

SYMMETRY IN CONSTRAINT PROGRAMMING

Iain McDonald

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2004

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/14983

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/14983

Symmetry in Constraint Programming

O O

A thesis to be submitted to the

UNIVERSITY OF ST ANDREWS

for the degree of

DOCTOR OF PHILOSOPHY

by

Iain McDonald

School of Computer Science
University of St Andrews

September 2004

ProQuest Number: 10170992

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10170992

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

<î-

1%;

Abstract

the best symmetries to use.

Finally, we look at areas of redundant computation in constraint solvers that no other re­
search has examined. New ways of dealing with this redundancy aie proposed with results
of an example implementation which improves efficiency by several orders of magnitude.

4

Constraint programming is an invaluable tool for solving many of the complex NP-complete
problems that we need solutions to. These problems can be easily described as Constraint
Satisfaction Problems (CSPs) and then passed to constraint solvers: complex pieces of

software written to solve general CSPs efficiently.

Many of the problems we need solutions to are real world problems: planning (e.g. vehicle
routing), scheduling (e.g. job shop schedules) and timetabling problems (e.g. staff rotas) to
name but a few. In the real world, we place structure on objects to make them easier to deal
with. This manifests itself as symmetry. The symmeti'y in these real world problems make
them easier to deal with for humans. However, they lead to a great deal of redundancy
when using computational methods of problem solving. Thus, this thesis examines some
of the many aspects of utilising the symmetry of CSPs to reduce the amount of computation

needed by constraint solvers.

In this thesis we look at the ease of use of previous symmetry breaking methods. We
introduce a new and novel method of describing the symmetries of CSPs. We look at
previous methods of symmetry breaking and show how we can drastically reduce their

computation while still breaking all symmetry.

I We give the first detailed investigation into the behaviour of breaking only subsets of all
symmetry. We look at how this affects the performance of constraint solvers before discov-

U ering the properties of a good symmetry. We then present an original method for choosing
1

I, Iain McDonald, hereby certify that this thesis, which is approximately 50,000 words in

length, has been written by me, that it is the record of work carried out by me, and that it

has not been submitted in any previous application for a higher degree.

date ^ f i- ________ signature o f candidate_______ __________________

I was admitted as a research student in September 2000 and as a candidate for the degree

of Doctor of Philosophy in September 2001; the higher study for which this is a record was

carried out in the University of St Andrews between 2000 and 2003.

2 0 /date ' ID / V T ________ signature o f candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu­
lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews

and that the candidate is qualified to submit this thesis in application for that degree.

'2c? /o /o tdate J-O / (O f O T signature o f supervisor

In submitting this thesis to the University of St. Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the

University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and abstract will be published,
and that a copy of the work may be made and supplied to any bona fide library or research

worker.

' Z O / f o ^date ^ ̂ signature o f candidate

&

I, Iain McDonald, hereby certify that this thesis, which is approximately 50,000 words in
length, has been written by me, that it is the record of work carried out by me, and that it
has not been submitted in any previous application for a higher degree.

date_________________________ signature o f candidate_________________________

I was admitted as a reseaich student in September 2000 and as a candidate for the degree
of Doctor of Philosophy in September 2001; the higher study for which this is a record was
caiTied out in the University of St Andrews between 2000 and 2003.

date signature o f candidate_____________ ____________

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu­
lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews
and that the candidate is qualified to submit this thesis in application for that degree.

date __________________________ signature o f supervisor_______________________ _

In submitting this thesis to the University of St. Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the

University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and abstract will be published,

and that a copy of the work may be made and supplied to any bona fide libraiy or research
worker.

date_________________________ signature o f candidate_________________________

Acknowledgements

I would like to thank mostly Ian Gent, Tom Kelsey, Steve Linton and Amy Midgley. This
document would not have been possible without their help.

I would like to thank all the members of the APES reseaich group, notably Lyndon Drake,
Ian Miguel, Patrick Prosser, Evgeny Selensky, Dan Sheridan, and Baibaia Smith and also
to Wai*wick Harvey and Meinolf Sellmann.

I would like to thank Maitin Bateman, Bairy Stormont, Andrew Rowley, Scott Walker,
Graeme Bell, Stuait Norcross, David Letham and Grant McLay.

Finally I would like to thank my family members Morgan, Maigaret, Elizabeth, Tony and
Alexander.

Published Research

Excerpts of this thesis have appeared in other forms in published research. We now Hst the
reseaich caiiied out during my time as a PhD student:

1. “Unique Symmetry breaking in CSPs using Group Theory” [McDOl] by Iain Mc­
Donald appeal's in Symmetry in Constraints, pages 75-78, 2001,

2. “Partial Symmetry Breaking” [MS02] by Iain McDonald and Barbaia M. Smith ap­
peal's in Principles and Practice o f Constraint Programming, pages 431 -445. Springer,
2002.

3. “NuSBDS: Symmetry breaking made easy” [McD03] by Iain McDonald appeal's in
Symmetry in Constraint Satisfaction Problems, pages 153-160, 2003.

4. “Symmeti'y and Propagation; Revising an AC algorithm” [GM03] by Ian P. Gent
and Iain McDonald appears in Symmetry in Constraint Satisfaction Problems, pages
66-74, 2003.

5. “Conditional Symmeti'y in the All-Interval Series Problem” [GMS03] by Ian P. Gent,
Iain McDonald and Baibaia M. Smith appeal's in Symmetry in Constraint Satisfac­
tion Problems, pages 55-65, 2003,

Apai't from [GMS03] which does not appeal' in thesis, I am the primaiy author of all the
above publications.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Constraint Satisfaction P roblem s.. -.................... 2
1.2 Group T h eo ry .. 7
1.3 Definitions... 9

1.3.1 Group Theory and Symmetry in C S P s ... 10
1.4 C ontributions... 15
1.5 Thesis O utline... 17

2 Review of Previous Work 18
2.1 Constraint Program m ing ... 18

2.1.1 M odelling.. 19
2.1.2 C onstrain ts.................................24
2.1.3 Propagation... 25
2.1.4 H euristics.. 28
2.1.5 Search...29

2.2 Constraint Solvers.. 30
2.3 Computational Group T heory... 31
2.4 Symmetries in CSPs .. 31

2.4.1 Symmetry Breaking in the 1990s..32
2.4.2 Symmetry Breaking in the 21®̂ c e n tu iy ..35

3 Implementation of Symmetry Breaking Systems 38
3.1 Requirements of a Synunetry Breaking S y s te m ... 39

11

3.1.1 Automatic Symmeti’y Detection vs Symmetiy Descriptions............ 39
3.1.2 Expressiveness... 42
3.1.3 Symmetry R epresentation .. 43
3.1.4 Problem Specific or Instance S p e c if ic ... 44
3.1.5 Breaking all Sym m etry.. 45
3.1.6 Ease of u s e 46
3.1.7 Combinations of methods .. 47

3.2 Unique Symmetry Breaking using Group T h e o ry ..47
3.2.1 Unique Symmetries... 49
3.2.2 Theoretical Analysis and Bound on Symmetry Breaking Constraints

N e e d e d ...49
3.2.3 Empirical R esults.. 54

3.3 Implementing the GHK Algorithm with G A P ...55
3.3.1 Analysis of Perform ance.. 56

3.4 Implementing the GHK Algorithm without GAP .. 58
3.4.1 Group Theory Implementation i s s u e s .. 58

3.5 NuSBDS ... 59
3.5.1 NuSBDS code ex am ples..61
3.5.2 Comparison of symmetry deseription methods64
3.5.3 M a e ro s ...68
3.5.4 Empiiieal Compaiisons... 71

3.6 Conelusions and Future W ork..74
3.6.1 Improved Symmetiy Breaking Teehniques... 75
3.6.2 User speeified m a e r o s ... 75
3.6.3 Intelligent Symmetry Breaking.. 75
3.6.4 Pai'tial Syimnetiy Breaking... 76

3.6.5 Verifieation of Sym m etries... 76

4 Partial Symmetry Breaking 77
4.1 Introduction and M o tiv a tio n .. 77
4.2 Review of Paitial Symmetry B reak in g .. 79
4.3 Definitions and N o ta tio n .. 81
4.4 Paitial Symmetry Breaking and Symmetry Representation 82

4.4.1 Explicit Symmetries and Group T h e o ry ... 83
4.5 Paitial Symmetry Breaking Experim ents... 83

Ill

4.5.1 Fractions P u z z le ...85
4.5.2 Alien T i l e s .. 86
4.5.3 Golfers’ P rob lem ... 89

4.6 Partial Symmetry Breaking with Implicit Symmetry Representation 90

4.6.1 Limited use of Symmetry Breaking Technique 91

4.6.2 Using a Subgroup of S y m m etries ...91
4.6.3 Limited eomputation of Symmetry Breaking Technique...................92

4.7 Symmeti'y Subset Selection.. 93
4.7.1 Looking for good subsets...93
4.7.2 The Effect of Different H eu ris tics ...96

4.8 Algorithm for Symmetry Subset Selection ... 98
4.9 Dynamic Algorithm for Symmetry Subset Selection..102
4.10 Symmetry Subset Selection for other Symmetry Breaking S ystem s.............. 105

4.11 Conelusions and Future W ork..105
4.11.1 Unknown or Dynamic Heuristics107
4.11.2 Finding Subsets that break all Symmetry ...107

4.11.3 Optimal PSB p o in t ... 108
4.11.4 Integration of Symmetiy Subset Selection into Symmetry Breaking

System s...108

5 Symmetry and Propagation 109
5.1 Introduction...109

5.1.1 Definition of Symmetry ..110

5.2 Levels of Consistency...I l l
5.2.1 An example modification..112

5.3 Modifying an existing AC a lgorithm ..113

5.3.1 Refining AC-2001 ... 116
5.4 Experimental R e su lts ... 118
5.5 Conclusions and Future W ork...121

5.5.1 Improvements to GAC algorithm s.. 122
5.5.2 Support for value sy m m etry ..122
5.5.3 Use of larger subgroups to enforce higher levels of consistency . . . 123
5.5.4 Concise representations of eonstiaints using group theory................... 123

6 Conclusions and Future Work 124

IV

6.1 C ontributions.. 125
6.1.1 Implementation of Symmetry Breaking Systems 125
6.1.2 Concise Representation of Symmetries ... 125
6.1.3 Analysis of Number of Symmetry Breaking Constraints 126
6.1.4 A Method for Describing Sym m etries... 126
6.1.5 Using Subsets of all Symmetry... 127
6.1.6 Observed Redundant Computation..128

6.2 Future W ork ..128
6.2.1 Symmetry Breaking Im plem entations... 128
6.2.2 An improved version of S B D S .. 129
6.2.3 Dynamic Partial Symmetry B re a k in g ... 129

6.2.4 Avoiding more Redundant Computation.. 130

Bibliography 131

A Glossary 142

B NuSBDS - User M anual 143
B.l What is N u S B D S ..143
B.2 Installing N u S B D S ...144

B.2.1 Compiling N u S B D S .. 144
B.2.2 Installing A iehive...145

B.3 Using N u S B D S ... 145

B.3.1 NuSBDS in P ra c t ic e .. 147
B.4 Using the NuSBDS m acro s.. 149

B.4.1 How to spot the sy m m etries ..1 5 0
B.4.2 Available NuSBDS m acros...150

C Problems 153
C.l Alien T iles...153

C.2 Balanced Incomplete Block D esign... 154
C.3 Dodecahedron C olouring ... 154
C.4 Fractions Puzzle ... 155

C.5 Golfers’ P ro b le m .. 155
C.6 Most Perfect Magic S q u a re s ...156
C .l n-queens.. 157

List of Figures

1.1 A diagram of a squai'e with numbered corners... 8
1.2 The original squai'e rotated by 90°. Though the numbers have changed, the

shape has not... 8
1.3 An example of a binaiy search tree... 10
1.4 A 5 X 4 matrix with symmetiie columns and symmetric rows. The stabilizer

of the highlighted element forbids any permutations of column 2 and row 2. 14
1.5 A 5 x 4 matrix with symmetric columns and symmeti'ic rows. The stabilizer

of the highlighted elements differs depending on whether it is setwise or
pointwise stabilized.. 14

2.1 The relation between a solution to the 4-queens problem and Model 2.1.
2.2 The relation between a solution to the 4-queens problem and Model 2.2.
2.3 The relation between a solution to the 4-queens problem and Model 2.3.

21
21
22

3.1 Unique Symmetries in the Alien Tiles problem..50
3.2 Unique Symmetries for a problem with Sio acting on the variables.....................51

3.3 Consti'aints posted by SBDS, U-SBDS and GHK-SBDS for a problem with
S'lo acting on the variables... 52

3.4 Maximum number of constraints posted by U-SBDS and GHK-SBDS for

any one nogood from a problem with Sn acting on the vaiiables for vaiying
n ..53

4.1 Finding the optimum p o i n t 84
4.2 Fractions Puzzle P S B .. 85

4.3 Initial State, Goal State and Example Solution... 86
4.4 Random PSB Subsets - Alien T ile s 87
4.5 Random PSB Subsets - Alien Tiles (cut-off at 70 seconds)87
4.6 Average cpu-times - Alien Tiles ... 88

VI

4.7 PSB - Golfers’ Problem .. 89
4.8 Best & worst times (eut-off at 60 seconds).. 93
4.9 The difference between best & worst times (cut-off at 40 seconds).................... 94
4.10 This subset took 140.05 seconds to solve the alien tiles problem........................95
'4.11 This subset took 69.05 seconds to solve the alien tiles problem.......................... 96
4.12 Identical subsets of symmetries with different vaiiable ordering heuristics

(eut-off 60 seconds). The first heuristic (top) is better up to 376 symmetries
after which the second heuristic (bottom) takes less t i m e97

4.13 A seai'ch tree illustrating how some symmetry breaking constraints prune
more search than others. Given the nogood X, g is a better symmetry to
break than h... 99

4.14 The alien tiles experiment using Algorithm 4.8.1 101
4.15 A compaiison of runtimes from solving the alien tiles problem with the

best random symmetries and those found using the Algorithm 4.8.1 101

4.16 The golfers’ problem solved using symmetries from Algorithm 4.9.1 com-
pai'ed with the original randomly chosen symmetries. We see a significant
improvement in runtime even after the time for sorting symmetries is taken

into account... 103
4.17 A search tree illustrating how some symmetries are better for different sub­

trees of search ..103

List of Tables

3.1 Results of finding all solutions to the 8-queens problem using different
symmetry breaking systems... 54

3.2 Results of finding an optimal solution to an alien tiles problem using dif­

ferent symmetry breaking systems..55
3.3 Results of using GAP with a U-SBDS implementation in Hog Solver 5.2 to

solve the n-queens problem. The table shows the cpu-time taken for GAP
and Solver as well as the actual overall run-time of U -S B D S 57

3.4 Results of using NuSBDS and Solver 5.2 to find all solutions to various
n-queens problems.. 72

3.5 Results of using NuSBDS and Solver 5.2 to find all 3-eolourings of the
dodecahedron. This problem has 360 symmetries. They consist of the
3! or 6 symmetries from the 3 available colours combined with the 60
symmetries of the dodecahedron itse lf ..72

3.6 Results of using NuSBDS and Solver 5.2 to solve the most perfect magic
squmes problem.. 72

3.7 Results of using NuSBDS, SBDS and Solver 5.2 to solve the alien tiles

problems for a 4 x 4 boai'd with 3 colours... . 73
3.8 - Results of using NuSBDS and Solver 5.2 to solve some small BIBDs. Find­

ing all solutions to the BIBD problem is generally hard due to the number

of symmetries. NuSBDS does not break all symmetry which allows a more
efficient symmetry breaking system..73

5.1 Results of comparing the original implementation by Bessière and Régin
with the new Java implementation.. 119

5.2 AC on uninstantiated latin squares. The predicted number of constraint

checks is produced experimentally..120
5.3 Maintaining AC while seai’ching for the first solution..120

Vll

Chapter 1

Introduction

Many of the real world problems that we need solutions to aie NP-complete problems so
efficient techniques of solving them do not exist. These problems aie pervasive in society
e.g. scheduling, planning, configuration, circuit design, hardwai e verifieation, vehicle rout­
ing and timetabling. They can all be represented as constraint satisfaction problems (CSPs)
and solved using constraint programming.

Constraint programming has become a populai* method of solving the complex tasks men­
tioned above due to the natural way constraint problems are described. Also beneficial

is that the problem deseription is all that is neeessaiy, since the problem is solved by the
computer.

However, constraint programming, no different from other combinatorial symbolic AI teeh­

niques, places human defined labelling on the problem to be solved. If we have n vehicles
to schedule, we can see that each vehicle is identical to the next. In order to solve the
problem though, we must label the vehicles, and in effect make each one different.

It is the labelling needed by constraint satisfaction problems that causes individual objects
and patterns with the problem to be lost. These patterns, or symmetries, exist all ai'ound
us. They put structure into the many things we see every day, making them easier for us to
comprehend and work with.

This stmcture is lost to constraint programming. Once the labelling has been created, the

symmetry disappears. This leads to a great deal of inefficiency when solving complicated

C h a p t e r 1. In t r o d u c t io n 2

and symmetric problems.

Over reeent yeai’s, reseaieh into how to deal with symmetry in CSPs has become very
populai'. Initially, attempts at using symmetry were generally dismissed as too complicated,
leading constraint programmers to use more ad-hoe methods in practice.

One of the strengths of constraint programming is the vast collection of algorithms, seai'ch
routines, heuristics and specialised constraints that research has developed. Currently, we
are at an interesting point in the timeline of constraints reseaieh where methods of using
symmetry aie entering mainstream constraint programming.

This has come about by both a greater understanding of symmetry in CSPs as well as the
development of effective ways of dealing with symmetry. The realisation of the constraint
programming community that the pure mathematics area of group theory deals with the
classification and measurement of symmetry has greatly furthered the ways in which we

deal with symmetiy in CSPs.

In this thesis we examine some aspects of the complicated relationship between symmetry
and CSP solving. More specifically, we introduce one of the first group theoretic based
methods of using symmetry in CSPs, we examine how using paitial amounts of symme­
try affects the complexity of CSP solving. We look at ways to bring symmetry use to
mainstream constraint programming and by doing so we bridge the gap that exists between
group theorists and constraint programmers. Finally we look at furthering the scope of
symmetry use to beyond the dombinatorial seaieh at the heait of constraint programming.
These form the main contributions of the thesis, discussed further at the end of the chapter.

1.1 Constraint Satisfaction Problems

A constraint satisfaction problem consists of a finite set of vaiiables (or unknowns), each
variable has a domain which is a finite set of possible values. There are also a set of {
constraints, each one forbidding a combination of assignments of values to variables. To
solve a CSP, we must assign (or choose) a value for each vaiiable from its domain such that
none of the constraints aie violated.

Consider the following problem: find five different numbers from 1 to 10 that sum to the

C h a p t e r 1. In t r o d u c t io n 3

number 40. In this case, the unknowns aie the five numbers we have to find, thus, these are
the 5 vaiiables of the problem.

Eaeh number ranges from 1 to 10 so this is the domain of each vaiiable.

Finally, this problem has the following eonstraints.

Given the above information, we can use a constraint solving toolkit to solve the above
problem. Notice however that tlie variables each have the same domain and the eonstraints
acting on them are commutative. Thus each vaiiable is said to be symmetric to all the others
i.e. if we find a solution to the above problem, we can re-arrange the values of the vaiiables
however we like to yield another solution. Though we can see this fact, the constraint solver

cannot. Therefore, we may think of the following solutions as the same.

6-f"7-j-8-|-9-|-10 — 40

74-6-1-84-9 + 10 = 40

but the constraint solver would not.

C h a p t e r 1. In t r o d u c t io n 4

Finding a solution

In general, the above type of problem (or indeed any CSP) is solved by use of a eombination

of inference and seai'ch.

Eaeh vaiiable is considered in an order dictated by some heuristic. The chosen variable is
then instantiated to some value taken from its domain. At this point, the set of domains of
the variables may be passed to some propagation algorithm which can infer inconsistent
choices that aie then removed from the relevant domain. Before moving on to the next
vaiiable, the current set of instantiations is considered against the set of eonstraints to see
if any of them have been violated. If any constraint has been violated, we backtrack from
our previous decision and remove that choice from the relevant domain.

There aie many different heuristics from a simple static lexicographic order based on our
labelling, to the more complicated dynamically ordered smallest domain first. The latter
heuristic works well in practice though there are other problems that work well with their
own specific heuristics.

There are many different general purpose propagation algorithms which yield different
levels of inference, as well as filtering algorithms for specific constraints. The aim of these

algorithms is to detect and remove domain elements than cannot paiticipate in a solution.
These will be discussed in greater detail later.

Though there aie a few backjumping algorithms available to the constraint programmer, a
simple backtracking seai'ch procedure is used by default by most constiaint solvers.

Since constraint solving is used in general to solve NP-complete problems, the runtimes
aie exponential. In the worst case, a complete backtrack seai'ch of all possible complete
instantiations will have a runtime of 0 (d") for a CSP with n vaiiables with domains of size
d.

Symmetries and CSPs

We will now look at how we would solve the problem of finding five different numbers
that sum to 40, using the approach described above. In this ease we will not use any
propagation algorithms and we will use a statically ordered lexicographic heuristic and a

C h a p t e r 1. In t r o d u c t io n

simple backtracking search procedure.

We initially set the first vaiiable, A, to be the first element in its domain.

A = 1

B , C , D , E e {1..10}

We now reeursively instantiate the next vaiiable.

A - 1

B = 1

C , D , E e {1..10}

As you can see, this violates the constraint that each number must be different. We therefore
baektraek from this decision and remove the relevant value from the domain of the variable

B.

A ~ 1

B e {2..10}

C , D , E e {1..10}

We eontinue to exhaustively try all the different instantiations of vaiiables B , C , D and E.
After doing so we will discover that no solution exists with A — 1.

A E {2..10}

B , C , D , E e {1..10}

However, by taking the symmetry of the problem into account we realise that no solution
exists with any of the vaiiables equal to 1. Therefore we can remove 1 from the domain of

all vaiiables.

C h a p t e r 1. In t r o d u c t io n

A , B , C , D , E e {2..10}

This is not something that a constraint solver would do though. By eontinuing our search
to find a solution, we come across many inconsistent sets of instantiations that lead to
failure. For eaeh of these failures, we could use the symmetries of the problem to avoid
making similai* inconsistent sets of instantiations. After much redundant search we come
to this first solution. If we were using some propagation algorithm to remove inconsistent

assignments, they would also be performing redundant work.

A = 6

B = 7

C = 8

D = 9

E = 10

Note that this is the only solution to this problem that is unique with respect to symmetry.
Any other solution can be found by relabelling this solution e.g.

A = 7

B = 6

C = 8

D - 9

E = 10

simply has the values of A and B exchanged. If we were to continue to seaieh for solutions,

which is a common thing to do in constraint programming, we would perform much more
redundant seaieh and find a further 5! — 1 (or 119) superfluous, duplicate solutions.

C h a p t e r 1. In t r o d u c t io n 7

Failing to appreciate the symmetries of a problem results in a lai'ge increase of computa­
tion both by increasing the search tree and the amount of reasoning done by propagation
algorithms. The study of symmetiy in constraint programming is an extremely important
one as utilising the symmetry in highly symmetric problems is the only way to make them

solvable.

1.2 Group Theory

Though the study of symmetry in CSPs is a fairly reeent one, the study of symmetiy in gen­
eral dates back to the Ancient Egyptians who were aware of the symmetiy of geometrical
objects used in tiling. The classification of group theory as we know it today was intro­
duced at the latter part of the 18^ ̂ century and is due to mathematicians such as Cauchy
[OR97], Cayley [Cay78], von Dyck [vD82] and Burnside [Bur97] to name just a few.

To look at group theory in an abstract way, if we wish to measure the number of occurrences
of something, we can use integers. If we wish to measure the amount of something, we
can use rational numbers. If we wish to measure the amount of symmetry of an object,
we can use group theory. The pure mathematics area of group theoiy is essentially the
measurement and application of symmetiy.

As an example of symmetry, imagine a squai'c with the corners labelled (Figure 1.1). This
has geometrical symmetiy. We can rotate the squai'e by 90°, 180° and 270° and the shape
will remain the same. We can also invert or flip the squai'e ai'ound the T-axis, ^-axis, around
the line bisecting the squai'e diagonally from top left to bottom right, and from top right to

bottom left.

We see that by applying any of these symmetries we change the corner labels but the re­
sulting shape is still a squai'e (Figure 1.2). This is exactly like the'example mentioned at
the stai't of the chapter: two vehicles may be conceptually identical but since symbolic AI

labels them, the symmetry is lost.

Rather than thinking of an actual squai'e, we can describe the symmetries as permutations

of the labels. For example, the symmetiy “rotate by 90°” can be written as a permutation

of the points from {1, 2, 3,4} to {3, 1, 4, 2).

C h a p t e r 1. In t r o d u c t io n

Figure 1.1: A diagram of a square with numbered corners.

rotate 90

Figure 1,2: The original square rotated by 90°. Though the numbers have changed, the
shape has not.

C h a p t e r 1. In t r o d u c t io n 9

Rather than listing all the different symmetries explicitly, we can list a few symmetries and
generate the remaining symmetries by combining the few we store [But91] [Ser03]. All the
symmetries of a square can be generated by just the “rotate by 90°” and “invert about the
x-axis” symmetries. For example, we can create the “invert about the y-axis” symmetry
by combining the “rotate by 90°” synnnetry twice and then applying the “invert about the
æ-axis” symmetry.

1.3 Definitions

We now define some of the preliminary ideas and concepts necessai^y before continuing
with symmetry in constraint satisfaction problems.

Definition 1.1 A CSP is a set o f constraints C acting on a finite set o f variables X :

X-\..Xn> each o f which has a finite domain o f possible values D(Xi). A solution to a CSP
L, is an instantiation o f all the variables in X where \/i 3 j Xi = j , j G D{Xi) such that
all the constraints in C are satisfied.

Definition 1.2 A k-ary constraint is a constraint that acts on k variables o f a CSP A con­
straint on k variables describes the allowed combinations o f choices allowed fo r the
set o f variables { X i,..., X^} as a subset o f the cartesian product o f D{X\) x ... x D{Xk).

Definition 1.3 A variable assignment (or instantiation) is a variable with a domain with
only one element i.e. that variable has been assigned a value. A set o f assignments is called
a tuple (or partial assignment). An instantiation o f all variables in a CSP is called a fu ll
assignment. For any given assignment or tuple, it is called consistent if it satisfies all the
constraints acting o f the variables in the assignment or tuple.

Definition 1.4 A nogood is an assignment or tuple that is inconsistent with at least one o f
the constraints o f the CSP.

Definition 1.5 A solution to a CSP is a consistent instantiation o f all the variables in the
CSP. A partial solution is a tuple that does not violate any o f the constraints acting on the
variables in that tuple.

The above aie some of the fundamental terms we will use when dealing with CSPs. In
general, when we aie seaiching for a solution we are looking for the first solution, looking

C h a p t e r 1. In t r o d u c t io n 10

A =

B =

C =

Figure 1.3: An example of a binary search tree.

for all solutions, verifying there are none, or looking for a solution that is optimised with
respect to some criteria.

We find solutions to CSPs by traversing the search space of the CSP. This is all the possible
combinations of tuples of the CSP. The path of the traversal of the search space is called
the search tree (Figure 1.3).

While searching for a solution, we make decisions such as those described above. A posi­
tive decision is a variable assignment {X^ = a), and a negative decision is a domain removal

f 6).

Definition 1.6 A state in search A, is the set o f decisions made (positive and negative)
while traversing the search space.

1.3.1 Group Theory and Symmetry in CSPs

We now formally define a symmetry of a CSP. A symmetry is a bijective function. A
function is bijective if it is both injective (no two inputs can have the same output), and sur-

jective (every possible output can be reached by some possible input). The input and output
of this function can be thought of as some representation of a CSP: a set of assignments, a
single assignment, a set of domains etc.

Definition 1.7 Given a CSP L, with a set o f constraints C, a symmetry o f L is a bijective

C h a p t e r 1. In t r o d u c t io n 11

function f : A ^ A where A is some representation o f a state in search e.g. a list o f

assigned variables, a set o f current domains etc., such that the following holds:

1. Given A, a partial or fu ll assignment o f L, if A does not violate the constraints C,
then neither does f{A) .

2. Similarly, if A is a nogood, then so too is f{A).

Recently, behaviour has been noticed in some problems which resembles symmetries but
does not satisfy this definition. Conditional symmetries (also known as dynamic symme­
tries within planning research) ar e bijective functions that require a condition to be satisfied
before they can be considered as symmetries [GMS03]. Pseudosymmetries are symmetries
that are not bijective i.e. though f is a symmetry, its inverse may not be [PS98] [PB04].

Though Definition 1.7 describes a symmetry in terms of CSPs, we also want to think of a
symmetry as an element of a group. Thus, we formally define a group.

Definition 1.8 A group G is a non-empty set o f elements with a binary operator x, that
obeys the following 4 axioms.

1. Every group contains an identity element.
3e G (7 G G, e x g = g x e = g

2. Every element o f a group has an inverse element.
V g G G , G G s. t . g X g~^ = g~^ x g = e

3. The binary operator o f a group is associative.
Vi, 7, k G G, {i X j) X k — i X { j x k)

4. The group is closed under the binary operator.
Vi, j G G, i X j G G

The size o f a group is the number o f elements it contains. For group G, its size is |G|.

C h a p t e r 1. In t r o d u c t io n 12

Definition 1.9 A subgroup H, o f group G, is a group that shares the same binary operator
as G and contains a subset o f the elements o f G. Given groups N and M, we say M is a
subgroup o f N by writing M C. N.

Throughout this thesis we will think of groups as permutations groups.

Definition 1.10 A group whose elements are bijective permutations from a set to itself are
called permutation groups.

We consider the set referred to in Definition 1.10 to be a contiguous set of points of the
range 1..p. For example, consider a permutation group acting on 4 points: {1,2, 3,4}. One
possible permutation of these points is to permute 1 with 2, 2 with 3, and 3 with 1. This
creates the set (3, 1, 2, 4}. A concise representation of permutations is called the cycle
form. This form lists the disjoint cycles that represent how the points aie affected. The
cycle form of the above permutation is (1, 2, 3)(4). We read this as “Point 1 goes to point
2, 2 goes to 3, 3 goes to 1. Point 4 goes to point 4.” We usually omit cycles of length one,
leaving just (1,2, 3).

Some common groups include the symmetric group whereby any bijective permutation of
the points is allowed, and the alternating group whereby any bijective permutation that
can be represented as an even number of transpositions is allowed. For groups acting on n
points, the symmetric group has nl elements and the alternating group has y .

Definition 1.11 A generator set G gen o f group elements, represents the group G if every
element o f G can be recreated by some combination o f elements in Ggen̂

Though the theoretical maximum number of generators needed to recreate the entire group
is log2 \G\, typically just 2 to 6 elements are needed in a generator set. This theorem is well
known to the group theory community, however for completeness the proof is outlined
here.

Consider a generator set = {gi ̂9 2 , 9k) for the group Gs^. The group generated by

Sk~i = {9 1 , 9 2 , ■■•,9k-i) is a subgroup of Gs^ since Sk-i Ç Sk. It follows then that Gs^ Ç
Gs2 Ç ... Ç Gsk> Recall that the size of every subgroup is a factor of the original group.
Therefore, is at least half the size of |GgJ > 2 \ |G%| > 2^,..., |Ggj |̂ > 2^

or k < Io9 2 {\Gs^\) i.e. the maximum number of generators in a minimal generator set for
group G, is I0 9 2 of the size of G.

C h a p t e r 1. In t r o d u c t io n 13

Permutation groups are of particular interest to constraint programmers since it gives a
means of translating between the group theory terminology of group elements (or permu­
tations) acting on sets of points, to symmetries acting on sets of assignments. Thus, rather
than considering permutation groups acting on a set of points, we consider permutation
groups acting on sets of variables, or assignments. Though we describe the group operator
X for combining group elements, when applying a group element to a point we will use the
notation of a function i.e. p (l).

Definition 1.12 The orbit O o f a (set of) point(s) A under a group G is the set o f all (sets
of) points that A can be mapped to. 'ig G G, g (A) G O.

Even though the size of a group may be large, the size of the orbit of a set of points can be
much smaller. The orbit of any one point, for example, cannot be more than the number of
points the group acts on.

Definition 1.13 The stabilizer G a o f a (set of) point(s) A, under the group G is a subgroup
o f G such that: Wg G G a , g (A) = A.

In many cases we will think of the orbit of one point under a group G, or the stabilizing
subgroup of one point under a group G. However, when we consider more than one point, it
is important to make a distinction between a set o f points or a list o f points. This is because
the orbit of a set of points (called the setwise orbit) is different from the orbit of a list of
points (called the pointwise orbit).

For example, given the set of points {1,2} with the symmetric group acting on 3 points,
the setwise orbit is {{1, 2}, (2,3}, {1,3}}. The pointwise orbit is {[1,2], [2,3], [1,3], [2,1],
[3,2], [3,1]}. The setwise orbit is always a subset of the pointwise orbit.

The reverse is tme of setwise stabilizers and pointwise stabilizers. Consider the diagram in
Figure 1.4 which contains a matrix with freely permutable rows and columns. If we wish
to stabilize the highlighted element, we must forbid any group element that permutes any
column with column 2, any row with row 2, and any combination of those permutations.

If we calculate the stabilizer in an incremental way, this is the same as performing the point-
wise stabilizer: Stabilizer (Stabilizer (G, A), B) = PointwiseStabilizer(G , [A,B]). Thus
the pointwise stabilizer of the highlighted elements in Figure 1.5 would not allow any per­
mutations of row 2 or row 4, or column 2, or any combinations of these permutations.

C h a p t e r 1. In t r o d u c t io n 14

Figure 1.4: A 5 x 4 matrix with symmetric columns and symmetric rows. The stabilizer
of the highlighted element forbids any permutations of column 2 and row 2.

Figure 1.5: A 5 x 4 matrix with symmetric columns and symmetric rows. The stabilizer of
the highlighted elements differs depending on whether it is setwise or pointwise stabilized.

However, the setwise stabilizer would allow the permutation of row 2 with row 4. Thus we
can see that the pointwise stabilizer is a subgroup of the setwise stabilizer.

The complexity of pointwise group theory operations is less than setwise operations since
they can be done incrementally. There is an algorithm [Ser03], however, that proposes
recording the setwise orbit for a set of points A. The orbit of A can then be used to con­
struct the orbit of B, where A Ç B, with less computation. This algorithm has yet to be

implemented.

We will see more about the applications of permutation groups, orbits, stabilizers and how
to calculate them later.

C h a p t e r 1. In t r o d u c t io n 15

1.4 Contributions

Symmetries are prevalent in real world problems which are solved by constraint program­
ming. As has already been shown, the lack of regard for these symmetries causes much
redundancy when solving CSPs. For this reason, the use of symmetry while solving CSPs
needs to be investigated thoroughly. Symmetry in CSPs is a vast research area with frequent
new avenues of study being introduced. This thesis looks at the problems of symmetry in

constraint programming from several angles and contributes to each of them.

From a constraint programmer’s point of view, they are not concerned with the internal
workings of their constraint solver. They simply wish to be able to describe their problems
easily and have their constraint solver find solutions as efficiently as possible. Much of the
research into CSPs culminates in implementations of effective constraint solvers. These
solvers take the best algorithms from the many areas within CSP research and make them

easy to use.

In this thesis, we look at the problem of symmetry in CSPs from the point of view of the
constraint programmer. We discuss the problems with the most popular methods of break­
ing symmetry in terms of ease of use. We present two new implementations of symmetry
breaking systems that advance the inclusion of symmetry breaking into constraint solvers.
Firstly, we introduce U-SBDS which has the advantage of a concise symmetry representa­
tion. This leads to less effort in describing symmetries. U-SBDS also limits the number
of symmetry breaking constraints needed to break all symmetry. Secondly, we introduce
NuSBDS which contains an intuitive method of describing symmetries that has many ad­
vantages over all previous methods.

For highly symmetric problems that have an exponential amount of symmetry, there is
currently no method to efficiently break all of itF When dealing with such problems, only
a subset of all possible symmetry can be dealt with. Though many symmetry breaking
methods can be used to break subsets of symmetry, no detailed research into breaking such
subsets has previously been carried out.

In this thesis we look at how the amount of symmetiy broken affects the amount of work
required in finding solutions. From this investigation we look at why some subsets of
symmetry appear to be better than others. We then present an algorithm for choosing the

 ̂Apart from value symmetry [RDGKL04].

C h a p t e r 1. In t r o d u c t io n 16

best symmetries.

Almost all previous research into symmetry in CSPs has looked at how the symmetry af­
fects search. This is done almost exclusively by adding constraints to the original CSP, or
by adding constraints dynamically during search to the solver. We look at trying to use
symmetry in CSPs to reduce the amount of work done in other areas of CSP solving. This
is the first research to do this. Based on this study we present a modified propagation algo­
rithm that results in fewer constraint checks by many orders of magnitude. We also suggest
many ways in which other redundant work could be reduced.

To summarise, the main contributions of this thesis are:

1. An evaluation of current symmetry breaking systems and a discussion of their suit­

ability for use within constraint solvers.

2. A new method of breaking symmetry while constraint solving using group theory,

U-SBDS.

3. An analysis of the number of required symmetry breaking constraints for breaking
symmetry dynamically during search. We introduce an upper-bound on the number
of symmetry breaking constraints needed after any one backtrack.

4. A new and novel method of easily describing problem specific symmetries, NuSBDS.

5. The first comprehensive study of breaking subsets of symmetries in highly symmet­
ric problems. We then discover the properties of a good symmetry and produce an
algorithm for selecting the best symmetries to use when breaking symmetries during
search.

6. A realisation of new ways in which symmetry can be used to reduce the computation
of solving CSPs. We modify an existing constraint programming algorithm to take
advantage of symmetry and present empirical results.

C h a p t e r 1. In t r o d u c t io n 17

1.5 Thesis Outline

The rest of this thesis is organised into the following chapters. Chapter 2 will review the
previous work in the field of constraint programming including modelling, constraints,
propagation and search. We will then look at symmetry breaking in constraint program­
ming, computational group theory and the continuing convergence of the two areas.

Chapter 3 looks at various symmetry breaking systems from the point of view of the con­
straint programmer. We examine the advantages and limitations of the previous implemen­
tations of these systems and argue what the most desired elements of the ideal symmetry
breaking system are. We introduce and evaluate two new implementations of symmetry
breaking systems.

Chapter 4 contains an investigation into partial symmetry breaking. We look at previous
research and discuss how their methods of breaking symmetry were limited in order to min­

imise run-times. We then present experimental evidence of how breaking varying numbers
of symmetry affects the overall run-time of solving symmetric problems. We conclude this
chapter by presenting an algorithm for selecting the best symmetries to use when symmetry
breaking along with supporting empirical evidence.

Chapter 5 argues that we should re-use all information gathered during search and not just
failed search decisions as we currently do. We present a modified definition of symmetry
which we use to take account of this. A refinement to a propagation algorithm is presented
before implementing a modified ai’c consistency algorithm. Empirical results of using this
modified algorithm are presented.

Finally, we conclude with Chapter 6. We reiterate the contributions of this thesis and

discuss future directions of research.

Appendix B contains the user manual for the symmetry breaking system: NuSBDS (Chap­
ter 3.5). Appendix C contains a reference for many of the common CSPs featured in this
thesis. As well as suggested models, it more importantly contains details of the amount of
symmetry of certain problems.

Chapter 2

Review of Previous Work

We now review previous work related to this thesis. This work will fall roughly into three
categories. The first of these is related to the discipline of constraint programming, how it
is used in practice as well as some issues of note for constraint programmers. Secondly,
we will briefly look at computational group theory (CGT) which is concerned with imple­
menting efficient group theoretic operations. Finally we will look at previous methods of
symmetry breaking and other investigations into symmetry specifically in CSPs.

2.1 Constraint Programming

The ethos behind the declarative programming paradigm, in which constraint programming
lies, is a unique one. Whereas other programming paradigms require the programmer to
describe how to solve a problem which the computer then automates, constraint program­
ming requires the programmer to describe the problem which the computer then solves.
Though the types of problems that can be solved by constraint programming are generally

limited to NP-complete combinatorial search problems, the ease with which they can be

solved is very beneficial to programmers.

For this advantage, a new approach to solving problems is needed i.e. a new programming
paradigm. Broadly speaking the methodology for solving CSPs is broken into three sec­
tions. The first is the modelling stage. Here we define the structure of what a solution looks
like i.e. what types of variable we have and what their possible values are. Secondly, we

18

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 19

constrain the model. In this stage, we describe the constraints which forbid combinations
of assignments i.e. the problem description itself. Finally, we must search for a solution.
This stage is concerned with how we traverse the search space or more specifically which
heuristics and search routines we use. We can also state what level of propagation we wish
to enforce during this search and what algorithms we will use to accomplish this.

Each of these stages are interconnected in that changes to one will affect the others. We will
now look in more detail at these three stages as well as other areas important to constraint
programmers when solving CSPs.

2.1.1 Modelling

The modelling stage is one the most important in terms of tractability since how we decide
to model our problem has far reaching effects on the efficiency of our program. As such,
workshops and other research within the constraint progranuning community are devoted
to modelling.

Modelling is sometimes referred to as the “bottleneck” in constraint programming, since
sometimes expert knowledge and experience is needed to model problems effectively. It
is this knowledge that researchers are trying to capture to make constraint programming a
more easily accessible tool for industry and academics in general.

In its basic form, modelling is concerned with looking at a problem and identifying the
unknowns and realising what their possible values could be i.e. describing the variables
and their domains. The main work of this thesis is concerned with finite integer variables
i.e. each variable has a domain which is a finite set of integers. Generally speaking this set
of integers is contiguous from 0 or 1 to n, though it does not need to be.

As well as integer variables we can use set variables [ILOOO], whose domain is a set of in­
tegers and whose value can be any subset of its domain. Particularly relevant to scheduling
problems, we can also use interval variables [BPNOl]. Here the domain of such variables
is a range between two floating point numbers and its value is a floating point number that
satisfies the constraints to within some predefined degree of error.

We may also wish to include so called redundant models whereby we use more than one
model for the problem [CLW99]. In such cases the models are combined by channelling

î
" A

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 2 0

constraints. These constraints are used to ensure that the two models yield the same an­
swer. By including redundant models the search space is increased exponentially, however,
the search tree is not affected since the channelling constraints ensure the models behave
consistently. The main reason for using redundant models is that some constraints may be
easier to express and/or more efficient to deal with when used with a specific model. A
good example of this in practice is featured in [DdVC03].

For problems like the sum problem found in the previous chapter, the modelling stage is
quite straightforward, we simply had a list of 5 finite domain integer variables. However
more complicated problems have many different ways of being modelled.

Example 2.1 n-queens problem. Given a n n x n chessboard, we must place n queens on
the board such that none o f them can attack another piece i.e. no two queens appear in the
same horizontal, vertical or diagonal line.

The problem in Example 2.1 has many different ways of being modelled [Nad90]. The
reason for this is that we can describe what is unknown in many ways. We can say that
the square on the board that each queen takes is unknown. We can say that whether or not
a queen goes on a squaie is unknown. We could also say that the column position of the
queen in each row is unknown. Each of the descriptions above creates different models and
more importantly, each model has a different search space. Also, different models may be
easier to describe constraints for.

Model 2.1

The unknowns in this case (and therefore the variables) are the positions of the queens.
The possible values that each queen can take (and therefore the domain of each variable)
are the squares on the board. For the n-queens problem, this results in n variables each
with a domain of n^ squares. Thus the size of the search space is (n^)". For n = 8 this is

2.8 X 10^ .̂

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 21

Figure 2.1: The relation between a solution to the 4-queens problem and Model 2.1.

Figure 2.2: The relation between a solution to the 4-queens problem and Model 2.2.

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 22

Figure 2.3: The relation between a solution to the 4-queens problem and Model 2.3.

Model 2.2

The unknowns in this case are the contents of each square. The possible values that each
square can take is the existence or non-existence of a queen. For this model, there are rP
variables each with a domain of two. Thus the size of the search space is 2^^. For n = 8
this is 1.8 X 10̂ ®.

Model 2.3

By noticing that each row has to have exactly one queen on it, we can have a variable for
each row and its value is the column the queen appears in. In this case we will have n
variables, each with a domain of size n resulting in a search space of n”. For n = 8 this is

1.7 X 10^.

We can see, even with a very simple problem such as the n-queens, the modelling choices
can result in large differences in the search space and therefore the time taken to solve
the problem. Different models need to be constrained differently and we will see later
how specialised constraints can also make a difference to the time taken to the solve the

problem.

C h a p t e r 2 . R e v ie w o f P r e v i o u s W o r k 23

Modelling and Symmetry

With respect to symmetry, modelling is one of the most important aspects of constraint
programming. The model we choose not only affects the seaivh space and how easily the
problem can be constrained but it also dictates the number of symmetries that the problem

has.

Some problems inherently have symmetry that cannot be avoided, however, poor mod­
elling can introduce needless symmetry. Similarly, a good model can reduce the amount of

symmetry a problem has [SmiOl].

We will now look at a simple example of this by examining the above n-queens models.
Given a solution to Model 2.1, we can freely permute the variables to yield another solution.
Also, the geometrical property of the square - on which the n-queens problem is based -
has 8 symmetries. Thus, this model has 8n! symmetries. The interchangeable symmetry
does not exist in Model 2.3, though the symmetries of the square still do. Thus, this model
has 8 symmetries regardless of the size of n. So as well as Model 2.1 having a larger search
space to Model 2.3, it also has exponentially more symmetries.

M atrix Models

Many problems that can be solved by constraint programming can be modelled as matrices
[FFH+01]. ■ A matrix model can be thought of as an n x m array of variables where the
rows and columns are considered to be symmetric i.e. the rows can be permuted freely as
can the columns. For models such as this, the resulting CSP will have n\ x ml symmetries.
Though this seems like a poor modelling decision, in many cases there are not any more
preferable alternatives and we must deal with the symmetries in other ways.

As well as the other general methods mentioned in this thesis (such as those presented in
Chapter 2.4) there are techniques that can be used specifically for breaking symmetries
in matrix models. These techniques involve adding ordering constraints [FFH+02] for
which there are GAC algorithms^ [FHK+02] [CB02]. A constraint encoding was described
in [GPS02] for matrix models which performs the same domain pruning as the global
constraint in [FHK+02].

‘This term will explained later

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 2 4

The main idea behind these ordering constraints is that by adding superfluous constraints
to the model (which rule out some solutions, but not all) we are destroying the symmetry of
the problem by stating that rows or columns of variables are different. There are different
ways we can order such matrices, for instance using lex constraints, ordered multisets, or
either of the previous methods with ordered sums. A detailed analysis of these methods is

presented in [Kiz04].

These methods need an exponential number of constraints to break all the nl x ml sym­
metries of a matrix [CGLR96]. Since adding this number of constraints to the model is
not computationally tractable, a subset of the symmetries is broken by adding a polynomial
subset of constraints.

2.1.2 Constraints

Describing the constraints of a CSP is where most effort is exerted by the constraint pro­
grammer. It is the constraints that essentially describe the problem. As we saw in Definition
1.2, constraints act on a set of variables. We can think of a constraint as a list of allowed
of tuples, a list of forbidden tuples, or some implicit function that takes a tuple and returns
valid, invalid or possibly unknown if a partial assignment is being considered [BR97].

In constraint solvers, constraints are usually constructed using combinations of arithmetic

and logical operators e.g. = , < , -H, A etc. All of these are binary operators, which
on their own, can create binary constraints. CSPs that contain just binary constraints are
called binary CSPs. Any CSP containing a constraint with arity larger than 2 is called a
non-binary constraint. It has been shown that any non-binary CSP can be transformed into a
binary CSP [RPD90]. Generally speaking, propagation (Chapter 2.1.3) is easier to perform
on constraints with a small arity. Thus, research has looked at converting non-binary CSPs

to binary CSPs [SteOl] [BCvW02].

We have already observed how constraint programming allows its users to easily describe
complex problems. One of the main tools of constraint programming that makes this so is
global constraints. A global constraint is a constraint that acts over a set of variables, thus
it is also a non-binary constraint. A global constraint also consists of di filtering algorithm,
which is a propagation algorithm to be used exclusively just for the global constraint in
question. Examples of global constraints are all-different: given n variables, ensure that

C h a p t e r 2 . R e v ie w o f P r e v i o u s W o r k 25

each one takes a different value. Occurrences: given n variables, a number of occurrences
0 and a domain element i, ensure that o of the n variables take the value i. Since the idea
of global constraints is too closely tied to propagation, we will return to these constraints
after we have looked at propagation in more detail.

2.1.3 Propagation

One of the many reasons that constraint programming is able to solve complex problems
efficiently, is due to the careful balance of propagation and search. We can reduce the
exponential search space by using propagation algorithms during search to prune branches
of the search tree. The importance of propagation has led to much research into both
different levels of consistency and different ways to achieve them. Note that the term
propagation is sometimes also referred to as consistency, inference or filtering.

The main idea behind propagation algorithms is to take a current state in search and a
set of constraints and remove values from the domains of variables we can show to be
inconsistent. For example, imagine the constraint Cij : X i + X j = 5 where D{Xi) =
D{Xj) — {1,2,3}, We can see that if = 1 then there is no value that X j can take that
will satisfy Cij. Therefore, we conclude that X* = 1 is an inconsistent choice and thus we
remove 1 from D{Xi). For the same reason we can infer that X j = 1 is also inconsistent

and thus 1 is also removed from D{Xj) . Constraint solvers are good at making simple
inferences such as these. After making such a domain removal, we can then propagate
these changes i.e. see if we can make any further inferences based on the new smaller
domains. By performing these computationally cheap inferences, we drastically reduce the
size of the search space.

A propagation algorithm enforces a level o f consistency . A consistency level is not con­
cerned with how the propagation algorithm is implemented, but what the result of applying
it to a set of domains is. We will now define some levels of consistency and provide refer­
ences to some implementations of algorithms that enforce them.

Any time we instantiate a variable X*, we examine the constraints that act on that variable.
To pQviotm forward checking we find any instantiations X j = a, that would result in failure
if they were to be made in conjunction with the newly instantiated X<. When we find such

an instantiation as Xj = a, we remove a from D{Xj). This is one of the simplest levels

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 2 6

of consistency to enforce. The most common form of consistency used with constraint
programming is arc consistency. One reason for this is that it is the strongest level of
propagation that can be enforced by adding unary constraints, or in other words, a domain
removal.

Definition 2.1 A binary constraint Cij is arc consistent iff:

2. Vo G D(X() 3b G D %) g.f. (a, b) G Q

2. Vb G D(Xj) 3ci G D(Xi) s.t. {a, b) G Cij

Definition 2.2 A binary CSP L is arc consistent iff all constraints in L are arc consistent.

The study of arc consistency was introduced by Mackworth in [Mac77]. This paper con­
tained an algorithm for enforcing arc consistency on binary CSPs called AC-3. This algo­
rithm has time complexity 0 {e(ff) and space complexity 0 (e + nd) where e is the number
of constraints and d is the size of the largest domain. Since then, other implementations
with the optimal time complexity Oiedf) and space complexity 0[ed) (except for AC-
4 which has space complexity 0{ed3)) have been created: AC-4 [MH86], AC-6 [BC93],
AC-7 [BFR95], AC-2001 [BROl], AC-3.1 [ZYOl]. In practice, AC-7 performs the smallest
number of constraint checks and is in many ways preferable. The algorithms AC-2001 and
AC-3.1 are the same, though developed independently, and are similar to AC-3. Though
the complexities of the above algorithms are similar, how well they work in practice has
been an area of interest [Wal93] [vD03].

All of the above algorithms apply only to binary constraints though. Given that constraint
solvers allow the construction of larger constraints, and also global constraints, we need
to be able to enforce arc consistency on non-binary constraints. This level of consistency
is call generalised arc consistency or GAC. An algorithm for enforcing GAC on a set of
arbitrary constraints is presented in [BR97] and is loosely based on AC-7. This algorithm is

called GAC-Schema and has time complexity 0{edf) and space complexity 0{elPd) and
is thus quite impractical for constraints with a large arity.

Enforcing arc consistency means that we must verify that every possible domain element
of every variable can be extended by at least one more decision. A limited version of this

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 27

consistency is also affective. A CSP is bounds consistent if we ensure that the lai'gest and
smallest element of every domain is consistent (Definition 2.3).

Definition 2.3 A binary constraint Cij is bounds consistent iff:

1. a G {D(Xi)smallest, I-^(^i)largest} 36 G D { X j) S.t. (fl, 6) G Cij

2. b G ^D(Xj)smallest, C^(^j)largesty 3u G D (X i) S.t. (<2,6) G C

For some constraints e.g. a binaiy constraint involving an addition operator, performing
bounds consistency is as powerful as arc consistency for contiguous domains, but compu­
tationally cheaper.

A concise representation of some levels of consistency can be described by the following

definition.

Definition 2.4 A CSP is (%, j)-consistent i f we can make any i consistent instantiations and

this state can be extended to a consistent instantiation o f another j variables.

We can see that arc consistency can be described as (1,1)-consistency. In addition, (2,1)-
consistency is also known as path consistency, (1,2)-consistency is also known as path
inverse consistency and (A: — 1,1)-consistency is also known as k-consistency. In general,
we need to perform searches over j variables, and post constraints of arity i, to enforce

(i, j)-consistency.

Global Constraints

As mentioned earlier, a global constraint is one that can act on any number of variables, pos­
sibly even all the variables in a CSP. However, Chapter 2.1.3 showed that such constraints
cannot be propagated efficiently in general. Global constraints are such an important part of
constraint solver though, that research is conducted to find efficient methods of enforcing
a level of consistency for specific constraints. These specific algorithms take advantage of
the semantics of the individual constraints.

C h a p t e r 2 . R e v ie w o f P r e v i o u s W o r k 28

One of the most popular global constraints is the all different constraint, for which there
is an algorithm that enforces GAC in polynomial time [Reg94]. Other examples of global
constraints include the global cardinality constraint [Reg96] and lexicographic ordering
constraints [FHK’̂ 02].

2.1.4 Heuristics

The next variable to instantiate while searching is decided by the heuristic we use. Though
CSPs have an exponential search space, the size of the search tree can be reduced by prop­
agation, and also by heuristics. Indeed, given the perfect heuristic for a given CSP, we can
find a solution in polynomial time if there is one. In general this is not the case. However,
good heuristics can greatly reduce the time taken to find a solution.

The traits of a good heuristic are that it guides the traversal of the search tree toward solu­
tions, and that it can quickly find paths that lead to failure. Examples of dynamic heuristics
include the smallest domain first which instantiates the variable with the smallest domain
first, and the most constrained first which instantiates the variable with the most constraints
acting on it first. Specific problems can have their own heuristics e.g. the n-queens problem
(Model 2.3) can be effectively solved using a heuristic that tries to place queens nearest the
center of the board, where it is most constrained. This is done by instantiating the variable
nearest to X a with the value neaiest to ̂ first [CHS+03]. A detailed empirical study of
dynamic variable ordering heuristics can be found in [GMP+96] and an investigation into
why certain variable heuristics are good can be found in [Smi97] [SG98].

As we will see later in this chapter, heuristics can play an important role in solving CSPs
with symmetry breaking methods. It was shown in [GHK02] how a poor ordering heuristic
can negate the benefit of some methods of symmetry breaking. One of the advantages of
the symmetry breaking method described in [GSOO], and later in other symmetry breaking
methods such as that in [FSSOl], is that they do not interact badly with the heuristic used.

This becomes particularly important when we are only interested in finding one solution.
Generally, symmetry breaking methods are used to find all solutions or an optimal solution
as this produces the greatest comparative reduction in search. The reverse is true of good
heuristics. Though they try to explore the seaich space that will yield a solution first, the
rest of the search space must still be explored later. Thus, the effect of a good heuristic

.r.'Y V j '] . ' : . .

C h a p t e r 2 . R e v ie w o f P r e v i o u s W o r k 29

is lessened when finding all solutions or an optimal solution. Although, note that a good
heuristic will try to search the remaining search in such a way that inconsistent subtrees
are found sooner. Since symmetry breaking methods work best when finding all solutions,
little symmetry breaking research has been carried out into finding just the first solution

[PreOl].

To eliminate the variability of the effect that dynamic ordering heuristics may have, we
will try to avoid their use in experiments. Therefore, unless stated otherwise, experiments
in this thesis will use a static lexicographic ordering heuristic.

2.1.5 Search

There are many different strategies for traversing the search space of combinatorial search
problems. CSPs are generally solved using a simple backtracking algorithm, and this is the
case for the entirety of this thesis. Since it is an important aspect of constraint programming
however, we will briefly discuss some alternatives.

A search strategy can be divided into one of two categories: complete and incomplete
search. The former deals with methods that systematically traverse the entire seaich space
of the problem until a solution is found. The latter may not traverse the entire search space.
Complete search has the advantage of being guaranteed to find a solution, or prove that
none exist. Incomplete seaich can either find a guaranteed solution or state that none were
found, but may still exist.

Complete search records the domains of variables. Instantiations are made and domains are
altered. States in search are verified to be consistent before recursively searching further,
or we backtrack to the last consistent state to make a different instantiation. Backjumping
methods work in a similar manner except they can backtrack further up the search tree

[Gas79] [Dec90] [Pro93].

Incomplete search methods work by considering the leaves of the seaich tree i.e. complete
instantiations. Many methods of incomplete search can be thought of as a general instance
of local search. These include hill-climbing, tabu-search [Glo89], GSAT [SLM92] and
stochastic search. For example, the main idea of GSAT is to try a random instantiation
of all the variables (possibly guided by some heuristic). We then alter the instantiations

...J -•

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 3 0

of individual vaiiables (also called a flip) to try to minimise the number of violated con­
straints. If we cannot satisfy all of the constraints within a certain number of flips, we then
(randomly) choose another complete instantiation of vaiiables. There may also be a limit
on the number of restarts we can take.

Symmetries in CSPs cause redundant work when using complete search. Subtrees of search
can be considered equivalent under some symmetry. Whatever computation we exerted
in proving such a subtree contains no solution, the same work must be done for all its
symmetric equivalents. The same is not true for incomplete search however. Consider
breaking symmetry by adding redundant constraints e.g. adding lex constraints to a matrix
model. Though we are breaking symmetry, we are making the problem more constrained
by adding to the constraints that must be satisfied. This leads to a smaller distribution of
solutions, which in turn makes it harder for local search to find a solution [PreOl]. It was
argued later that super symmetric models are preferable for incomplete search [Pre02].

A survey paper that discusses many different methods of complete search for CSPs was
written by Dechter and Frost [DF99]. An introduction to search methods is presented in
[PreOO] that covers some complete and incomplete search strategies.

2.2 Constraint Solvers

Research into constraint programming has yielded many different methods of solving CSPs.
A constraint solver is an implementation of many of these propagation and search tech­
niques, global constraints etc. so that CSPs can be solved efficiently. These implementa­
tions provide a clear method for constraint programmers to encode their problems.

There are many constraint solvers available today. Solver (produced by the company Hog)
is a C++ library which provides an imperative constraint solving toolkit. As well as con­

taining many efficiently implemented global constraints. Solver works by maintaining con­
sistency on constraints while using a simple backtracking algorithm.

E C D P S ^ (produced by ic-parc, a company owned by Imperial College London) is a con­
straint logic programming system with Prolog-like syntax. These are the main two solvers
used throughout this thesis. The constraint solver FreeSolver is introduced in Chapter 5.
This solver is an imperative constraint solver written in Java which allows constraints of

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 31

arbitrary arity constructed using Java’s arithmetic and logical operators. This solver was
written specifically to perform the experiments found in Chapter 5

2.3 Computational Group Theory

In this thesis we use group theory widely, both as a means of describing symmetries but
also as a means of computing with symmetries. However, the work carried out in this
thesis mainly deals with computational group theory (CGT) as a tool to perform research
into symmetry in the context of constraint progiamming. As such, we will mention some
computational group theory softwaie packages but not specifically the research that went
into developing them. We will also mention some papers that make heavy use of group
theory to solve combinatorial search problems, although not specifically using constraint
programming techniques.

GAP [GAP03] is the main CGT system used in this thesis. It is an interpreted programming
language that contains all the common functionality of an imperative language e.g. fo r and
w hile loops, i f / e ls e conditionals, recursive functions and many arithmetic and logical
operators. As well as this, there are thousands of library routines for solving common
algebraic problems to do with numbers, graphs and various types of group. Another similar
system is Magma [BCP97]. The work in [CF93] and the books [But91] and [Ser03] provide
many informative descriptions and algorithms for permutation groups.

Soicher used the complex symmetries of SOMAs (mutually orthogonal latin squares) to
good effect using GAP [Soi99]. Royle [Roy98] and McKay [McK98] present methods
of enumerating “combinatorial objects” whereby only one representative is produced from

each isomorphism class.

2.4 Symmetries in CSPs

The study of symmetries in CSPs has seen a large increase in interest over the past few
years. Evidence of this can be shown by looking at the popularity of the “Symmetry in
Constraints” workshop held at the annual “Principles and Practice of Constraint Program­
ming” conference. The number of accepted papers rose from 11 in its first and second year

C h a p t e r 2 . R e v ie w o f P r e v i o u s W o r k 32

(2001-2002), to 18 in 2003.

Though before 2000, work into symmetries in CSPs was not as widespread, many funda­
mental papers were published which first highlighted the redundancy of constraint solvers

dealing with symmetric problems.

In order to present a review of synunetry breaking in constraint programming we will
partition previous work into two sections. The first section will look at research carried
out in the 1990s. This work was generally concerned with breaking either specific types of
symmetry, or breaking symmetries within a specific framework. The second section will
look at papers from the 21̂ * century that mostly present general methods of breaking all
symmetry. These papers will define symmetries to be as expressive as Definition 1.7 unlike
most of the research discussed in the first section. Also, in the second section, we see
more work which is a by-product of specific symmetry breaking methods i.e. papers which
compare different symmetry breaking methods, or modify symmetry breaking methods etc.

Also of note, although outside the scope of this thesis, is the continuing interest of the study
of symmetry in other areas of combinatorial seaich. We are seeing symmetry becoming a
greater focus of study in SAT [Gol02] [LJP02] [ARMS03], planning [FL02], scheduling
[Sel03] and integer programming [Mar03] to name just a few areas.

2.4.1 Symmetry Breaking in the 1990s

Thought by many to be the first work that looked at symmetries in constraint programming
[Fre91], introduced the concept of neighbourhood interchangeability. In this paper, the
problem of graph colouring was examined: given an undirected graph G, and k colours,

a k colouring of G, is a labelling such that every node in G is associated with one of the %
k colours. No two nodes that share an adjoining edge may have the same colour. This
problem has a great deal of symmetry since any solution can be transformed by performing i

any of the k\ permutations of the colours.

This paper however, dealt with a significantly weaker form of symmetry. Any two domain
elements a,b G D{Xi) are said to be fully interchangeable iff any solution to the CSP
which contains X i ~ a remains a solution if the assignment is changed io X i — b and vice

versa.

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 33

In this case the symmetries are value symmetries i.e. only the domain elements are per­
muted. The symmetries are also only specific to one particular variable. Thus even if
Vi, j D{Xi) = D{Xj) , and a and b are fully interchangeable, we need to state explicitly
which vaiiable’s domain a and b belong to.

The concept of value synunetry being global over all variables in a CSP is introduced
in [Ben94]. Benhamou and Sais had already examined symmetries in prepositional cal­
culus earlier in [BS92]. In [Ben94], a system is developed for eliminating value sym­
metry in binary CSPs. A syntactical symmetry is defined as a permutation a, such that, Î

iff V i,i {D{Xi)a,D{Xj)b) G Cij,{D{Xi)^i^s),D{Xj)a{h)) E A filtering algorithm
revise{D{Xi), D{Xj)) is used during search to remove symmetric nogoods.

This paper presents good empirical results on proving the insolubility of the pigeon hole
problem: given n variables each with the domain from 1 to M — 1, each variable must take
a different value. The pigeon hole problem has freely interchangeable value symmetiy.
Though the technique in this paper applies only to binaiy CSPs, the author states that any
non-binary CSP can be converted to a binary CSP [RPD90].

In [Pug93], Puget describes a symmetrical problem as one where, “some permutations
of the variables map a solution onto another solution”. This definition encapsulates the
idea of symmetries acting on variables. Interestingly, this paper also defines symmetrical

constraints. For example, the binaiy constraint is described as symmetrical since it
is commutative. Similarly, so too is the global all-different constraint. Such symmetry
is broken by lexicographically ordering the values of the variables in any one constraint.
These ‘lex’ constraints are added to the problem. This method of dealing with symmetries,
is still popular today and essentially tiunsforms the original CSP into another CSP with less
(or no) symmetry. One of the major disadvantages with using ordering constraints however
is that different heuristics can have a detrimental affect [GHK02]. For example, consider
including the following constraint to break symmetry: X i < X 2 < ... < Xn with the value
heuristic that tries to instantiate the largest value first. Trying to instantiate the variables
from X i to X„ will result in many needless backtracks.

The paper by Crawford et al. [CGLR96] is a seminal paper in the field of symmetry in com­
binatorial search. Though the paper studies symmetry breaking with SAT, its implications

are still relevant to CSPs.

C h a p t e r 2 . R e v ie w o f P r e v i o u s W o r k 34

Firstly, the paper extends the approach used in [Pug93] to break a symmetry by adding a lex
constraint to the problem. Unlike Puget, the approach was automated i.e. given any sym­
metry, a relevant lex constraint could be constructed. Secondly, a technique from [Cra92]
was used to automatically detect the symmetries of a given problem by using a graph au­
tomorphism algorithm. Thus, symmetries that resulted from permutations of variables and
values could be found.

This was therefore the first paper that could break an entire set of arbitrary symmetries.
However, an exponential number of lex constraints are needed to break all symmetries in

general.

The final paper we will look at in this section is [MTOl]^. In some ways it is a step back
from the approach in [CGLR96] since it does not break all symmetries, and the definition of
symmetry used does not encapsulate all types of variable and value symmetry. A symmetry
is described as a bijective mapping 0 \ X X . This is enough to describe variable
symmetries. The symmetry 0 also contains another d bijective mappings (where d is the
domain size) Oi,...,0d, where 9i ; D{Xj) — > D(Xj) . This description allows many types
of symmetry but not all. The work in [FMOl] uses the same symmetry definition and thus
has the same limitations.

Consider the n-queens problem (Model 2.3) where we have the symmetry: rotate the chess

board by 180°. This is a symmetry that we can express by permuting the variables (for
4-queens, swap X i with X 4 and swap Xg with X3) and at the same time reversing the
domains of all variables.

The rotate by 90°, rotate by 270°, and the flip about the diagonals are symmetries of this
problem. However, they cannot be described using the definition of symmetry in [MTOl].
This paper states that, “The remaining four symmetries of the chessboard are not symme­
tries of this formulation.” This is not the case. These symmetries are in this model but they
cannot be expressed using this method of describing symmetries. We need a more powerful

method.

One of the major outcomes of this paper however is a symmetry breaking heuristic. This
heuristic instantiates the vaiiable that has the most symmetries acting on it at that node in
search. More importantly, the implementation saw a return to a dynamic symmetry break-

^The original version of the paper first appeared in IJCAI1999.

C h a p t e r 2 . R e v ie w o f Pr e v io u s W o r k 35

ing method i.e. like [Ben94], it is used during search. In a similar manner to Benhamou,
this method of symmetry breaking removes domain elements that are symmetric to previ­
ously found nogoods. The difference here is that the symmetries aie more complex than

just value symmetries.

2.4.2 Symmetry Breaking in the century

The second section of papers on symmetry breaking in constraint programming, deals
mainly with dynamic methods used during search, and general methods for breaking ar­
bitrary symmetries.

The first of these methods is that developed by Backofen and Will [BW99] and later by
Gent and Smith [GSOO]. The method, named SET (Symmetry Excluding Trees) in [BW99]
and SBDS (Symmetry Breaking During Search) in [GSOO] are essentially the same except
for one optimisation in SBDS. Once a symmetry can be shown to be broken in the current
subtree of search, it is discarded from consideration. Whenever we refer to SBDS in this
thesis, we are referring to the two approaches collectively.

SBDS, like the method introduced by Crawford et al. [CGLR96], can break all symme­
tries in a CSP. The symmetry breaking functions also allow all possible variable and value
symmetries. One area in which SBDS is superior to previous methods is that it does not
conflict with the heuristic being used. All symmetric valiants of nogoods are forbidden, so
it does not matter in what order the search is traversed.

To break symmetry using SBDS, the constraint programmer supplies a list of functions to
represent the symmetries of the CSP. While searching for a solution, we record the set of

decisions made as the state A. Upon backtracking from a failed assignment: X i = a we
add the following constraint to the local subtree for every symmetry function g.

A A g{A) A [Xi = a) ^ g{Xi = a)

The optimisation mentioned above in the method by Gent and Smith is that, once g (A) is
guaranteed to be false in a subtree, we discard g from consideration in that subtree. The
SBDS method can be seen as an extension to [MTOl] where non-unary constraints are
also posted. SBDS has been successfully used in many different papers [SmiOl] [FSSOl]

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 36

[FMOl] to break over 10 ̂ symmetries [MS02] and improve run-times by many factors

[GLSOO].

One problem with SBDS was the redundancy of duplicate constraints. For example, two
different symmetry breaking functions used by SBDS g and h may be used to construct the
same constraint. If a CSP had more than n x d symmetry breaking functions for a problem
with n variables with domain size d, then backtracking to the root node of search would
result in posting duplicate constraints.

A follow up to [GSOO] by Gent, Harvey and Kelsey [GHK02] contains a modification to
the SBDS implementation which uses group theory to deal with larger groups in a tractable
way. The GHK-SBDS symmetry breaking method uses group theoiy to avoid posting many
of the duplicate constraints that SBDS did.

Previous methods by Puget, Crawford et al., Backofen and Will, and Gent and Smith all
add constraints to the solver. This is done either as a pre-processing step before search
commences or they aie dynamically added to a subtree in search. The following approaches
are used dynamically during search but rather than add constraints to the solver, they inform
the solver when to backtrack in search.

Surprisingly, this approach was first used in 1988 by Brown, Finkelstein and Purdom
[BFP88] [BFP96]. Though their approach was not specifically for CSPs but backtrack
search, the ideas remain applicable to constraint programming. Given a group representing
the symmetries of a problem, if a group element could be found that mapped the current
state in search to a lexicographically smaller one, we should backtrack. One restriction that
this method entailed is that we must search for a solution using the static lexicographically
least ordering heuristic.

A similar approach was developed for the CSP framework, and for any heuristic, inde­
pendently from each other (and from Brown et al.) by Fahle, Schamberger and Sellmann
[FSSOl] and Focacci and Milano [FMOl]. Similar to SET and SBDS, the technique will
be collectively referred to as SBDD. Given a state in search and a set of nogoods T ,
we look for a symmetry that maps any element of T to a subset of the decisions in P^.
If such a symmetry can be found, then we have entered a node in search symmetrically
equivalent to a previously visited nogood and therefore, we can backtrack. The test to find
such a symmetry is called a “dominance check” because we are checking to see whether

C h a p t e r 2 . R e v ie w o f P r e v io u s W o r k 37

our current state in search is dominated by any of the other previously failed states. SBDD
contains an optimisation to limit the exponential number of failed states to consider, to at
most (n — I) X (d — 1). The dominance check, itself encoded as another CSP, is equivalent
to the NP-complete problem of subgraph isomorphism. The technique has been used to
break all symmetries in problems with over 10 ̂symmetries.

A modification to SBDD was proposed by Harvey [HarOl] which contains two notable
improvements. Firstly, a method of uniting all previous failed search states into one state
is presented. Secondly, rather than mapping the set of all domains, we look at just the set
of decisions made. This makes the set of points acted on much smaller. These two changes
reduce the amount of computation needed to use the symmetry breaking method SBDD.
When we refer to SBDD, we collectively consider the original SBDD technique with the
improvements introduced by Harvey.

The GHKL-SBDD method by Gent et al. [GHKL03] similarly uses the same idea as
SBDD: backtrack whenever we enter symmetrically redundant search. However, whereas
SBDD insists the constraint programmer writes their own dominance checker for each
problem, GHKL-SBDD, like GHK-SBDS, only requires a group representing the symme­

tries of the CSP.

As well as research that introduces new methods of breaking symmetry, we have seen
many examples of using symmetry breaking methods to solve problems with symmetry
effectively [HarOl] [Pug02] [Pea03] [PS03]. Much of this work notes small improvements
that can be made to the symmetiy breaking method in general or when dealing with specific
problems.

It is clear that the current research into symmetry in constraint programming is far reach­
ing and abundant. We are seeing more research now than ever before into the various

aspects of symmetry breaking: new methods, experiments, modifications to methods for
specific problems, solving specific symmetrical problems, implementing symmetry break­
ing systems, combining methods, and creating efficient methods of breaking specific types
of symmetry.

Chapter 3

Implementation of Symmetry Breaking
Systems

A constraint solver is made of many parts [Kum92]. There are many different ways to tra­
verse the search space of a CSP: backtrack search, conflict directed backjumping [Pro93],
limited discrepancy search [HG95], depth bounded search etc. There are also many lev­
els of consistency to enforce and even more different ways to accomplish them [Mac77]
[Coo 89]. Finally there are many popular dynamic variable and value ordering heuristics
we can choose: most constrained first, smallest domain first or kappa [GMP+96] [Smi97]

etc.

At present there are also a large number of different methods of breaking symmetry in
CSPs. A symmetry breaking system is quite simply an implementation of one or more
symmetry breaking methods that can be used to avoid redundant work performed by the
constraint solver.

In the future we hope to see symmetry breaking systems playing an equal role to search
and inference techniques and heuristics for symmetric problems in constraint solvers. This
chapter will be looking at the importance of implementing symmetry breaking methods in
terms of efficiency, ease of use and generality. We will look at the consequences of imple­
mentations of symmetry breaking systems throughout the chapter by using three symmetry
breaking systems as examples: SBDS [GS00][BW99], SBDD [FSS01][FM01] and GHK-
SBDS [GHK02], By identifying what the benefits and disadvantages of certain symmetry

38

— ' r L ^ ' 1 - 2 : j

C h a p t e r 3 . I m p l e m e n t a t i o n o f S y m m e t r y B r e a k i n g S y s t e m s 39

breaking systems are we can make superior implementations which will help to take sym­
metry breaking research into the mainstream of eonstraint solvers.

3.1 Requirements of a Symmetry Breaking System

As was reviewed in the previous chapter, there are many methods for breaking symmetry
in CSPs. At the moment, these methods are used by researchers working on symmetry in
CSPs. These researchers will have a detailed knowledge of the specific symmetry breaking
method most suited to them. If we are to look forward to more symmetry breaking systems
to be included in constraint solvers, we need to look at different symmetry breaking systems
and see how they differ. We also need to examine the strengths and weaknesses of these

symmetry breaking systems.

3.1.1 Automatic Symmetry Detection vs Symmetry Descriptions

One important task that needs to be performed before symmetry breaking can occur is
the process of actually identifying the symmetries. A symmetry breaking system needs to
decide whether identifying the symmetries of a CSP is a job for the constraint solver or the
constraint programmer. The most popular choice to date is that the constraint programmer
describes the symmetries of the problem. However, both choices have advantages and
disadvantages that will be considered in this section.

Some symmetry breaking systems break only a specific type of symmetry and thus no
symmetry needs to be detected or described. Such systems can only be used if the specific
symmetry exists. For example, lexicographic ordering constraints can be added to matrix
models with interchangeable rows and columns to break some symmetry [FFH+02]. Also,
the STAB method has currently only been used to break such symmetries [Pug03]. Freely
permutable value symmetry was examined in [GenOl] and [HFPA03].

Graph automorphism and isomorphism detection is used in data flow diagrams to find sym­
metries in Digital Signal Processing problems [vEJMT99]. Both [CGLR96] and [JR97]
use a graph automorphism algorithm to find symmetries in CSPs, a technique introduced

in [Cra92]. Finding symmetries in SAT has also been accomplished by using a graph au-

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 4 0

tomorphism algorithm [ARMS03], Special cases using boolean vaiiables introduced their
own methods of detecting symmetries [Agu93] [BS92]. Most modern symmetry break­
ing systems in the field of non binary constraint satisfaction however, rely on the fact that
spotting symmetries in CSPs is generally easy. The systems developed in [MTOl] [BW99]
[GSOO] [FSSOl] [FMOl] all assume the constraint programmer describes the symmetries.

The latter papers mentioned above specify that the constraint programmers must supply
the symmetries of the problem. By doing so, the work of both identifying the symmetries
and encoding the symmetries are passed to the constraint programmer. Since constraint
programming allows for very expressive models and easy problem representation, it is
a general assumption among the symmetry breaking community that recognising a great
deal, if not all, of the symmetry in ones own programs is generally straightforward. Once
the symmetries have been recognised though, they must then be encoded somehow. We
can see this as an extension of the encoding of a CSP - we must encode the model, the
constraints and now we must also encode the symmetries.

In effect, this adds an extra layer of code that needs to be written, the format of which is
specified by the symmetry breaking system. Even though it may be trivial to recognise the
symmetries of a given CSP, how easy it is to encode these symmetries is entirely dependent
on this format. This fact is extremely important. The method of encoding symmetries for
a given symmetry breaking system must allow us to represent any symmetries that may
occur and we also need to be able to do this in an easy, straightforward manner.

At present, the E C D P S ^ constraint logic programming system [WNS97] is the only con­
straint solver that contains a symmetry breaking system: an SBDS library. Symmetry
breaking is still largely in the domain of researchers. Since researchers will most likely have
their own specific implementation, ease of use is not usually a large concern. This raises
the important issue that a symmetry breaking system to be used by the average constraint
programmer must either detect symmetries automatically or supply well documented, easy

to use and expressive methods of describing the symmetries.

We will now look at symmetry breaking systems that automatically detect the symmetries

of a CSP. The general method of detecting symmetries automatically is to convert a CSP
into a graph. We then solve the graph automorphism problem on this graph which gives us
the generators of group representing the symmetries of the constraint graph. The complex­
ity of performing graph automorphism is equivalent to that of graph isomorphism which

1
C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 41

is known to be hard. This problem is not classified as being either NP-complete or in P
[JR97], however it can be solved by group theoretic algorithms that work well in practice.
In general, a large number of generators are returned by the graph automorphism algorithm
and some important group theoretic operations have complexities that depend on the size
of the generator set e.g. the complexity of the orbit finding algorithm is 0(|A;| x |o|) where
k is the generator set and o is the orbit.

One limitation of finding automorphisms of the constraint graph is that only symmetries of
the constraints are found. There may be constraints that are not represented since they are
implicit in the model. Since these constraints are not listed, the constraint graph does not
represent all the symmetries that exist in the problem. As an example, consider Model 2.3

of the n-queens problem. We have an all different constraint on the var iables that ensures
each queen is placed on a different column. We do not need such a constraint to ensure
only one queen must be placed on each row. This is because each row is represented by
one variable and thus it can only take one value. Therefore the symmetry where the board
is rotated by 270° or by 90° is not detected by the graph automorphism algorithm.

CSP encodings can be very concise due to the expressive power of constraint program­
ming. SAT encodings however, are very opaque and thus detecting symmetries by using
the graph automorphism algorithm is an easier method of describing symmetries in SAT

than produces generators manually [ARMS03].

One interesting approach to symmetry breaking used in SAT solving but not in CSP solving
is the idea of using the graph automorphism check at every node. Once the symmetries of a
problem G, have been detected, it is generally assumed that any symmetry acting on a state
during search will be a subset of G. However it is possible that after making decisions,
rather than reducing the number of symmetries that are still valid, some more are created
[GMS03]. By using the graph automorphism algorithm at every node, we can try to detect
symmetries that are introduced to the problem during search.

If a symmetry breaking system has automatic detection it is preferable to detect all the
symmetries that exist in the problem and should mn in a reasonable time. A symmetry

breaking system that requires the constraint programmer to describe the symmetries should
provide a language that is expressive enough and straightforward and easy to use.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 4 2

3.1.2 Expressiveness

The definition of symmetry used by the symmetry breaking system affects its expressive­
ness i.e. the limitations of which symmetries it is possible to represent. As was shown
in Chapter 2.4, if the definition of symmetry is not expressive enough then it may not be
possible to break all symmetry [MTOl] [FMOl]. Some symmetry breaking systems only
allow specific types of symmetries to be expressed e.g. lexicographic ordering constraints
used with matrix models can only break permutation symmetries. Whether or not all per­
mutation symmetries are broken by lexicographic ordering on a matrix model is not the

issue here but rather, can permutation symmetries be expressed?

Expressiveness is an important factor for symmetry breaking systems that require the user
to describe their own symmetiies. As was mentioned above (Chapter 3.1.1), a symmetry
breaking system that does not detect symmetries must supply a means of describing sym­
metries. The ideal symmetry breaking system should have an expressive language in which
to describe symmetries.

Definition 1.7 describes a symmetry as a bijective function i.e. we can represent a symmetry
as a function that takes a parameter and returns a result. Choosing the parameter to be a set
of assignments is more expressive than choosing the parameter to be a set of variables and
allows more symmetries to be represented. By making symmetries that take a state during
search e.g. a set of domains of all the variables, and return its symmetrically equivalent
state, this allows the most expressive symmetries. It should be noted that while some

symmetries may only need to be described in terms of variables, in general there are a lot
of symmetries found in CSPs that apply to combinations of variables and values. In the
cases where symmetries act on just variables or just values, it may be beneficial to the
symmetry breaking system to represent symmetries as just acting on variables or values.
However, it is necessary to ensure that if a CSP has symmetries acting on assignments, then
the symmetry breaking system should be able to express them.

The SBDS functions in [GSOO] essentially take an assignment and return the symmetric
assignment relevant to the specific SBDS function. The SBDD dominance check found in

[FSSOl] takes a state in search i.e. the current set of domains of all variables, and applies
symmetries to it to try to find a superset of an already failed state.

As mentioned in Chapter 1.3.1, any group can be represented as a permutation group, and

C h a p t e r 3 . I m p le m e n t a t io n o f S y m m e t r y B r e a k i n g S y s t e m s 43

every permutation group acts on a number of points. For GHK-SBDS, the points refer to
what the symmetries act on e.g. if a CSP has n variables which are symmetrically equiv­
alent, we can constmct a group acting on n points representing the symmetries of this
problem. If a CSP with n variables, each of which has a domain of size d, has some sym­
metries acting on the assignments, we need a group acting on n x d points to represent the
symmetries. For GHK-SBDS, it is the responsibility of the user to select an appropriate
number of points for the group to act on. It is this number that affects the expressiveness of
the symmetries. Even though GHKL-SBDD [GHKL03] has a completely different symme­
try breaking technique, the symmetry breaking representation is identicaP. All the above 4
methods have an expressive enough representation of symmetry to describe any symmetry
as defined by Definition 1.7.

3.1.3 Symmetry Representation

The symmetry representation of a symmetry breaking system is concerned with the way
symmetries are stored internally. Generally speaking, most current symmetry breaking
systems store symmetries as a group or something equivalent to a group i.e. a set of sym­
metries that can generate any symmetry of the problem.

The benefits of using just group generators as a symmetry representation include small
memory requirements since the size of the generator sets is usually quite small, and they
allow the symmetry breaking system to make use of group theory techniques i.e. if the gen­
erator set of symmetries is consistent with the four axioms of a group, then computational
group theory and the large literature on group theory and can be used.

The other main representation of symmetry in a symmetry breaking system is as a list
of symmetries. Storing symmetries as a list generally leads to simpler implementations
however, the symmetry breaking system is quickly limited to small number of symmetries.

The largest number of symmetries used with such a system is less than 10® symmetries
[MS02].

SBDS represents the symmetries of a CSP as a list. Each symmetry is represented as a

function and the symmetry breaking is performed by operating on the list of these func­
tions. GHK-SBDS represents the symmetries of a CSP as a group and makes use of the

^One minor exception is that the GHK-SBDD group has to act on all n x d points.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 4 4

efficient group theory algorithms of GAP [GAP03]. Although it is less clear to see how
the symmetries are represented by SBDD, it is as a set of symmetries that can recreate all
the symmetries of the CSP, essentially a generator set of a group. The SBDD dominance
check contains “state transitions” that take a state^ in search A, and map it to a symmetri­
cally equivalent state A'. Each state transition is a symmetry of the problem. When SBDD
tries to find a dominating state, the dominance check is trying to find a combination of state
transitions that map a previously failed state to a subset of the current state. By finding such
a mapping, the dominance check has found a symmetry that should be broken by SBDD.
Even though this symmetry was not represented internally, it was found by combinations
of the generator set of symmetries.

3.1.4 Problem Specific or Instance Specific

One great advantage of constraint programming is that we can describe the model and
constraints of the problem without needing to explicitly know the size of the problem i.e.

the number of variables and/or the size of their domains. For many constraint problems
it is possible to represent the number of variables as a constant variable^ n, and refer to n
when required. We can then state the size of the CSP at mn-time and not compile-time thus
making it easy to write general programs to solve constraint problems that vary in size. For
example, consider the n-queens problem. This is a class of problems with specific instances
such as the 4-queens problem, and the 8-queens problem etc.

If a symmetry breaking system is to be included in a constraint solver, it must be able to
refer to the size of the CSP (without needing to explicitly know it) and still be able to
break symmetry at mn-time i.e. be able to deal with problem specific symmetry break­
ing and not just instance specific symmetry breaking. There are two main issues to deal
with if this problem is to be solved. Firstly, even if the symmetries of a problem do not
change with its size, their internal representation may do. If we look at the group rep­

resenting the symmetry acting on assignments of the 2-queens problem using Model 2.3,
the generator set is (1 ,2)(3,4), (1 ,2 ,4 ,3). The generator set for the 3-queens problem is
(1 ,3)(4,6)(7,9), (1 ,3 ,9 ,7)(2 ,6,8,4). It is clear the group representation will change with
size since the number of points they act on will vary.

În [FSSOl], the domains of each of the variables.
^Not as a constrained variable.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 45

Secondly, many symmetric CSPs have a varying amount of symmetry with respect to their
size. A CSP with n variables that are symmetrically equivalent to each other, will have n\
symmetries. A CSP that is modelled on a square will have 8 symmetries regardless of the
size of the square. A symmetry breaking system needs to cope with varying numbers of

symmetries at run-time.

Since SBDS takes a list of symmetry breaking functions or predicates, they need to be
produced at compile time for non-interpreted languages such as Solver. It is possible for
these functions to work with CSPs of various sizes with constant amounts of symmetry in
certain cases e.g. n-queens problem in [GSOO]. However, since these functions are written
as code that needs to be compiled to work, SBDS cannot cope with CSPs whose number of
symmetries vary with their size. CSPs that have a varying amount of symmetry with respect
to their size need to run a separate program to output and compile specific functions for a
specific size of CSP if they are to use SBDS. This is not an ideal solution as it involves a
considerable amount of extra coding for the constraint programmer.

The SBDD dominance check has an internal representation of the generator set of the group
representing the symmetries of the CSP. The size of the set can remain constant and still
vaiy the size of the group by varying the size of the set of points the group is acting on.

The implementation of GHK-SBDS in [GHK02] leaves the constraint programmer to write

GAP code to describe the group. The constraint programmer can write GAP code to de­
scribe a specific permutation group by listing a generator set of permutations explicitly
i.e. g :== Group((1 , 2) , (3, 4)) ; . By doing so, the constraint programmer limits
their symmetry breaking to be instance specific. If the constraint programmer wishes to
break problem specific symmetry, they must write generic GAP code that produces a group
based on the size of the CSP. Since GAP is a language complete with all the necessary
programming constracts (i f statements, fo r loops etc.) and group theory library functions
(g : = SyimnetricGroup (5) etc.), it is possible to write such generic code. The constraint
programmer may need to learn more group theory and/or GAP in order to achieve this.

3,1.5 Breaking all Symmetry

Symmetry breaking can be used to limit the number of solutions returned by a constraint
solver for a problem with loose constraints. It can also be used to reduce run-times. Some

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 4 6

constraint programmers may wish to know the exact number of unique solutions. If the
latter is required than a symmetry breaking system that guarantees to break all symmetry

must be used.

Lexicographically ordered matrix models do not break all symmetry and cannot guaiantee
unique solutions. SBDS, SBDD and GHK-SBDS do however break all symmetry and
return unique solutions. The constraint programmer must be aware though that there is a
performance cost in applying symmetry breaking that increases with respect to the size of
the group representing the symmetries of a CSP. If the size of this group is too large, the
symmetry breaking systems above may not be able to operate efficiently enough i.e. there
is a limit to how much symmetry can be efficiently broken. In such cases where there are
too many synunetries, a subset of all of them must be broken. The topic of breaking subsets
of symmetries is the area of study of Chapter 4.

In general though, a symmetry breaking system should ideally break all symmetry but if
not, it should be able to deal with large amounts of symmetries efficiently by breaking just
a subset of them.

3.1.6 Ease of use

Perhaps the most important feature from the point of view of the constraint programmer
ignorant of symmetry breaking techniques is the ease of use of the symmetry breaking sys­
tem. Constraint programmers do not have to know anything of the implementation of arc-
consistency algorithms in order to use them. Similarly, constraint programmers should not
need to know anything about symmetry breaking techniques in order to use them. There­
fore, the interface between using a symmetry breaking system and the constraint program­

mer should be as easy to use as possible.

There are many features of modern symmetry breaking systems that may discourage the
average constraint programmer from using them. For example, constraint programmers
may not wish to write more functions (or a program to write more functions) as is needed
by SBDS. The constraint programmer may not wish to write a new dominance check for
every CSP as is required by SBDD. Finally, they may not wish to learn the group theory
needed to use GHK-SBDS or GHKL-SBDD. Due care must also be taken when using
GHK-SBDS that the labelling of the assignments to points and vice versa is consistent with

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 47

the GHK-SBDS implementation. This list is of course subjective and will vai'y from user
to user but, the easier to use the symmetiy breaking system is, the more likely it is to be

accepted by constraint programmers in general.

3.1.7 Combinations of methods

Some symmetry breaking methods are mutually exclusive such as SBDD and SBDS in
that they both prune redundant search so only one technique is required. Some methods
have consequences that need to be considered before using other techniques. Imposing
static symmetry breaking constraints changes the symmetries of the problem which could
have adverse affects if not considered carefully. For example consider a problem where we

have n variables: Ui, U2 , •••, that aie all symmetrically equivalent. If we post a symmetry
breaking constraint to order these variables lexicographically {v\ < V2 < ... < u„) we
cannot use SBDS to break the permutation symmetry. Consider searching for a solution
to this problem and a partial assignment = 4 A ^ 2 = 1 is reached. We would fail
from this point due to violating the ordering constraint. If we were using SBDS then upon
backtracking, constraints could be posted to rule out the partial assignment = 1 Au2 = 4.
However, this could be a valid partial assignment.

Puget describes a way of combining symmetry breaking systems and lexicographic order­
ing constraints in [Pug03] which relies on the variable and value ordering heuristics being
compatible. Some methods can be combined thus giving greater benefits, such as using
lexicographic ordering constraints to break some symmetry and using SBDS to break any
remaining. When doing so however, due cai’e needs to be taken to ensure the same symme­
tiy is not broken in incompatible ways.

3.2 Unique Symmetry Breaking using Group Theory

This section details the creation of a symmetry breaking system written for use with Ilog
Solver 4.4. It is the first system since [BFP96] to use group theory techniques to break
symmetiy in constraint programming. The group theory representation and algorithms
were written in C++. This symmetry breaking system also discards non-unique symmetries
thus reducing the number of symmetries to consider.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 4 8

This symmetry breaking system, Unique Symmetry Breaking During Search (henceforth
U-SBDS) is based on SBDS. When backtracking from a failure, we post constraints in the
current subtree that forbid any symmetrically equivalent state. There are 3 main differences
between this symmetry breaking system and SBDS. Firstly, since group theory techniques
are being used the constraint programmer does not have to write a list of functions but
merely the generators of the group. Secondly, unlike SBDS which has a list of the sym­
metries, this new symmetry breaking system cannot keep track of which symmetries have
been broken. This leads U-SBDS to post constraints forbidding states that can never be
reached from the current subtree. Thirdly, one disadvantage of SBDS, and to a lesser ex­
tent GHK-SBDS, is that it posts redundant identical constraints. Given a set of symmetry
breaking functions, some states can be mapped to the same different state by many of these
symmetry breaking functions. U-SBDS overcomes this by using the group theory setwise
orbit finding algorithm which finds the set of distinct states that can be reached by the group
representing the symmetries of the problem.

A consequence of using the orbit finding algorithm to find symmetrically equivalent states
during search is that the constraint that is added to the solver is calculated differently to
SBDS. After failing during search with assignment var — val, and backtracking to state
A, we add this constraint to the current subtree:

9(A) g{var ^ val) (3.1)

When using U-SBDS however, we say that {A (J var — val} is the state that failed and we
calculate (and forbid) the orbit of that set of decisions. The resulting output is a set of sets
and as such, the position of g {var ^ val) will most likely not be the last element of the set.
We can no longer post a constraint of the form A => It is possible, however, to expand

Equation 3.1:

g {var ^ val)

~^g{A) V g {var ^ val)

^g{vi = vala A ... A vk = valx) V g{var val)

-ip(ui = vala) V ... V ~^g{vk = v a Q V g{var ^ val)

p(Ul 7̂ W o) V ... V p(u& f Wa;) V g{var ^ val)

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 4 9

We can now post symmetry breaking constraints of the form:

V { o i , 0 2 , G O rhit{G ,{{ai,a2 ,...,ak-i}[J{var= = val}))

-lOi V —1O2 V ...

Where Orbit{G, A) is the set of orbits of the state A under the group G and { a i, «2 ,..., a%_i}
is the set of choices made thus far i.e. the root node of the cuiTent state in search.

3.2.1 Unique Symmetries

After every backtrack we post symmetry breaking constraints. It would be perfectly valid
to use the generators to recreate all the elements of the group and post a constraint for every
symmetry. This would incur a very high overhead by flooding the constraint solver with
too many constraints. At every node in the search tree some of the symmetrical constraints
are the same as each other. In many cases there are more duplicate constraints than distinct
ones. In order to reduce the overhead of posting duplicate constraints, we must ensure that
at each node in the search tree we only consider the unique symmetries.

Definition 3.1 Given a partial assignment A, the maximal set o f symmetries G' is a subset
o f all the elements in G, is unique with respect to A iff g G G'{~Pih G G'\h{A) =

p(A) A p).

The maximal set of unique symmetries is equivalent to the orbit of the set of decisions
made so far. Figure 3.1 contains the average size of the set of orbits for the 4 x 4 alien tiles
problem (see Appendix C .l) with respect to the depth of the search tree. This problem has
1,152 symmetries.

3.2.2 Theoretical Analysis and Bound on Symmetry Breaking Con­
straints Needed

We can use the idea of unique symmetries to create an upper bound on the maximum num­
ber of symmetries breaking constraints after any one failure needed to break all symmetry.

" l i e

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s

Unique Symmetries

50

700

600

g 500s
400

300"o
I 200

100

120 2 4 8 10 14 166
Depth of Search Tree

Figure 3.1: Unique Symmetries in the Alien Tiles problem.

The example of the alien tiles problems has 2nP symmetries for variables. For a group
G acting on n points, the largest possible size of G is n!, the symmetric group. This is
due to the fact that a symmetry has to be a bijection. Therefore, any upper bound for a
group with n\ symmetries will be an upper bound for all groups. We will be looking at the
symmetric group acting on just variables since the symmetric group acting on assignments
yields a problem that has either no solutions or dP' solutions. Any group that has symme­
tries acting on assignments should replace the term n with nd to produce a correct upper
bound.

We now propose to look at the number of unique symmetries for a lai’ger group than that
acting on the alien tiles problem: the symmetric group acting on ten points. We assume that
this group, ^lo, represents the symmetiies acting on the variables of some imaginary CSP
with 10 variables. The size of Sio is 3,628,800. Figure 3.2 contains the number of unique
constraints needed, plotted against the size of the failed partial assignment. The number of
unique symmetries is the same for all nogoods of size k. This is true because the group we
are using is the symmetric group. If G is the symmetric group then for any set of points
a , (3 of size k: Orbit{G, a) — Orbit{G, /?). Therefore, we only need to consider one set of
points for each size of set.

Consider a failed partial assignment, or nogood, with 3 variables. The number of unique
symmetries i.e. the upper bound for the number of symmetry breaking constraints that
we need to post for this nogood is 120. This is over 30,000 times less than the entire
group. This number will in general be much smaller as we only need to produce symmetry
breaking constraints for the intersection of non-broken symmetries and unique symmetries.

... " it- A l' % ■ ■

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 51

300

250

I 200
w
I 150
E

=3

100

I
50

9 104 5 6 7 831 2
Depth of Search

Figure 3.2: Unique Symmetries for a problem with S'lo acting on the variables.

By examining Figure 3.2 we can infer two things. Firstly, the number of symmetry breaking
constraints that need to be posted, is greatest halfway down the search tree. Secondly, and
most importantly, the maximum number of symmetry breaking constraints needed at any
time is a fraction of the entire set of all possible symmetries.

Note that for the symmetric group acting on n points, the size of the setwise orbit of a set
of m points is equal to nCm . The nC m function (pronounced “n choose m”) explicitly is;

nl
m\{n — m)\

The size of the pointwise orbit of a set of m points contains also contains all m\ reorderings,

and thus is equal to:

nl
(n — m)\

Since the setwise orbit is largest halfway down the search tree, or more specifically when
m — I , we have the upper bound of the maximum number of symmetry breaking con­
straints needed after any backtrack for any group acting on n points:

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 52

CO

1e+08

1e+07

1e+06

100000

10000

1000

100

10

SBDS
GHK-SBDS

U-SBDS

4 5 6 7
Depth of Search

10

Figure 3.3: Constraints posted by SBDS, U-SBDS and GHK-SBDS for a problem with
5io acting on the variables.

Theoretical Comparison of SBDS and U-SBDS

The major disadvantage of SBDS is that at the root, all symmetries are considered. Thus
if we backtrack to the root of search, we will post as many constraints as there are sym­
metries. For this reason, the number of symmetries that SBDS can effectively cope with

is minimised. By breaking just the unique symmetries (as U-SBDS does) we can greatly
reduce the number of constraints needed by similarly backtracking to the root node. How­
ever, whereas the large overhead of SBDS decreases as we traverse deeper into the search
tree, the overhead of U-SBDS increases as we approach the depth halfway down the search
tree.

Since there are exponentially more nodes of the latter type, we would expect U-SBDS

to perform worse than SBDS. However, the size of the overheads of SBDS and U-SBDS
are quite different. The largest number of constraints posted using SBDS to break the
symmetries of S'lo is 3,628,800. As shown in Figure 3.2, the largest number of constraints

posted using U-SBDS is 252. The size of the largest setwise orbit will always be much less
than the size of the entire set of symmetries.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 53

1e+140

1e+120

1e+100

GHK-SBDS
U-SBDS

1e+80

1e+60

1e+40

1e+20

10 20 30 40 50 60
Symmetric group acting on x points

Figure 3.4: Maximum number of constraints posted by U-SBDS and GHK-SBDS for any
one nogood from a problem with acting on the variables for varying n.

Constraints posted by SBDS, U-SBDS and GHK-SBDS

Figure 3.3 contains an upper bound for the number of constraints posted by SBDS, U-

SBDS and GHK-SBDS after a backtrack at a certain depth for a problem with 5io act­
ing on 10 variables. Though the results of this graph appear to show U-SBDS posts the

fewest symmetry breaking constraints, note that in practice SBDS and GHK-SBDS post
far fewer as they do not consider guaranteed broken symmetries unlike U-SBDS. We can
see however that there is a clear difference between using the setwise orbit to produce con­
straints (as U-SBDS does) and the pointwise orbit (as GHK-SBDS does). Recall that the

pointwise orbit essentially allows the points in a set to be re-ordered. Whereas the set­
wise orbit of {1,2} and Sz would be {{1,2}, {1,3}, (2,3}}, the pointwise orbit would be
{[1,2], [1,3], [2,1],[2,3],[3,1],[3,2]}.

Though a symmetry breaking system that breaks the intersection of unique symmetries
and non-broken symmetries does not exist, it is conceivable that one could be constructed.
Such a symmetry breaking system would theoretically be able to deal with larger groups
than GHK-SBDS.

We now examine how the maximum number of symmetry breaking constraints required

from any one nogood, increases with Sn for various n. Figure 3.4 shows the largest num­
ber of constraints needed from breaking all symmetries on S 2 to Sgo, which has over 10̂ ^ ̂
elements. We compare the largest possible size of the setwise orbit (U-SBDS) and the

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 5 4

8-queens Backtracks Runtime Solutions

Solver 4.4 324 0.06 92

U-SBDS 61 0.02 12

SBDS 61 0.01 12

Table 3.1: Results of finding all solutions to the 8-queens problem using different symmetry
breaking systems.

pointwise orbit (GHK-SBDS). The increase in the setwise orbit is much less than the point-
wise orbit. We can therefore use dynamic symmetry breaking constraints to break much
larger groups than is reported in [GHK02].

Unfortunately, though the setwise orbit increases much slower than the pointwise orbit,
it still increases at an exponential rate. This further enforces the theory that breaking
an exponential number of symmetries in general, with the exception of value symmetry
[RDGKL04], requires an exponential amount of computation.

3.2.3 Empirical Results

We now present some empirical results from solving symmetry problems using U-SBDS
with Ilog Solver 4.4. Results are compared against using no symmetry breaking and SBDS.
Table 3.1 contains the data from finding all solutions to the 8-queens problem. Table 3.2
contains the data from finding an optimal solution to the alien tiles problem with a 4 x 4
board with 3 colours.

Since the empirical benchmarks have a small number of symmetries, SBDS can easily
cope with them. The largest number of symmetries that SBDS has reportedly used is 8,000
(see Chapter 4.5.3 and [MS02]). We have shown in Figure 3.2 that a large group such as

Sio can be broken by posting a relatively small number of symmetry breaking constraints.
Therefore, it is possible that U-SBDS may be able to solve problems that have too much
symmetry for SBDS to cope with.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 55

Cost
Solver 4.4

Fails Runtime
SBDS

Fails Runtime
U-SBDS

Fails Runtime

1 0 0.37 0 3.74 0 0.42
2 0 0.38 0 3.77 0 0.42
3 0 0.39 0 3.95 0 0.44

4 0 0.40 0 3.99 0 0.46
5 0 0.42 0 4.18 0 0.48

6 0 0.43 0 4.22 0 0.50
7 0 0.45 0 4.44 0 0.52

8 0 0.46 0 4.50 0 0.54

9 290 5.15 29 11.56 29 2.92
10 866 15.23 116 18.59 114 31.24

Prove Optimal 57,664 1,304.99 499 56.59 479 125.01

Table 3.2: Results of finding an optimal solution to an alien tiles problem using different
symmetry breaking systems.

3.3 Implementing the GHK Algorithm with GAP

With the view of creating a symmetry breaking system to act as a library for Ilog Solver 5.2,
we implemented a version of GHK-SBDS. The main differences between this implemen­
tation and that found in [GHK02] are firstly, the original version is written for E C U P S ^
and this version is written for Solver 5.2. Secondly, the original version contained delayed
goals to reason more intelligently with symmetries whereas this implementation does not.
Finally, we implemented an additional layer of code that sits in between GAP and the con­
straint programmer that allows the symmetries to be described more easily. By doing so
it is hoped to create a symmetry breaking system that has many of the desired properties
mentioned in Chapter 3.1. More on how this is achieved can be found later in Chapter

3.5.3.

The initial hurdle in creating such a symmetry breaking system was the inter-process com­
munication between the CSP Solver (Solver 5.2) and the CGT package (GAP 4.3). Whereas
ECL'^PS^ contains predicates for starting new sub-processes, Solver does not. Code was
written to allow C++ to start a GAP sub-process which Solver could communicate with
during search by passing characters down pipes.

. à

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 56

The method of symmetry breaking used is in the style of SBDS. After backtracking from a
failed assignment, constraints are posted to mle out symmetrically equivalent assignments.
A cut-down version of the pseudocode described in [GHK02] is used that does not require
delayed goals. The constraints posted by this pseudo code break non-broken symmetries
and many of these constraints are also unique. The only duplicate constraints that occur are
as a result of a reordering of the assignments in the constraint e.g. v i ^ l M V2 ^ 2 may be
posted alongside ug ^ 2 V ui ^ 1. Note that although this greatly minimises the symmetry
breaking constraints needed there can still be an exponential number (w.r.t. the arity of the
constraint) of identical constraints. The algorithm for calculating the symmetry breaking
constraints to be added is shown in Algorithm 3.3.1.

Algorithm 3.3.1: NuSBDSC o n s t r a i n t s (if, prev, A)

comment: H is the pointwise stabilizer of the current partial assignment

comment: prev is the list of constraints from the parent node

comment: A is the failed vai-val assignment

R T ^ O r b i t{ H , A)
while prev . has Another C onstraint {)

for each g e R T

(c<r~ (prev.getNextConstraintQ || -'(^'(A)))
if -yc.isSatisfiedÇ)

then cons.addic)

comment: cons becomes prev for the child nodes

return {cons)

3.3.1 Analysis of Performance

As an initial test for the suitability of using Solver and GAP, the simpler U-SBDS symmetry
breaking system.was implemented. In this case however, the group theory computation was
performed by GAP unlike the implementation in Section 3.2 which used native C++ code.
The run-times produced by using U-SBDS with Solver and GAP show that the system is
not useful in practice. In general, the saving in run-time generated by symmetry breaking
does not validate the increase in run-time of using the system in the first place.

do <

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 57

n GAP Solver

U-SBDS
Runtime Fails Sols. Runtime

Solver 5.2
Fails Sols.

4 0.07 0.01 0.09 3 1 0 4 2

6 0.08 0.01 0.25 12 1 0.01 36 4

8 0.27 0.10 0.61 85 12 0.02 324 ' 92

10 3.46 1.47 6.11 1,327 92 0.22 5,942 724

12 77.18 37.04 141.66 29,325 1787 5.59 131,902 14,200

14 2,413.72 1,203.70 4,406.90 828,489 45,752 147.51 3,832,624 365,596

Table 3.3: Results of using GAP with a U-SBDS implementation in Ilog Solver 5.2 to solve
the n-queens problem. The table shows the cpu-time taken for GAP and Solver as well as
the actual overall mn-time of U-SBDS

The system was tested by trying to fipd all solutions of the n-queens problem. The pre­
liminary results for this experiment alone showed that this implementation was not worth
pursuing further. Table 3.3 shows the results of the GAP based implementation of the U-
SBDS algorithm. The overall mn-time using this symmetry breaking system is greater than
using no symmetry breaking at all.

It is not known for certain why such a symmetry breaking system should exhibit such poor
mn-times. We conjecture that it could be to do with the message passing between the two
processes and/or the difference in speed of GAP versus Solver.

To address the first argument in more depth, when GAP is given a fail point, it calculates
the relevant symmetrically equivalent fail points and transmits to Solver the images of those
symmetries. The size of this information transmitted by GAP is O{cons x points) where

cons is the number of constraints to be posted and points is the number of points that the
permutation group acts on. The amount of data being passed could mean that a lot of the
run-time is being spent on I/O on the pipes between Solver and GAP.

Secondly, if we compare the cpu-times of Solver and E C U P S ^ with respect to solving the
dodecahedron 3-colouring problem (Table 3.5) [GHK02], we can see that Solver takes less
time, whereas the GAP cpu-times should in theory be similar. It is possible that the GAP
cpu-times are a higher percentage of the total run-time and thus the effect of symmetry
breaking is detrimental.

" I
C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 58

3.4 Implementing the GHK Algorithm without GAP

Assuming the above conjecture is true, that the large run-times of the symmetry break­
ing system are as a result of large message passing and relatively high GAP cpu-times, one
way to get around such problems is to write native code to efficiently perform the necessary
group theory code therefore eliminating the need for GAP and its inter-process communi­
cation. In order to do so, certain group theory algorithms need to be written in C++ so that
they can be compiled along with Solver code. Fortunately, GHK-SBDS only utilises a few
of the many GAP algorithms available.

3.4.1 Group Theory Implementation issues

The following group theoretic capabilities are needed in order to implement the GHK-
SBDS algorithm:

1. A system of storing and describing a group via a set of generator permutations

2. A method of enumerating the elements of the group and calculating its size"̂

3. An efficient implementation of the Orbit-Stabilizer algorithm

The first two requirements are fairly trivial while the third is a specialised requirement.
There is a standaid Orbit-Stabilizer theorem [But91] and there is a standard Orbit-Stabilizer
algorithm [Ser03] to calculate the set of orbits or the stabilising subgroup using Schrier
vectors. The complexity of group theory as it is, there are many optimisations that can
be made to the Orbit-Stabilizer algorithm for specific groups. However, this symmetry
breaking system assumes two things that increase the efficiency drastically.

Firstly, this Orbit-Stabilizer algorithm can only work on individual points (i.e. assignments)
and not tuples or sets of points (i.e. partial assignments). This assumption allows the
algorithm to verify if a new point is unique or not in 0(1). Secondly, basic implementations
of the Orbit-Stabilizer algorithm generally return many redundant generators. It isn’t a
trivial process to discover which of these generators are redundant. The complexity of this

'̂ This will be mainly used for verification purposes.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 59

Orbit-Stabilizer algorithm is 0{gen x \orbit\) where gen is the number of generators. Thus,
for future calls to the Orbit-Stabilizer algorithm, we want the groups used to have as few
generators as possible. This is done by taking the first 10 generators. While this is efficient
and it is highly unlikely that it will not recreate the entire group, it is not a certainty. If only
a subgroup of a possible larger group is created by using this Orbit-Stabilizer algorithm,
the symmetry breaking system may not break all symmetry and thus can’t guarantee unique

solutions.

3.5 NuSBDS

We now introduce a new symmetry breaking system: Nu-SBDS. It is based on the GHK-
SBDS algorithm and uses native group theoretic code to calculate the relevant stabilising
groups and orbits. This is previously completed research by Gent, Harvey and Kelsey. The
actual contribution that this symmetry breaking system adds to the symmetry breaking re­
search community is the way symmetries are described. As was stated at the start of the
chapter, we need to make a symmetry breaking system that can be added to a constraint
solver as a singular' module in the same way arc consistency algorithms and different search
strategies are. We then looked at the requirements of a good symmetry breaking system and
noted that they must be easy to use for constraint programmers with little or no knowledge
of symmetry breaking techniques or research. NuSBDS provides such an ease of use by
allowing the constraint programmer to describe their symmetries via a set of macros. Since
NuSBDS is an implementation, it is specific to both Hog Solver and the GHK-SBDS al­

gorithm. The main theme of this research can be used for different constraint solvers and
different symmetry breaking algorithms.

The main ethos behind NuSBDS is that it should be as easy to use as possible. The con­
straint programmer does not need to supply extra code, or a group and a consistent labelling
of the CSP. The symmetries of the CSP are given in generic terms which allows the con­
straint solver to break symmetry in a general CSP problem and not for specific instances.
Also, since the constraint progiammer describes the symmetries of their problem by using
a set of macros, no great coding effort is expended.

Presented below is pseudo code for how such a system could be used to describe symme­
tries:

-_V-i

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 60

Vars nqueen = V arsC l..n]
nq u een .dom aind , 8)

. . . c o n s t r a in t s . . .

Symmetry s(nqueen, ASSIGN)
s.add(SQUARE)
search(nqueen)

In the above example, the constraint programmer describes what the symmetries act on,
either variables, values or assignments. They then describe the symmetries of the problem
and leave the symmetiy breaking system to do two things. Firstly, the method of symmetry
breaking is not specified by the constraint programmer, thus it has been removed from their
view. This satisfies our wish for a modular approach to symmetry breaking in the same way
we use consistency algorithms or search traversals. Secondly, the method of describing the
symmetries and interfacing with the symmetry breaking method is also hidden from the
constraint programmer. This greatly reduces the amount of work and expertise needed to
perform symmetry breaking.

We now imagine another example CSP that has more than one type of symmetry, the most
perfect magic squaies problem (see Appendix C.6).

Vars most = V a rs [l . .n * n]
most .dom aind , n*n)

. . . c o n s t r a in t s . . .

Symmetry s(m ost, VAR)
s.add(SQUARE)
s.add(CYCLE_ROW)
s.addCCYCLE.COL)
search(most)

The example code for the most perfect magic squares problem contains two significant
differences from the n-queens problem code. Firstly, we say that the symmetries act on

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 61

variables. Secondly, we describe more than one type of symmetry. Note however, that
we are still removed from the details of the symmetry breaking and rely on the constraint
solver to combine all the symmetries described and interface correctly with the symmetry

breaking system.

3.5.1 NuSBDS code examples

This section shows actual code fragments from CSPs that use NuSBDS to break symmetry.
As such the following sections of example code will be clearer to readers already familiar
with C++ and more specifically Ilog’s Solver constraint solving toolkit.

The macros used in NuSBDS are essentially functions representing types of symmetries.
When called, they look at the model of the CSP, perform some basic error checking to see
if the symmetry can be applied to the model, and internally store the generators for those

symmetries. Different macros can be called repeatedly so that different types of symmetry
can be combined to create direct products of groups. This allows the constraint programmer
to describe complicated groups by using a few simple commands.

For example, say we have an encoding of the n-queens problem which has n variables,
where the value represents which column the queen should be placed in. In this model,
the symmetries of a square act on the assignments. Using Solver we require an IloG oal
object to search on, which we create like so, where x is the array of variables and env is an
IloEnv object. The important facts to take from this are that x contains a list of constrained
integer variables and the IloG oal object will allow us to call functions that will search to
find values for the variables in x.

IloG oal goal = Ilo G en era te(en v , x) ;

We can use the following code to break the symmetries of the problem, where so lv e r is
an I lo S o lv e r object.

Symmetry* sym = new (env) Symmetry(env);

I lo in tA rra y ty p e(en v , 1, SQUARE);
IloG oal go a l;

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 62

if(sym Breaking){
goal = NuSBDSGenerate

(env, X , sym->setup(x, s o lv e r , ASSIGN, ty p e)) ;

} e lse{
goal = IloG enera te(env , x) ;

}

The above code contains some new terms that need explanation. Firstly, the Symmetry

class is a part of NuSBDS. We use this to describe and break the symmetries of the CSP.
The type object is simply an airay of integers. The #def ine statement in C++ was used
to associate each macro with an integer, and the type array merely contains the list of
integers (representing macros) to use. The NuSBDSGenerate function takes an additional
pai’ameter to the IloG enera te function i.e. the Symmetry object we created to deal with
the symmetry. Note that we must also call the function setup , which records which macros
to use and whether or not the symmetry acts on assignments (ASSIGN) or variables (VAR).

As another example, say we have the BIBD problem (CSPLib problem: prob028 [GW99],
Appendix C.2) which we can model as a matrix of 0/1 variables, given any solution we
can permute the rows and columns to yield another. This matrix may not necessarily be a
square so in order to describe the group, we need to tell NuSBDS the number of columns.
We can then simply use two macros to describe the symmetries of this problem. Notice
that these macros have “rectangle” in their name to show that they potentially act on a
non-square matrix^.

Symmetry* sym = new (env) Symmetry(env);
sym->setNumOfColumns(numOfCol);
I lo in tA rra y type

(env, 2, SYMMETRIC.RECTANGLEJROW, SYMMETRIC_RECTANGLE_COL);
IloGoal goal;
if(sym Breaking){

goal = NuSBDSGenerate
(env, X , sym->setup(x, s o lv e r , VAR, ty p e)) ;

} e lse{
goal = I loG enera te(env , x) ;

^Though all square matrices are also rectangles, a macro for squares is provided for simplicity.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 63

Given a problem that needs to use more macros, we just create a larger type array where
each element represents the macro to be used. Currently there are 11 different macros
which can be used for either symmetries acting on assignments (ASSIGN) or variables (VAR).
Here is the list of macros for variable symmetry:

• SQUARE - variables with the symmetry of an n x n square acting on them

• CYCLE„ROW - variables make a square where the rows can be cycled

• CYCLE_COL - variables make a square where the columns can be cycled

• SYMMETRIC_ROW - variables make a square where the rows are interchange­

able

• SYMMETRIC_COL - variables make a square where the columns are inter­
changeable

• SYMMETRIC_RECTANGLE_ROW - as SYMMETRIC_ROW but for non-square

matrices

• SYMMETRIC_RECTANGLE_COL - as SYMMETRIC_COL but for non-square

matrices

Here is the list of macros for variable and value symmetry:

• SQUARE - e.g. n-queens

• S YMMETRIC_VAR - interchangeable vaiiables

• SYMMETRIC„VAL - interchangeable values

• SQUARE_VAR - variables with the symmetry of an n x n squaie acting on them

The reader should note that some classes of symmetry can be broken more easily than using
the underlying GHK-SBDS algorithm e.g. freely interchangeable values (also known as
indistinguishable values), as found in graph colouring, can be broken using the constraint

.... , A

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 6 4

described in [GenOl], using the technique in [HFPA03] or as is noted in [BW99], only a
subset of the constraints posted by SBDS is needed to break all these symmetries. NuSBDS
is most useful for combinations of symmetries that result in groups for which there are no
efficient methods of dealing with.

3.5.2 Comparison of symmetry description methods

In order to demonstrate the ease of use of NuSBDS further, we will present example code
that describes symmetries for other symmetry breaking systems. By doing so, we intend
to make a convincing argument that by using the macros in NuSBDS, symmetries can be
described more easily and naturally than with any other symmetry breaking method. A
common example CSP used throughout this thesis is the n-queens problems. We now give
code for implementations of different symmetry breaking systems.

NuSBDS

Below is the bare minimum necessary to describe the symmetries of the n-queens problem
with NuSBDS. It consists of naming the one symmetry macro for the problem (i.e. the
symmetry of a square) and associating it with symmetries acting on assignments. Note
again the main advantages of this system, the concise representation (just 3 lines) and the
natural language description.

Symmetry* sym = new (env) Symmetry(env);
I lo In tA rra y ty p e(en v , 1, SQUARE);
IloG oal goal = NuSBDSGenerate

(env, X , sym ->setup(x, s o lv e r , ASSIGN, ty p e)) ;

SBDS

The following code sample is taken directly from the paper [GSOO]. They represent the
symmetries of the n-queens problem. SBDS requires an explicit list of the symmetries of
the problem. In this case, there are 7 symmetries (not including the identity) but for more
symmetiic problems the number of functions would be greatly increased. A function of

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 65

this sort would need to be both produced (either by hand or with a scripting language) and
compiled (in this implementation by a C++ compiler).

Thus it is clear that for symmetric problems, even if SBDS can handle the number of
symmetries required, great effort is extended in producing the symmetry functions.

I lc C o n s t ra in t r90 (I lc In tV arA rray v a r s , I l c i n t i , I l c i n t j)
{ re tu rn v a r s f j] == n - l - i ; }

I lc C o n s t ra in t r l8 0 (I lc In tV arA rray v a rs , I l c i n t i , I l c i n t j)
{ re tu rn v a r s [n - l - i] == n - l - j ; }

I lc C o n s t ra in t r270 (I lc In tV arA rray v a r s , I l c i n t i , I l c i n t j)
{ re tu rn v a r s [n - l - j] == i ; }

I lc C o n s t ra in t x (I lc In tV arA rray v a rs , I l c i n t i , I l c i n t j)
{ re tu rn v a r s [n - l - i] == j ; }

I lc C o n s t ra in t y (I lc In tV arA rray v a r s , I l c i n t i , I l c i n t j)
{ re tu rn v a r s [i] == n - l - j ; }

I lc C o n s t ra in t d l (I lc In tV arA rray v a r s , I l c i n t i , I l c i n t j)
{ re tu rn v a r s [j] == i ; }

I lc C o n s t ra in t d2 (I lcIn tV arA rray v a r s , I l c i n t i , I l c i n t j)
{ re tu rn v a r s [n - l - j] == n - l - i ; }

SBDD

The following code was used for the emphical experiments performed in [FSSOl]^. The
symmetry description in this case is very similar to that of SBDS above. One main dif­
ference is that SBDS needs separate functions for each symmetry but each symmetry is
represented in SBDD as an condition in a switch statement. Since the n-queens problem
has just 7 symmetries (not including the identity), all symmetries are described explicitly.
For exponentially symmetric CSPs, the generator set of symmetries can be described and
SBDD will detect dominance under the product of these symmetries.

Thus, SBDD has an advantage over SBDS in that drastically fewer symmetries need to
be described. However, the process of describing these necessary symmetries is no more
straightforward.

^Thanks to Meinolf Sellmann for allôwing his code to be included in this thesis.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 66

switch(k)

{
case 0 : / / l e f t - r i g h t *

f o r (1=0; KnonZero; 1++)

{
i = l i s t [1] ;
h [n - l - i] = p a t t e r n [i] ;

}
break ;

case 1 : / / up-down *
f o r (1=0; KnonZero; 1++)

{
i = l i s t [1] ;
h [i] = n - 1- p a t t e r n [i] ;

}
b re a k ;

case 2 : / / 180 *
f o r (1=0; KnonZero; 1++)

{
i = l i s t [1] ;
h [n - l - i] = n - l - p a t t e r n [i] ;

}
break ;

case 3; / / 90 *
f o r (1=0; KnonZero; 1++)

{
i = l i s t [1] ;
h [p a t t e r n [i]] =n-1- i ;

}
break;

case 4: / / 270 *
f o r (1=0; KnonZero; 1++)

{
i = l i s t [1] ;

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 67

h [n - 1- p a t t e r n [i]] = i ;

}
break ;

case 5: / / d2
fo r (1=0; KnonZero; 1++)

{
i = l i s t [1];
h [n - 1- p a t t e r n [i]] =n-1 - i ;

}
break;

case 6: / / d l *
f o r (1=0; KnonZero; 1++)

{
i = l i s t [l] ;
h [p a t te rn [i]] = i ;

}
break;

GHK-SBDS and GHKL-SBDD

Although these two methods of breaking symmetries differ greatly, the method of describ­
ing symmetries is almost identical since they both require a group to be passed to a GAP
subprocess of the constraint solver. This group can be expressed explicitly as a generator
set of permutations, or implicitly as a GAP program that can be used to produce problem
specific symmetries.

The following code shows instance specific code for creating a permutation group to model
the symmetries of the 3-queens problem.

gap> g := G r o u p ((l , 3 , 9 , 7) (2 , 6 , 8 , 4) , (1 , 3) (4 , 6) (7 , 9)) ;

The constraint programmer also needs to produce code to map the points to assignments
and vice versa e.g. point 4 is equivalent to X 2 = 1.

■Ji

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 68

By describing symmetries as groups we retain the benefits of concise representation as
NuSBDS does. However, background knowledge of group theory is needed to use GHK-
SBDS and/or GHKL-SBDD. The system of natural language keywords that NuSBDS has,

alleviates the need for this.

Conclusions

Though the methods of breaking symmetries in the above examples are totally different,
the task of describing symmetries in these previous symmetry breaking systems is very
similar. They are all concerned with describing how a symmetry applies to the constraint
model being used. The other main similaiity with all the symmetry breaking systems is
that the constraint programmer must produce either code, functions or an object/attribute

that the system then directly uses to break symmetry.

NuSBDS places a layer of abstraction between the constraint solver and the symmetry
breaking system. This allows the constraint programmer to create the input required by
the symmetry breaking system indirectly. As the above examples illustrate, this indirect
process makes describing symmetries simpler for the constraint programmer.

3.5.3 Macros

The macros system implemented in NuSBDS is the unique way that symmetries are de­
scribed. Each macro is an abstraction layer that takes some user defined parameter (in most
cases the number of constrained variables) and outputs a group acting on the CSP. Rather
than return this output to the user, it is stored internally by NuSBDS to be used to break
symmetry. The constraint programmer never sees the group itself. NuSBDS can also take
the groups created by the various macros and combine them to create a larger group. Again,
this group is hidden from the constraint programmer and used to break symmetry.

In order to combine macros to generate larger groups, a consistent action set must first be
chosen by the constraint programmer. If the symmetries of a certain problem act only on the
variables, the constraint programmer can say that the action set will be the variables or the
assignments. If some symmetries act on the variables and some on the values, the constraint
programmer must say the symmetries act on the assignments. Once the action set has been

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 69

decided, the groups returned by different macros will all be on the same points. It is the
responsibility of the constraint programmer to ensure that the macros are used conectly to

produce groups that represent symmetries that satisfy Definition 1.7 for the given CSP.

Consider the groups H, J and G such that H x J = G. We can recreate all the elements of
G by finding the direct product of the elements of H and J. If H and J are both permutation
groups that act on the same points, we can find generators for the group G by taking the
union of the generator sets of H and J. This is indeed how NuSBDS combines the groups
returned from the various macros called.

Research by Harvey et al. [HKP03] can create groups by taking the direct product of two
groups acting on the same number of points as NuSBDS does. They can also create groups
by taking the wreath product of two groups as well, something that NuSBDS cannot do.
Consider a group K , acting on 30 points and a group L acting on 3 points. We can combine
these groups by abstracting the points L acts on e.g. treat the first 10 points K acts on as
point 1, the next 10 as point 2 and the final 10 as point 3. By combining groups in such
a way we have created the wreath product of K and L. This functionality is useful for
common models of the golfers’ problem [HKP03].

Macro Implementation

Each macro is represented as a word such as SQUARE, SYMMETRIC_COL etc. The #def ine
command has been used to link every word with an integer:

#define SQUARE 0
#define SQUARE_VAR 1
#define SYMMETRIC 2

The constraint programmer selects the relevant macros and this information is used to call
the correct function. Before calling the macro function, some basic error checking is per­
formed if possible to see if the symmetry is valid for the given CSP e.g. if the symmetry
is that of a square acting on the assignments of the CSP, the size of each of the domains
must be the same as the number of variables. Also, NuSBDS insists that all domains must
be consecutively numbered starting from 0. Then the macro function is called with the

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 7 0

relevant paiameter based on the size of the CSP. By doing so, we can deal with symmetry
for a specific type of CSP, not just a specific sized instance of a CSP.

Here is an example of the code one of the macro functions. Each macro featured in NuS­
BDS takes the form of a method like this. This particular macro returns the generators of
the group representing the symmetries of a square acting on the assignments of a CSP with
n variables. Note that the group representing the symmetries of a square needs only two
generators: flip around an axis and rotate 90° (stored in p [0] and p [1] respectively). Each
cycle in the permutation is stored as an I lc In tA rra y object, which is an array of integers.

Permutation* Symmetry : :p e rm _ sq u are (I lo in t n){
Permutation* p = new (e) P erm uta tion [2] ;
p [0] .num = n * (n / 2) ;
p [0] .g = new (e) I lc In tA r ra y [p [0] .n u m];
I l o i n t next = 0;

f o r (I l o I n t j=0; j < n; j++){
f o r (I l o i n t i= l ; i <= n /2 ; i++){

I lc In tA r ra y tem p(so l, 2, j*n + i , j*n + n - i+ 1) ;
p [0] .g [next] = temp;
next++;

}
}
next = 0;
f o r (I l o i n t i=0; i < n /2 ; i++){

f o r d l o i n t j = l ; j <= n -2 * (i+ l)+ l ; j++){
next++;

}
}
p[l] .num = nex t;

p [l] . g = new (e) I l c I n tA r r a y [n e x t] ;
next = 0;

f o r d l o i n t j=0; j < n /2 ; j++){
f o r d l o i n t i= l ; i <= n - 2 * (j+ l)+ l ; i++){

I lc In tA r ra y tem p(so l, 4, i+ j* (n + l) , i* n + n * j- j ,

J

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 71

n * n - i~ n * j - j+ l , n * n - i* n + l - j* (n - l)) ;

p [l] .g [next] = temp;
next++;

}
}
r e tu rn p;

}

More detailed examples and specifics about NuSBDS can be found in Appendix B - the

NuSBDS user manual.

3.5.4 Empirical Comparisons

In this section, the empirical performance of NuSBDS is tested on some symmetric CSPs
(See Table 3.4, Table 3.5, Table 3.6, Table 3.7 and Table 3.8). NuSBDS is based on the
GHK-SBDS implementation and as such, can handle over 10 ̂symmetries. However, even

now this number is not as impressive as results matched by other symmetry breaking tech­
niques [GHKL03] [Pug02]. The main feature of NuSBDS though is user friendliness. We
present empirical data merely to show that such a symmetry breaking system can be used to
break symmetries efficiently. A superior symmetry breaking system could be implemented
and still have the ease of use of NuSBDS so long as the system and the macros interfaced
with each other correctly.

The size of the list of constraints to be posted by GHK-SBDS increases exponentially with
the depth of the seai'ch tree. This will eventually use all the memory available to the com­
puter and the solver will spend more time on memory (de)allocation than solving. NuSBDS
overcomes this problem by setting a bound? on the maximum number of symmetry break­
ing constraints that are allowed to be stored at any one time. While this reduces the amount
of symmetry breaking, the solver retains a polynomial bound on memory requirements.
Removing the exponential bound on memory requirements, the constraint programmer is
free to describe as many symmetries as possible. In examples with highly symmetiic prob­
lems though e.g. BIBD, the number of solutions reported by NuSBDS will most likely not
be the number of unique solutions. A table of results of finding solutions to BIBDs using

^By default of the order of 10®, but can be specified at runtime.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 7 2

n Sols.
Solver 5.2
Runtime Fails Sols.

NuSBDS
Runtime Fails

4 2 0.00 4 1 0.00 3

6 4 0.00 35 1 0.00 11

8 92 0.02 289 12 0.00 61

10 724 0.22 5,072 92 0.09 875

12 14,200 4.78 103,956 1787 1.52 17,801

14 365,596 137.92 2,932,626 45,752 47.83 485,128

Table 3.4: Results of using NuSBDS and Solver 5.2 to find all solutions to various n-queens

problems.

Dodecahedron Sols.
Solver 5.2

Runtime Fails Sols.

NuSBDS
Runtime Fails

3-colouring 7,200 0.09 132 31 0.04 19

Table 3.5: Results of using NuSBDS and Solver 5.2 to find all 3-colourings of the dodec­
ahedron. This problem has 360 symmetries. They consist of the 3! or 6 symmetries from
the 3 available colours combined with the 60 symmetries of the dodecahedron itself.

constraint programming can be found in [Pug03]. A more complete reference can be found

in [MR90].

n Syms.
Solver 5.2

Sols. Runtime Fails

NuSBDS
Sols. Runtime Fails

4 128
6 288

384 0.48 1,594
0 2,905.12 4,176,447

3 0.07 73
0 14.85 25,157

Table 3.6: Results of using NuSBDS and Solver 5.2 to solve the most perfect magic squares
problem.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 73

Alien Tiles (4, 3) Runtime Fails

Solver 5.2
NuSBDS

SBDS

1004.58
15.55
21.72

54,081
482
493

Table 3.7: Results of using NuSBDS, SBDS and Solver 5.2 to solve the alien tiles problems

for a 4 X 4 board with 3 colours.

BIBD Solver 5.2 NuSBDS

V b r k A Syms Sols. Runtime Fails Sols. Runtime Fails

4 6 3 2 1 17,280 720 0 . 0 2 29 1 0.08 1 1

7 7 3 3 1 2.5 X 10? 151,200 8.93 11,680 92 0.53 42

7 7 4 4 2 2.5 X 10? 151,200 10.91 64,639 234 7.51 43

5 1 0 4 2 1 4.3 X 10^ 3,628,800 109.59 113,291 5,400 0.87 1,233

Table 3.8: Results of using NuSBDS and Solver 5.2 to solve some small BIBDs. Finding
all solutions to the BIBD problem is generally hard due to the number of symmetries.
NuSBDS does not break all symmetry which allows a more efficient symmetry breaking

system.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 7 4

3.6 Conclusions and Future Work

In this chapter we have looked at various different symmetry breaking systems. We have
considered the different functionality of these systems. We have proposed standards that
implementations of these symmetry breaking systems should aim toward in order to be

easily integrated into constraint solvers.

We introduced the first implementation for breaking general user specified symmetries in
constraint programming with group theory. By introducing a group theoretic symmetry
description we eliminate the disadvantage of listing all symmetries. For previous symme­
try breaking systems such as SBDS, this disadvantage greatly reduced the size of groups
that could be handled. All modern general purpose symmetry breaking systems [FSSOl]
[GHK02] [GHKL03] [Pug03] now use group theory ideas e.g. a generator set of symme­
tries, to break very large groups of symmetry. We also showed that by using group theoretic
concepts, SBDS and similar symmetry breaking systems can break all symmetry by posting

a very small subset of all possible symmetry breaking constraints. We presented a general
upper bound for the maximum number of constraints needed upon backtracking from any
failed assignment. We also reasoned that this number would be much smaller in practice
when accounting for the intersection with non broken symmetries as well.

By concentrating on the interface between the process of describing symmetries and the
symmetry breaking system, we developed a truly user friendly method of describing sym­
metries. This idea led to the creation of NuSBDS, a symmetry breaking system based on
the GHK-SBDS [GHK02] algorithm. NuSBDS uses a series of macros that can be safely
combined to describe many different groups. These macros allow the constraint program­

mer to easily describe symmetries and more importantly allow a general CSP to be scaled
to produce different sized instances. Thus, once the symmetries have been described for a
given CSP, they are automatically scaled at mntime to all instances.

We objectively examine the advantages and disadvantages of general purpose symmetry
breaking systems. We highlight desirable aspects of various systems, and introduce aspects
which are fundamental to the inclusion of symmetry breaking systems in future constraint
solvers. There is still much work to do however before we can see truly industry standard
symmetiy breaking systems.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 75

3.6.1 Improved Symmetry Breaking Techniques

There are now symmetry breaking techniques that have surpassed the performance of
the GHK-SBDS algorithm included in NuSBDS. The SBDD [FSSOl] and GHKL-SBDD
[GHKL03] algorithms can be used to break general user specified groups of much larger
size. Also, though STAB [Pug03] has currently only been used to break symmetry in
matrix models, more intelligent implementations should be able to break user described
symmetries.

The ideas in this chapter can easily be extended so that the symmetry breaking systems
mentioned above (and other new ones) can make use of macros to succinctly and easily de­
scribe symmetries. Such a combination of superior symmetry breaking and easy symmetry

description would be a most welcome addition to any constraint solver.

3.6.2 User specified macros

The dodecahedron colouring problem (see Figure 3.5) was specifically chosen as a CSP
that exhibited an uncommon group. Thus, the symmetries were not described via any of

the NuSBDS macros but by a specific group. Though being able to describe symmetries
via group generators would be a welcome addition to a symmetry breaking system, a better
solution would be to allow the constraint programmer to construct their own macros. This
way, the symmetry breaking system would grow to be able to solve complex symmetrical
problems.

3.6.3 Intelligent Symmetry Breaking

In general, there is no tractable method for breaking any group of symmetries. There are
however, some types of symmetry that can be broken easily. Lex ordering an array of
symmetrically equivalent variables breaks all symmetry. Efficient methods for breaking
interchangeable value (or indistinguishable value) symmetry have been developed by Gent
[GenOl] and van Hentenryck et al. [HFPA03]. If the symmetries of the CSP deal with
just one of these types of symmetry, then a general method of symmetry breaking such as
GHK-SBDS may not be preferable.

C h a p t e r 3 . Im p l e m e n t a t io n o f S y m m e t r y B r e a k in g S y s t e m s 7 6

The macros used to describe the symmetries of the CSP could be provided with information
to automatically select the most appropriate symmetry breaking system. Again, this would
take the complexities of various symmetry breaking systems away from the constraint pro­
grammer.

3.6.4 Partial Symmetry Breaking

Partial Symmetry Breaking is the focus of Chapter 4. NuSBDS has some simple partial
symmetry breaking which limits the maximum number of constraints that can be added to
the constraint solver. This small optimisation stops NuSBDS from using all the memory
resources.

The research carried out in the paitial symmetry breaking chapter (which partly appears
in [MS02]) describes methods for choosing good symmetries to break. Implementations
of symmetry breaking systems that aie aware of such methods will be able to break more

symmetry and thus solve problems with less computation.

3.6.5 Verification of Symmetries

NuSBDS contains some basic checks to try to ensure that the constraint programmer selects
valid macros for their CSP. However, the consequences of incorrectly describing symme­
tries is disastrous. Valid solutions will most likely be rejected and in extreme cases, no
solutions may be reported.

Graph automorphism checks could be implemented that could verify the symmetries de­
scribed using macros. The advantage of parameterised CSPs could be used so that a check
could be performed on a small instance of a symmetric CSP which would probably hold
for larger instances. If such a procedure were to be implemented, care must be taken to
safely deal with symmetries that exist that the graph automorphism check does not detect.

Of all the possible directions for the future work of general purpose, easy to use symmetry
breaking systems, the participation of constraint programmers is the most important. Con­
straint programmers not familiar with sophisticated methods of breaking symmetry will be
able to show constraint solver developers how best to include symmetry breaking systems.

Chapter 4

Partial Symmetry Breaking

In this chapter we define partial symmetry breaking, a concept that has been used in many
previous papers without being the main topic of any research. This chapter is the first
systematic study of partial symmetry breaking in constraint programming.

4.1 Introduction and Motivation

Given a CSP with a set of constraints and variables, it is possible to use propagation tech­
niques to infer solutions i.e. for n variables, enforcing n-consistency allows us to find all
solutions to the problem. In practice however this is not a viable method of solving CSPs as
it uses an exponential amount of memory. We resolve the problem of expensive consistency
requirements by limiting ourselves in general to performing some local consistency.

In a similar manner it is theoretically possible to break all symmetry for any given group.
However this is often not achievable in practice. There are methods of breaking very large
numbers of symmetries e.g. lexicographically ordering n objects breaks the n\ symmetries
of S'n. Focacci and Milano also describe a filtering algorithm for breaking n! symmetries
that mns in 0{nd) where d is the size of the largest domain [FMOl]. As was mentioned in
Chapter 2.4, the former method can behave badly if used with incompatible heuristics and
the latter can only be used for a specific “family” of symmetries with the nogood recording
method of symmetry breaking. Also, the symmetric groups acting on variables or values is

*The symmetric group of size n has n! elements.

77

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 78

significantly easier to break than other groups with wreath or direct products. For groups
of symmetry in general, there is no tractable method of breaking an exponential number of
symmetries. For the case where we have too many symmetries to be able to handle them
efficiently, it is necessary to break a subset of all possible symmetries.

If we consider a symmetry breaking system, there are two distinct parts. Firstly there is the
symmetry breaking technique. This is the algorithm or function that takes a symmetry and
performs some task ensuring that that symmetry is broken. For example, SBDD [FSSOl]
looks for a symmetry and compares the mapping of that symmetry against all the book-
marked nogood nodes with the cuiTent node. If any of the symmetric states are a subset
of the current state then we should backtrack. The SBDS algorithm [GSOO] will take a
symmetry and if it is not guaranteed to be broken already, a symmetry breaking constraint
is added to the local subtree. The cost of performing either of these algorithms to break
one symmetry is trivial. The reason we have to limit the amount of symmetry breaking it is
possible to do is that these steps mentioned above need an exponential amount of mn-time
to complete. Even though it’s possible to reduce the number of symmetries to consider, if
there is an exponential number of symmetries, the run-time of performing symmetry break­
ing itself becomes exponential. Symmetry breaking systems that add constraints to break
symmetry can also add an exponential number of constraints. This in turn has a devastating
effect on propagation algorithms that have a time complexity proportional to the number of
constraints e.g. arc consistency.

Secondly there is the symmetry representation. This is the method of storing a given sym­
metry (or set of symmetries) that are to be used by a given symmetry breaking technique.
Every time the synunetry breaking procedure is called upon, the technique breaks all the
symmetries that are contained within the symmetry representation. Therefore, if there are
an exponential number of elements in the symmetry representation, the symmetry breaking
will have an exponential runtime.

We can now see that it is not the symmetry breaking technique that is the overhead in
performing symmetry breaking but rather it is the number of symmetries to break in the
symmetry representation associated with the system. We balance the propagation used
when solving CSPs with the search performed in order to minimise run-time. In a simi­
lar way, we must balance the benefit of applying symmetry breaking to avoid redundant
search with the expense of the symmetry breaking system itself. While much research has
observed that breaking a subset of all symmetries is a valid and sometimes necessary pro­

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 79

cedure, this chapter is the first systematic study of partial symmetry breaking in constraint
programming.

4.2 Review of Partial Symmetry Breaking

As previously mentioned , other papers have used partial symmetry breaking (henceforth
refered to as PSB) on problems with large amounts of symmetry. There now follows a
review of the brief experiments involving partial symmetry breaking and an analysis of
how best to perform partial symmetry breaking.

In the original SBDS paper by Backofen and Will [BW98], SBDS is used to break sym­
metry on the photo problem, which is a problem with freely interchangeable symmetry on
the values. They use SBDS to break just the transposition symmetries since there are a
polynomial number of them, and they report that this subset breaks all symmetry. Their
thinking behind this is also that the transpositions being a generating set for Sn might also
be relevant.

They do claim though that, in general, breaking a generating set does not break all symme­
try. The paper states that the reason this is the case for Sn on values is “an open question.”
They go on to prove that the transpositions break all symmetry in their next paper [BW99].
Since then, there have been other efficient symmetry techniques that break freely inter­
changeable value (or indistinguishable value) symmetry by Gent [GenOl], van Hentenryck
et al. [HFPA03] and Gent et al. [RDGKL04].

In [GHK02], Gent and Smith include a section titled “A Restricted SBDS Method” where
they describe how to perform PSB with SBDS. If there are too many symmetries to deal
with, it is perfectly valid for a constraint programmer to list a subset of all of them. This
will return valid solutions however, it no longer guarantees unique solutions. As an example
they state that, “a graph A;-colouring problem has k\ symmetries. Direct use of SBDS is then
impractical.” They suggest using just the symmetries for which the pre-condition for the
symmetry breaking constraints (i.e. g{A)) is guaranteed true. In group theory terms, this
means using the symmetries in the stabilizer of current state A,

Smith uses PSB in [SmiOl] to make the golfers’ problem more tractable. When limiting
the symmetries to be broken by SBDS, it is claimed, “It seems intuitively plausible that the

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 80

simpler symmetries might give highest returns, as well as being easiest to describe.”

The original SBDD paper by Fahle, Schamberger and Sellmann [FSSOl], describes a dom­
inance check that contains a subset of all symmetries when solving instances of the golfers’
problem. They reason, “Since invoking the symmetry detection function... is computation­
ally very expensive, applying it in every search node does not improve the overall mntime,
although the number of choice points is reduced. Thus, there is a trade-off between the re­
duction of choice points and the effort spent for the detection of symmetries.” They devise
a test for breaking all symmetries at leaf nodes (to ensure unique solutions) and every
level. For the golfers’ problem with 4 groups of 4 players for 4 weeks, they conclude that
“an invocation in about every 8 *̂ level has shown to be the best.”

Puget’s CP2002 paper [Pug02], states that, “It is often better not to remove all symmetries
... Moreover, although this is not displayed here because of lack of space, the time needed
to get the first solution is also greatly improved in such case, and is comparable to the time
without symmetry removal.” In Puget’s paper the following year [Pug03], there is more
detail about how the PSB was performed. The STAB technique is used to only 70% of the
depth of the search tree which yields on average (according to the experiments in the paper)
a 17% improvement in runtime. The STAB technique itself however, is already using PSB
since it does not guarantee to break all symmetry (See Chapter 4.6).

Aloul et al. [ARMS03] break just an irredundant generator set of symmetries. They state
that “one can often achieve significant pruning because an irredundant set of generators
contains ‘maximally independent’ symmetries i.e. none of them can be expressed in terms
of others.” A brief example of how different generator sets rule out different symmetrical
solutions is presented. The authors do not give scientific reasons as to why the ideal sym­
metries to break must be a generator set or even an irredundant generator set. They claim
that their future research will attempt to explain why some irredundant generator sets are
preferable to others.

The above cases effectively demonstrate that PSB is a well known and highly rated tech­
nique for improving the runtime of symmetry breaking systems. Some of the research
detailed here has shown that certain subsets of symmetry can break larger numbers of sym­
metries. Though some minor experiments have taken place to try and maximise a symme­

try breaking systems performance, in many cases, little explanation is given and no general
understanding is reached as to why using less symmetries results in greater runtimes.

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 81

It is the aim of this research to uncover why breaking less symmetries can reduce the
runtime of constraint solving, and in doing so, present constraint progiammers with the
information they need to maximise PSB in future experiments.

4.3 Definitions and Notation

The set of all symmetries of a CSP form a group. The way in which partial symmetry
breaking is performed depends on the symmetry representation. Previous encodings have
used group theory techniques to represent a large number of symmetries by listing a small
subset of all of them [GHK02] [McDOl] [BFP96] [GHKL03]. If it is possible to recreate
the entire group of symmetries by reapplying the symmetries in this small subset, we call
the subset a generator set. Many of the experiments and findings in this chapter are based
on representations that encode all the symmetries of a CSP and not just the generator set.
We discuss later how results from this chapter may be used with generator set representa­
tions.

We now define two classes of symmetric CSPs.

Definition 4.1 Given a CSP L where the number o f symmetries o f L increases polynomi-
ally with respect to the sizes o f the variables X and their domains D [X), L is said to be
polynomially symmetiic.

In the n-queens problem for example, the number of symmetries is 8 regardless of n. The
most perfect magic squares problem (See Appendix C.6) has symmetries for an n x n
board. For these types of problems, SBDS by Gent and Smith [GSOO] or Symmetry Ex­
cluding Trees by Backofen and Will [BW99] are probably the best methods of removing
symmetry as the overhead is low. Though SBDD is a better approach for more symmetric
problems, small problems like the n-queens are solved in less time and with fewer back­
tracks with SBDS [FSSOl].

Definition 4.2 Given a CSP L where the number o f symmetries o f L increases exponen­
tially with respect to the sizes o f the variables X and their domains D {X), L is said to be
exponentially symmetric.

Naïve encodings of the exponentially symmetric golfers’ problem (See Appendix C.5) have

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 82

{^\y^{g\)'^w\p\ symmetries for p players, g groups and w weeks [HarOl]. Clearly, increas­
ing either the number of players, groups or weeks by even one will greatly increase the

number of symmetries.

4.4 Partial Symmetry Breaking and Symmetry Represen­
tation

There have already been two improvements reported on the representation of symmetries
i.e. methods for removing symmetries from consideration from the symmetry representa­
tion. The first is found in the symmetry breaking method SET (symmetry excluding trees)
developed by Backofen and Will [BW99] and this removes broken symmetries. Removing
broken symmetries from consideration is also in the symmetry breaking method that will

be used in the experiments in this chapter: SBDS. Therefore, the concept will be explained
in terms of the SBDS notation. Symmetry Breaking During Search (SBDS), developed by
Gent and Smith [GSOO], works by adding constraints to the current search subtree. Af­
ter backtracking from a failed assignment vavi — valj, to a point in search with a partial
assignment A, we post the constraint:

g (A) & {vari y valf) =4> g {van ^ valj)

for every g in the symmetry representation. Symmetries are represented by functions and
SBDS removes a function from consideration when it discovers that a pre-condition (i.e.
g {A)) of the constraint it creates is guaranteed false from the current subtree. For example
consider a node k in search. A symmetry function may produce a pre-condition van =
but if at point k, van ^ ua/j we can ignore that symmetry function at all child nodes of k.

The second improvement is found in Chapter 3.2 [McDOl] where only unique symmetries
are considered. We showed how at certain points in search, some sets of symmetries all
have the same effect on a partial assignment hence we can discard all but one symmetry
from this set. For example, there may be a pair of symmetries g and h such that given a
partial assignment A, g {A) — h{A). If this is the case we only break symmetry on g or on
h but not on both. These two improvements reduce the number of symmetries to consider
without reducing the amount of symmetry breaking possible i.e. they do not introduce

..

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 83

non-unique solutions.

We now consider a third optimisation. In this chapter we show that where there is a large
number of symmetries, we can discard some of them and, by doing so, reduce run-time
greatly. If we are trying to solve a problem that is exponentially symmetric we may not be
able to fully utilise a given symmetry breaking technique. We cannot apply the dominance
check used in SBDD for all symmetries at every node in search for the golfers’ problem
as it is too expensive [FSSOl]. It is still possible to use SBDS if we limit the number of
symmetry breaking functions, and we can still use SBDD by applying a dominance check
under a subgroup of all the symmetries. Describing only a subset of the symmetries does
not lose any solutions (and may result in redundant search) but the overhead of performing
symmetry breaking will not be as great. By describing only a subset of symmetries we are
performing PSB i.e. performing some redundant search because the symmetry breaking
technique is too costly or even impossible to perform.

4.4.1 Explicit Symmetries and Group Theory

Given a symmetry representation, we perform PSB by only applying the symmetry break­
ing technique to a subset of the symmetries in the symmetry representation. How this
subset of symmetries is generated depends on the symmetry representation. There are two

types of symmetry representation:

1. A list of explicit symmetries

2. A generator set of a group

Generating a subset of symmetries from a list of explicit symmetries is trivial, however, the
implicit nature of using generators of groups makes it difficult (but still possible) to select
a subset of symmetries. This will be discussed in more detail later.

4.5 Partial Symmetry Breaking Experiments

It is a straightforwai'd assumption that by breaking more symmetries i.e. by increasing the
number of symmetries in the representation, we can reduce the search space further up to a

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 84

' 1
-f

Reduction
o f search

Overhead of
Symmetry Breaking

Optimum
PSB

V point

Number of Symmetries

Figure 4.1: Finding the optimum point

certain point.

However, as the number of symmetries represented increases, so does the overhead. We
will show how there is an optimum point of symmetry breaking as illustrated in Figure 4.1
by suggesting that there may be a point where the benefit in reducing search from adding
more symmetries is out-weighed by the extra overhead.

In order to discover how the cpu-time of solving a symmetric CSP varies with the number
of symmetries used in the symmetry representation we have constmcted the following ex­
periment. We record the cpu-time of solving a CSP L, with a subset of the symmetries
G, of L, This is done for subsets of size 0 to |G |. If we require a subset H, of size h, of the
set of symmetries G, of size g, there are gCh different subsets that H can be. Any time we
select a subset of symmetries for a given experiment, we choose a pseudo-random subset.
If it is necessary to repeat the experiment with different subsets we choose new seeds to
generate other pseudo-random subsets.

Take a CSP L with n symmetries solved using a set of symmetry breaking functions k, with

SBDS where |A;| < n. For |A;| = 0 to |A;| = n we find the cpu-time taken to solve L and use
this information to plot points on a graph. The set of symmetry breaking functions used are
chosen pseudo-randomly.

Given the data from the above experiment we can plot cpu-time against number of symme­
tries used. We can then use this graph to estimate how many symmetries we need to break
to minimise cpu-time for SBDS. It should be highlighted though that by doing this we al­
low duplicate solutions. Unique solutions can be found by applying an SBDD dominance

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 85

a 0.9
$
0 «
i 0.7

g 0.6

0.5

0.4

0.3
4 50 1 2 3

Number of Symmetries

Figure 4.2: Fractions Puzzle PSB

check to leaf nodes [FSSOl] or by some other means of isomoiph rejection.

4.5.1 Fractions Puzzle

We consider a very simple problem as an example experiment (See Appendix C.4). Given
the following problem:

A D G
+ — +B C E F H I

Can we find unique values (from the range {1..9}) for each variable such that the equation^
is satisfied? Note that we can pennute the fractions freely, yielding 5 symmetries and
the identity e.g. one symmetry is A Z), B 4 -̂ E and C ^ F. Since the number
of symmetries is so small it is possible to run the experiment with all possible subsets of
symmetries. The cpu-times were then averaged for each subset size. Figure 4.2 contains
the graph of the averaged cpu-time with respect to the number of symmetries. As you can
see, by adding more symmetries the cpu-time decreases.

'^BC does not mean B x C but rather (10 x B) + C.

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 86

.\m.mm

...............
..............

„
■ '

0 0 0 0

0 0 1 1

0 1 0 1

2 1 1 2

Initial State Goal State Solution

Figure 4.3: Initial State, Goal State and Example Solution

4.5.2 Alien Tiles

SBDS has already been used to solve alien tiles problems (See Appendix C .l) with good
results [GLSOO]. The alien tiles board can be described with two parameters n and c, the

size of the board and the number of colours respectively. An alien tiles board is an n x n
grid of rP coloured squares^. By clicking on any square on the board, the colour of the
square is changed +1 mod c. As well as this, the colour of every square in the same row
and column is also altered +1 mod c. Given an initial state and a goal state, the problem is
to find the required number of clicks on each square which can be anything between 0 and
c — 1 (since 0 = c, 1 = c + 1 etc). A more challenging problem for constraint programming

(which can be found in CSPLib [GW99] - problem 27) is finding the most complicated
goal state (in terms of the number of clicks needed) for some initial state and then reaching
that goal state in as few clicks as possible and verifying optimality.

The problem we consider is a 4 x 4 board with 3 colours. Figure 4.3 shows the initial state
and an optimally hard goal state for the problem we are trying to solve and an example
solution. The smallest number of clicks that can take us to the goal state is 10. Proving that
1 0 clicks is optimal needs a complete traversal of the entire search tree.

An instance of the alien tiles problem is exponentially symmetric. Given a solution we can
freely permute the rows and columns and flip the board around a diagonal. For a board
with variables, the group acting on the board is x x 2 which for a 4 x 4 board
is a group of size 1152, or 1151 symmetries and the identity. We derive this number by
noting that we have 24 (or 4!) row permutations, which can be used in conjunction with the

24 column permutations, which can be used with the diagonal flip (2n!^). The reason we
are using this symmetric CSP as the main example of PSB is that it is not a trivially easy

 ̂Alien tiles puzzles can be found online at http://www.alientiles.com/

http://www.alientiles.com/

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 87

400 -

Number of Symmetries

Figure 4.4: Random PSB Subsets - Alien Tiles

70

60

50 ++
40

30

20

10

0
0 200 400 600 800 1000 1200

Number of Symmetries

Figure 4.5: Random PSB Subsets - Alien Tiles (cut-off at 70 seconds)

problem to solve, but with n = 4 we can cope with all 1151 symmetry functions so we
can compare PSB against breaking all symmetry. Note that the results of this research are
applicable to very large groups.

Figure 4.4 shows the cpu-time to solve the alien tiles problem described above with dif­
ferent sized pseudo-random"* subsets of the 1151 symmetries i.e. each point in the graph
represents the runtime taken to solve the alien tiles problem with a pseudo-random subset
of symmetries. Figure 4.5 shows a magnified version of a portion of the same graph, giving
clearer results. By looking at the graphs we can deduce three things.

In this experiment the ECL*PS® random function was used.

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 88

E

70

60

50

40

20

10

0
0 200 400 800 1000 1200600

Number of Symmetries

Figure 4.6: Average cpu-times - Alien Tiles

1. Most of the run-time improvement from 940.4 seconds and 18751 backtracks with
no symmetry breaking to 60.5 seconds and 135 backtracks with all 1151 symmetry
functions comes from adding the first 2 0 or so symmetries.

2. Perhaps most importantly, we can see that the shortest cpu-time comes from using a
random subset of size 130. With this subset the problem was solved in 19.9 seconds
and with 216 backtracks. The size of this subset is much smaller than the size of the
group acting on the alien tiles CSP.

3. Different subsets of a similar size have large differences in cpu-time. This implies
that the choice of symmetries we include in our subset is as important as the size of
the subset. For example, another random subset of size 130 from another experiment
yielded a cpu-time of 54.9 seconds (almost as much as breaking all symmetry).

The above experiment was ran with 218 different random subsets^ for each subset size
to produce the less scattered curve in Figure 4.6. It is possible to gain an average factor
of 2 improvement over breaking all symmetry and a factor of 32 improvement over no
symmetry breaking. In the case of the subset of size 130 mentioned above, we gain a factor
of 3 improvement over breaking all symmetiy and a factor of 47 improvement over no
symmetry breaking. The shape of the curve in Figure 4.6 is consistent with Figure 4.1 i.e.

^Using ECL^PS® version 5.3 on a Pentium III 1 GHz processor with 5 12Mb of RAM

' " g

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 89

10000

8000

8
® 6000

I
E- 4000I

2000

1000 2000 3000 4000 5000 6000 7000 8000
Number of Symmetries

Figure 4.7: PSB - Golfers’ Problem

the overhead increases approximately linearly with the number of symmetries, and there is
a steep reduction in search as the first few symmetries are added. This reduction tails off as
most of the redundant search is pruned, making further symmetries less effective.

4.5.3 Golfers’ Problem

Here we show the existence of similar behaviour for a different problem. This uses Smith’s
encoding of the golfers’ problem [SmiOl] with p\ symmetries for p players. The graph
shown in Figure 4.7 shows the results of finding all solutions to g o lf (12,4,2)^. Using PSB
while performing a complete traversal of the search tree will yield symmetrically equivalent
solutions. Smith’s model has 12! or 479,001,600 symmetries. Using GAP [GAP03] it is
possible to produce random elements of the group acting on this problem: S'i2 . We used
GAP to output a random subset of 8000 functions representing 8000 random elements
of the group. The same experiment described at the start of this section was run, with
just one random subset. Due to the complexity of this problem the subsets of symmetries
incremented in size in steps of 250. It was not possible to solve the problem with 1500
symmetry breaking functions within 1 0 0 0 minutes of cpu-time.

The graph in Figure 4.7 is not as clear' as that seen in Figure 4.6. However, whereas the
alien tiles problem needed roughly 2 0 symmetries to do most of the symmetry breaking, the
golfers’ problem needs roughly 4500. We need to consider at least 1775 symmetries to be

^Using Hog Solver version 4.4 on a Pentium II 300MHz processor with 512Mb RAM

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 9 0

able to solve this problem in reasonable time and the more symmetries we add the smaller
the improvement in cpu-time. Using SBDS we are limited by the number of functions we
can compile. In this respect it is more advantageous to represent symmetries using groups
so that larger subsets of symmetries can be used as discussed in Chapter 4.4.1.

4.6 Partial Symmetry Breaking with Implicit Symmetry
Representation

One of the nice features of using SBDS to perform PSB experiments is that there is al­
ways an explicit list or representation of the symmetries to break. Limiting this number of
symmetries in order to perform PSB simply means removing some symmetries from that
list.

As the more modern symmetry breaking systems are using group theoretic techniques (or
other techniques that contain implicit symmetry representations), it is harder to see how
to limit the symmetries in order to perform PSB. These modern approaches use a set of
generators that aie at very most Ioq2 \G\ in size for a group G with |G| elements, and in
practice are much smaller (usually 2 to 6). It would be impractical to specify a list of group
elements to break due to its size as well as defeating the purpose of the implicit structure. To
limit the amount of symmetry breaking done we must modify the way symmetry breaking
systems work. This leads to more complicated metrics as to how much symmetry is broken
since we can no longer say specifically “experiment k broke n symmetries”. Modifications
are necessary however, in order to perform PSB with group theoretic symmetry breaking
systems and other systems with implicit symmetry representations.

There are three main ways in which we can perform PSB with an implicit symmetry repre­
sentation:

1. Do not perform the symmetry breaking technique at every node.

2. Use a subgroup of all symmetries.

C h a p t e r 4 , Pa r t ia l S y m m e t r y B r e a k in g 91

3. Limit the amount of computation the symmetry breaking technique performs at every
node.

4.6.1 limited use of Symmetry Breaking Technique

This is a very simple method of performing PSB. Once a certain depth in the search tree is
reached, we no longer execute the symmetry breaking technique [Pug03]. It is also simple
to apply the symmetry breaking technique only at certain nodes in search [FSSOl].

In two ways, performing PSB using this method is a good idea. Firstly, generally speaking,
there is more computation involved performing symmetry breaking further down the search
tree. The symmetry breaking constraints posted by SBDS become longer and thus weaker
i.e. they become a lot easier to satisfy. The dominance check in SBDD is equivalent to

subgraph isomorphism, whereby we are trying to map (via some symmetry) any p items of
the set Q to match the set P (where \P\ — p and |Q| = g). As |Q| gets larger, the problem
gets exponentially more difficult and in the case of SBDD, the size of Q is the same as the
number of search decisions made.

Observe that near er the leaf nodes, symmetries become harder to break, and that also those
symmetries that are broken do not pmne as much search as those symmetries broken nearer
the root. It is therefore clear that limiting a symmetry breaking technique to a certain depth
in search is a good way of performing PSB.

4.6.2 Using a Subgroup of Symmetries

Implicit symmetry representations store a small subset of all possible symmetries. These
symmetries can be repeatedly applied to each other to recreate the entire group of symme­
tries. As has been mentioned before, this subset is called a generator set. If this set has no
redundant generators, then removing a generator from the set will create a group of at least
an integer factor smaller. For example, consider the symmetric group Sn which has a gen­
erator set of two elements; (1,2) and (1,2,..., n). Though this group has n\ elements, by
removing the first generator we create a subgroup with n elements. By removing the latter
we create a group with 2 elements. In general, removing just one generator can reduce the

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 92

size of the resulting group drastically.

For solving instances of the golfers’ problem in [FSSOl], the dominance check for elimi­
nating all permutations of the groups, weeks and players is computationally too expensive
to use during search. Therefore a dominance check for just permutations of groups and

weeks is used.

The STAB technique [Pug03] uses stabilizers (which are subgroups) of the original group
of symmetries during search. For this reason, the technique does not break all symmetry.
Whereas other techniques can use these modifications to perform PSB to reduce mntimes,

the unmodified STAB technique already performs this type of PSB.

4.6.3 limited computation of Symmetry Breaking Technique

Finally, the amount of computation or the number of symmetry breaking constraints can
be given some upperbound. This could be done by giving a time limit to every dominance
check, or by stating that a maximum of n symmetry breaking constraints may be posted

after any backtrack.

The SBDD dominance check implemented by Pearson in [Pea03] performs a computation­
ally easier check by trying to map the current state into previously failed states at the same
depth. Whereas the original SBDD check was equivalent to subgraph isomorphism, by only
considering states with decisions the problem is reduced to graph isomoiphism. Though
subgraph isomorphism is known to be NP-complete, the complexity of graph isomorphism
is unknown and in practice it is quite often tractable. This modification means all previous
nogoods must be stored but still breaks all symmetry.

Another symmetry breaking system with an implicit symmetry representation that uses this
method of PSB is STAB. By only considering the stabilizer of decisions made, the number

of symmetries to consider quickly becomes smaller. However, at the root, all symmetries
must be considered. STAB overcomes this problem by selecting a polynomial subset of
available symmetries i.e. limiting the computation of the symmetry breaking technique.
Again, it is the unmodified version of the STAB technique that performs this type of PSB.

Notice that STAB has been used to greatest effect with all three forms of PSB used simul­
taneously. At this time, STAB has the most impressive runtimes for solving BIBDs with

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 93

60
Best Run-times

Worst Run-times

y 40
S
&
I
œ 20

0 200 400 800600 1000 1200
Number of Symmetries

Figure 4.8: Best & worst times (cut-off at 60 seconds).

constraint programming and this helps to demonstrate the importance of PSB even with
implicit symmetry representations.

4.7 Symmetry Subset Selection

In Chapter 4.5 we saw empirical evidence that using PSB can produce significant improve­
ments. This also highlighted the importance of symmetry subset selection i.e. how we
choose the subset of symmetries to break. Figure 4.8 shows the best and worst cpu-time for

different sized subsets of symmetries and Figure 4.9 shows the absolute difference between
them based on 15 random subsets used in the experiment^ (described in Chapter4.5.2). The
minimum cpu-time we can achieve is 12.61 seconds with a subset of 164 symmetries. How­
ever choosing a subset of this size can result in a cpu-time as large as 35.27 seconds. We
now look at how the symmetry subset selection affects search and in doing so, hope to find
an algorithm to select efficient symmetry subsets.

4.7.1 Looking for good subsets

In order to find an automated process for choosing sets of symmetries, we must try to look
for some property that good symmetries (or sets of symmetries) have. We can then order

^Using ECL*PS® version 5.3 on a dual Pentium III IGHz processor with 4Gb RAM

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 9 4

40

35

25

20

H+ +

200 400 600
Number of Symmetries

800 1000 1200

Figure 4,9: The difference between best & worst times (cut-off at 40 seconds).

the symmetries with respect to this property and choose the symmetries nearest the front
of the list. The large number of experiments performed in the previous section leave a
substantial amount of test data to examine in order to find such a property.

Good symmetries

The alien tiles problem was solved 251,136 times in total (218 x 1,152). The fastest 13 runs
were found and the symmetries which were broken from each of these mns were recreated
via the seed recorded for the pseudo-random number generator. Of the 13 subsets, the
smallest was of size 97 and the largest was 230.

If there is such a thing as a good symmetry we would expect to see the same symmetries
recuixing in these 13 subsets. We try to find such symmetries by calculating the intersection
of the subsets. However, the intersection of the first three subsets contained two symmetries
and the intersection of this and the fourth subset was empty. This suggests that there are not
specific symmetries that work well but rather sets of symmetries that work well together.

Patterns in symmetries

We will now try to see if there exists a pattern in good subsets of symmetries. This will
be done initially by looking at small subsets (of size 8) and examining the structure of the
individual symmetries. Using GAP, each symmetry is broken into individual row trans-

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 95

Col Row F lip

1 2 t r u e
2 3 t ru e

3 2 f a l s e
1 0 f a l s e

2 3 t ru e
3 3 f a l s e
1 3 f a l s e
1 2 t ru e

Figure 4.10: This subset took 140.05 seconds to solve the alien tiles problem.

positions, column transpositions and a possible rotation of the grid about the diagonal.
Hopefully some pattern may arise in terms of how many column and row permutations a
symmetry has and whether or not it contains a flip around a diagonal.

To do this, the GAP function F a c to r iz a t io n () was used. This function takes two param­

eters, a group and an element of that group. GAP then factors the element of the group in
terms of the generators. To find out how many column or row swaps etc. took place, each
possible row and column swap was included as a generator as well as one which rotates

the grid around the f {x) = x diagonal. However, this led to unexpected behaviour from
GAP. Whereas the documentation claims to return “a short word” i.e. a short list of the
generators needed, the output from this did not take advantage of the redundant generators
supplied and in short did not return the simplest / shortest factors. The GAP development
team were contacted about this and although they say it was not a ‘bug’, the code would be
changed (after the next release) to return the shortest factorization.

Using modified GAP code to find the shortest factorization^, it was possible to extract the
required data i.e. for any given symmetiy, how many row and column transpositions is it
made up of.

As can be seen by looking at Figure 4.10 and Fig 4.11, the results do not lend themselves
to any immediate conclusions. This is also true of the other 13 subsets examined.

^Written by Steve Linton.

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 9 6

Col Row F lip

3 1 f a l s e
2 3 t ru e

2 2 t ru e

3 3 t ru e

1 2 f a l s e
2 2 f a l s e
3 2 f a l s e
2 1 t ru e

Figure 4.11: This subset took 69.05 seconds to solve the alien tiles problem.

4.7.2 The Effect of Different Heuristics

We now look to see if external factors (in this case the heuristics) are important when it
comes to selecting subsets of symmetries.

When solving a symmetric CSP using symmetry breaking techniques there are two types
of failure resulting in backtracking. We either fail where we discover a new unique nogood,
or we fail where we find a nogood symmetrically equivalent to a previously unique nogood.

Definition 4.3 Given a complete traversal o f the search tree o f a CSP L, a list o f no goods
found K and a group o f symmetries G (acting on L), consider a node in search k which is
a nogood. I f while traversing the search tree we reach node k and jBg 6 G s.t. g(k) G K
then we call k a unique nogood. Conversely, i f3g G G s.t. g{k) G K where g ^ e (the
identity element) then we call k a symmetric nogood. Unique nogoods result in unique fails
and symmetric nogoods result in symmetric fails.

It is straightforward to see that exponentially symmetric problems can have significantly
more symmetric fails than unique fails. By performing symmetry breaking we can elimi­

nate symmetric fails, however if we use PSB some symmetric nogoods persist. Different
symmetries can be used to prune different parts of the search tree. The vaiiable and value
ordering heuristics and the propagation level dictate how the search space is traversed,
therefore the symmetric nogoods pruned are dependent not only on how many symmetries
we break but also on the heuristics we use.

In Figure 4.12 we present experimental evidence of this by performing the same experiment

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 97

3. 30

20

0 200 400 600 800 1000 1200

n 40

0 200 400 600 1000800 1200
Number of Symmetries

Figure 4.12: Identical subsets of symmetries with different variable ordering heuristics
(cut-off 60 seconds). The first heuristic (top) is better up to 376 symmetries after which the
second heuristic (bottom) takes less time

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 98

as in Chapter 4.5.2 with the same subsets of symmetries, but with different variable ordering
heuristics^. The subsets used in Chapter 4.5.2 were randomly chosen for each different
size, but in this section we have a standard subset that has a random symmetry added to
it at the start of each run. The first heuristic (on the top in Figure 4.12) instantiates the
alien tiles squares along the rows from top left to bottom right. The second (on the bottom)
instantiates the squares along the rows from bottom right to top left. The resulting cpu-
times are generally significantly different. On the other hand, changing the value ordering
heuristic in solving alien tiles problems makes no difference to the number of symmetric
fails we find, since the symmetries in this problem act on just the variables and not the
values.

If we want to use PSB with a given symmetry breaking method we need to be aware of the
variable and value ordering heuristics when we select a subset of symmetries. We can ex­
ploit this fact by choosing heuristics that work well with respect to a subset of symmetries.

4.8 Algorithm for Symmetry Subset Selection

If we wish to prune as much search as possible, it is preferable to post symmetry breaking
constraints (or equivalent) that make cuts nearest the root of search. The subtree pruned by
a symmetry breaking constraint is determined by 3 factors.

1. The (partial) assignment that failed

2. The symmetry being used to construct the constraint

3. The heuristics being used

Essentially, the (partial) assignment and the symmetry taken together construct the symme­
try breaking constraint. The subtree this constraint forbids is determined by the heuristic.
For example, consider a failed assignment = 1 and the symmetry g, where g{Vi = 1) =

^Using ECL^PS® version 5.3 on a dual Pentium III processor IGHz with 4Gb RAM

MA

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 99

g(X)

h(X)

Figure 4.13: A search tree illustrating how some symmetry breaking constraints prune
more search than others. Given the nogood X, g is a better symmetry to break than h.

(Vg = 1). If Vg is the next variable to be instantiated, we can say that g, in this case, is a
good symmetiy to use. However if Vg is one of the last variables to be instantiated, g would
not be a good symmetry to use here. Another simple example of this is shown in Figure
4.13.

If we are to choose a subset of symmetries we should choose those symmetries that map
the smallest (partial) assignments that will be visited by the ordering heuristics, to the root
of the subtrees nearest the root according to the ordering heuristics.

To this end, we have constructed an algorithm (Algorithm 4.8.1) that takes a CSP model, a
static ordering heuristic and the symmetries of the problem. This algorithm then considers
every partial assignment the solver would and applies every symmetry to it, which results
in a potential nogood 77. We associate each 77 we find with the symmetry that created it
and order the list of nogoods from those nearest the root (and leftmost) to those nearest the
leaves (and rightmost). We then remove the duplicate symmetries from the list and we are
left with the best symmetries at the front.

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 100

Algorithm 4.8.1: S Y M M E T R Y S u b s e tS e le c t io n {Group, Partial A ssignm ents)

for each g G Group
for each pa G Partial A ssignm ents

elem ent.partial_assignm ent <— g{pa)
elem ent.sym m etry_used g
element.latest «—latest point in search in g{pa)^
 ̂Sym m etricP artia l A ssignm en ts. add{element)

for each i G Sym m etricP artia l A ssignm ents

best «— i
for each j G Sym m etricP artia l A ssignm ents

{ i f j.la test < best.latest
then best <— j

Sym m etries . add {best, sym m etry _used)
Sym m etricP artia l Assignments.remove{best)

Symmetries.remove_duplicate_jsymmetries{)
return {Sym m etries)

do <

“Latest var = val assignment to be considered by the heuristics in the partial assignment

g {pa).

The time complexity of Algorithm 4.8.1 is 0{\G\d^) for a CSP with n variables with do­
mains of size d and a group of symmetries G acting on assignments. Thus, this algorithm is
quite impractical. However, the fact that the symmetries of the alien tiles problem acts on
variables means that rather than considering all 0 {dP') partial assignments, we only need
to consider the variables involved in those partial assignments. There are only n of these:
{Xi} , {Xi, X 2 }, ..., {Xi, ...,Xn}. The results of solving the alien tiles problem using the
first k symmetries from the list of symmetries ordered using Algorithm 4.8.1, can be found
in Figure 4.14.

A compaiison can be found in Figure 4.15, to show that the algorithm has matched the
best set of symmetries found already. The alien tiles problem can now be solved in 10.95
seconds with a subset of 92 symmetries. Algorithm 4.8.1 took only 2.11 seconds to com­
pletely order all 1,152 symmetries. The results of this experiment show that the intuition
behind choosing good subsets of symmetries is correct.

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 101

60

50

8 40

20

10

0
0 200 400 600 800 1000 1200

Number of Symmetries

Figure 4.14: The alien tiles experiment using Algorithm 4.8.1

60
Random Best

Algorithm Chosen
50

40

30

20

10

0
0 200 400 600 800 1000 1200

Number of Symmetries

Figure 4.15: A comparison of runtimes from solving the alien tiles problem with the best
random symmetries and those found using the Algorithm 4.8.1

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 102

Since a failed partial assignment with k decisions will make a symmetric nogood that will
prune at depth k or greater, we can limit the algorithm to small partial assignments. By
doing so we not only dramatically reduce the complexity of the algorithm but the symme­
tries found will still contain those that prune the most search. We also need to reduce the
number of symmetries to be considered before the algorithm can be considered as practical.
By selecting the setwise orbit of the partial assignment, we can drastically reduce the com­
plexity of the algorithm further to just 0{\orbit{G, Ak)\d^). The value of k need only be
raised until the algorithm produces a list containing as many symmetries as the constraint
programmer wishes to use. For example, if /c = 5 produces a list of 1,000 symmetries
and the constraint programmer wishes to use 900 symmetries, there is no need to rerun the
algorithm with k = 6 .

Using = 4 we obtained a list of 11,880 symmetries for the golfers’ problem instance
used in Chapter 4.5.3. The experiment involving the golfers’ problem was repeated with
the symmetries taken from the list of ordered symmetries (Figure 4.16). For a subset of
8,000 symmetries, we were able to solve the problem in just 128.1 seconds compared to
1802.53 seconds with 8,000 randomly chosen symmetries. The modified algorithm took
only 34.8 seconds to find the best 11,880 symmetries. The combined runtimes of the
constraint solver and Algorithm 4.8.1 yield a factor of 11 improvement over the 8,000
random symmetries chosen. For problems with larger amounts of symmetry, PSB becomes
unavoidable and therefore choosing the right symmetries to break becomes more important.

For larger (more symmetric) problems using the right symmetries will probably result in
larger factors of improvement.

4.9 Dynamic Algorithm for Symmetry Subset Selection

Though symmetry breaking methods are mainly used to help find optimal solutions or
all solutions (as we did with the alien tiles and golfers’ problems above), they can still
help reduce the search needed for finding the first solution. However, Algorithm 4.8.1
sorts symmetries so they are good with respect to the search tree as a whole. Therefore,
the ordered symmetries are meant to be used only for finding all solutions or an optimal
solution.

For example consider the search tree in Figure 4.17. The symmetries that result in the cuts

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 103

7000
Algorithm -
Random -

6000

5000

4000

3000

2000

1000

0
0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Symmetries

Figure 4.16: The golfers’ problem solved using symmetries from Algorithm 4.9.1 com­
pared with the original randomly chosen symmetries. We see a significant improvement in
runtime even after the time for sorting symmetries is taken into account.

First
Solution

Figure 4.17: A search tree illustrating how some symmetries are better for different sub­
trees of search

C h a p t e r 4 . Pa r t ia l S y m m e t r y B r e a k in g 104

at C, A and B would be preferred to those symmetries that cut D, E and F according to
Algorithm 4.8.1. However, given the location of the first solution, we would never consider
nodes C, A, or B. In order to select the best symmetries for a given subtree and thus allow
effective symmetry subset selection for finding the first solution, we must sort symmetries
dynamically during search.

Algorithm 4.9.1: SYMMETRYSuBSETSELECTiON(C?rowp, A)

for each g G orbitRepresentatwes{Group^ A)
element.partial_assignment <— g{A)
element.symmetry_used <r- g
element.latest latest point in search in g{AY

^SymmetricPartial Assignments.add{element)
for each i G SymmetricPartial Assignments

best <r~ i
for each J G SymmetricPartial Assignments

{if j.latest < best.latest
then best <— j

Symmetries.add{best.symmetry jased)
SymmetricPartial Assignments.remove{best)

Symmetries.remove_duplicate_symmetries{)
return {Symmetries)

do <

‘'Latest var — val assignment to be considered by the heuristics in the partial assignment

9{A).

We now present a modified algorithm (Algorithm 4.9.1) that finds the best symmetries to
consider based on just one failed partial assignment. This results in an ordering of sym­
metries that are optimal for the current subtree in search. As well as sorting symmetries
correctly for finding the first solution, this also gives us the advantage of removing the dA
term from the complexity of Algorithm 4.8.1 to just 0{\orbit{G^ A)|^). This complexity
comes from sorting the list of symmetries after they have been found. Note that for the sake
of simplicity, the algorithm encompases a bubblesort sorting algorithm. The implementa­
tion of this algorithm while semantically the same, contained a mergesort sorting algorithm.
While the dynamic algorithm will still be called a potentially exponential number of times
(i.e. after each backtrack), it will still be less than dA times. The implementation and

C h a p t e r 4 . P a r t i a l S y m m e t r y B r e a k i n g 105

empirical evaluation of this algorithm is left as future work.

One area the constraint programmer should note is the change in PSB metric. As mentioned I

previously, using a symmetry breaking system such as SBDS results in clear indication of
how much symmetry was broken. It is simply the number of symmetry breaking functions
used. The number of symmetry breaking constraints posted after each backtrack are in
general significantly less than the number of symmetries available.

4.10 Symmetry Subset Selection for other Symmetry Break­
ing Systems

By looking at how good symmetries are compared to ordering heuristics and just one partial
assignment, we have eliminated the exponential rantime of the symmetry subset selection
algorithm. This has also given the advantage that symmetries do not need to be sorted
before starting search.

Most importantly of all though this has meant that Algorithm 4.9.1 is applicable to sym­

metry breaking systems with implicit representations. By only sorting symmetries during
search (as the symmetry breaking constraints are being posted) we can choose just the
constraints that aie most likely to prune the most seai'ch. Algorithm 4.9.1 is particularly
relevant to both the GHK-SBDS [GHK02] and STAB [Pug03] methods and would help
them solve problems with larger symmetry groups.

However, SBDD approaches are not looking for a good symmetry but a specific symmetry
that satisfies the condition of dominance. In this respect, the idea behind the symmetry
subset selection algorithm could possibly be used to try to find a symmetry that is more
likely to find dominance. At this time though, the best methods for performing PSB with
SBDD techniques aie those described in Chapter 4.6

4.11 Conclusions and Future Work

In this chapter we have looked at the effect of breaking less symmetry than is possible. We
defined the term partial symmetry breaking (PSB) and gave an overview of the many past

C h a p t e r 4 . P a r t i a l S y m m e t r y B r e a k i n g 106

examples of PSB. We have constructed experiments that illuminate the behaviour of run­
times when solving problems with all, some or no symmetries broken. These experiments
have shown that while breaking all symmetry can improve runtimes, we can solve prob­
lems even quicker by breaking a fraction of all available symmetry. The experiments also
showed that different subsets of symmetries with the same size can produce very different
runtimes.

These observations led us to try to explain why some symmetries work better than others
when performing PSB. We looked at the possibilities of certain symmetries performing
well, or patterns in successful subsets of symmetry. We then reasoned that a symmetry
performs well by pmning large amounts of the search tree. The amount pruned is calculated
by the symmetry, the failed nogood, and the variable and value ordering heuristics.

After realising why some symmetries are better than others, we constructed an algorithm
to sort symmetries in order with respect to how well they will work with a specific (static)
ordering heuristic. The effectiveness and the reasoning behind this algorithm was then
shown to be correct by bettering our previous best results experimentally. The algorithm
was altered to be more tractable and resulted in further reduced runtimes of constraint
solving, even when combined with the mntime for sorting the symmetries.

The main contributions of this chapter therefore are threefold:

1. We have shown how most of the symmetry breaking it is possible to do can be done
with a small subset of all possible symmetries

2. For constraint programmers wishing to use PSB in their experiments, we have de­
scribed many different methods of performing PSB.

3. When selecting a subset of symmetries to use to perform symmetry breaking (either
before search or during search) we have provided an algorithm to allow constraint
programmers to find the symmetries that will prune the most search. In an exper­
iment using 8,000 symmetry breaking functions, the algorithm chosen symmetries
reduce runtime by a factor of 11 (including the runtime of the algorithm itself) com­
pared with 8,000 randomly chosen symmetries.

C h a p t e r 4 . P a r t i a l S y m m e t r y B r e a k i n g 107

Though we have a much clearer understanding of why PSB works well, we should continue
to research this area as many constraint programmers do not utilise PSB to its full potential.

4.11.1 Unknown or Dynamic Heuristics

Since we have shown that breaking a set of symmetries can work well with respect to a
certain heuristic, any ordering of symmetries to perform PSB using Algorithm 4.8.1 will
require a static ordering heuristic that is known in advance. This is a large restriction
to place on constraint solving since dynamic variable ordering heuristics can be used to
dramatically reduce run-times. In this case, one should examine where the greater overhead
would be i.e. using a non-dynamic heuristic or by breaking symmetries that do not prune
as well as others. For exponentially symmetric problems, the difficulty in solving these
problems comes from the symmetry and one could arguably say that breaking the right
symmetries is more important.

However, a compromise could be achieved by combining parts of both methods. If the
symmetry subset selection were to be done during search and the dynamic variable order­
ing heuristic is known, it is always possible to find the next variable to be instantiated.
Secondly, the list of the next variables to be instantiated could be estimated based on both
dynamic variable ordering heuristic and the current state in search. How this would perform
in practice however is unknown.

4.11.2 Finding Subsets that break all Symmetry

By lexicographically ordering an array of variables, we can eliminate freely interchange­
able variable symmetry. We can also eliminate freely interchangeable value symmetry with
a polynomial subset of all symmetries [BW99]. It would be interesting if there are other
interesting classes of symmetry that can be completely broken with a subset of all symme­
tries.

More interesting v/ould be to learn how to apply any new findings to complex groups made
from direct or wreath products of other groups. It looks most likely that to break all sym­
metry, we may not be able to use a small subset of symmetries. The only example of a
small subset of symmetries breaking all symmetries of a CSP was found by Smith [MS02].

C h a p t e r 4 . P a r t i a l S y m m e t r y B r e a k i n g 108

4.11.3 Optimal PSB point

The experiment involving the alien tiles problem (See Chapter 4.5.2) showed that there is a
point where the runtime of solving a CSP is minimised. At this point, trying to break more
symmetry produces little extra pruning and increases the overall mntime. Breaking fewer
symmetries reduces the pmning too much and again increases the mntime.

Though it has been possible to show which symmetries it is preferable to use when perform­
ing PSB, we do not know how many symmetries we should break. The only conclusion we
can state is that this number of symmetries is generally a small percentage of all available
symmetries.

4.11.4 Integration of Symmetry Subset Selection into Symmetry Break­
ing Systems

By far the most important piece of future work that should be undertaken is the integration
of the dynamic symmetry subset selection algorithm in a state of the art symmetry breaking
system such as GHK-SBDS or STAB.

Much of the reseai’ch into symmetry breaking in constraint programming has delivered very
elegant and impressive reductions in the mntimes of CSP solving for highly symmetric
problems. However, many of the advancements possible are mutually exclusive. This is
not the case with PSB. Even though the performance of most modern symmetry breaking
systems relies heavily on PSB, by breaking the right symmetries, the performance can be
improved further.

Only by considering all aspects of the symmetry breaking system, can we produce con­
straint solvers that can solve problems with a super exponentially large number of symme­
tries.

Chapter 5

Symmetry and Propagation

By using knowledge of the symmetry that exists in certain problems, we can find solutions
with less computation. There have been many different methods of dealing with symme­
try, that have been used with great success. Though much research has looked at reducing
redundant search^ there has been no work into redundant propagation. In this chapter, we
argue that we shouldn’t just use symmetries to avoid redundant search but to also avoid
redundant computation. We use this ethos of re-using learned information to modify a
popular arc consistency algorithm and significantly reduce the amount of redundant com­
putation.

5.1 Introduction

Previous methods of utilising symmetry in CSPs have always involved trying to break it.
This can be done by affecting the search routine directly e.g. SBDD informs the constraint
solver when to backtrack [FSSOl]. We can also effect the solver indirectly by adding
additional constraints [FFH'*‘02] [GSOO] or by using heuristics that try to avoid subtrees
where symmetry is prevalent [MTOl].

Constraint solving however is a balance between search and inference. There are various
levels of consistency that can be maintained while searching for a solution e.g. bounds con­
sistency, forward checking, arc consistency, path consistency. There are many algorithms
for enforcing these levels of consistency, most notable are the arc consistency (AC) algo­

109

C h a p t e r 5 , S y m m e t r y a n d P r o p a g a t io n 110

rithms (e.g. AC-3 [Mac77], AC-6 [BC93], AC-7 [BFR95], AC-2000, AC-2001 [BROl])
that enforce AC on binary CSPs. Though AC-6++ [BR95] makes use of the fact that “con­
straints are symmetric”, this is a specialised case for AC-6 where, A provides support for
B iff B provides support for A. This is different from the type of symmetry discussed in
this thesis.

There are also algorithms for generalised arc consistency (GAC) for non binary constraints
e.g. GAC-Schema [BR97]. Popular global constraints (such as all different [Reg94], or lex
constraints [FHK+02]) have specialised algorithms to enforce GAC efficiently.

In this chapter, we show that symmetry in CSPs has a wider effect than just on search. We
show that as well as developing systems which re-use nogoods to avoid symmetric search,
we can re-use any information gathered about a CSP. By doing so, it is hoped that constraint
programmers will look at automating methods of generating and using symmetric variants
of information gathered while solving CSPs.

We begin this work by looking at propagation algorithms, and try to use our knowledge of
symmetry to reduce the runtime and/or computation of such algorithms when dealing with
symmetric CSPs.

5.1.1 Definition of Symmetry

Before continuing further, we shall refine the definition of symmetry for illustrative pur­
poses.

Definition 5.1 Given a CSP L, a symmetry o f L is a bijective function f : A ~ ^ A where A
is some representation o f a state in search e.g. a list o f assigned variables, a set o f current
domains etc., such that the following holds:

1. Given A, a partial or fu ll assignment ofL, (A |= r) (/(A) \= r).

2. Similarly, \A ^ r) (/(A) ^ r).

where r can be a specific condition that a state o f a CSP can satisfy e.g. arc consistent,
satisfiable, etc.

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 111

The central ethos behind this new definition is that we no longer think about symmetric
nogoods but rather symmetric work. Anytime any reasoning or computation is done in a
symmetric CSP, we should look at how we can take advantage of it. The significance of this
is that before, where we considered symmetries behaving identically in terms of nogoods,
we can consider them identical in terms of anything else we can model. Previous research

was concerned with reusing information on nogoods to affect search.

As a preliminary step of extending our new definition of symmetry in CSPs, we now look
at consistency, more specifically arc consistency. Recall from Definition 2.2 that a binary
CSP L is arc consistent if all the constraints in L are arc consistent. A binai y constraint (7^
is arc consistent iff:

1. Vu G 36 G s.t. (d, 6) G Cij

2. Vb G 3u G jD (A ^) s.t. (u, 6) G Cij

By re-using our knowledge of symmetry in CSPs we can either hope to enforce arc consis­
tency with less computation or perhaps enforce a higher level of consistency.

5.2 levels of Consistency

By using symmetry to avoid symmetric nogoods, we generally add some constraint to the
problem that causes the constraint solver to backtrack earlier than it would by dealing with
the constraints of the original CSP. Thus, less search is performed. If we are to look at
using symmetry to avoid redundant work in consistency algorithms, we need to consider
whether or not we take less time computing a consistent state or we create new constraints
that enforce a higher level of consistency than is possible with the original constraints of
the CSP.

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 112

5.2.1 An example modification

Algorithm 5.2.1: reviseC ,̂ V̂)

delete false
for each x e D{Vi)

(i£ { ^ y e D{Vj) I {Vi = X AVj = y) is consistent }

then ^ ^

[^delete f— true
return {delete)

Algorithm 5.2.2: AC-1 ()

repeat
change false
for each G Q

do change <— REVISE(V^, Vj) V change
until -^change

Algorithm 5.2.2 contains the pseudocode for the AC-1 algorithm where Vi is the variable
of the CSP and D{Vi) is its domain. The idea behind the AC-1 algorithm is that for every
pair of variables Vi and Vj, we use the revise function (Algorithm 5.2.1) to remove values
from the domain of Vi that have no support. In doing so, we discover assignments that
cannot participate in a solution based on the current domains of vai’iables. It should also be
possible to rule out the symmetrically equivalent assignments that are nogood. Based on

this observation, we propose a modification to the revise function as is shown in Algorithm

5.2.3.

do <
then <

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 113

Algorithm 5.2.3: SYMMETRIC_REVISE(%, Vj)

delete false
for each x e D{Vi)

i f { ^ y e D{Vj) I {Vi = X A V j = y) is consistent}
comment: G is the group of symmetries of the CSP

comment: A is the current set of assignments made

for each g e O r b i t (G , A A V = x)

do g{A) => g{Vi ^ x)

 ̂delete <— true
return {delete)

The level of consistency enforced by this algorithm is dependent on the group we choose
to use. If the group we use in Algorithm 5.2.2 is the group that stabilizes the current set of
assignments i.e. \fg ^ G, g {A) — A and therefore g {A) is true, then we will enforce arc
consistency.

If the group we use in Algorithm 5.2.2 is the group that represents the symmetries of the
problem i.e. g {A) may be satisfied, false or unknown, then we will enforce arc consistency

and add extra constraints to the solver. If g {A) is false, the generated constraint can be
discarded. If g {A) is true, the resulting unary constraint would have been generated by the
AC algorithm and added at a later stage of computation. If g {A) is unknown i.e. it could
be satisfied later, then the resulting constraint can be added to the solver. These constraints
may help the solver to backtrack earlier or prune more branches of search. In this case we
can say that we have enforced a higher level of consistency.

5.3 Modifying an existing AC algorithm

Though the above algorithms are correct if the symmetries used satisfy Definition 5.1,
we will initially look at modifying AC-2001, the simplest encoding of an AC algorithm
with the optimal lower bound of 0 {ed?) time and 0 {ed) space where e is the number of
constraints and d is the size of the largest domain. At this stage, we will try to modify the
algorithm so that it still enforces AC and not AC as well as constructing symmetry breaking

C h a p t e r 5 , S y m m e t r y a n d P r o p a g a t io n 114

constraints.

As detailed in Chapter 5.1.1, the main ethos of the new way of looking at symmetry in CSPs
is to identify the information gathered and re-use it. There are two types of information
gathered during the computation of AC-2001.

1. Discovering inconsistent assignments.

2. Finding support for a particular assignment.

Finding and eliminating inconsistent assignments is the main task of AC algorithms. Con­
sider an assignment Va = b. This is can be shown^ to be (in)consistent by first assuming
that Va = bis tine. Then every variable 14, that is constrained with 14 is examined to see
if there exists a domain element t/ G 1 4 such that the current set of assignments combined
with Va = b and Vx = y does not violate the constmint Cax- If no such domain element
exists, Va = bis inconsistent with the current state in search and therefore b can be removed

from the domain of 1 4 .

AC algorithms need to consider assignments such as 14 = 6 more than once. Rather than
examine the domain of vaiiable that is constrained with 1 4 , we can record assignments
Vx = y that do not violate any constraints when considered with the current state in search
and Va = b. The assignment Vx = y is said to act as support for the assignment Va = b.
Recording support assignments (such as 14 = y) is useful since all we need to do when
proving 1 4 = 6 is consistent w.r.t. Cax is check to see that y is still in the domain of 1 4 -
If y has been removed from the domain of 14 then we must seai'ch for the next support
for 14 = b. Using support assignments when enforcing AC greatly reduces the number of
constraint checks needed by the AC algorithm.

Thus we will re-use these gathered data like so:

1. Forbid the orbit of inconsistent assignments under the stabilizing subgroup of the
current state. If we wished to introduce symmetry breaking constraints, we could

^This method of achieving arc consistency is not how AC algorithms work in practice. It is merely

presented as an example.

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 115

construct constraints (as SBDS does) using symmetries where the symmetric equiv­
alent of the current state in search is not guaranteed to be true.

2. When we find support, we actually find two assignments that support each other. By
taking the orbit on tuples of these two assignments we find other support assignments.

Once we find an inconsistent domain value, we can remove it since it is guaranteed to vio­
late some constraint if instantiated. The same is true of its symmetric equivalents, therefore
we can remove all the elements (assignments) of the orbit of this domain value. Note that
the symmetric variants of the original inconsistent assignment would be discovered by the
AC algorithm before it terminates. Here we remove it with the hope of reducing the number
of constraint checks needed.

Though the information we re-use in step two appears to be straightforward, there is an ex­
tra condition that support assignments must meet for AC-2001. When we look for support,
AC-2001 stipulates that we must use the lexicographically smallest^ domain element as the
support assignment. This condition coupled with bookmai’king the last known support for
an assignment means that we only search through a domain at most once.

However, symmetries that permute the domain elements of variables have destructive ef­
fects on the static lexicographic domain ordering. This makes it impossible to re-use sup­
port for symmetries that effect domain elements. If however, the symmetiies of the problem |
permute just variables then it is possible to re-use support in the following way. j

Theorem 5.1 Assume we are given assignments X i = x and X j ~ y where X i = x pro-]
vides support fo r X j = y with respect to constraint Cij. I f Xi = x is the lexicographically I

1
least support fo r X j — y, we can say that the smallest support fo r g{Xj — y) is g{Xi = x) j
i f g does not affect the ordering o f the domain elements. |

ti
P r o o f : If we discover support X i = x for assignment X j — y with respect to constraint |

Cij, we must infer what this means for the other domain elements of 7Q. |

Xi = X is the smallest support for X j ~ y with respect to the lexicographic ordering which |
!

means that i

^Although any other consistent static ordering could be used.

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 116

^ x ' such that x' < x A {Xi = x' A X j = y) Ç. Cij

Since g does not affect the ordering of the domains, we can say that the symmetric equiva­

lent is also true.

^ x ' such that x' < x A {g{Xi) = x' A g{Xj) = y) e g{Cij).

If g{Xj) = y doesn’t have support with respect to Cij i.e. the algorithm has not finished the
first iteration of all of the domain elements, then we can say that the smallest support for

= 2/ is

If g{Xj) = y already has support with respect to Cij, we can reason that it is no longer
a valid support since it will be lexicographically less than g{Xi) = x which violates the
above condition, thus we can say that support for g{Xj) = y is g{Xi) = x. We know that
the support must be lexicographically less than g{Xj) — y since X j and g{Xj) are in the
same orbit. If the last support for g{Xj) is the same or larger than the new support for Xj ,

then this is a contradiction since being in the same orbit means that X i — x would already
have been discarded by stating g~^{g{Xi)) = x', where x' > x, is the smallest valid support
for X j ~ y . ■

We assume that the constraint programmer produces a group representing the symmetries
of the problem prior to search. This group can then be used by the modified AC algorithm.
In order to maintain AC during search, we need to note that the symmetries of the problem
change as assignments are made. Anytime a search decision is made e.g. variable X i ~ j ,

or variable Xy ^ z, we must take the stabiliser of these decisions. In this chapter we
are taking the pointwise stabiliser rather than the setwise stabiliser of decisions. This will
result in the group tending toward the identity element during search sooner but allows for
cheaper group theory computations.

5.3.1 Refining AC-2001

Algorithm 5.3.1, 5.3.2 and 5.3.3 contain pseudocode based on the AC-2001 [BROl] algo­
rithm developed by Bessière and Régin. The time and space complexity for this algorithm

is optimal: 0 {e(f) and 0 {ed) respectively.

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 117

Essentially, AC-2001 enforces AC by making every constraint Q G L to be arc consis­
tent. This is done by looking for support for every potential assignment in the CSP. The
first support assignment X j — b is stored for every assignment Xi = a. In this case
L A S T { X i , a, Xj) = b. Support is searched for incrementally i.e. if X j = b is no longer a
valid support for X i = a then we will only look for elements in the domain of X j that are
lexicographically later than b. If at any point we cannot find support for any given assign­
ment X i = a, then a is removed from the domain of X i and Vj Cij is placed in a queue to
be made arc consistent again.

Algorithm 5.3.1: M a in (A ’)

Q
for each X i e A

for each X j such that Cij G C

do <

R 4- S y m m e t r i c R e v i s e 2 0 0 1 {Xi, Xj)

for each X^ E R

' ' i f D %) = 0
do < then return {false);

return (S y m m e t r i c P r o p a g a t io n 2 0 0 1 (Q));

Algorithm 5.3.2: S y m m e t r i c P r o p a g a t io n 2 0 0 1 (Q)

while Q ^ 0
p ick X j from Q;
for each Xi such that Cij G C

' R < - S y m m e t r i c R e v i s e 2 0 0 1 {Xi, Xj)

do < for each Xk E R

pfD%) = 0
do < then return (/a^5e);

return {true);

do <

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 118

Algorithm 5.3.3: Sym m etricRev ise200 1 (Xi, X j)

C H A N G E ^ 0;
G 4— group a c tin g on CSP;
for each Vi G D(Xi)

' i f LAST(X i , Vi , Xj) ^ D (X j)

if G D { X j) / v j >d EAST(Xi ,Vi ,Xj) l \Ci j (vi ,Vj)
LAST(Xj, A j) 4— Vj\

if G a c ts on variab les

^ 4 - O R B iT (G , (X j , Uj)]);

then ̂ for each [(X y, Vy) , (X%, v^)] G S

do L A ST (X y, Vy, Xz) 4— Vz',
do <

then <

then <

else

O ^ O RBIT(G , (X ^,t;i))

for each (X ,̂ G G
I remove Vk from D(Xk);

do
\C H A N G E 4- CH ANG E\j{Xk};

return {CHANGE);

The main changes to AC-2001 involve taking the orbit of inconsistent domain elements
and support domain elements and re-using them. As a consequence, the Algorithm 5.3.3
doesn’t return a boolean indicating whether or not the domain has been reduced, but rather
a set of variables whose domain have been reduced. Notice how in Algorithm 5.3.3, if we
find support then that support is re-used. If we cannot find support and we delete a domain
element then that information is re-used to make more deletions.

5.4 Experimental Results

For the experiments, a simple backtracking binary constraint solver was implemented in
Java. This solver takes instances from the model B [GMP+01], random binary CSP gener­
ator [FBDR96].

^Thanks to Christian Bessière for helping to verify its correctness.

1
C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 119

Original AC-2001 Java AC-2001
#ccks time #ccks AC del. time

<150, 50, 50 0 ,1250> 100,010 0.05 99,968 0 1.38

<150, 50, 500, 2350> 487,029 0.16 478,062 3,224 7.78

<150, 50 ,500 ,2296> 688,606 0.34 677,886 3,038 11.32

<50, 50,1225,2188> 1,147,084 0.61 1,114,781 1,255 18.05

Table 5.1: Results of compaiing the original implementation by Bessière and Régin with
the new Java implementation.

To give an idea of how it measures against the original implementation of the AC-2001
algorithm, the experiments from [BROl] were re-created (see Table 5.1, which records
the number of constraint checks taken, the mntime and the number of deletions by the
AC algorithm). As in [BROl], 50 instances were generated and the mean values were
calculated. The mntimes of the Java implementation seem to be worse, though roughly
consistent across instantiations, than the original implementation. Also, the number of
constraint checks is similar. All experiments were mn on an Athlon XP 2200 1.8GHz
processor with 512Mb of RAM.

The main problem for the applicability of using propagation in AC algorithms is that the
most symmetric problems that interest the symmetry in constraint programming commu­
nity contain n-ai'y constraints. Such constraints cannot be dealt with by a binary AC algo­
rithm such as is presented here.

The ideal problem for these experiments is a highly symmetric problem with a direct binary
CSP model i.e. not one that needs a dual or hidden variable encoding [SW99], and where
the symmetries act on variables as this would allow us to re-use support. Finding latin
squares is such a problem. A latin square is an n x n grid of numbers from 1 to n such that
each number can only appear once in each row and column. In this problem, we can freely
permute the rows and columns as well as inverting around a diagonal thus giving a total of
2m)? symmetiies.

The results for enforcing AC on an uninstantiated instance of a latin square problem are
presented in Table 5.2. Since the problem is uninstantiated (unlike when we are searching

for a solution), it is trivial to calculate the size of the orbit before computing the orbit
itself. This allows us to implement the orbit finding algorithm very efficiently. The latin

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 120

AC-2001 Modified AC

n #con. checks runtime size of group #con. checks runtime

15 100,800 0 .2 9 3 .4 X 1 0 ^ 16 0 .33

16 130,560 0.35 8 .8 X lÔ G 17 0 .4 6

17 166,464 0.44 2 .5 X 1 0 ^ 18 0.66

18 2 0 9 ,3 0 4 0 .6 4 8 .2 X 10^^ 19 0.66

19 259,920 0.79 2 .6 X 1 0 ^ 20 0 .83

20 3 1 9 ,2 0 0 0.94 1.2 X 10̂ "̂ 21 1.02

21 3 8 8 ,0 8 0 1.13 6 .2 X 10^^ 2 2 1 .27

22 467,544 1.59 2 .6 X 10^2 23 1.62

23 558,624 1 .8 7 1 .3 X 10"̂ ^ 24 1 .89

24 662,400 2.10 7 .7 X 10^7 25 2 .29

25 7 8 0 ,0 0 0 2 .7 8 4 .8 X 1 0 ^ 26 2 .82

26 9 1 2 ,6 0 0 3 .2 2 3 .3 X 10^^ 27 3 .60

Table 5.2; AC on uninstantiated latin squares. The predicted number of constraint checks
is produced experimentally.

n fails
AC-2001
#ccks AC del. time fails

Modified AC
#ccks AC del. time

3 0 623 5 0.02 0 324 5 0.07
4 0 3,371 9 0.06 0 1,550 9 0.13
5 4 13,432 24 0.07 5 5,743 23 0.17

6 8 41,003 40 0.13 8 14,696 40 0.29
7 55 140,454 110 0.38 55 54,141 ' 110 0.86

8 0 198,073 63 0.62 0 54,128 63 1.28

9 95 601,669 309 2.76 101 203,451 303 4.66

10 408 2,097,243 734 12.11 409 720,123 733 16.93
11 1,277 6,785,424 3,602 48.46 1,290 2,723,297 3,607 64.49

12 5,208 49,502,231 8,654 266.21 5,208 10,412,996 8,654 348.03
13 38,209 416,371,008 72,967 2466.16 38,232 100,507,570 72,942 3316.85

Table 5.3: Maintaining AC while searching for the first solution.

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 121

squares problem is underconstrained and as such no domain removals are made. Ensuring
the problem is arc consistent means just finding support for each assignment. For each
variable (of which there are n^), there are 2(n — 1) arcs i.e. variables they are constrained
with. For each arc, n -h 1 checks are required to find support for all domain elements. Thus
you can see how for an n x n latin square, enforcing arc consistency takes 2n^(n^ — 1)
constraint checks. However, for the modified algorithm, once it has been shown that one arc
is arc consistent, we can infer via the symmetry of the problem that all arcs are consistent.
So for an n X n latin square, enforcing arc consistency takes n + 1 constraint checks.

The results for maintaining arc consistency while searching for a solution (MAC) are shown
in Table 5.3. In this experiment we recorded how long it took to find the first solution to
the latin squaies problem, as well as the total number of constraint checks and domain
deletions. At every node in search we used the AC algorithm to prune inconsistent domain
elements. No data is shared between nodes so support is found from scratch with every
invocation of the AC algorithm.

Disappointingly, the runtimes have not improved by re-using information. This is because
the runtime of the algorithm for finding the pointwise orbit of two points outweighs the
benefit of a reduced number of constraint checks. The complexity of an efficient orbit
finding algorithm is 0{\orhit\ x g) where g is the number of generators of the group. In
retrospect, it is hard to improve an algorithm that has a low quadratic complexity.

Though the runtimes are not promising we manage to reduce the number of constraint
checks by over a factor of 4 for MAC and by a factor of over 10,000 for AC, A more detailed
look at the complexity of this algorithm would be interesting to show whether or not it could
be worth using in other cases. It is hoped that more constrained problems or problems with
more expensive constraint checks would be improved with inference algorithms that take
symmetry into account.

5.5 Conclusions and Future Work

In this chapter we proposed ways in which symmetries in CSPs can be used to make the
most of gathered information. We presented a modified version of the AC-2001 algorithm
which was shown to drastically reduce the number of constraint checks needed to enforce

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 122

AC on a highly symmetric problem. Most importantly though, we have shown that the
effect of symmetries in combinatorial search problems stretches further than just search

and we can use this fact to avoid redundant work wherever it occurs.

This is the first step into a research area with huge potential. Though the runtimes were
disappointing, the large reduction in the number of constraint checks demands further re­
search (especially into symmetric problems with expensive constraint checks). There are
many paths this research could take from here.

5.5.1 Improvements to GAC algorithms

The time complexity for GAC-Schema [BR97] is 0{edf) which makes the algorithm im­
practical for large k. Many global constraints act on all the variables in the CSP which can
make enforcing GAC more computationally expensive than actually solving the CSP.

If we consider that it takes polynomial effort to find support in AC algorithms, and poly­
nomial effort to find symmetric variants of support assignments, we can see how using
symmetry might not reduce run-times. However, for non-binary constraints, finding sup­
port takes exponential effort with respect to the arity of the constraints. Finding symmetric
variants of a set of k support assignments, is not exponential. Thus, re-using support and
domain removals in GAC-Schema may result in a practical algorithm for general non­
binary constraints in highly symmetric CSPs.

5.5.2 Support for value symmetry

For true generality we need to be able to re-use support with symmetries that act on values
as well as variables. This could be overcome by using a different AC algorithm other than
AC-2001 that does not need lexicographically ordered domains. A possible solution to this
is to record the symmetry used when re-using support to show what the re-ordered domain
looks like.

C h a p t e r 5 . S y m m e t r y a n d P r o p a g a t io n 123

5.5.3 Use of larger subgroups to enforce higher levels of consistency

The work earned out in this thesis contained very strict restrictions when creating sub­
groups of symmetries. By ensuring the group we dealt with stabilized both positive and
negative decisions, we enforced the same amount of consistency as a non-symmetry break­

ing AC algorithm.

By stabilizing just the positive decisions we conjecture that the modified AC algorithm
would post the unary constraints that SBDS would post. This would achieve a higher level
of consistency. It may also be possible to construct constraints like those posted by SBDS
that would forbid future decisions that are inconsistent as suggested by Algorithm 5.2.3.
This future work would require a theoretical evaluation to ensure that it is a valid method
of breaking symmetry and does not delete consistent assignments.

5.5.4 Concise representations of constraints using group theory

Rather than describing symmetric constraints explicitly, it should be possible to introduce
a new data type that consists of a constraint and a group. To use the latin squares problem
as an example, the constraint would be all different on any one row or column. The group
would be the one described in Chapter 5.4.

As well as being able to describe CSPs more easily, we could employ the ideas in this
chapter to the ^^-consistency algorithm [Coo89]. Not only would we be able to reduce the
run-time of this algorithm by using knowledge of symmetiy, we would be able to reduce
the space complexity by concise representations of the exponential number of constraints
produced by the A;-consistency algorithm.

This would involve much research into providing mechanisms for propagating implicit
constraints effectively. The potential benefits however are very important in our goal of
significantly reducing the time needed to solve highly symmetric problems.

Chapter 6

Conclusions and Future Work

There are many difficult problems that need practical methods of solving them. One such
method for solving combinatorial search problems is constraint programming. This method
of problem solving focuses on developing superior constraint solvers. Constraint satisfac­
tion problems (CSPs) are described in general ways which means one constraint solver can
be used to solve many different and complex problems. We arrive at a state where problems
are easy to express, and efficient to solve.

Symmetries are commonplace in the real world. The structure we place on physical objects
helps us to reason with them more easily. Symbolical artificial intelligence requires objects
to be labelled explicitly, and thus they are naïve to the inherent symmetries that exist in
the problems they are solving. This lack of awareness of symmetry causes redundancy in
solving constraint satisfaction problems.

In some areas of computer science, some redundancy may be acceptable. The exponential
complexity of solving NP-complete problems however, means that the methods employed
must be as efficient as possible. Thus if we are to use constraint programming to solve
problems with symmetry, we must develop efficient methods of utilising the symmetry.
Indeed, without considering the symmetry of certain problems, they become impossible to
solve in a reasonable time.

There are many subtle aspects of how symmetry affects solving CSPs. Similarly there exist
many ways of breaking symmetry in CSPs. In this thesis we investigated various ways in
which breaking symmetry while using constraint programming could be improved. This

124

C h a p t e r 6 . C o n c l u s i o n s a n d F u t u r e W o r k 125

involved looking at many of the diverse problems that symmetrical CSPs introduce.

6.1 Contributions

We now recount the achievements of this thesis. To each problem encountered, we describe
how we bettered the current research.

6.1.1 Implementation of Symmetry Breaking Systems

The way we describe problems using constraint programming is separate to way the com­
puter solves them. That is, a constraint programming language is made up of an interface
for describing models and constraints, and also a hidden set of algorithms that perform
backtrack search and maintain consistency etc. In a similar way, the way we describe the
symmetries of CSPs should be kept seperate to the way in which they are broken. By do­
ing so we hope to create symmetry breaking systems that easy to use. Currently, there is
only one implementation of a symmetry breaking system included with a constraint solver
[WNS97]. As the research into symmetry breaking in constraint programming matures, we

will see more constraint solvers including symmetry breaking systems.

In this thesis (Chapter 3.1) we critiqued the advantages and disadvantages of previous sym­
metry breaking methods from the point of view of the constraint programmer. We then
listed the ideal requirements for future implementations of these systems. This is an ex­
tremely important step it we wish to see symmetry breaking techniques being used by the
wider constraint community.

6.1.2 Concise Representation of Symmetries

Prior to the research in this thesis (Chapter 3.2), all generic symmetry breaking techniques
for constraint programming required an explicit representation of symmetries. We intro­
duced the symmetry breaking system U-SBDS which uses group theory to represent sym­
metries concisely by only listing a generator set of symmetries (Chapter 3.2). Apart from
Brown, Finkelstein and Purdom’s work [BFP96] we are not aware of any generic symmetry

"SI

C h a p t e r 6 . C o n c l u s io n s a n d F u t u r e W o r k 126

breaking method for backtrack search before this thesis.

Using the concise representation of symmetries that group theory gives makes the differ­
ence between being able to describe thousands of symmetries and being able to describe
millions of orders of magnitude more. Without this step forward, we would not be able to

deal with the amount of symmetry it is possible to today.

6.1.3 Analysis of Number of Symmetry Breaking Constraints

The symmetry breaking method SBDS [BW99] [GSOO] presented a general method of
adding constraints to the local subtree that would break a specific symmetry. The optimi­
sation in [GSOO] showed that symmetries that were guaranteed to be broken at a node in
search could be discarded from that subtree. We saw how using the orbit finding algorithm
to calculate the symmetries to break, drastically reduced the number of symmetries to con­
sider near the root of search. A result of this is a reduced number of symmetry breaking
constraints needed to break all symmetiy. This was also shown in [McDOl]. The research
in [GHK02] combined the first optimisation and a limited version of the second. In this
thesis we showed how many symmetry breaking constraints would be needed to break all
symmetry for specific groups and symmetry breaking methods (Chapter 3.2.2). We argued
(as in we did in [McDOl]) that a symmetry breaking system that used the intersection of
unique symmetries (Definition 3.1) with broken symmetries [GSOO] would be able to break
more symmetries than previous methods.

6.1.4 A Method for Describing Symmetries

It was shown that symmetry breaking methods either apply to specific symmetries or gen­
eral symmetries. For those systems that deal with specific symmetries, they can only be
used when the CSP they are dealing with has those symmetries. The symmetry breaking

systems that deal with general symmetries need a method of describing those symmetries.
Previously this has meant defining some permutation for each symmetry, writing another
CSP representing the symmetries of the original CSP, or writing a permutation group and
a method of translating from points to assignments and vice versa. We presented a method
for describing symmetries that provides three main advantages over any previous method

C h a p t e r 6 . C o n c l u s io n s a n d F u t u r e W o r k 127

(Chapter 3.5):

1. The symmetiy breaking method is hidden and thus the same description can be used
for different symmetry breaking systems.

2. By using descriptive words rather than groups or other CSPs, symmetries can be de­
scribed more easily. Thus it is more accessible to the average constraint programmer

unfamiliar with symmetry breaking.

3. Providing descriptions in general terms means that the symmetries scale for different
sized problems i.e. the symmetries are problem specific and not instance specific.

We implemented such a system, NuSBDS, gave example code and provided empirical evi­
dence.

6.1.5 Using Subsets of all Symmetry

We presented the first comprehensive study of breaking just subsets of symmetries i.e.
PSB. We analysed how breaking just a subset of symmetries altered the performance of
problem solving. Based on these experiments we noticed that not only is the number of
symmetries broken important but also which symmetries were chosen. By realising that
different subsets broke more symmetry than others we then looked at quantifying what
made a good subset of symmetries.

We reasoned that the good symmetries were those that produced symmetry breaking con­
straints that pmned the highest nodes of search. We then created an algorithm that ordered
symmetries based on this criterion.

We then provided empirical evidence of using this algorithm. With subsets of symmetry
generated by the symmetry sorting algorithm, we gained better results than already found
from the best random subsets found so fai’ (in the best case, a factor of 11 improvement).

C h a p t e r 6 . C o n c l u s io n s a n d F u t u r e W o r k 128

Many other symmetry breaking systems have the potential to be improved further by incor­
porating the results of this work into partial symmetry breaking.

6.1.6 Observed Redundant Computation

Though using the symmetry in CSPs can drastically reduce the size of the search tree we
traverse, no research has been undertaken to reduce other redundant computation. Since
constraint programming is, among other things, a balance of search and propagation, we
reasoned that symmetries could be used to avoid more than redundant search. This thesis
is the first research to look at other redundant computation.

In doing so, we look at a specific algorithm that contains redundant work. We recognise
the computation performed and also how it can be re-used to avoid redundant computation.

Although the mn-times of the particular' algorithm were not lowered by adding symmetry
breaking, this is just the first step in this new area. The central theme of this research can
be applied to other algorithms that perform redundant work. There is a great potential is
this respect for further improvements in solving symmetric problems.

6.2 Future Work

Most of the contributions to the area of symmetry in constraint programming presented in
this thesis can be extended further. By doing so we can produce more efficient and general
ways of solving CSPs with lai'ge amounts of symmetry.

6.2.1 Symmetry Breaking Implementations

We need to see more symmetry breaking systems being included in constraint solvers.
Thus far this has been a slow process. The main reason for is the complicated nature
of recognising and describing symmetries: currently a process mastered by generally just
symmetry researchers. Also, describing incorrect symmetries can lead to incorrect output.
This is a real problem for beginners in the field of symmetry breaking.

C h a p t e r 6 . C o n c l u s io n s a n d F u t u r e W o r k 129

Even if we were to find a guaranteed optimal method for symmetry breaking, it would be
hard to include it with current constraint solvers. More research is needed to look at how
difficult the average constraint programmer finds the task of recognising symmetry. We
also need a standard technique for describing direct and wreath products of symmetries

easily and correctly.

6.2.2 An improved version of SBDS

For an exponential number of symmetries, SBDS posts an exponential number of con­
straints. This overhead is the main reason for the upperbound on the number of symmetries
that can be broken for an SBDS-like symmetry breaking method. SBDD-like implementa­
tions have recently been the preferred method of breaking large amounts of symmetry since
they do not post any additional constraints to the solver. Even though the SBDD checks
take an exponential amount of time, the lack of an exponential memory requirement means
that they can break larger amount of symmetry.

However, the new symmetry breaking method STAB, posts symmetry breaking constraints
during search and yields good run-times in comparison to other methods. By reducing
the overhead and redundancy of SBDS further, it may be possible to create a symmetry
breaking method that can break a larger number of symmetry than any other. This can be
done by implementing a method of SBDS that contains the advantage of discarding broken
symmetries, posting unique constraints and possibly breaking the subset of symmetries that
provides the best pruning to overhead ratio.

6.2.3 Dynamic Partial Symmetry Breaking

Though an algorithm to perform symmetry sorting dynamically during search is provided
in this thesis, it has not been implemented. Such an implementation would theoretically
be able to handle large groups by breaking just the symmetries that would prune the most
search. Though the results of using sorted subsets of symmetries in this thesis are limited
to SBDS, it would be interesting and worthwhile to see if they could be employed to work
with other symmetry breaking systems.

C h a p t e r 6 . C o n c l u s io n s a n d F u t u r e W o r k 130

6.2.4 Avoiding more Redundant Computation

It is the area of avoiding redundant computation which yields the most unexplored avenues.
In this thesis we used the symmetries of a highly symmetric problem to drastically reduce
the number of constraint checks needed. However, the small computational complexity of

the original algorithm meant that there were no reductions in runtime.

The future work involves looking at some of the many other algorithms in constraint pro­
gramming that do not take advantage of the symmetries of CSPs. Algorithms with larger
complexities will most probably result in much enhanced performance by including sym­

metry breaking techniques.

Symmetries provide lots of benefits to the constraint programmer. We must ensure that in
future, we develop methods that allow us to take advantage of these benefits to solve our
problems as efficiently as possible.

Bibliography

[Agu93] Alfonso San Miguel Aguirre. How to use symmetries in boolean constraint
solving. In Frederic Benhamou and Alain Colmerauer, editors, Constraint
Logic Programming: Selected Research, pages 287-306. MIT Press, 1993.

[ARMS03] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving diffi­
cult instances of boolean satisfiability in the presence of symmetry. In IEEE
Trans, on CAD, vol. 22(9), pages 1117-1137. 2003.

[BC93] Christian Bessière and Marie-Odile Cordier. Arc-consistency and arc-
consistency again. In AAAI-93: Eleventh National conference on Artificial
Intelligence, pages 108-113, Washington, DC, 1993.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA algebra
system I: the user language. In Journal o f Symbolic Computation, volume 24,
pages 235-265. Academic Press, Inc., 1997.

[BCvW02] Fahiem Bacchus, Xinguang Chen, Peter van Beek, and Toby Walsh. Binaiy
vs. non-binary constraints. In Artificial Intelligence, volume 140, pages 1-37.
Elsevier Science Publishers Ltd., 2002.

[Ben94] Belaid Benhamou. Study of symmetry in constraint satisfaction problems. In
Alan Borning, editor. Principles and Practice o f Constraint Programming,
Orcas Island, Seattle, USA, 1994.

[BFP88] Cynthia Brown, Larry Finkelstein, and Paul Purdom. Backtrack searching
in the presence of symmetry. In Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, pages 99-110. Springer, 1988.

131

B ib l io g r a p h y 132

[BFP96] Cynthia Brown, Larry Finkelstein, and Paul Purdom. Backtrack searching in
the presence of symmetry. In Nordic journal o f Computing, pages 203-219.

Publishing Association Nordic Journal of Computing, 1996.

[BFR95] Christian Bessière, Eugene Freuder, and Jean-Charles Régin. Using in­
ference to reduce arc-consistency computation. In Fourteenth Interna­
tional Joint Conference o f Artificial Intelligence, pages 592-598, Montreal,

Canada, 1995.

[BPNOl] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based
Scheduling: Applying Constraint Programming to Scheduling Problems.
Kluwer Academic Publishers, 2001.

[BR95] Christian Bessière and Jean-Charles Régin. Using bidirectionality to speed
up arc-consistency processing. In M. Meyer, editor. Constraint Processing,
volume LNCS 923, pages 157-169. Springer, 1995.

[BR97] Christian Bessière and Jean-Charles Régin. Arc consistency for general con­
straint networks: preliminary results. In International Joint Conference o f
Artificial Intelligence, pages 398-404, Nagoya, Japan, 1997.

[BROl] Christian Bessière and Jean-Charles Régin. Refining the basic constraint
propagation algorithm. In International Joint Conference o f Artificial Intel­

ligence, pages 309-315, Seattle, WA, 2001.

[BS92] Belaid Benhamou and Lakhdar Sais. Theoretical study of symmetries in
prepositional calculus and applications. In D. Kapur, editor, CADE: Interna­
tional Conference on Automated Deduction, pages 281-294. Springer, 1992.

[Bur97] William Burnside. Theory o f groups o f finite order. Cambridge University

Press, 1897.

[But91] Gregory Butler. Fundamental Algorithms fo r Permutation Groups. Springer-
Verlag, 1991.

[BW98] Rolf Backofen and Sebastian Will. Excluding symmetries in concurrent con­
straint programming. In Modeling and Computing with Concurrent Con­

straint Programming, 1998.

B ib l io g r a p h y 133

[BW99] Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based
search. In Joxan Jaffar, editor, Principles and Practice o f Constraint Pro­
gramming, pages 73-87. Springer, 1999.

[Cay78] Arthur Cayley. On the theory of groups. In London Mathematics Society,
volume 9, pages 126-133.1878.

[CB02] Mats Carlsson and Nicolas Beldiceanu. Arc-consistency for a chain of lexi­
cographic ordering constraints. Technical Report Research Report T2001-18,
Swedish Institute of Computer Science, 2002.

[CF93] Gene Cooperman and Larry Finkelstein. Combinatorial tools for computa­
tional group theory. In Groups and Computation, volume 11, pages 53-86,

1993.

[CGLR96] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy.
Symmetry-breaking predicates for search problems. In Knowledge Repre­
sentation ’96: Principles o f Knowledge Representation and Reasoning, pages
148-159. Morgan Kaufmann, San Francisco, California, 1996.

[CHS+03] Andrew Cheadle, Warwick Harvey, Andrew Sadler, Joachim Schimpf, Kish
Shen, and Mark Wallace. ECL^PS^: An Introduction. Technical report,
IC-Parc-03-1, 2003.

[CLW99] B. M. W. Cheng, J. H. M. Lee, and J. C. K. Wu. Speeding up constraint
propagation by redundant modeling. In Constraints, volume 4(2), pages 167-

192. 1999.

[Coo89] Michael Cooper. An optimal k-consistency algorithm. In Artificial Intelli­
gence, Volume 41(1), pages 89-95. Elsevier Science Publishers, 1989.

[Cra92] James Crawford. A theoretical analysis of reasoning by symmetry in first-
order logic. In AAAI Workshop on Tractable Reasoning, pages 17-22, 1992.

[DdVCOS] Ivan Dotu, Alvai'o del Val, and Manuel Cebrian. Redundant Modeling for
the QuasiGroup Completion Problem. In F. Rossi, editor. Principles and
Practice o f Constraint Programming, pages 288-302. Springer, 2003.

B ib l io g r a p h y 134

[Dec90] Rina Dechter. Enhancement schemes for constraint processing: backjump-
ing, learning, and cutset decomposition. La. Artificial Intelligence, volume 41,
pages 273-312. Elsevier Science Publishers Ltd., 1990.

[DF99] Rina Dechter and Daniel Frost. Backtracking algorithms for constraint satis­
faction problems; a survey. Technical report, UCI Tech Report, 1999.

[Far02] Julian Faraway. Practical Regression and Anova in R. 2002. Available from
http://www.stat.lsa.umich.edu/Taraway/book/pra.pdf.

[FBDR96] Daniel Frost, Christian Bessière, Rina Dechter, and Jean-Charles Ré­
gin. Random Uniform CSP Generator, 1996. Available from
http://www.lirmm.fr/~bessiere/generator.html.

[FFH+01] Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel,
and Toby Walsh. Matrix modelling. Technical Report APES-36-
2001, APES Research Group, 2001. Available from http://www.dcs.st-

and.ac.uk/~apes/apesreports.html.

[FFH+02] Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel,
Justin Pearson, and Toby Walsh. Breaking row and column symmetries in

matrix models. In P. van Hentenryck, editor. Principles and Practice o f Con­
straint Programming, pages 462-476. Springer, 2002.

[FHK+02] Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh.
Global constraints for lexicographic orderings. In P. van Hentenryck, editor.
Principles and Practice o f Constraint Programming, pages 93-108. Springer,
2002.

[FL02] Maria Fox and Derek Long. Extending the exploitation of symmetries in
planning. In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso, editors.

Artificial Intelligence Planning Systems, pages 83-91, 2002.

[FMOl] Filippo Focacci and Michaela Milano. Global cut framework for removing
symmetries. In Toby Walsh, editor. Principles and Practice o f Constraint
Programming, pages 77-92. Springer, 2001.

[Fre91] Eugene Freuder. Eliminating interchangeable values in consti aint satisfaction
problems. In American Association for Artificial Intelligence, pages 227-

233, 1991.

http://www.stat.lsa.umich.edu/Taraway/book/pra.pdf
http://www.lirmm.fr/~bessiere/generator.html
http://www.dcs.st-

B i b l io g r a p h y 135

[FSSOl] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry break­
ing. In Toby Walsh, editor, Principles and Practice o f Constraint Program­
ming, pages 93-107. Springer, 2001.

[GAP03] The GAP Group, Aachen, St Andrews. GAP - Groups, Algorithms, and
Programming, Version 4.3, 2003.

[Gas79] J. Gaschnig. Performance measurement and analysis of search algorithms.
Technical Report CMU-CS-79-124, Carnegie Mellon University, Pittsburgh,

Pa., 1979.

[GenOl] Ian P. Gent. A symmetry breaking constraint for indistinguishable values.
In Piere Flener and Justin Pearson, editors, SymCon’Ol: Symmetry in Con­
straints, pages 25-32, 2001.

[GHK02] Ian P. Gent, Warwick Harvey, and Tom Kelsey. Groups and constraints:
Symmetry breaking during search. In P. van Hentenryck, editor. Principles
and Practice o f Constraint Programming, pages 4 15^30 . Springer, 2002.

[GHKL03] Ian P. Gent, Warwick Harvey, Tom Kelsey, and Steve Linton. Generic SBDD
using Computational Group Theory. In F. Rossi, editor. Principles and Prac­
tice o f Constraint Programming, pages 333-347. Springer, 2003.

[Glo89] Fred Glover. Tabu search - part i. In OSRA Journal o f Computing, volume

1(3), pages 190-206. 1989.

[GLSOO] Ian P. Gent, Steve Linton, and Barbara M. Smith. Symmetry breaking in the
alien tiles puzzle. Technical Report APES-22-2000, APES Research Group,

October 2000.

[GM03] Ian P. Gent and Iain McDonald. Symmetry and Propagation: Revising an AC
algorithm. In Barbara M. Smith, Ian P. Gent, and Warwick Harvey, editors.
Symmetry in Constraint Satisfaction Problems, pages 66-74, 2003.

[GMP+96] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and Toby
Walsh. An empirical study of dynamic vaiiable ordering heuristics for the
constraint satisfaction problem. In Eugene C. Freuder, editor. Principles and
Practice o f Constraint Programming, pages 179-193. Springer, 1996.

B ib l io g r a p h y 136

[GMP+Ol] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and Toby
Walsh. Random constraint satisfaction: Flaws and structure. In Constraints,
volume 6, pages 345-372. 2001.

[GMS03] Ian P. Gent, Iain McDonald, and Barbara M. Smith. Conditional symmetry
in the all-interval series problem. In Barbara M. Smith, Ian P. Gent, and War­
wick Harvey, editors, Symmetry in Constraint Satisfaction Problems, pages
55-65, 2003.

[Gol02] Eugene Goldberg. Testing satisfiability of CNF formulas by computing a
stable set of points. In Symposium on the Theory and Applications o f Satisfi­
ability Testing, pages 54-69, 2002.

[GPS02] Ian P. Gent, Patrick Prosser, and Barbara M. Smith. A 0/1 encoding of the
gaclex constraint for pairs of vectors. In W9 Modelling and Solving Problems
with Constraints, 2002.

[GSOO] Ian P. Gent and Barbara M. Smith. Symmetry breaking in constraint pro­
gramming. In W. Horn, editor, Proceedings o f ECAI-2000, pages 599-603.
lOS Press, 2000.

[GW99] Ian P. Gent and Toby Walsh. Csplib: a benchmark library for con­
straints. Technical report, APES-09-1999, 1999. Available from
http://www.csplib.org/.

[HarOl] Warwick Harvey. Symmetry breaking and the social golfer problem. In Piere
Flener and Justin Pearson, editors, SymCon’Ol: Symmetry in Constraints,
pages 9-16, 2001.

[HFPA03] Pascal Van Hentenryck, Pierre Flener, Justin Pearson, and Magnus Agren.
Tractable Symmetiy Breaking for CSPs with Interchangeable Values. In In­
ternational Joint Conference o f Artificial Intelligence, pages 575-580, Aca­
pulco, Mexico, 2003.

[HG95] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search.
In Chris S. Mellish, editor, IntemationalJoint Conference on Artificial Intel­
ligence, pages 607-615. Morgan Kaufmann, 1995.

1'

http://www.csplib.org/

B ib l io g r a p h y 137

[HKP03] Warwick Harvey, Tom Kelsey, and Kaien Petrie. Symmetry Group Expres­
sion for CSPs. In Baitara M. Smith, Ian P. Gent, and Warwick Harvey,
editors. Symmetry in Constraint Satisfaction Problems, pages 86-96, 2003.

[ILOOO] ILOG S.A., Gentilly, France. ILOG Solver, Version 5.0, 2000.

[JR97] David Joslin and Amitabha Roy. Exploiting symmetry in lifted CSPs. In
American Association for Artificial Intelligence, pages 197-202, 1997.

[Kiz04] Zeynep Kiziltan. Symmetry Breaking Ordering Constraints. PhD thesis,
Uppsala University, 2004.

[Kum92] Vipin Kumar. Algorithms for constraints satisfaction problems: A survey. In
The A I Magazine, by the AAAI, volume 13, pages 32-44. 1992.

[LJP02] Chu Min Li, Bernard Jurkowiak, and Paul W. Purdom. Integrating symmetry
breaking into a DLL procedure. In Symposium on the Theory and Applica­
tions o f Satisfiability Testing, pages 149-155, 2002.

[Mac77] Alan K. Mackwoith. Consistency in networks of relations. In Artificial In­
telligence, Volume 8 , pages 99-118. 1977.

[Mar03] François Margot. Exploiting Orbits in Symmetric ILP. In Mathematical
Programming, volume Series B 98, pages 3-21. 2003.

[McDOl] Iain McDonald. Unique Symmetry breaking in CSPs using Group Theory.
In Piere Flener and Justin Pearson, editors, SymCon’Ol: Symmetry in Con­
straints, pages 75-78, 2001.

[McD03] Iain McDonald. NuSBDS: Symmetry Breaking made Easy. In Barbara M.
Smith, Ian P. Gent, and Warwick Harvey, editors. Symmetry in Constraint
Satisfaction Problems, pages 153-160, 2003.

[McK98] Brendan D. McKay. Isomorph-free exhaustive generation. In Journal o f
Algorithms, volume 26(2), pages 306-324. 1998.

[MH86] Roger Mohr and Thomas Henderson. Arc and path consistency revisted. In
Artificial Intelligence, volume 28, pages 225-233. 1986.

B ib l io g r a p h y 138

[MR90] R. Mathon and A. Rosa. Tables of parameters of bibd with r<41 including
existence, enumeration and resolvability results: an update. In Ar.s Combina-
toria, volume 30. 1990.

[MS02] Iain McDonald and Barbara M. Smith. Partial symmetry breaking. In Pascal
van Hentenryck, editor. Principles and Practice o f Constraint Programming
- CP2002, pages 431-445. Springer, 2002.

[MTOl] Pedro Meseguer and Carme Torras. Exploiting symmetries within constraint
satisfaction search. In Artificial Intelligence, Vol 129, No. 1-2, pages 133-
163. Elsevier Science, 2001.

[Nad90] Bernard A. Nadel. Representation Selection for Constraint Satisfaction: A

Case Study Using n-Queens. In IEEE Expert: Intelligent Systems and Their
Applications, volume 5(3), pages 16-23. IEEE Educational Activities De­
partment, 1990.

[01186] Kathleen Ollerenshaw. On most perfect or complete 8 x 8 pandiagonal magic
squares. In Royal Society o f London, volume 407, pages 259-281. 1986.

[OR97] John O’Connor and Edmund Robertson. Augustin Louis Cauchy, 1997.

http://www-gap.dcs.st-and.ac.ukrhistory/Mathematicians/Cauchy.html.

[PB04] Steven Prestwich and Christopher Beck. Using pseudosymmetry to re­
duce search effort. Technical report, TR-01-2004, 2004. Available from
http://4c.ucc.ie/4cite/TR-01-2004.pdf.

[Pea03] Justin Pearson. Comma-free codes. In Barbara M. Smith, Ian P. Gent,
and Warwick Harvey, editors. Symmetry in Constraint Satisfaction Problems,
pages 161-167, 2003.

[PreOO] Steven Prestwich. An Informal Tutorial on Search Techniques in Constraint

Programming. In Workshop on Information Integration and Web-based Ap­
plications & Services, pages 105-121, 2000.

[PreOl] Steven Prestwich. First-Solution Search with Symmetry Breaking and Im­
plied Constraints. In Modelling and Problem Formulation - CP2001, 2001.

http://www-gap.dcs.st-and.ac.ukrhistory/Mathematicians/Cauchy.html
http://4c.ucc.ie/4cite/TR-01-2004.pdf

B ib l io g r a p h y 139

[Pre02] Steven Prestwich. Supersymmetric Modelling for Local Search. In Piere
Flener and Justin Pearson, editors, SymCon’02: Symmetry in Constraint Sat­
isfaction Problems, pages 21-28, 2002.

[Pro93] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. In

Computational Intelligence 9(3), pages 268-299. 1993.

[PS98] Les Proll and Barbar a Smith. Integer linear programming and constraint pro­
gramming approaches to a template design problem. In INFORMS Journal
on Computing, volume 10, pages 265-275. 1998.

[PS03] Karen Petrie and Barbara M. Smith. Symmetry breaking in graceful graphs.
Technical Report APES-56a-2003, APES, 2003.

[Pug93] Jean-François Puget. On the satisfiability of symmetrical constrained satis­
faction problems. In J. Komorowski and Z. W. Ras, editors. Methodologies
fo r Intelligent Systems: Proc. o f the 7th International Symposium ISMIS-93,
pages 350-361. Springer-Verlag, 1993.

[Pug02] Jean-François Puget. Symmetry breaking revisited. In P. van Hentenryck,
editor. Principles and Practice o f Constraint Programming, pages 446-461.
Springer, 2002.

[Pug03] Jean-François Puget. Symmetry breaking using stabilizers. In F. Rossi, ed­
itor, Principles and Practice o f Constraint Programming, pages 585-599.
Springer, 2003.

[RDGKL04] Colva M. Roney-Dougal, Ian P. Gent, Tom Kelsey, and Steve Linton.
Tractable symmetry breaking using restricted search trees. Technical Re­

port 2004/3, Centre for Interdisciplinary Research in Computational Algebra,
2004.

[Reg94] Jean-Charles Regin. A filtering algorithm for constraints of difference in
CSPs. In AAAI-94: Twelfth National conference on Artificial Intelligence,
pages 362-367, Seattle, WA, 1994.

[Reg96] Jean-Charles Regin. Generalized arc consistency for global cardinality con­
straints. In American Association fo r Artificial Intelligence, pages 209-215,
1996.

/J

B ib l io g r a p h y 140

[Roy98] Gordon R Royle. An orderly algorithm and some applications. In Discrete
Mathematics, volume 185, pages 105-115. Elsevier Science, 1998.

[RPD90] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of con­
straint satisfaction problems. In Luigia Aiello, editor, European Conference
on Artificial Intelligence, pages 550-556. Pitman, 1990.

[Sel03] Evgeny Selensky. A Reformulation of the Bridge Building Problem as Vehi­
cle Routing. In Alan Frisch, editor, Modelling and Reformulating Constraint
Satisfaction Problems, pages 132-142, 2003.

[Ser03] Akos Seress. Permutation Group Algorithms. Cambridge University Press,
2003.

[SG98] Barbara M. Smith and Stuart Grant. Trying Harder to Fail First. In H. Prade,
editor, European Conference on Artificial Intelligence, pages 249-253,1998.

[SLM92] Bait Selman, Hector J. Levesque, and D. Mitchell. A new method for solving
hard satisfiability problems. In Paul Rosenbloom and Peter Szolovits, editors,
AAAI-92: Tenth National Conference on Artificial Intelligence, pages 440-
446, Menlo Park, California, 1992. AAAI Press.

[Smi97] Barbara M. Smith. Succeed-first or fail-first: A case study in variable and
value ordering heuristics. In Practical Applications o f Constraint Technol­
ogy, pages 321-330, 1997.

[SmiOl] Barbara M. Smith. Reducing symmetry in a combinatorial design problem.
Technical Report Research Report 2001.01, University of Leeds, January
2001.

[Soi99] Leonard Soicher. On the structure and classifications of somas: Generaliza­
tions of mutually orthogonal latin squares. In Proceedings o f The Electronic
journal o f Combinatorics, page R32, Queen Mary and Westfield College,
London, UK, 1999.

[SteOl] Kostas Stergiou. Representation and Reasoning with Non-Binary Con­
straints. PhD thesis. University of Strathclyde, 2001.

B ib l io g r a p h y 141

[SW99] Kostas Stergiou and Toby Walsh. Encodings of non-binary constraint satis­
faction problems. In American Association fo r Artificial Intelligence, pages

163-168, 1999.

[vD82] Walther von Dyck. Gmppentheoretische studien. In Math. Annalen, vol­
ume 20, pages 1-44. 1882.

[vD03] Mai’c van Dongen. Lightweight arc-consistency algorithms. Technical report,
TR-01-2003, 2003. Available from http://4c.ucc.ie/4cite/TR-01-2003.pdf.

[vEJMT99] C. A. J. van Eijk, E. T. A. F. Jacobs, B. Mesman, and A. H. Timmer. Iden­
tification and Exploitation of Symmetries in DSP Algorithms. In Design,
Automation and Test in Europe, pages 602-608. IEEE Computer Society,

1999.

[Wal93] Richard Wallace. Why AC-3 is Almost Always Better than AC-4 for Es­
tablishing Arc Consistency in CSPs. In Ruzena Bajcsy, editor, International
Joint Conference on Artificial Intelligence, pages 239-245. Morgan Kauf­
mann, 1993.

[WNS97] Mark Wallace, Stefano Novello, and Joachim Schimpf. ECLTS^: A plat­
form for constraint logic programming. Technical report, IC-Parc, Imperial
College, 1997.

[ZYOl] Yuanlin Zhang and Roland Yap. Making AC-3 an Optimal Algorithm. In In­
ternational Joint Conference o f Artificial Intelligence, pages 316-321, Seat­
tle, WA, 2001.

http://4c.ucc.ie/4cite/TR-01-2003.pdf

Appendix A

Glossary

AC - Arc Consistent (or Arc Consistency depending on the context)

CSP - Constraint Satisfaction Problem

GHK-SBDS - A modified version of the Symmetry Breaking During Search technique by
Gent, Harvery and Kelsey [GHK02]

GHKl-SBDD - A new implementation of Symmetry Breaking via Dominance Detection
technique Gent, Harvey, Kelsey and Linton [GHKL03]

FSB - Partial Symmetry Breaking

SBDD - Symmetry Breaking via Dominance Detection [FSSOl]

SBDS - Symmetry Breaking During Search [GSOO]

142

Appendix B

NuSBDS - User Manual

B.l What is NuSBDS

NuSBDS is an archive that can be used with ILOG Solver to perform symmetry breaking
during search. It allows the constraint programmer to state the symmetries acting on the
variables and/or assignments in their CSP and ILOG Solver will generate symmetrically
equivalent solutions based on the SBDS technique developed by Gent and Smith. More
specifically, NuSBDS also uses some techniques developed by Gent, Hai'vey and Kelsey
using Computational Group Theory (CGT). Future versions of NuSBDS will contain other
methods from other research into symmetry in constraint programming.

Since this is a beta version there are still a few bugs that have yet to be fixed. There are
probably quite a few more that haven’t been spotted yet. If you find any, it would be greatly
appreciated if you could send details to iain@ dcs. s t - a n d . ac.uk.

That said, if your CSPs are highly symmetric then NuSBDS should yield large savings in
run-time. The remainder of this user manual talks you through installing NuSBDS to using
the NuSBDS symmetry macros to automate describing symmetries.

143

s

A p p e n d ix B. NuSBDS - U s e r M a n u a l 144

B.2 Installing NuSBDS

B.2.1 Compiling NuSBDS

If you already have a pre-compiled archive for your system then you can go directly to
Section B.2.2. If not then this section will tell you how to produce your own archive.

Firstly, create a directory with the following files: Group. cpp, Group. h , Symmetry. cpp,
Symmetry. h , SymCon. cpp, SymCon. h , S earch . cpp and S earch . h. Create a makefile
based on your default ILOG Solver makefile and add this file to your directory. Add the

following to your makefile:

Group . 0 : Group. cpp
$(CCG) -c $(CFLAGS) -o Group.o Group.cpp

Symmetry. o : Symmetry. cpp
$(CCC) -c $(CFLAGS) -o Symmetry.o Symmetry.cpp

SymCon. o :SymCon. cpp
$(CCC) -c $(CFLAGS) -o SymCon.o SymCon.cpp

S earch . o : S earch . cpp
$(CCC) -c $(CFLAGS) -o S earch .o Search.cpp

The variables CCC and CFLAGS should already be defined in your makefile. Consult the
example ILOG Solver makefile for more details.

Go to the relevant directory that contains the NuSBDS source code and type the following
at the command prompt:

[user©host nu _ sb d s_ d ir]$ make Group.o
[user@host nu _ sb d s_ d ir]$ make Symmetry.o
[userQ host nu _ sb d s_ d ir]$ make SymCon.o
[userOhost nu _ sb d s_ d ir]$ make Search .o

A p p e n d ix B. NuSBDS - U s e r M a n u a l 145

You can now create your NuSBDS archive. Depending on your version of a r you may
need to use the r a n l ib command as well.

[user©host nu_sbds_dir]$ a r r sb d s .a Group.o Symmetry.o SymCon.o Search .o
[user@host n u _ sb d s_ d ir]$ r a n l ib sb d s .a

You should now have a working archive.

B.2.2 Installing Archive

Place your NuSBDS archive in the same directory as your *. o and executable files and
place the NuSBDS . h files in the same directory as your CSP source files. Next edit your
makefile. If you have a CSP encoding in nqueen. cpp that you wish to use NuSBDS with,
change your makefile entry for nqueen from this:

nquee n : nquee n .o
$(CCC) $ (CFLAGS) nqueen . 0 -o nqueen $(LDFLAGS)

nqueen.o: nqueen.cpp
$ (CCC) -c $ (CFLAGS) -o nqueen.o nqueen.cpp

To this:

nqueen: nqueen. o sb d s . a
$(CCC) $ (CFLAGS) nqueen . 0 sb d s .a -o nqueen $(LDFLAGS)

nqueen. o : nqueen. cpp
$(CCC) -c $ (CFLAGS) -o nqueen.o nqueen.cpp

You are now ready to begin altering your CSP to make use of NuSBDS.

B.3 Using NuSBDS

Any ILOG Solver program that wished to use NuSBDS should contain the following line:

A p p e n d ix B. NuSBDS - U s e r M a n u a l 146

inc lude "Search.h"

You will also need an IL0CPG0ALWRAPPER2 to call the functions in S earch .h e.g.

IL0CPG0ALWRAPPER2
(Nu_SBDSGenerate, so lv e r , I lo In tV arA rray , v a rs , Symmetry, sym){
re tu rn I lc G e n e ra te A lg e b ra (so lv e r .g e tln tV a rA rra y (v a rs) , sym) ;

}

As well as the function IlcG en era teA lg eb ra(Ilc In tV arA rray , Symmetry) there are
also the functionsIlcG enera teA lgebra(IlcIn tV arA rray , Symmetry, IlcC hooseIn tIndex)
and IlcG en era teA lg eb ra(Ilc In tV arA rray , Symmetry, IlcC hooseIn tIndex , I lc In tS e le c t ;

which allow the user to supply their own variable and value ordering heuristics. See

S earch . h for more details.

A Symmetry object needs to be created like this:

IloEnv env;
Symmetry sym (env);

The NuSBDS library is finally used like so:

IloModel m dl(env);
Ilo S o lv e r so lv e r(m d l);
IIo in tA rra y ty p e (en v , 1, SQUARE);
IloG oal goal = Nu_SBDSGenerate

(Nu„SBDSGenerate(env, x , sym .setup(x , s o lv e r , ASSIGN, ty p e))) ;

so lv e r .s ta rtN e w S e a rch (g o a l);

This by no means explains how to use NuSBDS but it highlights how easy it is to use
NuSBDS. With just a few extra lines of code it is possible to perform symmetry breaking
in CSPs.

A p p e n d ix B. NuSBDS - U s e r M a n u a l 147

B.3.1 NuSBDS in Practice

The following is an encoding of the n-queens problem in ILOG Solver. This CSP has been
modified to make use of NuSBDS in order to break the 8 symmetries of this problem i.e.

the symmetries of a square.

include < i ls o lv e r / i lo s o lv e r in t .h >
include "Search .h"

ILOSTLBEGIN

IlcChooseIndex2(IlcChooseM inSizeM in,
var .g e tS iz e O ,

. v a r.g e tM in 0 ,
Ilc In tV a r)

ILOCPGOALWRAPPERKMyGenerate, s o lv e r , Ilo In tV arA rray , v a rs) {
re tu rn I lc G e n e ra te (s o lv e r .g e tln tV a rA rra y (v a rs) , IlcChooseM inSizeM in);

}

IL0CPG0ALWRAPPER2
(Nu_SBDSGenerate, s o lv e r , Ilo In tV arA rray , v a rs , Symmetry, sym){
re tu rn I lc G e n e ra te A lg e b ra (so lv e r .g e tln tV a rA rra y (v a rs) , sym,

IlcChooseM inSizeM in);

}

in t m ain (in t a rg c , char** argv) {
IloEnv env;

t r y {
IloModel m dl(env);

I lo i n t nqueen = (argc > 1) ? a to i (a rg v [l]) : 8;
I l o i n t symbreaking = (argc > 2) ? a to i(a rg v [2]) : 1;
Ilo In tV arA rray x (env, nqueen, 0, nqueen-1);

A p p e n d ix B. NuSBDS - U s e r M a n u a l 148

Ilo In tV arA rray x l(e n v , nqueen, -2*nqueen, 2*nqueen);
Ilo In tV arA rray x2(env, nqueen, -2*nqueen, 2*nqueen);

I lo i n t i ;
f o r (i = 0; i < nqueen; i++) {

m d l.a d d (x l[i] == x [i] + i) ;
m dl.add (x2 [i] == x [i] - i) ;

}

m d l.a d d d lo A llD iff (e n v , x)) ;
m d l.a d d d lo A llD iff (e n v , x l)) ;
m d l.a d d d lo A llD iff (env, x 2)) ;

Ilo S o lv e r so lv er(m d l);
Symmetry sym (env);

IloG oal g o a l;
if(sy m b reak in g){

I lo in tA rra y ty p e (en v , 1, SQUARE);
goal = Nu_SBDSGenerate

(env, X , sym .setup(x , so lv e r , ASSIGN, ty p e)) ;

} e lse{
goal = M yGenerate(env, x) ;

}

so lv e r .S ta rtN ew S earch (g o a l);
I lo i n t numOfSolutions = 0;

w hile (s o lv e r .n e x t()) {
numOfSolutions++; .

}

s o lv e r .o u t0 « numOfSolutions « " so lu tio n s " « end l;

'A

A p p e n d ix B. NuSBDS - U s e r M a n u a l 149

so lv e r .endSearchO ;
s o lv e r .p r in t In f o rm a t io n 0 ;

}
catch (IloExceptionfe ex) {

c e r r « "E rro r: " « ex « endl;

}
env .end() ;
r e tu r n 0;

}

B.4 Using the NuSBDS macros

The n-queens example in the previous section used one the NuSBDS macros to describe
the symmetries of the problem. This was done by the following two lines:

I lo in tA rra y ty p e(en v , 1, SQUARE);
goal = Nu_SBDSGenerate(env, x , sym .setup(x , ASSIGN, ty p e)) ;

The first specifies that this CSP has “1” type of symmetry and that it is the symmetry of a
“SQUARE”. The second line specifies that the symmetry acts on the “ASSIGNMENTS”
rather than the variables. Both SQUARE, ASSIGN and all further capitalized variables are
defined in Symmetry. h

There are three advantages of using the NuSBDS macros. Firstly, even though NuSBDS
used CGT techniques to break symmetry, the constraint programmer does not need to know
any group theory in order to express symmetries. Secondly, changing the size of the prob­
lem does not change the nature of the symmetries but it does change the group acting on
the problem. Using the macros means the group is calculated with respect to the size of the
problem every time so the whole process of describing the group is automated for any size
of problem. Finally, combinations of symmetries can be described by using more than one
macro e.g. the most perfect magic squares problem has the symmetries of a square as well
as being able to cycle the rows and cycle the columns. This can be represented by creating
the following array: I l o i n t Array type (env, 3 , SQUARE, GYCLE_ROW, CYCLE^COL).

A p p e n d ix B. NuSBDS - U s e r M a n u a l 150

B.4.1 How to spot the symmetries

In order to use NuSBDS, the symmetries of the relevant CSP need to be recognized. This
information needs to be related to the NuSBDS syntax. Here is an example with the n-
queens problem.

Q Q

Q

Q

Q Q

In this example we can see that the partial assignment Qi = 1 & Q 2 = 3 & Q4 = 2 is
translated to the partial assignment Qi = 3 & Q3 = 2 & Q4 = 4 by rotating the board
180°. In this example we can see that the symmetries act on the “assignments” i.e. the
symmetries alter not just the variable but also their value. Therefore in this case, when
we use the Symmetry : : se tu p (I lo In tV a rA rray , I l o i n t , I l o i n t Array) method, the
second argument should be ASSIGN and not VAR. Now consider the BIBD problem.

0 0 0 1 1

0 0 1 1 0

1 0 1 0 1

Here each square represents a boolean variable and not an assignment. Numbering the
squares from left to right and top to bottom, if we swap column 1 and column 2 , vari <=>
var2 , vare var7 , va rn <=> var 12. The values of each variable remains unchanged thus
we say the symmetries act on the “variables”.

B.4.2 Available NuSBDS macros

Here are the available NuSBDS macros for symmetries on assignments:

A p p e n d ix B. NuSBDS - U s e r M a n u a l 151

• SQUARE - e.g. n-queens

• SYMMETRIC_VAR - interchangeable valuables

• SYMMETRIC_VAL - interchangeable values

• SQUARE„VAR - valuables with the symmetry of an n by n square acting on them

Here are the available NuSBDS macros for symmetries on variables:

• SQUARE - variables with the symmetry of an n by n square acting on them

• CYCLE_ROW - ‘n? variables make a square where the rows can be cycled

• CYCLE_COL - variables make a square where the columns can be cycled

• SYMMETRIC_ROW - variables make a square where the rows are interchange­

able

• SYMMETRIC_COL - n3 variables make a square where the columns are inter­
changeable

If you have variables that form a rectangle and not a square e.g. BIBD problems, then the

following macros may also be relevant:

• SYMMETRIC_RECTANGLE_ROW - as SYMMETRIC_ROW but for rectangles

A p p e n d ix B. NuSBDS - U s e r M a n u a l 152

• SYMMETRIC_RECTANGLE_COL - as SYMMETRIC_COL but for rectangles

Where the symmetries act on variables which form squares e.g. n-queens, the dimensions
of the specific square can be calculated from the size of the array of constrained integer
variables. If the variables form a rectangle, NuSBDS needs to be told how many columns
there are before the above two macros can be used. This is done by using the method void
Symmetry : : setM umOfColumns(Iloint).

NuSBDS performs some checks to ensure that the symmetries you have described are valid
for your array of constrained variables. However, it is advised that you validate your solu­
tions to ensure that you have used the macros correctly.

If there are any types of symmetry not covered here, email ia in© dcs. s t-a n d .a c .u k with
a description of the symmetry and a macro for it may appear in a future version.

Acknowledgements

Thanks to Steve Linton for help with Group Theory algorithms and making sure my code
was efficient. Thanks to Andrew Rowley for sharing his expert C++ knowledge. Thanks
to Ian Gent for explaining the GHK-SBDS algorithm. Thanks to Tom Kelsey for helpful

discussions and suggestions.

Appendix C

Problems

In this appendix we will describe some of the common CSPs mentioned in this thesis.
Many of these problems will be solved in order to present empirical evidence of different
symmetry breaking techniques. The description of the problems will include information
about potential models and the symmetries they contain.

C.1 Alien Tiles

This problem is problem number 27 in CSPLib [GW99]. More about alien tiles can be
found at http://www.alientiles.com/.

Example C .l The alien tiles board can be described with two parameters n and c, the size
o f the board and the number o f colours respectively. An alien tiles board is a n n x n grid
ofii3 coloured squares. By clicking on any square on the board, the colour o f the square is
changed +1 mod c. As well as this, the colour o f every square in the same row and column
is also altered +1 mod c. Given an initial state and a goal state, the problem is to find
the required number o f clicks on each square which can be anything between 0 and c — 1

(since () = c, 1 = c 1 etc). The more challenging problem fo r constraint programming
(which we will consider) is finding the most complicated goal state (in terms o f the number
o f clicks needed) fo r some initial state and then reaching that goal state in as few clicks as

possible and verifying optimality.

153

http://www.alientiles.com/

A p p e n d i x C. P r o b l e m s 154

The model is quite simply v? variables with a domain from 0 to c — 1. The expression of
the constraints for this problem is quite complicated and required the use of GAP [GLSOO].

Given a solution we can freely permute the rows and columns and flip the board around
a diagonal. For a board with variables, the group acting on the board contains 2n!^

symmetries.

C.2 Balanced Incomplete Block Design

This problem is problem number 28 in CSPLib [GW99]. Balanced incomplete block de­
signs have uses in, among other things, cryptography and experiment design [Far02].

Example C.2 A balanced incomplete block design (BIBD) is a v x b binary matrix with
exactly r ones per row, k ones per column, and with a scalar product o f X between any pair
o f distinct rows. A BIBD is therefore specified by its parameters (v, b, r, k, A).

Note that vr = bk and X{v—1) = r{k—l). The most common model for the BIBD problem
is a matrix model of binaiy variables. Such a model has a large amount of symmetries since
both the rows and columns can be freely permuted. This results in v\ x b\ symmetries.

C.3 Dodecahedron Colouring

A dodecahedron colouring problem is a specific instance of a graph colouring problem.
In this case the graph has the same shape as a dodecahedron where the vertices of the
dodecahedron are the nodes of the graph, and the edges of the dodecahedron are the edges
of the graph.

Example C.3 A graph colouring problem consists o f an undirected graph G, and a set o f
colours k. Each node in G must be given one o f the k colours such that no two nodes in G

that share an adjoining edge have the same colour.

A standard model for this problem has each node in the graph represented as a variable
with domain 1 to k. The constraints are simply that adjoining nodes cannot be equal.

A p p e n d ix C. P r o b l e m s 155

Given k colours, there are A:! symmetries. These come from the permutations of the colours
of the nodes. If the graph in question has any automorphisms then they can also be com­
bined with the k\ value symmetries. The dodecahedron has 60 automorphisms. Thus, for a
3-colouring of a dodecahedron, there are 60 x 3! = 360 symmetries.

C.4 Fractions Puzzle

This problem is a small equation containing 9 unknown terms.

Example C.4

B C E F H I

Find values fo r each variable such that the equation is satisfied, and each letter has a
different value from 1 to 9.

We can model this problem quite simply by selecting each letter as a variable, whose do­
main is the numbers from 1 to 9. If we consider the three seperate fractions of this problems,
we can see that the commutative operator F is acting on them. Therefore a solution to this
problem can be permuted by any of the 3 !, or 6 , re-orderings of these fractions.

C.5 Golfers’ Problem

This problem is problem number 10 in CSPLib [GW99]. It is based on a question posed on
the sci.op-research newsgroup in May 1998 for a real golf tournament scheduling problem.
Though the specific instance referred to contained 32 golfers, and 8 groups of 4, it can be
generalised to other sizes.

Example C.5 Given p players, and g groups o f golfers (where p mod g = Oj, schedule
these groups o f golfers over w weeks, such that no golfer plays in the same group as any
other golfer twice.

Note that every week, a golfer must play with ^ — 1 new golfers, and there are only p — I
other golfers. Therefore w <

.ij

A p p e n d ix C. P r o b l e m s 156

The golfers’ problem is a very important example for general symmetry breaking methods
as it has a great deal of symmetry resulting from complex interactions. We can freely per­
mute the order of the groups within any week. The labelling of the players can be permuted
freely. As well as this, we can re-order the weeks of any solution to yield another. All of
these symmetries can be combined. This results in not just a highly symmetric problem,
but also one whose symmetries are difficult to describe. Since there are many models to
the golfers’ problem [FSSOl] [SmiOl], each with their own number of symmetries, we will
discuss the exact number of symmetries of specific models when relevant.

C.6 Most Perfect Magic Squares

A magic square is an n x n grid of unique numbers such that the sum of the rows, columns
and diagonals all add to the same number. A most perfect magic square is a more complex
structure with tighter constraints.

Example C.6 A most perfect magic square is a n n x n grid o f numbers with different values
from 1 to that satisfy the following constraints:

7. Each row and column sum to {nf -j- n)/2

2. Every 2 x 2 block o f cells (including wrap-around) sum to 2T (where T = -h Ij.

3. Any pair o f integers distant along a diagonal (including wrap-around) sum to T.

The model is a straightforward matrix of variables with a domain of 1 to n^. This
problem has 8 n^ symmetries which are derived from the symmetries of a square combined
with being able to cycle the rows and columns.

Though more complex symmetries can be found, the symmetries need a redundant model
to be effectively realised [01186]. Breaking only a subset of all symmetries is still a valid
way of reducing computation.

A p p e n d ix C. P r o b l e m s 157

C.7 n-queens

This is a very common problem to describe as a CSP. Not only is this a simple problem to
solve, it is also easy to explain and so is commonly used as an example problem to explain
a simple concept. This problem also contains some symmetry and thus can be used as an
example problem for symmetry breaking too.

Example C.7 Given a n n x n chess board, place n queens on it such that none can attack
each other. In other words, no two queens can be place on the same row, column or

diagonal.

Various models are discussed in Chapter 2.1.1. Model 2.3 contains 8 symmetries. These
are the symmetries of a square in 2 dimensional space i.e. given a solution, we can rotate
the board by 90° (or another symmetry of a square) to yield another solution.

