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Abstract Large amounts of rich, heterogeneous information nowadays rou-

tinely collected by health care providers across the world possess remarkable

potential for the extraction of novel medical data and the assessment of differ-

ent practices in real-world conditions. Specifically in this work our goal is to

use Electronic Health Records (EHRs) to predict progression patterns of future

diagnoses of ailments for a particular patient, given the patient’s present diag-

nostic history. Following the highly promising results of a recently proposed

approach which introduced the diagnosis history vector representation of a pa-

tient’s diagnostic record, we introduce a series of improvements to the model

and conduct thorough experiments that demonstrate its scalability, accuracy, and

practicability in the clinical context. We show that the model is able to capture

well the interaction between a large number of ailments which correspond to

the most frequent diagnoses, show how the original learning framework can be

adapted to increase its prediction specificity, and describe a principled, prob-

abilistic method for incorporating explicit, human clinical knowledge to over-

come semantic limitations of the raw EHR data.

Keywords Electronic medical records · EMRs · Bayesian · risk · disease ·

epidemiology
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1 Introduction

The trend of increased efforts in health data collection and its ready digitiza-

tion is widely recognized as a major change in the manner medical data is used.

In particular the collection of Electronic Health Records (EHRs) has recently

started attracting major translational research efforts in the domains of data min-

ing, knowledge extraction, and machine learning (Xu et al., 2016; Christensen

and Ellingsen, 2016). Electronic Health Records have already been extensively

used in large scale sociodemographic surveys of death causes (RGI-CGHR Col-

laborators, 2009), clinical epidemiological (Paul et al., 2015c; Bhatnagar et al.,

2015; Crawford et al., 2010) and pharmacoepidemiological studies (Wettermark

et al., 2013; Lau et al., 2011; Paul et al., 2015b), as well as in the analysis

of pharmacovigilance (Nadkarni, 2010; Liu et al., 2013; Coloma et al., 2013),

health related economic effects (Canavan et al., 2015; Bessou et al., 2015), and

public health (Birkhead et al., 2015; Paul et al., 2015a; Kukafka et al., 2007;

Menachemi and Collum, 2011). Considering that this research is still in its early

stages it is undeniably wise to refrain from overly ambitious predictions regard-

ing the type of knowledge which may be discovered in this manner, at the very

least it is true that few domains of application of the aforesaid techniques hold

as much promise for impact. It is sufficient to observe the potential benefits that

an increased understanding of complex interactions of lifestyle diseases in the

economically developed world could deliver in terms of personalized medicine

or health care policy (Fan et al., 2016) on the one hand, and a wiser utilization of

resources, aid, and educational material in the economically deprived countries
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(RGI-CGHR Collaborators, 2009), to appreciate the global and overarching po-

tential.

Public health care is an issue of major global significance and concern. On

one end of the spectrum, the developing world is still plagued by “diseases of

poverty” which are nearly non-existent in the most technologically developed

countries; on the other end, the health risk profile of industrially leading na-

tions has dramatically changed in recent history with an increased skew towards

so-called “diseases of affluence”, as illustrated in Figure 1 (data taken from

(Murray et al., 2001)).

Hence, health care management poses challenges both in the sphere of pol-

icy making and scientific research. Considering the complexity of problems at

hand, it is unsurprising that there is an ever-increasing effort invested in a di-

verse range of promising avenues. Yet, the available resources are inherently

limited. To ensure their best usage it is crucial both to develop an understanding

of the related epidemiology, as well as to be able to communicate this knowl-

edge effectively to those who can benefit from it: governments (Berwick and

Hackbarth, 2012), the medical research community (Beykikhoshk et al., 2015a,

2016; Andrei and Arandjelović, 2016), health care practitioners (Arandjelović,

2015a; Osuala and Arandjelović, 2017), and patients (Beykikhoshk et al., 2014;

Barracliffe et al., 2017).

The associations between diseases and a wide variety of risk factors are un-

derlain by a complex web of interactions. This is particularly the case for the

diseases of the developed world. The key premise of the present work is that to

facilitate the understanding of this complexity and the discovery of meaningful
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patterns within it, it is crucial to make use of the vast amounts of data routinely

collected by health services in industrially and technologically developed coun-

tries.

Our specific aim is to develop a framework which allows a health practitioner

(e.g. a doctor or a clinician) to manipulate the available patient information in an

intuitive yet powerful fashion. Such a framework would, on one end of the util-

ity spectrum, facilitate a deepening of disease understanding, and on the other,

provide the practitioner with a tool which can be used to incentivize the patient

at risk to make the required lifestyle changes.

1.1 Data: electronic medical records

This work leverages the large amounts of medical data routinely collected and

stored in electronic form by health providers in most developed countries. This

is a rich data source which contains a variety of information about each pa-

tient including the patient’s age and sex, mother tongue, religion, marital status,

profession, etc. In the context of the present work, of main interest is the in-

formation collected each time a patient is admitted to the hospital (including

out-patient visits to general practitioners or specialists). The format of this data

is explained next.

Each time a patient is admitted to the hospital the reason for the admission, as

determined by the medical practitioner in primary charge during the admission,

is recorded in the patient’s medical history. This is performed using a standard-

ized coding schema such as that provided by the International Statistical Classi-
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fication of Diseases and Related Health Problems (ICD-10) (World Health Or-

ganization, 2004) and the related Australian Refined Diagnosis-Related Groups

(AR-DRGs).

These have hierarchical structures (Arandjelović, 2016). ICD-10, for exam-

ple, contains 22 chapters, each chapter encompassing a spectrum of related

health issues (usually symptomatically rather than etiologically related). For ex-

ample, ICD-10 Chapter 4 which includes codes E00-E90, covers “Endocrine,

nutritional and metabolic diseases”. At each subsequent depth level of the tree

the grouping is refined and the scope of conditions narrowed down. In this paper

we use the classification attained at the depth of two of ICD-10, which achieves

a good compromise between specificity and frequency of occurrence. This re-

sults in each diagnosis being given a three character code which comprises a

leading capital letter (A-Z, first grouping level), followed by a two digit number

(further refinement). For example, E66 codes for “Obesity” within the broader

range of “Endocrine, nutritional and metabolic diseases”.

2 Modelling comorbidity progression

The major contribution of this work is a novel disease progression model. The

principal challenge is posed by the need for a model which is sufficiently flexible

to be able to capture complex patterns of comorbidity development, while at

the same time constrained enough to facilitate learning from a real-world data

corpus.
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2.1 Bottom-up modelling

The problem of modelling disease progression has already attracted a consid-

erable amount of research attention. Most previous research focuses on spe-

cific individual diseases, such as type-II diabetes mellitus (Topp et al., 2000;

De Gaetano et al., 2008) or heart disease (Ye et al., 2012). These methods are

inherently ‘low-level’ based in the sense that they explicitly model known phys-

iological changes that affect disease progression. For example, the modelling

of the progression of type-II diabetes may include low-level models of β-cell

mass changes, and insulin and glucose dynamics (Topp et al., 2000), with the

free parameters (e.g. β-cell replication rate) of the models adopted from previ-

ous empirical studies. Higher level disease progression then emerges from the

interaction of low-level models.

The low-level approach to disease modelling has several limitations. Firstly,

by their very nature these models are limited to specific diseases only and cannot

be readily adapted to deal with conditions with entirely different etiologies. Sec-

ondly, the modelling is practically constrained usually to a single condition, two

at the most, as the complexity of modelled system increases dramatically with

the inclusion of a greater number of conditions. This observation is of major

significance as most diseases of the developed world are most often accompa-

nied and affected by multiple comorbidities. Lastly, the range of diseases which

can be modelled in this manner is limited to diseases which are sufficiently well

understood and studied to allow for the free model parameters to be set reliably;

even for type-II diabetes, which has been studied extensively, at present some
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parameters must be set in an ad hoc manner and others using in vitro rather than

in vivo data (Topp et al., 2000).

2.2 Direct high-level modelling

Given the significance of the disadvantages of low-level based disease progres-

sion models, in this paper an alternative approach is pursued, that of seeking

to describe disease progression as well as the interplay of different comorbidi-

ties directly on the ‘high-level’ as observed by a medical practitioner. Previous

research in this area is far scarcer than that on low-level modelling; a possible

reason for this is probably to be found in the until recently limited availability

of large-scale medical records data. The central idea of the existing corpus of

work is to regard disease progression as a discrete sequence of events, with the

progression governed by what is assumed to be a first-order Markov process

(Sukkar et al., 2012; Jackson et al., 2003).

A high-level view of disease progression is seen as being reflected by a pa-

tient’s diagnostic history H = d1 → d2 → . . . → dn where di is a discrete

variable whose value is a code corresponding to the i-th of n diagnoses on the

patient’s record. The parameters of the underlying first-order Markov model are

then learnt by estimating transition probabilities p(d′ → d′′) for all transitions

encountered in training (the remaining transition probabilities are usually set to

some low value rather than 0, using a pseudocount based estimate) (Wang et al.,

2014; Folino and Pizzuti, 2011; Bartolomeo et al., 2008). The model can be ap-

plied to predict the diagnosis dn+1 expected to follow from the current history
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by model likelihood maximization:

dn+1 = argmax
d
p(dn → d). (1)

Alternatively, it may be used to estimate the probability of a particular diagnosis

d∗ at some point in future:

pf (d
∗) =

∑
d

[p(d→ d∗) pf (d)], (2)

or to sample the space of possible histories:

H ′ = d1 → d2 → . . .→ dn 99K dn+1 99K dn+2 . . . . (3)

The primary purpose of the Markovian assumption is to constrain the mech-

anism underlying a specific process and thus formulate it in a manner which

leads to a tractable learning problem. Although it is seldom strictly true, that

it is often a reasonable approximation to make is witnessed by its successful

application across a diverse range of disciplines; examples of modelled phe-

nomena include meteorological events (Gabriel and Neumann, 1962), software

usage patterns (Whittaker and Thomason, 1994), breast cancer screening (Duffy

and Yau, 1995), human motion and behaviour (Lee et al., 2005; Arandjelović,

2011), and many others. Nonetheless, the key premise motivating the model in

this paper is that the Markovian assumption is in fact not appropriate for the

high-level modelling of disease progression (note that this does not reject its

possible applicability in disease progression modelling on different levels of

abstraction). Indeed, we will demonstrate this empirically. The aforementioned

premise is readily substantiated using a theoretical argument as well. Consider a

patient who is admitted for what is diagnosed as a serious chronic illness. If the
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same patient is subsequently admitted for an unrelated ailment, possibly a triv-

ial one, the knowledge of the serious underlying problem is lost and the power

to predict the next related diagnosis lost. The model proposed in the section

which follows solves this problem, while at the same retaining the tractability

of Markov process based approaches.

2.3 Proposed approach

In this paper our aim is to predict the probability of a specific diagnosis a fol-

lowing the patient history H:

p(H → a|H). (4)

The difficulty of formulating this as a tractable learning problem lies in the

fact that the space of possible histories is infinite as H can be of an arbitrary

length. Even if the length l(H) is limited, the number of possible histories is

extremely large: [l(H)]na where na is the number of different diagnosis codes.

Therefore it is necessary to make an approximation which constrains and sim-

plifies the task. We already argued why the Markovian assumption on the level

of diagnosis codes is inappropriate. In its stead we propose a different rep-

resentation of a patient’s state, particularly suitable for the modelling of dis-

ease progression (Arandjelović, 2015b). Consider a particular diagnosis history

H = d1 → . . . → dn. The proposed method makes use of the well known ob-

servation that when it comes to chronic diseases, the very presence of past com-

plications strongly predicts future complications (Mudge et al., 2011; Friedman

et al., 2008–2009; Dharmarajan et al., 2013; Butler and Kalogeropoulos, 2012).
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Thus, a history H is represented using a history vector v = v(H) which is a

fixed length vector with binary values (Beykikhoshk et al., 2015b). Each vector

element corresponds to a specific diagnosis code (except for one special element

explained shortly) and its value is 1 if and only if the corresponding diagnosis

is present in the history:

∀d ∈ D. v(H)i(d) =


1 : ∃j. H = H1 → dj → H2 ∧ d = dj

0 : otherwise

where D is the set of diagnosis codes, i(d) indexes the diagnosis code d in a

history vector, and H1,2 may take on degenerate forms of empty histories. By

collapsing an arbitrary length history of diagnoses onto a fixed length vector,

the space of possible states over which learning is performed is dramatically

reduced and the problem immediately made far more tractable. Notice the im-

portance of the observation that it is the presence of past complications which

most strongly predicts future ailments, given that under this representation any

information on the ordering of diagnoses is discarded. The binary nature of the

representation also has the effect of reducing the size of the space over which in-

ference is performed. In this case, this is achieved by discarding information on

the number of repeated diagnoses and in this manner it too predicates the over-

whelming predictive power of the presence of history of a particular ailment,

rather than the number of the corresponding diagnoses.

The disease progression modelling problem at hand is thus reduced to the

task of learning transition probabilities between different patient history vectors:

p(v(H)→ v(H ′)). (5)
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It is important to observe that unlike in the case of Markov process models

working on the diagnosis level when the number of possible transition proba-

bilities is close to na2, here the transition space is far sparser. Specifically, note

that it is impossible to observe a transition from a history vector which codes

for the existence of a particular past diagnosis to one which does not, that is:

v(H)i(d) = 1 ∧ v(H ′)i(d) = 0⇒ p(v(H)→ v(H ′)) = 0. (6)

The converse does not hold however. Moreover, possible transitions can be only

those which include either no changes to the history vector (repeated diagnosis)

or which encode exactly one additional diagnosis:

p(v(H)→ v(H ′))

> 0 : ∀a. v(H)i(d) = 1⇒ v(H ′)i(d) = 1

and∣∣{a : v(H)i(d) = 1}
∣∣ ≤ 1 +

∣∣{a : v(H ′)i(d) = 1}
∣∣

= 0 : otherwise

(7)

This gives the upper bound for the number of non-zero probability transitions

of na × 2na . In practice the actual number of transitions is far smaller (several

orders of magnitude for the data set described in the next section) which allows

the learnt model to be stored and accessed efficiently.

The final aspect of the proposed model concerns transitions with probabili-

ties which do not vanish but which are nonetheless very low. These transitions

can be reasonably considered to be noise in the sense that the corresponding
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probability estimates are unreliable due to low sample size. Hence diagnosis

history vectors are constructed using only the n̂d most common diagnoses and

merge the remaining nd − n̂d types into a single special code ‘other’. Thus, the

dimensionality of diagnosis history vectors becomes n̂d + 1. The soundness of

this approach can be readily observed by examining the plot in Figure 2 which

shows that only a small number of diagnosis types covers a vast number of all

data. For example the top 30 most frequent types account for 75% of all diag-

noses.

A conceptual illustration of the method is shown in Figure 3.

2.4 Limitations and questions

One of our contributions of the present work is in the form of an analysis which

scrutinizes the expectation that the method would scale well. In the original

work (Arandjelović, 2015b) it was argued that the predictive performance of

the method, reported with explicit modelling of the 30 most frequent diagnosis

types only, could be maintained as a greater number of diagnosis types is in-

cluded in the model as most practical applications would demand. The original

paper did not investigate this; rather, the number of salient, explicitly modelled

diagnoses was set in an ad hoc manner to 30, explaining approximately 75% of

the data corpus (Arandjelović, 2015b). If our expectation of performance dete-

rioration with an increased number of explicitly modelled diagnoses is correct,

and if the rate of deterioration is high, the model could end up being of lit-

tle practical significance: on the one end of the parameter spectrum the model
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would provide high accuracy but insufficient specificity for its predictions to

be practically useful, and on the other high specificity but poor accuracy for

its predictions to be relied upon. Thus an analysis of this aspect of the original

method is necessary before any practical use can be considered; our experiments

as regards this issue are presented in Section 4.3.

3 Further technical contributions

In this section we introduce our two main technical contributions. Our third

contribution in the form of novel analyses and empirical results which highlight

important and promising future research directions is presented in Section 4.

3.1 Improving the specificity of the model

The first major contribution of the present work goes to the very heart of the

learning framework underlying the diagnostic progression model, and concerns

the issue of the space over which learning is performed. In other words we

propose a paradigm change in terms of what is explicitly learnt.

Recall from the previous section that the method described by (Arandjelović,

2015b) learns the probabilities of transitions from the space of history vectors

to the same space of history vectors i.e. it learns p(H ′|H) where H is a patient

history vector and H a possible extension to that history, H ′ = H → d. This

approach naturally follows from the structure of the problem: both H and H ′

are states in a Markov chain and indeed the baseline formulation of this class

of problems learns amongst other things precisely these transition probabilities.
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However, the very aspect of the history vector representation which makes it a

powerful feature for longitudinal pattern extraction, in this instance introduces a

significant practical limitation. Because history vectors are binarized, in general

a specific transition does not uniquely determine the diagnosis which caused the

transition to occur. In particular this occurs when a diagnosis already recorded in

a patient’s history is repeated – the transition fromH to itself does not allow the

method to distinguish between different diagnoses in the patient’s history and

determine which effected the transition (Vasiljeva and Arandjelović, 2016b).

This is a major limitation given that many of the most serious diseases tend to

be chronic in nature.

The method introduced in the present paper solves the described problem by

changing the space over which learning is performed. In particular, rather than

learning the probabilities of transitions between history vectors themselves, we

learn the probabilities of follow up diagnoses directly. It can be readily seen that

this is a stronger learning task in the sense that knowing the follow-up diagnosis

d allows for the computation of the next Markov chain state H ′ = H → d

without ambiguity whereas the opposite is not the case, as described previously.

What makes this learning choice particularly sensible is that it does not carry the

burden of either greater computational complexity nor learning challenge – the

dimensionality of the space over which learning is performed stays exactly the

same (it is governed by the choice of the number of salient diagnoses), which

remains as densely populated as before. Hence this learning paradigm change is

unambiguously superior to that described originally.
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3.2 Risk driven inference

Our second key technical novelty concerns a major challenge in the develop-

ment of models underlain by data from EHRs, which emerges from the perva-

sive problem known as the semantic gap (Vasiljeva and Arandjelović, 2016c).

In colloquial terms, the problem is readily understood as arising from the lack

of understanding of, say, disease aetiology and physiology that an automatic

method has in the interpretation of data from EHRs. For example, a human ex-

pert (such as a general practitioner or a specialist) who does have such knowl-

edge, may be readily able to discount even the consideration of certain dis-

ease interactions which may be difficult to infer using a purely data driven ap-

proach that machine methods generally employ. To overcome this challenge

some means of interaction, that is, information provision between an expert and

a computer algorithm is needed. Yet this interaction has to be intuitive, and re-

quire little effort and computing expertize.

The original authors correctly point out and thereafter empirically demon-

strate that a major limitation in the use of Markovian models lies in their ‘for-

getfulness’. This feature seemingly makes them inappropriate for the modelling

under consideration here. They overcome this limitation by incorporating mem-

ory into the state representation itself. In particular they describe what they term

a history vector which is a representation of a patient’s diagnostic history in the

form of a binary vector which encodes the types of diagnoses that the patient

has been given in the past.
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3.2.1 Identifying confounding factors

Consider two history vectors, Hx and Hy, which differ in the presence of only

a single past diagnosis dd. In other words, all bits in Hx and Hy are the same

except for exactly one. A specific follow-up diagnosis df , causes the transition

of Hx and Hy to respectively H ′x and H ′y. We show how it can be automatically

inferred if the differential diagnosis between hx and hy is one which affects

the probability of df . We achieve this using a Bayesian approach which read-

ily lends itself to asymmetrical risk driven inference, as described next. If the

probability of df is not affected by the presence of dd (in the context of other

historical diagnoses in Hx and Hy, of course) then the transition data from the

database of EHRs can be merged and thus used to estimate the aforesaid proba-

bility with higher precision so clearly this is a highly desirable goal which can

be used to reduce the amount of confounding factors greatly and improve the

accuracy of the learnt models.

Consider what happens if Hx and Hy are indeed merged in the context of

the prediction of df . In such a case, the number of the observed transitions from

Hx to Hx → df and from Hy to Hy → df are considered as equivalent. By

considering them jointly a new probability of df from either Hx or Hy can be

estimated. Call this probability z. The total risk ρ of the aforesaid merge can

then be computed as a sum of risks associated with the actual probabilities of

df following Hx and Hy respectively:

ρ = ρx + ρy. (8)
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This risk emerges as a consequence of the fact that the empirical nature of EHRs

inherently involves a degree of stochasticity which means that there can never

be absolute certainty that dd is indeed entirely inconsequential in the context

of this prediction. Instead, employing Bayesian framework, it is necessary to

integrate over the latent probability of df following Hx and Hy and weight this

with the associated relative risk. In this manner for ρx the risk can be written as:

ρx = Cx

∫ 1

z
|x− z|p(x|nx)dx+ (9)

+ (1− Cx)

∫ z

0
|z − x|p(x|nx)dx. (10)

What this expression captures can be readily understood as follows. The first

term quantifies the risk of z underestimating the true probability x of df follow-

ingHx (hence the integration is for x > z). Similarly the second term quantifies

the risk of z overestimating the true probability x of df followingHx (hence the

integration is for x < z). The two risks are in general weighted asymmetrically,

as governed by the constant Cx ∈ [0, 1] which should be set by a relevant medi-

cal professional. The aforesaid asymmetry captures what are in general different

‘costs’ of overestimating and underestimating the probability of a particular di-

agnosis. For example, the cost of underestimating the probability of a terminal

diagnosis is much greater than of overestimating it by the same amount. In this

case Cx should be large i.e. closer to 1.

Continuing from (9), using Bayes theorem the term p(x|nx) can be rewritten

as follows:

p(x|nx) =
p(nx|x)p(x)

p(nx)
, (11)
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where nx is the number of cases in which df was the next diagnosis follow-

ing Hx, of the total of Nx transitions present in the EHRs database. Since the

method has no means of establishing an informative prior on the transition prob-

ability x, an uninformative prior p(x) is used which leads to p(x) = 1 since

x ∈ [0, 1]. Moreover, p(nx|x) is readily identifiable as a binomial distribution

with the parameter x and the number of draws Nx allowing p(x|nx) to be ex-

panded further as follows:

p(x|nx) =
p(nx|x)
p(nx)

(12)

=

(
Nx

nx

)
xnx(1− x)Nx−nx∫ 1
0 p(nx|w)dw

(13)

=
xnx(1− x)Nx−nx∫ 1

0

(
Nx

nx

)
wnx(1− w)Nx−nxdw

(14)

=
xnx(1− x)Nx−nx(

Nx

nx

)
β(nx + 1, Nx − nx + 1)

(15)

where β(.) is the Euler beta function, and simple marginalization over x is per-

formed in the denominator. This expression can be substituted back into (9) and

(10), and then (8), and the integration performed numerically (which is both

simple and fast, given that it is a simple integration in 1D).

Notes and remarks on practical application It is insightful to highlight sev-

eral important practical aspects of the proposed technique. Firstly, once im-

plemented as software it is intuitive to use – the tradeoff between over- and

under-diagnosis is a concept routinely dealt with by medical professionals, and

it is simply set using a single constant which balances the two risks. The risk

is also readily interpretable. For example, for a terminal diagnosis the integrand
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in (9) can be interpreted as computing the number of individuals who would

be incorrectly expected to have a terminal diagnosis – an undesirable mistake

considering the potential emotional stress, to begin with. Similarly, for a ter-

minal diagnosis the integrand in (10) estimates the number of individuals who

would experience a terminal episode which would not be predicted – arguably

an even more serious mistake in that it ipso facto involves the loss of life. The

acceptable tradeoff can be made by a clinician either on the level of an indi-

vidual patient, for a specific diagnosis, or for an entire class of diagnoses (e.g.

the same baseline risk tradeoff could be set for an entire ICD chapter, such as

chapter IX which covers circulatory system diseases). In summary, the proposed

technique is simple and intuitive to use, and it allows a high degree of flexibility

in the choice of specificity or generality in application.

4 Evaluation

In this section we summarize some of the experiments we conducted to evaluate

the proposed framework, and derive useful insights which illuminate possible

avenues for improvement and future work.

4.1 EHR data

In an effort to reduce the possibility of introducing variability due to confound-

ing variables, we sought to standardize our evaluation protocol as much as possi-

ble with that adopted by previous work. Hence we requested access to the large

collection of EHRs described by (Arandjelović, 2015b) and were kindly pro-
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vided 75% of the records used in the aforementioned paper. For completeness

here we summarize the key features of this subset.

The EHRs adopted for evaluation were collected by a large private hospital

in Fife, Scotland. The distribution of patient age in the database is 75±14 years,

the youngest and oldest patients being 18 months and 105 years old respectively,

with the male to female ratio 56 : 44. Approximately 23% of the patients in the

database have a date of death associated with their EHR, which means that they

are deceased and thus have a record of a terminal diagnosis. The entire EHR

collection spans a period of 10 years, with the average number of diagnoses per

patient of 9.9± 64.0.

4.2 Baseline model validation

Interestingly, on our data set the patient’s age was found not to be associ-

ated with the number of admissions on record, while a low positive correlation

(r = 0.14) was found between the patient’s age and the number of conditions

the patient had been diagnosed with at some point in the past – see Figures 4(b)

and 4(b). A better predictor of the number of admissions was found to be the

presence of a particular diagnosis (e.g. a high number of admissions is associ-

ated with the presence of the diagnoses of mental disorders, renal and cardio-

vascular conditions), as illustrated in Figures 5(a) and 5(b). Further insight can

be gained by examining Figures 6(a) and 6(b) which summarize the repeated

diagnosis statistics across different conditions. A mental disorder diagnosis or

dialysis treatment for example predict both a high probability of a repeated di-
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agnosis, as well as a high total number of the diagnosis type on record. These

results are consistent with previous studies in the literature (Vigod et al., 2013;

Kilkenny et al., 2013; Allaudeen et al., 2011) and support our diagnosis pres-

ence based model.

4.2.1 Next diagnosis prediction

To evaluate the predictive power of the proposed model, we examined its perfor-

mance in the prediction of the next diagnosis based on a patient’s prior diagnosis

history, and compared this with the performance of the Markov process based

approach described previously; see (1)–(3). Both methods were trained using

an 80-20 split of data into training and test. Specifically, 80% of the data corpus

was used to learn the model parameters – conditional probabilities p(Ĥ → d|Ĥ)

in the case of the proposed model and p(d→ d′) for the Markov process based

model. The remaining 20% of the data was used as test input. For each test

patient we considered the predictions obtained by the two methods given all

possible partial histories. In other words, given a patient with the full diagnosis

history H = d1 → d2 → . . .→ dn we obtain predictions using partial histories

Hk = d1 → . . .→ dk for k = 1 . . . n− 1.

A summary of the results is given in Figure 7 which shows the cumulative

match characteristic curves corresponding to the two methods – each point on a

curve represents the proportion of cases (ordinate) for which the actual correct

diagnosis type is at worst predicted with a specific rank (abscissa). The first

thing that is readily observed from the plot is that the proposed method (blue

line) vastly outperforms the Markov process based approach (red line). What is
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more, the accuracy of our method is rather remarkable – it correctly predicts the

type of the next diagnosis for a patient in 82% of the cases (rank-1). Already

at rank-2 the accuracy is nearly 90%. In comparison, the Markov process based

method achieves only 35% accuracy at rank-1, less than 50% at rank-2, and

reaches 90% only at rank-17.

It is interesting to observe a particular feature of the CMC plot for the pro-

posed method. Notice its tail behaviour – at rank-25 and above, the Markov

process based approach catches up and actually performs better. While perfor-

mance at such a high rank is not of direct practical interest, it is insightful to

consider how this observation can be explained given that it is highly unlikely

for it to be a mere statistical anomaly, considering the amount of data used to

estimate the characteristics. The answer is readily revealed by considering the

plot in Figure 8 which shows the dependency between the average rank of the

proposed method’s prediction and the length of the partial history used as input.

Specifically, notice that higher ranks (i.e. worse performance) are associated

with short histories. Put differently, when there is little information in a patient’s

history, there is more uncertainty about the patient’s possible future ailments.

This observation too strongly supports the validity of our model as it shows that

accumulating evidence is used and represented in a more meaningful and robust

way which allows for the learning of complex interactions between conditions

and their development. Finally, this is illustrated in Figure 7 which also shows

the plot of the proposed method’s CMC curve restricted to test histories con-

taining at least 5 prior diagnoses. In this case, rank-1 and rank-2 performances

reach the remarkable accuracy of 91% and 97% respectively.
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4.2.2 Long-term prediction

Given the outstanding performance of our method in predicting the type of

the next diagnosis given the patient’s current medical history, we next con-

sidered how the proposed model performs in long-term predictions. Consid-

ering that we are now dealing with sequences of future diagnoses and thus a

much greater space of possible options, the characterization of performance us-

ing CMC curves is impractical. Rather, we now compare our approach with

the Markov process based method by comparing the corresponding conditional

probabilities for the actual progression observed in the data. In other words, for

the prediction following a partial history Ĥ of the length k and the correct full

history H = Ĥ → dk+1 → . . . → dn we compute the log-ratio of conditional

probabilities:

ρ = log

(
pMarkov(Ĥ → dk+1 → . . .→ dn|Ĥ)

pproposed(Ĥ → dk+1 → . . .→ dn|Ĥ)

)
(16)

A positive value of ρ means that the Markov process based method performed

better and a negative value that the proposed method did. The greater the ab-

solute value of ρ the greater is the measured difference in performance in the

corresponding direction. As before we divide the data into training and test sets

using an 80-20 split and consider the predictions for all possible partial histories

in the test set.

A summary of the results is presented in Figure 9. Specifically, the plot

shows the cumulative distribution function (CDF) of the log-ratio ρ. As in the

case of the one-step prediction, it is readily apparent that the performance of the

proposed method vastly exceeds that of the Markov process based approach.
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The value of CDF at the crossing of the curve with the ρ = 0 line is 0.82 which

means that our method exhibited superior performance in 82% of the predic-

tions. Even in the case of 18% of the predictions in which the Markov process

based method performed better, the performance differential is not substantial.

This is in sharp contrast with the instances in which the proposed method was

better – in 67% of the cases the conditional probability of the correct history

progression was over 100 greater for our model.

4.3 Assessing model scalability

Our primary goal here is to examine how the predictive performance of the his-

tory vector based model is affected by the choice of the number of salient diag-

nostic codes (Vasiljeva and Arandjelović, 2016a). As in (Arandjelović, 2015b)

we too assess the quality of a specific prediction by considering the rank of the

ground truth diagnostic code in the probability ordered list of predictions. For-

mally, let dt be the ground truth diagnostic code which follows a particular his-

tory H . Then the rank r of dt is given by the number of diagnostic codes which

the model predicts as following H with at least the probability p(H → dt):

r = | {d : d ∈ D ∧ p(H → d) ≥ p(H → dt)} |. (17)

We used the same granularity of codes the original work described in (Arand-

jelović, 2015b).

Furthermore, we adopt the usual ‘leave one out’ evaluation protocol whereby

the performance of the method is tested with each patient’s data in turn and the

model trained using the data of all other patients. To quantify the aggregate
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performance of the model for specific model parameter values (i.e. the number

of salient diagnoses included in the history vector representation) we use two

well known measures. These are the average rank (a special case of the average

normalized rank (Salton and McGill, 1983) when the set of target matches is

exactly equal to 1) and the normalized area under the cumulative match charac-

teristic (CMC) curve. For each possible rank r (r = 1 . . . n, where n is the worst

possible rank, equal to the number of diagnosis types), the CMC takes on the

value equal to the proportion of predictions which predict the correct diagnosis

at worst with the rank r (Bolle et al., 2005). The ideal performance results in the

CMC having the value 1 across all ranks i.e. in each individual case the correct

diagnosis is ranked 1. The area under the curve is normalized so that it is equal

to 1 in this ideal case.

We started by looking at the effect that changing the number of salient di-

agnosis types, i.e. diagnosis codes with the corresponding (1-to-1) elements in

the history vector, has on the area under the CMC curve. Our experimental re-

sults are captured by the plot in Figure 10(a). The plot can be readily seen to

support our hypothesis that predicted a decay in the adopted model’s predic-

tion performance for an increasing number of explicitly modelled diagnoses.

Notwithstanding this unwelcome qualitative observation, the major result is of

a quantitative nature – the rate of the aforementioned decay is very slow indeed.

Like many other natural phenomena the decay exhibits a power-law form with

the associated exponent value which differs from 1 by only 5 parts in 100,000

i.e. it is equal to 1 − 0.5 × 10−5. The practical significance of this finding is

better appreciated by considering the plot in Figure 10(b). This plot shows the
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variation in the area under the CMC curve as a function of the coverage of the

entire diagnosis data corpus by the salient codes. The outstanding performance

of the adopted method is illustrated well by noting, for example, that the di-

mensionality of history vectors can be increased to explicitly model the number

of most frequent diagnosis codes which cover over 91% of the data, with the

predictive performance of the method dropping by a mere 0.5% as compared

to the coverage of only 61%. Even 98% of data coverage results in a change

of only 0.8%. Recall that in the original paper the authors used 30 codes which

accounted for 75% of the diagnoses in the corpus. Our results demonstrate that

this was an overly conservative value.

We next examined the average prediction rank of the correct diagnosis type,

which offers further insight into the performance of the adopted method. As

expected from the previous set of findings, the results summarized by the plots

in Figures 11(a) and 11(b) corroborate the observation that an increase in the

dimensionality of history vectors, a key parameter of the method, worsens per-

formance. In this experiment this worsening is exhibited as an increase in the

average rank (i.e. a greater number of incorrect predictions are made with a

higher probability than the actual ground truth diagnosis type). It is interesting

to note the significance of what appears to be a much more rapid performance

deterioration in terms of this performance measure in comparison with the area

under the CMC curve discussed previously. For example, while the use of 200

vs. 10 most frequent diagnosis codes effects a reduction of only 0.5% in the

area under the CMC curve, the corresponding change in the average rank of the

correct diagnosis type increases fivefold (from approximately 1.5 for 10 salient
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codes, to approximately 7.3 for 200 salient codes). The explanation for this ap-

parent discrepancy is in fact reassuring as it demonstrates that the most dramatic

changes in the predicted rank happen for predictions which are already not very

good i.e. the small number of bad predictions become even worse, rather than

good predictions becoming bad.

Lastly, to examine in additional detail how an increase in the number of ex-

plicitly modelled diagnosis types affects predictions, we looked at prediction

rank histograms for different diagnosis codes and the corresponding changes as

their number was changed. Figures 12(a) and 12(b) contrast the histograms for

20 and 50 salient diagnosis types. It is remarkable to observe that in both cases

the histograms are virtually identical across different codes within the same

model. Rather than being effected by sub-par histograms of the added codes,

the (small, as demonstrated previously) deterioration in predictive performance

as the number of salient diagnosis types is increased, is effected by slightly

worse predictive performance uniformly distributed across different diagnoses.

This is highly preferable in practice as it implies that for a fixed model com-

plexity predictive power remains the same regardless of the patient’s ailment.

Were it otherwise, the predictions would be more difficult to interpret and the

model complexity more challenging to set appropriately as the model’s predic-

tive performance would exhibit dependence on the nature of the health problems

affecting a specific patient.
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4.3.1 Assessing the effects of incorporating explicit clinical knowledge

Firstly we examined how the number of transition merges changes with the

variation in the values of the two free parameters, namely the merging threshold

tm and the relative risk weighting constant Cx in (9) and (10). We applied our

method to the entire EHRs data set though, as noted in the previous section,

in practice it is likely that different parameters would be applied to different

sub-trees of the diagnosis coding hierarchy.

Our findings are summarized by the surface plot shown in Figure 13. While

it is inherently the case that increasing tm cannot reduce the number of merges

made, the characteristics of the corresponding change are insightful to the clin-

ician in that they can be used to guide the choice of the risk weighting con-

stant. Notice, for example, that the number of effected merges increases approx-

imately linearly across the entire range of tm for Cx smaller than approximately

0.5 whereas for Cx greater than 0.5 there is a much more sudden increase.

Next we examined salient diagnoses df (see Section 3.2) associated with

the greatest number of merges. We noticed that the diagnosis of stroke was one

of the particularly represented diagnosis amongst these, across different values

of tm and Cx, so we examined the corresponding merging behaviour in more

detail. Interpreted intuitively, this means that on average the diagnosis of stroke

has the least effect on (from the set of salient diagnoses included in the history

vector) the prognosis of other ailments. The family of curves for different values

of Cx, showing the variation of the number of merges (as the proportion of all

possible transitions pairs which could possibly be merged and associated with
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transitions effected by the diagnosis of stroke) as a function of the merging

threshold tm is shown in Figure 14. It is insightful to observe that much like

in Figure 13, an increase in Cx results in more merges for the same value of

tm. A careful consideration of characteristics such as this one is crucial in the

practical deployment of the proposed method, and the choice of granularity (in

the context of the diagnosis coding hierarchy) at which the method is applied

and its parameters.

5 Summary and future work

In this paper we introduced a novel algorithm that uses machine learning on

EHR collections for the discovery of longitudinal patterns in the diagnoses of

diseases. The two key technical novelties are: (i) a novel learning paradigm

which enables greater learning specificity, and (ii) a method for risk driven iden-

tification of confounding diagnoses. A series of experiments were presented to

demonstrate the effectiveness of the proposed techniques. Novel insights result-

ing from our experimental findings were also discussed and highlighted.

As regards possible future work directions, a number of possibilities were

proposed by the authors of the original history vector based approach that the

present method was partly inspired by. While we agree with most of these in

broad terms, our contributions, experiments, and results suggest what we be-

lieve to be more promising immediate alternatives. In particular while we agree

with the authors of the original method that the presence of a particular episode

of care is a predictive factor not much weaker than the exact number of episodes
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(which would require a prohibitively large amount of training data to learn), we

believe that history vector binarization is an overly harsh step for the reduc-

tion of the learning space. Following the spirit of the method introduced in the

present paper we intend to explore the possibility of automatically detecting

chronic types of episodes of care (such as dialysis, for example) and then using

a binary representation for non-chronic, and a more graded representation for

chronic conditions.
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history of autism spectrum disorder using topic models. In Proc. IEEE In-

ternational Conference on Data Science and Advanced Analytics, pages 762–

771, 2016.

P. Bhatnagar, K. Wickramasinghe, J. Williams, M. Rayner, and N. Townsend.

The epidemiology of cardiovascular disease in the UK 2014. Heart, 101(15):

1182–1189, 2015.

G. S. Birkhead, M. Klompas, and N. R. Shah. Uses of electronic health records

for public health surveillance to advance public health. Annual Review of

Public Health, 36:345–359, 2015.

R. M. Bolle, J. H. Connell, S. Pankanti, N. K. Ratha, and A. W. Senior. The

relation between the ROC curve and the CMC. In Proc. IEEE Workshop on

Automatic Identification Advanced Technologies, pages 15–20, 2005.

J. Butler and A. Kalogeropoulos. Hospital strategies to reduce heart failure

readmissions. J Am Coll Cardiol, 60(7):615–617, 2012.

C. Canavan, J. West, and T. Card. Calculating total health service utilisation and

costs from routinely collected electronic health records using the example of

patients with irritable bowel syndrome before and after their first gastroen-

terology appointment. PharmacoEconomics, 34(2):181–194, 2015.



34 Vasiljeva & Arandjelović
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0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Admission rank by frequency

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y

Cumulative

Individual

Fig. 2 Frequency (red line) and cumulative frequency of different diagnoses.

The plot illustrates the highly uneven distribution, with the top 30 most frequent

diagnoses accounting for 75% of the entire data corpus.
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Fig. 3 Conceptual illustration of the method proposed by (Arandjelović, 2015b)

which superimposes a Markovian model over a space of history vectors used to

represent the medical state of a patient.
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Fig. 4 (a) Patient age is not associated with the total number of admissions of

the patient. (b) Patient age shows low association (r = 0.14, p < 0.001) with

the number of conditions the patient has been diagnosed with.



Towards Sophisticated Learning from EHR 43

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

Admission type (as frequency rank)

N
u

m
b

e
r 

o
f 

a
d

m
is

s
io

n
s
 o

n
 r

e
c
o

rd

(a)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

Admission type (as frequency rank)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
a

d
m

is
s
io

n
 p

e
r 

a
ff

e
c
te

d
 p

a
ti
e

n
t

(b)

Fig. 5 (a) The presence of a particular condition in a patient’s history is a good

predictor of the total number admissions. (b) Average number of admissions for

patients containing a particular diagnosed condition in their history.
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Fig. 6 (a) Repeated diagnosis statistics for the top 30 diagnosed conditions.

(b) Average number of repeated admussions and the probability of a repeated

diagnosis for a particular condition.
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Fig. 7 Cumulative match characteristics (CMCs) for the prediction of the next

diagnosis from a patient’s history.
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Fig. 8 Partial history length vs. next diagnosis prediction rank.
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Fig. 9 Cumulative density function of the ratio of the probabilities of true pa-

tient medical history progression for the diagnoses-level Markov process ap-

proach and the proposed method.
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Fig. 10 The normalized area under the cumulative match characteristic (CMC)

curve.
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Fig. 11 The average prediction rank of the correct diagnosis type.
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(a)

(b)

Fig. 12 Prediction rank histograms across different diagnosis codes using (a)

20 vs. (b) 50 salient codes.
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Fig. 13 Surface plot showing the number of pair-wise merges performed (as

the proportion of all possible transitions pairs which could possibly be merged)

as a function of the adjustable parameters of the proposed method, namely the

merging threshold tm and the relative risk weighting constantCx in (9) and (10).
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Fig. 14 The number of effected merges associated with the diagnosis of stroke

(as df in Section 3.2) as the proportion of all possible transitions pairs which

could possibly be merged and associated with transitions effected by the diag-

nosis of stroke.


