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Abstract 

 

The sialidases/neuraminidases represent a family of enzymes whose function is important in the 

pathogenicity of bacteria and the virulence of influenza. Relenza and Tamiflu represent two drugs 

that were developed using structure-based drug design (SBDD) and computational-assisted drug 

design (CADD). These drugs target the active site of the influenza neuraminidase A and B (GH-34 

family). Sialidases in the GH-33 family could represent novel drug targets for the treatment of 

bacterial or parasitic infection. SBDD was employed to develop chemical tools of two GH-33 

sialidases, NanB and TcTS.  

 

NanB is a potential drug target for S. pneumoniae. The chemical tool developed for NanB follows 

on from work within the Taylor and Westwood research groups, in which a molecule of CHES and a 

glycerol were found serendipitously bound within a water channel at an allosteric site. Using this 

information as a basis for SBDD an allosteric inhibitor of NanB, Optactin was developed. Within this 

work, synthesis of this inhibitor was achieved and optimised. Optactin was then modified to improve 

potency. This proceeded through an amide analogue and addition of an arene resulting in a mid-

micromolar inhibitor (IC50: 55.4±2.5 µM). Addition of polar substituents improved potency further 

resulting in a low micromolar inhibitor of NanB, Optactamide (IC50: 3.0±1.7 µM). Application of this 

tool in vitro demonstrated that NanB and NanA have a role in invasion of S. pneumoniae into lung 

epithelial cells.  

 

TcTS is a potential drug target for the treatment of Chagas disease. A CADD approach using a 

fragment library was unsuccessful at identifying an allosteric inhibitor of TcTS despite structural 

similarity with NanB. A re-task of the CADD approach towards the active site was successful in 

identifying an inhibitor of TcTS and a fragment useful for further development. This work sets the 

groundwork for the development of a chemical tool targeting TcTS. 

 



3 
 

Abbreviations 

 

2,3-difluoro-N-acetylneuraminic acid (2,3F-Neu5Ac) 

2,7-anhydro-α-N-acetylneuraminic acid (2,7-anhydro-Neu5Ac) 

2-deoxy-2,3,dehydro-N-trifluoro-acetylneuraminic acid (FANA) 

2-deoxy-2,3-didehydro-5-N-neuraminic acid (Neu5Ac2en/DANA) 

3-deoxy-D-glycero-D-galacto-2-nonulopyranos-1-onic acid (KDN) 

3-phosphoinositide-dependent kinase-1 (PDPK1) 

ABC transporter 

acquired immune deficiency syndrome (AIDS) 

adenosine monophosphate (AMP) 

ATP-binding cassette 

autolysin LytA 

BET bromodomain probe 

bromodomain and extra- terminal domain (BET) 

calcium-sensing receptor (CaSR) 

C-C chemokine receptor 5 (CCR5) 

Central nervous system (CNS) 

central nervous system (CNS) 

centre for drug evaluation and research (CDER) 

centre for drug evaluation and research (CDER) 

cerebrospinal fluid (CSF) 

Chronic myelogenous leukemia(CML) 

constrained approach (CA) 

constrained approach (CA) 

De-oxyribonucleic acid (DNA) 



4 
 

dihydrofolic acid (DHFA) 

Drug Discovery Unit (DDU) 

Electrocardiogram (ECG) 

enzyme-linked immunosorbant assay (ELISA) 

factor VIIa (FVIIa) 

galactose (Gal) 

Global disease burden (GDB) 

glutathione-S-transferase (GST) 

glutathionylspermidine (Gsp) 

glutathionylspermidine synthetase (GSPS) 

glycogen phosphorylase (GlyP) 

glycoside hydrolase (GH) 

glycosylphosphatidylinositol (GPI) 

G-protein coupled receptors (GPCR, receptor family) 

hepatitis C virus (HCV) 

high throughput screens (HTS) 

human immunodeficiency virus (HIV) 

human neuraminidase enzymes (hNEU) 

Innovative Medicines Initiative (IMI) 

KNF model 

Leishmania infantum (L.infantum) 

LPXTG-anchored protein 

methicillin-resistant S. aureus (MRSA) 

mitogen-activated protein kinase (MEK) 

Molecular dynamics (MD) 

molecular mechanism of action (MMOA) 

Monad-Wyman Changeux (MWC) 



5 
 

N-acetylgalactosamine (GalNAc) 

N-acetylneuraminic acid (Neu5Ac) 

Negative allosteric modulators (NAMs) 

Neglected disease (ND) 

neglected tropical diseases (NTDs) 

neuaminidase1 (Neu1) 

neuraminic acid (Neu) 

neuraminidase 2 (Neu2) 

neuraminidase 3 (Neu3) 

neuraminidase 4 (Neu4) 

neuraminidase inhibitors (NAIs) 

neuraminidases (NA) 

new molecular entities (NMEs) 

N-glycolylneuraminic acid (Neu5Gc) 

nuclear magnetic resonance (NMR) 

Office of Orphan Products Development (OOPD) 

Office of Orphan Products Development (OOPD) 

P. falciparum translocation elongation factor 2 (PfeEF2) 

penicillin-binding proteins (PBP) 

Pharmaceutical Research and Manufacturers of America (PhRMA) 

phosphoinositide 3-kinase (PI3K) 

platelet-activating factor (PAF) 

pneumococcal surface protein A (PspA) 

pneumococcal surface protein C (PspC) 

positive allosteric modulators (PAMs) 

Protein of interest (POI) 

Protein-protein interactions (PPIs) 



6 
 

Protein-protein interactions (PPIs) 

Relaxed  state (R) 

relaxed approach (RA) 

relaxed approach (RA) 

research and development (R&D) 

Sialic acids (Sia) 

small and medium enterprises (SMEs) 

staphylococcal cassette chromosome mec (SCCmec) 

Streptococcus pneumoniae (S. pneumoniae) 

T. cruzi Trans-sialidase (TCTS) 

Tense state  (T) 

tetrahydrofolic acid (THFA) 

transverse relaxation optimized spectroscopy (TROSY) 

Trypanosoma brucei (T. brucei) 

Trypanosoma Cruzi (T. cruzi) 

Trypanothione (T(SH)2) 

trypanothione synthetase (TRYS) 

U.S Food and Drug Administration (FDA) 

UDP-GlcNAc-2-epimerase/ManNAc kinase (GNE) 

United States (U.S.) 

Wild-type (WT) 

World Health Organisation (WHO) 

ρ-aminobenzoic acid (PABA) 

Υ-aminobutyric acid (GABA) 

Υ-aminobutyric acid receptor α (GABAA) 

 

 



7 
 

Amino Acids 

Ala, A Alanine 

Arg, R Arginine 

Asn, N Asparagine 

Asp, D Aspartic acid 

Cys, C Cysteine 

Gln, Q Glutamine 

Gly, G Glycine 

His, H Histidine 

Ile, I Isoleucine 

Leu, L Leucine 

Lys, K Lysine 

Met, M Methionine 

Phe, F Phenylalanine 

Pro, P Proline 

Ser, S Serine 

Thr, Threonine 

Trp, W Trypotophan 

Tyr, Y Tyrosine 

Val, V Valine 



8 
 

Table of Contents 

Acknowledgements .......................................................................................................................... 1 

Abstract ............................................................................................................................................ 2 

Abbreviations ................................................................................................................................... 3 

Table of Contents ............................................................................................................................. 8 

Table of Figures .............................................................................................................................. 14 

1.0 Chemical Biology ...................................................................................................................... 19 

1.10 Chemical genetics ............................................................................................................... 19 

1.11 Forward chemical genetics ............................................................................................. 20 

1.12 Reverse chemical genetics.............................................................................................. 22 

1.20 Biological Target Types and Regulatory Approvals ............................................................ 28 

1.21 Target Identification ....................................................................................................... 30 

1.22 Target Validation ............................................................................................................ 32 

1.23 Chemical Tools/Probes ................................................................................................... 33 

1.30 Protein modulation ............................................................................................................ 34 

1.31 Allosteric modulation ..................................................................................................... 35 

1.32 Discovery of Allosteric Inhibitors .................................................................................... 40 

1.33 Phage Display.................................................................................................................. 40 



9 
 

1.34 Tethering approach ........................................................................................................ 41 

1.35 Fragment screening and serendipitous binders ............................................................. 42 

1.36 The correct approach to allosteric discovery ................................................................. 44 

1.40 Neglected disease (ND) and unmet need ........................................................................... 45 

1.41 Chagas disease ................................................................................................................ 49 

1.42 Antibiotics ....................................................................................................................... 52 

1.43 Streptoccocus pneumoniae ............................................................................................ 54 

1.50 The sialidases and sialic acid as potential drug targets ...................................................... 56 

1.51 Sia ................................................................................................................................... 56 

1.52 The core structure of Sia ................................................................................................ 57 

1.53 Sia linkage and presentation within the “Sialome” ........................................................ 58 

1.54 Sialidases (EC 3.2.1.18) ................................................................................................... 60 

1.55 Glycoside Hydrolase family (GH-33) ............................................................................... 61 

1.56 Bacterial Sialidases ......................................................................................................... 61 

1.57 Trans-sialidase ................................................................................................................ 65 

1.58 Glycoside Hydrolase family (GH-34) ............................................................................... 67 

1.59 Conservation ................................................................................................................... 67 

1.59.1  Active site ................................................................................................................... 67 



10 
 

1.59.2 Active site mechanism ................................................................................................. 68 

1.59.3 Water channel ............................................................................................................. 72 

1.59.4  “Asp boxes” and F/Y-R-I-P motif ................................................................................. 74 

1.60 Current Inhibitors of Sialidases .......................................................................................... 74 

1.61 Current Inhibitors of NanB ............................................................................................. 78 

1.62 Current Inhibitors of TcTS ............................................................................................... 80 

1.70 Rational Design ................................................................................................................... 83 

1.71 Medicinal chemistry ....................................................................................................... 84 

1.72 Structure-based Design .................................................................................................. 86 

1.73 Computational design .................................................................................................... 88 

1.80 Thesis Aims ......................................................................................................................... 96 

1.81 Development of a NanB “relaxed” chemical tool........................................................... 96 

1.82 Development of a TcTS “constrained” chemical tool. .................................................... 97 

2.0 NanB and the development of an allosteric chemical tool ...................................................... 98 

2.1 The story so far ..................................................................................................................... 98 

2.2 Resynthesis of Optactin ...................................................................................................... 103 

2.3 Production of NanB protein ................................................................................................ 106 

2.4 Testing of Optactin ............................................................................................................. 110 



11 
 

2.5 Identification of a single point mutation ............................................................................ 112 

2.6 Biochemical comparison ..................................................................................................... 114 

2.7 Crystallisation of mutant D643G NanB and WT NanB ....................................................... 114 

2.8 Retesting of Optactin .......................................................................................................... 117 

2.9 Summary ............................................................................................................................. 118 

3.0 Development of alternative series ......................................................................................... 119 

3.1 Previous Mutant studies ..................................................................................................... 119 

3.2 Repeated mutant studies on WT ........................................................................................ 122 

3.3 Design and development of simplified analogues .............................................................. 122 

3.3.1 Synthesis of analogues ................................................................................................ 123 

3.3.2. Optimisation ............................................................................................................... 126 

3.3.3. Further optimisation ................................................................................................... 131 

3.4 Optactamide binding position ............................................................................................ 133 

3.5 Activity assays and synergistic inhibition ........................................................................... 134 

3.6 Control experiments ........................................................................................................... 136 

3.7 Cell and bacterial assay ...................................................................................................... 137 

3.8 Summary ............................................................................................................................. 139 

4.1 Discussion and Future work ................................................................................................... 140 



12 
 

4.2. Experimental ......................................................................................................................... 147 

4.2.1 Chemistry ......................................................................................................................... 147 

4.2.2 Biology ............................................................................................................................. 168 

5.0 The discovery of constrained tools for TcTS. .......................................................................... 175 

5.1 The TcTS story so far. .......................................................................................................... 175 

5.2 The water channel within TcTS........................................................................................... 181 

5.3 Fragment library generation .............................................................................................. 185 

5.4 In Silico docking and ‘’HIT’’ identification .......................................................................... 186 

5.5 TcTS construct, expression and purification ...................................................................... 189 

5.6 TcTS crystal generation and structures .............................................................................. 189 

5.7 Fragment activity and crystal soaking ................................................................................ 191 

5.8 Summary ............................................................................................................................. 192 

6.0 Development of a TcTS constrained chemical tool that targets the active site ..................... 194 

6.1 TcTS active site ................................................................................................................... 194 

6.1.1 Known binders of the TcTS active site ......................................................................... 197 

6.2 Library generation and docking .......................................................................................... 198 

6.2.1 FlexX docking and validation ....................................................................................... 200 

6.2.2 Faster docking using the KNIME workflow .................................................................. 201 



13 
 

6.2.3 Docking scores. ............................................................................................................ 202 

6.2.4 Active site binding assessment .................................................................................... 204 

6.3 Biological testing of compound 81 and 82. ........................................................................ 204 

6.4 SAR with analogues of 84 ................................................................................................... 206 

6.5 Summary ............................................................................................................................. 209 

7.0 Discussion and Future work ................................................................................................... 210 

7.1 Experimental ...................................................................................................................... 212 

7.1.1 Computational modelling: ........................................................................................... 212 

7.1.2 Protein expression: ...................................................................................................... 213 

7.1.3. Protein purification: ................................................................................................... 213 

7.1.4. Kinetic analysis: .......................................................................................................... 214 

7.1.5. Protein crystallisation and X-ray crystallography: ...................................................... 214 

8.0 Bibliography ............................................................................................................................ 217 

 



14 
 

Table of Figures 

Figure 1. A. Schematic of the forward and reverse genetic approach. ........................................................... 20 

Figure 2. Schematic of the forward chemical-genetic examples discussed in this subchapter ........................ 21 

Figure 3. A. Schematic of a reverse chemical genetic example in this subchapter showing the development 

and use of PD184352.. ........................................................................................................................... 24 

Figure 4. Schematic of the reverse chemical genetic approach used to identify TRYS as an essential enzyme 

for L. infantum....................................................................................................................................... 25 

Figure 5.  Graph illustrating the percentage of NMEs by approach used for discovery for first-in-class drugs 

and follower drugs ................................................................................................................................ 27 

Figure 6. A. Figure of the estimated number of exploitable drug targets from the genome i.e the ‘druggable’ 

genome ................................................................................................................................................. 29 

Figure 7. A schematic representing the different requirements of drugs and chemical tools/probes. The 

general approach applies to probes only whereas the constrained approach applies to both at the 

interface between probes and drugs.. ................................................................................................... 34 

Figure 8. A simplistic diagram of the types of allosteric modulation on an enzyme. ...................................... 35 

Figure 9. A schematic diagram of the MWC model showing the transition between the T and R states upon 

ligand binding ........................................................................................................................................ 36 

Figure 10. Model of the GABAA receptor, a transmembrane ligand-gated ion channel found within the 

central nervous system (CNS).. .............................................................................................................. 38 

Figure 11. Graph showing the frequency of amino acids in allosteric sites compared to orthosteric sites ..... 39 

Figure 12. Diagram of the tethering screening approach adapted from Hardy and Wells, 2004 ..................... 41 

Figure 13. Images of cyclohexyl-hexyl-β-D-maltoside bound in the allosteric site of S70C SHV β-lactamase 

(PDB: 4FD8).. ......................................................................................................................................... 43 

Figure 14. Graphs representing global spend on R&D for PhRMA (consisting of 39 members of the largest 

pharmaceutical and biotechnology companies) as a comparison against global neglected disease 

spend.. .................................................................................................................................................. 47 

Figure 15. Schematic of T.Cruzi life cycle within vector and mammalian host ................................................ 50 

Figure 16. A. Schematic of MMOA of various antimicrobial agents ................................................................ 55 



15 
 

Figure 17. A. Chemical structures of the “four core sialic acid” molecules. .................................................... 58 

Figure 18. Chemical structures of the various sialic acid linkages found within the “sialome”. ...................... 60 

Figure 19. Structure of NanB. ......................................................................................................................... 64 

Figure 20. Structure of TcTS ........................................................................................................................... 66 

Figure 21. Active site overlay representation of sialidases ............................................................................. 68 

Figure 22. Glycosidic hydrolases reaction mechanism of the retaining hydrolase and the inverting hydrolase 

reaction ................................................................................................................................................. 69 

Figure 23. Reaction mechanism of the Streptoccocus pneumoniae sialidases (NanA, NanB and NanC) ......... 70 

Figure 24. Reaction mechanism TcTS ............................................................................................................. 71 

Figure 25. NanB 3D structure alignment of SWISSPROT database .................................................................. 73 

Figure 26. The chemical structure of different sialidase inhibitors ................................................................. 76 

Figure 27. NanB surface representation with CHES bound within the active site cavity ................................. 79 

Figure 28. A schematic of the Topliss Scheme ................................................................................................ 85 

Figure 29. SBDD of Sildenafil. ......................................................................................................................... 89 

Figure 30. SBDD of Zanamivir ......................................................................................................................... 95 

Figure 31. Identification of a secondary site within NanB .............................................................................. 98 

Figure 32. A profile of the active site and secondary site within NanB ......................................................... 100 

Figure 33. Generation of Optactin. ............................................................................................................... 101 

Figure 34. Binding analysis of Optactin ........................................................................................................ 102 

Figure 35. Grubbs 1st generation and Grubbs 2nd generation catalysts. ..................................................... 106 

Figure 36. SDS page of NanB purified through a nickel column using different methods ............................. 107 

Figure 37. SDS Page of NanB after anion exchange purification and size-exclusion chromatography ........... 109 

Figure 38. 4-Mu fluorescence, near-UV CD and DLS analysis of Optactin against NanB ................................ 111 

Figure 39. The 2Fo-Fc (black mesh, contoured at 1.5σ) and Fo-Fc (green (3.0σ) and red(-3.0σ)) electron 

density maps for amino acid residue 643 of published structure 2VW2. ............................................. 112 

Figure 40. Schematic of the NanB domains and sequence of NanB WT ........................................................ 113 

Figure 41. Diagram of the sitting drop method ............................................................................................ 115 

Figure 42. Images taken of crystals grown in the initial hit and conditions when crystal seeding was 

performed ........................................................................................................................................... 116 



16 
 

Figure 43. IC50 curve of re-crystallised Optactin tested against WT NanB. Optactin tested against D643G and 

tested against fresh 4-Munana substrate. ........................................................................................... 117 

Figure 44. Binding mode of Optactin within the Optactin-NanBD643G,K499G crystal structure and the binding 

mode of Optactin within the Optactin-NanBD643G(PDB: 4XJ9) crystal structure .................................... 120 

Figure 45. Optactin-NanBWT complex ........................................................................................................... 121 

Figure 46. SDS page gel of WT and K499G after purification and the activity of NanBWT and NanBK499G using 

the 4-Munana assay including  the IC50 values of Optactin against NanBWT and NanBK499G .................. 122 

Figure 47. ORTEP plots showing 50% thermal ellipsoid probability of 40 and 41.......................................... 124 

Figure 48. The percentage of 4-Munana hydrolysis by NanB in the presence of amine 31, amide 40 and 

amide 41 including the binding position of amide 40 compared with Optactin within the allosteric site 

of crystal structures NanBWT-amide 40 and NanBWT-Optactin. ............................................................. 125 

Figure 49. CADD optimisation of 40 ............................................................................................................. 127 

Figure 50. Binding position of amide 56 within the allosteric site of NanB. .................................................. 128 

Figure 51. Optactamide bound within the allosteric site of NanB with Optactin superimposed................... 133 

Figure 52. Overlay of Optactamide-NanB crystal structure the identified displaced waters ......................... 134 

Figure 53. Line weaver-Burke plot of Optactamide and IC50 values of Optactamide when in the presence and 

absence of active site inhibitor compound 80 ..................................................................................... 135 

Figure 54. A. The fluorescence of 4-Mu (100 µM) at various concentrations of Optactamide. B. CD near UV 

spectra of NanB in the absence (red line) and presence of 500 µM Optactamide (green line). CD near 

UV spectrum was also measured on a solution containing no protein/NanB (blue line). C. DLS showing 

size distribution by diameter of (i) NanB control and (ii) NanB in the presence of Optactamide at 2.5 

mM...................................................................................................................................................... 136 

Figure 55. The number of colonies determined from the invasion assay (with the antibiotic addition step). 

Adhesion and invasion assay (without the addition of the antibiotics).  A549 cell toxicity assay using 

MTT. .................................................................................................................................................... 138 

Figure 56. Superimposed structure of NanA against Optactamide-NanB crystal structure (RMSD: 1.8 Å) .... 141 

Figure 57. Superimposed structure of NanC against Optactamide-NanB  ..................................................... 143 

Figure 58. Examples of CHES serendipitously bound within crystal structures ............................................. 145 



17 
 

Figure 59 Chemical structures of two similar anthraquinones and the TcTS active site with the proposed 

binding conformation of compound 10. .............................................................................................. 176 

Figure 60. TcTS active site with residue Phe58 ............................................................................................. 179 

Figure 61. The chemical structure of the TcTS inhibitors identified by Dr Telford. ....................................... 180 

Figure 62. Aligned structures of TcTSF58N and solved structures by Buschiazzo et al., 2002 .......................... 182 

Figure 63 Overlaid structures of TcTS and NanB secondary site ................................................................... 183 

Figure 64. Bar chart representing the hydrophobic and polar/charged residues as a percentage of the total 

for NanB (allosteric site and active site) and TcTS (mapped site and active site) ................................. 184 

Figure 65. Examples of fragments from the ZINC
12

 database. ...................................................................... 186 

Figure 66. Schematic of the ligand similarity results generated from JChem. ............................................... 187 

Figure 67. Top ten hits and ZINC ID’s from the FlexX screen of 1,015 fragments. ......................................... 187 

Figure 68. SDS Page of TcTSF58N after nickel-column chromatography (1) and size-exclusion chromatography 

(2). ....................................................................................................................................................... 189 

Figure 69. Images of TcTS crystals grown in conditions, A: 200 mM L-proline, 100 mM Hepes and 10% PEG 

3350, B: 100 mM Tris pH 8.5 and 10% PEG 8000. ................................................................................. 190 

Figure 70. Proline found bound within the active site of TcTS. ..................................................................... 191 

Figure 71. Graph showing the percentage activity of each fragment against TcTS using the 4-Munana assay

 ............................................................................................................................................................ 192 

Figure 72. Binding position of lactose and DANA within the active site of TcTS ........................................... 195 

Figure 73. Three pockets identified within the TcTS binding site identified by Dr Telford. ........................... 196 

Figure 74. Graph showing the percentage inhibition of known sialidase inhibitors against TcTS activity using 

the 4-Munana assay ............................................................................................................................ 198 

Figure 75. A schematic of the ligand similarity selection applied to the large “clean drug like” ZINC
12

 library.

 ............................................................................................................................................................ 199 

Figure 76.  Siastain B binding position within the TcTS active site and FlexX prediction of siastatin B within 

TcTS ..................................................................................................................................................... 200 

Figure 77. Schematic representing the KNIME workflow for FlexX docking within LeadIT. .......................... 201 

Figure 78. Common chemical structure found within the top ten “hits” identified for the open TcTS active 

site structure by FlexX ......................................................................................................................... 203 



18 
 

Figure 79. The binding pose generated from the FlexX screen for two examples of “hits” ........................... 204 

Figure 80. Evaluation of “hits” using the 4-Munana assay. .......................................................................... 205 

Figure 81. Binding position of 84 within the active site of TcTS. ................................................................... 206 

Figure 82. Binding position of cis-4-hydroxy proline within the active site of TcTS.. .................................... 207 

Figure 83. Binding position of  trans-4-hydroxy proline within the active site of TcTS. ................................ 208 

Figure 84. Overlaid binding positions of 84, trans-4-hydroxy proline, cis-4-hydroxy proline and L-proline 

within the TcTS active site and the % inhibition of TcTS activity observed for 84, trans-4-hydroxy 

proline, cis-4-hydroxy proline and L-proline (all tested at 1mM) using the 4-Munana assay. .............. 208 

Figure 85. Binding of indole-5-carboxylic acid (green) found bound on the surface of TcTS. ........................ 211 

 



19 
 

1.0 Chemical Biology 

The term “chemical biology” came into wide use in the 1990s and is a discipline that 

encompasses a collaborative investigation between the subjects of chemistry and biology (Bucci et 

al., 2010). It is a varied field covering a wide range of subjects including, but not limited to, medicinal 

chemistry, proteomics, cell biology, biochemistry and structural biology (Ostler, 2007). The 

synergistic combination of biology and chemistry allows novel approaches to address problems. In 

particular, a chemist’s understanding of molecular structure, interaction and reactivity can be useful 

in the dissection of mechanisms and interactions in large biological molecules (Science, 1884). This 

understanding enables an alternative perspective on large macromolecular systems and scope for an 

explorative investigation of function using chemical tools (Stockwell, 2004, Arrowsmith et al., 

2015). Biology, and the variety of synthetically challenging molecules identified as natural products, 

have not only inspired new chemical space (Paterson and Anderson, 2005) but also enabled the 

development of new synthetic methodology (Mohr et al., 2008).  Biological catalysts, such as 

enzymes, are capable of complex regioselective and stereoselective transformations of molecules 

(Wong, 1989). Chemists are using biological catalysts and adapting them for use in chemical 

synthesis (Klibanov, 1990, Whitesides and Wong, 1985). In drug discovery, both disciplines are 

needed in synergy to understand the biological target, the mechanism of action and what 

constitutes a good drug candidate with an optimal pharmacokinetic and toxicological profile (Hughes 

et al., 2011). This thesis will have an emphasis on the combination of biology and chemistry to 

develop novel small biological modulators, which will enable the study of the biological system of 

interest. This multi-disciplinary speciality is called chemical genetics (Schreiber, 1998). 

1.10 Chemical genetics  

Chemical genetics uses small molecules to interrupt biological processes by inducing a 

phenotypic or physiological change (Schreiber, 1998). This approach is more advantageous over the 

conventional genetics method as the modification is dose dependent and usually reversible (Choi et 

al., 2014). Two chemical genetic approaches exist: a) a chemical modulator is identified from a 

phenotypic screen and methods are used to identify the target (forward chemical genetic approach), 

and b) a target is identified and a chemical modulator/ tool is developed to investigate the mode of 

action of the target (reverse chemical genetic approach). (Figure 1) (Stockwell, 2000). 
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Figure 1. A. Schematic of the forward and reverse genetic approach. B. Schematic of the forward and reverse chemical 

genetics approach (adapted from Stockwell, 2000). Figure created using Microsoft® PowerPoint® 14.6 and ChemDraw® 

15.0. 

1.11 Forward chemical genetics 

In the forward approach, phenotypic screens assess small molecule effects at the cellular, tissue 

or whole organism level (Murphey et al., 2006). The target is then identified through further 

investigation. The techniques used to identify the target can vary from affinity tags to full genomic-

wide studies (Choi et al., 2014). A success story using forward chemical genetics is in the discovery of 

an anti-malarial published in the journal Nature (Baragana et al., 2015). In this recent publication, 

the Drug Discovery Unit (DDU) in Dundee used a phenotypic screen to identify a novel anti-malarial 

(DDD107498) that had activity against all stages of the parasite’s life-cycle (Baragana et al., 2015). 

The target was identified by active promotion of drug-resistance through culturing of asexual blood-

stage P. falciparum in the presence of DDD107498 (Baragana et al., 2015). Genomic de-

oxyribonucleic acid (DNA) was extracted and sequenced for resistance mutations (Baragana et al., 

2015). By comparison with the wild-type (WT) genomic DNA, nine mutations in three clustered 

regions of P. falciparum translocation elongation factor 2 (PfeEF2) were identified, revealing PfeEF2 

as a novel parasitic drug target (Baragana et al., 2015). Another literature example of forward 

chemical genetics was in the identification of a hepatitis C virus (HCV) NS5A inhibitor BMS-790052 

(Daclatasvir) (Gao et al., 2010). HCV infection had an unmet need as, at this time, therapeutic 

strategies relied upon a combination of pegylated interferon-α and ribavirin (Fried  et al., 2002). This 

combination therapy was associated with poor tolerance and a sustained response of less than 50% 
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(Palumbo, 2011). The study identified a novel small molecule with picomolar EC50 towards a variety 

of HCV genotypes in an in vitro replicon assay (Gao et al., 2010). The target was identified in a similar 

approach to DDD107498, replicon cell resistance was generated with incubation of HCV replicon 

cells with compound 4 (Lemm et al., 2010). Resistant cells were isolated and mutations mapped. This 

identified HCV NS5A as the protein target (Lemm et al., 2010). Proof of concept and successive 

progression led to phase I clinical studies where a single 100mg dose reduced mean viral load by 3.3 

log10 after 24hrs within a sustained period of 120hrs (Gao et al., 2010). Daclatasvir (Figure 2) has 

successfully passed through phase III clinical studies and is now clinically approved as a combination 

therapy with Sofosbuvir (Sovaldi®). Sofosbuvir is an NS5A inhibitor approved in 2013 by the U.S Food 

and Drug Administration (FDA) for HCV infection (Chayama et al., 2016). 

 

Figure 2. Schematic of the forward chemical-genetic examples discussed in this subchapter (examples include 

the discovery and development of compound 2 and compound 3 through phenotypic screening) (Baragana et 

al., 2015, Gao et al., 2010, Lemm et al., 2010). Figure created using Microsoft® Powerpoint® 14.6 and 

ChemDraw® 15.0. 

Phenotypic screening provides a direct translation into therapeutic impact and a transition to 

biological target identification (Swinney and Anthony, 2011). The use of phenotypic-screening has 

led to a variety of successful marketed drugs, such as: Rufinamide (Inovelon®) (Jain, 2000), 

Memantine (Nameda®) (Witt et al., 2004), Ezetimibe (Zetia®) (Clader, 2004), Cinacalcet (Sensipar®) 
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(Nemeth, 2006) and Sirolimus (Rapamune®) (Swinney and Anthony, 2011, Vezina et al., 1975). Prior 

knowledge or understanding of the molecular target or mechanism of action is not required 

(Swinney, 2013) for further drug development and often the process of forward genetics is not 

continued (Swinney, 2014). Rufinamide is a first in class central nervous system (CNS) therapeutic 

developed by Novartis and gained US Food and Drug Administration (FDA) approval in 2008 (Kluger 

et al., 2009) without prior knowledge of the target (Swinney, 2014).  

Phenotypic screening is a mainstay of drug discovery (Futamura et al., 2013) and although it was 

the greatest contributor to FDA approved drugs between 1999-2008 (56%) it has its limitations 

(Swinney and Anthony, 2011). The challenge of optimising a screening hit without prior knowledge 

of the molecular mechanism of action to guide design is one such limitation. The screening 

technology/platform also needs careful design, as development of new screening technology for 

effective modelling of disease state is problematic and expensive (Macarron et al., 2011). The 

success of the technology relies heavily on the quality and quantity of the chemical screen (Smith, 

2002). Limited diversity in chemical libraries (Macarron, 2006) and the confidential nature of the 

pharmaceutical companies restricts the success of this approach (Kogej et al., 2013). In academia, a 

target-centric/reverse chemical genetics approach was more commonly seen due to limited 

resources and inexpertise in high-throughput screening (Frearson and Collie, 2009, Kawasumi and 

Nghiem, 2007, Stein, 2003). Improvement in collaboration and partnering between sectors of 

healthcare research has seen more access and expertise in this area with enterprises such as the 

Innovative Medicines Initiative (IMI) that enable academic departments and small and medium 

enterprises (SMEs) access to large chemical libraries (Kogej et al., 2013, Roy et al., 2010). Due to the 

challenges of discovering novel best-in-class therapeutics, more than one strategy is needed (Al-Ali, 

2016). Reverse chemical genetics, which is target-centric, is an alternative to phenotypic screening. A 

target centric-approach is vital for future drug discovery, particularly in an age when tailored 

medicines now have an important role (Verweij et al., 2012). 

1.12 Reverse chemical genetics 

Target-based screening focuses entirely on a particular biological target. Chemical tools are 

designed to modulate the biological target and are used in reverse chemical genetics to determine 

the role and mode of action of the biological target (Spring, 2005). This provides prior knowledge of 

the molecular target and its relevance to a particular disease or diseases (Spring, 2005). This enables 

selection and design for superior therapeutic properties, improving the drug candidate’s chance of 

success (Futamura et al., 2013). Target-based screening, which employs reverse chemical genetics 

has also led to a number of successfully marketed drugs. Examples include: Imatinib (Gleevec®) 
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(Capdeville et al., 2002) for chronic myelogenous leukemia(CML), Zanamivir (Relenza®) for flu (von 

Itzstein et al., 1993), Raltegravir (ISentress®) for human immunodeficiency virus (HIV) (Summa et al., 

2008) and Maraviroc (Celsentri®) for HIV (Armour et al., 2006). A small molecule (PD184352, Figure 3) 

that had an IC50 of 17nM against MEK1 was identified and developed from an in vitro cascade-based 

assay using glutathione-S-transferase (GST) fusion proteins of MEK1 and MAPK (Sebolt-Leopold et 

al., 1999). MEK1 integrates signals into the MAPK pathway through phosphorylation of both tyrosine 

and threonine residues and was identified as a likely cancer target due to its activation leading to 

cellular transformation (Sebolt-Leopold et al., 1999). To identify the role of MEK1 in proliferative 

disease, further studies were undertaken with PD184352 (Sebolt-Leopold et al., 1999). In a whole 

cell assay, PD184352 inhibition of MEK1 decreased the activation of MAPK and reversed high levels 

of MAPK in human derived cancer cells (Sebolt-Leopold et al., 1999). In vivo, PD184352 dosing of 

tumour-grafted mice decreased tumour growth by as much as 80% (Sebolt-Leopold et al., 1999). This 

study showed MEK1 to have an important role in MAPK activity and classified it as a drug target for 

proliferative disease.  
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Figure 3. A. Schematic of a reverse chemical genetic example in this subchapter showing the development and 

use of PD184352. A, B and C. Images showing the inhibition of colon 26 cell invasion through matrigel.  Cells 

stained with Calcien Am and then visualised with fluorescence imaging. A. Image of the control experiment 

with addition of DMSO only. B. Image of colon cancer cell invasion in the presence of 10 μM PD184352. C. 

Image of colon cancer cell invasion in the presence of 1 μM PD184352. The inhibition of colon cancer cell 

invasion in the presence of PD184352 suggests the importance of MEK1 in this cellular process. D. Graph 

showing the mean tumor burden in mice after tumor implantation in the presence and absence of PD184352. 

PD184352 was orally administered to mice in doses of 200 mg/kg (▫), 124 mg/kg (▪), 77 mg/kg (●) or 48 mg/kg 

(▲). A diluent control was also performed (O). The presence of PD184352 impairs growth of colon tumors. 

Figure created using Microsoft® PowerPoint® 14.6 and ChemDraw® 15.0. Figures A,B,C and D adapted from 

Sebolt-Leopold et al., 1999. 
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A reverse chemical genetics approach combined with genetic analysis identified trypanothione 

synthetase (TRYS) as an essential enzyme for Leishmania infantum (L.infantum). Trypanothione 

(T(SH)2) is a redox metabolite of trypanosomatid parasites (Sousa et al., 2014). The synthesis of 

T(SH)2 occurs via the conjugation of two glutathione molecules to spermidine in the presence of the 

catalyst TRYS (Sousa et al., 2014). TRYS is present in the redox pathway of trypanosomatid parasites 

and it is not known if TRYS is essential in all parasites, particularly in parasites expressing 

glutathionylspermidine synthetase (GSPS) (Sousa et al., 2014, Manta et al., 2013) (Figure 4).  

 

Figure 4. Schematic of the reverse chemical genetic approach used to identify TRYS as an essential enzyme 

for L. infantum. A. A schematic of the reaction pathway to Trypanothione (T(SH)2). TRYS and GSPS are enzymes present in 

the reaction pathway. B. TYRS coding sequences are located in the entire Trypanosomatidae lineage whereas GSPS is 

located in L. infantum, L. Donovan, L. Mexican, T. cruzi and C. fasciculata. C. Genetic targeting of GSPS and TRYS indicate 

that TRYS only is important for L.infantum survival. Chemical targeting of TRYS confirms that TRYS is critical for L.infantum 

survival. 
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GSPS is able to catalyse the first step of trypanothione synthesis to produce a monothiol, 

glutathionylspermidine (Gsp) (Shames et al., 1986). This monothiol can be substituted for T(SH)2 in 

essential reactions. Similarly to T(SH)2 , Gsp can reduce tryparedoxin and is recycled by 

trypanothione reductase (TR) (Arias et al., 2013). The physiological functions that require the 

oxidoreductase tryparedoxin include: DNA repair and replication, methionine sulfoxide reduction, 

iron-sulfur cluster biogenesis and degradation of hydroperoxides, peroxynitrite, xenobiotics and oxo-

aldehydes (Manta et al., 2013, Comini and Flohé, 2013). It was possible that within parasites 

harbouring GSPS the enzyme TRYS was redundant (Sousa et al., 2014).  A gene targeting approach 

was employed, using an L.infantum gsps-/- knockout that was non-lethal and capable of replicating 

(Sousa et al., 2014). A knockout of trys-/- was not possible without episomal copies of the gene 

(Sousa et al., 2014). Retention of this copy throughout several passages indicated TRYS as critical for 

L.infantum survival (Sousa et al., 2014). In further support of this chemical targeting of L.infantum 

TRYS, using a small drug-like compound of the paullone family (FS-554) resulted in parasitic death 

(Sousa et al., 2014) (Figure 4). Combining both genetic and reverse chemical genetics data indicated 

TRYS as a chemotherapeutic target for L.infantum and possibly the entire trypanosomatid lineage. 

During 1999-2008, a target-centric approach (prior knowledge of the molecular target and mode 

of action) contributed 34% to all FDA approved first-in-class small molecules (Swinney and Anthony, 

2011). This contribution is second only to phenotypic screening (Swinney and Anthony, 2011). Other 

contributors during this period include small molecule new molecular entities (NMEs) based on 

natural substrates (10%) (Swinney and Anthony, 2011). The relative success of one approach over 

the others depends upon the type of disease in question, its complexity and biological nature. 

Relevance to the disease area can give a division in the success of the approach used. In the same 

study between 1999-2008, the target-centric approach contributed 62.5% and the phenotypic 

approach contributed to 37.5% of all first-in-class NMEs for cancer (Swinney and Anthony, 2011). For 

infectious diseases however, the target centric approach and the phenotypic approach contributed 

30% and 70% respectively for all first-in-class FDA approved new small molecule therapeutics 

(Swinney and Anthony, 2011). Phenotypic screening of infectious disease allows for the direct 

interrogation and impact of the NME on the pathogen/whole cell, already addressing issues with 

cellular uptake and efflux (Gilbert, 2013). Relative ease for counter screening against mammalian 

cells and subsequent filtering of compound showing general cytotoxicity leads to a more 

advantageous discovery set up (Gilbert, 2013). The malfunction of ‘normal’ cells results in the 

“hallmarks of cancer” including abnormal cell proliferation and metastatic capabilities (Hanahan and 

Weinberg, 2011). The challenge in cancer therapy is to eliminate or reprogram cancerous cells while 

minimizing its effects on ‘normal’ cells (Moffat et al., 2014). A diverse range of molecularly and 
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phenotypically distinct cancer types exist requiring a larger repertoire of drugs with different 

molecular mechanism of action (MMOA) (Moffat et al., 2014). Phenotypic screens for anti-cancer 

drugs rely predominately on cytotoxic assays that do not effectively model clinical cancer 

phenotypes or identify NMEs that would avoid targeting ‘normal’ cells (Moffat et al., 2014). 

 

Figure 5.  Graph illustrating the percentage of NMEs by approach used for discovery for first-in-class drugs and 

follower drugs (adapted from Swinney, 2013 and Swinney and Anthony, 2014). 

In a target-centric approach limitations exist: a) the target may not be relevant to disease 

pathogenesis, b) modulation of the target may not have a sufficient therapeutic index in patients 

and c) it may not be clinically competitive (Swinney and Anthony, 2011). If target modulation is 

prioritized at the expense of understanding the MMOA then the target-based NME will most likely 

fail. In a study performed by Swinney and Anthony they suggested that the absence of MMOA is a 

key contributing factor to high attrition of target-based first-in-class NMEs (Swinney and Anthony, 

2011). However, if the MMOA is known then target-based development will more likely supersede 

phenotypic assays.  This is supported by follower drugs where target-based approaches account for 

51% of NMEs whereas phenotypic approaches account for 18% (Swinney and Anthony, 2011). 

Chemical biology and good chemical tools are much needed to enable the interrogation of systems 

in the target-centric approach. This enables the identification and validation of the biological target 

leading to an improved understanding of the MMOA.  
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1.20 Biological Target Types and Regulatory Approvals 

A biological target is a broad term for a macromolecular biological entity that can undergo 

modification/ modulation through binding of a molecule (Hughes et al., 2011). Proteins, 

polysaccharides, lipids and nucleic acids are deemed to be important macromolecules in normal 

cellular function and are the four types of macromolecule, which can be modulated by small 

molecules (Hopkins and Groom, 2002). Abnormalities in the expression of these macromolecules 

and/or function can result in disease.  The difficulties in obtaining potent compounds with low 

toxicity and high specificity against polysaccharides, lipids and nucleic acids means that the vast 

majority of successful drugs work through binding to proteins (Hopkins and Groom, 2002). Last year 

the FDA approved 45 new drugs and 81% of these targeted proteins (FDA, 2016b). Proteins are a 

large class of drug target-containing families of enzymes, receptors and ion channels. Within these 

families the most prominent drug targets are hydrolases (enzyme family), G-protein coupled 

receptors (GPCR, receptor family) and voltage-gated Ca2+ channels (ion-channel family) (Imming et 

al., 2006).  
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Figure 6. A. Figure of the estimated number of exploitable drug targets from the genome i.e the ‘druggable’ 

genome. B. Graph of the marketed small-molecule drugs by target class. Figures created using Microsoft® 

PowerPoint® 14.6 and Microsoft® Excel® 14 (Figures adapted from Hopkins and Groom, 2002). 

Excluding cosmetics and imaging agents, the FDA approved 353 NMEs from 2000 to 2012 

(Mullard, 2016). This averages at 27 per year of which 65% are small molecules (Mullard, 2016).  

From 2012 to 2015, the FDA approved 152 new drugs averaging at 38 per year (Mullard, 2016). Last 

year, 71% of drugs were small molecules with 60% as oral formulations (FDA, 2016b). The number of 

drug approvals last year (45) is a 19-year high, beating the previous record from the year before of 

41 (Owens, 2015).  Targeting neglected disease has contributed to this increase in approvals with 

47% in 2015 being orphan-designated drugs (FDA, 2016b). Orphan designation is a special status 

granted through the FDA (Sharma et al., 2010). Orphan drugs are pharmaceutical therapeutics 

developed to treat a rare disease or condition that affects less than 200,000 persons in the United 

States (U.S.) (Sharma et al., 2010). Designation of orphan status for a therapeutic that treats a 

disease that affects more than 200,000 people occurs when: 1) adequate drugs for the disease have 
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not yet been developed and 2) there is no reason to expect U.S. sales would recuperate the cost of 

developing the drug for FDA market approval (FDA, 2016c). Incentives for the development of 

orphan designated drugs include seven years of market exclusivity, waived fees for regulatory 

activities, tax credits (this can total half of the development costs), research and development 

grants, access to a single centralised authorisation and assignment of a priority review voucher 

(Wellman-Labadie and Zhou, 2010). Since 1983, more than 400 drugs and biologic therapeutics are 

registered with orphan status through the FDA Office of Orphan Products Development (OOPD) 

(FDA, 2016a). Regulatory rejection rates last year were low with the centre for drug evaluation and 

research (CDER) only issuing two denied approvals to would-be drugs (Mullard, 2016). This low 

rejection rate has been attributed to “more meetings with drug sponsors, better applications, and 

targeted and orphan drugs that offer a clearer benefit-risk balance” (Mullard, 2016). A clearer 

benefit-risk balance depends on the specificity of the new molecular entity and the identification of 

a suitable disease target.  

1.21 Target Identification  

Target identification is one of the most important steps in a drug discovery campaign, with past 

failures largely attributed to improper target selection (Hughes et al., 2011). The Genome Wide 

Project has rapidly expanded the number of potential drug targets (Broder and Venter, 2000, 

Chanda and Caldwell, 2003). Post-genomic research to associate polymorphisms with disease 

exacerbation or progression was an approach used for the identification of biological targets 

(Hughes et al., 2011). A review by Drews of an accumulated pharmaceutical industry portfolio 

identified 417 targets suggesting that, based on the number of disease-related genes, a potential 

further 3,000-10,000 could be identified (Drews and Ryser, 1997, Drews, 1996). With inclusion of 

ligand binding domains and number of potential points upon which therapeutic agents could act, 

this has been suggested to be even more than 10,000 (Bailey et al., 2001). In a comprehensive 

survey that followed nine years on from the seminal review by Drews, only 324 drug targets for all 

classes of approved therapeutic drugs have been identified (Overington et al., 2006). Of the 324 drug 

targets, 266 are classified as human genome targets of approved drugs (Overington et al., 2006). The 

number of targets identified post the genome wide project that has led to approved drugs has been 

disappointing (Clarke and Cooper, 2010). Identifying the targets to proceed with from such a large 

portfolio is challenging. This strategy linking disease with variation in human genetics and changes in 

protein expression relies heavily upon good clinical samples, supporting medical data and a good 

bioinformatics platform for data analysis and correlation (Lindsay, 2003). Bioinformatic approaches 

have been used to compile data on biological targets from a variety of sources including: 

publications, patents, gene expression, proteomics, transgenic phenotyping and compound profiling 
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(Yang et al., 2009). Data mining is then used to prioritise and select potential disease targets 

(Gershell and Atkins, 2003). The bioinformatics approach relies on the availability of data and 

conclusive evidence (Whittaker, 2004).  Within the genome approximately half of the proteins 

expressed are functionally unclassified (Hopkins and Groom, 2002). The increase in a large number 

of uncharacterised potential drug targets from the genome project has resulted in the expansion of 

chemical biology and the further development of new screening technologies for drug development 

(Makley and Gestwicki, 2013).  

As mentioned above (Chapter One, Section Two, Chemical Genetics), chemical genetics is an 

alternative approach to target identification and elucidation of target function (Schenone et al., 

2013). High quality chemical probes are powerful research tools that have initiated the development 

of new medicines (Scott, 2016). Biological testing on cell or organisms via high-throughput screening 

has resulted in the discovery of biologically active small molecules (Swinney and Anthony, 2011). 

Follow up studies and target deconvolution aids the medicinal chemistry process of optimisation, 

selectivity and identification of promiscuity (Schenone et al., 2013). Using chemical tools on the 

target in question provides information on the role of that target in disease and a suitable starting 

point for small molecule drug development (Lipinski and Hopkins, 2004). This information is useful 

for the selection and narrowing of targets from the ‘druggable’ genome. Chemical genetics relies on 

chemical modulation of the target (Spring, 2005). However, not all biological targets are easy to 

modulate with small molecules. Protein-protein interactions (PPIs) are more acquiescent to 

antibodies, proteins or peptides due to the need to disrupt large interfaces (Hughes et al., 2011). 

However, there has been some success with the development of small molecules for the disruption 

of PPIs. Certain biological classes such as G-protein coupled receptors are more amenable to small 

molecule modulation (Hughes et al., 2011). This type of receptor contains more than one site of 

modulation (Hughes et al., 2011). Binding site homology is another complication for specificity. 

Enzymes within families often have conserved catalytic sites and so targeting a specific enzyme can 

be difficult (Nussinov and Tsai, 2012). Protein modulation can occur in a variety of different forms 

and this is explained below (Chapter One, Section Three, Protein Modulation). Validation is another 

key process in drug development and follows on from target identification. 
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1.22 Target Validation 

To be deemed a “valid” biological target for drug development, the biological target needs to 

fulfil certain criteria including efficacy, safety, commercial and clinical need (Hughes et al., 2011). 

The biological target also needs to be ‘druggable’, which means it needs to be accessible to the 

putative drug molecule and this molecule needs to be able to elicit a response in vivo or in vitro upon 

binding (Hughes et al., 2011). Identifying and validating a target is a difficult process and relies 

heavily on the thorough evaluation of the target’s relevance to disease, efficacy and potential impact 

(Smith, 2003). To gain regulatory approval, sufficient efficacy and safety needs to be demonstrated 

(Hughes et al., 2011). This is difficult as more than 90% of compounds fail clinical trials (Plenge et al., 

2013). The failure rate is highest in phase II with at least 50% due to a lack of efficacy and 25% due to 

unwanted toxicity. In a retrospective study performed by Pfizer of 44 drug programmes in phase II 

the lack of efficacy was identified as the major cause of failure (Morgan et al., 2012). To address this 

problem an emphasis has been placed on the ‘front-loading’ of research to reduce the failure from 

incorrect biological hypotheses (Lindsay, 2003). Early validation is important in this challenge. The 

techniques used to validate a target range from in vitro tools to in vivo/ whole animal disease 

models (Hughes et al., 2011).  

In vivo knockout models are useful in determining if the target is disease relevant and produces 

a similar phenotype (Hughes et al., 2011). Of the 3000-10000 targets identified through disease-

related genes, not all of these targets would be valid. Firstly, not all of these targets are ‘druggable’ 

and secondly, large scale mouse knockout studies reveal that approximately only 10% have the 

ability to be disease modifying (Gilbert, 2013). Gene knockouts are technically challenging and 

require avoidance of compensatory mechanisms and developmental phenotype (Hughes et al., 

2011). Further complexity occurs when the knockout results in embryonic lethality (Hughes et al., 

2011). Knock-in studies are an alternative method to knockout (Manis, 2007). This method replaces 

functional protein with non-functional protein (Manis, 2007).  A key factor in the high failure rate of 

drug development is the limited ability of pre-clinical disease models to predict direct benefit to 

patients and so determining if a target is valid is sometimes only possible through clinical testing 

(Hughes et al., 2011). Confidence increases when a range of techniques is used and the target is 

multi-validated using different approaches (Hughes et al., 2011). In vitro tools provide additional 

support and validation to in vivo experiments. In vitro techniques for pre-clinical validation range 

from genetic engineering at the molecular, whole cell or tissue level to the use of chemical biology 

for the rigorous testing of targets. The importance of good chemical tools/probes is integral to this 

challenge as well as confidence in the data set.  Chemical probes are necessary for the rigorous 

testing (Bunnage et al., 2013). In this type of testing a more robust chemical tool will be used. 
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Avoiding promiscuity, achieving good affinity, good permeability, good bioavailability and disease 

modifying are all areas looked for in a robust chemical tool (Bunnage et al., 2013). Pfizer adopt a 

‘pillar’ framework to target validation, which comprises exposure at site of action (1st Pillar), target 

engagement (2nd Pillar) and functional pharmacology (3rd Pillar) (Morgan et al., 2012). Within a 

retrospective study of the 44 drug programmes mentioned earlier all the successful programs 

achieved the first three ‘pillars of survival’ (Morgan et al., 2012).  In the use of chemical probes a 

‘fourth pillar’, relevant phenotype, is applied to determine if the target modulated is disease 

relevant (Bunnage et al., 2015). By applying these four pillars a more confident link can be made 

between target modulation and translation to the clinic (Bunnage et al., 2015, Bunnage et al., 2013). 

A successful example of this is a bromodomain and extra- terminal domain (BET) bromodomain 

probe produced by GlaxoSmithKline, GSK525762A (Bunnage et al., 2013, Filippakopoulos et al., 

2010).  

1.23 Chemical Tools/Probes 

Two different strategies can be used to design chemical tools/probes and these depend entirely 

upon the goal of the researcher. The first strategy is called the relaxed approach (RA). As chemical 

genetics is not primarily concerned with clinical relevance or therapeutic outcome it is used to 

determine the identity (forward chemical genetics) or the importance (reverse chemical genetics) of 

the target in question. Such chemical tools used for forward or reverse chemical genetics need not 

follow the drug-like property guidelines and so further interrogation of the biological system is 

unhindered by drug property considerations. In this situation, chemical tools need to only elicit the 

modulation required to provoke a response. They are required to have some solubility and lipid 

permeability, the latter depending on the loci of the target (Workman and Collins, 2010).  

Unhindered chemical design could likely feature chemical functionality associated with failure in 

drug discovery and promiscuous effects on the biological system. Despite the ‘relaxed’ criteria, 

chemical tools in this strategy have some similarity with drug-like compounds in that they need to be 

synthetically tractable, pure and selective for the target to avoid off-target effects and promiscuity 

(Workman and Collins, 2010). 

The second strategy, called the constrained approach (CA), is more specialised. It is employed by 

drug discovery to develop a tool that would be a suitable starting point for a drug. The intention of 

this strategy is to avoid the pitfalls of poor in vivo chemical utility that the RA can lead to and is more 

likely to avoid promiscuous effects on the biological system (Workman and Collins, 2010). The scope 

of commercially available chemical space with the CA is smaller and frequently drug-like compounds 

are more expensive to purchase or difficult to synthesise (Lipinski and Hopkins, 2004). Ultimately, 
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both strategies are useful and the one employed for chemical tool development depends on the 

goals of the researcher. This thesis will look to develop tools for reverse chemical genetics in the 

elucidation of the function and disease relevance of biological targets. 

 

Figure 7. A schematic representing the different requirements of drugs and chemical tools/probes. The general 

approach applies to probes only whereas the constrained approach applies to both at the interface between 

probes and drugs. (Adapted from Arrowsmith et al. 2015). 

1.30 Protein modulation 

Modulation of a protein can occur through activation or inhibition. The ‘classical’ mode of 

modulation is through a small molecule/ligand interaction at the orthosteric site (Nussinov and Tsai, 

2012).  This site is where the endogenous ligand binds and is often referred to as the active site in 

enzymes (Nussinov and Tsai, 2012).   Agonist and antagonistic activity are two types of modulation 

that occur. An agonist is a ligand that binds to the protein and activates it to produce a response 

(Rang et al., 2014). An antagonist is a ligand that binds to the protein and inhibits its response. 

Agonists or antagonists can have full or partial efficacy resulting in full activation/inhibition or 

submaximal activation/inhibition respectively (Rang et al., 2014). Competitive or non-competitive 

agonist or antagonist modulation occurs. When the antagonist or agonist competes directly with the 

endogenous ligand it is a competitive agonist or antagonist (Rang et al., 2014). If the antagonist or 
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agonist does not compete directly with the endogenous ligand this is non-competitive modulation 

and can happen at two sites: the orthosteric site or the allosteric site (Nussinov and Tsai, 2012). This 

alternative method of modulation is termed allostery. 

1.31 Allosteric modulation 

The modulation of a protein can occur through binding of a ligand to a protein on a site that is 

topographically distinct and remote from the orthosteric site (Changeux, 2013, Conn et al., 2009). 

This type of modulation is termed allostery (Nussinov and Tsai, 2012). Monod and Jacob introduced 

the term ‘’allostery’’ in the 1960’s (Monod et al., 1963). This term was to account for ligand 

interactions they observed on the enzymatic action of over 24 allosteric enzyme systems (Monod et 

al., 1963). From this they determined that allostery occurs within proteins that have multiple ligand 

recognition sites, contain an axis of symmetry and are oligomeric in structure (Monod et al., 1963, 

Canals et al., 2011). Allosteric sites have been discovered in a variety of protein types including: G-

protein coupled receptors, ion channels, enzymes and transcription factors (Conn et al., 2009). 

Allosteric regulation is present in biological systems and crucial for the control of metabolism. 

Allosteric regulation can occur through either “negative” or “positive” modulatory mechanisms 

(Gunasekaran et al., 2004, Conn et al., 2009). Negative allosteric modulators (NAMs) inhibit the 

protein’s function (this can also be referred to as antagonistic action). Alternatively, positive 

allosteric modulators (PAMs) enhance the protein’s activity (this can be referred to as agonist action) 

(Figure 8)(Conn et al., 2009, Gunasekaran et al., 2004). 

 

Figure 8. A simplistic diagram of the types of allosteric modulation on an enzyme. The binding of a ligand to the 

allosteric site can result in a subtle conformational change in the protein conferring action on the orthosteric 
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site. Commonly appearing within biological systems, this phenomenon governs features of molecular control 

and cellular function.  

The “Monad-Wyman Changeux (MWC)” model was formulated by Monad and Jacob to explain 

fundamental features of allosteric modulation on oligomeric proteins (Monod et al., 1965). Within 

this model the protein can exist between two states: the “tense” (T) state and the “relaxed” (R) state 

(Monod et al., 1965). When a ligand binds to one site it switches the site from T state to a R state 

causing a conformational change that promotes switching of the other binding sites from the T to 

the R state (cooperative binding). The R state favours ligand binding and promotes further ligand (A) 

binding (Figure 9) (Monod et al., 1965). This model was based on the conformational states 

observed in haemoglobin when oxygen binds to the deoxyhaemoglobin state (Gunasekaran et al., 

2004). Cooperative binding of oxygen to the remaining deoxyhaemoglobin binding sites is observed 

and explained via this model (Monod et al., 1965, Milo et al., 2007). 

 

Figure 9. A schematic diagram of the MWC model showing the transition between the T and R states upon 

ligand binding (adapted from Milo et al., 2007). 

Failures of this model to explain all features of allosteric regulation resulted in the development 

of other models. An example of an alternative model is the sequential model (also known as the KNF 

model) proposed by Koshland, Némethy and Filmer 1966.  In this proposed model subunits change 

conformation between the two T and R states, however a hybrid form (the TR state) also exists 

between the two states (Levitzki and Koshland, 1969). Nonetheless, allostery and its mechanism are 

often complicated and might not always follow these proposed models (Changeux, 2012).  

Communication between the allosteric site and the orthosteric site can happen over long 

distances and despite only a minor conformational change, a significant modification in the protein’s 

activity can be observed. Within the aspartate receptor, a small 1.0Å structural change in an 
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allosteric site causes a significant change in activity of the orthosteric site located 100Å away 

(Gunasekaran et al., 2004). The mechanism and reason for a profound effect on the protein’s activity 

from a subtle change is not well understood.  

Allosteric ligands can be split into two classes, these being homotropic (similar binding site to 

the orthosteric site) and heterotropic (different binding site from the orthosteric site) ligands (Hardy 

and Wells, 2004). Further subdivision of allosteric sites into orphan allosteric sites and serendipitous 

allosteric sites was made by Hardy and Wells, 2004. An orphan allosteric site is an “allosteric site 

used by an, as yet, undiscovered natural effector” and a serendipitous allosteric site is an “allosteric 

site that may not interact with any natural ligand and has only adventitiously been exploited by the 

small molecule that binds there” (Hardy and Wells, 2004). 

A number of papers give extensive reviews of allosteric mechanisms (Cui and Karplus, 2008, Tsai 

et al., 2009). This thesis will focus more on the benefits of allostery, its scope and the discovery of 

allosteric regulators.  

Allosteric regulation occurs in a range of protein types including cell surface receptors. Cell 

surface receptors contribute to more than 60% of current drugs targets (Christopoulos, 2002). Ion 

channels and G-protein coupled receptors (GPCRs) are two types of cell surface receptor 

(Christopoulos, 2002). Ion channels are transmembrane proteins possessing a central pore (Unwin, 

1989). This pore allows the flux of ions through the membrane (Unwin, 1989). These channels can 

contain multiple subunits and have the potential for allosteric modulation. 
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Figure 10. Model of the GABAA receptor, a transmembrane ligand-gated ion channel found within the central 

nervous system (CNS). Five subunits combine together to form the central cationic/Cl- pore. The orthosteric 

site is located between the α and β subunits (highlighted in blue). The orthosteric site is where the 

endogenous ligand  Υ-aminobutyric acid (GABA) binds. The allosteric site (highlighted in red) is located 

between the α and Υ subunits. Benzodiazepines bind to this allosteric site and operate by PAM (Chlonazepam 

is an example of clinically approved benzodiazepine) adapted from Christopoulos, 2002.  

Benzodiazepines are used clinically to treat anxiety and sleeping disorders as well as for the 

treatment of epilepsy. This class of drugs act allosterically on GABAA receptors to increase the ion 

channel’s affinity for the endogenous ligand GABA (Christopoulos, 2002). When GABA is bound to 

the ion channel it causes a conformational change, which opens the channel and allow a flux of Cl- 

through the central cationic pore (Goetz et al., 2007).  

For drug design and development, targeting allosteric sites can present several advantages over 

orthosteric sites (Hardy and Wells, 2004). Orthosteric sites where the endogenous ligand is a protein 

or peptide can have physicochemical and pharmacokinetic properties that tend to be unsuitable 

scaffolds for small molecule drug discovery e.g. for some GPCRs (Conn et al., 2009). Due to this 

limitation, allosteric sites can provide an alternative avenue for the development of modulators for 

this protein class (Conn et al., 2009, May et al., 2007). Across certain protein subfamilies, orthosteric 

sites can be highly conserved (Nussinov and Tsai, 2012).  Achieving high selectively within the 

protein subfamily by targeting a conserved orthosteric site is challenging (Conn et al., 2009). 

Examples of highly conserved orthosteric sites within protein subfamilies include: GPCRs and kinases 

(Conn et al., 2009, Wenthur et al., 2014). Low selectivity leads to “off-target” effects that are 
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unwanted in drug development (Leeson and Springthorpe, 2007). Allosteric sites are much less 

conserved across protein subtypes than orthosteric sites due to less severe evolutionary pressure 

(Wenthur et al., 2014). 

 

Figure 11. Graph showing the frequency of amino acids in allosteric sites compared to orthosteric sites 

(adapted from Li et al., 2013). 

The physicochemical environments of allosteric sites are different to that of orthosteric sites 

(Figure 11). Li et al., 2013 compiled a list of the amino acids and their frequency in allosteric and 

orthosteric sites (Li et al., 2013). Within allosteric sites a higher proportion of hydrophobic groups 

were observed suggesting the importance of hydrophobic interactions rather than polar interactions 

in allosteric binding (Li et al., 2013).  The frequency of glycine in allosteric sites was lower than in 

orthosteric sites (Li et al., 2013). Li et al. attributed this difference to restricted movement within 

allosteric sites as opposed to orthosteric sites (Li et al., 2013). It is clear from this report that 

allosteric sites contain different frequencies of amino acids to orthosteric sites and consequently 

have different physiocochemical properties to orthosteric sites. Allosteric sites provide an 

alternative option for drug development (Wenthur et al., 2014). 

Achieving high affinity and selectivity for the allosteric site can prove challenging, which limits 

the success of this developing allosteric modulators within drug development programmes (Wang et 

al., 2012). This may be due to a lower frequency of polar amino acids within allosteric sites and the 

reliance on hydrophobicity for ligand to protein contacts (Wang et al., 2012). Another disadvantage 

is that resistance is more likely to arise within allosteric sites as these sites are functionally less 

important than active sites/orthosteric sites (Nussinov and Tsai, 2013). Despite this, a number of 

allosteric modulators have made it through to market in the past years, examples include: 

Trametinib a mitogen-activated protein kinase (MEK) inhibitor (FDA approved for metastatic 

melanoma in 2013) (Wu et al., 2016), Maraviroc a C-C chemokine receptor 5 (CCR5) antagonist (FDA 
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approved in 2007 for HIV) (Armour et al., 2006) and Cinacalcet a calcium-sensing receptor (CaSR) 

activator (FDA approved for hypercalcemia in hyperthyroidism in 2004) (Wenthur et al., 2014, 

Nemeth, 2006).   

1.32 Discovery of Allosteric Inhibitors 

The discovery of allosteric sites is not simplistic (Wang et al., 2012). Orthosteric cavities are rich 

in functional groups suited for small molecule binding (Hardy and Wells, 2004). This renders 

selective screening for allostery difficult making the process laborious (due to the need to filter out 

and discount orthosteric binders) (Sadowsky et al., 2011). High throughput screening is the 

traditional approach to allosteric site discovery (Hardy and Wells, 2004). This method enables the 

testing of a large range of chemical entities for activity on biological screens (Macarron, 2006). 

The identification of non-competitive inhibitors within high throughput screens (HTS) can be 

achieved (Hardy and Wells, 2004). However, many of the non-competitive inhibitors identified either 

act by nonsensical or non-drug like mechanisms including denaturation, high-stoichiometry binding 

and protein aggregation (McGovern et al., 2002, Rishton, 2003, McGovern et al., 2003). HTS 

therefore tends to be an inefficient and laborious process due to the high volume of promiscuous 

data (Hardy and Wells, 2004). Despite such difficulties, combining high throughput screening with X-

ray crystallography has led to the successful discovery of several new allosteric sites (Hardy and 

Wells, 2004). Using a HTS screen of 300,000 compounds, Pfizer and the National Hellenic Research 

Foundation discovered an allosteric site within the human liver glycogen phosphorylase (GlyP) 

(Oikonomakos et al., 2000, Martin et al., 1998, Rath et al., 2000). GlyP is an enzyme involved in the 

control of blood glucose levels (Hardy and Wells, 2004). This enzyme is competitively inhibited by 

glucose and allosterically modulated (PAM) by adenosine monophosphate (AMP) (Hardy and Wells, 

2004). Indole-based compounds were observed to bind in a site situated 30 Å away from the 

catalytic site and 10 Å away from the AMP site (Hardy and Wells, 2004). Indole-based compounds 

stabilised the enzyme in a T state, which promoted glucose binding and synergistic inhibition (Hardy 

and Wells, 2004). 

1.33 Phage Display 

Libraries of peptides, proteins or antibodies can be generated through phage display technology 

(Terstappen et al., 2007, Rossenu et al., 1997). DNA fragments encoding certain peptide/protein 

sequences are inserted into a phage (Terstappen et al., 2007). The phage then expresses the 

peptide/protein on its surface (Terstappen et al., 2007). Screening of phage is performed against a 

given target and the phage that binds to the target is collected and amplified (Terstappen et al., 
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2007). The protein, peptide or antibody on the phage coat is identified from the DNA sequence 

(Terstappen et al., 2007). A group at Genentech used peptide phage display to develop and find 

inhibitors of factor VIIa (FVIIa), which is an essential protease for blood clotting (Dennis et al., 2000). 

They found that two peptides were bound to this protease at two separate allosteric sites (Roberge 

et al., 2001, Maun et al., 2003). 

1.34 Tethering approach 

A different approach to discover allosteric sites uses cysteine tags as a means of covalently 

trapping bound small molecules in secondary sites (Hardy and Wells, 2004). Tethering involves 

screening a library of compounds that contain thiols, against proteins with native or introduced 

cysteines on their surface (Hardy and Wells, 2004). Small molecules that are tight binders have the 

residency time to form a disulfide bond between the thiol within the molecule and the cysteine 

present on the protein (Hardy and Wells, 2004). Combining this approach with peptide mapping can 

negate the need for X-ray structure determination providing a means by which to discover new 

allosteric sites (Hardy and Wells, 2004). 

 

Figure 12. Diagram of the tethering screening approach adapted from Hardy and Wells, 2004. Protein of 

interest (POI) is incubated with a screening library.  Each compound in the library has a unique molecular 

weight and contains a disulfide linker and a monophore. The level of reductant is adjusted so that only tightly 

binding monophores are present long enough to form disulfide linkers with a cysteine on the protein. Mass 

spectrometry identifies covalently bound monophores. Kinetic analysis or binding analysis of the POI with the 

monophore of interest investigates if the novel site is allosteric (adapted from Hardy and Wells, 2004). 
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A new allosteric site on the dimer interface of caspase-3 and caspase-7 was discovered using this 

approach (Hardy et al., 2004). Caspase-3 and caspase-7 are two apoptotic proteases involved in the 

caspase cascade resulting in the formation of the mitochondrial pore and controlled cell death (Fan 

et al., 2005).  

1.35 Fragment screening and serendipitous binders 

Fragments are small molecules of less than 250 Da (Zartler and Shapiro, 2005). Screening with 

fragments requires sensitive high-throughput screens due to low binding affinities (Carr et al., 2005). 

Fragment screens have advantages over the conventional high-throughput screens (Rees et al., 

2004). Fragments lower the chances of unfavourable interactions and can identify the minimal 

binding unit necessary for affinity and potency (Rees et al., 2004). Consequently, this results in 

modulators that have high ligand efficiency (Murray et al., 2010). Another advantage of fragment 

screens is they tend to be more chemical diversity than conventional HTS libraries (Keserű et al., 

2016). Allosteric regulators of 3-phosphoinositide-dependent kinase-1 (PDPK1) in the 

phosphoinositide 3-kinase (PI3K) pathway was identified by Pfizer using nuclear magnetic resonance 

(NMR) spectroscopy combined with fragment-based screening (Stockman et al., 2009). By enriching 

PDPK1 with 15N and acquiring 1H-15N transverse relaxation optimized spectroscopy (TROSY) spectra 

they identified binders in an allosteric PDPK1 interacting pocket (Stockman et al., 2009).  

An alternative method to allosteric site discovery was first described by Hardy and Wells, 2004. 

This approach uses information within X-ray crystal structures to find novel binding pockets from 

serendipitous binders. In this paper, a maltoside used in the crystallisation buffer was found 

serendipitously bound to the allosteric site of a ß-lactamase crystal structure (Figure 13) (Hardy and 

Wells, 2004).  
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Figure 13. Images of cyclohexyl-hexyl-β-D-maltoside bound in the allosteric site of S70C SHV β-lactamase (PDB: 

4FD8). A. Stick representation of the maltoside and protein complex .B. The maltoside is located between the 

two alpha helices within the allosteric site of the protein. Figures created using Microsoft® PowerPoint® 14.6 

and PyMOL®. 

Horn and Schoichet were the first to identify this site as an allosteric site. They used 

thermodynamics, mutagenesis and crystal structure analysis to identify the allosteric site (Horn and 

Shoichet, 2004). Hardy and Wells discovered that maltoside (a crystal additive) was found bound to 

the same site on a similar β-lactamase (Hardy and Wells, 2004). In this instance, crystal additives 

serendipitously bound to the crystal structure would have identified the novel allosteric site without 

the need for laborious experimentation (Hardy and Wells, 2004). Within this paper, Wells et al. 

acknowledged that serendipitous binding of “crystallisation artefacts” (small molecules present in 

the crystallisation buffer) within protein cavities is not uncommon (Hardy and Wells, 2004). They 

further suggested that these “crystallisation artefacts” recorded in the protein data bank (PDB) could 

be the largest collection of information on serendipitous binders and undiscovered allosteric sites 

(Hardy and Wells, 2004). 

The Hardy and Wells approach provides an advantage over the previous defined approaches of 

allosteric site discovery described in this section.  Firstly, the protein crystal structure has been 

solved and conditions for purification, expression and crystallisation are published (reducing the 

time/workload needed to generate crystals for structure based drug design).  Secondly, the small 

molecule has identified a suitable target without the need for high-throughput screening and 

laborious analysis. Finally, the secondary binding pocket and consequently residues located within 

this pocket have been identified for binding small compounds to. This then allows a more site 

A. B. 
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directed approach to computational or fragment based screening to aid the development of a lead 

compound. 

Serendipitous binders are useful in identifying a novel-binding pocket suited for a small 

molecules, however they do not identify if this site is allosteric. The novel binding site would have to 

confer some negative or positive communication with the orthosteric site resulting in NAM or PAM. 

Extensive kinetic/functional analysis is still a requirement in order to define if this site is allosteric. 

1.36 The correct approach to allosteric discovery  

All approaches to allosteric discovery have disadvantages and no single approach is the correct 

approach. High-throughput screening either through large “lead-like”, fragment or phage-based 

libraries identify a large plethora of “hits”. Not all “hits” identified will be true modulators of the 

biological target in question and the true “hits” identified from the screens may not modulate via 

allosteric mechanisms. Further work is needed to establish if the modulator is allosteric and this is 

accomplished via structural binding and/or extensive kinetic analysis. It requires a skilled team to 

work through the results from a screen to design and conduct experiments to establish the method 

of modulation, which can be time consuming and difficult (particulary if a structure of the target has 

not been obtained previously). The advantage of HTS/fragment-based/phage-display screening is 

that the chemical modulator/modulators identified already have reasonable potentcy and are a 

good starting point for SBDD. Additionally, a number of “hits” identified from the screen may bind in 

similar positions providing useful structural information for further SBDD optimisation.  

Approaches specifically designed to identify novel binding pockets such as the tethering 

approach also have their limitations. The monophore binding unit, the length of the linker and the 

position/s of the cysteine on the protein are factors that could limit the success of this screening 

approach. To improve the likelihood a successful allosteric “hit” would be identified through the 

tethering approach a large monomer-linker screening library is required with varied linker lengths 

and monophore binding units. The position of the cysteine residue is important as a novel binding 

pocket/allosteric site can only be identified if the cysteine residue is within close proximity for 

disulphide linker reactivity.  

The other approach to allosteric site discovery includes the data mining approach identified by 

Hardy and Wells. Although serendipitous binders might identify novel pockets amenable to small 

molecule binding, this method provides no functional information relating small molecule binding to 

protein modulation. The major challenges for this approach include: a) identify if the bound 

serendipitous modulator causes functional modulation of the protein and b) establish affinity, 
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potentcy and selectivity at this site. A further challenge exists in sorting through PDB structures and 

the serendipitous binders within the PDB. Chemicals are commonly used in high concentrations 

inorder to generate the conditions appropriate for crystal formation and cryoprotection. 

Consequently, a high proportion of the serendipitous binders found within these protein structures 

are likely to be surface bound and promisciuous. Mining for novel allosteric sites within the PDB 

using serendipitous binders as guides will be labourious and so serendipitous binders buried deep 

within pockets should be prioritised for screening. Additional fragments/small molecules found 

bound in close proximity to serendipitous binders could provide additional structural information for 

improved SBDD. This was the approach used within this thesis. 

1.40 Neglected disease (ND) and unmet need 

Neglected disease (ND) corresponds to disease that principally impacts on the world’s poorest. 

Global Funding of Innovation for Neglected Diseases (G-FINDER) defines 34 diseases as ND or having 

an unmet need (POLICYCURES, 2015, POLICYCURES, 2016). Of the 35 diseases, 15 are classified as 

neglected tropical diseases (NTDs) and include: dengue fever, helminth infections (acariasis, 

ancylostomiasis, necatoriasis, trichuriasis, strongyloides, lymphatic filariasis, onchocerciasis, 

schistosomiasis and cysticerosis/taeniasis), kinetoplastids (human African sleeping sickness, 

leishmaniasis, Chagas disease), trachoma, Buruli ulcer and leprosy (Choffnes and Relman, 2011). NTD 

is a subset of ND that predominates in the tropics where poverty is found in the greatest 

concentration (Feasey et al., 2010). The World Health Organisation (WHO) estimates NTD to be a 

health burden with more than 1 billion people infected in 149 different countries (WHO, 2012, 

Armah et al., 2015). NDs have a lack of options for treatment or prevention and are generally 

disregarded by the pharmaceutical industry due the likelihood of poor commercial revenue (Mrazek 

and Mossialos, 2003, Chokshi, 2006). As a consequence, the research and development (R&D) of 

new ND or NTD therapeutics is poorly funded (Choffnes and Relman, 2011). The most recent annual 

survey from G-FINDER (at the time of writing) is a report detailing ND R&D funding in 2014 

(POLICYCURES, 2015). In this year $3.4 billion was invested globally in ND R&D (POLICYCURES, 2015). 

This investment is up 4.9% from the previous year, however this is attributed to the Ebola epidemic 

(Ebola global funding totalled $165 million in 2014) (POLICYCURES, 2015, POLICYCURES, 2014). 

Global total R&D spending in 2014 of the Pharmaceutical Research and Manufacturers of America 

(PhRMA) was estimated at $51.2 billion (PhRMA, 2015). PhRMA has 58 members consisting of the 

largest biopharmaceutical companies and their subsidiary companies (PhRMA). ND R&D spending 

represents 6.6% of the total PhRMA R&D spending. This is a crude estimate of R&D PhRMA 

contribution funding for ND.  It is likely this contribution is lower as this estimate does not account 
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for biotech, public/government or philanthropic contribution to the $3.4 billion total ND fund.  

Although spending on ND R&D by the pharmaceutical industry is disproportionately low, a 28% rise 

in industry funding for ND R&D was observed in 2014 compared with 2013 (POLICYCURES, 2015, 

POLICYCURES, 2014). Combining this rise with a decrease of 0.8% in PhRMA total R&D spending for 

2014 from the previous year suggests greater interest in the development of ND therapeutics (Figure 

14). The introduction of incentive mechanisms has likely promoted this interest. The current 

incentives for ND R&D investment include: access to public funding and partnerships (enables the 

cost of development to be shared with publically funded research institutions), tax credits (in the 

U.S.) this would make pharmaceutical companies eligible for a 20% R&D tax credit or if the disease 

had orphan status in the U.S., e.g. tuberculosis, it could be as high as 50% and prizes (this includes 

FDA priority review vouchers and a payment to the researcher on the condition the therapeutic 

achieves a set outcome) (Mueller-Langer, 2013). 

A large disparity is observed for funding between the different neglected diseases. The three 

‘top tier’ diseases HIV/acquired immune deficiency syndrome (AIDS) (32%), tuberculosis (17%) and 

malaria (18) received over two thirds of the funding designated for neglected disease (67%) 

(POLICYCURES, 2015). Kinetoplastids, a ‘second tier’ disease, received 4.4% of the 2014 total R&D 

funding. Diseases designated ‘second tier’ include: kinetoplastids, helminth infections, dengue, 

diarrhoeal diseases, bacterial pneumonia and meningitis, salmonella infections, hepatitis C 

(genotypes 4,5 and 6) and Ebola (POLICYCURES, 2015).  Buruli ulcer, a ‘third tier’ classified disease, 

only received 0.1% of the total 2014 R&D funding (the ‘third tier’ disease classification includes: 

trachoma, Buruli ulcer, leprosy, rheumatic fever, cryptococcal meningitis and leptospirosis) 

(POLICYCURES, 2015). ND represents one disease classification where there is an unmet need for the 

development of new therapeutics.  It is clear that some diseases classified under ND receive greater 

support than others (Figure 14).  Global disease burden (GDB) is likely the reason for the disparity 

seen in ND R&D funding. The observed GDB for HIV/AIDS is approximately 36.9 million patients with 

a mortality of 1.2 million in 2014 (UNAIDS, 2015, Lima et al., 2016).  Malaria has a GDB of 214 million 

patients with a mortality of 438, 000 in 2015 (Coats, 2016). For tuberculosis the GDB is 9.6 million 

patients with 1.5 million mortalities in 2014 (WHO, 2016a). In contrast to ‘top tier’ diseases, 

kinetoplastids have a GDB of approximately 9.3 million patients and 31,000 mortalities in 2014 

(Chagas disease independently has a GDB of 8 million with 10,600 mortalities in 2014) (Beaumier et 

al., 2016, WHO, WHO, 2016b). Buruli ulcer, a ‘third tier’ disease, has a GDB of 2,200 patients and 

unreported mortality in 2014 (WHO, 2016c). GDB is linked to commercial viability and so diseases 

with low global patient population and mortality are less lucrative (Pollastri, 2014). These diseases 

are subsequently reliant upon public and philanthropic funding (Moran et al., 2009).  
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Figure 14. A.Graph representing global spend on R&D for PhRMA (consisting of 39 members of the largest 

pharmaceutical and biotechnology companies) as a comparison against global neglected disease spend. B. 

Graph representing the difference in funding in 2014 for each neglected disease. Tier one: HIV/AIDS, Malaria 

and Tuberculosis receive the greatest proportion of funding, whereas tier two and tier three receive a much 

lower share. Tier three neglected diseases sharing less than 0.3% of total 2014 neglected disease fund are not 

included on the graph (this includes: Trachoma, Cryptococcal meningitis, Buruli Ulcer, Leptospirosis and 

Rheumatic fever). C. Graph representing the number of products in the pipeline for each neglected disease. 

Statistics are taken from G-FINDER and Reuters. Graphs generated using SLIDE
©

 and manipulated for 

presentation using Microsoft® PowerPoint®. 

Unmet need also corresponds to orphan disease (previously mentioned in 1.20 Biological Target 

Types and Regulatory Approvals), emerging disease and re-emerging disease (Morens et al., 2004). 

Emerging disease relates to a disease that has appeared within a population for the first time or 

existed previously but has rapidly increased in incidence or geographical range (Morens et al., 2004). 

The sudden recurrence of Ebola in 2014 is an example of an emerging disease due to its rapid 

incidence rate and geographical distribution (Morens et al., 2004). The first appearance of Ebola was 

in Central Africa in 1976 with a small local outbreak in a small town and neighbouring areas. The 
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total number of infected individuals totalled 284 individuals resulting in 151 mortalities. Further 

outbreaks were reported in Democratic Republic of Congo (318 cases with 280 mortalities) and in 

the U.S. (identified in imported Cynomolgus monkeys) (Feldmann et al., 2003). Ebola became a 

threat to public health in 1995 when outbreaks were reported in Kikwit and Democratic Republic of 

Congo (293 cases with 233 deaths) (Feldmann et al., 2003). In 2014 the WHO declared a public 

health emergency in response to an outbreak of Ebola that resulted in more than 8,000 deaths (an 

underestimated figure), spread to eight countries and infected more than 20,000 individuals before 

containment (Sanchez et al., 1995).  

Re-emerging disease relates to a disease that has emerged again with no sudden change in 

incidence (Morens et al., 2004). This occurs in the same geographical location or can occur in a 

different geographical location. Tuberculosis and malaria are two examples of re-emerging diseases 

(Morens et al., 2004). Tuberculosis was well managed with previously developed therapeutics in the 

past but has re-emerged in immune deficient patient populations (HIV/AIDS) (Morens et al., 2004). 

The evolution of Mycobacterium tuberculosis in HIV patients has contributed to the emergence of 

drug-resistant and multi-drug resistant strains (Shah et al., 2007). Drug resistance is a factor that 

causes viral and microbial re-emergence resulting from the mutation or bacterial acquisition of 

genes (Morens et al., 2004).  Antibiotic resistance is a major health concern (see Antibiotics) and 

antibiotic resistant bacterial infection is an example of a re-emerging disease (Jones et al., 2008). 

The impact of both emerging and remerging diseases on human populations is dependent on the 

rate and spread across geographical locations (Morens et al., 2004). Diseases emerging or re-

emerging in populations within developing countries is likely to have a greater impact and GDB 

(Morens et al., 2004). Chemical biology can have a major role in identifying targets and 

understanding MMOA in neglected disease and diseases with unmet need. This research carried out 

by independent publically funded research institutions would reduce the costs associated with R&D 

(Nwaka and Ridley, 2003).  This would make the development of therapeutics for some of the 

disregarded diseases more attractive and lucrative to the pharmaceutical industry (Nwaka and 

Ridley, 2003).  
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1.41 Chagas disease 

Chagas disease is named after a physician and researcher (Carlos Riberio Justiniano Chagas) who 

discovered the disease in the 1900s (Steverding, 2014). It is caused by the vector-borne protozoan 

parasite Trypanosoma Cruzi (T. cruzi). The vector is a triatomine bug (“kissing bug”) that ingests the 

parasite upon taking a blood meal from an infected mammalian host (Steverding, 2014). Within the 

vector the epimastigotes multiply in the midgut and transform to metacyclic trypomastigotes in the 

hindgut (Steverding, 2014).  Disease transmission of the metacyclic trypomastigotes occurs when 

urine and/or faeces of the blood-sucking triatomine bug contact a wound or intact mucous 

membrane of the mammalian host enabling trypomastigote entry (Steverding, 2014). Other 

methods of transmission include: organ transplantation, blood transfusion and ingestion of 

contaminated food and drink (Steverding, 2014). Newborn infants are at risk of transmission from 

their mothers through breast milk or congenitally through the placenta (Steverding, 2014). Within 

the human body metacyclic trypomastigotes penetrate into cells and transform into amastigotes 

(Steverding, 2014). These amastigotes undergo binary fission in cells of the infected tissue. These 

intracellular amastigotes can transform into trypomastigotes and burst out of the cell. The 

circulating trypomastigotes can infect other cells and organs resulting in clinical manifestations 

(Figure 15) (Noireau et al., 2009).  
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Figure 15. Schematic of T.Cruzi life cycle within vector and mammalian host (adapted from Rassi and Marin-

Neto, 2010). Localised inflammation at the site of entry (Chagoma and Romaña’s sign) is a classical sign of 

Chagas disease. The Chronic phase of Chagas disease can occur after many years. During the acute phase the 

patient/animal can be asymptomatic.Figure 14. Schematic of T.Cruzi life cycle within vector and mammalian 

host (adapted from Rassi and Marin-Neto, 2010). Localised inflammation at the site of entry (Chagoma and 

Romaña’s sign) is a classical sign of Chagas disease. The chronic phase of Chagas disease can occur after many 

years. During the acute phase the patient/animal can be asymptomatic. 

In the initial/acute phase, which begins 6-10 days after infection and can last for about 4-8 

weeks, symptoms are absent or mild and are unspecific/typical for many infections (Rassi and Marin-

Neto, 2010). A specific symptom occurs at the entry point of infection. Inflammation at the loci of 

the bite or trypomastigote infection site results in a Chagoma (Rassi and Marin-Neto, 2010). If the 

eye is the entry point, a unilateral periorbital swelling, also known as a Romaña’s sign, may occur 

(Rassi and Marin-Neto, 2010). Electrocardiogram (ECG) abnormalities can follow in about 50% of 

infected individuals but usually disappear. Following the acute phase, a prolonged asymptomatic 

chronic “indeterminate” phase can ensue and can last for a patient’s lifetime (Steverding, 2014).  

Approximately 15-30% of people enter into the determinate/chronic phase and this can last for 10-

25 years post infection (Steverding, 2014). In the chronic phase the disease exhibits diverse clinical 

manifestations including cardiomyopathy (30% of patients), neuropathies and dilations of the colon 

or oesophagus (10% of patients) (Steverding, 2014). Immune suppression can result in reactivation 
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of latent infection with chronic infection resulting and cardiac, neuropathic and oesophageal 

manifestations (Steverding, 2014). Low levels of circulating parasites at the “indeterminate” stage 

cause limited success from serological diagnostic tests (Sabino et al., 2013, Angheben et al., 2015). 

An estimated 6 to 7 million people worldwide are infected by the parasite T. cruzi and 

approximately 25 million people live in risk areas (WHO, 2010).  Traditionally thought of as a disease 

endemic to Latin America, the WHO found cases of Chagas disease in Latin American immigrants to 

Europe (WHO, 2010).  Transmission through blood donation has occurred in North America, Europe, 

Japan and Australia resulting in its classification as a global health threat and new practices to limit 

transfusional transmission (Angheben et al., 2015). An enzyme-linked immunosorbant assay (ELISA) 

is used to screen blood donors for Chagas disease (FDA approved in 2006) (Kirchhoff and Pearson, 

2007).  This assay uses antibodies present for epimastigote lysate antigens to detect T.cruzi. Donor 

selection criteria and repeat testing is performed on blood donations deemed to be high risk 

(Kirchhoff and Pearson, 2007).  

Chagas disease has only two therapeutics available for treatment: Nifurtimox and Benznidazole 

(Bermudez et al., 2016). Problems exist with these treatments as they have high toxicity issues and 

require prolonged administration (Bermudez et al., 2016). Additionally, these treatments are only 

useful in the acute phase of infection and are labile in chronic instances of disease (Bermudez et al., 

2016). Currently no vaccine is yet available for the prevention of Chagas disease (Carrea and 

Diambra, 2016). Another approach to limiting the spread of Chagas disease is through vector 

control. Vector control is employed throughout Latin America and this is currently the most effective 

prevention strategy (Schofield and Dias, 1991). However secondary transmission, emergence of 

insecticide resistant vectors and transmission through infected food limit the effectiveness of this 

strategy (Sosa-Estani and Segura, 2015). Since the description of Chagas disease in 1909 extensive 

research has been carried out to identify the biological mechanisms of the parasites infection and 

survival in the host (Coura and Borges-Pereira, 2010).  
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1.42 Antibiotics 

Antibiotics represent one of the most crucial therapeutics in modern medicine (Aminov, 2009). 

They offer protection from infectious bacteria and are in use every day to limit septicaemia from 

invasive surgery to chemotherapy (Silvani, 1947, DeVita and Chu, 2008). The use of antibiotics has 

reduced childhood mortality and increased our life expectancy (Cohen, 2000, Ahmad et al., 2000).  

The MMOA of antibiotics includes inhibition of: bacterial cell wall synthesis, fatty acid synthesis, DNA 

replication and protein synthesis (Neu, 1992). For example, the antibiotic vancomycin binds to D-Ala-

D-Ala peptides preventing peptidoglycan crosslinking thereby inhibiting cell wall synthesis (Walsh, 

1999). The β-lactam antibiotics bind to penicillin-binding proteins (PBP), which is essential in 

peptidoglycan synthesis and a further example of a cell wall inhibitor (Spratt, 1983). Triclosan biotics 

target the enoyl-ACP reductase enzyme responsible for fatty acid synthesis used in cell function and 

growth (Heath et al., 1999).  Bacteriostatic drugs target the 30S (tetracyclins and aminocyclitols) and 

50S (macrolides and chloramphenicols) ribosome subunits inhibiting ribosome function (Neu, 1992). 

The quinolone antibiotics target DNA replication through binding with DNA gyrase complexed with 

DNA, promoting double-strand breaks and cell death (Kohanski et al., 2007). Antibiotics work by a 

variety of MMOA (Figure 16), but despite a plethora of antibiotics available multi-drug resistant 

strains of bacteria are emerging (Hashemi et al., 2013). Complacency in the use of antibiotics 

(overuse and inappropriate prescribing) has led to the rise in bacterial resistance (Ventola, 2015). 

Antibiotic use within livestock production contributes to this problem (Phillips et al., 2004). Global 

average consumption of antimicrobials in 2010 is estimated to be 45 mg/kg for cattle, 145 mg/kg for 

chickens and 172mg/kg for pigs. This could potentially rise 65% by 2030 due to an increase in 

consumer demands and shift to large-scale farming (Van Boeckel et al., 2015). A significant fraction 

of the antibiotics used in livestock consumption are antibiotics that are in clinical use and medically 

important for human health (Van Boeckel et al., 2015). Significant volumes are used prophylactically 

for healthy animals to promote growth and stop the development of infection (Angulo et al., 2005). 

Prolonged exposure of bacteria to antibiotics represents a risk of cultivating drug resistance through 

natural selection (Davies and Davies, 2010). Routes of drug-resistant bacterial transmission from 

animals can occur through: human consumption of contaminated meat, direct contact from animals 

to humans (i.e. farmers) and environmental contamination and exposure through animal faeces 

used for fertiliser (Van Boeckel et al., 2015). An extensive literature review of 280 published, peer-

reviewed research papers observed that 72% of these research papers established a link between 

antibiotic consumption in animals and antibiotic resistance in humans (Resistance, 2015). Multi-drug 

resistance to antibiotics is a global health concern and is listed in the most recent World Economic 

Forum Global Risks report as one of the greatest threats to human health (Forum, 2016). Bacterial 
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resistance to antibiotics costs the European Union economy $1.5 billion annually (WHO, 2015). 

Within Europe, 25,000 mortalities occur annually as a result of antibiotic resistance and in the U.S. 

the corresponding figure is 23,000 mortalities annually (WHO, 2015).  

Resistance is already found intrinsically within bacteria, as certain bacterial strains are less 

susceptible to certain types of antibiotic (Martínez, 2008).  Additionally, resistance can be acquired 

through chromosomal changes (chromosomal mutation or inductive expression of a latent 

chromosomal gene) or exchange of genetic material using plasmids and transposons 

(transformation, transduction or conjugation) (Davies and Davies, 2010). More than 20,000 potential 

antibiotic resistance genes are in existence (Davies and Davies, 2010). Transposons have the ability 

to enter transmissible plasmids or chromosomes and contribute to the inter-genus transfer of 

resistance (Davies and Davies, 2010). Gram-positive bacteria can pass resistance to Gram-negative 

bacteria by inter-genus transmission (Gram-negative to Gram-positive transmission however is 

uncommon) (Davies and Davies, 2010). Resistance to antibiotics occurs by three main mechanisms: 

1) prevention of access to the target, 2) inactivation of the antibiotic via destruction or modification 

or 3) alteration of the target site (Neu, 1992). Resistance against β-lactam antibiotics can occur by 

alteration of PBP, reduced permeability and β-lactamase activity (Neu, 1992). Mechanisms to limit 

access of the antibiotic to the target include: reducing porins expression to limit the diffusion of 

hydrophilic antibiotics through transmembrane proteins and increasing the efflux of antibiotics 

through expression of bacterial efflux pumps (Neu, 1992).  Alteration of the target occurs through 

changes in the target structure limiting efficient antibiotic binding or acquisition of a homologous 

gene to the original target (Neu, 1992). An example of target alteration is found within methicillin-

resistant S. aureus (MRSA) in which resistance to methicillin is generated through the acquisition of 

staphylococcal cassette chromosome mec (SCCmec) (Blair et al., 2015). This relays the mecA gene 

that encodes PBP2a (a β-lactam insensitive protein) enabling cell wall synthesis in the presence of a 

PBP inhibiting antibiotic (Blair et al., 2015). The effectiveness of the antibiotic and its clock relies 

heavily on its appropriate use and management within human and veterinary health. The antibiotic 

clock is the length of time an antibiotic will be useful before clinically significant resistance emerges 

(Clardy et al., 2006). Resistance generated in microbes to clinically used antibiotics is inevitable and 

so a continuing need for new biotics is required.  
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1.43 Streptoccocus pneumoniae 

The Gram-positive bacteria Streptococcus pneumoniae (S. pneumoniae) is a member of the 

commensal microflora present on human mucosal surfaces (Patterson, 1996). Also known as 

pneumococcus or Streptococci, it is a non-spore forming, non-motile, α-hemolytic, catalase-negative 

facultative anaerobe (Patterson, 1996). Pneumococci have a lancet-shaped morphology encased by 

a polysaccharide capsule. This bacteria colonises the mucosal surfaces of the host’s upper airway 

and nasopharynx and is often carried asymptomatically in the nasopharynx (approximately 60% of 

the population carry pneumococcus asymptomatically) (Kadioglu et al., 2008). To establish and 

cause infection the pathogen will need to compete with normal flora present on the mucosal 

surface, invade host cells, avoid the host immune system and replicate (Janeway Jr et al., 2001). 

Pneumocci cause a range of serious infections: meningitis (in children and adults), sinusitis, otitis 

media and community acquired pneumonia (Mitchell, 2003). Host factors (reduced immune function 

or lack of pre-existing antibodies against Streptoccoci) and/or bacterial factors contribute to the 

development of pneumococcal disease (Kadioglu et al., 2008).  The polysaccharide capsule is a key 

bacterial factor, which protects against phagocytosis. Other factors that contribute to pathogenesis 

are: components of the cell wall, haemolysin (pneumolysin) and cell-surface proteins (LPXTG-

anchored protein, choline-binding proteins, ABC transporter, ATP-binding cassette, fibronectin-

binding protein and laminin-binding protein) (Mitchell, 2003). The cell wall components are 

important in mediating cell attachment to the host, an example of which is phosphorylcholine 

(within the cell wall) (Tuomanen et al., 1985). This molecule binds to platelet-activating factor (PAF) 

present on the host cells. PAF upregulation is an inflammatory response to infection or disease and 

could explain the increased occurrence of pneumonia post viral infection or at any stage of chronic 

obstructive pulmonary disease (Tuomanen et al., 1985). Pneumolysin is a pore-forming protein and 

is secreted when autolysin is host cell-bound (Mitchell, 2003). Pneumolysin is toxic to pulmonary, 

epithelial cells and causes damage to ependymal cilia of the brain inducing apoptosis (Spreer et al., 

2003, Mitchell, 2003). As well as forming pores, pneumolysin stimulates the production of 

inflammatory mediators including: TNF-α, IL-1β, nitric oxide, IL-8, prostaglandins and leukotrienes 

(Mitchell, 2003). It also interferes with the complement pathway and inhibits phagocyte and 

lymphocyte function (Mitchell, 2003). Isogenic mutants of pneumococci that do not express 

pneumolysin or autolysin caused no or very mild pneumococcal disease when infected into the 

cerebrospinal fluid (CSF) of rats (Hirst et al., 2008). In contrast, wild type pneumococci infected into 

rat CSF caused meningitis within 26hrs (Hirst et al., 2008). The roles of autolysin and pneumolysin 

are essential for pneumococcal pathogenicity (Hirst et al., 2008). Cell surface proteins consist of a 

broad range of protein types (Maestro and Sanz, 2016).  The choline binding proteins known to be 
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important virulence factors for pneumococci are anchored non-covalently to the cell wall via a 

repeat region of the C-terminal end of the protein (Maestro and Sanz, 2016). This protein class 

includes: pneumococcal surface protein A (PspA), pneumococcal surface protein C (PspC) and 

autolysin LytA (Paton, 1998). PspA is expressed by all clinically important serotypes of S.pneumoniae 

(Jedrzejas, 2001, Crain et al., 1990). Mutant pneumococci unable to express PspA tested in models of 

systemic disease are less virulent and easily cleared from the bloodstream (Tu et al., 1999). This 

choline binding protein inhibits complement activation and complement receptor mediated 

clearance (Jedrzejas, 2001). The MMOA of PspA on the complement pathway is unknown although it 

is known to interfere with C3b deposition and can inhibit the formation of alternative pathway C3 

convertase (Tu et al., 1999) (Figure 16). The MMOA of a number of different virulence factors for 

S.pneumoniae has not yet been established and the use of chemical biology can aid our 

understanding (Blair et al., 2015). 

 

Figure 16. A. Schematic of MMOA of various antimicrobial agents (messenger ribonucleic acid (mRNA), ρ-

aminobenzoic acid (PABA), dihydrofolic acid (DHFA), tetrahydrofolic acid (THFA)).  Adapted from Neu et al. B. 

Schematic of S.pneumoniae and the identified virulence factors (adapted from Mitchell., 2003). 
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Transmission of S.pneumoniae occurs through aerosolised droplets (person to person 

transmission of pneumococci in a cough or a sneeze) and exacerbation occurs through aspiration of 

pneumococci into the lower respiratory tract (CDC, 2016, Kumar, 2012). Each year in the U.S., 

pneumoccocal disease is responsible for 445,000 hospitalisations, 774,000 emergency department 

visits and 22,000 mortalities (Huang et al., 2011). This amounts to $3.5 billion in direct medical costs 

(Huang et al., 2011). Currently, resistance of S.pneumoniae to antibiotics means penicillin is an 

ineffective antibiotic against pneumococcal meningitis. Previously in the 1940s, penicillin treatment 

would result in a cure from pneumococcal meningitis infection (Neu, 1992). Resistance of 

S.pneumoniae was first observed in the 1960s and since then S.pneumoniae antibiotic resistance has 

become a worldwide problem (Quagliarello and Scheld, 1997, Neu, 1992, Blair et al., 2015).  

1.50 The sialidases and sialic acid as potential drug targets  

Sialic acids (Sia) and sialidases (see description of both below) are involved in many cellular 

functions (Varki and Schauer, 2009). Disturbances in the biosynthesis or degradation of Sia can lead 

to disease (Varki and Schauer, 2009). Hereditary Sia disorders are an indication of the importance of 

Sia in human health (Varki and Schauer, 2009). Defects in the lysosomal Sia transporter Sialin causes 

Salla disease (Prolo et al., 2009). A missense mutation in the UDP-GlcNAc-2-epimerase/ManNAc 

kinase (GNE) gene causes hereditary inclusion body myopathy and a defect of GNE feedback 

inhibition by CMP-Neu5Ac causes sialuria (Weiss et al., 1989). Sia distribution and loci are observed 

to have a role in the exacerbation of cancer, atherosclerosis, diabetes and Alzheimer’s disease (Varki 

and Varki, 2007, Dall'Olio and Chiricolo, 2001, Varki and Schauer, 2009, Lindberg et al., 1991). The 

external position of Sia on outer cell membranes implies it has a strong role in cell biology (Schauer, 

2004). Consequently, this positioning of Sia makes them susceptible to action of enzymes such as 

esterases, sialidases and lyases (Varki and Schauer, 2009). This enzymatic action affects the amount 

of Sia present resulting in actions including: the stabilisation of membranes, masking of antigenic 

sites and immunological functions (Varki and Schauer, 2009). Pathogens use lectins, sialidases or 

trans-sialidases as virulence factors and many bacterial toxins and viruses bind to sialylated 

glycoconjugates (Taylor, 1996). Sia and the enzymes that regulate its distribution and concentration 

represent a potential route to target validation and the development of new therapeutics. 

1.51 Sia 

Sia are a diverse family of approximately 50 related negatively charged sugars usually present as 

terminal residues on cell surface glycoconjugates (Buschiazzo and Alzari, 2008a). Sialic acids have 

ubiquitous distribution and modulate a wide variety of physiological and pathological processes 

(Varki, 2008). Sia present on cell surfaces can mask underlying recognition sites and/or can act as 
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recognition sites (Varki and Gagneux, 2012). The physicochemical features of sialic acid include a net 

negative charge and hydrophilicity forming important components of binding sites enabling 

structural or modulatory roles for various pathogens or toxins (Varki, 2008). Typically, a cell exhibits 

tens of millions of Sia molecules on its surface with a local concentration approaching 100 mM (Varki 

and Gagneux, 2012). At blood physiological pH the carboxylic acid in Sia is deprotonated (Vimr et al., 

2004). This negative charge affords charge repulsion of Sia coated erythrocytes avoiding unwanted 

cell-to-cell interactions in blood circulation (Varki and Gagneux, 2012). Apart from attracting or 

repulsing cells or molecules they are involved in the binding and transport of positively charged 

molecules (Lundblad, 2015). Sia coating on mucins contributes to its high viscosity and water 

solubility (Schauer, 2000). The anti-proteolytic effect of Sia in glycoproteins is also attributed to this 

negative charge (Schauer, 2000).  

1.52 The core structure of Sia 

The core structure of sialic acid consists of a nine-carbon polyhydroxylated α-keto acid 

(Buschiazzo and Alzari, 2008b). Substitution at the fifth carbon generates sialic acid species 

including: N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc) and 3-deoxy-D-

glycero-D-galacto-2-nonulopyranos-1-onic acid (KDN) (Varki, 1992). A less common analogue is 

neuraminic acid (Neu) a non-N-acylated variant of Neu5Ac (Varki and Schauer, 2009). The hydroxyl 

groups on these four “core” Sia molecules (Neu, Neu5Gc, Neu5Ac and KDN) can be further 

substituted one or more times at the C4, C7, C8 or C9 position resulting in O-acetyl, O-sulfate, O-

phosphate, O-lactyl or O-methyl moieties (Varki and Schauer, 2009). The C1 carboxylate, normally 

ionised under physiological conditions, can be condensed with free hydroxyl groups of adjacent 

saccharides resulting in lactones or with free amino groups resulting in lactams (Varki and Schauer, 

2009). Unsaturated and anhydro variants of Sia can exist, examples include: 2-deoxy-2,3-didehydro-

5-N-neuraminic acid (Neu5Ac2en/DANA) and 2,7-anhydro-α-N-acetylneuraminic acid (2,7-anhydro-

Neu5Ac) (Varki and Schauer, 2009). The two main types of Sia found in mammals are Neu5Ac and 

Neu5Gc (Figure 17)(Varki and Schauer, 2009). The most abundant of these is Neu5Ac, which is the 

biosynthetic precursor to all other members of the Sia family (Varki and Schauer, 2009). 
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Figure 17. A. Chemical structures of the “four core sialic acid” molecules.  B. Unsaturated and anhydro 

chemical structures of sialic acid. 

1.53 Sia linkage and presentation within the “Sialome” 

The “sialome” represents a subclass of the glycome focusing on particular Sia type, linkage and 

presentation on macromolecular structures (Cohen and Varki, 2010). The glycome denotes a vastly 

diverse set of monosaccharides and polysaccharides present as a repertoire within and on the cell, 

tissue and organism (Varki and Sharon, 2009). Further variation exists between saccharides through 

α or β linkages at any of the several linking positions on each core saccharide unit (Schauer, 2000). 

Within the “Sialome”, Sia is typically found terminally linked on branches of O-glycans, N-glycans and 

glycosphingolipids (gangliosides) (Varki and Schauer, 2009). The more common linkages include: N-

acetyl, N-glycolyl and O-acetyl (Stencel-Baerenwald et al., 2014). The less common linkages found 

are: O-lactyl, O-methyl and O-sulfate groups (Schauer, 2000). Sia sometimes contribute to branches 

on underlying glycans, for example Sia forms side chains on glycosylphosphatidylinositol (GPI) 

anchors (Cohen and Varki, 2010). Further complexity exists in Sia-to-sia linkages (Varki and Schauer, 

2009). These linkages occur at the C2 position, referred to as α-linkages, and result in different 

underlying sugars (Figure 18). The most common Sia α-linkages observed are:  the α-2,3 and α-2,6 to 

galactose (Gal) or the α2,6 to N-acetylgalactosamine (GalNAc) (Varki and Schauer, 2009). Other 

linkages observed include: the α-2,8 and α-2,9 linkages between Sias and the α-2,4 linkage in 

repeating units of echinodermal glycans (Cohen and Varki, 2010). Sia-to-sia linkages form further 
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branched structures upon the underlying sugars/glycans (Cohen and Varki, 2010). These underlying 

glycans can be split into various classes. The N-Glycans are attached via an N-g lycosidic covalent 

bond to asparagine residues in “sequons” on glycoproteins (Stanley et al., 2009). These “sequons” 

are a minimal amino acid sequence (Asn-X-Ser/Thr) to which an N-glycosidic bond can occur (X 

corresponds to any amino acid accept proline) (Breitling and Aebi, 2013). All N-glycans contain a 

common core of Manα-1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn-X-Ser/Thr (Stanley et al., 

2009). 

The O-glycans represent another class, archetypally consisting of GalNAc units covalently linked 

through an O-glycosidic bond to serine or threonine residues of mammalian glycoproteins (Bennett 

et al., 2012). Mucins are O-glycosylated glycoproteins expressed by various epithelial cell types 

either as mucous secretions or transmembrane glycoproteins (Brockhausen et al., 2009). In mucous 

secretions, mucins can be small monomeric (soluble mucins) or large polymeric (gel-forming mucins) 

complexes (Brockhausen et al., 2009). Mucins protect epithelial cells by the prevention of infection, 

dehydration, chemical and physical stress (Brockhausen et al., 2009). Mucins also facilitate the 

passage of materials through the respiratory, digestive or urogenital tracts (Behera et al., 2015). 

Other glycan classes include the glycosphingolipids and are predominantly found in the outer leaflet 

of the plasma membrane (Schnaar et al., 2009). Glycosphingolipids mediate cell signalling, act as 

microbial toxin receptors and are present in cell surface antigens (Schnaar et al., 2009). These 

particular glycans have an ability to form clusters through (cis) hydrogen bond interactions between 

OH and N-Ac functional groups resulting in cluster arrangements on cellular membranes (Todeschini 

and Hakomori, 2008a, Hakomori, 2004). The spatial organisation of glycans into clusters results in 

sialylated microdomains (Schnaar et al., 2014). Two examples of sialylated microdomains are the 

“saccharide patch” and the “glycosynapse” domains (Cohen and Varki, 2014). Presentation, location 

and density of Sia are important for macromolecular binding and cell signalling (Cohen and Varki, 

2014). Individuals suffering from Miller Fisher syndrome (a rare acquired nerve disease resulting in 

paralysis and abnormal muscle coordination (Horton Jr et al., 2011)) generate antibodies that do not 

bind to single isolated gangliosides but bind specifically to ganglioside complexes: GQ1b/GM1 and 

GQ1b/GD1a (Kaida et al., 2006). The erythrocyte binding antigen generated by Plasmodium 

falciparum binds specifically to O-linked Neu5Acα2-3Gal tri- and tetra-saccharides on glycophorin A. 

Glycosynapse domains are known signalling mediators of cell growth, motility and adhesion 

(Todeschini and Hakomori, 2008b).   
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Figure 18. Chemical structures of the various sialic acid linkages found within the “sialome”. 

Multicellular sialic-acid-deficient organisms that express sialic acid binding proteins include: 

plants, molluscs and arthropods (Cohen and Varki, 2010). Although important surface sugars in the 

lineage of animals Sia are found in other branches of life including viruses, bacteria and protozoa 

(Freire-de-Lima et al., 2015). These microorganisms exploit this commonality on host cells and use 

proteins and enzymes that bind or act on sialic acid for invasion, evasion and survival (Taylor, 1996). 

The sialidases are a family of proteins that cleave Sia (Traving and Schauer, 1998). Viral and microbial 

pathogens acquire these enzymes for nutrition and pathogenesis (Traving and Schauer, 1998). 

1.54 Sialidases (EC 3.2.1.18) 

Sialidases (also known as neuraminidases or sialyl hydrolases) were first discovered in the 1940s 

(Varki and Schauer, 2009). They catalyse the removal of Sia within the “sialome” and can be split into 

two categories: exosialidases and endosialidases (Cohen and Varki, 2010, Chan and Bennet, 2012). 

This classification is dependent on the position of hydrolysis, as exosialidases remove terminal Sia 

and endosialidases hydrolyse internal glycosidic bonds within oligomers and polymers (Watts et al., 

2006). Sialidases are widely distributed in vertebrates and microorganisms (viruses, bacteria, fungi, 

mycoplasma and protozoa) (Warren, 1963). Based upon amino acid sequence homology the 

sialidase superfamily has been classified into three glycoside hydrolase (GH) families: GH-33 

(including most simple eukaryotic and bacterial sialidases as well as Trans-sialidases), GH-43 
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(includes viral sialidases) and GH-83 (includes hemaglutinin-neuraminidases) (CAZy, Lombard et al., 

2014). An additional fourth classification for sialidases (GH-58) includes endosialidases present in 

bacteriophages (Kim et al., 2011). Despite their shared structural features (see 1.55 Conservation), 

the linkage and substrate specificities of the sialidases can vary (Kim et al., 2011).   

1.55 Glycoside Hydrolase family (GH-33) 

Trans-sialidases, bacterial sialidases and eukaryotic sialidases make up this class of GH (Lombard 

et al., 2014, CAZy).  Mammalian sialidases have been identified to modulate cell adhesion, 

proliferation/differentiation, metabolism and immunological functions (Fanzani et al., 2012). In 

vertebrates four sialidases have been characterised based upon subcellular location (Miyagi and 

Yamaguchi, 2012). These include an intra lysosomal neuaminidase1 (Neu1), cytosolic neuraminidase 

2 (Neu2), plasma membrane neuraminidase 3 (Neu3) and lysosomal or mitochondrial membrane 

neuraminidase 4 (Neu4) (Miyagi and Yamaguchi, 2012). The human neuraminidase enzymes (hNEU) 

are exosialidases cleaving terminal sialic acid linkages (Fanzani et al., 2012). Neu1 participates in 

lysosomal catabolism of sialoglycoconjugates and cellular immune response (Pshezhetsky and Hinek, 

2011). Abnormalities in Neu1 activity results in the progressive lysosomal storage of oligosaccharides 

and sialylated glycopeptides (Fanzani et al., 2012). This causes Sialidosis, an autosomal recessive 

disease, characterised by firstly milder symptoms including visual defects, myoclonus syndrome, 

cherry-red macular spots, ataxia, hyperreflexia and seizures (Seyrantepe et al., 2003, Lowden and 

O'Brien, 1979).  More severe symptoms can develop later that include: mental retardation, 

dysostosis multiplex, Hurler-like phenotype and hepatosplenomegaly (Seyrantepe et al., 2003).  

Neu2 hydrolyses GM3 gangliosides participating in myotube formation and regulation. Localisation 

of this enzyme is found at a low level within skeletal muscle, brain and liver cells (Chavas et al., 

2005). Neu3 hydrolyses gangliosides involved in signal transduction including GM1 and GD1a 

(Seyrantepe et al., 2004). Neu3 has been implicated to play a role in signal transduction, cell 

proliferation and cell differentiation (Seyrantepe et al., 2003). Neu4 has broad specificity and 

participates in glycolipid catabolism (Yamaguchi et al., 2005). It has also been implicated in 

regulation of GD3 and mitrochondrial apoptosis (Yamaguchi et al., 2005). 

1.56 Bacterial Sialidases 

Bacteria use sialidases as virulence factors to recognise sialic acids exposed on host cell surfaces 

(Severi et al., 2007). Bacteria also use sialidases to scavenge sialic acid as a nutrient source for 

growth (Vimr et al., 2004). Sialidases have been implicated in many bacterial infections for example: 

septicaemia (Pneumococcus, Streptococcus, Bacteroides, Corynebacterium), gas gangrene 

(Clostridium), pneumonia (Streptococcus), peritonitis (Clostridium, Bacteroides), cholera (Vibrio 
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cholerae) and meningitis (Streptococcus B) (Gaskell et al., 1995). Most bacterial sialidases are 

secretory proteins containing signalling peptides cleaved upon secretion (Kim et al., 2011). These 

monomeric bacterial sialidases range in molecular weight from 40 to 150 kDa with several bacteria 

producing isoenzymes/multiple sialidases (Gaskell et al., 1995).  The bacteria producing multiple 

sialidases include Arthrobacter ureafaciens, Clostridium perfringens, Pasteurella multocida, S. 

pneumoniae and Arthrobacter nicotianae (Kim et al., 2011). The regioselectivity and affinity of 

bacterial sialidases to various sialoglyconconjugate substrates varies (Kim et al., 2011). For example, 

Corynebacterium diphtheriae and M. viridifaciens sialidases show a specificity for α(2,6) over α(2,3) 

(Kim et al., 2011). The sialidase isoforms, L, M1, M2 and S from A. ureafaciens show a specificity for 

both α(2,6) and α(2,3) over α(2,8) (Kim et al., 2011). Substrate type can impact on activity as 

V.cholerae sialidase has a higher hydrolase activity of sialic acid linked glycolipids to other sialic acid 

linked glycoconjugates (Kim et al., 2011). Despite substrate and linkage specificity, most bacterial 

sialidases have an ability to hydrolyse a broad range of sialoglycoconjugates containing α(2,3), α(2,6) 

and α(2,8)-linked sialic acids (Juge et al., 2016, Nicholls et al., 2013). To this date, 11 structures of 

bacterial sialidases have been solved and published on the PDB (RCSB, Berman et al., 2000). 

1.56.1 Streptoccocus pneumoniae sialidases 

The genome of S. pneumoniae encodes three sialidases: NanA, NanB and NanC (Xu et al., 2011). 

Screening 342 clinical pneumococcal isolates for NanA, NanB and NanC genes found each to be 

present in 100%, 96% and 51% of these strains respectively (Pettigrew et al., 2006). Colonization of 

the upper respiratory tract during S. pneumoniae infection is promoted by the removal of sialic acid 

from the host’s cell surface glycans (Brittan et al., 2012). NanA is a cell surface anchored sialidase 

(115 kDa) with broad substrate specificity towards  α(2,3), α(2,6) and α(2,8) linkages (Xu et al., 

2008). Upregulation of NanA occurs in the presence of free sialic acid and by interaction of 

pneumococci with host cells (Hentrich et al., Parker et al., 2009). Bacterial survival is aided by NanA 

activity, as sialic acid hydrolysis provides a carbon source for S. pneumoniae (Marion et al., 2011, 

Manco et al., 2006). NanA also aids pathogenesis through surface modification of other bacterial 

surfaces, host defence function/modification and passage across the blood brain barrier (Chang et 

al., 2012). NanA activity has also been implicated in biofilm formation (Parker et al., 2009). 

NanB (78 kDa) is an extracellular secreted sialidase (Xu et al., 2008). The structures of the 

sialidases provide an insight into the substrate selectivities of the sialidases (Xu et al., 2011). The 

structures of the catalytic NanA (Gut et al., 2011) and NanB (Xu et al., 2008) and NanC (Owen et al., 

2015) have been solved within the Taylor group. The active site cavity of NanA is open and flat, 

allowing accommodation of the various types of sialic acid linkage (Xu et al., 2011). The NanB active 
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site cavity is narrow due to the presence of Trp647, sterically hindering α(2,6) and α(2,8) linkages (Xu 

et al., 2011).  The active site cavity of NanC also features a Trp716 creating a narrow cleft for α(2,3) 

specificity (Owen et al., 2015). Further structural differences of Phe396 and Trp581 are observed 

creating a more hydrophobic environment within the active site cavity (Owen et al., 2015). This 

difference enables NanC to convert α(2,3)-sialyllactose into Neu5Ac2en/DANA, a general sialidase 

inhibitor (Owen et al., 2015). In the presence of a high concentration of DANA, NanC can perform 

the reverse reaction to form Neu5Ac (Owen et al., 2015). Although the structure and biochemical 

characterisation provide insight into its kinetic parameters, the function and role of NanC remains 

elusive and is the least studied of the three sialidases (Owen et al., 2015). NanA and NanB are well-

studied sialidases due to their observed importance in pneumococcal infection. 

1.56.2 NanB 

NanB is an intramolecular trans-sialidase that produces 2,7-anhydro-Neu5Ac from α(2,3) 

sialoglyconconjugates (Gut et al., 2008). Sequence homology with other pneumoccocal sialidases is 

low (24% NanA and 46% NanC) (Gut et al., 2008). The pH optimum of NanB is also different to NanA 

at approximately pH 4.5 (NanA pH optima is approximately pH 6.5) (Berry et al., 1996). NanB exists 

as a monomer of 76kDa, consisting of three domains: a concanavalin-like lectin domain, a canonical 

ß-propeller catalytic domain and an inserted third domain (Figure 19) (Xu et al., 2008). These 

structural features are conserved across sialidases (see conservation). 
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Figure 19. Structure of NanB (2VW2). A. Crystal structure of NanB consisting of three domains: catalytic site 

(green), carbohydrate binding domain (blue) and the inserted domain (red). B. Cartoon representation of the 

catalytic site and location of the water channel (waters in red). C and D. Electrostatic surface representation of 

NanB. Images created in PyMOL. Electrostatic surface representation created using CCP4MG. 

NanB also plays an important role in pneumococcal infection. In 2006 in vivo experiments 

showed that NanB was an essential component in the colonisation of Streptococcus pneumoniae 

(Manco et al., 2006). In this paper a NanB neuraminidase deficient mutant was introduced into mice 

by intranasal infection (Manco et al., 2006). This mutant was unable to cause sepsis or persist in the 

blood for longer than 48hrs post infection due to rapid clearance (Manco et al., 2006). In support of 

this, a study in 2012 on a NanB deficient pneumococci mutant D39 strain showed reduced total 

neuraminidase activity (52%) and decreased pneumococci adherence (50-80%) to four epithelial cell 

lines (A549, Hep-2, Detroit 562 and primary culture of nasopharyngeal cells) (Brittan et al., 2012).  

Given the importance of NanB in the virulence of Streptococcus pneumonia it is an identified target. 
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1.57 Trans-sialidase 

In contrast to sialidases that are strict hydrolases, trans-sialidases catalyse the transfer of sialic 

acids from sialoglycoconjugates to acceptor glycoconjugates (Juge et al., 2016). The trans-sialidases 

employ two catalytic functions; the first is hydrolysis of the donor substrate and second transfer of 

the donor to the acceptor. Trans-sialidases preferentially hydrolyse α(2,3)-linked substrate donors 

(Tailford et al., 2015).  

The trypanosomes T. cruzi and T. brucei contain sialidases with trans-sialidase activity (Montagna 

et al., 2002). In T.brucei, the trans-sialidase is expressed in the insect stages of its life cycle (Engstler 

et al., 1992). In T. cruzi the trans-sialidase is expressed in the mammalian stages of the life cycle 

(Schenkman and Eichinger, 1993, Taylor, 1996).  

1.57.1 TcTS Sialidase 

Sialidase activity was first reported in trypomastigotes of T. cruzi in 1983 (Pereira, 1983). This 

activity was found to be absent in amastigote forms of the parasite (Pereira, 1983). This activity was 

later associated with a membrane-anchored trans-sialidase known as the T. cruzi Trans-sialidase 

(TCTS) (Previato et al., 1985). T. cruzi cannot synthesise sialic acid and this trans-sialidase enables the 

parasite to evade the host immune response, preferentially catalysing the transfer of α-2,3 linked 

sialic acid from host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like 

molecules on the parasite’s cell surface (Freire-de-Lima et al., 2015). Donors are β-Gal residues 

linked with α(2,3) sialic acid and not α(2,6) or α(2,8) (Vandekerckhove et al., 1992). The acceptors 

are disaccharides, oligosaccharides terminally linked with β-Gal (Vandekerckhove et al., 1992). The 

second step in the transfer is more efficient than the hydrolysis (Buschiazzo et al., 2000). The TcTS 

structure was solved by Buschiazzo et al., 2002 (Figure 20). This structure provided insight into the 

reaction mechanism (Buschiazzo et al., 2002). TcTS has an N-terminal catalytic domain consisting of 

a canonical β-propeller fold (Buschiazzo et al., 2002). Connected by an α-helix to the catalytic 

domain is a C-terminal lectin/CBM domain (Buschiazzo et al., 2002). Further structural evaluation 

with Michaelis complexes consisting of a point mutation at Asp59 to Ala resulted in structural 

complexes with uncleaved substrate bound (Amaya et al., 2004). Two key residues within the TcTS 

structure are Trp312 and Tyr119 and these form important stacking interactions with the aglycon 

moieties (Amaya et al., 2004, Buschiazzo et al., 2002). The aglycon has few protein hydrogen bond 

interactions but abundant water hydrogen bond interactions (Amaya et al., 2004). The greater 

affinity of TcTS to lactose than Sia corresponds to a hydrophobic driven binding affinity presumably 

from the Trp312 and Tyr119 stacking interaction (Amaya et al., 2004). Investigation of the 

mechanism via a transition state trapping intermediate, 2,3-difluoro-N-acetylneuraminic acid (2,3F-
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Neu5Ac), identified Tyr342 as the catalytic nucleophile (Watts et al., 2003). The stereochemistry is 

retained via a ping pong mechanism (see active site mechanism) (Demir and Roitberg, 2009). 

 

Figure 20. Structure of TcTS (1MS9, 1SOI). A. Crystal structure of TcTS consisting of three domains: catalytic 

site (blue), lectin-like domain (orange) and the α-helix (yellow). B. Cartoon representation of the catalytic site 

and location of the water channel (waters in red). C and D. Electrostatic surface representation of TcTS. Images 

created in PyMOL. Electrostatic surface representation created using CCP4MG.  

TcTS aids host cell recognition and attachment through active site binding to aglycon and sialic 

acid moieties (Neres et al., 2008). Cleavage of the GPI anchor releases TcTS into the bloodstream 

(Neres et al., 2008). The circulating TcTS removes sialic acid from the platelet surface causing 

thrombocytopenia, a symptom of the acute phase of Chagas disease (Neres et al., 2008). TcTS 

represents a potential target for the treatment of Chagas disease and disease progression (Neres et 

al., 2008). Treatment of trypomastigote parasites with sialidase renders them susceptible to 

complement alternative pathway, uptake by macrophages and abolishes lectin induced cell 

agglutination (Colli, 1993).  Treatment of mice with trans-sialidase prior to trypomastigote infection 

in an in vivo mouse study increased mortality rates of mice over a 25 day period (Chuenkova and 

Pereira, 1995). In support of this, genetic immunization of mice with a pool of genes encoding for 

trans-sialidase resulted in protection from a normally lethal challenge of T.cruzi (Fralish and Tarleton, 

2003) 

.  
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1.58 Glycoside Hydrolase family (GH-34) 

The orthomyxoviridae family contains Influenza (Webster et al., 1992). The influenza viruses are 

split into three types: A, B and C (CDC, 2014). Influenza A is coated with haemagglutinin, sialidase 

and M2 ion channel proteins (Chlanda et al., 2015). Influenza A is classed into subtypes based upon 

the two surface proteins hemagglutinin and neuraminidase (Sui et al., 2009). Influenza B however, is 

classified under its genetic lineage (Jumat et al., 2014). The Victoria lineage (B/Victoria/2/87-like) 

and Yamagata lineage (B/Yamagata/16/88-like) have been circulating worldwide since 1983 (Rota et 

al., 1990). Both influenza A and B are clinically relevant as they cause human respiratory infections 

(Biere et al., 2010). Influenza B is less of a disease burden than influenza A (Paul Glezen et al., 2013). 

The influenza sialidases/neuraminidases are exosialidases comprising 11 different subtypes 

(Shtyrya et al., 2009). The influenza virus sialidase is comprised of approximately 470 amino acid 

residues (Shtyrya et al., 2009). Homology between various subtypes is approximately 50%, but strict 

conservation of residues occurs within the active site as a requirement for catalytic function (Arg118, 

Asp151, Arg152, Arg224, Glu276, Arg292, Arg371 and Tyr406 are conserved) (Shtyrya et al., 2009).  

The influenza sialidases are known to perform two critical steps in viral pathogenicity. This 

includes facilitation of virion progeny release and mobility of virus in the respiratory tract (Palese et 

al., 1974, Yang et al., 2014). The influenza neuraminidase is a validated drug target and a number of 

inhibitors of this sialidase have made it to market (see sialidase inhibitors) (Air, 2012). 

1.59 Conservation 

Despite low sequence homology across the four classes of sialidase, all sialidases have an overall 

fold similarity and a common catalytic domain  (Figure 21 and Figure 25) (Buschiazzo and Alzari, 

2008b). 

1.59.1  Active site 

Structural and sequence data of the sialidase superfamily have identified a number of conserved 

residues important for Sia recognition/binding and hydrolysis (Vimr et al., 2004, Vimr, 1994). The 

catalytic domain consists of a six-bladed β propeller topology with eight highly conserved residues in 

the active site (Gaskell et al., 1995). This domain also contains a water channel (Figure 21). The 

conserved residues responsible for Sia recognition and binding include an arginine triad (capable of 

electrostatic interactions directly with the carboxylate of Sia) (Gaskell et al., 1995). The presentation 

of a hydrophobic pocket made up of a multitude of amino acid residues accommodates the N-acetyl 

functionality of Sia (Owen et al., 2015). Both the arginine triad and the hydrophobic pocket are 
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responsible for the spatial orientation of Sia for catalytic hydrolysis (Owen et al., 2015). The glutamic 

and aspartic acid provide the acid catalyst for hydrolysis to occur (Newstead et al., 2005, Chan et al., 

2011). The role of tyrosine in the hydrolysis is not so clear. The conserved tyrosine residue has two 

possible roles: 1) nucleophile attacking the anomeric carbon, or 2) as an electrostatic stabilising 

group for an oxonium ion intermediate (Vimr et al., 2004). Two proposed intermediates within 

sialidase hydrolysis of Sia have been suggested and the role of this tyrosine differs depending on the 

intermediate formed (Morley et al., 2009, Mendonça-Previato et al., 2010).  

 

Figure 21. A. Active site overlay representation of sialidases (VCS (1KIT) in teal, NanI (2VK5) in violet, NanB 

(2VW0) in orange, NedA (1EUR) in light green, NanA (2W20) in dark green, BtSa (4BBW) in pink and RgNanH 

(4X47) in grey). DANA bound in the active site of RgNanH shown in yellow and van der Waals radius 

represented by spheres shown in light blue. Key residues of the RgNanH active site labelled in grey. B. Catalytic 

domain overlay representation of sialidases (VCS (1KIT) in teal, NanI (2VK5) in violet, NanB (2VW0) in orange, 

NedA (1EUR) in light green, NanA (2W20) in dark green, BtSa (4BBW) in pink and RgNanH (4X47) in grey). 

Structures aligned using CCP4MG Gesamt/SSM and figures created using PyMOL®.  

1.59.2 Active site mechanism 

The enzymatic hydrolysis of the glycosidic bond requires a proton donor/acid and a 

nucleophile/base (Davies and Henrissat, 1995). Within this mechanism stereochemistry can be 

preserved (retention) or the stereochemistry can be changed (inversion) (Davies and Henrissat, 

1995, Koshland, 1953). The position of the base within this reaction is key for the retention or 

inversion of stereochemistry at the anomeric carbon (Figure 22). In retaining enzymes the base is 
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within a close proximity to the anomeric carbon (average distance 5.5 Å) whereas in inverting 

enzymes the base is more distant from the anomeric carbon allowing accommodation of a water 

molecule (average distance 10 Å) (Davies and Henrissat, 1995).  

 

Figure 22. Glycosidic hydrolases reaction mechanism of A. retaining hydrolase reaction and B. inverting 

hydrolase reaction. Adapted from Davies and Henrissat., 1995. Schematic created using ChemDraw 12.0. 

Most sialidases proceed with retention of the anomeric carbon. An example of an inverting 

sialidase is the bacteriophage K1F endo-sialidase (Morley et al., 2009). This sialidase lacks one of the 

two acid catalysts, one of the three arginines and the tyrosine nucleophile/base (Morley et al., 

2009). As mentioned above two mechanisms for Sia hydrolysis have been postulated. The first 

mechanism proposed is through the formation of the half-chair oxocarbonium ion (Xu et al., 2011). 

The basic residue in this reaction mechanism is the deprotonated tyrosine and this acts to stabilise 

the oxonium ion formed in the transition state (Buschiazzo et al., 2002). The second is in the 

formation of a sialyl-enzyme intermediate with the tyrosine acting as a nucleophile (Chan et al., 

2011). This was observed using a fluorinated Neu5Ac analogue (2,3-difluoro-N-acetylneuraminic acid 

(2,3F-Neu5Ac)). The position of the electron withdrawing fluorine on C-3 destabilises build-up of 

positive charge, stabilising and increasing the lifetime of the covalent intermediate (Vavricka et al., 

2013). Following the formation of the substrate-covalent intermediate the reactions diverge forming 

different products (Figure 23) (Xu et al., 2011). In the hydrolytic sialidase, α-Neu5Ac is formed from 

an activated water substitution at C-2 (Xu et al., 2011). In the trans-sialidase, sialyllactose is 

produced by the transfer of Sia to a new aglycon acceptor(Buschiazzo et al., 2002, Demir and 
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Roitberg, 2009). In the intramolecular sialidase, the nucleophile is the C-7 hydroxyl forming an 

intramolecular bond (Figure 23) (Xu et al., 2011).  

 

 

Figure 23. Reaction mechanism of the Streptoccocus pneumoniae sialidases (NanA, NanB and NanC). Adapted 

from Xu et al., 2011. Figure created using ChemDraw® and PowerPoint® 14.6. 
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Figure 24. Reaction mechanism TcTS. TCTS trans-sialidase sialyl transfer with lactose donor and acceptor moieties. 

Hydrolysis reaction can occur and a water molecule takes the role of the acceptor lactose. Adapted from Demir and 

Roitberg, 2009. Figure created using ChemDraw® and PowerPoint® 14.6.  

As hydrolysis of Sia by definition involves use of water for substitution, not all sialidases 

hydrolyse Sia (Owen et al., 2015). NanC cleaves Sia in the absence of water producing its primary 

reaction product Neu5Ac2en/DANA (Owen et al., 2015). The closer vicinity of Asp-315 (3.2Å) to the 

C-2 of substrate in NanC causes direct deprotonation of C-3 via Asp315 (Owen et al., 2015). NanC is 

observed to hydrolyse DANA (when in excess) into Neu5Ac2en showing mechanistic diversity (Owen 

et al., 2015). 
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1.59.3 Water channel 

The conserved β-hairpin topology creates a centre pore in the catalytic domain (Figure 25). This 

central pore is comprised of a variety of solvent accessible amino acids leading to the formation of a 

water channel. This water channel leads from one face of the β-hairpin to the active site of the 

protein terminating at the conserved catalytic tyrosine (Xu et al., 2008). The importance of this 

central pore/water channel is undefined, yet the conservation of this feature within the catalytic 

domain of sialidases is indicative of its significance to its evolutionary function (Luo et al., 1998, 

Crennell et al., 1996).  With some exceptions sialidases cleave Sia in the presence of a water 

molecule. A hydrophilic pocket and residues contributing to binding of a water molecule would likely 

increase the probability a water molecule would be in the correct space, time and orientation for 

hydrolysis/substitution to occur at the anomeric carbon (Buschiazzo et al., 2000).  
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Figure 25. A. NanB 3D structure alignment of SWISSPROT database. Aligned against NanL, NanH and NanA. 

Sausage diagram representing homology between structures aligned. Red residues represent homologous 

residues in NanL, NanH and NanA. The grey residues represent the differences in residues between NanL, 

NanH and NanA. The RMSD is represented by the width of the area. Large structural deviation can be seen in 

the CBM domain and small structural deviation can be seen in the catalytic domain. Figure created using 

ENDscript 2.0, PyMOL® and PowerPoint®. Table 1. Multiple comparison of 15 published structures of GH-33 

sialidases on the PDB. Pink cells represent the sequence similarity of the published GH-33 sialidase structures 

(values representated as a ratio). The grey cells represent the structural similarity in RMSD (values in Å) of the 

published GH-33 sialidase structures. All values calculated by PDBefold. Figures created using ENDscript® 2.0 

and PowerPoint®. 

In functionally related enzymes, glycosidases, a conserved water channel exists within the GH-1 

family. Seven internal water molecules are conserved within 90% of known structures published on 

the PDB (Teze et al., 2013). Further analysis of Thermus thermophilus β-glycosidase through 

deuterium-exchange mass spectroscopy identified quick amide backbone hydrogen-deuterium 

exchange to occur in peptide L117-A125, a peptide indicated to be buried within the crystal 

structure (Teze et al., 2013). Residue W120 in this peptide forms contacts with catalytic residue E164 

and solvation of this peptide may have functional significance (Teze et al., 2013). Molecular 

dynamics (MD) simulations identify three long and narrow water clusters of which one is speculated 

to perform a role in the function of the GH-1 family (Teze et al., 2013). The authors speculate that 

two functional possibilities exist for the water clusters; either they provide the catalytically added 
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water for substrate hydrolysis or, fast dehydration of the active site is enabled to accommodate 

incoming substrate due to nanosecond water exchange rates (Teze et al., 2013). Within the GH117 

family a chain of seven water molecules located in the channel has been suggested to deliver the 

catalytically added water molecule (Rebuffet et al., 2011). However, the exact role of the water 

channel is yet to be determined. It is clear from molecular dynamic and crystallographic studies that 

water channels are important for the efficient proton transfer through chains of hydrogen bonds, 

hydration, dehydration or active site access for a number of enzymes, including serine proteases, 

kinases, cytochrome P450 and ATP-synthase (Teze et al., 2013, Knight et al., 2009, Meyer, 1992, 

Gohlke et al., 2012, Oprea et al., 1997).  

1.59.4  “Asp boxes” and F/Y-R-I-P motif 

The Asp-box is a recurring motif found within the sialidase six-bladed β propeller topology 

(Quistgaard and Thirup, 2009). The Asp-box sequence enables a β-hairpin loop stabilised by 

alternating hydrogen bonds (Quistgaard and Thirup, 2009). Despite low sequence homology 

between sialidases, these repeated “asp-boxes” are found in topologically identical positions in the 

β-hairpin loop (Copley et al., 2001). Clearly an important structural motif, but the function of the 

“asp-box” is still to be identified (Copley et al., 2001).  

Asp-box motifs contribute to the formation of the water channel mentioned above.  Conserved 

water molecules are found bound to two residues in Asp-box (serine and threonine) motif. These 

conserved water molecules form integral parts of the Asp-box motif forming hydrogen bonds 

between the β-strands (Copley et al., 2001).  

Other conserved sections include an N-terminal motif: T/FYRI/VP. This motif contains an arginine 

residue (arginine triad) important in substrate recognition/ orientation within the active site 

(Giacopuzzi et al., 2012, Monti et al., 2010). 

1.60 Current Inhibitors of Sialidases 

The first sialidase inhibitor reported was in the 1960s (Edmond et al., 1966, Rafelson Jr, 1962, 

Taylor, 2003). Rafelson published a review examining 85 compounds against sialidases (Rafelson Jr, 

1962). Within this review, Rafelson noted NANA (C11H19NO9) was the most active competitive 

inhibitor and glutathione, cysteine and ascorbic acid acted as sialidase inhibitors (Rafelson Jr, 1962). 

Rafelson used NANA as a chemical tool to differentiate the kinetics between two strains of influenza 

virus (Rafelson Jr, 1962). In 1966, Edmond et al. published a paper attempting to find antivirals 

based around sialidase/neuraminidase inhibition (Edmond et al., 1966). Rather than synthesise 
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compounds structurally related to NANA a known competitive inhibitor at the time, they looked for 

another class identifying N-substitued oxamic acids as inhibitors (Edmond et al., 1966). Further 

studies and investigations around NANA led to the discovery of DANA (C11H17NO8), a general 

sialidase inhibitor mimicking the transition state of Sia hydrolysis (Edmond et al., 1966). The threat 

of a major human influenza pandemic is the key stimulus for the development of new sialidase 

inhibitors (Von Itzstein and Thomson, 2009). The influenza virus belonging to the orthomyxoviridae 

family is split into three serologically distinct types: A, B and C (Couch, 1996). Serological types A and 

B are responsible for annual incidences of human pathogenic disease whereas type C causes mild 

sporadic upper respiratory infections in children (Wong and Webby, 2013, Moriuchi et al., 1991). 

Influenza therapeutics, rimantidine and amantadine (adamantane-based M2 ion channel protein 

inhibitors), at that time were not extensively used due to CNS side effects, redundancy against 

influenza B infections and the rapid rise in drug resistant influenza A viral strains (Dong et al., 2015, 

Schnell and Chou, 2008, Zimmerman et al., 1997).  New therapeutic agents were sought with 

influenza virion surface proteins hemagglutinin and influenza neuraminidases (NA) a major focus of 

drug development due to their role in virus infection. The published structures of hemagglutinin and 

NA provided opportunities for the development of new and specific inhibitors against the influenza 

A and B viral strains (von Itzstein, 2007). The unfavourable geometry of the sialic acid binding site in 

hemagglutinin resulted in failed attempts to generate potent selective inhibitors of this protein 

(Wade, 1997). Furthermore, the sporadic appearance of mutations within regions of this binding site 

reduced potency of designed inhibitors and added complexity to SBDD (Al-Majhdi, 2009). The 

influenza A and B NA are comparatively rigid with only minor structural changes in binding site 

conformation and geometry (Russell et al., 2006). The catalytic sites of these enzymes feature a high 

number of charged amino acids for hydrogen and electrostatic bonding to sialic acid and are 

invariant, indicating possible sub-type independent targeting (Zhang et al., 2008). The vital role 

played by the influenza sialidase in viral release and spread in the influenza A and B life cycle 

confirmed the validity of the target and provides a pharmacological strategy for drug development 

(von Itzstein, 2007).   

Synthesis of DANA analogues led to a better inhibitor of influenza NA, 2-deoxy-2,3,dehydro-N-

trifluoro-acetylneuraminic acid (C11H14NO8F3, FANA) with a Ki=0.8 (Meindl et al., 1974b). FANA no 

activity in vivo, despite having the strongest potency of all previously developed sialidase inhibitors 

(von Itzstein, 2007). It was thought that metabolism and/or rapid clearance caused weak in vivo 

efficacy (von Itzstein, 2007). This data along with the recently published structure of DANA bound to 

influenza NA (solved in 1993 by P. Bossart-Whitaker et al.) enabled the development and 

advancement of better sialidase inhibitors through SBDD (Bossart-Whitaker et al., 1993, von Itzstein 
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et al., 1993). As a consequence, four neuraminidase inhibitors (NAIs) are currently clinically 

approved for flu: Oseltamivir (C16H28N2O4, Tamiflu®), zanamivir (C12H20N4O7, Relenza®), peramivir 

(C15H28N4O4, Rapivab®) and laninamivir octanoate (C21H36N4O8, Inavir®) (Ison, 2011) (Figure 26). 

 

Figure 26. The chemical structure of different sialidase inhibitors. 

Zanamivir (Relenza) was the first sialidase inhibitor rationally designed through SBDD (Taylor, 

2003). Using DANA as a scaffold, GRID (a computational programme for in situ drug design) was used 

to optimise binding. From this SBDD a 4-guanidino group was identified as a functionality markedly 

favourable for influenza NA selectivity and potency (further discussed in 1.72 computer aided 

design) (von Itzstein et al., 1993).  Important interactions of zanamivir include hydrogen bond and 

electrostatic interactions of the carboxylate with an arginine triad: Arg118, Arg292 and Arg371 (von 

Itzstein et al., 1993). Other hydrogen bond interactions include: the guanidino group with Glu227 

and Glu119, the C8 – C9 hydroxyl groups with Glu276 (forming a bidentate bond), and the C5 

acetamido group carbonyl oxygen and N-H with Arg152 and a buried water molecule respectively 

(von Itzstein et al., 1993). Zanamivir was approved for clinical use by the FDA in 1999 (Oxford, 2000). 

Zanamivir is a potent NA inhibitor, but suffers from poor oral bioavailability, rapid elimination and a 

small volume of distribution (Li et al., 1998, Hayden et al., 1997). Formulated as an inhalant for twice 

daily administration, zanamivir also has patient compliance concerns (Shanmugam, 2015). Based 

upon the discovery platform of zanamivir, oseltamivir was developed as a pro-drug for oral 

administration (von Itzstein, 2007). Core templates of cyclohexane, cyclohexane shikimic acid and 
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quinic acid were used in the discovery of oseltamivir (von Itzstein, 2007). Three key strategies were 

employed to develop an orally administered NA inhibitor: 1) positioning of the double bond, 2) 

replacement of the glycerol moiety with a lipophilic group and 3) pro-drug development to improve 

oral bioavailability (von Itzstein, 2007). The positioning of the double bond is critical to mimic the 

putative transition state sialosyl cation (von Itzstein, 2007). Movement of the double bond between 

C2 – C3 to C2 – C7 results in a >32 fold decrease in potency (von Itzstein, 2007). Replacement of the 

glycerol group was explored to improve lipophilicity while maintaining potency (von Itzstein, 2007). 

This led to the 3-pentyl ether side chain (von Itzstein, 2007). Structural information from a ligand-

protein crystal complex showed an induced fit with changes in the active site upon binding, in 

particular an unpredicted movement of Glu276 towards Arg224 created a hydrophobic pocket (von 

Itzstein, 2007). This movement is essential for oseltamivir’s potency allowing accommodation of the 

branched alkyl ether (Sriwilaijaroen et al., 2016). This change resulted in improved lipophilicity from 

LogP -4.1 for zanamivir to LogP -2.1 for oseltamivir carboxylate (Lindegardh et al., 2011, Bahrami et 

al., 2008, Oo et al., 2003). A prodrug strategy was employed, as the addition of this lipophilic group 

was not sufficient to improve bioavailability despite the improvement in lipophilicity (von Itzstein, 

2007). The esterification of the carboxylate to the ethyl ester resulted in a significant change in 

lipophilicity (LogP = 0.36) (Oo et al., 2003). In vivo endogenous esterases hydrolyse the ester to form 

the active NA inhibitor, oseltamivir carboxylate (Rautio et al., 2008). Oseltamivir was FDA approved 

in 1999 and is currently marketed as Tamiflu® (Chand et al., 2005, Lindemann et al., 2010). Both 

oseltamivir and zanamivir are first generation NA inhibitors (Vavricka et al., 2013). 

Second generation NA inhibitors followed on from the success of oseltamivir and zanamivir. 

Laninamivir is another example of a pro-drug where its active component contains a similar active 

structure to zanamavir but the C7 hydroxyl is methylated (De Clercq, 2013). The prodrug form of 

laninamivir is laninamivir octonate ester, with esterification on the C9 hydroxyl rather than on the 

carboxylic acid (De Clercq, 2013). This prodrug form is slow to eliminate lasting up to six days after a 

single inhalation in healthy volunteers. This long lasting pro-drug is also active against H274Y (H275Y 

in N1 numbering) mutated oseltamivir-resistant virus (Feng et al., 2012). This form of NA inhibitor 

marketed as Inavir® was approved in Japan in 2010 for the treatment of influenza (Feng et al., 2012, 

De Clercq, 2013). Another second generation NA inhibitor is peramivir (Król et al., 2014). Further 

structure based drug design on influenza NA led to the discovery of a series of cyclopentene 

derivatives (von Itzstein, 2007). From these derivatives (1S, 2S, 3S, 4R)-3-(1S)-1-acetylamino-2-

hydroxycyclopentene carboxylic acid (Peramivir, BCX-1812) was developed as a highly selective 

inhibitor of influenza A and B (Smee and Sidwell, 2002). In vitro studies of peramivir ran in parallel 

with oseltamivir carboxylate and zanamivir found peramivir to be more or equipotent (Bantia et al., 
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2006). Peramivir remains potent against the S247N influenza virus mutation but showed a decreased 

potency against the H274Y (H275Y in N1 numbering) influenza virus mutation (Abed et al., 2012). 

This Tyr side chain residue induces a shift in Glu276 resulting in weaker hydrophobic interactions 

with the pentanyl functional group of peramivir and oseltamivir (Steinmetzer et al., 2015). Peramivir 

has passed through clinical trials and was in use for emergency administration in 2009 during the 

H1N1 pandemic (Castillo et al., 2010).  Peramivir marketed as Rapivab® was approved in 2014 as a 

single intravenous dose for the treatment of acute uncomplicated influenza (McLaughlin et al., 2015, 

Van Epps, 2016). Retrospective studies of hospitalized influenza patients observed that NAIs reduce 

viral replication and improve survival (Hernandez et al., 2011, Lee et al., 2010). Despite the success 

of these antivirals, new antivirals are needed to circumvent limitations of treatment-emergent 

antiviral resistance and variable resistance observed amongst differing strains.  

Replacement of the carboxylate in sialic acid mimetics have shown to increase potency through 

improved electrostatic interactions with the arginine triad (Shie et al., 2011). Phosphonate 

derivatives of DANA (4-amino-1-phosphono-DANA) and zanamivir (phosphono-zanamivir) result in 

more extensive hydrogen bonding interactions and stronger electrostatic interaction with the 

arginine triad (Shie et al., 2011). Apart from increased potency, these phosphonate derivatives are 

nontoxic to human 293T cells and have nanomolar EC50 values against oseltamivir-resistant strains 

(Feng et al., 2012). 

1.61 Current Inhibitors of NanB 

To our knowledge the Westwood group is the only group to develop and characterise non-

generalised sialidase inhibitors of S. pneumoniae sialidases. Within the Westwood group an active 

site targeted NanB inhibitor has been developed and characterised (Brear et al., 2012). This inhibitor 

was developed on the basis of a CHES molecule, which was found serendipitously bound in the 

protein crystal structure solved in the Taylor lab by Xu et al., 2008. CHES was used as a minimal 

binding fragment and optimised based upon crystallographic structural information provided from 

ligand-protein complexes (Brear et al., 2012).  
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Figure 27. A. NanB surface representation with CHES bound within the active site cavity. B. Interactions of 

CHES (in grey) with residues in the active site (side chains in yellow and catalytic domain in green).  C. i). 

Surface and van der Waals radius of CHES within the active site cavity. ii). Surface and van der Waal radius of 2-

[(3-Chlorobenzyl)ammonio]ethanesulfonate within the active site cavity. D. Schematic representation of the 

binding of 2-[(3-Chlorobenzyl)ammonio]ethanesulfonate in the active site. Hydrogen bonds are represented by 

dashed lines and hydrophobic contacts are represented by a green line. Figures created using PyMOL®, CCP4 

QTMG® and POSEVIEW®. 

The most potent N-substituted analogue developed was 2-((3-

chlorobenzyl)ammonio)ethanesulfonate with an IC50 of 38.9±0.8μM. This CHES analogue at 500μM 

inhibited NanA at 0.3 (±2.9) exhibiting some selectivity between the S. pneumoniae sialidase family 

(Brear et al., 2012). Although this inhibitor appears to be selective between these sialidases it has 

not been tested against other intra-molecular sialidases and would likely be unselective against 

these enzymes due to the higher active site homology. 
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1.62 Current Inhibitors of TcTS 

Following on the success of the Influenza neuraminidase inhibiting strategy, the current classes 

of inhibitors for TcTS have focused mainly on substrate mimetics (Neres et al., 2008). Despite 

sequence homology with other bacterial and viral sialidases slight variations in the potency of 

transition state mimetics is observed for TcTS (Paris et al., 2005, Neres et al., 2008). An oxonium ion 

transition state analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (Neu2en5Ac) is around 

100 times less potent against TcTS than viral and bacterial sialidases (Todeschini et al., 2000, Ratier 

et al., 2008). The crystal structure of TcTS was solved by Buschiazzo et al.,2002. In this structure sialic 

acid binds in a slightly tilted conformation as compared with other sialidases and this may explain 

the lack of potency of Neu2en5Ac against TcTS (Buschiazzo et al., 2002).  Lactose binding to its 

pocket is mainly hydrophobic with one protein hydrogen bond contact (Asp52) (Amaya et al., 2004). 

Sialic acid mimetics have been observed as weak inhibitors of TcTS (Neres et al., 2009). Zanamivir 

and Peramivir do not inhibit TcTS at low mM concentrations (Neres et al., 2008). The covalent 

sialidase inhibitor, 2,3-F-Neu5Ac inhibits TcTS time dependently, but requires very high 

concentrations (20mM) for complete inactivation (Watts et al., 2003). The phosphonate derivatives 

of sialidase inhibitors do not inhibit TcTS despite improved potency against influenza neuraminidase 

(Neres et al., 2008).  

A lactose binding site exists adjacent to the sialic acid binding site on TcTS (Buschiazzo et al., 

2002). This is absent in other sialidases and enables more possibilities for exploitation of a chemical 

tool. This however may represent a difficulty in inhibitor development as strong potency may 

require binding to both pockets in the binding site. This may explain the reason why weak inhibitors 

have only been identified so far as a two pocket binding approach presents additional optimisation 

difficulties. Binding within the lactose pocket is important for potency against TcTS. Lactitol, a 

lactose derivative, is not a conventional TcTS inhibitor, but rather a competitive acceptor of Sia. 

Lactitol does not inhibit TcTS enzymatic activity, but was determined to have an IC50 of 0.57mM 

(Neres et al., 2008). Lactitol prevents sialylation of parasitic mucins and diminished T. cruzi infection 

of cultured mammalian Vero cells by 20-27% in a cellular infection assay (Neres et al., 2008). 

Hydrophobic interactions and potential for aromatic stacking interactions within the lactose binding 

pocket have led to the discovery of pyridoxal phosphate, benzoic acid and pyridine-2-carboxylic acid 

inhibitor scaffolds as TcTS inhibitors (Table 2).  

Important residues located within the active site include the arginine triad (Arg314, Arg245, 

Arg35), Asp96, Asp59, Tyr312 and Tyr119 (Buschiazzo et al., 2002). These residues are important for 

ligand interactions in both the lactose and Sia binding pocket (Buschiazzo et al., 2002). A 
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computational and chemical library screening approach used these residues as a selection 

strategy/application filter to identify a benzothiazoyl as a novel inhibitor scaffold against TcTS. The 

Evotec in house supplier database was used containing approximately 2.5 million chemical entities 

narrowed down to 1.5 million by drug-likeness filters (Neres et al., 2009)(Lipinski’s rules see 

Medicinal Chemistry). Rescoring was performed to give enrichment and ligands considered with high 

scores from both scoring functions (Neres et al., 2009). Ligands also found to hydrogen bond with 

Arg314, Arg245, Arg35, Asp96, Asp59 and hydrophobic interactions with Tyr312 and Tyr119 were 

considered as these interactions are observed in co-crystal structures of TcTS (Neres et al., 2009). 23 

compounds were selected, purchased and assayed. 3-benzothiazol-2-yl-4-phenyl-but-3-enoic acid 

was identified as the most potent scaffold, however further kinetic analysis identified this inhibitor 

as non-competitive or a mixed inhibitor (Neres et al., 2009)(Table 2). The authors did not examine 

selectivity and it is likely that this compound suffers from promiscuity.  
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Table 2. Table of current published inhibitors of TcTS. 
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Further difficulties in developing inhibitors are presented by conformational changes observed 

within apo and holo crystal structures (Buschiazzo et al., 2002). In the holo enzyme, Try119 flips up 

and into an open conformation for lactose binding (Buschiazzo et al., 2002). In the apo enzyme 

Try119 flips down filling the pocket and forming the closed conformation (Buschiazzo et al., 2002). 

Another conformational switch between active and inactive states occurs with Tyr342 (Buschiazzo et 

al., 2002). In the active state, a hydrogen bonding interaction exists between Tyr342 and the 

carboxylate oxygen of Glu230, orientating the tyrosine underneath the scissile glycosidic linkage 

(Buschiazzo et al., 2002). This is thought to stabilise the substrate and/or the intermediate formed in 

the reaction (Buschiazzo et al., 2002). In unliganded crystal structures, Tyr342 does not form a 

hydrogen bond with Glu230 and is suggested to be in an inactive state (Buschiazzo et al., 2002). The 

importance of these conformational changes is unclear in terms of inhibitor design, i.e. is it 

important to design an inhibitor that stabilises the open or closed conformation for lactose binding. 

A list of currently published inhibitors of TcTS has been compiled (Table 2.). Currently the most 

potent inhibitor to date is an anthraquinone. This scaffold was identified from a natural product 

library. SAR analysis led to 6-chloro-9,10-dihydro-4,5,7-trihydroxy-9,10-dioxo-2-

anthracenecarboxylic acid (Arioka et al., 2010). To this date no inhibitor-protein crystal structure 

complex exists on the PDB. Poor inhibition observed for current TcTS inhibitors likely limits the 

success of these tools for in vivo and in vitro T.cruzi infection assays. It is clear new potent chemical 

tools are needed for TcTS to validate the sialidase as a drug target. 

1.70 Rational Design  

Rational design is the major component of reverse chemical genetics (Spring, 2005). A rational 

approach to drug discovery only emerged 50-60 years ago when the behaviour of a drug could be 

correlated to its intrinsic physiochemical properties (Adam, 2005).  In a target centric approach 

modern chemical tool/drug design is a use of medicinal chemistry, structural biology, computational 

chemistry and pharmacology (Satyanarayanajois and Hill, 2011). This combined knowledge allows 

the design of molecules with an appreciation of the binding and physiochemical properties required 

of an optimal modulator. This sub-chapter will discuss the uses of these disciplines that enable 

intuitive approaches to chemical tool/drug design.  
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1.71 Medicinal chemistry 

Medicinal chemistry is the core of small molecule drug development (Hann and Keserü, 2012).  

Medicinal chemists prepare appropriate compounds for biological study (Lombardino and Lowe, 

2004). The use of medicinal chemistry includes: the evaluation of structure activity relationships, 

chemical synthesis, purification, the disease requirement and the identification of the key 

physicochemical properties appropriate for good bioactivity (Lombardino and Lowe, 2004). In 

particular, oral ingestion is the preferred route of drug administration (Verma and Garg, 2001). Post 

analysis of drug success and failure has led to a series of guidelines for obtaining this goal. As such 

these guidelines have impacted on small molecule drug design (Cumming et al., 2013). Lipinski and 

co-workers in 1997 published a ‘rule of five’ (RO5) based upon observations of drugs in phase II and 

later development (Lipinski et al., 2012, Lipinski et al., 1997). They proposed that drug permeability 

and adsorption were more likely when the molecular weight is <500, LogP is <5, hydrogen bond 

donors <5 and hydrogen bond acceptors <10 (Livingstone and Davis, 2011). 

The RO5 is useful if the drug makes use of passive diffusion (Livingstone and Davis, 2011). In 

instances where membrane transporters are used in permeation these guidelines no longer apply 

(Lipinski et al., 1997). In these observations failing one of these RO5 conditions is considered 

acceptable, however failing two conditions is not (Livingstone and Davis, 2011). Drugs that have 

failed two or more are rarely observed to pass through clinical trials (Livingstone and Davis, 2011). 

As a consequence this concept has gained wide acceptance as an approach to reduce attrition in 

drug discovery (Leeson and Springthorpe, 2007). Critical properties in defining compound quality 

include: log P, pKa, log D, solubility and hydrogen bonding descriptors (Gleeson et al., 2015). Log P is 

a measure of lipophilicity that represents the affinity of a molecule for a lipophilic environment 

(Chen and Weber, 2007). It is an important feature for solubility, binding and permeability (Fauber et 

al., 2014). Many compounds have had their log Ps measured experimentally at 20°C in an n-

octanol/water partition system (Livingstone and Davis, 2011). These measurements are compiled in 

a database and used for a basis of prediction algorithms for log P calculations, the most popular 

being CLOGP (Leo et al., 1975). When a compound contains an ionisable centre the distribution 

within n-octanol and water differ depending on the pH of the aqueous phase (Livingstone and Davis, 

2011). LogD is the 1-octanol-water coefficient at various pH values (Leeson and Springthorpe, 2007). 

Ionisation of the molecule is an important feature for membrane diffusion (Kerns and Di, 2003).  

Drug design strategies include quantitative structure-activity relationships (QSAR) (Livingstone 

and Davis, 2011). Regressional analysis is used to correlate physicochemical parameters with activity 

values. The Topliss scheme/series is one such QSAR approach aimed at identifying electrostatic 
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properties that impact on potency (Cherkasov et al., 2014). The Topliss series is an operational 

scheme used for maximising analogue potency as early in the series as possible (Topliss, 1972). Two 

Topliss schemes exist in practice: one for aliphatic substituents and one for aromatic substituents 

(Figure 28) (Austel, 1983). These schemes consider both electronic and hydrophobic features and the 

impact on biological activity (Topliss, 1972). 

 

Figure 28. A schematic of the Topliss Scheme. The activity of the next analogue can be more (M), equal (E) or 

less (L) active. Sterics, hydrophobicity and/ or electron withdrawing properties impact on the activity and the 

result indicates the route followed for substitution (Topliss, 1972). 

An assumption is made that the “lead” compound possesses a single mono-substituted alkyl 

chain or aromatic ring. The 4-Cl possesses positive π and σ values relating to more hydrophobic and 

electron-withdrawing properties (Jorge et al., 2011). The synthesis of the next analogue depends on 

the impact these properties have on biological activity (Jorge et al., 2011). If potency improves then 

increasing these properties would likely improve biological activity (Jorge et al., 2011, Topliss, 1972).  

Ligand efficiency metrics are measures of potency correlated to physical properties (Hopkins et 

al., 2014). These metrics can be correlated to any physical property, but the most frequently used 

are heavy atom count (HA) and lipophilicity (Hopkins et al., 2014). Further considerations include 
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toxicology (Venkatesh and Lipper, 2000). The human Ether-à-go-go Related Gene (hERG) is the inner 

pore forming region/α subunit of a potassium channel responsible for repolarisation of cardiac 

muscle (Sanguinetti and Tristani-Firouzi, 2006). When a compound binds in this channel it blocks 

cardiac muscle repolarisation causing a QT prolongation that can induce cardiac arrhythmia 

(Sanguinetti and Tristani-Firouzi, 2006). Pre-clinical candidates that have been evaluated to bind to 

hERG can undergo clinical trials (Redfern et al., 2003). However, clinical trials of drugs known to bind 

to this channel are expensive, longer and more extensive (Witchel, 2011, Fermini and Fossa, 2003). 

Early detection and avoidance of hERG inhibition is promoted throughout early drug development 

(Hefti, 2008). General features of hERG blockers include: a basic amine, hydrophobicity (clog P >3.7), 

absence of a negatively ionisable functionality and a low number of oxygen hydrogen bond 

acceptors (Aronov, 2005). Removing any of these features would likely decrease affinity of a 

compound for the hERG channel (Aronov, 2005).  

1.72 Structure-based Design 

Structure-based drug design (SBDD) aims to identify and optimise interactions between ligands 

and the target molecule (Lounnas et al., 2013). Once a target has been identified, X-ray 

crystallography, NMR and homology modelling are the primary methods for obtaining structural 

information (Anderson, 2003). In structure-based design multiple iterative cycles of analysis and 

further development are performed before a ‘lead’ is generated (Anderson, 2003). The first cycle 

involves structure determination (including: cloning, purification and structural determination of the 

target) and identification of an initial ‘hit’ (fragment or full compound HTS). Additional cycles start 

when a promising ‘hit’ has been identified. Determination of the hit-target complex and further 

optimisation for potency is performed (Anderson, 2003). The optimised ligand is then subjected to a 

repeat of ligand-target structure determination and further optimisation (Anderson, 2003). A further 

cycle may exist in this process for optimisation of medicinal chemistry parameters including 

improving bioavailability and reducing toxicity issues. In silico docking is another approach to hit 

identification and optimisation (Kitchen et al., 2004) (See Computational Design).  

In the optimisation of a ligand a number of energy considerations are needed in its design 

(Fenley et al., 2012). The Gibbs free energy (ΔG) of binding dictates binding affinity and is the sum of 

two energy terms, enthalpy (ΔE) and entropy (ΔS) (Du et al., 2016).  In order to achieve high binding 

affinity both energy terms need to contribute favourably (Freire, 2008). The first energy term 

enthalpy is a difficult parameter to optimise (Freire, 2008). The formation of favourable new 

hydrogen bonds and van der Waals contacts with the protein would improve enthalpy, but conflict 

can occur with the unfavourable penalty of polar group desolvation (Freire, 2008). Solvation of the 
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ligand and binding site is vital in the energetics of binding (de Beer et al., 2010).  Desolvation of polar 

groups carries an enthalpic cost in the order of 8 kcalmol-1 at 25°C (Freire, 2008). Desolvation of non-

polar groups is one order of magnitude lower (Freire, 2008). Hydrogen bonds and electrostatic 

interactions have a narrow tolerance of approximately 0.2 Å for both angle and distance (Anderson, 

2003). If the distance and angle are sub-optimal in its binding the enthalpic contribution becomes 

unfavourable due to the desolvation penalty (Freire, 2008). Neutral hydrogen bond distances range 

from 2.7-3.2 Å and charged hydrogen bonds with carboxylates range from 2.6-3.0 Å (Davis and 

Ward, 2014). The hydrogen bond is oriented to approach the lone pair of the acceptor and is 

frequently observed to adopt a donor-hydrogen-acceptor angle of >150˚ (Davis and Ward, 2014). 

A perfect conformational fit of the ligand with the protein maximises van der Waals contacts 

improving potency. Furthermore ligand geometry and conformation is equally important as energy 

minima or low energy conformations improve potency (Bissantz et al., 2010). The development of 

human carbonic anhydrase II (HCA II) inhibitor is an example of the importance of correct ligand 

conformation (Baldwin et al., 1989). Similar binding modes of two enantiomers of the prototype lead 

MK-927 within the X-ray complex structure could not explain the 100 fold difference in potency 

(Talele et al., 2010, Bissantz et al., 2010). Quantum mechanics calculations identified the R 

conformation to be suboptimal with the N-S-C-S dihedral angle to have a calculated strain of 

1kcalmol-1 (Talele et al., 2010). Further conformational difference occurs at the 4-isobutylamino 

substituent (Talele et al., 2010). In the S enantiomer the side chain is trans whereas in the R 

enantiomer it is cis (Talele et al., 2010). Ab initio calculations identified the trans geometry to be 

preferred by 1kcalmol-1 (Talele et al., 2010). These two features explain the marked improvement in 

potency between two enantiomers and the importance of ligand conformation (Talele et al., 2010). 

Preferred conformations can be exploited through the use of hydrogen bond donor and acceptor 

regions within close proximity creating a temporary ring system (Kuhn et al., 2010). A 

thermodynamic equilibrium exists between the closed and open conformations where in the open 

form polar substituents are exposed making the molecule more soluble (Kuhn et al., 2010). 

Intermolecular hydrogen bonds can restrict the ligand in the favourable ligand-protein conformation 

shifting the equilibrium (Kuhn et al., 2010). In the closed form polar substituents are hidden 

increasing lipophilicity (Kuhn et al., 2010). As such the formation of intramolecular hydrogen bonds 

can impact on solubility, permeability and the lipophilicity of molecules (Kuhn et al., 2010). 

Intermolecular hydrogen bonds preferentially have angles greater than 150° and are close to linear 

(Kuhn et al., 2010). These intermolecular bonds are favoured when five or six membered rings are 

formed (Kuhn et al., 2010). The size of the ring system can impact on angle geometry and bond 

distances. The most common intermolecular hydrogen bond formation was observed in six-
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membered rings (Kuhn et al., 2010). The constraints of the six membered rings however resulted in 

less optimal angles for intermolecular hydrogen bonds of 130° to 140° (Kuhn et al., 2010). Five 

membered rings have smaller angles and longer distances and should not be classed as classical 

hydrogen bonds but as favourable electrostatic interactions (Kuhn et al., 2010). The introduction of 

an intramolecular hydrogen bond increased brain penetration for an NK1 antagonist (Ashwood et 

al., 2001). By the same intramolecular hydrogen bond inclusion oral absorption was increased for a 

luteinizing hormone-releasing hormone receptor antagonist developed by Takeda (Sasaki et al., 

2003).  

Entropy the second energy term, is easier to optimise (Freire, 2008). Replacing well-ordered 

water molecules in the binding site will increase the entropy of the system (entropy driven ligand 

binding) (Ladbury, 1996, Michel et al., 2009). Ordered water molecules can be observed within high-

resolution crystal structures (Wlodawer et al., 2008). Ordered water molecules can be treated as 

bound ligands and the contacts with the binding site can be used in the optimisation of the ligand 

(increasing enthalpy driven ligand binding), but only if the favourable enthalpy of the protein-ligand 

contacts outweighs the unfavourable penalty of desolvation (Bissantz et al., 2010).  

Misleading SBDD conclusions can be drawn from: 1) coordinate error in a crystal structure due 

to low-resolution data or uncertainty in ligand identity and/or position and 2) changes in structure 

and protein/ligand protonation states from crystallisation conditions and crystal packing (Davis et al., 

2003). Despite this, structural information has been successfully used in target-based approaches. 

For drugs approved until the end of 2009, 31 known examples have had significant contributions 

from X-ray and NMR structural data for SBDD (Livingstone and Davis, 2011). It is likely that more 

approved drugs had a contribution from X-ray and NMR structural data, but this was not published 

in the literature (Livingstone and Davis, 2011). 

1.73 Computational design 

Computational design has been aided by the increasing availability, size and speed of 

computational resources as well as the increasing structural information of endogenous ligand and 

protein binding sites (Livingstone and Davis, 2011). Key developments in the algorithms used to 

calculate atomistic detail and the physicochemical properties of the ligand or the protein have led to 

more accurate solutions and an improvement in computational modelling and predictions. Two 

principal types of screening exist: ligand similarity screening and molecular docking.  

In the past, the computational aided design was limited to modelling leads based upon 

similarities to endogenous ligand. A key example of this would be in the discovery of Sildenafil 
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(ViagraTM). Sildenafil was designed from informed computational lead optimisation (Campbell, 2000). 

Pfizer’s R&D used pyrazolopyrimidinone as a core structure for optimisation based upon similar 

shape, size and dipole moment calculations as the endogenous cGMP ligand (Terrett et al., 1996). 

Derivatives of pyrazolo(4,3-d)pyrimidin-7-one were found to be potent inhibitors of 

phosphodiesterases (PDE) type 5 and type 1 (Terrett et al., 1996).  Further optimisation of this core 

unit was carried out to increase potency and selectivity for PDE type 5 (Terrett et al., 1996). Using 

cGMP as a model it was determined that altering substituents on the 3-position would likely occupy 

the ribose binding site and substituents on the 5’-position could occupy the phosphate binding site 

(Terrett et al., 1996)(Figure 29). 

 

Figure 29. A. Structure and an electrostatic representation of cGMP. B. Structure and an electrostatic surface 

representation of pyrazole[4,3-d]pyrimidin-7-one (“hit” led by computational aided drug design (CADD)). C. 

Structure of Sildenafil. Functionalization and substitution on the 3 and 5’ position led to the LEAD, Sildenafil. D. 

The binding site of Sildenafil (in teal) in PDE5 (in green) (PDB: 2H42) published in 2006 after Sildenafil was 

approved (ligand-protein structure was not available during development). Binding site confirms the 

functionalization hypothesis with space available within the 3 and 5’ position of the “hit”. Structures created 

using ChemDraw® Professional 15. Electrostatic surface representations created using ChemAxon® software 

MarvinView®. Image of Sildenafil bound to PDE5 created using PyMOL®. 
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Structural modification with computational aid improved PDE affinity of the initial lead by 500 

fold leading to the discovery of sildenafil (Viagra®) (Terrett et al., 1996). Ligand similarity screening is 

a useful tool currently used within drug design today (Lengauer et al., 2004). The ranking of a 

database using ligand similarity virtual screening was first described in two papers published in the 

1980s (Willett, 2006). Ligand similarity aims to measure and quantify the similarity of the reference 

structure against a set of structures within a database (Willett et al., 1998). This similarity measure is 

performed by three components: 1) the representation used to characterise the molecules for 

comparison, 2) the weighting scheme used to assign degrees of importance to these representations 

and 3) the coefficient used to determine the similarity between these representations (Willett, 

2006). The most popular similarity metric in use is the Tanimoto similarity metric (Willett, 2006). The 

Tanimoto similarity coefficient τ, consists of: 

τ = NAB/NA  + NB - NAB 

NA consists of the features/representations in A (the reference) and NB consists of the 

features/representations in B (the query) (Flower, 1998). NAB consists of the 

features/representations in common between A and B (Flower, 1998). The size of a screening library 

can be drastically reduced using chemical similarity filtering criteria (Yadav and Singh, 2013). Select 

chemical subsets of the library can be prioritised and screened rather than the whole library saving 

time and money (Yadav and Singh, 2013). This ensures that molecules that have likely functionality 

for binding and activity are selected, thereby reducing the likelihood of finding a non-promiscuous 

hit within an activity screen. Problems do exist with similarity metrics. The Tanimoto similarity 

metric typically yields low similarity values when the search is just a few representations (Flower, 

1998). Despite the size dependency of the search, the Tanimoto metric is efficient and has been 

demonstrated to be effective in computational studies. A virtual screen of a compound library 

against known melanin-concentrating hormone-1 receptor (MCH-1R) ligands with a ≤0.7 Tanimoto 

similarity threshold resulted in a 14% hit rate and 10 novel potent MCH-1R antagonists, two with 

nanomolar potency (Heifetz et al., 2013).  

Virtual screening is a cost effective approach to ‘’hit’’ discovery (Lionta et al., 2014). It was in 

1982 that Kuntz et al. paved the way for in silico screening programmes with the development of the 

DOCK algorithm (Kuntz et al., 1982). Since then a variety of different docking programmes are in use 

today (Ferreira et al., 2015). These docking programmes aim to give an accurate ligand-protein 

binding pose with a prediction of the free energy of binding (Meng et al., 2011). This provides the 

researcher with insight into the chemical functionalities important for ligand binding. In its simplistic 

term docking programmes are all-similar in that they use an algorithm to predict the coordinates of 
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a complex from the coordinates of each of the individual molecular entities. Within this algorithm an 

exhaustive approach is used to generate all possible coordinates for the complex and a scoring 

function is applied to weight the intermolecular interaction energy. Despite this similar concept 

differences occur in the approach used by the algorithm in coordinate generation. Differences occur 

also in the influence of steric overlap and types of intermolecular interaction in its scoring. Two main 

approaches to ligand coordinate mapping exist and these are: 1) a systematic/direct approach and 2) 

random/stochastic method (Pujadas et al., 2008). In the systematic direct approach the degree of 

freedom of the ligand is explored and this is performed in one of three ways: conformation search 

method, fragmentation/incremental construction or the database method (Huang and Zou, 2010). 

Conformational search algorithms generate possible ligand conformations by rotating any ligand 

bonds that can be rotated 360° by increments then docking those conformations (Schwab, 2011). 

This generates multiple ligand conformations that increase exponentially with each additional 

rotatable bond (Schwab, 2011). The fragmentation construction method divides the ligand into 

several rigid fragments, these fragments are then docked and then rebuilt/joined with the flexible 

linkers (the place-and-join approach) (Pujadas et al., 2008). The incremental approach first docks the 

core fragment from the ligand and then the rest of the ligand is sequentially added (Kroemer, 2007). 

FlexX is an example of a programme that uses this incremental approach (Rarey et al., 1996).  An 

alternative technique is the database method that uses libraries of pre-generated conformations 

(conformational ensembles) and docks each one into a rigid body (Kitchen et al., 2004). 

The random/stochastic method samples the conformational space of the ligand generating 

different conformations (Kitchen et al., 2004). The new conformation is rejected or accepted based 

upon predefined probabilities (Reddy et al., 2007, Chang et al., 1989). When a new conformer is 

accepted a next random conformation is generated and this is accepted or rejected and the cycle 

repeats (Chang et al., 1989).  Three subtypes exist: Monte Carlo (MC) Method, Genetic Algorithm 

(GA) method and the tabu search (TS) method (Kitchen et al., 2004). The MC method randomly 

places the ligand in the receptor and generates new conformations by random changes of the 

ligands position or rotatable bonds (Brooijmans and Kuntz, 2003). After each change the ligand is 

minimised and scored (Brooijmans and Kuntz, 2003). If the score is higher than the previous change 

it is accepted (Brooijmans and Kuntz, 2003). However if the new pose is not a new minimum it is 

subjected to a Boltzman-based probability function and accepted only if it succeeds this test 

(Brooijmans and Kuntz, 2003). The GA method is an approach that starts from an initial population 

of different conformations (Ru et al., 2016). This method uses the theory of evolution and the 

favourable “genes” conformation passed onto the next generation eliminating the unfavourable 

(Meng et al., 2011). Degrees of freedom are encoded into each gene and assigned a fitness function 
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(Meng et al., 2011). GOLD is a programme that uses this GA method that includes full ligand and 

receptor hydrogen flexibility (Schneider and Böhm, 2002, Verdonk et al., 2003).  The TS is a docking 

algorithm starting from an initial random ligand conformation (Taylor et al., 2002). Upon this initial 

ligand conformation, random moves are applied and scored generating typically a population of 100 

solutions (Taylor et al., 2002). The highest-ranking solution is then accepted as the current solution 

and a new population is generated by random moves and scored. The process is then repeated by a 

user-defined number of iterations (Taylor et al., 2002). Within these cycles a Tabu list is created of 

25 former conformations. If the current solution is the lowest energy it is accepted, but if it is not the 

lowest energy the best non-tabu solution is used (Taylor et al., 2002).  

The main limitation of any of these docking approaches is that the observed conformation 

determined experimentally may not be achieved within the theoretical conformation determined by 

the docking approach (Taylor et al., 2002). Validation tests are performed on computational docking 

approaches to evaluate effectiveness (Kitchen et al., 2004). A comprehensive validation test was 

performed on GOLD using a test set of 100 different protein complexes (Jones et al., 1997). Within 

this validation set, the success rate of a correctly predicted binding pose was 71% with 66 complexes 

having an RMSD of 2.0 Å and 71 having an RMSD of 3.0 Å (Jones et al., 1997). A validation test of 

FlexX performed on a dataset of 200 protein-ligand complexes observed a success rate of 46.5% for 

an RMSD of less than 2.0 Å (Kramer et al., 1999). However, within the generated solution set the 

correct binding pose is predicted in 70% of the solutions (Kramer et al., 1999). Another limitation of 

computational docking is the length of time a vast library takes to run (Lionta et al., 2014).  

Differences in docking speed are observed for each docking approach. FlexX has a short running time 

compared to GOLD (Hioual et al., 2012). GOLD on the other hand requires more CPU time and for 

large database screening may not be the programme of choice despite being considered a more 

accurate docking programme (Kellenberger et al., 2004, Hioual et al., 2012). Automated workflows 

and parallel docking runs (on multiple processors) can speed up the output process, however this 

will still generate a large dataset that will need to be analysed and evaluated (Raicu, 2009). The 

laborious evaluation of multiple “hits” and identification of a valid output requires the skills of a 

medicinal and computational chemist. Analysis of large libraries of results can be accomplished 

through large data set mining and profiling (Hughes et al., 2011, Good et al., 2000).  

Scoring functions are implemented to make assumptions and simplifications of the binding 

interaction between ligand and protein and a prediction of binding affinity (Meng et al., 2011). These 

assumptions and simplifications do not account for all the physical aspects of molecular recognition 

due to the complexity and the time it would take to run (Kitchen et al., 2004). Three types of classes 
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of scoring function currently exist: force-field based scoring, knowledge based and empirical based 

scoring (Sousa et al., 2006). Force-field scoring quantifies the sum of two energies of the receptor-

ligand interaction and the internal ligand energy (Sousa et al., 2006). Internal energy of the protein is 

usually emitted, simplifying scoring (Kitchen et al., 2004). The force-field scoring interactions 

described between ligand and proteins are van der Waals and electrostatic energy terms (Kitchen et 

al., 2004). Knowledge based functions are based on simple atomic interaction pair potentials 

(Kitchen et al., 2004). These pair potentials are derived from crystal data from the Cambridge 

Structural Database attempting to score binding effects difficult to model (Velec et al., 2005).  

Further adaptions to knowledge based scoring includes the use of derived protein-ligand 

interactions from the PDB retrieved using ReLiBase (Gohlke et al., 2000). This combined with terms 

considering burial of solvent-accessible surfaces of both ligand and protein are used to generate 

improved scoring (Gohlke et al., 2000). Empirical scoring functions are similar to knowledge based 

scoring functions in that they use experimental data in scoring (Gohlke et al., 2000). Experimental 

data sets are used for regressional analysis and fitting to generate the coefficients used in the 

scoring function (Sliwoski et al., 2014). This class of scoring function can also include entropic terms. 

An additional scoring method includes a consensus scoring function, which combines multiple 

classes of scoring function described above (Charifson et al., 1999). This is used to balance errors in 

single scores and provide a more comprehensive score identifying “true” ligands (Kitchen et al., 

2004). 

Other computational resources for rational drug design include de novo ligand generation, 

toxicology and computational approaches to improve ADME properties in logP, logD calculations and 

P450 metabolism prediction (Sliwoski et al., 2014, Xing and Glen, 2002, Kirchmair et al., 2015). With 

crystal structures of the various CYP isoforms available for protein-ligand docking, this has improved 

structure-based predictions of metabolism and CYP inhibition (Kirchmair et al., 2012).  

Despite the difficulties in accurately predicting binding conformations and scoring binding 

interactions as an estimate of affinity, computational design is at the core of modern drug discovery 

(Charifson and Kuntz, 1997). Success has been observed in SBDD and computer aided drug design 

(CADD) (Kapetanovic, 2008). Captopril (marketed as Capoten® by Bristol Myers-Squibb) was the first 

angiotensin-converting enzyme (ACE) inhibitor to enter clinical use in the U.S. (approved by the FDA 

in 1981) (Talele et al., 2010, Thiel, 2004). Captopril is one of the first successful endeavors of 

structure-based design (Thiel, 2004, Talele et al., 2010). The structure of a different zinc protease 

(carboxypeptidase A) in complex with its inhibitor (L-2-benzylsuccinic acid) provided the basis for a 

model of the ACE binding site guiding the generation of a LEAD ACE inhibitor N-succinoyl-L-proline 
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(IC50 = 330µM) (Kubinyi, 2006, Cushman et al., 1977). SAR on N-succinoyl-L-proline resulted in the 

generation of captopril (Kubinyi, 2006, Cushman et al., 1977).  A more recent and topical example 

for this thesis is zanamivir. Zanamivir is a potent inhibitor of influenza neuraminidase marketed by 

GlaxoSmithKline under the name Relenza®. The GRID program developed by Peter Goodford was 

used to develop Relenza® (von Itzstein et al., 1993, Goodford, 1985). GRID determines energetically 

favourable binding sites enabling the identification of optimal ligand functionality for favourable 

ligand to protein interaction (English et al., 2001, Goodford, 1985). With this programme the 

transition state mimetic DANA (inhibits the protein with a Ki of approximately 4μM) was used as a 

scaffold for development of neuraminidase inhibitor analogues (Taylor and Russell, 2010, Meindl et 

al., 1974a). The influenza neuraminidase DANA crystal structure complex was solved and the bound 

conformation of inhibitor was used as a template for GRID SBDD (von Itzstein et al., 1996, von 

Itzstein et al., 1993). GRID identified that a positively charged group within the vicinity of the 4-OH 

group of DANA would make favourable van der Waals interactions to neighbouring Glu119 and 

Glu227 (von Itzstein et al., 1996, von Itzstein et al., 1993). Replacement of the 4-OH with an aliphatic 

amino group improved hydrogen bond interactions with the protein and improved affinity into the 

nanomolar range (von Itzstein et al., 1996) (Figure 30). Modification of the aliphatic amine to a 

guanidine group resulted in direct hydrogen bond interactions with both Glu119 and Glu227 

residues improving the Ki to 0.2nM (from 50nM against A/Tokyo/3/67 strain) (Taylor and Russell, 

2010, von Itzstein et al., 1996, Varghese, 1999). Despite improved interactions zanamivir suffers 

from poor bioavailability due to its high polarity (Varghese Gupta et al., 2011).  
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Figure 30. A. Hydrogen bond donor and acceptor regions within the influenza A neuraminidase binding site 

(PDB: 1F8B).  DANA (in grey) is bound within the binding site, a strong hydrogen bond acceptor region is 

located near the 4-OH.  B. Ionization surface representation of the influenza A neuraminidase binding site. An 

acidic region is located near the 4-OH of DANA. Both surface representations show agreement with GRID in 

placing a large basic, hydrogen bond donor group in the vicinity of the 4-OH of DANA.  C. A diagram of the 

interactions between Zanamivir and the influenza A neuraminidase. Discovery studios® was used to construct 

ionization and hydrogen bonding surface representation of the influenza A neuraminidase binding site. 

PoseView® was used to construct a 2D image and interactions of the Zanamivir-protein complex. 

Currently, computer aided drug design is an essential tool for academia and the pharmaceutical 

industry (Dalkas et al., 2012). It is estimated that computer aided design will account for 

approximately 20% of all pharmaceutical R&D expenditure by 2016 (Kapetanovic, 2008). With the 

increasing development and improvement in software, user interface design and availability of faster 

and cheaper computers, it is likely that computer aided design will contribute even more to R&D in 

the future (Liao et al., 2011). 
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1.80 Thesis Aims 

The main aim of this thesis is to develop chemical tools targeting specific sialidases for use in 

chemical biology experiments. Within the lab, the sialidase enzymes of current focus are the S. 

pneumoniae sialidases (NanA, NanB and NanC) and TcTS. The primary objective of this PhD is to 

develop novel sialidase inhibitors/chemical tools of NanB and TcTS.  

1.81 Development of a NanB “relaxed” chemical tool  

An allosteric site was discovered previously within the group. A “relaxed” chemical tool called 

Optactin was designed, synthesized, tested and characterised previously by Dr Brear. The aim of the 

work relating to the development of a NanB chemical tool follows on from the work performed by 

Dr Brear and is as follows: 

1) Firstly, the groundwork for testing and synthesis of new analogues needs to be established. 

The aim of this work was to synthesise, express and purify the materials required for testing 

new analogues as well as confirming previously observed results. Synthesis of Optactin was 

required for use as an experimental comparison and to confirm previous results. In Chapter 

2, Optactin was re-synthesised and the synthetic route optimised. NanB was sequenced, 

expressed and purified. The expression, purification and activity of NanB were evaluated. 

Optactin was tested against NanB.   

2) Secondly, modification of Optactin based on the identified area of optimisation was 

performed. The aim of this work in Chapter 3 was to improve on the current inhibitor and 

assess the function of the water channel on enzymatic activity including its overall impact on 

pneumococcal infection. In this chapter, an alternative series was developed based upon 

mutant studies. Optimisation of this alternative series was aided by rational design. These 

analogues were synthesized and tested against NanBWT. The lead inhibitor was evaluated for 

promiscuity/off target effects and activity. This included kinetic and binding analysis. The 

role of the catalytic domain in pneumococcal adherence and invasion was tested using an in 

vitro assay. 
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1.82 Development of a TcTS “constrained” chemical tool. 

The aim of this project was to develop or provide the ground work for novel TcTS chemical tool 

discovery. The tools developed followed the constrained approach to chemical tool design. 

Preliminary work was performed by Dr Telford. In this work the Maybridge fragment library was 

screened against TcTS.  This screen did not discover any valuable “hits” and so a different approach 

to TcTS inhibitor discovery was pursued. Based on the identification of a novel allosteric site within 

NanB and using the structure solved by Dr Telford, a CADD approach was used to determine if an 

allosteric site on TcTS could be identified.   

1) In chapter 5, the water channel in TcTS is compared to that of NanB. The residues within this 

site are profiled against NanB and a potential allosteric site is modelled for use in in silico 

screening. A CADD approach and a fragment library were used to identify potential 

fragments that would bind to this site. To decrease computational load and enrich the 

virtual library a ligand similarity screen was performed. The top three fragments were then 

screened using the 4-Munana assay against TcTS.  

2) In chapter 6, following on from the work by Dr Telford, a CADD approach with a large virtual 

library from a free resource was used to identify novel active site binders. The speed of the 

docking process was improved with the use of a workflow environment (Knime), which was 

a new technique recently promoted with the BioSolveITsoftware. A multi-docking approach 

was used as a validation of the docking. This approach identified chemical moieties 

important for binding and inhibition of the active site and will lead the ground work for the 

generation of a potent constrained TcTS chemical tool. 
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2.0 NanB and the development of an allosteric chemical tool 

 

This chapter details the discovery and synthesis of a negative allosteric modulator of NanB, called 

Optactin. Optactin was designed by Dr Brear using the relaxed approach to chemical tool design. 

Within this work the synthesis of Optactin was achieved and the synthetic route was optimised. 

Optactin was proved to inhibit NanB, but at a much lower potency than previously reported. 

Attempts to determine the reasoning behind this discrepancy were attempted within this chapter.    

 

2.1 The story so far 

 
Within the crystal structure of NanB, solved by the Xu et al., 2008 (2VW2), two molecules of CHES 

were found bound serendipitously (Xu et al., 2008). One molecule of CHES was observed within the 

active site cavity. Another molecule of CHES was located within the water channel (Figure 31). This 

water channel is around 39Å long with a diameter of 11Å at the opening. The CHES molecule is 

buried approximately 4.0Å within the channel opening located 24.4Å from the catalytic tyrosine 

(Tyr653) in the active site (distances measured within PyMOL using PDB:2VW2).  

 

Figure 31. A. Structure of NanB consisting of three domains (catalytic in green, CBM domain in blue and 

inserted domain in red). Water molecules (red spheres) and CHES (orange) within the catalytic domain are 
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shown (PDB: 2VW2). B. Active site of NanB (PDB: 2VW2) with CHES bound and hydrogen bond contacts 

highlighted (black dashed line). C. The secondary site of NanB with CHES (orange) and glycerol (white) bound 

with hydrogen bond contacts shown as black dashed lines (PDB: 2VW2). D. The secondary site of NanB with 

cis-cyclopentane diol (PDB: 4XHB) overlaid with glycerol and CHES from PDB: 2VW2. Figures created with 

PyMOL and Microsoft® Powerpoint® 14.6. 

 

Using this structure, Dr Brear applied two approaches to the discovery of novel modulators of NanB. 

Firstly, the CHES molecule located within the active site was used as a basis for SAR optimization to 

generate a novel competitive inhibitor of NanB (NanB inhibitors) (Brear et al., 2012). A second 

approach was to adapt the CHES molecule bound within the secondary site to generate a secondary 

site-specific small-molecule binder. Water channels appear in structures of several of the sialidase 

superfamily and are thought to have important functional roles in substrate binding, hydrolysis and 

protein stability. To our knowledge, no report of targeting the water channel within the glycoside 

hydrolase family with a chemical tool exists. Targeting this water channel may disrupt enzymatic 

activity, not only confirming the importance of this channel for function but also identifying a novel 

allosteric site on this class of enzyme. Moreover, the binding of CHES indicates that this pocket is 

amenable to small molecule binding and provides a starting point for small molecule optimization. 

As CHES binds to both the active site and a secondary site, the aim was to design a ligand specific for 

the secondary site. It was thought that selectivity solely for the secondary site would be achievable 

as the sites (active site and secondary site) contain very different physical environments. The 

secondary site within NanB contains a higher proportion of hydrophobic amino acids (47%) than the 

active site (38%) and follows a similar trend to that of the allosteric sites reported by Li et al., 2013. 

Furthermore, CHES has been previously adapted to produce an inhibitor 2-((3-

chlorobenzyl)ammonio)ethane-1-sulfonate specific for the active site (PDB:4FPF). No observed 

density for this ligand was seen within the secondary site (Figure 30). 
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Figure 32 A. 2Fo-Fc (black, σ = 1.5) and Fo-Fc (σ = 3.0 (green), σ = -3.0 (red)) electron density maps of NanB 

active site with selective inhibitor, 2-[(3-chlorobenzyl)amino]ethanesulfonic acid bound (PDB: 4FPF). B. 

Secondary site of NanB with observed density for DMSO and water molecules. No electron density for 2-[(3-

chlorobenzyl)amino]ethanesulfonic acid was observed. C. Bar chart of the percentage of hydrophobic and 

polar/charged amino acid residues located in the secondary site (blue) and active site (teal). The secondary site 

contains a similar number of hydrophobic amino acids as polar/charged amino acids. D. Bar chart of each 

amino acid residue located in the secondary site (blue) and active site (teal) as a percentage of the total amino 

acid residues within each site. Figures created within PyMOL® and Microsoft® Powerpoint® 14.6. A radius of 12 

Å from CHES within the active site and the secondary site was used to isolate the amino acids within each site. 

The amino acids were tallied and percentages of each calculated. 

 

A molecule of glycerol was located within the crystal structure of NanB (4.0Å from the secondary site 

CHES). No molecule of glycerol was observed within the active site. Upon scouting other published 

crystal structures of NanB, ethylene glycol was found by Dr Brear to bind within a similar region to 

glycerol. Low inhibition of NanB was observed in the 4-Munana assay by glycerol and ethylene glycol 

at 5mM (NanB activity was inhibited 11.3±5.9% and 2.1±3.7% respectively) (Brear, 2012). Thus 

indicating that, firstly, this site might be allosteric and, secondly, this environment favours 

interactions with ligands containing diols and triols. Using this information for generating selectivity, 

a small focused library of 13 diol and triol compounds was screened (Brear, 2012). Of these 13 

alcohols, only cis-cyclopentanediol was observed to bind within this secondary site through crystal 
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soaking. In this crystal structure, cis-cyclopentanediol makes hydrophobic interactions with a Tyr250 

as well as hydrogen bond interactions with Gln494, Thr657 and Thr251.  

 

Figure 33. A. Crystal structure of overlaid structures of cis-cyclopentane diol (orange) and CHES (teal) bound to 

the allosteric site. B. Examples of structures computationally screened against the allosteric site. Optactin was 

identified as the best binder compound from this computational screen. Figures created within PyMOL®, 

Microsoft® Powerpoint® 14.6 and ChemDraw®. 

 

Using the relaxed approach to chemical tool design a computational screen was applied to generate 

a secondary site-specific inhibitor. CHES and cis-cyclopentanediol were used as scaffolds (Figure 34). 

Combinations of various compounds were created in silico and docked against the secondary site. 

GOLD (Jones et al., 1997) was used as the program to identify the compound most likely to conform 

to the ligand-protein contacts of CHES and glycerol. To validate this program as an appropriate 

docking approach, cis-cyclopentanediol was docked and compared against the experimentally 

observed binding conformation. The docking pose was observed to be similar to the ligand-binding 

pose within the crystal structure (Figure 34). The top 3 GOLD solutions out of 7 had RMSD values 

within 1.5 Å. The best solution had an RMSD of 0.75 Å.  
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Figure 34 A. Experimental binding pose of cis-cyclopentane diol from crystal structure (PDB: 4XHB) overlaid 

with the best pose from a GOLD computational screen (RMSD: 0.75 Å) B. Optactin (purple) bound within the 

secondary site of NanB (teal)(PDB: 4XHX) overlaid with Optactin (pink) bound within the secondary site of 

K499G NanB (grey) (PDB: 4XMA). Hydrogen bonds are shown by black dashed lines and water molecules 

represented by red spheres. Figures created within PyMOL® and Microsoft® Powerpoint® 14.6. 

 

Screening of the small ‘virtual library’ identified 1-((cyclohexylamino)methyl-cis-3,4-

dihydroxycyclopentanesulfonate (Optactin) to have the most optimal binding position. Synthesis of 

Optactin proceeded via a six step route. Optactin was reported to have an IC50 of 79.5±6.5µM. 

Crystal soaking of NanB with Optactin resulted in a ligand-protein complex. Optactin was observed 

to bind within this site confirming it as a novel allosteric site. The sulfonic acid within this site was 

buried 3.1Å deeper than the sulfonic acid of CHES and appears to form a salt bridge with Lys499.  

Optactin was observed to be equipotent against NanB and a K499G NanB mutant confirming the 

sulfonic acid as redundant and unnecessary for activity. Dr Brear carried out this work in both the 

Westwood and Taylor labs. 
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2.2 Resynthesis of Optactin 

 
The synthetic scheme developed by Paul Brear was used and adapted to improve on the overall 

synthetic yield over six steps. The retrosynthetic approach to Optactin is shown in scheme 1. 

 

 
 
Scheme 1. Retrosynthesis to Optactin from starting material CHES. 

 

CHES was used as the starting material in the synthetic approach to Optactin. Although CHES is a 

cheap starting material, generating aminoalkylsulfonic acid intermediates en route to Optactin could 

pose a synthetic challenge. Aminoalkylsulfonic acids in solution can exist in multiple ionization states 

(Long et al., 2010). CHES, an aminoalkylsulfonic acid is zwitterionic possessing both an anionic 

sulfonic acid (deprotonated in aqueous solution) and a cationic secondary amine (pKa of 9.5) (Fuguet 

et al., 2008). CHES and generated aminoalkylsulfonic acid molecules will be hydrophilic molecules, 

limiting the use of hydrophobic solvents in the synthetic scheme. It was decided therefore that the 

sulfonic acid of CHES would be masked by conversion into a β-sultam. This β-sultam could then be 

ring-opened generating the sulfonic acid in the last step.  

 

In the first step of the synthesis, CHES was reacted with PCl5 to form the sulfonyl chloride in 

excellent yield. The sulfonyl chloride was then cyclized in the presence of a base to form the β-

sultam. Deprotonation on the most acidic carbon occurs with LDA and this is functionalised upon 

addition of allyl bromide to produce a diallylated species. Ring closing metathesis was then 

performed on 25 to produce a spiro product, 26 in moderate yield. Dihydroxylation of 26 in the 

presence of osmium tetroxide formed two meso compounds 27 and 28. Separation of 27 and 28 was 
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achieved by flash column chromatography in moderate (60%) to low (8%) yields respectively.  

Hydrolysis and ring opening of the β-sultam compound 27 was achieved by microwave irradiation 

with water. Recrystallisation afforded Optactin in moderate yield (45%). Successful synthesis of 16 

mg of Optactin in an overall yield of 8.5% over 6 steps prompted us to optimize the synthetic route 

(previously reported overall yield by Dr Brear for Optactin using this route was 2.9% over the 6-

steps).  

 

 

 

Scheme 2. Synthesis of Optactin: Reagents and conditions (a) PCl5, DCE, reflux, 2hrs, 98%; (b) Na2CO3, EtOAc, 

RT, 48hrs, 84%; (c) LDA (2.5 eq), allyl bromide (4.0 eq), THF, 2hrs, -78
°
C, 80%; (d) Grubbs 1

st
 generation catalyst 

(0.05%mol), DCM, RT, 3hrs, 51%; (e) cat. OsO4, NMO, THF:H2O (9:1), RT, 16hrs ((27:60%), (28:8%)); (f) H2O, 

microwave irradiation, 140
°
C, 8 minutes, 42%; (g) H2O, microwave irradiation, 140

°
C, 8 minutes, 45%. 

 

The use of 1,2-dichloroethane (DCE) in reaction step 1 seemed unnecessary and was the first step 

identified for modification/optimization. DCE is toxic and can cause acute effects on the human 

nervous system, liver and kidneys resulting in cardiac arrhythmia, pulmonary edema, respiratory 

depression, nausea and narcosis. 

Classified as a group B2 probable carcinogen, DCE has a long-term exposure limit (LTEL) of 5ppm 

(Service, 2001). Considerations for solvent replacement in a reflux experiment include solubility and 

boiling point. Dichloromethane (DCM), a commonly used solvent in chemistry laboratories is less 

toxic than DCE with a LTEL of 100ppm (England, 2016). Similar polarity and dipole moments of DCM 

(0.309, 1.60 D) and DCE (0.327, 1.80 D) would indicate that the solubility of CHES within these two 

solvents would be similar (PubChem, PubChem). The boiling point of DCM is slightly lower than DCE 

(57.3°C) at 39.6°C which might impact on reaction time and/or yield (PubChem, PubChem).  Reflux of 
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CHES with PCl5 in DCM for the same duration resulted in a lower yield (90%). However, increasing 

the reaction time by an hour produced a similar yield to the original conditions of 95% (Scheme 3).  

 

Scheme 3. Step 1 of Optactin synthesis: a,i) PCl5, DCE, reflux, 2hrs, 98% (original conditions); a,ii) PCl5, DCM, 

reflux, 3hrs, 95% (optimised conditions). 

 

Reaction steps 2 and 3 required no optimization as they proceeded with excellent yield.  Step 4 was 

the next step identified for optimization (Scheme 4).  

 

 

Scheme 4. Step 4 of Optactin synthesis: (d,i) Grubbs 1st generation catalyst (Figure 35) (0.05 mol%), 

DCM, RT, 3hrs, 51% (original conditions); d,ii) Grubbs 1st generation catalyst (0.05 mol%), toluene, 

40°C, 5hrs, 71% (optimised conditions). 

 

Under the original conditions a moderate yield (51%) of spiro compound 26 was obtained. Ring 

closing metathesis is a carbon-carbon bond formation from two alkenes generating a cycloalkene 

(Grubbs et al., 1995). A number of ruthenium carbine complexes have been developed to catalyze 

olefin metathesis (Grubbs, 2006). The first air stable and water-soluble metathesis catalyst to be 

used widely in organic synthesis was the Grubbs 1st generation catalyst (Schrodi and Pederson, 2007, 

Schwab et al., 1995). Since then a variety of catalysts have been generated for olefin metathesis 

(Vougioukalakis and Grubbs, 2009). The Grubbs 2nd generation catalyst is an example of another 

catalyst developed for improved olefin catalysis; it is reported as more active than the first 

generation catalyst with a broader substrate scope (Schrodi and Pederson, 2007, Trnka and Grubbs, 

2001, Scholl et al., 1999)(Figure 35).  
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Figure 35. Grubbs 1st generation and Grubbs 2nd generation catalysts. 

 

Different temperatures, reaction time and catalyst were investigated (Table 3.). Increase in reaction 

time resulted in only a slight increase in yield from 51% to 54%. Further improvement in yield (64%) 

was obtained by increasing the temperature from 20°C to 40°C. Increase in temperature to 40°C 

combined with an increased reaction time improved the yield further to 71%. Changing the catalyst 

from the first generation to the second generation catalyst at room temperature (RT) resulted in a 

yield similar to the best condition identified, but due to cost this was not selected for use. 

 

Table 3. Reaction conditions screened to optimize the ring closing metathesis reaction. 

 

 

 

 

 

 

 

 

A total of 487mg of Optactin was synthesized when incorporating both optimized conditions into the 

synthetic scheme. This resulted in a total overall yield of 11.8%, which is a 4-fold improvement from 

the overall yield reported by Dr Brear (2.9%). 

 

2.3 Production of NanB protein 

 

Xu et al., 2008 developed the procedure used within the lab to produce NanB. This procedure used 

Luria Broth (LB) and isopropyl ß-D-1-thiogalactopyranoside (IPTG) to produce NanB protein from a 

PET23b (ampicillin-resistant) plasmid (for full procedure see Experimental). LB is the most commonly 

used media for E. coli as it is easy to make, rich in nutrients and contains the optimal osmolarity for 

growth in early log phase (Rosano and Ceccarelli, 2014). Despite these features it is not the best 

media for achieving high cellular density due to lack of carbohydrates and divalent cations (Rosano 

Grubbs 

Catalyst 

Loading (mol%) Time (hrs) Temperature (
°
C) Solvent Yield (%) 

1
st

 generation 0.05 3 RT DCM 51 

1
st

 generation 0.05 5 RT DCM 54 

1
st

 generation 0.05 3 40 Toluene 64 

1
st

 generation 0.05 5 40 Toluene 71 

2
nd

 generation 0.05 3 RT DCM 69 

Grubbs 2
nd

 generation catalyst Grubbs 1
st

 generation catalyst 
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and Ceccarelli, 2014). IPTG is one of the most commonly used chemical inducers of the lac operon 

within biochemical labs. This thio-galactoside is a mimic of allolactose and inhibits the lac repressor 

lacI resulting in lac operon transcription (Politz et al., 2013). This chemical inducer is added during 

the mid-logarithmic phase of growth usually at an optical density (OD) at 600nm of 0.6 (Koopmans, 

2009). Using this procedure 21 mg of NanB protein was expressed and purified from 4 liters of E. coli 

LB bacterial culture. 

 

Figure 36. SDS page of NanB purified through a nickel column. 1. Original expression method (IPTG induction) 

and 2. First optimization attempt (autoinduction). 

 

To optimize this procedure it was reasoned that the autoinduction technique commonly used within 

the Taylor group would result in an improved yield of NanB. Autoinduction media was introduced in 

2005 and is an optimized blend of glucose, lactose and glycerol. Glucose is metabolized first as the 

preferred carbon source, and then glycerol and lactose (an inducer of the lac operon) metabolism 

follows in mid to late-logarithmic phase. This negates the need for biomass monitoring, culture 

manipulation and manual addition of the inducer (avoiding human error) (Rosano and Ceccarelli, 

2014). This enriched media can produce a yield of target protein several-fold higher than IPTG 

induction (Studier, 2005). Protein purity was evaluated after the first purification process (a nickel 

column) using an SDS-PAGE gel. The autoinduction procedure produced a cleaner batch of protein 

compared with expression in LB after the first purification process (Figure 36). The anion exchange 

purification was omitted from the procedure and the protein fractions were directly subjected to a 

final purification step (size exclusion chromatography). Using this optimized procedure 52 mg of 

protein was expressed and purified from 4 liters of E.Coli autoinduction media bacterial culture. This 

represents a 2.5 times increase in yield compared to the IPTG and LB broth procedure (21 mg). An 
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increase of 1.2g in biomass was observed for the autoinduction method for each 1L of bacterial 

culture (this represents an increase of 27%). 

 

In order to determine if the protein produced using this optimised method was useful for the kinetic 

analysis of inhibitors, it was compared against the NanB previously produced using the original 

method. Activities of neuraminidases/sialidases are tested using the 2’-(4-methylumbelliferyl)-α-D–

N-acetylneuraminic acid (4-munana) assay. This assay is described by Kongkamnerd et al., 2011 and 

used to probe the activity of neuraminidases/sialidases.  In the presence of a 

neuraminidase/sialidase, the substrate is cleaved into 30 and 4-methylumbelliferyl (4-Mu) 

(Kongkamnerd et al., 2011)(scheme 5). The fluorescence intensity of the fluorophore 4-Mu 

generated over time is measured giving the rate of the enzyme.  

 

 

Scheme 5. The substrate 4-munana cleaved into compounds 30 and 4-Mu. 

 

The activity of NanB purified and expressed from each approach was tested using the 4-munana 

assay at the optimum conditions of 37°C and pH 5.0. The activity of NanB differed between the two 

methods of expression and purification. Autoinduction produced a less active batch of protein 

compared with the IPTG LB method (Table 4).   

 

Table 4. Table of the enzymatic activity of NanB expressed and purified using the two approaches: IPTG 

(original method) and autoinduction (first attempt at optimization). Protein assayed using the 4-munana assay 

with 4-munana at a final concentration of 200µM and NanB at a final concentration of 60 ng/mL. 

Protein Expression and 

Purification method 

Mean activity 

(AFU/sec) 

Autoinduction 250±18 

IPTG induction 1100±25 

 

Based upon these results protein produced using the autoinduction method was used only for 

crystallization. For kinetic analysis, the IPTG method was chosen for NanB expression.  

30 4-Mu 4-Munana 
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An adaption to the purification method suggested by Professor Terry Smith involved purification of 

the protein without the use of cocktail inhibitors as this had shown to inhibit protein activity in the 

past. The purification method in the presence and absence of protease cocktail inhibitors was 

trialed. It was found that protein purified without protease cocktail inhibitors was more active 

(1440±120 AFU/second). 

Excluding protease cocktail inhibitors from the method resulted in an increased activity of 340 

AFU/sec. The next step was to assess carefully the purification steps. Protein activity was assessed 

at each stage of the purification procedure and observed to be the most active after the anion 

exchange purification step (1886±84 AFU/second) The purity of the protein after the anion exchange 

column by SDS page gel was observed to be similar to that after gel size exclusion chromatography 

(Figure 37). It was decided to avoid gel filtration and use protein directly after the anion exchange 

column.  

 

Figure 37. SDS Page of NanB after anion exchange purification (1) and size-exclusion chromatography (2). 

 

Table 5. Table of the enzymatic activity of NanB after each purification step. 

 

Purification Step Mean activity (AFU/ second)  

Nickel Column (step 1) 281±30 

Desalt Column (step 2) 476±16 

Anion Exchange Column (step 3) 1886±84 

Gel Filtration Column (step 4) 1440±120 

 

The stability of the enzyme was measured over time.  Left at 4°C the enzymatic activity remains 

stable for one week and left at -80°C the enzymatic activity remains stable for a month. 
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Having established an activity and stability profile of NanB, testing of Optactin against NanB was 

initiated. 

2.4 Testing of Optactin 

 

The 4-munana assay for NanB was conducted in the presence and absence of Optactin to give the 

percentage inhibition. Different concentrations of Optactin were run enabling an estimation of IC50. 

 

Unfortunately, it was not possible to reproduce the previously reported activity of Optactin in house 

(reported by Dr Brear to be 79.5±6.5 µM). 

Repeated measurements of the IC50 of Optactin against active NanB protein consistently gave values 

in the region of 537±45µM. The IC50 curve was observed to be steep, an indication of 

promiscuity/”off-target” effects (Shoichet, 2006). Due to this observation and the inconsistency in 

the reported and obtained potency of Optactin, the promiscuity of Optactin was evaluated. 

Kongkamnerd et al., 2011 described a method for the evaluation of quenching and promiscuity in 

the 4-munana screen. Compounds are assayed against 4-Mu at varying concentrations of ligand and 

the fluorescence measured (Kongkamnerd et al., 2011). No fluorescence quenching of 4-Mu was 

observed in the presence of Optactin at 500 µM or 1 mM (Figure 38).  
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	B.  

C.  

A.  

 

Figure 38. A. Graph of 4-Mu fluorescence in the presence and absence of Optactin (500 μM and 1mM). B. CD 

near-UV trace of NanB in the presence (green) and absence (red) of 1mM Optactin. Blank (no protein/buffer 

only) is shown in blue. C. DLS chart of size distribution by intensity of NanB in the presence of Optactin (1mM). 

Only one peak is seen at estimated MW 74.9±23.2 KDa 

 

Dynamic light scattering (DLS) is a technique used to monitor particle size in solution and is often 

used to determine the presence of protein aggregation in solution (Li et al., 2011). Circular dichroism 

measures the absorption of right hand and left hand polarised light. Spectra at near UV (250-350 

nm) arise from aromatic residues and the size and intensity differs depending on the environment of 
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the aromatic residues (Kelly et al., 2005). These spectral features correspond to the tertiary 

structure (Kelly et al., 2005). Good near UV signals indicate that the protein is folded and in a well-

defined structure. The spectra is also sensitive to protein-protein interactions (Greenfield, 2004).  

DLS and CD confirmed that the presence of Optactin did not cause protein aggregation or unfolding 

as a single peak/one population of particle is observed (corresponding to the molecular weight of 

NanB) and no change in near UV CD spectra between control and 1mM Optactin treated condition.  

Although the protein-ligand complex structure of Optactin-NanB shows that Optactin binds within 

the secondary site, we wanted further proof that Optactin is non-promiscous/had no “off-target” 

effects. The results obtained here confirm that despite a steep inhibitory curve and discrepancies in 

potency, Optactin is a non-promiscuous and a valid allosteric inhibitor of NanB (Figure 38).   

 

2.5 Identification of a single point mutation 
 

To evaluate reasons for the difference in the observed activity of Optactin the sequence of the 

protein was re-checked. The pET23b NanB DNA vector construct created within the Taylor lab (used 

previously by Xu et al., 2008 for the structural identification of NanB and by Brear et al., 2012 for the 

structural evaluation of inhibitors) was sent for sequencing. Upon evaluation of the sequence and 

inspection of previously published crystal structures, a single point mutation was identified at 

position D643G that differs to the WT sequence reported on the UniProtKB database (Figure 39).  

 

 

Figure 39. The 2Fo-Fc (black mesh, contoured at 1.5σ) and Fo-Fc (green (3.0σ) and red(-3.0σ)) electron density 

maps for amino acid residue 643 of published structure 2VW2. 
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This amino acid is located on the surface of the catalytic domain 26 Å from the active site and 24 Å 

from the secondary site. Due to its positioning it is unlikely this will impact upon the activity of the 

protein or potency of the inhibitor, but this would need to be verified.  

 

Primers were designed and a single point mutation was performed by site directed mutagenesis. The 

mutated construct was transformed into competent cells and colonies grown on agar plates 

containing antibiotic. A miniprep to purify plasmid DNA was performed on selected colonies and the 

new DNA construct was sent to GATC Biotech for full sequencing. The sequencing results confirmed 

this new construct as the WT sequence reported on the UniProtKB database (Figure 40). 

 

 

Figure 40. A. Schematic of the NanB domains. and sequence of NanB WT with the mutation highlighted (purple 

box). Catalytic (green), inserted (red) and CBM40 (blue) domains highlighted. Figure created within Microsoft® 

PowerPoint® 14.6 and Espript 3.0 (Robert and Gouet, 2014, Hann and Keserü, 2012, ESPript). 
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2.6 Biochemical comparison 

 

WT NanB was expressed and purified using the optimized method for generating active D643G NanB 

and activity assessed and compared with the D643G mutant. The mutation had no effect on the 

activity of the enzyme (D643G mutant 1886±84 AFU/second and WT 1841±88 AFU/second) (Table 

6).   

 

Table 6. Table of NanB activity for WT and D643G mutant. 

 

Protein Type Activity (AFU/second) 

Mutant (D643G) 1886±84 

Wild type 1841±88 

 

However, the mutation was observed to have profound effects on the stability of the protein over 

time, with the activity of the wild type lasting for a long period after storage in -80°C, whereas the 

mutant would lose activity after a month. The activity of Optactin was observed to be similar when 

assayed against the wild type protein (IC50 517±12µM). 

 

2.7 Crystallisation of mutant D643G NanB and WT NanB 
 

X-ray crystallography, a technique for the structural determination of proteins and their binding sites 

at atomic resolution, provides valuable information for structure-based design. X-ray crystallography 

requires protein crystals, which are grown by bringing the macromolecule to supersaturation 

(Dessau and Modis, 2011). Vapor diffusion is one technique to obtain protein crystals. This involves 

placing a mix of protein solution and precipitant/mother liquor in a sealed chamber with pure 

precipitant/mother liquor (Dessau and Modis, 2011). Optimal crystal formation is influenced by a 

range of variables that are tested via crystallization trials. These trials occur in plates of 24 to 96 well 

formats set up to test a range of conditions chemical parameters (pH, type of buffer, additives and 

precipitants) (Benvenuti and Mangani, 2007). The sitting drop method is one such procedure used 

for protein crystallization trials (Figure 41). 
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Mother	liquor	and	
protein	droplet	

Mother	liquor	

Seed	stock	

Seed	wand	

Pipe e	

Crystal	streaking	 Micro	seeding	
 

Figure 41. Diagram of the sitting drop method.(4c) Mother liquor typically consists of buffer and a 

precipitant such as polyethylene glycol (PEG). Mother liquor and protein droplet can be combined in 

varying ratios. Streaking of crystal seeds or pipetting of small volumes into the mother liquor and 

protein droplet is performed for crystal seeding. 

 

The previous conditions reported by Xu et al., 2008 (0.1 M imidazole pH 8.0 and 7% (w/v) PEG 8K) 

were used for the D643G NanB protein crystal trials. Trialing conditions of 0.1M imidazole pH 8.0 

with PEG 8K at 3%, 4%, 5%, 6%, 7% and 8% resulted in crystals appearing in 5%, 6% and 7% after 5 

minutes. These crystals were too small for use in X-ray structure determination. Three months were 

needed for a crystal to grow to an appropriate size for X-ray crystallography. This procedure was too 

long and needed to be optimised to shorten the length of time required to grow crystals of 

diffraction quality. To achieve this, crystal seeding was  performed by pulverising a larger crystal into 

smaller pieces and then transferring these crystalline particles into a new drop by the use of a 

seeding wand (Stura and Wilson, 1991). These crystalline particles provide nucleation points for 

crystallisation and potentiated crystal growth. Seeding was trialed at 5%, 7% and 10% PEG 8K at pH 

8.0. In the 5% and 7% conditions seeding produced diffraction quality crystals in a period of two 

weeks. The 7% PEG 8K trials produced appropriate size crystals in most wells and proved to be the 

best condition. 

 

In order to generate a WT NanB X-ray structure, new crystallization conditions were required, as the 

WT protein did not crystallize in the conditions used for D643G NanB.  Four commercial screens 

(JCSG+, Anion Suite, Salt Rx and Cryo I and II screen) were tested in a 96 well format.  
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For each condition, 0.1 µL volumes of WT NanB protein were dispensed into separate drops of 0.1 µL 

and 0.2 µL of mother liquor. The JCSG+ screen was the most successful after two weeks, generating 

crystals in five conditions. Of these five conditions bicine pH 9.0 was found to regularly produce 

crystals of suitable size (0.1 M bicine pH 9.0, 20% PEG 6K). However, these crystals diffracted poorly 

(only to 4 Å).  In order to generate crystals with improved diffraction quality, these crystals were 

used for seeding experiments. A 96 well screen with a range of concentrations of bicine (0.02-0.30M 

at pH 9.5) and PEG 6K (8 –30% w/v) were set up with protein concentrations ranging from 5 mg/mL 

to 15 mg/mL. Unfortunately, this did not lead to crystals with improved diffraction.  The JGSC+ 

commercial screen was then re-trialed with micro seeding. Micro seeding is a similar process to 

crystal seeding except a volume of seed stock is added directly to the protein droplet instead of 

using a seeding wand (Bergfors, 2003).  

 

Figure 42. Images taken of crystals grown in the initial hit 1: 0.1 M bicine pH 9.0 20% PEG 6K, and conditions 

when crystal seeding was performed 2: 0.1 M CHES pH 9.5, 20% PEG 8K and 3: 0.3 M imidazole pH 8.0 12% 

PEG 8K. 

 

The number of hit conditions increased to 17. The best crystals grew in 0.1 M CHES pH 9.5, 20% PEG 

8K and diffracted to 2 Å. However, this crystal condition resulted in CHES within the active site.  

These crystals were used to generate a seed stock and used in crystal seeding experiments.  With a 

good crystal seed stock the imidazole and PEG 8K conditions were revisited. A screen of ranging 

imidazole pH 8.0 (0.02-0.5 mM) and PEG 8K (3%-10%) concentrations were set up. Crystals of an 

appropriate size grew in 0.3M imidazole pH 8.0, 12% PEG 8K after two weeks and diffracted to 1.8 Å. 

The WT structure was solved and observed to be identical to the D643G structure apart from 

observed density for the aspartic acid. Both proteins were used for X-ray crystallography and 

generation of ligand-protein complexes.  
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2.8 Retesting of Optactin 

 

Further attempts to explain the discrepancy in the measured activities of the inhibitor prompted a 

new evaluation of the purity of Optactin. This was achieved by repeated re-crystallisations followed 

by testing against NanB. Another approach was to evaluate the substrate. The substrate 4-munana is 

known to breakdown over time and therefore fresh substrate 4-munana was ordered from 

Carbosynth and tested.  

 

Figure 43. IC50 curve of re-crystallised Optactin (O) tested against WT NanB (IC50 = 517±12 µM). Optactin tested 

against D643G (•)(IC50 = 537±45µM) and tested against fresh 4-Munana substrate (∆)(IC50 = 550±11µM). Data 

points and error bars represent the mean and standard error of the mean of 4 repeats. Graph created using 

SLIDE®. 

 

The activity of Optactin was not observed to change under any of the re-evaluated conditions (Figure 

43). Despite the inconsistency in Optactin’s potency reported and observed here, it is evident that 

Optactin is a negative allosteric modulator of NanB and the first reported allosteric modulator of this 

protein class. This chemical tool will be further developed through rational design, hopefully leading 

to an improved understanding of the role of the water channel and sialidase impact on 

pneumococcal infection. 
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2.9 Summary 
Dr Brear identified a novel allosteric site within NanB. However, this initial work was performed 

on a mutant variant of NanB. A spontaneous mutation was observed within the sequence at position 

643 where an aspartic acid is mutated to a glycine. Although the positioning of this mutation is 

within the catalytic domain, it is located 26 Å away from the catalytic site and 24 Å away from the 

allosteric site. The position of this mutation is unlikely to impact on the results observed by Dr Brear.  

However, to confirm an allosteric site exists within NanB and that the mutation has no impact on the 

results found, the experiments were repeated on NanBWT.  A point mutation was performed and 

after confirmation of the correct sequence, the NanBWT protein was expressed, purified and 

crystallised. The originally developed inhibitor, Optactin, was re-synthesised and the synthesis was 

optimized to improve overall yield (an overall improvement of 4 times from 2.9 % to 11.8 % over 6 

steps). Analysis of the activity of Optactin using the 4-Munana assay determined the potency of 

Optactin to be weaker than by Dr Brear despite repeated attempts. 
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3.0 Development of alternative series  

 

This chapter is on the development and optimisation of the NanB allosteric modulator, Optactin. 

The aim of this work was to develop a potent chemical tool for the elucidation of NanB’s role in 

S.pneumoniae pathogenicity. Within this chapter a NanBWT-Optactin crystal structure has been 

solved and used for structure based design to improve potency and selectivity of a “relaxed” 

chemical tool against NanB. Protein mutagenesis of a lysine (thought to form a salt bridge with the 

SO3
- of Optactin) to a glycine did not reduce the potency of Optactin suggesting that the SO3

- is 

redundant and has no role in binding or activity. The SO3
- functional group of Optactin was the first 

point identified for optimisation. Synthesis of an amine non-sulfonic acid analogue resulted in 

improved ligand efficiency and the fortuitous discovery of another analogue, an amide that had 

greater potency than the amine equivalent. CADD and SAR further optimized this amide to generate 

a low micromolar inhibitor, Optactamide.  Control experiments were performed to test the 

selectivity and promiscuity of Optactamide, validating this molecule as a useful chemical tool. Use of 

this chemical tool in an S.pneumoniae adhesion and invasion assay identified NanA and NanB 

sialidase activity to be important in the invasion of S.pneumoniae into lung epithelial cells, but the 

exact role of NanB in S.pneumoniae pathogenicity still remains unclear.  

  

3.1 Previous Mutant studies 

Dr Brear in his initial analysis of the NanB-Optactin crystal structure identified that three 

residues formed key van der Waals contacts with Optactin. One of the van der Waals contacts was 

identified as obsolete from mutagenesis studies of NanBD643G. The lysine at position 499 within 

NanBD643G was mutated to a glycine and activity of Optactin was tested against this mutant using the 

4-Munana assay. From this assay it was observed that Optactin had similar activity against NanBD643G 

and its K499G mutant. A crystal structure of the K449G mutant of NanBD643G generated by Dr Brear 

identified that the binding mode of Optactin is identical in both mutants (Figure 44). The RMSD of 

NanBD643G (PDB: 4XJ9) against NanBD643G,K499G (PDB: 4XMA) is calculated to be 0.35 Å.  
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Figure 44. A. Binding mode of Optactin (green) within the Optactin-NanBD643G,K499G (PDB: 4XMA) crystal 

structure. Electrostatic surface potential is shown calculated within CCP4MG QTMG. B. Binding mode of 

Optactin within the Optactin-NanBD643G(PDB: 4XJ9) crystal structure. Electrostatic surface potential is shown 

calculated within CCP4MG QTMG. Within both images the side chain of residue 499 is labelled and highlighted 

by parentheses. 

The approximate position of the +NH3 from K499 side chain is 3.6 Å from the SO3
- of Optactin 

(PDB; 4XJ9). Salt bridge contacts occur over distances of less than 4 Å (Kumar and Nussinov, 2002) 

and so is thought to form as an interaction between the SO3
- of Optactin and the +NH3 of K499. It is 

unlikely given the similarity of the WT structure to the NanBD643G mutant that the spontaneous 

mutation at position 643 would impact on this result. However, the crystal structure of Optactin-

NanBWT was solved to confirm the binding position of Optactin and the proximity of K499 to the 

sulfonic acid of Optactin within the WT structure. Within this Optactin-NanBWT complex structure, 

the B-factor for the lysine residue is high relative to the surrounding residues indicating flexibility 

and movement of the residue. No complete electron density was observed for the K499 side chain 

indicative of no fixed position for the +NH3 of K499. It is therefore unlikely that an electrostatic 

interaction occurs between the +NH3 of K499 and the SO3
- of Optactin (Figure 45). The RMSD of the 

Optactin-NanBWT complex solved here against the Optactin-NanBD643G mutant is 0.342 Å (RMSD of 

the full NanB structure) (calculated using CCP4MG superpose). 

 

A. B. 
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Figure 45. A. Optactin-NanBWT complex (grey) with an identical binding pose as Optactin-NanBD643 crystal 

complex (teal, PDB:4XJ9). B. A 2D binding image of Optactin generated by PoseView using the Optactin-

NanBWT crystal structure (Stierand et al., 2006). 

PoseView (Stierand et al., 2006) was used to predict the van der Waals forces between Optactin 

and the interacting residues of NanB. PoseView is an interaction prediction software that uses atom 

coordinates from ligand-protein crystal structures to predict hydrogen bonding (black dashed lines), 

salt bridges (black dashed lines), metal interactions (black dashed lines), hydrophobic interactions 

(green solid lines), π-π (green dashed lines) and π-cation (green dashed lines) interactions between 

ligands and interacting protein surfaces (Stierand et al., 2006).  Using this software, hydrogen bond 

interactions were predicted to occur between the diol of Optactin and the backbone amide N-H of 

Thr251 and the side chain carbonyl of Gln494. A hydrophobic interaction was predicted to occur 

between the cyclohexyl ring of Optactin and NanB. A negatively charged Glu658 residue occupies 

the pocket that the cyclohexyl ring binds in. This indicates this interaction maybe suboptimum. 

PoseView did not identify a salt bridge between SO3
- of Optactin and the +NH3 of K499 from the 

Optactin-NanBWT complex. PoseView evaluates interactions based on geometric criteria and so this 

interaction must not fulfil this criteria.  To further confirm these structure based results and the 

redundancy of the SO3
- group within Optactin, mutagenesis of residue 499 was performed.     

 

 

 

 

A. 
B. 
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3.2 Repeated mutant studies on WT  

Primers were designed and a single point mutation of the K499 was accomplished using site 

directed mutagenesis. The K499G mutant was expressed and purified using the same L-B method for 

NanBWT (Chapter 3.). NanBK499G had a slightly lower activity than NanBWT at 1653±130 and 1841±88 

AFU S-1 respectively.   

 

 

Figure 46. A. SDS page gel of WT and K499G after purification. B. The activity of NanBWT and NanBK499G using 

the 4-Munana assay. C.  The IC50 values of Optactin against NanBWT (IC50 value = 517±12 µM) and NanBK499G 

(IC50 value = 534±22µM). 

Analysis of the K499G mutant using the 4-Munana assay identified that Optactin has a similar 

potency to that of NanBWT (Figure 46). The NanBK449G mutant studies performed here suggest that the 

sulfonic acid did not contribute to the potency of Optactin. Based on the result from this 

mutagenesis experiment and the structure based design observations from the crystal structure, the 

sulfonic group is an unnecessary functionality for activity and binding and should be the first point of 

modification for inhibitor optimisation. 

3.3 Design and development of simplified analogues 

The relaxed approach to chemical tool development does not need to follow medicinal 

chemistry guidelines for bioavailability.  Achieving high potency and selectivity are the major design 

criteria for relaxed chemical tool development. Removing functional groups that do not contribute 

to binding is essential to improve selectivity and identify areas for optimisation for improved 

potency. Ligand efficiency (LE) is an in vitro based method for the comparison of the binding energy 

or potency and atom count of small molecules. This metric quantifies the molecular properties 

required to obtain binding affinity and/or potency. It has expanded to include other parameters such 

A. 

B. C. 
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as molecular mass, lipophilicity, polar surface area and physiocochemical properties. LE is useful in 

SBDD to clarify if removal or replacement of certain functional groups is beneficial for optimisation. 

Currently the LE for Optactin is 0.095 (using the LE equation: LE= 1.4(-logIC50)/N (N is the number of 

non-hydrogen atoms)). Substitution of the SO3
- to a hydrogen atom would likely improve ligand 

efficiency. To generate this non-SO3
- analogue, it was thought that the synthesis should proceed via 

a Boc-protected amine (Scheme 6) to enable purification through silica gel column chromatography 

prior to removal of the Boc-protecting group.  

 

Scheme 6. Retrosynthetic scheme to amine 31. 

3.3.1 Synthesis of analogues 

The first attempted synthesis of a non-sulfonic acid proceeded via the proposed retrosynthetic 

route in Scheme 6 using a Boc-protected amine (Scheme 7) as discussed in the retrosynthetic 

scheme.  

 

Scheme 7. synthetic route to 37: (a) LiAlH4, THF, RT, 12hrs; (b) Dess Martin Periodinane, DCM, RT, 5hrs; (c) NaBH4, DCM, 

RT, 2hrs; (d) Di-tert-butyl dicarbonate, DIPEA, DCM, RT, 30mins, 14% (over 5 steps); (e) OsO4, NMO, THF, H20 (9:1), 52%. 
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The 3-cyclopentene carboxylic acid (37) was subjected to a reduction to the alcohol 36 in the 

presence of excess lithium aluminium hydride. The alcohol was then oxidized in situ to the aldehyde 

35 using Dess-Martin periodinane. The amine 34 was generated by combination of cyclohexylamine 

(38) with the aldehyde 35. Due to the volatility of 36 and 35 and the polarity of 34 these were not 

isolated and the synthesis was continued with crude products from steps 1, 2 and 3. Isolation and 

purification of the Boc-protected amine 33 was achieved at step 4. The Boc-protected amine 33, was 

subjected to osmium tetroxide dihydroxylation to yield 32, as a mix of two meso isomers 32a and 

32b. Unfortunately, it was not possible to separate out the meso isomers 32a and 32b and so this 

route was abandoned. A new synthetic scheme was postulated based upon synthetic ease and 

potential for column separation. This new route proceeds via an amide (Scheme 8) intermediate.  

 

 

Scheme 8. Synthetic route to 40 and 41. (a) CDI, DCM, RT, 6hrs, 82%; (b) OsO4, NMO, THF, H2O (9:1), RT, 12hrs 

(20: 46%, 21: 32%). 

The 3-cyclopentene carboxylic acid was coupled to the amine using carbonyl-diimidazole. This 

reaction proceeded for 6 hours. The amide 39 produced from this reaction was then subjected to a 

dihydroxylation using osmium tetroxide in the presence of NMO. This generated the two meso 

isomers 40 (“syn”) and 41 (“anti”), which were separable by flash column chromatography. To 

confirm the stereochemistry of each ligand, small-molecule crystals structures were generated 

(Figure 47). Additionally, NOESY 3D NMR was observed to distinguish between each ligand. 

 

Figure 47. ORTEP plots showing 50% thermal ellipsoid probability of A. (40) and B. (41). 

A. B. 
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Reduction of the amide to the amine 31 proceeded in the presence of a strong reducing agent 

(LiAlH4) (Scheme 9).  

 

Scheme 9. Synthetic route to 31. (a) LiAlH4, THF, 12hrs, 10%. 

Silica gel column chromatography pre-treated with trimethylamine (TEA) was used to purify 

amine 31 using DCM and MeOH in a ratio of 9:1 as the mobile phase. The potency of amine 31 and 

the amides 40 and 41 were all evaluated using the 4-Munana assay. Surprisingly, the amide analogue 

40 had a slightly higher potency than the amine 31 (Figure 48) tested at 500 µM. The IC50 obtained for 

amide 40 was slightly more potent than that obtained for Optactin (IC50: 347±44 µM). The calculated 

LE for amide 40 is 0.128, which is an improvement over the LE of 0.095 for Optactin. The binding of 

the amide was determined through X-ray crystallography and observed to bind into the allosteric 

site of NanB (Figure 48). 

 

Figure 48. A. The percentage of 4-Munana hydrolysis by NanB in the presence of amine 31, amide 40 and amide 41 (at 

500µM as compared to the control). B. The binding of amide 40 (yellow) compared with Optactin (green) within the 

allosteric site of crystal structures NanBWT-amide 40 and NanBWT-Optactin.  

The binding site of amide 40 was observed to bind in a similar fashion to that of Optactin within 

a NanBWT-amide 40 crystal structure complex. The binding of amide 41 to the secondary site was 

difficult to determine due to weaker electron density observed for this amide despite similar 

potency to its meso isomer, amide 40. 

 

A. B. 
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3.3.2. Optimisation 

The next point of modification identified from the amide-NanB complex was the cyclohexyl 

group. The positioning of the cyclohexyl ring within close proximity to E658, Y598 and H662 is likely a 

suboptimal functionality for binding affinity and a suitable point for the next modification. To 

identify a moiety as a suitable alternative at this position, a CADD approach was used. The GOLD 

docking program (Jones et al., 1997) was used to evaluate suitable moieties. A “virtual” library was 

created containing a population of analogues with different functionality at this identified point for 

modification (Figure 46.). These analogues were designed to evaluate the size of the hydrophobic 

pocket that the cyclohexyl group is adjudged to bind to (Figure 42) and the need for lipophilic, 

hydrophobic and/or electrostatic properties for improved binding. Before the docking run of the 

“virtual” library was initiated a validation run was performed. Within the top three binding poses 

generated of amide 40-NanB the correct binding pose was predicted, validating GOLD as a useful 

docking program for CADD. 
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Figure 49. A. The chemical structures of each analogue within the virtual library used for CADD assisted 

structure-based design. GOLD was the docking software used to dock the “virtual” library against the mapped. 

B. Graph of the best CHEMScores values output by GOLD for each compound within the “virtual” library (Opt = 

Optactin). 

The CADD docking run identified that small ring systems made up of five or less carbons were 

suboptimum and had lower calculated binding scores. Replacing the ring system to an alkane chain 

also resulted in a lower binding score. However, replacing the cyclohexane ring with a phenyl ring 

caused no change in the calculated binding score. Adding a polar functionality (OH) to this arene in 

the para position decreased the calculated binding score suggesting that hydrophobicity within this 

Opt 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 

B. 

A. 

ChemScore 

values 
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pocket is important for improved binding. The addition of a CH2 to make a benzyl ring increased the 

binding score further by increasing hydrophobicity and/or positioning the arene further into the 

hydrophobic pocket.  

 

Figure 50. Binding position of amide 56 within the allosteric site of NanB. The calculated aromatic receptor 

surface using Discovery Studio 4.0 is shown in the image. Positioning of the arene ring in amide 56 is in a 

possible edge-to-edge interaction. 

The benzyl group was identified from the docking run as the most promising candidate 

(compound 56 was the highest scoring analogue identified from the virtual library) and from 

visualisation within Discovery Studio 4.0 the arene of amide 56 contributes to an edge-to-edge 

aromatic interaction with histidine residue 662 (Figure 50). Amide 56 was chosen as the chemical 

candidate for synthesis and biological testing. This molecule was synthesized as described in Scheme 

9.   

 

Scheme 10. (a) CDI, DCM, r.t. 6hrs, 75% (b) cat. OsO4, NMO, THF/H2O (9:1) r.t. 16hrs (56: 45%, 57: 40%). 

The stereochemistry of the amides 56 and 57 were assigned using NOE. The potency of amide 56 

and 57 was checked using the 4-Munana assay. With the presence of an aromatic ring in the new 

inhibitor, it is possible further improvements could be made using rational design and QSAR. The 

Topliss scheme (Topliss, 1972) discussed earlier (Chapter: Medicinal Chemistry 1.71) is an 

operational scheme suited for aiding further optimisation and was used to guide the synthesis of a 
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more potent analogue. The generation of further analogues was accomplished using the same route 

(Scheme 11). 

 

Scheme 11. (a) CDI, DCM, r.t. 6hrs. (b) cat. OsO4, NMO, THF/H2O (9:1) r.t. 16hrs. 

The stereochemistry of all further analogues of amides 56 and 57 were assigned based on their 

separation by flash chromatography as subtle (non-polar) changes on the aromatic ring was deemed 

unlikely to alter the fractional position of the two meso conformers on a silica column. For the final 

LEAD compound a protein-ligand complex crystal structure was solved, which confirms the 

assumption above to be true and the stereochemistry of the LEAD as “syn” ( 3.3.3. Further 

Optimisation).  
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Table 7. Table showing a selection of compounds assayed against NanB using the Topliss scheme. * 

compounds synthesised and purified by Yernur Syzdykov (an undergraduate project student under my 

guidance). 

 

  % Inhibition  

Compound R1 R2 Stereochemistry 500 μM 100 μM IC50 

56 H H “syn” 69±5 26±3  

57 H H “anti” 50±3   

62 H Cl “syn” 98±1 51±2  

63 H Cl “anti” 92±2 38±4  

64* Cl Cl “syn” 92±1 90±2 55.4±2.5 

65* Cl Cl “anti” 81±2 16±3  

66* CF3 Cl “syn” 78±2 35±3  

67* CF3 Cl “anti” 65±4 20±5  

 

A project student under my guidance assisted with the synthesis and purification of some of 

these developed analogues. The most potent analogue generated using the Topliss series was 

compound 64. It was evident from testing of both the “syn” and “anti” isomers of each compound 

that the “syn” isomers were more potent. Therefore further optimisation would only be carried out 

on the “syn” isomers. Compound 64 was used as a basis for further optimisation to improve 

potency.  
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3.3.3. Further optimisation 

Further optimisation was implemented on the data generated from the Topliss series. Different 

electron withdrawing groups were tested to identify whether decreasing the electron density of the 

aromatic ring resulted in improved electrostatic or hydrophobic interactions with the allosteric site. 

Additionally, non-polar groups were tested to determine whether hydrophobicity was key for 

potency. The R1 and the R3 positions were investigated for functionalities that would improve 

potency, as these positions were not covered extensively within the Topliss series (Table 8).  

Table 8. Table showing compounds assayed against NanB using further SAR. 

 

 
 

 
 % Inhibition  

 

Compound R1 

 

R2 R3 

 

R4 500 μM 100 μM 50 μM IC50 

68 Br H H H 20±2 5±3   

69 Me H H H 45±1 15±2   

70 F H H H 98±1 93±2 90±1 8.0±1.2 

71 Cl H H H 98±2 97±4 94±1 6.2±1.3 

72 F Cl H H 97±2 95±3 43±3 

 73 Cl H H F 97±3 97±1 49±2  

74 Cl H H Cl 98±1 41±5   

75 F H Cl H 95±2 96±1  3.0±1.7 

 

The first synthetic route to these amides involved a CDI coupling and then an osmium tetroxide 

dihydroxylation (Scheme 11). Due to the problems with the separation of the two-meso products a 

second synthetic route to these analogues was pursued. This route was designed so that separation 
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could be achieved and the functionality changed late in the synthesis providing an efficient means 

for analogue synthesis. This route proceeded through an ester (Scheme 12). 

 

Scheme 12. (a) CDI, cat. DMAP, DCM, r.t. 16hrs, 65%. (b) cat. OsO4, NMO, THF/H2O (9:1) r.t. 16hrs (77: 56%, 78: 18%). (c) 

1M NaOH, reflux, 2hrs. (d) CDI, DCM, r.t. 6hrs. 

Cyclo-pentene carboxylic acid was esterified with an alcohol using a Steglich esterification 

(Neises and Steglich, 1978). The ester was then subjected to a dihydroxylation using osmium 

tetroxide in the presence of NMO. The two meso isomers generated were separated using flash 

chromatography. The ester was then subjected to hydrolysis using NaOH. After a work-up the crude 

product was subjected to coupling with an amine in the presence of carbonyl-diimidazole to yield 

the final amide. This route was used to re-synthesise amides 56 and 57. NMR comparison of the 1H 

spectra of amide 56 synthesised in this route with that of amide 56 synthesised earlier through 

Scheme 10 was used to assign ester stereochemistry. This route was used to develop some of the 

candidates for biological testing. 

The generated analogues tested in this further optimisation cycle identify that an electron 

withdrawing group in the R1 position is key for potency. Amide 75/Optactamide was identified as the 

most potent inhibitor. Distortion of the electron density of the ring with two electron withdrawing 

groups in the R1 and R3 position results in improved potency. Three possible interactions occur that 

improve the potency observed:  1) the halogen atoms contribute to more favourable hydrophobic 

and steric interactions, 2) the halogen atoms contribute to hydrogen bonding or halogen bonding at 

these positions and/or 3) a favourable stacking interaction occurs between the aromatic ring and the 

allosteric site, which is promoted by the electronic withdrawing effects of the two halogens. To 

determine which is true a NanB-amide 75 crystal structure complex was solved (Figure 51).  
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3.4 Optactamide binding position 

The Optactamide-NanB crystal structure complex was solved. Within this crystal structure 

Optactamide is observed to bind in the same position as Optactin (Figure 51).  

 

Figure 51. A. Optactamide (grey) bound within the allosteric site of NanB with Optactin superimposed (green) 

(PDB: 4XYX and PDB: 4XHX). B. PoseView generated 2D binding interaction between the LEAD 

candidate/Optactamide. Similar interactions are made between Optactamide with the allosteric site of NanB 

as Optactin. PoseView identifies the aromatic region as positioned within a hydrophobic pocket. 

PoseView (Stierand et al., 2006) identifies a hydrophobic interaction of the aromatic ring and the 

halogen substituents with the allosteric site. Given the position of the halogen atoms in the crystal 

structure, it is possible that the F atom on the R1 position has a direct hydrogen bonding interaction 

with the side chain of S599, which is 3.7 Å away. Hydrogen bonding with water is likely given the 

orientation of the halogens into the water channel exposes them to the solvent. It is possible both 

hydrogen bonding and solvation contribute to the increased potency of this molecule. The software 

(PoseView) did not predict an electrostatic/π-stacking interaction to occur between the aromatic 

group of Optactamide and NanB. However, it is possible that such an interaction does exist as a 

Glu658 side chain is located 4.0 Å away and is orientated in a face-to-face interaction with the 

aromatic ring. No electron density for Optactamide was observed within the active site of NanB. 

The allosteric site within NanB is located within the water channel of the catalytic domain (as 

observed within the Optactin-NanB crystal structures). Comparing the water channel of the 

Optactamide-NanB crystal structure (PDB: 4XYX) with an “apo” crystal structure (PDB: 4XIO) 

indicates that a number of waters are displaced by the binding of Optactamide (Figure 49).  

A. B. 



134 
 

  

Figure 52. A and B. Overlay of Optactamide-NanB crystal structure (PDB: 4XYX, gold) and “apo” crystal 

structure (PDB: 4XIO, blue). RMSD of both structures is 0.41 Å (as calculated by CCP4MG). Water molecules are 

shown as spheres. A. Waters that appear within the Optactamide-NanB crystal structure are in light blue.  

Waters that appear within the “apo” crystal structure are in red. B. Identified displaced waters from the 

overlay are in dark green.  

It is unclear what role the central pore/water channel has in the sialidase activity of NanB. This 

structural feature, however is conserved within many sialidases and structurally related glycosidases 

and must be significant to its evolutionary function (Luo et al., 1998, Crennell et al., 1996). 

Disruption of ordered waters within this channel could explain the reason reduced sialidase activity 

is observed in the presence of Optactamide.  

3.5 Activity assays and synergistic inhibition 

To determine if Optactamide would be useful as a chemical tool in chemical biology studies, 

control experiments (3.6. Control experiments) and an activity analysis were conducted. A feature of 

allosteric inhibition is the ability to inhibit selectively proteins within the same protein family. To 

determine if Optactamide is selective between various sialidases, it was tested against two other 

sialidases present in S. pneumoniae. The two other silaidases present in S. pneumoniae are NanA and 

NanC (Chapter 1.56.1 Streptoccocus pneumoniae sialidases). To determine if Optactamide had 

selectivity for NanB it was tested against NanA and NanC using the 4-Munana assay (Table 9).  

A. B. 
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Table 9. Table of the percentage inhibition observed for NanA and NanC against Optactamide at 500 µM and 100 µM. 

*NanA catalytic domain expressed and purified by Dr L. Yang. *NanC expressed and purified by Dr C. D. Owen. 

Sialidase % Inhibition 

 500µM 

Optactamide 

100µM 

Optactamide 

NanA* 81.1±1.1 51.2±6.4 

NanC* 14.1±7.0 5.9±3.3 

 

Optactamide was determined to bind in a non-competitive manner against NanB using a Line-

Weaver Burke plot against increasing substrate concentrations. In the presence of increasing 

concentrations of active site inhibitor of NanB (compound 80), the potency of Optactamide did not 

change identifying Optactamide as a synergistic inhibitor (Figure 53).  

 

Figure 53. A. Line weaver-Burke plot of Optactamide with increasing concentrations of substrate/4-Munana. B. 

IC50 values of Optactamide when in the presence and absence of active site inhibitor compound 80/2-((3-

chlorobenzyl)ammonio)ethane-1-sulfonate (IC50 of 38.9±0.8 μM,  see Chapter 1.61 Current Inhibitors of NanB). 
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3.6 Control experiments  

To determine if the inhibition observed for Optactamide is attributed to binding at the allosteric 

site alone and not due to promiscuous effects, a number of control experiments were run. In the 4-

Munana assay quenching of the fluorophore can occur, which can lead to ambiguous/promiscuous 

results. Various concentrations of Optactamide were tested against 4-Mu to determine if quenching 

could occur.  At all of the concentrations tested quenching of fluorescence was not observed for 4-

Mu (Figure 51.A).  

 

 

Figure 54. A. The fluorescence of 4-Mu (100 µM) at various concentrations of Optactamide. B. CD near UV 

spectra of NanB in the absence (red line) and presence of 500 µM Optactamide (green line). CD near UV 

spectrum was also measured on a solution containing no protein/NanB (blue line). C. DLS showing size 

distribution by diameter of (i) NanB control and (ii) NanB in the presence of Optactamide at 2.5 mM. 

To determine that the cause of decreased sialidase activity in the presence of Optactamide was 

not due to protein folding or aggregation two experiments were performed. Circular-dichroism near 

A. 

B. 

C i). C ii). 
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UV spectra of NanB was recorded in the presence and absence of 500 µM Optactamide. No protein 

unfolding, change in tertiary structure or protein-protein interactions were observed in the presence 

of Optactamide. Small molecules can cause the aggregation of protein leading to promiscuity. Direct 

light scattering (DLS) is a method useful for the determination of particle size in solution. DLS was 

performed on NanB in the presence and absence of of Optactamide at 2.5 mM. No change in particle 

size was observed in solution and verifies that the protein is not aggregated within solution. 

Attempts to determine the binding affinity of Optactamide against NanB were unsuccessful. 

Isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) experiments did not yield 

a measurable binding affinity for Optactamide. Despite this, these control tests identify Optactamide 

as a valid allosteric inhibitor of NanB and a useful chemical tool. 

3.7 Cell and bacterial assay 

Optactamide’s use as a chemical tool was tested in preliminary experiments using a cell and 

bacterial assay. Lung epithelial cells (A549 cells) were used to determine if inhibition of NanB could 

protect against S. pneumoniae adherence and invasion. S. pneumoniae was grown overnight in BHI 

broth. The OD was measured the next day (OD: 1.29) and the bacteria were centrifuged and re-

suspended in 10% FBS and DMEM high glucose. This suspension was then diluted 1 in 10 and 100 µL 

added to each well of a 24 well plate containing A549 cells in the presence or absence of 

Optactamide. Cells were then incubated for six hours. Cell medium was removed and wells washed 

with PBS. The cells were then treated with trypsin/EDTA and triton and dilutions spread onto blood 

agar plates and left to incubate overnight. The number of colonies was counted the next day. In the 

presence of 1 mM and 500 µM Optactamide some protection against S. pneumoniae was observed. 

This is more evident when looking at S. pneumoniae invasion only. The addition of non-cell 

permeable antibiotics (gentamycin and penicillin, according to the Winram et al. protocol) to the 

wells prior to cell lysis removes adhered S. pneumoniae that has not invaded into the mammalian 

cells (Figure 52). 
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Figure 55. A. The number of colonies determined from the invasion assay (with the antibiotic addition step). Cell 

suspensions diluted to 1 in 3. B. Adhesion and invasion assay (without the addition of the antibiotics). Cell suspensions 

diluted to 1 in 20. C. A549 cell toxicity assay using MTT. 

Protection of A549 cells against S. pneumoniae adherence and/or invasion was not noticed for 

lower concentrations of Optactamide. At the higher concentrations protection was detected but at 

these concentrations almost full inhibition of NanA would be observed (Table 9). It is therefore 

evident that for protection against S. pneumoniae infection, NanB cannot be considered as an 

independent target, rather NanA would also need to be targeted. However full protection was not 

observed at 1mM and Optactamide at concentrations of 1 mM and higher cause cellular death of 

A549 cells using an MTT assay (Figure 52.C.). Optactamide cannot be considered a clinical candidate 

however its preliminary use as a chemical tool has shed some light on the validity of NanB as a 

therapeutic target. 

 

 

A. 

B. 

C. 
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3.8 Summary 

The focus of this chapter was to develop a selective and potent chemical tool for NanB by the 

optimisation of the NanB allosteric inhibitor Optactin. Optimisation of Optactin proceeded by the 

removal of the SO3
- (due to mutagenesis studies identifying this functional moiety as redundant), 

replacement of the amine with an amide and substitution of the cyclohexyl moiety with a benzyl ring 

improved potency 5-fold. Further optimisation through rational design using the Topliss scheme 

generated 10-fold further improvement in potency (IC50: 55.4±2.5 µM) with compound 64. Different 

substitution patterns around the aromatic ring led to the discovery of compound 75/Optactamide 

with a low micromolar potency (IC50: 3.0±1.7 µM). Kinetic analysis and structural information show 

Optactamide to be an allosteric inhibitor of NanB. Optactamide was tested against other sialidases 

present in S. pneumoniae. Against NanA, Optactamide was observed to be 17-fold less potent than 

NanB (51.2±6.4% inhibition of NanA at 100 µM). Against NanC, Optactamide was observed to have 

no inhibition at 500 µM (14.1±7 % inhibition of NanC). Optactamide was used as a chemical tool to 

decipher its role in pneumococcal invasion in an in vitro S. pneumoniae invasion experiment. NanB 

and NanA were identified to play a role in the invasion of S. pneumoniae into A549 cells, however a 

high dose was required to cause inhibition (500 µM). Analysis against a cell death assay identified 

that a dose of higher than 1mM of Optactamide caused cell toxicity and death of A549 cells and so 

the inhibition observed at 500 µM can be directly attributed to sialidase inhibition. Optactamide 

could not fully protect A549 cells against S. pneumoniae invasion. This preliminary work with a NanB 

allosteric tool suggests that NanB is not an independent therapeutic target. Targeting NanA, NanB 

and possibly NanC would provide a better outcome. Optactamide has been useful as a chemical tool 

in preliminary chemical biology experiments.  
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4.1 Discussion and Future work 

The development of a novel chemical tool was accomplished against NanB. This “relaxed” 

chemical tool works by negative allosteric modulation. Orthosteric sites are conserved within the 

sialidase family and allosteric site modulation provides an alternative route to the development of 

specific modulators. Optactamide was determined to be specific to NanB when tested against NanC, 

a sialidase with the highest sequence homology to NanB at 46%. However, Optactamide did inhibit 

NanA with approximately 50% inhibition at 100µM despite a lower sequence homology of 24%. The 

allosteric site of NanA contains a very similar binding site to NanB. Further optimisation of 

Optactamide against NanB should focus on achieving specificity as well as potency. Firstly, an 

Optactamide-NanA crystal complex should be solved or alternatively, in the absence of an 

Optactamide-NanA crystal structure, a CADD approach could be used to determine the binding 

mode of Optactamide within NanA. This will provide valuable information for SBDD assumptions in 

achieving NanB selectivity in future Optactamide analogues as well as providing an opportunity for 

the development of a specific NanA inhibitor. Overlay of the structure of NanA (PDB: 2YA4)  with 

Optactamide-NanB crystal structure (PDB: 4XYX) suggests that the binding site maybe similar with 

only minor positional changes of the key protein side groups involved in van der Waal interactions 

with Optactamide (structural RMSD: 1.8 Å). In NanA the backbone carbonyl of threonine 251 is 

replaced with a backbone carbonyl of a lysine (residue 338). Glutamine 494 in NanB (a residue that 

contributes to direct hydrogen bonding with one of the diols of Optactamide) is replaced with a 

glycine (residue 556) in NanA. However, glutamine 741 within NanA is positioned 3.7 Å away from 

the position of glutamine 494 within NanB. This results in a slight steric clash with an OH from the 

diol of Optactamide (Figure 56). It is unlikely this would render Optactamide inactive, but would 

change the binding position of Optactamide slightly. Glutamic acid 658 in NanB is thought to 

contribute to electrostatic interactions with the arene of Optactamide. This glutamic acid is also in a 

slightly different position in NanA (2.1 Å further away, residue 742). It is possible the flexibility within 

Optactamide might still accommodate the positional change of the glutamic acid, but both positional 

changes of the glutamic acid and glutamine would result in sub-optimal binding of Optactamide 

within NanA (Figure 56).  This could explain the reduced potency of Optactamide observed against 

NanA in the 4-Munana assay (see Chapter 3.5, Activity assays and synergistic inhibition).     
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Figure 56. Superimposed structure of NanA (PDB: 2YA4) against Optactamide-NanB (PDB: 4XYX) crystal 

structure (RMSD: 1.8 Å). Electrostatic surface representation shown in each image. A. Optactamide (green) 

binding position within NanB (blue) overlaid in the same position within NanA (pink). B. Close up image of the 

cyclopentane diol binding position of Optactamide. Changes in the position of the glutamine results in a slight 

clash with Q741 (NanB residue at this position is Q494). C. Close up image of the arene binding position of 

Optactamide. Changes in the position of glutamic acid (NanA: E742 and NanB: E658) results in slightly 

suboptimal binding for an electrostatic interaction with the arene. 

Adaption of Optactamide to a NanA chemical tool could be possible.  Improvements in potency 

and selectivity would include the change of the amide to an amine within Optactamide as this would 

likely generate a favourable electrostatic interaction with glutamine 742. Addition of a CH2 to move 

the position of the amine closer to glutamic acid 742 might result in a move favourable electrostatic 
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interaction. Further improvements in potency against NanA could be generated by: 1) modification 

of the benzyl ring using the Topliss series or 2) complete replacement of the arene with another 

functionality guided by CADD. The analogues sythesised would need to be screened in parallel 

against NanB using the 4-Munana assay to exclude functionality that cause reduced selectivity.  

Comparison of Optactamide’s binding position within NanB (PDB: 4XYX) with a structural overlay 

of NanC (PDB: 4YZ1) confirms that binding within NanC would be unfavourable (structural RMSD is 

1.7 Å). Firstly, glutamine 494 within NanB (a residue that contributes to direct hydrogen bonding 

with one of the diols of Optactamide) is not present in NanC. Instead arginine 538 within NanC 

occupies this position resulting in a change in the electrostatic and accessible surface of the binding 

site. The electrostatic surface of this arginine directly clashes with an OH from the diol of 

Optactamide rendering Optactamide unlikely to bind at this position (Figure 57).  Mutation of 

arginine 538 into a glutamine to develop a NanCR538Q mutant might result in Optactamide efficacy. 

The generation of bacterial resistance to antibiotics is a major health concern (see Chapter 1.42, 

Antibiotics). The generation of a NanBQ494R would likely result in reduced Optactamide activity and 

could be a mechanism of bacterial resistance against Optactamide. The antibiotic clock (see Chapter 

1.42, Antibiotics) dictates how useful an antibiotic will be. If a NAM of NanB or NanA was to be 

developed as an antibiotic the potential routes of resistance would need to be investigated and 

evaluated. Other residues that likely contribute to a reduced binding ability include: serine 642, 

glutamine 700 and histidine 704. These residues are positioned further into the pocket resulting in a 

steric clash with the arene of Optactamide.  
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Figure 57. Superimposed structure of NanC (PDB: 4YZ1) against Optactamide-NanB (PDB: 4XYX) crystal 

structure (RMSD: 1.7 Å). Electrostatic surface representation shown in each image. A. Optactamide (green) 

binding position within NanB (blue) overlaid in the same position within NanC (gold). B. Close up image of the 

cyclopentane diol binding position of Optactamide. A direct clash with R538 is observed (NanB residue at this 

position is Q494). C. Close up image of the arene binding position of Optactamide. Changes in the position of 

the residues that exist in the arene binding pocket (serine, histidine and glutamic acid) are observed. 

The results obtained from the S. pneumoniae infection/invasion assay suggest that NanB has 

only a minor role in the invasion of S. pneumoniae into lung epithelial cells. At high concentrations of 

Optactamide that would cause full inhibition of NanA, lung epithelial cell protection is observed. 

Using a specific chemical tool that is selective for NanA would confirm these results. Despite 

protection being observed in an in vitro set up, these results may not correlate with in vivo 
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experiments. Optactamide would not be useful for in vivo experimentation as its solubility is low and 

its toxicity is high (as observed in a MTT toxicity assay) (see Chapter 3.7, Cell and bacterial assay). 

The limitations of a “relaxed” chemical tool design are evident in this situation. Further optimization 

of Optactamide will need to follow the “constrained” chemical tool design with the future aim of in 

vivo experimentation. Furthermore, full protection of the lung epithelial cell line against S. 

pneumoniae was not observed with NanA and NanB inhibition suggesting that NanC may also need 

to be inhibited. Alternatively, these results could indicate that these sialidases are multifaceted and 

catalytic activity is not the only important function these proteins have in S. pneumoniae virulence. 

The carbohydrate binding domains of these proteins may also have an important role in S. 

pneumoniae virulence. The carbohydrate binding domain in particular, is present in NanA, NanB and 

NanC and binds to terminal sialic acid of glyconjugates (Owen et al., 2015, Yang et al., 2015, Xu et al., 

2008).  Development of chemical tools that inhibit sialic acid binding within the carbohydrate 

binding domains could prove challenging, but inhibition of both the catalytic activity and 

carbohydrate recognition/binding from the CBM domains could result in full protection from S. 

pneumoniae invasion and adhesion. Alternatively, use of an engineered multi-valent CBM with 

improved affinity as a competitive inhibitor of S. pneumoniae sialidase CBM could provide a novel 

approach to limiting S. pneumoniae invasion and adhesion. Similarly the influenza virus binds to 

sialic acid present on host cell surfaces (Connaris et al., 2014). A multi-valent CBM has been used in 

in vivo studies and shown to provide mice with complete protection from a lethal challenge of a 

2009 pandemic H1N1 influenza virus (Connaris et al., 2014).  

Other GH-33 sialidases that allosteric sites could be located in include TcTS (PDB: 1MR5), NanI 

(PDB: 2VKs), NedA (PDB: 1EUR), VCS (PDB: 1KIT), Neu2, TrSA, STNA, PaNa, Btsa, BDI-2946, 

Baccac_01090 and RgNanH (PDB: 4X47) (see Chapter 1.59, Conservation). Further glycosidic 

hydrolases that allosteric sites could exist in include the GH-1 sialidases as the water channel is 

conserved with seven internal water molecules conserved across 90% of the known published 

structures (see Chapter 1.59, Conservation). Direct disruption of one of these conserved waters 

could result in reduced enzymatic activity.  It is also likely allosteric sites exist within water channels 

of other protein types including: serine proteases, kinases, cytochrome P450 and ATP-synthase (Teze 

et al., 2013, Knight et al., 2009, Meyer, 1992, Gohlke et al., 2012, Oprea et al., 1997). 

It is possible that the PDB provides an as of yet unmined wealth of information of novel 

unexplored small molecule binding sites in other protein families.   Hardy and Wells were the first to 

identify that small molecules present within crystallization conditions could “serendipitously” bind to 
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the protein within the crystal structure and identify pockets amenable to small molecule binding and 

modulation (see Chapter 1.35, Fragment screening and serendipitous binders).  

 

Figure 58. Examples of CHES serendipitously bound within crystal structures of: A. the NK1 fragment of HGF/SF 

complexed with CHES (PDB: 5CT1) and B. phosphoribosylglycinamide formyltransferase (purN) from Coxiella 

burnetii (PDB: 3TQR). CHES is found bound within a pocket in A. CHES is found bound on the surface of B. 

However, care will need to be taken with this approach as it is unlikely that all pockets 

containing serendipitous small molecule binders in the PDB would be novel allosteric sites. It is likely 

small molecules bind at the surface and contribute to crystal-crystal contacts (Figure 58).  The 

presence of these small molecules in high millimolar concentrations and errors within crystal 

structures due to low resolution coordinate errors or density misinterpretation could lead to 

incorrect assumptions. Additionally, the active sites of enzymes are rich with polar residues and 

would be more amenable to small molecule binding. A large number of ligands are found bound 

within structures in the PDB. Evaluating each small molecule bound within each structure is no small 

task. Computational tools that can screen and identify serendipitous binders within pockets, 

evaluate their binding and determine if this site is allosteric would be useful in reducing this 

workload.   

The design of a computational tool that screens for allosteric pockets using a machine learning 

approach was developed by Chen et al, 2016. This computational tool uses structural information 

from previously determined orthosetric sites (159 protein-ligand complexes from PDBbind), 

allosteric sites (59 protein-ligand complexes from literature and the AlloSteric Database) and 
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miscellaneous (99 protein-ligand complexes, where the ligand is neither defined as an orthosteic or 

allosteric binder and deemed to have no modulatory activity) to rank protein cavities into categories 

(allosteric, regular, orthosteric)(Chen et al., 2016). A validation test was carried out on CHES, in 

collaboration with our work. In the PDB 158 CHES-protein binding sites were identified. Only 14 of 

these sites were defined as buried in pockets and from this only one was identified as an allosteric 

site (NanB) (Chen et al., 2016).  

To further improve the success of a computational screen a direct comparison of multiple 

structures of the same protein (to evaluate structural conformational shifts in the presence of small 

molecule binding) should be including in the evaluation. Additionally, the importance of the pocket 

(identified to serendipitously bind a small molecule) to the protein’s function should be examined 

and included in the evaluation. Water channels within proteins are thought to have important 

structural and functional roles (see Chapter 1.59, Conservation). Small molecules that bind to 

important structural features of proteins would be more likely to have a modulatory impact.  

Research groups depositing protein structures to the PDB should be aware of serendipitous small 

molecule binders and its potential for allosteric site discovery.  
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4.2. Experimental 

4.2.1 Chemistry 

All reagents and chemicals were purchased from chemical suppliers including: Sigma Aldrich, 

Alfa Aeasar, Apollo scientific, Carbosynth and Fluorochem. These chemicals were used without any 

further purification unless otherwise stated.  Thin layer chromatography (TLC) was performed on 

silica coated glass plates purchased from Sigma Aldrich and Fluorochem with fluorescent indicator 

UV254. Developed TLC plates were air dried and analysed under a UV lamp (254/365 nm) or by 

staining with potassium permanganate. All moisture sensitive reactions were carried out in flame 

dried glassware and under a positive pressure of nitrogen. Dry THF and toluene were obtained from 

a dry solvent purification system (MBraun, SPS-800). Ethyl acetate was dried by distillation over 

K2CO3. Microwave assisted reactions were carried out using a CEM Discover microwave. Column 

chromatography was performed on silica gel (40-60 µm, Fluorochem). 

NMR spectra were acquired using the Bruker AVANCE 300 (1H, 400 MHz; 13C, 75 MHz), 400 (1H, 

400 MHz; 13C, 100 MHz) or 500 (1H, 500 MHz; 13C, 125 MHz) spectrometers. Deuterated solvents 

were used as the lock for acquiring NMR spectra. All chemical shifts are reported as δ in units of 

ppm. 13C spectra was acquired using the PENDANT or DEPTQ pulse sequence. Coupling constants (J) 

are reported in Hz and the following abbreviations are used for multiplicity: s = singlet, d = doublet, t 

= triplet, q = quartet, m = multiplet, br = broad. All signals were assigned as far as possible by 2D 

NMR techniques including COSY, HMBC and HSQC.  

Low resolution mass was obtained from the University of St Andrews using electron spray 

ionisation (ESI) mass spectrometry. High resolution and low resolution mass was obtained from the 

ESPRC facility in Swansea. Melting points are uncorrected and measured using Electrothermal 9100 

capillary melting point apparatus. FT infrared spectra were obtained using the Perkin Elmer Paragon 

1000 FT spectrometer and absorption maxima reported in wavenumbers (cm-1). 
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2-(cyclohexylamino)ethanesulfonic acid (23) 

 

2-(cyclohexylamino)ethanesulfonic acid (4.0 g, 19 mmol) was added to phosphorous 

pentachloride (4.8 g, 23 mmol, 1.2 eq) and suspended in dichloromethane (40 mL).  The reaction was 

heated under reflux for 3 hrs and then left to cool to room temperature. The desired product 23, a 

white powder was then isolated by filtration and used without further purification (4.3 g, 18 mmol, 

95%). M.p. 159-161˚C (lit 158-160˚C). 1H NMR (300 MHz, CDCl3): δ 9.76 (br. s., 2H, NH2
+), 4.52 (t, J = 

5.7Hz, 2H, H1), 3.52-3.48 (m, 2H, H2), 3.06-2.96 (m, 1H, H1’), 2.17-2.15 (m, 2H, 1 x H2’, 1 x H6’), 1.88-

2.00 (m, 2H, 1 x H2’, 1 x H6’)1.28-1.18 (m, 6H, H4’, H3’, H5’); 13C NMR (75 MHz ,CDCl3): δ 59.6 (C1), 

58.6 (C1’), 39.14 (C2), 29.3 (C2’, C6’), 24.6 (C4’), 24.3 (C3’, C5’); LRMS (EI+): m/z 249.10 [M+H]. 

2-Cyclohexylamino-1, 2-thiazetidine 1, 1-dioxide (24) 

 

Finely ground 23 (11 g, 42 mmol) and sodium carbonate (8.9 g, 84 mmol, 2 eq) were suspended 

in dry ethyl acetate (300 mL), under a nitrogen atmosphere. The suspension was stirred vigorously 

for 48 hrs. The reaction mixture was filtered and the filtrate concentrated to give 24 as white crystals 

(7.5 g, 35 mmol, 85%); m.p. 78-80 ˚C (lit 65˚C); IR (KBr) vmax/cm-1:  2941 2789 2733 (CH, CH2), 1376 

1162 (SO2), 1032 (C-N); 1H NMR (400MHz, CDCl3): δ 4.01 (t, J = 6.5 Hz, 2H, H-3), 3.17 (t, J = 6.5 Hz, 2H, 

H-4) 3.16 (m, 1H, H-1’), 1.86-1.78 (m, 2H, 1 x H-2’, 1 x H-6’), 1.70-1.66 (m, 2H, 1 x H-3’, 1 x H-5’) 1.55-

1.51 (m, 1H, 1 x H-4’), 1.39-1.28 (m, 5H, 1 x H-2’, 1 x H-3’, 1 x H-4’, 1 x H-5’, 1 x H-6’); 13C NMR (101 

MHz, CDCl3): δ 56.9 (C4), 56.7 (C1’), 34.0 (C3), 31.0 (C6’, C2’), 25.1 (C4’), 24.0 (C5’, C3’); LRMS (EI+): 

m/z 212.00 [M+Na]. 
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4,4-Diallyl-2-cyclohexyl-1,2-thiazetidine 1,1-dioxide (25) 

 

A solution of 24 (1.0 g, 5.3 mmol) in dry THF (10 mL) and allyl bromide (1.2 mL, 21 mmol, 4 eq) 

was cooled to -78 °C and freshly prepared lithium diisopropylamide (13 mmol, 2.5 eq) was added. 

The reaction was maintained at -78 °C for 1.5 hours.  The reaction was quenched by the addition of a 

saturated solution of NH4Cl (50 mL) and allowed to warm to room temperature. The product was 

extracted with ethyl acetate (3 x 35 mL) and the organic extracts were dried over sodium sulfate and 

the solvent removed in vacuo. This gave the crude product as off white crystals which were purified 

by column chromatography (ethyl acetate:hexanes 15:85) using Al2O3 as the solid phase to give the 

product 25 as white crystals (1.1 g, 4.1 mmol, 80%); m.p. 48-49 °C; IR (KBr) vmax/cm-1: 3070 (H-C=C), 

2929 2857 (CH, CH2), 1636 (C=C), 1301 1144 (SO2); 
1H NMR (400 MHz, CDCl3): δ 5.80-5.70 (m, 2H, H-

2’’), 5.18-5.13 (m, 4H, H-3’’), 3.08-3.01 (m, 1H, H-1’), 2.82 (s, 2H,  H-2), 2.75-2.70 (dd, J = 14.6 Hz, J = 

7.8 Hz, 2H,  H-1a’’), 2.63-2.58 (dd, J = 14.6, 7.9 Hz, 2H, H-1b’’), 1.69-1.65 (m, 2H,  1 x H-3’, 1 x H-5’), 

1.56-1.49 (m, 2H, 1 x H-2’, 1 x H-6’), 1.37-1.17 (m, 6H, 1 x H-2’, 1 x H-3’, 2 x H-4’, 1 x H-5’, 1 x H-6’); 

13C NMR (75MHz, CDCl3): δ 132.5 (C2’’), 119.7 (C3’’), 59.6 (C1’), 59.3 (C1), 48.9 (C2), 36.4 (C1’’), 31.2 

(C2’, C6’), 26.0 (C4’), 24.1 (C3’, C5’); LRMS (EI+): m/z 292.07 [M+Na]; HRMS (EI+):  calculated for 

C14H23NO2SNa 292.1347, found 292.1345. 

2-Cyclohexylamino-4-(3-cyclopentene)-1,2-thiazetidine-1,1-dioxide (26) 

     

β-Sultam 26 (1.4 g, 6.1 mmol) and benzylidene bis(tricyclohexylphosphine)dichlororuthenium 

(Grubbs 1st generation catalyst, 0.25 g, 0.30 mmol) in dry DCM (200 mL) was stirred at room 

temperature for 1.5 hours. The reaction mixture was filtered through celite and the solvent removed 

in vacuo to give the crude product as a black oil. The crude product was purified by column 

chromatography (ethyl acetate:hexane 20:80) using Al2O3 as the solid phase to give the product 27 

as a white solid (0.80 g, 3.3 mmol, 61%); m.p. 75-76 °C; IR (KBr)  vmax/cm-1: 2935, 2857 (CH, CH2), 

Grubbs 1
st

 generation catalyst 
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1614 (C=C), 1304, 1155 (SO2); 
1H NMR (400 MHz, CDCl3): δ 5.61 (m, 2H, H-3”, H-4”), 3.40 (d, J = 16.8 

Hz, 2H,  H-2a”, H-5a”), 3.07 (s, 2H, H-2), 3.03 (m, 1H, H-1’), 2.65 (d, J = 16.8 Hz, 2H, H-2b”, H-5b”), 1.84-

1.80 (m, 2H, 1 x H-2’, 1 x H-6’), 1.70-1.66 (m, 2H, 1 x H-3’, 1 x H-5’), 1.56-1.50 (m, 1H, 1 x H-4’), 1.38-

1.14 (m, 5H, 1 x H-2’, 1 x H-3’, 1 x H-4’, 1 x H-5’, 1 x H-6’); 13C NMR (75 MHz, CDCl3): δ 128.2 (C3”, 

C4”), 79.2 (C1), 56.4 (C1’), 50.1 (C2), 40.3 (C2’’, C5’’), 30.9 (C2’, C6’), 25.6 (C4’), 23.8 (C3’, C5’); LRMS 

(EI+): m/z 264.01 [M+Na]; HRMS (EI+):  calculated for C12H19NO2SNa 264.1034, found 264.1033. 

2-Cyclohexylamino-4-(cis-3,4-cyclopentanediol )-1,2-thiazetidine 1,1-dioxide (27) and 2-

Cyclohexylamino-4-(trans-3,4-cyclopentanediol )-1,2-thiazetidine 1,1-dioxide (28) 

 

 

Bicycle 26 (0.80 g, 3.7 mmol) and N-methylmorpholine-N-oxide (0.65 g, 5.6 mmol) was dissolved 

in THF/H2O (30 mL, 9:1). A solution of osmium tetroxide (2.5% wt in tbutanol) (0.015 mmol, 0.12 mL) 

was added to the reaction, which was allowed to stir for 16 hours at room temperature before being 

quenched by the addition of a saturated solution of sodium sulphite (100 mL). The reaction was 

extracted with ethyl acetate (3 x 40 mL). The combined organic extracts were dried over magnesium 

sulphate and the solvent removed in vacuo to give the crude products as a white solid (0.78 g). The 

crude reaction mixture was purified by column chromatography (ethyl acetate:hexane 80:20 to 

100:0) to give the products (27 and 28) as 2 separate fractions 27 (0.53 g, 2.1 mmol, 57%) and 28 

(0.080 g, 0.30 mmol, 8%). 

 

 

 

 

27 28 
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27: m.p. 108-109 °C; IR (KBr) vmax/cm-1: 3446 (OH), 2932, 2852 (CH, CH2), 1636 (C=C), 1309, 1145 

(SO2); 
1H NMR (400 MHz, CDCl3): δ 4.24-4.19 (m, 2H, H-3”, H-4”), 3.18 (s, 2H, H-2), 3.14-3.08 (m, 1H, 

H-1’), 2.87 (dd, J = 14.8 Hz, J = 5.9 Hz, 2H, H-2a”, H-5a”), 2.43 (br. s., 2H, OH), 2.16 (dd, J = 14.8  5.9 Hz, 

2H, H-2b”, H-5b”), 1.90-1.87 (m, 2H, 1 x H-2’, 1 x H-6’), 1.78-1.74 (m, 2H, 1 x H-3’, 1 x H-5’), 1.66-1.65 

(m, 1H, 1 x H-4’), 1.45-1.25 (m, 5H, 1 x H-2’, 1 x H-3’, 1 x H-4’, 1 x H-5’, 1 x H-6’); 13C NMR (75 MHz, 

CDCl3): δ 76.7 (C1), 72.9 (C3’’, C4’’), 56.2 (C1’), 51.0 (C2), 38.1 (C2”, C5”), 30.8 (C2’, C6’), 25.5 (C4’), 

23.7 (C3’, C5’); LRMS (EI+): m/z 298.04 (M+Na), (EI-): m/z 274.09 [M-H]; HRMS (EI+): calculated for 

C12H21NO4SNa 298.1089, found 298.1092. 

 

 

28: m.p. 169-170 °C; IR (KBr) vmax/cm-1: 3431 (OH), 2932, 2857 (CH, CH2), 1636 (C=C), 1294, 1150 

(SO2); 
1H NMR (400 MHz, CDCl3): δ  4.24-4.19 (m, 2H, H-3” H-4”), 3.14-3.08 (m, 1H, H-1’), 2.97 (s, 2H, 

H-2), 2.72 (dd, J = 14.8 Hz, J = 3.5 Hz, 2H, H-2a” H-5a”), 2.43 (br. s., 2H, OH), 2.10 (dd, J = 14.8  5.5 Hz, 

2H, H-2b”, H-5b”), 1.90-1.87 (m, 2H, 1 x H-2’, 1 x H-6’), 1.78-1.74 (m, 2H, 1 x H-3’, 1 x H-5’), 1.66-1.65 

(m, 1H, 1 x H-4’), 1.45-1.25 (m, 5H, 1 x H-2’, 1 x H-3’, 1 x H-4’, 1 x H-5’, 1 x H-6’); 13C NMR (75MHz, 

CDCl3): δ 76.7 (C1), 72.9 (C3”, C4”), 56.2 (C1’), 51.0 (C2), 38.1 (C2”, C5”), 30.8 (C2’, C6’), 25.5 (C4’), 

23.7 (C3’, C5’); LRMS (EI+): m/z 298.04 [M+Na]; HRMS (EI+):  calculated for C12H21NO4SNa 298.1089, 

found 298.1095.  

 

 

 

27 

28 
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1-[(Cyclohexylamino)methyl]-cis-3,4-dihydroxycyclopentanesulfonate (Optactin) 

 

27 (10 mg, 0.035 mmol) was dissolved in H2O (5 mL) and irradiated in a sealed glass microwave 

tube at 140 °C (maximum 300 W) for 8 minutes. The solvent was removed in vacuo to give the crude 

product as a white solid that was purified by recrystallization from H2O/EtOH to give Optactin as 

white crystals (3 mg, 0.010 mmol, 28% yield); m.p. 266-267 (dec) °C; IR (KBr) vmax/cm-1: 3494 (NH2
+), 

2935, 2863 (CH3, CH2, CH), 1220, 1183 (SO3
-); 1H NMR (400 MHz, D2O): δ 4.15 (t, J = 4.4 Hz, 2H, H-3, 

H-4), 3.38 (s, 2H, CH2), 3.13-3.05 (m, 1H, H-1’), 2.35 (dd, J = 14.9 Hz, 5.2 Hz, 2H, H-2a, H-5a), 1.98-1.94 

(m, 2H, 1 x H-2’, 1 x H-6’), 1.77-1.70 (m, 2H, 1 x H-3’, 1 x H-5’),  1.74 (dd, J = 14.9   5.2 Hz, 2H, H-2b, H-

5b), 1.57-1.52 (m, 1H, 1 x H-4’), 1.36-1.03 (m, 5H, 1 x H-2’, 1 x H-3’, 1 x H-4’, 1 x H-5’, 1 x H-6’); 13C 

NMR (75 MHz, CDCl3): δ 72.8 (C3, C4), 62.0, (C1’), 58.9 (C1), 50.6 (CH2), 36.5 (C2, C5), 28.6 (C2’, C6’), 

24.4 (C4’), 23.8 (C3’, C5’); LRMS (EI+): m/z 316.11 [M+Na]; HRMS (EI+): calculated for C12H23NO5SNa 

316.1195, found 316.1205. 

1-[(Cyclohexylamino)methyl]-cis-3,4-dihydroxycyclopentanesulfonate (29) 

 

28 (10 mg, 0.035 mmol) was dissolved in H2O (5 mL) and irradiated in a sealed glass microwave 

tube at 140 °C (maximum 300 W) for 8 minutes. The solvent was removed in vacuo to give the crude 

product as a white solid that was purified by recrystallization from H2O/EtOH to give 7 as white 

crystals (5 mg, 0.017 mmol, 48% yield); m.p. 229-231 (dec) °C; IR (KBr) vmax/cm-1: 3494 (NH2
+), 2935, 

2863 (CH3, CH2, CH), 1220, 1183 (SO3
-); 1H NMR (400 MHz, D2O): δ 4.06 (q, J = 7.0 Hz, 1H, H-3), 3.93 

(q, J = 7.3 Hz, 1H, H-4), 3.38 (s, 2H, CH2), 3.15-3.03 (m, 1H, H-1’), 2.48 (dd, J = 14.5 Hz, J3 = 7.0 Hz, 1H, 

H-2a), 2.10 (dd, J = 14.5  7.3 Hz, 1H, H-5a), 2.05 (dd, J = 14.5 Hz,  7.7 Hz, 1H, H-5b), 2.01-1.92 (m, 2H, 1 

x H-2’, 1 x H-6’), 1.77-1.68 (m, 2H, 1 x H-3’, 1 x H-5’), 1.61 (dd, J = 14.5 Hz, 7.0 Hz, 1H, H-2b), 1.57-1.51 

(m, 1H, 1 x H-4’,) 1.39-1.15 (m, 4H, 1 x H-2’, 1 x H-3’, 1 x H-5’, 1 x H-6’), 1.15-1.00 (m, 1H, 1 x H-4'); 13C 

NMR (75 MHz, D2O): δ 76.1 (C3), 75.6 (C4), 60.1 (C1), 59.0 (C1’), 50.4 (CH2), 36.6 (C2), 36.2 (C5), 30.2 
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(C2’), 28.6 (C6’), 28.5 (C4’), 24.4 (C3’), 23.9 (C5’); LRMS (EI+): m/z 291.72 [M-H]; HRMS (EI-): calculated 

for C12H22NO5S 292.1219, found 292.1211. 

(1R,2S, 4r)-4-((Cyclohexylamino)methyl)cyclopentane-1,2-diol (31) 

 

To (1r, 3R, 4S)-N-Cyclohexyl-3,4-dihydroxycyclopentanecarboxamide (5.4 mg, 0.024 mmol) in dry 

THF (5 mL), LiAlH4 ( 0.19 mL, 0.19 mmol, 8.0 eq) was added carefully. The reaction was stirred for 16 

hrs and quenched by the addition of H2O (0.19 ml), NaOH (0.19 ml,1 M)and H2O (0.58 ml) and then 

filtered through celite. The crude product was purified by silica column chromatography (treated 

with triethylamine) and eluted with DCM/MeOH (9:1) to give 31 as an oil (3 mg , 0.014 mmol, 30%). 

IR (thin film) vmax/cm-1: 3426 (OH); 1H NMR (500 MHz, CDCl3) δ 3.88 (ddd, J = 5.6, 4.4, 1.5 Hz, 2H, 

H3, H4), 2.58 (d, J = 3.0 Hz, 2H, CH2), 2.38 (tt, J = 10.5, 3.7 Hz, 1H, H1’), 2.26 (dtd, J = 8.8, 5.4, 4.3, 2.0 

Hz, 1H, H1), 2.14 – 2.00 (m, 2H, 1 x C2, 1 x C5), 1.97 – 1.84 (m, 2H, 1 x C2, 1 x C5), 1.66 – 1.56 (m, 

1H), 1.66 – 1.56 (m, 1H, NH), 1.39 – 0.98 (m, 10H, C2’, C3’, C4’, C5’, C6’). LRMS (EI+): m/z 214.13 

(M+H); HRMS (EI+): calculated for C12H23NO2H 214.18, found 214.18. 

tert-butyl cyclohexyl((3, 4-dihydroxycyclopentyl)methyl)carbamate (32) 

 

To tert-butyl cyclohexyl(cyclopent-3-en-1-ylmethyl)carbamate (10 mg, 0.036 mmol) and N-

methylmorpholine-N-oxide (72 mg, 0.60 mmol) dissolved in THF/H2O (9:1, 1 mL : 0.1 mL) was added 

a catalytic amount of osmium tetraoxide (1.2 µmol, 0.01 mL). After stirring at room temperature for 

16 hrs, the reaction was quenched with sodium sulfite (5 mL). The product was extracted with ethyl 

acetate (10 mL), dried over magnesium sulfate and concentrated. The crude was then subject to 

column chromatography DCM/MeOH (9:1) to give 32 a mixture of diasteromers (5.9 mg, 0.019 

mmol, 52%). IR (ATR) νmax/cm-1: 3428 (OH), 2976 - 2854 (CH) and 1635 (C=O) 1H NMR (400 MHz, 

CDCl3): δ 4.14 (s, 2H, H3,H4), 3.10 (s, 2H, CH2 ), 2.52 (q, J = 7.9 Hz, 1H, H1), 2.40-2.35 (br, s, 2H, OH) 
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1.83 – 1.74 (m, 3H,1 x H2, 1x H5, 1 x H1’ ), 1.73 – 1.67 (m, 2H, 1 x H2’, 1 x H6’), 1.65 – 1.56 (m, 2H, 1 x 

H2, 1  H5), 1.45 (s, 9H, H1’’, H2’’, H3’’), 1.32 – 1.20 (m, 2H, 1 x H2’, 1x H6’), 1.16 – 1.03 (m, 6H, H3’, 

H4’, H5’). LRMS (EI+): m/z 314.23 (100) (M +H); HRMS (EI+): calculated for C17H31NO4H 314.2326, 

found 314.2330. 

tert-Butyl cyclohexyl(cyclopent-3-en-1-ylmethyl)carbamate (33) 

 

3-Cyclopentene carboxylic acid (0.064 ml, 0.54 mmol) was added to dry THF (5 mL) and LiAlH4 

(2.16 mmol, 4.0 eq) and left stirring at room temperature for 16 hrs. The reaction was quenched by 

the sequential addition of H2O (0.19 mL), NaOH (0.19 mL, 1 M) and H2O (0.58 mL) and then filtered 

through Celite©. The filtrate was washed with DCM. Dess-Martin Periodinane (0.46 g, 1.08 mmol, 2.0 

eq) was then added to the DCM solution containing the crude product. The reaction was left for 16 

hrs. The reaction was then quenched with sodium thiosulfate (5 mL) and sodium bicarbonate (5 mL). 

The crude product was then subject to extraction with DCM. Activated molecular sieves were added 

to the crude product and then cyclohexylamine (0.54 mmol, 1.0 eq) was added. The reaction was left 

stirring for 1 hr at room temperature and then NaBH4 (30 mg, 0.81 mmol,1.5 eq) added. 4 mL of 

NH4Cl was then added and aqueous separated from DCM layer. DIPEA (28 mg, 0.24 mmol) and di-

tert-butyl dicarbonate (0.14 g, 0.65 mmol, 1.1 eq) were added to the mixture and left at room 

temperature for 30 mins. The crude product was concentrated and subject to column 

chromatography (DCM/MeOH 19:1) to afford 33 as an oil (24 mg, 0.076 mmol, 14%). IR (ATR) 

νmax/cm-1: 2976 - 2854 (CH), 1685 (C=O) and 1543 (C=C);  1H NMR (400 MHz, CDCl3) δ 5.54 (s, 2H, H3, 

H4), 3.01 – 2.96 (s, 2H, CH2), 2.53 – 2.37 (m, 1H, H1), 2.37 – 2.16 (m, 2H, 1x H2, 1 x H5), 2.06 – 1.84 

(m, 3H, H1’, 1 x H2,1 x H5), 1.74 – 1.03 (br. m, 19H, H1’’, H3’’, H4’’, H2’, H6’, H5’, H3’ H4’ ). LRMS 

(EI+): m/z 279.84 (100).  
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N-Cyclohexylcyclopent-3-enecarboxamide (39) 

 

To a solution of 3-cyclopentene carboxylic acid 37 (0.46 mL, 4.5mmol, 1 eq) in DCM (mL), 1, 1’-

carbonyl diimidazole (0.56 g, 4.91 mmol, 1.1 eq) was added in portions. After 45 mins, 

cyclohexylamine (0.56 g, 4.91 mmol, 1.1 eq.) was added and left to stir for 4-5 hrs. The reaction was 

quenched with an aqueous solution of HCl (60 mL, 1 M). The product was extracted using DCM (50 

mL). The product was then washed with an aqueous solution of HCl (30 mL, 1M), H2O (30 mL), a 50% 

saturated aqueous Na2CO3/NaCl solution (30 mL), dried and filtered through a cotton plug. The 

filtrate was diluted with 10% EtOAc/CH2Cl2 and filtered through silica plug eluting with 10% 

EtOAc/CH2Cl2 to remove the baseline color. Subsequent concentration in vacuo affords amide alkene 

39 as a white solid (0.80 g, 3.6 mmol, 80% yield); m.p. 151-153 °C. IR (ATR) νmax/cm-1: 3283(NH), 2924 

- 2846 (CH), 1635 (C=O) and 1543 (C=C); 1H NMR (500 MHz, Methanol-d4): 5.65 – 5.60 (m, 2H, H3, 

H4), 3.64 - 3.58 (m, 1H, H1’), 3.05 - 2.94 (m, 1H, H1), 2.58 - 2.49 (m, 4H, H2, H5), 1.91 - 1.15 (m, 10H, 

H2’, H3’, H4’, H5’, H6’); 13C NMR (126 MHz, Methanol-d4) δ 176.4, (C=O), 128.6 (C3, C4), 48.3 (C1’), 

42.8 (C1), 36.6 (C2, C5), 32.4, 25.2, 24.8 (C2’, C3’, C4’, C5’, C6’). LR-MS (ES+): m/z 194.02 [M+H]. 

HRMS (EI+): calculated for C12H20NO 194.1539, found 194.1538. 

(3S,4R)-N-Cyclohexyl-3,4-dihydroxycyclopentanecarboxamide (40) and (3R,4S)-N-Cyclohexyl-

3,4-dihydroxycyclopentanecarboxamide (41).  

 

 

To a solution of 39 (100 mg, 0.52 mmol, 1 eq.) and N-methylmorpholine-N-oxide (1.2 eq.) 

dissolved in THF/H2O (9:1) was added a catalytic amount of osmium tetroxide (0.012 mmol, 0.1 mL) 

and stirred at room temperature overnight. The reaction was then quenched by the addition of 

sodium sulphite (30 mL). The product was extracted with ethyl acetate (100 mL), dried over 

40 41 
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magnesium sulphate and concentrated in vacuo. The crude product was then purified using flash 

column chromatography (10% MeOH/DCM) to give products 40 (40% yield) and 41 (17% yield) as 

white solids.  

 

40: m.p. 134-135 °C; IR (thin film) νmax/cm-1: 3299 (OH), 1639 (C=O) and 740; 1H NMR (500 MHz, 

Methanol-d4) δ 3.98 – 3.91 (m, 2H, H3, H4), 3.64 – 3.57 (m, 1H, H1’), 2.76 – 2.68 (m, 1H, H1), 2.17 – 

2.08 (m, 2H, 1 x H2, 1 x H5), 1.86 (m, 2H, 1 x H2’, 1 x H6’), 1.83 – 1.73 (m, 4H, 1 x H2, 1x H5, 1x H2’, 1 

x H6’ ), 1.67 – 1.62 (m, 1H, 1 x H4’), 1.43 – 1.33 (m, 2H, 1 x H3’, H x H5’), 1.23 (m, 3H, 1 x H3’, 1 x H4’, 

1x H5’); 13C NMR (126 MHz, Methanol-d4) δ 177.2 (C=O), 73.6 (C3, C4), 48.4 (C1’), 40.3 (C1), 34.3 (C2, 

C5), 32.2 (C2’, C6’), 25.2 (C4’), 24.6 (C3’, C5’); LR-MS (ES+): m/z 228.15 [M+H]; HRMS (EI+): calculated 

for C12H22NO3 228.1594, found 228.1594. 

 

41: m.p. 179-181 °C; IR (thin film) νmax/cm-1: 3299 (OH), 1635 (C=O) 1540, 1264 and 746; (C=C) 1H 

NMR (500 MHz, Methanol-d4) δ 4.15 – 4.09 (m, 2H, H3, H4), 3.65 – 3.55 (m, 1H, H1’), 2.98 (m, 1H, 

H1), 1.97 – 1.81 (m, 6H, H2, H5, 1 x H6’, 1 x H2’), 1.81 – 1.73 (m, 1H, 1 x H4’), 1.66 (m, 2H, 1 x H5’, 1 x 

H3’), 1.41 – 1.30 (m, 2H, 1 x H5’, 1x H3’), 1.26 – 1.15 (m, 3H, 1x H4’, 1 x H6’, 1 x H2’); 13C NMR (126 

MHz, Methanol-d4) δ 175.2 (C=O), 73.6 (C3, C4), 48.3 (C1’), 40.2 (C1), 34.5 (C2, C5), 32.4 (C2’, C6’), 

25.2 (C4’), 24.8 (C3’, C5’); LR-MS (ES+): m/z 228.15 [M+H]. HRMS (EI+): calculated for C12H22NO3 

228.1594, found 228.1594. 

 

 

 

 

40 

41 
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N-benzylcyclopent-3-ene-1-carboxamide (58) 

 

To a solution of 3-cyclopentene carboxylic acid 37 was reacted with phenylmethanamine (1 eq) 

using carbonyl diimidazole (1.2 eq). The reaction was quenched with an aqueous solution of HCl (60 

mL, 1 M). The product was extracted using DCM (50 mL). The product was then washed with an 

aqueous solution of HCl (30 mL, 1M), H2O (30 mL), a 50% saturated aqueous Na2CO3/NaCl solution 

(30 mL), dried and filtered through a cotton plug. The filtrate was diluted with 10% EtOAc/CH2Cl2 and 

filtered through silica plug eluting with 10% EtOAc/CH2Cl2 to remove the baseline color. Subsequent 

concentration in vacuo affords 58 as a white solid (81% yield); m.p. 92-93 °C; ; IR (ATR) νmax/cm-1: 

3271 (NH), 3055-2846 (CH), 1635 (C=O), 1543 (C=C), 817 (C-Cl), 678 (C-H); 1H NMR (300 MHz, CDCl3) 

δ 7.31 (d, J = 8.2 Hz, 1H, H3’), 7.27 (d, J = 2.0 Hz, 1H, H4’), 7.03 (dd, J = 8.2, 2.1 Hz, 1H, H2’), 5.96 (m, 

1H, NH), 5.68 – 5.54 (m, 2H, H3, H4), 4.31 (d, J = 6.1 Hz, 2H, H1’’), 2.93 (quin, J = 7.9 Hz, 1H, H1), 2.64 

-2.50 (m, 4H, H2, H5). 13C NMR (75 MHz, CDCl3) δ 176.4 (C=O), 139.3 (C1’), 131.0 (C3’), 129.9 (C4’), 

129.6 (C3, C4), 127.4 (C2’), 77.5 (2 x C-Cl), 43.8 (C1), 42.8 (C1’’), 37.4 (C2, C5). LR-MS (ES+): m/z 

271.98 (M+H). 

 

(3S,4R)-N-benzyl-3,4-dihydroxycyclopentanecarboxamide (56) and (3R,4S)-N-benzyl-3,4-

dihydroxycyclopentanecarboxamide (57). 

 

 

To a solution of 58 and N-methylmorpholine-N-oxide (1.2 eq.) dissolved in THF/H2O (9:1) was 

added a catalytic amount of osmium tetroxide (1 mol %) and stirred at room temperature overnight. 

56 57 
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The reaction was then quenched by the addition of sodium sulphite (30 mL). The product was 

extracted with ethyl acetate (100 mL), dried over magnesium sulphate and concentrated in vacuo. 

The crude product was then purified using flash column chromatography (10% MeOH/DCM) to give 

products 56 (43% yield) and 57 (40% yield) as white solids.  

56: m.p. 125-127 °C;  IR (ATR) νmax/cm-1: 3295 (OH), 1635 (C=O), 1539 (Ar C=C), 692 (C-H);  1H 

NMR  (500 MHz, CDCl3)  δ 7.40 –7.28 (m, 5H, H2’, H3’, H4’, H5’, H6’), 6.11 (s, 1H, NH), 4.46 (d, J = 5.2 

Hz, 2H, H1’), 3.99-3.91 (m, 2H, H3, H4), 3.90 (d, J = 8.4 Hz, 2H, 2 x OH), 2.80-2.66 (m, 1H, H1), 2.25-

2.17 (m, 2H, 1 x H2, 1 x H5), 1.94-1.88 (m, 2H, 1 x H2, 1 x H5); 13C NMR (126 MHz, CDCl3) δC 178.6 

(C=O), 138.4 (C1’), 128.9 and 127.9 (C2’, C3’, C4, C5’, C6’), 74.3 (C3, C4), 44.1 (C1’’), 42 (C1), 35.3 (C2, 

C5); LR-MS (ES+): m/z 236.11 [M+H]; HRMS (EI+): calculated for C13H17NO3 235.1200, found 236.1200 

[M+H]. 

57: m.p. 154-155 °C; IR (ATR) νmax/cm-1: 3275 (OH), 1635 (Amide C=O), 1541 (Ar C=C), 692 (C-

H);  1H NMR  (500 MHz, CDCl3) δH 7.38-7.25 (m, 5H, H2’, H3’, H4’, H5’, H6’), 5.70 (br s, 1H, NH), 4.43 

(d, J = 6.26 Hz, 2H, H1’), 4.31-4.25 (s, 2H, H3, H4), 2.99-2.92 (m, 1H, H1), 2.18-2.10 (m, 2H, 1 x H2, 1 x 

H5), 2.00-1.95 (m, 2H, 1 x H2, 1 x H5); 13C NMR (126 MHz, CDCl3) δC 177.5 (C=O), 137.9 (C1’), 128.7 

and 127.6 (C2’, C3’, C4, C5’, C6’), 73.6 (C3, C4), 43.8 (C1’’), 41.3 (C1), 35.4 (C2, C5); LR-MS (ES+): m/z 

236.11 [M+H]; HRMS (EI+): calculated for C13H17NO3 235.1200, found 236.1200 [M+H]. 

 

(3S,4R)-N-(4-chlorobenzyl)-3,4-dihydroxycyclopentanecarboxamide (62) and (3R,4S)-N-(4-

chlorobenzyl)-3,4-dihydroxycyclopentanecarboxamide (63) 

  

 

To a solution of 85 and N-methylmorpholine-N-oxide (1.2 eq.) dissolved in THF/H2O (9:1) was 

added a catalytic amount of osmium tetroxide (1 mol %) and stirred at room temperature overnight. 

The reaction was then quenched by the addition of sodium sulphite (30 mL). The product was 

62 63 
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extracted with ethyl acetate (100 mL), dried over magnesium sulphate and concentrated in vacuo. 

The crude product was then purified using flash column chromatography (10% MeOH/DCM) to give 

products 62 (50% yield) and 63 (48% yield) as white solids.  

62: m.p. 127-128 °C; IR (ATR) νmax/cm-1:  3296.35 (OH), 1637.56 (C=O), 1527.92 (Ar C=C), 

1089.78 (CH); 1H NMR  (300 MHz, CDCl3) δ 7.32 (d, J = 8.04 Hz, 2H, H3’, H4’), 7.20 (d, J = 8.04 Hz, 2H, 

H2’, H5’), 6.15 (br  s, 1H,  NH), 4.40-4.38 (m, 2H, H1’’), 4.08-3.97 (m, 2H, H3, H4), 2.77-2.67 (m, 1H, 

H1), 2.26-2.11 (m, 2H, 1 x H2, 1 x H5), 1.93-1.80 (m, 2H, 1 x H2, 1 x H5); 13C NMR (75 MHz, CDCl3) δC 

179.2 (C=O), 136.8 (C1’), 129.5 (C2’, C5’), 74.7 (C3, C4), 64.9 (C-Cl), 43.7 (C1’’), 42.4 (C1), 35.7 (C2, 

C5), LR-MS (ES+): m/z 292.05 [M+Na]; HRMS (EI+): calculated for C13H16ClNO3 269.0819, found 

270.0894 [M+H]. 

63: m.p. 166-168 °C; IR (ATR) νmax/cm-1:  3271.27 (OH), 1633.71 (Amide RCONHR), 1539.20 (Ar 

C=C), 1062 (C-H);  1H NMR  (300 MHz, CDCl3) δH 7.23 (d, J = 8.25 Hz, 2H, H3’, H4’), 7.12 (d, J = 8.25 

Hz, 2H, H2’, H5’), 5.67 (br s, 1H, NH), 4.34-4.32 (m, 2H, H1’’), 4.25-4.17 (m, 2H, H3, H4), 2.96-2.83 (m, 

1H, H1), 2.10 – 1.84 (m, 4H, H2, H5); 13C NMR (75 MHz, CDCl3) δC 179.2 (C=O), 136.8 (C1’), 129.5 

(C2’, C5’), 129.4 (C3’, C4’), 74.7 (C3, C4), 64.9 (C-Cl), 43.7 (C1’’), 42.4 (C1), 35.7 (C2, C5); LR-MS (ES+): 

m/z 291.99 [M+Na];  

(3S,4R)-N-(4-chloro-3-(trifluoromethyl)benzyl)-3,4-dihydroxycyclopentanecarboxamide (66) 

and (3R,4S)-N-(4-chloro-3-(trifluoromethyl)benzyl)-3,4-dihydroxycyclopentanecarboxamide (67) 

 

 To a solution of 85 and N-methylmorpholine-N-oxide (1.2 eq.) dissolved in THF/H2O (9:1) was 

added a catalytic amount of osmium tetroxide (1 mol %) and stirred at room temperature overnight. 

The reaction was then quenched by the addition of sodium sulphite (30 mL). The product was 

extracted with ethyl acetate (100 mL), dried over magnesium sulphate and concentrated in vacuo. 

The crude product was then purified using flash column chromatography (10% MeOH/DCM) to give 

products 66 (39 % yield) and 67 (34 % yield) as white solids. 

66 67 
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66: m. p. 145-146 °C; IR (ATR) νmax/cm-1: 3302 (OH), 2939 (CH), 1635 (C=O), 1134 (C-F), 663 (C-

Cl);  1H NMR (300 MHz, Methanol-d4) δH 7.60-7.56 (m, 1H, H4’), 7.48–7.42 (m, 1H, H3’), 7.42–7.38 

(m, 1H, H2’), 4.30 (s, 2H, H1’’), 3.90-3.79 (m, 2H, H3, H4), 2.68 (tt, J = 9.2, 6.8 Hz, 1H, H1), 2.14-1.96 

(m, 2H, 1 x H2, 1 x H5), 1.83 – 1.65 (m, 2H, 1 x H2, 1 x H5); 13C NMR (75 MHz, Methanol-d4) δC 179.7 

(C=O), 140.6 (C1’), 134.0 (C2’), 133.2 (C3’),  128.1 (C4’), 126.5 (C-CF3) , 75.2 (C3, C4), 48.9 (CF3) , 43.6 

(C1’’), 41.8 (C1), 36.1 (C2, C5); LR-MS (ES+): m/z 337.99 [M+H]; HRMS (EI+): calculated for 

C14H15ClF3NO3Na 360.0590, found 360.0580 [M+Na]. 

67: m. p. 147-149 °C; IR (ATR) νmax/cm-1: 3282 (OH), 1635 (C=O), 1539 (C=C), 1114 (C-F), 659 (C-

Cl); 1H NMR (300 MHz, Methanol-d4) δH 7.59–7.54 (m, 1H, H4’), 7.49–7.41 (m, 1H, H3’), 7.41-7.32 

(m, 1H, H2’), 4.28 (s, 2H, H1’’), 4.04-3.96 (m, 2H, H3, H4), 2.97 (quin, J = 8.2 Hz, 1H, H1), 1.87–1.78 

(m, 4H, H2, H5); 13C NMR (75 MHz, Methanol-d4) δC 178.6 (C=O), 140.7 (C1’), 133.9 (C2’), 133.2 

(C3’), 128.0 (C4’), 127.8 (C-CF3) , 75.2 (C3, C4), 47.9 (CF3) , 43.5 (C1’’), 42.0 (C1), 36.2 (C2, C5). LR-MS 

(ES+): m/z 338.07 [M+H]; HRMS (EI+): calculated for C14H15ClF3NO3Na 360.0590, found 360.0591 

[M+Na]. 

(1r,3R,4S)-N-(3-bromobenzyl)-3,4-dihydroxycyclopentane-1-carboxamide (68) 

 

To a solution of 87 and N-methylmorpholine-N-oxide (1.2 eq.) dissolved in THF/H2O (9:1) was 

added a catalytic amount of osmium tetroxide (1 mol %) and stirred at room temperature overnight. 

The reaction was then quenched by the addition of sodium sulphite (30 mL). The product was 

extracted with ethyl acetate (100 mL), dried over magnesium sulphate and concentrated in vacuo.  

The crude product was then purified using flash column chromatography (10% MeOH/DCM). This led 

to the isolation of only one of the two diastereomers to give 68 (33% yield) as a white solid; m. p. 

103–105 °C; IR (ATR) νmax/cm-1: 3336-3244 (OH), 2920 (CH), 1631 (C=O), 1543 (C=C), 690 (C-Br); 1H 

NMR (500 MHz, Methanol-d4) δ 7.48-7.45 (m, 1H, H5’), 7.43-7.41 (m, 1H, H4’), 7.27-7.24 (m, 1H, H2’. 

H3’), 4.36 (s, 2H, H1’’), 4.00-3.92 (m, 2H, H3, H4), 2.84-2.74 (m, 1H, H1), 2.22-2,11 (m, 2H, 1 x H2, 1 x 

H5), 1.91 – 1.80 (m, 2H, 1 x H2, 1 x H5); 13C NMR (126 MHz, Methanol-d4) δ 177.8 (C=O), 130.1 (C5’), 

129.9 (C4’), 129.8 (C2’), 125.9 (C3’), 73.4 (C3, C4), 42.2 (C1’’), 40.1 (C1), 34.8 (C2, C5); LR-MS (ES+): 

m/z 313.98 (M+H). 
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(1r,3R,4S)-3,4-dihydroxy-N-(3-methylbenzyl)cyclopentane-1-carboxamide (69) 

 

Ester 77 was subjected to a hydrolysis using NaOH. After a work up the crude product was amide 

coupled with m-tolylmethanamine (1eq) using carbonyl-diimidazole (1.2eq). After an acid base work 

up, the product 70 was extracted with DCM (100 mL), dried over magnesium sulphate and 

concentrated in vacuo to afford a white powder (23% yield). m.p. 102-104°C. IR (ATR) νmax/cm-1: 

3402-3296 (OH), 2968-2883 (CH), 1656 (C=O), 1529-1440 (C=C), 1348 (C-H). 1H NMR (500 MHz, 

Methanol-d4) δ 7.22-7.17 (t, J = 7.5 Hz, 1H, H5’’), 7.11-7.04 (m, 3H, H2’’, H4’’, H6’’), 4.32 (s, 2H, H1’), 

3.98-3.92 (m, 2H, H3, H4), 2.78 (tt, J = 9.3, 6.6 Hz, 1H, H1), 2.19-2.10 (m, 2H, 1 x H2, 1 x H5), 1.89–

1.81 (m, 2H, 1 x H2, 1 x H5). 13C NMR (75 MHz, Methanol-d4) δC 179.2 (C=O), 139.8 (C3’’), 139.3 

(C1’’), 129.5 (C2’’), 129.2 (C4’’), 128.9 (C6’’) 125.6 (C5’’) 74.9 (C3, C4), 44.3 (CH3), 43.6 (C1’), 41.6 

(C1), 35.7 (C2, C5). LR-MS (ES+): m/z 251.1 [M+H]; HRMS (EI+): calculated for C14H20O3N 250.1438, 

found 250.1441. 

 

 (1r,3R,4S)-N-(3-fluorobenzyl)-3,4-dihydroxycyclopentane-1-carboxamide (70) 

 

Ester 77 was subjected to a hydrolysis using NaOH. After a work up the crude product was amide 

coupled with (3-fluorophenyl)methanamine (1 eq) using carbonyl-diimidazole (1.2eq). After an acid 

base work up, the product 70 was extracted with DCM (100 mL), dried over magnesium sulphate and 

concentrated in vacuo to afford a white powder (23% yield). m.p. 106-108°C. IR (ATR) νmax/cm-1: 

3267 (OH), 3059-2839 (CH), 1616 (C=O), 1539-1435 (C=C), 1251-1114 (C-F). 1H NMR (500 MHz, 

Methanol-d4) δ 7.36-7.29 (m, 1H, H5’’), 7.11-7.07 (m, 1H, H2’’), 7.03-6.94 (m, 2H, H4’’, H6’’), 4.36 (s, 

2H, H1’), 3.98-3.92 (m, 2H, H3, H4), 2.78 (tt, J= 9.2, 6.7 Hz, 1H, H1), 2.19-2.10 (m, 2H, 1 x H2, 1 x H5), 
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1.89–1.80 (m, 2H, 1 x H2, 1 x H5). 13C NMR (75 MHz, Methanol-d4) δC 179.5 (C=O), 163.4 (C3’’), 

143.2 (C1’’), 131.5 (d, J= 8.4 Hz, C2’’), 124.4 (C6’’), 115.4 (d, J= 8.4 Hz, C4’’), 115.2 (d, J = 8.4 Hz, C5’’), 

75.1 (C3, C4), 43.9 (C1’), 41.7 (C1), 35.9 (C2, C5). LR-MS (ES+): m/z 255.1 [M+H]; HRMS (EI+): 

calculated for C13H17O3NF 254.1190, found 254.1194. 

 (1r,3R,4S)-N-(3-chlorobenzyl)-3,4-dihydroxycyclopentane-1-carboxamide (71) 

 

Ester 77 was subjected to a hydrolysis using NaOH. After a work up the crude product was amide 

coupled with (3-chlorophenyl)methanamine (1eq) using carbonyl-diimidazole (1.2eq). After an acid 

base work up, the product 71 was extracted with DCM (100 mL), dried over magnesium sulphate and 

concentrated in vacuo  to afford a white powder (34% yield). m.p. 105-107°C. IR (ATR) νmax/cm-1: 

3250 (OH), 2922 (CH), 1633 (C=O), 1552-1396 (C=C), 788 (C-Cl). 1H NMR (500 MHz, Methanol-d4) δ 

7.33-7.25 (m, 2H, H4’’, H6’’), 7.27-7.23 (m, 1H, H4’’), 7.22-7.18 (m, 1H, H2’’), 4.35 (s, 2H, H1’), 3.97-

3.92 (m, 2H, H3, H4), 2.78 (tt, J = 9.2 Hz, 6.7 Hz, 1H, H1), 2.19-2.11 (m, 2H, 1 x H2, 1 x H5), 1.88–1.81 

(m, 2H, 1 x H2, 1 x H5). 13C NMR (75 MHz, Methanol-d4) δC 179.3 (C=O), 142.5 (C1’’), 135.3 (C3’’), 

131.1 (C2’’), 128.5 (C6’’), 128.3 (C4’’), 126.9 (C5’’), 74.8 (C3, C4), 43.6 (C1’), 41.5 (C1), 35.7 (C2, C5). 

LR-MS (ES+): m/z 271.1 [M+H]; HRMS (EI+): calculated for C13H17ClNO3 270.0896 found 270.0896 

 

(1r,3R,4S)-N-(4-chloro-3-fluorobenzyl)-3,4-dihydroxycyclopentane-1-carboxamide (72) 

 

Ester 77 was subjected to a hydrolysis using NaOH. After a work up the crude product was amide 

coupled with (4-chloro-3-fluorophenyl)methanamine (1eq) using carbonyl-diimidazole (1.2eq). After 
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an acid base work up, the product 72 was extracted with DCM (100 mL), dried over magnesium 

sulphate and concentrated in vacuo to afford a white powder (22% yield). m.p. 127-129°C. IR (ATR) 

νmax/cm-1: 3329 (OH), 2939-2872 (CH), 1628 (C=O), 1585-1489 (C=C), 1099-1014 (C-F) 817 (C-Cl). 1H 

NMR (500 MHz, Methanol-d4) δ 7.43 (t, J = 9.2, 6.8 Hz, 1H, H5’’), 7.17 (dd, J = 9.2, 6.8 Hz, 1H, H6’’), 

7.13-7.09 (m, 1H, H2’’), 4.36 (s, 2H, H1’), 3.95-3.94 (m, 2H, H3, H4), 2.84-2.75 (tt,J= 9.2, 6.8 Hz, 1H, 

H1), 2.20-2.12 (m, 2H, 1 x H2, 1 x H5), 1.90–1.80 (m, 2H, 1 x H2, 1 x H5). 13C NMR (75 MHz, Methanol-

d4) δC 179.7 (C=O), 164.9 (C3’’), 142.3 (C1’’), 132.1(C5’’), 125.7 (C6’’), 117.1 (C4’’), 116.9 (C2’’), 75.2 

(C3, C4), 43.7 (C1’), 41.9 (C1), 36.1 (C2, C5).  

(1r,3R,4S)-N-(3-chloro-4-fluorobenzyl)-3,4-dihydroxycyclopentane-1-carboxamide (73) 

 

Ester 77 was subjected to a hydrolysis using NaOH. After a work up the crude product was amide 

coupled with (3-chloro-4-fluorophenyl)methanamine (1eq) using carbonyl-diimidazole (1.2eq) After 

an acid base work up, the product 73 was extracted with DCM (100 mL), dried over magnesium 

sulphate and concentrated in vacuo to afford a white powder (18% yield). IR (ATR) νmax/cm-1: 3280 

(OH), 2918 (CH), 1640 (C=O), 1543-1500 (C=C), 1114-1026 (C-F) 819 (C-Cl). m.p. 112-113°C. 1H NMR 

(500 MHz, Methanol-d4) δ 7.38 (dd, J = 7.1, 2.1 Hz, 1H, H2’’), 7.24-7.15 (m, 2H, H5’’, H6’’), 4.30 (s, 

2H, H1’), 4.13-4.08 (m, 2H, H3, H4), 3.06 (tt, J = 7.1, 2.1 Hz, 1H, H1), 2.01-1.83 (m, 4H, H2, H5). 13C 

NMR (75 MHz, Methanol-d4) δC 177.5 (C=O), 158.3 (C4’’), 148.2 (C1’’), 136.7 (C2’’), 129.3 (C6’’), 

129.8 (C3’’), 116.9 (C5’’), 75.2 (C3, C4), 41.6 (C1’), 40.2 (C1), 34.4 (C2, C5). LR-MS (ES+): m/z 289.1 

[M+H]; HRMS (EI+): calculated for C13H15ClFNO3 288.0800 found 288.0801 
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 (1r,3R,4S)-N-(3,5-dichlorobenzyl)-3,4-dihydroxycyclopentane-1-carboxamide (74) 

 

Ester 77 was subjected to a hydrolysis using NaOH. After a work up the crude product was amide 

coupled with (3,5-dichlorophenyl)methanamine (1eq) using carbonyl-diimidazole (1.2eq). After an 

acid base work up, the product 74 was extracted with DCM (100 mL), dried over magnesium 

sulphate and concentrated in vacuo to afford a white powder (22% yield). m.p. 121-123°C. 1H NMR 

(500 MHz, Methanol-d4) δ 7.32 (t, J = 9.2, 6.9 Hz, 1H, H4’’), 7.25-7.24 (m, 2H, H2’’, H6’’), 4.33 (s, 2H, 

H1’), 3.96-3.93 (m, 2H, H3, H4), 2.78 (tt, J = 9.2, 6.9 Hz, 1H, H1), 2.20-2.10 (m, 2H, 1 x H2, 1 x H5), 

1.90-1.80 (m, 2H, 1 x H2, 1 x H5). 13C NMR (75 MHz, Methanol-d4) δC 178.9 (C=O), 143.9 (C1’’), 135.7 

(C3’’, C5’’), 127.6 (C2’’, C6’’), 126.7 (C4’’), 74.4 (C3, C4), 42.8 (C1’), 41.0 (C1), 35.3 (C2). 

 (1r,3R,4S)-N-(2-chloro-3-fluorobenzyl)-3,4-dihydroxycyclopentane-1-carboxamide 

(75/Optactamide) 

 

Ester 77 was subjected to a hydrolysis using NaOH. After a work up the crude product was amide 

coupled with (2-chloro-3-fluorophenyl)methanamine (1 eq) using carbonyl-diimidazole (1.2eq). After 

an acid base work up, the product 75 was extracted with DCM (100 mL), dried over magnesium 

sulphate and concentrated in vacuo to afford a white powder (22% yield). m.p. 118-120°C. IR (ATR) 

νmax/cm-1: 3304 (OH), 2937-2906 (CH), 1583 (C=O), 1568 (C=C), 1103 (C-F), 794 (C-Cl). 1H NMR (500 

MHz, Methanol-d4) δ 7.32 (t, J = 9.2, 6.9 Hz, 1H, H5’’), 7.25-7.24 (m, 2H, H4’’, H6’’), 4.33 (s, 2H, H1’), 

3.98-3.92 (m, 2H, H3, H4), 2.78 (tt, J = 9.2, 6.9 Hz, 1H, H1), 2.20-2.10 (m, 2H, 1 x H2, 1 x H5), 1.89-

1.80 (m, 2H, 1 x H2, 1 x H5). 13C NMR (75 MHz, Methanol-d4) δC 177.9 (C=O), 159.2 (C3’’), 138.3 

(C2’’), 127.7 (C6’’), 127.5 (C5’’) 124.1 (d, J = 7.8 Hz, C4’’), 114.8 (C4’’), 73.4 (C3, C4), 40.5 (C1’), 40.0 

(C1), 34.2 (C2). LR-MS (ES+): m/z 289.1 [M+H]; HRMS (EI+): calculated for C13H15ClFNO3 288.0800 

found 288.0801 
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N-butylcyclopent-3-ene-1-carboxamide (76)  

 

To a solution of 3-cyclopentene carboxylic acid 37 was reacted with butan-1-amine (1eq) using 

carbonyl diimidazole (1.2 eq). The reaction was quenched with an aqueous solution of HCl (60 mL, 1 

M). The product was extracted using DCM (50 mL). The product was then washed with an aqueous 

solution of HCl (30 mL, 1M), H2O (30 mL), a 50% saturated aqueous Na2CO3/NaCl solution (30 mL), 

dried and filtered through a cotton plug. The filtrate was diluted with 10% EtOAc/CH2Cl2 and filtered 

through silica plug eluting with 10% EtOAc/CH2Cl2 to remove the baseline color. Subsequent 

concentration in vacuo affords 76 as a yellow oil (70% yield). IR (ATR) νmax/cm-1: 2468-2100 (CH), 

1745 (C=O), 1630 (C=C). 1H NMR (500 MHz, CDCl3) δH 5.63-5.6 (m, 2H, H3, H4), 4.05 (m, 5.614 2H, 

H1’), 3.10-3.03 (m, 1H, H1), 2.64-2.58 (m, 4H, H2, H5), 1.61-1.54(m, 2H, H2’), 1.40-1.30 (m, 2H, H3’), 

0.89 (t, J=7.4 Hz, 3H, H4’). 13C NMR (75 MHz, CDCl3) δC 177.8 (C=O), 128.6 (C3, C4), 67.1 (C1’), 39.2 

(C1), 34.8 (C2,C5), 18 .5 (C3’) 10.2 (C4’). 

(1r,3R,4S)-N-butyl-3,4-dihydroxycyclopentane-1-carboxamide (77) and (1s,3R,4S)-N-butyl-3,4-

dihydroxycyclopentane-1-carboxamide (78)  

 

 

To a solution of 76 and N-methylmorpholine-N-oxide (1.2 eq.) dissolved in THF/H2O (9:1) was 

added a catalytic amount of osmium tetroxide (1 mol %) and stirred at room temperature overnight. 

The reaction was then quenched by the addition of sodium sulphite (30 mL). The product was 

extracted with ethyl acetate (100 mL), dried over magnesium sulphate and concentrated in vacuo. 

The crude product was then purified using flash column chromatography (10% MeOH/DCM) to give 

products: 77 as yellow oil (56% yield) and 78 as yellow oil (18% yield).  

77 78 
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77: IR (ATR) νmax/cm-1: 3329-3204 (OH), 2461-2069 (CH), 1712 (C=O). 1H NMR (500 MHz, CDCl3) 

δH 4.30-4.20 (m, 2H, H3, H4), 4.15-4.06 (m, 5.614 2H, H1’), 3.20-3.13 (m, 1H, H1), 2.64-2.58 (m, 4H, 

H2, H5), 1.61-1.54(m, 2H, H2’), 1.40-1.30 (m, 2H, H3’), 0.89 (t, J=7.4 Hz, 3H, H4’). 13C NMR (75 MHz, 

CDCl3) δC 176.6 (C=O), 73.46 (C3, C4), 64.6 (C1’), 39.25 (C1), 34.57 (C2,C5), 19.1 (C3’) 13.7 (C4’). 

HRMS (EI+): calculated for C10H18O4 203.1277 found 203.1278 

78: IR (ATR) νmax/cm-1: 3315-3196 (OH), 2459-2034 (CH), 1705 (C=O). δH 4.30-4.20 (m, 2H, H3, 

H4), 4.15-4.06 (m, 5.614 2H, H1’), 2.26-2.19 (m, 1H, H1), 2.16-2.10 (m, 2H, 1 x H2,1 x H5), 2.06-1.99 

(m, 2H, 1 x H2, 1 x H5), 1.65-1.60(m, 2H, H2’), 1.42-1.36 (m, 2H, H3’), 0.98-0.93 (m, 3H, H4’). 

N-(4-chlorobenzyl)cyclopent-3-ene-1-carboxamide 85  

 

To a solution of 3-cyclopentene carboxylic acid 37 was reacted with (4-

chlorophenyl)methanamine (1eq) using carbonyl diimidazole (1.2 eq). The reaction was quenched 

with an aqueous solution of HCl (60 mL, 1 M). The product was extracted using DCM (50 mL). The 

product was then washed with an aqueous solution of HCl (30 mL, 1M), H2O (30 mL), a 50% 

saturated aqueous Na2CO3/NaCl solution (30 mL), dried and filtered through a cotton plug. The 

filtrate was diluted with 10% EtOAc/CH2Cl2 and filtered through silica plug eluting with 10% 

EtOAc/CH2Cl2 to remove the baseline color. Subsequent concentration in vacuo affords a white solid 

85 (64% yield); m.p. 106-107 °C; IR (ATR) νmax/cm-1: 3271 (NH), 3055-2843 (CH), 1535 (C=C), 802 (C-

Cl), 682 (C-H); 1H NMR (500 MHz, Methanol-d4) δ 7.33 – 7.31 (m, 2H, H3’, H4’), 7.28 – 7.26 (m, 2H, 

H2’, H5’), 5.72 – 5.62 (m, 2H, H3, H4), 4.36 (s, 2H, H1’’), 3.14 – 3.03 (m, 1H, H1), 2.68 – 2.53 (m, 4H, 

H2, H5). 13C NMR (126 MHz, Methanol-d4) δ 137.7 (C=O), 132.5 (C1’), 128.7 (C2’, C5’), 128.6 (C3, C4), 

128.18 (C3’, C4’), 42.82 (C1), 42.05 (C1’’), 36.58 (C2, C5). LR-MS (ES+): m/z 235.95 (M+H). 
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N-(4-chloro-3-(trifluoromethyl)benzyl)cyclopent-3-ene-1-carboxamide 86  

 

To a solution of 3-cyclopentene carboxylic acid 37 was reacted with (4-chloro-3-

(trifluoromethyl)phenyl)methanamine (1 eq) using carbonyl diimidazole (1.2 eq). The reaction was 

quenched with an aqueous solution of HCl (60 mL, 1 M). The product was extracted using DCM (50 

mL). The product was then washed with an aqueous solution of HCl (30 mL, 1M), H2O (30 mL), a 50% 

saturated aqueous Na2CO3/NaCl solution (30 mL), dried and filtered through a cotton plug. The 

filtrate was diluted with 10% EtOAc/CH2Cl2 and filtered through silica plug eluting with 10% 

EtOAc/CH2Cl2 to remove the baseline color. Subsequent concentration in vacuo affords a yellow solid 

(80% yield); m.p. 63-65 °C; IR (ATR) νmax/cm-1: 3255 (NH), 3074-2846 (CH), 1643 (C=O), 1543 (C=C), 

1111 (C-F), 659; 1H NMR (300 MHz, Methanol-d4) δ 7.70 – 7.65 (m, 1H, H3’), 7.54 (m, 1H, H4’), 7.53 – 

7.47 (m, 1H, H2’), 5.76 – 5.56 (m, 2H, H3, H4), 4.61 (m, 1H, NH), 4.41 (s, 2H, H1’’), 3.18 – 3.00 (m, 1H, 

H1), 2.63 – 2.56 (m, 4H, H2, H5). 13C NMR (75 MHz, Methanol-d4) δ 178.94 (C=O), 140.3 (C1’), 133.5 

(C3’), 132.7 (C4’), 129.9 (C3, C4), 127.6 (C3’), 126.2 (C-CF3), 64.11 (C-Cl), 44.18 (C1), 43.8 (CF3), 43.07 

(C1’’), 37.90 (C2, C5). LR-MS (ES+): m/z 303.93 (M+H). 

N-(3-bromobenzyl)cyclopent-3-ene-1-carboxamide 87  

 

To a solution of 3-cyclopentene carboxylic acid 37 was reacted with (3-

bromophenyl)methanamine (1eq) using carbonyl diimidazole (1.2 eq). The reaction was quenched 

with an aqueous solution of HCl (60 mL, 1 M). The product was extracted using DCM (50 mL). The 

product was then washed with an aqueous solution of HCl (30 mL, 1M), H2O (30 mL), a 50% 

saturated aqueous Na2CO3/NaCl solution (30 mL), dried and filtered through a cotton plug. The 

filtrate was diluted with 10% EtOAc/CH2Cl2 and filtered through silica plug eluting with 10% 
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EtOAc/CH2Cl2 to remove the baseline color. Subsequent concentration in vacuo affords to produce a 

dark yellow solid (91% yield); m.p. 85.0-86.0 °C; IR (ATR) νmax/cm-1: 3267 (NH), 2904 (CH), 1631 

(C=O), 1527 (C=C), 663 (C-Br); 1H NMR (500 MHz, Methanol-d4) δ 7.42 -7.38 (s, 1H, H5’), 7.40 (m, 1H, 

H4’), 7.28 -7.21 (m, 2H, H2’, H3’), 5.79 – 5.57 (m, 2H, H3, H4), 4.36 (s, 2H, H1’’), 3.15 – 3.04 (m, 1H, 

H1), 2.69 – 2.54 (m, 4H, H2, H5). 13C NMR (126 MHz, Methanol-d4) δ 177.4 (C=O), 141.6 (C1’), 130.1 

(C5’), 129.9 (C4’), 129.8 (C3’), 128.6 (C3, C4), 125.90 (C2’), 63.4 (C-Br), 42.8 (C1), 42.1 (C1’’), 36.6 (C2, 

C5). LR-MS (ES+): m/z 279.88 (M+H). 

4.2.2 Biology 

Computational modelling: 

CORINA was used to create 3D coordinates of low energy states of Optactin analogues. These 

were modelled into the allosteric site of NanB (protein-ligand complex crystal structure of Optactin 

(Brear, 2012)) using GOLD and ranked based on a fitness algorithm called CHEMSCORE. CORINA was 

also used to create a small library of structural analogues of amide 40. GOLD was again the docking 

programme used to dock this ligands against the allosteric pocket of NanB. The Optatin-NanBK499G 

crystal structure was used as the basis for receptor file generation. Optactin bound within the 

allosteric site of NanB was used as a basis to generate a receptor file. A circumference cut-off of 

between a 10 Å around the bound ligand was used to create the receptor for docking. GOLD docking 

was performed by using the software’s GUI. The scores were compiled and compared. 

Protein expression: 

The NanB plasmid 5 µl (pet23b vector) supplied by the Taylor group (University of St. Andrews) 

was transformed into 500 µL of E.Coli (BL21 GOLD) by incubation on ice for 45 mins, then heat 

shocked for 30 seconds and then put back on ice for 2 minutes. The cells were then added to 1 mL of 

L-B Broth and incubated at 37 °C overnight. After incubation for 1 hr 200 µl of cells were spread onto 

L-B agar plates containing 100 mg/mL L-ampicillin. These cells were incubated overnight at 37 °C. A 

single colony was then inoculated into 10 mL of L-B Broth containing 0.1 mg/mL. From this overnight 

inoculation 1 mL was transferred into 1000 mL x 4 of L-B Broth containing 0.1 mg/mL L-ampicillin. 

The cultures were shaken at 37 °C until reaching optical density of 0.6. At this point IPTG was added 

at a final concentration of 1 mM to initiate protein expression. The cultures were incubated 

overnight at 37 °C before harvesting the cells by centrifugation at 8000 rpm for 25 minutes. 

For the autoinduction method; 1 mL of overnight inoculation was transferred into 1000 mL of 

autoinduction media (Terrific broth base with trace elements, ForMedium) containing 0.1 mg/mL L-
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ampicillin and incubated for 2 hrs at 37 °C. The temperature was then turned down to 22 °C and 

incubated for 48 hrs stopping only to add a further 50 µg/mL L-ampicllin. Cells were then harvested 

by centrifugation at 8000 rpm for 25 minutes. 

Protein purification: 

The cell pellet was resuspended in 200 mL of PBS with 10mM imidazole, 2 protease cocktail 

tablets (Roche Diagnostics) (or without protease cocktail inhibitor in later preps), DNase I (Sigma, 20 

µg/ml final concentration) and 5 mM NaCl. The cells were lysed on ice by sonication (5 x 30 second 

bursts). Cell debris was then removed by centrifugation at 20,000 rpm for 25 minutes at 4 °C. The 

supernatent was then filtered using a syringe 0.2 µm filter. The filtered supernatent was loaded onto 

a nickel HisTrap HP column (GE Healthcare) and protein eluted with a gradient of 10 mM-500 mM 

imidazole. The fractions containing NanB were collected and dialysed overnight at 4 °C into 10 mM 

of Tris HCl, pH 7.5. The protein was then applied to a 5 ml Q-FF DEAE anion exchange column and 

eluted with a NaCl gradient from 0-500 mM. The NanB containing fractions were concentrated and 

applied to a 120 ml Sephacryl S-100 gel filtration column equilibrated with 10 mM Tris-HCl, 50 mM 

NaCl, pH 7.5. Protein was concentrated to 1 mg/mL for biological assays. For crystallisation 

experiments protein was concentrated to 6.73 mg/mL. 

Protein crystallisation and X-ray crystallography: 

Crystal trials were set up using sitting drop vapour diffusion 96 well plates (Douglas 

instruments). 2 µL of 6.73 mg/mL protein and 2 µL of buffer was added into the sitting drop well. In 

the reservoir 50 µL of buffer was added. The buffer consisted of PEG 8K and imidazole pH 8.0. 

Different concentrations of PEG 8K were used (4, 5, 6, 7, 8, 10 % PEG 8K). The crystals generated 

were used for seeding. For seeding a single crystal was aspirated into 50 µL of buffer in a seed bead 

tube and vortexed for 60 seconds. Crystallisation conditions were set up as before with addition of 

crystal seeds by use of a cat whisker dipped into the seed solution and then into the sitting drop. The 

plates were then sealed and stored at room temperature.  

Crystal soaking was performed with the generated NanBD643G and NanBWT crystals. Compounds 

were made up in stock concentrations of 1M. This was performed with DMSO. The compounds were 

kept at a stock concentration of 1M dissolved in DMSO. The buffer contained compounds at a final 

concentration of 5 mM and at a final DMSO concentration of 5%. Crystals were soaked for periods of 

time ranging from 10 mins to 3 days. It was noticed that NanBD643G crystals survived for longer under 

these conditions. The crystals were cryo-protected with DMSO (30%) or MPD (20%) and sodium 

acetate buffer pH 5.0 for 30 seconds prior to placement in liquid nitrogen.  
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Data collection NanBWT-CHES NanBW

T 
NanBWT-

Optactin 
NanB-

amide 40 
NanBD643G-Optactamide 

(PDB: 4XYX) 

Beamline In-house In-house In-house In-house In-house 

Wavelength (Å) 1.54178 1.54178 1.54178 1.54178 1.54178 

Unit-cell parameters 

a (Å) 

b (Å) 

c (Å) 

α (°) 

β (°) 

γ (°) 

 

75.873 

82.047 

113.85 

 

90.00 

 

90.00 

 

90.00 

 

76.672 

82.834 

117.627 

90.00 

97.00 

90.00 

 

75.70 

82.83 

116.47 

90.00 

97.00 

90.00 

 

75.7 

82.83 

116.36 

 

90.00 

90.00 

90.00 

 

75.6 

82.65 

116.32 

 

90.00 

90.00 

90.00 

Molecules per 

symmetric unit 

1 1 1 1 1 

Resolution (Å) 50-3.32 50-1.93 44.55-1.84 50-2.1 50-2.1 

Unique 

reflections 

11450 1381  1458 1953 

Redundancy
a
 3.6 (3.3) 7.5(5.1) 6.5(5.0) 6.2(2.3) 5.5 (4.2) 

Completeness 

(%)
a
 

70.1(76.1) 99.8(97.4) 99.6(95.5) 99.6(92.7) 98.6(92.6) 

Rmerge (%)
a,b

 11.2(23.4) 4.8(12.8) 6.5(5.0) 5.6(19) 7.1(22.1) 

I/σI
a
 13.5(8.18) 55.6(16.6) 34.9(11.1) 36.5(10.2) 38.0 (9.2) 
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Refinement  NanBWT NanBWT-Optactin NanB-amide 

40 

NanBD643G-Optactamide 

Resolution range (Å) 50-

3.32 

44.5

2-1.84 

44.55-1.84 50-2.1 50-2.1 

Mean B-factor (Å
2
)      

Protein - 20.3 18.1 22.5 24.9 

Ligands - N/A 21.3 24.2 - 

Water - 27.6 25.5 19.5 - 

R-factor (%)
c
 - 16.9 15.1 17.1 17.6 

Rfree (%)
d
 - 21.2 19.9 21.4 24.7 

r.m.s.d. bond lengths 

(Å)
e
 

- 0.02 0.02 0.02 0.02 

r.m.s.d. bond angles 

(°)
e
 

- 1.92 2.35 2.14 2.37 

Number of 

reflections 

- 5392

0 

55944 56450 40395 

No. of atoms      

Protein atoms - 5254 5218 5193 5602 

Ligands - - 

 

Optactin 

27 

Amide 40 

34 

Optactamide 

- 

Water molecules - 156 148 158 - 
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Table 4.3. Data collection, refinement and validation statistics of NanBD643G and NanBWT in complex 

with Optactin, Amide 40 and Optactamide. 

a. Values in parentheses correspond to the highest resolution shell. 

b. Rmerge=Σhkl Σi |Ii(hkl)-<I(hkl)>|/ Σhkl Σi Ii(hkl), where Ii (hkl) is the intensity for all observations i of 

reflection hkl, and <I (hkl)> is the weighted average intensity for all observations i of reflection hkl. 

c. Rfactor and Rfree = (Σ| |Fo| - |Fc| |)/(Σ |Fo|). 

d. Rfree was calculated for a 5% set of reflections excluded from the refinement. 

e. r.m.s.d. is the root-mean-square deviation from ideal geometry. 

 

Proein crystallography data was recorded in house on the Rigaku-MSC Micromax-007 X-ray 

generator and R-Axis detector. This was recorded at 100 K and data was scaled and intergrated using 

MOSFLM. Data was intergrated by MOSFLM and run on pointless and scaled by scalar using CCP4. 

Alternatively the data was processed with HKL2000. SCALEPACKtoMTZ was used within the CCP4 

suite to generate an MTZ file. Phaser was used with molecular replacement to solve the initial 

phases. The data was then subject to Refmac for refinement. Coot was then used to fit the ligand to 

the observed density. 

Kinetic assay: 

The MUNANA assay was used to measure the activity of inhibitors on NanB. Stock solutions 

were made of each compound in DMSO (0.1 M). Each compound was initially assayed at 500 µM. 

The MUNANA was assayed in 96 well plates with each well containing a 50 µl total volume 

containing sodium acetate (50 mM) buffer pH 5.0 a final concentration of 60 ng/ml NanB, 120 µM 

MUNANA and compound (2 mM, 1mM, 500 µM, 250 µM, 100 µM, 20 µM).  The assay was 

performed using the Stratagene MX3005P PCR system and fluorescence measured at 320 nm 

excitation and 430 nm emission. Recordings were taken at 37 °C every 30 seconds for 20 minutes. 

The initial rate was calculated and compared to a control giving the percentage inhibition. 

Flourescence quenching: 

The fluorescence quenching assay was used to determine if compounds quench the fluorescence 

of 4-Mu. The assay was performed at 37 °C using 96 well plates with a total volume of 50 µl on the 

Stratagene MX3005P PCR system. The fluorescence was measured at 365 nm excitation and 420 nm 

emission and recordings were taken every 30 seconds for 10 minutes. Each well had 4-Mu at a final 

concentration of 20 µM, the compound at 500 µM or 1 mM, 2% DMSO in 50 mM sodium acetate 

buffer pH 5.0. The amount of fluorescence was compared at each condition against the control. 
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Dynamic light scattering (DLS) assay:  

DLS assay was performed in a Quartz Suprasil 1.25 mm precision cell (Hellma Analytics). A 125 

mM stock of Optactamide was made up in DMSO. A 50mM stock of Optactin was made up in DMSO. 

The reaction cell contained a total volume of 200 µL, with a final concentration of 2mg/mL NanB and 

2% DMSO (final concentration of 2.5mM Optactamide or 0 mM Optactamide for Control)(final 

concentration of 1mM Optactin or 0 mM Optactin for Control) in 50 mM sodium acetate buffer pH 

5.0. DLS of each sample was measured using a Zetasizer µV (Malvern) spectrometer and analysed 

using Zetasizer software (Malvern). 

Cell culture: 

The A549 cell line was obtained from Professor Randall’s group (the original location these cells 

were obtained from was the ECACC). This cell line was maintained in a T75 flask in 10% FBS, DMEM 

high glucose and 1% penicillin/streptomycin media. Cells were passaged when reaching 80-95% 

confluence and maintained for 20 passages. 

S.pneumonia (50µL) was cultured in 5mL BHI from D39 S.pneumonia frozen stock vials stored by 

the Professor Taylor group. This inoculation was left to incubate overnight at 37°C in anaerobic 

conditions.  The OD was measured the next day (OD: 1.29) and the bacteria was centrifuged and re-

suspended in 10% FBS, DMEM high glucose and 1% penicillin/streptomycin media ready for use in 

the adhesion and invasions assay. Contamination was checked by the streaking of cells on blood 

(horse blood) agar plates with sensitivity to optochin checked with optochin disks. 

Cytotoxicity/MTT assay: 

The MTT assay was performed using a 96 well plate with 10,000 A549 cells/well seeded 24hrs 

before the start of the experiment in 10% FBS, DMEM high glucose and 1% penicillin media. The cells 

were then treated with or without Optactamide at various concentrations (20, 10, 5, 2, 1, 0.5, 0.1, 

0.05, 0.01 mM) and left to incubate overnight. MTT was added (20 µL) from a stock solution of 12 

mM to each well and left to incubate for 4hrs.  The media was then removed and formazan product 

was re-suspended in 200 µL of DMSO. Absorbance at 530nm was read using a SpectraMax plate 

reader.  
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S.pneumonia adhesion and invasion assay: 

The S.pneumonia adhesion and invasion assay was performed using 24 well plates seeded with 

2.5 x 105 cells per well 24hrs prior to the start of the experiment. To the monolayers of A549 cells 

100 µL of a 1 in 10 dilution of the S.pneumonia cell suspension was added to each well. Optactamide 

(made up in PBS and DMSO (2% final DMSO concentration in each well) at various concentrations (1, 

05, 0.1 and 0.01 mM) was immediately added to each well (for the control PBS + DMSO (2% final 

DMSO concentration in each well) was added), centrifuged (800 x g for 10 mins) and incubated at 

37°C in anaerobic conditions for six hours.  After this incubation period each well was washed 

carefully with 3 x 500 µL PBS (for the invasion assay the addition of 500 µL of DMEM high glucose 

containing gentamycin (100 µg/mL) and penicillin (10 µg/mL) was added and incubated for a 2hr 

prior to a further wash with 3 x 500 µL PBS) and 0.2 mLs of trypsin/EDTA plus 0.025% Triton-X-100 

was added to cause cell detachment and lysis. Dilutions (1 in 3, 1 in 10, 1 in 20 and 1 in 100 were 

trialed) of each cell lysis sample were spread onto blood agar plates and left to incubate at 37°C in 

anaerobic conditions overnight. The number of colonies was then counted and only the control 

dilutions that produced colonies of 30 to 300 were analysed and reported. 
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5.0 The discovery of constrained tools for TcTS. 

In this chapter an attempt was made to discover an allosteric pocket within TcTS. The sequence 

identity between TcTS and NanB is low (19%), however the structural features of the catalytic 

domains are similar with both containing a 6-bladed β topology with a water channel core that runs 

through the centre of the catalytic domain.  The aim of the work in this chapter was to identify a 

similar allosteric site within TcTS as in NanB. Using the position of the allosteric site in NanB, a 

potential allosteric site within TcTS was mapped and used for fragment screening. A CADD approach 

was used for “hit” identification. A 704,041 fragment library obtained from the ZINC database was 

filtering down to a smaller “focused” library of 1,015 fragments using ligand similarity searching. This 

smaller “focused” fragment library was screened against the mapped site using FlexX, a faster 

docking programme than GOLD.  Three “hits” were chosen from the evaluation of binding scores and 

removal of potential active site binders. Only weak inhibition was observed and no ligand binding 

was observed through crystal soaking.   

5.1 The TcTS story so far. 

The structure of TcTS was solved by Buschiazzo et al., 2002 (see Chapter 1.57.1). Despite an 

available crystal structure and interest in TcTS as a potential drug target candidate for the NTD, 

Chagas disease (see Chapter 1.40, 1.41 and 1.57.1), no protein-inhibitor complex of TcTS has been 

published apart from DANA-TcTS, covalent intermediate (2,3-difluoro-N-acetylneuraminic acid) and 

benzoylated NANA (5-(acetylamino)-9-(benzoylamino)-3,5,9-trideoxy- 3-fluoro-D-erythro-alpha-L-

manno-non-2-ulopyranosonic acid). All of these inhibitors are substrate mimetics and weak 

inhibitors of TcTS. In the pursuit of more potent TcTS inhibitors, SBDD has been used by a variety of 

groups to use structural observations within the active site as a basis for improved binding and 

potency (see Chapter 1.62). An example of a TcTS inhibitor discovered using a HTS approach is in the 

discovery of compound 10 (Figure 59).  
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Figure 59 A. Chemical structures of two similar anthraquinones, a natural laxative Rhein and compound 10. B. The 

chemical structure of a hydroxyanthraquinone and its in vitro and in vivo toxicity. C. The chemical structure of a quinone 

with potential routes of toxicity including direct alkylation and generation of reactive oxygen species (ROS). D. i) The 

structure of the TcTS active site within two separate crystal structures (unpublished TcTSF58N crystal structures, see Chapter 

4.7). The conformation of Tyr119 differs between the two structures (closed (yellow) and open (green)) highlighted by a 

dashed square. ii). The open conformation of the TcTS active site with the proposed binding conformation of compound 

10. iii). Proposed binding conformation of compound 10 in the closed conformation of the TcTS active site. Figures created 

using CHEMdraw, GOLD docking programme and PYMOL. 

This TcTS inhibitor was discovered using a natural product library of 2283 moieties. This led to 

the initial discovery of 103 inhibitors of TcTS. Filtering out promiscuous binders, following Lipinski’s 

constraints (Chapter 1.71) and limiting based on structural availability narrowed this subset to two 

“hits”.  SAR was performed on these two hits, which led to the most potent inhibitor to date 

(compound 10) an anthraquinone derivative with a potency of 580 nM (Chapter 1.62). Tested 

against human Neu2, compound 10 was observed to have a selectivity of 170 times greater for TcTS 

than for the human sialidase.  Tyr119 exists in two separate conformations observed within crystal 

structures solved within the group and in the paper published by Buschiazzo et al., 2002 (Figure 56). 
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Compound 10 was run against these two conformations of the active site (termed open and closed 

based on the positioning of Tyr119) using the docking programme GOLD. From the docking run, the 

anthraquinone core of compound 10 was observed to form aromatic stacking interactions with the 

side chains of residues, Tyr119 and Trp312. The position of the carboxylic acid from compound 10 

was not observed to form van der Waals contacts with the arginine triad in any of the ten poses 

generated against the open conformation of TcTS. Within the closed conformation, the carboxylic 

acid from compound 10 was observed to form van der Waals contacts with the arginine triad in 7 of 

the 10 binding poses generated. Surprisingly, the CHEMPLP docking score generated by GOLD for the 

highest ranked binding pose for the open conformation (155.05) is greater than that of the highest 

ranked binding pose (with arginine triad van der Waals contacts as a filter) in the closed 

conformation (146.62).  The carboxylic acid of compound 10 should form strong van der Waals 

contacts with the arginine triad. These data suggest that compound 10 either binds in an unusual 

manner or it may bind to or stabilise the closed conformation of the TcTS active site. Without a 

solved TcTS-ligand complex of compound 10 the exact binding pose is unclear.  

Despite the successful identification of a novel potent TcTS inhibitor problems exist with this 

class of chemical as a constrained chemical tool.  A number of drugs that have made it through to 

the clinic contain an anthraquinone moiety (Malik and Müller, 2016), however a concern with 

anthraquinones as drug molecules is the presence of a quinone, which is a well-known toxicophore 

(Figure 56). Quinones can act as electrophilic Michael acceptors (Malik and Müller, 2016). However, 

the quinone in anthraquinone is unable to act as a Michael acceptor due to the position of the 

aromatic rings (Malik and Müller, 2016). The toxicity of anthraquinone derivatives is attributed to 

the generation of free radicals and for their potential to non-covalently bind to DNA causing 

topoisomerase II inhibition (Genov et al., 2016).  Anthraquinone, without any substitution, is 

determined as a B2 possible carcinogen to humans by the International Agency for Research on 

Cancer (IARC) (Malik and Müller, 2016). Rhein is a hydroxyanthraquinone with an almost identical 

substitution pattern to compound 10. Rhein is the major toxic chemical in Cassia occidentalis seeds 

(Panigrahi et al., 2015). The consumption of these seeds has been linked to the deaths of children in 

northern parts of India (Panigrahi et al., 2014). Rhein is toxic to rat primary hepatocytes and has 

been demonstrated to interfere with the cellular cytoskeleton, mitochondrial function and depletion 

of reduced glutathione in a number of other cell lines (Yuan et al., 2016, Panigrahi et al., 2015). In 

addition to the toxicity risk, further problems exist with compound solubility of anthraquinones, 

thereby limiting the versatility of the chemical class as a chemical tool. Despite the problems that 

exist with this class of molecule, the discovery of compound 10 and other active site inhibitors by 

other research groups (see Chapter 1.62) have highlighted key compound functionalities required for 
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potency. It is clear that solely targeting the sialic acid binding pocket results in low potency. All the 

potent inhibitors of TcTS contain aromatic groups and have predicted affinity for the lactose binding 

pocket.  

The crystal structure of TcTS solved by Buschiazzo et al., 2002, contains 7 mutations at the 

molecular surface. These mutations were generated using a “systematic surface-mutagenesis 

approach” and proposed to aid crystallisation (amino acid positions involved in crystal contacts from 

the TrSA (a protein with 70% sequence identity to TcTS) crystal structure were used as the basis for 

TcTS mutagenesis). The majority of these mutations fall within the lectin-like binding domain of TcTS 

at proposed crystal-crystal contact positions. However, a single mutation (Phe58) exists within the 

catalytic domain and within close proximity to the catalytic site residue Asp59.  
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Figure 60. A. TcTS active site with residue Phe58 highlighted in pink (1MS9) B. Surface potential (electrostatic) of the 

TcTS active site (TcTSF58N) with residue Asn58 highlighted (unpublished). C. Surface potential (electrostatic) of the TcTS 

active site with residue Phe58 highlighted (1MS3). The active site of 1MS3 was aligned against the active site of Dr Telford’s 

TcTSF58N structure (unpublished) and calculated to have an RMSD of 0.12 Å over all atoms. Figures created using PyMOL 

and CCP4MG (surface potentials). RMSD calculated using the alignment function in PyMOL. Active sites for 1MS9 and 

TcTSF58N were generated using residue 58 as the epicenter to a 12 Å diameter cut-off. 

Although determined by Buschiazzo et al., 2002 to have no impact on TcTS activity using the 4-

Munana assay, it is possible a mutation this close to the active site might bias the structural integrity 

of the active site and mislead SBDD approaches. To generate a structure with an increased similarity 

to wild-type TcTS, Dr Telford within the Taylor group performed a point mutation on this construct, 

expressed and purified this TcTSF58N enzyme. This TcTSF58N enzyme was crystallised and used for 

structural determination. Despite very little structural difference between the TcTSF58N construct and 
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the version used by Buschiazzo et al., 2002 (Figure 57.), the TcTSF58N construct was observed to form 

crystals with excellent diffraction in house and so TcTSF58N was used for further experiments.  Using 

this new TcTSF58N construct, Dr Telford began an initial search for small molecule inhibitors against 

TcTSF58N. This involved screening 672 fragments from the Maybridge RO3 library. All fragments were 

tested against TcTSF58N using two screening assays. The first assay used was the standard sialidase 4-

Munana assay. This 4-Munana assay identified 66 possible inhibitors of TcTSF58N from the Maybridge 

library. The second assay, a 1H water-LOGSY NMR technique was used to screen 472 fragments from 

the Maybridge library and identified only 24 fragments as inhibitors. Only one fragment (2-(4-

methoxyphenyl)acetonitrile) was identified by both assays to inhibit TcTSF58N. Potency of this 

inhibitor was deemed to be weak by the 4-Munana assay (38.2 ± 11% at 2 mM). The most potent 

inhibitor identified from the Maybridge library was 2,3-dimethyl-1H-indole-5-carboxylic acid (78.0 ± 

2.1% at 2mM) (Figure 61).   

 

Figure 61. A. The chemical structure of the TcTS inhibitors identified by Dr Telford and the percentage inhibition 

observed for each inhibitor at 2mM using the 4-Munana assay. B. The active site of TcTSF58N-siastatinB complex (siastatinB 

in grey, Dr Telford, unpublished). The docking of siastatinB performed by Dr Telford using GOLD was replicated here. Three 

poses (teal, orange and purple) were generated (all within an RMSD of 1.5) with all poses observed to bind in a similar 

manner to the observed binding mechanism in the crystal structure. 

Due to the disappointing results obtained from these assays, an alternative approach was sought 

that could use the structural information provided by the TcTSF58N crystal structure to generate a 

more potent inhibitor. A CADD approach was investigated to evaluate if ligand binding poses could 
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be accurately predicted. GOLD was tested and binding modes compared against the solved crystal-

ligand complex (Siastatin B-TcTSF58N). GOLD accurately predicted the binding pose of this ligand and 

indicated that a CADD approach to TcTS inhibitor discovery and design could be successful. A CADD 

approach is used within this thesis to attempt to discover a novel TcTS inhibitor.   

5.2 The water channel within TcTS 

TcTS contains 19% sequence similarity to NanB (see Chapter 1.59.3). This enzyme is a trans-

sialidase and works via a different mechanism to NanB (see Chapter 1.59.2). The allosteric site on 

NanB exists within a conserved water channel. The water channel and conserved water molecules 

are found across the glycoside hydrolase family and proposed to have important structural and 

functional roles for enzymatic activity (see Chapter 1.59.3).  The allosteric site found within the 

water channel of NanB (see Chapter 2 and Chapter 3) could be present in other enzymes within the 

glycoside hydrolase family. Within TcTS, the conserved water channel runs as a central pore through 

the canonical propeller of the domain ending at the catalytic site (Figure 59.). The TcTS water 

channel is approximately 37.5 Å long with a width of 16 Å (measurements estimated within PyMOL 

using solved crystal structure of TcTSF58N) at the channel opening (located on the opposite side to the 

active site of TcTS). TcTS crystal structures were solved in three different space groups by Buschiazzo 

et al., 2002. Alignment and comparison of the three space groups (1MS3: monoclinic (P1211), 1MS4: 

triclinic (P1) and 1MS9: orthorhombic (P21212)) showed no significant difference between the solved 

structures (see Appendix Table 1.). Additionally the solved structure within this work (using Dr 

Telford’s methods, see Chapters 4.6 and 4.7) is a monoclinic (P21) space group with a RMSD 

(calculated with the alignment function in PyMOL) of 0.38, 0.50 and 0.42 Å compared to that of 

1MS3, 1MS4 and 1MS9 respectively (Figure 61).   
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Figure 62. A. Aligned structures of TcTSF58N and solved structures by Buschiazzo et al., 2002 in monoclinic 

(1MS3, yellow), triclinic (1MS4, purple) and orthorhombic (1MS9, teal) space groups. The catalytic site of TcTS 

is highlighted with a dashed box. B. A stick representation of the water channel running through the catalytic 

domain of TcTSF58N. The length of the water channel from Tyr342 to the opening is estimated to be 37.5 Å.  C. 

An image of the water channel opening (approximate width is 16 Å). A number of conserved waters exist at 

the channel opening and within the channel. Conserved water molecules from TcTSF58N, 1MS3, 1MS4 and 

1MS9 are shown as red spheres. Conserved water molecules are water molecules that appeared in a similar 

position in all of the structures analysed. Waters that did not appear in a similar position in all of the structures 

were not shown in this image. Figures were created using PyMOL and Microsoft PowerPoint. 

A number of conserved water molecules are found within the water channel of the TcTSF58N 

structure and across three published TcTS structures analysed (Figure 62).  A large number of the 

conserved water molecules are located at the channel opening and continue to an approximate 

depth of 18 Å. Disruption of these conserved water molecules through small molecule binding might 

result in decreased activity of TcTS leading to the identification of an allosteric site. To generate a 

model of a potential allosteric site within TcTS, the allosteric site of NanB was used as a basis to map 

the “secondary” site coordinates. An RMSD of the secondary site compared to NanB was calculated 

to be 2.9 Å. Whereas the RMSD of the whole NanB catalytic domain compared with TcTS is 

calculated to have an RMSD of 3.7 Å. Due to the low sequence similarity between both proteins a 

high RMSD was expected. The coordinates from NanB did map out the opening of the water channel 

on TcTS, which provides a starting point for CADD (Figure 60.). A molecule of DMSO was found 
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within this mapped secondary site on TcTS. No other ligand was found to serendipitously bind within 

this mapped site in all 14 published TcTS crystal structures on the PDB.  

 

Figure 63 A. Overlaid structures of TcTS (green) and NanB (4XYX, cyan) secondary site using Optactamide 

(purple) as the centre coordinate (12 Å distance filter). B. An image of the resulting mapped site of TcTS 

showing the opening of the water channel. A molecule of DMSO is observed to bind within this site (forming a 

hydrogen bond contact with the backbone carbonyl of residue Val184). C. Electrostatic surface representation 

of the mapped TcTS site. Waters are shown as red spheres. Figures created using PyMOL and Microsoft 

PowerPoint. Electrostatic surface representation was created using CCP4 QTMG. 

The two sites between TcTS and NanB were compared and both contain a higher ratio of 

hydrophobic amino acids than polar/charged groups. The electrostatic surface of the mapped 

“secondary” site on TcTS is mainly hydrophobic (Figure 63 C.).  
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Figure 64. A. Bar chart representing the hydrophobic and polar/charged residues as a percentage of the total for NanB 

(allosteric site and active site) and TcTS (mapped site and active site).  B. Bar chart representing the frequency of each 

amino acid within the mapped and active site of TcTS as a percentage of the total. C. Sequence alignment of the TcTS 

mapped site (TcTSMS) and NanB allosteric site (NanBAS). Residues within NanBAS that form van der Waals contacts with 

Optactamide are highlighted in blue. All TcTS and NanB sites created within PyMOL using a distance filter from a centre 

coordinate. The frequency of amino acids in each site was tallied within Microsoft® Excel® 14.6. Bar charts were created 

using GraphPad Prism 7. Sequence of TcTSMS and NanBAS were aligned using EMBOSS Needle. Images manipulated using 

Microsoft® PowerPoint® 14.6. 

Allosteric sites have a different composition to that of active sites (see Chapter 1.31) (Li et al., 

2013). The active site of NanB and TcTS contain a higher proportion of polar/charged groups than 

hydrophobic groups (Figure 61.). The frequency of glycine in the NanB active site is 7.5% and 6.1% in 

the allosteric site fitting with the description by Li et al., 2013.  The ratio of hydrophobic groups 

within the allosteric site using a 12 Å distance filter from Optactamide (PDB:4XYX) is 0.8:1 

(hydrophobic to polar/charged groups). The frequency of glycine is identical within the TcTS 

secondary site and active site at 6.3%. The number of polar/charged groups within this mapped 

secondary site is lower than that of the hydrophobic groups (1.56:1 of hydrophobic to polar/charged 

groups), consistent with the description by Li et al., 2013. In contrast, the active site of TcTS contains 

a high proportion of polar/charged sites and a lower frequency of hydrophobic sites with a ratio of 

1.5:1 of polar/charged to hydrophobic groups. TcTS contains a higher frequency of hydrophobic 
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amino acids than the NanB allosteric site.  The make-up of the mapped site in TcTS is very different 

to that of the allosteric site in NanB with a sequence match of 11.5% (calculated using EMBL-EBI 

pairwise sequence alignment tool EMBOSS Needle (Figure 61.). Only one of the residues important 

for Optactamide binding (Figure 61.) within the allosteric site of NanB is found within the TcTS 

mapped site. Unsurprisingly, Optactamide did not inhibit TcTS at 1mM using the 4-Munana assay 

(see Appendix Figure 5). With a possible allosteric site mapped within TcTS the next step was to use 

this in CADD to identify if any small molecules would bind to this site. 

5.3 Fragment library generation 

The generation of a good screening library requires a diverse set of synthetically viable 

chemicals. Fragment screening has been in use for more than 20 years (Siegal et al., 2007) and has 

contributed to the discovery and development of two approved drugs and over thirty clinical 

candidates (Erlanson et al., 2016). The first drug approval from a fragment based discovery approach 

was in 2011 for an inhibitor (vemurafenib) of a mutant BRAF kinase (Bollag et al., 2012, Erlanson et 

al., 2016). Fragments are typically small molecules of less than 300 Da (Ruda et al., 2010). Chemical 

space can be exploited much more efficiently with fragments than by traditional high-throughput 

screening (HTS), as there are fewer possible fragments than larger lead sized drug molecules (Davis 

and Erlanson, 2013). Consequently, fragments are usually screened in the thousands in the hope of 

identifying different pharmacophore moieties required for high affinity binding. Fragments make 

better starting points for drugs as they will contain fewer interfering moieties than HTS hits (Davis 

and Erlanson, 2013).  

The availability of fragments through chemical suppliers was the main criteria for the generation 

of a “virtual” fragment-screening library against TcTSMS. ZINC is a free public resource of 

commercially available compounds from chemical supplier catalogues (Figure 65.) (Irwin et al., 2012) 

and was used to generate a virtual library. ZINC provides 3D structural information for each 

compound in a ready-to-dock format (sdf or smile formats) with each compound in different 

protonation states (pH 5 - 9.5) and tautomeric forms (Irwin et al., 2012). The ZINC12 database 

contains 22,724,825 purchasable compounds that include make-on-demand and in-stock 

compounds.  

The ZINC12 library contains 3,459,596 fragments (make-on-demand and in-stock compounds). 

This set is filtered using the ZINC filtering capacity and reduced to 704,041 fragments that meet 

certain logP, molecular weight and rotatable bond criteria (logp equal to or less than 3.5, molecular 

weight equal to or less than 250 Da and rotatable bonds equal to or less than 5). This filtering 
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capacity was used to follow the constrained approach to chemical tool design. Fragments that 

adhere to these guidelines are more likely to lead to the development of chemical tools that 

conform to Lipinski’s “Rule of Five” to achieve drug-like properties and valuable properties for use in 

chemical biology (see Chapter 1.23 and 1.71).  

 

Figure 65. Examples of fragments from the ZINC
12

 database. Each compound contains a unique ZINC ID 

(fragments and ZINC ID from in stock/Frags Now subset on the ZINC
12

 database available at 

http://zinc.docking.org/browse/subsets/). Figure created using ChemDraw® 15.0 and Microsoft® PowerPoint®. 

5.4 In Silico docking and ‘’HIT’’ identification 

Generation of an enriched library can be performed by ligand similarity searching. Ligands 

observed to bind to the site was used as a similarity search criteria. This criterion should filter out 

fragments without the appropriate functionality for binding and should generate a library of ligands 

with a higher probability of binding. DMSO is a small ligand and used in high millimolar 

concentrations as a cryoprotectant in crystallography. As this was the only observed molecule to 

bind to this site and its likely weak affinity (forming a single hydrogen bond with Val184), it provides 

only limited functionality information. The Tanimoto similarity threshold was set to 0.2 (20%) to 

enable filtering of potential binding functionalities that might prove useful and decrease the library 

set to reduce the computational run time. Library filtering and reduction was performed using 

JChem and reduced the library set from 704,041 fragments to 1,015 fragments (a more appropriate 

load for docking) (Figure 66). The docking software FlexX from BioSolveIT LeadIT was used to run the 

screen as this software has a faster runtime than GOLD (see Chapter 1.73). These hits were screened 

http://zinc.docking.org/browse/subsets/
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independently against the active site. The hits were then profiled based upon FlexX scores for both 

the mapped secondary site and the active site.  

 

Figure 66. Schematic of the ligand similarity results generated from JChem. DMSO was used as the initial 

ligand similarity criteria. The threshold was set low at 0.2 and this generated 1,015 fragments (five examples 

are shown in the image with their corresponding Tanimoto score). Figure created using ChemDraw 14.0 and 

Microsoft PowerPoint. 

Hits that scored high for binding against the mapped secondary site and low for the active site were ranked (Figure 

67and Table 10).  The top three were bought in from commercial sources (hypotaurine, 1,2,3-butanetriol and (2-

methylsulfonyl)acetic acid). 

 

Figure 67. Top ten hits and ZINC ID’s from the FlexX screen of 1,015 fragments. 

 



188 
 

Table 10. Table of the scoring information generated from FlexX for the top ten highest scoring fragments. Score: 

Total score of the docking solution generated by FlexX. Match Score: the calculated contribution of the matched 

interacting groups. Lipo: the calculated contribution of the lipophilic area. Ambig score: the contribution of the lipophilic-

hydrophilic contact area. Clash score: the contribution of the clash penalty to the score. Rot: the ligand conformational 

entropy score (Merzoug et al., 2013). 

ZINC ID Score Match Lipo Ambig Clash Rot 

ZINC02505902 -19.96 -24.85 -3.18 -5.69 2.76 5.6 

ZINC01609553 -19.88 -24.38 -2.52 -5.15 1.17 5.6 

ZINC03995571 -19.70 -24.50 -2.34 -3.46 1.00 4.2 

ZINC94437828 -19.32 -20.49 -1.64 -4.90 0.91 1.4 

ZINC02510138 -19.18 -23.95 -1.96 -4.09 2.62 2.8 

ZINC19092487 -18.24 -23.23 -2.61 -4.35 2.35 4.2 

ZINC06019635 -17.62 -19.52 -3.42 -3.07 1.59 1.4 

ZINC02037827 -17.45 -27.31 -1.78 -3.58 2.82 7.0 

ZINC05113724 -17.38 -24.57 -1.10 -4.08 1.36 5.6 

ZINC38611823 -17.23 -22.22 -2.13 -5.45 1.58 5.6 

DMSO -5.32 -6.10 -3.71 -2.28 1.37 0.0 

 

Fragments typically have low (mM) affinity for their targets and so sensitive and robust methods 

are required for the experimental analysis of the fragment “hits” generated from the CADD screen 

(Davis and Erlanson, 2013). The two methods run in parallel were the standard sialidase 4-Munana 

assay and X-ray crystallography (ligand soaking) to evaluate activity and binding. To do this TcTSF58N 

protein was expressed, purified and crystallised. 
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5.5 TcTS construct, expression and purification 

The expression of TcTS followed Dr Telford’s protocol. Unfortunately, a copy of the TcTSF58N 

plasmid could not be located, so mutagenesis was performed using the original template provided 

by Alejandro Buschiazzo. Primers were designed (Appendix Figure 84.) and site-directed mutagenesis 

was performed on the Buschiazzo construct. Colony PCR was performed and full sequencing by 

GATC confirmed the sequence of TcTSF58N (see Appendix for full sequence).  This TcTSF58N construct 

was transformed into BL21 DE3 GOLD E.coli and expressed using the autoinduction method (Figure 

68.).  

 

Figure 68. SDS Page of TcTSF58N after nickel-column chromatography (1) and size-exclusion chromatography (2). 

The activity of TcTSF58N was assessed after each stage of protein purification. The activity of 

TcTSF58N was the highest after the size-exclusion chromatography purification step (345 AFU/sec 

compared to 100 AFU after IMAC).  

5.6 TcTS crystal generation and structures 

TcTSF58N protein purified using the method detailed in Chapter 4.6 was added to crystal drop 

vapour diffusion plates for protein crystallisation. The crystallisation conditions discovered by Dr 

Telford (Telford, 2014) were used. The first condition used was 200mM L-Proline, 100mM Hepes and 

10% PEG 3350. Crystals in this condition grew within a week and after two weeks were observed to 

diffract to the resolution limits of the in house detector (Figure 69.).  
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Figure 69. Images of TcTS crystals grown in conditions, A: 200 mM L-proline, 100 mM Hepes and 10% PEG 3350, B: 

100 mM Tris pH 8.5 and 10% PEG 8000. 

The second condition used was 100 mM Tris pH 8.5 and 10% PEG 8000. Crystals grew within two 

weeks and after one month were observed to diffract to the resolution limits of the in house 

detector. This condition produces an apo crystal structure with no small molecules bound within the 

active site. The time for the crystals to grow could be optimised and streak seeding of previously 

grown crystals into the crystallisation drop drastically shortened the length of time needed for 

crystals to grow. The first condition required one week and the second condition only required two 

weeks after crystal seeding. L-proline was observed to serendipitously bind within the active site of 

TcTS and form a number of van der Waal interactions with TcTS active site (Figure 70).  



191 
 

 

Figure 70. Proline (purple) found bound within the active site of TcTS. Interactions of Proline with 

surrounding molecule (DMSO, pink) and protein highlighted with dashed bonds (black).  Phosphate also 

located within the active site. Water molecules are shown as red spheres. Figure created using PyMOL. 

5.7 Fragment activity and crystal soaking 

The top three hits (hypotaurine, 1,2,3-butanetriol and (2-methylsulfonyl)acetic acid) were 

bought in from commercial sources. A single molecule of DMSO is the only “serendipitous” binder 

within this secondary site.  The lack of information on “serendipitous” binders within this site 

provides a major challenge to identify key functionalities for binding and selectivity. All fragments 

run by FlexX had low binding scores and are therefore likely to be very weak binders. Unsurprisingly, 

low inhibition was observed at 1mM or 10mM for hypotaurine, 1,2,3-butanetriol and (2-

methylsulfonyl) acetic acid in the 4-Munana assay. Despite low inhibitory activity for hypotaurine 

and (2-methylsulfonyl) acetic acid these fragments were screened against the mapped site using 

ligand soaking and X-ray crystallography. Unfortunately, no fragment was identified to bind to the 

mapped “allosteric” site of TcTS through crystal soaking. No structural information and very low 

potency (Figure 71) provides a challenging prospect for further development.  
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Figure 71. Graph showing the percentage activity of each fragment against TcTS using the 4-Munana assay. Graph 

created using Microsoft Excel and GraphPad. 

This CADD approach to identifying secondary site binders was unsuccessful. An alternative 

approach to the identification of TcTS chemical tools was pursued. With the wealth of knowledge 

generated from groups targeting the active site, a re-task of CADD screening towards this site was 

likely to be more successful and the following work details our approach to identifying an active site 

directed inhibitor. 

5.8 Summary 

The water channel within TcTS runs through the catalytic domain forming a central pore. This 

structural feature also appears within NanB despite only a 19% sequence similarity between the two 

sialidases.  The TcTS water channel is 37.5 Å long and has a width of 16 Å. A number of conserved 

waters appear within the water channel of TcTS structures published in the PDB. Using a solved 

TcTSF58N crystal structure (previously solved by Dr Telford) a potential allosteric site was mapped 

using the allosteric site of NanB as a template. Creation of an enriched “virtual” docking library 

proceeded by obtaining a freely available fragment library database in a ready-to-dock format (only 

including fragments with a logp equal to or less than 3.5, molecular weight equal to or less than 250 

Da and rotatable bonds equal to or less than 5) and filtering it using a ligand similarity search set at 

0.2 (20%) against DMSO (the only known molecule to bind within this mapped pocket). This reduced 

the library size from 3,459,596 to 704,041 fragments. This enriched “virtual” library was then docked 

against the potential allosteric site within TcTS. The library was also docked against the active site to 

remove potential promiscuous binders and the top three hits that scored low for active site binding 

and high for binding within the potential allosteric pocket of TcTS were bought in from commercial 
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sources. The activity of these three hits (hypotaurine, 1,2,3-butanetriol and (2-methylsulfonyl)acetic 

acid) against TcTS in the 4-Munana assay was low. Crystal soaking of hypotaurine, 1,2,3-butanetriol 

and (2-methylsulfonyl)acetic acid performed in parallel to the 4-Munana assay did not generate any 

ligand-crystal complexes. With very low activity and no further structural information to aid design 

the SBDD approach to the development of a TcTS allosteric inhibitor is limited. It is possible an 

allosteric site exists within the water channel of TcTS, but a large compound screen would be 

required in order to identify functionalities important for binding within this potential allosteric 

pocket. The CADD approach was unsuccessful at identifying ligands that would bind within this 

mapped site. A wealth of information exists on inhibitors that bind within the active site of TcTS and 

a re-task of CADD screening towards the active site would likely be successful.   
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6.0 Development of a TcTS constrained chemical tool that 

targets the active site 

This chapter is focused on the development of a constrained chemical tool that targets the 

active site of TcTS. To do this a CADD approach was used to identify novel TcTS active site binders. 

The crystal structures previously generated within the group were utilised to generate receptor files 

for docking. Within these structures and the TcTS structures published in the PDB, the active site of 

TcTS has been observed to form two conformations (Tyr119 flipped up (open conformation) and 

Try119 flipped down (closed conformation)) (see Chapter 1.62, Current Inhibitors of TcTS). 

Therefore, two receptor files for CADD were created using both the open and closed conformations. 

A large “lead-like” library was obtained from the ZINC12 online database. This “lead-like” library was 

filtered using a subset of known active site binders of TcTS to create an enriched library (increasing 

the likelihood of finding an active site binder). The “lead-like” library was filtered from 13,760,200 to 

60,256 compounds using a Tanimoto chemical similarity search criteria. This enriched library was 

docked against the two receptors files using FlexX. A KNIME workflow was used to speed up the 

docking process. Two “Hits” from this CADD screen were chosen for activity analysis. Activity analysis 

using the 4-Munana assay observed that the first “hit” inhibits TcTS activity. Crystal soaking however 

did not result in an inhibitor-TcTS complex. The second “hit” was evaluated, but due to cost of 

material the compound was only investigated as fragments. The core unit of this inhibitor was 

evaluated for activity and found to have moderate potency. A ligand-TcTS complex was solved 

indicating that the core fragment binds to the active site of TcTS. Analysis of analogues of this five-

membered-ring fragment suggests that this core is suboptimal for binding and could be improved. 

The activity and structural analysis of these inhibitors provides a starting point for the development 

of a constrained chemical tool targeting the active site of TcTS.  

6.1 TcTS active site 

The TcTS active site is located within a canonical β-propeller fold in the N-terminal catalytic 

domain (see Chapter 1.57.1, TcTS Sialidase). The active site accommodates the binding of α-2,3 

linked sialic acid from host glycoconjugates. The key residues within the active site are Trp312 and 

Tyr119 as the side chains of these two aromatic amino acids form stacking interactions with aglycon 

moieties. Lactose has very few protein hydrogen bonds but abundant water hydrogen bonds within 

the TcTS active site. The TcTS active site has a greater affinity for lactose than Sia suggesting that 

binding is driven by hydrophobic affinity from these two amino acids (Trp312 and Tyr119). Other key 
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residues that form important ligand interactions include the arginine triad (Arg35, Arg245 and 

Arg314) and two aspartic acid residues (Asp59 and Asp96) (Figure 72).  

 

Figure 72. Binding position of lactose (green) and DANA (green) within the active site of TcTS (PDB: 1MS0). The key 

residues important for substrate binding are highlighted.   

Three pockets have been identified within the TcTS active site. Within the proline crystal 

structure solved by Dr Telford, L-proline, a phosphate ion and DMSO molecules occupy these 

pockets. Developing a chemical tool that can bind in all three pockets might prove challenging as it is 

unlikely a flat molecule will occupy all pockets forming all the key interactions required for the best 

affinity. A molecule with stereochemistry would be needed complicating ligand design and synthetic 

tractability.  
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Figure 73. A. Three pockets identified within the TcTS binding site identified by Dr Telford. 1. Lactose binding 

site (DMSO bound). 2. Sia binding site with L-proline bound (green). 3. Phosphate binding pocket.  B. Tyr119 

exists in two conformations (PDB: 1MS3). The two positions of Tyr119 are highlighted in this image. C. Tyr342 

also exists in two conformations these positions are highlighted in this image. 

Further difficulty in inhibitor design is presented by the presence of two conformational changes 

in the Tyr119 (Figure 73). In the holo structure, Tyr119 flips up and into an open conformation for 

lactose binding. In the apo structure, Tyr119 flips down filling the pocket and forming a closed 

conformation. Two receptor files were created containing the TcTS active site (one with the open 

conformation and one with the closed conformation of Tyr119). The residue Tyr342 also exists 

between two states, the inactive state and the active state (Figure 73). In the active state, a hydrogen 

bond exists between Tyr342 and the carboxylate of Glu230 orientating the tyrosine underneath the 

scissile glycosidic linkage. Tyr342 in this position is thought to stabilise the substrate and/or the 

intermediate formed in the reaction. In the inactive state/unliganded structure, Tyr342 does not 

form a hydrogen bond with Glu230. Both the receptor files created contain the active state of 

Tyr342 to provide the most appropriate TcTS active site models for ligand docking.  
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6.1.1 Known binders of the TcTS active site 

A number of research groups have developed inhibitors of TcTS. These focus mainly on substrate 

mimetics of sialic acid (see Chapter 1.62, Current Inhibitors of TcTS). These inhibitors have been 

reported in the literature to have a weak potency against TcTS. To confirm these results the sialidase 

mimetics we had available in the lab were tested against TcTS (Figure 74). These sialidase mimetics 

were observed to have low potency against TcTS confirming previous results from other labs.  

The most potent TcTS inhibitor reported to date is an anthraquinone, 6-chloro-9,10-dihydro-

4,5,7-trihydroxy-9,10-dioxo-2-anthracenecarboxylic acid developed by Arioka et al. 2010. The TcTS 

inhibitor 6-chloro-9,10-dihydro-4,5,7-trihydroxy-9,10-dioxo-2-anthracenecarboxylic acid was not 

commercially available to purchase, however a structurally similar analogue anthraquinone-2-

carboxylic acid was available from Sigma-Aldrich. This compound was difficult to dissolve in DMSO 

and so testing of this compound at final concentrations of 50µM and higher proved difficult. At 

50µM anthraquinone-2-carboxylic acid was found to have little inhibitory activity against TcTS (7±3 

% inhibition of TcTS in the 4-Munana assay). According to Arioka et al. anthraquinone-2-carboxylic 

acid has an IC50 of 430 µM and at concentrations of 0.1mM or higher, the activity of TcTS is inhibited 

in the 4-Munana assay. An attempt to generate an anthraquinone-2-carboxylic acid-TcTS crystal 

structure was unsuccessful. This was probably due to the inability to dissolve anthraquinone-2-

carboxylic acid at a concentration suitable for crystal soaking. It is likely the inhibitor 6-chloro-9,10-

dihydro-4,5,7-trihydroxy-9, 10-dioxo-2-anthracenecarboxylic acid would be more soluble due to the 

presence of a number of polar groups that would contribute to hydrogen bonding with solvent.  
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Figure 74. A. Graph showing the percentage inhibition of known sialidase inhibitors against TcTS activity 

using the 4-Munana assay (DANA, Oseltamivir carboxylate (OC), Peramivir and Zanamivir). B. Graph showing 

the percentage inhibition of previously identified active site binders against TcTS activity using the 4-Munana 

assay (2-(4-methoxyphenyl)acetonitrile (MA), 2-3-dimethyl-1H-indole-5-carboxylic acid (MIC) and siastatin B). 

Dr Telford in previous work identified three main active site binders and inhibitors of TcTS (2-(4-

methoxyphenyl)acetonitrile, 2-3-dimethyl-1H-indole-5-carboxylic acid and siastatin B). These 

inhibitors were re-tested against TcTS and observed to have weak potency confirming Dr Telford’s 

results (Figure 71.B.). The percentage inhibition of these compounds at 2mM was determined to be 

42±8% (38.2±11%), 74±5% (78.0±2.1%) and 13±4% (10.3±4.5%) respectively (percentage inhibition 

obtained by Dr Telford shown in parentheses). Within the TcTS crystal structure generated by Dr 

Telford, L-proline was identified as a serendipitous binder within the active site (Figure 67).  

6.2 Library generation and docking 

To improve the likelihood of finding a ‘hit’ against the active site a larger ‘virtual’ library was 

taken from the ZINC12 database. To comply with the constrained chemical tool approach the “clean 

drug-like” library containing 13,760,200 molecules was chosen. The following filters applied to this 

set of molecules include: molecular weight (molecular weight above 150 Da and below 500 Da), 

hydrogen bond donor (maximum of 5), hydrogen bond acceptor (maximum of 10), logP (maximum 

of 5) and polar surface area (PSA) criteria (maximum of 150 kcal/mol). These comply with Lipinski’s 

RO5 guidelines for increasing the likelihood of drug permeability and adsorption. PSA is a useful 

parameter for the prediction of adsorption (Ertl et al., 2000). PSA is defined by the sum of all polar 

surfaces within a molecule and correlates well with passive molecular transport data (Ertl et al., 
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2000) enabling successful prediction of Caco-2 penetration (Palm et al., 1998) , blood-brain barrier 

transport (Kelder et al., 1999) and intestinal absorption (Palm et al., 1997).  

To create an enriched library, these 13,760,200 compounds were filtered using a Tanimoto 

similarity ligand screen of known substrates and active site binders of TcTS (0.5 set threshold) (Figure 

72). The known binders of TcTS were profiled and tested against TcTS using the 4-Munana assay. 

These binders had low potency against TcTS, but have been evaluated as TcTS inhibitors. This subset 

library of TcTS inhibitors will be used for chemical similarity comparison. As most of the inhibitors 

included in the subset library have been identified as TcTS active site binders through X-ray 

crystallographic studies, this provides a useful basis for obtaining the required chemical functionality 

for an active site inhibitor.   

 

Figure 75. A schematic of the ligand similarity selection applied to the large “clean drug like” 

ZINC12 library. 

This reduced the library to 60,256 compounds. This was spilt into 100 sdf files containing 

between 203 to 863 molecules in each docking file. This allows the use of the graphical user 

interface (GUI) input within LeadIT. This user interface allows the maximum of 1,000 ligands docked 

at one time. To dock larger libraries of 1,000 ligands or more the commandline interface or a 
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Konstantz Information Miner (KNIME) workflow can be used. This 60,256 compound library was 

screened against the active site using FlexX within the docking programme LeadIT. 

6.2.1 FlexX docking and validation 

LeadIT was the docking programme of choice for this large CADD screen due to its faster run 

time than GOLD. This docking programme was validated through the evaluation of a known binder 

of TcTS. FlexX could accurately predict the binding of siastatin B (the binding mode of siastatin B was 

experimentally determined by Dr Telford in previous work). 

 

Figure 76.  Siastain B binding position within the TcTS active site (Telford, 2014). FlexX prediction of siastatin B within 

TcTS (blue) and binding position determined by siastatin B-TcTS crystal structure (green). 

The overlay of the experimentally determined binding pose of siastain B matches with the best 

binding pose generated by FlexX (Figure 76). As FlexX docking programme can accurately predict the 

binding pose of this inhibitor, docking of the large library was then initiated using the GUI interface 

within LeadIT.  
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6.2.2 Faster docking using the KNIME workflow 

The use of the GUI interface within LeadIT is limited to one input file (containing less than 1000 

ligands) per docking run. After each docking run a new library needs to be manually input if docking 

ligand files containing libraries of 1000 or more. The KNIME workflow was used to decrease the need 

for the manual input of each ligand batch file. KNIME workflow enables the user to visually assemble 

and interactively execute data within a pipeline (Berthold et al., 2009). Data is processed or 

visualised by nodes (Warr, 2012). Data processed and completed within one node is then passed 

onto the next node within the series (Warr, 2012). A number of advantages exist with the use of 

KNIME as multiple sdf files can be input into the pipeline and data can be viewed on intermediate 

results even after execution of the workflow (Warr, 2012). Furthermore, the workflow can be 

restarted at any intermediate node within the pipeline (Warr, 2012). 

 

Figure 77. Schematic representing the KNIME workflow for FlexX docking within LeadIT.  

The enriched library created within Instant JChem was loaded from the individual batch files into 

the SDF Reader Node 5. The 3D coordinates of each ligand are generated using the Generate 3D 

Coordinates Node 6. The receptor files were created within the GUI of LeadIT and loaded into the 

Project Reader (FXX) Node 1. The ligands were then docked using the Compute LeadIT Docking Node 

2 and the docking output visualised using the BioSolveIT viewer Node 4 and Interactive Table Node 

3. The KNIME workflow method was used to aid the docking of this large library (Figure 77).  
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6.2.3 Docking scores. 

The large “clean drug like” library was docked against the open conformation using FlexX. The 

FlexX docking scores generated for each of the 60,256 compounds were filtered to include 

compounds that only scored higher than -55 (resulting in 1277 identified “hits”).  These were 

compiled into a spreadsheet and then ranked according to FlexX score, the compounds were then 

docked using GOLD. GOLD was used to confirm and validate the docking scores obtained by FlexX for 

the open conformation. GOLD was also used to screen these 1277 identified “hits” against the closed 

conformation of the TcTS active site (Figure 78). As it was unclear as to which conformation would 

be useful for inhibitor generation, compounds that scored high for both receptor conformations 

were selected for further assessment. The top ten “hits” from all tables were profiled and the 

chemical structures were compared. Within the top ten “hits” for the open and the closed 

conformation (identified using FlexX and GOLD), the most common chemical structure was a five 

membered ring containing a carboxylic acid and two amines. Within the top ten “hits” for the open 

conformation identified within GOLD, the most common chemical structure is a heterocyclic ring. 

This is different to the results from FlexX. However, one structure within the top ten “hits” (for the 

open conformation) identified using GOLD contains a five membered ring containing a carboxylic 

acid and two amines.     
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Table 11. Top ten “hits” identified using FlexX for the open conformation of TcTS. Table 12. Top ten “hits” identified using 

GOLD for the open conformation of TcTS. Table 3.  Top ten “hits” identified using GOLD for the closed conformation of 

TcTS. 

 

Figure 78. A. Common chemical structure found within the top ten “hits” identified for the open TcTS 

active site structure by FlexX. B. Common chemical structure found within the top ten “hits” identified for the 

open TcTS active site structure by GOLD. C. Common chemical structure found within the top ten “hits” 

identified for the closed TcTS active site structure by GOLD.  

All of the top ten hits contain a carboxylic acid moiety. This suggests that for a good docking 

score/affinity, the presence of carboxylic acid is important (presumably this is required for an 

interaction with the arginine triad). The presence of aromatic moieties within the top “hits” suggests 

that this is also required for a good docking score. It is likely that the presence of an aromatic 

functionality results in electrostatic stacking with Tyr119 and Trp312. Additionally, the presence of 

an amine within most of the top “hits” suggests this functionality is also important. It is likely this 

functionality forms van der Waal interactions with the aspartic acids (Asp 59 and Asp96). To evaluate 

if these assumptions hold true, manual evaluation of the binding pose generated for each of the 

chemical structures in Figure 78 were conducted.  
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6.2.4 Active site binding assessment 

An example was chosen from each common chemical structure within the top “hits” identified 

from the CADD screen (Figure 79). The main residues involved in receptor-substrate interactions 

include: Trp312, Tyr119, the arginine triad (Arg53, Arg245 and Arg314) and two aspartic acid 

residues (Asp59 and Asp96).  

 

Figure 79. The binding pose generated from the FlexX screen for two examples of “hits” in Figure 75. 

Image created by PoseView within LeadIT.  

For both the FlexX identified inhibitors a number of key interactions are observed between the 

arginine triad and Asp59. ZINC93430368 has a hydrogen bond interaction with Tyr342. 

ZINC93825333 has the potential for binding with Tyr119 and Trp312 with position of the alkane 

chain. It is likely this group is suboptimal and could be modified for a key interaction with Tyr119 and 

Trp312. The binding of “hits” from the GOLD screen were also evaluated. Based on the interactions 

with the key residues, two inhibitors were selected for further development and analysis. These two 

inhibitors were compounds ZINC35057649/81 and ZINC93827840/82 (Figure 80).  

6.3 Biological testing of compound 81 and 82. 

A close analogue of 81 was readily available to purchase through Carbosynth. This compound is 

2-acetamido-4,6-O-benzylidene-2-deoxy-D-galactopyranose/compound 83. Activity analysis using 

the 4-Munana screen evaluated compound 83 to have moderate potency in the 4-Munana assay 

(25±6% inhibition of TcTS activity at 500µM and 41±9% inhibition at 1mM). This is the best potency 

of all evaluated inhibitors so far.  However, various attempts at crystal soaking with this inhibitor did 

not generate a co-crystal complex. Compound 82 was available commercially, but this compound is a 

make-on-demand compound requiring a 6 week development time. It is also expensive to buy. 

Evaluation of compound ZINC93827840 instead proceeded through fragment analysis. Compound 82 

was instead broken down into functional units and investigated as individual fragments. As the 
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fragments were readily available and cheap to purchase, this was advantageous. Additionally, this 

core fragment featured commonly in many of the top hits and so activity and structural evaluation of 

this fragment alone would be very useful in identifying if it inhibits TcTS and binds in the active site.   

 

Figure 80. A. Chemical structure of ZINC35057649/81 and structurally similar analogue 83 and a graph 

representing the % inhibition of TcTS activity in the presence of 81 at 500µM and 1mM using the 4-Munana 

assay. B. Chemical structure of ZINC93827840/82 and fragments 84, 85 and a graph representing the % 

inhibition of TcTS activity in the presence of 81 at 500µM and 1mM using the 4-Munana assay. Evaluation of 

the fragments of this ‘hit’ was conducted using the 4-Munana assay. 

The first fragment/84 was observed to have 12±4% inhibition at 1mM. Ligand soaking with 84 

resulted in a 84-TcTS crystal structure. The binding of 84 to the active site matched with that 

predicted from LeadIT. Further evaluation of an additional fragment 85 (tert-butyl piperazine) 

resulted in inhibition against TcTS 20±7% at 1mM. Addition of both fragments together resulted in 

slightly improved inhibition of 35±4% inhibition at 1mM suggesting that synergistic inhibition has 

occurred. However, ligand soaking with tert-butyl piperazine did not result in a ligand-TcTS complex. 

A crystal structure has been obtained with the core structural unit bound within the Sia pocket of 

TcTS (Figure 81).  
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Figure 81. A. Binding position of 84 within the active site of TcTS. B. A 2D schematic of the interactions of 

84 with the active site of TcTS as predicted by PoseView. 

To gain further information on the optimal binding within the Sia binding site a number of other 

five membered analogues were tested.  

6.4 SAR with analogues of 84  

Two analogues of 84 were trailed (cis-4-hydroxy proline and trans-4-hydroxy proline) and 

evaluated to identify the optimum position of the five membered ring within the TcTS active site. 

These analogues were chosen to also evaluate the position and required stereochemistry for the 

addition of functional groups to the five membered ring. A crystal structure of cis-4-hydroxy proline-

TcTS was obtained (Figure 79). Cis-4-hydroxy proline was bound within the same position as L-

proline and in a slightly different position to 84 (Figure 82). 
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Figure 82. A. Binding position of cis-4-hydroxy proline within the active site of TcTS. B. A 2D schematic of 

the interactions of cis-4-hydroxy proline with the active site of TcTS as predicted by PoseView. 

 The van der Waals interaction between the amine and the aspartic acid residue (Asp59) of TcTS 

orientates the cis-4-hydroxy proline into a different position than that of 84 (Figure 82). Interactions 

exist between the arginine triad and the carboxylic acid of cis-4-hydroxy proline. The hydroxyl group 

of cis-4-hydroxy proline has additional hydrogen bonds with Tyr342 and Glu230, potentially 

increasing binding affinity. The isomer of cis-4-hydroxy proline, trans-4-hydroxy proline was also 

investigated as an active site binder and analogue of 84. A crystal structure of trans-4-hydroxy 

proline-TcTS was obtained (Figure 80). Trans-4-hydroxy proline was observed to bind in a similar 

position to L-proline and cis-4-hydroxy proline (Figure 81). Trans-4-hydroxy proline was observed to 

have slightly better potency against TcTS than cis-4-hydroxy proline and 84. This could be due to the 

presence of a hydrogen bond between aspartic acid (Asp96) and the hydroxyl group of trans-4-

hydroxy proline ().    
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Figure 83. A. Binding position of  trans-4-hydroxy proline within the active site of TcTS. B. A 2D schematic of the 

interactions of trans-4-hydroxy proline with the active site of TcTS as predicted by PoseView. 

The slightly increased potency of trans-4-hydroxy proline suggests that the further optimisation 

of an active site inhibitor of TcTS should proceed with the use of trans-4-hydroxy proline or the 

addition of functionality to 84 that would result in a direct hydrogen bond interaction with Asp96.   

 

Figure 84. A. Overlaid binding positions of 84 (green), trans-4-hydroxy proline (orange), cis-4-hydroxy 

proline (blue) and L-proline (purple) within the TcTS active site. B. Graph representing the % inhibition of TcTS 

activity observed for 84, trans-4-hydroxy proline, cis-4-hydroxy proline and L-proline (all tested at 1mM) using 

the 4-Munana assay. 
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 6.5 Summary 

Within this chapter a fragment was identified as a suitable starting point for chemical tool 

development. A CADD approach was used to identify an active site inhibitor. A large “clean drug like” 

library was used as a platform to generate an enriched library of compounds likely to bind to the 

TcTS active site. The information gained from the literature and previously identified active site 

binders within the group (Telford, 2014) were used to generate a table of active site binders for a 

chemical search filter. Similarly to Chapter 5, a Tanimoto similarity metric was used with a threshold 

of 50%. This filtered the initial 13,760,200 down to a smaller more manageable library of 60,256 

compounds. This enriched library of 60,256 compounds was then screened against the active site of 

TcTS using FlexX. This was performed initially using the GUI interface within LeadIT and later 

completed with a KNIME workflow. The results from this screen were further filtered to include 

“hits” with a total FlexX score of more than -55. The docking was performed for a second cycle on 

this library of “hits” using GOLD. Within this second docking cycle, the two conformations of Tyr119 

were used and so the library of “hits” was docked against two receptor files.  The top ten hits from 

each docking cycle were evaluated. Common chemical structures appeared within the top ten “hits”. 

Two “hits” 81 and 82 were chosen for further evaluation based on the binding analysis of each of 

these “hits” from PoseView. The purchase and test of 83 a close analogue to 81 identified a 

moderate inhibitor of TcTS activity within the 4-Munana assay. However, no inhibitor-TcTS structure 

was solved for this heterocyclic compound 83 raises questions over the validity of this inhibitor as an 

active site TcTS inhibitor and would require further investigation. To improve the potency of 83 

against TcTS a ligand-protein structure would be needed for SBDD. Testing of 83 proceeded through 

fragment analysis. Fragments of 82 also had moderate potency against TcTS using the 4-Munana 

assay. A crystal structure of the core fragment (84) of 83 bound to the active site of TcTS was 

generated. Further evaluation of analogues of 84 offers valuable information for the generation of a 

novel active site inhibitor of TcTS. This provides a good basis for future SBDD and sets the 

groundwork for the generation of a TcTS active site targeted constrained chemical tool.  
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7.0 Discussion and Future work 

An allosteric site was not located within TcTS with a CADD fragment screen. It is unlikely that a 

CADD approach would be successful in identifying a small molecule binder of an allosteric site within 

TcTS without the identification of a key functionality required for binding to this site. Additionally, a 

higher ratio of hydrophobic residues within this mapped allosteric site would also lead to difficulties 

in generating/finding a small molecule that would bind to this site. DMSO was the only small 

molecule/fragment found to bind within this mapped region on TcTS. This is used at a high 

concentration (20-30% DMSO in crystallisation buffer) as a cryoprotectant for crystal structure 

generation.  Even though DMSO is observed within the crystal structure of TcTS, it is likely to have a 

low binding affinity. Therefore, DMSO is not a good molecule on which to base a chemical similarity 

search and so the Tanimoto threshold was set low at 20%.  Despite the low threshold the library was 

filtered from 704,041 to 1,015 (filtering the library by 99.9%). The reduction of this library is too 

high, greater chemical variety is needed in the future to identify functional groups important for 

binding at this site. The full fragment library should be screened against the mapped secondary site 

using the CADD approach. Without the availability of SBDD information provided by serendipitous 

binders, conventional methods should be used to determine if an allosteric site exists on TcTS. A 

large HTS should be utilised to identify fragments that bind and inhibit the TcTS. Crystal soaking and 

structural determination using X-ray crystallography should be used to identify if the fragment/“hits” 

determined to inhibit TcTS activity bind to an allosteric site. Using crystallisations conditions 

discovered by Dr Telford, it is possible to generate crystals of consistent quality and resolution for 

ligand binding determination. 
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Figure 85. Binding of indole-5-carboxylic acid (green) found bound on the surface of TcTS. Electrostaic surface of the 

protein shown. 

An analogue of 2-3-dimethyl-1H-indole-5-carboxylic acid (MIC) was also tested in the 4-Munana 

assay and resulted in similar potency (70±4% inhibition of activity in the 4-Munana assay at 2mM). 

Although indole-5-carboxylic acid had weak potency against TcTS, it was used in crystal soaking to 

determine mode of binding. Within the crystal structure, indole-5-carboxylic acid was not observed 

to bind to the active site or the predicted allosteric site. It was found bound to a position outside of 

the water channel at the surface of the catalytic domain (Figure 85). Low potency of the indole-5-

carboxylic acid suggests this inhibitor lacks affinity for TcTS. The position of the indole-5-carboxylic 

acid is positioned between crystal-crystal contacts. This binding could be an artefact of crystallisation 

and would need to be further investigated as this ligand may have serendipitously identified an 

allosteric site. Due to the disappointing results obtained from screening ligands against the mapped 

secondary site, the CADD approach was then used to determine if a new active site inhibitor could 

be discovered. The benefit of this approach is that examples exist of TcTS active site inhibitors and 

this information can be used to determine the functionality required for binding within the TcTS 

active site. However, the development of a potent active site inhibitor has proven to be difficult. 

Inhibitors that are sialic acid mimetics typically have low potency against TcTS. It is evident from past 

work that the lactose pocket, specifically binding to Trp312 and Tyr119 needs to occur in order for 

increased potency. “Hits” generated from the CADD screen were analysed with this in mind. Two 
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candidates (81 and 82) were selected based on these criteria for further analysis. The two 

compounds selected were difficult to obtain commercially and so close an analogue of 81, 83 was 

obtained instead. The compound 82 was investigated as fragments. The difficulty in generating a 83-

TcTS crystal structure suggests that 83 may be promiscuous and not a true active site inhibitor of 

TcTS. This should be further investigated to determine if 83 binds to the active site of TcTS. 

Compound 84 is the core unit for many of the top “hits” from the CADD screen and a fragment of 82. 

This compound has reasonable inhibitory activity (for a fragment) against TcTS despite only binding 

within the Sia binding pocket of the active site. The development of a more potent chemical tool 

should proceed with the addition of functionality to 84 that will occupy the lactose pocket of TcTS. 

Analysis of analogues of 84 suggest that this core fragment could be further improved. The 

positioning of a group that can hydrogen bond to Asp96 would slightly improve potency. However, 

addition of an aromatic functionality forming aromatic stacking interactions with Tyr119 and Trp312 

would probably improve potency significantly. Further increases in potency could be generated by 

the addition of functionality into the third pocket (phosphate binding pocket) identified by Dr 

Telford. The work here has identified a valid starting point for further SAR development. It is highly 

likely a potent TcTS active site directed constrained chemical tool could be developed using 

fragment 84 as the core unit. Compound 83 would need to be further investigated. This analogue of 

81 lacks the important carboxylic acid functional group for binding to the arginine triad. Addition of 

this group might significantly increase its potency.  

7.1 Experimental 

All reagents were purchased from chemical suppliers: Sigma, Carbosynth and Fluorochem. These 

chemicals were used without further purification. 

7.1.1 Computational modelling: 

 Computational experiments were conducted using a Dell Inspiron 5520 Intel ® Core i5-3210M 

2.50 GHz CPU. A 64-bit operating system running Windows 10 was used. BioSolve IT LeadIT software 

containing the docking programme FlexX was operated for computational docking. The Cambridge 

Crystallographic Data Centre (CCDC) software GOLD was also employed for computational docking. 

Ligand libraries were obtained from the freely available chemical database ZINC12 (obtained from: 

http://zinc.docking.org/).  Two libraries were downloaded from the ZINC12 database. These were the 

ZINC12 “Frag Now” library containing 704,041 fragments and the ZINC12 “Clean Drug-like” library 

containing 13,760,200 compounds. Chemical similarity profiling was performed by ChemAxon 

software Instant JChem. A Tanimoto similarity metric was used to search for ligands within these 

libraries that had similar chemical characteristics as the target group. The target group chosen was 

http://zinc.docking.org/
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based on using known binders/inhibitors of the sites prepared for docking. Docking receptor files 

were created using the GUI within LeadIT. Receptor files for docking were generated from structures 

obtained within the group ((Telford, 2014)). Ligands bound within these sites were used as a basis to 

generate a receptor file. A circumference cut-off of between a 6 and 15 Å around the bound ligand 

was used to create the receptor for docking. Docking was performed using the GUI within LeadIT or 

KNIME workflow provided by BioSolveIT and KNIME. GOLD docking was performed by using the 

software’s GUI. Docking scores obtained from LeadIT were manually compiled into excel files. GOLD 

automatically creates log files containing docking scores.  

7.1.2 Protein expression: 

The TcTS plasmid 5 µl (pTrcHis) supplied by the Busciazzo group was subjected to site-directed 

mutagenesis using designed primers (Appendix Figure 2) and the QuickChange Lightning Site-

Directed Mutagenesis Kit (Stratagene). The resulting construct was then transformed into DH5α 

E.Coli and plated onto 100µg/mL L-ampicillin plates. These plates were then incubated at 37°C 

overnight. Colonies were selected and amplified in 5mL of LB with a final concentration of 100µg/mL 

of L-ampicillin. The DNA plasmid was isolated by mini-prep (Qiagen) and sent to GATC Biotech for 

sequencing (in accordance with previous work (Telford, 2014)). Once the sequence was confirmed 

the new TcTS construct (TcTSF58N) was transformed into 100 µL of E.Coli (BL21 GOLD) by incubation 

on ice for 45 mins. The E.Coli was then heat shocked for 30 seconds and then put back on ice for 2 

minutes. The cells were then added to 1 mL of L-B Broth and incubated at 37 °C. After incubation for 

1 hr 200 µl of cells were spread onto L-B agar plates containing 100 mg/mL L-ampicillin. These cells 

were incubated overnight at 37 °C. A single colony was then inoculated into 10 mL of L-B Broth 

containing 0.1 mg/mL. From this overnight inoculation 1 mL was transferred into autoinduction 

media (Terrific broth base with trace elements, ForMedium) containing 0.1 mg/mL L-ampicillin and 

incubated for 2 hrs at 37 °C at 200 rpm. The temperature was then turned down to 22 °C and 

incubated for 48 hrs briefly stopping after 30hrs to add a further 50 µg/mL L-ampicllin. Cells were 

then harvested by centrifugation at 9000 rpm for 25 minutes and stored at -80°C overnight. 

7.1.3. Protein purification: 

The cell pellet was thawed and resuspended in 200 mL of Tris buffer (50 mM Tris. pH 7.5) with 2 

protease cocktail tablets (Roche Diagnostics) and DNase I (Sigma, 20 µg/ml final concentration). The 

cells were lysed by a cell disruptor (Constant Systems). Cell debris was then removed by 

centrifugation at 20,000 rpm for 25 minutes at 4 °C. The supernatent was then filtered using a 

syringe 0.2 µm filter. The filtered supernatent was loaded onto a nickel HisTrap HP column (GE 

Healthcare) equilibrated with 50mM Tris, pH 7.5). The protein was eluted with a gradient of 10 mM-
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500 mM imidazole. The fractions containing TcTS were collected and to a 120 ml Sephacryl S-200 gel 

filtration column. Fractions containing TcTS were collected and analysed using an SDS-PAGE gel. 

Protein was concentrated to 12mg/mL for crystallisation experiments. 

7.1.4. Kinetic analysis: 

The MUNANA assay was used to measure the activity of “hits” identified from computational 

screening. Stock solutions were made of each compound in DMSO (0.1 M) or in water depending on 

solubility. Compound were initially assayed at concentrations ranging between 2-1mM. The 

MUNANA was assayed in 96 well plates with each well containing a 100 µl total volume containing 

Hepes, 100mM NaCl pH 7.5 and a final concentration of 100 ng/mL TcTS, 120 µM MUNANA and 

compound (concentrations ranging between 2 mM, 1mM, 500 µM).  The assay was performed using 

the Stratagene MX3005P PCR system and fluorescence measured at 365 nm excitation and 420 nm 

emission. Recordings were taken at 37 °C every 10 seconds for 10 minutes. The initial rate was 

calculated and compared to a control giving the percentage inhibition. 

7.1.5. Protein crystallisation and X-ray crystallography: 

Crystal trials were set up using sitting drop vapour diffusion 96 well plates (Douglas 

instruments). 2 µL of 12 mg/mL protein and 2 µL of buffer was added into the sitting drop well. In 

the reservoir 70 µL of buffer was added. The buffer consisted of 200mM L-proline, 100mM Hepes 

and 10% PEG 3350. Crystals in this condition grew within a week and after two weeks had grown to 

suitable size. A second crystallisation condition was also used. The buffer within this condition was 

100 mM Tris pH 8.5 and 10% PEG 8000. Crystal were slower to grow in this condition. Crystal seeding 

was employed to speed crystal growth. For seeding a single crystal (obtained from the L-proline 

condition) was lifted using a crystal loop and was suspended in 50 µL of 100 mM Tris pH 8.5 and 10% 

PEG 8000 buffer.  A seed bead was added and the solution vortexed for 60 seconds. Crystallisation 

conditions were set up as before with addition of crystal seeds by use of a cat whisker dipped into 

the seed solution and then into the sitting drop.  The plates were then sealed and stored at room 

temperature. 

Crystal soaking was performed with the generated TcTS crystals. Compounds were made up in 

stock concentrations of 1M. This was performed with DMSO for insoluble compounds or water for 

soluble compounds. The stock solution was added into the wells (to generate a 100mM final 

concentration of compound) containing the crystal for periods of time ranging from 2 mins to 

overnight. Additonal soaking experiments included the addition of compound (water soluble 

compounds) at 200mM with 100mM Hepes and 10% PEG 3350.  
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Crystals were cryoprotected with 30% DMSO in crystallisation buffer for a few seconds prior to 

placing into a liquid nitrogen stream. All X-ray structural data were collected in house at 100 K using 

a Rigaku MSC Micromax-007 X-ray generator and Saturn 944+ CCD detector. HKL2000 was used to 

integrate and scale the diffraction images. SCALEPACKtoMTZ was used within the CCP4 suite to 

generate an MTZ file. Phaser was used with molecular replacement to solve the initial phases. The 

data was then subject to Refmac for refinement. Coot was then used to fit the ligand to the 

observed density.  
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Data collection 

TcTS 
proline-
indole-5-
carboxylic 
acid 

TcTS-
cycloleucine 

TcTS-cis 
hydroxyproline 

TcTS-trans 
hydroxyproline 

 

Beamline  In-house 
In-

house In-house In-house 

Wavelength (Å) 1.54178 1.54178 1.54178 1.54178 

Unit-cell 
parameters 

a (Å) 

b (Å) 

c (Å) 

α (°)  

β (°)  

γ (°) 

 

54.069 

86.932 

73.815 

90.00 

99.557 

90.00 

 

54.39 

129.5 

54.38 

90.00 

107.79 

90.00 

 

 

 

 

54.39 

129.54 

54.38 

90.00 

107.794 

90.00 

 

 

 

 

53.923 

129.1 

54.24 

90.0 

107.89 

90.0 

Molecules per 
symmetric unit 1 1 

 

1 

 

1 

Resolution (Å) 60-1.87 50-1.95 50-1.97 50-1.68 

Redundancya  2.5(2.2) 2.8 (1.8) 3.0(4.8) 3.2(1.8) 

Completeness (%)a 84.0(83.8) 91.6(52.5) 98.9(92.4) 60.2(2.6) 

Rmerge (%)a,b 7.8(10.5) 7.0(21.3) 7.8(16.8) 3.0(13.0) 

I/σIa 37(10.8) 24.3(3.96) 56.1(30.2) 51.5(8.96) 
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