
 
 

TODD-COXETER METHODS FOR INVERSE MONOIDS 
 

Andrew Cutting 
 

A Thesis Submitted for the Degree of PhD 
at the 

University of St Andrews 
 
 

  

2001 

Full metadata for this item is available in                                                                           
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this item: 
http://hdl.handle.net/10023/15052  

     
     
           

 
This item is protected by original copyright 

 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/15052


I

m
Todd-Coxeter Methods for Inverse Monoids

i By Andrew Cutting

A thesis submitted for the degree of Doctor of 
Philosophy of the University of St. Andrews.



ProQuest Number: 10166193

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10166193

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346





Declarations

I Andrew George Cutting hereby certify that this thesis has been composed by 
myself, that it is a record of my own work, and that it has not been accepted in 
partial or complete fulfillment of any other degree of professional qualification.

Signed............................  Date

I was admitted to the Faculty of Science of the University of St Andrews under 
Ordinance General No 12 on October 1996 and as a candidate for the degree of 
Ph.D. on October 1997.

Signed............................  Date .J.Z/JÆI..

In submitting this thesis to the University of St Andrews I understand that I am 
giving permission for it to be made available for use in accordance with the regula­
tions of the University Library for the time being in force, subject to any copyright 
vested in the work not being affected thereby. I also understand that the title and 
abstract will be published, and that a copy of the work may be supplied to any 
bona fide library or research worker.

Signed............................  Date

I hereby certify that the candidate has fulfilled the conditions of the Resolutions 
and Regulations appropriate to the degree of Ph.D.

Signature of Supervisor............................  Date .!?.(...



Acknowledgements

I would like to express my gratitude to my supervisors Edmund Robertson and 
Mike Atkinson and also to Werner Nickel, Nikola Ruskuc, Andrew Solomon, 
Steve Linton, Robert Wainwright, Haymllah Ayik, Robert Aithur, Brunnetto Pi- 
ochi and Allessandra Cherubini who helped me with so many mathematical ideas.
I would like to thank B. P. S. R. C. for the financial support.

I would like to thank my fiance Hilary Anderson and my family for all their pa­
tience.

11



Abstract

Let P  be the inverse monoid presentation {X\U) for the inverse monoid M, let 
7T be the set of generators for a right congruence on M  and let u € M. Using 
the work of J. Stephen [15], the current work demonstrates a coset enumeration 
technique for the 7^-class Ru similar to the coset enumeration algorithm developed 
by J. A. Todd and H. S. M. Coxeter for groups. Furthermore it is demonstrated 
how to test whether Ru ~  fot u,v e M  and so a technique for enumerating 
inverse monoids is described. This technique is generalised to enumerate the R-  
classes of M.
The algorithms have been implemented in GAP 3.4.4 [25], and have been used 
to analyse some examples given in Chapter 6. The thesis concludes by a related 
discussion of normal forms and automaticity of free inverse semigroups.
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Chapter 0

Introduction

In 1936, J. A. Todd and H. S. Coxeter [29] developed a systematic method for 
enumerating the cosets of a subgroup of a finitely presented group. This is one 
of the most important and usefull procedures in computational group theory and 
provides a vital link between group presentations and permutations. It was one of 
the first group theoretic algorithms to be implemented on a digital computer by C. 
B. Hazelgrove in 1953.
Although the algorithm is for groups it also generalises quite naturally to monoids 
(see B. H. Neumann [17] and A. Jura [12]). The current work describes an im­
plementation of a Todd-Coxeter style algorithm for inverse monoids based on the 
work of J. Stephen [27]. There are, however, important differences in this proce­
dure to the previous procedures such as the fact that the inverse monoid is divided 
into subsets which are enumerated seperately rather enumerating the entire struc­
ture in one go and also that in each of these subsets the enumeration terminates 
before the coset table is filled.
There is a set of relations called Greens relations on a monoid, these include R- 
classes and 7^-classes. In particular in an inverse monoid, every 7?.-class contains 
exactly one idempotent, e. The property of 7^-classes in inverse monoids is that 
if uu~^v'Ruu~^ then uu~^vv~^ =  uu~^. It could be said that inverse monoid 
%-classes have a kind of local right cancelation which is similar to groups. % is 
a subset of IZ such that there is both a right cancelation and a left cancelation in 
each "K-class. The reader is encouraged to keep group theoretic results in mind as 
we generalise them to inverse monoid 7^-classes. See, for example, Howie [9] or 
Petrich [18] for basics on Green’s relations.
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The inverse monoid enumeration procedure is of necessity split into two parts 
- the enumeration of each 71-class and the enumeration of the 7^-classes. The 
enumeration procedure for groups and monoids is only reminscent of the first of 
these paits. This splitting is, I believe, necessaiy and is related to the fact that the 
free inverse monoid over X  cannot be finitely presented as a monoid. In essence 
we are dealing with two superimposed congruences - the one generated by an 
infinite number of relations for the monoid presentation of the free inverse monoid 
and the one generated by the extra relations from the inverse monoid presentation.

This work is primarily of use for those who wish to study inverse monoid presen­
tations. It allows a detailed investigation into each of the 72-classes of an inverse 
monoid, with the only finiteness conditon being that each 72-class contains a fi­
nite number of 72-classes. It may also be of use for developing a technique to 
enumerate any algebraic structure whose word problem is solvable.
Chapter 1 is an introduction to Todd-Coxeter coset enumeration and details the 
worldng of the algorithm for monoids. This algorithm is based on Neumann’s 
algorithm although I do not give an exact replica. Monoids aie very general alge­
braic structures and it is partly my goal to understand the application of the coset 
enumeration method in its most general form.

Chapter 2 is an introduction to inverse monoid theory. Naturally the emphasis is 
on the computational and presentation theory side of inverse monoid theory.

Chapter 3 details W. D. Munn’s work [16] on word trees and the solution of the 
word problem in the free inverse monoid. I then go on to apply Munn’s ideas to 
constmct an inverse monoid enumerator. The purpose of this chapter is entire­
ly for the sake of explaining and exploring my reasoning about inverse monoid 
enumeration. The algorithm in Section 3.4 is inferior in several respects to the 
algorithm in Chapter 5. Chapter 3 can be skipped when reading this thesis.
Chapter 4 details Stephen’s work [27] on the solution of word problem for gen­
eral inverse monoids. I add a slight generalisation to do with right congruences.
Chapter 5 details the inverse monoid coset enumeration algorithm proper. I pro­
vide a proof that it terminates and produces the coiTect result and I also detail some 
valuations for enumerating individual 72-classes and right quotients of 72-classes 
and a variation which enumerates M/72.
In Chapter 6, using insights from the enumeration algorithm, I look at various 
types of inverse monoid presentation which include presentations for monogenic 
inverse monoids, coxeter inverse semigroups, symmetric inverse semigroups, free



inverse semigroup products of finite inverse semigroups with semilattices, inverse 
semigroups with infinite 72-classes and inverse semigroups with an infinite 72- 
class.
Chapter 7 Contains a paper I wrote with Andrew Solomon concerning the auto­
maticity of free inverse semigroups.
The implementation has been done in GAP 3.4.4 [25] and is included in the Ap­
pendix.



Chapter 1

Preliminaries

In this chapter I introduce some of the basic ideas involving groups and semi­
groups. In paiticular I am interested in free groups and semigroups, words in these 
structures, presentations of groups and semigroups and ultimately Todd-Coxeter 
coset enumeration.

1.1 Free Semigroups, Monoids and Groups

It is worth recalling some basic definitions before we proceed.
As I am interested in insights into enumeration techniques in the most general 
terms I shall talk about algebraic structures. By these I shall mean a set. A, with 
certain operations. An n-ary operation (with n > 1) being a mapping from the 
Cartesian product of n copies of A into A. If n = 0 then this nullary operation 
is a simply a specific element in A. Almost all algebraic structures that mathe­
maticians are interested in only involve binary, unary and nullary operations. In 
particular if * is a binary operation on A and x^y € A  then the image of {x,y) 
under * is written multiplicatively as a; * y. I shall talk about certain standard no­
tions such as homomorphisms and substructures and would refer the reader to a 
standai'd algebra textbook such as Burris and Sankappanavar [2],

Definition 1.1.1. A semigroup, S, is a set with a binaiy operation * such that * is 
associative that is

G1 X * {y ^ z) = (x * y) * z, Væ, y ,z  G S.



A monoid, M, is a semigroup with an identity cm ^  M  such that 

G2 a: * 6m =  ÊM * a; =  æ , Væ G M.

A group, G, is a monoid with inverses, that is it has a unary operation such that

G3 æ * x~^ — x~^ ^ X  = eo, E G.

Where there is no confusion we write xy instead of æ * y and we write e in instead 
of €m- The equations in the axioms Gl, G2 and G3 are called identities.

Definition 1.1.2. A variety, V, is a collection of algebraic structures with the fol­
lowing characteristics:

VI V is closed under homomoiphisms. That is if O G V and O' is a homomor­
phic image of O then O' G V.

V2 V is closed under talcing of substructures. That is if O' is a substructure of 
O G V then O' G V.

V3 V is closed under taking direct products. That is if {Oi\i G / }  Ç V then the 
Cartesian product Hiej ^

The collection of semigroups, the collection of monoids and the collection of 
groups are varieties. We call elements (eg. single groups, single semigroups etc.) 
of a variety objects.

N otation: I shall refer to S  as the variety of semigroups, M. as the variety of 
monoids and Ç as the variety of groups.

Definition 1.1.3. Given a variety V and a set X ,  then an object, F  is said to b&free 
over X  in V if X C. F  and for every object O G V and any mapping (f) : X  O 
there is a unique homomorphism (j)' -. F O which extends (j) ie. xcj) =  x(j)' for 
æ G X.
In particular we have/re^ groups, free semigroups and free monoids.

We have the following well know lemma. See for example Burris and Sankap­
panavar [2] for a proof.



Lemma 1.1.4. Given a variety V and a set X  then the free object over X  in V 
exists and is unique.

N otation: The free object over X  in variety V is denoted by Fv(X) .
The definition of a free object is quite abstract so I shall introduce some notions 
to help “concretise” them for semigroups, monoids and groups.

Definition 1.1.5. Let X be a set. A word over X is a string of elements of X. 
The elements of X are refered to as letters. We call the string of zero length the 
empty word and denote it by e. If w = XiX2 ...Xn is a word then all the words of 
the form X{Xi+i...Xj (1 < i < j  < n) are all subwords ofw. The set of all words 
(including the empty word) over X is denoted by X*. We denote X*\{e} by X+.

If we define a binary operation, *, on X* and X"  ̂by concatenation ie.

(^XiX2...Xn) * (yiî/2”*2/m) “  X\X2...Xjiyiy2...ym

where 2:2 , -, a;», yi, 3/2 , 3/m G X then it is easy to check that X* is a monoid
with the empty word as the identity, and that X+ is a semigroup.
Given a monoid M  and a set X  with a map (j) : X  M, then we define 
(j)' : X* M  by

{x iX 2 . . .X n ) ( p '  -  {Xi ( j ) ){X2j>) . . . {Xn(l ))

and
e f  =

It is easy to see that <j)' is a homomorphism which extends (j). Moreover by the 
definition of homomorphism {uv)6 =  {u9){v9) for any homomorphism ̂  : X* -A 
M and e9 = cm and so we see that ÿ is unique. Hence X* is the free monoid over 
X. Similarly X+ is the free semigroup over X.
In a general setting a congruence is an equivalence relation on a structure which is 
consistent with operations and relations of that structure. By consistency there is a 
similar kind of structure on the set of equivalence classes, or congruence classes, 
which is called a quotient. For a semigroup (or monoid) S  a congruence p is 
consistent with multiplication ie. if xpy then xzpyz and zxpzy for x , y , z  £ S. It 
turns out that if an equivalence relation on a group is consistent with multiplication 
then it is also consistent with taking inverses and is thus a group congruence. If S  
is a semigroup (or a monoid or a group) and p is just a congruence on S  then we 
write the quotient semigroup (or quotient monoid or quotient group) as S / p.



A right congruence p on a semigroup/monoid/group S  is consistent with “right 
multiplication” ie. if xpy  then xzp yz .  We also have the dual left congruence so 
that a congruence is both a left congruence and a right congruence. The set of 
equivalence classes of a right congruence p on a semigroup/monoid/group only 
form a new semigroup/monoid/group when pis a congruence.
It would be no exaggeration to say that this thesis is about congruences and right 
congruences on semigroups. In particular we may define X* as being isomorphic 
to a congruence p of (X  U {e})"^ by using axiom G2. If we define a relation on 
(XU{€})+

T) =  {(a;e, ex), {xe, x ) \x  €  X},

then we can construct p by finding the intersection of all equivalence relations, 
etai, i e I  on {X U {e})+ which contain rj such that for each (u, t;) G r]i and for 
every s , t  e  (X  U then {sut, svt) e pi (i E I). Now this is a convoluted 
way of saying, “you may cross out the e’s in any word in (X +  U {e})" ,̂” but it is 
the Idnd of construction we will be looldng at.
We now turn our attention to the free group on X. Let X"^ be a set of symbols 
with the same cardinality as X such that X f~l X~^ — 0. We define a bijection 

: X  —)• X~^ so that for x E X , x~^ is the image of x under We extend 
to bijection of (X U X~^)* onto itself so that {x~^)~^ = x for each æ G X U X~^ 
and

{XiX2...Xn)~^ =  X~^X~li...X^^.
We call an involution. It may be characterised by the following identities:

11 =  X

12 {xy)~^ — y~^x~^

Define a congruence a  on (X  U X~^)* (or p U a  on (X  U X ~ ^  U where p 
is the free monoid congruence) by first defining the relation

C — x~^x),  (a;æ“ \  e)|a; G X  U X “ ^} U { (w ,u ) |u  G (X  U X “ ^)*}

on (X UX”^)*. Define a to be the intersection of all equivalence relations Q ,i  E I  
containing Ç such that i f u , v E  Q and s , t  E {X U X~^)* then {sut, svt) E Q.
It is a non-trivial fact that (X  U X~^)*/a is isomorphic to the free group over X  
because it turns out that a is identical to

{{xx~^ ,x~^x),  {xx~^, e)\x G (X  U X “ ^)*}



which is the intersection of all congruences which satisfy the identities in axiom 
G3 (see for example D.L. Johnson [11] for a proof of this).
Given a word w E {X U X~^)*, we define w to be the unique word in wa such 
that there are no subwords which contain xx~^ or x~^x. We say that w is freely 
reducedand w is the free reduction of w. The free group on X  is the set of freely 
reduced words. The multiplication is defined by concatenation followed by free 
reduction.
I shall summarise. We aie interested in varieties which are subclasses of the vari­
ety of semigroups. Each variety, V, has a unique free object for any given set X. 
The free object is defined as being isomorphic to the quotient of X+ by the con­
gruence which is defined as the intersection of all congruences pon X+ such that 
X ^ ! p E V. In the cases of monoids and groups this intersection of congruences 
can be defined as a finite (if X  is finite) relation which generates the congruence. 
This last fact is very convenient and is not true of other varieties such as inverse 
semigroups and completely regular semigroups.

1.2 Presentations

Consider a variety V Ç 5. Any object O 6 V is a homorphic image of Fv(X) for 
some set X . Equivalently O is isomorphic to Fv(X )/p for some set X  and some 
congruence p. It is therefore natural to regard an object as a set of generators, X  
and a congruence on Fy(X).

Definition 1.2.1. A semigroup presentation P  is the pair of a set X  and a relation 
U on X+. It is written (X\U) and {u,v) E U is often written u  ~  v. Here X  
is called the set of generators, while U is called the set of relations. Similarly 
a monoid presentation P — {X\U) is the pair of a set X  and a relation U on 
X*. A group presentation P  =  (X|[/) is the pair of a set X  and a relation U on 
(XUX-^)*.

In the most general terms, given a variety V, then a V presentation is the pair 
P ~  (X\U). The (unique) object defined by P  is Fv(X )/p where p is the inter­
section of all congruences which contain U. It not immediately obvious although 
it is the case that p is itself a congiuence. Where it does not confuse anything 
I shall abuse the notation and write u ~  v instead of upv  or x p  =  y p. I shall



refer to equality in the free semigroup and the free monoid as “= ” so as to avoid 
confusion.
Example: The semigroup defined by the semigroup presentation {x\x‘̂ =  x"̂ ) 
is {x}^! p where p is the intersection of all congruences which identify x^ with 
x"̂ . Take the word x^ G X ^ . Now we know that {x^^x" )̂ G p therefore x^ — 
[x‘̂ )x‘̂p{x'^)x^ — x'̂ px'  ̂and so [x^, x"̂ ) G p that is x^ is in the same congruence 
class as We would write x^ = x^.
As every object O in variety V is isomorphic to a quotient of a free object then 
there is a (non unique) presentation which will define an object which is isomor­
phic to O.
A  semigroup presentation can be regai'ded as a rewriting system. Given a semi­
group presentation P — {X\U) and given a word w G X+ with a subword u such 
that {u, v) e U  (or {v,u) E U) then we may replace the subword u with -y in to to 
create a new word z. We would say that w ~  z. In the above example x^ can be 
rewritten as In a confluent rewriting system a word w can be rewritten in its 
canonical form. The latter is some special element in the congruence class of w - 
usually the length-by-lexicographic least element in wp. In the above example x^ 
is rewritten as x"̂  which is length-by-lexicographic less than x^.
If V Ç «S is a variety then Fy(X) can be presented as a semigroup. In particular 
we have:

F_A4 (X) =  (X U {e}\xe ~  ex, xe — x)

and

Fg(X) =  (X U X~^ U {e}|rce =  ex, xe ~  x, xx~^ ~  x~^x, xx~^ — e).

Of course the group (monoid) presentation of the free group (monoid) is simply 
(X|0).
Suppose that P — {X\U) is a V presentation for object O and Q = (y |y )  is 
the semigroup presentation for Fy(X) then the semigroup presentation for O is 
(y  |t/ U y). In this sense monoid presentations and group presentations are short­
hand for semigroup presentations.

So far we have been talking in very general terms. To be able to compute with 
these sort of structures we will need some finiteness conditions. Given an object 
O in a variety V, we say that O is finitely generated if there is a presentation 
{X\U) of O such that X is finite. We say that O is finitely presented if there is a



presentation {X\U) of O so that both X  and U are finite. It is difficult to perform 
any computations with infinitely generated objects and I will not touch upon these. 
Likewise finite presentability is highly desirable. If in particular O is finite then 
O is finitely presented as we can take the generators to be the elements of O itself 
and the relations to be its multiplication table.
An important question is the word problem. This asks whether, given a certain 
semigroup presentation {X\U) for the semigroup S, it is generally possible to 
tell whether w =  v in 5  for u, y G X+. As our concern is with enumerating 
semigroups, we must be able to solve the word problem to be able to distinguish 
between elements, and so a soluble word problem is a pre-requisite for coset enu­
meration.
It is an interesting question whether there is always a systematic enumeration 
process for a semigroup presentation with solvable word problem. This question, 
though, is dependent on the exact meaning of “systematic”. In the case of inverse 
semigroup presentations (see Chapter 2 for a description of inverse semigroups 
and Chapter 5 for the enumeration technique) , we must be willing to generate 
subsets of the inverse semigroup a number of times which is not the case for group 
and semigroup presentations. It is, however, clear that there must be some sort of 
enumeration process for any semigroup where the word problem is solvable as we 
can list the elements of X+ in length-by-lexicographic order and work our way 
down them using the solution to the word problem to eliminate any words which 
are equal to any of the previous words. This method, though, is inferior to the 
coset enumeration described in the following section as clearly it is necessary to 
first find a method for solving the word problem, which is not always easy and is 
perhaps computationally inefficient.

1.3 Todd-Coxeter Coset Enumeration for Monoids

This section is based on the work but not the teiminology of A. Jura [12] and B.
H. Neumann [17].
The Todd-Coxeter algorithm for monoids provides us with a basic, stripped down 
technique. It is a useful introduction to coset enumeration although the classical 
algorithm was for groups.
The set of mappings of a set A  into itself defines a monoid with multiplication be­
ing map composition and the identity being the identity map. We call this monoid
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the transformation monoid over A. If A =  {1, 2 , n} then we denote the trans- 
foiTnation monoid over A by T .̂ Similarly the set of bijections of a set A onto it­
self defines a group. We call this the symmetric group over A. If A =  {1,2,..., n} 
then we denote the symmetric group over A by 5^.
Given a monoid M, and m G M, we define a map : M -> M by : w i-̂
um .  The map composition o ; w i-)> u m n  and so p,uoprn = Therefore 
T  = {pml'tn G M} is a monoid with ct ~  the map f  : M  ~ ^ T  defined
by : m i-A /iyn is an epimorphism. M can therefore be embedded in T\m \ where 
|M| is the number of elements in M. We call T  along with mapping f  the right 
regular representation of M.
In exactly the same way a group G can be embedded in S\g\ s o  that for y G G 
we define the bijection pg : G G by pg : u ug. In the group case all the 
mappings have inverses - Pg~  ̂ ~  Pg~̂ . This result was first discovered by Cayley 
and both the case for groups and the case for monoids are refered to as the Cayley 
theorem.
We now focus on monoids. If we start with a finite monoid presentation P = {X\U) 
for a monoid M we wish to find the following:

1. The number of elements in M.

2. The right regular representation of M  acting on M.

The gist of the algorithm is that it defines cosets (that is cosets of the trivial sub­
monoid {e} of M) by post-multiplying each of the already defined cosets by each 
of the generators. The algorithm then “applies relations” to the cosets it has de­
fined and identifies them with each other. The algorithm terminates if and only if 
M  is finite.
E xam ple: If M  is presented by (%,y|0) then the algorithm will start with the 
coset representing e - call this coset “1”. We define a new coset of 1 under the 
image px which we shall call “2” 2 Ipx. Similarly we define 3 := Ipy. We
then proceed to apply x and y to coset 2 to define cosets 4 and 5. The coset table 
will look like this:
Where ±  indicates that the table is still incomplete. Clearly this procedure will 
not teiTninate as in this case M  is not finite.
Exa m ple: If M  is presented by {x\x^ — x"̂ ) then, as before, we start with 
the coset 1 representing e, we then define 2 := Ipx and 3 := 2px =  and

11



Cosets X y
1 2 3
2 4 5
3 X X
4 X X
5 X X

4 := 2>px = we then notice that we can “trace both sides of the relation 
through our table” and we come to the conclusion that “4 =  3”. We then 

“delete” coset 4 and replace all occurrences of coset 4 in the table with coset 3. 
The table is now complete.

Cosets X

1 2
2 3
3 3

I shall proceed to describe this algorithm more rigorously.

1.3.1 The Data Structures

• The presentation P  stored as the immutable pair of a list of generators, X  
and a list of pairs of words in those generators, U.

• The set of cosets, C which is a mutable set of positive integers. Initially 
C ;= {!}.

• The coset table, T  which is an incomplete mutable array. The columns 
of T  are labeled by the generators in X  and the rows are labeled by C. 
The entries are elements of C U {_L} where X is a symbol which tells us 
that the entry has yet to be considered. Entries in the table are refered to 
as T{c,x) where c E C and x E X .  We define T{±,x)  X for all 
X E X.  For any w =  XiX2-..Xn E X* we recursively define T{c,w) :=  
T { T { c , X i ) , X 2 X 3 . . . X n ) .
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• The mutable coincidence set K  Ç C x C. This is the set of identities of 
cosets which are derived from applying the relations in U.

• The replacing function r  : C -4 C U {0} with r(c) < c, Vc G C.

1.3.2 The Subroutines

The full names of the subroutines are given in bold while the part of the names 
in italics are their shorthand names. Some procedures simply change the data 
structures while others return a value, others will do both.
Replace

Description: During the computation various cosets will get deleted and replaced 
by other cosets. Rather than physically replacing the cosets it is simpler to use a 
pointer (the function r) to the replacing coset (and if that coset is deleted then its 
pointer is used and so on). If r{c) = 0  then the coset c has not been deleted.

• Parameter: c G C

• Locals: None

• While r(c) > 0 then c := r(c)

• Return c

Create a New Definition
Description: For coset c and generator x this routine defines a new coset for 
T(c, x), modifies the data structures accordingly and returns the value of T(c, x).

• Parameters: c E C, x E X .

• Local: d

Do the following in order:

• Add an element d max(C) +  1 to C.

• Add an empty row onto T  labeled by d.
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• Define r{d) := 0.

• Define T(c, x) := d.

• Return d.

Identify Coincidences
Description: This routine works its way through the set of coincidences and mod­
ifies the data structures accordingly.

• Parameters: None.

• Locals: di, dg

• While K  is not empty do the following

-  Pop (ci, C2) from K.
-  Let di := Replace(ci) and let ^ 2  •= Replace(c2).
-  If di 7  ̂ d2 then (assuming without loss of generality that di < CÎ2) do 

the following
* For each entry equal to ^ 2  in T, replace ^ 2  by di.
* For each æ G X, if T{di,x) = X then replace T{di,x) by 

T{d2 ,x) otherwise replace T{di,x) by min(T(di,a;),T(d2 ,a:)) 
and add (T(di, x),T(d 2 , x)) to K,

* Replace all pairs (s, d2) and (d2 , s) in K  with (s, di) and (di, s) 
respectively.

-  Let r{d2 ) := di

1.3.3 The Main Procedure

• Input: A presentation P = {X\U)

• Let c := 1

• Repeat

-  For each æ G X do New(c, re)
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-  For each 1 < d < c and for each [u, v) e U do the following
* If T(d, «) =  m 7  ̂X and T{d,v) = n ^  1. then push (m, n) onto 

K
-  Identify
-  Let c ;= c +  1

• Until T{c, x) ^  A- for every c E C with r(c) = 0 and x E X

• Tidy Up T

• Return T

1.3.4 Comments

There are several other points to make about the enumeration algorithm.

• The Tidy Up procedure simply removes the rows of deleted cosets from T  
and renumbers C so that the rows of T  are numbered 1,2,3...

• The For loop over which the variable d runs is necessary because changes in 
the data structures made in Identify mean that some cosets in {d G C |d  < c} 
may now trace relations.

• It is very easy to adapt this algorithm to semigroup presentations. It is only 
necessary to remove the first coset, which represents the identity, from the 
table. The monoid algorithm is more general than the semigroup algorithm 
in the sense that it allows presentations which involve the identity.

The proof of the following can be found in Jura [12].

Theorem 1.3.1. The monoid coset enumeration algorithm terminates if and only
the monoid M  presented by P  is finite in which case it returns a table with \M\
rows with the transformation px • AÎ M  being represented by the x  column in
T.
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Briefly the proof shows that given any word in w G X* there exists a positive in­
teger Nu, such that after a finite number of iterations, T{l,w) = Ny .̂ Furthermore 
the first k rows of table T will stabilze in a finite number of iterations as the holes 
will fill up and the entries will only ever be replaced by lesser values. Therefore 
for each w after a finite number of iterations there will be a stable row labelled by 
Nyj such that T (l, w) =  Ny,.

1.4 Enumeration of Right Congruence Classes

In the last section I described how to enumerate M  by enumerating the cosets 
of the trivial submonoid {e}. In other words the monoid enumeration algorithm 
enumerates M /p where p is the trivial (right) congruence. The algorithm naturally 
extends to right congruences in general.
The new algorithm will describe the action of each generator a; G X on {mp\m G 
M} and will do so by producing a table similar to the one in the standard algo­
rithm.
Assume we are given a monoid M presented by P  =  {X\U) and a right con­
gruence p on M. If m  G M then we define the map pm : M /p M /p  by 
Pm ' up ^  {um)p. The composition of maps pm pn ' up {umn)p and so 
Pm ® Pn ~  Pmri'
Note: It should be noted that T =  {pm\fti G M} and M/p are not “isomorphic”, 
indeed M /p is not even necessarily a monoid even though T  is. To see this con­
sider the map 0 : T  ^  M / p  where 9 : pm ^  rnp for m  G M. If (m , n) G p 
and Pm 7̂  Pn then Pm9 = mp — np — pn9 and so if this happens 9 is not an 
injection.
The right congruence monoid algorithm starts with two inputs.

1. A finite presentation P  =  {X\U) for the monoid M.

2. A finite set tt of pairs in X* x X* which generate the right congruence p. 
That is p is the intersection of all right congruences which contain t t .

The main procedure is modified thus:

• Input: A presentation P — {X\U) and a right congruence generator t t .
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• Let c := 1

• Repeat

-  For each x E X  do New(c, cc)
-  For each (w, v) G t t  do the following

* If T (l, u) = m ^  P  and T(l, t») =  n 7  ̂L then Push (m, n) onto 
K

-  For each 1 < d < c and for each {u,v) E U do the following
* If T{d, u) — X and T{d, v) = n ^  X  then Push (m, n) onto 

K
-  Identify
-  Let c := c +  1

• Until T{c, x) X for every c E C and every x E X .

» Tidy Up T

• Return T

The only change is the addition of the second For loop. In essence it is only 
necessary to check the application of a right congruence generator on the first 
coset. The reason for this is that the first coset, 1, represents the p-class containing 
the identity. If upv then clearly eupev and indeed e is the only element of M  which 
we can a priori multiply on the left with. If, in the above case, wupwv for some 
w E X* then eventually the algorithm will generate cosets representing either wu 
or wv and so it will discover that T (l, wu) = T{1, wv).

1.5 The Todd-Coxeter Algorithm for Groups

The classical algorithm was for groups even though it is more natural in the 
monoid case. This is because there has been far more research done in computa­
tional group theory than there has been in computational monoid and semigroup 
theory for the simple reason that monoids and semigroups are much more general 
and don’t have certain properties. For example, an important property of groups
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is that the order of a subgroup of a finite group G divides the order of G. This 
does not hold for monoids and semigroups.
The differences with the monoid algorithm (without the right congruence) are as 
follows:

1. The columns of the coset table are labelled by % U X~^,

2. For every new definition made, d ;= T(c, æ), then we set T{d, x~^) c.

There are certain things to note about the group algorithm and its use:

1. It is usual to write a relation ia =  as the relator uv~^ ~  e, and so the 
presentation becomes a set of generators and a set of words. The algorithm 
therefore checks an individual word, u and forces T(c, u) = c for each coset 
c e  G. Given any relator u = XiX2 ...Xn then any cyclic permutation of u is 
simply

Xi...XnX\...Xi-i =  { X i - i ~ ^  . . . X i ~ ^ ) u { x i . . . X i - i )  

p{xi î~  ̂...Xi~' )̂e{xi...Xi î)
=  e,

and so we may replace any relator with any of its cyclic permutations.

2. There is an algorithm for enumerating equivalence classes of a right congru­
ence on a group which works exactly the same way as the right congruence 
on a monoid algorithm works.

3. If p is a right congruence on the group G then ep is a subgroup of G. We 
may therefore think of the right congruence algorithm as enumerating the 
cosets of a subgroup. Hence the origins of the term coset enumeration.

4. The group algorithm has the same terminating conditions as the monoid 
algorithm. That is the algorithm terminates if and only if G (or G/p for the 
right congruence algorithm) is finite.
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Chapter 2

Inverse Monoids

In this chapter I intend to get to grips with what inverse monoids are and
sketch a theory of computing in inverse monoids. All proofs are taken from Pet- 
rich [18].

2.1 Green’s Relations

There are several important structural properties of semigroups and monoids which 
are worth reminding ourselves about.
N o ta tio n : If 5  is a semigroup then is the semigroup S  with an extra element, 
e added to it which obeys the identity law G2. Clearly is always a monoid. Note 
that if S  is already a monoid with identity 77 then er) ~  rje =  rj in S^.

Definition 2.1.1. Let 5  be a semigroup. If e e S  and e = then we call e an 
idempotent. We denote the set of idempotents in S h y  Es.

Definition 2.1.2. Let S' be a semigroup and let s ,t  e  S. We define the following 
equivalence relations on S.

sTZt if and only if there exists u,v e such that su = t and tv — s. We 
write Rs for the 7^-class containing s.

sCt if and only if there exists w^x 6  such that ws = t and xt — s. We 
write Lg for the £-class containing s.
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• s j t  if and only if there exists u , v , w , x  e such that w su  =  t  and x tv  — 
s. We write Jg for the jT-class containing s.

• H = CnTZ, We write Hg for the 7^-class containing s.

These equivalences are called Green’s relations.

Lemma 2.1.3. I f S  is a semigroup then C is a right congruence on S and IZ is a 
left congruence on S.

P ro o f:  Suppose sC t  in S  then s =  u t  and t  — vs  for some u ,v  e  S^. We 
therefore have sw = {ut)w  and tw  =  {vs)w  and therefore sw C tw  for any w e  S. 
£  is therefore a right congruence on S  and dually 7  ̂is a left congruence on S. ■

Lemma 2.1.4. £  o % = % o £

Proof: Let sCu and uR t  for s, w G S. Now 5 =  wu, t = ux, u = ys = tz  for 
some w, x ,y^z  G S^. Let v = sx = wt, s — wu ~  wtz — v z , t  = ux = ysx — 
yv and so sRv  and vCt so that C o R  C R o  C and dually C o R  C R o  C. ■
Finally we define the Green’s relation V  = R  o C. For any given semigroup 
n c R C V G j .  Dually R C C C V C J .

J

V
/  \

£  R
\  /

n

7^-classes and £-classes of a semigroup, S  have certain desirable features when 
they contain idempotents. The two following somewhat technical lemmas will be 
important when we consider the notion of inverses in semigroups. The proofs are 
not difficult and I would refer the reader to a standard text on semigroup theory, 
for example J. M. Howie [9].

Lemma 2.1.5. Let S  be a semigroup and let s^t  G S. Then s t  e RgC\ Lt if and
only if Lg Pi Rt contains an idempotent. In such a case,

sHt =  Hgt — HgHt =  Hgt =  RgH Lt.
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Lemma 2.1.6. Let e, /  G E s. For every s G i?e H L /, there exists a unique 
t e  R f C\ Lq such that st = e and ts =  /.

Corollary 2.1.7. I f  S is a semigroup and e G Es, then is a group.

Proof: By Lemma 7.1.3 we have He^ = He so He is closed under semigroup 
multiplication. Given s e He then by letting /  — e in Lemma 2.1.6 we know that 
there exists a unique t e  He such that st = t s ~  e. Thus se =  s{ts) — {st)s =  es 
and we know that because site  that there exists u e  such that s = eu and so 
es = e^u = eu = s and so e is an identity for He and t is an inverse for s. M
It is at first quite surprising that the variety of semigroups which is so general 
has some definite, general structural properties. In particular it is important to 
understand that different 7^-classes (and dually £-classes) within a given D-class 
are structurally identical. We have the following vital lemma.

Lemma 2.1.8 (Green’s lemma). Let s and t be C-related elements of a semi­
group S. By hypothesis there exist w, u' G such that us = t and u't — s. The 
mappings

a X ux {x ^  Rs)
and

a' '. y u'y {y G Rt), 
are mutually inverse, C-class preserving bijections of Rg and Rp

P r o o f :  If æ g  then uxRus. A s t = us so ux G Rt. Hence a  maps Rs into 
Rt. Similarly a' maps Rt into Rs.
For any a; G i?s, we have x — sv for some v e and thus

xaa' — u'ux =  u'u{sv) ~  u'{us)v — u'tv = sv = x.

Hence aa' is the identity mapping on Rs. Similarly a'a is the identity mapping 
on Rt. If æ G Rs, then xa ~  ux and x = u'(xa) so that xCxa. Hence a is £-class 
preserving. Similarly a' is also £-class preserving. ■
Even at this stage it is worth noting that Green’s lemma could be used to “run 
through” the 7^-classes in any given D-class. If we start with R^ we may define 
other 7^-classes in Du by {vRu\v G V} where V  is some sort of “canonical set” 
of left multipliers which includes the identity.
There is of course a dual for Green’s lemma where right multipliers permute C- 
classes.
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2.2 Regular Semigroups and Monoids

Definition 2.2.1. Let 5  be a semigroup and let s E S. We say that s is regular 
if there exists a' E S  such that aa'a = a and a'aa' = a'. In such a case a' is an 
inverse of a. The set of inverses for a is denoted V (a). We say that 5  is a regular 
semigroup if every a G S' is regular. If S is also a monoid then we say that S is a 
regular monoid.

Given any semigroup S then an example of a regular element is any idempotent 
e E Es. It is easy to see that e is its own inverse.

Lemma 2.2.2. Let S  be a semigroup and let a E S be regular with a' E V (a). 
Then the following hold:

(i) aRaa'.

(ii) aCa'a.

(iii) aVa'.

(iv) aa' and

Proof: (i) We need to find u and v in S  ̂ such that au =  aa' and aa'v = a. Let 
u = a' and v = a.
(ii) We need to find u and v in S  ̂ such that ua = a'a and vEa — a. Let u — a' 
and V =  a.
(iii) By (i) and (ii) and noting that a is an inverse of a', aRaa'Ca' and so aVa'.
(iv) {aa'){aa') =  {aa'a)a' =  a a ', ( a 'a ) (a 'a )  =  ( a 'a a ') a  =  a'a. ■

Theorem 2.2.3. Let S  be a semigroup, the following two statements are equiva­
lent.

(i) S  is a regular semigroup.

(ii) Every C-class and every R-class in S has at least one idempotent.
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P r o o f ; (i) =>- (ii). This follows from Lemma 2.2.2 parts (i), (ii) and (iv).
(ii) => (i). Let a E S, let e be an idempotent in La and let /  be an idempotent in 
Ra. Now ua = e, ve = a, ax = f  and f y  = a for some u, v ,x ,y  E S^. I want to 
show that uax is an inverse for a. We have

a{uax)a — a{ua)xa =  aexa =  {ve)exa = vexa — [ax)a — fa  = f{ fy )  ~  a

and

{uax)a{uax) — u{ax){a){ua)x =  u f{ fy )ex  = uaex = u(ve)ex =  uax

as required. ■
If we recall Todd-Coxeter enumeration methods for groups, the action of the group 
on itself on the right is examined systematically. Now there is no free regular semi­
group over a set X  and so there are no regular semigroup presentations, so there is 
special Todd-Coxeter method for regular semigroups as a class as Todd-Coxeter 
requires a presentation for the input. However before moving on to inverse semi­
groups let us have a quick look at 7^-classes of regular semigroups.
Let 5* be a regular semigroup. Let a E S  and let a' E V{a). Now aa'Ra by 
Lemma 2.2.2 (i) and so Ra =  Raa> • Consider the subset of S

Ua =  {u\ao!'RaUu^ E V{u) such that aa'uu' — uu'aa'}.

For u E Ua, aa'uu' — uu'aa'Caa' and so for some v E where aa'uv = aa' we 
have:

aa'uu' ~  uu'aa' — uu'aa'uv =  aa'uu'uv — aa'uv =  aa'.
Hence within Ra we have inverses working somewhat like inverses in groups as 
long as we only act on the right within this subset Ua of S. This is not strong 
enough for the systematic approach of Todd-Coxeter style algorithm for 7^-classes 
special to regular semigroups and monoids because of the multitude of inverses 
any particular element has. We need a more refined class of semigroups before 
we can approach this question.

2.3 Introduction to Inverse Semigroups

Definition 2.3.1. A regular semigroup, S, is an inverse semigroup if every a E S  
has a unique inverse. If S  is also a monoid then we call S  an inverse monoid. The 
inverse of a is written a~^.
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N o t e : If a  g 5 then by definition (a  ̂ =  a.

There are two alternative definitions of inverse semigroups (inverse monoids) e- 
quivalent to the above definition summarized in the following theorem.

Theorem 2.3.2. Let S  be a semigroup, the following statements are eqivalent:

(i) S  is an inverse semigroup.

(ii) S  is regular and its idempotents commute.

(iii) Every C-class and every IZ-class of S  contain exactly one idempotent.

P r o o f :  (i) => (ii). Let e , /  g  E s  and a = (ef)~^. Now (a e ) (e /) (o e )  =  
( a ( e / ) a ) e  = ae and ( e / ) ( a e ) ( e / )  = ( e / ) a ( e / )  = e f  and so ae =  ( e / ) “ \  like­
wise fa  = ( e / ) “  ̂ and so a  = ae = fa . But then a^ = ( a e ) ( /a )  = a{ef)a =  a 
so that e f  = a~  ̂ — a e Es by Lemma 2.2.1 (vi). Symmetrically fe  G Es- 
Consequently ( e / ) ( / e ) ( e / )  = e / e /  = e f  and ( / e ) ( e / ) ( / e )  =  / e / e  =  fe  and 
so ( e / ) " i  =  fe . But we loiow that ( e / ) “  ̂ =  e f  and so fe  = ef.
(ii) (iii). By way of contradiction let e, /  G %  be ^-related. Then e = u f  and
f  — ve for some u,v  G S^, so that e f  =  /e ^  =  e / e  = u f^ u f — (uf)^ =  =  e
and similarly e f — e/^ =  ve^ve = (ve)^ =  /^ = /  as required. Similarly e R f  
implies e — f .
(iii) (i). By Theorem 2.2.3 we know that S  is regular. Let x and y be inverses 
of an element a of S. Then xa, ya G Es and xaCaCya and thus by hypothesis, 
xa = ya. Symmetrically, we get ax — ay. Hence x =  xax =  yay = y as 
required. ■

Corollary 2.3.3. Let S  be an inverse semigroup and let D be a V-class of S. 
Then the R-classes and C-classes of D are in one-to-one correspondence with 
each other.

We can now write a universal algebra style definition for inverse semigroups.

Definition 2.3.4. An inverse semigroup, S, is a semigroup with a unary operation 
so that for any x ,y  e S the following axioms hold:

(151) (æ-^)-^ = X

(152) (a; * 7/)“  ̂ =
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(153) X  ^  X   ̂ ^  X  =  X

(154) X  * x ~ ^  * y  * y ~ ^  =  y  *  y ~ ^  *  a; * a;"^

An inverse monoid, M  is an inverse semigroup with an identity eu  which satisfies 
G2.

By examining the latter definition it is clear that both inverse semigroups and 
inverse monoids form varieties.

N o t a t io n : The variety of inverse semigroups is denoted XS  and the variety of 
inverse monoids is denoted XM .
It is clear that all groups are inverse monoids and all inverse monoids are inverse 
semigroups. So we have the lattice of varieties:

<S
/  \

A4
\  /

Using Definition 2.3.4 we can define homomorphisms between inverse semi­
groups and inverse monoids.

Definition 2.3.5. If S  and T  are two inverse semigroups, an inverse semigroup 
homomorphism is a map p,: S  - y T  such that for x ,y  G S:

(1 ) [xy)p = xpyp

(2) x~~̂ p =  {xp)~^

If M and N  are two inverse monoids then an inverse monoid homomorphism 
V M  N  will satisfy the above properties as well as

(3)
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Lemma 2.3.6. Given two inverse semigroups (inverse monoids) S  and T, and a 
map p : S  ^  T  then p is an inverse semigroup (inverse monoid) homomorphism if 
and only if{xy)p = xpyp, \fx,y  G S (and esp = ct). That is it is only necessary 
to check conditions (1) and (3).

Proof: I shall check condition (2) assuming condition (1). Let x e S. Define 
y = x~^p. Now xp = {xx~^x)p =  (xp)y{xp) and y = x~^p — {x~^xx~^)p ~  
y{xp)y and so y is an inverse of xp  in T, hence by uniqueness of inverses x~^p = 
y =  {xp)~'^. ■

Lemma 2.3.7. Let S  be an inverse semigroup then

(i) each idempotent in S is its own inverse,

(ii) for each a E S, aa~^ is an idempotent,

(iii) each idempotent in S is the product of an element and its inverse.

(iv) the set of idempotents of S  forms a semilattice, that is it is a closed algebraic 
structure where every element is idempotent and e f  =  fe fo r  e , f E  Eg.

P r o o f :

(i) Let e G Eg. By Definition 2.3.1 we have a unique inverse e~  ̂of e satisfying 
ee~^e =  e and e “ ^ee“  ̂ = however e satisfys these conditions for e“  ̂
and so =  e by uniqueness of inverses.

(ii) Given a E S  then by (IS3) in Definition 2.3.4,

(aa~^){aa~^) =  {aa~^a)a~'  ̂ = aa~^.

(iii) Let e G By (i), e”  ̂ = e and so ee“  ̂ = =  e.

(iv) Given any e, /  G Eg, by (iii) e and /  are the products of elments and their 
inverses and by (IS4) in Definition 2.3.4, (e /)^  =  e / e /  = e^ /^  =  e f  and 
so Eg is a subsemigroup of S. Clearly each element of Eg is idempoten- 
t and again by (IS4) each pair of elements commute hence satisfying the 
semilattice axioms.
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■
At the end of Section 2.2 we defined a subset of a regular semigroup S  as follows: 

Ua = {u\aa'7laa'u, 3u' G U(u) such that aa'uu' — uu'aa'}.

If S  is an inverse semigroup then Ua is more simply

Ua ~  {u\aa~^7laa~^u}.

For inverse semigroups aa~^Ua = Ra, whereas for regular semigroups aa'Ua is 
only a subset of Ra, suggesting that enumerating Ra is similar to enumerating a 
group providing that we have a test for ^-equivalence. Indeed this conjecture is 
bom out even further by the Wagner representation theorem which shows how 
inverse semigroups can be represented when they act on themselves.

2.4 Wagner Representation Theorem

Analagous to the Cayley theorem for groups and the Cayley theorem for semi­
groups we have the Wagner representation theorem [31] for inverse semigroups 
which states the intimate relation between inverse semigroups and partial injec­
tions. Firstly though, some definitions are needed.

Definition 2.4.1. Given a set X, a partial transformation, r  : X  —)■ X, is a 
mapping of a subset of X into X. Likewise a partial injection, a : X —>• X, is 
an injection of a subset of X into X. Let a  be a partial transformation on X we 
denote the domain of a by d(a) and the range of a by r(a).

Definition 2.4.2. For a set X, the symmetric inverse monoid over X  is the set 
of all partial injections a : X X with composition written on the right. It is 
denoted Z(X). The set of all partial transformations over X is denoted Z*(X).

N ote: The similar set where the compositions are written on the left is antiiso­
morphic to Z(X). (See Lemma 2.4.3 below for the proof that Z(X) is a monoid.)

The name symmetric inverse monoid comes from the name of the symmetric 
group or full permutation group . The reader is encouraged to remember that 
a group, G, acting on itself induces a group of permutations of G isomorphic to G
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(Cayley’s theorem). One sometimes refers to partial injections as partial symme­
tries.
Given a set of symbols, X , let us add another symbol 0 and call the new set Xq. 
Given a partial transformation, a  on X  we may convert this to a transformtion a! 
on Xq by defining a ' : Xq \  d(a) -4- {0} and a! \ x  x a , \ ix  G d(a). We 
may therefore think of partial transformations on X as tranformations on Xq such 
that 0 is always mapped to 0, and throughout this thesis I shall treat them as such 
objects.

Lemma 2.4.3. Z’(X) is a monoid. Z(X) is an inverse submonoid o fT {X ) .

PROOF: Considering partial transformations on X as transformations on Xq it 
is easy to see that they are well defined and that the composition is associative. 
To see that the composition of two partial transformations gives another partial 
transformation notice that all that is needed is that the compostion maps 0  to 0  and 
as both partial transformations map 0  to 0  then the composition certainly does. 
Finally note that the identity transformation is a partial transformation and we 
have that Z’(X) is a monoid, or to be more precise a submonoid of Tx^.
Consider a G X(X). Now a restricted to d(a) is a bijection from d(a) to r(a) 
and hence has an inverse, a|d(a)~^, we construct an inverse, a! for a  by extending 
«|r(o:)~  ̂ to Xo by defining xa! ~  0 for a; G Xq \  r(o;). Note that xa!  =  0 if and 
only if a; G Xo \  r ( a ) .  To check that a a 'a  = a  we need to consider the following 
two cases:

•  æ G Xo \  d(a) in which case it is easy to see that both sides of the equation 
map X to 0 .

•  X  E d(o') in which case x a  ^  b and so x a a ' = x  and so x a a 'a  — 
{x a a ')a  =  x a  as required.

To check that a 'a a ' = a ' we need to consider the following two cases:

•  a: G Xo \  r ( a )  in which case it is easy to see that both sides of the equation 
map X  to 0 .

•  X  E r(o;) in which case x a ' ^  0 and so x a 'a  ~ x  and so x a 'a a '  = 
{x a 'a )a ' = x a ' as required.
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We now have a method for constructing an inverse for every element of Z(X) 
which we may consider a unary operation (although these inverses are not neces­
sarily unique). We may talk about a' and /3' as inverses of a and /3.
Observe that both ao>' and a!a will either map an element of X q to itself or to 0. 
These maps are both identities on a subset of X  and map the rest of X to 0. It is 
therefore clear that the product of aa' and /3/7' will commute. The unary operation 
of constructing inverses thus fulfills axioms (ISl), (IS3) and (IS4) of Definition
2.3.4 and by the note on (IS2) this is all that is required to show that X{X) is an 
inverse monoid. ■

Lemma 2.4.4. Given a set X  and a ,/3e  %(X) then d(cK )̂ =  (r(a) D d(^))a;~^ 
andr{a^) — (r(a) nd{^))/3.

P r o o f : Let x e d{a/3) then clearly xa  G r(a) and xa  G d(/3) hence x G 
(r(a) n d(^))û'“ .̂ Conversely let x G (r(a) H d(j0))a~^ then xa  G r(a) and 
xa  G d(^) and so æ G d{a/3). Hence d(a/3) =  (r(a) H d (^ ))a“^
Similarly it follows directly from definition that r(ap) = {r(a) n d{P))/3. ■

The Wagner Representation Theorem essentially declares that the action of an 
inverse semigroup, 5, on itself gives partial symmetries of S.

Theorem 2.4.5 (Wagner Representation Theorem). Let S  be an inverse semi­
group. For each a E S then we construct the partial symmetry on S, w°' as 
follows:

7/;® : a; xa, {x E Sa~^) 

w°' : X  0,{x E S q \  Sa~^).

The mapping
w : a ^  U)®5 (a G S) 

is a monomorphism of S  into X{S).

P r o o f :  First note that for a E S, d(w'^) =  =  Saa~^ and r(7t;®) = Sa =
Sa~^a.
If X ,  y E Saa~^ with xa = y a then xaa~^ =  yaa~^ but as#  G Saa~^ then 
X =  uaa~^ for some u E S  and so xaa^^ — u{aa~iy  =  uaa~^ =  x and 
similarly yaa~^ =  y and so a; =  y. Hence w isa  well-defined map of S  into X{S).
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Let a, 6 € S. Consider æ € d(u;“̂ ) =  S{ab){ab)  ̂ =  Sabb Then æ =
xabb~^a~^ and so

xaa~^ = x{abb~^ a~^)aa~^ = xabb~^a~^ = x

and

xabb~^ =  x{abb~^ a~^)abb~^ = xa{bb~^){a~^a){bb~^) = x{abb~^a~^)a = xa

and so xa 6  Sabb~^ so that x = xaa~^ G Sabb~^a~^ and therefore x G Saa~^ Pi 
Sabb~^ — [Sa~^a (T Sbb~^)w°‘~̂  and from Lemma 2.4.4 it follows that x G 
d(w'^w^). Conversely let x  G d(w'^w^). Then by Lemma 2.4.4 x ~  xaa~^ and 
xa =  xabb~^. Hence

X  =  xaa~^ =  xa{bb~^)a~^ =  a ; ( a 6 ) ( a 6 ) “ ^

and thus x G d(w°^). We have that d(w'^w^) =  and it is clear that if æ G
d(-u;“7n̂ ) =  d(w^^) then xw^w^ =  xab — xw^^ and if æ ^  d{w^w^) — d(w°^) 
then xw°’w^ — 0 =  Hence — w°‘̂  and w is an inverse semigroup
homomorphism.

Assume that ~  for some a,b E S. Then Saa~^ ~  Sbb~^ and so 

(aa~^){bb~^) = (aa~^){aa~^) ~  aa~^

and
{aa~^){bb~^) — {bb~^){aa~^) — (bb~^){bb~^) =  bb~̂

that is aa~^ =  bb~ .̂ Since aa~̂  ̂ E Sa~^, it follows that aa~^a = aa~^b, which 
implies a — aa~^b = bb~^b = b. Hence w is one-to-one and so is a monomor­
phism of S  into X{S). ■

2.5 Inverse Monoid Presentations

Having discussed inverse semigroups as partial symmetries, we shall now begin 
to look at the theory of presentations for these objects.

Given a set of symbols, X , there is a free inverse semigroup over X written 
F%g(X) and a free inverse monoid over X written (X).
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Given that is an involution then F%g(X) is presented as a semigroup by

{X  U X~^\uu~^u =  u, uu~^vv~^ = vv~^uu~^ Vw, 7; G (X U X “ )̂'*')

Similarly Fx^vt(X) is presented as a monoid by the same presentation.
The congruence generated by these relations is called the Wagner congruence and 
is denoted by px or more simply just p when there is no confusion.
Now unfortunately this is an infinite presentation as there are an infinite number 
of elements in (X U X “^)’̂. Worse still, this is the best we can possibly do. See 
Petrich [18] for a proof of the fact that Fi^(X ) cannot be finitely presented. At 
first sight this is disaterous, because Todd-Coxeter is applicable only to finite pre­
sentations. I shall show how this problem is overcome in Chapter 3 and Chapter 
4.

Definition 2.5.1. An inverse semigroup presentation is a presentation {X\U), where 
[7 Ç (X U X~^)+ X (X U X “^)+. If T is the congruence generated by pUU  then 
the inverse semigroup correponding to the inverse semigroup presentation {X\U) 
is (X U X -i)+ /t.

Similai'ly:

Definition 2.5.2. An inverse monoid presentation is a presentation (X|C7), where 
t/ Ç (X U X~^)* X (X U X~^)*. If r  is the congruence generated by p \JU  
then the inverse monoid coiTeponding to the inverse monoid presentation (X|?7) 
is (A: u

As with group and monoid presentations we may think of invserse semigroup 
and inverse monoid presentations as being shorthand for a semigroup presentation 
which includes p in its relations.

Definition 2.5.3. Given two inverse semigroups S  and T with presentations (X | U) 
and (y |y )  so that (X U X “ )̂ n (F U Y~^) ~  0 then the inverse semigroup free 
product is the inverse semigroup 5 * T which is presented by {X UY \U  UV).

The free inverse monoid product of two inverse monoids presented as inverse 
monoids is defined in the same way.
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Chapter 3 

Problems With Enumerating 
Inverse Monoids

As I have commented, the results of the previous chapter are largely negative 
as far as computation is concerned. For a Todd-Coxeter style enumeration for 
some object O in variety V a presentation of O is required. This means that 
a thorough understanding of free objects in V is needed. As we have seen in 
Chapter 1, semigroups and monoids have very simple free objects where there is 
only one representation of any particular element in terms of the free generators. 
For groups the free object is only slightly more complicated. The normal form 
for any particular element is found by free cancellation and in Todd-Coxeter this 
cancellation is implicit in the computation and actually makes the process easier. 
For inverse semigroups and inverse monoids there is a normal form for any word 
in a free object but this is not trivial to find.
N o t a t io n : We will want to be talking about varieties with an associative binary 
operation such that the free object has a unique noimal form for every element. I 
will call these varieties UNF-varieties.

3.1 An Approach to Enumerating Free Objects

In this section I shall introduce a simple, original algorithm to demonstrate ’’enu­
meration by identities” rather than ’’enumeration by relations” for the purpose of
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gaining insights into inverse monoid enumeration, which I will attempt in Section
3.4 and again more thoroughly in Chapter 5.
In general Todd-Coxeter style coset enumeration has three subroutines:

(1) Making a new definition.

(2) Checking a relation or a right congruence.

(3) Processing coincidences.

A free inverse monoid is a monoid with an infinite number of relations
and so process (2) has to be applied an infinite number of times. However, remem­
bering the universal algebra definition of inverse monoids, the free inverse monoid 
obeys only a handful of identities, that is equations which hold true throughout the 
variety. So instead of looking at the infinite relations, we might look at identities 
which a certain word 7n G (X U X~^)* must satisfy.

Supposing that variety V must satisfy the identity p{xi ,X2 ,...,Xm) = q{yi,y2 , 
then for any object O G V generated by the set X, O will satisfy the set of relations

IL2 , ...J Uiffi) — qipi, 772, •••5 77̂ ) Î Uij 7̂2 ) •••) Ujyi, 7^1, 7̂2 j •••3 '̂ n C F y (X") j", 

which is finite only when Fy(X) is finite.

For example any G E Q satisfies the identity xx~^ — e which is to say that 
for every element x E G then the relation xx~^ =  e is implicitly satisfied. Let 
us call these relations which are implicit in identities implicit relations and any 
other relations explicit relations. For a free object of variety V generated by X all 
relations are implicit over the set of free generators.
How is it that free groups can be finitely presented as monoids if there are an 
infinite number of implicit relations from the identities? The simple answer is that 
only a finite number of relations aie necessary. The “crude” monoid presentation 
ofFg(X) is:

(XU% -'|(Vw e =  £, =

however the standard presentation is

{X U X -'|(V x 6  X U X -i)  32-1 ^
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which is clearly finite when X  is finite. To see that this is a presentation of Fg(X) 
consider any word w = XiX2 ...Xn G (X U then

WW~  ̂ =  XiX2...XnXn~^Xn-l~^ ...Xi~^

and it is easy to see that this will cancel down to e by repeated application of the 
relations in the standard presentation.

For inverse monoids the implicit relations cannot be reduced to a finite number of 
monoid relations (for a proof of this see Petrich [18]). This does not necessarily 
make our task impossible, as given any word G (X U X~^)* there are only a 
finite number of implicit relations whose left or right side are sub words of w.
There are two important points about free groups. One is that they can be finitely 
presented, the other is that words in free groups have a unique normal form which 
is very easily found. This means that given two words u,v  G (X U X"^)* it is 
possible, indeed very easy, to tell whether u — v inFg{X). That is to say that the 
word problem is soluble.

Let us look at a variety where a normal form is easily found (and so the word 
problem is solvable) in the free objects. My example is that of semilattices with 
an identity, which form a variety SC^ c  XM. with a binary operation A and a 
nullary operation e satisfying the following identities

(SLI) associativity [x Ay) /\ z = x /\{y  /\ z)

(SL2) idempotency x A x  = x 

(SL3) commutativity x A y  = y A x 

(SL4) identity e A x  — x A e  — x

Let X be a finite set and Fĝ î (X) be the free semilattice with identity over X. 
Let there be a total order < on X. Given a word w = xi A X2  A ... A Xn EX*,  
let Y  = {xi, X2 ,...,Xn} G X then a unique normal form for w is the product of 
all the elements of Y  ordered in ascending order by <. It is not hard to see how 
w can be manipulated using (SL2) and (SL3) to do this and that this new word is 
unique. Let U{w) be this unique normal form of w.
An algorithm for enumerating F^^i (X) follows.
Define the following data structures:
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• The immutable set of generators, X .

• The coset set C which is a mutable set of positive integers. At the start of 
the algorithm G := {!}.

• The mutable coset table T  which is an array of elements of GU{_L} (where 
_L is the empty symbol) with rows labelled by elements of G and columns 
labelled by elements of X . Entries in T are referred to by T(c, x) where 
c e C and x E X . Initially T is a single row of empty symbols.

• The mutable representative set P Ç X*. Initially P := {e}.

• A surjection t/j : G P with 1 t/> =  e.

• A mutable coincidence set iP C G x G.

• The replacing function r  : G -4 G U {0} with r(c) < c, Vc e  G.

Define the following subroutines:

Replace

• Parameter: c e C

• Locals: None

• While r(c) > 0 then c := r(c)

• Return c

Create a New definition

• Parameters: c e C and x E X .

• Local: d

• Add d := max(G) +  1 to G.

• AddU{{c'ip) A x) to P.

• Add an empty row onto T labelled by d.
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• Define dip =  U{{cip) A x)

• Define T{c,x) d

Check a Coset.

• Parameter: cE C

• Local : d

• For each d E C if cip — dip then add (c, d) to K .

Identify Coincidences

• Parameters: None

• Locals: ci, cg, d\, dg, s, x

• While K  is not empty do the following

-  Pop (ci, cg) from K.
-  Let d\ =  Replace(ci) And Let dg = Replace(cg)
-  If dx dg then (assuming without loss of generality that di < dg) do 

the following
* For each entry equal to dg in T, replace dg by di.
$ For each x E X , if T[dx,x) — _L then replace T[di,x) by 

T(dg;æ) otherwise replace T{di,x) by min(T(di, æ),T(dg,a;)) 
and add ((di,a;),r(d2 ,a;)) ioK .

* For each pair (s, dg) or (dg, s) in K, replace with (s, di) or (di, s) 
respectively.

-  Let r(dg) := di

The main algorithm proceeds as follows:

• Repeat

• For cE  C and each æ G X do
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-  If T(c, a;) = ±  Then
-  New(c,rc)
~ Check(c)
-  Identify

• Until Vc G G and Væ G X, T{c, æ) ^  _L

This algorithm will enumerate free semilattices with identities and it is easy to see 
that it applies just as easily to any free object of a UNF-variety although it will 
only terminate when the free object is finite.

It should be noted that this algorithm applies only to free objects. A procedure for 
enumerating general semilattices with identity is a simple generalisation as every 
finitely generated semilattice with identity is finite and hence has a unique normal 
form. Having said that, I have no general approach to enumerating any object of 
any UNF-variety.

The point is, though, that having a systematic method for enumerating free objects 
is a step towards enumerating general objects of that variety. Certainly if one 
has no method for enumerating the free object then there is no hope of anything 
approaching a Todd-Coxeter style enumeration for quotients of the free object.
As we noted there is a unique normal form for inverse semigroups. For our pur­
poses it suffices to be able to find a unique representation of some Idnd.

3.2 Word Trees

In this section I will be working from W.D. Munn’s paper Free Inverse Semigroups 
[16]. This is a graph theoretic approach to handling Fx;^(X) which shows how 
to solve the word problem.

As I will be talking consistently about F%;^(X) in this section, I will refer to the 
Wagner congruence on X* by p.

Definition 3.2.1. A tree is a connected, directed graph without cycles except that 
for every edge {a, /?) there is an edge (/?, a) in the opposite direction.
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Usually a tree is defined to be a connected, non-directed graph without cycles. 
The only difference with this and the above definition is that the latter allows the 
two directions of an edge to be distinguished.

For any set X  called a labelling set there is a corresponding set X~^ with |X| = 
|X“ |̂ and a bijection \ X  ^  X~^ with the image of x being x~^.

Definition 3.2.2. A word tree T on a labelling set X is a tree, with at least one 
edge, satisfying the following two conditions:

(WTl) Each edge is oriented and labelled by an element of X. For every edge from 
a to j3 labelled by x then there is another edge from /3 to a  labelled by x~^. 
The former is refered to as {a, x, /3) and the latter as (^, x~^, a).

(WT2) T is deterministic in that for every vertex 7  all edges from 7  are labelled by 
different elements of X. Dually T is injective in that for every vertex 7  all 
edges to 7  are labelled by different elements of X.

The set of vertices of a word tree, T, is denoted by V  (T) while the set of edges 
is denoted by E{T). A word tree is said to ho finite if both V{T) and E{T) are 
finite.

An example of an infinite word tree is the Cayley graph of Fç;(X).

Definition 3.2.3. Let T be a word tree on X and lota, eV {T ) .

• An (a, fi)-walk on T is a sequence P = [a ~  7 0 , 7 1 ,..., 7 » =  of vertices 
of T  such that 7 ^_i and 7  ̂are adjacent vertices for i =  1,..., n.

• An {a, /7)-walk P = (a — 7 0 , 7 1 , ...,7 » = j3) on T  is said to span T  or to 
be a spanning (a, fi)-walk on T, if and only if each vertex of T occurs at 
least once among the 7 *.

• The (a, fi)-path on T is the unique (a, /3)-walk {a = 7 0 , 7 1 ,..., 7 » =  j3) on 
T such that no vertex of T occurs more than once among the 7 .̂ We denote 
it by n(a, /?). The integer n is called the length of II(o', ^).

Definition 3.2.4. Let T and T' be word trees on X. A word tree homomorphism 
9 :T  -> T' is a map from V  (T) to V (T') which preserves adjacency, orientation 
and labelling of edges, that is if (a ,x,fi) e E{T), then [a6,x,P9) e E{T').
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Similarly a word tree monomorphism is a word tree homomorphism which is in­
jective. A word tree isomorphism is a word tree homomorphism which is bijective. 
A word tree automorphism is a word tree isomorphism which maps a word tree T 
onto itself.

It turns out that word tree homomorphisms and word tree monomoiphism between 
finite word trees are actually the same thing as any map which preserves adjacen­
cy, labelling and orientation of edges will either be one-to-one or will create a 
cycle.

Lemma 3.2.5 (Munn). Let T  and T' be word trees on X  and letO \ T  —> T' and 
(j) \ T  -y T' be monomorphisms such that a9 = a f fo r  some a  G V{T). Then 
9 = (p.

P r o o f :  Choose a spanning {a, ^)-walk P = (a = 7 0 , 7 1 ,..., 7 » =  ^ )  on T for 
any vertex of T. By hypothesis 7 0 ^ =  7 o<̂. Suppose that 7 i_i0  =  7 %_iÿ. 
Then if x is the label on 7 i_i7 i it is also the label on both (7 %_i )̂(7 %̂) and 

Hence, by (WT2), %9 — Thus, by induction on i, 7 *̂  =  'yif 
for 7 =  0,1,..., n. Every vertex of T  occurs among the 7  ̂and so <p — 9. ■
This last result and a bit of graph theory provide us with the following theorem.

Theorem 3.2.6 (Munn). The only automorphism of a finite word tree T  on X  is 
the identity automorphism.

Let P  =  (a =  7 o, 7 1 ...7 m = and Q = {j3 = Ôq, Ji, ...ôn =  7 ) be , respectively, 
an (a,/7)-walk and a (^ ,7 )-walk on a word tree T  on X . Then we define an 
(a, 7 )-walk PQ on T by

PQ ~  ( C K  =  7 0 j  ■ ■ ■ 5  T m — 1 >  ^ I j  ’"i^n  —  T ) '

We now have a multiplicative operation for walks given that the former ends where 
the latter begins (simply by concatenating them). It is clear that this operation is 
associative. Also if P  is an (a, o;)-walk then P^{r G N) is the product of r 
copies of P  with P^ being simply the null walk n(cK, a). We also define the 
inverse P~^ of an (a, ^)-walk P = (a =  7 0 , 7 1 ,..., 7 n =  /3) to be the (/?, a)-walk
{P — Tn, Tn—15 To — tf).
For a non-null (a,/?)-walk P ~  (a = 7 0 , 7 1 , ...,7 » = P) on T, we define the 
element w(P) G (X U X~^)* by

w{P) = XiX2 ...Xn,
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where Xi e (X  U X  is the label of the edge j i - i j i  (i = We also
define w (n(a, a)) =  e.
We have the following results:

Lemma 3.2.7 (Munn). Let P be an (a, p)-walk and Q a {P, 'y)-walk on a word 
tree T  on X . Then w{PQ) =  w(P)w{Q). Also Q =  P~^ if and only ifw{Q) = 
w (P )-\

P r o o f : It is clear that w{PQ) =  w{P)w{Q) and that if Q = P~^ then w{Q) = 
w (P )-^
Let w(Q) =  w{P)~^ = xiX2 ...Xn {xi e XUX~'^), andP — (a =  7 0 , 7 1 ? =
P),Q — (;0 =  Àq, (̂ 1 , =  7 )- We have Jo =  7 .̂ Suppose that we have shown 
that Ji_i =  7n-i+i* Then Xi is the label on both and 7 „_j+i7 „_i. Hence, by 
(WT2), 5i = 'jn-i. It follows by induction on i that 5i — 'jn-i for i =  0 , 1 , n. 
Hence Q — P~^ as required. ■
It is necessary to explain exactly how word trees relate to free inverse monoids. 
The next lemma is technical but demonstrates that the two mathematical con­
structs are intimately related so I shall include Munn’s proof.

Lemma 3.2.8 (Munn). Let P  and Q be spanning [a, p)-walks on a word tree T  
on X . Then w{P)p =  w{Q)p.

Proof: First consider the case when |T| = 2. Let 7  denote the vertex of T other 
than a, let 0  = n (a , 7 ) and let x =  w{Q) (g X U X “ )̂. Consider the two cases

# P = a .ln  this case P  =  (0©“ )̂’', Q =  ( 0 0 “ )̂̂  and so by Lemma 3.2.7,

w{P)p — {xx~^yp =  {xx~^)p ~  {xx~^yp = w{Q)p.

• ^ =  7 . In this case P  = (0 0 “^)^0, Q — ( 0 0 “^)^0 and so by Lemma 
3.2.7,

w{P)p =  {{xx~^yx)p = xp=  {{xx~^Yx)p =  w{Q)p.

Hence the result holds for |T| = 2 .
Let n be a positive integer greater than 2. We make the inductive hypothesis that 
if P', Q' are spanning {a, /3)-walks on any word tree T' on X such that |T'| < n 
then w(P')p =  w{Q')p.
Consider a word tree T on X such that \T\ = n.
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* Suppose that Pq is a (7 , 7 )-walk on a subtree T' of T such that \T'\ < n, 
then w{Poyp =  w{Po^)p =  (u;(Po)) V
To see this, let Tq denote the subtree of T' spanned by Pq. Then \Tq\ < n and 
Pq and Po  ̂ are spanning (7 , 7 )-walks on Tq. Hence w {Pq)p =  w{Pq)p =
(u;(Po))V

Now let P  and Q be spanning (a, /?)-walks on T. We have two cases.

1. O' is an end point of T, that is there is only one vertex adjacent to a.
Let 7  denote the unique vertex of T adjacent to a and let T' denote the 
subtree of T obtained by deleting a and the edge a'y from T. We now look 
at the following two cases:

• p = a. Then for some (7 , 7 )-walks Pi,P 2 , ...,Pk on T' and some 
non-negative integers (i =  0 ,..., /c),

P  =  © (0 -i0 ) '-°P i(0 -i0 f  iP 2 ...P fc(0 -i0P 0-^

where 0  =  II(q;, 7 ), and so by Lemma 3.2.7 we have that

w{P) =  x{x~^xY'^Ui{x~^xY^U2 ...Uk{x'~^xY'‘X~^,

where x = w(Q) and Ui = w{Pi). By * we know that ufp = uip. Re­
minding ourselves that in F%^(X), idempotents commute, we have:

w{P)p= {x{x~^xY^^^^'^'"^^'‘UiU2 ...UkX~^)p = {xu'x~^)p,

where u' ~  u\U2 ...Uk. Now u' =  w[P') where P' — PiP2 ...Pk. 
Moreover since P  spans T, it follows that P' is a spanning (7 , 7 )-walk 
on T'.
Similarly w{Q)p — [xv'x~^)p where v' = w{Q') for some spanning 
(7 , 7 )-walk Q' on T'. But |T'| = n — 1 and so, by the inductive 
hypothesis, u'p = v'p. Hence we have

w[P)p — [xu'x~^)p — [xv'x~^)p — w{Q)p

as required.
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• p  ^  a. Then p  e T '  and an argument parallel to that above shows that

w{P)p = {xu')p, w{Q)p ~  {xv')p,

where x is as before and u' — w{P'), v' =  w{Q') for some spanning 
(7 , -walks P', Q' on T'. By the inductive hypothesis, u'p = v'p and 
so w {P)p =  w{Q)p as required.

2. a  is not an end point of T.
In this case we can split T into two subtrees T f  and T f  so that both trees 
have less than n vertices and the only common vertex is a. Again we look 
at two distinct cases:

• p  — a. Then we write

P  =  PiP2...Pr,

where Pi, P3 , P5 , ... are [a, a)-walks (possibly null-walks) on one of 
the subtrees T/ (z =  1 , 2 ) and P2 , P4 , Pe,... are (a, a)-walks (possibly 
null-walks) on the other tree. Let Ui =  w{Pi), {i — 1,2, ...,r). By 
* we know that upp =  uip, and so w{P)p = {ui'u2 )p where up ~  
w{Pk) and Pp is the product of all the (a, a)-walks Pi on Tp {k =
1.2). Moreover, since P  spans T, it follows that PP spans TP (k —
1. 2).
Similarly, we can show that w{Q)p =  {vpV2 ')p, where vP — w{Qk) 
for some spanning (a, a)-walk QP on TP (A: = 1 , 2 ). By the inductive 
hypothesis, w{PP)p = w{QP)p {k = 1 , 2 ).

• p a. Without loss of generality, we can assume that P E V{T2 ). 
By an argument similar to that above we can show that w{P)p = 
(u iW )a  w(Q)p =  {vi'v2 ')p, where u f  -  w(P/), vP = w{QP) 
for some spanning (a, a)-walks Pi', Pi' on TP and uP ~  u){PP), 
vp = w{QP) for some spanning (a, ^)-walks pp, QP on TP. Hence 
w(P)p = w{Q)p.

The proof of the next lemma demonstrates how to construct word trees so that a 
spanning walk traces a particular word.
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Lemma 3.2.9 (Munn). Let u G Then there exists a word tree T  on X
and a spanning (a, j5)-walk P on T  such that u ~  w{P).

P r o o f :  Le t u — xiX2^..Xn, where Xi G X  U X ~ ^. We construct a sequence of
word trees Ti C T2 Ç ... Ç T„ on X  and a sequence of vertices 70,71, 
of Tn such that Ti is spanned by Pi — (7 0 , 7 1 , ...,7 i) and xiX 2 ...Xi = w{Pi) 
(2 — 1 , • • •, rij.

First let Ti denote the word tree with two vertices 70 and 71 in which 7071 is 
labelled cci. Now suppose that we have constructed the sequences as far as Ti and 
7 %. Consider the {i H- l)th step. There are two possibilities.

1. There exists a vertex 6 in Ti, adjacent to 7 % and such that 7 ^ 6  has label æ̂ +i. 
Then we take Ti+i = Ti and 7 ^+ 1 =  ô.

2. There exists no such vertex 6 in T{ with the property stated in 1. In this case 
we adjoin a new vertex 7 ^+ 1 to Ti and a new edge 7 i7 i+i which we label 
ruj+i. Let Ti+i denote the word tree so formed.

In either case T^+i is spanned by Pj+i =  (7 0 , 7 1 , ...,7 i+i) and æi^g.-.æ^+i =
w{Pi^i). By induction on i, the sequences can be constructed as fai* as and 
7 ». The result follows by taking T =  P  =  (7 0 , 7 1 , and a  =  7 0 ,
/? =  7n- ■

We need another couple of technical lemmas concerning isomorphisms between 
word trees which I shall omit the proofs of as we shall return to this topic in 
Chapter 4.

Lemma 3.2.10 (Munn). Let T, T ’ be word trees on X, Let P  be a spanning 
{a, P)-walk on T  and P' an {a', ^')-walk on T' such that w{P) = w{P^). Then 
there exists a monomorphism 6 : T  —> T' such that a9 = a',f39 = P'. If, in 
addition, P' spans T' then 9 is an isomorphism.

Lemma 3.2.11 (Munn). Let T  and T' be word trees on X . Let P be spanning 
{a, ^)-walk on T  and P' a spanning (a\^')-walk on T' such that w[P)p = 
w{P')p. Then there exist an isomorphism 9 \T  - ^ T ' such that a9 =  a', ^9 =

N o t a t io n : Let Tx denote a transversal of the isomorphism classes of word trees 
on X . Let B T x  denote the class of ordered triples (a, T, where T  e Tx and 
a, j3 e V (T). We refer to any such triple as a birooted word tree on X .

43



Note that birooted word trees are deterministic inverse automata (see Section 4.1). 
It should also be remembered that these are always subsets of the Cayley graph for 
the free group over X  with the initial state as the group identity and the terminal 
state as a particular word in the free group.

Theorem 3.2.12 (Munn). I f P and Q are spanning (a, ^)-walks on a word tree 
T on X  then w{P)p = w{Q)p and the mapping (f) : B T x  — P xm [^) defined by

[a,T, fi)(j} = w{P')p,

where P' is any spanning (a, fi)-walk on T, is a bijection.

Furthermore, ((a, T, =  (/?, T, a ) f  and (a, T, fi)(f) is an idempotent if and
only if a — {3.

P r o o f : By Lemma 3.2.8, if P  and Q are spanning {a, -walks on a word tree T 
on X  then w{P)p — w{Q)p. Hence f  is well defined.

By Lemma 3.2.9, </> is surjective. To show f  is injective, suppose that (a, T, f)(j) = 
{a ',T , T)(j). Then by Lemma 3.2.11, there exists an isomorphism (/) : T  T' 
such that a9 = a!, fi9 = T . Thus T  =  T', by the definition of Tx> But now 9 is 
an automorphism of T and so, by Theorem 3.2.6, ol —  a '  and fi = /?', as required. 
Thus {/> is a bijection.

Let (a, T, 13) e B T x  and let P  be a spanning (a, /5)-walk on T. Then P “  ̂ is a 
spanning (fi, a)-walk on T  and hence, by Lemma 3.2.7,

(^, T, CK)(̂  =  =  ((«, T, ;6 )<^)-\

Suppose that (a, T, P)(f) is an idempotent. Then ((a, T, fi)4>)~̂  — (a, T, and 
so, by the previous result, (/), T, a)(j) — (a, T, Thus a = /3.
Conversely, if Q is a spanning (a, a)-walk on T  then so also is QQ~^ and there­
fore

(a, T, a)(f) = w{QQ~^)p = {w{Q)w(Q)~'^)p,

which is an idempotent. ■

With Theorem 3.2.12 we can now talk about the unique up to isomorphism biroot­
ed word tree conesponding to the word u G F j^ (X ). We denote this birooted 
word tree as the triple (a«, T ,  ^u)-
The next lemma is proved in a more general fashion in Corollary 4.2.8.
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Lemma 3.2.13 (Munn). Let u =  x\X2 ...Xn and let u' — XiX2 ...Xm where m  < 
n, {xi e  X  U X “ )̂. Let and {cxui,Tu>, fiu') birooted word trees
corresponding to u and u' respectively. Then there is a monomorphism 6 :Tu' ^  
Tu.
Conversely, let (a, T, fi) and (a', T', fi') be two birooted word trees such that there 
is a monomorphism 9 : T' T  so that a'9 =  a. Then there is a spanning 
(a, fi)-walk P onT  so that given any spanning {a\ fi')-walk P' on T ’, w[P)p — 
{xiX2 ...Xn)p and w{P')p =  {xiX2 ...00m)pfor m < n {xi Ç: X  U X~^).

E x a m p l e : Let X  =  {a;, y} and let u = x ‘̂ x~^yx. Then the birooted word tree 
Tu, fiu) is.

73 ~^x fiu -7
t y

- 7  au  — 7i  —̂ x 72

I have, of course, left out the “inverse edges” (for example (7 2 , 7 1 )) as it is
quite natural to read these as the other edges going backwards. To emphasise as 
the “input” vertex and fiu as the “output” vertex, I have used the standard automata 
notation of putting an extra arrow pointing to the input and an extra arrow pointing 
from the output.

E x a m p l e : If X  = {æ, y} and u — yy~^x‘̂ x~‘̂ then the birooted word tree 
(cKu, Tu, au) (without labelled vertices) is:

o

t y
77 o -T ’a; o -7 $  o

From this diagram we can see immediately that {yy~^x‘̂x~'^)p — {x'^x~'^yy~^)p 
and also that {yy~^x^x~‘̂ )p is an idempotent.

Now we are ready to state a very important result.

Theorem 3.2.14 (Munn). The word problem for Pxm (X) is solvable.

Proof: It is easy to see that there is an algorithm for deciding whether or not 
two given elements of B T x  are isomorphic. Let u,v e Fxm(x). Construct 
{au,Tu,fiu) and {ay,Tu,pv). Then by Theorem 3.2.12, up =  vp if and only if 
these elements of B T x  are identical. ■
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3.3 Free Group Representations

Having established the link between birooted word trees and the free inverse 
monoid, we can now introduce a short hand notation for a birooted word tree. 
This representation is found in Petrich [18]. As we shall see it is very similar to 
Munn’s birooted word tree representation, but less cumbersome especially from 
the point of view of computation.
N o tation : Let w g (X  U X “ ^)*, ü  is the standard unique noimal form for u in 
P g(X ) that is, it is thQfree cancellation of u.

Definition 3.3.1. Let u G Fj^i(X ) with u =  x i X 2...Xn where x i , X 2, - . . ,Xn G 
X U X “ .̂ Then \h& free group representation for u denoted by FG{u) is the 
double (W, w) where W  — {e, x{, xFh., X\X2 X^ ,..., w} and w =

As free cancellation in free groups provides a unique normal form for groups 
we know that there is exactly one free group representation for every word u G 
(X U X~^)* and so free group representations are well and uniquely defined.

Lemma 3.3.2. Let u ,v  E Fxm (X ) then up ~  vp if and only ifFG{u) =  FG{v). 

Proof: Suppose that up =  vp.

We know from Theorem 3.2.12 that there exists a unique (up to isomorphis- 
m) birooted word tree {otu,Tu,fiu) such that for any spanning (a^,/?ti)-walk P, 
w{P)p = up. We construct (W, w) as follows:

W  — {w{Q)\Q is an (a, 7 )-walk for each 7  G F (T )} ,

w — w{P) for some spanning (o;„, /5u)-walk P

Note that w is uniquely defined because by Lemma 3.2.8 any two spanning (a„, 
walks are Wagner equivalent and aie hence equal after free cancellation.

Now supposing that u — XiX2 ...Xn, let u^ — XiX2 ...Xm with coiTesponding bi­
rooted tree fium) for each (m < n). By Theorem 3.2.13 Tu^  can be
embedded in T„. Noting that for any two (a, 7 )-walks Q and Q' that v){Q) = 
w(Q') we have

W  — {xiX2 ...Xm\^ < m <  n }

and so {W, w) =  FG(u).
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By Theorem 3.2.12 (üj ,̂ Tu, fiu) — {oiu, %, /?„) and so the same aiguement applies 
to the (cKw, Ty,fiy) as it did with the (o;„, Ty, fiy) above hence (W, w) =  FG{v) 
and so FG{u) =  FG{v) as required.
Suppose that FG{u) =  FG{v) =  iyV,w). Let u — xiX2 ...Xn where G X U
x - ^
I proceed by constructing the birooted word tree [a,T,fi) by constructing the 
sequence of subtrees To,Ti, of T with T  = Tn. We define To to be the word 
tree with a single vertex we label this vertex e. Given the tree Ti we define T̂ +i in 
one of the two following ways:

1. If xiX 2 ...Xi — x\X 2 ...Xj for some 0 < j  < z then we define Tj+i =  Ti.

2. If x\X 2 ...Xi ^  XiX2 -.Xj for each 0 < j  < i then we adjoin a new vertex to 
Ti such that there is an edge labelled Xi from this new vertex to the vertex 
labelled xiX2 -..Xi. Label this new vertex

At the zth step of this procedure we need to show that Ti has a vertex labelled by 
xiX 2 ...Xj for each 1 < j  < i  Clearly Tq has this property. Suppose T^ has the 
above property for all /e < z. If the zth step is an example of case 1. then it is clear 
that Ti also has the above property.
For case 2. we note that x\X 2 ...Xi =  x^xTCxTTXi. By hypothesis we need only 
check the new vertex. Now look at the smallest j  where x^xTXxFT =  WxTCx]. 
Then Tj has the required property by our hypothesis and therefore there is a vertex 
labelled by xiX 2 ...Xj as we required in T̂ . Hence by induction on i and noting the 
similarities of this procedure with the construction of {œu, T„, I3u) in Lemma 3.2.9 
we can see that (cK, T, /3) = Ty, py) where a is the vertex labelled by e and P 
is the vertex labelled by u.
Similarly we can use the same induction proof to show that {a,T ,p) is in fact 
isomorphic to {ay, Ty, Py). Hence by Theorem 3.2.12 we loiow that up = vp. ■

Corollary 3.3.3. For u G ¥ xm {^ )  and corresponding free group representa- 
tion {W, w), we can construct {a, T, p) G B T  such that for any {a, P)-walk P, 
w{P) = u — w. I f P  is a spanning {a, P)-walk then w{P)p — up.

N o ta tion: Let TG x  denote the class of free group representations over X.
By Theorem 3.2.12 and Corollary 3.3.3 there is a one-to-one coiTespondence be­
tween elements of F%vw(X), B T x  and TQ x
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E x a m p l e ; G iven the w ord x‘̂x~'^y‘̂y~^ g Fxm{{x, y}) then the free group rep­
resen tation is ({e, X, x^, xy, xy^}, xy) and the corresponding biroo ted w ord tree 
is:

o

t y
o -7  

t y
O -7  a; O -7  a; °

We may talk about W-classes where uW v if and only if FG{u) =  {W,u) and 
FG{v) =  (W,F).

Lemma 3.3.4. If u E Fxm [^) wzï/t FG{u) = {yVy,Wy) then FG{uu~^) =
(tFu, e). :

P roof: Suppose that u =  xiX2 ...Xn where Xi E X  U X~^ and FG{u) =
{Wu,Wu). Thenwu”  ̂ =  xiX 2 ...XnXn~^Xn^i~^...Xi~^, define {Wuu-i,Wyy~i) —
FG{uu~^). Let V E Wuu~'>- now either v =  xiX2 ...Xi for some 0 < z < n or
V — xiX2...XnXn~^Xn-i~'^...Xj~'^ for som e 0 < j  <  n. In the form er case cleariy
V E Wy, in the latter case v — xYxTTXjZF G Wy. Clearly Wy C Wyy-i and so 
Wyy-i = Wy. Clearly =  e and so FG{uu'^^) =  {Wy, e) as required. ■

Theorem 3.3.5. Given any u,v E {X U X~^)* then uWv if and only ifupFvp.

Proof: Suppose that uW v in P%y^(X). Now by Lemma 3.3.4 FG{uu~^) =
(W, e) =  FG{vv~^) for some set W  that is uu~^p — vv~^p. Hence i

{u{u~^v))p =  {{uu~^)v)p = {{vv~^)v)p — vp

and ;
{v{v~^u))p = {{vv~^)u)p — {{uu~^)u)p — up, j

so upTZvp. I
Conversely suppose that uplZvp in F%vw(X). By Theorem 2.3.2 we loiow that |
up7luu~^p ~  vv~^p1Zvp. Hence FG{u) ~  {Wy,Wy) where FG{uu~^) — |
{Wy,  e) and FG{v) = {Wy, Wy) where FG{vv~^) = {Wy, e), but uu~^p =  vv~^p j
and so Wy =  Wy.  Hence uWv as required. ■  I

To conclude we can note that F j;^(X ) can be regarded as a collection of bi­
rooted trees, which are actually subsets of the Cayley graph for groups. The
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important point is that given u,v  G (X U X"^)* with {uu~^v)pTZ{uu~^)p then 
{uu~^vv~^)p =  {uu~^)p. That is, at a local 7^-class level, the multiplication on 
the right by an inverse behaves as if it would do in F^(X). If you like you might 
think of ¥xm {^)  being in a sense “locally Fg;(X)”.

з.4 An Attempt at Enumerating Inverse Monoids

We now understand F%^(X) well enough to be able to enumerate it in the same 
way as we did with Fg^i (X) in Section 3.1. However this is a fruitless exercise 
as it is always infinite (except when X is empty). The question is whether it is 
possible to combine the technique of pushing a row of a relation with the technique 
of finding the unique normal form for words in the free object. Certainly there 
are situations where these two techniques can not be combined, for example any 
inverse monoid with unsolvable word problem.
Essentially the problem is not knowing how the implicit relations are affected by 
the explicit relations. An explicit relation, (w, v) will affect all implicit relations 
with either u or f  as a subword on either their left or right hand sides. In the case 
of inverse monoids (with the standard implicit relations) adding a single explicit 
relation will always affect an infinite number of explicit relations. However with 
groups this is not the case, indeed with groups adding explicit relations is very 
simple, because not only are there just 2n implicit relations (where n is the number 
of generators) but all of these relations are very simple and have the identity as 
their right hand sides.

Having said all this it is possible to enumerate individual inverse monoids by 
taking careful account of 7^-classes using a generalised notion of free group rep­
resentatives. Again, the important point is that in any inverse semigroup, S, with
и,v  G S, if uu~^7Zuu~^v then uu~^vv~^ =  uu~^ (see Chapter 4 for more 
about this sort of thing). In other words inverse semigroups “behave like groups” 
with respect to right multiplication within 7^-classes. What is needed is a test for 
when uu~^v7luu~^, that is if =  xiX2 ...Xn we need to know the unique value of 
1 <  z <  n  — 1 such that uu~^xiX2 ...Xi G Ry anduu~^xiX2 ...Xi^i ^  Ry.

Given an inverse monoid presentation {X\U) for M, given a relation {u, v) e U 
and an element w E M  then if there exists z E Rw such that zu E Rw then 
zv' E Rio for any v' with v's — v. As shall be made explicit in Chapter 4, this is 
much like tracing a relation in group Todd-Coxeter.
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Hence given the inverse monoid M = (X U X “^)*/r what I wish to do is expand 
the notion of free group representatives so that it consists of pairs (W, w) where 
W  — {wi,W 2 , z/Jn} contains freely reduced words such that

{ { w w ~ ^ w i ) r ,  {w w ~^ W 2) t , { w w ~ ^ W n ) r }  =  RyjT-.

With this concept of free group representatives there is, however, no guarantee 
that {ww~^Wi)r {ww~^Wj)r when i ^  j.
This is roughly the reasoning behind my first attempt at coding an inverse monoid 
enumerator. This algorithm is new but is based on the group and monoid Todd- 
Coxeter algorithm’s in Section 1.3 and Sectionl.5.1 shall give a rough description 
of it before moving on to a more general understanding of 7^-classes in Chapter 
4 and a much improved enumerator which borrows some ideas from Nik Ruskuc, 
Allessandra Cherubini and Brunnetto Piochi in Chapter 5.

3.4.1 The Data Structures

• The immutable finite inverse monoid presentation P — (XlLT).

• The mutable set of cosets C which is a finite set of positive integers which 
initially is C =  {!}.

• The mutable coset table T  whose entries are elements of CU{_L} where _L is 
the empty symbol and whose columns are labelled by elements of X U X~^ 
and whose rows are labelled by elements of C. I shall refer to the entry in 
row c and column x by T(c, x). Initially T  contains a single empty row of 
_L’s.

• The mutable truth coset table T' whose entries are elements of {0,1, ±} 
and whose columns are labelled by elements of X U X “  ̂ and whose rows 
are labelled by elements of C. I shall refer to the entry in the row c and 
column X by T'{c, x). Initially T' contains a single empty row of _L’s.

• The mutable/ree group representative set 0  contains elements of the foim 
(yV, w) where kP C (X U X “ )̂* and w e W .  Initially := {({e}, e)}.

• A suijection ip : C ^  with lip = ({e}, e).

• The mutable coincidence set K  Ç C x C. Initially K  is empty,
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• The mutable representative coincidence set k C. 0 x 0 .  Initially k> is empty.

• An equivalence ^  on C and also D C. C of elements which need to be 
forced to be related. Initially D is empty.

Cleai'ly there are many more data structures than there were for the standard 
monoid enumeration algorithm. In particular we have 0, ip and n, all dealing 
with representatives all of which must be processed while the relations in U are 
processed. In addition it is necessary to record which elements of C are in which 
7^-class, which is the purpose of Even then the algorithm is, as we shall see, 
flawed as it cannot immediately distinguish between different 7^-classes.

3.4.2 The Subroutines

Before I describe these it is important to understand how %-classes work in this 
algorithm. Given c E  C and x E X C X ~ ^  suppose that T'{c,  a;) =  1. This means 
that the element u E M  represented by the coset c is 7  ̂related to ux (it is possible 
that u = ux). The algorithm will occasionally update 0 entries in T' to I ’s when 
it discovers that two 7^-classes are identical therefore a 0 entry merely means that 
“u and ux are not %-related as far as we loiow.”
Similarly an element (W, w) E ^  will constantly be updated, but only by adding to 
and not taking away from or changing elements of W  as new words are discovered 
to be 1Z related t o w .  As a consequence at all stages

{ e , X i , X f X ^ ,  . . . ,  X i X 2 . . . X n }  Ç w
when w — xïxTTx^. It is important to note that, unlike the free inverse monoid 
case, different elements in W  do not necessarily represent different elements in 
Ry,. Fox oxamplQ ww~^xiX2 ...Xi =  ww~^xiX2 ...Xj (for some 1 < z < j  < n) 
might be a consequence of U and so xi...Xi and xi...Xj will represent the same 
element in Ry, even though they are both different elements in W.
Create a New Definition

• Parameters: c E C, x E X  U X~^.

• Local: d
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This subroutine is much like the same in the monoids algorithm except for the 
following points

• A new empty row is added to T'

• Suppose that cip =  (kk, w) then add (kk U {wx}, wx) to ^  and if the new
coset is d let dip := (kk U {wx}, wx).

• ï fw x E W  then let d, let T'(c, x) 1 and let T{d, := c.

• If wx 0 kk then let c d and let T'{c, x) 0.

Update r-j

• Parameter: E C. C

• Locals: e, / ,  x

This is a “book keeping subroutine” which forces all the elements of T' to be ^  
related. Suppose that for e G E that eip = {We,We), then we update eip 
(U/e£:kk/, We). Also if e, /  G E such that there exists x E X  with T{e, x) — f  
then T'{e, x) := 1. Finally E  is added to D.
Update 0

• Parameters: None

• Locals: d, e, x

Another “book keeping subroutine” which looks at the set D of cosets which 
have had their free group representatives recently modified. This subroutine takes 
each d E D where dip =  (kk ,̂ Wd) and each adjacent coset e =  T{d, x) where 
eip = {We, We) and sets eip := (kkg U Wd, We).
Trace a Relation

• Parameters: c E C and {u, v) E U

• Locals: k, I, m

52



Suppose that u = uiU2 ...Um and that v =  viV2 ...Vn. This subroutine compares 
T{c,u) with T{c,v) and T \c ,u )  with T'{c,v). There are eight cases where 
changes need to be made, although we only need to discuss four of them as the 
other four are symmetric in u and v.

1. T(c, u) = _L, T(c, ui...Um-i) = k ^  ±, T{c, v) = I ±  and T'(c, v) =  0. 
In this case we define T{k,Um) '■= I. Furthermore if =  1 
then set T'{l,Um) := T'{c,v) and then apply the subroutine Update ~

Note that the case where T(c, =  -1_ tells us nothing. It is only
the case where the relations/orce conclusions in the coset table that tell us 
anything.
Note also that it is not necessary to check that T ' =  0 as 
although IZ is transitive, the failure to be TZ related is not transitive, ie. if 
r ^  Rs and s ^  Rt then it does not necessarily follow that r ^  Rt.

2. T{c,u) =  T{c,ui...Um-i) ~  ± ,T {c ,v) ~  I Jl m dT'{c,v) =  1. Unlike 
in the first case, here we are forced to conclude that c ^  T{c,u) as c ~  
T(c, v). We therefore apply Update {{T{c, Ui,..Ui)\l < i<  m}).

3. T{c,u) =  _L, T{c,Ui...Ujn-i) = k ^  1., T{c,v) = 1 ^ 1 .  and T'(c,z;) =
1. As in the first case set T{k,Um) := I and like the second case apply 
Update ru [{T(c,ui...Ui)\l < i<  m}).

4. T(c, u) = k and T(c, v) ~  I. Here we have a coincidence as we would in 
the monoid algorithm. We add {k, I) to K . Furthermore if

(a) T'{c, u) — T'(c, v) = 1 then add {kip, lip) to k.
(b) T'{c,u) landT'(c, î;) =  1 then apply Update ~  ({T(c,i4i...Wi)|l < 

i < m}).

Finally Update $  is applied.

Identify k Coincidences

• Parameters: None

• Locals: c, d, U, u, V, v
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This algorithm runs through each {{U,u), (V, u)) e k. If a particulai' {U,u) =  
(V, v) then simply ignore this one and remove from k. Otherwise choose c E C 
such that cijj = {U, u) and do the following:

• For every d E C such that dip = {V, w)  with w G U \  {v},  replace (V, w)  
by {U U V, w)  in 0  and let d ~  c.

• For every d E C such that dip = (V, f) replace (V, t?) by (U U F, v) in # 
and redefine cip := {U uV ,v)  and let d ~  c.

• For every d E C such that dip =  {U, w)  with w E U \  {w}, replace (U, w) 
by {U U V, w)  in ^  and let d ^  c.

• For every d E C such that dip =  {U, u) replace (t/, u) by {JJ U V, u) in 0  
and redefine cip \= {U U V, f  ) and let d ^  c.

Identify K  Coincidences

• Parameters: None

• Locals: c, d, x

This is similar to the monoid algorithm Identify subroutine. Given (c, d) E K  
then the following differences are noted.

1. If for some æ G X U X~^, T'(d, x) — 1 and if T'{c, x) ^  1 then redefine 
T'(c, a;) := 1 and apply Update ^({c, T(c, z)}).

2. Update d}) is applied.

3. d is replaced by c in all the data stmctures.

The Main Procedure

For cE C and a; G X U X “  ̂ do the following

• New(c, æ)

• For d E C and {u, v) E U, do Trace(c, {u, v))
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• Update $

• Identify k

• Identify X

Tidy Up

3.4.3 Comments

The first thing to notice is that this algorithm is quite convoluted. There is a lot 
of “book keeping”. Secondly it is honibly inefficient with memory as elements 
in €> tend to grow uncontrollably and apparently unnecessarily large. Thirdly 
it only systematically enumerates cosets within particular 7^-classes, there is no 
guarantee that two new cosets in apparently different 7^-classes are not actually 
the same coset in the same 7^-class.
It is, however, possible to fix this last point by finding an 7^-class test and elimi­
nating excess %-classes using some sort of “Identify 7?.-classes” subroutine. All 
this, however, points in the direction of enumerating 7^-classes individually rather 
than simultaneously. Indeed this is what I do in Chapter 5.
E x a m p l e : A  very simple example is the inverse monoid M  presented by = 
x ) . It is not hard to see that this is the cyclic group of order 2 with an extra identity 
attached. This can be seen by the fact that in M, x is its own inverse because 
x{x)x ~  x^ = X and by uniqueness of inverses x~^ = x and so it is not difficult 
to see that M  is presented by {x\x^ — x) as a monoid.
The algorithm given above will produce the table below.

Cosets X x~^ 0

1 2o 3o
2 4i 4i {{e,x,x'^,x^},x)
3 5i 5i
4 2i 2i ({e,x ,x ‘̂ ,x^},x)
5 3i 2i ({e,

In this table the truth coset table is represented by suffixes in the entries. We also 
have three ^-classes - {!}, {2,4} and {3, 5}.

55



Now apparently M  is not a cyclic group with an extra identity but rather two 
cyclic groups with an extra identity. This is precisely because Todd-Coxeter style 
algorithms have no way of recognising the condition “uniqueness of inverses” 
and so for M  seem to think that x and x~^ generate two different %-classes even 
though X = x~^. I believe this is fundamental problem that can only be solved by 
recognising the equivalence of two 7^-classes after they have been enumerated.
I conclude by saying that before we can proceed we need a clearer understanding 
of inverse monoid presentations and their effect on %-classes.
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Chapter 4 

The Word Problem for Inverse 
Monoids

As we have seen the strategies of Chapter 3 are perhaps insightful but not ade­
quate for the job of a Todd-Coxeter style enumeration for inverse monoids. How­
ever, as I have pointed out, if the word problem for a semigroup is solvable then 
there should be a strategy for enumerating its elements. In Chapter 3 we looked 
at Munn’s solution to the word problem for free inverse monoids. Here we shall 
review J. B. Stephen’s paper Presentations of Inverse Monoids [27] extending the 
ideas of Chapter 3 to general inverse monoids. Most results in this section are 
attributed to Stephen and the ones which are not are generalisations of Stephen’s 
results involving right congruences.

4.1 Inverse Word Graphs and Automata

First we consider the generalisation of word trees to word graphs.

Definition 4.1.1. A word graph F on the set X is a connected, directed graph 
with edges labelled by elements of X. If a  and P are adjacent vertices in F, then 
the edge labelled

by a; G X from a  to 0̂ is denoted (a, x, p). We shall denote the vertices of F by 
V  (F) and we shall denote the edges of F by T(F). The word graph F is said to be 
finite if both V  (F) and E(F) are finite.

57



Definition 4.1.2. Given two vertices a and p on a word graph T, the notions of 
{a, y0)-walk on F, spanning {a, /3)-walk on F and (a, ^)-path are defined in the 
same way as for word trees (see Definition 3.2.2). The notions of word graph ho­
momorphism, word graph monomorphism, word graph isomorphism, word graph 
automorphism are also defined in the same way as word tree homomoiphisms etc. 
(see Definition 3.2.3).

Definition 4.1.3. A word graph is said to be deterministic if all the edges direct­
ed from a vertex are labeled by different letters and it said to be injective if all 
edges directed towards a vertex are labeled by different letters. In other words, a 
deterministic, injective word graph obeys (WT2) (see Definition 3.2.1).

Definition 4.1.4. An inverse word graph over X is a connected, directed graph, 
F, with edges labeled by elements from X U X “  ̂ in such a way that the labeling 
is consistent with involution; that is (7 , x, 6) e E{T) if and only if {S, 7) G
E{V), where æ G X U X~^ and 7 ,5  G F  (F). For convenience we shall assume 
that at every vertex of F there is a loop labeled by e.
A birooted inverse word graph is a triple A  =  (a, F, P) where F is an inverse 
word graph over X  with a, p G F  (F). We call a the start of F and we call P the 
end of F.
The notion of word graph homomorphism extends to birooted inverse word graph- 
s. A birooted inverse word graph homomorphism (p : {a, F, /?) —> (a', F', P') is a 
word graph homomorphism from F to F' with the special conditions acp — o! and 
p(p = p'. Similarly we have extensions for word graph monomorphism, word 
graph epimorphisms and word graph automorphisms. I will call birooted inverse 
word graph homomorphisms word graph homomorphisms or simply homomor- 
phisms where there is no confusion.

Lemma 4.1.5. An inverse word graph over X  U X~^ is deterministic if and only 
if it is injective.

P r o o f : This is clear from Definition 4.1.4. ■
It should be noted that a birooted inverse word graph A = (a, F,P) is also an 
automaton see, for example, John Howie’s Automata and Languages [10]. In 
particular A  has the following features:

(i) As each edge of A has an inverse edge, A  is strongly connected and is 
therefore trim
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(ii) A  has only one terminal state - p. It is a one-out automaton. The initial 
state of A is a.

(iii) A  has a special inverse property as described in Definition 4.1.4. It is an 
inverse automaton

(iv) If r  is deterministic then A is a deterministic automaton.

N o t a t i o n :  I f  A = {a,T,P) is an automaton over X , and if  tu G X* traces a
(7 1 , 7 2 )-walk in T then we say 7 1  tu =  7 2 . The set L[A] = {w e X*\aw — p} is 
the language recognised by A.
So far we have looked at ideas which were discussed in a more specific form (ie. 
with respect to word trees) in Section 3.2. However, homomorphisms between 
word trees are always one-to-one maps on the vertices. With word graphs we 
have a richer theory.

Definition 4.1.6. Given a word graph F over X and an equivalence relation rj 
on y(F) the quotient ofV induced by rj is the word graph denoted by F /77. The 
vertices of F /77 are the equivalence classes of V  (F)/ty. The edges of F /?7  are given 
by:

E y /r i)  = {(7i/?7, a;, 7 2 / 77) 1(7 1 , a;, 7 2 ) G E{V)}

We have a first isomorphism theorem for inverse word graphs.

Theorem 4.1.7. Given word graphs F and A overX and an epimorphism ̂  : F ^  A 
then A is isomorphic to F/r] for some equivalence q on V{V).

Furthermore we have the following important lemma:

Lemma 4.1.8 (Stephen). Let F and F' be word graphs and (f> : V V' be a 
homomorphism and let a ,p  E y(F). I f  w labels an {a,p)-walk in F, then w 
labels an {acp, pep)-walk in F'. So if A = {a,F,p) and A! =  {a(f),F', p f), then 
L[A] Ç L[A!].

PROOF: This follows straight from Definition 4,1.1. ■

The converse of this does not always follow unless we are dealing with determin­
istic inverse automata as shown in the following theorem.
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Theorem 4.1,9 (Stephen). Let A =  (a, P, P) be a birooted word graph over X  U 
X~^ and let A' — (a', P% P') be a deterministic birooted inverse word graph over 
X  U X~^. I f  L[A\ Ç L[A!], then there is a homomorphism f  \V  ^  V  such that 
a<f) — a' and p f  — P'.

Proof: We define the map p on the vertices of F as follows. If 7  G U(F), then, 
since A is strongly connected, there is a w G (XU X “ )̂* such that aw = 7 . 
Define jcp to be a'w. It is necessaiy to show that f  is well defined.

Suppose aw ~  7  and aw' = 7 , now note that since A is strongly connected there 
is a 16 G (X u  X"^)* such that 71/ =  p. Thus wu, w'u G L[A] C L[A']. We wish 
to show that a'w = a'w', so note that a'w =  P'u~^ and a'w' =  P'u~^, since A' is 
deterministic and inverse. Thus a'w =  a'w', and p is well defined on the vertex 
set.

Suppose (7 1 , 37, 7 2 ) G E{r), then there exists Wi,W2  G (X U X ”’-)* such that 
wi labels an (a, 7 1 )-path and W2 labels a (7 2 , ^)-path in F. Now W1 XW2 labels an 
a', ^Lwalk in F% so (7 1  ÿ, x, 7 2 ÿ) G E(T'). Thus we see that ÿ is a homomorphis- 
m. ■
Now there are many automata which recognise the same language L. We want to 
pick a particular automaton - the minimal automaton - which is unique for each 
language. We have the following result for automata (see Reutenauer [20] for the 
definition of minimal and for the proof):

Lemma 4.1.10 (Reutenauer). Let A =  (a, F, p) be a trim one-out automaton. If  
F is deterministic and injective, then A is the minimal automaton accepting L{A).

The following lemma is an immediate consequence of Lemmas 4.1.5 and 4.1.10.

Lemma 4.1.11. If V is a deterministic inverse word graph over X  U X " \  and 
a ,p  G y  (F), then (o:, F, p) is the minimal automaton accepting L[{a, F, P)].

As a corollaiy it follows that if F is a word tree then A — {a, F, P) is minimal as 
F is by definition deterministic.

The thinldng here is that coset tables can be viewed as deterministic word graphs 
and so given a word w G (X U X~^)* it is our task to find a minimal automaton A 
which accepts w (ie. w G L[A]). We shall return to this “determinising process” 
after examining SchUtzenberger graphs.
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4.2 Schützenberger Graphs

In this section we introduce an important concept from semigroup theory (see 
Petrich [18] or Howie [9]).
For the rest of this section M is an inverse monoid with presentation {X\U), with 
r  being the congruence generated by pU U  {p being the Wagner congruence for 
Fxm{^)).  If w G M  then Hy, Ru, Lu and Dy are the Green’s equivalence classes 
of u. We let <j be the minimal group congruence. Recall that for u,v e M, we 
write u > z; if there exists an idempotent e E M  such that ue = v. This last is 
equivalent to saying that u > v if there exists an idempotent /  =  ueu~^ E M  
such that fu  = v.

Definition 4.2.1. Let u E M. The SchUtzenberger graph of Ry is the word graph 
Sr{u) where

y(5T(u)) =

and

E{sr{u)) ~  {(z7i, X ,  V2 ) \ v i ,  V2 E Ry, X  E X u  v i ( x r )  ~  %}. 

N o t a t i o n :  Let A be a se t and let B C. A. We define the equivalence relation on
y

\b — {(^ij ^2)|^>ij ^2 G B}  U {(tti, a2)|ai5 U2 G A \  B}.

Definition 4.2.2. Let u E M  and let C be a right congruence on M  such that

c s  K -

Then the set Ry/C is the set of all equivalence classes of C restricted to Ry. The 
right quotient of ST {u) by (  is the word graph ST{u)lQ where

y(6T(u)/c) =

and

E(SV{u)/C) =  { { v i , x , V 2 ) \ v i , V 2 E Ry/C,x E X  U X~'^,vi{{xr)C) =
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The condition that C G is necessary in the above definition to make Ry/C well 
defined as otherwise (  is not an equivalence relation on Ry.

I introduce the idea of right quotients of Schützenberger graphs because they aie 
useful for simplifying the structures and we need to show to what extent they 
are consistent with Stephen’s theory for Schützenberger graphs. Of course the 
special case of proper quotients (quotients which are both right quotients and left 
quotients) in effect add new relations to U and thus can be thought of as the IZ- 
class on a new inverse monoid. It is useful to recall that T is a right congruence 
while 7  ̂is a left congruence.

It is important to note the distinction between right congruences on M  and right 
congruences on SV{u). We can think of the latter as “local right congruences”. 
It could be a fruitful area of research to look at what exactly we can do with 
right congruences on M  which fail to satisfy the condition that Ç Ç |^ .  It is 
however difficult to even define the Schützenberger graph in this case as Ry will 
be identified with Ry by C for some v ^  Ry.

Definition 4.2.3. There is also the dual concept of left SchUtzenberger graph (and 
a corresponding notion of left quotients), SW{u), of Ly where

and

E{SV^{u)) =  {{vi,x,V2)\vi,V2 e Ly,x e X U X “ \  {xr)vi =  112}-

All of the results which follow for SV{u) can be dualised for 5'r^(«).

Lemma 4.2.4. Given u E M  and a right congruence (" on ST{u), there is a word 
graph homomorphism (p : ST{u) -7 S r{u )/(  so that ifw  labels a {yi,V2 )-walk 
in SV{u) then its image under (p labels a (fiC, V2 ()-walk in SV{u)/C.

Proof: For v E y(5'r(w)), define v(p =  v(  and for {vi,x,V 2 ) E E{SF{u)), 
define {vi,x,V 2 )(p = (vi(,x ,V 2 C). Clearly this map is well defined and preserves 
the labeling of edges.

Given any {vi, r;2 )-walk in ST{u), which is given by P  =  (r;i =  7 o,7 r, ---,7 % = 
V2 ) with P  labelled by {xi, X2 , ..., Xy), then the image walk starts at viC and, as 
the action is on the right, each 7 % = {viQxiX2 ...Xi as required. ■
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Lemma 4.2.5 (Stephen). Given u E M, Sr{u) is a trim, inverse, deterministic 
word graph.

P r o o f : ST(u) is trim because it is strongly connected. ST(u) is deterministic 
since multiplication is well defined on M.
To show that 5T(w) is inverse consider (-ui, x, V2 ) E E{SV{u)). Now 

e — v iv ^  — V2 vT^ =  Vi{xT){x~^r)vy,

so
vi = evi — vi{xr){x ^r)vi Vi = viv^ ^Vi {xt){x ~̂ t̂ )

— V i { x t ) { x ~ ^ t )  =  V2 { x ~ ^ r ) .

Thus (v2 ,x~^,vi) E E{ST{u)) and so Sr{w) is an inverse word graph. ■
Given that ww~^'Rw (see Lemma 2.2.2) we may talk about the minimal automa­
ton Ayj =  {ww~^, ST{w),w) corresponding to w.

Theorem 4.2.6. Let u E M, let Ç be a right congruence on Ry, let 
ui,U2  E Ry and w E {X U X “ ^)*. Then Ui{wr)C — U2 C if and only ifw  la­
bels a (iiiC, U2 C)-walk in ST{u)/Ç

P r o o f :

The proof is by induction on |w|. If |w| =  0 that is w = e, then by definition of 
ST{u)/C, ui(wr)Ç = U2 C if and only if {uiC, e, Ü2C) G E{ST{u)), or w labels a 
(wiC, W2C)-walk, that is =  U2C and so %(wT)( =  U2C as required. If zu =  e 
and ui(wr)C =  U2 C then u i(  — U2 C so w labels the empty (uiC, z62()-walk. Now 
suppose that the result is true for all words of length less than N.
Let zu G (X U X~^)* such that |zu| = N. If zu =  xiX2. . .xx  is a (z&i(,I62C)- 
walk there exists zzg G Ry such that zu =  xiX2 ...xn-i labels a (zziC^zzgO-walk. 
By hypothesis, ui{xiX2 ...xn-it)C  =  zzgC and, since zu labels a (z6i(, zz2C)-walk, 
{u2 C,xn,U 2 C) G E{Sr{u)/C). By the definition of ST{u)/( we have U2 C = 
U2 {xnt)C and so

z6i(zur)C =  U i { x i . . . x x - i X m t ) C  -  zzg(a;yvT)( =  U2C

as required.
Conversely, if zii(zur)C =  Z62C then choose zzg such that

U i {x i X 2 . . . x n - i t ) C =  U2C G R y / C -
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Then by the induction hypothesis Xi...xn-i labels a {uiC, zzgO-walk. Now 
ui{xi...XM-i'r){xxT)C = U2 C and so U2 {xnt)C — U2 C and so xiX 2 -..xn labels a
(t îC,7Z2()-walk.

For the special case of Schützenberger graphs without right congruences we have 
the following results found in Stephen’s paper.

Corollary 4.2.7 (Stephen). Let u E M, e ~  uu~^, U\,U2 G Ry and w, wi,W2 E 
{X U X “ )̂*. The following statements hold.

(i) ui{wr) = U2 if and only ifw  labels a {ui, U2 )-walk in 5r(u).

(ii) WT > u if and only ifw  labels an (e, u)-walk in ST{u).

(iii) Ifw i and W2 both label {ui,U2 )-walks in SV{u) then Wio — W2 cr.

P r o o f :

(i) This is Theorem 4.2.6 with (  as the trivial right congruence.

(ii) Suppose wr > u, then e{wr) =  u, so by letting (  be trivial in Theorem
4.2.6, w labels an (e, zi)-walk. Conversely if w labels an (e, zi)-walk, then 
by letting (  be trivial in Theorem 4.2.6, e{wr) = u, so wr > u.

(iii) Suppose that Wi and W2 both label (ui, Z62)-walks, then upw ir) — ui{w2 t)  
and so ui{wir)a = Ui{w2 r)a  and by group cancellation wia = W2 <r.

It is worth noting how much results (ii) and (iii) in the above corollary generalise. 
The following corollary uses the same notation as Theorem 4.2.6 and Corollary
4.2.7.

Corollary 4.2.8. Ifw r > u then w labels an (eC, u(f)-walk in SV{u)/Ç

P r o o f : Suppose wr > u, then e{wr) =  u, so by Theorem 4.2.6, w labels an 
[eÇ,uÇ)-walk on 5F(n)/C as required. ■
Of course the converse of this corollaiy does not hold. Even if we define a partial 
ordering on M/C so that uÇ > v(^ if and only if there exists an idempotent e E
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M  such that (we)C =  uC then we do not get a converse as we cannot say that 
{uu~^{wr))Q = uÇ as the left hand side of this is a left multiple of w{r) and 
under the right congruence (  it is not generally true unless uu~^ commutes with
wr.
However it is possible to generalise Corollary 4.2.7 part (iii). The next corollary 
uses the same notation as in Theorem 4.2.6 and Corollaiy 4.2.7.

Theorem 4.2.9. Suppose Ç Ç. a. I f W\ and zug both label {uiC,U2 C)-walks in 
5r(zi)/C then (zuir)cr =  (zu2r)cr.

P r o o f :  Suppose that zui and zug bo th label (zziC, z6gC)-walks, then ui [ w ir ) (u i  (zugr) 
and so ui{wiT)aui{w2r)  and by group cancellation (zui)rcr(zug)r. ■

The next lemma is simply a restatement of Green’s lemma in the language of word 
graphs.

Lemma 4.2.10. Let u ,v ,y ,z  E M. I f  yu = v and zv — u (that is uCv), then 
y and z induce mutually inverse C-class preserving word graph isomorphisms 
(py : SV{u) —> Sr{v) and <pz : ST{v) —> Sr{u) respectively, where s<py =  ys and 
t(pz — z tfo rs  E V{Sr{u)) andt E y (6 T (z ;)) .

We are now ready to state the main result.

Theorem 4.2.11 (Stephen). Let u ,v E M  and let e =  uu~^ and f  =  vv~^. The 
following statements hold:

(i) uVv if and only if there exists a word graph isomorphism

: ST(zz) -7  6T(z/).

(ii) uTlv if and only if there exists a word graph isomorphism

: ST(zz) ^  ST(z,) 

with the condition that e<p =  /.

(iii) uCv if and only if there exists a word graph isomorphism

(7̂ : ST(zz) gr(zi)  

with the condition that u(p ~  v.
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(iv) uHv if and only if there exist word graph isomorphisms

,^ ,^:5 'r(z6)-7 5T(u) 

with the conditions that ej> — f  and uip =  v

(v) u = V if and only if there exists a word graph isomorphism

<7̂  : 6 T(zz) ^  5T(u) 

with the conditions that ecp — f  and ucp ~  v.

P r o o f :

(i) Suppose that uVv, then let y E ReU Lf. Now note that y~^Ce and y~^1Zf.
It is clear that y~^e = y~^ and y{y~^) = e, so by Lemma 4.2.10 there exists 
a word graph isomorphism from 6 T(e) =  ST{u) to ST{y~^) =  SV{f) — 
Sr{v) induced by left multiplication by y.
Conversely, if  f  : SV{u)  -7  SV{v)  is a word graph isom orphism , then 
let y  label an ( / ,  e0 )-w alk and z a [uf ,  u)-w alk. From  pait (ii) of C orol­
lary 4 .2.7 it is clear that {y~^y)r  >  ecp and so (y~^y)ru  — u. Thus 
{yr )uLu .  Now let wi E ur~^,  then y w i z  labels an ( / ,  u)-w alk in 6 T(u), so 
{ywiz )r  > V. Similarly, if  zug E vr~^,  then {y~^W2Z~^)T > u. Now note 
{yy~^r)v{z~^zr)  =  {y{y~^W2Z~^)z)r >  {yr)u{zT)  >  v, bu t v — zugr >  
{y{y~^W2Z'~^)z)T, so [yT)u{zT) — v. Exam ine the product {{yr)u){zT){z~^r) .  
If  we can show that u{zr)  {z~^t)  = u, then it w ill be clear that {yr)u1Zv. To 
see this, no te that wizz~^  labels an (e, zz)-walk, so {wizz~^)r  — u{vv~^r) > 
zt, bu t it is clear that u > u{zz~^r)  so u { z z ~ ^ t )  =  u. Thus u V v .

(ii) For uRv, let f  be the identity word graph isomorphism.
Conversely, if p : SV{u) -7  ST(z') is a word graph isomorphism such that 
ep — f ,  then note that the proof of the indirect implication in (i) will caiiy 
over to this case. Let y = e, and then note that {yr)u'Rv yields uRv.

(iii) Similar to (ii) except let % =  e from the proof of (i).

(iv) Clear from the definition of % and (ii) and (iii).
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(v) The direct implication is obvious. If (p : SV[u) -7 SV{v) is a word graph 
isomorphism such that ep = f  and up — v, then L[{e, ST{u),u)] — 
L[{f, ST{v),v)], by Lemma 4.1.8. Now note that if wi G ut~̂  and zug G 
z)T“\  then WiT > v and zugr > zz by part (ii) of Corollary 4.2.7 and so
u = V.

We now turn our attention to the right quotients again. We have a result similar to 
Green’s lemma.

Lemma 4.2*12. Let u ,v ,y ,z  E M, let (  Ç be a right congruence on M. 
Suppose that yu — v and zv — u and let py : Ry -7 Ry and pz ' Ry Ru 
be the respective Green’s isomorphisms induced by y and z. There exists a right 
congruence y so that there is a word graph isomorphism 0 : Ry/Ç -7 Ry/p.

Proof: By Theorem 4.2.11 part (i) we know that py induces a word graph iso­
morphism from 5r(zt) to sr{v).
Define p as being the relation

{{yuim,yu 2 m)\{uuU2 ) E C {Ry x Ry),m  E M }

• pis reflexive as (z/zzizn)?̂  =  {yuim)p because zzi( =  zziC for each ui E Ry.

• p is symmetric because if {yuim)p =  {yu2 m)p then zziC =  ztgC and so 
zzgC =  zziC and so {yu2 m)p = (yuim)p.

p is transitive because if {yuim)p — {yu2 m)p and {yu2 m)p =  {yusm)p 
then ziiC =  zzgC and zzgC =  zzgC and so zziC =  us( and so {yuim)p = 
{yu3m)C

p is consistent with multiplication on the right because if {yuim)p — (yu2m)p 
then {yuimn)p ~  {yu2 mn)p for all n E M.

Suppose {yuim)p — {yu2 m)p. If yuim  E Ry then zyuim  = Uim E Ry 
and remembering (  Ç if U2 m E Ry  then z/zzgm G Ry.  Conversely 
suppose that yuim E M  \  Ry then by way of contradiction suppose that 
yzigm G Ry then by symmetry we know that yuim  E Ry and hence z/zzgzn G 
R y \ R y .  Therefore ?7 Ç |^ .
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Therefore ^ i s a  right congruence on M  such that r] Ç  and so 77 is a right
congruence on ST{v).

Define 9 : Ru/C — Ry/rj by (uiC)9 =  (2/Wi)?? for ui 6  Ru-

• 9 is a word graph homomorphism. This is because if x, U2C) E F (S r(u )/()  
and we know that (yui7j)((xr)7j) =  (pui(xt))tj because 77 is consistent with 
right multiplication, then x, U2()^ =  (2/^177, x, yu2 rj) as required.

• 0 is an injection. If uiC,W2C G i?u/C such that ^  U2 Ç, then yui ^  
y u 2 by Lemma 4.2.10. Now suppose there existed m  e M  such that 
{yuim)r] =  {yu2 m)r] G Ry/v^ then by the inverse property of 6 T(7;) /77, 
{yu)r] — {yu im m ~ ^)r ]  = {yu2mm~^)r}  — (77̂ 2)77, Therefore { u i ( ) 9  ^  
{u2Ç)9 as required.

• 9 is a surjection. Suppose viT) g Ry/rj we know that zvi G Ry and so 
{zvi)C G Ru/C- Now {{zvi)Ç)9 =  {yzvi)r] =  Virj by Lemma 4.2.10 as 
required.

It now becomes apparent the extent of the limitations we must place on our dis­
cussion of right congruences on Schützenberger graphs. Given two different 72,- 
classes Ru and Ry which are C related to each other then given a congruence 
C Q Iæ„ il is still necessaiy to find 77 Ç such that 6 T(7 ;)/7 7  is isomorphic to 
Sr{u)/Ç  We shall see in the next chapter that the enumeration process bases 
itself on enumerating different 72,-classes quite independently from each other.
The following theorem follows from Theorem 4.2.11 and Lemma 4.2.12.

Theorem 4.2.13. Let u,v E M  and let e — uu~^ and f  = vv~^. Let C G and 
77 Ç be right congruences on M  so that

77 =  {{yuim,yu 2 m)\{uuU2 ) G (  A (72« x Ry), m e M}

for some y E M, The following statements hold:

(i) I f  uVv then there exists a word graph isomorphism

ÿ : 5TW /C 5T(7;)/77.
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(ii) IfulZv then there exists a word graph isomorphism

ÿ : 5T(7;)/?7

with the condition that {eQ f =  fr].

(iii) I f uCv then there exists a word graph isomorphism with

5T (7,)/77

the condition that {uQ f = vq.

(iv) I f uRv then there exist word graph isomorphisms

with the condition that (e()ÿ =  fq  and {uQ f =  vq.

(v) IfuQv (or equivalently ifuqv) then there exists a word graph isomorphism

ÿ  : 5 T M / (  - y  5T (7 ;)/C  

with the conditions that {eQ f ~  /C and {uQ f = vQ.

4.3 Graph Productions

Given w — x\X 2 -.-Xn (â i G X U X “ )̂ we need to be able to construct SV{w). 
This process is similar but more difficult than the construction of word trees found 
in Section 3.2. Firstly we start with the linear graph of w. This is the birooted 
inverse word graph M  where

^(r'lu) ~  Tl? T2 } Tn—l}

and

0^1)3 (T 1 ) j ^ w ) :  i l n —l j  ^nt  iPw: i T n —l ) y
U{(7 i_i,a;i,7 i),(7 i,æ ,"\7 i_i) |2  < 2 < n -  1 }.

Example: If X =  {a;, y} and w = xx~^yx~^ then T^ is:

7i 72 73
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To convert the linear graph into the minimal graph Stephen introduces two con- 
sti’uctions.
Determinations. Let {a, P, p) be a birooted inverse word graph over X  U X~^. 
This is a process of forcing P to be deterministic at a vertex 7 .
Suppose we have (7 , ( 7 ,2/, <̂2) G £^(P) with ^  Ô2 and y G X U X " \  
We form a new birooted inverse word graph by talcing the quotient of {a, P, by 
the equivalence relation on V{T) generated by {((̂ 1 , J2)}. We call a sequence of 
determinations a determination sequence.
Elementary P-expansions Let {a, P, /3) be a birooted inverse word graph over 
XUX~k This construction is specific to a presentation P = {X\U). If (r, s) e U  
and P has a (^1 , 6 2)-walk labelled by r but no (6 1 , (̂2)-walk labelled by s then we 
obtain a new birooted inverse word graph { a ,r ', f )  by adjoining the linear graph 
of s to {a, P, yS). Here we identify the start and end of (cKg, P ,̂ Ps) with <5i and Ô2  

respectively.
If we have a right congruence (  which is the intersection of all right congruences 
which contain the relation V Ç {X U X “ )̂* x (X U X “ )̂* then for (r, g) G y  
we have a restricted elementary V-expansion such that if there is an (a, 7 )-walk 
(note that a is the start) labelled by r but no (a, 7 )-walk labelled by s then the 
new birooted inverse word graph is obtained by adjoining Pg at the start to a and 
at the end at 7 . We need to restrict the application for right congruences because 
given an inverse monoid with u E M  so that ur E Ry and us E Ry, the only 
element v E Ry for which we can say a priori {vr)( = (vs)( is v = uu~^. 
This is because we know that uu~^rr~^ = rr~^uu~^ and uu~^ss~^ =  ss~^uu~^ 
and so uu~^r is a right multiple of r and uu^^s is a right multiple of s. Indeed 
restricted elementary P-expansions are sufficient for the same reason that in Todd- 
Coxeter coset enumeration of right congruence classes it is sufficient to check the 
application of a right congruence only on the first coset (see Section 1.4).
Restricted elementary P-expansions are identical in character to elementary V- 
expansions with the only difference that the former must stait on the vertex uu~^.
If A’ is a determination of .ri it is a homomorphic image of A  and so by Lemma 
4.1.8 L[A] Ç L[A']. If A' = (a \ P%ŷ ') is an elementary 'P-expansion of ri. = 
(a, P, /?) then P is a subgraph of P' and so L[A] C L[Æ].
We will call an equivalence relation q on the vertices of a birooted inverse word 
graph (a, P, a determinising equivalence if {aq, P/y, ^q) is deterministic. We
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need to show that the application of determinations is confluent.

Lemma 4.3.1 (Stephen). fli) and (cKg, P2 , f t)  are obtainedfrom (ao, To, ft)
by determination sequences, then there exists (cKg, Pg, f t)  which can be obtained 
from both (ai, Pi, f t)  and (0 =2 , P2 , f t)  by determination sequences.

The proof for this lemma is a strong induction on the sum of the number of de­
terminations required to obtain (cKi, Pi, f t)  and («2, f t ,  ft) from (ao, Po, ft)  and 
can be found in Stephen’s paper. Furthennore we have the following lemma which 
refers to birooted inverse word graphs in which it is impossible to make any fur­
ther detenninations.

Lemma 4.3.2 (Stephen). A completely determinised birooted inverse word graph 
is a unique deterministic birooted inverse word graph.

P r o o f : As the set of equivalence relations on a given set is a complete lattice, the 
completely determinised graph of a given birooted inverse word graph is a well de­
fined birooted inverse word graph. It is only necessary to show that the completely 
determinised graph of a given birooted inverse word graph is deterministic.
Let A = (a, P, f t  be a birooted inverse word graph and let A /q ~  (aq, P/77, j8q) 
be its completely determinised graph. Let (777, ,̂^177), (777, y, f t77) € ^(P/77).
Let ?7i be any determinising quotient of A. Note that 77 C 771 and also note that 
f t771 =  f t771 since A/771 is deterministic. Now since 771 is arbitrary, we see that 
(ft, ft) e  77, since ft and ft must be related by any determinising quotient of A.
■
It is useful to be able to characterise the detei-minising equivalence relation on a 
given birooted inverse word graph.
It is worth noting that the following results are valid for infinite graphs. Using the 
notation from Section 3.2 where given a (71,72)-walk, F  then w(F) is the word 
labelling that walk.

Theorem 4.3.3 (Stephen). Let A ~  (a,F, be a birooted inverse word graph, 
and let 77 be the largest determinising quotient of A. For 71,72 G V  (P), 7177 =  7277 
if and only if there is a (71,72)-^^% F in P, such that w{F) is freely reducible, 
in the free group sense, to e. That is w{F) is an idempotent in ¥xm{^)>

P r o o f : Let 77 be the least determinising quotient on A =  (a, P, f t ,  and let 771 be 
the quotient on A defined by 7177172 if and only if there exists a path from 71 to 72 
which is labelled by a word which is freely reducible, in the free group sense to e.
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It is easily established that qi Ç 77, by applying the definition of determination 
and employing a straightforward induction on the length of the word involved.

To complete the proof, we need only establish that r/?7i is deterministic. Sup­
pose that (^T7i,y,7i77i), ((̂ 771,̂ ,72771) G E{T), then in T there exists (ft, y ,72)3 
such that ft 771 =  f t771 =  ôqi. Now by definition of 771 there exists paths Pi ~
(71.71),ft =  (ft, ft), f t  =  (72,72), such that w (fi),w (ft) andw(fg) are freely 
reducible, in the free group sense, to e. It then follows that w{Q), where Q is the
(71.72)-walk Q =  f t(7 i, f t) f t( f t ,  y, l4) f t ' is freely reducible in the free 
group sense to e and thus 71771 =  72771. hence A/771 is deterministic. ■
Next we have a local confluence lemma which shows the local confluence of de­
terminations and elementary 7^-expansions.

Lemma 4.3.4 (Stephen). ^  (cKi, Ti, ft)  is obtainedfrom (ao, f t ,  f t)  by either 
a determination or an elementary V -expansion, and (cKg, F2, f t)  is likewise ob­
tainedfrom (cKo, To, f t)  by a determination or an elementary V -expansion, then 
there exists (ag, Fg, f t)  which can be obtainedfrom both (oji, Fi, f t)  and (0 :2 , f t ,  ft) 
by sequences of determinations and elementary V -expansions. Moreover at most 
one elementary V -expansion is required in each sequence which derives (cKg, Fg, ft).

Proof: There are four possible cases:

(i) (cKi, F i, f t  ) and (0:2, f t ,  f t)  are both obtained by determinations of («o, Fq, f t ) , 
in which case this is the same as Lemma 4.3.1,

(ii) (cKi, Fi, f t)  and («2, f t ,  f t)  are both obtained by elementary P-expansions 
of (cKo,Fo,ft).
Suppose (cKi,Fi,ft) is obtained by sewing on the (71,72) walk f t  labelled 
by xiX2...Xy and (a2,F2,ft) is obtained by sewing the (73,74)-walk f t  
labelled by yiy2...ym- Then we have the following sub cases.

(a) XiX2...Xn does not label a (71,72)-walk in P2, nor does yiy2. .ym label 
a (7g, 74) walk in Pi.
In this case, the results of sewing the (71,72)-walk labelled by X1X2.. .æ„ 
onto P2 and the result of sewing the (7g, 74) -walk labelled by yiy2 ■. .ym 
onto Pi clearly lead to the same birooted inverse word graph, (ag, Pg, f t  ).

(b) xiX2...Xn does not label a (71,72)-walk in P2, but yiy2...ym does label 
a (73,74)-walk in Pi.
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In this case sew the (71,72)-walk labelled by xiX2...Xn onto F2. Call 
this path P. This yields a new birooted inverse word graph (0=2, F^, f t ) , 
which is the same birooted inverse word graph that would be obtained 
if we sewed the (73,74)-walk labelled by yiy2---l/m onto Fi. However, 
in Fi we have a (73,74)-walk labelled byyiy2--.2/m- Call this path P'.
In P2 we have the path P  that we sewed on and also F '. By a sequence 
of determinations, we can identify the path P  with P'. the resulting 
birooted inverse word graph (%, P4, f t)  is equal to (cki, Pi, f t) .

(c) The symmetric opposite of (b), which is clearly equivalent.
(d) Both xiX2...Xn labels a (71,72)-walkin P2 andyiy2-.-2/m labels a (73,74)- 

walk in P i.
Let (ftjP g jf t)  be (ag, Po,ft) with both the (71,72)-walk and the 
(73,74)-walk sewn on. Note that each of («i, Pi, f t)  and (0̂ 2, P2, ft) 
can be obtained from (ft,Pg; f t)  by a sequence of determinations. 
Thus by Lemma 4.3.1 there are sequences of detenninations of both 
(o;i,P i,ft) and (0:2, P2, f t)  which yield the same birooted inverse 
word graph (ag, Pg, ft).

(iii) (cKi, Pi, f t)  is obtained by an elementary P-expansion from (cKo, Po, f t)  and 
(of2, P2, f t)  is obtained by a determination by a determination of (o;o, Pq, ft).
Suppose that (a i ,P i,f t)  is obtained from (ao,Po,ft) by sewing on the
(71,72)-walk labelled by xiX2...Xn and (0:2, P2, f t)  is obtainedfrom («q, Pq, ft) 
by the quotient generated by {(73,74)}. There are two sub cases to consid­
er:

(a) If (o!2,P2,ft) does not have a (71,72)-walk labelled xiX2...Xn, then 
we sew this path onto («2, P2, f t)  and take the quotient of (ai, Pi, f t)  
induced by {(73,74)}. The resulting birooted word graphs are the 
same.

(b) If (cK2,P2,ft) does have a (71,72)-walk labelled xiX2...Xn, then call 
this path P'. Now note that if we let (ft, P'l, f t)  be the quotient of 
(a i ,P i,f t)  induced by {(73,74)}, then (f t, Pi, f t)  has two (71,72)- 
walks labelled by xiX2...Xn. The one we originally sewed on and the 
one coiTesponding to P '. Identify these two paths by a sequence of de­
terminations. The resulting birooted inverse word graph is (0:2, P2, ft).

(iv) The symmetric case opposite of (iii) which is clearly equivalent.
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So in each case the lemma holds. ■
We may now talk about more general constructions.
P-expansion. For a birooted inverse word graph (ex, F, f t :  if («i, Fi, f t)  is ob­
tained from (ex, F, f t  by an elementary P-expansion, and (ex2, P2, f t)  is the com­
pletely determinised graph of (exi. Pi, ft) , then we say that (ex2, Pg, f t)  is obtained 
from (ex, P, f t  by a V-expansion. We denote this by (ex, P, f t  (ex2, Pg, f t). If 
(exn,Pn,ft) is obtained from (ex, P ,f t  by a sequence of P-expansions then we 
denote this by (ex, P, f t  =>* (ex», P,̂ , f t) .
It is interesting to compare this with Munn’s method for constructing word trees 
from a word in ¥ xm {^ )  (see Section 3.2). Although Munn constructed the trees 
vertex by vertex it would be just as valid to start with a linear graph and simply 
determinise it. Also note that in F%_M(X) there are no relations and so elementary 
P-expansions can never be applied.

4.4 Approximations to Schützenberger Graphs

Definition 4.4.1. For u, G [XUX)*, an approximate graph of {uu~^r^ ST{ut)^ut) 
is a birooted inverse word graph A =  (ex, P, /?) with the properties u G L[A] and 
wr > ur for all w G L[A].

An approximate graph is (usually) anon-deterministic automaton. A, which shaies 
the important property of {uu~^r, ST{ut), ut) that L[A\r Ç L[{uu~^r, ST{uT)yUT)\r. 
In particular the linear graph of u is an approximation to (uu~^r, ST{ur), ur).

Lemma 4.4.2 (Stephen). I f A = (cx, P ,/?) is a deterministic birooted inverse 
word graph and u G L[A], then for every G (X U X “ )̂* with vp > up then 
V G L[A].

Proof: Let J(y (P )) be the symmetric inverse monoid on y(P). We define 
a natural action of (X U X ” )̂* on J(y(P )). We define a homomoiphism f  :
(X U X-^)* %(y(P)) by =  1/,̂  where : y(P) ^  y(P) is defined
by j'ljj = jw . Now notice that each is a one-to-one map on V  (P), since P is 
deteiTninistic, and that is an inverse of 'fw since P is an inverse word graph. 
Moreover, since the maps are defined by right multiplication it is easy to see that 
0 is a homomorphism.
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Let V be such that vp > up. Note that by the universal property of {X UX~^y/p,  
v(j) > u(j), so that {uu^^v)(j) =  ucj), ie., ipuu-'̂ v =  f t -  particular, cxftu-iu = 
cxft =  j3. Now since cxft„-i =  a, it is clear that a f t  =  that is, v € L[A\ as 
required. ■

The following lemmas and their corollaries demonstrate that throughout the pro­
cess of finding the minimal automaton recognising the word w, the automata are 
always approximations. Stephen’s proofs are omitted because they are quite tech­
nical.

Lemma 4.4.3 (Stephen). Suppose the word graph (a, T, ^) is an approximate 
graph of{uu~^T, 5 T(wr), wr). T', ft) is a determination of [a, P, f t , then
(a', P% ft) is an approximate graph of{uu~^r, Sr(ur), u t ) .

Corollary 4.4.4. Let (  Ç be a right congruence on M. Let (a, P, /?) be an 
approximate graph of {{uu~^r)C,, SV(ur)/C,, [ur)Q. I f  (a% P% ft) is a determi­
nation of [a, P, /5), then (a% P% ft) is an approximate graph of 
((wu“ V)C, S'P(ur)/C, { u t ) Q .

P r o o f : This follows from Lemma 4.4.3 and the fact that 5P(wr)/C is detemiin- 
istic. ■

Lemma 4.4.5 (Stephen). Suppose the word graph (a, P, f t  is an approximate 
graph of ((wu~^)r, 5 P(ur), ur). I f  (a', P% ft) is obtained from (a, P, f t  by an 
elementary V-expansion, then (a% P', ft) is an approximate graph of 
{uu~^r^ 5 P(ur), ur).

Corollary 4.4.6. Let (" Ç \^^bea right congruence on M. Let [a.,V,j3) be an ap­
proximate graph of ((ww'^rX, SP(wr)/ft {ur)C). I f {a!, P% ft) is obtainedfrom 
(a, P, /5) by a restricted elementary V-expansion, then (a', P', ft) is an approxi­
mate graph of({uu~^r)C SV{ur)/Ç, {ur)C).

P r o o f : This follows from Lemma 4.4.5 and the fact that restricted elemen­
tary P-expansions always append to the start and {uu~^r)r = {uu~^rr~^r)r ~  
{r{r~^uu~^r))r is a right multiple of rr. ■

Theorem 4.4.7. Let u ,v E (X U X “ )̂* and let A — (a, P, /3) be an approximate 
graph of {{uu~^)r^SV{ur),ur). I f vr > ur, then there exists a sequence of 
V-expansions (a, P,/5) (aT ',^ ')  such that v E L[(a', P', ft)].
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P r o o f :  We will assume, w ithou t loss of generality, that (a,  F , f t  is de term in­
istic. M oreover, w ithou t loss of generality, we w ill assum e that u r  ~  v t  since 
uu~^vT — UT and uu~^v e  L [ ( a T ',  f t) ]  if and only if  i; G L[(a',  F ', f t) ] .

Note that every elementary r  transition is either an elementary p  transition or an 
elementary U transition. We therefore have two cases.

1. If u p  = v p  then v  G L[(cx, F, /3)] by Lemma 4.4.2.

2. Suppose there is (r, s) (or (s, r)) in U such that v  =  uiru 2  and u = uisu 2 . 
Now U1 SU2  labels an (a, ,g)-walk in (a, P, f t ,  where the subpath labelled 
by s is a (7 1 , 7 2 )-walk. If r  labels a (7 1 , 72)-walk then v  G L[(a, P ,ft], 
in this case let (ex', P', ft) =  (cx, P, f t .  Otherwise sew on the (7 1 , 7 2 )-walk 
labelled by r to get (cxi. Pi, f t)  and let (ex', P', ft) be its determinised form. 
Now note that in each case v  G L[(ex', P', ft)].

Corollary 4.4.8. Let u^v E (X UX"^)*, let (  Ç be a right congruence on M  
and let A = (ex, P, f t  be an approximate graph o f  {{uu~^r)Q^ SV{ur)/Q, (t6T)C). 
I f v T  >  U T ,  then there exists a sequence o f V-expansions (cx, P, / ) )  =>* (cx'P', f t )  

such that V E L[(ex', P', ft)].

P r o o f : This follows from Theorem 4.4.7 and Corollary 4.2.8. ■

Definition 4.4.9. A closed approximate graph is one in which no non-trivial V -  
expansions or determinations can be carried out.

The next theorem is central to solving the word problem.

Theorem 4.4.10 (Stephen). Let w E {X  \J X ^^)* and let (ex, P, /?) be an ap­
proximate graph o f {ww~^T, S T { w t ) , w t ) .  I f  (ex, P, /?) =>* (ex', P', f t )  where 
(ex', P', f t )  is closed, then (ex', P', f t )  is isomorphic to the Schützenberger graph, 
{ww~^T, S r{w r) ,W T ) .

P r o o f : This follows from Lemma 4.1.11 and Theorem 4.4.7 ■
Theorem 4.4.10 combined with Theorem 4.2.11 (v) demonstrates a method for 
solving the word problem in an inverse monoid M. Similarly when Theorem 
4.4.10 is combined with Theorem 4.2.11 (i) to (iv) we have a method for finding 
whether two elements of M  are Z>, 7?-, £  or related.
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We shall have to generalise Theorem 4.4.10 for right congruences. This is no 
problem because right quotients of Schützenberger graphs aie trim, inverse and 
deterministic. Formally we have the following theorem.

Theorem 4.4.11. Let Q C be a right congruence. Let w G (X U X~^)* 
and let (a, F, f t  be an approximate graph of ST{wr)/<^, (wr)()). I f
{a, r ,  f t  =̂ * (ex', F', j3') where (ex', P', ft) is closed, then (ex', P', ft) is isomorphic 
to the Schützenberger graph, { { w w ~ ^ r ) Ç ^  S T { w r ) / ( ^ ^  { w t ) Q .

4.5 Comments on Solving the Word Problem

Given u^v E (XU X"^)*, the word problem is thus solved in the following two 
steps:

1. Find the minimal automata =  (iau“V, 5P(wr), nr) and Â , =  {vv~^t^SV{vt)^vt) 
recognising u and v respectively.

2. n =  n in M if and only if u labels a ivv~^r^ nr)-walk in Ay and v labels a 
(nn~ V, nr)-walk in A„.

Theorem 4.5.1. The second step is correct.

P r o o f : If n r =  vr  then we know that n G T[(nn“^r, 5'P(nr), vr)] and similarly 
V E I/[(nn”^r, S'P(nr),nr)] by Theorem 4.4.7.
Conversely if n G I/[(nn“’-r, 5P(nr), vr)] and v E L[(nn~V, S'P(nr), nr)] then 
(vv~^u)r =  n r and (nn“^n)r =  vr and so

(nn“^)r = (nn~^nn“^nn“^)r — {uu~^vv~^)r

and similarly {vv~^)r =  {uu~^vv~^)r and so (nn“^)r =  (nn“^)r hence R^r =
Ryr. Hence n labels a (nn"V, nr)-walk in (nn"V, S^P(nr), nr) and v labels a 
(nn“^r, nr)-walk in (nn“^r, S'P(nr), nr) and so

n r =  (nn~^n)r =  {uu~^v)r = {vv~^v)r =  vr.

We can see that the word problem is solvable if there is a finite way of generating 
Ru  and Ry.  Usually this requires both Ry  and Ry  to be finite. Of course, it
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is possible that Ry and Ry are both finite while M  is infinite, and so Stephen’s 
technique for solving the word problem is indeed quite powerful. He manages to 
prove the following quite remarkable result.

Theorem 4.5.2 (Stephen). Let M  be the inverse monoid given by the presenta­
tion {X\wV^ =  G I) where I  is some finite index set, I f b < k i <  riifor
all i E I, then M  has decidable word problem. In particular, (nn“ ^r, 5 r (n r ) , ur) 
is finite and effectively constructible for all u E {X U X~^)*.

In particular if n* = /cj = I for each i E I  then the above presentation be­
comes {X\wi == wy), which considered as a group presentation, is equivalent to 
{X\wi =  e) after free cancelation - ie. any finite group presentation! Of course 
if we consider the group presentation f  =  e) as an inverse monoid p-
resentation then there is no guarantee that the word problem is decidable for the 
inverse monoid presented by P.
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Chapter 5

Inverse Monoid Enumerator

Theorems 4.2.11 and 4.4.10 generalise the results found in Section 3.2. We are 
now suitably equipped to enumerate 77.-classes.
Throughout this chapter I will be talking about an inverse monoid M = (X U 
X “^)*/r finitely presented as an inverse monoid by {X\U).
Everything in this chapter is new and constitute the main results of the thesis.

5.1 7?.-class Enumerator

A word graph V can be considered as an incomplete coset table. This is done by 
simply taking the vertices as rows, the columns as the labelling set and the entry 
T[c, x) in row c and column x is taken as the the edge (c, x ,T(c,x)).
I shall now proceed to describe the algorithm.

5.1.1 The Data Structures

• The immutable presentation for M, (X|?7) stored as a list of generators and 
their inverses and a list of pairs of words.

• The set of cosets is the mutable set C which is a set of positive integers. 
Initially C {!}.

79



• The coset table T  is mutable. With columns labelled by X U and 
rows labelled by C with entries from the set C U {_L} where ±  is the empty 
symbol. It starts with an empty row of _L’s labelled by 1.

• The coincidence set K  Ç.C x C is mutable and is considered as a stack.

• The function r : C C U 0 (r(c) is always less then c) is for replacing 
deleted rows - if r(c) =  0 then c has not been deleted. Initially r(l)  := 0.

5.1.2 The Subroutines

The full names of the procedures are given in bold while the part of the names 
in italics are their shorthand names. Some procedures simply change the data 
stmcture while others will return a value, others will do both.
Replace

• Parameter: c E C

• Locals: None

• While r(c) > 0 then c r{c)

• Return c

Create a New Definition

• Parameters: c E C and a; e X U X “ .̂

• Local: d

Do the following in order:

• Add d := max(C) +  1 to (7.

• Add an empty row onto T labelled by d.

• Define r{d) := 0

• Define cx := d

80



• Define dx  ̂ c

• Return d.

Trace a Relation

• Parameters: c e  C and {u =  uiU2 ...Uk, v — viV2 ...Vm) G U.

• Locals: i, s, d, e

Do the following in order:

• If cu =  _L and cv = ±  then do nothing.

• If cui...Ui 7  ̂ ±  and cui...Ui+i = Jl (1 < i < k) and cv = d JL define 
s := cui...Ui then while i < k

-  Do s := New(s, Ui)
-  Let i \= i + 1.

•  If cvi . . .Vi  ^  _L and cv i . . ,V i+i  =  A- (1 <  i <  m )  and c u  =  d A. define 
s cvi...Vi then while i < m

-  Do s := New(s, vi)
-  Let i i + 1.

• If cw =  d 7  ̂ -L and cv = e 1. and d ^  e then push (d, e) onto K.

•  Identify 

Identify Coincidences

• Parameters: None

• Locals: d, e, s, x

While K  is not empty do the following:

• Pop (d, e) from K.
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• Let d := Replace(d) and let e := Replace(e)

• If d e then (assuming with out loss of generality that d < e) do the 
following

-  For each entry equal to e in T replace e by d.
-  For each x e X  U X~^ if dx = ±  then replace dx by ex otherwise if 

ex ^  X  replace dx by min(dæ, ex) and add {dx, ex) to K .
-  For each pair (s, e) or (e, s) in K  replace with (s, d) and (d, s) respec­

tively.

• Let r(e) := d and mark row e as complete

5.1.3 The Main Procedure

The algorithm runs as follows.

To enumerate Ry first generate the coset table of the word tree of u =  xiX2 ---Xy 
as an element of F%yv((X). To do this start with an empty coset table with only 
the 1st row with the variable c := 1. For each Xi where i runs from 1 to n do the 
following.

• if cXi — _L then let c := New(c, Xi),

• else c := cxi.

This preliminary procedure will set up the table before applying any relations. It 
is all that is needed to enumerate Ry in Fj;w(X) (remember that in this case Ry 
is always finite). Now resetting c := 1 we proceed as follows.

• Repeat

• For each 1 < d < c so that r(d) =  0 and for each {u, v) e U do the 
following

-  Ti*ace(d, {u, v))

• Mark coset c as complete
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• Let A  be the set of incomplete cosets. If A 0 then let c := min(A).

• Until A =  0

• Tidy up T

• Return T

The Tidy up process removes all rows which have been deleted (ie. r(c) > 0), it 
also renumbers the cosets so that the rows read 1,2,3,... etc.

5.1.4 Proof that the 7^-dass Algorithm Enumerates Ru

It should be noted that there is no particular reason that this algorithm should 
terminate. It should also be remembered that there is no particular reason that Ry 
should be finite.
I shall talk about stages. The first stage, stage 1, starts just after the data structures 
have been set up. A new stage starts every time the For loop in the Main Procedure 
is started.
At the end of each stage, s, we call the coset table, T, (without rows whose r value 
is greater than 0) {ft. A map from coset tables to the corresponding word graphs 
is defined by 0 : i-> Ps where the cosets (whose r value is 0) map to vertices i
and edges are mapped to {c9, x, d9) when Ts{c, x) =  d in T̂ . j
It is clear that at every stage Tg is a fully determinised word graph because each I
entry in the table is well defined. !

A careful inspection of the New, Trace and Identify subroutines reveals the fol- I
lowing three lemmas.

Lemma 5.1,1. Pi is the determinised linear graph o fu  that is Pi is the birooted 
word tree {ay, Ty,fiy).

P r o o f : P i is produced by the preliminary procedure which runs through each of 
the letters in u. Let us regard c as a pointer in the tree. The only way in which 
the table may induce a loop in the coiTesponding graph is that the pointer moves 
to a non-adjacent vertex on the graph. As at each step in the For loop, either a 
new vertex is created which is adjacent to the pointer or the pointer moves to an 
adjacent vertex then at no stage is a loop induced.
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It is only necessary to notice that P = {a, axi, axiX 2 , au)  is a spanning walk 
on Fi to complete the proof. ■

Lemma 5.1.2. At each stage, s, the operation of the subroutine Trace{c, {u,v)) 
on the coset table Tg either:

• I f neither side of [u, v) can be traced from c then the subroutine does noth-

• I f u can be traced from c then the subroutine adds a determinised linear 
graph ofv to vertex c.

• I f V can be traced from c then the subroutine adds a determinised linear 
graph ofu to vertex c.

• I f  both u and v can be traced from c then it adds [cu, cv) to the coincidence 
set.

P r o o f : Clear. ■

Lemma 5.1.3. At each stage, s, the operation of the subroutine Identify on the 
coset table Tg corresponds, by the mapping 9, to a series of V-expansions on ft. 
Moreover given any coset c Identify does every possible V-expansion starting at 
c .

P r o o f :  For each (d, e) g  K, the 7^-expansion carried out is attaching vertex d 
to vertex e. Maldng the table consistent after this corresponds, by the mapping 9, 
to a deteiinination sequence. We know that a particular elementary P-expansion 
coiTesponds to a particular relation {u, v) on vertex c because the only place (d, e) 
can be added to the stack is in the subroutine l l  ace when we discover that d — cu 
and e =  cv.
Identify does every possible P-expansion because in Lemma 5.1.2 we see that Vg 
is expanded so as to include every path labelled by u starting at c when there is a 
path labelled by v starting at c where (u, v) eU . ■

Theorem 5.1.4. f t  is an approximate graph of [{uu~yr, ST [u t),u t) at each 
stage s.
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Proof: We loiow Fi is an approximate graph of ((ww~^)r, S'F(ur), wr) by Lem­
ma 5.1.1 and the fact that the linear graph of u is an approximate graph of 
{uw~^, SV(u),u). Hence by Lemma 4.4.5 and Lemma 5.1.3 F2 ,F 3 , ... are approx­
imate graphs of {{uu~^)r, 5F(wr), wr) by induction. ■

Theorem 5.1.5. The algorithm terminates if and only ifRy is finite in which case 
there is a stage s such that F g =  ((ww~^)r, 5F(wr), wr). In this case the table T  
is returned where T9 = 5F(w).

Proof: This follows from Theorem 4.4.10. ■

5.2 Examples

It will be useful to give a couple of demonstrations of the P-class algorithm before 
proceeding.

E x a m p l e : Let M  be presented by =  x^). Let us apply the P-class algo­
rithm to the P-class generated by x. The coset table for the word tree of x is as 
follows:

Cosets X x~~^ r(c)
1 2 L 0
2 _L 1 0

Whether starting at coset 1 or coset 2 we notice that it is impossible to trace either 
side of our relation through the table. Therefore the Trace procedure does nothing 
and the algorithm simply returns the above table.

In this case Rx is precisely the same as the P-class generated by x in Fjm  (ft that 
is the elements x and xx~^.
E x a m p l e : Let M  be as in the previous example but this time apply the 7Z.-class 
algorithm to Rx^. The coset table for the linear graph is as follows:
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Cosets X x~ ^ r(c)
1 2 _L 0
2 3 1 0
3 4 2 0
4 3 0

Starting at coset 1 it is possible to trace the right hand side of our relation but not 
the left hand side. The Ti'ace procedure forces us to define a new coset 5 such that 
4x = 5 and then another coset 5 such that 4æ =  5 we have:

Cosets X x~ ^ r(c)
1 2 0
2 3 1 0
3 4 2 0
4 5 3 0
5 J_ 4 0

But we also are forced to add (5,3) to K  because Ix'^ = 3 and =  5. Now 
running procedure Identify we set r(5) =  3, we replace all occuiTences of 5 by 3 
in the table and we are forced to add (2,4) on the stack, we have:

Cosets X X ^ r(c)
1 2 J_ 0
2 3 1 0
3 4 2 0
4 3 3 0
5 JL 4 3

Continuing we set r(4) =  2 and replace all 4’s by 2’s in the table and we are 
forced to add (1,3) onto the stack. Finally we are left with:

86



Cosets X r(c)
1 2 2 0
2 1 1 0
3 2 2 1
4 1 1 2
5 _L 2 3

The algorithm then checks coset 1 again and finds it is consistent with the relation. 
It then checks coset 2 and finds that this is also consistent with the relation and 
then tidies the table so that it looks like:

Cosets X x~'^ r(c)
1 2 2 0
2 1 1 0

This 7^-class is isomorphic to the group Cg which is the group obtained from the 
presentation of M. Indeed it is not too difficult to see that M  has 4 %-classes:

1. The trivial 7^-class generated by the identity and containing only the iden­
tity.

2. Rx = Rxx-^ which is of order two.

3. Rx~i =  Rx-^x which is also of order two.

4. Rx2 =  Rw where w is any word in (X U X “ )̂* which has either x ‘̂ or x~‘̂ 
as a subword. This 7^-class is of order 2 and we may use x'̂  and x^ as the 
canonical forms. Rx^ is the cyclic group of order two with x"̂  being the 
identity. The difference between and Rx is that Rx is not closed under 
multiplication, in particular x ^ x ^  Rx. Similarly * x~~̂  ^  Rx-^- As 
regai'ds the coset tables both Rx and have holes where as does not.

M  therefore has 7 elements. The inverse semigroup given by the same presenta­
tion is the same except that it does not contain an identity element.

It is worth commenting at this point that the columns of a standard (group) Todd- 
Coxeter algorithm are permutations of the set of cosets by a generator. For the
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7^-class enumeration algorithm we see that the columns have holes (or _L’s) in 
them but are otherwise partial one-to-one mappings of the set of cosets in to itself. 
If we recall Theorem 2.4.5 (the Wagner representation theorem) then it should 
not be surprising that generators perform partial injections of elements (cosets) of 
7^-classes.

5.3 Generating the Set of 7?.-Classes

An inverse monoid is the disjoint union of 77.-classes, therefore we can enumerate 
the entire monoid if we can systematically generate all the 77-classes of an inverse 
monoid M. I have already hinted how to do this in the last example, I use an orbit 
algorithm which I shall proceed to describe.

5.3.1 The Data Structures

The only data structure is a stack, R, of pairs. The first element of each pair is a 
word (a representative word) u 6 {X UX~^)*. The second element of each pair 
is the coset table for Ry denoted by Ty. Initially R  starts with a single element 
(e, Te) where is found using the 77-class algorithm on f t .

5.3.2 The Subroutines

Enumerate 77-class

• Parameter: w; g (XUX~^)*

This is the 77-class algorithm described in section 5.1 
Check whether a Path can be Traced in a Table

• Parameters: ( w ,f t )  G f t  =  viV2 ...Vy G (X U X “ )̂*

• Locals: c, i

• Let c := 1
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• For each Vi where i runs from 1 to n do the following:

-  c :=  T y { c ,V i )

-  if c = J_ then Return False

• Return True

5.3.3 The Orbit Algorithm

For each {w, f t )  G R  and each a; G X U X"^ do the following:

• Let Txw = Enumerate (fty;)

• Let F  := False.

• For each {u, f t )  G i? do the following while F  — False

-  Let F  := Path((w, Tu),xw) and Path((a;w;, fty,), u).

• If F — False then Push {xw, 2 ft) onto R

Return R
N ote: A s 77-classes are added to R  (they are never taken off), the outer For loop 
simply continues running through the new 77-classes. The algorithm will only 
terminate when new 77-classes are not being generated. If this never happens then 
M  has an infinite number of (finite) 77-classes and it should not be expected that 
the algorithm terminate.
N ote: This is a quite inefficient algorithm because it tends to repeatedly generate 
the same 77-classes.

5.3.4 Proof that the Orbit Algorithm generates M

Before proceeding let us examine exactly how the Path subroutine can be used to 
check the equality of 77-classes. We merely need to restate Corollary 4.2.7 (ii).

Lemma 5.3.1. Assume we are given a monoid presented hy {X\U) with u,v E 
(XUX“ )̂ so that u generates a finite R-class with table f t .  Then Path{{u, f t ) , r;) 
True if and only ifuu~^v — v.
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Suppose that u and v generate finite 77-classes in M. We know that if uu~^v = v 
and vv~^u = u then uu~^ — uu~^vv~^ =  vv~^ and so if Path((w, f t) , w) = 
True and Path((i>, ft), w) = True then f t  =  f t .  As the converse is clearly true 
this last lemma allows us to check 77-class equality.

Theorem 5.3.2. Given a monoid M, the Orbit Algorithm will terminate if and 
only if M  is finite. Upon termination the list ofTZ-classes of M  with their repre­
sentatives will be returned.

P r o o f :

The algorithm can only be expected to generate M if M is finite. Hence we 
assume that M  has a finite number of finite 77-classes. I shall denote the set of 
77-classes of M by R. I need to show that at each stage of the Orbit Algorithm 
that each element, (w, f t) ,  of R  corresponds to exactly one element, f t ,  of R  and 
that the algorithm terminates with a one-to-one corresponds from R  to R. It is 
useful to think of an injective mapping from 7? to R  which eventually becomes 
surjective as well. Hence there are two things to prove.

1. “one-to-one” If (w, f t )  G R  and given v e  {X UX"^)* such that u ^ v  and 
f t  = f t ,  then at any point in the calculation {v,Ty) ^  R.

2. “eventually onto” There is a total ordering yiength-by-reverse-lexicographic") 
< on (X U X “ )̂* such that given any w G (X U X “ )̂* then after a finite 
time there exists v < u  such that f t  =  Ry and (w,ft) G R.

1. “one-to-one”
Suppose (n, f t )  G R, f t  =  f t  and v = xw where a; G X U X “  ̂ and 
{w, f t )  G R. At some point the outer For loop will examine {w, f t )  and 
hence f t  ;=Enumerate(Ry) is calculated. It should be noted that i fu  = v 
in (X U X “ )̂* then this situation never aiises as the Orbit Algorithm never 
checks the same word twice.
The inner For loop examines each element in R  including (w,ft). Now 
Path((w, ft),t>) =  True if and only if uu~^v = v, but by assumption 
v'Ru1Zuu~^ and so Path((w, f t) , i;) = True. Similarly Path((v, f t) , w) = 
True. Hence the algorithm will not Push (w, f t)  onto R. We now only need 
to note that the algorithm only pushes pairs onto R  immediately after they 
have been examined.
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2. “eventually onto”
I define length-by-reverse-lexicographic as follows. Suppose there is a total 
ordering < on X U X “  ̂ so that the outer For loop in the Orbit Algorith- 
m runs through each x E X  U X~^ from least to greatest. We extend 
the ordering to (X U X “ )̂* by saying that if |w| < jr/I then u  <  v while 
if |w| =  |f| and u  =  Uj . . .U2UiXi . . .X 2X i ,  v = Vk---V2V\Xi . . . .X2Xi  where 
x \ ,  . . . , X i , u i ,  E X  U X “  ̂ with u i  Vi then u  < v if and
only if wi < vi. The Orbit Algorithm will always generate new pairs, 
(w, f t ) ,  where u  is greater than or equal to all previous words it has exam­
ined.
Given w 6 (X  U X~^)*, let v min(w G (X  U X "^)* |w  <  u,w7lu). 
Suppose V =  Xn...X2 Xi (xi G (X  U X “ ^)*). Let Vi := Xi...X2 Xi for each 
1 < i < n and let vq =  e. The algorithm starts with (i)o,ft) G R. 
Suppose that G 72 (0 < k < n). We know that the algorithm
will then at some point examine 72ŷ _̂ .̂ If (w^+i, is not added to R  
then there is some w < v^+i such that 72̂ , =  ftfc+i • However this means
that Rxn...Xk+3Xk̂ 2W ~  Rxn...Xk+sXk+2Vk+l ~  With < V
which contradicts our assumption. Therefore the algorithm will generate 
{vi,Tyf),[v2 ,% f), ...,{vn,Tyfj = V required.

5.4 Comments and Improvements

The Orbit Algorithm has a remarkable strength as well as an important wealcness. 
The strength lies in the ease in which it is possible to decide whether two 77- 
classes are identical. This strength is suiprising because the problem of deciding 
whether two 77-classes are identical is similar to a special case of the graph iso­
morphism problem (which asks whether two graphs are isomorphic) because 77- 
classes are labelled directed graphs. There is no loiown polynomial time solution 
to the graph isomoiphism problem. However the Path subroutine is polynomial 
and, indeed, very quick. To understand this, consider that every 77-class is not 
recorded as merely a graph but as a graph along with a generating word which 
acts as a “key”. The first versions of the algorithm used a recursive algorithm 
to check whether the tables for two words were identical ie. it repeatedly solved 
special cases of the graph isomorphism problem.
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The weakness, as I have pointed out, is that a single 77-class will be generated 
several times. There does not appear to be a way of solving this problem. The free 
inverse monoid algorithm developed in Section 3.1 had a form of coset collapse 
which was dependent on the free inverse monoid identities rather than the relations 
and because of that it works more or less like a standard Todd-Coxeter. However 
when we introduce explicit relations, the free inverse monoid algorithm has to 
check both identities and relations and there is no way of immediately telling how 
they interact with one another. For this reason it seems doubtful that there is a 
Todd-Coxeter style algorithm which does not follow a similai* method to the one 
described in this chapter.
There is, however, an improvement we can make. It is not necessary to calculate 
each 77-class from scratch as will become apparent if we consider the following 
lemma.

Lemma 5.4.1. Suppose that at some point in the Orbit Algorithm {u, f t )  G R and 
there exists x E X  U X~^. Then xuCu if and only ifPath{{u,Tf), x~^) = True.

Proof: Suppose xuCu. We know that

u~^u = {u~^x~^){xu),

pre-multiplying by u we get

u =  {uu~^){x~^x)u = {x~^x){uu~^)u — x~^xu,

therefore Path(('u,ft),æ“^æn) =  True and in particular Path((w,ft),a:'^) = 
True.
Let w label a w)-walk in F„. Suppose Path((w,ft), a;” )̂ =  True, then
cleaiiy f t ( l ,  x~^x) =  1 and so f t ( l ,  x~^xw) ~  f t ( l ,  w) and sou = x~~^xu and 
x u j C u  as required. ■
If xuCu as above then by Theorem 4.2.11 we know that there is a word graph 
isomorphism from : f t  —> Fa:u with the condition that u f  = xu and hence 0 
will map the start (ie. uu~^) of {uu~^,Tu,u) to xuu~^. Converting this to the 
tables we see that all we have done is move the starting vertex of f t  to the 
entry to create ft^. Hence, when the Orbit Algorithm has found an 77-class, f t ,  
in a certain D-class, f t ,  then it never has to enumerate any of the other 77-classes 
in f t .  This does not mean however that the other 77-classes in f t  do not have
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to be checked against as shifting the start does not necessarily create a new 
7^-class.
The final version written in GAP has this improvement (see Appendix),
Just as in groups we are interested in permutation representatives for generators 
and in monoids we are interested in transformation representatives for generators, 
for inverse monoids we are interested in partial injection representatives for gener­
ators. It is apparent that the Orbit Algorithm produces a collection of tables rather 
than a single table where information can be read off. It is now clearly no problem 
to find the number of elements in a finite inverse monoid as this number is merely 
the sum of the numbers of elements of 7^-classes. Fortunately to find a partial 
injection representation for a generator is similarly no great problem, all we need 
to do is append the tables together (while renumbering the cosets so as to distin­
guish between the cosets of one 7^-class from another) to get one big table, the 
fully appended table, and then read off from the columns to get partial injection 
for each generator and its inverse (entries in the table which read T(c, x) — A. 
simply mean that c is not included in the generator x's domain). To show this, 
recall the notation and ideas of Section 2.4 on the Wagner representation theorem 
and consider the following theorem:

Theorem 5.4.2. Let S  be an inverse semigroup. For each a E S and for each 
Lt-class Ru in S, we construct a partial injection as follows:

P^\ru X ^  x a , { x  E R u F̂  R uGT^)

: a; 0, (rc G Ry\Rua~^).
For each a E S, we define the partial symmetry on S as follows:

\x\~^ xp°-\r .̂

The mapping
g : a  i-> g®, ( a  G 5 )  

is a monomorphism o fS  into X{S).

Proof: The difference between this theorem and the Wagner representation the­
orem (Theorem 2.4.5) is that for each a E S in the latter we have xŵ " = xa when 
X E Sa~^ and xŵ " = 0 otherwise while in the former æg“ =  =  xa when
X E Rxa~^̂  and xq^ =  xp^-Ir  ̂ — 0 when x 0 Rxa~^ (obviously x is always a 
member of Rx).
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These constructions are identical because if æ G Sa~^ = Saa~^, then x = yaa~^ 
for some y E S. Clearly æ is a right multiple of y a and likewise xa = {ya)a~^a = 
ya and so ya is a right multiple of x and so ya E Rx, hence x =  yaa~^ E Rxa~^ 
as required. Clearly if æ ^  then in particular x ^  Rxa~^. ■
This theorem basically says that the generators will map cosets only to cosets 
in the same 72.-class, that is %-classes form blocks. Moreover this behaviour is 
implicit in the Wagner Representation Theorem.
E x a m p l e : Let M  be the inverse monoid presented by {x\x‘̂ = x^) then the fully 
appended table would look like:

Cosets X Block
1 J_ _L R e
2 3 R x
3 L 2 R x
4 5 _L R^-i
5 T 4 Rx~^
6 7 7 Rx^
7 6 6 Rx^

5.5 Right Congruences

As we saw in Chapter 1, in general group Todd-Coxeter enumerates the cosets 
of a subgroup rather than simply the entire group. We saw how to use a right 
congruence to do this. This idea extends partially but readily to inverse monoid 
enumeration. In group Todd-Coxeter we found transversals for subgroups as right 
congruence classes, this is precisely what we can do in the inverse monoid enu­
merator.
For the rest of this section M  is an inverse monoid, u E M  and (  Ç is a right 
congruence on M.
Given that (  is generated by A = {(n, G (A U i E 1} for some
index set I  we define Au — {(n, > w}. Note that by Corollaiy 4.2.7 (ii) for
each (r, s) E Au, both r  and s label a path in F„.

Lemma 5.5.1. Given v E M  then v E Ru i f  and only ifvÇ E R u /Ç
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P r o o f :  The direct im plica tion is im m ediate. Suppose that v(  G R u / C  then 
vÇTluÇ, and as (  C then vTlu and hence v e Ru. ■

Corollary 5.5.2. There is a word graph epimorphism f  : Fu Fu/C <̂ tid so

P roof: For v G V(Fu) define v f  =  v(. For {vi,x,V 2 ) G £^(r„) define 
{vi, X, V2 )(f> = {vi(, X, V2 C). This mapping is clearly well-defined and preserves 
labeling. By Lemma 5.5.1 we can see that it is also onto.

L[{uu~'^  ̂r^; ti)] Ç L[(uu~^C, Fu/C, îC)] follows from Lemma 4.1.8. ■
From Lemma 5.5.1 we can conclude that (r, s) G Au if and only if r(Tlu(. Hence 
if C is the right congruence generated by A u  then R u / (  ~  R r / C -

The %-class Algorithm can now be modified to enumerate these right congruence 
classes. At the beginning of the Repeat loop in the Main Procedure we insert the 
following:

• For each {r, s) G Au do the following

-  Trace(l, {r,s))

This is called the Generalised R-class Algorithm.
Right congruences are treated in exactly the same way as relations except that 
the starting point for any elementary P-expansion is the idempotent uu~^, this is 
because if (r, s) G C then both uu~^r and uu~^s are R  related to uu~^ and as 
C G R , {uu~^r)C =  (ww“^s)C, while for any other v E Ru 'WQ do not laiow a 
priori if {vr)Ç =
The proof that the modified %-class Algorithm terminates if and only if Ru/C is 
finite is exactly the same as the proof that the %-class Algorithm teiminates if and 
only if R u  is finite.
In a certain sense these results aie not tenibly exciting. The cases where C 2 
are surely much richer, but far more difficult to deal with - if it is possible to find 
a general solution at all. The power of the Inverse Monoid Enumerator comes 
from the fact that it separates right multiplication within 7?.-classes away from left 
multiplication of those %-classes as blocks and so structures which “cut across” 
7^-classes fundamentally interfere with this process. Not only that, but it remains 
problematic deciding whether or not a right congruence is a subset of R. Having
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said that though, being able to fac tor ou t large or even infinite substructures is 
incredibly useful ju st as it is in group theory. In  particular it is useful to be able to 
factor ou t Hu which I shall look at in the nex t section.

5.6 Enumerating R„/

We have the following lemma.

Lemma 5.6.1. Given an idempotent e E M  and v E Re then v E He if and only 
ifev = ve and e =  ev~^v.

P r o o f :  Suppose v E He. By Corollary 2.1.7, He is a group with e as an identity 
and so by the group axioms ev ~  ve and e = ev~^v.
Conversely suppose that ev ~  ve and e — ev~^v, then we want to show that eCv, 
Now as V = ev then ve ~  ev ~  v and v~^v =  v~^ev — v~^ve = ev~^v — e as 
required. ■
Given u E M  it is now possible to modify the Generalised 7^-class Algorithm so 
that it constructs the smallest right congruence (r  on M  such that

Ruu-^ X Huu-^ Ç CHu ^  1^-

This is done by giving each c E C a normal form A(c) E and inserting
Trace from Section 5.1 and the following subroutine into the Generalised %-class 
Algorithm.
Find H

• Parameters: None

• Local: c

For c G (7 do

•  If r(c) =  0 And Trace(W(c)'w) ^  _L And Trace(W(c)~^W(c)) L  Then

-  Add (iV(c), e) to Au
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N{c) is calculated very easily in the New subroutine. Firstly iV(l) := e and when 
coset d e C is defined as the entry T(c, x) then N{d) := N{c)x.
This Ru/Hu Algorithm will now construct generators for the right congruence 
for Chu- Essentially what happens is that the group Huu~  ̂ is factored out of Ru 
and each coset represents an Ti-class in Ru. Note that given a right congruence 
(  there is nothing to stop this algorithm enumerating R/C' where is the right 
congruence generated by U (. This done by just adding the generators for (  
into Au at the start of the algorithm.

The result of this algorithm will give the action of Ru on Huu-'  ̂ : that is the 
structure of the 77-classes in Ru. The word graph for this is denoted ST{u)/Hu. 
It should be noted that if ST{u)/Hu is isomoiphic to SV(v)/Hu then it does not 
necessarily follow that uRv.

By N. Ruskuc [23] we know that Chu is finitely generated, moreover this algorithm 
systematically creates pairs for Chu and so as there is a finite generating set for Chu , 
the algorithm will terminate.
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Chapter 6

More on Inverse Monoids

In this chapter I explain my work with Allessandra Cherubini and Brunnetto Pi- 
ochi, looldng at some of the applications of the algorithm described in Chapter 
5, Not all theorems are original, the results in Section 6.1 for example can be 
found in Petrich [18]. However the results are all proved in an original manner us­
ing the insights from Chapter 4 and Chapter 5 to directly tackle inverse monoid 
presetation theory questions.

Most of this chapter is about presentations and the following concepts will be 
needed.
Firstly, though, I shall introduce (or restate) some notation that I shall use through­
out this chapter.
N o t a t io n : The greatest com m on divisor o f the positive integers r i ,  r-2,... is de­
no ted ( r i , r 2 , ...).

N o t a t i o n :  The cyclic perm u tation of the objects xi,X2, ...■,Xnis deno ted {xiX2...Xn).

N o t a t io n : Given a word w G (A  UA~^ ) *  then w is the free cancellation of w 
in Fg{X).
I shall introduce the following theorem which is very useful for discussing inverse 
monoid and inverse semigroup presentations in general.

Theorem 6.0.2. Let M  be an inverse monoid presented by {X | U) with an idem- 
potent e such that e f  = efor every idempotent f  E M. Then Re is isomorphic to 
the group {X U A “^)*/(J where a is the group congruence generated by U.
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P r o o f : Given any w E M  then eTZew as e — eww and similarly eCew as 
e = ew~^w =  w~^we and so ew E Therefore eM = Me =  which is 
a group. Clearly He is a homomorphic image of M as for each {u,v) E U then 
eu — ev.
Given any {s,t) G a then sr  — tr  where r  is the inverse monoid congruence 
generated by U therefore

e (s r )  =  e{sr) =  eÇtr) = e{tr)

and conversely by Corollary 4.2.8 (iii) if e (s r )  =  e ( t r )  then sa — ta. All that 
remains to do is to construct the isomorphism f  : {X U X~^)*/a -4- eM  by 
defining f  \ sa e{sr). ■

6.1 Monogenic Inverse Monoids

Let us stait by looldng at the most simple example of inverse monoids.

Definition 6.1.1. Let V be a variety and let O E V. We say that O is monogenic 
if it is generated by a single element a; G O. In other words there exists a unique 
homomorphism from Fv(A) to M  where X  contains one symbol. In particular 
we have monogenic monoids, monogenic inverse monoids and monogenic groups.

Monogenic monoids are easily to characterised by the following well-known the­
orem.

Theorem 6.1.2. Let M  be a monogenic monoid generated by x then M  is present­
ed by {x\x^ ~  x^) for some distinct non-negative integers m and n. Furthermore 
\M\ =  max(m, n) ifm  n and M  = {æ}* ifm  =  n.

In other words monogenic monoids are either free or one-relation monoids. Simi­
larly monogenic semigroups and monogenic groups are either free or one-relation 
semigroups and one-relation groups respectively. Monogenic groups are usually 
called cyclic groups.
E x a m p l e : Given the monoid M  presented by — x^) then the Cayley graph
is:

x^

E - 4  æ   > X^
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Essentially monogenic monoids are “tadpoles” in that they are cyclic groups with 
a “tail”. Likewise the semigroup given by the same presentation has the following 
Cayley graph tadpole:

X x'^ — > x^

Whereas the group given by the same presentation has a Cayley graph which is 
the determinised form for the Cayley graph of the semigroup (or the monoid).

e — > X

It is generally true that Cayley graphs for groups, like Schiitzenberger graphs 
for 7^-classes of inverse monoids, are deterministic and injective whereas Cay­
ley graphs for monoids are only deterministic.
We now turn our attention to monogenic inverse monoids. From here on, p shall be 
the free inverse monoid congruence on {x, and M  shall be the monogenic 
inverse monoid {rr, x~^}*/r for some congruence r  D pon {x,
The case of monogenic inverse monoids is somewhat more complex. If we consid­
er a monogenic inverse monoid M  =  then M  is presented by {x,x~^\U U p)
as a monoid. M  is therefore not necessarily a monogenic monoid, unless, that is, 
it is possible to eliminate one of the two generators - for example if x~^ — 
is a consequence of U. Let us distinguish between two types of inverse monoid 
relations.

Definition 6.1.3. Given an inverse monoid presentation P  =  (A|C/). The relation 
{u, v) e U  is an idempotent relation if ïï =  U. Conversely we have non-idempotent 
relations where ü ^  v. The relation {u, v) E U is trivial i iu  = v. Similarly if 
{XUX~^)*/r is an inverse monoid then an equation ur =  vr {u, v E (AUA“ )̂*) 
is called an idempotent equation if ü =  ïï. The equation ur =  vr is trivial if 
u = V.

Idempotent relations are quite special to inverse monoid and inverse semigroup 
presentations. They are always trivial in monoid presentations and can always 
be freely reduced to trivial relations in group presentations. Note that given an 
idempotent relation {u, v) in a presentation {X\U) for M, it is possible that both
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UT and vr are non-idempotent in M, however if one of u or v is idempotent then 
the other one is as well.
At this point we shall recall that it was shown in Chapter 3 that we can write 
u 6 Fxm{x) as where m, n > 0, —m < k < n  and we know
that u is idempotent if and only if k — 0. Alternatively we can write u as its free 
group representative which will be

FG{up~^) — {{x~^,x~'^'^^, ...,e,x, ...,x'^},x^)

It is easy to see that FG{up~^) — FG{x~'^x^'^^x'^~^) and we may use the repre­
sentative x~'^x^x'~^ where p = m -\-n  and q — k ~ n  and conversely n ~ p  — m  
and k = —m -\-p — q. The condition on m, p and g is 0 < m, g < p.
Now, suppose that we have ui,U2 € Fxm{x) with free group representations

...,x'^^},x’̂ )̂ then

F G { u i U 2 ) =  ({a? a;” } U . . . , x ' ^ ^} ,x ' ^ ^x^^)
_  m2) ^max(ni,fci+n2) j.

In o ther words

(x~'^^ x^  ̂x^  ̂) x '̂^x^  ̂)
_  ^min{—mi,62—m2)^max(?)i —mi,—mi +Pi —q i  + P 2  —m2)^ q i  + p + l—mi+ q 2 + P 2 —m2

Lemma 6.1.4. If the equation

{x~'^'^ x^'^ x ~ ^ ^ ) r  — [ x ~ ^ ' ^ x ^ ^ x ~ ^ ‘̂ ) r  

with 0 < mi, gi < pi, 0 < m2 , gi < P2 cindpi > p2 holds in M  then
^ P 2 M k i - k 2 \ ^  _  ^ P 2 r f

where ki — —mi +  Pi — gi and k2 — —m2 +  P2 — gg.

P r o o f : We know that in M ,

[x~'^'^ x^^ x~ ^ '^ )r  =  {x~ ' ^^x^ ' ^x~^ ’̂ ) r .  (6.1)

M ultiplying 6.1 on the righ t by x ^ ^ r  and on the left by x ^ ^ r  and no ticing that both
<l2 <  P2 and m2 <  P2 so we can cancel the righ t hand side o f the equation, then
we get

{x̂ "̂  x~̂ '̂  x̂~̂ x~̂  ̂x̂ '̂ )r =  x^ r̂. (6.2)
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Now the free group representative of the left hand side of 6.2, ui e Fx m {x), is 

FGiui) =   ̂^m2-mi+pi+max(0,g2-<7l)|̂

while the free group representative of the right hand side of 6.2, Ur G Fx m {x) is

FG{ur) — ({e, æ,

Now clearly uit G Ru^r and so

UiT =  {UrUr~^lIi)r — =  (x̂ "̂  x~^^

If ki > /c2 then
UiT =  a;̂ 2+A:i k2^

as required, otherwise

U i =  U r  =  X  =  { x  ^ ‘̂ X ^ ^ X

—  ^~P2-̂ k\—k2^

and so
UiT =  a;;P2+A:i k2^

as required. ■

We want to show that

{x\x~^'^x^^x~^^ = x~' '̂  ̂x^  ̂x~^^)

is equivalent to
=  x”̂ ),

however it is only true when the relation is non-idempotent. We need the following 
lemma.

Lemma 6.1.5. I f  the equation

a;P+*7- = x'^T

with p > 0 and k > b holds in M  then Rxpt Is the group {æ, x~^}*/a where o 
is the minimum group congruence. Rxpt is a group homomorphic image of the 
cyclic group Gk-
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Proof: Clearly and label -walks in Sr{x^r) and so by
Corollary 4.2.8 (iii), x^a = x' '̂^^a where <j is the minimum group congruence.
Therefore (æ^,e) G <j and so {x ,x~ ^Y /a  is a homomorphic image of as
required. ■

Lemma 6.1.6. Let M  = {x, be a monogenic inverse monoid generated
by X . I f the equation

X'P'̂ T̂ ~  X^T 

with p > 0  and k > 0 holds in M  then

{x~'^^ x̂ '̂  x~^Y'^ — {x'~'̂ '̂  x̂ "̂  x~^^)r

where pi > P2 ~  P and | — mi +pi — gi + m 2 —P2 +  ga| = k and0 < mi, gi < pi 
and0 < m2 , q2 < P2 -

Proof: We know that in M,

X '̂^^T ~  X^T. (6.3)

By Lemma 6.1.5, Rxpt is a homomorphic image of the cyclic group C* with e ==
(xPx~P)r as the identity and generated by xt‘x~‘̂XT.
Multiplying 6.3 on the left by x~'^^r and on the right by x~^'^r (where 0 < 
m2 ,92 < P2 ) and substituting p2 for p, we have

(x~'̂ '̂ x^'^^x~^^)t — (x~^^ x^  ̂x~^'^)r.

We simply note that it is possible to cancel on both sides of this equation on both 
the left and the right as the elements are products of members of the cyclic group 
{x, x~^}*/a and that x^ = for any  ̂ > 0. In this case pick a pi > P2 and 
0 < m i, 9 i < Pi so that —mi + pi — gi =  p + /c and we may construct the result. 
■
The previous lemma breaks down when k = 0 and we have the trivial equation 
x^T =  x^T. We thus turn our attention to idempotent equations. We already know 
about the infinite monogenic inverse monoid F x m {x ), here I introduce another 
example.

Definition 6.1.7. The bicyclic monoid generated by x, Bx, is the monoid present­
ed by {x\xx~^ =  e).
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There is a dual of denoted by which is presented by (æ|a: = e).
Throughout the rest of this section I shall denote the congruence generated by
p U e) by v and I shall denote the congruence generated by p U {x~^x, e)
by v^.

Lemma 6.1.8. Ifw  € {æ, so that wp =  [x~’̂ x^x~^)p (b < m ,q  <p) then
wv = {x~'^x‘̂~^)v and dually wv^ = {x''^~'^x~^)v^.

P r o o f : It is clear from the definition of v that we may cancel w on the right. 
Similarly from the definition of f  ̂  we may cancel w on the left. We need only 
note that p>  q and p > m to  get each result. ■

Lemma 6.1.9. Suppose that {ui,U2 ) G v with FG{ui) =
and FG{u2 ) =  ..., then mi — m 2 and ki =  k2 . Dually sup­
pose that («1 ,^ 2) G then ni — U2 and ki =  k2 .

P r o o f : We already know that FG{u) =  FG{v) for all {u^v) G p. Now
FG{xx~Y = ({e, ic},e) while F7r(e) =  ({e},e) and =  xx~^ and
e”  ̂== e and so the result holds for all the generators and their inverses of v. Now

FG(UiU2) =  ^^max(niA+n2)

and if we notice that min(—mi, k i~  m 2 ) and ki +  k2 are not dependent on either 
ni or 712, we have our result.
The dual is proved in the same way. ■

Lemma 6.1.10. In Bx, the Schiitzenberger graph ST'{ev) has vertices

y(6T(Ef)) — > 0}

and edges

E{SV{ev)) — {(æ'f, a;, |g > 0}

The set of idempotents in Bx is {{x^^x'^)v\r > 0} and each R(x-rx^)v have 
Schiitzenberger graphs isomorphic to ST[ev).

P r o o f : evx^v = x^v and x^vx~^v — ev and so x^vIZev.

104



By Lemma 6.1.9 x^v =  x^v if and only if s = t and noticing that x^vxv = x^'^^v 
and x^'^^vx~^v = x^v (s > 0 ) we can conclude that S'r(etî) is as described.

The set of idempotents of {x,x~^}*/p is {{x~' '̂^x‘̂ ^'^^^x~^^)p\ri,r2 > 0}, and 
by Lemma 6.1.8 f  = (x~'^^x'^Y'^■ Moreover ŷ
(x'~‘̂ ^x^^)v if fi ŷ  T2 and so ri =  rg if x~'‘'^x‘̂^v = x~'^^x'^^v by Lemma 6.1.9. 
Hence all the idempotents are distinct.

Let (j) : Rev -> R{x~̂ 'x̂ )v hy (j) \ x^ ^  x~^xF Let : R{x-^x'')v -4 Rev by 
0' : x~'^x^ 1-4 It is clear that 0 and 0' are mutually inverse and induce word 
graph homomoiphisms on the respective Schiitzenberger graphs. ■
For the dual of the above, in the Schiitzenberger graph ST(E'u^) is simply 
S T \ev)  in
In Bx, Sr{x~'^x'^v) looks like this:

X  ^ — Yx a: ^ x  — )-x ••• — ^  '—^x ^  ^ x ^ ^ ^  — Yx  •••

t

N o t a t i o n :  We denote the %-class of B x  which contains e by R b  ̂ and the 
Schützenberger graph of Rb^ by STg^.

Lemma 6.1.11. I f  the equation

{x^'^^X~^)t =  X^T

withp > 0 and g > 0 holds in M  then ST{{x~'̂ x^)t ) with r,s > 0 is a homomor­
phic image of SFb  ̂ if either r > p or s > p.
Dually if the equation

{x~^x^^^)r ~  rc^r

with p > 0 and g > 0 holds in M  then SV{{x^x~^)r) with r,s >f) is a homomor­
phic image of SV^b ,̂ if either r > p or s > p.

P r o o f :  The idempotent in R(x-^x^)t is {x~‘̂ x^x~^x^)r. Suppose r > p then for 
A; > 0

{x~'̂ x^x~^x '̂ x^)t [x~^t) ~  {x~'^x^x~^{x' '̂^’̂ ^x~^^)x^x~^)r
= {x~'̂ x^x~^x '''^̂ x̂~^^)t 
— (x~'̂ x x̂~^x^)t
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and so [x '̂x^x ^x^x^)rR{x '^x^x ^x^)t. Likewise if s > p, then for A; > 0

{x~'̂ x x̂ '~̂ x^x^)tx~^t ~  ( x ~ ' ^ x^x~^)t
—  )g g—(A+r
=  (a;-^a;'+(*+'')9a;-g-(&4-r)g r̂).^
=  {x~^X̂ X'~̂ xY t‘ 

and so {x~^x^x~^x '̂ x^)t‘7Z{x~'̂ x^x~^x' )̂t ,
Define the mapping 0  : Rb^ -> R(^x-^x )̂t by 0  : x^v t-4 {x~^x^x~^x'^x'^)t 
(k > 0). It is easy to see that 0  preserves labelling and orientation of edges.
The dual result is proved in the same way. ■

Corollary 6.1.12. If the equation

{xt '̂^^X~^)r = 

where p > 0 and g > 0 holds in M  then

{x’̂'^̂ ' X~̂ ' )t = X^T

holds in M  for every q' > 0.
Dually if the equation

{x~^X '̂^^)t =  X^T 

where > 0 and g > 0 holds in M  then

{x~^' x^^^')r — x^T

holds in M  for every q' > 0.

P r o o f : Suppose that
{x^^^x~^)t =  rr^r.

Consider R^pt- We can see that from the proof of Lemma 6.1.11 that there is 
an ((æ^a;~^)r, (æ r̂r“^æ*)r)-walk in SV{xPt) for every A: > 0. In particular if 
A: = p + g' (g' > 0), then we have

[x^ x~’’̂ )tR[x  ̂x~' )̂t

that is
{x^ x~’’̂ x~'^~^')r — {x'̂ x~^)t
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which cancels down to

) r  = {x^x~^) t  

multiply on the right by x ^ r  and we have

{x' '̂^ '̂X̂ ')t = X^T

as required.
The dual is proved in a similar manner. ■
The other more obvious standard example of infinite monogenic inverse monoids 
is the infinite cyclic group F g { x ) .

Lemma 6.1.13. If  the idempotent equation

with 0 < mi, 92 < P i ,  0 < mg, 92 < P2, rrii mg, qi ŷ  92 andpi > pg > 0 
holds in M  then RxP2t Is a group.

P r o o f :  Now  {x^^x ~p^)t  is the idempotent in R xP2t we need to show that

{{x^‘̂X~t^^){x~'^xt^X~^))T = {x'̂  ̂X~̂  ̂X~'^'^^~^)t 

for any 0 < m, 9  < p. Now

=  {af^^ x~~'̂ '̂  x̂ "̂  x~ '̂  ̂x^^) r  
— {x^'^X~'^'^xt‘^X~^^X^'^)T.

I shall split this equation up into three cases

1. mi > m2 , 9 i > 92 In this case

and so

=  (a;’̂ 2 -m i^ P 2 2 ;~ P 2 ^ P X ^ m i-m 2 -p i^

and if we substitute [x’̂ ^x~^^)r back into the above k times we get
{x ^^X~'^^)t  — ( ^P2 ̂ - P 2  +A(m,i - m 2 ) -m g  - p i  ̂

If we choose k > 0  such that k{mi — m2 ) > m andpi +  k{mi — mg) > p 
and we have the result.
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2. mi > mg, 9i < 92 In this case

_  (^^rn2-ini^pl+q2-qi^j.
—  ^^m2-mi^p2j.pi-p2+q2-qi'^j-

If we substitute back in again k times we get

^P2  ̂ _  ^^Hm2-mi)^P2^k{pi-p2+q2-qi)'^j.

and so all we need to do is choose A: > 0 such that A:(mg — mi) > m and
k{pi -  P2 +  92 -  9 i) > rn.

3. mi > mg, 9 i < 9 g This is just the dual of case 2.

We need only note that the fourth case where mi < mg and 91 < 9 g violates the
condition that pi > Pg. ■

Clearly RxP2 t  is a homomorphic image of Fg{x) ie. it is either free or cyclic. 

Theorem 6.1.14. The following statements are true.

(i) The idempotent equation

where 0 < mi, 91 < Pi, 0 < mg, 9g < pg, mi =  mg andpi — mi > pg — mg
holds in M  if and only if

(ii) The idempotent equation

where 0  < mi, 91 < pi, 0  <  m g, 92 < pg, mi > mg andpi -  mi =  pg — mg
holds in M  if and only if
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(iii) The idempotent equation

(^-mi^pi^-gi)^ _  (g;-1Tt2g;P2g;-92).y-

where 0  <  m i ,  91 < p i ,  0  <  m g ,  9g <  p g , m i  m g  andpi — m i  p g  -  m g  

/zoWj" in M  if and only if

P r o o f :

(i) Suppose

with the conditions given. Now mi =  mg and so multiplying on the left by 
mi and on the right by 92 gives

{x^  ̂X~̂  ̂X'^ ‘̂̂)t =  X̂ ^T.

By idempotency 91 =  (pi -  mi) -  (pg -  mg) +  9g > 9 g so

(x'^^x~^)r =  x'^r

where p =  pg and 9 = 92 — 9i > 0. Hence by Corollary 6.1.12

(^p+i^-i)^ _

Conversely suppose that

Let m i =  mg =  9 2  =  0, P i =  p +  1, pg =  p and q \ — l  and the conditions 
are satisfied.

(ii) This is the dual case of (i).

(iii) This follows from Lemma 6.1.13

If we notice that =  x'^r => x‘̂''^^t = x^'r if p' > p and =  x^r
(æ^rc"^)r =  {x~^x^)t and that (x^æ“^)r =  {x~^xt^)r {xP'^̂ x~Yt = we
can now categorise monogenic inverse monoids. Either we have

109



1. M  is presented by {x\x^'^^ — x^) where p > 0 and A; > 0. In this case we 
have a chain of V  classes D^t, Dx^tj •••> RxPr where D^ir has z +  1 
P-classes and E-classes with each 77-class containing one element. For ex­
ample Ĥ -ruxP' x~̂  — Rx~^xP' — ^xP' dually G L̂ pt ̂ -q Ç
D̂p> (for p' < p). The chain ends with D^p which is isomoiphic to the 
cyclic group of order k. The order of M  is

\M\ =  +  k.

2. M  is presented by {x\x~^x‘‘ =  x^x"^) where p > 0. In this case we have the 
same chain of D-classes as before except that P^p is isomoiphic to F g { x ) .

3. M is presented by {x\xt '̂^^x~  ̂ — x^) where p > 0. In this case we have 
the same chain of P-classes as before except that P^p is isomorphic to the 
bicyclic inverse monoid.

4. M  is presented by {x\x~^x^^^ =  x' )̂ where p > 0. In this case we have the 
same chain of P-classes as before except that P^p is isomorphic to the dual 
bicyclic inverse monoid.

5. Finally M  can be free in which case the sequence of P-classes continues 
indefinitely.

6.2 Coxeter Presentations

Definition 6.2.1. Let T be a finite directed graph with vertices with E(T) = X  = 
{xi,X 2 , Xn} where the vertex Xi is labelled by the positive integer pi and the 
edge {xi, Xj) is labelled by the positive integer We call T a Coxeter graph. 
The Coxeter presentation corresponding with T is the semigroup presentation

{X\ =  Xi\fxi e X, {xjXkYj^ — x/^y{xj,xic) G P(T),
XjXk = XkXj\f{xj,Xk) 0  P(T)).

Coxeter presentations can be considered as monoid, group, inverse monoid or 
inverse semigroup presentations. For the case of groups the presentation is equiv­
alent to

(AI xf^  =  6Va;* G A, {xjXkyjk -e \ f{xj,X k)  G P(T),
XjXk = XkXj 'i{xj,Xk) ^ P(T)).
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Groups presented by Coxeter presentations are called Coxeter groups and similar­
ly we have Coxeter semigroups and Coxeter inverse semigroups. As the presen­
tations do not involve the identity, the monoid and inverse monoid cases are not 
particulaiiy interesting and amount to merely adding an artificial identity to the 
semigroup. We shall look at some well known examples of Coxeter groups and 
semigroups.

E x a m p le :  The sym m etric group is a Coxeter group generated by {xi — 
( m - | - l ) | l < ? < n  — 1} with the group presen tation

{X\xi^  =  e ( l  <  i <  n - 1 ) ,  =  e,XiXj — XjXi{l  < i < n - 2 ,  \ i - j \  > 1)).

E x a m p le :  The dihedral group on { 1, 2 , . .., n}  is a Coxeter group generated by 
X — (1  2 ...n) and y = (1 2 ) with the group presentation

{x,y\x^ =  2/̂  =  ( x y f  = e)

E x a m p l e : A finite group direct product of finite cyclic groups is a Coxeter group. 
Let G be the product

Gp̂  X Gp2 X ... X Gp̂

then G can be presented as a group by

{xi,X2, . . . ,Xn\xf^  =  e, XjXk — XkXj (1 <  i , j , k  < n)).

Note that the semigroup S  given by the Coxeter presentation

{x i ,X2, . . . ,Xn\xf^^'^  =  Xi, XjXk — XkXj (1 <  l , j , k  < Tl))

is only a group when n  — 1, in which case it is Cp̂  with the identity being xf*'^.
Now we know from Section 6.1 that the inverse semigroup given by the Coxeter 
inverse semigroup presentation

= x)

is just the cyclic group of order p with the identity being x^. In this case the inverse 
behaves just like the group inverse.
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Lemma 6.2.2. The inverse semigroup direct product S — Cp̂  x Cp̂  x ... x 
is presented by the inverse semigroup Coxeter presentation

{x i ,X2, ~  Xi, XjXk =  XkXj (1 <  i , j , k  < Tl)).

P r o o f : We know that S  is presen ted by

(xi,X2,. . . ,Xn\xf^'^'^ =  Xi ,XjXk = XkXj,XjXk~^ -  Xk~^Xj{l < i , j , k  < n , j  ^  k)).

We need to eliminate the relations of the form XjXk~^ =  Xk~^Xj. This is done by 
noticing that Xk~  ̂ = and that XjXk '̂‘~̂  ~  Xk‘‘̂ ^~^Xj. ■
It follows that in a Coxeter inverse semigroup, S — {X U that {xx~^)r  =
(x~^x)r  for æ G A  U A ~^. It follows that S  is generated by A  as a semigroup.

Lemma 6.2.3. Let S be an inverse semigroup with x , y  E S such that x^^^^ — x, 
yP2-\-i — y [ xyY  — x^^, then

and

XX ^ y y   ̂ ~  XX ^

xyy ^x  ̂ = yxx ^y  ̂ = xx ^

P r o o f : By Lemma 6.2.2 xx~^ =  x~^x =  x^  ̂ and yy~^ — y~^y ~  2/̂ -̂ There­
fore

xx~^^yy~^ =  {xyYyy~^ =  {xyYy~^y = (xyY = xx~~̂ .
Also

xyy~^x~^ =  x{x~^x)yy~^x~^
= x{xyYyy~^x~^
= x{xyY~^xyy~^yx~^
=  x{xyYx~^
—  xx~^xx~^
—  xx~^.

As is a group and xx~^Rxx~^y~^ and xx~^Cxx~^y~^ then xx~^y~^ =
y~^xx~^ and so

_ i  _ i  — 1  _ i  _ iyxx y = 2/2/ xx xx  .

Definition 6.2.4. A semigroup which is a semilattice of groups is Clijford semi­
group.
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The following theorem helps us identify Clifford semigroups. The proof is found 
in Petrich [18].

Theorem 6.2.5. The following conditions on a semigroup S are equivalent.

(i) S is a Clifford semigroup.

(ii) S is regular and if e is an idempotent in S  then es — se  for all s E S.

(iii) S  is an inverse semigroup and ss~^ =  s~^sfor all s E S.

Theorem 6.2.6. All Coxeter inverse semigroups are Clifford semigroups.

Proof: Let S' be a Coxeter inverse semigroup and let u =  XiX2 -..Xn E S  where 
X\,X2 , ...,Xn E X  (there is no need to include any elements of as they can 
be rewritten as elements of X  using Lemma 6.2.2). Then

UU~̂  =  Xi...Xn-\XnXn~^Xn-i~^ ...Xff^

and there are four cases which can arise

• Xn-i = Xn. In which case

Xji—lXjiXji Xji—l — Xji Xfi
— XjiXfi ^XjiXji 
=  Xfi—lXji—l ^XnXji

• Xn~iXn = XnXn-i. In which case

Xn—lXnXfi Xji—l. — 1

• (xn-iXnY'"~^^ = . In which case by Lemma 6.2.3

Xn—lXnXn 1 ~  37̂,— 1 — l^n—1

• {xnXn~iY^^~'^ = Xjf^. In which case by Lemma 6.2.3

X n —l X n X n  ^ n —1 ~  X n X n  —  X j i —l X n —l  X ^ X n
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So in each case

u u - 1 X\.,.Xji—2{Xn-~\Xu—l XfiXfi )Xji—2 “-Xi ,

and noticing that {xn-iXn-i ^XnXn Y ~  VV  ̂ for some y e S  we may repeat 
this procedure until we arrive at:

UU~̂  — XiXi~^X2 X2 ~^...XnXn~^-

As each Xi commutes with Xi~  ̂ then it is easy to see that the same procedure 
applies to u~^u and so uu~^ = u~^u and therefore S is a Clifford semigroup by 
Theorem 6.2.5 ■
E x a m p l e : Let P be the Coxeter presentation

(x,y\x^ =  æ, 2/̂  =  2/, {x y f  = x^)

Then the inverse semigroup presented by P  has two 77.-classes, Ry which is iso­
moiphic to the cyclic group C4  and Rx which is isomorphic to the dihedral group 
D4 . This can be seen by the fact that if we start with the linear graph Fy, then the 
only relation which contains y as a sub word is y^ = y. If we notice that in the 
word graph generated by applying the elementary “P-expansion corresponding to 
2/̂  =  2/ there are no edges labelled by x and so there is no way that either of the 
other two relations can be applied and we aie finished. On the other hand if we 
apply the elementary P-expansion corresponding to x^ = x to the linear graph 
Fa, then we obtain a word graph which contains a path labelled by x^ and we may 
therefore apply the elementary P-expansion coiTesponding to {xyY — x"̂ . At this 
point the word graph contains edges labelled by y and all three relations can be 
applied and by Theorem 6.0.2, Rx is isomorphic to the dihedral group presented 
by

{x^ylx"  ̂== /  = [xyY = e).

6.3 Symmetric Presentations

This section looks at a type of presentation examined in the paper On a Class of 
Semigroups with Symmetric Presentations by Campbell, Robertson and Thomas
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A symmetric presentation is a semigroup presentation of the form

T,{m,n) ~  {xi,X2 , ...,Xn\xi^^'^ =  Xi(l < i <  n),Xix‘j = Xjx‘̂{l < i  < j  < n)).

The semigroup presented by S(m, n) is denoted S{m, n), the group presented by 
S(m, n) is denoted by G{m, n) and the inverse semigroup presented by E(m, n) 
is denoted by I S (m, n).

E(m, n) is called a symmetric presentation because any permutation of the gener­
ators produces a permutation of the relations. They also have the property that for 
every relation u — v, the generators involved in u are exactly the same as the gen­
erators involved in v so that any two words in X* representing the same element 
in the semigroup S{m, n) will involve precisely the same generators. S{m, n) is 
therefore a semilattice of semigroups, where the semilattice is the Boolean lat­
tice of subsets of the set of generators under reverse inclusion, with the empty set 
removed.

When m  is odd then 5'(m, n) is a semilattice of groups and therefore an inverse 
semigroup (in particular a Clifford semigroup). In this case the inverse semigroup 
IS{m, n) presented by the S(m, n) is isomorphic to the semigroup presented by 
S(m, n) because in a finite Clifford semigroup S', if u G S' then = vP for some 
p > 0 and we can thus eliminate the inverses (cf Theorem 6.2.6). Thus insofar as 
we know anything about S(m, n) then we can say the same about IS(m, n). This 
case is useful for testing of the enumerator algorithm, because we already know 
what the results should be.

If m  is even and greater than 6  then S(m, n) is infinite, I shall look at some 
examples of E(2, n) and E(4, n).

E x a m p le :  The semigroup S(2, 2) =  {x,y \x^  = x,  y^ ~  y, xy"^ — yx^)  has five 
E-classes each of which is isomorphic to the cyclic group Cg. The elements are 
given in the following table:

D-class E-class Elements
Dx Lx X,  x^

Dy Ly Î/, 2/̂
Rxy Lxy a;?/, a;̂ 2/
Dxy L/yx 2/a;, 2/̂ a;

Ex'^yx ^x^yx x ^ y x ,  x^ ,  2/̂
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Clearly 5(2,2) is not an inverse semigroup as Dxy contains two E-classes but 
only one 77.-class. We can see that xyRyx  as {xy)yx — (xy^)x = yx^ — yx and 
{yx)xy =  {yx'^)y = xy^ — xy. Also xy and yx are both idempotent because

{xyY =  xyxy  =  xyxy^ =  xy'^x^y =  yx^^y ~  yx^y — xy^ ~  xy
and in the same way {yxY — yx.
Notice that in 75(2,2), we have {xyY = xy and {yxY — yx as before, however 
by the commutativity of idempotents

xy =  {yx)[xy) =  {xy){yx) =  yx

and so we could say that Greens classes Lxy and Lyx in 5(2,2) are “identified 
with each other in 75(2,2).”
The enumeration of 75(2,2) gives us the semilattice of cyclic groups:

î>-class Elements
Dx X, x^
Dy 2/, 3/̂
Dxy xy, x'^y

E x a m p l e : The sem igroup

5(4 ,3) =  {x, y, z\x^ = x, y^ = y, =  2 :, xy^ = yx^, xz^ — zx^ , yz^ — zy"^) 

has 25 E-classes which include

•  Lx, Ly and L^ which are cyclic groups of order 4.

•  Lxy, Lyx, Lxz, Lzx, Lyz, Lzy - six groups of order 20 with LxyRLyx, LxzRL,  
and LyjfRL^y.

•  15 E-classes of similar type to Lx{yz)^ each with 84 elements.

•  E(a;2y2g2)2 =  (7(4,3) which contains 100 elements.

By contrast 75(4,3) contains

•  Lx, Ly and L z  which are cyclic groups of order 4.

•  Lxy =  Lyx, Lxz — Lzx, Lyz = Lzy wWch are groups of order 20.

•  Lxyz — (7(4,3) which is a group of order 100.
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6.4 Free Products Involving a Semilattice

Firstly I shall define free products for inverse semigroups.

Definition 6.4.1. Given two inverse semigroups (inverse monoids) S  and T with 
presentations {X\U) and (y |y )  so that {X U X ~Y  H (Y U V~Y  =  0 then the 
inverse semigroup free product (inverse monoid free product) is the inverse semi­
group (inverse monoid) S * T  which is presented as an inverse semigroup by
( A u y |[ / u y ) .

Inverse semigroup free products are, of course, defined in a similar way to group 
and semigroup free products. This does not make them semigroup or group free 
products. If, for example, S  is an inverse semigroup presented by (X\U) and T is 
an inverse semigroup presented by (y |y )  then the inverse semigroup free product 
5*T  will have, for example, implicit relations of the form (xx~^yy~^, yy~^xx~Y 
for rc G (A U A “ )̂* and y G (y  U y~^)* whereas the semigroup free product will 
not.
The inverse semigroup free product between two inverse semigroups S  and T  will 
produce an infinite inverse semigroup unless S  is finite and T is a semilattice (or 
vice versa). This is because if both S  and T contain the non-idempotent elements 
s e S  and t e T  then (st)^ G 5 * T are distinct for all k.
I shall characterise these inverse semigroup with the following two lemmas.

Lemma 6.4.2. Let S  be an inverse semigroup and let L b ea  semilattice such that 
5 n  L =  0. The the set of idempotents of S  ^ L is  a semilattice generated by

A = L U {ses~^|s G 5, e G L} U {ss“^|s G S}

P r o o f : N ow

(ses” )̂̂  = se{s~^s)es'~^ — ss~^se^s~^ — ses~^

and so by commutativity of idempotents, A generates a semilattice. Also if t E S 
and f  E L then as the product is free ses~^ is distinct from tft~^ if either u ^  v 
or e / .

Let 5  =  sieiSgCg.-.en-iSn where s* G 5  for 1 < i < n and where e* G L for 
1 < i < n — 1 and where each |s*| > 0 and n > 0. Now for any 1 < z < n — 1

117



and if  we define ti =  siS2...Si then

—  { s i . . . S i ) { s i . . . S i )  ^ { s i . . . S i ) e i S i J ^ i e i ^ i { s i . . . S i ^ i )

and

and therefore

tn—l tfi^n — ifi—l tn—l^n^n ^n— 1 

— n̂—1 ^n—l^n— 1

— Sn.tr

{tntn ^){tieiti ^)(f262^2

' tiG\S2G'2"'^n—2^n~2(^^n—l^n—l t n —l ^{tntn  )
~  2 7̂1—2 (^71—l^n—l^n^n )•

N ow for 2 <  i <  n

G i —\ S i . . . S n t n  —  ( ^ i — l )  ( 5 * . . . 5 ^ 5 ^  • > • 5 ^  1  . . . S i

— ' ^ i —l i ^ S i , . . S j i S f i  . . . S i  ) e j _ i S i _ i  , . . S i

and com bining these two results we get

(^l^ifr^) (̂ 2 6 2(2""̂ ) ...(L-lGm-lfn_r^)
' ( ^1^1 ' "^71—1^71) (̂ 71 7̂1 — )

and we need only no tice that the righ t hand side is any idem po ten t in 5 * L \  (L U 5 ) 
and the left hand side is a product of elem en ts of

{ses“^|s e 5 , e e L}U  {ss~^|s G S}.

Lemma 6.4.3. Let S  be an inverse semigroup and let L he a semilattice then for 
any Si, S2,..., Sn E S and e i, 6 2 ,..., e„_i G L then SVs{siS2 ...Sn) is embedded in 
SVs*L{sieiS2 e2 --.en-iSn) and\V{Srs{siS2 ...Sn))\ = | ^ ( s i e i S 2 6 2 ...e^_is^)) |.

P r o o f : A s the product of S  and L is free then we know that each o f the e, label 
a (s ie i...e i_ iS j, sie2...e^_iSi)-w alk and there are no relations which we can use to 
expand this. Therefore acts as an iden tity on this vertex and there are no o ther 
differences to S T 5 ( s i ...s „ ) . ■
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It is easiest to see what is going on in the special case of G * L where G is a 
group and L is a semilattice containing only one element. Here are a couple of 
examples.

E x a m p l e : Let G be the cyclic group presented by the inverse semigroup presen­
tation =  æ). The table below lists all the elements of the inverse semigroup 
presented by {x, e\x^ ~  x,e^ — e).

D-class %-class Elements
De Re e
D. Rx X, x"̂ , x^
D^e Rx^ex^ x^ex^, x^ex, xi^ex^
Dxe Rxex^ xex^, xex, xex"̂
Dxe Rx^ex x^ex^, x^ex, x'^ex^
Dexe Rex^ex^ ex^ex^, ex^ex, ex^ex"^
Dgxe Rexex"̂ exex^, exex, exex"^
Dexe Rex^ex ex^ex^, ex^ex, ex^exP'

Dexexe Rexexex exexex^, exexe, exexex

E x a m p l e : It is interesting to examine the difference between the semigroup S  
presented by {x,e\x^ = x, = e) and the inverse semigroup S' presented by the 
same presentation. It is not difficult to see that the former contains all the (distinct) 
elements of the form (xeY for any % > 0 and is thus infinite. On the other hand in 
the inverse semigroup S', by commutativity of idempotents

(xexY = xex^ex = ex = xex

and so (xe^^ can be rewritten as {{xex)eY and by commutativity of idempotents 
{xeY^ =  {xexYe'^ = xexe. Similarly =  {xex)exe = exex'^e ~  exe.
From a presentation theory perspective we can reduce words to canonical forms 
using not only relations but by recognising idempotents and allowing them to 
commute.

If G is a group and L a semilattice, then thinking about the Schützenberger graphs 
of G * X, we have a semilattice of groups all of which are isomorphic to G. For 
some w G G * X with

uu~^ =  {9ieigr'^){92e292~'^)‘-{gnen-i9n~^)
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where ^1 ,^2 ,. E G and ei, 6 2 , e„_i € L then SV{u) is the Cayley graph 
of G with each vertex labelled by Ui “coloured” by the idempotent e*. That is each 
vertex Ui has a [ui, % )̂-walk of length 1 labelled by e, attached to it. Every other 
vertex is “uncoloured”.
We can construct new Schützenberger graphs from loiown Schützenberger graphs. 
Suppose vv~'  ̂ = uu~'^{gn+iengn-^i~^) (with G G and e„ G L). If =  gi 
for some 1 < i  < n ,  then the vertex gi is “recoloured” by in ST{v) otherwise 
ST{v) is identical to ST{u). If on the other hand gn+i /  gi for any 1  < i < n, 
then the vertex gn+i is coloured by iri ST{v) and otherwise ST{v) is identical 
to sr{u).
It is worth noting that if both G and L aie finite then G ^ L has a minimum 
idempotent, to which is the product of all elements of the form geg~^ for g E G 
and e G L. In this case ST (to) is the Cayley graph of G with each vertex coloured 
by the least element in L.
We have the following theorem.

Theorem 6.4.4. If G is a finite group and L is a finite semilattice such that G H 
X =  0 , then

|G*L| = |G|*{|L| + l)l°l + |i|.

P r o o f :  Each Schützenberger graph in G * X is either a single vertex labelled 
by an element of X or the Cayley graph or G with each vertex coloured by an 
element of X or not coloured at all. We therefore have |X| +  1 options for each 
vertex and so there are (|X| +  1)1̂ 1 Schützenberger graphs of order |G| and |X| 
Schützenberger graphs of order 1 in G * X. ■

For the more complex case of S' * X where S' is a finite inverse semigroup and X 
a semilattice we have.

Theorem 6.4.5. If S  is a finite inverse semigroup with a set of idempotents E  and 
X is a finite semilattice such that S' fl X =  0, then

\S * L \=  SeeB(|iîel * (|L| +  +  \L\.

P r o o f :  The reasoning is the same as Theorem 6.4.4 except that we apply the 
same logic for each %-class in S' as we did to G and then sum the results. ■
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6.5 On Inverse Semigroups with infinite 7^-classes

Although at first sight the inverse monoid enumerator is quite awkward because 
it enumerates 7^-classes separately, there is however an advantage to this in that 
it is capable of enumerating single finite 7^-classes in infinite inverse semigroups. 
Unlike the previous examples we have looked at, there are many examples of 
inverse semigroup presentations of inverse semigroups of this type which are not 
embedded in the semigroup given by the same presentation.
E x a m p le :  The m ost obvious exam ple o f an infinite inverse m onoid in which 
every % -class in finite is F i ^ ( X ) .  In this case the algorithm  sim ply gives a table 
which corresponds to the word tree o f the w ord which generates the 7̂ -class.

E x a m p l e : Let S  be the inverse semigroup presented by {x, y \xy = {xyY). Now 
let u e y) and suppose that the word tree T^y cannot be embedded in T„
then SVs{u) ~  Tu as there is no way to apply any elementary "P-expansions. 
Otherwise suppose there is a (u, t'a;?/)-walk labelled by xy in T„, then vxy = 
vxyxy and as vlZvxy then vxyy~^x~^ =  vxy however v'JZvxyy~^x~^ and so 
V = vxyy~^x~^ = vxy and so xy labels a {v, f)-walk in STsiu). For example if 
u =  xyy~^x~^y then Tu is the following tree.

73 74
Ty Ty

“ > 7 i 72

where 7 i =  xyy~'^x~^yy~^, 7 2  =  yy~^xyy~'^, 7 3  — xyy~'^x~^y and 7 4  =  yy~^xy 
while 5Fs(u) is the following graph where 7 4  ;= 7 1 .

73
t y

7i 72

E x a m p l e : Le t S  be the inverse sem igroup presen ted by

P  =  {x, y\x^ =  x^, y^ =  y^, xy =  yx).

A t a glance S  seem s to be finite as bo th the group and the sem igroup defined by P 
are finite and com m u tative, indeed the group is trivial. The inverse sem igroup, is
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however infinite because xy~^ y~^x and it turns out that each {xy~'^y is distinct 
for alH > 0. As with the above example we can, however, readily enumerate the 
^.-classes of S. For example SV{xyx) = SV{x'^y) looks like:

x'^yy-^ -^y x^y
Whereas Sr{xy  â;) is the word tree

7 i ~~tx 72
t .
73 74

6.6 On Inverse Semigroups with an infinite %-class

In this section I look at some of the examples I looked at with Allessandra Cheru­
bini and Brunnetto Piochi. I use the technique for enumerating Ru/C Ru/H  
that I developed (see Section 5.5).
E x a m p l e : Let the inverse semigroup S  be presented by

{x, y, elâ a;-̂  =  x~^x, y^ = ?/, — e, xy =  yx, xe = ea;).

Now (x) generates a free group, {y) generates a cyclic group of order 2 and {x, y) 
is the direct product of the two groups. Now eyxReyxx^^Reyx^ for all non-zero 
values of i and similarly xeyCx~^xeyCx^ey but eyx — xey and so Heyx contains 
an isomorphic copy of the free group (x). The Reyy-ixx~^/R enumerator will 
therefore find a right quotient generated by {eyy~^x, eyy~^xx~^). The word graph 
for Sr{eyx)/H  is:

^^x,e
7 l 72

Similarly the word graph for ST{yex)/H  is:

^ x  ^x,e
7 i 72

Other than these two 7^-classes there are = {x),Ry = (y). Re — {e}, Rex — 
(x), Rey = {ey, ey‘̂} which is C related to Rye — {ye, yey}, R^y and Reyex with
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the last two being isomoiphic to {x,y). It is interesting to note that ST(ey) is 
almost identical to SV{eyx)/H  with the only difference being the lack of edges 
labelled by x. Similarly SV{ye) is almost identical to SV(yex)/H.

Definition 6.6.1. An inverse monoid presentation where the relations are made up 
of idempotent relations (see Definition 6.1.3) is called an idempotent presentation.
An inverse semigroup (inverse monoid) presented by an idempotent presentation 
is called an idempotent inverse semigroup {idempotent inverse monoid).

Inverse semigroups and inverse monoids defined by idempotent presentations are 
quite unusual, especially if we note that groups and semigroups with such relations 
are free. Indeed it is easy to see that all Schützenberger graphs in an inverse 
semigroup (inverse monoid) defined by the idempotent presentation {X\U) can 
be embedded in the Cayley graph of Fg(X).

Lemma 6.6.2. If S is an idempotent inverse semigroup then for any idempotent 
e e  S, He is a free group.

P r o o f : Suppose that He is generated by Y" C S. We know that He is a group by 
Corollary 2.1.7 and so each of the relations in the presentation for S  is trivial on

m

N o te :  N o te in the lem m a above that He could be a free group w ith zero genera­
tors, in w hich case He = {e}.
E x a m p l e : Let S  be an idempotent inverse semigroup presented by

{x,y\xx~'^ -  y~^y,x~^x =  y'^y~^).

It turns out that every 7^-class in S  contains an infinite number of 7^-classes, 
this demonstrates a failing in the potentials of the inverse monoid enumerator. 
However it is actually very easy to work out the structure of each of the 7^-classes 
by hand.
Now ST (a;) will certainly contain the word subgraph

—)■ XX~  ̂ ^

Noticing that the path {xx~^,x,xx~^) is labelled by xx~^ and that the path {x,xx~^,x) 
is labelled by x~^x then we can immediately perform two elementary P-expansions
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to get

ty
æ?/
ty

—  ̂ X X   ̂ X

ty
xx~^y~^

I shall call this the base graph. If we now notice that the paths {xy, x, xy) and 
{xy"̂ , xy, xy^) are labelled by y~^y and noting that although the path {xx~^,xx~^y~^) 
is labelled by y~^y it is already possible to trace a walk labelled by xx~^ starting 
at the vertex xx~^, we can perform another two elementary 'P-expansions to get

ty
xy xyx
t y

-4- xx~^ —>x X
ty

xx~^y~'^

At this point we notice that the whole procedure can be repeated as we have an­
other two walks labelled by xx~^, namely {xy, xyx, xy) and {xy‘̂, xy'^x, xy^). In 
essence, after we have constructed the base graph the following expansions see 
the attachment to the vertices xy and xy"̂  two subgraphs of the form

74
ty
73
ty

7 l ~^x 72

I shall call the above graph the repeated graph.
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Likewise ST {y) has a base graph which is isomorphic to the base graph for ST{x).

t y
3/a;?/
t y

3/ 3/a;
t y

3/3/"̂

Again the same repeated graph is attached, this time to the vertices yxy and yxy" .̂ 
If we now look at ST{x^) we have a base graph of

-> x'^x  ̂ -4.

x^x ^y ^

x'^x ^ 2 y 2

t y t y
x '^ x~ ^ y

t y t y
x ‘̂ x~'^ -4 a;

t y
x ‘̂ x~^y~ '^

Here we simply attach the repeated graph to the vertices x^x~^y, x ‘̂x~^y'^, x'^y 
and
As we can see all these Schützenberger graphs contain what I loosely term a re­
peated graph, a base and a tail on the base. Where the base contains a certain 
number of copies of the repeated graph with a tail. In ST{x) the tail is the sub­
graph

xx~^
t y

XX ^y ^
while the base for 5F(a;^) is two copies of the base for ST{x).
All this is perhaps leading to a more sophisticated technique for enumerating Vi­
ciasses in idempotent inverse semigroups, where instead of factoring out right 
congruences, repeated graphs are factored out. If there is such a method then the 
key to it is in recognising the boundaries to the base graph.
Imagine a base graph enumerator which operates in a similar manner to the 7i- 
class enumerator. If there is a î; G such that uu~^v < vuu~^ then after tracing
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a path labelled by v in ST(u) we can immediately trace another copy of Sr{u) 
starting from the vertex labelled by uu~^v. As soon as such a f  is found then the 
base graph enumerator labels that vertex as a boundary and no further vertices are 
defined adjoining this vertex. Assuming that there is a terminating process where
all the boundaries aie found then imagining that another set of base graphs are
adjoined by an elementary P-expansions, then there will be a certain “overlap” 
between the original base graph and the adjoined set of base graphs. This overlap 
is the tail. The new adjoined base graph without the tail is the repeated graph 
which is continually adjoined to the previous repeated graph or in the first instance 
the base graph. The algorithm should return the base graph, its boundaries and the 
repeated graph.

E x a m p le :  The easiest exam ple o f an idem po ten t inverse sem igroup w hich con­
tains 7̂ -classes with infinite 7^-classes is the bicyclic m onoid, presen ted by 
{x\xx~^ =  e). Given the idem po ten t x ~ ^ x ^  €  Ex,  then the base graph for

is simply the linear graph r^-m.

r p  T B   V ^  “ 771  ^  \ ____________________________ V r n  T f h  ^ T T l
7  gg t h  %Aj X  • * * ' X  k t/

t

The first boundary that is found is x~ '^x  as

(x- ’̂ x ^ )x  =  = æ (a ;-V ) .

This means that the repeated graph is

7 l 72

while the tail is

X~'^X -4 a; X~'^x‘̂ -4 a; . . . -4 a; X ~ ^X ^

The most striking problem with this sort of procedure is that there are redundant 
boundaries at each of the vertices labelled by x~'^x^ where 2 < i < m. It does, 
however, look like it is possible to create a meaningful algorithm for finding the 
structure for these types of inverse semigroup.
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Chapter 7 

On the Automaticity of the Free 
Inverse Semigroup

The chapter constitutes a paper that I wrote with Andrew Solomon. It is related 
to rest of the thesis in that it looks at the structure of free inverse semigroups 
although it does not involve any references to coset enumeration.

7.1 Introduction

Automatic groups are widely studied and are the subject of a major book [5]. In 
[4] the notion of automaticity is extended to semigroups. The motivation of the 
present work is to deteimine whether free inverse semigroups are automatic. In 
the process of showing that they are not, we demonstrate that for these purposes, 
it is the property of having a regular set of unique normal forms that is of interest, 
a property considered in the context of groups by Gilman [7]. Connections with 
growth are exploited to prove the main theorem, and we also discuss decidability 
and the word problem.

We proceed now to recall some relevant definitions and notation. For any set 
X , X* denotes the set of all words in the elements of X  including the empty 
word e, while denotes the set of all such words of length at least 1. We refer 
to the words of length 1 as letters. When X* (respectively A+) is considered 
along with the associative binaiy operation of concatenation, it is referred to as
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i\\Q free monoid (respectively/ree semigroup) on the set X ,  and has the universal 
properties one would expect. A language over X is a subset of X*.
Let 5  be a semigroup and X  a set of generators with natural homomorphism 
(j) : -4 S. If L Ç is any language such that the restriction of to L is
suijective, say that X is a language of normal forms for S  over X .  If in addition 
the restricition of ÿ to X is injective, say that X is a language of unique normal 
forms for S  over X.
The fact that regular languages are precisely the sets accepted by finite state ma­
chines has passed into folklore and we use it freely without comment. For details 
see [8 ].
We set out some well known facts about regular languages for later reference. 
Theorem 7.1.1. Suppose X  and Y  are finite sets. Then

(i) i fK  Ç Y* is a regular language and <p \Y* X* is a monoid homomor­
phism, then <j)(K) is a regular language overX;

( ii) ifK , x e y *  are regular languages, then so are KiJL, KC\L, K \ L ,  KL, 
K* and K'^.

For convenience, we shall refer to a semigroup with a regular set of unique normal 
forms as a rational semigroup. We will see that in contrast with automaticity in 
semigroups, the property of being rational is independent of the choice of gener­
ating set. (This dependence of automaticity on choice of generating set is peculiar 
to semigroups, while an automatic monoid will have an automatic structure for 
any finite generating set -  see [6 ] for details.)

7.1.1 Rational semigroups and automaticity

Although the developments in this paper do not depend on the definition of auto­
maticity, we sketch it here by way of background and refer the interested reader to 
[4] for details. Let S' be a semigroup with generating set A  and natural homomor­
phism (j) : -4 S. An automatic structure for S  consists of a regular language
X Ç A"'' of normal forms for S  such that (roughly speaking) checking whether 
two words of X are equal or differ by a factor of a generator can be done by a finite 
state machine. Any semigroup with an automatic structure over some generating 
set is called an automatic semigroup.
An immediate consequence of [4, Corollary 5.6] is that
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Lemma 7.1,2. Any automatic semigroup is a rational semigroup.

While an automatic semigroup may have an automatic structure over one gener­
ating set and not another, we show that the definition of a rational semigroup is 
independent of the choice of generating sets.

Lemma 7.1.3. I f  a semigroup has a regular language of unique normal forms 
over some finite generating set, then it has a regular language of unique normal 
forms over every finite generating set.

P r o o f :  Let X be a regular language of unique normal forms for a semigroup S  
over some finite generating set Y. Let i!)y : Y~̂  - 4  S' be the natural homomor­
phism. Let X  be some other generating set for S  with natural homomorphism 
ijjx '• X~  ̂ -y S. Then there is a function (j) \ Y  - 4  %+ expressing every generator 
y G y  as a product of generators in X  such that ipx4>{y) ~  Vy(y). Extend ^ to a 
homomorphism. By Theorem 7.1.1, (j){L) is a regular language. By definition of 

=  '0 y , so that since restricted to X is a bijection, so is ipx restricted to 
ÿ(X), proving that ÿ(X) is a regular language of unique normal forms for S  over 
X. ■
On the other hand, the stronger definition of an automatic semigroup gives rise to 
a number of interesting properties, most significantly

Theorem 7.1.4 (2, Corollary 3.7). I f  S is an automatic semigroup, we can solve 
the word problem for S  in time quadratic in the length of the words.

7.1.2 Rational semigroups and decidability

We show here that for rather general reasons, rational semigroups have a solv­
able (recursive) word problem and that the property of being rational is there­
fore Markov. It has been shown that for finitely presented semigroups [14], [15], 
groups [1], [19] and inverse semigroups [32], Markov properties are undecidable. 
For general background on computability, the reader is referred to [8 ].
Recall that a set is recursively enumerable if there is an algorithm to list its el­
ements. We shall say that the word problem of a semigroup is recursively enu­
merable if there is an algorithm which lists all pairs of words in the generators 
which represent equal elements of the semigroup. It is a simple observation that 
a finitely presented semigroup has recursively enumerable word problem. For a
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finitely presented semigroup S  and word w in the generators of S, denote by Sw 
the recursively enumerable set of elements of S  equal to lu in 5.
The word problem for a semigroup is recursive (or solvable) if there is an algorith- 
m whose input is two words in the generators and which teiminates with output 
‘yes’ if they represent the same element of the semigroup and terminates with 
output ‘no’ otherwise.

Theorem 7.1.5. Let S  be a finitely presented semigroup. Then the word problem 
for S  is solvable if and only ifS  has a recursively enumerable set of unique normal 
forms.

Proof: Let A be a generating set for S. The direct part is obvious. If a semigroup 
has solvable word problem, simply list the elements of A'*' in some order. As we 
aiiive at a word which represents the same element of S  as another word already 
in the list, don’t emit it but skip over it to the next word in A+. In this way we are 
able to obtain a list of unique normal forms for elements of S.
Conversely, suppose there is a recursively enumerable set L of unique normal 
forms for S. Given words u, v G A* we decide equality in S  as follows:

• Since Su is a recursively enumerable set and L is recursively enumerable, 
their intersection is also recursively enumerable. By uniqueness, this inter­
section is a singleton which we denote Wu\

• Compute the unique normal form Wu of v in the same way;

• u and V represent the same element of S  precisely when Wu = Wy.

Since a regular language is trivially a recursively enumerable set we have

Corollary 7.1.6. Rational semigroups ( and therefore their finitely generated sub­
semigroups) have solvable word problem.

This result is well known for semigroups which aie groups, see for instance [5, 
Section 2.1].

Reflecting on the rather general argument above, we consider it an interesting 
question to determine what properties a semigroup will enjoy when the word
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problem and the set of unique normal forms are in other computability classes. 
For example, if the word problem were solvable by a push-down automaton or the 
set of unique normal forms were a context-free language.

A Markov property of semigroups [groups, inverse semigroups] is a property V  
such that:

• T  is preserved under isomorphism;

• there is a finitely presented semigroup [group, inverse semigroup] which 
has property V\

• there is a finitely presented semigroup [group, inverse semigroup] which 
embeds in no semigroup [group, inverse semigroup] with property V.

As mentioned at the beginning of this section, it has been shown that Markov 
properties of semigroups, groups and inverse semigroups are undecidable. Among 
Markov properties is the property of having solvable word problem. However it 
is known [32] that there are undecidable properties which are not Markov.

Theorem 7.1.7. The property of being rational is Markov for semigroups, groups 
and inverse semigroups.

P r o o f : Since the following aigument is completely generic, the reader may re­
place ‘semigroup’ with ‘group’ or ‘inverse semigroup’ throughout, simply noting 
that there are finitely presented semigroups S  in each class which are automatic 
and other finitely presented semigroups T  in each class which have insoluble word 
problem. For details the reader is referred to [32].

By Lemma 7.1.3 we know that the property of being rational is preserved under 
isomorphism. Since every automatic semigroup is rational, there are certainly 
examples with this property. Let T be a finitely presented semigroup with insol­
uble word problem. Then by Corollary 7.1,6 T embeds in no semigroup which is 
rational. ■

7.1.3 Closure operations on the class of rational semigroups

In this section we exhibit a number of operations under which the class of rational 
semigroups is closed. In the following discussion, if 5  is a semigroup, will
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denote the set S  with an extra element 1 adjoined which is a multiplicative identity 
for every element of S^, and 5° will denote the set S  with an extra element 0  

adjoined which is a multiplicative zero for every element of S^.

Theorem 7.1.8. A finitely presented semigroup S  is rational if and only if is 
rational.

P r o o f :  Let 5  be a rational semigroup with regular language L  of unique noimal 
forms over generating set A. Let B = AÙ{e} be a generating set for where e 
maps to 1 under the natural homomorphism. Then X is a regular subset of B'^ and 
consequently so is X' =  X U {e}. That L'  is a regular set of unique normal forms 
for follows from the fact that there is no element of X which maps to 1 G 5"̂  
under the natural homomorphism.
Conversely, suppose is rational. Then there is a set B  of generators, a homo- 
moiphism f  -4 and a regular language X Ç in bijection with 
under f .
Firstly note that there is at least one letter e G B such that f{e) = 1, for otherwise 
1 would be a product of non-identity elements of S, contradicting the defintion 
of S^. Let X Ç B be the set of all e such that (j}{e) = 1. Put A = B \  E  
and define ip : B* -y A* by mapping all e G B to the empty word and fixing 
the other generators. Put wi equal to the preimage of 1 in X under cp, then the 
language X \  {ifi} is regular- and so is ?A(X \  {wi}) C A*. Since none of the 
elements of X \  {wi} are the empty word, nor composed entirely of letters of B, 
ip{L\{wi}) Ç A'^. Defining 7  : A+ —)■ 5 as the restriction of cptoA'^, we see that 
Im(7 ) =  Im((?!>) \  {1} = S, since for all w G B+, f>{w) — 1 or <p{w) — jip{w), 
so ip{L \ {wi}) is a set of normal forms. If 7 (u) =  7 (1;) for u,v e ip{L \  {wi}), 
then u = ip{u') and v =  ip{v') for some u',v' G X \  {wi}. Then

(p{u') = yip{u') ~  y{u)  =  7(î;) =  Jipiv')  =  (p{v')

which shows that u'  = v'  by injectivity of </) on X \  {wi}. But then u = v giving 
injectivity o f y o n i p { L \  {wi}) as required. ■
A simpler argument gives

Theorem 7.1.9. A finitely presented semigroup S is rational if and only if is 
rational.

Theorem 7.1.10. Let S  be a rational semigroup and I  an ideal of S  such that 
S/1 has no zero divisors. Then S/1 is rational.
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Pro o f: Suppose S  has a regular language L of unique normal forms over some 
generating set A. Let ti/i ; A+ — S' be the natural homomorphism. Let B  =  
A \  Define \\b ■ B -y S f I  by

ÜBW | o  i f  b =  z

and extend homomorphically. Under this mapping, B  is clearly a generating set 
for S /I .
Let K  be the regular language (X n (B \  {%})+) U {z} over B. To see that K  is 
a set of normal forms for S /I , note that H w E L  and \\a {w) E S \ I ,  the fact that 
I  is an ideal implies each letter of w is in B, so w € K, whence the restriction of 
\\b to K  is onto.

Suppose E K  and =  \\b(w2 ) e S \ I ,  then Wi,W2 E L so Wi  — W2,  
by uniqueness in X. If — 0 then w ^  K  \  {%} since S /I  has no zero
divisors, therefore w = z. ■

Theorem 7.1.11. The free product of two semigroups is rational if and only if 
both factors are rational.

Proof: Let S  and T  be rational semigroups with regular languages of unique 
normal forms XT C A"̂  and X Ç B+ respectively. The set (XB)+ U K {L K Y  U 
{LK)*L U (XTX)+ is again a regular language with a unique representative for 
each element of 5  * X as required.

Conversely, suppose 5  * T is a rational semigroup. The semigroups S^ and 
are Rees quotients of B * T without zero divisors, and are therefore rational by 
Theorem 7.1.10, and by Theorem 7.1.9, 5  and T are also rational. ■

7.1.4 Growth and rational semigroups

We take the following development on the growth of functions from [30]. Con­
sider the set of non-decreasing functions from N  -4  E + . We define a preorder on 
this set by /  < y if and only if there are positive natural numbers m and c such 
that for every n 6 N, /(n) < cg{mn). Further define an equivalence relation ^  
by /  y if /  < y and g < f .  We refer to the equivalence class of /  as the 
growth of /  and denote it [/]. Then < defines a partial order on the growth classes 
of functions N - 4  .
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We make some definitions and easy observations about growth which will be 
used in the sequel without comment. All polynomials of degree d have the same 
growth, namely [n̂ ] which we call polynomial o f degree d. All exponential func­
tions of the form oT with a > 1 a real number have growth [2̂ ] which we call ex­
ponential. Clearly, the conditions of growth being polynomial or exponential are 
mutually exclusive. Growth which is either polynomial or exponential is called 
alternative and growth which is neither polynomial nor exponential is called in­
termediate. Finally we have

Theorem 7.1.12. Suppose that for some real numbers a, /i > 0, 6, c > 0 and for 
all sufficiently large n ^  N  we have g{n) = hf{an b) -\- c, then [/] =  [g].

We now recall the notion of growth of a semigroup. Let B be a semigroup, A  a 
set of generators for B and t]A : A+ ^  B the natural homomorphism. For each 
X e S  define the length l{x) of x  to be the least length of a word w G A+ such 
that — X .  The growth function of B with respect to A  is defined in [24] by

=  |{a; E B I l(x) < n}|.

When B and A  aie understood, the growth function will be referred to simply as 
y. It is not difficult to see that the ^-class of the growth function is independent of 
the generating set A  so we can use growth of the semigroup to mean the -class 
of any of its growth functions.
Finally we define the notion of growth for a formal language. Let X Ç A* be 
a language. The growth function h i of X is given by defining hL{n) to be the 
number of words of X of length at most n. Then the growth of X is [hi].

7.1.5 Growth of a language of unique normal forms

One may also define the growth function of B with respect to A by

g{n) =  E A+ I \w\ < n})|

and it is an easy exercise to see that this definition is equivalent to the previous one. 
Let X be a language of unique normal forms for B over A. Then \\a is injective on 
the elements of X so that

hL{n) = \\\a {{w € X I |w| < n})|
< |L({w E A+ I |w| < n})l 
=  g{n).
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Therefore, noting that any semigroup has at least polynomial growth and at most 
exponential growth, we have

Theorem 7.1.13. The growth of a language of unique normal forms for a semi­
group S  is bounded above by the growth of S. In particular, if S  has polynomial 
growth, then any language of unique normal forms for S  has polynomial growth, 
and if a language of unique normal forms for S has exponential growth, then so 
does S.

Considering this theorem, a number of questions inunediately spring to mind: 
When are the growth of the semigroup and the growth of its language of normal 
forms in the same class? The growth of the number of paths in a graph is known 
to be alternative [30], and therefore the growth of a regular language is alternative 
-  is the growth of a rational semigroup necessarily alternative? In [30] it is shown 
that the growth of any algebra with finite Grobner basis is alternative.

7.2 The monogenic free inverse semigroup is not ra­
tional

There appears to be consensus among workers in the area of automatic semigroup- 
s that it is more difficult to show that a semigroup is not automatic than to show 
that it is (which is usually a matter of exhibiting an automatic structure for it). In 
this section we use the fact that the growth of the free monogenic inverse semi­
group is polynomial to show that it is not a rational semigroup (and therefore not 
automatic).
In [5, Chapter 8], it is shown that nilpotent groups are not automatic, and that 
proof also exploits the fact that nilpotent groups have polynomial growth. Nilpo­
tent groups are, nevertheless, rational. As mentioned by Sims in [26], they have 
finite confluent rewriting systems under the basic wreath product ordering and it 
is a simple exercise in the theory of automata that this implies the existence of a 
regular set of unique normal forms.

7.2.1 Finite state machines

We start with some general facts about finite state machines, a construction used in 
the subsequent argument. A finite state machine consists of a finite set A of states,
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a finite set A of input letters and a function F : A x A —> A describing the state 
transitions. We extend F to a (right) monoid action of A* on A. Denoting by e the 
empty word in A*, F(_, e) is therefore the identity on A. There is a distinguished 
state i G A called the initial state and a subset T C A of terminal states. We will 
usually identify the state machine with its transition function. We also consider 
the state graph of the machine, which has vertex set A and an edge from s to f 
labelled by a G A if F(s, a) =  t.
A word w G A* is said to be accepted by F if F(i, w) G X. A state a G A is said 
to be accessible if there is some w e A* such that F(%, w) = s and coaccessible if 
there is a word w G A* such that F(s, w) G X.
The state graph of a state machine influences the growth of the language accepted 
by the machine in the following way.

Theorem 7.2.1. Suppose the state graph of the state machine F has two distinct 
cycles on an accessible and coaccessible state. Then the language accepted by F 
has exponential growth.

Pro o f: Recall that a cycle in a graph on the vertex s is a path from s to itself 
passing through no other vertex twice.

Let s be the state with two distinct cycles in the state graph. Since s is accessible 
and coaccessible, there are words w, î; G A* such that F(i, u) — s and F(s, v) G X. 
Since the two cycles on s are distinct, there are distinct words W\,W2 E A+ (which 
are not prefixes of one another) which label the edges of the cycles, such that all 
words determined by the regular expression u{wi,W 2 Y v  are accepted by F. Let 
I = LCM(|wi|, \w2 \) and fix p i,p 2 E N such that I =  \wi\pi — |w2 |p2 - Then the 
number of words accepted by F of length m =  |w| +  |v| + is at least 2 .̂ Namely, 
they contain the set of words given by the regular expression all
of which are distinct.

Therefore, if the language accepted by the automaton has growth h, we have that 
h{m) > 2̂  =  2 (m-|u|-|i,|)/( as required. ■

Theorem 7.2.1 is an automaton theoretic formulation of the fact that a language 
not being textitsimply staired (described by a regular expression in which the star 
operator is only applied to singletons) implies that it has exponential growth, a 
fact explained in [5, Section 1.3]. The next lemma dictates the form of words in 
a regular language with polynomial growth. In the terminology of [5] one would 
say that a regular language with polynomial growth is simply staned.
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Lemma 7.2.2. Let L be a regular language with polynomial growth accepted by 
some automaton F. L consists of precisely the words of the form

Ui v Y u 2V2‘̂ . . . UmV^UmArl

where u \ . .. Wrn+i labels a cycle free path from the initial state of V to a terminal 
state, hi > 0/or all i, U2 , . . . ,  Um are nonempty, and each Vi labels a cycle in the 
state graph onV{i,Ui.. .Ui).

Pro o f : The result follows as a corollary of Theorem 7.2.1. Since L has poly­
nomial growth, the state graph of F has no two cycles on a single accessible and 
coaccessible state. ■

7.2.2 The monogenic free inverse semigroup

For the remainder of Section 7.2 let FI^ denote the free monogenic inverse semi­
group with (semigroup) generating set {x,x~^}. We pause now to recall some 
simple facts and standard definitions about this semigroup. The reader requiring 
elucidation of the following development is refened to [18].

Let “ denote the homomorphism of FI^ onto the free group F^ of rank 1 defined 
by taldng any word in {x, and freely reducing it, that is to say, cancelling 
xx~^ and x~^x. For example, xxx~^x — x^.
It is a consequence of the graph representation of free inverse semigroups (see 
[18, VIII.3]) that Fix  may be identified with the set of triples {i, j, k) G such 
that i < j  and 0 and k are contained in the contiguous interval [i,j]. In particular, 
i < 0 < j. The product {i,j, k) * k‘) is then (min(/ k -T i'),max(j, k +
/ ) ,  k +  k'). Let \\ : {æ, -4 FI^ be the natural homomorphism mapping
words to triples. This map is completely defined by setting t|(æ) =  (0,1,1) and 

— (“ Ij 0, —1).

It is a useful intuitive device to regard a triple as described above as a segment 
[i,j] of Z with a distinguished element k. Then reading any word from left to 
right defines a path, starting at 0 and moving a step to the left every time x~^ 
is read, and a step to the right every time x is read. Then a word w such that 
t|(it;) =  (i,j,k )  defines a path starting at 0, whose meanderings in the number 
line take it at most |t| places left of zero and at most j  places right of zero, finally 
ending at position k. Composing with another word v with [](?;) =  k') we
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start at k and meander at most |/ |  places to the left of k, j ' places to the right of k 
and end up k' places to the right of k.
More formally, set lex(w) =  min{% \ ü = x'^,usl prefix of w} and refer to it as 
the left extremum of w's path through Z. Similarly define rex(w) = max{% | u — 
x \ u  a. prefix of w} (the right extremum) and the endpoint given by w =
With this notation we now have \\{w) ~  (lex(w), rex(w), end(w)).
An immediate consequence of the discussion above is that

Theorem 7.2.3. Let w be a word in {x,x~^}'^. The following conditions are 
equivalent:

• '̂ [w] is idempotent;

•  w  — 1;

• t{(w) =  {i, j,0) for some i , j  6 Z.

Finally we quote a well known result mentioned in [24] which is at the core of the 
proof of Theorem 7.2.7.

Theorem 7.2.4. The free monogenic inverse semigroup has cubic growth.

7.2.3 Proof of Theorem 7.2.7

For the remainder of this section we derive some lemmas under the assumption 
that Fix is rational so that the proof proper is a proof by contradiction.
Suppose that X is a regular language of unique normal forms for FI^ over the 
alphabet {x,x~^}, and let T be a finite state machine with n states accepting 
precisely the words of X.
Since Fix has polynomial growth (by Theorem 7.2.4), X also has polynomial 
growth, so that each word of X may be written in the form described in Lemma 
7.2.2. In particular, any word in X is of the form

UivYu2 V2  ̂ . . . UmV^Um+ 1  (7.1)

where.

138



• t i l . . .  Um+i describes a cycle free path in the state graph of P from the initial 
state to a terminal state;

• are nonempty;

• m  < n\

• \ [vj) is not idempotent, for otherwise the word obtained by increasing hi by 
one, which is also accepted by F would represent the same element of FI^ 
contradicting uniqueness.

Let w be any word in L. Then w may be factored not only as in (7.1) but also as 
abc where end(a) and ond{ab) are the opposite extrema of w's path. That is, either
â  = ;%;iGX(w) — ^lGX(w)^ Or =  a;^GX(w) _  l̂ex(îü)̂

However it may happen (inconveniently for our purposes) that a or b ends within 
one of the Vi. The next lemma shows that we may choose a, b and c so that their 
boundaries are out of the Vi but where end(a) and end(a6) aie still ‘not too far’ 
from the extrema of w’s path.

Lemma 7.2.5. Let w G L. Then w may be factored as abc and also as in (7.1) so 
that

• a = u ivY ^ ...  Uj-iVj-Y^-^uf;

mb — . . .  Uk-iVk^Y’̂ -^Uk,'

•  C  =  U h ' V k + Y ^ + ^  . . . U m V m ^ " ^ U m + i ;

and so that end{a) is within n of the lower extremum o fw ’s path in Z and end{ab) 
is within n of the upper extremum, or vice versa.

P roof: We prove the lemma for the case that w may be factored as a'b'd with 
end(a') the lower extremum and end(a'ô') the upper extremum. The other case is 
similar.
If a' ends within Uj for some j  then put a =  a'. Otherwise, a' = . . .  UjV^v'-
for some prefix v'̂  of Vj.

Now if tij is a negative power of x, then h must be hj — 1, in which case put
a =  uivY^ . . .  UjV^T Then â cannot be more than an (n — l)th power of x
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greater than a' since no state appears more than once going from F (/ a') to F (/ a) 
since it traces the last part of a cycle in the state graph of F.

If, on the other hand, lij is a positive power of x, then = 0 so we can let 
a ~  UivY^...Uj^i. Again a can differ from a' by no more than an (n — l)th power 
of X.

Now we have w = ah"d where ah” — a'b', defines a path in Z with endpoint the 
right extremum of w’s path. We now have lex(w) < end(a) < lex(w) + n, as 
required. Of couse, we still have end(a6") =  rex(w).

If ab” ends within put b — b” and c =  c' and we are done. Otherwise, b” is the 
word starting at the end of a and ending with for some prefix of Vk and
u'l is some (possibly empty) suffix of Uk-

If % is a negative power of x then, h = 0. Truncate b” at the end of u'/ to produce
6. If ÿp is a positive power of x then h is hk — 1. Append the rest of % to form b
In either case, noting that end(6") — n < end(6), we still have rex(w) — n < 
Qnd{ab) < rex(w). ■

It is now shown that if w e L represents a ‘large enough’ element of FI^, then as 
F accepts w, each of the factors a, b and c determined by Lemma 7.2.5 traverses 
a cycle in the state graph of F. The astute reader will recognize this as a thinly 
disguised Pumping Lemma [8].

Lemma 7.2.6 (Pumping Lemma). Let w be an element ofL with k|(w) =  (p, q, 0). 
If p < ~2n and q > 2n then w factors as in (7.1), and for some i\ < % 2  < is, the 
factors Vjf, and vî ,̂ are nonzero powers of x which alternate in sign.

Proof: We can write w — abc as in the statement of Lemma 7.2.5 with end(a) 
within n of the lower extremum of w’s path and end(a6) within n of the upper 
extremum, or vice versa. Without loss of generality we assume the former.

To begin with, consider a = u i v Y ^ . . .  Uj^ iVj-Y^-^uf . Now uiU2 . . .  Uj^iu'j 
traces out a path in the state graph of F which does not visit the same state twice 
hence u i . .. Uj is a power of x which is between —n and n. But â  is a power of 
x~^ which is greater than n. Thus there is some 1 < ii < j  with a negative 
power of X and >0.

Similarly, 6 is a power of x which is greater than 2n, which implies that there is 
some j  < i2 < k with a positive power of x and hi  ̂ > 0 .
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An identical argument assures us that there is some k < is < m  with Vî  a negative 
power of X and hi^> d. ■

Finally we are in a position to prove main theorem of this section.

Theorem 7.2.7. The monogenic free inverse semigroup is not rational.

P ro o f:  Suppose by way of contradiction that Fix  is rational. Then by Lemma 
7.1.3 it must have a regular language of unique normal forms over the generating 
set {x, x~^}. Let L be such a supposed language and T a finite state machine 
which accepts precisely the words of L. Let n be the number of states of F. Since 
L is neither {x, nor 0, n must be at least 2.

Under these assumptions we proceed to exhibit two words in L with the same 
image under \\ contradicting uniqueness.
Let w be the unique element of L with \\{w) = {—2n — 1, 2n +  1, 0). Then w 
satisfies the conditions of Lemma 7.2.6. So without loss of generality we may 
write w = uivYu 2 V2 ^ . .. as in (7.1) and assume that there are ii <
%2 < %3 with:

• vif = x^  ̂ and f i  < 0;

• vl^ = x^  ̂ and /g > 0;

• Vil = x^  ̂ and fs < 0; and

hi  ̂ and hi  ̂ nonzero. Let Ô2 ,ôs > 0 be the unique integers such that

/ 2^2 == —fs^s = lcm(/2 , —fs)- (7.2)

Observe that 0 < <̂ 2 < —fs < |% | < n and that similarly 0 < 63 < M. Let 
A =  lcm(—/i, f 2 , —fs) (a positive integer). Then set

a =

/5 =  

7  =

8 r d X

—f l
4 r d X

A
2 r d X

—f s
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By the fact that n > 2, fi > n > Ô2 and j  > b > Ŝ . Define

Wi ' U1U2 • • • ' • • *̂ î3̂ ï3̂ î3+1 • • • '̂ ?n+l
W2 =  U1U2 . . . . . . Ui^v/Y^^Ui^+i . . . Um+1 -

The construction by which we arrive at the factorization (7.1) ensures that wi and 
W2 are both accepted by T and are therefore in X. It only remains to show that 
l;(wi) =  \\{w2 )- The equality holds if the endpoints aie equal (which is equivalent 
to showing that wï = W2 ) and that the left and right extrema are equal.
Now by commutativity of

W 1  =  W 2 v l l v l l

but by (7.2)

—

as required. Now we calculate the left and right extrema of the paths of wi and W2  

in Z. A helpful observation for the following calculations is that if F is a positive 
power of X, then for all k > 0, lex(v^) =  lex('u) and similarly, if F is a negative 
power of X ,  then for all k > 0, rex('u^) = rex(i;). Note also that

lex(tt'u) =  min(lex(w), end(w) +  lex(ti)) (7.3)

and
rex(«i;) — max(rex(w), end(u) +  rex(ii)). (7.4)

Let ai be the prefix of wi given by U1 U2  . . .  Ui^Vi^Ui^+i. . .  Uî vf̂  and let Og be the 
prefix of W2 given by U1 U2 . . .  Ui^vf[Ui^+i.. .  Choose 61 and 62 so that
wi = aibi and W2 =  ^2 2̂ - Since ii^is a positive power of x, we can easily deduce 
that

lex(ai) — lex (<3 2)
=  lex{uiU2 . . .  Ui^vY^Ui^+i. . .  Ui^Vi )̂
< n ~  SrfiX.
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To determine lower bounds on end(ai),end(a2),lex(6 i) and lex(6 2), we assert 
only that end(wi...  WiJ > and end(ui2+i ■ • • %m+i) > — Thus,

end(ai) > - n  +  af i  + %
= ~n — 8n?A +  4n^A 
= —4n^A — n, and similarly,

end(a2 ) > —4n^A — n — 6 2 / 2 ]
lex(6 1) > — 2 n^A — n; and
lex(6 2) > -2n^A - n -  6 3 / 3 ;

=  — 2rt^A — ?%-{- ^2^.

We show that lex(ai) < end(ai) H- lex(6 %) and lex(<%2 ) < end(û2) +  lex(6 2) which 
proves (by (7.3)) that lex(wi) =  lex(ai6 i) =  lex(ai) =  lex(<12) =  lex(o2 6 2) — 
lex(w2) as required. Now it a simple matter of arithmetic to show that if either 
of these two inequalities didn’t hold, then we would have 2n^A — 3r& < 0. But 
this is only true for values of n between 0 and Since A > 1 we have shown
a contradiction since our automaton must have at least 2 states. From this we
conclude that the left extrema of wi and W2 are the same.

To complete the proof of the theorem, it is now shown in a similar way that the 
right extrema of wi and W2 are the same. Let a — U1 U2 . .. and once again 
choose 61 and 62 so that Wi = abi and W2 =  0 6 2 - We claim that rex(wi) =  
rex(w2 ) =  rex(o-).
A priori, rex(a) > 0. In the same manner as the previous part of the proof, we 
calculate:

end(o) < —8n^A + n\ and 
rex(6 i),rex(6 2) < 4n?A + n.

If rex(wi) or rex(w2) are not equal to rex (a) then (7.4) implies that rex (a) < 
end(a) +  rex(6 i) or rex (a) < end(a) + rex(&2). In either case we would have 
—4n^A + 2n > 0 , which only occurs for values of n between 0  and once 
again contradicting the fact that the automaton has at least 2 states. Thus the right 
extrema of wi and W2 are the same.
This completes the proof that no regular language of normal forms for FI^ can 
have uniqueness. ■

143



7.3 Application and Discussion

The remarks in Section 1 together with the theorem of Section 2 allow us to draw 
some useful conclusions and conjecture further results.
In contrast with finitely generated free groups and free semigroups which aie both 
easily seen to be automatic and therefore rational

Theorem 7.3.1. No free inverse semigroup is rational Therefore no free inverse 
semigroup is automatic.

P r o o f :  L e t F ix  deno te the free inverse sem igroup on a finite set X  and let 
X e X . Then define a m ap <j) : X  ^  {x^Q} by

d,(v) = i ^\  0 otherwise

and extend it to a Rees quotient map (j) : F ix  If F ix  were rational
then Theorem 7.1.10 would imply that FI°,  and by Theorem 7.1.9, that Fix  was 
rational -  a contradiction. ■
Together with Theorem 7.1.11 this shows that

Corollary 7.3.2. No semigroup can be rational (nor, therefore, automatic) if it is 
a free product of a free inverse semigroup with another semigroup.

The class of semigroups which we now Icnow not to be rational is not contained 
within the class of semigroups with polynomial growth, since the free inverse 
semigroup on more than one generator has exponential growth. This fact is some­
what intriguing since the proof of Theorem 7.2.7 is so dependent on the growth of

An obvious question which arises is whether a free inverse semigroup may embed 
in any rational semigroup, for if not. F ix  would be an interesting semigroup 
satisfying the third condition in the definition of a Markov property, while still 
having solvable word problem.
Another class of inverse semigroups closely entwined with the present thread of 
discourse are defined in [13]:

Theorem 7.3.3. Suppose S is a finitely presented Rees quotient of a free inverse 
semigroup with polynomial growth. Then the following conditions are equivalent:
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• s  is infinite;

• S  contains a free monogenic inverse subsemigroup;

• S  has growth of degree at least 3.

We conjecture that the semigroups defined by Theorem 7.3.3 are not rational.
As a final remai'k, the observations of Section 7.1.2 recall a lecture given by Pro­
fessor Rick Thomas at the conference CGAMA at Heriot-Watt University, Edin­
burgh in July 1998 [28]. For a finitely presented group G the set W  (G) of words 
representing the identity of G was considered. A number of theorems relating the 
position of W  [G) in the formal language hierarchy with the algebraic structure of 
G were cited. We consider it a promising line of inquiry to investigate the alge­
braic properties of groups and semigroups which are known to have a language of 
unique normal forms in the various strata of the language hierarchy.
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Appendix



# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F RClassCosetTable( <M>, <word>, <table>, <coset> )
## . . coset table of
## R-class generated by
## word.
RClassCosetTable;= function{M, word, table, identity)
local a, i, c, k, r, d, n, FLAG, 

active, 
gens, rels, 
leng,
tidytable, 
stack, 
replace, 
complete, 
parsymrep, 
numberUnde1, 
list, 
eqnTrace, 
ideNtify, 
newCoset;

newCoset;=function(c,a)
##modifies table and returns the new coset

Add(table,List(leng,x->0));
table[c][Position(gens,a)]:=Length(table);
table[Length(table)][((Position(gens,a)+n/2-l) mod n)+l]:=c;
Add(replace,0);
Add(complete,false); 
active :=active+l;
return Length(table);

end;
eqnTrace:=function(c,r)

#trace the relation r starting at coset c
local s,t,u,a,b,lflag,rflag;

#trace through lefthand side 
s:=c; 
a: =1;
while not s=0 and a<=LengthWord(r[1]) do 

u; =s;
s:=table[s][Position(gens,Subword(r[1],a,a))]; 
a :=a+l; 

od;
if s=0 then 

Iflag:=false; 
s : =u; 
a :=a-l; 

else
Iflag:=true; 

fi;
#trace through righthand side 

t:=c; 
b: =1 ;
while not t=0 and b<=LengthWord(r[2]) do 

u:=t;
t:=table[t][Position(gens,Subword(r[2],b,b))];



b : =b+l ; 
od;
if t=0 then 

rflag:=false; 
t : =u ; 
b: =b-l ; 

else
rflag:=true;

fi;
#check relation

if not Iflag and rflag then 
#trace through left of <r>

while a<=LengthWord(r[1]) do
s :=newCoset(s,Subword(r[1],a,a)); 
a : =a+l ; 

od;
Add(stack,[Minimum(s,t),Maximum(s,t)]); 

elif Iflag and not rflag then 
#trace through right of <r>

while b<=LengthWord(r[2]) do
t :=newCoset(t,Subword(r[2],b,b)); 
b :=b+l; 

od;
Add(stack,[Minimum(s,t),Maximum(s,t)]); 

elif Iflag and rflag and not s=t then 
Add(stack,[Minimum(s,t),Maximum(s,t)]); 

fi;
ideNtify(); 

end;
ideNtify:=function()

#coset collapse
local s,t,a,i,u,v;
while not stack=[] do 

FLAG;=true;
s :=stack[Length(stack)];
Unbind(stack[Length(stack)]); 
while replace[s[1]]>0 do 

s [ 1] :=replace[s [1]]; 
od;
while replace[s[2]]>0 do 

s [2]:=replace[s [2]]; 
od;

# do the identification.
if not s[l]=s[2] then

for i in [1..Length(table)] do
if replace[i]=0 and not i=s[2] then 

for a in leng do
if table[i][a]=s[2] then 

table[i] [a] :=s [1];
v:=table[s[1]][((a+n/2-1) mod n)+1]; 
if v=0 then

table[s[1]][((a+n/2-1) mod n)+1]:=i; 
else

Add (stack, [Minimum (i,v) , Maximum (i,v) ] ) ; 
fi; 

fi; 
od; 

fi; 
od;



#modify table
for a in leng do 

v:=table[s[2]] [a] ; 
if v>0 then

u:=table[s[1]] [a] ; 
if 11=0 then

table [s (13 ] [a] : =v;
table[v][((a+n/2-1) mod n)+1];=s[1]; 

else
Add(stack,[Minimum(u,v),Maximum(u,v)]); 

f i; 
fi;

od;
#modify stack

for t in stack do 
if t[l]=s[2] then 

t [1]:=s[l]; 
elif t[2]=s[2] then 

t [2];=s[1]; 
fi; 

od;
active ;=active-l; 
replace[s [2]];=s[1];
if s [2]=identity then 

identity :=s[1]; 
fi;

fi;
od;

end;
([initialize
gens;=Copy(M.generators);
Append(gens,M .inverses); 
n ;=Length(gens); 
leng:=[1..Length(gens)]; 
rels:=M.relations ; 
stack:=[];
replace:=List([1..Length(table)],x->0); 
complete:=List([1..Length(table)],x->false);
FLAG :=true;
active :=Length(table);

#main routine 
while FLAG do 

FLAG :=false; 
c : =1 ; 
repeat

for r in rels do
if replace[c]=0 then 

eqnTrace(c,r) ; 
fi; 

od;
complete[c]:=true; 
repeat

c :=Position(complete,false); 
if c=false then c:=l;fi; 
if replace[c]>0 then 

complete[c]:=true;
fi;

until replace[c3=0 or not false in complete; 
until not false in complete;
complete :=List([!..Length(table)],x->replace[x]>0);



od;
#tidy up

numberUndel:=[]; 
k: =0 ;
for i in [1..Length(table)] do 

if replace[i]>0 then 
k:=k+l; 

fi;
Add(numberUndel,i-k); 

od;
if not Set(replace)=[0] then 

tidytable:=[];
for i in [1..Length(table)] do 

if replace[i]=0 then 
Add(tidytable,[]); 
for a in leng do

if table[i][a]=0 then
tidytable[Length(tidytable)][a]:=0; 

else
tidytable[Length(tidytable)] [a] :=numberUndel[table[i3 [a33 ; 

fi; 
od; 

fi;
od;

else
tidytable:=table; 

fi;
return rec(

active;=active,
representative :=word,
identity:=numberUndel[identity),

#Number(replace,x->x=0),###Alternative return 
([representative :=parsymrep,###Alternative return 

table :=tidytable);
end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
([#
#F Trace( <generators>,<table>,<word>,<coset> ) . . . word traces to...?
##
Trace :=function( gens, table, word, coset ) 

local a,c,l;
1 :=Length(gens); 
c : =coset;
for a in List(word) do

c :=table[c3 [Position(gens,a)3 ; 
if c=0 then 

return 0 ;
fi;

od;
return c ; 

end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
([#
([F Enumerate ( <M> ) ............. enumerates inverse monoid given by
## the presentation M
Enumerate ;=function(M)



local RClasses,r,s,newtab,i,a,c,gens,1,flag;
gens :=ShallowCopy(M.generators);
Append(gens,M.inverses);
1 ;=Length(gens);
RClasses;=[];
Add(RClasses,RClassCosetTable(M,IdWord,[List([1..1],x->0)],!));

#orbit algorithm
for r in RClasses do 

for a in gens do
c :=r.table[r.identity][((Position(gens,a)+1/2-1) mod 1)+1]; 
if c=0 then

newtab;=Copy(r .table);
Add(newtab,List([1..1],x->0));
newtab[r.identity][((Position(gens,a)+1/2-1) mod l)+l]:=r.active+l; 
newtab[r.active+1][Position(gens,a)]:=r.identity; 
s :=RClassCosetTable(M,a*r.representative,newtab,r.active+1); 

else
s :=rec(active :=r.active,representative :=a*r.representative,identity;=c, 

table :=Copy(r.table));
fi;
flag:=false; 
i : =1 ;
while not flag and i<Length(RClasses)+1 do

flag :=Trace(gens,RClasses[i] .table,s.representative,
RClasses[i].identity)>0 and 

Trace(gens,s.table,RClasses[i].representative,s.identity)>0 ; 
i :=i+l; 

od;
if not flag then 

Add(RClasses,s);
fi;

od;
od;
return rec(Size:=Sum(RClasses,x->x.active),

NumberOfRClasses:=Length(RClasses),
RClassTables:=List(RClasses,x->rec(Size :=x.active.

Representative :=x.representative, 
Identity:=x.identity.
Table :=x.table)));

end;

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F RClassAlg{ <M>, <cong>, <word>, <type> ) . . . returns coset table of
## R-class generated by
## word factored out by cong.
## Original RClass
## enumerator v. similar to
## main one. For support.
RClassAlg:= function(M, cong, word, type)
##type=0 - normal; type=l - R/H;
local a, c, i, k, r, d, n, 

active, 
gens, rels, 
leng, 
table, 
tidytable, 
stack.



replace, 
complete, 
parsymrep, 
numberUndel, 
list,
representative, 
eqnTrace, 
ideNtify, 
newCoset,
Inverted,
Cancelled,
trace,
AddNewCong;

Inverted:=function(w)
#([returns the inverse of the word w 

local nw,a; 
nw:=IdWord;
for a in Reversed(List(w)) do

nw:=nw*gens[((Position(gens,a)+n/2-l) mod n) +1]; 
od;
return nw;

end;
Cancelled:=function(w)

([#given a word w this function cancels it as if it were a word in a group
local nw,a;
nw:=IdWord;
for a in List(w) do

if Position(gens,a)<=n/2 then 
nw;=nw*a; 

else
nw: =nw*gens [Position (gens, a) -n/2] '^-l; 

fi; 
od;
return nw;

end;
newCoset:=function(c,a)

#([modifies table and returns the new coset
Add(table,List(leng,x->0));
table[c][Position(gens,a)]:=Length(table);
table[Length(table)][((Position(gens,a)+n/2-l) mod n)+l]:=c;
Add(replace,0);
Add(representative,representative[c]*a);
Add(complete,false); 
active :=active+l;
return Length(table);

end;
eqnTrace:=function(c,r)



local s,t,u,a,b,Iflag,rflag;
# does <c> trace through left of <r>?

s:=c; 
a ; =1 ;
while not s=0 and a<=LengthWord(r[1]) do 

u:=s;
s :=table[s][Position(gens,Subword(r[1],a,a))]; 
a :=a+l; 

od;
if s=0 then 

Iflag:=false; 
s : =u ; 
a : =a-l ; 

else
Iflag:=true; 

fi;
# does <c> trace through right of <r>?

t : =c ; 
b:=l;
while not t=0 and b<=LengthWord(r[2]) do 

u:=t;
t:=table[t][Position(gens,Subword(r[2],b,b))]; 
b : =b+l ; 

od;
if t=0 then 

rflag:=false; 
t : =u ; 
b:=b-l; 

else
rflag:=true; 

fi;
if not Iflag and rflag then 

#trace through left of <r>
while a<=LengthWord(r[1]) do

s :=newCoset(s,Subword(r[1],a,a)); 
a:=a+l; 

od;
Add(stack,[Minimum(s,t),Maximum(s ,t)]); 
elif Iflag and not rflag then 

#trace through right of <r>
while b<=LengthWord(r[2]) do

t :=newCoset(t,Subword(r[2],b,b)); 
b :=b+1; 

od;
Add(stack,[Minimum(s,t),Maximum(s,t)]); 
elif Iflag and rflag and not s=t then 

Add(stack,[Minimum(s ,t),Maximum(s ,t)]); 
fi;
ideNtify(); 

end;

ideNtify:=function()
#coset collapse

local s,t,a,i,u,v;
while not stack=[] do

s :=stack[Length(stack)] ; 
Unbind(stack[Length(stack)]) ;



while replace[s[13]>0 do 
s [1]:^replace[s [1]]; 

od;
while replace[s[2]]>0 do 

s [2];=replace[s[2]]; 
od;

# do the identification.
if not s[l]=s[2] then

for i in [1..Length(table)] do
if replace[i]=0 and not i=s[2] then 

for a in leng do
if table[i][a]=s[2] then 

table[i][a];=s[1];
v:=table[s[1]][((a+n/2-1) mod n)+l]; 
if v=0 then

table[s[1]][((a+n/2-1) mod n)+1]:=i; 
else

Add (stack, [Minimum(i,v) ,Maximum(i,v) ] ) ; 
fi; 

fi; 
od; 

fi; 
od;
for a in leng do 

v;=table[s[2]] [a] ; 
if v>0 then

u:=table[s[1]][a]; 
if u=0 then

table[s[1]3 [a]:=v;
table[v] [((a+n/2-1) mod n)+1]:=s[13 ; 

else
Add(stack,[Minimum(u,v),Maximum(u,v)]); 

fi; 
fi;

od;
for t in stack do 

if t[l]=s[2] then 
t [1 3  :=s[1] ; 

elif t[23=s[23 then 
t[23 :=s[l]; 

fi; 
od;
active :=active-l; 
replace[s [2 3 3 :=s[13 ;

fi;
od;

end;
trace :=function(w)

#trace the word w starting coset 1 
local a,c; 
c : =1 ;
for a in List(w) do

c:=table[c] [Position(gens,a)3 ; 
if c=0 then 

return 0; 
fi; 

od;



return c;
end;
AddNewCong:=function()

#R/H subroutine which adds new right congruence genertors 
local w,flag; 
flag:=false;
for w in [2..Length(table)] do

if replace[w]=0 and trace(representative[w]*word)>0
and trace(Inverted(representative[w])*representative[w])>0 then 

Add(cong,[representative[w],IdWord]); 
fi; 

od;
if flag then complete :=Copy(List(table,x->false));fi; 

end;
#initialize
gens :=Copy(M.generators);
Append(gens,M .inverses); 
n:=Length(gens); 
leng:=[!..Length(gens)]; 
rels:=M.relations ; 
table;=[List(leng, x->0)]; 
stack;=[]; 
replace ; = [0] ; 
representative : = [IdWord]; 
complete : = [false]; 
active :=1;
if not word=IdWord then 

c : =1 ;
for a in List(word) do

if table[c][Position(gens,a)]=0 then 
c;=newCoset(c,a); 

else
c ;=table[c][Position(gens,a)]; 

fi; 
od; 

fi;
if type=l then AddNewCong();fi;

#main routine 
c : =1; 
repeat

for r in cong do 
eqnTrace(1, r) ; 

od;
for d in [1. .c] do 

if replace[d]=0 then 
for r in rels do 

eqnTrace(d,r); 
od;

fi;
od;
complete[c];=true;
if type=l then AddNewCong();fi;
repeat



c :=Position(complete,false) ; 
if c=false then c:=l;fi; 
if not replace[c]=0 then 

complete[c]:=true; 
f i;

until replace[c3=0 or not false in complete; 
until not false in complete;

#tidy up
n u m b e r U n d e l : = [ ] ;  
k  : = 0 ;
for i in [1..Length(table)] do 

if replace[i]>0 then 
k:=k+l; 

fi;
A d d ( n u m b e r U n d e l , i - k ) ; 

o d ;

if not Set(replace)=[0] then 
tidytable:=[];
for i in [1..Length(table)] do 

if replace[i]=0 then 
Add(tidytable,[]); 
for a in leng do

if table[i][a]=0 then
tidytable[Length(tidytable)][a]:=0; 

else
tidytable[Length(tidytable)] [a]:=numberUndel[table[i][a]]; 

fi;
od;

fi;
od;

else
tidytable:=table; 

fi;
if type=0 then

return rec(Size :=active.
Representative ;=word,

#representative:=parsymrep.
T a b l e  : = t i d y t a b l e ) ;

else
return rec(Size;=active.

Representative :=word,
RightCongruenceGenerators:=List(cong,x - > x [ 1 ] ) ,

#representative;=parsymrep,
Table :=tidytable);

fi;
end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F Inverted( <generators>, <word> ). . Inverts word
##

Inverted :=function(gens,w)
local n,nw,a;
n : = L e n g t h ( g e n s ) ; 
n w : = I d W o r d ;
for a in Reversed(List(w)) do

nw:=nw*gens[((Position(gens,a)+n/2-l) mod n) +13; 
od;



return nw;
end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F RClassEnumerate(<M>, <cong>, <word>) . . . Standard Enumeration for
##
##
##
RClassEniimerate ; ̂ function (M, cong, word) 

cong:=List(cong,x->[x,IdWord]); 
return RClassAlg(M, cong, word, 0); 

end;

R-class generated by word 
with the right congruence cong 
factored out

. Enumerates the R-class generated 
by word the right congruence 
generated by H and cong 
factored out.

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F R O v e r H E n u m e r a t e(<M>, < c o n g > ,  < w o r d > )
##
##
##
ROverHEnumerate:=function(M, cong, word) 

cong:=List(cong,x->[x,IdWord]); 
return RClassAlg(M, cong, word, 1); 

end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F IsEqual( <M>, <wordl>, <word2>) .
##
IsEqual:=function(M,u,v)

support function tests whether 
wordl=word2 in M

local gens,r,s;
gens :=ShallowCopy(M.generators);
Append(gens,M .inverses); 
r :=RClassEnumerate(M,[],u); 
s :=RClassEnumerate(M,[],v);
if Trace(gens,r.Table,V,1)>0 and Trace(gens,s.Table,u,l)>0 and 

Trace(gens,r .Table,u ,1)=Trace(gens,r .Table,v ,1) then 
return true; 

else
return false; 

fi;
end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F IsHEquivalent( <M>, <wordl>, <word2>). . support function tests whether
## wordlHword2 in M
#Note that this is mathematically dodgy as it claims that two factored R-classes 
#are identical if they are isomorphic.
IsHEquivalent:=function(M, wordl, word2)



local gens,r,s;
gens :=ShallowCopy(M.generators);
Append{gens,M .inverses); 
r :=ROverHEnumerate(M,[],wordl); 
s :=ROverHEnumerate(M, [],word2);
if Trace(gens,r.Table,word2,1)>0 and Trace(gens,s.Table,wordl,1)>0 and 

Trace(gens,r .Table,wordl,1)=Trace(gens,r .Table,word2,1) then 
return true; 

else
return false; 

fi;
end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F IsREquivalent( <M>, <wordl>, <word2>). . support function tests whether
## wordlRword2 in M
IsREquivalent:=function(M, wordl, word2)

local gens,r,s;
gens :=ShallowCopy(M.generators);
Append(gens,M .inverses); 
r :=RClassEnumerate(M,[],wordl); 
s :=RClassEnumerate(M,[],word2);
if Trace(gens,r.Table,word2,1)>0 and Trace(gens,s.Table,wordl,1)>0 then 

return true; 
else

return false; 
fi;

end;
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
##
#F IsLEquivalent( <M>, <wordl>, <word2>). . support function tests whether
## wordlLword2 in M
IsLEquivalent:=function(M, wordl, word2)

return IsREquivalent(M,Inverted(Concatenation(M.generators,M.inverses),wordl),
Inverted(Concatenation(M.generators,M.inverses),word2));

end;


