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Abstract

Evidence of the last glaciation of the Shetland Islands, UK, is re-examined and combined 
with new data on terrestrial glacigenic deposits and recent offshore data from the 
continental shelf to produce a dynamic, integrated model of the history of the whole ice cap.

• It is shown that evidence which has previously been attributed to last glacial, 
or earlier, Scandinavian ice incursion, might be explained by the eastwards 
migration of local ice sheds.

• At its maximum, the ice sheet reached the continental shelf edge to the west 
of the islands, at least 75 km east, at least 50 km north and might be seen as 
a peninsular extension of the Scottish ice sheet to the south.

• The changing patterns of ice flow during deglaciation are reconstructed, 
implying an early phase of deglaciation at the west and northwest margins 
(possibly accounting for the suggested eastern migration of the ice shed), 
followed by retreat at more northern, then eastern, then southern margins.

• It is suggested that the above pattern reflects tidewater calving controlled by 
bathymmetric variation around the ice sheet.

• During a later phase of deglaciation, the margin of the ice cap may have 
grounded at around the current -100m bathymmetric contour and from 
there retreated terrestrially.

• The importance of topographic control on patterns of deglaciation as ice 
retreated towards the island group is clearly established.

• Some minor moraines in parts of Shetland are due to active ice margins but 
their age is unknown.

• Radiocarbon dates reported here show that the last glaciation was Late Weichselian 
and that the maximum northern extent was at least 50 km north of the islands.

• The concepts of an eastwards migrating ice shed and an early, extensive ice cap 
retreating to a grounding point, could have parallels elsewhere in Scotland during the 
last glaciation.

• The methodology applied in this study of Shetland - integrating onshore and offshore 
data, and developing a dynamic picture of the whole ice cap - needs to be applied to 
the last Scottish ice sheet also.
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9.12 Upper unit of sequence of sediments incised by Milldale Burn, Unst, Shetland. 
(HP597142)

9.13 Kussa Waters, Yell, Shetland, showing Flinn’s (1983) proposed glacial lake shoreline. 
(HP518029)

9.14 Lodgement till on glacitectonized bedrock, Bay of Brough, Yell, Shetland. (HP538048)
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1. Introduction

1.1. Background and aims

Shetland lies on the margins of a crucial location within the northwest European and global 

climate system, to the south and southeast of key components of the oceanographic circulation 

system. What occurred in this area during the last glaciation of this northwest continental shelf 

zone is of some importance therefore. However understanding of the last glaciation of the 

Shetland Islands and surrounding shelf area is limited. Much ice movement direction data has 

been collected from the islands and this has been interpreted in the context of regional issues 

relating to the influence or otherwise of Scandinavian ice upon them. Generally, reconstructions 

have attempted to incorporate all available data into a single, temporal, snapshot or ice 

configuration. New offshore datasets have great potential for furthering understanding but the 

use of these has been limited to date. Little dating has been undertaken and the

chronostratigraphy of the last glaciation of the area is tentative. This study aims to draw 

together this limited knowledge, add to it and interpret it in the wider context of northwest 

European glaciation. More specifically, the aims are:

1. To comprehensively re-examine and re-interpret published data relating to the last glaciation 

of the islands from terrestrial and offshore areas.

2. As far as possible, to establish a sequence of events during the last glaciation - combining 

relevant data, interpreting it in greater detail than previously and identifying patterns that can be 

morphochronologically resolved to present a stage-by-stage reconstruction for the first time.

3. To provide a new dataset of glacial sediments across the islands to assist in the interpretation 

of events.

4. For the first time to combine offshore interpretation with the terrestrial reconstruction to 

establish an integrated regional pattern covering the whole of the Shetland ice cap and its 

history, not just that part of it that is manifest in the rather limited terrestrial evidence.

5. To contribute to the temporal context of the last regional glaciation by dating key sediments 

for the first time.

6. To develop a reconstruction that is, as far as possible, testable, and to recommend courses of 

action that may confirm or refute it.

1.2. Limitations
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The difficulties that the writer has encountered in reconstructing the last glaciation of the 

Shetland islands are outlined here to inform both this study and the discussions of previous work 

undertaken.

Reconstruction of the last terrestrial glaciation of Shetland is not straightforward. The islands 

form a narrow, Caledonian remnant, just a few kilometres from east to west in places. The last 

ice sheet may have been 150 km in diameter, so only a fraction of the former bed is represented 

terrestrially. Reconstruction of former glacial environments requires both evidence of the 

glaciation and some way of accounting for the varied effects that the substrate over which it 

developed might have upon the pattern of evidence. Both of these requirements are hard to 

satisfy on terrestrial Shetland. Evidence of glaciation on Shetland includes striae, stoss and lee 

landforms, erratics, some glacigenic landforms and drift geology. The terrestrial solid geology is 

highly variable, including intrusive and extrusive igneous rocks, sandstones and a wide variety 

of melamorphics. The writer has found the identification of striae on many rock types difficult: 

extrusive igneous types and sandstones provide the clearest record but striae are much more 

difficult to locate on coarse grained granites and granodiorites and schistose metamorphics. 

Although roches moutonees are identifiable in some areas, micro- stoss and lee data are less 

convincing in most because of the effect that the structure of the rock has on its pattern of 

disintegration under glacial erosion. Although the broadly north-south strike of the solid 

geology on Shetland offers considerable potential for the study of erratic movements in the east- 

west plane, the sheer diversity of rock types makes reliable identification from weathered hand 

specimens, particularly of metamorphic varieties, extremely difficult. The present writer has 

only been able to conduct useful erratic studies in areas where the available sources are limited 

and easily distinguishable. Across most of Shetland a thorough working knowledge of the solid 

geology would be advantageous, and the acquisition of such, a major project in its own right.

Shetland continues to sink relative to sea-level. Many of the valley floors in which glacial 

landform assemblages might be anticipated are now submarine and may have suffered erosion 

during this transgression. What little depositional glacigenic morphology there is, largely in 

central Mainland, is often difficult to interpret due to its small size, peat cover and erosion by 

postglacial drainage. The absence of major drainage basins and rivers and the high base-level 

that results from rising sea-level means that there are few natural exposures of glacial drift 

inland. Conversely, coastal exposures are excellent throughout the islands. Recent economic 

development due to the oil industry continues to open up new sections inland particularly during 

road building. Unfortunately the program is so large that major quarries have been established 

and the more numerous and widespread local roadside pits are less well maintained.

The recent development of data from offshore is potentially of enormous significance. Maps of 

Quaternary sediments at the 1:250 000 and 1:10 000 000 scales have been published together
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with regional reports. Little in-depth discussion of the data and its correspondence or otherwise 

with terrestrial interpretations has been attempted. In general, the interpretation of the data that 

has been undertaken is provisional and there is scope for widespread detailed analysis of seismic 

traces, sidescan sonar traces, and core material. Published interpretations are tentative. The 

considerable task of looking at the available data in greater depth has begun and exciting 

developments can be expected in coming years, both from analysis of the marginal areas of the 

continental shelf edge and the more limited sediments, sea bed sediments and sea bed 

morphology of inshore areas.

The difficulty in reliably distinguishing between glacimarine and subglacial sediments is a 

major problem in the interpretation of offshore sediments and the collection and analysis of 

widespread micropalaeontological data would be beneficial. More importantly still, the dating of 

sequences would provide a much needed temporal context for reconstruction. The sequences of 

relevance to this study were undated to the west and north of the islands and are only recently 

dated to the east.

It is clear when terrestrial data is considered in detail that not all of it can be accommodated 

without the establishment of some sequence of events. It is difficult, if not impossible, to 

construct an ice shed configuration that accounts at one time for all the observed data. This 

study uses morphochronology to assign different time periods to ice movement patterns. 

Morphochronolgy is the the assignment of morphological evidence to relative timescales based 

on the juxtaposition of landforms. In particular, it is assumed that more peripheral areas reflect 

earlier ice movements and that as deglaciation progresses, ice becomes increasingly 

topographically contained. It is also assumed that where multiple events are overlain or 

adjacent, that the stronger pattern is more recent. Finally, 'negative evidence,' - evidence for an 

event based on the absence of something rather than its presence and open to the criticism that 

the absence may be due to random or post-event processes - is treated with cautious open- 

mindedness.

This study attempts to build from detailed local interpretation, to a general pattern for the last 

Shetland ice cap as a whole, and ultimately to the implications for northwestern European 

continental shelf. This range of focus has been difficult to achieve given the timescale over 

which the study must be conducted. In all chapters compromise is attempted - between the detail 

in which the employed knowledge or observation was collected and the area over which it is 

being applied. No site, or local area, provides sufficient information to extrapolate usefully to the 

wider picture. However, published data and interpretation are largely at the scale of the islands 

themselves and have focused on regional issues such as the influence or otherwise of 

Scandinavian glaciation. There is therefore a need for some level of examination between these
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two scales and that is the level of new interpretation offered in the regional chapters of this 

thesis.

Conducting the investigation at tliis level does not allow direct observation of the data 

throughout the area. For the avoidance of contusion the writer has attempted wherever possible 

to refer to his own new observations as such, but cannot claim responsibility for finding, and 

must disclaim responsibility for the accuracy of, much of the data employed in the 

reconstruction. While the writer has always sought verification of observations recorded by other 

workers while in the field, only a limited amount of time is available for this activity and the fact 

that direct verification was not made of particular evidence obviously does not mean that such 

evidence does not exist. The writer does not therefore record instances of positive verification 

except in areas of particular controversy. Suffice to say, however, that sufficient positive 

verification has been made to confirm the broad reliability of the datasets used.

1.3. Conclusions

The results of the study show that terrestrial patterns of ice flow can indeed be assigned to some 

temporal sequence and that this is a more appropriate model than a static ice configuration. The 

established sequence reveals a pattern of deglaciation that can be explained by the relationship 

of the ice cap to regional bathymmetry and demonstrates the influence of sea level rise. After an 

initial maximum ice margin had retreated to approximately the -100 m bathymmetric contour, 

sea level ceases to control deglaciation and rose following ice retreat across inshore areas to the 

present terrestrial landmass.
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2. The last glaciation of Northwest Europe

Shetland lies in an important position with respect to the climatic and oceanographic history of 

northwest Europe. The glacial history of this wider area is, therefore, both important to, and can 

be illuminated by, understanding of the glacial history of Shetland. The glacial history of 

northwest Europe is reviewed here. ‘Devensian,’ is usually used to refer to the last British 

glacial phase and, ‘Weichselian,’ to the Scandinavian. However, for simplicity, ‘Weichselian,’ 

only is employed in this study, regardless of the location under consideration.

2.1. The last glaciation of Scotland

2.1.1. Glacial build-up (englaciation) and maximum extent

Although pre- Quaternary events have contributed significantly to the physiography of 

Scotland1, the radial trough pattern seen around Rannoch Moor suggests that this has repeatedly 

been an ice centre. Late Weichselian ice directional indicators across the country' show a 

complex overall configuration with a number of major and minor centres of dispersion (figure 

2.1) and the relative stratigraphic positions of tills bearing key erratics demonstrates that 

different centres developed diachronously2.

Much, if not all, of the maximum margins of the last ice sheet around Scotland now lie offshore 

(figure 2.2). Difficulties in distinguishing between proximal glacimarine and subglacial 

sediments in cores, and the absence of chronostratigraphic data that reliably resolves Late 

Weichselian and earlier Weichselian events, remain considerable obstacles to confident 

reconstruction. Accordingly, better offshore interpretation in these areas will probably resolve 

the 'minimalist' versus 'maximalist' maximum ice extent debate that has polarised the literature 

to date (for example, compare figures 2.3 and 2.4). In terms of vertical extent, while Scottish 

trimlines exist and their interpretation is becoming increasingly sophisticated3 their 

chronostratigraphic significance remains ambiguous. Theoretically, vertical and lateral limits 

can be linked by surface profile determinations4 but such calculations can only be tested against 

the geological record and have further served to highlight the need to resolve the difficulties in 

that record.

In eastern Scotland, the age of the last major glaciation of Caithness, Orkney and Buchan is 

controversial. There is evidence of extensive ice moving from the Moray Firth across Caithness,

‘I-Iall, 1991
2e.g. Kirby, 1969
3Ballantyne, 1994
'‘Boulton el al.. 1991
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Orkney and coastal Buchan, perhaps due to pressure from Scandinavian ice, subsequent west- 

east movement across Caithness, and the possibility of ice-free periglacial zones in both 

Caithness and Buchan. Interpretation of these eastern areas therefore has implications for the 

extent of the last Scandinavian ice sheet also. Widely varying conclusions can be drawn from 

the available data, polarising between limited Late Weichselian glaciation, with Buchan, 

Caithness and Orkney being ice free5, and extensive glaciation with all these areas glaciated6. 

Off-shore in the Moray Firth area7, the Bosies Bank Moraine complex may form the eastern 

margin of the last Scottish ice sheet8, from where it retreated by tidewater calving, and the Wee 

Bankie moraine further south9 may also be of Late Weichselian age. North Sea data is discussed 

further below.

The western Scottish ice sheet subsumed those of the inner Hebrides10, but was deflected, 

northwestwards and particularly soutliwestwards, by the Lewis ice cap and topography. The 

southern arm created an erosion surface to the continental shelf edge11 and a margin also lay 

grounded close to the shelf edge southwest of St Kilda12. The Lewis ice sheet is thought to have 

had its ice shed to the west of the islands13, presumably due to aggradation in the direction from 

which precipitation was being delivered. There is widespread evidence of the influence of an 

undated Scottish ice sheet on St Kilda but Sutherland et al.14 suggest only limited glaciation 

during the Late Weichselian. Another possible Late Weichselian erosion surface extends 40 km 

north-northwest of the Butt of Lewis. In contrast, a restricted Late Weichselian western ice 

margin is implied by Von Weymarn15 who argued that the Outer Hebrides ice sheet did not 

cover the extreme north of Lewis, and Sutherland and Walker16 who suggest that the area was 

not glaciated at all, although evidence for ice free zones on north Lewis has recently been 

criticized17. There is however a morainic feature in the Minches, referred to as the Greenstone 

Ridge18 which supports theoretical ice profiles consistent with maximum vertical extent 

reconstructions on the Trollernish peninsula of Skye19. Elsewhere, the vertical extent of the ice 

sheet al its maximum may be represented by trimlines in Easter and Wester Ross20. Much of this 

observation has been assembled into a possible temporal sequence in figure 2.521 which 

highlights the idea of more than one phase of glaciation, as yet temporally unresolved. By

5e.g. Sutherland, 1984
6IIall and Bent, 1990; Hall and Whittington, 1989
7Benl, 1986; Andrews et al., 1990
8I-Iall and Bent, 1990
‘’i-Iolmes, 1977
10Sutlierland, 1984
1’Davies et al., 1984
,2Peacock et al.,1992
13Selby, 1989
14Sutherland el al., 1984
15 Von Weymam, 1979
l6Sulherland and Walker, 1984
17I-Iall, 1995
18Fyfeetal., 1993
l9Ballantyne, 1990, 1994
20Ballantyne, 1990
21 Stoker et al., 1994
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comparison with events to the north, the logical morphochronological implication that the more 

extensive margin is the older22 is confirmed. This more extensive glaciation may be Early 

Weichselian23 (as shown in figure 2.5), but this is inconsistent with global ice volume events and 

radiocarbon dates on glacimarine sediments immediately west of the moraines southwest of St 

Kilda which indicate that these, at least, are Late Weichselian24. It is possible that the evidence 

reflects two temporally distinct Late Weichselian phases, or a single, spatially complex, Late 

Weichselian ice configuration.

2.1.2. Deglaciation

Where the Scottish ice sheet reached the western continental shelf edge, transported material 

was reworked by submarine slope processes to further the progradation of the shelf itself5. On 

the shelf the pattern is characterized by glacimarine sequences, submarine end-moraines and ice 

contact fans26. The features are indicative of grounded ice rather than a grounded ice-shelf and 

reflect glacial retreat punctuated by periods of stasis. Foraminiferal and sedimentological data 

beyond the retreating ice on the outer shelf area27 suggest shallow water (circa 30 m) high-arctic 

and probably sea-ice dominated conditions prior to the Windermere interstadial. The widespread 

raised shorelines, some revealing glacimarine material, of the Inner Hebrides and surrounding 

areas show that retreat was associated with glacimarine conditions well onto the present land 

area due to rising euslatic sea-levels and relatively slow glacio-isoslatic recovery. Glacimarine 

sequences associated with grounded tidewater glaciers are also characteristic off the east coast28 

and extend into Buchan29.

Due to the apparent lack of lowland moraine systems, glacial retreat is generally reconstructed 

on the assumption that ice directional indicators reflect ice flow immediately prior to 

deglaciation and perpendicular to palaeomargins30. A series of recessional moraines in the Dee 

valley of northeast Scotland indicate that at least east coast deglaciation was active and included 

the development of supraglacial land systems at a cold based margin31. The position of these 

moraines appears topographically controlled and evidence for climatically significant periods of 

stasis or readvance in Scotland, such as the Aberdeen-Lammermuir and Perth readvances, has 

been rejected except in Wester (and possibly Easter) Ross32. Periods of stasis at the mouths of sea 

lochs during rapid ice-calving retreat from the west coast seas also probably reflect topographic

22Stoker and Holmes, 1991
23Sloker, 1988
24Peacock et al., 1992
25Stoker et al., 1994; Stoker, 1995
26Stoker and Holmes, 1991
27Peacock et al„ 1992
28Bent, 1986
29Hall and Jarvis, 1989; Hall and Bent. 1990
30Boulton et al 1991
31Brown, 1993
32Perth and Aberdeen-Lammermuir: Sissons, 1967; Wester Ross: Robinson and Ballantyne, 1979; Sissons and Dawson, 
1981;
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rather than climatic control33. The nature of subsequent deglaciation. which may or may not 

have been completed through the Windermere interstadial, cannot yet be determined due to the 

eradication of evidence by the subsequent Loch Lomond stadial ice field.

Referred to as the Loch Lomond stadial glaciation, and the equivalent of the Scandinavian 

Younger Dryas stadial glaciation, the subsequent ice field of the Northwest Highlands and 

Western Grampians was contained within topographic boundaries, and elsewhere smaller ice 

caps and ice fields and many corrie glaciers developed. As the most recent evidence of 

glaciation, the lateral and vertical limits of the ice field and corries have in places been mapped 

in detail, allowing reconstruction of ice sheet surfaces and palaeoclimates34. Beyond these limits 

there is abundant evidence of periglaciai activity35. Although Loch Lomond stadial glacial ice 

did not reach the outer continental shelf, the distribution and grain size of volcanic ash in 

continental shelf cores from a number of different eruptions suggests that sea ice was an 

important part of the offshore environment at that time36. Deglaciation is represented by 

hummocky moraine, a widespread landform within the Loch Lomond stadial ice field limits. 

Originally thought to be associated with rapid stagnation and subsequently seen as ice marginal 

and indicative of active retreat37 the detailed analysis of this polygenetic morphology on Skye 

shows that retreat was initially active, probably driven by precipitation starvation, and latterly by 

stagnation due to increased temperature38. On the mainland ice field the pattern is repeated but 

the stagnation terrain is less widespread39. Despite this evidence of active retreat, palynological 

work thought to demonstrate glacial recession40 has been criticised on theoretical grounds by 

Tipping41 who also found no evidence of the expected pattern in the Awe valley.

2.1.3. Chronology

The chronology of the last glaciation is imprecise. Glaciation appears to have commenced circa. 

26 ka BP: dates on reindeer (Rangifer tarandus} and woolly rhinoceros bones at Sourlie, 

Bishopbriggs and Inchnadamph show that lowland Scotland was ice free around 30-26 ka BP42; 

uranium series dates for speleothem deposition in Assynt show that neither glacial ice nor 

continuous permafrost were present in the area from 40-25 ka BP43; and no interstadial 

radiocarbon dates are younger than 25 ka BP on mainland Scotland or 23 ka BP on the Outer 

Hebrides44.

33Sutherland, 1984; Greene, 1992
34e.g. Ballantyne, 1989
35Boulton etai., 1991
36I’eacock et at, 1992
37Bennet, 1994
38Benn et al., 1992
39Bennet and Boulton, 1993a,b
40e.g. Walker and Lowe, 1985
41Tipping, 1988
42Jardine et at, 1988; Rolfe 1966; Lawson 1984
43Atkinson et al., 1986; Gordon et al., 1989
44Boulton et al., 1991: table 15.3, p.522
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Timing of the maximum ice extent is presumed to have coincided with maximum global ice 

volume, i.e. around 20-18 ka BP. The maximum in England is radiocarbon dated to around 18

17 ka BP45 and speleothem deposition halted circa. 18 ka BP in north-west Yorkshire46, 

although the English maximum may not be synchronous with the Scottish47 one.

For deglaciation there are dates on the arctic marine fauna of the glacimarine Errol beds of the 

Forth and Tay valleys, and the glacimarine silts around St Fergus48. The latter are dated to circa 

15.3 ka BP and the former between 18 and 13 ka BP. The intersladial Clyde Beds were 

deposited after deglaciation of the Clyde area, commencing at about 13 - 12.8 ka BP49. 

Radiocarbon dating of immediately postglacial sediments onshore is prone to error50 and there is 

no reliable radiometric chronology, however the pattern of glacial retreat may be temporally 

constrained by intersection with the raised sea-level record. There are considerable difficulties in 

combining the independent factors involved however51. It has been suggested that by c. 13 ka BP 

ice had retreated to within the Highland boundary52. The Wester Ross end moraine, a possible 

readvance feature, is undated, but predates a radiocarbon dale of 12,800 ± 155 BP at Loch 

Droma53. The many dates published for the Loch Lomond stadial suggest that it lasted 

approximately from 11 ka to 10 ka BP with considerable variation54. The quoted error margins 

are usually 100-200 years. These must be at least doubled for reliability (so that the true age has 

a two standard deviation (98%) probability of lying within the quoted margins and also to 

account for inter-laboratory variations) and the resolution therefore is not high. Equally 

significant is the decrease in atmospheric CO2 during this time (the radiocarbon calibration 

plateau) resulting in the tendency for true ages in this range to map to around 10,000 

radiocarbon years before present55. The early Holocene Juniperus maximum occurred at around 

9.6 ka BP and it is thought likely that complete deglaciation had occurred by this lime56. Insect 

evidence shows abrupt climatic amelioration at 13.5-13 ka BP and climate was analogous to the 

present day until about 12.2 ka BP when a sudden decline to cool-temperate conditions occurred 

at around 12.0-11.0 ka BP. From 11.0-10.0 ka BP a tundra environment is inferred57.

Offshore radiocarbon dates from fossil marine mollusc assemblages suggests that an interstadial 

marine circulation was established off Scotland by about 12.8 ka BP, that polar waters had

45e.g. Penny et al., 1969
46Atkinson et al.,1986; Gordon et al., 1989
47Sissons, 1981
48Errol beds: Peacock, 1981; St Fergus: Hall and Jarvis, 1989
49Peacock and Harkness, 1990
50Sutherland, 1980
51Lambeck, 1994
52Sulherland and Gordon, 1993c
53Kirk and Godwin, 1963
54Walker et al., 1994
55Amman and Lotler, 1989
5613oulton et al., 1991
57Coope, 1977
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returned by about 10.85 ka BP, and that warming was once again occurring by about 10.1 ka 

BP58 59. However, these data cannot be used to constrain patterns of glacier extent or recession.

2.2. Northwest European and Scandinavian Glaciation

The timing and extent of northwest European and particularly Scandinavian ice sheets is of 

considerable importance in interpreting the last glaciation on Shetland, since evidence of 

external ice influence on the glacial history of the islands has been suggested.

2.2.1. Englaciation and maximum extent

Near the southern edges of the Eurasion ice sheet in Sweden and Germany, there is stratigraphic 

evidence that indicates extremely rapid ice build up. Advance rates across Sweden, which 

appears to have remained ice free as far north as Golhenberg until 24 ka BP, are estimated to be 

in the region of 75 - 100 ma"159. More geographically central Alesund interstadial dates60 show 

that much of Norway was ice free at this lime, resulting in the conclusion that much of the 

Scandinavian ice sheet developed over just 10,000 years61. The maximum extent of the Eurasian 

ice sheets during the last glaciation has long been controversial and reflects the absence of 

unequivocal evidence and the mutual dependence of oxygen isotope, isostatic, and marginal 

morphological and stratigraphic data interpretation. There is disagreement over the question of 

whether the Scandinavian ice sheet was coalescent with extensive ice sheets over the former 

USSR, major ice sheets and shelves in the Barents Sea and Arctic Ocean, forming a large mass 

that crossed the North Sea to western Britain, or whether the Eurasian glaciation was much 

more restricted with only sea ice over much of the Arctic and independent ice sheets over 

Scandinavia, Spitsbergen and the UK62. Nearly all of the Late Weichselian glacial margin 

around Iceland is offshore and there is little information available for this time63.

The core area of the Fennoscandian ice cap appears to have remained cold-based throughout its 

lifetime, a fact that has been interpreted as either evidence of extensive, more eastern, Gulf of 

Bothnia-centred Late Weichselian glaciation (largely supported by isostatic recovery patterns), 

or evidence of relatively thin, more west-centred glaciation (requiring reinterpretation of 

isostatic recovery patterns but offering more flexibility of geomorphological and geological 

interpretation particularly at the eastern margins of the ice sheet)64. Either way it is probable that 

the last glaciation of northwest Europe, and of Scandinavia, was the most extensive since the 

last interglacial65. It has been generally accepted that the maximum western limit is represented

58l’ciicock and Harkness. 1990
59Ehlers, 1990
60Bergersen et al., 1991; Lauritzen, 1991;
61 Baumann et al., 1995
62Dawson, 1992
63Ingolfsson and Norddahl, 1994
64Kleman and Borgslrom, 1994; Sollid and Sorbet, 1994; McCarroll and Nesje. 1993
65e.g. Larsen and Sejrup, 1990
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by the Egga II series of moraines66 which confines the margin to just west of the Norwegian 

trench, particularly in northern areas (figure 2.6). Some far northern islands, such as Andoya, 

have remained ice free altogether67. The Egga II moraines are undated and it is their proximity 

to dated advances on Andoya which suggests that they represent the maximum limit. A feature 

of the lake record in Andoya is the sparsity of minerogenic inwash which suggests low levels of 

precipitation, in keeping with more restricted northern glaciation. Despite such geological 

evidence, some workers suggest that a more extensive western Late Weichselian margin, 'seems 

plausible,'68 and further interpretation of the North Sea deposits is required (see below).

2.2.2. Deglaciation

The global pattern of ice melting, and consequent changes in ocean and atmospheric circulation 

patterns, is highly complex. Even within the northwest European theatre the pattern may be 

asynchronous. Inevitably fundamentally different models of Eurasian ice sheet size dictate 

fundamentally different models of Eurasian ice sheet deglaciation. The deglaciation history of 

western Scandinavia is difficult to reconstruct, partially because of the uncertain extent of the 

glacial maximum. Dated pollen influxes and glacial advances on Andoya69 suggest that ice 

reached its maximum about 18,500 BP with a series of ameliorations before about 16,000 BP. 

There then followed amelioration to around 13,700 BP when deterioration recurred70. 

Deglaciation is generally thought to have started at around 14 ka BP further south on the west 

coast and 13 ka BP in the Bergen area, with a minor readvance at 12.6 ka BP71. The generally 

recognized deglacial oscillations in Scandinavia (Bolling interstadial c. 13,000 - 12,000 BP; 

Older Dryas stadial c. 12,000 - 11,800 BP; Allerod interstadial c.l 1,800 - 11,000 BP) are 

followed by the major Younger Dryas stadial readvance (between c. 11,000 - 10,000 BP) that is 

well marked by moraines around coastal areas of Norway and in particular the Herdla ice-frontal 

marine delta near Bergen72. The ice domes of Spitsbergen73 and Iceland74 are also thought to 

have experienced pronounced readvance during the Younger-Dryas stadial, although on western 

Spitsbergen, following rapid deglaciation at 12,500 BP, it is not thought that there was any 

significant readvance75. The pre- Younger-Dryas oscillations are proving illusive in Britain but 

sufficient evidence is available elsewhere that an amphi-Atlantic climatic oscillation has been 

proposed for this time76. This informal namer refers to the correlation of cooling events affecting 

Europe, Greenland, the North Atlantic and eastern North America shortly before the Younger-

66 Andersen, 1979
07 Aim, 1993
68Ehlers, 1990 (p.81)
69 Aim, 1993
70Vorren el al., 1988
71Birks et al., 1994
72Mangenid et al., 1979; Nesje and Dahl, 1993
73Boulton, 1979
74Grosswald, 1984
75Birks et al.. 1994
76Levesque et al., 1993
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Dryas stadial (although better dating will be required to demonstrate that the various oscillations 

are indeed coeval.)

2.3. The North Sea Basin
There is a significant body of new data derived from investigations in the North Sea basin. A 

long chronological record is offered by the subsiding basin and the nature of deglaciation of 

adjacent areas must be examined in this context. There is much data and much interpretation, 

both past and ongoing but two important problems hinder the development of a complete 

picture: insufficient dating and the difficulty of distinguishing subglacial till from proximal 

glacimarine material on seismic traces and in cores.

The southern North Sea sequence is thinly capped by middle- to late- Pleistocene glacigenic and 

marine sediments. Interpretation of the these, together with sediments on the eastern coast of 

England as far south as The Wash, is relatively uncontroversial and leads to a lobate ice margin 

extending between 100 and 200 km into the North Sea from the English coast with the southern 

margin of the North Sea and western parts of the Netherlands being terrestrial at the Late 

Weichselian maximum77. Further north there is considerable uncertainty over Weichselian 

glaciation, some sense of which is summarized in figure 2.778. The Wee Bankie moraine off the 

east coast of Scotland (figure 2.2) and the apparent absence of till beyond it are critical to the 

argument for a relatively limited Scottish ice excursion into the North Sea79 and dry land is 

inferred for much of the area80 beyond it (figure 2.7c). But the distribution of what are 

interpreted as Weichselian subglacial meltwater channels in the sediments of the North Sea 

implies extensive areas of ice both in the central and, more critically for the present study, 

northern areas (figure 2.7d), and the absence of till is explained by the erosive potential of 

postglacial marine transgressions81. The conflict between these two models of glaciation of the 

northern North Sea could be resolved by temporal resolution of Late Weichselian landforms and 

sediments. In this context, some progress has been made82 (figures 2.8 and 2.9) which suggests 

that the Weichselian maximum in the central North Sea was earlier than conventionally 

believed and may lie between circa 29 ka - 23 ka BP. This contradicts the prevailing philosophy, 

based on oxygen isotope analysis, that the Late Weichselian became progressively more severely 

glaciated until 20-18 ka BP, and suggests that there was a more restricted glaciation al this 

stage.

77Cameron etal., 1992
78Ehlers and Wingfield, 1991
79e.g. Hall and Bent, 1990
80Cameron et al., 1987
81Ehlers and Wingfield, 1991
82Sejrup et al., 1994
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This important result is not (yet) reflected in the interpretation of deposits of direct significance 

to the present study. Sediments on the Shetland Platform itself are particularly thin and offer 

little assistance (figure 3.15). More extensive sediments occur further east, however, where a 

succession from Lower Pleistocene to Holocene is interpreted83, dipping broadly west to east 

from the East Shetland Platform to the Norwegian trench (figure 2.10- line of section is shown 

in figure 3.15 (line section 1)). The distinction between the early and late phases of glaciation 

identified above is not evident here. The British Geological Survey identify three 

seismostratigraphic units of presumed Weichselian age in the area - the Ferder, Cape Shore and 

Sperus formations. The Ferder Formation, includes the last interglacial and the early 

Weichselian. The overlying Cape Shore formation is thought to represent a firmly dated Mid- 

Weichselian marine environment84. The subsequent Sperus formation is interpreted as being a 

shallowing glacimarine unit deposited during the early Late Weichselian eustalic sea level 

regression and this is then overlain by the Tampen Formation which may be a lateral moraine 

deposit (northeast corner of figure 3.13) due to ice flowing northward in the Norwegian trench. 

Shells within it are radiocarbon dated to c. 18,860 ± 260 BP85. The Norwegian Trench 

Formation is also a till-like deposit but is apparently to be distinguished as having been 

deposited under differing glacial conditions as ice and water levels within the trench varied. The 

overlying Viking Bank Formation is thought to represent a pro-delta and delta-front 

environment draining ice overtopping the Norwegian trench, and infills some deep channels, 

with possible sandy, mobile, shallow water islands with aeolian input, on top. These units vary' 

in age from 11, 350 ±120 BP to 8,530 ±110 BP86. Rising sea level is recorded on the edge of the 

Norwegian Trench by a thick beach deposit dated to between 12,500 and 10,800 BP87.

What is crucial for our understanding of the timing and western extent of the maximum Late 

Weichselian Scandinavian ice sheet, and its possible impact on Shetland, is the absence of a 

discrete unit reflecting an early extensive glaciation between the Sperus Formation that 

represents the onset of global Late Weichselian glaciation, and the Tampen Formation 

representing glacial deposition of ice in the Norwegian trench and evidently part of the later, 

less extensive glaciation. There is no evidence that Scandinavian ice even crossed the 

Norwegian Trench, rather than flowing up it. It has been suggested that the high shear strengths 

and fabric characteristics near the sea bed noted in the Brae, Heather, Thistle and Magnus oil 

fields, which lie in a north-south line between Norway and Orkney, northern Shetland, and 

further north still, respectively, may be due to desiccation in subaerial permafrost conditions,

83Johnson et al., 1993
84Johnson et al., 1993
85Rokoengen et al., 1982
8<5Rise and Rokoengen, 1984
87Johnson et al., 1993
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rather than ice loading88. This subaerial state might have occurred had the area been on an 

isostatic forebulge between the Norwegian, Scottish and Shetland ice sheets.

The local absence of evidence for the two-phase Late Weichselian glaciation suggested above 

may be due to the absence or misinterpretation of evidence, the fact that it did not happen in this 

northern area, or that elsewhere in the North Sea the more extensive glaciation was due to 

Scottish rather than Scandinavian ice and that there should therefore be no reason to expect the 

same sequence between Shetland and Norway. However it is clear that as the sequences of the 

North Sea are examined and dated in detail, the better the last glaciation in northwest Europe 

will be understood.

2.4. Mechanisms

An important element of many studies of glaciation in northwest Europe is an attempt to 

determine the mechanisms of ice sheet development and decay as they relate to global 

atmospheric and oceanic circulation.

Glacier advance and maintenance requires low temperatures and/or high precipitation, both 

strongly influenced by oceanic and atmospheric conditions that are themselves influenced by 

adjacent ice sheets. The rate at which ice is transferred to situations in which it melts is 

important and is determined by the interaction between the base of the ice and the surface over 

which it moves. These range from cold based restricted movement to effectively frictionless 

water and the development of ice shelves which are sensitively related to sea-level. Sea water 

volume and sea level itself is locally and globally related to glaciation. Global and regional 

contexts are therefore interdependent and the overall climatic system is a complex arrangement 

of thresholds and feedback loops. This is evident in the fact that whilst Milankovitch orbital 

forcing cycles appear to control the tempo of Quaternary climate change, the magnitude and 

pace of that change requires that it is relayed and amplified throughout a global system89.

Global, oceanic, thermohaline circulation is of great importance in transmitting heat around the 

globe (figure 2.11). In the current interglacial, warm surface waters flow north in the north 

Atlantic (the North Atlantic Drift), to the northeast margins, the Greenland, Icelandic and 

Norwegian Seas (GIN seas). Here, seasonal sea ice development increases salinity, the denser 

water sinks and returns south down the Atlantic (North Atlantic Deep Water). These 

northeastern areas are important therefore as a, 'pump,' in the maintenance of this global, 

'conveyor belt,' (figure 2.12).

88Joluison cl al., 1993
89Imbrie et al.. 1992
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When open, the depth of the Bering Strait may have a profound effect on this mechanism, 

resulting in distinct differences between interglacials90. But during glacials, eustatic sea level fall 

results in the Bering land bridge, leaving only the North Atlantic connection to the GIN seas.

The depth of this route is also reduced, and thus its capacity to exchange heat and salinity with 

the global oceans. The Wyville-Thomson Ridge across the Faeroe-Shetland channel (figure 3.4) 

is therefore a critical bathymmetric threshold, certainly in northwest Europe91 and possibly in 

the global climate system. The failure of warm surface waters to reach the Arctic seas induces 

sea ice development in these areas92.

Also of importance is the southern displacement of the polar atmospheric and oceanic fronts in 

the North Atlantic93 (figure 2.13). Not only do precipitation bearing storm tracks follow this 

front, but sea ice develops north of it. During the winter months of the last glacial maximum, 

sea-ice may have extended as far south as 40-45° N (south of UK) and permanent pack ice may 

have extended to 60° N (exactly the line of latitude of Shetland)94. Cold surface waters and sea 

ice reduce the evaporative flux to the atmosphere and therefore precipitation to ice sheets, an 

effect especially enhanced by the high albedo of sea ice. The consequently reduced precipitation 

does not favour glaciation despite reduced temperatures and such factors suggest that maximum 

glaciation in Arctic areas may be out of phase with both Laurentide and Fennoscandian 

glaciation95.

The relative rate of migration of these fronts and fluctuations in sea level around thresholds such 

as the Wyville-Thomson Ridge, are the most likely unifying keys to the pattern of the last 

glaciation and deglaciation of northwest Europe and Shetland.

The important issue of the timing of warm water advection into, and of evaporation and 

precipitation from, the GIN seas has often focused around the extent of ice in the Barents Sea. It 

has been suggested that the entire Barents Sea area was covered by grounded ice between 22 ka 

BP and 15 ka BP96, but it has proved difficult to model circumstances that would allow such 

extensive glaciation97. Considerable precipitation is required to account for the rapidity of 

growth suggested by the above dates and it is therefore likely that the area cannot be treated as a 

closed cold-water cell as has been modelled previously98. Instead, deep sea sediment core 

analysis reveals that North Atlantic Drift water was advected into the area between 27-22.5 ka 

BP and also between 19.5 and 14.5 ka BP, the former being possibly responsible for the required

90Shafferand Bendlsen, 1994
9'Peacock and Harkness, 1990
92Dawson. 1992
93Ruddiman and McIntyre, 1981
94CLIMAP, 1976
95Boulton, 1979
96Elverlioi et al., 1993; Gataullin et al., 1993
97Siegert and Dowdeswell, 1995
98CLIMAP. 1976
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precipitation", and both showing some correspondence with Heinrich events 1 and 2 which are 

thought to represent ice sheet build-up. Raised shorelines and glacio-isostatic modelling 

however have been interpreted to suggest that, while there was indeed a major grounded ice 

sheet over the area at the last glacial maximum, it had mostly retreated by 15 ka BP* 100.

A more general examination of ice-rafted debris input from the Norwegian Sea indicates several 

Late Weichselian oscillations on the shelf, at least four of which correspond to North Atlantic 

Heinrich events, suggesting that at least some major North Atlantic glacial advances were in 

phase101. This work again suggests that the Late Weichselian maximum was relatively early.

Subsequently, a north-south sea-ice-free corridor was already opened along the coast of Norway 

by 13,400 BP (figure 2.14) indicating the northward flow of North Atlantic Drift waters at this 

time, a switch that may partly reflect the re-establishment of an unsplit jet-stream due to the 

altitude reduction of the North American ice sheets102. This is earlier than the evidence suggests 

further south, where it has been shown that warm southerly water rapidly (within radiocarbon 

resolution) replaced polar water on the coast of northwest Europe and an interstadial marine 

circulation was hilly established off southern Scandinavia by approximately 12,800 BP103. An 

important implication is that this water probably reached Scandinavia from north of Shetland, 

rather than between Scotland and Shetland.

Since maximum North Atlantic Deep Water (figure 2.11) return currents at the bottom of the 

Faeroe-Shetland channel may not have been in operation until the early Holocene104, much 

global deglaciation probably occurred before the full interglacial oceanic circulation was 

operational.

Sea level during deglaciation of northwest European ice sheets is probably crucial given the 

quantities of Late Weichselian glacimarine deposits around their former margins and it is 

certainly likely that the deglaciation of ice shelves such as those hypothesised for the Barents 

Sea were sensitive to sea level105 106. Recent modelling has suggested that glacio-hydro-isostatic 

rebound during deglaciation is more significant than glacio-euslatic rise100. Around Shetland sea 

level is inferred to have been 40 metres below present at 16 ka BP, reached its lowest of -80 m at 

13 ka BP, and has been rising progressively ever since. This corresponds to models that place

"Hebbeln et al., 1994
100Lambeck, 1995
101Baumann, etal., 1995
102Ko<j et al,, 1993; Jansen and Bjorkland, K.R., 1985
103Peacock and I-larkness, 1990
104Stoker et al,, 1989
105Elverhoi et al., 1993
106Lambeck, 1994
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Shetland in a down-warping lithospheric part of the post glacial uplift pattern107 and may 

suggest that Shetland lay on an isostatic forebulge from Scottish and/or Scandinavian ice sheets.

2.5. Conclusions

Areas to the north of Shetland are possibly of global importance during Late Weichselian times 

and an understanding of the timing of the englaciation, maximum, and deglaciation. as well as 

the maximum extent, of the last ice sheets in northwest Europe will assist understanding of the 

global climatic processes involved in such major environmental oscillations. These in turn are 

related to the position of precipitation-bearing storm fronts, the extent of evaporation-reducing 

sea-ice, relative sea-level and the movements of warm. North Atlantic waters. Confusion over 

the spatial arrangement of data relating to glaciation on the west coast of Scotland, the east coast 

of Scotland, the North Sea, Scandinavia, and the Barents Sea must be resolved. This may be 

achieved by applying a more complex temporal sequence of events that includes the glacial 

maximum between 29-22 ka BP followed by a more restricted glaciation between 20-18 ka BP.

In general, however, it is probable that more detailed analysis of the offshore record on the 

northwest European continental margin, and more chronostratigraphic data, will make a major 

contribution to that effort.

107Elverhoi et at, 1993
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3. The last glaciation of Shetland

One of the major objectives of this study is the re-evaluation of existing datasets and 

publications relating to the last glaciation of Shetland on a region by region basis. Therefore, 

much of the literature discussed here is reviewed in greater detail in each of the region chapters 

to which it relates. This section gives a brief overview of the literature.

A number of broad reviews of the glacial history of the islands have been published1. There is 

also a series of summaries of the offshore sediments around the islands2. This latter data 

represents an enormous resource but has received superficial attention as regards interpretation. 

At the time of writing, it is being reviewed further by the British Geological Survey. The solid 

geology of the islands and surrounding continental shelf discussed in this study is taken from a 

number of publications3 although it should be noted that there is a large literature on the subject 

and that the British Geological Survey is, at the time of writing, reviewing and re-mapping the 

area.

3.1. Solid geology, topography and bathymmetry

Shetland can be divided into east and west by the major north-south trending Walls Boundary 

Fault4, a possible extension of the Great Glen fault. The terrestrial geology is highly complex 

(figure 3.1). Even at this generalized level the solid geology encompasses possible Precambrian 

(Lewisian) rocks of the Caledonian Foreland (A in figure 3.1), and subsequent meta-sediments 

resulting from regional orogenic metamorphism, Old Red Sandstone (Devonian) age 

sedimentary and volcanic rocks, and major subsequent igneous intrusions, all associated with 

the Caledonian orogeny. Lithological variation within the mapped units is considerable and is 

discussed on a region by region basis in subsequent chapters. The structural control of the Walls 

Boundary, Melby and Nesting Faults and the thrusts of east Mainland and Unst, together with 

the steeply dipping nature of the Caledonian metamorphic successions, impart a distinctive 

north-south lineation to the landscape that has not been significantly altered by subsequent 

agents of modification including glaciation. But since the exploitation of pre-existing structural 

weakness and topographic channels by ice is inevitable, those valleys aligned with ice 

movement, such as Colla Firth and Dales Voe, Delting (chapter 7, figure 7.2), may owe the 

perfection of their, “U-shapes,” to glacial erosion5. The continuous seaward slope of the

'Mykura, 1976; Flinn, 1977, 1978, 1980; Bimie et al., 1993; Sutherland and Gordon, 1994
2Johnson et al., 1993; Stoker, et al., 1993; Long, 1988; Stevenson, 1991; Chesher, 1984b; Evans et al., 1990;
3Mykura, 1976; Mykura and Phemister, 1976; Chesher, 1984a; Evans and Andrews, 1988
4Mykura, 1976; Mykura and Phemister, 1976
5Flinn, 1977
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numerous drowned valleys prohibits a glacial explanation although some shallow seaward and 

maybe glacially over-deepened (e.g. Ronas Voe - chapter 8, figure 8.2)6.

Offshore, even close to the terrestrial landmass, there are significant additional solid geological 

outcrops (figure 3.2 and 3.3), including a number of fault-bounded Permo-Triassic sedimentary 

basins comprising sandstones with conglomerate bands including clasts of local terrestrial rocks 

(the Unst, Fetlar, St Magnus Bay, and West Fair Isle Basins in figure 3.5). The existence of 

these features as bathymmetric lows, and the possibility that a variety of local rock types might 

be exhumed from the conglomeritic bands, may have a profound influence on erratic distribution 

and the interpretation of ice flow during the last glaciation. With the exception of these basins, 

the offshore outcrops appear to be extensions of those identified onshore - although sequences 

are undivided, boreholes have proved similar rock types. The offshore bathymmetry is shown in 

figures 3.4 and 3.5.

The Permo-Triassic basins partly support the contention that the islands form part of a 

Caledonian erosional remnant which was partly or completely buried by proximal Devonian 

sediments, this cover being stripped during the Carboniferous7. Therefore, although the 

development of the Norwegian Graben and Faeroe-Shetland channel by the end of the Triassic 

led to the platform being sea-bound (figure 3.5), the erosional remnant of the present islands 

was probably in place and the surrounding platform peneplaned. The Mesozoic sediments in the 

Unst and Fitful basins, below the base of the present remnant, confirm this. Since the platform 

does not appear to have been a major source of Tertiary material it is likely that from the 

Jurassic onwards it remained fairly static and close to sea-level8. This supports the wider 

proposition that the main morphometric components of the Scottish Highlands, including the 

Orkney-Shetland Platform, were established by the end of the Palaeozoic, that several major 

erosional cycles were experienced during the Mesozoic, and that any deep weathering occurred 

during the pre-Quaternary Cenozoic9. If relics of past landscapes exist then east-west erosional 

features are of significance given the north-south structural control on the topography of the 

present islands. The gap at Quarff may relate to the Devonian landscape and there are also 

anomalous valleys at Voe and Mid-Yell (figure 3.6). Erosion surfaces on and around the islands 

(figure 3.6) have been tentatively identified by examining frequency histograms of Admiralty 

soundings and various Ordnance Survey map data10. The histograms suggest there may be 

terraces at 150 in, 100m, 60m, -15m, -45m, and -82m OD but the work is not conclusive. In 

particular the ages of the surfaces cannot be determined.

6Fliiin, 1977
7Flinn, 1977
8Flinn, 1977
9Hall, 1991
10Flinn, 1977
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3.2. Previous work

3.2.1. The last terrestrial glaciation

At both regional and local level there are numerous direct conflicts and unexplained differences 

in both the evidence and interpretation of workers since the beginning of the century11. These 

are addressed directly in subsequent chapters. Only the major findings and issues are dealt with 

here.

The first major work on the last glaciation of the Shetland Islands showed that Scandinavian ice 

overran the entire archipelago from the northeast, turned upon it, and proceeded towards the 

northwest (figure 3.7), and that there was a subsequent local glaciation from the islands 

themselves12. These conclusions were drawn from striae, roche moulonee and stoss and lee 

observations, erratic movements (figure 3.7 also shows the solid geological interpretation with 

which the authors were working), and in places the asymmetry of till development around 

obstacles in the ice sheet's path. This scenario is consistent with the same authors' work in 

Orkney and Caithness (figure 3.8)13. At the time of publication, argument ensued over why a 

Scandinavian ice sheet should turn to the northwest14 upon reaching Shetland and the authors 

proposed the impingement of a Scottish ice sheet from the south.

The possibility of Scandinavian glaciation was supported by the discovery of a large Tonsbergite 

boulder, originating near Oslo in Norway, at Dalsetter on the south Mainland peninsula15 

(chapter 5, figure 5.2). The boulder is discussed in detail in chapter 5 but its status as an erratic 

is open to question.

Subsequent authors have been unable to explain some of the sense of direction of striae data 

presented in the above work and also noted that erratic distributions strongly suggested only a 

local ice cap shedding ice radially from the islands16. The only evidence of Scandinavian ice was 

observed in the north of Unst and the southern peninsula of Mainland where erratics had 

crossed over the high ground and where the Dalsetter erratic is located. Local ice subsequently 

flowed from this high ground also however. The available data showed a pattern of northeasterly 

movement in central Mainland and Whalsay (figure 3.9) inconsistent with flow perpendicular to 

the axis of the islands and all the data was collated to produce a picture that involved a local ice 

sheet in confluence with Scandinavian ice to the east of central Mainland, with Scandinavian ice 

itself crossing south Mainland and Fair Isle, and possibly north Unst17.

11 Ross et al., 1993
12Peach and Home, 1879
!3Peadi and Home, 1881
14Home, 1880
15Finlay, 1932
16Robertson, 1935; Mykura, 1976
l7Mykura, 1976
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Variations in the radial pattern were also interpreted more subtly as being caused by ice flow 

shifting to new glacier margins, the orientations of which were being controlled by rapid ice 

calving into a rising sea level18. The conclusion thus reached was that the islands were indeed 

overrun by Scandinavian ice but as sea level rose at the end of the glaciation an independent ice 

cap was formed, possibly more dynamically active than climatically sustained, with the ice flow 

therefore controlled by rapid ablation by ice calving and ultimately bathymmetry (figure 3.10).

This interpretation was of course dependent on a knowledge of bathymmetry and it was 

subsequently observed that the pattern could equally be explained simply in terms of 

topographically contained ice flowing under gravity without any need to invoke iceberg 

calving19. By far the largest striae dataset and, given the extent to which it has been borrowed 

and passed on20, more or less the only one, is that of D. Flinn who is responsible for re-mapping 

the solid geology of much of the Shetland islands and is therefore well placed to identify 

erratics. His major work on the subject21 confirmed the radial pattern of ice movement (figure 

3.11) from the islands and, while accepting evidence of Scandinavian ice crossing both south 

Mainland and Fair Isle, suggesting that it reflected, if not a previous glaciation altogether, an 

early stage in the last. This was reaffirmed with the regional addition of Foula and Fair Isle 

(figure 3.12)22, a reversal of the conclusion previously reached on Fair Isle, where Scandinavian 

glaciation of the island was thought to be a relatively late, unimportant, event23.

Broadly, interest in the issue of Scandinavian ice has taken prominence over the detailed 

interpretation of ice direction indicators on the islands and it is recognized that a more complex 

interpretation of the available data may be justified24.

Given the small size of the islands, it is not surprising that references to terrestrial Late 

Weicliselian ice margins are not abundant in the literature. One is reported across the island of 

Papa Stour25, west Mainland (see figure 6.2), and another across north Unst and north Yell 

which may be that of the northern glacial maximum26, or may not27. Various hummocky drift 

deposits have been reported28 but it is not clear whether these represent active ice marginal 

deposits. Neither is it known whether they relate to a period of stasis or readvance during 

deglaciation of the Late Weichselian ice, or a Loch Lomond/Younger Dryas stadial readvance.

18IIoppe, 1974
I9Flinn, 1977
20to Mykura, 1976 (D. Flinn, pers. comm.) and from Mykura to Hoppe, 1974
21FIinn, 1977; and more or less reiterated, 1980
22Flinn, 1978
23Flinn, 1970
24Ross et al., 1993
25Mykura and Phemister, 1976
26Flinn, 1983, 1992b, 1994a
27Ross, 1993
28Mykura and Phemister, 1976; Flinn, 1982; May and Mykura, 1978; Gordon, 1993b
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Numerous possible come glaciers are observed by one author29 but subsequent writers30 find 

little evidence of these (except for the hummocks mentioned above) and argue that they are 

hypothetical ice masses based on the likely locations of snow accumulation rather than on direct 

evidence.

3.2.2. The last offshore glaciation

There is potential for major improvements in understanding the last glaciation of the area since 

the development of enormous offshore sediment datasets. These have, as yet, only been 

interpreted superficially, and the results have been published during the course of this project. 

These interpretations are discussed here but it should be noted that combining the offshore and 

terrestrial conclusions to achieve this potential has not been attempted, other than briefly31, prior 

to this study in which it is a major aim.

The summary conclusions regarding the last glaciation reached by the British Geological Survey 

are shown in figure 3.1332 but the original 1: 250 000 maps33 show that the situation is complex, 

and even these are only initial interpretations. In particular, there are two possible margins in 

the north - the more restricted34 fits well with the proposed terrestrial ice margin on Unst and 

Yell mentioned above35. However the more extensive is the limit of the Otter Bank sequence: 

sediments comprising over-consolidated diamicts forming ridges as well as mounded and sheet

like morphology across much of the shelf area36. They are interpreted as being deposited 

proximal to grounded glacial ice37 and near the shelf edge in places form a series of parallel 

retreat moraines, indicative of ice retreat to the southeast. Between these ridges glacimarine 

deposits are visible on seismic traces38. The area marked in figure 3.13 as being of glacimarine 

sediments is also of interest. These are part of the Stormy Bank sequence, interpreted as being 

deposited during the waning stages of the last glaciation. They are well-layered, soft, 

glacimarine muds and clays with dropstones and are thought to be deposited in shallow 

conditions from icebergs or floating ice shelves39.

Figure 3.14 shows the limit of the Stormy Bank sequence in inshore areas and to the east of the 

islands. These sediments are also related to the waning stages of the Late Weichselian and are of 

clear importance to the interpretation of the terrestrial data in this study. The relationship of the 

Otter Bank and Stormy Bank sequences in inshore areas is also shown in figure 3.15. To the

29Charlesworlh, 1956
30Mykura, 1976; Flinn, 1977
3lGordon et al., 1993; Ross et al., 1993
32Stoker et al., 1993
33Chesher, 1984b; Long, 1988; Stevenson, 1991; Holmes, 1991; Evans et al., 1990
34Long and Skinner, 1985
35Flinn, 1983
36IIolmes, 1991; Stevenson, 1991
37Cockcrolt, 1987
38Stoker and Holmes, 1991; R.Holmes (pers. comm. 1993)
39Johnson et al., 1993
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northeast of Unst, beneath the area of Stormy Bank sediments, the Otter Bank sequence forms a 

possible morainal bank and both the Otter Bank and Stormy Bank sediments show some 

evidence of having been channelled here40. Beyond this, in an area that follows the shelf break 

from the north around to the west, between depths of around 150-300 m below modern sea-level 

(figure 3.4), is a zone where the seabed is characterized by iceberg scour marks41.

The British Geological Survey have, at the time of writing, yet to publish an in-depth 

interpretation of the last glaciation of the area, however this work is underway42.

The dispersal of heavy minerals in the sediments around the Shetland Islands have been studied 

and suggest a radial pattern of ice flow from the islands (figure 3.16)43. Comparing figures 3.16 

and 3.9 reveals that the confluent Shetland and Scandinavian ice sheet, if such a situation 

existed, would have been further away from the islands than previously envisaged. The drawn 

limit is at the limit of the study, however, the presence of Scandinavian ice is derived from 

previous hypotheses and is not in any way demonstrated by the heavy mineral assemblages 

themselves.

3.2.3. Chronology

Dating is an objective of this study and the available terrestrial and offshore chronologies are 

reviewed in detail in chapter 10.

Fugla Ness in northwest Mainland includes organic materials overlain by two inorganic 

diamicts44. The age of the organic material is controversial and beyond radiocarbon 

determination but the thermophilous character of its constituents clearly indicate an interglacial, 

evidently not the present one. At Sel Ayre45 a sequence of organic deposits is overlain by slope 

deposits and till and the age of the organic material, also beyond radiocarbon determination, 

based on pollen correlation, is contended to be either Ipswichian (last interglacial) or an Early 

Weichselian (Early Weichselian) interstadial, possibly correlated to oxygen isotope stage 5a or 

5c46.

The Stormy Bank and Otter Bank sequences have not been dated other than by the assumption 

that their uppermost stratigraphic position suggests that they are likely to be of Late Weichselian 

age. To the east of the islands, sediments are thin and patchy and are described as the East

40Stevenson, 1991
4'Stevenson, 1991
42A. Stevenson (pers. conun. 1995)
43Beg, 1990
44Chapeihowe, 1965
45Mykura and Phemister, 1976
46Hall et al., 1993b
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Shetland Platform sediments47 but are probably lateral equivalents of the Otter Bank and Stormy 

Bank sequences (as assumed in figure 3.15). Sediments associated with early deglaciation of ice 

from Shetland, near its assumed eastern maximum limit, have here been dated to early 

interstadial times at circa 13 ka BP48. These sediments are patchy and cannot be seismically 

traced to the Otter Bank and Stormy Bank sequences of the north and west shelf areas.

The oldest postglacial dates on Shetland are similarly dated to approximately 13 ka BP49, 

discounting one of about 15 ka BP due to possible contamination50. A variety of projects relating 

to the timing of the late-glacial on Shetland have been completed or are underway but the 

overall situation is deemed, 'preliminary'51. Following the commencement of deposition of 

organic material there is a distinct late-glacial interstadial period followed by a return to more 

minerogenic deposition generally correlated with the Loch LomondZYounger Dryas stadial.

3.3. Conclusions

There are a number of general points that can be made about work on the last glaciation of the 

Shetland islands to date.

Terrestrially, the issue of whether or not Scandinavian ice played any part in contributing to the 

last glaciation of the islands has been of importance. The question remains unresolved although 

it is clear that the most recent glacial activity involved a significant local ice cap which may or 

may not have reached its maximum extent on the northern isles of the group. More detailed 

interpretation of ice flows within this ice cap has not been undertaken and little attempt at 

establishing a sequence of events has been made. There is little terrestrial drift and this has also 

received no attention in terms of the timing of its deposition or its significance in relation to the 

subglacial environment.

Offshore interpretation around the area is at an early stage and no detailed description of the 

nature of the glaciation of the shelf area, and how or why this changed through time, has been 

published. However it appears that the maximum extent of the last ice cap reached 75 km to the 

east of the islands52. The extent to the north is controversial; and to the west, although there are 

clear morainic features on the shelf edge, these are not dated. Thus far, no attempt has been 

made to reconstruct the last ice sheet of the area in a way that accounts for both the onshore and 

offshore data.

47Long, 1988
48Peaeock and Long, 1994
49Bimie, 1993b; Bimie and Harkness, 1993
50Engstrand, 1967
51Bimie, 1993a (p. 15)
52 Long and Skinner, 1983
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The last glaciation of the islands is assumed to be the Late Weichselian and dates from east of 

the islands suggest that this is indeed the case. A fuller timescale, taking account of variations 

around the islands and upon them, is yet to be developed. Although there is evidence of a 

Lateglacial climatic oscillation, and some depositional landforms on the islands, the oscillation 

is poorly dated and the landforms not at all. The timing, severity and geomorphological effects 

of the oscillation, and how closely it correlates with the Younger Dryas stadial are therefore 

uncertain.
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4. The last glaciation of Fair Isle

4.1. Solid Geology, topography and bathymmetry

The solid geology and topography of Fair Isle are shown in figure 4.1 and comprise medium to 

coarse grained and occasionally pebbly sandstones of Middle and Lower Old Red Sandstone age 

with subsidiary bands of dolomitic mudstone and shale. The strata are steeply inclined to the 

east-south-east, except in the south-west where there is evidence of tectonic deformation or 

possibly thermal metamorphism1. No appropriate intrusions have been mapped2 to support the 

latter hypothesis. There are a number of west-north-west trending faults cutting the island, some 

of which have dykes associated with them outcropping in the west. The geological structure is 

evident in the topography: the ground rises at the angle of dip of the sandstone to high cliffs in 

the west and less competent bands are readily identifiable in many places as shallow channels 

following the strike of the sequence. Offshore, Fair Isle lies close to the western edge of the Fair 

Isle ridge which is bounded to the West by the Walls Boundary fault and to the east by the East 

Fair Isle basin (figures 3.2 and 3.4). Boreholes in the ridge have proven sandstones and 

siltstones. On either side of the ridge, broad bands of Permo-Triassic sandstones and siltstones 

have also been mapped3 (figure 3.2). Structurally, Fair Isle can be seen as an extension of the 

Caledonian erosional remnant that forms the archipelago of Shetland itself.

4.2. Previous work
Early authors have suggested that Fair Isle was overridden by ice moving from the east-south

east4. In support of this, strong ice moulding along fault lines in the south of the island and the 

azimuth of striae observations are referred to but no sense of direction evidence is given. Two 

supporting roche moulonee have subsequently been mapped5 showing east to west ice 

movement. However Flinn6 shows that striae azimuths form a bi-modal distribution - the 

majority associated with micro- stoss and lee features supporting north-west to south-east ice 

movement. The remainder, 'in several cases could be seen to be due to ice moving from the east 

towards the west.'7 The superimposition of the two sets in some locations led to the inference 

that movement from the west preceded movement from the east, the latter being considered a, 

'late and relatively unimportant phase'.8 This conclusion was subsequently abandoned in favour 

of the opposite sequence of events9 but it is not clear why.

'Mykura ,1976
2Chesher, 1984a; Evans and Andrews, 1988
3Evans and Andrews, 1988
4Peach and Home, 1881; Mykura, 1976
5May and Mykura, 1978
6Flinn, 1970
7Flinn, 1970
8Flinn, 1970 (p.275)
9Flinn, 1978
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Evidence of the direction of ice movement has been sought in the nature of the till matrix and its 

colour and relative percentages of millet seed grains have been inconclusively investigated10: 

originally it was concluded that ice moved across Permo-Triassic basins to the north and east of 

the island11, but such basins occur on both sides of the Fair Isle ridge (figure 3.2) and it has also 

been conceded that the Fair Isle till matrix might be derived from local rocks12. The low-lying 

distribution of the reddish till is thought to indicate westward movement followed by south

eastward movement of ice, although how this conclusion is deduced is not discussed by its 

author13.

The most common non-local erratic on Fair Isle is a drusy granophyric granite similar to those 

intrusions encountered on the main island group but possibly from a late or post Devonian 

intrusion outcropping offshore14. No such outcrop has been identified15 16 (figure 3.2) however and 

ice flow lines on Shetland make a Ronas Hill (north Mainland; figure 8.1) provenance10 

improbable. A possible alternative is the Sandsting Complex of the south Walls Peninsula (west 

Mainland; figure 6.1). The Spiggie plutonic complex (south Mainland; figure 5.1) is 

undoubtedly represented and Fair Isle till also includes a variety of igneous and metamorphic 

rocks compatible with but not matching Shetland suites and some gneisses that are incompatible 

and may have been derived from the basement of Norway17.

Pre-Holocene Quaternary sediments offshore are limited (figure 3.15), possibly due to stripping 

by high bottom current velocities. Holocene sands usually overlie a shell hash and diamicton 

occasionally up to 3 m thick. The latter may include soft clays or well-sorted sands locally. 

Sidescan images indicate the presence of gravel ridges throughout an area approximately 30 km 

to the east of Fair Isle18, which may represent an outwash plain, and the beginnings of a 

proglacial channel system draining into the Witch Ground Basin is perhaps identifiable19 

(figures 3.14 and 3.15). The south-eastern maximum of the Shetland ice sheet may therefore be 

represented by an area of stony clays of high undrained shear strength to the west of this area20, 

these characteristics being possibly due to ice loading.

4.3. Outstanding issues

10Flinn, 1970
"Flinn 1969; Evans and Andrews, 1988
12Flinn, 1978
I3Flinn, 1978
14Flinn 1970, 1978
I5Chesher 1984b; Evans and Andrews, 1988;
16Flinn 1970, 1978
17Flinu, 1978
18Evans et al., 1990
19Johnson et al., 1993; Flinn, 1967;
20Johnson et al., 1993
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There remains confusion over the glacial history of Fair Isle. The following regionally crucial 

questions are considered here: Is there evidence of more than one glaciation? Were there 

multiple phases of ice movement within the last glaciation and is there any evidence of ice 

movement from an eastern source? What was the nature of the last glaciation and deglaciation 

and the mechanisms involved?

4.3.1. Multiple or single glaciation

The issues of ice direction and multiple glaciation are bound together on Fair Isle. Although 

there is no litho-/bio~stratigraphic evidence, multiple glaciation has been inferred as the simplest 

explanation for multiple striae azimuths, senses of direction inferred from stoss and lee data and 

complex erratic suites. Striae trending northeast-southwest and striae trending east-west must 

represent different ice movements and may be due to different glaciations21. The present author 

considers the latter to be improbable on the grounds of preservation. On Fair Isle sub aerial 

weathering of exposed surfaces since the last glaciation may be estimated from the pebbly grits 

and conglomerates through the extent to which the sandstone matrix has been denuded 

compared with sheared or planed pebbles of more resistant lithology. This can be up to 5 mm at 

various locations, such as the Bu Ness peninsula. In most parts of the island, joint block removal 

of many surfaces is evident (plate: figure 4.6), as it is over much of Shetland, so preservation of 

a striated surface both between and through subsequent glaciations is unlikely - indeed, only 43 

observations have been made of striae. Il is therefore simplest to assume that most of the 

erosional features reflects the last glacial period.

4.3.2. East-west and west-east ice movement

Even if there is evidence of only the most recent glaciation, it remains possible that multiple 

directions of ice movement occurred during that glaciation. In the case of Fair Isle, it has been 

suggested that the previously reported evidence supports two opposite movements: broadly, from 

the east and from the west22. It will be argued here that the evidence can be interpreted as being 

entirely due to ice moving from the west.

Near Bu Ness, the direction of glaciteclonization of bedrock is offshore and towards the east or 

north-east (figure 4.3). This is incommensurate with glaciation from the east and the 

preservation of such structures (plate: figure 4.7) lying beneath 0 - 0.5m of till (figure 4.5) 

through a subsequent glacial phase is unlikely. It follows that the last ice movement here was 

broadly from the west and this direction can be reconciled with parts of the striae azimuth 

pattern (see below). It should be noted, however, that the precise orientation of glacitectonized 

bedrock may owe something to solid structure.

21FIinn, 1978, 1980
22Flinn, 1970

40



Fair Isle

The reported23 sense direction of the two roches moutonees in the south of the island (figure 4.3) 

can be directly challenged. The more northerly (plate: figure 4.8) has a clearly smoothed 

western flank and more plucked eastern end, suggesting ice movement broadly from west to 

east, and there is no apparent reason why the sense of direction was previously interpreted to 

indicate the reverse flow. It is difficult to determine the sense of direction of the more southerly 

example, but the stoss and lee form of all smaller outcrops in the area suggests an eastward 

movement of ice. The author has been unable locate the striae and micro- stoss and lee 

observations showing east to west movement at Scroo and Head of Tind (figure 4.3) but it is 

worth noting that these are the only two striae that are attributed an east-to-west sense of 

direction by direct observation. They represent one of the reported, 'two sets of striated, ice- 

moulded surfaces'24 on Fair Isle. It is possible that the stoss and lee observations were 

misinterpreted: stoss and lee, especially micro- stoss and lee, observations are not 

straightforward on Fair Isle where the bedrock is structured with an orthogonal joint system. 

Dilation is evident near the surface and removal of small blocks by non glacial processes readily 

achieved. The direction of glaciation under such circumstances is determined by dominant 

pattern not individual sites. The observations of this study leave little doubt that there is a 

dominant stoss and lee pattern indicative of ice movement from the west to the east. Occasional 

reverse observations are not locally consistent and probably do not owe their existence to ice 

moving in the other direction.

Till is generally thin and poorly developed on Fair Isle. However thicker till occurs at South 

Harbour (figure 4.3) and has a very clear fabric (plates: figures 4.9 and 4.10). The direction of 

dip, assumed to be up-glacier25, suggests ice movement from the west. Although consistent, dip 

values were small and it is possible that this trend may have been due to ice moving locally up- 

slope. However the azimuth of clasts are clearly east-west and local stoss and lee observations 

suggest movement from the west. Fabric measurements were made elsewhere on the island but 

there were no sites of similar till thickness: the fabrics showed no strong azimuths and no 

evidence of the direction of ice movement.

Ice movement from the east might also be expected to result in a till distribution that reflected 

preferential lodgement against the western high ground due to pressure melting at the base of 

the ice. What little till exists, however, is best developed on the low groimd in the south of the 

island (figure 4.5). Although it is possible that till which may have been previously lodged 

against the high ground was subsequently stripped away, it is difficult to reconcile that 

conclusion with the simultaneous preservation of former striae such as those discussed above at

23May and Mykura, 1978
24Flinn, 1978(p.ll6)
25Hambrey, 1994
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Scroo and Head of Tind, on bedrock lithologies which prove highly susceptible to

glacitectonization. The southerly distribution of till is more simply explained by a model in 

which the northeastern parts of the island lie in the shadow of the high ground that offers some 

protection from an east-flowing ice mass. Only at Bu Ness does the drift distribution show a 

distinctive preferential lodgement pattern on the up-glacier side of an obstacle, although no 

consistent fabric was identifiable, and here the implied ice direction is from west to east (figure 

4.5) and may be associated with convergence around the high ground (see below and figure 4.4).

There is a distinct low ground striae azimuth pattern suggesting ice movement around the high 

ground (figure 4.4 - additional NW-SE observations (figure 4.3) are incompatible, and in places, 

cross this pattern) and the assumption has been made26 that this reflects divergence of a 

westward moving ice mass of Scandinavian origin. The alternative hypothesis is that the pattern 

reflects convergence of an eastward moving ice mass on the lee side of the high ground. The 

low-ground pattern consists of only a few observations, which may reflect local topographic 

circumstances, and without clear directional information (see above) it is here concluded on the 

grounds of a combination of other evidence and preservation (see above) that the pattern reflects 

convergence of ice from the west. Such convergence of basal ice after flowing around the north 

and south flanks of the island is readily envisaged. The western, up-glacier, side of the island 

comprises near vertical cliff faces which could not be ascended by basal ice between the two 

flanks. The lee, or down-glacier, side of the island would become an area of low lateral pressure 

that would be filled by the convergence of northern and southern streams (figure 4.4).

The only remaining evidence that ice from a Scandinavian or any eastern ice shed passed across 

Fair Isle is the existence of exotic erratics. These are identified simply as being unlike Shetland 

suites. It is possible that the erratic content of till on Fair Isle is partly derived from offshore 

drift sequences and that their original deposition is the result of a previous glaciation. If these 

erratics were re-excavated from drift deposits in offshore areas then it might be reasonable to 

expect shell material, from the deposits themselves or from overlying interglacial or interstadial 

marine sediments, occurring in the same till sections on Fair Isle. No section on Fair Isle 

contains visible shell material and even crude, visual HC1 experiments on the matrix of till 

samples taken from around the island suggest that the carbonate content is low. This implies 

that what drift did exist around Shetland prior to the last glaciation (and there is little there al 

present) was stripped early and that deposition on Fair Isle includes little or none of this 

material. The possibility that erratics on Fair Isle in general may be derived from glacial erosion 

of conglomeratic bands in the surrounding Permo-Triassic basins has not been considered. Such 

bands might contain remnants of basement rocks around Shetland that are no longer in outcrop. 

This hypothesis is difficult to demonstrate without detailed analysis both of Fair Isle erratics and

26Flinn, 1970, 1978
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conglomerate bands around the island offshore, and even then the particular conglomerate 

source bands probably no longer exist. Such alternative hypotheses are however at least 

sufficient to remove any requirement that Scandinavian ice reached Fair Isle from the east 

during the last glaciation.

In summary, the likelihood that evidence of more than one glaciation exists on Fair Isle is small. 

It is possible that an initial west-moving ice sheet was succeeded by an east moving one during 

the same glacial phase but the evidence of striae and drift geology can be most simply attributed 

to the eastward movement of glacial ice and there is no need to accept an eastern ice shed at any 

stage.

4.3.3. Western and north-western ice sheds

An implication of ice moulded landforms and striae on Fair Isle is that the ice shed lay directly 

to the west. However there is a strong northwest to southeast pattern of striae on Fair Isle 

suggesting a more northerly ice shed (figure 4.3). The aim of tliis section is to consider the 

sequence of ice shed configurations necessary to produce these variations. Erratic data does not 

contribute to this issue. Most erratics on Fair Isle have been attributed to Mainland Shetland 

which lies northeast. Flow lines on Shetland itself do not indicate that ice moved towards Fair 

Isle, however they do indicate movement of potential erratic material into areas west of Fair Isle 

at a late stage in glaciation. It is possible that similarly moved material from a previous 

glaciation was re-excavated and transported directly east or southeast during the most recent, or 

that the erratics derive from conglomeratic bands in the Permo-Triassic sedimentary sequences 

on either side of the island.

There is little doubt that ice moved directly from the west across southern Fair Isle at some 

stage. The fabric at South Harbour shows no northerly influence and neither do some striae 

azimuths (figure 4.3). These observations are likely to reflect regional basal ice movement as 

there is little relief in tliis southern area. The northwesterly set of striae, on the other hand, is 

broadly perpendicular to contours and may reflect topographic control of ice movement. The 

slight northwesterly alignment of the two mapped roches moutonees is the product of structural 

influence and stoss and lee observations are not of direct assistance in this context: in some 

areas orthogonal joint plucking perhaps suggests a more southerly direction of movement but 

systematic investigation did not reveal any trends.

There is no clear basis for conclusion here. It seems most probable that early ice movement was 

more directly from the northwest, followed by west to east movement. The reason for this 

conclusion is that much of the northwest-southeast pattern, though not all, is associated with 

high ground, over which ice may have become increasingly cold based, or even ice free, as the 

ice cap surface elevation was lowered during deglaciation. The alternative that the ice
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movements were contemporaneous is difficult to sustain: in places the northwesterly striae cross 

areas where the east-west set also exists, although it should again be noted that the present 

writer has been unable to make direct striae observations on Fair Isle.

The existence of striae on the high ground of the northwest (figure 4.3) is in itself curious. This 

is the western most part of the island, faced by high, vertical, cliffs, and it is therefore difficult to 

envisage where the basal material required to generate the striae has come from, particularly 

since it has been argued that basal ice moved around this area. We are left to conclude either 

that the ice movement indicated is from the south-east (which is contradicted by direction 

evidence), or that high level ice picked up material on the high groimd and immediately used it 

to etch striae. The crucial part of this latter conclusion is that the ice shed would be to the west 

or north-west of Shetland and not centred on the Fair Isle high-ground itself.

4.3.4. Nature of englaciation and deglaciation

The presence of striations and ice moulding indicate that the last ice sheet to cross Fair Isle had 

a warm based temperature regime. Lodgement deposition is not easy to prove however. 

Stratigraphically, in places bedrock glacitectonization only is visible (plate: figure 4.6), and in 

others this has been succeeded by a more dispersed till (plate: figure 4.7). The vertical boundary 

is sharp and it is possible that the thin till mantle is melt-out and there are no locations where it 

is so thick that accretion is likely. An exception is at South Harbour (figure 4.5; plates: figures 

4.9 and 4.10), where 2m of diamict is encountered and there are occasional striated clasts. In 

some locations clast clustering, sand stringers and shear structures suggest local lodgement. 

Elsewhere on Shetland, glacitectonization of bedrock is usually succeeded by lodgement. Al the 

base of slopes on Fair Isle, more complex facies including gravelly material and fines bands that 

suggest a wetter depositional environment (plate: figure 4.11) and possibly flow till during 

deglaciation.

The absence of shells or much calcareous material in till on Fair Isle suggests that, by the time 

of till deposition, any antecedent offshore drift sequences containing such matter had been 

stripped and transported elsewhere; either those sequences were thin, as they are today, or till 

deposition occurred relatively late in the glacial cycle, or both.

The mechanisms of deglaciation around Fair Isle are difficult to determine due to the thin drift 

cover in the offshore areas. The record perhaps suggests that the maximum of the Shetland shelf 

glaciation lay 30 km or more to the east of Fair Isle and that meltwater drained, possibly 

subaerially, in a southeasterly direction. The sediments within that zone are thin however and, 

although there are hints of glacimarine sedimentation, any interpretation of the area would be
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difficult. To the west, shelf-edge end moraines interleave with glacimarine sediments27 

suggesting early deglaciation due to ice-calving (figure 3.13). The thin record nearer Fair Isle 

prevents the reconstruction of subsequent events.

4.4. Conclusions
Existing and new evidence is here interpreted to demonstrate a single, dominantly erosive, 

glaciation with possible multiple phases of ice movement. The latter may have included early ice 

moving from the east, but there is little, if any, conclusive evidence of this. Stoss and lee data 

clearly indicate that Fair Isle suffered glaciation from the west, broadly, and it is here suggested 

that tliis western ice shed may have been to the northwest at some early stage, and that it moved 

progressively to a more western position subsequently as a shelf-wide ice cap deteriorated. A 

residual ice mass may have existed independently of the Shetland ice sheet but there is no 

evidence of Fair Isle nourishing independent glaciers. The regional implications of these 

conclusions are considered in chapter 11 but of particular interest is the fact that the last major 

ice movement across Orkney was from the east.

27R. Holmes (pers. comm. 1993)
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5. The last glaciation of south Mainland

5.1. Solid geology, topography and bathymmetry

The solid geology, topography and bathymmetry of the area are shown in figure 5.1. The area 

comprises steeply dipping metasediments, primarily phyllites, overlain by Devonian sedimentary 

rocks outcropping along most of the east coast. The Spiggie granitic intrusion in the southwest 

of the area is probably part of a plutonic complex that also crops out in central Mainland (figure 

7.1) and western Mainland (figure 6.1). Topography is closely related to structural control: the 

area is dominated by the Clift Hills ridge and its southern outlier, Fitful Head; most of 

Sumburgh, and a thin eastern coastal strip, is underlain by Devonian sedimentaries comprising 

sandstones and conglomerates, and is relatively flat and close to sea-level. Offshore1 (figure 3.2) 

to the east the East Shetland Platform is composed largely of sandstones and siltstones, whereas 

immediately to the west undivided metamorphic rocks and also some granite intrusions occur to 

the Walls Boundary Fault, beyond which the West Fair Isle Basin contains Permo-Triassic 

sandstones and gives rise to a bathynunetric deep. The metamorphic rocks of the area are taken 

to have been metamorphosed during the Caledonian orogeny and may be correlated with the 

Dalradian of Scotland. The igneous intrusions are probably late Caledonian and the sedimentary 

rocks of Devonian age2. It has been suggested that the gap at Quarff may be a Devonian 

erosional remnant (figure 3.6)3 4.

5.2. Previous work

Tliis area is crucial since it offers the clearest evidence of possible Scandinavian ice moving onto 

the Shetland land mass. The pattern of striae in the area has generally been interpreted as 

indicating offshore ice movement from the spine of the Clift Hills'1. Only Peach and Horne5 

interpret striae showing onshore movement (figure 3.7 - southeast corner) but these are disputed 

by subsequent authors6. However erratic data includes not only the movement of central Clift 

Hills phyllites east and west off the high ground, but also the transfer of sandstones from eastern 

source areas, across the high ground, to the west7 (figure 5.2). This is interpreted as evidence for 

Scandinavian ice crossing the watershed prior to subsequent local glaciation from it. Some 

authors treat this as two phases of a single glaciation8, others suggest that it may represent an 

earlier glaciation altogether9. Petrographic analysis of a single example of a large erratic near 

Dalsetter (figure 5.2) shows that it originated in the Tonsberg region of Norway but its original

‘Chesher, 1984a
2Mykura, 1976
3Flinn, 1977
4Peach and Home, 1879; Flinn, 1977; Mylura, 1976
5Peach and Home, 1879
6Flinn, 1977
7Peach and Home, 1879; Mykura, 1976; Flinn, 1977;
8Peach and Home, 1879; Hoppe, 1974; Mykura, 1976
9Flinn, 1977
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stratigraphic position remains unclear despite anecdotal evidence that it may have been 

recovered from till10. No evidence is discussed for Scandinavian ice inclusion north of Lerwick, 

although early authors believed it occurred nonetheless11 (figure 3.7). Improved striae datasets 

suggest that ice flowed southeast across Dales Voe in the northeast of the area (figure 5.2), 

presumably from high ground to the northwest, and tliis is confirmed by erratic carry12. The 

sense of direction of striae on Bressay (figure 5.2) is controversial: since in the north of the 

island erratics include no evidence of Mainland metamorphic rocks, extra-local glaciation from 

the northeast, and Scandinavia, has been suggested13 (figure 3.9); but other authors are 

convinced that the sense of direction of striae in this area indicates ice movement to the 

northeast14; and the possibility of a local ice-cap on the Ward of Bressay deflecting Mainland ice 

into Bressay Sound at a late stage in glaciation has been raised also15.

Offshore (figures 3.14 and 3.15) sediments are thin but subglacial deposits associated with the 

last Shetland ice cap extend 75 km to the east16 and probably to the shelf edge to the west17, 

although the latter are not directly dated.

At Burn of Mail in the centre of the peninsula, localized hummocky topography has been 

described as morainic18 although its extent is possibly confused by the presence of a nearby 

landslide19. Cored sediments in Aith Voe which drains the Veester catchment just to the north of 

Burn of Mail have been analyzed in detail20. There is no lithostratigraphic evidence that the 

catchment was glaciated during Loch Lomond stadial times, although there is clear evidence of 

reduced organic deposition and disturbed soils. The timing of these events by radiocarbon assay 

is discussed in chapter 10. Former corrie glaciers on the Clift Hills, on Bressay, and a valley 

glacier in Dales Voe have been mapped21, but other authors22 find no evidence of these and 

presume them to be partly hypothesised.

5.3. Outstanding issues
The following outstanding issues arise from the above. Did Scandinavian ice cross southern 

Mainland during the last glaciation? If not, how are the observations reviewed above to be 

interpreted? Can they be reconciled in a single phase of glaciation, or do they indicate major 

changes in ice shed configuration through the glacial cycle? What were the nature of glaciation

10review: Gordon, 1993a; discovery and antecedence: Finlay, 1932; Flinn, 1992a; petrography: LeBas, 1992
"Peach and Home, 1879
l2Robertson, 1935; Flinn, 1982
13Mykura, 1976
14Flinn, 1977
15Peadi and Home, 1879
16Peacock and Long, 1994
17Stoker etal., 1993
18Peach and Home, 1879; Cliarleswortli, 1956; May and Mykura, 1978; Gordon, 1993b
19Flinn, 1977
20Bimie, 1993b; Bimieand Harkness, 1993
2'Cliarleswortli, 1956
22Flinn, 1977
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and the reasons for deglaciation? Is there hummocky moraine in Burn of Mail and does it 

represent Loch Lomond stadial glaciation?

5.3.1. Scandinavian glaciation

This area has received the most attention in terms of evidence of Scandinavian, as well as 

subsequent local, ice movement. It is clear that striae in the northeast of the area, including on 

Bressay, were not all formed at the same time, since their azimuth indicate mutually exclusive 

ice movements in close proximity (figure 5.2). Two possible explanations for this pattern exist:

(1) The Bressay striae reflect north-east to south-west ice movement from an extra-local source 

(i.e. Scandinavia)23, and a local glaciation produced the more west-east pattern on the Kebisler 

Ness peninsula.

(2) Alternatively, both patterns are of offshore movements and the change is due to ice-flow 

changes during deglaciation of a local ice cap only.

It has been argued24 that the first hypothesis is supported by the absence of Mainland-derived 

metamorphic erratics in northern Bressay, suggesting that local ice did not cross that area. 

However, it can be seen from solid geology, topography and striae, that offshore ice passage in 

this direction would be almost exclusively across the sandstones of the Lerwick area (figure 5.3). 

The second hypothesis is supported by the author's observation of the drift distribution (figure 

5.4) which suggests preferential lodgement on the upglacier side of the subglacial obstacle 

presented by the island - the west shore of the island supports a thin lodgement diamict up to 1.5 

nr thick, whereas only a thin glacitectonite or no drift was observed on the northeast coast. It has 

been suggested25 that an ice stream flowed down Bressay Sound from the north, prevented from 

crossing the island by a local ice mass. Such a stream might account for the lodgement on the 

west shore, however all along this area the writer has identified northeast-southwest azimuth 

striae associated with the diamict and these observations are not consistent with an ice stream 

travelling down Bressay Sound. The pattern of lodgement against Ness of Sound may also be 

associated with offshore moving ice. The writer has observed northeast-southwest trending striae 

on the east side of Brei Wick and there is no evidence of metamorphic erratics in the till here 

either, although coastal protection has added many to the beach. This area is further west than 

the confluence zone of Mykura's26 Scandinavian and local ice sheets (figure 5.3).

The striation of northern Bressay indicate erosion. This has a number of implications for the 

current argument. The first is that it is unlikely, this close to an apparent confluence with

23Peach and Home, 1879; Mykura, 1976
24Mykura, 1976
25Peadi and Home, 1879
26Mykura, 1976
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another ice sheet, that Mykura's Scandinavian ice sheet would have the velocity and 

glacidynamic regime required for such erosion (figure 5.3). The second is that any early 

metamorphic erratics from Mainland might have been subsequently stripped by more recent ice 

flowing across areas that do not include metamorphic erratic sources.

Where the present writer has been able to identify micro stoss and lee patterns associated with 

striae near the disused quarry to the north of Hill of Setter on Bressay, Flinn's27 conclusion that 

the sense of direction is to the northeast, offshore, is confirmed. Heavy mineral analysis of 

sediments offshore to the east and northeast of the area confirm that ice probably moved towards 

the northeast from the islands (figure 3.16)28.

Further south on the peninsula, as far south as Ward of Scousborough (figure 5.2), ice direction 

indicators have been interpreted as showing Scandinavian ice crossing the peninsula from the 

east, followed by local ice flowing off both sides29. Here the two pieces of data suggesting 

Scandinavian ice are the Dalsetter erratic and the translocation of sandstone from the east to the 

west coasts. The former is a singular Scandinavian boulder and occurs near Boddom30. It is not 

known whether this is a glacial erratic, or an ornament transported to Shetland in Viking times. 

There is some evidence that the boulder was excavated from till31, however the writer’s search of 

all dry-stone built structures and till sections over an area of 7 km2 in the vicinity revealed no 

further examples despite its striking visual appearance. If it is a glacial erratic, there is no way 

of determining whether it has been carried during the last glaciation only. Since its significance 

will probably always be determined by the context in which it is being used as evidence, the 

Dalsetter erratic is of questionable value in the present discussion.

The present writer confirms the existence of sandstone erratics in till sections on the west coast 

of the area. Since the West Fair Isle basin also comprises sandstones and conglomerates, and 

further west still there are Devonian sedimentaries, it might be hypothesised that these clasts 

were entrained and deposited by ice flowing west to east across the high ground rather than the 

conventional assumption of east to west. However the writer has observed sandstone clasts in till 

on Trondra where the till distribution (figure 5.4) suggests upglacier lodgement on the eastern 

face of the island. This, in turn, suggests that the ice lodging the till and carrying the erratics 

came from the east. It might be doubted that major erratics from Devonian outcrops further west 

than the West Fair Isle Basin could have reached the west coast of South Mainland without 

some other evidence of this movement, but it is also possible that erratics of all the local country 

rocks might have been exhumed from conglomeritic bands in the Permo-Triassic basin itself.

27Flinn, 1977
28Beg, 1990
29Peadi and Home, 1879; Mykura, 1976; Flinn, 1977
30review: Gordon, 1993a; discovery ;ind antecedence: Finlay, 1932; Flinn, 1992a; petrography: Le Bas, 1992
31Flinn, 1992a
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Other authors, however, have been quite explicit in attributing erratics to source sandstones on 

the east coast32, particularly in the far south where erratics and outcrops are not separated by 

high ground and the boulder train is easily traced. In the central part of this area however, there 

is a possibility that the erratics are derived from the west. It would take detailed spatial and 

petrographic analysis to further tliis argument.

5.3.2. Ice shed movements in the last glaciation

There may be evidence of a western ice shed at some stage. While Scandinavian ice, or ice from 

an eastern ice shed, may have moved sandstone erratics across the high ground early in the last 

glaciation, or during a previous one, the issue of their preservation during deglaciation, or 

subsequent glaciation, arises. If the deglaciation of the peninsula was highly erosive it is 

unlikely that previously deposited or entrained sandstone erratics could have survived tliis later 

stage on the narrow western coastal strip. There is no doubt that the most recent glacial phase 

on the eastern coast was highly erosive. What drift there is usually takes the form of a barely 

assimilated glacitectonite (figure 5.4). That this erosive situation reflects the most recent, local 

phase of glaciation, is shown by the involvement of metamorphic erratics from the high ground 

to the west (plate: figure 5.11). If this stripping also occurred on the west coast, it is difficult to 

explain the preservation of erratics in areas such as St Ninian's Isle (figure 5.2). One possible 

explanation is given in figure 5.5. If the central ice shed was displaced to the west of the high 

ground itself, and retreated towards it, then there may have been a zone of inactivity beneath its 

centre where previously deposited or entrained erratics would be preserved. This model would 

not account for erratics emplaced during a previous glaciation, since they would have suffered 

during englaciation of the most recent, but if, during the last glaciation, erratics were 

transported in basal ice to the west coast of the area, from whatever source, and then 

deglaciation progressively occurred in such a way as to limit erosion here, then their 

preservation is less remarkable. This discussion is inevitably speculative, but a western ice shed 

may be borne out by evidence from other areas (see chapter 6), also from the southern tip of the 

south Mainland peninsula (see below), and possibly even in consideration of the Bum of Mail 

moraine (see below).

On the southern tip of the peninsula, there are source areas for sandstone, schistose, and granitic 

erratics, and here again it is suggested that ice moved first from east to west across the area, and 

was subsequently shed from Fitful Head in the west33 (e.g. figure 3.9). The present writer's 

suivey suggests that the situation here is more complex than this. Although unable to confirm 

the sense of direction of the striae to the east of Ward Hill, the observations would appear to be 

consistent with an ice stream moving eastwards across the narrow strip of land here, and a clast

32Peach and Home, 1879
33Peadi and Home, 1879; Mykura, 1976; Flinn, 1977
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fabric of lodgement till at Quendale suggests an even more northerly azimuth (figure 5.2). The 

till at Quendale includes sandstones, granite, and metamorphics, consistent with ice moving 

broadly west to east, although there are possible source areas for all these types offshore to the 

southwest (figure 3.2). The striae on the east coast around Voe may reflect east to west or west 

to east ice movement. Those on the west coast appear to show divergence around Fitful Head. 

The writer is not able to confirm the sense of direction of these, however the fabric at Noss Hill 

also suggests a broadly northwest-southeast azimuth of ice movement, consistent with the striae 

at the north end of Fitful Head. The clastic content of the till here is important, containing 

subsidiary quantities of both sandstone and metamorphics in the largely granitic composition.

All along the coast between Spiggie Bay and Fitful Head there are erratics of all three rock types 

but in this particular location, if the fabric analysis is accepted, or assuming that ice from Fitful 

Head would have flowed under topographic constraints, then it is likely that the ice shed lay to 

the northwest, offshore, and crossed metamorphic outcrops to the northwest of Noss Hill. The 

sandstone clasts were either entrained earlier from the east, or from the West Fair Isle basin in 

the west. The implied western ice shed configuration reflects that suggested above (figure 5.5). 

Furthermore, to the northwest of Noss Hill, there is a dendritic pattern of now dry channels, 

running under the influence of topography, and converging on one channel containing a misfit 

stream running around the north side of the hill (figure 5.2; plate: figure 5.12). The heads of 

this system run close to the coastline and have no catchments commensurate with their size. It is 

difficult to explain these phenomena except as a proglacial meltwater system emanating from 

ice to the northwest of the coast. Although the metamorphic erratics at Noss Hill might have 

been transported by a piedmont-style glacier from Ward of Scousborough there is no other 

evidence of such a system and it does not explain the fabric analysis or the meltwater channel 

system. However, not only are there clear movements of particular sandstone erratics from east 

to west in this southern area34, but the movement of sandstone and local syenite up Fitful Head is 

recorded and this must be due to an ice shed to the east, since basal ice from the west would be 

unlikely to ascend the sheer cliffs facing it.

There is, therefore, some evidence for ice crossing this southern area from both eastern and 

western or northwestern ice sheds. Clearly these movements did not occur at the same time but 

there is no evidence that they reflect discrete glaciations. At Quendale, for example, both 

metamorphic and granitic erratics are found in sediments associated with the most recent ice 

movement (plates: figures 5.13 and 5.14).

In the north of the area evidence of changes in ice movement direction is significant. When the 

evidence is considered as it is above, the second hypothesis of the glaciation of Bressay, that 

Mainland ice crossed northeast over it, is the more probable. This requires a relatively late ice

34Peach and Home, 1879
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shed to the south-west of Lerwick. Topographically it might lie as in figure 5.3 (ice shed 2), 

leaving ice to travel across non-inetamorpliic rocks, although a more significant ice cap over or 

to the west of the main high ground might result in a zone of inactivity over potential western 

erratic sources. Either way, such an ice-shed is incompatible with the pattern around 

Gulberwick, where the northwest-southeast dominance is approximately perpendicular to 

submarine contours and also shows some correspondence with local topography (figure 5.2).

The writer has observed the pattern into Brei Wick and, again on the morphochronological 

grounds of dominant pattern and the preservation of older, laterally more extensive patterns 

through deglaciation in an erosive context, these striae probably post-date those observed on the 

east shore of the bay. It can be reasonably argued therefore that the northeast Bressay pattern 

pre-dates that into Gulberwick and may reflect containment to a deeper bathynunetric contour 

than the Gulberwick pattern. The northern Bressay pattern may reflect regional northeasterly 

movement if a more considerable ice sheet's zone of erosion was restricted to source areas within 

the sandstone around Lerwick (as suggested above), or any further-travelled metamorphic 

erratics were swept off Bressay subsequently. Figure 5.3 attempts to combine the ice movements 

for which there is evidence, although the relative timing of ice shed 1 cannot be ascertained. It 

may be earlier because if there are striae corresponding to the Kebister Ness set on Bressay, they 

are not dominant and therefore probably older. If the two sets are unrelated and ice crossed 

Kebister Ness and did not reach Bressay, then ice shed 1 would be the most recent, a more 

reasonable explanation if the ice cap as a whole is retreating to the high ground of central 

Mainland.

Most of the rest of the evidence north of Channerwick is strongly suggestive of local ice moving 

under the influence of topographic and bathynunetric contours (figure 5.2). Striae are notably 

not perpendicular to topographic contours in the northwest of the area and as far south as West 

Burra. Tliis can be explained by ice moving perpendicular to bathynunetric contours around the 

-100m level, i.e. into the West Fair Isle basin. There is no apparent shift to the -50m level, 

suggesting that by the time the ice front reached this location, little erosion was occurring. This 

is easily understood given the narrow spinal source area and sleep slopes and may again suggest 

a late ice shed slightly west of the spine (see above and figure 5.5 - northeast). Around 

Gulberwick, it is suggested above that ice movement may reflect the influence of shallower 

bathynunetric contours. Continued supply of ice from the northwest to a later stage in 

deglaciation in this more northerly location (represented by a greater degree of topographic 

containment) is readily envisaged, with the ice cap retreating to the wider and (on average) 

higher altitude areas of central Mainland. The implication is that the southern spine of south 

Mainland may have been deglaciated earlier than central Shetland. To some extent tliis may be 

reflected in exposed possible solifluction deposits (figure 5.4 and plate: figure 5.15) on the hills 

above Bum of Mail (although it is not clear how widespread these are beneath peat) and rare 

cryoturbation structures near St Ninian's Isle (plate: figure 5.16). The age of these features is,
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however, not known, and their distribution may be limited. This latter point perhaps indicates 

that they are not of Lateglacial age since, there being no evidence of widespread glacial activity 

during this time, more widespread periglacial deposits would be anticipated if they were.

In the northwest of the area there is some evidence of changes in ice flow through the last 

glaciation (figure 5.2). Striae show that ice, at least at high level, crossed Whiteness and 

Stromness voes. However the distribution of drift suggests that ice has moved down Weisdale 

Voe (figure 5.4), in particular where a protrusion sticks out into the voe there is lodgement on 

the up Voe side and thin drift or glacitectonite on the down glacier side. This evidence of 

changing ice flow directions is more readily observed in the adjoining central Mainland area 

(figure 7.2).

In Dales Voe the golf course is built on a series of sloping, terrace-like, drift slopes. Sections are 

very limited but the upper surfaces appear to be underlain by diamict, whilst the lowest consists 

of fine gravels. A kilometre up valley front the coastline, a birdsfoot fan extends from a deep 

channel that drains a shallow enclosed basin above the valley to the west (figure 5.2 and plate: 

figure 5.17). The fan is clearly inactive and the minor stream in the voe flows around it. It is 

likely that it, and the lowest terrace of the valley, represents drainage from melting ice in the 

basin after the voe was deglacialed and the cutting passes through several metres of valleyside 

diamict. This assemblage of features suggests retreat of ice across Dales Voe to the west, 

possibly offering further evidence of a more western, late, ice shed.

5.3.3. The nature of glaciation and deglaciation

Only the evidence given above provides any suggestion of events occurring before the last period 

of deglaciation. This is not surprising: the last glacial ice cap is thought to have extended to the 

continental shelf edge to the west (more than 100 km from south Mainland) and perhaps 75 km 

or more to the east35, and this part of the archipelago is only a few kilometres wide. The offshore 

sequence to the west suggests retreat and deposition of glacimarine sediments from the shelf 

edge to the Foula Ridge36 (figure 3.13 and the Stormy Bank sequence (STB) in figure 3.15 

(excluding the inshore basins)). To the east, across the East Shetland Platform, non-Holocene 

Quaternary sediments are patchily distributed and difficult to interpret (figure 3.15). The ice cap 

appears to extend 75 km to the east and initial deglaciation at least, may have also been through 

tidewater calving37. Only the terrestrial record, and the sediments in the West Fair Isle Basin are 

likely to give any indication of the nature of subsequent deglaciation.

35Longand Skinner, 1985
36Stoker et al., 1993
37Peacock and Long, 1994
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According to some reports the West Fair Isle Basin contains Quaternary sequences of 30m or 

more comprising compact grey clays with scattered pebbles38. The present writer has examined 

the borehole in a shallow part of the basin. Above the sandstone bedrock there is a thin (< 20 

cm) gravel including weathered granitic clasts. Overlying this there are 4.75m of slightly sandy, 

soft, plastic, muds, with occasional shells in live position. Tliis is overlain by 1.2m of Holocene 

shelly sands. The middle unit appears to be largely postglacial and there is no evidence of 

glacimarine deposition (such as dropstones, gravel, or laminated sediments). No detailed 

palaeontological work has been undertaken but it is likely, by comparison to other inshore basins 

(see chapters 6 and 7), that it represents a marine environment. The basal granite erratics could 

be from east or north of the basin and the weathering may suggest some subaerial exposure 

before sea level rose. It is clear that the basin deglaciated terrestrially and with little glacigenic 

sedimentation, possibly indicating in situ decay or subsequent erosion of any subglacial 

sediments. The subsequent low energy depositional regime suggests that significant marine 

erosion did not occur however. Finally, it should be observed that any significant preglacial 

sediments have been removed.

The erosive nature of deglaciation on terrestrial south Mainland is readily illustrated, although 

in northern parts of the area more prolonged ice streams have resulted in significant lodgement 

accretion (figure 5.4). This material is not melt-out till: four metres of diamict (such as that in 

Dales Voe) is unlikely to represent the consolidated thickness of the dispersed basal layer of the 

ice sheet, especially given the limited distance over which material can be incorporated into the 

layer. Occasional stone clusters support the lodgement interpretation in places. Preferential 

lodgement on the upglacier flanks of bedrock undulations is widely observed. In many sections, 

such as in Dales Voe, and on Bressay and Mousa, it is clear that lodgement has succeeded 

glacitectonization of the underlying bedrock. In some places the incorporation of the ripped 

material into the dispersed diamict is evident. Glacier, 'plucking,' is not a steady-state process, 

and this is illustrated here, where the plucked rocks increase frictional drag and become the 

basis of lodgement deposition. Differential lodgement against obstacles to ice flow demonstrates 

ice movement directions that can be independently associated with striae data of late stages in 

deglaciation. It is likely that much of this lodgement is therefore a relatively late development.

5.3.4. Burn of Mail

Morainic features of this valley have been reported and the author's 1:10 000 air photo 

interpretation is shown in figure 5.6.

The characteristics of hummocky moraine anticipated as an ice-marginal landform include 

planimetric bifurcations, down valley convexity, glacier-size-related lateral gradients (with

38Chesher, 1984b
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steeper gradients near valley heads), cross-sectional asymmetry, with gentler up-glacier faces 

(possibly with cuspate hollows due to inter-longitudinal-crevasse pressure), shear-folded, 

heterogeneous or homogenous diamiclons, associated supraglacial and proglacial sediments and 

attendant landform assemblages39. At Burn of Mail there is only one small section (plate: figure 

5.18) and this appears to be a homogenous diamict. There is evidence of bifurcation, and in 

places cross-sectional asymmetry: at the front of the main lower valley group, the distal slopes of 

the features reach 80° (plates: figures 5.19 and 5.20) whereas on the upglacier side they are less 

than 45° (plate: figure 5.21). Channels are cut through the moraine, in some places up-slope, 

suggesting hydrostatic pressure, although on the distal side they appear proglacial (plate: figure 

5.20) and in all cases there is no commensurate drainage basin, indicating that they emanated 

from ice. These lower valley hummocks are the best developed and show all of the above 

features. They are up to 4-5 m high, larger than any of those further up valley and, with the 

channels as further evidence, probably represent a longer period of ice margin stasis.

There are abundant clasts of vein quartz on and within the features, possibly derived from a 

clear linear quartz vein further up the valley, showing that the ice responsible streamed through 

the valley rather than entering it tangentially. Two questions must be answered. Firstly, why is 

this evidence of valley glaciation so singular and localized? Secondly, when did it occur?

The glacier surface cannot be reconstructed in the absence of clear lateral moraines, evidence 

that the hummocky features represent its maximum advance, or ice-direction indicators within 

the valley, however even if the entire valley above the limits were filled wth ice, the equilibrium 

line altitude (ELA), must be less than 200 m at its highest. This is low relative to other western 

Scottish Loch Lomond Readvance ELA's, which on Skye are thought to range from 216m to 

461m with a mean of 319m40, average 357m on Rhum41, and show an eastward rise across 

Scotland attributed to corresponding decline in precipitation42, although on Hoy, Orkney, there 

are a number of undated corrie glaciers with ELA’s in the region of 150m43. The low ELA’s on 

Shetland and Orkney might be explained by extreme precipitation or lower temperatures. Both 

factors bear important relation to the position of the precipitation-bearing polar front. This is 

time-transgressive - it effects different places at different times as its position shifts from north 

to south and back through a glacial cycle - and such a low ELA would be anticipated early or 

late in the Younger Dryas episode, relative to the glaciation of northwest Scotland. The timing 

of the Loch Lomond stadial on Shetland is discussed elsewhere. It is likely that pack-ice

39Bennel and Boulton, 1993a
40Ballantyne, 1989
41Bal1anlyne and Wain-IIobson, 1980
42Sissons, 1980
43Sutherland and Gordon, 1993b
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extended as far south as St Kilda during the Loch Lomond/Younger-Dryas stadial44. This would 

have severely reduced the availability of moisture around Shetland.

If the features are attributed to the last ice sheet then comparison with Younger Dryas ELA 

estimates is of course irrelevant, but in either case such a low ELA would indicate glaciation in 

other locations, including the Laxdale basin immediately to the north. No similar features are 

evident in the south Mainland area, either on the ground or on 1:10 000 air photographs. We 

can do little more than speculate about this discrepancy. The combination of relief, valley shape 

and aspect, is unique in Shetland. The Mail catchment runs west-east, has a high amphitheatre

shaped upper valley and drops steeply to a relatively constrained lower valley. Lower altitude 

situations would prevent englaciation, wider valleys result in broader ice fronts, thinner glaciers 

and less dramatic morphological signatures, and protection from sun is naturally significant in 

determining the ELA of the glacier.

An alternative to the low ELA estimate would be allowed by a model in which the Late 

Weichselian ice shed was to the West of the Clift Hills and supplied ice from above them from 

the wasting ice cap itself (figure 5.5).

5.4. Conclusions

In summary, this section cannot claim to have resolved the issues surrounding Scandinavian 

glaciation and the configuration of ice sheds in south Mainland. It has however, demonstrated 

that it is not yet possible to propose a simple explanation for all the observed phenomena. On 

the southern tip there is good evidence of an easterly ice shed at some stage but only the 

Dalsetter erratic exists to imply that tliis was Scandinavian ice since the evidence on Bressay can 

be explained by shifting local ice sheds. Early deglaciation from the west could have the effect of 

shifting a linear ice shed centred over the central spine to the east, obviating any need for 

Scandinavian influence (figure 5.8). On the other hand, the reason why Scandinavian ice should 

overwhelm this southern spine but not areas further north (see central Mainland chapter 7) is 

easily modelled and this is explained in figure 5.7 in terms of topographic controls on the 

rapidity of englaciation. The strong north-south structure of the islands' geology part-justifies 

the use of a two dimensional illustration but where in the area the subsequent boundary between 

the Scandinavian and local ice sheets occurs would be dependent on the three-dimensional 

structure of the central mainland ice. The analysis given above indicates that this junction is not 

west of Bressay.

However it may only be on the southern tip of the area that ice from the east crossed the island 

at all, for erratics on the west coast further north may have sources offshore to the west. There is

44l’eacock et al., 1992;CLIMAP, 1976
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other evidence of ice from a western ice shed flowing across the southern tip and deglaciation 

from such a position might explain the preservation of erratics on the west coast, ice direction 

indicators and channel heads around Noss Hill, the retreat pattern of ice across Dales Voe, and 

the morainic features of Burn of Mail. If it is accepted that precipitation sources were to the 

west, then englaciation would be expected ultimately to lead to the western movement of the ice 

shed as the ice cap itself topographically depleted precipitation from moist air masses travelling 

east. However it has been suggested that, subsequently, an eastern ice shed occurs in early 

deglaciation (figure 5.8) and a western ice shed later (figure 5.9). The mechanisms responsible 

for this are considered in Chapter 11. Although it is not possible to refute the premise of 

Scandinavian ice followed at some stage by a local ice shed flowing off the central spine and 

Fitful Head, it is possible to cast reasonable doubt on the accuracy, and certainly the simplicity, 

of these interpretations. Subsequent events include the streaming of topographically contained 

ice to both the southeast and southwest from the high ground of the northern part of the area and 

central Mainland.

Early deglaciation at the western margins, and possibly at the eastern, appears to have been 

glacimarine, but there is no evidence that this continued to the inshore West Fair Isle basin. The 

southern peninsula may have deglaciated relatively early, again due to the influence of 

topography, having a relatively low average altitude and steep slopes into surrounding offshore 

areas. Central Mainland appears to have continued to supply ice to northern parts of this area 

where it flowed, topographically contained, towards the -100m or -50m bathymmetric contours, 

specifically into the West Fair Isle basin. There is evidence of an earlier northeasterly ice 

movement across Bressay which may indicate that the deglaciation front reached northern areas 

before southeastern ones.

There is also little evidence of direct glacial activity in the area dining the Younger Dryas 

period. If the characteristics of the Burn of Mail valley exceptionally resulted in a freak glacier 

at this time, then its ELA was very low. Similarly low ELA glaciers occurred on Orkney but, 

like the Burn of Mail glacier, these are undated.
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6. The last glaciation of west Mainland

6.1. Solid geology, topography, and bathymmetry

The simplified solid geology1, topography and bathymmetry of western Mainland are shown in 

figure 6.1. The oldest rocks in the area may be the acid and hornblendic gneisses that form the 

small group of islands (Ve Skerries) 6 km northwest of Papa Stour; these are potentially 

Precambrian (Lewisian). A band of metasediments across the top of the Walls peninsula, largely 

comprising muscovite-biotite-gneiss with some schist and occasional limestones, may be the 

result of the Caledonian orogeny. Much of the area is underlain by twice-folded sequences of 

Old Red sandstones with subsidiary rhyolites, basalts and tuffs. Granitic rocks outcropping in 

the south of the peninsula and on Muckle Roe are linked to plutonic complexes dated to late 

Caledonian times and much of the area is cut by dyke swarms. Offshore2 (figure 3.2) to the west 

there are undivided sequences of sedimentary and extrusive igneous rocks with basins of 

Triassic and Permian sandstones to the north and south of the peninsula itself. Igneous 

intrusions are present around their terrestrial outcrops. The island of Foula lies southwest of the 

peninsula on a northeast-southwest trending bathymmetric ridge (figure 3.4) and is composed 

entirely of Upper Old Red sandstones except in the northeast where older, unclassed gneisses 

and schists outcrop with minor intrusions of microgranite of Old Red Sandstone age. The 

topographic significance of faulting is evident in Sandness, along Brindister Voe, and within the 

southern granitic intrusion (figure 6.1). Locally, sandstone dips dictate topography but regional 

trends are confused by multiple phases of folding. The northwest-southeast lineation on Muckle 

Roe does not appear to have any underlying structural control. The dominant bathymmetric 

feature (figures 3.4, 3.5 and 6.1) is the St Magnus Bay basin. Lying between the Walls 

peninsula, Esha Ness, and bounded to the west by a shallow sill, this is a fault-controlled basin3. 

There is also a basin to the south of the peninsula referred to as the West Fair Isle Basin. To the 

west of the Walls peninsula, the seabed rises to the Foula Ridge before dropping further 

westward to the continental shelf edge. The main voes deepen gradually seaward, to 10-20 m 

depth in places.

6.2. Previous work

Early authors noted that erratic carry across the area and onto Papa Stour shows that ice moved 

broadly east-west, and striae suggest more precisely from south-east to north-west4 (figure 6.2). 

The idea that tliis northwesterly movement was due to the northward swing of a Scandinavian 

ice sheet5 upon encountering the islands from the east was criticized on the grounds that there

'Mykura, 1976
2Ckesher, 1984a
3Cheslier, 1984a
4Peach and Home, 1879
5Peach and Home, 1879
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was no reason for an ice sheet to swing northwest under such circumstances6. The striae which 

indicate south-westerly movement of ice on the south coast are noted but not discussed by these 

writers. Subsequent account of these later brought the possibility that the last glacial maximum 

in the area involved ice movement off the peninsula7 to the north-west, west, and south-west, 

with the ice shed lying in a southerly position (figure 6.2)8. However it is also recorded that 

erratic- and striae- founded interpretations of ice movement are in places divergent by 30° and 

there is evidence of due east-west erratic movement across Sandness9 (figure 6.2). Multiple 

phases of ice movement may thus be in evidence and could be due to progressive deglaciation 

and shifts normal to bathymmetric contours as a result of rapid ablation at a calving marine 

margin10. The relationship of ice movement to bathymmetric contours is noted around Shetland 

as a whole by other authors11 but no explanation for it given, probably implying that the pattern 

is due to gravitational topographic containment. On Foula (figure 6.3), early authors report 

northwest-southeast striae azimuth and interpreted northwesterly direction of ice movement, 

confirming the need for some agent to redirect Scandinavian glaciation to the northwest12. Later 

authors agreed, with the additional possibility of residual local ice from the island itself3. 

Subsequent work14 has revealed more east-west striae and evidence of erratic carry both east to 

west across the north of the island and west to east across the south, as well as evidence of corrie 

glaciation. This data was interpreted as meaning that Foula supported local glaciers which were 

diverted both north and south by impinging Mainland ice. The existence of Spiggie granite 

erratics suggests that the impingement was from the south east, later supported by the additional 

observation of two northwest to southeast striae on the southeast coastline attributed to an earlier 

stage in glaciation15. The latter work also lists a considerable number of erratics derived from 

Mainland Shetland, including granodiorites almost certainly from the intrusive complex 

running from Bixter to Spiggie down the west coast of south Mainland (figure 3.1). These are 

reported on Foula at heights of at least 200 m and possibly higher. Metamorphic rocks from the 

Clift Hills and areas south are also reported, together with possible material from Walls and the 

Colla Firth Permeation belt of central Mainland. It is noted that striated surfaces are found 

beneath till sections containing these erratics and it is argued that ice completely covered the 

island with no nunataks being present, and further that, 'evidence,' of corries on the island is 

more accurately explained by recourse to other agents16.

6IIome, 1880
7Mykura, 1976
sMykura and Phemister, 1976
9Mykura and Phemister, 1976; Mykura, 1976;
10Hoppe, 1974
"Flinn, 1977
12Peadi and Home, 1879
13Finlay, 1926
14Mykura, 1976; Mykura and Phemister, 1976
15Flinn, 1978
16Flinn, 1978
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A belt of hummocks 1.6 km long is recorded across the island of Papa Stour17 (figure 6.2) which 

must have been emplaced during overall deglaciation. The mounds trend north-south and 

individual cross sectional asymmetries are described as being slightly steeper to the east. The 

whole is interpreted as a terminal moraine attributed to a stillstand or readvance of the last 

glaciation. A number of possible residual glacier locations have been pul forward18 but only on 

the Sandness Hill plateau (figure 6.2) is there good evidence: a series of morainic mounds and 

sinuous ridges which contain only local material despite the proximity of erratic sources to the 

east; and meltwater channels terminating in small eskers. Both landform assemblages are 

thought to be evidence of late local glaciation19.

The sedimentary infill of St Magnus Bay is up to 60 m deep in places. The borehole record is 

interpreted as containing about 4 m of till above the bedrock, 30 m of lacustrine material and 4 - 

5 m of modern sands, with no other evidence of glacial or periglacial input20. Elsewhere this 

material is simply interpreted as Late Weichselian to early Holocene soft muds associated with 

the waning stages of the Weichselian glaciation21. The sedimentary infill of the West Fair Isle 

basin, which is up to 30 m thick in places, has not been examined in detail since there are few 

boreholes. The material is thought to be more clastic and may include till or glacimarine 

facies22.

Immediately offshore to the west there is little in the way of Quaternary sediments over the 

Foula Ridge (figure 3.15) although there are pockets of glacimarine material (see below). The 

sea bed sediments of this area are sands and gravels. Beyond the ridge sub-glacial diamicts, 20 - 

60 m thick, cover the shelf, forming a series of parallel shelf retreat moraines23 on the outer shelf 

edge (figure 3.13) and grading into mass flow deposits that are at least partially glacigenic in 

origin on the shelf slope. The stratigraphic position of tliis deposit is post Eemian and, as the 

uppermost till sequence, generally supports a Late Weichselian age but no direct dating has been 

undertaken. Glacimarine sediments are identified in restricted embayments and may be up to 20 

m thick. Ponded sediments are also seismically visible between the shelf edge moraines24. Again 

there is no direct chronostratigraphic data for these sediments (see chapter 10) but they are 

presumably Late Weichselian.

6.3. Outstanding issues

17Mykura and Phemister, 1976
18Charlesworth, 1956
19Mykura and Phemister, 1976
20Cockcrolt, 1987
21Stoker et al., 1993; Holmes et al., 1993
22Holmes et al., 1993
23Stoker and Holmes, 1991
24Stoker et al., 1993
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The following issues arise in connection with the last glaciation of this area. Is the pattern of ice 

movement consistent with a single phase of glaciation or is it more probable that multiple 

movements are involved? What was the regional direction of ice movement at the last glacial 

maximum? What was the pattern of deglaciation, particularly into the St Magnus Bay basin?

Was that pattern controlled by calving due to sea-level rise or not?. What evidence is there of 

slillstands or readvances in the area during deglaciation?

6.3.1. Single/Multiplc phases of ice movement

The direction of ice movement across the area, inferred from striation, stoss and lee and erratic 

evidence, may reflect a broad regional ice movement of the glacial maximum or late local 

topographic containment associated with deglaciation, particularly into the St Magnus Bay 

basin, or both. The conclusion of this study is that there is evidence for both on the Walls 

peninsula and the reasons for this are clarified below where both regional maximum and late 

local ice movements are discussed.

6.3.2. Multiple phases of ice movement direction: glacial maximum

There are examples of striae on the Walls peninsula that show little or no relation to the 

topographic influence of the St Magnus Bay basin: near Voe of Dale, Vaila Sound, Seli Voe (a), 

on Papa Stour and the Ve Skerries to the northwest of Papa Stour, they show broadly 

northwesterly ice movement. On Esha Ness (figure 8.2) there are also northwesterly striae, as 

well as on high ground to the east of the Walls peninsula and elsewhere in northwestern 

Shetland (figures 7.2, 8.2). Up to 5 m of lodgement till has been deposited against the high ridge 

of Ward of Browland in the central area (figure 6.4). Like much till on the peninsula, this 

feathers out against the slope and is presumably lodged on the upglacier side of obstructions to 

west/northwest ice flow. Such a thickness of dispersed, matrix dominated lodgement till, in this 

location, is unlikely to reflect a short, deglacial phase of ice movement into the St Magnus Bay 

basin. Lodgement across Papa Stour thins westward, possibly for similar reasons and the pattern 

against eastern Muckle Roe and Aith Voe is also of interest (figure 6.4). The erosive 

topographic lineation of Muckle Roe must reflect prolonged, possibly repeated, northwesterly 

glaciation. Movement of erratics across Muckle Roe and central Walls, and from Sandness to 

Papa Stour, is also northwesterly. In the latter case, the topographic influence of St Magnus Bay 

may be discounted and across Sandness there are even metamorphic erratics from a directly 

eastern origin observed by the author and others25.

It is therefore clear that some of the northwesterly trend is of regional significance rather than 

local streaming into St Magnus Bay. However, southwesterly ice movement is manifest in striae 

on the southern coast. The idea that these are contemporaneous with the northwesterly set and

25Myk«ra, 1976

61



West Mainland

that an ice dispersion centre therefore existed on south walls with ice streaming both northwest 

and southwest from it has been put forward26. The required ice shed (figure 6.2) is an 

improbable and delicate configuration to maintain within an ice sheet that probably stretched to 

the shelf edge and may have been more than a kilometre thick. Its authors concede that the 

southwesterly striae could be due to a later phase of glaciation but consider this explanation 

unlikely due to the absence of, 'earlier,' northwesterly striae in the southern area. If, as 

contended in this study, northwesterly ice movement was regionally significant, why is no 

evidence of it preserved here as it is in north Walls? Two reasons can be given. The first is that 

solid geology on which the two sets are preserved is different: the relatively coarse-grained 

granitic substrate of the southern area is easily stripped whereas the relatively fine-grained 

gneissose northern peninsula is more resistant to erosion, a contrast evident in the landscape 

(plates: figures 6.8 and 6.9). Even though Muckle Roe is also an igneous intrusion outcrop, it is 

composed of finer-grained, harder, granophyre. There are areas where both sets of striae are 

preserved on the same bedrock type, i.e. sandstone, for example near Seli Voe (a), Vaila Sound 

and Voe of Dale, and indeed the proposed ice shed must be aligned broadly around the 

geological division (figures 6.1 and 6.2). The second reason for the, 'preservation,' of, 'earlier,' 

northwesterly striae in north Walls is that this is also the direction of later glaciation, so many of 

the observations may post-date those mentioned above.

Evidence of erratic carry westward across the southern area is potentially crucial to resolution of 

the issue. Observations of erratic carry onto the peninsula as a whole were noted at an early 

stage27, but it is not clear how far south such observations are to be taken as being relevant and 

the present writer has not encountered any erratics of western provenance in the southeast Walls 

area. Slaurolite schist erratics on the land between Sandsound Voe and Seli Voe (b) (figure 6.2) 

have eastern as well as northern sources28 and are therefore unhelpful. The present writer has 

observed granitic erratics east of Seli Voe (a) and these again may be of eastern, northeastern, or 

southeastern provenance (figure 6.1). The direction of strialion in the same area (figure 6.2) 

suggests that they came from the southeast and such evidence forces the hypothesised ice shed to 

run in a more north-south direction. This is incompatible with the movement of Staurolite schist 

mentioned above and would also result in southeasterly ice movement in the area south of Seli 

Voe (b), of which the writer can find no evidence. It is, of course, possible that the later 

southwestern glaciation of the south Walls peninsula, which was highly erosive, removed any 

erratics of eastern provenance.

It is here concluded that during the last glacial maximum of Shetland, or at an early stage of 

deglaciation, ice movement was broadly northwesterly across the whole of the area. It has been

26Mykura and Phemister, 1976
27Peach and Home, 1879
28Flinn, 1982
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advanced that this reflects encroachment of a Scottish ice sheet to the west of Shetland29 - 

erratics on Esha Ness are thought to indicate a consequent bending of local ice that has passed 

southwest over Hillswick30 (figure 3.11). It is argued below that ice flow converged in the St 

Magnus Bay basin during deglaciation: the above erratic movement could be explained by 

divergence of ice upon leaving the basin at this stage or as the re-movement of erratics deposited 

in the basin at a late stage of a previous glaciation, or a more directly eastern ice movement. The 

present author prefers the latter explanation as discussed in chapter 8 on North Mainland, so 

that northwest movement across Esha Ness is seen as part of early regional glaciation. Offshore 

evidence implies that the Shetland ice cap extended to the shelf edge where a series of moraine 

ridges are identified in places31 and there is no evidence of Scottish ice extending further north 

than Orkney (for example, on Fair Isle - see chapter 4). There is similarly no evidence for 

Scandinavian ice swinging north off southern Mainland. The absence of mainland schistose 

erratics in the southern areas of the Walls peninsula, even where the hypothesised local ice shed 

is not relevant, is crucial: the source of northwesterly movement across central Walls has, from 

erratic evidence, at some stage, been central Mainland; but across the southern coast, if the 

source was south Mainland, then any erratics have subsequently been removed. Alternatively, 

northwesterly moving ice neither crossed the south Mainland peninsula, nor, apparently, was 

shed from it. This suggests that the ice shed was just to the west of south Mainland and a 

summary reconstruction of these possibilities is shown in figure 6.5.

6.3.3. Multiple phases of ice movement direction: deglaciation

Following regional northwesterly glaciation, deglaciation resulted in changes in ice direction, 

very obviously on the south Walls peninsula, less so in the north.

On north Muckle Roe there are striae which diverge from the northwesterly topographic 

lineation and adopt a more westerly azimuth (figure 6.2). That pattern continues north from the 

area (figure 8.2) and striae observations around St Magnus Bay appear to converge on it. This 

convergence is improbable at the same time as a major ice stream crossing the bay in a 

northwesterly direction as described above. There are examples of striae of more northerly 

azimuth on the north east Walls peninsula which may also reflect a shift in ice movement into 

the basin but here the separation of the two trends, given the potential for minor variations due 

to local topographic conditions, makes tliis impossible to demonstrate conclusively.

Till distribution across northern Walls is also significant. In both east and west till development 

occurs (figure 6.4) but whilst it is well-developed as a sheet of dispersed lodgement in the west 

and on Papa Stour (plate: figure 6.10), it is patchy, locally derived, clastic, and found on the

29Peach and Home, 1879
30Peach and Home, 1879; Flinn, 1977
31Stoker and Ilohnes, 1991; Stoker et al., 1993
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upglacier side of obstacles in the east. Much of this latter area is severely ice-moulded (plate: 

figure 6.8) and even in central eastern Walls, where the author has examined bedrock beneath 

the blanket peat, around Sandsting for example, there is only a thin, clastic nibble, probably the 

remnants of a poorly sediment-laden ice mass, or no drift at all. The solid geology is similar and 

the difference in till development is anomalous. The explanation offered here is that ice moving 

northwest offshore from the northwestern coast does so over a relatively gentle gradient, 

whereas the gradient into the St Magnus Bay basin is high, basal velocities would have been 

greater and erosion more dominant than deposition except on the upglacier flanks of obstacles. 

This difference may not apply to earlier, regional, northwesterly glaciation. If ice were moving 

into the St Magnus Bay basin, and out the other side, across Esha Ness, towards the continental 

shelf edge as is suggested above, then the compression of ice in the basin itself would transmit 

reduced basal velocities back onto the Walls peninsula or other marginal areas. Alternatively the 

stream may have sheared across a block of largely inactive ice within the basin, also reducing 

basal velocities due to a reduction in the, ‘bed,’ gradient. In either case the absence of till around 

the basin would still require explanation. It is here proposed that at a late stage in glaciation, ice 

moved freely into the St Magnus Bay basin and either streamed out westward or disintegrated 

there. Such circumstances allowed the maintenance of basal velocities implied by the 

geomorphology, more so if ablation was occurring within the basin itself.

The ice movement southwest of southern Walls peninsula must have occurred when a sizeable 

ice mass remained over Shetland. There is no evidence of more southerly movement into the 

West Fair Isle basin. Such movement was presumably prevented by the existence of ice there 

already. However the southwesterly movement is not commensurate with an ice shed to the 

southeast, as discussed above for the glacial maximum, so ice must have been streaming into the 

West Fair Isle basin from central Mainland as it was streaming off the Walls peninsula. As 

discussed below, tliis is the beginning of the end of the ice mass over the peninsula itself.

It is concluded here that the regional trend of glaciation across the area at the last glacial 

maximum, or just after it, was northwesterly. The reasons for this are discussed briefly in the 

conclusion to this chapter, and then in the final synthesis, but the implied ice shed on the axis of 

central mainland may have run to the southwest, either west or east of the south Mainland 

topographic axis. An ice shed somewhere along the Walls peninsula with ice moving, erosively, 

southwest off the southern coastline, and possibly north into the St Magnus Bay basin, 

developed during deglaciation although it is unlikely to have been independent of central 

Mainland ice which also flows into the basin at a late stage.

6.3.4. The last glaciation of Foula

The peripheral island of Foula must be reconciled with the pattern described above. There do 

appear to be two senses of ice movement (figure 6.3): striae suggesting ice from the southeast
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diverging around the high ground of the island, with the exception of two in the south of the 

island which most probably reflect movement from the northeast; and erratics derived 

predominantly from the northeast and east. The author has not been to Foula and so can only 

advance the debate to a certain degree. Ice movement from the southeast to the northwest is 

consistent with the regional pattern discussed above, but the absence of erratics from 

southeasterly sources may again suggest that the ice shed latterly lay west of the south Mainland 

peninsula and that evidence of earlier ice movement from a more eastern ice shed has been 

removed. The movement of ice from the east, as suggested by some erratics, might also be 

responsible for a pattern of diverging striae around the high ground, particularly in northern 

areas. Erratics from the northeast, which may be associated with the striae on the southern tip of 

the island, are consistent with the northeast-southwest movement of ice discussed as a relatively 

late phase from the Walls peninsula (above). This overall interpretation however, is based on a 

sequence of events developed for the area as a whole and the author has not made any 

supporting local observations.

6.3.5. Nature of deglaciation

The seismically well layered sequences of sediment that are interpreted as being glacimarine 

occur widely across the western shelf, and shallow bores indicate that these probably occur more 

widely than mapped and are certainly glacimarine, comprising soft, well-layered muds, with 

dropstones. This would indicate glacier retreat into a marine margin at least as far east as the 

Foula ridge. The seabed sediments of the ridge itself are mostly gravels and sands of mixed 

provenance32. These are probably the clastic component of glacigenic material. Whether it has 

been winnowed by marine erosion and its original mode of deposition destroyed is not known. 

The British Geological Survey are currently investigating sea bed morphology around the 

Shetland Islands and there are possible morainic features to the west of the St Magnus Basin33. 

However, these have not yet been positively identified and the work is at an early stage.

The group of mounds that make up the moraine feature34 on Papa Stour run north-northwest 

from Hamna Voe to Sholma Wick (figure 3.2). Individual mounds are visible on 1:10 000 air 

photos and the lineation is easily identifiable on the ground. The line is broadly parallel with 

striae and it could be argued that it represents a stream of drumlins rather than a terminal 

moraine. The former seems unlikely since the three hypothesised drumlin formation processes 

do not apply35: (1) moulding of previously deposited subglacial material - in this case the local, 

linear, nature of the feature is unexplained; (2) local variations in the textural properties of 

subglacial debris due to a variety of possible factors - none of which obviously relate to the

32Stoker et al., 1993
33A. Stevenson (peis. comm. 1995)
34Mykura and Phemister, 1976
35Hambrey, 1994
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formation of these linear features; and (3) the filling of basal meltwater cavities with a variety of 

stratified materials, particularly as a result of catastrophic flooding - and in tliis case the 

material appears to be massive diamict.

The hummocky form of the lineament is consistent with a variety of processes of end moraine 

production, but the report36 that individual hummocks have a steeper eastern face is inconsistent 

since the ice contact side of terminal moraines is generally less steep37 because the glacier has 

supplied material to the upglacier slope during progressive retreat or dammed slipped material, 

thus constructing a shallow slope, whereas on the downglacier side the slope is the angle of rest 

of the material of which the hummock is made. Tliis model is not perfect and ice contact faces 

from residual inactive ice blocks may obscure the picture. However the present writer's 

obseivations suggest that the hummocks have steeper western slopes (plate: figure 6.11) and are 

only less steep on this side where the slope intersects a hummock or other relief further west 

(plate: figure 6.12). The slightly north-northwest trend may be the product of some topographic 

containment: although the relief of Papa Stour is not great, the feature broadly follows contours 

between Mauns Hill and Virda Field and can be seen in places to be adjacent to these 

topographic features (plate: figure 6.12). The larger hummocks, 5 to 8 m high and 20 m long, 

are found further west in the band, with smaller examples further east, suggesting that the ice 

front was stationary for longer in this western location. The composition of the hummocks is not 

known since there are no sections. In at least one location there is evidence of slipping of the 

material forming the hummock following retreat of ice, implying that the hummocks are at least 

partially composed of matrix sediments, although in all cases surficial large blocks of local rock 

are encountered. On the west shore of Hamna Voe there is a sequence of sediments including 

thin sands and gravels sandwiched between two tills which might represent an oscillating ice 

front (plate: figure 6.13). Overall, it is probable that the feature is indeed a terminal moraine, in 

which case its relationship with striae is contradictory (figure 6.2) and suggests a late ice front 

coming out of St Magnus Bay, possibly the extrusive divergence of flows converging on the 

basin discussed above (figure 6.7). The location of the moraine may be topographic: the sill at 

the western edge of the glacial basin, which includes Papa Stour, is a glacidynamically probable 

location for a stillstand, or, 'pinning point'38; the moraine would continue in an arcuate fashion 

and extend furthest west at the midpoint between Papa Stour and Esha Ness - here the greatest 

volume of ice would be streaming against the least elevated barrier. It will be interesting to 

discover whether the work being conducted by the British Geological Survey (above) coincides 

with this reconstruction. This reconstruction has two significant implications. The first is that 

the feature may have little or no climatic significance in terms of stillstands and readvances. The 

second is that it implies a less strong flow of ice from the Walls peninsula into the basin than

36Mykura and Phemister, 1976
37Hambrey, 1994
38Greene, 1992
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from elsewhere around it; the peninsula may not, therefore, be a major centre of ice dispersion, 

relative to central Mainland, at this stage. There may have been some blocking ice on the 

northwest peninsula but there are metamorphic erratics in Sandness which have an eastern 

origin and there are even two curious, southern pointing, striae on the island of Holm of Melby 

(figure 6.2) according to the 6" to 1 mile hand-drawn BGS drift map of the area. It is not known 

if ice was able to come onto Sandness from the northeast but if it is assumed that regional ice 

retreated to some consolidated core, then it is likely that the Walls peninsula was not part of it.

This latter point is consistent with the expected situation based on the average altitude of the 

peninsula relative to central Mainland. Ice on the peninsula would have lost mass considerably 

to the surrounding areas, at some stage both to the northwest and southwest (see above). At the 

same time, ice from central Mainland would also be diverted southwest into the West Fair Isle 

basin and northwest into St Magnus Bay (figure 6.6). The peninsula's supply would have been, 

‘pinched out,’ and, if there was ice left, it may have stagnated. Tliis situation is shown in figures 

6.6 and 6.7 but it should be remembered that the relative timing of the events described above, 

including the formation of the Papa Stour moraine, is not known and they are shown on separate 

figures for simplicity only.

As across much of Shetland, there is little other evidence of the nature of terrestrial deglaciation. 

The lower parts of the Voe of Dale valley are clearly infilled with waterlain materials. Sections 

in this material (plates: figures 6.14 and 6.15) are, to the author's mind, clearly fluvioglacial: the 

discharges indicated are variable and higher than those occurring in the present channel which 

cuts through the infill creating terraces up to 2 m high (plate: figures 6.16). The upper part of 

the valley is dominated by bedrock with patches of diamict, possibly till, whereas till is more 

extensive in the lower valley (figure 6.4). The absence of fluvioglacial material in the upper 

valley may suggest that melting glaciers released large quantities of water but not such large 

quantities of sediment - the fluvioglacial material of the lower valley being largely reworked 

local lodgement till. This might again reflect a disintegrating, largely inactive, ice mass of some 

size, consistent with the, 'pinch-out,' of ice supply from the higher ground suggested above. 

Alternatively, the high discharges of the lower valley may be associated with drainage from a 

late, local ice cap on the Sandness Hill plateau to the north.

Sandness Hill is part of a relatively high plateau area, ideally suited to being a residual ice 

centre or corrie-glacier development site. The hummocky drift and fluvioglacial morphology 

identified39 (figure 6.2) are restricted to its northern-facing slopes which, for reasons of aspect, 

are likely locations for residual or recrudescing ice. The mounds, which are generally orientated 

northwesterly and are composed of a sandy diamict with angular sandstone clasts, are

39Mykura and Phemister, 1976
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interpreted as being the product of a local glaciation. A crucial part of this interpretation lies in 

the absence of any metamorphic clasts despite metamorphic outcrops immediately to the east. 

These features are certainly associated with ice from Sandness Hill but it is not possible to 

determine whether they relate to the latter part of deglaciation, or a Loch Lomond re-glacialion. 

If the latter were the case, then the local equilibrium line altitude would again be less than 200 

m above modern sea level (see chapter 5). The existence of an independent ice cap on the 

Sandness Plateau has been proposed as a possible explanation for the quantity of fluvioglacial 

material in the lower part of the Voe of Dale valley (above), however the proposal has not been 

investigated in detail and no other evidence of such an ice cap is offered here.

It is argued above that ice, at a late stage in the last glacial cycle, flowed rapidly into St Magnus 

Bay, converging from the southeast, east and northeast (see also chapter 8 on North Mainland). 

This continued for at least long enough to generate an identifiable erosive pattern on the flanks 

of the basin. It is also hypothesised that in order to achieve this, the ice must have been ablating 

within the basin at some stage. It is of regional significance, in terms of the extent to which sea- 

level controlled the demise of the last glaciation of Shetland, to know whether this ablation was 

glacimarine or otherwise.

The answer to this issue lies in the interpretation of the extensive Quaternary sediments of the 

bay which are up to 60 m thick. Cockcroft40 has studied the BH 80/08 borehole (water depth 140 

m.; depth drilled 47.75 m.; rockliead 34.6 m; percentage recovery 43%) and associated seismic 

data. He concludes that there is a small basal sequence of till, about 4 in thick, including 

metamorphic rocks from the surrounding landmass, beneath 29.5 m of low energy regime 

lacustrine sediments of interglacial aspect, and a Holocene, shelly, lag deposit on top of tliis.

The extensive unit is interpreted as containing no outwash and no glacimarine sediments, nor 

evidence of active glaciation or periglaciation on the surrounding landmass. This proposed 

sequence is, in the clear sedimentary trap of St Magnus Bay, surrounded as it is by evidence of 

glaciation into it, somewhat implausible. Cockcroft's conclusion is that dead ice sat in the basin 

and routed meltout debris across it to the shelf areas beyond the western edge of the Walls 

peninsula. How the extensive sequence of low energy regime sediments, topped by a lag deposit, 

came to exist in St Magnus Bay over the Holocene, however, is not suggested. Indeed, Cockcroft 

concludes that the islands were not glaciated during the Late Weichselian at all. More recently41 

the sediments have been assigned to the Stormy Bank sequence, which is attributed to the 

waning stages of the Late Weichselian glaciation and which are, elsewhere, clearly glacimarine.

40Cockcroft, 1987
41Stoker et al., 1993
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The present author has examined the material in the core, records derived from it, and the 

interpretations of the above authors, in order to attempt to resolve the apparent difficulties of the 

sediment sequence and the terrestrial geomorphology (above).

The 4 m of basal material identified in the core is not identifiable as a seismostratigraphic unit, 

probably because it is within the resolution range of Sparker records and too deep for Pinger to 

penetrate. Crucially, it is not clear, therefore, whether the material is found only in the deepest 

part of the basin (which is penetrated by the borehole), or more extensively throughout. The 

recovered material represents only 25 cm and is a gravelly sand too disaggregated to determine 

its in situ fabric (plate: figure 6.17). It could be:

(a) a lag deposit derived from conglomeritic bands in the underlying Permo-Triassic sandstones;

(b) basal till;

(c) fluvioglacial outwash;

(d) glacimarine material;

The material comprises a gravel with some sandy matrix which is friable, but tough, and reddish 

brown. The gravel includes clasts up to 3 cm (a-axis) of sandstone and metamorphic rocks from 

the surrounding land. Although the sample size is extremely small, the absence of intrusive 

igneous rocks (granite/diorite) is noticeable. Clasts are sub-angular to rounded. Cockcroft42 

argues that the material is a terrestrial till, by tenuous comparison with extensive sequences on 

the other side of the islands (chapter 7). The present author's opinion is that the clasts are 

rounder than those in local terrestrial till but there is insufficient material available to conduct a 

well-controlled and statistically significant study.

A similarly washed sample from a conglomerate band in the Permo-Triassic sandstones of the 

same core contained some larger clasts (up to 5 cm) and possibly a more varied metamorphic 

suite, although again no granite. It should be noted, however, that the sample size was 

considerably larger than that available for the unit under investigation. Clasts were similarly 

sub-angular to rounded. With the available material, more detailed analysis is not possible and it 

is evident from the above comparison that the material could be an erosional lag from the 

underlying bedrock. If this were the case, however, then there is no glacigenic unit represented 

in this borehole at all and the lag deposit, which is 4 m thick in this location, must have 

survived glaciation since it is buried beneath sediments indicative of very low energy and 

possible gradual sea level rise (see below). Given the erosive nature of glaciation around the 

basin the outcrop of such a preserved deposit seems improbable.

42Cockcroft, 1987
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More significantly, it leaves no evidence of deglaciation itself. It has been suggested43 that 

meltout material was routed across a dead-ice-filled basin. Tliis is a doubtful explanation for the 

absence of fluvioglacial material - such an ice mass would not exist for long in a basin setting 

where ablation was occurring on the surrounding landmass. It is simpler to postulate that the 

basin does indeed contain deglacial material and that this is represented at the base of the core. 

The similarity with bedrock conglomeritic bands is quite consistent with a fluvioglacial 

explanation, since the clast source areas would be broadly similar as would the transport 

medium. No postglacial preservation issues arise. Hematite is mentioned on the core's ship log 

and may account for some of the redness in colour. Iron oxide development is common in 

fluvioglacial sands and gravels where water percolation is facilitated. It is not common in tills. It 

is not clear from seismic traces whether the material is more widespread but the conclusion of 

this study is that it is fluvioglacial in origin.

Regardless of interpretation, there is no evidence of glacimarine activity. Subsequent deposition 

is clearly very low energy - the material is almost entirely silts and clays - and the author has 

found no gravel or dropstones having examined the split core (plate: figure 6.18). Dinoflagellate 

cyst44 analysis suggests a severe cold marine environment with two periods of amelioration (at 

19 - 23 m, and much less significantly at 5 - 10 m). Below 10 in low cyst productivity and 

particular assemblages suggest a cold and severe climate in perhaps slightly less than full 

marine conditions. The presence of seasonal sea-ice is indicated and tliis may explain the low 

energy regime. At this point, perhaps, sea level was only just rising over the sill into the basin. 

Between 5 and 10 m conditions are perhaps more open but again with at least seasonal sea-ice 

cover. From 2.5 to 5.0 m there is a general warming, but not approaching modern temperatures. 

There were no significant findings below 25 m (i.e. within the fluvioglacial unit). Given the 

above, and whether or not the basal unit is a till, deglaciation at this stage was due to 

precipitation starvation or climatic wanning, not rising sea level.

Less work has been undertaken on the sediments of the West Fair Isle basin to the south of the 

peninsula (see chapter 5). The author's own observations indicate that, at least 

sedimentologically, conditions were similar although no lamination is recorded and occasional 

molluscs in life position are observed. This may or may not imply the absence of sea ice and 

relatively warmer waters, leading to the tentative conclusion that the West Fair Isle basin was 

inundated later in deglaciation than the St Magnus Bay basin.

6.4. Conclusions

The simplest interpretation of ice directional evidence is that at the glacial maximum the Walls 

peninsula was crossed in its entirety by ice streams moving in a northwesterly direction that also

43Cockcroft, 1987
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diverged around Foula at its base and overtopped it by some margin. The ice shed lay at least as 

far east as central Mainland, if not further east at some stage (figure 6.5). The inshore shelf area 

and St Magnus Bay basin were stripped of sediment and substantial subglacial deposition 

commences to the west of the Foula Ridge, possibly due to the existence from that point of an 

unconsolidated substrate. Deglaciation was initially glacimarine across the outer shelf area to as 

far inshore as the Foula Ridge. Further inshore retreat appears to be terrestrial and rising sea 

level is then recorded in the St Magnus Bay. Deposition on land and inshore probably occurred 

during deglaciation but Walls is largely an eroded landscape. Ice sheds shifted dramatically. Ice 

converged into the St Magnus Bay basin, including from the Walls peninsula, and at some point 

the peninsula itself became a divide and ice flowed southwest from it as well. The supply of ice 

to the Walls peninsula from central Mainland probably, 'pinched out,' due to topography and 

what remained on the peninsula may have stagnated leaving a minor legacy of its little basal 

material (figure 6.9). Ice still flowing into and out of the basin dumped a moraine at the pinning 

point of the basin's western sill which included Papa Stour (figure 6.7). Subsequent retreat 

resulted in the deposition of fluvioglacial material in the basin but little or no till. It is possible 

that ice flow to the basin was also curtailed suddenly by increasing topographic containment in 

Sullom, Busta and Aith Voes. It may be that the Sandness Plateau maintained an independent 

ice mass for some time.

44BGS internal report on borehole BH 80/08 (Harland -1986)
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7. The last glaciation of central Mainland

7.1. Solid geology, topography and bathymmetry

The solid geology1, topography, and bathymmetry of the area are shown in figure 7.1. For 

reasons of scale the former is highly simplified: the principal components of the East Mainland 

Succession are shown but each of these contains a considerable mix of metamorphic rock types 

and some later igneous outcrops. The broad distinctions are evident in the strong influence of 

the north-south strike of the sequence on the topography of the area. The succession is divided 

into three divisions: the Yell Sound division (1, in figure 7.1) is composed almost entirely of 

migmatised psanunites with quartzite bands; the Scatsta division (2, in figure 7.1) includes a 

lower (more western) group of pelitic Staurolite schists and an upper quarlzitic group, the 

relative resistance of which is seen in the Scallafield ridge west of Weisdale Voe and Kergord 

valley as well as the high ground around Garder Hill. The Whiteness division (3, in figure 7.1) 

is composed of flaggy micaceous psanunite with thinner bands of much less resistant crystalline 

limestone. The basal (most western) member is a 400 m thick example of the latter and is 

clearly identifiable as the north-south valley running between Weisdale and Dales Voes. The 

depression forming Whiteness Voe and Petta Dale as far as Hoo Kame is formed from another 

crystalline limestone member. The upper and easternmost members of the division include a 

limestone band that forms Lax Firth and the low ground between South Nesting and the South 

Nesting peninsula, and the psanunites that form the Ward of Laxfirth peninsula, the South 

Nesting peninsula itself, and the high ground immediately to the east of the Nesting Fault from 

Clubb of Tronister in the north to Hill of Catfirth and Wadbister Voe in the south. The broad 

centre of the division is occupied by semi-pelitic and psammitic granulites with a major belt of 

migmatitic gneiss. Although the influence on topography is not as marked in this more 

homogeneous area, the trend of ridges follows the strike of these rocks and the effect is 

accentuated by high and often vertical dips. The metamorphic rocks forming Lunna Ness, 

Lunnasting and Whalsay are homogenous pelitic and semipelitic gneisses and are probably 

related to the Yell Sound (1) and Scatsta (2a) divisions. The Whiteness and Scatsta Divisions 

are tentatively correlated with the Dalradian of Scotland, and the Yell Sound Division with the 

Moinian.

There are three significant late Caledonian plutonic intrusions in the area, all forming relatively 

low ground. The area immediately west of Busta Voe is predominantly diorite and the areas 

north of Laxobigging and of East Hill of Guimafirth are granodiorite but include large areas of 

the original metamorphic country rock which make up the high ground within these zones.

'Mykura, 1976
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Offshore around the area are undivided sequences of rocks, mostly schists, also believed to have 

been metamorphosed during the Caledonian orogeny2 (figure 3.2). The igneous intrusion to the 

north of Laxobigging continues to outcrop some way into Yell Sound. A Permo-Triassic 

sandstone basin, referred to as the Fetlar Basin, is evident in the bathymmetry to the north of 

Whalsay (figure 7.1). The ridge on which Whalsay is situated continues northwest to include the 

Out Skerries, and then a trench is reached, the northern end of which is the Unst Basin and 

which is also infilled by Permo Triassic sandstones. Metamorphic rocks continue thereafter to 

the northeast onto the bathymmetrically raised Pobie Bank, sandstones and siltstones to the east 

and southeast across the East Shetland Platform.

The gap at Voe is a possible Devonian channel (figure 3.6)3.

7.2. Previous work

Early authors4 record striae azimuth in the east of the area, on Out Skerries, Whalsay, around 

Dury Voe, and Colla Firth, that are north-east to south-west, and interpret the direction of ice 

flow towards the southwest (figure 3.7). Excellent roches moutonees are referred to on Out 

Skerries, Lunna Ness and Lunnasting, generally in the maimer: 'the position of the roches 

moutonees leaves no room for doubt as the direction of the ice-movement.'5 On the high ground 

of the Weisdale Hill ridge in the west of the area, and further west (see chapter 6), striae of 

northwest-southeast azimuth are observed and interpreted as showing ice movement towards the 

northwest. Peach and Horne conclude that Scandinavian ice crossed the islands from the 

northeast and was diverted northwest by an impinging Scottish ice mass, the existence of which 

has been dismissed6 as well as supported7. Striae not fitting the pattern, such as those obseived 

on Whalsay showing northward ice movement, are attributed to later local glaciation.

Subsequent authors8 attribute all the eastern coastal striae, and more, (see figure 7.2 for a 

complete inventory) to ice moving off the east coast of the area in various directions ranging 

from northeast to southeast. It is difficult to say how much this interpretation is influenced by 

crucial work on erratics (see below) but the conclusion directly contradicts the early 

interpretation. Although inferred ice flow lines on published figures are of offshore movement, 

mapped striae observation points are equivocal towards flow direction9. This caution is not 

evident in the early work discussed above. The correspondence between Peach and Horne and

2Chesher, 1984a
Minn, 1977
4Peach and Home, 1879
5Peadi and Home, 1879 (p.793) - present author's italics
6Home, 1880
Minn, 1978
Minn, 1977; Mykura, 1976
9See, for example, Mykura 1976 (p.108, fig. 28), and compare Flinn 1977 (p. 140, fig 5) with Flinn 1982
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Home10 is instructive and suggests that the direction attributed to striae by the former authors 

may have little to do with the striae themselves, or supporting stoss and lee data. Others have 

argued, for example, with, 'absolute certainty,'11 that the sense of direction on Out Skerries is the 

reverse of that suggested by Peach and Horne. The most considered striae dataset for the area is 

that of Flinn12, where both azimuth-only and azimuth-and-direction striae and stoss and lee 

observations are given. In the latter cases ice flow is offshore. Such occurrences occur widely on 

Whalsay and the Out Skerries, less frequently on the Mainland. Flinn also maps, 'air photo 

striae,' which are lineations in drift or bedrock of a scale visible on 1:10 000 air photos. These 

correspond with local striae.

Between Swining Voe and Vidlin Voe in the northeast early workers13 comment on roches 

moutonees with drift tails on the assumed downglacier side, again oriented northeast to 

southwest. Also mentioned are larger scale differences in till development: the greater volume of 

till on the eastern sides of Vidlin and Swining voes, in other words in the lee of the hypothesised 

southwesterly moving ice sheet, is compared with Dales Voe and Colla Firth which run parallel 

to ice flow and show no such drift asymmetry. Tliis is taken as evidence that an ice sheet did 

indeed move on shore from the northeast, eroding the upglacier sides of Vidlin and Swining 

Voes but not the downglacier sides.

The early reported14 clastic content of the drift on the eastern side of Swining Voe includes a 

nodular gneiss which outcrops on Lunna Ness to the northeast. Tliis is the only erratic evidence 

offered for on shore ice movement in the central Mainland area. Much is made of the absence of 

dioritic clasts from the Busta Voe igneous intrusion in the west occurring east of that outcrop, 

permitting the inference that ice did not move from some ice shed to the west of Busta Voe, and 

of erratics being moved broadly westward onto and across the Walls peninsula (see chapter 6) 

and South Mainland (see chapter 5). But in this central area, although the same cross-island ice 

movement is favoured, no other erratic evidence is given. The erratic data of later authors15 

supports ice movement from central Mainland offshore to the east and west. In particular, the 

cany of erratics to the northeast as far as the Out Skerries conflicts with early theories of 

Scandinavian ice incursion. Instead it suggests that erosional ice movement information should 

be interpreted as offshore flow. Intriguingly, the, 'nodular gneiss,' used as evidence of the 

northwest to southeast passage of ice across Swining Voe, and with which tliis discussion of 

erratics began, is probably the, 'porphyroblast gneiss,' employed latterly16 to demonstrate the 

reverse direction of flow (figure 7.2). Erratic movement from east to west onto the Walls

l0IIome, 1880
1’Hoppe, 1974 (p. 205)
12Flinn, 1982
13Peach and Home, 1879
14Peach and Home, 1879
15Robertson, 1935; Mykura, 1976; Flinn, 1982
16Flinn, 1982
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peninsula from central Mainland is undoubted but there are no examples that can unequivocally 

be attributed to bedrock sources further east than the main Scallafield ridge17.

The overall pattern of ice direction indicators in central Mainland is shown in figure 7.2. The 

northerly swing from Whalsay north has been attributed to the impinging influence of a 

Scandinavian ice sheet18 and, alternatively, to the proximity of the -82m bathymmetric contour19. 

The causal relationship between the bathymmetry and ice flow is not specified. But elsewhere on 

Shetland, and around Whalsay in particular, inshore ice calving into a rising sea has been 

hypothesised20.

Moraines are observed by Peach and Horne21 at the heads of Dales Voe, Colla Firth, and 

Swining Voe, and near Voe, Voxter and Brae and are attributed to a late local ice mass flowing 

out of central Mainland. They have pointed out that they are more numerous where hypothesised 

ice streams converged such as at the head of Swining Voe: the spur between two streams is 

reported as being covered with lateral moraines which are distinct from the ground till in some 

sections. Others22 describe the same features as 'hummocky drift,1 and consider that they may 

relate to static accumulations of snow and ice possibly representing a minor Loch Lomond 

Readvance (figure 7.4). A number of boulder fields, terminal and lateral moraines identified 

near Loch of Voe, Olna Firth, and Colla Firth, and extensive fluvioglacial sediments in Kergord 

valley and Burn of Grunnafirth23 are also thought to relate to this time, although the timing of 

the deposition of the fluvioglacial material is deemed uncertain24. Other possible Loch Lomond 

stadial glaciers25 are dismissed as being based on the likely location of snow accumulation rather 

than on geological evidence26.

Offshore Quaternary deposits in the inshore area east of Mainland and west of Out Skerries are 

less than 10 m thick except in the Fetlar basin where they reach 50 m. They are up to 20 m thick 

in parts of the Unst Basin but disappear onto the Pobie Bank further west27. They can be traced 

as patches across the East Shetland Platform as a reddish, stony, sandy, clay, and are interpreted 

as tills or glacimarine deposits28 of Late Weichselian age and Shetland provenance29 and reach 

an identifiable limit approximately 75 km to the east of the islands (figure 3.15). Dating from 

these sediments is discussed in chapter 10. The sediments of the inshore Fetlar Basin are

17Mykura, 1976
18Mykura, 1976
19FIinn, 1977
20PIoppe, 1974
21Peadi and Home, 1879
22Flinn, 1977; Flinn, 1982
23Fliun, 1982
24Flinn, 1977
25Charleswortli, 1956
26Flinn, 1977
27Chesher, 1984b
28Long and Skinner, 1985; Long, 1988
29Peacock and Long, 1994
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described as consisting of very soft, olive grey, silly clays rich in hydrogen sulphide, probably of 

post-glacial age, underlain by a compact grey till30.

7.3. Outstanding issues
Some arguments put forward by proponents of Scandinavian glaciation have been ignored and 

these must be briefly mentioned. Also, the comparative wealth of information collected in the 

central Mainland area has not been fully scrutinized in terms of its interpretation: is only a 

single phase of ice movement represented by the directional evidence available, as suggested by 

later authors? How much of the glacial landscape is the product of the final period of ice 

movement? What were the mechanisms and patterns behind deglaciation? Is there any evidence 

of minor readvances or periods of stasis during or after deglaciation?

7.3.1. Scandinavian glaciation

The erratic evidence for a local ice cap of significant size streaming radially out from the area is 

convincing and the requirement for a nearby Scandinavian ice sheet to explain the northeasterly 

direction of striae and erratic cany is reasonably obviated when these are considered with 

respect to topography (see below). Although the observations made by proponents of the 

Scandinavian incursion31 were a small subset of those now at hand, and although we may 

speculate on the influence of contemporary popular paradigm regarding northern European 

glaciation as a whole (see figure 3.8)32, there are observations that seem inexplicable. On the 

Out Skerries all authors33 are in no doubt about the direction of asymmetry of the roches 

moutonees but conclude totally different directions of ice movement. Tliis is surprising, because 

the asymmetry and direction of ice inferred is described explicitly for other areas on Shetland 

where these authors concur (chapter 8). A brief examination reveals that the stoss and lee 

character in parts of the islands is by no means straightforward to interpret34. The asymmetry of 

drift development in key locations such as Vidlin Voe and Lunna Ness on a large scale, and the 

drumlinoid features between Vidlin and Swining Voes on a smaller scale, have also been 

ignored since they were proposed as evidence of onshore moving ice. In the section below on the 

nature of deglaciation, it is here argued that these are more probably evidence of offshore 

movement. The argument however is made on an understanding of glacial process-form 

relationships that is relatively recent. There remains the contradiction in the movement of 

erratics of gneiss from Lunna Ness to Swining Voe. The metamorphic rocks of this part of 

Shetland are highly variable and given the weight of evidence in favour of offshore movement,

30Chesher, 1984b
31Peach and Home, 1879
32see for example Peach and Home, 1881
33Peach and Home, 1879; Flinn, 1977;
34AHall (pers. comm. 1995)
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and the relative complexities of the local geological knowledge of the contending parties, the 

more recent data is favoured. However, the discrepancy remains unaccountable.

There is no clear evidence of Scandinavian or other eastern ice influence in this part of the 

islands. In the section on the nature of deglaciation (below) it is argued that much of the glacial 

landscape is the product of the final stages of glaciation, and that the processes were dominantly 

erosive. It is therefore conceivable that onshore ice movement did occur and evidence of it has 

been subsequently eradicated or is indistinguishable from evidence of offshore ice movement.

7.3.2. Multiple phases of ice movement
Recent reconstructions of ice movement off central Mainland35 have sought to unify all the 

available spatial data in a single snapshot (figures 3.9 and 3.11). Others have argued for 

changes in ice movement direction during progressive retreat, especially around Whalsay (figure 

3.10)36.

Temporal reconstruction is based on the morphochronology of directions of ice movement and 

north and south central Mainland are treated separately in subsequent sections since there is 

little such evidence in the latter. It is reasonable to expect earlier directional information to be 

preserved in laterally and vertically peripheral locations, and it is the islands of the Out Skerries, 

Whalsay, Bigga and Little Roe in the north which present the greatest difficulty to the 

reconstruction of a single, all-encompassing, ice flow configuration. Such peripheral areas are 

not available for south Central Mainland (although see chapter 6).

Reconstructing changes in ice shed configuration is not straightforward. North of Dury Voe on 

the east coast, and on Whalsay, the pattern of ice direction indicators (figure 7.2) suggests 

convergence in the topographic low of the Fetlar Basin. Ice flow out of Dales Voe and across the 

island of Samphrey is also compatible with tliis, but striae azimuths on Bigga and the adjacent 

Mainland are northwest-southeast and granodioritic erratics on Linga suggest a more easterly, 

or even southeasterly movement. The pattern of striation of the Out Skerries is northeasterly 

which may represent movement into the Unst Basin or some regional phenomenon but not into 

the Fetlar Basin. Around Whalsay itself multiple directions of ice movement are evident in 

striae and these are incompatible with a single ice shed and published reconstructions either 

predate the discovery of all the evidence that is available now (figure 3.9)37 or fail to discuss its 

implications38. Erratics from the granodiorite of Laxfirth appear on the Out Skerries and 

Whalsay, both to the northeast, yet the direction of ice movement across the source areas,

35Myk«ra, 1976; Flinn, 1977;
36I-Ioppe, 1974
37Mykura, 1976
38Flino, 1982 '
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manifest in striae, air photo striae and the same erratics, is east to southeast. The islands of 

Nista and Moa off the east coast of Whalsay also suggest that the situation is complex: one is 

striated due east-west, the other contains an erratic which either came from the southwest, in 

which case the striation must post- or pre- date its arrival, or due west from the small outcrop on 

the north side of Dury Voe which is consistent with its neighbour's striation but not with those 

of the vast majority of Whalsay across which it must have journeyed (figure 7.2). The issue may 

be complicated by undetected offshore source outcrops (although none have been mapped and 

granitic intrusions within metamorphic country rocks are easily identified) or by multiple phases 

of erratic carry. Given the erosive nature of the glaciation (see below) it is likely that antecedent 

drift deposits were stripped and transported to the continental shelf before deposition occurred in 

these inshore areas so the multiple carry hypothesis between glaciations is less likely than 

changes in ice flow patterns at the end of the most recent.

In the southwest, on the Scallafield ridge, there are striae showing a broadly northwesterly 

direction of movement and, at lower elevations, southwesterly in the direction of the West Fair 

Isle basin (figures 7.2, 5.2 ). These are clearly not contemporaneous. Given the amount of 

evidence of multiple phases of ice movement elsewhere, the southeast coast of the area is 

remarkable in showing unidirectional ice flow. Questions nonetheless arise and these are dealt 

with in subsequent sections. An attempt is now made to reconstruct the last glaciation of the 

area through time.

7.3.3. North central Mainland ice shed movement

Tliis kind of reconstruction is complex and must be broken down into discrete steps. The true 

impression is of a continuum of increasing topographic containment during deglaciation, yet 

there must have been some discrete scenarios maintained long enough to create a consistent 

impact on the landscape. Il is difficult, however, to definitely correlate similar step changes 

between different areas and the precise sequence of events given below is tentative.

There were two ice movements across Whalsay, from the southwest and from the west, the latter 

being particularly but not exclusively evident in the southwest of the island (figure 7.2). Both 

striae and ice moulded bedrock show these movements and, accepting that they are not 

synchronous, we must ask which occurred first. Granodiorite has been entrained from Dury Voe 

and transferred to the Out Skerries, a northeasterly movement that must have passed over 

Whalsay and, assuming the Out Skerries deglaciated before areas closer to Mainland, was 

reasonably early. The wide spread of the erratics, and their occurrence on the east side of 

Whalsay suggests that their origin was the larger mass to the south of Dury Voe. The earliest 

identifiable ice shed therefore, must either have been southwest of here (evidence of its track 

subsequently destroyed), suggesting regional northeasterly ice movement, or due west of the 

source with some northerly diversion offshore (figure 7.5). Such a diversion might be due to the
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topographic influence of the Pobie Bank, Unst Basin, a more remote regional influence, or even 

the impingement of a Scandinavian ice sheet. In any event, for the stream to have reached the 

Out Skerries the Fetlar Basin and shelf area to the southeast of Whalsay must have supported ice 

to prevent reorientation normal to the bathymmetry of the Whalsay/Out Skerries ridge. It is 

argued below that, at a later stage, the ridge is a potential ice dispersion centre with ice moving 

both southeast and north. Topographic determination at this scale would also give rise to 

northwesterly movement across the Out Skerries into the Unst Basin but under these 

circumstances the transport of erratics from the distant Dury Voe is more difficult to envisage 

because the movement of ice southeast across the source area is unrestricted. In addition, while 

there is little to contradict the idea that ice flowed across the Lunna peninsula and along Colla 

Firth and Dales Voe at some stage, there is evidence of ice streaming northwest into Yell Sound, 

across the island of Bigga. Tliis more northwesterly movement is consistent with striae on Yell 

(see chapter 9) and implies a stream of ice into Yell Sound. There is evidence of ice moving east 

from the adjacent Mainland into the Fetlar Basin, so this Yell Sound ice movement can be 

interpreted as further evidence of an early stage in which Fetlar basin was not as influential as it 

was subsequently (figure 7.5).

The idea that northeast movement was of regional significance and not due to the impingement 

of Scandinavian ice or the Pobie Bank is confirmed by heavy mineral analysis which shows the 

movement of terrestrial heavy minerals considerable distances offshore in this direction (figure 

3.16 - compare with figure 3.9 but note that no evidence is given for the location or existence of 

Scandinavian confluence)39.

The deglaciation of the Whalsay/Out Skerries bathymmetric ridge involves ice moving north 

into the Fetlar Basin and, since there are striae on south Whalsay aligned this way, the ice shed 

was perhaps somewhere to the south, implying broadly that deglaciation occurred in the 

northeast earlier than the southeast (figure 7.6).

Directional data across Lunnasting suggests predominantly northeasterly ice movement. 

Although the arguments below regarding the nature of deglaciation rather suggest that much of 

the pattern reflects late local glaciation into the Fetlar basin, the area contains granodiorite 

erratics probably from the small outcrop on the north side of Dury Voe which is an area latterly 

crossed by easterly moving ice topographically contained in the voe itself. This appears to be 

evidence of the progressive disintegration of an ice shed running broadly east-west down Dury 

Voe, probably contiguous with a linear ice shed on the Whalsay/Out Skerries ridge, and its 

progressive topographic containment within the voe. Tliis is presumably accompanied by the 

deglaciation of the Whalsay/Out Skerries ridge. There are striae indicating southeasterly

39Beg, 1990
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movement, possibly even from an ice shed on the island itself and perhaps shown by the striae 

on Nista and some on Whalsay. Whalsay splits the broadly easterly ice stream passing down 

Dury Voe, which crosses its southeastern and possibly western edges in its passage to the 

southeast or the Fetlar Basin respectively. At some equivalently late stage, ice crossed the source 

area of the granodiorite erratics in an easterly or southeasterly direction (figure 7.8).

The picture in these peripheral areas is of more rapid deglaciation from the north and northeast 

than the southeast. If the stream of ice into Yell Sound is taken as being a relatively early event, 

perhaps contemporaneous with that crossing the Out Skerries in a northeasterly direction, then 

this further confirms the pattern. There appears to follow a shift in flow direction into the Fetlar 

basin but again from an ice shed to the south of Whalsay, then the development of the 

Whalsay/Out Skerries ice shed which demonstrates deglaciation in the southeast. Finally, 

progressive lowering until ice splits around Whalsay and deglaciation from the east and 

southeast occurs. This sequence is shown in figures 7.6 and 7.7. The position of the ice limits 

are not known at these stages and possibilities only are shown.

Reconstruction is less controversial once on Mainland because as the final ice shed is 

approached directional evidence is less diverse. Ice evidently moves into the Fetlar Basin across 

the Lunna Peninsula, although on the west side of the peninsula, and in Dales Voe and Colla 

Firth there may have been marginally more northerly movement once the peninsula can no 

longer be crossed and the Fetlar Basin loses its influence. Air photo striae inland of Hill of 

Vidlin may suggest similar reorientation once ice was unable to reach the Fetlar Basin from tliis 

more southerly area. Further south still, ice direction indicators show no dramatic late changes 

to the broadly easterly pattern. The evidence of both east and west moving ice from the area 

north of Dales Voe is of uncertain age but this relatively low northern area probably supported 

residual ice for a shorter period of time than more southerly parts.

The draw of ice into the St Magnus Bay basin on the west coast has been discussed in chapter 5. 

The broadly northwesterly direction of striation in the northwest of the area, particularly around 

Olna Firth, is most probably consistent with this and therefore reflects a stage in deglaciation 

dining which that near-shore basin is topographically influential. It is unlikely that evidence 

exists of early ice directional movement at low elevations. Around Grobs Ness for example, the 

direction of glacilectonization of bedrock, in some cases associated with thin lodgement till 

development (plate: figure 7.11), is consistent with local high ground striae. There has therefore 

been an erosive northwesterly movement of ice in the area at some stage and the convergence 

pattern on St Magnus Bay suggests it was a late one. To account for tliis ice must be streaming 

as far as St Magnus Bay at least, suggesting that the ice cap at the time these indicators were 

created was thick. By simple comparison, at the same time it must have been streaming 

extensively into Yell Sound to the north, and have reached at least as far east as the Fetlar
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Basin. It might be postulated therefore, that the pattern of glaciation into Yell Sound, or the 

Fetlar Basin, post-dates the commencement of that into the St Magnus Bay basin: erratic 

evidence shows ice moving westwards from at least as far east as Hill of Dale. Striae east of Voe 

suggest that the ice shed was further east than this also. Evidence of an earlier (thicker) eastern 

ice shed is evident in the clear stoss and lee forms observed by the writer at altitudes possibly up 

to 100m, again to the east of Voe (plates: figures 7.12 and 7.13). The overall impression is of 

deglaciation of a thick ice shed to the east of the central high ground (figure 7.5). Such 

conclusions are difficult to examine in detail since there is a broad gap in directional evidence, 

particularly erratic data, between western and eastern parts of the area.

7.3.4. South central Mainland ice shed movements

In south central Mainland reconstruction is more problematic because all directional evidence is 

remarkably consistent, prohibiting effective morphochronology, possibly due to the absence of 

peripheral areas upon which a longer record of directional data can be preserved from any but 

the most recent phase of deglaciation. Some relevant information is available from west 

Mainland (see chapter 5), regarding the regional northwesterly ice movement at an early stage 

in glaciation and curtailment of the supply of ice to the Walls peninsula over time. Bressay 

(chapter 5, figure 5.2) possibly also shows relatively early northeastern regional ice movement.

Erratics of Staurolite or kyanite schist (figure 7.2) are encountered to the east of their Scallafield 

ridge source area, on both the Mid- and East- Kame ridges. They also occur to the west on the 

Walls peninsula. The implication is that the ridge was an ice shed. However there are clearly 

striated and eroded surfaces on the ridge which have been interpreted as indicative of 

northwesterly moving ice on grounds of micro stoss and lee evidence40, so an ice shed must also 

once have existed to the east of the ridge. Schistose granites of the central Colla Firth 

permeation belt are found as erratics further to the east of the Mid Kame source (figure 7.2) but 

there are no reports of Staurolite schists this far east, perhaps indicating that the Scallafield 

ridge ice cap did not extend further than Mid Kame, or that if it did any erratics were 

subsequently swept away. And while there are Scallafield erratics to the southwest of the source 

area on the other side of Sandsound Voe, there are none to the southeast, along Weisdale Voe, to 

where the schistose granites appear to have travelled slightly west. This is a complex and 

unresolved picture that does not lend itself to a single temporal snapshot reconstruction.

The cross-sections of figure 7.9 and 7.10 give two slightly different reconstructions. The 

Scallafield ridge rises to 280 m in places, considerably higher than the 160 m maximum of Mid 

Kame, and also higher than the highest point of the East Kame ridge, Hoo Kame, at 209 m. The 

differences in average heights are even more marked. It is reasonable to assume that ice build

40Hoppe, 1974; Flinn, 1982
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up, particularly from westerly precipitation sources, was relatively rapid on the higher altitude 

ridge. Ice flowing from here may have overwhelmed the more easterly high ground, succeeded 

in transporting Staurolite schist erratics as far as East Kame, and possibly further. (The 

alternative hypothesis that the Staurolite schist erratics were deposited by a Scallafield Ridge ice 

cap near the end of deglaciation is discussed in the appropriate time sequence below.)

During deglaciation, ice must have moved across the Colla Firth belt that runs on East Kame, 

transporting erratics eastward. Ice must also have moved across the Scallafield ridge from the 

east in order to cause the erosion there. There are no eastern erratics on or beyond the ridge to 

the west so this ice acquired abrading materials from the ridge itself, and was probably clean 

prior to it. It is impossible to be precise, but these facts point to ice retreating from both the east 

and west, in the direction of an ice shed that lay somewhere to the east of the Scallafield ridge 

(figure 7.10). Here there may be evidence of earlier western deglaciation than eastern: assuming 

a westerly precipitation source, then any ice shed migration during englaciation would be 

towards the west; to achieve an easterly migration of the ice shed, western ablation is required.

Deglaciation also saw a significant southwesterly ice movement down Weisdale Voe, which 

transports schistose granites from eastern or northeastern sources. Il is clear, from the 

glacitectonized bedrock, thin drift and marked striation on the sides of the voe, that this was a 

major ice stream (figures 7.2 and 7.3). No Staurolite schists, erratics of which are found 

southwest of Russa Ness Hill, appear in Weisdale Voe, although there are some examples of 

schistose granites on the more southerly, eastern side of the voe. There is no evidence, therefore, 

that this southwesterly ablation drew ice from the Scallafield Ridge down Weisdale Voe, rather 

that the source areas were further east and northeast. It seems probable that the Scallafield Ridge 

was a late, subsequent ice source for immediately western areas after the deterioration of a more 

eastern ice cap. This later ice cap may have been of sufficient dimension at its northern end to 

reach the other side of East Kame with a load of Staurolite schist erratics now attributed to a late 

phase of the cycle (figure 7.9). Since these have survived in a position to the east of the Colla 

Firth source area, from which schistose granites were transmitted further east still, tliis later 

time of deposition is the more likely.

However the morphological contrast between the areas immediately to the east and west of the 

Scallafield Ridge suggests an alternative circumstance. To the west there are large pockets of 

hummocky moraine (figure 7.4). These occur in linear bands, following the strike of valleys. 

Their nature and position is discussed below, however unless they represent a Loch Lomond 

stadial glaciation they confirm that ice retreated actively from the west. To the east of the ridge, 

no such constructional features exist and the largest quantity of fluvioglacial material on 

Shetland is located around Kergord in the Weisdale and Kergord valleys (figure 7.3). The more 

eastern Petta Dale is more difficult to interpret because of the extensive peat cover but appears to
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contain less drift. It could be argued that there is more material in Kergord because the valley 

was being fed by active ice for longer, whereas the Petta Dale valley contains only the basal 

meltout of the last resident ice which contained little debris. What is critical however, is that 

there is no evidence of constructional forms in either, suggesting that residual ice here decayed 

in situ. Tliis asymmetry between the nature of deglaciation between the east and west sides of 

Scallafield may reflect the decay of an ice shed to the east of the Scallafield ridge rather than on 

top of it, as indicated in figure 7.10.

It is difficult to establish a clear sequence of events for this south central mainland area, but 

there is little doubt that the available evidence points to dynamic and significant changes in the 

ice configuration of the area. In particular, there is evidence of relatively early western 

deglaciation resulting in a more eastern ice shed that may have decayed in situ.

7.3.5. Nature of glaciation and deglaciation

Late Weichselian sediments appear to reach a limit about 75 km to the east of the area41 (figure 

3.15). Till or proximal glacimarine sediment, often forming positive bathymmetric features 

which might be end moraines, with high undrained shear strengths (>150 kPa), have been 

identified. A vibrocore 60 km from Mainland penetrates an interstadial marine mud (the 

chronology of the sequence is discussed in chapter 10), and below this a soft-sediment 

deformation till or subaqueous slope deposit with molluscs dating to the end of the last 

glaciation of the area42. The nature of tliis sediment is of concern for the present discussion. The 

authors assert that if it was a lodgement till then the shells would have been more damaged than 

they are. It is also probably the case, in the present writer's experience, that the vibrocore would 

not have penetrated 1.5 m of the material because lodgement till is generally too clastic for 

successful vibrocore penetration. The question arises as to whether these two observations 

should be any different for deformation till. The alternative hypothesis suggested by the authors 

is that the sediment is a glacigenic subaqueous debris flow although they feel that the slope of 

the platform is insufficient to support tliis interpretation. Presumbably this would be part of a 

glacimarine environment. The incorporation of shells that died at around the Late Weichselian 

maximum into the sediment suggests either a minor readvance, or burial in the proglacial 

setting. The latter corresponds to the subaqueous glacigenic debris flow interpretation of the 

diamict and a local ice margin may offer some topographic or hydrologic support for such a 

flow, but the establishment of deformation till conditions beneath a minor readvance is perhaps 

more questionable. At any rate, deformation till must have some pre-existing nature and, for the 

reasons outlined above, tliis was probably not lodgement till and therefore would have been 

glacimarine. This leads to the conclusion that early deglaciation of the Shetland ice sheet on this

41Long and Skinner, 1985; Long, 1988;
42Peacock and Long, 1994
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coast was probably glacimarine. It should be noted however that the molluscan assemblage of 

the unit predates the incursion of warm, north Atlantic waters into the North sea (see chapter 2).

Further west, across the East Shetland Platform to Mainland, there are generally either no 

Quaternary sediments or a very few areas with more than 0-5 m. The latter are difficult to 

resolve seismically and vibrocore logs suggest that they are muds and clays. The sea bed 

sediments are highly carbonaceous sands, in places organized into sandwaves, with some gravel 

lags, and are otherwise underlain by bedrock. The latter may partially be reworked Late 

Weichselian sediments and the British Geological Survey are currently working on possible 

morainic features evident in sea bed morphology43. Tliis work is at an early stage however and 

the distinction between bedrock and drift morphology is not clearly resolved.

More extensive sequences have fortunately been preserved in the Fetlar and Unst Basins, and the 

topographic valley extending south from the latter (figures 3.4, 3.15 and 3.14). It is regionally 

important whether there is evidence of glacimarine processes in these areas. The Unst basin is 

discussed in chapter 9. The Fetlar Basin sediments are recovered in Borehole BH 80/02 and are 

described as soft muds of postglacial age, overlying a compact, grey, till or bedrock lag deposit44. 

The shipboard log shows:

0-3.5

3.5 -4.6
4.6 - 5.0 
5.0-6.75 
6.75-7.10 
7.10-7.5
7.5 - 7.6
7.6 - 12.0 
12.0 - 12.2

12.2

Holocene muddy, very fine, sand with numerous 
shell fragments
Highly plastic, very soft, reddish brown clay 
Grey, fine sand 
No recovery
Fine micaceous, well sorted mud
Alternating laminae of fine and medium sand 
Fine - medium sand; probably bedded 
No recovery
Sand with angular to subrounded pebbles of 
quartz. Till or weathered bedrock 
Rockhead - although difficult to identify with 
certainty. Bedrock is pebbly quartzose sandstone 
with conglomeritic bands including quartzite, 
schist, psanunite, hematite stained quartz.

Quaternary calcareous tests abovel2.10 m are extremely sparse, showing increasing diversity 

up-boreliole and generally shallow, cold, marine conditions, with a possible amelioration above 

4.85m45.

The present writer has also examined the core. The sediments at 12 m are difficult to interpret 

but washing the clastic content reveals that it is invariably quartzitic and this suggests that it is

43A. Stevenson (pers. comm. 1995)
44Chesher, 1984b
45British Geological Survey internal report 95/501 - I’DL 84/17
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an erosional lag from the underlying bedrock. Difficulty in identifying the rockhead supports 

this but it should also be noted that conglomerate bands further downhole have more 

heterogeneous clast assemblages, including schists, and there is no recovery or data from the 

overlying 4.5 m, so it is dangerous to discount the existence of till or fluvioglacial material 

within the basin. The laminated sands and clays at 7.10 metres may indeed have a glacimarine 

origin controlled by rhythmic hydrologic variation (plate: figure 7.14). They are probably 

marine (although only 2 foram. tests were counted at this level) but do not appear to have any 

clastic component. If these sediments are related to glaciation then there were no icebergs 

calving into the basin and they are distal to the ice margin. An alternative possibility is that the 

variations are due to seasonal fluctuations in sea ice altering the energy regime of the basin and 

this may be evident up the rest of the core. The increasing diversity of the assemblages perhaps 

reflects rising sea level and the amelioration above 4.8m the beginning of the Holocene. 

Therefore the Fetlar basin was probably not a calving basin and ice converging in it must have 

exited to the east. As with St Magnus bay, retreat appears to have left little depositional evidence 

and was terrestrial. Sea level rises into the basin after ice has departed although it remained 

extremely cold. Like the St Magnus basin the retreat pattern of ice (discussed above) and 

topography might have conspired to cut ice supply to the basin suddenly, leaving ice decaying zzz 

situ. In tliis zone close to the ice shed, and as discussed below, it is not likely that the sediment 

transporting basal layer of the ice was very thick and the absence of much diamict in the core 

may be explained in this way. It is important to emphasize however that this borehole was not 

taken in the deepest part of the basin and seismic lines show an identifiable unit between the 

rockhead and the marine clays that can be traced into the Unst Basin to the east46. The sediments 

of the Unst basin are discussed in chapter 9 but tliis seismic correlation reveals that, over much 

of the Fetlar basin, the sediments described above may be underlain by subglacial diamict.

Borehole 77/60 (60-01/327) is located to the east of Out Skerries, in the tail end of the Pobie 

Bank trench. Recovery is extremely low and interpretation can only be based on trace materials. 

The rockhead appears to be at about 7 m and is overlain with pink clays, and shelly, sandy 

gravels. There are occasional metamorphic clasts up to 3 cm that are edge-rounded and faceted. 

However interpretation of this material is difficult in the absence of in situ superposition and 

fabric.

It is clear from terrestrial drift (figure 7.3) that the dominant processes are erosive. Tills are 

widely underlain by glacitectonized bedrock. This sequence implies early plucking and 

incorporation into a more dispersed matrix and ultimately a switch to lodgement deposition. The 

pattern is evident in all areas. Till is often thicker on central Mainland than elsewhere in 

Shetland and since the thickness of the dispersed layer of the basal ice in an area so close to the

46Chesher, 1984b
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ice shed would not be great enough to produce thick melt-out facies this material must be 

accretionary, i.e. lodgement. Stone clusters, stone pavements, and fines bands are all partially 

diagnostic of lodgement and can be identified in some areas. This lodgement is probably a 

relatively late, deglacial event. In places it occurs in positions on the up-glacier side of obstacles 

to flow such as at Lunna Ness and Lunnasting and the south Nesting peninsulas. Smaller scale 

examples have been observed by the writer in Weisdale Voe and Little Holm in Cat Firth. This 

pattern is in keeping with the direction of ice movement recorded by other means as due to a late 

stage in glaciation (see above). In some places the underlying glaciotectonized bedrock records 

the direction in which ice is moving and on Grobs Ness (plate: figure 7.11) this is in keeping 

with striae and erratic carry there. A similar conclusion can be reached on the east coast. 

Although the south side of Dury Voe evidently supplied erratics to the northeast that are 

preserved on Out Skerries and Whalsay, the direction of erosional indicators on the source area 

is east and southeast. Glacitectonization cannot be treated as a separate, earlier event than 

lodgement. Invariably it is found that the clasts in the lodgement till are dominantly local and 

that these are usually more angular than their further travelled neighbours. The transition from 

the glacitectonization of bedrock to the lodgement of till may be a rapid process associated with 

increased frictional resistance. In this respect lodgement and erosion are part of a continuum of 

processes bounded by intrinsic thresholds. These appear to occur relatively late, so evidence of 

earlier ice movement may have been removed.

The warm-based nature of the system is evident from all that has been said above, but additional 

evidence is available. At Cat Firth there are significant bands of sand and gravel within the 

diamict (although this section is now inaccessible behind coastal defences) and on the east coast 

of Swining Voe there are washed gravel bands 5-6 cm thick within the diamict. There is a small 

esker at Grobs Ness (plate: figure 7.15), not more than a metre high but clearly sinuous and 

containing a more gravelly material than the underlying diamict. In some locations there is 

evidence of meltout: north of Brae there is 0.5 m of more gravelly washed material above the 

diamict but the boundary is unclear and does not appear to be periglacial or subsequent wash; 

and at Foraness Voe, there is 0.5 m of deformed sand bands with large clasts (plate: figure 

7.16). Some of these are relatively peripheral areas by contrast with the sands and gravels of 

Kergord. There are other areas with fluvioglacial material but none with quantities similar to 

those in Kergord or in the Voe of Dale valley on the Walls peninsula (see chapter 6; plates: 

figures 6.14 and 6.15). There is little evidence therefore of any considerable deglacial flux of 

material from the englacial to proglacial environment. This may indicate a low glacial sediment 

load, high deglaciation rate, or both.

The author has encountered no evidence of periglacial modification of the sediments in Central 

Mainland.
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7.3.6. Hummocky moraine

Hummocky moraine has been mapped in various locations and it has been argued that it 

represents debris associated with static collections of snow and ice during the Loch Lomond 

stadial47. The areas are shown in outline in figure 7.4. There is no evidence of the age of these 

features, although for them to be associated with the Loch Lomond stadial then the regional 

equilibrium line altitude would need to be less than 200 m above modern sea level. They do not 

appear to be associated with static accumulations of snow and ice however. Their size and 

morphology is highly variable and some are certainly significant constructional features clearly 

associated with active ice margins. Tliis is best illustrated with the two most well developed 

areas which are on the west side of the Scallafield Ridge, and west of Souther Hili. In the former 

case there are ridges 8-10 m high, and up to 100 m long, parallel to the Scallafield ridge and 

with some cross sectional asymmetry (plate: figure 7.17) suggesting glaciation from that high 

ground and the formation of a series of terminal moraines. In the only section the author has 

been able to find, a coarse, angular, diamict was observed, again inconsistent with the washed 

sediments anticipated by formation associated with inactive ice. The hummocks in tliis case 

occur in topographic lows between north-south trending ridges. This is to be expected of the 

interaction between glaciers and cross-flow topography and the location of the moraines is not 

necessarily of climatic significance. Similarly to the west of Souther Hill there are examples of 

hummocks with clear cross-sectional asymmetry, the shallow side upslope and upglacier (plate: 

figure 7.18). These hummocks reach 5 m in height and 10 m long. Elsewhere the size of 

hummocks is much less significant and it is often difficult to tell what contribution peat, 

bedrock, hummock and post-depositional drainage channels make to the visible morphology. In 

places such as Dales Voe and Colla Firth, the broad disposition, as shown in figure 7.4 may 

again suggest debris accumulation from ice entering the valley from the side rather than at its 

head, consistent with glaciation from the highest ground. It seems likely tliat these features 

indicate progressive retreat to the highest ground in the area during a deglaciation but without 

dating control it is not possible to rule out a Loch Lomond stadial age. The chronostratigraphic 

issue as a whole is discussed in chapter 10 but the evidence given there cannot be related to the 

morphology discussed here.

7.4. Conclusions

There is widespread evidence of erosional activity in central Mainland and all observations of 

glacial action probably relate to the degiacial period. If Scandinavian ice crossed Shetland in the 

early part of the glaciation it is therefore not surprising that no evidence of its passage remains, 

although there is evidence of an early, relatively eastern, ice shed. Evidence of striae on the

47Flinn, 1977, 1982
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Scallafield ridge and other ice direction indicators further north and the pattern of ice movement 

into Yell Sound points to an ice shed to the east of the main high ground in Mainland (figure 

7.5). If this is not Scandinavian glaciation then it probably reflects relatively early deglaciation 

from the west. Whilst a local ice cap would build up on the high ground and the ice shed would 

ultimately migrate west if precipitation was from the west, early western deglaciation would 

account for an eastern migration.

It is not possible to consistently account for all ice direction indicators on eastern peripheral 

areas in a single, atemporal, reconstruction. On the grounds that laterally and vertically 

peripheral locations preserve older patterns, a tentative reconstruction is given in figures 7.5 to 

7.8. On the eastern coast early deglaciation was probably from the north and northeast (figures 

7.6 and 7.7) and later from the south east (figure 7.7). The pattern suggests early deglaciation at 

the northern and northeastern margins of the ice sheet followed by increased topographic 

containment. The glacimarine sedimentation of the East Shetland Platform does not appear to be 

reflected in inshore areas. Tliis again suggests glacimarine deglaciation to some limit following 

which deglaciation was terrestrial, with sea level rise to modern levels after the disappearance of 

ice at least to the high terrestrial ground. The step change in the nature of deglaciation may 

coincide therefore with bathymmetry and the British Geological Survey's work on sea bed 

morphology (above) also shows some correspondence with water depth. There are difficulties 

with this reconstruction. Firstly, it is unlikely that deglaciation occurred in the discrete steps 

shown - more likely there was some continuum of progressive deglaciation and topographic 

containment, although this does not preclude step changes. Given this, it is difficult correlate 

local patterns from different areas. This is particularly tme of incorporating the west coast 

reconstruction into the time frame of the east. It has been suggested that deglaciation started 

here early but its progress at each point in the east coast story is difficult to assess.

There is evidence of morainic features around the high areas of central Mainland. Their location 

appears to reflect topographic control and they remain undated.
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8. The last glaciation of north Mainland

8.1. Solid geology, topography and bathymmetry
The solid geology1, topography and bathynunetry of the area are shown in figure 8.1. The oldest 

rocks are the acid and hornblendic gneisses of possible Precambrian (Lewisian) age that outcrop 

in the northeast corner (A in figure 8,1). The belt of younger metasediments associated with the 

Caledonian Orogenic Belt (B in figure 8.1) includes an older group of impure, quartzilic, 

hornblendic gneiss and muscovite schist and a younger group of greenschist and calcareous 

rocks. These rocks are dated to the Caledonian orogeny but cannot be equated with the 

metamorphic rocks of Mainland and no correlation with the Moine-Dalradian sequence of 

Scotland is possible. Their broadly north-south strike is responsible for the north-south lineation 

of the topography across the north of the area and down the east coast as well as the more 

northeast-southwest lineation to the west of Lamba and Gluss Isle. The existence of Hillswick 

suggests some relative resistance within the confines of St Magnus Bay. The peninsula of Esha 

Ness comprises a sequence of rhyolites, andesites and tuffs, and a small outcrop of sandstone. 

These are very evident as the low relief ground to the west of the Melby Fault and are part of the 

Melby Formation which also outcrops on Sandness in west Mainland (see chapter 6) where two 

fish beds are correlated to the Eday Fish Bed of Orkney. The sequence is therefore of Devonian 

age. The area is topographically dominated by the Ronas Hill Plateau which is part of the 

probably interconnected series of Late Caledonian plutonic intrusions of the islands. In tliis area 

most of the complex is granite although there is a major band of more dioritic aspect running 

southward from Ronas Voe and more minor outcrops in the northern part of the plateau. With 

the exception of the Melby Formation of Esha Ness, swarms of dykes cut the entire area.

The granitic part of the intrusion continues to outcrop some way into St Magnus Bay (figure 

3.2), including all around Hillswick, but the bathynunetric depression of the bay is the product 

of the fault-controlled Permo-Triassic sedimentary basin (figure 3.2) discussed in chapter 6. 

Undifferentiated metamorphic and igneous rocks continue some way offshore immediately to the 

north of the area, but the Walls Boundary fault is delineated by the eastern coastline and Yell 

Sound is underlain by a granitic intnision to the south of Colla Firth and undifferentiated 

metamorphic rocks of the Mainland series to the north (figure 3.2). Similarly to the west the 

Melby fault comes close to the shore of North Roe and west of this is a band of undivided 

Devonian rocks including extrusive igneous varieties (figure 3.2). The long profile of Ronas 

Voe, including a lip at its mouth, may be suggestive of glacial over-deepening2

’Mykura, 1976
2Chapelhowe, 1965
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8.2. Previous Work
On the east coast of the area the general azimuth of striae observed by early authors3 (figure 3.7) 

between Ollaberry and North Roe is southwest-northeast, although at North Roe and on 

Fethaland point, southeast-northwest examples are noted. The main set are interpreted as having 

a southwesterly direction due to the main Scandinavian glaciation. The exception at North Roe 

is interpreted as showing a southeasterly direction of ice associated with a later movement of ice 

down the bay. The northwest-southeast azimuth striae at Fethaland are interpreted as being 

evidence of ice moving to the northwest on low ground while maintaining the general southwest 

movement on higher ground. A similar argument is given for the variation in striae azimuth 

along Ronas Voe, from west at its head, to northwest at its mouth. The striae south of these 

areas, as far as Mavis Grind, are described as indicating ice movement from the east to the west, 

and the description of stoss and lee faces around the area, 'the smooth slopes looking to the east, 

while the rough slopes face the west,'4 confirm this. A detailed study has been undertaken of the 

glacial evidence of the North Roe area (north ofRonas Voe), including glacial striae5 (see figure 

8.2). Two sets are resolved, a northeast-southwest azimuth set dominating the east coast of the 

area, and a northwest-southeast set over the rest of the area. The first group are assumed to show 

ice movement from the northeast, 'coincident with the land ice from Scandinavia postulated by 

Peach and Home (1879).'6 The second group are taken to indicate ice moving to the northwest 

on the grounds of erratic evidence (see below).

The movement of erratics noted by early authors7 includes: the absence of more western dioritic 

and extrusive varieties on the eastern coast of the area around Ollaberry, the western movement 

of the eastern metamorphics onto the intrusive igneous central area; and the translocation of 

intrusive igneous rocks to the lee of the Hillswick metamorphic area and further west to 

Braewick. Erratics from all areas to the east are found on the Esha Ness peninsula. Across North 

Roe8 drift is reported highly variable. Along the east coast north of Ollaberry, except in Burra 

Voe and north and west Colla Firth, a grey clay is variably well-developed, containing no 

granitic erratics (which would have indicated ice movement from the west) and an assemblage 

otherwise suggestive of movement from the east to the west. A grey clay also infills Burn of 

Sandvoe on the northern coast and the low ground between Burra Voe and Sand Voe in the 

northeast but this includes granitic erratics from the south and west. In Colla Firth, and around 

the northwest coast of the area, till derived largely from the granitic mass is reported. Other 

authors identify the northwesterly erratic carry across the Ronas Hill plateau and the east-west 

carry across the southern part of the area9.

3Peach and Home, 1879
4Peach and Home, 1879 (p.792)
5Chapelhowe, 1965
eChapelhowe, 1965 (p. 63)
7Peadi and Home, 1879
8Chapelhowe, 1965
9Mykura, 1976
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Some10 have ignored the complexity of the directional data in North Roe, indicating that ice 

simply flowed from the southeast to the northwest across the area (figure 3.11), and others11 

acknowledge it but do not offer any sense of the events necessary for its creation. Two works12 

suggest an early Scandinavian ice sheet responsible for the deposition of the grey till on the east 

coast of the area, followed by more local glaciation from the Ronas Plateau itself, followed by 

minor corrie glaciation on the plateau. Tliis final event is inferred from corrie features on the 

northern face of Ronas Hill13.

Offshore, Quaternary sediments are thought to reach 30 m thickness in an elongate basin 

running between and beyond this area and Yell14 (figure 3.15) but there are no boreholes in the 

sequence. South of Esha Ness and Hillswick, in the St Magnus Bay basin, are Quaternary 

sediments up to 60 m in thickness and these are discussed in detail in chapter 6. Otherwise the 

surrounding inshore area is largely devoid of non-Holocene sediments. Further offshore to the 

northwest, Quaternary sediments thicken towards the continental shelf edge. The uppermost 

units are thought to be of last glacial age and comprise the stiff diamicts of the Otter Bank 

sequence, thought to represent subglacial or proximal grounded glacial till, and the overlying 

Stormy Bank sequence which in tliis area is glacimarine and contain dropstones - a zone of 

iceberg keel marks is evident near the shelf edge15. These data are shown in figures 3.15 and 

3.13

8.3. Outstanding issues

A number of issues require resolution in tliis area. North of Ronas Voe more than one phase of 

glaciation is indicated but is it necessary to invoke Scandinavian influence and, if not, how are 

the various directions evident in striae and erratics to be explained temporally? South of Ronas 

Voe there is an evident change in ice direction from east-west in the east to northwest-southeast 

in the west. Erratics are taken as showing broadly east-west movement. How are these 

contrasting ice directions to be explained? If these changes occurred during deglaciation, what 

are the mechanisms responsible?

8.3.1. Evidence of Scandinavian glaciation

There is clear erratic evidence of ice movement from the east coast of the area across it in a 

broadly west or northwesterly direction including across the Ronas Plateau, if not the high point 

of Ronas Hill itself. Despite the fact that Ronas Hill is the highest ground on Shetland, the area

10Flinn, 1977
11 Mykura, 1976
12Peach and Home, 1879; Chapelhowe, 1965;
13Charlesworth, 1956; Mykura, 1976; Flinn, 1977;
14Chesher, 1984b
15Stoker et al., 1993
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is to the west of probable ice shed positions in recent reconstructions16 (figure 3.11) and so this 

erratic movement itself does not provide conclusive evidence of Scandinavian glaciation, just as 

it does not in other western parts of the island (see chapter 6). What is significant, and ignored 

by recent reconstruction, is the northeast-southwest azimuth of some striae on the east coast of 

the area. Since areas to the northeast (i.e. Yell and Unst) are both more peripheral and of lower 

altitude, it is perhaps reasonable to invoke the external influence of a Scandinavian ice sheet 

from the northeast to explain these observations. The alternative hypothesis here suggested is 

that these azimuth reflect a relatively late movement of ice, in the opposite direction (northeast) 

into an ice stream formed in Yell Sound. The existence of such an ice stream at some stage is 

supported by ice movement from central Mainland (chapter 7) and south Yell (chapter 9). It is 

reasonable to expect that if north Mainland supported significant quantities of ice at the same 

time, and it is the highest area in Shetland, then some of this would be drawn into that stream. 

The theory requires that the sense of direction of the striae on the east coast of the area be the 

reverse of that suggested by previous authors and the present writer has been unable to identify 

convincing stoss and lee evidence that establish the direction of ice movement. The absence of 

granite erratics on the east coast of the area can be explained by the fact that the direction of 

striae would be consistent with basal ice movement along the metamorphic area only, although 

it is possible that basal ice from further west was drawn into an englacial position, thus passing 

over the narrow coastal strip. It has been suggested that the erratics in the till on the east coast 

are, ‘fairly local in origin and suggest a movement from east to west, rather than from west to 

east’17. Given the banded nature of the solid geology along this area such a process would be 

particularly difficult to demonstrate. An unidentifiable quartz-feldspar pegmatite is mentioned 

occurring throughout till on the east coast and is thought to represent an unknown outcrop on 

the North Sea floor18. It is more likely, in the author’s opinion, to originate locally, since it is 

reasonable to expect pegmatite as a constituent of the rocks around Yell Sound; the absence of a 

particular mapped outcrop and the widespread nature of the erratic rather suggests that it might 

occur in Yell Sound itself. These facts may indeed indicate an earlier east to west movement of 

ice. The pattern of striae around Quey Firth, Colla Firth and Bay of Ollaberry is less easily 

accommodated in this explanation since these areas are south of the high ground of Ronas Hill, 

however the streaming in Yell Sotuid noted in other areas (chapters 7 and 9) is

morphochronologically assigned to a relatively early phase.

An earlier, broad, east to west movement may have been given a southwesterly azimuth by ice 

streaming around the high ground and the movement of erratics here does indeed confirm the 

sense of direction suggested by stoss and lee observations. South of Ronas Voe, ice movement is 

mostly east-west and is consistent with relatively late draw into the deep of the St Magnus Bay

16Flinn, 1977
17Chapelhowe, 1965 (p.65)
18Chapelhowe, 1965
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basin, except across Esha Ness. The relative timing and an explanation of these movements is 

discussed below - the purpose here is to demonstrate that Scandinavian ice is not necessary to 

explain the apparent northeast to southwest movement of ice on the eastern coast of the area.

8,3.2. Ice movement North of Ronas Voe

It is not possible to demonstrate whether or not ice from Ronas Hill flowed across Ronas Voe at 

any stage during the last glaciation. The writer has sought erratics that might conclusively 

suggest such a movement and has found none. If it did so, it would therefore most likely have 

been at an early stage. The significance of northwesterly movement is again discussed in this 

chapter in relation to the glacial maximum or early deglaciation (see chapter 6) and Ronas Hill's 

contribution to the convergent pattern around St Magnus Bay later would have been severely 

curtailed by the depth and steep northern side of Ronas Voe, as discussed below. For the 

purposes of this section, the areas to the north and south of the voe are treated separately.

Across the Ronas Plateau area there is again a preponderance of striae and erratic evidence 

suggesting ice movement to the northwest, with variations ranging from west-north-west to 

north-north-west. In areas such as to the south of the Beorgs of Uyea there are contrasting sets 

in close proximity, suggesting shifts in the predominant ice movement over time. The difficulty 

of identifying striae on the easily weathered granite of the area has been encountered by tliis 

study and certainly no sets have been revealed overlying each other in a way that might provide 

the correct temporal sequence. Some attempt at providing a time frame can be made however. 

The northwesterly striae in the area are consistent with those on Esha Ness (see below) and as 

discussed elsewhere on western extremities of the island group (see chapter 6). These are here 

attributed to the broad northwesterly movement of ice that appears to be related to the glacial 

maximum or early deglaciation (figure 8.4). The occurrence of erratics of eastern provenance on 

the eastern coastal strip also suggests some early movement from the east onto this area. There 

are sets of striae which are more north-south and more east-west than these however. The more 

northerly sets along the Beorgs of Housetter and between North Roe and Fethaland, and possibly 

on the low ground some way to the west of this area, may coincide with the north moving ice 

stream in Yell Sound (see above). It is logical to assert that tliis movement post-dates the 

northwesterly regional movement since an ice stream moving north up Yell Sound would 

remove the eastern source ice required to sustain the northwesterly movement, particularly on 

the high eastern areas such as the Beorgs of Skelberry (figure 8.5). The ice stream may have 

diverged and streamed through the gap between Sand Voe and Burra Voe although this area is 

affected by later ice movement from the Ronas Hill plateau (discussed below). If the more 

eastern striae on the low ground along the north of the area are not contemporaneous they are 

likely to be earlier, possibly reflecting the adjustment of the ice front to increasingly local 

bathymmetric contours that would draw ice to the northwest early on, and to the north and east 

later.
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Heavy mineral analysis of offshore sediments (figure 3.16)19 shows that tliis northwesterly 

movement is regionally dominant.

8.3.3. Plateau glaciation
Thus far, this adjustment from northwesterly ice movement to ice movements indicating more 

localized ice fronts and streams is similar to the situation discussed in other parts of Shetland 

(see chapters 5, 6, 7). The Ronas Plateau forms the highest groimd on Shetland by a significant 

margin however and there is evidence of a plateau ice cap existing on the area and draining 

locally in all directions. To the east of the plateau area there appear to be only specific localities 

in which granite erratics are evident in till. These occur in Colla Firth and Burra Voe 

representing unique chaining sites for ice from the plateau on the east coast (figure 8.6). A 

margin may be delimited by the A970 to the west of Ness of Queyfirth. Here granite erratics are 

evident to the west of the road but only metamorphic clasts are found to the east. In addition, to 

the southeast of Oxensetter there are small hummocky features which may represent a margin 

(plate: figure 8.7). Colla Firth and Burra Voe in particular are at the north and south ends of the 

Beorgs of Housetter and Skellberry which prevent ice streaming to the northeast. There are 

significant, now disused, drainage channels, particularly between the Beorgs of Housetter and 

Skelberry (plate: figure 8.8) that may be related to drainage associated with this plateau 

glaciation. The till bearing granitic erratics on the west shore of Colla Firth is overlain by 

fluvioglacial materials (plate: figure 8.9) (figure 8.3) and backed by minor channels and 

associated morphology, again suggesting progressive deglaciation of the plateau ice field. 

Further west, ascending Collafirth Hill, the area is hummocky but tliis can be largely attributed 

to bedrock forms.

Across the north coast of the area, all till contains granitic erratics, even as far east as the area 

between Sand Voe and Burra Voe. This till must relate to a northern or even northeastern 

movement of ice, again draining the plateau area. The previous movements discussed would not 

result in granite erratics appearing in sections in these areas. Together with the entire west 

coast, the above areas are topographically probable outlets for a plateau ice centre or field. As 

with Colla Firth, there is evidence of possibly fluvioglacial material in Burn of Sand Voe and 

terraces up to 1-2 m in height and these again demonstrate down-wasting of ice on the plateau 

area.

It is not possible to determine whether there was a re-expansion of ice from the plateau, or 

whether it represents continuing retreat. The thickness of till indicates that the ice remained 

active, and the underlying glacitectonite in plates suggests that the streams were erosive, but

19Beg 1990
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pre-existing northwesterly striae have not been eradicated in some locations. On the higher 

ground of the plateau itself there is little striae evidence, largely due to peat cover and 

postglacial surface deterioration rather than inactivity since the area is of knock and lochan 

character.

8.3.4. Ice movement south of Ronas Voe

There are striae that suggest the possible movement of an ice stream along Ronas Voe itself. The 

inner voe is deep but becomes less so and has a shallow sill at its outflow which may reflect 

westward glacial over-deepening.

Again peripheral areas record a broad ice movement towards the northwest. Tliis is especially 

noticeable on Esha Ness. The areas around St Magnus Bay are dominated by evidence of ice 

flow into it, except in places such as Ness of Olnesfirth where there are striae of northwest- 

southeast azimuth also. The picture that emerges from tliis area is again that of early 

northwesterly ice movement (figure 8.4), followed by greater topographic containment and the 

establishment of ice flow into the St Magnus Bay basin (figure 8.6). This may well be a step 

change caused by the Esha Ness peninsula itself dissecting further northwesterly flow, since 

there is little evidence of progressive variation. The present writer has mapped striae that are 

more or less due east on the south coast of Esha Ness, as well as crossing striae that vary 

between north and northwest. The till on Esha Ness overlies the above mentioned striae and 

contains metamorphics of assumed Hillswick origin as well as other eastern, widespread, 

erratics. Some authors20 suggest that ice must have moved into the St Magnus Bay over the 

Hillswick peninsula and then been bent out over Esha Ness again (figure 3.11). The above data 

would seem to suggest the possibility of a more direct, eastern ice flow across both areas, post 

dating the northwesterly movement, and predating the pattern into St Magnus Bay. There is also 

evidence of a more north-south or northeast-southwest azimuth ice movement on Esha Ness 

which is difficult to place into this set of events. This may reflect local topographic containment 

of ice streams during the general northwesterly movement (although there is little topography) 

or an intermediate period that resulted in more northerly movement.

The late movement of ice into St Magnus Bay is strongly erosive. Substantial areas of ice 

moulding occur on the eastern fringe of the basin and what drift is evident is generally a 

glacitectonite with highly localized and insubstantial patches of more dispersed material (figure

8.3). More significant lodgement deposition is evident further east on the Sullom Voe side of the 

area. This may reflect preferential deposition on a large scale on the upglacier side of the 

subglacial obstacle presented by the isthmus, or alternatively the erosion of equally significant 

deposits on the downglacier side.

20Flinn, 1977
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Thick tills occur in the northwest corner of the Hillswick peninsula and at Braewick (plate: 

figure 8.10) as well as on the southeast coast of Ura Firth (figure 8.3). There is no erosive 

directional data in the area between Hillswick and Esha Ness and so it is not clear whether or 

not these thick sequences owe their existence to the absence of ice streaming into the St Magnus 

Bay at this locality, i.e. through preservation, or the presence of such streams, i.e. by enhanced 

lodgement. If the latter proves to be correct then the question arises as to why these should be 

the only locations around the basin where such tills have developed. The writer's preferred 

explanation is that they are the product of early westerly or northwesterly ice movement and that 

ice did not flow into the St Magnus Bay basin across the terrestrial area west and immediately 

east of the Hillswick peninsula. The clast pavements and surface of the till at Breiwick dips to 

the northwest, and contains metamorphic clasts of probable Hillswick derivation, suggesting 

that it was deposited beneath northwesterly moving ice. The fabric of the lodgement till in Ura 

Firth is orientated broadly northwest-southeast (figure 8.2) (although this may partially be due to 

the local slope, it certainly does not show northeast-southwest, along voe, movement) and 

overlies possible glacial grooves of similar azimuth. These observations are in keeping with 

striae on the high ground to the southeast of Ura Firth. It is here suggested, therefore, that when 

the switch into the basin occurred these areas had no source area of ice to the northeast due to 

the existence ofRonas Voe. The writer has sought erratic evidence of ice crossing Ronas Voe 

and has found none. The distribution of ice moulding, characteristic of ice streaming into the 

bay, extends only as far north as Ness of Olnesfirth (figure 8.3). There is evidence of striation 

into the basin in Hamar Voe, on which azimuth a direct stream into the centre of the basin 

would bypass Ronas Voe to its source area. The only observed striae on Hillswick are in the 

south of the peninsula, on a similar flow line (figure 8.2). Ronas Voe may have prevented ice 

from flowing into the basin over areas west of Ura Firth at the time the switch took place, either 

if it was deglaciated or if there was a late ice stream, by cutting supply from the northeast.

Further retreat may also be evident in the distribution of striae and ice moulding, although care 

should be taken in its analysis since the variable underlying substrate and overlying drift cover 

plays some role in that distribution. The absence of these erosional features on the east coast of 

this southern area may be due to topographic influence during retreat. Whilst considerable 

erosion demonstrates ice flow into the St Magnus Bay basin, ice may then have retreated across 

to Sullom Voe with much less activity since average bed gradients would have been significantly 

reduced.

8.3.5. The nature of deglaciation

The offshore record around the area again suggests a two stage deglacial process. To the 

northwest there are undoubtedly subglacial deposits overlain by glacimarine deposits (figure 

3.15) and in this area there is swathe of the outer shelf that is scored by iceberg ploughmarks
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between 150 and 300 m below modern sea level21. The glacimarine sediments however end as 

the landmass is approached. As has been discussed at length in chapter 6, there is no evidence of 

glacimarine deposition in the deep St Magnus Bay, but it is unfortunate that the sediments of 

Yell Sound are not sampled since it would be interesting to know if the same may be said of tliis 

inshore area also. In St Magnus Bay there is evidence of rising sea level in a harsh environment 

with no terrestrial glacial input. This implies that, at some stage during deglaciation, there was 

a switch from glacimarine to non-glacimarine ablation. The British Geological Survey are 

currently working on sea bed morphology in inshore areas and there may be morainic 

hummocks to the west, possibly at tliis transition, and around the -100m bathymmetric contour 

line22. Tliis work is in progress however and in particular the distinction between bedrock forms 

and sediment hummocks has not been examined in detail. The strong influence of topography 

on glacier movements is again observable around St Magnus Bay and in this location again 

extensive ice moulding provides further evidence of the warm-based temperature regime during 

deglaciation.

8.4. Conclusions

The northwesterly regional movement is probably the earliest ice movement recorded (figure

8.4) . The next major shift is to the north, particularly with a major ice stream in Yell Sound, 

possibly sufficiently thick to cover the Beorgs of Skelberry and cause basal erosion there (figure

8.5) . Ice may still have been flowing northwest across the southern area at this stage, or possibly 

in a more western direction, including around Ronas Voe. This is followed by the disappearance 

or substantial reduction of the Yell ice stream, to allow plateau drainage glaciers to cross the 

northeastern coastal strip, and the switch to ice moving into St Magnus Bay (figure 8.6). The 

convergent St Magnus Bay pattern does not occur west of Ura Firth, suggesting that, at some 

stage, ice supply from the northeast was diverted along or prevented by Ronas Voe. It is difficult 

to place these events into time sequence. The relative chronology of the Yell and Ronas Voe ice 

streams is difficult to resolve, since they probably issued from the same source area which may 

have become depeleted by one stream more rapidly than the other. Also, on the basis of altitude, 

it is probable that the plateau glaciation was the longest lived in the area, and may have been the 

last glacial event of significance in the entire island group. The nature of deglaciation again 

indicates early glacimarine followed by terrestrial retreat.

21 Stevenson, 1991
22A. Stevenson (pers. comm. 1995)
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9. The last glaciation of Unst, Yell and Fetlar

9.1. Solid geology, topography and bathymmetry

The solid geology, topography and bathymmetry of the area are shown in figure 9.1. The entire 

area is underlain by metamorphic rocks. Figure 9.1 is highly simplified and the solid geology is 

heterogeneous. The island of Yell is imderlain by a possible equivalent to the Yell Sound 

division of the East Mainland Succession discussed in chapter 7 (la in figure 9.1 and 1 in figure

7.1) and tentatively correlated with the Moinian of Scotland. It consists of metamorphosed and 

migmatised gneisses with a number of poorly defined belts trending north-south to northeast- 

southwest. These can be seen to influence topography. Most notably: quartzite forming the high 

ground of the Hills of Arisdale and Reafirth ridge; and a belt of plane-foliated, granular gneiss 

between two broader areas of coarsely-foliated gneiss giving rise to the trough running from Mid 

Yell Voe to Gloup Voe. Western Unst and western Fetlar may correspond to the Dalradian 

Scatsta division discussed in the chapter 7 (2a in figure 9.1 and 2 in figure 7.1). The western 

high ground of Unst (Valla Field Ridge) represents a block, including north-south trending 

bands of a variety of gneisses, bounded to the east by the dislocation zone evident in the 

topography. The west coast of Fetlar, including the Lamb Hoga peninsula comprises similar 

basement rocks and is separated to the east by an equally clear fault line. The block comprising 

the Saxa Vord area ("?" in figure 9.1) is predominantly schistose and is difficult to place within 

the metamorphic history of the region. Eastern Unst and eastern Fetlar comprise the Unst-Fetlar 

Nappe Pile (UF in figure 9.1) - a series of major blocks of metamorphosed igneous and 

sedimentary rocks including serpentines, phyllites, metagabbros, schistose conglomerates and 

granites, that show a clear correspondence with topography in places. In addition, the serpentine 

blocks of Unst give rise to the brown weathering outcrops that characterise much of the Unst 

landscape. The metamorphism of the Nappe pile is associated with the Caledonian orogeny but 

is otherwise of unknown age1. Offshore around the area (figure 3.2) the solid geology is 

undivided but includes offshore equivalents of the terrestrial sequences. To the south of Fetlar, 

in the southeast of the area, is the Fetlar basin of Permo-Triassic sediments discussed in chapter 

7, and to the east of the area the Unst basin and trough (figure 3.4 and 3.5) containing similar 

sediments and terminating to the east on the Pobie Bank that comprises metamorphic and 

igneous rocks. The Unst basin widens to an area of Cretaceous shales and mudstones, and to the 

north and northwest of the island there are undivided igneous rocks bounded to the west by a 

possible continuation of the Walls boundary fault2 (figure 3.2).

The Mid Yell gap is a possible Devonian channel remnant (figure 3.6)3.

'Chesher, 1984a
2Chesher, 1984a
3Flinn, 1977
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9.2. Previous work
It is interesting to note that, as a peninsular extremity of the Shetland archipelago, like south 

Mainland, this area has also been seen as a possible area of invasion by Scandinavian ice. Early 

authors4 describe ice markings showing west-east or southwest-northeast azimuth across Unst, a 

similar pattern on Fetlar and on northeast Yell (figure 3.7). On the west coast of Unst and Yell, 

the trend described is northwest-southeast and the overall interpretation is of Scandinavian ice 

impinging from the east and northeast and swinging to the northwest on encountering the 

landmass. No reference to roches moutonees is made however, and it is not clear how the sense 

of direction of these striae is gathered. Maps based on a greater number of striae observations5 

and on more detailed analysis of stoss and lee data6 show both a more complex pattern of striae 

and are interpreted, in some places on, ’absolutely clear evidence,'7 as showing offshore ice 

movement (figure 9.2), incompatible with the Scandinavian theory. On the east coast, the 

interpretation for the northwesterly azimuth is variously thought to be due to the bending of 

local ice by impingement of a Scandinavian ice sheet8, or to flow into bathymmetric lows9. The 

latter is assumed to be imder gravity but the possibility of ice calving into rising sea level is 

offered as an explanation of the pattern10 in other areas of Shetland. The data has been used to 

construct an ice shed for the last glaciation which runs across south Yell in a northeasterly 

direction to Unst where it continues due north in the centre of the island (figure 3.11). No stoss 

and lee evidence of ice moving from the east of the area is given in any of these later accounts.

Proponents of Scandinavian influence11 support the argument for the incursion of Scandinavian 

ice on the grounds that erratics of serpentine and gabbro crossed the Vallafield ridge of Unst 

from Balta Sound in the east (and indeed that the relative percentages of the two in till sections 

up and down the west coast correlate with the relative outcrop areas on the east). Additional 

traverses by these authors, from Belmont to Muness, and across Saxa Vord hill (where the 

distinctive Lamba Ness granite is the erratic in question), revealed a similar pattern. A more 

recent12 and wide-ranging survey of erratic distribution on Unst has also been conducted and the 

main elements of this are shown in figure 9.2. The conclusions are not dissimilar except that 

west to east ice movement is evident in places and the data is interpreted with the ice shed in the 

centre of the island, east of the high ground, rather than further west, thereby obviating any need 

for Scandinavian ice. Pebbles of flint, Tonsbergite (petrographically identical to that found near 

Dalsetter in south Mainland (chapter 5)) and rhomb porphyry are found on a beach on the south

4Peach and Home, 1879
5Mykura 1976; Flinn, 1977
6Flinn, 1994a; Flinn, 1994b; Hoppe, 1974
7Hoppe, 1974 (p. 205)
sMykura, 1976
9Flinn, 1977
10Hoppe, 1974
11 Peach and Home, 1879
12Flinn, 1994b
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side of the island of Hascosay, but these rocks from London and Tonsberg (south of Oslo) are 

believed to be ballast from the ship Kragerbe wrecked on Hascosay in 180313. No Scandinavian 

erratics have otherwise been recorded. Erratics of gabbro and serpentine of Unst provenance are 

observed14 on the northeast coast of Yell, implying ice movement across Bluemull Sound. Other 

erratic data from Yell, 'at best,'15 are consistent with the ice flow on the island suggested by 

striae (figure 9.2). On Fetlar, gabbro and serpentine are reported to have been transported from 

the centre to the west coast of the island and also to the east coast of Yell between Mid Yell and 

Basta Voe16. Other authors describe many erratics from the Lamb Hoga peninsula lying on the 

central Serpentine areas of Fetlar and erratics from the latter on the eastern conglomerates17, 

implying the reverse direction of ice movement, but do not discuss the earlier observations.

It has been proposed that an ice margin lay across or just to the north of northern Unst and Yell 

and in some papers that it represents the maximum limit of the last glaciation of the islands18.

On Hernia Ness in northern Unst there are meltwater channels that are variously described as 

subglacial, proglacial and supraglacial, and on both Herma Ness and Saxa Vord there is no till 

or striae and some solifluction, which facts are taken to indicate that ice did not cross the area 

during the last glaciation but that a periglacial environment prevailed19. A section through a 

possible fan into a hypothesised ice dammed lake north of Libbers Hill is also reported20 (figure

9.2). On northern Yell there are observations of fluvioglacial sands and gravels, meltwater 

channels, solifluction deposits, local surficial erratics, as well as previously ice dammed lakes. 

Again there are no till or striae observations, particularly in the northwest21. Early offshore 

evidence22 suggested that the distribution of till to the north of the area was varied and implied a 

lobate ice margin that fitted well with this hypothesised terrestrial limit, lobes extending well to 

the north off the east coast of Unst, between Unst and Yell, and west of Yell (figure 3.13). 

However, it has been argued that both the onshore and offshore evidence are equivocal and the 

existence of any kind of stable ice margin in general, and whether it represents the maximum of 

the last glaciation in particular, remain highly uncertain issues23 (see, for example, figure 3.14).

Immediately offshore24 there is little or no evidence of Quaternary sedimentation but the basins 

of Fetlar and Unst, and the trough areas running north of these contain Quaternary sequences up 

to 50 m in depth. A tongue of Quaternary sediments 30 m in depth exists in Yell Sound to the

l3Flinn, 1977
14Peach and Home, 1879
15Flinn, 1994a (p. 95)
16Peach and Home, 1879
17Phemister, cited in Mykura, 1976 (p. 107)
18Flinn, 1983, 1992b, 1994a
19Flinn, 1983
20Flinn, 1992b
21FIinn, 1983, 1994a
22Long and Skinner, 1985
23Ross, 1993
24Chesher, 1984b
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side of the island of Hascosay, but these rocks from London and Tonsberg (south of Oslo) are 

believed to be ballast from the ship Krageroe wrecked on Hascosay in 180313. No Scandinavian 

erratics have otherwise been recorded. Erratics of gabbro and serpentine of Unst provenance are 

observed14 on the northeast coast of Yell, implying ice movement across Bluemull Sound. Other 

erratic data from Yell, 'at best,'15 are consistent with the ice flow on the island suggested by 

striae (figure 9.2). On Fetlar, gabbro and serpentine are reported to have been transported from 

the centre to the west coast of the island and also to the east coast of Yell between Mid Yell and 

Basta Voe16. Other authors describe many erratics from the Lamb Hoga peninsula lying on the 

central Serpentine areas of Fetlar and erratics from the latter on the eastern conglomerates17, 

implying the reverse direction of ice movement, but do not discuss the earlier observations.

It has been proposed that an ice margin lay across or just to the north of northern Unst and Yell 

and in some papers that it represents the maximum limit of the last glaciation of the islands18.

On Hernia Ness in northern Unst there are meltwater channels that are variously described as 

subglacial, proglacial and supraglacial, and on both Hernia Ness and Saxa Vord there is no till 

or striae and some solifluction, which facts are taken to indicate that ice did not cross the area 

dining the last glaciation but that a periglacial environment prevailed19. A section through a 

possible fan into a hypothesised ice dammed lake north of Libbers Hill is also reported20 (figure

9.2). On northern Yell there are observations of fluvioglacial sands and gravels, meltwater 

channels, solifluction deposits, local surficial erratics, as well as previously ice dammed lakes. 

Again there are no till or striae observations, particularly in the northwest21. Early offshore 

evidence22 suggested that the distribution of till to the north of the area was varied and implied a 

lobate ice margin that fitted well with this hypothesised terrestrial limit, lobes extending well to 

the north off the east coast of Unst, between Unst and Yell, and west of Yell (figure 3.13). 

However, it has been argued that both the onshore and offshore evidence are equivocal and the 

existence of any kind of stable ice margin in general, and whether it represents the maximum of 

the last glaciation in particular, remain highly uncertain issues23 (see, for example, figure 3.14).

Immediately offshore24 there is little or no evidence of Quaternary sedimentation but the basins 

of Fetlar and Unst, and the trough areas running north of these contain Quaternary sequences up 

to 50 m in depth. A tongue of Quaternary sediments 30 m in depth exists in Yell Sound to the

13Flinn, 1977
14Peach and Home, 1879
15Flinn, 1994a (p. 95)
16Peach and Home, 1879
17Phemister, cited in Mykura, 1976 (p. 107) 
lsFlinn, 1983, 1992b, 1994a 
19Flinn, 1983
20Flinn, 1992b
21Flinn, 1983, 1994a
22Long and Skinner, 1985
23Ross, 1993
24Chesher, 1984b
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north of West Sandwick but there are no boreholes in these sediments. Those in and around the 

Fetlar Basin are described in chapter 7. The sediments of the Unst Basin are reported as mainly 

compact grey clays with scattered pebbles25 and the borehole has been interpreted as containing 

a till sequence with some evidence of interdigitated proglacial facies26. Quaternary deposits 

thicken to the north of the islands and become seismically distinct. The underlying units and 

chronology are discussed in chapter 10 in detail but the upper two units are of interest here: the 

Stormy Bank and underlying Otter Bank sequences27 (figure 3.15). The latter are composed of 

over-consolidated diamicts and are generally less than 10m thick except where they become 

mounded. Such an area of mounding, that may represent a terminal moraine sequence, exists to 

the northwest of Unst and the sequence as a whole is considered to have been deposited 

proximal to grounded glacial ice. The overlying Stormy Bank sequence is a sediment drape on 

the Otter Bank sequence and also in channels, possibly meltwater channels, that cut down 

through both the Otter Bank and underlying sequences. It comprises soft muds with some gravel 

in places and is thought to represent the waning stages of the Late Weichselian glaciation. The 

boundaries of both sequences are not currently known precisely because seismic sparker 

interpretation allows only 5m vertical resolution. The author's own examination of core material 

(chapter 10) shows that the Stormy Bank sequence at least extends further north than shown in 

figure 3.15. Also observed to the northwest and northeast of the area, aroimd the continental 

shelf edge, is an zone of iceberg scouring at a depth of 150-300 m (figure 3.4) below modern sea 

level28.

Corrie glaciers are again discussed in various parts of Yell, Unst and Fetlar29 and again treated 

by subsequent authors30 as hypothetical features based on the likely locations of snow 

accumulation rather than direct evidence.

9.3. Outstanding issues
A number of regionally significant questions require resolution. Is there any evidence of 

Scandinavian ice movement across the area, or at least of regional ice movement from east to 

west? Can all ice direction indicators be related to a single ice shed model and, if not, how have 

ice sheds changed over time, particularly during deglaciation? What controlled deglaciation, in 

particular to what extent was rising sea level important? What is the evidence for a stable ice 

margin across northern Yell and northern Unst? What is the evidence that such an ice margin 

represented the maximum extent of the last ice sheet?

25Chesher, 1984b
26Cockcroft, 1987
27Stevenson, 1991
28Stevenson, 1991
29Charlesworth, 1956
30Mykura, 1976; Flinn, 1977
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9.3.1. Scandinavian Glaciation

There are a number of pieces of evidence attributed to Scandinavian glaciation by various 

authors (see above): the direction of erosional evidence on Unst; the east to west movement of 

erratics across Unst; the east to west movement of erratics across Fetlar and to Yell. Striae are 

discussed in the sections below and although it is necessary to invoke multiple phases of ice 

movement to account for the pattern, the author has not found any convincing evidence of stoss 

and lee that suggests onshore movement, particularly in the crucial area of east Unst. The 

movement of erratics from east to west across Unst is not contested although it is not necessary 

to invoke Scandinavian glaciation to achieve it. The only exception to this is in the far north, 

across Saxa Vord. Here, early authors describe a deposit that, 'occurs on the east bank of Burra 

fiord, about 300 feet above sea-level, where it reaches 50 feet in depth.'31 The current author's 

observations allow clarification of the fact that it must be Burra Firth which is 50 feet in depth at 

this point, for it is certainly not the depth of drift on Saxa Vord, however the crucial point is the 

report of the preponderance of the Lamba Ness granite fragments which must have been 

transported from the east and across Saxa Vord. Some authors32 mention the movement of 

erratics west across the island further south but do not discuss this particularly crucial example 

and the most recent work33 is premised on the glacial maximum being to the south of the area 

and does not include Saxa Vord. The Lamba Ness granite is an easily identifiable rock amongst 

the largely schistose and quartzitic types that make up the hill and the present writer has found 

no sections on the hill that contain it. What drift there is appears to be a combination of 

weathered bedrock and possibly solifluction (plate: figure 9.7). No explanation for this 

discrepancy can be offered.

The other key erratic observation is the movement of serpentine and gabbro from the east to the 

west coast of Fetlar, and of Fetlar gabbro west to Yell between Basta and Mid Yell Voes34. 

Others35 report blocks of western Lamb Hoga peninsula melamorphics on Fetlar lying on the 

centre-island serpentine and of serpentine on the conglomerates of the east coast. These 

represent the opposite direction of ice movement - west to east. The author's observations of till 

development on Fetlar are discussed below and suggest ice moving from west to east also. No 

erratic observations were made in tliis area in the course of the study and the evidence given and 

the failure to comment on early findings by subsequent authors leaves the issue somewhat 

unresolved, however the till sections in which the erratics are supposed to occur on Fetlar are, in 

the author's opinion, related to ice moving onto Fetlar from the west (see below). Once again it 

is assumed that the improved geological data available to later authors make their interpretation 

more probable.

31Peach and Home, 1879 (p.796)
32Mykura 1976
33Flinn, 1994b
34Peach and Home, 1879
35Mykura, 1976

102



Unst, Yell and Fetlar

With this ambiguous exception, there is no reported evidence from the area that must be 

attributed to an external, eastern, source, such as from Scandinavia. Heavy mineral assemblages 

in offshore deposits again indicate movement of minerals to the northeast from areas south of 

Fetlar (figure 3.16).

9.3.2. Terrestrial glacial maximum

A nmiiber of arguments have been put forward to suggest that the maximum limit of the last 

glaciation of the islands lay across north Unst and just to the north of north Yell. The evidence 

and interpretation are considered here.

The absence of till and striae north of the proposed margin on north Unst has been suggested as 

being indicative of ice marginal conditions. The area outside the proposed limit, which itself has 

become increasingly crenulate with the discovery of till on the east side of Saxa Vord36, is at 

high altitude. For striation and till development, ice must be thick above the subglacial substrate 

and basal ice must contain debris. North moving basal ice would probably have streamed around 

rather than over Saxa Vord and Henna Ness, and ice thickness over this high ground would 

have been less than surrounding low altitude areas so direct comparison of the presence or 

absence of till or striae is dubious. The writer has observed severely weathered bedrock and 

possibly periglacial solifluction on Saxa Vord (plate: figure 9.7), which may have destroyed both 

thin till and striated surfaces. On both Saxa Vord and Herma Ness there is little bedrock 

exposure at all, so striae observation is very unlikely. Metamorphic erratics occur on the granitic 

area of the lower altitude eastern flank of Saxa Vord (plate: figure 9.8) indicating that ice 

extended beyond the coastline here at least. The surficial material of Saxa Vord and Hermaness 

comprises in situ weathered bedrock possibly thinly reworked into periglacial slope deposits.

The existence of these may be related to nunatak exposure of tliis area for protracted periods 

during retreat with ice streams passing north on either side. They do not necessarily imply that 

the area was ice free for the duration of the last glaciation.

Channels along the west side of Burra Firth (plate: figure 9.9) are undoubtedly meltwater 

channels since they run in places parallel or sub-parallel to contours. Such examples must be 

subglacial, sub-marginal or marginal but sub-classification on grounds of morphology is fraught 

with difficulty as the relationships between tliis and ice mass configuration, meltwater 

discharge, and bedrock characteristics are complex. On Unst they most probably reflect the 

existence of a temporarily stable ice margin but, as discussed above, there is no reason why this 

should be the glacial maximum. A possible ice dammed lake immediately to the north of Libbers 

Hill is inferred from the existence of meltwater channels tentatively classified as of overflow

36compare Flinn, 1983 with Flinn, 1994b
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type and a possible subaqueous fan emanating from two meltwater channels on the side of 

Libbers Hill itself (figure 9.3). Milldale burn cuts through this fan, revealing a deposit that has 

been variously described as solifluction37 and subaqueous fan deposition38.

The present writer has examined this section, possibly following further undercutting since there 

is no previously reported mention of the lowest unit observed. The stratigraphy comprises three 

units (plates: figures 9.10, 9.11, 9.12): approximately 1 m of low energy, laminated, fine to 

coarse sands, with ripple and cross-tabular bedding showing that water flow directions varied, 

and sharp contacts indicating repeated erosion and deposition; this is overlain with 

approximately 2m of massive, largely clast supported, diamict with a fine sandy matrix and 

varied clast fabric that in places is vertical; the sequence is overlain by peat. The contact at the 

base of the sequence is obscured.

The Milldale Burn cuts through sediments up to 3 thick in tliis upper area, which have 

themselves been incised by now dry re-entrants. It is not clear, however, whether this 

morphology is underlain by the same materials as those describe above. The author's 

examination of air photos suggests that the drift limit on the side of Libbers Hill is the most 

prominent feature of the proposed fan and the existence of the feature is not certain.

The lowest unit in the sequence is evidently a reflection of variable, low discharge, fluvial 

environment. The sediments are unconsolidated and may not be much deeper than those 

presently visible. It is probable that glaciation would have removed such sediments at an early 

stage and they are here attributed to subglacial or proglacial meltwater deposition, probably 

relatively close to the ice margin, variations in hydrological regime accounting for the variations 

in deposits. The overlying massive unit presents profound problems however due largely to the 

quantity of material involved. The writer has found some terracing by other streams on the east 

side of the Valla Field ridge, largely bedrock based, and in places with subaerial fan morphology 

at their exit, but in the upper reaches only thin till or periglacial solifluction deposits have been 

encountered. This massive unit appears too clastic to be either lodgement or meltout till. The 

absence of lower energy regime sediments suggests that if it was fluvioglacial then it was 

deposited catastrophically, but at this altitude it is difficult to envisage the glacial system 

providing such quantities of material in a short space of time. If it was deposited subaqueously 

as an accretionary fan, then lower energy sediments would also be expected to be interdigitated.

The subaqueous fan proposal leaves other issues unresolved. In order to create the Milldale 

glacial lake, an ice stream in Burra Firth is required. This is reasonable and the writer has

37Flinn, 1983
38Flinn, 1992b
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observed possible evidence of such a stream (discussed below). However, in order to create the 

fan with tliis quantity of material in the thus dammed lake, there must also be a significant 

thickness of ice on the highground of the Valla Field ridge, with its northerly terminus al 

Libbers Hill. Even assuming that the ice stream draws its ice surface down, the difference in 

altitude between the surfaces of the two is difficult to accept. If the lower energy sediments 

either occur near the margin or in a proglacial setting, and if the terraces are formed of the 

massive unit and the terraces are themselves eroded by water, and the massive unit is not till, 

then at least it can be said that it is probably a proglacial deposit. The writer is inclined to 

consider the deposit of periglacial solifluction origin, owing its unusual depth to the existence of 

a sediment trap. Such an explanation notably does not explain the apparent morphology to be 

seen on the 1:10 000 air photos but, ironically, is the same as Flinn's initial explanation39.

The deposits and morphology of the Milldale area remain open to further investigation, but in 

the context of the wider issues with which this study is concerned, the evidence for a stable 

terrestrial ice margin of climatic significance is not overwhelming. The only proposed evidence 

that such a margin represents the maximum of the last glaciation is the absence of till and striae 

to the north of the area, and this can be alternatively explained (above).

A further contribution to the issue may be made by examination of offshore deposits to the 

north. Early reports suggested a lobate arrangement of till that fits well with the proposed 

terrestrial margins on or near Unst and Yell40. However till is also reported as the Otter Bank 

sequence further offshore, resulting in a much more northerly ice margin in keeping with the 

assumed extent of the Shetland ice cap to both the east and west41. A lobate margin may well 

have existed at some stage during deglaciation, but if the Otter Bank sequence represents the 

glacial maximum then the lobate deposits and terrestrial margins must post date tliis. The 

question of whether the Otter Bank sequence represents the last glacial maximum or not is 

discussed in chapter 10. There it is concluded it the sequence does relate to the last glaciation.

On Yell a series of meltwater channels and a further ice dammed lake are described42. The 

writer concurs that the channels are most probably the product of meltwater but the assertion 

that the zone between the present shore of Kussa Waters and the peat is indicative of drainage 

that took place at the end of the last glaciation (plate: figure 9.13) is improbable. The peat itself 

post-dates the glaciation and it is unlikely that it would not have spread across the bare surface 

since then. The drainage of Kussa Waters is probably much more recent. Although drainage 

channels to the southwest are clearly fluvioglacial in origin, since they are cut to some extent

39Fliim, 1983
40Longand Skinner, 1985
41 Stevenson, 1991
42 Flinn, 1985
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through bedrock, they are in places also cut through up to 4-5 m of peat, indicating that water 

continues to drain them in postglacial times. Sands and gravels reported in Burn of Gossawater 

are certainly fluvioglacial since the competence required to transport the material exceeds that 

presently indicated by the channel. Although the writer has been unable to find striae on the 

North Neaps in northeast Yell there are probable deposits of till up to 2m on the west shore of 

Gloup Voe (figure 9.3). A thin veneer of periglacial solifluction is otherwise recorded. If this 

area represented a stable ice margin at any time then it was probably not the last glacial 

maximum extent. Immediately to the east between Wick of Breacon and Bay of Brough the 

landscape is ice moulded and in Bay of Brough itself there is lodgement till up to 5m in depth 

(figure 9.3 and plate: figure 9.14). This kind of activity is the product of relatively thick ice and 

again it is difficult to envisage an ice free zone directly adjacent.

The existence of heavy mineral assemblages of Unst source in sediments all around the area to 

the north of the islands also suggests that, if there was a terrestrial ice margin, it was not that of 

the last glacial maximum43 (figure 3.16). Although post-glacial deposition may affect heavy 

mineral assemblages, more so than with erratics, the research suggests that this effect is not 

significant.

9.3.3. Multiple phases of ice movement

It is difficult to envisage a single ice configuration that can accoimt for all the ice direction data 

available. There are particular locations, such as on the island of Uyea and near Ay wick on Yell 

that support crossing sets of striae; the observations of northwesterly erratic movement on Fetlar 

and some of the striae there are incompatible, and strong northwesterly sets of striae at the head 

of Basta Voe are difficult to reconcile with northeasterly striae in the same area (figure 9.2). 

Attempts to draw all encompassing ice shed configurations are prone to difficulty.

The idea that more peripheral data may reflect earlier movements of ice is difficult to apply 

here. The entire area is largely on the periphery of the island group as a whole. However 

something can be gained from looking at the vertical dimension. West-northwest striation of the 

highground of the Valla Field ridge on Unst, together with the movement of erratics from the 

east across it, suggests early west or northwestern ice movement from a significant ice shed east 

of tliis high ground. The vertical extent of that ice must have been considerable, even over the 

high ground itself, since there is evidence of widespread basal erosion at these elevations. Much 

of Yell shows evidence of northwesterly ice movement also. Reconstruction has generally shown 

the ice shed to be between these sets of striae and those further east (figure 3.11), however at an 

early stage the ice shed may have sat over eastern Unst, Fetlar and southeast Yell, or been 

further east still, the directional evidence of these areas being developed latterly. Such an ice

43Beg, 1990
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shed may explain the incorporation of rocks from the east and centre of Fetlar into basal ice that 

ultimately deposited them to the west, although evidence of this is uncertain (see above). The 

northwesterly movement in central and west Yell may be due to a later draw into an ice stream 

in Yell Sound (chapter 8) but the western shore of Yell Sound extends only as far as Whale 

Firth on the eastern shore (figure 3.5), and there are numerous striae north of Whale Firth and 

some way inland that suggest northwesterly ice movement that is locally topographically 

independent. There is also no evidence of an increasingly northerly swing in eastern coastal 

areas as might be expected if the dominant influence was a north flowing ice stream. This is 

only evident on the east coast south of West Sandwick. Once again, therefore, it is argued that 

the evidence suggests that the earliest movement of ice was in a broadly northwesterly direction 

from an ice shed that may have lain to the east of the northern isles.

From figure 9.2 subsequent events evidently produced the following at some stage: an ice stream 

passing up Bluemull sound between Unst and Yell; an ice stream passing up Yell Sound; ice 

crossing the east coast of Yell (at Sandwick and Basla), north Fetlar, Uyea and Muness to the 

northeast; ice moving directly east from Unst and Fetlar; ice moving into the Fetlar basin from 

southeast Yell and southeast from Fetlar. The relative timing of these events is difficult to 

ascertain.

At Noiwick on Unst there are striae indicating northeasterly ice movement. These may reflect 

draw into a stream moving north between the island and the Pobie Bank, or more local northerly 

movement diverging aroimd the Saxa Vord high groimd. Although there is no clear directional 

evidence from the central low ground of Unst, near Baliasta the author observed possible 

evidence of till lodged aroimd a bedrock obstacle in a manner that suggests northerly movement 

up the centre of the island to Burra Firth. There is only one minor section from which a striated 

stone was recovered. The above observations suggest that early retreat may have been to a 

northerly ice front. Evidence from the rest of the east coast of Unst suggests movement into the 

Unst basin largely perpendicular to bathymmetric contours with possible local topographic 

variations such as at Vord and Colvadale Hills. This ice movement appears to be directly east- 

west and associated with a north moving ice stream between the island and Pobie Bank and so 

probably post-dates that possible circumstance. Furthermore, if the earlier, significant, eastern 

ice shed (discussed above and capable of taking erratics across the western Valla Field ridge) is 

accepted then this eastern movement into the Unst Basin entails a reduction in size and shift to 

the west, of that ice shed. Therefore, tliis movement also post-dates the early northwesterly 

movement. The critical evidence of heavy minerals44 in offshore deposits is relevant here, as 

they extend from Unst to northeast further than the Pobie Bank (figure 3.16).

44Begl990
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It is difficult to suggest when the ice stream through Bluemull Sound developed but the need for 

a further shift of ice centres to the south is required, which suggests a more advanced degree of 

retreat from the north.

Further draw down through Bluemull Sound and the Unst basin probably resulted in further ice 

centre movement to the south and west, progressively allowing northeasterly ice movement 

across Fetlar and southeast Unst in the direction of the Unst basin. The striae at Aywick in 

southeast Yell may also be part of this pattern. An ice shed running along the Arisdale 

highground and possibly further to the northeast, is implied by the switch to movement to the 

southeast across Fetlar and southeast Yell, into the Fetlar basin. This indicates that the Fetlar 

Basin has deglaciated and the movement into it probably post-dates those into Bluemull Sound 

and the Unst Basin but there is no direct morphochronological evidence of this. The movement 

probably post-dates the Yell Sound ice stream however, since evidence of this more eastern 

movement occurs south of Yell (chapter 7 - figures 7.2 and 7.6).

Tliis is a complex sequence of events and it is tempting to resort to an explanation involving a 

number contemporaneous ice centres to explain all the data. This is the approach taken to some 

extent by Flinn45. An examination of the relevant figures (figures 3.11 and 9.2) however reveals 

that an equally complex set of extrapolated ice flow lines, bearing in places uncertain 

relationships to the main hypothesised ice masses, is required to support such a reconstruction.

9.3.4. Nature of glaciation and deglaciation

The nature of glaciation on Unst is largely erosive. Sizeable quantities of lodgement till are 

found on the western low ground around Bluemull Sound as far north as Wick of Collaster 

where up to 3-4 m of lodgement, including stone clusters, striated clasts and boulders up to lm 

in diameter are deposited. Similar lodgement occurs on the other side of Bluemull Sound and 

this is probably related to ice stream development in the Sound (see above). The only other area 

where significant till is consistently developed on Unst is in the southeast corner over which a 

northeastern stream is thought to have passed. This till is also lodgement and includes boulder 

pavements in places. Elsewhere over much of the island, although there are surficial erratics, 

there is little drift development. Particularly on areas of serpentine the surface is bare and in 

places there are indications of solution weathering and microgelivation. It might be suggested 

that these bare areas, especially on high ground, such as at Keen of Hamar, represent periglacial 

environments during the last glaciation and that ice direction indicators on Unst are relics from 

a previous glaciation. This limited extent model does not fit with other data on the last 

glaciation of the islands to the north (see chapter 10). The more likely reason for the striking 

landscape is that the weathering of serpentine offers remarkably unsuitable nutrient material for

45Flinn, 1978
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vegetation. Climate, or a thin mantle of glacigenic material, since the end of the last glaciation 

may have allowed this limitation to be overcome but wherever the cover was subsequently 

stripped it has been unable to re-establish itself. Although not therefore a relic periglacial 

landscape, this state of affairs does allow the observation that very little till was deposited over 

most of Unst during the last glaciation where the landscape is dominantly erosive. Elsewhere on 

Shetland, and especially on Yell, thick peat often prohibits such observations.

On Fetlar there is a clear distinction between the west and east coasts. To the east there is little 

or no till development and colluvium with thrown beach gravels is developed on sheared 

bedrock surfaces with some evidence of glacitectonization. On the west coast up to 2-3 m of 

lodgement till is developed but extends only 10's of metres inland. This may reflect preferential 

lodgement on the up-glacier side of the obstacle presented by the island as ice passed to the 

northeast over it, but the rest of the island is again devoid of drift cover.

Much of the island of Yell is covered with a substantial thickness of peat, making it difficult or 

impossible to determine the character of the underlying drift. In most places where the peat is 

removed there is either bedrock or a thin veneer of clastic debris. The major exceptions are 

along the east coast, particularly on the fringes of Bluemull Sound, through which ice appears to 

have streamed to the north - at Bay of Brough, where up to 4-5m of lodgement is developed - 

and on the southeast coast which appears to have been passed over by an east-moving ice 

stream. There is also some evidence of lodgement on the flanks of the major voes.

In those areas on Unst, Yell and Fetlar where there is evidence of lodgement development there 

is also evidence of underlying glacitectonization, once again underlying the fact that lodgement 

and erosion are closely related processes. The absence of shell material in sections that are 

down-ice from areas that are now underwater, such as the northeast coast of Yell, the west coast 

of Fetlar, and the southeast coast of Unst, suggests that these inter-island inshore areas were 

swept clean before deposition of the lodgement occurred. The implied sequence of events is that 

considerable erosion took place, followed by a second phase of erosion and glacitectonization 

which in particular places crossed a glacidynamic threshold and led to deposition. This latter 

phase was probably relatively late in the cycle since the areas of deposition are associated with 

ice movements and streams that are identified as being relatively recent on the basis of 

morphochronology (above).

Offshore to the north the Otter Bank (subglacial) sequence extends to the shelf edge to the 

northwest and is hummocky and cut by channels in some areas. Overlying this, infilling some of 

the channels and partly channelized itself is the Stormy Bank sequence. The latter is 

glacimarine in origin and to the northwest there is an area of iceberg ploughmarks near the shelf 

edge at depths of between 150 - 300 m below modern sea level. As discussed above there are
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areas closer to the islands which do not appear to support these sequences and it has been 

suggested that till extends from Yell Sound, Bluemull Sound and between Unst and Pobie Bank 

in a lobate manner46. The sediments of Yell Sound and Bluemull Sound have not been cored but 

a borehole exists through the sediments of the Unst basin, between Unst and Pobie Bank. Here 

there are two seismic units, both of which extent from the inshore Fetlar basin and along the 

trough to the west of Pobie Bank.

The clastic nature of the material infilling the Unst Basin, the absence of significant 

micropalaeontological matter, the low calcium carbonate content, and the evidence of possible 

sub-aerial weathering, have all led to the conclusion that it is a terrestrial subglacial till with 

facies variations associated with possible proglacial environments47. The writer’s examination of 

the till suggests that while the fabric could be proximal glacimarine the other evidence is in 

agreement with terrestrial deposition.

9.4. Conclusions

The last glaciation extended well to the north of Unst and Yell, probably to the shelf edge in the 

northwest and at least 50 km directly to the north. Early deglaciation resulted in ice flow to the 

northwest and an ice shed that may have been displaced to the east of Unst (figure 9.4). Ice 

direction evidence reveals that the deglaciating ice front must have become more northerly with 

time and the ice shed in the area moved south and west, ultimately feeding ice streams through 

Bluemull Sound, the Unst basin, and Yell Sound (figure 9.5). These may have resulted in a 

lobate offshore margin, possibly associated with terrestrial margins on north Unst and north 

Yell, Saxa Vord and Hennaness on Unst may have been nunataks for some time, shedding 

solifluction deposits. Further draw down through these exits resulted in further south and west 

movement of the ice source areas and ultimately flow into the Fetlar basin. There may have been 

a residual ice cap on Unst also (figure 9.6).

The pattern of northwestern and northern deglaciation and increased topographic containment is 

familiar but the relative timing of these events with those of the rest of the islands is discussed in 

chapter 11. The dating of the all important Otter Bank and Stormy Bank sequences is 

considered in chapter 10 and these are found to be of Late Weichselian age.

46 Long and Skinner, 1983
47Cockcroft, 1987
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10. Chronology of the last glaciation

10.1. Previous work

10.1.1. On-shore Quaternary stratigraphy

Work on the pre-Holocene Quaternary of the Shetland Islands has resulted in the development 

of a stratigraphy extending at least as far back as the last interglacial, and has resolved the late

glacial interstadial and at least one other interstadial period.

10.1.1.1. Pre-last glacial maximum

The sedimentary sequence at Fugla Ness was first described1 as comprising:

top till
till 
peat 
till

base bedrock

More detailed analysis of the lithostratigraphy2 resolved:

top till
periglacial slope deposits (organic bands at base)
peat (in places resting on pond silts)
till

base bedrock

The biostratigraphy of the peat has been investigated3 and is indicative of local open coniferous 

woodland, alternating with heath and grassland communities. The pollen assemblages of the 

organic bands in the slope deposits indicate a reversion to a harsher climate prior to the onset of 

the periglacial mass movement4.

The age of the main peat is important. The presence of some thermophilous taxa, and 

macrofossil evidence of local pine woodland, suggest it is of interglacial character. 

Biostratigraphic correlation is difficult over long distances5, especially given Shetland's unique 

position, but is attempted by two authors6 who reach different conclusions. Firm 

geochronometric control is essential and missing. Most recently, the interglacial has been 

correlated with the Eemian (oxygen isotope stage 5e) on thermoluminescence dating and, 

'count-from-the-top,' lithostratigraphy7.

'Chapelhow, 1965
2IIalIetaI., 1993a
3Birks and Ransom, 1969
“Hall etal., 1993a
5Lowe, 1984
6Birks and Ransom, 1969; Hall et al., 1993a
’Halletal., 1993a
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At Sel Ayre, the presence of peat beneath a number of deposits including till has been reported8. 

The lithostratigraphy, as more recently examined9, comprises:

top till
breccia
organic sands and gravels (including peat bed) 

base scree-like, brecciated, rock gully infill

The lower breccia is overlain by a thin, non-polleniferous, pond clay indicative of continuing 

climatic severity. The organic sands and gravels contain evidence of considerable local 

environmental change, but climatic amelioration from below, and through, the peat bed, is 

evident. The overlying upper breccia is a solifluction deposit, evidence of a return to a period of 

intense frost action prior to full glacial conditions.

The sequence at Sel Ayre represents a cold-warm-cold cycle. The pollen spectra of the main peat 

is statistically distinct from both the Fugla Ness peat and the Holocene assemblages10 at 

Murraster11, and is of interstadial character. The presence of Bruckenthalia spiculi folia, often 

associated with the Brorup and Odderade interstadials12, equivalent to oxygen isotope sub-stages 

5c and 5a, may be of some chronostratigraphic value. However, the number of 

interstadial/stadial cycles that may have occurred since the Eemian is considerable and the use 

of even such exotic species should be treated with caution. Geochronometry has proved 

inconclusive13, although Uranium-series dating of the main peat14 gives a very tentative 

maximum age of 100 ka BP. An interstadial post-dating the last interglacial, possibly of isotope 

sub stage 5a or 5c, is thought to be the likely age of the main peat15.

For the present purposes, it should be noted that neither of these pre-glacial sites demonstrates 

that the last glaciation was of Late Weichselian age.

10.1.1.2. Late-glacial oscillation

Research into the stratigraphy of the late-glacial is at an early stage16, but consists of 

lithostratigraphic, pollen and diatom analysis of lake basin sediments17 and open sections18. 

Geomorphic evidence (discussed in the preceding regional chapters) has been presented19 but is 

tentative and remains undated. Those sequences with dating control are discussed here.

8Mykura and Phemister, 1976
9Hall et al., 1993b
10Johansen, 1975
11 Birks and Peglar, 1979
12Beaulieu and Reille, 1992
13I-Iall et al., 1993b
14Heijnis, 1992
15Halletal., 1993b
16Bimie, 1993a
17Hoppe, 1974; Hulme and Dumo, 1980; Bimie, 1981, 1993b; Edwards et al., 1993
18Hoppe, 1974; Hall, 1993; Hall and Whittington, 1993
19Charleswortli, 1965; Mykura and Phemister, 1976; Flinn, 1982; Gordon, 1993b
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Two cores at Aith Voe show a late-glacial interstadial lithostratigraphy20:

top up incr. productivity;
up deer, productivity; sediment virtually inorganic 
up incr. productivity; herbs, poss. Salix, Betula 
up incr. productivity but poss. disturbed soils

base no/low organic productivity

Grain size variations in the sequence are thought to be due to changes in the location of stream 

input and do not indicate glacier input during the stadial.

Radiocarbon dating21 suggests an early late-glacial oscillation (13,680 ± 80 BP and 12,190 ±80 

BP delimiting the interstadial) compared to the Scottish mainland. Direct comparison is

difficult, however, because radiocarbon dating of bulk samples from lake sediments suffers from
14

the numerous and complex pathways by which C may reach the sediment. Accelerator Mass 

Spectrometry (AMS) dating of macrofossils, even microfossils, is a potential solution.

At Clettnadal22 fine-grained organic lake sediments rich in macrofossils have been exposed in 

open section:

top coarse breccia of unknown genesis
brown gyttja with prominent leaf layers 
blue-grey organic silt
brown gyttja with prominent leaf layer 
inorganic blue-grey silt (basal gravel lag)

base glaciated rock surface

Four dates appear to confirm the late-glacial character of the lithostratigraphy. Deposition of the 

lower brown gyttja began at 11,650 ± 45 BP. The upper gyttja supports a sequence of three dates 

from 10,050 ± 45 BP at the base, to 9170 ± 45 BP at the top. These dates are inconsistent with 

the dates from Aith (above). However it would again be beneficial to conduct AMS dating, 

especially since macrofossils are abundant.

At Tresta23 the following sequence is exposed:

top peat
grey diamict 
organic sediments 
grey diamict

base till

20Bimie, 1981
21 Bimie and Harkness, 1993
22Hall, 1993
23I-Ioppe, 1974; Hall and Whittington, 1993
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A date ofll,135±135BP has been obtained from the organic sediments, although it is not clear 

where in the organic unit tliis was taken. If the base was dated, then the organic development 

might be conventionally placed during the late-glacial stadial and the diamict on either side may 

be associated with slope movement during the same period. The base of the overlying peat was 

dated to 5,865 ± 95 BP leaving a substantial hiatus at the commencement of the Holocene, so if 

the earlier date was from the top of the organic sediments, then a late-glacial interstadial 

assignation would again be reasonable. The uncertainties involved make it difficult to extend the 

significance of tliis site to the emerging picture of the late-glacial on Shetland.

An organic-inorganic-organic sequence from Clickliimin Loch has been reported24, with dates of 

12,090 ± 900 BP for the lower organic sediments, and 9,620 ± 750 BP at the base of the upper 

organic unit. Tliis would appear to delimit the late-glacial oscillation. AM$ dating would again 

be advantageous but recent workers have failed to recover a similar sequence25.

A conventional lithostratigraphic late-glacial sequence was not recovered at Lang Lochs26, but 

the base of the sequence comprised mineral in-wash with some organic content, succeeded by a 

gyttja. The base of the mineral in-wash was dated to 13,200 ±100 BP, and the base of the gyttja 

to 10,450 ±70 BP. Environmental change at c. 10.4 ka BP can be interpreted as the 

commencement of the Holocene interglacial, but the absence of a Lateglacial oscillation before 

this is anomalous.

Further evidence of the late-glacial environmental oscillation is reported at Grunna Water27 but 

no chronostratigraphic data is available for tliis site.

The earliest date available for the commencement of the Holocene at Murraster is 10,400 ± 160 

BP28, and the onset of non-minerogenic sedimentation pre-dates 9,350 ± 90 BP at Dallican 

Water29 and 9,785 ±80 BP at Gunnister Water30.

In summary, pre-last glacial sites do not necessarily demonstrate that the last glaciation was 

Late Weichselian. Work on the late-glacial oscillation is at a preliminary stage, although it is 

clear that the oscillation is post- Late Weichselian and that environmental changes occurred, as 

they did elsewhere across northwest Europe. As yet there is no conclusive evidence of associated 

glacial activity. Tentative dates suggest that lowland parts of the islands were ice-free around 13

24Hoppe, 1974
25G. Whittington (pers. comm. 1993)
26Hulnie and Dunio, 1980
27Edwards, el al., 1993
28Johansen, 1985; Bennett, 1993
29Bennet and Shaip, 1993
30Bennet et al., 1993
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ka BP, and that environmental deterioration recommenced around 12 ka BP, terminating 

perhaps at 10 -10.5 ka BP. The commencement of the interstadial may be relatively early but 

there are considerable anomalies, much work remains to be undertaken, and this broad sequence 

is highly tentative. Abundant macrofossils offer the potential of using AMS dating techniques to 

improve the chronostratigraphic sequence.

10.1.2. Off-shore stratigraphy

Longer and fuller Quaternary sequences are preserved offshore, particularly in the northern 

North Sea basin and in the progradation of the western continental shelf edge. However, climate 

change has major effects on the rate of sedimentation in these areas, particularly between glacial 

and non-glacial environments: much of the Quaternary cover on the shelf is glacigenic and, 

therefore, lithostratigraphic correlation between cores is not possible; interglacial sediments are 

richer in in situ biostratigraphic and geochronometric material, however such interglacial strata 

are thinner, may be missed or locally not present in core samples, and may not attain acoustic 

resolution on seismic traces. It should also be noted that biostratigraphic resolution is limited to, 

'Early,' and, 'Late Pleistocene.'

Seismic correlation is therefore crucial, but in the inner shelf areas, both to the east and west of 

Shetland, the Quaternary cover is thin (and frequently impossible to differentiate due to the 

limitations of seismic resolution). The best sequences are preserved in basin settings but these 

cannot be traced from basin to basin, or to the outer shelf areas. Outer shelf sequences are better 

preserved but are bounded by rmconformable erosion surfaces. While these provide the basis of 

seismic sequencing, chronological or environmental interpretation of such hiatuses is not 

possible and the erosion surfaces are potentially time-transgressive31. Seismic correlation 

between the West Shetland Shelf and the northern North Sea basin is largely prevented by the 

Orkney/Shetland ridge/platform, and between the northern North Sea basin and the main North 

Sea basin by the East Shetland Ridge. Between the West Shetland Shelf and the Hebrides Shelf, 

and the northern and main North Sea basins, other methods of correlation must be treated 

cautiously since these areas were affected by different ice centres. The West Shetland slope area 

appears to be beyond the limits of direct glaciation, except in places32, and the chronology here 

is complicated by progradation and mass-movement33. The sediments of the deep Faeroe- 

Shetland Channel are distal, bioturbated, interdigitated with mass-flow from the slope area, and 

subjected to erosion by bottom-current activity which has varied significantly with marine 

circulation through the Quaternary34. Correlation between the Faeroe-Shetland Channel and the 

deep-sea basins to the south is limited by the Wyville-Thomson Ridge.

3 *Stoker and Long, 1984
32D. Long (pers. comm. 1995)
33Stoker et al., 1993
34Stoker et al., 1989
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The sequences identified by the British Geological Survey are shown in figure 10.1. Given the 

problems outlined above, however, the stratigraphy is to be taken as tentative. See also figures 

2.10, 3.4, 3.13,3.14, 3.15.

Only those sequences of direct relevance to tliis study are discussed below. Full discussions of 

the underlying sequences are available from a variety of sources35.

The glacimarine Sperus Formation (SPE) conformably overlies the dated Cape Shore Formation 

(CSO) in the north-east shelf areas and is therefore Mid- to Late- Weichselian in age (figure 

10.1). The overlying Tampen (TAM) Formation is a possible lateral moraine due to northward 

flowing ice in the Norwegian trench. Shells within tliis formation have been radiocarbon dated 

to 18 860 ± 260 BP36. The Viking Bank Formation overlies the Cape Shore Formation on the 

western side of the Viking Bank high and is associated with deltaic/pro-deltaic and shallow 

coastal processes. A stratigraphically consistent radiocarbon sequence from 11,350 ± 120 BP, to 

10,420 ± 80 BP, to 8,530 ± 110 BP has been established37.

The sediments of the inner, northern and western shelf areas are not as well dated. The inner 

shelf area is largely rockliead outcrop or thinly covered with Quaternary deposits. Exceptions 

occur in some basin settings (the St Magnus Bay (see chapter 6), Fetlar (chapter 7), West Fair 

Isle (chapter 5) and Unst (chapter 9) Basins), and to the north of the islands. The thin and 

patchy cover of the East Shetland Platform has been referred to as the Shetland Platform 

sediments38. They include sediments of glacial/glacimarine origin with some possible late- 

glacial/post-glacial soft clays infilling depressions. Until recently, only their relationship with 

the Ferder Formation (FDR in figure 10.1) and, 'count-from-the-top,' stratigraphy suggested that 

they may be of Late Weichselian age. Shells in either a glacigenic debris flow or soft-sediment 

deformation till from these sediments, are dated tol3,315±155BP (adjusted for seawater 

apparent age of 405 ±40 years)39, suggesting that ice covered these inner shelf areas at tliis time. 

An important feature of the sediments, widespread in this eastern continental shelf area, is the 

shelly strata beneath the Holocene sands that is associated with the late-glacial interstadial 

period. This is dated to 12,265 ± 135 BP (similarly adjusted).

Unfortunately the sediments of the East Shetland Platform are not seismically correlated with 

the more extensive glacigenic deposits of the Northern and Western Outer Shelf areas. Here the 

Otter Bank (OTB) sequence includes glacial diamicts with, in some places, overlying

35Chesher, 1984b; Evans el at, 1990; Holmes, 1991; Johnson, et at, 1993; Long, 1988; Stevenson, 1991; Stoker et at, 1993;
36Rokoengen et at, 1982
37Rise and Rokoengen, 1984
38Long, 1988
39Peacock and Long, 1994
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glacimarine deposits, and to the north there may be equivalent sediments within the 

Undifferentiated Upper Pleistocene sequence (UUP in figure 10.1). These sequences 

unconformably overly the Ferder (FDR) formation to the north and west of Shetland, suggesting 

that they are al least post-Eemian, and are the uppermost subglacial materials, therefore possibly 

of Late Weichselian age but there is no direct dating nor seismic relation to dated sequences 

elsewhere.

The Stormy Bank Sequence (STB) is glacimarine in origin and is identified in seismically 

isolated areas north and west of Shetland overlying the Otter Bank Sequence in many places. 

These areas are correlated on the basis of acoustic and lithological similarity and stratigraphic 

position. Within these locations the STB is invariably the uppermost non-Holocene unit and in 

places it merges with the underlying Otter Bank Sequence. No direct chronostratigraphic data 

exists for this sequence although it is again assumed to be Late Weichselian. The sediments of 

the inner basins have been examined in the preceding regional chapters. The most important 

finding is that, while there may be subglacial tills, there is no evidence of subsequent 

glacimarine activity. Instead, shallow, severe, marine conditions are indicated. It may, therefore, 

be appropriate to reconsider the validity of including these upper basin sediments in the Stormy 

Bank Sequence40 (figure 3.15).

10.2. Outstanding issues

There are numerous outstanding issues related to the chronology of the last glaciation of the 

Shetland islands and this study does not attempt to cover them all.

Clearly the sediments of the northern North Sea basin are dated more effectively than those to 

the north, west and, to some extent, east of Shetland. Although the inner shelf sediments to the 

east have been dated41, the thicker sequences to the north and west are in need of similar 

treatment. The assumed Late Weichselian position of these sediments has two bases, namely, 

'count-from-the-top,' and their relation to the Ferder Formation. The Ferder Formation is 

therefore of considerable importance in regional correlation, but although seismostratigraphic 

correlation with the North Sea has been achieved, the interglacial data proved in boreholes there 

have not been observed north and west of Shetland. Since the Ferder Formation should include 

two cold episodes, the absence of the intervening warm episode confuses the stratigraphic 

position of overlying sediments such as the Otter Bank sequence. That is to say, the Otter Bank 

Sequence could be Early or Late Weichselian depending on whether the Ferder Formation 

includes both the cold episodes (Saalian and Early Weichselian) identified to the east. The need

40Johnson et al., 1993
41Peacock and Long, 1994
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for chronostratigraphic control on the Otter Bank sequence and further resolution of the 

Undifferentiated Upper Pleistocene deposits, therefore, is pressing.

The Stormy Bank sequence overlies the Otter Bank Sequence only and is not directly dated. The 

contact is generally conformable and this sequence may offer more useful organic dating 

material than the Otter Bank Sequence itself. The existing assignation to the, 'waning stages of 

the Late Weichselian,'42 is highly probable given the sequence's stratigraphic position but the 

time span involved is not known.

10.3. Northern glacial chronology: aims

Tliis study attempts to tackle some of these issues by examining and dating the sediments to the 

north of the islands. The northern area was selected over the western because: the date of the 

sediments here assists in the resolution of the extent of the northern glacial maximum (see 

chapter 9); and the western shelf edge sediments and morphology are currently under 

investigation at the British Geological Survey.

10.4. Northern glacial chronology: data and results

In order to contribute to the chronology of the region and also help resolve issues relating to the 

northern position of the last glacial maximum, a number of cores were examined from north of 

Unst and Yell. Those selected for initial examination were identified from the various British 

Geological Survey logs available for the region. Figure 10.2 shows the location of cores that 

were examined. All the cores were dialled in 1977 except 328 (1978), 275 (1980) and 9 (1984), 

and have been sealed and stored by the British Geological Survey since that time. Although 

some of the cores have been worked on subsequently, the details of these activities are not 

available.

The cores were examined and their fabric characteristics recorded. Due to poor borehole 

recovery and predominantly inadequate vibrocore penetration, only five of the examined cores 

contained useful sequences (figure 10.3), and only one a possible glacial-Holocene transition.

10.4.1. Seismic stratigraphy

A typical seismic line across the shelf area in figure 10.2 is shown in figure 10.443. Despite the 

limited extent of the glacimarine (Stormy Bank) sediments mapped, most of the cores examined 

(figure 10.2) proved substantial glacimarine sequences (figure 10.3). This discrepancy is due to 

the resolution of 'Sparker' seismic records (about 5m) which is insufficient to show the top few

42 Stevenson, 1991
43Alter Stevenson, 1991
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metres that the vibrocores penetrate. The veneer of glacimarine sediments may therefore cover 

much of the shelf area beyond that shown in figures 10.2 and 10.4.

10.4.2. Core quality

Of the cores marked on figure 10.2:

9,328 and 275 are boreholes with circa. 10% recovery in the Quaternary or are extremely dried 

and have insufficient geotechnical and lithostratigraphic data to develop a reliable 

lithostratigraphic sequence;

65 is a vibrocore that recovered only bottle samples of 0.23m of sediment; there is therefore no 

geotechnical information and the lithostratigraphic sequence, sedimentary structures etc., are 

destroyed;

These cores were not considered further.

The remaining cores were 100% recovered and are logged in summary in figure 10.3. Of these, 

the detailed lithostratigraphy and other available data show 61-01 66ve to be a sequence 

including possible sub-glacial to Holocene units. The remaining cores generally showed no 

evidence of having penetrated possible sub-glacial materials or did not appear to have a possible 

Late-glacial unit44. Further data on vibrocore 61-01 66ve is given here.

10.4.3. Lithostratigraphy

Figure 10.5 shows the lithostratigraphy of core 61-01 66ve and the lettered units (l)-(4) are 

discussed below:

(1) Unconsolidated coarse shelly sand is almost invariably found at the top of vibrocore 

sequences in the area and represents Holocene marine deposition with much biogenic activity 

and some tidal winnowing of fines.

(2) This unit is common in most vibrocores from the surrounding shelf areas and characterizes 

the late-glacial oscillation45. The basal shell hash represents the amelioration of the late-glacial 

interstadial, with biogenic activity decreasing up-core until the commencement of the Holocene 

(unit 1).

(3) This unit is characteristic of glacimarine sedimentation: sandy muds and muddy sands 

suggest that marine influences are superseding ice-related processes but the singular occurrence 

of a large lithic is difficult to interpret as anything other than an iceberg dropstone. The bands of 

clay and fine silt may represent the distal tails of turbidity plumes or occasionally prolonged sea-

44Peacock and Long, 1994
45J. D. Peacock (pers. comm. 1994); Peacock and Long 1994
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ice cover. Although the core has not been X-rayed for burrows, mottling of the sediments in 

parts of this unit is characteristic of bioturbation. More fines bands may have been destroyed by 

this mechanism.

(4) The lowest unit contains a coarser matrix, smaller shell fragments, lower biogenic 

productivity (more moderate visual HC1 reactions on the sub 125 micron fraction), and is more 

gravelly. It is always difficult to distinguish lithologically between sub-glacial sediments and 

those released in a proximal glacimarine environment. The seismic interpretation of the area 

(figure 10.4), when allowance is made of the failure of the 2.5 m of glacimarine and Holocene 

sediment to be resolved on seismic traces, suggests that the vibrocore might well penetrate the 

Otter Bank Sequence. However it is possible that a proximal glacimarine unit is also seismically, 

"hidden," and that this is what is found at the base of 61-01 66ve.

10.4.4. Geotechnical data

The high undrained shear strength measurements at the base of 61-01 66ve (figure 10.5), which 

are also associated with higher values of hardness and lower values of plasticity, may be due to 

sub-glacial stress history46. Although the reduction in shear stresses up-core may be accounted 

for by reduced pressure of overlying sediments, the high value in the lower unit 4 is well above 

that of normally consolidated material. For comparison, shear stress measurements on Late 

Weichselian tills from the northern North Sea are generally in excess of 100 kPa47, and the East 

Shetland Platform Sediments (figure 10.1) are frequently overconsolidated to undrained shear 

stresses of about 150 kPa48. Although high shear stress values have been recorded within mass 

movement sediments on the continental slope49, in the shelf setting of this study the value of 450 

kPa is unlikely to represent such a deposit.

10.4.5. Biostratigraphy

Although the available evidence supports a sub-glacial interpretation of unit 4, the

lithostratigraphic difference between this and a proximal unit near the grounding line is 

probably not great.

No micropalaeontological data are available for this core although HC1 reactions on the sub-125 

micron fraction throughout the core indicate the presence of calcareous micro-biota. Such data 

for the upper sequences elsewhere in the study area are generally poor but, since the lithological 

sequence is well established, what data is available can be applied to 66ve and is here discussed 

in terms of lateral equivalents of the units described above. It is only possible to distinguish

46e.g. Young etal., 1978
47e.g. Sejrup et al., 1994
48Long, 1988
49M. Stoker (pers. comm. 1994)
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between, ‘Early Pleistocene,’ and, ‘Later Pleistocene,’ by assemblage, so correlation within the 

latter period is limited to palaeoenvironmental comparison. Early Pleistocene derived 

assemblages have not been reported in the upper sequences of the shelf regions around the study 

area. The two nearest cores for which data are available are discussed below.

Vibrocore 60-01 31ve lies approximately 30 km south of 66ve. The lithological sequence 

appears similar to 66ve although it is not clear whether the core penetrates substantially 

different material at the base. The macrofauna50 is typical of modern sediments in the lateral 

equivalent of unit 1. Lower down the fauna is more restricted and includes the cold water 

species Macoma calcarea and Nuculana pernula suggesting that the equivalent of unit 2 may 

record the late-glacial stadial. Unfortunately samples were not examined below this depth. 

Dinoflagellate cyst data51 again reveal a well-established Holocene sequence in the unit 1 

equivalent but samples below this were too poor to give any clue as to the age of the older 

sediments (unit 2/3), although again a more severe environment is implied by tliis paucity.

Borehole 84/08, approximately 27 km southwest of 66ve, again penetrates Holocene sands and 

Stormy Bank glacimarine deposits. Dinoflagellate cyst data52 do not cover the equivalent of units 

1&2 but samples from the glacimarine (unit 3) sediments show a paucity typical of severe arctic 

conditions. At the top of tliis unit there is a possible amelioration or a change to a more open 

marine environment. Tliis would suggest that unit 3 is increasingly distal up-core or possibly 

that downward bioturbation of late-glacial interstadial assemblages has occurred. Foraminifera53 

show a strong amelioration through the top of the unit 3 equivalent, which is otherwise 

unfavourable for the development of diverse assemblages.

A summary of Professor J D Peacock’s examination of the macrofauna of the 61-01 66ve 

samples identified in figure 10.5, made for tliis study,, is as follows:

Unit 1 contains an assemblage to be expected at the present day at this water depth (160 m). 

This confirms the Holocene assignation of unit 1 and there is even some evidence of rising sea- 

level, confirming geomorphological evidence for the phenomenon on the Shetland Islands.

Unit 2 contains a characteristic late-glacial interstadial fauna, particularly including Margarites 

costalis, Boreotrophon clathratus and Yoliella lenticula, not currently found as far south as 

Scotland. The presence of Nucula nucleus, while not entirely incompatible with a late-glacial 

context, may indicate bioturbation of the overlying sediments into this unit. Sample 4 contains

50British Geological Survey internal report: PDS 80/28
51British Geological Survey internal report: PDS 80/297
52British Geological Survey internal report: PDS 85/108
53British Geological Survey internal report: PDS 85/78
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the more identifiable fauna and is more clearly within the late-glacial lithological unit (figure 

10.5).

Unit 3, which is lithologically glacimarine, includes the anticipated cold water species. Some 

are abraded and possibly derived but others are unabraded and more probably in situ. The 

assemblage is not diagnostic of any particular environment, but Nucula pernula is a northern 

form not currently found in British seas.

The unit 4 assemblage is difficult to interpret and probably includes derived species. The shoe 

sample (11) in particular contains rare fragments of species found in the Holocene assemblage 

(unit 1, above) which may be derived from pre-glacial circumstances. Unabraded fragments also 

exist and may not be derived.

10.4.6. Radiocarbon dates

The sequence within the selected core (61-01 66ve) has been dated in four places. AMS dating 

on single shell fragments has been undertaken since recovery of a sufficient bulk sample for 

conventional dating from cores is destructive and may result in a loss of stratigraphic resolution. 

The original samples comprised approximately 100 mm sections of half core, wet sieved through 

a 1000 micron sieve and oven dried overnight at 70° C. The shell material to be dated was 

examined by Professor J. D. Peacock for his observations on sample quality, type, 

biostratigraphic significance (see above), and sample selection. In situ material has been selected 

for dating, although for units 3 and 4 the status is more probable than certain.

The results are as follows (see also figure 10.5) and include adjustments for the apparent age of 

seawater:

Lab No. Sample Species Measured Age

with 2 SD limits

Adjusted age1 813C ±

0.1%o

AA16903 4 Modiolus modiolus 12860 ± 180 12445 0.1

AA16904 6 Hiatella arctica 13165 ± 180 12760 1.4

AA16905 9 Hiatella arctica 13390±190 12985 1.3

AA16906 10 Trodonta elliptica 18230 ±280 17825 0.5

’Adjusted ages based on apparent age of seawater of 405 ± 40 years.54

54Harkness, 1983
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The effect of using the 2 standard deviation (95% confidence) limits on the resolution of these 

dates is as follows. The late-glacial date (unit 2; AA16903) cannot be resolved from the late 

glacimarine date (3; AA16904), the early glacimarine date (3; AA16905) cannot be resolved 

from the late glacimarine date (3; AA16904), but the early glacimarine date (3; AA16905) can 

be said to be significantly older than the late-glacial date (2; AA16903), and the sub- 

glacial/proximal glacimarine date (4; AA16906) can be said to be significantly older than all the 

others at the 95% confidence level. Note that atmospheric CO2, ocean circulation, depth, and the 

location of areas of upwelling may be radically altered during full glacial times, so the apparent 

age of seawater given above may not be appropriate.

The date from unit 4 suggests that this is either a relatively proximal glacimarine unit, or that 

glacier ice fluctuated over the area, since the mollusc clearly did not die prior to the last 

glaciation. The question of whether the unit is glacimarine or subglacial is unresolved. However, 

either way, a nearby ice margin is indicated. This margin is considerably further north than 

Unst and the Otter Bank sequence continues further north still - it is therefore highly unlikely, 

even accepting a lobate northern margin, that the last glacial maximum was terrestrial on the 

northern isles (see chapter 9).

The site is close to a postulated ice margin and the date may suggest that deglaciation may have 

been underway in this northern area, as early as 17 -18 ka BP, whereas, East of Shetland, 

although perhaps 30 km from the maximum eastern extent, ice-proximal deglaciation was 

occurring at around 13 -14 ka BP55. It is possible that, by this time, much more distal 

glacimarine activity was underway at the northern site and that deglaciation commenced to the 

north of the islands earlier than to the east. However tliis cannot be conclusively stated on this 

evidence alone.

The timing of the late-glacial interstadial unit is comparable with that from the East Shetland 

Platform sediments (where an adjusted date of 12,265 ± 135 BP was obtained56).

Perhaps most significantly, these data suggest that the sediments north of the Shetland Islands 

are indeed associated with the Late Weichselian glaciation. Since the Otter Bank and Stormy 

Bank sequences can be seismically traced to the sediments and shelf edge moraines of the 

western continental shelf, it is likely that these too are of Late Weichselian age, although such a 

correlation does not imply that all the sediments were emplaced at the same time as those in this 

core.

55Peacock and Long, 1994
56Peacock and Long, 1994
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10.5. Conclusions

A number of conclusions are drawn from the investigation of the sediments north of Shetland 

made by this study: the Otter Bank and Stormy Bank sequences are associated with a glaciation 

of Late Weichselian age, that may have been more northerly extensive than currently mapped; 

since these sediments can be traced to the western shelf edge then these, too, are associated with 

Late Weichselian glaciation; although direct comparison is difficult, there may be evidence that 

deglaciation was underway considerably earlier in tins northern location, than was the case for 

the eastern ice sheet margin; the late-glacial interstadial unit is identifiable in these northern 

areas, and is dated to around 12-13 ka BP, comparable with other late-glacial interstadial dates 

in the region.

t.

1
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11. Synthesis
This chapter synthesises the regional analyses, proposes a broad reconstruction of the last 

glaciation of the region, combines this with the wider context of northwest European glaciation 

and makes recommendations for future work. It is also intended to function as a sensible 

alternative to reading all the other chapters and offers brief reviews of previous work and the 

aims and limitations of the project. Since the existing literature is reviewed in chapters 2 and 3 

and in relevant regional chapters specific publications are not referred to here.

11.1. Context

Problems and work to date on the last glaciation of the Shetland Islands are here reviewed 

briefly in the light of the author's own experience of the quality of the data available.

11.1.1. Terrestrial problems

Reconstruction of the last glaciation of Shetland on the current landmass is difficult. The islands 

form a narrow, Caledonian remnant, just a few kilometres from east to west in places and the 

last ice sheet may have been 150 km in diameter on this axis. Complex terrestrial solid geology1 

makes erratic analysis and, in many cases, the identification of erosional data such as striae and 

stoss and lee observations, difficult. Many of the valley floors in which glacial landform 

assemblages might be anticipated are now submarine and there is little - and generally poorly 

developed, preserved or exposed - morphological data. While coastal drift exposure is excellent, 

inland exposure is much more limited.

11.1.2. Terrestrial work to date

Given these difficulties a remarkable quantity of evidence has been collected from the Shetland 

islands since work began on their last glaciation a century ago. Striae and erratic data are 

particularly well documented2 but the problems mentioned above are evident in the literature 

with a variety of authors being, ‘convinced,’ or, ‘certain,’ of the direction of ice movement 

implied by stoss and lee data but reporting contrasting conclusions. Even some early erratic 

reports are not compatible with later analyses and in these cases subsequent authors have 

ignored rather than directly refitted the suggestions.

Directional data has been used to discuss arguments relating to the influence or otherwise of 

Scandinavian ice on the islands. A number of models have been put forward, including: (1) 

early Scandinavian ice crossing the islands from the northeast and turning to the northwest

Mykura, 1976
2 e.g. Flinn, 1982
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followed by more limited local glaciation in which ice flowed both east and west off islands3 

(figure 3.7); (2) early Scandinavian glaciation from the east followed by the establishment of an 

independent remnant ice cap on the islands due to rising sea level, and the progressive 

reorientation of ice flow lines as ice calved into inshore areas4 (figure 3.10); (3) an independent 

ice sheet flowing east and west off the islands but encountering a Scandinavian ice sheet to the 

east and flow lines being turned to the northeast and back across northern islands - the 

Scandinavian ice itself crossed the southern peninsula and Fair Isle5 (figure 3.9); (4) and an 

independent ice sheet wholly unrelated to Scandinavian glaciation (although such glaciation is a 

possibility in an early stage or previous glaciation) in which ice flow lines are related to 

bathymmetric contours in inshore areas6 (figure 3.11).

With the exception of the second, these have all been presented as atemporal models in which 

all the evidence has been fitted to a single ice sheet configuration at one point in time. This is 

not surprising since there is no obvious method of developing a stratigraphic framework into 

which erosional data, such striae and stoss and lee, can be placed. Till also usually occurs in 

thin, single units (see below) so observing changes in ice movement through erratics in 

stratigraphic sequence is not possible.

11.1.3, Offshore problems

The recent development of data from offshore7 is potentially of enormous significance but to 

date has been interpreted for the last glaciation in only a limited manner, particularly with 

respect to its correlation with onshore events. Considerable work is now underway and new 

interpretation can be anticipated in coming years.

The difficulty in reliably distinguishing between glacimarine and subglacial sediments and the 

absence of chronostratigraphy are major impediments to offshore interpretation. The sequences 

of relevance are undated to the west, only recently dated to the east and, in this study, the north.

11.1.4. Offshore work to date

Offshore interpretation has provided some evidence of the size of the last ice cap of the area, 

stretching perhaps 75 km to the east of Shetland and as far as the continental shelf edge to the 

west8 (figure 3.13). The northern glacial maximum has been more controversial largely due to 

the proposition that there may be a terrestrial maximum margin on northern Unst and Yell9. 

Tliis is inconsistent with the extent of possible last glacial deposits to the north of the islands

3 Peach and Home, 1879
4 Hoppe, 1974
5 Mykura, 1976
6 Flinn, 1977, 1978
7 Chesher, 1984b; Evans et al., 1990; Holmes, 1991; Johnson, et ah, 1993; Long, 1988; Stevenson, 1991; Stoker et ah, 1993
8 Stoker et ah, 1993; Johnson, et ah, 1993
9 Flinn, 1983, 1992b, 1994a; Long and Skinner, 1985
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however10. The southern limit is also not known: although evidence of the glaciation of Fair Isle, 

possibly from Shetland and/or Scandinavia, has been put forward11 much of this area is in 

shallow water and Quaternary sediments are reported as being tliin and difficult to interpret12.

To the north, east and west, subglacial tills have been identified in offshore zones although these 

are thin and patchily distributed in shallow inshore areas, especially on the East Shetland 

platform. The top pre-Holocene imit has been identified from the shelf edge and East Shetland 

Platform to inshore basins and has been attributed to the waning stages of the last glaciation13 

(figures 3.14 and 3.15). In places it is described as glacimarine indicating that deglaciation was 

associated with a marine margin. For the reasons outlined above, published interpretation of 

offshore data is provisional, cautious, and although there is much useful descriptive data, 

reconstruction is largely limited to what has been described above.

11.1.5. Chronological work to (late

There is no separate section on the problems of chronology here since the largest relevant 

problem is its absence. The provision of a temporal context for the last glaciation, deglaciation, 

and late-glacial of the region is at a preliminary stage. The commencement of the last glaciation 

in the area is undated although there are two terrestrial sites14 and extensive offshore sequences15 

that offer some evidence of pre- last glacial environments. Recently the sediments of the East 

Shetland Platform, which extend 75 km to the east of the islands, have been dated and these 

suggest that deglaciation of the last ice sheet commenced at or before 13 ka BP16. This work 

demonstrated for the first time that the last glaciation of the islands was during the Late 

Weichselian but only gives a date for the commencement of deglaciation from the eastern 

margin of ice sheet. The earliest accepted post-glacial dates from terrestrial Shetland17 are not 

dissimilar to tliis age suggesting either exceptionally rapid deglaciation or some error in the 

chronology. A single late-glacial oscillation has been reliably identified in various parts of 

Shetland18, although none of these have shown that the Younger-Dryas equivalent stadial period 

was associated with glaciation.

11.2. Aims and limitations of this study

Tliis study aims to combine existing and new data sources to achieve a number of objectives: the 

reconstruction of the last glaciation of the islands over time, rather than as a single ice shed 

configuration; the inclusion of offshore interpretation and the integration of tliis to provide the

10 Ross, 1993; Gordon et al., 1993
11 Flinn, 1970, 1978; Mykura, 1976
12 Evans et al., 1990
13 Stoker et al., 1993; Johnson, et al., 1993
14Halletal., 1993a, 1993b
15 Stoker et al., 1993; Johnson et al., 1993
16 Peacock and Long, 1994
17 Bimie, 1993a
18 Bimie, 1993a
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first interpretation for the whole ice cap; and the interpretation of the reconstruction in a wider, 

northwest European context. New observations have been made to augment existing datasets, 

and those existing datasets have largely been confirmed. A new data source is provided with 

preliminary observations on glacial sediments throughout the islands and these are used to assist 

in the reconstruction. This glacial drift generally relates to late periods in deglaciation, so the 

progress made in establishing a time sequence is largely due to new approaches rather than new 

data. These are: combining all relevant data cartographically to identify trends and patterns as 

well as exceptions to these; the morphochronological resolution of erosional data, particularly 

assuming earlier glaciation of vertically and horizontally peripheral locations and increasingly 

topographically contained ice flow through deglaciation and, in cases where two mutually 

exclusive ice direction patterns are adjacent or overlain, that the stronger is the more recent by 

virtue of greater preservation; and taking a cautious but open-minded approach to, 'negative 

evidence,' (interpretation arising from the absence of evidence rather than its presence).

The study attempts to focus on interpreting data from terrestrial Shetland at a new level of detail 

and also to expand the resulting reconstruction into the context of northwest European 

glaciation. Within the time period available some compromise is inevitable between these two 

scales of examination. The author has spent months in the field, partially verifying existing 

datasets and also collecting preliminary glacial sediment data but has not had time to conduct 

in-depth studies in local areas. This work has been essential in providing the understanding of 

published data required to interpret it, but much of the data here is cartographically transferred 

from existing sources.

11.3. Review of regional conclusions

For this study the Shetland area has been divided up into 6 regions, each corresponding to an 

earlier chapter with a further chapter on chronology. The conclusions relating to patterns of ice 

flow in each are briefly re-capitulated. These conclusions form a new hypothesis of the last 

glaciation of the islands - for details, and some sense of how tentatively they are made, the 

relevant chapter should be consulted. Interpretation of these conclusions for the glaciation of 

Shetland as a whole is considered in subsequent sections.

11.3.1. Fair Isle

It is has been suggested that there was an early ice movement east across Fair Isle19 but there is 

no unequivocal evidence for tliis. Roches moutonees, the direction of glacitectonization of 

bedrock, till clast fabric and drift distribution are all used to show that ice crossed the island 

broadly from the west. In addition, there is possible offshore evidence for proglacial conditions,

19 e.g. Flinn, 1978

128



Synthesis

including an outwash plain and drainage channels into the Witch Ground Basin, 30 kin to the 

east of Fair Isle20, so any ice from the east must have been due to a phase in glaciation which 

predates this limit. Some of the directional evidence on Fair Isle suggests that ice moved due 

west-east, diverging around the island at low elevations, whereas on the high ground of the west 

coast, most striae indicate a broadly northwest to southeast movement. Although these patterns

' cross to some extent, they are difficult to resolve morphochronologically. The northwesterly 

pattern is found on the highest ground of the island and is therefore assumed to be the older. It 

is therefore here proposed that an earlier and more substantial ice sheet crossed Fair Isle from 

the northwest, followed by glaciation from more directly western sources.

11.3.2. South Mainland

For the south Mainland peninsula existing reconstructions involve Scandinavian ice crossing the 

central high ground from the east, followed by a smaller, local ice-cap flowing off the area to the 

west and east21. The transport of local rocks across the high ground and a single erratic of 

Norwegian provenance22 is used as evidence of Scandinavian incursion, and other erratic 

evidence demonstrates the latter movement.

This study concludes that such a reconstruction is too simplistic. The local ice cap would extend 

75 km to the east on the basis of offshore sediments23. The single, ‘erratic,’ of Norwegian 

provenance - the only evidence of specifically Scandinavian incursion - might have been 

transported to Shetland during a previous glaciation or by non-glacial means entirely. It is 

possible that earlier or faster deglaciation from the western margin of a major shelf ice cap 

would cause the eastward migration of the ice shelf, so that no Scandinavian incursion is 

required to carry local erratics across the high ground (figure 5.8). Latterly, this ice shed 

migrated west again, possibly lying just to the west of the peninsula and there finally decaying 

(figure 5.9).

On the northeast coast of the south Mainland area there is early evidence of northeasterly ice 

movement, superseded by a southeasterly pattern (figures 5.9 and 5.10). On the northwest coast 

there is a pattern of ice movement southwest into the West Fair Isle Basin. These later ice 

movements suggest ice feed from the relatively high central Mainland areas (figure 5.10).

There is some evidence of a terrestrially contained, active valley glacier at Burn of Mail on the 

southern peninsula. There is no evidence to indicate whether it relates to deglaciation or the

20 Evans et al., 1990
21 Peach and Home, 1879; Mykura, 1976; Flinn, 1977
22 Gordon, 1993a
23 Long and Skinner, 1985
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Younger Dryas stadial. If the latter, then its estimated ELA is low compared with other Scottish 

sites.

11.3.3. West Mainland
Across the most western areas of Shetland there is a clear pattern of early, northwesterly moving 

ice. The ice shed was at least as far east as central Mainland (and probably further east (see 

below)) (figure 6.5). Increasing topographic containment is clearly indicated by ice movement 

into the St Magnus Bay basin, particularly from central areas. Ice was shed to the southwest 

from the Walls peninsula at or after this time and flow from central Mainland northwest and 

southwest - into the St Magnus Bay and West Fair Isle basins respectively - cut supply to the 

peninsula leaving the possibility of a Walls peninsula - centred ice cap (figure 6.6). At the 

western maximum, ice reached the continental shelf edge and retreated from there under 

glacimarine conditions24 until it reached the relatively shallow Foula Ridge where there may 

have been a period of stasis and the development of morainal systems offshore and on Papa 

Stour (figure 6.7).

The nature of subsequent deglaciation is poorly, if at all, recorded in the sediments of the St 

Magnus Bay basin (this writer suggests there may be some fluvioglacial material) but there is no 

evidence of further glacimarine activity. Instead there is a record of postglacial sea level rise in 

the basin with poor biotic assemblages suggesting a severe environment and possible sea ice 

cover.

11.3.4. Central Mainland

In central Mainland there is evidence of early westerly and northwesterly ice movement. 

However there is no evidence of Scandinavian ice crossing the area. It is possible that an early 

ice shed lay east of the east coast and clear evidence that it at least lay to the east of the central 

Scallafield Ridge high ground (figure 7.5), possibly remaining there until the end of glaciation. 

The ice sheet extended up to 75 km offshore to the east25.

There is evidence of subsequent ice movements towards the north and northeast, particularly 

with streams through Yell Sound and towards the Unst Basin (figure 7.6). These are followed by 

increasingly topographically contained movements, particularly to the east and into the Fetlar 

Basin (figure 7.7). Ice draining in more southerly directions appears to be a relatively late 

phenomenon but the high central Mainland area may have remained an ice dispersion centre for 

some time (figure 7.8).

24 Stoker et al., 1993
25 Long and Skinner, 1985; Johnson et al., 1993
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Like the St Magnus Bay basin, recovered sediments of the Fetlar Basin show evidence of rising 

sea level in severe climatic conditions, possibly with seasonal sea ice cover. There is no evidence 

of previous glacimarine activity, although it cannot be discounted. Just as with west Mainland, 

there may have been glacimarine retreat to some limit, followed by terrestrial deglaciation.

There is morphological evidence of individual, small, active, topographically contained glaciers 

in parts of central Mainland. The ages of these are not known.

11.3.5. North Mainland

The earliest ice movement across north Mainland is again towards the northwest (figure 8.4). 

Subsequent ice movement to the north is clearly indicated, particularly with the establishment of 

an ice stream in Yell Sound. There may also have been some eastern ice movement across the 

area south of, and presumably through, Ronas Voe before the strong containment effect of the 

St Magnus Bay is seen (figure 8.5). St Magnus Bay containment did not affect areas to the north 

of the bay where Ronas Voe curtailed ice supply from that direction. The ice stream in Yell 

Sound also disappeared, allowing a plateau glacier on Ronas Hill, the highest ground on 

Shetland, to drain, at particular sites, into the Sound (figure 8.6).

11.3.6. Unst, Yell and Fetlar

The northern maximum of the last glaciation extended to the shelf edge to the northwest and at 

least 50 km north of Unst. Again northwesterly ice flow is probably the earliest recorded in the 

northern isles area and again the ice shed was clearly east of the high ground, and possibly the 

east coast, of Unst (figure 9.4) - possibly a response to early western deglaciation rather than 

Scandinavian influence for which there is no evidence. As deglaciation progressed there is 

evidence that ice sheds moved south and west, ultimately feeding ice streams north and 

northeast through Bluemull and Yell Sounds and into the Unst basin (figure 9.5). Tliis 

configuration may have resulted in a lobate offshore margin and possible terrestrial margins on 

Unst and Yell. There is no evidence, however, that the latter are associated with the glacial 

maximum as has been suggested26. Further topographic containment resulted in ice flow from 

the central Mainland area, and possibly Yell, into the Fetlar basin. There may have been a 

residual ice cap on Unst (figure 9.6).

11.3.7. Temporal relationships of regional patterns

There is little evidence that allows the stratigraphic relationship of the above regional 

reconstructions to be determined. A number of observations can be made however.

26 Flinn, 1983
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The northwesterly movement of ice is a pervasive feature of many parts of Shetland and is found 

particularly on high ground and in peripheral parts of the landmass. It is clearly the earliest 

major movement for which there is evidence. Subsequent deglaciation resulted in ice movements 

that are seen to be increasingly topographically contained and the relative timing of these 

movements are considered next.

The ice stream in Bluemull Sound between Unst and Yell must have disappeared before the 

pattern of ice movement into the Fetlar Basin from Yell (figures 9.5 and 9.6). The Yell Sound 

ice stream must have substantially deteriorated or disappeared before ice movement into the 

Fetlar basin from north central Mainland because some striae suggest that the Yell Sound 

stream was partially fed from ice within the basin itself (figure 7.7). The pattern of ice 

movement into St Magnus Bay from central Mainland cannot be stratigraphically related to the 

Yell Sound stream but probably predates the pattern into the Fetlar Basin since there is evidence 

of a significant eastern ice shed associated with movement into the former (figure 7.5). It 

follows that the Yell Sound and St Magnus Bay patterns may be contemporaneous to some 

extent.

The northeasterly pattern of striae across Whalsay and Bressay (figures 7.6 and 5.9) both 

predate the southeasterly pattern of striae across east central Mainland and the Lerwick area as a 

whole (figures 7.8 and 5.10) and may suggest broad northeasterly ice movement at some stage 

during deglaciation, possibly at the same time as the streams between the northern isles or later, 

followed by more easterly and southeasterly movement from more central areas.

The southwesterly pattern on the south coast of the Walls peninsula (figure 6.6) predates the 

deglaciation of the West Fair Isle basin (figure 5.9), otherwise flow into the basin would be 

indicated, unless it occurred at approximately the same time as the significant stream from 

central Mainland into the basin (figure 6.6). This latter movement must itself be more recent 

than the deglaciation of the western ice shed over the west coast of the southern peninsula 

(figure 5.9). The northeast pattern across Bressay predates the deglaciation of the southern 

peninsula.

In summary, following regional northwesterly ice movement, there is evidence of north and 

northeasterly moving ice streams across the northern isles, increasing topographic containment 

into the St Magnus Bay basin on the west coast, and later movement from central areas to the 

east and into the Fetlar Basin. The final ice movements appear to be those to the southeast and 

southwest from the central High ground of Mainland. In all, a picture of a major ice cap with an 

eastern ice shed, shrinking to a core in the high ground of central Mainland, first revealing 

northern and western peripheral areas of Shetland, then eastern and finally southern parts. A
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plateau glaciation oil the Ronas Hill plateau existed for an unknown period of time also. This 

sequence is summarized in figures 11.4 to 11.8 (discussed below).

11.3.8. Nature of englaciation and deglaciation

Offshore subglacial sediments show that ice reached the continental shelf edge to the west27, at 

least 75 km to the east28, at least 50 km to the north29, and there may have been a margin at least 

30 km east of Fair Isle30 (figure 3.13). The subglacial deposits to the east are much thinner and 

more discontinuous than to the north and west31. This may be because of the existence of pre- 

Late Weichselian subglacial sediments to the north and west allowing the development of 

deformation till and the provision of material for other deposition there, whereas to the east ice 

flowed erosively over the East Shetland Platform - a solid substrate.

There are morainic forms parallel to parts of the continental shelf edge and widespread 

glacimarine deposits as well as areas of iceberg scour marks32. The glacimarine deposits 

continue inshore towards terrestrial Shetland, suggesting that deglaciation was into a rising sea 

level in its early stages. The inshore basins, however, show no evidence of glacimarine 

sedimentation and the sea level rise recorded within them is post-glacial although still related to 

severe climatic conditions. This implies some position at which the deglaciating ice margin 

became grounded. The ice margin on Papa Stour33 and other possible hummocky bedfonns 

currently under investigation at the British Geological Survey may relate to this transition and it 

is possible that this zone is in the region of the -100m bathynunetric contour around the island.

Subsequent deglaciation was topographically contained and highly erosive. These two 

contentions are mutually supportive. Evidence of erosion abounds and some of the strongest 

patterns shown by tliis erosion indicate topographic containment and are associated with very 

late ice movement. The glacial drift geology has been studied here for the first time. Almost 

everywhere there is evidence of glacitectonization of incompetent bedrock types, often showing a 

conformable contact with thin lodgement till. The direction of ice movement can be shown to be 

associated with late deglacial trends. The till is invariably deposited in a single unit and, where 

determinable, contains erratics associated with the most recent ice movement. In no sections 

were shells discovered, despite the likelihood that such material would have been entrained 

between islands and offshore during earlier stages, again suggesting that this evidence relates to 

the most recent period of deglaciation. In summary, the last glaciation was erosive in at least its 

late stages and, where lodgement deposition has occurred, it should be treated in most places be

27 e.g. Stoker et al., 1993
28 Johnson et al., 1993
29 Stevenson, 1991
30 Evans et al., 1990
31 Stoker et al., 1993; Johnson, et al., 1993
32 Stoker et al., 1993
33 Mykura and Phemister, 1976
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seen as a glacidynamic process triggered by a friction threshold as erosion of the underlying 

bedrock entrains greater amounts of debris.

Finally, although what evidence there is of terrestrial ice margins is in most places loo poor to 

interpret adequately, there is no doubt that in some locations there are constructional ice 

marginal forms34 which indicate individual, small, active, glaciers, at a very late stage in the last 

deglaciation or during a recrudescence of ice during the Younger Dryas stadial.

11.3.9. Conclusions

There is evidence of ice retreat from the northwest, north, northeast and latterly from the east 

and southeast to a central Mainland core with a subsidiary core on the Ronas Hill plateau. It is 

likely that through much of deglaciation the main ice sheds were displaced somewhat to the 

east, and western areas of central Mainland were deglaciated earlier than eastern areas. However 

it is also likely that the ice shed was just to the west of south Mainland latterly.

There is, however, little evidence of an eastern displaced ice shed on Fair Isle at any time.

11.4. The last glaciation of Shetland

This apparently complex sequence can be explained in terms of a relatively simple hypothesis of 

the englaciation and deglaciation of the last ice cap of the area and this is outlined here and in 

figures 11.1 to 11.8.

11.4.1. Maximum

The limits of the last glaciation as best they are known are shown in figure 11.1. The orientation 

of the western margin is of significance since it explains the northwestern movement of ice that 

is seen across many parts of Shetland: from central and western Mainland to as far north as 

Unst. Early southeastern movement on Fair Isle might also be explained by a linear ice shed, 

parallel to the continental shelf edge. However, since tliis northeast-southwest trending ice shed 

is maintained through early deglaciation the pattern of ice movement described may relate to a 

later period than the glacial maximum shown in figure 11.1.

11.4.2. Early deglaciation

Glacimarine deposits between and within moraine systems, and iceberg scour marks, on the 

outer western continental shelf edge35 suggest that deglaciation was associated with relative sea 

level rise. Bathymmetric asymmetry means that such a rise would have an immediate impact on 

the western margin of the ice sheet and a more delayed affect on the eastern margin. Assuming

34 Flinn, 1982; Mykura and Phemister, 1976; Cliarleswortli, 1956
35 Stoker et al., 1993
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that the linear ice shed was able to adjust to equilibrium, this disproportionate or wholly western 

ablation would cause it to migrate east. Note that it may have remained to the northwest of Fair 

Isle (figure 11.2).

11.4.3. Scandinavian influence?

The eastern ice shed discussed above explains the carriage of erratics from east to west across 

the southern peninsula of the islands. It has alternatively been hypothesised that early 

Scandinavian ice achieved this36, since there is no evidence for such movement elsewhere on the 

islands because they were protected from the incursion by a local ice cap. This latter scenario 

has been modelled in tliis study (figure 5.7).

However the present writer believes the absence of eastern erratics across other parts of Shetland 

is instead due to their subsequent removal. Shetland has been severely glacially eroded. Even 

where lodgement deposition is evident it is often conformably underlain, and possibly triggered, 

by glacitectonization of the underlying bedrock. The direction of ice movement associated with 

this erosion is consistent with late, topographically contained, glaciation. Therefore, the little 

glacial drift on terrestrial Shetland is a late phenomenon associated with local ice from high 

ground areas. Since tliis movement was sufficiently prolonged to result in clear patterns of 

erosive evidence, it would be most unlikely that pre-existing erratics would survive in observable 

quantities on such a narrow archipelago. Widespread survey by this study did not reveal any 

multiple till sequences.

Some explanation is therefore required for why south Mainland alone should include erratic 

evidence of an earlier eastern ice shed. It is here suggested that a subsequent ice shed lay over, 

and decayed on, the west coast of south Mainland, preserving erratic evidence there (see below).

11.4.4. Later deglaciation

Figure 11.3 shows the situation when sea-level has risen to -100 m OD. Considerable 

deglaciation of the eastern margin has occurred but only a small movement in the western 

margin, so the eastern ice shed outlined above may have persisted for a considerable period. 

Deglaciation to the north and northeast has occurred but is less significant in the southeast and 

southwest. The conclusions reached from terrestrial Shetland (above) - that northern and 

northeastern margins were deglaciated earlier than southern margins - are therefore compatible 

with this model.

At -100m glacimarine sedimentation ceases, inshore basins between here and the current 

landmass have been shown in tliis and other studies not to contain glacimarine sediments. On-

36 Peach and Home, 1879; Flinn, 1977; Mykura, 1976
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going work at the British Geological Survey may reveal morainic morphology37 at locations 

associated with tliis approximate depth. The development of a stable ice margin at, and 

terrestrial retreat from, tliis position might be due to a combination of eustatic and isostatic 

effects on relative sea level rise, or bathymmetry (around much of Shetland, a bathymmetric rise 

is observed at approximately -82 ni38).

At tliis stage, bathymmetric asymmetry results in the position of the simple linear ice shed just 

to the west of south Mainland, continuing to shed ice to the northwest and southeast. Such a 

situation would explain the unexpected absence of south Mainland erratics on south Walls and 

Foula, the preservation of earlier erratics on the w'est coast of south Mainland (figure 5.5), and 

the most recent ice movement across Sumburgh. However at this stage the topography of the 

islands, relative to the size of the degraded ice cap, may be significant. Flow patterns now relate 

to a more complex three dimensional picture (discussed next) and the linear model is therefore 

simplistic.

The point at which terrestrial topographic containment of the last ice cap becomes significant 

can be determined veiy approximately. Assuming a maximum east-west ice sheet diameter of 

approximately 150 km a simple calculation39 suggests that the ice shed, if centred over Shetland, 

reaches heights of approximately 1200 m. This assumes basal shear stresses associated with 

bedrock rather than deforming sediments. The assumption is appropriate to the east of the 

islands and some way to the west but last glacial sediments of the outer continental shelf to the 

west and north are imderlain by unconsolidated Quaternary material. Tliis may have had some 

effect in reducing the elevation of the ice cap but is unlikely to have resulted in topographic 

containment to an extent that would affect the conclusions given above.

With the ice extent associated with the -100 in bathymmetric contour (figure 11.3), subglacial 

deformation can be ignored since within this zone the substrate is almost entirely bedrock. Here 

the east-west extent is approximately 50 km and tliis results in an ice surface elevation over the 

centre of the ice cap of just 234 m. The analysis is simplistic but demonstrates significant 

topographic containment is relevant by tliis stage in deglaciation. The three dimensional nature 

of the ice cap becomes important and influences much of the terrestrial pattern of ice movement 

observed in this study and discussed now.

The early northwestern pattern of ice movement towards deglaciation on the northwestern 

margins of the ice sheet is observable in all areas except south Mainland (figure 11.4). As 

deglaciation occurred more significantly from northern margins, this movement over the

37 A. Stevenson (pers. comm. 1995)
38 Flinn, 1964
39 Nye, 1952
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northern isles deteriorates and north moving ice streams in Yell Sound, Blue Mull Sound and 

the Unst Basin develop. Further south the ice shed continued to lie to the east side of central 

Mainland, although these northern ice streams may have drawn it westwards and reduced its 

elevation, furthering the topographic containment that becomes increasingly evident there 

(figure 11.5). A strong pattern of movement into the St Magnus Bay basin was underway by this 

time.

Further rises in sea level resulted in the first evidence of northeastern ice movement. The exact 

sequence of events is not clear but northeastern ice movement affected eastern coastal areas as 

far south as Bressay. By this time the ice shed must have migrated westwards onto central 

Mainland and possibly switched to the west coast of south Mainland (figure 11.6) and 

increasing draw down from northern streams resulted in the southern displacement of the ice 

shed zone also (figure 11.7).

Increasingly eastern and southeastern ice movements develop as deglaciation at eastern and 

southeastern margins becomes more significant (figure 11.8). Since the ice shed is likely to have 

been to the west of south Mainland, partly covering the west Fair Isle basin, deglaciation of the 

basin, and ice streams into it from central Mainland, may have occurred later still.

There is clear evidence of plateau glaciation north of Ronas Voe draining into Yell Sound 

(figure 11.8) and minor active glaciation of some high groimd areas. Neither the timing or 

duration of these high ground glacial events is known.

The entire reconstruction, from bathymmetry-related early deglaciation, to inshore basin-related 

later deglaciation, and ultimately topographically contained terrestrial glaciation, demonstrates 

the overriding influence of topography at all scales. Ice flow associated with the ice cap at its 

maximum is controlled by regional bathymmetry, for example the orientation of the continental 

shelf edge, and appears unrelated to more local topography. Ice flow is subsequently towards 

major inshore basins, such as the St Magnus Bay and Fetlar basins, and eventually flows within 

local, terrestrial topography. It is the remnants of these different patterns and the relationship 

between the size of the ice cap and the scale at which it can be seen to be topographically 

contained, that has permitted this dynamic reconstruction. The heavily eroded nature of the 

Shetland landscape allows the writer confidence in attributing these patterns to different time 

sequences because it is possible to assume that earlier patterns of ice movement, associated with 

different scales of topographic containment, are removed by subsequent, more locally 

influenced, glaciers.

11.4.5. Chronology
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The absence of extensive periglacial deposits has been used to infer that the most recent 

glaciation was of Late Weichselian age. However, although terrestrial chronological sites show 

the existence of at least two glaciations and one interglacial, their age remains uncertain40. An 

environmental oscillation that is clearly post Late Weichselian has also been recognized. Dates 

suggest the islands were ice free at circa. 13 ka BP and that there was a cold, although not 

necessarily glacial, spell between 12 ka BP and 10 ka BP. This chronological work is at a 

preliminary stage however41.

Offshore sequences of sediments offer greater potential for establishing the chronology of the 

last glaciation of the area. Radiocarbon dates ofl3,315±155 BP (adjusted for seawater 

apparent age of 405 ± 40 a) have been published from sediments near the eastern limit of the 

last ice sheet, thus indicating a Late Weichselian glaciation42. The end of the Lateglacial 

interstadial in this area is dated to 12, 265 ± 135 BP (adjusted for seawater apparent age of 405 

± 40 a). These sediments cannot be correlated with the more extensive last glacial sequences to 

the north and west of the islands and cannot, in themselves, assist in establishing the sequence 

of deglaciation suggested above.

However this study dated sediments on the northern continental shelf area, again illustrating 

that the last glaciation was Late Weichselian and extensive. It might also be suggested that 

deglaciation may have commenced much earlier than on the eastern margin, before 17,825 ± 

280 BP, and that more distal glacimarine activity was occurring at around 13 ka BP, however 

this is simply consistent with the morphochronological sequence outlined above and is not 

conclusively demonstrated by the core logging and dating work undertaken. The late glacial 

interstadial unit examined in tliis study is of comparable age to tliat recovered from the East 

Shetland Platform.

11.4.6. Conclusions

In summary the last ice sheet of the Shetland Islands at its known maximum was perhaps 150 

km wide and stretched northeast-southwest on the western edge of the continental shelf. Much 

of the ablation during deglaciation was due to ice calving into a rising sea level and the position 

of the ice cap relative to bathymmetry exerted a strong influence on the movement of the ice 

shed. Rapid deglaciation in the west and northwest moved the ice shed to the east of the island 

and, although it is to not possible to wholly resolve the issue, evidence previously attributed to 

Scandinavian glaciation could have resulted from this shift. Deglaciation commenced on the 

margins of the ice cap in a clockwise fashion: following early western deglaciation, the north, 

northeast, east, southeast and southwest margins began deteriorating in order, as sea level rose.

40 Hall et al., 1993a,b
41 Birnie, 1993a
42 Peacock and Long, 1994
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Patterns of ice movement observed on Shetland demonstrate this sequence and preliminary 

dating may support it. The margin of the ice cap appears to have become wholly terrestrial at 

about the -100 m bathymmetric contour, due to a stabilization in relative sea level rise or a step- 

change in bathynunetry at -83 m aroimd parts of the island group. At tliis stage the Shetland 

Islands and surrounding topography were exerting influence in the containment of ice flow. This 

reconstruction demonstrates the influence of topography at different scales in relation to the size 

of the ice cap. Parts of Shetland may have been ice free by 13 ka BP but this date is uncertain. 

There is good evidence of plateau glaciation on the Ronas Hill plateau and of valley glaciers in 

other parts of the islands and these are undated.

The writer believes that tliis sequence of events offers a hypothesis that more robustly 

accommodates the evidence available than models providing a single ice shed configuration.

The hypothesis requires further testing and recommendations for future work are given below.

11.5. The last glaciation of Shetland in northwest Europe

The last glaciation of northwest Europe as a whole was reviewed at the beginning of tliis study. 

This section briefly considers some of the conclusions reached by the study and highlights 

further questions that might be asked of the current models of northwest European glaciation.

Offshore work to the east of Shetland has shown that there is no evidence of Scandinavian 

glaciation extending further west than the western edge of the Norwegian trench during the last 

glaciation43. This study has provided a model in which evidence on Shetland may be interpreted 

in this context. However evidence from eastern Scotland, particularly Buchan, Caithness and 

Orkney also requires resolution in tliis respect (figures 2.3 'and 2.4). In the case of Shetland, a 

linear ice shed migrated to the east of the islands due to significant ablation on one side, the 

west, of the ice sheet. Figure 2.4 (cl) refers to a Moray Filth ice divide. It is reasonable to ask 

whether a major ice shed developed here under similar circumstances and whether the linear, 

northeast-southwest trending ice shed discussed above in the context of the shelf-wide glaciation 

around the Shetland Islands, can be extended still further southwest, lying to the southeast of 

Orkney and Caithness, thus accounting for the northwestern pattern of ice movement across 

these areas.

The Shetland reconstruction also reveals that a more extensive glaciation retreated by sea-level 

rise induced glacimarine ablation to a more restricted margin where the ice appears to have 

become grounded. That point was aroimd the -100m bathymmetric contour. Elsewhere in 

northwest Europe much debate surrounds the ideas of more extensive and less extensive Late

43 Johnson et al., 1993
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Weichselian glaciations44. It is possible that tliis conflicting evidence can also be explained in 

terms of two phases of glaciation, possibly controlled by sea level rise.

Thus, 29-25 ka ago, as the result of an early, precipitation enhancing, incursion of warm north 

Atlantic waters into the northern seas45, an extensive northwest European glaciation occurred. 

Regardless of the role played by Scandinavian ice, the maximum extent of Shetland ice itself is 

more compatible with the extensive glaciation of the North Sea that may have occurred at 

around 25 lea BP46 (figures 2.8 and 2.9). The maximum eastern limit is improbably far east to be 

contemporaneous with the Bosies Bank moraine. Similarly on the western edge of the 

continental shelf, it is unlikely a Shetland ice cap would have reached the shelf edge47 while a 

Scottish one was restricted to the Greenstone Ridge in the Minch48. The more extensive 

reconstruction is compatible with a recognized ice margin on the continental shelf edge to the 

west and northwest of Scotland (figure 2.5 and 11.9). The latter is thought to be early 

Weichselian in age but is undated49 and may represent an early maximum of the Late 

Weichselian.

From this more extensive maximum, the Shetland ice cap retreated to a stable position 

associated with the -100m contour under the influence of sea level rise. The Bosies Bank 

moraine on the east coast of Scotland, and more restricted reconstructions on the west coast, 

including the Greenstone Ridge, demonstrate a striking relationship to the -100 m bathymmetric 

contour50 (figure 2.5 and 11.9). South of St Kilda, a relative sea level minimum of 

approximately -80m is modelled to occur at between 18 and 13 ka BP51, consistent with 

palaeoenvironmental evidence from dated vibrocores in tliis area52. These show that here sea 

level is relatively constant between 18 and 13 ka BP, during which time isostatic and eustatic 

contributions to sea level are therefore approximately equal and opposite. The result is a period 

of approximately 5,000 years during which sea level lay at or around the present -100m 

bathymmetric contour.

A pattern of deglaciation from an early extensive ice margin to a more restricted ice margin, 

then, can be reconstructed and might be achieved by the combination of sea level rise and 

bathymmetry. To apply such a hypothesis to the last glaciation of Scotland requires much 

consideration of eustatic and isostatic influences on relative sea level, of the significance of

44 e.g. Ehlers and Wingfield, 1991
45 Hebbeln et al., 1994
46 Sejrup et al., 1994
47 Stoker et al., 1994
48 Fyfe et al., 1993
49 Stoker et al., 1994
50 Hall and Bent, 1990
51 Lambeck, 1993
52 Peacock et al., 1992
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trimlines and, above all, further dating of sediments. The writer has not investigated such 

parallels in detail but they certainly merit attention.

The Shetland study also suggests that these wider issues might be resolved by two

complementary approaches: the integration of terrestrial and off-shore data in a non-superficial 

way; and the development of a robust chronostratigraphy. In the case of Shetland, a complex 

and confusing pattern of spatial data is resolved in this study by the introduction of a dynamic, 

temporal dimension and an effort to consider the ice cap as a whole, not simply its terrestrial 

expression. A similar approach needs to be taken with what is, after all, an even more complex 

and confusing pattern of spatial data around Scotland.

11.6. Summary and recommendations of this study

This study has demonstrated the following:

• that the last Shetland ice cap needs to be reconstructed as a dynamic entity if all available 

evidence is to be understood;

• that both terrestrial and offshore data need to be integrated if either is to be understood in the 

context of the whole Shetland ice cap;

• that bathymmetry and sea-level rise play an important role in determining the pattern of 

deglaciation of the last Shetland ice cap until its margins approached the current terrestrial 

landmass, that topography has constrained the pattern of deglaciation on and around 

terrestrial Shetland, and that, therefore, topography at a variety of scales has profoundly 

influenced the last Shetland ice cap throughout its history;

• that the last glaciation of Shetland can be explained without recourse to the influence of 

Scandinavian ice;

• that there are no multiple till sequences and that the last glaciation of Shetland was highly 

erosive, especially as ice became increasingly topographically contained during deglaciation, 

so that much of the terrestrial evidence pertains to later phases of deglaciation;

• that within this study lie important implications for the reconstruction of the last glaciation 

of Scotland, both in terms of the controlling influences on deglaciation and the methodology 

that permitted their reconstruction.
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The wide ranging nature of this investigation has not allowed the full pursuit of all the 

implications of the reconstruction given. Whilst the writer believes it provides the most 

advanced consideration of the last glaciation of the islands to date it is best treated as an 

hypothesis awaiting testing. Numerous possibilities for future investigation arise. This study can 

make a number of challenging assertions that need to be investigated: high resolution 

stratigraphy and dating of offshore sediments around the islands will demonstrate the clockwise 

sequence of deglacial events suggested here; in-depth analysis of the clastic component of 

western offshore sediments or thicker lodgement till sections on western Shetland will prove 

that, al some stage, the last ice sheet crossed the entire Shetland archipelago from the east; 

however, terrestrial lodgement till fabrics will further demonstrate that much of the till on 

Shetland is associated with the most recent ice movements at the end of the last glaciation; 

modelling and further reconstruction of the development of the last Scandinavian ice sheet 

should not be constrained by any necessity that it need reach Shetland, and modelling of the 

Shetland ice cap that accounts for tidewater calving ablation will show an early eastern 

migration of the main ice shed zone and the pattern of deglaciation suggested above; further 

seismic and sidescan sonar analysis of the inshore area, some of which is already underway, will 

reveal more about the transition between glacimarine and terrestrial deglaciation around the - 

100m bathymmetric contour; and, in the case of Scotland, the integration of terrestrial and 

offshore data, the recognition of topographic influence at a variety of scales and the development 

of a dynamic framework, will further understanding of the last ice sheet.

The last Shetland ice cap should be treated as a sensitive focus of northwest European and, by 

extension, global climate change during the last glaciation. There are, of course, many ways in 

which the hypothesis outlined in tliis thesis might be challenged, tested and refuted. For the 

time-being, it is hoped that it serves to catalyse those activities.

142



References

12. References

Aim, T. 1993. 0vre /Erasvatn - palynostratigraphy of a 22,000 to 10,000 BP lacustrine record 
on Andoya, northern Norway. Boreas, 22, 171-188.

Amman, B. andLotter, A.F., 1989. Late-glacial radiocarbon-dating and palynostratigraphy 
on the Swiss Plateau. Boreas, 18, 109-126.

Andersen, B.G., 1979. The deglaciation of Norway 15,000-10,000 years BP. Boreas, 8, 79
87.

Andrews, J.T., Erlenkeuser, H., Tedesco, K., Aksu, A.E. and Jull, A.J.T., 1994. Late 
Quaternary (Stage 2 and 3) meltwater and Heinrich Events, northwest Labrador Sea. 
Quaternary Research, 41, 26-34.

Andrews, I.J., Long, D., Richards, P.C., Thomson, A.R., Brown, S., Chesher, J.A. and 
McCormac, M., 1990. United Kingdom offshore regional report: the geology of the Moray 
Firth. London: HMSO for the British Geological Survey.

Atkinson, T.C., Lawson, T.J., Smart P.L., Harmon, R.S. and Hess, J.W., 1986. New data on 
speleothem deposition and palaeoclimate in Britain over the last forty-thousand years.
Journal of Quaternary Science, 1, 1,67-72.

Ballantyne, C.K., and Wain-Hobson, T. 1980. The Loch Lomond Advance on the Island of 
Rhum. Scottish Journal of Geology, 16, 1-10.

Ballantyne, C.K., 1987. The present-day periglaciation of upland Britain. In Boardman, J., 
1987. Periglacial landforms and processes in Great Britain and Ireland. Cambridge: 
Cambridge University Press. 113-126.

Ballantyne, C.K., 1989. Loch Lomond readvance on the Isle of Skye, Scotland: glacier 
reconstruction and palaeoclimatic implications. Journal of Quaternary Science, 4, 2, 95-108.

Ballantyne, C.K., 1990. The late Quaternary glacial history of the Trotternish Escarpment, 
Isle of Skye, Scotland, and its implications for ice-sheet reconstruction. Proceedings of the 
Geological Association, 101, 3, 171-186.

Ballantyne, C.K., 1994. Gibbsitic soils on former nunataks: implications for ice sheet 
reconstruction. Journal of Quaternary Science, 9, 1, 73-80.

Baumann, K-H., Lackschewitz, K.S., Mangerud, J., Spielhagen, R.F., Wolf-welling, T.C.W., 
Henrich, R. and Kassens, H., 1995. Reflection of Scandinavian ice sheet fluctuations in 
Norwegian Sea sediments during the past 150,000 years. Quaternary Research, 43, 185-197.

Beaulieu, J.L.D. and Reille, M., 1992. The last climatic cycle at La Grande Pile (Vosges, 
France). A new pollen profile. Quaternary Science Reviews, 11, 431-438.

Beg, M.A., 1990. The distribution and dispersal of heavy minerals on the continental shelf 
around the Shetland Islands. Unpublished PhD Thesis, University of Strathclyde.

Benn, D.I., Lowe, J.J., and Walker, M.J.C., 1992. Glacier response to climatic change during 
the Loch Lomond Stadial and early Holocene: geomorphological and palynological evidence 
from the Isle of Skye, Scotland. Journal of Quaternary Science, 7, 125-144.

143



References

Bennet, K.D., 1993. Holocene vegetation history at Murraster, west Mainland, Shetland. In 
Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland 
Field Guide. Cambridge: Quaternary Research Association., p. 119-120.

Bennet, K.D., Boreham, S., Hill, K., Packham, S., Sharp, M.J. and Switsur, V.R., 1993. 
Holocene environmental history at Gunnister, north Mainland, Shetland. In Birnie, J.F., 
Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland Field Guide. 
Cambridge: Quaternary Research Association., p. 83-98.

Bennet, M.R., 1994. Morphological evidence as a guide to deglaciation following the Loch 
Lomond readvance: a review of research approaches and models. Scottish Geographical 
Magazine, 110, 1, 24-32.

Bennet, M.R. and Boulton, G.S., 1993a. A reinterpretation of Scottish 'hummocky moraine' 
and its significance for the deglaciation of the Scottish Highlands during the Younger Dryas 
or Loch Lomond Stadial. Geological Magazine, 130,301-318.

Bennet, M.R. and Boulton, G.S., 1993b. The deglaciation of the Younger Dryas or Loch 
Lomond Stadial ice-field in the Northern Highlands, Scotland. Journal of Quaternary 
Science, 8, 133-146.

Bent, A.J.A., 1986. Aspects of pleistocene glaciomarine sequences in the North Sea. 
Unpublished Phd Thesis, University of Edinburgh.

Bergersen, O.F., Thoresen, M., and Hougsnae, R., 1991. Evidence for a newly discovered 
Weichselian interstadial in Gudbrandsdalen, central South Norway. Striae, 34, 103-108.

Birks, H.H., Paus, A., Svendsen, J.I., Aim, T., Mangerud, J. andLandvik, J.Y. 1994. Late 
Weichselian environmental change in Norway, including Svalbard. Journal of Quaternary 
Science, 9, 133-146.

Birks, H.J.B. and Peglar, S.M., 1979. Interglacial pollen spectra from Sel Ayre, Shetland.
New Phytologist, 83, 559-575.

Birks, H.J.B. and Ransom, M E., 1969. An interglacial peat at Fugla Ness, Shetland. New 
Phytologist, 68, 777-796.

Birnie, J.F., 1981. Environmental changes in Shetland since the end of the last glaciation. 
Unpublished PhD Thesis, University of Aberdeen.

Birnie, J.F. 1993a. The Late-glacial in Shetland. In Birnie, J.F., Gordon, J.E., Bennet, K.D. 
and Hall, A.M., 1993. The Quaternary of Shetland Field Guide. Cambridge: Quaternary 
Research Association. 15-16.

Birnie, J.F. 1993b. The record of the late-glacial environment at Aith Voe, Cunningsburgh.
In Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland 
Field Guide. Cambridge: Quaternary Research Association, 27-38.

Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland 
Field Guide. Cambridge: Quaternary Research Association.

Birnie, J.F. and Harkness, D.D., 1993. Radiocarbon dates on Late-glacial sediments at Aith 
Voe, Cunningsburgh, and adjustments for rock flower effects. In Birnie, J.F., Gordon, J.E., 
Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland Field Guide. Cambridge: 
Quaternary Research Association, 39-43.

144



References

Boulton, G.S., 1979. A model of Weichselian glacier variation in the North Atlantic region. 
Boreas, 8, 373-396.

Boulton, G.S., 1990. Sedimentary and sea level changes during glacial cycles and their 
control on glacimarine facies architecture. In: Dowdeswell, J.A. and Scourse, J.D.,1990. 
Glacimarine Environments: Processes and sediments, p. 15-56.

Boulton, G.S., Peacock, J.D. and Sutherland, D.G., 1991. Quaternary. In Craig, G.Y.
Geology of Scotland. London: The Geological Society. 503-543.

Brown, I.M., 1993. Patterns of deglaciation of the last (Late Weichselian) Scottish ice sheet: 
evidence from ice-marginal deposits in the Dee valley, northeast Scotland. Journal of 
Quaternary Science, 8, 3, 235-250.

Cameron, T.D.J., Crosby, A., Balson, P.S., Jeffery, D.H., Lott, G.K., Bulat, J. and Harrison, 
D.J. 1992. Uni ted Kingdom offshore regional report: the geology of the southern North Sea. 
London: HMSO for the British Geological Survey.

Cameron, T.D.J., Stoker, M.S. and Long, D. 1987. The history of Quaternary sedimentation 
in the UK sector of the North Sea basin. Journal of the Geological Society, 144, 43-58.

Chapelhowe, R., 1965. On the glaciation of North Roe, Shetland. Geographical Journal, 131, 
60-70.

Charlesworth, J.K., 1956. The late-glacial history of the highlands and islands of Scotland. 
Transactions of the Royal Society of Edinburgh, 62, 769-928.

Chesher, J. A., 1984a. Shetland Sheet 59° 50'N - 02°WBritish Geological Survey 1:250 000 
Series Solid Geology. Southampton: Ordnance Survey for the British Geological Survey.

Chesher, J. A., 1984b. Shetland Sheet 59° 50'N - 02°WBritish Geological Survey 1:250 000 
Series Sea Bed Sediments and Quaternary Geology. Southampton: Ordnance Survey for the 
British Geological Survey.

CLIMAP Project Members 1976. The surface of the ice age Earth. Science, 191, 1131-1136.

Cockcroft, D.N., 1987. The Quaternary sediments of the Shetland Platform and adjacent 
continental shelf margin. Unpublished PhD thesis, University of Keele.

Coope, G.R., 1977. Fossil coleopteran assembalges as sensitive indicators of climatic change 
during the Weichselian (last) cold stage. Philosophical Transactions of the Royal Society, 
B280, 313-337.

Davies, H.C., Dobson, M.R., and Whittingon, R.J., 1984. A revised sesismic stratigraphy for 
Quaternary deposits on the inner continental shelf west of Scotland between 55°30'N and 
57°30'N. Boreas, 13, 49-66.

Dawson, A.G. 1992. Ice Age Earth - Late Quaternary Geology and Climate. London: 
Routledge. pp.293.

Dunham, K.C., 1968. Institute of Geological Sciences One Inch Series Scotland sheets 129, 
130 & 131: Northern Shetland. Drift Edition. Southampton: Ordnance Survey for Institute of 
Geological Sciences.

145



References

Dunham, K.C., 1971. Institute of Geological Sciences One Inch Series Scotland sheet 127: 
Western Shetland. Drift Edition. Southampton: Ordnance Survey for Institute of Geological 
Sciences.

Edwards, K.J., Moss, A.G. and Whittington, G., 1993. A Late-glacial pollen site at Grunna 
Water, Nesting. InBirnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The 
Quaternary of Shetland Field Guide. Cambridge: Quaternary Research Association., p. 99
102.

Ehlers, J. 1990. Reconstructing the dynamics of the north-west European Pleistocene ice 
sheets. Quaternary Science Reviews, 9, 71-83.

Elilers, J. and Wingfield, R. 1991. The extension of the Late Weichselian/Late Weichselian 
ice sheets in the North Sea Basin. Journal of Quaternary Science, 6, 313-326.

Elverhoi, A., Fjeldskaar, W., Solheim, A., Nyland-Berg, M. and Russwurm, L., 1993. The 
Barents Sea ice sheet - a model of its growth and decay during the last ice maximum. 
Quaternary Science Reviews, 12, 863-873.

Engstrand, L.G., 1967. Stockholm Natural Radiocarbon Measurements VII. Radiocarbon, 9, 
387-438.

Evans, D. and Andrews, I. J., 1988. Fair Isle Sheet 59°N - 02°WBritish Geological Survey 
1:250 000 Series Solid Geology. Southampton: Ordnance Survey for the British Geological 
Survey.

Evans, D., Long, D. and McElvanney, E.P., 1990. Fair Isle Sheet 59°N - 02°WBritish 
Geological Survey 1:250 000 Series Sea Bed Sediments and Quaternary Geology. 
Southampton: Ordnance Survey for the British Geological Survey.

Finlay, T.M. 1926. The Old Red Sandstone of Shetland. Part I: South-eastern area. 
Transactions of the Royal Society of Edinburgh, 54, 553-572

Finlay, T.M. 1932. A Tonsbergite boulder form the boulder-clay of Shetland. Transactions of 
the Edinburgh Geological Society, 12, 180.

Flinn, D., 1964. Coastal and submarine features around the Shetland Islands. Proceedings of 
the Geologists' Association, 75, 321-329.

Flinn, D., 1967. Ice front in the North Sea. Nature, 215, 1151-1154.

Flinn, D., 1969. A geological interpretation of the aeromagnetic maps of the continental shelf 
aroimd Orkney and Shetland. Geological Journal, 6, 279-292.

Flinn, D., 1970. The glacial till of Fair Isle, Shetland. Geological Magazine, 107, 273-276.

Flinn, D., 1977. The erosion history of Shetland: a review. Proceedings of the Geologists' 
Association, 88, 129-146.

Flinn, D., 1978. The most recent glaciation of the Orkney-Shetland Channel and adjacent 
areas. Scottish Journal of Geology, 14, 109-123.

Flinn, D., 1980. Geological history. In Berry, R.J. and Johnston, J.L. (eds) The Natural 
History of Shetland. London: Collins, p. 31-59.

146



References

Flinn, D., 1982. Institute of Geological Sicences One-Inch Series Scotland Sheet 128:
Central Shetland Drift Edition. Southampton: Ordnance Survey for the Institute of Geological 
Sciences.

Flinn, D., 1983. Glacial meltwater channels in the northern isles of Shetland. Scottish 
Journal of Geology, 19,311-320.

Flinn, D., 1992a. A note on the Dalsetter erratic, Dunrossness, Shetland. The Shetland 
Naturalist, 1, 49-50.

Flinn, D., 1992b. The Milldale glacial lake, Henna Ness, Unst. The Shetland Naturalist, 1, 
29-36.

Flinn, D., 1994a. Geology of Yell and some neighbouring islands in Shetland. Memoir of the 
British Geological Survey, Sheet 130 (Scotland). London: HMSO for the British Geological 
Survey

Flinn, D., 1994b. Ice flow in Unst during the last glaciation. The Shetland Naturalist, 1, 3, 
73-80.

Folk,
Fyfe, J. A., Long, D., Evans, D. and Abraham, D.A., 1993. United Kingdom offshore regional 
report: the geology of the Malin-Hebrides Sea area. London: HMSO for the British 
Geological Survey.

Gatuallin, V., Polyak, L., Epstein, O. and Romanyuk, B. 1993. Glacigenic deposits of the 
Central Deep: a key to the Late Quaternary evolution of the eastern Barents Sea. Boreas, 22, 
47-58.

Gordon, D., Smart, P.L., Ford, D.C., Andrews, J.N., Atkinson, T.C., Rowe, P.J. and 
Christopher, N.S.J., 1989. Dating Late Pleistocene interglacial and interstadial periods in the 
United Kingdom from speleothem growth frequency. Quaternary Research, 31, 14-26.

Gordon, J.E., 1993a. Dalsetter erratic. In Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, 
A.M., 1993. The Quaternary of Shetland Field Guide. Cambridge: Quaternary Research 
Association., p.43

Gordon, J.E., 1993b. Bum of Mail. In Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall,
A.M., 1993. The Quaternary of Shetland Field Guide. Cambridge: Quaternary Research 
Association., p.44

Gordon, J.E., Hall, A.M. and Ross, H.M., 1993. Introduction to the Quaternary of Shetland.
In Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland 
Field Guide. Cambridge: Quaternary Research Association., p. 6-8.

Gordon, J.E. and Sutherland, D.G., 1994. Geological Conservation Review Series 
Quaternary of Scotland. London: Chapman and Hall for the Joint Nature Conservation 
Committee.

Greene, D., 1992. Topography and former Scottish tidewater glaciers. Scottish Geographical 
Magazine, 108, 3, 164-171.

Grosswald, M.G. 1984. Glaciation of the continental shelves (parts I and II). Polar 
Geography and Geology, 8, 194-258.

Hall, A.M., 1991. Pre Quaternary landscape evolution in the Scottish Highlands.
Transactions of the Royal Society of Edinburgh, 82, 1-26.

147



References

Hall, A.M., 1993. Clettnadal, West Burra. InBirnie, J.F., Gordon, J.E., Bennet, K.D. and 
Hall, A.M., 1993. The Quaternary of Shetland Field Guide. Cambridge: Quaternary Research 
Association., p. 48-50.

Hall, A.M. and Bent, A. J. A., 1990. The limits of the last British ice sheet in northern 
Scotland and the adjacent shelf. Quaternary Newsletter, 61, 1-12.

Hall, A.M., Whittington G., and Gordon, J.E. 1993a. Interglacial peat at Fugla Ness,
Shetland. In Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary 
of Shetland Field Guide. Cambridge: Quaternary Research Association., p. 65-76.

Hall, A.M., Gordon, J.E., and Whittington G. 1993b. Early Weichselian interstadial peat at 
Sel Ayre. In Birnie, J.F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary 
of Shetland Field Guide. Cambridge: Quaternary Research Association., p. 104-118.

Hall, A.M. and Jarvis, J., 1989. A preliminary report on the Late Weichselian glaciomarine 
deposits at St Fergus, Grampian Region. Quaternary Newsletter, 59, 5-7.

Hall, A.M. and Whittington, G., 1989. Late Weichselian glaciation of southern Caithness. 
Scottish Journal of Geology, 25, 307-324.

Hall, A.M. and Whittington, G., 1993. Tresta. In Bimie, J.F., Gordon, J.E., Bennet, K.D. and 
Hall, A.M., 1993. The Quaternary of Shetland Field Guide. Cambridge: Quaternary Research 
Association., p. 121-122.

Hambrey, M. J., 1994. Glacial Environments. London: UCL Press

Harkness, D.D., 1983. The extent of natural 14C deficiency in the coastal environment of the 
United Kingdom. Proceedings of the First International Symposium ofC-14 and Archeology. 
PACT 8, 351-364.

Hebbeln, D., Dokken, T., Andersen, E.S., Hald, M. and Elverhoi, A. 1994. Moisture supply 
for nothern ice-sheet growth during the Last Glacial Maximum. Nature, 370, 357-360.

Heijnis, H., 1992. Uraniutn/Thorium dating of Late Pleistocene peat deposits in N W Europe. 
Unpublished PhD Thesis, University of Groningen.

Holmes, R., 1977. Quaternary deposits of the central North Sea, 5. The Quaternary geology of 
the UK sector of the North Sea between 56° and 58°N. Report of the Institute of Geological 
Sciences, 77/14.

Holmes, R., 1991. Foula Sheet 60°N - 04°WBritish Geological Survey 1:250 000 Series 
Quaternary Geology. Southampton: Ordnance Survey for the British Geological Survey.

Holmes, R., Jeffrey, D.H., Ruckley, N.A. and Wingfield, R.T.R., 1993. Quaternary Geology 
Around the United Kingdom (North Sheet). 1: 1 000 000. Edinburgh: British Geological 
Survey.

Home, D.M. 1880. Valedictory address by President. Transactions of the Edinburgh 
Geological Society, 3, 23-26.

Hoppe, G., 1974. The glacial history of the Shetland Islands. Transactions of the Institute of 
British Geographers, Special Publication, 7, 197-210.

Hulme, P.D. and Dumo, S.E., 1980. A contribution to the phytogeography of Shetland. New 
Phytologist, 84, 165-169.

148



References

Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., 
Marinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, 
N.G., Prell, W.L., Raymo, M.E., Shacketon, N.J. and Toggweiler, J.R., 1992. On the 
structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. 
Palaeoceanography, 7.

Ingolfsson O. and Norddahl, H. 1994. A review of the environmental history of Iceland, 13 
000-9000 yr BP. Journal of Quaternary Science, 9, 147-198.

Jansen, E. and Bjorkland, K.R. 1985. Surface ocean circulation in the Norwegian Sea 15,000 
BP to present. Boreas, 14, 243-257.

Jardine, W., Dickson, J.H., Haughton, P.D.W., Harkness, D.D., Bowen, D.Q. and Sykes, G.A. 
1988. A late Middle Weichselian interstadial site at Sourlie, near Irvine, Strathclyde. Scottish 
Journal of Geology, 24, 288-295.

Johansen, J., 1975. Pollen diagrams from the Shetland and Faeroe Islands. New Phytologist, 
75, 369-387.

Johansen, J., 1985. Studies in the vegetational history of the Faroe and Shetland Islands. 
Annales Societatis Faeroensis Supplementum, XI.

Johnson, H., Richards, P.C., Long, D. and Graham, C.C., 1993 United Kingdom offshore 
regional report: the geology of the northern North Sea. London: HMSO for the British 
Geological Survey.

Kirby, R.P., 1969. Till fabric analyses from the Lothians, central Scotland. Geographiska 
Annaler, Stockholm, 51 A, 48-60.

Kirk, W. and Godwin, H., 1963. A late-glacial site at Loch Droma, Ross and Cromarty. 
Transactions of the Royal Society of Edinburgh, 65, 225-249.

Kiernan, J. and Borgstrom, I., 1994. Glacial landforms indicative of a partly frozen bed. 
Journal of Glaciology, 40, 255-264.

Koq, N., Eystein, H. and Haflidason, H. 1993. Palaeoceanographic reconstructions of surface 
ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based 
on diatoms. Quaternary Science Reviews, 12, 115-140.

Lambeck, K., 1994. Glacial rebound and sea-level change in the British Isles. Terra Nova, 3, 
379-389.

Lambeck, K., 1995. Constraints on the Late Weichselian ice sheet over the Barents Sea from 
observations of raised shorelines. Quaternary Science Reviews, 14, 1-16.

Larsen, E. and Sejrup, H.P., 1990. Weichselian land-sea interactions: Western Norway- 
Norwegian Sea. Quaternary Science Reviews, 9, 85-98.

Lauritzen, S.-E., 1991. Uranium series dating of speleothems: a glacial chronology for 
Nordland, Norway, for the last 600 ka. Striae, 34, 127-133.

Lawson, T.J., 1984. Reindeer in the Scottish Quaternary. Quaternary Newsletter, 42, 1-7.

Le Bas, M.J., 1992. The petrography of the Shetland tonsbergite. The Shetland Naturalist, 1, 
51-56.

149



References

Levesque, A.J., Mayle, F.E., Walker, I.R. and Cwynar, L.C., 1993. The amphi-Atlantic 
oscillation: a proposed late-glacial climatic event. Quaternary Science Reviews, 12, 629-643.

Long, D., 1988. Halibut Bank Sheet 60°N-00°W. British Geological Survey 1:250 000 Series 
Quaternary Geology. Southampton: Ordnance Survey for British Geological Survey.

Long, D. and Skinner, A.C., 1985. Glacial meltwater channels in the northern isles of 
Shetland. Scottish Journal of Geology, 21, 222-224.

Lowe, J. J., 1984. A critical evaluation of pollen-stratigraphic investigations of pre-Late 
Weichselian sites in Scotland. Quaternary Science Reviews, 3, 405-432.

Mangerud, J., Larsen, E., Longva, O. and Sonstegaard, E., 1979. Glacial history of western 
Norway 15,000-10,000 BP. Boreas, 8, 179-187.

May, F. and Mykura, W., 1978. Institute of Geological Sicences One-Inch Series Scotland 
Sheet 126: Southern Shetland Drift Edition. Southampton: Ordnance Survey for the Institute 
of Geological Sciences.

McCarroll, D. and Nesje, A. 1993. The vertical extent of ice sheets in Nordfjord, western 
Norway: measuring degree of rock surface weathering. Boreas, 22, 255-265.

Mykura, W., 1976. Institute of Geological Sciences British Regional Geology: Orkney and 
Shetland. Edinburgh: HMSO.

Mykura, W. and Phemister, J., 1976. Institute of Geological Sciences Memoirs of the 
Geological Survey of Great Britain (Scotland): The Geology of Western Shetland.
Edinburgh: HMSO.

Nesje, A. and Dahl, S.O. 1993. Late-glacial and Holocene glacier fluctuations and climate 
variations in western Norway: A review. Quaternary Science Reviews, 12, 255-261.

Nesje, A. and Sejrup, H.P. 1988. Late Weicliselian/Weichselian ice sheets in the North Sea 
arid adjacent land areas. Boreas, 17, 371-384.

Nye, J.F. 1952. A method of calculating the thickness of ice sheets. Nature, 169, 529-530.

Peach, B.N. and Home, J., 1879. The glaciation of the Shetland Isles. Quaterly Journal of the 
Geological Society of London, 35, 778-811.

Peach, B.N. and Horne, J., 1881. The glaciation of Caithness. Proceedings of the Royal 
Society of Edinburgh, 6, 316-352.

Peacock, J.D., 1981. Scottish late-glacial marine deposits and their environmental 
significance. In Neale, J. and .Flenley, J., 1981. The Quaternary in Britain. Oxford:
Pergamon Press. 222-236.

Peacock, J.D., Austin, W.E.N., Selby, I., Graham, D.K., Harland, R., and Wilkinson, I.P., 
1992. Late Weichselian and Holocene palaeoenvironmental changes on the Scottish 
continental shelf west of the Outer Hebrides. Journal of Quaternary Science, 7, 2, 145-161.

Peacock, J.D. and Harkness, D.D., 1990. Radiocarbon ages and full-glacial to Holocene 
transition in seas adjacent to Scotland and southern Scandinavia: a review. Transactions of 
the Royal Society of Edinburgh, 81, 385-396.

150



References

Peacock, J.D. and Long, D., 1994. Late Weichselian glaciation and deglaciation of Shetland. 
Quaternary Newsletter, 74, 16-21.

Penny, L.F., Coope, G.R. and Catt, J. A., 1969. Age and insect fauna of the Dimlington Silts, 
East Yorkshire. Nature, 224, 65-67.

Rise, L. and Rokoengen, K., 1984. Superficial sediments in the Norwegian sector of the 
North Sea between 60°30' and 62°N. Marine Geology, 58, 287-317.

Robertson, T. 1935. The glaciation of Aithsting, South Nesting, Whalsay and the Out 
Skerries. Unpublished: Geological Survey Records (Edinburgh).

Robinson, M. and Ballantyne, C.K., 1979. Evidence for a glacial readvance pre-dating the 
Loch Lomond Advance in Wester Ross. Scottish Journal of Geology, 15, 271-277.

Rokoengen, K., Lofaldi, M., Rise, L., Loken, T. and Carlsen R. 1982. Description and dating 
of a submerged beach in the northern North Sea. Marine Geology, 50, M21-M28.

Rolfe, W.D.I., 1966, Woolly rhinoceros from the Scottish Pleistocene. Scottish Journal of 
Geology, 2, 253-258.

Ross, H.M., 1993. North Unst and north Yell - evidence for an ice margin. In Birnie, J.F., 
Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland Field Guide. 
Cambridge: Quaternary Research Association. 57-58.

Ross, H.M., Hall, A.M., and Gordon, J.E., 1993. Patterns of ice flow on Shetland. In Birnie,
J. F., Gordon, J.E., Bennet, K.D. and Hall, A.M., 1993. The Quaternary of Shetland Field 
Guide. Cambridge: Quaternary Research Association. 9-14.

Ruddiman, F. and McIntyre, A. 1981. The mode and mechanism of the last deglaciation: 
oceanic evidence. Quaternary Research, 16, 125-134.

Seidenkrantz, M.-S., Kristensen, P. and Knudsen, K.L., 1995. Marine evidence for climatic 
instability during the last interglacial in shelf records from northwest Europe. Journal of 
Quaternary Science, 10, 77-82.

Sejrup, H.P., Haflidason, H., Aarseth, I., King, E., Forsberg, C.F., Long, D. and Rokoengen
K. 1994. Late Weichselian glaciation history of the northern North Sea. Boreas, 23, 1-13.

Selby, I., 1989. The Quaternary geology of the Hebridean continental margin. Unpublished 
PhD Thesis, Universtiy of Nottingham.

Shaffer, G. and Bendtsen, J., 1994. Role of the Bering Strait in controlling North Atlantic 
ocean circulation and climate. Nature, 367, 354-357.

Siegert, M.J. and Dowdeswell, J.A. 1995. Modelling ice-sheet sensitivity to Late Weichselian 
environments in the Svalbard-Barents region. Journal of Quaternary Science, 10, 33-44.

Sissons, J.B., 1967. The Evolution of Scotland's Scenery. Edinburgh

Sissons, J.B., 1981. The last Scottish ice-sheet: facts and speculative discussion. Boreas, 10, 
1-17.

Sissons, J.B. and Dawson, A.G., 1981. Former sea-levels and ice limits in part of Wester 
Ross, Northwest Scotland. Proceedings of the Geological Association, London, 92, 115-124.

151



References

Sollid, J.L. and Sorbel, L. 1994. Distribution of glacial landforms in southern Norway in 
relation to the thermal regime of the last continental ice sheet. Geografiska Annaler, 76 A: 1- 
2, 25-35.

Stevenson, A.G., 1991. Miller Sheet 6l°N-02°WBritish Geological Survey 1:250 000 Series 
Quaternary Geology. Southampton: Ordnance Survey for British Geological Survey.

Stoker, M.S. 1988. Pleistocene ice-proximal glaciomarine sediments in boreholes from the 
Hebrides Shelf and Wyville-Thomson Ridge, Northwest UK continental shelf. Scottish 
Journal of Geology, 24, 3, 249-262.

Stoker, M.S. 1995. The influence of glacigenic sedimentation on slope-apron development on 
the continental margin off Northwest Britain. In Scrutton, R.A., Stoker, M.S., Shimmield, 
G.S. andTudhope, A.W. (eds) 1995. The Tectonics, Sedimentation and Palaeoceanography 
of the North Atlantic Region, Geological Society Special Publication No. 90, 159-177.

Stoker, M.S. and Holmes, R. 1991. Submarine end-moraines as indicators of Pleistocene ice- 
limits off northwest Britain. Journal of the Geological Society of London, 148, 431-434.

Stoker, M.S., Harland, R., Morton, A.C. and Graham, D.K., 1989. Late Quaternary 
stratigraphy of the northern Rockall Trough and Faeroe-Shetland Channel, northeast Atlantic 
Ocean. Journal of Quaternary Science, 4, 211-222.

Stoker, M.S., Hitchen, K. and Graham, C.C. 1993. United Kingdom offshore regional report: 
the geology of the Hebrides and West Shetland shelves, and adjacent deep-water areas. 
London: HMSO for the British Geological Survey.

Stoker, M.S., Leslie, A.B., Scott, W.D., Briden, J.C., Hine, N.M., Harland, R., Wilkinson,
I.P, Evans, D., Ardus, D.A., 1994. A record of late Cenozoic stratigraphy, sedimentaion and 
climate change from the Hebrides Slope, Northeast Atlantic Ocean. Journal of the Geological 
Society, 151, 253-249.

Stoker, M.S. and Long, D., 1984. A relict ice-scoured erosion surface in the central North 
Sea. Marine Geology, 61, 85-93.

Sutherland, D.G., 1980. Problems of radiocarbon dating deposits from newly deglaciated 
terrain: examples from the Scottish Late-glacial. In Lowe, J.J., Gray, J.M. and Robinson, J.E., 
1980. Studies in the Late-glacial of North-West Europe. Oxford: Pergammon Press. 139-149.

Sutherland, D.G., 1984. The Quaternary deposits and landforms of Scotland and the 
neighbouring shelves: a review. Quaternary Science Reviews, 3, 157-254.

Sutherland, D.G., 1991. Late Weichselian glacial deposits and glaciation in Scotland and the 
adjacent offshore region. In Ehlers, J., Gibbard, P.L. and Rose, J., 1991. Glacial Deposits in 
Great Britain and Ireland. Rotterdam: Balkema. 53-60.

Sutherland, D.G., Ballantyne, C.K. and Walker, M.J.C., 1984. Late Quaternary glaciation 
and environmental changes on St Kilda, Scotland, and their palaeoclimatic significance. 
Boreas, 13, 261-272.

Sutherland, D.G. and Gordon, J.E., 1993a. The Shetland Islands - Introduction. In Gordon, 
J.E. and Sutherland, D.G. 1994. Geological Conservation Review Series Quaternary of 
Scotland. London: Chapman and Hall for the Joint Nature conservation Committee.

Sutherland, D.G. and Gordon, J.E., 1993b. The Orkney Islands - Introduction. In Gordon, 
J.E. and Sutherland, D.G. 1994. Geological Conservation Review Series Quaternary of 
Scotland. London: Chapman and Hall for the Joint Nature Conservation Committee.

152



References

Sutherland, D.G. and Gordon, J.E., 1993c. Introduction. In Gordon, J.E. and Sutherland,
D.G. 1994. Geological Conservation Review Series Quaternary of Scotland. London: 
Chapman and Hall for the Joint Nature Conservation Committee.

Sutherland, D.G. and Walker, M.J.C., 1984. A Late Weichselian ice free area and possible 
interglacial site on the Isle of Lewis, Scotland. Nature, 309, 701-703.

Tipping, R.M., 1988. The recognition of glacial retreat from palynological data: a review of 
recent work in the British Isles. Journal of Quatnemary Science, 3, 3, 171-182.

Von Weymarn, J. A., 1979. A new concept of glaciation in Lewis and Harris, Outer Hebrides. 
Proceedings of the Royal Society of Edinburgh, 77B, 97-105.

Vorren, T.O., Vorren, K.D., Aim, T., Gulliksen, S. andLovlie, R. 1988. The last deglaciation 
(20,000 to 11,000 BP) on Andoya, northern Norway. Boreas, Yl, 41-77.

Walker, M.J.C., Bohncke, S.J.P., Coope, G.R., O’Connell, M., Usinger, H. and Verbruggen, 
C., 1994. The Weicliselian/Weichselian Late-glacial in northwest Europe (Ireland, Britain, 
north Belgium, the Netherlands, northwest Germany). Journal of Quaternary Science, 9, 2, 
109-118.

Walker, M.J.C., and Lowe, J. J. 1985. Flandrain environmental history of the Isle of Mull, 
Scotland. I. pollen-stratigraphic evidence and radiocarbon dates from Glen More, south
central Mull. New Phytologist, 99, 587-610.

Weaver, A.J. and Hughes, T.M.C., 1994. Rapid interglacial climate fluctuations driven by 
North Atlantic ocean circulation. Nature, 367, 447-450.

Yomig, A.C., Sullivan, R.A., Rybicki, C.A., 1978. Pile design and installation features of the 
Thistle Platform. Proceedings of the European Offshore Petroleum Conference, London.

153



References

Technical Appendix
This is the technical appendix.

154



Technical Appendix

Assumptions underlying evidence for reconstruction

The reconstruction of the last glaciation of Shetland offered in this thesis is based not only on 

newly observed terrestrial evidence but also on that collected from other sources. The latter is 

taken at face value and so it is appropriate to consider the assumptions upon which it is based.

Striation

Shetland’s glacial history is dominantly erosive and striae are the most widely analysed 

indicators of ice movement. It may be possible to determine both the azimuth and sense of 

direction of ice movement from striae. The following assumptions are made in the 

interpretation of striae data in tliis study.

• Striae are the product of glacial abrasion rather than other floating or flowing masses which 

are capable of creating them, such as landslides, avalanches or iceberg scouring.

• Basal ice movement is sensitive to undulations in the bedrock over which it is flowing, as 

well as larger topographic controls at all scales. In general, wider, consistent patterns of 

striae azimuth are preferred to isolated observations as evidence of the azimuth of ice flow. 

However, this reconstruction is based on a recognition of patterns of topographic 

containment at varying scales and all observations, from all sources, are considered in this 

context.

• The distribution of striae is at least partially related to the distribution of appropriate 

lithologies upon which they can be etched and perserved, vegetation cover (concealment), 

postglacial erosion and observation and mapping. In this study, distribution is rarely used as 

evidence in itself.

• Although sense of direction of ice flow can be determined from striation morphology (Flint, 

1971; Menzies and Shilts, 1996) the depth, width and length of are complexly related to 

basal stress, ice velocity, meltwater, debris content, effective stress, lithology of the indenter 

and indented and the angle of the indenter. This study, therefore, does not attempt to deduce 

sense of direction from striae observations. Sense of direction striae data from other sources 

are treated as being open to reversal unless clearly accompanied by consistent stoss and lee 

evidence.
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Stoss and lee
Sense of direction of ice movement data is in places controversial on Shetland with different 

authors concluding different senses of direction for the same area. The following assumptions 

are made regarding stoss and lee data in this study.

• The distribution and pattern of individual and areal stoss and lee observations are strongly 

related to bedrock lithology (Rastas and Seppala, 1981).

• Azimuth of ice movement is difficult to determine with precision because of this variation. 

Although Flint (1971) considers there to be only a 10 - 15° arc of variation, the heterogeneity 

of solid geology on Shetland is great and no attempt is made to determine azimuth of ice 

flow from such data in this study.

• Sense of direction from stoss and lee observations. particularly small scale (micro-) stoss and 

lee observations, can only be reliably established over an area in which consistent evidence 

exists. Single, small scale, observations are unreliable and can be the product of other 

weathering processes exploiting the same lithological weaknesses as a glacier.

Erratics

Clastic erratic data is used in the study as evidence of the direction of former ice movement. A 

number of assumptions are made in this regard.

• The presence of non-local rocks, surficially or in glacial sediments, is due to one period 

glacial transport from the source area. Other mechanisms (such as human carriage) would be 

readily identifiable. Most evidence of glaciation on Shetland indicates a high degree of 

erosion, especially in the later phases of glaciation, so multiple movements of erratics can 

reasonably be discounted.

• There is insufficient space on the islands, and insufficient data, to demonstrate the existence 

of indicator trains or fans. Core sampling of clastic debris is inadequate to mount such an 

investigation offshore.

• The percentage quantities of particular erratic assemblages are dependent on: area of 

upstream source outcrop; erodibility of upstream source outcrop; durability of rock type in 

transport; distance of transport. Some use of these assumptions on Shetland is made by other 

authors however this study treats these tenlativelyand generally considers only the existence 

or otherwise of erratics of particular provenance, rather than their quantity.
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• The variability of rock types on Shetland and the extent of weathering suffered by tranported 

clasts makes hand specimen identification of erratics from particular outcrops difficult. This 

study only identifies erratics in simple circumstances and accepts the superior knowledge of 

other workers al face value.

Heavy mineral analysis
A study on the heavy mineralogy of sand grade particles is referred to throughout tliis work as 

giving some evidence of the provenance of offshore glacigenic sediments. The following 

assumptions are made.

• The most influential control on heavy mineral assemblages sampled offshore is the 

petrography of the source materials.

• The stability of heavy minerals during weathering is highly variable (Bateman and Catt, 

1985).

• Erosion, transport and deposition can affect the distribution of heavy minerals, particularly 

where grain density, size and shape are variable, but this has been little studied.

• Some heavy minerals may survive glacial abrasion more than others (Drewry, 1986).

• It is difficult to reliably analyse provenance where a variety of bedrock types are crossed by 

glaciers.

For these reasons, the study of heavy minerals is treated with some caution and detailed 

conclusions are not drawn from it in this reconstruction.

Fabric analysis

Fabric analyses are conducted in a number of locations. The following assumptions are noted.

• The study is concerned with a-type fabrics (a-axis declination parallel with ice flow and 

inclination slightly up-glacier) (Gale and Hoare, 1991).

• Lodgement and melt-out tills often display a-type fabrics.
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• Fabric is not only controlled by depositional process but by: clast size and shape; till 

coarseness (interclast contact); local relief (extending ice flow may enhance a-type fabrics): 

ice flow velocity (Harris, 1968).

• Use of the horizontal reference plane may result in different fabrics than the plane of 

deposition which is not always possible to deteremine (Cornish, 1979).

• The character of till fabrics may change over very short horizontal and vertical differences 

(e.g. Hoare and Connell, 1981).

In this study, time did not permit widespread sampling of till faces and the fabrics presented are 

used as supplementary evidence unless clearly visible throughout the exposed till section.
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Ground covered in field observation
Although this reconstruction is partially based on existing datasets, much of Shetland was 

covered by ground reconnaissance during the study. In all areas, new drift geology data was 

recorded and this is presented in summary in the figures accompanying this volume. Attention 

was paid to the depth, disposition with respect to the underlying substrate and topography, 

matrix colour, clast lithology, size and angularity, fabric, contacts and structure where these 

were evident, and probable genesis. Although many sections were cleaned for examination and
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photography, notes were made for whole exposures, where possible lateral and vertical extent 

were recorded, but individual sections were not formally logged in detail. Given the small scale 

maps in published work, it is difficult to determine whether recorded observations should be 

treated as new or confirmed. Specific striae observations made by the author are not recorded 

here. The author’s field maps are largely at the 1:25 000 scale, however the major dataset is that 

of Flinn who has mapped striae throughout Shetland at 1:10 000.

To assist in the interpretation of the author’s observations and in the planning of future work, 

the ground covered is recorded here. Much of the coastline was recorded because drift exposure 

is best here. Most roads and tracks, also liable to lead to exposures especially in quarries, were 

travelled by car. Many inland areas are peat-covered but the larger burns and valleys were 

explored, together with any areas that contained interesting drift or morphology previously 

published. In all. this amounts to six months work in the field.

Fair Isle
The entire coastline and much of the inland area was covered. All rock outcrops that might 

provide stoss and lee data were examined, as were all exposed drift sections. It is notable that 

despite particular efforts to verify striae evidence in this area none were observed. All roads and 

tracks were travelled and drift exposures examined.

South Mainland

The only coastlines not traversed were as follows: east coast of Bressay, east coast of Clift 

Sound, the West coast of West Burra, and the isles of Noss, Colsay, South Havra, Oxna, Papa 

and Hildsay. Much of the high ground of the Clift Hills is peat-covered but all available tracks 

were explored, together with the tributaries of the Burns of Laxdale, Mail and Sevdale. The 

areas of Dales Voe, Loch of Tingwall and west of Lerwick were covered. All roads and tracks 

were travelled and drift exposures examined.

West Mainland

Most of the southern coastline and associated voes were traversed, together with all of the west 

and northwest coasts. The voes and firths of the northern coast were explored although 

Vementry, Papa Little and the west coast of Muckle Roe were not visited. The entire coastline 

and inland area of Papa Stour was examined. Across the Walls peninsula, all roads and tracks 

were travelled and drift exposures examined, the Bum of Dale was traversed and Sandness Hill 

explored.

Central Mainland

The only coastlines not traversed were as follows: Aith Voe between East Burra Firth and Gon 

Firth; Sullom Voe west of Voxter Ness and North Ward; Garth’s Voe to Orka Voe; Colla Firth
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to Sand Wick in Swining Voe; the east coast of Lunna Ness; Lunning Sound to Levaneap; parts 

of the east coast of South Nesting peninsula; parts of the east coast of Loch of Strom; the isles of 

Bigga, Samphrey, West Linga, Linga, Papa Little and Little Roe. Inland, East Kame, Mid 

Kame, West Kame, Petta Dale and the Valley of Kergord were covered. Also Burn of 

Laxobigging and tributaries, Burn of Valayre and Thieves Knowes. The area west of Lunnasting 

was not explored, but in North Nesting the Burns of Gnmnafirth, Forse, Quoys and Laxo (to 

Grossawater) were. All roads and tracks were travelled and drift exposures examined.

North Mainland

The entire west coast of Sullom Voe and Yell Sound was traversed, along with the southern 

coast of the Esha Ness Peninsula, Hillswick, Ura Firth, Hatnar, Gunnister and Mangaster Voes, 

and Hamna Voe and the south side of Ronas Voe. The coast and area north of Beorgs of Uyea 

was covered, as well as the Beorgs of Skellberry and Collafirth and Ronas Hill. The west coast 

of the Ronas Plateau, from Hevdadale Head to Uyea was traversed. All roads and tracks were 

travelled and drift exposures examined.

Unst, Yell and Fetlar

The only coastlines not traversed in this area were: parts of the northwest coast of Unst; the 

island of Balta; the island of Uyea; parts of the north and east coast of Fetlar; the island of 

Hascosay; the island of Linga; and the west coast of Yell between Whale Firth and West Sand 

Wick. On Unst, the Valla Field ridge, the Burns of Mailand and Caldback, the area of Virda 

Field and the areas around Saxa Vord and Hennaness were covered. On Fetlar, the inland areas 

of the west side of the island were widely covered. And on Yell, where much of the inland area 

is peat covered, the areas north of Hill of Vigon and Kussa Waters were explored, and the Laxa 

and Arisdale Burns were traversed. All roads and tracks were travelled and drift exposures 

examined.
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Ice-movement direction during ice-sheet glaciation

2.1 Major icc movements during the last glaciation, showing that ice flowed from a number 
of centres.
From Gordon and Sutherland. 1993

----- ........ - --- ------
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Bowen et al.
(1986)
Northern limit of
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& Bent (1990)

- . Southern limit of
< Anglian Glaciation

ure 2.1 Extent of glacial limits in Great Britain and Ireland. Based on a map in Bowen et al. (1986), with modifications.

Maximum extent and ice limits for the Anglian. Late Devensian and Loch Lomond 
stadial glaciations.
From Ballantyne and Harris. 1994
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Fig. 15.16. Theoretical reconstructions of the maximum extent of the Late Devensian ice 
sheet over the British Isles, a. Model based on an ice sheet confluent with a Scandinavian 
ice sheet in the North Sea and using a 100 kPa basal shear stress. Contours (in metres) 
and flow lines are shown. No significant nunataks occur (Boulton et al. 1977).

Theoretical reconstruction of maximum extent of Scottish Late Dev ensian ice 
('maximalist' version).
From Boulton et al.. 1991
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Early ice movement 
from Moray Firth

Later ice movement 
towards Moray Firth

100km
i

Fig. 15.16.
b. Reconstruction based on limited ice sheet extent in the North Sea, a basal shear stress 

of 70 kPa on the land area and 30 kPa in the sea area. Principal nunatak areas are 
shown as dots.

c. Explanation of the evidence of last ice flow directions in the Moray Firth area. 
Evidence of landward flow in the outer Firth suggests an ice divide in the Firth (C,), 
whilst seaward flow in the inner Firth (C2) must have occurred after collapse of the 
ice dome. The change could reflect a Wolstonian/Late Devensian contrast (e.g. 
Sutherland 1984) or stages in decay of the Late Devensian ice sheet (e.g. Boulton et 
al. 1985).

Theoretical reconstruction of maximum extent of Scottish Late Dev ensian ice 
('minimalist' version) including possible scenarios for the northeast of Scotland 
From Boulton et al.. 1991
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Fig. 9. Schematic palaeogeography ot the Hebrides Slope during the Plio-Pleistocene (alter Stoker et al. in press): Abbreviations: WTR. 
Wyvillc-Thomson Ridge: FSC. Faeroe-Shetland Channel; SS. Sula Sgeir: NR. North Rona; F. Flannan Islands: SK, St Kilda.

Schematic palaeogeography of the Hebrides Slope from the Plio-Pleistocene to Late 
Pleistocene. The right hand figure is of particular interest in this study .
From Stoker et al.. 1994



Figure 4.3 The distribution 
of glacier ice in the North Sea 
region during the last glacial 
maximum. The eastern limit 
of the British ice sheer is 
uncertain (dotted line). The 
distribution of ice-marginal 
moraines in Scandinavia is 
consistent with the view that 
much of the North Sea region 
was unglaciated during the 
last glacial maximum. The 
significance of the Hills 
moraine complex is not 
known (after Andersen 1979, 
Bowen 1978, Sutherland 
1984; Long et al. 1988).

2.6 North sea icc distribution, including the Egga moraine sequences and the Wee Bankic 
moraine
From Dawson, 1992



Figure 10 Weichselian/Devensian ice margins in the North Sea area as envisioned by (a) Valentin (1957), (b) Jansen (1976), (c) Long et 
a/. (1988), and (d) Ehlers and Wingfield (this paper).

2.7 Various reconstructions of Weichselian/Devensian ice margins in the North Sea. 
From Ehlers and Wingfield. 1991
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transect shown in figure 3.15. Relevant deposits include: FD= Ferder Formation; SHN = 
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Figure 1 Location map showing the present current systems in the North Atlantic. S = Skagen 3, NL = Nor re Lyngby 2

2.12 Present thermohaline current systems in the Northeast Atlantic, Greenland, Iceland and 
Norwegian Seas.
From Seidenkrantz and Knudsen, 1995



DEGLACiAL POLAR FRONT MOVEMENTS
Fig. I. Retreat positions of the North Atlantic polar front from the glacial maximum position 18,000 

yr ago to the modern interglacial location after 6000 yr B.P. Based on data in Ruddiman and 
McIntyre (in press).

2.13 Deglacial polar front movements in the Atlantic Ocean. 
From Ruddiman and McIntyre, 1981
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Regional bathymmetry around Shetland. 
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Figure 3.5. Outline of bathymmetry around Shetland. Bathymmetric contours are in -50 m intervals.
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fig 13. Erosion surfaces.

3.6 Erosion surfaces and possible major Devonian channels on Shetland. 
From Flinn. 1980
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Direction of ice movement inferred from 
boulder content of drift and glacial erratics 

XT Tonsbergite boulder

S Conjectural eastern limit of local ice cap 
s' during Devensian maximum

0 5 10 15 20 Km

•a Possible direction of ice flow 
during Devensian maximum

Approximate position of ice shed in central 
/* Mainland during Devensian maximum

Fio. 28. Directions of ice movement during the Devensian {Weichselian} in Shetland

3.9 Mykura's reconstruction of the last glaciation of Shetland
From Mvkura. 1976



figure 7. Glaciation of the Shetland Islands. During an early stage the Shetland Islands were most probably over
ridden by an ice sheet from the east (left map), whereas the later stage was characterized by radial flow from a local 

ice cap (right map)

Hoppe's reconstruction of the last glaciation of Shetland.
From Hoppe. 1974
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fig 8. Flow pattern of the Shetland ice cap.

3.11 Flinn's reconstruction of the last glaciation of Shetland
From Flinn. 1980
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3.14 Distribution of latc-glacial deposits and suggested maximum limits of late Weichselian 
terrestrial and submarine tills on the East Shetland Platform and northern North Sea 

From Johnson et al.. 1993
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3.15 Distribution of Quaternary deposits around northern and eastern Shetland and the northern North 
Sea, see figure 2.10 for a cross section through these sediments. Relevant deposits include: OTB 
= Otter Bank Sequence; STB = Stormy Bank Sequence; FD= Ferder Formation; SHN = 
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From Johnson et al., 1993



-‘Sr Glacial striae (Not all recorded striae shown)

Direction of ice movement inferred from 
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XT Tonsbergite boulder

Conjectural eastern limit of local ice cap 
during Devensian maximum
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F i g. 5.11 Probable transport paths of glacial material during the earlier phase of 
glaciation (Devensian) on the Shetland CS.

3 .16 Probable transport paths of glacial material during earlier Devensian derived from
analysis of heavy minerals in sea bed sediments.
From Bcgg. 1990
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Figure 4.1. Solid geology and topography of Fair Isle, Shetland.
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ure 4.2. Bathymmetry around Fair Isle, Shetland (numbers on shallow side of bathymmetric contours).
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Figure 4.4. Ice direction indicators on Shetland, except NW-SE striae azimuth. The striae pattern has been 
interpreted as being indicative of ice from the east diverging around the high ground (thick black arrows). The 
interpretation of this study is of ice from the west converging on the lee side of the high ground (thick grey arrows). 
(See figure 4.3 for details of observation sources).
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Figure 4.5. Drift distribution and glacial stratigraphy, Fair Isle, Shetland: drift distribution after May and Mykura 
(1978) and this study; glacial stratigraphy (this study).



4.6 Glacitectonization and joint-block removal, northeast Fair Isle. Shetland. (HU221730)

4.7 Glaciteconization near the Observatory, east Fair Isle. Shetland. (HU224723)



4.8 Roche moutonec. south Fair Isle. Shetland (centre horizon). Direction of ice movement 
from the left or west. (HU204706)

4.9 Lodgement till. South Harbour. Fair Isle. Shetland. (HU203699)



4.10 Lodgement till. South Harbour. Fair Isle. Shetland. Direction of ice movement probably 
left to right, or east to west. (HU203699)



4.11 Complex facies including gravels and sands, west Fair Isle. Shetland. (HU201708)



Figure 5.1. Solid geology, topography and bathymmetry, south Mainland, Shetland.



Figure 5.2. Ice direction indicators, south Mainland, Shetland: striae after May and Mykura (1978), Flinn (1977), 
Hoppe (1974) and this study; glacitectonized bedrock (this study); fabric data (this study), including sample size (n 
clasts), maximum eigen vectors (az degrees) and values (sig %) and azimuth of local slope angle shown by black 
line through fabric; erratic data from this study (but general trends established by previous authors): G - granite, 
Sch - schist, Sst - sandstones; birdsfoot fan and meltwater channels near Noss Hill (this study).



Figure 5.3. Possible ice shed configurations in the northeast of south Mainland, Shetland: the Mykura (1978) 
confluence between Scandinavian and Shetland ice sheets (M); and other possible ice sheds (1 - oldest/most recent - 
see text for explanation, 2 - older than 3).



Figure 5.4. Drift distribution and glacial stratigraphy, south Mainland, Shetland: drift distribution after May and 
Mykura (1978) and this study; glacial stratigraphy (this study).



_______ 1 Km. Vertical exaggeration x 10

_______ 1 Km. Vertical exaggeration x 10

Figure 5.5. Schematic representation indicating a possible circumstance explaining the preservation of early- 
deposited erratics on the west coast of south Mainland, Shetland: in the top scenario, it is difficult to explain the 
preservation of these erratics under conditions of sever erosion on the west coast; in the lower, the erratics are 
preserved beneath a zone of limited or no erosion if the ice shed is displaced to the west of the high ground.



outcrop*

500 metres

Figure 5.6.. API of Bum of Mail moraine. Grey areas are general topographic raised areas with individual mounds in black. ThiJK uratT aim uasmu lines
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______ 1 Km. Vertical exaggeration xlO

Figure 5.7. Possible circumstance explaining why Scandinavian ice could cross south Mainland but be deflected by 
local ice over central Mainland. The diagram compares central and south Mainland at two different regional 
equilibrium line altitudes (ELAs) (200 and 150 m above modern sea level). Lateral extent of accumuation and 
ablation areas shown by dashed and solid lines respectively (these are schematic repsentations only). For the higher 
ELA there is little difference in ice extent as topography above ELA is similar. But for the lower ELA there is a 
dramatic difference. Note that the size of the ice cap has a non-linear relationship with surface area above the ELA. 
This is due to the infilling of valleys (grey shading) and the consequent topographic effect of the ice itself. The result 
is that as the ELA falls in englaciation, central Mainland develops a large ice cap relatively quickly.



Figure 5.8. Possible reconstruction of early deglaciation on South Mainland, Shetland. An eastern ice shed explains 
the movement of erratics from the east to the west coasts of the area. It is not known whether this ice shed implies 
Scandinavian glaciation but this study argues that it need not. Ice movement shown by solid lines with arrows. Ice 
shed shown by dashed line. The ice shed lies to the east but the exact position is not known.



Figure 5.9. Possible reconstruction of early deglaciation of south Mainland, Shetland, following figure 5.8. The ice 
shed (dashed line) is placed in a relatively western location, explaining the preservation of early-deposited erratics 
on the west coast and the pattern of movement across the Sumburgh low ground. At this stage, ice is streaming to 
the southeast, but movement to the northeast, across Bressay, probably occurred earlier than this. Ice movement 
shown by solid lines with arrows.



Figure 5.10. Reconstruction of the final deglaciation of south Mainland, Shetland. The main ice centre (dashed line) 
has retreated to the higher ground of central Mainland and ice is streaming both southwest and southeast from here. 
It does not appear to have reached Bressay. Together with the birdsfoot fan in Dales Voe, this perhaps suggests an 
overall pattern of retreat towards the west, so some element of the western ice shed identified in figure 5.9 may still 
be extant. Ice movement shown by solid lines with arrows.



5.11 Glacitectonized sandstone with metamorphic erratics, east coast of south Mainland. 
Shetland. (HU404188)

5.12 Dendritic pattern of dry channels, northwest of Noss Hill, south Mainland. Shetland.
The channels are thought to represent flow from ice off the coast which can be seen in 
the background. (HU358161)



5.13 Weathered granite erratic associated with glacitectonized sandstone near the Sumburgh 
peninsula, south Mainland. Shetland. (HU388112)



5.14 Metamorphic erratic taken from thin till to the east of Quendale Bay. south Mainland. 
Shetland. (HU388118)

5.15 Possible solifluction deposits on high ground above Burn of Mail, south Mainland. 
(HU415296)



5.16 Crvoturbation structures and frost-heaved clasts, near St Ninian's Isle, west coast of 
south Mainland. Shetland. (HU375216)

5.17 Meltwater channel and birdsfoot fan into Dales Voe. south Mainland, looking 
approximately west across Dales Voe. (HU426416)



5.18 Massive diamict in section through hummock. Burn of Mail, south Mainland. Shetland. 
(HU426286)

5.19 Distal slopes of main area of hummocky moraine. Burn of Mail, south Mainland. 
Shetland. (HU426286)



5.20 Distal slopes of main area of hummocky moraine. Burn of Mail, south Mainland. 
Shetland, showing proglacial channelization. (HU426286)

5.21 Proximal slopes of main area of hummocky moraine, ice to the right of the picture. 
(HU426286)



Figure 6.1. Solid geology, topography and bathymmetry (numbers on shallow side of bathymmetric contours) 
of west Mainland, Shetland.



Figure 6.2. Ice direction indicators, west Mainland, Shetland: striae after Dunham (1971), Mykura and 
Phemister (1976) and this study; drift hummocks after Mykura and Phemister (1976); erratic carry after Mykura 
(1976), this study and Flinn (1982).



6.3

Fig. 2. The glacial geology of Foula. The figures 6 to 19 represent percentages of millet seed 
sand grains relative to quartz grains in the 1-0-0-5 mm fraction of the tills at the localities 
indicated, ©ditto in post glacial sand.

Glacial geology of Foula. 
From Flinn, 1978



Figure 6.4. Drift distribution and glacial stratigraphy, west Mainland, Shetland: drift distribution after Dunham 
(1971) and this study; glacial stratigraphy (this study).
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Figure 6.5. Possible reconstructions of early deglaciation of west Mainland, Shetland. The dominant northwesterly 
movement of ice is uncontroversial but the position of the ice shed is uncertain (dashed lines). The more western ice 
shed explains the reported absence of southern Mainland erratics on the Walls peninsula and Foula and is a possible 
reason for the preservation of earlier erratics on the west coast of south Mainland (see chapter 5). But the more 
eastern ice shed explains the existence of those erratics in the first place. Throughout this study, the northwesterly 
movement of ice has been shown to be an early condition and the author prefers the more eastern ice shed at this 
early stage in deglaciation. Ice movement shown by solid lines with arrows.



Figure 6.6. Reconstruction of the deglaciation of the Walls peninsula, west Mainland, Shetland, following the 
events shown in figure 6.5. The pattern of convergence into St Magnus Bay is shown, and streams into the West 
Fair Isle Basin. These, 'pinch out,' supply to the peninsula itself, leaving a remnant ice centre. Ice movement shown 
by solid lines with arrows. Ice shed zones shown with dashed lines.



Figure 6.7. Reconstruction of the late deglaciation of west Mainland, Shetland. A possible ice margin is shown 
(solid line, no arrow), taking account of the moraine on Papa Stour and the possibility of the sill at the western 
margin of St Magnus Bay acting as a 'pinning point.' The timing of this reconstruction relative to that shown in 
figure 6.6 is not known and they may be contemporaeneous. Ice movement shown by solid lines with arrows. 
Western edge of hypothetical ice shed zone shown with dashed line.



6.8 Oblique aerial of Ihc ice moulded landscape of northeast Walls, west Mainland.
Shetland, (the island of Vementry in the midground (HU2960)). St Magnus Bay is to 
the top left of the photograph.

Planed landscape of the granitic area of the south Walls peninsula. Shetland. (HU .3143)6.9



6.10 Dispersed lodgement till. West Voe. east Papa Stour. Shetland. (HU 178613)

6.11 Cross sectional form of morainic mound on Papa Stour, west Mainland. Shetland. The 
ice contact, eastern face, is to the left. (HU 165613)



1

6.12 Hummocks against topography on Papa Stour, west Mainland. Shetland. Photo taken 
from the hummock shown in plate 6.11- the ice contact side is to the right, or east, but 
the western side is shallower because the drift is emplaced against the hillsloi

uianucts separated oy min sanas at iiamna voe. rapa stour. west iviamiana. aneuana 
Their proximity to the Papa Stour moraine suggest that they may reflect and ice margin 
oscillation but this is not proven. (HD 161600)



6.14 Fluvioglacial material. Voe of Dale, west Mainland. Shetland. (HU 184527)



6.15 Fluvioglacial materia,. Voe of Dale, west Mainland. Shetland. (HU 184527)



6.16 Fluvioglacial terrace. Voe of Dale, west Mainland. Shetland. (HU 187527)

6.17 BH 80/08 from the St Magnus Bay basin, just above rockhcad at 31-31.5 m. rounded 
gravel, disaggregated, in situ fabric not know n.



6.18 BH 80/08 from the St Magnus Bay basin. 24.5-25 m. laminated silts and clays.
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Figure 7.1. Solid geology, topography and bathymmetry, central Mainland, Shetland. No.'s 1-3 refer respectively 
to the Yell Sound, Scatsta and Whiteness Divisions of the East Mainland Succession of rocks metamorphosed 
during the Caledonian orogeny (their stratigraphic relation is youngest to the west and oldest to the east). Each 
division contains much heterogeneity and fuller details are discussed in the text.



Figure 7.2. Ice direction indicators, central Mainland, Shetland: striae after Flinn (1982) and this study; 
glacitectonization (this study); erratic movement after Flinn (1982): Gd - granodiorite, PG - porphyroblast gneiss, 
SS - staurolite schists, SG - schistose granite of Colla Firth Permeation belt. Only erratic movements discussed in 
the text are shown.
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Figure 7.3. Drift distribution and glacial stratigraphy, central Mainland, Shetland: drift distribution after Flinn 
(1982) and this study; glacial stratigraphy (this study).
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Figure 7.4. Approximate location and disposition of hummocky material, central Mainland, Shetland: after Flinn 
(1982).



N. Mail

Fetlar
Basin

Esha Ncs:

Out Skerries

.SuMaghus Bay,

_ Whalsay

Papa StourMg

;ula

-Bressay

Foula

West Fair Isle Basin

Sumburgh

Figure 7.5. Reconstruction of the deglaciation of central Mainland, Shetland. The reconstruction shows the early 
establishment of ice streams into St Magnus Bay and Yell Sound (solid lines with arrows). The position of the ice 
shed zone (possible western edge shown by dashed line) cannot be drawn with certainty, although it is likely that it 
occupies a relatively eastern position, for the Fetlar Basin is not having a profound effect on ice movement at this 
time.



N. Mainland

Esffa N Fetlar*
Basin

(*)ut Skerries
.SkMa^mis Bay.

Papa Stour.,,

fcMSlls Peninsula-’*
RSFX I* * ' ►

Foula

West Fair Isle Basin

Biessay

Sumburgh

Figure 7.6. Reconstruction of the deglaciation of central Mainland, Shetland, following the events shown in figure 
7.5. Clear patterns of northeasterly ice movement are shown, of sufficient dimension at least to transport erratics 
from Mainland to Out Skerries and beyond. This northeasterly movement may also be that identified on Bressay 
(see chapter 5). Ice movements shown by solid lines with arrows, possible ice shed zone shown with dotted lines.
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Figure 7.7. Reconstruction of the deglaciation of central Mainland, Shetland, following the events shown in figure 
7.6. Northeastern deglaciation continues and the topographic influence of the Fetlar Basin becomes apparent. It 
follows that the Yell ice stream is diminished. The more northerly movement of ice over Whalsay towards the basin 
suggests ice is being supplied from the south. Ice movements shown by solid lines with arrows. Conjectural ice 
margin shown by solid line, no arrows.
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Figure 7.8. Reconstruction of the deglaciation of central Mainland, Shetland, following the events shown in figure 
7.7. Southeastern deglaciation becomes apparent and and an ice stream splits around Whalsay. It is not known what 
continued northerly movement into Yell Sound is occurring. Evidently ice is now topographically contained and it 
is clear that the surface elevation of the ice cap has been diminished. Ice movements shown by solid lines with 
arrows. Hypothesised ice margins shown by solid lines, no arrows.



Figure 7.9. Glacial cycle in south central Mainland, Shetland - hypothesis 1: Staurolite schist erratics 
possibly carried east from Scallafield ridge during englaciation (A) and preserved later as ice striates ridge 
from east (B) with staurolite schists carried from Scallafield Ridge again during final stages of deglaciation 
from an ice shed centred on the ridge itself.



Figure 7.10. Glacial cycle in south central Mainland - hypothesis 2: Staurolite schist erratics are carried 
east from Scallafield ridge during englaciation (A) and are preserved later as ice striates ridge from east (B) 
and decays in situ (C).



1

. 11 Glacitectonization of bedrock on the south side of Grobs Ness, west central Mainland. 
Shetland. (HG367637)

7.12 Large scale stoss and lee assymetrv southeast of Voc at South Filla Runnic (133m OD).
central Mainland. Shetland. Assymetrv in the background, ice moving from the left, or 
cast. (HU420617)



7.13 Large scale stoss and lee assymetry at altitudes of 25m east of Voe. central Mainland. 
Shetland. Ice moving from the right, or east. (HL 148632)

7.14 BH 80/02. from the Fetlar Basin, east central Mainland. Shetland: 7.10 - 7.30 m. knife 
pointing up core, showing laminated sands and clays.



7.15 Small csker with Grobs Ness, west central Mainland. Shetland, running left to right
across the midground. The height of the feature is approximately 1 metre. (HU374638)

7.16 Deformed sands with large clasts. Foraness Voe. southeast central Mainland. Shetland. 
(HU456481)



7.17 View along linear hummock, immediately west of Scallaficld Ridge, central Mainland. 
Shetland, running central foreground to background. Ice from the right, or east. 
(HU378568)

7.18 Small hummock in midground, west of Hill of Duddin. west central Mainland.
Shetland, showing cross-sectional assymetry with ice from the highground to the left.
(HU375673).



Figure 8.1. Solid geology, topography and bathymmetry, north Mainland, Shetland; A = 
grantite-gneiss; B = sehists and gneisses (mainly metasediments).



Figure 8.2. Ice direction indicators, north Mainland, Shetland: striae after Chapelhowe 
(1965), Mykura (1976), Flinn (1977), Dunham (1968) and this study; erratic 
movements after Mykura (1976) and this study; fabric data (this study), including 
sample size (n clasts), maximum eigen vector (az degrees) and value (sig %) and 
azimuth of local slope angle shown by black line through fabric.



Figure 8.3. Drift distribution and glacial stratigraphy, north Mainland, Shetland: drift 
distribution: after Dunham (1968) and this study; glacial stratigraphy (this study).
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Figure 8.4. Reconstruction of the early deglaciation of north Mainland, Shetland. The position of the ice shed is 
not known. Ice movement shown by solid lines with arrows.
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Figure 8.5. Reconstruction of the deglaciation of north Mainland, Shetland, following the events shown in figure 
8.4. The position of the ice shed is not known. There is possibly an independent ice cap on the Ronas Plateau, 
feeding ice to the northwest and perhaps into the Yell Sound ice stream. At some stage, ice crosses the northern 
flank of St Magnus Bay in an easterly direction. Ice movement shown by solid lines with arrows. Ice shed zone and 
independent ice centre shown by dashed lines.



N. Mai,

Fetlar
Basin

Esha N(

Out Skerries

St Magnus Bay-

Whalsay

Papa Stour,

Bressay

Foula

West Fair Isle Basin

Sumburgh

Figure 8.6. Reconstruction of the deglaciation of north Mainland, Shetland, following the events shown in figure 
8.5. Ice streams into St Magnus Bay from the east but not the north as supply is not available because of Ronas Voe. 
Ice also streams radially from an independent ice centre on the Ronas Hill plateau, with identifiable drainage 
streams to the east into Yell Sound. It is not clear whether these two scenarios were contemporaeneous but if not it 
is likely that the Ronas Hill ice cap is the later of the two on altitudenal grounds. The position of the main ice shed 
is not known but the absence of more eastern erratics from this late stage suggests that it was relatively central. Ice 
shed/centre shown by dashed lines. Ice movement shown by solid lines with arrows.



8.7 Possible ice marginal morphology, southeast of Oxensettcr. north Mainland. Shetland, 
representing margin of possible late plateau glaciation. (HU341819)
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8.8 Meltwater channel draining the eastern margin of the Ronas Plateau, north Mainland. 
Shetland, between Beorgs of Skellbcrrv and Housettcr. (HU357864)



8.9 Fluvioglacial material overlying diamict. west Colla Firth, north Mainland. Shetland. 
(HU354834)

8.10 Thick lodgement facies at Breiwick. north Mainland. Shetland, dipping between west 
and northwest. The section is approximately 5 m thick at its thickest point. 
(HU249787)



Figure 9.1. Solid geology, topography and bathymmetry, Unst, Yell and 
Fetlar, Shetland. Key (see figure 7.1): la = probable equivalent of Yell 
Sound Division; 2a = probable equivalent of Scatsta Division; UF = Unst- 
Fetlar Nappe Pile. The Skaw granite of NW Unst is part of UF but is shown 
separately here because of its distinctive nature and importance for erratics; 
"?" = schistose block of uncertain age.
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Figure 9.2. Ice direction indicators, Unst, Yell and Fetlar, Shetland: striae after Flinn (1977, 1994ab), Mykura (1976) 
and this study; erratics after Mykura (1976) and Flinn (1994b) - M = metagabbro, S = serpentine, G = gneiss;



Figure 9.3. Drift distribution and glacial stratigraphy, Unst, Yell and Fetlar, 
Shetland: drift distribution after Dunham (1968) - includes surficial rubble - 
and this study; glacial stratigraphy (this study).

U
ns

t B
as

in



Figure 9.4. Reconstruction of early deglaciation, Unst, Yell and Fetlar, Shetland. The position of the ice shed 
(dashed line) is unknown but must be to the east, from which position the high ground of Unst is crossed. Ice 
movement shown by solid lines with arrows.
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Figure 9.5. Reconstruction of early deglaciation, Unst, Yell and Fetlar, Shetland following that shown in figure 9.4. 
This reconstruction combines a number of elements that may not have been contemporaeneous but the overall 
pattern strongly suggests a southwestward movement of the ice shed zone (shown by dashed line) from the position 
shown in figure 9.4. The northern ice margins (solid lines, no arrows) represent the possibility of a lobate pattern of 
stream termini, not the number or positions of them. Ice movement shown by solid lines with arrows.



Figure 9.6. Reconstruction of final deglaciation of Unst, Yell and Fetlar, Shetland. Residual ice masses on the high 
ground of Yell and central Unst (dashed lines), appear to be indicated, and the pattern of flow into the 
topographically influential Fetlar and Unst Basins can be seen. Ice movement shown by solid lines with arrows.



9.7 Weathered bedrock and possible solifluction deposits on the cast side of Saxa Vord. 
Unst. Shetland. (HP6515)

9.8 Metamorphic erratic in thin diamict developed on Lamba Ness granite, east of Saxa 
Vord. Unst. Shetland. (HP663168)



9.9 Meltwater channels on the side of Herma Ness, as seen from Saxa Vord to the east. 
Unst. Shetland. (HP612148)

9.10 Section through the sequence of sediments incised by Milldale Burn. Unst. Shetland 
(HP597142)



Lower unit of sequence of sediments incised bv Milldale Burn. Unst. Shetland 
(HP597142)



9.12 Upper unit of sequence of sediments incised by Milldale Burn. Unst. Shetland. 
(HP597142)



9.13 Kussa Waters. Yell. Shetland, showing Flinn's (1983) proposed glacial lake shoreline. 
(HP518029)



9.14 Lodgement till on glacitectonized bedrock. Bay of Brough. Yell. Shetland. (HP538O48)
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Figure 10.2. Location of this study's sample sites in British Geological Survey Miller and 
Shetland areas, north of Shetland, with various proposed maximum ice margins.
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Figure 10.3. Summary vibrocore logs with probable lithostratigraphic ties: (I) coarse shelly sands (Holocene); (2) oscillation marked by ameliorative shell lag at base (Lateglacial); (3) 
glacimarine muddy sands and sandy muds (Late Weichselian); (4) subglacial/proximal glacimarine (Late Weichselian). Left to right is approximately North to South but there is no clear 
proximal to distal relationship (see figure 10.2 for core locations). Water depth in brackets.



Metres below 
modem sea-level

■? ?
Z so —

2
co rt 
.2 rs.

o •£ 
J. -o\D C

V2 t/5
n c3X u

CZ3 c3
C
.o

<u.3
co -a
Uh c<D o
bxj >s
0/j 4)03 X5X0> 3

"c3 -C
.2 s
£ « 
> i=. « 
n *s

u-
O co
C
o X

o
.32 <Z5t/2
o co
c- 6
c/3 Cl

$ <DX3O m

w c$ 
£ £
~ J " aoO' _
2 co 

H
C CO

1 2 
tS
c/5 "3

s s
u- 03 
£ 2 
_
§ .£ 
3 §

re
so

lv
ed

 at
 th

is 
se

ism
ic

 re
so

lu
tio

n (
ap

pr
ox

. 5
 m

).



12.8 ka

13.1 ka

61-01 66 VE (water depth: 161 m)

5Y 5/2 (olive grey)

V»
«L7

«L>
•••••• Vk*
• Ctf • • • » • •

coarse sand with shell frags; upper sub-unit 
removed; pebble fraction (< 10 mm) coarsens 
downward, lithics rounded and partially encrusted 
with marine organisms;
slightly muddy gravelly sand; rounded ultrabasic 
lithics (to 35 mm) with some encrusted by marine 
organisms; coarsens with increasing shell fragment 
concentration to basal shell hash with large fragments 
(to 10 mm);

sand with fewer shell frags; 1 rounded lithic (40 mm) 
and some <10 mm; sharp basal contact;
4.5 mm clay band with 1 rounded lithic of 7 mm;

(1)

(2)

2.5Y6/2
(light brownish grey)l(XX)

7.6

8.4

7.7

450

Vibrocore shoe

2(XX)

13.3 ka ©H

18.2 ka ©H

30(X)

2.5Y 5/2 
(greyish brown)

2.5Y5/2 
(greyish brown)

2.5 YR 4/2 
(weak red)

slightly gravelly massive sandy mud with fine silt/clay 
inclusions (to 10 mm diameter); one large (75 mm) rounded 
and part-facetted ultramafic lithic; lithics (to 20 mm) 
becoming more rounded and encrusted towards base; few 
shell frags (1-2 mm coarsening downcore to 10 mm);

bioturbated sandy mud with occasional fine 
silt/clay bands; occasional shell frags (to 20 mm); 
heterogeneous lithics (to 20), rounded and encrusted;

70 mm clay band; 1-2 mm sand stringers 4-5 mm 
long; no visible shells; one ultramafic lithic;

gravelly sandy diamict; more numerous larger (to 30 mm), 
rounded and facetted heterogeneous lithics with no 
encrustation; fewer and smaller shell frags (< 10 mm)

as above with possibly higher gravel fraction and slightly 
larger shell fragments (to 20 mm);

(3)

(4)

Figure 10.5. Vibrocore 61-01 66VE. Sampling point numbers circled in black and the vertical bar represents the 100 mm section 
of half core taken as a sample. Probable chronostratigraphic units numbered in brackets: (1) Holocene; (2) Lateglacial 
oscillation; (3) Late Weichselian glacimarine; (4) Late Weichselian proximal glacimarine/sub glacial. Radiocarbon 
determinations are shown in bold to the left of the sample location.
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Figure 11.1. Suggested maximum limit of last ice sheet with associated evidence. There is possible evidence that ice tongues extended beyond the shelf edge in restricted areas (D. Long 
pers. comm. 1995) but the uppermost slope deposits are generally reworked glacigenic slope sediments. Note the relationship with the Scottish ice sheet is not known and neither is the 
southeastern limit. Sources for ice limit: Johnson et al., 1993; Stevenson, 1991; Stoker et al., 1993; Long, 1988; Evans et al., 1990.



Metres below 
modern sea-level

White lines represent 
margins of Long and 
Skinner (1985) (inner) 
and Johnson et al. 
(1993) (outer).

Figure 11.2 Reconstruction of early deglaciation resulting in eastern migration of the main ice shed. It can be seen from the bathymmetric assymetry that sea level rise causes immediate 
glacimarine ablation of the western and northwestern margins earlier than northeastern and eastern margins (previous northwstem margin shown by dashed line - see figure 11.1 - new 
schematic margin shown by solid black line). Significant western deglaciation and little or no eastern deglacation would result in an eastern shift of the ice shed. Its exact position is not 
clear because with northern deglaciation a single plane ice shed reconstruction is highly simplistic.and a more southerly shift in ice shed might be anticipated. Note the eastern ice limits of 
Long and Skinner (1985) and Johnson et al. (1993) (white lines). If these represent distinct periods of stasis, then their confluence to the east supports the earlier northern deglaciation 
theory.



Figure 11.3. Reconstruction of glaciation as sea level rises to -100 m. This is approximately the position at which glacimarine deposits cease and possible sea-bed morainic morphology 
occurs. Note the continued assymmetry of the ice sheet across southern Mainland and the resultant ice shed marginally to the west of the peninsula. It is still to the west of Fair Isle but has 
shifted to a more directly western position (in figures 11.1 and 11.2 it is more northwest). Previous margins shown by dashed lines (see figures 11.1 and 11.2).
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Figure 11.4. Reconstruction of glacial maximum/early deglaciation of Shetland. Differences in ablation between 
east and west result in the eastward movement of the ice shed (dashed line) on the continental shelf. Ice movement 
(solid lines with arrows) is perpendicular to the continental shelf edge (i.e. the ice margin). The exact position of the 
ice shed is not known.
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Figure 11.5. Reconstruction of deglaciation of Shetland following that shown in figure 11.4. Deglaciation at 
northern margins results in the southward movement of the ice shed zone (dashed lines) but it continues to remain 
largely east of central Mainland (and possibly south Mainland). Reduced surface elevations resulted in greater 
topographic containment, ice streaming and possibly the development of ice centres (dashed lines) on the Ronas 
Hill Plateau and Walls peninsula. Ice movement shown by solid lines with arrows.
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Figure 11.6. Reconstruction of deglaciation of Shetland following that shown in figure 11.5. Deglaciation at 
northeastern and eastern margins results in the westward movement of the ice shed over central Mainland (less so 
for south Mainland). Ice shed zones shown by dashed lines. Ice movement shown by solid lines with arrows. Ice 
margins shown by solid lines, no arrows.
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Figure 11.7. Reconstruction of deglaciation of Shetland following that shown in figure 11.6. Deglaciation at eastern 
margins is now evident in patterns of ice movement, but the ice shed is still substantial over the south. Remnant ice 
sheds over the Walls peninsula, Ronas Plateau, Unst and Yell may be present at this tim. Hypothesised ice shed 
zones and ice centres shown by dashed lines. Ice movement shown by solid lines with arrows. Hypothesised ice 
margins shown by solid lines, no arrows.
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Figure 11.8. Reconstruction of deglaciation of Shetland following that shown in figure 11.7. Deglaciation at 
southeastern and southwestern margins now results in radial retreat to a core ice shed located over the central 
Mainland high ground. The Ronas Plateau ice cap probably persisted beyond this stage but it is not clear whether 
any other remnant ice caps existed. Ice sheds and ice centres shown by dashed lines. Ice movement shown by solid 
lines with arrows. Hypothesised ice margins shown by solid lines, no arrows.
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Figure 11.9. Possible extension of the resonstruction of the last glaciation of Shetland to include the Scottish ice sheet. The Shetland ice sheet is seen as a peninsular extension of the 
glaciation centred on Scotland, projecting out onto the northern continental shelf. While the maximum reached the continental shelf edge (and may have been confluent with Scandinavian 
ice to the east) the -100m bathymmetric contour may represent a grounding position during deglaciation that resulted in the establishment of a more restricted stable margin. Since 
deglaciation would have occurred first from the west and northwest, the ice shed may have moved east, possibly to the east of Shetland, Orkney and Caithness. Looking at the Shetland ice 
sheet as a peninsular extension of the Scottish explains why its ice shed remained in a southerly position until a late stage in deglaciation and also has implications for the routing and timing 
of warm, north Atlantic water incursions into the North Sea such as at the end of the last glaciation.


