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Abstract 
To withstand the pressures of a rapidly changing world, resilient ecosystems should 
exhibit compensatory dynamics, including uncorrelated temporal shifts in population 
sizes. The observation that diversity is maintained through time in many systems is 
evidence that communities are indeed regulated and stabilized, yet empirical 5	
observations suggest that positive covariance in species abundances is widespread. 
This paradox could be resolved if communities are composed of a number of 
ecologically relevant sub-units in which the members compete for resources, but 
whose abundances fluctuate independently. Such modular organization could explain 
community regulation, even when the community as a whole appears synchronized. 10	
To test this hypothesis, we quantified temporal synchronicity in annual population 
abundances within spatial guilds in an estuarine fish assemblage that has been 
monitored for 36 years. We detected independent fluctuations in annual abundances 
within guilds. In contrast, the assemblage as a whole exhibited temporal synchronicity 
- an outcome linked to the dynamics of guild dominants, which were synchronized 15	
with each other. These findings underline the importance of modularity in explaining 
community regulation and highlight the need to protect assemblage composition and 
structure as well as species richness.  
 
Introduction 20	
One of the major challenges in ecology is explaining how diverse communities 
maintain their properties through time. We know that (substantially transformed 
habitats apart) assemblage diversity does not systematically change over the time 
scale of years to decades [1-4].  Indeed, there is now evidence that assemblage size 
(richness and total abundance) is regulated [5]. In principle, compensatory dynamics 25	
[6, 7], whereby increases in the abundances of one taxon are offset by decreases in 
another, should promote persistence. Nonetheless, where tests have been carried out, 
species tend towards positive temporal covariance in abundance with synchronized 
rises and falls in numbers [8]. 
 30	
May’s pioneering work showed that randomly assembled ecosystems are unstable [9, 
10]. However, species interactions in ecological communities have been shaped by 
evolution, and new theory [11] suggests that higher-order interactions (where one 
species mediates the interactions of other species) can support species coexistence. 
Modularity, defined here as coherent sub-groups of entities such as those with a 35	
shared function or habitat, can also potentially underlie resilience in domains ranging 
from engineering to banking systems [9, 12]. Indeed, there is evidence that systems 
with inherent modularity, such as mutualistic networks of plants and their pollinators, 
and foodwebs [13], can be stable. A recent experimental study [14] showed that 
modularity promotes the persistence of an arthropod population. Much of the focus on 40	
modularity in natural communities has been directed towards the role tightly 
organized networks of species, such as mutualisms, play in promoting stability. Yet 
ecosystems contain many other looser associations of taxa with the potential to 
provide a form of modularity that supports community regulation. Indeed, Gotelli et 
al. [5] argue that the regulation of entire communities could be linked to these looser 45	
groupings. One form of modularity arises when species subdivide into spatial guilds 
associated with different habitat zones. In the Bristol Channel estuarine fish 
assemblage, for example, species form guilds that exploit the habitat in different 
ways. These guilds include fish in the pelagic zone and those associated with hard 
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benthic surfaces [15]. Guild structure has been stable for the almost 4 decades over 50	
which the system has been monitored [16].  
 
To test the hypothesis that modularity promotes coexistence, we draw on this 
exceptionally complete estuarine assemblage dataset, in which the abundances of the 
fish species present have been monitored, every month, using the same methodology, 55	
for 36 years. We focus on the species that occur persistently (that is, are present in at 
least 10 years) as these account for most of the abundance in the system [17], and 
have dynamics that are shaped by density dependence [18]. We quantify the degree of 
synchronicity of annual populations in the overall assemblage (the four main spatial 
guilds combined), and then within guilds. In this context synchronicity is a measure of 60	
the extent to which the abundances of species covary over time. Annual abundance 
measures the success of a species in a given year, taking into account seasonal 
dynamics (which vary amongst species in this system [19]). It is also the temporal 
unit used in many studies of biodiversity change and assemblage regulation [5]. The 
dominant species in each guild are spatially segregated from one another, yet, because 65	
they appear be responsive to shared external drivers [20], could be key players in 
producing synchronous dynamics in the assemblage as a whole.  We therefore 
additionally evaluate synchrony in annual abundance amongst the dominants.  
 
Methods 70	
 
The Bristol Channel estuarine fish community has been sampled monthly for 36 
years; 84 species and >200,000 individuals have been recorded. Fish samples are 
collected from the cooling water filter screens at Hinkley Point B Power Station, 
situated on the southern bank of the Bristol Channel in Somerset, England. The water 75	
intakes are in front of a rocky promontory within Bridgwater Bay. Depending upon 
the tide, the fish were sampled from water varying in depth from about 8 to 18 m.  For 
a full description of the intake configuration and sampling methodology see [21, 22]. 
Methodology has not changed over the 36 years of study since monthly quantitative 
sampling commenced in January 1981. The total volume of water sampled per month, 80	
which has not varied over the entire period, is 4.27 x 105 m3. To standardize for tidal 
influence, all sampling dates are chosen for tides halfway between springs and neaps, 
with sampling commencing at high water (normally about 12.00 hrs). Fish are 
collected hourly for a 6 h period, identified to species, measured, weighed and the 
number of individuals recorded.  85	
 
Our analysis focuses on the S=33 persistent species (i.e. those present in at least 10y) 
in the four main spatial guilds (hard benthic, soft benthic, pelagic and proximo 
benthic, see also SI Table1) as defined in [15, 16, 18]. Guild dominants (Conger 
Conger conger, flounder Platichthys flesus, sprat Sprattus sprattus, and whiting, 90	
Merlangius merlangus) are the species that account for most of the biomass within 
their guild, as well as within the entire assemblage (average 70.3% of total sampled 
annual fish biomass for the 4 guild dominants for the years 2000 – 2011, maximum 
80.4 %, minimum 42.5%). These are species for which the Bristol Channel lies 
towards the centre of their geographical range, and that are well-adapted to local 95	
conditions. 
 
Synchrony is quantified using Loreau’s method [23]. Loreau's method (introduced by 
Loreau and de Mazancourt in 2008 [23])  is based on the relationship between the 
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variance in the abundance of the entire community, and the variances of the 100	
abundances of the species that make up the community [23, 24]. It is 0 when perfect 
asynchrony prevails. As the average temporal correlation between species increases, 
so does the value of the metric, with 1 denoting perfect synchrony. In addition, we 
calculate Tilman's index of community stability [25]. This index evaluates community 
stability by dividing mean abundance over the time frame of interest, by the temporal 105	
standard deviation.  
 
Calculations are made using the R package Codyn [24, 26]. In all cases observed data 
are tested relative to a null model of independence in temporal abundance, based on a 
cyclic shift randomization [27] that preserves temporal autocorrelation within species, 110	
but breaks temporal cross-correlations amongst species. A cyclic-shift permutation 
takes a random start date for the sequence of annual abundances for a given species, 
and 'wraps' the abundances around to the start of series as required.  A cyclic-shift 
permutation is more ecologically realistic than a free permutation. Preserving species 
temporal autocorrelation is important here, given the role that density-dependent 115	
dynamics play in this system [18].  
 
In essence our analysis is as follows. We select a guild (as previously defined [15, 
16]) and compute each metric using the observed data. We then permute all of the 
species in that guild j times and calculate metrics for each permutation. Next, we 120	
examine the quantile value of the observed metric relative to the null distribution of 
cyclic shifted metrics (Figure S2). This analysis is repeated for the assemblage as a 
whole, and for dominant taxa separately. Data are not transformed for these analyses.  
 
To determine if synchrony is higher or lower within guilds than would be expected 125	
from a random assemblage of species, we draw S species at random, i times, from the 
overall assemblage, and compute the metric for each ith group. This analysis 
illustrates how the value of the metric varies with S in a system with this structure 
(Figure 3). We then expose each of these i groups to j cyclic shift permutations, as 
before. The next step is to compute the Z score of the ith metric in relation to the 130	
distribution of j cyclic shifted metrics. Finally, we plot the distribution of the i Z 
scores, for the S species, and ask how the Z score of observed guild, based on the null 
expectation of the cyclic shift (as above), compares. In other words, is the extent of 
synchrony in a guild of given S different from a synthetic guild of equivalent size, 
when both have been tested using the cyclic shift protocol? We do not run these 135	
additional randomisations on the overall assemblage as there is only one possible 
draw of S=33 species. To ascertain whether seasonal patterns take the same form as 
annual ones we also compute the cyclic shift permutation using monthly data.  
 
 140	
 
Results  
 
The species in each guild can be ranked from more common to less common - a 
typical pattern in ecological assemblages (Figure 1). Annual abundances fluctuate 145	
with a rise in one year often being matched by a fall in the subsequent year (Figure 1).  
 
The impression, from visual inspection of these plots (Figure 1e), that there is 
stronger positive covariance in annual abundance amongst the dominant species than 
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within the four guilds (Figure 1a-d), is supported by the analysis. As Figure 2 shows, 150	
synchronicity in the annual abundances of the dominant taxa is greater than would be 
expected by chance. The combined assemblage also exhibits statistically significant 
synchronicity even though the species within each of the guilds have dynamics that 
are consistent with independent fluctuations.  The same result emerges from the 
analysis of community stability. Thus, when viewed as a whole, the assemblage 155	
appears less stable [25], and more highly synchronized than it does if it is considered 
as a composite of functionally distinct modules.  
 
The value of both metrics varies with S (Figure 3). However, our additional 
randomisation tests confirm that the results we report are not an artefact of reduced S 160	
within guilds compared to the whole assemblage (Figure S3). Here we find that the 
dominant taxa exhibit greater synchrony in annual abundance, but intriguingly also 
higher stability, than the null expectation based on randomly drawn guilds of equal S, 
subjected to a cyclic permutation (Figure S3). In contrast, the degree of synchrony 
and stability in each of the guilds is consistent with the expectation of independent 165	
fluctuations in the annual abundances of guild members.  
 
Although the focus of our study is on annual abundance we find broadly the same 
result if we analyse the same groupings of species using monthly data (n=442 time 
points). When month by month abundances are considered, the dominant species, the 170	
overall assemblage, as well as the proximo benthic guild, show greater temporal 
synchrony and less stability than expected by chance (Figure S4). In contrast, the hard 
benthic, soft benthic and pelagic guilds continue to display independent fluctuations 
in abundance, and retain stability, at this finer temporal resolution (Figure S4), 
indicating that these patterns are not restricted to single time scales.   175	
 
 
 
Discussion 
 180	
Our results uncover a plausible mechanism to account for the persistence and 
regulation of ecological communities. By partitioning the assemblage into functional 
groupings we can explain how community properties are maintained despite overall 
temporal covariance in species abundances. The pattern we see is not one of 
compensatory dynamics sensu stricto because that would imply stability to be greater 185	
within guilds than for either the randomly permuted guilds or randomly assembled 
guilds - something we did not detect in these data. Instead, we find independent 
fluctuations in species abundances within guilds - groups of fish that interact with one 
another and share the same habitat. Loreau's synchrony metric is most heavily 
influenced by abundant species [23, 24]. Since dominant species jointly account for 190	
the largest fraction of the assemblage's abundance it is their synchronicity that appears 
to be driving the synchronicity of the assemblage as a whole. However, as our study 
shows, because community diversity is the product of the dynamics of the constituent 
units (here spatial guilds) it reflects more than the sum of the parts.  
 195	
The analysis also uncovers an intriguing, and in some ways counter-intuitive finding, 
due to the contrasting insights provided by the different null model approaches. When 
we shuffle the individual guilds, and the group of dominants, using the cyclic shift 
permutation, we are preserving the temporal dynamics of each species in the system 
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(within-species temporal autocorrelation) but breaking correlations between species 200	
abundances. In this context, synchrony and stability results are mirror images of one 
another in all cases (i.e. increased synchrony results in reduced stability, relative to 
the null expectation (Figure 2)). However, when we construct synthetic groupings by 
drawing S species at random from the assemblage as a whole, the dominant species 
appear to be both synchronous and stable (albeit not falling outside the 95% limits of 205	
the null distribution - Figure 3), while the individual guilds exhibit the same pattern as 
before. Note that the observed values for the 2 metrics are the same in Figures 2 and 
3, but the shape of the null distribution differs.  
 
We suggest that because the dominant species are spatially segregated in the system, 210	
they can each respond to the same environmental drivers without directly competing 
with one another, thus there is no advantage in avoiding synchronicity. Because the 
dominants are limited by carrying capacity constraints they respond synchronously to 
changes in environmental parameters that alter overall ecosystem production and 
resource availability. As such, their dynamics appear relatively synchronous and 215	
relatively stable when viewed against the backdrop of a randomly assembled guild. 
However, if we remove the natural cross-correlations in temporal abundance in this 
group of dominants (via the cyclic shift permutation - Figure 2) we find that 
synchronicity is high and stability is low. The influence of the cross correlations in 
abundance seems strong given the result obtained in the hybrid null model (Figure 220	
S3). As we have noted previously, the most dominant species show the least temporal 
variation in abundance [18], suggesting that they will be relatively more stable than a 
randomly assembled group of species, as long as their natural dynamics and cross-
correlations in abundance, are preserved. This analysis highlights the utility of the 
null model approach [28, 29] in elucidating the mechanisms that structure ecological 225	
communities. 
 
Competition between species within spatial guilds [19], makes temporal partitioning 
in the abundance of guild members likely. Pairwise correlations in annual abundance 
occur within all guilds, as well as amongst the dominant species (Figure S5), and 230	
some interesting, but different, patterns emerge. Although the dynamics of the 
dominant species are mediated by similar environmental drivers [20], spatial 
partitioning associated with guild membership means that direct competition amongst 
them for spatial and trophic resources will be muted [19].  
 235	
Independent fluctuations in temporal abundance within a guild will reduce variability 
of aggregate guild properties, through statistical averaging [30], also known as the 
portfolio effect [31]. But the portfolio effect alone cannot account for within guild 
dynamics, because guild members are more seasonally dispersed than would be 
expected by chance [19].  The marked unevenness in species abundances in guilds 240	
(Figure 1) will also moderate the influence of the portfolio effect [30, 31]. Indeed, 
intra-guild variability in species responses to environmental conditions, combined 
with interspecific competition [18, 19] suggests that species interactions play an 
important role in temporal structuring.  As such, the annual dynamics of these guilds 
are consistent with the insurance effect [30]. The uncorrelated temporal dynamics 245	
within guilds could also reflect a straightforward diversity or sampling effect.  
 
The importance of compensatory dynamics in promoting community stability is 
widely recognized, but only sparsely supported by data [7, 8]. One reason for this 
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could be that aggregate communities are typically probed in metanalyses of large 250	
databases. However, evidence for compensation appears strongest when assemblages 
are decomposed, for example by taking account of variation in ecophysiology [32] or 
habitat heterogeneity [33]. Detailed local knowledge of taxa thus remains an essential 
part of community ecology alongside broad brush macroecological analyses.  
 255	
Our approach is transferable to other ecosystems where communities of species are 
divisible into functional ecological groups. For example, taxa that form the gut 
microbiome may occupy spatial guilds within the intestine [34] suggesting that  the 
decomposition we discuss here could shed light on the complex dynamics of this 
diverse microbial system.  The guild approach offers a tractable means of extending 260	
the search for the mechanisms that underpin species coexistence beyond pairwise 
interactions [35]. Finally, our results underline the importance of protecting entire 
assemblages, as community resilience is supported by locally-adapted complexes of 
species. In practice, conservation effort is often focused on safeguarding populations 
of iconic species rather than on protecting the ecological assemblages in which they 265	
occur. Care needs to be taken to ensure that such species-specific conservation, and 
the attendant habitat management, does not weaken or reduce the natural modularity 
essential for resilient, healthy, ecosystems.  
 
 270	
Ethics statement 
The work complied with Association for the Study of Animal Behaviour / Animal 
Behavior Society Guidelines for the Use of Animals in Research  and legal 
requirements of the UK where the work was carried out, and all institutional 
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Figure 1. Annual abundances of the species in the four guilds (a. hard benthic, b. soft 
benthic, c. proximo benthic, d. pelagic) and the dominant taxa (e.). Abundance data 
are transformed (log10 (X+1)) prior to plotting. In each case the left panel shows the 
time series of the annual abundances of the species in the group, while the right panel 
ranks the species from most to least abundant and uses a bean plot [36] to illustrate 
temporal variation in the abundance of that taxon. Mean values are shown for the 
overall line and bean lines. Species abbreviations can be found in Table S1. See 
Figure S1 for a combined time series plot for all species in the analysis and [36] for 
details of the methodology used to compute density in the beanplots.  
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Figure 2. Bean plots illustrating  the null distribution of synchrony values (Loreau 
index [23]) and community stability (Tilman index [25]), based on a cyclic shift 
randomisation (1000 draws, using the shuffle_community function in Codyn [24]) of 
species temporal abundances in: hb (hard benthic guild); sb (soft benthic guild); pb 
(proximo benthic guild); pel (pelagic guild), all (combined guilds, S=33); dom 
(dominant species in 4 spatial guilds). Only species present ≥10y are included. In each 
case a black dot represents the observed value. The quantiles of these are as follows: 
synchrony - hb=0.522; sb=0.893; pb=0.811; pel=0.475; dom=0.994; all=0.993, 
stability - hb=0.478; sb=0.107; pb=0.189; pel=0.525; dom=0.006; all= 0.007. The 
dotted lines show the overall mean value. (See Figure 1 for information on bean 
plots.) 
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Figure 3. Relationship between metric (top: synchrony; bottom: community stability) 
and assemblage size. In these plots the null distibution (illustrated as bean plots) 
consists of 1000 random draws of species at each assemblage size (S=2 to S=32 
species). (See Figure 1 for information on bean plots.) The observed values for each 
group of fish are superimposed on these bean plots. Note that the observed values are 
the same as those in Figure 2, as is the colour coding (hard benthic (red); soft benthic 
(orange); proximo benthic (purple); pelagic (dark blue); dominants (cyan)), but that a 
different null distribution is used in Figure 3 (see text for details).  
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More than the sum of the parts: annual partitioning within spatial guilds underpins 
community regulation 

 
 
A.E Magurran and P.A Henderson 
 
Supplementary Material 
 

1. Table 1 Guild species list. 
2. Data availability. 
3. Figure S1 Time series plot for combined species. 
4. Figure S2 Summary of approach used in randomisation tests. 
5. Figure S3 Z scores for observed guilds from a null distribution using a cyclic 

shift randomisation, in relation to the distribution of Z scores obtained using 
synthetic guilds of equivalent S.  

6. Figure S4 Synchrony and community stability analysis using monthly data.  
7. Figure S5 Distribution of correlation coefficients (Pearson), showing temporal 

correlation between pairs of species in group or guild of interest. 
 
 

1. Table S1 – The 33 guild members 
 
Species Common name Abbreviation Guild 
1. Agonus cataphractus 
(L.) 

Hooknose (Pogge) Ago.cat HARD BENTHIC 

2. Ciliata mustela (L.) Rockling,5-Bearded Cil.mus HARD BENTHIC 
3. Conger conger L. Conger Con.con HARD BENTHIC 
4. Cyclopterus lumpus L. Lumpsucker Cyc.lum HARD BENTHIC 
5. Alosa fallax 
(Lacepede) 

Shad,Twaite Alo.fal PELAGIC 

6. Aphia minuta (Risso) Goby,Transparent Aph.min PELAGIC 
7. Clupea harengus L. Herring Clu.har PELAGIC 
8. Entelurus aequoreus 
(L.) 

Snake pipefish Ent.aeq PELAGIC 

9. Maurolicus muelleri 
(Gmelin) 

Pearlsides Mau.mue PELAGIC 

10. Merluccius 
merluccius (L.) 

Hake Mer.merlu PELAGIC 

11. Micromesistius 
poutassou 

Blue Whiting Mic.pou PELAGIC 

12. Sprattus sprattus (L.) Sprat Spr.spr PELAGIC 
13. Dicentrarchus labrax 
(L.) 

Bass Dic.lab PROXIMO 
BENTHIC 

14. Gadus morhua L. Cod Gad.mor PROXIMO 
BENTHIC 

15. Merlangius merlangus 
(L.) 

Whiting Mer.merla PROXIMO 
BENTHIC 

16. Pollachius pollachius 
(L.) 

Pollack Pol.pol PROXIMO 
BENTHIC 

17. Trigla lucerna L. Gurnard,Tub Tri.luc PROXIMO 
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BENTHIC 
18. Trisopterus esmarkii Norway pout Tri.esm PROXIMO 

BENTHIC 
19. Trisopterus luscus 
(L.) 

Pout Tri.lus PROXIMO 
BENTHIC 

20. Trisopterus minutus 
(L.) 

Poor cod Tri.min PROXIMO 
BENTHIC 

21.Ammodytes tobianus 
L. 

Sand eel, Common Amm.tob SOFT BENTHIC 

22. Ciliata septentrionalis 
(Collet) 

Rockling,Northern Cil. sep SOFT BENTHIC 

23. Eutrigla gurnardus 
(L.) 

Gurnard,Grey Eut.gur SOFT BENTHIC 

24. Limanda limanda (L.) Dab Lim.lim SOFT BENTHIC 
25. Liparis liparis (L.) Sea snail,Common Lip.lip SOFT BENTHIC 
26. Platichthys flesus (L.) Flounder Pla.fle SOFT BENTHIC 
27. Pleuronectes platessa 
L. 

Plaice Ple.pla SOFT BENTHIC 

28. Pomatoschistus 
microps (Kroyer) 

Goby,Common Pom.mic SOFT BENTHIC 

29. Pomatoschistus 
minutus (Pallas) 

Goby,Sand Pom.min SOFT BENTHIC 

30. Psetta maxima (L.) Turbot Pse.max SOFT BENTHIC 
31. Raja clavata L. Ray,Thornback 

(Roker) 
Raj.cla SOFT BENTHIC 

32. Scophthalmus 
rhombus (L.) 

Brill Sco.rho SOFT BENTHIC 

33. Solea solea L. Sole (Dover sole) Sol.sol SOFT BENTHIC 
 
A further 11 species occurred persistently in the assemblage: Scyliorhinus caniculus 
(L.); Gasterosteus aculeatus L.; Mullus surmuletus L.; Atherina boyeri Risso; 
Trachurus trachurus (L.); Syngnathus acus (L.); Gobius niger L.; Syngnathus 
rostellatus Nillson; Callionymus lyra L.; Liza ramada (Risso); Anguilla anguilla (L.). 
These species are associated with different habitats or are passage migrants.  
 
2. Data availability. Data are available at: https://dx.doi.org/10.17630/e678f99b-e170-
4852-bf70-ab738c6a81b7 
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3.	Figure	S1	Time	series	of	annual	abundances	of	combined	guild	members.	
Abundance	data	are	transformed	(log10	(X+1))	prior	to	plotting. 
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4. Figure S2 Summary of randomisation tests.  
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5. Figure S3 Z scores for observed guilds from a null distribution using a cyclic shift 
randomisation, in relation to the distribution of Z scores obtained using synthetic 
guilds of equivalent S (300 runs).  
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Figure	S3	continued	
 

 
Z scores 
proximo benthic (prox): Loreau Z=0.98; proximo benthic: stability Z=-0.975 
pelagic (pel) Loreau Z= -0.271; pelagic: stability Z=0.249 
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Figure S3 continued 

 
 

	
Z scores 
soft benthic (soft) Loreau 1.22; soft benthic: stability Z= -1.15 
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6. Figure S4. Synchrony and community stability analysis using monthly data. The 
analysis presented in Figure 1 was repeated using the entire time series (t=442 time 
points, with n=300 runs). In each case a black dot represents the observed value. The 
quantiles of these are as follows: synchrony: hb=0.94, sb=0.94, pb=1, pel=0.70, 
dom=0.99, all=1; stability: hb=0.51; sb=0.10; pb=0.003; pel=0.71; dom=0.01; all=0.  
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8. Figure S6 Distribution of correlation coefficients (Pearson), showing temporal 
correlation between pairs of species in group or guild of interest. Note that the 
temporal abundances of species tend to positively covary (there are good years and 
bad years) and that this is notably strong for dominants. 
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