AUTOMATIC S-ACTS AND INVERSE SEMIGROUP PRESENTATIONS

Erzsébet Rita Dombi
A Thesis Submitted for the Degree of PhD at the University of St Andrews

2005

Full metadata for this item is available in St Andrews Research Repository
at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/15123

This item is protected by original copyright

Automatic S-acts and inverse semigroup presentations

Erzsébet Rita Dombi

Ph.D. Thesis
University of St Andrews
September, 2004

ProQuest Number: 10166195

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10166195
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

To Zsolt

Contents

Declaration vii
Abstract ix
Acknowledgements xi
1 Introduction 1
2 Preliminaries 5
2.1 Semigroups 5
2.2 Regular languages and finite state automata 11
2.3 Automatic groups and semigroups 14
3 Automatic semigroup acts 19
3.1 Definitions 19
3.2 Schützenberger automatic regular semigroups 25
3.3 Examples 29
3.4 Basic properties 34
3.5 Automatic versus Schützenberger automatic. 47
3.6 Invariance under the change of generators. 49
3.7 Fellow traveller property I. 59
3.8 Fellow traveller property II. 64
3.9 Fellow traveller property III 74
3.10 Finite presentability 77
3.11 Equality and word problems 78
3.12 Inverse free product of inverse semigroups. 84
4 Semidirect product 95
4.1 Presentations. 95
4.2 Finite generation with respect to an action. 99
4.3 Finite generation 106
4.4 Finite presentability with respect to an action I. 108
4.5 Examples I. 119
4.6 Finite presentability with respect to an action II. 129
4.7 Examples II. 133
4.8 Matched and conjugate words 140
4.9 Finite presentability I. 143
4.10 Finite presentability II. 150
4.11 Schützenberger automaticity 161
5 HNN extensions 167
5.1 Group HNN extensions 168
5.2 Yamamura's HNN extension 170
5.3 Gilbert's HNN extension 172
5.4 An alternative presentation for Gilbert's HNN extension 175
5.5 Finite generation of Gilbert's HNN extension 177
5.6 Finite presentability of Gilbert's HNN extension 179
5.7 A compelling consequence 181
5.8 Examples 183

Declaration

I, Erzsébet Rita Dombi, hereby certify that this thesis, which is approximately 66000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree.

Signature \qquad Name Erzsébet Rita Dombi Date 03/09/04

I was admitted as a research student in September 2001 and as a candidate for the degree of Ph.D.; the higher study for which this is a record was carried out in the University of St Andrews between 2001 and 2004.

Signature \qquad Name Erzsébet Rita Dombi Date 03/09/04

I hereby certify that Erzsébet Rita Dombi has fulfilled the conditions of the Resolutions and Regulations appropriate for the degree of Ph.D. in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.

Signature \qquad Name Nik Ruškuc

Date 03/09/04

In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I also understand that the title and abstract will be published, and that a copy of the work may be made and supplied to any bona fide library or research worker.
\qquad Name Erzsébet Rita Dombi

Date 03/09/04

Abstract

To provide a general framework for the theory of automatic groups and semigroups, we introduce the notion of an automatic semigroup act. This notion gives rise to a variety of definitions for automaticity depending on the set chosen as a semigroup act. Namely, we obtain the notions of automaticity, Schützenberger automaticity, \mathcal{R} - and \mathcal{L}-class automaticity, etc. We discuss the basic properties of automatic semigroup acts. We show that if S is a semigroup with local right identities, then automaticty of a semigroup act is independent of the choice of both the generators of S and the generators of the semigroup act. We also discuss the equality problem of automatic semigroup acts. To give a geometric approach, we associate a directed labelled graph to each S-act and introduce the notion of the fellow traveller property in the associated graph. We verify that if S is a regular semigroup with finitely many idempotents, then Schü̈tzenberger automaticity is characterized by the fellow traveller property of the Schützenberger graph. We also verify that a Schützenberger automatic regular semigroup with finitely many idempotents is finitely presented. We end Chapter 3 by proving that an inverse free product of Schützenberger automatic inverse semigroups is Schützenberger automatic.

In Chapter 4, we first introduce the notion of finite generation and finite presentability with respect to a semigroup action. With the help of these concepts we give a necessary and sufficient condition for a semidirect product of a semilattice by a group to be finitely generated and finitely presented as an inverse semigroup. We end Chapter 4 by giving a necessary and sufficient condition for the semidirect product of a semilattice by a group to be Schützenberger automatic.

Chapter 5 is devoted to the study of HNN extensions of inverse semigroups from finite generation and finite presentability point of view. Namely, we give necessary and sufficient conditions for finite presentability of Gilbert's and Yamamura's HNN extension of inverse semigroups. The majority of the results contained in Chapter 5 are the result of a joint work with N.D. Gilbert and N. Ruškuc.

Acknowledgements

First of all I would like to thank my supervisor Professor Nik Ruškuc for all his help and support during the last three years. He shared his great mathematical ideas, gave me interesting problems to work on and always had time for discussing them. He carefully read the drafts of this thesis and gave helpful advice on how I could improve my notation system. He not only guided me in mathematics but shared his experience in "how to be an alien".

I wish to thank Dr Nick Gilbert for the inspiring discussions and for his encouragement. I had an excellent time during collaboration with Nick Gilbert and Nik Ruškuc.

Next, I would like to thank Professor Mária Szendrei for all her support. She awoke my interest in semigroup theory, gave hard and interesting problems and supported me in coming to St Andrews.

Thanks goes to the Ph.D. students who made the department cheerful. I am more than grateful to Alan Cain and Peter Gallagher for reading various parts of my thesis and to Maja Waldhausen for all her help and support.

I wish to thank my husband Zsolt for all his patience during these years and his help in creating the pictures in the thesis.

Chapter 1

Introduction

In order to obtain certain properties of (infinite) semigroups or groups quickly and efficiently with the help of computers, encoding them with finitely many pieces of information is important. One way of encoding a semigroup or a group is to find generators and relations between words on the generators that describe the semigroup or group in question. This is the subject of the theory of semigroup and group presentations. Another way of encoding is in terms of generators and finitely many finite state automata. This approach led to the theory of automatic groups and semigroups.

The theory of automatic groups was introduced in the early 1980s by Epstein et al [9]. The main aim was to introduce a large class of groups having solvable word problem. Automatic groups have many pleasant properties. They are finitely presented, their automaticity does not depend on the choice of the finite generating set, and most importantly they are characterized by a geometric property, called the fellow traveller property of their Cayley graphs.

That the (language theoretic) notion of an automatic group can be naturally extended to semigroups was observed by Campbell et al [5] and the study of automatic semigroups was initiated. Investigation began into whether properties of automatic groups carry over in the case of automatic semigroups [5]. Automatic semigroups have solvable word problem. On the other hand, it turned out that automatic semigroups behave more wildly than automatic groups. Automatic semigroups are not necessarily finitely presented [5, Example 4.4], automaticity of semigroups does depend on the choice of generators [5, Example 4.5]. Moreover a geometric characterization of automatic semigroups with the help of their Cayley graphs does not exists.

The response to the above results was twofold. On one hand alternative notions of automaticity have been considered for semigroups [34], [19]. On the other hand semigroup
classes closely related to groups have been considered. For example, regarding automatic completely simple semigroups, the group theoretic results generalize. That is, automatic completely simple semigroups are finitely presented, automaticity does not depend on the choice of generators and fellow traveller property of their Cayley graph characterizes them. In [12] it is proved that automaticity of monoids does not depend on the choice of the generating set.

The main purpose of Chapter 3 is to give a general framework for the theory of automatic semigroups and groups and to extend the known results. In Section 1, we introduce the notion of an automatic semigroup act or automatic S-act for short. Choosing the S-act to be a set closely related to the semigroup S, we arrive at a wide variety of notions of automaticity. If the S-act is the semigroup S, then we obtain the usual notion of automaticity. By choosing the S-act to be S / \mathcal{R} or S / \mathcal{L}, we introduce the notion of \mathcal{R}-class and \mathcal{L}-class automaticity. With the assumption that S is a regular semigroup and the S-act is an \mathcal{R}-class of S we introduce the notion of Schützenberger automaticity. Combining Schützenberger automaticity and \mathcal{R}-class automaticity we introduce the notion of a strongly Schützenberger automatic semigroup. In Section 3, we illustrate these notions by giving examples.

In Sections 4 and 5, we discuss basic properties of automatic S-acts and compare the notion of automaticity and Schützenberger automaticity of regular semigroups.

In Section 6, we show that if S is a semigroup with local right identities, then automaticity of an S-act is independent of the choice of generators of S and also of the choice of generators of the S-act. A consequence of this result is that automaticity of a regular semigroup is independent of the choice of generators.

In Sections $7-9$ we discuss a geometric approach. To each S-act we associate a directed labelled graph and introduce the notion of the fellow traveller property in that graph. We show that if an S-act is automatic then the fellow traveller property holds in the associated graph. In Section 8, we investigate the conditions under which the converse holds. In particular, we verify that if S is a regular semigroup with finitely many idempotent elements, then the fellow traveller property of a Schützenberger graph of an \mathcal{R}-class R does characterize Schützenberger automaticity of R. In Section 9, we give an example of a semigroup S with infinitely many idempotents, in which there is an \mathcal{R}-class whose Schützenberger graph possesses the fellow traveller property but is not Schützenberger automatic.

As mentioned above, automatic semigroups and groups have solvable word problem. In Section 10, we introduce the equality problem for S-acts, and show that the equality
problem is solvable in automatic S-acts.
Free products of automatic groups and semigroups are automatic. In Section 11, we verify that inverse free product of Schützenberger automatic inverse semigroups is Schützenberger automatic. The proof of this result is based on the description of the Schützenberger graphs of the inverse free product of two inverse semigroups given by Jones et al [25]. The underlying tool of the results in [25] is Stephen's procedure for constructing Schützenberger graphs with respect to an inverse semigroup presentation [35].

An extensive study of semigroup presentations began in the last decade. One of the main areas of research is the study of presentations of semigroup constructions [33], [1], [7]. Naturally, the main purpose is to give a necessary and sufficient condition for the semigroup construction to be finitely presented. In the last two chapters we investigate two inverse semigroup constructions: one of them is the semidirect product of a semilattice by a group; the other is an HNN extension (both in the sense of Gilbert and in the sense of Yamamura) of an inverse semigroup.

We begin Chapter 4 by introducing the concept of finite generation and finite presentability with respect to a semigroup action. With the help of these concepts we give a necessary and sufficient condition for a semidirect product of a semilattice by a group to be finitely generated and to be finitely presented as an inverse semigroup. We end Chapter 4 by giving a necessary and sufficient condition for a semidirect product of a semilattice by a group to be Schützenberger automatic.

The construction of an HNN extension was first introduced when Higman, Neumann and Neumann studied embeddability questions of groups. The construction was first considered for semigroups by Howie [20]. In recent years, two alternative notions for HNN extensions of inverse semigroups have been given. One of these is due to Yamamura. [36], the other one to Gilbert [14]. We consider finite presentability of HNN extensions of groups and inverse semigroups both in the sense of Gilbert and in the sense of Yamamura. Considering Yamamura's HNN extension we see that the group theoretic result generalizes. The main result of Chapter 5 is to give a necessary and sufficient condition for Gilbert's HNN extension of an inverse semigroup to be finitely presented. Sections 3-8 of Chapter 5 contain results of a joint work with N.D.Gilbert and N.Ruškuc, and are accepted for publication.

Chapter 2

Preliminaries

We begin by reviewing three main mathematical subjects under consideration in this thesis. These are: semigroup theory, the theory of finite state automata and regular languages and the theory of automatic groups and semigroups. To give a detailed survey on these subjects is beyond the scope of the thesis. Our aim is to introduce the basic definitions and results that are going to be used in the third chapter. For further details in semigroup theory we refer the reader to [22], in the theory of finite automata and regular languages [28],[21] and in automatic groups and semigroup [9] and [5]. At the beginning of each subsequent chapter we give a further brief introduction containing the necessary definitions and results to make the chapter self-contained.

2.1 Semigroups

We summarize some basic definitions and results from semigroup theory we will refer to in the thesis.

Basic definitions

A non-empty set S together with an associative binary operation, usually called multiplication is called a semigroup. Let T be a non-empty subset of a semigroup S. We say that T is a subsemigroup of S, if T is closed with respect to the multiplication. If S is a semigroup and X is a non-empty subset of S, then the intersection of all subsemigroups of S containing X is the subsemigroup $\langle X\rangle$ generated by X. If $\langle X\rangle=S$, then we say that S is generated by X.

Let X be a non-empty set. Let X^{+}denote the set of all finite words ($x_{1} \ldots x_{n}$), where $x_{i} \in X$ for all $1 \leq i \leq n$. The integer $1 \leq n$ is the length $|w|$ of the word $\left(x_{1} \ldots x_{n}\right)$. The
set X^{+}can be equipped with the following associative operation, called concatenation:

$$
\left(x_{1} \ldots x_{n}\right)\left(y_{1} \ldots y_{m}\right)=\left(x_{1} \ldots x_{n} y_{1} \ldots y_{m}\right)
$$

The semigroup obtained is called the free semigroup on X. We recall [33, proposition 1.1].
Proposition 2.1.1. Let X be a non-empty set and S be a semigroup. Then every mapping $f: X \rightarrow S$ extends uniquely to a homomorphism $\varphi: X^{+} \rightarrow S$. If S is generated by X, then φ is surjective.

Let S be a semigroup generated by $X \subseteq S$. Let $\varphi: X^{+} \rightarrow S$ denote the homomorphism extending the identity map $\iota: X \rightarrow S$. For any two words $u, v \in X^{+}$, we write $u \equiv v$, if u and v are identical as words, and we write $u=v$, if u and v represent the same element of S, that is, if $u \varphi=v \varphi$.

Let S be a semigroup. We say that $1 \in S$ is an identity element, if $1 s=s 1=s$ holds for all $s \in S$. It is easy to see that a semigroup can have at most one identity element. If a semigroup S contains an identity element, then we call S a monoid. If S does not have an identity element, then a monoid can be formed from S in the following way. We choose a symbol $1 \notin S$ and define $1 s=s 1=s$ for all $s \in S$ and define $11=1$. The monoid obtained is denoted by S^{1}.

Let S be a semigroup with at least two elements. We say that $0 \in S$ is a zero element, if $0 s=s 0=0$ holds for all $s \in S$. A semigroup S can have at most one zero element. If S does not have a zero element, then a semigroup with zero element can be obtained in the following way. We choose a symbol $0 \notin S$ and define $0 s=s 0=0$ for all $s \in S$ and define $00=0$. The semigroup obtained is denoted by S^{0}.

We say that $e \in S$ is an idempotent, if $e e=e$. The set of idempotents of S will be denoted by $E(S)$.

Let S be a semigroup and R be a relation on S. We say that R is left (right) compatible with the multiplication, if whenever $s, t \in S$ are such that $s R t$, then for all $a \in S$, as R at, (sa $R t a$) holds. We say that R is compatible with the multiplication, if whenever $s_{1}, s_{2}, t_{1}, t_{2} \in S$ are such that $s_{1} R t_{1}$ and $s_{2} R t_{2}$ hold, then $s_{1} s_{2} R t_{1} t_{2}$ holds. A left (right) compatible equivalence relation is called a left (right) congruence, and a compatible equivalence relation is called a congruence on S.

Before we give examples for a left and a right congruence on a semigroup S, we introduce the following notions. Let A be a non-empty subset of a semigroup S. We say that A is a left (right) ideal in S, if for all $s \in S$ and $a \in A, s a \in A,(a s \in A)$ holds. If A is a left and a right ideal in S, then we say that A is an ideal in S. If A is an ideal
of S so that $A \subset S$, then say that S is a proper ideal of S. We say that S is simple, if it has no proper ideals. If $a \in S$, then the smallest left (right) ideal of S containing a is $S^{1} a=\left\{s a \mid s \in S^{1}\right\}\left(a S^{1}=\left\{a s \mid s \in S^{1}\right\}\right)$, which we call the principal left (right) ideal generated by a. The smallest ideal containing a is $S^{1} a S^{1}=\left\{s a t \mid s, t \in S^{1}\right\}$, which we call the principal ideal generated by a.

Let S be a semigroup. We define the following equivalence relations on S. For all $s, t \in S$, we define $s \mathcal{L} t$, if and only if s and t generate the same principal left ideal, that is, if and only if $S^{1} s=S^{1} t$. Similarly, for all $s, t \in S$, we define $s \mathcal{R} t$, if and only if s and t generate the same principal right ideal, that is, if and only if $s S^{1}=t S^{1}$. Clearly, \mathcal{L} is a right congruence and \mathcal{R} is a left congruence on S. It can be easily seen that \mathcal{L} and \mathcal{R} commutes, and so $\mathcal{D}=\mathcal{L} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{L}$ is the smallest equivalence containing \mathcal{L} and \mathcal{R}. We denote by \mathcal{H} the intersection of \mathcal{L} and \mathcal{R}. If \mathcal{H} is trivial, then we call S a combinatorial or aperiodic semigroup. We introduce our final equivalence relation. For all $s, t \in S$, we define $s \mathcal{J} t$, if and only if s and t generate the same principal ideal, that is, if and only if $S^{1} s S^{1}=S^{1} t S^{1}$. We note that S is' a simple semigroup if and only if $\mathcal{J}=S \times S$. It is immediate that $\mathcal{H} \subseteq \mathcal{R}, \mathcal{L} \subseteq \mathcal{J}$, and so $\mathcal{D} \subseteq \mathcal{J}$ holds as well. We call the relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$, and \mathcal{J} Green's relations. We denote the \mathcal{L}-class [$\mathcal{R}, \mathcal{H}, \mathcal{D}, \mathcal{J}$-class] of an element $s \in S$ by $L_{s}\left[R_{s}, H_{s}, D_{s}, J_{s}\right]$. Since $\mathcal{D}=\mathcal{L} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{L}$, the \mathcal{D}-class of $s \in S$, can be visualized in a convenient way by the egg-box picture:

The box represents a \mathcal{D}-class, namely D_{s}, the rows correspond to \mathcal{R}-classes, the columns to \mathcal{L}-classes, and each cell represents an \mathcal{H}-class.

Lemma 2.1.2. Let S be a semigroup and $e \in E(S)$. Then er $=r$ for all $r \in R_{e}$ and $l e=l$ for all $l \in L_{e}$.

Proof. See [22, Proposition 2.3.3].
With the help of left and right translations, a bijection can be given between \mathcal{L}-, \mathcal{R} and \mathcal{H}-classes of a semigroup contained within a \mathcal{D}-class.

Lemma 2.1.3 (Green's lemma). Let S be a semigroup and $s, t \in S$ so that $s \mathcal{L} t$. Assume that $s=a t$ and $t=b s$. Then the mappings

$$
\lambda_{a}: R_{s} \rightarrow R_{t} ; x \mapsto b x \quad \text { and } \quad \lambda_{b}: R_{t} \rightarrow R_{s} ; y \mapsto a y
$$

are mutually inverse \mathcal{L}-class preserving bijections.

Proof. See [22, Lemma 2.2.2].
A subgroup of a semigroup S is a subsemigroup, which is a group. With the help of Green's lemma the following propositions can be proved.

Proposition 2.1.4. The maximal subgroups of a semigroup S coincide with the \mathcal{H}-classes of S which contain an idempotent. Each subgroup of S is contained in an \mathcal{H}-class of S.

Proof. See [22, Corollary 2.2.6].
Proposition 2.1.5. Let S be a semigroup, and $s, t \in S$ such that $s \mathcal{D} t$. Then $s t \in R_{s} \cap L_{t}$ if and only if $L_{s} \cap R_{t}$ contains an idempotent.

Proof. See [22, Proposition 2.3.7].
We illustrate Proposition 2.1.5 with the help of the egg-box picture:

Regular semigroups

Throughout the thesis we shall be interested in regular semigroups. We first generalize the group theoretic notion of an inverse. Let S be a semigroup. We say that $s \in S$ is regular, if there exists $x \in S$ so that $s=s x s$. We say that x is an inverse of s, if $s=s x s$ and $x=x s x$ hold. It can be easily seen, that if $s \in S$ is regular and $s=s x s$, then $s^{\prime}=x s x$ is an inverse of s. Thus, we may deduce that $s \in S$ is regular if and only if s has an inverse. An element can have more than one inverse. The set of all inverses of an element will be denoted by $V(s)$. We call S a regular semigroup, if every element of S is regular. Note that if $s^{\prime} \in V(s)$, then $s s^{\prime}, s^{\prime} s \in E(S)$ and $s s^{\prime} \mathcal{R} s \mathcal{L} s^{\prime} s$. Thus in a regular semigroup, every \mathcal{L} - and \mathcal{R}-class contains an idempotent. Also we have

Proposition 2.1.6. If $s \in S$ is regular, then every element of D_{s} is regular.

Proof. See [22, Proposition 2.3.1].
Let $s \in S$, where S is a regular semigroup. The locations of the idempotents in D_{s} determines the location of inverses of s. Namely, we have

Proposition 2.1.7. Let S be regular semigroup and $s \in S$. Then
(1) For all $s^{\prime} \in V(s)$, we have $s \mathcal{D} s^{\prime}$.
(2) For all $s^{\prime} \in V(s)$, we have $s s^{\prime} \in R_{s} \cap L_{s^{\prime}}$ and $s^{\prime} s \in L_{s} \cap R_{s^{\prime}}$.
(3) If $e, f \in E(S)$ and e $\mathcal{R} s \mathcal{L} f$, then there exists $s^{\prime} \in V(s)$ such that $s s^{\prime}=e$ and $s^{\prime} s=f$.
(4) No \mathcal{H}-class contains more than one inverse of s.

Proof. See [22, Theorem 2.3.4].
We illustrate the results of the above proposition with the help of the egg-box picture:

The Green's relations in a regular semigroup can be described in the following way:
Proposition 2.1.8. Let S be a regular semigroup and $s, t \in S$. Then
(1) $s \mathcal{L} t$,' if and only if $s^{\prime} s=t^{\prime} t$ for some $s^{\prime} \in V(s), t^{\prime} \in V(t)$.
(2) $s \mathcal{R} t$, if and only if $s s^{\prime}=t t^{\prime}$ for some $s^{\prime} \in V(s), t^{\prime} \in V(t)$.
(3) $s \mathcal{H} t$, if and only if $s^{\prime} s=t^{\prime} t$ and $s s^{\prime}=t t^{\prime}$ for some $s^{\prime} \in V(s), t^{\prime} \in V(t)$.

Proof. See [22, Proposition 2.4.1].
Let S be a regular semigroup and $s, t \in S$. To determine an inverse of $s t$ in terms of inverses of s and t, we need to introduce the notion of a sandwich set.

Definition 2.1.9. Let S be a regular semigroup. The sandwich set of $e, f \in E(S)$ is the non-empty set

$$
S(e, f)=\{h \in E(S) \mid h=h e=f h, e h f=e f\} .
$$

Proposition 2.1.10. Let S be a regular semigroup, $s, t \in S$. Let $s^{\prime} \in V(s), t^{\prime} \in V(t)$ and $h \in S\left(s^{\prime} s, t t^{\prime}\right)$. Then $t^{\prime} h s^{\prime} \in V(s t)$.

Proof. See [22, Theorem 2.5.4].
With the help of Proposition 2.1.5, the following proposition can be verified.
Proposition 2.1.11. Let S be a regular semigroup, $e \in E(S)$ and consider $G=H_{e}$. Let $s, t \in R_{e}$ such that s $\mathcal{H} t$. Then $G s=G t$ hold .

We give a brief summary on certain regular semigroup classes that will appear in the thesis.
We say that S is a completely regular semigroup, if every \mathcal{H}-class in S is a group. A completely regular simple semigroup is called a completely simple semigroup. It can be verified, that if S is a completely simple semigroup, then $e S e$ is a group for all $e \in E(S)$. Completely simple semigroups play an important role in the description of the structure of completely regular semigroups. Namely, if S is a completely regular semigroup, then S / \mathcal{J} is a semilattice, and each \mathcal{J}-class is a completely simple subsemigroup of S. In other words, each completely regular semigroup is a semilattice of completely simple semigroups. The Rees-Sushkevich Theorem, which we now introduce, describes the structure of completely simple semigroups, and so a finer picture can be obtained from completely regular semigroups.

Proposition 2.1.12 (Rees-Sushkevich). Let G be a group, Λ and I non-empty sets. Let $P=\left(p_{\lambda i}\right)$ be a $\Lambda \times I$ matrix with entries in G. Let $S=I \times G \times \Lambda$, and define a multiplication on S by

$$
(i, g, \lambda)(j, h, \mu)=\left(i, g p_{\lambda j} h, \mu\right) .
$$

Then S is a completely simple semigroup. Conversely, every completely simple semigroup is isomorphic to a semigroup constructed in this way.

Proof. See [22, Theorem 3.3.1].
The semigroup $I \times G \times \Lambda$ with the given multiplication is denoted by $\mathcal{M}[G, I, \Lambda ; P]$ and is called a Rees matrix semigroup over G.
In a regular semigroup an element can have more than one inverse. We say that S is an inverse semigroup, if every element has exactly one inverse. The inverse of an element s is denoted by s^{-1}. It can be easily seen that if S is an inverse semigroup and $s, t \in S$, then $(s t)^{-1}=t^{-1} s^{-1},\left(s^{-1}\right)^{-1}=s$ hold.

Proposition 2.1.13. Let S be a semigroup. Then the following are equivalent.
(1) S is an inverse semigroup.
(2) S is regular and $E(S)$ forms a semilattice.
(3) Every \mathcal{R} - and \mathcal{L}-class contains exactly one idempotent.

Proof. See [22, Theorem 5.5.1].
There is a natural partial order defined on inverse semigroups, which possesses pleasant properties. Let S be an inverse semigroup and $s, t \in S$. We say that $s \leq t$ if and only if $s=e t$ for some $e \in E(S)$. It can be easily seen, that $s \leq t$ if and only if $s^{-1} \leq t^{-1}$. Furthermore, if $s_{1} \leq t_{1}$ and $s_{2} \leq t_{2}$, then $s_{1} s_{2} \leq t_{1} t_{2}$.

2.2 Regular languages and finite state automata

We will often refer to a finite non-empty set A as an alphabet. We may wish to adjoin an element λ to A^{+}, called the empty-word, to form the free monoid A^{*}. The length of the empty-word will be defined to be 0 . A subset of $L \subseteq A^{*}$ will be called a language over A. If L and K are languages over A, then $L \cap K, L \cup K, L \backslash K, L K=\{u v \mid u \in L, v \in K\}$, $L^{*}=\{\lambda\} \cup L \cup L L \cup L L L \cup \ldots$ and $L^{+}=L \cup L L \cup L L L \cup \ldots$ are also languages over A. We often write $L+K$ instead of $L \cup K$.
\dot{A} deterministic finite state automaton is a quintuple $\mathcal{A}=(\Sigma, A, \mu, p, T)$, where Σ is a finite non-empty set called the set of states, A is an alphabet, $\mu: \Sigma \times A \rightarrow \Sigma$ is a function, called the transition function, $p \in \Sigma$ is called the initial state, $T \subseteq \Sigma$ is the set of terminal or final states. We extend the transition function to a mapping $\mu^{*}: \Sigma \times A^{*} \rightarrow \Sigma$ as follows:

$$
(q, \lambda) \mapsto q ;(q, a) \mapsto \mu(q, a) ;(q, a w) \mapsto \mu^{*}(\mu(q, a), w),
$$

where $q \in \Sigma, a \in A, w \in A^{*}$. We say that a word $w=a_{1} \ldots a_{n}$ over A is recognized by the automaton \mathcal{A} if $\mu^{*}(p, w) \in T$. The language $L(\mathcal{A})$ recognized (or accepted) by the automaton \mathcal{A} is the set of all elements $w \in A^{*}$ that are recognized by \mathcal{A}.

A deterministic finite state automaton $\mathcal{A}=(\Sigma, A, \mu, p, T)$ can be visualized as a directed labelled graph, whose vertices are elements of Σ and there is an arrow from state q to state r with label a, if $\mu(q, a)=r$. If $w=\dot{a}_{1} \ldots a_{n} \in L(\mathcal{A})$, then we say that the path

$$
p \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n-1}} q_{n-1} \xrightarrow{a_{n}} r
$$

is successful.

A non-deterministic finite state automaton is a quintuple $\mathcal{A}=(\Sigma, A, \mu, p, T)$, where Σ is a finite non-empty set called the set of states, A is a finite non-empty set called the alphabet, $\mu: \Sigma \times(A \cup\{\lambda\}) \rightarrow P(\Sigma)$, where $P(\Sigma)$ denotes the set of all subsets of Σ, is a function, called the transition function, $p \in \Sigma$ is called the initial state and $T \subseteq \Sigma$. The elements of T are called terminal or final states. To define the language accepted by this automaton, we need the following notion. Let w be a word over $A \cup\{\lambda\}$. The value of w is the word obtained from w by deleting all occurrences of λ in w. A path in \mathcal{A} is a sequence

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n-1}} q_{n-1} \xrightarrow{a_{n}} q_{n},
$$

where $q_{i} \in \mu\left(q_{i-1}, a_{i-1}\right),(1 \leq i \leq n)$ and we say that $a_{1} \ldots a_{n}$ is the label of the path. We say that w is accepted by \mathcal{A}, if there exists a path from the initial state to a final state whose label is w or a word with the same value as w. The language $L(\mathcal{A})$ recognized (or accepted) by the automaton \mathcal{A} is the set of all elements $w \in A^{*}$ that are recognized by \mathcal{A}. Similarly to deterministic finite state automata, non-deterministic finite state automata can be visualized as directed labelled graphs.

Let A be an alphabet. A regular expression over A is a special type of word over $A \cup\left\{\emptyset,(),,+, \cdot,^{*}\right\}$. Namely, \emptyset, λ, a, where $a \in A$ are regular expressions. If r, r_{1}, r_{2} are regular expressions, then so are $\left(r_{1}+r_{2}\right),\left(r_{1} \cdot r_{2}\right)$ and $(r)^{*}$. Every regular expression is formed in this way. Each regular expression r defines a language $L(r)$. Namely, we define $L(\emptyset)=\emptyset, L(\lambda)=\{\lambda\}, L(a)=\{a\}$, where $a \in A$. We define $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right)+$ $L\left(r_{2}\right), L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$ and $L\left(r^{*}\right)=(L(r))^{*}$, where r, r_{1}, r_{2} are regular expressions. A language defined by a regular expression is called a regular language. The first major result in automata theory is due to Kleene, Rabin and Scott. For the proof, see for example Theorem 4.1.2 and Theorem 5.2.1 in [28].

Theorem 2.2.1 (Kleene, Rabin, Scott). Let A be an alphabet and L be a language over A. Then the following are equivalent:
(1) L is recognized by a deterministic finite state automaton.
(2) L is recognized by a non-deterministic finite state automaton.
(3) L is a regular language.

The following lemma provides a necessary condition for a language to be regular.
Lemma 2.2.2 (Pumping lemma). Let L be an infinite regular language over the alphabet A. Then, there exists a positive integer N such that every word $w \in L$ with length
greater or equal to N can be factorized as $w=x y z$, where $|x y| \leq N,|y| \geq 1$ and $x y^{n} z \in L$ for all $n \geq 0$.

Proof. See [28, Theorem 2.6.1].
Next, we recall Proposition 2.2 in [5].
Proposition 2.2.3. Let X and Y be finite sets. Then the following hold:
(1) \emptyset, X^{+}and X^{*} are regular languages.
(2) Any finite subset of X^{*} is a regular language.
(3) If $K \subseteq X^{*}$ and $L \subseteq Y^{*}$ are regular languages, then $K \cup L, K \cap L, K-L, K L, K^{*}$ and $K^{\mathrm{rev}}=\left\{x_{1} \ldots x_{n} \mid x_{n} \ldots x_{1} \in K\right\}$ are regular languages.
(4) If $K \subseteq X^{*}$ is a regular language and $\varphi: X^{+} \rightarrow Y^{+}$is a semigroup homomorphism, then $K \varphi$ is a regular language.
(5) If $L \subseteq Y^{*}$ is a regular language and $\varphi: X^{+} \rightarrow Y^{+}$is a semigroup homomorphism, then $L \varphi^{-1}$ is a regular language.

Before we finish this section, we introduce the following notion of automata theory.
Definition 2.2.4. Let A be an alphabet and L be a language over A. Let $v \in A^{*}$. The left quotient of L by v is the language

$$
K=\left\{w \in A^{*} \mid v w \in L\right\}
$$

Similarly, the right quotient of L by v is the language

$$
N=\left\{w \in A^{*} \mid w v \in L\right\}
$$

The following lemma will prove useful.
Lemma 2.2.5. Let L be a regular language over the alphabet A and let $v \in A^{*}$. Then the left (right) quotient of L by v is also a regular language.

Proof. See [28, Proposition 7.5.5].

2.3 Automatic groups and semigroups

Let X be a finite set, and let $\$$ be a symbol not contained in X. Let $X(2, \$)=((X \cup \$) \times$ $(X \cup \$)) \backslash\{(\$, \$)\}$. Define $\delta_{X}: X^{*} \times X^{*} \rightarrow X(2, \$)^{*}$ by

$$
\left(a_{1} \ldots a_{n}, b_{1} \ldots b_{m}\right) \delta_{X}= \begin{cases}\left(a_{1}, b_{1}\right) \ldots\left(a_{n}, b_{n}\right) & \text { if } n=m \\ \left(a_{1}, b_{1}\right) \ldots\left(a_{n}, b_{n}\right)\left(\$, b_{n+1}\right) \ldots\left(\$, b_{m}\right) & \text { if } n<m \\ \left(a_{1}, b_{1}\right) \ldots\left(a_{m}, b_{m}\right)\left(a_{m+1}, \$\right) \ldots\left(a_{n}, \$\right) & \text { if } n>m\end{cases}
$$

We recall [5, Proposition 2.2].
Proposition 2.3.1. Let X be a finite set.
(1) If $K, L \subseteq X^{*}$ are regular languages, then $(K \times L) \delta_{X}$ is a regular language.
(2) If $U \subseteq\left(X^{*} \times X^{*}\right) \delta_{X}$ is a regular language, then

$$
\left\{u \in X^{*} \mid(u, v) \delta_{X} \in U \text { for some } v \in X^{*}\right\}
$$

is also a regular language.
We will also make use of [5, Proposition 2.4] and of [5, Proposition 2.3] :
Proposition 2.3.2. If L is a regular language over X, then $\{(w, w) \mid w \in L\} \delta_{X}$ is a regular language over $X(2, \$)$.

Proposition 2.3.3. Let L and K be regular languages over $X(2, \$)$. Then the language $W=\left\{(u, w) \in X^{*} \times X^{*} \mid\right.$ there exists $v \in X^{*}$ such that $\left.(u, v) \delta_{X} \in L,(v, w) \delta_{X} \in K\right\} \delta_{X}$ is regular.

Let S be a semigroup. Assume that the set $X \subseteq S$ generates S and let $\varphi: X^{+} \rightarrow S$ denote the homomorphism extending the identity map $\iota: X \rightarrow S$. As introduced, for any two words $u, v \in X^{+}$, we write $u \equiv v$, if u and v are identical as words, and we write $u=v$, if u and v represent the same element of S, that is, if $u \varphi=v \varphi$. We say that the word problem is solvable in S, if an algorithm can be given with the help of which it can be decided whether two words over X represent the same element of S.

Definition 2.3.4. Let S be a semigroup generated by a finite set X. Let L be a regular language over X. We say that (X, L) is an automatic structure for S, if the following conditions hold:
(1) $L \varphi=S$;
(2) $L_{=}=\{(u, v) \in L \times L \mid u=v\} \delta_{X}$ is a regular language;
(2) $L_{x}=\{(u, v) \in L \times L \mid u x=v\} \delta_{X}$ is a regular language for all $x \in X$.

If S has an automatic structure (X, L), then we say that S is an automatic semigroup. We say that (X, L) is an automatic structure with uniqueness for S, if whenever $u, v \in L$ are such that $u=v$, then $u \equiv v$ holds.

Considering groups as semigroups, we obtain the notion of an automatic group.
Definition 2.3.5. Let G be a group generated a finite set X as a semigroup. Let L be a regular language over X. We say that (X, L) is an automatic structure for G, if the following conditions hold:
(1) $L \varphi=G$;
(2) $L_{=}=\{(u, v) \in L \times L \mid u=v\} \delta_{X}$ is a regular language;
(2) $L_{x}=\{(u, v) \in L \times L \mid u x=v\} \delta_{X}$ is a regular language for all $x \in X$.

If G has an automatic structure (X, L), then we say that G is an automatic group. We say that (X, L) is an automatic structure with uniqueness for G, if whenever $u, v \in L$ are such that $u=v$, then $u \equiv v$ holds.

We now recall [5, Corollary 5.5].
Proposition 2.3.6. If S is an automatic semigroup (group), then there exists an automatic structure with uniqueness.

Automatic groups can be described with the help of a geometric property of their Cayley graphs. First, we summarize some basic notions concerning the Cayley graph of a group.

Let G be a group generated by a set X. We assume that X is closed under taking inverses. The right Cayley graph $\Gamma=\Gamma_{X}(G)$ of G is a directed labelled graph, whose vertices are elements of G, and there is an arrow from g to h with label x precisely when $h=g x$. Clearly, there is an arrow from g to h with label x precisely when there is an arrow from h to g with label x^{-1}. We define a directed path between two vertices g and h of Γ to be a sequence of edges:

$$
g=g_{0} \xrightarrow{x_{1}} g_{1} \xrightarrow{x_{2}} g_{2} \ldots g_{n-1} \xrightarrow{x_{n}} g_{n}=h
$$

and say that the length of the path is n. Clearly Γ is a connected graph, and there exists a directed path between any two vertices of Γ. Let $g, h \in G$. We define the distance $d_{\Gamma}(g, h)$ between g and h to be the length of the shortest path connecting g and h. Before we define the fellow traveller property, we introduce the following notation. If $u \equiv x_{1} \ldots x_{m}$ and $t \geq 1$, then we let

$$
u(t)= \begin{cases}x_{1} \ldots x_{t} & \text { if } t \leq m \\ x_{1} \ldots x_{m} & \text { if } t \geq m\end{cases}
$$

Definition 2.3.7. Let G be a group generated by a finite set X. Let L be a regular language over X and assume that $L \varphi=G$. We say that the Cayley graph $\Gamma=\Gamma_{X}(G)$ possesses the fellow traveller property with respect to L, if there exists a constant $k \in \mathbb{N}$, such that whenever $u, v \in L$ are such that $d_{\Gamma}(u, v) \leq 1$, then $d_{\Gamma}(u(t), v(t)) \leq k$ for all $t \geq 1$.

The following result yields a powerful tool in proving results about automatic groups.
Proposition 2.3.8. Let G be a group. Then G is automatic if and only if the fellow traveller property holds in the Cayley graph of G with respect to some regular language L.

Proof. See [9, Theorem 2.3.5].
We recall the following nice properties of automatic groups.
Proposition 2.3.9. Let G be an automatic group and assume that (X, L) forms an automatic structure for G. Then the following hold:
(1) If Y also generates G as a semigroup, then there exists a regular language K over Y such that (Y, K) forms an automatic structure for G.
(2) The group G is finitely presented.
(3) The word problem is solvable in quadratic time.

Proof. See $[9$, Theorem 2.4.1, Theorem 2.3.12, Theorem 2.3.10].
Next, we discuss some of the basic properties of automatic semigroups. Let S be a group generated by a set X. The (right) Cayley graph $\Gamma_{X}(S)=\Gamma$ of S is a directed labelled graph, whose vertices are elements of S, and there is an arrow from s to t with label x precisely when $s=t x$. Certain subgraphs, called Schützenberger graphs of the Cayley graph of S will play an important role in the thesis. Let R be an \mathcal{R}-class of S. The Schützenberger graph of R is the Cayley graph of S restricted to R. In other words,
the vertices of the Schützenberger graph of R are elements of R, and there is an arrow from s to $t,(s, t \in R)$ with label x, if $s=t x$.

The aim of giving a geometric characterization of automatic semigroups with the help of the Cayley graph raises a few question. First of all the Cayley graph of a semigroup is not necessarily connected. Even, if two vertices s and t are in the same connected component, then there does not necessarily exists a directed path between them. These considerations lead to the decision to ignore the direction of the edges in the Cayley graph of S. A path between two vertices s and t of Γ is a sequence of edges:

$$
s=s_{0} \xrightarrow{x_{1}} s_{1} \xrightarrow{x_{2}} s_{2} \ldots s_{n-1} \xrightarrow{x_{n}} s_{n}=t
$$

such that either $\left(s_{i}, x_{i}, s_{i+1}\right)$ or $\left(s_{i+1}, x_{i}, s_{i}\right)$ is an arrow in the Cayley graph of S, and say that the length of the path is n. For any two vertices s and t we define the distance $d_{\Gamma}(s, t)$ between s and t to be the length of the shortest path connecting s and t and say that the distance is infinite if s and t belong to different components of Γ.

Definition 2.3.10. Let S be a semigroup generated by a finite set X. Let Γ be the Cayley graph of S with respect to X. Let L be a regular language over X and assume that $L \varphi=S$. We say that Γ possesses the fellow traveller property with respect to L, if there exists a constant $k \in \mathbb{N}$, such that whenever $u, v \in L$ are such that $d_{\Gamma}(u, v) \leq 1$, then $d_{\Gamma}(u(t), v(t)) \leq k$ for all $t \geq 1$.

Proposition 3.12 of [5] tells us:
Proposition 2.3.11. Let S be an automatic semigroup. Then the fellow traveller property holds in the Cayley graph of S with respect to some regular language L.

The converse of Proposition 2.3.11 does not necessarily hold. The fellow traveller property holds in any semigroup with a zero element. To be more precise, if S is a semigroup with a zero element, then the distance between any two vertices in the Cayley graph of S is less then or equal to two. Thus, to demonstrate that the converse of Proposition 2.3.11 does not hold, one needs to take a semigroup with zero that is not automatic. Such a semigroup can be formed by adjoining a zero element to a group that is not automatic.

Automatic semigroups behave more wildly than automatic groups. An example is given in [5, Example 4.4] for a semigroup that is automatic but not finitely presented. Another example [5, Example 4.5] shows that a semigroup can be automatic with respect to one generating.set, but not automatic with respect to another one. On the other hand, if we consider monoids, then automaticity is independent of the choice of the generators
[12]. Also, if we consider semigroup classes that are somehow related to groups, such as consider completely simple semigroups, then the group theoretic results generalize [4].

Proposition 2.3.12. Let S be an automatic semigroup generated by the set X. Then the word problem is solvable in quadratic time.

Proof. See [5, Corollary 3.7].
Consider the alphabet $X=\left\{x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right\}$ and choose an ordering $x_{1}<x_{2}<$ $\ldots<x_{n-1}<x_{n}$. Let $u, v \in X^{+}$. We define $u<v$ if and only if u is shorter then v, or they have the same length, and u comes before v in the lexicographical order. This ordering is called the shortlex order on X^{+}.

Proposition 2.3.13. Let (X, L) be an automatic structure for a semigroup S. Let $<$ denote the shortlex order on X^{+}. Then the language

$$
K=\left\{u \mid \text { if }(u, v) \in L_{=} \text {then } u<v\right\}
$$

is regular.
Proof. See [5, Proposition 5.4].
The following proposition will also prove useful.
Proposition 2.3.14. Let (X, L) be an automatic structure for a semigroup S and let $w \in X^{+}$. Then $L_{w}=\{(u, v) \mid u, v \in L, u w=v\} \delta_{X}$ is a regular language.

Proof. See [5, Proposition 3.2].
The notion of a padded product of regular languages is introduced in [10]:
Definition 2.3.15. Let X be an alphabet and let M, N be regular languages over ($X^{*} \times$ $\left.X^{*}\right) \delta_{X}$. The padded product of M and N is the language

$$
M \odot N=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \delta_{X} \in M,\left(u_{2}, v_{2}\right) \delta_{X} \in N\right\} \delta_{X}
$$

Theorem 3.3 of [10] gives a sufficient condition on the padded product of regular languages to be regular.

Proposition 2.3.16. Let X be an alphabet and let M, N be regular languages over ($X^{*} \times$ $\left.X^{*}\right) \delta_{X}$. If there exists a constant c such that for any two words $u, v \in X^{*}$ the following property holds:

$$
(u, v) \delta_{X} \in M \quad \text { then } \quad\|u|-| v\| \leq c,
$$

then the padded product $M \odot N$ is a regular language.

Chapter 3

Automatic semigroup acts

3.1 Definitions

Finite state automata are easy to handle computationally. Therefore, some recent research has aimed at encoding algebraic structures in terms of finite state automata. However, there are different ways to define what it means for an algebraic structure to be automatic. Epstein et al. developed a theory of automatic groups, Campbell et al. realized that the notion of an automatic group can be naturally extended to semigroups and investigated to what extent the theory of automatic groups can be generalized to semigroups. It turned out that automatic semigroups do not have as nice properties as automatic groups, which led researchers to modify the definition of an automatic semigroup, see for example [19],[34].

We mention that Khoussainov and Nerode represent another viewpoint of defining an algebraic structure automatic [26]. Automatic groups (semigroups) in the sense of Epstein et al. (Campbell et al.), viewed as unary structures - where the unary operations are multiplication by the generators on the right - are automatic in the sense of Khoussainov and Nerode.

Our aim in this chapter is to give a general framework for the theory of automatic semigroups introduced by Cambell et al. and to extend the known results. To achieve this goal we are going to define automaticity of a very simple structure, called an S act. One of the reasons we are going to work with S-acts is that semigroups and groups can be naturally considered as S-acts and S-acts proved to be a useful tool in studying semigroups. On the other hand, certain sets - for example an \mathcal{R} - or an \mathcal{L}-class - can be associated with a semigroup S, which can be viewed as a S-acts. This will allow us to introduce other notions of automaticity, for example Schützenberger automaticity, \mathcal{R}-class automaticity.

Throughout this chapter S will denote a semigroup, X a generating set for S. We assume that $X \subseteq S$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity map $\iota: X \rightarrow S$.

Let $S=\langle X\rangle$ be a semigroup and A be a non-empty set. A right action (left action) of S on A is a function $f: A \times S \rightarrow A ;(a, s) \mapsto a . s$ such that $(a . s) . t=a .(s t)((a . s) . t=a .(t s))$ holds for all $s, t \in S$, and we say that A is a right S-act (left S-act). We say that A is an S-act, if it is either a left or a right S-act. Although it might seem a little unorthodox to write left actions on the right, we will do so. The main reason for this is that we stick to the rule in this chapter that a product $s_{1} s_{2} \ldots s_{n},\left(s_{i} \in S, 1 \leq i \leq n\right)$ is read from left to right. If we would write left actions of S on A on the left, then considering $\left(s_{1} s_{2} \ldots s_{n}\right) \cdot a$ would make us read $s_{1} s_{2} \ldots s_{n}$ from right to left.

The subset $A_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$ of A is said to generate the S-act A, if

$$
\bigcup_{a_{j} \in A_{0}} a_{j} \cdot S=A .
$$

If A_{0} can be chosen to be a finite set, then we say that the S-act A is finitely generated. If A_{0} can be chosen to be a one element set, then we say that the S-act A is cyclic. Clearly, if A_{0} generates the S-act A, then it might happen that there exists $s, t \in S$ so that $s \neq t$ and $a_{i} . s=a_{j} . t$ for some $a_{i}, a_{j} \in A_{0}$. To generalize the notion and basic properties (for example uniqueness of an automatic structure) of an automatic group or semigroup, we would like to use only as many elements of S as are necessary to generate the S-act A. The following straightforward lemma is a crucial observation that will lead to the defintion of an automatic S-act.

Lemma 3.1.1. Let A be an S-act. Then A_{0} generates A if and only if there exist subsets $T_{1}, T \ldots, T_{n}, \ldots$ of S such that

$$
\bigcup_{a_{j} \in A_{0}} a_{j} \cdot T_{j}=\bigcup_{a_{j} \in A_{0}}\left\{a_{j} . t \mid t \in T_{j}\right\}=A
$$

If there exist regular languages $L_{1}, L_{2}, \ldots, L_{n}, \ldots$ over X such that $L_{j} \varphi=T_{j}$, then we say that A is regularly generated by A_{0} and $\left\{L_{1}, L_{2}, \ldots, L_{n}, \ldots\right\}$, and use the notation

$$
A=\bigcup_{a_{j} \in A_{0}} a_{j} \cdot L_{j} \varphi=\left\{a_{j} \cdot l \varphi \mid l \in L_{j}\right\}
$$

Following semigroup and group theoretical conventions, we will also write $a_{i} \cdot u=a_{j} . v$ and $a_{i} \cdot(u \cdot x)=a_{j} \cdot v,(u, v) \in L_{i} \times L_{j}$ instead of $a_{i} \cdot u \varphi=a_{j} \cdot v \varphi$ and $a_{i} \cdot(u: x) \varphi=a_{j} \cdot v \varphi$, since
the context will always make it clear over which alphabet the regular languages are being taken, and what the homomorphism from the set of all words over that alphabet to S is.

Before we give the definition of an automatic S-act A, we give examples for right and left S-acts.

Example 3.1.2. Let S be a semigroup and ξ a right congruence on S. Define $f: S / \xi \times S \rightarrow$ $S / \xi ;(s \xi, t) \mapsto(s t) \xi$. Since ξ is a right congruence, f is a well defined function, and clearly. defines a right action of S on the factor set S / ξ.

Example 3.1.3. Let S be a semigroup and ξ a left congruence on S. Define $f: S / \xi \times S \rightarrow$ $S / \xi ;(s \xi, t) \mapsto(t s) \xi$. Since ξ is a left congruence, f is a well defined function, and clearly defines a left action of S on the factor set S / ξ.

Example 3.1.4. Any semigroup S can be considered as a right S-act, where the action is right multiplication, that is $f: S \times S \rightarrow S,(s, t) \mapsto s \cdot t$. For convenience, when considering a semigroup S as a right S-act, we write $s \cdot t$ instead of s.t.

Example 3.1.5. Let S be a semigroup. Adjoin a zero element 0 to S and extend multiplication of S to $S^{0}=S \cup\{0\}$ in the usual way; $s 0=0 s=0$ for all $s \in S$ and $\mathbf{0} \cdot \mathbf{0}=\mathbf{0}$. Let T be a subset of S with the condition that if

$$
\begin{equation*}
t \cdot\left(s_{1} s_{2}\right) \in T \text {, where } t \in T \text { and } s_{1}, s_{2} \in S, \text { then } t \cdot s_{1} \in T \text {. } \tag{3.1}
\end{equation*}
$$

Let $T^{0}=T \cup\{0\}$. Then one can naturally consider T^{0} as a right S^{0}-act by defining $f: T^{0} \times S^{0} \rightarrow T^{0}$ as:

$$
(t, s) \mapsto \begin{cases}t \cdot s & \text { if } t s \in T \\ 0 & \text { otherwise }\end{cases}
$$

To verify that $\left(t \cdot s_{1}\right) \cdot s_{2}=t \cdot\left(s_{1} \cdot s_{2}\right)$ indeed holds for all $s_{1}, s_{2} \in S$, we consider the following two cases:
(i) If $t \cdot s_{1} \notin T$, then $t \cdot s_{1}=\mathbf{0}$ and it follows that $\left(t \cdot s_{1}\right) \cdot s_{2}=0 \cdot s_{2}=0$ for all $s_{2} \in S$. On the other hand, by condition (3.1), $t \cdot\left(s_{1} s_{2}\right) \notin T$, hence $t \cdot\left(s_{1} s_{2}\right)=0$, proving that $t \cdot\left(s_{1} s_{2}\right)=\left(t \cdot s_{1}\right) \cdot s_{2}$.
(ii) If $t \cdot s_{1} \in T$, then $\left(t \cdot s_{1}\right) \cdot s_{2}=t \cdot\left(s_{1} \cdot s_{2}\right)$ is immediate.

Our final example is a special case of the last example. This important subcase is the basis of the definition of a Schützenberger automatic regular semigroup.

Example 3.1.6. Let S be a semigroup and adjoin a zero element 0 to S as in Example 3.1.5. Let R be a \mathcal{R}-class of S. We verify that R fulfills (3.1), hence a right action of S^{0} on R^{0} can be defined as in Example 3.1.5. Let $r \in R, s_{1}, s_{2} \in S$, such that $r \cdot\left(s_{1} s_{2}\right) \in R$. Then $r \mathcal{R} r s_{1} s_{2}$ and by the definition of \mathcal{R}, there exists $t \in S$ such that $r=r s_{1} s_{2} \cdot t$, that is $r=r s_{1} \cdot s_{2} t$. On the other hand $r s_{1}=r \cdot s_{1}$, verifying that $r \mathcal{R} r s_{1}$.

Next we introduce the notion of an automatic S-act A.
Definition 3.1.7. Let S be a semigroup generated by a finite set X. Let A be an S-act and $A_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite subset of A. Let $L_{1}, L_{2}, \ldots, L_{n}$ be regular languages over X. We say that $\left(X, L_{1}, \ldots, L_{n}\right)$ forms an automatic structure for A with respect to the generating set A_{0}, if the following conditions hold:
(1) A is regularly generated by A_{0} and $\left\{L_{1}, \ldots, L_{n}\right\}$, that is:

$$
\bigcup_{j=1}^{n} a_{j} \cdot L_{j} \varphi=A
$$

(2) $L_{\left(a_{i}, a_{j}\right)=}=\left\{(u, v) \in L_{i} \times L_{j} \mid a_{i} \cdot u=a_{j} \cdot v\right\} \delta_{X}$ is a regular language for all $\left(a_{i}, a_{j}\right) \in$ $A_{0} \times A_{0} ;$
(3) $L_{\left(a_{i}, a_{j}\right)_{x}}=\left\{(u, v) \in L_{i} \times L_{j} \mid a_{i} \cdot(u \cdot x)=a_{j} \cdot v\right\} \delta_{X}$ is a regular language for all . $\left(a_{i}, a_{j}\right) \in A_{0} \times A_{0}$ and $x \in X$.

If an S-act A has an automatic structure $\left(X, L_{1}, \ldots, L_{n}\right)$ with respect to the generating set A_{0}, then we say that A is automatic with respect to the generating set A_{0}. An automatic structure (X, L_{1}, \ldots, L_{n}) with respect to the generating set A_{0} of an S-act A is said to be with uniqueness, if for all $a_{i}, a_{j} \in A_{0}, a_{i} \cdot u=a_{j} \cdot v,\left((u, v) \in L_{i} \times L_{j}\right)$ implies $a_{i}=a_{j}$ and $u \equiv v$.

The following two lemmas will prove useful. Both of the lemmas and their proofs are based on [5, Proposition 3.1.].

Lemma 3.1.8. Let $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ be an automatic structure for the S-act A with respect to the generating set $A_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $b \in A$ and $x \in X$. Then for each $i,(1 \leq i \leq n)$, the language $\left\{w \in L_{i} \mid a_{i} \cdot(w \cdot x)=b\right\}$ is regular.

Proof. Since $\bigcup_{j=1}^{n} a_{j} \cdot L_{j} \varphi=A$, there exists - and hence we can fix - a language L_{k} and $u \in L_{k}$ such that $a_{k} \cdot u=b$. Choose a language L_{i}. It might happen that $\{w \in$ $\left.L_{i} \mid a_{i} \cdot(w \cdot x)=b\right\}=\emptyset$, in which case it is a regular language by definition. Assume that $\left\{w \in L_{i} \mid a_{i} \cdot(w \cdot x)=b, x \in X\right\} \neq \emptyset$ and let $v \in X^{+}$. Then $(v, u) \delta_{X} \in L_{\left(a_{i}, a_{k}\right)_{x}}$ if and only if $v \in L_{i}$ and $a_{i} \cdot(v \cdot x)=a_{k} \cdot u$. By Propositions 2.2 .3 and 2.3.1, the language

$$
K=\left\{(w, u) \mid w \in L_{i}, a_{i} .(w \cdot x)=b\right\} \delta_{X}=L_{\left(a_{i}, a_{k}\right)_{x}} \cap\left\{(v, u) \mid v \in X^{+}\right\} \delta_{X}
$$

is regular. Making use of Proposition 2.3.1, we obtain that

$$
\begin{aligned}
\left\{w \in X^{+} \mid(w, v) \delta_{X} \in K \text { for some } v \in X^{+}\right\} & =\left\{w \in X^{+} \mid(w, u) \delta_{X} \in K\right\} \\
& =\left\{w \in L_{i} \mid a_{i} \cdot(w \cdot x)=b\right\}
\end{aligned}
$$

is a regular language.
Similarly we can prove the following:
Lemma 3.1.9. Let $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ be an automatic structure for the S-act A with respect to the generating set $A_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and let $b \in A$. Then for each $i,(1 \leq$ $i \leq n)$, the set $\left\{w \in L_{i} \mid a_{i} \cdot w=b\right\}$ is regular.

Now we claim that the definition of an automatic S-act is indeed a generalization of the notion of an automatic semigroup. As in Example 3.1.4, when considering a semigroup S as a right S-act, we assume that the action is right multiplication and we write $s \cdot t$ instead of s.t.

Proposition 3.1.10. A semigroup S generated by a finite set X is automatic if and only if it is automatic as a right S-act with respect to the generating set X.

Proof. (\Rightarrow) Assume that (X, L) forms an automatic structure for S, where $X=$ $\left\{x_{1}, \ldots, x_{n}\right\}$. Then $L \varphi=S$ and the languages $L_{=}$and $L_{x}(x \in X)$ are regular. By Lemma 2.2.5, for each $j,(1 \leq j \leq n)$, the language

$$
L_{j}=\left\{w \in X^{+} \mid x_{j} w \in L\right\}
$$

is regular. We assume that none of the languages $L_{j}(1 \leq j \leq n)$ are empty. We clearly have that

$$
\bigcup_{j=1}^{n} x_{j} \cdot L_{j} \varphi=L \varphi=S
$$

and hence S is regularly generated by X and L_{1}, \ldots, L_{n}. We claim that (X, L_{1}, \ldots, L_{n}) is an automatic structure for the right S-act S with respect to the generating set X. By definition,

$$
\begin{aligned}
K_{\left(x_{i}, x_{j}\right)=} & =\left\{(u, v) \in L_{i} \times L_{j} \mid x_{i} \cdot u=x_{j} \cdot v\right\} \delta_{X} \\
& =\left\{(u, v) \delta_{X} \in X(2, \$) \mid\left(x_{i}, x_{j}\right)(u, v) \delta_{X} \in L_{=}\right\},
\end{aligned}
$$

and so it is a regular language by Lemma 2.2.5. Similarly,

$$
\begin{aligned}
K_{\left(x_{i}, x_{j}\right)_{x}} & =\left\{(u, v) \in L_{i} \times L_{j} \mid x_{i} \cdot u \cdot x=x_{j} \cdot v\right\} \delta_{X} \\
& =\left\{(u, v) \delta_{X} \in X(2, \$) \mid\left(x_{i}, x_{j}\right)(u, v) \delta_{X} \in L_{x}\right\}
\end{aligned}
$$

is a regular language by Lemma 2.2.5.
(\Leftrightarrow) Conversely, assume that $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure for the right S act S with respect to the generating set X. Then $\bigcup_{j=1}^{n} x_{j} \cdot L_{j} \varphi=S$ and so $K=\bigcup_{j=1}^{n} x_{j} L_{j}$ is a regular language for which $K \varphi=S$. We show that (X, K) is an automatic structure for S. By definition,

$$
\begin{aligned}
K_{=}= & =\{(u, v) \mid u, v \in K, u=v\} \delta_{X} \\
& =\left\{(u, v) \mid u \equiv x_{i} k, v \equiv x_{j} l,(k, l) \in L_{i} \times L_{j}, x_{i} k=x_{j} l\right\} \delta_{X} \\
& =\bigcup_{1 \leq i, j \leq n}\left(x_{i}, x_{j}\right) L_{\left(x_{i}, x_{j}\right) m},
\end{aligned}
$$

which is a finite union of regular languages, and hence is regular. Similarly, for each $x \in X$, the language

$$
\begin{aligned}
K_{x} & =\{(u, v) \mid u, v \in K, u \cdot x=v\} \delta_{X} \\
& =\left\{(u, v) \mid u \equiv x_{i} k, v \equiv x_{j} l,(k, l) \in L_{i} \times L_{j}, x_{i} k x=x_{j} l\right\} \delta_{X} \\
& =\bigcup_{1 \leq i, j \leq n}\left(x_{i}, x_{j}\right) L_{\left(x_{i}, x_{j}\right)_{x}}
\end{aligned}
$$

is regular, since it is a finite union of regular languages.
For monoids the following proposition holds.
Proposition 3.1.11. A monoid M is automatic if and only if it is automatic as a right M-act with respect to the generating set $\{1\}$.

Proof. That $\{1\}$ is a generating set for the M-act M is immediate, since $1 \cdot M=M$. The lemma now follows from the definitions.

3.2 Schützenberger automatic regular semigroups

It was proved in [8], that free inverse semigroups are not automatic. On the other hand, free inverse semigroups have solvable word problem [22], [27]. These facts motivate us to introduce a new definition of automaticity for regular semigroups, namely that of a Schützenberger automatic regular semigroup. We formulate the new notion in the framework of automatic S-acts, where the S-acts are \mathcal{R}-classes of the semigroup. In the next section, we show that free inverse semigroups are Schützenberger automatic.

Being Schützenberger automatic means that the regular semigroup satisfies a collection of local properties. As indicated above these local properties are defined on the \mathcal{R}-classes of the regular semigroup. By introducing \mathcal{R}-class automaticity in terms of left actions of S, we connect the \mathcal{R}-classes of S. Finally, combining the definition of Schützenberger automaticity and \mathcal{R}-class automaticity, we introduce the notion of a strongly Schützenberger automatic regular semigroup.

Throughout this chapter S will denote a semigroup, X a generating set for S. We assume that $X \subseteq S$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity $\operatorname{map} \iota: X \rightarrow S$.

Before we give the definition of a Schützenberger automatic regular semigroup, we turn our attention to the right S^{0}-act R^{0} given in Example 3.1.6.

Proposition 3.2.1. Let S be a regular semigroup generated by a finite set X, and let R be an \mathcal{R}-class of S. Then the following are equivalent:
(S1) There exists a regular language L over $X^{0}=X \cup\{0\}$ such that $\left(X^{0}, L\right)$ forms an automatic structure for the right S^{0}-act R^{0} with respect to some one element generating set $\{s\}$.
(S2) There exists a regular language K over X and an element $s \in R$ such that the following conditions hold:
(i) $s \cdot K \varphi=R$;
(ii) $K_{=}=\{(u, v) \mid u, v \in K, s \cdot u=s \cdot v\} \delta_{X}$ is a regular language;
(iii) $K_{x}=\{(u, v) \mid u, v \in K, s \cdot(u \cdot x)=s \cdot v\} \delta_{X}$ is a regular language for all $x \in X$.
(S3) There exists a regular language N over X such that the following conditions hold:
(i) $N \varphi=R$;
(ii) $N_{=}=\{(u, v) \mid u, v \in N, u=v\} \delta_{X}$ is a regular language;
(iii) $N_{x}=\{(u, v) \mid u, v \in N, u \cdot x=v\} \delta_{X}$ is a regular language for all $x \in X$.

Proof. $(S 1) \Rightarrow(S 2)$ Assume that $\left(X^{0}, L\right)$ is an automatic structure for the right S^{0} act R^{0} with respect to the generating set $\{s\}$. Then $s \cdot L \varphi=R^{0}$. By Lemma 3.1.9, $L^{\prime}=\{l \in L \mid s \cdot l=\mathbf{0}\}$ is a regular language, hence $K=L-L^{\prime}$ is also a regular language and $s \cdot K \varphi=R$. It is also obvious that

$$
\begin{aligned}
K_{=} & =\{(u, v) \mid u, v \in K, s \cdot u=s \cdot v\} \delta_{X} \\
& =L_{=}-\left\{(u, v) \mid u, v \in L^{\prime}\right\} \delta_{X} \\
& =L_{=}=-\left(L^{\prime} \times L^{\prime}\right) \delta_{X},
\end{aligned}
$$

and so $K_{=}$is a regular language. To show that K_{x} is a regular language, note that

$$
K_{x}=L_{x}-\left(L^{\prime} \times L^{\prime}\right) \delta_{X}-\left\{(u, v) \in L \times L^{\prime} \mid s \cdot(u \cdot x)=s \cdot v\right\} \delta_{X}
$$

Let $L^{\prime \prime}=\{u \in L \mid s \cdot(u \cdot x)=0\}$. By Lemma 3.1.8, $L^{\prime \prime}$ is a regular language. It follows that $\left.\left\{(u, v) \in L \times L^{\prime}\right\} s \cdot(u \cdot x)=s \cdot v\right\} \delta_{X}=\left(L^{\prime \prime} \times L^{\prime}\right) \delta_{X}$ is also a regular language, and hence we may deduce that K_{x} is a regular language.
$(S 2) \Rightarrow(S 3)$ Assume that there exists a regular language K over X such that conditions $(i)-(i i i)$ of $(S 2)$ hold. Let w be a word over X representing s. Then we have $R=s \cdot K \varphi=(w K) \varphi$. Define $N=w K$. It is obvious that N is a regular language and that $N \varphi=R$. Moreover

$$
\begin{aligned}
N_{=} & =\{(u, v) \mid u, v \in N, u=v\} \delta_{X} \\
& =\left\{(u, v) \mid u \equiv w k_{1}, v \equiv w k_{2}, w k_{1}=w k_{2}\right\} \delta_{X} \\
& =\left\{(u, v) \mid u \equiv w k_{1}, v \equiv w k_{2}, s \cdot k_{1}=s \cdot k_{2}\right\} \delta_{X} \\
& =(w, w) \delta_{X} K_{=},
\end{aligned}
$$

hence is a regular language. Similarly we obtain that

$$
N_{x}=\{(u, v) \mid u, v \in N, u \cdot x=v\} \delta_{X}=(w, w) \delta_{X} K_{x}
$$

is a regular language for all $x \in X$.
$(S 3) \Rightarrow(S 1)$ Assume that there exists a regular language N over X such that conditions (i) - (iii) of ($S 3$) hold. Adjoin a zero element 0 to S and extend multiplication in the usual way. Define a right action of S^{0} on R^{0} as before:

$$
(r, s) \mapsto \begin{cases}r \cdot s & \text { if } r s \in R \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

Let e be an idempotent element of R. Such an element of R exists, since S is a regular semigroup. Consider the regular language $L=N \cup\{0\}$. Recall that e is a left identity in its \mathcal{R}-class. Then $e \cdot L \varphi=e \cdot(N \cup\{0\}) \varphi=R^{0}$. Since $N \varphi=R$, we obtain that

$$
\begin{aligned}
L_{=} & =\{(u, v) \mid u, v \in L, e \cdot u=e \cdot v\} \delta_{X} \\
& =\{(u, v) \mid u, v \in N, u=v\} \delta_{X} \cup\{(\mathbf{0}, \mathbf{0})\} \\
& =N_{=} \cup\{(\mathbf{0}, \mathbf{0})\}
\end{aligned}
$$

Similarly, if $x \in X$ then

$$
L_{x}=\{(u, v) \mid u, v \in L, e \cdot u \cdot x=e \cdot v\} \delta_{X}=N_{x} \cup\{(\mathbf{0}, \mathbf{0})\}
$$

and we have that

$$
L_{0}=\{(u, v) \mid u, v \in L, e \cdot u \cdot 0=e \cdot v\} \delta_{X}=(0,0)
$$

which verifies that $\left(X^{0}, L\right)$ is indeed an automatic structure for the right S^{0}-act R^{0} with respect to the generating set $\{e\}$.

We note that in the proof of Proposition 3.2.1 the assumption that S is a regular semigroup was only used to deduce that the \mathcal{R}-class R contains an idempotent element. Hence, Proposition 3.2.1 can be rephrased for all such \mathcal{R}-classes of an arbitrary semigroup that contains an idempotent. On the other hand, if we assume that S is a semigroup in which every \mathcal{R}-class contains an idempotent, then we have that S has to be a regular semigroup.

We introduce now the definition of a Schützenberger automatic regular semigroup S.
Definition 3.2.2. Let S be a regular semigroup generated by a finite set X, and L be a regular language over X. Let R be an \mathcal{R}-class of S. We say that (X, L) is a Schützenberger automatic structure for R, if the following conditions are satisfied:
(i) $L \varphi=R$;
(ii) $L_{=}=\{(u, v) \mid u, v \in L, u=v\} \delta_{X}$ is a regular language;
(iii) $L_{x}=\{(u, v) \mid u, v \in L, u \cdot x=v\} \delta_{X}$ is a regular language for all $x \in X$.

If an \mathcal{R}-class R has a Schützenberger automatic structure (X, L), then we say that R is Schützenberger automatic. A Schützenberger automatic structure (X, L) of an \mathcal{R}-class R is said to be with uniqueness, if $u=v(u, v \in L)$ implies $u \equiv v$. Define a regular semigroup S to be Schützenberger automatic, if all of its \mathcal{R}-classes are Schützenberger automatic.

Although Proposition 3.2.1 provides three different descriptions of a Schützenberger automatic regular semigroup, we will usually work with ($S 2$) and ($S 3$). Clearly conditions of $(S 3)$ seem to be the easiest to check. On the other hand, the advantage of $(S 2)$ is that if $k \in K$, then for every prefix \tilde{k} of $k, s \cdot \tilde{k} \in R_{s}$, a property that is not necessarily true when considering description (S3). That is if $n \in N$ and \tilde{n} is a prefix of n, then usually $\tilde{n} \notin R$.

The next proposition tells us, that the notion of a Schützenberger automatic regular semigroup is in fact a generalization of the notion of an automatic group.

Proposition 3.2.3. Let G be a group. Then the following are equivalent:
(1) G is automatic.
(2) The right G-act G is automatic.
(3) G is Schützenberger automatic.

Proof. (1) \Leftrightarrow (2) See Proposition 3.1.10.
(1) $\Leftrightarrow(3)$ Follows from the fact that if G is a group then $\mathcal{R}=G \times G$.

Schützenberger automaticity of a regular semigroup S is a collection of local properties. To link the \mathcal{R}-classes of S we define \mathcal{R}-class automaticity in terms of left S-actions on the partially ordered set S / \mathcal{R}.

First we need to define a left action of a semigroup S on S / \mathcal{R}. Let

$$
f: S / \mathcal{R} \times S \rightarrow S / \mathcal{R} ;\left(R_{t}, s\right) \mapsto R_{s t} .
$$

Since R is a left congruence on S, f clearly defines a left S-act.
For our purposes, we will define \mathcal{R}-class automaticity of a semigroup S when S is a monoid.

Definition 3.2.4. Let S be a monoid generated by a finite X. Let L be a regular language over X. We say that (X, L) is an \mathcal{R}-class automatic structure for S / \mathcal{R}, if (X, L) is an automatic structure for the left S-act S / \mathcal{R} with respect to the generating set R_{1}. That is,
(1) $R_{1} \cdot L \varphi=S / \mathcal{R}$;
(2) $L_{=}=\left\{(u, v) \mid u, v \in L, R_{1} \cdot u=R_{1} \cdot v\right\} \delta_{X}$ is a regular language;
(3) $L_{x}=\left\{(u, v) \mid u, v \in L, R_{1} \cdot(u \cdot x)=R_{1} \cdot v\right\} \delta_{X}$ is a regular language for all $x \in X$.

Combining the notions of Schützenberger automaticity and \mathcal{R}-class automaticity we introduce the notion of a strongly Schützenberger automatic regular semigroup.

Definition 3.2.5. We say that a regular semigroup is strongly Schützenberger automatic, if it is Schützenberger automatic, and \mathcal{R}-class automatic.

3.3 Examples

In this section we give several examples for automatic S-acts. Throughout this section S will denote a semigroup, X a finite generating set for S. For the sake of simplicity we assume that $X \subseteq S$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity $\operatorname{map} \iota: X \rightarrow S$.

Proposition 3.3.1. Let A be a finite S-act so that the action $f: A \times S \rightarrow A$ is surjective. Then A is automatic.

Proof. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and for each $a_{i} \in A$, fix an element $t_{i} \in S$ and an element $b_{i} \in A$ such that $a_{i}=b_{i} . t_{i}$. Since f is a surjective map, such elements exist. Let $T=\left\{t_{1}, \ldots, t_{n}\right\}$. For each $t_{i} \in T$ fix a word w_{i} over X for which $w_{i} \varphi=t_{i}$ and let $L_{i}=\left\{w_{i}\right\}$. Clearly A is regularly generated by L_{1}, \ldots, L_{n} and $\left\{b_{1}, \ldots, b_{n}\right\}$. On the other hand the languages $L_{\left(b_{i}, b_{j}\right)=}$ and $L_{\left(b_{i}, b_{j}\right)_{x}}(x \in X)$ are finite, and hence they are regular, proving that A is indeed automatic.

Corollary 3.3.2. Let S be a monoid such that S / \mathcal{R} is finite. Then S is \mathcal{R}-class automatic.
Proof. The left action $f: S / \mathcal{R} \times S \rightarrow S / \mathcal{R}$ is clearly surjective. Hence if S / \mathcal{R} is finite, then S / \mathcal{R} is an automatic left S-action by Proposition 3.3.1, proving that S is indeed \mathcal{R}-class automatic.

Corollary 3.3.3. Let R be a finite \mathcal{R}-class of a regular ṣemigroup S. Then R is Schützenberger automatic.

Proof. If R is a finite \mathcal{R}-class of S, then the right S^{0}-act R^{0} is finite, moreover the right action $f: R^{0} \times S^{0} \rightarrow R^{0}$ is surjective. Hence by Proposition 3.3.1, the right S^{0}-act R^{0} is automatic. Making use of Proposition 3.2.1 we obtain that R is Schützenberger automatic.

We have the following immediate consequence of Corollary 3.3.3:

Corollary 3.3.4. Let S be a regular semigroup whose \mathcal{R}-classes are finite. Then S is Schützenberger automatic.

Combining Corollaries 3.3 .2 and 3.3 .3 we obtain:
Corollary 3.3.5. Let S be a finite regular semigroup. Then S is strongly Schützenberger automatic.

Next, we give two examples for infinite automatic S-acts.
Example 3.3.6. Let A be the double infinite chain with an identity adjoined on top:

$$
\ldots<e_{-1}<e_{0}<e_{1}<\ldots<\mathbf{1} .
$$

Let $G=\langle g\rangle$ be the infinite cyclic group. Let $n, k \in \mathbb{Z}$ and define a right action of G on A in the following way:

$$
f: A \times G \rightarrow A ; \quad\left(e_{n}, g^{k}\right) \mapsto e_{n} . g^{k}=e_{n+k} ; \quad\left(\mathbf{1}, g^{k}\right) \mapsto \mathbf{1} . g^{k}=\mathbf{1} .
$$

We claim that the right G-act A is automatic. (We note that the defined action can be considered as a left action of G on A as well and it can be verified that the left G-act A is automatic.)

Let $X=\left\{g, g^{-1}\right\}, A_{0}=\left\{e_{0}, 1\right\}, L_{0}=g^{+} \cup\left(g^{-1}\right)^{+} \cup\left\{g g^{-1}\right\}$ and $L_{1}=\{g\}$. By definition $e_{n}=e_{0} \cdot g^{n}, n \in \mathbb{Z}$, thus A is regularly generated by A_{0} and the regular languages L_{0}, L_{1}. Clearly we have that the languages $L_{\left(e_{0}, 1\right)=}, L_{\left(e_{0}, 1\right)_{x}}, L_{\left(1, e_{0}\right)=}, L_{\left(1, e_{0}\right)_{x}}(x \in X)$ are empty, and hence they are regular. Moreover we have that

$$
\begin{aligned}
L_{(1,1)=}= & \left\{(u, v) \in L_{1} \times L_{1} \mid \mathbf{1} \cdot u=1 . v\right\} \delta_{X}=(g, g) ; \\
L_{(1,1)_{x}}= & \left\{(u, v) \in L_{1} \times L_{1} \mid \mathbf{1} .(u \cdot x)=1 . v\right\} \delta_{X}=(g, g) ; \\
L_{\left(e_{0}, e_{0}\right)=}= & \left\{(u, v) \in L_{0} \times L_{0} \mid e_{0} \cdot u=e_{0} \cdot v\right\} \delta_{X} \\
= & (g, g)^{+} \delta_{X} \cup\left(g^{-1}, g^{-1}\right)^{+} \delta_{X} \cup\left(g g^{-1}, g g^{-1}\right) \delta_{X} ; \\
L_{\left(e_{0}, e_{0}\right)_{g}}= & \left\{(u, v) \in L_{0} \times L_{0} \mid e_{0} \cdot(u \cdot g)=e_{0} \cdot v\right\} \delta_{X} \\
= & (g, g)^{+} \delta_{X}(\$, g) \cup\left(g^{-1}, g^{-1}\right)\left(g^{-1}, g^{-1}\right)^{+} \delta_{X}\left(g^{-1}, \$\right) \\
& \cup\left(g^{-1}, g\right)\left(\$, g^{-1}\right) \cup(g, g)\left(g^{-1}, \$\right) \\
L_{\left(e_{0}, e_{0}\right)_{g}-1}= & \left\{(u, v) \in L_{0} \times L_{0} \mid e_{0} \cdot\left(u \cdot g^{-1}\right)=e_{0} \cdot v\right\} \delta_{X} \\
= & \left(g^{-1}, g^{-1}\right)^{+} \delta_{X}\left(\$, g^{-1}\right) \cup(g, g)(g, g)^{+} \delta_{X}(g, \$) \\
& \cup(g, g)\left(\$, g^{-1}\right) \cup\left(g, g^{-1}\right)\left(g^{-1}, \$\right) .
\end{aligned}
$$

These languages are regular, and hence we obtain that (X, L_{0}, L_{1}) forms an automatic structure with respect to the generating set A_{0} for A.

Example 3.3.7. Let B be the infinite antichain

$$
\ldots, e_{-1}, e_{0}, e_{1}, \ldots
$$

Adjoin an identity $\mathbf{1}$ on top and a zero $\mathbf{0}$ on bottom, that is for each $e_{i} \in B, \mathbf{0}<e_{i}<\mathbf{1}$ holds. Let A denote the lattice obtained. Let $G=\langle g\rangle$ be the infinite cyclic group. Let $n, k \in \mathbb{Z}$ and define a right action of G on A in the following way:

$$
f: A \times G \rightarrow A ; \quad\left(e_{n}, g^{k}\right) \mapsto e_{n+k} ; \quad\left(1, g^{k}\right) \mapsto 1 ; \quad\left(0, g^{k}\right) \mapsto \mathbf{0}
$$

We claim that the right G-act A is automatic. (We note that the defined action can be considered as a left action of G on A as well and it can be verified that the left G-act A is automatic.)

Let $X=\left\{g, g^{-1}\right\}, A_{0}=\left\{e_{0}, \mathbf{1}, \mathbf{0}\right\}, L_{0}=g^{+} \cup\left(g^{-1}\right)^{+} \cup\left\{g g^{-1}\right\}, L_{1}=L_{2}=\{g\}$. By definition, $e_{n}=e_{0} \cdot g^{n}, n \in \mathbb{Z}$, thus A is regularly generated by A_{0} and the regular languages L_{0}, L_{1}, L_{2}. Let

$$
(a, b) \in\left\{(\mathbf{1}, \mathbf{0}),(\mathbf{0}, \mathbf{1}),\left(e_{0}, \mathbf{1}\right),\left(\mathbf{1}, e_{0}\right),\left(e_{0}, \mathbf{0}\right),\left(0, e_{0}\right)\right\} .
$$

Clearly, the languages $L_{(a, b)_{m}}, L_{(a, b)_{x}}, L_{(a, b)_{=}}, L_{(a, b)_{x}}(x \in X)$ are empty, and hence they are regular. Moreover we have that

$$
\begin{aligned}
& L_{(1,1)_{=}}=\left\{(u, v) \in L_{1} \times L_{1} \mid 1 . u=1 . v\right\} \delta_{X}=(g, g) ; \\
& L_{(1,1)_{x}}=\left\{(u, v) \in L_{1} \times L_{1} \mid 1 .(u \cdot x)=1 . v\right\} \delta_{X}=(g, g) ;
\end{aligned}
$$

for all $x \in X$. Similarly

$$
\begin{aligned}
& L_{(0,0)=}=\left\{(u, v) \in L_{2} \times L_{2} \mid \mathbf{0} . u=\mathbf{0} . v\right\} \delta_{X}=(g, g) \\
& L_{(0,0)_{x}}=\left\{(u, v) \in L_{2} \times L_{2} \mid \mathbf{0 .}(u \cdot x)=\mathbf{0} . v\right\} \delta_{X}=(g, g) ;
\end{aligned}
$$

for all $x \in X$. Also we have that

$$
\begin{aligned}
L_{\left(e_{0}, e_{0}\right)=}= & \left\{(u, v) \in L_{0} \times L_{0} \mid e_{0} \cdot u=e_{0} \cdot v\right\} \delta_{X} \\
= & (g, g)^{+} \delta_{X} \cup\left(g^{-1}, g^{-1}\right)^{+} \delta_{X} \cup\left(g g^{-1}, g g^{-1}\right) \delta_{X} ; \\
L_{\left(e_{0}, e_{0}\right)_{g}}= & \left\{(u, v) \in L_{0} \times L_{0} \mid e_{0} \cdot(u \cdot g)=e_{0} \cdot v\right\} \delta_{X} \\
= & (g, g)^{+} \delta_{X}(\$, g) \cup\left(g^{-1}, g^{-1}\right)\left(g^{-1}, g^{-1}\right)^{+} \delta_{X}\left(g^{-1}, \$\right) \\
& \cup\left(g^{-1}, g\right)\left(\$, g^{-1}\right) \cup(g, g)\left(g^{-1}, \$\right) \\
L_{\left(e_{0}, e_{0}\right)_{g-1}-1}= & \left\{(u, v) \in L_{0} \times L_{0} \mid e_{0} \cdot\left(u \cdot g^{-1}\right)=e_{0} \cdot v\right\} \delta_{X} \\
= & \left(g^{-1}, g^{-1}\right)^{+} \delta_{X}\left(\$, g^{-1}\right) \cup(g, g)(g, g)^{+} \delta_{X}(g, \$) \\
& \cup(g, g)\left(\$, g^{-1}\right) \cup\left(g, g^{-1}\right)\left(g^{-1}, \$\right)
\end{aligned}
$$

These languages are regular, and hence we obtain that (X, L_{0}, L_{1}, L_{2}) forms an automatic structure with respect to the generating set A_{0} for A.

Example 3.3.8. The bicyclic monoid is strongly Schützenberger automatic.
To verify this, consider the bicyclic monoid given by the monoid presentation $B=$ $\langle p, q \mid p q=1\rangle$. We let $X=\{p, q\}$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity map $\iota: X \rightarrow S$. Each element $s \in B$ can be written as $s=q^{i} p^{j},(i, j \in \mathbb{N})$, moreover $q^{i} p^{j} \mathcal{R} q^{n} p^{m}$ if and only if $i=n$. To show that B is \mathcal{R}-class automatic, consider the regular language $K=q^{+} \cup q p$. Clearly $R_{1} \cdot K \varphi=B / \mathcal{R}$. On the other hand

$$
\begin{aligned}
K_{=} & =\left\{(u, v) \in K \times K \mid R_{1} \cdot u=R_{1} \cdot v\right\} \delta_{X}=\{(u, u) \mid u \in K\} \delta_{X}, \\
K_{p} & =\left\{(u, v) \in K \times K \mid R_{1} \cdot u \cdot p=R_{1} \cdot v\right\} \delta_{X}=(q, q)^{+} \delta_{X}(q, \$) \cup(q p, q p) \delta_{X}, \\
K_{q} & =\left\{(u, v) \in K \times K \mid R_{1} \cdot u \cdot q=R_{1} \cdot v\right\} \delta_{X}=(q, q)^{+} \delta_{X}(\$, q) \cup(q p, q) \delta_{X},
\end{aligned}
$$

and so (X, K) indeed forms an automatic structure for the left B-act B / \mathcal{R}.
To show that B is Schützenberger automatic, consider an arbitrary \mathcal{R}-class R of B. Assume that $q^{i} p^{j} \in R$. As we have noted above, any element of R is of the form $q^{i} p^{k}, k \in$ \mathbb{N}. Let $L=q^{i} p^{*}$. Clearly $L \varphi=R$ and we have that

$$
\begin{aligned}
L_{=} & =\{(u, v) \in L \times L \mid u=v\} \delta_{X}=\{(u, u) \mid u \in L\} \delta_{X}, \\
L_{p} & =\{(u, v) \in L \times L \mid u \cdot p=v\} \delta_{X}=(q, q)^{i} \delta_{X}(p, p)^{*} \delta_{X}(\$, p), \\
L_{q} & =\{(u, v) \in L \times L \mid u \cdot q=v\} \delta_{X}=(q, q)^{i} \delta_{X}(p, p)^{*} \delta_{X}(p, \$),
\end{aligned}
$$

proving that (X, L) is a Schützenberger automatic structure for R. Since R was an arbitrary \mathcal{R}-class of B, it follows that B is Schützenberger automatic.

Example 3.3.9. Polycyclic monoids are strongly Schützenberger automatic.
The polycyclic monoid on n generators ($n \geq 2$) is given by the presentation

$$
\left.P_{n}=\left\langle p_{1}, \ldots, p_{n}, p_{1}^{-1}, \ldots, p_{n}^{-1}\right| p_{i} p_{i}^{-1}=1, p_{i} p_{j}^{-1}=0 \text { for } i \neq j\right\rangle .
$$

Consider the generating set $X=\left\{0,1, p_{1}, \ldots, p_{n}, p_{1}^{-1}, \ldots, p_{n}^{-1}\right\}$ for P_{n}. Denote by φ : $X^{+} \rightarrow P_{n}$ the homomorphism extending the identity map $\iota: X \rightarrow P_{n}$. To make notation convenient, we let $Y=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Y^{-1}=\left\{p_{1}^{-1}, \ldots, p_{n}^{-1}\right\}$. Every non-zero element of P_{n} can be uniquely written as $u^{-1} v$, where $u, v \in Y^{+}$. Moreover $u^{-1} v \mathcal{R} x^{-1} y,(u, v, x, y \in$
Y^{+}) if and only if u and x are identitcal words ([27, Chapter 9.3]). To show that P_{n} is \mathcal{R}-class automatic, we consider the regular language $K=\{0,1\} \cup\left(Y^{-1}\right)^{+}$. Clearly $R_{1} \cdot K \varphi=P_{n} / \mathcal{R}$. On the other hand, we have that

$$
\begin{aligned}
K_{=} & =\left\{(u, v) \in K \times K \mid R_{1} \cdot u=R_{1} \cdot v\right\} \delta_{X}=\{(u, u) \mid u \in K\} \delta_{X}=K_{1} \\
K_{0} & =\left\{(u, v) \in K \times K \mid R_{1} \cdot u \cdot 0=R_{1} \cdot v\right\} \delta_{X}=(0,0) \cup(1,0) \cup\left(\left(Y^{-1}\right)^{+} \times\{0\}\right) \delta_{X},
\end{aligned}
$$

and hence they are regular languages. To show that $K_{p_{i}}$ and $K_{p_{i}^{-1}}$ are regular languages for all $1 \leq i \leq n$, we make the following observations. By Lemma 2.2.5, the language

$$
M_{i}=\left\{u \in\left(Y^{-1}\right)^{+} \mid u \equiv p_{i}^{-1} w\right\}
$$

is regular, and so by Proposition 2.2.3, the language

$$
N_{i}=\left(Y^{-1}\right)^{+} \backslash M_{i}^{\mathrm{rev}}
$$

is also regular. By Proposition 2.3.2, the language $A=\left\{(u, u) \mid u \in\left(Y^{-1}\right)^{*}\right\} \delta_{X}$ is regular. Using the above introduced notation, we obtain that

$$
K_{p_{i}}=\left\{(u, v) \in K \times K \mid R_{1} \cdot u \cdot p_{i}=R_{1} \cdot v\right\} \delta_{X}=\left(N_{i} \times\{0\}\right) \delta_{X} \cup A\left(p_{i}^{-1}, \$\right) \cup(0,0) \cup(1,1)
$$

and

$$
K_{p_{i}^{-1}}=\left\{(u, v) \in K \times K \mid R_{1} \cdot u \cdot p_{i}^{-1}=R_{1} \cdot v\right\} \delta_{X}=A\left(\$, p_{i}^{-1}\right) \cup(0,0) \cup\left(1, p_{i}^{-1}\right)
$$

are regular languages. Hence, we may deduce that P_{n} is indeed \mathcal{R}-class automatic.
Next, we show that P_{n} is Schützenberger automatic. Clearly the \mathcal{R}-class of 0 is Schützenberger automatic. Consider an \mathcal{R}-class $R \neq R_{0}$ of P_{n} and assume that $u^{-1} v \in R$, where $u, v \in Y^{+}$. As we mentioned before, every element of R is of the form $u^{-1} w$, where $w \in Y^{*}$. Consider the regular language $L=u^{-1} Y^{*}$. Clearly $L \varphi=R$, moreover

$$
\begin{aligned}
L_{=} & =\{(v, w) \in L \times L \mid v=w\} \delta_{X}=\{(v, v) \mid v \in L\} \delta_{X}=L_{1}, \\
L_{0} & =\{(v, w) \in L \times L \mid v \cdot 0=w\} \delta_{X}=\emptyset
\end{aligned}
$$

To prove that $L_{p_{i}}$ and $L_{p_{i}^{-1}}$ are regular languages for all $1 \leq i \leq n$, we make the following observations. By Lemma 2.2.5, the language

$$
\bar{M}_{j}=\left\{v \in Y^{+} \mid v \equiv w p_{j}\right\}
$$

is regular, and so by Proposition 2.2.3, the language

$$
N_{i}=\bigcup_{j=1, i \neq j}^{n} \bar{M}_{j}
$$

is also regular. By Proposition 2.3.2, the language $B=\left\{(v, v) \mid v \in Y^{*}\right\} \delta_{X}$ is regular. Using the above introduced notation, we obtain that

$$
\begin{aligned}
L_{p_{i}} & =\left\{(v, w) \in L \times L \mid v \cdot p_{i}=w\right\} \delta_{X}=\left(u^{-1}, u^{-1}\right) \delta_{X} B\left(\$, p_{i}\right) \\
L_{p_{i}^{-1}} & =\left\{(v, w) \in L \times L \mid v \cdot p_{i}^{-1}=w\right\} \delta_{X}=\left(u^{-1}, u^{-1}\right) \delta_{X} B\left(p_{i}, \$\right) \cup\left(u^{-1} N_{i} \times\{0\}\right) \delta_{X}
\end{aligned}
$$

proving that (X, L) is a Schützenberger automatic structure for R. It follows that B is Schützenberger automatic.

Proposition 3.3.10. Let X be a non-empty finite set. Then the following hold:
(1) The free band and the free semilattice on X are strongly Schützenberger automatic.
(2) The free completely simple semigroup on X is strongly Schützenberger automatic.
(3) The free inverse semigroup on X is Schützenberger automatic.

Proof. (1) It is known that if a band or a semilattice B is finitely generated then it is finite. The assertion hence follows from Corollary 3.3.5.
(2) We first describe the free completely simple semigroup on X. Fix $z \in X$ and let $Y=\left\{p_{x y} \mid x, y \in X \backslash\{z\}\right\}$. Let $Z=X \cup Y$. Consider the free group $F G(Z)$ and denote its identity element by 1 . For all $x \in X$ let $p_{z x}=p_{x z}=1$, and consider the $X \times X$-matrix P with (x, y) entry $p_{x y}$. Then the free completely simple semigroup on X is isomorphic to the Rees matrix semigroup $C S_{X}=\mathcal{M}(X, F G(Z), X ; P)$. Since X is finite, $C S_{X}$ has finitely many \mathcal{R}-classes, and hence is \mathcal{R}-class automatic by Corollary 3.3.4. In Section 9 , we will verify that a completely simple semigroup is Schützenberger automatic if and only if all of its maximal subgroups are automatic. Clearly the maximal subgroups of $C S_{X}$ are isomorphic to the free group $F G(Z)$, which is known to be automatic, and hence the assertion follows.
(3) It is known that the \mathcal{R}-classes of the free inverse semigroup $F I S(X)$ are finite, and hence by Corollary 3.3.4, $F I S(X)$ is indeed Schützenberger automatic.

3.4 Basic properties

One naturally expects automatic S-acts to bear certain properties: for example, having automatic structures with uniqueness, invariance under the change of generators of S and
of the S-act A, etc. In this section we discuss the concept of an automatic structure with uniqueness and the invariance of \mathcal{R}-classes being Schützenberger automatic within a \mathcal{D}-class. Finally, in preparation for the fifth section (discussion of automaticity being invariant under the change of generators), we introduce three technical lemmas. Throughout this section S will denote a semigroup, X a finite generating set for S. We assume that $X \subseteq S$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity map $\iota: X \rightarrow S$. We begin this section with the following observation.

Lemma 3.4.1. Let A be an S-act regularly generated by $L_{1}, \ldots, L_{n} \subseteq X^{+}$and A_{0}. Assume that $L_{\left(a_{i}, a_{j}\right)=}, a_{i}, a_{j} \in A_{0}$ is a regular language. Then $L_{\left(a_{j}, a_{i}\right)=}$ is also a regular language.

Proof. Let $\mathcal{A}=(\Sigma, X(2, \$), \mu, p, F)$ be a finite state automaton accepting the language $L_{\left(a_{i}, a_{j}\right)=}$. Consider the automaton $\mathcal{B}=(\Sigma, X(2, \$), \tilde{\mu}, p, F)$, where $\tilde{\mu}(q,(x, y))=$ $\mu(q,(y, x))$. Since $(u, v) \in L_{\left(a_{i}, a_{j}\right)=}$ if and only if $(v, u) \in L_{\left(a_{j}, a_{i}\right)=}$, it is clear, that \mathcal{B} is the automaton accepting $L_{\left(a_{j}, a_{i}\right)=}$.

Automatic structure with uniqueness

We prove in two steps that if A is an automatic S-act, then there exists an automatic structure with uniqueness. In the first step we show that if A is an automatic S-act, then there exists an automatic structure $\left(X, K_{1}, \ldots, K_{m}\right)$ with respect to a generating set $B=\left\{a_{1}, \ldots, a_{m}\right\}$, such that $a_{i} \cdot K_{i} \varphi \cap a_{j} \cdot K_{j} \varphi=\emptyset$ for all $1 \leq i, j \leq m, i \neq j$. That is, $a_{i} . u=a_{j} . v,(u, v) \in K_{i} \times K_{j}$ implies $a_{i}=a_{j}$. In the second step - following the semigroup and group theoretical approach to the problem, by ordering the alphabet X and introducing shortlex order on X^{+}- we construct regular languages L_{1}, \ldots, L_{m} from K_{1}, \ldots, K_{m}, such that (X, L_{1}, \ldots, L_{m}) will form an automatic structure with uniqueness for A.

Lemma 3.4.2. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$ for the S-act A. Then there exists a subset $B=\left\{b_{1}, \ldots, b_{m}\right\} \subseteq$ A_{0} and regular languages K_{1}, \ldots, K_{m} such that the following hold:
(i) $b_{i} \cdot K_{i} \varphi \cap b_{j} \cdot K_{j} \varphi=\emptyset$ for all $1 \leq i, j \leq m, i \neq j$.
(ii) $\left(X, K_{1}, \ldots, K_{m}\right)$ is an automatic structure for A with respect to the generating set B.

Proof. For each $i(1 \leq i \leq n-1)$, we let

$$
\widetilde{L}_{i}=\bigcup_{j=i+1}^{n}\left\{u \in L_{i} \mid(u, v) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)=} \text { for some } v \in L_{j}\right\} .
$$

Since $L_{\left(a_{i}, a_{j}\right)}$ is a regular language for each $j(i+1 \leq j \leq n)$, the languages

$$
\left\{u \in L_{i} \mid(u, v) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)=} \text { for some } v \in L_{j}\right\}
$$

are regular by Proposition 2.3.1. Thus \widetilde{L}_{i} is a regular language, since it is a finite union of regular languages. Define for each $i(1 \leq i \leq n-1)$

$$
K_{i}=L_{i}-\widetilde{L}_{i} \quad \text { and let } \quad K_{n}=L_{n}
$$

Note that we only kept those elements u of L_{i} for which there exists no generator $a_{j}, i<j$ of A and $v \in L_{j}$ such that $a_{i} . u=a_{j} . v$. By Proposition 2.2.3, $K_{1}, K_{2}, \ldots, K_{n}$ are regular languages. It might happen that $K_{i}=\emptyset$, in which case a_{i} is a surplus generator, since then, for all $u \in L_{i}$, there exists $v \in L_{j}, i<j$, such that $a_{i} . u=a_{j} . v$. Let $B=\left\{a_{i} \in A_{0} \mid K_{i} \neq \emptyset\right\}$.

That $a_{i} \cdot K_{i} \varphi \cap a_{j} \cdot K_{j} \varphi=\emptyset$, where $a_{i}, a_{j} \in B, i \neq j, 1 \leq i, j \leq n$ follows from the definition of the regular languages K_{1}, \ldots, K_{m}. To give a more detailed reason: the equation $a_{i} . u=a_{j} . v$, where $(u, v) \in K_{i} \times K_{j}$ cannot hold, since if $i<j$, then by the definition of K_{i}, u should have been removed from L_{i}, and similarly if $j<i$, then v should have been removed from L_{j}.

To prove that an automatic structure for A is obtained with respect to the generating set B, we first verify that we did not subtract necessary elements from L_{1}, \ldots, L_{n}, that is we show that

$$
\bigcup_{a_{j} \in B} a_{j} \cdot K_{j} \varphi=A .
$$

Let $b \in A$. Since $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure for A with respect to the generating set A_{0}, there exists $a_{i} \in A_{0}$ and $u \in L_{i}$ such that $a_{i} . u \varphi=b$. If $u \in K_{i}$, then we are finished. If $u \notin K_{i}$, then there exists $a_{j} \in A_{0}$ and $v \in L_{j}$ such that $a_{i} \cdot u=a_{j} . v$ and $i<j$. Obviously we can suppose that j is the greatest such index, hence it follows by the definition of K_{j} that $v \in K_{j}$, hence $b=a_{j} \cdot v \varphi \in a_{j} . K_{j} \varphi$.

It is immediate that for all $\left(a_{i}, a_{j}\right) \in B \times B$,

$$
K_{\left(a_{i}, a_{j}\right)=}=\left\{(u, v) \in K_{i} \times K_{j} \mid a_{i} \cdot u=a_{j} \cdot v\right\} \delta_{X}=L_{\left(a_{i}, a_{j}\right)=} \cap\left(K_{i} \times K_{j}\right) \delta_{X}
$$

hence is a regular language. Similarly we obtain that for all $x \in X$,

$$
K_{\left(a_{i}, a_{j}\right)_{x}}=\left\{(u, v) \in K_{i} \times K_{j} \mid a_{i} \cdot(u \cdot x)=a_{j} \cdot v\right\} \delta_{X}=L_{\left(a_{i}, a_{j}\right)_{x}} \cap\left(K_{i} \times K_{j}\right) \delta_{X},
$$

is a regular language.
We have the following immediate consequence of Lemma 3.4.2.
Corollary 3.4.3. If A is an automatic S-act, then there exists an automatic structure $\left(X, K_{1}, \ldots, K_{m}\right)$ with respect to some generating set B, with the help of which A can be partitioned into m subsets A_{1}, \ldots, A_{m}; that is to say that

$$
\bigcup_{j=1}^{m} A_{j}=A \quad \text { and } \quad A_{i} \cap A_{j}=\emptyset \text { for all } 1 \leq i, j \leq m, i \neq j
$$

Proof. Let A be an automatic S-act. Making use of Lemma 3.4.2, we may assume that $\left(X, K_{1}, \ldots, K_{m}\right)$ is an automatic structure with respect to a generating set $\cdot B=$ $\left\{b_{1}, \ldots, b_{m}\right\}$, such that $b_{i} \cdot K_{i} \varphi \cap b_{j} \cdot K_{j} \varphi=\emptyset$ for all $1 \leq i, j \leq m, i \neq j$. Define $A_{i}=b_{i} \cdot K_{i} \varphi$. It is immediate that $A_{i} \cap A_{j}=\emptyset$ for all $1 \leq i, j \leq m, i \neq j$. Furthermore, since $\bigcup_{j=1}^{m} b_{j} \cdot K_{j} \varphi=A$, we also have that $\bigcup_{j=1}^{m} A_{j}=A$.

Before we turn to the second step, we recall the definition of the shortlex ordering. Let X be an alphabet, and choose an ordering $x_{1}<x_{2}<\ldots<x_{n}$ on X. The shortlex ordering $<$ on X^{+}is defined as follows:

$$
v<w \Leftrightarrow v \text { is shorter then } w \text {, or they have the same length }
$$ and v comes before w in the lexicographical order.

Proposition 3.4.4. If A is an automatic S-act, then A has an automatic structure with uniqueness.

Proof. Let $\left(X, K_{1}, \ldots, K_{n}\right)$ be an automatic structure with respect to the generating set $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$ for the S-act A. By Lemma 3.4.2, we may assume that $a_{i} . K_{i} \varphi \cap$ $a_{j} \cdot K_{j} \varphi=\emptyset$ for all $1 \leq i, j \leq n, i \neq j$. Hence, if $a_{i} . u=a_{j} . v, u \in K_{i}, v \in K_{j}$, then $a_{i}=a_{j}$ and $u, v \in K_{i}$. To construct an automatic structure (X, L_{1}, \ldots, L_{n}) with uniqueness, we need to reduce the number of elements of each regular language $K_{i},(1 \leq i \leq n)$ in such a way that for each $a \in\left(a_{i} \cdot K_{i} \varphi\right)$ we have exactly one $w \in L_{i} \subseteq K_{i}$ such that $a_{i} \cdot w \varphi=a$. Define

$$
L_{i}=\left\{w \in K_{i} \mid \text { if }(w, v) \in K_{\left(a_{i}, a_{i}\right)=} \text { then } w<v \text { in the shortlex order }\right\} .
$$

By Proposition 2.3.13, L_{i} is a regular language. Furthermore, we clearly have that

$$
\bigcup_{j=1}^{n} a_{j} \cdot L_{j} \varphi=A
$$

If $a_{i} \cdot u=a_{j} \cdot v,(u, v) \in L_{i} \times L_{j}$, then as before $a_{i}=a_{j}, u, v \in L_{i}$, and hence by the definition of $L_{i}, u \equiv v$. It follows that

$$
L_{\left(a_{i}, a_{j}\right)=}= \begin{cases}\emptyset & \text { if } i \neq j, \\ \left\{(u, u) \mid u \in L_{i}\right\} \delta_{X} & \text { if } i=j .\end{cases}
$$

Thus $L_{\left(a_{i}, a_{j}\right)=}$ is a regular language for all $\left(a_{i}, a_{j}\right) \in A_{0} \times A_{0}$ by Proposition 2.3.2. Moreover,

$$
L_{\left(a_{i}, a_{j}\right)_{x}}=K_{\left(a_{i}, a_{j}\right)_{x}} \cap\left(L_{i} \times L_{j}\right) \delta_{X},
$$

and hence is a regular language. We may deduce that $\left(X, L_{1}, \ldots, L_{n}\right)$ is indeed an automatic structure with uniqueness with respect to the generating set A_{0} for the S-act A.

An immediate consequence of Proposition 3.4.4:
Corollary 3.4.5. If S is an \mathcal{R}-class automatic semigroup, then there exists an \mathcal{R}-class automatic structure for S / \mathcal{R} with uniqueness.

Also we have:
Corollary 3.4.6. If R is a Schützenberger automatic \mathcal{R}-class of a regular semigroup S, then there exists a Schützenberger automatic structure for R with uniqueness.

Proof. Let R be a Schützenberger automatic \mathcal{R}-class of a regular semigroup S. Then by Proposition 3.2.1, the right S^{0}-act R^{0} is automatic with respect to some generating set $\{s\}$, hence there exists an automatic structure (X, L) with uniqueness for the right S^{0}-act R^{0} with respect to $\{s\}$. Following the construction of the regular languages K and N in Proposition 3.2.1, we have that $K=L-L^{\prime}$, where $L^{\prime}=\{l \in L \mid s \cdot l=0\}$ and $N=w\left(L-L^{\prime}\right)$, where w is a word over X representing $s=e s$. Since (X, L) is an automatic structure with uniqueness, and $N_{=}=(w, w) \delta_{X} K_{=}$, we obtain that

$$
(u, v) \in N_{=} \Leftrightarrow(u, v) \in(w, w) \delta_{X}\left(L_{=} \cap(K \times K) \delta_{X}\right) \Leftrightarrow u \equiv v
$$

hence (X, N) is a Schützenberger automatic structure with uniqueness for R. \square.

Schützenberger automatic \mathcal{R}-classes in a \mathcal{D}-class.

We will focus on Schützenberger automatic \mathcal{R}-classes of a regular semigroup S. To be more precise, we show that the property of being Schützenberger automatic is invariant within a \mathcal{D}-class of a regular semigroup S. Recall that if $s \in S$, then R_{s} denotes the \mathcal{R}-class of s.

Proposition 3.4.7. Let S be a regular semigroup and R be a Schützenberger automatic \mathcal{R}-class of S. Let $s \in R, r \in S$ such that $s \mathcal{D} r$. Then R_{r} is Schützenberger automatic.

Proof. Suppose that (X, L) is a Schützenberger automatic structure for R. Then $L \varphi=R$ and the languages $L_{=}, L_{x}(x \in X)$ are regular. On the other hand, since $s \mathcal{D} r$, there exists $t \in S^{1}$ such that $s \mathcal{R} t \mathcal{L} r$. In particular, we have that $r=k \cdot t$ for some $k \in S^{1}$ and it follows by Green's lemma, that we can give an \mathcal{L}-class preserving bijection

$$
\xi: R_{t} \rightarrow R_{r} ; x \mapsto k \cdot x
$$

Let w be a word over X representing k, and let $K=w L$. Clearly K is a regular language. We show that (X, K) is a Schützenberger automatic structure for R_{r}. Since ξ is a bijection and $L \varphi=R_{t}$, we obviously have that $K \varphi=(w L) \varphi=k \cdot L \varphi=R_{r}$. Also,

$$
\text { if } \quad w l_{1}=w l_{2} \quad \text { then } \quad l_{1}=l_{2}
$$

holds, since if $w l_{1}=k \cdot l_{1} \varphi=k \cdot l_{2} \varphi=w l_{2}$, that is if $\left(l_{1} \varphi\right) \xi=\left(l_{2} \varphi\right) \xi$, then $l_{1} \varphi=l_{2} \varphi$, since ξ is injective. Similarly,

$$
\text { if } \quad w l_{1} x=w l_{2},(x \in X) \quad \text { then } \quad l_{1} x=l_{2} .
$$

Thus we obtain that

$$
\begin{aligned}
K_{=} & =\{(u, v) \mid u, v \in K, u=v\} \delta_{X} \\
& =\left\{(u, v) \mid u \equiv w l_{1}, v \equiv w l_{2},\left(l_{1}, l_{2} \in L\right), w l_{1}=w l_{2}\right\} \delta_{X}=(w, w) \delta_{X} L_{=}
\end{aligned}
$$

is a regular language. Similarly, we obtain that

$$
\begin{aligned}
K_{x} & =\{(u, v) \mid u, v \in K, u \cdot x=v\} \delta_{X} \\
& =\left\{(u, v) \mid u \equiv w l_{1}, v \equiv w l_{2},\left(l_{1}, l_{2} \in L\right), w l_{1} x=w l_{2}\right\} \delta_{X}=(w, w) \delta_{X} L_{x}
\end{aligned}
$$

is a regular language for all $x \in X$.

Technical lemmas

We are going to give two lemmas that will prove useful later on. First, we generalize Proposition 3.2 of [5].

Lemma 3.4.8. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Let $w \in X^{+}$and $a_{i}, a_{k} \in A_{0}$. Then the language

$$
L_{\left(a_{i}, a_{k}\right)_{w}}=\left\{(u, v) \in L_{i} \times L_{k} \mid a_{i} \cdot u w=a_{k} \cdot v\right\} \delta_{X}
$$

is regular.

Proof. Let $w \equiv x_{1} \ldots x_{t}$ and fix $a_{i}, a_{k} \in A_{0}$. Let $L=\bigcup_{j=1}^{n} L_{j}$. Consider the set

$$
K_{1}=\bigcup_{j=1}^{n} L_{\left(a_{i}, a_{j}\right)_{x_{1}}}
$$

Since (X, L_{1}, \ldots, L_{n}) is an automatic structure with respect to the generating set A_{0} for A, K_{1} is a regular language. We note that

$$
\begin{aligned}
\left(u, v_{1}\right) \delta_{X} \in K_{1} \Longleftrightarrow & \left(u, v_{1}\right) \in L_{i} \times L \text { and } a_{i} \cdot\left(u \cdot x_{1}\right)=a_{j} . v_{1} \\
& \text { where } a_{j} \in A_{0}, v_{1} \in L_{j} .
\end{aligned}
$$

Since K_{1} is a regular language, the language

$$
N_{1}=\left\{v_{1} \in L \mid\left(u, v_{1}\right) \delta_{X} \in K_{1} \text { for some } u \in L_{i}\right\}
$$

is regular by Proposition 2.3.1. Moreover the set N_{1} determines the following index set

$$
I_{1}=\left\{j \mid 1 \leq j \leq n \text { there exists } v \in L_{j} \cap N_{1}\right\} .
$$

We next define the languages K_{2}, N_{2} and the index set I_{2}. Then we give a recursive definition for $K_{l}, N_{l}, I_{l}(1 \leq l<t)$. Let

$$
K_{2}=\bigcup_{m \in I_{1}}\left(\bigcup_{j=1}^{n} L_{\left(a_{m}, a_{j}\right)_{x_{2}}}\right)
$$

Since K_{2} is a finite union of regular languages it is a regular language. We note that

$$
\begin{aligned}
\left(v_{1}, v_{2}\right) \delta_{X} \in K_{2} \Longleftrightarrow & \left(v_{1}, v_{2}\right) \in N_{1} \times L \text { and } a_{m} \cdot\left(v_{1} \cdot \dot{x_{2}}\right)=a_{j} \cdot v_{2} \\
& \text { where } m \in I_{1}, v_{1} \in L_{m} \cap N_{1} \text { and } a_{j} \in A_{0}, v_{2} \in L_{j} . \\
\Longleftrightarrow & \text { there exists } u \in L_{i} \text { such that } a_{i} \cdot\left(u x_{1} x_{2}\right)=a_{j} \cdot v_{2}, \text { where } \\
& a_{j} \in A_{0}, v_{2} \in L_{j} .
\end{aligned}
$$

Since K_{2} is a regular language, the set

$$
N_{2}=\left\{v_{2} \in L \mid\left(v_{1}, v_{2}\right) \delta_{X} \in K_{2} \text { for some } v_{1} \in N_{1}\right\}
$$

forms a regular language by Proposition 2.3.1. We consider the following index set determined by N_{2} :

$$
I_{2}=\left\{j \mid 1 \leq j \leq n \text { there exists } v \in L_{j} \cap N_{2}\right\} .
$$

Giving the promised recursive definition for $K_{l}, N_{l}, I_{l},(2 \leq j<t)$, we let

$$
K_{l}=\bigcup_{m \in I_{l-1}}\left(\bigcup_{j=1}^{n} L_{\left(a_{m}, a_{j}\right)_{x_{l}}}\right)
$$

Clearly K_{l} is a regular language. We note that

$$
\begin{aligned}
\left(v_{l-1}, v_{l}\right) \delta_{X} \in K_{l} \Longleftrightarrow \Longleftrightarrow & \left(v_{l-1}, v_{l}\right) \in N_{l-1} \times L \text { and } a_{m} \cdot\left(v_{l-1} \cdot x_{l}\right)=a_{j} \cdot v_{l} \\
& \text { where } m \in I_{l-1}, v_{l-1} \in L_{m} \cap N_{l-1} \text { and } a_{j} \in A_{0}, v_{l} \in L_{j} . \\
\Longleftrightarrow & \text { there exists } u \in L_{i} \text { such that } a_{i} \cdot\left(u x_{1} x_{2} \ldots x_{l}\right)=a_{j} \cdot v_{l}, \\
& \text { where } a_{j} \in A_{0}, v_{l} \in L_{j} .
\end{aligned}
$$

We have that the language

$$
N_{l}=\left\{v_{l} \in L \mid\left(v_{l-1}, v_{l}\right) \in K_{l} \text { for some } v_{l-1} \in N_{l-1}\right\}
$$

is regular. The index set determined by N_{l} is

$$
I_{l}=\left\{j \mid 1 \leq j \leq n \text { there exists } v \in L_{j} \cap N_{l}\right\} .
$$

Finally we consider the set

$$
K_{t}=\bigcup_{m \in I_{t-1}} L_{\left(a_{m}, a_{k}\right) x_{t}} .
$$

Clearly K_{t} is a regular language, since it is a finite union of regular languages. We note that

$$
\begin{aligned}
\left(v_{t-1}, v\right) \delta_{X} \in K_{t} \Longleftrightarrow & \left(v_{t-1}, v\right) \in N_{t-1} \times L_{k} \text { and } a_{m} \cdot\left(v_{t-1} \cdot x_{t}\right)=a_{k} \cdot v \\
& \text { where } m \in I_{t-1} \text { and } v_{t-1} \in L_{m} . \\
\Longleftrightarrow & \text { there exists } u \in L_{i} \text { such that } a_{i} \cdot u x_{1} x_{2} \ldots x_{t}=a_{k} \cdot v \\
& \text { and } v \in L_{k} .
\end{aligned}
$$

Now the languages

$$
\begin{aligned}
K_{x_{1} x_{2}}= & \left\{\left(u, v_{2}\right) \in L_{i} \times N_{2} \mid \text { there exists } v_{1} \in N_{1}\right. \text { such that } \\
& \left.\left(u, v_{1}\right) \in K_{x_{1}} \text { and }\left(v_{1}, v_{2}\right) \in K_{x_{2}}\right\} \delta_{X} \\
K_{x_{1} x_{2} x_{3}}= & \left\{\left(u, v_{3}\right) \in L_{i} \times N_{3} \mid \text { there exists } v_{2} \in N_{2}\right. \text { such that } \\
& \left.\left(u, v_{2}\right) \in K_{x_{1} x_{2}} \text { and }\left(v_{2}, v_{3}\right) \in K_{x_{3}}\right\} \delta_{X} \\
& \vdots \\
K_{x_{1} \ldots x_{t}}= & \left\{(u, v) \in L_{i} \times L_{k} \mid \text { there exists } v_{t-1} \in N_{t-1}\right. \text { such that } \\
& \left.\left(u, v_{t-1}\right) \in K_{x_{1} x_{2} \ldots x_{t-1}} \text { and }\left(v_{t-1}, v\right) \in K_{x_{t}}\right\} \delta_{X}
\end{aligned}
$$

are regular by Proposition 2.3.3. Clearly, if $(u, v) \in K_{x_{1} \ldots x_{t}}$, then $(u, v) \in L_{\left(a_{i}, a_{k}\right)_{w}}$. Let $(u, v) \in L_{\left(a_{i}, a_{k}\right)_{w}}$. Since $\bigcup_{j=1}^{n} a_{j} \cdot L_{j} \varphi=A$, we can construct the following sequence

$$
\begin{array}{rlrl}
a_{i} \cdot u x_{1} & =a_{j_{1}} \cdot v_{1}, & & v_{1} \in L_{j_{1}} \\
a_{j_{1}} \cdot v_{1} x_{2} & =a_{j_{2}} \cdot v_{2}, & & v_{2} \in L_{j_{2}} \\
\vdots & & \vdots \\
a_{j_{t-1}} \cdot v_{t-1} x_{t} & =a_{k} \cdot v, & & v \in L_{k}
\end{array}
$$

where $\left(u, v_{i}\right) \delta_{X} \in K_{x_{1} \ldots x_{i}}(1 \leq i \leq t-1)$, and so $(u, v) \in K_{x_{1} \ldots x_{t}}$. Hence we may deduce that $K_{x_{1} \ldots x_{t}}=L_{\left(a_{i}, a_{k}\right)_{w}}$, and so $L_{\left(a_{i}, a_{k}\right)_{w}}$ is indeed a regular language.

Finally we introduce the following lemma:
Lemma 3.4.9. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with uniqueness for the S act A, where the generating set is $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$. Assume that $a_{n}=a_{i} . u, u \in L_{i}, n \neq$ i. Let $a_{j} \in A_{0}, j \neq n$ and $x \in X$. Then the languages
(a) $L_{\left(a_{i}, a_{j}\right)=}^{\prime}=\left\{(v, w) \mid v \in u L_{n}, w \in L_{j}, a_{i} \cdot v=a_{j} \cdot w\right\} \delta_{X}$;
(b) $L_{\left(a_{j}, a_{i}\right)=}^{\prime}=\left\{(w, v) \mid w \in L_{j}, v \in u L_{n}, a_{j} \cdot w=a_{i} \cdot v\right\} \delta_{X}$;
(c) $L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime}=\left\{(v, w) \mid v \in u L_{n}, w \in L_{j}, a_{i} \cdot(v \cdot x)=a_{j} \cdot w\right\} \delta_{X}$;
(d) $L_{\left(a_{j}, a_{i}\right)_{x}}^{\prime}=\left\{(w, v) \mid w \in L_{j}, v \in u L_{n}, a_{j} \cdot(w \cdot x)=a_{i} \cdot v\right\} \delta_{X}$
are regular.
Proof. (a) Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with uniqueness for the S-act A, where the generating set is $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$. Assume that $a_{n}=a_{i} . u, u \in L_{i}, n \neq i$. Then,

$$
\begin{aligned}
L_{\left(a_{i}, a_{j}\right)=}^{\prime} & =\left\{(v, w) \mid v \in u L_{n}, w \in L_{j}, a_{i} \cdot v=a_{j} \cdot w\right\} \delta_{X} \\
& =\left\{(u \tilde{v}, w) \mid \tilde{v} \in L_{n}, w \in L_{j}, a_{i} \cdot u \tilde{v}=a_{j} \cdot w\right\} \delta_{X} \\
& =\left\{(u \tilde{v}, w) \mid \tilde{v} \in L_{n}, w \in L_{j}, a_{n} \cdot \tilde{v}=a_{j} \cdot w\right\} \delta_{X} .
\end{aligned}
$$

Hence if $(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)=}^{\prime}$, then $v=u \tilde{v}$ for some $\tilde{v} \in L_{n}$ and $(\tilde{v}, w) \delta_{X} \in L_{\left(a_{n}, a_{j}\right)=}$. Since $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure with uniqueness it follows that $a_{n}=a_{j}$ and $\tilde{v} \equiv w$. Since by assumption $a_{j} \neq a_{n}$, we may deduce that $L_{\left(a_{i}, a_{j}\right)=}^{\prime}=\emptyset$, hence it is a regular language.
(b) The proof is similar to that of part (a).
(c) First we note that

$$
\begin{aligned}
L_{\left(a_{i}, a_{j}\right) x}^{\prime} & =\left\{(v, w) \mid v \in u L_{n}, w \in L_{j}, a_{i} \cdot(v \cdot x)=a_{j} \cdot w\right\} \delta_{X} \\
& =\left\{(u \tilde{v}, w) \mid \tilde{v} \in L_{n}, w \in L_{j}, a_{i} \cdot(u \tilde{v} \cdot x)=a_{j} \cdot w\right\} \delta_{X} \\
& =\left\{(u \tilde{v}, w) \mid \tilde{v} \in L_{n}, w \in L_{j}, a_{n} \cdot(\tilde{v} \cdot x)=a_{j} \cdot w\right\} \delta_{X} .
\end{aligned}
$$

Hence

$$
(v, w) \in L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime} \Longleftrightarrow v \equiv u \tilde{v}, \tilde{v} \in L_{n} \text { and }(\tilde{v}, w) \delta_{X} \in L_{\left(a_{n}, a_{j}\right)_{x}}
$$

Let

$$
\mathcal{A}_{1}=\left(\Sigma_{1}, X, \mu_{1}, p_{0}, T_{1}\right)
$$

be a finite state automaton accepting the regular language $u L_{n}$. We assume that $\left|T_{1}\right|=1$. Let

$$
\mathcal{A}_{2}=\left(\Sigma_{2}, X(2, \$), \mu_{2}, q_{0}, T_{2}\right)
$$

be a finite state automaton accepting the regular language $L_{\left(a_{n}, a_{j}\right)_{x}}$. With the help of \mathcal{A}_{1} and \mathcal{A}_{2} we want to construct a finite state automaton \mathcal{A} accepting $L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime}$. Assume that the length of the word u is $m\left(a_{i} \cdot u=a_{n}\right)$.

We make some remarks. If we input the word $\left(x_{1} \ldots x_{t_{1}}, y_{1} \ldots y_{t_{2}}\right) \delta_{X}$ into \mathcal{A}, then we require \mathcal{A} to check:
(P1) whether $x_{1} \ldots x_{t_{1}}$ is an element of $u L_{n}$ or not;
(P2) whether $\left(x_{m+1} \ldots x_{t_{1}}, y_{1} \ldots y_{t_{2}}\right) \delta_{X}$ is an element of $L_{\left(a_{n}, a_{j}\right) x}$ or not.
The first requirement can be checked with the help of \mathcal{A}_{1} and the second one with the help of \mathcal{A}_{2}. Note also that \mathcal{A}_{2} need to be set to work after reading through the first m (the length of u) letters of the input word. That is we have to construct an automaton in such a way that it

- recognizes that we have read the first m letters;
- stacks in the first instance $y_{1} \ldots y_{m} \in X(2, \$)$, so that after reading through the first m letters $\left(x_{1} \ldots x_{m}, y_{1} \ldots y_{m}\right) \delta_{X}$, we can set to work \mathcal{A}_{2} by inputting the letter $\left(x_{m+1}, y_{1}\right)$. At this stage, the stack has to change to $y_{2} \ldots y_{m+1}$ if $y_{m+1} \neq \$$ and to $y_{2} \ldots y_{m}$ otherwise. Hence the stack always contains words of length less then or equal to m.
- empty its stack by the end of the procedure. In other words we want our automaton to read all of $\left(x_{m+1} \ldots x_{t_{1}}, y_{1} \ldots y_{t_{2}}\right) \delta_{X}$ with the help of \mathcal{A}_{2}. To be more precise, we need to take into consideration that we may have the following situation occur: The word $\left(x_{1} \ldots x_{t_{1}}, y_{1} \ldots y_{t_{2}}\right) \delta_{X}$ is already read by the automaton \mathcal{A}, but there is still a word $y_{k} \ldots y_{t_{2}}$ of length less then or equal to m stacked, so that the word $\left(\$, y_{k}\right) \ldots\left(\$, y_{t_{2}}\right)$ is still waiting to be "processed by \mathcal{A}_{2} ". To be able to do that, we need to lengthen the word $\left(x_{1} \ldots x_{t_{1}}, y_{1} \ldots y_{t_{2}}\right) \delta_{X}$ by attaching the letter ($\$, \$$) at most m times, to make sure that the empty word is stacked at the end of the procedure.

Depending on how many times the letter ($\$, \$$) needs to be attached to the word

$$
\left(x_{1}, \ldots x_{t_{1}}, y_{1} \ldots y_{t_{2}}\right) \delta_{X}
$$

so that property (P2) could be checked, we let

$$
K_{0}=\left\{(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime}| | v|-m>|w|\}\right.
$$

Illustrating this case:

That is K_{0} contains words $(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right) X}^{\prime}$ for which properties (P1) and (P2) can be checked without attaching the letter $(\$, \$)$.

For $1 \leq j \leq m-1$ we let

$$
K_{j}=\left\{(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime}| | v|-m+j=|w|\} .\right.
$$

Illustrating this case:

That is K_{j} contains words $(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right) X}^{\prime}$ for which properties (P1) and (P2) can be checked by attaching j times the letter $(\$, \$)$.
We let

$$
K_{m}=\left\{(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime}| | v|-m<|w|\} .\right.
$$

That is K_{m} contains words $(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)_{X}}^{\prime-}$ for which properties (P1) and (P2) can be checked by attaching at least m times the letter (\$,\$).

It is immediate that if $(v, w) \delta_{X} \in L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime}$, then $(v, w) \in K_{j}$ for some $1 \leq j \leq m$, since the length of $v=u \tilde{v} \in u L_{n}$ has to be greater then m. Thus,

$$
\begin{equation*}
\bigcup_{j=1}^{m} K_{j}=L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime} \tag{3.2}
\end{equation*}
$$

We first verify that the languages $N_{j}=K_{j}(\$, \$)^{j},(0 \leq j \leq m)$ are regular. For N_{j} we let

$$
\begin{aligned}
\mathcal{L}_{j} & =\{0,1, \ldots, m\} \\
\mathcal{I}_{j} & =\left\{w \in X^{\star}| | w \mid \leq m\right\} ; \\
\mathcal{J}_{j} & =\{0,1, \ldots, j\} .
\end{aligned}
$$

Attach a failure state $\overline{F S}$ to Σ_{1} and denote $\Sigma_{1}^{\prime}=\Sigma \cup \overline{F S}$. We will explain why this step was needed when we discuss how the transition function ν_{j} of the below defined automaton works. Consider the automaton $\mathcal{B}_{j}=\left(Q_{j}, X(2, \$) \cup(\$, \$), \nu_{j}, r_{j}, F_{j}\right)$ where

$$
\begin{aligned}
Q_{j} & =\left(\Sigma_{1}^{\prime} \times \Sigma_{2} \times \mathcal{L}_{j} \times \mathcal{I}_{j} \times \mathcal{J}_{j}\right) \cup F S ; \\
r_{j} & =\left(p_{0}, q_{0}, 0, \lambda, 0\right) ; \\
F_{j} & =T_{1} \times T_{2} \times\{m\} \times\{\lambda\} \times\{j\},
\end{aligned}
$$

where λ denotes the empty word. Before we define the transition function ν_{j}, we introduce the following notations: for $w=y_{1} \ldots y_{t} \in \mathcal{I}_{j}$ we let

$$
\bar{w}= \begin{cases}y_{2} \ldots y_{t} & \text { if } w \neq \lambda \\ w & \text { if } w=\lambda\end{cases}
$$

and define $\bar{w} \$=\bar{w}$.
Let $(p, q, l, w, k) \in Q_{j}$, where $w=y_{1} \ldots y_{t}$ and let $(x, y) \in X(2, \$)$. Recall that \mathcal{A}_{1} is a finite state automaton with exactly one final state. Let

$$
p_{1}= \begin{cases}\mu_{1}(p, x) & \text { if } x \neq \$ \\ p & \text { if } x=\$, p=T_{1} \\ \overline{F S} & \text { otherwise }\end{cases}
$$

and let

$$
q_{1}= \begin{cases}q & \text { if } l<m \\ \mu_{2}\left(q,\left(x, y_{1}\right)\right) & \text { if } w \neq \lambda, l=m \\ \mu_{2}(q,(x, \$)) & \text { if } w=\lambda, x \neq \$, l=m\end{cases}
$$

The transition function ν_{i} in given in the following tableau:

$\nu_{j}((p, q, l, w, k),(x, y))$		
$\left(p_{1}, q_{1}, l+1, w y, k\right)$	if $y \neq \$, l<m, k=0 ;$	(R1)
$\left(p_{1}, q_{1}, l+1, w, k\right)$	if $y=\$, l<m, k=0 ;$	(R2)
$\left(p_{1}, q_{1}, l, \bar{w} y, k\right)$	if $x \neq \$$ or $w \neq \lambda, l=m, k=0$	(R3)
$\left(p_{1}, q_{1}, l, \bar{w}, k+1\right)$	if $x=\$, y=\$, l=m, k<j, w \neq \lambda$	(R4)
$F S$	if $x \neq \Phi, y \neq \$, k>0$	(R5)
$F S$	if $x=\$, y=\$, k<j, w=\lambda$	(R6)
$F S$	if $(p, q, l, w, k)=F S$	(R7)

We now explain in more detail how the transition function works:
With rules (R1) and (R2), we

- count how many letters of the input word we have read so far up to m;
- fill up the stack with a word of length less then or equal to m;
- begin to check with the help of \mathcal{A}_{1}, whether property (P1) holds for the input word.

With rule (R3), we

- continue checking whether property (P1) holds for the input word;
- begin checking with the help of \mathcal{A}_{2}, whether property (P2) holds for the input word.
With rule (R4), we
- continue checking whether property (P2) holds for the input word by emptying the stack;
- begin counting the number of $(\$, \$)$ letters of the input word.

With rule (R5), we assure that

- words are not accepted in which a letter $(\$, \$)$ is followed by a letter $(x, y), x \neq$ $\$$ or $y \neq \$$.
With rule (R6), we assure that
- the stack empties exactly when we read through j times the letter $(\$, \$)$ consecutively.

With rules (R1)-(R3), with the definition of p_{1} and with the help of the assumption that \mathcal{A}_{1} is an automaton with one final state we assure that

- if $(v, w) \delta_{X}$ is accepted by \mathcal{B}_{j}, then $v \in u L_{n}$, that is v does not contain a letter $\$$ followed by a letter $x \neq \$$.
With rule (R1)-(R4), we assure that
- the input word satisfies property (P2).

We may now deduce that a word w is accepted by \mathcal{B}_{j} if and only if $w \in N_{j}$, hence for each $1 \leq j \leq m$ the language N_{j} is regular. By Proposition 2.2.3, $N_{j}^{\mathrm{rev}}=(\$, \$)^{j} K_{j}^{\mathrm{rev}}$ is also a regular language. Making use of Lemma 2.2.5, we may deduce that $K_{j}^{\text {rev }}$, and hence K_{j} is a regular language for each $1 \leq j \leq m$. By (3.2) we have that $L_{\left(a_{i}, a_{j}\right)_{x}}^{\prime}$ is a finite union of regular languages, and hence is a regular language.
(d) The proof is similar to that of part (c). Basically we need to redefine \mathcal{A}_{2} to be the automaton accepting the regular language $L_{\left(a_{j}, a_{n}\right)_{x}}$.

3.5 Automatic versus Schützenberger automatic.

Considering a regular semigroup S, the property of being Schützenberger automatic is a collection of local properties - namely it is required that all \mathcal{R}-classes are Schützenberger automatic - meanwhile being automatic is a global property. In this section we discuss how the two notions compare. Proposition 3.2.3 tells us that a group is automatic if and only if it is Schützenberger automatic. We verify that under certain conditions automatic regular semigroups are Schützenberger automatic. Moreover, we give an example that shows
that even strongly Schützenberger automatic regular semigroups might not be automatic. Throughout this section S will denote a semigroup, X a finite generating set for S. We assume that $X \subseteq S$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity map $\iota: X \rightarrow S$.

Proposition 3.5.1. Let S be an automatic regular semigroup with automatic structure (X, L). Assume that for every \mathcal{R}-class R of S, there exists a regular language $K \subseteq L$ such that $K \varphi=R$. Then S is Schützenberger automatic.

Proof. Let (X, L) be an automatic structure for S with uniqueness, $s \in S$, and consider the \mathcal{R}-class of s, R_{s}. By assumption, there exists a regular language $K \subseteq L$ such that $K \varphi=R_{s}$. We see that (X, K) is a Schützenberger automatic structure for R_{s}, since

$$
K_{=}=\{(u, v) \mid u, v \in K, u=v\} \delta_{X}=L_{=} \cap(K \times K) \delta_{X}
$$

and

$$
K_{x}=\{(u, v) \mid u, v \in K, u \cdot x=v\} \delta_{X}=L_{x} \cap(K \times K) \delta_{X}
$$

are regular languages which completes the proof.

Corollary 3.5.2. Let S be an automatic regular semigroup with finitely many \mathcal{R}-classes. Then S is Schützenberger automatic.

Proof. Let (X, L) be an automatic structure for S. Let $S / \mathcal{R}=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ and choose idempotents $e_{1}, e_{2}, \ldots, e_{n}$ so that $e_{i} \in R_{i}$. Let R be an \mathcal{R}-class of S with idempotent e. We show that the assumption of Proposition 3.5.1 is satisfied, that is we construct a regular language $K \subseteq L$ such that $K \varphi=R$. Consider the automaton $\mathcal{A}=(\Sigma, X, \mu, p, F)$, where

$$
\Sigma=\bigcup_{i=1}^{n} R_{e_{i}} \cup\{p\} ; \quad F=\{R\} ; \quad \mu:\left(R_{i}, x\right) \rightarrow R_{x_{i}} \quad \text { and } \mu:(p, x) \rightarrow R_{x}
$$

Since \mathcal{R} is a left congruence, μ is well defined. Note that if' a word $w \equiv x_{1} x_{2} \ldots x_{n}$ is accepted by this automaton, that is if

is a successful path, then $w^{\mathrm{rev}} \in R$. Let M be the language accepted by this automaton and let $M^{\prime}=M^{\text {rev }}$. By Proposition 2.2.3, $K=M^{\prime} \cap L$ is a regular language, moreover we have that $K \varphi=R$. The assertion follows by Proposition 3.5.1.

The following counterexample shows that the reverse statement does not hold even if S is strongly Schützenberger automatic.

Example 3.5.3. Let $S=\left[Y_{2} ; G_{1}, G_{2}, \varphi\right]$, be a Clifford semigroup where the building blocks are Y_{2}, the two element chain, $G_{1}=\langle a, b \mid\rangle$ the free group of rank $2, G_{2}=$ $\left\langle c, d, \mid c^{2}=d^{2}=1\right\rangle$ the free product of two cyclic groups of order two, and $\varphi: G_{1} \rightarrow G_{2}$ is the homomorphism defined by $a \varphi=c, b \varphi=d$. Then S is Schützenberger automatic, but it is not automatic.

Indeed, since S has two \mathcal{R}-classes, G_{1} and G_{2} we obtain by Corollary 3.3.2, that S is \mathcal{R}-class automatic. Moreover, the groups G_{1} and G_{2} are known to be automatic groups, hence by Proposition 3.2.3 they are Schützenberger automatic and we may deduce that S is strongly Schützenberger automatic. However, it is shown in [4] that S is not automatic.

3.6 Invariance under the change of generators.

The following problem is essential to consider when talking about automatic S-acts:
Main Problem: Let $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Assume that the finite set Y also generates S and that the finite set B also generates the S-act A. Do there exist regular languages K_{1}, \ldots, K_{m} over Y such that $\left(Y, K_{1}, \ldots, K_{m}\right)$ forms an automatic structure with respect to the generating set B for the S-act A ?

We can split the above problem into two subproblems:
Changing the generators of \mathbf{S}. Let $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Assume that the finite set Y also generates S. Do there exist regular languages K_{1}, \ldots, K_{n} over Y such that $\left(Y, K_{1}, \ldots, K_{n}\right)$ forms an automatic structure with respect to the same generating set A_{0} for the S-act A ?

Changing the generators of A. Let $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Assume that the finite set B also generates the S-act A. Do there exist regular languages K_{1}, \ldots, K_{m} over X such that $\left(X, K_{1}, \ldots, K_{m}\right)$ forms an automatic structure with respect to the generating set B for the S-act A ?

Giving a positive answer to both of the subproblems certainly gives a positive answer to our main problem. We can first change the generating set of S and then the generating set of the S-act A.

It is known that automaticity of semigroups depends on the choice of the finite generating set. Hence with Proposition 3.1.10 in mind, we expect that in general we cannot change the set of generators either of S or of A without losing the property of being automatic. We will verify in this section that if S is a semigroup with local right identities, then an affirmative answer can be given to both of the subproblems, and hence to our main problem.

As in the previous sections S will denote a semigroup, X a finite generating set for S. We assume that $X \subseteq S$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity map $\iota: X \rightarrow S$. Also, $S^{0}=S \cup\{0\}$ denotes the semigroup obtained by adjoining a zero element 0 to S, and $X^{0}=X \cup\{0\}$.

We say that a semigroup S has local right identities, if for all $s \in S$ there exists $e \in E(S)$ such that $s e=s$. We note here that regular semigroups have local right identities.

Changing the generators of the semigroup

Proposition 3.6.1. Let $S=\langle X\rangle$ be a semigroup with local right identities and assume that $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ is an automatic structure with respect to the generating set A_{0} for the S-act A. Assume that the finite set Y also generates S. Then there exist regular languages K_{1}, \ldots, K_{n} over Y such that $\left(Y, K_{1}, \ldots, K_{n}\right)$ forms an automatic structure with respect to the same generating set A_{0} for the S-act A.

The proof of Proposition 3.6.1 follows from Lemmas 3.6.2, 3.6.4 and 3.6.5.

Lemma 3.6.2. Let $S=\langle X\rangle$ be a semigroup with local right identities and assume that $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ forms an automatic structure with respect to the generating set $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$ for the S-act A. Assume that the finite set Y also generates S. Then there exists a finite set $Y^{\prime} \supseteq Y$ and regular languages K_{1}, \ldots, K_{n} over Y^{\prime} such that ($Y^{\prime}, K_{1}, \ldots, K_{n}$) forms an automatic structure with respect to the same generating set A_{0} for the S-act A.

Proof. Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$. Let $\psi: Y^{+} \rightarrow S$ be the homomorphism extending the identity map on Y. Fix words $v_{1}, v_{2}, \ldots, v_{k}$ over Y such that $x_{i} \varphi=v_{i} \psi,(1 \leq i \leq k)$. Let $Y^{\prime}=Y \cup\left\{e_{1}, \ldots, e_{m}\right\}$, where $y_{j} \psi \cdot e_{j}=y_{j} \psi$ for all $1 \leq j \leq m$.

Clearly, since $Y^{\prime} \supseteq Y$, we have that Y^{\prime} also generates S and that there exists a surjective homomorphism $\varsigma:\left(Y^{\prime}\right)^{+} \rightarrow S$ such that $\left.\varsigma\right|_{Y}=\psi$. Making use of the fact that e_{i} is a right identity for $y_{i} \psi$, we have that for each word v_{i} there exists $f_{i} \in\left\{e_{1}, \ldots, e_{m}\right\}$ such that $\left(v_{i}\left(f_{i}\right)^{t}\right) \varsigma=v_{i} \varsigma, t \in \mathbb{N}$. Hence, by attaching the appropriate local right identities to the words v_{1}, \ldots, v_{k}, we obtain words w_{1}, \ldots, w_{k} over Y^{\prime} of equal length such that

$$
\begin{equation*}
x_{i} \varphi=w_{i} \varsigma=v_{i} \varsigma=v_{i} \psi . \tag{3.3}
\end{equation*}
$$

Consider the map

$$
\tilde{\xi}: X \rightarrow\left(Y^{\prime}\right)^{+}, x_{i} \mapsto w_{i}
$$

and extend it to a semigroup homomorphism $\xi: X^{+} \rightarrow\left(Y^{\prime}\right)^{+}$. In particular we have that the diagram

is commutative, since

$$
\begin{equation*}
x \varphi=v_{i} \psi=v_{i} \varsigma=w_{i} \varsigma=(x \xi) \varsigma, \tag{3.4}
\end{equation*}
$$

hence $\varphi=\xi \varsigma$. Let

$$
K_{i}=L_{i} \xi \quad(1 \leq i \leq n) .
$$

By Proposition 2.2.3, K_{i} is a regular language for all $(1 \leq i \leq n)$. We verify that

$$
\left(Y^{\prime}, K_{1}, K_{2}, \ldots, K_{n}\right)
$$

is an automatic structure with respect to the generating set A_{0} for the S-act A.
Since $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ is an automatic structure for the S-act A, we have that $\bigcup_{j=1}^{n} a_{j} \cdot L_{j} \varphi=A$. To show that $\bigcup_{j=1}^{n} a_{j} \cdot K_{j} \varsigma=A$, let $a \in A$. Then there exists $a_{i} \in A_{0}$ and $u \in L_{i}$, such that $a_{i} . u \varphi=a$. On the other hand $u \varphi=(u \xi) \varsigma$ by (3.4) and also by definition $u \xi \in K_{i}$. Thus we obtain that $a_{i} \cdot(u \xi) \varsigma=a$ and we deduce that

$$
\bigcup_{j=1}^{n} a_{j} \cdot K_{j} \varsigma=A .
$$

Let $\left(a_{i}, a_{j}\right) \in A_{0} \times A_{0}$. We show that the languages $K_{\left(a_{i}, a_{j}\right)=}$ and $K_{\left(a_{i}, a_{j}\right)_{y}}, y \in Y^{\prime}$ are regular. Let $\theta: X(2, \$)^{+} \rightarrow Y^{\prime}(2, \$)^{+}$be the semigroup homomorphism induced by the map

$$
(x, y) \mapsto(x, y)(\xi \times \xi) \delta_{Y^{\prime}}, \quad(x, y) \in X \times X .
$$

Since for each $1 \leq i, j \leq k$ the length of $x_{i} \xi \equiv w_{i}$ and $x_{j} \xi \equiv w_{j}$ is the same, we have that for all $\left(u^{\prime}, v^{\prime}\right) \in X^{+} \times X^{+}$

$$
\left(u^{\prime}, v^{\prime}\right) \delta_{X} \theta=\left(u^{\prime} \xi, v^{\prime} \xi\right) \delta_{Y^{\prime}}=\left(u^{\prime}, v^{\prime}\right)(\xi \times \xi) \delta_{Y^{\prime}}
$$

and we may deduce that

$$
\begin{aligned}
K_{\left(a_{i}, a_{j}\right)=} & =\left\{(u, v) \in K_{i} \times K_{j} \mid a_{i} \cdot u=a_{j} \cdot v\right\} \delta_{Y^{\prime}} \\
& =\left\{\left(u^{\prime} \xi, v^{\prime} \xi\right) \mid\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j}, a_{i} \cdot u^{\prime} \xi=a_{j} \cdot v^{\prime} \xi\right\} \delta_{Y^{\prime}} \\
& =\left\{\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j} \mid a_{i} \cdot u^{\prime}=a_{j} \cdot v^{\prime}\right\}(\xi \times \xi) \delta_{Y^{\prime}} \\
& =\left\{\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j} \mid a_{i} \cdot u^{\prime}=a_{j} \cdot v^{\prime}\right\} \delta_{X} \theta=L_{\left(a_{i}, a_{j}\right)=}^{=} \theta,
\end{aligned}
$$

hence is a regular language by Proposition 2.2.3. Let $y \in Y^{\prime}$ and $w \in X^{+}$such that $w \xi \equiv y$. Then,

$$
\begin{aligned}
K_{\left(a_{i}, a_{j}\right)_{y}} & =\left\{(u, v) \in K_{i} \times K_{j} \mid a_{i} \cdot(u \cdot y)=a_{j} \cdot v\right\} \delta_{Y^{\prime}} \\
& =\left\{\left(u^{\prime} \xi, v^{\prime} \xi\right) \mid\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j}, a_{i} \cdot\left(u^{\prime} \xi \cdot y\right)=a_{j} \cdot v^{\prime} \xi\right\} \delta_{Y^{\prime}} \\
& =\left\{\left(u^{\prime} \xi, v^{\prime} \xi\right) \mid\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j}, a_{i} \cdot\left(u^{\prime} \cdot w\right) \xi=a_{j} \cdot v^{\prime} \xi\right\} \delta_{Y^{\prime}} \\
& =\left\{\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j} \mid a_{i} \cdot\left(u^{\prime} \cdot w\right)=a_{j} \cdot v^{\prime}\right\}(\xi \times \xi) \delta_{Y^{\prime}} \\
& =\left\{\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j} \mid a_{i} \cdot\left(u^{\prime} \cdot w\right)=a_{j} \cdot v^{\prime}\right\} \delta_{X} \theta=L_{\left(a_{i}, a_{j}\right)_{w}} \theta,
\end{aligned}
$$

hence is regular by Lemma 3.4.8 and Proposition 2.2.3.

Definition 3.6.3. Let $\left(X, L_{1}, \ldots L_{n}\right)$ be an automatic structure for the S-act A. Let $L=\bigcup_{j=1}^{n} L_{j}$. We say that a letter $x \in X$ is dispensable in L, if whenever a word $w \in L$ contains the letter x, the word \widetilde{w} obtained from w by deleting all occurrences of x in w represents the same element of S as w.

We note that in Lemma 3.6.2, all supplementary letters added to Y are dispensable in $K=\bigcup_{j=1}^{n} K_{j}$. To be more accurate: let $w \in K$. Then $w=\left(x_{i_{1}} \ldots x_{i_{t}}\right) \xi=w_{i_{1}} \ldots w_{i_{t}}$ for some $\left(x_{i_{1}} \ldots x_{i_{t}}\right) \in L_{i}$. Recall that $w_{i_{k}}$ is obtained from $v_{i_{k}}$ by attaching an appropriate local right identity (supplementary letter) to it, and also by (3.3) $v_{i_{j}} \varsigma=w_{i_{j}} \varsigma$. That is deleting a supplementary letter from w means substituting certain $w_{i_{j}}$'s by $v_{i_{j}}$, which does not have any affect on the element represented by w.

Before we finish proving Proposition 3.6.1 we invoke the following technical lemma which follows from the proofs of [12, Lemma 3.1] and [9, Theorem 2.4.1.].

Lemma 3.6.4. Let S be a semigroup generated by $X=\left\{x_{1}, \ldots, x_{m}, e\right\}$. Assume that $Y=\left\{x_{1}, \ldots, x_{m}\right\}$ also generates S and let $e=x_{i_{1}} \ldots x_{i_{k}}$. Define $\psi: X^{+} \rightarrow Y^{+}$as follows: For each word w, let $w \psi$ be the word obtained from w by substituting all kth occurrences of e by the word $x_{i_{1}} \ldots x_{i_{k}}$ and delete all other occurrences. Then the following hold:
(1) If L is a regular language over X, then $L \psi$ is a regular language over Y.
(2) If J is a regular language over $X(2, \$)$, then

$$
\left(J^{l}\right)^{r}=\left\{(u \psi, v \psi) \mid(u, v) \delta_{X} \in J\right\} \delta_{Y}
$$

is a regular language over $Y(2, \$)$.

Lemma 3.6.5. Let $\left(X, K_{1}, \ldots, K_{n}\right)$ be an automatic structure for the S-act A with respect to the generating set $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$, where $X=\left\{x_{1}, \ldots, x_{m}, e\right\}$. Let $K=\bigcup_{j=1}^{n} K_{j}$. Assume that e is dispensable in K and that $Y=\left\{x_{1}, \ldots, x_{m}\right\}$ also generates S. Then there exist regular languages L_{1}, \ldots, L_{n} over Y such that $\left(Y, L_{1}, \ldots, L_{n}\right)$ is an automatic structure for the S-act A.

Proof. Assume that $e=y_{1} \ldots y_{k}, y_{i} \in Y(1 \leq i \leq k)$. Let $\psi: Y^{+} \rightarrow S$ be the homomorphism extending the identity map on $\iota: Y \rightarrow S$. Define the map $\varsigma: X^{+} \rightarrow Y^{+}$ in the following way. For each word $w \in X^{+}$, replace all k th occurrences of e by $y_{1} \ldots y_{k}$ and delete all other occurrences of e in w. Let $L_{i}=K_{i} \varsigma,(1 \leq i \leq n)$. By Lemma 3.6.4(1), L_{i} is a regular language for each $1 \leq i \leq n$. Let $a_{i}, a_{j} \in A_{0}$. To show that $\left(X, L_{1}, \ldots, L_{n}\right)$ forms an automatic structure with respect to the generating set A_{0} for A, we need to verify that the languages $L_{\left(a_{i}, a_{j}\right)=}, L_{\left(a_{i}, a_{j}\right) y}(y \in Y)$ are regular. First we note that since e is dispensable in K we have by definition for all $u^{\prime} \in K$ that $\left(u^{\prime} \varsigma\right) \psi=u^{\prime} \varphi$, hence by letting $u \equiv u^{\prime} \varsigma$ we obtain

$$
a_{i} \cdot u^{\prime}=a_{i} \cdot u^{\prime} \varphi=a_{i} \cdot\left(u^{\prime} \varsigma\right) \psi=a_{i} \cdot u \psi=a_{i} \cdot u
$$

Now we may deduce using Lemma 3.6.4 (2) that

$$
\begin{aligned}
L_{\left(a_{i}, a_{j}\right)=}= & \left\{\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j} \mid a_{i} \cdot u^{\prime}=a_{j} \cdot v^{\prime}\right\} \delta_{Y} \\
= & \left\{\left(u^{\prime}, v^{\prime}\right) \mid\left(u^{\prime}, v^{\prime}\right)=(u \varsigma, v \varsigma) \text { for some }(u, v) \in K_{i} \times K_{j},\right. \\
& \left.a_{i} \cdot u=a_{j} \cdot v\right\} \delta_{Y} \\
= & \left\{(u \varsigma, v \varsigma) \in L_{i} \times L_{j} \mid(u, v) \delta_{X} \in K_{\left(a_{i}, a_{j}\right)=}\right\} \delta_{Y} \\
= & \left(K_{\left(a_{i}, a_{j}\right)=}{ }^{l}\right)^{r}
\end{aligned}
$$

is a regular language. Let $y \in Y$ and $w \in X^{+}$such that $y \psi=w \varphi$. Then

$$
\begin{aligned}
L_{\left(a_{i}, a_{j}\right)_{y}}= & \left\{\left(u^{\prime}, v^{\prime}\right) \in L_{i} \times L_{j} \mid a_{i} \cdot\left(u^{\prime} \cdot y\right)=a_{j} \cdot v^{\prime}\right\} \delta_{Y} \\
= & \left\{\left(u^{\prime}, v^{\prime}\right) \mid\left(u^{\prime}, v^{\prime}\right)=(u \varsigma, v \varsigma) \text { for some }(u, v) \in K_{i} \times K_{j},\right. \\
& \left.a_{i} \cdot(u \cdot w)=a_{j} \cdot v\right\} \delta_{Y} \\
= & \left\{(u \varsigma, v \varsigma) \in L_{i} \times L_{j} \mid(u, v) \delta_{X} \in K_{\left(a_{i}, a_{j}\right) w}\right\} \delta_{Y} \\
= & \left(K_{\left(a_{i}, a_{j}\right)_{w}}{ }^{l}\right)^{r}
\end{aligned}
$$

is a regular language by Lemma 3.4.8 and Lemma 3.6.4(2).
Proof of Proposition 3.6.1. Assume that $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ is an automatic structure with respect to the generating set A_{0} for the S-act A. Assume that the finite set Y also generates S. Then, according to the proof of Lemma 3.6.2, there exists a finite set $Y^{\prime} \supseteq Y$ and regular languages N_{1}, \ldots, N_{n} over Y^{\prime} such that ($Y^{\prime}, N_{1}, \ldots, N_{n}$) forms an automatic structure for A with generating set A_{0}. Moreover, all letters added to Y are dispensable in $N=\bigcup_{j=1}^{n} N_{j}$. Making use of Lemma 3.6 .5 we can remove the supplementary letters added to Y one by one and obtain regular languages K_{1}, \ldots, K_{n} such that (Y, K_{1}, \ldots, K_{n}) forms an automatic structure with respect to the generating set A_{0} for the S-act A.

Corollary 3.6.6. Let $S=\langle X\rangle$ be a regular semigroup and R be an \mathcal{R}-class of S. Assume that (X, L) is a Schützenberger automatic structure for R and that the finite set Y also generates S. Then there exists a regular language K over Y such that (Y, K) is a Schützenberger automatic structure for R.

Proof. Assume that (X, L) is a Schützenberger automatic structure for the \mathcal{R}-class R of the regular semigroup S. Then by Proposition 3.2 .1 there exists a regular language L_{1} over $X^{0}=X \cup\{\mathbf{0}\}$ such that $\left(X^{0}, L_{1}\right)$ forms an automatic structure for the right S^{0}-act R^{0} with respect to a one element generating set $\{s\}$. Since Y generates S, we clearly have that $Y \cup\{0\}$ generates S^{0}. Applying Proposition 3.6.1, we deduce that there exists a regular language L_{2} over Y^{0} such that $\left(Y^{0}, L_{2}\right)$ forms an automatic structure for R^{0} with generating set $\{s\}$. Pulling back the argument for the \mathcal{R}-class R with the help of Proposition 3.2.1 we conclude that there exists a regular language K over Y such that (Y, K) forms a Schützenberger automatic structure for R.

Changing the generators of the act.

Proposition 3.6.7. Let S be a semigroup with local right identities. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Assume that the finite set B also generates A. Then there exist regular languages $K_{1}, K_{2}, \ldots, K_{m}$ over X, such that $\left(X, K_{1}, \ldots, K_{m}\right)$ forms an automatic structure with respect to the generating set B for the S-act A.

The proof of the proposition is based on Lemmas 3.6.8, 3.6.9.
Lemma 3.6.8. Let S be a semigroup with local right identities and $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Let $a_{n+1} \in A$ and $B=A_{0} \cup\left\{a_{n+1}\right\}$. Then there exist regular languages K_{1}, \ldots, K_{n+1} over X such that $\left(X, K_{1}, \ldots, K_{n+1}\right)$ forms an automatic structure with respect to the generating set B for the S-act A.

Proof. By Proposition 3.4.4 we can assume that (X, L_{1}, \ldots, L_{n}) is an automatic structure with uniqueness for the S-act A. Let $a_{n+1} \in A$. Then there exists a unique generator $a_{i} \in A_{0}$ and a unique word $u \in L_{i}$ such that $a_{i} \cdot u \varphi=a_{n+1}$. Let e be a local right identity of S such that $u \varphi: e=u \varphi$. Let w be a word over X representing e and $L_{n+1}=\{w\}$. Note that $(u w) \varphi=u \varphi$, and so

$$
a_{n+1}=a_{i} \cdot u \varphi=a_{i} \cdot(u \cdot w) \varphi=\left(a_{i} \cdot u \varphi\right) \cdot w \varphi=a_{n+1} \cdot w \varphi
$$

That is

$$
\begin{equation*}
a_{n+1} \cdot w=a_{n+1} \tag{3.5}
\end{equation*}
$$

holds. We clearly have that $\bigcup_{j=1}^{n+1} a_{j} \cdot L_{j} \varphi=A$. To show that $\left(X, L_{1}, \ldots, L_{n+1}\right)$ indeed forms an automatic structure with respect to the generating set B we need to verify that for all $1 \leq j \leq n$ the languages $L_{\left(a_{j}, a_{n+1}\right)=}, L_{\left(a_{j}, a_{n+1}\right)_{x}}$ and $L_{\left(a_{n+1}, a_{j}\right)_{x}}$ are regular.

Since $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure with uniqueness and since $a_{n+1} \cdot w=$ a_{n+1} by (3.5), we have that

$$
a_{j} \cdot v=a_{n+1} \cdot w \Leftrightarrow a_{j}: v=a_{n+1} \Leftrightarrow a_{j}=a_{i} \text { and } v \equiv u .
$$

Thus $L_{\left(a_{j}, a_{n+1}\right)=}=\emptyset$ for all $1 \leq j \leq n, i \neq j$ and $L_{\left(a_{i}, a_{n+1}\right)=}=(u, w) \delta_{X}$, and hence they are regular.

Next we consider the language $L_{\left(a_{j}, a_{n+1}\right)_{x}}(1 \leq j \leq n)$. Let $L_{j}^{\prime}=\left\{v \in L_{j} \mid a_{j} \cdot(v \cdot x)=\right.$ $\left.a_{n+1}\right\}$. By Lemma 3.1.8, L_{j}^{\prime} is a regular language, and so

$$
\begin{aligned}
L_{\left(a_{j}, a_{n+1}\right)_{x}} & =\left\{(v, w) \in L_{j} \times L_{n+1} \mid a_{j} .(v \cdot x)=a_{n+1} \cdot w\right\} \delta_{X} \\
& =\left\{(v, w) \in L_{j} \times L_{n+1} \mid a_{j} \cdot(v \cdot x)=a_{n+1}\right\} \delta_{X} \\
& =\left(L_{j}^{\prime} \times L_{n+1}\right) \delta_{X}=\left(L_{j}^{\prime} \times\{w\}\right) \delta_{X}
\end{aligned}
$$

is a regular language by Proposition 2.3.1.
Finally consider the language $L_{\left(a_{n+1}, a_{j}\right)_{x}}$. Let $c=a_{n+1} \cdot(w \cdot x)$ and $L_{j}^{\prime \prime}=\left\{v \in L_{j} \mid a_{j} \cdot v=\right.$ c\}. By Lemma 3.1.9, $L_{j}^{\prime \prime}$ is a regular language, and hence

$$
\begin{aligned}
L_{\left(a_{n+1}, a_{j}\right)_{x}} & =\left\{(w, v) \in L_{n+1} \times L_{j} \mid a_{n+1} \cdot(w \cdot x)=a_{j} . v\right\} \delta_{X} \\
& =\left\{(w, v) \in L_{n+1} \times L_{j} \mid c=a_{j} . v\right\} \delta_{X} \\
& =\left(L_{n+1} \times L_{j}^{\prime \prime}\right) \delta_{X}=\left(\{w\} \times L_{j}^{\prime \prime}\right) \delta_{X}
\end{aligned}
$$

is a regular language by Proposition 2.3.1, proving that ($X, L_{1}, L_{2}, \ldots, L_{n+1}$) is indeed an automatic structure with respect to the generating set B for the S-act A.

Lemma 3.6.9. Let S be a semigroup with local right identities and let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set $A_{0}=\left\{a_{1} \ldots, a_{n}\right\}$ for the S-act A. Assume that $B=\left\{a_{1}, \ldots, a_{n-1}\right\}$ also generates the S-act A. Then there exist regular languages K_{1}, \ldots, K_{n-1} over X such that $\left(X, K_{1}, \ldots, K_{n-1}\right)$ is an automatic structure with respect to the generating set B for the S-act A.

Proof. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with uniqueness with respect to the generating set $A_{0}=\left\{a_{1} \ldots, a_{n}\right\}$ for the S-act A. Assume that $B=\left\{a_{1}, \ldots, a_{n-1}\right\}$ also generates the S-act A. Then there exists a unique generator $a_{i} \in B$ and $u \in L_{i}$ such that $a_{i} \cdot u \varphi=a_{n}$. Define

$$
K_{j}=L_{j} \quad \text { for all } \quad(1 \leq j \leq n-1, i \neq j) \quad \text { and } \quad K_{i}=L_{i} \cup u L_{n}
$$

By Proposition 2.2.3, K_{i} is a regular language, and we clearly have that

$$
\bigcup_{j=1}^{n-1} a_{j} \cdot K_{j} \varphi=A
$$

To prove that $\left(X, K_{1}, \ldots, K_{n-1}\right)$ forms an automatic structure with respect to the generating set B, we need to verify that the languages $K_{\left(a_{i}, a_{j}\right)=}, K_{\left(a_{i}, a_{j}\right)_{x}}$ and $K_{\left(a_{j}, a_{i}\right)_{x}}, x \in$ $X,(1 \leq j \leq n-1)$, are regular, since for all $j \neq i,(1 \leq j \leq n-1) L_{j}=K_{j}$.
Case 1. If $a_{j} \neq a_{i}$, then

$$
\begin{aligned}
K_{\left(a_{i}, a_{j}\right)=} & =\left\{(v, w) \in K_{i} \times K_{j} \mid a_{i} \cdot v=a_{j} \cdot w\right\} \delta_{X} \\
& =L_{\left(a_{i}, a_{j}\right)=} \cup\left\{(v, w) \in u L_{n} \times L_{j} \mid a_{i} \cdot v=a_{j} \cdot w\right\} \delta_{X}
\end{aligned}
$$

is a regular language by Lemma 3.4.9 and by the fact that $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure for A.

Case 2. If $a_{j}=a_{i}$, then

$$
\begin{aligned}
K_{\left(a_{i}, a_{i}\right)=}= & \left\{(v, w) \in K_{i} \times K_{i} \mid a_{i} \cdot v=a_{i} \cdot w\right\} \delta_{X} \\
= & L_{\left(a_{i}, a_{j}\right)=} \cup\left\{(v, w) \in u L_{n} \times L_{i} \mid a_{i} \cdot v=a_{i} \cdot w\right\} \delta_{X} \\
& \cup\left\{(w, v) \in L_{i} \times u L_{n} \mid a_{i} \cdot w=a_{i} \cdot v\right\} \delta_{X} \cup(u, u) \delta_{X} L_{\left(a_{n}, a_{n}\right)=} \\
= & L_{\left(a_{i}, a_{j}\right)=} \cup(u, u) \delta_{X} L_{\left(a_{n}, a_{n}\right)=}
\end{aligned}
$$

is a regular language by Lemma 3.4 .9 and by the fact that $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure for A.

Case 3. If $a_{j} \neq a_{i}$, then

$$
\begin{aligned}
K_{\left(a_{i}, a_{j}\right)_{x}} & =\left\{(v, w) \in K_{i} \times K_{j} \mid a_{i} \cdot(v \cdot x)=a_{j} \cdot w\right\} \delta_{X} \\
& =L_{\left(a_{i}, a_{j}\right)_{x}} \cup\left\{(v, w) \in u L_{n} \times L_{j} \mid a_{i} \cdot(v \cdot x)=a_{j} \cdot w\right\} \delta_{X}
\end{aligned}
$$

and

$$
\begin{aligned}
K_{\left(a_{j}, a_{i}\right)_{x}} & =\left\{(w, v) \in K_{j} \times K_{i} \mid a_{j} .(w \cdot x)=a_{i} . v\right\} \delta_{X} \\
& =L_{\left(a_{j}, a_{i}\right)_{x}} \cup\left\{(w, v) \in L_{j} \times u L_{n} \mid a_{j} .(w \cdot x)=a_{i} . v\right\} \delta_{X}
\end{aligned}
$$

are regular languages by Lemma 3.4 .9 and by the fact that $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure for A.
Case 4. If $a_{j}=a_{i}$, then

$$
\begin{aligned}
K_{\left(a_{i}, a_{i}\right)_{x}}= & \left\{(v, w) \in K_{i} \times K_{i} \mid a_{i} \cdot(v \cdot x)=a_{j} \cdot w\right\} \delta_{X} \\
= & L_{\left(a_{i}, a_{i}\right)_{x}} \cup\left\{(v, w) \in u L_{n} \times L_{i} \mid a_{i} \cdot(v \cdot x)=a_{i} \cdot w\right\} \delta_{X} \\
& \cup\left\{(w, v) \in L_{i} \times u L_{n} \mid a_{i} \cdot(w \cdot x)=a_{i} \cdot v\right\} \delta_{X} \cup(u, u) \delta_{X} L_{\left(a_{n}, a_{n}\right)_{x}},
\end{aligned}
$$

is a regular language by Lemma 3.4.9, Proposition 2.2 .3 and the fact that (X, L_{1}, \ldots, L_{n}) is an automatic structure for A.

Proof of Proposition 3.6.7. Assume that $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure with respect to the generating set $A_{0}=\left\{a_{1} \ldots, a_{n}\right\}$ for the S-act A. Assume that $B=\left\{b_{1}, \ldots, b_{m}\right\}$ also generates A. Then, by Lemma 3.6.8, there exist regular languages N_{1}, \ldots, N_{n+m} over X, such that $\left(X, N_{1}, \ldots, N_{n+m}\right)$ forms an automatic structure with respect to the generating set $C=A_{0} \cup B$ for the S-act A. Since B also generates the S-act A, by applying Lemma 3.6 .9 we can subtract the generators of A_{0} from C one by
one, so that we obtain regular languages K_{1}, \ldots, K_{m} over X, such that (X, K_{1}, \ldots, K_{m}) forms an automatic structure with respect to the generating set B for the S-act A.

Proposition 3.6.7 has the following consequences, which provide a generalization of [9, Theorem 1.1] and of [4, Proposition 1.4].

Corollary 3.6.10. Let S be a semigroup with local right identities. Assume that (X, L) is an automatic structure for S and that the finite set Y also generates S. Then there exists a regular language K over Y such that (Y, K) forms an automatic structure for S.

Proof. Let (X, L) be an automatic structure for the semigroup S, where S has local right identities. Assume that $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Then by Proposition 3.1.10, S is an automatic right S-act with generating set X. In particular we have that there exist regular languages L_{1}, \ldots, L_{n} over X such that $\left(X, L_{1}, \ldots, L_{n}\right)$ forms an automatic structure with respect to the generating set X for the right S-act S.

Assume that $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ also generates the semigroup S. Then as shown in Proposition 3.1.10, Y generates S as an S-act as well, hence by Proposition 3.6.7, there exist regular languages K_{1}, \ldots, K_{m} such that $\left(Y, K_{1}, \ldots, K_{m}\right)$ is an automatic structure with respect to the generating set Y for the S-act S. Making use of Proposition 3.1.10 repeatedly, we obtain that there exists a regular language K over Y such that (Y, K) forms an automatic structure for the semigroup S.

Corollary 3.6.11. Let S be a regular semigroup. Assume that (X, L) is an automatic structure for S and that the finite set Y also generates S. Then there exists a regular language K over Y such that (Y, K) forms an automatic structure for S.

Proof. Since every regular semigroup has local right identities, our corollary immediately follows from Corollary 3.6.10.

We will make use of the following useful fact later on.
Proposition 3.6.12. Let S be a regular semigroup generated by a finite set X and R be an \mathcal{R}-class of S. Let $s, t \in R$. Assume that $\left(X^{0}, L\right)$ forms an automatic structure with respect to the generating set $\{s\}$ for the right S^{0}-act R^{0}. Then there exists a regular language K over X^{0}, such that $\left(X^{0}, K\right)$ forms an automatic structure with respect to the generating set $\{t\}$ for R^{0}.

Proof. Since $\left(X^{0}, L\right)$ forms an automatic structure with respect to the generating set $\{s\}$ for R^{0}, we have that $s \cdot L \varphi=R^{0}$ and that the languages

$$
\begin{gathered}
L_{=}=\{(u, v) \mid u, v \in L, s \cdot u=s \cdot v\} \delta_{X} \\
L_{x}=\{(u, v) \mid u, v \in L, s \cdot u x=s \cdot v\} \delta_{X} \quad\left(x \in X^{0}\right)
\end{gathered}
$$

are regular. Since $s \mathcal{R} t$, we also have that $s=t t^{\prime} s, t^{\prime} \in V(t)$. Let w be a word over X such that $w \varphi=t^{\prime} s$ and let $K=w L$. Note that $s=t \cdot w \varphi$. Clearly K is a regular language over X^{0} and $t \cdot K \varphi=t \cdot(w L) \varphi=s \cdot L \varphi=R^{0}$. We verify that $\left(X^{0}, K\right)$ is an automatic structure with respect to the generating set $\{t\}$ for R^{0}. Note that $\left(k_{1}, k_{2}\right) \in K_{=}$if and only if $k_{1} \equiv w l_{1}$ and $k_{2} \equiv w l_{2}$ for some $l_{1}, l_{2} \in L$, and $t \cdot w l_{1}=t \cdot w l_{2}$. Since $t \cdot w=s$, it follows that $t \cdot w l_{1}=t \cdot w l_{2}$ if and only if $s \cdot l_{1}=s \cdot l_{2}$ if and only if $\left(l_{1}, l_{2}\right) \in L_{=}$. Hence, we have that $K_{=}=(w, w) \delta_{X} L=$ and so it is regular. Similarly we have that $K_{x}=(w, w) \delta_{X} L_{x}, x \in X^{0}$ proving that $\left(X^{0}, K\right)$ is an automatic structure with respect to the generating set $\{t\}$ for R^{0}.

To summarize the main result of this section, we have:
Theorem 3.6.13. Let $S=\langle X\rangle$ be a semigroup with local right identities and assume that $\left(X, L_{1}, L_{2}, \ldots, L_{n}\right)$ forms an automatic structure with respect to the generating set A_{0} for the S-act A. Assume that the finite set Y also generates S and that the finite set B also generates the S-act A. Then there exist regular languages K_{1}, \ldots, K_{m} over Y such that $\left(Y, K_{1}, \ldots, K_{m}\right)$ forms an automatic structure with respect to the generating set B for the S-act A.

3.7 Fellow traveller property I.

In this section we first associate a directed labelled graph $\Gamma_{X}(A, S)$ to each S-act A and introduce the notion of distance in $\Gamma_{X}(A, S)$. With these tools, we give the definition of the fellow traveller property and claim that the introduced notion is a generalization of the fellow traveller property given for semigroups and groups. Finally we prove in this section that if A is an automatic S-act, then $\Gamma_{X}(A, S)$ possesses the fellow traveller property.

As before, S will denote a semigroup, X a finite generating set for S. We assume that $X \subseteq S$ and we denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity map $\iota: X \rightarrow S$. We denote by S^{0} the semigroup obtained by adjoining a zero element 0 to S, and we let $X^{0}=X \cup\{0\}$. If S is a group, then we will assume that X is closed under taking inverses.

The associated graph

Intuitively we can think of an S-act A as a directed labelled graph $\Gamma_{X}(A, S)$, in which the vertices are elements of A, the labels are elements of X and there is an arrow from a to b with label x precisely when $a . x=b$. We write the arrows of $\Gamma_{X}(A, S)$ as ordered triples (a, x, b) indicating that $a . x=b$. We let $\mathcal{V}\left(\Gamma_{X}(A, S)\right)$ denote the set of vertices and $\mathcal{A}\left(\Gamma_{X}(A, S)\right)$ denote the set of arrows of $\Gamma_{X}(A, S)$. Clearly $\Gamma_{X}(A, S)$ is not necessarily a connected graph.

We define a path between two vertices a and b of $\Delta=\Gamma_{X}(A, S)$ to be a sequence of edges:

$$
a=a_{0} \xrightarrow{x_{1}} a_{1} \xrightarrow{x_{2}} a_{2} \ldots a_{n-1} \xrightarrow{x_{n}} a_{n}=b
$$

such that either $\left(a_{i}, x_{i}, a_{i+1}\right) \in \mathcal{A}(\Delta)$ or $\left(a_{i+1}, x_{i}, a_{i}\right) \in \mathcal{A}(\Delta) ;(0 \leq i \leq n-1)$ and say that the length of the path is n. For $a, b \in \mathcal{V}(\Delta)$, we define the distance $d_{\Delta}(a, b)$ between a and b to be the length of the shortest path connecting a and b and say that the distance is infinite if a and b belong to different components of Δ.

We give a list of S-acts A, when $\cdot \Gamma_{X}(A, S)$ or a graph related to $\Gamma_{X}(A, S)$ is a wellknown graph.

Example 3.7.1. If A is the right S-act S (see Example 3.1.4), then $\Delta=\Gamma_{X}(A, S)$ is the right Cayley graph $\Gamma=\Gamma_{X}(S)$ of S. Bearing in mind the definition of distance in the Cayley graph of a semigroup introduced in the Preliminaries, we have for all $a, b \in S$ that $d_{\Delta}(a, b)=d_{\Gamma}(a, b)$. If S is a group then Δ is a connected graph and $(g, x, h) \in \mathcal{A}(\Delta)$ if and only if $\left(h, x^{-1}, g\right) \in \mathcal{A}(\Delta)$. In other words, any two vertices are connected via a directed path. To make it clear whether we consider S as a semigroup or a right S-act we write Cayley graph $\Gamma_{X}(S)$ of S and the graph $\Gamma_{X}(S, S)$ respectively.

Example 3.7.2. If A is the right S^{0}-act R^{0}, where R is an \mathcal{R}-class of S (see Example 3.1.6), then $\Gamma_{X}\left(R^{0}, S^{0}\right)$ restricted to R is the Schützenberger graph $\mathrm{S}_{X}(R)$ of R.

Fellow traveller property

Recall the following notation. If $u \equiv x_{1} \ldots x_{m}$ and $t \geq 1$, then

$$
u(t)= \begin{cases}x_{1} \ldots x_{t} & \text { if } t \leq m \\ x_{1} \ldots x_{m} & \text { if } t \geq m\end{cases}
$$

Definition 3.7.3. Let A be an S-act regularly generated by L_{1}, \ldots, L_{n} and the set $A_{0}=$ $\left\{a_{1}, \ldots, a_{n}\right\}$. The graph $\Delta=\Gamma_{X}(A, S)$ is said to have the fellow traveller property with respect to L_{i}, L_{j} and a_{i}, a_{j}, if there exists a constant $k \in \mathbb{N}$ such that whenever $(u, v) \in$
$L_{i} \times L_{j}$ with $d_{\Delta}\left(a_{i} \cdot u, a_{j} \cdot v\right) \leq 1$, then $d_{\Delta}\left(a_{i} \cdot u(t), a_{j} \cdot v(t)\right) \leq k$ for all $t \geq 1$. We say that $\Gamma_{X}(A, S)$ possesses the fellow traveller property with respect to L_{1}, \ldots, L_{n} and A_{0}, if it possesses the fellow traveller property with respect to any two regular languages L_{i}, L_{j} and corresponding generators a_{i}, a_{j}.

We have seen that if S is a semigroup then $\Gamma_{X}(S, S)$ is the Cayley graph of S. Now we show that the fellow traveller property for S-acts is a generalization of the fellow traveller property given for semigroups and groups.

Proposition 3.7.4. Let S be a semigroup generated by a finite set $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Then the Cayley graph of S possesses the fellow traveller property with respect to some regular language L if and only if $\Gamma_{X}(S, S)$ possesses the fellow traveller. property with respect to some regular languages L_{1}, \ldots, L_{n} and X.

Proof. (\Rightarrow) Assume that the Cayley graph $\Gamma=\Gamma_{X}(S)$ of S has the fellow traveller property with respect to a language L. Then $L \varphi=S$ and there exists a constant $k \in \mathbb{N}$ such whenever $d_{\Gamma}(u, v) \leq 1$ with $u, v \in L$ then $d_{\Gamma}(u(t), v(t)) \leq k$ for all $t \geq 1$. As in Proposition 3.1.10, the languages $L_{i}=\left\{u \in X^{+} \mid x_{i} u \in L\right\}(1 \leq i \leq n)$ and X regularly generates the S-act S. Let. $\Delta=\Gamma_{X}(S, S)$. Choose languages L_{i}, L_{j} and let $(u, v) \in L_{i} \times L_{j}$ such that $d_{\Delta}\left(x_{i} \cdot u, x_{j} \cdot v\right) \leq 1$. Bearing in mind that $d_{\Delta}(a, b)=d_{\Gamma}(a, b)$ for all $a, b \in S$, (see Example 3.7.1) we have that $d_{\Gamma}\left(x_{i} u, x_{j} v\right) \leq 1$, and hence $d_{\Gamma}\left(\left(x_{i} u\right)(t),\left(x_{j} v\right)(t)\right) \leq k$ holds for all $t \geq 1$. In particular we have that $d_{\Delta}\left(x_{i} \cdot(u(t)), x_{j} \cdot(v(t))\right) \leq k$ for all $t \geq 1$, proving that the fellow traveller property holds in Δ with respect to L_{i}, L_{j} and x_{i}, x_{j}. Since L_{i}, L_{j} were arbitrarily chosen, we may deduce that $\Gamma_{X}(S, S)$ possesses the fellow traveller property.
(\Leftrightarrow) Assume that $\Delta=\Gamma_{X}(S, S)$ possesses the fellow traveller property with respect to some regular languages L_{1}, \ldots, L_{n} and X. Then $\bigcup_{j=1}^{n} x_{j} L_{j} \varphi=S$ and for any two chosen languages L_{i}, L_{j} and corresponding generators x_{i}, x_{j}, there exists a constant $k \in \mathbb{N}$ such that whenever $d_{\Delta}\left(x_{i} \cdot u, x_{j} \cdot v\right) \leq 1$ with $(u, v) \in L_{i} \times L_{j}$ then $d_{\Delta}\left(x_{i} \cdot(u(t)), x_{j} \cdot(v(t))\right) \leq k$ for all $t \geq 1$. As in Proposition 3.1.10, we let $L=\bigcup_{j=1}^{n} x_{j} L_{j}$. Then $L \varphi=S$. We claim that the Cayley graph $\Gamma=\Gamma_{X}(S)$ has the fellow traveller property with respect to L. Let $N \in \mathbb{N}$ be a constant such that for any two generators x_{k} and x_{m} that are connected via a path in Δ the distance $d_{\Delta}\left(x_{i}, x_{j}\right) \leq N$. Let $M=\max (k, N)$. Assume that $d_{\Gamma}(u, v) \leq 1,(u, v \in L)$. Then $u=x_{i} \cdot \tilde{u}$ and $v=x_{j} \cdot \tilde{v}$, where $x_{i}, x_{j} \in X$ and $(\tilde{u}, \tilde{v}) \in L_{i} \times L_{j}$. It follows that $d_{\Delta}\left(x_{i} \cdot \tilde{u}, x_{j} \cdot \tilde{v}\right) \leq 1$ holds and we obtain that for all $t \geq 1$, $d_{\Delta}\left(x_{i} \cdot(\tilde{u}(t)), x_{j} \cdot(\tilde{v}(t))\right) \leq k \leq M$ holds. Since $d_{\Delta}(a, b)=d_{\Gamma}(a, b)$ for all $a, b \in S$, we have that for all $t \geq 1, d_{\Gamma}\left(x_{i} \cdot(\tilde{u}(t)), x_{j} \cdot(\tilde{v}(t))\right) \leq k \leq M$. To finish the proof we need to verify
that $d_{\Gamma}\left(x_{i}, x_{j}\right) \leq M$ or equivalently that x_{i} and x_{j} are connected in $\Gamma=\Delta$. But the latter fact follows by our assumptions, since $x_{i} \cdot(\tilde{u} \cdot x)=x_{j} \cdot \tilde{v}$ holds for some $x \in X \cup\{\lambda\}$, where λ denotes the empty word. That is, we have the following path in Δ

$$
x_{i} \xrightarrow{\tilde{u}} x_{i} \cdot \tilde{u} \xrightarrow{x} x_{i} \cdot \tilde{u} \cdot x=x_{j} \cdot \tilde{v} \longleftrightarrow \stackrel{\tilde{v}}{ } x_{j}
$$

We may deduce that the Cayley graph of S possesses the fellow traveller property with respect to L.

Next we verify that if A is an automatic S-act, then $\Gamma_{X}(A, S)$ possesses fellow traveller property. We follow the group and semigroup theoretical proofs.

Proposition 3.7.5. Let S be a semigroup generated by a finite set X. Let A be an automatic S-act. Then there exist regular languages L_{1}, \ldots, L_{n} over X, such that $\Gamma_{X}(A, S)$ has the fellow traveller property with respect to L_{1}, \ldots, L_{n} and A_{0}.

Proof. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure for A with respect to the generating set $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$. For each regular language $L_{\left(a_{i}, a_{j}\right) x}, x \in X \cup\{=\}$ consider a finite state automaton $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$ accepting it and choose a constant $N \in \mathbb{N}$, such that N is greater then the number of states of any of the automata defined. Let $\Delta=\Gamma_{X}(A, S)$.

Choose regular languages L_{i}, L_{j} and assume that $d_{\Delta}\left(a_{i} \cdot u, a_{j} \cdot v\right) \leq 1$ holds, where $(u, v) \in L_{i} \times L_{j}$. Without loss of generality we can assume that $a_{i} \cdot(u \cdot y)=a_{j} . v$ for some $y \in X \cup\{\lambda\}$, where λ denotes the empty word. Then $(u, v) \delta_{X}$ is accepted by the automaton $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$, where $x=y$ if $y \in X$ and x is the symbol $=$ if $y=\lambda$. Start reading the word $(u, v) \delta_{X}$ in $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$ and assume that after reading the first t letters $(u(t), v(t)) \delta_{X}$, we are at state q. Let $(\tilde{u}, \tilde{v}) \delta_{X}$ be the shortest word over $X(2, \$)$ such that reading $(\tilde{u}, \tilde{v}) \delta_{X}$ from state q, we arrive at a final state of $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$. Clearly, the length of $(\tilde{u}, \tilde{v}) \delta_{X}$ is less then N, since the number of states of the considered automaton is less then N. Furthermore, since $(u(t), v(t)) \delta_{X}(\tilde{u}, \tilde{v}) \delta_{X}$ is accepted by $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$, we have the following diagram in Δ :

That is,

$$
d_{\Delta}\left(a_{i} \cdot u(t), a_{j} \cdot v(t)\right) \leq|\tilde{u}|+|\tilde{v}|+|x| \leq 2 N+1,
$$

which proves that the fellow traveller property holds in Δ with respect to L_{i}, L_{j} and a_{i}, a_{j}. Since L_{i}, L_{j} were arbitrarily chosen, we may deduce that Δ possesses the fellow traveller property with respect to L_{1}, \ldots, L_{n} and A_{0}.

Corollary 3.7.6. Let S be an automatic semigroup. Then the Cayley graph of S possesses the fellow traveller property.

Proof. Immediately follows from Proposition 3.1.10 and Propositions 3.7.4 and 3.7.5.

Corollary 3.7.7. Let S be a monoid and assume that $A=S / \mathcal{R}$ is an automatic left S-act. Then $\Gamma_{X}(A, S)$ has the fellow traveller property.

We will also make use of the following corollary.
Corollary 3.7.8. Let S be a semigroup generated by a finite set X and let A be an S-act. Assume that $\left(X, L_{1}, \ldots, L_{n}\right)$ forms an automatic structure with respect to the generating set $A_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$ for A. Let $l \in \mathbb{N}$. Then there exists a constant $k \in \mathbb{N}$, such that whenever $a_{i} . u w=a_{j} . v$ holds for some $w \in X^{+},|w| \leq l$, where $(u, v) \in L_{i} \times L_{j}$, then $d_{\Delta}\left(a_{i} \cdot u(t), a_{j} \cdot v(t)\right) \leq k$ holds in $\Delta=\Gamma_{X}(A, S)$.

Proof. Let $L=\left\{w \in X^{+}| | w \mid \leq l\right\}$. Since for all $a_{i}, a_{j} \in A_{0}$ and $w \in L$ the languages $L_{\left(a_{i}, a_{j}\right)_{w}}=\left\{(u, v) \mid a_{i} . u w=a_{j} . v\right\} \delta_{X}$ are regular by Lemma 3.4.8, finite state automata $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{w}}$ can be defined accepting these languages. We can choose a constant $N \in \mathbb{N}$ that is greater than the number of states in any of the automata defined. The proof now continues along the same lines as the proof of Proposition 3.7.5.

In preparation for the next section, we make the following observation. Let S be a regular semigroup generated by a finite set X and let R be an \mathcal{R}-class of S. Then, for any regular language L over X and $s \in R$, for which $s \cdot L \varphi=R^{0}$ holds, the graph $\Delta=\Gamma_{X}\left(R^{0}, S^{0}\right)$ associated to the right S^{0}-act R^{0} possesses the fellow traveller property with respect to L and $\{s\}$. Indeed, since we have for all $s, t \in R^{0}$ that $d_{\Delta}(s \cdot u, s \cdot v) \leq 2$. This fact ruins our hopes to connect Schützenberger automaticity of R and the fellow traveller property of Δ, and urges us to introduce the following definition.

Definition 3.7.9. Let S be a semigroup and R be an \mathcal{R}-class of S. Let L be a regular language over X and $s \in R$ such that $s \cdot L \varphi=R$. The Schützenberger graph $\Gamma=\operatorname{S\Gamma }_{X}(R)$ is said to have the fellow traveller property with respect to L and $\{s\}$, if there exists a constant $k \in \mathbb{N}$ such that in the Schützenberger graph of R whenever $u, v \in L$ with $d_{\Gamma}(s \cdot u, s \cdot v) \leq 1$, then $d_{\Gamma}(s \cdot u(t), s \cdot v(t)) \leq k$ holds for all $t \geq 1$.

Similarly to Proposition 3.7.5 and Corollary 3.7.8 the following proposition and corollary can be proved:

Proposition 3.7.10. Let S be a regular semigroup generated by a finite set X and let R be a Schützenberger automatic \mathcal{R}-class of S. Let $s \in R$. Then there exists a regular language L over X, such that $\mathrm{S}_{X}(R)$ has the fellow traveller property with respect to L and $\{s\}$.

Corollary 3.7.11. Let S be a regular semigroup generated by a finite set X and R be an \mathcal{R}-class of S. Let $s \in R$ and K be a regular language over X satisfying condition ($S 2$) of Proposition 3.2.1. Let $l \in \mathbb{N}$. Then there exists a constant $k \in \mathbb{N}$, such that whenever $s \cdot u w=s \cdot v$ for some $w \in X^{+},|w| \leq l$, where $u, v \in L$, then $d_{\Gamma}(s \cdot u(t), s \cdot v(t)) \leq k$ holds in the Schützenberger graph $\Gamma=\Gamma_{X}(R)$.

3.8 Fellow traveller property II.

We have seen in the previous section that if A is an automatic S-act, then the fellow traveller property holds in $\Gamma_{X}(A, S)$. The question naturally arises whether the converse holds or not:

Problem: Let A be an S-act. Is it true that if $\Gamma_{X}(A, S)$ possesses the fellow traveller property then A is automatic?

We know that groups can be characterized by the fellow traveller property, while semigroups usually cannot. Hence, with Propositions 3.1.10 and 3.7.4 in mind an affirmative answer can be given if A is the right S-act S, where S is a group, but if A is the right S-act S, where S is a semigroup then the answer is expected to be negative. As a reaction to the result that fellow traveller property does not characterize automatic semigroups, investigations continued in two directions:
(a) On one hand, semigroup classes closely related to groups came into the focus of research; i.e. it was shown in [4] that completely simple semigroups can be characterized by the fellow traveller property.
(b) On the other hand, modification of the concept of automaticity has been considered in [34]. With the introduction of the notion of prefix-automatic monoids and the notion of monoids of finite geometric type the following results are verified:
(i) Prefix-automaticity is still a valid generalization of the group theoretical notion of automaticity.
(ii) Prefix-automatic monoids of finite geometric type are characterized by the fellow traveller property.

These considerations suggest that if we want to obtain a positive answer to our proposed problem, then we need to have structural information and a finiteness condition on the S-act A.

The main purpose of this section is to prove
Theorem 3.8.1. Let S be a regular semigroup with finitely many idempotents. Assume that each \mathcal{R}-class possesses the fellow traveller property. Then S is Schützenberger automatic.

The key to prove Theorem 3.8.1 is based on the following proposition.
Proposition 3.8.2. Let S be a regular semigroup with finitely many idempotents. Let R be an arbitrary \mathcal{R}-class of S and let $e \in E(S) \cap R$. Then R is Schützenberger automatic if and only if H_{e} is automatic.

Proposition 3.8.2 is proved in three steps. The first step is to find a generating set for H_{e} in terms of generators of S. The second step is to prove that if the Schützenberger graph of R possesses the fellow traveller property then the Cayley graph of H_{e} possesses the fellow traveller property. The final step is to prove that that if H_{e} is automatic, then R is Schützenberger automatic.

First step. Let S be a regular semigroup generated by a set X, and let G be a maximal subgroup of S. In particular, G is an \mathcal{H}-class of S, and the identity element e of G is an idempotent in S. Recall that e is a left identity in its \mathcal{R}-class. Our aim is to find a generating set for G. In doing so, we will translate the results from [32] into our setting.

The following concept plays a central role. Consider the \mathcal{R}-class R of e and choose representatives $e=r_{0}, r_{1}, r_{2}, \ldots$ of the \mathcal{H}-classes contained in R. For each chosen representative choose an inverse $r_{0}^{\prime}=e, r_{1}^{\prime}, r_{2}^{\prime}, \ldots\left(r_{i}^{\prime} \in V\left(r_{i}\right)\right)$. Clearly $e r_{i}=r_{i}$ and $r_{i} \mathcal{D} r_{j}^{\prime}$. Illustrating what we have done:

R_{e}| $\cdot r_{0}=e$ | $\cdot r_{1}$ | $\cdot r_{2}$ | $\cdot r_{3}$ | |
| :---: | :---: | :---: | :---: | :---: |
| | $\cdot r_{3}^{\prime}$ | | | |
| $\cdot r_{1}^{\prime}$ | | | $\cdot r_{2}^{\prime}$ | |
| | | | | |

For a word w over X and a representative r_{i}, if $r_{i} \cdot w \varphi \mathcal{R} e$, then we let $r_{i w}$ denote the representative of the \mathcal{H}-class of $r_{i} \cdot w \varphi$.

We verify
Proposition 3.8.3. If X generates S, then

$$
Y=\left\{r_{i} x\left(r_{i x}\right)^{\prime} e \mid r_{i} x \mathcal{R} e\right\}
$$

generates G as a semigroup.
Proof. First we show that $Y \subseteq G$. Let $r_{i} x\left(r_{i x}\right)^{\prime} e \in Y$. Then, $r_{i x} \mathcal{H} r_{i} x \mathcal{R} e$, and hence $R_{\left(r_{i x}\right)^{\prime}} \cap L_{r_{i x} x}$ contains an idempotent, namely $\left(r_{i x}\right)^{\prime} r_{i x}$. It follows by Proposition 2.1.5, that $r_{i} x\left(r_{i x}\right)^{\prime} \in L_{\left(r_{i x}\right)^{\prime}} \cap R_{r_{i} x} \subseteq R_{e}$. On the other hand, $r_{i} x\left(r_{i x}\right)^{\prime} \mathcal{H} r_{i x}\left(r_{i x}\right)^{\prime} \mathcal{R} e$, and hence $R_{e} \cap L_{r_{i} x\left(r_{i x}\right)^{\prime}}$ contains an idempotent, namely $r_{i x}\left(r_{i x}\right)^{\prime}$. Applying Proposition 2.1.5 one more time, we obtain that $r_{i} x\left(r_{i x}\right)^{\prime} e \in L_{e} \cap R_{r_{i} x}=G$. Illustrating the argument:

By Proposition 2.1.5 we also have that for $y_{1}, y_{2} \in Y, y_{1} \cdot y_{2} \in G$ holds. Let $g \in G$, and assume that $g=x_{1} \ldots x_{n}$, where $x_{i} \in X(1 \leq i \leq n)$. We verify that g can be written in terms of generators in Y. Clearly $g=e g=e x_{1} \ldots x_{n}$ and hence $r_{0 x_{1} \ldots x_{n}}=r_{0}=e$. We make the following further observations.
(1) Since $e \mathcal{R} e x_{1} \ldots x_{n}$, we have for all $1 \leq i \leq n$ that

$$
\begin{equation*}
e \mathcal{R} e x_{1} \ldots x_{i} \tag{3.6}
\end{equation*}
$$

Moreover, since \mathcal{R} is a left congruence, it follows that

$$
\begin{equation*}
h \mathcal{R} h x_{1} \ldots x_{i} \quad \text { for all } \quad h \in G, 1 \leq i \leq n \tag{3.7}
\end{equation*}
$$

(2) For all $1 \leq i<n$,

$$
\begin{equation*}
r_{0 x_{1} \ldots x_{i}} x_{i+1} \mathcal{R} e \tag{3.8}
\end{equation*}
$$

For, by definition and by (3.6), e $\mathcal{R} r_{0} x_{1} \ldots x_{i} \mathcal{H} r_{0 x_{1} \ldots x_{i}}$ and hence it follows by Proposition 2.1.11 that $G r_{0} x_{1} \ldots x_{i}=G r_{0 x_{1} \ldots x_{i}}$. So, there exists $h \in G$ such that

$$
h x_{1} \ldots x_{i}=h r_{0} x_{1} \ldots x_{i}=e r_{0 x_{1} \ldots x_{i}}=r_{0 x_{1} \ldots x_{i}} .
$$

Multiplying each side on the right by x_{i+1}, and making use of (3.7), we obtain that $r_{0 x_{1} \ldots x_{i}} x_{i+1} \mathcal{R} e$ indeed holds.
(3) Since $r_{0 x_{1} \ldots x_{i} x_{i+1}} \mathcal{H} r_{0 x_{1} \ldots x_{i+1}} \mathcal{L}\left(\left(r_{0 x_{1} \ldots x_{i+1}}\right)^{\prime} r_{0 x_{1} \ldots x_{i+1}}\right)$, and since every idempotent is a right identity in its \mathcal{L}-class, we have that

$$
\begin{equation*}
r_{0 x_{1} \ldots x_{i}} x_{i+1}=r_{0 x_{1} \ldots x_{i}} x_{i+1}\left(\left(r_{0 x_{1} \ldots x_{i+1}}\right)^{\prime} r_{0 x_{1} \ldots x_{i+1}}\right) . \tag{3.9}
\end{equation*}
$$

We are now ready to rewrite g in terms of generators of Y :

$$
\begin{array}{rlr}
g=e x_{1} x_{2} \ldots x_{n} & =r_{0} x_{1} x_{2} \ldots x_{n} & \\
& =\left(r_{0} x_{1} r_{0 x_{1}}^{\prime} r_{0 x_{1}}\right) x_{2} \ldots x_{n} & \\
& =r_{0} x_{1} r_{0 x_{1}}^{\prime}\left(r_{0 x_{1}} x_{2} r_{0 x_{1} x_{2}}^{\prime} r_{0 x_{1} x_{2}}\right) \ldots x_{n} & \\
& \vdots & \\
& =r_{0} x_{1} r_{0 x_{1}}^{\prime} r_{0 x_{1}} x_{2} r_{0 x_{1} x_{2}}^{\prime} r_{0 x_{1} x_{2}} \ldots\left(r_{0 x_{1} \ldots x_{n-1}} x_{n}\left(r_{0 x_{1} \ldots x_{n}}\right)^{\prime} r_{0 x_{1} \ldots x_{n}}\right),
\end{array}
$$

Using the fact that e is a left identity in its \mathcal{R}-class and that $r_{0 x_{1} \ldots x_{i}} \mathcal{R} e$ for all $1 \leq i \leq n$ by (3.6), we obtain that

$$
g=\left(r_{0} x_{1} r_{0 x_{1}}^{\prime} e\right)\left(r_{0 x_{1}} x_{2} r_{0 x_{1} x_{2}}^{\prime} e\right) \ldots\left(r_{0 x_{1} \ldots x_{n-1}} x_{n}\left(r_{0 x_{1} \ldots x_{n}}\right)^{\prime} e\right)
$$

To make notation convenient, we write $\left[r_{i}, x\right]$ instead of $r_{i} x\left(r_{i x}\right)^{\prime} e \in Y$. Proposition 3.8.3 asserts that $Y=\left\{\left[r_{i}, x\right] \mid r_{i} x \mathcal{R} e\right\}$ generates G. By the proof of Proposition 3.8.3, we have that for $g \in G$,

$$
g=x_{1} x_{2} \ldots x_{n}=\left[r_{0}, x_{1}\right]\left[r_{0 x_{1}}, x_{2}\right] \ldots\left[r_{0 x_{1} \ldots x_{n-1}}, x_{n}\right] .
$$

We observe here that the length of a word over X that represents an element of G does not change when we rewrite it in terms of generators of Y.

Second step. We keep the notation of the first step. We prove that if $R=R_{e}$ is a Schützenberger automatic \mathcal{R}-class, and $E(S)$ is finite, then G, our chosen maximal subgroup, is automatic. We need the following lemma and its corollary.

Lemma 3.8.4. Let S be a regular semigroup generated by a finite set X and assume that $E(S)$ is finite. Let R be an \mathcal{R}-class of S. There exists a constant $c \in \mathbb{N}$ such that whenever $s, t \in R$ are such that $s=t x$ for some $x \in X$, then $t \cdot w=s$ for some word $w \in X^{+}$with length less then or equal to c.

Proof. Since $E(S)$ is finite, there exists a constant $c_{1} \in \mathbb{N}$ such that each idempotent $e \in E(S)$ can be represented by a word of length less then or equal to c_{1}. For each $x \in X$, choose $x^{\prime} \in V(x)$. Since X is finite, there exists a contant $c_{2} \in \mathbb{N}$ such that each chosen element $x^{\prime} \in V(x)$ can be represented by a word of length less then or equal to c_{2}. Let $c=2 c_{1}+c_{2}$. Assume that $s \mathcal{R} t$ and that $s x=t$. Then, by Proposition 2.1.8, $s s^{\prime}=t t^{\prime}$ for some $s^{\prime} \in V(s)$ and $t^{\prime} \in V(t)$. Let $h \in S\left(s^{\prime} s, x x^{\prime}\right)$. Then, by Proposition 2.1.10, $t^{\prime \prime}=x^{\prime} h s^{\prime} \in V(x s)=V(t)$, and so we obtain that

$$
s=t t^{\prime} s=t t^{\prime \prime} t t^{\prime} s=t t^{\prime \prime} s=t \cdot x^{\prime} h s^{\prime} s
$$

By definition $h \in E(S)$ and so we obtain that $x^{\prime} h s^{\prime} s$ can be represented by a word of length less then or equal to c.

An immediate corollary of Lemma 3.8.4:
Corollary 3.8.5. Let S be a regular semigroup generated by a finite set X and assume that $E(S)$ is finite. Let R be an \mathcal{R}-class of S and denote by Γ the Schützenberger graph of R. Let $k \in \mathbb{N}$. Then there exists a constant $c \in \mathbb{N}$ such that whenever $s, t \in R$ are such that $d_{\Gamma}(s, t) \leq k$, then $s \cdot w=t$ for some word $w \in X^{+}$with length less then or equal to c.

Proof. By definition, if $d_{\Gamma}(s, t) \leq k$, then there exists an undirected path

$$
s=s_{0} \xrightarrow{x_{0}} s_{1} \xrightarrow{x_{1}} s_{2} \ldots s_{n-1} \xrightarrow{x_{n-1}} s_{n}=t
$$

such that $n \leq k$. We want to verify that there exists a directed path with some bounded length from s to t. Two cases can occur:
(i) If $s_{i} x_{i}=s_{i+1}$, then our arrow point in the "right" direction.
(ii) If $s_{i+1} x_{i}=s_{i}$, then by Lemma 3.8.4, there exists a constant c_{1} and a word $w \in X^{+}$, whose length is less then or equal to c_{1} such that $s_{i} \cdot w=s_{i+1}$. Hence arrows that point in the "wrong" direction can be substituted by a sequence of at most c_{1} arrows pointing in the "right" direction.

We may now deduce that there is a directed path from s to t in the Schützenberger graph of R, whose length is less then or equal to $c=k c_{1}$.

Proposition 3.8.6. Let S be a regular semigroup generated by a finite set X and let G be a maximal subgroup of S with identity element e. Assume that $E(S)$ is finite and that the Schützenberger graph of R_{e} possesses the fellow traveller property. Then G is an automatic group. In particular, if R_{e} is Schützenberger automatic, then G is automatic.

Proof. For the sake of convenience, we assume that $e \in X$. We let $\varphi: X^{+} \rightarrow S$ denote the homomorphism extending the identity map $\iota_{1}: X \rightarrow S$. Since R_{e} possesses the fellow traveller property, there exists a regular language L over X such that $e \cdot L \varphi=R_{e}$. By.our assumptions $E(S)$ is finite, and so R_{e} contains finitely many \mathcal{H}-classes. Choose representatives $e=r_{0}, r_{1}, \ldots, r_{n}$ of the \mathcal{H}-classes contained in R_{e} and also choose inverses of the representatives $e=r_{0}^{\prime}, r_{1}^{\prime}, \ldots, r_{n}^{\prime}\left(r_{i}^{\prime} \in V\left(r_{i}\right)\right)$. According to Proposition 3.8:3 and using the notation introduced after Proposition 3.8.3, the finite set $Y=\left\{\left[r_{i}, x\right] \mid x \in\right.$ $\left.X, r_{i} x \mathcal{R} e\right\}$ generates G as a semigroup. Let $\psi: Y^{+} \rightarrow G$ be the homomorphism extending the map $\iota: Y \rightarrow G ;\left[r_{i}, x\right] \mapsto r_{i} x r_{i x}^{\prime} e$.

Next, we construct a regular language over Y that is mapped onto G. For this, let

$$
\widetilde{L}=\{e w \in e L \mid(e w) \varphi \in G\} .
$$

It is immediate that $\widetilde{L} \varphi=G$. Consider the map

$$
\varsigma: \widetilde{L} \rightarrow Y^{+} ; x_{1} x_{2} \ldots x_{m} \mapsto\left[r_{0}, x_{1}\right]\left[r_{0 x_{1}}, x_{2}\right] \ldots\left[r_{0 x_{1} \ldots x_{m-1}}, x_{m}\right] .
$$

Let $K=\widetilde{L}_{\varsigma}$. Since $\widetilde{L} \varphi=G$, we have that $K \psi=G$. We first show that K is a regular language over Y. Let $\mathcal{A}_{1}=\left(\Sigma_{1}, X, \nu, p, T\right)$ be a finite state automaton accepting the regular language $e L$. Let $\epsilon \notin Y$ and $Z=Y \cup\{\epsilon\}$. Consider the automaton $\mathcal{A}=(\Sigma, Y, \mu, q, F)$, where

$$
\Sigma=\left(\Sigma_{1} \times Y\right) \cup\{q\} \cup F S, q=(p, \epsilon), F=T \times Y
$$

and the transition function μ is defined as follows:

$$
\mu\left(q,\left[r_{j}, y\right]\right)=\left(\nu(p, y),\left[r_{j}, y\right]\right)
$$

for $\left(\tilde{p},\left[r_{i}, x\right]\right) \in \Sigma_{1} \times Y$ we define

$$
\mu\left(\left(\tilde{p},\left[r_{i}, x\right]\right),\left[r_{j}, y\right]\right)= \begin{cases}\left(\nu(\tilde{p}, y),\left[r_{j}, y\right]\right) & \text { if } r_{i x}=r_{j}, \\ F S & \text { otherwise }\end{cases}
$$

and

$$
\mu\left(F S,\left[r_{j}, y\right]\right)=F S .
$$

By the definition of K, it is straightforward, that every word $w \in K$ is accepted by \mathcal{A}. On the other hand, by the definition of μ, we have that every word accepted by \mathcal{A} is an element of K. We may now deduce that K is a regular language for which $K \psi=G$.

We next prove that G is automatic by showing that the fellow traveller property holds in the Cayley graph Δ of G. The Schützenberger graph of R will be denoted by Γ. We will work with distances both in the Cayley graph Δ of G and in the Schützenberger graph Γ of R. The notation will always make it clear in which graph the distance is understood. First, we introduce the following upper bounds:

- Since Y is finite, there exists $c_{1} \in \mathbb{N}$, such that for every generator $\left[r_{i}, x\right] \in Y$ there exists a word w over X of length less then or equal to c_{1} such that $\left[r_{i}, x\right] \psi=w \varphi$.
- Since the set of representatives of the \mathcal{H}-classes contained in R_{e} is finite, there exists $c_{2} \in \mathbb{N}$, such that $r_{i}^{\prime} e,\left(r_{i}^{\prime} \in V\left(r_{i}\right), 1 \leq i \leq n\right)$ can be represented by a word over X of length less then or equal to c_{2}. In particular $e=r_{0}$ can be represented by a word with length less or equal to c_{2}.

Let $u, v \in K$ for which $d_{\Delta}(u, v) \leq 1$ holds. We verify that there exists a constant $c \in \mathbb{N}$ such that $d_{\Delta}(u(t), v(t)) \leq c$ holds for all $t \geq 1$.

We may assume that $u \cdot\left[r_{i}, x\right]=v$ for some $\left[r_{i}, x\right] \in Y$. Consider $e \tilde{u}, e \tilde{v} \in \widetilde{L}$ for which $(e \tilde{u})_{\varsigma} \equiv u$ and $(e \tilde{v})_{\varsigma} \equiv v$. Let w be a word over X such that $w \varphi=\left[r_{i}, x\right] \psi$. We may assume that $|w| \leq c_{1}$. Then $e \cdot \tilde{u} w=e \cdot \tilde{v}$, and hence $d_{\Gamma}(e \cdot \tilde{u}, e \cdot \tilde{v}) \leq c_{1}$. Making use of Corollary 3.7.11, we have that there exists $k \in \mathbb{N}$ such that $d_{\Gamma}(e \cdot \tilde{u}(t), e \cdot \tilde{v}(t)) \leq k$ for all $t \geq 1$.

Let $t \geq 1$. We verify that in the Schützenberger graph of R, the distance between the vertices $e \cdot \tilde{u}(t) \varphi$ and $u(t) \psi$ is less then c_{2}. Assume that

$$
u \equiv\left[r_{0}, x_{1}\right]\left[r_{0 x_{1}}, x_{2}\right] \ldots\left[r_{0 x_{1} \ldots x_{i-1}}, x_{l}\right] .
$$

Then $e \tilde{u} \equiv x_{1} \ldots x_{l}$ and

$$
\begin{array}{rlr}
u(t) & =\left[r_{0}, x_{1}\right]\left[r_{0 x_{1}}, x_{2}\right] \ldots\left[r_{0 x_{1} \ldots x_{t-1}}, x_{t}\right] \\
& =r_{0} x_{1} r_{0 x_{1}}^{\prime}\left(e \cdot r_{0 x_{1}}\right) x_{2} r_{0 x_{1} x_{2}}^{\prime} e \cdot \ldots\left(e \cdot r_{0 x_{1} \ldots x_{t-1}}\right) x_{t} r_{0 x_{1} \ldots x_{t}}^{\prime} e \\
& \left.=\left(r_{0} x_{1} r_{0 x_{1}}^{\prime} r_{0 x_{1}}\right) x_{2} r_{0 x_{1} x_{2}}^{\prime} \ldots \cdot r_{0 x_{1} \ldots x_{t-1}} x_{t} r_{0 x_{1} \ldots x_{t}^{\prime}}^{\prime} \quad \text { (since } r_{i} \mathcal{R} e\right) \\
& =r_{0}\left(x_{1} \ldots x_{t}\right) r_{0 x_{1} \ldots x_{t}}^{\prime} e \tag{3.9}\\
& =e \cdot \tilde{u}(t) \cdot r_{0 x_{1} \ldots x_{t}}^{\prime} e . & \text { (by (3.9)) }
\end{array}
$$

It follows that $d_{\Gamma}(u(t), e \cdot \tilde{u}(t)) \leq c_{2}$. Similarly, $d_{\Gamma}(v(t), e \cdot \tilde{v}(t)) \leq c_{2}$ and so we have that

$$
\begin{aligned}
d_{\Gamma}(u(t), v(t)) & \leq d_{\Gamma}(u(t), e \cdot \tilde{u}(t))+d_{\Gamma}(e \cdot \tilde{u}(t), e \cdot \tilde{v}(t))+d_{\Gamma}(e \cdot \tilde{v}(t), v(t)) \\
& \leq c_{2}+k+c_{2}
\end{aligned}
$$

Illustrating this, we have

By Corollary 3.8.5, there exists a constant $c_{3} \in \mathbb{N}$ and a word $\bar{w} \in X^{+}$such that $|\bar{w}| \leq c_{3}$ and

$$
u(t) \psi \cdot(\bar{w} \varphi)=u(t) \psi \cdot(e \bar{w}) \varphi=v(t) \psi .
$$

It follows that $(e \bar{w}) \varphi \in G$. Clearly $(e \bar{w}) \varphi$ can be represented by a word over X with length less then or equal to $1+c_{3}$. According to the remark after Proposition 3.8.3, rewriting a word over X that represents an element of G does not change the length of the word and so we have that $(e \bar{w}) \varphi$ can be represented by a word over Y with length less then or equal to $1+c_{3}$. We may now deduce that there exists a word $\widetilde{w} \in Y^{+}$, such that $|\widetilde{w}| \leq 1+c_{3}$, and $u(t) \widetilde{w}=v(t)$ and so $d_{\Delta}(u(t), v(t)) \leq 1+c_{3}$ for all $t \geq 1$.

Third step. We prove
Proposition 3.8.7. Let S be a regular semigroup finitely generated by $X \subseteq S$ and assume that $E(S)$ is finite. Let $e \in E(S)$ and assume that H_{e} is automatic. Then R_{e} is Schützenberger automatic.

Proof. Assume that H_{e} is generated by a finite set $Y \subseteq H_{e}$. Let $\psi: Y^{+} \rightarrow H_{e}$ denote the homomorphism extending the identity map $\iota_{1}: Y \rightarrow H_{e}$. Let $K \subseteq Y^{+}$be a regular language such that (Y, K) form an automatic structure for H_{e} with uniqueness. Since $E(S)$ is finite, D_{e} contains finitely many \mathcal{L}-classes. We choose representatives $r_{0}=e, r_{1}, \ldots, r_{n}$ in each \mathcal{H}-class contained in R_{e}. For each representative r_{i}, we choose an inverse $r_{i}^{\prime} \in V\left(r_{i}\right)$. Since S is generated by X, it is also generated by the finite set

$$
Z=X \cup Y \cup\left\{r_{0}, \ldots, r_{n}\right\} .
$$

Let $\varphi: Z^{+} \rightarrow S$ denote the homomorphism extending the identity map $\iota: Z \rightarrow S$. Let

$$
L=\bigcup_{i=1}^{n} K r_{i}
$$

By Green's Lemma, $L \varphi=R_{e}$. Moreover, since (Y, K) is an automatic structure with uniqueness, for each $s \in R_{e}$, there exists exactly one $w \in L$ such that $w \varphi=s$, and so $L_{=}=\{(u, u) \mid u \in L\} \delta_{Z}$ is a regular language. To show that (Z, L) is a Schützenberger automatic structure for R_{e}, we have to show that for each $z \in Z, L_{z}$ is a regular language. We first fix notation. Let

$$
I=\left\{(i, j) \mid 1 \leq i, j \leq n, r_{i} z \mathcal{H} r_{j}\right\} .
$$

Observe that if $(i, j) \in I$, then $r_{i} z r_{j}^{\prime} e \in H_{e}$. Indeed, since $r_{j}^{\prime} r_{j} \in L_{r_{i} z} \cap R_{r_{j}^{\prime}}$, we have by Proposition 2.1.5, that $r_{i} z r_{j}^{\prime} \in R_{r_{i} z} \cap R_{r_{j}}$. Since $r_{j} r_{j}^{\prime} \in L_{r_{i} z r_{j}^{\prime}} \cap R_{e}$, we have $r_{i} z r_{j}^{\prime} e \in$ $R_{r_{i} z r_{j}^{\prime}} \cap L_{e}=H_{e}$ by Proposition 2.1.5. Thus, for each $(i, j) \in I$ we can fix a word $w_{i, j} \in Y^{+}$ such that $w_{i, j} \psi=\left(r_{i} z r_{j}^{\prime} e\right) \varphi$. For each $(i, j) \in I$, we let

$$
L_{i, j}=L_{z} \cap\left(Y^{*} r_{i} \times Y^{*} r_{j}\right) \delta_{Z} .
$$

We first verify that

$$
\begin{equation*}
L_{z}=\bigcup_{(i, j) \in I} L_{i, j}, \tag{3.10}
\end{equation*}
$$

then we show that $L_{i, j}$ is a regular language for each $(i, j) \in I$. It is immediate that $L_{i, j} \subseteq L_{z}$ for each $(i, j) \in I$. To prove the reverse inclusion, we show the following stronger statement:

$$
\begin{equation*}
\left(\tilde{u} r_{i}, \tilde{v} r_{j}\right) \delta_{Z} \in L_{z} \Longleftrightarrow r_{i} z \mathcal{H} r_{j} \text { and }(\tilde{u}, \tilde{v}) \delta_{Y} \in K_{w_{i, j}} \tag{3.11}
\end{equation*}
$$

First, assume that $\left(\tilde{u} r_{i}, \tilde{v} r_{j}\right) \delta_{Z} \in L_{z}$. Then $\tilde{u} r_{i} z=\tilde{v} r_{j}$ and it follows that $r_{i} z \mathcal{H} r_{j}$. On the other hand, multiplying each side on the right by $r_{j}^{\prime} e$, we obtain that $\tilde{u} r_{i} z r_{j}^{\prime} e=\tilde{v} r_{j} r_{j}^{\prime} e$. Since $r_{j} r_{j}^{\prime} \mathcal{R}$ e $\mathcal{H} \tilde{v}$, we have $\tilde{v} r_{j} r_{j}^{\prime} e=\tilde{v}$ and so $\tilde{u} r_{i} z r_{j}^{\prime} e=\tilde{v}$. It follows that $(\tilde{u}, \tilde{v}) \delta_{Z} \in K_{w_{i, j}}$.

For the converse, assume that $(\tilde{u}, \tilde{v}) \delta_{Z} \in K_{w_{i, j}}$ and that $r_{i} z \mathcal{H} r_{j}$. Then $\tilde{u} w_{i, j}=\tilde{v}$, and so $\tilde{u} r_{i} z r_{j}^{\prime} e=\tilde{v}$ holds in S. Multiplying each side on the right by r_{j}, we obtain that $\tilde{u} r_{i} z r_{j}^{\prime} e r_{j}=\tilde{v} r_{j}$. Since $e \mathcal{R} r_{j}$, we have $e r_{j}=r_{j}$. By assumption $r_{i} z \mathcal{H} r_{j} \mathcal{L} r_{j}^{\prime} r_{j}$, and so $r_{i} z r_{j}^{\prime} r_{j}=r_{i} z$. We may now deduce that $\tilde{u} r_{i} z r_{j}^{\prime} e r_{j}=\tilde{u} r_{i} z=\tilde{v} r_{j}$, and so $\left(\tilde{u} r_{i}, \tilde{v} r_{j}\right) \delta_{Z} \in L_{z}$.

Fix $(i, j) \in I$. We construct a finite state automaton accepting $L_{i, j}$. To simplify notation, we let w denote $w_{i, j}$. Since (Y, K) is an automatic structure for H_{e}, we have by Proposition 2.3.14, that K_{w} is a regular language. Let $\mathcal{A}_{1}=\left(\Sigma_{1}, Y, \mu_{1}, p_{1}, F_{1}\right)$ be a finite state automaton accepting K_{w}. Consider the finite state automaton $\mathcal{A}_{i, j}=(\Sigma, Y \cup$ $\left.\left\{r_{i}, r_{j}\right\}, \mu, p, F\right)$, where

$$
\Sigma=\left(\Sigma_{1} \times\left\{\emptyset, r_{i}\right\} \times\left\{\emptyset, r_{j}\right\}\right) \cup\{F S\} ; \quad F=F_{1} \times\left\{r_{i}\right\} \times\left\{r_{j}\right\} ; \quad p=\left(p_{1}, \emptyset, \emptyset\right) .
$$

The transition function μ is defined in the following way.

$$
\begin{aligned}
& \mu\left((q, \emptyset, \emptyset),\left(y_{1}, y_{2}\right)\right)= \begin{cases}\left(\mu_{1}\left(q,\left(y_{1}, y_{2}\right)\right), \emptyset, \emptyset\right) & \text { if } y_{1}, y_{2} \in Y, \\
\left(\mu_{1}\left(q,\left(\$, y_{2}\right)\right), r_{i}, \emptyset\right) & \text { if } y_{1}=r_{i}, y_{2} \in Y, \\
\left(\mu_{1}\left(q,\left(y_{1}, \$\right)\right), \emptyset, r_{j}\right) & \text { if } y_{1} \in Y, y_{2}=r_{j}, \\
\left(q, r_{i}, r_{j}\right) & \text { if } y_{1}=r_{i}, y_{2}=r_{j}, \\
F S & \text { otherwise. }\end{cases} \\
& \mu\left(\left(q, r_{i}, \emptyset\right),\left(y_{1}, y_{2}\right)\right)= \begin{cases}\left(\mu_{1}\left(q,\left(\$, y_{2}\right)\right), r_{i}, \emptyset\right) & \text { if } y_{1}=\$, y_{2} \in Y, \\
\left(q, r_{i}, r_{j}\right) & \text { if } y_{1}=\$, y_{2}=r_{j}, \\
F S & \text { if } y_{1} \neq \$.\end{cases}
\end{aligned}
$$

Similarly,

$$
\mu\left(\left(q, \emptyset, r_{j}\right),\left(y_{1}, y_{2}\right)\right)= \begin{cases}\left(\mu_{1}\left(q,\left(y_{1}, \$\right)\right), \emptyset, r_{j}\right) & \text { if } y_{1} \in Y, y_{2}=\$ \\ \left(q, r_{i}, r_{j}\right) & \text { if } y_{1}=r_{i}, y_{2}=\$ \\ F S & \text { if } y_{2} \neq \$\end{cases}
$$

and define

$$
\mu\left(\left(q, r_{i}, r_{j}\right),\left(y_{1}, y_{2}\right)\right)=F S .
$$

Let $u \equiv a_{1} \ldots a_{k}$ and $v \equiv b_{1} \ldots b_{m}$ be words over Z and assume that $(u, v) \delta_{Z}$ is accepted by $\mathcal{A}_{i, j}$. Without loss of generality we may assume that $k \leq m$. Since $(u, v) \delta_{Z}$ is accepted by $\mathcal{A}_{i, j}$, we have that the path

$$
p \xrightarrow{\left(a_{1}, b_{1}\right)} q_{1} \xrightarrow{\left(a_{2}, b_{2}\right)} \ldots \xrightarrow{\left(a_{k}, b_{k}\right)} q_{k} \xrightarrow{\left(\$, b_{k+1}\right)} \ldots \xrightarrow{\left(\$, b_{m}\right)} q_{m}
$$

is successful, and so $q_{m} \in F$. It follows that $a_{k}=r_{i}$ and $b_{m}=r_{j}$ and that the word $\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{m-1}\right) \delta_{Y} \in K_{v v}$. Keeping in mind (3.11), we indeed obtain that $(u, v) \delta_{Z} \in$ $L_{i, j}$.

Assume that $(u, v) \delta_{Z} \in L_{i, j}$. Then $u \equiv a_{1} \ldots a_{k-1} r_{i}$ and $v \equiv b_{1} \ldots b_{m-1} r_{j}$. Moreover, by (3.11), the word ($\left.a_{1} \ldots a_{k-1}, b_{1} \ldots b_{m-1}\right) \delta_{Y} \in K_{w}$ and so it is accepted by \mathcal{A}_{1}. From the construction of $\mathcal{A}_{i, j}$, it follows htat $(u, v) \delta_{Z}$ is indeed accepted by $\mathcal{A}_{i, j}$.

We may now deduce for each $(i, j) \in I$, the language $L_{i, j}$ is regular and so L_{z} is a regular language, since by (3.10), it is a finite union of regular languages. We have thus proved that (Z, L) is a Schützenberger automatic structure for R_{e}.

Combining Proposition 3.8.6 and 3.8.7, we obtain:
Corollary 3.8.8. Let S be a regular semigroup with finitely many idempotents. Let $e \in$ $E(S)$. Then H_{e} is automatic if and only if R_{e} is Schützenberger automatic.
Corollary 3.8.9. Let S be a regular semigroup with finitely many idempotents. Let R be an \mathcal{R}-class of S and assume that the fellow traveller property holds in the Schützenberger graph of R with respect to some regular language. Then R is Schützenberger automatic.

Proof. Let $e \in R$. If the fellow traveller property holds in R, then H_{e} is automatic by Proposition 3.8.6. If H_{e} is automatic, then R_{e} is Schützenberger automatic by Proposition 3.8.7.

3.9 Fellow traveller property III.

In the previous section, we verified that if S is a regular semigroup with finitely many idempotents, then the fellow traveller property of $\mathrm{S} \Gamma_{R}$ implies that R is Schützenberger automatic. In this section, we give an example which shows that Corollary 3.8.9 does not hold without the finiteness condition.

Let $X=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ be an infinite set, and consider the symmetric inverse monoid I_{X}. Let $T=\left\{\alpha_{x_{i}, x_{j}}: x_{i} \mapsto x_{j}\right\} \cup \emptyset$. Clearly T is an inverse subsemigroup of I_{X}, moreover

$$
\alpha_{x_{i}, x_{j}} \mathcal{R} \alpha_{x_{n}, x_{m}} \Longleftrightarrow x_{i}=x_{n} \quad \text { and } \quad \alpha_{x_{i}, x_{j}} \mathcal{L} \alpha_{x_{n}, x_{m}} \Longleftrightarrow x_{j}=x_{m}
$$

We may deduce that T is an aperiodic 0 -bisimple inverse subsemigroup in I_{X}. In particular, $T \backslash\{\emptyset\}$ is a \mathcal{D}-class of I_{X} containing infinitely many idempotents. Further on we denote $\alpha_{x_{0}, x_{0}}$ by α.

Next, we construct a finitely generated inverse subsemigroup S of I_{X} containing T. For this, consider the following three elements of I_{X} :

$$
\beta: x_{i} \mapsto\left\{\begin{array}{ll}
x_{i+2} & \text { if } i \text { is even, } \\
\text { undefined } & \text { otherwise }
\end{array} \quad \gamma: x_{i} \mapsto \begin{cases}x_{i+2} & \text { if } i \text { is odd } \\
x_{1} & \text { if } i=0 \\
\text { undefined } & \text { otherwise }\end{cases}\right.
$$

$$
\delta: x_{i} \mapsto \begin{cases}x_{i-1} & \text { if } i=2 n+1, \text { where } n \text { is not a prime, } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Let S be the inverse subsemigroup of I_{X} generated by $Y=T \cup\left\{\beta^{ \pm 1}, \gamma^{ \pm 1}, \delta^{ \pm 1}\right\}$.

Lemma 3.9.1. S is finitely generated by $\alpha, \beta^{ \pm 1}, \gamma^{ \pm 1}$ and $\delta^{ \pm 1}$.
Proof. We show, that any element of T can be written in terms of $\alpha, \beta^{ \pm 1}, \gamma^{ \pm 1}, \delta^{ \pm 1}$. By the definition of α, β, γ we have that

$$
\begin{equation*}
\alpha_{x_{0}, x_{2 n}}=\alpha \cdot \beta^{n} \quad \text { and } \quad \alpha_{x_{0}, x_{2 n+1}}=\alpha \cdot \gamma^{n+1} \tag{3.12}
\end{equation*}
$$

On the other hand $\alpha_{x, y}=\alpha_{x, x_{0}} \cdot \alpha_{x_{0}, y}=\alpha_{x_{0}, x}^{-1} \cdot \alpha_{x_{0}, y}$ holds. It follows now by (3.12) that S is generated by $\alpha, \beta^{ \pm 1}, \gamma^{ \pm 1}$ and $\delta^{ \pm 1}$ as a semigroup.

For notational convenience, we introduce the alphabet

$$
Z=\left\{a, b, b^{-1}, c, c^{-1}, d, d^{-1}\right\},
$$

where a corresponds to $\alpha, b^{ \pm 1}$ corresponds to $\beta^{ \pm 1}, c^{ \pm 1}$ corresponds to $\gamma^{ \pm 1}$ and $d^{ \pm 1}$ corresponds to $\delta^{ \pm 1}$. Consider now the Schützenberger graph R of α in the \mathcal{D}-class T of S :

(Note that we omitted the inverse arrows). Let $L=a \cup b^{*} \cup c^{*}$. Our aim is to show that SI_{R} possesses the fellow traveller property with respect to L and $\{\alpha\}$, and that R is not Schützenberger automatic.

Lemma 3.9.2. The Schützenberger graph $\mathrm{S} \Gamma_{R}$ possesses the fellow traveller property with respect to L and $\{\alpha\}$.

Proof. All distances considered in the proof will be distances in the Schützenberger $\operatorname{graph} \Gamma=\operatorname{S\Gamma } \Gamma_{X}(R)$. Therefore we write $d(s, t)$ instead of $d_{\Gamma}(s, t)$. Clearly L is a regular language, and $\alpha \cdot L \psi=R$. We verify that for all $u, v \in L$ with $d(\alpha \cdot u, \alpha \cdot v) \leq 1$, we have that $d(\alpha \cdot u(t), \alpha \cdot v(t)) \leq 4$. The following cases have to be dealt with:
(1) If $\alpha \cdot u=\alpha \cdot v$, then either $u \equiv v \equiv a$ or $u \equiv v \equiv b^{n}$ or $u \equiv v \equiv c^{n}, n \in \mathbb{N}$. Thus, $d(\alpha \cdot u(t), \alpha \cdot v(t)) \leq 4$ clearly follows.
(2) The case, when $\alpha \cdot u \cdot a=\alpha \cdot v$ is similar to the previous case.
(3) If $\alpha \cdot u \cdot b=\alpha \cdot v$, then either $u \equiv a$ and $v \equiv b$, or $u \equiv b^{n}$ and $v \equiv b^{n+1}, n \in \mathbb{N}$. In both cases, we clearly have that $d(\alpha \cdot u(t), \alpha \cdot v(t)) \leq 4$.
(4) If $\alpha \cdot u \cdot c=\alpha \cdot v$, then either $u \equiv a$ and $v \equiv c$, or $u \equiv c^{n}$ and $v \equiv c^{n+1}, n \in \mathbb{N}$. In both cases, we clearly have that $d(\alpha \cdot u(t), \alpha \cdot v(t)) \leq 4$.
(5) If $\alpha \cdot u \cdot d=\alpha \cdot v$, then $u \equiv c^{n+1}$ and $v \equiv b^{n}$, where n is not a prime. To verify that $d(\alpha \cdot u(t), \alpha \cdot v(t)) \leq 4$ holds for all $t \geq 1$, we consider the following cases:
(a) If t is even and $t \neq 2$, then

$$
\alpha \cdot c^{t} \cdot(c \cdot d)=\alpha \cdot c^{t+1} \cdot d=\alpha_{x_{0}, x_{2 t+1}} \cdot d=\alpha_{x_{0}, x_{2 t}}=\alpha \cdot b^{t}
$$

and hence $d(\alpha \cdot u(t), \alpha \cdot v(t))=2 \leq 4$.
(b) If $t=2$, then

$$
\alpha \cdot c^{2} \cdot d=\alpha \cdot b
$$

and hence $d(\alpha \cdot u(t), \alpha \cdot v(t))=1 \leq 4$.
(c) If t is odd and t is not a prime, then

$$
\alpha \cdot c^{t} \cdot(c \cdot d)=\alpha \cdot c^{t+1} \cdot d=\alpha_{x_{0}, x_{2 t+1}} \cdot d=\alpha_{x_{0}, x_{2 t}}=\alpha \cdot b^{t}
$$

and hence $d(\alpha \cdot u(t), \alpha \cdot v(t))=2 \leq 4$.
(d) If t is an odd prime, then using the fact that $t+1$ is even and making use of (a), we obtain that

$$
\alpha \cdot c^{t} \cdot c^{2} \cdot d=\alpha \cdot c^{t+1} \cdot(c \cdot d)=\alpha \cdot b^{t+1}
$$

and it follows that

$$
\alpha \cdot c^{t} \cdot\left(c^{2} \cdot d \cdot b^{-1}\right)=\alpha \cdot b^{t}
$$

That is, $d(\alpha \cdot u(t), \alpha \cdot v(t))=4$.

Lemma 3.9.3. The \mathcal{R}-class R of α is not Schützenberger automatic with respect to L and α.

Proof. One can easily see, that $L_{a}=L_{=}=\{(u, u) \mid u \in L\} \delta_{Z}$, that

$$
L_{b}=\{(u, v) \mid u, v \in L, \alpha \cdot u \cdot b=\alpha \cdot v\} \delta_{Z}=(a, b) \cup(b, b)^{+}(\$, b),
$$

and that

$$
L_{c}=\{(u, v) \mid u, v \in L, \alpha \cdot u \cdot c=\alpha \cdot v\} \delta_{Z}=(a, c) \cup(c, c)^{+}(\$, c) .
$$

Hence, these languages are regular. Clearly, we have that $(u, v) \in L_{d}$, if and only if $u=c^{n+1}$ and $v=b^{n}$, where n is not a prime. That is to say, that

$$
L_{d}=\left\{\left(c^{n+1}, b^{n}\right) \mid n \in \mathbb{N}, n \text { is not prime }\right\} \delta_{Z}
$$

Using the pumping lemma one can easily verify that L_{d} is not regular.

3.10 Finite presentability

Automatic groups are finitely presented. As far as automatic semigroups are concerned an example is given in [5, Example 4.4] for an automatic semigroup that is not finitely presented. On the other hand, as soon as we get closer to groups, for example consider completely simple semigroups, we see that the group theoretical result generalizes [4], that is being automatic does imply finite presentability.

Proposition 3.10.1. Let S be a Schützenberger automatic regular semigroup having finitely many idempotents. Then S is finitely presented.

Proof. By Proposition 3.8.6, the maximal subgroups of S are automatic, and hence they are finitely presented. According to [32, Theorem 4.1], a regular semigroup S with finitely many idempotent elements is finitely presented if and only if all maximal subgroups of S are finitely presented, and so we obtain the desired result.

The following proposition provides a generalization of [4, Corollary 1.2].
Proposition 3.10.2. Let S be an automatic regular semigroup with finitely many idempotents. Then S is finitely presented.

Proof. It follows by 3.5 .2 that S is Schützenberger automatic. Making use of Proposition 3.8.2, we have that the maximal subgroups of S are automatic, and hence they are finitely presented. Making use of [32, Theorem 4.1] once again, we obtain our desired result.

We end this section by proving:

Proposition 3.10.3. For a finitely generated completely simple semigroup S, the following are equivalent:
(1) S is Schützenberger automatic;
(2) All maximal subgroups of S are automatic;
(3) S is automatic.

Proof. (1) \Rightarrow (2) Finitely generated completely simple semigroups have finitely many \mathcal{L} - and \mathcal{R}-classes. Hence, by Proposition 3.8.6 if a completely simple semigroup S is Schützenberger automatic, then all of its maximal subgroups are automatic.
(2) $\Leftrightarrow(3)$ See [4, Theorem 1.1].
(3) \Rightarrow (1) If S is automatic, then it is finitely generated, and hence it has finitely many \mathcal{L} - and \mathcal{R}-classes. Making use of Corollary 3.5.2, we thus have that S is Schützenberger automatic.

3.11 Equality and word problems

Let S be a semigroup generated by a finite set X. The word problem is said to be solvable for S, if there exists an algorithm which decides whether or not given any two words $u, v \in X^{+}$represent the same element in S or not. Automatic groups and semigroups have solvable word problem in quadratic time. In this section we will introduce the concept of the equality problem for S-acts, and show that the equality problem is solvable for the right S-act S if and only if the word problem is solvable for the semigroup S. Moreover we consider the following two problems:

Problem 1. Is it true that automatic S-acts have solvable equality problem?
Problem 2. Is it true that (strongly) Schützenberger automatic regular semigroups have solvable word problem?

Concerning Problem 1, we see that the semigroup theoretical approach to the word problem of automatic semigroups will carry over, that is, with slight modification of the proofs, we will obtain an affirmative answer to Problem 1. As far as Problem 2 is concerned we will give a partial answer. Throughout this section S will denote a semigroup, X a finite generating set for S. We assume that $X \subseteq S$ and denote by $\varphi: X^{+} \rightarrow S$ the homomorphism extending the identity map $\iota: X \rightarrow S$.

Equality problem for S-acts. Let A be an S-act, generated by a finite set $A_{0} \subseteq A$. If there exists an algorithm that decides whether or not for any $\left(a_{i}, a_{j}\right) \in A_{0} \times A_{0}$ and for any two given words $u, v \in X^{+}, a_{i} \cdot u=a_{j} . v$ holds, then we say that the equality problem is solvable for the S-act A.

Proposition 3.11.1. Let S be a semigroup generated by a finite set X. Then the word problem is solvable for S if and only if the equality problem is solvable for the right S-act S.

Proof. Recall that if S is generated by X, then the right S-act S is generated by X (see Proposition 3.1.10). Assume that the word problem is solvable for S. Let $x_{i}, x_{j} \in$ $X, u, v \in X^{+}$and $u^{\prime} \equiv x_{i} u, v^{\prime} \equiv x_{j} v$. By our assumptions, there exists an algorithm which decides whether or not $x_{i} \cdot u=u^{\prime}=v^{\prime}=x_{j} \cdot v$, proving that the equality problem is solvable for the right S-act S.

For the converse, assume that the equality problem is solvable for the right S-act S. Let $u, v \in X^{+}$, and assume that $u \equiv x_{i} u^{\prime}$ and that $v \equiv x_{j} v^{\prime}$. By our assumptions, there exists an algorithm that decides whéther or not $u=x_{i} \cdot u^{\prime}=x_{j} \cdot v^{\prime}=v$ holds in S or not, proving that the word problem is indeed solvable for S.

In giving a solution to Problem 1, we follow the semigroup theoretical approach.
Proposition 3.11.2. Let A be an automatic S-act. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for A. Then, there exists a constant N such that for any $a_{i} \in A_{0}$ and $u \in L_{i}$ the following hold for the elements $a=a_{i} . u$ or $a=a_{i} \cdot(u \cdot x)$ of A, where $x \in X:$
(i) There exists $a_{j} \in A_{0}$ and $v \in L_{j}$ such that $|v| \leq|u|+N$ and $a=a_{j} . v$.
(ii) If there exists $a_{j} \in A_{0}$ and $v \in L_{j}$, such that $|v|>|u|+N$ and $a=a_{j}$.v. Then there exists infinitely many $w \in L_{j}$ such that $a=a_{j} . w$.

Proof. (i) For all $\left(a_{j}, a_{k}\right) \in A_{0} \times A_{0}$ consider finite state automata $\mathcal{A}_{\left(a_{j}, a_{k}\right)=}, \mathcal{A}_{\left(a_{j}, a_{k}\right)_{x}}$, $(x \in X)$ accepting the regular languages $L_{\left(a_{j}, a_{k}\right)=}, L_{\left(a_{j}, a_{k}\right)_{x}}$ respectively. Let N be greater than the number of states in any of the automata defined.

Let $a_{i} \in A_{0}$ and $u \in L_{i}$. If $a=a_{i} . u$, then (i) is straightforward. Assume that $a=$ $a_{i} \cdot(u \cdot x)$, where $x \in X$. Since $\left(X, L_{1}, \ldots, L_{n}\right)$ is an automatic structure with respect to the generating set A_{0}, there exists $a_{j} \in A_{0}$ and $v \in L_{j}$ such that $a=a_{j} . v$. If $|v| \leq|u|+N$, then we are finished. Assume that $|v|>|u|+N$. Clearly $(u, v) \delta_{X}$ is accepted by $\mathcal{A}=\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$.

Reading through all of u, we visit a state say q in \mathcal{A} at least twice. Removing the subword of v between successive visits to q, we get a shorter word v_{1}, moreover $\left(u, v_{1}\right) \delta_{X}$ is still accepted by $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$. Repeating this procedure as many times as necessary, we obtain a word w, which satisfies that $|w| \leq|u|+N$ and $a=a_{j} \cdot w$.
(ii) Assume that there exists $a_{j} \in A_{0}$ and $v \in L_{j}$, such that $|v|>|u|+N$ and $a=a_{j} . v$. In particular we have that $(u, v) \delta_{X}$ is accepted by one of the automata defined; say by \mathcal{A}. After reading through all of u, we visit a state say q in \mathcal{A} more then once. Inserting the subword in between two successive visits to q in v in the appropriate place, we will get a longer word v_{1} so that $\left(u, v_{1}\right) \delta_{X}$ is still accepted by \mathcal{A}. Repeating this process as many times as we want, we get the desired result.

In the following proposition, we let S^{1} denote the semigroup obtained by adjoining an identity element to S.
Proposition 3.11.3. Let A be an automatic S-act. Then A is also an automatic S^{1}-act.
Proof. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for A. Let $Y=X \cup\{1\}$ and extend the action of S on A to an action of S^{1} on A by defining $a .1=a$ for all $a \in A$. Define $K_{i}=L_{i} \cup\{1\}$. Clearly each K_{i} is a regular language over Y, and $\bigcup_{j=1}^{n} a_{j} . K_{j} \varphi=A$ holds. To show that $\left(Y, K_{1}, \ldots, K_{n}\right)$ is indeed an automatic structure with respect to the generating set A_{0} for A, we claim that the languages $K_{\left(a_{i}, a_{j}\right)=}, K_{\left(a_{i}, a_{j}\right) y}, y \in Y$ are regular. If $a_{i} \neq a_{j}$, then

$$
\begin{aligned}
K_{\left(a_{i}, a_{j}\right)=}= & \left\{(u, v) \in K_{i} \times K_{j} \mid a_{i} \cdot u=a_{j} \cdot v\right\} \delta_{X} \\
= & L_{\left(a_{i}, a_{j}\right)=} \cup\left\{(u, 1) \mid u \in L_{i}, a_{i} \cdot u=a_{j}\right\} \delta_{X} \\
& \cup\left\{(1, v) \mid v \in L_{j}, a_{i}=a_{j} \cdot v\right\} \delta_{X},
\end{aligned}
$$

and hence is regular by Lemma 3.1.9 and Proposition 2.3.1. If $a_{i}=a_{j}$, then

$$
\begin{aligned}
K_{\left(a_{i}, a_{i}\right)=}= & \left\{(u, v) \in K_{i} \times K_{i} \mid a_{i} \cdot u=a_{i} \cdot v\right\} \delta_{X} \\
= & L_{\left(a_{i}, a_{i}\right)=} \cup\left\{(u, 1) \mid u \in L_{i}, a_{i} \cdot u=a_{i}\right\} \delta_{X} \\
& \cup\left\{(1, v) \mid v \in L_{i}, a_{i}=a_{i} \cdot v\right\} \delta_{X} \cup\{(1,1)\},
\end{aligned}
$$

hence is regular. It is straightforward that for all $\left(a_{i}, a_{j}\right) \in A_{0} \times A_{0}$ we have $K_{\left(a_{i}, a_{j}\right)_{1}}=$ $K_{\left(a_{i}, a_{j}\right)=}$. Let $y \in X$. Then

$$
\begin{aligned}
K_{\left(a_{i}, a_{j}\right)_{y}}= & \left\{(u, v) \in K_{i} \times K_{j} \mid a_{i} \cdot(u: x)=a_{j} \cdot v\right\} \delta_{X} \\
= & L_{\left(a_{i}, a_{j}\right)_{y}} \cup\left\{(u, 1) \mid u \in L_{i}, a_{i} \cdot(u \cdot x)=a_{j}\right\} \delta_{X} \\
& \cup\left\{(1, v) \mid v \in L_{j}, a_{i} \cdot x=a_{j} \cdot v\right\} \delta_{X},
\end{aligned}
$$

and hence is regular by Lemmas 3.1.8, 3.1.9 and Propositions 2.2.3 and 2.3.1.
Proposition 3.11.4. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Let $u \in X^{+}, a_{i} \in A_{0}$, and consider $a=a_{i} . u$. Then we can find a generator $a_{j} \in A_{0}$ and $v \in L_{j}$ such that $a=a_{j} . v$ in time proportional to $|u|^{2}$.

Proof. By Proposition 3.11.3 we can consider A as an automatic S^{1}-act. Let $Y=X \cup$ $\{1\}$ and consider the automatic structure $\left(Y, K_{1}, \ldots, K_{n}\right)$ with respect to the generating set A_{0} for A as defined in the proof of Proposition 3.11.3. For each $\left(a_{i}, a_{j}\right) \in A_{0} \times A_{0}$ and $x \in X$, let $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x}}$ denote a finite state automaton recognizing the regular language $K_{\left(a_{i}, a_{j}\right) x}$. Let $u \equiv x_{1} \ldots x_{m}$ where $x_{i} \in X,(1 \leq i \leq m)$, and let $a=a_{i}$.u. We will run the following procedure:

Step 1. Consider the finite state automata $\mathcal{A}_{\left(a_{i}, a_{1}\right)_{x_{1}}}, \ldots, \mathcal{A}_{\left(a_{i}, a_{n}\right)_{x_{1}}}$ in this order. We follow a path in the automaton $\mathcal{A}_{\left(a_{i}, a_{j}\right)_{x_{1}}}$, in which the first component of the labels of the edges are $1 \$ \$ \ldots$. We begin this procedure with the first automaton, that is when $j=1$.
(a) If a final state can be reached in $\mathcal{A}_{\left(a_{i}, a_{j}\right) x_{1}}$, then the second component of the labels of the edges give a word $\alpha_{1} \in L_{j}$, so that $a_{i} \cdot 1 x_{1}=a_{j} \cdot \alpha_{1}$. Continue with step 2.
(b) If a final state cannot be reached, then we consider $\mathcal{A}_{\left(a_{i}, a_{j+1}\right)_{x_{1}}}$ and repeat (a) with this automaton.

We note that since $\bigcup_{j=1}^{n} a_{j} \cdot K_{j} \varphi=A$, we will find a generator $a_{k_{1}}$ and $\alpha_{1} \in L_{k_{1}}$, so that $a_{i} \cdot 1 x_{1}=a_{k_{1}} \cdot \alpha_{1}$.

Step 2. Consider the finite state automata $\mathcal{A}_{\left(a_{k_{1}}, a_{1}\right)_{x_{2}}}, \ldots, \mathcal{A}_{\left(a_{k_{1}}, a_{n}\right)_{x_{2}}}$ in this order. We follow a path in $\mathcal{A}_{\left(a_{k_{1}}, a_{j}\right)_{x_{1}}}$, in which the first component of the labels of the edges are $\alpha_{1} \$ \$ \ldots$. We begin this procedure with the first automaton, that is when $j=1$.
(a) If a final state can be reached in $\mathcal{A}_{\left(a_{k_{1}}, a_{j}\right)_{x_{2}}}$, then the second component of the labels of the edges give a word $\alpha_{2} \in L_{j}$, so that $a_{k_{1}} \cdot \alpha_{1} x_{2}=a_{j} \cdot \alpha_{2}$. Continue the procedure with step 3 .
(b) If a final state cannot be reached, then we consider $\mathcal{A}_{\left(a_{k_{1}}, a_{j+1}\right) x_{2}}$ and repeat (a) with this automaton.

Since $\bigcup_{j=1}^{n} a_{j} \cdot K_{j} \varphi=A$, there exists a generator $a_{k_{2}}$ and a word $\alpha_{2} \in L_{k_{2}}$, so that $a_{i} \cdot 1 x_{1} x_{2}=a_{k_{1}} \cdot \alpha_{1} x_{2}=a_{k_{2}} \cdot \alpha_{2}$.
:
Step m. Consider the finite state automata $\mathcal{A}_{\left(a_{k_{m-1}}, a_{1}\right)_{x_{m}}}, \ldots, \mathcal{A}_{\left(a_{k_{m-1}}, a_{n}\right)_{x_{m}}}$ in this order. We follow a path in $\mathcal{A}_{\left(a_{k_{m-1}}, a_{j}\right)_{x_{m}}}$, in which the first component of the labels of the edges are $\alpha_{m-1} \$ \$ \ldots$. We begin this procedure with the first automaton, that is when $j=1$.
(a) If a final state can be reached in $\mathcal{A}_{\left(a_{k_{m-1}}, a_{j}\right) x_{m}}$, then the second component of the labels of the edges give a word $\alpha_{m} \in L_{j}$, so that $a_{k_{m-1}} \cdot \alpha_{m-1} x_{m}=a_{j} . \alpha_{m}$.
(b) If a final state cannot be reached, then we consider $\mathcal{A}_{\left(a_{k_{m-1}}, a_{j+1}\right)_{x_{2}}}$ and repeat (a) with this automaton.

As before, we note that since $\bigcup_{j=1}^{n} a_{j} \cdot K_{j} \varphi=A$, we will eventually find a generator $a_{k} \in A_{0}$ and $\alpha \in L_{k}$, so that

$$
a_{i} \cdot 1 x_{1} x_{2} \ldots x_{m}=a_{k_{1}} \cdot \alpha_{1} x_{2} \ldots x_{m}=\ldots a_{k_{m-1}} \cdot \alpha_{m-1} x_{m}=a_{k} \cdot \alpha
$$

In the worst case, the time being taken to find α_{j} is $n \cdot\left|\alpha_{j}\right|$, since then we need to input $\alpha_{i-1} \$ \$ \ldots$ in n automata. By Proposition 3.11.2 there exists a constant N such that $\left|\alpha_{i}\right| \leq\left|\alpha_{i-1}\right|+N$. So the time being taken to find α is $O\left(\sum_{j=1}^{|u|} n(|1|+j N)\right)=O\left(|u|^{2}\right)$.

Proposition 3.11.5. Let A be an automatic S-act, then the equality problem is solvable for A in quadratic time.

Proof. Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an automatic structure with respect to the generating set A_{0} for the S-act A. Let $u, v \in X^{+}$and let $a_{i}, a_{j} \in A_{0}$. Let $a=a_{i} . u$ and $b=a_{j} . v$. Then, according to Proposition 3.11 .4 we can find generators $a_{k}, a_{l} \in A_{0}$ and words $\tilde{u} \in$ $L_{k}, \tilde{v} \in L_{j}$ in quadratic time, so that $a_{i} \cdot u=a_{k} . \tilde{u}$ and $a_{j} . v=a_{l} . \tilde{v}$. With the help of the automaton $\mathcal{A}_{\left(a_{k}, a_{l}\right)=}$ accepting the regular language $L_{\left(a_{k}, a_{l}\right)=}$ we will obtain an answer whether $a_{i} . u=a_{j} . v$ in A.

An immediate consequence of Proposition 3.11.5 is:
Corollary 3.11.6. Let $S=\langle X\rangle$ be an \mathcal{R}-class automatic monoid, and $u, v \in X^{*}$. Then we can decide in quadratic time whether $u \varphi \mathcal{R} v \varphi$ in S.

Also we have:

Corollary 3.11.7. Let $S=\langle X\rangle$ be a regular semigroup and R be a Schützenberger automatic \mathcal{R}-class of S. Let $u, v \in X^{+}$. Then we can decide whether $u \varphi, v \varphi \in R$. Moreover if $u \varphi, v \varphi \in R$, then we can decide whether $u \varphi=v \varphi$.

Proof. Using the notation of Proposition 3.2.1, let (X, N) be a Schützenberger automatic structure for R, let $L=N \cup\{0\}$ and $e \in E(R)$. According to Proposition 3.2.1, $\left(X^{0}, L\right)$ is an automatic structure with respect to the generating set $\{e\}$ for the right S^{0}-act R^{0}. Let $u \in X^{+}$. In the right S^{0}-act R^{0} we have that $e . u=u$ if $u \in R$, and $e . u=0$ if $u \notin R$. By Proposition 3.11.5, we can decide in quadratic time whether or not $e . u=e \cdot 0=0$.

Now let $u, v \in X^{+}$. Decide first whether or not $e . u=e .0$ and $e . v=e .0$. If $e . u \neq e .0$ and $e \cdot v \neq e .0$, then $u=e \cdot u$ and $v=e \cdot v$ are elements of R. By Proposition 3.11.5 again we can decide whether or not $u=e \cdot u=e \cdot v=v$.

Corollary 3.11.8. Let S be a strongly Schützenberger automatic regular semigroup with finitely many. \mathcal{R}-classes. Then the word problem is solvable for S in quadratic time.

Proof. Let $S / \mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ and let $\left(X, N_{i}\right)$ be a Schützenberger automatic structure for $R_{i}(1 \leq i \leq n)$. Let $u, v \in X^{+}$. Since S is also \mathcal{R}-class automatic we can decide by Corollary 3.11 .6 in quadratic time whether or not the elements represented by u and v are \mathcal{R}-related. Since S has finitely many \mathcal{R}-classes, we can find their \mathcal{R}-class in finitely many steps and then decide by Corollary 3.11 .7 in quadratic time whether or not they represent the same element in S.

To be more precise we decide with the following procedure whether or not $u=v$ holds in S. As in Corollary 3.11.7, let (X^{0}, L_{i}), where $L_{i}=N_{i} \cup\{0\}$ be an automatic structure with respect to a one element generating set $\left\{e_{i}\right\}$, where $e_{i} \in E\left(R_{i}\right)$ for the right S^{0}-act R_{i}^{0}. Let $u, v \in X^{+}$. Since we have finitely many \mathcal{R}-classes and hence S^{0}-acts we can find in finitely many steps the idempotents e_{i}, e_{j} so that $e_{i} \cdot u \neq e_{i} \cdot \mathbf{0}, e_{j} \cdot v \neq e_{j} . \mathbf{0}$. In other words, we can find in finitely many steps the Schützenberger automatic structure assigned to the \mathcal{R}-class of the element represented by u and the \mathcal{R}-class of the element represented by v. If the \mathcal{R}-classes of the elements represented by u and v happens to be the same, then as seen in Corollary 3.11 .7 we can also decide whether or not u and v represent the same element in quadratic time.

Whether the word problem is solvable for strongly Schützenberger automatic regular semigroups with infinitely many \mathcal{R}-classes seems to be a more difficult question. We can obviously decide whether or not the elements represented by the two given words belong
to the same \mathcal{R}-class. If they happen to be in the same \mathcal{R}-class, then a technique needs to be developed with the help of which one can find in finitely many steps the Schützenberger automatic structure of the \mathcal{R}-class of these elements, so that it can be decided whether or not the two given words represent the same element. We end this section with the following

Open question. Is it true that strongly Schützenberger automatic regular semigroups have solvable word problem?

3.12 Inverse free product of inverse semigroups.

It is verified in [3] that the group free product of automatic groups is automatic, and in [5] it is shown that the free product of automatic semigroups is automatic. In this section we seek answer to the following problem:
Problem: Is the inverse free product of Schützenberger automatic inverse semigroups Schützenberger automatic?

The results in [25] concerning the description of Schützenberger graphs of the inverse free product of two inverse semigroups will serve as a basis of the answer of the above problem. First we summarize some necessary notions and results needed for this section.

Throughout the section S_{1} and S_{2} denote two disjoint inverse semigroups. The inverse free product $S=S_{1} *_{\mathrm{Inv}} S_{2}$ is an inverse semigroup satisfying the following properties:
(i) There exists embeddings $\alpha_{1}: S_{1} \rightarrow S, \alpha_{2}: S_{2} \rightarrow S$;
(ii) If there exists an inverse semigroups T and homomorphisms $\beta_{1}: S_{1} \rightarrow T, \beta_{2}: S_{2} \rightarrow$ T, then there exists a unique homomorphism $\delta: S \rightarrow T$ such that the following diagram is commutative:

Assume that $S_{1}=\operatorname{Inv}\langle X \mid P\rangle$ and $S_{2}=\operatorname{Inv}\langle Y \mid Q\rangle$ where $X \cap Y=\emptyset$. Then $S_{1} *_{\operatorname{Inv}} S_{2}=$ $\operatorname{Inv}\langle X \cup Y \mid P \cup Q\rangle$.

The first general result concerning the structure of the inverse free product of two inverse semigroups was obtained by Jones in [24]. This structure theorem provides a set of
canonical forms for the elements of the inverse free product, with the help of which Green's relations are described. A graph theoretical approach to describe the structure of the inverse free product of two inverse semigroups is introduced in [25]. This approach employs a technique introduced by Stephen [35] for obtaining Schützenberger graphs relative to an inverse semigroup presentation. As our answer to our proposed problem relies on the latter approach, we summarize the necessary notions and results of [25] regarding the Schützenberger graphs of $S_{1}{ }^{\operatorname{In}}{ } S_{2}$.

Let X be a finite set and let $X^{-1}=\left\{x^{-1} \mid x \in X\right\}$ denote the set of formal inverses of elements of X. Let Γ be a directed labelled graph, where the labels of the edges are elements of $X \cup X^{-1}$. We say that Γ is a word graph over $X \cup X^{-1}$ if it satisfies the following two conditions:
(i) The graph Γ is strongly connected, that is to say that for any two distinct vertices v_{1}, v_{2} of Γ, there exists a directed path from v_{1} to v_{2}.
(ii) If $v_{1} \xrightarrow{x} v_{2}$ is an edge of Γ, then $v_{2} \xrightarrow{x^{-1}} v_{1}$ is an edge of Γ as well.

Let X and Y be disjoint finite sets, and let Γ be a word graph over $Z=X \cup X^{-1} \cup Y \cup$ Y^{-1}. The edges of Γ can be coloured with two colours in such a way that the edges of Γ labelled with elements of $X \cup X^{-1}$ get one of the colours, and the edges of Γ labelled with elements of $Y \cup Y^{-1}$ get the other one. A subgraph of Γ is said to be monochromatic, if all of its edges have the same colour. We say that a path in Γ is monochromatic, if all of its edges have the same colour. A lobe is a maximal monochromatic subgraph of Γ. A vertex of Γ is called an intersection vertex if it belongs to more then one lobe. A switchpoint of a path p in Γ is a vertex that is common to successive edges of different colour. The switchpoint sequence of a path p in Γ is the sequence of switchpoints p traverses, in order.

A path p in Γ is called simple if there are no repeated vertices in p other then perhaps its first and last vertex, in which case p is called a simple cycle. A word graph Γ over Z is called cactoid, if the following two conditions hold:
(i) Γ has finitely many lobes;
(ii) every simple cycle of Γ is monochromatic.

The following important properties of cactoid graphs over Z is proved in Lemma 2.1. and Corollary 2.2 of [25].

Proposition 3.12.1. Let Γ be a cactoid graph over Z, and let v_{1}, v_{2} be two distinct vertices of Γ. Then the following hold:
(i) Any two simple paths from v_{1} to v_{2} traverse the same switchpoint sequence.
(ii) Distinct lobes of Γ possess at most one common vertex.

Let Γ be a cactoid graph. Fix a vertex v in Γ, and let v_{1} be a vertex distinct from v. The switchpoint sequence of v_{1} is the switchpoint sequence of a (in fact any) simple path from v to v_{1}. Denoting by l the length of the switchpoint sequence of an arbitrary vertex v_{1} of Γ, a norm with respect to v is then defined for v_{1} in the following way:

$$
\left\|v_{1}\right\|= \begin{cases}0 & \text { if } v_{1}=v \\ 1+l & \text { otherwise }\end{cases}
$$

The following results are proved in [25, Lemma 2.3.] and [25, Corollary]:
Proposition 3.12.2. Let Γ be a cactoid graph over Z and let v be a vertex of Γ. Then the following hold:
(i) Each lobe Λ of Γ possess a unique vertex called the root λ_{Λ} of least norm with respect to v.
(ii) For each lobe Λ of $\Gamma, \lambda_{\Lambda}$ is either an intersection vertex of Γ or is the vertex v.
(iii) For each vertex $u \neq \lambda_{\Lambda}$ of the lobe $\Lambda,\|u\|=\left\|\lambda_{\Lambda}\right\|+1$.
(iv) The chosen vertex v is the root of two distinct lobes if and only if it is an intersection vertex in Γ and it is the root of a unique lobe otherwise. Every other intersection vertex of Γ is the root of a unique lobe of Γ.

One of the main results of [25] is Theorem 4.1.:
Theorem 3.12.3. Let S_{1} be an inverse semigroup generated by a set X and S_{2} be an inverse semigroup generated by Y, where $X \cap Y=\emptyset$. Then the Schützenberger graphs of $S_{1} *_{\operatorname{Inv}} S_{2}$ are precisely the cactoid graphs over $X \cup X^{-1} \cup Y \cup Y^{-1}$ each of whose lobes is isomorphic to a Schützenberger graph of S_{1} or of S_{2}.

We are ready to give an answer to our proposed problem.
Proposition 3.12.4. Let S_{1} and S_{2} be Schützenberger automatic inverse semigroups. Then the inverse free product $S=S_{1} *_{\operatorname{Inv}} S_{2}$ is also a Schützenberger automatic inverse semigroup.

Step 1: notation. In the first step, we set up the notation. Assume that S_{1} is generated by the finite set X, where X is closed under taking inverses. For the sake of simplicity we assume that $X \subseteq S_{1}$. Let $\varphi_{1}: X^{+} \rightarrow S_{1}$ denote the semigroup homomorphism extending the identity map $\iota_{1}: X \rightarrow S_{1}$. Assume that S_{2} is generated by the finite set $Y \subseteq S_{2}$, where Y is closed under taking inverses and $X \cap Y=\emptyset$. Let $\varphi_{2}: Y^{+} \rightarrow S_{2}$ denote the homomorphism extending the identity map $\iota_{2}: Y \rightarrow S_{2}$. Let $Z=X \cup Y$ and let $\varphi: Z^{+} \rightarrow S$ denote the homomorphism extending the identity map $\iota: Z \rightarrow S$. Let $s \in S$ and consider the Schützenberger graph $\Gamma=\mathrm{S}_{s}(Z)$ of R_{s}. By Theorem 3.12.3, Γ is a cactoid graph over Z, and so it has finitely many lobes each of which is isomorphic to a Schützenberger graph of S_{1} or of S_{2}. Let Λ_{X} denote the set of lobes, whose edges are labelled by elements of X and let Λ_{Y} denote the set of lobes, whose edges are labelled by the elements of Y. Let $\lambda_{1}, \ldots, \lambda_{n-1}$ denote the intersection vertices of Γ and let λ_{0} be the vertex corresponding to $s s^{-1}$. For the sake of convenience, we assume that λ_{0} is not an intersection vertex in Γ. (Note that since we have $n-1$ intersection vertices, Γ has n lobes.) For each $1 \leq i \leq n-1$ we fix a simple path p_{i} in Γ from λ_{0} to λ_{i}. Denote by w_{i} the word over Z that labels the path p_{i}. Let $W=\left\{w_{1}, \ldots, w_{n-1}\right\}$. Clearly W is a regular language over Z.

According to Proposition 3.12.2, each intersection vertex λ_{i} is the unique root of one of the lobes of Γ. We let Δ_{i} denote the lobe whose root is λ_{i}.

For all $\Delta_{i} \subseteq \Lambda_{X}$ we choose an \mathcal{R}-class R_{i} of S_{1}, such that Δ_{i} is isomorphic to the Schützenberger graph of R_{i}. The set of \mathcal{R}-classes chosen in S_{1} will be denoted by \mathcal{R}_{1}. Similarly, for all $\Delta_{i} \subseteq \Lambda_{Y}$ we choose an \mathcal{R}-class R_{i} of S_{2}, such that Δ_{i} is isomorphic to the Schützenberger graph of R_{i}. The set of \mathcal{R}-classes chosen in S_{2} will be denoted by \mathcal{R}_{2}. To simplify notation, we will actually think of Δ_{i} as the Schützenberger graph of the chosen \mathcal{R}-class R_{i}. In particular, we will think of the vertices of Δ_{i} as elements of R_{i}. Define

$$
W_{X}=\left\{w_{i} \in W \mid \Delta_{i} \in \Lambda_{X}\right\},
$$

and let $W_{Y}=W \backslash W_{X}$. In other words, $w_{i} \in W_{X}$ if and only if $\lambda_{0} \cdot w_{i}=\lambda_{i}$ is a root of a lobe in Λ_{X}, and $w_{j} \in W_{Y}$ if and only if $\lambda_{0} \cdot w_{j}=\lambda_{j}$ is a root of a lobe in Λ_{Y}.

By assumptions, S_{1} and S_{2} are Schützenberger automatic inverse semigroups. In particular, for each \mathcal{R}-class $R_{i} \subseteq \mathcal{R}_{1}$, we may assume by Propositions 3.6.12, 3.2.1 and Proposition 3.4.4 that there exists a regular language K_{i} over X such that the following hold:
(1a) For each $t \in V\left(\Delta_{i}\right)$ there exists exactly one $u \in K_{i}$ with $\lambda_{i} \cdot u \varphi_{1}=t$ and so $\left(K_{i}\right)==\left\{(u, w) \in K_{i} \times K_{i} \mid \lambda_{i} \cdot u=\lambda_{i} \cdot w\right\} \delta_{X}=\left\{(u, u) \mid u \in K_{i}\right\} \delta_{X}$ is a regular language.
(1b) $\left(K_{i}\right)_{x}=\left\{(u, w) \in K_{i} \times K_{i} \mid \lambda_{i} \cdot(u \cdot x)=\lambda_{i} \cdot w\right\} \delta_{X}$ is a regular language for each $x \in X$.

We let \mathcal{K}_{X} denote the set of regular languages obtained. Similarly, for each \mathcal{R}-class $R_{j} \subseteq \mathcal{R}_{2}$ we may assume that there exists a regular language K_{j} over Y such that the following hold:
(2a) For each $t \in R_{j}$ there exists exactly one $u \in K_{j}$ with $\lambda_{j} \cdot u \varphi_{2}=t$ and so $\left(K_{j}\right)==$ $\left\{(u, w) \in K_{j} \times K_{j} \mid \lambda_{j} \cdot u=\lambda_{j} \cdot w\right\} \delta_{Y}=\left\{(u, u) \mid u \in K_{j}\right\} \delta_{Y}$ is a regular language.
(2b) $\left(K_{j}\right)_{y}=\left\{(u, w) \in K_{j} \times K_{j} \mid \lambda_{j} \cdot(u \cdot y)=\lambda_{j} \cdot w\right\} \delta_{Y}$ is a regular language for each $y \in Y$.

We let \mathcal{K}_{Y} denote the set of regular languages obtained. We let $\mathcal{K}=\mathcal{K}_{X} \cup \mathcal{K}_{Y}=$ $\left\{K_{0}, K_{1}, \ldots, K_{n-1}\right\}$.

Step 2: the regular language. In the second step, we are going to construct a regular language K with the help of the regular languages in \mathcal{K}, so that λ_{0} and K satisfy that $\lambda_{0} \cdot K \varphi=R_{s}$.

Let Δ_{i} be an arbitrary lobe of Γ with vertex set $V\left(\Delta_{i}\right)$ and root λ_{i}. Let V_{i} denote the intersection vertices of Γ belonging to Δ_{i}. Clearly V_{i} is a finite set. Let $\widetilde{\Delta}_{i}$ denote the subgraph of Δ_{i}, whose vertex set is $V\left(\widetilde{\Delta}_{i}\right)=\left(V\left(\Delta_{i}\right) \backslash V_{i}\right) \cup\left\{\lambda_{i}\right\}$. Illustrating this:

Clearly

$$
\begin{equation*}
\Gamma=\widetilde{\Delta}_{0} \cup \ldots \cup \widetilde{\Delta}_{n-1} \quad \text { and } \quad \tilde{\Delta}_{i} \cap \widetilde{\Delta}_{j}=\emptyset, \text { for all } 0 \leq i, j \leq n-1, i \neq j \tag{3.13}
\end{equation*}
$$

For each $v \in V_{i}$, consider the language

$$
\begin{equation*}
K_{i, v}=\left\{u \in K_{i} \mid \lambda_{i} \cdot u=v\right\} \tag{3.14}
\end{equation*}
$$

By Lemma 3.1.9, we have that $K_{i, v}$ is a regular language over X or over Y, depending on whether Δ_{i} is an element of Λ_{X} or of Λ_{Y}. In fact, since K_{i} satisfies (1a) or (2a), for each $v \in V_{i}, K_{i, v}$ has exactly one element. Let

$$
\begin{equation*}
K_{i, V_{i}}=\bigcup_{v \in V_{i}} K_{i, v} \tag{3.15}
\end{equation*}
$$

The language $K_{i, V_{i}}$ is regular, since it is a finite union of regular languages. Define

$$
\widetilde{K}_{i}=K_{i}-K_{i, V_{i}} \quad \text { and } \quad L_{i}=\widetilde{K}_{i} \cup\{\epsilon\}
$$

where ϵ denotes the empty word. Clearly \widetilde{K}_{i} and L_{i} are regular languages. Taking into consideration that for all $1 \leq i \leq n-1, w_{i}$ is path between λ_{0} and λ_{i}, the importance of the languages defined can be illustrated in the following way in Γ :

That is to say that

$$
\begin{equation*}
\lambda_{0} \cdot\left(w_{i} L_{i}\right) \varphi=V\left(\widetilde{\Delta}_{i}\right) \tag{3.16}
\end{equation*}
$$

Moreover since K_{i} is a language satisfying (1a) or (2a), we also have that for all $v \in V\left(\widetilde{\Delta}_{i}\right)$ there exists exactly one $w \in L_{i}$ so that $\lambda_{0} \cdot\left(w_{i} w\right) \varphi=v$ holds. To have a complete picture, we note that

$$
\begin{equation*}
\lambda_{0} \cdot\left(w_{i} K_{i, V_{i}}\right) \varphi=\dot{V}_{i} . \tag{3.17}
\end{equation*}
$$

Let

$$
K=L_{0} \cup w_{1} L_{1} \cup \ldots \cup w_{n-1} L_{n-1}
$$

where w_{i} denotes the labels of the path we fixed from λ_{0} to λ_{i} and L_{i} is the regular language over X or over Y so that $\lambda_{0} \cdot\left(w_{i} L_{i}\right) \varphi=V\left(\widetilde{\triangle}_{i}\right)$. It follows by (3.16) and (3.13) that $\lambda_{0} \cdot K \varphi=R_{s}$.

Third step: the Schützenberger automatic structure. We verify that λ_{0} and K satisfy the last two conditions of ($S 2$) of Proposition 3.2.1.

Clearly, by the definition of K and by the note after (3.16) we have that for all $t \in R_{s}$, there exists exactly one $w \in K$ so that $\lambda_{0} \cdot w \varphi=t$ proving that

$$
K_{=}=\left\{(u, w) \mid \lambda_{0} \cdot u=\lambda_{0} \cdot w\right\} \delta_{Z}=\{(u, u) \mid u \in K\} \delta_{Z}
$$

Hence $K_{=}$is a regular language by Proposition 2.3.2.
Next we claim that for all $x \in X$, the language

$$
K_{x}=\left\{(u, w) \in K \times K \mid \lambda_{0} \cdot(u \cdot x)=\lambda_{0} \cdot w\right\} \delta_{Z}
$$

is regular. It is straightforward that if $(u, w) \in K_{x}$, then $\lambda_{0} \cdot(u \cdot x)$ and $\lambda_{0} \cdot w$ belong to the same lobe say to Δ_{i}, where $\Delta_{i} \in \Lambda_{X}$. Moreover, since the "last arrow" is an element of X and since by definition a lobe is a maximal monochromatic subgraph, $\lambda_{0} \cdot u$ and $\lambda_{0} \cdot w$ have to be vertices of Δ_{i}. Depending on what kind of vertices (intersection vertex or not) the elements $\lambda_{0} \cdot u$ and $\lambda_{0} \cdot w$ represent in the Schützenberger graph R_{s}, the following four cases can occur:
(1) Our first case is when $(u, w) \delta_{Z}$ is a word for which $\lambda_{0} \cdot u$ and $\lambda_{0} \cdot w$ are not intersection vertices of Γ. First we introduce the following notation. Let

$$
\left(L_{i}\right)_{x}=\left(K_{i}\right)_{x} \backslash\left\{(u, w) \mid u, w \in K_{i, V_{i}}, \lambda_{i} \cdot u \cdot x=\lambda_{i} \cdot w\right\} \delta_{z}
$$

Since $\left(K_{i}\right)_{x}$ is a regular language and since the latter set is finite, $\left(L_{i}\right)_{x}$ is a regular language.

We verify that words $(u, w) \delta_{Z} \in K_{x}$ that satisfy that $\lambda_{0} \cdot u, \lambda_{0} \cdot w$ are not intersection vertices in a lobe $\Delta_{i} \subseteq \Lambda_{X}$ are exactly the words contained in the regular language

$$
N_{1}=\bigcup_{w_{i} \in W_{X}}\left(w_{i}, w_{i}\right) \delta_{Z}\left(L_{i}\right)_{x}
$$

If $(u, w) \in N_{1}$, then $u \equiv w_{i} \tilde{u}$ and $w=w_{i} \widetilde{w}$, where $w_{i} \in W_{X}$ and $(\tilde{u}, \widetilde{w}) \delta_{Z} \in\left(L_{i}\right)_{\mathbb{x}}$. It follows that $\tilde{u}, \widetilde{w} \notin K_{i, V_{i}}$, in other words $\lambda_{i} \tilde{u}$ and $\lambda_{i} \widetilde{w}$ are not intersection vertices of Γ. Moreover we have that $\lambda_{i} \cdot(\tilde{u} \cdot x)=\lambda_{i} \cdot \widetilde{w}$ holds. It follows, that $\lambda_{0} \cdot(u \cdot x)=$ $\lambda_{0} \cdot\left(w_{i} \cdot \tilde{u} \cdot x\right)=\lambda_{0} \cdot w_{i} \cdot \tilde{w}=\lambda_{0} \cdot w$, proving that $(u, w) \delta_{Z} \in K_{x}$.
For the converse, assume that $(u, w) \delta_{Z} \in K_{x}$ and that $\lambda_{0} \cdot u, \lambda_{0} \cdot w$ are not intersection vertices in a lobe $\Delta_{i} \subseteq \Lambda_{X}$. Then, as noted before $\lambda_{0} \cdot u$ and $\lambda_{0} \cdot w$ are vertices of the same lobe $\Delta_{i} \in \Lambda_{X}$. It follows that $u \equiv w_{i} \tilde{u}$, and $w \equiv w_{i} \widetilde{w}$, where $\tilde{u}, \widetilde{w} \in \widetilde{K}_{i}$. In particular, we have that

$$
\lambda_{i} \cdot(\tilde{u} \cdot x)=\left(\lambda_{0} \cdot w_{i}\right) \cdot \tilde{u} \cdot x=\lambda_{0} \cdot w_{i} \widetilde{w}=\lambda_{i} \cdot w .
$$

In other words, $(\tilde{u}, \widetilde{w}) \in\left(L_{i}\right)_{x}$.
Since $\left(L_{i}\right)_{x}$ is regular we have that $\left(w_{i}, w_{i}\right) \delta_{Z}\left(L_{i}\right)_{x}$ is regular and N_{1} is a finite union of regular languages, proving that N_{1} is regular.
(2) Our second case is when $(u, w) \delta_{Z} \in K_{x}$ is a word such that $\lambda_{0} \cdot u$ is not an intersection vertex of Γ and $\lambda_{0} \cdot w$ is an intersection vertices of Γ. Again, we first introduce the notation we are going to use. For each $\Delta_{i} \in \Lambda_{X}$ and for all intersection vertices $\lambda_{k} \in V_{i}$, we let $w_{i, k} \in K_{i, V_{i}} \subseteq K_{i}$ so that $\lambda_{i} \cdot w_{i, k}=\lambda_{k}$. Such an element exists, since Γ_{i} and Δ_{i} are isomorphic and since $\lambda_{i} \cdot K_{i} \varphi_{1}=R_{i}$. We let

$$
K_{(i, x, k)}=\left\{\bar{u} \in K_{i} \mid \lambda_{i} \cdot \bar{u} \cdot x=\lambda_{k}\right\} \backslash K_{i, V_{i}} .
$$

By Lemma 3.1.8 and Proposition 2.2.3, $K_{(i, x, k)}$ is a regular language. Let

$$
M_{1}=\left\{\left(w_{i}, w_{k}\right) \in W_{X} \times W_{Y} \mid \lambda_{0} \cdot w_{k} \in V_{i}\right\}
$$

We will verify that words $(u, w) \delta_{Z} \in K_{x}$ that satisfy that $\lambda_{0} \cdot u$ is not an intersection vertex of $\Delta_{i} \subseteq \Lambda_{X}$ and $\lambda_{0} \cdot w$ is an intersection vertex of Δ_{i} are exactly the words contained in the language

$$
\left.N_{2}=\bigcup_{\left(w_{i}, w_{k}\right) \in M_{1}}\left(w_{i}, w_{k}\right) \delta_{Z} \odot\left(K_{(i, x, k)} \times\{\$\}^{*}\right\}\right) \delta_{Z}
$$

where \odot denotes the padded product.
If $(u, w) \in N_{2}$, then $w \equiv w_{k}$ and $u \equiv w_{i} \tilde{u}$, where $\tilde{u} \in K_{(i, x, k)}, \lambda_{0} \cdot w_{i}, \lambda_{0} \cdot w_{k} \in V_{i}$. In particular we have that $\lambda_{i} \cdot \tilde{u}$ is not an intersection vertex and that $\lambda_{i} \cdot \tilde{u} \cdot x=\lambda_{k}=$ $\lambda_{0} \cdot w_{k}$. Hence $\left(\lambda_{0} \cdot w_{i}\right) \cdot \tilde{u} \cdot x=\lambda_{0} \cdot w_{k}$ holds, which verifies that $(u, w) \delta_{Z} \in K_{x}$.
For the converse assume that $(u, w) \delta_{Z} \in K_{x}$ such that $\lambda_{0} \cdot u$ is not an intersection vertex of $\Delta_{i} \in \Lambda_{X}$ and $\lambda_{0} \cdot w$ is an intersection vertex. Since $\lambda_{0} \cdot w$ is an intersection vertex, we have that $w \equiv w_{k}$, where $\lambda_{k} \in V_{i}$. Moreover, since $\lambda_{0} \cdot u$ is not an intersection vertex in Δ_{i}, we have that $u \equiv w_{i} \cdot \tilde{u}$, where $\tilde{u} \in \widetilde{K}_{i}$. Also, since $(u, w) \delta_{Z} \in K_{x}$, we have that

$$
\begin{aligned}
\lambda_{k}=\lambda_{0} \cdot w_{k} & =\lambda_{0} \cdot w \\
& =\lambda_{0} \cdot u \cdot x \\
& =\left(\lambda_{0} \cdot w_{i}\right) \cdot \tilde{u} \cdot x \\
& =\lambda_{i} \cdot \tilde{u} \cdot x,
\end{aligned}
$$

verifying that $\tilde{u} \in K_{(i, x, k)}$. Hence we may deduce that

$$
(u, w) \delta_{Z} \in\left(w_{i}, w_{k}\right) \delta_{Z} \odot\left(K_{(i, x, k)} \times\{\$\}^{*}\right) \delta_{Z} \subseteq N_{2}
$$

Finally we verify that N_{2} is a regular language over Z. By Proposition 2.2.3, the language $\left(K_{(i, x, k)} \times \epsilon\{\$\}^{*}\right) \delta_{Z}$ is regular. Since $M=\left(w_{i}, w_{k}\right) \delta_{Z}$ is finite, it satisfies the condition of Proposition 2.3.16 and hence we have that for all $\left(w_{i}, w_{k}\right) \in M_{1}$ the language $\left(w_{i}, w_{k}\right) \delta_{Z} \odot\left(K_{(i, x, k)} \times\{\$\}^{*}\right) \delta_{Z}$ is regular. We may now deduce that N_{2} is regular, since it is a finite union of regular languages.
(3) This case can be considered as the dual of the previous case. We consider words $(u, w) \delta_{Z} \in K_{x}$, where $\lambda_{0} \cdot u$ is an intersection vertex of Γ and $\lambda_{0} \cdot w$ is not an intersection vertices of Γ. We introduce the following notations.
For each $\Delta_{i} \subseteq \Lambda_{X}$ and for all intersection vertices $\lambda_{k} \in V_{i}$, let $w_{i, k} \in K_{i, V_{i}} \subseteq K_{i}$ so that $\lambda_{i} \cdot w_{i, k}=\lambda_{k}$. Such an element exists, since Γ_{i} and Δ_{i} are isomorphic and since $\lambda_{i} \cdot K_{i} \varphi_{1}=R_{i}$. Let

$$
K_{(x, i, k)}=\left\{\bar{u} \in K_{i} \mid \lambda_{i} \cdot \bar{u}=\lambda_{k} \cdot x\right\} \backslash K_{i, V_{i}}
$$

By Lemma 3.1.9 and Proposition 2.2.3, $K_{(x, i, k)}$ is a regular language. Let

$$
M_{2}=\left\{\left(w_{k}, w_{i}\right) \in W_{Y} \times W_{X} \mid \lambda_{0} \cdot w_{k} \in V_{i}\right\}
$$

We will verify that words $(u, w) \delta_{Z} \in K_{x}$ that satisfy that $\lambda_{0} \cdot u$ is an intersection vertex of some $\Delta_{i} \in \Lambda_{X}$ and $\lambda_{0} \cdot w$ is not an intersection vertex of Δ_{i} are exactly the words contained in the language

$$
N_{3}=\bigcup_{\left(w_{k}, w_{i}\right) \in M_{2}}\left(w_{k}, w_{i}\right) \delta_{Z} \odot\left(\{\$\}^{*} \times K_{(x, i, k)}\right) \delta_{Z}
$$

where \odot denotes the padded product.
If $(u, w) \in N_{3}$, then $u \equiv w_{k}$ and $w \equiv w_{i} \widetilde{w}$, where $\widetilde{w} \in K_{(x, i, k)}, \lambda_{0} \cdot w_{i}, \lambda_{0} \cdot w_{k} \in V_{i}$. In particular we have that $\lambda_{i} \cdot \widetilde{w}$ is not an intersection vertex and that $\lambda_{0} \cdot w_{k} \cdot x=$ $\lambda_{k} \cdot x=\lambda_{i} \cdot \widetilde{w}$. Hence $\left(\lambda_{0} \cdot w_{k}\right) \cdot x=\lambda_{0} \cdot w_{i} \cdot \widetilde{w}$ holds, which verifies that $(u, w) \delta_{Z} \in K_{x}$. For the converse assume that $(u, w) \delta_{Z} \in K_{x}$ such that $\lambda_{0} \cdot u$ is an intersection vertex of $\Delta_{i} \subseteq \Lambda_{X}$ and $\lambda_{0} \cdot w$ is not an intersection vertex. Since $\lambda_{0} \cdot u$ is an intersection vertex, we have that $u \equiv w_{k}$, where $\lambda_{k} \in V_{i}$. Moreover, since $\lambda_{0} \cdot w$ is not an intersection vertex in Δ_{i}, we have that $w \equiv w_{i} \cdot \widetilde{w}$, where $\widetilde{w} \in \widetilde{K}_{i}$. Also, since $(u, w) \delta_{Z} \in K_{x}$, we have that

$$
\begin{aligned}
\lambda_{k} \cdot x=\lambda_{0} \cdot u_{k} \cdot x & =\lambda_{0} \cdot w \\
& =\left(\lambda_{0} \cdot w_{i}\right) \cdot \widetilde{w} \\
& =\lambda_{i} \cdot \widetilde{w}
\end{aligned}
$$

verifying that $\widetilde{w} \in K_{(x, i, k)}$. Hence we may deduce that

$$
(u, w) \delta_{Z} \in\left(w_{k}, w_{i}\right) \delta_{Z} \odot\left(\{\$\}^{*} \times K_{(x, i, k)}\right) \delta_{Z} \subseteq N_{3}
$$

Finally we verify that N_{3} is a regular language over Z. By Proposition 2.2.3, the languages $\left(K_{(x, i, k)} \times\{\$\}^{*}\right) \delta_{Z}$, where $\lambda_{0} \cdot w_{k} \in V_{i}$ are regular. Since $M=\left(w_{k}, w_{i}\right) \delta_{Z}$ is finite it satisfies the condition of Proposition 2.3.16 and hence we have that for all $\left(w_{k}, w_{i}\right) \in M_{2}$ the language $\left(w_{k}, w_{i}\right) \delta_{Z} \odot\left(K_{(x, i, k)} \times \epsilon\{\$\}^{*}\right) \delta_{Z}$ is regular. We may now deduce that N_{3} is regular, since it is a finite union of regular languages.
(4) Our final case is when $(u, w) \delta_{Z} \in K_{x}$ is such that the vertices $\lambda_{0} \cdot u, \lambda_{0} \cdot w$ are intersection vertices of some $\Delta_{i} \in \Lambda_{X}$. In this case $(u, w) \delta_{Z} \in K_{x}$ if and only if the word $(u, w) \delta_{Z}$ is an element of the following language

$$
N_{4}=\left\{\left(w_{j}, w_{k}\right) \mid w_{j}, w_{k} \in W, \lambda_{0} \cdot w_{j} \cdot x=\lambda_{0} \cdot w_{k}\right\} \delta_{Z}
$$

Since W is finite, N_{4} is finite, and hence is a regular language.

Now we may deduce that

$$
K_{x}=N_{1} \cup N_{2} \cup N_{3} \cup N_{4},
$$

is a finite union of regular languages and hence is regular. That K_{y} is a regular language for all $y \in Y$ can be proved in a similar way. Since R_{s} was an arbitrary \mathcal{R}-class of S, we may deduce that every \mathcal{R}-class of S is Schützenberger automatic, and hence S is Schützenberger automatic.

Chapter 4

Semidirect product

Semilattices and groups are some of the handiest examples of inverse semigroups. In fact, every inverse semigroup can be described using semilattices and groups as building blocks with a semidirect product construction. Namely, every inverse semigroup is an idempotent separating homomorphic image of a subsemigroup of a semidirect product of a semilattice by a group. In addition, a dual approach tells us that every inverse semigroup is a subsemigroup in an idempotent separating homomorphic image of a semidirect product of a semilattice by a group. In this chapter we give necessary and sufficient conditions for the construction of a semidirect product of a semilattice by a group to be finitely generated, to be finitely presented and to be Schützenberger automatic.

4.1 Presentations.

Semigroup presentations.

We first summarize the basic definitions and properties concerning semigroup presentations.

Let X be a non-empty set. A semigroup presentation is an ordered pair $\langle X \mid P\rangle$, where P is a binary relation on the free semigroup X^{+}. Let τ denote the congruence generated by P on the free semigroup X^{+}. The semigroup $S=X^{+} / \tau$ is said to be presented by the generators X and relations P and we denote this by

$$
S=\langle X \mid P\rangle
$$

If X can be chosen to be a finite set, then we say that S is finitely generated, and if both X and P can be chosen to be finite sets, then we say that S is finitely presented. Let w_{1}, w_{2} be words over X. We write $w_{1} \equiv w_{2}$, if w_{95} and w_{2} are identical as words and we write
$w_{1}=w_{2}$, if w_{1} and w_{2} represent the same element of S. If $w_{1}=w_{2}$, then we also say that S satisfies the relation $w_{1}=w_{2}$. We say that w_{2} is obtained from w_{1} by an application of a relation of P, if $w_{1} \equiv \alpha u \beta$ and $w_{2} \equiv \alpha v \beta$, where $\alpha, \beta \in X^{*}$ and $u=v$ or $v=u$ is a relation of P. We say that $w_{1}=w_{2}$ is a consequence of relations in P, if there exists a sequence of words

$$
w_{1} \equiv \alpha_{0}, \ldots, \alpha_{m} \equiv w_{2}
$$

where α_{j+1} is obtained from α_{j} by applying a relation of P.
We recall [33, Proposition 2.3.]:
Proposition 4.1.1. Let S be a semigroup generated by a set X and P be a binary relation on X^{+}. Then $S=\langle X \mid P\rangle$ if and only if the following two conditions hold:
(i) S satisfies all relations in P;
(ii) If $w_{1}, w_{2} \in X^{+}$are such that $w_{1}=w_{2}$ holds in S, then $w_{1}=w_{2}$ is a consequence of relations in P.

Let S be defined by the finite presentation $\langle X \mid P\rangle$. One can obtain an alternative semigroup presentation for S by applying the following elementary Tietze transformations:
(T1) adding a new generating symbol y and a new relation $y=w$, where $w \in X^{+}$
(T2) if P possesses a relation of the form $y=w$, where w is a word over X that does not contain the symbol y, then deleting the generating symbol y and the relation $y=w$ and replacing all occurrences of y by w in the remaining relations;
(T3) adding a new relation $w_{1}=w_{2}$ to P, in the case where $w_{1}=w_{2}$ is a consequence of relations in P;
(T4) deleting a relation $w_{1}=w_{2}$ from P, in the case where $w_{1}=w_{2}$ is a consequence of relations in $P-\left\{w_{1}=w_{2}\right\}$.
Proposition 2.5. of [33] tells us:
Proposition 4.1.2. Two (finite) semigroup presentations define the same semigroup if and only if one can be obtained from the other by applying (a finite sequence of) elementary Tietze transformations.

Inverse semigroup presentations.

In the rest of the thesis, we work frequently with inverse semigroup presentations. Therefore we recall the basic definitions and properties concerning presentations of inverse semigroups.

We consider inverse semigroups as algebras of type (2,1), where the binary operation is multiplication and the unary operation assigns to each element its unique (von Neumann) inverse.

The class of inverse semigroups forms a variety and hence free inverse semigroups exist. This fact enables us to define inverse semigroup presentations. First, we recall the description of the free inverse semigroup on a non-empty set X as a factor semigroup of the free semigroup with involution on X.

Let X be a non-empty set and $X^{-1}=\left\{x^{-1} \mid x \in X\right\}$. Consider the free semigroup $F=\left(X \cup X^{-1}\right)^{+}$and define a unary operation on F in the following way: For each $y \in X \cup X^{-1}$, let

$$
y^{-1}= \begin{cases}x^{-1} & \text { if } y=x \in X \\ x & \text { if } y=x^{-1} \in X^{-1}\end{cases}
$$

and define

$$
\left(y_{1} \ldots y_{n}\right)^{-1}=y_{n}^{-1} \ldots y_{1}^{-1} .
$$

With the unary operation defined, $\left(F, \cdot,^{-1}\right)$ is the free semigroup with involution on X, which we shall denote by $F S I(X)$. Define the following binary relation on $F S I(X)$:

$$
\Re=\left\{\left(u u^{-1} u, u\right) \mid u \in F S I(X)\right\} \cup\left\{\left(u u^{-1} v v^{-1}, v v^{-1} u u^{-1}\right) \mid u, v \in F S I(X)\right\} .
$$

The congruence generated by \Re is called the Wagner congruence which we denote by ρ. The factor-semigroup

$$
F I(X)=F S I(X) / \rho
$$

is the free inverse semigroup on X. We will refer to the elements of \Re as standard inverse semigroup relations.

An inverse semigroup presentation is an ordered pair $\langle X \mid P\rangle$, where P is a binary relation on $F S I(X)$. Let τ denote the congruence generated by $P \cup \Re$. The semigroup $S=F S I(X) / \tau$ is said to be presented as an inverse semigroup by the generators X and relations P and we denote this by

$$
S=\operatorname{Inv}\langle X \mid P\rangle
$$

If X can be chosen to be a finite set, then we say that S is finitely generated as an inverse semigroup, and if both X and P can be chosen to be finite, then we say that S is finitely presented as an inverse semigroup. We note that if S is generated as an inverse semigroup by X, then S is generated by $X \cup X^{-1}$ as a semigroup. In particular S is finitely generated as a semigroup if and only if it is finitely generated as an inverse semigroup. Moreover, if S
is given by the inverse semigroup presentation $\operatorname{Inv}\langle X \mid P\rangle$, then it is given by the following semigroup presentation:

$$
\left\langle X \cup X^{-1} \mid P \cup \Re\right\rangle .
$$

Proposition 4.1.3. Let S be an inverse semigroup defined by the semigroup presentation $\langle X \mid P\rangle$. Then S is defined by the inverse semigroup presentation $\operatorname{Inv}\langle X \mid P\rangle$.

Let $S=\operatorname{Inv}\langle X \mid P\rangle$ and let w_{1}, w_{2} be words over $X \cup X^{-1}$. We write $w_{1} \equiv w_{2}$, if w_{1} and w_{2} are identical as words and we write $w_{1}=w_{2}$, if w_{1} and w_{2} represent the same element of S. If $w_{1}=w_{2}$, then we also say that S satisfies the relation $w_{1}=w_{2}$. We say that w_{2} is obtained from w_{1} by an application of a relation of P or of a standard inverse semigroup relation, if $w_{1} \equiv \alpha u \beta$ and $w_{2} \equiv \alpha v \beta$, where $\alpha, \beta \in\left(X \cup X^{-1}\right)^{*}$ and $u=v$ or $v=u$ is a relation of P or a standard inverse semigroup relation. We say that $w_{1}=w_{2}$ is a consequence of relations in P and of standard inverse semigroup relations, if there exists a sequence of words

$$
w_{1} \equiv \alpha_{0}, \ldots, \alpha_{m} \equiv w_{2}
$$

where α_{j+1} is obtained from α_{j} by applying a relation of P or a standard inverse semigroup relation.

The following proposition is a modification of [33, Proposition 2.3.]:
Proposition 4.1.4. Let S be an inverse semigroup generated by a set X. Let P be a relation on $F S I(X)$ and let \Re denote the set of standard inverse semigroup relations on $F S I(X)$. Then $S=\operatorname{Inv}\langle X \mid P\rangle$ if and only if the following two conditions hold:
(i) S satisfies all relations in $P \cup \Re$;
(ii) If $w_{1}, w_{2} \in\left(X \cup X^{-1}\right)^{+}$are such that $w_{1}=w_{2}$ holds in S, then $w_{1}=w_{2}$ is a consequence of relations in $P \cup \Re$.

Proof. (\Longrightarrow) If $S=\operatorname{Inv}\langle X \mid P\rangle$, then $S=F S I(X) / \tau$ by definition, where τ is the congruence generated by $P \cup \Re$ and hence (i) and $(i i)$ hold.
(\Longleftarrow) Let F denote the free semigroup with involution on X and let $\varphi: F \rightarrow S$ be the unary homomorphism extending the identity map $\iota: X \rightarrow X$. Let τ denote the congruence generated by $P \cup \Re$. We show that $S=\operatorname{Inv}\langle X \mid P\rangle$ by verifying that $\operatorname{ker} \varphi=\tau$. Since S satisfies all relations in $P \cup \Re$ by (i), we clearly have that $\tau \subseteq \operatorname{ker} \varphi$. Suppose now that $\left(w_{1}, w_{2}\right) \in \operatorname{ker} \varphi$. Then w_{1} and w_{2} represent the same element of S, and hence by ($i i$) $\operatorname{ker} \varphi \subseteq \tau$.

Let $S=\operatorname{Inv}\langle X \mid P\rangle$. One can obtain an alternative inverse semigroup presentation for S by applying the following elementary Tietze transformations:
(T1) adding a new generating symbol y and a new relation $y=w$, where $w \in\left(X \cup X^{-1}\right)^{+}$;
(T2) if P possesses a relation of the form $y=w$, where w is a word over $X \cup X^{-1}$ that does not contain the symbols y or y^{-1}, then deleting the generating symbol y and the relation $y=w$ and replacing all occurrences of y by w and y^{-1} by w^{-1} in the remaining relations;
(T3) adding a new relation $w_{1}=w_{2}$ to P, in the case where $w_{1}=w_{2}$ is a consequence of relations in P and of standard inverse semigroup relations;
(T4) deleting a relation $w_{1}=w_{2}$ from P, in the case where $w_{1}=w_{2}$ is a consequence of relations in $P-\left\{w_{1}=w_{2}\right\}$ and of standard inverse semigroup relations.

Similarly to Proposition 4.1.2; we have:
Proposition 4.1.5. Two (finite) inverse semigroup presentations define the same inverse semigroup if and only if one can be obtained from the other by applying (a finite sequence of) elementary Tietze transformations.

4.2 Finite generation with respect to an action.

In the first section of the third chapter, we introduced the notion of an S-act and among others defined finite generation for S-acts. We also showed that every semigroup S can be considered as an S-act, but in doing so we forget the structure which S possesses and only keep the underlying set. Bearing in mind that an S-act A can have an algebraic structure underlying it, we give a more sophisticated version of the definition of finite generation and introduce the concept of finite presentability with respect to an action in Section 4.

Let (Y, \wedge) be a semilattice and denote by \leq the natural partial order on it. Recall that $x \leq y$ if and only if $x=x \wedge y$. We say that $y \in Y$ is a maximal element of Y if $x \in Y$, $y \leq x$ always implies that $x=y$. We say that Y satisfies the maximum condition if it has finitely many maximal elements, and for all $x \in Y$ there exists a maximal element $y \in Y$ such that $x \leq y$. The following lemma is immediate from the definitions.

Lemma 4.2.1. Let (Y, \wedge) be a semilattice and let φ be an automorphism of (Y, \wedge). Then $x \leq y$ if and only if $x \varphi \leq y \varphi$. In particular we have that y is a maximal element of Y if and only if $y \varphi$ is a maximal element of Y as well.

Next we recall the notion of a left action of a semigroup S on a semigroup T. Let $(T, *)$ and (S, \cdot) be semigroups. We say that S acts on T by endomorphisms on the left, if there exists a map $f: T \times S \rightarrow T,(t, s) \mapsto{ }^{s} t$ satisfying the conditions
(A1) $\left.{ }^{\left(s_{1} \cdot s_{2}\right)} t={ }^{s_{1}\left(s_{2}\right.} t\right)$;
$(\mathrm{A} 2){ }^{s}\left(t_{1} * t_{2}\right)={ }^{s} t_{1} *{ }^{s} t_{2}$
for all $t, t_{1}, t_{2} \in T$ and $s, s_{1}, s_{2} \in S$. If S is a monoid, then we also require the following condition to hold:
(A3) ${ }^{1} t=t$ for all $t \in T$.
We say that S acts on T by automorphisms on the left, if besides conditions (A1), (A2) (and (A3), if S is a monoid), the following conditions are satisfied:
(A4) for all $t \in T$ and $s \in S$ there exists $\tilde{t} \in T$ such that ${ }^{s} \tilde{t}=t$;
(A5) for all $t_{1}, t_{2} \in T$ and $s \in S,{ }^{s} t_{1}={ }^{s} t_{2}$ implies that $t_{1}=t_{2}$.
The reason we deviated from our notation introduced in the third chapter, and write ${ }^{s} t$ instead of $t . s$, is that we would like to keep the traditional notation used in semidirect products, which will be given soon. We also mention that a right action of S on T by endomorphisms (automorphisms) can be defined similarly.

Definition 4.2.2. Let (S, \cdot) and $(T, *)$ be semigroups. Assume that S acts on T on the left by endomorphisms (automorphisms). We say that T is generated by $T_{0} \subseteq T$ with respect to the action of S, if $T=\left\langle{ }^{S} T_{0} \cup T_{0}\right\rangle$, where ${ }^{S} T_{0}=\left\{{ }^{s} t \mid s \in S, t \in T_{0}\right\}$. We say that T is finitely generated with respect to the action of S if T_{0} can be chosen to be a finite subset of T.

Lemma 4.2.3. Let T be a finitely generated semigroup and assume that the semigroup S acts on T on the left by endomorphisms. Then T is finitely generated with respect to the action of S as well.

Proof. Clearly, if T is generated by a finite set Y, then T is finitely generated by Y with respect to the action of S as well.

Finitely generated semilattices are finite. We give three examples for infinite semilattices that are finitely generated with respect to a group action defined on them. These examples will be referred to throughout the fourth chapter to illustrate the results concerning finite generation and finite presentability of a semidirect product of a semilattice by a group. Our first two examples have already been introduced in the third chapter, these are Example 3.3.6 and Example 3.3.7.

Proposition 4.2.4. Let Y_{∞} be the double infinite chain with an identity adjoined on top:

$$
\ldots<e_{-1}<e_{0}<e_{1}<\ldots<1
$$

Let $G=\langle g\rangle$ be the infinite cyclic group. Let $n, k \in \mathbb{Z}$ and consider the following map:

$$
f: Y_{\infty} \times G \rightarrow Y_{\infty} ; \quad\left(e_{n}, g^{k}\right) \mapsto g^{g^{k}} e_{n}=e_{n+k} ; \quad\left(1, g^{k}\right) \mapsto g^{g^{k}} \mathbf{1}=\mathbf{1}
$$

With this action, G acts on Y_{∞} on the left by automorphisms, and Y_{∞} is generated by $Y_{0}=\left\{e_{0}, \mathbf{1}\right\}$ with respect to this action of G.

Proof: We first show that conditions (A1)-(A5) hold.
(A1) Let $y \in Y_{\infty}$ and $g_{1}=g^{n}, g_{2}=g^{m}, n, m \in \mathbb{Z}$. If $y=1$, then clearly ${ }^{g_{1} g_{2}} 1=1=$ ${ }^{g_{1}} \mathbf{1}={ }^{g_{1}}\left({ }^{g_{2}} \mathbf{1}\right)$. If $y=e_{k}$, for some $k \in \mathbb{Z}$, then

$$
g_{1 g_{2}} y=g^{n+m} e_{k}=e_{k+n+m}=g^{n} e_{k+m}=g^{n}\left(g^{m} e_{k}\right)={ }^{g_{1}\left(g_{2} y\right)}
$$

proving that (A1) does indeed hold.
(A2) Let $y_{1}=e_{n}, y_{2}=e_{m}$ and let $h=g^{k}$, where $n, m, k \in \mathbb{Z}$. Without loss of generality we can assume that $n \leq m$, and hence $n+k \leq m+k$. Then

$$
\begin{aligned}
{ }^{h}\left(y_{1} \wedge y_{2}\right)=g^{k}\left(e_{n} \wedge e_{m}\right)=g^{k} e_{n} & =e_{n+k} \\
& =e_{n+k} \wedge e_{m+k} \\
& =g^{g^{k}} e_{n} \wedge g^{g^{k}} e_{m}={ }^{h} y_{1} \wedge^{h} y_{2} .
\end{aligned}
$$

The case when y_{1} and/or y_{2} equals $\mathbf{1}$ can be verified similarly.
(A3) Clearly ${ }^{1} y={ }^{g^{0}} y=y$ for all $y \in Y_{\infty}$.
(A4) Let $e_{n} \in Y_{\infty}$ and $g^{m} \in G$. By definition, $s^{m} e_{n-m}=e_{n}$ and also $g^{m} 1=1$, verifying that (A4) holds.
(A5) Let $y_{1}=e_{n}, y_{2}=e_{m}$ and let $h=g^{k} \in G$ such that ${ }^{h} y_{1}={ }^{h} y_{2}$. That is

$$
e_{n+k}=g^{g^{k}} e_{n}=g^{k} e_{m}=e_{m+k}
$$

holds and hence we obtain that $e_{n}=e_{m}$, proving that (A5) is satisfied.
We may now deduce that G acts on Y_{∞} on the left by automorphisms. By (A4), for all $n \in \mathbb{Z}, e_{n}=g^{n} e_{0}$, and so the semilattice Y_{∞} is finitely generated with respect to the action of G by 1 and e_{0}.

Proposition 4.2.5. Let A be the infinite antichain

$$
\ldots, e_{-1}, e_{0}, e_{1}, \ldots
$$

Adjoin an identity $\mathbf{1}$ on top and a zero $\mathbf{0}$ on bottom, that is for each $e_{i} \in A, \mathbf{0}<e_{i}<\mathbf{1}$ holds. Let A_{∞} denote the (semi)lattice obtained. Let $G=\langle g\rangle$ be the infinite cyclic group. Let $n, k \in \mathbb{Z}$ and consider the following map:

$$
f: A_{\infty} \times G \rightarrow A_{\infty} ;\left(e_{n}, g^{k}\right) \mapsto g^{k} e_{n}=e_{n+k} ;\left(\mathbf{1}, g^{k}\right) \mapsto g^{g^{k}} \mathbf{1}=\mathbf{1} ;\left(\mathbf{0}, g^{k}\right) \mapsto g^{g^{k}} \mathbf{0}=\mathbf{0}
$$

With this action, G acts on A_{∞} on the left by automorphisms, and A_{∞} is generated by $Y_{0}=\left\{e_{0}, \mathbf{1}\right\}$ with respect to this action of G.

Proof. We show that conditions (A1)-(A5) hold.'
(A1) Clearly if $y \in A_{\infty}$ equals to $\mathbf{1}$ or to $\mathbf{0}$, then for all $g_{1}, g_{2} \in G,{ }^{g_{1} g_{2}} y={ }^{g_{1}}\left({ }_{2} y\right)$. Let $y=e_{k}, g_{1}=g^{n}, g_{2}=g^{m}$. Then

$$
{ }^{g_{1} g_{2}} y=g^{g^{n} g^{m}} e_{k}={ }^{g^{n+m}} e_{k}=e_{n+m+k}=g^{n} e_{k+m}=g^{n}\left(g^{m} e_{k}\right)=g_{1}^{g_{1}}\left(g_{2} y\right)
$$

proving that (A1) indeed holds.
(A2) Let $y_{1}, y_{2} \in A_{\infty}$ and $h=g^{k}$. If either $y_{1}=\mathbf{0}$ or $y_{2}=\mathbf{0}$ (or both), then clearly ${ }^{h}\left(y_{1} \wedge y_{2}\right)={ }^{h} y_{1} \wedge{ }^{h} y_{2}$. Similarly, if $y_{1}=1$ and $y_{2} \in A_{\infty}$ arbitrary, then ${ }^{h}\left(y_{1} \wedge\right.$ $\left.y_{2}\right)={ }^{h} y_{2}=\mathbf{1} \wedge{ }^{h} y_{2}={ }^{h} y_{1} \wedge{ }^{h} y_{2}$. The only case remaining to consider is when $y_{1}=e_{n}, y_{2}=e_{m}$ for some $n, m \in \mathbb{Z}$. If $n \neq m$, then we have

$$
{ }^{h}\left(y_{1} \wedge y_{2}\right)=g^{k}\left(e_{n} \wedge e_{m}\right)=g^{k} 0=g^{k} e_{n} \wedge^{g^{k}} e_{m}={ }^{h} y_{1} \wedge^{h} y_{2}
$$

If $n=m$, then

$$
{ }^{h}\left(y_{1} \wedge y_{2}\right)=g^{k}\left(e_{n} \wedge e_{n}\right)=g^{g^{k}} e_{n}=g^{k} e_{n} \wedge^{g^{k}} e_{n}={ }^{h} y_{1} \wedge{ }^{h} y_{2} .
$$

verifying that (A2) holds.
(A3) By definition, it is clear, that for all $y \in A_{\infty},{ }^{1} y={ }^{g^{0}} y=y$.
(A4) Let $y=e_{n} \in A$ and $g^{m} \in G$. By definition, $g^{m} e_{n-m}=e_{n}$. Also $g^{m} \mathbf{1}=\mathbf{1}$ and $g^{m} 0=0$, verifying that (A4) holds.
(A5) Let $y_{1}, y_{2} \in A_{\infty}$ and let $h=g^{k}$ such that ${ }^{h} y_{1}={ }^{h} y_{2}$. Then the following three cases can occur:
(a) If ${ }^{h} y_{1}={ }^{h} y_{2}=1$, then $y_{1}=y_{2}=\mathbf{1}$.
(b) If ${ }^{h} y_{1}={ }^{h} y_{2}=\mathbf{0}$, then $y_{1}=y_{2}=\mathbf{0}$.
(c) If ${ }^{h} y_{1}={ }^{h} y_{2}=e_{m}$, then ${ }^{h^{-1}}\left({ }^{h} y_{1}\right)={ }^{h^{-1}}\left({ }^{h} y_{2}\right)={ }^{h^{-1}} e_{m}$, from which it follows that $y_{1}=y_{2}={ }^{h^{-1}} e_{m}$.

Hence (A5) is satisfied.
We may deduce that G acts on A_{∞} on the left by automorphisms. Since by (A4) for all $n \in \mathbb{Z}, e_{n}=g^{n} e_{0}$, and since $e_{n} \wedge e_{m}=0$ where $n, m \in \mathbb{Z}(n \neq m)$, we also obtain that the semilattice A_{∞} is finitely generated with respect to the action of G by 1 and e_{0}.

Before presenting our last example, we make a few basic observation about the free semilattice generated by a set A. To be more precise, in our case A is going to be an infinite set. Let F be the free semilattice generated by $A=\left\{\ldots, e_{-1}, e_{0}, e_{1}, \ldots\right\}$. Since F is the free semilattice, for every element $f \in F$, there exists a unique subset $\left\{f_{1}, \ldots, f_{m}\right\}$ of A, such that

$$
\begin{equation*}
f=f_{1} \wedge \ldots \wedge f_{m} \tag{4.1}
\end{equation*}
$$

and the following conditions hold:
(F1) $f_{i} \neq f_{j}$ for all $i \neq j, 1 \leq i, j \leq m$.
(F2) If $f=l_{1} \wedge \ldots \wedge l_{n}$, where $l_{i} \neq l_{j}(i \neq j, 1 \leq i, j \leq n)$ then $m=n$ and $\left\{f_{1}, \ldots, f_{m}\right\}=$ $\left\{l_{1}, \ldots, l_{n}\right\}$.
In the next proposition, if we write

$$
\begin{equation*}
f=f_{1} \wedge \ldots \wedge f_{m} \tag{4.2}
\end{equation*}
$$

then we assume that conditions (F1) and (F2) hold.
Proposition 4.2.6. Let F be the free semilattice generated by infinitely many elements $A=\left\{\ldots, e_{-1}, e_{0}, e_{1}, \ldots\right\}$. Adjoin an identity $\mathbf{1}$ on top that is for each $e_{i} \in A_{0}, e_{i}<\mathbf{1}$ holds. Denote by F_{∞} the (semi)lattice obtained. Let $G=\langle g\rangle$ be the infinite cyclic group. Let $n, k \in \mathbb{Z}$ and consider the following map:

$$
\varphi: F_{\infty} \times G \rightarrow F_{\infty} ; \quad\left(e_{n}, g^{k}\right) \mapsto g^{k} e_{n}=e_{n+k} ; \quad\left(\mathbf{1}, g^{k}\right) \mapsto g^{k} \mathbf{1}=\mathbf{1}
$$

where $e_{n} \in A$. If $e \in F$ so that $e=f_{1} \wedge f_{2} \wedge \ldots \wedge f_{m}$, then we define

$$
\left(e, g_{k}\right) \mapsto g^{k} e=g^{k} f_{1} \wedge g^{k} f_{2} \wedge \ldots \wedge_{g^{k}} f_{m}
$$

With this action, G acts on Y_{∞} by automorphisms. Furthermore Y_{∞} is generated by $Y_{0}=\left\{e_{0}, \mathbf{1}\right\}$ with respect to this action.

Proof. That f is a well-defined map follows, since (F1) and (F2) hold. We note that for $g^{n} \in G$, we have by definition that

$$
\begin{aligned}
g^{n}\left(g^{k} f_{1} \wedge g^{k} f_{2} \wedge \ldots \wedge_{g^{k}} f_{m}\right) & =g^{g^{n}}\left(g^{k} f_{1}\right) \wedge^{g^{n}}\left(g^{k} f_{2}\right) \wedge \ldots \wedge^{g^{n}}\left(g^{k} f_{m}\right) \\
& =g^{n+k} f_{1} \wedge g^{g^{n+k}} f_{2} \wedge \ldots \wedge^{g^{n+k}} f_{m} .
\end{aligned}
$$

We are now ready to show that conditions (A1)-(A5) hold.
(A1) Clearly if y equals to $\mathbf{1}$, then for all $\left.g_{1}, g_{2} \in G,{ }^{g_{1} g_{2}} y={ }^{g_{1}\left(g_{2}\right.} y\right)$. Let $y=f_{1} \wedge \ldots \wedge f_{n}$, where $f_{1}, \ldots, f_{n} \in A$ and let $g_{1}=g^{m}, g_{2}=g^{k}$. Then on one hand

$$
g_{1} g_{2} y=g^{m} g^{k}\left(f_{1} \wedge \ldots \wedge f_{n}\right)=g^{m+k}\left(f_{1} \wedge \ldots \wedge f_{n}\right)=g^{g^{m+k}} f_{1} \wedge \ldots \wedge^{g^{m+k}} f_{n}
$$

On the other hand

$$
g_{1}\left(g_{2} y\right)=g^{m}\left(g^{k}\left(f_{1} \wedge \ldots \wedge f_{n}\right)\right)=g^{m}\left(g^{k} f_{1} \wedge \ldots \wedge g^{g^{k}} f_{n}\right)=g^{m+k} f_{1} \wedge \ldots \wedge_{g^{m+k}} f_{n}
$$

proving that (A1) indeed holds.
(A2) Let $y_{1}, y_{2} \in F_{\infty}$ and $h=g^{k}$. If $y_{1}=1$ and $y_{2} \in F$ is arbitrary, then ${ }^{h}\left(y_{1} \wedge y_{2}\right)=$ ${ }^{h} y_{2}={ }^{h} 1 \wedge{ }^{h} y_{2}={ }^{h} y_{1} \wedge^{h} y_{2}$. The only remaining case to consider is when $y_{1}, y_{2} \in F$. Assume that $y_{1}=f_{1} \wedge \ldots \wedge f_{m}$ and that $y_{2}=l_{1} \wedge \ldots \wedge l_{n}$, where $f_{i}, l_{j} \in A$. Then, on one hand

$$
{ }^{h}\left(y_{1} \wedge y_{2}\right)=g^{g^{k}}\left(f_{1} \wedge \ldots \wedge f_{m} \wedge l_{1} \wedge \ldots \wedge l_{n}\right)=g^{g^{k}} f_{1} \wedge \ldots \wedge^{g^{k}} f_{m} \wedge g^{k} l_{1} \wedge \ldots \wedge g^{g^{k}} l_{n}
$$

On the other hand

$$
{ }^{h} y_{1} \wedge{ }^{h} y_{2}=g^{k}\left(f_{1} \wedge \ldots \wedge f_{m}\right) \wedge g^{k}\left(l_{1} \wedge \ldots \wedge l_{n}\right)=g^{k} f_{1} \wedge \ldots \wedge^{g^{k}} f_{m} \wedge g^{g^{k}} l_{1} \wedge \ldots \wedge \wedge^{g^{k}} l_{n}
$$

Thus (A2) holds.
(A3) By definition, it is clear that for all $y \in F_{\infty},{ }^{1} y={ }^{g^{0}} y=y$.
(A4) Let $e=f_{1} \wedge \ldots \wedge f_{n} \in F$ and $g^{m} \in G$. Let $l=s^{-m} e$. By (A1) and (A3) we have that $g^{m} l=g^{m}\left(g^{-m} e\right)={ }^{1} e=e$. Also, if $e=1$ then $g^{m} 1=1$, verifying that (A4) holds.
(A5) Let $y_{1}, y_{2} \in F_{\infty}$ and let $h=g^{k}$ such that ${ }^{h} y_{1}={ }^{h} y_{2}$. Then either $y_{1}=y_{2}=\mathbf{1}$ or $y_{1}=y_{2}=0$, or $y_{1}=f_{1} \wedge \ldots \wedge f_{n}$ and $y_{2}=l_{1} \wedge \ldots \wedge l_{m}$. In the latter case we have that

$$
g^{k} y_{1}=g^{k}\left(f_{1} \wedge \ldots \wedge f_{n}\right)=g^{k}\left(l_{1} \wedge \ldots \wedge l_{m}\right)=g^{k} y_{2}
$$

That is, $g^{k} f_{1} \wedge \ldots \wedge^{g^{k}} f_{n}=g^{k} l_{1} \wedge \ldots \wedge^{g^{k} l_{m}}$. Having in mind that $(F 1)$ and $(F 2)$ hold, we have that

$$
B_{1}=\left\{g^{g^{k}} f_{1}, \ldots,,^{g^{k}} f_{n}\right\}=\left\{g^{k} i_{1}, \ldots, g^{k} l_{m}\right\}=B_{2}
$$

where $n=m$. In particular, we have that for each $g^{k} f_{i} \in B_{1}$ there exists exactly one element $g^{k} l_{j} \in B_{2}$ such that $g^{k} f_{i}=g^{k} l_{j}$ and vica versa. It follows that

$$
\left\{f_{1}, \ldots, f_{n}\right\}=\left\{l_{1}, \ldots, l_{m}\right\}
$$

and hence $y_{1}=y_{2}$, verifying that (A5) is satisfied.
We may now deduce that G acts on F_{∞} on the left by automorphisms. By definition for all $n \in \mathbb{Z}, e_{n}=s^{n} e_{0}$. Moreover every element of F is a product of finitely many elements of A, therefore we may deduce that F_{∞} is finitely generated with respect to the action of G by 1 and e_{0}.

Let (Y, \wedge) be a semilattice and (G, \cdot) be a group. Assume that G acts on Y on the left by automorphisms. The semidirect product $S=Y \rtimes G$ of Y by G is the set $Y \times G$ equipped with the following multiplication

$$
(e, g)(f, h)=\left(e \wedge^{g} f, g \cdot h\right)
$$

With this construction an inverse semigroup is obtained. We recall some basic properties of the semidirect product $S=Y \rtimes G$.

Proposition 4.2.7. Let (Y, \wedge) be a semilattice and (G, \cdot) be a group. Assume that G acts on Y on the left by automorphisms and consider the semidirect product $S=Y \rtimes G$. Then we have that
(i) $(e, g)^{-1}=\left(g^{-1} e, g^{-1}\right)$;
(ii) $(e, g) \leq(f, h)$ if and only if $e \leq f$ in Y and $g=h$;
(iii) $(e, g) \in E(S)$ if and only if $g=1$;
(iv) $(e, g) \mathcal{R}(f, h)$ if and only if $e=f$.
(v) $(e, g) \mathcal{L}(f, h)$ if and only if $g^{-1} e=h^{h^{-1}} f$.

4.3 Finite generation.

In this section, we give a necessary and sufficient condition for a semidirect product of a semilattice by a group to be finitely generated. Throughout this section, if we say that the group G acts on a semilattice Y, then it will be understood that G acts on Y on the left by automorphisms.

Proposition 4.3.1. Let (Y, \wedge) be a semilattice, and (G, \cdot) be a group acting on Y. The semidirect product $S=Y \rtimes G$ is finitely generated if and only if the following conditions hold:
(i) G is finitely generated;
(ii) Y satisfies the maximum condition;
(iii) Y is finitely generated with respect to the action of G.

Proof. (\Longrightarrow) Assume that $S=Y \rtimes G$ is finitely generated by the elements $A=$ $\left\{\left(e_{1}, h_{1}\right), \ldots,\left(e_{n}, h_{n}\right)\right\}$, where $A \subseteq S$. By Proposition 4.2.7, we obtain that $A^{-1}=$ $\left\{\left({ }^{h_{1}^{-1}} e_{1}, h_{1}^{-1}\right), \ldots,\left({ }^{\left(n_{n}^{-1}\right.} e_{n}, h_{n}^{-1}\right)\right\}$. Let

$$
X=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\} \quad \text { and } \quad Y_{0}=\left\{e_{1}, \ldots, e_{n}\right\} \cup\left\{g^{-1} e \mid(e, g) \in A\right\}
$$

Let $(e, g) \in S$. Write

$$
(e, g)=\left(f_{1}, g_{1}\right)\left(f_{2}, g_{2}\right) \ldots\left(f_{k}, g_{k}\right)
$$

where $\left(f_{j}, g_{j}\right) \in A \cup A^{-1}$ for all $1 \leq j \leq k$. Then, on one hand

$$
g=g_{1} \ldots g_{k}
$$

where $g_{j} \in X \cup X^{-1}$ verifying that G is generated by the finite set X. On the other hand,

$$
e=f_{1} \wedge^{g_{1}} f_{2} \wedge \ldots \wedge^{g_{1} \ldots g_{k-1}} f_{k},
$$

where $f_{1}, \ldots, f_{k} \in Y_{0}$. It follows that for each $e \in Y$ there exist $f_{1}, \ldots, f_{k} \in Y_{0}$, and $t_{1}, \ldots, t_{k-1} \in G$ such that

$$
\begin{equation*}
e=f_{1} \wedge^{t_{1}} f_{2} \wedge \ldots \wedge^{t_{k-1}} f_{k}, \tag{4.3}
\end{equation*}
$$

proving that $Y=\left\langle{ }^{G} Y_{0}\right\rangle$. We also obtain from (4.3), that $e \leq f_{1}$. That is to say that every element of Y is less than or equal to an element of Y_{0} with respect to the natural partial order. In particular, we have that the maximal elements of Y are the maximal elements of Y_{0}, and so we deduce that Y satisfies the maximum condition.
(\Longleftrightarrow) For the converse, let G be a group acting on a semilattice Y, where G and Y satisfy conditions (i) - (iii). More precisely, assume that the finite set X generates G as a group, and suppose that $\left\langle{ }^{G} \bar{Y}_{0}\right\rangle=Y$. For the sake of simplicity we assume that $X \subseteq G$ and $\bar{Y}_{0} \subseteq Y$. Let Y_{m} denote the set of maximal elements of Y and let $Y_{0}=Y_{m} \cup \bar{Y}_{0}$. By assumption, Y_{m} is a finite set, and so Y_{0} is a finite set as well. Moreover, we still have that $\left\langle{ }^{G} Y_{0}\right\rangle=Y$. We claim that the set

$$
A=\left\{(e, 1): e \in Y_{0}\right\} \cup\left\{(e, h): e \in Y_{m}, h \in X\right\}
$$

generates S as an inverse semigroup.
Let $(e, g) \in Y_{0} \times G$. We verify that (e, g) can be written in terms of elements of $A \cup A^{-1}$. Let $\tilde{e} \in Y_{m}$ be such that $e \leq \tilde{e}$ and suppose that $g=g_{1} g_{2} \ldots g_{k}$ where $g_{1}, g_{2}, \ldots, g_{k} \in$ $X \cup X^{-1}$. By Lemma 4.2.1, there exist $f_{1}, f_{2}, \ldots, f_{k-1} \in Y_{m}$ such that ${ }^{g_{1}} f_{1}=\tilde{e}$ and $g_{j} f_{j}=f_{j-1}$ for all $2 \leq j \leq k-1$. It follows that ${ }^{g_{1} \ldots g_{j}} f_{j}=\tilde{e}$ for all $1 \leq j \leq k-1$, and we obtain

$$
\begin{aligned}
(e, 1)\left(\tilde{e}, g_{1}\right)\left(f_{1}, g_{2}\right) \ldots\left(f_{k-1}, g_{k}\right) & =\left(e \wedge \tilde { e } \wedge ^ { g _ { 1 } } f _ { 1 } \wedge \ldots \wedge \left({ }^{\left.\left.g_{1} g_{2} \ldots g_{k-1} f_{k-1}\right), g\right)}\right.\right. \\
& =(e \wedge \underbrace{\left.\tilde{e} \wedge{ }^{\tilde{e} \ldots \wedge \tilde{e}}, g\right)=(e \wedge \tilde{e}, g)}_{k} \\
& =(e, g),
\end{aligned}
$$

verifying that any element of $Y_{0} \times G$ can be written in terms of elements of $A \cup A^{-1}$.
Let $e \in Y$ be arbitrary. Since $\left\langle{ }^{G} Y_{0}\right\rangle=Y$, there exist $t_{1}, \ldots, t_{k} \in G$, and $f_{1}, \ldots, f_{k} \in Y_{0}$ such that

$$
e={ }^{t_{1}} f_{1} \wedge \ldots \wedge^{t_{k}} f_{k} .
$$

Since Y satisfies the maximum condition, there exists $\tilde{e} \in Y_{m}$ such that $e \leq \tilde{e}$, and so $e=\tilde{e} \wedge e$ holds. Let $g \in G$ and write $g=t_{1} t_{2} \ldots t_{k} u$ where $u \in G$. Then

$$
(e, g)=\left(\tilde{e}, t_{1}\right)\left(f_{1}, t_{1}^{-1} t_{2}\right) \ldots\left(f_{k-1}, t_{k-1}^{-1} t_{k}\right)\left(f_{k}, t_{k}^{-1}\right)(\tilde{e}, u) .
$$

By the above argument each component of the product can be written in terms of elements of $A \cup A^{-1}$, and thus S is finitely generated as an inverse semigroup by A.

We have the following useful corollary of the above proof.
Corollary 4.3.2. Let G be a group generated as a group by a finite set X and let 1 denote the identity element of G. Let Y be a semilattice satisfying the maximum condition and let Y_{m} denote the set of maximal elements of \dot{Y}. Assume that G acts on Y on the
left and that the finite set Y_{0} containing Y_{m} generates Y with respect to the action of G. Then the semidirect product $S=Y \rtimes G$ is generated as an inverse semigroup by $A=\left(Y_{0} \times\{1\}\right) \cup\left(Y_{m} \times X\right)$.

We end this section by giving three examples for finitely generated semidirect products.
Example 4.3.3. Let Y_{∞} be the double infinite chain with an identity element adjoined on top and let G be the infinite cyclic group. Define the action of G on Y_{∞} as it was in Proposition 4.2.4. Clearly G is finitely generated and Y_{∞} satisfies the maximum condition. According to Proposition 4.2.4, Y_{∞} is finitely generated with respect to the action of G. Hence, by Proposition 4.3.1, the semidirect product $S=Y_{\infty} \rtimes G$ is finitely generated.

Example 4.3.4. Consider the semilattice A_{∞} introduced in Proposition 4.2 .5 and let G be the infinite cyclic group. Define the action of G on A_{∞} as it was in Proposition 4.2.5. Clearly G is finitely generated and A_{∞} satisfies the maximum condition. According to Proposition 4.2.5, A_{∞} is finitely generated with respect to the action of G. Hence, by Proposition 4.3.1, the semidirect product $S=A_{\infty} \rtimes G$ is finitely generated.

Example 4.3.5. Consider the semilattice F_{∞} introduced in Proposition 4.2 .6 and let G be the infinite cyclic group. Define the action of G on F_{∞} as it was in Proposition 4.2.6. Clearly G is finitely generated and F_{∞} satisfies the maximum condition. We have also shown in Proposition 4.2 .6 that F_{∞} is finitely generated with respect to the action of G. Hence, by Proposition 4.3.1, the semidirect product $S=F_{\infty} \rtimes G$ is finitely generated.

4.4 Finite presentability with respect to an action I.

The main purpose of this section is to introduce the concept of finite presentability of a semigroup with respect to a semigroup action. We investigate basic properties regarding this new notion. Among other things, we prove that a finitely presented semigroup on which a finitely generated semigroup acts on the left by endomorphisms is also finitely presented with respect to the action of the finitely generated semigroup. We set the concept introduced in this section into an inverse semigroup theoretic context in Section 6.

Throughout this section, if we say that a semigroup S acts on a semigroup T, then it will be understood that S acts on T on the left by endomorphisms. Moreover, if $S=\langle X \mid P\rangle$, then we assume for the sake of convenience that $X \subseteq S$. We let λ denote the empty word.

Let X and Y be non-empty sets and let $Z=X^{*}$. Consider the set

$$
{ }^{Z} Y=\left\{{ }^{\alpha} y \mid \alpha \in Z, y \in Y\right\}
$$

In other words, the elements of ${ }^{Z} Y$ consist of symbols of the form ${ }^{x_{1} \ldots x_{n}} y$, where $y \in$ $Y, x_{i} \in X \cup\{\lambda\}$. Consider the map:

$$
\begin{gather*}
f:\left({ }^{Z} Y\right)^{+} \times Z \rightarrow\left({ }^{Z} Y\right)^{+} \\
\left({ }^{\beta} y, \alpha\right) \mapsto{ }^{\alpha \beta} y,(y, \lambda) \mapsto y,\left(y_{1} \ldots y_{n}, \alpha\right) \mapsto{ }^{\alpha} y_{1} \ldots{ }^{\alpha} y_{n} \tag{4.4}
\end{gather*}
$$

where $\beta \in Z \backslash\{\lambda\}, \alpha \in Z$ and $y_{1}, \ldots, y_{n} \in{ }^{Z} Y$. Clearly, f satisfies (A1) and (A2) and so Z acts on $\left({ }^{Z} Y\right)^{+}$. As before, we write the image of $\left(y_{1} \ldots y_{n}, \alpha\right)$ under f as ${ }^{\alpha}\left(y_{1} \ldots y_{n}\right)$. That is,

$$
{ }^{\alpha}\left(y_{1} \ldots y_{n}\right) \equiv{ }^{\alpha} y_{1} \ldots{ }^{\alpha} y_{n}
$$

In particular we obtain $Y \subseteq{ }^{Z} Y$, since for all $y \in Y,{ }^{\lambda} y \equiv y$. Throughout this section, we consider $\left({ }^{Z} Y\right)^{+}$as a semigroup on which the semigroup Z acts, where the action is determined by the map f, defined in (4.4).

Definition 4.4.1. Let $\langle X \mid P\rangle$ be a semigroup presentation, $Z=X^{*}$ and Y be a nonempty set. A semigroup presentation with respect to the action of $\langle X \mid P\rangle$ is an ordered pair $\langle Y \mid Q\rangle$, where Q is a binary relation on $\left({ }^{Z} Y\right)^{+}$. Let

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

We note that $Q \subseteq Q_{A}$. The semigroup defined by the semigroup presentation $\left\langle{ }^{Z} Y \mid Q_{A}\right\rangle$ is said to be presented with respect to the action of $\langle X \mid P\rangle$ by the generators Y and relations Q and we denote this by

$$
T=\operatorname{Act}_{\langle X \mid P\rangle}\langle Y \mid Q\rangle .
$$

If Y and Q can be chosen to be finite sets, then we say that T is finitely presented with respect to the action of $\langle X \mid P\rangle$. If we fix a presentation $\langle X \mid P\rangle$ for a semigroup S, then we write

$$
T=\operatorname{Act}_{S}\langle Y \mid Q\rangle
$$

instead of $T=\operatorname{Act}_{\langle X \mid P\rangle}\langle Y \mid Q\rangle$, and say that T is presented with respect to an action of S by Y and Q.

Let $T=\operatorname{Act}_{(X|P\rangle}\langle Y \mid Q\rangle, Z=X^{*}$ and let $w_{1}, w_{2} \in\left({ }^{Z} Y\right)^{+}$. We say that w_{2} is obtained from w_{1} by an application of a relation of Q_{A}, if $w_{1} \equiv \alpha u \beta$ and $w_{2} \equiv \alpha v \beta$, where $\alpha, \beta \in\left({ }^{Z} Y\right)^{*}$ and $u=v$ is a relation of Q_{A}. We say that $w_{1}=w_{2}$ is a consequence of relations in Q_{A}, if there exists a sequence of words

$$
w_{1} \equiv \alpha_{0}, \ldots, \alpha_{m} \equiv w_{2}
$$

such that α_{j+1} is obtained from α_{j} by applying a relation of Q_{A}.
According to Proposition 4.1.1, we obtain:
Proposition 4.4.2. Let $\langle X \mid P\rangle$ be a semigroup presentation and Y be a non-empty set. Let $Z=X^{*}$ and Q be a binary relation on $\left({ }^{Z} Y\right)^{+}$. Then $T=\operatorname{Act}_{\langle X \mid P\rangle}\langle Y \mid Q\rangle$ if and only if the following two conditions hold:
(i) T satisfies all relations in Q_{A};
(ii) If $w_{1}, w_{2} \in\left({ }^{Z} Y\right)^{+}$are such that $w_{1}=w_{2}$ holds in T, then $w_{1}=w_{2}$ is a consequence of relations in Q_{A}.

Every semigroup can be defined in terms of a semigroup presentation. The question naturally arises whether a semigroup T on which a semigroup S acts can be defined in terms of a presentation with respect to the action of S. We give an answer to this problem in the next proposition.

Proposition 4.4.3. Let S and T be semigroups and assume that S acts on T. Then T can be defined in terms of a presentation with respect to the action of S.

Proof. Fix a presentation $\langle X \mid P\rangle$ for S. Let $Z=X^{*}$ and let T be given by the presentation $\langle Y \mid R\rangle$. Since S acts on T, there exists a function

$$
f: T \times S \rightarrow T ;(t, s) \mapsto{ }^{s} t
$$

satisfying the following two conditions:

$$
\text { (A1) } \quad{ }^{\left(s_{1} s_{2}\right)} t={ }^{s_{1}}\left(s_{2} t\right) ; \quad \text { and } \quad(A 2) \quad{ }^{s}\left(t_{1} t_{2}\right)={ }^{s} t_{1}{ }^{s} t_{2}
$$

for all $t, t_{1}, t_{2} \in T$ and $s, s_{1}, s_{2} \in S$. For all $y \in Y$ and $\alpha \in Z$, we fix a word $v_{\alpha, y}$ over Y, so that

$$
{ }^{\alpha} y=v_{\alpha, y}
$$

holds. We note that because of conditions (A1) and (A2) and since f is well-defined, the following hold: On one hand, if $\alpha, \beta \in Z$ are such that $\alpha=\beta$ holds in S, then for all $y \in Y$

$$
\begin{equation*}
v_{\alpha, y}=v_{\beta, y} \tag{4.5}
\end{equation*}
$$

holds in T. More generally, if $w \equiv y_{1} \ldots y_{n}$ is a word over Y, then

$$
\begin{equation*}
v_{\alpha, y_{1}} \ldots v_{\alpha, y_{n}}=v_{\beta, y_{1}} \ldots v_{\beta, y_{n}} . \tag{4.6}
\end{equation*}
$$

On the other hand, for all $y \in Y$ and $\delta \equiv \alpha \beta$, where $\alpha, \beta \in Z$, if $v_{\beta, y} \equiv y_{1} \ldots y_{n}$, then

$$
\begin{equation*}
v_{\delta, y}=v_{\alpha, y_{1}} \ldots v_{\alpha, y_{n}} \tag{4.7}
\end{equation*}
$$

holds in T. Let

$$
Q=R \cup\left\{{ }^{\alpha} y=v_{\alpha, y} \mid \alpha \in Z, y \in Y\right\} .
$$

Consider the semigroup presentation $\left\langle{ }^{Z} Y \mid Q_{A}\right\rangle$, where

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} \beta_{p}={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

We verify that $T=\operatorname{Act}_{S}\langle Y \mid Q\rangle$, by showing that the semigroup presentation $\left\langle{ }^{Z} Y \mid Q_{A}\right\rangle$ can be obtained from the semigroup presentation $\langle Y \mid R\rangle$ by applying elementary Tietze transformations.

It is immediate that applying Tietze transformations of type ($T 1$), the semigroup presentation $\left\langle{ }^{Z} Y \mid Q\right\rangle$ is obtained from $\langle Y \mid R\rangle$. We verify that $\left\langle{ }^{Z} Y \mid Q_{A}\right\rangle$ cạn be obtained from $\left\langle{ }^{Z} Y \mid Q\right\rangle$ by applying Tietze transformation of type ($T 3$). In other words, we show that every relation in $Q_{A} \backslash Q$ is a consequence of relations in Q.

First, consider a relation in R :

$$
a_{1} \ldots a_{n}=b_{1} \ldots b_{m}
$$

Let $\alpha, \beta \in Z$ and $(u=v) \in P$. Let

$$
\delta_{1} \equiv \alpha u \beta \quad \text { and } \quad \delta_{2} \equiv \alpha v \beta
$$

It is immediate that the relation $\delta_{1}=\delta_{2}$ holds in S. Bearing in mind that f is a well-defined map and that (A2) holds, we obtain that

$$
\begin{equation*}
v_{\delta_{2}, a_{1}} \ldots v_{\delta_{2}, a_{n}}=v_{\delta_{2}, b_{1}} \ldots v_{\delta_{2}, b_{m}} \tag{4.8}
\end{equation*}
$$

holds in T. In particular, we have that

$$
\begin{aligned}
{ }^{\delta_{1}}\left(a_{1} \ldots a_{n}\right) & \equiv{ }^{\delta_{1}} a_{1} \ldots{ }^{\delta_{1}} a_{n} & & \\
& =v_{\delta_{1}, a_{1}} \ldots v_{\delta_{1}, a_{n}} & & \text { applying relations in } Q \\
& =v_{\delta_{2}, a_{1}} \ldots v_{\delta_{2}, a_{n}} & & \text { by (4.5) } \\
& =v_{\delta_{2}, b_{1}} \ldots v_{\delta_{2}, b_{m}} & & \text { by (4.8) } \\
& ={ }^{\delta_{2}} b_{1} \ldots{ }^{\delta_{2}} b_{m} . & & \text { applying relations in } Q \\
& \equiv{ }^{\delta_{2}}\left(b_{1} \ldots b_{m}\right) . & &
\end{aligned}
$$

It can be similarly proved that for all $\alpha \in Z$,

$$
{ }^{\alpha}\left(a_{1} \ldots a_{n}\right)={ }^{\alpha}\left(b_{1} \ldots b_{m}\right)
$$

is a consequence of relations in Q.
Next, let $w \in\left({ }^{Z} Y\right)^{+}$and let $\delta_{1}, \delta_{2} \in Z$ as defined before. Assume that $w \equiv$ ${ }^{\alpha_{1}} y_{1} \ldots{ }^{\alpha_{n}} y_{n}$, where $\alpha_{i} \in Z$ and ${ }^{\alpha_{i}} y_{i}=y_{i}$, if α_{i} is the empty word. Let $\mu_{i} \equiv \delta_{1} \alpha_{i}$ and $\nu_{i} \equiv \delta_{2} \alpha_{i},(1 \leq i \leq n)$. Since $\delta_{1}=\delta_{2}$ holds in S, we also have that $\mu_{i}=\nu_{i}$ holds for all $1 \leq i \leq n$. Making use of (4.5), we obtain that $v_{\mu_{i}, y_{i}}=v_{\nu_{i}, y_{i}}$ holds in T for all $1 \leq i \leq n$. Hence, we have that

$$
\begin{array}{rlrl}
{ }^{\delta_{1}} w & \equiv & \\
& \equiv{ }^{\delta_{1} \alpha_{1}} y_{1} \ldots{ }^{\delta_{1} \alpha_{n}} y_{n} & & \\
& \equiv{ }^{\mu_{1}} y_{1} \ldots{ }^{\mu_{n}} y_{n} & & \text { applying relations in } Q \\
& =v_{\mu_{1}, y_{1}} \ldots v_{\mu_{n}, y_{n}} & & \text { by (4.5) } \\
& =v_{\nu_{1}, y_{1}} \ldots v_{\nu_{n}, y_{n}} & & \text { applying relations in } Q \\
& ={ }^{\nu_{1}} y_{1} \ldots{ }^{\nu_{n}} y_{n} & & \\
& ={ }^{\delta_{2} \alpha_{1}} y_{1} \ldots{ }^{\delta_{2} \alpha_{n}} y_{n} & & \equiv{ }^{\delta_{2}} w .
\end{array}
$$

Finally, consider a relation of the form ${ }^{\gamma} y=v_{\gamma, y}$ in Q. Let δ_{1} and δ_{2} be the words over X as defined before. Let $\mu \equiv \delta_{1} \gamma$ and $\nu \equiv \delta_{2} \gamma$. Since $\delta_{1}=\delta_{2}$ holds in S, we have that $\mu=\nu$ also holds in S. Assume that $v_{\gamma, y} \equiv y_{1} \ldots y_{n}$. Then,

$$
\begin{align*}
{ }^{\mu} y & =v_{\mu, y} & & \text { applying a relation in } Q \\
& =v_{\nu, y} & & \text { by (4.5) } \tag{4.5}\\
& =v_{\delta_{2}, y_{1}} \ldots v_{\delta_{2}, y_{n}} & & \text { by (4.7) } \tag{4.7}\\
& ={ }^{\delta_{2}} y_{1} \ldots{ }^{\delta_{2}} y_{n} & & \text { applying relations in } Q \\
& \equiv{ }^{\delta_{2}}\left(y_{1} \ldots y_{n}\right) \equiv{ }^{\delta_{2}} v_{\gamma, y} . & &
\end{align*}
$$

It can be similarly proved that for all $\alpha \in Z$,

$$
{ }^{\alpha}\left({ }^{\gamma} y\right)={ }^{\alpha} v_{\gamma, y}
$$

is a consequence of relations in Q.

From the proof of Proposition 4.4 .3 we obtain the following useful corollary:
Corollary 4.4.4. Let $S=\langle X \mid P\rangle, Z=X^{*}$ and $T=\langle Y \mid R\rangle$. Assume that S acts on T. For each $\alpha \in Z$ and $y \in Y$, let $v_{\alpha, y}$ be a word over Y representing ${ }^{\alpha} y$. Let

$$
Q=R \cup\left\{{ }^{\alpha} y=v_{\alpha, y} \mid \alpha \in Z, y \in Y\right\}
$$

and

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

Then the following hold:
(1) Every relation in $Q_{A} \backslash Q$ is a consequence of relations in Q.
(2) $T=\operatorname{Act}_{S}\langle Y \mid Q\rangle=\left\langle^{Z} Y \mid Q_{A}\right\rangle=\left\langle{ }^{Z} Y \mid Q\right\rangle$.

Proposition 4.4.5. Let T be a finitely presented semigroup and assume that a finitely generated semigroup S acts on T. Then T is also finitely presented with respect to the action of S.

Proof. Fix a semigroup presentation $\langle X \mid P\rangle$ for S, where X is a finite set and let $Z=X^{*}$. Let T be defined by the semigroup presentation $\langle Y \mid R\rangle$, where Y is a finite set and R is a finite set of relations on Y^{+}. For all $y \in Y$ and $\alpha \in Z$ we fix a word $v_{\alpha, y}$ over Y so that

$$
{ }^{\alpha} y=v_{\alpha, y}
$$

Let

$$
Q=R \cup\left\{{ }^{\alpha} y=v_{\alpha, y} \mid \alpha \in Z, y \in Y\right\}
$$

and consider the semigroup presentation $\left\langle{ }^{Z} Y \mid Q_{A}\right\rangle$, where

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{\left\{^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\}\right. \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

Making use of Corollary 4.4.4, we have that $T=\left\langle^{Z} Y \mid Q_{A}\right\rangle=\left\langle^{Z} Y \mid Q\right\rangle$. Let

$$
\widetilde{Q}=R \cup\left\{{ }^{x} y=v_{x, y} \mid x \in X, y \in Y\right\} .
$$

Since R is a finite set of relations and since X and Y are finite sets, \widetilde{Q} is a finite set of relations. Let

$$
\begin{aligned}
\widetilde{Q}_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in \widetilde{Q},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{\left\{^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\}\right. \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \widetilde{Q}, \alpha \in Z\right\} .
\end{aligned}
$$

We claim that T is finitely presented with respect to the action of S, by verifying that $\left\langle{ }^{Z} Y \mid \widetilde{Q}_{A}\right\rangle$ can be obtained from $\left\langle{ }^{Z} Y \mid Q\right\rangle$ by applying elementary Tietze transformations. Clearly $\widetilde{Q}_{A} \subseteq Q_{A}$. By Corollary 4.4.4, the elements of $Q_{A} \backslash Q$ and hence of $\widetilde{Q}_{A} \backslash \widetilde{Q}$ are consequences of relations in Q, and so we obtain

$$
T=\left\langle{ }^{Z} Y \mid Q \cup \widetilde{Q}_{A}\right\rangle
$$

Finally, we claim by induction on the length of words $\alpha \in Z$, that all relations of the form ${ }^{\alpha} y=v_{\alpha, y}$, where $|\alpha| \geq 2$ are consequences of relations in \widetilde{Q}_{A}.

We recall that by (4.7), for all $y \in Y$ and $\delta \equiv \alpha \beta$, where $\alpha, \beta \in Z$, if $v_{\beta, y} \equiv y_{1} \ldots y_{n}$, then

$$
\begin{equation*}
v_{\delta, y}=v_{\alpha, y_{1}} \ldots v_{\alpha, y_{n}} \tag{4.9}
\end{equation*}
$$

Let $\alpha \equiv x_{1} x_{2}$. Then ${ }^{x_{2}} y=v_{x_{2}, y}$ is a relation in \widetilde{Q}, and so ${ }^{x_{1} x_{2}} y={ }^{x_{1}} v_{x_{2}, y}$ is a relation in \widetilde{Q}_{A}. Assume that $v_{x_{2}, y} \equiv y_{1} \ldots y_{n}$. Then we obtain

$$
\begin{aligned}
{ }^{x_{1} x_{2}} y & ={ }^{x_{1}} v_{x_{2}, y} & & \text { applying a relation in } \widetilde{Q} \\
& \equiv{ }^{x_{1}} y_{1} \ldots{ }^{x_{1}} y_{n} & & \\
& =v_{x_{1}, y_{1}} \ldots v_{x_{1}, y_{n}} & & \text { applying relations in } \widetilde{Q} \\
& =v_{x_{1} x_{2}, y} & & \text { by (4.9). }
\end{aligned}
$$

Next, assume that for all words α over X with length less then m, where $2 \leq m$, the relation ${ }^{\alpha} y=v_{\alpha, y}$ is a consequence of relations in \widetilde{Q}_{A} and let $\alpha \in Z$ such that $|\alpha|=m$.

Then $\alpha=\beta x$ for some $x \in X$ and $\beta \in Z$, where $|\beta|=m-1$. Since ${ }^{x} y=v_{x, y}$ is a relation in \widetilde{Q} we have that ${ }^{\beta x} y={ }^{\beta} v_{x, y}$ is an element of \widetilde{Q}_{A}. Assume that $v_{x, y} \equiv y_{1} \ldots y_{n}$. Then, we obtain

$$
\begin{aligned}
{ }^{\alpha} y \equiv{ }^{\beta x} y & ={ }^{\beta} v_{x, y} & & \text { applying a relation in } \widetilde{Q}_{A} \\
& \equiv{ }^{\beta}\left(y_{1} \ldots y_{n}\right) & & \\
& \equiv{ }^{\beta} y_{1} \ldots{ }^{\beta} y_{n} & & \\
& =v_{\beta, y_{1}} \ldots v_{\beta, y_{n}} & & \text { by the inductive hypothesis } \\
& =v_{\alpha, y} & & \text { by (4.9). }
\end{aligned}
$$

Hence, applying Tietze transformations of type ($T 4$), we obtain

$$
T=\left\langle{ }^{Z} Y \mid \widetilde{Q}_{A}\right\rangle=\operatorname{Act}_{S}\langle Y \mid \widetilde{Q}\rangle
$$

proving that T is indeed finitely presented with respect to the action of S.
We introduce a sharper version of Corollary 4.4.4.
Corollary 4.4.6. Let $S=\langle X \mid P\rangle, Z=X^{*}$ and $T=\langle Y \mid R\rangle$. Assume that S acts on T. For each $\alpha \in Z$ and $y \in Y$, let $v_{\alpha, y}$ be a word over Y representing ${ }^{\alpha} y$. Let

$$
\widetilde{Q}=R \cup\left\{{ }^{\alpha} y=v_{\alpha, y} \mid \alpha \in Z \backslash X, y \in Y\right\}
$$

and

$$
Q=R \cup\left\{{ }^{x} y=v_{x, y} \mid x \in X, y \in Y\right\}
$$

Let

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

Then the following hold:
(1) Every relation in $\widetilde{Q} \backslash Q$ is a consequence of relations in Q_{A}.
(2) Every relation in $Q_{A} \backslash Q$ is a consequence of relations in Q.
(3) $T=\operatorname{Act}_{S}\langle Y \mid Q\rangle=\operatorname{Act}_{S}\langle Y \mid \widetilde{Q}\rangle$.

Finally, we prove:

Proposition 4.4.7. Let $S=\langle X \mid P\rangle$, where X is a finite set and let $Z=X^{*}$. Let T be a semigroup on which S acts. Assume that the finite sets Y_{1} and Y_{2} generate the semigroup T with respect to the action of S and that $T=\operatorname{Act}_{S}\left\langle Y_{1} \mid Q\right\rangle$, where Q is a finite set of relations on $\left({ }^{Z} Y_{1}\right)^{+}$. Then there exists a finite set of relations \widetilde{Q} on $\left({ }^{Z} Y_{2}\right)^{+}$such that $T=\operatorname{Act}_{S}\left\langle Y_{2} \mid \widetilde{Q}\right\rangle$.

Proof. Since Y_{2} generates T with respect to the action of S, for each $y \in Y_{1}$ there exists a word v_{y} over ${ }^{Z} Y_{2}$ such that y and v_{y} represent the same element of T. In particular, for all $\alpha \in Z$, we have that ${ }^{\alpha} y$ and ${ }^{\alpha} v_{y}$ represent the same element of T. The map

$$
y \mapsto v_{y},{ }^{\alpha} y \mapsto{ }^{\alpha} v_{y}
$$

can be extended to a homomorphism

$$
\eta:\left({ }^{Z} Y_{1}\right)^{+} \rightarrow\left({ }^{Z} Y_{2}\right)^{+} .
$$

We note that for each $w \in\left({ }^{Z} Y_{1}\right)^{+}, w$ and $w \eta$ represent the same element of T. Consider the word $w \equiv{ }^{\alpha_{1}} y_{1} \ldots{ }^{\alpha_{n}} y_{n}$, where $\alpha_{i} \in Z$ and $y_{i} \in Y_{1}$ for all $1 \leq i \leq n$. Let $\alpha \in Z$ and let $\delta_{i} \equiv \alpha \alpha_{i}$, where $1 \leq i \leq n$. Then

$$
\begin{aligned}
\left({ }^{\alpha} w\right) \eta & \equiv\left({ }^{\delta_{1}} y_{1} \ldots{ }^{\delta_{n}} y_{n}\right) \eta \\
& ={ }^{\delta_{1}} v_{y_{1}} \ldots{ }^{\delta_{n}} v_{y_{n}} \\
& \equiv{ }^{\alpha}\left({ }^{\alpha_{1}} v_{y_{1}} \ldots{ }^{\alpha_{n}} v_{y_{n}}\right) \\
& ={ }^{\alpha}(w \eta),
\end{aligned}
$$

and so for all $w \in\left({ }^{Z} Y_{1}\right)^{+}$and $\alpha \in Z$,

$$
\begin{equation*}
\left({ }^{\alpha} w\right) \eta \equiv{ }^{\alpha}(w \eta) \tag{4.10}
\end{equation*}
$$

holds. Similarly, since Y_{1} generates T with respect to the action of S, for each $y \in Y_{2}$ there exists a word $\tilde{v}_{y} \in\left({ }^{Z} Y_{1}\right)^{+}$such that y and \tilde{v}_{y} represent the same element of T. In particular, for all $\alpha \in Z$, we have that ${ }^{\alpha} y$ and ${ }^{\alpha} \tilde{v}_{y}$ represent the same element of T. The map

$$
y \mapsto \tilde{v}_{y},{ }^{\alpha} y \mapsto{ }^{\alpha} \tilde{v}_{y}
$$

can be extended to a homomorphism

$$
\xi:\left({ }^{Z} Y_{2}\right)^{+} \rightarrow\left({ }^{Z} Y_{1}\right)^{+},
$$

and for each $w \in\left({ }^{Z} Y_{2}\right)^{+}, w$ and $w \xi$ represent the same element of T. Furthermore, for all $w \in\left({ }^{Z} Y_{2}\right)^{+}$, and $\alpha \in Z$,

$$
\begin{equation*}
\left({ }^{\alpha} w\right) \xi \equiv{ }^{\alpha}(w \xi) . \tag{4.11}
\end{equation*}
$$

Since $T=\operatorname{Act}_{S}\left\langle Y_{1} \mid Q\right\rangle$, we have that $T=\left\langle{ }^{Z} Y_{1} \mid Q_{A}\right\rangle$, where

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta_{p}}={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y_{1}\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

Let

$$
\widetilde{Q}=\{p \eta=q \eta \mid(p=q) \in Q\} \cup\left\{y=y \xi \eta \mid y \in Y_{2}\right\}
$$

and let

$$
\begin{aligned}
\widetilde{Q}_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in \widetilde{Q},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y_{2}\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \widetilde{Q}, \alpha \in Z\right\} .
\end{aligned}
$$

Our aim is to show that $T=\operatorname{Act}_{S}\left\langle Y_{2} \mid \widetilde{Q}\right\rangle$. By the definition of the homomorphisms η and ξ and by (4.10), we have that T satisfies all relations in \widetilde{Q} and of \widetilde{Q}_{A} as well.

Before we proceed and show that every relation $w_{1}=w_{2},\left(w_{1}, w_{2} \in\left({ }^{Z} Y_{2}\right)^{+}\right)$that holds in T is a consequence of relations in \widetilde{Q}_{A}, we verify that for all $y \in Y_{2}$ and $\alpha \in Z$

$$
{ }^{\alpha} y=\left({ }^{\alpha} y\right) \xi \eta
$$

holds in T. Keeping (4.10) and (4.11) in mind, we obtain for all $y \in Y_{2}$ and $\alpha \in Z$, that

$$
\begin{equation*}
\left({ }^{\alpha} y\right) \xi \eta \equiv\left(\left({ }^{\alpha} y\right) \xi\right) \eta \equiv\left({ }^{\alpha}(y \xi)\right) \eta \equiv{ }^{\alpha}(y \xi \eta) \tag{4.12}
\end{equation*}
$$

holds. Let $y \in Y_{2}$ and $\alpha \in Z$. Since $y=y \xi \eta$ is a relation in \widetilde{Q}, we have that ${ }^{\alpha} y={ }^{\alpha}(y \xi \eta)$ is a relation in \widetilde{Q}_{A}. Having (4.12) in mind we have that ${ }^{\alpha}(y \xi \eta) \equiv\left({ }^{\alpha} y\right) \xi \eta$ and hence we obtain that

$$
\begin{equation*}
{ }^{\alpha} y=\left({ }^{\alpha} y\right) \xi \eta \tag{4.13}
\end{equation*}
$$

holds in T.
Let $w_{1}, w_{2} \in\left({ }^{Z} Y_{2}\right)^{+}$such that w_{1} and w_{2} represent the same element of T. We show that $w_{1}=w_{2}$ is a consequence of relations in \widetilde{Q}_{A}. Since $w_{1}=w_{2}$, we have that $w_{1} \xi=w_{2} \xi$ holds in T, and hence there exists a finite sequence of words over ${ }^{Z} Y_{1}$:

$$
w_{1} \xi \equiv u_{1}, u_{2}, \ldots, u_{m} \equiv w_{2} \xi
$$

such that u_{i+1} is obtained from $u_{i},(1 \leq i \leq m-1)$ by applying a relation in Q_{A}. Consider now the following sequence of words over ${ }^{Z} Y_{2}$:

$$
w_{1} \xi \eta \equiv u_{1} \eta, u_{2} \eta, \ldots, u_{m} \eta \equiv w_{2} \xi \eta .
$$

If u_{i+1} is obtained from $u_{i},(1 \leq i \leq m-1)$ by applying a relation in Q, then $u_{i+1} \eta$ is obtained from $u_{i} \eta$ by applying a relation in \widetilde{Q}. Assume that u_{i+1} is obtained from $u_{i},(1 \leq i \leq m-1)$ by applying a relation in $Q_{A} \backslash Q$. Then the following three cases can occur:
(a) u_{i+1} is obtained from u_{i} by applying a relation of the form

$$
{ }^{\alpha u \beta_{p}}={ }^{\alpha v \beta} q,
$$

where $\alpha, \beta \in Z,(p=q) \in Q$ and $(u=v) \in P$. Then $u_{i+1} \eta$ is obtained from $u_{i} \eta$ by substituting the subword $\left({ }^{\alpha u \beta} p\right) \eta$ of $u_{i} \eta$ by $\left({ }^{\alpha v \beta} q\right) \eta$. Keeping in mind (4.10), we have that

$$
\left({ }^{\alpha u \beta} p\right) \eta \equiv{ }^{\alpha u \beta}(p \eta)
$$

and that

$$
\left({ }^{\alpha v \beta} q\right) \eta \equiv{ }^{\alpha v \beta}(q \eta)
$$

and so we may deduce that $u_{i+1} \eta$ is obtained from $u_{i} \eta$ by applying a relation in \widetilde{Q}_{A}.
(b) u_{i+1} is obtained from u_{i} by applying a relation of the form

$$
{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w,
$$

where $\alpha, \beta \in Z, w \in\left({ }^{Z} Y_{1}\right)^{+}$and $(u=v) \in P$. Then $u_{i+1} \eta$ is obtained from $u_{i} \eta$ by substituting the subword $\left({ }^{\alpha u \beta} w\right) \eta$ of $u_{i} \eta$ by $\left({ }^{\alpha v \beta} w\right) \eta$. By (4.10),

$$
\left({ }^{\alpha u \beta} w\right) \eta \equiv{ }^{\alpha u \beta}(w \eta)
$$

and

$$
\left({ }^{\alpha v \beta} w\right) \eta \equiv{ }^{\alpha v \beta}(w \eta)
$$

and hence we may deduce that $u_{i+1} \eta$ is obtained from $u_{i} \eta$ by applying a relation in \widetilde{Q}_{A}.
(c) u_{i+1} is obtained from u_{i} by applying a relation of the form

$$
{ }^{\alpha} p={ }^{\alpha} q
$$

where $\alpha \in Z,(p=q) \in Q$. Then $u_{i+1} \eta$ is obtained from $u_{i} \eta$ by substituting the subword ($\left.{ }^{\alpha} p\right) \eta$ of $u_{i} \eta$ by $\left({ }^{\alpha} q\right) \eta$. Since

$$
\left({ }^{\alpha} p\right) \eta \equiv{ }^{\alpha}(p \eta) \quad \text { and } \quad\left({ }^{\alpha} q\right) \eta \equiv{ }^{\alpha}(q \eta)
$$

we have that $u_{i+1} \eta$ is obtained from $u_{i} \eta$ by applying a relation in \widetilde{Q}_{A}.
To finish our proof, we need to verify that $w_{1}=w_{1} \xi \eta$ and $w_{2} \xi \eta=w_{2}$ is a consequence of relations in \widetilde{Q}_{A}. Assume that $w_{1} \equiv{ }^{\alpha_{1}} y_{1} \ldots{ }^{\alpha_{n}} y_{n}$, where $\alpha_{i} \in Z$ and $y_{i} \in Y_{2}$ for all $1 \leq i \leq n$. Keeping in mind (4.13) and that ξ and η are homomorphisms we obtain

$$
\begin{aligned}
w_{1} & \equiv{ }^{\alpha_{1}} y_{1} \ldots{ }^{\alpha_{n}} y_{n} \\
& =\left({ }^{\alpha_{1}} y_{1}\right) \xi \eta \ldots\left({ }^{\alpha_{n}} y_{n}\right) \xi \eta \\
& =\left({ }^{\alpha_{1}} y_{1} \ldots{ }^{\alpha_{n}} y_{n}\right) \xi \eta \\
& \equiv w_{1} \xi \eta .
\end{aligned}
$$

Similarly $w_{2}=w_{2} \xi \eta$ holds, and so $w_{1}=w_{2}$ is a consequence of relations in \widetilde{Q}_{A}.

4.5 Examples I.

The aim of this section is to illustrate through a sequence of examples the concept of finite presentability with respect to a semigroup action. By Proposition 4.4.5, we know that if a semigroup T is finitely presented and a finitely generated semigroup S acts on it, then T is also finitely presented with respect to the action of S. To demonstrate that T does not necessarily have to be finitely presented as a semigroup in order to be finitely presented with respect to a semigroup action, we will consider infinite semilattices. The reason we choose infinite semilattices is twofold. On one hand infinite semilattices are not finitely generated and hence they are not finitely presented. On the other hand these examples serve as a preparation for considering semidirect products. We give an example of an infinite semilattice that is finitely presented as a semigroup with respect to a semigroup action and we give two examples of semilattices that are not finitely presented as a semigroup with respect to a semigroup action.

Proposition 4.5.1. Let Y_{∞} be the double infinite chain with an identity element adjoined on top, and let G be the infinite cyclic group. Define the action of G on Y_{∞} as in Proposition 4.2.4. Then Y_{∞} is finitely presented as a semigroup with respect to the action of G.

Proof. Consider the semilattice Y_{∞} :

$$
\ldots<e_{-1}<e_{0}<e_{1}<\ldots<\mathbf{1}
$$

Since Y_{∞} is infinite, it is not finitely generated and hence it is not finitely presented. To be more precise, if we let

$$
R=\left\{e_{i} \wedge e_{j}=e_{j} \wedge e_{i}=e_{i}, e_{i} \wedge \mathbf{1}=\mathbf{1} \wedge e_{i}=e_{i}, \mathbf{1} \wedge \mathbf{1}=1 \mid i \leq j, i, j \in \mathbb{Z}\right\}
$$

then we have that Y_{∞} is defined by the semigroup presentation $\left\langle Y_{\infty} \mid R\right\rangle$. Let $G=\langle g\rangle$ be the infinite cyclic group. To make notation clear, we let $X=\left\{g, g^{-1}, 1\right\}$ and let $Z=X^{*}$. Let

$$
P=\left\{g g^{-1}=g^{-1} g=1,1 g=g, 1 g^{-1}=g^{-1}, 11=1\right\}
$$

Clearly G is defined by the semigroup presentation

$$
G=\langle X \mid P\rangle
$$

Define the action of G on Y_{∞} as in Proposition 4.2.4. According to Proposition 4.2.4, Y_{∞} is finitely generated by $\left\{e_{0}, \mathbf{1}\right\}$ with respect to the action of G. It follows that Y_{∞} is generated by the finite set $Y_{0}=\left\{e_{0}, e_{1}, 1\right\}$ with respect to this action of G as well. Let

$$
\begin{aligned}
Q= & \left\{e_{0} \wedge e_{1}=e_{1} \wedge e_{0}=e_{0}, e_{0} \wedge e_{0}=e_{0}, \mathbf{1} \wedge e_{0}=e_{0} \wedge 1=e_{0},\right. \\
& \left.{ }^{g} e_{0}=e_{1},{ }^{1} e_{0}=e_{0},{ }^{1} \mathbf{1}=\mathbf{1},{ }^{g} \mathbf{1}=\mathbf{1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y_{0}\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

Let $Y=\left\langle{ }^{Z} Y_{0} \mid Q_{A}\right\rangle$. We claim that $Y_{\infty}=\operatorname{Act}_{G}\left\langle Y_{0} \mid Q\right\rangle$, by giving two homomorphism $\eta: Y_{\infty} \rightarrow Y$ and $\xi: Y \rightarrow Y_{\infty}$ that are inverse to each other.

We first show that the map $e_{n} \mapsto g^{n} e_{0}, 1 \mapsto 1$ induces a homomorphism $\eta: Y_{\infty} \rightarrow Y$ by showing that relations in R are mapped onto relations that hold in Y. First consider
a relation of the form $e_{n} \wedge e_{m}=e_{n}$, where $n \leq m$. Then

$$
\begin{aligned}
e_{n} \eta \wedge e_{m} \eta & =g^{n} e_{0} \wedge^{g^{m}} e_{0} & & \\
& =g^{n} e_{0} \wedge^{g^{n}} e_{1} \wedge g^{m} e_{0} & & \text { applying a relation in } Q_{A} \\
& =g^{n} e_{0} \wedge^{g^{n+1}} e_{0} \wedge^{g^{m}} e_{0} & & \text { applying a relation in } Q_{A} \\
& \vdots & & \\
& =g^{n} e_{0} \wedge^{g^{n+1}} e_{0} \wedge \ldots \wedge^{g^{m-1}} e_{0} \wedge^{g^{m}} e_{0} & & \text { applying a relation in } Q_{A} \\
& =g^{n} e_{0} \wedge^{g^{n+1}} e_{0} \wedge \ldots \wedge^{g^{m-1}}\left(e_{0} \wedge e_{1}\right) & & \text { applying a relation in } Q_{A} \\
& =g^{n} e_{0} \wedge^{g^{n+1}} e_{0} \wedge \ldots \wedge^{g^{m-1}} e_{0} & & \text { applying a relation in } Q_{A} \\
& \vdots & & \\
& =g^{n} e_{0}=e_{n} \eta & &
\end{aligned}
$$

and so $\left(e_{n} \wedge e_{m}\right) \eta=e_{n} \eta$ holds. It can be similarly proved that all relations of the form $e_{m} \wedge e_{n}=e_{n}$, where $n \leq m$ are mapped onto relations that hold in Y.

It is immediate by the definition of η that $1 \wedge 1=1$ is mapped onto the relation $1 \wedge 1=1$.

Before we proceed, we first claim that $g^{g^{k}} 1=1$ holds in Y for all $k \geq 0$ by induction. Clearly

$$
\begin{aligned}
g^{2} \mathbf{1}={ }^{g} \mathbf{1} & \text { applying a relation in } Q_{A} \\
=\mathbf{1} & \text { applying a relation in } Q .
\end{aligned}
$$

Assume that $g^{k} 1=1$ holds in Y for all $k<m$. Then $\mathbf{1}=g^{m-1} \mathbf{1}$ holds. On the other hand $g^{m-1}\left({ }^{g} 1\right)=g^{m-1} 1$ is a relation in Q_{A}, and so we may deduce that ${ }^{g^{m}} \mathbf{1}=1$ holds in Y.

We also note that $g^{-1} 1=g^{-1} g 1, g^{-1} g 1={ }^{1} 1, g^{-1} 11=g^{-1} 1$ are relations in Q_{A}, and so

$$
g^{-1} \mathbf{1}=\mathbf{1}
$$

holds in Y. Furthermore, for all $k \leq 0, g^{k} \mathbf{1}=\mathbf{1}$ holds.
Consider a relation of the form $e_{n} \wedge 1=e_{n}$. Then

$$
\begin{aligned}
e_{n} \eta \wedge 1 \eta & =g^{n} e_{0} \wedge 1 \\
& =g^{n} e_{0} \wedge g^{n} \\
& =g^{n} e_{0} \\
& =e_{n} \eta,
\end{aligned}
$$

$$
=g^{n} e_{0} \wedge^{g^{n}} 1 \quad \text { applying relations in } Q_{A}
$$

$$
=s^{n} e_{0} \quad \text { applying a relations in } Q_{A}
$$

and hence $\left(e_{n} \wedge 1\right) \eta=e_{n} \eta$. It can be similarly proved that all relations of the form $1 \wedge e_{n}=e_{n}$ are mapped onto relations that hold in Y.

Before we define a homomorphism from Y to Y_{∞}, we introduce the following notation. Let $\alpha \in Z$, and assume that the group reduced word obtained from α is g^{n}. Then we let $\|\alpha\|=n$.

We verify that the map ${ }^{\alpha} e_{0} \mapsto e_{\|\alpha\|},{ }^{\alpha} e_{1} \mapsto e_{\|\alpha\|+1},{ }^{\alpha} \mathbf{1} \mapsto \mathbf{1}$ induces a homomorphism $\xi: Y \rightarrow Y_{\infty}$, by showing that relations in Q_{A} are mapped onto relations that hold in Y_{∞}.

First, we consider relations in Q. We have the following seven cases:
(i) $e_{0} \xi \wedge e_{1} \xi=e_{0} \wedge e_{1}=e_{0}=e_{0} \xi=\left(e_{0} \wedge e_{1}\right) \xi$. Similarly, $\left(e_{0} \wedge e_{1}\right) \xi=e_{0} \xi$ holds.
(ii) $e_{0} \xi \wedge e_{0} \xi=e_{0} \wedge e_{0}=e_{0}=e_{0} \xi=\left(e_{0} \wedge e_{0}\right) \xi$.
(iii) $(1 \wedge 1) \xi=1 \xi$.
(iv) $\left({ }^{9} e_{0}\right) \xi=e_{1}=e_{1} \xi$.
(v) $\left({ }^{1} e_{0}\right) \xi=e_{0}=e_{0} \xi$.
(vi) $\left({ }^{g} \mathbf{1}\right) \xi=\mathbf{1}=(\mathbf{1}) \xi$.
(vii) $\left({ }^{1} \mathbf{1}\right) \xi=\mathbf{1}=(1) \xi$.

Thus, we may deduce that relations of Q are mapped onto relations that hold in Y_{∞}.
Let $\alpha, \beta \in Z$ and $(u=v) \in P$. Let $\delta_{1} \equiv \alpha u \beta$ and $\delta_{2} \equiv \alpha v \beta$. Since $(u=v) \in P$, we have that $\|u\|=\|v\|$, and it follows that $\left\|\delta_{1}\right\|=\left\|\delta_{2}\right\|$. Consider the relation $e_{0} \wedge e_{1}=e_{0}$ in Q. Then

$$
\left({ }^{\delta_{1}} e_{0}\right) \xi \wedge\left({ }^{\delta_{1}} e_{1}\right) \xi=e_{\left\|\delta_{1}\right\|} \wedge e_{\left\|\delta_{1}\right\|+1}=e_{\left\|\delta_{1}\right\|}=e_{\left\|\delta_{2}\right\|}=\left({ }^{\delta_{2}} e_{0}\right) \xi=\left({ }^{\delta_{1}}\left(e_{0} \wedge e_{1}\right)\right) \xi
$$

holds. Similarly, we have that

$$
\left({ }^{\alpha} e_{0}\right) \xi \wedge\left({ }^{\alpha} e_{1}\right) \xi=e_{\|\alpha\|} \wedge e_{\|\alpha\|+1}=e_{\|\alpha\|}=\left({ }^{\alpha} e_{0}\right) \xi=\left({ }^{\alpha}\left(e_{0} \wedge e_{1}\right)\right) \xi
$$

holds. It can be proved similarly, that for any relation $(p=q) \in Q$,

$$
\left({ }^{\delta_{1}} p\right) \xi=\left({ }^{\delta_{2}} q\right) \xi \quad \text { and } \quad\left({ }^{\alpha} p\right) \xi=\left({ }^{\alpha} q\right) \xi
$$

hold. Finally, let

$$
w \equiv{ }^{\alpha_{1}} y_{1} \wedge \ldots \wedge^{\alpha_{n}} y_{n}
$$

where $\alpha_{i} \in Z$ and $y_{i} \in Y_{0}$. Let

$$
\mu_{i} \equiv \delta_{1} \alpha_{i} \quad \text { and } \quad \nu_{i} \equiv \delta_{2} \alpha_{i}
$$

where $1 \leq i \leq n$. Clearly, $\left\|\mu_{i}\right\|=\left\|\nu_{i}\right\|$ for all $1 \leq i \leq n$. It is straightforward that $\left({ }^{\delta_{i}} w\right) \xi=\left({ }^{\delta_{2}} w\right) \xi$ holds, if $y_{i}=\mathbf{1}$ for all $1 \leq i \leq n$. Assume that there exists $y_{i} \neq \mathbf{1}$. Then, applying the appropriate relations in Q_{A}, we may assume that in w each $y_{i}=e_{0}$. Let $\mu_{i} \in Z$ be such that $\left\|\mu_{i}\right\| \leq\left\|\mu_{j}\right\|$ for all $1 \leq j \leq m$. Then, applying the appropriate relations in Q_{A}, we obtain that

$$
{ }^{\delta_{1}}\left({ }^{\alpha_{1}} y_{1} \wedge \ldots{ }^{\alpha_{n}} y_{n}\right)={ }^{\mu_{i}} y_{i}
$$

and that

$$
{ }^{\delta_{2}}\left({ }^{\alpha_{1}} y_{1} \wedge \ldots{ }^{\alpha_{n}} y_{n}\right)={ }^{\nu_{i}} y_{i} .
$$

Taking into account that

$$
\left({ }^{\mu_{i}} y_{i}\right) \xi=e_{\left\|\mu_{i}\right\|}=e_{\left\|\nu_{i}\right\|}=\left({ }^{\nu_{i}} y_{i}\right) \xi
$$

holds, we obtain that $\left({ }^{\delta_{1}} w\right) \xi=\left({ }^{\delta_{2}} w\right) \xi$ holds in Y_{∞}.
That η and ξ are inverse to each other follows from the following facts. On one hand we have

$$
\left(e_{n}\right) \eta \xi=\left(g^{n} e_{0}\right) \xi=e_{n} \quad \text { and } \quad 1 \eta \xi=1
$$

On the other hand

$$
\begin{gathered}
\left({ }^{\alpha} e_{0}\right) \xi \eta=\left(e_{\|\alpha\| \|}\right) \eta=g^{\|\alpha\|} e_{0}={ }^{\alpha} e_{0}, \\
\left({ }^{\alpha} e_{1}\right) \xi \eta=\left(e_{\|\alpha\|+1}\right) \eta=g^{g \alpha \|+1} e_{0}={ }^{\alpha}\left({ }^{g} e_{0}\right)={ }^{\alpha} e_{1}
\end{gathered}
$$

and

$$
{ }^{\alpha} \mathbf{1} \xi \eta=\mathbf{1}
$$

Proposition 4.5.2. Let A_{∞} be the semilattice obtained by adjoining an identity and a zero element to an infinite antichain. Let G be the infinite cyclic group. Define the action of G on A_{∞} as in Proposition 4.2.5. Then A_{∞} is not finitely presented as a semigroup with respect to the action of G.

Proof. Let A be the infinite antichain

$$
\ldots, e_{-1}, e_{0}, e_{1}, \ldots
$$

Adjoin an identity $\mathbf{1}$ on top and a zero $\mathbf{0}$ on bottom. Then, for each $e_{i} \in A, \mathbf{0}<e_{i}<\mathbf{1}$ holds. Let A_{∞} denote the (semi)lattice obtained. Since A_{∞} is an infinite semilattice, it is not finitely generated and hence it is not finitely presented. To be more precise, if we let

$$
\begin{aligned}
R= & \left\{e_{i} \wedge e_{j}=e_{j} \wedge e_{i}=\mathbf{0}, e_{i} \wedge \mathbf{1}=\mathbf{1} \wedge e_{i}=e_{i}, e_{i} \wedge \mathbf{0}=\mathbf{0} \wedge e_{i}=\mathbf{0},\right. \\
& \left.e_{i} \wedge e_{i}=e_{i}, \mathbf{1} \wedge \mathbf{1}=\mathbf{1}, \mathbf{0} \wedge \mathbf{0}=\mathbf{0} \mid i, j \in \mathbb{Z}, i \neq j\right\},
\end{aligned}
$$

then we have that A_{∞} is defined by the semigroup presentation $\left\langle A_{\infty} \mid R\right\rangle$. Let $G=\langle g\rangle$ be the infinite cyclic group. To make notation clear, we let $X=\left\{g, g^{-1}, 1\right\}$ and let $Z=X^{*}$. Let

$$
P=\left\{g g^{-1}=g^{-1} g=1,1 g=g, 1 g^{-1}=g^{-1}, 11=1\right\} .
$$

Clearly G is defined by the semigroup presentation

$$
G=\langle X \mid P\rangle .
$$

Define the action of G on A_{∞} as in Proposition 4.2.5. As we verified in Proposition 4.2.5, A_{∞} is finitely generated by $Y_{0}=\left\{e_{0}, 1\right\}$ with respect to the action of G.

Assume that A_{∞} is finitely presented with respect to the action of G. Then, according to Proposition 4.4.7, there exists a finite set of relations Q on $\left({ }^{Z} Y_{0}\right)^{+}$such that $A_{\infty}=$ $\operatorname{Act}_{G}\left\langle Y_{0} \mid Q\right\rangle$. In other words, if we let

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y_{0}\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\}
\end{aligned}
$$

then $A_{\infty}=\left\langle{ }^{Z} Y_{0} \mid Q_{A}\right\rangle$.
We make some observations. Every relation in Q is of the following form:

$$
{ }^{\alpha_{1}} a_{1} \wedge \ldots \wedge^{\alpha_{n}} a_{n}={ }^{\beta_{1}} b_{1} \wedge \ldots \wedge^{\beta_{m}} b_{m}
$$

where $a_{i}, b_{j} \in Y_{0}$ and $\alpha_{i}, \beta_{j} \in Z$ for all $1 \leq i \leq n, 1 \leq j \leq m$. Without loss of generality we may assume that the following finite set of relations:

$$
\widetilde{Q}=\left\{e_{0} \wedge e_{0}=e_{0}, e_{0} \wedge \mathbf{1}=\mathbf{1} \wedge e_{0}=e_{0}, \mathbf{1} \wedge \mathbf{1}=\mathbf{1},{ }^{g} \mathbf{1}={ }^{1} \mathbf{1}=\mathbf{1}\right\}
$$

is contained in Q. To make notation convenient, we let

$$
\begin{aligned}
\widetilde{Q}_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in \widetilde{Q},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y_{0}\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \widetilde{Q}, \alpha \in Z\right\} .
\end{aligned}
$$

As in the proof of the previous proposition, it can be verified that for all $k \in \mathbb{Z}$, the relation

$$
g^{k} 1=1
$$

is a consequence of relations in Q_{A}. Since for all $k \in \mathbb{Z}$, the relations

$$
g^{k} e_{0} \wedge g^{k} e_{0}=g^{k} e_{0} \quad \text { and } \quad g^{k} e_{0} \wedge^{g^{k}} 1=g^{k} 1 \wedge g^{g^{k}} e_{0}=g^{k} e_{0}
$$

are relations in Q_{A}, we may assume that for all relations

$$
{ }^{\alpha_{1}} a_{1} \wedge \ldots \wedge^{\alpha_{n}} a_{n}={ }^{\beta_{1}} b_{1} \wedge \ldots \wedge^{\beta_{m}} b_{m}
$$

in $Q \backslash \widetilde{Q}$ the following hold:
(a) $a_{i}=b_{j}=e_{0}$ for all $1 \leq i \leq n, 1 \leq j \leq m$;
(b) there is no subword of p and of q of the form ${ }^{\alpha} e_{0} \wedge{ }^{\alpha} e_{0}$;
(c) α_{i}, β_{j} are group reduced words for all $1 \leq i \leq n, 1 \leq j \leq m$.

We also note that $n=1$ if and only if $m=1$, in which case the relation in $Q \backslash \widetilde{Q}$ reads ${ }^{\alpha} e_{0}={ }^{\alpha} e_{0}$, and hence is redundant. Because of this fact, we assume that for all relations

$$
{ }^{\alpha_{1}} a_{1} \wedge \ldots \wedge^{\alpha_{n}} a_{n}={ }^{\beta_{1}} b_{1} \wedge \ldots \wedge^{\beta_{m}} b_{m}
$$

in $Q \backslash \widetilde{Q}$,

$$
n, m \geq 2
$$

also holds. Let

$$
I=\left\{\left.\alpha \in Z\right|^{\alpha} e_{0} \text { occurs in one of the relations in } Q\right\} .
$$

By our assumptions, for every $\alpha \in I$, we have $\alpha=g^{k}$ for some $k \in \mathbb{Z}$. Let $i, j \in \mathbb{Z}$ such that $g^{i}, g^{j} \in I$, and if $g^{k} \in I$, then $j \leq k \leq i$. Let $d=i-j$.

Clearly, the relation

$$
g^{i+1} e_{0} \wedge g^{j-1} e_{0}=g^{j-1} e_{0} \wedge g^{g^{i+1}} e_{0}
$$

holds in A_{∞}. We claim that the above relation is not a consequence of the relations in Q_{A}. For this, assume that there exists a finite sequence of words

$$
g^{i+1} e_{0} \wedge^{g^{j-1}} e_{0} \equiv u_{0}, u_{1}, \ldots, u_{n} \equiv g^{g^{j-1}} e_{0} \wedge^{g^{i+1}} e_{0}
$$

such that u_{t+1} is obtained from $u_{t},(0 \leq t \leq n-1)$ by applying a relation in Q_{A}.
Let us take a closer look how the word u_{1} can be obtained:.
(i) It is straightforward to see that we cannot apply any of the relations in Q to the word u_{0}, since $g^{i+1} e_{0}$ and $g^{g-1} e_{0}$ do not occur in any of the relations in Q, and so to obtain a different word from u_{0}, we need to apply a relation in $Q_{A} \backslash Q$.
(ii) It is also obvious that by applying a relation in \widetilde{Q}_{A}, the order of the elements $g^{i+1} e_{0}$ and $g^{j-1} e_{0}$ in the word p cannot be changed.
(iii) If a relation in $Q_{A} \backslash \widetilde{Q}_{A}$ can be applied, then it is either of the form

$$
{ }^{\alpha} p={ }^{\alpha} q,
$$

where $(p=q) \in Q \backslash \widetilde{Q}$, and $\alpha \in Z \backslash\{\lambda\}$, where λ denotes the empty word, or of the form

$$
{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q,
$$

where $(p=q) \in Q \backslash \widetilde{Q}$, and $\alpha, \beta \in Z$. Considering both cases, it follows that there exists a relation $p=q$ in $Q \backslash \widetilde{Q}$, such that $p \equiv{ }^{g^{l}} e_{0} \wedge^{g^{k}} e_{0}$, and a word $g^{m} \in Z$, such that

$$
g^{i+1} e_{0} \wedge^{g^{j-1}} e_{0} \equiv g^{m+l} e_{0} \wedge^{g^{m+k}} e_{0}
$$

It follows that $l-k=m+l-m-k=i+1-j+1=d+2$, which contradicts our choice of the number d. We may now deduce that relations in $Q_{A} \backslash \widetilde{Q}_{A}$ cannot be applied to the word u_{0}.

To summarize the above argument, we have that only relations in $\widetilde{Q}_{A} \backslash \widetilde{Q}$ can be applied to the word u_{0} to obtain a different word u_{1}, but applying relations in $\widetilde{Q}_{A} \backslash \widetilde{Q}$, the order of the elements $g^{i+1} e_{0}$ and $g^{j-1} e_{0}$ in the word p cannot be changed. Inductively, it can be seen that for all $1 \leq t \leq n-1, u_{t+1}$ is obtained from $u_{t},(1 \leq t \leq n-1)$ by applying a relation in $\widetilde{Q}_{A} \backslash \widetilde{Q}$, but doing so the order of the elements $g^{i+1} e_{0}$ and $g^{j-1} e_{0}$ in the word u_{t} cannot be changed. We may now deduce that the relation

$$
g^{i+1} e_{0} \wedge^{g^{j-1}} e_{0} \equiv u_{0}, u_{1}, \ldots, u_{n} \equiv g^{j-1} e_{0} \wedge^{g^{i+1}} e_{0}
$$

is not a consequence of relation in Q_{A}, and so A_{∞} is not finitely presented with respect to the action of G.

Proposition 4.5.3. Let F_{∞} be the semilattice obtained by adjoining an identity element to the free semilattice generated by infinitely many elements. Let G be the infinite cyclic group. Define the action of G on F_{∞} as in Proposition 4.2.6. Then F_{∞} is not finitely presented as a semigroup with respect to the action of G.

Proof. Let F be the free semilattice generated by infinitely many elements $A=$ $\left\{\ldots, e_{-1}, e_{0}, e_{1}, \ldots\right\}$. Adjoin an identity 1 on top. Then, for each $e_{i} \in A, e_{i}<\mathbf{1}$ holds. Denote by F_{∞} the (semi)lattice obtained. Clearly F_{∞} is not finitely presented, since it is not finitely generated. To be more precise, if we let

$$
R=\left\{e_{i} \wedge e_{j}=e_{j} \wedge e_{i}, e_{i} \wedge \mathbf{1}=\mathbf{1} \wedge e_{i}=e_{i}, e_{i} \wedge e_{i}=e_{i}, \mathbf{1} \wedge \mathbf{1}=\mathbf{1} \mid i, j \in \mathbb{Z}\right\}
$$

then we have that F_{∞} is defined by the semigroup presentation $\langle A, \mathbf{1} \mid R\rangle$. Let $G=\langle g\rangle$ be the infinite cyclic group. To make notation clear, we let $X=\left\{g, g^{-1}, 1\right\}$ and let $Z=X^{*}$. Let

$$
P=\left\{g g^{-1}=g^{-1} g=1,1 g=g, 1 g^{-1}=g^{-1}, 11=1\right\}
$$

Clearly G is defined by the semigroup presentation

$$
G=\langle X \mid P\rangle
$$

Define the action of G on F_{∞} as in Proposition 4.2.6. As we verified in Proposition 4.2.6, F_{∞} is finitely generated by $Y_{0}=\left\{e_{0}, \mathbf{1}\right\}$ with respect to the action of G.

Assume that F_{∞} is finitely presented with respect to the action of G. Then, according to Proposition 4.4.7, there exists a finite set of relations Q on $\left({ }^{Z} Y_{0}\right)^{+}$such that $F_{\infty}=$ $\operatorname{Act}_{G}\left\langle Y_{0} \mid Q\right\rangle$. In other words, if we let

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{\left\{^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y_{0}\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\}\right. \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\},
\end{aligned}
$$

then $F_{\infty}=\left\langle{ }^{Z} Y_{0} \mid Q_{A}\right\rangle$.
As in the previous proposition, we now make some observations. Every relation in Q is of the following form:

$$
{ }^{\alpha_{1}} a_{1} \wedge \ldots \wedge^{\alpha_{n}} a_{n}={ }^{\beta_{1}} b_{1} \wedge \ldots \wedge^{\beta_{m}} b_{m}
$$

where $a_{i}, b_{j} \in Y_{0}$ and. $\alpha_{i}, \beta_{j} \in Z$ for all $1 \leq i \leq n, 1 \leq j \leq m$. Without loss of generality we may assume that the following finite set of relations:

$$
\widetilde{Q}=\left\{e_{0} \wedge e_{0}=e_{0}, e_{0} \wedge \mathbf{1}=\mathbf{1} \wedge e_{0}=e_{0}, \mathbf{1} \wedge \mathbf{1}=\mathbf{1},{ }^{g} \mathbf{1}={ }^{1} \mathbf{1}=\mathbf{1}\right\}
$$

is contained in Q. To make notation convenient, we let

$$
\begin{aligned}
\widetilde{Q}_{A} & =\left\{{ }^{\alpha u \beta}{ }_{p}={ }^{\alpha v \beta} q \mid(p=q) \in \widetilde{Q},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y_{0}\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \widetilde{Q}, \alpha \in Z\right\}
\end{aligned}
$$

As in the previous propositions, it can be verified that

$$
g^{k} \mathbf{1}=\mathbf{1}
$$

is a consequence of relations in Q_{A}. Since for all $k \in \mathbb{Z}$, the relations

$$
g^{k} e_{0} \wedge^{g^{k}} e_{0}=g^{k} e_{0} \quad \text { and } \quad g^{k} e_{0} \wedge g^{k} \mathbf{1}=g^{k} \mathbf{1} \wedge g^{g^{k}} e_{0}=g^{k} e_{0}
$$

are contained in Q_{A}, we may assume that for all relations

$$
p \equiv{ }^{\alpha_{1}} a_{1} \wedge \ldots \wedge^{\alpha_{n}} a_{n}={ }^{\beta_{1}} b_{1} \wedge \ldots \wedge^{\beta_{m}} b_{m} \equiv q
$$

in $Q \backslash \widetilde{Q}$ the following hold:
(a) $a_{i}=b_{j}=e_{0}$ for all $1 \leq i \leq n, 1 \leq j \leq m$;
(b) there is no subword of p and of q of the form ${ }^{\alpha} e_{0} \wedge^{\alpha} e_{0}$;
(c) α_{i}, β_{j} are group reduced words for all $1 \leq i \leq n, 1 \leq j \leq m$.

We also note that $n=1$ if and only if $m=1$, in which case the relation in $Q \backslash \widetilde{Q}$ reads ${ }^{\alpha} e_{0}={ }^{\alpha} e_{0}$, and hence is redundant. Because of this fact, we assume that for all relations

$$
{ }^{\alpha_{1}} a_{1} \wedge \ldots \wedge^{\alpha_{n}} a_{n}={ }^{\beta_{1}} b_{1} \wedge \ldots \wedge^{\beta_{m}} b_{m}
$$

in $Q \backslash \widetilde{Q}$,

$$
n, m \geq 2
$$

also holds. Let

$$
I=\left\{\left.\alpha \in Z\right|^{\alpha} e_{0} \text { occurs in one of the relations in } Q\right\} .
$$

By our assumptions, for every $\alpha \in I$, we have $\alpha=g^{k}$ for some $k \in \mathbb{Z}$. Let $i, j \in \mathbb{Z}$ such that $g^{i}, g^{j} \in I$, and if $g^{k} \in I$, then $j \leq k \leq i$. Let $d=i-j$.

Clearly, the relation

$$
g^{i+1} e_{0} \wedge^{g^{j-1}} e_{0}=g^{j-1} e_{0} \wedge g^{g^{i+1}} e_{0}
$$

holds in F_{∞}. We claim that the above relation is not a consequence of the relations in Q_{A}. For this, assume that there exists a finite sequence of words

$$
g^{g^{i+1}} e_{0} \wedge^{g^{j-1}} e_{0} \equiv u_{0}, u_{1}, \ldots, u_{n} \equiv g^{j-1} e_{0} \wedge^{g^{i+1}} e_{0}
$$

such that u_{t+1} is obtained from $u_{t},(0 \leq t \leq n-1)$ by applying a relation in Q_{A}.
Let us take a closer look how the word u_{1} can be obtained:
(i) It is straightforward, that we cannot apply any of the relations in Q to the word u_{0}, since $g^{g^{i+1}} e_{0}$ and $g^{g^{j-1}} e_{0}$ do not occur in any of the relations in Q, and so to obtain a different word from u_{0}, we need to apply a relation in $Q_{A} \backslash Q$.
(ii) It is also obvious, that by applying a relation in \widetilde{Q}_{A}, the order of the elements $g^{g^{i+1}} e_{0}$ and $g^{j-1} \cdot e_{0}$ in the word p cannot be changed.
(iii) If a relation in $Q_{A} \backslash \widetilde{Q}_{A}$ can be applied, then it is either of the form

$$
{ }^{\alpha} p={ }^{\alpha} q,
$$

where $(p=q) \in Q \backslash \widetilde{Q}$, and $\alpha \in Z \backslash\{\lambda\}$, where λ denotes the empty word, or of the form

$$
{ }^{\alpha u \beta} \beta_{p}={ }^{\alpha v \beta} q
$$

where $(p=q) \in Q \backslash \widetilde{Q}$, and $\alpha, \beta \in Z$. Considering both cases, it follows that there exists a relation $p=q$ in $Q \backslash \widetilde{Q}$, such that $p=s^{l} e_{0} \wedge g^{k} e_{0}$, and a word $g^{m} \in Z$, such that

$$
g^{i+1} e_{0} \wedge g^{j-1} e_{0} \equiv g^{m+l} e_{0} \wedge^{g^{m+k}} e_{0}
$$

It follows that $l-k=m+l-m-k=i+1-j+1=d+2$, which contradicts our choice of the number d. We may now deduce that relations in $Q_{A} \backslash \widetilde{Q}_{A}$ cannot be applied to the word u_{0}.

To summarize the above argument, we have that only relations in $\widetilde{Q}_{A} \backslash \widetilde{Q}$ can be applied to the word u_{0} to obtain a different word u_{1}, but applying relations in $\widetilde{Q}_{A} \backslash \widetilde{Q}$, the order of the elements ${ }^{g^{i+1}} e_{0}$ and ${ }^{g^{j-1}} e_{0}$ in the word p cannot be changed. Inductively, it can be seen that for all $1 \leq t \leq n-1, u_{t+1}$ is obtained from $u_{t},(1 \leq t \leq n-1)$ by applying a relation in $\widetilde{Q}_{A} \backslash \widetilde{Q}$, but doing so the order of the elements $g^{i+1} e_{0}$ and $g^{j-1} e_{0}$ in the word u_{t} cannot be changed. We may now deduce that the relation

$$
g^{i+1} e_{0} \wedge^{g^{j-1}} e_{0} \equiv u_{0}, u_{1}, \ldots, u_{n} \equiv g^{g-1} e_{0} \wedge^{g^{i+1}} e_{0}
$$

is not a consequence of relation in Q_{A}, and so F_{∞} is not finitely presented with respect to the action of G.

4.6 Finite presentability with respect to an action II.

In Section 4, we introduced the concept of a semigroup presentation with respect to an action of a semigroup and discussed basic properties. In this section we introduce the
concept of an inverse semigroup presentation with respect to an action of a semigroup. The new notion serves as a key point in giving a necessary and sufficient condition for finite presentability of a semidirect product of a semilattice by a group.

As in the previous sections, if we say that a semigroup S acts on a semigroup T, then it will be understood that S acts on T on the left by endomorphisms. Moreover, if $S=\langle X \mid P\rangle$, then we assume for the sake of convenience that $X \subseteq S$. We let λ denote the empty word.

As in Section 4, we use the following notations. Let X and Y be non-empty sets, and let $Z=X^{*}$. Consider the set

$$
Z_{Y}=\left\{{ }^{\alpha} y \mid \alpha \in Z, y \in Y\right\} .
$$

In other words, the elements of ${ }^{Z} Y$ consist of symbols of the form ${ }^{x_{1} \ldots x_{n}} y$, where $y \in Y$, $x_{i} \in X \cup\{\lambda\}$, where λ denotes the empty word. Let $\left({ }^{Z} Y\right)^{-1}$ denote the set of formal inverses of elements of ${ }^{Z} Y$. Let

$$
B={ }^{Z} Y \cup\left({ }^{Z} Y\right)^{-1} .
$$

Consider the following map:

$$
\begin{gather*}
f: B^{+} \times Z \rightarrow B^{+} ; \\
\left({ }^{\beta} y, \alpha\right) \mapsto{ }^{\alpha \beta} y,\left(\left({ }^{\beta} y\right)^{-1}, \alpha\right) \mapsto\left({ }^{\alpha \beta} y\right)^{-1},(y, \lambda) \mapsto y,\left(y^{-1}, \lambda\right) \mapsto y^{-1} \tag{4.14}
\end{gather*}
$$

where $\beta \in Z \backslash\{\lambda\}, \alpha \in Z$ and $y \in Y$. For any word $y_{1} \ldots y_{n}$ over B, we define

$$
\left(y_{1} \ldots y_{n}, \alpha\right) \mapsto{ }^{\alpha} y_{1} \ldots{ }^{\alpha} y_{n} .
$$

Clearly, f satisfies (A1) and (A2) and so Z acts on B^{+}on the left by endomorphisms. As before, we write the image of $\left(\alpha, y_{1} \ldots y_{n}\right)$ under f as ${ }^{\alpha}\left(y_{1} \ldots y_{n}\right)$. That is,

$$
{ }^{\alpha}\left(y_{1} \ldots y_{n}\right) \equiv{ }^{\alpha} y_{1} \ldots{ }^{\alpha} y_{n} .
$$

In particular, we have that $Y \cup Y^{-1} \subseteq B$. Throughout this section, we consider B^{+}as a semigroup on which the semigroup Z acts on the left by endomorphisms, where the action is determined by the map f defined in (4.14).

Definition 4.6.1. Let $\langle X \mid P\rangle$ be a semigroup presentation, Y be a non-empty set and $Z=X^{*}$. Let $B={ }^{Z} Y \cup\left({ }^{Z} Y\right)^{-1}$, where $\left({ }^{Z} Y\right)^{-1}$ is the set of formal inverses of elements of elements ${ }^{Z} Y$. An inverse semigroup presentation with respect to the action of $\langle X \mid P\rangle$ is
an ordered pair $\langle Y \mid Q\rangle$, where Q is a binary relation on B^{+}. Let \Re denote the, standard inverse semigroup relations on $F S I\left({ }^{Z} Y\right)$, and let

$$
\begin{aligned}
Q_{R} & =\left\{{ }^{\alpha u \beta} \beta_{p}={ }^{\alpha v \beta} q \mid(p=q) \in Q \cup \Re,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in B^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q \cup \Re, \alpha \in Z\right\} .
\end{aligned}
$$

We note that $Q \cup \Re \subseteq Q_{R}$. Let $Q_{A}=Q_{R} \backslash \Re$. The semigroup defined by the inverse semigroup presentation $\operatorname{Inv}\left\langle{ }^{Z} Y \mid Q_{A}\right\rangle$ is said to be presented as an inverse semigroup with respect to the action of $\langle X \mid P\rangle$ by the generators Y and relations Q and we denote this by

$$
T=\operatorname{InvAct}_{\langle X \mid P\rangle}\langle Y \mid Q\rangle .
$$

If Y and Q can be chosen to be finite sets, then we say that T is finitely presented as an inverse semigroup with respect to the action of $\langle X \mid P\rangle$. If we fix a presentation $\langle X \mid P\rangle$ for a semigroup S, then we write

$$
T=\operatorname{InvAct}_{S}\langle Y \mid Q\rangle
$$

instead of $T=\operatorname{InvAct}_{\langle X \mid P\rangle}\langle Y \mid Q\rangle$, and say that T is presented as an inverse semigroup with respect to an action of S by Y and Q.

Let $T=\operatorname{InvAct}_{\langle X \mid P\rangle}\langle Y \mid Q\rangle$ and $Z=X^{*}$. Let $B={ }^{Z} Y \cup\left({ }^{Z} Y\right)^{-1}$, where $\left({ }^{Z} Y\right)^{-1}$ is the set of formal inverses of elements ${ }^{Z} Y$. Let $w_{1}, w_{2} \in B^{+}$. We say that w_{2} is obtained from w_{1} by an application of a relation of Q_{R} if $w_{1} \equiv \alpha u \beta$ and $w_{2} \equiv \alpha v \beta$, where $\alpha, \beta \in B^{*}$ and $u=v$ is a relation in Q_{R}. We say that $w_{1}=w_{2}$ is a consequence of relations in Q_{R}, if there exists a sequence of words

$$
w_{1} \equiv \alpha_{0}, \ldots, \alpha_{m} \equiv w_{2}
$$

such that α_{j+1} is obtained from α_{j} by applying a relation of Q_{R}.
According to Proposition 4.1.4, we have:
Proposition 4.6.2. Let $\langle X \mid P\rangle$ be a semigroup presentation and Y be a non-empty set. Let $Z=X^{*}, B=Z_{Y} \cup\left({ }^{Z} Y\right)^{-1}$ and Q be a binary relation on B^{+}. Then $T=$ $\operatorname{InvAct}_{\langle X \mid P\rangle}\langle Y \mid Q\rangle$ if and only if the following two conditions hold:
(i) T satisfies all relations in Q_{R};
(ii) If $w_{1}, w_{2} \in B^{+}$are such that $w_{1}=w_{2}$ holds in T, then $w_{1}=w_{2}$ is a consequence of relations in Q_{R}.

Next, we set Propositions 4.4.3, 4.4.5 and 4.4.7 into an inverse semigroup theoretic context. Propositions 4.6.3, 4.6.4 and 4.6 .5 can be verified similarly to Propositions 4.4.3, 4.4.5 and 4.4.7. To be more accurate, one needs to consider inverse semigroup presentations, Ti etze transformations regarding inverse semigroups and inverse semigroup homomorphisms instead of semigroup presentations, Tietze transformations of semigroups and semigroup homomorphisms.

Proposition 4.6.3. Let S be a semigroup and T be an inverse semigroup. Assume that S acts on T. Then T can be defined in terms of an inverse semigroup presentation with respect to the action of S.

Proposition 4.6.4. Let T be a finitely presented inverse semigroup and assume that S is a finitely generated semigroup that acts on T. Then T is also finitely presented as an inverse semigroup with respect to the action of S.

Proposition 4.6.5. Let $S=\langle X \mid P\rangle$ and let T be an inverse semigroup on which S acts. Assume that the finite sets Y_{1} and Y_{2} generate T with respect to the action of S and that T can be defined by a finite inverse semigroup presentation with respect to the action of S in terms of Y_{1}. Then T can be defined by a finite inverse semigroup presentation with respect to the action of S in terms of Y_{2} as well.

Finally, we prove the following useful proposition.
Proposition 4.6.6. Let S be a semigroup defined by the semigroup presentation $\langle X \mid P\rangle$, and let T be an inverse semigroup. Assume that $T=\operatorname{Act}_{S}\langle Y \mid Q\rangle$. Then we have $T=$ InvAct ${ }_{S}\langle Y \mid Q\rangle$. In particular, we have that if T is finitely presented as a semigroup with respect to an action of S, then it is also finitely presented as an inverse semigroup with respect to the same action of S.

Proof. Let $Z=X^{*}$. If $T=\operatorname{Act}_{S}\langle Y \mid Q\rangle$, then T is defined by the semigroup presentation $\left\langle{ }^{Z} Y \mid Q_{A}\right\rangle$, where

$$
\begin{aligned}
Q_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in\left({ }^{Z} Y\right)^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q, \alpha \in Z\right\} .
\end{aligned}
$$

Making use of Proposition 4.1.3, we have that $T=\operatorname{Inv}\left\langle^{Z} Y \mid Q_{A}\right\rangle$. Let \Re denote the standard inverse semigroup relations on $F S I\left({ }^{Z} Y\right)$. To verify that $T=\operatorname{InvAct}_{S}\langle Y \mid Q\rangle$, we need to show that

$$
\begin{aligned}
\Re_{A} & =\left\{{ }^{\alpha u \beta} \beta_{p}={ }^{\alpha v \beta} q \mid(p=q) \in \Re,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \Re, \alpha \in Z\right\} .
\end{aligned}
$$

is a consequence of relations in Q_{A}. Since T is an inverse semigroup, the relations in \Re are consequences of relations in Q_{A}, and hence the relations in \Re_{A} are also consequences of relations in Q_{A}.

4.7 Examples II.

Examples introduced in Section 5 involved inverse semigroups. To deepen the notion of an inverse semigroup presentation with respect to a semigroup action, we continue working on these examples. We investigate whether the semilattices Y_{∞}, A_{∞} and F_{∞} are finitely presented as inverse semigroups with respect to the group actions defined on them.

Proposition 4.7.1. Let Y_{∞} be the double infinite chain with an identity element adjoined on top, and let G be the infinite cyclic group. Define the action of G on Y_{∞} as in Proposition 4.2.4. Then Y_{∞} is finitely presented as an inverse semigroup with respect to the action of G.

Proof. According to Proposition 4.5.1, Y_{∞} is finitely presented as a semigroup with respect to the action of G. Making use of Proposition 4.6.6, we may deduce that Y_{∞} is finitely presented as an inverse semigroup with respect to the action of G as well.

Proposition 4.7.2. Let F_{∞} be the semilattice obtained by adjoining an identity element to the free semilattice generated by infinitely many elements. Let G be the infinite cyclic group. Define the action of G on F_{∞} as in Proposition 4.2.6. Then F_{∞} is finitely presented as an inverse semigroup with respect to the action of G.

Proof. Let F be the free semilattice generated by infinitely many elements $A=$ $\left\{\ldots, e_{-1}, e_{0}, e_{1}, \ldots\right\}$. Adjoin an identity 1 on top. Then, for each $e_{i} \in A_{0}, e_{i}<\mathbf{1}$. holds. Denote by F_{∞} the semilattice obtained. Clearly F_{∞} is not finitely presented as an inverse semigroup, since it is not finitely generated. To be more precise, if we let

$$
R=\left\{e_{i} \wedge e_{i}=e_{i}, e_{i} \wedge \mathbf{1}=e_{i}, 1 \wedge 1=\mathbf{1} \mid i \in \mathbb{Z}\right\}
$$

then we have that F_{∞} is defined by the inverse semigroup presentation $\operatorname{Inv}\langle A, \mathbf{1} \mid R\rangle$. Let $G=\langle g\rangle$ be the infinite cyclic group. To make notation clear, we let $X=\left\{g, g^{-1}, 1\right\}$ and let $Z=X^{*}$. Let

$$
P=\left\{g g^{-1}=g^{-1} g=1,1 g=g, 1 g^{-1}=g^{-1}, 11=1\right\}
$$

Clearly G is defined by the semigroup presentation

$$
G=\langle X \mid P\rangle .
$$

Define the action of G on F_{∞} as in Proposition 4.2.6. As we verified in Proposition 4.2.6, F_{∞} is finitely generated by $Y_{0}=\left\{e_{0}, 1\right\}$ with respect to the action of G. Let $B={ }^{Z} Y_{0} \cup\left({ }^{Z} Y_{0}\right)^{-1}$, and let

$$
Q=\left\{e_{0} \wedge e_{0}=e_{0}, e_{0} \wedge \mathbf{1}=e_{0}, \mathbf{1} \wedge \mathbf{1}=\mathbf{1},{ }^{g} \mathbf{1}=\mathbf{1},{ }^{1} e_{0}=e_{0},{ }^{1} \mathbf{1}=\mathbf{1}\right\}
$$

Let

$$
\begin{aligned}
Q_{R} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q \cup \Re,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in B^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q \cup \Re, \alpha \in Z\right\},
\end{aligned}
$$

where \Re denotes the standard inverse semigroup relations on $\operatorname{FSI}\left({ }^{Z} Y_{0}\right)$. Consider $Y \doteq$ $\operatorname{InvAct}{ }_{G}\left\langle Y_{0} \mid Q\right\rangle$. We claim that $F_{\infty}=\operatorname{InvAct}_{G}\left\langle Y_{0} \mid Q\right\rangle$, by giving two inverse semigroup homomorphism $\eta: F_{\infty} \rightarrow Y$ and $\xi: Y \rightarrow F_{\infty}$ that are inverse to each other.

We first show that the map $e_{n} \mapsto g^{n} e_{0}, \mathbf{1} \mapsto \mathbf{1}$ induces an inverse semigroup homomorphism $\eta: F_{\infty} \rightarrow Y$ by showing that relations in R are mapped onto relations that hold in Y. As in Proposition 4.5.3, we have that for all $k \in \mathbb{Z}$, the relation

$$
g^{k} 1=1
$$

is a consequence of relations in Q_{R}.
The following three cases have to be considered.
(i) $e_{i} \eta \wedge e_{i} \eta=g^{i} e_{0} \wedge g^{i} e_{0}=g^{i} e_{0}=e_{i} \eta=\left(e_{i} \wedge e_{i}\right) \eta$.
(ii) $e_{i} \eta \wedge 1 \eta=g^{i} e_{0} \wedge 1=g^{i} e_{0} \wedge g^{i} 1=g^{i} e_{0}=e_{0} \eta=\left(e_{0} \wedge 1\right) \eta$.
(iii) $1 \eta \wedge 1 \eta=1 \wedge 1=1=1 \eta=(1 \wedge 1) \eta$.

We may hence deduce that every relation in R.is mapped onto a relation that holds in Y.
Before we define a homomorphism from Y to F_{∞}, we introduce the following notation. Let $\alpha \in Z$, and assume that the group reduced word obtained from α is g^{n}. Then we let $\|\alpha\|=n$.

We verify that the map

$$
{ }^{\alpha_{1}} e_{0} \wedge \ldots{ }^{\alpha_{n}} e_{0} \mapsto e_{\left\|\alpha_{1}\right\|} \wedge \ldots \wedge e_{\left\|\alpha_{n}\right\|}, \quad{ }^{\alpha} \mathbf{1} \mapsto \mathbf{1}
$$

induces a homomorphism $\xi: Y \rightarrow F_{\infty}$, by showing that relations in Q_{R} are mapped onto relations that hold in F_{∞}. It is immediate by the definition of ξ that relations of Q are mapped onto relations that hold in F_{∞}.

Let $\alpha, \beta \in Z$ and $(u=v) \in P$. Let $\delta_{1} \equiv \alpha u \beta$ and $\delta_{2} \equiv \alpha v \beta$. Since $(u=v) \in P$, we have that $\|u\|=\|v\|$, and it follows that $\left\|\delta_{1}\right\|=\left\|\delta_{2}\right\|$. Consider the relation $e_{0} \wedge e_{0}=e_{0}$ in Q. Then,

$$
\left({ }^{\delta_{1}}\left(e_{0} \wedge e_{0}\right)\right) \xi=e_{\left\|\delta_{1}\right\|} \wedge e_{\left\|\delta_{1}\right\|}=e_{\left\|\delta_{1}\right\|}=e_{\left\|\delta_{2}\right\|}=\left({ }^{\delta_{2}} e_{0}\right) \xi
$$

holds. Moreover, we have that

$$
\left({ }^{\alpha}\left(e_{0} \wedge e_{0}\right)\right) \xi=e_{\|\alpha\|} \wedge e_{\|\alpha\|}=e_{\|\alpha\|}=\left({ }^{\alpha} e_{0}\right) \xi
$$

holds. It can be proved similarly, that for any relations $(p=q) \in Q \cup \Re$,

$$
\left({ }^{\delta_{1}} p\right) \xi=\left({ }^{\delta_{2}} q\right) \xi \quad \text { and } \quad\left({ }^{\alpha} p\right) \xi=\left({ }^{\alpha} q\right) \xi
$$

holds.
That η and ξ are inverse to each other follows from the following observations. On one hand

$$
e_{n} \eta \xi=\left(g^{n} e_{0}\right) \xi=e_{n} \quad \text { and } \quad \mathbf{1} \eta \xi=\mathbf{1} .
$$

On the other hand

$$
\left({ }^{\alpha} e_{0}\right) \xi \eta=e_{\|\alpha\|} \eta={ }^{g^{\|\alpha\|}} e_{0}={ }^{\alpha} e_{0} \quad \text { and } \quad \mathbf{1} \xi \eta=\mathbf{1}
$$

Proposition 4.7.3. Let A_{∞} be the semilattice obtained by adjoining an identity and a zero element to an infinite antichain. Let G be the infinite cyclic group. Define the action of G on A_{∞} as in Proposition 4.2.5. Then A_{∞} is not finitely presented as an inverse semigroup with respect to the action of G.

Proof. Let A be the infinite antichain

$$
\ldots, e_{-1}, e_{0}, e_{1}, \ldots
$$

Adjoin an identity $\mathbf{1}$ on top and a zero $\mathbf{0}$ on bottom, that is for each $e_{i} \in A, \mathbf{0}<e_{i}<\mathbf{1}$ holds. Let A_{∞} denote the semilattice obtained. Clearly A_{∞} is not finitely presented as an inverse semigroup. To be more precise, if we let

$$
\begin{aligned}
R= & \left\{e_{i} \wedge e_{j}=\mathbf{0}, e_{i} \wedge \mathbf{1}=e_{i}, e_{i} \wedge \mathbf{0}=\mathbf{0}\right. \\
& \left.e_{i} \wedge e_{i}=e_{i}, \mathbf{1} \wedge \mathbf{1}=\mathbf{1}, \mathbf{0} \wedge \mathbf{0}=\mathbf{0} \mid i, j \in \mathbb{Z}, i \neq j\right\}
\end{aligned}
$$

then we have that A_{∞} is defined by the inverse semigroup presentation $\operatorname{Inv}\left\langle A_{\infty} \mid R\right\rangle$. Let $G=\langle g\rangle$ be the infinite cyclic group. To make notation clear, we let $X=\left\{g, g^{-1}, 1\right\}$ and let $Z=X^{*}$. Let

$$
P=\left\{g g^{-1}=g^{-1} g=1,1 g=g, 1 g^{-1}=g^{-1}, 11=1\right\} .
$$

Clearly G is defined by the semigroup presentation

$$
G=\langle X \mid P\rangle .
$$

Define the action of G on A_{∞} as in Proposition 4.2.5. As we verified in Proposition 4.2.5, A_{∞} is finitely generated as a semigroup and hence as an inverse semigroup by $Y_{0}=\left\{e_{0}, \mathbf{1}\right\}$ with respect to the action of G.

Let $B={ }^{Z} Y_{0} \cup\left({ }^{Z} Y_{0}\right)^{-1}$ and let \Re denote the standard inverse semigroup relations on $F S I\left({ }^{Z} Y_{0}\right)$. Assume that A_{∞} is finitely presented as an inverse semigroup with respect to the action of G. Then, according to Proposition 4.6.5, there exists a finite set of relations Q on B^{+}such that $A_{\infty}=\operatorname{InvAct}_{G}\left\langle Y_{0} \mid Q\right\rangle$. In other words, if we let

$$
\begin{aligned}
Q_{R} & =\left\{{ }^{\alpha u} \beta_{p}={ }^{\alpha v \beta} q \mid(p=q) \in Q \cup \Re,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in B^{+},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q \cup \Re, \alpha \in Z\right\} .
\end{aligned}
$$

and $Q_{A}=Q_{R} \backslash \Re$, then $A_{\infty}=\operatorname{Inv}\left\langle{ }^{Z} Y_{0} \mid Q_{A}\right\rangle$. Without loss of generality we may assume that the following set of relations

$$
\widetilde{Q}=\left\{e_{0} \wedge e_{0}=e_{0}, e_{0} \wedge \mathbf{1}=e_{0}, \mathbf{1} \wedge \mathbf{1}=\mathbf{1},{ }^{g} \mathbf{1}={ }^{1} \mathbf{1}=\mathbf{1}\right\}
$$

is a subset of Q. For further use, we introduce the following notations. We let

$$
\begin{aligned}
\widetilde{Q}_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in \widetilde{Q},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \widetilde{Q}, \alpha \in Z\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\Re_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in \Re,(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \Re, \alpha \in Z\right\} .
\end{aligned}
$$

It is immediate that for all $\alpha \in Z,{ }^{\alpha} e_{0} \wedge{ }^{\alpha} e_{0}={ }^{\alpha} e_{0}$ is a relation in \widetilde{Q}_{A}, and hence by applying relations in \Re we obtain that for all $\alpha \in Z$,

$$
{ }^{\alpha} e_{0}=\left({ }^{\alpha} e_{0}\right)^{-1}
$$

In particular, every relation in \Re is a consequence of relations in

$$
\mathcal{P}=\left\{{ }^{\alpha} a \wedge^{\alpha} a={ }^{\alpha} a,{ }^{\alpha} a \wedge^{\beta} b={ }^{\beta} b \wedge^{\alpha} a \mid a, b \in Y_{0}, \alpha, \beta \in Z\right\} .
$$

We let

$$
\begin{aligned}
\mathcal{P}_{A} & =\left\{{ }^{\alpha u \beta} \beta^{\alpha}={ }^{\alpha v \beta} q \mid(p=q) \in \mathcal{P},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in \mathcal{P}, \alpha \in Z\right\} .
\end{aligned}
$$

In a similar way as claimed in Proposition 4.5.3, we have that for any $k \in \mathbb{Z}$

$$
g^{k} 1=1
$$

is a consequence of relations in Q_{R}. Having these observations in mind, we assume that for all relations

$$
p \equiv a_{1} \wedge \ldots \wedge a_{n}=b_{1} \wedge \ldots \wedge b_{m} \equiv q
$$

in $Q \backslash \widetilde{Q}$, the following conditions hold:
(i) $a_{j}, b_{i} \in{ }^{Z} Y_{0}$ for all $1 \leq j \leq n, 1 \leq i \leq m$;
(ii) $a_{j}={ }^{\alpha} e_{0}$ for all $1 \leq j \leq n$, where α is a group reduced word over Z;
(iii) $b_{i}={ }^{\alpha} e_{0}$ for all $1 \leq i \leq m$, where α is a group reduced word over Z;
(iv) there is no subword of p and of q of the form ${ }^{\alpha} e_{0} \wedge^{\alpha} e_{0}$.

With these conditions, we also have that $n=1$ if and only if $m=1$, in which case our. relation $p=q$ reads ${ }^{\alpha} e_{0}={ }^{\alpha} e_{0}$, and hence is redundant. We thus assume, that for all relations in $Q \backslash \widetilde{Q}$:

$$
p \equiv a_{1} \wedge \ldots \wedge a_{n}=b_{1} \wedge \ldots \wedge b_{m} \equiv q
$$

$n, m \geq 2$ also holds.

We recall that for all $\alpha \in Z$, if $\alpha=g^{k}$ in G, then we let $\|\alpha\|=k$. We need the following notion, to verify that A_{∞} is not finitely presented as an inverse semigroup with respect to the action of G. Consider a word

$$
w \equiv{ }^{\alpha_{1}} y_{1} \wedge \ldots \wedge^{\alpha_{n}} y_{n}
$$

over ${ }^{Z} Y$, and assume $\alpha_{i}, \alpha_{j},(1 \leq i, j \leq n)$ are such that $\left\|\alpha_{i}\right\| \leq\left\|\alpha_{k}\right\| \leq\left\|\alpha_{j}\right\|$ for all $1 \leq k \leq n$. Define

$$
d(w)=\left\|\alpha_{j}\right\|-\left\|\alpha_{i}\right\|
$$

and say that $d(w)$ is the distance in w. Let

$$
I=\left\{\left.\alpha \in Z\right|^{\alpha} e_{0} \text { occurs in one of the relations in } Q\right\} .
$$

By our assumptions, for every $\alpha \in I$, we have $\alpha=g^{k}$ for some $k \in \mathbb{Z}$. Let $i, j \in \mathbb{Z}$ such that $g^{i}, g^{j} \in I$, and if $g^{k} \in I$, then $j \leq k \leq i$. Let $d=i-j$. It is straightforward that the relation

$$
p \equiv g^{g^{i+1}} e_{0} \wedge g^{j-1} e_{0}={ }^{g^{i+2}} e_{0} \wedge g^{g-2} e_{0} \equiv q
$$

holds in A_{∞}, and that

$$
d(p) \neq d(q)
$$

To show that $A_{\infty}=\operatorname{InvAct}_{G}\left\langle Y_{0} \mid Q\right\rangle$ does not hold, we need to verify that the above relation is not a consequence of relations in $\left(Q_{R} \backslash \Re_{A}\right) \cup \mathcal{P}_{A}$. Assume that there exists a finite sequence of words

$$
p \equiv u_{0}, u_{1}, \ldots, u_{m} \equiv q,
$$

so that u_{t+1} is obtained from u_{t} applying a relation in $\left(Q_{R} \backslash \Re_{A}\right) \cup \mathcal{P}_{A}$.
Let us take a closer look how the word u_{1} can be obtained from u_{0}.
(a) It is immediate that we cannot apply any of the relation in Q, since $g^{g^{i+1}} e_{0}$ and $g^{j-1} e_{0}$ do not occur in any of the relations in Q.
(b) Applying a relation in $\widetilde{Q}_{A} \backslash \widetilde{Q}$, the following words can be obtained:
(i) $u_{1} \equiv{ }^{\alpha} e_{0} \wedge{ }^{\alpha} e_{0} \wedge g^{j-1} e_{0}$, where $\alpha=g^{i+1}$ in G;
(ii) $u_{1} \equiv g^{i+1} e_{0} \wedge^{\beta} e_{0} \wedge^{\beta} e_{0}$, where $\beta=g^{j-1}$ in G;
(iii) $u_{1} \equiv{ }^{\alpha} e_{0} \wedge^{\alpha} 1 \wedge{ }^{g^{j-1}} e_{0}$, where $\alpha=g^{i+1}$ in G;
(iv) $u_{1} \equiv g^{i+1} e_{0} \wedge^{\beta} e_{0} \wedge^{\beta} 1$, where $\beta=g^{j-1}$ in G;

We note that with the application of relations in $\widetilde{Q}_{A} \backslash \widetilde{Q}$, the distance in the obtained word u_{1} equals to the distance in u_{0}.
(c) When applying a relation in \mathcal{P}_{A}, we may have the following situations occur:
(i) $u_{1} \equiv{ }^{\beta} e_{0} \wedge^{\alpha} e_{0}$, where $\alpha=g^{i+1}$ and $\beta=g^{j, 1}$ in G;
(ii) $u_{1} \equiv{ }^{\alpha} e_{0} \wedge^{\alpha} e_{0} \wedge g^{j-1} e_{0}$, where $\alpha=g^{i+1}$ in G;
(iii) $u_{1} \equiv g^{i+1} e_{0} \wedge^{\beta} e_{0} \wedge^{\beta} e_{0}$, where $\beta=g^{j-1}$ in G.

We note that in all three cases, $d\left(u_{1}\right)=d\left(u_{0}\right)$.
(d) With the application of a relation in $Q_{R} \backslash\left(Q \cup \widetilde{Q}_{A} \cup \mathcal{P}_{A} \cup \mathcal{R}_{A}\right)$, the we obtain a word of the form

$$
u_{1} \equiv g^{\alpha} e_{0} \wedge^{\beta} e_{0}
$$

where $\alpha=g^{i+1}, \beta=g^{j-1}$ in G. That relations in the set

$$
\begin{aligned}
\bar{Q}_{A} & =\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q \backslash \widetilde{Q},(u=v) \in P, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \backslash(p=q) \in Q \backslash \widetilde{Q}, \alpha \in Z \backslash\{\lambda\}\right\} .
\end{aligned}
$$

cannot be applied to u_{0} follows from the following remarks. Assume that a relation of \bar{Q}_{A} can be applied to u_{0}. Then there exists a word $g^{m} \in Z$ and a relation relation $p=q$ in $Q \backslash \widetilde{Q}$, such that $p \equiv g^{g^{l}} e_{0} \wedge g^{k} e_{0}$ and

$$
g^{i+1} e_{0} \wedge^{g^{j-1}} e_{0} \equiv g^{m+l} e_{0} \wedge^{g^{m+k}} e_{0}
$$

It follows that $l-k=m+l-m-k=i+1-j+1=d+2$, which contradicts our choice of the number d. We may now deduce that relations in \bar{Q}_{A} cannot be applied to the word u_{0}. To highlight the key point of the fourth case, we note that applying a relation in $Q_{R} \backslash\left(Q \cup \widetilde{Q}_{A} \cup \Re_{A} \cup \mathcal{P}_{A}\right)$ results a word u_{1} so that $d\left(u_{1}\right)=d\left(u_{0}\right)$.

Thus we may deduce, that u_{1} is a word so that $d\left(u_{1}\right)=d\left(u_{0}\right)$. We can make the same observation, if we take a closer look how the word u_{2} can be obtained from u_{1}. With an inductive argument we thus arrive to the conclusion, that

$$
d(p)=d\left(u_{0}\right)=d\left(u_{1}\right)=\ldots=d\left(u_{m}\right)=d(r)
$$

leading to a contradiction. We may hence deduce that A_{∞} is not finitely presented as an inverse semigroup with respect to the action of G.

4.8 Matched and conjugate words

We introduce the concepts of matched and conjugate words inspired by the proof of Proposition 4.3.1. The new notions and related notations will be frequently used in the next two sections. As in the previous sections, if we say that a semigroup S acts on a semigroup T, then it will be understood that S acts on T on the left by endomorphisms.

Matched words

We first fix the notation for this section. Let Y be a semilattice and G be a group acting on Y. Assume that the semidirect product $S=Y \rtimes G$ is generated as an inverse semigroup by the finite set A. For simplicity we suppose that $A \subseteq S$, and we let $B=A \cup A^{-1}$. Let

$$
X=\{g \in G \mid(e, g) \in A \text { for some } e \in Y\}
$$

and let

$$
Y_{0}=\left\{e \in Y \mid(e, g) \in B \text { for some } g \in X \cup X^{-1}\right\}
$$

By Proposition 4.3.1 we may assume that $Y_{m} \subseteq Y_{0}$, where Y_{m} denotes the set of maximal elements of Y. Let $Z=X \cup\{1\}$ and define the following map:

$$
\mathbf{n}: Y_{m} \times\left(Z \cup Z^{-1}\right)^{+} \rightarrow B^{+} ;\left(f_{1}, g_{1} g_{2} \ldots g_{k}\right) \mapsto\left(f_{1}, g_{1}\right)\left(f_{2}, g_{2}\right) \ldots\left(f_{k}, g_{k}\right)
$$

where ${ }^{g_{j}} f_{j+1}=f_{j},(1 \leq j+1 \leq k)$. By Lemma 4.2.1, $f_{j} \in Y_{m}$ for all $1 \leq j \leq k$. Moreover,

$$
\begin{equation*}
f_{1}={ }^{g_{1}} f_{2}={ }^{g_{1}}\left(g_{2} f_{3}\right)=\ldots={ }^{g_{1}}\left({ }^{g_{2}}\left(\ldots\left({ }^{g_{k-1}} f_{k}\right) \ldots\right)\right)={ }^{g_{1} \ldots g_{k-1}} f_{k} \tag{4.15}
\end{equation*}
$$

holds, and thus the word $\mathbf{n}\left(f_{1}, g_{1} g_{2} \ldots g_{k}\right)$ represents the element $\left(f_{1}, g_{1} g_{2} \ldots g_{k}\right)$ in S. We say that the word $\mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$ is matched to the word $\mathbf{n}\left(f, h_{1} \ldots h_{m}\right)$, if $e={ }^{g_{1} \ldots g_{k}} f$. We introduce two lemmas regarding matched words.

Lemma 4.8.1. The word $\mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$ is matched to the word $\mathbf{n}\left(f, h_{1} \ldots h_{m}\right)$ if and only if $\mathbf{n}\left(e, g_{1} \ldots g_{k}\right) \mathbf{n}\left(f, h_{1} \ldots h_{m}\right) \equiv \mathbf{n}\left(e, g_{1} \ldots g_{k} h_{1} \ldots h_{m}\right)$.

Proof. (\Rightarrow) Assume that $\mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$ is matched to the word $\mathbf{n}\left(f, h_{1} \ldots h_{m}\right)$. Then we know that

$$
\begin{equation*}
e=g_{1} \ldots g_{k} f \tag{4.16}
\end{equation*}
$$

On one hand, we have that

$$
\mathrm{n}\left(e, g_{1} \ldots g_{k}\right) \mathbf{n}\left(f, h_{1} \ldots h_{m}\right) \equiv\left(e, g_{1}\right) \ldots\left(e_{k}, g_{k}\right)\left(f, h_{1}\right) \ldots\left(f_{m}, h_{m}\right)
$$

where ${ }^{g_{i}} e_{i+1}=e_{i},\left(1 \leq i \leq k-1, e_{1}=e\right)$ and ${ }^{h_{j}} f_{j+1}=f_{j},\left(1 \leq j \leq m-1, f_{1}=f\right)$. On the other hand, we have that

$$
\mathbf{n}\left(e, g_{1} \ldots g_{k} h_{1} \ldots h_{m}\right) \equiv\left(e, g_{1}\right) \ldots\left(e_{k}, g_{k}\right)\left(l_{1}, h_{1}\right) \ldots\left(l_{m}, h_{m}\right)
$$

where ${ }^{g_{i}} e_{i+1}=e_{i},\left(\dot{1} \leq i \leq k-1, e_{1}=e\right),{ }^{g_{k}} l_{1}=e_{k}$ and ${ }^{h_{j}} l_{j+1}=l_{j},(1 \leq j \leq m-1)$. Making use of (4.15) we obtain that

$$
e=g_{1} \ldots g_{k} l_{1}
$$

Bearing in mind (4.16), we thus obtain that

$$
g_{1} \ldots g_{k} l_{1}=g_{1} \ldots g_{k} f_{1}
$$

holds. It follows that $l_{j}=f_{j}$ for all $1 \leq j \leq k$ verifying that

$$
\mathbf{n}\left(e, g_{1} \ldots g_{k}\right) \mathbf{n}\left(f, h_{1} \ldots h_{m}\right) \equiv \mathbf{n}\left(e, g_{1} \ldots g_{k} h_{1} \ldots h_{m}\right)
$$

(\Leftarrow) Assume that

$$
\mathbf{n}\left(e, g_{1} \ldots g_{k}\right) \mathbf{n}\left(f, h_{1} \ldots h_{m}\right) \equiv \mathbf{n}\left(e, g_{1} \ldots g_{k} h_{1} \ldots h_{m}\right)
$$

Hence, if

$$
\begin{aligned}
\mathbf{n}\left(e, g_{1} \ldots g_{k}\right) & \equiv\left(e, g_{1}\right) \ldots\left(e_{k}, g_{k}\right) \\
\mathbf{n}\left(f, h_{1} \ldots h_{m}\right) & \equiv\left(f, h_{1}\right) \ldots\left(f_{m}, h_{m}\right) \\
\mathbf{n}\left(e, g_{1} \ldots g_{k} h_{1} \ldots h_{m}\right) & \equiv\left(e, g_{1}\right) \ldots\left(e_{k}, g_{k}\right)\left(l_{1}, h_{1}\right) \ldots\left(l_{m}, h_{m}\right),
\end{aligned}
$$

then $l_{j}=f_{j},\left(1 \leq j \leq m, f_{1}=f\right)$ and

$$
e={ }^{g_{1} \ldots g_{k}} l_{1}={ }^{g_{1} \ldots g_{k}} f_{1}
$$

proving that the word $\mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$ is indeed matched to the word $\mathbf{n}\left(f, h_{1} \ldots h_{m}\right)$.
The following lemma can be proved using similar techniques.
Lemma 4.8.2. Assume that $\mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$ is matched to $\mathbf{n}\left(f, h_{1} \ldots h_{m}\right)$. Then

$$
\mathbf{n}\left(e, g_{1} \ldots g_{k}\right)(f, g) \equiv \mathbf{n}\left(e, g_{1} \ldots g_{k} g\right)
$$

holds for all $g \in Z \cup Z^{-1}$.

The following lemma is immediate from the definitions. Before asserting the lemma, we recall that by Lemma 4.2.1, if $l \in Y_{m}$, then for any word $g_{1} \ldots g_{k}$ over $Z \cup Z^{-1}$, $g_{1} \ldots g_{k} l \in Y_{m}$.

Lemma 4.8.3. Consider the words $u \equiv \mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$ and $v \equiv \mathbf{n}\left(\tilde{e}, g_{k}^{-1} \ldots g_{1}^{-1}\right)$, where $e=g_{1} \ldots g_{k} \tilde{e}$. Then the following hold:
(i) u is matched to v;
(ii) v is matched to u;
(iii) $u v u=v$ and $v u v=v$ hold in S.
(iv) If $w=\mathbf{n}\left(f, g_{k}^{-1} \ldots g_{1}^{-1}\right)$ such that $u w u=u$ and $w u w=w$ hold in S, then $w \equiv v$.

We note that considering u and v as elements of $S, v=u^{-1}$. Therefore, if $u \equiv$ $\mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$, then we let u^{-1} denote the word $\mathbf{n}\left(\tilde{e}, g_{k}^{-1} \ldots g_{1}^{-1}\right)$, where $e={ }^{g_{1} \ldots g_{k}} \tilde{e}$.

Conjugate words of idempotents

We keep the notation introduced so far. Before we introduce the notion of conjugate words, we prove the following lemma.

Lemma 4.8.4. Let $f \in Y$ and assume that

$$
f=g_{1} \ldots g_{k} l,
$$

where $l \in Y_{0}$ and $g_{1}, \ldots, g_{k} \in Z \cup Z^{-1}$. Let $e \in Y_{m}$ such that $f \leq e$. Let $u \equiv \mathbf{n}\left(e, g_{1} \ldots g_{k}\right)$. Then the word

$$
u(l, 1) u^{-1}
$$

represents the element $(f, 1)$ in S.
Proof. Indeed, we have

$$
\begin{aligned}
u \cdot(l, 1) \cdot u^{-1} & =\left(e, g_{1} \ldots g_{k}\right) \cdot(l, 1) \cdot\left(\tilde{e}, g_{k}^{-1} \ldots g_{1}^{-1}\right) \\
& =\left(e \wedge g_{1} \ldots g_{k} l \wedge^{g_{1} \ldots g_{k}} \tilde{e}, 1\right) \\
& =(e \wedge f \wedge e, 1) \\
& =(f, 1) .
\end{aligned}
$$

Keeping the notation of Lemma 4.8.4, we say that

$$
u \cdot(l, 1) \cdot u^{-1}
$$

is a conjugate word of the idempotent ($g_{1} \ldots g_{k} l, 1$). Clearly, any idempotent (${ }^{g_{1} \ldots g_{k}} l, 1$) in S can have several conjugate words representing it, depending on how many maximal idempotents there are above it with respect to the natural partial order.
Notation. The set of all conjugate words of $\left(g_{1} \ldots g_{k} l, 1\right)$ will be denoted by

$$
c\left(g_{1} \ldots g_{k} l\right)
$$

Clearly, if Y satisfies the maximum condition, then $c\left(g_{1} \ldots g_{k} l\right)$ is a finite set for all $l \in Y_{0}$ and $w \equiv g_{1} \ldots g_{k} \in\left(Z \cup Z^{-1}\right)^{+}$.

4.9 Finite presentability I.

The main result of this chapter is
Theorem 4.9.1. Let (Y, \wedge) be a semilattice, and G be a group acting on Y on the left by automorphisms. The semidirect product $S=Y \rtimes G$ is finitely presented as an inverse. semigroup if and only if the following conditions hold:
(i) G is finitely presented as a group;
(ii) Y satisfies the maximum condition;
(iiii) Y is finitely presented as an inverse semigroup with respect to the action of G.

We prove direct implication in this section. As in the previous sections, if we say that a group G acts on a semilattice Y, then it will be understood that G acts on Y on the left by automorphisms. We first fix notation for this and the following section.

Notation

Let Y be a semilattice and G be a group acting on Y. Let $S=Y \rtimes G$ and let A be a finite inverse semigroup generating set for S. We assume that $A \subseteq S$. We let

$$
X=\{g \in G \mid(e, g) \in A \text { for some } e \in Y\}
$$

and let

$$
Y_{0}=\left\{e \in Y \mid(e, g) \in A \cup A^{-1} \text { for some } g \in X \cup X^{-1}\right\} .
$$

Because of Proposition 4.3.1 we assume that Y_{m}, the finite set of maximal elements of Y, is contained in Y_{0}. We let $Z=X \cup X^{-1} \cup\{1\}$. Since we are going to work with words over three different alphabets, namely over $A \cup A^{-1}, X \cup X^{-1}$ and over $B={ }^{Z} Y_{0} \cup\left({ }^{Z} Y_{0}\right)^{-1}$, we agree that words over $A \cup A^{-1}$ and $X \cup X^{-1}$ will be written in the usual way, i.e. we write the letters consecutively. From the context it will be clear over which alphabet the word being considered is taken. For the sake of legibility words over B will be written in the following way:

$$
a_{1} \wedge \ldots \wedge a_{k}
$$

As in Section 6, we consider the semigroup B^{+}as a semigroup on which Z acts, where the action is defined by the rule (4.14) introduced in Section 6. As introduced in the previous section, we define

$$
\mathbf{n}: Y_{m} \times\left(Z \cup Z^{-1}\right)^{+} \rightarrow B^{+} ;\left(f_{1}, g_{1} g_{2} \ldots g_{k}\right) \mapsto\left(f_{1}, g_{1}\right)\left(f_{2}, g_{2}\right) \ldots\left(f_{k}, g_{k}\right)
$$

where ${ }^{g_{j}} f_{j+1}=f_{j},(1 \leq j+1 \leq k)$.
We also adopt the following notation. For a word $w \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{k}, g_{k}\right) \in\left(A \cup A^{-1}\right)^{+}$, we let

$$
\widetilde{w} \equiv e_{1} \wedge^{g_{1}} e_{2} \wedge \ldots \wedge^{g_{1} \ldots g_{k-1}} e_{k} \quad \text { and } \quad \widehat{w} \equiv g_{1} \ldots g_{k}
$$

Note that the element of S represented by w is $(\widetilde{w}, \widehat{w})$. It is immediate that if $w \equiv u v$, then

$$
\widetilde{w} \equiv \widetilde{u} \wedge^{\widehat{u}} \widetilde{v}
$$

We recall that $F S I(A)$ denotes the free semigroup with involution on the set A. We first prove

Lemma 4.9.2. Let (Y, \wedge) be a semilattice and G be a group acting on Y. Assume that the semidirect product $S=Y \rtimes G$ is generated by A. Then for any $w \in \operatorname{FSI}(A)$,

$$
\widetilde{w w^{-1}}=\widetilde{w}
$$

holds in Y.
Proof. We prove the lemma by induction on the length of w. If $|w|=1$, then $w \equiv$ $(e, g) \in A \cup A^{-1}$ and so $(e, g)^{-1}=\left(g^{-1} e, g^{-1}\right)$ by Proposition 4.2.7. To simplify notation, let $u \equiv w w^{-1}$. Then

$$
\left.\tilde{u} \equiv e \wedge^{g\left(g^{-1}\right.} e\right)=e \wedge e=e
$$

verifying that $\widetilde{u}=\widetilde{w}$, when $|w|=1$. Assume that

$$
\widetilde{w w^{-1}}=\widetilde{w}
$$

holds in Y for all $w \in F S I(A)$, whose length is less then $m,(m>1)$. Let $w \in F S I(A)$ so that the length of w is m. Then $w \equiv(e, g) w_{1}$, where w_{1} is a word of length $m-1$ and $(e, g) \in A \cup A^{-1}$. To simplify notation, let $u \equiv w w^{-1}$ and $v \equiv w_{1} w_{1}^{-1}$. Then

$$
\begin{array}{rlr}
\widetilde{u} & \equiv e \wedge^{g} \widetilde{v} \wedge^{g \hat{v}}\left(g^{-1} e\right) & \\
& =e \wedge^{g} \widetilde{w_{1}} \wedge^{g \hat{v}}\left(g^{-1} e\right) & \text { by the induction hypothesis } \\
& =e \wedge^{g} \widetilde{w_{1}} \wedge e & \text { since } g \hat{v} g^{-1}=1 \\
& =e \wedge^{g} \widetilde{w_{1}} & \text { standard inverse semigroup relation } \\
& \equiv \widetilde{w} &
\end{array}
$$

proving that $\widetilde{u}=\widetilde{w}$.

The necessary condition

We prove
Proposition 4.9.3. Let (Y, \wedge) be a semilattice, and G be a group acting on Y. If the semidirect product $S=Y \rtimes G$ is finitely presented as an inverse semigroup then the following conditions hold:
(i) G is finitely presented as a group;
(ii) Y satisfies the maximum condition;
(iii) Y is finitely presented as an inverse semigroup with respect to the action.

Proof. Assume that the semidirect product $S=Y \rtimes G$ is given by the presentation $S=\operatorname{Inv}\langle A \mid P\rangle$, where $A \subseteq S$ is a finite set and P is a finite set of relations. As introduced, we let

$$
X=\{g \in G \mid(e, g) \in A \text { for some } e \in Y\}
$$

and let

$$
Y_{0}=\left\{e \in Y \mid(e, g) \in A \cup A^{-1} \text { for some } g \in G\right\}
$$

By Proposition 4.3.1 we may assume that $Y_{m} \subseteq Y_{0}$. That condition (ii) holds, follows by Proposition 4.3.1, and thus it remains to show that G is finitely presented as a group and that Y is finitely presented with respect to the action as an inverse semigroup. Let

$$
\widehat{P}=\{\hat{r}=\hat{p} \mid(r=p) \in P\}
$$

We show that

$$
G=\operatorname{Grp}\langle X \mid \widehat{P}\rangle .
$$

We already know by Proposition 4.3 .1 that G is generated by X. It is straightforward that the relations of \widehat{P} hold in G. We verify that any relation that holds in G is a consequence of the relations in \widehat{P}. For this, assume that the relation

$$
g_{1} g_{2} \ldots g_{m}=h_{1} h_{2} \ldots h_{k}
$$

($g_{i}, h_{j} \in X \cup X^{-1}$) holds in G. Let $f \in Y_{m}$. Then

$$
\mathbf{n}\left(f, g_{1} g_{2} \ldots g_{m}\right)=\mathbf{n}\left(f, h_{1} h_{2} \ldots h_{k}\right)
$$

holds in S. Thus, there exists a finite sequence of words

$$
\mathbf{n}\left(f, g_{1} g_{2} \ldots g_{m}\right) \equiv q_{0}, q_{1}, \ldots, q_{t} \equiv \mathbf{n}\left(f, h_{1} h_{2} \ldots h_{k}\right)
$$

where q_{j+1} is obtained from q_{j} by applying a relation in P or a standard inverse semigroup relation. In particular we have that:
(i) If q_{j+1} is obtained from q_{j} by applying a relation in P, then \hat{q}_{j+1} is obtained from \hat{q}_{j} by applying a relation in \widehat{P}.
(ii) If q_{j+1} is obtained from q_{j} by applying a standard inverse semigroup relation, then \hat{q}_{j+1} is obtained from \hat{q}_{j} by applying a sequence of standard group relations.

It follows that there exists a finite sequence of words

$$
g_{1} g_{2} \ldots g_{m} \equiv \alpha_{0}, \alpha_{1}, \ldots, \alpha_{l} \equiv h_{1} h_{2} \ldots h_{k}
$$

such that α_{j+1} is obtained from α_{j} by applying a relation in \widehat{P} or a standard group relation, verifying that $G=\operatorname{Grp}\langle X \mid \widehat{P}\rangle$.

We let $Z=\left(X \cup X^{-1} \cup\{1\}\right)^{*}$ and

$$
\bar{P}=\widehat{P} \cup\left\{x x^{-1}=x^{-1} x=1,1 x=x, 1 x^{-1}=x^{-1}, 11=1 \mid x \in X\right\} .
$$

Clearly $G=\left\langle X \cup X^{-1} \cup\{1\} \mid \bar{P}\right\rangle$.
Next, we claim that Y is finitely presented as an inverse semigroup with respect to the action of G. We already know that Y satisfies the maximum condition and that Y is finitely generated as a semigroup by Y_{0} with respect to the action. We recall that $\left({ }^{Z} Y_{0}\right)^{-1}$
denotes the set of formal inverses of elements of ${ }^{Z} Y_{0}$. We let $B={ }^{Z} Y_{0} \cup\left({ }^{Z} Y_{0}\right)^{-1}$. We denote by \Re the set of standard inverse semigroup relations on $\operatorname{FSI}\left({ }^{Z} Y_{0}\right)$. Let

$$
Q=\{\tilde{r}=\tilde{p} \mid(r=p) \in P\} \cup\left\{e=f \wedge e \mid e, f \in Y_{0}, e \leq f\right\} .
$$

We show that

$$
Y=\operatorname{InvAct}_{G}\left\langle Y_{0} \mid Q\right\rangle
$$

by proving that $Y=\operatorname{Inv}\left\langle{ }^{Z} Y_{0} \mid Q_{A}\right\rangle$, where $Q_{A}=Q_{R} \backslash \Re$ and

$$
\begin{aligned}
Q_{R} & =Q \cup\left\{{ }^{\alpha u \beta} p={ }^{\alpha v \beta} q \mid(p=q) \in Q \cup \Re,(u=v) \in \bar{P}, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha u \beta} w={ }^{\alpha v \beta} w \mid w \in B^{+},(u=v) \in \bar{P}, \alpha, \beta \in Z\right\} \\
& \cup\left\{{ }^{\alpha} p={ }^{\alpha} q \mid(p=q) \in Q \cup \Re, \alpha \in Z\right\} .
\end{aligned}
$$

It is clear that every relation of Q and hence of Q_{R} holds in Y. Furthermore, for all $\alpha \in Z$, the relation ${ }^{\alpha} e \wedge^{\alpha} e={ }^{\alpha} e$ is an element of Q_{R}, and so it follows that

$$
\begin{equation*}
\left({ }^{\alpha} e\right)^{-1}={ }^{\alpha} e \tag{4.17}
\end{equation*}
$$

Making use of this observation, we may assume that any relation that holds in Y is of the form:

$$
\begin{equation*}
{ }^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}={ }^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k} \tag{4.18}
\end{equation*}
$$

where $e_{i}, f_{j} \in Y_{0}$ and $\alpha_{i}, \beta_{j} \in Z$. Assume now that the above relation holds in Y. Let \tilde{e}_{1} be a maximal element of Y, such that $e_{1} \leq \tilde{e}_{1}$. Since Y satisfies the maximum condition, such an element exists. In particular, the relation

$$
{ }^{\alpha_{1}} \tilde{e}_{1} \wedge{ }^{\alpha_{1}} e_{1}={ }^{\alpha_{1}}\left(\tilde{e}_{1} \wedge e_{1}\right)={ }^{\alpha_{1}} e_{1}
$$

is an element of Q_{R}. Moreover, ${ }^{\alpha_{1}} \tilde{e}_{1} \in Y_{m} \subseteq Y_{0}$ by Lemma 4.2.1. Let $e_{0}={ }^{\alpha_{1}} \tilde{e}_{1}$. Then we obtain

$$
{ }^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}=e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}
$$

With a similar argument, we also obtain that

$$
{ }^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k}=f_{0} \wedge^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k}
$$

holds for some $f_{0} \in Y_{m} \subseteq Y_{0}$. We verify that (4.18) is a consequence of relations in Q_{R} by verifying that

$$
\begin{equation*}
e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}=f_{0} \wedge^{\beta_{1}} f_{1} \wedge \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k} \tag{4.19}
\end{equation*}
$$

is a consequence of the relations in Q_{R} in three steps.
Step 1. Consider the element $\left(e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}, 1\right)$ of S. Let

$$
\gamma_{j} \equiv \begin{cases}\alpha_{j}^{-1} \alpha_{j+1} & 1 \leq j \leq m-1 \\ \alpha_{j+1} & j=0 \\ \alpha_{j}^{-1} & j=m .\end{cases}
$$

Define words $w_{1,0}, \ldots, w_{1, m}$ over $A \cup A^{-1}$ in the following way:

$$
w_{1, j} \equiv \begin{cases}\mathbf{n}\left(e_{j}, \gamma_{j}\right) & \text { if } e_{j} \in Y_{m} \\ \left(e_{j}, 1\right) \mathbf{n}\left(\tilde{e}_{j}, \gamma_{j}\right) & \text { otherwise }\end{cases}
$$

where $\tilde{e}_{j} \in Y_{m}$ is such that $e_{j} \leq \tilde{e}_{j}$. Clearly, the word

$$
w_{1} \equiv w_{1,0} w_{1,1} \ldots w_{1, m}
$$

represents $\left(e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}, 1\right)$. On the other hand, by the definition of the words $w_{1,0}, \ldots, w_{1, m}$ we obtain that

$$
\tilde{w}_{1, j}= \begin{cases}e_{j} \wedge \ldots \wedge e_{j} & \text { if } e_{j} \in Y_{m} \\ e_{j} \wedge \tilde{e}_{j} \wedge \ldots \wedge \tilde{e}_{j} & \text { otherwise },\end{cases}
$$

and hence $e_{j}=\widetilde{w}_{1, j}$ is a consequence of the relations in Q_{R}. It follows that

$$
\begin{equation*}
e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}=\widetilde{w}_{1} \tag{4.20}
\end{equation*}
$$

is also a consequence of the relations in Q_{R}.
Step 2. We consider the element $\left(f_{0} \wedge^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k}, 1\right)$ of S and repeat the first step. We let

$$
\delta_{j} \equiv \begin{cases}\beta_{j}^{-1} \beta_{j+1} & 1 \leq j \leq k-1 \\ \beta_{j+1} & j=0 \\ \beta_{j}^{-1} & j=k .\end{cases}
$$

Define words $w_{2,0}, \ldots, w_{2, k}$ over $A \cup A^{-1}$ in the following way:

$$
w_{2, j} \equiv \begin{cases}\mathbf{n}\left(f_{j}, \delta_{j}\right) & \text { if } f_{j} \in Y_{m} \\ \left(f_{j}, 1\right) \mathbf{n}\left(\tilde{f}_{j}, \delta_{j}\right) & \text { otherwise }\end{cases}
$$

where $\tilde{f}_{j} \in Y_{m}$ is such that $f_{j} \leq \tilde{f}_{j}$. The word

$$
w_{2} \equiv w_{2,0} w_{2,1} \ldots w_{2, k}
$$

represents ($f_{0} \wedge{ }^{\beta_{1}} f_{1} \wedge{ }^{\beta_{2}} f_{2} \wedge \ldots \wedge \wedge^{\beta_{k}} f_{k}, 1$). On the other hand, by the definition of the words $w_{2,0}, \ldots, w_{2, k}$ we obtain that

$$
\widetilde{w}_{2, j}= \begin{cases}f_{j} \wedge \ldots \wedge f_{j} & \text { if } f_{j} \in Y_{m} \\ f_{j} \wedge \tilde{f}_{j} \wedge \ldots \wedge \tilde{f}_{j} & \text { otherwise }\end{cases}
$$

and hence $f_{j}=\widetilde{w}_{2, j}$ is a consequence of the relations in Q_{R}. It follows that

$$
\begin{equation*}
\widetilde{w}_{2}=f_{0} \wedge^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k} \tag{4.21}
\end{equation*}
$$

is also a consequence of the relations in Q_{R}.
Step 3. Since by (4.20)

$$
e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}=\widetilde{w}_{1}
$$

and by (4.21)

$$
\widetilde{w}_{2}=f_{0} \wedge^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k}
$$

hold, to show that

$$
e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}=f_{0} \wedge^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k}
$$

is a consequence of relations in Q_{R}, it is enough to verify that

$$
\widetilde{w}_{1}=\widetilde{w}_{2}
$$

is a consequence of relations in Q_{R}. Since

$$
e_{0} \wedge^{\alpha_{1}} e_{1} \wedge^{\alpha_{2}} e_{2} \wedge \ldots \wedge^{\alpha_{m}} e_{m}=f_{0} \wedge^{\beta_{1}} f_{1} \wedge^{\beta_{2}} f_{2} \wedge \ldots \wedge^{\beta_{k}} f_{k}
$$

holds in Y, the relation $w_{1}=w_{2}$ holds in S, and hence there exists a finite sequence of words

$$
w_{1} \equiv q_{0}, q_{1}, \ldots, q_{t} \equiv w_{2}
$$

such that q_{j+1} is obtained from q_{j} by applying a relation in P or a standard inverse semigroup relation. We consider the following three cases:
(1) If q_{j+1} is obtained from q_{j} by applying a relation in P, then we may write $q_{j} \equiv$ $t_{1} s t_{2}, q_{j+1} \equiv t_{1} z t_{2}$, where $(s=z) \in P$. It follows that $(\tilde{s}=\tilde{z}) \in \widetilde{P}$ and $(\hat{s}=\hat{z}) \in \widehat{P}$. In particular $\widehat{t_{1} s}=\widehat{t_{1} z}$ holds in G and we obtain that

$$
\begin{aligned}
\tilde{q}_{j} & \equiv \tilde{t}_{1} \wedge^{\hat{1}_{1}} \tilde{s} \wedge^{\widehat{t_{1} s}} \tilde{t}_{2} \\
& =\tilde{t}_{1} \wedge^{\hat{t}_{1}} \tilde{\wedge^{\widehat{t_{s}^{s}}}} \tilde{t_{2}} \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \tilde{z} \wedge^{\tilde{1_{1}}} \tilde{t}_{2} \\
& \equiv \tilde{q}_{j+1}
\end{aligned}
$$

verifying that \tilde{q}_{j+1} is obtained from \tilde{q}_{j} by applying relations in Q_{R}.
(2) If q_{j+1} is obtained from q_{j} by applying a relation of the form $w w^{-1} w=w$, then we may write $q_{j} \equiv t_{1} w w^{-1} w t_{2}, q_{j+1} \equiv t_{1} w t_{2}$. Let $u \equiv w w^{-1}$, and $v \equiv w w^{-1} w$. Clearly $\widehat{v}=\widehat{w}$ holds in G and we have that

$$
\begin{aligned}
\tilde{q}_{j} & \equiv \tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{u} \wedge^{\widehat{t_{1} u}} \widetilde{w} \wedge^{\widehat{t_{1} v}} \tilde{t}_{2} \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{w} \wedge^{\widehat{t_{1} u}} \widetilde{w} \wedge^{\widehat{t_{1} v}} \tilde{t_{2}} \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{w} \wedge^{\hat{t_{1}}} \widetilde{w} \wedge^{\widehat{t_{1} v}} \tilde{t_{2}} \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{w} \wedge^{\widehat{t_{1} v}} \tilde{t_{2}} \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{w} \wedge^{\widehat{t_{1} w}} \tilde{t_{2}} \\
& \equiv \tilde{q}_{j+1}
\end{aligned}
$$

$$
=\tilde{t}_{1} \wedge^{\hat{t}_{1}} \widetilde{w} \wedge^{\widehat{t_{1}}} \widetilde{w} \wedge^{\widehat{t_{1} v}} \tilde{t_{2}} \quad \text { since } \widetilde{u}=\widetilde{w} \text { by Lemma 4.9.2 }
$$

since $\widehat{t_{1} u}=\widehat{t_{1}}$ in G

$$
=\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{w} \wedge^{\widehat{t_{1} v}} \tilde{t}_{2} \quad \text { by applying a relation in } Q_{R}
$$

$$
=\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{w} \wedge^{t_{1} w} \tilde{t}_{2} \quad \text { since } \widehat{w}=\widehat{v} \text { in } G
$$

proving that $\tilde{q}_{j}=\tilde{q}_{j+1}$ is a consequence of relations in Q_{R}.
(3) If q_{j+1} is obtained from q_{j} by applying a relation of the form $w_{1} w_{1}^{-1} w_{2} w_{2}^{-1}=$ $w_{2} w_{2}^{-1} w_{1} w_{1}^{-1}$, then we may write

$$
q_{j} \equiv t_{1} w_{1} w_{1}^{-1} w_{2} w_{2}^{-1} t_{2}, q_{j+1} \equiv t_{1} w_{2} w_{2}^{-1} w_{1} w_{1}^{-1} t_{2}
$$

Let $u \equiv w_{1} w_{1}^{-1}, v \equiv w_{2} w_{2}^{-1}$. Then

$$
\begin{array}{rlrl}
\tilde{q}_{j} & \equiv \tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{u} \wedge^{\widehat{t_{1}}} \widetilde{v} \wedge^{\widehat{t_{1} u v}} \tilde{t_{2}} & \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{u} \wedge^{\hat{t}_{1}} \widetilde{v} \hat{t}_{1} \tilde{t}_{2} & \text { since } \widehat{u}=\widehat{u v}=1 \text { in } G \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{v} \wedge^{\hat{t}_{1}} \widetilde{u} \wedge^{\hat{t}_{1}} \tilde{t_{2}} & & \text { standard inverse semigroup relation } \\
& =\tilde{t}_{1} \wedge \hat{t}_{1} \widetilde{v} \wedge^{\widehat{t_{1} v}} \widetilde{u} \wedge^{\overparen{t_{1} v u}} \tilde{t_{2}} & & \text { since } \widehat{v}=\widehat{v} u=1 \text { in } G \\
& \equiv \tilde{q}_{j+1} & &
\end{array}
$$

proving that $\tilde{q}_{j}=\tilde{q}_{j+1}$ is a consequence of relations in Q_{R}.
It follows that a finite sequence of words can be given $\widetilde{w}_{1} \equiv u_{0}, u_{1}, \ldots, u_{l} \equiv \widetilde{w}_{2}$ such that u_{j+1} is obtained from u_{j} by applying a relation of Q_{R} and we may deduce that $Y=\operatorname{InvAct}_{G}\left\langle Y_{0} \mid Q\right\rangle$.

4.10 Finite presentability II.

We keep the notation introduced at the beginning of Section 9. In addition, we recall that for any element ${ }^{g_{1} \ldots g_{k}} e \in Y$

$$
\left.c^{\left(g_{1} \ldots g_{k}\right.} e\right)
$$

denotes the set of conjugate words of the idempotent $\left({ }^{g_{1} \ldots g_{k}} e, 1\right) \in E(S)$. The main purpose of this section is to prove

Proposition 4.10.1. Let (Y, \wedge) be a semilattice, and G be a group acting on Y. Assume that the following conditions hold:
(i) G is finitely presented as a group;
(ii) Y satisfies the maximum condition;
(iii) Y is finitely presented as an inverse semigroup with respect to the action.

Then the semidirect product $S=Y \rtimes G$ is finitely presented as an inverse semigroup.
Since the proof of Proposition 4.10 .1 is rather long, we first summarize the main steps of the proof.

1. We give an inverse semigroup generating set A for $S=Y \rtimes G$ and define a set of relations \mathbf{R} on $\left(A \cup A^{-1}\right)^{+}$that hold in S.
2. In Proposition 4.10.2, we give a normal form for the elements of S. Proposition 4.10.2 is proved with the help of two technical lemmas: Lemma 4.10.3 and Lemma 4.10.4.
3. Making use of Proposition 4.10.2, we prove that any relation $w_{1}=w_{2}$ that holds in S is a consequence of relations in \mathbf{R}.

Proof. Let G be a group acting on a semilattice Y and assume that G and Y satisfy conditions (i) $-(i i i)$. More precisely, let $G=\operatorname{Grp}\langle X \mid P\rangle$, where X is a finite set and P is a finite set of relations. Let Y be a semilattice satisfying the maximum condition and let Y_{m} denote the set of maximal elements of Y. Assume that $Y=\operatorname{InvAct}_{G}\left\langle Y_{0} \mid Q\right\rangle$, where Y_{0} is a finite subset of Y and Q is a finite set of relations. By Proposition 4.6.5 we may assume that $Y_{m} \subseteq Y_{0}$. Consider the semidirect product $S=Y \rtimes G$. Making use of Corollary 4.3.2, S is finitely generated as an inverse semigroup by

$$
A=\left(Y_{0} \times\{1\}\right) \cup\left(Y_{m} \times X\right)
$$

By Proposition 4.2.7, we have

$$
A^{-1}=\left(Y_{0} \times\{1\}\right) \cup\left(Y_{m} \times X^{-1}\right)
$$

Define the following relations on $\left(A \cup A^{-1}\right)^{+}$:
(R1) $(e, 1)(f, g)=(f, 1)(e, g)$, where $e, f \in Y_{m}$;
(R2) $(e, g)=(e, 1)(e, g)$, where $e \in Y_{m}$;
(R3) $(e, g)=(e, g)(f, 1)$, where $f \in Y_{0},{ }^{g} f . \leq e \in Y_{m}$;
(R4) $(e, g)(f, 1)=(\tilde{f}, 1)(e, g)(f, 1)$, where $f \in Y_{0}, e, \tilde{f} \in Y_{m},{ }^{g} f \leq \tilde{f}$;
(R5) $(e, 1)(f, g)=(e, 1)(f, g)(\tilde{e}, 1)$, where $e, \tilde{e}, f \in Y_{m},{ }^{g} \tilde{e}=e$;
(R6) $(e, g)(f, h)=(e, 1)(\tilde{f}, g)(f, h)$, where $e, f, \tilde{f} \in Y_{m},{ }^{g} f=\tilde{f}$;
(R7) $(e, g)(f, h)=(e, g)(f, 1)(\tilde{e}, h)$, where $e, \tilde{e}, f \in Y_{m},{ }^{g} \tilde{e}=e$.
We denote by R the relations obtained.
For each relation $g_{1} \ldots g_{m}=h_{1} \ldots h_{k}$ in P and $e \in Y_{m}$ consider the following relation

$$
\mathbf{n}\left(e, g_{1} \ldots g_{m}\right)=\mathbf{n}\left(e, h_{1} \ldots h_{k}\right)
$$

and denote the set of relations obtained by R_{G}. Since Y_{m} and P are finite sets, we have that R_{G} is a finite set of relations. For each $(e, g) \in Y_{m} \times X$ consider the relations

$$
(e, g)\left(f, g^{-1}\right)=(e, 1) \quad \text { and } \quad\left(f, g^{-1}\right)(e, g)=(f, 1)
$$

where f is the maximal element of Y for which ${ }^{g} f=e$. Denote the set of relations obtained by R_{M}.
For each relation

$$
{ }^{\alpha_{1}} e_{1} \wedge \ldots \wedge^{\alpha_{m}} e_{m}={ }^{\beta_{1}} f_{1} \wedge \ldots \wedge^{\beta_{k}} f_{k}
$$

in Q we define the following set of relations

$$
\left\{c_{11} \ldots c_{1 m}=c_{21} \ldots c_{2 k} \mid c_{1 j} \in c\left({ }^{\left(\alpha_{j}\right.} e_{j}\right), c_{2 j} \in c\left({ }^{\beta_{j}} f_{j}\right)\right\}
$$

Since Y satisfies the maximum condition, each of the sets $c\left({ }^{\alpha_{j}} e_{j}\right)$ and $c\left({ }^{\left(\beta_{j}\right.} f_{j}\right)$ is finite and hence

$$
\left\{c_{11} \ldots c_{1 m}=c_{21} \ldots c_{2 k} \mid c_{1 j} \in c\left({ }^{\alpha_{j}} e_{j}\right), c_{2 j} \in c\left({ }^{\beta_{j}} f_{j}\right)\right\} .
$$

is a finite set. Denote the set of all relations obtained in this way by R_{Y}. For each $e, f \in Y_{0}$ such that $e \leq f$ consider the relation

$$
(e, 1)=(f, 1)(e, 1)
$$

and denote the set of all relations of this form by R_{L}.

Let

$$
\mathbf{R}=R \cup R_{G} \cup R_{M} \cup R_{Y} \cup R_{L} .
$$

Our aim is to show that $S=\operatorname{Inv}\langle A \mid \mathbf{R}\rangle$. Clearly \mathbf{R} is a finite set of relations and all relations in \mathbf{R} hold in S. According to Proposition 4.1.4 we need to verify that any relation $w_{1}=w_{2}$ that holds in S is a consequence of relations in \mathbf{R} and of standard inverse semigroup relations. In order to prove this, we need the following proposition.

Proposition 4.10.2. Let $w \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right) \in\left(A \cup A^{-1}\right)^{+}$such that $|w| \geq$ 2. Then the relation

$$
w=\left(e_{1}, 1\right) c_{2} \ldots c_{k-1} v
$$

where $\left.c_{j} \in c^{\left(g_{1} \ldots g_{j}\right.} e_{j+1}\right), v \equiv \mathbf{n}\left(f, g_{1} \ldots g_{k-1}\right)$ for some $f \in Y_{m}$ and $c_{k-1} \equiv v\left(e_{k}, 1\right) v^{-1}$, is a consequence of relations in \mathbf{R}.

We need the following two technical lemmas:

Lemma 4.10.3. Let $w \equiv \mathbf{n}\left(e, g_{1} g_{2} \ldots g_{k}\right)(f, 1)$, where $f \in Y_{0}$. Then there éxists $l \in Y_{m}$ such that the relation

$$
w=(e, 1) \mathbf{n}\left(l, g_{1} g_{2} \ldots g_{k}\right)
$$

is a consequence of the relations in R. Moreover, if we let $u \equiv \mathbf{n}\left(l, g_{1} g_{2} \ldots g_{k}\right)$, then $u(f, 1) u^{-1} \in c\left({ }^{g_{1} g_{2} \ldots g_{k}} f\right)$.

Proof. Let $\tilde{f} \in Y_{m}$ so that $f \leq \tilde{f}$. Let $l_{k}=g_{k} \tilde{f}$. Let $l_{1}, l_{2}, \ldots, l_{k-1} \in Y_{m}$ such that $l_{j}={ }^{g_{j} l_{j+1}}$ holds. Such elements exist by Lemma 4.2.1. Since $f \leq \tilde{f}$, we also obtain that

$$
\begin{equation*}
g_{1} \ldots g_{k} f \leq l_{1} . \tag{4.22}
\end{equation*}
$$

Assume that

$$
\mathbf{n}\left(e, g_{1} \ldots g_{k}\right) \equiv\left(e, g_{1}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, g_{k}\right)
$$

Applying the appropriate relations in R we obtain

$$
\begin{array}{rlrl}
w & \equiv\left(e, g_{1}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(\left(e_{k}, g_{k}\right)(f, 1)\right) & \\
& =\left(e, g_{1}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(\left(l_{k}, 1\right)\left(e_{k}, g_{k}\right)(f, 1)\right) & & \text { by }(R 4) \\
& =\left(e, g_{1}\right) \ldots\left(l_{k-1}, 1\right)\left(e_{k-1}, g_{k-1}\right)\left(l_{k}, 1\right)\left(e_{k}, g_{k}\right)(f, 1) & & \text { by }(R 4) \\
& & & \vdots \\
& =\left(l_{1}, 1\right)\left(e, g_{1}\right)\left(l_{2}, 1\right) \ldots\left(l_{k-1}, 1\right)\left(e_{k-1}, g_{k-1}\right)\left(l_{k}, 1\right)\left(e_{k}, g_{k}\right)(f, 1) & & \text { by }(R 4) \\
& =(e, 1)\left(l_{1}, g_{1}\right)\left(e_{2}, 1\right) \ldots\left(e_{k-1}, 1\right)\left(l_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right)\left(\left(l_{k}, g_{k}\right)(f, 1)\right) & & \text { by }(R 1) \\
& =(e, 1)\left(l_{1}, g_{1}\right)\left(e_{2}, 1\right) \ldots\left(\left(e_{k-1}, 1\right)\left(l_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right)\right)\left(l_{k}, g_{k}\right) & & \text { by }(R 3) \\
& =(e, 1)\left(l_{1}, g_{1}\right)\left(e_{2}, 1\right) \ldots\left(e_{k-1}, 1\right)\left(l_{k-1}, g_{k-1}\right)\left(l_{k}, g_{k}\right) & & \text { by }(R 5) \\
& \vdots & & \vdots \\
& =(e, 1)\left(l_{1}, g_{1}\right) \ldots\left(l_{k-1}, g_{k-1}\right)\left(l_{k}, g_{k}\right) & & \text { by }(R 5) \\
& \equiv(e, 1)\left(\mathbf{n}\left(l_{1}, g_{1} \ldots g_{k}\right)\right) . &
\end{array}
$$

\qquad
It is immediate from (4.22) that if $u \equiv \mathbf{n}\left(l_{1}, g_{1} g_{2} \ldots g_{k}\right)$, then $u(f, 1) u^{-1} \in c\left({ }^{g_{1} g_{2} \ldots g_{k}} f\right)$.
Lemma 4.10.4. Let $w \equiv(f, 1) \mathbf{n}\left(e, g_{1} g_{2} \ldots g_{k}\right)$, where $f \in Y_{m}$. Then

$$
w=(e, 1) \mathbf{n}\left(f, g_{1} g_{2} \ldots g_{k}\right)
$$

is a consequence of the relations in R.
Proof. Let $f_{1}=f$ and let $f_{2}, \ldots, f_{k} \in Y_{m}$ such that ${ }^{g_{j}} f_{j+1}=f_{j}$ holds. Assume that

$$
\mathbf{n}\left(e, g_{1} g_{2} \ldots g_{k}\right) \equiv\left(e, g_{1}\right)\left(e_{2}, g_{2}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, g_{k}\right)
$$

Then

$$
\begin{aligned}
w & \equiv(f, 1)\left(e, g_{1}\right)\left(e_{2}, g_{2}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, g_{k}\right) & & \\
& =(e, 1)\left(\left(f, g_{1}\right)\left(e_{2}, g_{2}\right)\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, g_{k}\right) & & \text { by }(R 1) \\
& =(e, 1)\left(f, g_{1}\right)\left(e_{2}, 1\right)\left(f_{2}, g_{2}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, g_{k}\right) & & \text { by }(R 7) \\
& \vdots & & \vdots \\
& =(e, 1)\left(f, g_{1}\right)\left(e_{2}, 1\right)\left(f_{2}, g_{2}\right) \ldots\left(\left(e_{k-1}, 1\right)\left(f_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right)\right)\left(f_{k}, g_{k}\right) & & \text { by }(R 7) \\
& =(e, 1)\left(f, g_{1}\right)\left(e_{2}, 1\right)\left(f_{2}, g_{2}\right) \ldots\left(\left(e_{k-1}, 1\right)\left(f_{k-1}, g_{k-1}\right)\right)\left(f_{k}, g_{k}\right) & & \text { by }(R 5)
\end{aligned}
$$

$$
=(e, 1)\left(f, g_{1}\right)\left(f_{2}, g_{2}\right) \ldots\left(f_{k-1}, g_{k-1}\right)\left(f_{k}, g_{k}\right) \quad \text { by }(R 5)
$$

$$
\equiv(e, 1) \mathbf{n}\left(f, g_{1} \ldots g_{k}\right)
$$

verifying the lemma.
Proof of Proposition 4.10.2. We proceed by induction on the length of w.
If $|w|=2$, then $w \equiv(f, g)(e, 1)$, where $(f, g) \in A \cup A^{-1}$. We assume that $(f, g) \in$ $Y_{m} \times\left(X \cup X^{-1}\right)$. The case when $(f, g) \in A \cup A^{-1}$ is such that $g=1$ can be verified similarly. Let $\tilde{e} \in Y_{m}$ such that ${ }^{g} e \leq \tilde{e}$ and let ${ }^{g^{-1}} \tilde{e}=l$. By Lemma 4.2.1, $l \in Y_{m}$. Moreover,

$$
\begin{aligned}
w & \equiv(f, g)(e, 1) & & \\
& =(f, 1)((f, g)(e, 1)) & & \text { by }(R 2) \\
& =(f, 1)((\tilde{e}, 1)(f, g))(e, 1) & & \text { by }(R 4) \\
& =(f, 1)(f, 1)(\tilde{e}, g)(e, 1) & & \text { by }(R 1) \\
& =(f, 1)(\tilde{e}, g)(e, 1) & & \text { by } R_{L} \\
& =(f, 1)(\tilde{e}, g)\left(\left(l, g^{-1}\right)(\tilde{e}, g)(e, 1)\right) & & \text { standard inverse sg. relation } \\
& =(f, 1)(\tilde{e}, g)(e, 1)\left(l, g^{-1}\right)(\tilde{e}, g) & & \text { standard inverse sg. relation }
\end{aligned}
$$

Clearly, $(\tilde{e}, g)(e, 1)\left(l, g^{-1}\right) \in c\left({ }^{g} e\right)$, verifying that the proposition holds for all words of the form $(f, g)(e, 1)$.

Assume that the proposition is true for all words over $A \cup A^{-1}$ that satisfy the condition stated in the proposition and whose length is less then m, where $m \geq 2$. We consider the following two cases:
Case 1. $w \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, 1\right)\left(e_{k}, 1\right)$;
Case 2. $w \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right)$, where $g_{k-1} \neq 1$.
Case 1. The inductive hypothesis can be applied to the subword

$$
\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, 1\right)
$$

and hence we obtain that

$$
w=\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} u\left(e_{k}, 1\right)
$$

where $\left.c_{j} \in c^{\left(g_{1} \ldots g_{j}\right.} e_{j+1}\right), u \equiv \mathbf{n}\left(f, g_{1} \ldots g_{k-2}\right)$ for some $f \in Y_{m}$ and $c_{k-2} \equiv u\left(e_{k-1}, 1\right) u^{-1}$. By Lemma 4.8.3, we know that u^{-1} is matched to u, and so applying a relation of type (R3) we obtain that $u^{-1}(f, 1)=u^{-1}$. In particular, we have

$$
\begin{equation*}
c_{k-2}(f, 1)=c_{k-2} . \tag{4.23}
\end{equation*}
$$

On the other hand, by Lemma 4.10.3, there exists $l \in Y_{m}$ so that

$$
\begin{equation*}
\mathbf{n}\left(f, g_{1} \ldots g_{k-2}\right)\left(e_{k}, 1\right)=(f, 1) \mathbf{n}\left(l, g_{1} \ldots g_{k-2}\right) \tag{4.24}
\end{equation*}
$$

holds, and if we let v denote the word $\mathrm{n}\left(l, g_{1} \ldots g_{k-2}\right)$, then

$$
\begin{equation*}
\left.c_{k-1} \equiv v\left(e_{k}, 1\right) v^{-1} \in c^{\left(g_{1} \ldots g_{k-2}\right.} e_{k}\right) . \tag{4.25}
\end{equation*}
$$

Summarizing the above facts, we obtain that

$$
\begin{array}{rlr}
w & =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} u\left(e_{k}, 1\right) & \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} u\left(e_{k}, 1\right)\left(e_{k}, 1\right) & \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2}(f, 1) v\left(e_{k}, 1\right) & \text { by (4.24) } \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} v\left(e_{k}, 1\right) & \text { by (4.23) } \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} v v^{-1} v\left(e_{k}, 1\right) & \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} v\left(e_{k}, 1\right) v^{-1} v & \text { standard inverse sg. relation } \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} c_{k-1} v &
\end{array}
$$

verifying that the proposition indeed holds in the first case.
Case 2. If $w \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right)$ where $g_{k-1} \neq 1$, then $e_{k-1} \in Y_{m}$, since all generators of the form $(e, g), g \neq 1$ have first component in Y_{m}. Applying (R2) we obtain that

$$
\begin{aligned}
w & \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right) \\
& =\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, 1\right)\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right) .
\end{aligned}
$$

The inductive hypothesis can be applied to the subword

$$
\left(e_{1}, g_{1}\right) \ldots\left(e_{k-1}, 1\right)
$$

and so we obtain

$$
w=\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} u\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right),
$$

where $\left.c_{j} \in c{ }^{\left(g_{1} \ldots g_{j}\right.} e_{j+1}\right), u \equiv \mathbf{n}\left(f, g_{1} \ldots g_{k-2}\right)$ for some $f \in Y_{m}$ and $c_{k-2} \equiv u\left(e_{k-1}, 1\right) u^{-1}$. To unravel the information, we have that

$$
u\left(e_{k-1}, 1\right) u^{-1}=\left({ }^{g_{1} \ldots g_{k-2}} e_{k-1}, 1\right),
$$

and so

$$
\begin{equation*}
\left(f \wedge^{g_{1} \ldots g_{k-2}} e_{k-1}, 1\right)=\left({ }^{g_{1} \ldots g_{k-2}} e_{k-1}, 1\right) \tag{4.26}
\end{equation*}
$$

holds. Taking into account that. $e_{k-1} \in Y_{m}$, we thus obtain from (4.26) that $f=$ $g_{1} \ldots g_{k-2} e_{k-1}$. In particular, we have that $u \equiv \mathbf{n}\left(f, g_{1} \ldots g_{k-2}\right)$ is matched to $\left(e_{k-1}, g_{k-1}\right)$, and so by Lemma 4.8.1 we obtain

$$
\begin{equation*}
u\left(e_{k-1}, g_{k-1}\right)=\mathbf{n}\left(f, g_{1} \ldots g_{k-2} g_{k-1}\right) \tag{4.27}
\end{equation*}
$$

By Lemma 4.8.3, we know that u^{-1} is matched to u, and so applying a relation of type (R3), it follows that $u^{-1}(f, 1)=u^{-1}$. In particular, we have that

$$
\begin{equation*}
c_{k-2}(f, 1)=c_{k-2} . \tag{4.28}
\end{equation*}
$$

To summarize the above observations,

$$
\begin{aligned}
w & =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} u\left(e_{k-1}, g_{k-1}\right)\left(e_{k}, 1\right) \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} \mathbf{n}\left(f, g_{1} \ldots g_{k-2} g_{k-1}\right)\left(e_{k}, 1\right) .
\end{aligned}
$$

We need one more observation to finish the argument. Making use of Lemma 4.10.3, we have that there exists $l \in Y_{m}$ so that

$$
\begin{equation*}
\mathbf{n}\left(f, g_{1} \ldots g_{k-2} g_{k-1}\right)\left(e_{k}, 1\right)=(f, 1) \mathbf{n}\left(l, g_{1} \ldots g_{k-2} g_{k-1}\right) \tag{4.29}
\end{equation*}
$$

holds and if we let $v \equiv \mathbf{n}\left(l, g_{1} \ldots g_{k-2} g_{k-1}\right)$, then

$$
\begin{equation*}
\left.c_{k-1} \equiv v\left(e_{k}, 1\right) v^{-1} \in c{ }^{\left(g_{1} \ldots g_{k-1}\right.} e_{k}\right) \tag{4.30}
\end{equation*}
$$

Summarizing the above facts:

$$
\begin{array}{rlr}
w & =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} \mathbf{n}\left(f, g_{1} \ldots g_{k-2} g_{k-1}\right)\left(e_{k}, 1\right) & \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} \mathbf{n}\left(f, g_{1} \ldots g_{k-2} g_{k-1}\right)\left(e_{k}, 1\right)\left(e_{k}, 1\right) & \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2}(f, 1) v\left(e_{k}, 1\right) & \text { by (4.29) } \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} v\left(e_{k}, 1\right) & \text { by (4.28) } \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} v v^{-1} v\left(e_{k}, 1\right) & \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} v\left(e_{k}, 1\right) v^{-1} v & \\
& =\left(e_{1}, 1\right) c_{2} \ldots c_{k-2} c_{k-1} v &
\end{array}
$$

proving Proposition 4.10.2.
We are now ready to prove that $S=\operatorname{Inv}\langle A \mid \mathbf{R}\rangle$. Recall that $G=\operatorname{Grp}\langle X \mid P\rangle$ and $Y=\operatorname{InvAct}_{G}\left\langle Y_{0} \mid Q\right\rangle$.

Proof of Proposition 4.10.1. Assume that the relation $w_{1}=w_{2}$ holds in S. By applying a relation of type (R3), we may assume that

$$
w_{1} \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{m}, 1\right) \quad \text { and that } \quad w_{2} \equiv\left(f_{1}, h_{1}\right) \ldots\left(f_{k}, 1\right)
$$

By Proposition 4.10.2, we have that

$$
\begin{equation*}
w_{1}=\left(e_{1}, 1\right) c_{2} \ldots c_{m-1} u \tag{4.31}
\end{equation*}
$$

where $\left.c_{j} \in c^{\left(g_{1} \ldots g_{j}\right.} e_{j+1}\right), u \equiv \mathbf{n}\left(e, g_{1} \ldots g_{m-1}\right)$ for some $e \in Y_{m}$ and $c_{m-1} \equiv u\left(e_{m}, 1\right) u^{-1}$. We write

$$
\left(w_{1}\right)_{Y} \equiv\left(e_{1}, 1\right) c_{2} \ldots c_{m-1}
$$

and recall the notation introduced in Section 9:

$$
\widetilde{w}_{1} \equiv e_{1} \wedge^{g_{1}} e_{2} \wedge \ldots \wedge^{g_{1} \ldots g_{m-1}} e_{m} \quad \text { and } \quad \widehat{w}_{1} \equiv g_{1} \ldots g_{m-1}
$$

Similarly we have that

$$
w_{2}=\left(f_{1}, 1\right) d_{2} \ldots d_{k-1} v
$$

where $d_{j} \in c\left({ }^{h_{1} \ldots h_{j}} f_{j+1}\right), v \equiv \mathbf{n}\left(f, h_{1} \ldots h_{k-1}\right)$ for some $f \in Y_{m}$ and $d_{k-1} \equiv v\left(f_{k}, 1\right) v^{-1}$. We write

$$
\begin{gathered}
\left(w_{2}\right)_{Y} \equiv\left(f_{1}, 1\right) d_{2} \ldots d_{k-1} \\
\widetilde{w}_{2} \equiv f_{1} \wedge^{h_{1}} f_{2} \wedge \ldots \wedge^{h_{1} \ldots h_{k-1}} f_{k} \quad \text { and } \quad \widehat{w}_{2} \equiv h_{1} \ldots h_{k-1} .
\end{gathered}
$$

We prove in four steps that $w_{1}=w_{2}$ is a consequence of relations in \mathbf{R} and of standard inverse semigroup relations.

Step 1. Since $w_{1}=w_{2}$ in S, we have that $\widehat{w}_{1}=\widehat{w}_{2}$ holds in G, and hence there exists a finite sequence of words

$$
\widehat{w}_{1} \equiv \alpha_{1}, \alpha_{2}, \ldots, \alpha_{t} \equiv \widehat{w}_{2}
$$

such that α_{j+1} is obtained from α_{j} by applying a relation in P or a standard group relation. It follows that there exists a finite sequence of words

$$
\mathbf{n}\left(e, g_{1} \ldots g_{m-1}\right) \equiv \beta_{1}, \ldots, \beta_{t} \equiv \mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)
$$

such that β_{j+1} is obtained from β_{j} by applying a relation in $R_{G} \cup R_{M}$. In particular we have a finite sequence of words

$$
\begin{equation*}
\left(w_{1}\right)_{Y}\left(\mathbf{n}\left(e, g_{1} \ldots g_{m-1}\right)\right) \equiv\left(w_{1}\right)_{Y} \beta_{1}, \ldots,\left(w_{1}\right)_{Y} \beta_{t} \equiv\left(w_{1}\right)_{Y}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) \tag{4.32}
\end{equation*}
$$

Step 2. Since $w_{1}=w_{2}$ in S, we have that $\widetilde{w}_{1}=\widetilde{w}_{2}$ holds in Y, and hence there exists a finite sequence of words

$$
\widetilde{w}_{1} \equiv \gamma_{1}, \gamma_{2}, \ldots \gamma_{q} \equiv \widetilde{w}_{2}
$$

such that γ_{j+1} is obtained from γ_{j} by applying a relation in Q_{R}. It follows that there exists a finite sequence

$$
\left(w_{1}\right)_{Y} \equiv \delta_{1}, \delta_{2}, \ldots, \delta_{q} \equiv\left(w_{2}\right)_{Y}
$$

such that δ_{j+1} is obtained from δ_{j} by applying a relation in $R_{Y} \cup R_{L} \cup R_{G} \cup R_{M}$ or a standard inverse semigroup relation. In particular, we have a finite sequence of words

$$
\begin{aligned}
\left(w_{1}\right)_{Y}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) & \equiv \delta_{1}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right), \ldots \\
& \ldots, \delta_{q}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) \equiv\left(w_{2}\right)_{Y}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) .
\end{aligned}
$$

Bearing in mind (4.32), we thus obtain that

$$
\begin{equation*}
\left(w_{1}\right)_{Y}\left(\mathbf{n}\left(e, g_{1} \ldots g_{m}\right)\right)=\left(w_{2}\right)_{Y}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) \tag{4.33}
\end{equation*}
$$

is a consequence of relations in \mathbf{R} and of standard inverse semigroup relations. In the following two steps, we verify that

$$
\left(w_{2}\right)_{Y}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right)=\left(w_{2}\right)_{Y}\left(\mathbf{n}\left(f, h_{1} \ldots h_{k-1}\right)\right)
$$

is a consequence of relations in \mathbf{R}, and thus verifying that $w_{1}=w_{2}$ is a consequence of relations in \mathbf{R}.

Step 3. By (4.31), we have that

$$
\widetilde{w_{1}}=\widetilde{\left(w_{1}\right)_{Y}} \wedge e
$$

and so we obtain

$$
\widetilde{w}_{1}=\widetilde{w}_{1} \wedge e .
$$

On the other hand we know that $\widetilde{w}_{1}=\widetilde{w}_{2}$, and hence

$$
\begin{equation*}
\widetilde{w}_{2}=\widetilde{w}_{2} \wedge e . \tag{4.34}
\end{equation*}
$$

Step 4. We give a finite sequence of words

$$
\left(w_{2}\right)_{Y}\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) \equiv \sigma_{0}, \ldots, \sigma_{n} \equiv\left(w_{2}\right)_{Y}\left(\mathbf{n}\left(f, h_{1} \ldots h_{k-1}\right)\right)
$$

where σ_{j+1} is obtained from σ_{j}, using relations in \mathbf{R}. Recall that

$$
\left(w_{2}\right)_{Y} \equiv\left(f_{1}, 1\right) d_{2} \ldots d_{k-1}
$$

where $d_{k-1} \equiv v\left(f_{k}, 1\right) v^{-1}$ and $v \equiv \mathbf{n}\left(f, h_{1} \ldots h_{k-1}\right)$. Applying (R3), we obtain that $v^{-1}(f, 1)=v^{-1}$ and hence we get that

$$
\left(w_{2}\right)_{Y}=\left(w_{2}\right)_{Y}(f, 1)
$$

It follows that

$$
\begin{aligned}
\left(w_{2}\right)_{Y}\left(\mathrm{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) & =\left(w_{2}\right)_{Y}(f, 1)\left(\mathbf{n}\left(e, h_{1} \ldots h_{k-1}\right)\right) \\
& =\left(w_{2}\right)_{Y}(e, 1)\left(\mathbf{n}\left(f, h_{1} \ldots h_{k-1}\right)\right) \quad \text { by Lemma 4.10.4. }
\end{aligned}
$$

Bearing in mind that $\widetilde{w}_{2}=\widetilde{w}_{2} \wedge e$ by (4.34), there exists a finite sequence of words

$$
\left(w_{2}\right)_{Y}(e, 1) \equiv \zeta_{1}, \ldots, \zeta_{l}=\left(w_{2}\right)_{Y},
$$

such that ζ_{j+1} is obtained from ζ_{j} using relations in $R_{Y} \cup R_{L} \cup R_{G} \cup R_{M}$. It follows that

$$
\left(w_{2}\right)_{Y}(e, 1) v \equiv \zeta_{1} v, \ldots, \zeta_{l} v=\left(w_{2}\right)_{Y} v
$$

verifying that $w_{1}=w_{2}$ is indeed a consequence of relations in \mathbf{R} and of inverse semigroup relations.

We end this section by returning to our examples.
Example 4.10.5. Let Y_{∞} be the double infinite chain with an identity element adjoined on top and let G be the infinite cyclic group. Define the action of G on Y_{∞} as it was in Proposition 4.2.4. Clearly G is finitely presented and Y_{∞} satisfies the maximum condition. According to Proposition 4.7.1, Y_{∞} is finitely presented as an inverse semigroup with respect to the action of G. Hence, by Theorem 4.9.1, the semidirect product $S=Y_{\infty} \rtimes G$ is finitely presented as an inverse semigroup.

Example 4.10.6. Consider the semilattice F_{∞} introduced in Proposition 4.2 .6 and let G be the infinite cyclic group. Define the action of G on F_{∞} as it was in Proposition 4.2.6. Clearly G is finitely presented and F_{∞} satisfies the maximum condition. We have also shown in Proposition 4.7.2 that F_{∞} is finitely presented as an inverse semigroup with respect to the action of G. Hence, by Theorem 4.9.1, the semidirect product $S=F_{\infty} \rtimes G$ is finitely presented as an inverse semigroup.

Example 4.10.7. Consider the semilattice A_{∞} introduced in Proposition 4.2 .5 and let G be the infinite cyclic group. Define the action of G on A_{∞} as it was in Proposition 4.2.5. We verified in Proposition 4.7.3, that A_{∞} is not finitely presented as an inverse semigroup with respect to the action of G. Hence, by Theorem 4.9.1, the semidirect product $S=A_{\infty} \rtimes G$ is not finitely presented.

4.11 Schützenberger automaticity

In this section, we give a necessary and sufficient condition for a semidirect product of a semilattice by a group to be Schützenberger automatic.

As in the previous sections, if we say that a group G acts on a semilattice Y, then it will be understood that G acts on Y on the left by automorphisms. We recall the notation introduced in Section 9: Let A be a semigroup generating set for the semidirect product $S=Y \rtimes G$ of a semilattice by a group and assume that $A \subseteq S$. For a word $w \equiv\left(e_{1}, g_{1}\right) \ldots\left(e_{m}, g_{m}\right) \in A^{+}$, we let

$$
\widehat{w} \equiv g_{1} \ldots g_{m}
$$

Proposition 4.11.1. Let Y be a semilattice and G be a group acting on Y. Then the semidirect product $S=Y \rtimes G$ is Schützenberger automatic if and only if the following conditions hold:
(SA1) G is automatic;
(SA2) Y satisfies the maximum condition and is generated by a finite set Y_{0} with respect to the action of G;
(SA3) There exists an automatic structure (X, K) for G such that for all $e \in Y$ and $f \in Y_{0}$ the language

$$
K_{e}^{f}=\left\{w \in K \mid e \leq w_{f}\right\}
$$

is regular.
Proof. (\Longrightarrow) If $S=Y \rtimes G$ is Schützenberger automatic, then S is finitely generated. It follows by Proposition 4.3.1, that G is generated by a finite set X, that Y satisfies the maximum condition and is generated by a finite set Y_{0} with respect to the action of G, and hence (SA2) holds. Let Y_{m} denote the set of maximal elements of Y. For the sake of convenience we assume that X is closed under taking inverses, that $1 \in X \subseteq G$ and that $Y_{m} \subseteq Y_{0} \subseteq Y$. In particular we may assume that S is generated by the finite set

$$
A=\left(Y_{0} \times\{1\}\right) \cup\left(Y_{m} \times X\right)
$$

Since X is closed under taking inverses, for each element $(e, h) \in A,(e, h)^{-1} \in A$ holds by Lemma 4.2.1 and Proposition 4.2.7. Thus A is a semigroup generating set for S. Let $\varphi: A^{+} \rightarrow S$ denote the homomorphism extending the identity map $\iota_{1}: A \rightarrow S$ and let $\psi: X^{+} \rightarrow G$ denote the homomorphism extending the identity map $\iota_{2}: X \rightarrow G$. Let $e \in Y$ and consider $s=(e, 1) \in S$. Let R denote the \mathcal{R}-class R of s. By Proposition 4.2.7, we have that

$$
\begin{equation*}
R=\{(e, g) \mid g \in G\} \tag{4.35}
\end{equation*}
$$

Making use of Proposition 3.2.1, and of Corollaries 3.4.6 and 3.6.6 in Chapter 1, we have that there exists a regular language L over A such that the following conditions hold:
(c1) $s \cdot L \varphi=R$;
(c2) $L_{=}=\{(u, u) \mid u \in L\} \delta_{A}$ and hence is a regular language;
(c3) $L_{a}=\{(u, v) \mid u, v \in L, s \cdot u \cdot a=s \cdot v\} \delta_{A}$ is a regular language for all $a \in A$.
We claim that G is automatic by verifying that the fellow traveller property holds in the Cayley graph Δ of G. Consider the map

$$
\text { ค } L \rightarrow X^{+} ; w \mapsto \widehat{w},
$$

and let $K=\widehat{L}$. It follows by (4.35) and (c1), that $K \psi=G$.
The language K is regular, since if $\mathcal{A}=(\Sigma, A, \mu, p, F)$ is a finite state automaton accepting L, then the automaton obtained from \mathcal{A} by changing the labels $(e, h) \in A$ to h accepts K. Let w_{1} and $w_{2} \in K$ such that

$$
d_{\Delta}\left(w_{1}, w_{2}\right) \leq 1 .
$$

Then $w_{1} \cdot x=w_{2}$ for some $x \in X$. Consider the elements u_{1}, u_{2} of L for which $\widehat{u}_{1} \equiv w_{1}$ and $\widehat{u}_{2} \equiv w_{2}$. Clearly, for all $t \geq 1$

$$
\begin{equation*}
\widehat{u_{1}(t)} \equiv w_{1}(t) \quad \text { and } \quad \widehat{u_{2}(t)} \equiv w_{2}(t) . \tag{4.36}
\end{equation*}
$$

Let $f \in Y_{m}$ such that $e \leq{ }^{w_{1}} f={\widehat{{ }_{u}^{1}}}_{1} f$. Since Y satisfies the maximum condition, such an element of Y_{m} exists by Lemma 4.2.1. Then $s \cdot u_{1} \cdot(f, x)=s \cdot u_{2}$, and hence

$$
d_{\Gamma}\left(s \cdot u_{1}, s \cdot u_{2}\right) \leq 1 .
$$

Since R is Schützenberger automatic, the fellow traveller property holds in the Schützenberger graph Γ of R by Proposition 3.7.10. Hence, there exists a constant $k \in \mathbb{N}$ such that whenever $u, v \in L$ with $d_{\Gamma}(s \cdot u, s \cdot v) \leq 1$, then $d_{\Gamma}(s \cdot u(t), s \cdot v(t)) \leq k$ holds for all $t \geq 1$. It follows that for all $t \geq 1$,

$$
d_{\Gamma}\left(s \cdot u_{1}(t), s \cdot u_{2}(t)\right) \leq k
$$

Because of the observations made in Example 3.7.2 of Chapter 1, there exists a word α over A, whose length is less then or equal to k and

$$
s \cdot u_{1}(t) \cdot \alpha=s \cdot u_{2}(t)
$$

Bearing in mind (4.36) and that $s=(e, 1)$, we obtain that $w_{1}(t) \widehat{\alpha}=w_{2}(t)$, and hence

$$
d_{\Delta}\left(w_{1}(t), w_{2}(t)\right) \leq k
$$

proving that the fellow traveller property holds in the Cayley graph of G.
Let $w_{1}, w_{2} \in K$. Before we show that (SA3) holds, we verify that

$$
\begin{equation*}
w_{1}=w_{2} \quad \text { if and only if } \quad w_{1} \equiv w_{2} . \tag{4.37}
\end{equation*}
$$

Clearly, if $w_{1} \equiv w_{2}$, then $w_{1}=w_{2}$. Assume that $w_{1}=w_{2}$ and let $u_{1}, u_{2} \in L$ such that $\hat{u}_{1} \equiv w_{1}$ and $\hat{u}_{2} \equiv w_{2}$. In particular we have that $s \cdot u_{1}=\left(e, w_{1}\right)$ and $s \cdot u_{2}=\left(e, w_{2}\right)$ and hence we may deduce that $\left(u_{1}, u_{2}\right) \in L_{=}$. It follows by condition (c2) that $u_{1} \equiv u_{2}$ and so $w_{1} \equiv w_{2}$, verifying (4.37). In particular we have obtained that

$$
\begin{equation*}
w_{1} \equiv w_{2} \quad \text { if and only if } \quad u_{1} \equiv u_{2} \tag{4.38}
\end{equation*}
$$

To show that (SA3) holds, let $f \in Y_{0}$ and consider the generator $(f, 1) \in A$. Our aim is to show that

$$
K_{e}^{f}=\left\{w \in K \mid e \leq^{w} f\right\}
$$

is a regular language. Note that

$$
\begin{aligned}
(u, v) \delta_{A} \in L_{(f, 1)} & \Longleftrightarrow s \cdot u \cdot(f, 1)=s \cdot v \\
& \Longleftrightarrow(e, \hat{u})(f, 1)=(e, \hat{v}) \\
& \Longleftrightarrow(\hat{u}, \hat{v}) \in K_{m}, \hat{u} \in K_{e}^{f}
\end{aligned}
$$

Thus $\hat{u} \equiv \hat{v}$ by (4.37) and hence bearing in mind (4.38) we may deduce that

$$
\begin{equation*}
(u, v) \in L_{(f, 1)} \quad \text { if and only if } \quad u \equiv v \text { and } \hat{u} \in K_{e}^{f} \tag{4.39}
\end{equation*}
$$

By Proposition 2.3.1, we have that the language

$$
L_{e}^{f}=\left\{u \in L \mid(u, v) \delta_{A} \in L_{(f, 1)} \text { for some } v \in A^{\star}\right\}
$$

is regular. It follows that the language

$$
\widehat{L}_{e}^{f}=\left\{\hat{u} \in K \mid u \in L_{e}^{f}\right\}
$$

is regular as well. We finish our proof by showing that

$$
\widehat{L}_{e}^{f}=K_{e}^{f} .
$$

Let $w \in \widehat{L}_{e}^{f}$. Then $w \equiv \hat{u}$ for some $u \in L_{e}^{f}$, and hence $e \leq^{\hat{u}_{f}}$ holds, verifying that $w \in K_{e}^{f}$. Now let $w \in K_{e}^{f}$. Then $e \leq{ }^{w_{f}}$. Let $u \in L$ such that $\hat{u} \equiv w$. Then by (4.39), $(u, u) \in L_{(f, 1)}$, and so $u \in L_{e}^{f}$, proving that $w \in \widehat{L}_{e}^{f}$.
(\Longleftarrow) For the converse, assume that G is a group acting on a semilattice Y, where G and Y satisfy conditions (SA1) - (SA3). More precisely, assume that (X, K) is an automatic structure with uniqueness for G, where X is closed under taking inverses. To simplify notation, we assume that $1 \subseteq X \subseteq G$. Let $\psi: X^{+} \rightarrow G$ denote the homomorphism extending the identity map $\iota_{1}: X \rightarrow G$. Suppose that Y is generated by the finite set Y_{0} with respect to the action of G. We assume that the set of maximal elements Y_{m} is contained in Y_{0} and that for all $e \in Y$ and $f \in Y_{0}$, the language $K_{e}^{f}=\left\{w \in K \mid e \leq{ }^{w} f\right\}$ is regular. Let $S=Y \rtimes G$. By Corollary 4.3.2, the finite set

$$
A=\left(Y_{0} \times\{1\}\right) \cup\left(Y_{m} \times X\right)
$$

generates S as a semigroup. Let $\varphi: A^{+} \rightarrow S$ be the homomorphism extending the identity $\operatorname{map} \iota_{2}: A \rightarrow S$.

Let R be an arbitrary \mathcal{R}-class of S and assume that $(e, 1) \in R$. To simplify notation, denote $(e, 1)$ by s. Choose $\tilde{e} \in Y_{m}$ such that $e \leq \tilde{e}$. Since Y satisfies the maximum condition, such a maximal element of Y exists. Define

$$
\xi: K \rightarrow A^{+} ; w \mapsto \mathbf{n}(\tilde{e}, w)
$$

where n is the function defined in Section 8.
Let $L=K \xi$. We show that L is a regular language, by constructing a finite state automaton accepting it. Let $\mathcal{A}_{1}=\left(\Sigma_{1}, X, \mu, p, T\right)$ be a finite state automaton accepting K. Such an automaton exists, since K is a regular language. To simplify notation, let $B=\left(Y_{m} \times X\right)$ and consider the automaton $\mathcal{A}=(\Sigma, B, \nu,(p,(\hat{e}, 1)), T \times B)$, where $\Sigma=\left(\Sigma_{1} \times B\right) \cup\{F S\}$ and

$$
\nu:((r,(l, g)),(f, h)) \mapsto \begin{cases}(\mu(r, h),(f, h)) & \text { if } g_{f}=l \\ F S & \text { otherwise } .\end{cases}
$$

By the definition of the function \mathbf{n}, and since \mathcal{A}_{1} is an automaton accepting K, we have that \mathcal{A} is a finite state automaton accepting L.

By the definition of the function n and since K is an automatic structure with uniqueness, we have that

$$
\begin{equation*}
\mathbf{n}\left(\tilde{e}, w_{1}\right)=\mathbf{n}\left(\tilde{e}, w_{2}\right) \quad \text { if and only if } \quad w_{1}=w_{2} \tag{4.40}
\end{equation*}
$$

Since $K \psi=G$ and since $R=\{(e, g) \mid g \in G\}$ by Proposition 4.2.7, $s \cdot L \varphi=R$ holds.

Let $u, v \in L$ and $w_{1}, w_{2} \in K$ such that $w_{1} \xi \equiv u$ and $w_{2} \xi \equiv v$. Then

$$
\begin{aligned}
(u, v) \delta_{A} \in L_{=} & \Longleftrightarrow s \cdot u=s \cdot v \\
& \Longleftrightarrow(e, 1) n\left(\tilde{e}, w_{1}\right)=(e, 1) n\left(\tilde{e}, w_{2}\right) \\
& \Longleftrightarrow\left(e, w_{1}\right)=\left(e, w_{2}\right) \\
& \Longleftrightarrow\left(w_{1}, w_{2}\right) \delta_{X} \in K_{=} .
\end{aligned}
$$

It follows by (4.40) that $(u, v) \delta_{A} \in L_{=}$if and only if $u \equiv v$, verifying that

$$
L_{=}=\{(u, u) \mid u \in L\} \delta_{A} .
$$

Let $(f, x) \in A$ and consider the language $K_{e}^{f}=\left\{u \in K \mid e \leq u_{f}\right\}$. By our assumptions, K_{e}^{f} is a regular language. Let $u, v \in L$ and $w_{1}, w_{2} \in K$ such that $w_{1} \xi \equiv u$ and $w_{2} \xi \equiv v$. Then

$$
\begin{aligned}
(u, v) \delta_{A} \in L_{(f, x)} & \Longleftrightarrow s \cdot u \cdot(f, x)=s \cdot v \\
& \Longleftrightarrow(e, 1) n\left(\tilde{e}, w_{1}\right)(f, x)=(e, 1) n\left(\tilde{e}, w_{2}\right) \\
& \Longleftrightarrow\left(e, w_{1}\right)(f, x)=\left(e, w_{2}\right) \\
& \Longleftrightarrow\left(w_{1}, w_{2}\right) \delta_{X} \in K_{x}, w_{1} \in K_{e}^{f} .
\end{aligned}
$$

It follows that

$$
L_{(f, x)}=K_{x} \delta_{X}^{-1}(\xi \times \xi) \delta_{A} \cap\left(K_{e}^{f} \times K\right)(\xi \times \xi) \delta_{A} .
$$

Since K, K_{x} and K_{e}^{f} are regular languages we have that $K_{x} \delta_{X}^{-1}(\xi \times \xi) \delta_{A}$ and $\left(K_{e}^{f} \times K\right)(\xi \times$ $\xi) \delta_{A}$ are regular languages as well. Thus we may deduce that $L_{(f, x)}$ is a regular language.

Chapter 5

HNN extensions

In the 1950s, G. Higman, B. Neumann and H. Neumann investigated embeddability questions of groups. Among others, they considered the following problem. Let G be a group and U, V be subgroups of G that are isomorphic via $\varphi: U \rightarrow V$. They asked whether it is possible to embed G into a group H, so that H possesses an element t for which $t^{-1} u t=u \varphi$ holds for all $u \in U$. They showed that this is always possible; the construction they gave for H. is called an HNN extension of G.

The above problem was first introduced for semigroups by Howie [20] in the following settings. Let S be a semigroup, $e \in E(S)$. Let $U, V \subseteq e S e$ be subsemigroups of S that are isomorphic via $\varphi: U \rightarrow V$. Does there exists a semigroup H and $t, t^{\prime} \in H$, where $t^{\prime} \in V(t)$ so that S embeds in $H, t^{\prime} u t=u \varphi$ and $t t^{\prime}=t^{\prime} t=e$. Howie proved that if U and V are unitary subsemigroups of $e S e$, then this is possible.

HNN extension of inverse semigroups was considered in recent years. There are two alternative definitions for an HNN extension of an inverse semigroup. One is introduced by Yamamura [36], the other by Gilbert [14]. In this chapter, we first discuss group HNN extensions from finite generation and finite presentability point of view. Regarding finite generation, a sufficient condition will be straightforward. Moreover, we shall see that Britton's lemma is the key in giving a necessary and sufficient condition for finite presentability of an HNN extension of a group. Considering Yamamura's HNN extension, we verify that the group theoretic results generalize. The role of Britton's lemma is played by the strong HNN property in this context. Gilbert's HNN extension is more delicate and the \mathcal{J}-preorder is the key notion in understanding finite generation and presentability. Regarding finite presentability, a variation of the strong HNN property will help us in giving a necessary and sufficient condition. Results of sections 3-8 are the result of a joint work [11] with N.Gilbert and N.Ruškuc. We give more detailed proofs for these results.

5.1 Group HNN extensions

The construction of an HNN extension of a group arose while Higman, Neumann and Neumann studied embeddability problems related to groups. The construction is employed in solving algorithmic problems, e.g. undecidability of Markov properties of finitely presented groups.

Definition 5.1.1. Let $G=\operatorname{Grp}\langle X \mid P\rangle$. Let U and V be subgroups of G that are isomorphic via $\varphi: U \rightarrow V$. Let $t \notin X$. The group presented by

$$
H=\operatorname{Grp}\left\langle X, t \mid P, t^{-1} u t=u \varphi(u \in U)\right\rangle
$$

is called the HNN extension of G associated with $\varphi: U \rightarrow V$. The element t is called the stable letter of H.

In what follows, we assume that $G=\operatorname{Grp}\langle X \mid P\rangle$, that U and V are subgroups in G that are isomorphic via $\varphi: U \rightarrow V$. To simplify notation, instead of

$$
H=\operatorname{Grp}\left\langle X, t \mid P, t^{-1} u t=u \varphi(u \in U)\right\rangle,
$$

we write

$$
H=\operatorname{Grp}\left\langle G, t \mid t^{-1} U t=V\right\rangle .
$$

The following theorem is due to Higman, Neumann and Neumann.
Theorem 5.1.2. The group G embeds in $H=\operatorname{Grp}\left\langle G, t \mid t^{-1} U t=V\right\rangle$.
Proof. See [2, Chapter IV].
Clearly, if G is finitely generated, then the HNN extension H is also finitely generated. However, the converse is not necessarily true. To demonstrate this fact, we give an example. Let $C_{2}=\langle x\rangle$ be the cyclic group of order two and let

$$
G=\ldots \times C_{2} \times C_{2} \times C_{2} \times \ldots
$$

Clearly G is not finitely generated. In particular we have that G is generated by the elements of the form

$$
\mathbf{x}_{i}=(\ldots, 1,1, x, 1,1, \ldots)
$$

where x appears exactly at the i th position. Denote the set of these elements by X. Let $P=\left\{\mathbf{x}^{2}=1_{G}, \mathbf{x y}=\mathbf{y x} \mid \mathbf{x}, \mathbf{y} \in X\right\}$. Then $G=\operatorname{Grp}\langle X \mid P\rangle$. Let $U=V=G$. We consider the following automorphism of G :

$$
\varphi: G \rightarrow G ; \mathbf{x}_{i_{1}} \mathbf{x}_{i_{2}} \ldots \mathbf{x}_{i_{n}} \mapsto \mathbf{x}_{i_{1}+1} \mathbf{x}_{i_{2}+1} \ldots \mathbf{x}_{i_{n}+1}
$$

Consider the HNN extension of G associated with $\varphi: G \rightarrow G$:

$$
H=\operatorname{Grp}\left\langle X, t \mid P, t^{-1} u t=u \varphi, u \in G\right\rangle
$$

Observe that for every $i \in \mathbb{Z}$, we have $\mathbf{x}_{i}=\left(t^{-1}\right)^{i} \mathbf{x}_{0} t^{i}$. It follows that H is generated by the finite set $\left\{\mathrm{x}_{0}, t\right\}$ as a group.

Next, we are going to discuss when H is finitely presented. For this, we need the following notion.
Definition 5.1.3. Consider the HNN extension $H=\operatorname{Grp}\left\langle G, t \mid t^{-1} U t=V\right\rangle$. A pinch is a word over $G \cup\left\{t, t^{-1}\right\}$ of the form $t^{-1} u t$, where $u \in U$ or of the form $t v t^{-1}$, where $v \in V$.

Lemma 5.1.4 (Britton). Consider $H=\operatorname{Grp}\left\langle G, t \mid t^{-1} U t=V\right\rangle$. Let

$$
w \equiv g_{0} t^{\epsilon_{1}} g_{1} t^{\epsilon_{2}} \ldots t^{\epsilon_{n}} g_{n},
$$

where $g_{j} \in G(0 \leq j \leq n)$ and $\epsilon_{j} \in\{1,-1\}(1 \leq i \leq n)$. If w represents the identity element of H, then it contains a pinch.

Proof. See [2, Chapter IV].
Proposition 5.1.5. Let G be defined by the finite group presentation $\langle X \mid P\rangle$. Let U and V be subgroups in G that are isomorphic via $\varphi: U \rightarrow V$. Then the HNN extension

$$
H=\operatorname{Grp}\left\langle X, t \mid P, t^{-1} u t=u \varphi(u \in U)\right\rangle
$$

is finitely presented if and only if U is finitely generated.
Proof. Assume that the HNN extension

$$
H=\operatorname{Grp}\left\langle X, t \mid P, t^{-1} u t=u \varphi(u \in U)\right\rangle
$$

is finitely presented. Then there exists a finite subset $Y \subseteq U$ such that H is isomorphic to

$$
H_{0}=\operatorname{Grp}\left\langle G, t \mid t^{-1} u t=u \varphi, \quad(u \in Y)\right\rangle .
$$

Let U_{0} denote the subgroup of U generated by Y. In particular, we have that H_{0} is the HNN extension of G associated with $\hat{\varphi}: U_{0} \mapsto U_{0} \varphi$. By assumption U is not finitely generated, and so there exists $u \in U \backslash U_{0}$. Then $t^{-1} u t(u \varphi)^{-1}=1$ holds in H and hence in H_{0}. Making use of Britton's lemma it follows that $t^{-1} u t(u \varphi)^{-1}$ contains a pinch and so $u \in U_{0}$, leading to a contradiction.

For the converse, assume that U is finitely generated by Y. Then, it is immediate that

$$
H=\operatorname{Grp}\left\langle X, t \mid P, t^{-1} y t=y \varphi(y \in Y)\right\rangle .
$$

5.2 Yamamura's HNN extension

Yamamura generalized the notion of an HNN extension to inverse semigroups in such a way that the construction possesses similar properties as in the case of groups. In• [36], it is shown that several important inverse semigroups, e.g. free inverse semigroups and the bicyclic monoid arise as Yamamura HNN extensions of certain semilattices. The Yamamura HNN extension is as powerful as in the case of groups for discussing algorithmic problems. Among others, undecidability of Markov properties of finitely presented inverse semigroups is proved in [36].

Definition 5.2.1. Let $S=\operatorname{Inv}\langle X \mid P\rangle$ be an inverse semigroup. Let $e, f \in E(S)$. Let U and V be inverse subsemigroups of S such that $e \in U \subseteq e S e$ and $f \in V \subseteq f S f$. Assume that U and V are isomorphic via $\varphi: U \rightarrow V$. The inverse semigroup S^{*} defined by the presentation

$$
S^{*}=\operatorname{Inv}\left\langle X, t \mid P, t t^{-1}=e, t^{-1} t=f, t^{-1} u t=u \varphi(u \in U)\right\rangle
$$

is called the Yamamura HNN extension of S associated with $\varphi: U \rightarrow V$. The element t is called the stable letter of S^{*}.

In what follows, we assume that $S=\operatorname{Inv}\langle X \mid P\rangle$, that $e, f \in E(S)$ and that $e \in U \subseteq e S e$ and $f \in V \subseteq f S f$ are isomorphic subsemigroups in S via $\varphi: U \rightarrow V$. To simplify notation, instead of

$$
S^{*}=\operatorname{Inv}\left\langle X, t \mid P, t t^{-1}=e, t^{-1} t=f, t^{-1} u t=u \varphi(u \in U)\right\rangle
$$

we write

$$
S^{*}=\operatorname{Inv}\left\langle S, t \mid t t^{-1}=e, t^{-1} t=f, t^{-1} U t=V\right\rangle .
$$

The following theorem is proved by Yamamura in [36].
Theorem 5.2.2. The inverse semigroup S embeds in the Yamamura HNN extension $S^{*}=$ $\operatorname{Inv}\left\langle S, t \mid t t^{-1}=e, t^{-1} t=f, t^{-1} U t=V\right\rangle$.

If S is finitely generated, then the HNN extension S^{*} is also finitely generated. As in the case of groups, the converse is not true. The same example as the one introduced in the previous section demonstrates this fact.

The main purpose of this section is to discuss finite presentability of the Yamamura HNN extension. For this, we need the following theorem proved by Yamamura [36, Theorem 12].

Theorem 5.2.3. Let S be an inverse semigroup and consider the Yamamura HNN extension $S^{*}=\operatorname{Inv}\left\langle S, t \mid t t^{-1}=e, t^{-1} t=f, t^{-1} U t=V\right\rangle$. Then $t^{-1} S t \cap S=t^{-1} U t=V$.

The above theorem can be considered as a weaker version of Britton's lemma and is called the strong HNN property by Yamamura. Whether Britton's lemma can be generalized for Yamamura's construction is still unknown. Yamamura's conjecture is that a fully analogous result does not hold. We see that concerning finite presentability of Yamamura's HNN extension, the group theoretic result generalizes.

Proposition 5.2.4. Let S be defined by the finite inverse semigroup presentation $\langle X \mid P\rangle$. Let e, $f \in E(S)$ and let $e \in U \subseteq e S e$ and $f \in V \subseteq f S f$ be inverse subsemigroups that are isomorphic via $\varphi: U \rightarrow V$. Then the Yamamura HNN extension

$$
S^{*}=\operatorname{Inv}\left\langle X, t \mid P, t t^{-1}=e, t^{-1} t=f, t^{-1} u t=u \varphi(u \in U)\right\rangle
$$

is finitely presented if and only if U is finitely generated.
Proof. Assume that the Yamamura HNN extension

$$
S^{*}=\operatorname{Inv}\left\langle X, t \mid P, t t^{-1}=e, t^{-1} t=f, t^{-1} u t=u \varphi(u \in U)\right\rangle
$$

is finitely presented. Then there exists a finite subset $Y \subseteq U$ such that S^{*} is isomorphic to

$$
S_{0}^{*}=\operatorname{Inv}\left\langle X, t \mid P, t t^{-1}=e, t^{-1} t=f, t^{-1} u t=u \varphi(u \in Y)\right\rangle
$$

Without loss of generality we may assume that $e \in Y$. Let U_{0} be the inverse subsemigroup of U generated by Y. Since e is the identity element of U_{0}, we have that for all $u \in U_{0}$, the relation $t^{-1} u t=u \varphi$ is a consequence of relations of the form $t^{-1} y t=y \varphi$, where $y \in Y$. It follows that S_{0}^{*} is the Yamamura HNN extension of S associated with $\hat{\varphi}: U_{0} \rightarrow U_{0} \varphi$. Making use of Theorem 5.2.3, we obtain that

$$
\begin{equation*}
t^{-1} S t \cap S=t^{-1} U_{0} t=U_{0} \hat{\varphi}=U_{0} \varphi \tag{5.1}
\end{equation*}
$$

By assumption U is not finitely generated, and so there exists $u \in U \backslash U_{0}$. Clearly $t^{-1} u t=u \varphi$ holds in S^{*}, and so in S_{0}^{*}. By (5.1), there exists $u_{0} \in U_{0}$ such that $t^{-1} u t=u_{0} \varphi$, and hence $u \varphi=u_{0} \varphi$. Since φ is an isomorphism it is injective, and so we obtain the contradiction that $u=u_{0}$. Thus U is indeed finitely generated.

For the converse, assume that U is generated by a finite set Y. Since e is the identity element of U, we obtain that the Yamamura HNN extension is defined by the finite presentation

$$
S^{*}=\operatorname{lnv}\left\langle X, t \mid P, t t^{-1}=e, t^{-1} t=f, t^{-1} u t=u \varphi(u \in Y)\right\rangle
$$

5.3 Gilbert's HNN extension

Making use of the relationship between inductive groupoids and inverse semigroups, Gilbert introduced an alternative notion for an HNN extension of an inverse semigroup in [14]. The relationship between the two notions of HNN extensions is discussed, moreover maximal subgroups and the maximal group homomorphic image of the construction is described [14]. In [13], Gilbert shows that free inverse semigroups, and the bicyclic monoid arise as Gilbert's HNN extension of certain semilattices. To be more accurate, the latter case is set in a more general context. Namely, it is explained how Bruck-Reilly extensions of monoids arise as Gilbert's HNN extensions. The purpose of this section is to introduce Gilbert's notion of an HNN extension of an inverse semigroup, and to prove some useful results.

First, we recall some definitions and results regarding inverse semigroups. We have already mentioned, that the natural partial order \leq has an important role in inverse semigroup theory.

Definition 5.3.1. Let S be an inverse semigroup and $s, t \in S$. We define

$$
s \leq t \Longleftrightarrow s=e t
$$

for some $e \in E(S)$.
It is easy to see, that

$$
\begin{aligned}
s \leq t & \Longleftrightarrow s=f t \quad \text { for some } f \in E(S) \\
& \Longleftrightarrow s^{-1} \leq t^{-1} .
\end{aligned}
$$

Definition 5.3.2. Let S be an inverse semigroup and U be a subset of S. We say that U is an order ideal of S, if whenever $s \leq u$, where $u \in U$, then $s \in U$ holds.

There is another relation which will be important in our considerations, namely the $\leq_{\mathcal{J}}$ preorder.

Definition 5.3.3. Let S be an inverse semigroup and $s, t \in S$. We define

$$
s \leq_{\mathcal{J}} t \Longleftrightarrow s \in S t S
$$

Note that $s \leq_{\mathcal{J}} t$ and $t \leq_{\mathcal{J}} s$ if and only if $s \mathcal{J} t$. Moreover, if $s \leq t$, then $s \leq_{\mathcal{J}} t$. With the help of the natural partial order and the \mathcal{D}-relation the $\leq \mathcal{J}$ preorder can be described in the following way [27, Proposition 8]:

Lemma 5.3.4. Let S be an inverse semigroup and $s, t \in S$. Then $s \leq \mathcal{J} t$ if and only if there exists $u \in S$ such that $s \mathcal{D} u \leq t$.

Definition 5.3.5. Let S be an inverse semigroup. A set $F \subseteq E(S)$ is said to \mathcal{J}-dominate S, if for every $s \in S$ there exists $f \in F$ such that $s \leq \mathcal{J} f$.
Notation. Let U be an inverse subsemigroup of S. Then for any $F \subseteq E(U)$ we let

$$
U_{F}=\left\{u \in U \mid \exists e, f \in F \text { such that } u u^{-1} \leq e, u^{-1} u \leq f\right\} ;
$$

this is easily seen to be an inverse subsemigroup of S.
Definition 5.3.6. Let $S=\operatorname{Inv}\langle X \mid P\rangle$. Let U and V be inverse subsemigroups of S that are order ideals. Assume that U and V are isomorphic via $\varphi: U \rightarrow V$. The inverse semigroup $S *_{U, \varphi}$ defined by the presentation

$$
\begin{array}{r}
S * U, \varphi=\operatorname{Inv}\left\langle X \cup\left\{t_{e} \mid e \in E(U)\right\}\right| P, t_{e} t_{f}^{-1}=e f, t_{e}^{-1} t_{f}=(e f) \varphi, \\
\left.t_{u u^{-1}}^{-1} u t_{u^{-1} u}=u \varphi(u \in U)\right\rangle
\end{array}
$$

is called the Gilbert HNN extension of S associated with $\varphi: U \rightarrow V$. The elements t_{e} are called the stable letters of $S * U, \varphi$.

To make reference easier to certain relations, we fix the following notations for this section. Let $S=\operatorname{Inv}\langle X \mid P\rangle$. We let U and V denote inverse subsemigroups of S that are order ideals. We assume that U and V are isomorphic via $\varphi: U \rightarrow V$. For a subset $L \subseteq E(U)$ we let

$$
T_{L}=\left\{t_{e} t_{f}^{-1}=e f, t_{e}^{-1} t_{f}=(e f) \varphi \mid e, f \in L\right\}
$$

and for brevity we denote $T_{E(U)}$ by T. For a subset $L \subseteq E(U)$ and a subset K of U we let

$$
W_{L, K}=\left\{t_{e}^{-1} a t_{f}=a \varphi \mid a \in K, e, f \in L, a a^{-1} \leq e, a^{-1} a \leq f\right\}
$$

and for brevity we denote $W_{E(U), U}$ by W. The following proposition will prove useful.
Proposition 5.3.7. (a) If $e \in E(S)$ and $f \in E(U)$, then et $_{f}=t_{e f}$. In particular, if $e \leq f$, then et $f_{f}=t_{e}$.
(b) Let $e, f \in E(U)$ and $u \in U$ with $u u^{-1} \leq e$ and $u^{-1} u \leq f$. Then the relation $t_{e}^{-1} u t_{f}=u \varphi \cdot h o l d s$ in $S * U, \varphi$, and so

$$
S *_{U, \varphi}=\operatorname{Inv}\left\langle X \cup\left\{t_{e} \mid e \in E(U)\right\} \mid P, T, W\right\rangle .
$$

(c) Fix a subset $F \subseteq E(U)$ and suppose that U_{F} is generated by a subset $Y \subseteq U_{F}$. Then for all $u \in U_{F}$ with $u u^{-1} \leq e$ and $u^{-1} u \leq f, e, f \in F$, the relation $t_{e}^{-1} u t_{f}=u \varphi$ is a consequence of the relations in $P \cup T_{F} \cup W_{F, Y}$.

Proof. (a) Let $e \in E(S)$ and $f \in E(U)$. We verify that $e t_{f}=t_{e f}$ is a consequence of the defining relations of $S * U, \varphi$ and of standard inverse semigroup relations. Indeed,

$$
\begin{aligned}
e t_{f} & =e t_{f} t_{f}^{-1} t_{f} \\
& =e f t_{f} \\
& =t_{e f} t_{e f}^{-1} t_{f} \\
& =t_{e f}(e f) \varphi \\
& =t_{e f}(e f) \varphi t \\
& =(e f) t_{e f} \\
& =t_{e f} t_{e f}^{-1} t_{e f} \\
& =t_{e f} .
\end{aligned}
$$

$$
=e f t_{f} \quad \text { by applying a relation in } T
$$

$$
=t_{e f} t_{e f}^{-1} t_{f} \quad \text { by applying a relation in } T
$$

$$
=t_{e f}(e f) \varphi \quad \text { by applying a relation in } T
$$

$$
=t_{e f}(e f) \varphi t_{e f}^{-1} t_{e f} \quad \text { by applying standard inv. sg. relations }
$$

$$
\text { since } t_{e f}(e f) \varphi t_{e f}^{-1}=e f
$$

by applying a relation in T
(b) Since $u u^{-1} \leq e$, we have that $e u u^{-1}=u u^{-1}$. Since $u^{-1} u \leq f$, we have that $u^{-1} u f=$ $u^{-1} u$. Thus, with the previous part of the proposition in mind, we obtain that

$$
t_{e}^{-1} u t_{f}=t_{e}^{-1} u u^{-1} u u^{-1} u t_{f}=t_{u u^{-1}}^{-1} u t_{u^{-1} u}=u \varphi .
$$

It follows that all relations in W hold in $S * U, \varphi$. On the other hand

$$
\left\{t_{u u^{-1}}^{-1} u t_{u^{-1} u}=u \varphi \mid u \in U\right\} \subseteq W
$$

and so we obtain that

$$
S *_{U, \varphi}=\operatorname{Inv}\left\langle X \cup\left\{t_{e} \mid e \in E(U)\right\} \mid P, T, W\right\rangle .
$$

(c) We proceed by induction on the number of elements of Y required to express $u \in U$ as a product. The base case is dealt with by the relations with $y \in Y$. Let $u=u_{1} u_{2}$, with $u_{1}, u_{2} \in U_{F}$ and assume that $u_{1} u_{1}^{-1} \leq i=t_{i} t_{i}^{-1}, u_{1}^{-1} u_{1} \leq g=t_{g} t_{g}^{-1}$ and $u_{2} u_{2}^{-1} \leq h=$ $t_{h} t_{h}^{-1}, u_{2}^{-1} u_{2} \leq j=t_{j} t_{j}^{-1}$ for some $i, j, g, h \in F$. Then $u_{1}=i u_{1} g$ and $u_{2}=h u_{2} j$ hold as a consequence of P, and hence

$$
\begin{aligned}
t_{e}^{-1} u t_{f} & =t_{e}^{-1} u_{1} u_{2} t_{f} \\
& =t_{e}^{-1}\left(i u_{1} g\right) \cdot\left(h u_{2} j\right) t_{f} \\
& =t_{e}^{-1} t_{i}\left(t_{i}^{-1} u_{1} t_{g}\right)\left(t_{g}^{-1} \cdot t_{h}\right)\left(t_{h}^{-1} u_{2} t_{j}\right) t_{j}^{-1} t_{f} \\
& =t_{e}^{-1} t_{i}\left(u_{1} \varphi\right) t_{g}^{-1} t_{h}\left(u_{2} \varphi\right) t_{j}^{-1} t_{f} \\
& =(e i) \varphi\left(u_{1} \varphi\right)(g h) \varphi\left(u_{2} \varphi\right)(j f) \varphi=\left(e\left(i u_{1} g\right)\left(h u_{2} j\right) f\right) \varphi \\
& =\left(e u_{1} u_{2} f\right) \varphi=u \varphi .
\end{aligned}
$$

5.4. AN ALTERNATIVE PRESENTATION FOR GILBERT'S HNN EXTENSION 175

Definition 5.3.8. Let S be an inverse semigroup. A product $s_{1} s_{2} \ldots s_{n}$ of elements of S is called a trace product if $s_{i}^{-1} s_{i}=s_{i+1} s_{i+1}^{-1}$ for all $1 \leq i \leq n-1$.

Lemma 5.3.9. Let S be an inverse semigroup and let $s_{1}, s_{2} \in S$. Then there exists $t_{1}, t_{2} \in S$ such that the product of $s_{1} s_{2}$ equals to the trace product $t_{1} t_{2}$ and $t_{1} \leq s_{1}, t_{2} \leq s_{2}$ holds.

Proof. Consider the idempotent $e=s_{1}^{-1} s_{1} s_{2} s_{2}^{-1}$ and let $t_{1}=s_{1} e$ and $t_{2}=e s_{2}$. Clearly $s_{1} \leq t_{1}$ and $s_{2} \leq t_{2}$. Moreover an easy calculation shows that $t_{1}^{-1} t_{1}=t_{2} t_{2}^{-1}$ and that $t_{1} t_{2}=s_{1} e s_{2}=s_{1} s_{2}$.

By an easy induction the following lemma can be verified.
Lemma 5.3.10. Let S be an inverse semigroup. Then a product of elements $s_{1} s_{2} \ldots s_{n}$ of S equals to a trace product $t_{1} t_{2} \ldots t_{n}$ with $t_{i} \leq s_{i}$ for all $1 \leq i \leq n$. Moreover, if $s=t_{1} \ldots t_{n}$ is a trace product, then $s s^{-1}=t_{1} t_{1}^{-1}$ and $s^{-1} s=t_{n}^{-1} t_{n}$.

In the HNN extension $S * U, \varphi$, we shall consider products that are words on the alphabet $S \cup\left\{t_{e} \mid e \in E(U)\right\}:$ for such words, we can form trace products that preserve the structure of the word. Combining Lemma 5.3 .10 with Proposition 5.3.7(a) we obtain the following:

Lemma 5.3.11. An element $h=s_{1} t_{f_{1}}^{\epsilon_{1}} s_{2} t_{f_{2}}^{\epsilon_{2}} \cdots s_{n} t_{f_{n}}^{\epsilon_{n}} s_{n+1} \in S * U, \varphi$, where $\epsilon_{i}= \pm 1$ for $1 \leq i \leq n$ and $s_{i} \in S$ for $1 \leq i \leq n+1$ is equal to a trace product $r_{1} t_{e_{1}}^{\epsilon_{1}} r_{2} t_{e_{2}}^{\epsilon_{2}} \cdots r_{n} t_{e_{n}}^{\epsilon_{n}} r_{n+1}$ where $e_{i} \leq f_{i}$ for $1 \leq i \leq n$ and $r_{i} \leq s_{i}, r_{i} \in S$ for $1 \leq i \leq n+1$.

Definition 5.3.12. Let S be an inverse semigroup. Let U and V be inverse subsemigroups of S that are order ideals. Assume that U and V are isomorphic via $\varphi: U \rightarrow V$. Consider the Gilbert HNN extension $S *_{U, \varphi}$. A pinch is a word over $S \cup\left\{t_{e}, t_{e}^{-1} \mid e \in E(U)\right\}$ of the form $t_{u u^{-1}}^{-1} u t_{u^{-1} u}$, where $u \in U$ or of the form $t_{u u^{-1}}^{-1}(u \varphi) t_{u^{-1} u}$.

The following proposition will prove useful when proving Proposition 5.5.1.
Proposition 5.3.13. [18, 29] Let $h=s_{1} t_{e_{1}}^{\epsilon_{1}} s_{2} t_{e_{2}}^{\epsilon_{2}} \cdots s_{n} t_{e_{n}}^{\epsilon_{n}} s_{n+1}$ be a trace product in $S * U, \varphi$, with $n>0$. If h is an idempotent then it contains a pinch.

5.4 An alternative presentation for Gilbert's HNN extension

In preparation for discussing finite presentability of Gilbert's HNN extension, we give an alternative presentation for the HNN extension $S * U_{, \varphi}$. Throughout this section, we use the notation introduced in the previous section.

Proposition 5.4.1. Let $S=\operatorname{Inv}\langle X \mid P\rangle$ be an inverse semigroup and let U, V be inverse subsemigroups of S that are order ideals. Assume that U and V are isomorphic via φ : $U \rightarrow V$. Let F be any \mathcal{J}-dominant subset of U. Then

$$
S *_{U, \varphi}=\operatorname{Inv}\left\langle X \cup\left\{t_{e}: e \in F\right\} \mid P, T_{F}, W_{F, U_{F}}\right\rangle .
$$

Proof. Let $X_{F}=X \cup\left\{t_{e}: e \in F\right\}$ and $H_{F}=\operatorname{Inv}\left\langle X_{F} \mid P, T_{F}, W_{F, U_{F}}\right\rangle$. By Proposition 5.3.7, $S *_{U, \varphi}=\operatorname{Inv}\left\langle X \cup\left\{t_{e}: e \in E(U)\right\} \mid P, T, W\right\rangle$. We show that $S *_{U, \varphi}$ and H_{F} are isomorphic inverse semigroups by giving two inverse semigroup homomorphisms $\eta: H_{F} \rightarrow$ $S *_{U, \varphi}$ and $\xi: S *_{U, \varphi} \rightarrow H_{F}$ that are inverse to each other.

Since $T_{F} \subseteq T$ and $W_{F, U_{F}} \subseteq W$, we clearly have that the identity map on X_{F} induces an inverse semigroup homomorphism $\eta: H_{F} \rightarrow S *_{U, \varphi}$.

For each $e \in E(U)$, choose and fix $u_{e} \in U$ and $\vec{e} \in F$ such that

$$
\begin{gathered}
e=u_{e} u_{e}^{-1}, u_{e}^{-1} u_{e} \leq \bar{e} \\
u_{e}=\bar{e}=e(e \in F)
\end{gathered}
$$

We show that the mapping $t_{e} \mapsto u_{e} t_{\bar{e}}\left(u_{e} \varphi\right)^{-1}$ and the identity map on X together induce an inverse semigroup homomorphism $\xi: S *_{U, \varphi} \rightarrow H_{F}$. That is we show that ξ maps relations in $S *_{U, \varphi}$ to relations that hold in H_{F}.

Let $e_{1}, e_{2} \in E(U)$. Clearly $u_{e_{1}}^{-1} u_{e_{2}} u_{e_{2}}^{-1} u_{e_{1}} \leq u_{e_{1}}^{-1} u_{e_{1}} \leq \bar{e}_{1}$ and $u_{e_{2}}^{-1} u_{e_{1}} u_{e_{1}}^{-1} u_{e_{2}} \leq u_{e_{2}}^{-1} u_{e_{2}} \leq$ \bar{e}_{2}, and we have

$$
\begin{aligned}
t_{e_{1}} \xi t_{e_{2}}^{-1} \xi & =u_{e_{1}} t_{\bar{e}_{1}}\left(u_{e_{1}} \varphi\right)^{-1}\left(u_{e_{2}} \varphi\right) t_{\bar{e}_{2}}^{-1} u_{e_{2}}^{-1} \\
& =u_{e_{1}} t_{\bar{e}_{1}}\left(u_{e_{1}}^{-1} u_{e_{2}}\right) \varphi t_{\bar{e}_{2}}^{-1} u_{e_{2}}^{-1} \\
& =u_{e_{1}} u_{e_{1}}^{-1} u_{e_{2}} u_{e_{2}}^{-1}=e_{1} e_{2}=\left(e_{1} e_{2}\right) \xi
\end{aligned}
$$

using the relation $t_{\bar{e}_{1}}\left(u_{e_{1}}^{-1} u_{e_{2}}\right) \varphi t_{\bar{e}_{2}}^{-1}=u_{e_{1}}^{-1} u_{e_{2}}$ from $W_{F, U_{F}}$ and it follows that $\left(t_{e_{1}} t_{e_{2}}^{-1}\right) \xi=$ $\left(e_{1} e_{2}\right) \xi$ indeed holds in H_{F}. Similarly,

$$
\begin{aligned}
t_{e_{1}}^{-1} \xi t_{e_{2}} \xi & =\left(u_{e_{1}} \varphi\right) t_{\bar{e}_{1}}^{-1} u_{e_{1}}^{-1} u_{e_{2}} t_{\bar{e}_{2}}\left(u_{e_{2}} \varphi\right)^{-1} \\
& =\left(u_{e_{1}} \varphi\right)\left(u_{e_{1}}^{-1} u_{e_{2}}\right) \varphi\left(u_{e_{2}} \varphi\right)^{-1} \\
& =\left(u_{e_{1}} u_{e_{1}}^{-1} u_{e_{2}} u_{e_{2}}^{-1}\right) \varphi=\left(e_{1} e_{2}\right) \varphi=\left(\left(e_{1} e_{2}\right) \varphi\right) \xi
\end{aligned}
$$

and it follows that $\left(t_{e_{1}}^{-1} t_{e_{2}}\right) \xi=\left(\left(e_{1} e_{2}\right) \varphi\right) \xi$. These considerations show that all the relations in T, once rewritten in terms of X_{F}, follow from T_{U} and $W_{F, U_{F}}$ in H_{F}.

Now consider a relation $t_{e_{1}}^{-1} u t_{e_{2}}=u \varphi$ from W, where $u u^{-1} \leq e_{1}$ and $u^{-1} u \leq e_{2}, u \in$ $U, e_{1}, e_{2} \in E(U)$. Consider $t_{e_{1}} \xi=u_{e_{1}} t_{\overline{\bar{c}}_{1}}\left(u_{e_{1}} \varphi\right)^{-1}$ and $t_{e_{2}} \xi=u_{e_{2}} t_{\bar{e}_{2}}\left(u_{e_{2}} \varphi\right)^{-1}$. Note that

$$
\left(u_{e_{1}}^{-1} u u_{e_{2}}\right)\left(u_{e_{2}}^{-1} u^{-1} u_{e_{1}}\right)=u_{e_{1}}^{-1} u e_{2} u^{-1} u_{e_{1}}=u_{e_{1}}^{-1} u u^{-1} u_{e_{1}}=u_{e_{1}}^{-1} u_{e_{1}} \leq \bar{e}_{1}
$$

and similarly $\left(u_{e_{2}}^{-1} u^{-1} u_{e_{1}}\right)\left(u_{e_{1}}^{-1} u u_{e_{2}}\right) \leq \bar{e}_{2}$, hence $u_{e_{1}}^{-1} u u_{e_{2}} \in U_{F}$. In particular, we have that $t_{\bar{e}_{1}}^{-1} u_{e_{1}}^{-1} u u_{e_{2}} t_{\bar{e}_{2}}=\left(u_{e_{1}}^{-1} u u_{e_{2}}\right) \varphi$ is a relation in $W_{F, U_{F}}$ and we obtain

$$
\begin{aligned}
t_{e_{1}}^{-1} \xi u \xi t_{e_{2}} \xi & =\left(u_{e_{1}} \varphi\right) t_{\bar{e}_{1}}^{-1} u_{e_{1}}^{-1} u u_{e_{2}} t_{\bar{e}_{2}}\left(u_{e_{2}} \varphi\right)^{-1} \\
& =\left(u_{e_{1}} \varphi\right)\left(u_{e_{1}}^{-1} u u_{e_{2}}\right) \varphi\left(u_{e_{2}} \varphi\right)^{-1} \\
& =\left(u_{e_{1}} u_{e_{1}}^{-1} u u_{e_{2}} u_{e_{2}}^{-1}\right) \varphi . \\
& =\left(e_{1} u e_{2}\right) \varphi=u \varphi=(u \varphi) \xi .
\end{aligned}
$$

It clearly follows that $\left(t_{e_{1}}^{-1} u t_{e_{2}}\right) \xi=(u \varphi) \xi$ indeed holds in H_{F}. This completes the check that ξ is a homomorphism.

Let us now check that η and ξ are inverse to each other. Indeed, for $x \in X$ we clearly have $x \eta \xi=x$ and $x \xi \eta=x$. Likewise, for $e \in F$ we have $t_{e} \eta \xi=t_{e}$. Now consider any $e \in E(U)$; we have

$$
t_{e} \xi \eta=\left(u_{e} t_{\bar{e}}\left(u_{e} \varphi\right)^{-1}\right) \eta=u_{e} t_{\bar{e}}\left(u_{e} \varphi\right)^{-1}=u_{e} u_{e}^{-1} t_{e}=e t_{e}=t_{e}
$$

using the relations $t_{e}^{-1} u_{e} t_{\bar{e}}=u_{e} \varphi$ and $e t_{e}=t_{e}$, which hold in $S *_{U, \varphi}$. This completes the proof that η and ξ are mutually inverse.

5.5 Finite generation of Gilbert's HNN extension

In this section, a necessary and sufficient condition will be given for the Gilbert HNN extension of inverse semigroups to be finitely generated.

As, in the previous section, we use the following notation. We let S denote an inverse semigroup. We let U and V denote inverse subsemigroups of S that are order ideals. We assume that U and V are isomorphic via $\varphi: U \rightarrow V$. For a subset $L \subseteq E(U)$ we let

$$
T_{L}=\left\{t_{e} t_{f}^{-1}=e f, t_{e}^{-1} t_{f}=(e f) \varphi . \mid e, f \in L\right\}
$$

and for brevity we denote $T_{E(U)}$ by T. For a subset $L \subseteq E(U)$ and a subset K of U we let

$$
W_{L, K}=\left\{t_{e}^{-1} a t_{f}=a \varphi \mid a \in K, e, f \in L, a a^{-1} \leq e, a^{-1} a \leq f\right\}
$$

and for brevity we denote $W_{E(U), U}$ by W.
Proposition 5.5.1. Let S be a finitely generated inverse semigroup. Let U and V be inverse subsemigroups of S that are order ideals. Assume that U and V are isomorphic via $\varphi: U \rightarrow V$. Then the Gilbert HNN extension $S_{* U, \varphi}$ is finitely generated if and only if U is finitely \mathcal{J}-dominated.

Proof. Suppose that S is finitely generated by X and that $S *_{U, \varphi}$ is finitely generated. Then there exists a finite subset $F \subseteq E(U)$, such that $S * U, \varphi$ is generated by $X \cup\left\{t_{f} \mid f \in F\right\}$, and hence by $S \cup\left\{t_{f} \mid f \in F\right\}$. Let $e \in E(U) \backslash F$. Then, in the Gilbert HNN extension $S * U, \varphi$, the stable letter t_{e} is equal to some word

$$
w \equiv s_{1} \epsilon_{f_{1}}^{\epsilon_{1}} s_{2} t_{f_{2}}^{\epsilon_{2}} \cdots s_{n} t_{f_{n}}^{\epsilon_{n}} s_{n+1}
$$

on the generating set $S \cup\left\{t_{f} \mid f \in F\right\}$, where $\epsilon_{i}= \pm 1,(1 \leq i \leq n)$. By Lemma 5.3.11, t_{e} may also be represented by a trace product

$$
w^{\prime}=r_{1} t_{e_{1}}^{\epsilon_{1}} r_{2} t_{e_{2}}^{\epsilon_{2}} \cdots r_{n} \epsilon_{e_{n}}^{\epsilon_{n}} r_{n+1}
$$

where for each $i,(1 \leq i \leq n), e_{i} \leq f_{i}$ and $r_{i} \leq s_{i}$ for each $i,(1 \leq i \leq n+1)$. By application of W-relations we may assume that w^{\prime} contains no pinch. It is possible that w^{\prime} is the trace product t_{e}, in which case $e \leq f$ for some $f \in F$, in particular $e \leq_{\mathcal{J}} f$. Assume now that w^{\prime} is not identical to t_{e}. Note that by Lemma 5.3.10 $w^{\prime} t_{e}^{-1}$ is a trace product and by Proposition 5.3 .13 the trace product $w^{\prime} t_{e}^{-1}$ contains a pinch. This must be the final segment $t_{e_{n}}^{\epsilon_{n}} r_{n+1} t_{e}^{-1}$, where $r_{n+1}=u \varphi$ for some $u \in U$ and $e=u^{-1} u$. Hence $e \mathcal{D} u u^{-1}$ and $u u^{-1} \leq f_{n} \in F$: that is, $e \leq \mathcal{J} f_{n}$. Therefore, U is finitely \mathcal{J}-dominated by the set F.

Conversely, suppose that U is finitely \mathcal{J}-dominated by F. Given $e \in E(U)$ suppose that $e \leq \mathcal{J} f$ with $e \mathcal{D} h$ and $h \leq f$. Take $u \in U$ with $u u^{-1}=e$ and $u^{-1} u=h$. Then

$$
\begin{aligned}
t_{e}^{-1} & =t_{e}^{-1} t_{e} t_{e}^{-1} & & \text { by applying standard inv. sg. relations } \\
& =t_{e}^{-1} u u^{-1} & & \text { by applying relations in } T \\
& =t_{e}^{-1} u u^{-1} u u^{-1} & & \text { by applying standard inv. sg. relations } \\
& =t_{e}^{-1} u h u^{-1} & & \\
& =t_{e}^{-1} u t_{h} t_{h}^{-1} u^{-1} & & \text { by applying relations in } T \\
& =u \varphi t_{h}^{-1} u^{-1} & & \text { by applying relations in } T,
\end{aligned}
$$

and so $t_{e}=u t_{h}(u \varphi)^{-1}$ holds. In particular we have that the following hold in $S * U_{, \varphi}$:

$$
\begin{aligned}
t_{e}=u t_{h}(u \varphi)^{-1} & =u t_{h} t_{h}^{-1} t_{h}(u \varphi)^{-1} & & \\
& =u h t_{h}(u \varphi)^{-1} & & \text { by applying relations in } T \\
& =u h t_{f}(u \varphi)^{-1} & & \text { by Proposition 5.3.7 } \\
& =u t_{f}(u \varphi)^{-1} . & &
\end{aligned}
$$

Thus we may deduce that t_{e} is expressible as a word on the generators $X \cup\left\{t_{f} \mid f \in F\right\}$, and $S * U, \varphi$ is finitely generated.

5.6 Finite presentability of Gilbert's HNN extension

The main purpose of this section is to give a necessary and sufficient condition for $S * U, \varphi$ to be finitely presented.

Proposition 5.6.1. Let S be a finitely presented inverse semigroup and let U, V be inverse subsemigroups of S, that are order ideals. Assume that U and V are isomorphic via $\varphi: U \rightarrow V$. Then the Gilbert HNN extension $S * U, \varphi$ is finitely presented if and only if U is finitely \mathcal{J}-dominated by a subset $F \subseteq E(U)$ such that the inverse subsemigroup U_{F} is finitely generated.

Proof. Assume that the inverse semigroup S is defined by the finite inverse semigroup presentation $\langle X \mid P\rangle$. Assume that U is \mathcal{J}-dominated by a finite subset $F \subseteq E(U)$, and that U_{F} is generated by a finite set Y of words on X. As before, let $X_{F}=X \cup\left\{t_{e} \mid e \in F\right\}$. Then by Proposition 5.4.1,

$$
S * U, \varphi=\operatorname{Inv}\left\langle X_{F} \mid P, T_{F}, W_{F, U_{F}}\right\rangle .
$$

On the other hand, since $W_{F, Y} \subseteq W_{F, U_{F}}$ and since all relations in $W_{F, U_{F}}$ are consequences of relations in $R \cup T_{F} \cup W_{F, Y}$ by Proposition 5.3.7 (c), we have that

$$
\operatorname{Inv}\left\langle X_{F} \mid P, T_{F}, W_{F, U_{F}}\right\rangle=\operatorname{Inv}\left\langle X_{F} \mid P, T_{F}, W_{F, Y}\right\rangle
$$

Since F and Y are finite it is clear that the latter presentation is finite, hence $S * U, \varphi$ is indeed finitely presented.

For the converse, suppose that $S *_{U, \varphi}$ is a finitely presented inverse semigroup. In particular, $S *_{U, \varphi}$ is finitely generated and so by Proposition 5.5.1, there exists a finite \mathcal{J}-dominant subset $F \subseteq E(U)$ of U. Then, by Proposition 5.4.1,

$$
S * U, \varphi=\operatorname{Inv}\left\langle X_{F} \mid P, T_{F}, W_{F, U_{F}}\right\rangle
$$

where P and T_{F} are finite sets of relations, but $W_{F, U_{F}}$ is possibly infinite. Since $S * U, \varphi$ is finitely presented by assumption, there exists a finite subset $W_{0} \subseteq W_{F, U_{F}}$, such that

$$
S * U, \varphi=\operatorname{Inv}\left\langle X_{F} \mid P, T_{F}, W_{0}\right\rangle .
$$

Consider the finite set

$$
Y=\left\{u \in U \mid \exists e, f \in F \text { such that }\left(t_{e}^{-1} u t_{f}=u \varphi\right) \in W_{0}\right\} \cup F,
$$

and let U_{0} be the inverse subsemigroup of U generated by Y. Our aim is to show that U_{F} is finitely generated by showing that $U_{0}=U_{F}$. By definition of U_{0}, we clearly have $U_{0} \subseteq U_{F}$. For the reverse inclusion we need the following variation of the strong HNN embeddability.

Lemma 5.6.2. Let $e, f \in F$ and $U_{e, f}=\left\{u \in U_{0} \mid u u^{-1} \leq e, u^{-1} u \leq f\right\}$. Then, in $S * U, \varphi$, we have

$$
t_{e}^{-1} S t_{f} \cap S=t_{e}^{-1} U_{e, f} t_{f}=U_{e, f} \varphi
$$

Proof. Relations in $W_{F, U_{F}}$ imply immediately that $t_{e}^{-1} U_{e, f} t_{f}=U_{e, f} \varphi$ and that

$$
t_{e}^{-1} U_{e, f} t_{f} \subseteq t_{e}^{-1} S t_{f} \cap S
$$

To prove the reverse inclusion we employ a technique used by Yamamura [36]. Let $U_{0} \varphi=$ V_{0} and S^{\prime} be a copy of S with $\iota: S \rightarrow S^{\prime}$ an isomorphism, let $U_{0}^{\prime}=U_{0} \iota$. Since U_{0} is an inverse subsemigroup of S, the amalgam $K=S *_{V_{0}}=U_{0}^{\prime} S^{\prime}$ can be considered. By a theorem of Hall [16] (see also [30]), S and S^{\prime} are canonically embedded in K, that is we have embeddings $\iota_{1}: S \rightarrow K, \iota_{2}: S^{\prime} \rightarrow K$. Moreover by the strong amalgamation property of inverse semigroups [16] we have that $S \iota_{1} \cap S^{\prime} \iota_{2}=U_{0}^{\prime}=V_{0}$. Let $\psi=\iota_{1}^{-1} \iota_{2}$. Then it is clear that $\psi: S \iota_{1} \rightarrow S^{\prime} \iota_{2}$ is an isomorphism; furthermore for all $u \in U_{0},\left(u \iota_{1}\right) \psi=(u \iota) \iota_{2}=$ $(u \varphi) \iota_{1}$. It follows by identifying $S \iota_{1}$ with S, that $\left.\psi\right|_{U_{0}}=\left.\varphi\right|_{U_{0}}$. Let K^{1} be obtained from K by adjoining an identity to it, and form the Yamamura HNN extension

$$
K^{*}=\operatorname{Inv}\left\langle K^{1}, t \mid t t^{-1}=1=t^{-1} t, t^{-1} s t=s \psi,(s \in S)\right\rangle
$$

associating the subsemigroups $\left(S \iota_{1}\right)^{1}$ and $\left(S^{\prime} \iota_{2}\right)^{1}$.
Next we show that the mapping $t_{e} \mapsto e t$ and the identity map on S together induce an inverse semigroup homomorphism $\nu: S *_{U, \varphi} \rightarrow K^{*}$, that is we verify that ν maps relations in $S * U, \varphi$ to relations that hold in K^{*}. Let $e, f \in F$ and $u \in U_{e, f}$ such that $u u^{-1} \leq e$ and $u^{-1} u \leq f$:

$$
\begin{aligned}
& \left(t_{e} \nu\right)\left(t_{f}^{-1} \nu\right)=(e t)(f t)^{-1}=e t t^{-1} f=e f=(e f) \nu \\
& \left(t_{e}^{-1} \nu\right)\left(t_{f} \nu\right)=(e t)^{-1}(f t)=t^{-1} e f t=(e f) \psi=(e f) \varphi=((e f) \varphi) \nu \\
& \left(t_{e}^{-1} \nu\right)(u \nu)\left(t_{f} \nu\right)=(e t)^{-1} u(f t)=t^{-1} e u f t=t^{-1} u t=u \psi=u \varphi=(u \varphi) \nu
\end{aligned}
$$

Therefore relations in $P \cup T \cup W$ are indeed mapped onto relations that hold in K^{*}.
Let us now consider an arbitrary $s \in t_{e}^{-1} S t_{f} \cap S$, and write $s=t_{e}^{-1} z t_{f}$ for some $z \in S$. Then in K^{*} we have

$$
s=s \nu=t^{-1} e z f t \in t^{-1} e S f t \cap S
$$

By the above mentioned strong amalgamation property, we have that

$$
(e t)^{-1} S(f t) \cap S=t^{-1} e S f t \cap S=(e S f) \psi \cap S \subseteq S \psi \cap S \subseteq S^{\prime} \iota_{2} \cap S \iota_{1}=U_{0}^{\prime}=V_{0}
$$

Therefore there exists $u_{0} \in U_{0}$ such that the relation $t^{-1} e z f t=u_{0} \varphi$ holds in K^{*}. Let $g, h \in$ F be such that $u_{0} u_{0}^{-1} \leq g$ and $u_{0}^{-1} u_{0} \leq h$, so that the relation $u_{0} \varphi=(g t)^{-1} u_{0}(h t)=t^{-1} u_{0} t$ holds in K^{*}. Now from $t^{-1} e z f t=t^{-1} u_{0} t$ and $t t^{-1}=t^{-1} t=1$ it follows that $e z f=u_{0}$. This, in turn, implies that $u_{0} u_{0}^{-1} \leq e$ and $u_{0}^{-1} u_{0} \leq f$; in other words $u_{0} \in U_{e, f}$. Also, notice that e $\dot{z} f=u_{0}$ is a relation between elements of S, and hence it also holds in $S *_{U, \varphi}$. So, returning to $S * U, \varphi$, we have

$$
s=t_{e}^{-1} z t_{f}=t_{e}^{-1} e z f t_{f}=t_{e}^{-1} u_{0} t_{f} \in t_{e}^{-1} U_{e, f} t_{f}
$$

completing the proof.
We are now in the position to prove the remaining inclusion $U_{F} \subseteq U_{0}$. Let $u \in U_{F}$. Then there exist $e, f \in F$ such that $u u^{-1} \leq e$ and $u^{-1} u \leq f$. It follows that $t_{e}^{-1} u t_{f}=u \varphi$ holds in $S * U, \varphi$. Applying Lemma 5.6.2, we have that there exists $u_{0} \in U_{0}$ such that $u \varphi=u_{0} \varphi$, and so we obtain that $u=u_{0} \in U_{0}$, proving that $U_{F}=U_{0}$ is indeed finitely generated.

We conclude this section by formulating Proposition 5.6 .1 in the special case when $E(U)$ satisfies the maximum condition. Recall that we say that $E(U)$ satisfies the maximum condition if U has finitely many maximal idempotents $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ and for every idempotent $e \in E(U)$ there exists $f_{i} \in F$ such that $e \leq f_{i}$. Note that in this case F is also a finite \mathcal{J}-dominant subset and $U_{F}=U$ holds, and so we may conclude:

Corollary 5.6.3. Let S be a finitely presented inverse semigroup and let U, V be inverse subsemigroups of S that are order ideals. Assume that U and V are isomorphic via φ : $U \rightarrow V$. Assume that $E(U)$ satisfies the maximum condition. Then the HNN extension $S * U, \varphi$ is finitely presented if and only if U is finitely generated.

5.7 A compelling consequence

Proposition 5.6.1 and its proof have the following intriguing consequence. Assume that S, U, V and φ are as in Proposition 5.6.1 and suppose that $S *_{U, \varphi}$ is finitely presented. Taking any finite \mathcal{J}-dominant set $F \subseteq E(U)$, we have

$$
S * U, \varphi=\operatorname{Inv}\left\langle X_{F} \mid R, T_{F}, W_{0}\right\rangle,
$$

where W_{0} is a finite subset of $W_{F, U_{F}}$. But then the converse part of the proof of Proposition 5.6.1 shows how this presentation yields a finite generating set for U_{F}. In other words if U_{F} is finitely generated for some finite \mathcal{J}-dominant subset F then U_{G} is finitely generated for every finite \mathcal{J}-dominant subset G. In fact, we can prove this in full generality removing the requirements that S be finitely presented, that U be an order ideal, and any mention of V.

Proposition 5.7.1. Let S be an inverse semigroup and assume that the inverse subsemigroup U is finitely \mathcal{J}-dominated. Then U_{F} is finitely generated for some finite \mathcal{J} dominant set F if and only if U_{G} is finitely generated for every finite \mathcal{J}-dominant set G.

The proof is divided into the following two lemmas.
Lemma 5.7.2. Let U_{F} be finitely generated and g be an arbitrary idempotent of U. Then $U_{F \cup\{g\}}$ is finitely generated.

Proof. Assume that U_{F} is generated by the finite set A. Let $e \in F$ be such that $g \leq \mathcal{J} \quad e$. Then there exist $k, l \in U$, such that $g=k e l=k e l l^{-1} e k^{-1}=k l l^{-1} \mathrm{ell}^{-1} k^{-1}$, hence there exists $v \in U$ such that $g=v e v^{-1}$. From this we have that $g v=v e=g v e$. We claim that $U_{F \cup\{g\}}$ is generated by $A \cup\{g v e\}$. Let $s \in U_{F \cup\{g\}}$. The following four cases are to be considered.
(i) The case when $s \in U_{F}$ is straightforward.
(ii) Assume that $s s^{-1}, s^{-1} s \leq g$. Then $s=g s g=v\left(e v^{-1} \cdot s \cdot v e\right) v^{-1}$. Since $e v^{-1} s v e \in U_{F}$, there exist $a_{1}, \ldots, a_{k} \in A \cup A^{-1}$ such that $e v^{-1}$ sve $=a_{1} \ldots a_{k}$. From this we have that $s=v e \cdot a_{1} \ldots a_{k} \cdot e v^{-1}=g v e \cdot a_{1} \ldots a_{k} \cdot(g v e)^{-1}$.
(iii) Assume that $s s^{-1} \leq g$ and $s^{-1} s \leq f$ for some $f \in F$. Then $s=g s f=v\left(e v^{-1} \cdot s f\right)$. Since $e v^{-1} s f \in U_{F}$, there exist $a_{1}, \ldots, a_{k} \in A \cup A^{-1}$ such that $e v^{-1} s f=a_{1} \ldots a_{k}$. From this we have that $s=v e \cdot a_{1} \ldots a_{k}=g v e \cdot a_{1} \ldots a_{k}$.
(iv) The case when $s^{-1} s \leq g$ and $s s^{-1} \leq f$ for some $f \in F$ can be proved similarly as (iii).

Lemma 5.7.3. Assume that U_{F} is finitely generated and that for some $g \in F, G=F \backslash\{g\}$ is also \mathcal{J}-dominant in U. Then U_{G} is finitely generated.

Proof. Let U_{F} be generated by the finite subset A which we may assume, without loss of generality, is closed under taking inverses. There exists $e \in F \backslash\{g\}$ for which $g \leq \mathcal{J} \quad e$, and hence $g=v e v^{-1}$ for some $v \in U$. Let A^{\prime} denote the set of elements of A for which $a a^{-1} \leq g$ and for which there is no other $j \in F \backslash\{g\}$ such that $a a^{-1} \leq j$; also let $A^{\prime \prime}=\left(A^{\prime}\right)^{-1}$. Notice that if $a \in A^{\prime}$ then $a=g a$, while if $a \in A^{\prime \prime}$, then $a=a g$. Let $\hat{B}=A \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$. We show that U_{G} is generated by

$$
B=\hat{B} \cup\left\{a_{i} v e: a_{i} \in A \backslash A^{\prime}\right\} \cup\left\{e v^{-1} a_{i}: a_{i} \in A \backslash A^{\prime \prime}\right\} \cup\left\{e v^{-1} a_{i} v e: a_{i} \in A\right\} .
$$

Let $s \in U_{G} \subseteq U_{F}$. Then $s=a_{1} a_{2} \ldots a_{k}$ for some $a_{1}, \ldots, a_{k} \in A$. If $a_{i} \in A^{\prime}$, then substitute a_{i} by $g a_{i}$; if $a_{i} \in A^{\prime \prime}$, then substitute a_{i} by $a_{i} g$; and if $a_{i} \in A^{\prime} \cap A^{\prime \prime}$, then substitute a_{i} by $g a_{i} g$. Consider now all subwords w of the form $a_{i-1} a_{i} g a_{i+1} g \ldots g a_{m-1} g a_{m} a_{m+1}$. These subwords can be written in terms of B, since

$$
w=a_{i-1} \cdot a_{i} v e \cdot e v^{-1} a_{i} v e \cdot e v^{-1} a_{i+1} \ldots \cdot e v^{-1} a_{m-1} v e \cdot e v^{-1} a_{m} \cdot \dot{a}_{m+1}
$$

It follows that s can be written in terms of B, hence U_{G} is generated by B.

5.8 Examples

Here we provide four examples of HNN extension of inverse semigroups.

Example 1. Let B be the bicyclic monoid, considered as the set $\mathbb{N} \times \mathbb{N}$ with binary operation $(m, n)(p, q)=(m-n+\max (n, p), q-p+\max (n, p))$. Now B is presented as an inverse monoid by $B=\operatorname{Inv}\left\langle a \mid a=a^{2} a^{-1}\right\rangle$, where $a=(0,1)$. Let $U=B$ and $V=\{(m, n) \mid m, n>0\}$ with $\varphi: U \rightarrow V$ the shift map $(p, q) \mapsto(p+1, q+1)$, so that $a \varphi=a^{-1} a^{2}$. It is clear that $U=B$ is \mathcal{J}-dominated by the identity element $1=(0,0)$, and that $U_{\{1\}}=B$ is finitely generated. Hence the HNN extension $B *_{B, \varphi}$ is finitely presented. It is easy to check that

$$
\operatorname{Inv}\left\langle a, t \mid a=a^{2} a^{-1}, t t^{-1}=a a^{-1}, t^{-1} t=a^{-1} a, t^{-1} a t=a^{-1} a^{2}\right\rangle
$$

gives a presentation.
Example 2. With B as before, suppose now that $U=E(B)=\{(m, m) \mid m \in \mathbb{N}\}$ with $\varphi:(m, m) \mapsto(m+1, m+1)$. It is clear that U is finitely \mathcal{J}-dominated by the identity element $1=(0,0)$ of U, but $U_{\{1\}}=U$ is not finitely generated. Hence we may conclude that the HNN extension $B * U, \varphi$ is finitely generated but not finitely presented.

Example 3. In this example we construct a finitely presented HNN extension $S * U, \varphi$, with U not finitely generated. Let $S=\operatorname{Inv}\left\langle a, e \mid a a^{-1}=1, a e=0, e^{2}=e\right\rangle$ considered as a semigroup with 0 . It can be easily seen that

$$
\left\{a^{-i} a^{j}, a^{-i} e a^{j} \mid i, j \in \mathbb{N}\right\} \cup\{0\}
$$

is a set of normal forms for S. Consider the inverse subsemigroup

$$
U=\left\{a^{-i} e a^{j} \mid i, j \in \mathbb{N}\right\} \cup\{0\}
$$

of S, together with the identity isomorphism $\iota: U \rightarrow U$. We observe that U is isomorphic to the infinite aperiodic Brandt semigroup, and hence U is \mathcal{J}-dominated by any of its idempotents. Let $F=\left\{a^{-i} e a^{i}\right\}$. Then $U_{F}=\left\{a^{-i} e a^{i}, 0\right\}$ is finite, so certainly finitely generated, and it follows that the HNN extension $S * U, \iota$ is finitely presented. However, the associated inverse subsemigroup U is not finitely generated.

Example 4. Our final example shows that the maximum condition on $E(U)$ is essential in Corollary 5.6.3. We give an example of a finitely presented HNN extension of a finitely presented inverse semigroup S, where the associated subsemigroups contain finitely many maximal idempotents, but do not satisfy the maximum condition and are not finitely generated. Consider the semidirect product $S=Y_{\infty} \rtimes G$, introduced in Example 4.10.5. We verified that S is finitely presented as an inverse semigroup. In particular, it is generated by the set $\left\{\left(e_{0}, 1\right),(\mathbf{1}, g),\left(\mathbf{1}, g^{-1}\right)\right\}$ and if we correspond a to $(\mathbf{1}, g), b$ to $\left(\mathbf{1}, g^{-1}\right)$ and c to $\left(e_{0}, 1\right)$, then we have that

$$
S=\operatorname{Inv}\left\langle a, b, c \mid a b=b a=1, c^{2}=c, c b c=b c, c a c=c a\right\rangle
$$

Then it can be easily seen that
(i) $\left\{a^{i}: i \in \mathbb{N}\right\} \cup\left\{b^{i}: i \in \mathbb{N}\right\} \cup\{a b\} \cup\left\{x^{i} c y^{j}: x, y \in\{a, b\} i, j \in \mathbb{N}\right\}$ is a set of normal forms for S,
(ii) $E(T)$ is an infinite chain with an identity element adjoined on top:

$$
\ldots<b^{2} c a^{2}<b c a<c<a c b<a^{2} c b^{2}<\ldots<1
$$

(iii) the \mathcal{H}-class H_{1} of 1 is isomorphic to the infinite cyclic group,
(iv) $K=T \backslash H_{1}$ is a bisimple aperiodic inverse subsemigroup of S, which is not finitely generated.

It follows from (ii) and (iv) that, for any $e \in E(S) \backslash\{\mathbf{1}\}$, the subsemigroup

$$
U_{e}=\left\{u \in U: u u^{-1}, u^{-1} u \leq e\right\}
$$

is finitely generated. To be more accurate, if $e=\left(e_{n}, 1\right)$, then U_{e} is generated by the finite set $\left\{\left(e_{n}, 1\right),\left(e_{n}, g\right),\left({ }^{g^{-1}} e_{n}, g^{-1}\right)\right\}$.

Take two copies $S^{(1)}$ and $S^{(2)}$ of S and let T be their 0-direct union. It is straightforward that T is finitely presented. Let $f \in E\left(S^{(2)}\right)$ and let U be the 0-direct union of K with U_{f}. Then U has one maximal idempotent f, and is not finitely generated since the subsemigroup K contains an infinite ascending chain of idempotents. Moreover since K is bisimple, for any $e \in E(K)$, the idempotents e and f are \mathcal{J}-maximal in U and

$$
U_{\{e, f\}}=\left\{u \in U: u u^{-1}, u^{-1} u \leq e \text { or } u u^{-1}, u^{-1} u \leq f\right\}
$$

is isomorphic to the 0-direct union of U_{e} and U_{f}, and hence is finitely generated. It follows by Proposition 5.6.1, that the HNN extension $H=S_{* U, \iota}$, where $\iota: U \rightarrow U$ is the identity isomorphism, is finitely presented.

Bibliography

[1] I.M. Araújo, Presentation for semigroup constructions and related computational methods, Ph.D. Thesis, University of St Andrews, 2000.
[2] G. Baumslag, Topics in Combinatorial Group Theory, Birkhäuser Verlag, 1993.
[3] G. Baumslag, S.M. Gersten, M. Shapiro, H. Short, Automatic groups and amalgams, J. Pure Appl. Algebra 76 (1991) 229-316.
[4] C.M. Campbell, E.F. Robertson, N. Ruškuc, R.M. Thomas, Automatic completely simple semigroups, Technical Report, University of Leicester, 2000.
[5] C.M. Campbell, E.F. Robertson, N. Ruškuc, R.M. Thomas, Automatic semigroups, Theoretical Computer Science 250 (2001) 365-391.
[6] C.M. Campbell, E.F. Robertson, N. Ruškuc, R.M. Thomas, Direct product of automatic semigroups, J.Austral.Math.Soc. (Series A) 69 (2000) 19-24.
[7] C. Carvalho, Presentations of semigroups and inverse semigroups, MSc Thesis, University of St Andrews, 2002.
[8] A.Cutting, A.Solomon, Remarks concerning finitely generated semigroups having regular sets of unique normal forms, J.Austral.Math.Soc. 70 (2001) 293-309.
[9] D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, W.P. Thurston, Word Processing in Groups, Jones and Barlett Publishers, 1992.
[10] L. Descalço, Automatic semigroups:Constructions and Subsemigroups, Ph.D. Thesis, University of St Andrews (2002).
[11] E. Dombi, N.D. Gilbert, N. Ruškuc Finite presentability of HNN extensions of inverse semigroups, Internat. J. Algebra Comput, (to appear).
[12] A.J. Duncan, E.F. Robertson, N. Ruškuc, Automatic monoids and change of generators, Math.Proc.Camb.Phil.Soc. 127 (1999), 403-409.
[13] N.D. Gilbert, Some constructions of inverse semigroups as HNN extensions, preprint.
[14] N.D. Gilbert, HNN extensions of inverse semigroups and groupoids, J. Algebra 272 (2004) 27-45.
[15] S. Haataja, S.W. Margolis and J. Meakin, Bass-Serre theory for groupoids and the structure of full regular semigroup amalgams, J. Algebra 183 (1996), 38-54.
[16] T.E. Hall, Amalgamation of inverse and regular semigroups, Trans. Amer. Math. Soc. 246 (1978), 395-406.
[17] P.J. Higgins, Notes on categories and groupoids, Van Nostrand Reinhold Math. Stud. 32, 1971.
[18] P.J. Higgins, The fundamental groupoid of a graph of groups, J. London Math. Soc. (2) 13 (1976), 145-149.
[19] M. Hoffmann; Automatic semigroups, Ph.D. Thesis, University of Leicester, 2001.
[20] J.M. Howie; Embedding theorems for semigroups, Quart. J. Math (2) 14 (1963), 254258.
[21] J.M. Howie; Automata and languages, Clarendon Press, Oxford, 1991.
[22] J.M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.
[23] T. Jajcayova, HNN extensions of inverse semigroups, Ph.D. Thesis, University of Nebraska-Lincoln, 1997.
[24] P.R. Jones, Free products of inverse semigroups, Trans. Amer. Math. Soc. 282 (1984) 293-317.
[25] P.R. Jones, S.W. Margolis, J. Meakin, J.B. Stephen, Free products of inverse semigroups II., Glasgow Math. J. 33 (1991) 373-387.
[26] B.Khoussainov, A.Nerode, Automatic presentations of structures, Lecture Notes in Comput.Sci., 813, Springer, Berlin 1995.
[27] M.V. Lawson, Inverse Semigroups, World Scientific, 1998.
[28] M.V. Lawson, Finite automata, Chapman \& Hall/CRC, 2004.
[29] E.J. Moore, Graphs of groups, word computations, and free crossed resolutions, Ph.D. Thesis, University of Wales, Bangor, 2001.
[30] K.S. Nambooripad and F.J. Pastijn, Amalgamation of regular semigroups, Houston J. Math. 15 (1989), 249-254.
[31] M. Petrich, Inverse semigroups, John Wiley \& Sons Publication, 1984.
[32] N. Ruškuc, Presentation for subgroups of monoids, J.Algebra 220 (1999), 365-380.
[33] N. Ruškuc, Semigroup presentations, Ph.D. Thesis, University of St Andrews, 1995.
[34] P.V. Silva, B. Steinberg A geometric characterization of automatic monoids, preprint.
[35] J.B. Stephen, Presentations of inverse monoids, J. Pure Appl. Algebra 63 (1990), 81-112.
[36] A. Yamamura, HNN extensions of inverse semigroups and applications, Internat. J. Algebra Comput. 7 (1997), 605-624.
[37] A. Yamamura, Locally full HNN extensions of inverse semigroups, J. Austral. Math. Soc. 70 (2001), 235-272.

