression, so processing a 24 MP test image in the conducted exper-

iments required 40 + 200 = 240 (ms).

In case if input image is already encoded in some format it has to be decom-

pressed prior to extracting content features. Consequently, the transcoding method

will require less total processing time if input is in JPEG format. However, it is

risky, and not just due to high algorithm errors, but also because the original codec

that produced such image could have used different quantization tables making the

image incompatible with statistical tables created for standard codec.

To conclude the demonstration of the JPEG models, we investigated whether

our method performs equally well for an entire range of considered image sizes. A

large number of images dedicated to each individual resolution allows to see how

good the model is for compressing with file size or quality constraints at various

resolutions. Figure 3.16 shows that the average error when compressing images into

given file size gradually increases from about 2.9% for small images to approximately

3.6% for big resolutions. The trend line explicitly shows the direction of error change.

This behaviour is expected because larger images can have more possibilities to vary

content complexity, which subsequently is harder to predict. Image sizes of 0.24 and

24 megapixels have slightly higher errors on average because these are “edge cases”

of the regression model used in this experiment.

The graph in figure 3.17 demonstrates an unexpected trend – average quality

error for large images is noticeably lower than for the small ones. This happens
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Figure 3.16: Average file size deviation upon compressing into JPEG

with target size (using the proposed methodology). Each of 100

points is a mean error for 4000 images of a particular resolution.
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Figure 3.17: Average MSSIM deviation upon compressing into JPEG

with given level of quality.
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because of the specific of calculating mean SSIM metric using a fixed 11×11 pixels

window. Thus, with increasing resolution the amount of significant details in each

small area of the image decreases being replaced by some noise, which makes it

slightly easier to predict quality degradation at the pixel level.

3.11.2 Comparison with a constant quality factor

In some practical scenarios using a fixed value of quality factor for JPEG com-

pression may seem a reasonable choice even knowing that it does not guarantee the

same resulting quality.

However, if the use case requires a particular minimal level of quality for com-

pressed images, then using the proposed machine learning method can give better

results than a constant quality factor. This can be useful, for example, in mo-

bile devices assuming that the user wants to keep visual quality of the produced

photographs at a certain level.

For comparison purpose the JPEG quality factor was set to 90 – a typical value

implying a high quality image. A thousand images of 4980×3320 pixels were selected

from the testing set to be used in this comparison. The size of approximately 16

megapixels is a common photo resolution today.

This experiment was conducted under assumption that 95% of compressed im-

ages should be above the same fixed level of quality in MSSIM metric. Using sta-

tistical models it is not possible to get a desired result in 100% of cases, at least

with a single compression run. In order to improve accuracy of the method several

recompressions may be necessary for some images. However, such strategies were

not investigated in this research because they depend principally on the specifics and

priorities of the practical use cases, which in addition may involve time constraints.

Firstly, the chosen subset of images was compressed with quality factor 90

resulting in the average quality 0.978 and average file size 3.12 MB per image. The

5th percentile threshold was at the level of 0.942, i.e. 95% of compressed images had

at least this quality (fig. 3.18).

Secondly, we calculated 90% confidence interval (−5% for each side of the distri-

bution) for JPEG MSSIM regression model to be used for predictions. It appeared

to be approximately ±0.018. Aiming for the same threshold 0.942 the equivalent

mean quality value for the new distribution should be 0.942 + 0.018 = 0.96.

Thirdly, targeting MSSIM quality level of 0.96 the selected images were com-

pressed using the proposed methodology. As a result, a narrower distribution was

obtained with mean 0.96 and 95% of images above 0.95 threshold, which is even
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Figure 3.18: Sketch of quality distributions for 16 MP images

compressed with a constant quality factor and with the proposed

method while keeping the same minimal quality for 95% of images.

better than planned 0.942 because the used regression model tends to overestimate

quality. A significant advantage of this approach is the smaller average file size of

1.94 MB per image, which is about 38% less than 3.12 MB in the case of QF = 90.

This example of minimising file size while maintaining the quality demonstrates

how proposed machine learning approach allows to balance between target objectives

for JPEG compression.

3.12 Results for WebP

Google’s WebP is a relatively new format that can be used for compressing

photographic images. It is often considered as a modern alternative to JPEG. This

research uses WebP codec alongside JPEG to demonstrate universality of the pro-

posed methodology.

The previous section presented various aspects of applying our machine learning

system to the JPEG codec. It explained the mechanism of obtaining a desired result

and evaluated the expected accuracy. Although none of the existing JPEG codecs

employs any strategy to encode images into given file size or quality, the WebP

codec contains a built-in algorithm to compress images with constraints through

multiple partial recompressions – a relatively obvious and reliable choice assuming

that the user has enough time to conduct such procedure. This allows to perform

a direct comparison of the proposed method with an existing alternative solution.

This section does not investigate all possible use cases for WebP, but considers some

real world scenarios of obtaining images with particular size or quality.
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The WebP codec supports option -pass <int> that allows to control the ac-

curacy of fitting the target objectives by specifying up to ten partial compression

runs that converge to the desired result. The file size and quality level can be set

with parameters -size <int> and -psnr <float> respectively according to the WebP

user manual [63]. The codec uses PSNR metric to specify target level of quality.

Consequently, this section employs PSNR for comparison purposes too.

The same dataset of 500 000 uncompressed images was used for experiments

with WebP codec, so the content image features also remained constant since exper-

iments with JPEG. The regression models for predicting file size and quality were

trained identically to those for JPEG.

Considering the fact that multiple recompressions in the WebP codec substan-

tially increase total encoding time, it was taken into account during comparison. To

accurately measure compression time the test images were processed sequentially

and independently in a single CPU thread, while recording only in-memory com-

pression time. As such procedure was hardly practical to perform for all 400 000 test

images, only the smallest (600×400 px) and the largest (6000×4000 px) resolutions

were tested under assumption that similar results can be obtained for any interme-

diate image resolution. So, only 8000 test images were used in the comparison –

4000 small and 4000 large.

After randomly choosing reasonable target values of the resulting size and qual-

ity for all selected test images, they were compressed aiming for each of these con-

straints separately and using both: the proposed method and the WebP codec, in

which up to five passes were specified.

Figure 3.19 compares mean errors and total compression time between the pro-

posed approach and different numbers of WebP codec passes for 0.24 MP images

only. Our method on average needs approximately the same amount of time as the

single-pass WebP encoding but demonstrates much smaller errors between target

and actual compression results, when aiming for either file size or quality. The aver-

age error achieved by the proposed method is approximately at the level of four or

five passes in the WebP codec while the compression time is substantially smaller.

This experiment proves that using the proposed methodology it is possible to find

optimal compression parameters much faster, and consequently in a more energy

efficient way, than by performing image recompressions.

Figure 3.20 looks into file size errors in detail. It compares size error distribu-

tions after several encoding passes as well as a single compression with our method

using the same 4000 small 0.24 MP images as an example test set. One or two

passes in WebP codec look more like consequences of a random guess rather than a
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Figure 3.19: Comparison of the average file size percentage errors (a),

PSNR quality deviations (b) and the total compression time for

multipass WebP encoding versus the proposed machine learning

method using 4000 small test images of 0.24 MP.
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Figure 3.20: Distributions of the file size percentage errors for

multipass WebP encoding and proposed machine learning approach.

67



reasonable choice of compression parameters. Their distributions are so wide that

the majority of bars had to be clipped to keep the same range of values for the

graphs. After five passes the situation with WebP codec errors improves dramati-

cally. It is even better than error distribution from our method in a sense that there

is much less cases with file size overestimation. The last two distributions show that

both compared methods tend to underestimate file size. However, 5-pass WebP

compression has much longer tail of large amplitude negative errors. Conversely,

the proposed machine learning method has error distribution close to normal, which

was intended by design.

Therefore, for small images our method demonstrated superiority over exist-

ing multipass WebP compression in many aspects without any modifications to the

codec. This fact supports the Predictable Compression Hypothesis formulated pre-

viously in the introduction.

Large images (24 MP) were tested separately due to much bigger compression

time in order to avoid distorted time statistics. Figure 3.21 shows very similar

trends in comparison of size and quality errors to those for small images. The only

difference is that total compression time for 4000 images is measured in hours instead

of minutes. Such closely correlated trends in average errors and compression time for

images of different resolutions suggest that the same picture remains across a wide

range of image resolutions when the proposed method is applied to WebP codec.

There are some interesting trends in the average errors that can be observed

from the graphs of figures 3.19 and 3.21. The average file size errors for large images

are bigger than for small ones in every compression scenario, while the average

PSNR deviations demonstrate a completely opposite pattern. The quality level for

large images is easier to predict. This phenomenon is very similar to the trends on

the graphs 3.16 and 3.17 from the previous section related to the JPEG models.

This cannot be due to a statistical error, which one may assume by comparing

deviations of 0.63 dB and 0.59 dB from our method applied to small and large

images respectively, because every multipass compression case demonstrates the

same behaviour.

The reason why 24 MP images are easier to compress into given quality may

be related not so much to the way the error metric is calculated (as it was assumed

previously) because PSNR is computed in a different way than MSSIM, but mainly

down to the actual compression algorithms.

Assuming that high resolution photographs have a considerable amount of

evenly distributed noise at the pixel level implied by the physical properties of

the camera, and the image compression algorithm works as a low-pass filter, then
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Figure 3.21: Comparison of the average file size percentage errors (a),

PSNR quality deviations (b) and the total compression time for

multipass WebP encoding versus the proposed machine learning

method using 4000 large test images of 24 MP.
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it changes the distribution of such noise in a predictable way. However, small reso-

lution images tend to have more high- and low-contrast fragments (like sharp edges

and smooth colour areas) unevenly distributed across the image, which results in

more diverse distributions of the introduced errors in different image fragments upon

applying a low-pass filter. Therefore it is harder to estimate the average distribution

of the introduced noise for small images.

There is another peculiarity about the compression time difference between the

proposed method and the single-pass encoding. It is not obvious why there are

both positive and negative deviations in average compression time between these

scenarios. Our method can be slightly faster (fig. 3.19a) or slower (fig. 3.19b) than

1-pass compression. The reason is that WebP compression with different quality

factors requires different amount of time. This is not related to overhead for the

feature extraction procedure in our system because its time is tiny in comparison

with actual WebP compression. A typical encoding time for 24 MP image according

to figure 3.22 is about 2 s, while feature extraction requires constant 40 ms, which is

fifty times smaller, so the contribution of the feature extraction stage into the total

processing time can be considered negligibly small – one extra second per minute of

actual compression time.
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Figure 3.22: WebP compression time distribution for 24 MP images

using the machine learning method (exclusive of feature extraction).

Images encoded with large quality factors (90-100) require much longer com-

pression time (around 10 s) and result in considerably bigger files.
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3.13 Discussion

This chapter proved the idea of a universal methodology that allows to make

reasonably accurate estimations of the compression outcome, which in turn can

be used to find optimal quality factor for different image codecs. The proposed

approach is flexible not just in terms of the target image format but also can be

used with different sets of features and machine learning techniques.

Looking at the error comparison graphs related to JPEG and WebP codecs it

is easy to notice how closely correlated the average size and quality error trends

are despite the fact that they represent distinct characteristics measured in different

units. Nevertheless, the compressed file size in general seems to be more difficult

to predict than the resulting quality level. Although there is no explicit evidence

to support such conclusion, it looks reasonable considering the following point of

view – the average deviation of 0.6 dB in target quality (according to fig. 3.21 using

the proposed method) may indicate a small difference hardly noticeable even upon

close manual inspection, while the “equivalent” 5% deviation in file size is trivial to

see and can be too big for some applications. Also, the lack of a reliable objective

quality metric makes measurements of quality degradation somewhat less decisive

compared to absolute certainty of a compression ratio. Considering similar trends in

other compared methods, it is possible to make a supposition that fitting a file size

constraint is a fundamentally more difficult task in comparison with a quality level.

Among other general observations it is worth to mention slightly higher errors of

the regression models for WebP codec in comparison with those for JPEG. It is likely

to be a consequence of the WebP’s more intricate and slow compression algorithm

that involves a search for similar neighbour fragments and an arithmetic compression

– more efficient version of entropy reduction than Huffman codes. Anyway, this work

does not aim for the best possible accuracy in practice.

The application domain of the proposed concept of predicting compression result

properties before actual compression is not limited to images. The next chapter

investigates how it can be used for more complex type of multimedia data – videos.

3.14 ACACIA image compression tool

Using the techniques described in this chapter we created ACACIA [70] – an ap-

plication that allows user to compress images into JPEG and WebP formats target-

ing explicitly specified level of quality or compressed file size with minimal overhead

for computational time.
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ACACIA (Advanced Content-Adaptive Compressor of ImAges) is a demonstra-

tive software that supports GUI mode (fig. 3.23) as well as command line interface.

Figure 3.23: ACACIA interface in Windows.

Upon loading an image into the program, the feature extraction process is per-

formed. The feature vector is stored in memory. There are two sliders for adjusting

quality and file size. When user moves one of the sliders, the closest quality factor

value is found using a regression model built into the program. Then by substituting

values into another regression model for the free objective, the prediction is made

for the second slider, and it moves to the new position automatically indicating the

connection between the two objectives. The predictions takes less than a milisecond,

so the program reacts to user input in real time.

The quality slider displays values in the MSSIM metric in the range [0.6; 1.0]

equally split onto four intervals approximately corresponding to the ’high’, ’meduim’,

’low’ and ’very low’ levels of quality. The file size slider has a logarithmic scale

between the smallest and the largest estimated compressed file size.

The ’Compress!’ button allows user to choose the location for the compressed

image file. ACACIA also reports the time spent on the library function call, which

performs actual compression.
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Despite that fact that MSSIM metric was used only for JPEG and PSNR was

tested only for WebP, the program uses statistical models for both quality metrics

in either target format.

3.15 Summary

This chapter introduced a general methodology for compressing images with ex-

plicitly specified target objectives like file size in bytes or quality level in MSSIM or

PSNR metrics. The methodology is based on the machine learning models that pre-

dict the outcome of compression. It allows to avoid multiple image recompressions

to get a desired result, thus saving processing time and energy.

In order to represent the image entropy in a compact and descriptive form

suitable for training regression models, a set of ten content features was designed

from scratch. The concept is based on estimating the amount of the high-frequency

image components, but in a computationally efficient way. As a result, the features

correlate with the compressibility of an image and require only few milliseconds to

calculate even for a large photograph. Also the content features were devised with

resolution independence in mind.

The universality of the proposed methodology was demonstrated using two im-

age codecs for popular compression standards: JPEG and WebP. It is pertinent to

emphasise that the algorithms used in this chaper did not require any modifica-

tions to the considered image compressors. However, by embedding the introduced

techniques into the codecs it is reasonable to expect the reduction in the total compu-

tational time mainly due to merging external and internal colour space conversions

into one.

The tests for JPEG involved a comparison with an existing transcoding method

that recompresses JPEG images into lower quality. The compression with both

target quality and size using the proposed methodology demonstrated a considerably

better accuracy of fitting the constraints in comparison with the transcoding method

by Pigeon et al. [26]. This result was expected because the transcoding approach

does not use information about image content, only resolution. As a consequence,

the feature extraction stage is not required for JPEG transcoding, which makes it

slightly faster than the proposed technique. However, the main advantage of the

proposed method is that its area of application is not limited to a single image codec.

The experiments with WebP codec explicitly demonstrated better performance

of the new system in comparison with the scenario involving multiple recompressions.

The WebP codec has built-in options to encode images into given size or quality using
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several partial compressions. This functionality allowed a direct comparison of the

total compression time required to achieve a certain proximity of the desired result.

The WebP codec takes approximately three time longer to get to the same level of

error in comparison with the machine learning approach. Looking from the side of

accuracy, the proposed method has the average error comparable with 4–5 passes of

WebP codec but using only a single compression.

Due to the fact that WebP codec is considerably slower than JPEG (∼2000 ms

and 120-200 ms respectively), the overhead for feature extraction and prediction is

negligibly small in comparison with a single WebP compressor run. Therefore, the

proposed methodology can be considerably more useful for new and emerging image

compression formats, which are more complex than JPEG.

3.16 List of Contributions

The following results were obtained during investigation into image compression

optimisation:

• a low-complexity technique for analysing uncompressed content of the images

and predicting the resulting size and quality before compression;

• an accurate method for one-shot compression with target file size or quality

level based on the prediction technique;

• the proposed system considerably outperforms the existing JPEG transcoding

method in accuracy for either size or quality;

• the proposed method allows to obtain a narrower quality distribution for a set

of images in comparison with using a constant JPEG quantizer;

• the method of predictable single compression substantially outperforms mul-

tipass encoding in therms of processing time;

• the result of WebP compression is more difficult to predict than for the JPEG

codec;

• the compressed file size becomes more difficult to predict with increasing image

resolution, while the quality in MSSIM metric is on the contrary easier to

estimate for large images;

• a standalone tool ACACIA designed as a proof of concept for two different

image codecs.
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Chapter 4

Dynamic Resolution and Video

Compression with Target Quality

This chapter is dedicated to optimisations in video compression. It is a broad

area, so this research focuses on a particular aspect of balancing the quality and

compression ratio between different parts of the video.

The research also addresses the challenge of compressing the videos with a target

quality without running multiple recompressions. This issue is considered alongside

optimisation, which takes priority in an attempt to decrease file size or compression

time. Shifting focus towards video optimisation builds and expands on the work

of the previous chapter. Considering real-world optimisation problems is a more

interesting scenario than predicting video compression results. For example, adding

dynamic resolution increases optimisation possibilities in video compression. It is

the combined compression outcome and dynamic resolution prediction methodology

that makes this novel research.

The problem of quality balancing is investigated for x265 video codec using the

machine learning methodology from the previous chapter adopted to video com-

pression. Although the large number of encoding options provided by video codec

adds complexity to the problem of predicting compression outcome, it allows the

discovery of optimal parameter combinations, which are unobvious and otherwise

obtainable through a time consuming search with actual compressions alone. The

result is a better tradeoff between quality and file size for the whole video.

In order to increase the number of possibilities for optimisation, the segments

inside a video are allowed to have variable resolution by design. Is is assumed that

the display resolution remains constant, which means that some frames must be

upscaled upon playback. Although modern video codecs work only with frames of

constant resolution, it is possible to compress and store different parts separately as

75



well as play them in a sequential order like a normal video.

Besides a variable resolution, which can be considered as a modification to the

video container formats, this research does not introduce any changes to the video

codec itself.

4.1 Levels of Quality Balancing

Aiming for a constant quality for entire video during compression is a common

use case. However, video is a complex data structure that can consist of thousands of

frames, which are technically separate images. Consequently, the problem of quality

balancing is not trivial, especially if the user has provided other constraints like the

target file size.

Considering an uncompressed video, there are four structural levels, elements

of which can be subjects to optimisation:

– entire video;

– video segments;

– separate frames;

– blocks in a frame.

The content complexity of the components at each level is different, which means

that by varying compression options it is possible to keep the resulting quality at a

certain level.

It is often user’s responsibility to select compression parameters for the entire

video based on its complexity and desired outcome characteristics. This is a difficult

task, so video codecs usually provide options to control the resulting file size. The

constant bitrate, for example, ensures a fixed compression ratio but causes uneven

quality degradation across the video. In order to produce a given total file size some

video codecs employ a strategy similar to WebP image codec – multipass compres-

sion, which requires much longer compression time. As for the desired quality, there

is no explicit targeting for quality metrics implemented in any popular video codec.

Modern compressors by default try to maintain the same quality level by adjusting

the DCT quantizers according to the frames complexity. But in any case, it is done

with relation to a reference quantizer value provided by user.

All video codecs split videos of sufficient length into segments separated by key

frames (or I-frames), which are encoded independently from other frames and used to

facilitate navigation in the compressed video stream and increase its error robustness.

At this level the codec is primarily responsible for balancing quality across different

segments. If the compressor provides options to set content specific preferences
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then the user can indirectly influence this process. This chapter investigates quality

balancing between video segments. In practice such a procedure can be done without

modifications to the video codec, while almost any attempt to alter compression

processes at lower levels will need changes in the codec algorithm (but not necessarily

the video format).

Individual frames in the video may require quality balancing due to the fact that

different images compressed with the same quantizer result in technically different

quality levels (see example in the introduction on fig. 1.1). The same problem is

related to the blocks inside each frame. Modern video codecs like VP9, x264 and

x265 support adaptive quantization – i.e. independent quantizer values for each

macroblock in a frame. The codecs use heuristics based on the content complexity

and potential motion range of the blocks to determine optimal quantizer. Performing

quality balancing at such low level requires not just deep understanding of the

encoding process, but also reliable quality metrics, which can justify even minor

changes.

Current research considers image and video codecs more like black boxes aiming

to distant itself from the details of particular implementations. Consequently, the

most suitable scale, at which quality balancing can be performed, is the level of

separate video segments. The distinct feature of this work in comparison with

the built-in quality balancing is the dynamic adjustment of the segment resolution

during compression process. It can be considered as an extra mean of quality control.

In addition, such problem was not previously investigated in the literature.

The proposed optimisation arises from the fact that different parts of the video,

despite being related in terms of meaning or depicted objects, have different content

at the pixel level and therefore require an individual approach from the video codec

perspective. Adding variable resolution to the problem prevents the video codec from

performing quality balancing between segments. However, the low-level balancing

between frames and their blocks is still done by the video codec using its heuristics.

4.2 Video Quality Measuring Program

The main focus of this chapter is on the problems related to the compressed

video quality. Therefore, it was important to prepare appropriate tools for measuring

quality degradation in various video compression scenarios.

According to Kotevski et al. [42] objective quality metrics like PSNR and SSIM

have a range of problems when applied to videos. In particular, some motion arte-

facts visible to a human are difficult to capture with formulas. Therefore, human
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viewers are often asked to rank a dataset of compressed videos against the original

versions thus allowing to calculate a mean opinion score. This method however

has its own drawbacks. For example, in order to create a reliable statistical model,

multiple measurements should be made for a single video using different compres-

sion options, but users often cannot detect minor quality changes between similar

parameter combinations. A substantial amount of statistics is needed to detect the

regularities. Such an approach may require thousands of viewers and thousands of

videos to mark, which often makes it impractical.

For example, consider a dataset of 2500 video segments used in this chapter

experiments, where every video was compressed with 300 parameter combinations.

It required 750 000 quality evaluations in total. Such procedure was time consuming

even with a relatively simple MSSIM metric implemented using vector and multi-

threaded parallelism. Relying on the human judgment would make these experi-

ments impossible and require a completely different approach.

The MSSIM metric was used to calculate quality levels in all video compression

experiments. Despite the fact that this is not a perfect option, it was used mainly

to demonstrate the working methodology, which is independent from any particular

metric by design.

In this thesis the MSSIM between compressed and original videos is calculated as

an average MSSIM of all decoded frames with respect to the corresponding original

frames.

For video experiments this metric was chosen due to several reasons. Firstly, it

is widely used in the literature and, in particular, in the related research. Secondly,

it provides a reasonable balance between the computational (and implementation)

complexity and the correlation with subjective perception. And finally, the specific

of calculating mean SSIM metric using separate frames allows to instantly obtain

the average quality of a long video by knowing the average quality levels of its

individual segments. The experiments on optimising video compression included

assembling videos from segments with separate values of MSSIM. So, this property

added flexibility to the experiment planning and decreased the experimental time.

However, some tests required to calculate the frame quality distribution and

investigate per-frame quality correlation between different compression scenarios.

Therefore, the program for measuring video quality was extended with extra func-

tionality – printing MSSIM for every frame in addition to the average. It is a

relatively unique feature in comparison with the existing tools for video quality

calculation. Here is an example of the program output:
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./y4m-psnr-mssim-fp32 original.y4m decoded.y4m -nopsnr -notime

-print-per-frame -threads 6

Frame Y-MSSIM

1 0.9615719

2 0.9586021

3 0.9563300

4 0.9555718

5 0.9553111

[...]

average 0.9575674

Internally the programs for calculating MSSIM metric for images and videos

used exactly the same subroutine that processes two arrays of image pixel data.

Taking into account a fixed 11×11 window size and predefined weighting kernel, the

SSIM subroutine was optimised with AVX/AVX2 instructions. However, in case of

videos this metric was still quite expensive in therms of computational time. So,

the program was improved by implementing parallel processing of the corresponding

individual frames. This approach allowed to efficiently utilise multicore CPUs for

video quality evaluation and considerably speed up the experiments.

It is also important to mention that technically all experimental videos were

stored in the Y CbCr colour space according to the ITU-R BT.709 standard, which

has limited range for luminance and chrominance components. For example, the

values in the luminance channel Y have a recommended range of brightness levels

[16; 235], which is different from a standard dynamic range of [0; 255] used for images.

Formally, this should affect the dynamic range L = 255 in the SSIM formula. How-

ever, in the decompressed videos many pixel values were out of the recommended

range. Such phenomenon is called overexposure or underexposure depending on a

particular value and is formally allowed by the standard. The only brightless levels

that are strictly forbidden are 0 and 255. Assuming that over- and underexposure

has a minimal influence on the result, the dynamic range in the MSSIM formula was

left at the default value 255 for simplicity.

4.3 External Tools

Couple of external applications were employed for the experiments with video

compression, such as an opensource x265 video codec and the FFmpeg tool for

resizing videos and decompressing them into the raw format.
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4.3.1 FFmpeg and FFprobe tools

FFmpeg is a popular program for video and audio conversion [71]. It aggre-

gates different libraries for encoding and decoding a wide range of image, video and

audio formats. FFmpeg supports various video containers like AVI, MP4, MKV and

WEBM. In this research the program was used mainly as a fast tool for changing

video resolution and for decoding compressed video streams in the lossless *.y4m

format. Actual video compression was performed with a standalone version of the

x265 video codec described in the next section.

In order to test the concept of dynamic resolution all video segments were

resized to smaller resolutions before compression using a simple command like the

following:

./ffmpeg -i input.y4m -s 960x540 output.y4m

By default FFmpeg uses bicubic interpolation for resampling operations. It

is not explicitly stated in the documentation but can be found in the source code

[72, line 1229]. Investigating the resampling methods is beyond the scope of this

research, but it is reasonable to employ bicubic interpolation for videos because it

is suitable for natural images, computationally cheap and widely used in practice.

So, FFmpeg was used during experiments to decrease resolution before com-

pression and to decompress video files to the raw format with restored resolution for

subsequent quality calculation. Decoding H.265 format with resampling was done

using the following syntax:

./ffmpeg -i input.h265 -s 1920x1080 output.y4m

It was empirically established that the decoded video obtained with FFmpeg is

identical to the output stream of the reference H.265 decoder [73]. The advantage

of the FFmpeg is the multithreaded processing enabled by default, which helped to

reduce the experimental time.

In the video experiments there was a need to split the long videos onto indi-

vidual segments separated by I-frames. The optimal positions were automatically

determined by x265 video codec during a test compression run. Then the FFprobe

tool from the FFmpeg library was used to extract the key frame positions from the

compressed video stream:

./ffprobe -i video.h265 -select streams v -show frames

-show entries frame=pict type -of csv
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4.3.2 Introduction to x265

x265 is one of the best modern video codecs in terms of quality to size ratio ac-

cording to multiple comparisons [13, 14, 15]. It is a relatively sophisticated software

implementation of the H.265 standard for video compression. H.265 is positioned as

a format for the next generation video codecs. However, in this research it was cho-

sen for a different reason – it allows to utilise a wide range of macroblock sizes from

4×4 to 64×64 pixels [74]. Big enough blocks can be compressed with DCT as whole

or subdivided into smaller ones through quad-tree partitioning in order to preserve

the details. This helps to cover smooth and detailed areas in the large resolution

frames more efficiently. Theoretically this should dramatically reduce the potential

benefits of the dynamic resolution approach proposed in the thesis by using such

built-in variable-resolution DCT. Nevertheless, this work investigates what kinds of

improvements are still possible.

There are various software implementations of the H.265 standard, but x265

codec was chosen for the experiments among other implementations due to the

following reasons:

– high efficiency of the encoder by default, which leaves a small room for the

optimisation in general and with dynamic resolution in particular;

– a wide range of codec options for controlling quality and compression time;

– open source and vector instructions support (to speed up the experiments).

The codec provides a range of different parameters which directly influence

outcome of compression. Some of them are grouped into presets, which according to

user’s manual [75] can be used to control thoroughness of the search for interframe

motion compensation. There are ten presets in total that allow to vary compression

speed in a range of several orders of magnitude for a small tradeoff in quality.

For quality control x265 by default uses so-called “constant rate factor” (or

CRF, specified as --crf <float>), which implies a reference quantizer value for adap-

tive quantization. It is a major parameter determining a balance between resulting

quality and compression ratio.

In order to demonstrate the influence of the main compression options of the

x265 codec we used a short test video “Bosphorus” (fig. 4.1), which is available

at [76]. This video contains a single 600-frame scene with a moving boat. It is a

standard material used for testing video codecs.

Figure 4.2 shows a set of typical trends in the average quality, compressed size

and encoding time upon compressing the test video with an entire range of CRF

parameter values [0; 51]. The main effect of increasing the reference quantizer is

the exponential decrease in the file size, which is accompanied by a considerable
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Figure 4.1: First frame of the test video “Bosphorus” 1.

reduction in quality and compression time as well.

Figure 4.3 demonstrates that the compression time is a main objective affected

by different x265 presets. It increases exponentially when moving towards slow op-

tion presets. It is understandable considering that changing preset generally adjusts

the search radius and precision of detecting similar blocks in the related neighbour

frames. The slow presets also tend to produce slightly higher quality and larger file

size. This is a typical regularity, although the proportions may be different in case

of another video.

Due the fact that this research investigates an idea of dynamic resolution video,

it is reasonable to consider the effect of changing resolution. Although x265 does not

support video resizing, it can be taken into account as an additional compression

parameter – ’scale factor’. Figure 4.4 shows almost linear trends in resulting quality,

size and time upon changing the scale from 1.0 to 0.5 and compressing the video

with default options. Quality comparison for videos of different resolutions is made

assuming that the display resolution has 1.0 scale (1920×1080 pixels).

The quality balancing experiments presented in this research targeted optimal

combinations of the following parameters for each video segment:

– CRF;

– preset;

– scale factor (not x265 option).

It is important to mention that we designate quality balancing between frames

in a video segment to the codec by using constant rate factor (--crf <float>) instead

1The video frame was taken from an unmodified source distributed under the Attribution-

NonCommercial Creative Commons license: https://creativecommons.org/licenses/by-nc/

3.0/deed.en US
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time when encoding a small test video with different CRF values.

83



Time

ultrafast
superfast

veryfast
faster

fast
medium

slow
slower

veryslow
placebo

1

10

100

1000

x265 preset

Co
m

pr
es

sio
n 

tim
e,

 s

Size

ultrafast
superfast

veryfast
faster

fast
medium

slow
slower

veryslow
placebo

1.8

2.2

2.6

3.0

Co
m

pr
es

se
d 

siz
e,

 M
B

Quality

ultrafast
superfast

veryfast
faster

fast
medium

slow
slower

veryslow
placebo

0.94

0.95

0.96

M
SS

IM
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Figure 4.4: Trend examples of the default compressed video using

preliminary resampling to different resolutions, and assuming that

the quality is calculated with respect to the 1080p original.
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of quality parameter (--qp <int>). This choice was made deliberately based on the

fact that the “quality parameter” option means simply a constant quantizer for all

frames, which is not the best scenario. We assume that using CRF allows x265 to

keeps quality inside a segment at approximately the same level.

In order to compress a video the following command line syntax was used:

x265 --pools 8 --crf 28 --preset medium --no-progress

--input video.y4m --output video.h265

In this command --pools 8 explicitly specifies the number of computational

threads; CRF = 28 is a default reference quantizer value; --preset medium represents

a recommended set of values for the minor codec options; --no-progress disables

percentage counter to reduce the amount of logged information during automated

batch processing.

4.4 Problem Formulation

The general problem considered in this chapter is to find optimal combinations

of compression parameters for all segments in a video that lead to the same quality

but reduced file size or compression time in total. The result of video encoding with

default options is used as a typical alternative for comparison purposes.

Multiple optimisation strategies are possible depending on the user priorities.

This research focuses on the use cases that involve quality balancing because com-

paring other objectives if quality is the same is considerably easier and more reliable

than comparing different values of the objective quality metric like MSSIM or PSNR.

One of the possible strategies is to match the average quality of the entire video

with the default compression case while decreasing total size of the video stream.

Such a method does not take into account the frame quality distribution in the

compressed video. The main requirement of this approach is a preliminary analysis

pass of the whole video (fig. 4.5a). It also needs to employ a search algorithm in

order to find a suitable sequence of parameter sets for all segments.

An alternative method that does not require an extra pass is based on con-

straining the resulting quality level in a relatively small range for all segments, thus

minimising frame quality distribution by definition. It does not necessarily require

any preliminary samples from any part of the video. Instead this approach can rely

on some heuristics guiding the choice of an optimal parameter combination among

multiple alternatives with similar result characteristics. In this case video segments

can be processed sequentially and independently from each other (fig. 4.5b).
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The problem is that having more than one compression option often results in

several parameter combinations, which produce a given level of quality for a partic-

ular video segment. Assuming that it is possible to predict all such combinations,

making an optimal choice is not a trivial task. For example, randomly selected op-

tions among those satisfying the quality constraint may not be the best alternative

in terms of quality to size ratio. There could be a better parameter combination

that provides a considerably smaller file size for a tiny decrease in quality – which

is a more preferable choice.

So, having just a target quality level as an objective technically does not provide

enough information to develop a straight and simple strategy for optimal quality

adjustments in a sequence of independent segments. There should be some extra

information about the balance of preferences between quality and compressed size.

Creating a reasonable heuristic may help to deal with this problem.

4.5 Dataset of Video Segments

The problem of predicting compression result characteristics is an integral part

of this research. The machine learning methods require a considerable amount

of diverse training material to achieve a reasonable accuracy in their statistical

estimations.

In order to provide training samples for the regression models a dataset of 2500

video segments was constructed. They were obtained from 47 YouTube videos,

which were chosen more-or-less randomly but with deliberate intention to diversify

the content of the whole dataset. The videos include amateur and professional

filming material that contains scenes of urban and natural landscapes, people and

animals as well as some aerial drone footage.

The resolution of all original video clips was 4K (3840×2160 pixels). However,

due to relatively poor quality of the source material the frame detailization was

increased by resampling all videos into smaller Full HD resolution (1920×1080 pix-

els). Between various processing steps the videos were stored in a lossless *.y4m

file format [77], which contains separate frames as raw pixel values in Y CbCr colour

space. FFmpeg tool [71] was used to decode and resize videos at all stages of the

experiments.

The optimal positions of key frames in each video were extracted from the

compressed versions of each 1080p video using another program from the FFmpeg

toolset called FFprobe. The x265 codec was used to perform the default compression

in order to define positions of the key frames (fig. 4.6). The lossless videos were
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Figure 4.6: Video segments extraction procedure.

subsequently split into segments using a specially created program for frame-precise

raw video sampling.

The length of obtained video segments varied between 1 and 250 frames (fig. 4.7).

By default x265 limits segment size to 250 frames maximum, therefore any longer

scene in the video was cut into smaller parts making 250 the most common size.

All raw video material was stored in a lossless *.y4m container format using

4:2:0 chroma subsampling (Cb and Cr colour components have two times smaller

resolution 960×540 pixels). It was assumed that colour space transformation should

be done according to ITU-R BT.709 standard [78], although actual conversion to

RGB was not explicitly used in the experiments. The quality metric was calculated

for luminance component Y under assumption that x265 balances chromatic com-

ponents in a reasonable manner in accordance with luminance quality degradation.

The latter assumption is based on the fact that the codec by default uses the same

quantization parameter for all colour components (see x265 manual [75], section

Quality Control, parameters --cbqpoffs <int> and --crqpoffs <int>).

The dataset of 2500 video segments was randomly split into two equal subsets:
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Figure 4.8: Dataset structure.

training and development (fig. 4.8). The training set was used in gradient calcula-

tions at each iteration of learning the model. The development set was employed

to control overfitting during training and to choose the best model among several

alternatives by the lowest error. Term “development set” is used by Andrew Ng

in his recommendations to machine learning strategies [79]. This term reflects the

purpose more accurately than traditional “validation set”, although the meanings

are similar. It is obvious that the models can overfit to the development set, however

it can be considered as an intermediate test set to a certain extent when creating

the statistical modes.

There was no explicit test set allocated among the 2500 segments. Instead,

testing of the models was conducted on a separate group of four videos. The reason

is that this research aims to optimise some real world use cases that involve complete

videos rather than individual segments. Table 4.1 provides more detailed informa-
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Table 4.1: Short summary of four test videos.

# Video name Content description Frames Segments Source address

1 GoPro HERO5 +
Karma: The
Launch in 4K

Action scenes 7255 123 https://youtu.be/vlDzYIIOYmM

2 Horizon Zero
Dawn PS4 Pro
4K Showcase

Video game
recording

5257* 24 https://www.digitalfoundry.net/2017-02-23-free-
download-horizon-zero-dawn-ps4-pro-4k-showcase

3 New York in 4K City landscapes,
complex motion

8421 66 https://youtu.be/TmDKbUrSYxQ

4 Sony Glass
Blowing Demo

Colourful scenes on
a dark background

2492 20 https://youtu.be/74SZXCQb44s

* the original frame rate was reduced by half to remove frame duplicates

tion about these videos. The first video contains a large number of various short

action scenes. The second test video contains long seamless scenes of the gameplay

from a modern 3D computer game. The third video mostly consists of highly de-

tailed scenes with complex motion patterns. The last video contains images with

smooth colour transitions and has relatively small amount of motion.

4.6 Error Metrics

An error metric defines an objective function, which is minimised during training

of the regression models. Balancing video segments without actual compression

requires reasonably accurate predictions of the following values:

– compressed file size;

– quality level in the MSSIM metric;

– compression time.

The range of possible values for quality and time is relatively narrow in com-

parison with compressed size. So, for different objectives this chapter adopts two

error metrics: a widely used root-mean-squared error (RMSE) and specially designed

root-mean-squared relative correction of prediction (RMSRCoP). The explanation

below considers the differences in calculating partial derivatives for these two met-

rics. The problem is that the output of the regression models is not a directly

predicted objective but its statistically standardised value (and also logarithmised

for the file size model). This adds some extra complexity to the error function but

facilitates training process by providing error metrics in the same units as target

objectives (see also Appendix B for details).

91



4.6.1 RMSE

Assume that we have S training samples indexed with <s> from 0 to S− 1 (in

superscript notation for convenience). The root-mean-squared error is defined as

RMSE =

√√√√ 1

S
·
S−1∑
s=0

(
Q<s>
predicted −Q<s>

target

)2
,

where Qpredicted and Qtarget are estimated and actual quality values for a training

sample. Predicted quality value is calculated by reversing the standardization:

Q<s>
predicted = Θ<s> · sdevQ+meanQ,

where Θ<s> is a neural network output, meanQ and sdevQ are the average and

standard deviation values for target quality distribution.

Suppose that w0 is one of the regression model parameters (a network connection

weight). Then a partial derivative of the error function RMSE with respect to w0 is

calculated as follows:
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The network output derivatives with respect to any internal parameter were

obtained using backpropagation algorithm according to Bishop [68, chapter 4].

One of the advantages of using RMSE is the fact that it is equal to the standard

deviation of the prediction error distribution (fig. 4.9), of course under assumption

that the expected value of the error is zero. Since the distributions of prediction

errors and target objective values are connected, the latter needs to be transformed

into normal form prior to the training process.
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Figure 4.9: Relation between RMSE and error distribution.

4.6.2 Relative correction of prediction

RMSE is an optimal choice for the regression models predicting quality or time.

It is relatively easy to use as an error function because it operates in the units of a

target objective. However, it is not the best option for representing compressed file

size errors due to a wide range of possible values.

Relative correction of prediction is a percentage error metric defined as

RCoP =
sizetarget − sizepredicted

sizepredicted
· 100%.

The main difference from a simple percent error is that it is expressed in the

fractions of a predicted value instead of target one (fig. 4.10).

actual compressed size 100 kB

120 kB

80 kBunderestimation

overestimation

percentage 
error

–20%

+20%

correction of 
prediction

+25%

–17%

predictions

+20 kB error

–20 kB error

Figure 4.10: Example comparison between percent error and relative

correction of prediction.

In order to connect this metric with a confidence interval of the prediction it
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was further developed into root-mean-squared relative correction of prediction:

RMSRCoP =

√√√√ 1

S
·
S−1∑
s=0

(
size<s>target − size<s>predicted

size<s>predicted

)2

· 100% =

=

√√√√ 1

S
·
S−1∑
s=0

(
size<s>target

size<s>predicted

− 1

)2

· 100%.

Using RMSRCoP as an error function for the regression model enforces normal

distribution of the percentage correction values and allows to express target file size

as a predicted value with confidence interval:

sizetarget = sizepredicted ± (2σ) %,

where σ = RMSRCoP. Confidence interval calculated as a fraction of a predicted

value helps to estimate a range of possible file size values in bytes.

The target file size values were logarithmised and statistically standardised to

facilitate training of the MLP. Predicted file size value is calculated from the network

output through reversed standardization and subsequent exponentiation:

size<s>predicted = eΘ<s>·sdevLnSize+meanLnSize,

where Θ<s> is a neural network output, meanLnSize and sdevLnSize are the av-

erage and standard deviation values of the logarithmised file size distribution.

A partial derivative of the RMSRCoP with respect to any regression model

parameter w0 is calculated as follows:
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4.7 Gradient Descent Techniques

Training the regression models quickly and efficiently is an important part of

the investigation. Two gradient descent optimisation techniques were considered in

this chapter for training multilayer feed-forward neural networks: gradient descent

with momentum [69] and Adam (adaptive moment estimation) [80]. The latter is a

more complex algorithm, however typically it demonstrates better performance in

terms of number of iterations to reach the same level of error. Figure 4.11 shows

example of the error trends, where Adam also converges to a slightly better result.
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Figure 4.11: Example of the error trends comparison using different

gradient descent modifications.

When using gradient descent with momentum at every iteration i the network

parameters −→wi are updated according to formulas:

−→mi+1 ← β · −→mi + (1− β) · ∇E (−→wi) ;

−→w i+1 ← −→wi −−→mi+1,

where β = 0.99 and ∇E is a gradient of the error function.

Adam works similar to previous formulas, however there are two separate mo-
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mentum vectors (first and second moment estimates):

−→mi+1 ← β1 · −→mi + (1− β1) · ∇E (−→wi) ;

−→v i+1 ← β2 · −→v i + (1− β2) · ∇E (−→wi)�∇E (−→wi) ;

−→w i+1 ← −→wi − α ·
−→mi+1√−→v i+1 + ε

,

where α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8 according to the original

algorithm description [80, algorithm 1]. The only difference is that bias correction

for moment initialization, which increases step size at first iterations, was not used

to simplify program implementation.

4.8 Experimental Setup

Encoding videos and video segments with a purpose of recording size, quality

and compression time was conducted on a cluster of 12 computers with Intel Xeon

E3-1240 v2 @ 3.4 GHz, 16 GB RAM running Scientific Linux 7.3 64-bit with GCC 4.8

compiler. The x265 codec was compiled with AVX instructions enabled (but not

AVX2 due to lack of support). The software versions used: x265-2.4, ffmpeg-3.3.

Compression of all video material was performed in 8 threads.

Training of the regression models was done on Intel Core i7 5820K @ 4.0 GHz

with 16 GB RAM running Ubuntu 17.04 64-bit and GCC 6.3 compiler.

4.9 Video Segment Features

In this chapter fifteen content features were employed as a measure of video

segment complexity for the machine learning models. The feature set consists of ten

image features used in the previous chapter and five interframe differences, which

estimate the amount of motion in different directions.

The process of choosing appropriate content features was guided by the error

of the regression models for predicting compressed size. It was done considering an

observation in the previous chapter that file size is the hardest objective to predict

accurately.

In order to train a basic model for predicting compressed size, all 2500 video

segments from the dataset were encoded with the default compression options using

x265 codec. The obtained file sizes were normalised by the video segment length to

represent the compressed size per frame. However, the length parameter was still
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used as an input in the models because it is related to the distribution of P- and

B-frames (forward-predicted and bi-directionally predicted frames) in the segment.

Different frame types use different quantizers, which in turn affect total file size,

compression time and average quality. For example, short segments often contain

a small number of B-frames, while long segments consist mainly of B-frames. The

difference in compression ratio between P- and B-frames can be greater than an

order of magnitude.

The idea behind designing a set of content features is to predict the default

compressed file size using different groups of features and choose the best ones. For

this purpose the preliminary regression models were trained. They were based on a

simple feed-forward neural network (fig. 4.12) with two hidden layers containing 3

and 2 neurons. This network configuration yields the smallest errors in the devel-

opment set for the current problem. It was empirically established that using more

than one hidden layer allows to delay the moment of overfitting. During training

the early stopping regularization technique was extensively used [67, chapter 7]. So,

the reported results relate to the point of minimal development set error.

File size logarithm

Features

Length

Figure 4.12: Sketch of an MLP used to evaluate content features.

The process of evaluating features efficiency started with a baseline model that

had no content features as input, only length. The network on fig. 4.12 was trained

on 1250 segments to predict the default compressed size per frame. Minimal root-

mean-squared correction of prediction was used as a training objective and an error

metric. The stopping criterion was the smallest development set error, which was

59.5% (fig. 4.13). It is important to mention that the used percentage error metric is

independent from the video segment length because it is based on the ratio between

actual and predicted file size.

Considering the fact that video compression aims to reduce both spacial (in-

side frames) and temporal redundancy (interframe similarities) features representing

both these types of content entropy are required.

In the previous chapter a set of ten image features was proposed and proven

useful for predicting compression result characteristics. It was reasonable idea to try

them for videos too. Image features were modified to be calculated as an average

for all frames in the video segment – i.e. the frames and their non-overlapping
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Figure 4.13: Adding content features decreases average file size

prediction errors.

blocks are considered as separate parts of a single huge image. The length of the

video segment does not matter because content features are resolution independent

by design. These adopted video features were denoted f1–f10 in exactly the same

order as in section 3.2. Upon adding this feature set as an input to the regression

model, the error in the development set reduced to 48.7% in comparison with no

features case (fig. 4.13). It means that content features play a significant role in the

problem of predicting compressed size of the video, which is expectable considering

how important they are for images.

In order to estimate the amount of change in the content of neighbour frames a

set of five “motion features” was introduced. The first feature (f11 for convenience)

is an average absolute pixel difference between consecutive frames. Figure 4.14a

illustrates all differences between 4×4 pixels block and its subsequent projection

from the next frame. This feature measures lack of direct similarity between frames.

The other four motion features f12–f15 are somewhat similar to f11. They are

calculated as mean absolute differences between pixels in neighbour frames that are

shifted by one pixel in each of four orthogonal directions: left, right, up and down.

For example, figure 4.14b shows how subtracting pixels with offset allows to estimate

motion downwards. All four features are calculated in a similar manner. Although,

exactly speaking, these features measure “lack of movement” in the corresponding

offset directions because the feature value decreases if it correlates with the line of
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Figure 4.14: Differences used in video features to detect

static regions (a) and movement down (b).

actual content motion.

The design of the motion features was based on an assumption from author’s

subjective observation that the most common motion radius of a pixel in an ordinary

video is zero pixels or one pixel (static background or slightly shaking camera). In

general it is less likely to find bigger radius.

The motion features were averaged across all frames in the video segment and

logarithmised similar to image features: fi ← log10(fi + 1). A different logarithm

basis 10 was used due to large range of values, although it is not fundamentally

important. These features are also independent from video length and resolution.

Adding five extra features to the regression model reduced average error further

to 39.1% (fig. 4.13), which means that the set of fifteen described features so far is the

most efficient for predicting compressed file size. The number of training iterations

to obtain this model was approximately 10 000 (and 15 s of training time).

Figure 4.15 demonstrates how correction of prediction is distributed for 1250

segments from the development set using the proposed features. Although the range

of deviations is quite wide, its distribution is strictly controlled by the error metric.

For example, more than 95% of predictions (1194 out of 1250) are in ±78.2% interval

(2σ = 2 · 39.1% = 78.2%).

Unfortunately, any subsequent attempt to add extra content features like var-

ious other interframe differences or 3-dimensional convolutions did not noticeably

reduce the average error. This may be due to several reasons.

Firstly, increasing number of input variables leads to overparametrizing the

model, which in turn provokes overfitting. The growing error gap between training

and development set on fig. 4.13 suggests that the risk of overfitting is raising. Using

a considerably larger training set can be a rational course of action, however in this
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Figure 4.15: Example distribution of the file size errors.

case the original quality and diversity of the training material becomes a problem.

Secondly, the low informativeness of the features themselves could be an issue.

It is obvious that the proposed motion features cannot possibly capture all kinds of

temporal complexity in the video. Supposedly, creating more complex and compu-

tationally expensive features will help to increase accuracy of model predictions.

In an attempt to perform a feature selection procedure, content features f2, f5,

f9 and f10 were excluded from the model inputs. This reduced development set

error from 39.1% to 38.3%. However, as this tendency did not remain for complex

regression models, described in the next section, the decision was made to leave

unchanged the proposed set of fifteen features. Although some features can be

almost harmlessly removed from the models predicting compressed size, they may

still be useful in the models for quality or time. Nevertheless, reducing number of

required features in practice will decrease time for their computation.

The set of video content features was designed manually, and despite the extra

attempts it could not be improved with other handmade features. However, this

does not mean that it is the best possible solution.

Calculating a set of 15 features for 2500 video segments in a sequential order

took about 2.5 hours. So, processing 1000 random segments requires approximately

an hour including time for reading from HDD. For a single Full HD frame feature

extraction takes 30 ms including disk reading time and only 5 ms using in-memory
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processing. These are average values obtained from a long video. It is reasonable to

assume that with some extra programming effort the time can be reduced.

4.10 Regression Models

This section describes how the models used in the experiments for actual pre-

dictions were obtained from the video segments dataset. The regression models in

this chapter were employed for the analogous purpose as in the previous – to predict

compressed video characteristics without performing actual compression. Besides an

obvious advantage of saving processing time this allows to optimise other objectives

like quality and compression ratio for an entire video.

So, using the statistical models it is possible to discover optimal compression

parameters relatively quickly for each segment inside a video depending on the goals

of a specific practical scenario. The space of compression parameters was designed

to include three options that have a major impact on the compression result:

– scale factor – a coarse way of quality control by changing resolution;

– constant rate factor for more precise manipulation with quality to size ratio;

– preset, which is mainly used to adjust compression speed.

Due to the fact that this work aims to surpass the default compression in terms

of mainly file size or encoding time but keep quality the same, there is no need to

consider all possible values of the parameters – only those that make the objectives

smaller. For example, increasing frame resolution is not useful because it raises

compression ratio and encoding time. For the same reason small CRF values (target

quantizers), which produce files considerably larger than the default, were not used.

The default encoding options are CRF = 28, medium preset and, of course,

no resolution scaling. The regression models were trained using six values of scale

factor in the range [0.5; 1.0] (with corresponding resolutions):

– 1.0 (1920×1080);

– 0.9 (1728×972);

– 0.8 (1536×864);

– 0.7 (1344×756);

– 0.6 (1152×648);

– 0.5 (960×540).

Twenty five integer vales of CRF from the range [24; 48] were considered allowing

smaller quantizers than the default 28 under assumption that, for example, a com-

bination of CRF = 24 and scale = 0.9 can be better than the default options, say,

for a low-detailed scene.
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As for the preset parameter, it was included into the models because it can be

used for comparison purposes as a simple alternative to default compression. From

ten preset values provided by x265 only two were considered: medium (used by

default) and fast. Using fast preset usually decreases compression time at a small

penalty in quality or file size. In order to give numerical representation to the chosen

presets, they were assigned codes 4 (fast) and 5 (medium).

Other presets were not considered in the experiments because of the difficulties

in gathering statistical data for training. Thus, very fast presets complicate com-

pression time measurement due to a considerable relative cost of reading each video

segment from the disk, while using slow presets requires a lot of time to simply com-

press video segments with all combinations of scale factor and CRF. Also adding

slow presets does not help to decrease compression time for any segments.

After defining the parameter space (fig. 4.16) each of 2500 video segments desig-

nated for model training purposes was compressed with 300 combinations of options

(6 scales · 25 CRFs · 2 presets = 300 combinations). The framerate in all compres-

sion runs was set to 25 FPS.

Scale factor

CRF

Preset

1.0

0.5
24

48

30
36

42

medium

fast

Figure 4.16: Range of scales and x265 parameters used in the

experiments.

In each case compressed size, quality and time were recorded. This data together

with the previously calculated content features was used to train regression models

according to the scheme:

(features; length; scale; CRF ; preset)→ (size | quality | time).

Quality measurement was performed between the raw video segment and its

compressed version that had been decoded into raw *.y4m format. The MSSIM

metric was calculated for luminance components using a specially designed program.

Compression time was recorded according to the measurements by x265 codec itself.

Before training a regression model for predicting compressed file size the target

values were normalised by length of the corresponding segments to represent size per
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Figure 4.17: Compressed frame size distribution before and after

logarithmisation.
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Figure 4.18: Distribution of mean SSIM quality metric values:

standard (a) and measured in decibels (b).
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frame, which narrowed the distribution of possible outputs. Then the values were

logarithmised to normalise the distribution (fig. 4.17). Finally the target values

of the logarithmised size were statistically standardised to increase the speed of

converging to a solution.

The target quality levels in MSSIM metric were also preprocessed prior to train-

ing the model. In order to normalise the distribution of quality values they were

transformed using a special function for representing SSIM metric in decibels, which

had been introduced into x264 video codec under the name x264 ssim [81]. In this

chapter this metric was called “logarithmised mean SSIM” (LMSSIM) to avoid con-

fusion related to a different codec. It was calculated according to formula:

LMSSIM = −10 · log10 (1−MSSIM) .

Figure 4.18 shows how this transformation affects distribution of quality val-

ues. Considering the facts that the MSSIM numbers in this research are expressed

using three digits after decimal point, they were limited by 0.999 maximum to pre-

vent infinitely large values of LMSSIM. As 0.999 corresponds to 30 dB, some video

segments with quality close to 1.0 created a spike at 30 dB on figure 4.18b.

The training process commenced with statistical standardization of all input

and output variables, has been reported to facilitate the gradient descent. This

process was repeated for all input features and compression parameters, even preset

codes.

Due to the fact that the preset option is not a continuous variable but a set of

categories, and with intention to decrease the load on a predictor, it was assumed

that excluding preset from the model inputs will improve accuracy. Alternatively,

training a separate model for each preset value seemed a reasonable option. However,

after comparing the best models obtained with and without preset as a regressor

the outcome was the opposite.

Table 4.2 compares different network topologies by the correction of prediction

in the development set. Each configuration was checked once and took between 2

and 8 hours to train (for the smallest and the biggest network respectively). The

left part of the table contains training results for models without preset, while the

right one reflects tests with this option. The models excluding preset parameter

were learned using half of the training points corresponding only to medium preset.

It would appear that adding the preset as input parameter led to better result.

The MLP configuration with the lowest error (30.3%) is shown on figure 4.19. This

model was used in further experiments.

Comparing the 30.3% error with 39.1% obtained during feature set construction
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Figure 4.19: Sketch of the best network for file size predictions.
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Figure 4.20: Difference between file size error distributions for models

with and without compression options (calculated for development set).
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Table 4.2: Selecting optimal network structure for the regression

model predicting file size.

Neurons
in

hidden
layers

Scale factor and CRF as input variables Scale factor, CRF and preset as input variables

Root-mean-squared correction of
prediction, %

Training
iterations

Root-mean-squared correction of
prediction, %

Training
iterations

Training set Development set Training set Development set

(3; 2) 29.1 40.5 20 000 27.5 32.8 9 622

(4; 3) 26.9 32.8 10 410 26.6 32.3 10 711

(6; 4) 24.6 31.3 12 170 26.0 31.3 10 417

(6; 4; 2) 24.3 31.1 19 885 34.1 31.0 16 584

(8; 4; 2) 25.0 32.2 8 206 23.5 30.3 17 276

in section 4.9, it is possible to assume that the first value is lower due to includ-

ing some parameter combinations, outcome of which is easier to predict than for

the default, that consequently lowered the average error. However, calculating the

correction of prediction for the file size on the development set, which was per-

formed specifically for default compression options (like during feature selection),

resulted in 34.8%. This value is still less than original 39.1%, and comparing the

error distributions corresponding to these values on figure 4.20 shows that the more

complicated model involving three compression options and no extra content fea-

tures corresponds to a noticeably narrower distribution in comparison with a simpler

model (from fig. 4.12), which involved only segment features. The underlying blue

graph on figure 4.20 corresponds to the histogram on figure 4.15.

This observation means that adding compression parameters as model inputs

delays the moment of overfitting allowing to train more complex network configura-

tion and leads to slightly better prediction accuracy.

The regression models for quality and time were trained similar to the those

for file size using all the same input variables. Table 4.3 presents the results of

selecting the optimal network configurations for these objectives. The RMSE of the

best model for predicting quality was 0.91 dB in LMSSIM metric using MLP with

two hidden layers containing 6 and 4 neurons. The same network structure was

discovered to be optimal for the model predicting compression time. It resulted in

average error of 0.80 s per video segment (not per frame).

The fact that optimal MLP for predicting file size has more hidden neurons

and, consequently, degrees of freedom in comparison with models for other objectives

suggests that file size may be more difficult to predict. This correlates with a similar

observation made for images in the previous chapter.
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Table 4.3: Selecting optimal network structure for the quality and

compression time models.

Neurons
in hidden

layers

Models predicting quality (LMSSIM) Models predicting compression time

Root-mean-squared error, dB Training
iterations

Root-mean-squared error, s Training
iterations

Training set Development set Training set Development set

(3; 2) 0.69 0.98 19 913 0.70 0.87 9 158

(6; 4) 0.62 0.91 12 692 0.66 0.80 4 853

(8; 4; 2) 0.57 0.93 16 646 0.65 0.88 3 136

4.11 Experimental Results

This section presents two principally different approaches for balancing quality

and compressed size between segments in a video.

The first approach is focused on obtaining better quality to size ratio on average

for the whole video. It is based on the assumption that high- and low-detailed scenes

have different rate of quality degradation upon lowering or increasing their bitrate.

For example, decreasing the quality of a high complexity segment reduces file size by

a considerable amount equivalent to that obtainable by decreasing quality of several

segments with small amount of motion and smooth image. So, the size budget can

be distributed across the video in a way that makes low complexity parts having

better quality in comparison with the highly detailed ones. This allows us to obtain

a compressed file size which is smaller than in case of having the same quality for

all segments. Consequently, an obvious downside of this method is uneven quality

distribution across different video segments.

The second approach considers the problem of unbalanced segment quality in-

stead of just targeting an average value for the whole video. The priority is dedicated

to compressing each segment with a given level of quality.

4.11.1 Targeting average frame quality

In this scenario we investigated the potential of the proposed dynamic resolution

concept in terms of improving quality to size ratio. It was done under assumption

that an average frame quality is the main objective. The distribution of quality was

not taken into account.

Knowing the outcome of compression with different parameters for all video seg-

ments creates many optimisation possibilities. When each segment can be encoded

with individual options the result could potentially be better than, say, a default
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compression. At the scale of the whole video these options form a set of parameter

combinations that corresponds to a group of video segments.

Testing of the dynamic resolution started with predicting compressed size, time

and quality for video segments using the previously trained regression models. The

predictions were obtained for all segments from the four test videos and using 150

parameter combinations from the parameter space on figure 4.16 excluding fast pre-

set. In addition, all test segments were actually compressed with all those different

options, and the results were recorded alongside the predictions.

As x265 codec produces deterministic result by default, having both actual

and predicted outcomes of compression for each segment facilitated organization of

the experiments. The necessary information could be subsequently retrieved faster

and multiple times when necessary according to the logical flow of the experiment.

This approach reduced time for the experiments allowing to conduct more tests and

propose reasonable optimisation strategies.

In practice the optimisation procedure would consist of the following steps:

– making a preliminary analysis pass of the video splitting it onto segments and

calculating features;

– predicting compression results for 150 parameter combinations in all segments;

– searching for an optimal set of parameter combinations that leads to the

desired outcome;

– compressing segments with the corresponding options;

– recording total result characteristics for comparison.

Need for a search strategy

It is infeasible to perform an exhaustive search over all possible ways to compress

several video segments with different options. Even the shortest test video “Sony

Glass Blowing Demo” contains 20 segments. Each one of them can be encoded

with 150 parameter combinations (or even more if necessary), which leads to 15020

possible sets for the whole video.

Therefore, a search algorithm should be employed. Two different techniques

were used for this purpose: the genetic algorithm and the hill climbing search. They

were guided by an error function (or inverted fitness) defines as follows:

error =

Spredicted, if Qpredicted ≥ Qtarget;

Spredicted + 107 · e−1000(Qtarget−Qpredicted), otherwise;

where S and Q are total video size and average quality respectively.
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This metric uses compressed file size as a basis of the function that should

be minimised. It applies a penalty of 10 MB even for 0.001 drop in predicted

quality, which also exponentially increases. As a result, the search process brings

quality to the required level first and then tries to minimise the file size. Figure 4.21

demonstrates an example of the hill climbing trends for size and quality.
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Figure 4.21: Hill climbing search trends for the compressed file size

and average quality in MSSIM metric using random start and 4th test

video as an example.

Genetic algorithm and hill climbing search

Considering a high efficiency of the x265 video codec “out of the box”, it is rea-

sonable to estimate how much room for improvement can be offered by the dynamic

resolution concept and if there is any possibility for optimisation at all.

For this purpose a classic genetic algorithm (GA) was employed. It used all the

standard attributes: a population of solutions, crossingover, mutation and ranking

solutions by the smallest error, so that better ones were mixed more frequently.

A solution represented a set of combinations of three parameters describing com-

pression options for each video segment. For example, a crossover operator was

randomly mixing segment options from two parent solutions to obtain a new one.

The mutation procedure was changing one of three parameters in a random segment

with 5% probability. The population size was 2000 and the maximum number of
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generations – 200.

Due to the fact that assigning different selection probabilities to potential solu-

tions in a population may be not an easy task, a custom approach was used in the

experiments. See Appendix C for more details about selecting random solutions for

crossingover.

In this search problem any change in the compression options of a single video

segment has a relatively small influence on the total file size or quality. Due to this

specific even the simple search strategies demonstrate good performance in terms of

the number of iterations required to converge to a minimum file size value.

So, for the real world comparison the hill climbing algorithm (HC) was used

instead of GA. It was empirically established that the GA performs marginally better

than HC. However, because GA is a more complex and computationally expensive

method, the HC was considered a more practical choice as it need less processing

time. It was used to search for the optimal parameter combinations based on the

predictions made with regression models.

The hill climbing algorithm changes a random compression parameter by one

unit in a single or two randomly chosen segments at every iteration. This minor

difference from the traditional HC decreases probability of the search process getting

stuck in the local minima beforehand. It required between 1000-3000 iterations to

converge depending on the video and the starting point (see example on fig. 4.21).

Comparing results with typical x265 compression

Table 4.4 presents characteristics of both the best possible and the real com-

pression results for the dynamic resolution, which are compared with three ordinary

compression options: default (CRF = 28), CRF = 36 and CRF = 44. The latter

options correspond to the lower quality and size.

The row “standard x265 encoding” contains results of the normal compression

for every test video without any modifications. The “best possible” scenario of the

dynamic resolution shows theoretically obtained outcome found by the genetic algo-

rithm under assumption that all video segments have been compressed beforehand

with different options. It is quite expensive to do in practice, but such procedure

allowed to see that all videos except “New York in 4K” demonstrate a potential for

improvement in total file size and compression time. With increasing compression at

higher values of CRF the possible dynamic resolution alternatives look even better.

However, the time values shown in the “best results” do not include the exhaustive

enumeration of parameter combinations for all segments or time for any video anal-
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ysis, or the GA search itself. This time is just a raw sum required to compress the

segments with the discovered options.

Despite a considerable theoretical potential of the dynamic resolution, the actual

tests based on the predicted values without any preliminarily obtained information

about compression outcome for the segments are not very encouraging. The “real

result” row shows that using dynamic resolution in practice does not allow to de-

crease the file size in comparison with the default scenario (see two highlighted rows

for each video). It is possible only at lower quality levels corresponding to higher

CRF values, although not for all videos.

The real world tests used hill climbing instead of GA for searching compression

options. The C++ implementation needs roughly 1 second per 1000 HC iterations

per 1000 video frames. A typical search needed 2000 iterations, so the time overhead

was accounted as 2 s per 1000 frames and included in the total time. The feature

extraction stage required about 5 s per 1000 Full HD frames. So, the total processing

time combines compression of all segments and 7 s per 1000 frames overhead for

feature extraction and HC search.

In the context of time measurement it is important to note that the time needed

for splitting video into segments was considered negligibly small. The reason is that

in order to identify an optimal position for a key frame the x265 codec must calcu-

late a frame difference metric between all pairs of neighbour frames. This procedure

is performed regardless of the number of frames. So the same time overhead is im-

plicitly present when compressing video either as a whole or by individual segments.

The average quality in the table 4.4 was deliberately made the same in all

scenarios to make an accurate file size comparison. The accuracy of fitting quality

in particular was investigated in the next use case aiming for equal segment quality.

The difference between theoretical and practical cases, in particular considering

worse file size, can be explained only by inaccurate predictions made by the regres-

sion model for estimating compressed size. However, there is no 30% error like in

the predictor itself because the errors for multiple segments compensated each other

resulting in a reasonable but not accurate enough estimations.

It is worth mentioning that the ideal case comparison was done for the original

4K videos as well (see two rows with 2160p test resolution for each video in the

table 4.4). The potential for optimisations in terms of quality to size ratio as well

as compression time look noticeably better than for the resampled 1080p. However,

due to the low quality of these source videos it was assumed that the results will

be biased by the fact that such material is highly compressible. If training video

data also limited to low quality, it is easier to predict outcome of compression. This
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circumstance prevented a proper investigation of the 4K resolution case.

In addition, the difficulties in gathering training statistics such as the need for

large amounts of disk space and processing time complicated obtaining the regression

models for the 4K resolution, so the decision was made to set aside this problem at

least until the reasonable quality source material can be obtained.

Detailed video scenes and dynamic resolution

The 3rd test video in the table 4.4 – “New York in 4K” demonstrated the lack

of even a possibility for optimisation in comparison with the default compression.

This video consists mostly of the scenes with high detailization like buildings, trees

and other objects with many edge elements. Considering the fact that resizing is

a relatively coarse compression operation that eliminates the small details, it may

not be possible to obtain a high quality after resampling the frames into smaller

resolution and back.

It is quite easy to conclude how suitable a particular video is for applying

the dynamic resolution by looking at the optimal set of compression parameters

discovered with the GA, which was aimed for a relatively high quality. Figure 4.22a

illustrates this with a heatmap of the parameter combinations (scale; CRF) for

all segments from the 3rd test video, which were obtained with the GA targeting

the default average quality 0.957. Apparently, the optimal strategy for the vast

majority of segments from this video is to use the original resolution for compression.

Otherwise it will be impossible to meet the target quality 0.957.

If the resolution cannot be changed then the proposed strategy for balancing

the segments has to operate only with the quantization control parameter CRF. But

due to the fact that the internal x265 adaptive quantization is usually better than

the external, on average the dynamic resolution performs slightly worse in terms of

quality to size ratio.

However, in case if target quality is lower than the default (say 0.790 correspond-

ing to CRF = 44), the dynamic resolution demonstrates a possibility for optimisation

even for complex scenes. Figure 4.22b shows that in such scenario the situation with

the scale factors is the opposite – using the original resolution is not the optimal

strategy for any of the segments. A wide range of scale and CRF values was used

to balance average quality and file size for the low quality compression.

So, adding variable resolution as an additional compression parameter increased

the optimisation space and allowed to discover better compression strategies for long

videos. However, a considerable limitation of the dynamic resolution is the fact that
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it is more suitable for compressing into low quality rather than high.
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Figure 4.22: Heatmaps of the best parameter combinations found by

the GA for 3rd test video with target quality 0.957 (a) and 0.790 (b).

Frame quality distribution

The distribution of the frame quality across the test videos was not used as a

standalone objective in the experiments. It was done under assumption that the

deviations of the segment quality from the average will stay in a reasonable range.

Otherwise, a significant quality drop even in one of the segments will be reflected in

the average quality due to a relatively small number of segments in the test videos.

Nevertheless, it is important to consider how the frame quality behaves in this
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scenario. The graph on figure 4.23 plots the quality for individual frames from the

shortest video “Sony Glass Blowing Demo”. It compares the trends between default

compression and the real world dynamic resolution test, when both resulted in the

same size and average quality.

However, the standard deviation of the frame quality distribution was 0.014

for the dynamic resolution versus 0.013 for the default compression. The proposed

method performed slightly worse in this objective, although it is an expectable result

because this parameter was not constrained. In this light it is reasonable to conclude

that aiming for a minimal size does not allow to obtain a constant quality.

Yet the more important fact is a very close correlation between the trends on

figure 4.23. It was unexpected because according to the purpose of the default

CRF = 28 it should result in a more evenly distributed quality. Instead, the video

compressed as a whole with the default settings has practically the same quality

trend as the dynamic resolution version assembled from segments of various resolu-

tions, which were encoded with different options, with a sole purpose to minimise

file size at the cost of increasing quality distribution.

The x265 codec does not explicitly rely on MSSIM metric and does not use

variable resolution. Despite these facts, there could be a couple of reasons explaining

how such close correlation could happen.

Firstly, the codec may use some internal heuristic, which allocates quality levels

among different parts of the video in a way that minimises total file size but with the

intention to keep the average quality at a particular statistically determined level.

It is unclear whether this is an intended behaviour (which would contradict the user

manual) or simply a side effect of adjusting the quantizer based on a frame com-

plexity. The latter is likely to be the case because x265 uses so-called psychovisual

optimisations. In order to adjust the video to the human perception the codec ap-

plies higher quality degradation in the more complex scenes in favour of improving

total compression ratio.

Secondly, the x265 intensively uses quad-tree partitioning of the frame blocks,

which technically could do the same job as dynamic resolution. This technique

partially compensates the diversity of smooth and highly detailed frames by using

blocks of different sized for each frame type. It can be considered as an alternative

method to the dynamic resolution causing unexpected similarities.

This interesting observation about the frame quality distribution and minimis-

ing file size was not found in the literature. Supposedly, the reason could be that the

researchers usually test their algorithms on the specially selected individual video

scenes (approximately 250-500 frames) instead of long videos.
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Beyond medium preset

Besides the quality distribution, which was intentionally set aside in the con-

sidered use case, the compression time also was not properly taken into account

as either a target objective or a part of the fitness function. The reason was the

difficulty of including it into the fitness function. There is no obvious and universal

way to add time into the formula as it would require focusing on a specifically made

up narrow practical scenario, which was not a goal of this work.

Due to this specific, the fast preset was not used in these experiments. The

preset parameter purpose is mostly the compression time management rather than

quality to size ratio. Any possible decrease in the compression time from the table

4.4 is a side effect caused by smaller resolution in some segments.

However, in the next use case involving dynamic resolution the proposed method

considers all four objectives during optimisation.

4.11.2 Targeting constant frame quality

This section proposes an approach for sequential segment optimisation with-

out performing a search. Such technique can be useful for live video streaming or

other time constrained scenarios. In addition we propose a concept of an alternative

mechanism for controlling the balance between resulting quality, size and compres-

sion time by specifying user priorities.

Heuristic-based parameter selection

Consider a use case, in which conducting a preliminary analysis pass of the

whole video is infeasible or too expensive and each video segment should be processed

sequentially and independently from the forthcoming ones. In this situation only

previous parts of the video can be a source of extra information. However, it may

not be useful if the video consists of substantially different scenes. So, in this

investigation it is assumed that each video segment must be analysed and compressed

separately based only on its content and user preferences.

The complexity of this problem is in the fact that video compression is a process

involving multiple objectives influencing each other. If user specifies a desired level

of quality, it is still unclear how to obtain a reasonable balance between file size and

encoding time because both of these characteristics should be minimal for each seg-

ment. Among the positive sides of such approach is the fact that the decision process

guided mainly by target quality aims to reduce quality jumps between the segments.
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Many live streaming services include a few seconds delay for video processing,

so it is reasonable to assume that in practice a video segment can be analysed as a

whole with intention to calculate the content features (at a cost of approximately

5 ms per 1080p frame as measured previously).

After extracting content features from a video segment, the results of compress-

ing it with several parameter combinations can be predicted in a fraction of a second

using pre-trained regression models. At this point it is possible to identify multiple

sets of options, which are expected to compress the segment close enough to the

desired level of quality. This situation usually takes place when using more than

one compression option in the video codec.

The problem of choosing an optimal combination is not trivial. The obvious

cases with the highest quality or lowest file size are often the worst in terms of

quality to size ratio. One of the ways to deal with this task is to use a problem-

specific heuristic to rank all parameter combinations for a particular video segment.

Such heuristic basically includes some a priori information about preferences between

resulting size, quality and time. For example, quality to size ratio is a reasonable

candidate for a metric that allows to rank different compression options:

rank =
Q

S
,

where Q and S are predicted quality and compressed size per frame respectively.

However, using this simple ratio still leads mainly to the edge cases with maxi-

mum quality and consequently very large size or, alternatively, minimal file size and

very low quality. There is no typical default value for this ratio either because it

can vary in a wide range for different segments.

Nevertheless, it is possible to use such ratio as a fitness metric assuming that

the user has provided a desired quality level. This allows to limit the choice of

possible quality values. For example, consider a Gaussian function that can be used

to measure a deviation from the given quality:

G(Q, µ, σ) =
1√
2πσ

e−
(Q−µ)2

2σ2 ,

where µ is a target average quality and σ defines a range of acceptable deviations (in

the experiments it was set to σ = 0.005). This function can be used as a coefficient

for eliminating any edge cases when ranking different compression options:

rank =
Q

S
· 1√

2πσ
e−

(Q−µ)2

2σ2 .

In order to take into account the compression time T , it was also included into

the formula. Time should be inversely proportional to the rank of a parameter
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combination, so it was placed in the denominator although raised to the power 0.5

to slightly decrease its influence in comparison with quality to size ratio:

rank =
Q

S ·
√
T
· 1√

2πσ
e−

(Q−µ)2

2σ2 .

This formula was used to find optimal parameter combinations for all segments

in the test videos. Figure 4.24 shows a typical example of ranking several combi-

nations of two compression options: scale factor and CRF, which correspond to the

encoding results with approximately the same average quality. Assuming that the

user provided 0.9 as the target quality level, it is hard to select the optimal case

without any extra information. However, calculating the rank values for all scenar-

ios helps to make a definitive choice of the optimal compression parameters. So,

the proposed ranking heuristic represents some reasonably constructed predefined

priorities, which facilitate the problem.

Scale CRF MSSIM Size per frame, bytes Time per frame, ms Rank, ×10-3

1.0 41 0.912 747 99 0.5
1.0 42 0.901 690 98 10.3
1.0 43 0.887 643 97 0.4
0.9 39 0.917 725 84 0.0
0.9 40 0.907 650 81 4.6
0.9 41 0.896 593 79 9.8
0.8 38 0.916 651 66 0.1
0.8 39 0.907 597 65 5.6
0.8 40 0.894 542 65 7.9
0.7 36 0.917 644 53 0.0
0.7 37 0.909 572 53 3.4
0.7 38 0.899 538 52 18.1
0.6 34 0.914 586 42 0.4
0.6 35 0.907 535 42 7.8
0.6 36 0.900 491 41 22.8
0.5 31 0.907 562 32 8.5
0.5 32 0.902 522 32 22.5
0.5 33 0.897 478 31 22.5

Highest quality

Best rank

Smallest size and 
compression time

Optimal compression 
parameters

Figure 4.24: Example of choosing optimal compression parameters

among several alternatives by using heuristic-based ranking

(assuming µ = 0.9 and σ = 0.005).

Dynamic resolution video with heuristic optimisation

Using the proposed heuristic it is possible to compress each video segment

separately from others. In order to show that such approach allows to obtain a

decent result at the scale of a whole video, it was compared with the x265 default
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compression as well as the fast preset. The latter option was included for time

comparison purposes because it was initially considered as a compression parameter

for all test segments.

The following procedure was employed for compressing test videos into dynamic

resolution with heuristic optimisation:

– split a test video onto segments;

– predict compression outcome for 300 parameter combinations in all segments;

– choose the best combination for each segment using heuristic;

– compress each segment with the corresponding options;

– record total average quality, file size and compression time.

Table 4.5 compares two ordinary compression scenarios (medium and fast pre-

sets) with the results of applying the proposed balancing algorithm to the dynamic

resolution video. The target quality for each test video was set to the corresponding

average quality of the default compressed video. The total time reported in the

table includes the feature extraction time of 5 ms per frame.

Table 4.5: Comparison summary of applying dynamic resolution

method with heuristic-based quality balancing to four test videos.

# Video Compression 
scenario

Comp. time, s Comp. size, MB Frame quality (MSSIM)

Average Stand. deviation

1 GoPro HERO5 +
Karma: The 
Launch in 4K

Default 714 100.0 0.967 0.018

Fast preset 503 94.3 0.963 0.021

Dynamic resolution 488 102.9 0.962 0.014

2 Horizon Zero 
Dawn PS4 Pro 
4K Showcase

Default 532 58.2 0.956 0.013

Fast preset 364 53.1 0.951 0.014

Dynamic resolution 316 47.4 0.946 0.014

3 New York in 4K Default 789 134.2 0.957 0.019

Fast preset 580 123.9 0.951 0.022

Dynamic resolution 635 163.3 0.957 0.010

4 Sony Glass 
Blowing Demo

Default 424 22.4 0.979 0.013

Fast preset 295 21.5 0.977 0.014

Dynamic resolution 234 22.0 0.971 0.009

In general, the dynamic resolution video requires slightly less processing time

than the default scenario and reduces the spread of the frame quality values. This

fact is an important evidence supporting the Predictable Compression Hypothesis.

However, using the proposed approach results in a larger file size and slightly lower

average quality.
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There are some exceptions from these observations. For example, the second test

video has the largest deviation from the target level of quality and does not improve

frame quality distribution. This occurred because the game footage was not present

in the dataset used for training the models, which lowered the prediction accuracy

and did not allow to properly match the target quality.

The third test video with the most complex and detailed content was the easiest

in terms of predicting the outcome of segment compression, which is indicated by

exact match of the average quality with the default value and a substantially lower

frame quality distribution. However, it resulted in a considerably larger file size.

This correlates with a similar result in the previous search-based segment balancing

(table 4.4).

It seems that narrowing the frame quality range is the most important advan-

tage of the proposed heuristic balancing. This was engineered by design through

including a Gaussian function into the ranking metric, and was adjusted deliberately

by limiting possible quality values for each segment with σ = 0.005.

Figure 4.25 compares the quality per frame for the longest “New York in 4K”

video between dynamic resolution and default compression approach. A noticeably

smaller amplitude of the quality oscillations in case of the heuristic-based balancing

indicates that the algorithm regulates the quality of all segments to make it more-

or-less even. The differences in frame quality inside the segments are due to x265

internal balancing, which was not modified in the proposed method.

Figure 4.26 allows to see quality variations in more details for the smallest tested

video “Sony Glass Blowing Demo”. At the end of the graph there is an example

of incorrectly predicted segment quality, represented as a noticeable drop. It is a

reminder that the proposed technique is based on a statistical methodology and does

not always produce an ideal result.

User priorities for multiobjective optimisation

Due to the fact that the proposed heuristic is just a type of a priori assumption,

it can be modified to adjust the priorities between quality, file size and time. It was

empirically established that using the ratio
Q

S
√
T

in ranking compression parameters

provides a reasonable tradeoff between quality, size and time, at least in author’s

opinion. However, some practical scenarios may need a different balance between

target objectives. For example, compression for online publishing should be less

strict about time but more demanding towards improving compression ratio because

video will be viewed multiple times.
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So, in order to make balancing more flexible from the user perspective, a concept

of relative priorities was introduced. The priorities are specified in a form of three

independent variables α, β, γ ∈ [0; 1], which are used as powers for the objectives

Q, S, T in the rank formula:

rank =
Qα

Sβ · T γ
· 1√

2πσ
e−

(Q−µ)2

2σ2 .

Decreasing any of the power values will reduce the influence of the corresponding

characteristic on the final score, and setting any of them to zero eliminates the

objective from the equation. Assigning the same value (except zero) to all variables,

say α = β = γ = 0.5 is equivalent to α = β = γ = 1.

The variables can be represented as three independent sliders (fig. 4.27), which

can be regulated manually. Like many video codec options these values are still

abstract parameters, but in some cases they can be an informative mean of con-

trolling compression. For example, if an entire video can be analysed, it is possible

to calculate the resulting video characteristics based on per-segment predictions in

real time upon moving the sliders. Such hint should make compression process more

transparent to the user.

Figure 4.27: Concept of the three sliders to specify priorities for each

target objective.

Several priority combinations were tested with dynamic resolution video com-

pression. Table 4.6 contains examples of the compressed video characteristics for the

short test video “Sony Glass Blowing Demo” using different priorities. The target

quality was set to 0.979 as in the default encoding. Consider, for example, the last

two rows in the table – decreasing size priority β from 1.0 to 0.2 resulted in larger

file size but smaller time and better average quality.

It is important to emphasise that the main objective in this case is still a target

level of quality provided by user. Varying the relative priorities only modifies the

heuristic for ranking compression option for each video segment. This alters the

process of choosing between similar alternative outcomes, so the actual compression

result can sustain only minor changes.
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Table 4.6: Comparison of the compression results obtained with

different priority combinations using 4th test video as an example.

Priorities Comp. time, s Comp. size, MB MSSIM

α = 1; β = 1; γ = 0 302 21.9 0.972

α = 1; β = 1; γ = 1 213 22.0 0.971

α = 1; β = 1; γ = 0.5 234 22.0 0.971

α = 1; β = 1; γ = 0.2 253 21.8 0.972

α = 1; β = 0.2; γ = 0.2 233 24.2 0.974

4.12 Discussion

The goal of this chapter was to investigate how predicting video compression can

be used for improving its result, and to develop methods for controlling the outcome

of compression in a more explicit way than through the quantization parameters.

The concept of dynamic resolution allowed us to see some of the optimisation

possibilities when using one of the fastest and efficient video codecs in the world.

However, obtaining a solid improvement in quality to size ratio in actual tests is

difficult because it relies on the accuracy of approximate statistical estimations.

Predicting the outcome of video compression, especially file size, appears to be

a complicated problem. Due to the low accuracy of the regression models the opti-

misation potential of the dynamic resolution in some scenarios remains unreachable

in practice without multiple compressions. However, for low quality encoding the

dynamic resolution concept is useful even in the proposed implementation, at least

in terms of the reduced processing time.

It may seem that a major limitation of the dynamic resolution concept is that

it is not suitable for high quality compression. Technically, it is not a fundamen-

tal problem but the result of a particular experimental design. For example, it is

possible to upscale some high quality segments before compression to preserve their

details even better than at the 100% scale and then resize them back to the display

resolution, thus removing limitations for the highest quality achievable with dynamic

resolution. However, such scenario has not been investigated in this research.

An important factor in controlling the outcome of video compression in addition

to size, time and average quality is the frame quality distribution, which is not

a commonly considered characteristic. In this work investigating the problem of

constant quality for all parts of the compressed video allowed the introduction of

the concept of relative user priorities to balance the free objectives like file size and

compression time.
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The focus on using a fixed given quality as a main reference target was due to

the fact that quality metric values use non-linear scale and are difficult to compare

unless they are the same. Aiming for a given file size or time requires some additional

constraints for the quality distribution, otherwise it has tendency to increase like in

one of the considered use cases.

Although such experiments were not conducted as part of this research it would

also be possible to target a specific total file size or even a limited time budget.

This, however, would require a preliminary analysis of the whole video. Moreover,

the accuracy of the statistical models complicates a reliable investigation of such

scenarios.

4.13 Summary

This chapter investigated video compression with a target level of quality using

the x265 video codec. There are two principally different compression scenarios

that are possible when aiming for a specific average quality. The difference is in

considering the frame quality distribution. If the quality level of different segments

in the video is not constrained, this leads to a similar result as produced by the x265

default strategy. The total compressed file size is minimised at the cost of increasing

frame quality distribution. In case if the priority is a fixed quality across the entire

video, the compression strategy requires a heuristic to choose compression options

for each segment among several alternatives with similar quality but different size

and encoding time.

Considering the fact that the first optimisation strategy aiming for a simple

average quality requires a search to minimise the free objectives, it usually needs

more computational time than the default compression. The experimental results

show that it becomes useful only when dealing with low quality compression.

The alternative optimisation strategy that processes each video segment indi-

vidually looks more promising. By considering all four characteristics – time, com-

pressed size, frame quality average and distribution, it is possible to decrease quality

fluctuations inside a video. This can be done in a comparable time or even faster

than using either default or fast codec options (table 4.5). The price is a slightly

reduced quality and, in some cases, increased file size. However, the error between

actual and a target quality in the real world experiments is at a reasonable level of

approximately −0.01 in MSSIM metric, which means it is practically impossible to

see the difference.

So, it was experimentally established that video compression with given quality
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can be done not just in a single compression run but sometimes even faster. Although

among the factors that influenced compression time was a dynamic resolution, which

allowed smaller size and compression time for some segments, this fact does not

detract from the significance of the obtained results. On the contrary, it shows how

the proposed dynamic resolution concept can be useful for reducing time and energy

required for video compression.

4.14 List of Contributions

The following results were obtained in this chapter:

• a new technique for predicting the outcome of video compression by using a set

of low-complexity features calculated directly from the uncompressed content;

• a novel concept of the dynamic resolution video, allowing the achievement of

a smaller compression time in comparison with the default options;

• a new method for one-shot video compression with a target quality level based

on the prediction models and dynamic resolution;

• the discovery that predicting compressed video characteristics is a substantially

more difficult problem in comparison with the same problem for images;

• that the search-based method proposed and investigated in this chapter is

unable to consistently outperform the default x265 compression in terms of

the file size and compression time when maintaining the same average quality;

• that dynamic resolution concept is more suitable for low quality compression

than medium or high;

• that using heuristic-based quality balancing minimises time overheads for the

video analysis and allows to obtain a compression result with smaller qual-

ity fluctuations even quicker than using either default or fast x265 options,

although at a cost of small decrease in average quality and compression level;

• that heuristics can be adjusted to control the balance between the free objec-

tives like file size and compression time while maintaining the target quality.
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Chapter 5

Conclusions

The thesis proposes a novel methodology for image and video compression with

explicitly specified target objectives, without requiring multiple compression passes

– i.e. in a time and energy efficient way.

The majority of the existing research into the problem of image and video

compression optimisation aims to investigate the potential improvements in the

quality to size ratio rather than predictability of the compression process. However,

the latter problem is gaining popularity because it allows to reduce compression

time in various practical scenarios using only existing compression standards.

This work is dedicated to the methods of time-optimised application of existing

image and video standards and investigates possible video compression improve-

ments using the dynamic resolution concept, and how it interacts with compression.

The growing interest particularly to video compression optimisations in the

companies like Google and Netflix indicates that the related problems considered in

this thesis are actual and relevant to the present day challenges.

5.1 Summary of Results

There are two types of approaches for improving image and video compression

considered in the related literature: creating new methods and improving existing

ones. The first is dedicated to developing new image compression algorithms that

can outperform the existing standards mainly in terms of quality-to-size ratio. The

second approach includes investigation into the possibilities of compression optimi-

sation for already existing and widely used image and video formats. There are also

two variations of the second approach – it may involve certain modifications of the

compressor like in MozJPEG, or it can be implemented as a completely external
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procedure like the JPEG transcoding.

The research methods that do not rely on any compressor modifications typi-

cally use machine learning techniques or other statistical analysis in order to model

some regularities related to the compression process. However, in the previous re-

search such methods are connected to the properties and functionality of a particular

image or video codec like JPEG (transcoding) or x264 (YouTube optimiser). This

thesis presented a novel universal methodology that is not attached to any specific

compression standards but considers their algorithms as “black boxes”.

One of the main features in this research was application of the simple machine

learning models for predicting compression outcome characteristics without perform-

ing any actual compression. Another important aspect was designing a unique set of

computationally cheap image and video content features, which are extracted from

the raw pixel data without any substantial preprocessing. This approach allowed to

minimise complexity and execution time of the proposed methods.

All techniques proposed in this thesis rely on using a single compression pass

over the encoded data following the Predictable Compression Hypothesis. The as-

sumption for targeting specifically a one-shot compression was based on the fact that

even two codec passes may be too expensive in an energy sensitive environment or

real time compression scenario. The unique feature of this work is a combination of

a single compression pass with a deliberate minimisation of the time overhead for

analysing raw data and making decisions about optimal compression parameters.

Current research is dedicated mainly to the problem of compressing images and

videos with the desired objective characteristics. The methods used to obtain a

target compression result are based primarily on image or video complexity, or in

other words – entropy. The complexity is estimated from the uncompressed data

without taking into account the details of a particular codec implementation ex-

cept, of course, the specific compressor parameters and some general assumptions

about the compression process like using the Y CbCr colour space and the concept

of I-frames in video compression. This fact leads to the universality of the proposed

methods and eliminates the necessity to introduce any modifications in the com-

pression algorithms. This property substantially differs current research from the

related work.

This research presented the low-complexity techniques for analysing image and

video content and explicitly predicting such compression characteristics as file size,

quality and encoding time with respect to different compression parameters. The

predicting mechanism uses the numerical regression models based on shallow feed-

forward neural networks, which are relatively simple to train and computationally
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cheap when evaluating predictions in practice. The numerical regression is used

for predicting various compression characteristics in a unified manner, i.e. with the

same or similar network configurations. This property makes the proposed methods

suitable for using different quality metrics and a wide range of compression options.

The ability to quickly predict the outcome of compression creates a “bridge”

through the complexity of a compression algorithm between the input image or

video and the expected result characteristics. This property allowed to introduce

methods for searching optimal values for either a single compression parameter or a

parameter combination, which satisfy a target objective.

The proposed methods were tested on a range of randomly selected images

and videos. Two popular lossy image formats – JPEG and WebP were used for

the image compression experiments. A distinctive property that JPEG and WebP

codecs have in common is a quality factor parameter between 0 and 100. Each value

of the quality factor determines a one-to-one correspondence between compressed

size and quality. This property considerably simplified design of image compression

experiments in comparison with the videos.

The experiments on predictable video compression were based on the state-

of-the-art x265 video codec. This allowed to investigate non-trivial multiobjective

optimisation scenarios, which were made possible due to using several compression

options that affect compression outcome in different ways. It is a complex task to

obtain a desired video compression result based on a single target objective like

quality because it is unclear how to balance the remaining characteristics like file

size and compression time.

It was experimentally established that for the image compression scenarios the

proposed machine learning approach demonstrates superiority over the closely re-

lated JPEG transcoding method in terms of accuracy of satisfying target file size or

quality. In addition, it is reasonable to recommend the proposed system instead of

using a constant JPEG quality factor, which is still a common practice, because the

machine learning method accurately fits a given quality level while fixed quantization

does not imply constant quality.

In terms of comparing the proposed method with multipass compression using a

particularly suitable WebP codec implementation as an example, the experimental

evidence confirmed the expected substantial improvement in compression time in

case of one-shot compression, even with a minor time overhead for content analy-

sis. This can be seen as an essential fact for the confirmation of the Predictable

Compression Hypothesis at least in relation to image compression.

It was empirically demonstrated that the proposed method is equally well ap-
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plicable to a wide range of image resolutions from small 0.24 MPix images to very

big 24 MPix photographs. It is an important fact considering lack of attention in

the related work to the compression optimisation in very large images. In order

to prove applicability of the designed system in practice to different image codecs,

an ACACIA image compression tool was created based on the prediction models

utilised in the experiments.

The idea of statistical optimisation methods is particularly suitable for video

compression. An ordinary video consists of multiple segments often depicting differ-

ent content, which creates appropriate conditions for various balancing strategies.

Although statistical methods are not always accurate, the errors tend to compen-

sate each other in the long run. In order to increase the number of optimisation

possibilities, the concept of dynamic resolution video was implemented in all video

experiments.

This thesis considers only the problem of video compression with target quality

level, which is the most applicable practical scenario. It proposes a new method

for single pass video compression, which is based on the conceptually similar tech-

niques of predicting video characteristics without actual compression. This problem,

however, appeared to be substantially more complicated in comparison with the pre-

vious image case. It resulted in high errors of predictions, although the main concept

remained functional.

Using several video compression options leads to a multiobjective optimisation

problem. In order to deal with it the different strategies can be implemented. This

research considers a search-based and a heuristic-based quality balancing methods.

The first approach used a hill climbing search to find a set of parameter combinations

for all video segments that minimise total compressed size while meeting a given

level of average quality. The experimental results show that the proposed system is

unable to outperform default x265 compression on a constant basis.

Applying the alternative strategy, which uses a specially designed heuristic to

constrain quality level of the video segments, demonstrates a more predictable be-

haviour by making the frame quality more evenly balanced across the video. Ac-

cording to this concept, the video is processed sequentially segment by segment,

which reduces time overhead in comparison with a search. This property allowed to

minimise the decision time in the heuristic-based strategy. The experimental results

show that this method outperformed the default x265 compression on all test videos

in terms of total compression time while meeting a target quality with reasonable

accuracy. A considerable downside of this approach in comparison with the default

encoding is increased file size, which is caused by segment quality rebalance and low

prediction accuracy.
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The possibility to compress a video into the specified quality at a time compa-

rable with ordinary compression operation provides extra evidence in support of the

Predictable Compression Hypothesis. Of course, there are other aspects related to

this hypothesis that were not fully investigated, like higher accuracy and compres-

sion within a given time budget, but it is reasonable to conclude that there is a solid

approach that allows to confirm the hypothesis through implementing the necessary

functionality using the proposed methodology.

In general, the heuristic-based method can be recommended for practical use

even for real time video compression because of its reliability in terms of the frame

quality distribution as well as the flexibility in balancing between file size and com-

pression time using the concept of user-defined priorities.

Speaking of the video compression optimisations in general, there does not seem

to be a possibility for “free” improvements – i.e. a strategy that performs better

than the default compression in one of the objectives without worsening the others.

5.2 Relation to Other Work

Despite many distinct features this thesis remains related to the existing re-

search. In particular, the most related works are the JPEG transcoder by Pigeon et

al. [24] for image compression and the YouTube optimiser by Covell et al. [30] in

case of video compression. While the image transcoding method was investigated

and thoroughly compared with the proposed methodology in Chapter 3, the video

optimisation approach by Covell et al. was impossible to replicate due to lack of

details. Nevertheless, it is possible to make an approximate comparison based on

the reported results.

Thus, according Covell et al. [30], the obtained model for predicting compressed

video bitrate has 20% error in 80% of cases. Assuming normal distribution of er-

rors, it is possible to calculate (of course, with some degree of uncertainty) that the

standard deviation of such error distribution is 15%. This error is twice less than

the 30% correction of prediction (which is also σ) for the file size regression model

obtained in this thesis. Despite the possibility that predicting file size for the x264

and x265 video codecs may slightly differ, the work by Covell et al. demonstrated

a relatively good result. However, the main difference from this paper is that the

methods presented in the thesis do not use video precompressions. Moreover, the

feature extraction stage in [30] should be relatively expensive, while in the cur-

rent research the features are calculated relatively fast directly from the raw video

content.
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As for the features, their design was influenced by a range of literature. The

existing idea of using convolutions as a proxy for the image complexity was further

developed into a set of computationally cheap content features that hold useful

information for the statistical models.

The intention to reduce computational expenses even for relatively small prob-

lems remains very important today. This can be demonstrated with an example of

a new time-optimised image upscaling method by Romano et al. [51] from Google

that was discussed in the section 2.6. This problem, no matter how narrowly spe-

cialized, was worth the effort to develop a solution that works a fraction of a second

faster than analogues. Following this principle, a reasonable amount of effort was

invested into optimising experiments and proposed solutions in this thesis.

Targeting time and energy efficient solutions is a noticeable trend in the modern

research literature. For example, Ejembi and Bhatti [35] recommended to increase

energy awareness of the producers and consumers of the video content. This partially

inspired the idea of the dynamic resolution video presented in Chapter 4. The

variable resolution video should not just be faster to compress but it is also expected

to consume less energy for decompression upon playback, which can, for example,

increase the battery life of the mobile devices without affecting user experience.

5.3 Theoretical and Practical Significance

The most important outcomes of this research are as follows:

• a single-pass compression with the target objectives;

• a universal methodology for predicting image and video compression.

This thesis presents a comprehensive investigation of the time-oriented compres-

sion optimisations for some of the popular image and video codecs. One of the key

features of this work is a systematic analysis of the possible practical implications of

the proposed methods. In particular, we consider a full spectrum of the compression

process characteristics, such as quality, file size, compression time and even frame

quality distribution for video codecs. As the optimisation process involves balancing

these objectives, the research draws attention to the way they influence each other.

By comparing methods used to deal with the problems of image and video com-

pression targeting a specific level of quality, which were presented in this research, it

is possible to conclude that using a single compression parameter (in case of images)

leads to a substantially simpler method of a single-objective optimisation that relies

directly on the statistical models without involving any additional heuristics.

However, using more than one encoding parameter, as shown in the the video
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compression investigation, lead to the development of a distinct and considerably

more complicated strategy for multiobjective optimisation that required extra a

priori information in the form of a handmade heuristic formula. The problem is

that different parameter combinations can produce the desired outcome. This phe-

nomenon is caused by intricate interactions between several compression parameters,

which is difficult to describe or put under control, especially taking into account an

additional factor of different video content subject to compression with these pa-

rameters.

The relation between the number of compression parameters and the potential

complexity of the optimisation strategies is an important theoretical outcome, which

has not been pointed out in the related work. This fact should increase the aware-

ness of the complex interactions between compression parameters and subsequent

difficulties with predictability of the compression process.

Considered properties of the optimisation problems should improve understand-

ing of the challenges arising when compressing images and videos with specific target

objectives. An example of such challenge can be the necessity to specify additional

priorities for multiobjective optimisation.

The proposed methods for image encoding with a desired file size or quality and

for the sequential video compression with the target quality have a direct practical

application, the main benefit of which is a reduced processing time due to using

prediction techniques instead of several compression passes to meet the specified

objective. An example of the program implementation is the ACACIA tool that

was specifically designed as a proof of concept. Although the analogous application

for video compression was not created, it would be possible to achieve with some

extra engineering effort.

Technically, the proposed methods can also be integrated directly into the re-

spective compressors, which will allow to implement new compression scenarios with

explicit control of the compression outcome. Supposedly, the idea of predictable

compression can also facilitate optimisation of the experimental and emerging mul-

timedia compression standards.

5.4 Limitations of the Considered Techniques

The first obvious limitation of the techniques proposed in this research is the

fact that they were build on top of the the statistical methods. This means that

they cannot be 100% accurate and reliable in current implementation. This however

was an intentional tradeoff between accuracy and potential practical efficiency.
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Another fundamental limitation is derived from one of the main advantages of

the proposed methods – unmodified compressor functionality. This means that all

optimisation strategies are bounded by the efficiency and capabilities of a particular

image or video codec.

The quality evaluation procedures used in the thesis did not employ human

judgment, which would likely be a more reliable approach than conventional quality

metrics. Real people were not involved in the research process due to the specifics of

the experiments and large volumes of data suitable only for automated processing.

However, technically the proposed methodology can be used with various quality

metrics including the mean opinion score.

Probably the most significant unsolved problem is a relatively low accuracy of

the regression models predicting outcome of video compression.

The problem of image compression with resizing was not investigated, although

such functionality was considered in the related work. However, the scaling factor

was used within the concept of dynamic resolution video. The image compression

experiments instead utilised a wide range of original resolutions. The video experi-

ments on the contrary were conducted based on a single original Full HD resolution.

The 4K size was superficially considered in one of the experiments but not properly

investigated due to lack of high quality 4K sources.

The concept of dynamic resolution video in the described implementation, which

allows only decreasing resolution with relation to original, is not suitable for high

quality compression as the x265 codec is already extremely good in this area.

The fact that the existing video containers support concatenation of video

streams specifically with the same frame resolution creates a problem with applying

the dynamic resolution method in practice. Consequently, its implementation may

require saving video segments as separate files or designing a simple container for-

mat to represent video as a single file. Playing such video however will not cause

major technical difficulties as all video players support frame resizing to any display

resolution.

5.5 Future Work

Due to the fact that predicting image and video compression has not been

extensively researched, it is possible to propose a range of potential directions for

further investigation.
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Learning image and video content features automatically

A considerable obstacle towards obtaining reliable improvements in comparison

with the default x265 compression is a relatively high error level of the regression

models for predicting video compression characteristics. It is reasonable to suggest

that using machine learning in feature design will improve the performance of the

predictors and optimisation strategies in general. Also, for example, having accu-

rate enough models will allow to consider a new video compression scenario with

predefined time budget.

The most popular approach to automated feature design and extraction from

image and video content is using deep learning techniques, in particular, convolu-

tional neural networks. However, the problem is that standard convolutional net-

works are not suitable for such task because of the variable image/frame resolution

and video length. A typical image rescaling approach to normalise the input size

would destroy the pixel structure and alter the content entropy that need to be es-

timated. Consequently, a specially designed technique is required for this problem.

Moreover, applying deep learning would require a substantial amount of training

data and computational resources in comparison with a shallow network that uses

handmade features. In this light it seems inevitable that such an approach will need

the power of GPU cards or co-processors in order to train models from scratch in a

reasonable time.

Energy efficiency of the dynamic resolution video

The energy consumption issues were not investigated in this thesis, although the

compression time was considered as an important optimisation objective. Due to the

fact that the video compression results using dynamic resolution are approximately

the same as those produced by the default compression, while the frame resolution

in some parts is smaller, it is reasonable to assume that the energy consumption for

decoding and playing the dynamic resolution video is lower than of the default one

because Ejembi and Bhatti [35] demonstrated that playing smaller resolution video

uses substantially less energy.

Using alternative image upscaling techniques for dynamic resolution video

The image resampling techniques play an important role in the concept of the

dynamic resolution. Although the experiments in this thesis relied solely on the

bicubic interpolation – it is not the most efficient method for upscaling image in

terms of the resulting quality. Considering the methods proposed in the related

136



research, it is possible to suggest that implementing other upscaling techniques will

improve the efficiency of the proposed optimisation methods in terms of quality to

size ratio. However, a potential downside of this approach will be the increased time

for video decompression.

Investigating dynamic resolution efficiency for 4K video

According to the experimental results on the search-based method for video

compression optimisation, there is an indirect evidence that 4K video has more

potential for using dynamic resolution in comparison with the Full HD resolution.

However, there is also some uncertainty based on a fact that that the source videos

had relatively low original quality with a considerable amount of blur that could have

facilitated the role of dynamic resolution and consequently resulted in a formally

better outcome. Therefore, a lack of the high quality 4K videos is a limiting factor

for constructing reliable and unbiased machine learning models.

Nevertheless, it is reasonable to expect that the dymanic resolution is indeed

more suitable for 4K videos because 3840×2160 pixels size can be resampled into a

wider range of smaller resolution than 1920×1080 frame, thus increasing the optimi-

sation space and potential benefits. This could be an interesting research direction.

5.6 Closing Thoughts

Predicting the effects of compression empirically has the tremendous advantage

that it can be applied quickly to both existing and new compression techniques

alike, without large scale engineering effort. It is reasonable to expect that the

future image and video codecs despite the growing algorithm complexity will have

fewer compression parameters because a considerable amount of minor adjustments

will be performed automatically based on statistical analysis.

The author also hopes that eventually the concept of predictable compression

will play its role in a discovery of the vastly more efficient compression algorithms

than the ones existing today.
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Appendix A

Alternative approaches to

numerical regression

A part of the early experimental work consisted of numerous attempts to im-

prove accuracy of the regression models for predicting compressed file size and qual-

ity. The main focus in this direction was on using various approaches to non-linear

regression that can be alternative to artificial neural networks. In particular, the

tests were conducted using polynomial and Gaussian process regression.

Polynomial regression involves a conceptually simple parametric model of a

non-linear function of multiple variables. According to Bishop [68, section 1.7], a

typical polynomial function of nth degree represents a weighted sum of all possible

products of the variables up to length n. For example, a 3rd degree polynomial from

two variables (x1; x2) has 10 parameters:

F (x1; x2) = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2+

+ w6x
2
1x2 + w7x1x

2
2 + w8x

3
1 + w9x

3
2.

Increasing the number of variables or the degree of polynomial function causes

the number of its free parameters to grow exponentially, which can quickly lead to

overparametrisation and consequently overfitting.

The Gaussian process regression [82] is a kernel based method that has only

several metaparameters, which, for example, adjust curvature of the solution at

a certain scale. The distinct feature of the Gaussian process regression is a more

explicit control over the regression result in comparison with traditional weight based

functions. However, the kernel based approach is very computationally expensive

especially for problems involving multidimensional parameter spaces.

Several regression methods were compared using a problem of predicting the

file size of JPEG compressed images. A relatively small dataset of 24 000 training
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Table A.1: Brief comparison of the regression problem solutions

obtained with Gaussian processes, polynomial function and

multilayer perceptron.

Regression type
# training

points

Prediction error, % Training
time, sTraining set Test set

Gaussian process

1000 9.12 9.09 < 1

2000 8.74 8.71 1

4000 8.39 8.37 9

8000 8.12 8.11 69

16000 7.76 7.76 511

20000 7.65 7.66 997

24000 7.06 7.13 1900

Polynomial 24000 7.03 7.07 ≈ 60

MLP 24000 7.16 7.19 ≈ 300

points obtained from a basic set of 1000 images up to 4 MP in size was used for

training purposes. The regression problem was formulated as follows:

compressed size = F (f1; quality factor; megapixels),

where f1 is a content feature value as described in section 3.2.

The problem was intentionally simplified by reducing the number of content

features from ten to one. This allowed to perform a simple comparison of predic-

tion accuracy for the models obtained with Gaussian process, polynomial and MLP

regression in a reasonable amount of time. As a consequence, the error values are

at about 7% instead of about 3% obtained in Chapter 3.

Table A.1 shows that for the above described regression problem all three meth-

ods are capable of producing models with approximately the same average error.

Gaussian process regression was performed using Python Scikit-learn library

[83]. Due to a large computational complexity of this method, it was first tested

using smaller subsets of training points. Moreover, there was a problem using all

24 000 training samples – the memory consumption of the script was over 16 GB

available on the working machine, and consequently required space in the swap

file on an SSD and longer training time. The problem is that Gaussian process

regression requires solving a very large system of equations, proportional to the size

of the training set, which consumes a substantial amount of memory.
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For polynomial regression a custom application was written in C++ that al-

lowed some customization of the fitting function. This method also requires solving

a system of linear equations, but its size is relatively small and equals to the number

of parameters in the model function. For example, the polynomial used to obtain

results in the table A.1 had 7th degree and 220 free parameters. It was selected as

the best of several alternatives, results of which unfortunately were not recorded

for comparison. Although polynomial functions with the degree higher than 3 are

generally not very useful due to the high probability of overfitting, it worked well in

this particular case.

Among the three tested alternatives the polynomial regression appeared to be

the most straightforward and computationally cheap method. However, upon adding

more features even 3rd degree polynomial becomes overparametrised and quickly

overfits the data. One of the possible ways to deal with this issue would be to remove

components from the polynomial, but it makes overall problem too complicated and

not worth the effort.

As for the Gaussian process regression, it is impractical to train a model on

large datasets with multidimensional input vectors mainly due to the high memory

consumption, which makes it impossible to run even on server machines without

extra problem-specific optimisation.

A multilayer perceptron model requires a considerable training time but instead

it has excellent scalability potential regarding multidimensional inputs and size of the

training dataset. Therefore, this type of a feed-forward neural network was chosen

for all experiments in the thesis as a reasonable compromise between accuracy,

flexibility and computational complexity.
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Appendix B

Tool for training feed-forward

neural networks

The machine learning models used in this research were created in a form of

the regression functions based on a standard MLP template (multilayer perceptron,

or feed-forward neural network).

The models were trained to predict compressed file size, quality and encoding

time for images and videos. The original intention however was making statistical

estimations – i.e. a prediction with a confidence interval to make more confident

compression decisions. But in the end a confidence interval was not playing a signif-

icant role in the experiments because a single predicted value is enough for compar-

ison purposes in most of the real world scenarios. However, in the case if a target

objective has a strict limit, the confidence interval boundaries can be used as target

values instead of simply the predicted value, which by design is an average of the

confidence interval.

All regression models in this work were trained with a specially designed tool

written in C++ with the multi-thread parallelism. Its pilot version was imple-

mented in order to perform quick tests of different training set sizes and network

configurations specifically for image compression problems. It was optimised to use

a single hidden layer because the gradient formulas in this case are considerably

simpler in terms of computational resources than for networks with more than one

hidden layer. The first version used the standard mean squared error metric as a

minimisation objective.

The problem was in the error units, which were not decibels, bytes or percent

but some abstract units like squared logarithm differences. This required to do extra

calculations to present the meaningful error values in the report. Another issue was

that the training metric (mean squared error) was different from the mean abso-

141



lute error used during evaluation. So, for the investigation into video compression

problems these metric were merged into one – the root-mean-squared error, which

corresponded to the units of the predicted objective.

Another important factor that influenced the custom implementation was a

relatively low accuracy of the trained models for predicting video compression char-

acteristics. In order to deal with this problem the network output was assumed

to be statistically standardised (µ = 0, σ = 1), which facilitated convergence but

increased complexity of the formulas for partial derivatives (see section 4.6) under

the requirement to keep errors in certain units.

Special attention has been dedicated to the parallel execution of the program.

The most computationally intensive operation during the network training is cal-

culating the gradient of the error function – i.e. partial derivatives of the network

output with respect to all free parameters (connection weights). The complexity of

each partial derivative depends on the number of training samples. Consequently,

there are two possibilities for parallel implementations: by gradient components and

by training samples. Due to the fact that in this research the number of training

samples was considerably larger than network weights, the computational threads

were designed to deal with training samples for the sake of smaller granularity.

The parallel implementation used a pool of processing threads running on a

CPU without involving any GPU capabilities. This allowed to train several models

simultaneously on different university servers. The program contained a pool of

training samples – input vector and output value pairs. Each computational thread

had been taking one training sample at a time and calculating respective parts of the

gradient. The validation samples were also evaluated together with the training ones

but did not participate in the gradient calculation. After processing the pool, the

gradient was formed and the network weights adjusted according to the predefined

gradient descent technique. This operation concludes a single training iteration.

The backpropagation algorithm was implemented as a standard learning strat-

egy according to the recommendations by Bishop [68, chapter 4]. One if the impor-

tant properties of this method is that the partial derivatives are calculated for each

layer simultaneously with a forward network pass, which saves processing time but

increases memory consumption.
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Appendix C

Fitness bias in the genetic

algorithm

A genetic algorithm (GA) was employed in one of the experimental scenarios to

find an optimal combination of compression parameters for compressing test videos

in parts. One of the steps in a classical GA is the crossover operation between

two solutions that results in a new combination. Although the parent solutions are

chosen by random, the preference should be dedicated to the solutions with better

fitness (value of the objective function).

The problem is that selecting a random solution in a population taking into

account its relative value is not a trivial task. It was empirically established that

in some search scenarios the majority of population can have a very similar fitness

value, for example, [2.01; 2.03; 2.07; 2.11]. Using a standard probability wheel will

lead to allocating approximately the same chances to all solutions, which slows

down the evolution process. In addition, recalculating probabilities based on the

fitness of new solutions at each iteration is a relatively time consuming procedure.

Therefore, in this work a set of probabilities was assumed constant for all iterations

and prepared beforehand.

The vector of probabilities can be assumed constant at all iterations because

its size depends only on the number of solutions in the population. It is calculated

starting with a set of samples from a Gaussian curve between 0 and 3σ (fig. C.1),

which is then normalised with intention to have a total sum equal to 1.

This approach subsequently allows to use any ordinary random number gener-

ator capable of producing floating point numbers that are uniformly distributed in

the interval [0; 1).
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Figure C.1: Relative probabilities sampled from a Gaussian function

normalised to cumulative probabilities with a sum of 1 to make a

table for selecting a solution from the population of 8 elements.

These selection probabilities are assigned element-wise to the list of solutions

in a population, which is sorted by fitness value at every iteration. Then choosing a

random solution with respect to its fitness consists of generating a random number

from [0; 1) and matching it with a list of cumulative probabilities (fig. C.1).
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Hämäläinen, “Kvazaar: Open-source HEVC/H.265 encoder,” in Proceedings of

the 2016 ACM on Multimedia Conference, MM ’16, (New York, NY, USA),

pp. 1179–1182, ACM, 2016.

[13] J. D. Cock, A. Mavlankar, A. Moorthy, and A. Aaron, “A large-scale video

codec comparison of x264, x265 and libvpx for practical VOD applications,”

in Proceedings Volume 9971, Applications of Digital Image Processing XXXIX,

vol. 9971, pp. 9971 – 9971 – 17, 2016.

[14] D. Vatolin, D. Kulikov, M. Erofeev, S. Dolganov, and S. Zvezdakov,

“Twelfth MSU video codecs comparison.” http://compression.ru/video/

codec comparison/hevc 2017, August 2017.

[15] N. Barman and M. G. Martini, “H.264/MPEG-AVC, H.265/MPEG-HEVC and

VP9 codec comparison for live gaming video streaming,” in 2017 Ninth Inter-

national Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6,

May 2017.

[16] Cisco, “Thor video codec implementation.” https://github.com/cisco/thor.

[17] Cisco, “Thor video codec Internet draft.” https://tools.ietf.org/html/

draft-fuldseth-netvc-thor-03, October 2016.

[18] M. Montgomery, “Next generation video: Introducing daala part 3.” https:

//people.xiph.org/~xiphmont/demo/daala/demo3.shtml, August 2013.

[19] D. Salomon, A Guide to Data Compression Methods. Springer, 2002.

[20] S. Chandra and C. S. Ellis, “JPEG compression metric as a quality aware image

transcoding,” in 2nd USENIX Symposium on Internet Technologies & Systems

(USITS’99), 1999.

[21] S. Coulombe and S. Pigeon, “Low-complexity transcoding of JPEG images with

near-optimal quality using a predictive quality factor and scaling parameters,”

Image Processing, IEEE Transactions on, vol. 19, no. 3, pp. 712–721, 2010.

[22] S. Pigeon and S. Coulombe, “Efficient clustering-based algorithm for predicting

file size and structural similarity of transcoded JPEG images,” in Multimedia

(ISM), 2011 IEEE International Symposium on, pp. 137–142, Dec 2011.

146



[23] S. Pigeon and S. Coulombe, “Optimal quality-aware predictor-based adapta-

tion of multimedia messages,” in Intelligent Data Acquisition and Advanced

Computing Systems (IDAACS), 2011 IEEE 6th International Conference on,

vol. 1, pp. 496–499, Sept 2011.

[24] S. Pigeon and S. Coulombe, “K-means based prediction of transcoded JPEG

file size and structural similarity,” International Journal of Multimedia Data

Engineering and Management (IJMDEM), vol. 3, no. 2, pp. 41–57, 2012.

[25] H. Louafi, S. Coulombe, and U. Chandra, “Efficient near-optimal dynamic con-

tent adaptation applied to JPEG slides presentations in mobile web confer-

encing,” in Advanced Information Networking and Applications (AINA), 2013

IEEE 27th International Conference on, pp. 724–731, March 2013.

[26] S. Pigeon and S. Coulombe, “Quality-aware predictor-based adaptation of still

images for the multimedia messaging service,” Multimedia Tools and Applica-

tions, vol. 72, pp. 1841–1865, Sep 2014.

[27] J. Tichonov, O. Kurasova, and E. Filatovas, Quality Prediction of Compressed

Images via Classification, pp. 35–42. Cham: Springer International Publishing,

2017.

[28] M.-K. Choi, H.-G. Lee, M. Song, and S.-C. Lee, “Adaptive bitrate selection

for video encoding with reduced block artifacts,” in Proceedings of the 2016

ACM on Multimedia Conference, MM ’16, (New York, NY, USA), pp. 282–286,

ACM, 2016.

[29] JVT, “H.264/14496-10 AVC reference software manual.” http:

//iphome.hhi.de/suehring/tml/JM%20Reference%20Software%20Manual%

20(JVT-AE010).pdf, January 2009.

[30] M. Covell, M. Arjovsky, Y.-c. Lin, and A. Kokaram, “Optimizing transcoder

quality targets using a neural network with an embedded bitrate model,” Elec-

tronic Imaging, vol. 2016, no. 2, pp. 1–7, 2016.

[31] YouTube Engineering and Developers Blog, “Machine learning for video

transcoding.” https://youtube-eng.googleblog.com/2016/05/machine-

learning-for-video-transcoding.html, May 2016.

[32] J. I. Wong, “Netflix’s new AI tweaks each scene individually to make video

look good even on slow internet.” https://qz.com/920857/netflix-nflx-

uses-ai-in-its-new-codec-to-compress-video-scene-by-scene, Febru-

ary 2017.

147



[33] Netflix Technology Blog, “Per-title encode optimization.” http:

//techblog.netflix.com/2015/12/per-title-encode-optimization.html,

December 2015.

[34] Netflix Technology Blog, “Toward a practical perceptual video qual-

ity metric.” http://techblog.netflix.com/2016/06/toward-practical-

perceptual-video.html, June 2016.

[35] O. Ejembi and S. N. Bhatti, “Help save the planet: Please do adjust your

picture,” in Proceedings of the 22Nd ACM International Conference on Multi-

media, MM ’14, (New York, NY, USA), pp. 427–436, ACM, 2014.

[36] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective video

quality assessment methods: A classification, review, and performance compar-

ison,” IEEE Transactions on Broadcasting, vol. 57, pp. 165–182, June 2011.

[37] H. Tong, M. Li, H. Zhang, and C. Zhang, “Blur detection for digital images us-

ing wavelet transform,” in 2004 IEEE International Conference on Multimedia

and Expo (ICME) (IEEE Cat. No.04TH8763), vol. 1, pp. 17–20 Vol.1, June

2004.

[38] M.-J. Chen and A. C. Bovik, “No-reference image blur assessment using multi-

scale gradient,” EURASIP Journal on Image and Video Processing, vol. 2011,

p. 3, Jul 2011.

[39] I. P. Gunawan and A. Halim, “Local blur and blocking artifact detection in

digital images,” Ultima Computing, vol. 1, no. 1, 2010.

[40] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video

quality assessment,” Electronics Letters, vol. 44, pp. 800–801, June 2008.

[41] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in 2010 20th

International Conference on Pattern Recognition, pp. 2366–2369, August 2010.

[42] Z. Kotevski and P. Mitrevski, “Experimental comparison of PSNR and SSIM

metrics for video quality estimation,” ICT Innovations 2009, pp. 357–366, 2010.

[43] Google, “butteraugli.” https://github.com/google/butteraugli.

[44] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[45] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja,

M. Covell, and R. Sukthankar, “Variable rate image compression with recurrent

neural networks,” CoRR, vol. abs/1511.06085, 2015.

148



[46] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and

M. Covell, “Full resolution image compression with recurrent neural networks,”

CoRR, vol. abs/1608.05148, 2016.

[47] P. Gupta, P. Srivastava, S. Bhardwaj, and V. Bhateja, “A modified psnr metric

based on hvs for quality assessment of color images,” in 2011 International

Conference on Communication and Industrial Application, pp. 1–4, Dec 2011.

[48] N. Johnston and D. Minnen, “Image compression with neural net-

works.” https://research.googleblog.com/2016/09/image-compression-

with-neural-networks.html, September 2016.

[49] P. Schlessinger, “Problems with self-similarity as a basis for image compres-

sion.” https://paulschlessinger.wordpress.com/2014/09/17/problems-

with-self-similarity-as-a-basis-for-image-compression, February

2017.

[50] H. T. Siegelmann and E. D. Sontag, “On the computational power of neural

nets,” Journal of computer and system sciences, vol. 50, no. 1, pp. 132–150,

1995.

[51] Y. Romano, J. Isidoro, and P. Milanfar, “RAISR: rapid and accurate image

super resolution,” CoRR, vol. abs/1606.01299, 2016.

[52] J. Nack, “Saving you bandwidth through machine learning.” https:

//www.blog.google/products/google-plus/saving-you-bandwidth-

through-machine-learning, January 2017.

[53] F. Jiang, W. Tao, S. Liu, J. Ren, X. Guo, and D. Zhao, “An end-to-

end compression framework based on convolutional neural networks,” CoRR,

vol. abs/1708.00838, 2017.

[54] F. Bellard, “BPG image format.” https://bellard.org/bpg/, 2015.

[55] ITU, “Recommendation ITU-R BT.601-7.” https://www.itu.int/

dms pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf, March

2011.

[56] E. Hamilton, “JPEG file interchange format.” https://www.w3.org/Graphics/

JPEG/jfif3.pdf, September 1992.

[57] K. Fant, “A nonaliasing, real-time spatial transform technique,” Computer

Graphics and Applications, IEEE, vol. 6, pp. 71–80, January 1986.

149



[58] U. Javaid, “Find & remove similar photos instantly.” http:

//www.addictivetips.com/windows-tips/find-remove-similar-photos-

instantly, June 2010.

[59] “Mozilla jpeg encoder project.” https://github.com/mozilla/mozjpeg, 2017.

[60] Mozilla Research, “Introducing the ’mozjpeg’ project.” https:

//research.mozilla.org/2014/03/05/introducing-the-mozjpeg-project,

March 2014.

[61] R. Obryk and J. Alakuijala, “Announcing Guetzli: A new open source

JPEG encoder.” https://research.googleblog.com/2017/03/announcing-

guetzli-new-open-source-jpeg.html, March 2017.

[62] R. Obryk and J. Alakuijala, “A closer look at Guetzli, Googles new JPEG-

encoder.” https://cloudinary.com/blog/a closer look at guetzli, April

2017.

[63] Google Developers, “cwebp.” https://developers.google.com/speed/webp/

docs/cwebp, June 2017.

[64] O. Tange, “GNU Parallel - the command-line power tool,” The USENIX Mag-

azine, February 2011.

[65] Kaggle, “Root mean squared error.” https://www.kaggle.com/wiki/

RootMeanSquaredError, May 2017.

[66] T. Little, The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical

Analysis. Oxford Library of Psychology, Oxford University Press, 2013.

[67] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[68] C. Bishop, Neural Networks for Pattern Recognition. Advanced Texts in Econo-

metrics, Clarendon Press, 1995.

[69] S. Ruder, “An overview of gradient descent optimization algorithms.” http:

//ruder.io/optimizing-gradient-descent, June 2017.

[70] O. Murashko and J. Thomson, “ACACIA.” https://github.com/

johndthomson/acacia, 2016.

[71] “FFmpeg.” https://www.ffmpeg.org.

150



[72] “FFmpeg source code mirror.” https://github.com/FFmpeg/FFmpeg/blob/

master/libswscale/utils.c#L1229.

[73] Fraunhofer Heinrich Hertz Institute, “High efficiency video coding (HEVC).”

https://hevc.hhi.fraunhofer.de, 2016.

[74] MulticoreWare Inc., “HEVC/H.265 explained.” http://x265.org/hevc-h265.

[75] MulticoreWare Inc., “x265 documentation.” http://x265.readthedocs.io.

[76] Ultra video group, “Test sequences.” http://ultravideo.cs.tut.fi/

#testsequences.

[77] M. J. Marjanovic, “yuv4mpeg - Linux man page.” https://linux.die.net/

man/5/yuv4mpeg, 2004.

[78] ITU, “Recommendation ITU-R BT.709-6.” https://www.itu.int/

dms pubrec/itu-r/rec/bt/R-REC-BT.709-6-201506-I!!PDF-E.pdf, June

2015.

[79] Andrew Ng, “Machine learning yearning: Technical strategy for

AI engineers in the era of deep learning. Draft version 0.5.”

https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/

Machine Learning Yearning V0.5 01.pdf, December 2016.

[80] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

CoRR, vol. abs/1412.6980, 2014.

[81] J. Garrett-Glaser, “[x264-devel] commit: Display SSIM measurement in

dB.” https://mailman.videolan.org/pipermail/x264-devel/2010-June/

007391.html, June 2010.

[82] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learn-

ing (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[83] Scikit-learn, “Gaussian processes.” http://scikit-learn.org/stable/

modules/gaussian process.html#gaussian-process-regression-gpr.

151


