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Abstract

A group whose co-word problem is a context free language is called coCF . Lehnert’s

conjecture states that a group G is coCF if and only if G embeds as a finitely generated

subgroup of R. Thompson’s group V . In this thesis we explore a class of groups, Faug,

proposed by Berns-Zieze, Fry, Gillings, Hoganson, and Mathews to contain potential

counterexamples to Lehnert’s conjecture. We create infinite and finite presentations for

such groups and go on to prove that a certain subclass of Faug consists of groups that

do embed into V .

By Anisimov a group has regular word problem if and only if it is finite. It is also known

that a group G is finite if and only if there exists an embedding of G into V such that

its natural action on C2 := {0, 1}ω is free on the whole space. We show that the class of

groups with a context free word problem, the class of CF groups, is precisely the class

of finitely generated demonstrable groups for V . A demonstrable group for V is a group

G which is isomorphic to a subgroup in V whose natural action on C2 acts freely on an

open subset. Thus our result extends the correspondence between language theoretic

properties of groups and dynamical properties of subgroups of V . Additionally, our

result also shows that the final condition of the four known closure properties of the

class of coCF groups also holds for the set of finitely generated subgroups of V .
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Chapter 1

Introduction

The subject of this thesis lies in the intersection between formal language theory and

group theory, an area of study which has a long history in mathematics. The origins of

this intersection lie in combinatorial group theory, which began with the first systematic

study of the matter by Walther Von Dyck in 1882 [32]. Thus began the concept of a

group presentation, an abstract way of defining a group G using a set of generators X

and a set of relators R. In 1911 Max Dehn introduced several formal questions that could

be asked in association with group presentations [16]. One such is the Word Problem

which asks, for a group G with finite generating set X, whether there exists a algorithm

for determining in finite time whether or not any given finite product of generators of G

is equal to the identity. It is the concept of the word problem which is at the foundation

of the work in this thesis.

From the word problem of a group G with finite generating set X, there naturally

arises a formal language over the alphabet X± := X tX−1, which we call WP (G,X).

Informally, the language WP (G,X) is defined to be the set of strings from (X±)∗ which,

under product in G, equal the identity of G. Therefore, the word problem is asking

whether there exists an algorithm that can, in finite time, determine whether or not a

word from the language (X±)∗ is contained in WP (G,X). In an abuse of terminology,

we will call WP (G,X) the word problem of G with respect to X. Formal languages

can be classified by their complexity and it is known that for some of these language

classes the class of the word problem of a finitely generated group G is independent

of the choice of finite generating set (see [20]). Thus one can introduce a well defined

classification of the finitely generated groups by the language class of their respective

word problems. Conversely, for a group G with finite generating set X one can also

consider the complement of its word problem, its co-word problem. In this thesis we

focus on the class of groups with a context free co-word problem, which we call the coCF
groups.
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The main motivation for our work is to answer a conjecture by Jörg Lehnert in [22].

After applying the work of [7] the conjecture states that a group G is in the class of

coCF groups if and only if G embeds as a finitely generated subgroup of R. Thompson’s

group V . The authors of [3] introduce a class of groups, which we call Vaug, which

they suggest may contain counterexamples to Lehnert’s conjecture. In this thesis we

study a class of groups Faug, related to those in Vaug. We produce infinite and finite

presentations for the groups in Faug, and show that a subclass of these groups embed

into R. Thompson’s group V . Ultimately we are unable to find a counterexample, or

find a resolution to Lehnert’s conjecture. However, we see no evidence to suggest that

the groups from Faug or Vaug will not contain a counterexample to the conjecture, and

continue to propose these groups as an area of study in this regard.

This thesis will take the following outline. In Chapter 2 we give a preliminary intro-

duction to the core areas and objects of study contained in the thesis. In Chapter 3 we

will positively answer a question posed in [3] and in doing so further explore and estab-

lish the correspondence between language theoretic properties of groups and dynamical

properties of the subgroups of R. Thompson’s group V . In Chapter 4 we will construct

infinite and finite presentations for all groups in the class Faug. In Chapter 5 we will use

the presentations from Chapter 4 to prove that groups from a certain subclass of Faug

do embed into R. Thompson’s group V .

The remainder of the introduction divides into three sections. We first provide basic

definitions so that the content which follows may be understood. We go on to give a

brief, and non-comprehensive, history of the work that has already been done in the

research area surrounding this thesis, including important results which motivated our

work. In the final section we expand on the outline of the thesis given in the previous

paragraph, stating the main results and explaining how they fit into, and build on, the

current knowledge of the subject area.

1.1 Definitions

Formal languages

Let Λ be a set of symbols, which we call an alphabet. A letter from the alphabet Λ is

a symbol a in Λ. A word over an alphabet Λ is a sequence, or string, of letters from Λ.

We set Λ∗ to be the set of all finite words over the alphabet Λ, including the empty word

which we will denote by ε. Note that Λ∗ is also a monoid under the binary operation of

concatenation of strings.

A formal language L over an alphabet Λ is a subset of Λ∗. Formal languages

are known to exist in different classes, differing by the “complexity” of the languages
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contained within each class. We have not yet defined what we mean by the “complexity”

of a language, but it sufficient for this stage of our discussion to understand that such

a concept exists and can be formally defined (see, for example, [21]). One of the first

classifications of formal languages was given by Noam Chomsky in [14]. From his work

we have the Chomsky hierarchy, a collection of four classes of languages in which the

classes of lower complexity are contained within those of higher complexity. The four

classes and the respective containments are given below.

Regular ⊂ Context Free ⊂ Context Sensitive ⊂ Recursively Enumerable

We say that a class C of languages is closed under inverse homomorphisms if, for

any finite alphabets A and B, and any monoid homomorphism θ : A∗ → B∗, we have

L in C where L ⊂ B∗ , then (L)θ−1 ⊂ A∗ is also in C. It is a well known result that

regular, context free (CF), context sensitive and recursively enumerable languages are

all closed under inverse homomorphisms.

Group presentations

Let G be a group with generating set A. Let X be a set of symbols such that the

map X → A is a bijection of sets. Let FX be the free group with basis X. The map

X → A extends to a surjective group homomorphism φ : FX → G, and thus, by the First

Isomorphism Theorem, G ∼= FX/ker(φ). Suppose R is a subset of FX such that ker(φ)

is the normal closure of R, that is, ker(φ) the smallest normal subgroup of FX containing

R. Then the expression 〈X|R〉 uniquely determines the group G up to isomorphism; we

call it a presentation for G. We call X a set of generators and R a set of relators.

Word problem

Let X−1 := {x−1 : x ∈ X}. By the map φ : FX → G above one can identify words over

the alphabet X± := X tX−1 to elements in G. The language of the word problem of

G with respect to X, or WP (G,X), is defined as

WP (G,X) := {w : w is in (X±)∗ such that w =G 1}.

By w =G 1 we mean that the word w is equivalent to the identity in the group G. That

is, w =G 1 if and only if w is in the coset of FX/N containing the empty word. Often

we abuse our terminology and shorten the description of WP (G,X) to simply the word

problem of G with respect to X.

The definition of WP (G,X) depends on the set of generators of the group G. However,

there exists the following well known result (see [20]).
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Proposition 1.1. Let G1 and G2 be two isomorphic groups defined by presentations

〈X|R〉 and 〈Y |S〉 respectfully, where X and Y are both finite. If C is a language class

closed under inverse homomorphisms then WP (G1, X) ∈ C if and only if WP (G2, Y ) ∈
C.

The proposition states that for a group G the language class of WP (G,X) is independent

of our choice of finite generating set X, provided that language is closed under inverse

homomorphisms. As stated in the previous section, those languages in the Chomsky

hierarchy are known to have this property, and for the sake of this work, those are the

only languages that we will be considering. Thus, it is acceptable to say that a finitely

generated group G has word problem in the class of languages C, without referring

to a specific generating set. Therefore we will use notation such as WP (G) ∈ C. If

WP (G) ∈ C for some class of languages C, then we will refer to G as a “C-group”. For

example, if WP (G) is in the class of context free languages, we would say that “G is a

CF group”, or equivalently, “G is CF”.

1.2 Background

Regular and context free groups

As we previously mentioned, we can define a class of groups by the language class of the

word problem. For example, a group G, for which WP (G) is a context free language is

in the class of context free, or CF , groups. The question arises, for a class of languages

C, can the class of C-groups be defined by purely group theoretic properties? In [1]

Anatoly Anisimov proves the following theorem.

Theorem 1.2 (Anisimov). A finitely generated group G is a regular group if and only

if it is finite.

Put another way, this result states that the class of regular groups is exactly the class of

finite groups. Subsequently, in [24] and [25], David Muller and Paul Schupp prove the

following result for CF groups (relying on the work of Dunwoody in [18]).

Theorem 1.3 (Muller, Schupp). A finitely generated group G is a CF group if and only

if it is virtually free.

The co-context free groups

Let G be a group defined by the presentation 〈X|R〉. The co-word problem of G with

respect to X, otherwise called coWP (G,X), is the complement of WP (G,X), formally
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defined as

coWP (G,X) := {w : w ∈ X± such that w 6=G 1G}.

As with WP (G,X), the language class of coWP (G,X) is independent of the generating

set X.

Introduced by Holt, Rees, Röver and Thomas [20], the next class of groups we consider

consists of all the groups whose co-word problem is context free, the coCF groups. The

class of context free languages is not closed under complementation. Nevertheless, it is

known that if a group G is virtually free (a group containing a finite index free subgroup)

then WP (G) is a deterministic context free language, (the definition of which we give

in Chapter 2). Since the class of deterministic context free languages is closed under

complementation, the class of CF groups is contained within the class of coCF groups.

The containment is also strict, there do exist coCF groups which do not have a context

free word problem, for example Z× Z. From the perspective of formal language theory

the class of coCF groups is a natural broadening of the class of CF groups, a “next step”

in widening the class.

The authors of [20] prove a number of closure properties of the coCF groups,

1. passing to finitely generated subgroups,

2. passing to finite index overgroups,

3. taking finite direct products of coCF groups,

4. taking the restricted wreath product G oH, where G is a coCF group and H is a

CF group.

However, there currently does not exist an algebraic classification of the whole class as

there does for the classes of regular and CF groups. One of the motivations of this work

was to explore a possible way in which these groups could be classified. To understand

the potential classification we are referring to, we first need to introduce an infinite,

finitely presented group, upon which the classification is based; R. Thompson’s group

V .

R. Thompson’s group V

In 1965 [31] Richard Thompson introduces three infinite, finitely presented groups, which

today are referred to by F , T and V . In unpublished notes [31], Thompson proves that

T and V are simple, the first examples of infinite, finitely presented, simple groups.

(F is not simple, however its derived subgroup [F, F ] is.) The R. Thompson groups

have been widely researched since their introduction and used in a variety of different
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mathematical areas. For example, specific to V we can point the reader to publications

[8, 9, 3, 4, 7, 17, 28], a by no means comprehensive list. The groups are often defined

as groups of homeomorphisms of different spaces. Thompson’s group F can be given

as a group of homeomorphisms of the unit interval [0, 1], T can be given as a group of

homeomorphisms of the unit circle S1, and V can be given as a group of homeomorphisms

of the Cantor space C2. Not apparent from these definitions though, it also happens

that the groups are related to each other by natural containments, namely F < T < V .

In [23] Lehnert and Schweitzer prove the following theorem.

Theorem 1 of [23] The Higman-Thompson groups Gn,r are coCF .

As Thompson’s group V is isomorphic to the Higman-Thompson group G2,1 a corollary

of their result is that F , T and V are coCF groups. (Recall that the class of coCF
groups are closed under passing to finitely generated subgroups.)

Lehnert’s conjecture

Let T2,c be the infinite binary 2-coloured tree, and let QAut(T2,c) be the group of all

bijections on the vertices of T2,c that respect adjacency and the edge-colour relation,

except for, possibly, finitely many edges. In his dissertation [22], Lehnert proves the

following theorem.

Theorem 1.4 (Lehnert). The group QAut(T2,c) is coCF and there exists an embedding

of Thompson’s group V into QAut(T2,c) as a subgroup.

Also in [22], he conjectures that QAut(T2,c) is a universal coCF group. That is, he

conjectured that a group G is coCF if and only if G is finitely generated and embeds

in QAut(T2,c). If the conjecture were true then it would provide a purely algebraic

classification of the class coCF .

In [7], Bleak, Matucci and Neunhöffer prove the converse embedding result of Theorem

1.4.

Theorem 1.5 (Bleak, Matucci and Neunhöffer). The group QAut(T2,c) embeds into

Thompson’s group V as a subgroup.

Thus, the authors of [7] prove thatQAut(T2,c) and Thompson’s group V are bi-embeddable.

This means we can rephrase Lehnert’s conjecture in the following way.

Conjecture 1.6 (Lehnert’s conjecture). Thompson’s group V is a universal coCF group.

Lehnert’s conjecture is still open at the time of writing, and the motivation for this

thesis is to investigate potential counterexamples to the conjecture.
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1.3 Results and Implications

Languages and dynamics

In R. Thompson’s group V one can find embeddings of finite groups that have interesting

dynamical properties. Let G be a finitely generated group. It was noted by Collin Bleak

that the group G is finite if and only if it admits an embedding as a subgroup of V with

a free action on the Cantor set [6]. By Theorem 1.2 the class of regular groups is exactly

the class of finite groups. Thus we have a first correspondence between formal language

theoretic properties of groups and dynamical properties of subgroups of Thompson’s

group V . In Chapter 3 we investigate this correspondence further. (Note that the work

done in Chapter 3 is joint with Collin Bleak, and much of the content can be found in

a co-authored paper [2].)

The initial motivation for the work in the third chapter was to answer a question posed

by the authors of [3].

Question 1.2 of [3] Does there exist a demonstrative embedding of the free group on

two generators, F2, into Thompson’s group V ?

Informally, a finitely generated group G is a demonstrative subgroup if and only if it

freely acts on an open subset of C2. In this chapter we positively answer the question

above and go on to prove a deeper result.

Theorem 1.7. A finitely generated group G is CF if and only if it is a demonstrable

group for Thompson’s group V .

This result provides another correspondence between formal language theoretic proper-

ties of groups and the dynamics of the subgroups of V . As we already mentioned, a

finitely generated group G is regular if and only if it has an embedding into V which

acts freely on the whole of C2. By Theorem 1.7 a finitely generated group G is CF if and

only if it has an embedding into V which acts freely on an open subset of C2, a weaker

condition. If Lehnert’s conjecture is proven to be true then the correspondence would

be taken further, as a group G will be coCF if and only if there exists an embedding of

G into V with no conditions on the dynamics.

Potential counterexamples to Lehnert’s conjecture

Given the implications that Lehnert’s conjecture could have on the correspondence be-

tween group theory and formal language theory, establishing its resolution has been

a major area of study which prompted the work done in this thesis. Currently there

are a few notable groups that are considered potential counterexamples to Lehnert’s

conjecture. The first is Z ∗ Z2 which was shown by Bleak and Salazar-Dı́az to have no
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embedding into V [9]. It was first mentioned in conjunction with coCF groups by Holt

et al. [20], where they conjecture that Z ∗ Z2 is not a coCF group. However, this is

still an open problem, and should their conjecture prove to be false then, by Bleak and

Salazar-Dı́az, Z ∗ Z2 would be a counterexample to Lehnert’s conjecture. The second

notable example is the Grigorchuk group (see [19]), a finitely generated, infinite torsion

group. Since V is torsion locally finite by Röver [27], V cannot contain the Grigorchuk

group as a subgroup. Therefore if one were able to prove that the Grigorchuk group was

coCF then it would also be a counterexample to Lehnert’s conjecture.

In both cases above, to prove the groups are counterexamples to Lehnert’s conjecture,

one has to show that they were in the class coCF . In Chapters 4 and 5 we consider po-

tential counterexamples that are already known to be coCF . To prove that these groups

are counterexamples requires showing that they cannot embed into V as subgroups. We

are unsuccessful in providing such a proof, however we do prove that a subclass of these

groups does embed into V .

The classes Vaug and Faug

In 2014 Rose Berns-Zieze, Dana Fry, Johnny Gillings, Hannah Hoganson and Heather

Mathews introduce a class of groups, which we call Vaug, which they prove to be coCF .

The groups in Vaug follow the construction of Stefan Witzel and Matthew Zaremsky

[33], who introduce a method for constructing “Thompson-like” groups. We do not

describe the construction here, however more details are given in Chapter 4, and for

further reference see “A users guide to cloning systems” by Zaremsky [34]. The groups

in Vaug are a generalisation of those first observed by Slobodan Tanusevski in his PhD

thesis [30], although written in different language to Witzel and Zaremsky.

A group V(G,θ) from Vaug can be constructed using Thompson’s group V , a finite group

G and an endomorphism θ of G, the details of which are given in Chapter 4. In seeking

to find a counterexample to Lehnert’s conjecture, we actually study a “simpler” class

of groups, Faug, where each group F(G,θ) from Faug is a subgroup of some V(G,θ) in Vaug.

We study the groups from Faug first for the same reason one might study the properties

of Thompson’s group F before moving on to the related yet more complex properties

of V . As the class of coCF groups is closed under taking finitely generated subgroups,

the groups in Faug are also coCF , and therefore are all potential counterexamples to

Lehnert’s conjecture. Thus, we narrow our search for a counterexample to the following

question.

Question 1: Does there exists a group F(G,θ) in Faug that does not embed into Thomp-

son’s group V ?

Our approach to answer Question 1 is to first find a group presentation for each group in

9



Faug, as often one can use presentations to find embeddings between groups. In Chapter

4 we construct two presentations for a group F(G,θ). The first, F inf
(G,θ), is an infinite

presentation with three infinite sets of generators, and twelve infinite sets of relations.

The second is a finite presentation F fin
(G,θ) which consists of 2(N + 1) generators and 26

finite sets of relations, where N is the order of the finite group G. We have no doubt

that these figures could be reduced, however, they complete the purpose of showing

that each group in Faug is finitely presented. The method we use for creating F inf
(G,θ)

follows a similar line to that used for Thompson’s group T by Burillo, Cleary, Stein and

Taback [11]. The finite presentation F fin
(G,θ) then follows by using Tietze transformations

on F inf
(G,θ).

In Chapter 5 we use the infinite presentation created in Chapter 4 to prove that the

group F(G,θ) does in fact embed into Thompson’s group V under certain conditions on

G and θ. This result follows from a surprising isomorphism theorem.

Theorem 1.8. Let G is a finite abelian group and suppose θ and φ are two idempotent

endomorphisms of G. Then F(G,θ) and F(G,φ) are isomorphic.

Berns-Zieve et al. make the following observation.

Observation 1.9. If θ is the identity endomorphism that maps every elements of G to

itself, then V(G,θ) embeds as a subgroup of Thompson’s group V .

As the identity endomorphism is clearly idempotent, this observation with Theorem 1.8

gives the main result of the chapter.

Theorem 1.10. Let G be a finite abelian group and θ an idempotent endomorphism of

G. Then the group F(G,θ) embeds into Thompson’s group V .

The proof of Theorem 1.8 relies on the presentation of F(G,θ). Therefore, we do not know

if a similar theorem to Theorem 1.10 exists for groups in Vaug, and leave it as an open

question.
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Chapter 2

Background and Definitions

2.1 Formal Languages

In this section we give a brief introduction to formal languages, reinforcing and elabo-

rating on the definitions we introduced in the previous chapter. Much of the notation

that we introduce below will be used throughout the thesis.

Let Λ be a finite set of symbols which we call an alphabet. A word over Λ is a finite

sequence or “string” of symbols from the alphabet. The set Λ∗ is the set of all finite

words over the alphabet Λ. Any subset L ⊆ Λ∗ we call a language over the alphabet

Λ. We use the symbol ε to denote the empty string consisting of zero symbols.

Example 2.1. Let Λ1 := {0, 1} be the alphabet consisting of the two formal symbols

“0” and “1”. The set Λ∗1 = {0, 1}∗ is a language in its own right, the language of all

finite binary strings. The subset {0n1n | n ∈ N0} ⊆ Λ∗1 is the language over the alphabet

Λ1 consisting of all the binary strings that are of the form “n zeroes followed by n ones”.

Example 2.2. The empty set, denoted by ∅ which consists of no words (not even the

empty word), is a language over any alphabet.

Example 2.3. Let Λ2 := {a, b, c}. The finite subset {a, ab, abc} ⊂ Λ∗2 is a language over

the alphabet Λ2.

Given an alphabet Λ and a language L ⊆ Λ∗ then the complement of L is the language

Lc = {w ∈ Λ∗|w /∈ L}.

Example 2.4. Given any alphabet Λ the complement of the language Λ∗ is ∅.

Finite state automata
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Formal languages can also be defined by theoretical machines called automata. In-

formally, an automaton M is a theoretical computation device that reads a word over

a predefined alphabet and either accepts it or rejects it. The language defined by

the automaton, which we denote by L(M), is the set of all words that the automaton

accepts. There are many different types of automata, two of which will appear in this

work, finite state automata and pushdown automata. We direct the interested

reader to the seminal introduction of this topic by Hopcroft and Ullman in [21] which

goes into greater depth and breadth than we will be able to here.

Definition 2.5 (Finite state automata). A finite state automaton (or FSA) is a 5-

tuple, M = (Λ, Q, δ, I, F ), where Λ is a finite alphabet, Q is a finite set of states,

δ ⊆ (Q× Λ)×Q is the transition relation, I is the set of start states of M and F ⊆ Q

is the subset of final/accept states.

Let M = (Λ, Q, δ, I, F ) be a finite state automaton as defined above. A valid path

through M for a word w = a1a2 . . . an is a finite sequence of states q1, q2, . . . , qn+1 with

((qi, ai), qi+1) ∈ δ for all 1 ≤ 1 ≤ n, and q1 ∈ I. A finite word w = a1a2 . . . an is

accepted by M if and only if there exists a valid path q1, q2, . . . , qn+1 for w where

qn+1 ∈ F . The empty string ε is accepted if and only if there exists q ∈ I ∩ F . The

set of all words over Λ that are accepted by the automaton M forms a language which

we call L(M). We say that the automaton M accepts the language L if L = L(M).

If for any finite string w over the alphabet λ there exists exactly one valid path for

w through the automaton we say that M is deterministic. Otherwise M is called

non-deterministic.

Informally we speak of an FSA “reading” a word. We can picture an FSAM as a machine

which is in some initial state q0 ∈ I, reading a sequence of symbols w = a1a2 . . . an from

Λ∗ written on a tape. In one move, the automaton reads the first symbol a1, transitions

to some state q1 such that ((q0, a1), q1) ∈ δ, and advances the tape on by one symbol to

a2. The automaton then repeats this move for the next symbol of w and so on, until

either there is no possible transition to take, and the machine stalls, or it reaches the

end of the tape/string. A word w is accepted if the automaton can read the whole word

and finish in a state end from F . If M is non-deterministic then it may have a choice

of transitions to take after reading a letter.

Finite state automata can be represented by labelled directed graphs sometimes called

state diagrams. Suppose M = (Λ, Q, δ, I, F ) is a FSA. A state diagram GM = (V,E) for

M consists of a vertex set V = Q and a set E of directed edges of the form (qi, qj) where

qi, qj ∈ Q. There exists a directed edge (qi, qj) ∈ E if and only if there exists a ∈ Λ such

that ((qi, a), qj) ∈ δ. Therefore, a directed edge may appear more than once in E. When

we draw GM we label the edge (qi, qj) ∈ E associated to the relation ((qi, a), qj) ∈ δ.
with an “a”.
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Example 2.6. Consider the automaton M1 = (Λ, Q, δ, I, F ) where

• Λ = {a, b}

• Q = {q0, q1}

• δ = {((q0, a), q0), ((q0, b), q1), ((q1, a), q1), ((q1, b), q0)}

• I = {q0}

• F = {q1}.

Figure 2.1 gives the state diagram for M1.

q0start q1

a

b

b

a

Figure 2.1: The state diagram for the finite state automaton M1.

The state diagram in Figure 2.1 illustrates certain properties that will be true for all the

automaton diagrams that we will draw. We indicate the final/accept states by drawing

a “double circle” around them, in the example above q1 is the only accept state. We

also use a single arrow with no origin to indicate a start state, in this case the state q0.

The language L(M1) accepted by the automaton consists of all the finite strings of a’s

and b’s that contain an even number of b’s. To see this visualise the process of M reading

a word w. From either state, if M reads an a it remains in that state. If M reads a b

then it moves to the alternate state. Reading one b will take the automaton to the state

q1. Therefore, if a word w has an odd number of b’s it will end in state q1, the accept

state. If w has an even number of b’s it will end in the state q0, a reject state. Note

that the automaton does not count the number of b’s, it merely tracks the parity.

Definition 2.7 (Regular languages). A language L is called regular if and only if there

exists a finite state automaton M that accepts L.

There are other equivalent definitions of regular languages that use objects called formal

grammars. However, we do not touch on these here.

The automaton M1 in Example 2.6 is a deterministic FSA or DFSA. Given a non-

deterministic FSA M there exists a construction (which can be found in [21]), called the

powerset construction, by which one can create a DFSA N such that L(M) = L(N).
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Thus for every regular language L there exists a DFSA N such that L = L(N). This

leads to the following well known theorem concerning regular languages (see [21]).

Theorem 2.8. The class of regular languages is closed under complementation.

A sketch of the proof proceeds as follows. If L is a language accepted by a determin-

istic finite state automaton M then one can create an automaton M ′ that accepts the

complement Lc by changing set set of accept states F to the complement set F c. The

automaton M ′ then rejects all the words accepted by M and must accept every word

rejected by M .

Pushdown Automata

In Chapter 1, we mentioned that there exists a hierarchy for formal languages called the

Chomsky hierarchy.

Regular ⊂ Context Free ⊂ Context Sensitive ⊂ Recursively Enumerable

The Chomsky hierarchy does not contain all languages, nor does it contain every com-

plexity class that is known today, however for our purposes we are only interested in

Regular and Context Free languages. As we go from left to right in the hierarchy above,

the automata which define the languages of each type increase in their complexity. The

context free languages, which contain the regular languages, are defined using push-

down automata.

Definition 2.9 (Pushdown Automata). A pushdown automaton (or PDA) is a 7-tuple,

M = (Λ,Γ, Q, δ, I,#, F ), where Λ is a finite alphabet, Γ is a finite alphabet called the

stack alphabet, Q is a finite set of states, δ ⊆ (Q × (Λ ∪ ε) × Γ∗) × (Q × Γ∗) is the

transition relation, I ⊆ Q is the set of start states of M , # ∈ Γ is the initial stack

symbol, and F ⊆ Q is the set of final/accept states.

One can see many similarities between the definition of a PDA and the definition of

an FSA. However, a PDA introduces the concept of a stack, alluded to above by Γ

the stack alphabet. A stack is a memory device that allows the automaton to store

information. However, it can only access this information in a first-in-last-out basis.

Formally it is a string of symbols from Γ where we define the top of the stack to be the

left of the string and the bottom of the stack to be at right. The automaton can edit

the stack by removing a finite string from the top of the stack, which we call a “pop”,

and placing a finite string onto the stack, which we call a “push”.

We base the following from Chapter 5 of [21]. Let M = (Λ,Γ, Q, δ, I,#, F ) be a PDA as

defined above. To define the way in whichM computes a finite string w over the alphabet
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Λ, we introduce notation that represents the current situation of the automaton. An

instantaneous description, or ID, of M is a three-tuple (q, v, η) ∈ Q× Λ∗ × Γ∗, where q

is the current state of M , v ∈ Λ∗ is the remainder of the string w yet to be read by M ,

and η ∈ Γ∗ is the current stack. A valid move, or M , is a relation on the set of ID’s.

Suppose ((qi, a, γi), (qj , γj)) ∈ δ. Then for all strings v ∈ Λ∗ and η ∈ Γ:

(qi, av, γiη) M (qj , v, γjη).

If a = ε then it is also called an ε-move, and none of the input string is read. We use

the symbol M
∗ to denote the reflexive, transitive closure of M , that is, a finite sequence

of zero or more valid moves. We drop the subscript from M and M
∗ when the automaton

M is understood.

The language L(M) of a pushdown automaton is as follows.

L(M) = {w : (q0, w,#) ∗ (p, ε, γ) where q0 ∈ I, p ∈ F and γ ∈ Γ∗}

The language L(M) above accepts by final state, the same as a FSA. The contents of

the stack at the end of the computation is irrelevant. However we could define M to

accept by empty stack. We define the language N(M) accepted by empty stack to be

the following.

N(M) = {w : (q0, w,#) ∗ (p, ε, ε) where q0 ∈ I and p ∈ Q}

There is a well-known theorem (see [21]) that the languages defined by PDAs that accept

by final state and those defined by PDAs that accept by empty stack are the same. For

our purposes in this thesis we will be creating PDAs that accept by final state.

The concept of determinism also exists for PDA’s. A PDA M is deterministic if for every

word w ∈ Λ∗ and every q0 ∈ I there is a unique sequence of valid moves (q0, w,#) ∗

(p, ε, γ), where p ∈ Q and γ ∈ Γ∗.

We can represent pushdown automata graphically. Let M = (Λ,Γ, Q, δ, I,#, F ) be a

pushdown automaton. A state diagram GM = (V,E) for M consists of a vertex set

V = Q and a set E of labelled edges of the form (qi, qj) where qi, qj ∈ Q. An edge

(qi, qj) is in E if and only if there exists ((qi, a, γi), (qj , γj)) ∈ δ. We label an edge (qi, qj)

in GM associated to the relation ((qi, a, γi), (qj , γj)) ∈ δ with (a, γi, γj).

Example 2.10. Consider the PDA M2 defined by the state diagram in Figure 2.2. The

automaton M2 has alphabet Λ = {a, b} and stack alphabet Γ = {#, α} where # is

the bottom-of-the-stack symbol. The acceptance criteria for this automaton is by final

state, although incidentally, when in the final state the automaton always has an empty
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stack.

q0start q1 q2

(a,#, α#)

(a, α, αα)

(b, α, ε)

(b, α, ε)

(b, α#, ε)

Figure 2.2: The state diagram for the finite state automaton M1.

Consider the computation of a string w from Λ∗.

Reading the a’s: At q0 the automaton starts to read the word w. The purpose of this

stage is to count how many a’s the word w begins with. For each a that is read the

automaton pushes a symbol α onto the top of the stack. This stage ends once the first b

has been read. If there is an α at the top of the stack then the automaton removes it and

transitions to state q2. If the very first letter of w is b then the automaton stalls as there

is no transition of the form δ(q1, b,#). Thus any word beginning with a b is immediately

rejected. If the word w does not contain any b’s then the automaton remains in state

q0 and the word is rejected.

Reading the b’s: Once in state q1 if any a’s are read from w then the automaton stalls

and the string is rejected. When b is read the transition depends on the current symbol

at the top of the stack. If the top of the stack reads an α then the automaton pops it

and remains in state q1. If the stack reads # then we have reached the bottom of the

stack, # is removed and we move to the accept state q2. If we finish reading the string

before the bottom-of-the-stack symbol is revealed then we end in q1 and the word is

rejected.

Acceptance: If the automaton reaches q2 it means that every α that was put onto the

stack at q0 has been removed. Therefore the number of b’s that have been read must be

exactly the number of a’s read at q0. The state q2 has no outgoing transitions thus if

there is still more of w to read the automaton will stall and the word will be rejected.

Thus for w to be accepted it must be of the form anbn for some natural number n > 1.

Thus L(M) ⊆ {anbn|n ∈ N1}. Furthermore, if an input string is of the form w = anbn

then there exists a path through the automaton for w that ends in the state q2. Thus

{anbn|n ∈ N1} ⊆ L(M). Hence L(M) = {anbn|n ∈ N1}.

Definition 2.11 (Context free languages). A language L is called context free if and

only if there exists a PDA M such that L = L(M).
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We saw in Theorem 2.8 that the class of regular languages is closed under complemen-

tation. This is not the case for context free languages. Given a context free language L

its complement Lc need not be context free. However, there are an important subclass

of the context free languages that are closed under complementation.

Theorem 2.12. Suppose L is a language accepted by a deterministic pushdown au-

tomaton. Then Lc is also a context free language.

The idea of the proof is the same as the case for regular languages, one simply swaps

the accept and reject states of the original automaton accepting the language L.

2.2 Group presentations

A group (G, ◦) is a set G and a binary operation ◦ : G×G→ G, that together satisfy the

axioms of associativity, identity and invertibility. Commonly the group (G, ◦) is simply

denoted by G. Another way of defining a group G is by using a group presentation.

In what follows we expand on our definition of a group presentation given in Chapter 1.

Free groups

To define a group presentation one begins with a fundamental object in combinatorial

group theory, a free group. The theory of free groups is well known and in what follows

we will not provide proofs for the statements that are made. We base much of what

follows on Chapter 3 of [10].

Let X be an arbitrary set of symbols. Set X−1 := {x−1 : x ∈ X}, where x−1 is a distinct

symbol corresponding to the symbol x from X. Thus X−1 is in bijective correspondence

with X and X ∩ X−1 = ∅. Set X± := X t X−1 and let W be the set of all finite

words over X±, that is, W = X±
∗
. We now introduce an equivalence relation between

words in W . Two words u and v are equivalent if there exists a sequence of words

u = w1, w2, w3, . . . , wn = v such that wi differs from wi+1 by either the insertion or

deletion of a subword of the form x−1x or xx−1 for some x ∈ X.

For example, suppose X = {x, y}, u = xyx−1xy and v = yy−1xyy. Then the following

sequence of words will take u to v.

u = xyx−1xy → xyy → yy−1xyy = v.

Thus u is equivalent to v under the equivalence relation defined above.

We denote the equivalence class of a string u by [u], and use [W ] to represent the set of

all equivalence classes of W . A word is called freely reduced if it contains no subwords
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of the form xx−1 or x−1x for any x ∈ X. It is a well known result that each equivalence

class [u] in [W ] contains exactly one reduced word. One can define a multiplication

on W by [u][v] = [uv], where uv is concatenation of strings. It is an exercise that

this multiplication is well defined (see [10]). The free group FX is defined as the set

[W ] together with this multiplication. Practically, it is often more convenient to treat

elements of FX as words over the alphabet X±, assuming two words are equal if and

only if their reduced words are equal.

Presentations of groups

Definition 2.13 (Generating sets). Let G be a group and A a set of elements from G.

We denote by 〈A〉 the set of all elements generated by A, i.e. every element in G created

by a product of elements from A and their inverses A−1. The set A is a generating

set for G if 〈A〉 = G. Thus A is a generating set if and only if the smallest subgroup of

G containing A is G itself.

Suppose G is a group with generating set A. Let X be a set of symbols such that the

map X → A is a bijection of sets. Then the map X → A extends to a surjective homo-

morphism of groups, φ : FX → G, that maps the generators of FX onto the generators

of G. As φ is surjective, the First Isomorphism Theorem gives G ∼= FX/ker(φ). The

kernel ker(φ) consists of every word in FX that gets sent to the identity of G under

φ, we call such words relators. Suppose there exists a subset R of FX such that the

smallest normal subgroup containing R in FX is ker(φ). Then we call the set R a set

of defining relators for G. The smallest normal subgroup containing some set R is

called its normal closure and is given by

〈〈R〉〉 =

{
n∏
i

w−1
i riwi : ri ∈ R,wi ∈ FX

}
. (2.1)

Thus every relator can be written as a product of conjugates of elements from R. There-

fore, even though there are an infinite number of relators, the set of defining relators

may be finite.

Thus, the expression 〈X|R〉, determines the group G up to isomorphism and is referred

to as the presentation of G. The presentation 〈X|R〉 is called finite if both X and R

are finite.

Example 2.14 (Integers). Consider the integers under addition (Z,+). The group has

one generator and no relations. Therefore a presentation for (Z,+) is 〈x|−〉.

Example 2.15 (Cyclic groups). Consider the group Zn, the integers modulo the natural

number n. The group has one generator, call it x, and any product of generators xm,

where m mod n = 0, is equivalent to the identity and thus is a relator. If xm is a relator
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then m = np for some integer p and xm = (xn)p. Thus the set consisting of the single

relator xn is a set of defining relators for Zn. Hence a presentation of Zn is 〈x|xn〉.

A presentation can also be defined using relations instead of relators. Let G be a

group defined by a presentation 〈X|R〉. A relation is an identity of the form u = v

where u and v are words over the alphabet X± and uv−1 ∈ 〈〈R〉〉. Given a presentation

〈X|R〉, where R is a set of relators, the set R′ := {r = 1 : r ∈ R} is called the

set of defining relations and the group presentation 〈X|R′〉 represents the same

group as 〈X|R〉. Conversely, suppose G is a group defined by the presentation 〈X|S〉
where S is a set of relations. Then one can define the set of defining relators as

S′ := {uv−1 : if u = v is in S} and 〈X|S′〉 represents the same group. Thus one can

choose to define a group presentation with either relations or relators.

2.3 R. Thompson’s groups

For the rest of the chapter, we give a brief introduction to the R. Thompson groups F ,

T and V , in particular, how one can construct the groups as homeomorphisms of the

Cantor set. A helpful way to describe elements of F , T and V is to use binary trees.

In what follows, we introduce the theory behind binary trees, describe how they relate

to the Cantor set and then go on to define the R. Thompson groups using the notation

that we have established.

2.3.1 Binary trees

An undirected graph G is a an ordered pair G = (V,E) where V is set of vertices or

nodes and E is a set of edges between the vertices of V . We denote edges by unordered

pairs of vertices of the form {v, w}, where v and w are vertices in V . Two vertices v

and w are adjacent if there exists an edge {v, w} between them. A loop is an edge of

the form {v, v} from a vertex v to itself. An undirected graph G is finite if it contains

a finite number of vertices and edges, and simple if it does not contain multiple edges

between vertices or loops. A path in G is a sequence of vertices v1, v2, v3, . . . , vk such

that there exists an edge {vi, vi+1} in E for all 1 ≤ i < k. The length of a path is the

number of edges the path contains, thus the path v1, v2, v3, . . . , vk has length k − 1. A

cycle is a path v1, v2, v3, . . . , vk such that v1 = vk. A graph G is connected if for any

two vertices v and w in G there exists a path v = v1, v2, v3, . . . , vk = w connecting them.

A tree is a simple, connected graph with no cycles. A tree is rooted if it has an assigned

vertex which we call the root. We define a descending path for a node n in a rooted

tree to be a path P beginning at the root and ending at n such that p does not contain

any repeated vertices i.e. a path of minimal length from the root to n. The descending
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path for the root itself is the trivial path of length zero consisting solely of the root.

The properties of a tree give us the following lemma.

Given a vertex v in a rooted tree, its parent p is the adjacent vertex that is contained in

the unique descending path from the root to v. Conversely a child c of a vertex v is an

adjacent node for which the v is the parent of c. From the definition of a rooted tree one

can see that a non-root vertex must have exactly one parent but can have any number

of children, including none. A vertex that has no children is called a leaf. A vertex in a

tree that is not the root or a leaf we call an internal node. A binary tree is a rooted

tree such that every vertex has at most two children. Every binary tree throughout this

work will in fact be strongly binary, in that every vertex will have either two children

or none. As this applies to all the binary trees that follow we will drop the descriptor

“strongly” and assume it throughout. We will draw rooted trees so that parent vertices

are drawn above their children, hence all the rooted trees will be drawn with the root

at the top and all other vertices below it. As all the trees we will be considering will be

rooted, we will drop the descriptor and refer to rooted trees simply as trees.

The tree below is an example of a finite binary tree. The grey vertex at the top is the

root and the white vertices at the bottom are the leaves. Every vertex that isn’t white

we call an internal node.

Often we will not explicitly draw the circular vertices on the binary trees. For example,

the tree above could instead be drawn as the following.

The way in which the nodes of a binary tree are drawn on the page are important. For

example the two trees
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are not the same even though they are isomorphic as graphs. Given an internal node n

of a binary tree we distinguish the two children of n by either left or right, depending

on what side of the parent they were drawn. We say that the left child is connected by

a left edge and the right child by a right edge.

Lemma 2.16. Let T be a binary tree. Then there exists a bijection between the set of

vertices of T and the set of descending paths.

Proof. Let T be a binary tree. To prove the result we must show that for each node n

in T , there exists a unique descending path from the root to n. As a tree is connected,

for each node n there must exist a descending path from the root. Suppose P1 =

v1, v2, . . . , vk and P2 = w1, w2, . . . , wk are two distinct descending paths for n, each of

the minimal length k− 1 where by definition v1 = w1 is the root of T and vk = wk = n.

As P1 and P2 are different there must exist some minimal integer i < k − 1 such that

vi = wi and vi+1 6= wi+1. As both paths terminate at the same node n, there must also

exists a minimal integer j > i such that vj 6= wj and vj+1 = wj+1. Thus there exists a

path in the tree P3 = vi, vi+1, . . . , vj , . . . , vi which is a cycle in T . This is a contradiction

and hence P1 = P2 and the descending path from the root to n must be unique.

For each node n in a binary tree T we introduce an address by which to identify n in

T . We begin by labelling all left edges of T with a “0” and all right edges by a “1”.

Suppose P is the descending path through the binary tree T for a node n. Starting at

the root the sequence of left edges and right edges we follow in P through T will give a

sequence of zeroes and ones. A sequence of zeroes and ones is called a binary string

and we denote the set of all finite binary strings by {0, 1}∗. As each node n in T has a

unique descending path by Lemma 2.16, there exists a unique binary string for n, which

we call its address in T . For example the bold path in the tree below corresponds to the

string “110”. Thus we say that the node n on which the path terminates has address

110.

0 1

0 10 1

0 1
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The descending path of the root of T is the trivial path of length zero consisting solely

of the root and thus its address in {0, 1}∗ is the empty string ε. For the remainder of

the thesis we will not distinguish between a node n and its address, thus in the example

above we would say that n = 110.

A caret is a binary tree consisting of just the root and two leaves.

Given a binary tree T we can “attach” a caret c to one of its leaves l by associating the

root of c with the leaf l in T . As an example, we attach a caret to the final leaf of the

binary tree below.

Therefore, beginning with the root we can construct any finite binary tree by progres-

sively attaching carets. This gives us the following result.

Lemma 2.17. If a binary tree is constructed from n carets then it has n+ 1 leaves.

Proof. Let P(n) be the statement that all trees constructed from n caret have n+1 leaves

for some integer n ≥ 0. The proof proceeds by induction on n. The tree consisting of 0

carets contains only the root, thus has only one leaf and therefore satisfies the lemma.

Suppose P(m) is true for some m ≥ 0. Let T be some tree constructed from m + 1

carets and suppose it has k leaves. Let T ′ be the tree created by removing a caret from

T . Removing a caret from T removes two leaves and exposes an internal node, which

becomes a leaf in T ′. Thus T ′ has m carets and k− 1 leaves. By P(m) the tree T ′ must

have m+ 1 leaves and thus k = m+ 2. Hence P(m+ 1) is also true, and by induction

P(n) is true for all n ≥ 0.

The infinite binary tree T2

The infinite binary tree T2 is formally defined as the binary tree in which every node

has two children. Thus T2 has a (countably) infinite number of nodes and zero number

of leaves. Figure 2.3 gives the first four levels of T2.
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Figure 2.3: T2, the infinite binary tree

We can build addresses for nodes in T2 in the same way as finite binary trees, assigning

a “0” to every left edge and a “1” to every right edge. From Lemma 2.16 we have the

following corollary.

Corollary 2.18. There exists a bijection between the set of nodes of T2 and the set of

all binary strings {0, 1}∗.

We define an infinite descending path in T2 to be a path from the root that contains

infinitely many nodes and never crosses an edge twice. By using the binary address

system on T2 one can observe that there exists a bijection between the set of all infinite

descending paths and the set of all infinite binary strings, which we denote by {0, 1}ω.

The set {0, 1}ω can be thought of as the “boundary” of the tree T2. We will see in the

next section that the set {0, 1}ω is in fact in bijection with the Cantor set.

2.3.2 The Cantor set

The Cantor set, although named after Georg Cantor for his work in 1883 [13], was

thought to have first been discovered by Henry J S Smith in 1874 [29] in his paper

“On the Integration of Discontinuous Functions”. The construction of the standard

ternary Cantor set proceeds as follows. One begins with the unit interval [0, 1] which

we call C0. One then deletes the open “middle third” interval
(

1
3 ,

2
3

)
from C0 to produce

C1 =
[
0, 1

3

]
∪
[

2
3 , 1
]
. The procedure is then repeated on the two remaining intervals in C1,

where we delete the middle thirds from both to give C2 =
[
0, 1

9

]
∪
[

2
9 ,

1
3

]
∪
[

2
3 ,

7
9

]
∪
[

8
9 , 1
]
.

This process continues ad infinitum, where the set Ck+1 is created by deleting the open

middle thirds from all the intervals comprising Ck. Thus for any natural number n the

set Cn is defined as

Cn :=
Cn−1

3
∪
(

2

3
+
Cn−1

3

)
. (2.2)

The process is illustrated by the figure below.
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0 1

Figure 2.4: The first five iterations of the Cantor set construction

The Cantor set is then defined to be all the points in the unit interval that are not

removed at any step in the process.

One can set up a binary labelling system on the construction process similar to that

found on binary trees. Each interval that is created in the construction process is

contained in an interval from the previous stage. We call this its parent interval,

similar to the parent of a node in a binary tree. If the interval contains the left limit

point of its parent we label it with a “0”, if it instead contains the right limit point of its

parent we label it with a “1”. For example, the first three stages are labelled as below.

ε

0

0 0

1

1 1

Figure 2.5: The binary labelling on the first two stages of the Cantor set construction

Thus each interval in the construction can be uniquely identified by a finite binary

sequence, defined as we descend down the stages of the iterated process. For example

the interval
[

2
9 ,

1
3

]
which appears after the second iteration would be given by the binary

sequence “01” as we descend first to the interval
[
0, 1

3

]
which is labelled with a “0” and

then to the interval
[

2
9 ,

1
3

]
itself which is labelled with a “1”. If x is a point in the Cantor

set then at each stage in the construction process x is contained within a unique interval.

Thus x corresponds to an infinite sequence of intervals which in turn corresponds to an

infinite binary sequence by the labelling we have introduced. Therefore the Cantor set

is in bijective correspondence to the set C2 := {0, 1}ω, the set of countably infinite

binary strings, sometimes seen as {0, 1}N or 2N in some of the literature. We call C2

a Cantor space. Although we normally use lower case roman letters, such as w, to

represent strings from {0, 1}ω, occasionally we may use “arrowed” notation, such as
⇀
w,

to distinguish from finite strings if the situation arose.

Topology of the Cantor space

The Cantor space C2 can also be equipped with a topology. The set {0, 1}ω can be

24



interpreted as the product of countably many copies of the the binary set {0, 1},

{0, 1}ω =

∞∏
n=1

{0, 1}. (2.3)

By giving each copy of {0, 1} the discrete topology we can induce a topology on {0, 1}ω,

namely the product topology. If u is a finite binary string from {0, 1}∗ then the set

buc = {u⇀w|⇀w ∈ {0, 1}ω}

is called a cylinder set or cone. An alternative way to describe a cone buc is as the

set of all infinite binary strings that have the finite string u as a prefix. The set of

all cones forms a basis for the product topology on {0, 1}ω. Notice that for each cone

buc = {u⇀w|⇀w ∈ {0, 1}ω} there exists a bijective map ϕ : buc → C2 given by (u
⇀
w)ϕ =

⇀
w.

Thus each cone is itself a Cantor space. This property of a space containing copies of

itself is called self-similarity and is a property found in some fractals, of which the

Cantor space would be one.

Metric on the Cantor space

We can also introduce a metric d : C2 × C2 → N0 on C2. If u = a1a2 · · · an is a finite

binary string, ai ∈ {0, 1}, then we define the length of u to be n, sometimes written

length(u) = n. Suppose x and y are two points in C2. A common prefix u of x and y

is a prefix u that is both a prefix of x and a prefix of y. Then the metric d defines the

distance between x and y as

d(x, y) = inf
{

2−length(u) : u is a common prefix of x and y
}
. (2.4)

Proposition 2.19. The set C2 with the metric d : C2 × C2 → N0 defined in (2.4) is a

metric space.

Proof. Suppose x = a1a2a3 . . ., y = b1b2b3 . . . and z = c1c2c3 . . . are three points in C2,

ai, bi, ci ∈ {0, 1}. There are four conditions to check.

1. (Positivity) By definition d(x, y) > 0 for any x and y.

2. (Identity) First note that if there exists a common prefix of x and y of length n,

then there exists a common prefix of x and y for all natural numbers m ≤ n. As

2−n > 0 for all n ∈ N1, if d(x, y) = 0 then for each natural number n there must

exist a common prefix of x and y of length n. Thus x = y.

3. (Symmetry) The metric is commutative thus the symmetry condition holds.
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4. (Triangle inequality) For any x, y, z the triangle inequality states that d(x, y) ≤
d(x, z) + d(y, z). If x = y = z then the triangle inequality holds. If x = y then

d(x, y) = 0 and the inequality will always hold as the metric is always positive. If

x = z when y 6= z then d(x, y) = d(z, y) as required. Suppose x, y and z are all

distinct from each other. Let a ∈ {0, 1}∗ be the longest prefix shared by x and z

and b ∈ {0, 1}∗ be the longest prefix shared by y and z. If length(a) ≤ length(b)

then a must be a prefix of b. Thus a is a shared prefix of x and y and d(x, y) ≤
length(a) = d(x, z). If instead length(a) > length(b) then b must be a strict prefix

of a. In this case b is a shared prefix of x and y and d(x, y) ≤ length(b) = d(y, z).

Thus in either case d(x, y) ≤ d(x, z) + d(y, z) for any x, y and z which means the

triangle inequality holds.

Cantor space and the infinite binary tree T2

There exists a natural correspondence between C2 = {0, 1}ω and the infinite binary tree

T2. As we mentioned in our discussion of T2, the boundary of T2 which is the set of all

infinite descending paths is in bijective correspondence to the set {0, 1}ω. A cone buc is

a subset of this boundary that exists below a certain node in T2 given by the address u.

The figure below illustrates the concept and one can see from the shape of the shaded

section why we call buc a cone.

u

buc

Figure 2.6: An illustration of a cone buc in T2.

2.3.3 R.Thompson’s group V

R. Thompson’s group V2 is a group of self homeomorphisms of the Cantor space C2

under composition. A homeomorphism is a continuous, bijective function between

topological spaces that maps open sets to open sets. For the remainder of the work
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we will exclusively refer to V2 as V and drop the subscript as we will never change the

alphabet size of the Cantor space we are considering.

Prefix replacement maps

In this section we construct homeomorphisms of C2 which are called prefix replace-

ment maps. These will form our elements of Thompson’s group V . The process of

defining a prefix replacement map begins with a binary relation � on {0, 1}∗ defined as

u � v if and only if the string v is of the form v = uw for some string w ∈ {0, 1}∗.

In other words u � v if and only if u is a prefix of v. The following lemma proves that

this relation is in fact a partial order on the set of all finite binary strings.

Lemma 2.20. The binary relation � is a partial order on the set {0, 1}∗.

Proof. To prove that � is a partial order we have to show that it is reflexive, anti-

symmetric and transitive. Reflexivity is obvious as any string is its own prefix. Suppose

u and v are strings in {0, 1}∗ such that u � v and v � u. The there exists strings a

and b in {0, 1}∗ such that u = va and v = ub. By substitution we have u = uba and

v = vab and thus a and b must both be the empty string ε. Hence u = v and � is

anti-symmetric. Finally suppose that u, v and w are strings in {0, 1}∗ such that u � v

and v � w. Then there exists strings c and d in {0, 1}∗ such that v = uc and w = vd. By

substituting for v we have w = ucd and therefore u � w, which proves transitivity.

Given two strings u and v if u � v or v � u then we say u and v are comparable.

Else u and v are called incomparable, a property we denote by u ⊥ v. Any subset

of {0, 1}∗ that consists solely of pairwise incomparable elements is called an antichain.

Suppose A = {u1, u2, . . . , un} is a finite antichain where each ui is a string from {0, 1}∗.
We say that A is complete if for every infinite string w in {0, 1}ω there exists a string

ui from A such that ui is a prefix of w. Note that uniqueness is guaranteed by the fact

that all the strings in A are incomparable. For example, the set {00, 010, 011, 1} is a

finite complete antichain, whereas the set {001, 01, 1} does not qualify as it contains no

prefix for points in the cone b000c. The theory of prefixes and antichains is well known

and not restricted to the sets {0, 1}∗ and {0, 1}ω. Jean-Camille Birget in his 2004 paper

[5] gives a more general treatment of the subject, also with Thompson’s groups in mind.

He uses the term prefix codes to denote antichains and the term maximal instead of

complete.

We can use antichains to define homeomorphisms of the Cantor set. Suppose A1 =

{u1, u2, . . . , un} and A2 = {v1, v2, . . . , vn} are two complete antichains of order n. Let ϕ

be a bijection between A1 and A2 that maps each string ui from A1 to a unique string
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vi from A2. We call ϕ a prefix replacement. Each individual map ui 7→ vi from ϕ we

call a prefix replacement rule. The bijection ϕ induces a map Φ on the space C2 in

the following way. Suppose w is a string from C2. As A1 is a finite complete antichain,

w has some prefix ui from A1 such that w = ui
⇀
w where

⇀
w is from {0, 1}ω. The map Φ

then acts on the string w by

Φ(w) = Φ(ui
⇀
w) = ϕ(ui)

⇀
w = vi

⇀
w. (2.5)

We call Φ a prefix replacement map. The following lemma proves that Φ is a

homeomorphism of C2.

Lemma 2.21. Let ϕ : A1 → A2 be a prefix replacement. The induced prefix replacement

map Φ from ϕ is a homeomorphism of the Cantor set C2 = {0, 1}ω.

Proof. Let Φ be the prefix replacement map induced by the prefix replacement ϕ :

A1 → A2. As A1 and A2 are complete antichains and ϕ is bijective then Φ must also be

bijective. This leaves us to check continuity, to show that the preimage of every open

subset of C2 under Φ is open. Suppose U is some open subset of {0, 1}ω. Then U can

be written as a union of cones U =
⋃
ibuic where each buic is contained in some unique

cone baic where ai ∈ A2. Therefore ui = aiv for some v ∈ {0, 1}∗ and the preimage of

buic under Φ is the cone b(ai)φ−1vc. Therefore the preimage of U under Φ is a union

of cones and hence is open. Continuity of the inverse function is given by the same

argument.

A prefix replacement rule ui 7→ vi defines a partial function buic 7→ bvic on C2 which we

call a cone map. The cone map buic 7→ bvic is defined on the cone buic and maps the

point ui
⇀
w to the point vi

⇀
w in bvic. Therefore, given a prefix replacement ϕ : A1 → A2

the induced prefix replacement map Φ can be defined by the collection of cone maps

induced from the prefix replacement rules of ϕ.

Example 2.22. Define complete antichains A1 = {0, 10, 11} and A2 = {00, 01, 1}. An

example of a prefix replacement is the map ϕ : A1 → A2 such that

0 7→ 01

10 7→ 1

11 7→ 00

The induced map Φ : {0, 1}ω → {0, 1}ω can be then defined by the cone maps;

b0c 7→ b01c
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b10c 7→ b1c

b11c 7→ b00c.

As an example consider the infinite string of zeroes, denoted by 0̄ ∈ C2. Under Φ this

point gets mapped to (0̄)Φ = 010̄.

Expansions and reductions

Consider a prefix replacement ϕ : A1 → A2 that contains the rule u 7→ v for some

u, v ∈ {0, 1}∗. Notice that the two prefix replacement rules u0 7→ v0 and u1 7→ v1

together induce the same partial map on C2 as the single rule u 7→ v from ϕ. Thus the

prefix replacement ϕ′ : A1 → A2 we create from ϕ by replacing the rule u 7→ v with the

two rules u0 7→ v0 and u1 7→ v1, induces the same prefix replacement map as ϕ. We

call such an operation an expansion of ϕ. The inverse operation is called a reduction.

We have the following observation which follows from the discussion above.

Observation 2.23. Suppose ϕ1 and ϕ2 are two prefix replacements such that there

exists a finite sequence of prefix replacements ϕ1 = r1, r2, . . . , rn = ϕ2 such that for all

1 ≤ i < n, ri differs from ri+1 by an expansion or a reduction. Then ϕ1 and ϕ2 induce

the same prefix replacement map.

For example consider the two prefix replacements ϕ1 and ϕ2.

ϕ1 ϕ2

0 7→ 1 00 7→ 10

1 7→ 0 01 7→ 11

1 7→ 0

The prefix replacement ϕ2 is created from ϕ1 by expanding the rule 0 7→ 1 once. One

can observe that any string from C2 will get mapped to the same string under the prefix

replacement map induced by ϕ1 or ϕ2.

Definition 2.24. Suppose ϕ : A1 → A2 is a prefix replacement such that one cannot

apply a reduction. Then ϕ is called irreducible. Else it is called reducible.

Lemma 2.25. For each prefix replacement map Φ there exists a unique irreducible prefix

replacement ϕ that induces Φ.

Proof. Let Φ : C2 → C2 be some prefix replacement map induced from a prefix replace-

ment ϕ1 : A1 → A2. Suppose ϕ1 is reducible. Then ϕ1 contains two prefix replacement

29



rules u0 7→ v0 and u1 7→ v1 in ϕ1 for some u, v ∈ {0, 1}∗. Then by Observation 2.23

the prefix replacement ϕ2 created from ϕ1 by applying a reduction to the rules u0 7→ v0

and u1 7→ v1 induces the same prefix replacement map Φ. If ϕ2 is itself reducible then

we repeat the steps above. The process of reduction continues until one reaches a prefix

replacement which is irreducible. As the number of rules in ϕi+1 is one less that ϕi the

process must terminate in finite time.

Suppose there exists two distinct prefix replacements ϕa : A1 → A2 and ϕb : B1 → B2

that are both irreducible and both induce the same prefix replacement map Φ. Suppose

A1 = B1 and A2 = B2. Then as ϕa and ϕb are not the same they must defined different

bijections between the antichains and thus induce two distinct homeomorphisms of C2,

a contradiction. Suppose A1 = B1 and A2 6= B2. Then there exists u,w1, w2 such that

w1 6= w2 and ϕa contains the rule u 7→ w1 and ϕb contains the rules u 7→ w2. The cone

maps defined by these two rules are different and thus the homeomorphisms induced

by ϕa and ϕb must also be different, another contradiction. The parallel case when

A1 6= B1 and A2 = B2 follows likewise. Suppose then that A1 6= B1 and A2 6= B2. As

the antichains are complete there must exist u1 ∈ A1 and v1 ∈ B1 such that u1 6= v1

and either u1 � v1 or v1 � u1. Without loss of generality assume that u1 � v1, that

is, v1 = u1w for some w ∈ {0, 1}∗. As B1 is complete we choose v1 such that v1 = v0

for some v and such that the string v′1 = v1 is also in B1. If this were not possible

then the infinite string v1̄ would not have a prefix in B1. Note that u1 must also be a

prefix of v′1. Suppose u1 7→ u2 is a rule in ϕa and v1 7→ v2 and v′1 7→ v′2 are rules in

ϕb. Then these rules induce the cones maps bu1c 7→ bu2c, bv1c 7→ bv2c and bv′1c 7→ bv′2c
respectively. As both ϕa and ϕb induce the same homeomorphism of C2, if bu1c 7→ bu2c
then bu1wc 7→ bu2wc and hence u2 is a prefix of v2. The same argument applies to

v′2 which must also have u2 as a prefix. Therefore the cone map bv1c 7→ bv2c can be

rewritten as bu1w
′0c 7→ bu2w

′0c for some w′, and the cone map bv′1c 7→ bv′2c can be

rewritten as bu1w
′1c 7→ bu2w

′1c. Therefore ϕb contains the rules u1w
′0 7→ u2w

′0 and

u1w
′1 7→ u2w

′1 and hence must be reducible, a contradiction.

Theorem 2.26. The set of all prefix replacement maps under composition is a group.

Proof. Let V be the set of all prefix replacement maps and let the binary product ∗
represent composition of functions. Function composition is known to be associative.

The identity homeomorphism is given by the prefix replacement map Φε which maps

every string in {0, 1}ω to itself. Suppose Φ is a prefix replacement map induced by

a prefix replacement ϕ : A1 → A2 which contains n number of rules ui 7→ vi. As

ϕ is a bijection its inverse exists ϕ−1 : A2 → A1 from which one can build a prefix

replacement map Π. The map formed by the composition Φ ∗ Π acts on the cones buic
by buic

Φ7−→ bvic
Π7−→ buic, and likewise the composition Π ∗ Φ acts on the cones bvic by

bvic
Π7−→ buic

Φ7−→ bvic. Thus Π = Φ−1. Therefore (V, ∗) is a group.
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The group (V, ∗) is one way of describing R. Thompson’s group V . Although the

theorem above proves that (V, ∗) is a group, it does not describe how to compose two

prefix replacement maps when given as a collection of cone maps. In the next section

we describe a useful way of describing the elements of (V, ∗), using binary trees, which

will provide an effective way to represent the group multiplication.

Group Actions

A group G is said to act on a set X if there exists a map ψ : G×X → G such that the

following two conditions hold for all x ∈ X;

1. ψ(1G, x) = x and,

2. ψ(g, ψ(h, x)) = ψ(gh, x).

Lemma 2.27. Thompson’s group G acts on the cantor set C2.

Proof. The proof follows from the fact that elements of V are homeomorphisms of C2.

Therefore, there exists a natural group action (Φ, x) 7→ Φ(x).

This natural action will appear again in Chapter 3 when we consider the dynamics of

the action of Thompson’s group V on C2.

Tree pairs

Definition 2.28 (Tree Pairs). Suppose D and R are binary trees, both with n leaves.

Let σ be a permutation from the group Sn. We call the triple (D, σ,R) a tree pair.

The tree D we call the domain tree and the tree R the range tree. One interprets σ

as a map between the leaves of domain and range trees, where the ith leaf of D is being

mapped to the (i)σth leaf of R.

One draws tree pairs in the following way. Let (D, σ,R) be a tree pair. One first draws

D on the left and R on the right. Then one sequentially labels the leaves of D from

left to right with the numbers 1 through n. Finally, one labels the ith leaf of R with

the number (i)σ−1. Consider the following example below where σ = (1234). (We will

explain the label on the middle arrow in the discussion below.)

31



1
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2 3

g

3
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1 2

Figure 2.7: An example of a tree pair where σ = (1234).

Tree pairs are an alternative way to represent prefix replacements. To prove this, we

need the following lemma.

Lemma 2.29. There exists a bijection between the set of all finite complete antichains

and the set of all finite binary trees.

Proof. Suppose T is a finite binary tree with n leaves. Each leaf in the tree has a

unique binary string associated to it, defined by its descending path from the root. Let

AT = {l1, l2, . . . , ln} be the set of the n binary strings associated to the n leaves of T .

Suppose li � lj for some i and j. Then the ith leaf of T must be the parent of the jth

leaf which contradicts the definition of a leaf. Thus AT must be an antichain. By our

definition every binary tree is strongly binary, therefore every infinite descending path

in T2 must pass through one of the nodes defined by the n leaves of T . Thus every

infinite string in {0, 1}ω must have a unique prefix from AT and hence AT must also be

complete.

Conversely, suppose A is a finite complete antichain of the poset ({0, 1}∗,�) containing

n strings. Each string in A uniquely defines a node in the infinite binary tree T2. As all

these strings are pairwise incomparable, each node must lie in a unique path from the

root. Therefore we can define a finite tree TA as the rooted subtree in T2 whose leaves

are exactly the nodes defined by A. To finish the proof we have to show that the tree

TA is strongly binary. As A is complete every infinite binary string has a unique prefix

from A, this is equivalent to saying that every infinite descending path from T2 passes

through exactly one of the nodes defined by A. Suppose TA was not strongly binary.

Then there would exists a node u in TA that would only have one child. All infinite

descending paths in T2 that passed through the child of u that was not in TA would

have no prefix from A and thus is a contradiction. Hence TA must be strongly binary

and the proof is complete.

Let (D, σ,R) be a tree pair. By Lemma 2.29, the trees D and R represent two finite

complete antichains A1 = {u1, u2, . . . , un} and A2 = {v1, v2, . . . , vn}. Therefore the tree

pair induces the prefix replacement ϕ : A1 7→ A2, where (ui)ϕ = v(i)σ.
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Consider the tree pair in Figure 2.7. This tree pair gives rise to the following prefix

replacement;

0 7→ 010

100 7→ 011

101 7→ 1

11 7→ 00.

In a tree pair we commonly label the arrow between the two binary trees with the

element in V that the respective prefix replacement represents. In the example above

the tree pair represents the following element g from V ;

b0c 7→ b010c

b100c 7→ b011c

b101c 7→ b1c

b11c 7→ b00c.

When considering the tree pair representative of g in Figure 2.7 we may use language

such as “the element g takes the node 0 to the node 010”. This language could imply

that g is describing an automorphism of the infinite binary tree T2, however, this is not

the case. What is meant by the sentence is that g defines a prefix replacement rule

0 7→ 010, and nothing more. There is a sense in which an element v of V does induce a

partial map from T2 to itself. However, it is only partial as there may be finitely many

vertices at the top of the tree for which the map induced by v is not well defined. For

example, consider the vertex 10 in T2. There is no well defined way in which the element

g acts on the vertex 10.

In the same way that there are many prefix replacements that all induce the same prefix

replacement map, so too there are many tree pairs that also represent a single element

of V . Reducible prefix replacements can be easily identified from their equivalent tree

pairs. Consider the tree pair below that has the same domain and range trees as Figure

2.7 but a different permutation on the leaves, in this case the identity permutation.

33



1

4

2 3

h

4

1

2 3

Figure 2.8: An example of a reducible tree pair with an exposed caret (in bold) consisting
of the second and third leaves.

Notice how the leaves labelled 2 and 3 are both contained in a single caret in both the

domain and range trees of the tree pair. We call this an exposed caret. In the language

of prefix replacements, these represent the rules 100 7→ 010 and 101 7→ 011 which satisfy

the conditions for reducible prefix replacement rules and thus can be replaced with the

one rule 10 7→ 01. This reduction is represented in the tree pair diagram by removing

the exposed caret from both the domain and range trees, and adjusting the permutation

to reflect the lower number of leaves. Any tree with an exposed caret we call reducible.

In the figure below we have removed the exposed caret from the tree pair in Figure 2.8,

notice that the tree pair that remains is in fact irreducible.

1

2 3

h

3

1 2

Figure 2.9: The unique irreducible tree pair representing the element h previously de-
fined in Figure 2.8. Notice how we have removed the exposed caret and adjusted the
permutation on the leaves accordingly.

As well as reducing a tree pair by removing an exposed caret, one can also expand

a tree pair by adding one. To any tree pair one can expand the nth leaf by adding a

caret to the nth leaf of the domain tree and to the σ(n)th leaf of the range tree. In the

example above, we can create the tree pair in Figure 2.8 by adding caret to the second

leaves of both the domain and range tree of Figure 2.9. Notice that as well as adding the

extra carets one must also adjust the permutation accordingly too, so that the leaves

that were being mapped to one another in the original tree are still getting mapped to

one another in the new tree.

Tree pair multiplication

As well as representing the individual elements of V , one can use tree pairs to effec-
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tively multiply elements together. Recall that multiplication in V is composition of

homeomorphisms, thus the method we use to multiply tree pairs must be well-defined

in accordance with the group multiplication. We will begin by illustrating tree pair

multiplication with an example. Consider the two elements g and h from Figure 2.7 and

Figure 2.9 respectively. The order of multiplication matters, for this example we will be

creating the product λ = g ∗ h, where we use right actions. Thus this is equivalent to

saying, “apply the homeomorphism g first, then follow it with h”.

Written explicitly the two homeomorphisms are given in the table below by the canonical

cone maps;

g h

b0c 7→ b010c b0c 7→ b00c

b100c 7→ b011c b10c 7→ b01c

b101c 7→ b1c b11c 7→ b1c

b11c 7→ b00c.

To compose two cone maps one requires that the range of the first map matches the

range of the second, if this does not hold then the function composition is not well

defined. For example the element g written above contains the cone map b0c 7→ b010c,
however the element h has no explicit map on the cone b010c. Instead we notice h

contains the map b0c 7→ b00c which maps all these strings in C2 with prefix “010” to

those with prefix “0010”. Thus implicit within h is the cone map b010c 7→ b0010c. The

first stage in creating the element λ = g∗h is then to rewrite the cone maps of g and h so

that function composition is well defined between the cone maps, by which we mean for

each cone in the range of g there exists the same cone in the domain of h. The rewriting

occurs by repeatedly expanding the cone maps of the form buc 7→ bvc to two of the form

bu0c 7→ bv0c and bu1c 7→ bv1c until all the cone maps are as required. Below are the

cone maps for g and h once this process has taken place, we have arranged the maps

of h so that by reading across each row of the table one reads the composition of cone

maps. All the cone maps in bold are those that we have created by expanding previous

maps.
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g h

b0c 7→ b010c b010c 7→ b0010c

b100c 7→ b011c b011c 7→ b0011c

b1010c 7→ b10c b10c 7→ b01c

b1011c 7→ b11c b11c 7→ b1c

b11c 7→ b00c b00c 7→ b000c.

The element λ = g ∗h is then given by the union of the cone maps created by composing

the maps above;

g ∗ h

b0c 7→ b0010c

b100c 7→ b0011c

b1010c 7→ b01c

b1011c 7→ b1c

b11c 7→ b000c.

This process is more easily replicated using tree pairs. The two tree pairs representing

g and h are given below.

1

4

2 3

g

3

4

1 2

1

2 3

h

3

1 2

The process of rewriting the cone maps is the same as expanding the binary trees. To

the tree pairs that represent g and h we add carets until the range tree of g matches the

domain tree of h. Notice that any caret we add to the range tree of g we must also add

to its domain tree, respecting the bijection between the leaves. Thus by adding a caret

to the leaf labelled “3” in the range we must also add a caret to the leaf labelled “3” in

the domain. Similarly any carets we attach to the domain tree of h we must also add

to its range tree. In the case of h we are actually attaching a subtree made from two

carets.
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1

4

2 3

g

3

4

1 2

1

2 3

h

3

1 2

We must also adjust the permutation on the leaves to compensate for the number of

leaves we add when we expand the trees. Each tree pair now has five leaves on each tree

so the permutation is adjusted to reflect that. Notice below that we have also relabelled

the domain tree of h so that the labels exactly match the labels on the range tree of g.

Accordingly we have also adjusted the labels on the range tree of h so that leaves of the

domain are being mapped to the appropriate leaves in the range.

1

5

2

g

5

1 2

3 4

h

4

3

3 4

3 4 5

1 2 5

1 2

The final step is to remove the two middle trees which are now identical and construct

a new tree pair from the domain tree of g and the range tree of h. This new tree pair

now represents the product λ = g ∗ h.

1

5

2

3 4

g ∗ h

4

3

5

1 2

We can summarise the process used in the example above in five steps.

1. Choose two tree pair representatives for g and h,
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2. Add carets to each tree pair until the range tree of g matches the range tree of h

(excluding the labels on the leaves),

3. Adjust the permutation on the leaves of each tree pair to account for the extra

leaves added by the extra carets,

4. Rewrite the labels on the leaves of h so that its domain tree becomes identical to

the range tree of g,

5. The product g ∗ h is then given by the domain tree of g and the range tree of h

with the bijection on the leaves given by the pre-existing labels.

This process is the same for any elements g and h in V and provides a very visual way

of multiplying elements of the group. The careful reader will have noticed that the first

step involves a choice of tree pair representative being made for each element g and

h. We do not give a proof here that multiplication is well defined regardless of what

representative are chosen but the result is well known and follows from an application

of Observation 2.23.

Parting a node of T2

Given an element g in V one can define a natural partial bijection on the nodes of the

infinite binary tree. Let ai 7→ bi be the unique set of reduced prefix replacement rules for

g. Then there exists a bijection between the subsets {aiw|for all ai and w ∈ {0, 1}∗} ⊂
T2 and {biw|for all bi and w ∈ {0, 1}∗} ⊂ T2 by aiw 7→ biw.

Notice that the bijection on the nodes of T2 induced by g is only partial, it is not defined

on any node which is a prefix of some ai or bi. If we consider the unique reduced binary

tree pair representative of g, it is exactly the set of internal nodes in either the domain

or range tree on which the bijection is not defined. Suppose n is an internal node of the

domain tree of the unique reduced tree pair representative Tg of g. Let {l1, . . . , lm} be

the leaves of Tg underlying n. Then g acts on the subset bnc by

gbnc = gbl1c t . . . t gblmc.

As Tg is reduced each gblic must be disjoint, by which we mean there exists no j 6= i

such that gblic t gbljc is a cone. The subset of C2 under each leaf has been separated

from its neighbour under g. Therefore, we say that the node n has been parted under

g. (Note, in [9] they use the term splitting instead. We reserve the word splitting for

another definition in Chapters 4 and 5).

For example, consider the element g from Figure 2.7 which we have redrawn below.
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1

4

2 3

g

3

4

1 2

The binary tree pair for g defines a prefix replacement 0 7→ 010, therefore the induced

bijection would map the node 0110 to 010110. However, for all the nodes in the binary

tree pair that lie above the leaves of the domain and range trees g defines no bijection.

For example, consider the node ’10’ in the domain tree of Figure 2.7. Under g its children

get mapped to the following; 100 7→ 011 and 101 7→ 1, but g induces no well defined

action on 10 itself. Therefore 10 has been parted under g, or we could say that g parts

the node 10.

2.3.4 Thompson’s groups F and T

Two subgroups of V are of particular importance as groups in their own right. The first

is denoted by P̂ by Thompson in his original work [31] but now is more commonly seen

as F (see [12]). The group F is more commonly defined as a group of piecewise linear

homeomorphisms of the closed unit interval [0, 1]. We define a dyadic number to be

a number of the form m
2k

for some integers k and m. We then define a dyadic interval

to be an interval of the form [
m

2k
,
m+ 1

2k

]
.

The closed unit interval [0, 1] can be subdivided into unions of dyadic intervals, for

example

[0, 1] =

[
0,

1

4

]
∪
[

1

4
,
1

2

]
∪
[

1

2
, 1

]
.

Suppose

I1 = d1 ∪ d2 ∪ · · · ∪ dn I2 = r1 ∪ r2 ∪ · · · ∪ rn

are two subdivisions of [0, 1] into n dyadic intervals. Then one can define a home-

omorphism f : [0, 1] → [0, 1] that affinely maps each dyadic interval di in I1 to the

corresponding interval ri in I2 for every 1 ≤ i ≤ n. This is an element of Thompson’s

group F .

Definition 2.30. F is the group of piecewise linear homeomorphisms of the closed unit

interval [0, 1] that satisfy the following conditions;

• break points only ever appear on dyadic rationals,
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• the derivative on any unbroken interval is a power of 2.

As mentioned above, F appears as a subgroup of V . Consider the subgroup F̂ formed

by taking all the elements of V which have a tree pair representative with the identity

permutation on the leaves. Then F ∼= F̂ . A proof is given in [12]. We give some intuition

behind the result. Consider the infinite binary tree T2. Associate to each node n in the

tree a dyadic interval dn such that dn = dn0 ∪ dn1. Then the root is representative

of the whole unit interval and the leaves of each finite binary tree represent a dyadic

subdivision of [0, 1]. The action of each element of F on the unit interval then induces

an action on the infinite binary tree as described by elements of F̂ .

When we draw tree pairs representing element of F , we will forgo writing the permuta-

tion on the leaves of the diagram, leaving it implicit that the permutation is the identity.

For the example in Figure 2.10 below it is implicit that the ith leaf of the domain is

getting mapped to the ith leaf of the range.

Figure 2.10: An example element of Thompson’s group F

Thompson’s group T , originally called Ĉ by Thompson in [31], is a group of piecewise

linear homeomorphisms of the unit circle S1. Consider S1 as the interval [0, 1] with the

endpoints identified. Similarly to F , elements of T are homeomorphisms which map

images of dyadic rationals to images of dyadic rationals and have finitely many break

points. The derivatives on all unbroken intervals are powers of 2. As a subgroup in V it

contains all the elements whose tree pair representations have a cyclic permutation on

their leaves.
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Chapter 3

The Demonstrable Groups for V

The work in this chapter is joint with Collin Bleak and much of the content appears in

[2].

In this chapter we explore the relationship between groups defined by language theoretic

properties and the dynamics of certain subgroups in Thompson’s group V . As we have

already discussed in Chapters 1 and 2, one can classify a group using the language type

of its word problem. In 1977 Anatoly Anisimov provided an algebraic classification for

regular groups [1].

Theorem 3.1 (Anisimov). A finitely generated group G is a regular group if and only

if it is finite.

It is a well known fact that Thompson’s group V contains all the finite groups. However,

there exist particular embeddings of finite groups into V whose natural action on the

Cantor space C2 exhibit interesting dynamical properties. To understand the result one

first needs to know the definition of a free action.

Definition 3.2. An group action ψ(G×X)→ X is free if and only if ψ(g, x) 6= x for

all non-trivial g ∈ G and all x ∈ X. Thus, for any x ∈ X, if (g, x) = x then g = 1G.

The following lemma was pointed out by Collin Bleak [6].

Lemma 3.3. A finitely generated group G is finite if and only if there exists an embed-

ding of G into V whose natural action is free on the whole Cantor space C2.

The subgroups described in Lemma 3.3 are dynamically interesting because by the

definition of a free action, each non-trivial element moves every point of C2. Therefore,

by Theorem 3.1, we can characterise regular groups using a dynamical property of V .

That is, a group is regular if and only if it is isomorphic to a finitely generated subgroup

of V whose non-trivial elements move every point in C2.
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In this chapter we take the association between language theoretic properties of groups

and the dynamics of subgroups of V a step further. The context-free groups, or CF
groups, were classified by Muller and Schupp [24],[25].

Theorem 3.4 (Muller, Schupp). A finitely generated group G is a CF group if and only

if it is virtually free.

In this chapter we will provide a characterisation for the CF groups using dynamical

properties of subgroups of V . The particular subgroups of V were first introduced by

Bleak and Salazar-Diaz [9] and can informally be described as subgroups whose non-

trivial elements act freely on an open set of C2. These subgroups are called demon-

strative subgroups of V , and the set of demonstrable subgroups is denoted by ḊV,C2 .

Any group isomorphic to a demonstrative subgroup of V , is called a demonstrable

group for V . We denote the class of demonstrable groups for V by DV,C2 .

The main result of this chapter is as follows.

Theorem 3.5. A group G is a CF group if and only if it is finitely generated and in

the class DV,C2.

Theorem 3.5 is a parallel result to Lemma 3.3, where the condition placed upon the

group G has been weakened so that its corresponding subgroup in V only has to act

freely on an open set of C2 rather than the whole space. Thus Theorem 3.5 continues

the relationship between groups defined by language theoretic properties and groups

defined by dynamics in V . If Lehnert’s conjecture is true, the relationship would then

include the coCF groups, which would be characterised by subgroups of V without any

restriction on their dynamics.

3.1 Statement of results

The work in this chapter answers two questions proposed separately in two different

papers. The first question arose in [3], in which the authors investigate a class of groups

which were suggested as potential counterexamples to Lehnert’s conjecture that V is a

universal coCF group. They proved these groups were coCF and thus if any are shown

to be non-embeddable into V then Lehnert’s conjecture will have been proven to be

false. We investigate these groups in far more detail in the final two chapters of this

work.

In the course of [3] the authors ask a question regarding demonstrable groups for V .

Question 1.2 of [3]. Does there exist a demonstrative embedding of F2 into V ?
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We answer this question here in the affirmative. Indeed, by using a further result of

theirs, we show that all the countable virtually free groups are also demonstrable for V .

Theorem 3.6. The countable virtually free groups are demonstrable for V .

Some ramifications of Theorem 3.6 can understood by considering the work done by

Holt, Rees, Röver and Thomas in [20]. In [20] they show that class of coCF groups is

closed under four operations.

1. Passing to a finitely generated subgroup

2. Passing to a finite index overgroup

3. Taking finite direct products

4. Taking the restricted wreath product of a coCF group with a CF top-group.

If V is a universal coCF group then its set of finitely generated subgroups should also

be closed under the same operations. The first three operations were already known

to be satisfied by the set of finitely generated subgroups V . A theorem of Bleak and

Salazar-Dı́az in [9] states the following.

Theorem 1.2 [9] If G ≤ V and H is a demonstrable group from DV,C2 then the restricted

wreath product G oH embeds into V .

Recall that by Theorem 3.4 a finitely generated group is coCF iff it is virtually free.

Therefore, by Theorem 3.6 we have the following corollary.

Corollary 3.7. The finitely generated subgroups of V are closed under taking the re-

stricted wreath product of a coCF group with a CF top-group.

The second question we (partially) answer in this chaper was raised by Bleak and

Salazar-Dı́az in [9]. In their introduction they pose four questions, the third of which

asks;

Question 3 of [9] (paraphrased): Can one find a universal description of the demon-

strable groups of V ?

In the second half of this chapter we prove the following theorem which answers the

question above for finitely generated demonstrable groups.

Theorem 3.8. If G is finitely generated and in the class DV,C2, then G is a CF group.

Therefore, the main result of this chapter, Theorem 3.5, follows as a consequence of

Theorem 3.6 and Theorem 3.8.
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3.2 Demonstrable groups

Definition 3.9. Suppose H is a group that acts on a space X. We say that G is a

demonstrative subgroup of H with respect to X if and only if there exists a non-

empty open subset U in X such that for any two elements g1 and g2 in G if g1 6= g2

then

Ug1 ∩ Ug2 = ∅.

We define ḊH,X to be the set of all demonstrative subgroups of H with respect to X.

A group G is in the class of demonstrable groups for H with respect to X, denoted

by DH,X , if and only if G is isomorphic to a subgroup of H in ḊH,X . The open set U

used in the definition above we call a demonstration set, and is often not unique.

Example 3.10. Consider the group H = (R,+) and its subgroup G = (Z,+). Both

of these groups act on the real line R in the usual way. Let U = (a1, a2) be some

open interval of R such that a2 − a1 < 1. Then for any z in G, z acts on U by

Uz = (a1 + z, a2 + z). Thus for z1 and z2 in G such that z1 6= z2 the intersection

Uz1 ∩ Uz2 must be empty. Hence G is a demonstrative subgroup of H and the group

(Z,+) is a demonstrable group in the class DH,R.

Recall that Thompson’s group V has a natural action on the Cantor space C2 (see

Chapter 2). When we refer to the demonstrative subgroups of V we will always mean

with respect its natural action on the space C2. In [9] the authors give some isomorphism

types of the demonstrable groups of V .

Lemma 1.1 of [9] Let A be the smallest class of groups such that

1. A contains all finite groups,

2. A contains Z,

3. A contains Q/Z,

4. A is closed under

(a) isomorphism,

(b) passing to a subgroup,

(c) taking the direct product of a finite member with any other member.

Then if G is in A then G is in DV,C2.

They go on to prove three embedding results around demonstrable groups, one of which

is important for the main result of this chapter. We begin however with a result that

gives us an alternative description for demonstrative groups.
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Lemma 3.11. A subgroup G ≤ V is demonstrative if and only if there exists a basic

open set (cone) buc in C2 such that buc ∩ bucg = ∅ for all nontrivial g in G.

Proof. Suppose G is a demonstrative subgroup of V . Then there exists an open set U

that satisfies the properties of a demonstration set. The set U can be decomposed into

the union of basic open sets. Suppose buc ⊂ U . Therefore, the set buc must also be

a demonstration set for G, that is, bucg1 ∩ bucg2 = ∅ for all g1 6= g2 in G. Therefore

buc ∩ bucg = ∅ for all g in G.

Suppose instead that G is a subgroup of V and buc is a cone such that buc ∩ bucg = ∅
for all nontrivial g in G. We claim that G is demonstrative with demonstrative set buc.
Suppose g1 and g2 are elements of G such that g1 6= g2 and bucg1 ∩ bucg2 = U 6= ∅.
Therefore buc ∩ bucg2g

−1
1 6= ∅ which is a contradiction. Therefore bucg1 ∩ bucg2 = ∅ for

all g1 6= g2 and thus G is a demonstrative subgroup of V .

If G is a demonstrative group for V with a demonstrative open set buc then we call u a

demonstrative node for G.

Using this lemma we now sketch a proof of Theorem 1.2 in [9] which is important in

proving the fourth closure property of Corollary 3.7.

Theorem 1.2 [9] If G ≤ V and H is a demonstrable group from DV,C2 then the restricted

wreath product G oH embeds into V .

Proof. We give a sketch of the proof that was given in more generality in [9]. It is

known that Thompson’s group V is a group that acts with local realisation on C2 (see

[9]). That is, given any open set U ⊂ C2, there exists a subgroup VU ≤ V such that

VU ∼= V and the support VU is contained within U . Therefore for every cone buc and

every subgroup G of V , there exists an isomorphic copy of G in V whose support is

contained entirely in buc. We call this subgroup Gu.

Let G and H be subgroups of V such that H is demonstrative with a demonstration

node u. Let Gu be the subgroup of V isomorphic to G whose support is completely

contained within buc. For each h ∈ G define the subgroup Ghu := {h−1gh : g ∈ G},
which isomorphic to G. As H is a demonstrative subgroup Gu ∩ Ghu = ∅ for all non-

trivial h ∈ H and thus for all h1 6= h2, Gh1u and Gh2u have disjoint support. Therefore

〈Gu, H〉 ∼= G oH.
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3.3 The countable virtually free groups are in the class

DV,C2

By the end of this section we will have proven Theorem 3.6, that the countable virtually

free groups are demonstrable for V . However the main content of the section will be

taken up with proving a smaller result.

Lemma 3.12. The modular group Γ ∼= C2 ∗ C3 is contained in the class DV,C2.

As the class of demonstrable groups is closed under passing to subgroups, the lemma

implies that any countable free group admits a demonstrative embedding into V . In [3]

the authors show that the class of demonstrable groups for V is closed under passage to

finite index overgroups, which will then give us the main result.

Free products

We first formally define the free product of groups A ∗ B, basing our definition on the

one given in Chapter 2 of [10]. Suppose A and B are groups such that A ∩ B = {1}.
We define a reduced word over the set A ∪ B, to be a string g1g2g3 . . . gn, where

gi ∈ (A ∪B) \ {1} such that for all 1 ≤ i ≤ n− 1 the elements gi and gi+1 do not lie in

the same group. The reduced word of the identity element is represented by the empty

string ε.

For the reduced words x = g1 . . . gn and y = h1 . . . hm we define the product x · y by

x · y =



g1 . . . gnh1 . . . hm if gn and h1 are in opposite groups

g1 . . . gn−1zh2 . . . hm if gn and h1 are both in the same group

and gnh1 = z 6= 1

(g1 . . . gn−1) · (h2 . . . hm) if gn and h1 are both in the same group

and gnh1 = 1.

Under the multiplication above the set of reduced words form a group. The inverse of

the reduced word x = g1g2 . . . gn is the reduced word x−1 = g−1
n . . . g−1

2 g−1
1 . We call this

group the free product of A and B and denote it by A ∗B.

We introduce a function len : A ∗ B → N0 that takes a reduced word and outputs the

number of elements in the string, that is, len(g1 . . . gn) = n. Informally we call n the

length of the reduced word.

There also exists an alternative definition for the free product using group presentations.

Lemma 3.13. Suppose A ∼= 〈X|R〉 and B ∼= 〈Y |S〉 are two groups. Then the group
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A ∗B has presentation

A ∗B ∼= 〈X t Y |R t S〉.

3.3.1 Embedding Γ into V

The modular group Γ is the group of Möbius transformations of the upper half complex

plane which have the form

z 7→ az + b

cz + d

such that ad − bc = 1. For our purposes there are only two properties of Γ that are

important. Firstly, that it is isomorphic to the free product of the cyclic group of order

two and the cyclic group of order three, namely Γ ∼= C2 ∗C3. Secondly, that it contains

the free group on two generators as a subgroup.

The cyclic group of order m is given by the presentation 〈x|xm〉. Therefore the group

C2 ∗ C3 has presentation 〈α, β|α2, β3〉 where subgroups 〈α〉 and 〈β〉 are isomorphic to

C2 and C3 respectively. The purpose of this section is to find a subgroup of V that is

isomorphic to C2 ∗ C3. In the section following this we will show that this subgroup is

demonstrative.

We begin with two elements from Thompson’s group V , which we call a and b, defined

by the two tree pairs below.

1

2

3

4

65

a
6

5

4

3

12

Figure 3.1: The tree pair representative (Da, σa,Ra) for a ∈ V
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1

2 5 6

3 4

b
5

6 3 4

1 2

Figure 3.2: The tree pair representative (Db, σb,Rb) b ∈ V

We denote the tree pairs in Figure 3.1 and Figure 3.2 by (Da, σa,Ra) and (Db, σb,Rb)
respectively. Notice that for each tree pair the domain tree is identical to the range

tree, that is Da = Ra and Db = Rb. Thus both a and b are of finite order, determined

by their respective permutations. The permutation on the leaves of (Da, σa,Ra) is the

product of transpositions σa = (1, 6)(2, 5)(3, 4), thus σ2
a = 1 and the order of a is two.

The permutation on the leaves of (Db, σb,Rb) is the product of two disjoint three cycles

σb = (1, 3, 5)(2, 4, 6) and thus the order of b is three. Let G = 〈a, b〉 be the subgroup of

V generated by the elements a and b.

Lemma 3.14. The subgroup G = 〈a, b〉 ≤ V factors as 〈a〉 ∗ 〈b〉.

To prove Lemma 3.14 we use Fricke and Klein’s well known criterion, the Ping-Pong

Lemma. The version we give here is based on the one found in [15].

Lemma 3.15 (Ping-Pong Lemma). Let G be a group acting on a set X and let A and B

be two subgroups of G such that |A| ≥ 2 and |B| ≥ 3. Suppose there exist two non-empty

subsets XA and XB such that the following three conditions hold

1. XA 6⊂ XB

2. for all non-trivial a ∈ A, (XB)a ⊂ XA

3. for all non-trivial b ∈ B, (XA)b ⊂ XB.

Then 〈A,B〉 ∼= A ∗B.

Proof of Lemma 3.15. Let G be a group acting on a set X and let A and B be two

subgroups of G that satisfy the properties described in the lemma. To prove the result

we need to show that any reduced word in {A,B}∗ is non-trivial in 〈A,B〉. Consider

the reduced word w1 = b1a1b2a2 . . . bn in {A,B}∗ where ai ∈ A and bi ∈ B. Then w1

acts on the set XA and we have the following sequence of containments;

(XA)b1a1b2a2 . . . bn ⊂ (XB)a1b2a2 . . . bn ⊂ (XA)b2a2 . . . bn ⊂ . . . ⊂ (XA)bn ⊂ (XB).
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As XA 6⊂ XB the element represented by w1 must have acted on XA in a non-trivial

way and thus cannot be trivial.

Let w2 = a1b1a2b2 . . . an be a reduced word and consider b−1w2b where b ∈ B\{1}. Then

b−1w2b is a word in the same form as w1 and hence is non-trivial by the same argument.

Therefore w2 must also be non-trivial. Let w3 = a1b1a2b2 . . . anbn be a reduced word

and consider c−1w3c where c ∈ B \{1, b−1
n }. Then c−1w3c reduces to a word in the same

form as w1 and thus by the same argument as before w3 must be non-trivial. Finally let

w4 = b1a1b2a2 . . . bnan be a reduced word and consider d−1w4d where d ∈ B \ {1, b1}.
Then d−1w4d reduces to a word in the same form as w1 and thus by the same argument

as before w4 must also be non-trivial. As every non-trivial reduced word in {A,B}∗ has

the same form as either w1, w2, w3 or w4 we conclude that they all represent non-trivial

elements in 〈A,B〉 and hence 〈A,B〉 ∼= A ∗B.

Proof of Lemma 3.14. We use Lemma 3.15 to prove the result. First we identify the

subgroups 〈a〉 and 〈b〉 with the groups A and B from the lemma. Define the subsets

XA = b111c and XB = b10c.

Immediately we see that XA 6⊂ XB and the first condition of the lemma is satisfied.

Now observe the action of a on the set XB;

(XB)a = (b10c)a = b11110c ⊂ b111c = XA.

This confirms the third requirement. In 〈b〉 there are two non-trivial elements, b and

b−1. Observe (XA)b = (b111c)b = b100c ⊂ b10c = XB, and (XB)b−1 = (b111c)b−1 =

b1011c ⊂ b10c = XB. Thus the last of the three conditions in Lemma 3.15 is met and

thus 〈a, b〉 factors as 〈a〉 ∗ 〈b〉.

By Lemma 3.14 there exists a copy of the group C2 ∗ C3
∼= 〈α, β|α2, β3〉 in V given by

the embedding α 7→ a and β 7→ b. We now go on to show that this subgroup in V is

demonstrative.

3.3.2 Proving that C2 ∗C3 is demonstrable for V

In what follows we will prove that the subgroup G is demonstrative in V with demon-

stration set b0c. As G is the free product 〈a〉 ∗ 〈b〉, each element g ∈ G can be written

by a unique reduced word. The proof that G is a demonstrative subgroup for V , begins

with an induction on the length of the reduced words over {a} ∪ {b, b−1}.

Lemma 3.16. For every non-trivial g ∈ G,

b0c ∩ b0cg = ∅
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Proof. The proof will proceed on the length of reduced words in G.

Suppose g is a reduced word such that len(g) = 1. There are three options, namely a,

b and b−1. Suppose g = a, then b0cg = b11111c. Further, if g = b, then b0cg = b1010c.
Finally suppose g = b−1, then b0cg = b110c. Thus for all reduced words of length one

in G the lemma holds.

We now consider all elements in G with reduced length greater than one. Let P(n) be

the statement

b0cg ⊆

b111c, if g ends with generator a

b10c, if g ends with either of the generators b or b−1

for all reduced words g over {a} ∪ {b, b−1}, such that len(g) = n ≥ 2.

We will proceed to prove by induction that P (n) holds for all n ≥ 2. Suppose g ∈ G
such that len(g) = 2. There are four options, namely, ab, ab−1, ba and b−1a. Suppose

g = ab, then b0cg = b10011c ⊂ b10c. Suppose g = ab−1, then b0cg = b101111c ⊂ b10c.
Suppose g = ba, then b0cg = b1111010c ⊂ b111c. Finally suppose g = b−1a, then

b0cg = b1110c ⊂ b111c. Therefore P(2) holds.

Suppose P(k) is true for all reduced words g with len(g) = k such that 2 ≤ k ≤ n. Now

suppose h is a reduced word such that len(h) = n+ 1. Let h′ be the prefix of length n

in h.

Suppose h′ ends with a, then as h is a reduced word there are two possibilities, either

h = h′b or h = h′b−1. As len(h′) = n, by our inductive assumption b0ch′ ⊆ b111c.
Thus if h = h′b, then b0ch = b0ch′b ⊆ b111cb = b100c and P(n + 1) is true. Suppose

h = h′b−1, then b0ch = b0ch′b−1 ⊆ b111cb−1 = b1011c and again P(n+ 1) is true.

Suppose instead that h′ ends with either b or b−1. Then there is only one possibility for

h, namely h = h′a. As len(h′) = n, by our inductive assumption b0ch′ ⊆ b10c. Thus

b0ch = b0ch′a ⊆ b10ca = b11110c and P(n+ 1) is true.

Therefore for all reduced words h such that len(h) = n + 1, the statement P(n + 1) is

true, and therefore by induction P(n) must be true for all reduced words g such that

len(g) ≥ 2. Therefore, the lemma holds for all elements of G.

Therefore, by Lemma 3.11, we have the following corollary.

Corollary 3.17. The subgroup G is a demonstrative subgroup of V

Therefore this proves Lemma 3.12, that the modular group Γ ∼= C2∗C3 is a demonstrable

group in DV,C2 .
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3.3.3 Proof of Theorem 3.6

Bleak and Salazar-Dı́az observe the following in Lemma 3.2 [9].

Observation 3.18 (Bleak, Salazar-Dı́az). Suppose that G is a demonstrative group

with m serving as a demonstration node. Then given any subgroup H ≤ G, H is also

demonstrative with demonstration node m.

This observation, together with the fact that the free group on two generators F2 is

isomorphic to the subgroup 〈[a, b], [a, b−1]〉 ≤ G (where the bracket [x, y] represents the

commutator x−1y−1xy), implies the following corollary.

Corollary 3.19. The free group on two generators, F2, is in the class D(V,C2)

Virtually free groups are groups that contain a free group as a finite index subgroup.

While it is known (see [26, 9]) that if a group G embeds in V , then any finite index

over-group of G also embeds into V , the paper of Berns-Zieve et al [3], extends this with

Theorem 3.3, which we paraphrase below.

Theorem 3.20 (Theorem 3.3 in Berns-Zieve et al [3]). Suppose G is a group which

embeds in R. Thompson’s group V . If G ≤ H where [H : G] = m, for some m ∈ N
and G embeds as a demonstrative subgroup in V , then H also embeds as demonstrative

subgroup of V .

The theorem tells us that D(V,C2) is closed under taking finite index overgroups. As all

countable free groups embed into F2 and since virtually free groups are, by definition,

finite index overgroups of free groups, by Corollary 3.19 countable virtually free groups

are contained within D(V,C2). This proves Theorem 3.6.

3.4 Finitely generated groups in DV,C2
are virtually free

In this final section we will prove Theorem 3.8, stated at the beginning of the chapter

but repeated here for convenience.

Theorem 3.8 If G is finitely generated and in the class DV,C2, then G is a coCF group.

To prove our theorem we must be able to construct a push-down automaton that accepts

the word problem for a given finitely generated demonstrative group. (See Definition

2.9 in Chapter 2 for the definition of a push-down automaton.)

The section will proceed as follows. We begin with a motivating example which demon-

strates how we use the property of being demonstrative in V to create a push down

automaton accepting the group’s word problem. Subsequent to the example, we then
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give the procedure for creating a push down automaton which accepts the word problem

for an arbitrary demonstrative subgroup of V .

The example below is taken from [9] where they give a demonstrative embedding of Z
generated by the element g given in Fig. 3.3. The demonstrative node n is at address

0. Recall that we will abuse notation slightly and say that n = 0.

1

4

2 3

g

3

2

1 4

Figure 3.3: The generator of a demonstrative copy of Z inside V . The demonstrative
node n has address 0.

The subgroup G = 〈g〉 is isomorphic to the group Z given by presentation 〈g|∅〉. We

abuse notation by using the g to represent the element of the subgroup G and the formal

symbol in the presentation 〈g|∅〉. Where confusion may arise we will always clarify which

definition of g we are using.

The property that G is a demonstrative subgroup of V can be seen by considering where

the elements of the group map the cone b0c. Notice that any element of the form gp,

for some positive integer p, takes the node 0 to the node 1p10. Conversely, notice that

any element of the form g−p takes the node 0 to the node 10p1. Thus b0c ∩ b0cz = ∅ for

all non-trivial z in G. It is already known that Z is a CF-group so our example gives us

no new result, but the method we use below to create the push-down automaton that

accepts the word problem of G = 〈g|∅〉, can be generalised for every finitely generated

demonstrative subgroup of V .

Let A be our PDA that accepts the word problem of G. A has three states {q0, qr, qa}
where q0 is the start state and qa is the only accept state. The alphabet Λ of the

automaton is the set Λ = {g, g−1}, consisting of the generator and its formal inverse

symbol from the presentation 〈g|〉. Our stack alphabet is the set Γ = {#, 0, 1}, where

# is a special bottom-of-the-stack symbol. A is defined by the transition table given by

Table 3.1 below.
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Current State Input Stack Top Stack Replacement New State

q0 ε ∅ 0# qa

qa g 0 110 qr

qa g−1 0 101 qr

qr g 0 110 qr

qr g 100 10 qr

qr g 11 111 qr

qr g−1 0 101 qr

qr g−1 10 100 qr

qr g−1 111 11 qr

qr g 101# 0# qa

qr g−1 110# 0# qa

Table 3.1: The transition table of the automaton accepting the word problem of G ∼= Z

We also provide a visual representation of A in Fig. 3.4.

q0 qa qr
(ε,#, 0#)

(g, 0#, 101#)

(g−1, 0#, 110#)

(g, 101#, 0#)

(g−1, 110#, 0#)

(g, 0, 110) (g−1, 0, 101)

(g, 100, 10) (g−1, 10, 100)

(g, 11, 111) (g−1, 111, 11)

Figure 3.4: A graphical representation of the automata A that accepts the word problem
of G.

The automaton attempts to model the action of the generators on the demonstrative

node 0. The stack will represent the location of the demonstrative node under the

action of the element defined by the word read by the automaton so far. Whenever the

automaton A processes a letter g or g−1, it amends the stack according to the prefix

replacement rules defined for the appropriate element g or g−1 in G.

The automaton A begins with active state q0 by loading the stack with the address of

the demonstrative node n = 0, and moving the active state to the accept state qa. Note

that none of the input string is read at this time. Whenever the active state is qa, if

A has finished reading the input then it accepts the word. However, if the active state

is qa and there are still more letters to be read then A will process the next letter, the
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action of which will move the active state to qr and modify the stack according to the

prefix replacement rules. From the state qr there are circumstances which allow the

active state to return to qa. Namely, whenever the active state is qr and A processes a

letter and the resultant stack is “0#”, then the active state transitions to qa.

By the definition of demonstration nodes, a demonstration node under the action of an

element w of the demonstrative group is taken to itself if and only if w is the identity

element. By construction, our automata has stack “0#” only when the previously

processed word represents the trivial element. However, this is precisely at the times

that the automaton’s active state is qa.

We now generalise this method into a proof of Theorem 3.8. Note that our choice of

demonstrative node is important. It is possible to choose a demonstrative node that

gets parted by elements of G. Recall from Chapter 2 that an element g ∈ V parts a

node p if and only if g does not induce a prefix replacement rule of the form p1 7→ q1

for some prefix p1 of p and some q ∈ {0, 1}∗. We will show that for the automaton to

work we need to choose a node that will not get parted under any element of G. The

following lemma shows that such a node will exist.

Lemma 3.21. Let G be a finitely generated, demonstrative subgroup of V , with demon-

strative node n. Then there exists a depth d ∈ N such that a cone bmc ⊂ bnc gets parted

if and only if depth(m) ≤ d.

Proof. Let G = 〈X〉 be a finitely generated, demonstrative subgroup of V , with demon-

strative node n and generating set X. For each generator xi ∈ X± there exist finitely

many nodes which are parted by xi. Only those in the interior of the domain tree of the

irreducible representative of xi have the potential to be parted by the element. Let N be

the finite set of all nodes parted by the generators of G. Suppose the element g ∈ G parts

a cone bmc. Consider g decomposed as a product of generators g = x1x2 . . . xp. Then as

the product x1x2 . . . xp acts on the cone bmc, each xi+1 acts on the set bmcx1x2 . . . xi

for all 1 ≤ i < p. As g parts bmc there must exist a minimal q ≤ p such that xq parts

the cone bmcx1 . . . xq−1. As xq is a generator, the cone [a] = bmcx1 . . . xq−1 must be

in the set N . We say that the decomposition g = x1x2 . . . xp parts the cone bmc at [a]

with the subproduct g′ = x1x2 . . . xq.

Let Sk be the set of all such cones bmc ⊂ bnc of depth k that get parted by some

element of G. Suppose for a contradiction that for every k ∈ N there exists k′ > k

such that Sk′ is non-empty. Let [m1] ∈ Sk for some k. Then by our assumption there

exists some [m2] ∈ Sk′ where k′ > k. Suppose g and h are elements of G that part

[m1] and [m2] respectively for the decompositions g = x1x2 . . . xs and h = y1y2 . . . yt,

where xi, yi ∈ X. As N is finite, by the pigeon-hole principle it must be possible to find

such [m1], [m2], g and h such that g and h part [m1] and [m2] respectively at the same
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[a] ∈ N for the decompositions given above. Thus there exists q ≤ s and r ≤ t such

that g′ = x1x2 . . . xq, h
′ = y1y2 . . . yr and [m1]g′ = [m2]h′. However, as [m1], [m2] ⊂ bnc,

this implies bncg ∩ bnch 6= ∅. Observe that g and h must be distinct as [m1] 6= [m2].

Therefore, as bnc is a demonstrative node this is a contradiction by Definition 3.9.

We can now go on to describe how to construct a PDA that accepts the word problem

of a demonstrable group of V .

Proof of Theorem 3.8. Suppose Ĝ is a finitely generated, demonstrable group, isomor-

phic to a demonstrative subgroup G of Thompson’s Group V where G is finitely gener-

ated with set of generators X = {g1, g2, . . . , gm}. Suppose n ∈ {0, 1}∗ is a demonstrative

node for G that does not get parted by any element of G. We describe and construct

our automaton A below.

Set the input alphabet to be Λ := X±, the set of generators for G and their inverses.

We note, as we did for the example with Z, that the symbols gi ∈ Λ are formal symbols

from an alphabet, not group elements, and we will make the distinction where confusion

may arise. Set Γ = {#, 0, 1}∗ to be the stack alphabet. The new automaton A will also

have three states q0, qa and qr, where qa is the automaton’s only accept state. We will

describe the transitions from each of these states.

Loading phase: The automaton A begins in the state q0. That state admits one

transition, which loads the stack with the string n# ∈ Γ∗, and transfers the active state

to qa, without reading any of the input. After this transition, the stack will contain

the address of the demonstration node n and the bottom-of-the-stack symbol, with n

written from top to bottom on the stack. (For example if n = 100 then 1 would be at

the top of the stack followed by two 0’s and finally #.) We call this the loading phase.

Reading phase: After the loading phase, A enters the reading phase, where it begins

to read the input string from Λ∗. Each g in the input alphabet represents a generator

from the group. That generator has a unique minimal tree pair representative gT which

defines the homeomorphism. The domain and range trees of gT define two antichains,

{s1, s2, . . . , sj} and {t1, t2, . . . , tj} where (si)gT = ti. These will define our transitions

in the automaton.

Transitions from q0 and qa: When the automaton leaves the state q0 after the

loading phase, the symbols on the stack will be exactly “n#”. For each input letter g

there exists a unique prefix n′ of n contained within the domain antichain. Therefore

from qa we define transitions to the state qr by the tuples of the form (g, n′, (n′)gT ) for

each g in the input alphabet. For each input letter g the automaton removes the string

n′ from the top of the stack and replaces it with the string (n)gT and moves the active

state to qr. This will always be well defined as n is not parted by any element of the
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group G.

Transitions from qr All transitions from qr take the active state to either qr or to qa.

We first add transitions from qr to qr given by the tuples (g, si, (si)gT ). We then add

transitions from qr to qa of the form (g, siw#, (si)gTw#) if (si)gTw = n. This means

that the automaton will only be in the state qa if and only if the stack consists exactly of

the string n#. Note that as n is a demonstrative node the stack cannot contain a string

of the form nv for some finite string v. If it did this would imply that a non-identity

element of G had mapped the cone bnc to the cone [nv] which is not possible as bnc is

a demonstrative set.

We have introduced non-determinism into the automaton. If the stack consists of the

string siw# then the automaton must choose between the two transitions (g, si, (si)gT )

and (g, siw#, (si)gTw#).

When reading a string, the transitions defined above are sufficient to make the automa-

ton well defined on all possible instantaneous descriptions that could arise. That is,

there cannot exist a situation in which for a given input letter g and current stack m,

a transition cannot be found. If that were the case then the stack m would identify a

node which is parted by the element g, which is not possible by our choice of n.

Termination. When we reach the end of the input string, if the automaton is in qa,

then the stack must be n# by construction, and the input string is equivalent to the

identity in our group (by the definition of a demonstrative embedding). If the active

state at end of input is qr then the word is rejected.

The automaton is successful in accepting the word problem by the following reasoning.

The stack initially contains the location of the demonstrative node n. Let w = g1g2 . . . gk

be a string of generators from Λ∗. Each time an input letter gi is read the stack is

updated with the location of the node n after the element g1g2 . . . gi has acted on it.

Therefore if the automaton reads the whole string and the stack consists only of n# then

the equivalent element w ∈ G has fixed the node n. By the previous paragraph, if the

stack ever consists solely of n# then there will have existed a transition that would have

taken the automaton to the active state qa. Therefore, if w = 1G then w will fix n and

there will be a sequence of transitions that will take the automaton to the accept state.

Thus every string equivalent to the identity in G will be accepted. Suppose w 6= 1G.

Then because n is a demonstrative node it cannot be fixed by w. Hence, the automaton

cannot be in the active state qa when it has finished reading w as the stack will not

solely consist of the string n#. Thus A accepts the word problem of G and rejects all

other strings.
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Chapter 4

Presentations for Groups in Faug

In this chapter we change our attention to a class of groups first introduced in [3], which

are suggested by the authors as potential counterexamples to Lehnert’s conjecture. The

groups have their origin in the work by Stefan Witzel and Matthew Zaremsky [33]. In

[33] the authors describe a construction that creates “Thompson-like” groups. These

groups are defined from cloning systems on a family of groups, the details of which we

briefly discuss further down the chapter, but direct the interested reader to the recent

survey by Matthew Zaremsky in [34] for a more thorough description. Examples of

well known groups which arise from such a procedure include the Thompson groups

themselves and the braided Thompson groups Fbr and Vbr.

In addition to the groups stated above, the technology of cloning systems also brings

to light groups previously unstudied. Using the contstruction in [33], Berns-Zieze, Fry,

Gillings, Hoganson and Mathews in [3] introduce a group V(G,θ), where G is a finite group

and θ : G→ G is an endomorphism of G. They go on to prove that V(G,θ) is coCF for all

possible pairs of G and θ. We use Vaug to denote the class of all groups isomorphic to a

group of the form V(G,θ), (where ’aug’ is short for augmentation, a term we will define

further in the chapter). That is, a group H is in Vaug if and only if there exists some

finite group G and endomorphism θ such that H ∼= V(G,θ). The work in this chapter and

was motivated by the following question raised in [3].

Question 4.1. Does there exist some H ∈ Vaug such that H cannot embed into Thomp-

son’s group V ?

If such a group could be found then it would be a counterexample to Lehnert’s conjecture.

However, in what follows we do not study groups from Vaug, but instead consider a

closely related class of groups, Faug. Given a group V(G,θ) we will construct a finitely

generated subgroup which we call F(G,θ). Let Faug denote the class of groups where H ∈
Faug if and only if there exists some finite group G and endomorphism θ such that H ∼=
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F(G,θ). By the properties of coCF groups, as V(G,θ) is coCF its finitely generated subgroup

F(G,θ) must also be coCF . Therefore Faug is also a class of potential counterexamples

to Lehnert’s conjecture. In ordinary Thompson groups theory, one often establishes

properties of F before exploring the related and more complicated properties in T or V .

In the same manner we focus on the class Faug instead of Vaug as the natural first stop

for exploration.

In what follows we construct two group presentations which are isomorphic to F(G,θ), for

all pairs of G and θ. The first presentation we create is an infinite presentation F inf
(G,θ), the

second a finite presentation F fin
(G,θ). One will note that the infinite presentation provides

a clearer and more natural way of interpreting the group than the finite presentation.

This follows a well known property of group presentations, also seen, for example, in

Thompson’s group V (see [8]), where a larger, but perhaps more regular, presentation

provides more clarity regarding the nature of the group than a finite presentation. Al-

though we have been unable to use either of the presentations F inf
(G,θ) or F fin

(G,θ) to find a

group F(G,θ) which does not embed into V , in Chapter 5 we use a variant of F inf
(G,θ) to

show the perhaps surprising result that a subclass of groups from Faug do embed into

V .

Standard definitions and notation

Throughout this chapter, and also Chapter 5, a bold letter n represents the subset

{1, 2, . . . , n} of the natural numbers. We also use Ni to refer to the set of natural

numbers greater than or equal to i. If γ = (x1, x2, . . . , xn) is an n-tuple, then we use

the notation γ(i) = xi to reference the ith entry of γ.

For the rest of the chapter we fix a finite group G of order N with elements gi where

i ∈N and g1 = 1G. We also fix an endomorphism θ : G→ G. This allows us to refer to

the groups V(G,θ) and F(G,θ) as existing objects in our discourse. Additionally we define

two maps δ : N →N and ∆ : N ×N →N such that for all i, j ∈N ,

(i)δ = s if (gi)θ = gs

(i, j)∆ = t if gi · gj = gt.

Also common throughout the chapter is the binary tree with n+ 1 leaves where all but

one of the leaves is a left child. We call this a right vine binary tree and denote it by

Tn.
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n

Figure 4.1: The right vine tree Tn

4.1 Statement of results

In this chapter we create two presentations for the group F(G,θ), where G is a finite group

and θ is any endomorphism of G. The first presentation we create is infinite.

Theorem 4.2. Let G be a finite group of order N , and θ : G→ G be an endomorphism

of G. Then there exists a infinite presentation F inf(G,θ) := 〈X|R〉 for the group F(G,θ)

consisting of three infinite sets of generators and twelve infinite sets of relations.

In the second half of the chapter we use the infinite presentation F inf(G,θ) to create a finite

presentation Ffin(G,θ) by using Tietze transformations. Thus we will prove the following

theorem.

Theorem 4.3. Suppose G is a finite group of order N and θ is an endomorphism of G.

There exists a finite presentation Ffin(G,θ) = 〈Xfin|Rfin〉 for the group F(G,θ) consisting of

2(N + 1) generators and 26 finite sets of relations.

4.2 The groups Vaug

Witzel and Zaremsky in [33] introduced the notion of a cloning system on a family of

groups (Gn)n∈N. From a cloning system they described a procedure for creating a group,

called the generalised Thompson group for the cloning system, or “Thompson-like

group”. In this section we define the cloning system from which the group V(G,θ) is

derived, and prove that it satisfies the conditions necessary for a cloning system given in

[33]. However, we are content to show such a cloning system exists and do not construct

V(G,θ) using the method given [33] as it is detailed and not required to understand the

main results of this chapter. (For more information on the Brin-Zappa-Szép product of

monoids upon which the formal construction of these groups are based see [33] or [34].)

Instead we define V(G,θ) in the same way given in [3], using binary trees in a similar

manner to Thompson’s group V .

59



The literature for cloning systems and Thompson-like groups ([33],[34],[3]) is based on

left actions. Our work with the groups V(G,θ) and F(G,θ) uses right actions and thus we

have translated the standard definitions in the literature from left to right actions. In

what follows, the maps ιm,n and κnk act on the left and ρn acts on the right. This is

consistent with our translation of the literature where the respective maps above instead

act on the opposite sides.

Cloning systems

Let (Hn)i∈N be a direct system of groups with injective maps ιm,n : Hm → Hn for all

m ≤ n. This means that ιn,n : Hn → Hn is the identity map for all n, and for all

l ≤ m ≤ n the composition ιm,n ◦ ιl,m = ιl,n holds. Note that the way we have defined

ιm,n means it acts on the left, that is, ιm,n(h) ∈ Hn for some h ∈ Hm. We fix (Hn)i∈N

and the injective maps ιm,n : Hm → Hn for the rest of this section. To define a cloning

system we need two more families of maps.

A representation map is a homomorphism ρn : Hn → Sn for some n ∈ N. One can

think that a representation map for Hn defines how Hn acts on the set n := {1, 2, . . . , n}.
For ρn to be a representation map we require it to satisfy

(ιm,n(g))ρn = ιm,n((g)ρm)

for all m < n, and all g ∈ Hm. Note that we abuse notation by using ιm,n for both

Hm ↪→ Hn and Sm ↪→ Sn. We fix a family of representation maps (ρn)n∈N for our direct

system of groups (Hn)i∈N.

A cloning map κnk : Hn → Hn+1 is an injective function from the set Hn to the set

Hn+1 where 1 ≤ k ≤ n. Note that it need not be a homomorphism of groups. To be

cloning maps the functions κnk must satisfy the three cloning axioms which we outline

below, plus the additional requirement

κnk ◦ ιm,n = ιm+1,n+1 ◦ κmk

for all k ≤ m ≤ n. We now fix a family of cloning maps (κnk)k≤n for a direct system of

groups (Hn)i∈N.

Definition 4.4 (Cloning system). The tuple

((Hn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k)k≤n)

is called a cloning system if for all 1 ≤ k < m ≤ n and g, h ∈ Hn it satisfies the three

cloning axioms, given by;

C1: (Cloning products) κnk(gh) = κnk(g) · κn(k)(g)ρn
(h)
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C2: (Products of cloning maps) κn+1
k ◦ κnm = κn+1

m+1 ◦ κnk

C3: (Compatibility) (i)(κnk(g))ρn+1 = (i)(ςnk ((g)ρn))

where (ςnk )k≤n are the set of cloning maps for Sn, such that for all σ ∈ Sn

(i)(ςnk σ) =



(i)σ if i ≤ k and (i)σ ≤ (k)σ

(i)σ + 1 if i ≤ k and (i)σ > (k)σ

(i− 1)σ if i > k and (i− 1)σ < (k)σ

(i− 1)σ + 1 if i > k and (i− 1)σ ≥ (k)σ.

(4.1)

The cloning system for V(G,θ)

We will now introduce a particular class of groups around which we will construct a

cloning system. From this cloning system we will define the class of groups Vaug that

is first defined in [3]. (Although the cloning system is mentioned in [3] they do not

provide a proof. In what follows below we prove that the system we create satisfies the

conditions for a cloning system given in Definition 4.4.) Let G be a finite group and

let θ : G → G be an arbitrary endomorphism of G. Define Hn to be the permutation

wreath product

Hn =

n⊕
i=1

Gi oφ Sn,

where Gi ∼= G for all 1 ≤ i ≤ n, Sn is the symmetric group on n points, and φ : Sn →
Aut(

⊕n
i=1Gi) such that (g1, . . . , gn)φ(σ) = (g(1)σ, . . . , g(n)σ). The map φ defines an

action of Sn on
⊕n

i=1Gi where σ ∈ Sn acts on an element (g1, . . . , gn) by permuting the

entries by σ−1. Thus if ((a1, a2, . . . , an), σ1) and ((b1, b2, . . . , bn), σ2) are two elements of

Hn then their product

((a1, a2, . . . , an), σ1)((b1, b2, . . . , bn), σ2)

is equal to

((a1b(1)σ1 , a2b(2)σ1 , . . . , anb(n)σ1), σ1 · σ2).

For integers m ≤ n we define an injective map ιm,n : Hm → Hn by

ιm,n((g1, g2, . . . , gm), σ) = ((g1, g2, . . . , gm, 1G, 1G, . . . , 1G), σ′), (4.2)

where

(i)σ′ =

(i)σ if i ≤ m

i otherwise.
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The groups (Hn)n∈N together with the set of maps (im,n)m≤n, form a direct system of

groups and we set H := lim−→(Hn). We define the representation map ρn : Hn → Sn as

(h)ρn = σ

for each h = ((g1, g2, . . . , gn), σ) in Hn.

The cloning maps κnk : Hn → Hn+1 we define as

κnk((g1, . . . , gk, gk+1, . . . , gn), σ) = ((g1, . . . , gk, (gk)θ, gk+1, . . . , gn), ςnk σ) (4.3)

where ςnk : Sn → Sn+1 is the cloning map defined in (4.1). We fix the definitions of the

representation maps and the cloning maps for the rest of the chapter.

We now go on to prove that the tuple C(G,θ) := ((Hn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k)k≤n)

is a cloning system. We first prove the requirements on the maps (ρn)n∈N and (κnk)k≤n

with regards to the injective maps (ιm,n)m≤n.

Proposition 4.5. The representation map ρn : Hn → Sn satisfies the condition

(ιm,n(h))ρn = ιm,n((h)ρm)

for all m < n and h ∈ Hm, where we use ιm,n for both maps Hm ↪→ Hn and Sm ↪→ Sn.

Proof. Let h = ((g1, . . . , gm), σ) be an element of Hm. Then by (4.2) we have

ιm,n(h) = ((g1, . . . , gm, 1G, 1G, . . . , 1G), σ′),

where

(i)σ′ =

(i)σ if i ≤ m

i otherwise.

Therefore (ιm,n(h))ρn = σ′.

Consider instead ιm,n((h)ρm). By definition, (h)ρm = σ, and the canonical injection of

σ from Sm to Sn is σ′, therefore (ιm,n(h))ρn = ιm,n((h)ρm) holds.

Proposition 4.6. The cloning maps (κnk)k≤n and the injective maps (ιm,n)m≤n satisfy

the rule

κnk ◦ ιm,n = ιm+1,n+1 ◦ κmk

for all k ≤ m ≤ n.

Proof. Let h = ((g1, . . . , gk, gk+1, . . . , gm), σ) be an element of Hm. Then ιm,n(h) =

((g1, . . . , gk, gk+1, . . . , gm, 1G, 1G, . . . , 1G), σ′), where (i)σ′ = (i)σ if 1 ≤ i ≤ m and (i)σ =
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i otherwise. Then κnk(ιm,n(h)) = ((g1, . . . , gk, (gk)θ, gk+1, . . . , gm, 1G, 1G, . . . , 1G), ςnk σ
′).

As (i)σ′ = i for all i > m, k ≤ m, and σ(k) ≤ m, the permutation (i)(ςnk (σ′)) could be

written as

(i)(ςnk σ
′) =



(i)σ if i ≤ k and (i)σ ≤ (k)σ

(i)σ + 1 if i ≤ k and (i)σ > (k)σ

(i− 1)σ if i > k and (i− 1)σ < (k)σ

(i− 1)σ + 1 if m+ 1 ≥ i > k and (i− 1)σ ≥ (k)σ

i if i > m+ 1

Suppose instead we act on h with κmk first. Then κmk ((g1, . . . , gk, gk+1, . . . , gm), σ) =

((g1, . . . , gk, (gk)θ, gk+1, . . . , gm), ςmk σ), where ςmk σ is the permutation defined in (4.1).

Applying the map ιm+1,n+1 to ((g1, . . . , gk, (gk)θ, gk+1, . . . , gm), ςmk σ) gives

((g1, . . . , gk, (gk)θ, gk+1, . . . , gm, 1G, . . . , 1G), (ςmk σ)′)

where (ςmk σ)′(i) is ςmk σ(i) if 1 ≤ i ≤ m+ 1 and just i otherwise. Observe that (ςmk σ)′ =

ςnk σ
′ and therefore (κnk ◦ ιm,n)(h) = (ιm+1,n+1 ◦ κmk )(h).

We can now go on to prove that C(G,θ) is a cloning system.

Proposition 4.7. The tuple C(G,θ) := ((Hn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k)k≤n) is a cloning

system.

Proof. To prove that C(G,θ) := ((Hn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (κ
n
k)k≤n) is a cloning system

we have to show that C(G,θ) satisfies the three cloning conditions given in Definition 4.4.

In the proof below we use the result from [33] that the tuple

((Sn)n∈N, (ιm,n)m≤n, (ρn)n∈N, (ς
n
k )k≤n),

where the cloning maps (ςnk )k≤n are those defined in (4.1), is a cloning system. (We note

that the maps (ιm,n)m≤n and (ρn)n∈N are here defined for the family of groups (Sn)n∈N,

where ρn is just the identity map on Sn).

C1: Cloning a product

Let h1 = ((a1, a2, . . . , an), σ1) and h2 = ((b1, b2, . . . , bn), σ2) for ai, bi ∈ G and h1, h2 ∈
Hn. Then h1 · h2 = ((a1b(1)σ1 , a2b(2)σ1 , . . . , anb(n)σ1), σ1 · σ2). Cloning the product with

κnk gives

κnk(h1 · h2) = ((a1b(1)σ1 , . . . , akb(k)σ1 , (akb(k)σ1)θ, . . . , anb(n)σ1), ςnk (σ1 · σ2)). (4.4)
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We now consider the product κnk(h1) · κn(k)σ1
(h2) and show that it is equal to (4.4). We

begin by cloning the individual elements.

κnk(h1) = ((a1, . . . , ak, (ak)θ, . . . , an), ςnk σ1)

κn(k)σ1
(h2) = ((b1, . . . , b(k)σ1 , (b(k)σ1)θ, . . . , bn), ςn(k)σ1

σ2)

For ease of notation we introduce the following temporary definitions.

σ′1 := ςnk σ1

σ′2 := ςn(k)σ1
σ2

(a′i)1≤i≤n+1 := (a1, . . . , ak, (ak)θ, . . . , an)

(b′i)1≤i≤n+1 := (b1, . . . , b(k)σ1 , (b(k)σ1)θ, . . . , bn)

where

a′i =


ai if i ≤ k

ai−1 if i > k + 1

(ak)θ if i = k + 1

(4.5)

b′i =


bi if i ≤ (k)σ1

bi−1 if i > (k)σ1 + 1

(b(k)σ1)θ if i = (k)σ1 + 1

(4.6)

Therefore the product κnk(h1) ·κn(k)σ1
(h2) becomes ((a′ib

′
(i)σ′1

)1≤i≤n+1, σ
′
1 ·σ′2). We imme-

diately note that σ′1 · σ′2 = ςnk σ1 · ςn(k)σ1
σ2 = ςnk (σ1 · σ2) by Example 2.9 in [33].

To determine each a′ib
′
(i)σ′1

there are five cases to consider.

If i ≤ k and (i)σ1 ≤ (k)σ1 then

a′ib
′
(i)σ′1

= aib
′
(i)σ′1

by (4.5)

= aib
′
(i)σ1

by (4.1)

= aib(i)σ1 by (4.6)

If i ≤ k and (i)σ1 > (k)σ1 then

a′ib
′
(i)σ′1

= aib
′
(i)σ′1

by (4.5)

= aib
′
(i)σ1+1 by (4.1)
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= aib(i)σ1 by (4.6)

If i > k + 1 and (i− 1)σ1 < (k)σ1 then

a′ib
′
(i)σ′1

= ai−1b
′
(i)σ′1

by (4.5)

= ai−1b
′
(i−1)σ1

by (4.1)

= ai−1b(i−1)σ1 by (4.6)

If i > k + 1 and (i− 1)σ1 > (k)σ1 then

a′ib
′
(i)σ′1

= ai−1b
′
(i)σ′1

by (4.5)

= ai−1b
′
(i−1)σ1+1 by (4.1)

= ai−1b(i−1)σ1 by (4.6)

If i = k + 1 then

a′ib
′
(i)σ′1

= (ak)θb
′
(i)σ′1

by (4.5)

= (ak)θb
′
(k)σ1+1 by (4.1)

= (ak)(b(k)σ1)θ by (4.6)

Therefore (a′ib
′
(i)σ′1

)1≤i≤n+1 = (a1b(1)σ1 , . . . , akb(k)σ1 , (akb(k)σ1)θ, . . . , anb(n)σ1). Hence

κnk(h1) · κn(k)σ1
(h2) = κnk(h1 · h2) and C1 is verified.

C2: A product of cloning maps

Let h = ((g1, . . . , gn), σ) be an element of Hn and let k and m be integers such

that 1 ≤ k < m ≤ n. First consider the product of cloning maps κn+1
k ◦ κnm act-

ing on h. The maps act on the left so we first act on h with κnm to give κnm(h) =

((g1, . . . , gm, (gm)θ, . . . , gn), ςnmσ). Recall that m > k, thus by applying κn+1
k to κnm(h)

we get the following,

κn+1
k (κnm(h)) =

((g1, . . . , gm, (gm)θ, θ2(gm), . . . , gn), ςn+1
m+1(ςnmσ)) if m = k + 1

((g1, . . . , gk, (gk)θ, . . . , gm, (gm)θ, . . . , gn), ςn+1
k (ςnmσ)) otherwise.

Suppose instead we begin by acting on h with κnk to produce the element κnk(h) =

((g1, . . . , gk, (gk)θ, . . . , gn), ςnk σ). Therefore, for all i > k + 1, the ith component of

(g1, . . . , gk, (gk)θ, . . . , gn) will be equal to the (i− 1)th component of (g1, . . . , gk, . . . , gn)
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from h. Therefore applying κn+1
m+1 to κnk(h) produces the element;

κn+1
m+1(κnk(h)) =

((g1, . . . , gk, (gk)θ, θ
2(gk), . . . , gn), ςn+1

k+1 (ςnk σ)) if m = k + 1

((g1, . . . , gk, (gk)θ, . . . , gm, (gm)θ, . . . , gn), ςn+1
m+1(ςnk σ)) otherwise.

By Example 2.9 in [33], the cloning maps (ςnk )k≤n all satisfy ςn+1
k ◦ ςnm = ςn+1

m+1 ◦ ςnk for

k < m. Thus κn+1
k ◦ κnm = κn+1

m+1 ◦ κnk and C2 is verified.

C3: Compatibility

Let h = ((g1, . . . , gn), σ). Then (h)ρn = σ by definition. Applying the cloning map κnk
to h gives ((g1, . . . , gk, (gk)θ, . . . , gn), ςnk σ). Then (κnk(h))ρn+1 = ςnk σ = ςnk ((h)ρn) and

C3 is verified.

4.2.1 Definition of V(G,θ)

Having shown that C(G,θ) is a cloning system, we now go on to define the Thompson-

like group derived from this cloning system. Recall that G is a finite group, θ is an

endomorphism of G and the group Hn is the symmetric wreath product of G and Sn for

all n ∈ N. For each G and θ we denote by V(G,θ) the group defined by the cloning system

C(G,θ). As mentioned in the introduction to the section, we do not use the construction

of V(G,θ) described in [33] and instead use the definition given in [3].

We begin by defining the elements of V(G,θ) then go on to introduce multiplication be-

tween elements and finally prove that V(G,θ) satisfies the conditions of a group. To define

the elements of V(G,θ) we begin by defining what we call an augmented tree pair.

Definition 4.8 (Augmented tree pair). An augmented tree pair with n leaves is a

tuple A = (D, h,R) where D and R are n-leaved (rooted) binary trees and h = (γ, σ) is

an element of Hn such that γ ∈ Gn and σ ∈ Sn. We call D and R the domain and

range trees of A respectively.

We can draw augmented tree pairs in much the same way that we draw binary tree

pair representatives for V . Let A = (D, (γ, σ),R) be an augmented tree pair with n

leaves. We represent A by first drawing the domain tree on the left and the range tree

on the right. We then label the leaves of D from left to right with the numbers 1 up to

n. The leaves of R are correspondingly labelled such that the ith leaf is labelled with

the number (i)σ−1. The element γ is represented by labelling the ith leaf of D and the

(i)σth leaf of R with the element (i)γ from G. As such, we call γ the decoration of

the augmented tree pair, as the elements of γ decorate the leaves of the trees. Below we

give an example of an augmented tree pair A with three leaves, where σ = (1 2 3) and

γ = (g1, g2, g3).
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3, g3

1, g1 2, g2

[A]

3, g3

1, g1 2, g2

Figure 4.2

Note the difference between our augmented tree pairs and those used by the authors

of [3], in which they only place the decoration on either the domain or the range tree,

and not both. The difference will mean a slight change in the way we multiply elements

using augmented tree pairs. It is also common in the literature ([33],[34],[3]) to put the

domain tree on the right and the range tree on the left, as these articles all use left

actions. In our work we will use the opposite convention, our domain trees will always

be drawn on the left, and the range trees on the right, as we consider our elements to

act on the right which often occurs in literature around Thompson’s groups.

Leaf maps

Let A = (D, (γ, σ),R) be an n-leaved augmented tree pair. It is sometimes more con-

venient to represent A using a collection of maps, similar to prefix replacements in

Thompson’s group V . Let L1 := {d1, d2, . . . , dn} be the antichain represented by D and

L2 := {r1, r2, . . . , rn} be the antichain represented by R. The leaf map for the ith leaf

of A is the map (di, γ(i)) 7→ (r(i)σ, γ(i)). An augmented tree pair can be completely

described by the complete set of leaf maps for its leaves.

Splitting operation

Let A be the set of all augmented tree pairs. An element of V(G,θ) is an equivalence class

of an equivalence relation we will place on A. To define the equivalence relation we need

the following operation.

Definition 4.9 (Splitting operation for augmented tree pairs). Let A = (D, h,R) be

an augmented tree pair. Applying the splitting operation to the kth leaf of A produces

the augmented tree pair A′ = (D′, h′,R′) where D′ is the binary tree created by adding a

caret to the kth leaf of D, R′ is the binary tree created by adding a caret to the (k)(σ−1)th

leaf of R, and h′ = κnk(h).

The splitting operation becomes clearer by considering an example. LetA = (D, (γ, σ),R)

be the augmented tree pair given in Figure 4.2. Applying the splitting operation to the

second leaf of A gives augmented tree pair A′ below.
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4, g3

1, g1

2, g2 3, (g2)θ

[A′]

4, g3

1, g1

2, g2 3, (g2)θ

Figure 4.3: An example of the splitting operation. The tree pair above is created from
[A] in Figure 4.2 by splitting the second leaf.

The augmented tree pair A′ is constructed by adding a caret to the second leaf of the

domain tree of A and to the third leaf of the range tree. The permutation σ = (1 2 3)

has been replaced with σ′ = ςnk (σ) = (1 2 3 4) and the decoration has been replaced

with γ′ = (g1, g2, (g2)θ, g3). Notice that the bijection on the leaves of A′ defined by σ′

matches the bijection on the leaves of A for all shared leaves between the two tree pairs.

This is due to the way we defined the cloning map, and this property will hold any time

we use the splitting operation.

We define an equivalence relation, “ ∼ ”, on the set of all augmented tree pairs A, to

be the symmetric transitive closure of the splitting operation. The reflexive condition

is satisfied by the empty splitting which splits no leaf and returns the original tree

pair. The inverse operation we call shrinking, in which a decorated caret is removed

from both trees of an augmented tree pair. We cannot simply remove any decorated

caret however, it must be one which we could recover using the splitting operation. We

call this type of caret an exposed caret and drop the moniker decorated. Suppose

B = (D, (γ, σ),R) is an augmented tree pair such that for some i there exists a caret of

D consisting of the ith and (i+ 1)th leaves and a caret of R consisting of the (i)σth and

(i + 1)σth leaves with the property that (i + 1)γ = ((i)γ)θ. We would then say that B

has an exposed caret consisting of the ith and (i + 1)th leaves of B. Notice that if we

shrink this caret and produce the tree pair B′ then we can recover B by splitting the ith

leaf of B′. Consider the previous example in Figure 4.3, one can recover the augmented

tree pair A in Figure 4.2 by shrinking the caret of A′ consisting of the second and third

leaves.

For each augmented tree pair A = (D, h,R) we denote its equivalence class by [A] =

[D, h,R]. We denote the set of all equivalence classes by [A] := A/ ∼. For each equiva-

lence class in A under ∼ we will now prove that there exists a canonical representative

which which has no exposed carets, which we call an irreducible augmented tree

pair.

Proposition 4.10 (Existence). In each equivalence class [A] in [A] there exists an

irreducible augmented tree pair.
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Proof. Let A = (D, γ,R) be an n-leaved augmented tree pair in an equivalence class [A]

of [A]. If A has no exposed carets then we are done. Suppose A has an exposed caret

consisting of the (i)th and (i + 1)th leaves of D and R. We thus apply the shrinking

operation to this caret and produce a new augmented tree pair A1 which is also in [A] and

has (n − 1)-leaves. We then repeat the process with A1 and all subsequent augmented

tree pairs that are created by shrinking exposed carets. Eventually we must reach the

augmented tree pair An ∈ [A] for some n that has no exposed carets. The process must

terminate as the number of leaves of the augmented tree pair decreases by one after

every iteration of the process. Note that it is possible to end with the augmented tree

pair whose domain or range trees are nothing but the single leaved binary tree also

known as the root, at this point the augmented tree pair contains no carets and thus

the process must terminate.

We will now prove that this irreducible tree pair created from an arbitrary element in

the equivalence class is unique.

Proposition 4.11 (Uniqueness). Suppose A is an irreducible augmented tree pair in an

equivalence class [A] of [A]. If B ∈ [A] such that B is irreducible then A = B.

Proof. Suppose A and B are two irreducible augmented tree pairs in an equivalence

class [A] of [A] such that A 6= B. Let the number of leaves in A be lA and the number

of leaves in B to be lB and without any loss of generality suppose that lA ≥ lB. Let

m > 0 be the minimum number of splitting and shrinking operations required to take

A to B and suppose O1,O2, . . . ,Om is one such sequence of operations where each

Oi is either the splitting of a single leaf or the shrinking of an exposed caret. Let

A = A0, A1, A2, . . . , Am = B be the sequence of augmented tree pairs such that each Ai

is created by applying Oi to Ai−1. As A is irreducible O1 must be a splitting operation

and thus A1 must have lA + 1 leaves. However, as lB ≤ lA there must exist some

minimal natural number k such that Ak has fewer leaves that Ak−1, and thus Ok must

be a shrinking operation. However, the only carets that are exposed in Ak are those

which have been created by the splitting operations O1,O2, . . . ,Ok−1 that preceded it.

Suppose the exposed caret deleted byOk was first created byOj for some j < k. Call this

caret c. As Ok is the first instance of a shrinking operation, there can be no operation

Ol prior to Ok that splits Oj . If there were, then we would require the caret added

by Ol to be removed by another operation before the action of Ok, a contradiction

on the minimality of k. Therefore the sequence of operations sequence of operations

O1,O2, . . . ,Oj−1,Oj+1, . . . ,Ok−1 is well defined, but note that it will also take A to Ak,

a contradiction to the original claim as this sequence is shorter than O1,O2, . . . ,Om.

Thus A = B.
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Multiplication on [A]

We now define a binary operation “ • ” : [A] × [A] → [A]. Suppose [A] and [B] are in

[A] such that A = (DA, hA,RA) and B = (DB, hB,RB) are (not necessarily irreducible)

augmented tree pairs. The product [A] • [B] is defined by the following process. First

find augmented tree pairs U = (DU , hU ,RU ) and V = (DV , hV ,RV ) such that [A] = [U ],

[B] = [V ] and RU = DV . Thus U and V are chosen so that the range tree of U is the

same as the domain tree of V . This can always be done, for example let RU be equal

to the union of the trees RA and DB. By performing the operations on A that create

RU from RA will in turn create U , and by performing the operations on B that create

RU from DB will in turn create V . The product [A] • [B] is equal to [DU , hU · hV ,RV ].

Before we prove that the binary product is well defined we provide an example.

Example 4.12. Let A and B be the two augmented tree pairs drawn below.

3, g3

1, g1 2, g2

[A]

3, g3

1, g1 2, g2

1, h1 2, h2

[B]

2, h2 1, h1

To create the product [A] · [B] we must find augmented tree pairs U = (DU , hU ,RU )

and V = (DV , hV ,RV ) that are equivalent to A and B such that RU = DV . One

such instance is to set U = A and V to be the augmented tree pair that is produced

by splitting the second leaf of B. Figure 4.4 gives the augmented tree pairs U and V

explicitly.
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3, g3

1, g1 2, g2

[U ]

3, g3

1, g1 2, g2

1, h1

[V ]

1, h1

2, h2 3, (h2)θ 2, h2 3, (h2)θ

Figure 4.4

Following the definition of multiplication the product [A] • [B] is thus represented by

the following augmented tree pair.

3, g3h1

1, g1h2 2, g2(h2)θ

[UV ]

3, g3h1

1, g1h2 2, g2(h2)θ

Figure 4.5

It is worth noting at this stage a divergence in notation from the mainstream of Thomp-

son group literature, particularly in the work of Cannon, Floyd and Parry ([12]) to

which we refer to many times. In [12] it is the convention to write multiplication of

(non-augmented) tree pairs from right to left, and thus the product V U of two binary

tree pairs U = (DU ,RU ) and V = (DV ,RV ) would correspond to our tree pair multi-

plication (DU ,RU ) · (DV ,RV ) which is done from left to right.

Proposition 4.13. The binary operation “ • ” on [A] is well defined.

Proof. Let [A] and [B] be equivalence classes from [A], where A and B are tree pairs

from A. There are two ways in which the binary operation [A] · [B], as described above,

may not be well defined. It firstly may depend on our choice of the tree pairs U and V ,

secondly it may depend on the initial choice of representatives of [A] and [B].

We first check our choice of U and V . Let U = (DU , hU ,RU ), V = (DV , hV ,RV ), U ′ =

(DU ′ , hU ′ ,RU ′) and V ′ = (DV ′ , hV ′ ,RV ′) where hj = (γj , σj) for all j ∈ {U, V, U ′, V ′}.
Suppose U, V, U ′, V ′ are such that [U ] = [U ′], [V ] = [V ′], RU = DV and RU ′ = DV ′ . Let
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UV = (DU , hU ·hV ,RV ) and U ′V ′ = (D′U , h′U ·h′V ,R′V ). To show that the binary product

is well defined we must show that [UV ] = [U ′V ′]. Suppose that U and U ′ differ only by

one application of the splitting operation and, without loss of generality, let us assume

that we have split the ith leaf of U to produce U ′. Then U ′ = (DU ′ , κni (hU ),RU ′). Notice

that RU ′ is produced by adding a caret to the (i)σthU leaf of RU . Therefore, as RU = DV
and RU ′ = DV ′ , if we apply the splitting operation to the (i)σthU leaf of V the tree DV
will become DV ′ and thus V we will become V ′. Therefore V ′ = (DV ′ , κn(i)σU (hV ),RV ′)
where RV ′ is produced by adding a caret to the (i)(σU · σV )th leaf of RV . Hence

U ′V ′ = (DU ′ , κni (hU ) · κn(i)σU (hV ),RV ′).

Consider now the application of the splitting operation to the ith leaf of UV . As

(hU · hV )ρn = σU · σV the splitting operation will produce the augmented binary tree

(DU ′ , κni (hU ·hV ),RV ′). By using the first cloning condition C1 from Definition 4.4 the

cloned product κni (hU · hV ) becomes

κni (hU · hV ) = κni (hU ) · κn(i)σU (hV ). (4.7)

Therefore U ′V ′ = (DU ′ , κni (hU · hV ),RV ′) and thus [UV ] = [U ′V ′]. Therefore, as the

equivalence relation is the symmetric transitive closure of the splitting operation, we

can extend our result to show that the binary operation is well defined for any choice

of U ′ and V ′ such that [U ] = [U ′] and [V ] = [V ′].

Finally we check our choice of representative A and B. Suppose A,A′ and B,B′ are in A

such that [A] = [A′] and [B] = [B′]. Suppose U = (DU , hU ,RU ) and V = (DV , hV ,RV )

are in A such that [U ] = [A] = [A′], [V ] = [B] = [B′] and RU = DV . Then [A] • [B] =

[UV ] = [A′] • [B′] and multiplication is well defined in our choice of representatives.

Proposition 4.14. V(G,θ) = ([A], •) is a group.

Proof.

Associativity: Suppose A = (DA, hA,RA), B = (DB, hB,RB) and C = (DC , hC ,RC)

are augmented tree pairs representing three elements of [A]. Let A′ = (DA′ , hA′ ,RA′),
B′ = (DB′ , hB′ ,RB′) and C ′ = (DC′ , hC′ ,RC′) be equivalent augmented tree pairs for

A,B and C respectively, such that RA′ = DB′ and RB′ = DC′ . These augmented tree

pairs can always be found by using the splitting operation on all three elements until

the desired pairs are found. This gives us the following two ways to multiply these three

elements;

[A] • ([B] • [C]) = (DA′ , hA′ · (hB′ · hC′),RC′)

([A] • [B]) • [C] = (DA′ , (hA′ · hB′) · hC′ ,RC′)
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As Hn is a group it is associative thus hA′ · (hB′ · hC′) = (hA′ · hB′) · hC′ and hence

[A] • ([B] • [C]) = ([A] • [B]) • [C].

Identity: Any augmented tree pair of the form (D, (1Gn , 1Sn),D) represents the identity

in V(G,θ).

Inverse: Let [A] = [D, h,R] be an element of [A]. The reader can see that [D, h,R] •
[R, h−1,D] = [D, (1Gn , 1Sn ] = [R, h−1,D] • [D, h,R]. Thus [A]−1 = [R, h−1,D] is the

inverse of [A] in V(G,θ).

One can observe that there exists a copy of V in V(G,θ), namely as the subgroup of all the

elements of the form [D, 1Hn ,R]. Additionally there exist a surjective map ϑ : V(G,θ) → V

by [D, h,R] 7→ [D,R] that splits via [D,R] 7→ [D, 1Hn ,R]. Thus V(G,θ) = ker(ϑ) o V

[Observation 3.1, [33]].

The groups Faug

As mentioned in the introduction the groups in the class Vaug are of interest to us

because of a result given in [3].

Theorem 4.15 (Theorem 4.3 of [3]). The groups in Vaug are coCF .

Thus Vaug could provide counterexamples to Lehnert’s conjecture that V is a universal

coCF group. To provide a counterexample one would have to prove that there exists

a group V(G,θ) that does not embed into V . Since the class of coCF groups is closed

under taking finitely generated subgroups, if one found a f.g. subgroup of V(G,θ) that

did not embed into V , then this would also provide a counterexample to the conjecture.

In what follows for the rest of the chapter we will be investigating one particular class

of these subgroups which we call Faug. Given a finite group G and an endomorphism

θ : G → G, the group F(G,θ) in Faug is a subgroup of V(G,θ) in which every augmented

tree pair representative (D, h,R) in F(G,θ) satisfies (h)ρn = 1Sn . In other words, F(G,θ)

contains all the equivalence classes of augmented tree pairs that have the trivial bijection

between the leaves of the domain and range trees.

One can see that the relationship between F(G,θ) and V(G,θ) is similar to that between

the Thompson groups F and V . Much like in F , when we draw elements of a group

F(G,θ) we will forgo the numerical labelling of the leaves which represents the bijection

between the leaves of the two trees. As the bijection is always trivial we remove the

explicit reminder, making the tree pair diagrams less cluttered. Also, when writing an

element f ∈ F(G,θ) in the form [D, (γ, 1Sn),R] we reduce the notation and simply give it

as f = [D, γ,R].
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4.3 An infinite presentation for F(G,θ)

In this section we will construct an infinite presentation of the group F(G,θ) and produce

normal forms for elements of any group in Faug using the appropriate infinite sets of

generators. The construction of the presentation will follow a similar method that was

used in the construction of the presentation of Thompson’s group F in [12] and also the

creation of normal forms of Thompson’s group T in [11]. We will begin by introducing

an infinite set Λ(G,θ) of generators for F(G,θ), which we will refer to as Λ if G and θ

are understood, and go on to show that exists a unique normal form for each element

in F(G,θ), which is similar in its construction to the normal form introduced in [11]

for Thompson’s group T . Once this ground work has been laid, we will introduce a

presentation F inf
(G,θ) and go on to prove that F inf

(G,θ)
∼= F(G,θ).

4.3.1 Normal Form

To create a normal form for elements of F(G,θ) we begin with a generating set Λ. We

define Λ as the union of three infinite sets, X, L and R which are given below.

The first set, X := {Xn : n ∈ N0}, consists of all the elements Xn defined by the

augmented tree pair in Figure 4.6 below.

Xn

n n

Figure 4.6: The element Xn

Notice that the generators Xn above can be identified with the inverse generators of

R. Thompson’s group F as given in [12]. However, as augmented tree pairs recall that

there is also a decoration associated with the tree pair. In what follows, if a leaf of a

tree pair is not labelled with an element of G then we assume it is decorated with the

idenity element. The reason we work with the inverse generators of those given in [12]

is to counter the fact that we write our products from left to right as opposed to those

in [12] which are right to left. Using the inverse generators will mean that the relations

for F which will appear in our presentation of F(G,θ) will have the same form as those
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from [12].

The second set L := {Σg,n : g ∈ G,n ∈ N} consists of the elements Σg,n = [Tn, γΣ, Tn],

where Tn is the (n+1) leaved binary tree consisting solely of the right vine, and γΣ ∈ Gn

is defined as;

γΣ(k) =

g if k = n

1G otherwise.

Figure 4.7 represents the augmented tree pair (Tn, γΣ, Tn).

g
g

Σg,n
n

n

Figure 4.7: An augmented tree pair representative of Σg,n.

The final set we define is R := {Γg,n : g ∈ G,n ∈ N}, which contains elements of the

form Γg,n = [Tn, γΓ, Tn] for all n ≥ 0, where

γΓ(k) =

g if k = n+ 1

1G otherwise.

Figure 4.8 gives the augmented tree pair (Tn, γΓ, Tn).

g
g

Γg,n
n

n

Figure 4.8: An augmented tree pair representative of Γg,n.

We will now prove some important results regarding elements from L and R that will be
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used extensively in the rest of the chapter. The first is a commutativity result involving

elements from L.

Proposition 4.16. For all g, h ∈ G if i 6= j then Σg,iΣh,j = Σh,jΣg,i.

Proof. Suppose i, j are positive integers such that i < j. By definition the elements Σg,i

and Σh,j are represented by the augmented tree pairs (Ti, γ1, Ti) and (Tj , γ2, Tj) where

γ1(k) =

g if k = i

1G otherwise,
γ2(k) =

h if k = j

1G otherwise.

To find the product Σg,iΣh,j we first create an equivalent augmented tree pair for Σg,i

by splitting the final leaf of (Ti, γ1, Ti) a total of j − i times. As the decoration on the

final leaf of (Ti, γ1, Ti) is γ1(i+ 1) = 1G the process of splitting produces the augmented

tree pair (Tj , γ
′
1, Tj) where the element γ′1 ∈ Gj+1 is defined similarly to γ1 ∈ Gi+1;

γ′1(k) =

g if k = i

1G otherwise.

The product Σg,iΣh,j is then given by the augmented tree pair (Tj , γ
′
1, Tj)(Tj , γ2, Tj) =

(Tj , γ
′
1 · γ2, Tj). As i 6= j we have that γ′1 · γ2 = γ2 · γ′1, and therefore Σg,iΣh,j =

[Tj , γ
′
1 · γ2, Tj ] = [Tj , γ2 · γ′1, Tj ] = Σh,jΣi,h.

The second proposition describes the relationship between elements from the set L and

those in R.

Proposition 4.17. The equality Γg,n = Σg,n+1Γ(g)θ,n+1 holds for all n ≥ 0 and g ∈ G.

Proof. The product Σg,n+1Γ(g)θ,n+1 can be represented by the augmented tree pair,

(g)θg (g)θg

Σg,n+1Γ(g)θ,n+1
n+ 1

n+ 1

.

The final two leaves of both these trees form an exposed caret and thus one can use
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the shrinking operation to delete the caret from the augmented tree pair and create a

representative of Γg,n as required.

The normal form for R. Thompson’s group F

The normal form we are going to produce for elements of F(G,θ) has its foundation in

the normal form for Thompson’s group F as described in [12]. Thus before we prove

the normal form for F(G,θ) we will first outline the normal form for F . We will not give

any proofs, all of which can be found in [12].

One begins with the definition of an exponent of a leaf of a binary tree.

Definition 4.18 (Exponent of a leaf). Suppose T is a finite binary tree, and l is a leaf

of T . The exponent of l is the length of the longest path of (upward) left branches in

T which begins at l and does not reach the right-hand side of T .

Example 4.19. Let T be the binary tree in Figure 4.9.

Figure 4.9

The exponents of the leaves for T , from left to right, are 2, 1, 0, 0, 2, 0, 0, 0, 0.

Suppose (D,R) is an n-leaved binary tree pair that represents an element f ∈ F . Then

by Theorem 2.5 in [12] the element f can be given by the product

f = Xa0
0 Xa1

1 · · ·X
an
n X−bnn X

−bn−1

n−1 · · ·X−b00

where a0, . . . , an are the exponents of D and b0, . . . , bn are the exponents of R. (Recall

that our products are multiplied from left to right and all the generators are inverses

of those in [12], hence the difference in the exponents.) Further, the tree pair (D,R) is

irreducible if and only if the following conditions are satisfied;

1. if the last two leaves of D lie in a caret then the last two leaves of R do not lie in

a caret,
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2. for all k in N0 with k ≤ n, if ak > 0 and bk > 0 then at least one of either ak+1 > 0

or bk+1 > 0 must hold.

Thus if f ∈ F then f can be expressed uniquely as the product

f = Xa0
i0
Xa1
i1
· · ·Xam

im
X−bnjn

X
−bn−1

jn−1
· · ·X−b0j0

,

where ak, bk ∈ N0, 0 ≤ i0 < i2 < . . . < im and 0 ≤ j0 < j2 < . . . < jn, such that

im 6= jn and when both Xk and X−1
k both appear in the expression so does at least

one of Xk+1 or X−1
k+1. Any element that has no negative exponents in its normal form

we call positive and any that has no positive exponents we call negative. Thus every

element f ∈ F can be factorised as f = PQ where P is a positive element and Q is

a negative element. When written in this way we say that f is given in pq form. A

subtle point needs to be made about the relationship between tree pairs and elements of

F written in pq form. For every tree pair (D,R) there exists an associated element of F

written in pq form. We call this element the pq factorisation of the tree pair (D,R),

using the same language as in [11]. The important point is that every pq form is a pq

factorisation for some (non-unique) tree pair, that is, for every product PQ in pq form

there exists a tree pair (D,R) such that its pq factorisation is exactly PQ.

The normal form for F(G,θ)

We now return to consider the group F(G,θ). Following the definitions of positive and

negative elements in F(G,θ), we now introduce an augmenting element, defined in three

distinct types.

Definition 4.20 (Augmenting elements). An element from F(G,θ) is said to be aug-

menting if it can be factorised into one of the following three types;

Type 1: Γa,n,

Type 2: Σg1,i1Σg2,i2 · · ·Σgm,im ,

Type 3: Σh1,j1Σh2,j2 · · ·Σhm,jmΓb,l,

where m, l ∈ N1, n ∈ N0, 0 < i1 < i2 < . . . < im, 0 < j1 < j2 < . . . < jm ≤ l, and

a, b, gk, hk ∈ G \ {1G} such that

1. (gm)θ 6= 1G,

2. if jm = l then (hm)θ 6= b.

We call each of these types an augmenting product.
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We call any augmented tree pair of the form (Tn, γ, Tn), for some non-trivial γ ∈ Gn+1,

a right sided augmented tree pair. Recall that Tn is the (n + 1)-leaved binary tree

consisting solely of the right vine. The following proposition establishes a relationship

between augmenting products and right sided augmented tree pairs.

Proposition 4.21. Suppose f ∈ F(G,θ) is a non-identity element that be can represented

by a right sided augmented tree pair of the form S = (Tn, γ, Tn) for some γ ∈ Gn+1.

Then f can be factorised as an augmenting product of Type 1, 2 or 3. We call this the

augmentation factorisation for f associated to the tree pair S.

Furthermore, every augmenting product is an augmentation factorisation of an element

of F(G,θ) associated to some irreducible right sided augmented tree pair as given below.

(The variables below have their definitions given in Definition 4.20.)

Type 1: The augmented tree pair (Tn, γ1, Tn) where

γ1(k) =

a if k = n

1G otherwise.

Type 2: The augmented tree pair (Tim , γ2, Tim) where

γ2(k) =

gt if k = it for some 1 ≤ t ≤ m

1G otherwise.

Type 3: The augmented tree pair (Tl, γ3, Tl) where

γ3(k) =


b if k=l

ht if k = jt for some 1 ≤ t ≤ m

1G otherwise.

Proof. Let f be a non-trivial element of F(G,θ) such that f = [Tn, γ, Tn] for some γ ∈
Gn+1, this is fixed for the rest of the proof. Suppose that n = 0. Then [T0, {g}, T0] = Γg,0

is an augmenting product of Type 1 and we are done.

Suppose instead that n > 0 and γ(n + 1) = 1G. Let 0 < i1 < i2 < . . . < im < n + 1

be m integers and g1, g2, . . . , gm be m non-identity group elements from G such that γ

satisfies

γ(k) =

gl if k = il for some l ≤ m

1G otherwise.

For all j ≤ m, the indexes ij identify each leaf in the augmented binary tree that has a

non-identity element associated to it. By the fact that f is non-trivial γ must have at
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least one non-trivial entry from G thus m ≥ 1. As each integer il is distinct, (Tn, γ, Tn)

can be factorised into the product

(Tn, γg1 , Tn)(Tn, γg2 , Tn) · · · (Tn, γgm , Tn),

where for each 1 ≤ j ≤ m the decoration γgj is defined as

γgj (k) =

gj if k = ij

1G otherwise.

The augmented tree pair (Tn, γgj , Tn) is a representative of Σgj ,ij and thus f can be

factorised into the product

Σg1,i1Σg2,i2 · · ·Σgm,im .

If (gm)θ 6= 1G then by Definition 4.20 this is an augmenting product of Type 2. If

instead (gm)θ = 1G then by Proposition 4.17 we can replace Σgm,im with Γgm,im−1 and

produce another factorisation of f , namely

Σg1,i1Σg2,i2 · · ·Σgm−1,im−1Γgm,im−1.

If m = 1 then this is an augmenting product of Type 1. Otherwise, if im−1 6= im−1 or if

θgm−1 6= gm then by Definition 4.20 the product is an augmenting product of Type 3. If

both these conditions fail we once again apply Proposition 4.17 to the final two elements

Σgm−1,im−1Γgm,im−1 of the product and reduce the length of the product by one. We then

repeat the process above, checking to see if the product is an augmenting product after

each application of Proposition 4.17. As the product gets shorter with each application

of Proposition 4.17 we will either eventually reach an augmenting product of Type 3 or

be left with a single element of the form Γgm,0 which is an augmenting product of Type

1.

Finally, suppose that n > 0 and γ(n + 1) = h 6= 1G. Again we let 0 < i1 < i2 < i3 <

. . . < im < n + 1 be m integers and g1, g2, . . . , gm be m non-identity group elements

from G such that γ satisfies

γ(k) =


h if k = n+ 1

gl if k = il for some l ≤ m

1G otherwise.

The same argument from the previous case proceeds. However, now the factorisation of
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(Tn, γ, Tn) includes the factor (Tn, γh, Tn) where γh is defined as

γh(k) =

h if k = n+ 1

1G otherwise.

This tree pair represents an element from the set R namely Γh,n. Thus f can be

factorised as

Σg1,i1Σg2,i2 · · ·Σgm,imΓh,n.

As γ(n+ 1) 6= 1G it is possible for m = 0 which gives the case (Tn, γ, Tn) = (Tn, γh, Tn),

thus the factorisation of f is an augmenting product of Type 1. If m > 0 then the

product is an augmenting product of Type 3 if either im 6= n or (gm)θ 6= h. If both

of these conditions fail then we find ourselves in the same situation as we were when

dealing with the previous case (when γ(n + 1) = 1G) and thus we can repeatedly use

Proposition 4.17 to shorten the product until we reach an augmenting product of Type

1 or 3.

We now prove the second half of the proposition. Let A be an augmenting product. If

A is of Type 1 then it has the form Γa,n for some a ∈ G \ {1G} and n ∈ N0. This is the

augmenting factorisation of the irreducible tree pair (Tn, γg, Tn) where γg is defined as

γg(k) =

g if k = n+ 1

1G otherwise.

If A is of Type 2 then it has the form

Σg1,i1Σg2,i2 · · ·Σgm,im

where gj ∈ G \ {1G} and 0 < i1 < i2 < . . . < im. One can check that this is the

augmenting factorisation of the tree pair (Tim , γ, Tim), where γ is defined as;

γ2(k) =

gt if k = it for some 1 ≤ t ≤ m

1G otherwise.

The only potential exposed caret in (Tim , γ, Tim) is the caret consisting of its final two

leaves. The decoration on the left hand leaf of this caret is gm, which by condition 1 of

Definition 4.20 satisfies (gm)θ 6= 1. Thus the tree pair (Tim , γ, Tim) must be irreducible.

Finally, if A is of Type 3 then it has the form

Σh1j1Σh2,j2 · · ·Σhm,jmΓb,l
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where hk, b ∈ G \ {1G}, 0 < i1 < i2 < . . . < im ≤ l and m ∈ N1. One can check that

this is the augmenting factorisation of the tree pair (Tl, γ, Tl), where γ is defined as;

γ3(k) =


b if k=l

ht if k = jt for some 1 ≤ t ≤ m

1G otherwise.

As above, the only potential exposed caret in (Tim , γ, Tim) is the caret consisting of its

final two leaves. If jm = l then the decoration on the left hand leaf of this caret is hm and

on the right hand leaf is b, which by condition 2 of Definition 4.20 satisfies (hm)θ 6= b.

If jm 6= l then the decoration of the left hand leaf is the identity. Thus, in either case,

the tree pair (Tl, γ, Tl) must be irreducible.

We will use augmenting elements to create a natural factorisation for elements of F(G,θ),

similar to the pq factorisation for elements of F . The method is very similar to that

used by Burillo, Cleary, Stein and Taback in [11] to create factorisations and normal

forms of elements of Thompson’s group T . In their paper the authors introduce a set

of torsion generators that one can insert between positive and negative elements of F

to produce factorisations of elements of T . It is then from these factorisations, which

they call pcq factorisations, that their normal form arises. We will follow a similar line

using the augmenting elements described above. Note that augmenting elements are

also torsion. In fact there is a stronger observation regarding torsion elements of F(G,θ).

Observation 4.22. An element f in F(G,θ) is torsion if and only if f = [T , γ, T ] for

some arbitrary n-leaved binary tree T and some γ ∈ Gn.

The first step is to use augmenting tree pairs to construct factorisations for elements of

F(G,θ). These factorisations will not be unique for the elements of F(G,θ) but will provide

the ground for our own normal form.

Lemma 4.23. Suppose S = (D, γ,R) is an augmented tree pair such that D and R are

two binary trees with n + 1 leaves and γ ∈ Gn+1. Let a0, . . . , an and b0, . . . , bn be the

exponents of D and R respectively. Then the element in F(G,θ) represented by S is given

by the product;

(Xa0
0 Xa1

1 . . . Xan
n ) ·A · (X−bnn X

−bn−1

n−1 . . . X−b00 ), (4.8)

where A is either the identity or an augmenting product of Type 1, 2 or 3. We call this

the paq factorisation associated to S.
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Furthermore, S is irreducible if and only if the following conditions hold;

1. If the final two leaves of both D and R lie in a single caret then γ(n+1) 6= (γ(n))θ.

2. If ak > 0 and bk > 0 then either

(a) ak+1 > 0,

(b) bk+1 > 0, or

(c) The augmenting product A satisfies one of the following conditions;

i. A contains Σg,k+1 for some g such that (g)θ = h1 6= 1G, and A does not

contain either Σh1,k+2 or Γh1,k+1,

ii. A contains Σg,k+1, for some g such that (g)θ = 1G, and A also contains

either Σh2,k+2 or Γh2,k+1 for some non-trivial h2 ∈ G,

iii. A contains either Σg,k+2 or Γg,k+2 for some non-trivial g ∈ G, and A

does not contain Σh3,k+1 for any non-trivial h3 ∈ G.

Proof. Let S = (D, γ,R) be an augmented tree pair such that D andR are (n+1)-leaved

binary trees and γ ∈ Gn+1.

We split the proof into two parts.

Part 1: paq factorisation of S

We can factorise S to be the product of tree pairs (D, 1n+1
G , Tn)(Tn, γ, Tn)(Tn, 1

n+1
G ,R).

By Theorem 2.5 in [12], the function in F(G,θ) with tree pair (D, 1n+1
G , Tn) isXa0

0 Xa1
1 . . . Xan

n

where ak is the exponent of the (k+ 1)th leaf of D. Likewise, the function in F(G,θ) with

tree pair (Tn, 1
n+1
G ,R) is X−bnn X

−bn−1

n−1 . . . X−b00 where bk is the exponent of the (k+ 1)th

leaf of R. Finally, let A be the element of F(G,θ) that has the tree pair (Tn, γ, Tn). If

γ = 1n+1
G then A is the identity in F(G,θ). If γ is a non-identity element of Gn+1 then by

Proposition 4.21 A must be an augmenting element of Type 1, 2 or 3.

Therefore the element in F(G,θ) that has tree pair

S = (D, 1n+1
G ,R) = (D, 1n+1

G , Tn)(Tn, γ, Tn)(Tn, 1
n+1
G ,R)

is given by the product

(Xa0
0 Xa1

1 . . . Xan
n ) ·A · (X−bnn X

−bn−1

n−1 . . . X−b00 ),

where A is either the identity or an augmenting element of Type 1, 2 or 3.

Part 2: Irreducibility of S

Suppose S = (D, γ,R) is an irreducible augmented tree pair, we will now show that

conditions 1 and 2 of the lemma above must be true. Suppose the final two leaves
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of both D and R lie in a single caret. As S is irreducible this shared caret cannot

be exposed and thus the decoration γ must satisfy γ(n + 1) 6= (γ(n))θ. This satisfies

condition 1 of the lemma.

Suppose the (k+ 1)th leaf of S was such that its exponents in D and R satisfied ak > 0

and bk > 0 respectively. Any leaf that has a non-zero exponent must be a left leaf as all

right leafs have exponent zero. Thus the (k + 1)th leaf of S must be a left leaf of both

D and R. As S is irreducible we know that this leaf cannot lie in an exposed caret else

the caret could be reduced. This gives us at most three possible situations for S (more

than one of which may be true).

Situation 1: The (k + 2)th leaf of D is a left leaf,

Situation 2: The (k + 2)th leaf of R is a left leaf,

Situation 3: The decoration γ satisfies γ(k + 2) 6= (γ(k + 1))θ.

As an exposed caret must consist of one left leaf and one right left, if either of the first

two options are true then this guarantees that the (k+1)th leaf is not lying in an exposed

caret. If the final condition is true then if the (k+ 2)th leaf of S is a right leaf then the

decorations on those leaves will guarantee that the caret is not exposed. If none of these

conditions are met then the (k + 2)th leaf must be a right leaf and the decorations on

the leaves will satisfy the conditions of an exposed caret. Hence, if S is irreducible it

must satisfy at least one of the three situations above. We will consider each situation

in turn and show that if it is true then either 2(a), 2(b) or 2(c) from Lemma 4.23 must

also be true.

Situation 1: The (k + 2)th leaf of D is a left leaf.

If the first situation is true then the exponent ak+1 of the (k + 2)th leaf of D must be

non-zero and thus condition 2(a) of Lemma 4.23 would be satisfied.

Situation 2: The (k + 2)th leaf of R is a left leaf.

If the second situation is true then the exponent bk+1 of the (k+ 2)th leaf of D must be

non-zero and thus condition 2(b) of Lemma 4.23 would be satisfied.

Situation 3: The decoration γ satisfies γ(k + 2) 6= (γ(k + 1))θ.

Suppose Situation 3 is true and Situation 1 and Situation 2 are false. Then S will

contain an exposed caret in one of three types drawn below, for g and h non-trivial

elements of G. (By which we mean the (k + 1)th and the (k + 2)th leaves of both the

domain tree and the range tree of S have the following form).
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g h g g

Note that at least one of decorations must be non-trivial to satisfy the property γ(k+2) 6=
(γ(k + 1))θ given on the decoration by Situation 3.

Suppose the shared caret of Situation 3 is in the leftmost form drawn above for some

non-trivial g and h. If (g)θ 6= 1 then h 6= (g)θ by the property γ(k + 2) 6= (γ(k + 1))θ,

and therefore condition 2(c)i of Lemma 4.23 must be true. If (g)θ = 1 then condition

2(c)ii must be true.

Suppose the shared caret of Situation 3 is in the middle form drawn above for some

non-trivial g. If (g)θ = 1G then the caret would be reducible and thus a contradiction to

the irreducibility of S. Thus (g)θ 6= 1G and condition 2(c)i of Lemma 4.23 is satisfied.

Finally, suppose the shared caret of Situation 3 is in the rightmost form drawn above

for some non-trivial g. Then condition 2(c)iii of Lemma 4.23 is satisfied.

Therefore we have shown that if ak > 0 and bk > 0 then at least one of the options given

in condition 2 of Lemma 4.23 must be true. Hence this direction of the proof is done.

Now suppose S = (D, γ,R) is an augmented tree pair such that its paq factorisation

satisfies the conditions given in Lemma 4.23. By condition 1 the last two leaves of S

cannot form an exposed caret. For a shared caret in S that does not consist of the final

two leaves to be exposed the exponent of its left leaf must be non-zero in both D and

R.

Consider the kth leaf of S where k < n and suppose that its exponents ak−1 and bk−1

are both non-zero in D and R respectively. Condition 2 gives three possible options

that could be true for S, we will show that the kth leaf cannot be part of an exposed

caret should any of these options be true. The first option is condition 2(a), namely

that the exponent an of the (k + 1)th leaf of D is non zero. As mentioned before, if a

leaf has a non-zero exponent it must be a left leaf as all right leaves have zero exponent

by definition. Thus the kth and (k+ 1)th leaves of D are both left leaves and hence the

kth leaf of S cannot be in an exposed caret. Condition 2(b) gives the same situation

but this time we are considering leaves in the range tree R. As before the conclusion

is that the kth leaf of S cannot be in an exposed caret. This leaves us with the final

condition 2(c), which gives three possible conditions on the augmented product A. The
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product A is determined by the tree S thus we will consider each subproduct in turn

and determine what decorations on the kth and (k + 1)th leaves of S could create such

a subproduct in A. In each case we will show that the decorations imply an irreducible

caret.

2(c)i: A contains Σg,k+1 for some g such that (g)θ = h1 6= 1G, and A does not contain

either Σh1,k+2 or Γh1,k+1,

The decoration on the (k + 1)th leaf must therefore be g. As the decoration on the

(k + 2)th is not (g)θ the caret cannot be irreducible.

2(c)ii: A contains Σg,k+1, for some g such that (g)θ = 1G, and A also contains either

Σh2,k+2 or Γh2,k+1 for some non-trivial h2 ∈ G,

The decorations on the (k+ 1)th and the (k+ 2)th leaves must be g and h respectively.

As (g)θ = 1G 6= h the caret must be irreducible.

2(c)iii: A contains either Σg,k+2 or Γg,k+2 for some non-trivial g ∈ G, and A does not

contain Σh3,k+1 for any non-trivial h3 ∈ G.

The decoration on the right (k + 2)th leaf must therefore be g and the decoration on

the left (k + 1)th leaf must be the identity. Therefore the caret must be irreducible.

Therefore, if ak > 0 and bk > 0 then the (k + 1)th leaf cannot be part of an exposed

caret. Thus S contains no exposed carets and hence S must be irreducible.

Corollary 4.24. The set X = X ∪ L ∪R is a generating set for F(G,θ).

In Lemma 4.23 above we factorised an element of F(G,θ) into a product of three parts, a

positive product P , a negative product Q and an augmenting element A. Any product

in F(G,θ) that has this particular form we will call a paq product or a product in paq

form. Note that a product in paq form does not have to satisfy the conditions for

irreducibility in Lemma 4.23. The next result we need is to show that every product in

paq form is in fact a paq factorisation for some augmented tree pair.

Lemma 4.25. Consider the product PAQ where P is a positive product, Q is a nega-

tive product and A is an augmenting product of Type 1, 2 or 3. Then there exists an

augmented tree pair S such that the paq factorisation of S is the product PAQ.

Proof. Let PAQ be a product in the generators of Λ such that P is a positive product,

Q is a negative product and A is an augmenting product of Type 1, 2 or 3. Suppose

PT = (D, Tn) is the unique irreducible representative of P , QT = (Tm,R) is the unique

irreducible representative of Q and AT = (Tk, γ, Tk) is the unique irreducible represen-

tative of A. Consider the augmented tree pair S = PTATQT created by multiplying
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these three tree pairs together. Our claim is that the paq factorisation of S is exactly

the product PAQ. To create S one must first take the product of tree pairs

(D, Tn)(Tk, γ, Tk)(Tm,R)

and apply the splitting relation to each tree pair where necessary to produce the product

(D′, TM )(TM , γ
′, TM )(TM ,R′),

for some M ≥ max{n,m, k}. As any such value of M will suffice we will choose to set M

to be the smallest possible i.e. M = max{n,m, k}. The important point to note is that

the splitting operation is only ever applied to the final leaf of any of the tree pairs. If

n = m = k then no splitting operations are required and we immediately get our result

that the paq factorisation of S is PAQ. Suppose n < M , then (D′, TM ) is produced by

splitting the final leaf of PT (M − n)-times. As we are only ever adding carets to the

final leaf, the exponents of the new leaves that are created are always zero. Thus the

positive product that is associated to (D′, TM ) is the same as that for PT , which is P .

The same argument also holds for the case where m < M where the negative product

associated to (TM ,R′) must be Q. Finally, suppose k < M and we are required to split

the final leaf of AT . Since AT is the reduced version of (TM , γ
′, TM ) by definition the

augmentation factorisation associated to (TM , γ
′, TM ) must be the same as that for AT ,

which is A. Thus regardless of which tree pairs need to be expanded the augmented tree

pair S has paq factorisation PAQ.

In this case when M = max{n,m, k} we call S the canonical augmented tree pair

associated to PAQ.

Observation 4.26. Suppose S = (D, γ,R) is the canonical augmented tree pair asso-

ciated to a paq product PAQ. If the final two leaves of S lie in a shared caret then the

decoration on the final two leaves must satisfy γ(n+ 1) 6= (γ(n))θ.

Proof. Let S = (D, γ,R) be the canonical augmented tree pair associated to a paq

product PAQ and suppose the final two leaves of S lie in a shared caret. As the

exponents of all the leaves in this shared caret are zero the caret cannot exist in either

the irreducible representative of P or the irreducible representative of Q. Therefore, it

must have come from the irreducible representative of augmenting product A. The final

two leaves of this irreducible representative lie in a shared caret, therefore the decoration

on the leaves must satisfy γ(n+ 1) 6= (γ(n))θ else the caret would be exposed.

Theorem 4.27. For every non-identity element in F(G,θ), there exists a unique normal
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form, written in the generators Λ as

Xa0
0 Xa1

1 . . . Xan
n ·A ·X−bnn X

−bn−1

n−1 . . . X−b00 , (4.9)

where n, a0, . . . , an, b1, . . . , bn are non-negative integers, and A is either empty or an

augmenting product of Type 1, 2 or 3, such that if ak > 0 and bk > 0 for any natural

number k ≤ n then either

1. ak+1 > 0,

2. bk+1 > 0, or

3. The augmenting product A satisfies one of the following conditions;

(a) A contains Σg,k+1 for some g such that (g)θ = h1 6= 1G, and A does not

contain either Σh1,k+2 or Γh1,k+1,

(b) A contains Σg,k+1, for some g such that (g)θ = 1G, and A also contains

either Σh2,k+2 or Γh2,k+1 for some non-trivial h2 ∈ G,

(c) A contains either Σg,k+2 or Γg,k+2 for some non-trivial g ∈ G, and A does

not contain Σh3,k+1 for any non-trivial h3 ∈ G.

Proof. By Lemma 4.23 the paq factorisation of an irreducible augmented tree pair S

satisfies the conditions of the normal form. Therefore, as every element of F(G,θ) can be

represented by an irreducible augmented tree pair, every element can also be written in

the normal form.

We now prove uniqueness. Let PAQ be a paq product that satisfies the conditions of the

theorem. By Lemma 4.25, PAQ is the paq-factorisation associated to some augmented

tree pair S = (D, γ,R). We now show that S must be irreducible, that is, we show that

it satisfies the conditions of an irreducible augmented tree pair given in Lemma 4.23.

Recall that the first condition of Lemma 4.23 requires that if the final two leaves of D
and R lie in a single caret then γ(n + 1) 6= (γ(n))θ. By Observation 4.26, S satisfies

this first condition. Notice that the second condition of Lemma 4.23 is exactly the

same as the condition already placed upon S by the properties of PAQ imposed by the

theorem. Thus S must be irreducible. Suppose P1A1Q1 and P2A2Q2 are two distinct paq

products that satisfy the conditions of the theorem and represent the same element in

F(G,θ). By Lemma 4.25 the product P1A1Q1 is the paq-factorisation associated to some

augmented tree pair S1 and the product P2A2Q2 is the paq-factorisation associated

to some augmented tree pair S2. From the discussion above both S1 and S2 must

be irreducible. Since each element of F(G,θ) has a unique irreducible augmented tree

pair representative by Proposition 4.11, we must have S1 = S2. Therefore P1A1Q1 =

P2A2Q2, which is a contradiction to the original assumption that they were distinct.
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Therefore, each element in F(G,θ) must have a unique normal form representative as

defined by the theorem.

4.3.2 Presentation

Let G := {gi}i∈N be a finite group of order N , with g1 = 1G, and let θ : G→ G be an

endomorphism of G. Recall that the function δ : N →N is defined by the rule (i)δ = j

if and only if (gi)θ = gj . Also recall that the function ∆ : N ×N → N is defined by

(i, j)∆ = k if and only if gigj = gk. Let the group F inf
(G,θ) = 〈X|R〉 be following infinite

presentation with generators X and relations R defined below.

Set of generators: X := X1 tX2 tX3:

X1 = {Yn|n ∈ N0},

X2 = {Si,n|i ∈N , n ∈ N1},

X3 = {Ti,n|i ∈N , n ∈ N0}.

Set of relations: R :=
⊔12
i=1 Ri

(Note that we no longer use set notation as we did for the generators above to make the

sets of relations easier to read.)

R1 Y −1
k YnYk = Yn+1, for all k and n in N0 such that k < n,

R2 Y −1
k Si,nYk = Si,n+1, for all i in N , k in N0 and n in N1 such that k < n− 1,

R3 Y −1
k Si,nYk = Si,n, for all i in N , k in N0 and n in N1 such that k ≥ n,

R4 Y −1
n−1Si,nYn−1 = Si,nS(i)δ,n+1, for all i in N and n in N1,

R5 Y −1
k Ti,nYk = Ti,n+1, for all i in N , k in N0 and n in N1 such that k < n,

R6 Si,nSj,m = Sj,mSi,n, for all i and j in N and n and m in N1 such that n > m,

R7 Si,nSj,n = S(i,j)∆,n, for all i and j in N and n in N1,

R8 Ti,nTj,n = T(i,j)∆,n, for all i and j in N and n in N0,

R9 Ti,n = Si,n+1T(i)δ,n+1, for all i in N and n in N0,

R10 Si,kTj,n = Tj,nSi,k, for all i and j in N and k and n in N1, such that k ≤ n,

R11 S1,n = 1, for all n in N1,

R12 T1,n = 1, for all n in N0.

We note that the relations R11 and R12 can remove the extraneous generators S1,n

and T1,n but we retain them for the ease of writing the other relations in R.

Before we move on, we define some notation that will appear later on in the paper. We
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will refer to generators of the form Yn as Y-generators, Si,n as S-generators and Ti,n

as T-generators. In addition, for the elements Si,n and Ti,n we refer the subscript i

as the augmenting index and the subscript n as the depth index. The definition of

the depth index n also hold for the generators Xn.

The proof of the following theorem will be proof for Theorem 4.2 from the introduction.

Theorem 4.28. Let G be a finite group of order N and θ : G → G be a group homo-

morphism from G to itself. Then there exists an isomorphism φ : F inf
(G,θ) → F(G,θ) such

that φ(Yi) = Xi, φ(Si,j) = Σgi,j and φ(Ti,j) = Γgi,j.

Proof. Define a map φ from the free group FX generated by the set of formal symbols

X := {Yn|n ∈ N0} t {Si,j |i ∈ N , j ∈ N1} t {Ti,j |i ∈ N , j ∈ N1} to the group F(G,θ)

by φ(Yi) = Xi, φ(Si,j) = Σgi,j , and φ(Ti,j) = Γgi,j . From Corollary 4.24 we know that

the set φ(X) generates F(G,θ), thus to prove that φ is a surjective homomorphism from

F inf
(G,θ) to F(G,θ) we must show that the twelve sets of relations in F inf

(G,θ) hold in F(G,θ). We

consider each family of relations in turn.

R1. Y −1
k YnYk = Yn+1, for all k and n in N0 such that k < n.

Let n and k be in N0 such that k < n. Under the homorphism φ the product Y −1
k YnYk

is taken to the product X−1
k XnXk in F(G,θ), which is equal to Xn+1 by Theorem 3.4 in

[12].

R2. Y −1
k Si,nYk = Si,n+1, for all i in N , k in N0 and n in N1 such that k < n− 1.

Let k be in N0 and n be in N1 such that k < n − 1. Under the homomorphism φ the

product Y −1
k Si,nYk is taken to the product X−1

k Σgi,nXk in F(G,θ). We will evaluate this

product by using multiplication of tree pairs. We begin with the tree pair representatives

of Xk, X
−1
k and Σgi,n as drawn explicitly in Figures 4.6 and 4.7 earlier in the chapter.

We can write these concisely as tuples;

Xk : (D, 1k+3
G , Tk+2),

X−1
k : (Tk+2, 1

k+3
G ,D),

Σgi,n : (Tn, γi,n, Tn),

where D is the domain tree given in Figure 4.6, Tk+2 is the right sided tree with k + 3

leaves, Tn is the right sided tree with n+ 1 leaves, 1k+3
G is the identity of Gk+3 and γi,n

is an element of Gn+1 defined by

γi,n(j) =

gi if j = n

1G otherwise.

To find a representative tree pair for the product X−1
k Σgi,nXk one follows the rules for
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augmented tree pair multiplication given earlier in the chapter. We begin with the three

tree pairs being multiplied in the following order

(Tk+2, 1
k+3
G ,D)(Tn, γi,n, Tn)(D, 1k+3

G , Tk+2). (4.10)

The first step is to expand the tree pairs using the splitting operation such that under

the expansion the trees D and Tn become the same tree which we will call D′. Applying

the following operations to the tree pairs will give the desired result.

(Tk+2, 1
k+3
G ,D)⇒ (Tn+1, 1

n+2
G ,D′) by splitting the final leaf (n− k − 1)-times,

(Tn, γi,n, Tn)⇒ (D′, γ′i,n,D′) by splitting the (k + 1)th leaf once,

(D, 1k+3
G , Tk+2)⇒ (D′, 1n+2

G , Tn+1) by splitting the final leaf (n− k − 1)-times,

where the decoration γ′i,n is an element of Gn+2. The decoration γ′i,n will be determined

by the group element that was associated to the (k + 1)th leaf of (Tn, γi,n, Tn) when it

was split. As the only non-trivial decoration was on the nth leaf of (Tn, γi,n, Tn), the

decoration on the (k+ 1)th leaf must be trivial as k < n− 1. Therefore γ′i,n is given by;

γ′i,n(j) =

gi if j = n+ 1

1G otherwise.

Thus the product (4.10) now becomes;

(Tn+1, 1
n+2
G ,D′)(D′, γ′i,n,D′)(D′, 1n+2

G , Tn+1), (4.11)

which gives the single augmented tree pair

(Tn+1, γ
′
i,n, Tn+1).

This tree pair is, by definition, an augmented tree pair representative of Σgi,n+1, hence

we have proved this step.

As an example of the above multiplication consider the case when n = 3 and k = 0.

We draw the tree pairs below and use dotted lines to indicate the expansion of the tree

pairs under the operations described above. Notice how the expansions guarantee that

the four interior trees are all identical.
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X−1
0

g g

Σg,3 X0

Figure 4.10: The multiplication of X−1
0 Σg,3X0

The resulting product gives the following tree pair which is indeed a representative of

Σg,4 as expected.

g g

Σg,4

Figure 4.11: The resulting tree pair representing the product X−1
0 Σg,4X0

R3. Y −1
k Si,nYk = Si,n, for all i in N , k in N0 and n in N1 such that k ≥ n.

Let k be in N0 and n be in N1 such that k ≥ n. Under the map φ the product Y −1
k Si,nYk

is taken to the product X−1
k Σgi,nXk in F(G,θ). We will again use tree pair multiplication

to understand the product. We begin with the same three types of tree that we began

with when considering the case for R2 previously;

Xk : (D, 1k+3
G , Tk+2),

X−1
k : (Tk+2, 1

k+3
G ,D),

Σgi,n : (Tn, γi,n, Tn).

However, in this case k ≥ n and thus the splitting operations we apply to the three

trees will be different. Notice that for any values of k or n that satisfy the inequality

the only tree that needs to be expanded is (Tn, γi,n, Tn). This is because Tn is already

a subtree of D. When expanding (Tn, γi,n, Tn) one begins by expanding the final leaf

(k−n+1)-times. Then to produce D one must finally expand the penultimate leaf once.

This results in the following product of tree pairs;

(Tk+2, 1
k+3
G ,D)(D, γ′i,n,D)(D, 1k+3

G , Tk+2). (4.12)

Notice that each leaf split in the operation above has been decorated with the identity

from G. Thus γ′i,n, though now an element of Gk+3, is given by;
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γ′i,n(j) =

gi if j = n

1G otherwise.

Thus the tree pair

(Tk+2, γ
′
i,n, Tk+2)

can be reduced back down to the tree pair

(Tn, γi,n, Tn),

which represents the element Σgi,n as required.

As an example consider the case k = n = 1.

X−1
1

g
Σg,1

g
X−1

1

Figure 4.12: The multiplication of X−1
1 Σg,1X1

Observe the carets added to the tree pair representation of Σg,1 will be exposed in the

product X−1
1 Σg,1X1 and therefore the resulting element is again Σg,1.

R4. Y −1
n−1Si,nYn−1 = Si,nS(i)δ,n+1, for all i in N and n in N1.

Let n be in N1. Under the map φ the product Y −1
n−1Si,nYn−1 is taken to the product

X−1
n−1Σgi,nXn−1 in F(G,θ). Consider the tree pair representatives for these elements as

before;

Xn−1 : (D, 1n+2
G , Tn+1),

X−1
n−1 : (Tn+1, 1

n+2
G ,D),

Σgi,n : (Tn, γn+2, Tn).

As in the case we previously considered to product the tree pair representing the product

of these three elements we need only expand the tree pair (Tn, γi,n, Tn) as Tn is a subtree

of D. In fact, by splitting only the nth leaf of this tree pair the tree Tn becomes the

tree D. Thus the tree pair multiplication becomes;

(Tn+1, 1
n+2
G ,D)(D, γ′i,n,D)(D, 1n+2

G , Tn+1). (4.13)

The decoration γ′i,n takes some careful consideration. The leaf that we split in the
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original tree pair (Tn, γi,n, Tn) was the nth leaf and thus by the definition of γi,n had

the non-trivial decoration g associated to it. Thus by splitting leaf and producing the

tree pair (D, γ′i,n,D) the decoration γ′i,n is defined by;

γ′i,n(j) =


gi if j = n

(gi)θ if j = n+ 1

1G otherwise.

Thus the tree pair that we produce from our product

(Tn+1, γ
′
i,n, Tn+1)

must represent the product Σgi,nΣ(gi)θ,n+1, as required.

As an example consider the case when k = 0 and n = 1.

X−1
0

g (g)θ

Σg,1

g (g)θ

X0

Figure 4.13: The multiplication of X−1
0 Σg,1X0

In the figures above we have split the first leaf of the reduced tree pair representative of

S1 and in doing so have split the decoration on the tree. When this decoration is passed

to the trees representing X−1
0 and X0 upon multiplication, the resulting tree pair is as

below.

g

(g)θ

g

(g)θ

The augmented tree pair above is a representative of the element Σg,1Σ(g)θ,2, as expected

from the relation.

R5. Y −1
k Ti,nYk = Ti,n+1, for all i in N , k in N0 and n in N1 such that k < n.

Let k be in N0 and n be in N1 such that k < n. Under the map φ the product Y −1
k Ti,nYk is

taken to the product X−1
k Γi,nXk in F(G,θ). This time we require a tree pair representative

for Γi,n, which is provided explicitly by Figure 4.8 earlier in the chapter. Written as a

tuple, this tree pair is given by (Tn, γΓ, Tn) where γΓ is in Gn+1 and defined by
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γΓ(j) =

gi if j = n+ 1

1G otherwise.

When performing the tree pair multiplication we use the same tree pairs for Xk and

X−1
k as before. Thus we begin the product of tree pairs;

(Tk+2, 1
k+3
G ,D)(Tn, γΓ, Tn)(D, 1k+3

G , Tk+2). (4.14)

Taking the product of these tree pairs requires us to expand the three trees so that the

trees D and Tn both become the same tree which we call D′. The operations required

to achieve this are the same as the R2 case;

(D, 1k+3
G , Tk+2)⇒ (D′, 1n+2

G , Tn+1) by splitting the final leaf (n− k − 1)-times,

(Tn, γΓ, Tn)⇒ (D′, γ′Γ,D′) by splitting the (k + 1)th leaf once,

(Tk+2, 1
k+3
G ,D)⇒ (Tn+1, 1

n+1
G ,D′) by splitting the final leaf (n− k − 1)-times,

The tree D′ created by these operations can be again thought of as the tree Tn with an

extra caret attached to the (k+ 1)th leaf. Notice that when k = n− 1 we have D′ = D.

This is because in this case the tree Tn is a subtree of D.

The decoration γ′Γ is a group element in Gn+2 and was created from the splitting of the

(k + 1)th leaf of (Tn, γΓ, Tn). The only non-trivial decoration on (Tn, γΓ, Tn) is on the

(n+1)th leaf, thus for any value of k the decoration on the (k+1)th leaf must be trivial.

Thus the new decoration γ′Γ is defined by;

γ′Γ(j) =

gi if j = n+ 2

1G otherwise.

Therefore the product of tree pairs produces

(Tn+1, γ
′
Γ, Tn+1)

which is a representative of the element Γgi,n+1 as required.

R6. Si,nSj,m = Sj,mSi,n, for all i and j in N and n and m in N1 such that n > m.

Let i and j be in N , and n and m be in N1 such that n > m. Under the function φ the

product Si,nSj,m becomes Σgi,nΣgj ,m, which by Lemma 4.16 commutes.

R7. Si,nSj,n = S(i,j)∆, for all i and j in N and n in N1.
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Let i and j be in N and n be in N1 such that (i, j)∆ 6= 1. The product φ(Si,nSj,n) =

Σgi,nΣgj ,n = Σgigj ,n. If gigj = gk, then by definition of the function ∆, φ(S(i,j)∆) = Σgk,n

and R7 holds in F(G,θ).

R8. Follows by the same argument as R7.

R9. Ti,n = Si,n+1T(i)δ,n+1, for all i in N and n in N1.

This particular set of relations is important in the context of F(G,θ) as it represents the

splitting of a leaf. Let n be in N0 and i be in N . Under the map φ, Ti,n gets mapped to

Γgi,n which can be represented by the leaf map (1n, 1G)→ (1n, gi). Splitting this leaf map

gives us an equivalent element in F(G,θ) consisting of the leaf maps (1n0, 1G)→ (1n0, gi)

and (1n1, 1G) → (1n1, (gi)θ). Thus by the splitting operation Γgi,n = Σgi,n+1Γ(gi)θ,n+1

on augmented tree pairs, the set of relations R9 hold in F(G,θ).

R10. Si,kTj,n = Tj,nSik for all i and j in N and k and n in N1, such that k ≤ n.

Let i and j be in N , and k and n be in N1 such that k ≤ n. The non-trivial leaf map

of φ(Si,k) = Σgi,k is (1k−10, 1G)→ (1k−10, gi) and the non-trivial leaf map of φ(Tj,n) =

Γgj ,n is (1k−11, 1G) → (1k−11, gj). The prefixes 1k−10 and 1n−11 are incomparable if

k ≤ n and thus the two elements Σgi,k and Γgj ,n commute. Hence R10 holds in F(G,θ).

R11. S1,n = 1 for all n in N1 and

R12. T1,n = 1 for all n in N0.

The augmented tree pair representatives of φ(S1,n) and φ(T1,n) are the same and consists

of the augmented tree pair (Tn, 1
n+1
G , Tn) with the identity decoration. This augmented

tree pair is a representative of the identity in F(G,θ) and thus the relations R11 and R12

are hold true in F(G,θ).

Therefore, all the relations of F inf
(G,θ) are found in F(G,θ) under the map φ. Thus, by von

Dyck’s theorem, the map φ is a surjective group map from F inf
(G,θ) to F(G,θ). To prove

Theorem 4.28 it suffices to prove that φ is also injective.

Injectivity of φ

To prove that φ is injective we will show that for every non-trivial element f in F inf
(G,θ)

there exists a word fw written in the generators of F inf
(G,θ) which is equivalent to f and

such that φ(fw) is a non-trivial product in the normal form of Theorem 4.27. Thus

φ(fw) cannot be the identity element and hence φ will have been proven to be injective.

Let S be a finite string constructed from the generators of F inf
(G,θ). Via a series of stages

we will create an equivalent element in F inf
(G,θ) such that under φ the resulting product

is in the normal form described in Lemma 4.27. In the first 10 stages we will use the

group relations to rewrite S to be in either pq or paq form. In the final stage we will
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reduce the string that we produced in Stage 10 and show that its image under φ must

satisfy the irreducibility conditions needed for uniqueness from Theorem 4.27. Note

that we will abuse notation slightly and apply the descriptions “positive”, “negative”

and “augmenting” to any string of generators in F inf
(G,θ) that have such properties in F(G,θ)

under the map φ.

Stage 1:

Removing inverse generators of the form S−1
i,n and T−1

i,n

Consider the symbol Si,n for some i in N and some n in N1. Define j to be the index

in N such that gj = g−1
i . Then there exists a relation in R7 of the form Si,nSj,n = S1,n

which combines with the relation S1,n = 1 from R11 to produce S−1
i,n = Sj,n. This

technique for replacing inverse generators with regular generators works for any inverse

generators of the form S−1
i,n and T−1

i,n . Thus we replace every inverse generator of the

form S−1
i,n or T−1

i,n in the string S with its equivalent non-inverted generator. We call the

new string S1.

Stage 2:

Moving all the positive elements to the left of the string.

The next stage involves rewriting the string S1 to a string of the form S2 := P̄X where P̄
is a string of positive elements and X is a string composed from negative and augmenting

elements.

The set of relations R1 imply that for all k, n in N0 such that k < n,

Y −1
n Yk = YkY

−1
n+1, Y −1

k Yn = Yn+1Y
−1
k .

These relations provide us the means by which to move positive generators to the left

of negative generators.

Likewise relations R2, R3, R4 and R5 provide the following rules by which we can

move positive elements to the left of augmenting elements,

Si,nYk = YkSi,n+1, (k < n− 1)

Y −1Si,n = Si,nY
−1
k , (k ≥ n)

Si,nYn−1 = Yn−1Si,nS(i)δ,n+1,

Ti,nYk = YkTi,n+1, (k < n).

From all the rules above we can move any positive element to the left of nearly every

generator, negative or augmenting, in F inf
(G,θ). The only situation for which we don’t have

a rule yet is when we encounter the substring Ti,kYn when k ≤ n. In this situation we
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combine multiple relations from R9 together to produce the relation

Ti,k = Si,k+1 . . . Sδn−k(i),nTδn−k+1(i),n+1,

and replace the substring Ti,kYn with (Si,k+1 . . . Sδn−k(i),nTδn−k+1(i),n+1)Yn.

We can then use the previously defined rules to move Yn to the left of this product.

This process of moving all positive elements of the form Yn to the left of all the other

elements in the string is a finite process and must terminate. Thus after Stage 2 we

have produced the string S2.

Stage 3:

Rearranging the positive elements

Following the definition of a positive function in F(G,θ), a positive string is one of the

form Y a0
0 Y a1

1 . . . Y am
m for some powers ai in N0 (note that a positive string is not simply

a string of positive elements but a specially ordered one). Given a string of positive

elements, the relations of F inf
(G,θ) provide the rules necessary to rearrange the elements

and create a positive string. Specifically, the set of relations in R1 provide the rules

YnYk = YkYn+1, ∀k, n ∈ N0 such that k < n,

which moves positive generators with lower depth numbers to the left of positive gener-

ators with higher depth numbers. We thus apply this rule to the substring P̄ in S2 to

create the positive string P. This process ends when there exists no substring YkYn such

that k < n, which must be a finite process given we have a finite number of positive

elements. We call the new string that has been created S3 := PX .

Stage 4:

Moving all the negative elements to the right of the string

After the first three stages the original string S has been replaced by the string S3 = PX
where P is a positive string and X is a string of negative and augmenting elements.

Stage 4 rewrites the substring X to create a new substring A1Q̄ where A1 is a string of

augmenting elements and Q̄ is a string of negative elements. To create the new substring

we require that all the augmenting elements in X are moved to the left of the all the

negative elements. The relations R2, R3, R4, R5 and R9 provide the means for this

to happen. The first four of these relations imply the following:

Y −1
k Si,n = Si,n+1Y

−1
k , (k < n− 1)

Y −1
k Si,n = Si,nY

−1
k , (k ≥ n)

Y −1
n−1Si,n = Si,nS(i)δ,n+1Y

−1
n−1,
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Y −1
k Ti,n = Ti,n+1Y

−1
k , (k < n).

The final substring to consider is Y −1
n Ti,k, when k ≤ n. By using the method similar to

that found in Stage 2, we use the relation R9 to replace the generator Ti,k with

Ti,k = Si,k+1 . . . Sδn−k(i),nTδn−k+1(i),n+1.

The string Y −1
n Ti,k thus becomes Y −1

n Si,k+1 . . . Sδn−k(i),nTδn−k+1(i),n+1 and the negative

element Y −1
n can now be moved to the right by making use of the four rewrite rules

previously defined.

We now therefore create a new string S4 := PA1Q̄. Note that no positive elements

are produced in any of the rewrite rules above, thus we can now continue the process

without having to return to stages 2 or 3.

Stage 5:

Rearranging the negative elements

A negative string has the form Y −amm . . . Y −a11 Y −a00 for powers ai ∈ N0. In Stage 5 we

will rewrite the substring Q̄ to produce a negative string Q. The set of relations in R1

again provide the necessary rewrite rules;

Y −1
k Y −1

n = Y −1
n+1Y

−1
k , for all k, n in N0 such that k < n.

Using these rules, one can rewrite Q̄ to produce the string Q where the indexing of the

negative elements in the string decreases from left to right, as is required of a negative

string. Thus after Stage 5 we have produced the string S5 := PA1Q.

Stage 6:

Expanding the T-generators

Stages 6-10 concentrate on rewriting A1 as an augmenting string. If A1 is empty then

there is no work to be done and we go straight to Stage 11.

We define an augmenting string to be a string of generators which is taken to an aug-

menting product under the map φ. As there are three types of augmenting product

there are also three types of augmenting strings that correspond to each.

Type 1: Ti,n,

Type 2: Si1,k1Si2,k2 · · ·Sim,km ,

Type 3: Sj1,k1Sj2,k2 · · ·Sjm,kmTl,n,
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where k1 < k2 < . . . < km ≤ n, (im)δ 6= 1 and if km = n then (jm)δ 6= l. Under the map

φ each type given above gets mapped to the corresponding type of augmenting product

in F(G,θ). After Stages 6-10 the string A1 will have been rewritten as one of the three

types listed above.

In Stage 6 we deal exclusively with the T-generators that are found in A1. If there are

no T-generators in the string then we go straight to Stage 7.

Suppose then that the substringA1 in S5 contains one or more generators of the form Ti,k

for a range of depth indexes k. In Stage 6 we do not concern ourselves with the number

of T-generators and instead concentrate on their depth indexes with the intention of

making them all equal. This will ultimately allow us to combine them all into one

generator, but that step in the process is not reached until Stage 8.

The relation R9 gives us the rule to rewrite any T-generator of the from Ti,n with

Si,n+1T(i)δ,n+1. Therefore by using this relation multiple times on each T-generator in

A1 we can increase the depth index on all these generators to one common number

m. We choose m to be the smallest natural number that is greater than or equal to

the depth indexes of all S-generators in A1, should they exist. This is required for all

augmenting strings of Type 3.

Thus we now apply the rewrite rules supplied by R9 to create a string in which every T-

generator has depth index m. Note that although our use of the relation R9 also adds

extra S-generators to the string none of these have a depth number greater than m.

Therefore, the three conditions by which we chose the number m will hold throughout

the entirety of this stage. Once every T-generator in the newly written string has depth

index m we end the rewriting process and call the resulting substring A2.

Thus, at the end of Stage 6 we have produced the string S6 = PA2Q. Note that if A1

contained no T-generators then A2 = A1.

Stage 7:

Reordering the generators in the substring A2

In this stage we will be ordering the S and T generators in A2 relative to each other. If

A2 has no S-generators then we can go straight to Stage 8.

If A2 contains both S-generators and T-generators then we require every S-generator to

be to the left of each T-generator in anticipation of obtaining an augmenting string of

Type 3. This is achieved by using the relations in R10, which we recall as those of the

form Si,kTj,n = Tj,nSik for all i, j in N and k, n in N1 such that k ≤ n. Due to the work

done in Stage 6, the depth index of all the T-generators is greater than or equal to every

depth index of the S-generators and thus we satisfy the conditions required to use R10

to reorder A2 and move all the T-generators to the right.
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For augmenting strings of Type 2 and Type 3 we also require that the S-generators are

ordered from left to right according the their depth indexes, with the largest being at

the right. We can achieve this ordering in A2 by making use of R6 which states that

all S-generators of different depth indexes commute.

We apply these two reordering processes to the string A2 where necessary and call the

result A3. Thus at the end of Stage 7 we have produced the string S7 = PA3Q.

Stage 8:

Combining generators in A3

The substring A3 may contain substrings of the form Ti,nTj,n or Sq,kSr,k, where the

generators have identical depth indexes. We can use the relations R7 and R8 to rewrite

these substrings as single elements. Eventually this process will terminate and for each

depth index there will eventually exist at most one S-generator or T-generator. We

denote the substring that remains after this process A4 and the overall string S8 :=

PA4Q.

Stage 9:

Removing identity S and T generators

The generators S1,n and T1,n are taken to the identity under the map φ, thus need to

be removed from the string. The relations R11 and R12 give the means with which to

do this. After removing these extraneous generators the substring A4 has now become

A5. If A5 is empty then we go straight to Stage 11, else we carry on to Stage 10. We

call the resulting string from this stage S9 := PA4Q.

Stage 10:

Satisfying the conditions necessary for augmenting strings

The substring A5 in now in one of three possible forms

Form 1: Ti,n,

Form 2: Si1,k1Si2,k2 · · ·Sim,km ,

Form 3: Sj1,k1Sj2,k2 · · ·Sjm,kmTl,n,

where k1 < k2 < . . . < km ≤ n. However, it still may fail to be an augmenting string if

it fails one of the two final conditions, namely if either

1. A4 is in Form 2 and (im)δ = 1 or,
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2. A4 is in Form 3, km = n and (jm)δ = l.

We will consider each possibility in turn.

Case 1: A5 is in Form 2 and (im)δ = 1

Suppose that A5 = Si1,k1Si2,k2 · · ·Sim,km and satisfies the conditions in Case 1. Then

by R12 we can add the generator T1,km to the end of the A5 and produce the substring

Sim,kmT(im)δ,km . By R9 we can then reduce this substring to Tim,km−1 and the offending

generator Sim,km is removed. In F(G,θ) this is the equivalent to shrinking an exposed

caret. The new string will now need to be checked to see if it now fails the second

condition above.

Case 2: A5 is in Form 3, km = n and (jm)δ = l

Suppose that A5 = Sj1,k1Sj2,k2 · · ·Sjm,kmTl,n and satisfies the conditions in Case 2. Then

the substring Sjm,kmTl,n is the same as Sjm,kmT(jm)δ,km which can be rewritten as the

single generator Tjm,km−1 by R9. As in the previous case this is the equivalent to

shrinking an exposed caret in F(G,θ). Once the offending substring Sjm,kmTl,n has been

replaced the new string must be checked again to see if the new generator Tjm,km−1

creates the same issue. If it does then the process is repeated again until a string is

produced that either satisfies the condition or becomes an augmenting string of Type 1.

At the end of Stage 10 the substring A5 has now been rewritten as an augmenting string

A. Overall we leave the stage with the string S10 = PAQ.

Stage 11:

Creating irreducibility

The current string S10 will get taken to either a pq or a paq product under the map φ,

however these products may not be in the normal form defined by Theorem 4.27. We

will now consider all the forms that S10 could take such that φ(S10) will not satisfy any

of the three conditions given in Theorem 4.27.

Conditions 1 and 2 will fail if and only if S10 contains Yk and Y −1
k for some k but does

not contain Yk+1 and Y −1
k+1. Additionally, there are three different cases in which S10

will fail condition 3. We will consider each possible failure in turn and use the relations

from the group to correct them when they occur.

Failure 1: A contains S generators or T generators with depth index k + 1 and k + 2.

To reiterate, in each of these three failures S10 contains Yk and Y −1
k for some k but does

not contain Yk+1 and Y −1
k+1, and thus S10 already fails conditions 1 and 2. Failure 1 occurs

when A is empty or simply does not contain generators at the correct depth indexes.

The method of dealing with this case remains the same in both scenarios. We begin
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by inserting the subword (Y −1
k Yk) between each intervening generator in S10 that lies

between Yk and Y −1
k . This creates a series of conjugations by the inverse element Y −1

k .

These conjugations can then be reduced by using the group relations, a consequence

of which is that the original generators Yk and Y −1
k are removed from the string. In

the table below we give all the possible conjugations that could be created and their

replacements under the group relations.

Conjugations Group relation Reduction

YkYnY
−1
k for some n > k R1 Yn−1

YkSi,nY
−1
k for some n < k R3 Si,n

YkSi,nY
−1
k for some n > k + 1 R2 Si,n−1

YkTi,nY
−1
k for some n ≥ k R5 Ti,n−1

Table 4.1

After reducing all the conjugations we are left with a string where the number of gen-

erators Yk and Y −1
k it contains have both been reduced by one and the length of the

string has been reduced by two. If any generators of the form Yk and Y −1
k remain we

repeat the process again until all such generators have been removed.

Failure 2: A contains Si,k+1S(i)δ,k+2.

In dealing with the next two types of failure we employ the same method as we did above,

namely insert copies of (Y −1
k Yk) and then reduce the conjugations that are produced by

using the group relations. The one exception in this case is the subword Si,k+1S(i)δ,k+2.

Here we do not insert the product (Y −1
k Yk) between the two generators as the subword

Y −1
k Si,k+1S(i)δ,k+2Yk is reduced to Si,k+1 by R4. In all other respects the process is

the same as the previous case and the details are given in Table 4.1. As a result the

generators Yk and Y −1
k are removed and the substring Si,k+1S(i)δ,k+2 has been replaced

by Si,k+1. We must now check our new string for any of the three failures and repeat

the necessary steps if another occurs.

Failure 3: S10 contains Si,k+1W for some generator W 6= Sj,k+2 or Tj,k+1 for any j,

and (i)δ = 1.

By employing the same method as the two above we reduce the string by removing the

generators Yk and Y −1
k and adjusting the intervening generators by the rules in Table

4.1. Again we must now check our new string for any more failures and repeat the

necessary steps if another occurs.

In each of the three cases above we reduce the length of the string by at least two.

Thus these processes must end at some point. This will occur either when the string no
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longer fails in any of the areas given above, or the string has been reduced to the empty

string. In the case that we come to the end of Stage 11 and the string is non-empty

then its image under φ must be in the normal form of Theorem 4.27. As any element

in the normal form is necessarily non-trivial φ must be injective and hence our proof is

complete.

4.4 A finite presentation for F(G,θ)

In this section we will prove Theorem 4.3 from the introduction, and produce a finite

presentation for F(G,θ). To do this we will make use of the well known Tietze transfor-

mations introduced in 1908 by Heinrich Franz Friedrich Tietze. Group presentations

that differ only by a Tietze transformation define isomorphic groups. Throughout the

rest of the paper we will reference the four transformations by using the notation T1,

T2, T3 and T4.

To understand the Tietze transformations we first introduce some terminology. Let G

be a group given by the presentation 〈X|R〉, where R is a set of relations (rather than

relators). That is, R is a set of equalities between finite strings in (X±)∗. We say that

a set S is a consequence of the relations in R if every s ∈ S can be derived from the

relations in R.

T1. Adding a set of relations. Let 〈X|R〉 be a group presentation. Let

S be another, possibly infinite, system of relations such that every s ∈ S

is a consequence of the relations in R. Then under T1 we can create the

presentation 〈X|R ∪ S〉.

T2. Deleting a set of relations. Let 〈X|R〉 be a group presentation.

Suppose a subset S ⊂ R is a consequence of the relations in R \ S. Then

under T2 we can create the presentation 〈X|R \ S〉. This is the inverse

process of T1.

T3. Adding a set of generators. Let 〈X|R〉 be a group presentation.

Let Y be a set of symbols disjoint from X and {wy|y ∈ Y } a set of words

over X. Define the set of relations Ry := {y(wy)
−1 = 1|y ∈ Y }. Then under

T3 we can create the presentation 〈X ∪ Y |R ∪Ry〉.

T4. Deleting a set of generators. Let 〈X|R〉 be a group presentation

isomorphic to a group G. Suppose Y is a subset of X and Ry := {y(wy)
−1 =

1|y ∈ Y } is a subset of R where every wy is a word over X \ Y . Define a

new set R′ which consists of all the relations in R \Ry translated such that

for all r ∈ R \ Ry and y, y−1 ∈ Y every occurrence of y in r is replaced by

wy and every occurrence of y−1 in r is replaced by (wy)
−1. Then under the
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transformation T4 we can create the presentation 〈X \ Y |R′〉.

Using Tietze transformations, we will take the infinite presentation F inf
(G,θ) and produce

the finite presentation F fin
(G,θ) as given in Theorem 4.3. We will break the process into

two parts.

In the first part, we transform F inf
(G,θ) into the finite presentation Ffin = 〈Xf |Rf 〉 given

below.

Set of generators Xf : {Y0, Y1}∪{Si,1, Si,2| for all i in N}∪{Ti,0, Ti,1| for all i in N}.

Set of relations Rf :

R1A [Y0Y
−1

1 , Y −1
0 Y1Y0] = 1,

R1B [Y0Y
−1

1 , Y −2
0 Y1Y

2
0 ] = 1,

R2A [Y0Y
−1

1 , Y −1
0 Si,2Y0] = 1, for all i in N ,

R2B [Y0Y
−1

1 , Y −2
0 Si,2Y

2
0 ] = 1, for all i in N ,

R3A [Y1, Si,1] = 1, for all i in N ,

R3B [Y −1
0 Y1Y0, Si,1] = 1, for all i in N ,

R3C [Y −1
0 Y1Y0, Si,2] = 1, for all i in N ,

R3D [Y −2
0 Y1Y

2
0 , Si,2] = 1, for all i in N ,

R4A [Y0, S
−1
i,1 ] = S(i)δ,2, for all i in N ,

R4B [Y1, S
−1
i,2 ] = Y −1

0 S(i)δ,2Y0, for all i in N ,

R5A [Y0Y
−1

1 , Y −1
0 Ti,1Y0] = 1, for all i in N ,

R5B [Y0Y
−1

1 , Y −2
0 Ti,1Y

2
0 ] = 1, for all i in N ,

R6A [Si,2, T
−1
(j)δ,1Tj,0] = 1, for all i and j in N ,

R6B [Y −1
0 Si,2Y0, Sj,1] = 1, for all i and j in N ,

R6C [Y −1
0 Si,2Y0, Sj,2] = 1, for all i and j in N ,

R6D [Y −2
0 Si,2Y

2
0 , Sj,2] = 1, for all i and j in N ,

R7A Si,1Sj,1 = S(i,j)∆,1, for all i and j in N ,

R7B Si,2Sj,2 = S(i,j)∆,2, for all i and j in N ,

R8A Ti,0Tj,0 = T(i,j)∆,0, for all i and j in N ,

R8B Ti,1Tj,1 = T(i,j)∆,1, for all i and j in N ,

R9A Ti,0 = T(i)δ,1Si,1, for all i and j in N ,

R9B Ti,1 = Y −1
0 T(i)δ,1Y0Si,2, for all i and j in N ,

R10A [Si,1, Tj,1] = 1, for all i and j in N ,

R10B [Si,1, Y
−1

0 Tj,1Y0] = 1, for all i and j in N ,
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R10C [Si,2, Y
−1

0 Tj,1Y0] = 1, for all i and j in N ,

R10D [Si,2, Y
−2

0 Tj,1Y
2

0 ] = 1, for all i and j in N ,

R11A S1,1 = 1,

R11B S1,2 = 1,

R12A T1,0 = 1,

R12B T1,1 = 1.

Note that we name the sets comprising Rf based on the original set of relations in F inf
(G,θ).

For the second part, we will take the finite presentation Ffin and reduce the number of

generators by using the relations R9A and R9B to remove the generators of the form

Si,1 and Si,2. The presentation produced after this process will be F fin
(G,θ).

Proposition 4.29. The presentations F inf
(G,θ) = 〈X|R〉 and Ffin = 〈Xf |Rf 〉 represent

isomorphic groups.

Proof. The form of the proof will take the following outline. In Stage 1 we will derive

the set of relations Rf from the set R and use the transformation T1 to create a new

presentation F̂1 = 〈X|R ∪ Rf 〉. In Stage 2 we will show that every relation in the

presentation F̂1 can be derived from the finite set Rf and three specially chosen infinite

sets which we will call A, B and C. Then, by using the transformation T2 on F̂1, we

will create a new presentation F̂2 := 〈X|Rf ∪A ∪B ∪C〉. Finally, in Stage 3 we turn

our attention to the set of generators X. We will show that the three infinite sets of

relations, A, B and C satisfy the conditions needed to remove a set of generators by

the transformation T4. Therefore, by applying T4 to F̂2 we can remove all but finitely

many generators from F̂2 as well as the relations from A, B and C. The presentation

that will have been created after Stage 3 will be the finite presentation Ffin = 〈Xf |Rf 〉.

Stage 1

As stated in the introduction above, the purpose of this first stage is to transform the

presentation F inf
(G,θ) = 〈X|R〉 into the presentation F̂1 = 〈X|R ∪Rf 〉 by using the Tietze

transformation T1. To do so we must first show that each of the relations in Rf can be

derived from the relations in R. The set Rf is split up into 30 finite subsets where each

one is numbered according to the original relation in R from which it will be derived.

The sets R1A and R1B

The first two subsets from Rf are R1A and R1B. Both consist of just a single relation

each and both can be be derived from relations in the set R1.

Y −1
0 Y2Y0 = Y −1

1 Y2Y1 Y −1
0 Y3Y0 = Y −1

1 Y3Y1

⇒ Y1Y
−1

0 Y2Y0Y
−1

1 Y2 = 1 ⇒ Y1Y
−1

0 Y3Y0Y
−1

1 Y3 = 1
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⇒ [Y0Y
−1

1 , Y2] = 1 ⇒ [Y0Y
−1

1 , Y3] = 1

⇒ [Y0Y
−1

1 , Y −1
0 Y1Y0] = 1 ⇒ [Y0Y

−1
1 , Y −2

0 Y1Y
2

0 ] = 1

The sets R2A and R2B

The relations in R2A and R2B can be constructed from those in R2 in the following

way;

Y −1
0 Si,3Y0 = Y −1

1 Si,3Y1 Y −1
0 Si,4Y0 = Y −1

1 Si,4Y1

⇒ Y1Y
−1

0 S−1
i,3 Y0Y

−1
1 Si,3 = 1 ⇒ Y1Y

−1
0 S−1

i,4 Y0Y
−1

1 Si,4 = 1

⇒ [Y0Y
−1

1 , Si,3] = 1 ⇒ [Y0Y
−1

1 , Si,4] = 1

⇒ [Y0Y
−1

1 , Y −1
0 Si,2Y0] = 1 ⇒ [Y0Y

−1
1 , Y −2

0 Si,2Y
2

0 ] = 1.

The sets R3A, R3B, R3C and R3D

The set of relations R3 can be written as the set of commutators

{[Yk, Si,n] = 1| for all i in N , n, k ∈ N1 such that 0 < n ≤ k}.

Thus R3A is simply a subset of R3. The set R3B is very close to the subset {[Y2, Si,1] =

1| for all i in N} from R3. We use the relation Y2 = Y −1
0 Y1Y0 from R1 to replace every

occurance of Y2 and thus produce R3B. A similar process produces R3C and R3D.

The sets R4A and R4B

The set R4A is simply a subset of R4. The set R4B is derived from the subset

{[Y2, S
−1
i,2 ] = Si,3| for all i in N} of R4, where every Si,3 is replaced with Y −1

0 S(i)δ,2Y0

by the relation from R2.

The sets R5A and R5B

The sets R5A and R5B are derived from R5 in the same manner that R2A and R2B

were derived from R2.

Y −1
0 Ti,2Y0 = Y −1

1 Ti,2Y1 Y −1
0 Ti,3Y0 = Y −1

1 Ti,3Y1

⇒ Y1Y
−1

0 T−1
i,2 Y0Y

−1
1 Ti,2 = 1 ⇒ Y1Y

−1
0 T−1

i,3 Y0Y
−1

1 Ti,3 = 1

⇒ [Y0Y
−1

1 , Ti,2] = 1 ⇒ [Y0Y
−1

1 , Ti,3] = 1

⇒ [Y0Y
−1

1 , Y −1
0 Ti,1Y0] = 1 ⇒ [Y0Y

−1
1 , Y −2

0 Ti,1Y
2

0 ] = 1.

The sets R6A, R6B, R6C and R6D
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The set of relations R6 can be written as the set of commutators

{[Si,m, Sj,n] = 1| for all i in N , n,m ∈ N1 such that 0 < m ≤ n}.

Thus R6A is simply a subset of R6. The set R6B is derived from the subset {[Si,3, Sj,1] =

1| for all i in N} of R6. We use the relation Si,3 = Y −1
0 Si,2Y0 from R2 to replace every

occurance of Si,3 and thus produce R6B. A similar process produces R6C and R6D.

The sets R7A, R7B, R8A and R8B

All the relations from the sets R7A, R7B and R8A are taken directly from R7 and

R8 respectively.

The sets R9A and R9B

The set R9A is taken directly from R9. The set R9B is derived from from the subset

{Ti,1 = T(i)δ,2Si,2} of R9. By using the relation T(i)δ,2 = Y −1
0 T(i)δ,1Y0 from R5 we can

replace every occurrence of T(i)δ,2 with Y −1
0 T(i)δ,1Y0 and thus produce R9B.

The sets R10A, R10B, R10C and R10D

The set of relations R10 can be written as the set of commutators

{[Si,m, Tj,n] = 1| for all i in N , n,m ∈ N1 such that 0 < m ≤ n}.

Thus R10A is simply a subset of R10. The set R10B is derived from to the subset

{[Si,1, Tj,2] = 1| for all i in N} of R10. We use the relation Ti,2 = Y −1
0 Ti,1Y0 from R2

to replace every occurance of Ti,2 with , Tj,2] = 1| for all i in N} of R10. We use the

relation Ti,2 = and thus produce R10B. A similar process produces R10C and R10D.

The sets R11A, R11B, R12A and R12B

All the relations from the sets R11A, R11B, R12A and R12B are taken directly from

R11 and R12 respectively.

Having established that all the relations in F fin
(G,θ) can either be derived from or taken

directly from the relations in F̂ , we then use the Tietze transformation T1 to add the new

relations to F̂ and create a new presentation. We call this presentation F̂1 := 〈X|R∪Rf 〉.

Stage 2

The second stage of the proof involves removing a large number of relations from the

presentation F̂1 by making use of the Tietze transformation T2. By the end of this

stage we will have constructed a presentation that has the same generating set X but

whose relations have been reduced to the finite set Rf and three distinct infinite sets

which will be defined throughout the stage. In the process that follows we consider each
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set of relations from R in turn, these will in turn provide sub-stages for Stage 2.

The set of relations R1

First consider the set R1 = {Y −1
k Y −1

n YkYn+1 = 1|for all k and n in N0 such that k < n}.

We split this relation into two disjoint subsets R1a and R1b which are defined as

R1a :={Y −1
0 Y −1

n Y0Yn+1 = 1| for all n ≥ 1},

R1b :=R1 \R1a = {Y −1
k Y −1

n YkYn+1 = 1| for all 0 < k < n}.

We will first show that every relation Y −1
0 YnY0 = Yn+1 from the set R1a can be rewritten

as Y −n0 Y1Y
n

0 = Yn+1 for some n. The proof proceeds by induction on n. For the case

when n = 1 the relation Y2 = Y −1
0 Y1Y0 automatically satisfies the claim. Now suppose

that the relation Y −1
0 YnY0 = Yn+1 can be written as Y −n0 Y1Y

n
0 = Yn+1 for some n ≥ 1.

Consider the relation Y −1
0 Yn+1Y0 = Yn+2. By our assumption this becomes Yn+2 =

Y −1
0 (Y −n0 Y1Y

n
0 )Y0, from which follows the relation Yn+2 = Y

−(n+1)
0 Y1Y

(n+1)
0 . Thus, by

induction, the claim is true. We can therefore use the Tietze transformations T1 and

T2 to replace every relation from the set R1a that is of the form Yn+1 = Y −1
0 YnY

−1
0

with the relation Yn+1 = Y −n0 Y1Y
n

0 . First the transformation T1 adds all relations of

the form Yn+2 = Y
−(n+1)

0 Y1Y
(n+1)

0 to the presentation. Following this T2 then removes

all the relations Yn+1 = Y −1
0 YnY

−1
0 . The new set of relations that has replaced R1a we

call A;

A := {Y −n0 Y1Y
n

0 = Yn+1| for all n ≥ 1}.

This set A is the first of the infinite sets mentioned in the introduction to the second

stage of the proof. Every relation in A associates a generator Yn with a finite string

constructed from the set {Y0, Y
−1

0 , Y1} and A will be used in Stage 3, in conjuction with

the transformation T4, to remove from the presentation the generators Yn for all n ≥ 2.

We will now prove that the infinite set of relations R1b can be derived from A together

with the two relations R1A and R1B. Consider the relation Y −1
k Y −1

n YkYn+1 = 1 from

R1b. Using the relations from A this can be rewritten in the following way;

Y −1
k Y −1

n YkYn+1 = 1

⇔(Y
−(k−1)

0 Y −1
1 Y

(k−1)
0 )(Y

−(n−1)
0 Y −1

1 Y
(n−1)

0 )(Y
−(k−1)

0 Y1Y
(k−1)

0 )(Y −n0 Y1Y
n

0 ) = 1

⇔Y −(k−1)
0 Y −1

1 Y
(k−n)

0 Y −1
1 Y

(n−k)
0 Y1Y

(k−n−1)
0 Y1Y

n
0 = 1

⇔Y −1
1 Y

(k−n)
0 Y −1

1 Y
(n−k)

0 Y1Y
(k−n−1)

0 Y1Y
(n−k+1)

0 = 1

⇔Y −1
1 Y0Y

(k−n−1)
0 Y −1

1 Y
(n−k+1)

0 Y −1
0 Y1Y

(k−n−1)
0 Y1Y

(n−k+1)
0 = 1

⇔Y −1
1 Y0Y

−1
n−k+2Y

−1
0 Y1Yn−k+2 = 1

⇔[Y −1
0 Y1, Yn−k+2] = 1
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⇔[Y −1
1 Y0, Yn−k+2] = 1.

This gives us the important double implication

Y −1
k Y −1

n YkYn+1 = 1⇔ [Y −1
1 Y0, Yn−k+2] = 1. (?)

By (?), any result we prove for the relation [Y −1
1 Y0, Yn−k+2] = 1 will also be true for

Y −1
k Y −1

n YkYn+1 = 1. Therefore as n > k, by proving that for all m ≥ 3 the relation

[Y −1
1 Y0, Ym] = 1 can be derived from A, R1A and R1B we will have also proved that

the relations in R1b can be derived from the same three sets. The proof proceeds by

induction on m. Consider the initial case when m = 3,

Y −1
1 Y0Y3 = Y −1

1 Y0Y
−2

0 Y1Y
2

0 (from A)

= Y −1
1 Y −1

0 Y1Y
2

0

= (Y −1
0 Y0)Y −1

1 Y −1
0 Y1Y

2
0 (multiplication by the identity)

= Y −1
0 (Y0Y

−1
1 )(Y −1

0 Y1Y0)Y0

= Y −1
0 (Y −1

0 Y1Y0)(Y0Y
−1

1 )Y0 (from R1A)

= Y −2
0 Y1Y

2
0 Y
−1

1 Y0

= Y3Y
−1

1 Y0 (from A)

as required.

Therefore the relation

[Y −1
1 Y0, Y3] = 1 (4.15)

can be derived from A, R1A and R1B.

Likewise for m = 4,

Y −1
1 Y0Y4 = Y −1

1 Y0Y
−3

0 Y1Y
3

0 (from A)

= Y −1
1 Y −2

0 Y1Y
3

0

= (Y −1
0 Y0)Y −1

1 Y −2
0 Y1Y

3
0 (multiplication by the identity)

= Y −1
0 (Y0Y

−1
1 )(Y −2

0 Y1Y
2

0 )Y0

= Y −1
0 (Y −2

0 Y1Y
2

0 )(Y0Y
−1

1 )Y0 (from R1B)

= Y −3
0 Y1Y

3
0 Y
−1

1 Y0

= Y4Y
−1

1 Y0 (from A)

as required.

Recall that because the relation (4.15) satisfies the claim, by (?) it follows that for all
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n ≥ 1 the relation Yn+1 = Y −1
n−1YnYn−1 can also be derived from A, R1A and R1B.

This fact will be used in the inductive step below.

Suppose that [Y −1
1 Y0, Ym] = 1 and [Y −1

1 Y0, Ym+1] = 1 satisfy the claim for some m ≥ 3.

Consider the product Y −1
1 Y0Ym+2,

Y −1
1 Y0Ym+2 = Y −1

1 Y0Y
−1
m Ym+1Ym (from the consequences of (4.15))

= Y −1
m Ym+1YmY

−1
1 Y0 (by our assumptions)

= Ym+2Y
−1

1 Y0. (from the consequences of (4.15))

Thus the relation [Y −1
1 Y0, Ym+2] = 1 can also be derived from A, R1A and R1B.

Therefore, by induction, the relation [Y −1
1 Y0, Ym] = 1 satisfies the claim for all m ≥ 3.

Hence, by (?), the same is true for all relations of the form Y −1
k Y −1

n YkYn+1 = 1 where

0 < k < n and thus we have proved the proposition regarding R1b.

The set of relations R2

The second set of relations from the set R to consider is R2, which we recall as the set

{Y −1
k S−1

i,nYkSi,n+1 = 1|for all i in N , k in N0 and n in N2 such that k < n− 1}.

We will show that this set can be derived from four finite sets together with two infinite

sets, where the outline of the proof will be similar to the R1 case. To begin with we

partition R2 into two disjoint subsets,

R2a := {Y −1
0 Si,nY0 = Si,n+1| for all i ∈N and n ≥ 2}

R2b := R2 \R2a = {Y −1
k Si,nYk = Si,n+1| for all i ∈N and 0 < k < n− 1}.

A simple induction argument, similiar to the derivation of A, proves that we can replace

any relation Y −1
0 Si,nY0 = Si,n+1 in R2a with the relation Y

−(n−2)
0 Si,2Y

(n−2)
0 = Si,n.

Thus we use the transformations T1 and T2 to replace R2a with the set

B := {Y −(n−2)
0 Si,2Y

(n−2)
0 = Si,n|for all i ∈N and n ≥ 2}.

This set B is the second of the three infinite sets mentioned in the introduction to Stage

2.

Our aim is to show that the relations from the set R2b can be derived from R1A, R1B,

R2A, R2B together with the two infinite sets A and B. We can use the relations from

B and the relation Y
−(k−1)

0 Y1Y
(k−1)

0 = Yk from A to rewrite each Y −1
k Si,nYk = Si,n+1
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from R2b as follows;

Y −1
k Si,nYk = Si,n+1

⇔ (Y
−(k−1)

0 Y −1
1 Y

(k−1)
0 )(Y

−(n−2)
0 S−1

i,2 Y
(n−2)

0 )(Y
−(k−1)

0 Y1Y
(k−1)

0 )(Y
−(n−1)

0 Si,2Y
(n−1)

0 ) = 1

⇔ Y −1
1 Y

(k−n+1)
0 S−1

i,2 Y
(n−k−1)

0 Y1Y
(k−n)

0 Si,2Y
(n−k)

0 = 1

⇔ Y −1
1 Y0Y

(k−n)
0 S−1

i,2 Y
(n−k)

0 Y −1
0 Y1Y

(k−n)
0 Si,2Y

(n−k)
0 = 1

⇔ [Y −1
0 Y1, Y

(k−n)
0 Si,2Y

(n−k)
0 ] = 1

⇔ [Y −1
0 Y1, Si,n−k+2] = 1

⇔ [Y −1
1 Y0, Si,n−k+2] = 1.

This gives us another important double implication

Y −1
k S−1

i,nYkSi,n+1 = 1⇔ [Y −1
1 Y0, Si,n−k+2] = 1. (??)

Therefore, by (??), if we can prove that for all m ≥ 4 the relations [Y −1
1 Y0, Si,m] = 1 can

be derived from the relations R1A, R1B, R2A, R2B and the two infinite sets A and B,

then we will have proved the same claim for the relations of the form Y −1
k Si,nYk = Si,n+1

for all 0 < k < n− 1. Consider the case when m = 4. Using B and R2A we can derive

[Y −1
1 Y0, Si,4] = 1 in the following way;

Y −1
1 Y0Si,4 = Y −1

1 Y0Y
−2

0 Si,2Y
2

0 (from B)

= Y −1
1 Y −1

0 Si,2Y0Y0

= (Y −1
0 Y0)Y −1

1 Y −1
0 Si,2Y0Y0 (insertion of the identity)

= Y −1
0 (Y −1

0 Si,2Y0)(Y0Y
−1

1 )Y0 (by R2A)

= Y −2
0 Si,2Y

2
0 Y
−1

1 Y0

= Si,4Y
−1

1 Y0 (from B).

Therefore by using the relations B and R2A one can derive the relation

[Y −1
1 Y0, Si,4] = 1. (4.16)

Recall that as the relation (4.16) satisfies the claims, by (??) every relation of the form

Y −1
n−2S

−1
i,nYn−2Si,n+1 = 1 can also be derived from the relations B and R2A.

The cases when m ≥ 5 are proved by induction. In the proof we will make use of the

fact that the relations [Y −1
1 Y0, Ym] have already been proven to be derivable from A,

R1A and R1B, for any m ≥ 3. First consider the initial case, m = 5.

Y −1
1 Y0Si,5 = Y −1

1 Y0Y
−3

0 Si,2Y
3

0 (from B)
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= Y −1
1 Y −2

0 Si,2Y
3

0

= (Y −1
0 Y0)Y −1

1 Y −2
0 Si,2Y

3
0 (insertion of the identity)

= Y −1
0 (Y0Y

−1
1 )(Y −2

0 Si,2Y
2

0 )Y0

= Y −1
0 (Y −2

0 Si,2Y
2

0 )(Y0Y
−1

1 )Y0 (by R2B)

= Y −3
0 Si,2Y

3
0 Y
−1

1 Y0

= Si,5Y
−1

1 Y0. (from B)

Thus the relation [Y −1
1 Y0, Si,5] = 1 can be derived from B and R2B.

Suppose [Y −1
1 Y0, Si,m] = 1 satisfies the claim for some m ≥ 5. Then consider the product

Y −1
1 Y0, Si,m+1;

Y −1
1 Y0Si,m+1 = (Y −1

1 Y0)Y −1
m−2Si,mYm−2 (from the consequence of (4.16))

= Y −1
m−2(Y −1

1 Y0)Si,mYm−2 (from A, R1A and R1B)

= Y −1
m−2Si,m(Y −1

1 Y0)Ym−2 (by our assumption)

= Y −1
m−2Si,mYm−2(Y −1

1 Y0) (from A, R1A and R1B)

= Si,m+1Y
−1

1 Y0. (from the consequence of (4.16))

Thus, by induction, any relation of the form [Y −1
1 Y0, Si,m] = 1 for m ≥ 5 can be derived

using relations from the sets R1A, R1B, R2A, R2B and the infinite sets A and B.

Therefore by (??) we conclude that the claim is true for every relation in R2b.

The set of relations R3

The next set of relations to consider is R3, which we recall as the set

{[YkSi,n] = 1|for all i in N , k in N0 and n in N1 such that k ≥ n}.

The aim of the next part of the proof is to show that that this set can be constructed

from the six relations R1A, R1B, R3A, R3B, R3C and R3D and the two infinite

sets A and B. To do so we consider the set R3 as the union of two disjoint subsets,

R3a and R3b, and consider each subset separately.

R3a := {[Yk, Si,1] = 1| for all i in N , k in N1}

R3b := R3 \R3a = {[Yk, Si,n] = 1| for all i in N , n, k in N2 such that n ≤ k}.

We first prove the claim for R3a by induction on k. The case, when k = 1, is exactly

the relation R3A. The second case, when k = 2, is the relation R3B where we have

used the relation Y2 = Y −1
0 Y1Y0 from A to replace the string Y −1

0 Y1Y0. Suppose that
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for some k ≥ 1 the relations [Yk, Si,1] = 1 and [Yk+1, Si,1] = 1 can be constructed using

relations from R1A, R1B, R3A and R3B together with the infinite set A. Consider

the product Yk+2Si,1. Using relations from the five sets above we have the following;

Yk+2Si,1 = (Y −1
k Yk+1Yk)Si,1 (from R1A, R1B and A)

= Si,1Y
−1
k Yk+1Yk (by our assumptions)

= Si,1Yk+2 (from R1A, R1B and A).

Thus, by induction, the relations [Yk, Si,1] = 1 for all k ≥ 1 can be constructed from

R1A, R1B, R3A, R3B and A.

This leaves us with the second subset R3b which we will show can be constructed from

the four finite sets of relations R1A, R1B, R3C and R3D together with the two

infinite sets A and B. Recall that the indexes k and n now must satisfy the inequality

2 ≤ n ≤ k. Let [Yk, Si,n] = 1 be a relation from R3b. By using relations from A and B

it can be rewritten in the following way;

[Yk, Si,n] = 1

⇔Y −1
k S−1

i,nYkSi,n = 1

⇔(Y
−(k−1)

0 Y −1
1 Y

(k−1)
0 )(Y

−(n−2)
0 S−1

i,2 Y
(n−2)

0 )(Y
−(k−1)

0 Y1Y
(k−1)

0 )(Y
−(n−2)

0 Si,2Y
(n−2)

0 ) = 1

⇔Y −(k−1)
0 Y −1

1 Y
(k−n+1)

0 S−1
i,2 Y

−(k−n+1)
0 Y1Y

(k−n+1)
0 Si,2Y

(n−2)
0 = 1

⇔(Y
−(k−n+1)

0 Y −1
1 Y

(k−n+1)
0 )S−1

i,2 (Y
−(k−n+1)

0 Y1Y
(k−n+1)

0 )Si,2 = 1

⇔Y −1
k−n+2S

−1
i,2 Yk−n+2Si,2 = 1

⇔[Yk−n+2, Si,2] = 1.

Thus, by the double implication above, proving that the set of relations {[Ym, Si,2] =

1|for all m ≥ 2} can be derived from R1A, R1B, R3C, R3D and A will also prove

our original claim regarding R3b. The proof proceeds by induction on m. The two

initial cases, when m = 2 and m = 3, are taken directly from the relations R3C and

R3D. Suppose the relations [Ym, Si,2] = 1 and [Ym+1, Si,2] = 1 satisfy the claim for some

m ≥ 2. Consider the product Ym+2Si,2;

Ym+2Si,2 = Y −1
m Ym+1YmSi,2 (by R1A, R1B and A)

= Si,2Y
−1
m Ym+1Ym (by our assumptions)

= Si,2Ym+2 (by R1A, R1B and A)

as required.
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Therefore the set of relations in R3b can be derived from the six relations R1A, R1B,

R3A, R3B, R3C and R3D and the two infinite sets A and B.

The set of relations R4

The set of relations R4 can be written as {[Yn, S−1
i,n+1] = S(i)δ,n+2| for all n in N0}. Our

claim is that the two sets R4A and R4B, and the two infinite sets A and B, are enough

to generate all the relations in R4. We split the relation into three cases. In the first

case we consider the subset of relations for when n = 0. This is exactly the set R4A

and thus automatically satisfies the claim. The second case is the subset of R4 for when

n = 1. Each relation of the form [Y1, S
−1
i,2 ] = S(i)δ,3 can be derived from the relation

[Y1, S
−1
i,2 ] = Y −2

0 S(i)δ,2Y0 from R4B and the relation S(i)δ,3 = Y −2
0 S(i)δ,2Y0 from B. Thus

every relation in R4 for when n = 1 is derived from R4B and B. Consider the product

YnS
−1
i,n+1 for some n ≥ 2. Using relations from the three sets R4B, A and B we have

the following;

YnS
−1
i,n+1 =Y

−(n−1)
0 Y1Y

n−1
0 Y

−(n−1)
0 S−1

i,2 Y
n−1

0 (from A and B)

=Y
−(n−1)

0 Y1S
−1
i,2 Y

n−1
0

=Y
−(n−1)

0 S−1
i,2 Y1S(i)δ,3Y

n−1
0 (from n = 1 case)

=Y
−(n−1)

0 S−1
i,2 (Y n−1

0 Y
−(n−1)

0 )Y1(Y n−1
0 Y

−(n−1)
0 )S(i)δ,3Y

n−1
0

(insertion of identity elements)

=S−1
i,n+1YnS(i)δ,n+2 (from A and B)

Therefore the relation [Yn, S
−1
i,n+1] = S(i)δ,n+2 satisfies the claim and we conclude that

the set of relations R4 can be derived from R4A, R4B and the two infinite sets A and

B.

The set of relations R5

Recall that R5 is the set

{Y −1
k T−1

i,n YkTi,n+1 = 1| for all i in N , k in N0 and n in N1 such that k < n}.

To begin with we split the set into two disjoint subsets;

R5a :={Y −1
0 T−1

i,n Y0Ti,n+1 = 1| for all i in N , n in N1}

R5b :=R5\R5a = {Y −1
k T−1

i,n YkTi,n+1 = 1| for all i in N , k, n in N0 such that k < n}.

The relations in the set R5a can be replaced in a manner similar to those that were in
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R2a and thus we replace R5a with

C := {Y −(n−1)
0 Ti,1Y

(n−1)
0 = Ti,n+1|for all i in N and n in N1}.

This set C is the third and final infinite set mentioned in the introduction to Stage 2.

Now consider Y −1
k T−1

i,n YkTi,n+1 = 1 from R5b, where 0 < k < n. We can use the rela-

tions from C and the relation Y
−(k−1)

0 Y1Y
(k−1)

0 = Yk from A to rewrite Y −1
k T−1

i,n YkTi,n+1 =

1 as follows;

Y −1
k Ti,nYk = Ti,n+1

⇔ (Y
−(k−1)

0 Y −1
1 Y

(k−1)
0 )(Y

−(n−1)
0 T−1

i,1 Y
(n−1)

0 )(Y
−(k−1)

0 Y1Y
(k−1)

0 )(Y −n0 Ti,1Y
n

0 ) = 1

⇔ Y
−(k−1)

0 Y −1
1 Y

(k−n)
0 T−1

i,1 Y
(n−k)

0 Y1Y
(k−n−1)

0 Ti,1Y
(n)

0 = 1

⇔ Y −1
1 Y

(k−n)
0 T−1

i,1 Y
(n−k)

0 Y1Y
(k−n−1)

0 Ti,1Y
(n−k+1)

0 = 1

⇔ Y −1
1 Y0Y

(k−n−1)
0 T−1

i,1 Y
(n−k+1)

0 Y −1
0 Y1Y

(k−n−1)
0 Ti,1Y

(n−k+1)
0 = 1

⇔ [Y −1
0 Y1, Y

(k−n−1)
0 Ti,1Y

(n−k+1)
0 ] = 1

⇔ [Y −1
0 Y1, Ti,n−k+2] = 1

⇔ [Y −1
1 Y0, Ti,n−k+2] = 1.

This gives the double implication

Y −1
k T−1

i,n YkTi,n+1 = 1⇔ [Y −1
1 Y0, Ti,n−k+2] = 1. (? ? ?)

Thus by (? ? ?), if we can prove that for all m ≥ 3 the relation [Y −1
1 Y0, Ti,m] = 1 can

be derived from the relations R1A, R1B, R5A, R5B together with the two infinite

sets A and C, then we will have proved the same claim for Y −1
k T−1

i,n YkTi,n+1 = 1 for

all 0 < k < n. Consider the case when m = 3. Using C and R5A we can derive

[Y −1
1 Y0, Ti,3] = 1 in the following way;

Y −1
1 Y0Ti,3 = Y −1

1 Y0Y
−2

0 Ti,1Y
2

0 (from C)

= Y −1
1 Y −1

0 Ti,1Y
2

0

= (Y −1
0 Y0)Y −1

1 Y −1
0 Ti,1Y

2
0 (insertion of the identity)

= Y −1
0 (Y0Y

−1
1 )(Y −1

0 Ti,1Y0)Y0

= Y −1
0 (Y −1

0 Ti,1Y0)(Y0Y
−1

1 )Y0 (by R5A)

= Y −2
0 Ti,1Y

2
0 Y
−1

1 Y0

= Ti,3Y
−1

1 Y0. (from C)
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Thus by using relations from C and R5A we can derive the relation

[Y −1
1 Y0, Ti,3] = 1. (4.17)

Therefore, as (4.17) satisfies the claims, by (? ? ?) every relation Y −1
n−1Ti,nYn−1 = Ti,n+1

where n ≥ 1 can be derived from the relations C and R5A.

The cases when m ≥ 4 are proved by induction. In the proof we will again make use of

the fact that for any m ≥ 3 the relations [Y −1
1 Y0, Ym] have already been proven to be

derivable from A, R1A and R1B. First consider the initial case, m = 4.

Y −1
1 Y0Ti,4 = Y −1

1 Y0Y
−3

0 Ti,1Y
3

0 (from C)

= Y −1
1 Y −2

0 Ti,1Y
2

0 Y0

= (Y −1
0 Y0)Y −1

1 Y −2
0 Ti,1Y

2
0 Y0 (insertion of the identity)

= Y −1
0 (Y −2

0 Ti,1Y
2

0 )(Y0Y
−1

1 )Y0 (by R5B)

= Y −3
0 Ti,1Y

3
0 Y
−1

1 Y0

= Ti,4Y
−1

1 Y0 (from C).

Thus the relation [Y −1
1 Y0, Si,5] = 1 can be derived from C and R5B.

Suppose [Y −1
1 Y0, Ti,m] = 1 satisfies the claim for some m ≥ 4. Then consider the product

Y −1
1 Y0Ti,m+1;

Y −1
1 Y0Ti,m+1 = (Y −1

1 Y0)Y −1
m−1Ti,mYm−1 (from the consequence of (4.17))

= Y −1
m−1(Y −1

1 Y0)Ti,mYm−1 (from A, R1A and R1B)

= Y −1
m−1Ti,m(Y −1

1 Y0)Ym−1 (by our assumption)

= Y −1
m−1Ti,mYm−1(Y −1

1 Y0) (from A, R1A and R1B)

= Ti,m+1Y
−1

1 Y0 (from the consequence of (4.17))

Thus, by induction, any relation of the form [Y −1
1 Y0, Ti,m] = 1 for some m ≥ 4 can be

derived using relations from the sets R1A, R1B, R5A and R5B together with the

infinite sets A and C. Therefore we conclude that the claim is true for every relation in

R5b.

The set of relations R6

Our attention now turns to the set of relations R6

{Si,nSj,m = Sj,mSi,n|for all i and j in N and n and m in N1 such that n > m},
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which we will show can be derived from the seven relations R2A, R3A, R3C, R6A,

R6B, R6C and R6D, together with the infinite set of relations B. We consider the set

R6 as two disjoint subsets;

R6a :={[Si,n, Sj,1] = 1|for all n ≥ 2}

R6b :=R6 \R6a = {[Si,n, Sj,m] = 1|for all 2 ≤ m < n}.

Our proposal is that the relations in R6a can be derived from the four finite sets of

relations R2A, R3A, R6A and R6B, together with the infinite set of relations B.

When n = 2 the relations are exactly the set R6A. We will prove by induction on n

that all the relations of the form [Si,n, Sj,1] = 1 for when n ≥ 3 can be derived from

the four sets R2A, R3A, R6B and B. The initial case when n = 3 is constructed

directly by combining R6B with relations from B. Suppose the relation [Si,n, Sj,1] = 1

satisfies the proposition for some for some i and j in N and n ≥ 3. Consider the product

Si,n+1Sj,1;

Si,n+1Sj,1 = (Y −1
1 Si,nY1)Sj,1 by R2A and B

= Y −1
1 Si,nSj,1Y1 by R3A

= Y −1
1 Sj,1Si,nY1 by our assumption

= Sj,1Y
−1

1 Si,nY1 by R3A

= Si,n+1Sj,1 by R2A and B.

Thus the relation [Si,n+1, Sj,1] = 1 can be constructed from R2A, R3A, R6B and the

infinite set of relations B. Hence by induction our claim is true.

The subset R6b consists of all the relations in R6 that are not in R6a. The proposal

is that this subset can be derived from the relations R2A, R3C, R6C, R6D and the

infinite set B. As we have done in previous cases, we first rewrite the set of relations

using R2A and B. Consider the relation [Si,nSj,m] = 1 in R6b;

S−1
i,nS

−1
j,mSi,nSj,m = 1

⇔ (Y
−(n−2)

0 S−1
i,2 Y

n−2
0 )(Y

−(m−2)
0 S−1

j,2 Y
m−2

0 )(Y
−(n−2)

0 Si,2Y
n−2

0 )(Y
−(m−2)

0 Sj,2Y
m−2

0 ) = 1

⇔ Y m−n
0 S−1

i,2 Y
n−m

0 S−1
j,2 Y

m−n
0 Si,2Y

n−m
0 Sj,2 = 1

⇔ S−1
i,n−m+2S

−1
j,2Si,n−m+2Sj,2 = 1.

Therefore, by the double implication

S−1
i,nS

−1
j,mSi,nSj,m = 1⇔ S−1

i,n−m+2S
−1
j,2Si,n−m+2Sj,2 = 1,

by proving that the set of relations {[Si,nSj,2] = 1| for all n ≥ 3} can be constructed
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from R2A, R3C, R6C, R6D and the infinite set B we will have proved our original

proposal. The proof follows by a similar method to our proof involving R6a. The

relations in R6b where n = 3 are constructed from those in the set R6C combining

with B. The rest of the cases will be proved by induction on n. The initial case when

n = 4 is constructed directly by combining R6D with relations from B. Suppose the

relation [Si,nSj,2] = 1 can be constructed using R2A, R3C, R6D and the infinite set

B for some for some i and j in N and n ≥ 4. Consider then the product Si,n+1Sj,2;

Si,n+1Sj,2 = (Y −1
2 Si,nY2)Sj,2 by R2A and B

= Y −1
2 Si,nSj,2Y2 by R3C

= Y −1
2 Sj,2Si,nY2 by our assumption

= Sj,2Y
−1

2 Si,nY2 by R3C

= Si,n+1Sj,2 by R2A and B.

Thus the relation [Si,n+1Sj,2] = 1 can be constructed from R2A, R3C, R6D and the

infinite set of relations B. Hence by induction our claim is true. Therefore the set of

relations R6 can be construced from the seven relations R2A, R3A, R3C, R6A,

R6B, R6C and R6D, together with the infinite set of relations B.

The set of relations R7

The next set of relations to consider is R7, which we recall as the set

{Si,nSj,n = S(i,j)∆|for all i and j in N and n in N1}.

This set can easily be seen to be derived from the two relations R7A and R7B coupled

with the infinite set B. All the relations in R7 for when n = 1 and n = 2 are contained

within the sets R7A and R7B respectively. Consider the product Si,nSj,n for some for

some i and j in N and n ≥ 3;

Si,nSj,n = Y
−(n−2)

0 Si,2Y
(n−2)

0 Y
−(n−2)

0 Sj,2Y
(n−2)

0 from B

= Y
−(n−2)

0 Si,2Sj,2Y
(n−2)

0

= Y
−(n−2)

0 S(i,j)∆,2Y
(n−2)

0 by R7B

= S(i,j)∆,n. from B

Thus R7 can be constructed from the two relations R7A and R7B together with the

infinite set B.

The set of relations R8

The claim for R8 is that this set of relations can be constructed from R8A, R8B and

the infinite set C. We leave the proof to the reader as it is identical in its construction
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to the one just given for R7.

The set of relations R9

The next set of relations to consider is R9, which we recall as the set

{Ti,n = T(i)δ,n+1Si,n+1|for all i in N and n in N0}.

The relations in R9 for when n = 0 are exactly those in R9A. Likewise, the relations

in R9 where n = 1 are simply those in the set R9A where we have replaced the string

Y −1
0 Ti,1Y0 with Ti,2 by the corresponding relation in C. From R9A, R9B and the two

infinite sets of relations B and C the rest of R9 can be constructed as follows. Consider

the element Ti,n for some i in N and n ≥ 2;

Ti,n = Y
−(n−1)

0 Ti,1Y
(n−1)

0 by C

= Y
−(n−1)

0 T(i)δ,2Si,2Y
(n−1)

0 by R9A

= Y
−(n−1)

0 T(i)δ,2(Y
(n−1)

0 Y
−(n−1)

0 )Si,2Y
(n−1)

0 by insertion of the identity

= T,n+1Si,n+1. by C and B

Thus the set of relations R9 can be constructed from R9A, R9B and the two infinite

sets B and C.

The set of relations R10

The next set of relations to consider is R10,

{[Si,k, Tj,n] = 1|for all i and j in N and k and n in N1, such that k ≤ n},

which we will show can be constructed from the seven relations R3A, R3C, R5A,

R10A, R10B, R10C, R10D together with the two infinite sets B and C. To prove

this claim we split the set R10 into two distinct subsets, R10a and R10b, and consider

each in turn;

R10a := {[Si,1, Tj,n] = 1| for all n ≥ 1}

R10b := R10 \R10a = {[Si,m, Tj,n] = 1| for all 1 ≤ m ≤ n}.

We first consider the set R10a. When n = 1 the relations from R10a are exactly those

from the set R10A. When n = 2 the relations from R10a are simply those from R10B

where the string Y −1
0 Ti,1Y0 is replaced with Ti,2 by the relation in C. Consider then the

product Si,1Tj,n for some i and j in N and some natural number n ≥ 3. Using relations
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from the sets R3A, R5A, R10B and C this product becomes the following;

Si,1Tj,n = Si,1(Y
−(n−2)

1 Tj,2Y
(n−2)

1 ) by R5A and C

= Y
−(n−2)

1 Si,1Tj,2Y
(n−2)

1 by R3A

= Y
−(n−2)

1 Tj,2Si,1Y
(n−2)

1 by R10B

= Y
−(n−2)

1 Tj,2Y
(n−2)

1 S
iX−bnn X

−bn−1
n−1 ...X

−b0
0 ,1

by R3A

= Tj,nSi,1. by R5A and C

Thus the relation [Si,1Tj,n] = 1 can be constructed from R3A, R5A, R10B and the

infinite set C, and hence our claim is true for R10a.

The subset R10b contains all the relations of R10 that are not found in R10a. Our

claim is that we can construct the relations in R10b using the relations R3C, R5A,

R10C, R10D and the two infinite sets B and C. Using a technique similar to that

used in many of the proofs that have gone before, we first rewrite the relations in R10b

using the infinite sets B and C. Consider the relation [Si,m, Tj,n] = 1 for some natural

numbers m and n such that 2 ≤ m ≤ n;

S−1
i,mT

−1
j,mSi,mTj,m = 1

⇔ (Y
−(m−2)

0 S−1
i,2 Y

m−2
0 )(Y

−(n−2)
0 T−1

j,2 Y
n−2

0 )(Y
−(m−2)

0 Si,2Y
m−2

0 )(Y
−(n−2)

0 T−1
j,2 Y

n−2
0 ) = 1

⇔ S−1
i,2 Y

m−n
0 T−1

j,2 Y
n−m

0 Si,2Y
m−n

0 T−1
j,2 Y

n−m
0 = 1

⇔ S−1
i,2 T

−1
j,n−m+2Si,2Tj,n−m+2 = 1.

Thus, by the double implication S−1
i,mT

−1
j,mSi,mTj,m = 1 ⇔ S−1

i,2 T
−1
j,n−m+2Si,2Tj,n−m+2 =

1, to prove our claim regarding R10b it is enough to prove the claim for the set

{[Si,2, Tj,n] = 1| for n ≥ 2}.

The first two cases, when n = 2 and n = 3, are taken from the relations R10C and

R10D and combining them with relations from C. Consider then the product Si,2Tj,n

for some i and j in N and n ≥ 4. Using the relations R3C, R5A, R10D and the

infinite set C we have the following;

Si,2Tj,n = Si,2(Y
−(n−3)

2 Tj,3Y
(n−3)

2 ) by R5A and C

= Y
−(n−3)

2 Si,2Tj,3Y
(n−3)

2 by R3C

= Y
−(n−3)

2 Tj,3Si,2Y
(n−3)

2 by R10D

= Y
−(n−3)

2 Tj,3Y
(n−3)

2 Si,2 by R3C

= Tj,nSi,2. by R5A and C
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Therefore the claim for R10b is true and thus the set of relations R10 can be construced

from the seven relations R3A, R3C, R5A, R10A, R10B, R10C, R10D and the

two infinite sets B and C.

The set of relations R11

The penultimate set of relations from R is R11={S1,n = 1| for all n ≥ 1}. The proposal

is that this set can be constructed from the two relations R11A, R11B and the infinite

set B. The two initial cases, when n = 1 and n = 2, are exactly the relations R11A

and R11B. Consider the element S1,n for some n ≥ 3. By B and R11B we have the

following;

S1,n = Y
−(n−2)

0 Si,2Y
(n−2)

0 by B

= Y
−(n−2)

0 Y
(n−2)

0 by R11B

= 1

Thus R11 can be constructed from the two relations R11A, R11B and the infinite set

B.

The set of relations R12

The final relation to consider is R12 = {T1,n = 1| for all n in N0}, which can be con-

structed from the relations R12A, R12B and the infinite set C. The proof follows the

same outline as that for R11 above.

Therefore, beginning from the presentation F̂1 = 〈X|R ∪ Rf 〉, we have shown that the

relations in R can be constructed from the relations in Rf and the three infinite sets A,

B and C. Thus we can define a presentation

F̂2 := 〈X|Rf ∪A ∪B ∪C〉

such that F̂2
∼= F̂1.

Stage 3

We have now reached the third and final stage in our proof. The presentation F̂2 is still

an infinite presentation with an infinite generating set X and an infinite set of relations.

However, in this final stage we will use the Tietze transformation T4 to create a finite

presentation from F̂2. Our first step is to break down the generating set X from the

presentation F̂2 into three subsets which we consider separately.

X1 {Yn|n ∈ N0},
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X2 {Si,n|1 ≤ i ≤ N,n ∈ N1},

X3 {Ti,n|1 ≤ i ≤ N,n ∈ N1}.

We first consider the subset X1. Define the set X1a as

X1a := {Yn|for all n ≥ 2}.

Recall that the set of relations A consists solely of the relations Yn = Y
−(n−1)

0 Y1Y
(n−1)

0

for every n ≥ 2. Therefore the set of generators X1a and the set of relations A satisfy

the conditions that are required to apply the Tietze transformation T4 to F̂2 with

respect to X1a and A. Noting that the relations in B and C do not use Yn or Y −1
n for

any n ≥ 1, the Tietze transformation T4 allows us to produce a presentation of a new

group F̂3 isomorphic to F̂2 as follows.

F̂3 := 〈X \X1a|Rf ∪B ∪C〉.

A similar process happens between the set of generators X2 and the set of relations B.

Define the set X2a as

X2a := {Si,n|for all i in N and n ≥ 3}.

The set B consists solely of relations of the form Si,n = Y
−(n−2)

0 Si,2Y
(n−2)

0 for every

n ≥ 3, where each generator Si,n is expressed as a string constructed from the set

of generators {Y0, Y
−1

0 , Si,2}. Therefore, by applying the transformation T4 to the

presentation F̂3 with respect to the set of generators X2a and the set of relations B, we

produce the presentation

F̂4 := 〈X \ (X1a ∪X2a)|Rf ∪C〉.

Likewise, for the final subset of generators X3 = {Ti,n|1 ≤ i ≤ N,n ∈ N1} we define the

set

X3a := {Ti,n|for all i in N and n ≥ 2}.

The relations from C facilitate the removal of all generators Ti,n where n ≥ 2 from F̂4,

the verification of which we leave to the reader as it follows the same method used in

the previous two cases. The group presentation that remains after the third stage is the

finite presentation 〈X \ (X1a ∪X2a ∪X3a)|Rf 〉 = 〈Xf |Rf 〉 = Ffin.

Now we have shown that F(G,θ) has a finite presentation given by Ffin, it remains for

us to remove the generators of the form Si,1 and Si,2 to complete the proof of Theorem

4.3.
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Proof of Theorem 4.3. The relations R9A and R9B can be rearranged to read;

T−1
(i)δ,1Ti,0 = Si,1 Y −1

0 T−1
(i)δ,1Y0Ti,1 = Si,2,

therefore one can use the Tietze transformation T4 to remove the generators Si,1 and

Si,2 in Ffin. The transformation replaces all the appearances of Si,1 and Si,2 in the

relations of Ffin with their respective products given above. After these replacements

are made, one has produced the presentation F fin
(G,θ) appearing in Theorem 4.3. For

example, the relations in R2A become the set of relations of the form

[Y0Y
−1

1 , Y −1
0 (T−1

(i)δ,1)Y0Ti,1Y0] = 1,

which is the set S3 in F fin
(G,θ).
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Chapter 5

Embedding Groups from Faug

into V

5.1 Statement of results

In this final chapter we will prove the following theorem.

Theorem 5.1. Suppose G is a finite, abelian group and θ is an idempotent endomor-

phism of G. Then F(G,θ) embeds into Thompson’s group V .

Recall that an endomorphism θ : G→ G is idempotent if and only if θ2 = θ. The proof

of Theorem 5.1 follows from two results. The first is an isomorphism result for groups

in Faug.

Theorem 5.2. Suppose F(G,θ) and F(G,φ) are groups from Faug such that G is abelian

and the endomorphisms θ and φ are both idempotent. Then F(G,θ)
∼= F(G,φ).

The proof of Theorem 5.2 follows from the presentation of the groups given in the

previous chapter. We will show that when G is abelian and θ is idempotent the infinite

presentation F inf
(G,θ) for F(G,θ) can be rewritten to be independent of θ. This result is

somewhat surprising and we give an example illustrating the isomorphism between two

such groups.

The second result that is needed to prove Theorem 5.1 is found in [3]. In Remark 2.12

of [3] the authors state that if G is a finite group and θ is the identity endomorphism

of G (the endomorphism that sends every group element to itself,) then the group V(G,θ)

embeds into V . We provide a proof this statement in the second half of the chapter,

together with an example.

Since F(G,θ) is a subgroup of V(G,θ) this also provides an embedding of F(G,θ) into V . As
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the identity homomorphism is clearly idempotent, by Theorem 5.2 every F(G,θ) for which

G is abelian and θ is idempotent must also embed into V . Thus the result follows for

Theorem 5.1.

5.2 Isomorphism result

In what follows G = {gi}i∈N is a finite group of order N , where g1 is the identity. We

define θ to be an idempotent endomorphism of G, that is, (g)θ2 = (g)θ for all g ∈ G.

Much of the notation we use is carried forward from Chapter 4. Recall that δ : N →N

is a function defined by (i)δ = j iff (gi)θ = gj . Note that if θ is idempotent then so is δ.

Additionally ∆ : N ×N → N is a function designed to translate group multiplication

from G to the set N , where (i, j)∆ = k iff gi · gj = gk.

As was mentioned above, we use the infinite presentation F inf
(G,θ) to prove Theorem 5.2.

The proof proceeds by using Tietze transformations on F inf
(G,θ) until we have produced a

group presentation that represents the same group as F inf
(G,θ) but without the dependence

on the endomorphism θ of G.

Theorem 5.2. Suppose F(G,θ) and F(G,φ) are groups from Faug such that G is abelian

and the endomorphisms θ and φ are both idempotent. Then F(G,θ)
∼= F(G,φ).

Proof of Theorem 5.2. We begin the proof by using the set of relations in R9, in con-

junction with the Tietze transformation T4, to remove all the S-generators (those of

the form Si,n) from the infinite presentation F inf
(G,θ), in similar fashion to the replacement

we carried out for the finite presentation F fin
(G,θ) at the end of the last chapter. Thus

every appearance of the generator Si,n in the relations of F inf
(G,θ) is replaced with the

word T−1
(i)δ,nTi,n−1. We call the resulting presentation P̂1 = 〈X1|R1〉, where the sets X1

and R1 are given below.

Set of generators: X1 := X1 tX3:

X1 := {Yn|n ∈ N0},

X3 := {Ti,n|1 ≤ i ≤ N,n ∈ N0}.

Set of relations: R1 is the disjoint union of the following sets;

R1′ Y −1
k YnYk = Yn+1,

for all k and n in N0 such that k < n,

R2′ Y −1
k T−1

(i)δ,nTi,n−1Yk = T−1
(i)δ,n+1Ti,n,

for all i in N , k in N0 and n in N1 such that k < n− 1,
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R3′ Y −1
k T−1

(i)δ,nTi,n−1Yk = T−1
(i)δ,nTi,n−1,

for all i in N , k in N0 and n in N1 such that k ≥ n,

R4′ Y −1
n−1T

−1
(i)δ,nTi,n−1Yn−1 = T−1

δ2(i),n+1
Ti,n−1,

for all i in N and n in N1,

R5′ Y −1
k Ti,nYk = Ti,n+1,

for all i in N , k in N0 and n in N1 such that k < n,

R6′ T−1
(i)δ,nTi,n−1T

−1
(j)δ,mTj,m−1 = T−1

(j)δ,mTj,m−1T
−1
(i)δ,nTi,n−1,

for all i and j in N and n and m in N1 such that n > m,

R7′ T−1
(i)δ,nTi,n−1T

−1
(j)δ,nTj,n−1 = T−1

((i)δ,(j)δ)∆,nT(i,j)∆,n−1,

for all i and j in N and n in N1,

R8′ Ti,nTj,n = T(i,j)∆,n,

for all i and j in N and n in N0,

R10′ T−1
(i)δ,kTi,k−1Tj,n = Tj,nT

−1
(i)δ,kTi,k−1,

for all i and j in N and k and n in N1, such that k ≤ n,

R12′ T1,n = 1,

for all n in N0.

Removing the relations from R2′

One may observe that the relations in R2′ immediately arise as consequences of the

relations in R5′.

Y −1
k T−1

(i)δ,nTi,n−1Yk = Y −1
k T−1

(i)δ,n(YkY
−1
k )Ti,n−1Yk inserting the identity

= (Y −1
k T−1

(i)δ,nYk)(Y
−1
k Ti,n−1Yk)

= T−1
(i)δ,n+1Ti,n by R5.

Thus we can rewrite P̂1 by removing the relations from R2′ using T2. We call the new

presentation P̂1 = 〈X1|R2〉, where R2 is the new set of relations with R2′ removed.

Deriving the set of relations D

Note that none of the steps taken in the proof so far have relied on the fact that G is

abelian and θ is idempotent. In fact, the steps above can be taken for arbitrary finite

group and endomorphism. However, this changes in the proceeding steps and the rest

of the proof is reliant on the properties of G and θ. In what follows we will take care to

point out when our assumptions on G and θ are used.
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The next two steps in the proof involve adding two new sets of relations, D and E, to

P̂2 defined as;

D := {Y −1
k Ti,nYk = Ti,n : for all i in N , k and n in N0 such that n ≤ k},

E := {Ti,nTj,k = Tj,kTi,n : for all i, j in N , k and n in N0 such that n ≤ k}.

We first show that the relations from D can be derived from those in R2.

The proof proceeds by induction. Let P(m) be the statement that Y −1
k Ti,nYk = Ti,n can

be derived from relations in F inf
(G,θ) where k−n = m for some m ≥ 0. Consider the initial

case when m = 0 and thus k = n. We begin with the left hand side of the proposed

relation.

Y −1
n Ti,nYn = Y −1

n (T(i)δ,n+1T
−1
(i)δ,n+1)Ti,nYn inserting the identity

= (Y −1
n T(i)δ,n+1Yn)(Y −1

n T−1
(i)δ,n+1Ti,nYn)

= T(i)δ,n+2(Y −1
n T−1

(i)δ,n+1Ti,nYn) by R5′

= T(i)δ,n+2T
−1
(i)δ2,n+2

Ti,n by R4′

= T(i)δ,n+2T
−1
(i)δ,n+2Ti,n by idempotency of δ

= Ti,n.

Thus P(0) is true. Suppose then that P(m) is true for some m ≥ 0. Consider the case

P(m+ 1).

Y −1
k Ti,nYk = Y −1

k (T(i)δ,n+1T
−1
(i)δ,n+1)Ti,nYk inserting the identity

= (Y −1
k T(i)δ,n+1Yk)(Y

−1
k T−1

(i)δ,n+1Ti,nYk)

= T(i)δ,n+1(Y −1
k T−1

(i)δ,n+1Ti,nYk) by P(m)

= T(i)δ,n+1T
−1
(i)δ,n+1Ti,n by R3′

= Ti,n.

Thus by induction P(m) must be true for all m ≥ 0. Hence the relations in D are

consequence of the relations of R2.

Deriving the set of relations E

We now prove that the relations from E are also consequences of the relations from R2.

The proof proceeds by induction. Let P(m) be the statement that Ti,nTj,k = Tj,kTi,n

can be derived from the relations in F inf
(G,θ) where k − n = m for some m ≥ 0. We begin

with the case P(0), when n = k. By R8′, Ti,nTj,n = T(i,j)∆,n for all i and j. As G is

128



abelian (i, j)∆ = (j, i)∆, thus Ti,nTj,n = T(j,i)∆,n = Tj,nTi,n and P(0) is true.

Suppose P(m) is true for some m ≥ 0. Consider P(m+ 1).

Ti,nTj,k = (T(i)δ,n+1T
−1
(i)δ,n+1)Ti,nTj,k inserting the identity

= T(i)δ,n+1(T−1
(i)δ,n+1Ti,nTj,k) rebracketing

= T(i)δ,n+1(Tj,kT
−1
(i)δ,n+1Ti,n) by R10′

= Tj,kT(i)δ,n+1T
−1
(i)δ,n+1Ti,n by P(m)

= Tj,kTi,n.

Thus by induction P(m) is true for all m ≥ 0. Hence the relations in E are consequence

of the relations of R2.

Therefore, we add the relations from D and E to P̂2 by using T1, and create the

presentation P̂3 = 〈X1|R3〉, where R3 := R2 tD tE.

Removing relations from R3 as consequences of D and E

Many of the relations in R3 now follow as consequences of D and E. First notice that

the relations in R3′ follow directly from the relations in D in the following way.

Y −1
k T−1

(i)δ,nTi,n−1Yk = Y −1
k T−1

(i)δ,n(YkY
−1
k )Ti,n−1Yk inserting the identity

= (Y −1
k T−1

(i)δ,nYk)(Y
−1
k Ti,n−1Yk)

= T−1
(i)δ,nTi,n−1 by D.

Thus we can remove R3′ from the set of relations R3 using the transformation T2.

Secondly notice that the relations in R4′ follow from a combination of the relations in

R5′ and D.

Y −1
n−1T

−1
(i)δ,nTi,n−1Yn−1 = Y −1

n−1T
−1
(i)δ,n(Yn−1Y

−1
n−1)Ti,n−1Yn−1 inserting the identity

= (Y −1
n−1T

−1
(i)δ,nYn−1)(Y −1

n−1Ti,n−1Yn−1)

= T−1
(i)δ,n+1(Y −1

n−1Ti,n−1Yn−1) by R5′

= T−1
(i)δ,n+1Ti,n−1 by D

Thus we can also remove R4′ from R3 using the transformation T2.

The relations from E tells us that all T -generators from X3 commute. Thus the relations
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R6′, R7′ and R10′ immediately follow as consequences and can be removed from R3

by the transformation T2.

Therefore the presentation P̂3 been rewritten as the presentation P̂4 = 〈X1|R4〉, where

the sets X1 and R4 are given below.

Set of generators, X1 := X1 tX3, where:

X1 {Yn|n ∈ N0},

X3 {Ti,n|1 ≤ i ≤ N,n ∈ N0}.

Set of relations: R4 is the union of the following set;:

R1′ Y −1
k YnYk = Yn+1, for all k and n in N0 such that k < n,

R5′ Y −1
k Ti,nYk = Ti,n+1, for all i in N , k in N0 and n in N1 such that k < n,

R8′ Ti,nTj,n = T(i,j)∆,n, for all i and j in N and n in N0,

R12′ T1,n = 1 for all n in N0,

D Y −1
k Ti,nYk = Ti,n, for all i in N , k and n in N0 such that n ≤ k,

E Ti,nTj,k = Tj,kTi,n, for all i, j in N , k and n in N0 such that n ≤ k.

Therefore if G is a finite abelian group and θ and φ are two idempotent endomorphisms

of G then F(G,θ) and F(G,φ) share a presentation and thus must be isomorphic.

Recall that the group F(G,θ) can be generated from the two infinite sets {Xn : n ∈ N0} and

{Γi,n : 1 ≤ i ≤ |G|, n ∈ N0}, which are formally defined by the tree pair representatives in

Figures 4.6 and 4.8 of Chapter 4. Given two groups F(G,θ) and F(G,φ), where G is abelian

and both θ and φ are idempotent, one can construct an isomorphism ψ between the two

groups by mapping the generators of one to the generators of the other. Formally, if

F(G,θ) = 〈{Xn} ∪ {Γi,n}〉 and F(G,φ) = 〈{X ′n} ∪ {Γ′i,n}〉 then the isomorphism ψ between

the two groups is defined on the generators as (Xn)ψ = X ′n and (Γi,n)ψ = Γ′i,n.

Below we give an example of the isomorphism ψ between two such groups F(G,θ) and

F(G,φ) in Faug. We take two elements from F(G,θ) and show that their product under ψ

is well defined in F(G,φ).

Example of the isomorphism

Let G = C2 × C4, the direct product of the cyclic group of order two and the cyclic

group of order four. Define the generators of G to be (a, 1) and (1, b), where (a, 1) is the
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generator of the canonical embedding of C2 inside G, and (1, b) is the generator of the

canonical embedding of C4 inside G. Let θ and φ be two idempotent endomorphisms of

G defined by

(x, y)θ = (1, y) (5.1)

(x, y)φ = (1, 1). (5.2)

Let ψ : F(G,θ) → F(G,φ) be the isomorphism between the two groups as previously defined.

Thus we refer to the generators of F(G,θ) by the set {Xn} ∪ {Γi,n}, and the generator of

F(G,φ) by {X ′n} ∪ {Γ′i,n}, where the isomorphism ψ maps Xn 7→ X ′n and Γi,n 7→ Γ′i,n.

Let g = (a, b) and h = (1, b3) be two group elements of G. Consider two elements, f1

and f2, of F(G,θ), defined by their reduced tree pair representatives below.

g

f1

g

h

f2

h

The product f1 · f2 is given by the augmented tree pair below.

gh θ(g)

f1 · f2

θ(h)

gh

131



To map these elements into the group F(G,φ) we first need to write them as a product

of generators. This is achieved by putting them into PAN form and then replacing

all the elements from the set {Σi,n} with those from {Γi,n} using the relation Σi,n =

Γi,n−1Γ−1
θ(i),n.

f1 = X0X1Σg,3X
−1
0

f2 = X1Σh,2X
−2
0

f1 · f2 = X0X1X2Σgh,3Σθ(g),4X
−3
0 .

Replacing the elements from {Σi,n} in f1, f2 and f1 · f2 gives the following;

f1 = X0X1Γg,2Γ−1
θ(g),3X

−1
0

f2 = X1Γh,1Γ−1
θ(h),2X

−2
0

f1 · f2 = X0X1X2Γgh,2Γ−1
θ(gh),3Γθ(g),3Γ−1

θ2(g),4
X−3

0 .

Under the isomorphism ψ from F(G,θ) to F(G,φ), the elements f1, f2 and f1 ·f2 get mapped

to the following products of generators;

(f1)ψ = X ′0X
′
1Γ′g,2Γ′

−1
θ(g),3X

′
0
−1

(f2)ψ = X ′1Γ′h,1Γ′
−1
θ(h),2X

′
0
−2

(f1 · f2)ψ = X ′0X
′
1X
′
2Γ′gh,2Γ′

−1
θ(gh),3Γ′θ(g),3Γ′

−1
θ2(g),4X

′
0
−3
.

To find augmented tree pair representatives for (f1)ψ, (f2)ψ and (f1 · f2)ψ, we can

multiply the reduced tree pair representatives of the products given above. Doing so

will give the same domain and range trees as their equivalent elements f1, f2 and f1 · f2

respectively, the difference will be in the decorations of each tree pair. We will refer to

these decorations as γ1, γ2 and γ3 respectively. After doing the tree pair multiplication

one gets the following decorations on the resulting augmented tree pairs.

γ1 = (1, 1, g, φ(g)θ(g)−1)

γ2 = (1, h, φ(h)θ(h)−1, φ2(h)φ(θ(h)−1))

γ3 = (1, 1, gh, φ(gh)θ(gh)−1θ(g), φ2(gh)φ(θ(gh)−1)φ(θ(g))θ2(g)−1)

After resolving the homomorphisms and the products in the decorations above, one has

the following augmented tree pair representatives for (f1)ψ, (f2)ψ and (f1 · f2)ψ.
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(1, b3)

(a, b)

(f1)ψ

(a, b) (1, b3)

(1, b3) (1, b)

(f2)ψ

(1, b)

(1, b3)

(1, b3)

(a, 1) (1, b)

(f1 · f2)ψ

(1, b3)

(1, b)

(a, 1)

To finish the example we multiply the augmented tree pairs of (f1)ψ and (f2)ψ, and

show that it is equal to the element (f1 · f)ψ. As before, we already know that the

domain and range trees for (f1)ψ · (f2)φ will be the same as (f1 · f2)ψ. The decoration,

which we denote by γ1,2, needs to be checked and is given by;

γ1,2 = (1, 1, gh, φ(g)φ(h)θ(h)−1, φ(g)θ(g)−1φ2(h)φ(θ(h)−1)).

Which, after being resolved, becomes;

γ1,2 = (1, 1, (a, 1), (1, b), (1, b3)).

Thus γ1,2 = γ3 as expected and hence (f1 · f2)ψ = (f1)ψ · (f2)ψ.
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5.3 Embedding results

In this final section we provide a proof for Remark 2.12 of [3]

Lemma 5.3 (based on Remark 2.12 of [3]). Consider the group V(G,θ) where θ is the

identity endomorphism of G. Then V(G,θ) embeds into Thompson’s group V .

Proof. Suppose G = {gi}i∈N is a finite group of order N , where g1 is the identity

element. Let A = {a1, a2, . . . , aN} be any antichain of T2 with N elements. Let TA be

the finite binary tree defined by the antichain A. We fix these objects for the rest of the

proof.

Let T be the set of all tree pairs and A be the set of all augmented tree pairs. We

define a map π : A → T in the following way. Suppose v = (D, γ, σ,R) is an n-leaved

augmented tree pair. Let Ld := {di}i∈n be the antichain given by D, and Lr := {ri}i∈n
be the antichain given by R. Let γ̄ ∈Nn be the n-tuple such that γ̄(k) = i if and only

if γ(k) = gi ∈ G. Then vπ = (D̂, σ̂, R̂), where D̂ , R̂ and σ̂ are defined as the following;

• D̂ is the binary tree created by attaching copies of the domain tree D to each leaf

of the tree TA,

• R̂ is the binary tree created by attaching copies of the range tree R to each leaf

of the tree TA,

• The permutation σ̂ defines the map that take the leaf with address aidj in D̂ to

the leaf with address a(i,γ̄(j))∆r(j)σ in R̂.

Although this looks quite complicated, one can visualise the tree pair vπ in the following

way. Suppose (d, gj) 7→ (r, gj) is a leaf map defined by v. If gigj = gk then aid 7→ akr

is a prefix replacement rule for vπ. An example is provided at the end of the chapter,

illustrating the map π.

Suppose [v] is an element of V(G,θ) represented by the augmented tree pair v = (D, γ, σ,R).

We construct a map π∗ : V(G,θ) → V such that [v]π∗ = [vπ].

We claim that the map π∗ is an injective homomorphism. There are three steps in-

volved. First we show that the map is well defined on the choice of augmented tree pair

representative. Secondly we show that π∗ is a homomorphism. Thirdly we prove that

π∗ is injective.

The map π∗ is well defined

Augmented tree pairs in A are equivalent under symmetric transitive closure of the

splitting operation. We will show that π∗ is well defined under the splitting operation
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and the result will follow. Suppose [v] is an element of V(G,θ) represented by the n-

leaved augmented tree pair v = (D, γ, σ,R). Let Ld := {di}i∈n be the antichain given

by D, and let Lr := {ri}i∈n be the antichain given by R. Let [v]π∗ = [vπ] be the

image of [v] under π∗, where vπ = (D̂, σ̂, R̂). Let v′ = (D′, γ′, σ′,R′) be the augmented

tree pair created by splitting the kth leaf of v. As the endomorphism θ is the identity

endomorphism, the decoration on both leaves of the newly created caret of v′ is γ(k).

That is, γ′(k) = γ′(k + 1) = γ(k).

Let v′π = (D̂′, σ̂′, R̂′). The binary tree D̂′ can be created by adding a caret to each leaf

of D̂ with address aidk, for all ai ∈ A. Likewise, the binary tree R̂′ can be created by

adding a caret to each leaf of R̂ with address airk, for all ai ∈ A. The prefix replacement

rules associated to each of the carets aidk0 and aidk1 of D̂′ are given by

aidk0 7→ a(i,γ̄(k))∆rk0

aidk1 7→ a(i,γ̄(k))∆rk1,

for all ai ∈ A. Thus each pair of leaves {aidk0, aidk1} in D̂ forms an exposed caret with

the pair of leaves {a(i,γ̄(k))∆rk0, a(i,γ̄(k))∆rk1} in R̂. Thus one can create v′π by using

the splitting operation on the (i + k)th leaves of vπ for all 0 ≤ i ≤ (N − 1). Therefore

[vπ] = [v′π] and hence the map π∗ is well defined on representative.

The map π∗ is a homomorphism

We now show that π∗ is a homomorphism. Suppose [u] and [v] are two elements of V(G,θ)

where u = (Du, γu, σu,Ru) and v = (Dv, γv, σv,Rv) are n-leaved augmented tree pair

representatives such that Ru = Dv. We consider the product [u] · [v] by using the leaf

maps of u and v.

Suppose Ld := {d1, d2, . . . , dn} is the antichain defined by Du, Ls := {s1, s2, . . . , sn}
is the antichain defined by Ru (and hence also Dv), and Lr := {r1, r2, . . . , rn} is the

antichain defined by Rv. The product of the augmented tree pairs uv = u · v is given

by the following leaf maps, for all i ∈ n,

(di, γuv(i)) 7→ (ri(σu·σv), γuv(i)),

where γuv(i) = γu(i) · γv((i)σu).

We will consider the images of [u], [v] and [uv] under π∗. By definition of π, the element

[u]π∗ is represented by the tree pair uπ defined by all the prefix replacement maps of

the form

aidj 7→ a(i,γ̄u(j))∆s(j)σu , (5.3)

for all i ∈ N and j ∈ n. Likewise the image [v]π∗ is represented by the tree pair vπ
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defined by all the prefix replacement maps of the form

aisj 7→ a(i,γ̄v(j))∆r(j)σv , (5.4)

for all i ∈N and j ∈ n. Finally the product [uv]π∗ is represented by the tree pair uvπ

defined by all leaf maps of the form

aidj 7→ a(i,γ̄uv(j))∆rj(σu·σv), (5.5)

for all i ∈N and j ∈ n.

By composition of (5.3) and (5.4), the product (u)π · (v)π is then represented by the

tree pair defined by all the leaf maps of the form

aidj 7→ a((i,γ̄u(j))∆,γ̄v((j)σu))∆r(j)σuσv (5.6)

for all i ∈N and j ∈ n. As group multiplication is associative we have

a((i,γ̄u(j))∆,γ̄v((j)σu))∆ = a(i,(γ̄u(j),γ̄v((j)σu))∆)∆.

By the definition γuv(j) = γu(j) · γv((j)σu) we know that γ̄uv(j) = γ̄u(j) · γ̄v((j)σu) and

therefore (5.6) becomes

aidj 7→ a(i,γ̄uv(j))∆rj(σu·σv). (5.7)

Therefore [u]π∗ · [v]π∗ = [uv]π∗.

The map π∗ is injective

Finally we show that π∗ is injective. Suppose [v] is an element of V(G,θ), represented by

the augmented tree pair v = (D, γ, σ,R), such that [v]π = 1V . Let vπ = (D̂, σ̂, R̂). Then

D̂ = R̂ and hence D = R. Additionally, as σ̂ is the identity permutation on the leaves

of (D̂, σ̂, R̂), σ must also be the identity permutation on the leaves of v. Furthermore,

(i, j)∆ = i for all i, j, therefore gj = 1G for all gj ∈ γ. Putting all these consequences

together gives us that v = (D, 1Gn , 1Sn ,D) which represents the identity in V(G,θ) and

hence π∗ is injective.

We finish the chapter by giving an example of an element of V(G,θ) being embedded into

V via the homomorphism π∗.

Example 5.4. Let G = 〈α〉 be the cyclic group C3 and θ be the identity endomorphism

of C3. Enumerate the elements in G as g1 = idG, g2 = α and g3 = α2. Consider the

element [v] of V(G,θ) represented by the augmented tree pair v below.
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1

2 3

[v]

1, α

2 3, α2

To implement the map π we must first define a complete antichain of T2 whose number

of elements is equal to the order of G. There are two possibilities and we choose A =

{0, 10, 11}, drawn below.

We let a1 = 0, a2 = 10 and a3 = 11. To create the domain tree for vπ we attach copies

of the domain tree of v to the leaves of TA. Similarly, to create the range tree for vπ we

attach copies of the range tree of v to the leaves of TA.

It is left to determine the bijection on the leaves of vπ. Let us consider the first leaf.

The address of this leaf is a10, where a1 is from the antichain A, and the zero is the

address of the first leaf in the domain tree of v. The tree pair v defines the leaf map

0α 7→ 1α, thus in vπ the leaf a10 is mapped to the leaf a(1,2)∆1 = a21 = 101. We follow

the method for the remainder of the leaves in vπ and we produce the following tree pair

diagram.

[v]π

1

2 3

4

5 6

7

8 9

7

2 6

1

5 9

4

8 3
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The element [v]π∗ is then given by [vπ].

5.4 Future research

When considering counter examples to Lehnert’s conjecture we have primarily focused

our research on the groups discussed in [3], the augmented Thompson groups V(G,θ)

and F(G,θ). The reason we have done so is two-fold. Firstly, they are a class of coCF
groups which do not seem to arise from the four constructions of Holt, Rees, Röver

and Thomas in [20] which we mentioned in Chapters 1-3. That is, there is no obvious

way of taking the known coCF groups and creating groups from the class of Vaug by

using direct products or wreath products with CF-groups. Secondly, the augmentation

features that define the groups have no obvious dynamical representation in Thompson’s

group V . Using dynamics to prove that a group cannot embed into V is not a new

approach. One can use dynamics to show that any infinite group which is finitely

generated and torsion cannot embed into V , for example, the Grigorchuk group. Whilst

groups from Vaug do not satisfy this property, we believe that it is possible that a similar

approach could be explored. The cases which we prove in this chapter to embed into

V require strict conditions on both the finite groups used and the group endmorphisms

we pair with them. By relaxing these conditions we believe it may be possible to find a

counterexample to Lehnert’s conjecture, that is, a group from Vaug which cannot embed

into V .

One possibility to consider would be the group F(G,θ), where G is the abelian group C3

and θ is the endomorphism which maps each non-identity element to the other. The

endomorphism θ is not idempotent and therefore F(G,θ) does not satisfy the conditions of

Theorem 5.1. When considering the decoration on an augmented tree pair, each time a

leaf that is decorated with a non-identity element is split, the new leaves are decorated

with one of each non-identity element from C3, the left leaf with one and the right leaf

with the other. At the time of writing we were unable to find a natural way of expressing

this relation using elements of V .

In summary, we propose that the class of groups Vaug continues to be a source of

plausible counterexamples to Lehnert’s conjecture.
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[26] Claas Röver. Subgroups of finitely presented simple groups. PhD thesis, Pembroke

College, University of Oxford, 1999.
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