

FINDING "SMALL' MATRICES P,Q
SUCH THAT PDQ = S

Robert J. Wainwright

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2002

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/15171

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/15171

Finding ’small’ matrices P, Q
such that PDQ = S

0 ^ 0

A thesis submitted to the

UNIVERSITY OF ST ANDREWS

for the degree of

DOCTOR OF PHILOSOPHY

by
Robert J. Wainwright

School of Computer Science
University of St Andrews

March 19, 2002

ProQuest Number: 10166157

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10166157

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

I, Robert J. Wainwright, hereby certify that this thesis, which is approximately 76000
words in length, has been written by me, that it is the record of work carried oqt by me,
and that it has not been submitted in any previous application for a higher degree.

date ^ ^ _______ _ signature of candidate-----------------------------------

I was admitted as a research student in October 1996 and as a candidate for the degree
of Doctor of Philosophy in October 1997; the higher study for which this is a record was
carried out in the University of St Andrews between 1996 and 1999.

date signature of candidate------------------------------------

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu
lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews
and that the candidate is qualified to submit this thesis in application for that degree.

date signature of supervisor

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and absti'act will be published,
and that a copy of the work may be made and supplied to any bona fide library or research
worker.

date / Q1 ________ signature of candidate.

Given an integer matrix A, there is a unique matrix S' of a particular form, called the Smith
Normal Form, and non-unique uniraodular matrices P and Q such that PAQ = S'.

It is often the case that these matrices P and Q will be used for further calculation, and
as such it is desirable to find P and Q with small entries. In this thesis we address the
problem of finding such P and Q with small entries, in particular in the case where A is a
diagonal matrix, which arises as a final step in many published algorithms.

Heuristic algorithms are developed which appear to do well in practice and some theory is
developed to explain this behaviour.

We also give an account of the implementation of an alternative algorithm which bypasses
this intermediary diagonal form. The basic theoretical development of this is work by
Storjohan.

11

Acknowledgements

I would especially like to thank my supervisor, Dr. Steve Linton, for his invaluable advice
and encouragement, and for providing an inspiring research environment.

I would also like to thank my patents for their support and encouragement, and my lovely
wife for understanding.

A final special thanks to my office mate, Andrew Cutting, who supported my chess and
coffee habits, and who helped me retain my sanity as a counterbalance to his own particular
brand of lunacy.

Contents

1 Introduction 1

2 Decomposition and Examples 5
2.1 A Worked Exam ple... 6

3 Quality of Solution
3.1 Quality of a Single M a tr ix ... 10
3.2 Quality of a Pair of M atrices .. 12
3.3 Bounds for Some Measures... 14

3 .3.1 14

3.3.2 Q [,,,,+](P ,Q) . . 16

3.3.3 Q.[x,x,Max] ^rid Q[oo,oo,Maæ] • 1^
3.3.4 Relationships Between Q(a;,a;,] and y ,] 18

3.4 Conclusions... 18

4 Directed Graphs
4.1 Basic Concept.. 19

4.1.1 D efinitions....................................... 19
4.1.2 Choices.. 22

4.2 Properties.................................... 23
4.2.1 T 2(D)... 23
4.2.2 r s (D) ... 24
4.2.3 r ^ (D) .. : 24

4.3 Some Number and Graph th eo ry .. 25
4.3.1 Gcd Free B a s is ... 25
4.3.2 Isomoiphism of Graphs... 28

4.4 Input S h a p e .. 29

11

CONTENTS

4.4.1 A Worst Case Input... 30
4.4.2 State Space of Inputs . 31

4.5 Coprime Entries... 35
4.6 Conclusions... 36

5 The 2 x 2 Problem 37
5.1 The Extended Euclidean A lgorithm .. 38
5.2 Basic Procedure... 41
5.3 Optimizing the Multiplier Matrices... 43

5.3.1 Brute Fo rce ... 43
5.3.2 More Intelligent .. 43
5.3.3 Factorization Based Methods.. 44

5.4 As an Isolated Problem ... 44

5.4.1 0 { 2 ,2 ,+] .. 45
5.4.2 Q[2,2,x] .. 45

5.5 As an Intermediary Step........... .. 46
5.5.1 Q + i ... 48

5.5.2 G |x | ... 49

5.6 Conclusions... 49

6 Strategies SO
6.1 Testing and Compaiing Algorithms... 53

6.1.1 Permutation of In p u t.. 57
6.2 Positional H euristics .. 58

6.2.1 The Standaid A lgorithm .. 59
6.2.2 Divide and C o n q u er.. 64

6.3 Power Growth.. 69
6.3.1 Maximum Powers for Particulai'Heuiistics.................................. 71
6.3.2 Random... 79
6.3.3 Relationship Between Theory and P ra c tic e 82

6.4 Comparisons of Positional Algorithms.. 85
6.5 Structural Heuristics .. 93

6.5.1 Overview of the Structural A lgorithm .. '. 94
6.5.2 Random.................. 95
6.5.3 M inGcd... 95

ill

__ CONTENTS

6.5.4 M ax L cm ... 96
6.5.5 Edge Creation in T2(D)... • 96
6.5.6 Height/W eight.. 96
6.5.7 Proximity... 98
6.5.8 Smallest / Largest P a i r .. 98
6.5.9 RowColSize ...101
6.5.10 Full Lookahead... 101
6.5.11 Structural Conclusions..103

6.6 Overall Strategy Conclusions... 103

7 Bypassing the Diagonal Form 105
7.1 Overview of the Algorithm.................. 106

7.1.1 s p li t ..106
7.1.2 rg c d ..107
7.1.3 2 X 2 H N F ..108
7.1.4 The modulo N extended gcd p rob lem ..109
7.1.5 SNF with Transforms...I l l

7.2 Performance... 115

8 Conclusion and Further Notes 116
8.1 Conclusions.. 116
8.2 Closing Notes and Further W o rk ... 117

8.2.1 Bounds rev isited ...117
8.2.2 Parallélisation.. 119
8.2.3 Improving the Solution... 119
8.2.4 Average S N F ...120

Appendix 1 121

Appendix 2 128

References 130

IV

hapte]

Introductio]

A relatively common problem in computational linear algebra is to find a transformation of
some input matrix into an “equivalent” but simpler canonical form. For input matrices with
integer entries (or in fact entries from any Euclidean domain) one of the most useful forms
is the Smith Normal Form (hereafter SNF). The existence and uniqueness of the SNF is
one of the most important results in elementary matrix theory. Algorithms to reduce a
matrix to SNF provide a constructive proof of the basis theorem for finitely generated
abelian groups (see e.g. [HS79, HHR93, Sim94]).

Converting a matrix to SNF is usually achieved by a sequence of elementary row/column
operations, namely :

o Negating a row / column (generally multiplying by an invertible element, but the
only invertible elements of Z are ±1).

o Adding a multiple of one row / column to another row / column.

o Swapping two rows / columns.

To each of these elementary row(column) operations there coiresponds an elementary ma
trix, that is an invertible non-singulai* integer matrix. An elementary row(column) opera
tion can be applied to a matrix by pre(post)-multiplication by the corresponding elemen
tary matrix.

By application of either elementary row or elementary column transformations any matrix
over Z can be reduced to a triangular form. Further operations then permit the reduction of
the off-diagonal entries modulo the diagonal entry in each column(row). If row operations

1

Chapter 1 Introduction

are used to produce an upper triangular matrix with this property we call this the Her-
mite Normal Form (HNF). Hermite first proved the existence of the HNF in 185L [Her51].
By application of both elementary row and column operations any matrix over Z can be
reduced to a diagonal form. Further application of elementary row and column transfor
mations allow the entries along the diagonal to be adjusted such that each entry divides the
next. A matrix in this form is said to be in Smith Normal Form. Smith gave a construction
for the SNF diagonalization in a paper of 1861 [Smi61].

Two matrices A and B are are said to be equivalent if there exist unimodular matrices P
and Q such that PAQ = B.

Definition 1.1. An integer matrix A is in Smith Normal Form if for some r>Othe entries
Si — A ii,l < i < r, are non-negative, A has no other nonzero entries and Si divides

Si+i, l < i < r .
Si 0 * • • 0
0 S2

Smith’s paper effectively showed :

o Every integer matrix A is equivalent over Z to a unique matrix S in Smith Normal
Form.

o There exist unimodular* matrices P and Q such that PAQ = S,

There has been much previous work on developing good strategies for the calculation of
both the HNF and SNF of matrices over Principal Ideal Domains. This work has been
mainly aimed at combatting “intermediate expression swell”, the problem of having to
deal with exceedingly large values during the calculation rather than reducing any measure
of the final answer. In the case of the HNF, for non-singular matrices at least, intermediate
expression swell is the main issue as given UA — H where A is non-singular and H
is in HNF, U is uniquely determined as HA~^. In the case of the SNF however, where
UAV = S, the matrices U and V aie not determined uniquely and different algorithms
may produce matrices U and V with larger or smaller entries. It turns out that the methods
which aim to keep intermediate entries in the work matrix small also tend to keep the
final transformation matrices relatively small as only small multiples of rows or columns

Chapter 1 _________ Inrtoduction

need be added to others. Algorithms for computing the SNF generally proceed by finding
such that is diagonal but may not have the divisibility property.required

for SNF. The final step in finding the SNF is then to perform row and column operations
to repeatedly replace pairs with their greatest common divisor (gcd) and lowest common
multiple (1cm). In fact the consequences of this final step upon the multiplier matrices can
be quite severe and the investigation of this problem will form the main subject of this

thesis.

An important situation arises from the natural conespondence between Z—modules and
abelian groups. The fundamental theorem of finitely generated abelian groups classifies
all such groups by giving a canonical decomposition. One version of the theorem states
that :

Theorem 1.1. Let G be a finitely-generated abelian group. Then G has a direct decom
position

G — G\ © . . . © Gf © © ■ • • © Gr-i-f

where:

1) G i is a nontrivial finite cyclic group o f order k for i = 1 , . . . , r;

2) Gi is an infinite cyclic group for i — r P 1, . . . ,r f;

3) /1 I/2 I • • • |4"

The integers / and occurring in such a decomposition are uniquely determined.
A finitely presented abelian group G, written additively, may be given as a set of n gen
erators x i , , . . ,Xn and m relations of the form — 0* Such presentations arise
from a variety of natural computations, for example from computation of subgroup pre
sentations by the Reidemeister-Schreier process. We associate with G its relation matrix,
the m X n integer matrix A. Performing row or column operations upon A coiTespond
to Tietze transformations (see [Tie08] or [Joh90] for details) of the group presentation,
leaving the associated group unchanged up to isomorphism, so that abelian groups with
equivalent relation matrices are isomorphic. Column operations correspond to operations
on the group generators, row operations to the relations. The SNF gives us the direct de
composition. The column transformation matrix and its inverse provide us with a way of
writing the generators of the original group in terms of the generators of the group defined

Chapter 1 Introduction

by using the SNF as the relation matrix and vice versa. The row transformation matrix
allows us to rewrite the relations and effectively provides a proof of correctness. It is
valuable to obtain matrices with small entries for use in further calculations.

The algorithms that are described in this thesis have been developed and implemented
in the GAP computational algebra system, see [S+95] . GAP (Groups, Algorithms and
Programming) is a system for computational discrete algebra with particular emphasis on,
but not restricted to computational group theory. GAP was developed at Lehrstuhl D fur
Mathematik (LDFM), RWTH Aachen, Germany from 1986 to 1997. After the retirement
of J. Neubiiser from the chair of LDFM, the development and maintenance of GAP has
been coordinated by the Schools of Mathematics and Computer Science at the University
of St Andrews, Scotland. List manipulation and large integer and rational arithmetic are
all built into the language.

Chapter 2

Decomposition and Examples

This chapter will provide an overview of the main problem, and an explanation of how
this problem is then broken down into several par ts, each of which will be the subject of a
later chapter.

A— 1 —y

d i 0 • • ■ 0 " d i Si

0 C?2 S2
— 2 —>■ — 3 —>•

i c

0 dfi Sfi

Figure 2. The basic procedure for finding the SNF of a matrix, A.

Figure 2 shows the general method by which the SNF of a matrix is usually computed,
each step being achieved by some sequence of elementary operations. First the gcd of a
row and column is obtained. This element is then used to zero the rest of the entries in
that row and column. This appears as step 1 in the figure. This process is then applied
repeatedly to the submatrix remaining until a diagonal form is reached (step 2). The
divisibility requirement of the SNF is then finally tackled (step 3). Each of these steps is
achieved by some sequence of

o premultiplying by unimodular matrices (row operations) and

o postmultiplying by unimodular matrices (column operations).

Chapter 2 Decomposition and Examples

The final step, step 3 in figure 2, from a general diagonal matrix D to one in Smith Normal
Form S is the step we will investigate further in the main part of this thesis. Much work
has been done on the diagonalization problem (steps 1 and 2), see e.g. [HM97] for work
in this area. The problem of converting a diagonal form to SNF, and especially of finding
small multiplier matrices, has been little studied however.

Worked Example

Consider the matrix
■ 42 24 18 12 78

177 737 - 2 3 8 71 491

A = 294 168 256 84 676

639 692 90 203 1248

. 1260 951 930 360 2961 .

Using a norm driven diagonalization procedure [HM97] we find

■ 1 0 0 0 0 ■ 1 2 —3 -2 2 ■ 6 0 0 0 0

13 1 4 - 1 - 1 0 1 0 0 0 0 78 0 0 0

- 7 0 1 0 0 X A X 0 1 1 0 - 1 = 0 0 130 0 0 (2.1) i

- 5 0 0 1 0 - 3 - 4 9 7 - 1 2 0 0 0 143 0

. - 9 0 - 3 0 1 . . 0 - 1 0 0 1 . . 0 0 0 0 231 .

Now we have a diagonal matrix, D, we calculate the SNF by, for example, repeating the
a 0

following basic step on selected 2x2 submatrices
0 b

o Perform a single column operation to obtain

a 0
b b

o Followed by row operations coiTesponding to the steps of the euclidean algorithm
to obtain

gcd{a, b) ht
0 lcm{a, b)

o And finally one more column operation to zero out the upper comer entry and leave
the SNF,

gcd{a, b) 0
0 lcm{a, b)

Chapter 2 Decomposition and Examples

So at each 2x2 step we can replace a pair of entries from the diagonal by the gcd and the
1cm thereof. By repeating this step we will eventually produce the SNF (termination of
this process is proved in chapter 4).

A standard approach is to take pairs of positions in the order (reading left to right, top to
bottom):

[1,2] [1,3] . . . [l,n] (si)
[2,3] [2,4] . . . [2,«] (S2)

[n - l , n] (s„_i)

The subsequence (si) guarantees that we obtain the gcd of d i , . . . , in position 1. And
similarly the n — 2 steps of (§2) obtain the gcd of ̂ 2 , . . . , in position 2. This continues
until finally with the subsequence (s„_i) consisting of a single pair of positions we must
definitely obtain the last two entries of the SNF.

Applying this naive procedure to the above diagonal matrix, D we find transforaiation
matrices, U and V such that we obtain the Smith normal foim, S.

UDV =

1 0 0 0 0
0 1 0 0 0

0 0 78 0 0

0 0 0 858 0
0 0 0 0 30030

where

U =

-1 5 6 2 0 - 7 1 1 0 ■ 1 143 -1 7 8 1 83941 -6 2 0 6 2 0 ■

-2 5 1 6 8 0 320 -1 1 4 4 0 160 1

, F =

0 1 - 1 1 572 -4 2 3 5

-9 5 6 8 11 - 4 3 5 6 0 - 1 - 1 4 3 1782 -8 3 9 5 2 620697

-66 8 4 2 4 9 8481 -3 0 3 8 3 1 4248 26 1 142 -1 7 0 4 82644 -6 1 1 3 1 0

. -3337 3 3 4 0 42350 -1 5 1 6 9 7 7 21210 130 . . 0 - 9 0 -4 1 6 0 31200

Thus, combining these with the multipliers shown in Equation 2.1, we obtain overall mul
tipliers

where
-1 0 7 0 0 - 7 1 1 0

-1 6 8 2 4 9 320 -1 0 1 6 3 -1 6 0 - 3 1 9
-6 4 1 0 11 -3 9 1 - 5 - 1 1

-44 6 8 6 5 3 8481 -2 6 9 9 8 5 -4 2 3 3 -8 4 5 5
-22311171 42350 -13 4 7 9 6 7 -2 1 1 4 0 -4 2 2 2 0

Chapter 2 Decomposition and Examples

and

y =

2 272 -3 7 4 1 163333 -1 2 0 6 1 6 1

0 1 - 1 1 572 -4 2 3 5

- 1 -1 3 3 1771 -7 9 2 2 0 585262

- 5 -6 1 8 9497 -3 8 1 2 5 1 2811503

0 - 1 0 11 -4 7 3 2 35435

These multiplier matrices have much larger entries than either the original matrix or the
SNF. The magnitude of the largest entry is of the order of 1000 times the magnitude of the
largest entry in the SNF itself, or roughly of the order of If we are a little more
careful when selecting the order of pairs upon which to perform the basic gcd-lcm step
then the calculation produces much better multipliers. Performing the gcd-lcm step on the
sequence of pairs [[1,4], [3,5]] we obtain

where

U2DV2 — S

■ 24 0 0 1 0 ■ 1 0 0 - 1 4 3 0

0 0 16 0 1 0 0 1 0 0 ■

0 1 0 0 0 , and V2 = 0 1 0 0 -2 3 1

143 0 0 6 0 - 1 0 0 144 0

. 0 0 2079 0 130 . . 0 - 9 0 0 2080

So the overall multipliers we obtain using this diagonal to SNF transformation would be

where

%2 =

= S

19 0 0 1 0 3 - 2 1 2 -4 3 1 4853

-1 2 1 0 13 0 1 0 0 1 0 0

13 1 4 - 1 - 1 , and I 2 = 0 10 1 0 -2 3 1 1

113 0 0 6 0 - 1 0 117 - 4 1437 -2 7 0 3 9

. -1 5 7 2 3 0 1689 0 130 . . 0 - 9 - 1 0 2080

which appears to be a ‘better’ solution as it is sparser and contains smaller numbers. No
tably we can see that the magnitude of the largest entry in either of the multiplier matrices
is actually less than Snn- We can assign other measures of quality to each of these solutions
by for example, examining the sum of the squares of all the elements of the transformation
matrices. Then we have that

Q uality{X,Y) % 2“

Chapter 2 Decomposition and Examples

and
Quality{X2yY2) « 229

If we use the method described in Chapter 7, implemented in GAP4, which computes the
SNE directly without the intermediate diagonal form then we produce the following :

■ 54090 1695 -3 7 9 9 -3 8 6 8 807 ■ ■ 1 0 - 5 6 —525 -1 3 9 8 8 ■

48702 1529 -3 3 8 7 -3 4 8 2 718
X A x

1 1 - 7 8 -7 8 1 -4 1 1 9 5

38250 1199 -2 6 8 0 -2 7 3 5 569 0 1 - 2 1 -2 6 5 -2 7 4 7 4

15562 484 -1 1 3 9 - 1 1 1 4 244 0 0 0 1 - 1 6

. 36723 1155 -2 5 2 9 -2 6 2 5 535 . . 0 0 0 1 - 1 5 .

Here these multiplier matrices though not particularly spar se are quite well balanced and
the largest entry in the multiplier matrices is of magnitude only roughly twice Snn- The
sum of the squares of all the elements of the transforming matrices is % 2̂ .̂ It appears
probable that we can compete favourably with such ‘combined techniques’ and gain no
ticeable improvements over naive methods by maldng some intelligent choices but still
using the simple pairwise techniques.

Three main points arising from this example will form the subjects of later chapters.

o How to measure the quality of the solution?

o How best to perform each 2 x 2 step?

o How to select pair order?

Chapter 3

Quality of Solution

We are looldng for ‘good’ or ‘small’ solutions to the problem of finding unimodular inte
ger matrices P and Q given a diagonal integer matrix D such that PDQ = 5 is the Smith
Normal Form of D. We need to define what we actually mean by a ‘good’ or ‘small’
solution. In this chapter we shall describe various ways to measure the quality of a partic
ular solution to the above problem and in doing so we will provide a range of methods to
compare in a quantitative fashion two such solutions and decide which is the ‘better’, or
‘smaller’ solution.

3.1 Quality of a Single Matrix

Our metrics for solutions P, Q to the problem PDQ — S will combine measures for two
individual matrices. Note that a transforming matrix T is a square, non-singular (uni
modular in fact) matrix over Z - our definitions will reflect this fact and could be readily
extended to more general matrices over any euclidean domain, however we do not do this
here. One natural measure with useful invariance properties is the determinant but as the
matrices we are interested in are unimodular the determinant will always be ±1. For the
applications for which these matrices are useful we are primarily interested in the absolute
magnitudes of the entries Tij of T and so this suggests we need to examine some function
on these elements Tij. The most obvious option is a sum of powers of the absolute values
of the entries of T. Since we will only be comparing different solutions of n x n problems
for fixed n we can also safely introduce any form of scaling depending only on n. We
shall for the moment examine the average (absolute) magnitude of the sum of some power

10

Chapter 3 Quality of Solution

of the entries which will help simplify formulae later in this chapter. This scaling appears
as a simple multiplier of to the sum. We have :

Definition 3.1. Let T be an n x n integer matrix and t be a non-negative real number.
We define a function || • \\rfrom T to by

w n r
i=l i=i

Note that we are abusing standard notation here as this function is not a matrix norm.
The only requirement of a matrix norm it fails to meet, however, is the linear scalability
requirement which is irrelevant here since we are dealing with unimodular* matrices and
multiplying them by any non-unit would mean they were no longer unimodular. We will
extend (and abuse) this notation slightly as we are quite often interested in the largest entry
appeai*ing in a matrix :

Défiiiitièiî 3,2o We define || ■ \\^from T to to be

||T||oo := Magnitude of largest entry ofT.

Note that we are choosing not to scale || ■ He»- Note also that the function |H|o is simply the
number* of non-zero entries of T divided by n^. And finally note that the above definitions
imply that || • ||a will be greater* than ^ for the problem in which we are interested, as any
unimodular matrix must have at least one non-zero entry in each row.

An immediate question is then what is a sensible value of r to select if we wish to use
II • IIt- as a measure for comparing two matrices in the context in which we are interested
i.e. as multiplier matrices. By using || • ||oo we would be ignoring a lot of the potential
infor*mation which we might prefer to utilise. For example this would give preference to a
much denser* matrix over a very sparse matrix with only slightly larger entries. At the other
end of the scale || • ||o is simply a measure of sparsity and is not of any use for selecting
the better* of two solutions with respect to the size of the entries of the matrix. || ♦ ||i is the
sum of the absolute magnitudes of the entries and if we consider two n x n matrices X, Y
such that X has entries, each of size k, and Y has — 1 zero entries and a single entry
of size in/'k we see that ||X ||i = ||y ||r — 'tt^k. So the ratio of the largest entries of two
solutions with the same size could be of the order of We note that applying a similar
argument shows that under || • ||2 , the ratio of the largest entries in the matrices is now at
worst linear in the number* of rows of the matrix. For our purposes this seems sensible and
so II • II2 will be the measure upon which we will mostly concentrate in this thesis.

11

Chapters__Quality of Solution

Note that if we have two n x n matrices X , Y such that ||X||.r = ll^llr for some r and we
wish to select between them, we can do so by examining the measures |lX||r+ij ||Y^l|r+i- It
should be clear that this will differentiate between the matrices according a smaller value
for the measure on the matrix which is better balanced i.e. having entries of a more similar

size.

We will also malce a couple of useful simple points,

Lemma 3.1. Pre or post multiplication by a permutation matrix does not change the size
of a matrix.

Proof; The size of a matrix is defined to be a sum of powers. Note that we can talce that
sum in any order. Hence swapping rows and/or columns has no effect on size. H

Lemma 3.2. Transposition does not change the size of a matrix.

Proof; As for lemma 3.1. B

3.2 QHallty off a Pair off Matrices

As already mentioned we generally wish to consider the pair, {P, Q} together when assess
ing the quality of a solution PDQ = S. We shall consider various functions <i \ JPf M
for combining two matrix norms. All of these functions will satisfy the wealc monotonicity
property,

y > z (T{x ,y)>a{x, z)^ (7[y ,x)>a{z ,x) .

We will write ||a;, y\\(r for cT(x,y). Further, we will allow binary operators such as + and
X in the place of a.

Definition 3.3. Given PAQ — S where P and Q are unimodular matrices the quality,
Q{a,̂ ,a]> of this solution is

S k m (AO) :=

where the triple [a, a] denotes the respective metrics being used for P, Q and the com
bination function a.

12

Chapters__________________________________ Quality of Solution

Some obvious candidates for the combination function a for our purposes are Minimum
(Min), Maximum (Max), +,or x. Many combination functions such as “root mean
square” are actually redundant as Q[a,p,rms] — \JQ[2ol,2 ,̂+] and so no new comparisons
are revealed.

Using M in as the combination function suffers from the same potential pitfalls as || • |loo,
i.e. we are ignoring information, albeit to a much lesser extent. In particular we need to
be very careful if a ^ fi, otherwise incredibly disparate solutions may well have similar
qualities, which does not really seem sensible. However in some circumstances we are
only interested in minimizing one of the multiplier matrices. In this case the measure
Q [r ,r ,M in] appears to be quite a good choice, as it does not actually matter which of the
multiplier matrices we minimize since

PDQ = S = = { P D Q f = (3.1)

and transposition has no effect on the size of the matrix (lemma 3.2).

Using Max as the combination function suffers from similar problems, though to an even
lesser extent. We will generally consider either + or x as our combination function.

So for example we denote by Q [2 ,2 ,+ j the quality metric

(3.2)

and we denote by Q[2 ,2,x] the quality metric

(3.3)

Note that though we have no idea of the exact relationship between the elements in the
multiplier matrices that form solutions to our overall problem we can get an idea of what
solutions with small metrics should look like by considering the possible distributions of
entries that may occur in pairs of matrices with a given quality. For example we can look
at minimizing the largest entry occuring in either matrix.

Under Q[2 ,2 ,+]. it is clear that if we are allowed to distribute the entries as we choose then
assuming an even distribution in each of the matrices leads to the matrices being well
balanced as well. That is to say the entries in both matrices will be of the same size.

13

Chapter 3 Quality of Solution

Under Q[2,2,*p it is interesting to note that if the matrices P, Q have equal sized entries of
magnitude X say then Q[2 ,2 ,*] {P, Q) ~ X ’̂. However we get the same result if the entries
in P aie all of magnitude k X and all the entries in Q are of magnitude

So it appears that Q[2 ,2,+] is a good metric to use if we wish to find small well balanced
multiplier matrices. If we are not too worried about the balance between the matrices then
we may find that Q[2 ,2,*] is a good choice that allows a greater variety of solutions of a
particular quality.

We have defined here measures which we can use to analyze the behaviour of various
algorithms. We will now discuss briefly some bounds on these measures.

3.3 Bounds for Some Measures

The main aim of this thesis is practical rather than analytical, but there are some interesting
results to be stated and connections between vaiious norms that illustrate the complexity
of the global minimization problem at hand. We will calculate some lower bounds but it
should be noted that it is not meaningful to consider upper bounds for the general problem
as given A and S there will exist arbitrarily large U and V such that UAV = S. We
will return to this in chapter 8 and prove some upper bounds under certain constraints on
various parts of the problem.

3 3 o l Q[i,i^x]{PjQ)

It is possible to derive a lower bound for the metric Q[i,i,x] immediately from the descrip
tion of the basic problem. Given PDQ = S where D is a ‘sorted’ diagonal matrix, i.e.
Dll < D22 < . . . < Dnn, and P and Q are unimodular multiplier matrices such that S is
the Smith Normal Form of D we have that,

 ̂ / n n \ / n n \

Q[i,i,x](A0) = E \Pii\j X (^ E E i % i j • (3.4)

14

Chapter 3 Quality of Solution

Now,

î kk — ^ ̂PkiDiiQik
i=l

n

\Skk\ ^ '^^\PkiDiiQik\
i=l
n

i=l

< Ê lA i l lQ t t I
i=l

< è i A i i Ê f e i
i=l i=l

- n n / n n \

 ̂ E ËiAiiEw
• fc=l ife=l \i= l i=l /

n n n n

< EE iaÆ E iôi-

D .

i=l fc=i i=l fc=l

Giving,

Q[i,i,x](T’, Q) > I ■\-^nn\n

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Remarks om the Derivation

The above bound is tight for a diagonal matrix that is already in SNF, when P, Q could be
n x n identity matrices.

Note also that at two points, [3.9 and 3.11] in the above derivation, use is made of the
following fact :

{ ± y ^ -

for non-negative Xi,yi.

In the ‘average’ case we actually have that

(To see this note that Xi, where Xi e [0..m] = — average and where Xi, % E
[0,.. . , m] = average. Let m tend to oo. The result follows.)

15

Chapter 3 Quality of Solution

Thus in ‘random’ situations we would expect the inequality

to hold.

Additionally, step 3.6 in the derivation
n n

'^PkiD iiQ ik < 53
i=l i=l

could hide a large amount of cancellation but unfortunately there appears to be no way of
estimating this

On the other hand, step 3.7

n n

E < E
i=l i=l

will hide a factor of less than n, a worst case example being a diagonal with an unusually
large entry which is coprime to all the other entries. Again it is difficult to anticipate what
will occur in practise and how closely we could hope to approach the bound in general.

33o2 Q[x,x,+]{P^Q)

We can derive upper and lower bounds for Q[x,x,+]{P, Q) in terms of Q[æ,æ,x](T*> Q)-

Recall that

q m .x](a q) = ^ f Ê Ê iA .r) X ■
\i= i / \i= i j = i J

And
n n n n

Q[x,«.+)(A <3) = i (ËË 1“" + ËË1%
\î= l j= i 1=1 y—t

Note that Q[œ,a:,+] — R-i-S, and Q[x,x,x] = P x 5. If we assume that Q[x,x,x] is fixed then
a simple differentiation reveals that Q[æ,æ,4-] is minimized when R and S are both equal to

\ / ô[æ,aj,x]’ Hence

Q[æ,æ,+](P) Q) ^ 2 ^ Q[x,x,x](P} Q) (3.13)

16

Chapters __ Quality of Solution

And similarly we can see from the symmetry and smoothness of the function that in order
to maximise Q[x,x,+] = R-\- S for a fixed Q[x,x,x] = iî x 5, we require one of R, S to
be as small as possible. The smallest possible value we could have is the quality of an
identity matrix. We then immediately have that

Q[æ,a3,+](^> Q) ^ Q) + “ (3 .1 4)

3o3o3 ^[æ,æ,Maœ] â[oo,oo,Ma.T]

We can quicldy derive lower bounds for either the largest matrix or the largest entry oc-
curing in either multiplier matrix in terms of either Q) or Q[æ,a:,x]{-P) Q)-

If Q[œ,a:,+](-Pj Q) > then it follows immediately that

Q[x,x,Max] ^ 2 (3 .1 5)

(by noting that the best we can do is split the evenly over the two matrices).

Similarly we can see that

Q[oo,c3 0 ,Maæ] ^ { / (3 . 1 6)
V ■ ^

If Q[æ,æ,x](-P> Q) > Rx then it again follows immediately that

Q[x,x,Max] ~ V^-^X (3 .1 7)

(by noting again that the best we can do is split the equally).

And similarly we have

Q[oo,oo,Max] ^ \ / R x ' (3 .1 8)

We can also derive a lower bound for Q[oo,oo,Moæ] directly. We have
n

PniDiiQin^ (3 .1 9)

Hence there exists an m such that

P n m D m m Q m n > " (3 . 2 0) n
and so

P n m O r Q ^ „ > (3 .2 1)

17

Chapters ___ Quality of Solution

3.3.4 Relationships Between Q[x,x,] and Q[y,y,]

We will assume y > x > 1. There exist simple relationships between Q[æ,æ,x](A Q) and

%>y,x]{P,Q) and between %,æ,+](P,Q) and %,y,+](P,Q).

Note first that, since we have products (or sums) of sums of powers of absolute miagnitudes,
we have

Q[æ,æ,+] 5 Q'[y,yM'

Q[œ,œ,x]

Now given a particular Q[æ,æ,+/x]. we can see that Q[y,y,+/x] will be minimized when all
entries are of similar size, X . Then we have that

= X '" . ew ,x] = x^y

Hence

and similarly.

And so

^[y,2/>x] ^ (Ô[æ,æ,x]) “ • (3 .22)

ô[œ,æ,+] — 22C® , Q[y,y,+] —

2l«,+l > (3.23)

3.4 Conclusions

We have defined here measures by which we can assess the quality of a solution to the
problem of finding unimodulai* matrices P, Q such that PAQ = S, We have provided
lower bounds for some of these measures and also derived some relationships between
them. We have seen that, apart from the “extreme” cases, the measures all broadly rise or
fall together. Thus algorithms that perform well for one measure should peifoim reason
ably well for other measures.

18

Chapter 4

Directed Graphs

The algorithms we are studying in chapters 4 to 6 proceed from an n x n diagonal integer
matrix Do = D to its SNF, S by repeatedly ‘moving’ subsections towards SNF. This is
done by taldng a (not necessarily contiguous) k x k diagonal submatrix of D and finding
k X k multiplier matrices that transform that subsection into SNF. After 7] applications of
this process we will produce unimodulai" integer matrices Pj, Qĵ such that T^D% = Djj
and we will reach a point where Djj — S for some rj. We shall now formalise this process.

4.1 Basic Concept

4.1.1 D eÊ m üons

We first define the restriction of the problem to a submatrix.

Definition 4.1. Let D be a n n x n diagonal integer matrix and let I be the set {%i,...
where ^ [1, • • •, n]. We define (D|/) to be t h e k x k matrix M such that Mab = Di^iy

We now define the embedding of a matrix into a larger identity matiix.

Definition 4.2. Let M be a k x k matrix. We define (”M^) to be then x n matrix such
that

(R̂ ab if ̂ ~ ia^y ~ "lb}
1 ifx = y ^ I ,

0 otherwise.

19

Chapter 4 Directed Graphs

We will generally omit the ” as it will be clear from the context. We are also going to need
some notion of how ‘close’ a diagonal matrix is to SNF. For this we will use the notion of

a divisibility graph.

Definition 4.3. The directed divisibility graph of a length n list o f integers L = [Li, . . . , L„]
is the graph obtained by taking the entries Li , . . . , ajr vertices and adding a directed
edge from Li to Lj ifLi\Lj.

Definition 4.4. The divisibility graph of a length n list o f integers L = [Li, . . . , Ln] is the
graph obtained by taking the directed divisibility graph, replacing all directed edges by
undirected edges and ignoring multiple edges.

Lemma 4.1. The divisibility graph of the diagonal o f an n x n matrix in SNF has Q)
edges.

Proof; It is the complete graph. ■

This now allows us to formalise a notion of ‘closeness’ to SNF, and justify our basic 2 x 2
step.

Definition 4.5. Given two lists, A and B whose divisibility graphs have Ea and Eb edges
respectively, we say that A is closer to SNF than B if Ea > Eb-

Proposition 4.1. Given an n x n diagonal matrix, D, and a set o f two elements, I =
{x,y}, such that D\i is not in SNF then if P and Q are 2 x 2 unimodular multiplier
matrices such that PD\iQ is in SNF then P^DQ^ is closer to SNF than D.

Proof:

Figure 4.1 : Possible
changes in divisibilités.

Consider the directed divisibility graph of the di
agonal D, denoted by ddg{D). For each x in
{1, . . . , n} denote Dx by A. We will also define
X ' = Gcd{X, Y) and ¥ ' = Lcm{X, Y).

Then we have

' X’ 0 \
0 Y’ j ■P D \ i Q =

The diagonal of D is

20

Chapter 4 Directed Graphs

and the diagonal of P^DQ^ is

[1 , . . . , X — 1, X% X + 1 , . . . , y — 1, Y H-1, . . . , iV].

So ddg{P^DQ^) differs from ddg{D) at least in that there is an edge x -y y . Also other
edges in the graph may differ. We will consider those edges in ddg{D) which may be
absent in ddg(P^DQ^) . We shall denote by AB the edge from A to B, (Da A).

The only types of edges which could be affected are those shown in Figure 4.1. Two of
these, (XU and CY)> are easily seen to be unaffected by our operation as, if X|C7 then
clearly X'\U and similarly, if C |y then C\Y'. There are then 4 cases to deal with:

Case 1 I There exists an entry A such that A X is an edge but A Y is not an edge in
ddg(D), Then since X|y', there will be an edge A Y ' in ddg(P^DQ^) and possibly an
edge AX. Specifically, there will be no further gain if A J(X' or a gain of one more edge

Case 2 : There exists an entry B such that both B X and B Y aie edges in ddg(D). Clearly
if B divides both X and Y then X = jB and Y — kB, i.e. B divides both X ' and Y'. We
gain no further edges.

Case 3 : There exists an entry W such that Y W is an edge but X W is not an edge in
ddg(D). Clearly X ' divides Y and hence divides W. We have no further gain if Y ']{F or
one more edge if Y'\W.

Case 4 : There exists an entry V such that both X V and Y V are edges ddg(D). Clearly
X ' divides Y and hence divides V. Also note that since V = k X = j Y then V —

^ ” Gcd(k, j) * y y We gain no further edges.

In every case the number of edges in the graph increases. The list moves closer to SNF. M

Corollary 4.1, Given a n n xn diagonal matrix, D and a set o f k elements, I = {%i, X2 ,...,X k} ,
such that D\i is not in SNF, then ifPD \jQ is in SNF then P^DQ^ is closer to SNF than
D.

Proof; A length k list may be put into SNF by repeated applications of 2 x 2 steps. Hence
in terms of divisibilities gained, performing a single k x k step is equivalent to peifoiming
between 1 and (J) steps on 2 x 2 subsections on that k x k set. M

21

Chapter 4_____ _______ ________________ _________________Directed Graphs

4.1.2 Choices

At step Tj of the overall calculation we have a diagonal matrix Dj .̂ We select some set A,
of size k giving us M = (D^|/,) and find k x k unimodular integer multiplier matrices

Vrj such that Ur)MV ̂is a diagonal matrix that is in SNF. Note that = Pj^DQ^ where

and

SoD.i+1 = x£), X isadiagonal matrix which is closerto SNF than

It should be clear that since we malce progress at each stage towards SNF we can write
down an acyclic directed graph whose vertices are the various intermediary matrices and
whose edges are associated with particular I. Note that these intermediary matrices are
all diagonal. Note also that since by lemma 3.1 neither pre- or post-multiplication by a
permutation matrix affects the size of a matrix we can,where convenient, assume each of
these diagonal matrices D to be ‘sorted’ i.e. Da < Djj Vi < j.

Definition 4.6. Let D be a n n x n diagonal matrix. Then {Da) is the length n list consist
ing of the diagonal entries o f D.

Definition 4.7. We define TAP) to be the directed graph associated with (Du). The ver
tices o f TAD) are those length n lists reachable from {Dii) by repeatedly replacing length
X subsections with their SNF and then sorting. The edges o f TAD) correspond to sets of
positions. We do not include self-edges.

In further discussion we will use the square bracket notation I = [Ji, J2 . . . h] to denote
the ordered set of positions I. We will sometimes abuse this notation to refer also to the
entries, d/. at those positions. We shall denote a path thr ough the graph F̂ CD) as a sequence

of k such pairs , . . . , Tij.]} \f2i j • • ■ 5 -̂ 20.]? ■ • • ? ? • • • > f̂ca,]]•

Note that we shall further systematically abuse notation and refer to F^CCAj)) when we
mean Fa;(D) as in the example shown in Figure 4.2.

22

Chapter 4 Directed Graphs

[2 ,9 ,1 2]

[3 ,4 ,1 8] [2, 3, 36]

Figure 4.2 : Example directed graph : r 2 ([4 ,6 ,9])

4 .2 Properties

We are interested primarily in F2 (D) as we can find good multiplier matrices F and Q
for the 2 X 2 problem (chapter 5). Note that any directed graph Pa;(D) has one source

vertex, (At) > one sink vertex,(6 '^).

Each heuristic we employ serves to traverse this graph from source to sink. As can be seen
from example Figure 4.2 not all paths have the same length. Choice of path has a large
effect on the (quality of) the transfoimation matrices obtained, and has some interaction
with the best method of performing the SNF calculation asociated with each edge. This
forms the subject of chapter 5. Since every step takes us closer to SNF the path length is
clearly bounded.

4.2.1 r2(D)

Theorem 4.1, For V2(D) the path length can be no greater than (g) for any graph, al
though this bound is attainable for many graphs.

Proofs Follows directly from Lemma 4.1 and Proposition 4.1 ■

23

Chapter 4 Directed Graphs

4.2.2 TsO))

For FaCD) we shall see that the path length can be no
greater than for any graph, although this bound is
attainable for many graphs. For example the following
sequence, illustrated in Figure 4.3, will take this many
operations.

• [1 , 2 , 3], [1 , 2 ,4], . . . , [1 , 2 , n] = n - 2 operations to
get positions 1 and 2 correct.

• [1,3,4], [1,3,5], . . . , [1,3, n] = n - 3 operations to
get position 3 correct also.

• Continue in this vein obtaining one more correct
position each run.

And it is easy to see that

n—2

Total number of steps = ~ (2) ‘

• • • 1
Figure 4.3: A naive

algorithm on 6 points
using 3x3 steps.

4.2.3 ra,(D)

Theorem 4.2. Path length for T^iD) can be no greater than

Proof: Starting with a length n list, L such that ddg{L) is completely disconnected, i.e.
as far from SNF as possible, the first x x x step will place those x elements into SNF,
i.e. create (2) edges. Each step that connects one of the n — T disconnected vertices to
the connected part will create at least x — 1 edges. Once all vertices are joined by at least
one edge each step will increase the number of edges in the graph by at least one, by
proposition 4.1.

So the number of steps can be at most :

24

Chapter 4 Directed Graphs

If we examine r 2 [6 ,I0 ,3 5], r2[18,112,168], or even F2 [l 11,815,26233] we notice that these
graphs are all isomorphic.

I 10.10.351 H [5 ,0 .7 0]

[1 ,30 .70]

I ^ n.mn.iac»u I-------- M |

I in .im n a iïl H li.w>ii.;

|i«,inmn H musHn----

I I ,M B ' : I----H

||«l,«C,CP|j-------Hl«°. (« . c . A i i e o | I

[D .A O ,A C D | I------------ t H [1 . M 0 , /

ti.*C,«ECÔn

Figure 4.4: F2 [6 ,1 0 ,3 5], F2[18,112,168],F2[1H,815,26233] andFgfAB.AC, CD].

One immediate question is then what do these length 3 sets have in common? We can
perform the ‘translations’ from any of these lists to any other by noting that all of these
sets of numbers are of the form [AB,AC,CD] for some restricted choices of A,B,C,D and
all have SNF [1,AC,ABCD].

6 = 2 * 3 18 = 6 * 3 111 = 3*37 A *B .
10 = 2 *5 168 = 6 * 28 813 = 3 * 271 A*C.
35 = 5 * 7 112 = 28*4 26233 = 37* 709 C * D .

It should be intuitively obvious that the shape of the above graphs is determined by the
numbers A,B,C,D and the ‘signature’ [AB,AC,CD]. What restrictions must we place on
the values of A,B,C,D to retain isomorphism? What can we say about the graph associ
ated with an arbitrary set of numbers? Can we find some canonical representation of an
arbitrary list of numbers? We shall now develop fuller theory to explain what is going on
here and provide some answers to these questions.

4.3.1 Gcd Free Basis

We are interested in investigating how relatively coprime factors of various numbers ‘move
around’ under each k x k step, or rather how the initial arTangement of relatively coprime

25

Chapter 4_________________________ Directed Graphs

parts in the list of n numbers that is the diagonal affects the graph. The first thing to
note is that any common integer multiplier can be ignored, or at least brought out of the
representational shape since Gcd{kx, ky) — k ^ Gcd{x, y).

Definition 4.8. Let A ~ («i, U2 , . . . , Um) be a nonempty list o fm positive integers, not
necessarily distinct. Let B — (6 1 , 6 2 , , bn) be a set o f integers, each >2. We say that B
is a gcd“fi'ee basis for A if

1. gcdifi, bj) = 1 ^ j; and

2. there exist m n non-negative integers such that = rii<j<n ^7 ̂ Vi, 1 < z < m.

One immediate consequence is the following.

Theorem 43^ ,̂ Let the set B be a gcd-free basis for A = (ui, «2 , • • • > <̂m)- Then each
be expressed uniquely as the product o f non-negative powers o f elements

o f B (up f o o te r o f the factors).

A proof of this can be found in [BS96a].

Note however that this does not in any way define a ‘minimal’ gcd-free basis. We could for
instance talce as B the set containing the complete prime factorization of each element of
A, or even add ‘redundant’ primes which don’t divide any of the elements of A. However
the algorithm developed in [BS96a] to compute a gcd-free basis does in fact efficiently
compute such a minimal gcd-free basis.

Now we can consider the cases involving powers.

Lemma 4.2. Let p, q, r, s be coprime and let m ^ n > ^ b e integers. Then

Gcd{p^qr,p^rs) = p^r, (4.1)

Gcd{p^'^^r,p^rs) = p^r. (4.2)

And similarly,

Lcm{p^qr,p^rs) = p^qrs, (4.3)

Lcm{p^'^^r,p^rs) = p^'^'^rs. (4.4)

The factor p^ and the factor q behave identically with respect to the Gcd and Lem opera
tions. In particular the p^ and p^ factors do not interact.

26

Chapter 4__ Directed Graphs

Thus we can effectively treat certain powers as single factors, q. So we can rewrite our
list in terms of linear factors. We can then utilise the concept of the gcd-free basis to find
a canonical representation.

Given this machinery, it is possible to write down a ‘signature’ for any list of integers by
using the following rewriting mechanism :

Signature Algorithm

0 Remove any common factor, i.e. divide through by the gcd of the list,

o Replace any powers of elements with new coprime elements,

o Find a minimal gcd-free basis, and label each element of this GFB uniquely.

© Write each element of A in terms of (labels of) elements of the GFB.

Using this signature algorithm we can rewrite an arbitraiy list D as another, simpler, list
D r . We will point out here that we can actually provide a much stronger rewriting. It
should be obvious that we can associate with each element A of our gcd-free basis, B
a term from another basis C. It should now be simple to see how we can perform the
rewriting from [4,6 ,9] to [6 ,10,35], say - each list being [AB, AC, CD]. We also point
out that by performing this further rewriting we can convert our potentially large integer
problem over an arbitrary set of basis elements to another over a smaller set, e.g. the first
k primes. This process provides us with a relatively simple method of checldng similarity
of two problems. To see this we will now define some concepts of ‘shape’. If we assign a
unique letter as a label to each element of the GFB and then we have

Definition 4.9. The signature o f a length n list, A, is the length n list Sig{A) where each
element is the string corresponding to rewriting the element o f A as described in the above
Signature Algorithm.

We regard signatures differing only by a permutation of letters or positions to be equal.
Determining this equality in general may be difficult, but the examples we shall use will
be small enough to allow such observation. A partial solution is repeated sorting and
application of the signature algorithm described above. It should be simple to see that this
process will always converge to a stable solution and we can thus utilise this idea to check
if two lists define the same digraph

27

Chapter 4___ Directed Graphs

Definition 4.10. The height of a length n list, A, is the number of distinct letters in Sig(A).

Definition 4,11. The weight o f a length n list, A, is the total number of letters inSig(A).

Note that we have some restrictions on height{A) and weight(A). It is obvious that the
minimum value for both is zero i.e. A = {1,1, . . . , 1,1}, although this is not really a valid
input for our purposes. We will explain further the constraints on height and weight in
subsection 4.4.2

4.3.2 Isomorphism of Graphs

Theorem 4.4. The signatures define isomorphism classes of graphs (up to permutation of
letters).

Proof; If two lists have the same signature, they clearly have the same graph associated
with them. ■

Note that we have not precluded two lists with differing signatures having the same graph
associated with them. This is for the simple reason that under our definitions we can find
such a case. For example r 2([a,b,c]) and r 2 ([ac,ab,bc]) are isomorpic. The reason for this is
that [ac, ah, be] and [a, b, c] are complements of each other. We can interpret this behaviour
as meaning that in the first case we aie tracldng the elements a, b and c, in the second we
aie following their absence. This of course implies that further rewriting is possible in
certain circumstances.

In fact.

Theorem 4.5. Given a list A and denoting it’s complement by A^, we have that if

weighi{A) ^ n
height (A) ~ 2

then
weight{A^) < weight{A).

Proof; Let H be the height of A, and let W be the weight of A. We will denote the height
of A^ by H^y and the weight of A^ by W^. We will denote by ki the number of positions
in which element i appears. Firstly recall that the height is the number of distinct letters

28

Chapter 4_________________________________ Directed Graphs

of A. The same number of distinct letters appeal' in A^, hence = H. Now, recall that
the weight is the total number of letters of A, and we have :

H
W = Y l^ '- (4.5)

i= l
H

W= = (4.6)
i= l
H H

= (4.7)
i=l i=l

= n H - W . (4.8)

Now, if

Ï 2 I «■»
^ = 1 + 5, 5 > 0 . (4.10)

nH = 2 W - e , e > 0 . (4.11)

And hence by equations 4.8 and 4.11 we have that ~ W — e, i.e. < W if e is not
zero. If e is zero then we have that = W. ®

This idea can be used in conjunction with the other rewriting ideas to produce equivalent
smaller (both in number and magnitude of coprime entries) lists in order that digraph
calculation (a breadth first search algorithm) will proceed more speedily.

4.4 Input Shape

The previous definitions (4.10 and 4.11) of the height and weight of the representational
signature of an input diagonal allow us to discuss broad classes of problems, and compaie
more easily the similarity of given input diagonals. We will utilise the teim ’shape’ of an
input to refer to the particular distribution of a given input rather than its signature class.
Note that we have to be quite careful when utilising these terms as the height and weight
themselves do not uniquely identify the digraph associated with a list. For instance the
two lists Li = [A, B, C, ABD , ABE], and A = B, AC, BE , ABD] both have height
5, weight 9 and SNF [1,1, AB, AB, ABCDE], but the associated digraphs differ (Li has
17 vertices, 45 edges and L2 has 18 vertices and 52 edges).

29

Chapter 4 Directed Graphs

Even though height and weight do not uniquely define the problem, we can use the con
cepts to get an idea of the nature of the problem. We will utilise these concepts to describe
a ’statespace’ of possible inputs. Firstly, however, we will discuss the shape of the input
in the worst case scenario.

A worst case input, W„, generating a directed graph with the maximum number of vertices,
edges and the longest paths can be computed quite easily. It should be obvious that an input
with a signature that has exactly one letter in every proper set of places must generate such
a graph. This can be achieved as follows: Talce all combinations of [1,. . . , n] and discard
the two trivial ones ([] and [1,. . . , n]). Then assign a distinct prime to each particular
combination. Then each of the n numbers can be constructed by taking the product of the
relevant primes belonging to the combinations in which the number appears. This covers
all possibilities for any coprime part appearing in any selection of the positions and so we
have a worst case input. This gives a ‘Universal Graph', for this problem with a length
n input, of which all directed graphs of other inputs of length n will be quotients, since
removal of a particular set of elements from Wn corresponds to some collapse of vertices
in the associated graph.

An example construction of the worst case of length 3 is shown in Table 4.1.

pos a b c d e f
1 1 0 0 1 1 0

2 0 1 0 1 0 1

3 0 0 1 0 1 1

Table 4.1: Generation of a worst case length 3 diagonal

i.e. [ade, bdf, cef] is as bad an input as possible for the length 3 problem, having height 6 ,
weight 9.

The worst case diagonal matrix of length 4 can be similarly constructed as shown in Ta
ble 4.2 so here a worst case diagonal looks like

[acegikm, bcfgjkn, defglmn, hijklmn]

30

Chapter 4 Directed Graphs

pos a b c d e f g h i j Ic 1 m n

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

2 0 1 1 0 0 1 1 0 0 1 1 0 0 1

3 0 0 0 1 1 1 1 0 0 0 0 1 1 1

4 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Table 4.2: Generation of a worst case length 4 diagonal

with height 14 and weight 28. The SNF of this input is

[1 , gkmUy cefgijklm n, abcdef ghijklmn].

It is simple to see that the worst case diagonal of length n has height 2” — 2 and weight

Wè'^ëdhtéMtéid in the structure of these worst case graphs. Enumeration of the first few
where W{ is the worst case of length i reveals the details in table 4.3.

Length 2 3 4 5
Vertices 2 1 1 261 43337
Edges 1 15 633 154570
Paths 1 6 708 3269040

Table 4.3: Various details of r 2 (W*)

It should be obvious that these numbers are growing very rapidly, and it has in fact been
beyond our ability to produce such complete results for larger worst case scenarios.

4.4.2 State Space of Inputs

In order that we will be able to pick a reasonable selection of cases upon which to test our
algorithms we first need to understand the set from which we will be selecting these cases.
We will refer to this set, or state space, as ^T, the set of all inputs of length n. We can
get a good idea of the characteristics of this set from the concepts of height and weight we
have already descibed.

We have seen that we can ‘rewrite’ an arbitrary diagonal in terms of its coprime parts.
Also as mentioned the worst case described above ‘contains’ all other possible diagonals.

31

Chapter 4 Directed Graphs

We can talce this worst case, containing 2"' — 2 coprime factors and look at the 2̂ ”“ ̂cases
of various elements being present or not. Clearly there are a large number of possible
different diagonals and enumerating them all and plotting the results is unfeasible. There
is however also a large amount of symmetry, and by examining the restrictions on the
possible weights for a given height we can produce a ‘statespace’ diagram of weight vs
height, as for example in Figure 4.5 which shows the boundaries of the state space of
inputs for integer lists of various length.

I

Figure 4.5 : Height / Weight State Space boundaries for length n lists, n=3 to n= 8

Given the evident shape of the statespace, we conclude that it should be reasonably simple
to sample effectively for algorithm testing.

We can derive an upper bound for the number of non-isomorphic digraphs for any
given length of problem by considering a worst case input of length n. Each possible
input is a quotient of the worst case and can be viewed as a binary representation of an
integer between 1 and The full group of symmetries of the n positions acts. The
result follows. Some of these selections are not valid for all purposes as they actually
define problems on smaller diagonals for example [1, a, &],[!, a, a], or [b, ab, a). It is not
immediately obvious how to count these precisely, or whether they should be included,
but they are few in number for moderate or large n.

It is worth mentioning here that height and weight aie not invariant as we progress through
the digraph of a given problem. A worst case SNF

n

i= l

32

Chapter 4 Directed Graphs

has height n - 1 and weight (J) compared to the worst case input which has height 2 ” — 2

and weight n * (2”~ ̂— 1). The point, in the state space of F(D), associated with will
be below and to the left of the point associated with D„_i. We will return to this idea as
the basis of an algorithm in section 6.5.

Figure 4.6 shows the five possible ‘different’ inputs for the 3 x 3 case with their graphs,
excluding the degenerate cases. For the 4 x 4 case a simple enumeration using GAP shows
there to be at least 418 different graphs.

33

Chapter 4 Directed Graphs

[1,A,BC1 J

I [A,BO,ABD} I
IA,B,AB0D)

(1, ABC, ABD]

I [1,AB,ABCP]

[[A ,B ,C 1 J--- ^ [1,B ,A C] I ^ M,1, ABC]

A------
[1 .C .A B] 1

I A, B, BCD]

[1, BO, ABD][A, BC,BD]

[1,BD,ABC]

[C.AB.AODE]

[A, C, ABCDE][AB, CD, ACE]

[A, CD, ABCE]

[1, AC, ABCDE]

[1,ACE, ABCD]

[E ,B C , ABCDEF]

[E,ABC,BCDEF]

[1,A B0E,BCD EF]

[0 , BE, ABCDEF]

[1 , BCE, ABCDEF][ABC,BDE, CEF]

[1.BCDE, ABCEF]

[B ,C E , ABCDEF]

[B , CEF, ABCDE]

[1.BCEF, ABCDE]

Figure 4.6 : The 5 possible graphs on 3 points

34

Chapter 4_____________________________ _______ _______ Directed Graphs

4.5 Coprime Entries

In some sense the opposite of the worst case is the coprime case, i.e. £) = [di, d j , . . . , d„j
where Gcd(di,dj) = '■ i ^ In this case we have n coprime entries, i.e. the
problem has height and weight both equal to n. We find that the structure of the associated
directed graph is particularly limited. It is not the smallest of the graphs in terms of number
of vertices or edges (see e.g. Figure 4.6), but it does permit some pleasing observations.

Since at each pairwise Gcd-Lcm step we ‘generate’ a 1, it follows that the length of each
path through the graph from D to 5 is n - 1. We can readily split this graph into various
‘levels’, where the number of steps taken to reach a level from the input is the number of
I ’s in each vertex of that level.

We have that at each level of this graph the number of vertices is equal to the number of
ways to partition a set of n elements into k pairwise disjoint nonempty subsets and so we
see that the number of vertices in the graph is equal to the Bell number B(n) i.e. it is the
sum of the Stirling numbers of the second kind.

Number of Vertices := Bell(n). (4.12)
n

:= y~] (Stirling2(n, æ))). (4.13)
m=l

m=l

A formula for the number of edges follows readily from the fact that within each level
each vertex has the same number of edges to new vertices beneath it being (J), and so

n
Number of Edges := y~] I Stirling2 (n, x) . (4.15)

m =2

We can also simply derive an expression for the number of paths through through this
graph. Since, as mentioned previously, within each level each vertex has (g) edges to
vertices on the next level then.

Number of Paths := f ̂ V (4.17)
x=2 ^ ^

(n — l)!n!
2.-1 • (4-18)

35

Chapter 4 Directed Graphs

It is obvious from this simple analysis that enumerating all possible paths, even in this
relatively simple case, and selecting the optimal solution is not a practical option for a
diagonal with more than a few entries.

Figure 4.7 r2([A,B,C,D]), 4 coprime entries.

[1 ,1 ,A B ,C D]

[1 ,C ,A B ,D]

[1 ,A , B, CD]

[A, B ,C ,D] 1 .1 ,1 , ABCD[1 ,1 ,D , ABC]

[1 , B, D, AC]

[1,1 ,AD,BC]

[1 , A, D, BC] F

[1 ,1 , A, BCD]

[1 ,1 , AC, BD]

4.6 Conclusions

We have seen in this chapter that the graph stiuctures associated with even appaiently sim
ple diagonal inputs can be incredibly complex. Enumerating all possible paths is cleaily
not an option except in very small cases. In the next two chapters we will examine first
how to perform each 2 x 2 step and then describe and analyze some algorithms for selecting
paths through these digraphs.

36

Chapter 5

The 2 x 2 Problem

As we have seen the solution of the overall problem can be naturally broken down into the
solution of smaller problems. A natural line of investigation is then to consider in detail
the subproblem which we will talce as the base case.

If S is the SNF of a diagonal matrix D then Su is the gcd of all the da, and if 5 = PDQ
then the first row of P and the first column of Q give an integer multiplier vector V such

that Y a=i = -sii where vj = Pijqji.

Finding ‘good’ solution vectors for arbitraiy length sets of integers is difficult, see for
example [MH94] wherein it is shown (Corollaiy 7) that, given a positive integer K and a
sequence of n positive integers A = {% . . . a„}, the task of expressing g ~ gcd{ai. . . a„)
in the form n

i=l
with |%| < iT, is NP-complete. i.e. it is difficult to find an optimal solution with respect
to the Loo (or max) norm.

For the case n = 2 however the extended euclidean algorithm provides us with an efficient
method of finding good vector multipliers for the gcd of a pair of integers.

We are, of course, actually interested in the more complex construct of a pair of multiplier
matrices rather than just a multiplier vector. We will take the euclidean algorithm as our
starting point and see how it relates to the problem of finding good multiplier matrices for
the SNF of a 2 X 2 diagonal integer matrix. We shall also mention in passing a few points
about the 3 X 3 case and the fuither problems associated with finding solutions.

37

Chapters__________ The 2 x 2 Problem

We need to find unimodular integer matrices P and Q such that PDQ = S' is in Smith
Noimal Foim, where D is a 2 x 2 diagonal integer matrix. We only need to consider the
case with coprime diagonal entries, as any common divisor will not affect the multiplier
matrices since PkDQ — kS. From section 5.2 on we will deal only with this case.

a 0p Q =
0 6

gcd{a, b) 0

0 lcm{a, b)
(5.1)

Note that we will generally assume a > b. We will write x = y{a) to mean x is equivalent
to y modulo a.

5.1 The Extended Euclidean Algorithm

As we will be building our techniques on the extended euclidean algorithm we will first
recall some elementary facts.

Theorem 5.1. Let a and b be integers, and let d — gcd{a, b). Then there exist integers s
and t such that as + bt — d. The extended euclidean algorithm computes d, s and tfrom a
andb.

Proof; See e.g. [BS96b]. #

Note that the coefficients s and t of the vector multiplier are not uniquely defined, but we
can describe all possible pairs of coefficients.

Theorem 5.2. I^ t d = gcd{a, b) = as bt = a u bv, then

kb , , ka
u = s + — and v — t -----rd d

for some integer k.

Proof; We have a{s — u) ~ b{v — t) which must equal some multiple k of the lcm{a, b) =
Hence s — u = ^ and v — t ~ M

Since we can ‘move’ easily amongst the solutions it should be easy to see that we can find
small solutions. In fact we have

Theorem 5.3. I f gcd{a, b) = as 4- bt, then s and t can be chosen such that |s| < |6 | and
|f| < |a|.

38

Chapters The 2 x 2 Problem

Proof; Clearly by theorem 5.2 we can find s such that \s\ < 11 || < |6 |. Since bt — d —as,
we have that |6t| < | | ^ | + d. Since |d| < |6 | it follows that \t\ < | | | 1 + 1. Finally if
a = 1 we can take f = 0 , and otherwise we have § |§| + 1 < |u|. *

This will suffice for some of our purposes but we can quite easily deduce much tighter
results which will in turn provide tighter bounds for some upper bound derivations in

chapter 8 .

Theorem 5.4. I f a > b > g where g = gcd{a, 6) = as + bt, then s and t can be chosen
such that (si < and |f| <

Proof; Denoting ^ by a and ̂by we have

as + p t = 1 . (5.2)

We can find t such that |f| < 11| using theorem 5.2. Now we can rearrange equation 5.2
and substitute for t :

CKS = 1 — Pt,

|q ;s | < | 1 | +

< HI + a ^

< +

(5.3)

(5.4)

(5.5)

(5.6)

But a > b > g i.e. a > ^ > 1 and so o; > 2 so |T| < | and it therefore follows that
|s| < If 1 5 which gives us

b<

as required. Assume fuither that we have \t\ = 111, then substituting for t gives

a s ± ^ t = 1,

(5.7)

(5.8)

(5.9)

Which implies that a = 2 since 2s±/3 € Z, but we have a > 2, so we have a contradiction
and we can therefore select |f | < j | j, which is to say

|t| < a (5.10)

39

Chapter 5 The 2 x 2 Problem

Corollary 5.1. Note that ifb > 2 then by a similar argument to steps 5,8- 5.10 in the proof
of theorem 5.4 we have |s| <

We malce one fuither obsei*vation about the coefficients computed by the extended eu
clidean algorithm,

Theorem 5.5. Ifas + bt — gcd{a, 6), then gcd{s, t) — 1.

Proof; Dividing through we have = 1. m

Note that the effect of premultiplying a column vector [a, 6]^ by a unimodular matrix is
equivalent to performing some sequence of row operations upon that vector. Now, starting
with a 2 X 2 identity matrix and performing row operations corresponding to the steps of
the euclidean algorithm, and applying those same operations to that identity matrix, will
yield a unimodular multiplier matrix and a column vector [gcd(a, b) , 0]^.

Then the multiplier matrix is of the form

s t
X y

where as + = gcd{a^ b). Note that the determinant of the matrix is sy — tx — 1, showing
again that pcd(s, f) = 1 .

This is equivalent to the statement that we can find a unimodular 2 x 2 matrix P such that

p
a gcd{a, b)
b 0

and gives a constmctive method of finding such a matrix.

We will also need some elementary lemmata about gcds.

Lemma 5.1, Let a, 6 , k be integers. Then gcd{a, bk) = gcd(ay b) * k).

Proof: The factors of gcd{a, bk) common to both a and b appear in pcd(a, 6). The further
factors of gcd{a, bk) are those common to a and k not in a and b i.e. gcd{^^^^, k). S

Corollary 5.2. gcd(a,bk) = gcd{a,b) iff gcd{—̂ ajbÿ = 1-

Corollary 5.3, I f gcd{a^ 6) = 1, then gcd{a^ bk) = gcd{a^ b) iffgcd{a, k) = 1.

With these results we can now describe the 2 x 2 SNF algorithm.

40

Chapter 5 The 2 x 2 Problem

5.2 Basic Procedure

Given the 2 x 2 diagonal integer matrix D —
a 0

0 b
with gcd{a, 6) = 1. As previously

noted we will examine the case a > 6 . We can now consider the following basic procedure.

1. Column operation - We begin by adding some multiple k of the second column to
the first, with the restriction that gcd{a, A;) = 1, to obtain

a 0

bk b

2. Row operations. Applying theorem 5.5 to the first column we can obtain

gcd{a, bk) bt
0 lcm{a, b)

3. And then with one more column operation we can zero out the upper comer entry
and obtain the SNF.

A Couple of Notes

In step one we restrict ourselves to multiples k such that gcd(a, k) = 1. This allows us
to apply Lemma 5.1 and so be sure that step 3 is possible and the operation proceeds
smoothly to SNF. If we were to allow any k then the algorithm could fail.

For example, taking a = 6 , 6 = 5 and k = 2 and following the procedure outlined above
we would proceed as follows :

' 6 0 ’
—y

' 6 0 ’
— y * 6 0 ’

—̂
' 2 - 5 '

-)■
' 2 - 5 '

0 5 1 0 5 4 5 _ 4 5 0 15

Example 5.1 : Why the choice of k is restricted.

Here we reach a situation where we cannot simply apply a single column operation to
zero out the off-diagonal entiy. Most, if not all, current implementations of this diagonal
to SNF sub-step do not encounter this problem as they simply add a single copy of one
column to the other (that is to say they choose k = 1), and then proceed with the euclidean

41

Chapters The 2 x 2 Problem

algorithm. A simple example that demonstrates that adding a single multiple of a column
is not optimal is the problem of finding multiplier matrices F, Q such that

' 97 0 ' x Q =
' 1 0

P x
0 2 0 194 _

Applying the standard proceduie, i.e. selecting ^ = 1 we find the solution

1 -4 8 '
X

* 97 0 '
X

' 1 96 ' ' 1 0

- 2 97 0 2 1 97 0 194

This solution has Q[2,2 ,+] = 7586 and Q[2 ,2 ,x] = 13641949. However we find, by a simple
enumeration of the solution pairs P, Q arising from applying the basic procedure described
above for various k, that k = 7 appears to be the best choice. The solution we obtain in
this case is

- 1 7 '
X

' 97 0 '
X

' 1 -1 4 ' " 1 0

. -1 4 97 0 2 7 -9 7 _ 0 194

which appears to be the best quality solution obtainable under this procedure. The qualities
associated with this solution are Q[2,2,+] = 4827 and Q[2,2,x] = 5826189.

Now we will consider the impact of the above procedure on the actual multiplier matri
ces. We have PDQ = S where P is a unimodular matrix computable with the extended
euclidean algorithm (Theorem 5.5). It is the product of a sequence of elementary matrices
coiTesponding to the steps of the euclidean algorithm. It should be clear from Theorem 5.3
or 5.4 that we can determine simple upper bounds for the magnitude of the entries of P
(assuming we are careful). In fact it can be arranged so that the largest entry in P has
magnitude equal to the greater of |a| and |6 ^|. The column multiplier matrix, Q, produced
by following the basic procedure is simply the product of the two elementar y matrices.

’ 1 0 ’
X

' 1 -W 1 —ht

, ^ 1 0 1 k 1 — hkt

Note that we can similarly arxange, by choice of k and care in step 2, that \kt\ is bound by
|a| and so the largest entry in Q is then bound by \ab\.

42

Chapter 5 The 2 x 2 Problem

We can actually write down explicit multiplier matrices for the Smith Normal Form of an
arbitrary 2 x 2 diagonal matrix. Specifically we have:

l —bkt
a t

X
a 0 ’

X

1 -b t ' 1 0 '

~bk a 0 b k 1 — bkt _ 0 ab
(5.11)

Figure 5.2 : Explicit multipliers for the 2 x 2 problem

where we have as + bkt = 1 , rather than the usual as-hbt — I. i.e.

bkt = 1 (a). (5.12)

As we remarked these are the multiplier matrices assuming a, b to be coprime. However
note that applying the algorithm to ga, gb will give the same result.

5.3 Optimizing the Multiplier Matrices

Given a 2 x 2 diagonal matiix D we now have explicit 2 x 2 multiplier matrices P, Q
such that PDQ = S (Equation 5.11). We investigate how to select k and t under the
restriction provided by equation 5.12 in order to minimize some particular measures on
these multiplier matrices. Each measure reduces to a function of a, 6 , k and t. There are
several strategies we can employ to proceed with our search:

5.3.1 Brute Force

Run through all values of k in some range and for each k calculate t = {bk)~^ (a). Al
though there are an infinite number of possible t the one with the smallest magnitude is
usually the one that will minimize our measure for that value of k. Do this for each k
and then select the k, t pair that is optimal. The problem, of course, with this exhaustive
method is that a can be rather large, so that the search space becomes excessive.

5.3.2 More Intelligeut

In this search we are interested in minimizing some Q(P, Q) which will be a function of k
and f, f{k , f), which is generally increasing in both k and t. One immediate improvement

43

Chapter 5 __ The 2 x 2 Problem

is to search in order of increasing k and stop the search when /{/c, 0) exceeds the smallest
f [k \ t’) already found

A further improvement along these lines is to let A; = 1, calculate t and then
then since we can.just as easily calculate k given f, let t = 1, calculate f{ k ,l) . We
then alternately increase each of k ,t, continuing until we reach a point where / U) is
greater than our best f{k ,t) to that point.

5.3.3 Factorization Based Methods

We can start by considering possible values for kt, which is known modulo a from as +
bkt — 1. Taldng v to be between 0 and a — 1 such that as-f-bv — 1 our candidates for kt are
V + ma and, while the exact bound varies for different Q, typically only m G [—2, . . . , 2]
need be considered.

For fixed kt we can then consider the possible factorizations into k and t.

Even this method is expensive and examines many options that are unlikely to be relevant.
For fixed values of kt we can examine and possibly simplify the measure f{k^t) and see
heuristically where good choices of k and t may lie. Generally we will show that we wish
I to be close to some value, r depending on the metric and the pair a, b. Once we know r
and have factorized kt as v i .. where % > vi+i we can then aiTange | to be as close
as possible to r by starting with ki = l , t i — 1 and for each u* in turn, multiplying either
ki or ti by % in order to best preserve the ratio r.

We will now consider two scenarios and examine some of the possible measure functions
that arise with a view to selecting k in order to find a good quality solution, i.e. one which
hopefully minimizes the measure.

These scenarios are :

o we wish to minimize the solution to this 2 x 2 problem in isolation;

o or the problem is part of a larger n x n calculation.

5.4 As am Isolated Problem

Considering this step in isolation we seek to optimise the quality of P, Q by our choice of
/c, t under condition 5.12. We can consider the problem for particular fixed values of kt

44

Chapter 5 The 2 x 2 Problem

(which we can assume to be 0{a) by theorem 5.3) and then we can investigate the manner
in which various ratios of | affect the approximate order of the function we are examining.
We shall examine in more detail the two likely measures of choice Q[2 ,2,+] and Q[2 ,2 ,x]-

5.4ol Q[2,2,+]

Recall 0[2,2,+] is:
- / n 71 n n

W E E N ' + Z E i Q
\i= l jf=l j = l

Minimizing this should give a solution where all the entries of both matrices are of roughly
similar magnitude. For fixed kt and ignoring the constant multiplier \ the function we are
trying to minimize is:

/(/c, t) + 1 + bH ̂+ + (1 - bkt^ .

Note kt is constant, hence is constant. The variable part of / is then

g{kyt) := (f + k^) (6̂ + l) .

And so it is clear that to minimize this function we require f ~ 1. Note that it may be
impossible to achieve this ratio exactly as we are working over the integers.

5.4.2 0[2,2,x]

Recall Q[2,2,x] is
- / « T i \ / n n \

è E E ^ x E E i« « iT
\ i = i j = i J \i= i j=i /

Attempting to find a solution that minimizes this metric will hopefully lead to a solution
in which the entries of P and Q respectively are of roughly equal magnitude. Ignoring the
constant factor of we have

/(A:, t) := ^ + b̂ k"̂ + x (l + + (1 — bktŸ) .

45

Chapters______ __________ _______ __________________ The 2 x 2 Problem

Recall that (1 — bkt)^ — (as)^ for some non-zero constant s. And so, for constant kt we
see that the variable part of / is

p(/c, t) := b^ (t^ 4- + 1 ̂ + 1 + + a^b^) + k^ (s^ + b ̂+ + a^)

If we make the reasonable assumption that kt is of 0(a) and that s = c + hb is 0(b) then
we can talce k and t such that both are less than or equal to 0(a). We can see that g is no
worse than 0(a^6^). From the 4th powers it would appear that | w 1 is again a sensible
choice i.e. k and t would be roughly 0(^/a), and in this case we can see that g would
be no worse than 0(a^6^). In fact it appears that the quadratic term is likely to dominate.
This term is itself dominated by :

h := f (a^s^ + a^^) + k^ (ol^b^s^) .

6l^i^in6%^q%^able parts are roughly (assuming s = c p h b is 0(b) and so ignoring the

,2/„2z \= 2t p b k

Which suggests that | | is a sensible ratio. This in turn suggests that k is O (y ^) and t
is 0(Vab). We can see that using this ratio we have g of 0(a^b)̂ at worst, which appears
to be about as good as we can get.

5.5 As an Intermediary Step

In fact of course this step is not usually isolated but is part of an ongoing calculation and
our goal is to optimize the final n x n multiplier matrices. The first stage in our calculation
is to select a path in V(D) which minimizes the power build up to be discussed in the
next chapter. The effect of this is likely to be that the entries of Pjj and Qjj are of uniform
magnitude and then we can start to select optimization strategies based on selecting k and t
to minimize the effect of these multiplier matrices on our current transformation matrices.

We need to consider the likely form of the multiplier matrices before our 2 x 2 step. There
are two cases:

o If we are in the early stages of the diagonal to SNF process, having started with
Po) Qo identity matrices then Qĵ will still be sparse. In this case the conclusions
of the isolated step analysis should be appropriate.

46

Chapter 5 The 2 x 2 Problem

o If we have Pq, Qq from a diagonalization process or we have already performed
substantial work in the diagonal to SNF process (especially if we use the “power
growth” heuristics of the next chapter), then it is likely to be that the entries of
and are of uniform magnitude. This is the situation we will now investigate.

Given an n x n diagonal matrix D at some stage of the calculation we have multiplier
matrices We then calculate matrices f/, V such tliat UD\^ij]V is in SNF. We will
examine how F̂ +% = and Qr}+i = differ from Pĵ ^Qr}- Let U, V be as
follows with entries of magnitude «{1...4},

«1 «2 \
(

0) / îJr \ 1 gcd{Di,Dj) 0 \
X "I V2 Vi r

[0 lcm(Di,Dj) j«3 «4 / » D, 1 \ /
If we assume, as previously mentioned, that the entries in the multiplier matrices F^, %
are similar in magnitude, and bound by x then we can estimate the damage done by the
step involving and y h J l. We shall examine the damage done to P but note that the
analysis for Q is very similar", differing only in the order of multiplication of the matrices.
We can see that premultiplication by will change the bound for the entries in only
two rows.

Ijihj} X

X X X X

X X

x { u i + U2) x { U i + U 2)

X X

X X

x { u s + W4) x { u 3 + U4)

X X

X X X X

And so the ‘damage’ done by this step is Q(F^+i) - Q(F^) for some measure Q. If we
examine our usual sum of squares metric ||F ||2 = ^ l-PÿP then, ignoring the ^
constant, we see that the damage is at most

n(n — 2)x^ + (til + U2)‘̂ x‘̂ + («3 + u^)^x^ — n̂ x"̂

47

Chapter 5 The 2 x 2 Problem

— (('^ 1 T "^2)^ + (r ig + 1 6 4) ^ ~ .

And so it appears that we should be looldng at the contributions of and (143+ 144) .̂
Similarly for V. The obvious measures to now attempt to minimize are

((t4% + + (t43 T 144)^) + ((vi T ^2) ̂+ (^ 3 + '̂ 4)^) (5.13)

and

((t4r + tig) ̂+ (% + 144)^) X ((t î + 1)2) ̂+ {vs + 1)4)^) (5.14)

We will denote the measures defined by equations 5.13 and 5.14 by Q\+\ and Q|x| respec
tively.

5.5.1 @1+1

Substituting the relevant terms for Ui, Vi we see that the function we wish to minimize
subject to bkt = 1 (a) is:

f{k,t)
1 — bkt

a

2

+ |f| I + (|6A:| -(- |a|)^ + (1 4- |6i|) 4- (|A:| 4 -11 — |) .

We will assume that both a and b are positive. We will talce a positive value for b~ ̂ (a)
and hence k, t will both either both be positive, or both be negative. We shall assume that
both are positive. Calculation actually showsthat inverting any of these decisions makes
no difference to the final result about the (magnitude of the) suggested ratio | .

f{k, t) := 4- 4- {bk 4- a)^ 4- (1 + bt^ 4- (/c 4- bkt — 1)^ .

Observe that (bkt — 1) = (as) for some positive constant s. And so, for constant kt we
have the variable parts of / are:

g{k,t) (f 4- A:^)(6^ 4 -1) 4- 2{t 4- ak){s 4- b).

Here the quadratic powers suggest that f 1 would be a sensible choice, i.e. selecting k
and t both of 0{^/â). Then the quadratic powers would be 0{ab^) and the linear powers
would be O(aib), so 0(g) depends upon the exact relationship between a and b.

Chapter 5__ The 2 x 2 Problem

To minimize the contribution of the linear powers of k,t, we see that we require the ratio
I fa i.e. selecting k to be 0(1) and t of 0(a). Then the linear powers would be 0(ab)
but the quadratic powers would be O(a^b^) and hence g would be 0 (a^b^).

It therefore appears that the ratio, | fa 1 is the best choice, and we can, in fact, see no way
to improve upon the order of g by using a different ratio.

f (k , t) := f ^ — - — + \t\^ + (|6A;| + |a|)^ j x ((1 + |6f|)^ + (\k\ + |1 — bkt\)^) .

Under the same positivity criteria we used for Q|+j and again replacing (bkt — 1) by (as)
for some positive constant s, we have:

f (k , t) := ((s + 1)^ + (bk + a)^) x ((1 + bt)^ + (A; + as)^) .

And so, for constant kt, the variable part of / is :

g(kyt) = (k' ̂+ t'^)b^

+ (ak̂ -I- P) 26 (6s + 1)

+ (a^6 ̂+ a^s^ + 6 ŝ ̂+ 6s + l) + A:̂ (a^6^s^ + + 6̂ + s^)

+ t

Here the quartic powers suggest f ~ 1, i.e. k and t both 0(^/(a), giving g to be O(a^b^).

The cubic powers suggest | ?a ^ is a good ratio, i.e. k is 0 (aè) and t is 0(ai) , giving g
to be 0 (a^ 6^), or O(aH^) depending upon the exact relationship between a and 6.

The quadratic powers, approximating slightly, suggest that | ^ i.e. k is O(VaJ) and t
is 0 (Vab), leading to g being at worst 0(a^6^).

From these it appears that the best ratio for f ~ ^

5.6 Conclusions

Explicit multiplier matiices have been given for the 2 x 2 problem. It has been shown that
the ‘standard’ method does not always produce the best result and an improvement has
been provided. Heuristic methods have been described by which we can hope to produce
small multipliers and some suggestions have been made for various general cases.

49

Chapter 6

Strategies

Once again we will take D to be an n x n diagonal integer matrix and we shall write di for
dii and S for the SNF of D. We shall continue to use the notation developed in chapter 4. In
particular we will use the notation FgCD) for the graph of intermediate diagonal matrices
reached by solving 2 x 2 subproblems. In this chapter we will often refer to pairs of
positions or elements, or sequences of pairs. We shall use the square bracket notation [x, y\
to denote the ordered pair of positions x and y. We will sometimes abuse this notation to
refer also to the entries, and dy, at those positions. We shall denote a sequence of k
such pairs by [[^i, yi], [x2 , 2/2], • [%, y&]]. We shall be using this notation in the context
of performing a 2 x 2 step on each pair where, after the operation on [æ, y] we will have
Gcd{dx, dy) in position x and Lcm{dx, dy) in position y.

The problem we are dealing with is solved in two separate stages :

1 Pick a path from D to *9 in FgCD). See Chapter 4 for discussion of the graph FgCD).

2 Perfoim the 2 x 2 step corresponding to each edge of that path as well as possible.
See Chapter 5 for this analysis.

We need to select a path through FgCD). In principle we could enumerate all possible paths
and talce the best result. One efficient method of performing this exhaustive enumeration
begins by calculating FgfD) and for each edge, calculating an associated good quality
matiix multiplier. All that then remains is to perform all the matrix multiplication chains
corresponding to each path. Unfortunately, as we have seen in chapter 4, the size of FgfD)
grows very rapidly with n. The number of possible paths through any paiticular graph is
usually fai" too large to allow exhaustive enumeration.

50

Chapters _______ Strategies

We therefore need some strategy to allow us to select one, or a few, promising paths
without having to examine the entirety of FgtD). In this chapter we shall examine some
heuristics and develop some effective strategies for selecting paths that generally lead to
good overall multiplier matrices.

We should note that there are basically two different types of algorithm we will be consid
ering:

o Structural algorithms in which the next pair is selected according to some virtue
of the elements within the current state of the overall problem or by some further
lookahead strategy.

For example selecting the pair [di, dj] with the least gcd (raingcd strategy).

©, Positional algoritlims in which the next pair is selected with no regard to the actual

Fdr èxænple performing operations on the sequence of positions

This obtains the gcd of all n elements in position I, then the gcd of the remaining
n — 1 elements in position 2 and so on (This is the standard implementation).

Recall our initial example 2.1 with diagonal D = [6,78,130,143,231]. We can see in
Example 6 the effect of the two different example strategies outlined above upon the path
through F2(D).

In this example the structural heuristic finds a minimal length path (two steps) through
F2(D) and, as we have seen, produced smaller multipliers than the positional heuristic
which talces a longer path (6 steps). When actually applying this algorithm some care
must be talcen; in the example shown the starred steps should have no effect, that is to say
that a sensible implementation will check for divisibility before applying a 2 x 2 step and
either do nothing or simply peimute the entries. One immediate improvement, especially
in this example, would be to precalculate the SNF and reduce the size of our problem by
removing any entries of the SNF that appeal* in the input, the 78 in the example shown. We
have of course been deliberately remiss with this degenerate example thus far. With this
ostensibly minor improvement the standard positional heuristic would still produce a path
of length 5 thiough F2 (D) - in fact, depending upon the initial ordering of D, the standard

51

Chapter 6 Strategies

heuristic produces paths of length as little as 2, or as much as 7 with the 78 included (120
orderings - Path length distribution : where denotes 6 paths of length
a) or between 2 and 5 without the 78 (24 orderings - Path length distribution : 2̂ 4̂ 5̂®).
Note also that in this case we appear to have improved our chances of randomly selecting
one of the shortest possible paths from 1 in 15 to 1 in 6, as well as cutting down on the
amount of work we need to perform.

However, when we have larger or more complex problems where we cannot see quite so
immediately the best course to take, it is useful to fall back on a good positional strategy.
For this we shall rely on a positional algorithm which we will proceed to develop in this
chapter.

s t a n d a r d (P o s i t i o n a l) :

[6 , 7 8 , 1 3 0 , 1 4 3 , 23 1]

t 6 , 7 8 , 1 3 0 , 1 4 3 , 231]

[2 , 7 8 , 3 9 0 , 1 4 3 , 231 J

[1 , 7 8 , 3 9 0 , 2 8 5 , 23 1]

[1 , 7 8 , 3 9 0 , 2 8 6 , 231]

[1 , 7 8 , 3 9 0 , 2 8 6 , 231]

[1 , 2 6 , 3 9 0 , 8 5 8 , 231]

[1 , 1 , 3 9 0 , 8 5 8 , 6 006]

[1 , 1 , 7 8 , 4 2 9 0 , 6006]

[1 . 1 , 7 8 , 4 2 9 0 , 6006]

[1 , 1 , 7 8 , 8 5 8 , 3 0 03 0]

Mi ngc d (S t r u c t u r a l) ;

[6, 7 8 , 1 3 0 , 1 4 3 , 231

[1, 7 8 , 1 3 0 , 8 5 8 , 231

[1 , 7 8 , 1 , 8 5 8 , 3 00 3 0

S t a r t .

* P a i r [1 , 2] h a s no e f f e c t .
P a i r [1 , 3] makes a l i t t l e p r o g r e s s .
P a i r [1 , 4] s u p p l i e s u s w i t h t h e 1 s t e n t r y o f t h e SNF.

* P a i r [1 , 5] h a s n o e f f e c t .

* P a i r [2 , 3] h a s no e f f e c t .

P a i r [2 , 4] moves u s ' c l o s e r ' , b u t ' d a m a g e s ' t h e 7 8 .

P a i r [2 , 5] g i v e s . u s t h e 2nd e n t r y o f t h e SNF.
P a i r [3 , 4] r e t u r n s t h e 7 8 , t h e 3 r d e n t r y o f t h e SNF.

* P a i r [3 , 5] h a s no e f f e c t .
P a i r [4 , 5] g i v e s u s t h e 4 t h a n d 5 t h e n t r i e s .

S t a r t - N o t e g c d (6 , 1 4 3) = l , and g c d (1 3 0 , 2 3 1) = 1 .

P a i r [1 , 4] a c t u a l l y g i v e s two e n t r i e s o f t h e SNF.

P a i r [3 , 5] t h e n g i v e s u s t h e r e m a i n i n g two e n t r i e s .

and we c a n t h e n e a s i l y p e r m u t e t o o b t a i n t h e SNF.

Example 6: A little intelligence goes a short way

During the rest of this chapter we will first describe the results of some experiments in
order to get a better feeling for the problem at hand and to provide a background for the
development of the algorithms in the rest of the chapter. We will examine some positional
heuristics and develop a good positional heuristic for selecting a path through F2 (D) in this
setting. We will then describe several structural heuristics and then compare these various
ideas with a view to deriving a good strategy for general employment.

52

Chapters__________ Strategies

6.1 Testing and Comparing Algorithms

Our algorithms will be attempting to minimize Q+ or G* by choosing a path through
r 2 (D). A useful experiment is to consider random paths for various D and evaluate the
corresponding Q to provide a background for assessing the utility of an algorithm. In
section 8.2.4 we will provide some thoughts on an ‘average’ case. However, since we will
be looldng for algorithms that do well in difficult situations, we will have to be a little
caieful when constructing our test cases.

Path Length / Quality Correlation

We will examine some experimental evidence which suggests a correlation between the
length of the path through r 2 (D) and the quality of the solution.

First we will define the parameters of our experiment. Recall from section 4.4,1 that to
create a worst case diagonal of length n we require 2*̂ —2 coprime elements. Each diagonal
entry is then the product of half of these. Though the 2 x 2 multipliers are dependent upon
the exact entries, we can try to minimize the effect of large differences between the sizes
of the elements, and thus hopefully minimize the effects of ordering, by choosing all our
coprime elements to be of similar* magnitude.

Recall that Wn is the worst case input of length n, as defined in section 4.4.1. In order to
select specific sets of examples from the entire statespace for a length n problem we fix
a height, H, generally 10%, 20%, . . . , 100% of heightiyVn) = 2” — 2. Recall that the
height is the number of distinct copiime elements. We then select randomly a set of H
elements (by selecting a set of H integers from 1 to 2” — 2), each of which could appear
in from 1 to n — 1 positions in the list (determined by examining the binary representation
of each element h, i.e. where there’s a one there’s a h). Thus we have fixed heights and
various associated, but random, weights. This procedure therefore allows us to effectively
sample slices of the statespace. We perfoim the tests on length 10 diagonals, using the set
of 1022 primes {997,..., 9643}. We also tried other proportions and sets of elements and
obtained similar results.

Having built our example diagonals, we then perform 200 runs through each problem,
choosing the next pair at each stage randomly. Scatter plots of Q+, Q* vs number of edges
in the path follow in Figure 6.1.

53

Chapter 6 Strategies

10% qtimes

50% qtime#50% qplu»

Figure 6.1: Scatter plots of 200 random runs
In each case the abscissa is path length, ordinate is log2 (quality).

It appears from the generally rising trend of these pictures that algorithms which find short
paths through the graph are likely to produce smaller Q. We will later examine various
positional algorithms in this regard.

Distribution of Path Lengths

As we have seen from the experimental results in Figure 6.1 there appears to be some
correlation between short paths and small solutions. One interesting question to investigate
is the distribution of path lengths through F2(D). We can get an idea of the distribution

54

Chapter 6 Strategies

of path lengths through F2(D) experimentally by randomly selecting paths and plotting
the resulting distribution statistics. Note that we need to be slightly careful about what
constitutes a valid step at each stage. Also should we ‘lock’ elements of the SNF as we
discover them, or should we make completely random selections at each stage? In either
case, of course, we need to ensure that each step would actually make some progress i.e.

dj; K̂ y and dy

There are two possibilities of interest depending upon whether or not we detect and ‘lock’
SNF entries, removing them from further consideration, when we find them. Locking the
SNF entries will typically produce slightly shorter paths as we saw in the discussion of
example 6 . In fact, in the worst case, it appears to make only a fairly small difference that
does not affect the overall shape of the distribution at all significantly. We will therefore
‘lock out’ particular elements as by so doing we can produce much faster algorithms for
our experiments.

Experimental distribution of path lengths from 10000 random runs through worst case
diagonals for various lengths are shown as bar charts in figures 6.2 through 6.7 :

5714

3041
1443

Figure 6.2 : Distribution of random path lengths in F2 (W4), F2 (W5) and F2 (W6).

From these smaller cases it appears that we are most likely to produce maximal length
paths, with the number of paths of any given shorter length tailing off quickly, however :

437342265000-
4000-
3000-
2 0 0 0 -

1 0 0 0 -

17 18 19 20 21

Figure 6.3 : Distribution of random path lengths in F2 (^ 7).

55

Chapter 6 Strategies

4000n
3000-

2000

lOOOH

0

4092

2738

874
141

2146

23 24 25 26 27 28

Figure 6.4 : Distribution of random path lengths in r 2 (W8).

3500-j
3000-
2500-
2 0 0 0 -

1500-

3346

2240

27 202
rTTT̂imt

29 30 31

2592

719

32 33 34 35 36

Figure 6.5 : Distribution of random path lengths in r 2 (Wg).

2830
3000
2500-
2 0 0 0 -

1500 1072 1050
1 0 0 0 -

36 37 38 39 40 41 42 43 44 45

Figure 6.6 : Distribution of random path lengths in r 2 (TFio).

2500H
2000

1500-
1 0 0 0 -

500-
0

22042281

1436

704

81 240

1852

913

247
p m p i . 33

44 45 46 47 48 49 50 51 52 53 54 55

Figure 6.7 : Distribution of random path lengths in r 2(lFii).

56

Chapter 6 Strategies

There is a twist in the tale; it appears that this distribution of path lengths in r 2 (l^n) is
actually a relatively smooth single peaked distribution with the maximum near, but not
actually at, the longest possible length (i.e. (g)) for a given problem. The bell curve has
quite a long tail to the left, i.e. the shorter paths. This is the area in which we would like to
find solutions, but we would like to find a better way of doing this than perfoiming several
thousand random runs.

Studying the behaviour of this distribution may be an interesting area for future study, but
since the heuristics we will develop find significantly shorter paths we will leave this as a
potential aiea for further work.

6.1.1 Permutation of Input

Note that if we had applied the standard algorithm to the diagonal [130,231,6,143,78]
without presorting we would have produced exactly the same result as applying the mingcd
structural algorithm. For 5 distinct elements there are 120 possible orderings. We plot
solution size vs path length for applying the standard approach to each of these orderings
in figure 6 .8 . As aheady mentioned this is a degenerate case, the 78 being in the SNF,
and we plot solution size vs path length for each of the 24 permutations of ‘reduced’
input also in figure 6 .8 . Recall that the standard approach first performs operations on the
sequence of pairs [[1 , 2], [1 ,3], . . . , [1 , nj] to produce the gcd of all the entries in position
1. We could at this point attempt to examine all orderings of the n-1 remaining entries
before embarking on each next major step. However this would then no longer be the
standard algorithm as described. We will therefore only consider orderings of the initial
entries when examining the effect of such orderings for any given positional algorithm.
Clearly permutation of input can have a large effect and it would be beneficial to develop
an algorithm that minimizes the effect of this ordering with respect to both the number of
such orderings and the range of sizes associated. When discussing positional algorithms
we will often refer to the range of qualities associated with them for a particular input.
These ranges have been estimated from the results of several random permutations of input
and while they may not actually correspond to the entire range they should be sufficient to
give a good idea.

57

Chapter 6 Strategies

Q—+ Q-*
60

50

40

30

20
0 2 4 6 8

Q—+
60

50

40

30

20
1 2 3 4 5 6

120

100

80

60

40

20
0 2 4 6 8

Q-*
140
120

100

80

60

40
20

1 2 3 4 5 6

Figure 6.8: Scatter plots of results of applying standard positional algorithm :
Top : to all 120 orderings of [6,78,130,143,231].
Bottom : to all 24 orderings of [6,130,143,231].

In each case the abscissa is path length, ordinate is log2 {quality).

Most implementations sort the diagonal D into ascending order before applying the stan
dard algorithm. These experiments show that the ordering of the input can have a signifi
cant effect on performance. We will investigate in section 6.2.1 whether sorting is actually
beneficial in the standard implementation.

6.2 Positional Heuristics

The basic idea behind the positional algorithms is to develop a strategy that preselects
a path (sequence of pairwise steps), P through the worst case graph, r 2 (VFn) • Since

58

Chapter 6 Strategies

any other input D of length n has an associated graph, FgCD), that is a quotient graph of
F2 (Wii) it follows that by applying the same sequence of steps, P , to D we will find a
route through F2(D). We will develop in this section ‘better’ positional algorithms for this
task. By ‘better’, we mean heuristics which find shorter paths through F2 (%), and which
appear to generally produce better quality solutions in both the worst case and also for
more general input diagonals. We will also provide some theoretical foundation that will
help explain the behaviour of these heuristics, and that permits a more general comparison
of positional algorithms.

6.2.1 The Standard Algorithm

The algorithm (sequence of steps / position pairs) that is usually implemented to convert a
diagonal matrix to SNF is as shown in Figure 6.9.

1 . for i in [1 , . . . , 7z — 1] do

2 . for j in [̂ + I j . . . , n] do

3. m[i][i];=gcd, m[j][j]:=lcm.

4. od;

5. od;

Figure 6.9 : Pseudocode for the standard algorithm.

This procedure talces up to n — 1 steps to find the gcd of n numbers, another n -- 2 to find
the gcd of the remaining n — 1 numbers and so on. It is easy to see that in the worst case

this takes = ”~̂~2~ '̂~ steps.

So here we repeatedly obtain gcds until the final step at which point we also obtain the 1cm
of all of the numbers. There are many variants of this algorithm, e.g. to produce Lems,
(naive-lcm) or to alternately produce some number of Gcds followed by some number of
Lems. In all cases the worst case still talces ~ steps.

To Sort or not to Sort

This procedure is obviously sensitive to input ordering. Exchanging di and Ü2 has no
effect on later diagonals, but any other change may do so, giving y possible cases. Even

59

Chapter 6 Strategies

exchanging di and dg will have an effect upon the multiplier matrices, but this can be made
quite small by utilising the methods of chapter 5 to ‘balance’ the entries of the multipliers.

Examining the effect of applying the algorithm described above to various random diag
onals (1 0 , 2 0 ... 1 0 0 percent of worst case) of various lengths it appears fairly clear that
sorting into increasing order is unhelpful when we are applying the standard algorithm.
Sorting into decreasing order on the other hand seems to generally produce better quality
results. These effects are more pronounced the closer the problem is to worst case i.e. the
larger the percentage of coprime elements that occur.

n 1 0 % 2 0 % 30% 40% 50% 60% 70% 80% 90% 1 0 0 %

4 (NA.NA] [NA.NA] [25,28] [25,30] [16,16] [8,14] [8.14] [16,17] [1,2] [0,0]
5 [21,21] [12.16] [19,19] [10.14] [4,7] [7,11] [2,7] [3,8] [2.2] [0,0]
6 [19,25] [12,18] [4.9] [4,5] [1.5] [3,8] [2.5] [2,3] [0,2] [0,0]
7 [7,17] [2,12] [1,4] [1,8] [0,3] [2,3] [0,1] [1,4] [0,1] [0.0]
8 [4.11] [0,5] [2,5] [0,0] [0,0] [1,2] [1,2] [0,0] [0,0] [0,0]
9 [0,5] [0.2] [0,3] [0,0] [1,1] [0,0] [0,0] [0.0] [0,0] [0,0]

1 0 [0.0] [0,0] [0.1] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]

Table 6.1: Results of applying Standard algorithm to 1000 random diagonals, showing the
percentage of cases where sorting produced a better quality result than reverse
sorting - In each case the pair relates as [Q*, Q+].

Note that the small percentages for n = 4 have not been given values. This is because
the height of W4 is only 14, and so 10 or 20% of this is too small for sensible comparison
(The cases are so degenerate as to either be in SNF, or be within a single step).

In fact it appears that in these cases (10,20,.. .,100 % of Wn) sorting into increasing or
der generally gives a result that is comparatively bad whilst sorting into decreasing order
generally gives a good quality result in comparison to other permutations of the input
ordering. This of course depends heavily upon the exact nature of the problem, but the re
sults shown in Tables 6.2 and 6.3 support this view. In each case, 10 random inputs (each
k% of Wn) were created. 1 0 0 random permutations of each of these inputs were selected
with the proviso that the sorted input and the reverse sorted input were included in those
100 permutations. The figures shown in the table are the sums of final positions of these
ten runs of the sorted and reverse sorted inputs in terms of the final qualities achieved by
applying the standard algorithm, (i.e. a 1 0 would imply that that peimutation of inputs

60

Chapter 6 Strategies

produced a better final result in all 1 0 cases, a 1 0 0 0 would imply every other permutation
was better.) In the case of the length 4 input, all 24 permutations were selected, rather than
100 random. We give only the results for Q* as Q+ shows almost identical behaviour.

n 1 0 % 2 0 % 30% 40% 50% 60% 70% 80% 90% 1 0 0 %

4 (240 mns) NA NA 117 169 183 209 183 146 217 180

5 (1000 runs) 289 330 729 696 694 609 856 803 850 976
6 (1 0 0 0 runs) 483 563 803 830 8 6 6 842 8 6 8 807 885 995

7 (1000 runs) 584 860 768 869 821 891 951 912 935 993
8 (1 0 0 0 runs) 771 885 940 972 901 929 869 966 950 990

Table 6.2: Results of applying standard algorithm to 100 different sortings of 10 inputs.
The value shown is the sum of the positions in which the ‘sorted’ input placed
(in terms of Q*). i.e. 1 0 = first place every time, 1 0 0 0 =last place each run

n 1 0 % 2 0 % 30% 40% 50% 60% 70% 80% 90% 1 0 0 %
4 (240 runs) NA NA 82 67 6 8 64 47 75 56 30
5 (1000 runs) 179 2 0 1 118 178 342 182 199 94 84 60
6 (1 0 0 0 runs) 284 198 2 0 1 163 152 115 157 1 1 0 135 1 1

7 (1000 runs) 137 60 61 183 175 32 98 173 117 17
8 (1 0 0 0 runs) 8 6 38 33 47 82 62 6 6 37 28 1 2

Table 6.3: Results of applying standard algorithm to 100 different sortings of 10 inputs.
The value shown is the sum of the positions in which the ‘reverse sorted’ input
placed (in terms of 0 *). i.e. 1 0 = first place every time, 1 0 0 0 =last place each
run

The experimental evidence from tables 6.2 and 6.3 definitely appears to show that sorting
into reverse order is not only better than sorting into increasing order, but also that it
appears to generally produce results that are in the top quartile. Sorting into increasing
order on the other hand generally appears to produce results that are deep in the fourth
quartile of quality.

Another case we are interested in that is not really covered by the above is the coprime
case, with height (and weight) equal to n. This case arises relatively often in practice and

61

Chapter 6 Strategies

as we can see from the data in table 6.4 it appears that here sorting into increasing order
generally produces better results than sorting into decreasing order.

n 3 4 5 6 7 8 9 1 0

0 . 72 89 97 98 99 1 0 0 1 0 0 1 0 0

Q+ 75 91 98 99 99 1 0 0 1 0 0 1 0 0

Table 6.4: Results of applying Standard algorithm to 1000 random diagonals of coprime
elements, showing the percentage of cases where sorting produced a better qual
ity result than reverse sorting.

In fact we can also see that in this case sorting into increasing order performs very well in
comparison to other random orderings, whereas sorting into decreasing order appears to
be a particularly bad way of proceeding. Table 6.5 shows the results of summing the final
positions of these two sortings in comparison with 98 random sortings, over 100 runs of
random coprime inputs.

n 3 4 5 6 7 8 9 1 0

range (0 0) 1 - 6 1-24 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0

Increasing 208 528 1523 939 712 390 269 148

Decreasing 486 2060 9147 9522 9787 9859 9962 9967

Table 6.5: Results of applying Standard algorithm to 100 random diagonals of coprime
elements, showing the sum of positions over 1 0 0 runs wit 0 * i.e. 1 0 0 -always
best, 1 0 0 0 0 -always worst.

This behaviour becomes more exaggerated the greater the length of the input. For length
2 0 lists of coprime elements sorting into increasing order appears to generally produce
solutions with qualities in the top percentile of all qualities for input orderings under ap
plication of the standard algorithm. It also appears that, for lists of this length, sorting into
decreasing order generally produces solutions with qualities in the bottom percentile.

It appears then that there is some relation between the height of the input and whether
sorting is beneficial. In fact the relation appears to be somewhat more complex as if
we examine the the complement of the coprime case, i.e. where every element appears
in n — 1 positions (hence Height n. Weight n{n — 1)), it appears, from table 6 .6 , to
benefit from sorting into decreasing order. And we can again examine how these orderings

62

Chapter 6 Strategies

n 3 4 5 6 7 8 9 1 0

Q* 18 7 2 I 0 0 0 0

Q+ 19 8 2 1 0 0 0 0

Table 6 .6 : Results of applying Standard algorithm to the complement of 1000 random
diagonals (complement of coprime), showing the percentage of cases where
sorting produced a better quality result than reverse sorting.

perfoim in comparison to other random orderings, as shown in Table 6.7. In this case
the opposite result of that in the coprime case is true, and for the longer inputs here we
would recommend, in virtually all circumstances, sorting into decreasing order. There is

n 3 4 5 6 7 8 9 1 0

range (0 0) 1 - 6 1-24 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0 1 - 1 0 0

Increasing 457 1967 8911 9355 9514 9757 9896 9929
Decreasing 241 549 1242 697 505 316 216 173

Table 6.7: Results of applying Standard algorithm to 100 random diagonals (complement
of coprime), showing the sum of positions over 1 0 0 runs wrt Q* i.e. 1 0 0 -always
best, 1 0 0 0 0 -always worst.

presumably some connection between height / weight and how best to sort our input. In
the absence of a better strategy we suggest that whilst sorting into reverse order appears
to be the best strategy in the general case, and sorting into increasing order appears best
in the coprime case, it is probably worthwhile trying both orderings in each case. In
fact we suggest trying a small number of pairs of random orderings and their reverses in
order to attempt to find a good quality solution. This approach will then require only a
linear increase in the amount of work to be performed, which amount can then be decided
depending upon whatever external criteria are most pressing.

During the rest of this thesis, when we will be comparing the results of applying various
algorithms to some given input, we will not be attempting to select the best way of sorting
the input. Rather we will generally talce several random permutations of the input in order
to try and minimize the effects of such input ordering upon oui* wider comparisons.

63

Chapter 6 Strategies

6.2.2 Divide and Conquer

If we examine the case n = 2, we see that we obtain both the gcd and 1cm in a single
step i.e. we get the 1cm ‘for free’. An immediate question is whether we can develop a
better algorithm by obtaining both the gcd and 1cm of a set of n numbers for n > 2. One
approach that lends itself to obtaining both gcd and 1cm is divide and conquer.

Starting with a problem of size n.

x x x x x x x x x x x x x x x x

Divide into two parts and recurse to get Gcd and Lem

g x x x x x x l j x x x x x x x x

g X X X X x x l j g x x x x x x l

o------------------ o
Now one step obtains the Gcd of all the numbers
G ! X X X X x x l ' x x x x x x x l

o------------------o
And another obtains the Lem

G I X X X X X X X X X X X X X x ' L

And then we recurse with a problem of size (n-2)

Split the problem into two
roughly equal parts and
solve recursively as shown
on the left. The base case with
n = 2 is the single step below

X Y

Single Step.

Gcd(X,Y) Lcm(X,Y)

Figure 6.10 : Basic Divide and Conquer Strategy

We can see that we gain by applying this divide and conquer strategy simply by examining
the problem of length 4.The naive method can take
(2) = 6 steps when n = 4. The divide and con
quer method can be easily seen to take no more
than 5 steps to solve the size 4 problem by us
ing the sequence [[1,2], [3,4], [1,3], [2,4], [2,3]] as
demonstrated in figure 6.11. Exhaustive enumer
ation of all 708 paths through r 2 (M(i) where W4

is a worst case diagonal of length 4 shows that 12
paths have length 5 and 696 paths have length 6.
Similar enumeration has shown there to be a to
tal of 3269040 paths through F2 (W5), the graph
of the length 5 worst case. Space and time con
straints have however prevented us from calculating the exact distribution of path lengths
in either this or larger worst cases.

Figure 6.11

64

Chapter 6 Strategies

We can write down a recursive formula for the maximum number of steps the divide and
conquer algorithm could take. As demonstrated in Figure 6.10 this problem has two stages,
the recursion to obtain the gcd and the 1cm of a length n list of integers and then the overall
recursion with a problem of size n-2 to find the SNF. This can be modeled using two linked
recursive formulae as follows :

• Maximum number of steps to obtain gcd and 1cm of n integers,

Sn := *S|̂ nj + + 2.

• Maximum number of steps to find SNF of n integers,

Tn := Tn-2 + Sri’

\^^th base cases = 0,52 = 1, Ti = 0, T2 = 1.

And so we have growth as shown in table 6.8:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5n 0 1 3 4 6 8 9 10 12 14 16 18 19 20 21 22

Tn 0 1 3 5 9 13 18 23 30 37 46 55 65 75 86 97

Table 6.8: Number of steps required by divide (into 2) and conquer in worst case

It is not particularly illuminating to derive an explicit formula for T„ since the the exact
behaviour relies upon the binary representation of n. However we can make some useful
observations. Figure 6.12 shows a plot of 2 x 5„ (dashes) and a plot of 3 x n (solid).

From this it appears that 5„ is roughly y +
o{log{n)). This observation is further borne out
by the fact that for n = 2* the recursion to obtain
the gcd and 1cm at each stage is

Figure 6.12

8 2 ̂ = 2 X 52&-1 4- 2

from which we can readily derive the explicit for-

8 2 k = 3 X 2^-1 - 2,

i.e. 8 n is 0(n). Hence it appears that T„ is O(n^).

65

«00 BOO 1000 mula

Chapter 6 Strategies

This prompts us to investigate whether we can find a better divide and conquer algorithm.
We assume that the basic premise of recursively finding the gcd and 1cm of our list of
length n, n - 2, n - 4 , . . . , 2 or 1 cannot be improved upon. We therefore concentrate
upon the problem of finding both the gcd and 1cm of a list of length n. Note that on the
length 6 problem to find the gcd and 1cm we split the problem into a pair of problems
of size 3, both of which take 3 steps, for 3+3+2=8 steps overall. If instead we split the
problem into 3 subproblems each of size 2, taking one step each, then we will require 4
further steps to collect the gcd (2 steps) and 1cm (2 steps) for a total of 7 steps in all.

Divide mto tlvee pain, then collect

Figure 6.13 : Divide into two versus divide into pairs

Divide iKo a pair of threes, then collect

Note that this approach splits the gcd-collection and the Icm-collection completely, that
is to say after the gcd-lcm operation on each pair, we cannot damage any information we
will later require. For this reason this approach appears to have promise. In fact upon
examining the various ‘divide into k parts and conquer’ algorithms we find that the non
recursive variant which divides into sub problems of size no more than 2 never takes
more steps than any other divide and conquer heuristic.

This ‘divide into pairs’ algorithm can be analysed by observing that we can set up two
linked recursive formulae as follows:

• Maximum number of steps required to obtain gcd and 1cm of n integers,

[fJ
• Maximum number of steps find SNF of n integers,

Tn := T„_2 + Sn-

66

Chapter 6 Strategies

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sn 0 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22

Tn 0 1 3 5 9 12 18 22 30 35 45 51 63 70 84 92

Table 6.9: Number of steps required by divide (into pairs) and conquer in worst case

With base cases Ti = 0, T2 — 1.

And so we have growth as shown in table 6.9:

For this recursion we can readily derive an explicit formula : note that there are [|J pairs
and then the ‘collection’ of the gcds to one point and the Icms to another is easily seen to
require no more than 2 {\^'\ — 1) operations.

&

Let := 2m + 1,

Now m = so

— 1), Tn Tn-2 + Sn

3(n - 1)
Sn :=

■2m+l
i=0

3m(m + 1)

3 (n - l) (n + l) _ 3 n ^ - 3

For even n.

Let n := 2m + 2,

Now m = so

S „ : = ^ - 2

2̂m+2 f 5 ^ (3 0 J +TTI + 1

3m (m +1) + m + 1

T : 3(n)(n — 2) n _ Sn^ — 2n
8 2 ~ 8 '

And so in general we have

67

Chapter 6 Strategies

T„. =
—3

8
3n^—2n

n odd
neven

(61)

This shows us that the divide into pairs allows us to solve the problem in under ^ op
erations. Recall that the plot in Figure 6.12 shows that standard divide and conquer will
generally take a little over “ operations. This difference also arises in the more general
‘divide into k’ and conquer heuristics. Note that the ‘obtain Gcd-Lcm’ sequence i.e Sn
for the ‘divide into k’ and conquer is actually as good as the ‘divide into pairs’ when the
problem size n — 2k^ for some i. In this case, all the base cases are of size 2. However
since we then recurse again but with a problem of size n — 2 we can see that divide into
pairs will perform better for problems of size greater than 4.

0 2 0 0 4 0 0 6 0 0 6 0 0 1 0 0 0

Column 5

2 0 0 4 0 0 6 0 0 6 0 0 1 0 0 0

Column 8

2 0 0 4 0 0 6 0 0 8 0 0 (0 0 0

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

Column 9

400 600 600

2 0 0 4 0 0 6 0 0 GOO 1 0 0 0

Column 7

AAAAA
2 0 0 4 0 0 6 0 0 6 0 0 1 0 0 0

Column 10

2 0 0 4 0 0 6 0 0 BOO 1 0 0 0

Figure 6.14 : (# steps for divide into k parts) - (# steps for divide into pairs)
TSBWBg

Figure 6.14 demonstrates the difference between the ‘divide into k paits’ heuristics and
the ‘divide into pairs’ heuristic. Each plot demonstrates similar behaviour, i.e. a sawtooth,
with sequences of k-1 peaks each of the same height. For /? = 2 the heights of each
successive peak are 2^, for & = 3 the height of each successive pair of peaks appears to

68

Chapter 6 Sti'ategies

be X)r=o 3% but for larger k there seems to be no readily accessible formula. It is also the
case that for laiger k the problem of how to perfoim the base cases rears it’s head again,
and we need to resort to dividing into smaller k to make further progress.

Having settled upon this strategy of dividing into pairs, collecting up the Gcd and Lem
and recursing, we need to address the problem of exactly how we intend to perform the
steps corresponding to the collection of the Gcd and Lem. We will concentrate on the
Gcd collection for the moment. The worst case that can arise for this collection is very
similar to the coprime case; we require n-1 operations to obtain the Gcd of n elements.
The question is how exactly we perform these n-1 operations. There are many ways of
perfoiining these operations (see Section 4.5 for the discussion of the digraph of a coprime
selection, and path selection therein) and we shall develop a solution to this problem after
developing a little more theory in the next section

6.3 Power Growth

In chapter 5 we looked at how to minimize the impact of each step by looking at the
‘damage’ that was done by the multiplier matrices for that step. We will now examine
another aspect of this ‘damage’ accumulation.

Recall from sections 4.1.2 and 5.2 that each step through the graph from initial input
to SNF consists of pre(post) multiplication of the current row(column) transformation
matrices by a multiplier of the form:

M

1 0
0 1

Mi,i Mj î

3̂,3

Note that premultiplication of the current row transformation matrix by such an almost
elementary matrix will cause changes to the entries in only two rows, namely rows i and
j , of the row transformation matrix. Similarly postmultiplication of the column transfor
mation matrix will cause changes to the entries in only columns i and j of the column
transformation matrix.

69

Chapter 6___ Strategies

We could easily keep track of how often each row/column of our evolving row/column
transformation matrices have been modified at step 77 as we progress toward SNF by using
a length n vector where each entry 1 < i < n is initially set to be zero. At each
step of the calculation, the only difference between and ' '̂^^Bi would be:

This however would not give a good indication of the way in which the magnitudes of the
entries of the transformation matrices aie likely to change as we progress toward SNF.

A better way of tracking the potential changes to the magnitudes of the entries in each
row/column of the transformation matrices is to recall from chapter 5 that we can easily
find an upper bound X for the magnitude of every entry in all almost elementary multiplier
matrices used in a given SNF calculation. Similaidy, at each stage of the calculation we
can see that for each row/column of the row/column multiplier matrices we can find some
power of X that must be an upper bound for the magnitude of the entries.

We can track these maximum bound powers in a similar manner as described above, i.e.
with a sequence of length n vectors ^B, relating to step p of the calculation.. In this case
it should be clear that, at each step, 77 4- 1, the potentially largest power of X in each
row/column i, j is equal to

Max{^Bi,^Bj)-\-l

i.e. the only difference between ^B and would be

= [Max{Wi,^ Bj) 4- 1, Max{^Bi,^ Bj) + 1].

In the rest of this section we will examine the vectors that arise from applying this idea
to the positional algorithms discussed previously in this chapter. We will then be able to
compaie the theoretical maximum power growth (final vector) with those results obtained
in practice. Appendix 1 contains a graphical demonstration of this idea, whereby we shade
the powers in each position at each stage (darker shading for higher values).

70

Chapter 6 Strategies

6.3.1 Maximum Powers for Particular Heuristics

We will now examine several heuristic methods in terms of this idea. There are two things
which are of interest. The maximum power occuning in any given row or column, and the
final distribution of maximum powers across all the rows or columns. We shall demon
strate the ideas in this section upon a length 8 problem. In Appendix 1 the results of
applying these ideas to a length 20 problem are demonstrated graphically.

Standard Implementation

We shall begin by examining the usually implemented simple heuristic and tracking the
changes in the bounding power of X as we proceed through the steps

,[1,2], [1 , 3] , . , [1, n], [2,3], [2,4],..., [2, n],. . . , [n - 1, n].

& 0 , 0 , 0 , 0, 0 , 0] ,

IV " 1 , 0 , 0 , 0 , 0 , 0, 0] ,
2 , 1 , 2 , 0 , 0 , 0 , 0 , 0] ,

3 , 1, 2 , 3 , 0, 0, 0, 0] ,

4 , 1 , 2 , 3 , 4 , 0, 0, 0] ,

5 , 1 , 2 , 3 , 4 , 5, 0, 0 1 ,
6 , 1 , 2 , 3, 4 , 5, 6, 0] ,
7 , 1 , 2 , 3 , 4 , 5, 6, 7] ,

After this first sequence we have now guaranteed that the gcd of all the elements appears
in position 1.

7 , 3 , 3 , 3, 4 , 5 , 6 , 7] ,

7 , 4 , 3 , 4, 4 , 5, 6 , 7] ,

7 , 5 , 3 , 4 , 5 , 5, 6 , 7] ,
7 , 6 , 3 , 4 , 5 , 6 , 6 , 7 3,
7 , 7 , 3, 4 , 5 , 6, 7 , 7] ,

7 , 8 , 3 , 4 , 5 , 6, 7 , B] ,

We now have the gcd of the next 7 elements in position 2. One interesting thing to note is
that this sequence of positions automatically ran thiough using the pair of positions with
the smallest powers at each step. This means that the laigest power, i.e. the one appear
ing in position 8 (here, or position n in general) only increases by 1 for each successive
sequence after the first. This style of increase then continues in a similar vein :

71

Chapter 6 Strategies

[7 , 8 , 5 , 5 , 5 , 6, 7 , 8] ,

[7 , 8 , 6 , 5 , 6, 6, 7 , 8] ,

t 7 , 8 , 7 , 5 , 6, 7 , 7 , 8 3,

[7 , 8 , 8 , 5 , 6, 7 , 8, 8 3,

[7 , 8, 9. 5, 6, 7 , 8, 9 3,

[7 , 8 , 9. 7 , 7 , 7, 8, 9 3,

[7 , 8, 9, 8, 7 , 8, 8, 9 3,

[7 , 8 , 9, 9, 7 , 8 , 9, 9 3,

[7 , 8, 9, 1 0 , 7 , 8, 9, 10 3,

[7 , 8, 9. 1 0 , 9 , 9 , 9, 10] ,

[7 , 8, 9, 1 0 , 1 0 , 9 , 1 0 , 10 3,

[7 , 8, 9, 1 0 , 1 1 , 9 , 1 0 , 11 3,

[7 , 8 , 9, 1 0 , 1 1 , 11 , 1 1 , 11 3,

I 7 , 8 , 9, 1 0 , 1 1 , 12 , 1 1 , 12 3,

[7 , 8 , 9, 1 0 , 1 1 , 12 , 1 3 , 13 3

We can see that this has a veiy simple structure for the final distribution of bounding
powers. On a length n diagonal the final powers are :

[n — 1, n , . . . , 2n — 4,2n — 3,2n — 3].

It is similarly obvious that the maximum power here for a length n diagonal is :

2 * 71 — 3.

So the standard implementation actually seems to do quite well, producing a maximum
power of 0 (n).

Although possibly a slightly odd metric to take we can readily examine the sum of the
final powers. This will hopefully give us some indication of the spread. In this case it is
easy to see that the sum of the final powers is

2n—3 ^
2ti — 3 4“ \ — (3tî — 3ti — 2).

2î=n—1

We now have a standard benchmark against which we can compare various other heuris
tics.

It is easy to see that we can develop a worst case strategy that will produce the largest pos
sible powers by ensuring that at each step, one of the (at least two) entries with maximum
cunent bounding power is used. This is achieved by the following sequence

72

Chapter 6 Strategies

[1 , 2]
[2 , 8]
[3 , 4]
[4 , 8]

[5, 6]
{ 6 , 8]
[7 , 8)

, [1 , 3 3, [1 , 4 3, [1 , 5 3, [1 , 6 3, [1 , 7

, [2 , 7] , [2, 6 3, [2, 5 3, [2, 4 3, [2, 3

, [3 , 5 3 , [3, 6 3, [3, 7 3, [3, 8 3,

, [4 , 7 3, [4, 6 3, C 4, 5 3 ,
, [5, 7] , [5, 8 3,
, [6 , 7] ,

Here we ai*e effectively chasing the gcd up and down.

0 ,

1,
2 ,
3,
4,

5 ,

6 ,
7 ,

0 ,
1,
1,
1,
1,

1,

1 ,
1 ,

0 ,
0 ,
2 ,

2 ,
2 ,

2 ,

2 ,

2 ,

0 ,

0 ,
0 ,

3,

3,

3 ,

3 ,

3 ,

0 ,

0 ,
0 ,
0 ,

4,

4 ,

4 ,
4 ,

0 ,

0 ,
0 ,
0 ,
0 ,
0 ,

6 ,
6 ,

0]
0]
0]
0]
0]
0]
0]
7]

After this first sequence we ai*e in exactly the same position as we were with the previous
naive strategy.

[7 , 8, 2 , 3 , 4 , 5, 6, 8 3 ,

[7 , 9, 2 , 3 , 4 , 5, ■ 9, 8 3 ,

[7 , 10 , 2, 3 , 4, 10 , 9, 8 3 ,

[7 , 11 , 2 , 3, 11 , 10 , 9 , 8 3,

[7 , 12 , 2 , 1 2 , 11 , 10 , 9 , 8 3,

[7 , 13 , 1 3 , 1 2 , 11 , 10 , 9, 8 3,

We now have the first two entries of the SNF once again. However we can see that the
sequence uses the entries with the largest powers of the bound at each step.

[7 , 13 , 14 , 14 , 11 , 10 , 9, 8 3 ,

[7 , 13 , 15 , 1 4 , 1 5 , 10 , 9, 8 3 ,

[7 , 13 , 16 , 14 , 15 , 16 , 9, 8 3 ,

[7 , 13 , 17 , 1 4 , 1 5 , 16 , 17 , 8 3 ,

[7 , 13 , 18 , 1 4 , 15 , 16 , 1 7 , 18] ,

[7, 13 , 18 , 19 , 15 , 16 , 17 , 19 3 ,

[7 , 13 , 18 , 2 0 , 15 , 16 , 20 , 19 3,

[7 , 13 , 18 , 2 1 , 15 , 21 , 20 , 19 3,

C 7 , 13 , 18 , 2 2 , 22 , 21 , 20 , 19 3 ,

[7, 13 , 18 , 2 2 , 2 3 , 23 , 20 , 19 3,

[7 , 13 , 1 8 , 2 2 , 24 , 23 , 24 , 19 3 ,

[7 , 13 , 18 , 2 2 , 25 , 23 , 24 , 25 3 ,

[7 , 13 , 1 8 , 2 2 , 2 5 , 26 , 2 4 , 26 3 ,

[7 , 13, 1 8 , 2 2 , 25 , 27 , 27 , 26 3 ,

[7, 13, 18 , 2 2 , 25 , 27 , 28 , 28 3

73

Chapter 6__________________________________ _____________________Strategies

For this worst case strategy the final powers are the worst possible obtainable, being :

n —1 n —1

[n — 1, (n — 1) + (n — 2), . . . , i, %],
i=l i=0

where the maximum power after obtaining the kth element of the SNF is given by :

n —r

E I
i=n—k

and the maximum bound power occurring overall for the length n problem is then

71 — 1

E n{n - 1)
1 =

The sum of the final powers appearing, for the length n problem, is the cubic

i (n - l) n (n + l).

Standard Divide and Conquer

The next heuristic we will examine is the standard divide into two similar sized parts and
recurse,

[0, 0, 0, 0 , 0, 0, 0, 0 3,

[1, 1, 0, 0 , 0, 0, 0, 0 3,

[1, 1, 1, 1 , 0, 0, 0, 0 3,

[2 , 1, 2, 1 , 0, 0, 0, 0 3,

[2 , 2, 2 , 2, 0, 0, 0, 0 3,

As we can see here, first we work down one 1

[2, 2, 2 , 2, 1, 1, 0, 0 3,

[2, 2, 2 . 2 . 1, 1, 1, 1 3,
[2, 2, 2 , 2, 2 , 1, 2 , 1 3,
[2, 2 , 2 , 2, 2, 2, 2, 2 3,

And then we collect the gcd and the 1cm.

[3, 2, 2, 2, 3, 2, 2, 2],
[3, 2, 2, 3. 3, 2, 2, 3] ,

74

Chapter 6 Strategies

We now recurse with the problem of size n-2. Note that we have managed to find multipli
ers such that the rows (or columns) conesponding to the first and last entries of the SNF
are bound by log2 {n).

3, 3, 3 , 3 , 3 , 2, 2, 3 1,

3, 4 , 3 , 4, 3 , 2, 2 , 3] ,

3, 4 , 5 , 5 , 3 , 2, 2 , 3] ,

3, 4, 5, 5, 4 , 4 , 2, 3] ,

3, 4, 5, 5, 5 , 4, 5, 3] ,

3 , 4 , 5, 5, 5 , 6, 6 , 3] ,

3, 6 , 5, 5, 6, 6, 6, 3] ,

3 , 6, 5, 7 , 6 , 6, 7 , 3] ,

3, 6, 8, 8, 6, 6, 7 , 3] ,

3, 6, 8, 8, 7 , 7 , 7 , 3 1,

3 , 6, 9 , 8, 9, 7 , 7 , 3] ,
3, 6, 9 , 9, 9, 9, 7 , 3] ,

3 , 6, 9 , 1 0 , 10 , 9, 7, 3]

It is interesting to note that we could improve these slightly by being a little more careful
about the order in which we do some of these steps. For instance the starred steps above ig
nore the fact that if we wish to find the SNF of a length 3 problem where the powers are ini
tially bound by [3,2,2] then we should use positions 2 and 3 for the first of the three moves,
which will then lead to the final powers [4,5,5] rather than the [5,6,6] demonstrated above.
This is not at all simple to check for generally, however we will make a note of tins for later.

I s t o p s - D iw da e n d C o n q u e r

Figure 6.15

Again we note that that exact behaviour of di
vide and conquer algorithms is difficult to analyse
and depends upon the binary representation of n.
We can however make some reasonable estimates
and assuming we simply apply the basic divide
and conquer procedure we find that the maximum
powers in any row (or column) increase as shown
in Figure 6.15. This seems to suggest that the
maximum power occuning in the length n prob
lem is at least 0 (n), and if we examine the values

for various powers of 2, we find that the ratio of jg approximately a sim
ple calculation shows that the difference between successive ratios of appears
to be tending towards It appears therefore that the maximum power occurring in the
length n problem is governed by an equation of 0{nlogn). Similarly it seems that the sum
of the final powers is at least O(n^), but no worse than 0 {nHogn).

75

Chapter 6 Strategies

It appears then that divide and conquer, despite producing shorter paths, is in some sense
asymptotically worse than the standard implementation. Divide and conquer produces
smaller maximum powers for n < 16 however (and smaller sums of powers for n < 52)
and when we recall that a worst case problem of length n requires each element to be
the product of 2"“ ̂— 1 coprime elements we doubt that many problems will arise where
divide and conquer is not competitive with the standard algorithm.

Divide into Pairs with Naive Collection Strategy

As we have seen the divide into pairs heuristic produces generally shorter paths in the
worst case than any other heuristic. We will now investigate whether these shorter paths
lead to the same powergrowth problems as with standard divide and conquer. One addi
tional prpblem is of course that there was no indication of how best to perform the gcd-lcm

shall begin by examining a simple strategy to see the distribution of

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

1 , 1 , 0 , 0 , 0 , 0 , 0 , 0

1 , 1 , 1 , 1 , 0 , 0 , 0 , 0

1 , 1 , 1 , 1 , 1 , 1 , 0 , 0

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

at this point we need to collect the gcds and Icms. These two operations will not in
terfere with each other in any way. We collect both using a simple chasing stmtegy
i.e. [... [A;, A; + 2],[k 4- 2, A; 4- 4]...]. We also implemented a standard style strategy
i.e. [[1,3], [1,5], [1,7],... and discovered that the results were almost identical.

[1 , 1, 1 , 1 , 2 , 1, 2, 1] ,
[1, 1, 3 , 1 , 3 , 1, 2, 1] ,
(4 , 1 , 4, 1 , 3 , 1, 2, 1] ,
[4 , 2 , 4 , 2, 3 , 1 , 2 , 1] ,
[4 , 2 , 4 , 3 , 3, 3, 2 , 1] ,
[4, 2 , 4 , 3 , 3, 4, 2, 4] ,

We have now reached a point such that we have the first and last entries of the SNF and
we can recurse with a problem of size n-2. Note that we have managed to find multipliers
such that the rows (or colunms) corresponding to the first and last entries of the SNF are
bound by |*|] which is clearly not as good as the bound we discovered for the standard
divide and conquer.

76

Chapter 6 Strategies

t 4 , 5 , 5 , 3 , 3 , 4 , 2 , 4] ,

t 4, 5, 5 , 4 , 4 , 4 , 2, 4] ,

t 4, 5 , 5, 4, 4 , 5, 5 , 4] ,

[4, 5 , 5 , 6, 4 , 6, 5 , 4] ,

[4 , 7 , 5, 1, 4 , 6, 5, 4] ,

[4 , 7 , 6 , 7 , 6 , 6, 5, 4] ,

[4 , 7 , 6, 7 , 7 , 6, 7 , 4] ,

[4, 7 , 8, 8 , 7 , 6, 7 , 4] ,

[4, 7 , 8 , 8, 8, 8, 7 , 4] ,

[4, 7 , 9, 8, 9, 8, 7 , 4] ,

[4, 7 , 9 , 9, 9 , 9, 7 , 4] ,

[4, 7 , 9, 1 0 , 1 0 , 9, 7 , 4]

Interestingly, after our apparently poor stait, we have not done that much worse than for
the standard divide and conquer. However it is now much easier to see where potential
improvements can be made. Simply sorting the positions with regards to the power after
each collection step leads to a small improvement ([4,6,8,9,9,8,6,4]). We shall utilise this
Iĵ ter, Without this improvement however we find that the maximum power for a length n
problem is simply

rti

î=i

Which is approximately ÿ so it appears that we have to be very careful with our gcd/lcm
collection routine.

Divide into Pairs with Intelligent Collection Strategy

Each pass to extract a gcd or 1cm does an uneven amount of damage. The refinement we
now consider is to attempt to ensuie that at each step the most damage is done where there
was least previous damage so that the largest power grows slowly and the damage is more
evenly distributed. We do remarkably well by using a simple ‘greedy algorithm’ wherein
we keep track of the powergrowth bound as we proceed, and at each step we are faced with
a choice as to which position to use we select the position with the least power. This is as
close as we can come to the adaptive (structural) heuristic which would select the position
based upon the current state of the multipliers. We then see powergrowth increasing as :

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ,
1 , 1 , 0 , 0 , 0 , 0 , 0 , 0] ,
1 . 1 , 1 , 1 , 0 , 0 , 0 , 0] ,
1 , 1 , 1 , 1 , 1 , 1 , 0 , 0] ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1] ,

77

Chapter 6 Strategies

[2 , 1 , 2 , 1 , 1 , 1 , 1 , 1],
[2 , 1 , 2 , 1 , 2 , 1 , 2 , 1] ,

Here we see the first implications of this strategy. We now need to use the pair [1,5] in
order to collect the overall gcd.

t 3 , 1, 2 , 1, 3 , 1 , 2, 1] ,

[3 , 2, 2 , 2 , 3 , 1, 2, 1] ,

t 3 . 2, 2 , 2 , 3 , 2, 2, 2] ,

[3 , 2, 2 , 3 , 3 , 2, 2 , 3] ,

We have now, once again, reached a stage where we have the first and last entries of the
SNF and can recurse with a problem of size n-2. We have also managed to find multipliers
such that the bounding powers in the rows (or columns) corresponding to the first and
last entries of the SNF are bound by 1 + 0̂ ^ 2 {[11)- This is as good as the bound we
discovered for the standard divide and conquer routine eaiiier. Now, as we continue we
are very caieful about the order in which we select our pairs i.e. if given a choice use the
position with the least power, and the power growth then proceeds as follows

3, 3, 3, 3 , 3 , 2, 2 , 3] ,

3 , 3 , 3, 3 , 3 , 3, 3 , 3] ,

3 , 3, 3 , 4 , 4 , 3 , 3 , 3] ,

3 , 4 , 3, 4 , 4 , 4 , 3, 3 3,

3 , 5 , 3 , 5, 4 , 4, 3 , 3 3,

3 , 5, 4 , 5, 4 , 4 , 4, 3] ,

3 , 5, 4 , 5, 5, 4 , 5, 3] ,

3 , 5, 5, 5 , 5, 5, 5, 3] ,

3, 5, 5, 6 , 5 , 5, 6, 3] ,

3, 5, 7 , 6, 5 , 5, 7 , 3] ,

3 , 5, 7 , 7 , 5 , 7 , 7 , 3] ,

3, 5, 7 , 7 , 5, 8, 8, 3 3

This appears to be as well as we can do. Upon examining the maximum powers occuning
we find that the maximum power for a problem of length n appears to be 0 {n).

In this case a simple calculation shows that the difference between successive ratios of
maxpower{2) ^ppg^fs to be tending towai'ds zero.

We conjecture that the maximum power that could appeal' in the length n problem using
this strategy is n V ^ H- 0 {log{n))

In fact experiments have shown that the divide into pairs with intelligent collection tglpIQ
performs even better than predicted in terms of path length and powergrowth. It turns out

78

Chapter 6 Strategies

that we don’t require ALL the steps suggested by this sequence for Wn with n > 7, i.e. we
create certain divisibilities early in the sequence, leading to the case that certain later steps
would cause no progress to be made. In light of this we can malce no certain statements
about the shortest path or smallest maximum power arising in any path through F2 (W„).
The divide into pairs with intelligent collection idea does however provide us with tighter
upper bounds than were previously known.

6.3.2 Random

It is interesting to investigate the range of powers produced from following an average,
or random, path selection, and to compare these with the previous heuristics. Firstly we
provide, for the purposes of comparison, some results relating to the previous positional
algorithms described in this chapter.

n 4 5 6 7 8 9 10

Standard 5 7 9 11 13 15 17
Worst Case 6 10 15 21 28 36 45

D&C (into 2) 3 7 7 10 10 14 15
D&C (pairs)-Naive collect 3 6 6 10 10 15 15

D&C (pairs)-Intelligent 3 6 6 9 8 12 11

Table 6.10: Maximum Powers produced by various heuristics for Wn

The following bar charts demonstrate the behavioiu of 1000 random runs over various
length worst case problems.

489

3 4
Figure 6.16

400-
300-
2 0 0 -

1 0 0 -

0

348
285

202

39
113

8
13
10

Distribution of maximum powers of 1000 random path selections
through r 2 (W4) and r 2(W5)-

79

Chapter 6 Strategies

300
200-1
100

0

270 276
154

37

168
72 16

5 6 7 8 9 10 11 12 13 14
|ure 6.17 : Distribution of maximum powers of 1000 random path selections

through r 2(lF6).

300-
2 0 0 -

1 0 0 -

0

211 197 234
112

33
arpn

9 To" 11 12 13 14 15 16 17
Figure 6.18 : Distribution of maximum powers of 1000 random path selections

through r 2(Wjr)-

125

"-T-
14

55 19
—,—
16

300-
2 0 0 -

1 0 0 -

171
9173 3529

iHtffflil

202 210

10 11 12 13 14 15 16 17 18 19 20 21
Distribution of maximum powers of 1000 random path selections

through r 2 (Wg).

3001
200
lOOH

0
11

25 58
.(iïïïTmt

12 13 14 15 16 17 18 19 20
Distribution of maximum powers of 1000 random path selections

through r 2 (VP̂9).

101
-T-
19

70 45
—T“
21

12
— 1—

22
— P ~

23 24

300
200
1004

0
2 4 20 44

T

98 15 6 13 4 98
46 27 14 6 1

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Figure 6.21 : Distribution of maximum powers of 1000 random path selections

through r 2 (Wio).

80

Chapter 6 Strategies

The range of the sums of the powers appearing from random paths through Wn is a much
broader spread. It is not particularly illuminating to show the plots of these wide bell
curves here. We will instead briefly describe the salient points for each n. Results of ap
plying the positional algorithms developed here are displayed in Table 6.7 for compaiison.

n 4 5 6 7 8 9 10
Standard 17 29 44 62 83 107 134

Worst Case 20 40 70 112 168 240 330
D&C (into 2) 10 27 33 49 57 86 106

D&C (pairs)-Naive collect 10 23 28 51 60 96 110
D&C (pairs)-Intelligent 10 23 28 46 46 76 78

Table 6.11: Sums of Powers produced by various heuristics for Wn

of the powers, from a 1000 random paths, ranged from 10 to 21. This
Tiad at 17 and 21, with over 200 ‘hits’ each.

For 71 = 5 the sum of the powers ranged from 21 to 44. There were pealcs at 29 and 32
with 115 hits andl27 hits respectively.

For n = 6 the sum of the powers ranged from 28 to 75. There were no obvious peaks, but
the main plateau was from 45 to 54, where each value had 50 to 60 hits.

For 71 = 7 the sum of the powers ranged from 44 to 106. Again there were no obvious
peaks, but again a main plateau could be identified from 64 to 83, wherein each value had
at least 30 hits.

For 71 = 8 the sum of the powers ranged from 65 to 146. The values between 92 and 117
all had at least 25 hits.

For 71 = 9 the sum of the powers ranged from 91 to 190. The values between 123 and 145
all had at least 20 hits.

For 71 = 10 the sum of the powers ranged from 115 to 251, The values between 156 and
189 all had at least 15 hits, and there appears to be a slight peak at 171 with a grand total
of 30 hits.

From these results it would appeal* that random selection is generally slightly worse than
the standard algorithm, though there is of course the potential to perfoi*m much better or
much worse. The divide and conquer algorithms appeal* to compare favourably, at least

81

Chapter 6 Strategies

over this range of lengths. It is not at all obvious what the expected maximum power or
power spread occurring from a random run would be in general.

6.3.3 Relationship Between Theory and Practice

While the power growth idea developed in this section is interesting in it’s own right it
is obviously much more interesting still if we can show a correlation between theory and
practice. In fact we will see that there is indeed such a correlation, not only in the worst
case scenario but also in the wider general setting.

0_* of 10% W_B

i

Q_+ of 10% WjB

i t

Q_* of 50% of W_8 Q_+ of 50% of W J

,;lir
: Î i t .

10 12 14 16 18 10 12 14 16 18

Figure 6.22 : Maximum power occurring in theoretical powergrowth of random runs
vs actual qualities in 10% (left pair) and 50% (right pair) of Wg.

Q_* of 100% of WJ Q_+ of 100% of W_B
4.0«10< ; [*

» « » " 2.2x10*
.

3.5«10"
. . . " ■ 2.0X10*

* * * 1 1 1.8x10*
1 » ;
J 1 Î * 1.8x10* i i i f -? , . , . , . ,n *

10 12 14 16 18 20 10 12 14 16 18 20

Figure 6.23 : Maximum power
occurring in theoretical powergrowth of
random runs vs actual qualities in PFg.

Firstly we see a good correlation from
plotting quality (in fact log thereof, as
usual) versus the theoretical powergrowth
of several random runs on various input di
agonals, as shown in figures 6.22 and 6.23
These experiments were run several times
over various lengths, percentages and sets
of elements and in each case a similar cor
relation was observed.

There is also a strong correlation between
the maximum power as calculated from
the trace versus our two usual qualities in
the coprime case, i.e. where all the ele
ments of the diagonal are coprime. Figure

82

Chapter 6 Strategies

6.24 demonstrates this correlation in an example arising from attempting to find the SNF
of a 20x20 diagonal matrix with prime entries. Over the course of experiments using dif
ferent diagonals of varying lengths and entries, the same behaviour and strong correlation
between maximum power and quality occurred throughout. Recall that in the coprime
case it can be seen that every element in either of the multiplier matrices is of the form
A B C . . . where each % is an entry of one of the 2 x 2 matrices used during the calculation.
That is to say there is no interference (addition or subtraction) during this calculation, and
so minimizing both powergrowth and also each of the 2 x 2 matrices will clearly improve
the quality of the final multiplier matrices.

Q_* Q-+
6000
5000

I I I4000

3000

2000

1000

4000

3000

2000

1000

10 126 8410 12

Figure 6.24 ; Scatter plots showing the results of plotting loç2 of Quality versus the
maximum theoretical power occurring from applying the actual steps taken for 1000

random runs to convert a 20x20 diagonal matrix with prime entries.

This correlation also appears when we examine the ranges of qualities produced by ap
plying the positional algorithms we developed in the previous section to various input
diagonals. Of course in this case we are primarily interested in the worst case input as
otherwise we have to be careful when assigning our theoretical power; this case is demon
strated in Figure 6.25 . In more general cases where we possibly create a lot more edges
in the divisibility graph at each step, negating the need for a later step in a given positional
algorithm, we could examine the steps that do get used and compare the power growth
with the size for a given sequence.

83

Chapter 6 Strategies

Log of Quollty (•) of 50 runs on random orderings of W_8

S ta n d a r d W o rs t C o m Oiv A C o n q Oiv P o tr s K) Oiv P a i r s

Log of Quollty (+) of 50 runs on rondom orderings of W_fl

S to n d a r d W o rs t C o m Dtv A C o n q Oiv P o ir s K3 Oiv P a i r s

Figure 6.25 : Demonstration of the differences of applying the various positional
algorithms described in this chapter to random orderings of a worst case of length 8.

The other main case in which we are interested is the coprime case, however, and it is
simple to see that in this case the divide (into 2) and conquer and the divide into pairs
with intelligent collection are both effective at spreading the damage, and minimizing the
maximum theoretical power appearing. There is again a strong correlation visible, as
shown in figure 6.26 :

Log of Quality (•) of 50 runs on random orderings of 20 coprime elements

I I

S to n d o r d W o rs t C o m Oiv A C o n q Div P o ir s iQ Oiv P a i r s

Figure 6.26 ; Application to random orderings of a coprime case of length 20.

The largest powers in the theoretical powergrowth here are 19 for both the standard and
worst case algorithms, 10 for the divide into pairs, and only 5 for both the divide and
conquer and divide into pairs with intelligent collection strategy. The sums of final pow
ers appearing being 209 for both the naive and worst case strategy, 46 for divide into 2
and conquer, and 74 and 40 respectively for the divide into pairs with naive collection
and intelligent collection strategies. It appears that the divide into pairs with intelligent
collection is the best strategy to choose in either the coprime or worst case scenarios.

84

Chapter 6___ Strategies

6.4 Comparisons of Positional Algorithms

Having developed several positional algorithms by paying attention to the theoretical as
pects of the problem at hand we will now provide experimental evidence to confirm that
these algorithms do indeed perform well in practice.

We performed experiments upon various percentages (10, 20,.. .,100%) of various length
(4,.. .,8) worst cases. In each case we selected 100 random inputs and performed 10
random runs upon each of these inputs. In each of the tables 6.12- 6.21, the values shown
are the total number of these random runs that produced a better quality result than the
positional algorithm in question. We also performed a similai* experiment upon random
coprime inputs of length up to 20. In each case the results are given as a pair [æ, y] where
X is the result for the Q* measure and y is the result for Q+. The values of x and y range
between 0 and 1000, where 0 is good, 500 is average (random) behaviour, and 1000 is bad.
As usual, these results are indicative of a larger range of experiments, all of which gave
similar results.

From these results we can see that the standai'd algorithm, whilst performing reasonably
on larger more complex problems, generally performs worse than a completely random
algorithm in most cases we are likely to encounter in practice, especially for coprime
input. The ’worst case’ algorithm perfonns as expected, i.e. badly, further strengthening
the correlation we have seen between theoretical powergrowth and practice. The results for
the divide and conquer heuristics display some interesting properties, performing generally
well but giving better results for even length inputs, which split more easily into smaller
cases. This appears to be due to the fact that there is a conelation between shorter paths
and quality, which is helping, and a conelation between powergrowth and quality, which
we are not making the most of here.

It is interesting to note that the divide (into 2) and conquer routine appears to perform
much better than the divide into pairs (IQ) for coprime inputs of length 5,7 and 9. This is
not an experimental anomaly, rather it is a consequence of applying algorithms designed
for use in the worst case to a non-worst case input. In this coprime case, as with any non-
worst-case input, many of the steps of these algorithms are not used, and so the theoretical
powergrowth, and path length bears less resemblance to practice. We note that while
we could have developed algorithms that attempted to minimize powergrowth on general
input, these would then be structural algorithms, and as such these will be discussed in the
next section. We will however mention here reasons for this behaviour. In the coprime

85

Chapter 6 Strategies

case, where all path lengths are equal, we can get a slightly clearer view of how damage
is accumulated. In this case we can step a little further from the powergrowth general
bound and see that at each step the damage that is done is dependent upon how many
coprime elements have ‘built up’ at a given stage. That is to say, we are not only interested
in the maximum power of some bound appearing in the multiplier matrices, but also in
the values of the pair a and b. In the coprime case we can track the growth of these
entries in a similar fashion to the powergrowth tracking. By so doing we discover that the
final step in the process of applying the sequence proscribed by divide into 2, upon the
length 5 copiime input, demands a 2 x 2 operation to be performed upon a and b where
a = pqr and b — sty i.e. a is the product of three of the original entries of the input, 6
is the product of the other 2. Applying the sequence proscribed by divide into pairs in
this case we find the last step is to be performed upon one entry of the original input, and

o% W ^0% iphces on the explicit multiplier matrices defined in equation 5.11. Hence
the divide into pairs heuristic performs worse than the divide into 2, mainly due to this
final imbalance. A similar situation appears in both the length 7 and 9 problems, i.e. the
divide into 2 performs a final operation upon a reasonably balanced pair, whilst the divide
into pairs heuristic generally performs a final operation upon an unbalanced pair. These
differences however are far* less pronounced for larger coprime problems and we begin
to see fairly similar behaviour between both the divide into two and the divide into pairs
heuristics.

Though both the divide into two and the divide into pairs heuristics appear to perform
similarly well we believe that overall the divide into pairs heuristic is the better of the two.
It performs better both in terms of path length found and theoretical (and practical) pow
ergrowth. Tables 6.22 and 6.23 detail the results of an experiment to compare these two
algorithms. For each row, 100 random inputs were created, corresponding to the length
and percentage height detailed by the first two columns of the table. The two algorithms in
question were then applied to each of these inputs; the third and fourth columns detail the
sum of all the (logs of) qualities and the fifth and sixth columns detail how the algorithms
performed in comparison to one another. As can be seen from table 6.22 the divide into
two heuristic appears to perform slightly better for lengths less than 8, though the actual
difference is very small, and the trend is far from obvious. For input lengths 8 or more
however the divide into pairs heuristic can be seen, from table 6.23, to outperform the

86

Chapter 6 Strategies

divide into two heuristic considerably over the entire statespace. Recall that for lengths
of 8 and greater we found that the divide into pairs, with intelligent collection, perfoimed
better than expected finding even shorter paths than predicted. We believe that these re
sults are a consequence of that behaviour and that the divide into pairs heuristic will, for
larger length inputs, consistently outperform the divide into two heuristic.

87

Chapter 6 Strategies

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 [NA.NA] [NA,NA] [327,323] [552,538] [581,564] [586,557] [521,559] [480,444] [443,343] [348,358]

5 [274.224] [668,646] [580,595] [556,537] [509,531] [464,427] [534,510] [400,456] [265,317] [294,313]

6 [611,598] [648,623] [406,417] [403,447] [282,347] [287,333] [264,365] [233,324] [203,342] [156,285]

7 [797,755] [524,551] [465,540] [246,325] [237,338] [161,281] [110,252] [124,216] [133,284] [185,337]

8 [592,648] [327,506] [191,378] [269,423] [97,292] [95,309] [94,187] [54,198] [66,213] [62,239]

Table 6.12: Sum of final positions ([Q^, Q+]) for standard heuristic on random inputs in
comparison to random path selections (0-good,500-avg, IK-bad)

n 4 5 6 7 8 9 10 11 12 13 14 15 16

Q* 687 851 933 975 991 IK IK 999 IK IK IK IK IK

Q+ 683 866 936 978 991 IK IK IK IK IK IK IK IK

Table 6.13: Sum of final positions for standard heuristic on coprime inputs in comparison
to random path selections (0-good, 500-avg, IK-bad)

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 [NA,NA] [NA,NA] [345,341] [568,553] [560,567] [598,567] [597,634] [673,770] [692,769] [780,947]
5 [242,219] [575,545] [611,606] [679,687] [754,764] [654,711] [799,844] [925,943] [899,918] [988.1K]
6 [565,535] [724,739] [750,822] [733,842] [769,916] [857,929] [863,957] [966,987] [954,985] [999.1K]
7 [731,729] [865,916] [879,926] [935,989] [930,993] [946,997] [935,996] [968.1K] [962,999] [1K.1K]
8 [888,950] [973,997] [971,999] [981,1K] [990,1K] [1K.1K] [IK,IK] [IK, IK] [1K.1K] [IK, IK]

Table 6.14: Sum of final positions ([Q*, Q+]) for worst-case heuristic on random inputs
in comparison to random path selections (0-good,500-avg, IK-bad)

n 4 5 6 7 8 9 10 11 12 13 14 15 16

Q* 684 840 918 974 991 IK IK 999 IK IK IK IK IK
Q+ 687 853 919 978 991 IK IK 999 IK IK IK IK IK

Table 6.15: Sum of final positions for worst-case heuristic on coprime inputs in compari
son to random path selections (0-good, 500-avg, IK-bad)

Chapter 6 Strategies

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 [NA.NA] [NA,NA] [281,259] [344,308] [300,264] [104,112] [84,80] [80,74] [18,24] [31,22]

5 [244,224] [514,525] [427,462] [390,378] [311,289] [282,228] [328,240] [227,149] [82,52] [104,65]

6 [399,386] [288,285] [95,92] [54,43] [22,25] [16,7] [2,6] [8,0] [0,2] [0,0]

7 [302,295] [129,190] [102,159] [46,98] [37,93] [24,82] [17,32] [25,52] [21,42] [38,77]

8 [56,66] [10,8] [1,2] [0.2] [0,0] [0,0] [0,0] [0.0] [0,0] [0.0]

Table 6. m of final positions ([Q*, Q+J) for divide (into 2) and conquer heunstic
random inputs in comparison to random path selections (0-good,500-avg,on

IK-bad)

n 4 5 6 7 8 9 10 11 12 13 14 15 16

0* 123 0 136 114 49 55 33 2 41 84 31 25 15

Q+ 108 0 60 29 17 0 1 0 2 1 4 0 0

Table 6.17: Sum of final positions for divide (into 2) and conquer heuristic on coprime
inputs in comparison to random path selections (0-good, 500-avg, IK-bad)

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
4 [NA.NA] [NA.NA] [281,259] [344,308] [300,264] [104,112] [84,80] [80,74] [18,24] [31,22]
5 [238,215] [422,415] [355,385] [303,311] [315,289] [266,244] [336,259] [226,153] [77,49] [86,56]
6 [371,379] [191,196] [65,59] [30,30] [19,19] [6.5] [0,0] [0,0] [0,0] [0,0]
7 [339,338] [205.198] [231,207] [110,86] [92,78] [72,46] [22,19] [59,25] [66,17] [106,60]
8 [147,130] [28,21] [2,4] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]

Table 6.18: Sura of final positions ([Q*, Q+]) for divide (into pairs) with naive collection
strategy heuristic on random inputs in comparison to random path selections
(0-good,500-avg, IK-bad)

n 4 5 6 7 8 9 10 11 12 13 14 15 16
123 624 144 593 327 613 508 854 694 928 766 970 936

Q+ 108 590 263 646 403 655 606 870 762 942 809 998 962

Table 6.19: Sum of final positions for divide (into pairs) with naive collection strategy
heuristic on coprime inputs in compaiison to random path selections (0-good,
500-avg, IK-bad)

89

Chapter 6 Strategies

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 [NA.NA] [NA.NA] [281,259] [344,308] [300,264] [104,112] [84,80] [80,74] [18.24] [31,22]

5 [238,215] [422,415] [355,385] [303,311] [315,289] [266,244] [336,259] [226,153] [77,49] [86,56]

6 [345,309] [173,167] [40,38] [28,30] [15,27] [12,15] [0.6] [6,0] [0,8] [0.9]

7 [287,284] [147,140] [162,143] [85,106] [56,82] [51.69] [18,28] [32,51] [55,34] [98,101]

8 [0.0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0.0] [0,0]

Table 6.20: Sum of final positions ([G*, Q+]) for divide (into pairs) with intelligent col
lection strategy heuristic on random inputs in comparison to random path se
lections (0-good,500-avg, IK-bad)

n 4 5 6 7 8 9 10 11 12 13 14 15 16

Q. 123 624 144 593 49 491 9 65 46 15 14 75 15

Q+ 108 590 263 646 17 283 0 30 53 13 12 0 0

Table 6.21 : Sum of final positions for divide (into pairs) with intelligent collection strategy
heuristic on coprime inputs in comparison to random path selections (0-good,
500-avg, IK-bad)

90

Chapter 6 Strategies

n % 1()0 Run Sum, [Q*, Q+] 100 Run Sum, [Q*, Q+] G* data Q+ data

for Divide into two for Divide into pairs [d2 , = , dp] [d2 , = , dp]

5 1 [1354,762] [1341,756] [7,86,7] [7,87,6]

5 2 [6473,3519] [6114,3338] [28,13,59] [33,14,53]

5 3 [14900,8163] [14331,7889] [39,6,55] [40,6,54]

5 4 [24631,13138] [25462,13765] [58,2,40] [61,2,37]

5 5 [38876,20669] [38504,20593] [50,0,50] [49,0,51]
5 6 [52743,27648] [51566,27365] [40,0,60] [41,0,59]
5 7 [66673,34443] [65954,34419] [46,0,54] [49,1,50]
5 8 [82183,42242] [81097,41737] [51,1,48] [40,1,59]
5 9 [97306,49826] [95501,48516] [38,2,60] [29,2,69]
5 10 [112100,57500] [111900,56800] [0,0,100] [0,0,100]

[6764,3688]
^ ^ 6 2 4 ,1 4 3 6 9]

[6477,3506] [40,4,56] [36,8,56]

i [24211,13023] [30,1,69] [28,2,70]
l6-- ■fW'j-524g4_27703] [49225,26172] [31,2,67] [30,1,69]
6 4 [82048,42807] [75338,40147] [21,1,78] [26,0,74]
6 5 [116455,60338] [110301,58427] [31,0,69] [42,2,56]
6 6 [146780,75568] [145841,76840] [64,0,36] [66,0,34]
6 7 [179699,92460] [177446,93769] [48,1,51] [64,0,36]
6 8 [213677,109315] [215912,113848] [67,0,33] [84,0,16]
6 9 [248008,125797] [251376,131833] [85,0,15] [92,0,8]
6 10 [288900,144800] [292300,153100] [100,0,0] [100,0,0]
7 1 [28066,15319] [28853,15477] [56,0,44] [52,3,45]
7 2 [101723,56066] [103549,54591] [54,0,46] [37,0,63]
7 3 [187060,104206] [189817,100834] [61,0,39] [38,0,62]
7 4 [284942,160337] [296947,157783] [76,0,24] [38,1,61]
7 5 [387237,218870] [404984,214365] [86,0,14] [42,0,58]
7 6 [486252,274061] [510853,271611] [92,1,7] [43,0,57]
7 7 [593687,333881] [628570,335093] [98,0,2] [51,0,49]
7 8 [697227,391827] [740288,395250] [100,0,0] [67,0,33]
7 9 [811834,457008] [865304,462022] [100,0,0] [77,1,22]
7 10 [928200,521900] [987000,527500] [100,0,0] [100,0,0]

Table 6.22: comparison between divide into two and divide into pairs (part 1)

91

Chapter 6 Strategies

n % 100 Run Sum, [Q*, Q+]
for Divide into two

100 Run Sum, [Q*, Q+]
for Divide into pairs

G* data
[d2, =, dp]

Q+ data
[d2 , = , dp]

8 1 [98693,52843] [84950,44385] [12,0,88] [9,0,91]
8 2 [279822,146779] [223472,115121] [1,0,99] [1,0,99]

8 3 [496331,259921] [388755,199436] [0,0,100] [0,0,100]

8 4 [707957,368376] [552479,282606] [0,0,100] [0,0,100]

8 5 [939703,490020] [734008,374324] [0,0,100] [0,0,100]
8 6 [1171915,610498] [919316,468883] [0,0,100] [0,0,100]
8 7 [1401426,731623] [1105186,562354] [0,0,100] [0,0,100]
8 8 [1643429,857198] [1299643,660246] [0,0,100] [0,0,100]
8 9 [1884800,980590] [1494754,758664] [0,0,100] [0,0,100]
8 10 [2144100,1114000] [1703600,863900] [0,0,100] [0,0,100]
9 1 [344782,183828] [323137,170686] [25,0,75] [27,0,73]
9 2 [913715,488584] [800168,415729] [3,0,97] [1,0,99]
9 3 [1548733,831058] [1331505,690478] [1,0,99] [1,0,99]
9 4 [2200584,1179711] [1888526,975821] [0,0,100] [0,0,100]
9 5 [2883841,1544090] [2471560,1275758] [0,0,100] [0,0,100]
9 6 [3585079,1919201] [3066642,1578929] [0,0,100] [0,0,100]
9 7 [4305373,2300976] [3684830,1893610] [0,0,100] [0,0,100]
9 8 [5017584,2681570] [4304373,2214931] [0,0,100] [0,0,100]
9 9 [5775703,3085271] [4951987,2547283] [0,0,100] [0,0,100]
9 10 [6526500,3484700] [5594500,2878800] [0,0,100] [0,0,100]
10 1 [963978,498928] [798635,411342] [0,0,100] [0,0,100]
10 2 [2294931,1174899] [1869310,952007] [0,0,100] [0,0,100]
10 3 [3740858,1909712] [3048809,1543905] [0,0,100] [0,0,100]
10 4 [5245763,2668662] [4298115,2170625] [0,0,100] [0,0,100]
10 5 [6813030,3469217] [5571534,2807133] [0,0,100] [0,0,100]
10 6 [8385058,4260206] [6889384,3469013] [0,0,100] [0,0,100]
10 7 [10015045,5096049] [8240074,4143892] [0,0,100] [0,0,100]
10 8 [11650749,5920169] [9602865,4827580] [0,0,100] [0,0,100]
10 9 [13319112,6773142] [10979387,5516315] [0,0,100] [0,0,100]
10 10 [15042200,7647000] [12414400,6236700] [0,0,100] [0,0,100]

Table 6.23: comparison between divide into two and divide into pairs

92

Chapter 6 Strategies

6=5 Structural Heuristics

There are far too many potential stiuctural heuristics for us to examine them all. We will
attempt to examine a number of the more obvious ideas. The structural heuristics aie very
tempting as the results are independent of permutation of input and it appears at first sight
that we can hopefully produce better final results by making good choices at each stage
based on our knowledge at that stage. If we define our heuristics well enough then there
are no arbitrary decisions that need be talcen (that is to say we can give secondary, tertiaiy
criteria). This can however get rather difficult and we will examine in this section how
these heuristics compare in practice as primary criteria. Note also that we need to ensure
that we select pairs with which we will actually malce progress, so the implementations
start to get a little triclder as we don’t want to end up in some odd loop, or reselecting the
same pair repeatedly.

Note that these are generally one step lookahead algorithms and so we will be making
one of (^) choices at each stage. This is where we lose out to the arbitrary positional
algorithms, having gained of course from not needing to examine all the permutations of
input. However it should be noted that most implementations of positional algorithms do
not in fact examine all permutations of input.

We could of course, in many instances, implement two or more step lookahead algorithms.
This can be very costly in terms of memory requirements, and obviously speed (to which
we have not really paid much attention). We will examine the following heuristics in more
detail in this section.

o Mingcd.

o Maxlcm.

o Maximal Edge creation in T2 (D).

o Height/Weight of remaining problem,

o Least squares proximity to SNF.

o Smallest pair,

o Largest pair.

o Pair with smallest associated rows of P and columns of Q.

o ‘Full’ lookahead to minimize the quality of P, Q after each step.

93

Chapter 6 Strategies

The structural algorithms can all be coded within the same basic template, the only thing
changing being the method of selecting which pair to use at the next stage. This template
is as shown in Figure 6.27.

1. While D is not in SNF do

2. select a pair i,j

3. D[i][i]:=gcd,D[j][j]:=:lcm.

4. od;

Figure 6.27 : Pseudocode template for structural algorithms.

This appears to be simple. There are a however a few points of which to be wary.

Firstly the diagonal at each stage has to be checked to decide if the algorithm has com
pleted. The simplest way of performing this check is to precalculate the SNF, sort the
diagonal at each stage and compare it to the SNF.

It is also important that progress is made at each stage and no loops aie entered into, e.g.
when using the MinGcd heuristic described earlier on the diagonal [2,4,12,20] we must
not select the pair with the smallest gcd here (2,4), but rather the pair with the smallest
gcd that will actually make some progress (12,20). This is easily achieved by ‘locking’
any elements that are in the SNF, and selecting the pair to use from the others. It should
be fairly obvious that this forces progress to always be made. Care must also be taken
in this locldng out procedure to not lock out elements accidentally, e.g. in the diagonal
[2,7,7] we wish to lock out only one of the 7’s. The locldng procedure implemented
for the selection routines described hereafter randomly selected from any multiple set of
entries which subset to lock out. An improvement may be, if given a choice, to select
the elements to which are attached the cuiiently largest multiplying rows / columns in the
multiplier matrices, but since this is basically applying a further structural algorithm, in
the interests of fair comparison this was not implemented.

In each case it should be noted that the structural heuristic was used as a primary heuris
tic, all further aibitrary choices being made uniformly at random between any candidates.
Further improvements may well follow from implementing a more intelligent decision

94

Chapter 6 Strategies

procedure to distinguish between any arbitrary choices, i.e. secondary, tertiary, etc heuris
tics. We will now describe the structural heuristics mentioned above and investigate their
potential.

For each heuristic we performed experiments on various percentages (10, 20.. .,100%) of
various length (4.. .8) worst cases. In each case we selected 20 random inputs and also
performed 20 random runs. The values displayed are the total number of random runs, of a
maximum of 400, that performed better than the structural algorithm in question. We also
performed a similar experiment upon 25 random coprime inputs, with 40 random runs for
comparison. In this case then the value in the table is between 0 and 1000.

Not strictly a stiuctural heuristic, but then again not strictly a positional heuristic. The
random selection procedure forms the backdrop for our comparisons and is used as the
secondary criterion for the following heuristics. As we have seen the random heuristic
produces a wide range of qualities.

6.5.3 MmGcd

Given that the usual implementation (the standai'd positional approach) proceeds by re
peatedly obtaining the gcd of the set of elements remaining at each stage, one natural
extension of this is to attempt to obtain the gcd as quicldy as possible. One sensible ap
proach then seems to be to always pick the pair with the minimum gcd. Recalling that
given a pair of random integers there is a high probability them being coprime we expect
this will generally perform well. An immediate drawback is that in the coprime case itself
this heuristic gives no indication of which pair to select, and in fact passes transparently to
the secondary heuristic, which is in this case completely random.

The results in tables 6.24 and 6.25 show that this is not a good heuristic to use. In fact it
appears that selecting a path at random is usually better. For coprime inputs, as mentioned
above, the algorithm performs as though it were a random path selection.

95

Chapter 6 Strategies

6.5.4 TWaaLcm

Again, a fairly natural extension of the standard positional procedure, the idea of this
heuristic is to try and find the large entries of the SNF first. This appears a reasonable
strategy as these entries generally require the largest entries in the multiplier matrices, and
so it appears sensible to try and get these out of the way first. Similarly to situation for
MinGcd, since two random integers are copiime more often than not, we expect to be able
to generate the 1cm of all the entries quite quicldy. For this heuristic we fall through to the
secondary criterion far less than for MnGcd.

The results in tables 6.26 and 6.27 show there to be no merit to this heuristic. The results
are worse than those produced by random selection in most cases, including coprime.

■6.5J; ;Edgfe,Creation in r 2(D)

Whilst we ^ould really prefer to find pairs that directly create entries of the SNF this is
not always possible. The immediate extension to the idea of creation of SNF entries is to
use the divisibility digraph (Definition 4.3) and to select the pair that will create the most
edges in the digraph of the next stage. This suffers from similar problems to MinGcd in
that in both the coprime case and the worst case, there aie generally multiple options and
we fall through to the secondary criteria quite often.

The results in tables 6.28 and 6.29 provide us with no reason to promote this as a good
choice of heuristic. In all cases performing one or two random runs should provide a better
quality solution.

Recall that the height of a problem is the number of distinct letters in the signature as
sociated with it, i.e. the number of coprime pieces. The weight is the total number of
letters in the signature. As we progress through F the height and weight of each suc
cessive diagonal will be less than the preceding one. The idea behind these heuristics is
to attempt to malce large jumps by selecting the pair that will lead to the diagonal with
the least height or weight. Unfortunately, as with most other structuial heuiistics we fall
through to the secondary criterion relatively often. Also as we have to totally rewrite each
of the potential (”) diagonals at each next stage in order to investigate the height or weight

96

Chapter 6 Strategies

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 NA NA [94,90] [147,131] [198,179] [180,160] [206,200] [257,262] [313,300] [376.329]

5 [124,111] [216,173] [201,194] [271,263] [271,268] [296,310] [304,303] [356,371] [354,371] [398,400]
6 [140,135] [168,155] [223,229] [336,352] [333,335] [379,383] [342,351] [390,395] [377,388] [399,400]

7 [183,177] [310,311] [342,345] [375,383] [391,398] [396,400] [398,400] [399,400] [400,400] [400,400]

8 [250,282] [368,379] [398,400] [394,400] [399,400] [400,400] [400,400] [400,400] [400,400] [400,400]

Table 6.24: Sum of final positions ([G*, G+]) for MinGcd heuristic on random inputs in
comparison to random path selections (0-good,200-avg, 400-bad)

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G» 418 415 577 525 539 567 540 581 588 494 527 505 471 547

Q+ 405 412 582 494 559 586 531 585 596 500 525 514 491 527

Table 6.25: Sum of final positions for MinGcd heuristic on coprime inputs in comparison
to random path selections (0-good, 500-avg, IK-bad)

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
4 NA NA [84,85] [121,133] [182,176] [172,184] [122,121] [186,235] [223,257] [326,390]
5 [109,107] [158,183] [151,160] [212,230] [178,217] [208,253] [240,280] [293,339] [331,377] [394,400]
6 [145,139] [114,138] [228,260] [270,328] [300,333] [341,374] [366,391] [385,397] [369,390] [397,400]
7 [141,157] [290,326] [322,375] [368,392] [390,396] [394,400] [390,400] [398,400] [393,400] [399,400]
8 [279,324] [384.396] [394,400] [400,400] [395,400] [398,400] [393,400] [399,400] [400,400] [400,400]

Table 6.26: Sum of final positions ([G*, G+]) for MaxLcm heuristic on random inputs in
comparison to random path selections (0-good,200-avg, 400-bad).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q* 455 765 961 993 IK IK IK IK IK IK IK IK IK IK

Q+ 488 789 962 994 IK IK IK IK IK IK IK IK IK IK

Table 6.27: Sum of final positions for MaxLcm heuristic on coprime inputs in comparison
to random path selections (0-good,500-avg, IK-bad).

97

Chapter 6__________________________ Strategies

this is a computation heavy heuiistic that does not appear justifiable from the experimental
evidence.

The results in table 6.30 appear to show that the height heuristic, whilst not drastically out
performing random selection does generally produce results in the second quartile those
qualities produced by random behaviour. In the coprime case, table 6.31, it appears to
perform on a par with random selection.

The results in table 6.32 and table 6.33 suggest that the weight heuristic generally produces
results that are on a par with random selection for any input,

6.5.7 Proximity

An early idea : At some stage we have D. We know S of course. For each possible next
sorted diagonal, D+ examine the least squares measuie

E
i-l

and select the pair that will minimize this. Hopefully we can then “home in on” the
solution and avoid some of the problems that can occur in the greedier heuristics. In some
sense this idea is a precursor to the edge creation and is a refinement of the Mingcd or
MaxLcm ideas. A little consideration shows that this heuiistic often selects a similar path
to that picked by the simpler ‘Largest Pair’ heuristic.

This heuristic appears to perform quite badly in comparison with random selection, as can
be seen from tables 6.34 and 6.35.

6.5.8 Smallest / Largest Pair

Since the size of the multipliers depend upon a and 6 another potential structural heuris
tic is to select either the smallest or laigest pair with which we can malce progress. We
therefore require a method to measure the size of a pair of integers. In keeping with
the rest of this thesis we consider the sum of squares metric i.e we let (a, b) < (c, d) if

-hb' ̂ < As noted previously the Laigest Pair heuristic often has the same effect
as the Proximity heuristic described earlier, especially in the coprime case.

The ‘Smallest Pair’ heuristic appears to have the most promise of any of the structural
heuristics. Whilst not performing particulaily well for general input, table 6.36, it does

98

Chapter 6 Strategies

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 NA NA [59,60] [112,123] [138,134] [115,135] [82,84] [103,149] [136i203] [170,261]

5 [107.109] [166,176] [109,108] [169,183] [139,204] [197,235] [195,249] [213,308] [249,334] [307,380]

6 [99,116] [84,85] [175,207] [219,271] [217,281] [266,342] [323,365] [355.391] [369,396] [352,392]

7 [56,70] [215,269] [245.319] [365,393] [349,390] [384,396] [389,398] [368,390] [379,400] [394,400]

8 [266,318] [318,376] [384,399] [388,399] [397,400] [399,400] [400,400] [400,400] [400,400] [400,400]

Table 6.28: Sum of final positions ([G*, G+]) for MaxEdgeCreation heuristic on random
inputs in comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q. 394 448 523 539 415 539 545 510 469 498 582 487 439 504

Q+ 394 455 525 529 409 537 528 484 496 513 535 467 435 512

Table 6.29: Sum of final positions for MaxEdgeCreation heuristic on coprime inputs in
comparison to random path selections (0-good, 500-avg, IK-bad).

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
4 NA NA [104,98] [117,122] [153,143] [126,121] [120,155] [156,156] [210,212] [215,222]

5 [79,77] [179,176] [125,118] [184,215] [95,116] [153,182] [119,119] [167,195] [197,266] [130.204]

6 [108,110] [114,122] [82,88] [119,126] [129,168] [196,235] [142,190] [163,219] [180,247] [148,210]

7 [111,118] [114,138] [73,111] [73,114] [125,177] [147,221] [137,211] [145,265] [155,247] [137,214]

8 [85,125] [94,165] [125,206] [102,169] [150,238] [143,255] [147,221] [162,215] [183.235] [196,230]

Table 6.30: Sum of final positions ([Q*, G+]) for Height heuristic on random inputs in
comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q* 374 488 425 565 518 504 499 536 556 583 458 508 534 527

Q+ 361 483 407 537 521 504 481 546 546 569 454 492 543 518

Table 6.31: Sum of final positions for Height heuristic on coprime inputs in compaiison
to random path selections (0-good, 500-avg, IK-bad).

99

Chapter 6 Strategies

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 NA NA [76,78] [166,149] [171,152] [180,196] [185,186] [243,241] [232.233] [243,230]

5 [85,78] [174,185] [201,192] [190,199] [188,195] [210,197] [211,203] [199,185] [238,236] [242,237]

6 [143,136] [197,185] [213,214] [239,240] [208,219] [218,250] [233,225] [211,216] [209,220] [255,243]

7 [159,174] [193,178] [210,219] [247,250] [214,222] [211,203] [235,229] [231,210] [227,227] [233,208]

8 [172,186] [220,212] [214,217] [243,250] [192,185] [202,213] [213,206] [232,221] [233,224] [245,231]

Table 6.32: Sum of final positions ([G*, G+]) for Weight heuristic on random inputs in
comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G, 341 447 510 548 633 443 464 624 451 562 602 561 474 474

G-h 343 458 517 549 603 447 454 627 426 584 602 571 489 478

Table 6.33: Sum of final positions for Weight heuristic on coprime inputs in comparison
to random path selections (0-good,500-avg, IK-bad).

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
4 NA NA [108,108] [170,155] [226,211] [221,223] [310,301] [352,360] [350,363] [396,396]

5 [110,103] [233.209] [218,227] [261,256] [311,302] [312,319] [333,335] [374,394] [392,399] [400,400]

6 [165,158] [298.303] [309,305] [356,365] [347,357] [385,385] [387,397] [397,398] [392,398] [400,400]

7 [191,203] [340,346] [346,349] [385,385] [393,393] [400,399] [399,400] [397,400] [399,400] [400,400]

8 [337,351] [389,394] [398,398] [396,398] [400,399] [400,400] [400,400] [400,400] [400,400] [400,400]

Table 6.34: Sum of final positions ([G*, G+]) for Proximity heuristic on random inputs
in comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G* 455 765 961 993 IK IK IK IK IK IK IK IK IK IK

G+ 488 789 962 994 IK IK IK IK IK IK IK IK IK IK

Table 6.35: Sum of final positions for Proximity heuristic on coprime inputs in comparison
to random path selections (0-good, 500-avg, IK-bad).

100

Chapter 6 Strategies

appear to produce reasonably good quality solutions, in comparison to random selection,
for the coprime case, table 6.37. As we mentioned when discussing the results for the
positional algorithms it appeal's to be sensible practice to attempt to talce entries a and b
upon which to perform the next 2 x 2 step to be of similar size, and specifically to attempt
to arrange that the last pair used aie of similar magnitude to one another. This heuristic
minimizes the differences between the magnitudes of the a and b selected at each stage,
and again specifically those of the final step. This appears to be reflected in the results we
are seeing here.

The results in table 6.38 and 6.39 appear to show that the largest heuristic is not a sensible
choice if we require good quality multipliers.

6.5.9

• there appears to be a link between powergrowth and quality. The idea
of this fieuiiéüc is to try and produce an adaptive algorithm that will minimize the largest
‘power’ appealing in the multipliers. We talce the euclidean sizes of the rows and columns
respectively of the row and column matrix multipliers, and use these to select which pair
we shall use next at each stage. In an attempt to minimize the damage done we select the
pair that has the smallest associated rows and columns.

The results in table 6.40 show that this heuristic performs reasonably for most heights and
most lengths, producing qualities that are generally somewhat better than those produced
by average random behaviour. In the coprime case this heuristic appears to perform on
a par with random behaviour as shown by the results in table 6.41. These results may
appear a little surprising in light of how well the positional algorithms that attempted to
minimize powergrowth perfoimed, but it appears that these results are due to the lack of
rigid structure that ensures short paths can be found. Also it appears to be the case that
the heuristics which ‘ti-y too hard’ early on in the calculation simply store up for later
problems that can then not be avoided.

6.5.10 Fiall Lookahead

At some stage we have multiplier matrices 7^, We calculate (hopefully) good 2 x
2 multipliers for each possible next step. Apply each of these, and talce the pair that
minimises Q(P^-|_i, Qtj+i)- We can improve the speed of this somewhat in general since

101

Chapter 6 Strategies

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 NA NA [121,118] [173,150] [236,212] [220,223] [246,241] [266,267] [352,329] [376,329]

5 [87,76] [221,186] [269,241] [302,282] [292,280] [324,317] [332,325] [368,377] [388,395] [398,400]

6 [219,211] [248,230] [305,290] [356,361] [367,371] [389,395] [381,393] [391,395] [396,399] [394,399]

7 [272,262] [328,320] [391,397] [398,400] [390,395] [399,400] [400,400] [400,400] [399,400] [400,400]

8 [351,357] [389,396] [400,400] [400,400] [400,400] [400,400] [400,400] [400,400] [400,400] [400,400]

Table 6.36: Sum of final positions ([Q*, Q+]) for Smallest heuristic on random inputs in
comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G# 251 93 161 120 58 46 179 159 100 42 24 11 6 7

Q+ 238 134 111 205 72 46 23 80 66 38 30 16 4 2

Table 6.37: Sum of final positions for Smallest heuristic on coprime inputs in comparison
to random path selections (0-good, 500-avg, IK-bad).

n 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
4 NA NA [80,86] [98,101] [140,156] [202,242] [148,158] [233,298] [254,312] [326,390]

5 [134,127] [142,145] [178.204] [245,284] [207,211] [286,329] [289,350] [323,384] [347,389] [394,400]

6 [182,191] [206,250] [295,340] [303,339] [318,373] [365,394] [353,393] [369,398] [379,398] [397,400]

7 [193,224] [338,372] [356,372] [379,396] [381,399] [395,400] [394,400] [394,400] [397,399] [399,400]

8 [337,375] [392,398] [396,400] [400,400] [399,400] [400,400] [400,400] [400,400] [400,400] [400,400]

Table 6.38: Sum of final positions ([Q*, Q+]) for Largest heuristic on random inputs in
comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G* 455 765 961 993 IK IK IK IK IK IK IK IK IK IK

G+ 488 789 962 994 IK IK IK IK IK IK IK IK IK IK

Table 6.39: Sum of final positions for Largest heuristic on coprime inputs in comparison
to random path selections (0-good, 500-avg, IK-bad).

102

Chapter 6___________________ Strategies

only two rows and two columns aie affected by a given operation, however there is still a
heavy computational burden for this heuristic.

The results in table 6.42 show good behaviour for the full lookahead, which appears to
outperform random behaviour in general. It appears that the further from coprime, the
better performance in comparison to random path selection we see. In the coprime case,
table 6.43, we see that the lookahead performs slightly better than random path selection
in general.

6.5.11 Stractwal Conclusions

Whilst some of the heuristics described here perform relatively well in some particular
problems, we have not found a satisfactory structural heuristic, or combination thereof,
for general use that can compete with applying the divide into pairs positional heuristic
developed earlier. The structural heuristics also generally suffer from the need to perform
a large amount of work at each stage, much of which is not reusable, and so they seem
to not be suitable for solving real general problems where time is a factor. Potential uses
for these smaller solutions being of course so that later calculations can be performed
faster. We suggest that certain of these heuristics, in particular the full lookahead and the
smallest pair, are however good for small problems (i.e. n x n matrices, where n is small)
or in lai'ger coprime or neaiiy coprime cases, i.e. where the SNF is mainly I ’s where we
strongly require good quality solutions.

We have provided theoretical ideas and experimental evidence to support the theoiy that
the “divide into pairs with intelligent collection strategy” provides an excellent basis for
the solution to the problem of the order of pair selection. The structural heuristics, as
well as generally being slow, suffer from several other problems and it seems difficult to
arrange cascading criteria so that they perform well and are not relying on a large random
element. We believe that the structural heuristics can be made use of however within the
positional framework suggested. In particular we note that applying the divide into pairs
heuristic could make use of a lookahead algorithm to decide exactly which pairs to use
when there is a choice.

103

Chapter 6 Strategies

n 1 0 % 2 0 % 30% 40% 50% 60% 70% 80% 90% 1 0 0 %

4 NA NA [95,90] [190,184] [172,182] [120.134] [163,169] [156,131] [147,123] [146,182]

5 [100,92] [179,192] [124,113] [166,164] [132,138] [115,89] [81,70] [81.71] [94,90] [109,116]

6 [122,123] [126,121] [160,135] [114,96] [96,104] [67.69] [78,71] [61,66] [50,49] [50,46]

7 [195,205] [155,166] [134,134] [148,145] [107,104] [116,114] [156,153] [148.163] [52,50] [23,19]
8 [175,190] [157,167] [87,103] [122,140] [115,143] [125,99] [87.97] [131,126] [84,93] [79,86]

Table 6.40: Sum of final positions ([Q^, Q+]) for RowColSize heuristic on random inputs
in comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16

Q* 348 648 662 297 555 314 539 471 606 403 454 483 526 385

Q+ 350 658 656 341 535 339 520 412 546 396 438 474 511 365

Table 6.41: Sum of final positions for RowColsize heuristic on coprime inputs in compar
ison to random path selections (0-good, 500-avg, IK-bad).

n 1 0 % 2 0 % 30% 40% 50% 60% 70% 80% 90% 1 0 0 %

4 NA NA [184.170] [126,131] [137,116] [143,142] [93,99] [140,150] [113,136] [341,356]
5 [30,20] [188,162] [137,118] [147,150] [150,141] [160,177] [128,173] [119,116] [135,150] [31,90]
6 [162,165] [125,144] [143,166] [142,183] [72,97] [60,64] [68,76] [78,99] [55,95] [20,30]
7 [168,172] [74,109] [52,92] [42,66] [97,136] [50,116] [44,80] [13,32] [23,27] [48,144]
8 [116,128] [36,58] [31.48] [12,39] [19,37] [15,24] [17,36] [9,15] [8,20] [7.23]

Table 6.42: Sum of final positions ([Q*, Q+]) for Full Lookahead on random inputs in
comparison to random path selections (0-good, 200-avg, 400-bad).

n 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16

G* 440 300 485 282 292 251 2 1 0 265 167 150 167 165 1 1 0 82

G+ 272 2 0 2 377 442 332 80 105 232 192 250 197 180 175 35

Table 6.43: Sum of final positions for Full Lookahead on coprime inputs in comparison to
random path selections (0-good,500-avg, IK-bad).

104

Chapter 7

Bypassing the Diagonal Form

There are two main routes we can take when attempting to calculate the SNF of a matrix.
We can either convert to a diagonal matrix which does not necessaiily satisfy the divisi
bility requirement and deal with this separately, or we can attempt to directly compute the
SNF, bypassing the intermediate diagonal foim. Most algorithms to directly produce the
SNF simply obtain each diagonal entry in turn by performing row and column operations
to produce an element which is the gcd of the remaining n x n submatrix. This element
is then used to zero out the other elements in the row and column in which it appears.
The computation then proceeds with the same procedure on the n — 1 x n — 1 submatrix
remaining. The drawback of this approach is that it seems particularly difficult to avoid
inteimediate expression swell, which is why most algorithms convert to an arbitrary di
agonal form (where we simply need to ensure that each element we find is the gcd of the
row and column in which it appears, rather than the entire submatrix) and then sort out
divisibility afterwards. The majority of this thesis studies the problems arising from this
approach.

The algorithm described in this chapter also computes the SNF, with transforming matri
ces, of arbitrary input matrices without going via an intermediate diagonal form. In fact the
algorithm implemented in GAP 4.2 is highly flexible and has several options permitting
calculation of triangular, hermite or smith forms, with or without relevant transforming
matrices. We shall focus upon the parts of the implementation producing the SNF with
transforming matrices, but will occasionally comment upon the differences relating to the
other options.

105

Chapter 1 Bypassing the Diagonal Form

7.1 Overview of the Algorithm

At the heart of the algorithm is a routine, very similar to that described in [Sto97], to find
a solution to the modulo N extended gcd problem. Unlike the algorithm for SNF with
transforms described in [Sto97] however we do not perform modulo arithmetic and hence
we do not need to first calculate a triangular form, which is of little further use. We can
also construct both transforming matrices as we proceed through the algorithm and not
rely upon matrix inversion, with its attendant difficulties, as a last step.

We will first describe the implementations of the lowest level operations we will wish to
perform, without describing in too much detail exactly why we require them. Such details
will be obvious when describing later algorithms, and the full theoretical development can
be found in [Sto97].

For two integers W and a we will be interested in finding those divisors of TV that are not
divisors of a. This function returns the product of all of the prime factors of W which are
not factors of a.

The implementation of this is very simple, being a single “while” loop wherein we repeat
edly divide out any factors of iV* in a until there are no common factors left. We include
the code here, since it is self-explanatory,

x : = a ; t : = N j

w h i l e x o l do

x : = G c d I n t (x , t) ;

t : = Q u o I n t (t , x) ;
od;

r e t u r n t ;

It should be clear that the i returned by this function is exactly that value which we wish
to calculate.

Example :

Let W = 60 = 2^.3.5, and a = 6 = 2.3. Then the value, t, returned by the algorithm is 5.
i.e. all powers of any factors of a are ‘removed’.

106

Chapter 7_________________________________ Bypassing the Diagonal Form

7.1.2 rged

In [Sto97], three algorithmic solutions to the following problem are investigated :

Given integers a, 6 , N with N positive and gcd{a, 6) = 1, find the smallest nonnegative
integer c that satisfies

gcd{a cb, N) — 1.

Three approaches are discussed

o Brute Force,

o Prime Factorization,

o Integer Factor Refinement.

The brute force approach is shown to require at worst 0(log^’̂ N) bit operations. The
prime factorization approach is bound by 0{log'^N) bit operations, but requires a full
prime factorization of N. Integer Factor Refinement is shown to be similarly bound by
OQog'^N) bit operations but without the need for any fuither infoimation. The algorithm
of choice would then appear to be Integer Factor Refinement, however we have discovered
that whilst Integer Factor Refinement does indeed appear to run faster for larger numbers,
the extra complexity of the algorithm, setup overheads and general booldceeping incurred
make brute force a better choice for smaller integers.

It is impossible to produce an exact value for the breakpoint, but by examining the be
haviour of the two algorithms on sets of random numbers in various ranges we can esti
mate where the crossover point is. In GAP 4.2 the brealc point appears to be when dealing
with numbers of around 2̂ °̂® — 2 ®̂°° or so. For smaller numbers, up to 2^ or so, the brute
force algorithm runs about 6 or 7 times faster than integer factor refinement, producing
far fewer transient results and general gaibage. The time difference between the two algo
rithms narrows as the size of the numbers we are dealing with increases, until the better
asymptotic complexity of the integer factor refinement algorithm contributes enough to
pay for the vaiious overheads, although the tests we have mn on random integers selected
from the range [1 ... only show a roughly 10% difference in favour of the Integer
Factor Refinement algorithm.

Since it is actually also quick to get an estimate of the size of a number, we get an overall
improvement by first checking the size of the numbers involved and deciding which al
gorithm to utilise. In this way we can produce faster results, with less gaibage creation,

107

Chapter 1 Bypassing the Diagonal Form

when dealing with numbers of less than 400 decimal digits or so, and also gain for larger
numbers due to the better asymptotic behaviour of the implemented algorithm.

Another of the simple base routines that we malce use of is the transformation of a 2 x 2
matrix, A, to HNF, H, i.e. by row transfoims. It should be noted that it is a simple matter
to find a transfomiation matrix P such that PA = H by use of the extended euclidean
algorithm. In particular we actually require

s t a b e /X =
U V c d _ 0 g

where e and g are positive, and 0 < / < 5 '. To calculate this we first let P be the 2 x 2
matrix corresponding to the extended euclidean algorithm upon the pair a, c. That is we
compute

U V

such that P X [a, c]^ = [e, 0], where e = gcd{a,c). All that then remains is to ensure
positivity of e and g by multiplication of the corresponding row of P by ±1 as necessaiy,
and to calculate how many multiples, m of p we need subtract from hp + dq to reduce to
the range 0 < f < g. We then subtract m copies of the second row of P from the first to
arrive at the required solution.

 ̂ s t
P =

U V

Recall that both the HNF, H and the transform, P are deteimined uniquely. The above
procedure gives us an efficient way of computing P.

108

Chapter 7 Bypassing the Diagonal Form

TTlie EBwodtdio €aübe:idk%dl;g(xl gMnodbleaoa

The modulo N extended gcd problem can be stated as follows :

Given a non-negative integer N together with an integer row vector a = [oi, ci2 , . . . , On],
find an integer row vector r; = such that

gcd Vitti, = gcd (%, AT).

This problem is solved in [Sto97], and is at the heart of this implementation. The solution
described produces a row vector c with particularly small entries, in particular ci = 1 ,
The procedure we actually implement differs from that described in the paper in several
aspects. Firstly we talce as input the triple (JV, a, v) where N and a are integers, and v is
an integer vector, and return a solution vector c such that

gcd{N, a + Cl * îJi + . . . + Cfe * Vfc) = gcd{N, a , v i , r>2 , •. •, Vk) -

This is not really a difference as the algorithm described in the paper returns a solution
with Cl = 1, Secondly and more importantly, the algorithm described in [Sto97] works by
computing ci, C2 , . . . , q in succession. The algorithm we implement first precomputes the
sequence

^ ^ gcdjN, ^i,...,-Ui-i)
gcd(N ,vi,.,.,V i)

and then computes the Ci in reverse. This allows to perform operations upon generally
smaller numbers, as M* < N , while the entries Vi are not bound in any manner. Further
we have that is the product of the factors common to W, v i , . . . , that are not to be
found in %. An immediate consequence of this is if = 1 then there will be no useful
contribution, and hence we can set c„ = 0. Also if has no factors distinct to those of
gcd{N a VI— we can similarly set c„ = 0 as our final solution will utilise the ’a’ directly.

This method appears to generally produce a solution vector with smaller entries. For
comparison we will mention the example given in [Sto97], where N = 223092870, and
a — [56039340,45020850,114868782,145800000]. The algorithm described in the paper
produces the solution vector c = [1,3,6 ,10]. Now we can see that [1,3,6 ,10] * a =
2338314582, and gcd{N, 2338314582) = 6 as required.

The algorithm we have implemented here produces the solution vector c = [1,0,1,1],
(actually [0,1,1] as mentioned previously). We then have that c * a = 316708122, and the
gcd of this value and N is again 6 .

109

Chapter 1 Bypassing the Diagonal Fomi

We include the GAP code for this function:

###*####*###
#
ft m g c d e x (< N > , < a > , < v >) - R e t u r n s c [l] , c [2] , . . . , c [k] s u c h t h a t

ft g c d (N , a + c [l] * v [l] + . . . + c [n] * v [k]) « g c d (N , a , v [l] , v [2] , . . . , v [k] }

ft
B i n d G l o b a l ("mgcdex" , f u n c t i o n (N , a , v)

l o c a l h , g , M , c , i , d , b , 1;
1 Î = L e n g t h (v) ; c ; = [] ; M : = [] ; h:=N;

f o r i i n [1 . . 1] d o

g ;= h;

h ; = G c d I n t (g , v [i]) ;
M [i] : = Q u o I n t (g , h) ;

o d ;

h : = G c d I n t (a , h) ; g : = Q u o I n t (a , h) ;

f o r i i n [1 , 1 - 1 . . 1] do

b s = Q u o I n t (v [i] , h) ;

d : = s p l i t { M [i] , b) ;

i f d - 1 t h e n

G[i] ! = 0 ;
e l s e

c [i] î = r g c d (d , g / b mod d) ;
g : = g + c [i] * b ;

f i ;
od;

r e t u r n c ; e n d) ;

We will also briefly describe here a method by which, given an integer row vector a it is
possible to calculate the gcd of that vector, or indeed a vector multiplier v such that

— gcd (%2) • • ■ j Ciji) .

By applying the routine described above to the triple (ai, G2 , a{3 ...n}) we can find a vector
multiplier c such that

gcd I O-ij 0>2 ”i~ / J Cj,(lî 2 I — gcd (tti, O2 , ■ • • j U,,,) .

We can now apply the extended euclidean algorithm to the pair (ui, 0 2 -f (kai+2)
and hence easily compute either the gcd or the associated vector multiplier.

In fact, in our implementation we will not need to explicitly calculate such a vector mul
tiplier, but rather we will wish to arrange, by row / column operations, that the gcd of a

110

Chapter 7 Bypassing the Diagonal Form

given column / row vector appears in a certain position. This routine can be easily adapted
for such an arrangement and provides a vector multiplier with generally small entries, so
little damage is done to the transforming matrices.

7.1.5 SNF with Transforms

1

A

i-i' 1

We are now ready to put all this together and describe the
implementation, in GAP 4.2, that computes the SNF with
transforming matrices of an integer matrix A. The first step
of the main routine is to embed the input matrix A into a 2
larger identity matrix as described in [Sto96].

This embedding has two main benefits. Firstly it permits
the handling of any arbitrary shape of input matrix without
the need to check for matrices with no rows or no columns.
Secondly, and more importantly, it allows us to apply the
main routine without the need to write special code to deal

with the edge effects. The first phase of the main routine is to perform row and column
operations to convert the matrix to an upper triangular form with the entries of the main
diagonal those of the SNF (almost - the final entry actually need not be).

Consider the basic step shown in figure 7.2.

Figure 7.2 : Basic step in producing an upper triangular matrix with diagonal entries
equal to those of the SNF; g is the gcd of all the entries of A \

It should be clear that by repeatedly applying this procedure we will produce an upper
triangular matrix with diagonal entries those of the SNF. Note that the embedding we have
already applied means that the initial matrix A^ is of the correct shape. This basic step can
be performed by the following procedure:

111

Chapter 7 ____________ ______________ Bypassing the Diagonal Form

o Perform some sequence of column operations to arrange that the gcd of the entries
in the first colunm of Æ is equal to the gcd of all the entries of Æ.

o Perform some sequence of row operations to obtain that gcd and zero out the rest of
the column.

The important question in each case is, how do we choose which sequence of row / col
umn operations to apply? We now address this question, firstly for the choice of column
operations.

The sequence of column operations we use is simply to add various multiples of columns
2 . . . m to column 1 to arrange that the gcd of column 1 of Æ is equal to the gcd of A*.
The question now becomes how to decide what multiples of the other columns to add to
column 1 .

The first step is to select a pair of linearly independent columns. We do this by exam
ining the determinant of successive 2 x 2 submatrices from the two columns; as soon as
we discover a non-zero determinant we loiow that we have found a linearly independent
column, and we note the row-column pair for later. Note that due to the embedding such
a pair of columns will always exist. We will, for clarity of explanation, assume that the
two columns we select are columns 1 and 2 of A \ Note that in practice, this may not be
the case, and we do not in fact bother to permute the columns so that it becomes the case,
rather we simply keep track of the columns we are worldng upon.

Having selected two linearly independent columns we now need to perform some sequence
of elementary operations in order that the gcd of the entries in the first of these columns
is equal to the gcd of the entire submatrix. We note that it is possible to work modulo
N =the gcd of column 2. We could proceed as follows:

o Set N = gcd{column2).

o For each column j 6 {3 ... m}

- Perform row operations to obtain the gcd of column j modulo N in position
A ij. i.e. Apply mgcdex to the jth column i.e. mgcdex{N, A ij, A{2...n},j)̂

” Perform column operations to obtain the gcd of Ai î and A ij modulo N in
position Ai,i. Again use mgcdex, i.e. mgcdex{N, Ai,i, A ij).

112

Chapter 7______ Bypassing the Diagonal Form

Note that this procedure will ensure that column 1 either contain the gcds of colunms 3
through m, or entries which divide those gcds. In fact we do not need to actually perform
the row operations described in the above sequence. We can simply track the effect that
applying the operations would have upon the positions Ai,i and and then the process
will continue with each stage being able to work upon far smaller integers, and only upon
(copies of) two columns rather than the entire matrix. There is a small proviso that we
need to be careful not to change column 1 so that it becomes linearly dependent to column
2. To this extent, if a multiplier is calculated that would cause the determinant of the row-
column pair that we calculated earlier to become zero, then the next smallest multiplier is
used instead.

All that now remains is to calculate what multiple of column 2 we need to add to column
1 in order that the gcd of colunm 1 is the gcd of the entire matrix. Consider the following
procedure : Perform row operations to obtain the gcd of column 2 in position Ai 2̂ > Now
perform a single column operation to zero out position Ai,i, i.e. subtract ^ multiples of
colunm 2 from column I. Now we can let N = gcd(coll), and then we can see that what
we wish to do is add some multiple t of column 2 to column 1 such that the gcd of column
1 after the operation is equal to the gcd of colunm 1 and Ai,2 - i.e. find a t such that

gcd{Nf Ai 2̂) — gcd{Ny Ai î + tAi 2̂)-

which is easily calculable using the mgcdex routine. Note that we not actually perform
these operations, rather we track the effect that finding the gcd of column 2 (denoted by
6) will have upon the corresponding entry of the same row in column 1 (denoted by a),
we can then calculate N as gcd{Aj^i — ^ ^) | j . These values of a, b and N then permit
calculation of the correct multiple of column 2 to add to column 1 to finish this phase of
the calculation, arranging that the gcd of column 1 is equal to the gcd of all the entries of
A.

We keep track of these column operations in our multiplier matrices. If we are not inter
ested in transformation matrices we actually bypass this entire step and simply reduce the
input matrix to row echelon form. It is then passed to an implementation of the algorithm
described in [Sto98] which allows fast computation of the SNF triangular integer matrices.
However that method does not allow us to easily recover transformation matrices.

We then perform row operations upon the matrix so that the gcd of the top two entries of
column 1 is equal to the gcd of column 1 (which is equal to the gcd of the entire matrix A).

113

Chapter 7 Bypassing the Diagonal Form

Again we use mgcdex, i.e.'we calculate a multiplier t = mgcdex{Ai^i, A 2,i, A[s_n],i)’ Fur
a b
c d

thermore we ensure at this point that the determinant of the top 2 x 2 submatrix

is non-zero. If we find that it is the case that the determinant is zero, we add a multiple of
another lower row to malce the determinant non-zero.

This is so that we can proceed with the next step, which is to
apply the 2 X 2 HNF subroutine, to put this top 2 x 2 section
into HNF. We then zero out the entries, below the current
row, in column 1 , and then reduce the entries below row 2 ,
in column 2 modulo g. This procedure is demonstrated in
Figure 7.3, where an * denotes a possibly non-zero entry.
Note that the embedding of the input matrix we undertook
initially means that the first entry trivially satisfies our crite
ria, and the first real effect is the reduction of the entries in
the first column of our input matrix modulo A} j.

We repeat this for each column until we reach the situation
where we have an upper triangular foim with each successive
entry on the diagonal being the corresponding entry of the

SNF. Having reached this upper triangular form we can turn our attention to zeroing the
off-diagonal entries. We can now malce good use of the fact that the entries on the diagonal
aie those of the SNF. Figure 7.4 demonstrates the situation

Figure 7.3

Figure 7.4 : The next step; conversion of upper triangular form to ‘almost’ SNF.

This conversion is performed by first reducing each off-diagonal element in question mod
ulo the diagonal entry, dc, in the same column (a row operation), and then reducing it to
zero using the diagonal entry, dr, in the same row (a column operation). We know that
dc > dr, and we Icnow that dr divides all the entries in the submatrix A[j .. .n][j .. .m],
hence this sequence zeroes each off-diagonal entry, and hopefully keeps the damage to

114

Chapter 7_______________________________________ Bypassing the Diagonal Foim

the multiplier matrices to a minimum. All that then remains is to apply mgcdex and the
euclidean algorithm to the last row to obtain the final entry of the SNF and zero off the
rest of the tail.

7.2 PerformaMce

In practice this algorithm performs incredibly well, being both very fast and also producing
fairly good quality multipliers for the problem of finding the SNF of arbitrary matrices.
It is interesting to note here that if we have a matrix with many more rows than columns,
or vice versa the performance can be very different depending upon whether we apply the
algorithm to the matrix in question, or it’s transpose. If we do not require the column
transformation multiplier matrix then applying the algorithm to a matrix with a small
number of rows and a large number of columns is much faster than applying it to the
transpose of that matrix. If we require the column transformation matrix then the opposite
is the case. i.e. the algorithm returns a result much faster if we apply it to a matrix with a
small number of columns.

115

Chapter 8

Conclusion and Further Notes

In this chapter we shall first detail the conclusions of this thesis, and then proceed to
' LdisGÙss%i^ë%^ts that may provide interesting areas for further research.

8.1 Comctasions

In this thesis we have examined the problem of finding good multiplier matrices P and
Q such that FD Q = S, where P is a diagonal input matrix. We developed, in Chapter
3, practical ways to measure and compare the quality of such solutions. These methods
can also be applied to the more general problem PAQ = S, where A is an arbitrary
matrix. We further showed that there are definite lower bounds for the quality, Q(P, Q), of
these solutions in the case that the input is a diagonal matrix, and found some interesting
relationships between various different quality measures.

The basic procedure we investigated was that of converting a diagonal input matrix to
Smith Normal Form by a sequence of operations on pairs of entries from the diagonal.
This procedure is easily split into two distinct areas, each of which we investigated in this
thesis.

o How best to perform each 2 x 2 step?

o How to select each successive pair?

In Chapter 4 we introduced and developed the concept of the directed graphs associated
with the problem of converting a diagonal input matrix to SNF by repeatedly applying

116

Chapter 8_______________________________________ Conclusion and Further Notes

pairwise steps. We investigated the structure of these graphs in certain cases, and saw
how we could develop worst case inputs. We further developed the idea of a state space
of possible inputs and later utilised this idea to select a representative range of inputs for
testing puiposes.

We have analysed the 2 x 2 problem and described explicit matrix multipliers in Chapter
5. We have demonstrated improvements to the usually implemented method and have also
provided thoughts upon how best to minimize the impact of these 2 x 2 multipliers upon
the rest of the calculation.

In Chapter 6 we investigated the effects of various heuristic methods of solving the prob
lem in the case of a diagonal input matrix. We discussed two types of algorithms - struc
tural and positional and perfoimed various experiments to investigate the effectiveness of
particular algorithms. These experiments allowed us to formulate new positional algo
rithms which generally produced better quality solutions than we had achieved with the
standard implementations.

In chapter 7 we have described an implementation of an algorithm that directly computes
the SNF with transforming matrices, and does not proceed via an intermediary diagonal
stage. This implementation performs veiy well in practice.

We believe that a sensible overall approach to the general problem would be to use the “di
vide into pairs” positional heuristic developed in chapter 6 as a good coarse grain solution
to the problem of path selection. We would recommend also using a one step lookahead
structural algorithm to decide upon the fine grain structure of exactly which pairs should
be used where there is choice. We recommend using a factorization based heuristic to
select good multipliers for each of these 2 x 2 steps, as developed in chapter 5.

8.2 Closing Notes and Farther Work

This thesis has laid a solid foundation for further work. We shall note a few potential areas
for investigation, and malce some brief comments about possible methods therein.

8.2.1 Bounds revisited

By combining the ideas and results of Chapters 5 and 6 we can derive upper bounds for
Q(P, Q) given PDQ = S. These bounds assume that we have followed the proceduies of

117

Chapter 8______________________________ Conclusion and Further Notes

these chapters rigorously.

We know from chapter 4 that each problem has a directed graph associated with it, and
from chapter 6 we know that we can find a path through this digraph that has at most
^ steps. Moreover we loiow that we can minimize the power build up as described in
sections 6.3 and 6.3.1 so that the largest power of some bound X occurring is no greater
than % ^ for this short sequence of steps.

We also know from chapter 5 that we can put an explicit value on this X, since we can
select \kt\ < 1 1 1 , and we can always allow either k or f to be 1 .

In the case that we set A; = 1 then the row multiplier matrices are all of the fomi

(; :)
where I — bt < | | | and so every entry is bound by \a\. Note that for any particular step
a < ^ (we can actually do much better than this if we want to) and so ||P||oo < ̂ .
The column multiplier matrices ar e of the form

1 -M

and the largest entry in Q is then bound by | y | < — giving | | Q | | o o <

If we sett ~ 1 then the row multiplier matrices are all of the form

/ 1—bk

3n

bk a

where 1 — bk < 11 | and so every entry is bound by |~ | < y and so | | P | | o o < ■

The column multiplier matrices are of the form

1y k l ~ b k J

and the largest entry in Q is then again bound by |y | < y giving |lQ||oo<

These bounds are not very good. We can get improvements by noting for example that
by using the divide into pairs with intelligent collection of gcd and 1cm, the entries in
the 2 X 2 multiplier matrices for at most | + log{n) operations will be bound by
Thereafter the entries will be bound by Sn-in-i for the next few operations and so on.
Further improvements along these lines are clearly possible.

118

Chapter 8________________________ Conclusion and Further Notes

8.2.2 Parallélisation

The algorithms to find multiplier matrices for the SNF of a diagonal matrix that we have
described in this thesis mostly permit simple parallélisation. For the positional algorithms
it is clear that we can select a path through the digraph before we embark upon any further
calculation, i.e. we Icnow in advance all the diagonals that will arise along the way and
hence we could set the task of finding good 2 x 2 multiplier matrices for each of these steps
running in parallel on as many processors as required (or available). For the majority of the
structural algorithms the same is true - we can precalculate the path and hence spread the
computationally harder work across parallel processors. Of course, this is not possible for
those algorithms wherein we malce choices according to the current state of the multiplier
matrices.

Pseudocode :

o Calculate a path.

o Parallel : for each step calculate (best) multiplier matrices,

o Parallel : multiply matrices together.

Assuming path length, P, the matrix multiplication can be done using P/2, P /4, P / 8 ...
processors in log2 {P) steps.

Also note that depending on exactly how we are finding best multiplier matrices, this step
itself could possibly be parallelised further in some fashion, e.g. by splitting the search
space across different processors.

8.2.3 Improvmg the Solution

Assuming we have found matrices P and Q such that PAQ = 5 is in SNF (and where A
need have no special form), then it is possible in some cases to improve the solution we
have obtained. If X , Y are unimodular matrices such that X P y = S then

{XP)A{QY) = X S Y = S.

and since Sa divides Sjj'ii < j then we can add any multiple, k, of row j to row i (i < j)
if we also add —k ^ times column i to column j, to zero out the Sij entry.

119

Chapter 8 Conclusion and Further Notes

Back in SNF.Subtract mutiple of
Col i from Col j.

Add Row j to Row i.

Figure 8.1: Basis for LLL improvement of Single Transforming Matrix

We can either track changes made by this to both transforming matrices, or if for example
the column transform Q is required and we only loiow the row transform, P then we can
easily calculate

Q := (fX)- 'g .

Much of the time we are interested only in minimizing one of the transforming matrices,
and some experiments suggest that this process can be used to improve the quality of one
of the matrices, but at significant cost to the quality of the other. Fmther investigation of
this idea may prove informative.

A question that has frequently arisen during the course of this research has been “What is
an average problem?” There is of course no sensible answer to this in general, as many of
these matrices arise from algebraic problems with a certain amount of inherent stmcture.
However we can consider the completely general problem of finding the SN F of a random
matrix, distinct from any external environment. In this case there are two sensible starting
points we can consider :

o The SN F of a matrix of randomly chosen integers,

o The SN F of a diagonal matrix of randomly chosen integers.

In either case we could apply the following reasoning to investigate the question of what
constitutes an ‘average’ SNF. Given an integer matrix,A with k non-zero entries the first

120

Chapter 8 Conclusion and Further Notes

entry in the SNF is the gcd of all of the entries of A. The probability that this is one is

a{k) 1

oo

C = 1

If we make the assumption that after the row and colunm operations required to isolate the
first entry of the SNF we are left with an essentially random matrix, with one less row and
one less column than the original, then we can make a similar estimate for the next entry
of the SNF and so on. This method could produce some results about what constitutes
an ‘average’ SNF. The same idea could be applied to a diagonal matrix, i.e. successive
lists of essentially random integers of length n ,n — 1 , . . . , 2 to build up an idea of what
constitutes an average SNF in this setting.

We are actually more interested in the average difficulty of a problem, i.e. how many steps
it t^ e s tp,^rqduce an SNF in general. We can get an idea of the ‘average’ complexity

’-:^vbÿ|I^ÉÉifÉnte}îè coprime parts of a particular random diagonal matrix. This is a little
 ̂ theoretically, but we can get an idea of the height and weight of random
cases by running some experiments. It is interesting to note that we can put immediate
bounds upon the height and weight simply from the size of the numbers appearing in
the list, although it is likely these will be gross overestimates. By applying the rewriting
procedure described in chapter 4 we can examine the height and weight of random lists.

Talcing 1000 diagonals of lengths 3 to 20 of randomly chosen integers from the range 1 to
2 ^̂ , and examining the coprime parts of each of these diagonals reveals that the distribution
of height and weight forms a bell curve in each case. The number of distinct coprime parts
appearing in a given ‘random’ diagonal of length n appears to peak at about whilst
the weight appears to be a wider,flatter bell curve with peak increasing as nlog{n). This is
clearly a far cry from the worst case scenario described in chapter 4.

We could also examine the ‘complexity’ of these random problems by examining the dis
tribution of path lengths through the digraph. However this is difficult, even if we restrict
our attention to the shortest paths through each of the digraphs. Preliminary results suggest
that the shortest path through the digraph of a random length n input diagonal generally
consists of n — 1 steps i.e. coprime. This is unsurprising given the above probability that
k integers are coprime. It would be a useful improvement to be able to analyse in advance
the likely complexity of a problem, in order to better select a method of obtaining the
multiplier matrices. We leave this as an open problem.

121

Appendix 1 = Powergrowth Pictures

The following pictures demonstrate graphically the power giowth described in section 6.3.1
upon a worst case problem of length 2 0 .

The shading of each picture is individually scaled such that black represents the largest
power occumng in the application of that algorithm. White represents a power of zero
and the greyscale represents all the values between, with the darker colours representing
higher powers.

Each row of each picture shows the powergrowth at a paiticular step in the calculation.
The top row of each picture is the powergrowth at the beginning, i.e. all zeroes. The
bottom row demonstrates the final powergrowth distribution. Recall that each algorithm
can talce a different number of steps to complete, and so the number of rows in each of
these pictures differs.

122

Appendix 1 Powergrowth Pictures

Standard algorithm power growth

Here the largest power, represented by the darkest shade, is 37. The final sequence of
powers is

[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,37].

123

Appendix 1 Powergrowth Pictures

Worst case algonthm power growth

Here the largest power, represented by the darkest shade, is 190. The final sequence of
powers is

[1 9 , 3 7 , 5 4 , 7 0 , 8 5 , 9 9 , 1 1 2 , 1 2 4 , 1 3 5 , 1 4 5 , 1 5 4 , 1 6 2 , 1 6 9 , 1 7 5 , 1 8 0 , 1 8 4 , 1 8 7 , 1 8 9 , 1 9 0 , 1 9 0] .

124

Appendix 1 Powergrowth Pictures

Divide and Conquer algorithm power growth

Here the largest power, represented by the darkest shade, is 38. The final sequence of
powers is

[5,10,15,19,23,27,31,34,37,38,38,37,35,31,28,24,20,15,11,6].

125

Appendix 1 Powergrowth Pictures

Divide into pairs- naive collection strategy, power growth

Here the largest power, represented by the darkest shade, is 55. The final sequence of
powers is

[1 0 , 1 9 , 2 7 , 3 4 , 4 0 , 4 5 , 4 9 , 5 2 , 5 4 , 5 5 , 5 5 , 5 4 , 5 2 , 4 9 , 4 5 , 4 0 , 3 4 , 2 7 , 1 9 , 1 0] .

126

Appendix 1 Powergrowth Pictures

Divide into pairs- Intelligent collection strategy, power growth

Here the largest power, represented by the darkest shade, is 25. The final sequence of
powers is

[5,8,11,24,25,14,20,20,8,18,16,22,16,18,24,11,14,22,25,5].

127

During the course of this research we desired to understand the properties of the digraph
structure generated by an input. We found it very useful to be able to generate pictures and
to this purpose we made use of the daVinci system [Wer98]; indeed the figures in chapter
4 were on the whole produced using daVinci. We will briefly describe here some of the
capabilities of that system, and some of the tools we developed in GAP to make better use
of it.

daVinci is an interactive tool to visualize directed graphs. A graph is a structure with a
number of objects (nodes) and relationships between them (edges). For directed graphs,
all edges have a direction, i.e. for each edge there is a parent (the source) and a child
node (the target). The gi'aph layout in daVinci reflects these hierarchical relationships by
arranging the nodes at horizontal levels such that all parent nodes are above their child
nodes and all edges point downwards (in a top-down layout; it is possible to arrange other
layouts e.g. left-to-right, and in fact we generally use this layout in preference). Further,
the direction of an edge is usually visualized with an arrow pointing to the child node.
This kind of representation is called hierarchical visualization of a directed graph.

Graphs are loaded in daVinci using a format called term representation. The term rep
resentation format supports all kind of directed graphs: cyclic or acyclic graphs, empty
graphs, graphs with only one level (a list of nodes without any edges), multi-edges (two or
more edges between two nodes) or even self-edges (edges where the parent and child node
are the same). The term representation is a plain text ASCII format, so daVinci graphs can
even be created with an arbitrary text editor. But normally, one will not do this by hand.
Instead, graphs are usually generated automatically by some application program, in our
case directly from GAP.

128

Appendix 2 ___________________________ daVinci

daVinci Term Representation

In general, a term is a structure where a superterm (parent) encloses its subteims (children),
e.g. parent[childl,child2,child3]. Brackets [...] are used to get a list of comma-separated
elements of the same type. This scheme of expressing parent-child relationships can be
applied recursively, so each child may have its own children, and so on. Such a notation
allows to represent arbitrary tree structures.

To specify graphs, a mechanism of identifiers and references is used in daVinci. For
example, if a child node has more than one parent node, then in the term representation
the corresponding subgraph of the child appears in only one of the parents as a subterm.
This subterm is marked with an identifier (in fact, all nodes and edges need to be marked
with a unique identifier). All the other parents of the same child do not duplicate the
subterm. Instead, they point to the child by using a reference to the identifier. Note
that this,allows the description of cyclic graphs. When loading a term representation,
daVinci will construct an internal graph by resolving these references. The linear order of
a node’s subterm (where the identifier is declared) and a reference to this node (where the
identifier is used) is arbitrary in a term representation, so references can be used before the
corresponding identifier and subterm appears in the term representation.

Beside the (unique) identifier and the list of child nodes, each node also has a type and a list
of attributes which aie responsible for the image of a node in the visualization. Between a
parent and the corresponding child node, there is an edge in the teim representation which
also has its unique edge identifier, type and attributes. So, in fact the children of a node
are edges and each edge has one node or reference as subterm.

For instance the following teim representation was used to generate the directed graph in
figure 4.1.2,

[! (" [4 , 6 , 9] " , n (" n o d e " , [a (" O B J E C T " , "[4 , 6 , 9] ")] , [1 (" 1 _ 2 " , e (" e d g e " , [] , 1 (" [2 , 9 , 12]

" , n (" n o d e " , [a (" O B J E C T " , "[2 , 9 , 12] ")] , [1 (" 2 _ 5 " , e (" e d g e " , [] , 1 ("[1 , 1 2 , 18] " , n (" n o d e

" , [a("OBJECT", "[1 , 1 2 , 18] ")] , t l (" 5 _ 3 " , e (" e d g e " , [] , 1 (" t 1 , 6 , 36] " , n (" n o d e " , [a ("OBJECT

1 , 6 , 36] ") 3 , {]))))])))) , l (" 2 _ 6 " , e (" e d g e " , [] , 1 (" [2 , 3 , 36] " , n (" node " , [a ("OBJECT",

"[2 , 3 , 36] ")] , [l (" 6 _ 3 " , e (" e d g e " , [] , r (" [1 , 6 , 36] ")))]))))])))) , 1 (" 1 _ 3 " , e (" e d g e " , [] , r (

"[1 , 6 , 36] "))) , l (" l _ 4 " , e (" e d g e " , [] , ! (" [3 , 4 , 18 3 " , n (" n o d e " , [a("OBJECT", " [3 , 4 , 18 3")3

t l (" 4 _ 5 " , e (" e d g e " , [3 , r (" [1 , 1 2 , 18 3 "))) , 1 (" 4 _ 6 " , e (" e d g e " , [3 , r ("[2 , 3 , 36 3 "))) 3 >))) 3)) 3

This term representation string was created by starting with the input node [4,6,9] and
generating, in GAP, a list of vertices in the digraph, and a list of edges. These are then
easily utilised to form the adjacency matrix, each row of which can be labelled (uniquely)

129

Appendix 2 daVinci

by associating with it the diagonal to which it coiTcsponds. It is then a reasonably simple
procedure to create the string above by a procedure which, keeping track of the nodes that
have already been added, works upon each node in sequence and either adds all children
therefrom, or in the case that the node already appears, simply appends the node identifier
and allows daVinci to resolve the internal references and build the graph.

130

Bibliography

[BS96a] E. Bach and J. Shallit. Algorithmic Number Theory, Volume 1: Efficient Algo
rithms, chapter 4, pages 84-90. The MTT Press, 1996.

[BS96b] E. Bach and J. Shallit. Algorithmic Number Theory, Volume 1: Efficient Algo-
rithms, chapter 4, pages 70-71. The MIT Press, 1996.

rHer5l{l#^®l|tïèiim Sur l’introduction des variables continues dans la théorie des nom-
très. J. Reine Angew. Math., 41:191-216,1851.

[HHR93] G. Havas, D.F. Holt, and Saïah Rees. Recognizing badly presented Z-modules.
Linear Algebra Appt, 192:137-163,1993.

[HM97] G. Havas and B.S. Majewski. Integer matrix diagonalization. Journal Symbolic
Computation, 24:399-408,1997.

[HS79] G. Havas and L.S. Sterling. Integer matrices and abelian groups. Lecture Notes
in Comput. ScL, 72:431-451,1979.

[Joh90] D.L. Johnson. Presentations of Groups. Cambridge University Press, 1990.

[MH94] B.S. Majewsld and G. Havas. The complexity of greatest common divisor com
putations. In Algorithmic Number Theory, LNCS 877, pages 184-193,1994.

[S+95] Martin Schonert et al. GAP - Groups, Algorithms, and Programming. Lehistuhl
D fur Mathematik, Rheinisch Westfalische Technische Hochschule, Aachen,
Germany, fifth edition, 1995.

[Sim94] C. C. Sims. Computation with Finitely Presented Groups. Cambridge Univer
sity Press, 1994.

[Smi61] H.J.S Smith. On systems of linear indeterminate equations and congruences.
Philos. Trans. Roy. Soc. London, 151:293-326,1861.

131

Appendix 2 daVinci

[Sto96] A Storjohann, A fast+practical+deterministic algorithm for triangularizing in
teger matrices. Technical Report Tech. Rep 256, Depaitement Informatik, ETH
Zurich, Dec. 1996,

[Sto97] A Stoijohann. A solution to the extended gcd problem with applications. In
InfL Symp. on Symbolic and Algebraic Computation : ISSAC ’97,1997.

[Sto98] A Storjohann. Computing hermite and smith normal forms of triangular integer
matrices. Linear Algebra and its Applications, 282:25-45,1998.

[TieOS] H. Tietze. über die topologischen invarienten mehrdimensionaler mannig-
filtigkeiten. Monatsh. fur Math. undPhys., 19:1—118,1908.

[Wei98] M. Werner, davinci v2.1.x online documentation.

‘http://www.tzi .de/^davinci/doc_ V2.1/’ , 1998.

132

http://www.tzi

