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"A Potentioiïietric Study of Some Solution Equilibria Involving Biological 

Ligands and Transition Metal Ions" by George K.R. Makar.

A thesis for the Degree of Ph.D. at the University of St. Andrews.

ABSTRACT

The formation constants for several metal ion - ligand complexes have 

been measured by glass electrode potentiometry in aqueous solution at 37°C 

using an ionic background of IBOmM sodium perchlorate.

The three topics comprising this thesis are (i) a study of the 

reaction of several metal ions, namely Co (II), Ni (II), Cu(II) and Zn(II).^ 

with ligands such as adeninate, cyclohexylamine and cyclopentylamine.

These were studied in order to gain experience in the techniques of 

potentiometry, and computation. (ii) The second topic, which comprises 

the major portion of the thesis, involved the 'in V'ttvo study of zinc 

complexes with a series of ligands which can be divided into two groups; 

those containing only oxygen donor groups (acetate, galacturonate, 

p-hydroxybutyrate, malate, malonate, oxalate, salicylate and tartarate) 

and those which contain oxygen and nitrogen donor groups (glycinate, 

glycylglycinate and glycylglycylglycinate); the purpose of this investigation 

being to suggest the best zinc supplementing drug for treating zinc 

deficiency conditions, g-hydroxybutyrate and galacturonate are suggested 

to be the most promising ligands for zinc absorption. (iii) Finally, 

computer simulation models of equilibria involving zinc and ligands in 

intestinal solution were used to correlate the rate of growth of turkey 

poults with the type of metal-ligand complexing occurring in intestinal 

fluid.
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CHAPTER 1

INTRODUCTION

General Introduction

Metal ions play a vital role in many biological processes. In the 

last few years, new techniques have been developed and these have 

accelerated studies involving both inorganic chemistry and biological 

sciences, an interdisciplinary area which is now considered to be one 

of the most rapidly expanding research fields.

It is well known that eighteen elements are essential for a
1-9healthy human life : ten of these are metals. These elements fall 

into three broad classes:-

a) the main group metals - sodium, potassium, 
magnesium, and calcium which are ionic and 
mobile 'in 'O'ivo}

b) the trace metals - manganese, iron, cobalt, 
copper, zinc, and molybdenum which are 
usually covalently bonded to the same donor 
groups;

c) the main group non-metals - hydrogen, carbon, 
nitrogen, oxygen, phosphorus, sulphur, 
chlorine, and iodine which are the molecular 
building blocks for 'in 'O'i’OO matter.

The Importance of the Bio-inorganic Study

The most likely area in which one might be able to contribute to 

man's knowledge of biochemistry appears to be in the field of trace 

element dietetics and pharmacology. Seventy per cent of our body weight 

is water and so it seems advisable to study the aqueous chemistry of



bio-metal-ligand interactions rather than undertake, for example, solid 

state investigations.

Projects Reported in this Thesis

Three topics comprise this thesis. The first topic, involving the 

reaction of several metal ions, namely Co(II), N i (II), Cu(II), and Zn(II) 

with ligands such as adeninate, cyclohexylamine and cyclopentylamine, 

was studied in order to gain experience in the techniques of potentiometry 

and computer programming. However, the ligands investigated also have 

biological functions which will be discussed later in this chapter.

The second topic, comprising the major portion of the thesis, involved 

the -in vi-tTO study of zinc complexes with a series of ligands which can 

be divided into two groups; those containing only oxygen donor 

groups and those which contain oxygen and nitrogen donor groups. The 

purpose of this investigation being to suggest the best zinc supplementing 

drug for treating zinc deficiency conditions. Finally, computer simulated 

models of the equilibria involving zinc and ligands in intestinal 

solution were used to correlate the rate of growth of turkey poults with 

the type of metal-ligand complexing occurring.

The structures of the ligands investigated by the potentiometric 

method in the first two topics are listed in figure 1. The ligands 

investigated in the final topic are listed in figure 2 along with 

their structures and abbreviated names



FIGURE 1

LIGANDS AND THEIR STRUCTURAL FORMULAE
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FIGURE 1 continued
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FIGURE 2

LIGANDS THEIR STRUCTURES AND ABBREVIATED NAMES 10
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FIGURE 2 continued
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Metals Investigated

1. Cobalt

In aqueous solution, cobalt has two common oxidation states, II

and III. When complexed Co(II) usually has octahedral or tetrahedral
2+ligand-metal bonds. Many Co(II) complexes, e.g. Co(NH^)g , are readily

oxidized by to give Co(III) complexes as the ultimate products,
3+e.g., Co(NH^).^ . Complexes of Co(III), like those of Co(II) are

numerous. Co(III) has a strong affinity for nitrogen donors and most 

of its complexes contain either amines, nitro groups, water molecules 

or halide ions.

Co(II) is needed for enzyme reactions,for example, it is needed

as an enzyme activator for carbonic anhydrase and carboxypeptidase activity.

The term vitamin generally means cyanocobalamin which has a

Co(III) - CN group, and is involved in the manufacture of the red

corpuscles of the blood. Vitamin B^^ can be used for the treatment of

pernicious anaemia, and perhaps it is the most potent substance known

in its physiological activity; one microgram per day of vitamin B^^ being
12effective in the control of the condition . This is the only compound 

of cobalt that is known to be essential for the human body.

2. Nickel

In its aqueous chemistry, as well as its non-aqueous chemistry, 

nickel has its most important oxidation state as II.
i[Nickel is not an essential metal ion, but N i (II) is included in ' . 1

the investigation as a model of Pd(II) and Pt(II) because it stands |
13at the top of group VIII . The latter two metals have complexes with i



anti-cancer properties'^. Graham and Williams have reported formation 

constants for mixed ligand complexes of Ni (II) and Pd(II) with asparaginate 

and chloride which have anti-cancer activity. However, palladium complexes 

are considerably more active against carcinoma than are nickel complexes.

3. Copper

Copper like cobalt is found in two different oxidation states, I and II.

In aqueous solutions the relative stabilities of Cu(I) and Cu(II) depend 

strongly on the nature of anions or other ligands present. Oxidation state 

II is the most important one. Cu(I) is easily oxidized to Cu(II) and is 

thus only found in solution when complexed or in solids, for example, CuCl.

Copper is stored in the liver, and is found in many métalloenzymes, for 

example, phenolase or haemocyanin, which are both capable of carrying oxygen 

like haemoglobin. Actually copper is required in the production of haemoglobin. 

It plays a part in the incorporation of iron into haem in the synthesis of 

haemoglobin and also in other aspects of the metabolism of iron.

Copper deficiency anaemia is often hypochromic and microcytic which 

suggests that iron deficiency is responsible and that the haemoglobin content 

o£ red cells is reduced. To copper deficient animals, the administration of 

copper causes a reduction in the iron content of the liver and an increase in 

the iron contained in haemoglobin. Animals deficient in iron and copper have 

more iron stored in the liver than animals which are only deficient in iron. 

These results show that copper is necessary for the release of iron from storage 

sites.

In serum, copper is loosely bound to albumin and tightly bound to the 

globulin, ceruloplasmin. This protein has a molecular weight of approximately 

151,000 and contains 8 atoms of copper per molecule.
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There are four possible biological activities of ceruloplasmin

that have occupied investigators;

a) enzymatic activity

b) relation to psychiatric disorders

. c) erythropoietin activity and

d) its possible role in the regulation 
of copper balance.

4. Zinc

This metal ion will be discussed in more detail, because this thesis 

reports more studies involving zinc than any other of the metals of the 

transition series.

Zinc has been estimated to rank twenty fifth in terms of abundance 

in the hydrosphere and to maike up 0.004 to 0.01% of the Earth’s crust

The human body contains about 1.4 - 2.3g of zinc 

Nevertlieless, there is an increasing awareness that zinc deficiency



is quite frequently found in malnourished populations and even in 

Western countries during diseases or injuries.

Reports indicating zinc deficiency have been presented by Prasad
19 20 21 22 23and co-workers ' " in Egypt and by Halsted and co-workers '

19in Iran. In 1960 and 1961 Prasad and co-workers and Halsted and 
24Prasad studied a group of Iranian dwarfs with extreme iron deficiency

anaemia. They suggested that zinc deficiency might be the reason for

the growth and sexual retardation observed in these dwarfs. They later

confirmed that a daily oral administration of zinc sulphate resulted

in a significantly rapid growth and sexual development.
25Neldner and Hambidge reported severe zinc deficiency in an

*adult woman with acrodermatitis enteropathica in whom the plasma zinc

concentration, serum alkaline phosphatase and urine zinc excretion rates

were extremely low. Following an oral administration of zinc sulphate,

the above parameters rapidly returned to normal. Thus, the beneficial

effects of zinc therapy in this patient confirm the efficacy of oral

zinc in the treatment of acrodermatitis enteropathica. However, zinc

sulphate has side effects Vomiting is one of the several symptoms

of zinc toxicity which occurs after the ingestion of large quantities.

In fact, an oral dose of 2g of zinc sulphate (454 mg of zinc) has been
27recommended as an emetic . Some of the other symptoms of zinc 

toxicity in humans include dehydration, stomach pain, and dizziness.

Reports have shown that death may result after the ingestion of 45 g
^ ^ 28,29of zinc sulphate

* "Acrodermatitis enteropathica, an autosomal recessive inherited 
disorder of unknown causes characterized by severe diarrhoea, 
dermatitis, and alopecia, begins in infancy, often coincident 
with the change from breast milk to cow's milk"



As already mentioned, several conditions, including pregnancy, 

stress, and oral contraception, induce the lowering of the plasma 

zinc concentration It is not clear whether this is due to a

zinc deficiency or a redistribution of zinc between amino-acids, 

free zinc, and albumin.
32 33Pories and Strain ' in 1966, reported that healing time was

apparently decreased with oral administration of zinc sulphate

heptahydrate, and suggested that the patient's initial zinc condition

may affect his response to zinc therapy. For example, Hallbook and

banner "observed significant differences in healing time between

zinc treated and untreated patients in a group whose individual serum

zinc levels were less than 110 /ag (100 ml) ^ but not in a group whose

serum zinc levels were lio /ig (100 ml) ^ or higher".
35In the United States, Hambidge and co-workers , reported cases 

of low hair zinc concentration and low taste acuity that responded 

to zinc supplementation.

The biochemical functions in which zinc has been considered as 

indispensable include

a) protein synthesis

b) enzymes and enzymatic function

c) carbohydrate metabolism

Several studies have been published on the distribution of zinc in
28tissues. The data is summarized in table 1

In the periodic table, zinc stands at the top of group lib. It

has an atomic number of 30 and an atomic weight of 65.4. The electronic
10 2configuration of zinc is Zd 4s and the two electrons in the 4s shell 

are conveniently lost to give the Zn (II), state. Metallic zinc



TABLE 1

Zine Concentrations in human tissues 28 ï
s

(mg/kg dry weight)*

Reference

Liver 141-245 (36, 37, 38, 39, 40)
Kidney 184-230 (36, 37, 38, 39, 40)
Lung 67-86 (36, 37, 39, 40)
Muscle 197-226 (37, 41)
Pancreas 115-135 (37, 41)
Heart 100 (37)
Bone 218 (41)
Prostates

normal 520 (42)
hyperplasia 2330 (42)
cancer 285 (42)

Eye
retina 571 (38)
choroid 562 (38)
ciliary body 288 (38)

Testes
Esophagus

* data are expressed as range of published mean values



is amphoteric and will dissolve in m n e r a l  acids and strong bases, 

and is also a good reducing agent.

The chemistries of Zn and Cd are very similar, some of their 

physical properties are listed in table 2 .

TABLE 2

Some properties of Zn and Cd elements

Zinc Cadmium

Electronic configuration 4d^°

Melting point, °C 419 321

Boiling point, °C 907 767

Radii of divalent ions, 0.69 0.92

Because of their completed d shells, there are no ligand field 

stabilisation effects in the Zn(II) and Cd(II) ions. Thus, the 

stereochemistry of their compounds is determined solely by ion sizes 

and bond strengths.

In their complexes, Zn and Cd commonly have coordination numbers 

four, five and six, with five especially common for zinc



Ligands Investigated

The choice of ligands depends on the specific bio-inorganic aspect 

being investigated.

Adeninate (6-aminopurinate)

Among the outstanding achievements of this century has been the

establishment of the structures of DNA and RNA, where the substituted

purines and pyrimidines constitute the backbone bases of these two

molecules. Several purine derivatives have been found to be efficient
44in humans for cancer therapy , for example, 6-mercaptopurine and 

various other derivatives. Structurally, 6-aminopurine is similar 

to 6-mercaptopurine, the only difference being the amino group in the 

former and the mercapto group in the latter. It is known that these 

compounds possess chelating properties and some relationship between 

chelation and cancer is obvious Therefore, the chelation

reactions of 6-aminopurine with the metal ion Zn(II) and the carcinogenic 

metal ions Co(II), Cu(II) and N i (II) have been investigated.

Cyclohexylamine (hex) and Cyclopentylamine (pent)

These two ligands have been studied because of the high therapeutic 

indices of their complexes compared to C'is ~ Pt(NH^)2Cl2 which is

* The therapeutic index (T,I.) is the ratio of the dose which kills 
50 percent of the animals (LD50) to that which causes tumour 
regression in 90 percent of the animals (IDg^).
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active against the ADJ/PC 6A murine plasma cell tumour (compare the 

therapeutic indices of ci-s - Pt(NH^) ̂ . Cl^, 8.1; C'is - pt (pent) 2 Cl^, 

235.7; and e-is ~ Pt(hex)2 Clg, >267) This potentiometric

investigation is aimed at elucidating the changes brought about when 

a coordinated ammonia is substituted by a cyclopentylamine or 

cyclohexylamine ligand. Unfortunately due to the insolubilities of 

the Pd(II) and Pt(II) cyclopentylamine or cyclohexylamine systems 

(less than 1 mM), we could not perform any potentiometric investigation, 

We have investigated N i (II) as a model of the Pd(II) and Pt(II) group 

and also Co(II), Cu(II), and Zn(II) which are the nearest neighbours 

to Ni (II) in the first transition series.

Glycinate, Glycylglycinate, and Glycylglycylglycinate

Amino-acids and peptides are indispensable components of living 

systems. The interactions between metals and amino-acids and peptides 

have become of considerable interest as models for biological systems. 

Some interesting examples of metal complexes involving amino-acids
50and peptides as ligands appear throughout Martell and Calvin’s book

and Nakamoto and McCarthy’s "Spectroscopy and Structure of Metal
51Chelate Compounds"

Acetate, Galacturonate, 3-Hydroxybutyrate, Malate, Malonate, Oxalate, 
Salicylate, and Tartarate

The formation of some carbohydrate and carboxylate compounds of

zinc were studied in order to compare these results with those of iron

complexes, the latter having been found to be effective reagents for
52treatment of iron deficiency
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The Relationships Between the Metalp and Ligands Investigated

For the first two topics, the approach used was the study of the 

ligands mentioned previously reacting with each of the metal ions and 

then using computer calculations in order to simulate the complex 

'in V'ivo system. In particular we require the presence of neutral 

complexes for effective lipid-protein membrane solubility and
COpermeability .The four metal ions that have been investigated are 

classified as acid acceptors of borderline hard/soft character and 

as such are vulnerable to symbiosis effects. This phenomenon of 

symbiosis is actually an advantage because, for the metal ions listed 

as borderline it means, that the metal ions can be converted into hard 

or soft depending on whether their environment is hard or soft. For 

example, zinc in carbonic anhydrase binds halide ions I ^Br >C1 >F 

and in aqueous solution, the hydrated zinc ion binds F >C1 >Br >I . 

Clearly the enzyme environment has symbiotically rendered the borderline

zinc ion soft whereas in water the hard solution sphere has 
rendered the zinc ion hard

As for the last topic, we are dealing with the publication of 

Kratzer and co-workers in which were reported several observations 

concerning the absorption of zinc ions from soya bean protein (as 

reflected in poultry growth rates) with, and without,the presence of 

zinc chelating agents related to EDTA. Our approach was to compute the

complex species concentrations Versus ph profiles for kratzer's ligands 
by using formation constants available in the chemical literature 

and trying to identify the principle controlling maximum zinc uptake.

In Kratzer's study the ligand donor groups were varied successively 

(e.g. the number of carboxylates in a series of ligands) until a
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general order of magnitude for the formation constant giving good

biological response was found. However, ligands producing neutral
53complexes with metal ions can promote absorption

9Justification for Equilibrium Studies

Until recently, only qualitative remarks have been made about the 

distribution of metal ions among competing ligands in biological systems. 

This was due to the difficulties of taking quantitative account of the 

numerous equilibria involved and of solving the resulting set of 

simultaneous equations.

A biological system is never truly in a state of equilibrium.

Instead, the components have a continuous movement across cell" 

membranes. Materials enter the system, and as they are transported 

through the various compartments they undergo a series of 

transformations, and finally the waste products are excreted. There 

is a delicate balancing of synthesis and degradation, so that the 

reaction processes and the kinetics of diffusion must also be taken 

into account. However, in order to achieve high efficiencies of energy 

conversion, most biological systems operate near to reversible equilibria 

and the rates of complex formation and dissociation are usually very fast.

Potentiometric Measurements

Many techniques are available for the determination of formation 

constants. In this work, potentiometry, which is widely applicable
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to the study of ionic equilibria and is one of the most precise 

techniques, was the chosen method. By potentiometric measurements, 

both the metal ion and ligand concentrations could be determined. 

For the study of ionic equilibria, the electrodes usually employed 

are reversible to metal ions, protons, or anions. In this manner 

the activity of the species in question can be calculated from the 

measured potential by means of the Nernst equation:-

E = E° + RT In ag,nf 
nF

Furthermore, the potentiometric technique may be used in the

determination of the Gibbs free energy, which is related to the
54formation constant by the reaction isotherm

AG° = - RT In 3

The best method for determining the enthalpy of reaction is by direct

calorimetry, however, there are problems associated with this technique,

For example, solubility difficulties, hydrolysis and oxidation.

Galacturonic acid, for example, is not stable in the presence of
55hydroxyl ions and air,being oxidised to the dicarboxylic acid 

Fortunately, another method is available, i.e. that of van't Hoff.

This uses formation constants at different temperatures to calculate
o 54AH from the equation

RT^

where P is the total pressure
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This equation is known as the reaction isochore^ ,

By integrating ^  _ AH" / 1 1 i

I
-Ti

However, this method is usually of low accuracy because the formation 

constants do not vary substantially over the working temperature range 

for aqueous solutions.

Ah° and AG° having been determined, AS° can be found from the equation

AG° = AH° - T A8°

Where AH° is available it is a measure of bond strength and A8° is an 

indication of the change in the number of particles in the complexation 

reaction.

However, the three projects about to be described in subsequent 

chapters involve only the formation constant aspects of AG° and use them 

in a variety of computed models of concentration and biological 

response relationships 'in V'ivo.

;
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CHAPTER 2

THEORETICAL CONSIDERATIONS

56The Electrode System

ph measurements are accomplished by determining the potential 

developed by an electrochemical cell containing an electrode that 

responds to The experimental measurements are performed in an

t

Complex formation between metal ions and ligands is conveniently '-f

researched using glass electrode ph (which is defined as -logh)
«

potentiometry. The premier aim of such work is to completely define *

the system in terms of formation constants (3) for all metal-ligand- 

proton complexes present. The steps that are usually followed, for such 

work are : firstly, the calibration of the electrodes to respond to 

concentrations, then the measurement of the protonation constants for 

the parent ligand by the observation of emf Versus titrant (ml)added data.

Then this data is fed into the computer program ZPLOT in order to obtain 

the formation curves, which help to reveal the compositions of the salient 

complexes present, and finally, several other computer programs are used 

in turn (namely PSEUDOPLOT, SCOGS and MINIQUAD) to determine the 

formation constants (3), which can then be used to generate models of 
species distribution using the COMPLOT program. These programs will be 

discussed in more detail in both this chapter and in chapter 4.
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ionic background of J = 150 mM. sodium perchlorate; this medium

having been shown to be a suitable one for minimising variations

in activity coefficients arising from opposite charges being
57neutralized during protonation and complexation . The cell 

consists of two electrodes - glass electrode and reference electrode 

—  immersed in the same test solution. This electrode system is 

shown in figure 3.

The glass electrode is the measuring element of the system, it 

consists of an internal sealed tube with a metallic termination 

(typically of silver-silver chloride) and an external tube which contains 

a buffered chloride solution. The tip of the electrode which is immersed 

in the solution is a ph-sensitive glass bulb. A potential is developed 

across the glass when the hydrogen-ion concentration in the solutions 

on the two sides of the glass is different. The potential of the 

glass electrode is proportional to the ph of the solution in which it 

is immersed.

The reference electrode provides a constant electric potential 

relative to which the potential of the glass electrode can be measured. 

This reference electrode consists of a metallic internal element 

[typically of mercury-mercurous chloride (calomel) or silver-silver 

chloride] immersed in an electrolyte, in our case, a saturated solution 

of sodium chloride. The electrolyte solution forms a salt bridge 

between the metallic element and the sample solution in which the 

glass and reference electrodes are immersed. A small but constant flow 

of electrolyte solution is maintained through a liquid junction in the 

tip of the outer body of the reference electrode in order to maintain 

electrical contact between the internal metallic element and the sample
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a digital millivolt meter.

-I
$solution.

The potential developed at the glass electrode is measured using .#

Calibration of the Electrode Pair (for the data refer to table 2a) 4
I

The glass electrode is calibrated with reference to a saturated 

sodium chloride calomel electrode, the emf of this pair E, at 37°C is S

given by the equation:

E = E° + 61.54 log h mV; where h = [H^] in mol dm ^

A plot of E VeTSUS - log h ought to give a straight line of slope 
-161.54 mV(-log h) . In practice, when pure ionic background solution 

was titrated with acid or alkali from an ’Agla' micrometer syringe an 

S shaped curve was obtained (figure 4). As can be seen from figure 4, 

the plot is linear in the acid range -log h = 2.2 to 3.3 then deviates 

and then becomes linear again in the alkaline region. The deviation 

from linearity in the intermediate region occurs only in unbuffered
59solutions and has been observed previously by Williams and Williams

A linear response was obtained in buffered solutions.

Sources of contamination such as impurities in the ionic background

salt or in the deionised water were searched for in order to explain

the phenomenon of the S shaped curve, but these possible causes were
59eliminated after performing several purification tests “ . , It was later 

found that contamination occurred from the glass of the electrodes and 

possibly the titration vessel. These results obtained by Williams 

and Williams also show that the calibration was more linear when a 

plastic vessel and stirrer were used, and the electrodes were kept ;-4

out of the solution eixcept for measurements.
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TABLE 2a

Electrode Calibration

25.00 ml sodium perchlorate (150 mM) titrated with sodium hydroxide 

(220.0 mM) using an 'Agla' syringe

ml added mV -log[H^] calculated

0.03 -229.3 10.05

0.05 -238.1 10.27

0.10 -260.4 10.57

0.20 -275.9 10.87

0.30 -287.1 11.05

0.50 -299.2 11.26



19 :

TABLE 2a continued
25.00 ml sodium perchlorate (150 mM) titrated with perchloric acid

(214.6 mM) using an 'Agla' syringe

ml added mV -log[ H*̂ ] calculated

0.01 47.8 4.07 ■'

0.02 85.7 3.76 .

0.03 120.2 3.58 :

0.04 140.3 3.46

0.06 170.1 3.29 i

0.09 182.4 3.11 :

0.12 191.8 2.99
j

0.20 206.8 2.77

0.25 212.3 2.67

0.30 217.2 2.59

0.40 225.5 2.47

0.50 232.1 2.37
1

0.60 237.4 2.30 ;;

\

1

i■-1

Buffer solutions mV -log

130.3 4.02

-30.2 6.84 ■j

-350.6 12.14
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It is important to note that such deviations from linearity occur 

only in completely unbuffered solutions. It is, however, prudent to check 

that the electrode pair does respond in a linear manner in buffered solutions 

and so, at the beginning of a series of titrations, linearity of E (which is 

the potential of the electrode system) response was checked by a buffer line 

(using pH buffers at pH = 4.02, 6.84, 12,14); where pH = -log a^+. The single 

purpose of this buffer line is to choose the glass electrode with the most 

linear response. Next, is measured by the Nernst equation and this value 

is checked before and after a titration by measuring E of a solution of known 

hydrogen-ion concentration in the ionic background J.

5a, 60
Choice of Experimental Conditions

The two problems to be decided are at what ionic strength to work and 

which ionic background salt to use to maintain this strength. The strengtlis 

of ion pair bonds lie in the order S O " > Cl > Br > I > NO^” > CIO^” . So, in 

order to avoid the complications of ion pairing (which could lead to an error 

in the values of the formation constants) perchlorate or nitrate are considered 

to be the best anions. The ionic mobility of potassium is almost equal to that 

of nitrate, whereas sodium has a much lower mobility. Thus potassium nitrate
Iis a widely used background salt. For similar reasons potassium perchlorate could| 

be recommended but unfortunately this salt is insoluble, so the sodium or lithium * 

perchlorates are used instead.
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We have given much thought to the choice of an ideal background salt 

and temperature for bio-potentiometric studies, and in particular we 

have considered 3M NaClO^ at 25°C Vevsus 150 mM NaClO^ at 37°C. We 

concluded that the major disadvantages of using I = 3M NaClO^ and 

T = 25°C are;-

a) these are far removed from biological blood-plasma 
conditions (which approximate to 37^C and I = 150 mM Cl )

b) the final traces of impurity remaining in the 
sodium perchlorate are emphasized when the 
background salt is 3M

c) even though the perchlorate ion has little 
tendency to ion pairing, at 3M concentration 
some may still occur.

The disadvantages of using I = 150 mM NaClO^ and T = 37°C are:-

a) a considerable quantity of volumetric glassware 
needs recalibrating

b) unless the complete system of vessel and electrodes 
are thermostatted at 37°C, condensation occurs in 
the cooler parts of the system and the electro
thermal effect in the electrodes can cause an 
error of up to 3mV

c) the tubing linking the burette to the titration 
vessel also needs to be maintained at 37°C to 
minimise temperature fluctuations in the vessel

d) J = 150 mM permits only a 0.008 M change 
in ion concentration without signii^^antly 
changing the activity coefficients

Clearly, there is no ideal medium, each set of conditions having 

certain merits and problems. However, this listing has two uses:-

a) conditions ought to be specifically selected for 
each investigation to minimise as many of these 
disadvantages as possible

b) being aware of these difficulties, a more realistic 
consideration of experimental errors is possible.

* 1 M = 1 mol dm ^
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Derivation of Z and Methods of Calculation

For a system of mononuclear complexes, the total concentrations

A and B of the ligand and the metal, respectively, are given by
N

[B] + [BA] + [BA^]+....  J 3^ ^n
O

Equation (3) shows that Z is a function of a only, provided that the 

system is entirely mononuclear. If polynuclear complexes are present, 

Z will also depend on the total concentration of E.

A - (a + Z, ag^h^)

N
A - a(l + I ;h*) 

1
(4)

i

A = [A] + [BA] + 2[BAg] + ----+ N[BA^] = a t b %  n 6^a*   (1) |
1 .. Û

N
B = [B] + [BA] + [BAg] +  + [BA^] = b I    (2)

The terms a and b are the free concentrations of the ligand and metal 

respectively. If corresponding values of both a and b have been 

calculated, the formation constants can be measured directly from 

equations (1) or (2), provided that either A or B is known. If, values 

of only one of the variables a and b have been determined as a function 

of A and B, the data may be treated by the Z method.

? n
[BA] + 2[BA ]+...... f *Gn^  (3)

5 = — -------  ^------------ $
4

I
_ Bound ligand concentration
2 = ----------------------------

Total metal concentration

Bound ligand concentration = Total ligand - (Free ligand + Protonated ligand)
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But the free ligand concentration is obtained from a mass balance equation

K N ÿ
H = h - ^  + a I ne h"  -----

h i "  ;
i

where is the ionic product of water, and from equation (5) j

H-h+K^h   (6)
a  =  -- -----------------

I "8n

hence from equations (4) and (6), Z can be determined.

Methods treating the resulting data are explained in great detail 

by Whewell, Rossotti and Rossotti .

" S

The Selection of Formation Constants and their Use in Describing an 

Equilibrium System in which Several Complexes are Present

The formation constant, g, of the resulting complex between a 

ligand. A, and a metal ion, B, is the most obvious quantity for

determining the extent of complex formation. Further, most ligands i

readily accept protons to form HA and so on to more highly protonated

species. In general, titrations are performed whilst keeping constant 

as many parameters as possible. Our systematic searching is known as 

the "grid approach" and it was applied (where possible) for both prbtonation
and metal complexing studies. For example, rather than titrating a solution of

A and B With alkali, the concentrations of A and B in the titrant ought 

to equal those in the titrate, the sole variant being the mineral acid 

content of these two solutions. This produces constant ligand and constant '4

metal ion concentration titrations. Next, formation curves were plotted
iZ^ (the average number of protons per ligand) V&vsùs ph, or Z (the |
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average number of ligands per metal ion) versus pa {-log [free l i g a n d ] ) ^

If only mononuclear metal-ligand species are present, the curves recorded r.1at different total metal and ligand concentrations will be superimposable, ŷ
If protonated complexes, hydroxy complexes, or polynuclear species are /g

" 6present these formation curves form a complicated pattern (i.e. they are

definitely not superimposable). |

We have developed a computer program, PSEUDOPLOT, in order to

interpret these patterns of formation curves. In this program it is

assumed that titrations have been carried out and the experimental data

plotted as versus ph, or Z .versus pa. The PSEUDOPLOT program is a

combination of Sillen and his co-workers* HALTAFALL program and our 
6 5 6 6ZPLOT program ' . The HALTAFALL portion uses, as input, the

experimental conditions [i.e. concentrations in titrate, titrant, volumes 

(all except the ph readings)] and a selected set of 3 values. The output 

is simulated titrant (ml) added Versus ph data that could have been 

obtained had such a system been titrated experimentally, and assuming 

that the 3 selection were exact. In the ZPLOT portion the program uses 

this data to produce Z^ Versus ph or Z versus pa curves. These 

simulated titration curves are then compared with the experimental data 

and then additional sets of 3s are tried until the 'best* fit is obtained.

In non-simple mononuclear systems we are faced with two difficulties:

a) the qualitative problem of finding the best 
set of 3 s and

b) the quantitative task of assigning values to 
these 3 s.

Qualitatively, the possible 3 s are limited by the denticity of the ligands 

and by the coordination numbers of the metal ions. The concentration 

dependence of complexing is also a useful guide to approximate values of t
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3s ; "z Versus pa curves have characteristic monOj bvs , and trvs complex 

pa regions (ca. Z = 0.5, 1.5 and 2.5 respectively); low metal and ligand 

concentrations encourage mononuclearity, high concentrations encourage 

polynuclearity, titrations at acid phs encourage protonated complex 

formation, while alkaline ph'§ encourage hydroxy complexes. Thus, lists 

of 3s can be suggested and used to generate PSEUDOPLOT patterns of curves.

The best set of 3s , as judged from the best fit of PSEUDOPLOT curves 

to the experimental data, can then be carried forward to the more 

quantitative aspects in which the least-squares program SCOGS ,

(which has been published by Sayce^and generalised by Jones and Williams^^) 

or MINIQUAD (which is based upon LETAGROP and has been developed by 

Sabatini, Vacca and Gans) refines suggested values of |s to better values. 

The SCOGS program varies sets of 3s until the relationship

Initial Oolnmej(^initial in vèssel-^calcH -Exp^volume I
) H -H I( calc titrant )

is minimised using a least squares approach. H refers to total analytical 

concentrations and the expression for uses all the measured emf values.

In the MINIQUAD program, formation constants are stored as mantissa and 

exponents, only the mantissa being varied, thus avoiding the possible

overflow or underflow, which may be observed in the SCOGS program.
71 72The program COMPLOT ' (which will also be discussed in more detail 

in Chapter 4) produces computer simulated models of species distribution in 

solutions at different phs. These models require the total concentrations 

of each metal and ligand, the ph of the solution and the logarithm of the 

formation constant for each complex as input data as just described.

The use of such computer programs has permitted the design of more 

realistic models for some of the biochemical aspects of physiological problems^!

i
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CHAPTER 3

EXPERIMENTAL TECHNIQUES

'SII
I
a

»

j
Potentiometry was performed in a special vessel (figure 5), using 

solutions and glassware prepared and analysed by the methods described 

below.

Water

All the water used was "Elgastat" de-ionised, boiled and cooled by 

the passage of oxygen-free nitrogen. The resistivity of water was then 

better than 2M Q, cm. I
-I
I

IPerchloric Acid |

Concentrated perchloric acid (60-62% W/V, Fisons A.R.) was diluted 

to make a stock solution of approximately 3M. This solution was then 

analysed by titrating against sodium carbonate (Fisons A.R.) using 

methyl orange as indicator and checked with standard sodium

hydroxide solution

I
I
I
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Sodium Hydroxide

This solution was made up as required from ampoules (B.D.H.

concentrated volumetric solutions) and the molarity was checked against

standard acid solution and standard potassium hydrogen phthalate
73c(Fisons A.R.) . No solutions more than a month old were used.

Sodium Perchlorate

Solutions of sodium perchlorate were made by either neutralising

perchloric acid (Fisons A.R.) with sodium carbonate or by dissolving

the monohydrate (Merck "puriss" or B.D.H. Analar) in de-ionised water.

The solution (~ 7.0 M) was then made alkaline (ph 9-10) by addition

of sodium hydroxide (B.D.H. Analar) and allowed to stand for a minimum

of seven days. Silica, heavy metal oxides and hydroxides precipitated

during this time and were removed by filtration through micropore
-6filters (Millipore Ltd) (average pore diameter 5 x 10 m and

0.45 X lO ^m respectively). Carbon dioxide was then removed by making

the solution acidic (ph - 2 .0 ) and boiling and eventually cooling under

nitrogen. The ph was adjusted as closely as possible to 7.0 using a

digital pH meter to check the progress of neutralisation. The exact

molarity was checked by passing samples through a cation exchange 
73dcolumn and titrating the acid produced against standard sodium

hydroxide, using bromothymol blue as indicator. The solution was
73ealso analysed by the flame photometric technique
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Metal Ion Solutions

Metal perchlorates (G.F. Smith, Chemical Co.) were dissolved in 

perchloric acid, to prevent hydrolysis, allowed to stand for several 

days, filtered through micropore filters and analysed as follows.

73f 73aZn(II) : Quinaldinate and EDTA (Eriochrome Black T)

Cu(II) : Electrodeposition and EDTA (Past Sulphon Black F)

73’i 73kNi (II) : Electrodeposition and EDTA (Murexide)

Co(II) : Electrodeposition and EDTA (Xylenol Orange)

The hydrogen ion concentration in the metal solution was obtained 
74by means of Gran plots

EDTA

The disodium salt of ethylenediaminetetra-acetic acid is available

as a primary standard and so solutions of it could be prepared by direct
, ,. 73nweighing

Ligands

The ligands used and their suppliers are listed below

Adenine (B.D.H.), cyclopentylamine (Koch-Light, pure grade), 

cyclohexylamine (Koch-Light, puriss. grade), glycine (Fisons A.R.), 

glycylglycine (Koch-Light, puriss. grade), glycylglycylglycine (Koch-Light, 

puriss. grade) , a-D-galacturonic acid monohydrate (Sigma Chemical Company),
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D,L“3-hydroxybutyric acid sodium salt (Boehringer Mannheim GmbH), 

L-malic acid (Koch-Light, puriss. grade), malonic acid (Koch-Light, 

puriss. grade), oxalic acid hydrated (B.D.H. Analar), salicylic acid 

(B.D.H. Analar), sodium acetate hydrated (Fisons A.R.), L-tartaric acid 

(Koch-Light, puriss. A.R. grade).

These ligands were checked by microanalysis for carbon, hydrogen, 

and nitrogen, using a Perkin-Elmer Model 240 Automatic Analyser.

1) Adenine (m.p. 361-3°C; lit. (anhydr.) 360-5°C (decomp.))

Found ; C, 44.4; H, 3.6; N, 51.8%

Calculated for C^H^N^ : C, 44.4; H, 3.7; N, 51.8%

2) Cyclopentylamine (liquid at room temperature)

Found : C, 70.1; H, 13.2; N, 16.2%

Calculated for C^H^^N : C, 70.6; H, 12.9; N, 16.5%

3) Cyclohexylamine (liquid at room temperature)

Found : C, 72.5; H, 13.2; N, 14.0%

Calculated for C^H^^N ; C, 72.0; H, 13.4; N, 13.8%

4) Glycine {(m.p. 260°C; lit. 262°C (decomp.), turns brown at 228°C).

Found : C, 32.1; H, 6.5; N, 18.5%

Calculated for C^H^NO^ : C, 32.0; H, 6.7; N, 18.6%

5) Glycylglycine (m.p. 214°C; lit. 215°C (decomp.))

Found : C, 36.3; H, 6.4; N, 21.1%

Calculated for C^HgN^O^ : C, 36.4; H, 6.1; N, 21.2%
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6) Glycylglycylglycine (m.p. 243-5°C/ lit. 246°C (deCQmp.). )

Found : C, 38.0;. H, 6.1; N, 22.1%

Calculated for C_H..N_0. : C, 38.1; H, 5.9; N, 22.3%b JlL j 4

7) a - D - G a l a c t u r o n i c  acid monohydrate (m.p. 156°C; lit. 156-9°C (decomp.))

Found : C, 33.9; H, 5.7%

Calculated for CgH^^Og - G, 34.0; H, 5.7%

8) D,L-3-Hydroxybutyric acid sodium sait(ionic salt; m.p. too high to measure):!

Found : C, 38.0; H, 5.6%

Calculated for C^H^O^Na : C, 38.1; H, 5.6%

9) L-Malic acid (m.p. 100°C; lit. 99-l02°C)

Found : C, 35.5; H, 4.3%

Calculated for C^H^O^ : C, 35.8; H, 4.5%

10) Malonic acid (m.p. 135°C; lit.l35.6°C (slightly sublimes))

Found : C, 34.5; H, 3.9%

Calculated for C^H^O^ : C, 34.6; H, 3.8%

11) Oxalic acid hydrated (m.p. 100-1°C; lit. (hydr.) 101.5°C)

Found : C, 19.0; H, 4.8%

Calculated for C H^O^ : C, 19.1; H, 4.8%z b D

12) Salicylic acid (m.p. 158°C; lit. 159°C)

Found : C , 60.8; H , 4.4%

Calculated for C^H^Og : C, 60.9; H, 4.4%
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13) sodium acetate hydrated (ionic salt; m.p. too high to measure)

Found : C, 17.6; H, 6.5%

Calculated for C^HgO^Na : C, 17.7; H, 6 .6%

14) L-Tartaric acid (m.p. 171-2°C; lit. 171-4°C)

Found : C, 32.0; H, 4.1%

Calculated for C.H-0- : C, 32.0; H, 4.0%4 6 6

Nitrogen

Oxygen-free nitrogen (British Oxygen) was further de-oxygenated by 

passage through chromous chloride and then "scrubbed" in 150 mM sodium 

perchlorate, all solutions being thermostatted at 37*̂ C.

Glassware

M.J. Elliot's "E-mil (Green Line)" calibrated glassware was used. 

This glassware was supplied with calibration certificates stating that 

it conformed to the appropriate British Standards Institution 

requirements for grade "A" calibrated glassware.

All glassware was cleaned regularly with "Quadralene" (Quadralene 

Chemical Products) and alcoholic potassium hydroxide (for about a minute) 

Before use, glassware was washed with demineralised water, "Elgastat" 

water, alcohol and anaesthetic ether, and then dried by suction.
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Accuracy and Precision S

In our work accuracy and precision are two important factors that 

should be considered. Accuracy expresses the correctness of a measurement, 

while precision the reproducibility of a measurement.

The accuracy and precision of all parameters measured are listed

below:

Stock solution concentration +0.1%

Added volume measurements - burettes jh 0,005 ml
- pipettes +^0.1%

Weights + 0 . 0 5  mg

Flasks + 0.05%

E (emf) ± 0.1 mV

E° + 0.2 mV

In general, we try to keep all errors less than 0.1%
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CHAPTER 4

COMPUTATIONAL ASPECTS

The trend towards more quantitative interpretation of experimental 

data has greatly increased the necessity for chemists and other scientists 

to be acquainted with computer programming.

Many computer programs have been developed for use in the 

determination of formation constants of metal complexes, from ph titration 

data. As mentioned in Chapter 2 (page 15 ), these programs include

ZPLOT, SCOGS, MINIQUAD, HALTAFALL, PSEUDOPLOT and COMICS, which are 

discussed below in greater detail.

ZPLOT '

As described earlier in Chapter 2 (page 23), this program plots 

formation curves, Z^ (the average number of protons per ligand) versus 

ph, or Z (the average number of ligands per metal ion) versus pa (-log 

[free ligand]). The mathematics of the calculation of Z are explained 

in Chapter 2 (refer to page 22). Table 3 lists the input and output 

data of ZPLOT, and similar tables will also be given for the other 

programs which will be discussed in the coming pages.

The relationships used in ZPLOT are only valid for single ligand 

and/or single metal systems.
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ZPLOT PROGRAM

TABLE 3

INPUT OUTPUT

a) pK^ and log Ks a) titrant added (ml)

b) number of dissociable 
protons on each ligand

b) emf for each point

c) concentrations of metals, 
ligands and protons in 
titrate and titrant.

c) ph and pa

d) initial volume in the vessel 
(ml) .

d) Z or Z, h

e) E°(mV), RT = 61,54mV/ph 
nF

at 37°C.

e) free ligand concentration

f) titrant added (ml), and 
emf for each point.

f) a plot of Z or Z, versus .. h pa or ph

SCOGS 67,68

SCOGS (^tability Constants Of Generalized ^ e c i e s ) , which employs 

the conventional non-linear least-squares approach, is used to calculate 

formation constants for systems containing up to two metals and two 

ligands and can deal with protonated and mixed species. This program 

can deal with up to twenty complexes of the type A ^ A ' ^ , B ^ B ' ^ w h e n  

the overall formation constant 3j is given by the expression

V]
P-i P \  P ’ . 3".

[a] [A'] ][B] J [B'] ][H] ^

-t

«

;
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where square brackets [ ] denote concentrations in moles dm . In

SCOGS, refinement consists of minimising the sum of the squares of
2residuals in titre,ZR. , where R. = (actual titre of base) - (titre

i ^ ^
calculated from the current set of constants and the experimental 

value of the hydrogen ion concentration). The constitution of each 

species (i.e. A^, A'^, B^, B'^ and H^) must be included together with 

an estimate of the overall formation constant. In the calculation, if 

the value of the constant is accurately known, then, this value may be 

retained, otherwise it may be adjusted by the computer to give the best 

fit to the data.

The original SCOGS has been modified, mainly in respect of input 
75and ouput (see table 4). The size of this program has been increased 

so that it can refine up to a total of five hundred titration readings 

simultaneously.

SCOGS PROGRAM 

TABLE 4

INPUT OUTPUT

a) pK^ , log Ks and log 0s

b) number of dissociable 
protons on each ligand

c) concentrations of metals, 
ligands and protons in 
titrate and titrant

d) initial volume in the 
vessel (ml)

e) E° (mV), ^  = 61.54 mV/ph 
at 37°C. ^

f) titrant added (ml), and emf 
for each point

a) titrant added (ml)

b) ph

c) residual in titre

d) total ligand and free ligand 
concentrations

e) total metal and free metal 
concentrations

f) log 3 and its estimated 
standard deviation.

g) the standard deviation in 
titre



34a

The two programs SCOGS and MINIQUAD although they perform the same 

job (i.e. computing the constants) are used as a check. In one program, 

SCOGS, a non-existent species may be refined, but, since the other program 

Uses different mathematics, there is little probability of its being 

refined by both programs.

MINIQUAD is necessary for more complicated systems to avoid the expon^ 

ent overflow problem which occurs in SCOGS, and is faster.
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MINIQUAD 69

This program accepts potentiometric data and uses it to refine 

estimates of formation constants. MINIQUAD, from the Italian for least 

squares, MINImi QUADrati, can treat data for systems containing any 

number of reactant species and potentiometric electrodes, and all types 

of complexes, e.g. mononuclear, polynuclear, and hydrolyzed complexes.

Table 5 lists the input and output data for the MINIQUAD program.

MINIQUAD PROGRAM 

TABLE 5

INPUT OUTPUT

a) temperature in degrees 
centigrade

b) pK^ , log Ks and log 3s

c) concentrations of metals, 
ligands, and protons in titrate 
and titrant

d) initial volume in the vessel (ml)

e) E°(mV)

f) titrant added<(ml) and emf for 
each point

a) titrant added(ml) and 
the emf for each point

b) log 3 and its estimated 
standard deviation

c) the sum of squared 
residuals

HALTAFALL 69

This program has not been used, but is included in this thesis, since 

it is a portion of the PSEUDOPLOT program.

HALTAFALL calculates the equilibrium concentrations of the species 

in mixtures of up to 10 components which can form a maximum of 40 complexes.
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provided concentrations can be used in the equilibrium concentrations,

HALTAFALL PROGRAM

TABLE 6

INPUT OUTPUT

a) pK^,, log Ks and log 3s simulated data for titrant 
added (ml) Versus ph, that could

b) concentrations of metals. have been obtained had such
ligands, and protons in a system been titrated
titrate and titrant experimentally, and assuming 

that the 3 selection was
c) initial volume in the 

vessel (ml)
exact.

4

d) titrant added (ml) %

e) selected set of 3 values \

PSEUDOPLOT

As mentioned earlier in Chapter 2 (page 24) this program is a 

combination of HALTAFALL and ZPLOT programs. It calculates pseudo-Z 

and pseudo-pa for titrations and will plot any pair of parameters. It 

is important to note that the mass-balance relations in ZPLOT, and in 

the ZPLOT part of PSEUDOPLOT, assume mononuclearity and absence of 

hydroxy and protonated complexes. Thus, when these conditions are not 

valid, Z and pa (or ph) are really pseudo-Z and pseudo-pa (or ph), 

these functions being ideal for showing the degree of variation from 

mononuclearity, and for comparing experimental with simulated titrations.

The two main advantages of this program are its speed of use and the
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visual representation of errors. The speed arises because it is 

unnecessary to derive different normalised functions for different sets 

o f ^ s  and also the plotting is done mechanically. Although least-squares 

programs such as SCOGS produce numerical values of 'standard deviations 

in titres' and 'residuals in tires', (a) the human mind prefers to see 

such errors in diagraxmabvc form and, once having seen these discrepancies 
in the PSEUDOPLOT fit, it is then in a position to suggest a 3 to correct 

them (from observing the area of the plots where the data and calculated 

curves are most mismatched), and (b) all calculated 'residuals in titres' 

etc. are based on the set of gs being offered to the computer program. 

Until least-squares programs have automatic species selectors included 

in their functioning, PSEUDOPLOT could be widely used to advantage.

PSEUDOPLOT PROGRAM 

TABLE 7

INPUT OUTPUT

a) P%w a simulated plot of Z or Z^ 
Versus pa or ph, that could

b) concentrations of metals. have been obtained had such
ligands, and protons in a system been titrated
titrate and titrant experimentally and assuming 

that the 3 selection were
c) initial volume in the vessel (ml) exact

d) number of dissociable protons 
on each ligand

e) titrant added (ml)

f) selected set of 3 values
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COMPLOT 71,72

71This program is the version of COMICS used on the St. Andrews 

IBM 360/44 computer.

The program COMICS (Concentrations of Metal Ions and Complex Species) 
calculates equilibrium concentrations of all species in multi-metal-multi- 

ligand mixtures from the ph of the solution, the total concentration of 

each metal and each complexing agent and the logarithm of the formation 

constant for each complex. The complexes can comprise mixed, hydrolyzed, 

protonated and polynuclear species.

The input has been modified from the published version as has the 

output which now has three plotter routines available. It is recommended 

that in the first instance the compounded printer plot be used as this 

gives a good, quick, picture of what is taking place in the system.

COMPLOT PROGRAM

TABLE 8

INPUT OUTPUT

a) 3 value for each complex 
(including the ionic product 
of water pK , protonated 
ligand, hydroxy species and 
polynuclear species).

b) ph values

c) total concentrations of ligands 
and metals.

a) concentrations of the free 
metals, free ligands, and 
complex species at every 
ph value

b) a plot of the concentrations 
versus ph
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This program is limited to systems containing ten metal ions, 

ten ligands, one hundred formation constants, and fifty ph values.

To chemists the use of electronic digital computers has become |

as important as some spectroscopic techniques. The speed of 

calculation is one of the greatest advantages of these computer programs.

I
-j



CHAPTER 5 - POTENTlOMETRY

CONTENTS

Protonation Constants of Adeninate 41
Formation Constants for Cu(II) - Adeninate Complexes 43
Formation Constants for Ni (II) - Adeninate Complexes 44
Formation Constants for Co(II) - Adeninate Complexes 46
Formation Constants for Zn(II) - Adeninate Complexes 47

Protonation Constants of Cyclohexylamine 51
Formation Constants for Cu(II) - Cyclohexylamine Complexes 57
Formation Constants for Ni (II) - Cyclohexylamine Complexes 58
Formation Constants for Co (II) - Cyclohexylamine Complexes 60
Formation Constants for Zn(II) - Cyclohexylamine Complexes 61

Protonation Constants of Cyclopentylamine 66
Formation Constants for Cu(II) - Cyclopentylamine Complexes 72
Formation Constants for N i (II) - Cyclopentylamine Complexes 73
Formation Constants for Co(II) - Cyclopentylamine Complexes 75
Formation Constants for Zn(II) - Cyclopentylamine Complexes 76

Protonation Constants of Glycinate 80
Formation Constants for Zn(II) - Glycinate Complexes 86

Protonation Constants of Glycylglycinate 92
Formation Constants for Zn(II)-Glycylglycinate Complexes 98

Protonation Constants of Glyclyglycylglycinate 104
Formation Constants for Zn(II) - Glycylglycylglycinate Complexes 110

Protonation Constants of Acetate 116
Formation Constants for Zn(II) - Acetate Complexes 122



Protonation Constants of Galacturonate 125
Formation Constants for Zn(II) - Galacturonate Complexes 130

Protonation Constants of g-Hydroxybutyrate 137
Formation Constants for Zn(II) - g-Hydroxybutyrate Complexes 142

Protonation Constants of Malate 145
Formation Constants for Zn(II) - Malate Complexes 151

Protonation Constants of Malonate 159
Formation Constants for Zn(II) - Malonate Complexes 165

Protonation Constants of Oxalate 173
Formation Constants for Zn(II) - Oxalate Complexes 179

Protonation Constants of Tartarate 184
Formation Constants for Zn(II) - Tartarate Complexes 191

Protonation Constants of Salicylate 198
Formation Constants for Zn(II) - Salicylate Complexes 204



40

CHAPTER 5

POTENTIOMETRY

All potentiometric determinations were carried out at 37°C and 

using an ionic background solution of 150 mM sodium perchlorate. .

The hydrogen ion concentration was followed by using a cell of the type

Hg, Hg^Cl^ I saturated NaCl | test solution [ glass electrode

The electrodes used were an '.Activion' • ph sensitive glass electrode, 

type 17SR, and a calomel reference electrode, type CR, with a saturated 

sodium chloride salt bridge. A sodium chloride salt bridge was used 

because potassium ions form insoluble potassium perchlorate in the porous 

plug of the calomel electrode. Several glass electrodes were employed 

throughout the series of titrations performed. The pH meter used was a 

Radiometer type PHM 52, to give readings reproducible to 0.1 mV.

Solutions were contained in an enclosed reaction vessel with an outer 

water jacket thermostatted at 37°C. Titrant was added from a 'Metrohm'

10 ml piston burette. The solution was stirred using a magnetic stirrer 

and 'TEFLON ' coated magnetic follower. Titrations were performed under 

an inert atmosphere of nitrogen, with nitrogen bubbling through the 

solution. The apparatus was set up as shown in Chapter 3 (figure 5).

The following pages of this chapter record tables and figures for all 

the systems studied. Refer to page 211 for the next chapter.
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Protonation constants of Adeninate

The formation curve (figure 6) was obtained using the ZPLOT computer 

program (Chapter 4). The formation curve can be seen to be independent 

of the ligand concentration, therefore polynuclear species were assumed 

to be absent.

The data was then fed into SCOGS (Chapter 4) and the results 

obtained were:

log = 3.83 +^0.01 S(titre) = 0.28 (19 readings)

log K^^_^=-9.26 + 0.01 S'(titre) = 0.20 (18 readings)

where <5 is the standard deviation.

TABLE 9

Experimental results for the protonation of adeninate

Titration
number

Titrate
(mM)

(S) Titrant (T) 
(mM)

initial
volume
(ml)

E° (mV)

A H A H

1 10.00 0 0 21.46 20.00 411.1

2 20.00 0 O 47.27 25.00 411.1
3 10.00 0 0 -20.04 20.00 411.1

4 20.00 0 0 -50.00 25.00 411.1
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Titration number 1 Titration number 3

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

1.00 115.3 1.00 -98.8

2.00 137.0 2.00 -122.2

3.00 151.7 3.00 -136.6

4.00 164.0 4.00 -148.0

5.00 175.2 5.00 -158.2

6.00 186.5 6.00 —168.O 1
7.00 198.6 7.00 -177.8

8.00 212.1 8.00 -188.2
'1

9.00 227.0 9.00 -199.0

Titration number 2 Titration number 4
1

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

1.00 111.7 1.00 -104.6

2.00 134.1 2.00 -126.4 ■'1

3.00 148.4 3.00 -140.5

4.00 160.0 4.00 -151.2

5.00 170.3 5.00 -162.1

6.00 180.5 6.00 -172.0
'I

7.00 191.0 7.00 -182.5

8.00 202.5 8.00 -194.1

9.00 216.2 9.00 -207.5

10.00 232.9
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Formation Constants for Cu(II)"Adeninate Complexes

The formation curve (figure 7) was obtained from the results in 

table 10,

TABLE 10

Experimental results for the Cu(II) - adeninate system

Titration
number

Initial concentrations (mM) ; 
Titrate (S) and Titrant (T)

Initial volume 
(ml)

E°(mV)
s

Ligand (A) Metal (B) Acid (B)

S T S T S T

1 0 20.00 21.55 0 18.18 0 25.00 363.6

Titration number 1

volume 
added (ml)

emf (mV)

20.00 219.8
22.00 213.5
24.00 206.2
25.00 202.4
26.00 198.4
27.00 194.3
28.00 190.2
30.00 182.6
32.00 176.2
33.00 173.4
35.00 168.7
36.00 166.6
38.00 163.0
39.00 161.4
40.00 159.8
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Total number of readings = 15.

Metal hydroxy precipitation restricted our working range of -logh 

to 2.1 - 3.3. The data was analysed using the SCOGS least squares program 

which was offered a range of species having p =  0 ^ 2, # = 0 ->2 , and

2» = -2 ->• 3, in addition to AH and Cu^COH)^/ the g values for the

latter being constant. The 'best' log constant obtained was

log = 2.68 0.04 S (titre) = 3.67

The system can then be described by the complex Cu (adeninate)’*',

Formation Constants for N i (II) - Adeninate Complexes

The formation curve was obtained from the results in table 11,

TABLE 11

Experimental results for the Mi(II) - adeninate system

Titration
number

Initial concentrations (mM); 
Titrate (S) and Titrant (T)

Initial volume 
(ml)

E°(mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 15.00 10.34 0 9.15 0 25.00 411.1
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Titration number 1

volume emf (mV)
added (ml)

6.00 220.0

7.00 216.2

Total number of readings = 2.

Metal hydroxy precipitation restricted our working range of -log h

to 2.3 - 2.4. The data was analysed using the SCOGS least squares program

which was offered a range of species having p - O 2, q = 0->2, and
77r ~ -‘2 3, in addition to AH and Ni. (OH) , the 3 values for the latter

being held constant. The 'best' log constant obtained was

log ^2.10 ~ 1*47 +_ 0.31 îï (titre) = 0.10

The system can then be described by the complex N i (adeninate) .
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Formation Constants for Co(II)- Adeninate Complexes

The formation curve (figure 8) was obtained from the results in 

table 12.

TABLE 12

Experimental results for the Co(II) - adeninate system

''C.%
%
.‘■ri

Titration
number

Initial concentrations 
Titrate (S) and Titrant

(mM) ; 
(T)

Initial volume 
(ml)

E° (mV) i
■I

Ligand (A) Metal (B) Acid (H)
S T S T S T

1 0 25.00 24.35 0 31 .92 O 25.00 355.4

2 12.50 0 12.17 0 15 .95 -10. 00 30.00 355,4

Titration number 1 Titration number 2

-4:
■i

volume emf (mV) volume emf (mV)
added (ml) added (ml)

20.00 226.3 0.00 210.0
30.00 193.5 1.00 206.9
31.00 188.9 2.00 203.6
32.00 183.9 3.00 200.2 4
33.00 179.1 4.00 196.6 1
34.00 173.9 5.00 192.7
35.00 168.8 6.00 188.6 fè
36.00 164.0 ft

Total number of readings = 15.



O

a

I
ë o

a?

I
g

o

oo o o o o
y«0-z



47

Metal hydroxy precipitation restricted our working range of -logh

2,1 - 3.1. The data was analysed using SCOGS least squares program which

was offered a range of species having p = 0 ->2 , q  = 0 - > 2  and r ~ ~2 -^3,
78in addition to AH and Co(OH) , the p values for the latter being held 

constant. The 'best' log constant obtained was

log ^2.10 ~ Hh 0.11 5 (titre) = 0.88

The system can then be described by the complex Co(adeninate) .

Formation Constants for Zn(ll) - Adeninate Complexes

The formation curve (figure 9) was obtained from the results in 

table 13.

TABLE 13

Experimental results for the Zn(II) - adeninate system

Titration
number

Initial concentrations (mM) ; 
Titrate (S) and Titrant (T)

Initial volume 
(ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 20.00 21.36 0 20.19 0 25.00 363.6
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%
sTitration number 1 $

volume emf (mV)
added (ml)

15.00 231.4

20.00 216.3

22.00 208.9

24.00 199.8

25.00 194.8

26.00 189.4

27.00 183.7

28.00 177.9

30.00 167.1

32.00 158.0

Total number of readings = 12.

Metal hydroxy precipitation restricted our working range of -log! h

2.1 - 3.3. The data was analysed using the SCOGS least squares program

which was offered a range of species having p ~ O 2, q = 0 " ^ 2  and
79V — -2 3, in addition to AH and ZnfOHÏg , the 3 values for the latter

being held constant. The 'best' log constant obtained was

log = 1.62 +^0.23 5 (titre) = 3.33

The system can then be described by the complex Zn(adeninate)

I

■11
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Table 14 below lists our formation constants of the complex 

formation of adeninate.

TABLE 14

Log formation constants for the protonation and

the metal complexes at 37 C and I = 150mM NaClO

B P 2» Present work S n

1 0 -1 -9.26 0.01 18 (8.2 - 10.0)
1 0 1 3.83 0.01 19 (2.9 - 4.8)

Cu 1 1 0 2.68 0.04 14 (2.1 - 3.3)
Ni 1 1 0 1.47 0.31 2 (2.3 - 2.4)
Co 1 1 0 1.38 0.11 15 (2.1 - 3.1)
Zn 1 1 o 1.62 0.23 12 (2.1 - 3.3)

2+  4-A = adeninate B = metal ion. , H = H , o = standard deviation in 

log constants, n = number of titration readings for each series. 

Parentheses refer to ph range studied.

Comparison with other workers results

The formation constants obtained in ISOmM NaClO^ are lower than 

those obtained at higher ionic strengths and this has been found for all 

the systems studied when compared with published results (tables15 and 16)
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TABLE 15

Protonation of adeninate

KlOl ^°^^101->102 Gc/°C Method* Medium Reference

3.83 -9.26t 37 gl 0.15 This work
9.83 4.25 20 gl 0.1 . 80

10.65 3.54 25 gl 0.01 50 vol% 81 
dioxan

t - 9.26 log K_ .__ * gl = glass electrode10—1

TABLE 16

Metal-adeninate complexes

Metal Method Medium log 3^ log 3g Reference

Cu(II) 20 gl 0.1 14.22 80
25 gl 0.01 50 vol% dioxan 8.94 81

Ni (II). 20 gl 0.1 4.37 80
25 gl 0.01 50 vol% dioxan 6.18 81

Zn(II) 25 gl 0.01 50 vol% dioxan 6.42 81

As mentioned earlier in chapter 1 (page 2), these systems have been

studied in order to gain experience in the techniques of potentiometry and 

computer programming.
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Experimental results for the protonation of eyelohexylamine

Titration
number

Titrate
(mM)

(S) Titrant (T) 
(mM)

Initial
volume
(ml)

E° (mV)

A H A H

1 250.00 0 0 107.30 25.00 360.0
2 250.00 0 0 268.30 25.00 360.0
3 100.00 0 0 107.30 25.00 362.0
4 100.00 0 0 53.65 25.00 361.8
5 50.00 O 0 53.66 25.00 362.6
6 50.00 0 O 26.83 25.00 362.4
7 25.00 0 0 26.83 25.00 364.2
8 25.00 o O 5.36 25.00 365.8
9 5.00 0 0 5.36 25.00 378.0

Protonation Constants of Çyçlohexylamine

The formation curve (figure lO) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using SCOGS (chapter 4) ;

and the results obtained were
$log = 9.93 0.01 S(titre) = 4.03 (227 readings) IlOl ■
'iwhere S is the standard deviation. é

I

TABLE 17
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Titration number 1 Titration number 2 1

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV) 1

8.00 -298.5 3.00 -299.0
J
!Ï

9.00 -296.0 4,00 -292.7 1

10.00 -293.7 5.00 -287.0

11.00 -291.5 6.00 -282.0

12.00 -289.4 7.00 -277.4 1
■i

13.00 -287.4 8.00 -272.9

14.00 -285.6 9.00 -268.8 y
i

15.00 -283.9 10.00 -264.5 Î

16.00 -282.1 11.00 -260.4
1

17.00 —280.4 . 12.00 -256.3
It

18.00 -278.6 13.00 -252.1

19.00 -276.8 14.00 -247.6

20.00 -275.0 15.00 -242.9 i
21.00 -273.5 16.00 -237.8

22.00 -272.0 17.00 -232.2

23.00 -270.4 18.00 -225.7 j

24.00 -268.6 19.00 -218.0

25.00 -267.0 20.00 -208.3

26.00 -265.5 21.00 -193.7

27.00 -263.9 22.00 —160.5
3
4 
3

28.00 -262.3

29.00 -260.7

30.00 -259.0



Titration number 3

volume 
added (ml)

emf (mV)
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Titration number 4

volume 
added (ml)

emf (mV)

0.00 -311.7 0.00 -310.7 y
1.00 -306.3 1.00 -307.6 1
2.00 -300.7 2.00 -304.6
3.00 -295.5 3.00 -301.7
4.00 -290.3 4.00 -298.7 1
5.00 -285.6 5.00 -295.8
6.00 -281.3 6.00 -292.9
7.00 -277.0 7.00 -290.4
8.00 -272.7 8.00 -288.2 i
9.00 -268.7 9.00 -285.8

10.00 -264.4 10.00 -283.5
11.00 -260.6 11.00 -281.4 A

12.00 -256.7 12.00 -279.3
13.00 -252.7 13.00 -277.3
14.00 -248.3 14.00 -275.2 Î
15.00 -243.6 15.00 -273.3 1
16.00 -238.7 16.00 -271.4
17.00 -233.3 17.00 -269.4
18.00 -226.9 18.00 -267.4
19.00 -219.3 19.00 -265.5
20.00 -209.6 20.00 -263.4
21.00 -195.8 21.00 -261.7 ,
22.00 -168.8 22.00 -259.7

23.00 -257.8 1
24.00
25.00
26.00 
27.00

-255.9
-253.8
-251.7
-249.7

1
1-4

28.00 -247.4 I
29.00 -245.2 1
30.00 -242.8
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Titration number 5 Titration number 6

volume emf (mV) volume emf (mV)
added (ml) added (ml)

0.00 -304.8 0.00 -304.9
1.00 -300.6 1.00 -302.5
2.00 -295.8 2.00 -299.8
3.00 -291.6 3.00 -297.1
4.00 -287.4 4.00 -294.7
5.00 -283.0 5.00 -292.3
6.00 -278.9 6.00 -289.7
7.00 -275.1 7.00 -287.5
8.00 -271.0 8.00 -285.4
9.00 -267.1 9.00 -282.9

10.00 -263.2 10.00 -280.4
11.00 -259.4 11.00 -278.5
12.00 -255.5 12.00 -276.4
13.00 -251.4 13.00 -274.5
14.00 -247.0 14.00 -272.4
15.00 — 242.4 15.00 -270.6
16.00 -237.3 16.00 -268.5
17.00 -231.5 17.00 -266.5
18.00 -225.0 18.00 -264.5
19.00 -216.9 19.00 -262.7
20.00 -206.2 20.00 -260.3
21.00 -189.9 21.00 -258.4
22.00 -147.4 22.00 -256.5

23.00 -254.5
24.00 -252.4
25.00 -250.0
26.00 -247.9
27.00 -245.6
28.00 -243.2
29.00 -240.8
30.00 -238.0

a
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Titration number 7 Titration number 8

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00
1.00

2.00
3.00
4.00
5.00
6.00
7.00
8.00 

9.00
10.00

11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00 
21.00

-296.7 
-292.4 
-288.7 
-284.8 
-281.0 
-277.3 
-273.6 
-269.6 
-265.9 
-262.1 
-258.6 
-254.7 
-250.9 
-246.7 
—242.6 
-237.8 
-232.8 
-226.8 
-219.8 
- 211.1 
-199.5 
-179.2

0.00
1.00

2.00
3.00
4.00
5.00
6.00
7.00
8.00 

9.00
10.00

11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00 
21.00 
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00

-296.0
-295.2
-294.2
-292.7
-291.7
-290.8
-289.6
-288.8
-287.8
-286.9
-285.8
-285.0
-284.2
-283.3
-282.6
-281.9
-281.0
- 280.2
-279.4
-278.7
-277.8
-277.1
-276.4
-275.6
-274.9
-274.2
-273.5
-272.9
-272.1
-271.4
-270.4
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Titration number 9

volume 
added (ml)

emf (mV)

0.00 -266.1

1.00 -263.5

2.00 -260.9

3.00 -258.2

4.00 -255.6

5.00 -253.1

6.00 -250.2

7.00 -247.4

8.00 -244.5

9.00 -241.5

10.00 -238.1

11.00 -234.9

12.00 -231.2

13.00 -227.2

14.00 -223.1

15.00 -218.4

16.00 -213.2

17.00 -207.2

18.00 -200.1

19.00 -191.2

20.00 -179.5

21.00 -160.9

22.00 -132.1
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Formation Constants for Cu(II) - Çyçlohexylamine Complexes

The formation curve (figure 11) was obtained from the results in 

table 18.

TABLE 18

Experimental results for the Cu(II) - çyçlohexylamine system

I

Titration
number

Initial concentrations (mM)? 
Titrate (S) and Titrant (T)

Initial Volume 
(ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 25.00 23.70 0 19.99 0 25.00 362.0

Titration number 1

volume 
added (ml)

emf (mV)

19.00 220.3
20.00 216.3
21.00 212.0
22.00 207.0
23.00 201.0
24.00 193.7
25.00 184.2
25.50 178.1
26.00 170.1
26.50 159.3
27.00 141.7
27.50 96.4

Total number of readings = 12.
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Metal hydroxy precipitation restricted our working range of -logh

2.3 - 4.3. The data was analysed using SCOGS least squares program 

which was offered a range of species having p ~ 0 2, q - 0 ' ^ 2  and

T = -2 2, in addition to AH and Ĉ X2̂{OB.) ̂  t the g values for the

latter being held constant. The 'best' log constant obtained was

log = 7.67 0.28 S (titre) = 12.1

2+The system can then be described by the complex C u (çyçlohexylamine)

Formation Constants for N i (II) - Çyçlohexylamine Complexes

The formation curve (figure 12) was obtained from the results in 

table 19.

TABLE 19

Experimental results for the N i (II) - çyçlohexylamine system

Titration
number

Initial concentrations (mM); 
Titrate (S) and Titrant (T)

Initial Volume 
(ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 25.00 25.87 0 22.90 0 25.00 355 .4
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Titration number 1

volume 
added (ml)

emf (mV)

15.00 218.1

16.00 213.8

17.00 209.0

18.00 203.5

19.00 197.0

20.00 188.7

20.50 184.2

21.00 178.1

22.00 160.4

23.00 101.8

Total number of readings = 10.

Metal hydroxy precipitation restricted our working range of -log h

2.2 - 4.1. The data was analysed using the SCOGS least squares program

which was offered a range of species having p ~ O -> 2, q = 0 - > 2  and
77P = -2 ->• 3, in addition to AH and Nl(OH) , the 3 values for the latter 

being held constant. The 'best' log constant obtained was

log 3^20 “ 5.94 +. 0.84 <5 (titre) =1.62

2+The system can then be described by the complex Ni(çyçlohexylamine)



60

Formation Constants for Co(II) - Çyçlohexylamine Complexes

The formation curve (figure 13) was obtained from the results in 

table 20.

TABLE 20

Experimental results for the Co (II) - çyçlohexylamine system

Titration
number

Initial concentrations (mM); 
Titrate (S) and Titrant (T)

Initial Volume 
(ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 25,00 24.35 0 31.92 0 25.00 355.4

Titration number 1 s-------------------- f

■Îvolume 
added (ml)

emf (mV)

22.00 219.2
23.00 215.8
24.00 212.1
25.00 207.9
26.00 203.3
27.00 198.0
28.00 191.6
29.00 183.5
30.00 172.3
31.00 155.6
31.50 140.2
32.00 103.5
32.10 84.2
32.12 80.2
32.15 71.9
32.18 61.4

Total number of readings = 16,

1
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Metal hydroxy precipitation restricted our working range of -log h

to 2.2 - 4.7. The data was analysed using SCOGS least squares program

which was offered a range of species having p = 2, q = q -^2 and
78p = -2 -> 3, in addition to AH and (OH) , the 3 values for the latter 

being held constant. The 'best' log constant obtained was

log = 5.28 ^  0.50 S (titre) = 1.23

2+The system can then be described by the complex C o (çyçlohexylamine)

Formation Constants for Zn(II)- Çyçlohexylamine Complexes

The formation curve (figure 14) was obtained from the results in 

table 21.

TABLE 21

Experimental results for the Zn(II) - çyçlohexylamine system

Titration Initial concentrations (mM)? Initial volume E° (mV) 
number Titrate (S) and Titrant (T) (ml)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 25,00 23.50 0 22.21 0 25.00 363.1

2 0 25.00 14.24 0 13.46 0 25.00 363.1

3 0 25.00 7.12 o 6.73 0 25.00 363.1

4 0 15.00 14.24 o 13.46 0 25.00 363.1

5 0 15.00 7.12 0 6.73 0 25.00 361.6

6 0 15.00 4.70 0 4.44 0 25.00 361.6

7 7.50 O 11.75 0 11.10 -10.00 30.00 361.6

8 7.50 0 11.75 0 11.10 - 4.00 30.00 361.6
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

20.00 203.9 11.00 203.8

21.00 197.0 12.00 195.0

22.00 188.3 13.00 182.8
23.00 176.1 14.00 162.0

24.00 154.7

25.00 15.9 3
26.00 -44.5

Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)
"'1

4.00 206.4 15.00 208.7

5.00 196.1 16.00 204.5

6.00 181.0 17.00 199.8 $
7.00 147.2 18.00

19.00

194.4

188.0

20.00 180.0

21.00 169.1 üg

22.00 152.2
1

23.00 105.2
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Titration number 5 Titration number 6

volume 
added (ml)

6.00

7.00

8.00 

9.00

10.00

11.00

emf (mV)

205.0 

198.9

191.5

182.1

168.5 

142.7

volume 
added (ml)

3.00

4.00

5.00

6.00 

7.00

emf (mV)

203.6

196.3

187.0

174.0 

150.5

Titration number 7

volume 
added (ml)

3.00

4.00

5.00

6.00

7.00

8.00 

9.00

10.00

11.00

12.00

emf (mV)

205.9

201.9

197.5

192.6 

186.8 

180.0

171.3

159.4 

139.0

58.6
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Titration number 8

volume 
added (ml)

emf (mV)

5.00 207.0

6.00 205.1

7.00 203.1

8.00 201.1

9.00 199.1

10.00 197.0

11.00 194.8

12.00 192.6

13.00 190.2

14.00 187.9

15.00 185.5

16.00 182.8

17.00 180.0

18.00 177.1

19.00 174.0

20.00 170.7

21.00 166.9

22.00 162.9

23.00 158.3

24.00 152.9

25.00 146.6

26.00 138.7

27.00 128.1

28.00 111.9

29.00 79.6

Total number of readings = 70.
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Metal hydroxy precipitation restricted our working range of -log h

2.5 - 6 .6 . The data was analysed using the SCOGS least squares program

which was offered a range of species having p =  O ^ 2, q = o 2 and
79r = -2 ^ 3, in addition to AH and ZnCOH)^ / the 3 values for the 

latter being held constant. The 'best' log constant obtained was

log = 4.60 0.13 5 (titre) = 2.1

2+The system..'Can then be described by the complex Zn (cyclohexylamine) 

Table 22 below lists our formation constants of the complex 

formation of cyclohexylamine and the published formation constants for 

the ammonia complexes as a comparison.

TABLE 22

Log formation constants the protonation

and the metal complexes at 37 C and I = 150mM NaClO4

A = cyclohexy lamine, B = metal ion^^, H = H^, S ~  standard deviation 

in log constants, n = number of titration readings for each series. 

Parentheses refer to ph range studied.

B V q. r Present work S n

1 o 1 9.93 0.01 227 1

Cu 1 1 0 7.67 0.28 12 (2.3-4.3)
%

Ni *1 1 0 5.94 0.84 10 (2.2-4.1)

Co 1 1 0 5.28 0.50 16 (2.2-4.7)

Zn 1 1 0 4.60 0.13 70 (2 .5-6.6) •I

Ammonia has log ^101 = 9.47 (H*), 1*9 9llO = 4.11 (Cu), 2.80 (Ni), '1

2.11 (Co) , and 2.37 (Zn) .



66

Comparison with other workers results

The value 10.66 at 24^C, I = 0.001 M for cyclohexylamine 

protonation is the only one available in the literature, por the 

formation constants of the metal complexes none are available.

Protonation Constants of Cyclopentylamine

The formation curve (figure 15) was constructed using the ZPLOT 

computer program (chapter 4). The data was then analysed using SCOGS 

(chapter 4) and the results obtained were

log K = 10.03 + 0.01 S'(titre) = 2.61 (229 readings)±UJL —

where S is the standard deviation.

TABLE 23

Experimental results for the protonation of cyclopentylamine

Titration
number

Titrate
(mM)

(S) Titrant (T) 
(mM)

Initial 
volume (ml)

E° (mV)

A H A H

1 249.00 0 0 250.10 25.00 388.9'
2 249.00 0 0 107.10 25.00 387.9
3 99.60 0 O 107.10 25.00 387.9
4 49.30 0 O 53.50 25.00 387.9
5 99.60 O 0 53.50 25.00 387.9
6 49.30 0 0 26.80 20.00 389.9
7 25.00 O O 26.80 25.00 388.9
8 25.00 0 O 5.30 25.00 390.9
9 4.90 0 0 5.30 25.00 393.9

I
T

. J
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00
1.00

2.00
3.00
4.00
5.00
6.00
7.00
8.00 

9.00
10.00

11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00 
19.00

-310.0
-299.0
-289.6
-281.0
-274.0
-267.5
-261.8
-256.5
-251.2
-246.3
-241.3
-236.3
-231.3
-226.4
-221.3
-216.5
-209.0
- 202.0
-193.5
-183.0

0.00
1.00

2.00
3.00
4.00
5.00
6.00
7.00
8.00 

9.00
10.00

11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00 
21.00 
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00

-310.0 
-305.0 
-300.0 
-296.0 
-291.6 
-287.5 
-284.5 
-281.2 
-278.0 
-275.2 
-272.5 
-270.0 
-267.2 
-264.8 
-262.2 
-260.5 
-258.2 
-256.2 
-254.1 
-252.2 
-250.0 
-248.0 
-246.5 
—244.4 
-242.5 
-240.7 
-238.9 
-237.0 
-235.0 
-233.1 
-231.1

\T
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Titration number 3

volume 
added (ml)

emf (mV)

0.00 -300.0

1.00 -292.2

2.00 -285.0

3.00 -278.5

4.00 -271.5

5.00 —266.O

6.00 -260.5

7.00 -255.5

8.00 -250.9

9.00 -245.9

10.00 -240.5

11.00 -236.0

12.00 -232.0

13.00 -227.0

14.00 -221.5

15.00 -216.1

16.00 -210.2

17.00 -204.2

18.00 -196.4

19.00 -186.6

20.00 -173.4

21.00 -151.0

Titration number 4

volume 
added (ml)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00 

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

emf (mV)

-289.4

-284.0

-278.5

-272.0

-267.5

-262.5

-258.0

-253.2

-248.9

-244.1

-240.0

-235.5

-231.0

-226.1

- 221.0
-215.8

- 210.0
- 202.2

-195.5

-185.9

-172.5



69

Titration number 5 Titration number 6

volume emf (mV) volume emf (mV)
added (ml) added (ml)

0.00 -298.5 0.00 -288.5
1.00 -295.2 1.00 -283.0
2.00 -291.5 2.00 -275.5
3.00 -288.0 4.00 -271.0
4.00 -283.5 5.00 -267.6
5.00 -280.5 6.00 -264.5
6.00 -277.3 7.00 -261.0
7.00 -274.5 8.00 -258.0
8.00 -271.5 9.00 -255.2
9.00 -268.8 10.00 -252.2

10.00 —266.4 11.00 -249.0
11.00 -264.5 12.00 -246.6
12.00 -261.0 13.00 -243.2
13.00 -258.7 14.00 -240.1
14.00 -256.5 15.00 -237.5
15.00 -254.0 16.00 -235.0
16.00 -251.8 17.00 -232.0
17.00 -249.5 18.00 -229.0
18.00 -247.0 19.00 -226.0
19.00 -245.0 20.00 -223.0
20.00 -242.5 21.00 -219.0
21.00 -240.1 22.00 -215.8
22.00 -238.0 23.00 -212.5
23.00 -236.0 24.00 -208.9
24.00 -233.8 25.00 -205.0
25.00 -231.0 26.00 -201.0
26.00 -228.6 27.00 -196.4
27.00 -226.3 28.00 -190.9
28.00 -223.7 29.00 -184.5
29.00 -221.3 30.00 -176.8
30.00 -218.5
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Titration number 7

volume 
added (ml )

emf (mV)

Titration number 8

volume 
added (ml)

emf (mV)

0.00 -278.0 0.00 -278.8 $
1.00 -273.5 1.00 -278.3 12.00 -269.5 2.00 -276.5
3.00 -265.0 3.00 -275.2
4.00 -261.0 4.00 -274.0
5.00 -256.5 5.00 -272.9
6.00 -252.6 6.00 -271.9
7.00 -248.5 7.00 -270.9
8.00 -244.2 8.00 -269.9
9.00 -240.0 9.00 -268.8

10.00 -236.0 10.00 -267.8
11.00 -231.5 11.00 -266.8
12.00 -227.3 12.00 -265.8
13.00 -222.0 13.00 -264.8 1
14.00 -217.0 14.00 -263.8
15.00 -212.0 15.00 -262.8 %
16.00 -206.0 16.00 -261.7
17.00 -199.0 17.00 -260.9 ■1
18.00 -190.3 18.00 -260.0
19.00 -179.2 19.00

20.00
-259.1
-258.2

21.00 -257.0 1
22.00 -255.8
23.00 -254.8 1
24.00 -253.8 -I
25.00 -253.0
26.00 -252.1
27.00 -251.5 128.00 -250.8
29.00 -250.0

■
ÿ

30.00 -249.2
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Titration number 9

volume 
added (ml)

emf (mV)

0.00 -258.0

1.00 -252.5

2.00 -250.5

3.00 -247.5

4.00 -244.0

5.00 -241.0

6.00 -238.1

7.00 -235.0

8.00 -231.9

9.00 -228.2

10.00 -225.0

11.00 -221.0

12.00 -217.5

13.00 -213.6

14.00 -209.4

15.00 -205.0

16.00 -199.8

17.00 -193.5

18.00 -186.5

19.00 -177.8

20.00 -166.3

21.00 -147.8

22.00 - 93.0

J
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Formation Constants for Cu(II) - Cyclopentylamine Complexes

The formation curve (figure 16) was obtained from the results in 

table 24.

TABLE 24

Experimental results for the Cu(II) - cyclopentylamine system

Titration
number

Initial concentrations(mM); 
Titrate (S) and Titrant (T)

Initial
volume
(ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 25.00 23.70 0 19.99 O 25.00 363.7

Titration number 1

volume emf (mV)
added (ml)

20.00 214.6

21.00 209.9

22,00 204.0

23.00 197.0

24.00 187.9

25.00 174.6

25.50 164.9

26.00 149.7

26.50 118.2

Total number of readings = 9
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Metal hydroxy precipitation restricted our working range of -log h to

2.4 - 3.9. The data was analysed using SCOGS least squares program 

which was offered a range of species having p = Q 2, q ~ 0 *^ 2 , and

r = -2 ^ 3, in addition to AH and Cu^(OH)^ the 3 values for the

latter being held constant. The ’best' log constant obtained was

log = 8.01 +.0.23 5 (titre) = 9.89

2+The system can then be described by the complex Cu(cyclopentylamine)

Formation Constants for N i (II) - Cyclopentylamine Complexes

The formation curve (figure 17) was obtained from the results in 

table 25.

TABLE 25

Experimental results for the N i (II) - cyclopentylamine system

Titration
number

Initial concentrations (mM); 
Titrate (S) and Titrant (T)

Initial 
volume (ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

8 T S T S T

1 0 25.00 25.87 O 22.90 O 25.00 361.0
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Titration nnmber 1

volume emf (mV)
added (ml)

15.00 220.6

16.00 216.4

17.00 211.7

18.00 206.4

19.00 200.0

20.00 192.1

20.50 187.6

21.00 181.5

22.00 163.9

22.50 148.4

Total number of readings = 10.

Metal hydroxy precipitation restricted our working range of -log h to

2.2 - 3.4. The data was analysed using the SCOGS least squares program

which was offered a range of species having p - O 2, q = 0. ->2 , and
77p = -2 3, in addition to AH and Ni(OH) , the B values for the latter

being held constant. The 'best' log constant obtained was

log B^^Q = 6.82 _+ 0.20 5'(titre) = 0.58

2+The system can then be described by the complex N i (cyclopentylamine)
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Formation Constants for Co(ll) - Cyclopentylamine Complexes

The formation curve (figure 18) was obtained from the results in 

table 26.

TABLE 26

Experimental results for the Co (II) - cyclopentylamine system

Titration
number

Initial concentrations (mM) 
Titrate (S) and Titrant (T)

Initial 
volume (ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 25.00 24.35 0 31.92 O 25.00 355.4

Titration number 1

volume emf (mV)
added (ml)

22.00 219.0
23.00 215.7
24.00 212.1
25.00 208.0
26.00 203.6
27.00 198.6
28.00 192.4
29.00 184.6
30.00 173.8
31.00 158.0
31.50 144.4
32.00 115.8
32.10 104.0
32.15 96.5
32.17 93.2
32.20 86.7
32.23 80.1
32.26 71.1 Total number of readings = 18

J
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Metal hydroxy precipitation restricted our working range of -log h

to 2.2 - 4.6. The data was analysed using SCOGS least squares program

which was offered a range of species having p = 0 2, q = 0-^2, and
78P = -2 ^ 3, in addition to AH and Co (OH) , the 3 values for the latter 

being held constant. The 'best' log constant obtained was

log & = 5.70 + 0.30 S (titre) = 1.151J.Ü-------- -
The system can then be described by the complex Co(cyclopentylamine) 2+

Formation Constants for Zn(II) - Cyclopentylamine Complexes

The formation curve (figure 19) was obtained from the results in 

table 27.

TABLE 27

Experimental results for the Zn(II) - cyclopentylamine system

Titration Initial concentrations (mM) Initial E° (mV)
number Titrate (S) and Titrant (T) volume (ml)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 65.10 117.50 0 111.00 0 25.00 384.3

2 0 65.10 47.00 0 44.42 0 25.00 384.3

3 0 65.10 23.50 0 22.10 0 25.00 384.3

4 O 99.80 117.50 0 110.00 0 25.00 384.3

5 0 99.80 47.00 o 44.42 0 25.00 384.3
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Titration number 1 Titration number 3

volume emf (mV) volume emf (mV)
added (ml) added (ml)

52.00 246.5 10.00 234.3

53.00 242.5 11.00 213.5

54.00 238.0 11.20 206.6

55.50 232.5 11.45 195.0

56.00 226.2 11.50 192.0

57.00 218.0 11.55 188.5

58.00 206.8 11.60 184.5

59.00 181.5 11.65 180.0

60.00 119.5 11.70 174.5

11.75 167.5

Titration number 2 11.80 158.5

11.81 156.2 'S
volume 
added (ml )

emf (mV) 11.82 154.3

11.83 152.0 1
21.00 241.5 11.84 149.5

22.00 230.0 11.85 146.5 %

23.00 209.5 11.86 143.0 •J

23.50 190.0 11.87 140.0

23.60 182.8 11.88 135.0

23.70 173.9 11.89 130.2 '1

23.80 160.0 11.90 125.5 '4'

23.90 133.2 11.92

11.94

11.96

115.0

97.2

72.9 4'
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Titration number 4 Titration number 5

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

28.00 237.4 11.00 239.0

29.00 213.2 12.00 199.0

30.00 14.2 12.10 188.0

30.10 6.8 12.20 168.2

30.20 6.1 12.25 152.8

30.30 5.5 12.30 110.8

30.40 5.0 12.35 53.9

30.50 3.2

Total number of readings = 56.

Metal hydroxy precipitation restricted our working range of -log h

to 2.2 - 6 .1. The data was analysed using the SCOGS least squares program

which was offered a range of species having p = 0 + 2, q == 0 - ^ 2  and

r - -2 3, 79in addition to AH and Zn(OH) , the 3 values for the latter

being held constant. The 'best' log constant obtained was

log = 4.16 + 0 .53 5 (titre) = 12.87n o  —
2+The system can then be described by the complex Zn(cyclopentylamine)
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Table 28 below lists our formation constants of the complex 

formation of cyclopentylamine and the published formation constants 

for the ammonia complexes as a comparison.

TABLE 28

Log formation constants (3 ) for the protonation andoPqr
the metal complexes at 37 C and I = 150 mM . NaClO/i

B P q V Present work S n

1 0 1 10.03 0.01 229

Cu 1 1 o 8.01 0.23 9 (2.4-3.9)

Ni 1 1 0 6.82 0.20 10 (2.2-3.4)

Co 1 1 0 5.70 0.30 18 (2.2-4.6 )

Zn 1 1 . 0 4.16 0.53 56 (2 .2-6 .1)

Ammonia has log ^101 = 9.47 (H^), log h l O  = 4.11 (Cu), 2.80 (Ni), 2.11 (Co),

and 2.37 (Zn) A = cyclopentylamine, 2+ +B == metal ion , H = H , 5 = standard

deviation in log constants, n = number of titration readings for each series, 

Parentheses refer to ph range studied.

Comparison with other workers results

The value 10.65 at 25°C, J = O for cyclopentylamine protonation 

is the only one available in the literature. Por the formation 

constants of the metal complexes, there have been none reported.
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Protonation Constants of Glycinate

The formation curve (figure 20) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using SCOGS (chapter 4) 

and the results obtained were:

-S'(titre) = 0.27 (179 readings)log K = 9.17 + 0.01 lOl —

holno2 = 2.34 ± 0.01

where S is the standard deviation.

TABLE 29

Experimental results for the protonation of glycinate

Titration
number

Titrate (S) 
(mM)

Titrant (T) 
(mM)

Initial E° (mV) 
volume (ml)

A H A H

1 200.00 O 0 -100.00 25.00 364.5

2 50.00 0 0 26.83 25.00 365.5

3 50.00 0 0 -50.00 25.00 363.8

4 25.00 0 O -24.03 25.00 363.8

5 25.00 0 0 26.83 25.00 365.5

6 15.00 0 0 -20.00 25.00 364.5

7 15.00 0 0 16.16 25.00 364.5

8 10.00 0 0 -15.15 25.00 367.9

9 10.00 o 0 13.41 25.00 364.3

10 5.00 6.70 5.00 - 8.00 25.00 364.3
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Titration number 1 Titration number 2

volume 
added (ralX

emf (mV) volume 
added (ml);

emf (mV)

0.00 10.4 0.00 20.4

0.01 -31.2 1.00 116.8

0.02 -33.6 2.00 135.5

0.05 -41.7 3.00 146.8

0.10 -51.8 4.00 154.9

0.20 -65.1 5.00 161.3

0.30 -73.8 6.00 166.7

0.40 -80.4 7.00 171.3

0.50 -85.7 8.00 175.3 ^

0.70 -93.8 9.00 178.8

1.00 -103.0 10.00 182.0

1.50 -113.6 11.00 185.0

2.00 -121.3 12.00 187.8

3.00 -132.2 13.00 190.3

4.00 -140.2 14.00 192.6

5.00 -146.7 15.00 194.9

8.00 -160.5 16.00 197.1

40.00 -235.7 17.00 199.0

18.00 201.0

19.00 202.8

20.00 204.5

22.00 207.8
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 22.7 0.00 19.9

1.00 —120.4 1.00 -118.0

2.00 -140.0 2.00 -137.8

3.00 -151.8 3.00 -149.7

4.00 -160.5 4.00 -158.4

5.00 -167.7 5.00 -165.5

6.00 -173.7 6.00 -171.3

7,00 -179.1 7.00 -176.7

8.00 -184.1 8.00 -181.6

9.00 -188.6 9.00 -186.1

10.00 -192.9 10.00 -190.2

11.00 -197.3 11.00 -194.3

12.00 -201.3 12.00 -198.2

13.00 -205.3 13.00 -202.0

15.00 -213.4 15.00 -209.6

16.00 -217.6 16.00 -213.4

17.00 -221.8 17.00 -217.3

18.00 -226.4 18.00 -221.3

20.00 -236.5 20.00 -229.7

21.00 -242.2 21.00 -234.2

22.00 -248.5 22.00 -239.1
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Titration number 5 Titration number 6

volume emf (mV) volume emf (mV)
added (ml) added (ml)

0.00 26.6 0.00 27.9

1.00 132.7 0.02 7.9

13.00 208.9 0.04 -11.5

14.00 211.3 0.10 —44.1

15.00 213.6 0.15 -58.7

17.00 217.7 0.20

0.30

0.50

-69.2 

—84.6 

-101.5
Titration number 7

0.70 -112.3

volume emf (mV) 1.00 -123.4
added (ml) 2.00 —144.6

0.00 21.0 4.00 -166.4

0.02 35.1 7.00 -186.4

0,10 68.1 10.00 -201.9

0.15 78.8 12.00 -211.4

0.20 86.3 13.00 -216.3

0.30 97.2

0.35 101.3

0.40 105.0

0.60 115.7

1.00 129.8

2.00 148.9

3.00 160.2

4.00 168.3
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Titration number 8 Titration number 9

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 30.8 0.00 23.2

0.02 17.7 0.20 89.3

0.05 -7.6 0.30 100.1

0.10 -33.6 0.40 107.7

0.25 -70.0 0.50 113.5

0.50 -99.0 0.60 118.2

1.00 -123.7 0.70 122.5

2.00 -146.1 0.80 126.2

3.00 -156.9 0.90 129.4

4.00 -167.1 1.00 132.3

6.00 -182.3 1.50 143.3

8.00 -194.3 2.00 151.1

10.00 -205.1 3.00 162.3

13.00 -220.9 4.00 170.2

6.00 181.4

8.00 189.4

10.00 195.6

13.00 202.8



'■ " 1
î■jVî

Titration number 10

volume emf (mV)
added (ml)

0.00 219.1 *
0.04 218.9
0.10 218.7 a

•IJ0.60 216.9
1.00 215.5
2.00 211.9
3.00 208.4
4.00 204.6
6.00 196.9 ^

10.00 178.8 î
14.00 149.7
15.00 136.5
16.00 112.8
17.00 -58.8
17.20 -86.7
17.25 -90.9
17.35 -97.8
17.50 -105.6
17.70 -113.6
17.80 -116.9
18.00 -122.4
18.20 -127.0
18.50 -132.7
19.00 -140.3
20.00 -151.1
21.00 -159.0
22.50 -167.6
40.00 -211.0
45.00 -218.1
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Formation Constants for Zn(II) - Glycinate Complexes

The formation curve (figure 21) was obtained from the results 

in table 30.

TABLE 30

Experimental results for the Zn(II) - glycinate system

Titration
number

Initial concentrations 
Titrate (S) and Titrant

(mM)
(T)

Initial 
volume (ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 100.00 100.00 24.47: 24.47 28.49 -76.87 20.00 362.3

2 50.00 50.00 26.11 26.11 30.04 -•25.32 20.00 362.3

3 25.00 25.00 25.87 25.87 -15.54 27.13 20.00 362.3

4 100.00 100.00 24.47 24.47 -76.87 28.49 20.00 362.3

5 50.00 50.00 26.11 26.11 -25.32 30.04 20.00 362.3
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV)

0.00 197.0
1.00 190.3
3.00 176.2
4.00 167.9
5.00 158.1
7.00 127.2
8.00 101.0

10.00 62.9
11.00 52.1
13.00 36.6
14.00 30.5
16.00 20.3
18.00 11.7
24.00 -8.9
25.00 -11.7
29.00 -22.6
30.00 -25.1
34.00 -34.9
46.00 -61.8
50.00 —70.4
54.00 -78.6
56.00 -82.5
59.00 -87.9
60.00 -89.7
62.00 -93.0
65.00 -97.5
67.00 -100.3
68.00 -101.6
69.00 -103.0
70.00 -104.3

volume 
added (ml)

emf (mV)

28.00
29.00
30.00
32.00
38.00
40.00
45.00

81.0
75.2
70.2
62.2
46.7 
43.2
35.8
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 -22.3 0.00 -178.7
1.00 -12.4 0.50 -171.9
1.30 -9.5 0.80 -168.2
1.50 -7.7 1.00 -165.7
2.00 -3.3 1.30 -162.0
2.40 0.2 1.60 -158.3
2.60 1.9 2.00 -153.3
3.00 5.2 2.30 -149.5
3.30 7.8 2.60 -145.9
3.50 9.4 3.00 -140.8
4.00 13.6 3.50 -134.6
4.50 17.8 3.80 -130.7
5.00 22.1 4.00 -128.0
5.50 26.4 4.50 -121.4
6.00 31.0 5.00 -114.4
6.50 35.8 5.40 -108.7
7.00 40.9 5.80 -102.6
7.50 46.4 6.00 -99.6
8.00 52.5 6.50 -92.0
9.00 67.6 7.00 -84.4

10.00 90.4 7.50 -77.1
11.00 121.3 8.00 -70.2
12.00 142.0 8.50 —64.0
13.00 154.4 9.00 -58.2
14.00 163.0 9.50 -53.1

10.00 -48.2
10.50 -43.8
11.00 -39.9
13.00 -26.6
16.00 -11.3
20.00 4.5
22.00 11.2
25.00 20.4
30.00 34.4
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Titration number 4 continued Titration number 5

volume emf (mV) volume emf (mV)
added (ml) added (ml)

32.00 39.8 0.00 -22.4

35.00 47.9 0.10 -21.5

40.00 62.3 0.30 -19.6 1

42.00 68.5 0.50 -18.0 1
45.00 78.7 1.00 -14.0 1
50.00 98.7 1.50 -10.2

2.00 -6.6 I;
2.20 -5.2 Ï
2.50 —3.1

3.00 0.3

4.00 6.8 J

5.00 13.0 1

6.00 19.2

7.00 25.3

8.00 31.4

10.00 44.7

12.00 60.4

13.00 69.7 j
15.00 95.5

16.00 111.5

18.00 135.9

1

Total number of readings = 123.
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The data was analysed using the SCOGS least squares program which was

offered a range of species having p = O 2, q = o -> 2 and r = -2-» 3,
79in addition to AH, AH^ and ZnfOHÏg r the g values for the latter being 

held constant. The 'best' log constants obtained were

log g 2.10 “ 4.91 ̂  0.02

log g210 = 8.97 + 0.04

log = 11.30 0.03

log g 2̂2.1 ” 9.30 + 0.24

log g^^_^= -2.71 + 0.38

These constants gave a standard deviation in titre of 0.46. The system
+ ocan thus be described by the five complexes; Zn(glycinate) , Zn(glycinate)2 r 

Z n ( g l y c i n a t e ) Z n ( g l y c i n a t e ) a n d  Zn(glycinate)0H°. ;

The zinc-glycinate complexes produced a pattern of formation curves 

as the glycinate-zinc ratio was varied. This was taken as evidence ;

of protonated, hydroxy or polynuclear complexes being present and some of these j, 

were indeed found in SCOGS, Then the best PSEUDOPLOT fit was obtained (figure ii
22).j

The next stage involved COMPLOT computer simulation models of species 

distribution in solutions at different ph (figure 23). These models I

require the total concentrations of zinc and glycinate (5.00 and 10.00 mM |

respectively) and the formation constants from table 31. '
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Table 31 below lists our formation constants of the complex 

formation of glycinate and some of the published results from other 

workers as a comparison.

TABLE 31

Log formation constants for the protonation and
the metal complexes at 37°C and I ~ ISOmM NaClO^; 
n = number of experimental observations and S denotes 
the standard deviation

B p q V log 3 S n literature data X/M,log3) Ref
,4

1 0 1 9.17 0.01 179 37,0.15(KNO^),3^q ^9 .38/g^^gll.76 84

1 0 2 11.51 0.01 25,0.10(NaClO ) , 3 ^ 9 . 6 2 , g Qgl2.05 85 • 1
Zn 1 1 0 4.91 0.02 123 37,0.15(KNO),3^4.90,329.01 84 1

2 1 0 8.97 0.04 32ll.31,3ii_i-8.89

3 1 0 11.30 0.03 25,0.10(KNO^) ,3^^5.03,329.30 86

1 1 1 9.30 0.24 25,^0,3^5.52,329.96 87

1 1 -1 -2.71 0.38 20,0.50(KN0 ),3.4.80,3.8.94 88

P^ll.SO
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ProtonatiOK coustaiïta of Giyoylglyciiiate

The formation curve (figure 24) was obtained using the ZPLOT 

computer program (chapter 4). The data was then analysed using SCOGS 

(chapter 4) and the results obtained were

log = 7.74 + 0.01lOjL —

where S is the standard deviation.

TABLE 32

S'(titre) = 0.20 (230 readings)

Experimental results for the protonation of glycylglycinate

Titration
number

Titrate (S) 
(mM)

Titrant (T) 
(mM)

Initial 
volume (ml)

E° (mV)

A H, A H

1 100.00 134.10 100.00 -200.00 20.00 364.1

2 50.00 134.10 50.00 -200.00 20.00 364.1

3 25.00 O 0 33.53 25.00 363.8

4 25.00 0 O -32.57 25.00 363.8

5 15.00 16.16 15.00 -20.00 20.00 364.1

6 10.00 16.16 10.00 -40.00 20.00 364.1

7 5.00 8.08 5.00 -20.00 20.00 364.1
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Titration number 1 Titration nundoer 2

volume 
added (ml)

emf (mV)

2.50 233.4
3.00 222.5
4.00 204.8
5.00 191.3
6.00 180.1
7.00 170.1
8.00 160.6

10.00 140.2
12.00 110.7
12.50 98.2
12.80 87.4
12.90 82.8
13.00 77.4
13.20 62.9
13.40 38.3
13.50 22.2
13.60 7.7
13.70 -2.8
14.00 -22.5
14.40 -37.1
15.00 -50.7
15.50 -58.5
16.00 -64.9
17.00 -74.7
18.00 -82.2
19.00 -88.5
20.00 -94.0
22.00 -103.4
26.00 -118.6
30.00 -132.1
32.00 rl38.8
35.00 -149.1
40.00 -169.8
44.00 -193.2
46.00 -209.4

volume 
added (ml)

emf (mV)

7.20
7.50
8.00

9.00
10.00

11.00
12.00
12.50 
12.80
13.00
13.30
13.50
13.70 
13.80
14.00
14.30
14.70
15.00
15.50
16.00
17.00
17.50
18.00
19.00
20.00 
21.00 
22.00
22.50
23.00 
23.20 
23.40
23.70
24.00

216.8
210.1
199.7
182.0
166.1
149.1
128.2 
113.0
99.1
84,8
30.2 

-15.1 
-33.0 
-39.3 
-48.7 
-59.0 
-69.2 
-75.3 
-83.6 
-90.7

- 102.6
-107.8
-112.9
- 122.6
-132.6
-143.1
-155.6
-163.1
-172.3
-176.6
-181.5
-190.4
- 202.0
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Titration number 3 Titration number 4

volume emf (mV) volume emf (mV)
added (ml) added (ml)

0.00 31.0 0.00 33.4

0.10 45.4 0.10 18.1

0.20 56.5 0.20 6.5

0.30 65.0 0.30 -2.5

0.40 71.4 0.40 —9.4

0.60 81.6 0.60 -20.3

0.70 85.6 0.70 -24.5

0.90 92.3 0.90 -31.6

1.00 95.2 1.00 -34.6

1.40 104.4 1.40 —44,4

2.00 114.7 2.00 -54.8

3.00 126.9 3.00 -67.3

4.00 136.2 4.00 -76.7

5.00 143.9 5.00 -84.4

6.00 150.4 6.00 -91.2

7.00 156.4 7.00 -97.3

8.00 162.0 8.00 -103.0

9.00 167.2 9.00 -108.6

10.00 172.1 10.00 -113.9

11.00 176.8 11.00 -119.4

13.00 186.1 12.00 -125.0

14.00 190.6 14.00 -127.2

15.00 -144.1

16.00 -152.3

18.00 -176.2

19.00 -198.9
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Titration number 5

volume 
added (ml)

emf (mV)

Titration number 6

volume 
added (ml)

emf (mV)

■ r 
•>

1

0.00 215.2 0.00 232.9
0.05 214.7 0.10 232.1 j
0.20 213,5 0.40 229.1 è
1.00 206.6 1.00 222.7
2.00 198.2 1.50 216.6 1
2.50 194.0 2.00 210.0 a

1
3.51 186.3 2.40 204.3 s
4.00 182.7 2.80 198.2 Ï
5.00 175.8 3.50 187.7 -
7.00 162.7 4.00 179.9
9.00 149.9 5.00 164.2

10.00 143.1 6.00 146.9
11.00 135.9 6.50 136.7
12.00 128.0 7.00 123.7
13.00 118.7 7.40 109.5
15.00 89.3 7.70 92.9
16.00 49.9 8.00 56.7
16.20 33.2 8.20 -2.5
16.40 13.6 8.30 -19.5 1

16.65 -3.6 8.40 -30.5
16.80 -10.9 8.50 -38.4
16.90 -15.0 8.60 —44.8
17.00' -18.5 8.70 -50.0 1
17.5p/ -31.5 8.85 -56.6 ■a

117.80 -37.2 9.00 -62.0
18.30 — 44.6 9.25 -69.3
19.00 -52.6 9.50 -75.4 &
20.00 -61.1 10.00 -85.6
21.00 -67.7 11.00 -100.8
23.50 -79.3 12.20 -115.4 1
27.00 —90.8 13.40 -128.8
30.00 -98.3 14.60 -143.0 '5;
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Titration number 5 continued

volume 
added (ml)

emf (raV)

35.00 -107.8
40.00 -115.8
50.00 -128.0
60.00 -138.3
65.00 -143.0

Titration number 7

volume emf 
added (ml)

(mV)

Titration number 6 continued

0.00
0.25
0.50
1.00

2.00
2.50
3.00
4.00
5.00
5.50
6.00
7.00
7.50
8.00 
8.10 
8.15 
8.18 
8.20 
8.25

217.1
215.0 
212.9 
208.3
198.2
192.7
187.0
174.8
161.3
153.9 
145.6
124.1
107.2
69.8 
51.5 
38.3 
29.2
22.9 
7.8

volume 
added (ml)

emf (mV)

15.80 -160.4
16.80 -181.9
17.20 -194.9
17.60 -212.8
18.00 -234.2
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Titration number 7 continued

volume 
added (ml)

emf (mV)

8.30 -4.3

8.40 -20.1

8.43 -23.7

8.48 -28.8

8.60 -38.3

8.80 -49.5

9.00 -57.7

9.50 -72.1

10.00 -82.5

10.70 -94.0

11.70 -107.0

12.50 -116.2

13.50 -127.3

14.50 -138.9

15.50 -152.1

16.00 -160.0

17.00 -180.9

17.40 -192.5

17.90 -210.3

18.00 -213.9

18.20 -221.3
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Formation Constants for Zn(II) - Glycylglycinate Complexes

The formation curve (figure 25) was obtained from the results 

in table 33.

TABLE 33

Experimental results for the Zn(II) - glycylglycinate system

Titration Initial concentrations (mM) Initial E° (mV)
number Titrate (S) and Titrant (T) volume (ml)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 25.00 25.00 1.88 1.88 -7.23 7.13 20.00 364..8

2 25.00 25.00 6.61 6.61 -20.06 8.92 20.00 364..8

3 20.00 20.00 9.40 9.40 -11.20 11.48 20.00 364..8

4 10.00 10.00 9.40 9.40 -3.24 11.48 20.00 364,.8
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00

0.50

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00 

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00
17.00

17.50

18.00

18.50

19.00
20.00

-73.3 
-70.9 

-68.5 

-63.7 
-58.9 
-54.2 
-49.5 
-44.6 
-39.7 
-34.7 

-29.7 
—24.4 

-19.0 

-13.3
-7.5

-1.3

5.5

12.7

20.9
25.2

29.9

34.7

39.7

49.7

0.00

0.50

1.00

1.50 
2.00

2.50

3.00

4.00

5.00

6.00

7.00

8.00 

9.00

10.00

11.00

13.00

15.00
16.00 
18.00 

20.00 
21.00 

22.00
23.00

24.00

-112.4 

-108.7 
-105.1 

-101.7 

-98.3 

-95.1 
-92.0 
- 86.2 
-80.5 
-75.4 
-70.3 
-65.5 
—60.8 

-56.5 
-52.1 

-44.2 

-36.7 
-33.4 
-26.8 

-20.5 

-17.4 
-14.9 

- 12.0 

-8.9



Titration number 1 continued
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Titration number 2 continued

:
I

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

20.50 

21.00 

22.00

22.50

23.00

24.00

25.00

27.00

30.00

35.00

54.7

59.0

66.5

69.7

72.6

77.6 

81.9

88.6
96.0 

104.3

25.00

26.00

27.00

28.00

29.00

30.00

30.60

31.00

31.50

32.00

32.60

33.00

33.50

34.00

34.50

35.00

35.15

36.15

37.15

39.15

40.15

-5.9

-2.9

0.3

3.4

6.5 

9.8

11.7

13.0

14.7

16.4

18.5

20.0

21.7 

23.4

25.3

27.3 

27.9

31.7 

36.1 

45.0

49.8
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 -58.7 0.00 -13.5

0.50 -54.6 0.10 -12.5

1.00 -51.0 0.20 -11.4

1.50 -47.7 0.30 -10.3

2.00 -44.5 0.50 -8.2

3.00 -38.2 0.80 -4.9

3.50 -35.0 1.00 —2 .6

4.20 -30.8 1.40 2.1

4.50 -29.1 1.70 5.8

5.00 -26.3 2.00 9.6

5.50 -23.4 2.20 12.3

6 . OO -20.7 2.40 15.2

6.50 -18.0 2.70 19.7

7.00 -15.2 3.00 24.7

7.50 -12.5 3.20 28.3

8.00 —9.8 3.40 32.2

8.50 -7.1 3.60 37.1

9.00 -4.4 3.80 41.6

9.50 -1.7 4.00 46.8

10.00 1.1 4.30 55.2

10.50 3.9 4.80 70.6

11.00 6.9 5.00 76.5

11.50 9.8 5.30 84.4
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Titration number 3 continued Titration number 4 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

12.00 12.8 5.50 89.0

12.50 15.9 5.60 91.1

13.00 19.1 5.80 95.2

14.00 25.9 6.00 98.6

15.00 33.4 6.30 103.2

15.50 37.6 6.50 106.0

16.00 42.0 7.00 111.9

17.00 51.5

17.50 56.6

18.00 61.9

18.50 67.1

19.00 72.1

19.50 76.7

20.00 81.0

20.20 82.6

20.70 85.8

Total number of readings = 128,

The data was analysed using the SCOGS least squares program which

was offered a range of species having p - O 3, q - 0 - ^ 2  and r = -2 ^ 3,
79in addition to AH, AH^ and Zn(OH)^ / the 3 values for the latter being
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held constant. The 'best' log constants obtained were 

log g = 3.57 + 0.04

log g = 5.88 + 0.05

log 022.0 “ 8.01 ̂  0.14

log 02_ii = 9.15 0.10

These constants gave a standard deviation in titre of 0.33. The system
- I -can thus be described by the four complexes:Zn(glycylglycinate) ,

Zn(glycylglycinate)Zn(glycylglycinate)^, and Zn(glycylglycinate).

The zinc-glycylglycinate complexes produced a pattern of formation 

curves as the glycylglycinate-zinc ratio was varied. This was taken as 

evidence of protonated, hydroxy or polynuclear complexes being present and some 

of these were indeed found in SCOGS,- Then the best PSEUDOPLOT fit was 

obtained (figure 26).

The next stage involved COMPLOT computer simulation models of 

species distribution in solutions at different ph (figure 27). These 

models require the total concentrations of zinc and glycylglycinate 

(5.00 and 10.00 mM respectively) and the formation constants from table 34.

Table 34 below lists our formation constants of the complex 

formation of glycylglycinate and some of the published results from other 

workers as a comparison.
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TABLE 34

Log formation constants for the protonation and the

metal complexes at 37°C and I = ISOmM NaClO^; n = number of 

experimental observations and S denotes the standard deviation

B P q V log 3 S n literature data (9^/^C, J/M, log3) Ref

1 0 1 7.74 0.01 230 20, 1.0 NaClO^, 3^0  ̂8.23, ^^^^11,39 89

1 0 2 10.84 0.01 25, 0.15, log 3^01 8.12 90

Zn 1 1 0 3.57 0.04 129 37, 0.15(KN0^), 3^ 3.24, 3g 5.88 91

2 1 0 5.88 0.05 25, 0.01, 3^ 3.6 92

3 1 0 8.01 0.14 25, 0 , 3n 3.80, 3g 6.57 93

1 1 1 9,15 0.10 21, 0.01 (ZnSO y, 3% 6.4 94

Protonation Constants of G lycylglycylglycinate

The formation curve (figure 28) was obtained using the ZPLOT 

computer program (chapter 4). The data was then analysed using SCOGS 

(chapter 4) and the results obtained were

log = 7.59 + 0.01

log îoi->102

S (titre) = 0.20 (173 readings)

!

where S is the standard deviation.

%
I
s
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TABLE 35

Experimental results for the protonation of glycylglycylglycinate

Titration
number

Titrate (S) 
(mM)

Titrant (T) 
(mM)

Initial 
volume (ml)

E°(mV)

A H A H .

1 50.00 134.10 50.00 -250.00 20.00 364.3

2 25.00 53.66 25.00 -100.00 20.00 364.5

3 15.15 40.65 15.15 -75.75 20.00 365.4

4 9.12 24.48 9.12 -45.63 20.00 366.0

5 5.00 10,73 5.00 -20.00 20.00 364.5

Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

5.80 227.8 4.30 228.2

6.20 214.0 5.00 214.3

6.50 204.0 5.40 205.9

6.70 198.8 5.80 197.5

7.00 190.7 6.10 191.5

7.30 183.4 6.40 185.8

7.80 172.2 6.80 178.5

8.70 153.7 7.40 168.1

9.70 129.6 8.00 157.8

10.00 120.0 8.70 145.4

10.15 111.5 9.40 130.9
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Titration number 1 continued Titration number 2 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

10.40 99.4 10.00 114.1

10.50 92.8 10.20 105.7

10.64 80.0 10.60 81.5

10.75 64.6 10.80 55.9

10.90 27.5 11.00 9.5

11.01 - 0.6 11.10 -7.2

11.10 -13.5 11.20 -18.0

11.30 -31.7 11.30 -26.0

11.50 -43.1 11.40 -32.5

11.75 -53.4 11.60 -42.3

12.00 -61.5 11.80 -49.9

12.50 -73.7 12.10 -58.8

13.00 -83.4 12.40 -65.8

13.70 —94.8 12.70 -71.8

14.40 -105.2 13.10 -78.8

15.20 -116.7 13.50 ' -84.8

16.00 -129.2 14.00 -91.7

17.00 -148.5 14.60 -99.2

18.00 -182.8 15.50 -109.7

18.25 -198.2 16.50 -121.2

18.40 -211.7 17.00 -127.2

18.00 -140.6

19.00 -157.3

20.00 -181.6

20.10 -184.2
20.20 “187.1
20.28 -189.3
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

5.00 225.1 4.00 224.3

5.50 216.8 4.50 218.2

6.00 207.4 5.00 211.9

6.80 191.6 6.00 196.8

7.50 178.0 7.00 180.1

8.00 168.5 7.60 170.0

8.50 159.1 8.00 163.1

9.00 149.3 8.60 152.4

9.50 138.5 9.20 140.7

10.00 125.6 10.00 120.3

10.50 107.3 10.70 85.1

10.75 93.1 10.85 68.5

11.00 67.6 11.00 37.4

11.40 -16.4 11.10 9.9

11.50 -26.0 11.20 -9.1

11.60 -33.6 11.50 -36.5

11.70 -39.7 11.80 -51.3

11.80 -44.9 12.00 -58.4

11.90 -49.4 12.30 -66.9

12.00 -53.3 12.70 -76.1

12.20 -59.9 13.00 -82.0

12.50 —68.0 13.50 -90.5
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Titration number 3 continued Titration number 4 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

13.00 -78.9 14.00 -98.3

13.70 -91.9 14.40 -104.1

14.50 -103.1 14.80 -109.9

15.20 -113.0 15.20 -115.5

16.00 -124.7 15.50 -119.8

17.00 -141.7 15.80 -124.3

17.50 -152.4 16.10 -128.9

18.00 -166.8 16.40 -133.6

18.30 -178.1 16.80 -140.8

17.00 -144.6

17.30 -150.8

17.60 -158.0

17.80 -163.6

18.00 -169.7

18.30 -180.3
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Titration number 5 Titration number 5 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

1.00 223.7 13.00 -76.8

2.00 216.7 14.00 -91.4

3.00 208.6 15.00 -103.7

4.00 199.3 15.50 -109.2

4.50 194.1 16.00 -114.9

5.00 188.6 17.00 -126.5

5.80 179.3 18.00 -139.3

6.50 170.7 19.00 -154.8

7.00 164.2 20.00 -175.3

7.60 156.2 20.10 -177.6

8.50 142.9 20.20 -180.0

9.50 123.9 20.28 -181.9

10.00 110.4

10.20 101.9

10.50 86.6

10,80 56.1

11.10 -3.4

11.30 -24.2

11.50 -36.6

11.70 -45.5

12.00 -55.5

12.20 -60.8

12.50 -67.5
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Formation Constants for Zn(II) - Glycylglycylglycinate Complexes

The formation curve (figure 29) was obtained from the results in 

table 36.

TABLE 36

Experimental results for the Zn(II) - glycylglycylglycinate system

Titration Initial concentrations (mM) Initial E°(mV)
number Titrate (S) and Titrant (T) volume (ml)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 25.00 25.00 6.61 6.61 11.60 -13.76 20.00 362.8

2 25.00 25.00 6.61 6.61 -13.76 11.60 20.00 362.8

3 20.00 20.00 9.40 9.40 11.56 -13,32 20.00 362.8

4 20.00 20.00 9.40 9.40 -13.32 11.56 20.00 362.8

5 10.00 10.00 9.40 9.40 -6.20 11.48 20.00 362.8

6 25.00 25.00 1.88 1.88 -8.23 4.45 20.00 362.8
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

10.50 116.1 4.00 -53.7

11.00 113.4 4.50 -51.1 '3
11.50 110.7 5.00 “*48 « 4

12.00 107.9 6.00 -43.3 'I
12.50 105.0 6.50 -40.9 -g

13.00 101.9 7.00 -38.5

13.50 98.6 8.00 -33.7
’i

14.00 95.1 9.00 -29.0

14.50 91.4 9.50 -26.6

15.00 87.2 10.00 -24.2

15.50 82.9 10.20 -23.3

16.00 78.1 10.40 -22.4

16.30 75.1 11.40 -17.8

16.60 71.9 11.91 -15.4

16.90 68.6 12.30 -13.5 '■Sh

17.00 67.5 13.00 -10.2

17.20 65.2 13.40 -8.3

17.50 61.7 13.70 -6.8
1

17.80 58.1 14.00 -5.3 ,5

18.00 55.7 14.50 -2.8 1

18.20 53.4 15.00 —0 . 2

18.50 49.9 15.30 1.5

18.70 47.6 15.67 4.1 1
19.00 44.4 'S

g

1
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 178.1 2.50 -54.2

0.50 174.2 3.00 -51.4

1.00 171.2 4.00 -45.8

2.00 165.9 5.00 —40,3

3.00 160.7 6.00 -35.0

4.00 155.9 7.00 -29.8

5.00 151.3 8.00 -24.8

6.00 146.8 10.00 -15.3

7.00 142.4 11.00 -10.0

8.00 138.0 12.00 -5.1

10.00 129.1 13.00 -0.1

11.00 124.3 14.00 5.3

13.00 114.1 15.00 11.0

15.00 102.2 16.00 17.2

16.00 95.0 17.00 24.1

16.50 91.1 17.50 27.9

17.00 86.8 18.00 32.0

18.00 77.1 19.00 41.2

19.00 66.2 20.00 51.4

19.50 60.5

20.00 54.8

20.30 50.9

20.80 45.8
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Titration number 3 continued

volume 
added (ml)

emf (mV)

21.50 39.5

22.00 35.5

23.00 28.6

25.00 18.1

26.00 13.9

28.00 7.0

30.00 1.3

31.00 -1.3

32.00 -3.4

33.00 -5.3

35.00 -8.9

36.00 -10.5

38.00 -13.5

40.00 -16.1

Titration number 5

volume 
added (ml)

emf (mV)

0.00

0.50

1.00

1.50 

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

7.00 

7.40

7.80

8.00

8.30 

8.60

8.80 

9.00 

9.10

9.30

9.50 

9.60

-54.1

-48.2

-43.5

-39.0

-34.6

-30.2

-25.8

-21.3

-16.7

- 12.0
-7.1

- 2.0

3.8

16.8

23.1

30.6

34.8

41.7

49.6

55.1

60.6

63.4

68.8
73.8

76.2



114

Titration number 5 continued Titration number 6

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

9.80 80.9 0.00 -72.9

10.00 84.8 1.00 -69.6

10.20 89.5 2.00 -66.3

10.50 94.3 3.00 -63.2

10.80 98.4 5.00 -56.8

11.00 100.9 6.00 -53.8

11.50 106.3 8.00 -48.1

12.00 111.0 10,00 -42.4

13.00 118.5 11.00 -39.7

14.00 124.5 13.00 -34.1

15.00 129.4 15.00 -28.7

16.50 135.5 16.00 -25.9

18.00 140.5 18.00 -20.4

20.00 146.0 20.00 -14.8

21.00 -11.9

22.00 —9 .0

24.00 -2.7

26.00 3.8

28.00 11.2

30.00 19.3

31.00 23.7

33.00 32.6

34.00 37.1

35.00 41.5

Total number of readings = 166,
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The data was analysed using SCOGS least squares program which was

offered a range of species having p = O -> 2, q = 0 - > 2  and r = -2 ^ 3,
79in addition to AH, AH^ and Zn(OH)^ , the g values for the latter being

held constant. The 'best' log constants obtained were

log = 3.38 + 0.03

log gg^o = 5.39 + 0.15

log g^^^ = 9.09 + 0.08

log g = -4.68 + 0.48 11—1 —

These constants gave a standard deviation in titre of 0.68. The system
+can thus be described by the four complexes Zn(glycylglycylglycinate) ,

oZn(glycylglycylglycinate)2' Zn(glycylglycylglycinate)H , and 

Zn(glycylglycylglycinate)0H°.

The zinc-glycylglycylglycinate complexes produced a pattern of 

formation curves as the glycylglycylglycinate-zinc ratio was varied.

This was taken as evidence of protonated,hydroxy or polynuclear complexes 

being present and some of these were indeed found in SCOGS, Then the best 

'PSEUDOPLOT fit was obtained (figure 30) .
The next stage involved COMPLOT computer simulation models of 

species distribution in solutions at different ph (figure 31). These 3

models require the total concentrations of zinc and glycylglycylglycinate 

(5.00 and 10.00 mM respectively) and the formation constants from table 37.

Table 37 below lists our formation constants of the complex formation 

of glycylglycylglycinate and some of the published results from other 

workers as a comparison.
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TABLE 37

Log formation constants (B ) for the protonation and
oPq::'the metal complexes at 37 C and J = ISOmM NaClO^y n = 

number of experimental observations and S denotes the 
standard deviation

B p q r log 3 S n literature data (0^/°C, X/M, log $) Ref

1 0 1 7.59 0.01 173 25, 0.15(KNO^), 8.02 90

1 0 2 10.70 0.01 30, 0.09(KCl), 3^0^ 7.74 95

Zn 1 1 0 3.38 0.03 166 37, 0.15(KNO), 3^3.00, 3 5.34 91

2 1 0 5.39 0.15 25, 0.15(KNO ), 3^ 3.18 90

1 1 1 9.09 0.08 25, ->■ 0 , 3 ,̂ 3.33, 3^ 6.32 96

1 1 -1 -4.68 0.48 25, 0.01 (ZnSO ), 3 2.6 92

Protonation Constants,of Acetate

The formation curve (figure 32) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log Kioi = 4.55 + 0.01 SUM OF SQUARES = 2.15 x lo”^ (mol^ dm~^)  ̂|
É

(163 readings). |
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TABLE 38

Experimental results for the protonation of acetate

Titration
number

Titrate
(mM)

(S) Titrant
(mM)

(T) Initial 
volume (ml)

E° (mV)

A H A H

1 100.00 124 .52 100.00 200.10 20.00 356.4

2 50.00 124 .52 50.00 160.10 20.00 356.5 €

3 25.00 93 .76 25.00 140.91 20.00 356.7

4 10.00 93 .76 10.00 100.05 20.00 356.3

Titration number 1 Titration number 2

1

volume 
added (ml)

emf (mV) volume
added

emf (mV)
(ml)

1.05 220.9 6.40 211.4

1.10 217.1 6.50 205.8

1.15 213.2 6.60 199.3

1.20 208.9 6.65 195.6 1
1.24 205.0 6.70 191.7

1.27 201.7 6.75 187.5

1.30 198.6 6.80 183.0 1
1.35 193.2 6.85 179.1 Ï
1.40 187.6 6.90 174.9 \j
1.42 185.4 7.00 166.4

-J

1.45 182.3 7.10 158.6

i
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Titration number 1 continued Titration number 2 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

1.50 177.4 7.20 152.4

1.55 172.9 7.30 146.5

1.60 168.4 7.40 141.8

1.65 164.5 7.50 137.6

1.70 161.0 7.60 133.7

1.80 154.6 7.70 130.2

1.85 152.2 7.80 127.1

1.90 149.5 8.00 121.4

2.00 144.8 8.30 114.2

2.10 140.8 8.60 108.1

2.20 137.2 9.00 101.0

2.30 134.0 9.50 92.8

2.50 128.3 10.00 86.3

2.70 123.5 11.00 73.1

2.90 119.2 12.00 60.0

3.20 113.4 13.00 45.4

3.50 108.6 13.50 36.5

4.00 101.3 14.00 25.4

4.50 94.9 14.20 19.9

5.00 89.2 14.40 13.3

6.00 78.6 14.60 5.2

7.00 68.6 14.70 0.2

8.00 58.5 14.80 -5.7

9.00 47.5 14.90 -13.5
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Titration number 1 continued Titration number 2 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (raV)

10.00 34.2 14.95 -18.1

10.50 25.5 15.00 -23.8

10.60 23.6 15.10 -40.6

10.70 21.5 15.15 -54.5

10.80 19.3

11.00 14.5

11.20 8.9

11.40 2.4

11.50 -1.7

11.70 -11.4

11.80 -17.9

11.90 -26.2

11.95 -31.5

12.00 -38.3
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Titration number 3 Titration number 4

volume 
added (ml )

emf (mV) volume 
added (ml)

emf (mV)

7.10 221.1 13.20 220.9

7.20 217.6 13.50 215.2

7.30 213.4 14.88 158.0

7.50 205.4 15.00 156.3

7.60 199.8 15.05 152.0

7.70 194.1 15.10 147.9

7.80 187.4 15.15 143.8

7.85 183.4 15.20 140.0

7.90 179.3 15.30 133.0

8.00 170.2 15.40 126.8

8.05 165.4 15.45 124.0

8.10 160.8 15.50 118.8

8.15 156.4 15.60 111.6

8.18 153.6 15.70 107.4

8.20 151.8 15.90 99.8

8.23 149.3 16.10 92.9

8.26 147.0 16.30 86.5

8.30 144.0 16.50 80.4

8.35 140.7 16.80 71.4

8.40 137.5 17.10 62.0

8.50 132.2 17.40 51.7

8.60 127.3 17.60 43.9

8.70 123.1 17.80 34.6

8.80 119.1 18.00 22.2
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Titration number 3 continued Titration number 4 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

9.00 112.1 18.10 14.1

9.20 105.9 18.25 —4.0

9.50 97.9 18.30 -14.0

9.80 90.8 18.32 -19.2

10.00 86.2 18.35 -28.5

10.20 81.3 18.37 -36.9

10.30 79.0 18.38 -41.9

10.40 76.8 18.40 -59.1

10.60 72.6

10.80 68.4

11.10 61.7

11.40 54.6

11.80 44.1

12.20 30.4

12.40 21.5

12.60 9.8

12.70 1.3

12.75 -4.8

12.85 -17.8

I
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Formation Constants for Zn(II) - Acetate Complexes

The formation curve (figure 33) was obtained from the results in 

table 39.

TABLE 39

Experimental results for the Zn(II) - acetate system

Titration
number

Initial concentrations (mM) 
Titrate (S) and Titrant (T)

Initial E (mV) 
volume (ml)

Ligand (A) Metal (Ë) Acid (H)

S T S T S T

1 0 4.00 2.00 0 14.54 -28.06 20.00 355.8

2 0 4.00 4.00 0 16.63 -28.06 20.00 355.9

3 0 1.00 2.00 0 14.54 -28.06 20.00 355.8

Î

Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

3.00

3.50

4.50

5.50

7.00

7.50 

7.80 

8.10

229.0 

226.2 

219.9 

212.3 

196.5

188.7

183.0

175.7

5.00

6.00

6.50

7.00

8.00 

9.00

9.50 

9.80

223.5

217.1 

213.3

209.1 

198.7

183.2 

171.0

160.6
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Titration number 1 continued Titration number 2 continued

volume 
added (ml )

emf (mV) volume 
added (ml)

emf (mV)

8.30 169.8 9.90 156.1

8.50 162.4 10.62 104.2

8.70 153.0 10.70 98.3

8.80 147.0 10.80 91.5

8.85 143.8 10.90 84.8

8.90 140.2 11.00 78.1

8.95 136.4 11.20 64.6

9.00 132.4 11.30 57.5

9.10 123.8 11.50 40.6

9.20 114.8 11.55 35.4

9.30 106.0 11.60 29.1

9.40 97.8 11.70 13.9

9.50 90.0 11.80 -15.6

9.60 82.5 11.82 -26.3

9.70 75.0 11.84 -40.1

9.80 67.4 11.85 -47.9

9.90 59.6

10.00 50.8 Titration number 3
10.05 44.3

10.10

10.20

38.0

23.2

volume 
added (ml)

emf (mV)

10.30 -1.1 7.00 203.7

10.35 -27.1 7.50 198.1

8.00

8.20
191.3

188.0

Total number of readings = 59
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comparison.

a

The data was analysed using the MINIQUAD program which was offered a range

of species having p = Q 2, q - 0->2, and p = -2 3, in addition to
97AH and Zn(OH) , the 3 values for the latter being held constant. The

’best' log constants obtained were

log 3 = 2.69 + 0.32

log 3^0-, = 10.02 + 0.43IZL —

-7These constants gave a sum of squares - 1.60 x 10 . The system can -y:
+ 4+ Sthus be described by the two complexes Zn(acetate) and Zn^(acetate)H

The zinc-acetate complexes produced a pattern of formation curves

as the acetate-zinc ratio was varied. This was taken as evidence of

protonated, hydroxy or polynuclear complexes being present and some of these

were indeed found in MINIQUAD.Then the best PSEUDOPLOT fit was obtained «

(figure 34).

The next stage involved COMPLOT computer simulation models of species 

distribution in solutions at different ph (figure 35) . These models 

require the total concentrations of zinc and acetate (7.65 and 15.30 mM

respectively) and the formation constants from table 40. |

Table 40 below lists our formation constants of the complex formation 

of acetate and some of the published results from other workers as a %
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TABLE 40

Log formation constants (3 ) for the protonation andpqr
the metal complexes at 37 C and I = ISOmM NaClO^; n = 
number of experimental observations and S denotes the

standard deviation

B P q r log 3 S n literature data (0^/°C, %/M, log 3 ) Ref

1 0 1 4.55 0.01 164 20, O.lO(NaClO^), 3 4.55 98

Zn 1 1 0 2.69 0.32 59 20, O.lO(NaClO^),3^^^1.28,32^q2 .09 98

1 2 1 10.02 0.43 25, 0 corr., 99

Protonation Constants of Galacturonate

The formation curve (figure 36) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log. = 3.21 + 0.01 SUM OF SQUARES = 2.84 x lo“^ (122 readings)
2(mol dm )
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TABLE 41

Experimental results for the protonation of galacturonate

Titration
number

Titrate (S) 
(mM)

Titrant (T) 
(mM)

Initial E°(mV) 
volume (ml)

A H A H

1 91.45 10.73 0 -100.00 20.00 363.4
-3

2 45.72 5.37 0 -100.00 20.00 363.4 %
3 22.86 2.68 O -50.00 20.00 364.2

4 13.73 2.15 0 -40.00 20.00 363.9 1
5 9.14 1.07 0 -24.03 20.00 363.9

6 4.57 0.53 0 -12.01 20.00 363.9

Titration number 1 Titration number 2

volume emf (mV) volume emf (mV)
added (ml) added (ml) J

2.00 232.8 1.20 219.8

3.00 222.9 1.70 212.5 i
4.00 213.6 2.10 206.7

5.00 205.2 2.60 199.9

6.00 197.7 3.00 194.7

8.00 184.4 3.50 188.5

10.00 172.7 4.00 182.5 1
12.00 161.0 4.50 176.8

i13.00 155.0 5.00 171.2
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Titration number 1 continued Titration number 2 continued

volume 
added (ml)

emf (mV)

14.00 148.9

15.00 142.1

15.60 137.8

16.20 133.1

16.50 130.6

17.00 125.9

17.50 120.8
18.00 114.8

19.00 98.5

19.40 88.5

19.80 73.1

20.00 60.9

20.05 54.1

20.10 47.8

20.20 31.7

volume 
added (ml)

emf (mV)

6.00

6.50

7.00 

7.40 

7.80

8.50

9.00

9.50 

9.70 

9.90 

9.95

10.00

10.02

10.10

160.2

154.4

148.2 

143.0

137.2

125.4

114.2 

97.7 

87.6

72.0

66.4

59.5 

54.3

31.0
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00

0.30

0.80

1.30

2.00

2.50

3.00

4.00

5.00

6.00

7.00

8.00 

9.00

9.50 

9.60 

9.90

10.00

10.10

222.0

218.9

213.8

208.4

200.7

195.2

189.8

179.3

168.9

158.3

146.9 

133.1 

113.7

97.8

93.3

74.0 

63.2

59.0

0.00

0.30

0.80

1.50 

2.00

2.50

3.00

4.00

5.00

5.60 

5.20

6.50 

6.80
7.00 

7.30

7.60 

7.70 

7.80 

7.85 

7.90

216.2

212.8
207.2 

198.8

192.7 

186.6

180.3

167.6

154.2

145.2

134.6

128.3

120.8
115.0

104.0 

86.8 
77.9 

64.6 

54.1 

38.5
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Titration number 5 Titration number 6

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00

0.50

0.90

1.30

1.70 

2.10 

2.60

3.10

3.70

4.50

5.20 

6.00

6.70

7.20

7.70 

7.90

8.10
8.30 

8.40

8.50

205.1 

200.7

197.1

193.4

189.6

185.6

180.7

175.6

169.4

160.7

152.1 

141.9 

130.6

120.4 

106.3

98.3

87.6

71.0

56.5

26.8

0.00

0.50

1.00

1.50 

2.00

3.00

4.00

5.00

5.50

6.50

7.00

7.50 

7.90 

8.20 

8.30 

8.40 

8.45

192.0

188.4

184.8

181.1

177.2

168.8 

159.8

149.5

143.7

129.5

120.2
107.8

92.5 

72.9 

61.1

41.6 

23.3
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Formation Constants for 2n(II) - Galacturonate Complexes

To within the limits of hydrolysis and solubilities, this system 

was studied using a pattern of titrations where both A and B (the total 

concentrations of ligand and zinc respectively) were held constant and 

equal in the titrate and titrant, the sole difference in these solutions 

being their perchloric acid concentrations.

The formation curve (figure 37) was obtained from the results in 

table 42.

TABLE 42

Experimental results for the Zn(II) - galacturonate system

Titration
number

Initial
Titrate

concentrations 
(S) and Titrant

(mM)
(T)

Initial 
volume (ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 82.41 82.41 11.75 11.75 -49.13 26.67 20.00 361.4

2 41.20 41.20 11.75 11.75 -28.89 23.56 20.00 361.4

3 20.60 20.60 11.75 11.75 -18.92 23.56 20.00 361.4

4 11.00 11.00 11.75 11.75 -8.89 23.56 20.00 361.4

5 5.50 5.50 11.75 11.75 1.11 23.56 20.00 361.4
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 159.1 0.00 147.2

0.50 161.5 0.10 148.2

1.00 163.9 0.20 149.0

2.00 168.2 0.40 150.4

2.50 170.2 0.50 151.2

3.00 172.0 0.70 152.6

4.00 175.5 0.80 153.3

5.00 178.8 1.00 154.6

6.00 181.8 1.20 155.9

7.00 184.6 1.50 157.6

8.00 187.3 1.80 159.4

8.50 188.6 2.00 160.5

9.00 189.8 2.30 162.1

9.50 191.1 2.60 163.7

10.00 192.4 3.00 165.7

11.00 194.6 3.50 168.1

11.50 195.8 4.00 170.4

12.00 196.8 4.50 172.5

12.50 197.9 5.00 174.6

13.00 198.9 5.50 176.6

14.00 201.0 6.00 178.6

15.00 203.0 7.00 182.1

16.00 205.0 7.50 183.9

17.00 206.8 8.00 185.6

18.00 208.5 8.50 187.2
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Titration number 1 continued Titration number 2 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

19.00 210.3 9.00 188.8

20.00 211.9 10.00 191.9

21.00 213.5 11.00 194.8

22.00 215.1 11.50 196.2

23.00 216,5 12.00^ 197.6

24.00 218.0 13.00 200.3

25.00 219.4 13.50 201.5

26.00 220.7 14.00 202.8

27.00 221.9 14.50 204.0

28.00 223.1 15.00 205.2

29.00 224.3 16.00 207.5

30.00 225.3 17.00 209.7

18.00 211.7

19.00 213.7

20.00 215.7

21.00 217.7

22.00 219.2

23.00 220.9

24.00 222.4

25.00 223.8

26.00 225.3
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00

0.10

0.20

0.30

0.50

0.70

1.00

1.30 

1.60

1.90 

2.20
2.50

2.90

3.30 

3.80

4.50

5.00

6.00

7.00

8.00 

9.00

10.00

11.00

11.50

12.00

112.4

115.4

117.8 

120.1

124.2

127.7

132.5

136.7

140.5

143.9

147.0

149.9

153.4

156.6

160.4

165.2

168.3

174.1

179.5

184.4

188.9

193.2

197.3 

199.2 

201.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.80

1.00

1.20

1.40 

1.60 

1.80 

2.00 

2.20
2.40 

2.60 

2.80

3.00

3.20

3.40 

3.60 

3.80

4.00

4.20

137.0

139.0

140.9 

142.7

144.4

146.0

147.6

150.6

153.4

156.1

158.5

160.9

163.2

165.4

167.5

169.5

171.4

173.2

175.0

176.9

178.6

180.3

181.9

183.5

185.0
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Titration number 3 continued Titration number 4 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

13.00 204.5 4.40 186.5

14.00 207.7 4.60 188.0

15.00 210.7 4.80 189.4 1
16.00 213.4 5.00 190.8

17.00 215.9 5.30 192.8 i
18.00 218.2 5.60 194.7

19.00 220.3 6.00 197.2 %
20.00 222.3 6.50 200.1

21.00 224.0 7.00 202.9

22.00 225.6 7.50 205.3

9.00 212.0

10.00 215.8

11.00 218.9
-

12.00 221.8 M

13.00 224.2

13.50 225.4

14.00 226.4
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Titration number 5

volume 
added (ml)

emf (mV)

0.00 204.5

0.10 205.5

0.15 205.9

0.20 206.3

0.30 207.1

0.50 208.4

0.70 209.6

0.80 210.3

1.00 211.5

1.20 212.7

1.40 213.8

1.70 215.3

2.00 216.8

2.30 218.1

2.60 219.4

3.00 221.0

3.40 222.6

3.80 223.9

4.20 225.2

4.50 226.1

Total number of readings = 180.
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The data was analysed using the MINIQUAD program which was offered the

range of species having p = O 2, q = 0 ^ 2 ,  and p == -2 3, in addition
97to AH and Zn(OH) , the 3 values for the latter being held constant.

The 'best' log constants obtained were

log 3 Q = 1.73 + 0.03 

log 3oi^ = 2.62 + 0.06/XU —

log 3^11 = 3.93 + 0.10 

log 3nn 1 = 3.37 + 0.10XX—X —

These constants gave a sum of squares = 6.33 x 10 ^ . The system can
+thus be described by the four complexes Zn(galacturonate) ,

Zn(galacturonate)2f Z n ( g a l a c t u r o n a t e ) a n d  Zn(galacturonate)0H*^.

The zinc-galacturonate complexes produced a pattern of formation 

curves as the galacturonate-zinc ratio was varied. This was taken as 

evidence of protonated, hydroxy, or polynuclear complexes being present arid

some of. these were indeed found in MINIQUAD. Then the best PSEUDOPLOT fit 

was obtained (figure 38).

The next stage involved COMPLOT computer simulation models of 

species distribution in solutions at different ph (figure 39). These 

models require the total concentrations of zinc and galacturonate 

(7.65 and 15.30 mM respectively) and the formation constants from table 43.

Table 43 below lists our formation constants of the complex formation 

of galacturonate and some of the published results from other workers as 

a comparison.
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TABLE 43

Log formation constants for the protonation and
the metal complexes at 37°C and J = ISOmM NaClO^; n = 
number of experimental observations and S denotes the

standard deviation

B p r log 6 S n literature data (8^/°C, J./M, log 3) Ref

1 0 1 3.21 0.01 122 37,0.15 BkClOjyf^Q^ll.42, E^Q2l4.65 52

Zn 1 1 0 1.73 0.03 180

2 1 0 2.62 0.06

1 1 1 3.93 0.10

1 1 ~1 -3.37 0.10

Protonation Constants of g-Eydrpxybutyrate ;

The formation curve (figure 40) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log = 4 . 4 9 + 0 . 0 2  SUM OF SQUARES = 6.48 x 10“^ (mol^ dm” )̂

(147 readings).
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TABLE 44

Experimental results for the protonation of 3~hydroxybutyrate

Titration
number

Titrate (S) 
(mM)

Titrant (T) 
(mM)

Initial E°(mV) 
volume (ml)

A H A H

1 20.00 46.74 ,20.00- 160,.10 20.00 357.9

2 15.00 37.41 15.00 -100 .05 20.00 358.9

3 10.00 31.13 10.00 -80 .04 20.00 358.1

4 5.00 31.13 5.00 -80 .04 20.00 357.0

Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume
added (ml)

emf (mV)

2.10 219.2 2.90 213.7

2.20 214.7 3.20 202.5

2.30 209.4 3.50 186.2

2.35 206.3 3.60 179.3

2.40 202.6 3.70 171.7

2.50 195.3 3.80 164.0

2.60 186.8 3.90 156.7

2.65 181.6 4.00 150.0

2.70 176.0 4.10 143.7

2.75 170.1 4.30 133.4

2.80 164.2 4.40 129.0
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I

Titration number 1 continued Titration number 2 continued

volume emf (mV) volume emf (mV) 1added (ml) added (ml)

2.85 158.7 4.60 121.0

2.90 153.8 4.80 114.0

2.95 149.0 5.00 107.5

3.00 145.1 5.30 98.4

3.05 141.3 5.60 89.8

3.10 137.6 6.00 77.9

3.15 134.1 6.30 67.9
1

3.20 130.2 6.60 56.2

3.40 119.5 6.80 46.4

3.50 115.3 7.00 33.0

3.70 107.8 7.10 23.6 4
3.90 100.6 7.15 17.5

4.10 93.5 7.20 9.9

4.30 86.3 7.26 -2.7

4.50 79.1 7.30 -15.8

4.70 71.2 7.31 -20.4

5.00 57,1 7.33 -31.9 1
5.20 44.3 7.35 -50.9

15.25 40.0

5.30 35.1
j

5.40 23.8 "A
%

5.50 5.2 i'i
5.52 —2.0
5.53 -7.3
5.54 -13.9 3;
5.55 -21.1
5.56 -29.9 1
5.57
5.58

-40.5 
-61.0
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Titration number 3 Titration number 4

volume 
added (ml)

emf (raV) volume 
added (ml)

emf (mV)

3.00 219.1 4.50 216.6

3.20 215.2 4.70 212.4

3.40 210.6 4.90 207.5

3.60 204.5 5.10 201.5

3.80 198.1 5.30 194.2

3.90 194.1 5.50 184.8

4.00 189.5 5.60 179.1

4.10 184.1 5.70 172.0

4.20 178.1 5.80 163.8

4.25 174.7 5.85 159.4

4.30 171.2 5.90 154.7

4.34 168.1 5.95 149.8

4.38 165.3 6.00 144.8

4.42 162.2 6.05 140.0

4.47 158.4 6.10 135.4

4.52 154.6 6.20 126.8

4.55 152.5 6.30 119.0

4.60 149.0 6.40 112.0

4.65 145.5 6.50 105.3

4.70 142.4 6.60 99.0

4.75 139.3 6.65 95.8

4.80 136.4 6.70 92.6

4.85 133.5 6.80 86.4
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Titration number 3 continued Titration number 4 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

4.95 128.4 6.90 79.8

5.00 125.9 7.00 72.9

5.20 117.0 7.10 63.9

5.40 109.2 7.20 56.2

5.60 102.0 7.30 45.1

5.90 91.5 7.35 38.3

6.20 81.1 7.40 29.5

6.50 69.9 7.45 17.4

6.70 61.5 7.48 6.5

6.80 56.6 7.50 -3.5

7.00 45.0 7.52 -19.3

7.10 37.5 7.53 -31.4

7.15 33.3 7.54 -54.8

7.25 22.2

7.35 5.7

7.38 -2.3

7.40 -8.4

7.41 -13.3

7.42 -16.9

%
?
I
A

i
i
6

1

...ii
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Formation Constants for Zn(II) - g-Hydroxybutyrate Complexes

The formation curve (figure 41) was obtained from the results in 

table 45.

TABLE 45

Experimental results for the Zn(ll) - 3-hydroxybutyrate system

Titration Initial concentrations (mM) Initial E°(mV) V
number Titrate (S) and Titrant (T) volume (ml )'

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 8.00 2.00 0 14.54 -40.02 20.00 358.1

2 0 16.00 2.00 0 14.54 -40.02 20.00 358.1

Titration number 1 Titration number 2

volume emf (mV) volume emf (mV) :>'S
added (ml) added (ml)

6.15 124.5 5.20 141.2

6.20 120.1 5.30 133.8 ■ s

6.30 111.4 5.40 126.6
6.40 103.1 5.50 119.9

6.45 99.2 5.55 116.9

6.50 95.4 5.65 111.0

6.55 91.2 5.80 102.8
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Titration number 1 continued Titration number 2 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

6.65 83.2 5.90 97.6

6.70 78.9 6.00 92.6

6.80 70.3 6.20 82.7

6.85 65.5 6.40 72.8

6.90 60.1 6.60 61.9

6.95 54.2 6.90 40.4

7.00 47.5 7.10 14.1

7.04 41.2 7.15 2.2

7.07 35.7 7.17 -3.9

7.10 29.0 7.20 -16.7

7.13 21.0

:

Total number of readings = 35.

The data was analysed using the MINIQUAD program which was offered a range

of species having p = O 3, q ~ 0 - ^ 2  and r - -2 3, in addition to
97AH and Zn(OH) , the 3 values for the latter being held constant. The 

'best' log constants obtained were

log ggio = 5.81 + 0.05

log 3 ^2 = 9.73 + 0.12

log 3r,oT = 13.33 + 0.09ZZL —

log ^222 “ 17.47 +_ 0.09

log GLgi = 16.27 + 0.10
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-9 yThese constants gave a sum of squares = 2.97 x 10 . The system can .g

thus be described by the five complexes Zn(3-hydroxybutyrate)
3+ 3+Zn(3-hydroxybutyrate) , Z n ^ ( 3 - b y d r o x y b u t y r a t e ) ,

4+ 2+ZUg(3-hydroxybutyrate)gHg / Zn^(3-hydroxybutyrate)
,iSThe zinc-3-hydroxybutyrate complexes produced a pattern of formation |
scurves as the 3-hydroxybutyrate-zinc ratio was varied. This was taken as 

evidence of protonated, hydroxy, or polynuclear complexes being present and 4

some of these were indeed found in MINIQUAD, Then the best PSEUDOPLOT fit '''
   . . -iiwas obtained (figure 42).

The next stage involved COMPLOT computer simulation models of 

species distribution in solutions at different ph (figure 43). These 

models require the total concentrations of zinc and 3-hydroxybutyrate 

(7.65 and 15.30 mM respectively) and the formation constants from 

table 46.

Table 46 below lists our formation constants of the complex formation 

of 3-hydroxybutyrate and some of the published results from other workers 

as a comparison.

I

i
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TABLE 46

Log formation constants for the protonation and
the metal complexes at 37°C and I = ISOmM NaClO^, n = 
number of experimental observations and S denotes the 

standard deviation

B p r log 3 S n Literature data (0^/°C,J /M, log 3) Ref

1 0 1 4.49 0.02 148 31, O.l(NaClO^), 3^ 4.40 100

Zn 2 1 0 5.81 0.05 35 25, 0.2(KCl), 3. 1.06 101

1 1 2 9.73 0.12

2 2 1 13.33 0.09

2 2 2 17.47 0.09

3 2 1 16.27 0.10

Protonation Constants of Malate

The formation curve (figure 44) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log = 4.48 +0.01

*101+102' + 0.01

(183 readings)

These constants gave a sum of squares = 1.56 x 10 ^ (mol^ dm



146

TABLE 47

Experimental results for the.protonation of malate

Titration
number

Titrate
(mM)

(S) Titrant (T) 
(mM)

Initial 
volume (ml)

E°(mV)

A H A H

1 100.00 5.37 100.00 -200.00 20.00 354.6

2 50.00 5.37 50.00 -151.50 20.00 354.6

3 25.00 5.37 25.00 -151.50 20.00 354.6

4 10.00 1.07 10.00 -30.30 20.00 354.6

5 5.00 5.34 5.00 -25.00 20.00 354.6

%

Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00

0.20

0.60

1.00

1.40

1.80

2.30 

2.80

3.30

4.00

5.00

238.0

234.0

226.7

219.8

213.6

207.9

201.6
196.1

191.2 

185.4

178.3

0.00

0.20

0.50

0.80

1.20
1.50 

1.90 

2.30 

2.70 

3.00

3.50

232.7

228.5

223.1

217.6

210.2

205.0

198.6

192.8 

187.4

183.8

178.1

. 3 4
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Titration number 1 continued Titration number 2 continued

volume- emf (mV) volume emf (mV)
added (ml ) added (ml) A-

6.00 172.3 4.00 172.9

8.00 162.0 4.60 167.0

10.00 153.4 5.20 161.6 i

12.00 146.0 6.00 155.0 %
15.00 136.3 7.00 147.2

16.00 133.3 8.00 139.9

18.00 127.9 9.00 133.0

20.00 123.1 10.00 126.4

23.00 116.6 11.20 118.9

26.00 111.1 12.50 111.6 ■j

28.00 107.8 14.00 103.8

30.00 104.8 16.00 94.7

33.00 100.7 18.00 86.7

35.00 98.2 20.00 79.4

37.00 95.9 22.50 70.8

40.00 92.8 25.00 62.8 ■1

43.00 89.9 28.00 53.1

45.00 88.2 30.00 46.2 3;

50.00 84.3 33.00 34.7

36.00 20.1

37.00 9.6 1

38.30 4.0

38.90 -1.9

39.50 -9.0
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Titration number 2 continued Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

40.00 -16.7 0.00 202.3

40.50 — 26.9 0.50 197.2

40.80 -35.5 1.00 192.4
41.00 -43.0 1.40 188.6

41.50 -50.5 1.80 184.9

42.52 -58.1 2.50 178.5
42.61 -65.6 3.00 174.0

3.50 169.8

Titration number 3 4.50 161.6

5.50 154.0

volume emf (mV) 6.00 150.3
added (ml)

6.50 146.6
0.00 227.8 7.00 143.1

0.20 222.7 7.50 139.6

0.35 218.9 8.00 136.1
0.50 214.9 9.00 129.4
0.70 209.3 10.00 123.0

1.00 201.0 11.00 116.8

1.20 195.3 12.00 111.0

1.50 187.5 13.00 105.6
1.80 180.1 15.00 95.9
2.00 175.4 16.00 ■ 91.4

2.30 168.7 18.00 83.3 ,
2.60 162.5 19.00 79.5



149

Titration number 3 continued Titration number 4 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

3.00 154.3 20.00 75.9

3.30 148.3 21.00 72.3

3.60 142.5 22.00 68.9

3.90 136.6 24.00 62.4

4.00 134.6 26.50 54.1

4.30 128.9 30.00 42.0

4.60 123.3 32.00 34.5

4.90 117.6 35.00 21.0

5.40 108.6 36.50 12.4

5.80 101.7 37.90 2.4

6.30 93.5 38.50 -3.0

6.80 85.7 39.00 -8.3

7.50 75.0 39.40 -13.2

8.00 67.3 39.70 -17.5

8.70 55.8 40.00 -22.7

9.00 50.4 40.30 -29.1 •i
9.50 40.2 40.52 -34.6

9.80 32.9 40.58 -36.3

10.00 27.1

10.30 16.3

10.50 6.2

10.70 -8.6

10.80 -19.7
1
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Titration number 5

volume emf (mV )
added (ml)

4.00 189.4
4.50 184.4
5.00 179.1
5.50 173.7
6.00 168.2
6.50 162.6
7.00 157.0
7.50 151.4
8.00 145.6
8.50 139.9
9.00 134.1
10.00 122.4
10.50 116.3
11.00 110.5
11.50 105.0
12.50 94.5
13.00 89.5
13.50 84.7
14.00 80.0
15.00 70.5
16.00 61.0
17.00 50.7
18.00 38.6
18.60 29.8
19.00 22.7
20.00 -6.3
20.10 -11.9
20.15 -15.0
20.20 -18.4
20.30 -26.4
20.32 -28.5
20.34 -30.7
20.36 -32.9
20.38 -35.6
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Formation Constants for Zn(II) - ?-fa.late Complexes

To within the limits of hydrolysis and solubilities, this system 

was studied using a pattern of titrations where both A and B (the total 

concentrations of malate and zinc respectively) were held constant and 

equal in the titrate and titrant, the sole difference in these solutions 

being their perchloric acid concentrations.

The formation curve (figure 45) was obtained from the results in 

table 48.

TABLE 48

Experimental results for the Zn(II) - malate system

Titration
number

Initial
Titrate

concentrations (mM) 
(S) and Titrant (T)

Initial 
volume (ml)

E° (mV)
«

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 90.00 90.00 11.75 11.75 -179.00 26.67 20.00 361.4
1

2 45.00 45.00 11.75 11.75 -88.89 26.67 20.00 361.4

3 25.00 25.00 11.75 11.75 -38.89 17.33 20.00 361.4

4 12.00 12.00 11.75 11.75 -18.92 23.56 20.00 361.4

5 6.00 6.00 11.75 11.75 -8.89 23.56 20.00 361.4
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.15

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1.00

1.20
1.50 

1.80 

2.10

2.50

3.00

3.50

4.00

4.50

5.00

6.00

7.00

8.00 

9.00

10.00

11.00

3.5

7.3

13.7

19.0

23.4

27.2

30.5

33.6

39.0

43.6

49.3 

54.2

58.6

63.6

69.1

74.1 

78.5

82.4

86.2
93.0

99.1

104.8 

110.0

114.9 

119.4

0.10

0.15

0.20

0.25

0.30

0.40

0.50

0.60

0.80

1.00

1.20
1.50 

1.80 

2.20

2.50

3.00

3.50

4.00

4.50

5.00

7.00

8.00 

10.00 

11.00 

13.00

22.0

24.5

26.9

29.0

31.0

34.7

38.0

41.0

46.3

50.9

55.1

60.4

65.1

70.8

74.5

80.4

85.6

90.4

94.9

99.2

113.9 

120.3

131.1

135.9

144.1
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Titration number 1 continued Titration number 2 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

13.00 127.6 15.00 151.0

15.00 134.7 16.00 154.2

16.00 137.8 18.00 159.8

18.00 143.7 20.00 164.8

20.00 148.8 22.00 169.3

23.00 155.4 25.00 175.6

26.00 161.1 28.00 181.1

30.00 167.7 30.00 184.5

33.00 172.0 33.00 189,2

36.00 175.8 37.00 195.1

40.00 180.5 40.00 199.1 f
45.00 185.1 44.00 204.1

50.00 189.3 i

55.00 193.4 Titration number 3

60.00 197.4

65.00 200.9 volume 
added (ml)

emf (mV) ■ 'i 
'%
Â70.00 204.4

0.20

0.40

99.9

102.1

lÿ'
Ï

0.60 104.2

0.80 106.2 a;■'1
1.00 108.2 J

1.30 111.1

1.60 113.8 1
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Titration number 3 continued Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (raV)

2.20 118.9 0.50 117.0

2.50 121.3 0.80 120.9

3.00 124.9 1.00 123.4

3.40 127.7 1.40 127.8

3.80 130.3 2.00 133.9

4.00 131.5 2.50 138.5

4.50 134.5 3.00 142.9

5.00 137.3 3.50 146.8

5.50 139.9 4.00 150.6

6.00 142.4 4.50 154.2

6.50 144.7 5.00 157.5

7.00 147.0 5.50 160.7

7.50 149.1 6.00 163.9

8.00 151.2 6.50 166.9

8.50 153.2 7.00 169.7

9.00 155.0 7.50 172.4

10.00 158.4 8.00 175.2

11.00 161.7 8.50 177.8

12.00 164.8 9.00 180.3

13.00 167.7 9.50 182.8

14.00 170.4 10.00 185.2

15.00 172.9 11.00 189.9

16.00 175.4 11.50 192.1
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Titration number 3 continued Titration number 4 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

18.00 179.9 12.00 194.3

20.00 184.2 12.50 196.3

22.00 188.0 13.00 198.3

23.00 189.9 13.50 200.2

25.00 193.4 14.00 202.1

28.00 198.3 15.00 205.6

30.00 201.3 16.00 208.8

32.00 204.1 18.05 214.6

35.00 207.8 19.00 216.9

20.00 219.1

i
I

i-
'./■

ï
I■I

21.00 221.1

■Î
-I
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Titration number 5 Titration number 5 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 122.6 7.80 200.9

0.10 124.4 8.00 202.0

0.20 126.2 8.60 205.3

0.30 127.9 9.00 207.2

0.50 131.0 10.00 211.6

0.70 134.0 10.50 213.7

0.90 137.0 11.00 215.5

1.10 139.9 11.40 216.9

1.50 145.1 11.80 218.1

1.70 147.6 12.00 218.8

2.00 151.2 12.40 219.9

2.30 154.7

2.50 156.9

2.80 160.1 Total number of readings = 1(

3.10 163.3

3.50 167.3

4.00 172.1

4.50 176.6

5.00 180.9

5.50 185.0

6.00 188.9

6.50 192.6

7.00 196.0

7.40 198.4
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The data was analysed using the MINIQUAD program which was offered a
range of species having p = O 3, q ~ 0->-2, and 2? = -2 ->■ 3, in

97addition to AH, AH^ and Zn(OH) , the 0 values for the latter being 

held constant. The 'best' log constants obtained were

log 0,,^ = 2.90 + 0.02 110 —

log 0_ = 4.65 + 0.04oXU —

log 0^^^ = 6.24 + 0.03 

log 0^^ ^ = -3.64 0.03

log 0^^2 = 8.87 + 0.04

These constants gave a sum of squares = 5.68 x lO ^ . The system can

thus be described by the five complexes Zn(malate)°, Znfmalate)^ ,
+  — 2+Zn(malate)H , Zn(malate)OH , and ZnfmalatelHg

The zinc-malate complexes produced a pattern of formation curves

as the malate-zinc ratio was varied. This was taken as evidence of

protonated, hydroxy, or polynuclear complexes being present and some of these

were indeed found in MINIQUAD. Then the best PSEUDOPLOT fit was

obtained (figure 46).

The next stage involved COMPLOT computer simulation models of

species distribution in solutions at different ph (figure 47). These

models require the total concentrations of zinc and malate (7.65 and

15.30 mM respectively) and the formation constants from table 49.
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Table 49 below lists our formation constants of the complex 

formation of malate and some of the published results from other 

workers as a comparison.

TABLE 49

B p q r log 3 S n literature data (0^/°C, X/ m , log 3) Ref

1 0 1 4.48 0.01 183 30, O.l(KCl), 3.4.78, 3g 8.00 102

1 O 2 7.59 0.01 20, O.l(NaClO^), 3 4.72, 3 8.00 103

Zn 1 1 0 2.90 0.02 184 25, 0.2(KC1),3^2.80, 1.57* 101

3 1 0 4.65 0.04 25, ^ 0, 3^ 3.32, K^oi/111 104

1 1 1 6.24 0.03 20, O.ltNaClO^), K102/112 1.66 t 105

1 1 -1 -3.64 0.03 ^101/111 2^93*
1 1 2 8.87 0.04

,s!Log formation constants (3 ) for the protonation and .!pqr
the metal complexes at 37 C and I ~ IBOmM NaClO^; n = 
number of experimental observations and S denotes the

standard deviation ;

%
I

?

*^102/112 ^  BHgA ] j
1
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Protonation Constants of Malonate

The formation curve (figure 48) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log = 5.09 + 0.01'

h01^102 = 2-58 ±  0.01

(200 readings)

these constants gave a sum of squares = 4.03 x 10 ^ (mol^ dm

TABLE 50

Experimental results for the protonation of'malonate

Titration
number

Titrate (S) 
(mM)

Titrant (T) 
(mM)

Initial E°(mV) 
volume (ml)

A H A H

1 100.00 2.68 100.00 -250.07 20.00 358.1

2 50.00 2,68 50.00 -200.06 20.00 358.1

3 25.00 2.68 25.00 -100.03 20.00 358.8

4 10.00 2.68 10.00 -50.01 20.00 358.6

5 5.00 2.68 5.00 -40.01 20.00 358.6
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Titration number 1 Titration number 2

volume 
added (ml )

emf (mV) volume 
added (ml)

emf (mV)

0.50 241.7 1.60 216.3

1.00 235.6 1.80 213.3

1.40 231.2 2.00 210.3

1.80 227.0 2.20 207.2

2.20 222.8 2.50 203.0

2,80 217.2 3.00 196.5

3.50 211.0 3.40 191.0

4.50 203.0 3.90 184.3

5.50 195.3 4.40 177.1

6.50 188.1 5.00 167.6

7.50 181.1 5.50 158.7

8.50 173.7 6.00 148.1

10.00 161.5 6.30 141.0

11.00 152.5 6.60 132.7

12.00 142.4 6.80 126.6

12.50 136.4 7.00 120.6

13.00 130.6 7.10 117.4

13.50 124.4 7.30 111.4

14.00 118.5 7.50 105.8

15.00 107.4 7.80 98.3

15.50 102.4 8.00 93.9

16.00 98.0 8.30 87.8

16.50 94.0 8.80 79.5
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Titration number 1 continued Titration number 2 continued

I
volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

17.00 90.4

18.00 84,1 9.50 70.3

20.00 74.2 10.00 64.6

22.00 66.8 10.50 58.9 ■Î

25.00 57.5 11.50 49.8

27.00 52.5 13.00 37.8

30.00 45.9 15.00 22.6

34.00 38.3 16.00 14.7

37.00 33.1 17.00 5.8

40.00 28.3 17.80 -2.7

45.00 20.6 18.20 -7.4

50.00 13.1 18.50 -11.3

155.00 5.5 18.80 -15.6

60.00 -2.6 19.10 -20.6 1̂
63.00 -8.0 19.40 — 26.4 !
66.00 -13.8 19.70 -33.3 1
70.00 -22.7 19.80 -36.0 ■1

20.00 —42.4 i
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

1.50 215.1 0.50 217.3

2.00 209.4 1.00 212.4

3.00 197.7 1.50 207.3

3.50 191.6 2.00 202.0

4.00 185.2 2.50 196.3

4.50 178.7 3.00 190.2

5.00 171.7 3.50 183.6

5.50 163.8 3.80 179.4

5.70 160.4 4.10 174.7

5.80 158.5 4.40 169.9

6.00 154.6 4.70 164.6

6.30 148.5 5.00 158.4

6.50 143.9 5.20 154.0

7.00 130.6 5.40 149.1

7.30 121.7 5.60 143.7

7.50 115.6 5.80 137.6

7.70 109.6 6.00 130.6

8.00 101.2 6.20 122.9

8.30 93.9 6.30 119.0

8.60 87.5 6.40 115.0

9.00 80.2 6.50 111.1

9.50 72.6 6.70 103.6

10.00 66.1 6.90 96.5
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Titration number 3 continued Titration number 4 continued

volume emf (mV) volume emf (mV) 1added (ml) added (ml)

10,50 60.3 7.10 90.2 4
11.00 55.2 7.30 84.6 1
12.00 46.1 7.50 79.7

13.00 37.9 7.70 75.4

14.00 30.2 8.00 69.3

15.00 22.5 9.00 53.2 '■■4

16.00 14.5 10.00 40.1

17.00 5.8 12.00 15.2 5
18.00 -4.3 13.00 0.6

18.30 -7.7 13.30 -4.7

19.00 -17.1 13.60 -10.6

19.30 -21.9 13.90 -17.6

19.60 -27.5 14.30 -29.6

20.00 -37.0 14.60 -42.6

20.30 . — 46.6 14.80 -55.8 1
20.40 -50.5 14.90 -65.8

20.50 -55.0 14.95 -72.3 1

Y

1
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Titration number 5 Titration number 5 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 213.9 4.60 95.5

0.20 211.4 4.70 89.8

0.50 208.2 4.80 84.5

0.70 206.0 4.90 79.6
1.00 202.3 5.10 71.1

1.30 198.5 5.20 67.3

1.60 194.5 5.40 60.5
2.00 188.4 5.70 51.6

2.40 181.6 6.00 43.3

2.70 175.9 6.30 35.5

3.00 169.1 7.00 16.8

3.20 164.1 7.50 1.1
3.40 158.4 7.70 -7.0

3.50 155.3 7.90 -17.1
3.60 151.9 8.10 -31.0

3.80 143.8 8.25 -47.7

4.00 134.0 8.35 -62.6

4.10 128.3

4.20 122.1

4.30 115.5

4.35 112.0

4.40 108.5

4.50 102.0
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Formation Constants for Zn(II) - Malonate Complexes

To within the limits of hydrolysis and solubilities, this system 

was studied using a pattern of titrations where both A and B (the total 

concentrations of malonate and zinc respectively) were held constant 

and equal in titrate and titrant, the sole difference in these solutions 

being their perchloric acid concentrations.

The formation curve (figure 49) was obtained from the results in 

table 51.

TABLE 51

Experimental results for the Zn(II) - malonate system

Titration
number

Initial
Titrate

concentrations (mM) 
(S) and Titrant (T)

Initial 
volume (ml)

E°(mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 85.00 85.00 9.98 9.98 -159.62 26.53 20.00 358.7

2 42.50 42.50 9.98 9.98 -79.68 23.85 20.00 358.7

3 21.25 21.25 9.98 9.98 -39.58 21.17 20.00 358.7

4 10.62 10.62 9.98 9.98 -19.60 19.85 20.00 358.7

5 5.31 5.31 9.98 9.98 0.43 18.49 20.00 358.7
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

1.00

1.50

2.20
3.00

4.00

5.00

6.00

7.00

8.00 

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00 

20.00 

21.00

23.00

25.00

22.7

29.5

37.8

45.9

55.2

63.9

72.5

81.2 

90.3

99.9 

110.1 

120.1 

129.2

137.4

144.5

150.6

155.9

160.5

164.7

171.6

174.6

179.9 

184.4

0.00

0.20

0.50

1.00

1.50 

2.00

2.50

3.00

4.00 

4.60 

5.20

6.00

7.00 

7.90

8.50

9.00 

10.00 

11.00 

12.00

13.00

14.00

15.00

16.00

5.6

11.0
17.9

27.4

35.3

42.3

48.8

54.9

66.4 
73.2 

80.0 

89.1

100.7 

111.0

117.5

122.8
132.7 

141.2

148.6 

155.0

160.6 

165.5

169.8
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Titration number 1 continued Titration number 2 continued

volume emf (mV) volume emf (mV) ■
added (ml) added (ml)

27.00 188.4 18.00 177.2

30.00 193.6 20.00 183.4

31.00 195.1 22.00 188.6

32.00 196.6 25.00 195.1

33.00 198.0 27.00 198.8 '

35.00 200.7 30.00 203.6

36.00 201.9 33.00 208.1 '

38.00 204.3 36.00 211.8

40.00 206.4 40.00 216.3

41.00 207.5 5
43.00 209.5

45.00 211.5
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV)

0.00

0.10

0.15

0.30

0.50

1.00

1.20

1.50

1.80

2.20

2.60

3.00

4.00

5.00

5.60 

6.10

7.00

7.60

8.00 

9.00

10.00

11.00

17.5 

22.7

24.4

28.6

33.4

44.0

48.0

53.3

58.4

65.0

71.1

77.2

91.3

104.7

112.4 

118.6 

129.1

135.5

139.7 

148.9

157.0

164.0

volume 
added (ml)

emf (mV)

0.00

0.10

0.20

0.40

0.60

0.90

1.20

1.50 

1.80 

2.10 

2.40 

2.70

3.00

3.50

4.00

4.50

5.00

5.50

6.00

7.00

8.00 

9.00

28.5

32.6

36.3 

42.9

48.6

56.3

63.3

69.7

75.5

81.3

86.6
91.7

96.8 

104.9 

112.8 
120.4 

128.0 

135.2

142.0

154.1

164.2

172.3
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Titration number 3 continued Titration number 4 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

12.00 169.9 10.00 179.2

13.00 175.0 11.00 184.8

15.00 183.5 13.00 193.8

17.00 190.3 15.00 200.7

20.00 198.6 18.00 208.9

22.00 203.3 20.00 212.8

24.00 207.0 22.00 216.3

26.00 210.3 24.00 219.4

28.00 213.4 26.00 221.9

30.00 216.2 28.00 224.1

30.00 226.0
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Titration number 5 Titration number 5 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 207.5 6.00 223.6

0.10 208.1 6.50 224.5

0.20 208.5 7.00 225.3

0.40 209.3 7.50 226.0

0.60 210.0 8.00 226.6

0.90 211.1 8.50 227.3

1.30 212.5 9.00 227.9

1.60 213.5 9.50 228.5

2.00 214.7 10.00 229.1

2.10 215.1

2.30 215.7

2.60 216.4 Total number of readings

2.80 217.0

3.00 217.4

3.20 217.9

3.50 218.7

3.80 219.3

4.00 219.8

4.40 220.6

4.70 221.2

5.00 221.8

5.50 222.7
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The data was analysed using the MINIQUAD program which was offered a range

of species having p = -0-^3, <̂ = -0->2, and p = -2 ^ 3, in addition to
97AH, AH^ and Zn(OH) , the 3 values for the latter being held constant.

The 'best' constants obtained were

log 3__^ = 2.64 + 0.08LLU ' —

log 3 - 5.79 + 0.03

Log 3^^^ = 5.85 4-̂ 0.07

Log 3g^2 = 10.62 ^  0.06 

log ^21-1 ~ "0.98 0.09

log 3gi2 " 14.70 + 0.13 

log 3220 = 7 . 2 6 + 0 . 1 7  

log 3221 = 10.92 + 0.19

-6These constants gave a sum of squares = 5.45 x 10 . The system can thus

be described by eight complexes: Zn(malonate)°, Z n ( m a l o n a t e ) ,
+ 3- 5- 2“Zn(malonate)H , Z n ( m a l o n a t e ) , Zn(malonate)^OH , Zn(malonate)^Hg ,
o +Zn^(malonate)2 / and Zn^ (malonate)gH .

The zinc-malonate complexes produced a pattern of formation curves 

as the malonate-zinc ratio was varied. This was taken as evidence of 

protonated, hydroxy, or polynuclear complexes being present and some of these

wete indeed found in MINIQUAD,- Then the best PSEUDOPLOT fit was obtained 

(figure 50). i

..a
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B p r log 3 S n literature data (©^/°C,J/M,log3) Ref

1 0 1 5.09 0.01 200 25, 0.15(NaC10^),3 5.34,3 8.19 106

1 o 2 7.67 0.01 30, 0.2(NaC10 ),3^ 5.10,32 7.70 107

Zn 1 1 0 2.64 0.08 168 20, O.l(NaClO^),3^ 2.97, 105

3 1 0 5.79 0.03 ^101/111
1 1 1 5.85 0.07 25, 0.001, 3, 3.35 108

3 1 1 10.62 0.06 0-45, 0 corr., 3^^(25°) 3.82 109

3 1 -1 -0.98 0.09 25, 0 corr., 3^ 3.85, 5.95 110

3 1 2 14.70 0.13 25, 0.2(KCl), 3. 2.78, 101

2 2 0 7.26 0.17 ^101/111 0-84
2 2 1 10.92 0.19 25, 0.1, 3. 2.7 111

The next stage involved COMPLOT computer simulation models of 

species distribution in solutions at different ph (figure 51). These 

models require the total concentrations of zinc and malonate (7.65 and

15.30 mM respectively) and the formation constants from table 52.

Table 52 below lists our formation constants of the complex formation 

of malonate and some of the published results from other workers as a i

comparison,

TABLE 52

Log formation constants the protonation and
the metal complexes at 37°C and I = 150mM , NaClO^; n = 
number of experimental observations and S denotes the 

standard deviation
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Protonation Constants_of Oxalate

The formation curve (figure 52) was obtained using the ZPLOT computer 

program (chapter 4), The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log K2,o i ” 3.68 +.0.01 (195 readings)

log ^201-^102 = 1.08 ^  0.03 (195 readings)

These constants gave a sum of squares = 1.51 x 10 ^ (mol^ dm*~̂ )

TABLE 53

Experimental results for the protonation of oxalate

Titration Titrate (S) Titrant (T) Initial E°(mV)
number (mM) (mM) volume (ml)

A H A H

1 100.00 2.68 100.00 -303.12 20.00 359.0

2 50.00 1.34 50.00 -250.07 20.00 358.9

3 25.00 1.34 25.00 -151.56 20.00 358.6

4 10.00 1.34 10.00 -100.03 20.00 360.0

5 5.00 1.34 5.00 -40.01 20.00 358.7
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

8.00

8.50 

9.00

9.50 

10.00

10.50 

11.00

11.50

12.50

13.50

14.50 

16.00 

18.00 

20.00 

22.00

24.00

27.00

30.00

32.00

34.00

36.00

37.00

38.00

234.0

227.2

220.3

213.3

204.8

196.2

189.3

183.5

173.6

165.6

159.0

150.6

141.4

133.4 

126.2 

119.2

108.9

98.0

89.7 

80.2

67.8

59.8

49.0

4.20

4.50

4.70

4.90

5.00 

5.10

5.20

5.30 

5.40

5.50

5.60

5.70

5.90

6.20

6.50

7.00

7.30

7.60

8.00

8.50 

9.00

9.50 

10.00

222.9

215.4

209.5

202.6
198.8

194.8

191.1

187.2

184.2

181.2 

178.6

176.1

171.2

165.0

159.2

150.9

146.3

142.0

136.4

130.2

124.2

118.2

112.0
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Titration number 1 continued Titration number 2 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

38.60 40.2 10.60 104.1

39.00 32.4 11.20 95.1

39.30 24.8 11.50 90.0

39.50 18.4 11.80 84.3

39.70 10.0 12.00 80.0

39.80 4.4 12.30 72.5

39.90 -2.3 12.50 66.4

40.00 -11.6 12,80 54.6

40.05 -16.9 12.90 49.0

40.10 -24.5 13.00 42.2

40.11 — 26. 4 13,05 37.9

40.13 -30.3 13.10 33.2

40.15 -34.9 13.15 27.9

13.20 20.3

13.23 15.2

I
I
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Titration number 3 Titration number 4

volume emf (mV) volume emf (mV) ''%
added (ml) added (ml)

2.50 229.1 0.00 237.4

3.00 220.2 1.00 224.0 "i'

3.10 218.0 1.20 220.4
1
-1

3.30 213.2 1.40 216.6

3.50 208.3 1.60 212.3

3.80 200.0 1.80 207.5

4.00 193.6 2.00 201.9 ;
4.20 187.1 2.20 195.4

4.40 180.3 2.40 188.2

4.50 177.1 2.50 184.3

4.60 174.0 2.60 180.0 i
4.70 171.1 2.70 175.6

4.80 168.2 2.80 171.5
i
1

4.90 165.5 3.00 162.9 1

5.00 162.7 3.10 158.6 î

5.10 160.3 3.20 154.5

5.30 155.8 3.30 150.6 1
5.50 151.6 3.40 146.9 i
5.80 145.6 3.50 143.2

6.00 141.8 3.60 139.7

6.30 136.3 3.70 136.0 ...

6.60 130.9 3.80 132.6 i

7.00 124.2 3.90 129.1

7.40 117.6 4.00 125.7 ;
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Titration number 3 continued Titration number 4 continued

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

7.80 110.5 4.10 122.2

8.20 103.0 4.20 118.8

8.60 94.7 4.30 115.3

9.00 84.8 4.50 108.1

9.20 78.9 4.60 104.2

9.40 72.0 4.80 95.6

9.60 63.1 4.90 90.7

9.80 51.0 5.00 85.1

9.90 41.8 5.10 78.7

9.93 38.1 5.20 71.0

9.97 32.5 5.30 61.3

10.00 27.2 5.50 22.8

10.04 18.0 5.51 18.0

10.10 -1.0

10.12 -12.1

10.13 -20.8

10.14 -36.1
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Titration number 5 Titration number 5 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

0.00 223.2 5.70 115.3

0.20 221.2 5.80 112.8

0.50 218.4 6.00 107.5

0.80 215.5 6.10 104.6

1.00 213.3 6.20 101.7 I

1.50 207.5 6.30 98.8

2.00 200.8 6.35 97.2 '1
2.50 192.5 6.40 95.6

y

3.00 182.6 6.50 92.2

3.20 178.0 6.60 88.7

3.40 173.2 6.70 85.0

3.60 168.2 6.80 80.7

3.80 163.0 6.85 78.3

4.00 157.7 6.90 75.9

4.10 155.0 7.00 70.3

4.20 152.4 7.10 63.9 1
4.30 149.8 7.20 55.8

4.50 144.7 7.25 50.9

5.00 132.4 7.30 44.6

5.10 130.0 7.35 37.5 i
5.20 127.5 7.40 27.8 '?î
5.30 125.1 7.43 19.9

5.50 120.2 7.45 12.7 %
7.48 -3.1 1

7.50 -20.1 1
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Formation Constants for Zn(II) - Oxalate Complexes

The formation curve (figure 53) was obtained from the results in 

table 54.

TABLE 54

Experimental results for the Zn(II) - oxalate system

Titration
number

Initial
Titrate

concentrations (mM) 
(S) and Titrant (T)

Initial 
volume (ml)

E° (mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 5.00 4.99 0 10.58 -50.00 20.00 359 .4

2 0 2.50 4.99 O 10.58 -50.00 20.00 359 .4

3 0 10.00 4.99 0 10.58 -50.00 20.00 359 .4

4 O 20.00 4.99 0 10.58 -100.00 20.00 357 .7

5 0 38.46 4.99 0 10.58 -100.00 20.00 357 .4
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

1.70 224.2 1.80 223.1

1.90 222.2 2.00 220.8

2.00 221.2 2.20 218.3

2.20 219.0 2.40 215.6

2.30 217.9 2.50 214.2

2.40 216.8 2.60 212.7

2.60 214.5 2.70 211.2

2.70 213.2 2.80 209.5

2.80 211.9 2.90 207.7

2.90 210.6 3.00 205.9

3.00 209.1 3.10 203.9

3.10 207.6 3.20 201.8

3.20 206.0 3.30 199.5

3.30 204.4 3.40 197.1

3.50 201.0 3.50 194.5

3.70 197.1 3.60 191.6

3.80 194.9 3.70 188.4

3.90 192.6 3.80 184.9

4.00 • 190.1 3.90 180.8

4.10 187.3 4.00 176.0

4.20 184.3 4.05 173.2

4.30 181.1 4.10 170.1

4.40 177.6 4.15 166.6
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4.90 146.5

Titration number 1 continued Titration number 2 continued 1

volume emf (mV) volume emf (mV) i:
added (ml ) added (ml) Ï%

4.50 173.4 4.20 162.7 i
1

4.60 168.7 4.25 158.2

4.70 163.0 4.27 156.1
j

4.75 159.6

4.80 156.0 À

4.85 151.6 ¥
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Titration number 3 Titration number 4

volume emf (mV) volume emf (mV)
added (ml) added (ml)

2.20 223.7 1.20 222.3
2.50 221.3 1.30 220.7
2.70 219.5 1.40 219.2
3.00 216.8 1.50 217.4
3.30 213.8 1.60 215.5
3.60 210.7 1.70 213.6
3.80 208.5 1.80 211.4
4.00 206.0 1.85 210.2
4.20 203.5 1.90 209.0
4.30 202.1 2.00 206.6
4.50 199.4 2.10 204.2
4.60 197.9 2.20 201.6
4.70 196.3 2.30 198.7
4.80 194.8 2.40 195.8
5.00 191.3 2.50 192.4
5.10 189.4 2.60 188.6
5.15 188.4 2.70 184.5
5.20 187.5 2.80 179.7
5.30 185.4 2.85 177.2
5.40 183.3 2.90 174.5
5.50 181.1
5.60 178.7
5.65 177.4
5.70 176.1 Titration number 5
5.75 174.7
5.80 173.4 volume emf (mV)
5.85 172.0 added (ml)
5.90 170.7 1.80 221.1
5.95 169.3 2.00 218.7
6.00 167.8 2.20

2.40
216.3
213.7

Total number of readings = 114. 2.60 211.0
2.80
3.00
3.10

208.1
204.8
202.9
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I The data was analysed using the MINIQUAD program which was offered

a range of species having p = 6 2, q = and r = -2 ^ 3, in
97addition to AH, AH^ and Zn(OH) , the g values for the latter being held 

constant. The 'best' log constants obtained were

log 3._ = 4.05 + 0.06LLU —

log = 13.29 + 0.27

-6These constants gave a sum of squares = 1.84 x 10 . The system can thus
o ^be described by two complexes Zn(oxalate) , and Z n ^ ( o x a l a t e ) .

The zinc-oxalate complexes produced a pattern of formation curves

as the oxalate-zinc ratio was varied. This was taken as evidence of

protonated, hydroxy or polynuclear complexes being present and some of these

were indeed found in MINIQUAD, Then the best PSEUDOPLOT fit was obtained

(figure 54).

The next stage involved COMPLOT computer simulation models of 

species distribution in solutions at different ph (figure 55). These 

models require the total concentrations of zinc and oxalate (7.65 and

15.30 mM respectively) and the formation constants from table 55.

Table 55 below lists our formation constants of the complex 

formation of oxalate and some of the published results from other workers 

as a comparison.
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TABLE 55

Log formation constants (3 ) for the protonation and thepgr
metal complexes at 37 C and I = ISOmM NaClO^; n = number 
of experimental observations and S denotes the standard

deviation

B p g T log 3 S n literature data (0^/°C,J./M, log3) Ref

1 0 1 3.68 0.01 200 25, 0.15(NaCl0^), 3.2.59, 3^ 3.92 106

1 0 2 4.77 0.03 25, 1 NaClO^, 3 3.54, 3^ -v 4.54 112

Zn 1 1 0 4.05 0.06 114 25, l(KN0g),3^ 3 .44,326.48,337,24 113

2 2 1 13.29 0.27 25, 0.1, 3 4.9 114

Protonation Constants of Tartarate

The formation curve (figure 56) was obtained using the ZPLOT computer 

program (chapter 4). The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log K = 3.69 + 0.01

= 2.80 + 0.01

(197 readings)

These constants gave a sum of squares = 8.79 x lO ^ (mol^ dm"^)
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TABLE 56

Experimental results for the protonation of tartarate

Titration
number

Titrate
(mM)

(S) Titrant (T) 
(mM)

Initial 
volume (ml)

E° (mV)

A H A H

1 100.00 -250.00 100.00 2.49 20.00 361.4

2 50.00 6.23 50.00 -151.50 20.00 361.4

3 25.00 6.23 25.00 -151.50 20.00 361.4

4 15.00 6.23 15.00 -151.50 20.00 361.4

5 10.00 6.23 10.00 -100.00 20.00 361.4

6 5.00 3.11 5.00 -50.00 20.00 359.8

Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

*

4.94 25.4 1.80 222.2 1
5.00 32.0 2.20 218.0 1
5.05 36.4 2.60 213.9 J

Ï
5.15 43.6 3.00 209.9

5.30 51.7 3.50 205.4
%

5.50 59.8 4.00 201.2 -•«
5.70 65.9 5.00 193.5

6.00 73.4 6.00 186.6
y.
y
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Titration number 1 continued

volume 
added (ml)

emf (mV)

7.00 89.4

7.50 95.0

8.00 99.7

9.00 107.3

10.00 113.5

11.00 118.7

13.00 127.1

15.00 133.8

17.00 139.5

20.00 146.7

25.00 156.2

30.00 163.7

35.00 169.3

40.00 173.7

45.00 177.5

50.00 181.0

Titration number 2 continued i

volume 
added (ml)

emf (mV)

7.00 180.4

8.00 174.8

9.00 169.5

10.00 164.7

11.00 160.1

13.00 151.7

15.00 144.4

17.00 137.5

18.00 134.4

20.00 128.3
%

23.00 119.6 1

25.00 113.9

27.00 108.2

30.00 99.5
1

32.00 93.2

34.00 86.3

36.00 78.5
3

38.00 69.1 is
}

39.00 63.5 i

40.00 56.8
i

41.00 48.5 i
1
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.50 225.4 0.40 224.5

0.60 223.9 0.50 222.0

0.80 220.8 0.60 219.1

1.00 217.5 0.70 216.2

1.20 214.1 0.80 213.8

1.40 210.7 1.00 209.3

1.60 207.3 1.20 204.4

1.80 203.8 1.40 199.4

2.00 200.3 1.60 194.4

2.20 197.0 1.80 189.3

2.40 193.7 2.00 184.4

2.60 190.6 2.20 179.2

3.00 184.4 2.40 174.3

3.20 181.3 2.70 166.9

3.40 178.3 3.00 159.4

3.70 174.0 3.20 154.3

4.00 169.5 3.50 146.9

4.40 164.0 3.80 139.4

4.80 158.5 4.00 134.2

5.20 153.1 4.30 126.6

5.50 149.2 4.60 118.5

6.00 142.7 4.80 112.6

6.50 136.3 5.00 106.2

7.00 130.0 5.20 99.0
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Titration number 3 continued Titration number 4 continued

volume 
added (ml)

emf (mV)

7.50 

8.00

8.50 

9.00

9.50 

9.70

10.00

10.20

10.40

10.60

10.80

11.00

123.5

117.0

110.1

102.6
94.1 

90.3

84.0

78.2

72.3

65.3

57.0

44.0

volume 
added (ml)

emf (mV)

5.40

5.60

5.80

5.90

91.3

81.4 

67.8 

58.3
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Titration number 5 Titration number 6

volume emf (mV) volume emf (mV)
added (ml) ' added (ml)

0.40 225.8 0.00 215.6

0.60 222.5 0.10 214.0

0.80 219.0 0.30 211.3

1.00 215.2 0.50 208.5

1.20 211.2 0.60 207.0 1
1.40 207.1 0.80 204.0

1.70 200.8 1.00 200.8
1

2.00 194.0 1.20 197.6

2.10 191.8 1.40 194.2

2.20 189.5 1.50 192.4

2.30 187.3 1.70 188.9

2.50 182.6 1.90 185.1 j
2.70 178.0 2.10 181.2

2.80 175.6 2.30 177.3 1
3.00 170.8 2.50 173.2 1
3.10 168.4 2.60 171.3

3.20 166.0 2.80 167.0 Î
3.30 163.7 3.00 162.6

3.40 161.3 3.20 158.2 1/

3.60 156.5 3.40 153.7 1

3.80 151.6 3.60 149.2 1

4.00 146.7 3.80 144.6 1>-4.20 141.8 4.00 139.8

4.50 134.4 4.20 135.0 Î
%

4.80 126.6 4.40 130.2 .,s
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Titration number 5 continued Titration number 6 continued

volume emf (mV) volume emf (mV)
added (ml ) added (ml) B

5.00 121.3 4.60 125.2

5.20 115.8 4.80 119.9

5.40 109.8 5.00 114.4

5.70 99.9 5.20 108.6

5.80 96.1 5.40 102.2

6.00 87.5 5.60 95.0

6.20 76.7 5.70 91.0

6.30 69.8 5.80 86.5

6.40 61.1 5.90 81.5

6.50 49.2 6.00 75.8

6.54 42.5 6.10 69.2

6.15 65.2

6.20 60.8 •■é

6.25 55.5

6.30 49.4

6.32 46.4

6.34 43.0

6.36 39.4
'4

6.40 30.6
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Formation Constants for Zn(II) - Tartarate Complexes

To within the limits of hydrolysis and solubilities, this system 

was studied using a pattern of titrations where both A and B (the total 

concentrations of tartarate and zinc respectively) were held constant 

and equal in the titrate and titrant, the sole difference in these 

solutions being their perchloric acid concentrations.

The formation curve (figure 57) was obtained from the results in 

table 57.

TABLE 57

Experimental results for the Zn(II) - tartarate system

Titration
number

Initial
Titrate

concentrations (mM) 
(S) and Titrant (T)

Initial 
volume (ml)

E°(mV)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 80.00 80.00 9.98 9.98 -159.60 26.53 20.00 357.5.

2 40.00 40.00 9.98 9.98 -69.58 23.85 20.00 357.2

3 20.00 20.00 9.98 9.98 -29.57 23.85 20.00 357.2

4 10.00 10.00 9.98 9.98 -9.57 23.85 20.00 357.1

5 5.00 5.00 9.98 9.98 0.43 21.17 20.00 357.1 A
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Titration nninber 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml )

emf (mV)

0.50 61.1 0.20 109.8

0.60 65.7 0.30 111.3

0.70 69.6 0.40 112.7

0.80 73.2 0.60 115.3

1.00 79.1 0.80 117.7

1.30 86.3 1.20 122.2

1.60 92.1 1.50 125.3

2.00 98.5 1.80 128.2

2.50 105.0 2.10 131.0

3.00 110.5 2.50 134.4

4.00 119.4 3.00 138.3

5.00 126.7 3.50 141.9

7.00 138.3 4.00 145.3

8.00 143.2 5.00 151.3

10.00 151.7 6.00 156.7

12.00 158.8 7.00 161.5

15.00 167.6 8.00 165.9

17.00 172.5 9.00 169.8

20.00 178.7 10.00 173.3

23.00 183.9 11.00 176.5

26.00 188.6 12.00 179.4

29.50 192.4 14.00 184.4

33.00 197.6 15.00 186.7

36.00 200.6 17.00 190.9
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Titration number 1 continued

volume emf (mV)
added (ml)

39.50 204.2

43.00 207.3

48.00 211.3

49.50 212.5

Titration number 2 continued

volume 
added (ml)

emf (mV)
%

20.00 196.2

21.00 197.8

23.00 200.7

25.00 203.4

27.00 206.0

30.00 209.9

32.00 212.1

33.00 213.1

35.00 215.0 1
37.00 216.9 1

I

;
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00

0.10

0.20

0.30

0.40

0.60

0.80

1.00

1.30

1.50 

2.00

2.30 

2.60 

2.80

3.00

3.30

3.50 

3.80

4.00

4.50

5.00

5.50

6.00

140.1

141.9

143.0

144.1

145.2

147.2

149.1

151.1

153.7

155.3

159.1

161.2

163.2

164.4

165.7

167.5

168.6

170.1

171.3

173.7 

176.0

178.2

180.3

0.00

0.05

0.10

0.20

0.30

0.50

0.70

0.90

1.10
1.30

1.50 

1.80 

2.00

2.30

2.50 

2.80

3.00

3.30 

3.60

4.00

4.50

5.00

5.50

173.6

174.2

174.8

175.5

176.3

177.6

178.9

180.3

181.6

182.9

184.1

185.9

187.1 

188.8

189.9

191.6

192.7

194.2

195.8 

197.7 

200.0

202.3

204.4
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Titration number 3 continued

volume 
added (ml)

7.00

8.00

9.00

10.00

11.50

13.00

15.00

16.00

17.00

18.00

19.00

20.00

emf (mV)

183.9

187.4

190.7

193.7

197.9

201.8

206.3 

208.6

210.5

212.4 

214.2

215.9

I
Titration number 4 continued 1a'1
volume emf (mV) -I
added (ml)

.1
6.00 206.4

6.50 208.4

7.00 210.2

7.50 211.9

8.00 213.5 1
8.50 215.0 1
9.00 216.5

9.50 217.8

10.00 219.1
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Titration number 5

volume 
added (ml)

emf (mV)

0.00 204.8

0.05 205.3

0.10 205.6

0.15 205.9

0.25 206.4

0.35 207.0

0.50 207.8

0.70 208.8

1.00 210.2

1.20 211.2

1.40 212.1

1.70 213.4

2.00 214.7

2.30 215.9

2.60 216.9

3.00 218.3

3.30 219.4

3.60 220.4

4.00 221.5

4.50 222.8

5.00 224.0

5.50 225.2

6.00 226.3

7.00 228.1

7.50 229.1

8.00 229.8 Total number of 
headings = 155.
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The data was analysed using the MINIQUAD program which was offered a

range of species having p = O 2, q = o - > 2  and 3? = -2 ->• 3, in
97addition to AH, AH^ and Zn(OH) , the 3 values for the latter being

held constant. The 'best' log constants obtained were

log 3 -̂|_q = 2.58 4̂  0.02

log ^2io = 4.49 + 0.02

log 3^13^ “ 5.59 + 0.03

log 3211 = 8.22 + 0.02

-6These constants gave a sum of squares = 6.56 x 10 . The system can

thus be described by four complexes Zn(tartarate)°, Zn(tartarate)2^ ,

Zn(tartarate)H , and Zn(tartarate)2H .

The zinc-tartarate complexes produced a pattern of formation curves 

as the tartarate-zinc ratio was varied. This was taken as evidence of 

protonated, hydroxy or polynuclear complexes being present and some of these 

were indeed found in MINIQUAD, Then the best PSEUDOPLOT fit was obtained 

(figure 58).

The next stage involved COMPLOT computer simulation models of 

species distribution in solutions at different ph (figure 59). These 

models require the total concentrations of zinc and tartarate (7.65 and

15.30 mM respectively) and the formation constants from table 58.

Table 58 below lists our formation constants of the complex 

formation of tartarate and some of the published results from other 

workers as a comparison.
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TABLE 58
Log formation constants (g ) for the protonation andpqr ^ ,
the metal complexes at 37°C and I = ISOmM i NaClO^; n = 
number of experimental observations and S denotes the 

standard deviation

B p q r log 6 S n literature data (0^/°C,J./M, log3) Ref

1 0 1 3.69 0.01 197 20, 0.1(NaC10 ),G 3 .96,026.76 103

1 0 2 6.49 0.01 20, l.O(KNO^),0^3.77,$26.37 115

Zn 1 1 o 2.58 0.02 155 25, O.2(KCl),g^2.68,K^0^y^^^l.44 101

2 1 0 4.49 0.02 20, 0.1(KC10^),g 2.69 116
1 1 1 5.59 0.03 25, 0 Corr., 0^ 3.31,0 5.16 110

2 1 1 8.22 0.02

.Protonation Constants of salicylate

The formation curve was obtained (figure 60) using the ZPLOT computer 

program (chapter 4). The data was then analysed using MINIQUAD (chapter 4) 

and the results obtained were

log = 11.02 + 0.02

^101->102 2.63 + 0.05

(175 readings)

These constants gave a sum of squares = 3.17 x 10 (mol dm )

,.:.l
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TABLE 59

Experimental results for the protonation of salicylate

Titration
number

Titrate
(mM)

(S) Titrant (T) 
(mM)

Initial 
volume (ml)

E° (mV)

A H A H

1 50.00 -100.02 0 134.15 20.00 357.0

2 0 56.71 15.00 -50.03 20.00 358.6

3 0 56.71 10.00 -40.02 20.00 357.6

4 0 28.35 5.00 -30.01 20.00 357.8

Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.00 -337.7 20.00 220.0

1.00 -335.2 21.00 214.6

3.00 -328.3 22.00 208.9

4.00 -323.2 23.00 202.9

5.00 -315.8 24.00 196.5

6.00 -302.8 25.00 189.8

6.50 -289.5 26.00 182.8

6.70 -279.9 27.00 175.4

6.90 -262.8 28.00 167.3

7.05 -236.3 29.00 158.3
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Titration number 1 continued Titration number 2 continued

volume emf (mV) volume emf (mV)
added (ml ) added (ml)

7.10 -222.6 30,00 147.4

7.13 -212.2 31.00 132.9

7.18 -189.2 31.50 123.1

7.20 -175.6 32.00 109.3

7.21 -166.5 32.20 101.4

7.22 -154.6 32.40 90.7

7.23 -137.2 32.55 79.3

7.27 -54.1 32.70 59.3

7.29 -33.9 32.80 27.8

7.31 — 14.4 32.85 -35.6

7.38 49.4 32.86 -73.9

7.40 59.8 32.87 -102.7

7.46 78.9 32.88 -119.8

7.50 86.6 32.89 -132.7

7.75 113.3 32.90 -143.7

7.90 122.4 32.91 -152.9

8.05 129.4 32.92 -160.5

8.20 135.2 32.93 -165,3

8.40 141.6 32.94 -169.6

8.70 149.4 32.95 -174.7

9.00 156.0 32.96 -178.2

9.50 165.1 32.98 -185.4

II■I

I
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Titration number 1 continued Titration number 2 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

10.00 172.8 33.00 -191.6

10.50 179.7 33.02 -196.2

11.00 186.2 33.05 -202.9

12.00 197.9 33.10 -211.6

12.50 203.4 33.13 -215.8

13.00 208.8 33.16 -219.3

13.50 214.0 33.20 -223.5

14.00 219.0 33.25 -228.1 %
33.40 -238.6
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Titration number 3 Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

23.00

25.00

26.50

28.00

30.00

31.20

32.50

33.00

34.00

35.00

35.50

36.00

36.50

37.00 

37.10

37.20 

37.30 

37.40

37.50 

37.60 

37.65

37.68

37.69

37.70

222.4

213.9 

206.8

199.0

187.1

179.1

169.6

165.6

156.6

145.7

138.9

130.7 

120.0

103.9

99.3 

93.8

87.0

78.4 

66.3

45.0

21.5 

-9.7

-31.8

-58.2

14.00

15.00

16.00

17.00

18.00

19.00

20.00 

20.65 

21.20 
21.60 

22.00 

22.30 

22.50 

22.60 

22.70 

22.80 

22.85 

22.88 
22.90

22.95

22.96

22.97

22.98

22.99

215.4 

210.1

204.4

197.7

190.1

181.1

170.1 

161.0

151.6

143.1

131.8

119.7

107.9

99.7 

88.2 
68.4

50.8 

30.3 

-2.3

-150.7

-158.3

-164.9

-170.2

-174.9
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Titration number 3 continued Titration number 4 continued

volume emf (mV) volume emf (mV)
added (ml) added (ml)

37.71 -88.4 23.00 -179.7

37.72 -109.5 23.02 -186.8

37.73 -126.1 23.03 -190.2

37.74 -137.4 23.05 -196.2

37.75 -145.4 23.10 -207.3

37.76 -152.0 23.15 -215.0
i

37.77 -157.5 23.20 -221.4

37.79 -168.2 23.25 -226.2

37.82 -179.9 23.35 -233.7

37.85 -188.2 23.50 -242,1

37.90 -199.3 23.60 -246.5

38.00 -214.4 23.80 -253.5

38.10 -224.1 24.00 -258.8

38.20 -231.3 24.20 -263.0

38.30 -237.0 24.40 -266.6

38.50 -245.5 24.70 -271.0

38.70 -251.8 25.00 -274.6

39.02 -259.4 25.50 -279.7

39.50 -267.5 26.50 -287.0

40.00 -273.6 27.00 -289.7

41,00 -282.1 28.00 -294.2

42.00 -288.0 30.00 -300-8

43.00 -292.5

45.00 -299.3

1
A*



204

Formation Constants of Zn(II) - Salicylate Complexes

The formation curve (figure 61) was obtained from the results in 

table 60.

TABLE 60

Experimental results for the Zn(II) - salicylate system

Titration Initial concentrations (mM) Initial E°(mV)
number Titrate (S) and Titrant (T) volume (ml)

Ligand (A) Metal (B) Acid (H)

S T S T S T

1 0 40.00 4.99 0 10.58 -50.02 20.00 356.6

2 0 20.00 4.99 0 10.58 -40.02 20.00 356.6

3 0 10.00 4.99 0 10.58 -30.04 20.00 356.4

4 0 5.00 4.99 0 10.58 -20.01 20.00 355.4-

5 0 2.50 4.99 O 10.58 -20.01 20.00 357.8
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Titration number 1 Titration number 2

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

0.30

0.60

0.90

1.20

1.50 

1.80 

2.20

2.50 

2.80

3.20 

3.60

4.00 

4.40 

4.80 

5.30

5.70

6.20
6.70 

7.20

8.00 

9.00
10.00

11.00

13.00

234.2

232.4
230.4

228.3 

226.1 

223.8

220.5 

218.0
215.4
211.7 

208.1

204.4

200.8 
197.2 

192.8

189.5

185.5

181.7

178.0
172.5

166.0 

160.0 
154.1

142.8

0.30
0.80

1.40 

2.00

2.50
3.70

4.00

5.00
5.50 

5.90 
6.30

6.70
7.00

7.40

7.80 
8.10
8.50
9.00

9.40

9.80 
10.00 

10.20 

10.30 

10.40

234.9

231.9 
228.1

223.9 
220.0

209.4
206.5

196.0

190.3

185.6
180.7

175.6
171.7 

166.2
160.4

155.8

149.1 

139.3

129.8
120.8 
107.8

95.2
86.3 

74.1

Ml
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Titration number 1 continued Titration number 2 continued

f

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV) -t

15.00 131.1 10.58 54.0 i
17.00 117.8 10.59 15.5

18.00 109.9 10.60 -0.5

19.00 100.4 10.61 -9.8

20.00 87.6 10.62 -16.8

20. 30 82.4 10.63 -23.6

20.60 76.8 10.64 -28.7

20.90 70.0 10.65 -33.3

21.30 57.6 10.66 -38.1

21.60 43.6 10.67 -42.0 V
21.80 28.6 10.68 —44.9 .Î
21.85 23.7 10.69 -48.7

21.90 17.9 10.70 -50.8

21.95 11.2 10.71 -52.9

21.98 7.0 10.72 -54.5

22.00 3.9 10.73 -56.4

22.02 0.3 10.76 -61.3 d
22.05 —4.6 10.78 -63.9

22.07 -7.4 10.80 -66.2

22.10 -12.1 10.84 -68.5

22.13 -16.6 10.98 -70.0 1
22.15 -19.3

22.18 -23.2 Î
22.21 -26.9 i
22.25 -31.6 i
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Titration number 1 continued Titration number 4

volume 
added (ml)

emf (mV) volume 
added (ml)

emf (mV)

22.30 -36.1 0.50 233.2

22.40 —44.1 1.50 229.7

22.50 -50.3 2.50 225.9

22.60 -55.8 3.00 223.9

22.80 -63.6 4.00 219.5

23.00 -69.4 5.00 214.6

23.30 -73.9 6.00 209.2

23.90 — 76.0 7.00 203.3

8.00 196.4

8.60 191.9

9.00 188.6 •
Titration number 3

9.40 185.0

volume emf (mV)
added (ml)

0.30 234.7

1.00 231.5

1.50 228.9

2.50 223.2

3.50 216.8

4.00 213.2

5.00 205.3

5.80 198.0

6.30 193.0

6.80 187.5

7.30 181.5
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Titration number 3 continued Titration number 3 continued

volume 
added (ml )

emf (mV) volume 
added (ml)

emf (mV)

7.70 176.2 10.82 -39.8

8.10 170.6 10.83 —44.6

8.50 164.3 10.84 -48.9

9.00 155.1 10.85 -52.2

9.40 146.3 10.86 -55.0

9.70 138.3 10.87 -57.5

9.90 131.6 10.88 -59.8

10.00 127.5 10.89 -62.2

10.20 118.2 10.90 -63.9

10,35 109.4 10.91 -65.5

10.47 99.5 10.92 -66.7

10.55 90.4 10.93 -67.5

10.65 72.3 10.94 -68.3

10.70 56.7 10.95 -68.9

10.71 52.2 11.00 -69.8

10.73 41.9

10.74 35.0

10.75 27.5 Titration number 5

10.76 17.0

10.77 5.1 volume 
added (ml)

emf (mV)

10.78

10.79

10.80 

10.81

—6.2 

-16.6 

-25.5 

-33.4

4.00

5.00

6.00

Total number of readings = 168.

219.8

214.5

208.5
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The data was analysed using the MINIQUAD program which was offered a

range of species having p = o 2, q ~ o 2 and p = -2 -> 3, in addition
97to AH, AH^ and Zn(OH) , the 3 values for the latter being held constant. 

The 'best' log constants obtained were

log 3^^q  = 5.30 + 0 .20

log 3^11 = 12.95 + 0.12

log 3213 29.80 + 0.15

log 3oio " 32.13 + 0.21
j x Z —

log 3313 = 39.52 + 0.21

-6These constants gave a sum of squares = 2.02 x 10 . The system can

thus be described by the five complexes Zn(salicylate)Zn(salicylate)
■4" 2“ "*Zn(salicylate)gHg , Z n ( s a l i c y l a t e ) , and Z n ( s a l i c y l a t e ) .

The zinc-salicylate complexes produced a pattern of formation curves 

as the salicylate-zinc ratio was varied. This was taken as evidence of 

protonated, hydroxy or polynuclear complexes being present and some of these 

were indeed found in MINIQUAD. Then the best PSEUDOPLOT fit was obtained 

(figure 62).

The next stage involved COMPLOT computer simulation models of species 

distribution in solutions at different ph (figure 63). These models 

require the total concentrations of zinc and salicylate (7.65 and 15.30mM 

respectively) and the formation constants from table 61.

Table 61 below lists our formation constants of the complex formation 

of salicylate and some of the published results from other workers as a 

comparison.
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TABLE 61

Log formation constants :Eor the protonation and
the metal complexes at 37°C and I = ISOmM NaClO^; n = 
number of experimental observations and S denotes the 

standard deviation

B p r log 3 S' n Literature data(0^/°C,X/M,log3I Ref 1

1 0 1 11.02 0.02 175 37, 0.15 KNO ,3 13.00,8215.81 117 .

4
1 0 2 13.65 0.05 20, O.ltKNOg),3 13.12,3216.04 118,119 .M31

Zn 1 1 0 5.30 0.20 168 20, 0.10-0.15 KCl, 3^ 6.85 120

1 1 1 12.95 0.12 30, 0.1 NaClO 75% dioxan,3^9.20 121

2 1 3 29.80 0.15

3 1 2 32.13 0.21

3 1 3 39.52 0.21
1

I
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CHAPTER 6

A STUDY OF THE BIO-AVAILABILITY OF DIETARY ZINC 

USING COMPUTER SIMULATION MODELS OF THE 

CO-ORDINATION EQUILIBRIA INVOLVED

Introduction

Life and survival involve competition both at the macro, prey-hunting 

level and at the micro, molecular level. In this latter respect, there 

are many competitive completing steps between the metal ions that are 

contained in our diet and their eventual assimilation and participation
I

■in vi-Vo. Fortunately, computer simulation can illuminate some steps in 

this complicated series of mechanisms that occur in the aqueous fluid 

in the stomach and in the small intestine.

In principle, the biological activity of metal dependent phenomena 

(for example, the rate of growth) ought to correlate with physical or 

chemical parameters. If this is possible, then the outcome is that 

desirable properties of the species present can be optimised by |

judicious chemical or dose adjustment and simultaneously undesirable j
side effects can be minimised. In solution, the best method of

illustrating such structure and concentration activity relationships s

is to plot biological effect Versus concentrations of the species {
I

believed to cause the response.

Now that reliable formation constants from sophisticated potentiometric 
techniques are available in the literature and large computer programs have 

been developed to simulate (using these constants) solution equilibria, it
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is possible to predict the concentration of individual species with 

reasonable accuracy and to attempt to correlate these concentrations 

with the biological response. On the other hand,
tables of biological response are not so readily available. Fortunately

 ̂10,122-6for this study, as mentioned earlier in Chapter 1 (p.ll),Kratzer et dl

have published several tables concerning the absorption of zinc ions

from soya bean protein with, and without, the presence of zinc chelating

agents related to EDTA. Soya bean protein complexes zinc ions rather

firmly and so either extra zinc needs to be added to the diet or

alternatively, a similar zinc liberating effect can be achieved by adding

EDTA, (the converse of this effect is that phytates bind zinc so firmly
127that they make it non-available )• However, the role of the ligand is 

not restricted to merely winning the zinc,- from the food, it is also 

capable of encouraging intestinal absorption and then of releasing its 

zinc ions to the several processes that assimilate these ions into the 

components of the animal. Thus, these multifarious roles are best 

mutually satisfied by zinc complexing ligands of intermediate complex 

stability, weak ligands not being able to sequester the dietary zinc, 

powerful ligands preventing the absorption and release into assimilation 

mechanisms.

Theoretical Considerations

The salient competitions involve the zinc binding capacity (BC) of 

^ood, of the ligand administered and of the ^issue protein in the 

gastrointestinal lining * that is involved in assimilation (subscripts

* The actual site of this zinc absorbing tissue protein is open to 
discussion; the majority of authors take the duodenum as the main 
absorber wherea.s other workers suggest that some absorption may occur 
in the stomach. Thus, this paper reports intestinal fluids bathing 
these sites at both duodenal and stomach phs (6.5 and 2.0 respectively)
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■a
jf, ^  respectively) . It is exceedingly difficult to quantify

■ cBC and BC but, fortunately, their influences are assumed to have

■ ■ jremained constant throughout Kratzer's biological activity 

determinations. The factor that was varied systematically was BC^ and 

solution chemists can establish the different contributions which

collectively add up to BC^:-

BC^ is a function of zinc-ligand complex formation constants )/

proton-ligand constants (|3^) , zinc hydrolysis constants (P2n(0H) ) '

the amount of ligand present, the ratio of total ligand to zinc 

concentrations, the presence of other competing metal ions such as 

calcium t and the ph of the aqueous intestinal solution from which ÿ:
■Ia zinc species is absorbed into the intestine.

Further, as far as the growth promoting characteristics of BC^ are 

concerned, it has two influences:- the degree to which the ligand wins 

over the zinc from the food (clearly B C ^ ^  BC^) , and also the amount of 

tissue assimilatable, i.e. membrane soluble, species formed. These two 

factors can sometimes oppose each other. For example, it may be possible 
to extract extra zinc from the food by increasing the total concentration 

of ligand but, in turn, this may turn a lipid membrane soluble mono 

complex into a useless b'is or tvis complex.

The most convenient means of seeing the effect of these influences 

is to plot biological activity vevsus concentration of species present 

at a given ph. These latter concentrations are conveniently displayed

using computed models of the equilibria involved by feeding our 
12 8COMPLOT program with the liga n d —proton and l i ga nd — zinc

formation constants and the total concentrations of zinc and ligand 

in a typical diet * Then, if a plot of biological effect versus 

concentration of species present shows a continuous plot this suggests
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that that kind of species is the most important in encouraging 

absorption. It may then be possible to encourage even greater >:

concentrations of the chosen species by varying concentrations or 

by using other ligands.

Table 62 lists the ligands examined and their formation constants 

as critically determined from the literature.

Table 63 lists the percentage gain in weight of broad breasted 

bronze turkey poults on a practical poult starter diet containing 

isolated soya bean protein compared to their growths without ligand 

addition versus the COMPLOT computed concentrations of species 

present at stomach and duodenal phs (ph = 2 and 6.5 respectively).

A typical ph profile is shown in figure 64 and figures 65 and 66
Idisplay relative growth Versus the degree of zinc complexed. (This &
-I

is best reflected by plotting the free zinc concentration at 

equilibrium since this embodies 1:1, 2:1 and protonated ligand : zinc.-, 

complexes.) Table 63 shows that in this study, as may be anticipated 

from the fact that we are studying multidentate ligands, the majority 

of complexing is in the form of 1:1 complexes.
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TABLE 62

Ligands and Formation Constants used in this Study

Ligands pqr logg^^^* Reference

1,2 Diaminocyclohexanetetraacetate (CDTA) 101 = 11.70 129
102 17.84
103 = 21.39
104 23.79no = 19.32 130

Diethylenetriaminepentaacetate (DTPA) 101 = 10.42 131,132,1:
102 19.18
103 = 23.60
104 26.16
105 = 27.95
110 18.3 132
210 = 22.78

4,5-dihydroxy-m-benzenedisulphonate (DHBDS) 101 = 12.26 134"
102 = 19.80
110 = 10.19
210 18.52

Ethylenediamine-N,N '-diacetate (EDDA) 101 = 9.46 135
102 = 15.88
110 = 11.10

Ethylenediarainetetraacetate (EDTA) 101 = 10.31 136
102 = 16.52
103 = 19.18
104 = 21.20
110 = 16.26(Zn) 137,138
110 10.42(Ca) 139

Ethylenediaminetetrapropionate (EDTP) lOl = 9.60 140
102 16.37
103 = 19.80
104 = 22.80
110 = 7.8

Glutamate (GA) 101 = 9.41 141
102 = 13.48
110 = 5.45 142

2-hydroxyethyliminodiacetate (HEIDA) 101 8.78 143
102 = 10.74
110 = 8.57
210 = 12.67

continued/,

.. r
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TABLE 62 continued

Hydroxyethylethylenediaminetetraacetate (HEDTA) 

8-Hydroxy-5-quinoline sulphonate (HQS) 

Iminodiacetate (IDA)

Mercaptosuccinate (MSA)

Nitrilotriacetate (NTA)

Prolinate (P)

Triethylenetetraamine (TETA)

101 9.73 144 3
102 = 15.06
103 17.70
110 = 14.5
101 = 8.43 145 ^
102 = 12.31
110 = 7.59
210 = 14.97lOl = 9.40 146
102 = 11.90
110 = 7.27 147
210 = 12.60
101 = 10.37 148 j
102 = 15.01
103 18.65 :S|no = 8.75 149 ]
210 = 15.57
101 = 9.73 150,116 j
102 12.22
103 =: 14.11 '’h
110 = 10.45 151 t
101 = 10.68 152 !
102 = 12.61
210 = 10.2
101 = 9.92 153 I
102 = 19.12 '4
103 = 25.79
104 = 29.11 Èno = 12.1 4111 = 17.22

* log3 ' refers to the general Complex A Zn H where
p  q  ^  P  q  I

A = ligand and H = proton
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TABLE 63
Kratzer et ai 's results for average percentage gain in weight 

of broad beasted bronze turkey poults and calculated concentrations 

of free zinc ions and of 1:1 zinc ligand complexes present at 

ph = 2.0 and 6.5. *

gain ph ph = 6.5
Ligand in weight Concn X io“^ Concn X

CDTA 8 7.18 1.43 X 10-14 2.52 X 10-5 9.70

DTPA 26 9.70 1.01 X 10-12 1.21 X 10-8 9.70

DHBDS 8 9.70 7.29 X 10-s 4.07 X 10-14 2.41

EDDA 64 9.70 1.74 X 10-8 2.75 X 10-8 9.70

EDTA 100 8.92 7.04 X 10-11 7.73 X 10-8 9.70

EDTA-Ca 72 8.92 1.85 X 10-1° 7.73 X 10-8 9.70

EDTP O 9.70 3.36 X 10-5 1.50 X 10-15 6.34

GA 0 9.70 9.18 X 10-5 1.54 X 10-12 0.52

HEIDA 24 9.65 6.66 X 10-7 5.30 X 10-7 9.59

HEDTA 120 8.95 7.52 X 10-12 7.51 X 10-8 9.70

HQS 4 9.70 4.98 X 10-8 3.12 X 10-8 2.35

IDA 10 9.70 2.84 X 10-5 2.95 X 10-8 6.68

MSA 8 9.70 1.29 X lo"^ 2.04 X 10-12 7.85

NTA 68 9.60 7.89 X 10-8 1.31 X 10-8 9.69

P 8 9.70 9.70 X 10-5 -

TETA 10 9.70 3.04 X 10-5 1.55 X 10-17 9.02

ph
fzn.Â]^''

ph = 6.5 
5

* These models used total concentrations of Zn = 97 yUM and 

ligand = 171/jM
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Discussion

This fundamental investigation at the molecular level supports the
Îconcepts that a soya bean protein diet requires either supplementary f

zinc or added ligands to extract the zinc that is firmly encased in the 

protein. Presumably, the rapid growth characteristics of soya bean 

requires its roots to have powerful zinc Sequestering ligands to win this 

growth dependent element from the humic acids in soils. Paradoxically, 

when animals attempt to acquire this zinc from the protein, the plant's 

sequestering ligands oppose the process because their bond strengths I

are so high. Further, we suggest that because maximum growth occurs 

for [HEDTA , Zn] = 1 x lO^^M and [Zn^"^] = 7 x lo“^^M at ph = 6.5, very 

little free zinc is used by the tissue protein but rather that it is

the complexed zinc that is assimilated. This agrees with studies j
14 "reporting the passage of radio-active C ligand-zinc complexes from

intestine into venous blood and then its metabolism to appear in
122 123respiratory carbon dioxide and in the urine ' ' ' . .

The explanation of some of the patterns of the published turkey 

growth rate results (which will be discussed in Chapter 7) enabled us 

to suggest the principles of improving bioavailability using liberating 

ligands. Firstly, to aim at a log 3 of approximately 13 to 17 is not 

completely foolproof because both bond-strength and concentration
4dependent terms are included in log 3. Secondly, due allowance must
zbe made for the ligand pK influence (protons compete with zinc for the I

ligand) and for the ratios of metal to ligand used. However, these, 

sometimes clashing, assorted claims for the zinc can be resolved i

provided one has access to computer programs which can calculate -

concentrations ïn V'ivo, I
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We suggest the following four-step approach to theoretically 

choosing ideal ligands for metal ion bioavailability enhancement :

a) A basic core of necessary ligand donor groups 
is established by successively varying, say, 
the number of carboxylates in a series of 
ligands (this is the case for Kratzer's studies) 
until a general order of magnitude for the 
formation constant giving good biological 
response is found (logg c 13 to 17 for the 
present ligands.

b) It is advantageous at this stage to find
natuPalty ooouvï-ing l'ùgands containing this core 
of donors (EDTA does not occur in nature).

c) This fundamental core of donors can then be 
modified and improved up to the cut-off 
binding capacity. This occurs when Zn-ligand 

Zinc-tissue protein. (For example, it occurs
near HEDTA in the present studies.)

d) Once having reached an optimum position with 
a naturally occuiring ligand, it is sometimes 
possible to improve the peak height still 
further by varying the ratios of zinc to ligand 
in the model. For example, at ph 6.5, a ratio 
of 1:1 seems ideal (figure 67 ) whereas at ph 2 
a higher ratio improves the concentration of 
[zinc-ligand]..

Conclusion

In conclusion this work suggests that many more biological activity 

Vevsus complex concentrations of species present studies would be useful 

especially those involving naturally occuring ligands.
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The results can be most efficiently discussed in five sections:

a) protonation of the ligands containing only 
nitrogen donor groups

b) protonation of the ligands containing both 
oxygen and nitrogen donor groups

c) protonation of the ligands containing only 
oxygen donor groups

d) complexing reactions of Cu(II), Co(II), Ni (II) 
with the first class of ligands and Zn(II) 
with the three classes of ligands

e) the study of the bio-availability of dietary 
zinc using computer simulation models of the 
coordination equilibria involved.

As mentioned earlier the first four sections have been studied

potentiometrically, while in section e) the values of the formation

constants of the complexes used were taken from the literature.

Most of the log K values that are published in the literature

refer to other temperatures and ionic strengths.
A quantity called the ionic strength was introduced by Lewis and 

154Randall in order that they could represent the variation of activity 

coefficient with concentration, especially in the presence of added 

electrolytes. The ionic strength is designated by the symbol I and is

. ' - I

\
CHAPTER 7
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defined as half the sum of the terms obtained by multiplying the 

concentration of each ion in the solution by the square of its 

valence.

i.e. J = 1 S C. Z.2

where is the ionic concentration in moles per litre of solution and 

is the valency of the ion concerned.

Activity coefficients can then be calculated according to the 

Debye-Hucke1 equation:-

log f^ = - ^ I 4̂-̂ -1 + bJ______________ _ (1)
”  1 + Ba /T

where A and B are theoretical constants for a given solvent and 

temperature, a respresents the average distance of approach of two 

oppositely charged ions which is expressed in Sngstrom units, and b 

is an empirical constant.

For very dilute aqueous solutions,

A = 1.825 X  lO^ (GT)

where G and T represent the dielectric constant of the solvent and the 

absolute temperature. For a given solvent and temperature, the expression 

for the ionic activity coefficient is given by

log.f ^ = - a |z^Z_|/T   (2)

For water as solvent at 25°C, the constant A is then 0.509, so that
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equation (2) becomes

log = - 0.509|z^ Z_ |   (3)

Equation (3) is called the Debye-H'ùckel limiting law, which is only 

applicable to dilute solutions. According to this law the deviation 

from ideal behaviour in a given solvent is controlled by the ionic 

strength of the medium and the valences of the ions-of the electrolyte, 

but is independent of their chemical nature. Thus, the activity 

coefficient of an ionic species in dilute solution depends principally 

upon its valence and the total ionic strength.

a) Protonation of the Ligands Containing only Nitrogen Donor Groups

1) Protonation of Adeninate
155-160Several workers ' have .the log k 'values of 3.5 - 4.2 for

+the proton ionisation from the C^H^N group. However, there is a

fundamental problem of identifying the site protonated. Lewin
■f“ "f*who summarised the arguments about protonation on N^H and C^H^N , 

concluded that C^H^N is the protonation site. Pullman, Pullman, and 

Berthier showed, by molecular orbital calculations, that the

C^HgN group in adenine has the greatest electron density of any of 

the nitrogen atoms in the molecule. It was later Concluded by Pullman^^^ 

that the most basic site is not necessarily determined by the highest 

electron density, but rather by the conditions in the transition state. 

This conclusion led him to express the opinion that in adenine, the

-4!
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position is the most likely site of protonation.

There is general agreement that proton ionisation is from the

NgH group (where logk~10)^^^.

The log K values are 3.83 +, 0.01 and -9.26 0.01 respectively.

The first log K value refers to protonating the NH^ or nitrogen

(or some zwitterionic intermediate involving both sites). The second
164log K value refers to deprotonating the imidazole 

our figures are in agreement with other literature values

In general 
165

N H 2

N - -H+ 

LogK=~9.26
Adeninate

Log K= 3.83
Adenine

NH

Adenic acid

132 ), Protonation of Cyclohexylamine and Cyclopentylamine

As mentioned earlier (page 10) , this potentiometric investigation 

is aimed at elucidating the changes brought about when a co-ordinated 

ammonia is replaced by a cyclohexylamine or cyclopentylamine ligand. 

Our protonation constants, even though they are somewhat lower than

the two values available from the literature, (10.66 at 24 C, I = 0.001 M
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for cyclohexylamine and 10.65 at 25°C, 1 = 0  for cyclopentylamine^^) 

are still larger than the log K of the parent ligand (9.47 for ammonia 

This pattern is not easily understood, but such phenomena could be due to 

entropy effects (large entropy of protonation for cyclohexylamine and 

cyclopentylamine compared to ammonia) or maybe electrostatic effects 

(distribution of the electrons in the cyclic ring).

b) Protonation of the Ligands Containing both Oxygen and N.itrogen Donor Groups

As mentioned previously in this chapter (page 222), the activity 

coefficient is dependent on the ionic strength. Our 150 mM - 010^ constants 

are lower than those values reported in the literature for higher ionic 

strengths J. Example of a plot of log K vevsus /X(over a range of 

ionic strengths) is shown in figure 68, These values are reported 

at 25°C, since only one log K value at 37°C is available in the literature^^^ 

Our value was taken with comparison of histidine protonations 

performed at 25°C and 37^0 ^^8,169^ The difference between the two values 

of the amino (NH^) .group protonation was added to our value at 37 C.



F igure bs

I  = Experimental value + the difference between 

the two values of the amino group 

■for histidine pro tonation
LÔÇ

10.1i

10.0

9.9

9.7
!■;

9,6

Â

9.3

9.2
I

1
9.0

I 1.0 1.50.5
Giycinate protonotion at 2 5'C (amino group)

0.0
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1) Giycinatey Glycylglycinate, Glycylglycylglycinate

For each ligand, -̂̂ q i ^^fers to protonating the primary amine 

group (ph region above 7) whereas :̂ or the second step 

refers to protonating the carboxylate group (low ph region).

TABLE 64

Log formation constants for ligand protonation
at 37°C and J '= 1^0 mM NaClO^

The proton attracting power of the ligand primary amine group decreases with

molecular weight (see in table 64). This trend supports a previous
96observation for substituted ligands . However, the log K values of 

protonating carboxylate groups increase with peptide size. The origin 

of this pattern is not apparent from the data, but it might be suggested 

that this behaviour is due to the increasing distance between the amino 

and the carboxylate groups or perhaps the presence of the amide group ̂

^101 ^102

Giycinate 9.17 11.51

Glycylglycinate 7.74 10.84

Glycylglycylglycinate 7.59 10.70 1
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C ) Protonation of the Ligands Containing only Oxygen Donor Groups

1) Galacturonate

The glycuronic acids (uronic acids) are the tetrahydroxyaldehydo-

carboxylic acids of the hexane series. The uronic acids combine the
170properties of sugars with those of carboxylic acids

• 171Haug_ reported the log K v a l u e  (in acidic medium) to b e  3.42

(T and I unspecified) by the paper electrophoresis method, which .is in
172agreement with our results (log K 3.21 ), this value refers to

protonating the carboxylate group.

2) Acetate, g-Hydroxybutyrate, Malate, Malonate, Oxalate and L-Tartarate J
Several workers have reported log K values fpr both carboxylic £

acids (acetate 98,173,174^ ^-hydroxybutyrate^^^^101^ and dicarboxylic 
acids (malatelOS'102'103, malonate 105-106,107, ^^^^^^^106,175,112 
and tartarate“ 3-115,176,177j_

For carboxylic acids, the log K values obtained refer to protonating

the carboxylate group. As for the dicarboxylic acids the log K values

refer to protonating both carboxylate groups (these log K figures fall 

within the accepted values for -COO protonation 173'100,103,106j^

3) Salicylate

Solubility problems (salicylic acid is insoluble in acid and slightly 

soluble in water, but . soluble in alkali) and drifting during the period 

of titration, prevented us from obtaining superimposable formation curves.
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This behaviour of the formation curves might suggest that polynuclear 

species are present. Several attempts were made with the PSEUDOPLOT 

program to detect this, but unfortunately with no success. In general, 

in acidic solutions only the carboxylic group dissociates, and in 

alkaline solutions the phenolic group then dissociates.

d) Complexing Reactions of Cu(II), Co(II), N i (II) with the
First Class of Ligands, and Zn(II) with the Three Classes of Ligands

178The metal complexes of adeninate have been investigated by Albert ,
179but not enough data is available on these complexes,. Harkins and Freiser

have studied the complexes of adeninate and first transition series metal 
159ions. Cheney gt al have investigated the interaction of adeninate 

with metal ions in mixed water-dioxan solutions, but these are not 

directly applicable to biological systems. Therefore, it was considered 

important to investigate the metal complexes of adeninate with Cu(II), 

Co(II), Ni(II) and Zn(II) ions in aqueous solution.

Our results show that metal complexing is rather weak and so is 

seriously challenged by metal ion hydrolysis. This hydrolysis restricted 

our working -log h range from 2.1 to 3.3. The presence of hydroxy complexes 

prevented us from producing formation curves for the system studied and 

our obtaining 3 values for bt-s - and - tv'is complexes. Izatt et at 

.have reviewed the sites of metal ion-adeninate complexing and
■làsuggest that Cu(II) is chelated either C^H^N - Cu - or - Cu - N^, 

the latter agreeing with x-ray analysis Co (II), Ni (II), and Zn(II) s

could conceivably be C^H^N - metal ion - N..̂ bonded (from comparison with
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Holmes and Williams formation constants for imidazoles, pyridines 

and amines). It must be emphasized that potentiometric analysis gives 

only stoichiometric, and not, structural information,

2) Cyclohexylamine and Cyclopentylamine

This investigation is the first potentiometric study of the metal 

complexes formed by cyclohexylamine (hex) and cyclopentylamine (pent) 

and therefore the tables, (see chapter 5, pages 65 and 79), quote 

published formation constants for related ammonia complexes as comparison.

It may be seen that the complexing order for Co(II), N i (II) and Cu(II) 

follows the log 3 order, cyclopentylamine > cyclohexylamine > ammonia 

whereas zinc has cyclohexylamine > cyclopentylamine > ammonia.

The complexing reactions are seriously challenged by hydrolysis 

producing insoluble complexes.

Apart from a general enhancement of the formation of all complexes 

compared to ammonia, the cyclic rings introduce nothing unusual into 

the expected complexing order, e.g. from our results, log 3^ values 

obey the Irving-Williams series.

2^8-Dichlorodicyclopentylamineplatinum(II) is a superior anti

cancer drug to o%8-dichlorodicyclohexylamineplatinum(II) (as far as side 

reactions in animals are concerned) which in turn is far superior to 

C'is-dichlorodiammineplatinum(II) (in terms of therapeutic indices). For 

the reasons already stated (chpater 1, page 10), formation constants for

chloro complexes are not available, nevertheless we set up a COMPLOT
71 2+computer model of the equilibria involved when N i (amine)^ was allowed

to equilibrate at various phs (figure 69). It is important to note that

the order of apparent drug effectiveness cyclopentylamine > cyclohexylamine >

ammonia coincides with the amount of mono and b'is nickel complexes present

at physiological phs. However, more evidence would be desirable before

one can be justified in making the sweeping assumption that platinum

complexes tn VVOO have solution equilibria analogous to nickel complexes

in vivo.
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3) Giycinate, Glycylglycinate and GlYcylglycylglÿcinate

In glycine peptides the following functional groups must be taken 

into account as potential sites of coordination to metal ions:

a) the terminal amino group,

b) the terminal carboxyl group in its changed form,

c) the peptide oxygen atom

d) the peptide nitrogen atom.

Our results show that complexes formed by Zn (II) and giycinate are 

more stable than zinc peptide complexes (tables. 31,34 & 37 ) . Bidentate 

giycinate bonds through the amine and carboxylate groups. Glycylglycinate 

and glycylglycylglycinate zinc complexes involve the primary amine and 

either the oxygen or possibly the nitrogen atom of the nearest peptide 

linkage. Whichever the mode of bonding, the similarity between the 

formation constants for the glycylglycinate and glycylglycylglycinate 

complexes suggest that the atoms involved in their chelate rings are 

the same in both instances.

Our models of species distribution show that the amount of 

uncharged A^B zinc complex present parallels the size of the peptide 

(figure %()).

4) Galacturonate

Thè literature contains no data on Zn(II) or any of the other 

divalent metal ions with galacturonate. One cannot assign binding 

sites without further evidence, but from our results Zn(II) could appear 

to favour the carboxylate groups since the formation constant obtained
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falls within the accepted value for-COO complexation.

From the point of view of neutral species, our model studies 

suggest that a-D-galacturonate could well have a very good zinc 

absorption promoting characteristic.

5) Acetate, g-Hydroxybutyrate, Malate, Malonate, Oxalate and L-Tartarate

The carboxylate groups are the binding sites of both the carboxylic 

and the dicarboxylic acids. From this series of ligands our results 

show that malate and malonate tv'is complexes are more stable than the h'is 

complexes, and so formation constants for h'is complexes were not present. 

Similarly, the h'is g-hydroxybutyrate complex is formed in preference 

to the mono complex.

Our models of species distribution show that g-hydroxybutyrate 

has the best zinc absorption promotion system of neutral complexes. 

Oxalate also has a high value but it is clearly too toxic for clinical 

studies.

6) Salicylate

The literature contains a paucity of data on Zn(II) - salicylate 

in aqueous solutions Similarly to protonation, formation constants

of the complexing reactions are unreliable due to the problems mentioned 

earlier.
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e) A Study of the Bio-availability of Dietary Zinc Using Computer
53Simulation Models of the Cor-ordination Equilibria Involved_____

Using formation constants available in the chemical literature, we 

have computed complex species present Vevsus ph profiles for the ligands 

studied 'in V'ivo by Kratzer et at, and attempted to identify the main 

principle controlling maximum zinc uptake.

We are now able to explain some of the patterns of the published 

turkey growth rate results

a) EDTA - Ca was less effective than EDTA itself.
This arises, according to our computed distribution 
of complexes present, because less EDTA is available 
for complexing the zinc, some remaining complexed to 
the calcium ion. Thus, there is effectively a
drop in the Czn.EDTA], an increase in [Zn^^], and 
these are mirrored in a reduced growth rate (see 
figures 55, 66 and table 63 in chapter 6),

b) maximum growth, for the diets used, occurs with 
HEDTA, even though EDTA, DTPA, and CpTA produce 
more substantial zinc complexing (i.e. [Zn^^] is 
lower). This, we suggest, arises because in the 
series up to HEDTA the growth is under the control 
of the amount of complexed zinc but after the HEDTA 
cut-off, bond strength control takes over (i.e. as 
discussed in the theoretical section in chapter 6, 
BC^ < BC^ and so the tissue protein is unable to win
the zinc from the ligand complex).

In conclusion, we must point out that these ligand-zinc absorption

promotion studies refer to a full stomach and intestine. When food

protein is absent BC^ = O and so powerful ligands of the EDTA-type are

unnecessary. However, ligands producing neutral complexes with metal
52ions can promote absorption
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Conclusions and Possible Future Prospects

We have drawn attention to the fact that metal—iona are essential to 

life, and in tliis thesis zinc in particular. The concept of possible zinc 

deficiency in man is relatively new, and the deficiency syndrome is not 

clearly defined.

Oral administration of zinc sulphate is the usual therapy for zinc 

deficiency conditions, but certain zinc-ligand mixtures may also increase 

serum concentrations of zinc more than oral zinc sulphate treatment.

The present thesis presents formation constants for the protonation 

and complex formation and includes ph versus complex species present profiles 

for a series of ligands, in order to suggest the best zinc supplementing drug 

for treating zinc deficiency conditions. These ligands were chosen from 

carboxylate and amino-acids found in man and in particular those known to be, 

or suspected of being, involved with zinc metabolism (e.g. a-D-galacturonic 

acid, D,L-g-hydroxybutyric acid, and L~tartaric acid).

The a-D-galacturonate and 6-hydroxybutyrate were found to be the best
2-j-zinc absorption promotion systems having 98.1 and 81.3% Zn ’in potentially 

lipid/protein soluble form respectively. The complete ph profiles of these 

systems are shown in figures 39 and 43.

These results are in agreement with those by E. Giroux and N, J. Prakash* 

(Centre de Recherche Merrell International), where they studied the influence 

of various salts, chelates and other complexes of zinc given by gavage upon 

serum concentration of zinc in rats.

In considering future developments, there is a great need for more data 

on the composition of biological fluids and tissues, in normal and in pathological' 

states, and also for more formation constant data, determined under physiological '

conditions (37*̂ 0 and I = 150mM), of other ligands that are of biological

relevance as well as those that are biologically essential.

* Personal Communication
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Clearly, as inorganic chemists we must recognise the fact that model 1

computations can only be as reliable as the data used in the model. Also /

these models are an extreme over-simplification of the vn vivo process and j

tliey give only a tentative suggestion to pharmaceutical researchers of which ^

complexes may be forwarded for animal screening.

Finally, tliis field of research is poised between the disciplines of 

biochemistry, inorganic chemistry and medicine. Thus, if researchers are 1

willing to accept the challenge and to expand their interdisciplinary discussions,: 

then this balance will lean towards a healthy future.
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