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Abstract

the best symmetries to use.

Finally, we look at areas of redundant computation in constraint solvers that no other re­
search has examined. New ways of dealing with this redundancy aie proposed with results 
of an example implementation which improves efficiency by several orders of magnitude.

4

Constraint programming is an invaluable tool for solving many of the complex NP-complete 
problems that we need solutions to. These problems can be easily described as Constraint 
Satisfaction Problems (CSPs) and then passed to constraint solvers: complex pieces of 

software written to solve general CSPs efficiently.

Many of the problems we need solutions to are real world problems: planning (e.g. vehicle 
routing), scheduling (e.g. job shop schedules) and timetabling problems (e.g. staff rotas) to 
name but a few. In the real world, we place structure on objects to make them easier to deal 
with. This manifests itself as symmetry. The symmeti'y in these real world problems make 
them easier to deal with for humans. However, they lead to a great deal of redundancy 
when using computational methods of problem solving. Thus, this thesis examines some 
of the many aspects of utilising the symmetry of CSPs to reduce the amount of computation 

needed by constraint solvers.

In this thesis we look at the ease of use of previous symmetry breaking methods. We 
introduce a new and novel method of describing the symmetries of CSPs. We look at 
previous methods of symmetry breaking and show how we can drastically reduce their 

computation while still breaking all symmetry.

I We give the first detailed investigation into the behaviour of breaking only subsets of all
symmetry. We look at how this affects the performance of constraint solvers before discov-

U ering the properties of a good symmetry. We then present an original method for choosing
1
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Chapter 1

Introduction

Many of the real world problems that we need solutions to aie NP-complete problems so 
efficient techniques of solving them do not exist. These problems aie pervasive in society 
e.g. scheduling, planning, configuration, circuit design, hardwai e verifieation, vehicle rout­
ing and timetabling. They can all be represented as constraint satisfaction problems (CSPs) 
and solved using constraint programming.

Constraint programming has become a populai* method of solving the complex tasks men­
tioned above due to the natural way constraint problems are described. Also beneficial 

is that the problem deseription is all that is neeessaiy, since the problem is solved by the 
computer.

However, constraint programming, no different from other combinatorial symbolic AI teeh­

niques, places human defined labelling on the problem to be solved. If we have n  vehicles 
to schedule, we can see that each vehicle is identical to the next. In order to solve the 
problem though, we must label the vehicles, and in effect make each one different.

It is the labelling needed by constraint satisfaction problems that causes individual objects 
and patterns with the problem to be lost. These patterns, or symmetries, exist all ai'ound 
us. They put structure into the many things we see every day, making them easier for us to 
comprehend and work with.

This stmcture is lost to constraint programming. Once the labelling has been created, the 

symmetry disappears. This leads to a great deal of inefficiency when solving complicated
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and symmetric problems.

Over reeent yeai’s, reseaieh into how to deal with symmetry in CSPs has become very 
populai'. Initially, attempts at using symmetry were generally dismissed as too complicated, 
leading constraint programmers to use more ad-hoe methods in practice.

One of the strengths of constraint programming is the vast collection of algorithms, seai'ch 
routines, heuristics and specialised constraints that research has developed. Currently, we 
are at an interesting point in the timeline of constraints reseaieh where methods of using 
symmetry aie entering mainstream constraint programming.

This has come about by both a greater understanding of symmetry in CSPs as well as the 
development of effective ways of dealing with symmetry. The realisation of the constraint 
programming community that the pure mathematics area of group theory deals with the 
classification and measurement of symmetry has greatly furthered the ways in which we 

deal with symmetiy in CSPs.

In this thesis we examine some aspects of the complicated relationship between symmetry 
and CSP solving. More specifically, we introduce one of the first group theoretic based 
methods of using symmetry in CSPs, we examine how using paitial amounts of symme­
try affects the complexity of CSP solving. We look at ways to bring symmetry use to 
mainstream constraint programming and by doing so we bridge the gap that exists between 
group theorists and constraint programmers. Finally we look at furthering the scope of 
symmetry use to beyond the dombinatorial seaieh at the heait of constraint programming. 
These form the main contributions of the thesis, discussed further at the end of the chapter.

1.1 Constraint Satisfaction Problems

A constraint satisfaction problem consists of a finite set of vaiiables (or unknowns), each 
variable has a domain which is a finite set of possible values. There are also a set of { 
constraints, each one forbidding a combination of assignments of values to variables. To 
solve a CSP, we must assign (or choose) a value for each vaiiable from its domain such that 
none of the constraints aie violated.

Consider the following problem: find five different numbers from 1 to 10 that sum to the
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number 40. In this case, the unknowns aie the five numbers we have to find, thus, these are 
the 5 vaiiables of the problem.

Eaeh number ranges from 1 to 10 so this is the domain of each vaiiable.

Finally, this problem has the following eonstraints.

Given the above information, we can use a constraint solving toolkit to solve the above 
problem. Notice however that tlie variables each have the same domain and the eonstraints 
acting on them are commutative. Thus each vaiiable is said to be symmetric to all the others
i.e. if we find a solution to the above problem, we can re-arrange the values of the vaiiables 
however we like to yield another solution. Though we can see this fact, the constraint solver 

cannot. Therefore, we may think of the following solutions as the same.

6-f"7-j-8-|-9-|-10 — 40 

74-6-1-84-9  +  10 =  40

but the constraint solver would not.
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Finding a solution

In general, the above type of problem (or indeed any CSP) is solved by use of a eombination 

of inference and seai'ch.

Eaeh vaiiable is considered in an order dictated by some heuristic. The chosen variable is 
then instantiated to some value taken from its domain. At this point, the set of domains of 
the variables may be passed to some propagation algorithm which can infer inconsistent 
choices that aie then removed from the relevant domain. Before moving on to the next 
vaiiable, the current set of instantiations is considered against the set of eonstraints to see 
if any of them have been violated. If any constraint has been violated, we backtrack from 
our previous decision and remove that choice from the relevant domain.

There aie many different heuristics from a simple static lexicographic order based on our 
labelling, to the more complicated dynamically ordered smallest domain first. The latter 
heuristic works well in practice though there are other problems that work well with their 
own specific heuristics.

There are many different general purpose propagation algorithms which yield different 
levels of inference, as well as filtering algorithms for specific constraints. The aim of these 

algorithms is to detect and remove domain elements than cannot paiticipate in a solution. 
These will be discussed in greater detail later.

Though there aie a few backjumping algorithms available to the constraint programmer, a 
simple backtracking seai'ch procedure is used by default by most constiaint solvers.

Since constraint solving is used in general to solve NP-complete problems, the runtimes 
aie exponential. In the worst case, a complete backtrack seai'ch of all possible complete 
instantiations will have a runtime of 0 (d") for a CSP with n  vaiiables with domains of size 
d.

Symmetries and CSPs

We will now look at how we would solve the problem of finding five different numbers 
that sum to 40, using the approach described above. In this ease we will not use any 
propagation algorithms and we will use a statically ordered lexicographic heuristic and a
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simple backtracking search procedure.

We initially set the first vaiiable, A, to be the first element in its domain.

A =  1 

B , C , D , E  e  {1..10}

We now reeursively instantiate the next vaiiable.

A  -  1 

B  =  1 

C , D , E  e  {1..10}

As you can see, this violates the constraint that each number must be different. We therefore 
baektraek from this decision and remove the relevant value from the domain of the variable 

B.

A  ~  1 

B  e  {2..10}

C , D , E  e  {1..10}

We eontinue to exhaustively try all the different instantiations of vaiiables B , C , D  and E.  
After doing so we will discover that no solution exists with A — 1.

A E {2..10}

B , C , D , E  e  {1..10}

However, by taking the symmetry of the problem into account we realise that no solution 
exists with any of the vaiiables equal to 1. Therefore we can remove 1 from the domain of 

all vaiiables.
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A , B , C , D , E  e  {2..10}

This is not something that a constraint solver would do though. By eontinuing our search 
to find a solution, we come across many inconsistent sets of instantiations that lead to 
failure. For eaeh of these failures, we could use the symmetries of the problem to avoid 
making similai* inconsistent sets of instantiations. After much redundant search we come 
to this first solution. If we were using some propagation algorithm to remove inconsistent 

assignments, they would also be performing redundant work.

A = 6

B =  7

C =  8

D =  9

E =  10

Note that this is the only solution to this problem that is unique with respect to symmetry. 
Any other solution can be found by relabelling this solution e.g.

A =  7

B =  6

C =  8

D -  9

E =  10

simply has the values of A  and B  exchanged. If we were to continue to seaieh for solutions, 

which is a common thing to do in constraint programming, we would perform much more 
redundant seaieh and find a further 5! — 1 (or 119) superfluous, duplicate solutions.
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Failing to appreciate the symmetries of a problem results in a lai'ge increase of computa­
tion both by increasing the search tree and the amount of reasoning done by propagation 
algorithms. The study of symmetiy in constraint programming is an extremely important 
one as utilising the symmetry in highly symmetric problems is the only way to make them 

solvable.

1.2 Group Theory

Though the study of symmetry in CSPs is a fairly reeent one, the study of symmetiy in gen­
eral dates back to the Ancient Egyptians who were aware of the symmetiy of geometrical 
objects used in tiling. The classification of group theory as we know it today was intro­
duced at the latter part of the 18^  ̂ century and is due to mathematicians such as Cauchy 
[OR97], Cayley [Cay78], von Dyck [vD82] and Burnside [Bur97] to name just a few.

To look at group theory in an abstract way, if we wish to measure the number of occurrences 
of something, we can use integers. If we wish to measure the amount of something, we 
can use rational numbers. If we wish to measure the amount of symmetry of an object, 
we can use group theory. The pure mathematics area of group theoiy is essentially the 
measurement and application of symmetiy.

As an example of symmetry, imagine a squai'c with the corners labelled (Figure 1.1). This 
has geometrical symmetiy. We can rotate the squai'e by 90°, 180° and 270° and the shape 
will remain the same. We can also invert or flip the squai'e ai'ound the T-axis, ^-axis, around 
the line bisecting the squai'e diagonally from top left to bottom right, and from top right to 

bottom left.

We see that by applying any of these symmetries we change the corner labels but the re­
sulting shape is still a squai'e (Figure 1.2). This is exactly like the'example mentioned at 
the stai't of the chapter: two vehicles may be conceptually identical but since symbolic AI 

labels them, the symmetry is lost.

Rather than thinking of an actual squai'e, we can describe the symmetries as permutations 

of the labels. For example, the symmetiy “rotate by 90°” can be written as a permutation 

of the points from {1, 2, 3,4} to {3, 1, 4, 2).
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Figure 1.1: A diagram of a square with numbered corners.

rotate 90

Figure 1,2: The original square rotated by 90°. Though the numbers have changed, the
shape has not.
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Rather than listing all the different symmetries explicitly, we can list a few symmetries and 
generate the remaining symmetries by combining the few we store [But91] [Ser03]. All the 
symmetries of a square can be generated by just the “rotate by 90°” and “invert about the 
x-axis” symmetries. For example, we can create the “invert about the y-axis” symmetry 
by combining the “rotate by 90°” synnnetry twice and then applying the “invert about the 
æ-axis” symmetry.

1.3 Definitions

We now define some of the preliminary ideas and concepts necessai^y before continuing 
with symmetry in constraint satisfaction problems.

Definition 1.1 A CSP is a set o f constraints C acting on a finite set o f variables X  : 

X-\..Xn> each o f which has a finite domain o f possible values D(Xi).  A solution to a CSP 
L, is an instantiation o f all the variables in X  where \/i 3 j Xi  = j , j  G D{Xi) such that 
all the constraints in C are satisfied.

Definition 1.2 A k-ary constraint is a constraint that acts on k variables o f a CSP A con­
straint on k variables describes the allowed combinations o f choices allowed fo r  the 
set o f variables { X i,..., X^} as a subset o f the cartesian product o f D{X\ )  x ... x D{Xk).

Definition 1.3 A variable assignment (or instantiation) is a variable with a domain with 
only one element i.e. that variable has been assigned a value. A set o f assignments is called 
a tuple (or partial assignment). An instantiation o f all variables in a CSP is called a fu ll 
assignment. For any given assignment or tuple, it is called consistent if  it satisfies all the 
constraints acting o f the variables in the assignment or tuple.

Definition 1.4 A nogood is an assignment or tuple that is inconsistent with at least one o f 
the constraints o f the CSP.

Definition 1.5 A solution to a CSP is a consistent instantiation o f all the variables in the 
CSP. A partial solution is a tuple that does not violate any o f the constraints acting on the 
variables in that tuple.

The above aie some of the fundamental terms we will use when dealing with CSPs. In 
general, when we aie seaiching for a solution we are looking for the first solution, looking
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A =

B =

C =

Figure 1.3: An example of a binary search tree.

for all solutions, verifying there are none, or looking for a solution that is optimised with 
respect to some criteria.

We find solutions to CSPs by traversing the search space of the CSP. This is all the possible 
combinations of tuples of the CSP. The path of the traversal of the search space is called 
the search tree (Figure 1.3).

While searching for a solution, we make decisions such as those described above. A posi­
tive decision is a variable assignment {X^ =  a), and a negative decision is a domain removal

f  6).

Definition 1.6 A state in search A, is the set o f decisions made (positive and negative) 
while traversing the search space.

1.3.1 Group Theory and Symmetry in CSPs

We now formally define a symmetry of a CSP. A symmetry is a bijective function. A 
function is bijective if it is both injective (no two inputs can have the same output), and sur- 

jective (every possible output can be reached by some possible input). The input and output 
of this function can be thought of as some representation of a CSP: a set of assignments, a 
single assignment, a set of domains etc.

Definition 1.7 Given a CSP L, with a set o f constraints C, a symmetry o f L  is a bijective
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function f  : A  ^  A  where A  is some representation o f a state in search e.g. a list o f 

assigned variables, a set o f current domains etc., such that the following holds:

1. Given A, a partial or fu ll assignment o f L, if  A  does not violate the constraints C, 
then neither does f{A) .

2. Similarly, if  A  is a nogood, then so too is f{A).

Recently, behaviour has been noticed in some problems which resembles symmetries but 
does not satisfy this definition. Conditional symmetries (also known as dynamic symme­
tries within planning research) ar e bijective functions that require a condition to be satisfied 
before they can be considered as symmetries [GMS03]. Pseudosymmetries are symmetries 
that are not bijective i.e. though f  is a symmetry, its inverse may not be [PS98] [PB04].

Though Definition 1.7 describes a symmetry in terms of CSPs, we also want to think of a 
symmetry as an element of a group. Thus, we formally define a group.

Definition 1.8 A group G is a non-empty set o f elements with a binary operator x, that 
obeys the following 4 axioms.

1. Every group contains an identity element.
3e G (7 G G, e x g  =  g x e  =  g

2. Every element o f a group has an inverse element.
V g G G , G G s. t .  g X g~^ =  g~^ x  g =  e

3. The binary operator o f a group is associative.
Vi, 7, k  G G, {i X j )  X k  — i  X { j  x  k )

4. The group is closed under the binary operator. 
Vi, j  G G, i  X j  G G

The size o f a group is the number o f elements it contains. For group G, its size is |G|.
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Definition 1.9 A subgroup H, o f group G, is a group that shares the same binary operator 
as G and contains a subset o f the elements o f G. Given groups N  and M, we say M  is a 
subgroup o f N  by writing M  C. N.

Throughout this thesis we will think of groups as permutations groups.

Definition 1.10 A group whose elements are bijective permutations from a set to itself are 
called permutation groups.

We consider the set referred to in Definition 1.10 to be a contiguous set of points of the 
range 1..p. For example, consider a permutation group acting on 4 points: {1,2, 3,4}. One 
possible permutation of these points is to permute 1 with 2, 2 with 3, and 3 with 1. This 
creates the set (3, 1, 2, 4}. A concise representation of permutations is called the cycle 
form. This form lists the disjoint cycles that represent how the points aie affected. The 
cycle form of the above permutation is (1, 2, 3)(4). We read this as “Point 1 goes to point 
2, 2 goes to 3, 3 goes to 1. Point 4 goes to point 4.” We usually omit cycles of length one, 
leaving just (1,2, 3).

Some common groups include the symmetric group whereby any bijective permutation of 
the points is allowed, and the alternating group whereby any bijective permutation that 
can be represented as an even number of transpositions is allowed. For groups acting on n  
points, the symmetric group has nl elements and the alternating group has y .

Definition 1.11 A generator set G gen o f group elements, represents the group G if  every 
element o f G can be recreated by some combination o f elements in Ggen̂

Though the theoretical maximum number of generators needed to recreate the entire group 
is log2 \G\, typically just 2 to 6 elements are needed in a generator set. This theorem is well 
known to the group theory community, however for completeness the proof is outlined 
here.

Consider a generator set =  {gi  ̂9 2 , 9k) for the group Gs^. The group generated by

Sk~i = {9 1 , 9 2 , ■■•,9k-i) is a subgroup of Gs^ since Sk-i Ç Sk. It follows then that Gs^ Ç 
Gs2 Ç ... Ç Gsk> Recall that the size of every subgroup is a factor of the original group. 
Therefore, is at least half the size of |GgJ >  2 \  |G%| >  2^,..., |Ggj |̂ >  2^

or k < Io9 2 {\Gs^\) i.e. the maximum number of generators in a minimal generator set for 
group G, is I0 9 2  of the size of G.
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Permutation groups are of particular interest to constraint programmers since it gives a 
means of translating between the group theory terminology of group elements (or permu­
tations) acting on sets of points, to symmetries acting on sets of assignments. Thus, rather 
than considering permutation groups acting on a set of points, we consider permutation 
groups acting on sets of variables, or assignments. Though we describe the group operator 
X for combining group elements, when applying a group element to a point we will use the 
notation of a function i.e. p (l).

Definition 1.12 The orbit O o f a (set of) point(s) A  under a group G is the set o f all (sets 
of) points that A  can be mapped to. 'ig G G, g (A) G O.

Even though the size of a group may be large, the size of the orbit of a set of points can be 
much smaller. The orbit of any one point, for example, cannot be more than the number of 
points the group acts on.

Definition 1.13 The stabilizer G a o f a (set of) point(s) A, under the group G is a subgroup 
o f G such that: Wg G G a , g (A) = A.

In many cases we will think of the orbit of one point under a group G, or the stabilizing 
subgroup of one point under a group G. However, when we consider more than one point, it 
is important to make a distinction between a set o f points or a list o f points. This is because 
the orbit of a set of points (called the setwise orbit) is different from the orbit of a list of 
points (called the pointwise orbit).

For example, given the set of points {1,2} with the symmetric group acting on 3 points, 
the setwise orbit is {{1, 2}, (2,3}, {1,3}}. The pointwise orbit is {[1,2], [2,3], [1,3], [2,1], 
[3,2], [3,1]}. The setwise orbit is always a subset of the pointwise orbit.

The reverse is tme of setwise stabilizers and pointwise stabilizers. Consider the diagram in 
Figure 1.4 which contains a matrix with freely permutable rows and columns. If we wish 
to stabilize the highlighted element, we must forbid any group element that permutes any 
column with column 2, any row with row 2, and any combination of those permutations.

If we calculate the stabilizer in an incremental way, this is the same as performing the point- 
wise stabilizer: Stabilizer (Stabilizer (G, A), B ) = PointwiseStabilizer(G , [A,B]).  Thus 
the pointwise stabilizer of the highlighted elements in Figure 1.5 would not allow any per­
mutations of row 2 or row 4, or column 2, or any combinations of these permutations.
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Figure 1.4: A 5 x 4 matrix with symmetric columns and symmetric rows. The stabilizer 
of the highlighted element forbids any permutations of column 2 and row 2.

Figure 1.5: A 5 x 4 matrix with symmetric columns and symmetric rows. The stabilizer of 
the highlighted elements differs depending on whether it is setwise or pointwise stabilized.

However, the setwise stabilizer would allow the permutation of row 2 with row 4. Thus we 
can see that the pointwise stabilizer is a subgroup of the setwise stabilizer.

The complexity of pointwise group theory operations is less than setwise operations since 
they can be done incrementally. There is an algorithm [Ser03], however, that proposes 
recording the setwise orbit for a set of points A. The orbit of A  can then be used to con­
struct the orbit of B,  where A Ç B,  with less computation. This algorithm has yet to be 

implemented.

We will see more about the applications of permutation groups, orbits, stabilizers and how 
to calculate them later.
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1.4 Contributions

Symmetries are prevalent in real world problems which are solved by constraint program­
ming. As has already been shown, the lack of regard for these symmetries causes much 
redundancy when solving CSPs. For this reason, the use of symmetry while solving CSPs 
needs to be investigated thoroughly. Symmetry in CSPs is a vast research area with frequent 
new avenues of study being introduced. This thesis looks at the problems of symmetry in 

constraint programming from several angles and contributes to each of them.

From a constraint programmer’s point of view, they are not concerned with the internal 
workings of their constraint solver. They simply wish to be able to describe their problems 
easily and have their constraint solver find solutions as efficiently as possible. Much of the 
research into CSPs culminates in implementations of effective constraint solvers. These 
solvers take the best algorithms from the many areas within CSP research and make them 

easy to use.

In this thesis, we look at the problem of symmetry in CSPs from the point of view of the 
constraint programmer. We discuss the problems with the most popular methods of break­
ing symmetry in terms of ease of use. We present two new implementations of symmetry 
breaking systems that advance the inclusion of symmetry breaking into constraint solvers. 
Firstly, we introduce U-SBDS which has the advantage of a concise symmetry representa­
tion. This leads to less effort in describing symmetries. U-SBDS also limits the number 
of symmetry breaking constraints needed to break all symmetry. Secondly, we introduce 
NuSBDS which contains an intuitive method of describing symmetries that has many ad­
vantages over all previous methods.

For highly symmetric problems that have an exponential amount of symmetry, there is 
currently no method to efficiently break all of itF When dealing with such problems, only 
a subset of all possible symmetry can be dealt with. Though many symmetry breaking 
methods can be used to break subsets of symmetry, no detailed research into breaking such 
subsets has previously been carried out.

In this thesis we look at how the amount of symmetiy broken affects the amount of work 
required in finding solutions. From this investigation we look at why some subsets of 
symmetry appear to be better than others. We then present an algorithm for choosing the

 ̂Apart from value symmetry [RDGKL04].
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best symmetries.

Almost all previous research into symmetry in CSPs has looked at how the symmetry af­
fects search. This is done almost exclusively by adding constraints to the original CSP, or 
by adding constraints dynamically during search to the solver. We look at trying to use 
symmetry in CSPs to reduce the amount of work done in other areas of CSP solving. This 
is the first research to do this. Based on this study we present a modified propagation algo­
rithm that results in fewer constraint checks by many orders of magnitude. We also suggest 
many ways in which other redundant work could be reduced.

To summarise, the main contributions of this thesis are:

1. An evaluation of current symmetry breaking systems and a discussion of their suit­

ability for use within constraint solvers.

2. A new method of breaking symmetry while constraint solving using group theory, 

U-SBDS.

3. An analysis of the number of required symmetry breaking constraints for breaking 
symmetry dynamically during search. We introduce an upper-bound on the number 
of symmetry breaking constraints needed after any one backtrack.

4. A new and novel method of easily describing problem specific symmetries, NuSBDS.

5. The first comprehensive study of breaking subsets of symmetries in highly symmet­
ric problems. We then discover the properties of a good symmetry and produce an 
algorithm for selecting the best symmetries to use when breaking symmetries during 
search.

6. A realisation of new ways in which symmetry can be used to reduce the computation 
of solving CSPs. We modify an existing constraint programming algorithm to take 
advantage of symmetry and present empirical results.
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1.5 Thesis Outline

The rest of this thesis is organised into the following chapters. Chapter 2 will review the 
previous work in the field of constraint programming including modelling, constraints, 
propagation and search. We will then look at symmetry breaking in constraint program­
ming, computational group theory and the continuing convergence of the two areas.

Chapter 3 looks at various symmetry breaking systems from the point of view of the con­
straint programmer. We examine the advantages and limitations of the previous implemen­
tations of these systems and argue what the most desired elements of the ideal symmetry 
breaking system are. We introduce and evaluate two new implementations of symmetry 
breaking systems.

Chapter 4 contains an investigation into partial symmetry breaking. We look at previous 
research and discuss how their methods of breaking symmetry were limited in order to min­

imise run-times. We then present experimental evidence of how breaking varying numbers 
of symmetry affects the overall run-time of solving symmetric problems. We conclude this 
chapter by presenting an algorithm for selecting the best symmetries to use when symmetry 
breaking along with supporting empirical evidence.

Chapter 5 argues that we should re-use all information gathered during search and not just 
failed search decisions as we currently do. We present a modified definition of symmetry 
which we use to take account of this. A refinement to a propagation algorithm is presented 
before implementing a modified ai’c consistency algorithm. Empirical results of using this 
modified algorithm are presented.

Finally, we conclude with Chapter 6. We reiterate the contributions of this thesis and 

discuss future directions of research.

Appendix B contains the user manual for the symmetry breaking system: NuSBDS (Chap­
ter 3.5). Appendix C contains a reference for many of the common CSPs featured in this 
thesis. As well as suggested models, it more importantly contains details of the amount of 
symmetry of certain problems.



Chapter 2

Review of Previous Work

We now review previous work related to this thesis. This work will fall roughly into three 
categories. The first of these is related to the discipline of constraint programming, how it 
is used in practice as well as some issues of note for constraint programmers. Secondly, 
we will briefly look at computational group theory (CGT) which is concerned with imple­
menting efficient group theoretic operations. Finally we will look at previous methods of 
symmetry breaking and other investigations into symmetry specifically in CSPs.

2.1 Constraint Programming

The ethos behind the declarative programming paradigm, in which constraint programming 
lies, is a unique one. Whereas other programming paradigms require the programmer to 
describe how to solve a problem which the computer then automates, constraint program­
ming requires the programmer to describe the problem which the computer then solves. 
Though the types of problems that can be solved by constraint programming are generally 

limited to NP-complete combinatorial search problems, the ease with which they can be 

solved is very beneficial to programmers.

For this advantage, a new approach to solving problems is needed i.e. a new programming 
paradigm. Broadly speaking the methodology for solving CSPs is broken into three sec­
tions. The first is the modelling stage. Here we define the structure of what a solution looks 
like i.e. what types of variable we have and what their possible values are. Secondly, we

18
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constrain the model. In this stage, we describe the constraints which forbid combinations 
of assignments i.e. the problem description itself. Finally, we must search for a solution. 
This stage is concerned with how we traverse the search space or more specifically which 
heuristics and search routines we use. We can also state what level of propagation we wish 
to enforce during this search and what algorithms we will use to accomplish this.

Each of these stages are interconnected in that changes to one will affect the others. We will 
now look in more detail at these three stages as well as other areas important to constraint 
programmers when solving CSPs.

2.1.1 Modelling

The modelling stage is one the most important in terms of tractability since how we decide 
to model our problem has far reaching effects on the efficiency of our program. As such, 
workshops and other research within the constraint progranuning community are devoted 
to modelling.

Modelling is sometimes referred to as the “bottleneck” in constraint programming, since 
sometimes expert knowledge and experience is needed to model problems effectively. It 
is this knowledge that researchers are trying to capture to make constraint programming a 
more easily accessible tool for industry and academics in general.

In its basic form, modelling is concerned with looking at a problem and identifying the 
unknowns and realising what their possible values could be i.e. describing the variables 
and their domains. The main work of this thesis is concerned with finite integer variables
i.e. each variable has a domain which is a finite set of integers. Generally speaking this set 
of integers is contiguous from 0 or 1 to n, though it does not need to be.

As well as integer variables we can use set variables [ILOOO], whose domain is a set of in­
tegers and whose value can be any subset of its domain. Particularly relevant to scheduling 
problems, we can also use interval variables [BPNOl]. Here the domain of such variables 
is a range between two floating point numbers and its value is a floating point number that 
satisfies the constraints to within some predefined degree of error.

We may also wish to include so called redundant models whereby we use more than one 
model for the problem [CLW99]. In such cases the models are combined by channelling
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constraints. These constraints are used to ensure that the two models yield the same an­
swer. By including redundant models the search space is increased exponentially, however, 
the search tree is not affected since the channelling constraints ensure the models behave 
consistently. The main reason for using redundant models is that some constraints may be 
easier to express and/or more efficient to deal with when used with a specific model. A 
good example of this in practice is featured in [DdVC03].

For problems like the sum problem found in the previous chapter, the modelling stage is 
quite straightforward, we simply had a list of 5 finite domain integer variables. However 
more complicated problems have many different ways of being modelled.

Example 2.1 n-queens problem. Given a n n  x  n chessboard, we must place n queens on 
the board such that none o f them can attack another piece i.e. no two queens appear in the 
same horizontal, vertical or diagonal line.

The problem in Example 2.1 has many different ways of being modelled [Nad90]. The 
reason for this is that we can describe what is unknown in many ways. We can say that 
the square on the board that each queen takes is unknown. We can say that whether or not 
a queen goes on a squaie is unknown. We could also say that the column position of the 
queen in each row is unknown. Each of the descriptions above creates different models and 
more importantly, each model has a different search space. Also, different models may be 
easier to describe constraints for.

Model 2.1

The unknowns in this case (and therefore the variables) are the positions of the queens. 
The possible values that each queen can take (and therefore the domain of each variable) 
are the squares on the board. For the n-queens problem, this results in n  variables each 
with a domain of n^ squares. Thus the size of the search space is (n^)". For n =  8 this is 

2.8 X 10^ .̂
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Figure 2.1: The relation between a solution to the 4-queens problem and Model 2.1.

Figure 2.2: The relation between a solution to the 4-queens problem and Model 2.2.
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Figure 2.3: The relation between a solution to the 4-queens problem and Model 2.3.

Model 2.2

The unknowns in this case are the contents of each square. The possible values that each 
square can take is the existence or non-existence of a queen. For this model, there are rP 
variables each with a domain of two. Thus the size of the search space is 2^^. For n = 8 
this is 1.8 X 10̂ ®.

Model 2.3

By noticing that each row has to have exactly one queen on it, we can have a variable for 
each row and its value is the column the queen appears in. In this case we will have n  
variables, each with a domain of size n  resulting in a search space of n”. For n =  8 this is 

1.7 X 10^.

We can see, even with a very simple problem such as the n-queens, the modelling choices 
can result in large differences in the search space and therefore the time taken to solve 
the problem. Different models need to be constrained differently and we will see later 
how specialised constraints can also make a difference to the time taken to the solve the 

problem.
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Modelling and Symmetry

With respect to symmetry, modelling is one of the most important aspects of constraint 
programming. The model we choose not only affects the seaivh space and how easily the 
problem can be constrained but it also dictates the number of symmetries that the problem 

has.

Some problems inherently have symmetry that cannot be avoided, however, poor mod­
elling can introduce needless symmetry. Similarly, a good model can reduce the amount of 

symmetry a problem has [SmiOl].

We will now look at a simple example of this by examining the above n-queens models. 
Given a solution to Model 2.1, we can freely permute the variables to yield another solution. 
Also, the geometrical property of the square - on which the n-queens problem is based - 
has 8 symmetries. Thus, this model has 8n! symmetries. The interchangeable symmetry 
does not exist in Model 2.3, though the symmetries of the square still do. Thus, this model 
has 8 symmetries regardless of the size of n. So as well as Model 2.1 having a larger search 
space to Model 2.3, it also has exponentially more symmetries.

M atrix Models

Many problems that can be solved by constraint programming can be modelled as matrices 
[FFH+01]. ■ A matrix model can be thought of as an n x m array of variables where the 
rows and columns are considered to be symmetric i.e. the rows can be permuted freely as 
can the columns. For models such as this, the resulting CSP will have n\ x ml symmetries. 
Though this seems like a poor modelling decision, in many cases there are not any more 
preferable alternatives and we must deal with the symmetries in other ways.

As well as the other general methods mentioned in this thesis (such as those presented in 
Chapter 2.4) there are techniques that can be used specifically for breaking symmetries 
in matrix models. These techniques involve adding ordering constraints [FFH+02] for 
which there are GAC algorithms^ [FHK+02] [CB02]. A constraint encoding was described 
in [GPS02] for matrix models which performs the same domain pruning as the global 
constraint in [FHK+02].

‘This term will explained later
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The main idea behind these ordering constraints is that by adding superfluous constraints 
to the model (which rule out some solutions, but not all) we are destroying the symmetry of 
the problem by stating that rows or columns of variables are different. There are different 
ways we can order such matrices, for instance using lex constraints, ordered multisets, or 
either of the previous methods with ordered sums. A detailed analysis of these methods is 

presented in [Kiz04].

These methods need an exponential number of constraints to break all the nl x ml sym­
metries of a matrix [CGLR96]. Since adding this number of constraints to the model is 
not computationally tractable, a subset of the symmetries is broken by adding a polynomial 
subset of constraints.

2.1.2 Constraints

Describing the constraints of a CSP is where most effort is exerted by the constraint pro­
grammer. It is the constraints that essentially describe the problem. As we saw in Definition 
1.2, constraints act on a set of variables. We can think of a constraint as a list of allowed 
of tuples, a list of forbidden tuples, or some implicit function that takes a tuple and returns 
valid, invalid or possibly unknown if a partial assignment is being considered [BR97].

In constraint solvers, constraints are usually constructed using combinations of arithmetic 

and logical operators e.g. = , < , -H, A etc. All of these are binary operators, which
on their own, can create binary constraints. CSPs that contain just binary constraints are 
called binary CSPs. Any CSP containing a constraint with arity larger than 2 is called a 
non-binary constraint. It has been shown that any non-binary CSP can be transformed into a 
binary CSP [RPD90]. Generally speaking, propagation (Chapter 2.1.3) is easier to perform 
on constraints with a small arity. Thus, research has looked at converting non-binary CSPs 

to binary CSPs [SteOl] [BCvW02].

We have already observed how constraint programming allows its users to easily describe 
complex problems. One of the main tools of constraint programming that makes this so is 
global constraints. A global constraint is a constraint that acts over a set of variables, thus 
it is also a non-binary constraint. A global constraint also consists of di filtering algorithm, 
which is a propagation algorithm to be used exclusively just for the global constraint in 
question. Examples of global constraints are all-different: given n  variables, ensure that
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each one takes a different value. Occurrences: given n  variables, a number of occurrences 
0  and a domain element i, ensure that o of the n  variables take the value i. Since the idea 
of global constraints is too closely tied to propagation, we will return to these constraints 
after we have looked at propagation in more detail.

2.1.3 Propagation

One of the many reasons that constraint programming is able to solve complex problems 
efficiently, is due to the careful balance of propagation and search. We can reduce the 
exponential search space by using propagation algorithms during search to prune branches 
of the search tree. The importance of propagation has led to much research into both 
different levels of consistency and different ways to achieve them. Note that the term 
propagation is sometimes also referred to as consistency, inference or filtering.

The main idea behind propagation algorithms is to take a current state in search and a 
set of constraints and remove values from the domains of variables we can show to be 
inconsistent. For example, imagine the constraint Cij : X i + X j = 5 where D{Xi) = 
D{Xj)  — {1,2,3}, We can see that if =  1 then there is no value that X j  can take that 
will satisfy Cij. Therefore, we conclude that X* =  1 is an inconsistent choice and thus we 
remove 1 from D{Xi).  For the same reason we can infer that X j  =  1 is also inconsistent 

and thus 1 is also removed from D{Xj) .  Constraint solvers are good at making simple 
inferences such as these. After making such a domain removal, we can then propagate 
these changes i.e. see if we can make any further inferences based on the new smaller 
domains. By performing these computationally cheap inferences, we drastically reduce the 
size of the search space.

A propagation algorithm enforces a level o f consistency . A consistency level is not con­
cerned with how the propagation algorithm is implemented, but what the result of applying 
it to a set of domains is. We will now define some levels of consistency and provide refer­
ences to some implementations of algorithms that enforce them.

Any time we instantiate a variable X*, we examine the constraints that act on that variable. 
To pQviotm forward checking we find any instantiations X j = a, that would result in failure 
if they were to be made in conjunction with the newly instantiated X<. When we find such 

an instantiation as Xj =  a, we remove a from D{Xj).  This is one of the simplest levels
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of consistency to enforce. The most common form of consistency used with constraint 
programming is arc consistency. One reason for this is that it is the strongest level of 
propagation that can be enforced by adding unary constraints, or in other words, a domain 
removal.

Definition 2.1 A binary constraint Cij is arc consistent iff:

2. Vo G D(X() 3b G D % )  g.f. (a, b) G Q

2. Vb G D(Xj )  3ci G D(Xi)  s.t. {a, b) G Cij

Definition 2.2 A binary CSP L is arc consistent iff all constraints in L  are arc consistent.

The study of arc consistency was introduced by Mackworth in [Mac77]. This paper con­
tained an algorithm for enforcing arc consistency on binary CSPs called AC-3. This algo­
rithm has time complexity 0 {e(ff) and space complexity 0 (e + nd) where e is the number 
of constraints and d is the size of the largest domain. Since then, other implementations 
with the optimal time complexity Oiedf)  and space complexity 0[ed)  (except for AC- 
4 which has space complexity 0{ed3)) have been created: AC-4 [MH86], AC-6 [BC93], 
AC-7 [BFR95], AC-2001 [BROl], AC-3.1 [ZYOl]. In practice, AC-7 performs the smallest 
number of constraint checks and is in many ways preferable. The algorithms AC-2001 and 
AC-3.1 are the same, though developed independently, and are similar to AC-3. Though 
the complexities of the above algorithms are similar, how well they work in practice has 
been an area of interest [Wal93] [vD03].

All of the above algorithms apply only to binary constraints though. Given that constraint 
solvers allow the construction of larger constraints, and also global constraints, we need 
to be able to enforce arc consistency on non-binary constraints. This level of consistency 
is call generalised arc consistency or GAC. An algorithm for enforcing GAC on a set of 
arbitrary constraints is presented in [BR97] and is loosely based on AC-7. This algorithm is 

called GAC-Schema and has time complexity 0{edf)  and space complexity 0{elPd)  and 
is thus quite impractical for constraints with a large arity.

Enforcing arc consistency means that we must verify that every possible domain element 
of every variable can be extended by at least one more decision. A limited version of this
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consistency is also affective. A CSP is bounds consistent if we ensure that the lai'gest and 
smallest element of every domain is consistent (Definition 2.3).

Definition 2.3 A binary constraint Cij is bounds consistent iff:

1. a G {D(Xi)smallest, I-^(^i)largest} 36 G D { X j )  S.t. (fl, 6) G Cij

2. b G ^D(Xj)smallest, C^(^j)largesty 3u G D ( X i )  S.t. (<2,6) G C

For some constraints e.g. a binaiy constraint involving an addition operator, performing 
bounds consistency is as powerful as arc consistency for contiguous domains, but compu­
tationally cheaper.

A concise representation of some levels of consistency can be described by the following 

definition.

Definition 2.4 A CSP is (%, j)-consistent i f  we can make any i  consistent instantiations and 

this state can be extended to a consistent instantiation o f another j  variables.

We can see that arc consistency can be described as (1,1)-consistency. In addition, (2,1)- 
consistency is also known as path consistency, (1,2)-consistency is also known as path 
inverse consistency and (A: — 1,1)-consistency is also known as k-consistency. In general, 
we need to perform searches over j  variables, and post constraints of arity i, to enforce 

(i, j)-consistency.

Global Constraints

As mentioned earlier, a global constraint is one that can act on any number of variables, pos­
sibly even all the variables in a CSP. However, Chapter 2.1.3 showed that such constraints 
cannot be propagated efficiently in general. Global constraints are such an important part of 
constraint solver though, that research is conducted to find efficient methods of enforcing 
a level of consistency for specific constraints. These specific algorithms take advantage of 
the semantics of the individual constraints.
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One of the most popular global constraints is the all different constraint, for which there 
is an algorithm that enforces GAC in polynomial time [Reg94]. Other examples of global 
constraints include the global cardinality constraint [Reg96] and lexicographic ordering 
constraints [FHK’̂ 02].

2.1.4 Heuristics

The next variable to instantiate while searching is decided by the heuristic we use. Though 
CSPs have an exponential search space, the size of the search tree can be reduced by prop­
agation, and also by heuristics. Indeed, given the perfect heuristic for a given CSP, we can 
find a solution in polynomial time if there is one. In general this is not the case. However, 
good heuristics can greatly reduce the time taken to find a solution.

The traits of a good heuristic are that it guides the traversal of the search tree toward solu­
tions, and that it can quickly find paths that lead to failure. Examples of dynamic heuristics 
include the smallest domain first which instantiates the variable with the smallest domain 
first, and the most constrained first which instantiates the variable with the most constraints 
acting on it first. Specific problems can have their own heuristics e.g. the n-queens problem 
(Model 2.3) can be effectively solved using a heuristic that tries to place queens nearest the 
center of the board, where it is most constrained. This is done by instantiating the variable 
nearest to X a with the value neaiest to  ̂ first [CHS+03]. A detailed empirical study of 
dynamic variable ordering heuristics can be found in [GMP+96] and an investigation into 
why certain variable heuristics are good can be found in [Smi97] [SG98].

As we will see later in this chapter, heuristics can play an important role in solving CSPs 
with symmetry breaking methods. It was shown in [GHK02] how a poor ordering heuristic 
can negate the benefit of some methods of symmetry breaking. One of the advantages of 
the symmetry breaking method described in [GSOO], and later in other symmetry breaking 
methods such as that in [FSSOl], is that they do not interact badly with the heuristic used.

This becomes particularly important when we are only interested in finding one solution. 
Generally, symmetry breaking methods are used to find all solutions or an optimal solution 
as this produces the greatest comparative reduction in search. The reverse is true of good 
heuristics. Though they try to explore the seaich space that will yield a solution first, the 
rest of the search space must still be explored later. Thus, the effect of a good heuristic

.r.'Y V  j ' ] . ' : . .
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is lessened when finding all solutions or an optimal solution. Although, note that a good 
heuristic will try to search the remaining search in such a way that inconsistent subtrees 
are found sooner. Since symmetry breaking methods work best when finding all solutions, 
little symmetry breaking research has been carried out into finding just the first solution 

[PreOl].

To eliminate the variability of the effect that dynamic ordering heuristics may have, we 
will try to avoid their use in experiments. Therefore, unless stated otherwise, experiments 
in this thesis will use a static lexicographic ordering heuristic.

2.1.5 Search

There are many different strategies for traversing the search space of combinatorial search 
problems. CSPs are generally solved using a simple backtracking algorithm, and this is the 
case for the entirety of this thesis. Since it is an important aspect of constraint programming 
however, we will briefly discuss some alternatives.

A search strategy can be divided into one of two categories: complete and incomplete 
search. The former deals with methods that systematically traverse the entire seaich space 
of the problem until a solution is found. The latter may not traverse the entire search space. 
Complete search has the advantage of being guaranteed to find a solution, or prove that 
none exist. Incomplete seaich can either find a guaranteed solution or state that none were 
found, but may still exist.

Complete search records the domains of variables. Instantiations are made and domains are 
altered. States in search are verified to be consistent before recursively searching further, 
or we backtrack to the last consistent state to make a different instantiation. Backjumping 
methods work in a similar manner except they can backtrack further up the search tree 

[Gas79] [Dec90] [Pro93].

Incomplete search methods work by considering the leaves of the seaich tree i.e. complete 
instantiations. Many methods of incomplete search can be thought of as a general instance 
of local search. These include hill-climbing, tabu-search [Glo89], GSAT [SLM92] and 
stochastic search. For example, the main idea of GSAT is to try a random instantiation 
of all the variables (possibly guided by some heuristic). We then alter the instantiations

...J -•
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of individual vaiiables (also called a flip) to try to minimise the number of violated con­
straints. If we cannot satisfy all of the constraints within a certain number of flips, we then 
(randomly) choose another complete instantiation of vaiiables. There may also be a limit 
on the number of restarts we can take.

Symmetries in CSPs cause redundant work when using complete search. Subtrees of search 
can be considered equivalent under some symmetry. Whatever computation we exerted 
in proving such a subtree contains no solution, the same work must be done for all its 
symmetric equivalents. The same is not true for incomplete search however. Consider 
breaking symmetry by adding redundant constraints e.g. adding lex constraints to a matrix 
model. Though we are breaking symmetry, we are making the problem more constrained 
by adding to the constraints that must be satisfied. This leads to a smaller distribution of 
solutions, which in turn makes it harder for local search to find a solution [PreOl]. It was 
argued later that super symmetric models are preferable for incomplete search [Pre02].

A survey paper that discusses many different methods of complete search for CSPs was 
written by Dechter and Frost [DF99]. An introduction to search methods is presented in 
[PreOO] that covers some complete and incomplete search strategies.

2.2 Constraint Solvers

Research into constraint programming has yielded many different methods of solving CSPs. 
A constraint solver is an implementation of many of these propagation and search tech­
niques, global constraints etc. so that CSPs can be solved efficiently. These implementa­
tions provide a clear method for constraint programmers to encode their problems.

There are many constraint solvers available today. Solver (produced by the company Hog) 
is a C++ library which provides an imperative constraint solving toolkit. As well as con­

taining many efficiently implemented global constraints. Solver works by maintaining con­
sistency on constraints while using a simple backtracking algorithm.

E C D P S ^  (produced by ic-parc, a company owned by Imperial College London) is a con­
straint logic programming system with Prolog-like syntax. These are the main two solvers 
used throughout this thesis. The constraint solver FreeSolver is introduced in Chapter 5. 
This solver is an imperative constraint solver written in Java which allows constraints of
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arbitrary arity constructed using Java’s arithmetic and logical operators. This solver was 
written specifically to perform the experiments found in Chapter 5

2.3 Computational Group Theory

In this thesis we use group theory widely, both as a means of describing symmetries but 
also as a means of computing with symmetries. However, the work carried out in this 
thesis mainly deals with computational group theory (CGT) as a tool to perform research 
into symmetry in the context of constraint progiamming. As such, we will mention some 
computational group theory softwaie packages but not specifically the research that went 
into developing them. We will also mention some papers that make heavy use of group 
theory to solve combinatorial search problems, although not specifically using constraint 
programming techniques.

GAP [GAP03] is the main CGT system used in this thesis. It is an interpreted programming 
language that contains all the common functionality of an imperative language e.g. fo r  and 
w hile loops, i f  / e ls e  conditionals, recursive functions and many arithmetic and logical 
operators. As well as this, there are thousands of library routines for solving common 
algebraic problems to do with numbers, graphs and various types of group. Another similar 
system is Magma [BCP97]. The work in [CF93] and the books [But91] and [Ser03] provide 
many informative descriptions and algorithms for permutation groups.

Soicher used the complex symmetries of SOMAs (mutually orthogonal latin squares) to 
good effect using GAP [Soi99]. Royle [Roy98] and McKay [McK98] present methods 
of enumerating “combinatorial objects” whereby only one representative is produced from 

each isomorphism class.

2.4 Symmetries in CSPs

The study of symmetries in CSPs has seen a large increase in interest over the past few 
years. Evidence of this can be shown by looking at the popularity of the “Symmetry in 
Constraints” workshop held at the annual “Principles and Practice of Constraint Program­
ming” conference. The number of accepted papers rose from 11 in its first and second year
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(2001-2002), to 18 in 2003.

Though before 2000, work into symmetries in CSPs was not as widespread, many funda­
mental papers were published which first highlighted the redundancy of constraint solvers 

dealing with symmetric problems.

In order to present a review of synunetry breaking in constraint programming we will 
partition previous work into two sections. The first section will look at research carried 
out in the 1990s. This work was generally concerned with breaking either specific types of 
symmetry, or breaking symmetries within a specific framework. The second section will 
look at papers from the 21̂ * century that mostly present general methods of breaking all 
symmetry. These papers will define symmetries to be as expressive as Definition 1.7 unlike 
most of the research discussed in the first section. Also, in the second section, we see 
more work which is a by-product of specific symmetry breaking methods i.e. papers which 
compare different symmetry breaking methods, or modify symmetry breaking methods etc.

Also of note, although outside the scope of this thesis, is the continuing interest of the study 
of symmetry in other areas of combinatorial seaich. We are seeing symmetry becoming a 
greater focus of study in SAT [Gol02] [LJP02] [ARMS03], planning [FL02], scheduling 
[Sel03] and integer programming [Mar03] to name just a few areas.

2.4.1 Symmetry Breaking in the 1990s

Thought by many to be the first work that looked at symmetries in constraint programming 
[Fre91], introduced the concept of neighbourhood interchangeability. In this paper, the 
problem of graph colouring was examined: given an undirected graph G, and k  colours, 

a k colouring of G, is a labelling such that every node in G is associated with one of the %
k colours. No two nodes that share an adjoining edge may have the same colour. This 
problem has a great deal of symmetry since any solution can be transformed by performing i

any of the k\ permutations of the colours.

This paper however, dealt with a significantly weaker form of symmetry. Any two domain 
elements a,b G D{Xi)  are said to be fully interchangeable iff any solution to the CSP 
which contains X i ~  a remains a solution if the assignment is changed io X i — b and vice 

versa.
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In this case the symmetries are value symmetries i.e. only the domain elements are per­
muted. The symmetries are also only specific to one particular variable. Thus even if 
Vi, j  D{Xi) = D{Xj) ,  and a and b are fully interchangeable, we need to state explicitly 
which vaiiable’s domain a and b belong to.

The concept of value synunetry being global over all variables in a CSP is introduced 
in [Ben94]. Benhamou and Sais had already examined symmetries in prepositional cal­
culus earlier in [BS92]. In [Ben94], a system is developed for eliminating value sym­
metry in binary CSPs. A syntactical symmetry is defined as a permutation a, such that, Î

iff V i,i {D{Xi)a,D{Xj)b)  G Cij,{D{Xi)^i^s),D{Xj)a{h)) E A filtering algorithm 
revise{D{Xi),  D{Xj))  is used during search to remove symmetric nogoods.

This paper presents good empirical results on proving the insolubility of the pigeon hole 
problem: given n  variables each with the domain from 1 to M — 1, each variable must take 
a different value. The pigeon hole problem has freely interchangeable value symmetiy.
Though the technique in this paper applies only to binaiy CSPs, the author states that any 
non-binary CSP can be converted to a binary CSP [RPD90].

In [Pug93], Puget describes a symmetrical problem as one where, “some permutations 
of the variables map a solution onto another solution”. This definition encapsulates the 
idea of symmetries acting on variables. Interestingly, this paper also defines symmetrical 

constraints. For example, the binaiy constraint is described as symmetrical since it 
is commutative. Similarly, so too is the global all-different constraint. Such symmetry 
is broken by lexicographically ordering the values of the variables in any one constraint.
These ‘lex’ constraints are added to the problem. This method of dealing with symmetries, 
is still popular today and essentially tiunsforms the original CSP into another CSP with less 
(or no) symmetry. One of the major disadvantages with using ordering constraints however 
is that different heuristics can have a detrimental affect [GHK02]. For example, consider 
including the following constraint to break symmetry: X i  < X 2 < ... < Xn  with the value 
heuristic that tries to instantiate the largest value first. Trying to instantiate the variables 
from X i to X„ will result in many needless backtracks.

The paper by Crawford et al. [CGLR96] is a seminal paper in the field of symmetry in com­
binatorial search. Though the paper studies symmetry breaking with SAT, its implications 

are still relevant to CSPs.
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Firstly, the paper extends the approach used in [Pug93] to break a symmetry by adding a lex 
constraint to the problem. Unlike Puget, the approach was automated i.e. given any sym­
metry, a relevant lex constraint could be constructed. Secondly, a technique from [Cra92] 
was used to automatically detect the symmetries of a given problem by using a graph au­
tomorphism algorithm. Thus, symmetries that resulted from permutations of variables and 
values could be found.

This was therefore the first paper that could break an entire set of arbitrary symmetries. 
However, an exponential number of lex constraints are needed to break all symmetries in 

general.

The final paper we will look at in this section is [MTOl]^. In some ways it is a step back 
from the approach in [CGLR96] since it does not break all symmetries, and the definition of 
symmetry used does not encapsulate all types of variable and value symmetry. A symmetry 
is described as a bijective mapping 0 \ X  X .  This is enough to describe variable 
symmetries. The symmetry 0 also contains another d bijective mappings (where d is the 
domain size) Oi,...,0d, where 9i ; D{Xj)  — > D(Xj) .  This description allows many types 
of symmetry but not all. The work in [FMOl] uses the same symmetry definition and thus 
has the same limitations.

Consider the n-queens problem (Model 2.3) where we have the symmetry: rotate the chess 

board by 180°. This is a symmetry that we can express by permuting the variables (for 
4-queens, swap X i  with X 4 and swap Xg with X3) and at the same time reversing the 
domains of all variables.

The rotate by 90°, rotate by 270°, and the flip about the diagonals are symmetries of this 
problem. However, they cannot be described using the definition of symmetry in [MTOl]. 
This paper states that, “The remaining four symmetries of the chessboard are not symme­
tries of this formulation.” This is not the case. These symmetries are in this model but they 
cannot be expressed using this method of describing symmetries. We need a more powerful 

method.

One of the major outcomes of this paper however is a symmetry breaking heuristic. This 
heuristic instantiates the vaiiable that has the most symmetries acting on it at that node in 
search. More importantly, the implementation saw a return to a dynamic symmetry break-

^The original version of the paper first appeared in IJCAI1999.
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ing method i.e. like [Ben94], it is used during search. In a similar manner to Benhamou, 
this method of symmetry breaking removes domain elements that are symmetric to previ­
ously found nogoods. The difference here is that the symmetries aie more complex than 

just value symmetries.

2.4.2 Symmetry Breaking in the century

The second section of papers on symmetry breaking in constraint programming, deals 
mainly with dynamic methods used during search, and general methods for breaking ar­
bitrary symmetries.

The first of these methods is that developed by Backofen and Will [BW99] and later by 
Gent and Smith [GSOO]. The method, named SET (Symmetry Excluding Trees) in [BW99] 
and SBDS (Symmetry Breaking During Search) in [GSOO] are essentially the same except 
for one optimisation in SBDS. Once a symmetry can be shown to be broken in the current 
subtree of search, it is discarded from consideration. Whenever we refer to SBDS in this 
thesis, we are referring to the two approaches collectively.

SBDS, like the method introduced by Crawford et al. [CGLR96], can break all symme­
tries in a CSP. The symmetry breaking functions also allow all possible variable and value 
symmetries. One area in which SBDS is superior to previous methods is that it does not 
conflict with the heuristic being used. All symmetric valiants of nogoods are forbidden, so 
it does not matter in what order the search is traversed.

To break symmetry using SBDS, the constraint programmer supplies a list of functions to 
represent the symmetries of the CSP. While searching for a solution, we record the set of 

decisions made as the state A. Upon backtracking from a failed assignment: X i = a we 
add the following constraint to the local subtree for every symmetry function g.

A  A g{A) A [Xi = a) ^  g{Xi = a)

The optimisation mentioned above in the method by Gent and Smith is that, once g (A) is 
guaranteed to be false in a subtree, we discard g from consideration in that subtree. The 
SBDS method can be seen as an extension to [MTOl] where non-unary constraints are 
also posted. SBDS has been successfully used in many different papers [SmiOl] [FSSOl]
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[FMOl] to break over 10  ̂ symmetries [MS02] and improve run-times by many factors 

[GLSOO].

One problem with SBDS was the redundancy of duplicate constraints. For example, two 
different symmetry breaking functions used by SBDS g and h may be used to construct the 
same constraint. If a CSP had more than n x d  symmetry breaking functions for a problem 
with n  variables with domain size d, then backtracking to the root node of search would 
result in posting duplicate constraints.

A follow up to [GSOO] by Gent, Harvey and Kelsey [GHK02] contains a modification to 
the SBDS implementation which uses group theory to deal with larger groups in a tractable 
way. The GHK-SBDS symmetry breaking method uses group theoiy to avoid posting many 
of the duplicate constraints that SBDS did.

Previous methods by Puget, Crawford et al., Backofen and Will, and Gent and Smith all 
add constraints to the solver. This is done either as a pre-processing step before search 
commences or they aie dynamically added to a subtree in search. The following approaches 
are used dynamically during search but rather than add constraints to the solver, they inform 
the solver when to backtrack in search.

Surprisingly, this approach was first used in 1988 by Brown, Finkelstein and Purdom 
[BFP88] [BFP96]. Though their approach was not specifically for CSPs but backtrack 
search, the ideas remain applicable to constraint programming. Given a group representing 
the symmetries of a problem, if a group element could be found that mapped the current 
state in search to a lexicographically smaller one, we should backtrack. One restriction that 
this method entailed is that we must search for a solution using the static lexicographically 
least ordering heuristic.

A similar approach was developed for the CSP framework, and for any heuristic, inde­
pendently from each other (and from Brown et al.) by Fahle, Schamberger and Sellmann 
[FSSOl] and Focacci and Milano [FMOl]. Similar to SET and SBDS, the technique will 
be collectively referred to as SBDD. Given a state in search and a set of nogoods T , 
we look for a symmetry that maps any element of T  to a subset of the decisions in P^. 
If such a symmetry can be found, then we have entered a node in search symmetrically 
equivalent to a previously visited nogood and therefore, we can backtrack. The test to find 
such a symmetry is called a “dominance check” because we are checking to see whether
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our current state in search is dominated by any of the other previously failed states. SBDD 
contains an optimisation to limit the exponential number of failed states to consider, to at 
most ( n  — I) X (d  — 1). The dominance check, itself encoded as another CSP, is equivalent 
to the NP-complete problem of subgraph isomorphism. The technique has been used to 
break all symmetries in problems with over 10  ̂symmetries.

A modification to SBDD was proposed by Harvey [HarOl] which contains two notable 
improvements. Firstly, a method of uniting all previous failed search states into one state 
is presented. Secondly, rather than mapping the set of all domains, we look at just the set 
of decisions made. This makes the set of points acted on much smaller. These two changes 
reduce the amount of computation needed to use the symmetry breaking method SBDD. 
When we refer to SBDD, we collectively consider the original SBDD technique with the 
improvements introduced by Harvey.

The GHKL-SBDD method by Gent et al. [GHKL03] similarly uses the same idea as 
SBDD: backtrack whenever we enter symmetrically redundant search. However, whereas 
SBDD insists the constraint programmer writes their own dominance checker for each 
problem, GHKL-SBDD, like GHK-SBDS, only requires a group representing the symme­

tries of the CSP.

As well as research that introduces new methods of breaking symmetry, we have seen 
many examples of using symmetry breaking methods to solve problems with symmetry 
effectively [HarOl] [Pug02] [Pea03] [PS03]. Much of this work notes small improvements 
that can be made to the symmetiy breaking method in general or when dealing with specific 
problems.

It is clear that the current research into symmetry in constraint programming is far reach­
ing and abundant. We are seeing more research now than ever before into the various 

aspects of symmetry breaking: new methods, experiments, modifications to methods for 
specific problems, solving specific symmetrical problems, implementing symmetry break­
ing systems, combining methods, and creating efficient methods of breaking specific types 
of symmetry.



Chapter 3 

Implementation of Symmetry Breaking 
Systems

A constraint solver is made of many parts [Kum92]. There are many different ways to tra­
verse the search space of a CSP: backtrack search, conflict directed backjumping [Pro93], 
limited discrepancy search [HG95], depth bounded search etc. There are also many lev­
els of consistency to enforce and even more different ways to accomplish them [Mac77] 
[Coo 89]. Finally there are many popular dynamic variable and value ordering heuristics 
we can choose: most constrained first, smallest domain first or kappa [GMP+96] [Smi97] 

etc.

At present there are also a large number of different methods of breaking symmetry in 
CSPs. A symmetry breaking system is quite simply an implementation of one or more 
symmetry breaking methods that can be used to avoid redundant work performed by the 
constraint solver.

In the future we hope to see symmetry breaking systems playing an equal role to search 
and inference techniques and heuristics for symmetric problems in constraint solvers. This 
chapter will be looking at the importance of implementing symmetry breaking methods in 
terms of efficiency, ease of use and generality. We will look at the consequences of imple­
mentations of symmetry breaking systems throughout the chapter by using three symmetry 
breaking systems as examples: SBDS [GS00][BW99], SBDD [FSS01][FM01] and GHK- 
SBDS [GHK02], By identifying what the benefits and disadvantages of certain symmetry
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breaking systems are we can make superior implementations which will help to take sym­
metry breaking research into the mainstream of eonstraint solvers.

3.1 Requirements of a Symmetry Breaking System

As was reviewed in the previous chapter, there are many methods for breaking symmetry 
in CSPs. At the moment, these methods are used by researchers working on symmetry in 
CSPs. These researchers will have a detailed knowledge of the specific symmetry breaking 
method most suited to them. If we are to look forward to more symmetry breaking systems 
to be included in constraint solvers, we need to look at different symmetry breaking systems 
and see how they differ. We also need to examine the strengths and weaknesses of these 

symmetry breaking systems.

3.1.1 Automatic Symmetry Detection vs Symmetry Descriptions

One important task that needs to be performed before symmetry breaking can occur is 
the process of actually identifying the symmetries. A symmetry breaking system needs to 
decide whether identifying the symmetries of a CSP is a job for the constraint solver or the 
constraint programmer. The most popular choice to date is that the constraint programmer 
describes the symmetries of the problem. However, both choices have advantages and 
disadvantages that will be considered in this section.

Some symmetry breaking systems break only a specific type of symmetry and thus no 
symmetry needs to be detected or described. Such systems can only be used if the specific 
symmetry exists. For example, lexicographic ordering constraints can be added to matrix 
models with interchangeable rows and columns to break some symmetry [FFH+02]. Also, 
the STAB method has currently only been used to break such symmetries [Pug03]. Freely 
permutable value symmetry was examined in [GenOl] and [HFPA03].

Graph automorphism and isomorphism detection is used in data flow diagrams to find sym­
metries in Digital Signal Processing problems [vEJMT99]. Both [CGLR96] and [JR97] 
use a graph automorphism algorithm to find symmetries in CSPs, a technique introduced 

in [Cra92]. Finding symmetries in SAT has also been accomplished by using a graph au-
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tomorphism algorithm [ARMS03], Special cases using boolean vaiiables introduced their 
own methods of detecting symmetries [Agu93] [BS92]. Most modern symmetry break­
ing systems in the field of non binary constraint satisfaction however, rely on the fact that 
spotting symmetries in CSPs is generally easy. The systems developed in [MTOl] [BW99] 
[GSOO] [FSSOl] [FMOl] all assume the constraint programmer describes the symmetries.

The latter papers mentioned above specify that the constraint programmers must supply 
the symmetries of the problem. By doing so, the work of both identifying the symmetries 
and encoding the symmetries are passed to the constraint programmer. Since constraint 
programming allows for very expressive models and easy problem representation, it is 
a general assumption among the symmetry breaking community that recognising a great 
deal, if not all, of the symmetry in ones own programs is generally straightforward. Once 
the symmetries have been recognised though, they must then be encoded somehow. We 
can see this as an extension of the encoding of a CSP - we must encode the model, the 
constraints and now we must also encode the symmetries.

In effect, this adds an extra layer of code that needs to be written, the format of which is 
specified by the symmetry breaking system. Even though it may be trivial to recognise the 
symmetries of a given CSP, how easy it is to encode these symmetries is entirely dependent 
on this format. This fact is extremely important. The method of encoding symmetries for 
a given symmetry breaking system must allow us to represent any symmetries that may 
occur and we also need to be able to do this in an easy, straightforward manner.

At present, the E C D P S ^  constraint logic programming system [WNS97] is the only con­
straint solver that contains a symmetry breaking system: an SBDS library. Symmetry 
breaking is still largely in the domain of researchers. Since researchers will most likely have 
their own specific implementation, ease of use is not usually a large concern. This raises 
the important issue that a symmetry breaking system to be used by the average constraint 
programmer must either detect symmetries automatically or supply well documented, easy 

to use and expressive methods of describing the symmetries.

We will now look at symmetry breaking systems that automatically detect the symmetries 

of a CSP. The general method of detecting symmetries automatically is to convert a CSP 
into a graph. We then solve the graph automorphism problem on this graph which gives us 
the generators of group representing the symmetries of the constraint graph. The complex­
ity of performing graph automorphism is equivalent to that of graph isomorphism which
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is known to be hard. This problem is not classified as being either NP-complete or in P 
[JR97], however it can be solved by group theoretic algorithms that work well in practice. 
In general, a large number of generators are returned by the graph automorphism algorithm 
and some important group theoretic operations have complexities that depend on the size 
of the generator set e.g. the complexity of the orbit finding algorithm is 0(|A;| x |o|) where 
k is the generator set and o is the orbit.

One limitation of finding automorphisms of the constraint graph is that only symmetries of 
the constraints are found. There may be constraints that are not represented since they are 
implicit in the model. Since these constraints are not listed, the constraint graph does not 
represent all the symmetries that exist in the problem. As an example, consider Model 2.3 

of the n-queens problem. We have an all different constraint on the var iables that ensures 
each queen is placed on a different column. We do not need such a constraint to ensure 
only one queen must be placed on each row. This is because each row is represented by 
one variable and thus it can only take one value. Therefore the symmetry where the board 
is rotated by 270° or by 90° is not detected by the graph automorphism algorithm.

CSP encodings can be very concise due to the expressive power of constraint program­
ming. SAT encodings however, are very opaque and thus detecting symmetries by using 
the graph automorphism algorithm is an easier method of describing symmetries in SAT 

than produces generators manually [ARMS03].

One interesting approach to symmetry breaking used in SAT solving but not in CSP solving 
is the idea of using the graph automorphism check at every node. Once the symmetries of a 
problem G, have been detected, it is generally assumed that any symmetry acting on a state 
during search will be a subset of G. However it is possible that after making decisions, 
rather than reducing the number of symmetries that are still valid, some more are created 
[GMS03]. By using the graph automorphism algorithm at every node, we can try to detect 
symmetries that are introduced to the problem during search.

If a symmetry breaking system has automatic detection it is preferable to detect all the 
symmetries that exist in the problem and should mn in a reasonable time. A symmetry 

breaking system that requires the constraint programmer to describe the symmetries should 
provide a language that is expressive enough and straightforward and easy to use.
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3.1.2 Expressiveness

The definition of symmetry used by the symmetry breaking system affects its expressive­
ness i.e. the limitations of which symmetries it is possible to represent. As was shown 
in Chapter 2.4, if the definition of symmetry is not expressive enough then it may not be 
possible to break all symmetry [MTOl] [FMOl]. Some symmetry breaking systems only 
allow specific types of symmetries to be expressed e.g. lexicographic ordering constraints 
used with matrix models can only break permutation symmetries. Whether or not all per­
mutation symmetries are broken by lexicographic ordering on a matrix model is not the 

issue here but rather, can permutation symmetries be expressed?

Expressiveness is an important factor for symmetry breaking systems that require the user 
to describe their own symmetiies. As was mentioned above (Chapter 3.1.1), a symmetry 
breaking system that does not detect symmetries must supply a means of describing sym­
metries. The ideal symmetry breaking system should have an expressive language in which 
to describe symmetries.

Definition 1.7 describes a symmetry as a bijective function i.e. we can represent a symmetry 
as a function that takes a parameter and returns a result. Choosing the parameter to be a set 
of assignments is more expressive than choosing the parameter to be a set of variables and 
allows more symmetries to be represented. By making symmetries that take a state during 
search e.g. a set of domains of all the variables, and return its symmetrically equivalent 
state, this allows the most expressive symmetries. It should be noted that while some 

symmetries may only need to be described in terms of variables, in general there are a lot 
of symmetries found in CSPs that apply to combinations of variables and values. In the 
cases where symmetries act on just variables or just values, it may be beneficial to the 
symmetry breaking system to represent symmetries as just acting on variables or values. 
However, it is necessary to ensure that if a CSP has symmetries acting on assignments, then 
the symmetry breaking system should be able to express them.

The SBDS functions in [GSOO] essentially take an assignment and return the symmetric 
assignment relevant to the specific SBDS function. The SBDD dominance check found in 

[FSSOl] takes a state in search i.e. the current set of domains of all variables, and applies 
symmetries to it to try to find a superset of an already failed state.

As mentioned in Chapter 1.3.1, any group can be represented as a permutation group, and
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every permutation group acts on a number of points. For GHK-SBDS, the points refer to 
what the symmetries act on e.g. if a CSP has n  variables which are symmetrically equiv­
alent, we can constmct a group acting on n  points representing the symmetries of this 
problem. If a CSP with n  variables, each of which has a domain of size d, has some sym­
metries acting on the assignments, we need a group acting on n  x d points to represent the 
symmetries. For GHK-SBDS, it is the responsibility of the user to select an appropriate 
number of points for the group to act on. It is this number that affects the expressiveness of 
the symmetries. Even though GHKL-SBDD [GHKL03] has a completely different symme­
try breaking technique, the symmetry breaking representation is identicaP. All the above 4 
methods have an expressive enough representation of symmetry to describe any symmetry 
as defined by Definition 1.7.

3.1.3 Symmetry Representation

The symmetry representation of a symmetry breaking system is concerned with the way 
symmetries are stored internally. Generally speaking, most current symmetry breaking 
systems store symmetries as a group or something equivalent to a group i.e. a set of sym­
metries that can generate any symmetry of the problem.

The benefits of using just group generators as a symmetry representation include small 
memory requirements since the size of the generator sets is usually quite small, and they 
allow the symmetry breaking system to make use of group theory techniques i.e. if the gen­
erator set of symmetries is consistent with the four axioms of a group, then computational 
group theory and the large literature on group theory and can be used.

The other main representation of symmetry in a symmetry breaking system is as a list 
of symmetries. Storing symmetries as a list generally leads to simpler implementations 
however, the symmetry breaking system is quickly limited to small number of symmetries. 

The largest number of symmetries used with such a system is less than 10® symmetries 
[MS02].

SBDS represents the symmetries of a CSP as a list. Each symmetry is represented as a 

function and the symmetry breaking is performed by operating on the list of these func­
tions. GHK-SBDS represents the symmetries of a CSP as a group and makes use of the

^One minor exception is that the GHK-SBDD group has to act on all n x d points.
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efficient group theory algorithms of GAP [GAP03]. Although it is less clear to see how 
the symmetries are represented by SBDD, it is as a set of symmetries that can recreate all 
the symmetries of the CSP, essentially a generator set of a group. The SBDD dominance 
check contains “state transitions” that take a state^ in search A, and map it to a symmetri­
cally equivalent state A'. Each state transition is a symmetry of the problem. When SBDD 
tries to find a dominating state, the dominance check is trying to find a combination of state 
transitions that map a previously failed state to a subset of the current state. By finding such 
a mapping, the dominance check has found a symmetry that should be broken by SBDD. 
Even though this symmetry was not represented internally, it was found by combinations 
of the generator set of symmetries.

3.1.4 Problem Specific or Instance Specific

One great advantage of constraint programming is that we can describe the model and 
constraints of the problem without needing to explicitly know the size of the problem i.e. 

the number of variables and/or the size of their domains. For many constraint problems 
it is possible to represent the number of variables as a constant variable^ n, and refer to n  
when required. We can then state the size of the CSP at mn-time and not compile-time thus 
making it easy to write general programs to solve constraint problems that vary in size. For 
example, consider the n-queens problem. This is a class of problems with specific instances 
such as the 4-queens problem, and the 8-queens problem etc.

If a symmetry breaking system is to be included in a constraint solver, it must be able to 
refer to the size of the CSP (without needing to explicitly know it) and still be able to 
break symmetry at mn-time i.e. be able to deal with problem specific symmetry break­
ing and not just instance specific symmetry breaking. There are two main issues to deal 
with if this problem is to be solved. Firstly, even if the symmetries of a problem do not 
change with its size, their internal representation may do. If we look at the group rep­

resenting the symmetry acting on assignments of the 2-queens problem using Model 2.3, 
the generator set is (1 ,2)(3,4), (1 ,2 ,4 ,3). The generator set for the 3-queens problem is 
(1 ,3)(4,6)(7,9), (1 ,3 ,9 ,7)(2 ,6,8,4). It is clear the group representation will change with 
size since the number of points they act on will vary.

În [FSSOl], the domains of each of the variables. 
^Not as a constrained variable.
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Secondly, many symmetric CSPs have a varying amount of symmetry with respect to their 
size. A CSP with n  variables that are symmetrically equivalent to each other, will have n\ 
symmetries. A CSP that is modelled on a square will have 8 symmetries regardless of the 
size of the square. A symmetry breaking system needs to cope with varying numbers of 

symmetries at run-time.

Since SBDS takes a list of symmetry breaking functions or predicates, they need to be 
produced at compile time for non-interpreted languages such as Solver. It is possible for 
these functions to work with CSPs of various sizes with constant amounts of symmetry in 
certain cases e.g. n-queens problem in [GSOO]. However, since these functions are written 
as code that needs to be compiled to work, SBDS cannot cope with CSPs whose number of 
symmetries vary with their size. CSPs that have a varying amount of symmetry with respect 
to their size need to run a separate program to output and compile specific functions for a 
specific size of CSP if they are to use SBDS. This is not an ideal solution as it involves a 
considerable amount of extra coding for the constraint programmer.

The SBDD dominance check has an internal representation of the generator set of the group 
representing the symmetries of the CSP. The size of the set can remain constant and still 
vaiy the size of the group by varying the size of the set of points the group is acting on.

The implementation of GHK-SBDS in [GHK02] leaves the constraint programmer to write 

GAP code to describe the group. The constraint programmer can write GAP code to de­
scribe a specific permutation group by listing a generator set of permutations explicitly
i.e. g :== Group((1 , 2 ) , (3, 4 ) ) ; .  By doing so, the constraint programmer limits 
their symmetry breaking to be instance specific. If the constraint programmer wishes to 
break problem specific symmetry, they must write generic GAP code that produces a group 
based on the size of the CSP. Since GAP is a language complete with all the necessary 
programming constracts ( i f  statements, fo r  loops etc.) and group theory library functions 
(g : = SyimnetricGroup (5) etc.), it is possible to write such generic code. The constraint 
programmer may need to learn more group theory and/or GAP in order to achieve this.

3,1.5 Breaking all Symmetry

Symmetry breaking can be used to limit the number of solutions returned by a constraint 
solver for a problem with loose constraints. It can also be used to reduce run-times. Some



C h a p t e r  3 . Im p l e m e n t a t io n  o f  S y m m e t r y  B r e a k in g  S y s t e m s  4 6

constraint programmers may wish to know the exact number of unique solutions. If the 
latter is required than a symmetry breaking system that guarantees to break all symmetry 

must be used.

Lexicographically ordered matrix models do not break all symmetry and cannot guaiantee 
unique solutions. SBDS, SBDD and GHK-SBDS do however break all symmetry and 
return unique solutions. The constraint programmer must be aware though that there is a 
performance cost in applying symmetry breaking that increases with respect to the size of 
the group representing the symmetries of a CSP. If the size of this group is too large, the 
symmetry breaking systems above may not be able to operate efficiently enough i.e. there 
is a limit to how much symmetry can be efficiently broken. In such cases where there are 
too many synunetries, a subset of all of them must be broken. The topic of breaking subsets 
of symmetries is the area of study of Chapter 4.

In general though, a symmetry breaking system should ideally break all symmetry but if 
not, it should be able to deal with large amounts of symmetries efficiently by breaking just 
a subset of them.

3.1.6 Ease of use

Perhaps the most important feature from the point of view of the constraint programmer 
ignorant of symmetry breaking techniques is the ease of use of the symmetry breaking sys­
tem. Constraint programmers do not have to know anything of the implementation of arc- 
consistency algorithms in order to use them. Similarly, constraint programmers should not 
need to know anything about symmetry breaking techniques in order to use them. There­
fore, the interface between using a symmetry breaking system and the constraint program­

mer should be as easy to use as possible.

There are many features of modern symmetry breaking systems that may discourage the 
average constraint programmer from using them. For example, constraint programmers 
may not wish to write more functions (or a program to write more functions) as is needed 
by SBDS. The constraint programmer may not wish to write a new dominance check for 
every CSP as is required by SBDD. Finally, they may not wish to learn the group theory 
needed to use GHK-SBDS or GHKL-SBDD. Due care must also be taken when using 
GHK-SBDS that the labelling of the assignments to points and vice versa is consistent with
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the GHK-SBDS implementation. This list is of course subjective and will vai'y from user 
to user but, the easier to use the symmetiy breaking system is, the more likely it is to be 

accepted by constraint programmers in general.

3.1.7 Combinations of methods

Some symmetry breaking methods are mutually exclusive such as SBDD and SBDS in 
that they both prune redundant search so only one technique is required. Some methods 
have consequences that need to be considered before using other techniques. Imposing 
static symmetry breaking constraints changes the symmetries of the problem which could 
have adverse affects if not considered carefully. For example consider a problem where we 

have n  variables: Ui, U2 , •••, that aie all symmetrically equivalent. If we post a symmetry 
breaking constraint to order these variables lexicographically {v\ < V2 < ... < u„) we 
cannot use SBDS to break the permutation symmetry. Consider searching for a solution 
to this problem and a partial assignment =  4 A ^ 2  =  1 is reached. We would fail 
from this point due to violating the ordering constraint. If we were using SBDS then upon 
backtracking, constraints could be posted to rule out the partial assignment =  1 Au2 =  4. 
However, this could be a valid partial assignment.

Puget describes a way of combining symmetry breaking systems and lexicographic order­
ing constraints in [Pug03] which relies on the variable and value ordering heuristics being 
compatible. Some methods can be combined thus giving greater benefits, such as using 
lexicographic ordering constraints to break some symmetry and using SBDS to break any 
remaining. When doing so however, due cai’e needs to be taken to ensure the same symme­
tiy is not broken in incompatible ways.

3.2 Unique Symmetry Breaking using Group Theory

This section details the creation of a symmetry breaking system written for use with Ilog 
Solver 4.4. It is the first system since [BFP96] to use group theory techniques to break 
symmetiy in constraint programming. The group theory representation and algorithms 
were written in C++. This symmetry breaking system also discards non-unique symmetries 
thus reducing the number of symmetries to consider.
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This symmetry breaking system, Unique Symmetry Breaking During Search (henceforth 
U-SBDS) is based on SBDS. When backtracking from a failure, we post constraints in the 
current subtree that forbid any symmetrically equivalent state. There are 3 main differences 
between this symmetry breaking system and SBDS. Firstly, since group theory techniques 
are being used the constraint programmer does not have to write a list of functions but 
merely the generators of the group. Secondly, unlike SBDS which has a list of the sym­
metries, this new symmetry breaking system cannot keep track of which symmetries have 
been broken. This leads U-SBDS to post constraints forbidding states that can never be 
reached from the current subtree. Thirdly, one disadvantage of SBDS, and to a lesser ex­
tent GHK-SBDS, is that it posts redundant identical constraints. Given a set of symmetry 
breaking functions, some states can be mapped to the same different state by many of these 
symmetry breaking functions. U-SBDS overcomes this by using the group theory setwise 
orbit finding algorithm which finds the set of distinct states that can be reached by the group 
representing the symmetries of the problem.

A consequence of using the orbit finding algorithm to find symmetrically equivalent states 
during search is that the constraint that is added to the solver is calculated differently to 
SBDS. After failing during search with assignment var — val, and backtracking to state 
A, we add this constraint to the current subtree:

9(A) g{var ^  val) (3.1)

When using U-SBDS however, we say that {A  (J var — val} is the state that failed and we 
calculate (and forbid) the orbit of that set of decisions. The resulting output is a set of sets 
and as such, the position of g {var ^  val) will most likely not be the last element of the set. 
We can no longer post a constraint of the form A  => It is possible, however, to expand 

Equation 3.1:

g {var ^  val)

~^g{A) V g {var ^  val)

^g{vi = vala A ... A vk = valx) V g{var val)

-ip(ui =  vala) V ... V ~^g{vk = v a Q V g{var ^  val)

p(Ul 7̂  W o) V ... V p(u& f  Wa;) V g{var ^  val)
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We can now post symmetry breaking constraints of the form:

V { o i , 0 2 ,  G O rhit{G ,{{ai,a2 ,...,ak-i}[J{var= = val}))

-lOi V —1O2 V ...

Where Orbit{G, A) is the set of orbits of the state A  under the group G and { a i, «2 ,..., a%_i} 
is the set of choices made thus far i.e. the root node of the cuiTent state in search.

3.2.1 Unique Symmetries

After every backtrack we post symmetry breaking constraints. It would be perfectly valid 
to use the generators to recreate all the elements of the group and post a constraint for every 
symmetry. This would incur a very high overhead by flooding the constraint solver with 
too many constraints. At every node in the search tree some of the symmetrical constraints 
are the same as each other. In many cases there are more duplicate constraints than distinct 
ones. In order to reduce the overhead of posting duplicate constraints, we must ensure that 
at each node in the search tree we only consider the unique symmetries.

Definition 3.1 Given a partial assignment A, the maximal set o f symmetries G' is a subset 
o f all the elements in G, is unique with respect to A  iff g G G'{~Pih G G'\h{A) = 

p(A) A p).

The maximal set of unique symmetries is equivalent to the orbit of the set of decisions 
made so far. Figure 3.1 contains the average size of the set of orbits for the 4 x 4  alien tiles 
problem (see Appendix C .l) with respect to the depth of the search tree. This problem has 
1,152 symmetries.

3.2.2 Theoretical Analysis and Bound on Symmetry Breaking Con­
straints Needed

We can use the idea of unique symmetries to create an upper bound on the maximum num­
ber of symmetries breaking constraints after any one failure needed to break all symmetry.
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Figure 3.1: Unique Symmetries in the Alien Tiles problem.

The example of the alien tiles problems has 2nP symmetries for variables. For a group 
G acting on n  points, the largest possible size of G is n!, the symmetric group. This is 
due to the fact that a symmetry has to be a bijection. Therefore, any upper bound for a 
group with n\ symmetries will be an upper bound for all groups. We will be looking at the 
symmetric group acting on just variables since the symmetric group acting on assignments 
yields a problem that has either no solutions or dP' solutions. Any group that has symme­
tries acting on assignments should replace the term n  with nd  to produce a correct upper 
bound.

We now propose to look at the number of unique symmetries for a lai’ger group than that 
acting on the alien tiles problem: the symmetric group acting on ten points. We assume that 
this group, ^lo, represents the symmetiies acting on the variables of some imaginary CSP 
with 10 variables. The size of Sio is 3,628,800. Figure 3.2 contains the number of unique 
constraints needed, plotted against the size of the failed partial assignment. The number of 
unique symmetries is the same for all nogoods of size k. This is true because the group we 
are using is the symmetric group. If G is the symmetric group then for any set of points 
a , (3 of size k: Orbit{G, a) — Orbit{G, /?). Therefore, we only need to consider one set of 
points for each size of set.

Consider a failed partial assignment, or nogood, with 3 variables. The number of unique 
symmetries i.e. the upper bound for the number of symmetry breaking constraints that 
we need to post for this nogood is 120. This is over 30,000 times less than the entire 
group. This number will in general be much smaller as we only need to produce symmetry 
breaking constraints for the intersection of non-broken symmetries and unique symmetries.

... " it-  A l' % ■ ■
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Figure 3.2: Unique Symmetries for a problem with S'lo acting on the variables.

By examining Figure 3.2 we can infer two things. Firstly, the number of symmetry breaking 
constraints that need to be posted, is greatest halfway down the search tree. Secondly, and 
most importantly, the maximum number of symmetry breaking constraints needed at any 
time is a fraction of the entire set of all possible symmetries.

Note that for the symmetric group acting on n  points, the size of the setwise orbit of a set 
of m  points is equal to nCm . The nC m  function (pronounced “n choose m”) explicitly is;

nl
m\{n — m)\

The size of the pointwise orbit of a set of m  points contains also contains all m\ reorderings, 

and thus is equal to:

nl
(n — m)\

Since the setwise orbit is largest halfway down the search tree, or more specifically when 
m  — I , we have the upper bound of the maximum number of symmetry breaking con­
straints needed after any backtrack for any group acting on n  points:
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Figure 3.3: Constraints posted by SBDS, U-SBDS and GHK-SBDS for a problem with 
5io acting on the variables.

Theoretical Comparison of SBDS and U-SBDS

The major disadvantage of SBDS is that at the root, all symmetries are considered. Thus 
if we backtrack to the root of search, we will post as many constraints as there are sym­
metries. For this reason, the number of symmetries that SBDS can effectively cope with 

is minimised. By breaking just the unique symmetries (as U-SBDS does) we can greatly 
reduce the number of constraints needed by similarly backtracking to the root node. How­
ever, whereas the large overhead of SBDS decreases as we traverse deeper into the search 
tree, the overhead of U-SBDS increases as we approach the depth halfway down the search 
tree.

Since there are exponentially more nodes of the latter type, we would expect U-SBDS 

to perform worse than SBDS. However, the size of the overheads of SBDS and U-SBDS 
are quite different. The largest number of constraints posted using SBDS to break the 
symmetries of S'lo is 3,628,800. As shown in Figure 3.2, the largest number of constraints 

posted using U-SBDS is 252. The size of the largest setwise orbit will always be much less 
than the size of the entire set of symmetries.
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Figure 3.4: Maximum number of constraints posted by U-SBDS and GHK-SBDS for any 
one nogood from a problem with acting on the variables for varying n.

Constraints posted by SBDS, U-SBDS and GHK-SBDS

Figure 3.3 contains an upper bound for the number of constraints posted by SBDS, U- 

SBDS and GHK-SBDS after a backtrack at a certain depth for a problem with 5io act­
ing on 10 variables. Though the results of this graph appear to show U-SBDS posts the 

fewest symmetry breaking constraints, note that in practice SBDS and GHK-SBDS post 
far fewer as they do not consider guaranteed broken symmetries unlike U-SBDS. We can 
see however that there is a clear difference between using the setwise orbit to produce con­
straints (as U-SBDS does) and the pointwise orbit (as GHK-SBDS does). Recall that the 

pointwise orbit essentially allows the points in a set to be re-ordered. Whereas the set­
wise orbit of {1,2} and Sz would be {{1,2}, {1,3}, (2,3}}, the pointwise orbit would be 
{[1,2], [1,3], [2,1],[2,3],[3,1],[3,2]}.

Though a symmetry breaking system that breaks the intersection of unique symmetries 
and non-broken symmetries does not exist, it is conceivable that one could be constructed. 
Such a symmetry breaking system would theoretically be able to deal with larger groups 
than GHK-SBDS.

We now examine how the maximum number of symmetry breaking constraints required 

from any one nogood, increases with Sn for various n. Figure 3.4 shows the largest num­
ber of constraints needed from breaking all symmetries on S 2 to Sgo, which has over 10̂ ^  ̂
elements. We compare the largest possible size of the setwise orbit (U-SBDS) and the
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8-queens Backtracks Runtime Solutions

Solver 4.4 324 0.06 92

U-SBDS 61 0.02 12

SBDS 61 0.01 12

Table 3.1: Results of finding all solutions to the 8-queens problem using different symmetry 
breaking systems.

pointwise orbit (GHK-SBDS). The increase in the setwise orbit is much less than the point- 
wise orbit. We can therefore use dynamic symmetry breaking constraints to break much 
larger groups than is reported in [GHK02].

Unfortunately, though the setwise orbit increases much slower than the pointwise orbit, 
it still increases at an exponential rate. This further enforces the theory that breaking 
an exponential number of symmetries in general, with the exception of value symmetry 
[RDGKL04], requires an exponential amount of computation.

3.2.3 Empirical Results

We now present some empirical results from solving symmetry problems using U-SBDS 
with Ilog Solver 4.4. Results are compared against using no symmetry breaking and SBDS. 
Table 3.1 contains the data from finding all solutions to the 8-queens problem. Table 3.2 
contains the data from finding an optimal solution to the alien tiles problem with a 4 x 4 
board with 3 colours.

Since the empirical benchmarks have a small number of symmetries, SBDS can easily 
cope with them. The largest number of symmetries that SBDS has reportedly used is 8,000 
(see Chapter 4.5.3 and [MS02]). We have shown in Figure 3.2 that a large group such as 

Sio can be broken by posting a relatively small number of symmetry breaking constraints. 
Therefore, it is possible that U-SBDS may be able to solve problems that have too much 
symmetry for SBDS to cope with.



C h a p t e r  3 . Im p l e m e n t a t io n  o f  S y m m e t r y  B r e a k in g  S y s t e m s 55

Cost
Solver 4.4 

Fails Runtime
SBDS 

Fails Runtime
U-SBDS 

Fails Runtime

1 0 0.37 0 3.74 0 0.42
2 0 0.38 0 3.77 0 0.42
3 0 0.39 0 3.95 0 0.44

4 0 0.40 0 3.99 0 0.46
5 0 0.42 0 4.18 0 0.48

6 0 0.43 0 4.22 0 0.50
7 0 0.45 0 4.44 0 0.52

8 0 0.46 0 4.50 0 0.54

9 290 5.15 29 11.56 29 2.92
10 866 15.23 116 18.59 114 31.24

Prove Optimal 57,664 1,304.99 499 56.59 479 125.01

Table 3.2: Results of finding an optimal solution to an alien tiles problem using different 
symmetry breaking systems.

3.3 Implementing the GHK Algorithm with GAP

With the view of creating a symmetry breaking system to act as a library for Ilog Solver 5.2, 
we implemented a version of GHK-SBDS. The main differences between this implemen­
tation and that found in [GHK02] are firstly, the original version is written for E C U P S ^  
and this version is written for Solver 5.2. Secondly, the original version contained delayed 
goals to reason more intelligently with symmetries whereas this implementation does not. 
Finally, we implemented an additional layer of code that sits in between GAP and the con­
straint programmer that allows the symmetries to be described more easily. By doing so 
it is hoped to create a symmetry breaking system that has many of the desired properties 
mentioned in Chapter 3.1. More on how this is achieved can be found later in Chapter 

3.5.3.

The initial hurdle in creating such a symmetry breaking system was the inter-process com­
munication between the CSP Solver (Solver 5.2) and the CGT package (GAP 4.3). Whereas 
ECL'^PS^ contains predicates for starting new sub-processes, Solver does not. Code was 
written to allow C++ to start a GAP sub-process which Solver could communicate with 
during search by passing characters down pipes.

. à
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The method of symmetry breaking used is in the style of SBDS. After backtracking from a 
failed assignment, constraints are posted to mle out symmetrically equivalent assignments. 
A cut-down version of the pseudocode described in [GHK02] is used that does not require 
delayed goals. The constraints posted by this pseudo code break non-broken symmetries 
and many of these constraints are also unique. The only duplicate constraints that occur are 
as a result of a reordering of the assignments in the constraint e.g. v i ^ l M  V2 ^  2 may be 
posted alongside ug ^  2 V ui ^  1. Note that although this greatly minimises the symmetry 
breaking constraints needed there can still be an exponential number (w.r.t. the arity of the 
constraint) of identical constraints. The algorithm for calculating the symmetry breaking 
constraints to be added is shown in Algorithm 3.3.1.

Algorithm 3.3.1: NuSBDSC o n s t r a i n t s  (if, prev, A) 

comment: H is the pointwise stabilizer of the current partial assignment 

comment: prev is the list of constraints from the parent node 

comment: A is the failed vai-val assignment

R T ^ O r b i t{ H , A) 
while prev . has Another C onstraint {) 

for each g e  R T

( c<r~ (prev.getNextConstraintQ  || -'(^'(A)) ) 
if -yc.isSatisfiedÇ) 

then cons.addic) 

comment: cons becomes prev for the child nodes

return {cons)

3.3.1 Analysis of Performance

As an initial test for the suitability of using Solver and GAP, the simpler U-SBDS symmetry 
breaking system.was implemented. In this case however, the group theory computation was 
performed by GAP unlike the implementation in Section 3.2 which used native C++ code. 
The run-times produced by using U-SBDS with Solver and GAP show that the system is 
not useful in practice. In general, the saving in run-time generated by symmetry breaking 
does not validate the increase in run-time of using the system in the first place.

do <
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n GAP Solver

U-SBDS
Runtime Fails Sols. Runtime

Solver 5.2 
Fails Sols.

4 0.07 0.01 0.09 3 1 0 4 2

6 0.08 0.01 0.25 12 1 0.01 36 4

8 0.27 0.10 0.61 85 12 0.02 324 ' 92

10 3.46 1.47 6.11 1,327 92 0.22 5,942 724

12 77.18 37.04 141.66 29,325 1787 5.59 131,902 14,200

14 2,413.72 1,203.70 4,406.90 828,489 45,752 147.51 3,832,624 365,596

Table 3.3: Results of using GAP with a U-SBDS implementation in Ilog Solver 5.2 to solve 
the n-queens problem. The table shows the cpu-time taken for GAP and Solver as well as 
the actual overall mn-time of U-SBDS

The system was tested by trying to fipd all solutions of the n-queens problem. The pre­
liminary results for this experiment alone showed that this implementation was not worth 
pursuing further. Table 3.3 shows the results of the GAP based implementation of the U- 
SBDS algorithm. The overall mn-time using this symmetry breaking system is greater than 
using no symmetry breaking at all.

It is not known for certain why such a symmetry breaking system should exhibit such poor 
mn-times. We conjecture that it could be to do with the message passing between the two 
processes and/or the difference in speed of GAP versus Solver.

To address the first argument in more depth, when GAP is given a fail point, it calculates 
the relevant symmetrically equivalent fail points and transmits to Solver the images of those 
symmetries. The size of this information transmitted by GAP is O{cons x points) where 

cons is the number of constraints to be posted and points is the number of points that the 
permutation group acts on. The amount of data being passed could mean that a lot of the 
run-time is being spent on I/O on the pipes between Solver and GAP.

Secondly, if we compare the cpu-times of Solver and E C U P S ^  with respect to solving the 
dodecahedron 3-colouring problem (Table 3.5) [GHK02], we can see that Solver takes less 
time, whereas the GAP cpu-times should in theory be similar. It is possible that the GAP 
cpu-times are a higher percentage of the total run-time and thus the effect of symmetry 
breaking is detrimental.
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3.4 Implementing the GHK Algorithm without GAP

Assuming the above conjecture is true, that the large run-times of the symmetry break­
ing system are as a result of large message passing and relatively high GAP cpu-times, one 
way to get around such problems is to write native code to efficiently perform the necessary 
group theory code therefore eliminating the need for GAP and its inter-process communi­
cation. In order to do so, certain group theory algorithms need to be written in C++ so that 
they can be compiled along with Solver code. Fortunately, GHK-SBDS only utilises a few 
of the many GAP algorithms available.

3.4.1 Group Theory Implementation issues

The following group theoretic capabilities are needed in order to implement the GHK- 
SBDS algorithm:

1. A system of storing and describing a group via a set of generator permutations

2. A method of enumerating the elements of the group and calculating its size"̂

3. An efficient implementation of the Orbit-Stabilizer algorithm

The first two requirements are fairly trivial while the third is a specialised requirement. 
There is a standaid Orbit-Stabilizer theorem [But91] and there is a standard Orbit-Stabilizer 
algorithm [Ser03] to calculate the set of orbits or the stabilising subgroup using Schrier 
vectors. The complexity of group theory as it is, there are many optimisations that can 
be made to the Orbit-Stabilizer algorithm for specific groups. However, this symmetry 
breaking system assumes two things that increase the efficiency drastically.

Firstly, this Orbit-Stabilizer algorithm can only work on individual points (i.e. assignments) 
and not tuples or sets of points (i.e. partial assignments). This assumption allows the 
algorithm to verify if a new point is unique or not in 0(1). Secondly, basic implementations 
of the Orbit-Stabilizer algorithm generally return many redundant generators. It isn’t a 
trivial process to discover which of these generators are redundant. The complexity of this

'̂ This will be mainly used for verification purposes.
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Orbit-Stabilizer algorithm is 0{gen  x \orbit\) where gen is the number of generators. Thus, 
for future calls to the Orbit-Stabilizer algorithm, we want the groups used to have as few 
generators as possible. This is done by taking the first 10 generators. While this is efficient 
and it is highly unlikely that it will not recreate the entire group, it is not a certainty. If only 
a subgroup of a possible larger group is created by using this Orbit-Stabilizer algorithm, 
the symmetry breaking system may not break all symmetry and thus can’t guarantee unique 

solutions.

3.5 NuSBDS

We now introduce a new symmetry breaking system: Nu-SBDS. It is based on the GHK- 
SBDS algorithm and uses native group theoretic code to calculate the relevant stabilising 
groups and orbits. This is previously completed research by Gent, Harvey and Kelsey. The 
actual contribution that this symmetry breaking system adds to the symmetry breaking re­
search community is the way symmetries are described. As was stated at the start of the 
chapter, we need to make a symmetry breaking system that can be added to a constraint 
solver as a singular' module in the same way arc consistency algorithms and different search 
strategies are. We then looked at the requirements of a good symmetry breaking system and 
noted that they must be easy to use for constraint programmers with little or no knowledge 
of symmetry breaking techniques or research. NuSBDS provides such an ease of use by 
allowing the constraint programmer to describe their symmetries via a set of macros. Since 
NuSBDS is an implementation, it is specific to both Hog Solver and the GHK-SBDS al­

gorithm. The main theme of this research can be used for different constraint solvers and 
different symmetry breaking algorithms.

The main ethos behind NuSBDS is that it should be as easy to use as possible. The con­
straint programmer does not need to supply extra code, or a group and a consistent labelling 
of the CSP. The symmetries of the CSP are given in generic terms which allows the con­
straint solver to break symmetry in a general CSP problem and not for specific instances. 
Also, since the constraint progiammer describes the symmetries of their problem by using 
a set of macros, no great coding effort is expended.

Presented below is pseudo code for how such a system could be used to describe symme­
tries:

-_V-i
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Vars nqueen = V arsC l..n ] 
nq u een .dom aind , 8)

. . .  c o n s t r a in t s  . . .

Symmetry s(nqueen, ASSIGN)
s.add(SQUARE)
search(nqueen)

In the above example, the constraint programmer describes what the symmetries act on, 
either variables, values or assignments. They then describe the symmetries of the problem 
and leave the symmetiy breaking system to do two things. Firstly, the method of symmetry 
breaking is not specified by the constraint programmer, thus it has been removed from their 
view. This satisfies our wish for a modular approach to symmetry breaking in the same way 
we use consistency algorithms or search traversals. Secondly, the method of describing the 
symmetries and interfacing with the symmetry breaking method is also hidden from the 
constraint programmer. This greatly reduces the amount of work and expertise needed to 
perform symmetry breaking.

We now imagine another example CSP that has more than one type of symmetry, the most 
perfect magic squaies problem (see Appendix C.6).

Vars most = V a rs [ l . .n * n ]  
most .dom aind , n*n)

. . .  c o n s t r a in t s  . . .

Symmetry s(m ost, VAR) 
s.add(SQUARE) 
s.add(CYCLE_ROW) 
s.addCCYCLE.COL) 
search(most)

The example code for the most perfect magic squares problem contains two significant 
differences from the n-queens problem code. Firstly, we say that the symmetries act on
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variables. Secondly, we describe more than one type of symmetry. Note however, that 
we are still removed from the details of the symmetry breaking and rely on the constraint 
solver to combine all the symmetries described and interface correctly with the symmetry 

breaking system.

3.5.1 NuSBDS code examples

This section shows actual code fragments from CSPs that use NuSBDS to break symmetry. 
As such the following sections of example code will be clearer to readers already familiar 
with C++ and more specifically Ilog’s Solver constraint solving toolkit.

The macros used in NuSBDS are essentially functions representing types of symmetries. 
When called, they look at the model of the CSP, perform some basic error checking to see 
if the symmetry can be applied to the model, and internally store the generators for those 

symmetries. Different macros can be called repeatedly so that different types of symmetry 
can be combined to create direct products of groups. This allows the constraint programmer 
to describe complicated groups by using a few simple commands.

For example, say we have an encoding of the n-queens problem which has n  variables, 
where the value represents which column the queen should be placed in. In this model, 
the symmetries of a square act on the assignments. Using Solver we require an IloG oal 
object to search on, which we create like so, where x is the array of variables and env is an 
IloEnv object. The important facts to take from this are that x contains a list of constrained 
integer variables and the IloG oal object will allow us to call functions that will search to 
find values for the variables in x.

IloG oal goal = Ilo G en era te(en v , x ) ;

We can use the following code to break the symmetries of the problem, where so lv e r  is 
an I lo S o lv e r object.

Symmetry* sym = new (env) Symmetry(env);

I lo in tA rra y  ty p e(en v , 1, SQUARE);
IloG oal go a l;
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if(sym Breaking){
goal = NuSBDSGenerate

(env, X ,  sym->setup(x, s o lv e r ,  ASSIGN, ty p e ) ) ;

} e lse{
goal = IloG enera te(env , x ) ;

}

The above code contains some new terms that need explanation. Firstly, the Symmetry 

class is a part of NuSBDS. We use this to describe and break the symmetries of the CSP. 
The type object is simply an airay of integers. The #def ine statement in C++ was used 
to associate each macro with an integer, and the type array merely contains the list of 
integers (representing macros) to use. The NuSBDSGenerate function takes an additional 
pai’ameter to the IloG enera te  function i.e. the Symmetry object we created to deal with 
the symmetry. Note that we must also call the function setup , which records which macros 
to use and whether or not the symmetry acts on assignments (ASSIGN) or variables (VAR).

As another example, say we have the BIBD problem (CSPLib problem: prob028 [GW99], 
Appendix C.2) which we can model as a matrix of 0/1 variables, given any solution we 
can permute the rows and columns to yield another. This matrix may not necessarily be a 
square so in order to describe the group, we need to tell NuSBDS the number of columns. 
We can then simply use two macros to describe the symmetries of this problem. Notice 
that these macros have “rectangle” in their name to show that they potentially act on a 
non-square matrix^.

Symmetry* sym = new (env) Symmetry(env); 
sym->setNumOfColumns(numOfCol);
I lo in tA rra y  type

(env, 2, SYMMETRIC.RECTANGLEJROW, SYMMETRIC_RECTANGLE_COL);
IloGoal goal;  
if(sym Breaking){

goal = NuSBDSGenerate
(env, X , sym->setup(x, s o lv e r ,  VAR, ty p e ) ) ;

} e lse{
goal = I loG enera te(env , x ) ;

^Though all square matrices are also rectangles, a macro for squares is provided for simplicity.
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Given a problem that needs to use more macros, we just create a larger type array where 
each element represents the macro to be used. Currently there are 11 different macros 
which can be used for either symmetries acting on assignments (ASSIGN) or variables (VAR). 
Here is the list of macros for variable symmetry:

•  SQUARE - variables with the symmetry of an n  x n  square acting on them

• CYCLE„ROW - variables make a square where the rows can be cycled

•  CYCLE_COL - variables make a square where the columns can be cycled

• SYMMETRIC_ROW - variables make a square where the rows are interchange­

able

•  SYMMETRIC_COL - variables make a square where the columns are inter­
changeable

•  SYMMETRIC_RECTANGLE_ROW - as SYMMETRIC_ROW but for non-square 

matrices

•  SYMMETRIC_RECTANGLE_COL - as SYMMETRIC_COL but for non-square 

matrices

Here is the list of macros for variable and value symmetry:

•  SQUARE - e.g. n-queens

• S YMMETRIC_VAR - interchangeable vaiiables

•  SYMMETRIC„VAL - interchangeable values

•  SQUARE_VAR - variables with the symmetry of an n  x n  squaie acting on them

The reader should note that some classes of symmetry can be broken more easily than using 
the underlying GHK-SBDS algorithm e.g. freely interchangeable values (also known as 
indistinguishable values), as found in graph colouring, can be broken using the constraint

.... , A
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described in [GenOl], using the technique in [HFPA03] or as is noted in [BW99], only a 
subset of the constraints posted by SBDS is needed to break all these symmetries. NuSBDS 
is most useful for combinations of symmetries that result in groups for which there are no 
efficient methods of dealing with.

3.5.2 Comparison of symmetry description methods

In order to demonstrate the ease of use of NuSBDS further, we will present example code 
that describes symmetries for other symmetry breaking systems. By doing so, we intend 
to make a convincing argument that by using the macros in NuSBDS, symmetries can be 
described more easily and naturally than with any other symmetry breaking method. A 
common example CSP used throughout this thesis is the n-queens problems. We now give 
code for implementations of different symmetry breaking systems.

NuSBDS

Below is the bare minimum necessary to describe the symmetries of the n-queens problem 
with NuSBDS. It consists of naming the one symmetry macro for the problem (i.e. the 
symmetry of a square) and associating it with symmetries acting on assignments. Note 
again the main advantages of this system, the concise representation (just 3 lines) and the 
natural language description.

Symmetry* sym = new (env) Symmetry(env);
I lo In tA rra y  ty p e(en v , 1, SQUARE);
IloG oal goal = NuSBDSGenerate

(env, X ,  sym ->setup(x, s o lv e r , ASSIGN, ty p e ) ) ;

SBDS

The following code sample is taken directly from the paper [GSOO]. They represent the 
symmetries of the n-queens problem. SBDS requires an explicit list of the symmetries of 
the problem. In this case, there are 7 symmetries (not including the identity) but for more 
symmetiic problems the number of functions would be greatly increased. A function of
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this sort would need to be both produced (either by hand or with a scripting language) and 
compiled (in this implementation by a C++ compiler).

Thus it is clear that for symmetric problems, even if SBDS can handle the number of 
symmetries required, great effort is extended in producing the symmetry functions.

I lc C o n s t ra in t  r90 (I lc In tV arA rray  v a r s ,  I l c i n t  i ,  I l c i n t  j )
{ re tu rn  v a r s f j ]  == n - l - i ; }

I lc C o n s t ra in t  r l8 0  (I lc In tV arA rray  v a rs ,  I l c i n t  i ,  I l c i n t  j )
{ re tu rn  v a r s [ n - l - i ]  == n - l - j ; }

I lc C o n s t ra in t  r270 (I lc In tV arA rray  v a r s ,  I l c i n t  i ,  I l c i n t  j )
{ re tu rn  v a r s [ n - l - j ]  == i ; }

I lc C o n s t ra in t  x (I lc In tV arA rray  v a rs ,  I l c i n t  i ,  I l c i n t  j )
{ re tu rn  v a r s [ n - l - i ]  == j ; }

I lc C o n s t ra in t  y ( I lc In tV arA rray  v a r s ,  I l c i n t  i ,  I l c i n t  j )
{ re tu rn  v a r s [ i ]  == n - l - j ; }

I lc C o n s t ra in t  d l  ( I lc In tV arA rray  v a r s ,  I l c i n t  i ,  I l c i n t  j )
{ re tu rn  v a r s [ j ]  == i ; }

I lc C o n s t ra in t  d2 (I lcIn tV arA rray  v a r s ,  I l c i n t  i ,  I l c i n t  j )
{ re tu rn  v a r s [ n - l - j ]  == n - l - i ; }

SBDD

The following code was used for the emphical experiments performed in [FSSOl]^. The 
symmetry description in this case is very similar to that of SBDS above. One main dif­
ference is that SBDS needs separate functions for each symmetry but each symmetry is 
represented in SBDD as an condition in a switch statement. Since the n-queens problem 
has just 7 symmetries (not including the identity), all symmetries are described explicitly. 
For exponentially symmetric CSPs, the generator set of symmetries can be described and 
SBDD will detect dominance under the product of these symmetries.

Thus, SBDD has an advantage over SBDS in that drastically fewer symmetries need to 
be described. However, the process of describing these necessary symmetries is no more 
straightforward.

^Thanks to Meinolf Sellmann for allôwing his code to be included in this thesis.
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switch(k)

{
case 0 : / /  l e f t - r i g h t  *

f o r  (1=0; KnonZero; 1++)

{
i = l i s t  [1] ;
h [ n - l - i ] = p a t t e r n [ i ] ;

}
break ; 

case 1 : / /  up-down *
f o r  (1=0; KnonZero; 1++)

{
i = l i s t  [1] ;
h [ i ] = n - 1- p a t t e r n  [ i]  ;

}
b re a k ; 

case 2 : / /  180 *
f o r  (1=0; KnonZero; 1++)

{
i = l i s t [1] ;
h [ n - l - i ] = n - l - p a t t e r n  [ i ] ;

}
break ; 

case 3; / /  90 *
f o r  (1=0; KnonZero; 1++)

{
i = l i s t  [1] ;
h [ p a t t e r n [ i ] ] =n-1- i ;

}
break; 

case 4: / /  270 *
f o r  (1=0; KnonZero; 1++)

{
i = l i s t [1] ;
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h [ n - 1- p a t t e r n [ i ] ] = i ;

}
break ; 

case 5: / /  d2
fo r  (1=0; KnonZero; 1++)

{
i = l i s t  [1];
h [ n - 1- p a t t e r n [ i ] ] =n-1 - i ;

}
break; 

case 6: / /  d l  *
f o r  (1=0; KnonZero; 1++)

{
i = l i s t [ l ] ;  
h [p a t te rn  [ i ] ] = i ;

}
break;

GHK-SBDS and GHKL-SBDD

Although these two methods of breaking symmetries differ greatly, the method of describ­
ing symmetries is almost identical since they both require a group to be passed to a GAP 
subprocess of the constraint solver. This group can be expressed explicitly as a generator 
set of permutations, or implicitly as a GAP program that can be used to produce problem 
specific symmetries.

The following code shows instance specific code for creating a permutation group to model 
the symmetries of the 3-queens problem.

gap> g := G r o u p ( ( l , 3 , 9 , 7 ) ( 2 , 6 , 8 , 4 ) ,  ( 1 , 3 ) ( 4 , 6 ) ( 7 , 9 ) ) ;

The constraint programmer also needs to produce code to map the points to assignments 
and vice versa e.g. point 4 is equivalent to X 2  =  1.

■Ji
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By describing symmetries as groups we retain the benefits of concise representation as 
NuSBDS does. However, background knowledge of group theory is needed to use GHK- 
SBDS and/or GHKL-SBDD. The system of natural language keywords that NuSBDS has, 

alleviates the need for this.

Conclusions

Though the methods of breaking symmetries in the above examples are totally different, 
the task of describing symmetries in these previous symmetry breaking systems is very 
similar. They are all concerned with describing how a symmetry applies to the constraint 
model being used. The other main similaiity with all the symmetry breaking systems is 
that the constraint programmer must produce either code, functions or an object/attribute 

that the system then directly uses to break symmetry.

NuSBDS places a layer of abstraction between the constraint solver and the symmetry 
breaking system. This allows the constraint programmer to create the input required by 
the symmetry breaking system indirectly. As the above examples illustrate, this indirect 
process makes describing symmetries simpler for the constraint programmer.

3.5.3 Macros

The macros system implemented in NuSBDS is the unique way that symmetries are de­
scribed. Each macro is an abstraction layer that takes some user defined parameter (in most 
cases the number of constrained variables) and outputs a group acting on the CSP. Rather 
than return this output to the user, it is stored internally by NuSBDS to be used to break 
symmetry. The constraint programmer never sees the group itself. NuSBDS can also take 
the groups created by the various macros and combine them to create a larger group. Again, 
this group is hidden from the constraint programmer and used to break symmetry.

In order to combine macros to generate larger groups, a consistent action set must first be 
chosen by the constraint programmer. If the symmetries of a certain problem act only on the 
variables, the constraint programmer can say that the action set will be the variables or the 
assignments. If some symmetries act on the variables and some on the values, the constraint 
programmer must say the symmetries act on the assignments. Once the action set has been
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decided, the groups returned by different macros will all be on the same points. It is the 
responsibility of the constraint programmer to ensure that the macros are used conectly to 

produce groups that represent symmetries that satisfy Definition 1.7 for the given CSP.

Consider the groups H, J  and G such that H  x  J  = G. We can recreate all the elements of 
G by finding the direct product of the elements of H  and J. If H  and J  are both permutation 
groups that act on the same points, we can find generators for the group G by taking the 
union of the generator sets of H  and J. This is indeed how NuSBDS combines the groups 
returned from the various macros called.

Research by Harvey et al. [HKP03] can create groups by taking the direct product of two 
groups acting on the same number of points as NuSBDS does. They can also create groups 
by taking the wreath product of two groups as well, something that NuSBDS cannot do. 
Consider a group K , acting on 30 points and a group L  acting on 3 points. We can combine 
these groups by abstracting the points L  acts on e.g. treat the first 10 points K  acts on as 
point 1, the next 10 as point 2 and the final 10 as point 3. By combining groups in such 
a way we have created the wreath product of K  and L. This functionality is useful for 
common models of the golfers’ problem [HKP03].

Macro Implementation

Each macro is represented as a word such as SQUARE, SYMMETRIC_COL etc. The #def ine 
command has been used to link every word with an integer:

#define  SQUARE 0 
#define  SQUARE_VAR 1 
#define  SYMMETRIC 2

The constraint programmer selects the relevant macros and this information is used to call 
the correct function. Before calling the macro function, some basic error checking is per­
formed if possible to see if the symmetry is valid for the given CSP e.g. if the symmetry 
is that of a square acting on the assignments of the CSP, the size of each of the domains 
must be the same as the number of variables. Also, NuSBDS insists that all domains must 
be consecutively numbered starting from 0. Then the macro function is called with the
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relevant paiameter based on the size of the CSP. By doing so, we can deal with symmetry 
for a specific type of CSP, not just a specific sized instance of a CSP.

Here is an example of the code one of the macro functions. Each macro featured in NuS­
BDS takes the form of a method like this. This particular macro returns the generators of 
the group representing the symmetries of a square acting on the assignments of a CSP with 
n  variables. Note that the group representing the symmetries of a square needs only two 
generators: flip around an axis and rotate 90° (stored in p [0] and p [1] respectively). Each 
cycle in the permutation is stored as an I lc In tA rra y  object, which is an array of integers.

Permutation* Symmetry : :p e rm _ sq u are (I lo in t n){
Permutation* p = new (e) P erm uta tion [2] ;
p [ 0 ] .num = n * ( n / 2 ) ;
p [0 ] .g  = new (e) I lc In tA r ra y [p [0 ] .n u m ];
I l o i n t  next = 0;

f o r ( I l o I n t  j=0; j < n; j++){
f o r ( I l o i n t  i= l ;  i  <= n /2 ;  i++){

I lc In tA r ra y  tem p(so l,  2, j*n  + i ,  j*n  + n - i+ 1 ) ; 
p [ 0 ] .g [next] = temp; 
next++;

}
}
next = 0;
f o r ( I l o i n t  i=0; i  < n /2 ;  i++){

f o r d l o i n t  j = l ;  j  <= n -2 * ( i+ l )+ l ;  j++){ 
next++;

}
}
p[l] .num  = nex t;

p [ l ] . g  = new (e) I l c I n tA r r a y [ n e x t ] ; 
next = 0;

f o r d l o i n t  j=0; j  < n /2 ;  j++){
f o r d l o i n t  i= l ;  i  <= n - 2 * ( j+ l )+ l ;  i++){

I lc In tA r ra y  tem p(so l,  4, i+ j* (n + l) ,  i* n + n * j- j ,

J
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n * n - i~ n * j - j+ l , n * n - i* n + l - j* ( n - l ) ) ;  

p [ l ] .g [next] = temp; 
next++;

}
}
r e tu rn  p;

}

More detailed examples and specifics about NuSBDS can be found in Appendix B - the 

NuSBDS user manual.

3.5.4 Empirical Comparisons

In this section, the empirical performance of NuSBDS is tested on some symmetric CSPs 
(See Table 3.4, Table 3.5, Table 3.6, Table 3.7 and Table 3.8). NuSBDS is based on the 
GHK-SBDS implementation and as such, can handle over 10  ̂symmetries. However, even 

now this number is not as impressive as results matched by other symmetry breaking tech­
niques [GHKL03] [Pug02]. The main feature of NuSBDS though is user friendliness. We 
present empirical data merely to show that such a symmetry breaking system can be used to 
break symmetries efficiently. A superior symmetry breaking system could be implemented 
and still have the ease of use of NuSBDS so long as the system and the macros interfaced 
with each other correctly.

The size of the list of constraints to be posted by GHK-SBDS increases exponentially with 
the depth of the seai'ch tree. This will eventually use all the memory available to the com­
puter and the solver will spend more time on memory (de)allocation than solving. NuSBDS 
overcomes this problem by setting a bound? on the maximum number of symmetry break­
ing constraints that are allowed to be stored at any one time. While this reduces the amount 
of symmetry breaking, the solver retains a polynomial bound on memory requirements. 
Removing the exponential bound on memory requirements, the constraint programmer is 
free to describe as many symmetries as possible. In examples with highly symmetiic prob­
lems though e.g. BIBD, the number of solutions reported by NuSBDS will most likely not 
be the number of unique solutions. A table of results of finding solutions to BIBDs using

^By default of the order of 10®, but can be specified at runtime.
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n Sols.
Solver 5.2 
Runtime Fails Sols.

NuSBDS
Runtime Fails

4 2 0.00 4 1 0.00 3

6 4 0.00 35 1 0.00 11

8 92 0.02 289 12 0.00 61

10 724 0.22 5,072 92 0.09 875

12 14,200 4.78 103,956 1787 1.52 17,801

14 365,596 137.92 2,932,626 45,752 47.83 485,128

Table 3.4: Results of using NuSBDS and Solver 5.2 to find all solutions to various n-queens 

problems.

Dodecahedron Sols.
Solver 5.2 

Runtime Fails Sols.

NuSBDS
Runtime Fails

3-colouring 7,200 0.09 132 31 0.04 19

Table 3.5: Results of using NuSBDS and Solver 5.2 to find all 3-colourings of the dodec­
ahedron. This problem has 360 symmetries. They consist of the 3! or 6 symmetries from 
the 3 available colours combined with the 60 symmetries of the dodecahedron itself.

constraint programming can be found in [Pug03]. A more complete reference can be found 

in [MR90].

n Syms.
Solver 5.2 

Sols. Runtime Fails

NuSBDS 
Sols. Runtime Fails

4 128 
6 288

384 0.48 1,594 
0 2,905.12 4,176,447

3 0.07 73 
0 14.85 25,157

Table 3.6: Results of using NuSBDS and Solver 5.2 to solve the most perfect magic squares 
problem.
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Alien Tiles (4, 3) Runtime Fails

Solver 5.2 
NuSBDS 

SBDS

1004.58
15.55
21.72

54,081
482
493

Table 3.7: Results of using NuSBDS, SBDS and Solver 5.2 to solve the alien tiles problems 

for a 4 X 4 board with 3 colours.

BIBD Solver 5.2 NuSBDS

V b r k A Syms Sols. Runtime Fails Sols. Runtime Fails

4 6 3 2  1 17,280 720 0 . 0 2 29 1 0.08 1 1

7 7 3 3  1 2.5 X 10? 151,200 8.93 11,680 92 0.53 42

7 7 4 4 2 2.5 X 10? 151,200 10.91 64,639 234 7.51 43

5 1 0 4 2 1 4.3 X 10^ 3,628,800 109.59 113,291 5,400 0.87 1,233

Table 3.8: Results of using NuSBDS and Solver 5.2 to solve some small BIBDs. Finding 
all solutions to the BIBD problem is generally hard due to the number of symmetries. 
NuSBDS does not break all symmetry which allows a more efficient symmetry breaking 

system.
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3.6 Conclusions and Future Work

In this chapter we have looked at various different symmetry breaking systems. We have 
considered the different functionality of these systems. We have proposed standards that 
implementations of these symmetry breaking systems should aim toward in order to be 

easily integrated into constraint solvers.

We introduced the first implementation for breaking general user specified symmetries in 
constraint programming with group theory. By introducing a group theoretic symmetry 
description we eliminate the disadvantage of listing all symmetries. For previous symme­
try breaking systems such as SBDS, this disadvantage greatly reduced the size of groups 
that could be handled. All modern general purpose symmetry breaking systems [FSSOl] 
[GHK02] [GHKL03] [Pug03] now use group theory ideas e.g. a generator set of symme­
tries, to break very large groups of symmetry. We also showed that by using group theoretic 
concepts, SBDS and similar symmetry breaking systems can break all symmetry by posting 

a very small subset of all possible symmetry breaking constraints. We presented a general 
upper bound for the maximum number of constraints needed upon backtracking from any 
failed assignment. We also reasoned that this number would be much smaller in practice 
when accounting for the intersection with non broken symmetries as well.

By concentrating on the interface between the process of describing symmetries and the 
symmetry breaking system, we developed a truly user friendly method of describing sym­
metries. This idea led to the creation of NuSBDS, a symmetry breaking system based on 
the GHK-SBDS [GHK02] algorithm. NuSBDS uses a series of macros that can be safely 
combined to describe many different groups. These macros allow the constraint program­

mer to easily describe symmetries and more importantly allow a general CSP to be scaled 
to produce different sized instances. Thus, once the symmetries have been described for a 
given CSP, they are automatically scaled at mntime to all instances.

We objectively examine the advantages and disadvantages of general purpose symmetry 
breaking systems. We highlight desirable aspects of various systems, and introduce aspects 
which are fundamental to the inclusion of symmetry breaking systems in future constraint 
solvers. There is still much work to do however before we can see truly industry standard 
symmetiy breaking systems.
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3.6.1 Improved Symmetry Breaking Techniques

There are now symmetry breaking techniques that have surpassed the performance of 
the GHK-SBDS algorithm included in NuSBDS. The SBDD [FSSOl] and GHKL-SBDD 
[GHKL03] algorithms can be used to break general user specified groups of much larger 
size. Also, though STAB [Pug03] has currently only been used to break symmetry in 
matrix models, more intelligent implementations should be able to break user described 
symmetries.

The ideas in this chapter can easily be extended so that the symmetry breaking systems 
mentioned above (and other new ones) can make use of macros to succinctly and easily de­
scribe symmetries. Such a combination of superior symmetry breaking and easy symmetry 

description would be a most welcome addition to any constraint solver.

3.6.2 User specified macros

The dodecahedron colouring problem (see Figure 3.5) was specifically chosen as a CSP 
that exhibited an uncommon group. Thus, the symmetries were not described via any of 

the NuSBDS macros but by a specific group. Though being able to describe symmetries 
via group generators would be a welcome addition to a symmetry breaking system, a better 
solution would be to allow the constraint programmer to construct their own macros. This 
way, the symmetry breaking system would grow to be able to solve complex symmetrical 
problems.

3.6.3 Intelligent Symmetry Breaking

In general, there is no tractable method for breaking any group of symmetries. There are 
however, some types of symmetry that can be broken easily. Lex ordering an array of 
symmetrically equivalent variables breaks all symmetry. Efficient methods for breaking 
interchangeable value (or indistinguishable value) symmetry have been developed by Gent 
[GenOl] and van Hentenryck et al. [HFPA03]. If the symmetries of the CSP deal with 
just one of these types of symmetry, then a general method of symmetry breaking such as 
GHK-SBDS may not be preferable.
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The macros used to describe the symmetries of the CSP could be provided with information 
to automatically select the most appropriate symmetry breaking system. Again, this would 
take the complexities of various symmetry breaking systems away from the constraint pro­
grammer.

3.6.4 Partial Symmetry Breaking

Partial Symmetry Breaking is the focus of Chapter 4. NuSBDS has some simple partial 
symmetry breaking which limits the maximum number of constraints that can be added to 
the constraint solver. This small optimisation stops NuSBDS from using all the memory 
resources.

The research carried out in the paitial symmetry breaking chapter (which partly appears 
in [MS02]) describes methods for choosing good symmetries to break. Implementations 
of symmetry breaking systems that aie aware of such methods will be able to break more 

symmetry and thus solve problems with less computation.

3.6.5 Verification of Symmetries

NuSBDS contains some basic checks to try to ensure that the constraint programmer selects 
valid macros for their CSP. However, the consequences of incorrectly describing symme­
tries is disastrous. Valid solutions will most likely be rejected and in extreme cases, no 
solutions may be reported.

Graph automorphism checks could be implemented that could verify the symmetries de­
scribed using macros. The advantage of parameterised CSPs could be used so that a check 
could be performed on a small instance of a symmetric CSP which would probably hold 
for larger instances. If such a procedure were to be implemented, care must be taken to 
safely deal with symmetries that exist that the graph automorphism check does not detect.

Of all the possible directions for the future work of general purpose, easy to use symmetry 
breaking systems, the participation of constraint programmers is the most important. Con­
straint programmers not familiar with sophisticated methods of breaking symmetry will be 
able to show constraint solver developers how best to include symmetry breaking systems.



Chapter 4

Partial Symmetry Breaking

In this chapter we define partial symmetry breaking, a concept that has been used in many 
previous papers without being the main topic of any research. This chapter is the first 
systematic study of partial symmetry breaking in constraint programming.

4.1 Introduction and Motivation

Given a CSP with a set of constraints and variables, it is possible to use propagation tech­
niques to infer solutions i.e. for n  variables, enforcing n-consistency allows us to find all 
solutions to the problem. In practice however this is not a viable method of solving CSPs as 
it uses an exponential amount of memory. We resolve the problem of expensive consistency 
requirements by limiting ourselves in general to performing some local consistency.

In a similar manner it is theoretically possible to break all symmetry for any given group. 
However this is often not achievable in practice. There are methods of breaking very large 
numbers of symmetries e.g. lexicographically ordering n  objects breaks the n\ symmetries 
of S'n. Focacci and Milano also describe a filtering algorithm for breaking n! symmetries 
that mns in 0{nd) where d is the size of the largest domain [FMOl]. As was mentioned in 
Chapter 2.4, the former method can behave badly if used with incompatible heuristics and 
the latter can only be used for a specific “family” of symmetries with the nogood recording 
method of symmetry breaking. Also, the symmetric groups acting on variables or values is

*The symmetric group of size n has n! elements.

77
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significantly easier to break than other groups with wreath or direct products. For groups 
of symmetry in general, there is no tractable method of breaking an exponential number of 
symmetries. For the case where we have too many symmetries to be able to handle them 
efficiently, it is necessary to break a subset of all possible symmetries.

If we consider a symmetry breaking system, there are two distinct parts. Firstly there is the 
symmetry breaking technique. This is the algorithm or function that takes a symmetry and 
performs some task ensuring that that symmetry is broken. For example, SBDD [FSSOl] 
looks for a symmetry and compares the mapping of that symmetry against all the book- 
marked nogood nodes with the cuiTent node. If any of the symmetric states are a subset 
of the current state then we should backtrack. The SBDS algorithm [GSOO] will take a 
symmetry and if it is not guaranteed to be broken already, a symmetry breaking constraint 
is added to the local subtree. The cost of performing either of these algorithms to break 
one symmetry is trivial. The reason we have to limit the amount of symmetry breaking it is 
possible to do is that these steps mentioned above need an exponential amount of mn-time 
to complete. Even though it’s possible to reduce the number of symmetries to consider, if 
there is an exponential number of symmetries, the run-time of performing symmetry break­
ing itself becomes exponential. Symmetry breaking systems that add constraints to break 
symmetry can also add an exponential number of constraints. This in turn has a devastating 
effect on propagation algorithms that have a time complexity proportional to the number of 
constraints e.g. arc consistency.

Secondly there is the symmetry representation. This is the method of storing a given sym­
metry (or set of symmetries) that are to be used by a given symmetry breaking technique. 
Every time the synunetry breaking procedure is called upon, the technique breaks all the 
symmetries that are contained within the symmetry representation. Therefore, if there are 
an exponential number of elements in the symmetry representation, the symmetry breaking 
will have an exponential runtime.

We can now see that it is not the symmetry breaking technique that is the overhead in 
performing symmetry breaking but rather it is the number of symmetries to break in the 
symmetry representation associated with the system. We balance the propagation used 
when solving CSPs with the search performed in order to minimise run-time. In a simi­
lar way, we must balance the benefit of applying symmetry breaking to avoid redundant 
search with the expense of the symmetry breaking system itself. While much research has 
observed that breaking a subset of all symmetries is a valid and sometimes necessary pro­
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cedure, this chapter is the first systematic study of partial symmetry breaking in constraint 
programming.

4.2 Review of Partial Symmetry Breaking

As previously mentioned , other papers have used partial symmetry breaking (henceforth 
refered to as PSB) on problems with large amounts of symmetry. There now follows a 
review of the brief experiments involving partial symmetry breaking and an analysis of 
how best to perform partial symmetry breaking.

In the original SBDS paper by Backofen and Will [BW98], SBDS is used to break sym­
metry on the photo problem, which is a problem with freely interchangeable symmetry on 
the values. They use SBDS to break just the transposition symmetries since there are a 
polynomial number of them, and they report that this subset breaks all symmetry. Their 
thinking behind this is also that the transpositions being a generating set for Sn might also 
be relevant.

They do claim though that, in general, breaking a generating set does not break all symme­
try. The paper states that the reason this is the case for Sn on values is “an open question.” 
They go on to prove that the transpositions break all symmetry in their next paper [BW99]. 
Since then, there have been other efficient symmetry techniques that break freely inter­
changeable value (or indistinguishable value) symmetry by Gent [GenOl], van Hentenryck 
et al. [HFPA03] and Gent et al. [RDGKL04].

In [GHK02], Gent and Smith include a section titled “A Restricted SBDS Method” where 
they describe how to perform PSB with SBDS. If there are too many symmetries to deal 
with, it is perfectly valid for a constraint programmer to list a subset of all of them. This 
will return valid solutions however, it no longer guarantees unique solutions. As an example 
they state that, “a graph A;-colouring problem has k\ symmetries. Direct use of SBDS is then 
impractical.” They suggest using just the symmetries for which the pre-condition for the 
symmetry breaking constraints (i.e. g{A)) is guaranteed true. In group theory terms, this 
means using the symmetries in the stabilizer of current state A,

Smith uses PSB in [SmiOl] to make the golfers’ problem more tractable. When limiting 
the symmetries to be broken by SBDS, it is claimed, “It seems intuitively plausible that the
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simpler symmetries might give highest returns, as well as being easiest to describe.”

The original SBDD paper by Fahle, Schamberger and Sellmann [FSSOl], describes a dom­
inance check that contains a subset of all symmetries when solving instances of the golfers’ 
problem. They reason, “Since invoking the symmetry detection function... is computation­
ally very expensive, applying it in every search node does not improve the overall mntime, 
although the number of choice points is reduced. Thus, there is a trade-off between the re­
duction of choice points and the effort spent for the detection of symmetries.” They devise 
a test for breaking all symmetries at leaf nodes (to ensure unique solutions) and every 
level. For the golfers’ problem with 4 groups of 4 players for 4 weeks, they conclude that 
“an invocation in about every 8 *̂  level has shown to be the best.”

Puget’s CP2002 paper [Pug02], states that, “It is often better not to remove all symmetries 
... Moreover, although this is not displayed here because of lack of space, the time needed 
to get the first solution is also greatly improved in such case, and is comparable to the time 
without symmetry removal.” In Puget’s paper the following year [Pug03], there is more 
detail about how the PSB was performed. The STAB technique is used to only 70% of the 
depth of the search tree which yields on average (according to the experiments in the paper) 
a 17% improvement in runtime. The STAB technique itself however, is already using PSB 
since it does not guarantee to break all symmetry (See Chapter 4.6).

Aloul et al. [ARMS03] break just an irredundant generator set of symmetries. They state 
that “one can often achieve significant pruning because an irredundant set of generators 
contains ‘maximally independent’ symmetries i.e. none of them can be expressed in terms 
of others.” A brief example of how different generator sets rule out different symmetrical 
solutions is presented. The authors do not give scientific reasons as to why the ideal sym­
metries to break must be a generator set or even an irredundant generator set. They claim 
that their future research will attempt to explain why some irredundant generator sets are 
preferable to others.

The above cases effectively demonstrate that PSB is a well known and highly rated tech­
nique for improving the runtime of symmetry breaking systems. Some of the research 
detailed here has shown that certain subsets of symmetry can break larger numbers of sym­
metries. Though some minor experiments have taken place to try and maximise a symme­

try breaking systems performance, in many cases, little explanation is given and no general 
understanding is reached as to why using less symmetries results in greater runtimes.
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It is the aim of this research to uncover why breaking less symmetries can reduce the 
runtime of constraint solving, and in doing so, present constraint progiammers with the 
information they need to maximise PSB in future experiments.

4.3 Definitions and Notation

The set of all symmetries of a CSP form a group. The way in which partial symmetry 
breaking is performed depends on the symmetry representation. Previous encodings have 
used group theory techniques to represent a large number of symmetries by listing a small 
subset of all of them [GHK02] [McDOl] [BFP96] [GHKL03]. If it is possible to recreate 
the entire group of symmetries by reapplying the symmetries in this small subset, we call 
the subset a generator set. Many of the experiments and findings in this chapter are based 
on representations that encode all the symmetries of a CSP and not just the generator set. 
We discuss later how results from this chapter may be used with generator set representa­
tions.

We now define two classes of symmetric CSPs.

Definition 4.1 Given a CSP L where the number o f symmetries o f L increases polynomi- 
ally with respect to the sizes o f the variables X  and their domains D [X ), L is said to be 
polynomially symmetiic.

In the n-queens problem for example, the number of symmetries is 8  regardless of n. The 
most perfect magic squares problem (See Appendix C.6 ) has symmetries for an n  x n 
board. For these types of problems, SBDS by Gent and Smith [GSOO] or Symmetry Ex­
cluding Trees by Backofen and Will [BW99] are probably the best methods of removing 
symmetry as the overhead is low. Though SBDD is a better approach for more symmetric 
problems, small problems like the n-queens are solved in less time and with fewer back­
tracks with SBDS [FSSOl].

Definition 4.2 Given a CSP L  where the number o f symmetries o f L  increases exponen­
tially with respect to the sizes o f the variables X  and their domains D {X), L  is said to be 
exponentially symmetric.

Naïve encodings of the exponentially symmetric golfers’ problem (See Appendix C.5) have
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{^\y^{g\)'^w\p\ symmetries for p players, g groups and w weeks [HarOl]. Clearly, increas­
ing either the number of players, groups or weeks by even one will greatly increase the 

number of symmetries.

4.4 Partial Symmetry Breaking and Symmetry Represen­
tation

There have already been two improvements reported on the representation of symmetries
i.e. methods for removing symmetries from consideration from the symmetry representa­
tion. The first is found in the symmetry breaking method SET (symmetry excluding trees) 
developed by Backofen and Will [BW99] and this removes broken symmetries. Removing 
broken symmetries from consideration is also in the symmetry breaking method that will 

be used in the experiments in this chapter: SBDS. Therefore, the concept will be explained 
in terms of the SBDS notation. Symmetry Breaking During Search (SBDS), developed by 
Gent and Smith [GSOO], works by adding constraints to the current search subtree. Af­
ter backtracking from a failed assignment vavi — valj, to a point in search with a partial 
assignment A, we post the constraint:

g (A) & {vari y  valf) =4> g {van ^  valj)

for every g in the symmetry representation. Symmetries are represented by functions and 
SBDS removes a function from consideration when it discovers that a pre-condition (i.e. 
g {A)) of the constraint it creates is guaranteed false from the current subtree. For example 
consider a node k in search. A symmetry function may produce a pre-condition van  = 
but if at point k, van  ^  ua/j we can ignore that symmetry function at all child nodes of k.

The second improvement is found in Chapter 3.2 [McDOl] where only unique symmetries 
are considered. We showed how at certain points in search, some sets of symmetries all 
have the same effect on a partial assignment hence we can discard all but one symmetry 
from this set. For example, there may be a pair of symmetries g and h such that given a 
partial assignment A, g {A) — h{A). If this is the case we only break symmetry on g or on 
h but not on both. These two improvements reduce the number of symmetries to consider 
without reducing the amount of symmetry breaking possible i.e. they do not introduce

..
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non-unique solutions.

We now consider a third optimisation. In this chapter we show that where there is a large 
number of symmetries, we can discard some of them and, by doing so, reduce run-time 
greatly. If we are trying to solve a problem that is exponentially symmetric we may not be 
able to fully utilise a given symmetry breaking technique. We cannot apply the dominance 
check used in SBDD for all symmetries at every node in search for the golfers’ problem 
as it is too expensive [FSSOl]. It is still possible to use SBDS if we limit the number of 
symmetry breaking functions, and we can still use SBDD by applying a dominance check 
under a subgroup of all the symmetries. Describing only a subset of the symmetries does 
not lose any solutions (and may result in redundant search) but the overhead of performing 
symmetry breaking will not be as great. By describing only a subset of symmetries we are 
performing PSB i.e. performing some redundant search because the symmetry breaking 
technique is too costly or even impossible to perform.

4.4.1 Explicit Symmetries and Group Theory

Given a symmetry representation, we perform PSB by only applying the symmetry break­
ing technique to a subset of the symmetries in the symmetry representation. How this 
subset of symmetries is generated depends on the symmetry representation. There are two 

types of symmetry representation:

1. A list of explicit symmetries

2. A generator set of a group

Generating a subset of symmetries from a list of explicit symmetries is trivial, however, the 
implicit nature of using generators of groups makes it difficult (but still possible) to select 
a subset of symmetries. This will be discussed in more detail later.

4.5 Partial Symmetry Breaking Experiments

It is a straightforwai'd assumption that by breaking more symmetries i.e. by increasing the 
number of symmetries in the representation, we can reduce the search space further up to a
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Figure 4.1: Finding the optimum point

certain point.

However, as the number of symmetries represented increases, so does the overhead. We 
will show how there is an optimum point of symmetry breaking as illustrated in Figure 4.1 
by suggesting that there may be a point where the benefit in reducing search from adding 
more symmetries is out-weighed by the extra overhead.

In order to discover how the cpu-time of solving a symmetric CSP varies with the number 
of symmetries used in the symmetry representation we have constmcted the following ex­
periment. We record the cpu-time of solving a CSP L, with a subset of the symmetries
G, of L, This is done for subsets of size 0 to |G |. If we require a subset H, of size h, of the 
set of symmetries G, of size g, there are gCh  different subsets that H  can be. Any time we 
select a subset of symmetries for a given experiment, we choose a pseudo-random subset. 
If it is necessary to repeat the experiment with different subsets we choose new seeds to 
generate other pseudo-random subsets.

Take a CSP L  with n symmetries solved using a set of symmetry breaking functions k, with 

SBDS where |A;| <  n. For |A;| =  0 to |A;| =  n we find the cpu-time taken to solve L  and use 
this information to plot points on a graph. The set of symmetry breaking functions used are 
chosen pseudo-randomly.

Given the data from the above experiment we can plot cpu-time against number of symme­
tries used. We can then use this graph to estimate how many symmetries we need to break 
to minimise cpu-time for SBDS. It should be highlighted though that by doing this we al­
low duplicate solutions. Unique solutions can be found by applying an SBDD dominance
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Figure 4.2: Fractions Puzzle PSB 

check to leaf nodes [FSSOl] or by some other means of isomoiph rejection.

4.5.1 Fractions Puzzle

We consider a very simple problem as an example experiment (See Appendix C.4). Given 
the following problem:

A  D G
+  —  +B C  E F  H I

Can we find unique values (from the range {1..9}) for each variable such that the equation^ 
is satisfied? Note that we can pennute the fractions freely, yielding 5 symmetries and 
the identity e.g. one symmetry is A Z), B 4 -̂  E  and C ^  F. Since the number 
of symmetries is so small it is possible to run the experiment with all possible subsets of 
symmetries. The cpu-times were then averaged for each subset size. Figure 4.2 contains 
the graph of the averaged cpu-time with respect to the number of symmetries. As you can 
see, by adding more symmetries the cpu-time decreases.

'^BC does not mean B x C  but rather (10 x B) +  C.
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4.5.2 Alien Tiles

SBDS has already been used to solve alien tiles problems (See Appendix C .l) with good 
results [GLSOO]. The alien tiles board can be described with two parameters n and c, the 

size of the board and the number of colours respectively. An alien tiles board is an n x n 
grid of rP coloured squares^. By clicking on any square on the board, the colour of the 
square is changed +1 mod c. As well as this, the colour of every square in the same row 
and column is also altered +1 mod c. Given an initial state and a goal state, the problem is 
to find the required number of clicks on each square which can be anything between 0  and 
c — 1 (since 0 =  c, 1 =  c + 1 etc). A more challenging problem for constraint programming 

(which can be found in CSPLib [GW99] - problem 27) is finding the most complicated 
goal state (in terms of the number of clicks needed) for some initial state and then reaching 
that goal state in as few clicks as possible and verifying optimality.

The problem we consider is a 4 x 4 board with 3 colours. Figure 4.3 shows the initial state 
and an optimally hard goal state for the problem we are trying to solve and an example 
solution. The smallest number of clicks that can take us to the goal state is 10. Proving that 
1 0  clicks is optimal needs a complete traversal of the entire search tree.

An instance of the alien tiles problem is exponentially symmetric. Given a solution we can 
freely permute the rows and columns and flip the board around a diagonal. For a board 
with variables, the group acting on the board is x x 2 which for a 4 x 4 board 
is a group of size 1152, or 1151 symmetries and the identity. We derive this number by 
noting that we have 24 (or 4!) row permutations, which can be used in conjunction with the 

24 column permutations, which can be used with the diagonal flip (2n!^). The reason we 
are using this symmetric CSP as the main example of PSB is that it is not a trivially easy

 ̂Alien tiles puzzles can be found online at http://www.alientiles.com/

http://www.alientiles.com/
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Figure 4.5: Random PSB Subsets - Alien Tiles (cut-off at 70 seconds)

problem to solve, but with n =  4 we can cope with all 1151 symmetry functions so we 
can compare PSB against breaking all symmetry. Note that the results of this research are 
applicable to very large groups.

Figure 4.4 shows the cpu-time to solve the alien tiles problem described above with dif­
ferent sized pseudo-random"* subsets of the 1151 symmetries i.e. each point in the graph 
represents the runtime taken to solve the alien tiles problem with a pseudo-random subset 
of symmetries. Figure 4.5 shows a magnified version of a portion of the same graph, giving 
clearer results. By looking at the graphs we can deduce three things.

In this experiment the ECL*PS® random function was used.
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Figure 4.6: Average cpu-times - Alien Tiles

1. Most of the run-time improvement from 940.4 seconds and 18751 backtracks with 
no symmetry breaking to 60.5 seconds and 135 backtracks with all 1151 symmetry 
functions comes from adding the first 2 0  or so symmetries.

2. Perhaps most importantly, we can see that the shortest cpu-time comes from using a 
random subset of size 130. With this subset the problem was solved in 19.9 seconds 
and with 216 backtracks. The size of this subset is much smaller than the size of the 
group acting on the alien tiles CSP.

3. Different subsets of a similar size have large differences in cpu-time. This implies 
that the choice of symmetries we include in our subset is as important as the size of 
the subset. For example, another random subset of size 130 from another experiment 
yielded a cpu-time of 54.9 seconds (almost as much as breaking all symmetry).

The above experiment was ran with 218 different random subsets^ for each subset size 
to produce the less scattered curve in Figure 4.6. It is possible to gain an average factor 
of 2 improvement over breaking all symmetry and a factor of 32 improvement over no 
symmetry breaking. In the case of the subset of size 130 mentioned above, we gain a factor 
of 3 improvement over breaking all symmetiy and a factor of 47 improvement over no 
symmetry breaking. The shape of the curve in Figure 4.6 is consistent with Figure 4.1 i.e.

^Using ECL^PS® version 5.3 on a Pentium III 1 GHz processor with 5 12Mb of RAM
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Figure 4.7: PSB - Golfers’ Problem

the overhead increases approximately linearly with the number of symmetries, and there is 
a steep reduction in search as the first few symmetries are added. This reduction tails off as 
most of the redundant search is pruned, making further symmetries less effective.

4.5.3 Golfers’ Problem

Here we show the existence of similar behaviour for a different problem. This uses Smith’s 
encoding of the golfers’ problem [SmiOl] with p\ symmetries for p players. The graph 
shown in Figure 4.7 shows the results of finding all solutions to g o lf (12,4,2)^. Using PSB 
while performing a complete traversal of the search tree will yield symmetrically equivalent 
solutions. Smith’s model has 12! or 479,001,600 symmetries. Using GAP [GAP03] it is 
possible to produce random elements of the group acting on this problem: S'i2 . We used 
GAP to output a random subset of 8000 functions representing 8000 random elements 
of the group. The same experiment described at the start of this section was run, with 
just one random subset. Due to the complexity of this problem the subsets of symmetries 
incremented in size in steps of 250. It was not possible to solve the problem with 1500 
symmetry breaking functions within 1 0 0 0  minutes of cpu-time.

The graph in Figure 4.7 is not as clear' as that seen in Figure 4.6. However, whereas the 
alien tiles problem needed roughly 2 0  symmetries to do most of the symmetry breaking, the 
golfers’ problem needs roughly 4500. We need to consider at least 1775 symmetries to be

^Using Hog Solver version 4.4 on a Pentium II 300MHz processor with 512Mb RAM
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able to solve this problem in reasonable time and the more symmetries we add the smaller 
the improvement in cpu-time. Using SBDS we are limited by the number of functions we 
can compile. In this respect it is more advantageous to represent symmetries using groups 
so that larger subsets of symmetries can be used as discussed in Chapter 4.4.1.

4.6 Partial Symmetry Breaking with Implicit Symmetry 
Representation

One of the nice features of using SBDS to perform PSB experiments is that there is al­
ways an explicit list or representation of the symmetries to break. Limiting this number of 
symmetries in order to perform PSB simply means removing some symmetries from that 
list.

As the more modern symmetry breaking systems are using group theoretic techniques (or 
other techniques that contain implicit symmetry representations), it is harder to see how 
to limit the symmetries in order to perform PSB. These modern approaches use a set of 
generators that aie at very most Ioq2 \G\ in size for a group G with |G| elements, and in 
practice are much smaller (usually 2 to 6 ). It would be impractical to specify a list of group 
elements to break due to its size as well as defeating the purpose of the implicit structure. To 
limit the amount of symmetry breaking done we must modify the way symmetry breaking 
systems work. This leads to more complicated metrics as to how much symmetry is broken 
since we can no longer say specifically “experiment k broke n  symmetries”. Modifications 
are necessary however, in order to perform PSB with group theoretic symmetry breaking 
systems and other systems with implicit symmetry representations.

There are three main ways in which we can perform PSB with an implicit symmetry repre­
sentation:

1. Do not perform the symmetry breaking technique at every node.

2. Use a subgroup of all symmetries.
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3. Limit the amount of computation the symmetry breaking technique performs at every 
node.

4.6.1 limited use of Symmetry Breaking Technique

This is a very simple method of performing PSB. Once a certain depth in the search tree is 
reached, we no longer execute the symmetry breaking technique [Pug03]. It is also simple 
to apply the symmetry breaking technique only at certain nodes in search [FSSOl].

In two ways, performing PSB using this method is a good idea. Firstly, generally speaking, 
there is more computation involved performing symmetry breaking further down the search 
tree. The symmetry breaking constraints posted by SBDS become longer and thus weaker
i.e. they become a lot easier to satisfy. The dominance check in SBDD is equivalent to 

subgraph isomorphism, whereby we are trying to map (via some symmetry) any p  items of 
the set Q to match the set P  (where \P\ — p  and |Q| =  g). As |Q| gets larger, the problem 
gets exponentially more difficult and in the case of SBDD, the size of Q is the same as the 
number of search decisions made.

Observe that near er the leaf nodes, symmetries become harder to break, and that also those 
symmetries that are broken do not pmne as much search as those symmetries broken nearer 
the root. It is therefore clear that limiting a symmetry breaking technique to a certain depth 
in search is a good way of performing PSB.

4.6.2 Using a Subgroup of Symmetries

Implicit symmetry representations store a small subset of all possible symmetries. These 
symmetries can be repeatedly applied to each other to recreate the entire group of symme­
tries. As has been mentioned before, this subset is called a generator set. If this set has no 
redundant generators, then removing a generator from the set will create a group of at least 
an integer factor smaller. For example, consider the symmetric group Sn which has a gen­
erator set of two elements; (1,2) and (1,2,..., n). Though this group has n\ elements, by 
removing the first generator we create a subgroup with n  elements. By removing the latter 
we create a group with 2 elements. In general, removing just one generator can reduce the
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size of the resulting group drastically.

For solving instances of the golfers’ problem in [FSSOl], the dominance check for elimi­
nating all permutations of the groups, weeks and players is computationally too expensive 
to use during search. Therefore a dominance check for just permutations of groups and 

weeks is used.

The STAB technique [Pug03] uses stabilizers (which are subgroups) of the original group 
of symmetries during search. For this reason, the technique does not break all symmetry. 
Whereas other techniques can use these modifications to perform PSB to reduce mntimes, 

the unmodified STAB technique already performs this type of PSB.

4.6.3 limited computation of Symmetry Breaking Technique

Finally, the amount of computation or the number of symmetry breaking constraints can 
be given some upperbound. This could be done by giving a time limit to every dominance 
check, or by stating that a maximum of n  symmetry breaking constraints may be posted 

after any backtrack.

The SBDD dominance check implemented by Pearson in [Pea03] performs a computation­
ally easier check by trying to map the current state into previously failed states at the same 
depth. Whereas the original SBDD check was equivalent to subgraph isomorphism, by only 
considering states with decisions the problem is reduced to graph isomoiphism. Though 
subgraph isomorphism is known to be NP-complete, the complexity of graph isomorphism 
is unknown and in practice it is quite often tractable. This modification means all previous 
nogoods must be stored but still breaks all symmetry.

Another symmetry breaking system with an implicit symmetry representation that uses this 
method of PSB is STAB. By only considering the stabilizer of decisions made, the number 

of symmetries to consider quickly becomes smaller. However, at the root, all symmetries 
must be considered. STAB overcomes this problem by selecting a polynomial subset of 
available symmetries i.e. limiting the computation of the symmetry breaking technique. 
Again, it is the unmodified version of the STAB technique that performs this type of PSB.

Notice that STAB has been used to greatest effect with all three forms of PSB used simul­
taneously. At this time, STAB has the most impressive runtimes for solving BIBDs with
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Figure 4.8: Best & worst times (cut-off at 60 seconds).

constraint programming and this helps to demonstrate the importance of PSB even with 
implicit symmetry representations.

4.7 Symmetry Subset Selection

In Chapter 4.5 we saw empirical evidence that using PSB can produce significant improve­
ments. This also highlighted the importance of symmetry subset selection i.e. how we 
choose the subset of symmetries to break. Figure 4.8 shows the best and worst cpu-time for 

different sized subsets of symmetries and Figure 4.9 shows the absolute difference between 
them based on 15 random subsets used in the experiment^ (described in Chapter4.5.2). The 
minimum cpu-time we can achieve is 12.61 seconds with a subset of 164 symmetries. How­
ever choosing a subset of this size can result in a cpu-time as large as 35.27 seconds. We 
now look at how the symmetry subset selection affects search and in doing so, hope to find 
an algorithm to select efficient symmetry subsets.

4.7.1 Looking for good subsets

In order to find an automated process for choosing sets of symmetries, we must try to look 
for some property that good symmetries (or sets of symmetries) have. We can then order

^Using ECL*PS® version 5.3 on a dual Pentium III IGHz processor with 4Gb RAM
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Figure 4,9: The difference between best & worst times (cut-off at 40 seconds).

the symmetries with respect to this property and choose the symmetries nearest the front 
of the list. The large number of experiments performed in the previous section leave a 
substantial amount of test data to examine in order to find such a property.

Good symmetries

The alien tiles problem was solved 251,136 times in total (218 x 1,152). The fastest 13 runs 
were found and the symmetries which were broken from each of these mns were recreated 
via the seed recorded for the pseudo-random number generator. Of the 13 subsets, the 
smallest was of size 97 and the largest was 230.

If there is such a thing as a good symmetry we would expect to see the same symmetries 
recuixing in these 13 subsets. We try to find such symmetries by calculating the intersection 
of the subsets. However, the intersection of the first three subsets contained two symmetries 
and the intersection of this and the fourth subset was empty. This suggests that there are not 
specific symmetries that work well but rather sets of symmetries that work well together.

Patterns in symmetries

We will now try to see if there exists a pattern in good subsets of symmetries. This will 
be done initially by looking at small subsets (of size 8 ) and examining the structure of the 
individual symmetries. Using GAP, each symmetry is broken into individual row trans-
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Figure 4.10: This subset took 140.05 seconds to solve the alien tiles problem.

positions, column transpositions and a possible rotation of the grid about the diagonal. 
Hopefully some pattern may arise in terms of how many column and row permutations a 
symmetry has and whether or not it contains a flip around a diagonal.

To do this, the GAP function F a c to r iz a t io n  () was used. This function takes two param­

eters, a group and an element of that group. GAP then factors the element of the group in 
terms of the generators. To find out how many column or row swaps etc. took place, each 
possible row and column swap was included as a generator as well as one which rotates 

the grid around the f {x )  = x  diagonal. However, this led to unexpected behaviour from 
GAP. Whereas the documentation claims to return “a short word” i.e. a short list of the 
generators needed, the output from this did not take advantage of the redundant generators 
supplied and in short did not return the simplest / shortest factors. The GAP development 
team were contacted about this and although they say it was not a ‘bug’, the code would be 
changed (after the next release) to return the shortest factorization.

Using modified GAP code to find the shortest factorization^, it was possible to extract the 
required data i.e. for any given symmetiy, how many row and column transpositions is it 
made up of.

As can be seen by looking at Figure 4.10 and Fig 4.11, the results do not lend themselves 
to any immediate conclusions. This is also true of the other 13 subsets examined.

^Written by Steve Linton.
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Figure 4.11: This subset took 69.05 seconds to solve the alien tiles problem.

4.7.2 The Effect of Different Heuristics

We now look to see if external factors (in this case the heuristics) are important when it 
comes to selecting subsets of symmetries.

When solving a symmetric CSP using symmetry breaking techniques there are two types 
of failure resulting in backtracking. We either fail where we discover a new unique nogood, 
or we fail where we find a nogood symmetrically equivalent to a previously unique nogood.

Definition 4.3 Given a complete traversal o f the search tree o f a CSP L, a list o f no goods 
found K  and a group o f symmetries G (acting on L), consider a node in search k which is 
a nogood. I f  while traversing the search tree we reach node k and jBg 6  G s.t. g(k) G K  
then we call k a unique nogood. Conversely, i f3g  G G s.t. g{k) G K  where g ^  e (the 
identity element) then we call k a symmetric nogood. Unique nogoods result in unique fails 
and symmetric nogoods result in symmetric fails.

It is straightforward to see that exponentially symmetric problems can have significantly 
more symmetric fails than unique fails. By performing symmetry breaking we can elimi­

nate symmetric fails, however if we use PSB some symmetric nogoods persist. Different 
symmetries can be used to prune different parts of the search tree. The vaiiable and value 
ordering heuristics and the propagation level dictate how the search space is traversed, 
therefore the symmetric nogoods pruned are dependent not only on how many symmetries 
we break but also on the heuristics we use.

In Figure 4.12 we present experimental evidence of this by performing the same experiment
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Figure 4.12: Identical subsets of symmetries with different variable ordering heuristics 
(cut-off 60 seconds). The first heuristic (top) is better up to 376 symmetries after which the 
second heuristic (bottom) takes less time
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as in Chapter 4.5.2 with the same subsets of symmetries, but with different variable ordering 
heuristics^. The subsets used in Chapter 4.5.2 were randomly chosen for each different 
size, but in this section we have a standard subset that has a random symmetry added to 
it at the start of each run. The first heuristic (on the top in Figure 4.12) instantiates the 
alien tiles squares along the rows from top left to bottom right. The second (on the bottom) 
instantiates the squares along the rows from bottom right to top left. The resulting cpu- 
times are generally significantly different. On the other hand, changing the value ordering 
heuristic in solving alien tiles problems makes no difference to the number of symmetric 
fails we find, since the symmetries in this problem act on just the variables and not the 
values.

If we want to use PSB with a given symmetry breaking method we need to be aware of the 
variable and value ordering heuristics when we select a subset of symmetries. We can ex­
ploit this fact by choosing heuristics that work well with respect to a subset of symmetries.

4.8 Algorithm for Symmetry Subset Selection

If we wish to prune as much search as possible, it is preferable to post symmetry breaking 
constraints (or equivalent) that make cuts nearest the root of search. The subtree pruned by 
a symmetry breaking constraint is determined by 3 factors.

1. The (partial) assignment that failed

2. The symmetry being used to construct the constraint

3. The heuristics being used

Essentially, the (partial) assignment and the symmetry taken together construct the symme­
try breaking constraint. The subtree this constraint forbids is determined by the heuristic. 
For example, consider a failed assignment =  1  and the symmetry g, where g{Vi =  1) =

^Using ECL^PS® version 5.3 on a dual Pentium III processor IGHz with 4Gb RAM
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g(X)

h(X)

Figure 4.13: A search tree illustrating how some symmetry breaking constraints prune
more search than others. Given the nogood X, g is a better symmetry to break than h.

(Vg =  1 ). If Vg is the next variable to be instantiated, we can say that g, in this case, is a 
good symmetiy to use. However if Vg is one of the last variables to be instantiated, g would 
not be a good symmetry to use here. Another simple example of this is shown in Figure 
4.13.

If we are to choose a subset of symmetries we should choose those symmetries that map 
the smallest (partial) assignments that will be visited by the ordering heuristics, to the root 
of the subtrees nearest the root according to the ordering heuristics.

To this end, we have constructed an algorithm (Algorithm 4.8.1) that takes a CSP model, a 
static ordering heuristic and the symmetries of the problem. This algorithm then considers 
every partial assignment the solver would and applies every symmetry to it, which results 
in a potential nogood 77. We associate each 77 we find with the symmetry that created it 
and order the list of nogoods from those nearest the root (and leftmost) to those nearest the 
leaves (and rightmost). We then remove the duplicate symmetries from the list and we are 
left with the best symmetries at the front.
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Algorithm 4.8.1: S Y M M E T R Y S u b s e tS e le c t io n  {Group, Partial A ssignm ents)

for each g G Group
for each pa G Partial A ssignm ents

elem ent.partial_assignm ent <— g{pa) 
elem ent.sym m etry_used g
element.latest «—latest point in search in g{pa)^
 ̂Sym m etricP artia l A ssignm en ts. add{element) 

for each i G Sym m etricP artia l A ssignm ents  

best «— i
for each j  G Sym m etricP artia l A ssignm ents

{ i f  j.la test < best.latest 
then best <— j  

Sym m etries . add {best, sym m etry  _used)
Sym m etricP artia l Assignments.remove{best)

Symmetries.remove_duplicate_jsymmetries{) 
return  {Sym m etries)

do <

“Latest var =  val assignment to be considered by the heuristics in the partial assignment 

g {pa).

The time complexity of Algorithm 4.8.1 is 0{\G\d^) for a CSP with n  variables with do­
mains of size d and a group of symmetries G acting on assignments. Thus, this algorithm is 
quite impractical. However, the fact that the symmetries of the alien tiles problem acts on 
variables means that rather than considering all 0 {dP') partial assignments, we only need 
to consider the variables involved in those partial assignments. There are only n  of these: 
{Xi} ,  {Xi, X 2 }, ..., {Xi, ...,Xn}. The results of solving the alien tiles problem using the 
first k symmetries from the list of symmetries ordered using Algorithm 4.8.1, can be found 
in Figure 4.14.

A compaiison can be found in Figure 4.15, to show that the algorithm has matched the 
best set of symmetries found already. The alien tiles problem can now be solved in 10.95 
seconds with a subset of 92 symmetries. Algorithm 4.8.1 took only 2.11 seconds to com­
pletely order all 1,152 symmetries. The results of this experiment show that the intuition 
behind choosing good subsets of symmetries is correct.
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Figure 4.14: The alien tiles experiment using Algorithm 4.8.1
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Figure 4.15: A comparison of runtimes from solving the alien tiles problem with the best 
random symmetries and those found using the Algorithm 4.8.1
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Since a failed partial assignment with k decisions will make a symmetric nogood that will 
prune at depth k or greater, we can limit the algorithm to small partial assignments. By 
doing so we not only dramatically reduce the complexity of the algorithm but the symme­
tries found will still contain those that prune the most search. We also need to reduce the 
number of symmetries to be considered before the algorithm can be considered as practical. 
By selecting the setwise orbit of the partial assignment, we can drastically reduce the com­
plexity of the algorithm further to just 0{\orbit{G, Ak)\d^). The value of k need only be 
raised until the algorithm produces a list containing as many symmetries as the constraint 
programmer wishes to use. For example, if /c =  5 produces a list of 1,000 symmetries 
and the constraint programmer wishes to use 900 symmetries, there is no need to rerun the 
algorithm with k = 6 .

Using =  4 we obtained a list of 11,880 symmetries for the golfers’ problem instance 
used in Chapter 4.5.3. The experiment involving the golfers’ problem was repeated with 
the symmetries taken from the list of ordered symmetries (Figure 4.16). For a subset of 
8,000 symmetries, we were able to solve the problem in just 128.1 seconds compared to 
1802.53 seconds with 8,000 randomly chosen symmetries. The modified algorithm took 
only 34.8 seconds to find the best 11,880 symmetries. The combined runtimes of the 
constraint solver and Algorithm 4.8.1 yield a factor of 11 improvement over the 8,000 
random symmetries chosen. For problems with larger amounts of symmetry, PSB becomes 
unavoidable and therefore choosing the right symmetries to break becomes more important. 

For larger (more symmetric) problems using the right symmetries will probably result in 
larger factors of improvement.

4.9 Dynamic Algorithm for Symmetry Subset Selection

Though symmetry breaking methods are mainly used to help find optimal solutions or 
all solutions (as we did with the alien tiles and golfers’ problems above), they can still 
help reduce the search needed for finding the first solution. However, Algorithm 4.8.1 
sorts symmetries so they are good with respect to the search tree as a whole. Therefore, 
the ordered symmetries are meant to be used only for finding all solutions or an optimal 
solution.

For example consider the search tree in Figure 4.17. The symmetries that result in the cuts
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Figure 4.16: The golfers’ problem solved using symmetries from Algorithm 4.9.1 com­
pared with the original randomly chosen symmetries. We see a significant improvement in 
runtime even after the time for sorting symmetries is taken into account.

First
Solution

Figure 4.17: A search tree illustrating how some symmetries are better for different sub­
trees of search
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at C, A  and B  would be preferred to those symmetries that cut D, E  and F  according to 
Algorithm 4.8.1. However, given the location of the first solution, we would never consider 
nodes C, A, or B. In order to select the best symmetries for a given subtree and thus allow 
effective symmetry subset selection for finding the first solution, we must sort symmetries 
dynamically during search.

Algorithm 4.9.1: SYMMETRYSuBSETSELECTiON(C?rowp, A)

for each g G orbitRepresentatwes{Group^ A) 
element.partial_assignment <— g{A) 
element.symmetry_used <r- g 
element.latest latest point in search in g{AY 

^SymmetricPartial Assignments.add{element) 
for each i G SymmetricPartial Assignments 

best <r~ i
for each J G SymmetricPartial Assignments

{if j.latest < best.latest 
then best <— j  

Symmetries.add{best.symmetry jased)
SymmetricPartial Assignments.remove{best)

Symmetries.remove_duplicate_symmetries{) 
return {Symmetries)

do <

‘'Latest var — val assignment to be considered by the heuristics in the partial assignment 

9{A).

We now present a modified algorithm (Algorithm 4.9.1) that finds the best symmetries to 
consider based on just one failed partial assignment. This results in an ordering of sym­
metries that are optimal for the current subtree in search. As well as sorting symmetries 
correctly for finding the first solution, this also gives us the advantage of removing the dA 
term from the complexity of Algorithm 4.8.1 to just 0{\orbit{G^ A)|^). This complexity 
comes from sorting the list of symmetries after they have been found. Note that for the sake 
of simplicity, the algorithm encompases a bubblesort sorting algorithm. The implementa­
tion of this algorithm while semantically the same, contained a mergesort sorting algorithm. 
While the dynamic algorithm will still be called a potentially exponential number of times 
(i.e. after each backtrack), it will still be less than dA times. The implementation and
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empirical evaluation of this algorithm is left as future work.

One area the constraint programmer should note is the change in PSB metric. As mentioned I

previously, using a symmetry breaking system such as SBDS results in clear indication of 
how much symmetry was broken. It is simply the number of symmetry breaking functions 
used. The number of symmetry breaking constraints posted after each backtrack are in 
general significantly less than the number of symmetries available.

4.10 Symmetry Subset Selection for other Symmetry Break­
ing Systems

By looking at how good symmetries are compared to ordering heuristics and just one partial 
assignment, we have eliminated the exponential rantime of the symmetry subset selection 
algorithm. This has also given the advantage that symmetries do not need to be sorted 
before starting search.

Most importantly of all though this has meant that Algorithm 4.9.1 is applicable to sym­

metry breaking systems with implicit representations. By only sorting symmetries during 
search (as the symmetry breaking constraints are being posted) we can choose just the 
constraints that aie most likely to prune the most seai'ch. Algorithm 4.9.1 is particularly 
relevant to both the GHK-SBDS [GHK02] and STAB [Pug03] methods and would help 
them solve problems with larger symmetry groups.

However, SBDD approaches are not looking for a good symmetry but a specific symmetry 
that satisfies the condition of dominance. In this respect, the idea behind the symmetry 
subset selection algorithm could possibly be used to try to find a symmetry that is more 
likely to find dominance. At this time though, the best methods for performing PSB with 
SBDD techniques aie those described in Chapter 4.6

4.11 Conclusions and Future Work

In this chapter we have looked at the effect of breaking less symmetry than is possible. We 
defined the term partial symmetry breaking (PSB) and gave an overview of the many past
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examples of PSB. We have constructed experiments that illuminate the behaviour of run­
times when solving problems with all, some or no symmetries broken. These experiments 
have shown that while breaking all symmetry can improve runtimes, we can solve prob­
lems even quicker by breaking a fraction of all available symmetry. The experiments also 
showed that different subsets of symmetries with the same size can produce very different 
runtimes.

These observations led us to try to explain why some symmetries work better than others 
when performing PSB. We looked at the possibilities of certain symmetries performing 
well, or patterns in successful subsets of symmetry. We then reasoned that a symmetry 
performs well by pmning large amounts of the search tree. The amount pruned is calculated 
by the symmetry, the failed nogood, and the variable and value ordering heuristics.

After realising why some symmetries are better than others, we constructed an algorithm 
to sort symmetries in order with respect to how well they will work with a specific (static) 
ordering heuristic. The effectiveness and the reasoning behind this algorithm was then 
shown to be correct by bettering our previous best results experimentally. The algorithm 
was altered to be more tractable and resulted in further reduced runtimes of constraint 
solving, even when combined with the mntime for sorting the symmetries.

The main contributions of this chapter therefore are threefold:

1. We have shown how most of the symmetry breaking it is possible to do can be done 
with a small subset of all possible symmetries

2. For constraint programmers wishing to use PSB in their experiments, we have de­
scribed many different methods of performing PSB.

3. When selecting a subset of symmetries to use to perform symmetry breaking (either 
before search or during search) we have provided an algorithm to allow constraint 
programmers to find the symmetries that will prune the most search. In an exper­
iment using 8,000 symmetry breaking functions, the algorithm chosen symmetries 
reduce runtime by a factor of 11 (including the runtime of the algorithm itself) com­
pared with 8,000 randomly chosen symmetries.
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Though we have a much clearer understanding of why PSB works well, we should continue 
to research this area as many constraint programmers do not utilise PSB to its full potential.

4.11.1 Unknown or Dynamic Heuristics

Since we have shown that breaking a set of symmetries can work well with respect to a 
certain heuristic, any ordering of symmetries to perform PSB using Algorithm 4.8.1 will 
require a static ordering heuristic that is known in advance. This is a large restriction 
to place on constraint solving since dynamic variable ordering heuristics can be used to 
dramatically reduce run-times. In this case, one should examine where the greater overhead 
would be i.e. using a non-dynamic heuristic or by breaking symmetries that do not prune 
as well as others. For exponentially symmetric problems, the difficulty in solving these 
problems comes from the symmetry and one could arguably say that breaking the right 
symmetries is more important.

However, a compromise could be achieved by combining parts of both methods. If the 
symmetry subset selection were to be done during search and the dynamic variable order­
ing heuristic is known, it is always possible to find the next variable to be instantiated. 
Secondly, the list of the next variables to be instantiated could be estimated based on both 
dynamic variable ordering heuristic and the current state in search. How this would perform 
in practice however is unknown.

4.11.2 Finding Subsets that break all Symmetry

By lexicographically ordering an array of variables, we can eliminate freely interchange­
able variable symmetry. We can also eliminate freely interchangeable value symmetry with 
a polynomial subset of all symmetries [BW99]. It would be interesting if there are other 
interesting classes of symmetry that can be completely broken with a subset of all symme­
tries.

More interesting v/ould be to learn how to apply any new findings to complex groups made 
from direct or wreath products of other groups. It looks most likely that to break all sym­
metry, we may not be able to use a small subset of symmetries. The only example of a 
small subset of symmetries breaking all symmetries of a CSP was found by Smith [MS02].
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4.11.3 Optimal PSB point

The experiment involving the alien tiles problem (See Chapter 4.5.2) showed that there is a 
point where the runtime of solving a CSP is minimised. At this point, trying to break more 
symmetry produces little extra pruning and increases the overall mntime. Breaking fewer 
symmetries reduces the pmning too much and again increases the mntime.

Though it has been possible to show which symmetries it is preferable to use when perform­
ing PSB, we do not know how many symmetries we should break. The only conclusion we 
can state is that this number of symmetries is generally a small percentage of all available 
symmetries.

4.11.4 Integration of Symmetry Subset Selection into Symmetry Break­
ing Systems

By far the most important piece of future work that should be undertaken is the integration 
of the dynamic symmetry subset selection algorithm in a state of the art symmetry breaking 
system such as GHK-SBDS or STAB.

Much of the reseai’ch into symmetry breaking in constraint programming has delivered very 
elegant and impressive reductions in the mntimes of CSP solving for highly symmetric 
problems. However, many of the advancements possible are mutually exclusive. This is 
not the case with PSB. Even though the performance of most modern symmetry breaking 
systems relies heavily on PSB, by breaking the right symmetries, the performance can be 
improved further.

Only by considering all aspects of the symmetry breaking system, can we produce con­
straint solvers that can solve problems with a super exponentially large number of symme­
tries.



Chapter 5

Symmetry and Propagation

By using knowledge of the symmetry that exists in certain problems, we can find solutions 
with less computation. There have been many different methods of dealing with symme­
try, that have been used with great success. Though much research has looked at reducing 
redundant search^ there has been no work into redundant propagation. In this chapter, we 
argue that we shouldn’t just use symmetries to avoid redundant search but to also avoid 
redundant computation. We use this ethos of re-using learned information to modify a 
popular arc consistency algorithm and significantly reduce the amount of redundant com­
putation.

5.1 Introduction

Previous methods of utilising symmetry in CSPs have always involved trying to break it. 
This can be done by affecting the search routine directly e.g. SBDD informs the constraint 
solver when to backtrack [FSSOl]. We can also effect the solver indirectly by adding 
additional constraints [FFH'*‘02] [GSOO] or by using heuristics that try to avoid subtrees 
where symmetry is prevalent [MTOl].

Constraint solving however is a balance between search and inference. There are various 
levels of consistency that can be maintained while searching for a solution e.g. bounds con­
sistency, forward checking, arc consistency, path consistency. There are many algorithms 
for enforcing these levels of consistency, most notable are the arc consistency (AC) algo­

109



C h a p t e r  5 , S y m m e t r y  a n d  P r o p a g a t io n  110

rithms (e.g. AC-3 [Mac77], AC-6 [BC93], AC-7 [BFR95], AC-2000, AC-2001 [BROl]) 
that enforce AC on binary CSPs. Though AC-6++ [BR95] makes use of the fact that “con­
straints are symmetric”, this is a specialised case for AC-6 where, A  provides support for 
B iff B provides support for A. This is different from the type of symmetry discussed in 
this thesis.

There are also algorithms for generalised arc consistency (GAC) for non binary constraints 
e.g. GAC-Schema [BR97]. Popular global constraints (such as all different [Reg94], or lex 
constraints [FHK+02]) have specialised algorithms to enforce GAC efficiently.

In this chapter, we show that symmetry in CSPs has a wider effect than just on search. We 
show that as well as developing systems which re-use nogoods to avoid symmetric search, 
we can re-use any information gathered about a CSP. By doing so, it is hoped that constraint 
programmers will look at automating methods of generating and using symmetric variants 
of information gathered while solving CSPs.

We begin this work by looking at propagation algorithms, and try to use our knowledge of 
symmetry to reduce the runtime and/or computation of such algorithms when dealing with 
symmetric CSPs.

5.1.1 Definition of Symmetry

Before continuing further, we shall refine the definition of symmetry for illustrative pur­
poses.

Definition 5.1 Given a CSP L, a symmetry o f L is a bijective function f  : A ~ ^  A  where A  
is some representation o f a state in search e.g. a list o f assigned variables, a set o f current 
domains etc., such that the following holds:

1. Given A, a partial or fu ll assignment ofL,  (A |= r)  (/(A ) \= r).

2. Similarly, \A  ^  r )  (/(A ) ^  r).

where r  can be a specific condition that a state o f a CSP can satisfy e.g. arc consistent, 
satisfiable, etc.
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The central ethos behind this new definition is that we no longer think about symmetric 
nogoods but rather symmetric work. Anytime any reasoning or computation is done in a
symmetric CSP, we should look at how we can take advantage of it. The significance of this
is that before, where we considered symmetries behaving identically in terms of nogoods, 
we can consider them identical in terms of anything else we can model. Previous research 

was concerned with reusing information on nogoods to affect search.

As a preliminary step of extending our new definition of symmetry in CSPs, we now look 
at consistency, more specifically arc consistency. Recall from Definition 2.2 that a binary 
CSP L  is arc consistent if all the constraints in L  are arc consistent. A binai y constraint (7^ 
is arc consistent iff:

1. Vu G 36 G s.t. (d, 6) G Cij

2. Vb G 3u G jD (A ^ ) s.t. (u, 6) G Cij

By re-using our knowledge of symmetry in CSPs we can either hope to enforce arc consis­
tency with less computation or perhaps enforce a higher level of consistency.

5.2 levels of Consistency

By using symmetry to avoid symmetric nogoods, we generally add some constraint to the 
problem that causes the constraint solver to backtrack earlier than it would by dealing with 
the constraints of the original CSP. Thus, less search is performed. If we are to look at 
using symmetry to avoid redundant work in consistency algorithms, we need to consider 
whether or not we take less time computing a consistent state or we create new constraints 
that enforce a higher level of consistency than is possible with the original constraints of 
the CSP.
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5.2.1 An example modification

Algorithm 5.2.1: reviseC ,̂ V̂ )

delete false  
for each x e  D{Vi)

( i£ { ^ y  e  D{Vj)  I {Vi = X  AVj  = y) is consistent }

then ^  ^

[^delete f— true
return {delete)

Algorithm 5.2.2: AC-1 ( ) 

repeat
change false  
for each G Q

do change <— REVISE(V^, Vj) V  change 
until -^change

Algorithm 5.2.2 contains the pseudocode for the AC-1 algorithm where Vi is the variable 
of the CSP and D{Vi) is its domain. The idea behind the AC-1 algorithm is that for every 
pair of variables Vi and Vj, we use the revise function (Algorithm 5.2.1) to remove values 
from the domain of Vi that have no support. In doing so, we discover assignments that 
cannot participate in a solution based on the current domains of vai’iables. It should also be 
possible to rule out the symmetrically equivalent assignments that are nogood. Based on 

this observation, we propose a modification to the revise function as is shown in Algorithm 

5.2.3.
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then <
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Algorithm 5.2.3: SYMMETRIC_REVISE(%, Vj)

delete false  
for each x  e  D{Vi)

i f  { ^ y  e  D{Vj)  I {Vi = X A V j  = y) is consistent}
comment: G is the group of symmetries of the CSP

comment: A is the current set of assignments made

for each g e  O r b i t  (G , A  A V  = x)  

do g{A)  => g{Vi ^  x)

 ̂delete <— true  
return {delete)

The level of consistency enforced by this algorithm is dependent on the group we choose 
to use. If the group we use in Algorithm 5.2.2 is the group that stabilizes the current set of 
assignments i.e. \fg ^  G, g {A) — A  and therefore g {A) is true, then we will enforce arc 
consistency.

If the group we use in Algorithm 5.2.2 is the group that represents the symmetries of the 
problem i.e. g {A) may be satisfied, false or unknown, then we will enforce arc consistency 

and add extra constraints to the solver. If g {A) is false, the generated constraint can be 
discarded. If g {A) is true, the resulting unary constraint would have been generated by the 
AC algorithm and added at a later stage of computation. If g {A) is unknown i.e. it could 
be satisfied later, then the resulting constraint can be added to the solver. These constraints 
may help the solver to backtrack earlier or prune more branches of search. In this case we 
can say that we have enforced a higher level of consistency.

5.3 Modifying an existing AC algorithm

Though the above algorithms are correct if the symmetries used satisfy Definition 5.1, 
we will initially look at modifying AC-2001, the simplest encoding of an AC algorithm 
with the optimal lower bound of 0 {ed?) time and 0 {ed) space where e is the number of 
constraints and d is the size of the largest domain. At this stage, we will try to modify the 
algorithm so that it still enforces AC and not AC as well as constructing symmetry breaking
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constraints.

As detailed in Chapter 5.1.1, the main ethos of the new way of looking at symmetry in CSPs 
is to identify the information gathered and re-use it. There are two types of information 
gathered during the computation of AC-2001.

1. Discovering inconsistent assignments.

2. Finding support for a particular assignment.

Finding and eliminating inconsistent assignments is the main task of AC algorithms. Con­
sider an assignment Va = b. This is can be shown^ to be (in)consistent by first assuming 
that Va = bis  tine. Then every variable 14, that is constrained with 14 is examined to see 
if there exists a domain element t/ G 1 4  such that the current set of assignments combined 
with Va = b and Vx = y  does not violate the constmint Cax- If no such domain element 
exists, Va = bis inconsistent with the current state in search and therefore b can be removed 

from the domain of 1 4 .

AC algorithms need to consider assignments such as 14 =  6 more than once. Rather than 
examine the domain of vaiiable that is constrained with 1 4 , we can record assignments 
Vx = y that do not violate any constraints when considered with the current state in search 
and Va = b. The assignment Vx = y is said to act as support for the assignment Va = b. 
Recording support assignments (such as 14 =  y) is useful since all we need to do when 
proving 1 4  =  6 is consistent w.r.t. Cax is check to see that y  is still in the domain of 1 4 - 
If y  has been removed from the domain of 14 then we must seai'ch for the next support 
for 14 =  b. Using support assignments when enforcing AC greatly reduces the number of 
constraint checks needed by the AC algorithm.

Thus we will re-use these gathered data like so:

1. Forbid the orbit of inconsistent assignments under the stabilizing subgroup of the 
current state. If we wished to introduce symmetry breaking constraints, we could

^This method of achieving arc consistency is not how AC algorithms work in practice. It is merely 

presented as an example.
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construct constraints (as SBDS does) using symmetries where the symmetric equiv­
alent of the current state in search is not guaranteed to be true.

2. When we find support, we actually find two assignments that support each other. By 
taking the orbit on tuples of these two assignments we find other support assignments.

Once we find an inconsistent domain value, we can remove it since it is guaranteed to vio­
late some constraint if instantiated. The same is true of its symmetric equivalents, therefore 
we can remove all the elements (assignments) of the orbit of this domain value. Note that 
the symmetric variants of the original inconsistent assignment would be discovered by the 
AC algorithm before it terminates. Here we remove it with the hope of reducing the number 
of constraint checks needed.

Though the information we re-use in step two appears to be straightforward, there is an ex­
tra condition that support assignments must meet for AC-2001. When we look for support,
AC-2001 stipulates that we must use the lexicographically smallest^ domain element as the 
support assignment. This condition coupled with bookmai’king the last known support for 
an assignment means that we only search through a domain at most once.

However, symmetries that permute the domain elements of variables have destructive ef­
fects on the static lexicographic domain ordering. This makes it impossible to re-use sup­
port for symmetries that effect domain elements. If however, the symmetiies of the problem |
permute just variables then it is possible to re-use support in the following way. j

Theorem 5.1 Assume we are given assignments X i  = x and X j  ~  y where X i  = x  pro- ]
vides support fo r  X j = y with respect to constraint Cij. I f  Xi  = x  is the lexicographically I

1
least support fo r  X j — y, we can say that the smallest support fo r  g{Xj — y) is g{Xi = x) j
i f  g does not affect the ordering o f the domain elements. |

ti
P r o o f : If we discover support X i = x for assignment X j — y with respect to constraint |

Cij, we must infer what this means for the other domain elements of 7Q. |

Xi  = X  is the smallest support for X j  ~  y  with respect to the lexicographic ordering which |
!

means that i

^Although any other consistent static ordering could be used.
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^ x '  such that x' < x A {Xi = x' A X j  = y) Ç. Cij

Since g does not affect the ordering of the domains, we can say that the symmetric equiva­

lent is also true.

^ x '  such that x' < x  A {g{Xi) = x' A g{Xj )  = y )  e  g{Cij).

If g{Xj )  = y  doesn’t have support with respect to Cij i.e. the algorithm has not finished the 
first iteration of all of the domain elements, then we can say that the smallest support for

=  2/ is

If g{Xj )  =  y  already has support with respect to Cij, we can reason that it is no longer 
a valid support since it will be lexicographically less than g{Xi) = x  which violates the 
above condition, thus we can say that support for g{Xj )  = y is g{Xi) = x. We know that 
the support must be lexicographically less than g{Xj)  — y  since X j  and g{Xj )  are in the 
same orbit. If the last support for g{Xj )  is the same or larger than the new support for Xj ,  

then this is a contradiction since being in the same orbit means that X i  — x  would already 
have been discarded by stating g~^{g{Xi))  =  x', where x' > x, is the smallest valid support 
for X j  ~ y .  ■

We assume that the constraint programmer produces a group representing the symmetries 
of the problem prior to search. This group can then be used by the modified AC algorithm. 
In order to maintain AC during search, we need to note that the symmetries of the problem 
change as assignments are made. Anytime a search decision is made e.g. variable X i ~ j ,  

or variable Xy  ^  z, we must take the stabiliser of these decisions. In this chapter we 
are taking the pointwise stabiliser rather than the setwise stabiliser of decisions. This will 
result in the group tending toward the identity element during search sooner but allows for 
cheaper group theory computations.

5.3.1 Refining AC-2001

Algorithm 5.3.1, 5.3.2 and 5.3.3 contain pseudocode based on the AC-2001 [BROl] algo­
rithm developed by Bessière and Régin. The time and space complexity for this algorithm 

is optimal: 0 {e(f) and 0 {ed) respectively.
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Essentially, AC-2001 enforces AC by making every constraint Q  G L to be arc consis­
tent. This is done by looking for support for every potential assignment in the CSP. The 
first support assignment X j  — b is stored for every assignment Xi  = a. In this case 
L A S T { X i ,  a, Xj )  = b. Support is searched for incrementally i.e. if X j  =  b is no longer a 
valid support for X i = a then we will only look for elements in the domain of X j  that are 
lexicographically later than b. If at any point we cannot find support for any given assign­
ment X i =  a, then a is removed from the domain of X i and Vj Cij is placed in a queue to 
be made arc consistent again.

Algorithm 5.3.1: M a in (A ’)

Q
for each X i  e  A

for each X j such that Cij G C

do <

R  4-  S y m m e t r i c R e v i s e 2 0 0 1  {Xi, Xj )  

for each X^  E R

' ' i f D % )  =  0
do < then return {false); 

return ( S y m m e t r i c P r o p a g a t io n 2 0 0 1  (Q ));

Algorithm 5.3.2: S y m m e t r i c P r o p a g a t io n 2 0 0 1  (Q )

while Q ^  0
p ick  X j  from Q; 
for each Xi  such that Cij G C

' R < -  S y m m e t r i c R e v i s e 2 0 0 1  {Xi, Xj )  

do < for each Xk E R

pfD%) = 0
do < then return (/a^5e); 

return {true);

do <
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Algorithm 5.3.3: Sym m etricRev ise200 1 (Xi,  X j )

C H A N G E  ^  0;
G  4— group a c tin g  on CSP; 
for each Vi G D(Xi)

' i f LAST( X i , Vi , Xj )  ^  D ( X j )

if G D { X j ) / v j  >d EAST(Xi ,Vi ,Xj )  l \Ci j (vi ,Vj)
LAST(Xj, A j) 4— Vj\

if G a c ts  on variab les

^  4 -  O R B iT (G , (X j , Uj)]);

then  ̂ for each [(X y, Vy ) ,  (X%, v^)] G S  

do L A ST (X y, Vy, Xz)  4— Vz',
do <

then <

then <

else

O  ^  O RBIT(G , (X ^,t;i)) 

for each (X ,̂ G G
I remove Vk from D(Xk);

do
\C H A N G E  4- CH ANG E\j{Xk};

return {CHANGE);

The main changes to AC-2001 involve taking the orbit of inconsistent domain elements 
and support domain elements and re-using them. As a consequence, the Algorithm 5.3.3 
doesn’t return a boolean indicating whether or not the domain has been reduced, but rather 
a set of variables whose domain have been reduced. Notice how in Algorithm 5.3.3, if we 
find support then that support is re-used. If we cannot find support and we delete a domain 
element then that information is re-used to make more deletions.

5.4 Experimental Results

For the experiments, a simple backtracking binary constraint solver was implemented in 
Java. This solver takes instances from the model B [GMP+01], random binary CSP gener­
ator [FBDR96].

^Thanks to Christian Bessière for helping to verify its correctness.
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Original AC-2001 Java AC-2001
#ccks time #ccks AC del. time

<150, 50, 50 0 ,1250> 100,010 0.05 99,968 0 1.38

<150, 50, 500, 2350> 487,029 0.16 478,062 3,224 7.78

<150, 50 ,500 ,2296> 688,606 0.34 677,886 3,038 11.32

<50, 50,1225,2188> 1,147,084 0.61 1,114,781 1,255 18.05

Table 5.1: Results of compaiing the original implementation by Bessière and Régin with 
the new Java implementation.

To give an idea of how it measures against the original implementation of the AC-2001 
algorithm, the experiments from [BROl] were re-created (see Table 5.1, which records 
the number of constraint checks taken, the mntime and the number of deletions by the 
AC algorithm). As in [BROl], 50 instances were generated and the mean values were 
calculated. The mntimes of the Java implementation seem to be worse, though roughly 
consistent across instantiations, than the original implementation. Also, the number of 
constraint checks is similar. All experiments were mn on an Athlon XP 2200 1.8GHz 
processor with 512Mb of RAM.

The main problem for the applicability of using propagation in AC algorithms is that the 
most symmetric problems that interest the symmetry in constraint programming commu­
nity contain n-ai'y constraints. Such constraints cannot be dealt with by a binary AC algo­
rithm such as is presented here.

The ideal problem for these experiments is a highly symmetric problem with a direct binary 
CSP model i.e. not one that needs a dual or hidden variable encoding [SW99], and where 
the symmetries act on variables as this would allow us to re-use support. Finding latin 
squares is such a problem. A latin square is an n  x n grid of numbers from 1 to n such that 
each number can only appear once in each row and column. In this problem, we can freely 
permute the rows and columns as well as inverting around a diagonal thus giving a total of 
2m)? symmetiies.

The results for enforcing AC on an uninstantiated instance of a latin square problem are 
presented in Table 5.2. Since the problem is uninstantiated (unlike when we are searching 

for a solution), it is trivial to calculate the size of the orbit before computing the orbit 
itself. This allows us to implement the orbit finding algorithm very efficiently. The latin
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AC-2001 Modified AC

n #con. checks runtime size of group #con. checks runtime

15 100,800 0 .2 9 3 .4  X 1 0 ^ 16 0 .33

16 130,560 0.35 8 .8  X lÔ G 17 0 .4 6

17 166,464 0.44 2 .5  X 1 0 ^ 18 0.66

18 2 0 9 ,3 0 4 0 .6 4 8 .2  X 10^^ 19 0.66

19 259,920 0.79 2 .6  X 1 0 ^ 20 0 .83

20 3 1 9 ,2 0 0 0.94 1.2 X 10̂ "̂ 21 1.02

21 3 8 8 ,0 8 0 1.13 6 .2  X 10^^ 2 2 1 .27

22 467,544 1.59 2 .6  X 10^2 23 1.62

23 558,624 1 .8 7 1 .3  X 10"̂ ^ 24 1 .89

24 662,400 2.10 7 .7  X 10^7 25 2 .29

25 7 8 0 ,0 0 0 2 .7 8 4 .8  X 1 0 ^ 26 2 .82

26 9 1 2 ,6 0 0 3 .2 2 3 .3  X 10^^ 27 3 .60

Table 5.2; AC on uninstantiated latin squares. The predicted number of constraint checks 
is produced experimentally.

n fails
AC-2001 
#ccks AC del. time fails

Modified AC 
#ccks AC del. time

3 0 623 5 0.02 0 324 5 0.07
4 0 3,371 9 0.06 0 1,550 9 0.13
5 4 13,432 24 0.07 5 5,743 23 0.17

6 8 41,003 40 0.13 8 14,696 40 0.29
7 55 140,454 110 0.38 55 54,141 ' 110 0.86

8 0 198,073 63 0.62 0 54,128 63 1.28

9 95 601,669 309 2.76 101 203,451 303 4.66

10 408 2,097,243 734 12.11 409 720,123 733 16.93
11 1,277 6,785,424 3,602 48.46 1,290 2,723,297 3,607 64.49

12 5,208 49,502,231 8,654 266.21 5,208 10,412,996 8,654 348.03
13 38,209 416,371,008 72,967 2466.16 38,232 100,507,570 72,942 3316.85

Table 5.3: Maintaining AC while searching for the first solution.
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squares problem is underconstrained and as such no domain removals are made. Ensuring 
the problem is arc consistent means just finding support for each assignment. For each 
variable (of which there are n^), there are 2(n — 1) arcs i.e. variables they are constrained 
with. For each arc, n  -h 1 checks are required to find support for all domain elements. Thus 
you can see how for an n x n  latin square, enforcing arc consistency takes 2n^(n^ — 1) 
constraint checks. However, for the modified algorithm, once it has been shown that one arc 
is arc consistent, we can infer via the symmetry of the problem that all arcs are consistent. 
So for an n  X n latin square, enforcing arc consistency takes n  +  1 constraint checks.

The results for maintaining arc consistency while searching for a solution (MAC) are shown 
in Table 5.3. In this experiment we recorded how long it took to find the first solution to 
the latin squaies problem, as well as the total number of constraint checks and domain 
deletions. At every node in search we used the AC algorithm to prune inconsistent domain 
elements. No data is shared between nodes so support is found from scratch with every 
invocation of the AC algorithm.

Disappointingly, the runtimes have not improved by re-using information. This is because 
the runtime of the algorithm for finding the pointwise orbit of two points outweighs the 
benefit of a reduced number of constraint checks. The complexity of an efficient orbit 
finding algorithm is 0{\orhit\ x g) where g is the number of generators of the group. In 
retrospect, it is hard to improve an algorithm that has a low quadratic complexity.

Though the runtimes are not promising we manage to reduce the number of constraint 
checks by over a factor of 4 for MAC and by a factor of over 10,000 for AC, A more detailed 
look at the complexity of this algorithm would be interesting to show whether or not it could 
be worth using in other cases. It is hoped that more constrained problems or problems with 
more expensive constraint checks would be improved with inference algorithms that take 
symmetry into account.

5.5 Conclusions and Future Work

In this chapter we proposed ways in which symmetries in CSPs can be used to make the 
most of gathered information. We presented a modified version of the AC-2001 algorithm 
which was shown to drastically reduce the number of constraint checks needed to enforce
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AC on a highly symmetric problem. Most importantly though, we have shown that the 
effect of symmetries in combinatorial search problems stretches further than just search 

and we can use this fact to avoid redundant work wherever it occurs.

This is the first step into a research area with huge potential. Though the runtimes were 
disappointing, the large reduction in the number of constraint checks demands further re­
search (especially into symmetric problems with expensive constraint checks). There are 
many paths this research could take from here.

5.5.1 Improvements to GAC algorithms

The time complexity for GAC-Schema [BR97] is 0{edf)  which makes the algorithm im­
practical for large k. Many global constraints act on all the variables in the CSP which can 
make enforcing GAC more computationally expensive than actually solving the CSP.

If we consider that it takes polynomial effort to find support in AC algorithms, and poly­
nomial effort to find symmetric variants of support assignments, we can see how using 
symmetry might not reduce run-times. However, for non-binary constraints, finding sup­
port takes exponential effort with respect to the arity of the constraints. Finding symmetric 
variants of a set of k support assignments, is not exponential. Thus, re-using support and 
domain removals in GAC-Schema may result in a practical algorithm for general non­
binary constraints in highly symmetric CSPs.

5.5.2 Support for value symmetry

For true generality we need to be able to re-use support with symmetries that act on values 
as well as variables. This could be overcome by using a different AC algorithm other than 
AC-2001 that does not need lexicographically ordered domains. A possible solution to this 
is to record the symmetry used when re-using support to show what the re-ordered domain 
looks like.
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5.5.3 Use of larger subgroups to enforce higher levels of consistency

The work earned out in this thesis contained very strict restrictions when creating sub­
groups of symmetries. By ensuring the group we dealt with stabilized both positive and 
negative decisions, we enforced the same amount of consistency as a non-symmetry break­

ing AC algorithm.

By stabilizing just the positive decisions we conjecture that the modified AC algorithm 
would post the unary constraints that SBDS would post. This would achieve a higher level 
of consistency. It may also be possible to construct constraints like those posted by SBDS 
that would forbid future decisions that are inconsistent as suggested by Algorithm 5.2.3. 
This future work would require a theoretical evaluation to ensure that it is a valid method 
of breaking symmetry and does not delete consistent assignments.

5.5.4 Concise representations of constraints using group theory

Rather than describing symmetric constraints explicitly, it should be possible to introduce 
a new data type that consists of a constraint and a group. To use the latin squares problem 
as an example, the constraint would be all different on any one row or column. The group 
would be the one described in Chapter 5.4.

As well as being able to describe CSPs more easily, we could employ the ideas in this 
chapter to the ^^-consistency algorithm [Coo89]. Not only would we be able to reduce the 
run-time of this algorithm by using knowledge of symmetiy, we would be able to reduce 
the space complexity by concise representations of the exponential number of constraints 
produced by the A;-consistency algorithm.

This would involve much research into providing mechanisms for propagating implicit 
constraints effectively. The potential benefits however are very important in our goal of 
significantly reducing the time needed to solve highly symmetric problems.



Chapter 6

Conclusions and Future Work

There are many difficult problems that need practical methods of solving them. One such 
method for solving combinatorial search problems is constraint programming. This method 
of problem solving focuses on developing superior constraint solvers. Constraint satisfac­
tion problems (CSPs) are described in general ways which means one constraint solver can 
be used to solve many different and complex problems. We arrive at a state where problems 
are easy to express, and efficient to solve.

Symmetries are commonplace in the real world. The structure we place on physical objects 
helps us to reason with them more easily. Symbolical artificial intelligence requires objects 
to be labelled explicitly, and thus they are naïve to the inherent symmetries that exist in 
the problems they are solving. This lack of awareness of symmetry causes redundancy in 
solving constraint satisfaction problems.

In some areas of computer science, some redundancy may be acceptable. The exponential 
complexity of solving NP-complete problems however, means that the methods employed 
must be as efficient as possible. Thus if we are to use constraint programming to solve 
problems with symmetry, we must develop efficient methods of utilising the symmetry. 
Indeed, without considering the symmetry of certain problems, they become impossible to 
solve in a reasonable time.

There are many subtle aspects of how symmetry affects solving CSPs. Similarly there exist 
many ways of breaking symmetry in CSPs. In this thesis we investigated various ways in 
which breaking symmetry while using constraint programming could be improved. This

124
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involved looking at many of the diverse problems that symmetrical CSPs introduce.

6.1 Contributions

We now recount the achievements of this thesis. To each problem encountered, we describe 
how we bettered the current research.

6.1.1 Implementation of Symmetry Breaking Systems

The way we describe problems using constraint programming is separate to way the com­
puter solves them. That is, a constraint programming language is made up of an interface 
for describing models and constraints, and also a hidden set of algorithms that perform 
backtrack search and maintain consistency etc. In a similar way, the way we describe the 
symmetries of CSPs should be kept seperate to the way in which they are broken. By do­
ing so we hope to create symmetry breaking systems that easy to use. Currently, there is 
only one implementation of a symmetry breaking system included with a constraint solver 
[WNS97]. As the research into symmetry breaking in constraint programming matures, we 

will see more constraint solvers including symmetry breaking systems.

In this thesis (Chapter 3.1) we critiqued the advantages and disadvantages of previous sym­
metry breaking methods from the point of view of the constraint programmer. We then 
listed the ideal requirements for future implementations of these systems. This is an ex­
tremely important step it we wish to see symmetry breaking techniques being used by the 
wider constraint community.

6.1.2 Concise Representation of Symmetries

Prior to the research in this thesis (Chapter 3.2), all generic symmetry breaking techniques 
for constraint programming required an explicit representation of symmetries. We intro­
duced the symmetry breaking system U-SBDS which uses group theory to represent sym­
metries concisely by only listing a generator set of symmetries (Chapter 3.2). Apart from 
Brown, Finkelstein and Purdom’s work [BFP96] we are not aware of any generic symmetry
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breaking method for backtrack search before this thesis.

Using the concise representation of symmetries that group theory gives makes the differ­
ence between being able to describe thousands of symmetries and being able to describe 
millions of orders of magnitude more. Without this step forward, we would not be able to 

deal with the amount of symmetry it is possible to today.

6.1.3 Analysis of Number of Symmetry Breaking Constraints

The symmetry breaking method SBDS [BW99] [GSOO] presented a general method of 
adding constraints to the local subtree that would break a specific symmetry. The optimi­
sation in [GSOO] showed that symmetries that were guaranteed to be broken at a node in 
search could be discarded from that subtree. We saw how using the orbit finding algorithm 
to calculate the symmetries to break, drastically reduced the number of symmetries to con­
sider near the root of search. A result of this is a reduced number of symmetry breaking 
constraints needed to break all symmetiy. This was also shown in [McDOl]. The research 
in [GHK02] combined the first optimisation and a limited version of the second. In this 
thesis we showed how many symmetry breaking constraints would be needed to break all 
symmetry for specific groups and symmetry breaking methods (Chapter 3.2.2). We argued 
(as in we did in [McDOl]) that a symmetry breaking system that used the intersection of 
unique symmetries (Definition 3.1) with broken symmetries [GSOO] would be able to break 
more symmetries than previous methods.

6.1.4 A Method for Describing Symmetries

It was shown that symmetry breaking methods either apply to specific symmetries or gen­
eral symmetries. For those systems that deal with specific symmetries, they can only be 
used when the CSP they are dealing with has those symmetries. The symmetry breaking 

systems that deal with general symmetries need a method of describing those symmetries. 
Previously this has meant defining some permutation for each symmetry, writing another 
CSP representing the symmetries of the original CSP, or writing a permutation group and 
a method of translating from points to assignments and vice versa. We presented a method 
for describing symmetries that provides three main advantages over any previous method
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(Chapter 3.5):

1. The symmetiy breaking method is hidden and thus the same description can be used 
for different symmetry breaking systems.

2. By using descriptive words rather than groups or other CSPs, symmetries can be de­
scribed more easily. Thus it is more accessible to the average constraint programmer 

unfamiliar with symmetry breaking.

3. Providing descriptions in general terms means that the symmetries scale for different 
sized problems i.e. the symmetries are problem specific and not instance specific.

We implemented such a system, NuSBDS, gave example code and provided empirical evi­
dence.

6.1.5 Using Subsets of all Symmetry

We presented the first comprehensive study of breaking just subsets of symmetries i.e. 
PSB. We analysed how breaking just a subset of symmetries altered the performance of 
problem solving. Based on these experiments we noticed that not only is the number of 
symmetries broken important but also which symmetries were chosen. By realising that 
different subsets broke more symmetry than others we then looked at quantifying what 
made a good subset of symmetries.

We reasoned that the good symmetries were those that produced symmetry breaking con­
straints that pmned the highest nodes of search. We then created an algorithm that ordered 
symmetries based on this criterion.

We then provided empirical evidence of using this algorithm. With subsets of symmetry 
generated by the symmetry sorting algorithm, we gained better results than already found 
from the best random subsets found so fai’ (in the best case, a factor of 11 improvement).
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Many other symmetry breaking systems have the potential to be improved further by incor­
porating the results of this work into partial symmetry breaking.

6.1.6 Observed Redundant Computation

Though using the symmetry in CSPs can drastically reduce the size of the search tree we 
traverse, no research has been undertaken to reduce other redundant computation. Since 
constraint programming is, among other things, a balance of search and propagation, we 
reasoned that symmetries could be used to avoid more than redundant search. This thesis 
is the first research to look at other redundant computation.

In doing so, we look at a specific algorithm that contains redundant work. We recognise 
the computation performed and also how it can be re-used to avoid redundant computation.

Although the mn-times of the particular' algorithm were not lowered by adding symmetry 
breaking, this is just the first step in this new area. The central theme of this research can 
be applied to other algorithms that perform redundant work. There is a great potential is 
this respect for further improvements in solving symmetric problems.

6.2 Future Work

Most of the contributions to the area of symmetry in constraint programming presented in 
this thesis can be extended further. By doing so we can produce more efficient and general 
ways of solving CSPs with lai'ge amounts of symmetry.

6.2.1 Symmetry Breaking Implementations

We need to see more symmetry breaking systems being included in constraint solvers. 
Thus far this has been a slow process. The main reason for is the complicated nature 
of recognising and describing symmetries: currently a process mastered by generally just 
symmetry researchers. Also, describing incorrect symmetries can lead to incorrect output. 
This is a real problem for beginners in the field of symmetry breaking.
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Even if we were to find a guaranteed optimal method for symmetry breaking, it would be 
hard to include it with current constraint solvers. More research is needed to look at how 
difficult the average constraint programmer finds the task of recognising symmetry. We 
also need a standard technique for describing direct and wreath products of symmetries 

easily and correctly.

6.2.2 An improved version of SBDS

For an exponential number of symmetries, SBDS posts an exponential number of con­
straints. This overhead is the main reason for the upperbound on the number of symmetries 
that can be broken for an SBDS-like symmetry breaking method. SBDD-like implementa­
tions have recently been the preferred method of breaking large amounts of symmetry since 
they do not post any additional constraints to the solver. Even though the SBDD checks 
take an exponential amount of time, the lack of an exponential memory requirement means 
that they can break larger amount of symmetry.

However, the new symmetry breaking method STAB, posts symmetry breaking constraints 
during search and yields good run-times in comparison to other methods. By reducing 
the overhead and redundancy of SBDS further, it may be possible to create a symmetry 
breaking method that can break a larger number of symmetry than any other. This can be 
done by implementing a method of SBDS that contains the advantage of discarding broken 
symmetries, posting unique constraints and possibly breaking the subset of symmetries that 
provides the best pruning to overhead ratio.

6.2.3 Dynamic Partial Symmetry Breaking

Though an algorithm to perform symmetry sorting dynamically during search is provided 
in this thesis, it has not been implemented. Such an implementation would theoretically 
be able to handle large groups by breaking just the symmetries that would prune the most 
search. Though the results of using sorted subsets of symmetries in this thesis are limited 
to SBDS, it would be interesting and worthwhile to see if they could be employed to work 
with other symmetry breaking systems.
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6.2.4 Avoiding more Redundant Computation

It is the area of avoiding redundant computation which yields the most unexplored avenues. 
In this thesis we used the symmetries of a highly symmetric problem to drastically reduce 
the number of constraint checks needed. However, the small computational complexity of 

the original algorithm meant that there were no reductions in runtime.

The future work involves looking at some of the many other algorithms in constraint pro­
gramming that do not take advantage of the symmetries of CSPs. Algorithms with larger 
complexities will most probably result in much enhanced performance by including sym­

metry breaking techniques.

Symmetries provide lots of benefits to the constraint programmer. We must ensure that in 
future, we develop methods that allow us to take advantage of these benefits to solve our 
problems as efficiently as possible.
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Appendix A

Glossary

AC - Arc Consistent (or Arc Consistency depending on the context)

CSP - Constraint Satisfaction Problem

GHK-SBDS - A modified version of the Symmetry Breaking During Search technique by 
Gent, Harvery and Kelsey [GHK02]

GHKl-SBDD - A new implementation of Symmetry Breaking via Dominance Detection 
technique Gent, Harvey, Kelsey and Linton [GHKL03]

FSB - Partial Symmetry Breaking

SBDD - Symmetry Breaking via Dominance Detection [FSSOl]

SBDS - Symmetry Breaking During Search [GSOO]
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NuSBDS - User Manual

B.l What is NuSBDS

NuSBDS is an archive that can be used with ILOG Solver to perform symmetry breaking 
during search. It allows the constraint programmer to state the symmetries acting on the 
variables and/or assignments in their CSP and ILOG Solver will generate symmetrically 
equivalent solutions based on the SBDS technique developed by Gent and Smith. More 
specifically, NuSBDS also uses some techniques developed by Gent, Hai'vey and Kelsey 
using Computational Group Theory (CGT). Future versions of NuSBDS will contain other 
methods from other research into symmetry in constraint programming.

Since this is a beta version there are still a few bugs that have yet to be fixed. There are 
probably quite a few more that haven’t been spotted yet. If you find any, it would be greatly 
appreciated if you could send details to iain@ dcs. s t - a n d . ac.uk.

That said, if your CSPs are highly symmetric then NuSBDS should yield large savings in 
run-time. The remainder of this user manual talks you through installing NuSBDS to using 
the NuSBDS symmetry macros to automate describing symmetries.
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B.2 Installing NuSBDS 

B.2.1 Compiling NuSBDS

If you already have a pre-compiled archive for your system then you can go directly to 
Section B.2.2. If not then this section will tell you how to produce your own archive.

Firstly, create a directory with the following files: Group. cpp, Group. h , Symmetry. cpp, 
Symmetry. h , SymCon. cpp, SymCon. h , S earch . cpp and S earch . h. Create a makefile 
based on your default ILOG Solver makefile and add this file to your directory. Add the 

following to your makefile:

Group . 0  : Group. cpp
$(CCG) -c  $(CFLAGS) -o Group.o Group.cpp

Symmetry. o : Symmetry. cpp
$(CCC) -c $(CFLAGS) -o Symmetry.o Symmetry.cpp

SymCon. o :SymCon. cpp
$(CCC) -c  $(CFLAGS) -o SymCon.o SymCon.cpp

S earch . o : S earch . cpp
$(CCC) -c  $(CFLAGS) -o S earch .o  Search.cpp

The variables CCC and CFLAGS should already be defined in your makefile. Consult the 
example ILOG Solver makefile for more details.

Go to the relevant directory that contains the NuSBDS source code and type the following 
at the command prompt:

[user©host nu _ sb d s_ d ir]$ make Group.o 
[user@host nu _ sb d s_ d ir]$ make Symmetry.o 
[userQ host nu _ sb d s_ d ir]$ make SymCon.o 
[userOhost nu _ sb d s_ d ir]$ make Search .o
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You can now create your NuSBDS archive. Depending on your version of a r  you may 
need to use the r a n l ib  command as well.

[user©host nu_sbds_dir]$  a r  r  sb d s .a  Group.o Symmetry.o SymCon.o Search .o  
[user@host n u _ sb d s_ d ir]$ r a n l ib  sb d s .a

You should now have a working archive.

B.2.2 Installing Archive

Place your NuSBDS archive in the same directory as your *. o and executable files and 
place the NuSBDS . h files in the same directory as your CSP source files. Next edit your 
makefile. If you have a CSP encoding in nqueen. cpp that you wish to use NuSBDS with, 
change your makefile entry for nqueen from this:

nquee n : nquee n .o
$(CCC) $ (CFLAGS) nqueen . 0  -o nqueen $(LDFLAGS) 

nqueen.o: nqueen.cpp
$ (CCC) -c $ (CFLAGS) -o nqueen.o nqueen.cpp

To this:

nqueen: nqueen. o sb d s . a
$(CCC) $ (CFLAGS) nqueen . 0  sb d s .a  -o nqueen $(LDFLAGS) 

nqueen. o : nqueen. cpp
$(CCC) -c  $ (CFLAGS) -o nqueen.o nqueen.cpp

You are now ready to begin altering your CSP to make use of NuSBDS.

B.3 Using NuSBDS

Any ILOG Solver program that wished to use NuSBDS should contain the following line:
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# inc lude  "Search.h"

You will also need an IL0CPG0ALWRAPPER2 to call the functions in S earch .h  e.g.

IL0CPG0ALWRAPPER2
(Nu_SBDSGenerate, so lv e r , I lo In tV arA rray , v a rs , Symmetry, sym){ 
re tu rn  I lc G e n e ra te A lg e b ra (so lv e r .g e tln tV a rA rra y (v a rs ) , sym) ;

}

As well as the function IlcG en era teA lg eb ra(Ilc In tV arA rray , Symmetry) there are 
also the functionsIlcG enera teA lgebra(IlcIn tV arA rray , Symmetry, IlcC hooseIn tIndex) 
and IlcG en era teA lg eb ra(Ilc In tV arA rray , Symmetry, IlcC hooseIn tIndex , I lc In tS e le c t ;  

which allow the user to supply their own variable and value ordering heuristics. See 

S earch . h for more details.

A Symmetry object needs to be created like this:

IloEnv env;
Symmetry sym (env);

The NuSBDS library is finally used like so:

IloModel m dl(env);
Ilo S o lv e r so lv e r(m d l);
IIo in tA rra y  ty p e (en v , 1, SQUARE);
IloG oal goal = Nu_SBDSGenerate

(Nu„SBDSGenerate(env, x , sym .setup(x , s o lv e r , ASSIGN, ty p e ) ) ) ;  

so lv e r .s ta rtN e w S e a rch (g o a l);

This by no means explains how to use NuSBDS but it highlights how easy it is to use 
NuSBDS. With just a few extra lines of code it is possible to perform symmetry breaking 
in CSPs.
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B.3.1 NuSBDS in Practice

The following is an encoding of the n-queens problem in ILOG Solver. This CSP has been 
modified to make use of NuSBDS in order to break the 8 symmetries of this problem i.e. 

the symmetries of a square.

# include  < i ls o lv e r / i lo s o lv e r in t .h >
# include  "Search .h"

ILOSTLBEGIN

IlcChooseIndex2(IlcChooseM inSizeM in, 
var .g e tS iz e O  ,

. v a r.g e tM in 0 ,
Ilc In tV a r)

ILOCPGOALWRAPPERKMyGenerate, s o lv e r , Ilo In tV arA rray , v a rs) {
re tu rn  I lc G e n e ra te (s o lv e r .g e tln tV a rA rra y (v a rs ) , IlcChooseM inSizeM in);

}

IL0CPG0ALWRAPPER2
(Nu_SBDSGenerate, s o lv e r , Ilo In tV arA rray , v a rs , Symmetry, sym){ 
re tu rn  I lc G e n e ra te A lg e b ra (so lv e r .g e tln tV a rA rra y (v a rs ) , sym, 

IlcChooseM inSizeM in);

}

in t  m ain (in t a rg c , char** argv) {
IloEnv env;

t r y  {
IloModel m dl(env);

I lo i n t  nqueen = (argc > 1) ? a to i ( a rg v [ l ]  ) : 8;
I l o i n t  symbreaking = (argc > 2) ? a to i(a rg v [2 ]  ) : 1; 
Ilo In tV arA rray  x (env, nqueen, 0, nqueen-1 );
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Ilo In tV arA rray  x l(e n v , nqueen, -2*nqueen, 2*nqueen); 
Ilo In tV arA rray  x2(env, nqueen, -2*nqueen, 2*nqueen);

I lo i n t  i ;
f o r  ( i  = 0; i  < nqueen; i++) { 

m d l.a d d (x l[ i]  == x [ i ] + i ) ;  
m dl.add (x2 [i] == x [ i ] - i ) ;

}

m d l.a d d d lo A llD iff (e n v , x ) ) ;
m d l.a d d d lo A llD iff (e n v , x l ) ) ;
m d l.a d d d lo A llD iff  (env, x 2 )) ;

Ilo S o lv e r so lv er(m d l);
Symmetry sym (env);

IloG oal g o a l;
if(sy m b reak in g ){

I lo in tA rra y  ty p e (en v , 1, SQUARE); 
goal = Nu_SBDSGenerate

(env, X ,  sym .setup(x , so lv e r , ASSIGN, ty p e ) ) ;

} e lse{
goal = M yGenerate(env, x ) ;

}

so lv e r .S ta rtN ew S earch (g o a l);
I lo i n t  numOfSolutions = 0;

w hile ( s o lv e r .n e x t() )  { 
numOfSolutions++; .

}

s o lv e r .o u t0  «  numOfSolutions «  " so lu tio n s "  «  end l;
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so lv e r  .endSearchO ; 
s o lv e r .p r in t In f o rm a t io n 0  ;

}
catch  (IloExceptionfe ex) {

c e r r  «  "E rro r: " «  ex «  endl;

}
env .end( ) ;  
r e tu r n  0;

}

B.4 Using the NuSBDS macros

The n-queens example in the previous section used one the NuSBDS macros to describe 
the symmetries of the problem. This was done by the following two lines:

I lo in tA rra y  ty p e(en v , 1, SQUARE);
goal = Nu_SBDSGenerate(env, x , sym .setup(x , ASSIGN, ty p e ) ) ;

The first specifies that this CSP has “1” type of symmetry and that it is the symmetry of a 
“SQUARE”. The second line specifies that the symmetry acts on the “ASSIGNMENTS” 
rather than the variables. Both SQUARE, ASSIGN and all further capitalized variables are 
defined in Symmetry. h

There are three advantages of using the NuSBDS macros. Firstly, even though NuSBDS 
used CGT techniques to break symmetry, the constraint programmer does not need to know 
any group theory in order to express symmetries. Secondly, changing the size of the prob­
lem does not change the nature of the symmetries but it does change the group acting on 
the problem. Using the macros means the group is calculated with respect to the size of the 
problem every time so the whole process of describing the group is automated for any size 
of problem. Finally, combinations of symmetries can be described by using more than one 
macro e.g. the most perfect magic squares problem has the symmetries of a square as well 
as being able to cycle the rows and cycle the columns. This can be represented by creating 
the following array: I l o i n t  Array type (env, 3 , SQUARE, GYCLE_ROW, CYCLE^COL).
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B.4.1 How to spot the symmetries

In order to use NuSBDS, the symmetries of the relevant CSP need to be recognized. This 
information needs to be related to the NuSBDS syntax. Here is an example with the n- 
queens problem.

Q Q

Q

Q

Q Q

In this example we can see that the partial assignment Qi =  1 & Q 2 =  3 & Q4  =  2 is 
translated to the partial assignment Qi =  3 & Q3 =  2 & Q4  =  4 by rotating the board 
180°. In this example we can see that the symmetries act on the “assignments” i.e. the 
symmetries alter not just the variable but also their value. Therefore in this case, when 
we use the Symmetry : : se tu p  (I lo In tV a rA rray , I l o i n t , I l o i n t  Array) method, the 
second argument should be ASSIGN and not VAR. Now consider the BIBD problem.

0 0 0 1 1

0 0 1 1 0

1 0 1 0 1

Here each square represents a boolean variable and not an assignment. Numbering the 
squares from left to right and top to bottom, if we swap column 1 and column 2 , vari <=> 
var2 , vare var7 , va rn  <=> var 12. The values of each variable remains unchanged thus 
we say the symmetries act on the “variables”.

B.4.2 Available NuSBDS macros

Here are the available NuSBDS macros for symmetries on assignments:
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•  SQUARE - e.g. n-queens

•  SYMMETRIC_VAR - interchangeable valuables

• SYMMETRIC_VAL - interchangeable values

•  SQUARE„VAR - valuables with the symmetry of an n by n square acting on them

Here are the available NuSBDS macros for symmetries on variables:

•  SQUARE - variables with the symmetry of an n by n square acting on them

•  CYCLE_ROW - ‘n? variables make a square where the rows can be cycled

•  CYCLE_COL - variables make a square where the columns can be cycled

•  SYMMETRIC_ROW - variables make a square where the rows are interchange­

able

•  SYMMETRIC_COL - n3 variables make a square where the columns are inter­
changeable

If you have variables that form a rectangle and not a square e.g. BIBD problems, then the 

following macros may also be relevant:

•  SYMMETRIC_RECTANGLE_ROW - as SYMMETRIC_ROW but for rectangles



A p p e n d ix  B. NuSBDS - U s e r  M a n u a l  152

•  SYMMETRIC_RECTANGLE_COL - as SYMMETRIC_COL but for rectangles

Where the symmetries act on variables which form squares e.g. n-queens, the dimensions 
of the specific square can be calculated from the size of the array of constrained integer 
variables. If the variables form a rectangle, NuSBDS needs to be told how many columns 
there are before the above two macros can be used. This is done by using the method void  
Symmetry : : setM umOfColumns(Iloint).

NuSBDS performs some checks to ensure that the symmetries you have described are valid 
for your array of constrained variables. However, it is advised that you validate your solu­
tions to ensure that you have used the macros correctly.

If there are any types of symmetry not covered here, email ia in© dcs. s t-a n d  .a c .u k  with 
a description of the symmetry and a macro for it may appear in a future version.
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Appendix C

Problems

In this appendix we will describe some of the common CSPs mentioned in this thesis. 
Many of these problems will be solved in order to present empirical evidence of different 
symmetry breaking techniques. The description of the problems will include information 
about potential models and the symmetries they contain.

C.1 Alien Tiles

This problem is problem number 27 in CSPLib [GW99]. More about alien tiles can be 
found at http://www.alientiles.com/.

Example C .l The alien tiles board can be described with two parameters n  and c, the size 
o f the board and the number o f colours respectively. An alien tiles board is a n n  x  n  grid 
ofii3 coloured squares. By clicking on any square on the board, the colour o f the square is 
changed +1 mod c. As well as this, the colour o f every square in the same row and column 
is also altered +1 mod c. Given an initial state and a goal state, the problem is to find 
the required number o f clicks on each square which can be anything between 0  and c — 1  

(since () = c, 1 = c 1 etc). The more challenging problem fo r constraint programming 
(which we will consider) is finding the most complicated goal state (in terms o f the number 
o f clicks needed) fo r  some initial state and then reaching that goal state in as few clicks as 

possible and verifying optimality.
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The model is quite simply v? variables with a domain from 0 to c — 1. The expression of 
the constraints for this problem is quite complicated and required the use of GAP [GLSOO].

Given a solution we can freely permute the rows and columns and flip the board around 
a diagonal. For a board with variables, the group acting on the board contains 2n!^ 

symmetries.

C.2 Balanced Incomplete Block Design

This problem is problem number 28 in CSPLib [GW99]. Balanced incomplete block de­
signs have uses in, among other things, cryptography and experiment design [Far02].

Example C.2 A balanced incomplete block design (BIBD) is a v x  b binary matrix with 
exactly r ones per row, k ones per column, and with a scalar product o f X between any pair 
o f distinct rows. A BIBD is therefore specified by its parameters (v, b, r, k, A).

Note that vr = bk and X{v—1) = r{k—l). The most common model for the BIBD problem 
is a matrix model of binaiy variables. Such a model has a large amount of symmetries since 
both the rows and columns can be freely permuted. This results in v\ x  b\ symmetries.

C.3 Dodecahedron Colouring

A dodecahedron colouring problem is a specific instance of a graph colouring problem. 
In this case the graph has the same shape as a dodecahedron where the vertices of the 
dodecahedron are the nodes of the graph, and the edges of the dodecahedron are the edges 
of the graph.

Example C.3 A graph colouring problem consists o f an undirected graph G, and a set o f 
colours k. Each node in G must be given one o f the k colours such that no two nodes in G 

that share an adjoining edge have the same colour.

A standard model for this problem has each node in the graph represented as a variable 
with domain 1 to k. The constraints are simply that adjoining nodes cannot be equal.
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Given k colours, there are A:! symmetries. These come from the permutations of the colours 
of the nodes. If the graph in question has any automorphisms then they can also be com­
bined with the k\ value symmetries. The dodecahedron has 60 automorphisms. Thus, for a 
3-colouring of a dodecahedron, there are 60 x 3! =  360 symmetries.

C.4 Fractions Puzzle

This problem is a small equation containing 9 unknown terms. 

Example C.4

B C  E F  H I

Find values fo r  each variable such that the equation is satisfied, and each letter has a 
different value from 1 to 9.

We can model this problem quite simply by selecting each letter as a variable, whose do­
main is the numbers from 1 to 9. If we consider the three seperate fractions of this problems, 
we can see that the commutative operator F  is acting on them. Therefore a solution to this 
problem can be permuted by any of the 3 !, or 6 , re-orderings of these fractions.

C.5 Golfers’ Problem

This problem is problem number 10 in CSPLib [GW99]. It is based on a question posed on 
the sci.op-research newsgroup in May 1998 for a real golf tournament scheduling problem. 
Though the specific instance referred to contained 32 golfers, and 8  groups of 4, it can be 
generalised to other sizes.

Example C.5 Given p players, and g groups o f golfers (where p mod g = Oj, schedule 
these groups o f  golfers over w weeks, such that no golfer plays in the same group as any 
other golfer twice.

Note that every week, a golfer must play with ^ — 1 new golfers, and there are only p — I 
other golfers. Therefore w <

.ij
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The golfers’ problem is a very important example for general symmetry breaking methods 
as it has a great deal of symmetry resulting from complex interactions. We can freely per­
mute the order of the groups within any week. The labelling of the players can be permuted 
freely. As well as this, we can re-order the weeks of any solution to yield another. All of 
these symmetries can be combined. This results in not just a highly symmetric problem, 
but also one whose symmetries are difficult to describe. Since there are many models to 
the golfers’ problem [FSSOl] [SmiOl], each with their own number of symmetries, we will 
discuss the exact number of symmetries of specific models when relevant.

C.6 Most Perfect Magic Squares

A magic square is an n  x n grid of unique numbers such that the sum of the rows, columns 
and diagonals all add to the same number. A most perfect magic square is a more complex 
structure with tighter constraints.

Example C.6 A most perfect magic square is a n n x n  grid o f numbers with different values 
from 1 to that satisfy the following constraints:

7. Each row and column sum to {nf -j- n )/2

2. Every 2 x 2  block o f cells (including wrap-around) sum to 2T (where T  =  -h Ij.

3. Any pair o f integers distant along a diagonal (including wrap-around) sum to T.

The model is a straightforward matrix of variables with a domain of 1 to n^. This 
problem has 8 n^ symmetries which are derived from the symmetries of a square combined 
with being able to cycle the rows and columns.

Though more complex symmetries can be found, the symmetries need a redundant model 
to be effectively realised [01186]. Breaking only a subset of all symmetries is still a valid 
way of reducing computation.
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C.7 n-queens

This is a very common problem to describe as a CSP. Not only is this a simple problem to 
solve, it is also easy to explain and so is commonly used as an example problem to explain 
a simple concept. This problem also contains some symmetry and thus can be used as an 
example problem for symmetry breaking too.

Example C.7 Given a n n x n  chess board, place n  queens on it such that none can attack 
each other. In other words, no two queens can be place on the same row, column or 

diagonal.

Various models are discussed in Chapter 2.1.1. Model 2.3 contains 8 symmetries. These 
are the symmetries of a square in 2 dimensional space i.e. given a solution, we can rotate 
the board by 90° (or another symmetry of a square) to yield another solution.


