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Abstract Environmental gradients are very common and many plant species respond to them through adaptive
genetic change. This can be a first step along a continuum of change that leads ultimately to the origin of fully
reproductively isolated forms, i.e., ‘biological species’. Before complete reproductive isolation is achieved, hybrid
zones may form between divergent lineages either through primary intergradation or secondary contact. Here, I
review the literature on plant hybrid zones between native species and highlight: mode of origin (primary
intergradation versus secondary contact); distribution among plant families, genera and life form; type and
genotypic composition related to strength and type of reproductive isolation between parental lineages; nature of
prezygotic and postzygotic reproductive barriers; level and direction of gene flow; and the stability of hybrid zones
in the face of climate change. The total number of plant hybrid zones detected in a literature searchwas surprisingly
small (137). This was the case even for areas of theworldwith a long history of research into plant evolution, ecology
and systematics. Reasons for this are discussed, including the possibility that plant hybrid zones are naturally rare in
the wild. Only for a few hybrid zones have attempts been made to distinguish between formation by primary
intergradation or secondary contact, and it is assumed that most hybrid zones originate through secondary contact.
From the limited information available, it appears that plant hybrid zones may frequently move in response to
climate change, but long-term studies are required to confirm this.

Key words: climate change, disturbance, environmental gradients, hybridization, hybrid zones, reproductive isolation, secondary
contact, speciation.

1 Introduction
Gradual changes in the natural environment occur commonly
across latitudinal, longitudinal and altitudinal gradients, and
impose selection on the vegetation type and constituent
species that establish across such gradients. On a more local
scale, sharp changes in plant environment may occur over
short distances reflecting, for example, changes in soil type,
moisture, temperature, exposure and light regime, which also
select for locally adapted types. Individual species can adapt
to changes of environment across both types of gradient
through phenotypic plasticity and/or by adaptive genetic
divergence. An impediment to adaptive genetic divergence is
gene flow, but this may be countered by selection for locally
adapted types, which consequently can be isolated from each
other by differences in environment.

Theory predicts that local adaptation across an environ-
mental gradient, either with or without gene flow, can be a
first step along a continuum of reproductive isolation that
leads ultimately to the origin of fully reproductively isolated
forms, i.e., biological species in the sense of Mayr (1942). Until
complete reproductive isolation is achieved, divergent
lineages may form hybrid zones, which can be examined to
determine mechanisms that reduce gene flow and genome

merging. A primary focus of this review is to record the
occurrence and nature of plant hybrid zones that form across
environmental gradients and the information they yield with
regard to plant speciation.

2 Local Adaptation across Environmental
Gradients
2.1 Heritable phenotypic divergence and adaptation
Turesson (1925) was first to demonstrate that different
heritable forms of the same plant species are often associated
with different habitats. He showed that morphological
differences between plants from different habitats were
maintained, at least in part, when grown under the same
conditions in a common garden. He called these different
forms ecotypes. Clausen et al. (1940) developed Turesson’s
approach using reciprocal transplant analysis and from studies
in California showed that (i) changes in the heritable
phenotype of a species could be either continuous across
an environmental gradient, i.e., clinal, or discontinuous
through formation of local ecotypes isolated by distance
(IBD) and environment (IBE) from each other; and (ii) plants
had higher fitness in gardens close to their own habitat
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relative to those originating from other more distant habitats,
i.e., exhibited local adaptation.

Despite some limitations (see Savolainen et al., 2013), the
reciprocal transplant approach developed by Clausen et al.
(1940) has proved key to determining local adaptation
through genetic divergence across environmental gradients
(for recent examples, see Gonzalo-Turpin & Hazard, 2009;
Fournier-Level et al., 2011; Ågren & Schemske, 2012; Anderson
et al., 2015; Samis et al., 2016; Wadgymar et al., 2017).
However, local adaptation is not always detected. Thus, a
meta-analysis of reciprocal transplant studies involving
pairwise site comparisons showed that in less than half of
such comparisons (�45%) were local plants favoured at their
respective sites, while in approximately half (51%) one
population performed better than the other at both sites
(Leimu & Fischer, 2008). The same analysis further indicated
that local adaptation more likely evolves in large than small
populations, and is independent of plant life history, habitat
heterogeneity and geographic distance between sites, though
more studies involving a greater number of species are
necessary to confirm the generality of these findings.

2.2 Molecular divergence and adaptation
Early studies of changes in gene frequencies within plant
species across environmental gradients focused on characters
known to be under major gene control, e.g., stem waxiness
(Harland, 1947), cyanogenesis (Daday, 1954a, 1954b) and seed
coat characters (New, 1958, 1959). In each case, there were
strong indications that clinal change was driven by natural
selection. Clines across environmental gradients were later
reported for alleles at enzyme encoding loci (e.g., Lumaret,
1984), for chloroplast DNA haplotypes (e.g., Tsumura et al.,
1994), and a wide range of other molecular markers (RAPDs,
AFLPs, SSRs) regarded as neutral to selection, but possibly
linked to genes subject to selection. More recently, clinal
change in allele (SNP) frequencies at candidate gene loci
associated with phenology has been reported across latitudi-
nal gradients in certain tree species (Holliday et al., 2010, 2016;
Ma et al., 2010; Chen et al., 2012), strongly implicating its
adaptive significance. In addition, evidence of adaptive clinal
change in allele frequency associated with soil salinity status
has been documented for a sodium transporter gene in the
model plant Arabidopsis thaliana (Baxter et al., 2010).

Following the development of high throughput sequencing,
it has become possible to examine genetic responses to
environmental gradients across the genome of a species,
though the number of such studies currently remains small
and limited to a handful of species (Savolainen et al., 2013). A
recent example of this approach has shown that conifers
which diverged from each other �140 million years ago show
convergent local genetic adaptation to spatial variation in
temperature or cold hardiness (Yeaman et al., 2016). These
studies set the scene for genomic analyses of adaptive
divergence and reproductive isolation between species that
form hybrid zones across environmental gradients.

2.3 Formation of hybrid zones
Hybrid zones may form across environmental gradients either
in situ by primary intergradation (Endler, 1977; Caisse &
Antonovics, 1978) or following secondary contact between
populations that diverged in allopatry (Mayr, 1942). With

primary intergradation, selection drives divergence across 
the environmental gradient in the face of continued and 
uninterrupted gene flow to produce steep clines of genetic 
divergence in response to both marked and gradual changes of 
environment (Haldane, 1948; Endler, 1977). During this process 
of spatial or geographical differentiation, breeding barriers 
accumulate between divergent populations located towards 
the extremes of the cline until they ultimately evolve into 
reproductively isolated species and the process of parapatric 
speciation is complete. Before species are fully reproductively 
isolated from each other a hybrid zone can form, located in the 
area of contact (Endler, 1977). In hybrid zones formed by 
secondary contact, breeding barriers between lineages will 
have evolved to a degree in allopatry, but gene exchange 
occurs following contact until reproductive isolation is 
completed, possibly through reinforcement (Hopkins, 2013).

Because primary intergradation and secondary contact 
produce hybrid zones, which at equilibrium exhibit very similar 
patterns of genetic and phenotypic variation (Endler, 1977; 
Barton & Hewitt, 1985; Gompert & Buerkle, 2016), their origins 
cannot usually be distinguished. Only if the history of a hybrid 
zone is known or can be reconstructed accurately, might its 
origin, either by primary intergradation or secondary contact, 
be determined or indicated.

3 Hybrid Zones: Background
3.1 Definition of hybrid zone
According to Harrison (1993), “Hybrid zones occur when 
genetically distinct groups of individuals meet and mate, 
resulting in at least some offspring of mixed ancestry.” 
Harrison emphasized that, “This definition is intentionally 
broad and includes situations ranging from sporadic or 
occasional hybridization between species that are broadly 
sympatric (perhaps associated with different habitats or 
resources) to narrow zones of hybridization between taxa 
with effectively parapatric distributions”, and furthermore, 
“In some cases the outcome is a “hybrid swarm” (a diverse 
array of recombinant types). In other situations, only F1 
offspring (in addition to parental types) are found.” Also this 
definition, “ . . .does not depend on either knowledge of the 
history of the interaction or an understanding of the 
evolutionary forces acting to maintain it”, and “. .  .  it 
makes no attempt to discriminate on the basis of the 
geography of hybridization”.

In the review of plant hybrid zones presented here, I follow 
Harrison’s definition of hybrid zones, but exclude studies 
involving one or more non-native species, i.e., species 
introduced to a non-native region, either by accident or 
design, as a result of human activities. These are omitted 
because a major focus of the review concerns how hybrid 
zones inform us of natural barriers to hybridization and gene 
flow between species, which may often be disrupted 
(particularly prezygotic barriers) following the introduction 
and establishment of species to non-native areas.

3.2 Types of hybrid zones
Traditionally, three types of hybrid zone have been recog-
nised. These are tension, bounded hybrid superiority, and 
mosaic hybrid zones. Tension zones occur where there is a 
balance between the production of hybrids and selection
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against them in zones of contact between parental forms.
Hybrids exhibit low extrinsic and/or intrinsic fitness relative to
their parents and a narrow clinal transition is normally evident
between the parents (Barton & Hewitt, 1985). In contrast, in
bounded hybrid superiority zones, hybrids exhibit superior
fitness to their parents in intermediate habitats, but lower
fitness in each parental habitat (Moore, 1977). Bounded hybrid
superiority zones tend to be located in ecotones between
habitats occupied by parental forms. In mosaic hybrid zones
(Harrison & Rand, 1989) a patchwork of environments exists
with parental types occupying different habitats. Hybrids are
produced where the parental forms meet and may exhibit
either lower fitness relative to parents (as in tension zones),
superior fitness (as in bounded hybrid superiority zones) or
variable fitness as may be the case in hybrid swarms
comprising a wide range of early and later generation hybrids.
A fourth type of hybrid zone, the evolutionary novelty hybrid
zone, has been proposed by Arnold (1997) where the higher
fitness of certain hybrids enables them to occupy novel
habitats away from the hybrid zone, or replace a parent
lineage from its habitat adjacent to a hybrid zone.

Recently, Curry (2015) emphasized that hybrid zones often
do not easily fit into any one of these four main types and
proposed that such models should be unified across a
continuum of selection pressure based on geographic range.
Here, direction of selection for or against hybrids and variation
in its magnitude over geography, would determine spatial
extent (also dependent on dispersal), movement and stability
of a hybrid zone. However, this approach has yet to be tested.

3.3 Structure of hybrid zones
Hybrid zones have also been classified according to their
multilocus genotypic structure.Harrison&Bogdanowicz (1997)
emphasized that whereas some hybrid zones are ‘unimodal’
consisting largely of F1s, F2s and backcrosses, others are
‘bimodal’ comprising mainly multilocus genotypes represent-
ing parental forms, with intermediates being rare. Jiggins &
Mallett (2000) recognised a continuum in genotypic distribu-
tions between these two types of hybrid zone with some
consisting “of a more even mixture of parental and hybrid
genotypes”. Importantly, Harrison & Bogdanowicz (1997)
considered that differences in genotypic composition between
hybrid zones reflect differences “in the effectiveness of pre- and
postzygotic barriers to gene exchange”, while Jiggins & Mallet
(2000) proposed that they signify different stages in the
speciation continuum with a hybrid swarm composition
indicating early stages and bimodality when speciation is
nearly complete (see also Mallet & Dasmahapatra, 2012).

In addition to these structures, it is now evident that some
unimodal hybrid zones may be entirely or largely composed of
F1 hybrids, while other hybrid zones are trimodal, containing
both parents and mainly F1s. The absence or low frequency of
later generation hybrids in these hybrid zones is not surprising
when F1s are sterile (e.g., Moccia et al., 2007; Lo, 2010;
Twyford et al., 2015), but is unexpected when F1s are fully
fertile as documented in several studies (e.g., Milne et al.,
2003; Christe et al., 2016). The absence of post-F1 hybrids
where F1s are fertile has been attributed to their reduced
postzygotic, extrinsic fitness in ecotones relative to F1s,
causing them to be outcompeted (Milne et al., 2003), or to a
lower intrinsic fitness relative to F1s caused by expression of

Bateson-Dobzhansky-Muller (BDM) incompatibilities and/or
breakdown of coadaptive gene complexes following recom-
bination (Christe et al., 2016). The occurrence of unimodal or
trimodal F1 dominated hybrid zones (F1-DZs) presents a
problem for distinguishing hybrid zones according to type
(see section above). Thus, in situations where F1s are better
adapted to ecotonal conditions relative to parents and other
hybrid classes, the hybrid zone may be considered to fit the
bounded hybrid superiority zone model. However, because
F1s contribute no offspring to subsequent generations, the
hybrid zone can also be interpreted as a tension zone.

4 Occurrence and Nature of Hybrid
Zones: A Literature Survey
Hybrid zones are widely recognised as “natural laboratories
for evolutionary studies” (Hewitt, 1988) and “windows on
evolutionary process” (Harrison, 1990), and their study has
contributed much to an understanding of the occurrence and
evolution of reproductive isolating mechanisms between
species. Recent reviews of plant hybrid zones have been
restricted to surveys of those occurring across altitudinal
gradients (Abbott & Brennan, 2014) and among trees (De La
Torre, 2015). Here, I present a broader survey of the hybrid
zone literature that covers trees, herbs and shrubs across a
wide range of different environmental conditions. For this
survey, hybrid zones were identified using the search term
‘hybrid zone’ in ISI Web of Knowledge and a range of journals
expected to publish articles on the topic. Excluded were
hybrid zones not subjected to nuclear gene marker analysis,
that involved one or more non-native species (for reasons
mentioned earlier), or species of different ploidy.

The literature search identified hybrid zones for 137
different pairs or groups of species (Table 1). Studies of these
hybrid zones vary greatly in the quality and quantity of
information obtained. Thus, the examination of some hybrid
zones entailed an analysis of the genetic structure of a single
hybrid population with little or no information provided on
isolating barriers and gene flow between parental lineages. In
contrast, other studies involved the examination of a range of
parent and hybrid populations across well-defined environ-
mental gradients together with relatively detailed investiga-
tions of prezygotic and postzygotic isolating barriers.
Information on the environmental gradient (where stated),
location, and genetic markers used in the analysis of each
hybrid zone is listed in Table 1, while information (where
available) on type and genetic structure of hybrid zone, hybrid
fitness, nature of prezygotic and postzygotic isolating barriers
between parental forms, and level and direction of gene flow
is presented in Table S1.

The major findings to emerge from a review of this
information are summarised below.

4.1 Taxonomic, life form and geographic distribution of
hybrid zones
Hybrid zones included in the surveywere distributed across 43
plant families (�7% of the total number of plant families) and
72 genera (0.44% of total number of plant genera). In the
majority of families and genera containing hybrid zones,
hybrid zones were detected for only one pair of lineages
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Table 1 Plant hybrid zones detected and analysed using nuclear genetic markers (Full references are listed in Table S2).

Genus Taxa Environmental
gradient

Location Genetic
markers

References

1 Abies
(Pinaceae)

A. alba � A.
cephalonica (Trees)

Latitudinal Southern
Balkans

nSSRs, mtDNA
NADH length
variants

Krajmerova et al.,
2016

2 A. homolepis � A.
veitchii (Trees)

Altitudinal Mount Fuji,
Japan

RAPDs, cpDNA,
mtDNA markers

Isoda et al., 2000

3 Aegilops
(Poaceae)

A. geniculata � A.
triuncialis (Herbs)

Altitudinal Golan Heights,
Israel

AFLPs, LTR-RT
SSAPs, cpDNA
sequence

Senerchia et al.,
2016

4 Aesculus
(Sapindaceae)

A. flava, A. pavia, A.
sylvatica (Trees)

Latitudinal Southeast USA Allozymes,
nSSRs and
ISSRs, cpDNA

DePamphilis, Wyatt,
1990; Modliszewski
et al., 2006; Thomas
et al., 2008

5 Ainsliaea
(Asteraceae)

A. apiculata � A.
faurieana (Herbs)

Forest–riverbank
transition

Yakushima
Island, Japan

nSSRs Mitsui et al., 2011

6 Alnus
(Betulaceae)

A. crispa � A. sinuata
(Trees)

Altitudinal and
longitudinal

British Columbia/
Alberta, Canada

Allozymes Bousqet et al., 1990

7 Anacamptis
(Orchidaceae)

A. morio � A.
papilionacea (Herbs)

Species sympatric
in area of
geographical overlap

Southern Italy ITS and cpDNA
length variants,
AFLPs

Moccia et al., 2007

8 Antirrhinum
(Plantaginaceae)

A. majus. pseudomajus
(magenta flowers) � A. m.
striatum (yellow) (Herbs)

Not stated Pyrenees, Spain Flower colour
and non-colour
gene sequences

Whibley et al., 2006

9 Aquilegia
(Ranunculaceae)

A. formosa � A.
pubescens (Herbs)

Altitudinal (soil type,
exposure, moisture)

California, USA nSNPs Noutsos et al., 2014

10 A. japonica � A.
oxysepala (Herbs)

Altitudinal Northeast China nSSRs, cpDNA
and nuclear
sequence

Li et al., 2014

11 Arctium
(Asteraceae)

A. lappa � A. minus
(Herbs)

Recently disturbed
sites. No gradients
evident

Rhine/Main area,
Germany

RAPDs Repplinger et al.,
2007

12 A. lappa � A.
tomentosum (Herbs)

Recently disturbed
sites. No gradients
evident

Rhine/Main area,
Germany

RAPDs Repplinger et al.,
2007

13 Arctostaphylos
(Ericaceae)

A. patula � A. viscida
(Shrubs)

Altitudinal, Aridity
(chaparral vs
montane forest)

Sierra Nevada,
California

Allozymes Ellstrand et al., 1987;
Nason et al., 1992

14 Argyranthemum
(Asteraceae)

A. formosa � A.
pubescens (Herbs)

Altitudinal Canary Islands AFLPs Fjellheim et al., 2009

15 Artemisia
(Asteraceae)

A. tridentata ssp.
tridentata � A. t. ssp.
vaseyana (Shrubs)

Altitudinal Wasatch Mts.,
Utah, USA

Coumarins,
flavonoids etc.

Freeman et al., 1991;
Miglia et al., 2007;
Wang et al., 1997

16 Asclepias
(Asclepiaceae)

A. exaltata � A. syriaca
(Herbs)

Forest–field
transition

Shenandoah
National Park,
Virginia, USA

Allozymes,
cpDNA RFLPs

Broyles, 2002

17 Banksia
(Proteaceae)

B. hookeriana � B.
prionotes (Shrubs)

Not stated Western
Australia

AFLPs Lamont et al., 2003

18 B. oblongifolia � B. robur
(Shrubs)

Swamp-woodland Southeastern
Australia

nSSRs Usher et al., 2010

19 Begonia
(Begoniaceae)

B. heracleifolia � B.
nelumbiifolia (Herbs)

Different
microhabitats

Mexico nSSRs,
cpSSRs

Twyford et al., 2015

20 B. heracleifolia �
B sericoneura (Herbs)

Different
microhabitats

Mexico nSSRs,
cpSSRs

Twyford et al., 2015

21 Betula
(Betulaceae)

B. alleghaniensis � B.
papyrifera (Trees)

Sympatric over
broad area–
microhabitat
segregation

Eastern North
America

nSSRs Thomson et al., 2015

Continued

4 Abbott

J. Syst. Evol. 9999 (9999): 1–21, 2017 www.jse.ac.cn

Yan Liang
插入号
.



Table 1 Continued

Genus Taxa Environmental
gradient

Location Genetic
markers

References

22 B. ermanii � B. pubescens
(Trees)

Longitudinal Between Yenisei
River and Lake
Baikal, Russia

nSSRs Tsuda et al., 2017

23 B. pendula � B. plathyphylla
(Trees)

Longitudinal Between Yenisei
River and Lake
Baikal, Russia

nSSRs Tsuda et al., 2017

24 Borrichia
(Asteraceae)

B. arborescens � B.
frutescens (Shrubs)

Latitudinal Florida Keys,
Florida, USA

Single copy
nuclear gene
and cpDNA
RFLPs

Cattell, Karl, 2004

25 Callicarpa
(Lamiaceae)

C. japonica � C. mollis
(Shrubs/Trees)

Light (open vs
shaded habitat)

Central Japan nDNA and
cpDNA
sequences

Tsukaya et al., 2003

26 Carex
(Cyperaceae)

C. curvula curvula � C. c.
rosae (Herbs)

Altitude (soil type) European Alps AFLPs Choler et al., 2004

27 C. limosa � C. rariflora
(Herbs)

Water depth Quebec/
Labrador,
Canada

Allozymes McIntire, Waterway,
2002

28 Ceanothus
(Rhamnaceae)

C. roderickii � C. cuneatus
(Shrubs)

Soil type Sierra Nevada,
California, USA

AFLPs Burge et al., 2013

29 Cirsium
(Asteraceae)

C. californicum � C.
occidentale (Herbs)

Altitude, (aridity,
chaparral–oak
woodland)

Figueroa Mt,
California, USA

Allozymes Wells, 1983

30 Clarkia
(Onagraceae)

C. xantiana
parviflora � C. x. xantiana
(Herbs)

Longitudinal
(precipitation,
winter temperature)

California, USA nSSRs and
nDNA
sequences;
cp DNA
sequences

Pettengill, Moeller,
2012; Briscoe
Runquist et al., 2014

31 Costus
(Costaceae)

C. pulverulentus �
C. scaber (Herbs)

Latitudinal Central and
South America

nSSRs Kay, 2006;
Surget-Groba &
Kay, 2013

32 Dubautia
(Asteraceae)

D. arborea D. ciliolata
(Shrubs)

Woodland-
shrubland transition

Mauna Kea
Hawaii

AFLPs Remington,
Robichaux, 2007

33 D. ciliolata � D. scabra
(Shrubs)

Different age of
lava flow substrate

Hawaii RAPDs Caraway et al., 2001

34 Eleocharis
(Cyperaceae)

E. cellulosa � E.
interstincta (Herbs)

Not stated Calabash Marsh,
Belize

ISSRs, ITS
sequence

Ko�snar et al., 2010

35 Epidendrum
(Orchidaceae)

E. calanthum � E.
cochlidium (Herbs)

Not stated Lojar, Ecuador AFLPS,
cpDNA
sequence

Vega et al., 2013

36 E. calanthum � E.
schistochilum (Herbs)

Not stated Lojar, Ecuador AFLPS,
cpDNA
sequence

Vega et al., 2013

37 E. cochlidium � E.
schistochilum (Herbs)

Not stated Lojar, Ecuador AFLPS,
cpDNA
sequence

Vega et al., 2013

38 Eucalyptus
(Myrtaceae)

E. acmenoides � E.
cloeziana (Trees)

Latitudinal SE Queensland,
Australia

nSSRs,
cpDNA
sequence

Stokoe et al., 2001

39 E. aggregata � E. rubida
(Trees)

Soil drainage New South
Wales, Australia

nSSRs Field et al., 2011a,
2011b

40 E. brownii � E. populnea
(Trees)

Latitudinal Queensland,
Australia

nSSRs,
cpDNA
sequence

Holman et al., 2003

41 E. cordata � E. globulus
(Trees)

Not stated Tasmania,
Australia

AFLPs,
cpDNA
sequence

McKinnon et al.,
2010

Continued
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Table 1 Continued

Genus Taxa Environmental
gradient

Location Genetic
markers

References

42 Fraxinus
(Oleaceae)

F. angustifolia �
F. excelsior (Trees)

Latitudinal (days
of frost)

France nSSRs, EST-
SSRs

G�erard et al., 2006,
2013; Fern�andes–
Manjarr�es et al.,
2006

43 Gaillardia
(Asteraceae)

G. pulchella, calcicole �
calcifuge (Herbs)

Soil type Texas, USA Allozymes Heywood, 1986;
Heywood, Levin,
1988

44 Geum
(Rosaceae)

G. rivale (outcrosser) � G.
urbanum (selfer) -(Herbs)

Shade and
drainage

Scotland, UK AFLPS,
cpDNA

Ruhsam et al., 2011,
2013

45 Gliricidia
(Fabaceae)

G. maculata � G. sepium
(Trees)

Latitudinal Meso-America
(Guatamala,
Belize, Mexico)

RAPDs and
nuclear
RFLPS,
mtDNA
markers

Dawson et al., 1996

46 Helianthus
(Asteraceae)

H. annuus � H. petiolaris
(Herbs)

Soil type and
moisture content

Nebraska, USA Allozymes,
RAPDs

Rieseberg et al.,
1998, 1999; Sambatti
et al., 2012

47 H. annuus � H. bolanderi
(Herbs)

Soil moisture and
composition

Davis, California AFLPs Carney et al., 2000

48 Impatiens
(Balsaminaceae)

I. javensis � I. radicans
(Herbs)

Altitudinal Central Java,
Indonesia

ITS, cpDNA
sequences

Tsukaya, 2004

49 Ipomopsis
(Polemoniaceae)

I. aggregata � I. tenuituba
(Herbs)

Altitudinal Rocky Mts,
Colorado, USA

Floral
morphology,
RAPDs,
AFLPs,
cpDNA
sequence

Aldridge, 2005;
Aldridge, Campbell,
2009; Campbell &
Waser, 2001; Campbell
et al., 1997, 2002,
2008; Wu, Campbell,
2005

50 I. aggregata subsp. candida
� subsp. collina (Herbs)

Altitudinal Rocky Mts,
Colorado, USA

nSSRs,
cpSSRs

Milano et al., 2016

51 Iris
(Iradaceae)

I. brevicaulis � I. fulva
(Herbs)

Forest–pasture
ecotone
(difference
in water depth
and light regime)

Louisiana, USA RAPDs,
cpDNA
RFLPs

Cruzan, Arnold,
1993, 1994;
Johnston et al.,
2001; Tang
et al., 2010;
Hamlin, Arnold, 2014

52 I. fulva � I. hexagona
(Herbs)

Forest–cypress
marsh ecotone
(difference in
water depth and light
regime)

Louisiana, USA rDNA RFLPs,
allozymes

Arnold et al.,
1990a,1990b;
Hodges et al., 1996;
Carney et al., 1994,
1996

53 Leucosceptrum
(Lamiaceae)

L. japonicum � L.
stellipilum (Shrubs/Small
trees)

Latitudinal Central Japan ITS sequence,
cpDNA,
nSSRs

Li, Maki, 2015;
Li et al., 2015

54 Liparis
(Orchidaceae)

L. kumokiri (self-
compatible) � L.
makinoana (self-
incompatible) (Herbs)

Possibly
latitudinal,
species overlap
over
broad area

South Korea Allozymes Chung et al., 2005

55 Lomatia
(Proteaceae)

L. myricoides � L.
silaifolia (Shrubs)

Latitudinal New South
Wales, Australia

nSSRs McIntosh et al., 2014

56 Magnolia
(Magnoliaceae)

M. salicifolia � M. stellata
(Trees)

River/marsh–dry
site transition

Aichi Prefecture,
Japan

nSSRs,
cpSSRs

Muranishi et al.,
2013

57 Metrosideros
(Myrtaceae)

M. polymorpha high � low
altitude populations

(Trees)

Altitudinal Hawaii nSNPs Izuno et al., 2017

Continued
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Table 1 Continued

Genus Taxa Environmental
gradient

Location Genetic
markers

References

58 Mimulus
(Phrymaceae)

M. guttatus (outcrosser) �
M. nasutus (selfer) - (Herbs)

Seasonal aquatic–
terrestrial transition

Washington,
USA

nSNPs Kenney, Sweigart,
2016

59 M. aurantiacus ssp. australis
(yellow flowered) � ssp.
puniceus (red flowered)
(Herbs)

Longitudinal California, USA nSNPs,
AFLPs,
cpDNA
RFLPs,

Streisfeld, Kohn,
2005, 2007;
Streisfeld et al.,
2013; Stankowski,
Streisfeld, 2015;
Stankowski et al.,
2015, 2017; Sobel,
Streisfeld, 2015

60 Ophrys
(Orchidaceae)

O. fusca � O. lutea
(Herbs)

Not obvious Portugal nSSRs,
cpSSRs

Cotrim et al., 2016

61 Orchis
(Orchidaceae)

O. mascula � O. pauciflora
(Herbs)

No obvious
habitat
difference or
environmental
gradient

Southern Italy rDNA and
cpDNA
RFLPs,
AFLPs

Pellegrino et al.,
2000;
Cozzolino et al.,
2006;
Scopece et al., 2013

62 O. militaris � O. purpurea
(Herbs)

Forest–grassland
transition

Belgium AFLPs Jacquemyn et al.,
2012

63 Pericallis
(Asteraceae)

P. cruenta � P. echinata
(Herbs)

Altitudinal Tenerife, Canary
Islands

AFLPs Van Hengstum et al.,
2012

64 P. cruenta � P.
tussilaginus (Herbs)

Altitudinal Tenerife, Canary
Islands

AFLPs Van Hengstum et al.,
2012

65 Phlomis
(Lamiaceae)

P. crinita � P. lychnitis
(Herbs)

P. crin. restricted
to limestone areas

Southern and
Eastern Spain

Allozymes Albaladejo et al.,
2004;
Albaladejo, Aparicio,
2007

66 Phlox
(Polemoniaceae)

P. cuspidata (pink flower) �
P. drummondii (red flower)
(Herbs)

Aridity Texas, USA Allozymes Levin, 1975; Hopkins,
Rausher, 2012

67 Phyllodoce
(Ericaceae)

P. aleutica � P.
caerulea (Shrubby herbs)

Early–late
snowmelt
transition

Hokkaido,
Northern Japan

nSSRs, AFLPs,
cpDNA
sequence

Kameyama, Kudo,
2011;
Kameyama et al.,
2008

68 Picea
(Pinaceae)

P. abies � P. obovata
(Trees)

Longitudinal Urals, Russia nSSRs and
nDNA
sequence,
mtDNA

Tsuda et al., 2016

69 P. engelmanii � P. glauca
(Trees)

Latitudinal and
altitudinal

British Columbia,
Canada

nSSRs and
SNPs

De La Torre et al.,
2014a, 2014b, 2015

70 P. glauca � P. sitchensis
(Trees)

Maritime–
continental
climate

British Columbia,
Canada

nSSRs and
SNPs, cp and
mt DNA

Hamilton, Aitken,
2013; Hamilton et al.,
2013a, 2013b

71 P. mariana � P. rubens
(Trees)

Latitudinal Northeastern
North America,
Canada & USA

nSNPs De Lafontaine et al.,
2015; De Lafontaine,
Bousquet, 2017

72 Pinus
(Pinaceae)

P. banksiana � P. contorta
(Trees)

Longitudinal Alberta and NW
Territories,
Canada

nSSRs and
SNPs

Cullingham et al.,
2012, 2013

73 P. echinata � P. taeda
(Trees)

Latitudinal Georgia, USA Allozymes,
cpDNA RFLPs

Edwards-Burke,
1997

74 P. hwangshanensis � P.
massoniana (Trees)

Altitudinal Anhui Province,
China.

EST-SSRs Zhang et al., 2014

75 P. mugo � P. sylvestris
(complex) (Trees)

Longitudinal, but
complex

Southern and
Central Europe

nSNPs,
cpDNA
RFLPs

Kormutak et al.,
2008;
Wachowiak, 2016
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Genus Taxa Environmental
gradient

Location Genetic
markers

References

76 P. parviflora � P.
pumila (Trees)

Altitudinal Honshu, Central
Japan

SSCPs Watano et al., 1995,
2004

77 Piriqueta
(Turneraceae)

P. caroliniana
caroliana � P. c. viridis
(Herbs)

Latitudinal Florida, USA Allozymes,
RAPDs

Martin, Cruzan,
1999;
Cruzan, 2005

78 Pitcairnia
(Bromeliaceae)

P. albiflos � P. staminea
(Herbs)

Not clear Rio de Janeiro,
Brazil

nSSRs,
cpSSRs

Palma-Silva et al.,
2011

79 Platanthera
(Orchidaceae)

P. aquilonis � P. dilatata
(Herbs)

Not evident Maine, USA RAPDs,
cpDNA
RFLPs

Wallace, 2006

80 Polystichum
(Dryopteridaceae)

P. imbricans � P. munitum
(Herbs–ferns)

Soil moisture and
light level

Trinity County,
California, USA

cpDNA
RFLPs,
allozymes

Kentner, Mesler,
2000

81 Populus
(Salicaceae)

P. alba � P. tremula (Trees) Flooding Central Europe,
and Xinjiang,
China

nSSRs and
SNPs, cpDNA
sequence

Lindtke et al., 2012,
2014; Christe et al.,
2016, 2017;
Zeng et al., 2016

82 P. angustifolia � P.
deltoides (Trees)

Altitudinal San Miguel
River, Colorado,
USA

nSSRs,
cpSSRs,
cpLPs

Hersch-Green et al.,
2014

83 P. angustifolia � P.
fremontii (Trees)

Altitudinal Utah, USA nDNA and
mtDNA RFLPs

Whitham, 1989;
Martinsen et al.,
2001; Schweitzer
et al., 2002

84 P. balsamifera � P.
deltoides (Trees)

Not clear Alberta and
Quebec, Canada

nSNPs,
cpSNPs

Hamzeh et al., 2007;
Roe et al., 2014

85 P. laurifolia � P. nigra
(Trees)

Soil moisture
content

Xinjiang, China nSSRs,
nSNPs,
cpDNA FLPs

Jiang et al., 2016

86 Primula
(Primulaceae)

P. beesiana � P. bulleyana
(Herbs)

Light regime
(shade
vs open)

Yunnan, China AFLPs,
cpDNA

Ma et al., 2014

87 Quercus
(Fagaceae)

Q. affinis � Q. laurina
(Trees)

Latitudinal,
longitudinal and
altitudinal

Trans-Mexican
Volcanic Belt and
Northern
Oaxaca, Mexico

RAPDs Gonz�alez-Rodr�ıguez
et al., 2004;
Ramos-Ortiz et al.,
2016

88 Q. austrocochinchinensis
� Q. kerrii (Trees)

Closed moist
forest–open
habitat transition

Xishuangbanna
nature reserve,
Yunnan, China

AFLPs, nSSRs An et al., 2017

89 Q. berberidifolia �
Q. durata (Trees)

Serpentine–Non-
serpentine soils

California, USA nSSRs Ortego et al., 2017

90 Q. coccifera � Q. ilex
(Trees)

Not clear Spain nSSRs Ortego, Bonal, 2009

91 Q. crassifolia �
Q. crassipes (Trees)

Not clear Eje
Neovolcanico,
Mexico

RAPDs Tovar-S�anchez,
Oyama, 2004

92 Q. crispula � Q. dentata
(Trees)

Coastal-inland
transition

Hokkaido, Japan AFLPs Ishida et al., 2003

93 Q. douglasii � Q. lobata
(Trees)

Not evident.
Parental species
are broadly
sympatric

Santa Lucia
Mountains,
California, USA

nSSRs Craft et al., 2002

94 Q. gambelii � Q. grisea
(Trees)

Mosaic of dry-
mesic sites across
altitudinal gradient

Mt Withington,
New Mexico,
USA

RAPDs Howard et al., 1997;
Williams et al., 2001
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gradient
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95 Soil type and
moisture content

Southeastern
USA

nSSRs Cavender-Bares,
Pahlich, 2009

96 Not evident Mediterranean,
Europe

nSSRs Burgarella et al.,
2009

97 Altitudinal. Dry
chapparal–mesic
forest transition

San Jacinto
Mountains,
California, USA

Allozymes Nason et al., 1992

98 Latitudinal/
longitudinal

North China nSSRs. AFLPs,
cpSSRs,
cpDNA
sequences

Zeng et al., 2011

99 Altitudinal Tequila volcano,
Jalisco, Mexico

nSSRs Albarr�an-Lara et al.,
2010

100 No gradient–single
sympatric
population
examined

Berignone-Tatti,
Central Italy

nSSRs Salvini et al., 2009

101 Latitudinal.
Seasonal
dry-mesic
transition

Montejo, Central
Spain

nSSRs Valbuena-Caraba~na
et al., 2005

102 Not evident.
Species
widely sympatric
in Europe

Europe Allozymes,
nSSRs

Bacilieri et al., 1996;
Streiff et al., 1999;
Gugerli et al., 2007;
Lepais, Gerber, 2011;
Abadie et al., 2012;
Gailing, Curtu, 2014

103 Heterogeneous
for soil type and
moisture content

West-central
Romania

Allozymes,
nSSRs,
cpDNA
sequence

Curtu et al., 2007

104 Not evident North Carolina,
USA

nSSRs Moran et al., 2012

105

Q. geminata � Q. virginiana 
(Trees)
Q. ilex � Q. suber (Trees)

Q. kelloggii � Q. wislizeni 
(Trees)

Q. liaotungensis � Q. 
mongolica (Trees)

Q. magnoliifolia � Q. 
resinosa (Trees)
Q. petraea � Q. pubescens 
(Trees)

Q. petraea � Q. pyrenaica 
(Trees)

Q. petraea � Q. robur
(Trees)

Mixed stand of Q. frainetto, 
Q. petraea, Q. pubescens, 
Q. robur (Trees)

Hybridization
between Q. coccinea,
Q. falcata, Q. rubra,
Q. velutina (Trees) 
Hybridization
between Q. ellipsoidalis, 
Q. velutina,

Q. coccinea, Q. rubra
(Trees)

Partly latitudinal
(complex)

Indiana and
Michigan, USA

nSSRs,
EST-SSRs,
AFLPs

Sullivan et al., 2016

106 Hybridization of Q. wislizeni
with Q. agrifolia, Q. kelloggii
and Q. parvula (Trees)

Environmental
gradients
between mosaic
of different
habitats

California, USA AFLPs Dodd, Afzal-Rafii,
2004

107 Rhinanthus
(Orobanchaceae)

R. angustifolia � R. minor
(Herbs)

Possible dry-moist
microsite
transitions
in disturbed areas

Belgium RAPDs, ISSRs,
cpDNA RFLPs

Ducarme et al., 2010;
Natalis, Wesselingh,
2012

108 Rhizophora
(Rhizophoraceae)

R. apiculata � R. mucronata
(Trees)

Not evident Sri Lanka ISSRs, cpDNA
and nuclear
ITS sequences

Lo, 2010

109 R. apiculata � R. stylosa
(Trees)

Not evident Australia,
Micronesia and
Guam

ISSRs, cpDNA
and nuclear
ITS sequences

Lo, 2010

Continued
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gradient
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110 Coastal zone
(salinity) transition

Central American
Isthmus, and
South America

nSSRs Cer�on-Souza et al.,
2010

111 Not evident Fiji ISSRs, cpDNA
and nuclear
ITS sequences

Lo, 2010

112 Rhododendron
(Ericaceae)

Altitudinal Yunnan, China AFLPs Marczewski et al.,
2015

113 Altitudinal Tiryal Dag,
Turkey

RAPDs, ISSRs Milne et al., 2003

114 Not clear Yunnan, China AFLPs, ITS
and cpSNPs

Zha et al., 2008

115 Altitudinal Yunnan, China AFLPs, ITS
and cpSNPs

Zha et al., 2010

116 Coastal-Inland
transition (saline,
temperature, soil
moisture gradient)

Yakushima
Island, Japan

AFLPs Tagane et al., 2008

117 Soil type (acid-
basic transition)

European Alps,
Austria

RAPDs Milne, Abbott, 2008

118 Not stated Yunnan, China nSSRs, cpDNA
sequence

Yan et al., 2017

119 Rorippa
(Brassicaceae)

R. mangle � R. racemosa 
(Trees)

R. samoensis � R. stylosa 
(Trees)

R. aganniphum � R. 
phaeochrysum (Shrubs)
R. caucasicum � R. 
ponticum (Shrubs)
R. decorum � R. delavayi 
(Shrubs)
R. delavayi � R. irroratum 
(Shrubs)
R. eriocarpum �. 
R. indicum (Shrubs)

R. ferrugineum � R. 
hirsutum (Shrubs)
R. spiciferum � R. 
spinuliferum (Shrubs)
R. amphibia (self-
incompatible) � R. 
palustris (self-
compatible) - (Herbs) Reed bank–open

river site
transition

North Germany Allozymes,
cpDNA
sequence

Bleeker, Hurka, 2001

120 R. amphibia � R. sylvestris
(Herbs)

Reed bank–
flooded
grassland/gravel
bank transition

River Elbe, North
Germany

Allozymes, cp
DNA
sequence

Bleeker, Hurka, 2001

121 Sabatia
(Gentianaceae)

S. arenicola � S. formosa
(Herbs)

Soil type (clay–
sand transition)

La Marque,
Texas

Allozymes Bell, Lester, 1978

122 Salix
(Salicaceae)

S. alba � S. fragilis (Trees) Not clear Danube, SE
Germany

AFLPs, nSNPs Oberprieler et al.,
2013

123 S. eriocephala � S. sericea
(Small trees)

Not clear (soil
moisture implicated)

New York state,
USA

RAPD, ITS
and cp DNA
markers

Hardig et al., 2000;
Fritz et al., 2006

124 S. helvetica � S.
purpurea (Shrubs/dwarf
trees)

Altitudinal and soil
type

Glacier forefield,
Switzerland

nSSRs Gramlich, H€orandl,
2016; Gramlich et al.,
2016

125 Mixed stand of S.
dasyclados, S. schwerinii
and S. viminalis (Trees)

Not clear Lake Baikal,
South Siberia,
Russia

nSNPs,
cpDNA
SSRs

Fogelqvist et al.,
2015

126 Sarracenia
(Sarraceniaceae)

Mixed stand of S.
leucophylla, S. alata, and
S. rubra (Herbs)

No evident
gradients
in recently, naturally
disturbed site

Alabama, USA nSSRs Furches et al., 2013

127 Schiedea
(Caryophyllaceae)

S. menziesii � S. salicaria
(Shrubs)

Longitudinal Halepohaku,
West Maui,
Hawaii

nSSRs, cpDNA
sequence

Wallace et al., 2011

128 Senecio
(Asteraceae)

S. aethnensis � S.
chrysanthemifolius (Herbs)

Altitudinal Mount Etna,
Sicily, Italy

Allozymes,
RAPDs,
nSSRs,
EST-SSRs

James, Abbott,
2005;
Brennan et al., 2009,
2014, 2016; Chapman
et al., 2005, 2013,

Continued
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(Figs. 1a, 1b; Table S3). Greater numbers of hybrid zones per
family were recorded for Fagaceae and Asteraceae with
intermediate numbers recorded for Ericaceae, Orchidaceae,
Pinaceae and Salicaceae. The Asteraceae and Orchidaceae are
two of the largest plant families, each comprising more than
20 000 species, so it is not surprising that more hybrid zones
have been studied in these families than in most others. With
regard to genera, Quercus (oaks) contained most studied
hybrid zones (20), while Eucalyptus, Picea (spruce), Pinus,
Populus, Rhizophora (mangrove), Rhododendron and Salix
(willow) each contained four to seven studied hybrid zones

representing different pairs or groups of species. These eight
plant genera are well known for containing many interfertile
species, and it is perhaps surprising that relatively few hybrid
zones (with the exception of Quercus) have been recognised
and studied in each of them.

Studies of hybrid zones on herbs and trees were
approximately equally represented in the survey, and more
common than those recorded for shrub species (Fig. 1c;
Table S3). Almost all studies were conducted on flowering
plants or conifers, with only one hybrid zone study conducted
in each of ferns and mosses. With regard to geographical

Table 1 Continued

Genus Taxa Environmental
gradient

Location Genetic
markers

References

2015; Filatov et al.,
2016

129 S. hercynicus � S. ovatus
(Herbs)

Altitudinal Harz Mts, and
Bavarian
National Park,
Germany

RAPDs, AFLPs Raudnitschka et al.,
2007; Bog et al.,
2017

130 Silene
(Caryophilaceae)

S. dioica � S. latifolia
(Herbs)

Altitudinal European Alps,
Switzerland and
Italy

AFLPs Minder et al., 2007;
Minde, Widmer,
2008;
Karrenberg, Favre,
2008; Rahm�e et al.,
2009; Favre et al.,
2017

131 Sphagnum
(Sphagnaceae)

S. capillifolium �
S. quinquefarium (Herbs,
mosses)

Dry pine forest–
moist spruce forest
transition

Sweden ISSRs, cpDNA
RFLPs

Natcheva, Cronberg,
2007

132 Tithonia
(Asteraceae)

T. rotundifolia � T.
tubaeformis (Herbs)

Altitudinal Mexico RAPDs Tovar-Sanchez et al.,
2012

133 Vincetoxicum
(Apocynaceae)

V. atratum � V. japonicum
(Herbs)

Latitudinal/
Longitudinal

Japan nSSRs Li et al., 2016

134 Viola
(Violaceae)

V. bissetii � V. rossii (Herbs) Sunny, dry southern Mt Ougi, central
Japan

AFLPs Nagano et al., 2015

135 V. chaerophylloides � V.
eizanensis (Herbs)

Tochigi
Prefecture,
Japan

AFLPs, cpDNA
sequence

Toyama et al., 2015

136 Yucca
(Asparagaceae)

Y. brevifolia � Y. jaegeriana
(Trees)

Tikaboo Valley,
Mojave Desert,
Nevada

nSNPs Royer et al., 2016

137 Zaluzianskya
(Scrophulariaceae)

Z. microsiphon � Z.
natalensis (Herbs)

aspect–shaded 
moist northern 
aspect transition 
Open grassland -
shaded forest 
transition 
Longitudinal. Due to 
east-west parapatric 
distribution of 
different species-
specific pollinators 
Not stated Mt. Gilboa,

Kwazulu-Natal,
South Africa

ISSRs Archibald et al.,
2004

Genetic markers: AFLPs, amplified fragment length polymorphisms; cpDNA, chloroplast DNA; cpSNPs, chloroplast single
nucleotide polymorphisms; cpSSRs, chloroplast simple single repeats; EST-SSRs, expressed sequence tag simple sequence
repeats; ISSRs, inter simple sequence repeats; ITS, nuclear ribosomal internal transcribed spacer sequence; LTR-RT SSAPs, long
terminal repeat transposon sequence specific amplified polymorphisms; mtDNA,mitochondrial DNA; nDNA, nuclear DNA; nSSRs,
nuclear simple sequence repeats; nSNPs, nuclear single nucleotide polymorphisms; RAPDs, random amplified polymorphic
DNAs; SSCPs, single strand conformation polymorphisms; rDNA, ribosomal DNA; RFLPs, restriction fragment length
polymorphisms.
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distribution, most hybrid zones studied are located in North
and Central America, Asia and Europe (54, 32 and 30,
respectively, Table 1), eight were located in Australia, six in
South America, six in Hawaii and additional Pacific islands,
three in the Canary Islands, and one in Africa. Note that hybrid
zones studied between Populus alba and P. tremula,
Rhizophora apiculata and R. stylosa, and Rhizophora mangle
and R. racemosa, were located in Europe and Asia, Australia
and several Pacific islands, and Central and South America,
respectively. The uneven geographical distribution across the
continents almost certainly reflects the human, scientific and
financial resources available for studying plant hybrid zones in
different parts of theworld, rather than the relative frequency
of hybrid zones in these different regions.

It is not possible to draw firm conclusions on the taxonomic,
life form and geographic distributions of all plant hybrid zones
(studied andnot studied) froma survey of only those that have
been studied genetically. However, given the known ability of
many species to hybridize (Whitney et al., 2010; Guo, 2014;
Stace et al., 2015), it is surprising that so fewplant hybrid zones
have been studied genetically, particularly in parts of theworld
where there is a longhistoryofplant evolutionary research. For
one such region—botanically rich California—only 12 hybrid
zones involvingdifferent pairsor groupsof nativeplant species

were recorded and four of these were in the ‘outlier’ genus
Quercus. The low occurrence in this region possibly
suggests that plant hybrid zones are relatively rare in California
and, by extension, may also be rare elsewhere in the world.
Alternatively, it may reflect that they have been grossly under-
recognised and understudied by evolutionary biologists.

4.2 Hybrid zone type, multilocus genotypic structure and
hybrid fitness
In many hybrid zone reports, no statement was made of the
type of hybrid zone that best fitted the data obtained, i.e.,
tension, bounded hybrid superiority, mosaic or evolutionary
novelty hybrid zone. Sometimes hybrid zone type could be
inferred or the pattern of variation described simply as clinal,
but for many an entry of ‘not stated’ remains (Table S1). The
distribution of hybrid zones according to type (Fig. 2A;
Table S4) shows the mosaic form is the most common type
reported or inferred, followed in turn by the tension and
bounded hybrid superiority types. The least frequent type was
the evolutionary novelty zone, for which only three possible
examples could be inferred. In certain cases, where more than
onehybrid zonewas examined for a pair of lineages,more than
one type of zone was distinguished. For example, with the
species pair Senecio hercynicus and S. ovatus, a hybrid zone
located in the Harz Mountains of Germany was described as
mosaic (Raudnitschka et al., 2007), whereas in the Bavarian
National Park (Boget al., 2017) thehybrid zone seemedabetter
fit to the evolutionary novelty type. In addition, a particular
hybrid zone type could be apparent for certain nuclear genetic
markers, but not for others. Thus, for Antirrhinum majus
pseudomajus (magenta flowers) and A. m. striatum (yellow
flowered) and for Mimulus aurantiacus ssp. australis (yellow

Fig. 1. Frequency of hybrid zones per a, family, b, genus and c,
life form, for hybrid zones detected and analysed using
nuclear genetic markers.

Fig. 2. Frequency of a, hybrid zone type (BHS¼Bounded
hybrid superiority; TZ¼ Tension zone), and b, hybrid zone
mode among hybrid zones detected and analysed using
nuclear genetic markers.

12 Abbott

J. Syst. Evol. 9999 (9999): 1–21, 2017 www.jse.ac.cn



flowered) and ssp. puniceus (red flowered), narrow tension
zoneswere evident forgenes controllingflower color,whereas
no apparent clines or weak clines existed for other molecular
markers (Whibley et al., 2006; Sobel & Streisfeld, 2015;
Stankowski et al., 2017). This indicates that the genomes of
these taxa are porous to gene flow except at key loci
distinguishing the phenotypes of parental lineages.

Figure 2b (Table S4) shows that in terms of modal structure,
bimodal hybrid zones were most common followed by
unimodal and trimodal (comprising only or mainly F1s and
both parent forms) types. However, unimodal hybrid zones
varied in structure and included those containing only ormainly
F1s, those comprising mainly F1s and F2s, and those comprising
one parent form and backcrosses to it (Table S4). Similarly,
bimodal hybrid zones varied in composition from those
comprising both parental forms and backcrosses to them
(and sometimes a few early generation hybrids), to those
comprising one parent type and backcrosses to the other
parent, and those containing F1s and one parent form and/or
backcrosses to it (Table S4). Clearly, classifying hybrid zones
neatly into unimodal and bimodal types obscures a range of
structural heterogeneity, and undermines such use to infer the
strengthof reproductive isolationbetweenparental lineagesas
proposed by Harrison & Bogdanowicz (1997) and Jiggins &
Mallett (2000). As already pointed out, an F1 dominated
unimodal hybrid zone reflects strong reproductive isolation
between parental lineages, rather than weak isolation as
Jiggins & Mallett (2000) proposed. Similarly, a bimodal hybrid
zone comprising one parent type and backcrosses to the other
parent indicates unidirectional gene flow, rather than strong
reproductive isolation between parental lineages. In addition
to theseproblems,manyhybrid zones (�36%of the total) could
not be classified as unimodal, bimodal or trimodal based on
information provided. Approximately 22% were best described
as hybrid swarms containing awide rangeof hybrid types along
with parental classes. For others (�8%) a cline was apparent,
while in the remainder noneof the foregoing typeswere stated
or couldbe inferred.Occasionally, unimodal andbimodal hybrid
zones were reported for the same species pair. This was the
case for Phlomis crinita and P. lychnitis, with unimodal hybrid
zones present in Southern Spain and bimodal zones in eastern
Spain (Albaladejo & Aparicio, 2007), and was also evident for
thespeciespair Ipomopsis aggregitaand I. tenuituba (Aldridge&
Campbell, 2009).

For most hybrid zones, no direct study of hybrid fitness in
terms of survivorship or fecundity was conducted, and in
approximately one third of cases no information on F1
fertility was presented or could be inferred. Often, hybrids
were stated as fertile or sterile based on personal
observation, or was inferred from the presence or absence
of later generation hybrids in a hybrid zone. Figure 3
(Table S5) indicates that for most hybrid zones where
information on F1 fertility was available, F1s were fertile or
partially fertile and only in a handful of cases (�7%) were
they sterile. For a few hybrid zones (in Artemisia, Ipomopsis,
Picea) reciprocal transplant analyses were conducted and
indicated that hybrids had a higher fitness than parent forms
in ecotones between parental habitats. In three further
cases (Antirrhimum, Costus and Yucca) it was shown or
inferred that pollinator visitation was lower to hybrids than
to parental forms.

4.3 Prezygotic and postzygotic reproductive barriers
For most hybrid zones, no investigations have been
conducted on the nature of prezygotic and postzygotic
reproductive barriers between parental lineages. However,
comments were often made on whether parental lineages
exhibited divergent phenology and/or habitat preference.
From these comments, and occasionally some quantitative
analyses, parental lineages could be inferred to exhibit
divergent habitat preferences in 84 cases, show divergent
phenologies in 38 cases, and in 24 cases exhibit both divergent
phenology and habitat preference (Fig. 4a; Table S6). In
addition, it was reported that divergent pollinator preference
in 18 cases, selfing of one or both parental lineages in 12 cases,
spatial clustering of individuals in seven cases and conspecific
pollen precedence in six cases, could be inferred or were
demonstrated to act as prezygotic barriers between certain
lineages that form hybrid zones.

A lack of information on postzygotic barriers is apparent
by the fact that in 52 cases no information on such barriers
was provided (Fig. 4b; Table S6). Where information was
available, it was inferred that postzygotic barriers were
absent or weak in 27 cases, strong in 18 cases, and of
intermediate strength (due to partial F1 sterility) in 16 cases.
A chromosomal or genic incompatibility basis to reproduc-
tive isolation was demonstrated or inferred in 4 and 46
cases, respectively, and post-F1 hybrid breakdown (possibly
due to genic incompatibility) was apparent in 9 cases. The
number of cases of genic incompatibility may be inflated by
the fact that often it was inferred from reduced hybrid
fitness, which in some instances could have resulted from
an extrinsic rather than intrinsic postzygotic effect (Tables
S1 and S6). Because it is often difficult to distinguish
between these effects, all such cases were grouped under
genic incompatibility. In some instances where genic
incompatibility was implied or demonstrated, hybrids were
fertile in one direction of a cross but not in the other
direction, indicating cytonuclear incompatibility. In a handful

Fig. 3. F1 fertility for taxa that form hybrid zones detected and
analysed using nuclear genetic markers.
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of cases, genic incompatibility due to BDM incompatibilities
and/or cytonuclear incompatibility was demonstrated from
an analysis of genetic mapping families produced from
reciprocal crosses (e.g., in Helianthus, Iris, Mimulus and
Senecio).

Only for a few taxa that form hybrid zones have detailed
analyses been conducted of prezygotic and postzygotic
reproductive isolating barriers across the life cycle. This has
been done for Clarkia xantiana parviflora and C. x. xantiana
(Briscoe Runquist et al., 2014), Costus pulverulentus and C.
scaber (Kay, 2006), Helianthus annuus and H. petiolaris
(Sambatti et al., 2012), Mimulus guttatus and M. nasutus
(see Kenney & Sweigart, 2016) and Orchis mascula and
O. pauciflora (Scopece et al., 2013). In each case it was shown
that a range of prezygotic and postzygotic isolating mecha-
nisms contribute positively to reproductive isolation, though

in combination do not completely impede gene flow. More
studies of this kind to supplement investigations of the
genetic structure of hybrid zones are required.

4.4 Level and direction of gene flow
Levels and directions of gene flow across hybrid zones were
indicated from the frequency and types of advance generation
hybrids present in a hybrid zone, and occasionally from
estimations based on population genetic data and simulation.
Gene flow appeared to be high across a relatively large number
of hybrid zones (54), but low/very low/absent in a greater
number (76) (Fig. 5; Table S7). In some instances, gene flow
couldbe high in certain hybrid populations of a species pair, but
low in others (e.g., in Ipomopsis, Lomatia and Phlomis). In a
relatively high number of cases (45) asymmetric gene flowwas
detected or inferred, while bidirectional gene flow was less

Fig. 4. Frequency of a, prezygotic and b, postzygotic reproductive isolating (RI) barriers between taxa that form hybrid zones
detected and analysed using nuclear genetic markers.
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commonly reported (17 cases). In hybrid populations between
Rhododendron spiciferum and R. spinuliferum, bidirectional
gene flow was most common, although asymmetric introgres-
sion was evident in some populations. Clearly, levels and
directions of gene flow vary considerably across plant hybrid
zones, and likely reflect different stages in the evolution of
reproductive isolation between parental lineages across the
speciation continuum. The relatively frequent occurrence of
asymmetrical gene flow across hybrid zones indicates a range
of factors that might act as causes of this phenomenon, e.g.,
differential abundanceofparental lineages, differential gamete
production and fertilization, and differential embryo develop-
ment and offspring survival (Tiffin et al., 2001; Turelli & Moyle,
2007; Lowry et al., 2008). However, only in a few cases have
these been investigated in any detail.

There is now mounting evidence that gene flow between
hybridizing plant lineages is not evenly distributed across the
genome (Payseur & Rieseberg, 2016). At one extreme, genes
may flow freely across the genomes of divergent lineages
except at a relatively low proportion of loci that distinguish
these lineages. This is the case for the different flower colour
subspecies of Mimulus guttatus (Sobel & Streisfeld, 2015;
Stankowski et al., 2017), whose genomes are mainly
undifferentiated. At the other extreme, when speciation is
at a more advanced stage, the genomes of hybridizing
lineages may be far more differentiated with gene flow
restricted to much fewer regions of the genome as is the case
for Populus alba and P. tremula (Christe et al., 2017). Future
studies of the comparative genomics of divergent lineages
that form hybrid zones will enable the extent of genomic
porosity to gene flow to be established between lineages
across the divergence continuum. Furthermore, such studies
will pinpoint genomic regions and candidate genes involved in
adaptive introgression between lineages (Suarez-Gonzalez
et al., 2016) across environmental gradients.

4.5 Formation of hybrid zones
Information on the possible origins of the hybrid zones
studied also varied greatly in both quality and quantity. It was
frequently assumed that secondary contact, often following
environmental disturbance (see below), precipitated the
formation of a hybrid zone. Usually, this was based on
evidence or an assumption that parental lineages were
primarily isolated by prezygotic barriers that failed, or were

significantly reduced in effect, when the environment was
disturbed naturally or through human activities. Alternatively
or in addition, phylogeographic evidence was presented to
indicate that parental lineages had recently come into
contact, possibly as a result of climate or geological change,
following a period of divergence in allopatry. However, for
very few hybrid zones were analyses conducted to distinguish
between the possibility of an origin by primary intergradation
or secondary contact. In these cases, coalescent-based
simulations were conducted to determine which of the two
models provided the best fit to population genetic data. An
origin following secondary contact after allopatric divergence
provided the best fit for the hybrid zone between Clarkia
xantiana parviflora and C. x. xantiana (Pettengill & Moeller,
2012) and for hybrid zones that exist between the four white
oak species,Quercus petraea, Q. pubescens, Q. pyrenaica and Q.
robur (Leroy et al., 2017), whereas primary intergradation
proved a better fit for the origin of the hybrid zone between
Senecio aethnensis and S. chrysanthemifolius (Filatov et al.,
2016). Acceptance of the primary intergradationmodel for the
origin of a hybrid zone relies on rejecting the possibility of an
allopatric phase having occurred at some stage during the
divergence of parental forms. However, even complexmodels
of the type used by Filatov et al. (2016) are likely to be much
simpler than reality and therefore possibly miss brief periods
of allopatry. Such periods could be key to the development of
prezygotic and postzygotic isolating barriers between paren-
tal types that reduce gene flow following secondary contact.

Although the importance of environmental disturbance in
promoting hybridization between species has been recog-
nized since the landmark papers of Anderson (1948) and
Anderson & Stebbins (1954) (see also Guo, 2014), and was
often implicated as a trigger to hybrid zone formation in the
studies reviewed here (see below and Lamont et al., 2003, in
particular), only one study attempted to distinguish the
relative importance of different types of environmental
disturbance in promoting hybridization between a particular
species pair. This was conducted on two Californian oak
species, Quercus berberidifolia and Q. durata (Ortego et al.,
2017), and showed that genetic admixture increased with
wildfire frequency, but surprisingly not with urbanization, land
clearance for agriculture. Clearly, the type as well as degree of
environmental disturbance may be important in promoting
hybrid zone formation.

4.6 Hybrid zone stability and movement across
environmental gradients
Hybrid zones may have a transient or long-term existence.
Those that establish as a result of anthropogenic disturbance
may quickly disappear when such disturbance ends. Other
hybrid zones that form more naturally might be maintained
over longer periods, though move across environmental
gradients in response to environmental change. Buggs (2007)
reviewed the literature on hybrid zone movement, pointing
out that for plants of equivalent ploidy, only one hybrid zone
had been monitored over a sufficient period to detect
movement directly. This was a hybrid zone between
Helianthus annuus and H. bolanderi (Tables 1 and S1) formed
most likely as a result of human disturbance, and in which an
advance of H. annuus at the expense of H. bolanderi was
detected over a period of 55 years (Carney et al., 2000).

Fig. 5. Frequency of level and direction of gene flow for taxa
in hybrid zones detected and analysed using nuclear genetic
markers.
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However, hybrid zone movement is also indicated indirectly
by asymmetrical introgression between parental lineages
across a hybrid zone. It has been shown that when a species
invades an area occupied by another and hybridizes with that
species, it is normal for unidirectional introgression to
proceed towards the invading species (Currat et al., 2008).
Thus, as an introgressed invader advances, the centre of the
hybrid zone which it forms with another species also
advances, and a signature of where hybrid zones were
previously located is indicated by a trail of historically
introgressed neutral genes that extends back from the hybrid
zone to areas where only the invading species is now present.

Based on this type of genetic signature, it appears that
hybrid zone movement across altitudinal gradients may have
occurred for hybrid zones formed between Pinus massoniana
and P. hwangshanensis in Anhui, China (Zhang et al., 2014),
Populus angustifolia and P. fremontii in Utah, USA (Martinsen
et al., 2001), Senecio aethnensis and S. chrysanthemifolius on
Mount Etna, Sicily (James & Abbott, 2005; Chapman et al.,
2013), and Senecio hercynicus and S. ovatus in Bavaria,
Germany (Bog et al., 2017). In the case of Senecio, the genetic
signatures of asymmetric introgression indicate that the
introgressed lowland species, S. chrysanthemifolius and S.
ovatus, are advancing to higher altitudes, possibly in response
to recent climate warming, and displacing their higher altitude
counterparts from these areas. In contrast, for Pinus and
Populus, asymmetric introgression towards the higher altitude
species, Pinus hwangshanensis and Populus angustifolia,
respectively, suggests that these species may have
advanced to lower altitudes during an earlier stage in their
recent history. Martinsen et al. (2001) proposed that for P.
angustifolia this could have occurred during the Holocene
when temperature was higher and lowland P. fremontii, and
the hybrid zone it formswith P. angustifolia, occurred at higher
altitude. Whether this difference in direction of hybrid zone
movement between these two plant groups (Senecio versus
Pinus and Populus species), possibly in response to different
periods of climate change, might be explained by differences
in generation time has yet to be tested. However, due to their
longer generation times, it is feasible that lowland trees,
such as Pinus massoniana and P. fremontii, have not yet begun
to ascend in any noticeable way to higher elevations in
response to very recent anthropogenic climate warming,
whereas short-lived herbaceous plants, such as the two
lowland Senecio species, have.

Amore complexgenetic signatureof historical introgression
is evident between the two forms of Piriqueta caroliniana that
form a hybrid zone in Florida (Table 1), indicating that themore
introgressed P. c. viridis has advanced northwards displacing
P. c. caroliniana in southern Florida, pushing the hybrid zone
northwards, possibly as a result of climate warming (Martin &
Cruzan, 1999; Cruzan, 2005). Patterns of asymmetric intro-
gression also indicate hybrid zone movement for some Picea
species, e.g., for the northward movement of a hybrid zone
between P. engelmannii and P. glauca, possibly as a result of
climate warming since the Last Glacial Maximum (De La Torre
et al., 2015), and a postglacial westward movement of the
hybrid zone between Picea abies and P. obovata (Tsuda et al.,
2016). However some hybrid zones have remained remarkably
stable in the face of climate change as appears to be the case
for that between two North American firs, Abies balsamea and

A. lasiocarpa. A genetic analysis of this hybrid zone indicates
that it has not moved since it originated at the end of the last
glacial period, approximately 11 kyr ago (Cinget et al., 2015).

In addition to moving, hybrid zones may disappear in
response to climate change. This can happen if climate change
causes the geographical ranges of parental species to pull
apart such that they no longer hybridize. A consequence is
that such species may frequently bear genomic signatures of
past hybridization and introgression events. Alternatively or in
addition, allopolyploid and homoploid hybrid taxa may occur
in areas where a hybrid zone formerly existed, but where one
or both parental species are no longer present. Liu et al. (2014)
proposed such a scenario to account for the occurrence of a
homoploid hybrid species of Ostryopsis (O. intermedia) close
to one of its parents in China (O. nobilis), but hundreds of
kilometers south of the geographical distribution of its other
parent (O. davidiana). Subsequently, Kadereit (2015) showed
that homoploid and allopolyploid species formed during the
Quaternary are frequently ecogeographically displaced from
their parental taxa and proposed that this was often due to
them occupying areas where their parental taxa were
formerly in contact and hybridized during glacial periods
(see also Klein & Kadereit, 2016). Kadereit (2015) argued that
because of the evolutionary novelty generated by hybridiza-
tion (Abbott et al., 2013), certain hybrids were more likely to
be adapted to the changed environmental conditions within
such areas, allowing them to maintain a presence and evolve
into hybrid species after their parents retreated from such
areas in response to climate change.

4.7 Genetic basis of local adaptation and reproductive
isolation
The ability to conduct genomic scans and construct genomic
maps to search for and locate parts of the genome that are
highly differentiated between specieswhich formhybrid zones
has led in recent years to investigations of the genetic basis of
differences in local adaptation between such species and the
traits involved in reproductive isolation. Genomicmapping also
provides information on whether genomic (chromosomal)
rearrangements distinguish species, which, in turn, may reduce
the fitness of hybrids and prevent the breakup (through
recombination) of blocks of adaptive genes contained within
such rearrangements. A review of this literature is beyond the
scope of this paper; however, it is worth mentioning briefly
some key findings to emerge from the literature review. For
some species pairs, large-scale chromosomal rearrangements
appear to be an important cause of reduced hybrid fitness and
preservation of adaptive differences, e.g., for Helianthus
annuus and H. petiolaris (Burke et al., 2004), whereas in
some other species they appear not to be, e.g., for Mimulus
guttatus andM. nasutus (see Fishman et al., 2013), and Senecio
aethnensis and S. chrysanthemifolius (Brennan et al., 2014,
2016), where BDM and cytonuclear incompatibilities are
important. Also evident is that highly divergedgenomic regions
detectedbygenomic scans represent a small componentof the
total genome and are often, though not always, spread across
the genome rather than strongly clustered (Strasburg et al.,
2012; Chapman et al., 2013; Brennan et al., 2016). Candidate
genomic regions/genes affecting particular traits, possibly
involved in adaptive divergence/reproductive isolation be-
tween species that form hybrid zones, have been identified by

16 Abbott

J. Syst. Evol. 9999 (9999): 1–21, 2017 www.jse.ac.cn



genomic scans (e.g., Christe et al., 2017), though have yet to be
subjected to functional analysis.

5 General Conclusions and Future
Directions
From the review of the plant hybrid zone literature
presented here, it is evident that with the exception of a
few comprehensive investigations, most hybrid zone
studies provide only preliminary information on the nature
of the hybrid zone investigated and the mechanisms that
maintain parental forms in the face of gene flow.
Nonetheless, these studies are important in providing
information on the occurrence of hybrid zones. What
emerges is that surprisingly few hybrid zones have been
recognised and studied genetically. Taxonomists are good
at recording naturally occurring hybrids based on morphol-
ogy (Guo, 2014; Stace et al., 2015) and frequently assign
names to hybrids, indicating that they are distinct and
recognisable entities. Although the name of a hybrid should
apply to all hybrid progeny of the parents, no matter how
much they vary, only early generation hybrids are likely to
be recognised as such, with later generation backcrosses
resembling one or both parents missed. Consequently,
many bimodal hybrid zones comprising mainly backcrosses
and parental types will not be recognised as hybrid zones in
the wild based on morphological analysis alone. Thus,
population genetic analysis is required to confirm the
existence and structure of these and other hybrid zones,
and this is likely to have imposed a constraint on the
number of hybrid zones detected, due to the scientific and
financial resources required for such analysis. It is to be
expected that a combined population morphological and
genetic approach should lead in future to the discovery of
many more plant hybrid zones.

Despite this, there are reasons to suggest that plant hybrid
zones may occur more rarely in the wild than anticipated from
the known ability of many plant species to hybridize (Whitney
et al., 2010; Guo, 2014; Stace et al., 2015). In both North
America and Europe, relatively few plant hybrid zones have
been recognised and analysed, despite a long history of
research into plant evolution, ecology and systematics. In
California, only twelve hybrid zones involving different pairs or
groups of native plant species have been reported and studied
genetically since initial studies were conducted in the 1980s
(Wells, 1983; Ellstrand et al., 1987).

Why might hybrid zones be relatively rare, if in fact this is
the case? Hybridization is generally thought to be limited to
closely related species, which are genetically similar. This has
been demonstrated for some plant genera (Moyle et al., 2004;
Scopece et al., 2008) and was recently confirmed for animal
species from analyses of genomic data (Roux et al., 2016).
Moreover, Levin (2012) has shown that postzygotic isolation
(hybrid sterility) of herbaceous plant lineages is achieved, on
average, approximately 4–5 million years after divergence.
Thus, hybrid zones containing fertile hybrids are expected to
form only between closely related, genetically similar taxa.
However, many of such taxa are reproductively isolated from
each other by very effective prezygotic isolating mechanisms
such as geographic barriers, divergent phenology, divergent

pollinators, and mating system differences, as well as
postzygotic extrinsic mechanisms involving immigrant and
hybrid inviability (Lowry et al., 2008; Baack et al., 2015). These
barriers are likely to prevent such species fromhybridizing and
forming hybrid zones in sympatric and parapatric situations
unless they are disrupted by natural or anthropogenic
disturbance. The literature surveyed indicates that almost
one third of hybrid zones occur in environmentally disturbed
areas (Table S8); however, this is likely to be an underestimate
as often no statement is made with regard to disturbance,
though sampling was conducted close to roads and pathways
which would indicate local habitat disturbance. The possibility
that hybrid zones might in fact be rare needs, of course, to be
fully tested. More examples of hybrid zones will no doubt
accumulate in the literature over future years and improve our
understanding of the frequency and taxonomic range of
hybrid zones throughout the world. In the meantime, it would
be useful to target genera already known to contain a
relatively high proportion of interfertile species. In these
genera, it would be expected that hybrid zones should be
frequent, as in oaks. If, however, this is normally not found to
be the case, particularly in areas not subject to anthropogenic
disturbance, then the rarity hypothesis would be supported
and genera such as oaks would be confirmed as outliers.

For a number of hybrid zones, considerable information
has been obtained on hybrid fitness, isolating barriers
between parental forms, local adaptation and gene flow,
e.g., in Helianthus, Iris, Mimulus, Picea, Populus, Quercus and
Senecio. Nonetheless, our understanding of these matters
remains far from complete even for these hybrid zones. For
example, in the case of local adaptation, which is considered
a key mechanism in the origin and maintenance of hybrid
zones, advances are being made from genomic analyses in
understanding the genetic basis of adaptive differences
between species that form hybrid zones, but in most cases
in the absence of testing for local adaptation using
reciprocal transplants. Continuing and detailed research
on these hybrid zones, and the parental taxa, should be
encouraged, in order to understand further the mechanisms
involved in processes of plant speciation.

At the outset of this review, emphasis was placed on plant
adaptation across environmental gradients and its potential
role in plant speciation. There is now abundant evidence to
suggest that local adaptation can occur in the face of gene
flow (see for example, Abbott & Comes, 2007) and increasing
evidence that this can lead to speciation (Nosil, 2008;
Papadopulos et al., 2013; but see Yang et al., 2017). Endler
(1977) pointed out that an intermediate step in the process of
speciation with gene flow, moving from local adaptation to
fully isolated biological species, is the formation of hybrid
zones by primary intergradation. Alternatively, hybrid zones
across environmental gradients may originate as a result of
secondary contact between partially reproductively isolated
species, following their divergence in allopatry. For many of
the hybrid zones covered in this review, it was inferred or
assumed that an origin by secondary contact had occurred.
Only for onewas an origin by primary intergradation advanced
(Filatov et al., 2016), and this was based on a modelling
approach that could miss brief, but important allopatric
phases, during which divergence causing reproductive isola-
tion may have occurred. Based on current methodology, it is
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almost impossible to show that a hybrid zone originated by
primary intergradation rather than secondary contact.
Nonetheless, from the available evidence, most hybrid zones
across environmental gradients seem to have originated by
secondary contact rather than primary intergradation,
indicating that ecological speciation with gene flow across
environmental gradients might be a rare phenomenon.

Another feature to emerge from the current literature is that
plant hybrid zones may often move, possibly in response to
climate change, although this is based on genetic signatures of
responses to historic climate change and, therefore, is open to
interpretation (Taylor et al., 2015). Long-termstudiesofexisting
hybrid zones are now required to determine how plant hybrid
zones are responding to current climate change from both a
demographic and evolutionary perspective. In general, hybrid
zones offer great potential for understanding the mechanisms
involved in plant adaptation and speciation. However, it
remains the case that for most hybrid zones studied to date
only preliminary information is available on these aspects.
Greater attention should be focused on plant hybrid zones in
the future if their potential to serve as windows on plant
adaptation and speciation is to be fully realised.
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