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INTRODUCTION

In v e s tig a tio n s  of th e  r a te s  of décom position of organic h a l id e s  

have played an  im portant p a r t in  th e  c re a t io n  of re c e n t l i s t s  of 

hand s tre n g th s  in  organic compounds, and of h ea ts  of f  ornmtion of 

r a d ic a ls .  Such d a ta  a re  very u s e fu l fo r  our understand ing  of the 

p r in c ip le s  of m olecular r e a c t iv i ty  and i t  i s  im portant th a t  these  

l i s t s  of va lues s h a l l  he a s  ac cu ra te  as p o s s ib le . The work des- 

n r i b ^  in  th i s  th e s i s  was undertaken  w ith  th e  aim of improving 

one p a r t ic u la r  techn ique of in v e s tig a tio n  and te s t in g  the method 

on an example of im portance.

The p a r t ic u la r  method chosen f o r  study was th e  to lu en e  r a d ic a l  

ac c e p to r  technique where the  fo llo w in g  r e a c t io n s  a re  sa id  to  occur

RX  ^ R- + X- (slow ) . .  . . .  . . .  ( l )

R- + PbOR  ̂  ) PhOHg- t  RH ( f a s t )  ...................... (2)

X----+ PhOBL-----> PhD Eg- + EX ( f a s t ) ................... , . ( 3 )

RPhCHg------- > d ibenzy l ( f a s t )  . . . . . . .  . (4)

In  o rder to  reduce the  p o s s ib i l i t y  of s id e  re a c tio n s  as  much 

as p o s s ib le , the  u su a l recommended procedure i s  to  choose operating  

co n d itio n s  which g ive only sm all percen tages o f dec omp os i t  don of 

RX. By u s in g  a flow technique, adequate q u a n t i t ie s  of one compound 

are  u s u a lly  c o l le c te d  f o r  a n a ly s is .  When bromo compounds have been 

pyro lysed , the hydrogen bromide formed has been determ ined and 

the s to ich io m etry  assutæ d.



Using values of d[H B r]/d t to  measure the r a te  of r e a c tio n  ( l )

r e s u lte d  in  the d e r iv a tio n  of f i r s t  o rder v e lo c ity  c o n s ta n ts , hut

the  proof o f f i r s t  o rder c h a ra c te r  bas not been convincing  in

many c a se s . For some compounds the tem perature c o e f f ic ie n t  of such

f i r s t  order c o n s ta n ts  has been s tu d ied  and en e rg ies  of a c t iv a t io n

deduced. In  o th e r  o ases i t  has been assumed th a t  the  A rrhenius
13 -1tem perature independent f a c to r  should be 10 sec and the values

of v e lo c ity  c o n s ta n ts  a t  a s in g le  tem perature have y ie ld ed  en e rg ie s

of a c t iv a t io n  through use o f th e  equa tion

log^O^cCseo”’’ ) = 13- ( e/4 .5 7 T ).

The deduced en e rg ies  of a c t iv a t io n  have been equated to  th e

en th a lp ie s  of re a c tio n  ( l ) ,  lead in g  to  the  r e la t io n s h ip

E «=• AH f o r  r e a c t io n  ( l )

«  A %  ( R - )  +  AHp ( X - )  -A H ^ (RX)

I t  i s  c le a r  th a t  th e  d a ta  on s e r ie s  of compounds such as

PhCHg-X and OE^-X should y ie ld  c o n s is t e n t  v a lu e s  o f AÊ  f o r  the

PhCHg- and ra d ic a ls . This has not always been found. In

some cases  the methods of a n a ly s is  of the d a ta  may have been a t

fa u lt ,  Mearns(l9) in  th is  Department, has shown, in  a study of

th e  decom position of Ph^^OEgBr, th a t  Szwaro 's  value of E is  too lov/ 
and h is  use of a  co n s tan t A f a c to r  i s  not j u s t i f i e d .

The purpose of the  re se a rch  work d escrib ed  in  t h i s  th e s is  has

been to  produce a  more search ing  method o f in v e s t ig a t io n  in to  th is

f i e ld  by app ly ing  mass spectrom etiy  as an  a n a ly t ic a l  to o l .  The

advantages fo reseen  inc luded  s-



-  I ' . . : - : . ;

(a) the  p o s s ib i l i ty  o f an a ly s in g  sim ultaneously  fo r  re a c ta n ts  

and p roducts emerging from a  flow  type re a c to r ,  ob ta in ing  d a ta  

which can be follow ed w ith  tim e in  o rder to  a sse ss  the seasoning  

( i f  any) o f th e  re a c to r  su rface  |

(b) th e  o p p o rtu n ity  to  base r a te  c o n s ta n ts  on r e a c ta n t  con­

c e n tra tio n , r a th e r  than  on product co n cen tra tio n s  and an assumed 

s t  oicbiom etry  ;

(c) the p o s s ib i l i ty  of amassing a  s u b s ta n t ia l  q u a n tity  of 

a n a ly t ic a l  d a ta  in  a reasonab le  time while r e ta in in g  the power 

of a  flow technique to  s tudy  the  i n i t i a l  s tag es of a  re a c tio n .

In  o rd e r to  prove th e  technique vfhich was developed, th e  work 

was co n cen tra ted  on the decom position of m ethyl bromide. The 

only p y ro ly tic  work on th i s  compound has been done by Szwaro who 

co n s id ers  the re a c tio n  complex under h is  co n d itio n s  and p re fe rs  

no t to  a t ta c h  any weight to the a c tiv a tio n  energy found experimen­

t a l l y ,  a lthough  i t  ag ree s  w ith  the value deduced from r e l ia b le  

thermochemioal data#

In  ad d itio i^  i t  i s  o f ten  convenient to  r e la te  d a ta  to  the f i r s t  

member of a s e r ie s ,  and i t  i s  im portant th a t  the bond d is s o c ia t io n  

en e rg ies  of such ’r e f e r e n c e ’ compounds should be f irm ly  supported  

by experim ental evidence#



1. Bond I) is  soo ia*b ion Energie s .

I t  i s  n ecessary  to  d is tin g u ish , between th e  two terms used 

in  the re p re s e n ta tio n  of the en e rg ies  of chem ical bondsr The 

f i r s t ;  and more u s e fu l ,  i s  the  libund d is s o c ia t io n  energy (b,D .E. ) 

o r sim ply d is s o c ia t io n  energy. This i s  defined  as th e  energy 

d if fe re n c e  between th e  p aren t molecule ( in  i t s  eq u ilib riu m  con­

f ig u ra t io n )  and the two fragm ents ( in  th e i r  eq u ilib riu m  ground 

s ta te  co n f ig u ra tio n s )  a f t e r  b reaking  the bond. Thus the  bond 

d is s o c ia tio n  energy of a bond AB -  C i s  th e  change in  energy 

AÊ  fo r  the  r e a c tio n

AB —— C AB— 4- (C —

occurring  in  the  id e a l ^ s  s ta te  a t  abso lu te  ze ro . The s t r i c t  

d e f in i t io n  i s  th e re fo re  where the s u p e rs c r ip t  re fe r s  to  products

in  t h e i r  ground s ta te s  and th e  su b sc rip t to  the zero tli v ib ra t io n a l  

le v e l  (23) .  O ccasionally  AH^^cy of the r e a c t io n  i s  u sed  in s te a d (8 0 ),

but f re q u e n tly  l i t e r a t u r e  v a lu es  a re  not c le a r ly  s ta te d .
o

For a d is s o c ia t io n  reac tio n »  AĈ  i s  g en e ra lly  p o s it iv e  but 

sm all and so ^  . The d iffe re n c e  r a r e ly  exceeds

1 k .ca l/m o le  ( fo r  example (H -  H) *= 103.24 k .ca l/m o le  and 

AHg^gO  ̂ fo r  Hg—) H- + H* i s  104.18 k .ca l/m o le ) and f re q u e n tly  the 

accuracy o f  the AS° 0̂  value does not ju s t i f y  the c o r re c t io n  to  

ab so lu te  ze ro .

I t  i s  of in t e r e s t  to  r e la te  the  B.D.E. to  o th e r m olecular 

p ro p e r tie s .



Thus the BDB i s  equal to  the d iffe re n ce  between the  h e a ts  of 

form ation  of the fragm ents and the p aren t m olecule,

D(AB-O) « (AB-) + AH f (O -)— AH  ̂ (ABG).

The h ea t of re a c tio n  i s  th e  sum o f the B .D .E’s of bonds formed 

minus the sum o f B .D .E’s of bonds broken. Thus f o r  the r e ­

a c tio n  AB 4- 0 —> A t  BO ÿ AH ^ B (B -G ) -  B (A -B ).

The h ea t of a to m iza tio n  (Qa) i s  eqüal to  th e  sum of a l l  the 

d is s o c ia t io n  en e rg ies  involved as the m olecule i s  degraded 

Stepwise in to  se p a ra te  atoms.

In  a  unimols)Gular decom position in  which two r a d ic a ls  or atoms 

are  formed the a c t iv a t io n  energy fo r  the p rocess w il l  be very 

c lo se  i f  no t equal to  the  B.D,E. This assumes th a t  the  r e ­

verse r e a c t io n , the recom bination o f the two atoms o r  r a d ic a ls ,  

has zero o r  very  sm all a c t iv a t io n  energy. In  th e  d e te rm in a tio n  

of th i s  a c t iv a t io n  energy i t  i s  necessary  to  in h ib i t  any 

p o te n t ia l  ohain  re a c tio n s  involv ing  th e  products o therw ise 

the value ob tained  cannot be r e la te d  to  th e  B.B.E. For most 

exothermic r a d ie a l-m olecu le  re a c tio n s , the a c t iv a t io n  energy 

is  a l s o  very sm a ll.

F in a lly  it" sh o u ld  be p o in ted  out th a t  the d is s o c ia t io n  energy 

of a  bond depends upon th e  groups a ttach ed  to  the  atoms c a r ry ­

ing  the  broken bond. The G — C s in g le  bond d is s o c ia t io n  energy 

in  ethane i s  84 k .ca l/m o le  but in  hexaphanyl e thane i t  is  

only 10 k .c a l/m o le .



The second term  is  th a t  of the  ’bond energy’ or 'average bond 

en e rg y ’ (e ) .  T his i s  a q u a n tity  assigned  to  each o f th e  bonds in  

a molecule such th a t  the  sum i s  equal to  th e  h ea t of a to m iza tio n  

of th e  m olecule. For th i s  term  to  be of value i t  i s  n ecessa ry  to  

assume the  constancy  of bond en e rg ies  from one molecule t o  an o th e r. 

Thus th e  bond energy, in  methyl c h lo rid e  may be estim ated

from th e  hea t of a to m iza tio n  of GH^Cl and a loiowledge o f  E(G—H) 5 

th i s  l a t t e r  value would be tsx en  a s  one q u a rte r  of th e  h ea t of 

a to m iza tio n  of methane.

Many d isc rep an c ie s  in  such methods have come abou t as a r e s u l t  

of the  u n c e r ta in ty  of the la te n t  h e a t of sub lim ation  o f  carbon .

This i s  now f a i r l y  w ell e s ta b lis h e d  a t  170 k .o a l/m o le (2 0 ,2 l) . Such 

an elem entary treatmon+ h as  obvious f a i l i n g s 5 n e v e rth e le s s , w ith  

c a re fu l  u se , h ea ts  o f fo rm ation  of tiDOleoules can be c a lc u la te d  to  

w ith in  a few k i lo c a lo r ie s  of the  observed value from a  s e t  of average 

bond en e rg ies  (see fo r  example, P i t z e r ( 22) ) .  Some o f th e  d i f f i ­

c u l t i e s  of such schemes have been d iscussed  by G o t t r e l l ( 23 ).

More re c e n t r e f in e d  trea tm en ts of bond energy schemes have 

involved n e a re s t neighbour c o r re c tio n s  and the s ta te  of h y b rid iz a ­

t io n  o f atom s(24) ,  the  use o f  bond d istance /bond  energy r e la t io n s ( 25) ,  

s te r i c  c o r r e c t io n s (26) and th e  use of the  valency s ta te s  of the  

atoms involved — the  aim being to  o b ta in  an a d d i t iv i ty  scheme. 

B ernste in (25 ) fo r  in s tan ce  has developed a scheme allow ing  the c a l ­

c u la t io n  of h e a ts  o f a to m iza tio n  a t  298^K of alm ost a l l  hydrocarbons 

to  +1k '.c a l./m o le .



Perhaps one should m ention here a th ir d  type o f  bond energy  

r e fe r r e d  t o  a s  the co o rd in a te  bond en ergy . T his i s  fo r  the h e te -  

rolytio breaking o f  a bond i . e .  f o r  th e  r e a c t io n  RY— —> R^ +

T h is i s  r e le v a n t  to io n ic  r e a c tio n s  and may become im portant 

in  th e  gas phase as a r e s u l t  o f M a cc o ll’s work (se e  th e  s e c t io n  on 

h a lid e  d eco m p o sitio n ). In  s o lu t io n ,  where such a term might be o f  

v a lu e , so lv e n t  in te r a c t io n  in t e r f e r e s  w ith  the trea tm en t.

To re tu rn  to  bond d is s o c ia t io n  e n e r g ie s , s e v e r a l  schemes have 

been proposed f o r  th e  c a lc u la t io n  o f  such q u a n t it ie s  but th e se  are  

o f te n  e it h e r  very  com plex or in a c cu ra te . R ecen tly  th e  p u b lic a tio n s  

o f E rrede(27 , 28 ) g iv e  a sim ple eq u ation  determ ined e m p ir ic a lly  

from p u b lish ed  d a ta . The bond d is s o c ia t io n  energy fo r  a s e r ie s  of  

0 —̂  C or C—X ""bonds i s  g iv e n  by D = fo r  a bond

R. - R.  5 ; the €  va lue o f a group (A_A_A_)C- i s  r e la te d ̂ J 1 A d
to  th e  s u b s t itu e n ts  on th e  carbon atom a ttach ed  to  th e  bond in  

q u estio n  by
Ç = 0*43 4* 0 . 1 6 2 ( +

T h is form ula h o ld s provided the does not have a c e n tr e  of 

u n sa tu ra tio n  a to  one o f  th e  c e n tr a l carbon atoms* The €' v a lu es  

o f  more com plex r a d ic a ls  cannot be c a lc u la te d  by th e  eq u a tio n  but 

must be found e x p e r im e n ta lly . Errede p o in ts  out th a t  the e v a lu es  

l i s t e d  may be r e la te d  to  P au lin gs e le c tr o n e g a t iv e ty ,  E, s in c e  è  i s  

g iv en  by J S /r  where r  i s  th e  bond le n g th . The fo r  a group

i s  very  n e a r ly  equal to  [E  ̂ + ] / 6  where E  ̂ i s  P a u lin g s

e le c t r o n e g a t iv i t y  fo r  carb on  (= 2 .5 ) '
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The values o a lo u la te d  by E rre d e 's  method agree w ith  o th e r 

l i t e r a tu r e  v a lu es  to  v /ith in  + 1 - 2  k .o a l./m o le  in  most o ases .

The experim enta l methods of in v e s tig a tio n  of bond d is s o c ia t io n  

en e rg ies  v iz .  therm al e q u ilib r iu m , k in e t ic s ,  e le c tro n  impact and 

spectroscop ic  methods a re  summarized and d iscu ssed  in  th e  l i t e r a t u r e  

by C o ttre  11 (23), Seho.n and 3 zwarc(29 ), 8zware (30), R eed (3 l) , Mortimer 

( 32) , S teacie (33 ),K ondra tev (34 ) and Trotman-Dic kens on(3 5)* E le c tro n  

impact d a ta  a re  a v a ila b le  from F ie ld  and F r a n k l in ( l l ) ,

Spectroscopic d a ta  o f diatom ic m olecules are d iscu ssed  in  d e t a i l  

by H erzberg(36) and by Gaydon(3?)* The app jica tionU  of spectroscopy  

to  polyatomic m olecules i s  somewhat l im ite d . The d i f f i c u l t i e s  l i e  

in  a knowledge of the p re c ise  n a tu re  and degree of e x c i ta t io n  of 

th e  fragm ents. However d a ta  on th e  sim pler polyatom ics has .been 

o f use in  supplem enting r e s u l t s  from the o th e r  methods.

Any fa c to r s  w hich in f lu e n c e  th e  h eat o f  form ation  o f  th e  r a d i­

c a l s  or the parent m olecule w i l l  be r e f le c t e d  in  th e  r e le v a n t  bond 

d is s o c ia t io n  en ergy . Changes in  r a d ic a l  resonance energy and the  

e f f e c t  o f changing io n ic  c h a r a c ter  of the r e le v a n t  bonds were su g­

g e sted  as main c o n tr ib u tin g  fa c to r s  by Baughan e t  a l . (3 8 ) . Szwaro(39) 

has d iscu sse d  h is  r e s u l t s  on h a logen ated  m ethyl bromides in  terms 

o f  th e  s t e r ic  r e p u ls io n s  in c r e a s in g  as the atomic s iz e  in c r e a se s .

The C Br bond len g th s  in  the s e r ie s  Br  ^ OX̂ — Br a re

about c o n sta n t  and so the d ecrea se  in  d is s o c ia t io n  energy a lo n g  the  

s e r ie s  may b e , in  p art a t  any r a te ,  a t t r ib u te d  to  t h i s  r e p u ls io n .



The resonance s ta b i l i z a t io n  o f th e  ra d ic a ls  formed w i l l  increase  

w ith  in c re a s in g  number of lialogen atoms, w ith  decreasin g  sep a ra tio n  

of the p o r b i ta l s  and w ith  d ec reasin g  e lee t r  one gat iv&t y of th e  

fqalogen atom s.

I t  has been suggested th a t  the  s ta b iù z a tio n  of a  r a d ic a l  R- be 

measured by th e  d if fe re n c e  D(CH^— -H) — D(R—H). Then such r a d i ­

c a ls  as C 0 1 ^-,fo r example^ would have about 12 K .cal/m ole of t o t a l  

s t a b i l i z a t io n .

Skinner(40) has d iscussed  the  c a lc u la t io n  of Q^(R-) and then  

compares c a lc u la te d  and experim ental values of D(R—X).

Id e a l ly ,  i t  i s  d e s ira b le  th a t  d i f f e r e n t  d e te rm ina tions of d i s ­

s o c ia tio n  en e rg ies  should a l l  y ie ld  ^ " c o n s is te n t h e a ts  of forma­

t io n  of r a d ic a ls .

2 . Toluene as a r a d ic a l  a c c e p to r .

T oluene, a lon g  w ith  many o th er  r a d ic a l  a c c e p to r s  such  

a s  p rop y len e , n i t r i c  ox id e  and c y c lo h ex en e , has found numerous 

a p p lic a t io n s  as a r a d ic a l  scavenger in  k in e t ic  s t u d ie s .  I t  r e a c ts  

very  e f f i c i e n t l y  w ith  r a d ic a ls ,  p r e v en tin g  th e  developm ent o f  c h a in s ,  

to  produce the r e l a t iv e l y  s ta b le  benzyl r a d ic a l  (PhGHg-) and i t  has 

been used in  th e  d eterm in ation  o f numerous bond s tr e n g th s , many of 

th e se  by the to lu en e  c a r r ie r  tech n iq u e (50 , 55» 41 ) ^

I t s  a p p l ic a t io n  i s  l im ite d  to  th e  study  of those m olecules con­

ta in in g  a  bond weaker th an  the  Ph.CH^—H bond in  to lu en e . The
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energy of a c t iv a t io n  fo r  th e  decom position of the ra d ic a l formed 

must a lso  be g r e a te r  th a n  th a t  f o r  any re a c tio n  invo lv ing  to lu en e .

At tem peratu res where to lu en e  decomposes i t  i s  d e s ira b le  th a t  th e  

p roducts of the main decom position d i f f e r  from those  of to luene 

decom position. (This was not th e  case in  th e  work described  in  th i s  

th e s i s  and was one of th e  e a r ly  d i f f i c u l t i e s  which had to  be- overcome 

by a  change in  technique# )

The method has proved u s e fu l in  h a lid e  s tu d ie s  e s p e c ia lly  

bromides where HBpi* is  formed as an end p ro d u ct. Szwaro and 

Ghosh(42) have dem onstrated how to  d is t in g u ish  between r a d ic a l  

decom position and HBr e lim in a tio n  to  y ie ld  u n sa tu ia te d  compounds.

In  r a d ic a l z e a c tio n s  fo r  e v e iy  RBr decom posing, one each o f  HBr,

RH and d ibenzy l are  formed w h ils t d ib en zy l does no t appear in  the 

e lim in a tio n  re a c tio n .

The bond d is s o c ia t io n  energy of to lu en e , D(Ph.CH2 — H) has 

been the  su b jec t of rmch in v e s tig a tio n . Several p y ro ly tic  s tu d ie s  

of to lu en e  y ie ld  v ary in g  v a lu e s . Szwaro’s value (43) of 77*5 k c a ^ o l  

had tended to become accepted  but was c r i t ic is e d , by S teao ie  e t  a l  (44) 

who found d im ethyldiphenyls in  the products and th a t  v a r ia t io n s  in  

co n tac t tim e, p ressu re  and surface/volum e r a t i o  a f fe c te d  the  r a te  

c o n s ta n t. More re c e n tly  Takahasi (45) found s im ila r  v a r ia t io n s  

and P rice  (46) in  a thorough a n a ly s is  obtained a f i r s t  o rder r a te  

co n s tan t f o r  the decom position;

log^^k( sec"*^) = 14,8 — 85OOO/2.3  RT in  th e  range 

640 to  870^0
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Anderson e t  a l (47) u s in g  a therm al and photoohem ical hrom ination 

of to luene ob ta ined  89#5k*cal/rao3e a t  room tem perature a s  an upper 

l im i t ,  Benson and Buss(48 ), who review  the v a rio u s  a ttem pts to  

determ ine B(PhCH2— H), t r i e d  to  measure fo r

Ph.GH^ t  Brg PhGHg-Br + HBr a t  150%

and obtained a  value D(PhCÏÏ2— H) « 84 k .o a l/m o le .

So h is s  1er and Stevens on (49) using an electron  impact method
+showed th a t  th e  appearance p o te n t ia ls  o f  G^Hy from to luene and 

from d ibenzy l led  to  a value of 77 ,0  fo r  B(PhOH2— H), Trotraan- 

Dickenson e t  a l , ( 5 0 )  v/arned of the u n c e r ta in ty  of e le c tro n  impact 

d a ta  because th e  benzy l p o s it iv e  ion  iso m erise s (51>52) and they obtained  

values o f 83.3 and 84,6 k .ca l/m o le  from  pyro lyses o f  e th y l  benzene 

and n-propylbenzene re sp e c tiv e ly  and p re fe rre d  the  l a t t e r  va lue .

They a ls o  po in ted  out th a t  Anderson e t  a l ,  (47) used a  value of zero 

fo r  the a c t iv a t io n  energy* o f a  benzyl r a d ic a l  a t ta c k in g  a  bromine mole­

c u le  whereas in  f a c t  i t  i s  more iiloely  to  be abou t 5 k .o a l/m o li,, 

which would give a value o f D(Ph G Eg— h)‘. = 85 k .oal/m ole* A value 

of 86,5 oan be deduced ( 50) from the work of Bus f i e l d  and lv in (  53 ) 

a lthough t h i s  may c a r ry  a  la rg e  e r ro r .

Dossing e t  a l . (54) a ls o  c r i t i s e d  the value o f S c h is s le r  and 

Stevenson(49) and suggest i t  i s  not complementary t o  Szwaro’s v a lu e , 

Takahasi (45) po in ted  out th a t  a  value of 77*5 k .ca l/m o le  is  to o  low 

because th e  d if fe re n c e  D(CH^— H) — D(Ph.GH2— 1^3 77-5 -  25*5

is  too la rg e  compared vfith th e  ex tra  resonance energy of th e  benzyl 

r a d ic a l  o a lo u la te d  a t  about 14 k .ca l/m o le  (55 ), On the o th e r hand
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B rick stook  and P o p le (8 l)  o a lo u la te d  th e  resonance energy o f  b en zy l 

a t  2 1 .9  k .c a l s / mole and compared i t  w ith  exp erim en ta l v a lu e s  of 

23,5 k fC als/m ole  based on th e  hydrocarbons and 17,0  based on th e  

brom ides. F ra n k lin  and Lumpkin(82) quoted a va lu e  o f  1 8 ,0  k .o a l  

based on th e  data  of R oberts and Sk inn er.

Smith (8) in  an  ex tensive  exam ination of the  decom position ob tained  

a r a te  co n s tan t given by log^Q k(sec"^) « I 5. I  -  8470o/2,3RT over 

the  tem perature range 750 to  88OOG but does not f e e l  ju s t i f i e d  in  

a s s ig n in g  th is  a c t iv a t io n  energy to  th e  bond d is s o c ia t io n  p ro cess . 

Rhind(56) in  an  exam ination of th e  p y ro ly is  of ethylbenzene u s in g  

to lu en e  as a r a d ic a l  accep to r was ab le  to  a s s ig n  a  v a lue  of 84k/)a]s/ 

mole to  th e  r a te  determ in ing  s te p  f o r  th e  breakdown of to lu en e .

A resuné of se v e ra l d e term in a tio n s i s  shown in  th e  ta b le  and  i t

w i l l  be seen th a t  a v a lue  o f about 84 k .o a ls/m o le  f o r  ^(PhOHg— R) 

would appear to  be w e ll e s ta b lis h e d ,

D(PhCHo-H) Temp, range Method
k .c a l . /m o le .  % _______     u s e d _____________ R eferen ce

77.0 - Appearance p o te n t ia l 49
77.5 680 -  850 Toluene c a r r i e r 43
84.0 150 E quilib rium 48
84,0 476 " 785 F I0W& s ta t i c 56
84,6 603 -  727 AHf(B2̂ )  from P h .E t 50
84,7 750 -  880 Flow system 8
85.0 640 -  870 Flow system 46
89.5 ( 82 -  132

( 166
Photochemic a l  brom inat ion 
ThormX b r o # m t io n

47
47
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In  gas phase pho td^ tio  s tu d ie s  of to lu en e  and d eu te ro to lu en es 

a t  60% ; C her(57) oonoludes th a t  the  r a te  of a b s tra c t io n  by methyl 

r a d ic a ls  o f  hydrogen atoms from the r in g  i s  0,17 tim es the  r a te  of 

a b s tra c t io n  from the s id e  ch a in . He suggested th a t  s id e  c h a in  and 

r in g  a t ta c k s  proceeded through g eo m etrica lly  d i f f e r e n t  t r a n s i t io n  

s t a t e s .  A b s trac tio n  from the  r in g  re s u lte d  in  a t o l y l  r a d ic a l  which 

re a c te d  w ith  to luene to  foim  a benzyl r a d ic a l ,  which in  tu rn  re ac ted  

w ith a  methyl r a d ic a l  to  produce the  main product e thy lbenzene, 

w hile  the  a b s tra c t io n  from the s id e  ch a in  proceeded v ia  a  3 -cen tre  

t r a n s i t io n  complex o f th e  type suggested by Johnston and P a r r (58).

Burkley and R ebbert(59)>  in  experim ents aimed a t  determ in ing  

th e  ra te  o f ÏÏ a b s tr a c t io n  by m ethyl from prim aiy , secondaiy  and 

t e r t ia r y  p o s it io n s  a lpha to  th e  arom atic r in g ,  deduced the Ea v a lu e s  

fo r  su ch  r e a c t io n s .  T h eir  experim ents in v o lv ed  th e  gas phase pho­

t o l y s i s  o f ace to n e -to lu e n e  m ixtures and th ey  claim ed th a t  m ethyl 

r a d ic a l  a b s tr a c t io n  from  th e r in g  was of minor im portance.

B erezin  e t  a l , (60) have a ls o  s tu d ied  th is  a b s t r a c t io n  re a c tio n  

a t  6 0 9 6 % , u s in g  t r i t i a t e d  to lu en e . They showed th a t ,  a t  85°0, 

the  r a te  o f a b s t r a c t io n  of t r i t iu m  from th e  s id e  ch a in  i s  156 tim es 

th e  r a te  of a b s tra c t io n  of th e  para-hydrogen in  the r in g .  They 

suggested th a t  methyl r e a c ts  w ith  7T bonds of the ring* to  f o r m a  f r e e  

r a d ic a l  of the  cyolo-hexadiene type which subsequently  d is s o c ia te d  

to  y ie ld  a product c a rry in g  a t r i t iu m  atom bound to  an a l ly  l i e  p o s i­

t io n  on a  t e r t i a r y  carbon atom. R eaction  of th e  m ethyl w ith the
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c a rb o n - tr it iu m  bond in  th e  methyl group was ra p id  and accounted fo r  

io of th e  t o t a l  methane.

In  th e  p y ro ly s is  of to lu en e  a t  750^0 u sin g  hydrogen as a c a r r i e r  

gas , WJeyer and B u rr(6 l)  claim ed much s im p lif ie d  k in e t ic s  w ith only 

methane and benzene a s  p roducts in  approxim ately  eq u a l amounts. To 

ex p la in  t h e i r  r e s u l t s  th a t  r in g  a b s tra c t io n  i s  the  major e f f e c t  they 

had to  assume th a t  one prim ary p rocess was a s p l i t  of tolueme in to  

Ph and follow ed by a b s t r a c t io n  from c a r r i e r  hydrogen o r  to lu e n e .

They concluded t i n t  both  Ph** and Me“ a b s tra c te d  from th e  r in g  and 

not th e  s id e ch a in  under t h e i r  c o n d itio n s , Benson and Buss(48) had 

po in ted  out th a t  en tropy  c o n s id e ra tio n s  favour PhOH  ̂ —>Ph-*K)H^- over

PhGHj •̂ ►PhGHg** + d e sp ite  the  la rg e r  a c t iv a t io n  energy of th e

former#

3 . R ad ica l r e a c t io n s .

R eac tions of ra d ic a ls  a b s tra c t in g  a hydrogen atom from 

to luene  proceed w ith  a c t iv a t io n  en e rg ies  of about 5 to  10 k .o a ls /m o le . 

The p a r t ic u la r  r e a c tio n s  re le v a n t t o  th e  p resen t work are  f o r  methyl 

r a d ic a ls  and fo r  bromine atoms a t ta c k in g  toluene#

A co n s id e rab le  amount of d a ta  is  a v a ila b le  on methyl r a d ic a l  

re a c tio n s  s in ce  th ey  are p a r t ic u la r ly  convenient to  s tu d y . The 

p roducts methane and ethane a re  e a s i ly  separa ted  and an a ly sed , th e  

r a d ic a l  does no t break  down o r decompose a t  normal tem pera tu res and 

i s  e a s i ly  p repared  w ith  an iso to p ic  la b e l .  The b e s t therm al source 

i s  d ite r t ia x y b u ty l-p e ro x id e  b u t i t s  a c t iv a t io n  energy of 38 k.cals/m ole



15

makes i t  only o f value in  th e  tem perature range lOO—

A gome thane and a o e ty l peroxide have a ls o  been used as  therm al 

sources# The o th e r  main source of methyl r a d ic a ls  i s  p h o to ly s is  

o f compounds which c o n ta in  a  methyl group, f o r  example, acetone , 

d im ethyl mercury, azomethane and s im ila r  compounds.

Bata g e n e ra l ly  leased on th e  r a te s  of th e  com petitive  r e a c t io n s :  

2CH,- -------------  > Cg Hg (1)

CHj- + RH ------ ^2 CH  ̂ + R- (2)

1/2One can deduce k^/k^ '  and hence determ ine 

The value of k^ appears to  he w ell e s ta b lish e d  as a  r e s u l t  of work 

by Gomer and Kistiakow8ky(62 ) u s in g  th e  com bim tion  r a te  of 

methyl r a d ic a ls  from a  r o ta t in g  se c to r  method of in te rm itte n t 

illu m in a tio n  on acetone and dim ethyl m ercuiy. A value fo r  k^ of 

10^^*^ exp (-C^700/RT) mol ^ oo# sec .  ̂ was deduced which was 

in  agreement w ith  the  A f a c to r  expected from c o l l i s i o n  theo ry , 

w ith  a  p ro b a b il i ty  f a c to r  o f  u n i ty  and zero energy b a r r i e r .  The 

r a te  co n s tan t was however p ressu re  dependent, f a l l i n g  o f f  w ith  

d ec reas in g  p re ssu re . This i s  expected since under co n d itio n s  

of eq u ilib riu m  th e  forw ard and rever&e r a t e s  of r e a c t io n  ( l )  above 

must bo th  vary to  th e  same e x te n t w ith  p ressu re  and k  ̂ i s  a^ J-
un im olecu lar decom position which would e x h ib it  such behaviour.

M ille r  and S teac ie (8 3 ) suggest th a t  a  value o f 1-2 k .oa l/m o le  fo r  

E i s  p o ss ib le  f o r  th e  m ethyl r a d ic a l  recom bination  p ro cess . Some 

second o rder p ro cesses  fo r  m ethyl a tta c k in g  vario u s s u b s tra te s

. . . : V
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are  quoted by F ro s t and P earson (63 ). A value of Î  of to  10~^

is  req u ired  fo r  c o l l i s i o n  th e o ry  in te rp r e ta t io n .  The a c t iv a t io n  

en e rg ieè  deduced are  about 10 k .c a ls /m o le .

Another method of f in d in g  k^ invo lves the  use of ace tone-d^ . 

The GDg r a d ic a ls  form methane by:

+ CD^.C O.GB^— ^  GD  ̂ + GB-.GO.OBg-

and
k

GD,- + R H ---------- ^ G D % H  + R-
3 3

I t  fo llo w s th a t  kJC D , . CO . C D j
,— i  "  -_ I 2
^CDjH ÎÇ T m ]

E xperim ental c o n d itio n s  a re  such as  to  keep|cD^.GO.ODj/RÏ^ 

e f f e c t iv e ly  co n s tan t and the r a te  r a t i o  i s  determ ined mass sp e c tro -  

me t r io  a l ly  to  g ive th e  k^/k^ r a t i o .  Then v a lu es of k^ and k^/kg 

may be found by se p a ra te  experim ents whence kg i s  a v a ila b le .

Below i s  a  ta b le  o f some re p o rte d  d a ta  f o r  methyl a t ta c k in g  toluenec 

The A -fa c to rs  f o r  th e  process a re  o f about the  expected o rder of 

magnitude fo r  a b im oleou lar r e a c t io n .
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Data on CH^- + PhCH^—  ̂ GH  ̂ + Ph.GHg-

k. (oo mol ^ see ^

6 . 8  + o .e )x  10^ ^

(2.3 + 0*4) X 10^ °

E ,( k .o a l /  mole) 

1 2 + 2

13.03 + O..27 a

8.5

5.6

7 .5

7 .4  + 0.3

Reference

64

65

57

57

66

67

68 

59

a Average of to luene a t ta c k  by se v e ra l 
CH^ sources»

b Side ch a in  a b s tra c t io n  of H-

o Ring a b s tra c t io n  o f ÏÏ-

Some of the f e a tu re s  of m ethyl r a d ic a l  a t ta c k  on to luene have 

been d iscussed  in  th e  proceeding  s e c tio n . The r a te  of a b s tra c t io n  

of H- from th e  side  ch a in  appears to  predominate over r in g  

a b s tra c t io n  in  th e  gas phase (59)- Some evidence (69, 70) has 

been proposed f o r  r in g  a b s tra c t io n  based on experim ents w ith  

to luene  a-d^ but th ese  a re  in  s o lu t io n  and probably the r in g  

a b s tra c t io n  occurs a f t e r  r in g  a d d itio n  since  m ethyl r a d ic a ls  a re  

known to  add to  the  r in g  in  the liq u id  phase (70).

A knowledge o f the  a c t iv a t io n  en e rg ies  of hydrogen a b s tra c t io n  

re a c tio n s  by bromine atoms i s  o f  value in  th e  c a lc u la t io n  of more 

accu ra te  bond d is s o c ia t io n  energ ies-
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C o n sid e ra tio n  of th e  r e a c tio n s
kc

Br- + RH -----^— > HBr + R- (5)

suggests th a t  a value  of d (r —H) may he deduced from th e  r e la t io n  

D(R-H) = AH. + D(H—Br)

« (E^ -  B_ ) + B(H -  Br ) .

S ince the  h ea ts  of fo rm ation  o f H, Br " and HBr a re  w ell e s ta b lis h e d  

we have an ac c u ra te  knowledge of B(H - B r), th u s  a llo w in g  th e  d e te r ­

m ination o f B(R-H), once and E  ̂ a re  knovm. T ro t man-Bic kens on

e t  a l . (71) l i s t  a c t iv a t io n  en e rg ies  f o r  the forw ard re a c t io n  in  ( 5) 

f o r  s e v e ra l  hydrocarbons. These v a lu es were as expected. The value 

fo r  however i s  le s s  w e ll known; T rot man-Bio kens on has e s tim a ted

a value o f t h i s  q u a n tity , bas in g  h is  c a lc u la t io n s  on th e  Polanyi 

r e la t io n  E^ = a AH + C, but he p o in ts  out th a t  the  es tim ated  value 

may be dubious and he emphasized the need f o r  more experim ental 

evidence on allcyl r a d ic a l  re a c tio n s  w ith  liydrogen bromide. Since 

the  method o f s tudy  was one of com petitive  r a t e s ,  th e  r e s u l t s  o f 

T ro t man-Bio kens on were r e la te d  to  the  r a te  of brom ination  of methyl 

bromide. T h e ir  r e s u l t s  on th e  brom ination  of methane were no t su f­

f i c i e n t l y  accu ra te  to  allow  th e  methane re a c t io n  to  be used as a 

s tandard  of re fe re n c e .

A b r ie f  d isc u s s io n  o f th e  k in e t ic s  of bromine atoms a t ta c k in g  

hydrocarbons was g iven by Van A rtsd a len  e t a l . (72) who d escribed  

in  d e t a i l  the  b rom ination  of isobu tane . The p a r t i c u la r  case of 

bromine a t ta c k in g  to lu en e  was quoted by Van A rtsd a len  e t  a l .  (47)
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f o r  th e  photochem ical and therm al brom ination  of to lu e n e . In f r a  

red  an a ly ses  showed th a t  th e  r e a c t io n  y ie ld ed  m ainly benzyl bromide 

and hydrogen brom ide. The photochem ical r e a c t io n  was s tu d ied  in  

th e  range 8 2 —>150^0 and the  therm al r e a c t io n  a t  166% . An a c t i ­

v a t io n  energy o f 7 .2  k .ca l/m o le  was assig n ed  to

Br. + Ph.CH- Ph.CHg- + HBr

The E fo r  the  re v e rs e  of th is  r e a c t io n  was estim ated  a t  a
5 k .ca ls /m o le  based on th e  tem perature dependerce of HBr in h ib i t io n  

in  th e  photochem ical r e a c t io n .

B ata on th e  r e la t iv e  e f f ic ie n c ie s  of Br^, argon and COg as 

th i r d  bodies in  th e  bromine atom recom bim tion  r e a c t io n  was g iven  

by Givens and W illa rd (75 ) .  The ta b le  below gives some re le v a n t d a ta  

on bromine atom re a c tio n s .
E

R eac tion (k .ca lV m o le )

Br- + Pl£!H,->HBr + Ph.CHg-

HBr + Ph.OHg— »PhCH- + Br-

Br- + CH. —ÿOH_- + HHr 
4- 3

B r- + CH. —>CH,- + HBr 4 5
OH,- + HBr-^CH. + Br- 3 4
B r- + CH,Br -»OHgBr- + HBr

7 .2  + 0.6 

> 5 .0  + 1.2  

17.8  + 0 ,4  

18.3 

about 2

15.6 + 1.0

Temp 
range (%_)

80  - - 5>130

80  -# 1 3 0  

150 -*230  

100

1 5 0 -4 2 3 0

1 5 0 -^2 3 0

E efe renoe

47 

47 

72, 75

71

72, 75 

75

I t  should be po in ted  out th a t  the assignm ent of 5 k .ca ls /m o le  

a c t iv a t io n  energy to  the  r e a c t io n :

HBr + Ph.CHg- 4  Ph.OH, + Br- 
3
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by Anderson e t  a l , (47) lead s to  a  high v a lu e  o f 89#5 f o r  the G -  H 

bond d is s o c ia t io n  energy in  to lu e n e . A v a lu e  h ig h er than  5 k .ca l/m o le  

would b rin g  the  bond s tre n g th  more in  l in e  w ith  l i t e r a t u r e  v a lu e s .

The r e s u l t s  of Van A rtsd a len  and c o lla b o ra to rs  on brom ination 

r a te s  o f hydrocarbons have been suspect because th ey  quote r a th e r  

h igh A fa c to r s  ; f o r  example, Benson and Buss(76) suggested  th a t  

th e i r  assum ptions o f a rap id  a tta inm en t of steady s ta te  c o n c en tra tio n s  

of bromine atoms were in v a lid  f o r  the more re a c tiv e  o f th e  compounds 

used . They a ls o  suggested th a t  th e  re a c tio n s  were p a r t ly  heteæogenous 

but th e re  was no t evidence f o r  t h i s .

S evera l r e la t io n s  have been proposed to  c o r r e la te  a c t iv a t io n  

en e rg ies  of p ro cesses  of the above ty p es. Probably the  b es t knovm 

i s  H irsch fe ld e r* s  ru le  (77) f o r  a  b im oleoular p rocess invo lv ing  atoms 

o r rad ica ls^w hich  s t a t e s  tha t,w hen  w r i t te n  in  th e  exothermic 

d ir e c t io n ,  the  a c t iv a t io n  energy fo r  the r e a c t io n  i s  about 5*5/^ of 

th e  energy of the bond being broken. For th e  endotherm ie d ir e c t io n  

the  becomes p lu s  the AE of the  re a c tio n . The value 5*5

was found by sem iem pirical c a lc u la t io n .

Semenov deduced th e o re t ic a l ly  an approxim ate eq u a tio n  fo r  an 

exotherm ic a b s tra c t io n  o r  a d d i t io n  re a c tio n  of sm all r a d ic a ls  or 

atoms th a t  E^ ~ 11.5 — 0.25 q , v/here q i s  th e  h ea t evolved 

in  th e  re a c tio n . The equ a tio n  i s  of lim ited  use and ap p ears not 

to  hold f o r  halogen atom s.
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TrotmarL-I)ickenson(78) showed th a t  good agreement can be 

expected between th e  observed a c t iv a t io n  en e rg ies  f o r  hydrogen 

a b s tra c t io n  by m ethyl from the  lower members of th e  p a r a f f in  s e r ie s  

and th e  deduced from P o la n y i 's  r e la t io n ,  E^ « 0 .4 9 [B(0—H) — 7 4 ,5 ]

E y rin g 's  r e l a t io n ,  E « aAH + C, where a and 0 a re  c o n s ta n ts  fo r  

a  s e r ie s  o f r e a c t io n s ,  was shown by B u tle r  and Po lany i to  hold  fo r  

sodium atoms re a c tin g  w ith  a lk y l h a l id e s .  Szabo(79) quoted a

r e la t io n  E " ^ D ^ tr o k e n )  " “ "j®ô(fornBd) homogeneous gas

re a c tio n s  which took in to  account the s tre n g th s  of bonds broken 

and formed where a is  ag a in  c o n s ta n t f o r  a g iven type o f  r e a c t io n .

4 , H alide p y ro lyses w ith  p a r t ic u la r  re fe ren ce  to  bromides

On p y ro ly s is ,  monochloro and monobromoalkanes y ie ld  halogen 

ac id  and an o le f in .  In  the  c a se  of the  ch loddes a r a d ic a l  c h a in  

p rocess i s  absen t and th e  mechanism involves th e  un im olecu lar e l i ­

m ination of hydrogen c h lo r id e .  The bromides can  d isp la y  th ree  

r e a c tio n  mechanisms : ( l) a  r a d ic a l  ch a in  p ro cess , (2) a r a d ic a l

nonchain p rocess and (3 ) un im olecu lar e l im in a tio n  of hydrogen 

bromide. P y ro ly s is  o f  th e  io d id e s  produces io d in e , an  o le f in  and 

the  co rrespond ing  p a r a f f in  — th e  mechanisms in  these  c a ses  a re  

le s s  w ell e s ta b lis h e d , a lthough  i t  has been shown th a t  un im olecu lar 

e lim in a tio n  of hydrogen iod ide and iodine c a ta ly se d  decom position 

a re  both f e a s ib le .

#LOo6ll e t  a l .  have been re sp o n s ib le  f o r  much o f the  p y ro ly tic  

work on bromides and Szwaro and co-w orkers have a ls o  examined these
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compounds u s in g  th e  to lu en e  c a r r i e r  te ch n iq u e , Benson a ls o  has 

rep o rted  on h a lid e  p y ro ly se s ; h is  work appears to  he p a r t ic u la r ly  

ap p lied  to  io d id e s  ( I I 5 ) ,  S zabo(4 l) g ives a b r i e f  survey o f such 

work (see a ls o  (8 5 )) , Some re le v a n t d a ta  on bromides i s  ta b u la te d  

belov;. A d d itio n a l re fe re n c e s  are  quoted in  those c i te d .

In  most c a se s  v e s s e l  c o n d itio n in g  was n ecessa ry  to  o b ta in  

rep ro d u c ib le  d a ta  and to  avoid  ch a in  decom position a t  the w a lls .

To o b ta in  in fo rm ation  on the r a d ic a l  ch a in  p resen t in  the  

p y ro ly s is  o f e th y l bromide, p h o to ly s is  experim ents were performed 

in  th e  tem perature range 150-300° and a  r a te  equa tion
tJL

— d [E tB r]/d t = C onst. Iq  [EtBr] was deduced ( I 04). The quantum 

y ie ld  was h ig h  and th e  f i r s t  o rd e r r a te  c o n s ta n t gave an a c t iv a t io n  

energy of 10.5 k .c a ls /m o le . At low p re ssu re s  a second order r e a c tio n  

became im portan t. Blades e t  a l . ( l 0 5 ) ,  in  an  iso tope  e f f e c t  in v e s t i ­

g a tio n , dem onstrated th a t  the in h ib i te d  decom position o f e th y l 

bromide was p r im a rily  a  m olecular p rocess and th a t  th e  r a t e  c o n tro l l in g  

s te p  involved a  C-H bond f i s s io n .

Kale and M aocoll(l06) provided fu r th e r  evidence f o r  a  un im olecu lar 

decom position Qf isopropy l bromide. The p y ro ly s is  was c a r r ie d  out 

a t  low p re ssu re s  (0 .5  to  48 mm Hg. ) to  v e r ify  th e  Lindemann th e o ry .

They found t h e i r  r a te  c o n s ta n ts  gave a b e t t e r  f i t  to  the R ice- 

Ramspeiger th eo ry  th an  to  th e  Lindemann-Hinshelwocd th eo ry .

The m ajor f a c to r  determ in ing  th e  r a te  o f dehydrobrom ination i s  

the environment of th e  C-Br bond. R e la tiv e  r a te s  f o r  t h i s  p rocess



c ompound î'echan ism Temp(^C )

CgE^Br

n-C ̂ HyBr

Chain mechanism and u n i­
m olecular decom position

Homogeneous 1 s t o rd er i f  
in h ib ite d

U nim olecular e lim in a tio n

1.5 o rd e r , homogeneous

1.5 o rder

510 -> 476

523 -  633 

380 -» 430

467 -» 667 

300 ->■ 380

350 -> 5 0 0

i-C 1st o rd er

n-G^H^Br

Homogeneous

U nim olecular e lim in a tio n

1 st o rd e r up to  50/  dec. 
i f  îiax. inh ib  i t  : 0n

1 s t

510 ^  550 

570 4 :0

500 5!

te r t-U .y  d4 •

. -r 15;-û cn a in  

.‘US, 1 st o rder 230 ^ 28C

iso-C y,H

te rt-C  c-H- -, d r 5

U nim olecular e lim in a tio n

Homogeneous, 1 st o rder i f  
max. in h ib i t io n

Homogeneous, 1 st o rd er 
U nim olecular e lim in a tio n

450

360 'K'd

ZZO >70

+ U nits of R a re  k .c a ls /m o le . 

U n its  a re  1^/^ m ol.“^/^ s e c .“^
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*1“O verall r a te  co n s tan t

6  X 1 0 ^ ^  e x p  ( - 4 6 . 4 / R T ) s e c  ^

8 . 5  X 1 0  e x p  ( - 5 2 . 2 / E G ? ) s e o “ ^

2 . 8  X  1 0 ^ 5  e x p  ( - 5 3 . 9 / E T ) s e o “ ^

8 . 0  X 1 0 ^ ^  e x p  ( - 5 3 . 7 / E T ) s e o " ^ -  

2 . 2 9  X  1 0 ^  e x p  ( - 3 3 . 8 / e T >

3 . 8  X 1 0 ^  e x p  ( - 4 2 . 0 / E T ) s e c  y
mm“ /  2

1 . 0  X 1 0 ^ ^  e x p  ( - 5 0 . 7 / E T ) s e c " ^

Remarks R eference

4 .17  X 10^^ exp (-47 .8 /E T )sec -1

4 .0  X 1 0 ^ 5  exp (-47 .7 /E T )seo"^  

4 .2  X 10^^ exp (-47.8/ET)seo~^ 

1.5  X 10^^ exp (-50 .9 /E T )seo"^

4 .27  X 1 0 ^  exp (-43 .8 /E T )seo"^

1.1 X 10^3 exp (~45.5/ET)seo"^ 

1.51 X 10^^ exp (-46 .5 /E T )seo”  ̂

1 .0  X 1 0 ^  exp (-42 .0 /E T )sec“ ^

3.2  X 10^^ exp (-41 .5 /E T )seo“ ^ 

1.12 X 10^^ exp ( - 50. 4/R T)seo"^

Surface re a c tio n  p re sen t 86, 87

Iso tope  e f f e c t  in v e s t ig a t io n  88

89

Shook tube method 

Retarded by propylene

E arly  d e term in atio n  in
presence of to luene

V essel co n d itio n in g  
necessary

Toluene c a r r i e r

Shook tube

In h ib i t io n  by o le f in io  
substance

No in h ib i t io n  by chain* 
b reakers

No ch a in  w ith  cyolohexene

103

90

91

92

94,95

92

103

95

96

97

98

No in h ib i t io n  by cha in b reak ers ; 99 
4 cen tre  t r a n s i t io n  s ta te

Shook tube method 100
101

3 .98  X 10 exp (-40.5/H T)seo No in h ib i t io n  or a c c e le ra t io n  102
by cyolohexene e t c .
Secondary H e lim in a ted
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and corresponding  a c t iv a t io n  en e rg ies  (ifecco ll and Thomas( 10?) f o r  

a  s e r ie s  of compounds a re  given in  th e  ta b le s  below.

n
C-Br

V —XI
Prim ary Secondary T e r t ia iy

Prim ary 1 170 32,000

Sec ondary 5-5 380 46,000

T e r t ia ry 6.3 - 130,000

R ates a re  r e la t iv e  to  EtBr taken  as  u t i %  a t  380%

C-H
0-B r

Primary Sec ondary T e r t ia ry

Prim ary 55.9 47 .8 42.2

Sec ondary 50.7 45 .8 40.5

T e r t ia ry 50.4 — 39.0

A c tiv a tio n  en e rg ie s  f o r  HBr e lim in a tio n

There d id  not appear to  be a simple r e la t io n  between th e  

a c t iv a t io n  energy f o r  the  e lim in a tio n  r e a c t io n  and th e  bond dissocia* 

t io n  energy D(R-Br) (See ta b le  below ).
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EtB r Sec-C,E,Br
- ............................2 7 .

T ert BuBr

% 2 r 55,9 4 7 .8 42.2

D(R-Br) 67.2 67.6 65 ,8

D(E+Br~) 183*7 156.3 140.5

Rate r a t i o 1 170 32,000

However, Maoooll and Thomas claim ed a c l e a r  c o r r e la t io n  between 

the  a c t iv a t io n  energy, f o r  HBr elim ina .tion  and the  h e te ro ly t ic  

d is s o c ia t io n  energy , D(R^Br~), f o r  the  p rocess HBr — + Br" , 

a l l  sp e c ie s  being in  the  gas phase. The h e te ro ly t ic  bond d is s o c ia t io n  

en e rg ies  were c a lc u la te d  from appearance p o te n t ia l ,  io n iz a t io n  

p o te n t ia l  and hom olytic bond d is s o c ia t io n  energy d a ta . Two u s e fu l  

r e la t io n s  which fo llo w  from the gas phase ic n iz a t io n  e n e rg e tic s  

diagram  below a re  ;

(a )  D(R+X~) "  A(E+) — I  (X")

(b) D(E+X") = I(E- ) + D (R-X) — I  (X“)

V

/iS.

D(R-X)
4-

T
l ( x " )

E’̂  + X-

E"̂  + X'

A(R- )̂ I (E-)  E(eV )Jt E- + X-

EX

E n erg e tic s  o f gas phase io n iz a tio n .



26

Suoh c a lc u la t io n s  led  to  h e a ts  o f h e te ro ly t ic  d is s o c ia t io n  of 

around 200 k .c a ls /m o le , g r e a t ly  in  exceeds o f  any observed a c t iv a t io n  

energy. la o c o ll(8 5 )  suggested th a t  a value of abou t 150 k .ca ls /m o le  

may be su b s tra c te d  as th e  oo*ulo.mbio energy of th e  io n -p a ir  t r a n s i t io n  

s t a t e ,  thus g iv in g  a  value s im ila r  to  th e  observed a c t iv a t io n  energ ies, 

The io n -p a ir  t r a n s i t io n  s ta te  was f i r s t  proposed by In g o ld (108), 

who suggested th e  sequence

slow f a s t
>0 — ----------) —  0 + / ----------- )  > 0  = o (/  ] , S /  I \  ^

H Br a  Br- H -  Br

fo r  a  un im olecu lar gas re a c t io n . T his i s  th e  same as the E l 

mechanism in  p o la r  so lv e n ts  except th a t  the ions s ta y  as a  p a i r .

The h e te ro ly t ic  t r a n s i t io n  s t a t e ,

\  Q Q / 1
/  \ j  Br*̂ - , was proposed in  p referen ce  to  th e  homo ly t i c  fo u r

(/ r * t
c e n tre  t r a n s i t io n  s ta te  (IO9 ) , è* * - Br ® ‘̂ Lioh would involve the 

halogen atom, a p-hydrogen atom and the two carbon atoms to  which 

th ese  a re  bonded.

The p-hydrogen atom was suggested  to have a  ro le  s im ila r  to  the  

p o la r  so lv en t in  th e  8^1 and El mechanisms in  s o lu t io n  re a c tio n s  — 

th e  ro le  of the so lv en t being to  s ta b i l i z e  th e  p o la r  t r a n s i t io n  s t a t e .

Thus a c t iv a t io n  c o n s is te d  of an  e lo n g a tio n  and p o la r iz a t io n  of 

the  C-Br bond w ith  some a s s is ta n c e  from th e  p o la riz ed  C-H bond.
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In  agreement w ith  Ifeo o o il's  c o r r e la t io n  between D(R'^X“ ) and 

the  hydrogen h a lid e  e lim in a tio n  a c t iv a t io n  energy, Lossing e t  a l . ( l l O )  

have shown th a t ,  f o r  a  s e r ie s  o f conjugated  m olecules, a  l in e a r  

r e la t io n  e x i s t s  betvæen D(RtX~) and the  charge , c a lc u la te d  by mole­

c u la r  o r b i t a l  th eo ry , on the  carbon  atom fo rm ally  c a rry in g  the  p o s i t iv e  

charge» M accoll has compared the  gas phase e lim in a tio n  r a te s  w ith  

^y l and E l r a te s  in  s o lu t io n . He dem onstrated th a t  th e se  gas phase 

and s o lu t io n  c o r r e la t io n s  co u ld  be extended to  ire lu d e  no t only the 

very  sim ple members but a ls o  a-m ethyl, a -o h lo ro  and p-m ethyl sub­

s t i tu t e d  aliqrl h a lid e s  and suggested th a t  the  id eas  could be extended 

to  o th e r gas phase e lim in a tio n s . For example, o le f in  form ing e l i ­

m ination  from e s te r s  b ea rs  a resem blance to  E2 re a c tio n  in  so lu t io n , 

and hydrogen h a lid e  c a ta ly s is  o f the  dehydration  of a lco h o ls  may be 

the gas phase analogue o f a c id  c a ta ly s is  in  s o lu t io n ,

A c o n d itio n  f o r  a r e a c t io n  to  be ’q u a s i - h e te r o ly t i c * i s  the 

presence of a  p o la r  group, S iix e  suoh groups d i f f e r  in  t h e i r  degree 

of p o la r i ty  the  p o s s i b i l i t y  e x i s t s  of a  g rad a tio n  in  gas phase 

mechanisms from c om pletely h e te ro ly t ic  to  com pletely  homo l y t i c .

Herndo.n e t  a l . ( l l l ) ,  a s  a  r e s u l t  of p y ro ly tic  work on secondaiy 

c h lo r id e s  which d if fe re d  g re a t ly  in  t h e i r  s o lv o ly tic  r e a c t iv i t y ,  

suggested th a t  th e  'q u a s i -h e te ro ly t ic  ' mechanism was n o t c o r re c t  

in  d e t a i l  bu t they  then  po in ted  out th a t  the  d iscovered  p a r a l l e l  

r e a c t i v i t i e s  to  s o lv o ly tic  re a c tio n s  became d i f f i c u l t  to  e x p la in .

The io d id es  d i f f e r  from the bromides in  th a t  in  the form er th e re
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i s  not a system  in  whioh th e  O -I bond s c is s io n  i s  r a te  determ ining  

and veiy  few in  which i t  i s  im portan t. Organic iod ide pyro lyses have 

been d iscussed  by Benson (112, 115, 114); f o r  a lk y l io d id es two r a te  

l im itin g  mechanisms a re  o p e ra tiv e  :

(1) E l  JH I + o le f in

(2) I  + E l — > I + HI + o le f in

These a re  fo llow ed ty  rap id  re a c tio n  between the a lk y l  iod ide  

and hydrogen iodide which m aintains the  l a t t e r  a t  a  low s ta tio n a ry

s ta te #  Mechanism (1 ) d e sc rib es  the py ro ly ses o f i ï îp l ,  E tI ,

t-B u I, OH^COI, w hile (2) i s  th e  mechanism fo r  n -P r I , i-B u I, 

n-BuI . Sec-Bui and 1:2 d iiodoethane involve both ( l )  and (2 ).

In  i - P r I  and n -P r I ,  a lth o u g h  both pyro lyse to  y ie ld  C^H^,

C^Hg and I^ , th ey  serve to  i l l u s t r a t e  the  two genera l r a te  law s;-

-  a f  i - P r i ]  /at = k i  [ i - P r l j  (a)

- a ^ n -P r l]  /at = k̂  l^nPrlJI^Igj (b)

I t  was found th a t  allcyl io d id es  co n ta in in g  a  prim ary iod ine 

atom follow ed r a te  law (b) w hile those w ith  secondary o r t e r t i a r y  

iod ine atoms follow ed r a te  law (a ) .

The spontaneous e lim in a tio n  o f HI by the io d id es is  an example 

of a  genuine 4 -oe n tre  m olecular re a c tio n  (compare I fe c c o il 's  theory*) 

This e lim in a tio n  i s  most rap id  when the I  atom i s  a ttac h ed  to  a 

secondary or t e r t i a r y  carbon atom. For prim aiy atom attachm ent, 

however, a f a s t  com peting s te p  i s  an  I  atom c a ta ly se d  e lim in a tio n
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w ith  an a c t iv a t io n  energy equal to  the  endo therm iaity  of the  r e a c tio n .

Benson ( I I 5 ) suggested th a t  th e  co n certed  e l im in a tio n  re a c tio n

\  **I
/

/  \  /
0 — 0_ ^ « 0 ^  + I -  i s  unique to  I  atoms.

That the 4 ’-cen tre  e lim in a tio n  r e a c t io n  i s  f a s t e r  fo r  secondary 

and t e r t i a r y  io d id e s , w h ile  the I  atom a s s is te d  e lim in a tio n  i s  

f a s t e r  f o r  prim ary io d id es  l i e s  in  th e  su p p o sitio n  of a t r a n s i t io n  

s ta te  of the type s

^ 0  I  J —  H
/

H

With prim ary io d id e s , I  a t ta c k s  the r e la t iv e ly  weakly hound 

secondary or t e r t i a r y  H atom, w hile f o r  the  secondary and t e r t i a r y  

io d id es  the I  a t ta c k  would he on t te  more s tro n g ly  hound p r in a iy  

hydrogen atom. F or sec-B u i, a t ta c k  can occur on a  secondary o r 

prim ary H atom and thus both p rocesses compete.

Holmes and IVhcooll ( I I 6 ) have examined th e  p y ro ly ses  of iso p ro p y l 

and 8- b u ty l io d id e s . These a u th o rs , l ik e  Benson,found th e  iso p ro p y l 

iod ide decom position to  be a f i r s t  o rd e r  p ro ce ss , w ith an I 2 c a ta ly se d  

decom position of im portance a t  the lower tem peratures» The f i r s t  

o rder r a te s  f o r  sec-B ui were com plicated  by th e  f a c t  th a t  HI was 

found in  amount up to  of the I^  produced. At the lov/er tem pera­

tu re s  an a u to c a to ly tic  r e a c t io n  was again  im portan t.
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The therm al deoom positions of monoohloro^alkanes occur hy the  

unim oleoular e lim in a tio n  of hydrogen c h lo r id e . For example,

1 -chloropropane shows a homogeneous f i r s b  o rd e r  decom position to  

propylene and B ] l( l0 9 ) ,  This ’r u l e ' ,  however, should no t he extended 

to  m u ltich lo ro a lk an e s ; 1 .1 .2 - tr ic h lo ro e th a n e , f o r  example, decomposes 

a t  about 4^0^ to  y ie ld  v in y lid en e  c h lo r id e , c i s  and tr a n s  d ic h lo ro -  

ethy lene  and HÛ1; decom position in  th e  presence o f  to lu en e  has shown (11?) 

th a t  a  r a d ic a l  ch a in  and a un im olecular mechanism o p era te  s im ultaneously  

lane e t  a l . ( l l 8 )  have p o in ted  out th a t  in  the s e r ie s  CH^X,

CgH^X, (CH^)g CÎÎX, (CH^)^ GX the d is s o c ia t io n  energy d ecreases  

re g u la r ly  i f  X « ÏÏ, but i t  i s  a p p ro x im te ly  co n s tan t f o r  th e  f i r s t  

th re e  members, i f  X = 01 or Br, a lthough  lower f o r  th e  t e r t i a r y  b u ty l 

h a l id e s .  They have in te rp re te d  t h i s  co n s tan t d is s o c ia t io n  energy as 

a balance between in c re a s in g  s t a b i l i t y  of the  lia lid e s  a long  th e  s e r ie s  

and in c re a s in g  s ta b i l i z a t io n  of the  r a d ic a ls  produced along the s e r ie s .  

The low v a lu es fo r  (OH^)^X a re  r e a d i ly  understood since  s t e r i c  e f f e c t s  

w i l l  lower th e  s t a b i l i t y  of th ese  h a l id e s .

The C-F bond in  OH^F i s  es tim ated  to  be about as  s tro n g  as  the  

C-H bonds in  metliane. S evera l bond d is s o c ia t io n  energ ies of f lu o ro -  

oarbons a re  quoted by E rrede(28) and th e  C-H bond s tre n g th s  in  t r i ­

f l u  or ome th an e , pen taflu o ro e th an e  and heptafluoropropane have been 

determ ined by P r itc h a rd  and Thommarson(ll9)« The value of D(CF^-H) 

i s  quoted as  102 + 2 k .o a l/m o le . The C-F bond d is s o c ia t io n  energy 

in  methyl f lu o r id e  has been measured by e le c tro n  impact methods by

Bossing e t  a l . ( l 2 4 )  and by Tsuda, Melton and Hami 11(74). The v a lu es  

a re  quoted on p 35*.
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Previous d e te rm in a tio n s  o f D(CH^-Br)

There have been se v e ra l d e term in a tio n s both  d i r e c t  and 

in d ir e c t  o f th e  bond d is s o c ia t io n  energy in  methyl bromide and r e ­

la te d  h a l id e s .  The value g e n e ra lly  accep ted  f o r  D (OH^-Br) is  

67*5 k .ca l/m o le  determ ined by Sehon and Szv7arc(39)* In  a  to lu e n e  

c a r r i e r  p y ro ly tic  study on halogenated  bromomethanes th ey  found th e i r  

r a te  co n s tan t dependent upon to luene  p ressu re  and so analysed  th e i r  

d a ta  fo r  t ie  se compounds u s in g  th e  A rrhenius ex p ress io n  

k = A exp. (~E/RT), w ith  a f ix e d  value of 2 x 1-0^  ̂ sec~^ f o r  A. This 

value of A was determ ined from work on the p y ro ly s is  of methyl bromide 

tak in g  B(CH^-Br) as 67.5  k .c a ls /m o le , th i s  l a t t e r  value being  com­

puted from w ell e s ta b lis h e d  thermoc hemic a l  d a ta . The value of k 

used was th a t  co rresponding  to the  lov/est tem pera tu res w ith  to luene 

p re ssu re s  of about 10mm Hg.

The decom position of m ethyl bromide a t  th re e  d if fe re n t  to luene

p re ssu re s  (5^ 11 and 20 mm Hg. ) gave th re e  p a r a l l e l  s t r a ig h t  l in e s
13 Xw ith  frequency f a c to r s  n ea r to  10 sec and an a c t iv a t io n  energy 

of 67 + 2 k .c a l/m o le . They co nsidered  th e  agreement between th i s  and 

the  value c a lc u la te d  from the  thermochemioal d a ta  to  be fo r tu i to u s .  

They s tu d ied  bo th  ch lo ro -an d  b rom o-substitu ted  methyl bromides and 

they  considered  th a t  the  deoom positions s ta r te d  y /ith  th e  un im oleou lar

s te p  HBr r> R -  + Br- . Since both r a d ic a ls  were then  removed by

f a s t  re a c tio n s  w ith excess of to lu e n e , the  r a t e  of the un im o lecu lar



32

process was measured by the r a te  of fo rm ation  of HBr. The py ro ly ses

were rep o rted  to  be e s s e n t ia l ly  f i r s t  o rder homogeneous p rocesses

and the r a te  c o n s ta n ts  were found to  be independent of the  c o n ta c t

tim es. In  only GCl^Br and GBr^ were th e  r a te  c o n s ta n ts  u n affec ted

by v a r ia t io n  of to lu en e  p re ssu re . Since t h i s  was the case  th e

tem perature independent f a c to r  f o r  CGl^Br decom position t e s  d e te r -
13 -1mined ex p erim en ta lly  and was found to  be 5 x 10 sec , in  good 

agreement w ith  the m ethyl bromide ca se . T h is c lo se  agreem ent was 

Szwaro and Sehon's j u s t i f i c a t i o n  f o r  a  co n s tan t frequency f a c to r  

throughout the  s e r ie s .

The g ra d a tio n  in  the  s e r ie s  of G-Br bond d is s o c ia t io n  en e rg ies  

determ ined p y r o ly t ic a l ly  showed good agreement w ith th e  v a lu es 

deduced from sodium flame r e a c t io n s .  Evans and P o lan y i(l2 9 ) 

r e la te d  th e  v a r ia t io n  of tlie a c t iv a t io n  energy fo r  th e  r e a c t io n  

R-Br + Na — )• R- + Na Br in  a  s e r ie s  of k indred  compounds to  th e  

v a r ia t io n  in  bond d is s o c ia t io n  en e rg ies  by th e  form ula AE « a AD. 

The p ro p o r t io n a li ty  c o n s ta n t, a , was ta k en  t o  be 0 .27 , md by 

assuming D(CH^-Br) to  be 67*5 k .c a l/m o le , and by u s in g  P o la n y i 's  

solium  atom re a c t io n  a c t iv a t io n  energy r e s u l t s ,  Sehon and Szwarc(59) 

computed v a lu es  of D(G-Br) a s  shown in  the ta b le  below, (d a ta  in  

k .c a ls /m o le . )
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C ompound
B(C-Br) computed 

from Na flam e
D(C-Br)

from p y ro ly s is Other worker^

CH,Br
3 (6 7 .5 ) (67 .5) See l a t e r

CHgC IBr 61.2 61 .0

CBDlgBr 54.5 55.5

CG l_B r
3

50.8 49 .0 51, 0 . 4^52 .0  55.5

OHgBrg 58.6 62.5

CHBr^ 50.1 55.5

OBr^ 4 9 .0 4 5 0 .0

Data of v a rio u s workers quoted by Sehon and Szwaro (59)*

The low v a lu e s , deduced from Na flame d a ta , f o r  th e  poly bromo­

me thanes were exp lained  by th e  f a c t  th a t  the Evans-Polanyi trea tm en t 

d id  not allov/ f o r  the  a d d i t io n a l  resonance s ta b l iz a t io n  of the

t r a n s i t io n  s ta te  R B r N a  f o r  m olecules co n ta in in g  more than

one id e n t ic a l  re a c tiv e  s i t e ,  and th i s  e f f e c t  becomes more im portant 

as the number of 'a c tiv e *  halogens in c re a se s .

The p a r t ic u la r  experim enta l d e ta i l s  of th e  methyl bromide 

p y ro ly s is  used by Sehon and Szwarc w i l l  be given in  th e  d is c u s s io n . 

However, i t  may be noted here  th a t  in  a d d it io n  to  la rg e  d if fe re n c e s  

between the  h a l id e s  in  t h e i r  behaviour to  v a r ia t io n  o f to luene 

p re ssu re , co n s id e rab le  d if fe re n c e s  in  the degree of h e te ro g en e ity  were 

observed# For example, th e  methyl bromide decom position was es tim ated  

to  be 4^  heterogeneous in  an  unpacked fu rnace a t  the lower tem pera­

tu re  u sed , bu t no su rface  e f f e c t s  a t  the  high tem peratu res were
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observed, GCl^Br, on the  o th e r hand, in  an  unpaoked v e s se l was ll^o 

and 2 , 5/  heterogeneous a t  the low er and upper ends o f  the tem perature 

range, r e s p e c t iv e ly ,  and carbon te trabrom ide showed 5 ^  h e te ro g en e ity  

a t  695°K.

Other experim en ta l d e te rm in a tio n s o f D(CH^-Br) have involved 

e le c tro n  impact methods and c a lc u la tio n s  from appearance p o te n t ia ls  

of th e  ap p ro p ria te  io n s . On the whole th ese  show m oderately good 

agreem ent w ith  th e  p y ro ly s is  work.

From d a ta  on th e  appearance p o te n t ia ls  of the  p o s it iv e  ions 

from methane and the  monohalogenated methanes and u sing  a  value of 

10, leV f o r  th e  io n iz a t io n  p o te n t ia l  of G H ^-(l22), Bianson and Smith 

(121) c a lc u la te d  D(CH^-Br) ^  5*1©V (=71.4 k .c a l . /m o le ) . They con­

s id e red  th i s  v a lu e  to  be an upper l im i t ,  p o in tin g  out th a t  the  

d if fe re n c e  in  energy between the G-X bond in  the h a lid e  and th e  C-H 

bond in  methane should be r e f le c te d  in  th e  t o t a l  d is s o c ia t io n  energy. 

A ccordingly the energy of the GH^—Br bond should be 0,9.eV le s s  th an  

the bond in  methare and i t  follow ed th a t  th e  bond en e rg ie s  in  GH^Br 

and GH^I should be 2.9eV (=66.8 k ca ls /m o le ) and 2 .3eV (=55 ,l k .ca ls /m o le )  

r e s p e c tiv e ly .

Bossing e t a l . ( 124) deduced a value fo r  the appearance p o te n t ia l  

of the GH^^ r a d ic a l  io n  o f 12,85 + 0.06eV. compared w ith  th e  value 

of 15.2 + 0.5eV. of Branson and S m ith ( l2 l) . Basing t h e i r  c a lc u la tio n s  

on an io n iz a t io n  p o te n t ia l  of the m ethyl r a d ic a l  of 9*95 ± 0»05e'V., 

Bossing e t  a l ,  deduced bond d is s o c ia t io n  en e rg ies  of th e  methanes as 

shown in  th e  ta b le  below. The more rece n t data  o f Tsuda, ïfe lton  and
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H am ill(74) is  shown fo r  com parison.

Energy in  k .o a ls /m o le 
Bond Lossing e t  a l .  Tsuda e t  a l ,

B(CH,-Br) 66.4  + 2 70.1

D(CH - I )  50.7 ±  1.5 52.8

D(CH -C l) 80.5 ± 3 83 .9

D(CH -E) 107.0 + 12 104.9

D(OH,-H) 102.8 + 1.5 103.8

MsDowell and Cox(l25) g ive a value of 55.6  f o r  th e  methyl iod ide 

bond d is s o c ia t io n  energy^again  based on e le c tro n  impact d a ta , and 

a re c e n t k in e tic  in v e s t ig a t io n  by Goy and P r i tc h a rd (130) produced 

a value  o f 35*0 k .ca l/m o le  f o r  the  a c t iv a t io n  energy of th e  r e a c t io n  

I 2 + CHj + I# This^ along w ith  an a c t iv a t io n  energy f o r  the

rev e rse  r e a c t io n  of 19.2 k .ca l/m o le  ( l 3 l ) ,  and a  value f o r  D (I-I)  

o f 35.5 k .oal/m ole  leads to  D(GH  ̂ -  I )  « 51.3 k .ca l/m o le . Lossing 

e t  a l ,  were unable to  suggest a  reason  fo r  t h e i r  ap p a re n tly  low 

value o f A(gH^* ‘̂)* They argued fo r  th e  ex c lu sio n  of se v e ra l p la u s ib le  

ex p lan a tio n s .

Reed and Sneddon(2l) have estim ated  the d is s o c ia t io n  en e rg ies  

of s e v e ra l  CH^—X compounds. They claim ed good agreement w ith  

p rev ious workers bu t t h e i r  v a lu e  f o r  D(GH^-Br) of 2 .35eV .(=  54knâ /moL ) 

i s  low. T h e ir methyl iod ide  value  (2.30eV. ) is  more in  agreement 

w ith  pub lished  d a ta , b u t th e i r  methane bond d is s o c ia t io n  energy
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D(CH^-H) = 4 . 12eV. i s  low er than  th a t  p re se n tly  accep ted . Other 

va lues a re  given in  th e  ta b le  below, which may be compared w ith  

d a ta  d iscussed  above.

Dis s o c ia t io n  Energy

Bond eV k. c a l s / mol.

d CcHj - h) 4.12 95,0

d (ch, - c i ) 3.4 78.4

D(CH,-Bi ') 2.33 55.7

D(CHj -1 ) 2.3 55.1

DCOlgCH-H) 3.46 79,7

DCciCHg-CX) 3.19 75.5

D(OlgCH-Ol) 2 ,89 66.6

DCBiCHg-Br) 2.59 59.8

B(BrgCa-Br) 2.67 61.6

A thermoc he mical de te rm ina tion  (l2 6 ) o f the h ea ts  o f  fo rm ation  

of mercury d ia lk y ls  in  a  bomb c a lo r im e te r  and use of thermoc hem ioal 

d a ta  ( 127, 128) allowed the c a lc u la t io n  of tine h e a ts  o f fo rm ation  of 

the  a lk y l h a l id e s .  These a re  ta b u la ted  belov/ a lo n g  w ith th e  c a l ­

c u la te d  bond d is s o c ia t io n  en e rg ie s  ( a  C-H bond d is s o c ia t io n  energy/" 

in  the  hydrocarbon was assum ed). An u n c e r ta in ty  of +2 k .ca ls /m o le  

i s  quoted.
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AHf ( in  k .o a l/m o le ) C—X bond d is s .  'En.

« V k ) -  8.6 67 .8  k .o a ls /m o le

- 22 .1 66.5 " "

-  2.3 53 .4  " "

- 10.13 52.6 " "

A ta b le  g iv in g  th e  v ario u s values f o r  the bond d is s o c ia t io n  

energy in  tie thy l bromide i s  g iv en  below,

D(OH^"Br) k+oals/m ole Method Reference

4  71.5 E lec tro n  impact 121

70.1 E lec tro n  impact 74

67,8 The rmoc hem ical 126

67.4 Thermoo hemic a l 40

(67. 0) p y ro ly s is 39

66.4 E lec tro n  im]%iot 124

53.7 E lec tro n  impact 21

A value o f ab o u t 67 ,0  k .oals/m o le  would seem th e  most a p p ro p r ia te .
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APPARATUS MD mPW OM TM j PROGSDUBE,

1 .  D esc rip tio n  of th e  appara tus.

T his was a conven tiona l type  of flow system  in  which th e  flow  

of gas c o n li  be ad ju s te d  to  g ive  co n tac t tim es in  th e  r e a c tio n  

zone of from about 0*3 sec , up to  about 5 se c s . I t  i s  shown 

d iagram m atioally  in  f ig -  1 and was capable of evacuation  to  

10 mm Hg- p ressu re*  The r e a c ta n ts  were in je c te d  c o n tin u a lly , 

a t  p o in t L, in to  about 1 mm of argon c a r r ie r  g as . C irc u la tio n  

was by a m ercury d if fu s io n  pump, P, which had a l iq u id  a i r  

t r a p  on th e  low p re ssu re  sid e  and, on th e  h igh  p re ssu re  sid e  a 

l iq u id  a i r  t r a p  fo llow ed by a mercury d em iste r to  p rev en t th e  

d if fu s io n  of any mercury to  o th e r  p a r ts  of th e  system -

V a ria tio n  i n  co n tac t tim e was ob ta ined  by c i r c u la t io n  o f 

th e  gases v ia  a r e s t r i c t i o n  to  flow  c o n s ti tu te d  by one, or 

a com bination of th i 'e e , flow  c a p i l l a r i e s .  A fte r  s u ita b le  

c a l ib r a t io n ,  which i s  d esc rib ed  l a t e r ,  o b se rv a tio n s of th e  

McLeod gauge read in g s on e i th e r  s ide  of th e se  flow  c a p i l l a r i e s  

enabled th e  flow  r a te s  in  m oles/second to  be c a lc u la te d  and 

hence th e  co n tac t tim es deduced (see appendix l ) .

Large b u lb s  were p laced  a t  V ( f ig -  1 ) making th e  flow  system 

volume over 20 l i t r e s .  This vfas to  p reven t an observable drop 

in  p ressu re  in  th e  system due to  b leed in g  th rough  th e  m e tro s il  

sampling le a k  of th e  mass spectrom eter-
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Aa a n a ly s is  of p ro d u cts  of decom position was a v a ila b le ,  

a f t e r  s u i ta b le  c a l ib r a t io n ,  by t h i s  sampling of th e  gases a t  p o in t M.

The fu rnace  was of 1 .2 5  in .  d iam eter s i l i c a  tube of hea ted  

volume 280 ml. and could be h ea ted  to  above 800^0. I t s  d e ta i le d  

co n s tru c tio n  i s  d esc rib ed  by B arraclough ( l ) .

Temperature p r o f i l e s  along th e  fu rnace were drawn and th e  

p a r a l l e l  r e s i s to r s  a d ju s te d  to  smooth th i s  p r o f i l e  to  + 2 a t  

720°C (see f i g .  2 ) .

The fu rnace  volume was measured by removing th e  fu rnace  and 

measuring th e  volume of w ate r re q u ire d  to  f i l l  i t  between th e  

l im i t s  of th e  f l a t  p o r tio n  of th e  tem peratu re  profite»

Temperature co n tro l was ob ta ined  by use of a Sunvio type 

RT2 tem peratu re  c o n t ro l le r  which gave tem peratu re v a r ia t io n s  of no t 

more th an  j- 0 .5  C° a t  800°C. The fu rn ace  tem peratu re  was measured 

by a chrom el-alum el therm ocouple * This had been p re v io u s ly  

c a l ib ra te d  by B arraclough ( l )  a g a in s t th e  m elting  p o in ts  of pure t i n ,  

le a d  and z in c .

2 . I n je c t io n  of re a c ta n ts .

The re a c ta n ts  wore in je c te d  to g e th e r  a t  p o in t L ( f ig .  l )  in to  

th e  flow  system#. The in je c t io n ,  from a  r e s e rv o ir ,  was v ia  a 

s u i ta b le  f in e  c a p i l l a r y  and a neoprene diaphragm v a lv e  (see  f i g .  4 ) .  

The to luene  in je c t io n  r a te  was c o n tro lle d  by a  v /a ter b a th  surrounding 

th e  r e s e rv o ir .  The methyl bromide in je c t io n  valve v;as s im ila r .
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c o n tro l being  ob ta in ed  by a need le  valve between th e  r e s e rv o ir  

and in je c t io n  c a p i l la ry  (see f i g .  5)«

The argon was s to re d  in  th re e  3 l i t r e  bu lbs and rep ro d u c ib le  

q u a n t i t ie s  could be adm itted  to  th e  flow  system by means of a 

m anosta t.

?o r mass spectrom eter c a l ib r a t io n s ,  adm ission of methane 

and hydrogen to  th e  flow system could be gahed from a gas b u r e t te .  

For such c a l ib r a t io n s  c a lc u la b le  amounts of hydrogen or methane 

could be g r i t t e d  to  th e  flovf system in to  a knov/n p re ssu re  of argon . 

The whole v/as allow ed to  c i r c u la te  f o r  some tim e , u n t i l  a 

homogeneous gas m ixture was obtaned, befo re  read in g s were ta k e n .

The gas b u re t te  was em ptied by means of a T oepler pump in je c t in g  

s t r a ig h t  in to  th e  flow  system . The p re ssu re s  on th e  flct?  McLeods 

gave th e  argon p re ssu re  since  th e  d i lu t io n  of methane o r hydrogen 

was h ig h . Such a c a l ib r a t io n  i s  shown in  f ig u re  $, th e  read ings 

being  based on a measured argon s e n s i t iv i ty  as i s  u s u a l. The 

flow  system argon was used as th e  re fe re n c e . Reading of any 

subsequen tly  measured peak h e ig h ts  was always done w ith  an immediate 

re fe ren c e  to  th e  argon s e n s i t i v i t y  since t h i s  could  v ary  from day 

to  day and during  th e  day.

3* P u r i f ic a t io n  o f r e a c ta n t s .

Methyl Bromide su p p lied  by B.L.H. in  100 m l. ampoules was 

d i s t i l l e d  tw ice from -80°C to  a l iq u id  a i r  t r a p  (-1 8 0 °0 ), I t  was
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s to re d  in  a b lackened 5 l i t r e  bu lb  a ttach ed  to  th e  needle valve of 

th e  in je c t io n  system . I t s  p u r i ty  was checked on th e  mass 

spectrom eter*

Toluene. I t  i s  known th a t  p u r i f ic a t io n  o f to lu en e  by 

shaking w ith  su lp h u ric  a c id , d i s t i l l a t i o n  and c r y s t a l l i s a t i o n  s t i l l  

leàlsto  ir re p ro d u c ib le  gas k in e t ic  d a ta  (Sawarc (2))*

P a r t i a l  p y ro ly s is  tw ice a t  850^0 fo llow ed by f r a c t io n a l  

d i s t i l l a t i o n  from sodium y ie ld s  to lu en e  which g iv es  r e l ia b le  k in e t ic  

d a ta . Toluene p u r i f ie d  i n  t h i s  way was used -  th e  d e ta i l s  a re  

d escrib ed  f u l l y  by B arraclough ( l ) .

Argon. The c a r r i e r  gas ob ta ined  from a c y lin d e r  Y/as p u r if ie d  by

slow passage th rough  a -80°G t r a p  to  remove w ater and then  through

two successive  sodium tr a p s  h ea ted  to  300^0 to  remove tr a c e s  of 

oxygen. A mass spectrum  of th e  p u r i f ie d  argon v/as taken  to  check 

th e  f i n a l  p u r i ty .

Hydrogen Bromide was p repared  by dropping concentrded aqueous 

hydrobromic a c id  onto P^O^, drawing tho r e s u l t in g  vapour through a 

tr a p  a t  -20^0 to  remove w ater and th en  c o l le c tin g  th e  HBr in  a 

l iq u id  a i r  cooled t r a p .  The HBr vfas d i s t i l l e d  * from a «80°0 b a th  

to  a  -180^0 b a th  on th e  vacuum system and s to re d  in  a b lackened b u lb .

Methane. A sample of pure methane v-ras a v a ila b le  from N .G .L.,

T eddington. T his Y/as s to re d  ad jacen t to  a gas b u re t te  f o r  in je c t io n  

in to  the  flov/ system  as re q u ire d .
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Hydrogen v-ras p u r i f ie d  "by p ass in g  i t  over p la t in i s e d  a sb esto s  

a t  200°C to  remove oxygen and subsequent v/ater vras removed by a 

l iq u id  a i r  t r a p .

F resh  samples of a l l  re a o ta n ts  were alvrays used f o r  experim ents.

4". R eactant in je c t io n  c a l ib ra t io n .

Toluene in je c t io n # The c a l ib r a t io n  was c a r r ie d  out as fo llo w s . 

A th e rm o s ta t ic a l ly  c o n tro lle d  w ate r b a th  which was tho rough ly  

s t i r r e d  ac ted  as a co n s tan t tem peratu re  b a th  f o r  in je c t io n *  The 

b a th  was used in  th e  tem peratu re  range from 15^0 to  53^0 and 

tem pera tu res were measured to  w ith in  + O.l^G. The l in e  ca rry in g  th e  

to lu en e  vapour from th e  le v e l  of th e  w ater b a th  su rface  to  th e  

in je c t io n  p o in t vras h ea ted  to  about lOO^G to  ensure th a t  th e  w&ter 

b a th  c o n tro lle d  th e  in je c t io n  r a t e .  With about 1 mm argon in  th e  

flov; system, to lu e n e  was in je c te d  f o r  a reco rded  tim e through th e  

co ld  furnace and c o lle c te d  in  l iq u id  a i r  cooled t r a p s  s i tu a te d ;  

a f t e r  th e  fu rn a c e . The flow  system was then  evacuated  and th e  

to lu en e  d i s t i l l e d  over in to  p re v io u s ly  weighed c o l le c t io n  v e s s e ls .  

A fte r  rew eig h in g , th e  in je c t io n  r a te  in  moles p e r  second could be 

c a lc u la te d .

A graph could th en  be drawn of b a th  tem peratu re  a g a in s t moles 

p e r second of to lu en e  in je c te d .  Under th e  co n d itio n s  of 

in f e c t io n  th e  vapour p re ssu re  of to lu en e  i s  between about
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15 nun and 45 nm H g.; th e  r a te  of flow  th rough  a c a p i l la ry  i s  

p ro p o rtio n a l to  th e  d if fe re n c e  of th e  squares of th e  p re ssu re s  on 

e i th e r  s id e , and, s ince  th e  p ressu re  in  th e  flow  system i s  sm all 

compared w ith  th e  vapour p re ssu re  o f to lu e n e , th e  in je c t io n  r a te  

vfil]. he determ ined hy th e  to lu en e  vapour p re ssu re  i n  th e  r e s e rv o i r .  

Reference to  th e  C lausius-O lapeyron eq u a tio n , lo g  p = -L/R1 + c o n s ta n t, 

would th u s  suggest th a t  a p lo t  o f log  (m oles/second) a g a in s t th e  

r e c ip ro c a l  o f th e  h a th  tem pera tu re  would h e ,a  s t r a ig h t  l i n e .  This i s  

th e  case and th e  to lu en e  in je c t io n  c a l ib r a t io n  i s  ^ow n in  f ig u re  6 ,

Ifethyl Bromide in je c t io n . Storage was in  a 5 l i t r e  hu lh  and 

up to  1 atmosphere p re ssu re  since  th e  substance i s  gaseous a t  room 

tem p era tu re . I n je c t io n  was v ia  a s ta in le s s  s te e l  needle v a lv e . A 

mercury manometer gave an in d ic a t io n  of th e  in je c t io n  p re ssu re  which 

was v a r ia b le  from 0 to  30 cms Hg. A backing volume of 5 l i t r e s  

b efo re  th e  c a p i l la ry  b u ffe re d  any sm all f lu c tu a t io n s  in  p re ssu ra  

th rough  th e  needle v a lv e . As in  th e  case of to lu e n e , th e  methyl 

bromide was passed  f o r  a g iven  tim e and c o l le c te d  in  l iq u id  a i r  

t r a p s .  S ince methyl bromide b o i ls  a t  44.^0 a t  normal p re ssu re  i t  was, 

a f t e r  evacuation  of th e  system , d i s t i l l e d  over and d isso lv ed  in  a 

weighed q u a n tity  of e th an o l i n  which i t  i s  v ery  so lu b le . Revfeighing 

allow ed a graph of moles p e r  second in je c te d  a g a in s t in je c t io n  

p re ssu re  to  be drawn (see  f i g .  ? )•
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5 • Oali’bration of flow oapillarles.

Although B arraclough ( l )  had c a lih ra t ed th e  flow  c a p i l l a r i e s  

f o r  h is  work, i t  was thought d e s ira b le  to  r e c a l ib r a te  them in  the  

p re ssu re  range to  be used in  t h i s  re se a rc h  since  he had used 

somevfhat h ig h e r p re s su re s .

The se c tio n  of th e  flow  system con ta in ing  tho c a p i l l a r i e s  v/as 

i s o la te d  and argon was passed  through i t  in  th e  same d ir e c t io n  as 

under experim ental co n d itio n s  and the  flow  p re ssu re s  measured by 

means of th e  McLeod gauges. The appara tu s i s  à io im  i n  f ig u re  8. 

D elivery  of argon wa,s from a 50 m l, b u r e t t e , The l iq u id  a i r  tr a p  

removed any w ater p re sen t in  th e  argon and tho  flow  f a te  was 

a d ju s ta b le  by tap  T. The tim e tak en  ( t  S ee s .)  to  pass X m l, of 

argon gas a t  a Imov/n tem peratu re  and p ressu re  th rough a p a r t ic u la r  

c a p i l la ry  w ith  p re ssu re s  and ( in  mm Hg,) ac ro ss  th e  c a p i l la ry  

then  enables th e  flovf r a te  to  be c a lc u la te d ,

X % 275 X P /Argon flow  r a te  = m oles/soo.

where P =s p ressu re  of argon in  b u re tte

« atm ospheric p re ssu re  -  v f,v ,p , a t  T^K,

T room tem perature in  ^K,

Water vapour p re ssu re  d a ta  ?/as tak en  from stan d ard  ta b le s  (5 ) .  

By Meyer’s m o d ific a tio n  of P o is e u i l le ’s fo rm ula, th e  r a te  

o f flov/ through a c a p i l l a r y  i s  g iven  by:



FLOW CAPILLARY CALIBRATIONMoles/sec.xlO

No.2

No.l

10

No .4

(mm.Hg.)

2 . 0 3.0 4.0 5.0 6.00.0

FIG, 9



CIRCULATION PUMP FLOW RATE

(mm.Hg.)

1 .02

1 -00

0.98

0.96

0.94

0.92

0.90

300280260240200 220

Bath temperatureFIG. 10



CIRCULATION PUMP EFFICIENCY

Capillary T 
Capillary,. 4 
Capillary 2

mm.Hg
/N

60 Optimum
rate.

50

40

30

20

10

300280260240220200
_1Bath temperature



45
A

v/hero k  w i l l  "be co n s tan t f o r  a g iven  c a p i l la ry .  O ther l e t t e r s  ho.ve

t h e i r  u su a l s ig n if ic a n c e ,
2 2 2Then a p lo t  of (P^ -P^ ) =A P a g a in s t the  floiv r a te  as 

c a lc u la te !  above w i l l  serve as a c a p i l la ry  c a l ib r a t io n .  The r e s u l t s  

of th e se  esgperiments a re  shovm in  f ig u re

When more th a n  one c a p i l la ry  i s  used th e  t o t a l  flow  ra te  i s  th e  

sum of th e  flow  r a te s  f o r  each c a p i l l a r y .

6 , C irc u la tio n  Pump Plow R a te ,

The mercury d if fu s io n  pump f o r  c i r c u la t io n  of th e  gas th rough 

th e  flow  system was h ea ted  by a m olten m etal b a th  a t  200 -  300°G.

The e f f ic ie n c y  of such a pump v a r ie s  w ith  b o th  th e  b a th  tem peratu re  

and th e  p re ssu re  in  th e  system  (if). A ty p ic a l  v a r ia t io n  i s  shown 

in  f ig u re  10, By p lo t t in g  such graphs a t  d i f f e r e n t  p re ssu re s  of 

argon i t  i s  p o ss ib le  to  c o n s tru c t f ig u re  11 which shows th e  v a r ia t io n  

in  m etal b a th  tem peratu re  allow able befo re  th e  r a te  of the  flow  f a l l s  

by I t  was found th a t  changing the  flow  c a p i l l a r i e s  had l i t t l e

or no e f f e c t  on th e  maximum flow  r a te  tem p era tu re . Under 

experim ental co n d itio n s  th e  maximum flow  r a te  was always used as 

only under th e se  co n d itio n s  i s  th e  flow  r a te  s ta b le .



00

r4

M

H

rH

M



a

o

wI

to

to
CO

r4

(H



46

7* P ressu re  g ra d ie n t in  th e  flow  system .

The flov/ r a te  v/as doterm inod as d escrib ed  above and, s ince  i t  

v/as in ten d ed  to  use f o r  subsequent c a lc u la tio n s  th e  h igh  p ressu re  

read ing  of th e  flow  c a p i l l a r i e s  as a measure of th e  p re ssu re  w ith in  

th e  fu rn a c e , a d e te rm in a tio n  of th e  p ressu re  g ra d ie n t w ith in  th e  flov/ 

system was d e s ira b le ,  McLeod gauge attachm ents were th e re fo re  made 

a t  p o in ts  0 and D ( f ig .  21) and a t  p o in ts  R, A and B ( f ig .  l ) .  

Readings on th e  fu rnace  and bypass l in e s  were a lso  o b ta in ed .

The d a ta  f o r  about 1 imu (and 2 mm) t o t a l  p re ssu re  i s  shown in  

g ra p h ic a l form in  f ig u re s  12a and 12b. To avoid  confusion  on th e  

diagram  only  th e  d a ta  f o r  flow  c a p i l l a r i e s  2 and 4 a re  shown.

The McLeod read ing  p o in ts  a re  marked along tho  a b s c is s a .

The r e s u l t s  in d ic a te d  th a t  a co n s tan t percen tage in c re a se  f o r  

each c a p i l la ry  ap p lie d  to  th e  h igh  p re ssu re  s id e  read ing  of th e  flow  

c a p i l la ry  would give th e  p ressu re  w ith in  th e  fu rn a c e . The percen tage 

in c re a se  v/as independent of tho  t o t a l  p ressu re  w ith in  tho  l im i t s  

u sed . The average v a lu es used in  c a lc u la tio n s  were as fo llo v /s :-

Plow C a p illa ry  % In c rease  Required

No. 1 14 .0

No. 2 25.0

No. 4  3 .0

Nos. 1 + 2 + 4  32.0
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The r e s u l t s  a ls o  showed th a t  th e  p ressu re  g ra d ie n t w ith in  th e  

fu rnace  was sm allj t h i s  i s  a d e s ira b le  fe a tu re  f o r  accuracy of 

c a lc u la t io n s .

Experim ents perform ed w ith  th e  fu rnace ho t showed the  same 

p re ssu re  d i s t r ib u t io n ,  id e n t ic a l  p lo ts  being ob tainod  f o r  tho  

fu rnace  cold  and a t  a ty p ic a l  v/orking tem p era tu re .

In  l a t e r  experim ents where a l in e d  fu rnace was used f o r  

h e te ro g e n e ity  t e s t s  th e  same p re ssu re  d i s t r ib u t io n  was 

ex p erim en ta lly  observed,

8 . The Mass Spectrom eter.

The in s tru m en t, a conven tional 60^ N ier (5 ) d es ig n , was 

co n s tru c ted  in  t h i s  departm ent. F u ll  d e ta i l s  a re  g iven by 

Davidson (6 ) , The e le c t ro n ic  power su p p lies  however had aged and 

become u n s ta b le  and were re c o n s tru c te d , care being  taken  in  th e  

red es ig n  to  ensure maximum s t a b i l i t y  and r e l i a b i l i t y .  A box 

diagram of th e  e l e c t r i c a l  requirem ents of a mass spectrom eter i s  

shown in  f ig u re  13#

Tho E.H .T. power supply to  th e  io n  gun and th e  magnet c u rren t 

power supply wore b a s ic a l ly  o f th e  same design  as p re v io u s ly .

The emphasis in  re c o n s tru c tio n  was on th e  under-running  of 

component p a r ts  and th e  in c o rp o ra tio n  of a la rg o  number of r e a d i ly  

a c c e ss ib le  t o s t  p o in ts  on th e  sid e  of tho  u n i t ,  A fte r
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c o n s tru c tio n , when th e  u n i t  was fu n c tio n in g  c o r re c t ly ,  n o te s  wore 

tak en  of th e  p o te n t ia ls  of a l l  im portan t re fe re n ce  p o in ts  on th e  

c i r c u i t ,  p a r t i c u la r ly  co n s tan t v o ltag e  l in e s  and g rid -o a th o d e  

p o te n t ia ls  on th e  v a lv e s . Where p o ss ib le  th e  c i r c u i t  param eters had 

been arranged  such th a t  th e  v a lv es  were o p era tin g  n ea r to  th e  m iddle 

of th e  s t r a ig h t  l in e  p a r t  of th e  valve  c h a r a c te r i s t i c .

The focus box was a v o ltag e  d iv id e r  to  supply v a rio u s  p o te n t ia ls  

to  th e  io n  gun p la te s .  The magnet c u rren t co n tro l was e i th e r  manual 

o r au to m atic . The p rev ious autom atic c o n tro l had been by an e l e c t r i c  

motor d riv in g  a 10 tu rn  p o ten tio m o ter a t  vary ing  speeds and in  

vary ing  ran g es . Tho new c i r c u i t  was an e n t i r e ly  e le c t ro n ic  T e lle r  

Sweep c i r c u i t  w ith  v a rio u s  scanning speeds as re q u ire d . The magnet 

cu rren t was v a r ia b le  from  about 6 mA up to  about 150 mi, th e  l a t t e r  

corresponding to  m ass/charge r a t io s  of about 250 f o r  th e  norm ally  used 

a c c e le ra tin g  p o te n t ia l  of 184*0 v o l t s ,

A new power supply was co n s tru c ted  to  feed  th e  c o n tro l valve 

h e a te r  in  th e  lÆ iller Svæep c i r c u i t ,  th re e  valve h e a te rs  i n  th e  D.C. 

a m p lif ie r  and tho DBM 8A e le c tro m e te r  valve  h e a te r .  These f iv e  valve 

h e a te rs  were fe d  in  s e r ie s  from t h i s  h ig h ly  s ta b i l i z e d  power supply 

which a lso  fe d  one o r two re fe ren ce  p o te n t ia ls  to  th e  a m p lif ie r  and 

magnet food c i r c u i t s .  The D.G. a m p lif ie r  (? ) was a 100^ n eg a tiv e  

feedback type vd.th a n p l i f io a t io n  s ta g e s  in c o rp o ra tin g  th e  e le c tro m e te r 

and two 12 SO 7 v a lv e s . The c i r c u i t ,  when c o r re c t ly  a d ju s te d
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(whioh was a d e l ic a te  o p e ra tio n ) , gave an output v/hioh was l in e a r  

up to  about 15 v o l ts  and i t  could be used on one of th re e  h igh  value 

in p u t r e s i s to r s  of 2 x 1 0 ^ \3  x 10^^ or 5 x 10^ ohms. The a m p lif ie r  

fe d  th e  c o l le c to r  s ig n a l to  a 1 second Honeywell-Brown H lec tro n ik  

re c o rd e r  v ia  an autom atic range ci’iange device which was tr ip p e d  by 

m icrosw itches f i t t e d  to  th e  re c o rd e r .

l 'o r  th e  m ajor p a r t  of the  re se a rc h  however th e  B.C. a m p lif ie r  

was rep laced  by an Ekco v ib ra tin g  reed  E lec trom eter type N616B-4 

T his u n i t  w ith  i t s  a s so c ia te d  decade v o ltag e  u n i t  N659,4 was id e a l ly  

s u ite d  to  observing a backed o f f  ou tpu t s ig n a l from th e  mass 

spectrom eter ( th i s  was a l a t e r  requirem ent of th e  re se a rc h  and i s  

d esc rib ed  under run  p ro ced u re ). The e lec tro m e te r  c o n s is ts  of a 

head u n i t  which i s  sea led  and d e s ic c a te d  and co n ta in s  th re e  in p u t 

r e s i s to r s  of 10^ , 10^^ and 10^^ ohms s e le c ta b le  by push b u tto n . This 

u n i t  a lso  co n ta in s  a v ib ra t in g  reed  ty p e  dynamic c a p a c ito r  o p era tin g  

a t  a frequency  of about 45O c .p . s .  The r e s u l ta n t  4 .C , s ig n a l i s  

am p lified  and r e c t i f i e d  and d isp lay ed  on a m eter on. th e  in d ic a to r  

u n i t  and fed  to  th e  re c o rd e r .

The e lec tro m e te r  h as , in  i t s  most s e n s it iv e  co n d itio n , a  f u l l  s c a le
^15read ing  f o r  a c u rre n t of 3 .0  x 10 amp, Ih en  p ro p e r ly  mounted 

(and considerab le  ca re  i s  n ecessa ry ) th e  s t a b i l i t y  observed on th e  

in strum en t was 0,05 mV. v a r ia t io n  on th e  10^^ ohm in p u t r e s i s t o r  

w ith  the in p u t sw itch  a t  " ion  chamber f a s t "  o p e ra tio n  p o s i t io n .
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The head u n it  in  th e  p re se n t se t-u p  was f ix e d  r ig id ly  to  th e  bottom

of the  mass spectrom eter tube w ith  no p o s s ib i l i t y  of f le x in g  between

the  c o l le c t io n  system and th e  u n i t ,  G reate r s t a b i l i t y  \yas a v a ila b le

on the  "vo ltage" p o s i t io n  bub a t  th e  expense of response tim e . The
10instrum ent was found to  bo most u se fu l on the  10 ohm r e s i s t o r  f o r  

t h i s  experim ental arrangem ent.

The f ila m e n t supply was a conven tional c i r c u i t  o p e ra tin g  th e  

f ila m e n t on A ,0 , a t  about 6 v o l ts  and 5 nmps and was s ta b i l iz e d  on 

th e  t o t a l  e le c tro n  em ission c u rren t from th e  f i la m e n t. . Tha c i r c u i t  . 

was f lo a t in g  a t  about 2000 v o l ts  fed  from the  E.H.T, supply  v ia  th e  box.

The e a r ly  experim ents d esc rib ed  in  th e  fo llo w in g  se c tio n s  were 

performed w ith  th e  c i r c u i t s  as d escrib ed  above bu t w ithou t th e  Kkoo 

e le c tro m e te r , ?o r th e  l a t e r  and major p a r t  of th e  re se a rc h  however 

whore i t  was n ecessa ry  to  back o f f  a peak and reco rd  sm all changes 

in  t h i s  peak h e ig h t, co n s id erab le  improvements wore f i r s t  of a l l  

n ecessary .

Backed o f f  peaks a t  f i r s t  showed marked i n s t a b i l i t y  and q u ito  

pronounced d r i f t  w ith  tim e. T his was suspected  to  be e l e c t r i c a l  

tro u b le  cud one e a r ly  o b se rv a tio n  was a c o r r e la t io n  of th e  f lu c tù ^ t ib n s  

w ith  t r a p  c u rre n t (the  io n iz in g  e le c tro n  beam c u r re n t)  i n s t a b i l i t i e s .

A new c i r c u i t ,  based  on t r a p  cu rren t s t a b i l i z a t io n ,  was 

co n s tru c ted  to  e lim in a te  th e  problem . The e s s e n t ia l  d e ta i l s  a re  

shown in  th e  c i r c u i t  diagram in  f ig u re  14, The whole c i r c u i t  again  

f l o a t s  a t  about 2000 v o l t s ,  fe d  in  from th e  box l in e  which i s  r a is e d
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to  t h i s  value hy th e  E*H*T, power supply* V oltages marked on th e  

diagram are  r e la t iv e  to  th e  zero v o ltag e  re fe ren ce  l in e  shown* E a o i l i t io s  

were a v a ila b le  a lso  f o r  read ing  t r a p  cu rren t (on two ranges of l{-00 and 

200 mioroamps 3?*S.B*) and t o t a l  em ission cu rren t (4 OO mioroamps and 

2mA F .S .D *). Tho energy of th e  io n iz in g  e le c tro n  beam was a d ju s ta b le  

from about 8 to  70 eV by vary ing  th e  box to  f ilam en t v o lta g e . A tr a p  

cu rre n t of 20 mioroamps was a v a ila b le  f o r  appearance p o te n t ia l  work i f  

required*

The r e s u l t in g  peak s t a b i l i t y  was markedly improved over th e  o ld e r  

c i r c u i t  bu t was s t i l l  no t good* The magnet and E.H.T. c i r c u i t s  wero 

examined f o r  A.O* r ip p le  w ith  an o sc illo scope*  The magnet in  p a r t ic u la r  

showed the  presence of co n sid erab le  R*P. which was tra c e d  to  one of 

th e  power supplies*  This along w ith  ripp le , on th e  iosn gun p la te s  

was reduced by ju d ic io u s ly  p laced  c a p a c ito rs . A m o d ifica tio n  which 

f u r th e r  reduced r ip p le  in  th e  io n  gun i s  next d e sc rib ed .

The o r ig in a l  method of vary ing  th e  H.T, was to  move th e  e a r th  

p o in t up from th e  bottom  of a cha in  of r e s i s to r s  ac ro ss  which was th e  

2000 v o lt  output d ep a rtu re  from ea rth iig  th e  bottom  in tro d u ced  

r ip p le s  a t  th e  to p . Further^  th e  v a r ia t io n  in  th e  H.T. adjustm ent 

r e s u l te d  in  a v a r ia t io n  of th e  c u rren t through th e  chain  of r e s i s to r s .

This was f e l t  to  be u n d es irab le  so f a r  as good s t a b i l i t y  was 

concerned. The c i r c u i t  was th e re fo re  m odified to  th a t  shown in  

f ig u re  15 . The ganging of a l l  co n tro ls  was f o r  th e  purpose of
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le av in g  a co n s tan t v o ltag e  ac ro ss  th e  focus box a t  a l l  tames bu t 

allow ing th e  le v e l  to  be ad justed*  This meant th a t  peaks could be 

observed a t  o th e r  v o lta g e s  w ithou t r e s e t t in g  a l l  th e  focus box 

c o n tro ls .

M odifications were a lso  made to  th e  io n  gun and th e  v o lta g es  to  

th e  v ario u s p la te s .  The f i n a l  arrangem ent i s  shown w ith  r e la t iv e  

p o te n t ia ls  in  f ig u re  16 . A lthough th e  r e p e l le r  v o ltag e  adjustm ent 

gave marked changes in  s t a b i l i t y  and s e n s i t iv i ty  (see f i g .  1?) i t  was 

found th a t  good s t a b i l i t y  on our in strum en t was ob ta ined  w ith  the  

r e p e l le r  a t  box v o lta g e . The e x i t  s l i t s  and c o l le c to r  s l i t s  were 

m ain tained  a t  0.008 in c h e s .

The o v e ra ll s t a b i l i t y  of th e  magnet and l .H .T , power su p p lie s  was 

measured a t  about 1 p a r t  in  10 ,

One f i n a l  improvement in  s t a b i l i t y  was found by a d ju s tin g  th e  

h e a te r  v o l ts  on th e  main mass spectrom eter th re e  s tag e  mercury 

d if fu s io n  pump. The use of l iq u id  a i r  on th e  main t r a p  a lso  gave 

improved s t a b i l i t y  when th e  s ig n a ls  from”0onden s ib le ” substances 

were being observed.

Ydien f i n a l l y  tuned  by th e  stan d ard  procedure th e  performance of

th e  mass spectrom eter v;as checked f o r  re s o lu t io n  by scanning th e

Hg^^ reg io n  of th e  mass spectrum  and by a p lo t  of th e  peak shape.
1 w

The fh a l  re s o lu t io n  was about^ZOO. T ypical r e s u l t s  a re  shown in  

f ig u re s  18 and 19.
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9, E arly  G ]^erim ent8.

A p re lim in a ry  in v e s t ig a t io n  in to  th e  p y ro ly s is  of methyl bromide 

in  the  presence o f to lu en e  was perform ed as fo llow s* A fte r  th e  mass 

spectrom eter power su p p lie s  had been allovfed to  warm up and th e  

re a c ta n ts  had flow ed f o r  some tim e to  season th e  fu rnace v /a ll, some 

d a ta  on th e  r a te  of decom position was obtained* The m ixture of 

methyl bromide and to lu en e  w ith  about a 20 fo ld  excess of th e  l a t t e r  

were flowed th rough th e  fu rnace  in  about 1 mm p re ssu re  of argon 

c a r r ie r  g as . Condensible p roducts  and unused r e a c ta n ts  were f ro s e n  out 

in  l iq u id  a i r  t r a p s  p laced  a t  a p o in t in  th e  flow  l in e  a f t e r  th e  

fu rn a c e . During th e  r e a c t io n  read in g s were tak en  a t  re g u la r  in te r v a ls  

of the  16^\ 2^ and 40^ peak h e ig h ts  on an a p p ro p ria te  g r id  in p u t 

r e s i s to r ,  the  l a t t e r  always being  accompanied by a p ressu re  

read ing  to  give th e  mass spectrom eter s e n s i t iv i ty .  I t  was assumed 

th a t  the  methane and hydrogen as ”non-condensib le” gases co n trib u te d  

n e g lig ib ly  to  th e  p ressu re  w ith in  th e  flow system and so th e  c a r r i e r  

gas p ressu re  could be used as th e  s e n s i t iv i ty  re fe re n c e . These d a ta  

a f t e r  su b tra c tin g  th e  mass spectrum  background and a f t e r  re fe ren ce  

to  th e  c a l ib r a t io n  graphs ( f ig .  5) could be converted  to  values of 

moles of methane o r moles of hydrogen produced p e r  second during  th e  

r e a c t io n . An average value over th e  time of th e  fun  of the  r a te  

of p roduction  of th e  above gases was used . The run  was allow ed to  

proceed f o r  about I 5 to  60 m inutes depending upon th e  tem peratu re 

being  used .
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A "blank run  c a r r ie d  out id e n t ic a l ly  and im m ediately a f t e r  th e  

above, was n ex t perform ed w ith  to lu en e  alone flow ing  th rough th e  

furnace# Again b o th  hydrogen and methane were reco rd ed  a t  re g u la r  

in t e r v a l s .  A ty p ic a l  r e s u l t  i s  shown in  f ig u re  20#

The d if fe re n c e  in  th e  r a te  of methane p ro d u c tio n  between a b lan k  

and th e  corresponding run  should g ive th e  amount of methane d eriv ed

from th e  GH^Br re a c t io n  i . e .  from th e  re a c tio n ;
D

GH  ̂ 4- excess to lu e n e  --------  ̂ GĤ  + benzyl-

This methane p ro d u c tio n  r a te  may th en  be converted  in to  a 

percen tage decom position and an ap p ro p ria te  f i r s t  o rd er r a te  

co n stan t determ ined . The co n tac t tim e was c a lc u la te d  by th e  form ula 

g iven  a t  th e  beg inning  of Appendix 1 . In  th e se  experim ents a l l  th e  

gases flowed down e i th e r  th e  bypass l in e  or th e  fu rnace  l in e  so no 

c o rre c tio n s  vrere n ecessa ry  f o r  th e  f ra c t io n s  p ass in g  down th e  two 

l in e s  as in  th e  l a t e r  p a r t  of th e  research#

S everal runs were perform ed in  th e  range 700 to  800°G. Gontact 

tim es were of th e  o rd er of 2 se c s , and p a r t i a l  p re ssu re s  were about 

0 .2  mm to lu en e  and 0.01 mm m ethyl brom ide.

However because to lu en e  decomposes a t  th e se  tenqperatures and i s  

i n  excess th en  th e  d if fe re n c e  in  GĤ  p roduction  between a blanlc and a 

run  i s  n e c e s s a r i ly  small# Toluene p y ro ly s is  dot'a i s  o .vailab le from 

Smith (8 ) . The r a te  of decom position of to lu en e  i s  based  o n 'th e  

t o t a l  number of moles of gaseous p ro d u c ts . Thus th e  b lank  d a ta  may
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be used to  o b ta in  to lu en e  p y ro ly s is  d a ta  and compare i t  vfith 

o th e r w orkers, This would a lso  to  some ex ten t a c t as a check 

on th e  method being  u sed . Such r e s u l t s  were i n  f a i r  agreoDient vd-th, 

f o r  example. Smith,

I t  was found th a t  th e  r e p ro d u c ib i l i ty  of a percen tage 

decom position f o r  methyl bromide was poor, r e s u l t in g  in  la rg e  sp reads 

of any c a lc u la te d  r a te  c o n s ta n ts . ' The o rder of magnitude of th e  

r a te  co n s tan ts  was, hov/evor, i n  approxim ate agreement w ith  

pub lished  d a ta  (9 ) .  I t  was f e l t  th a t  one d i f f i c u l t y  in  o b ta in in g  

r e l ia b le  and rep ro d u c ib le  beho.viour was th e  f a c t  th a t  th e  CH  ̂ or 

produced were no t measured when homogeneously d is t r ib u te d  throughout 

th e  flow  system , a lthough one would no t expect t h i s  to  account 

com pletely f o r  th e  spread  observed.

No d if fe re n c e  in  r a te  of hydrogen p ro d u ctio n  between a b lank  

and a run was found and f re q u e n tly  th e  blanlc gave a s l i g h t ly  h ig h e r 

r a te  of p ro d u c tio n  th an  th e  ru n . This was co n tra ry  to  th e  o b se rv a tio n s 

of Szvfaro ivho suggested  th a t  an observed in c re a se  in  hydrogen 

p roduction  in  h is  experim ents when m ethyl bromide was p re se n t was due 

to  su b s id ia ry  side  r e a c t io n s .

I t  was th e  above d i f f i c u l t i e s  which prompted th e  devo tion  of 

some tim e to  th e  p o s s i b i l i t y  of fo llow ing  th e  r e a c t io n  by m easuring 

p roduction  of HBr (m/e « 80^) on th e  mass spec trom eter; The OĤ  

and HBr produced by th e  r a d ic a ls  OHÿ' and Br- re a c tin g  w ith  th e  

to lu en e  should bo p re se n t in  éq u iv a len t amount, A met re s  i l  le a k
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le ad in g  d i r e c t ly  in to  th e  io n iz a t io n  'box was in s e r te d  c lo se  to  th e  

fu rn ace  e x i t  such th a t  e i th e r  bypass o r  fu rnace _ gas could be flow ed 

over i t*  I t  was n ecessa ry  to  p lace  a «80^(3 b a th  b e fo re  th e  le a k  in  

o rd er to  suppress th e  la rg e  to lu en e  peaks which spread  in to  th e  80* 

reg io n  of th e  mass spectrum . There was subsequently  no change in  th e  

80* peak h e ig h t on sw itch ing  from th e  furnace to  th e  b ypass. I t  

could  only be concluded a t  t h i s  p o in t th a t  mass number 80* produced 

by th e  p y ro ly s is  was balanced  by lo s s  of 80* due to  drop of methyl 

bromide co n c en tra tio n  on th e  fu rnace  l in e  (CH^Br alone g ives peaks in  

th e  7 9 * ---- )82*  reg io n  of th e  spectrum  ( lO )) .

Attem pts to  se p a ra te  HBr* due to  HBr, and HBr* duo to  CH^Br,by 

adjustm ent of th e  energy of th e  io n iz in g  e le c tro n  beam in  th e  io n  gun

were unsuccessful*. Measurements of th e  appearance p o te n t ia l  of HBr* 

from CH^Br and of HBr* from HBr gave v alues on our in strum en t w ith in  

l e s s  th an  0 .5  eV of one an o th e r . The l i t e r a t u r e  ( l l )  suggested th a t  

th e  two should d i f f e r  by seme 3 -A eV. One could only assume th a t  in  

our io n  gun th e  OH^Br was d if fu s in g  to  th e  ho t f ila m e n t where ̂

This HBr produced would th en  g ive th e  same appearance 

p o te n t ia l  as any HBr adm itted  from o u ts id e . The f a c t  th a t  th e  

i ^ i o  HBr*/OH^Br*, w ith  b o th  ions coming from CH^Br, was ’reduced 

when a -180^0 b a th  rep la c ed  th e  -80^0 b a th  on th e  mass spectrom eter
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main trap , supported the above conclusion.

Various cold  babhs ( ^ )  were made up to  g ive a temperature 

of about -120^0 to  -140^0 in  an attempt to  freeze  down the CĤ Br but 

l e t  the HBr pass through. I t  vfas found that the methyl bromide v/as 

com pletely suppressed at ^125^0 btct &t t l i is  temperature the HBr* peak 

was extremely sm all and no change could be observed in  i t s  magnitude 

by further reduction in  temperature. I t  would be a reasonable 

deduction that the r e la t iv e ly  sm all amount of HBr produced would be 

soluble in  the largo excess of toluene condensing in  the cold trap .

I t  was these d i f f i c u l t i e s  which prompted the development o f the 

method which was f in a l ly  used to  fo llow  the rea ctio n . This i s  

described in  the fo llow ing se c t io n s ,

10 . Apparatus m od ifica tion s.

I t  i s  advanto.geous to  fo llow  a reaction  by observing the f a l l  in  

concentration of the rea cta n ts. In th is  way one rea d ily  obtains a 

percentage decomposition without re ly in g  on a certa in  reaction  

stoich iom etry, and the importance o f any side reaction s i s  elim inated, 

The inherent d i f f i c u l t i e s  however are in  measuring a small change 

in  a r e la t iv e ly  large concentration of reactant and in  sw itching  

from a %ypass" to  a "furnace" reading without upsettin g  the flow  

con d ition s,

Some time was devoted to  try in g  to  use tvfo m etrosil le a k s , one 

in  the furnace l in e  and the other in  the bypass l in o .  Since i t



w

I
i§
0
5w

1
s

eM

0M

1
I
ê
§M
§
I

O•H
•PCjtH
cS
0I—c
a>
Ücd
;
U1
01 
(d Pi 
%  
W‘

03

03

O

03

O 00

00

Ô

CO

6

6

03

6

o
6

0
01
010k
P i

I

03

Ô
2



SAMPLING SYSTm.
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— > Trap y
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le a k .

FIG. 22

 ̂ Flow l in e
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was im possib le  to  arrange equal leakage r a te s  th e  h ig h e r  read ing  on 

th e  output re co rd e r  was reduced e l e c t r i c a l l y  to  be equal to  th e  lower.

Experim ents, u sing  argon, to  determ ine the  le a k  r a t io  le d  to  th e  

f in d in g  th a t  th e  r a t i o  v a r ie d  w ith  th e  p ressu re  of gas over th e  le a k s ,  

(see f i g .  21 )• The method of H alstod  and N ier ( l3 )  was used to  base a 

c a lc u la tio n  on flow  behav iour th rough  two mass spectrom eter v iscous 

le a k s . This le a d s  to  th e  r a t io  of th e  io n  c u r re n ts  being  rep re se n ted  

by an equation

(k + k« ' 0  j_ 2ÿc'P + k* ' J
[  25k' ' + k » ' « * ^ ^ 2 j

where i s  th e  p re ssu re  i n  th e  flow  system , ^  i s  th e  v is c o s i ty  of 

th e  gas of m olecular w eigh t, M, The v a rio u s  k^s are  flow  co n stan ts  

which depend upon se v e ra l f a c to r s  e .g .  geometry and tem p era tu re . 

These d i f f i c u l t i e s  le d  to  a design  of appara tus in c o rp o ra tin g  a 

s in g le  le a k . The ap p ara tu s  in  i t s  f i n a l  foriB i s  shown i n  f ig u re  22. 

The rem ainder of th e  flow  system i s  as shown in  f ig u re  1 . The gases 

a re  allow ed to  flow  down b o th  ro u te s  s im u ltan eo u sly , Bcmpling of 

fu rnace  gas o r bypass gas i s  done by sim ply moving th e  s te e l  b a l l s  

to  t h e i r  o th e r se a tin g s  w ith  a magnet.

The mass spec trom eter was a t  f i r s t  very  slow to  respond to  

changes, b u t t h i s  d i f f i c u l t y  was overcome by th e  use o f wide bore 

g la s s  tub ing  from th e  sampling p o in t to  th e  mass spectrom eter head . 

This a l t e r a t i o n  b rought about the  need fo r  a s p e c ia l ly  designed
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la rg e  boro s ta in le s s  s t e e l  valve in  t h i s  l in e  f o r  use i n  is o la t in g  

th e  mass spectrom eter when adm itting  a i r  to  th e  flow  system . The 

valve c o n s tru c tio n  i s  ûm m  i n  f ig u re  23. Tho diagram  i s  not to  sca le  

b u t th e  main c o n s tru c tio n a l d e ta i l s  a re  n o ted  in  th e  f ig u re *  The 

sampling l in e  was a lso  le d  r ig h t  in to  th e  box of th e  io n  gun, i i f t e r  

th e se  m o d ifica tio n s th e  response was alraost immediate and successive  

read in g s of a p a r t i c u la r  peak could be qu ick ly  o b ta in ed . The change 

in  read ing  between th e  bypass and fu rnace l in e s  d iv id ed  by th e  bypass 

read ing  g iv es  th e  f r a c t io n  decomposed.

In  o rd e r to  observe th e  sm all change in  th e  r e a c ta n t  p a ren t peak 

a t  m/o » th e  ou tpu t s ig n a l to  the  re c o rd e r  was backed o ff  by th e  

Ekco v o ltag e  decade u n i t .  For example, i f  th e  peak h e ig h t of $6* 

f o r  a p a r t ic u la r  in p u t r e s i s t o r  v/as 3#0 v o l ts ,  in s e r t io n  of 2,970 

v o l ts  baoldlng o ff  from th e  above u n i t  th en laav es th e  re c o rd e r  pen a t  

th e  top  o f a 0 ——430 mV s c a le ,  A change in  read in g  of th e  f u l l  

sca le  le n g th  (lO in c h es)  th en  re p re se n ts  a  1^ decom position of th a t  

su b stan ce .

The tr a p s  X and Y were i n i t i a l l y  h e ld  a t  -80°G to  suppress the  

to lu en e  peaks in  th e  mass spectrom eter bu t under th e se  co n d itio n s 

apparen t percen tage decom positions were in d ic a te d  when th e  furnace 

was a t  room tem p era tu re . T his was proved to  bo due to  e i th e r  (a) 

siToall d i f f e r e n t  amounts o f m ethyl bio mide d is so lv in g  in  th e  m olten 

to lu en e  in  th e  t r a p s  o r (b ) r e la t iv e  d if fe re n c e s  in  th e  e f f ic ie n c ie s  

of th e  two #"89°G b a th s  o r a com bination of tho two. I t  was th u s
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found n ecessa ry  to  run  ? /ith  no t r a p s  a t  a l l  between th e  fu rnace 

and tho m e tro s il and allow  every th ing  to  flow  over th e  m e tro s il 

le a k , M, A more e f f i c i e n t  way of mixing the  gases b e fo re  th ey  

reached  th e  fu rnace was a ls o  in tro d u ce d .

Subsequent exam ination of th e  96^ peak shov/ed zero decom position

w ith  tho  fu rnace a t  room tem p era tu re . A scan in  88^----- > $6^  reg ion

of th e  mass ^ e c tru m  showed th a t  th e  la rg e  to lu en e  peaks, a lthough  

tend ing  to  spread , d id  n o t in te r f e r e  w ith  96"**, th e  p a ren t peak of 

methyl brom ide.

The backed o ff  s t a b i l i t y  of th e  argon peak was b e t te r  than

0 • IS/o ,  .

Under experim ental co n d itio n s a l iq u id  a i r  t r a p  on th e  mass 

spectrom eter in c re a se d  th e  sh o rt term  s t a b i l i t y  of 96*** to  0, 05^*

11. F u rth e r  c a l ib r a t io n s .

A c e r ta in  p re ssu re  g ra d ie n t e x is ts  from G to  D ( f ig .  22) and 

th e re  should\.(if-^.K-is. r e l a t i v e l y  n ea r to  D, though n o t n ea r enough 

to  allow  any a ig n if io a n t back d if fu s io n )  be v i r t u a l ly  th e  same gas 

p re ssu re  over M w hether th e  gas a r r iv e s  th e re  v ia  th e  fu rn ace  l in e  

or v ia  th e  bypass l i n e .  Assuming good mixing a t  G th e n , 

a lthough  d if f e r e n t  numbers of moles o f gas flow  v ia  th e  d i f f e r e n t  

ro u te s , th e  p a r t i a l  p re ssu re s  of each re a c ta n t should be th e  same 

f o r  b o th  p a th s f o r  a  co ld  fu rnace  w h ils t in  th e  case of a hot 

fu rnace i t  w i l l  g ive a low er read ing  than  the  bypass and th u s allow
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th e  ex ten t of th e  decom position to  he c a lc u la te d .

The i n i t i a l  c a l ib ra t io n s  of to lu en e  and m ethyl bromide in je c t io n  

were f o r  t o t a l  moles p e r second in je c te d . Since we allow  the  gas to  

d is t r ib u te  f r e e ly  between th e  two ro u te s , th en  i t  i s  n ecessa ry  to  know th e  

r a t i o  in  which i t  d i s t r ib u te s  in  o rd er to  c a lc u la te  th e  moles p e r  

second of r e a c ta n t  passing  th rough th e  fu rn a ce , This l a t t e r  f ig u re  

i s  needed f o r  th e  c a lc u la tio n  of co n tac t tim es (see Appendix l ) ,

Toluene in je c te d  in to  argon was c o lle c te d  in  tr a p s  X and Y (fig#

22) from which i t  could be d i s t i l l e d  over in to  weighed co n ta in e rs  

( f i g .  2A). Grreased ta p s  were avoided where p o ss ib le  and m ag n e tica lly  

opera ted  s t e e l  b a l l s  were used in s te a d . One would expect th e  r a t i o  

o f fu rnace to  bypass gas to  vary  w ith  fu rnace tem peratu re and t h i s  

in  f a c t  was th e  c a se ,b u t because s l ig h t ly  in c o n s is te n t r e s u l t s  were 

a t  f i r s t  being  o b ta in ed ;th e  p resence of a p re ssu re  e f f e c t  was 

d iscovered:nam ely th a t  a t  co n s tan t tem perature th e  f r a c t io n  passin g  

through th e  fu rn ace  v a r ie d  w ith  bo th  tho  p re ssu re  in  th e  flow  

system and w ith  th e  flow  c a p i l l a r y  in  u se . The l a t t e r  e f f e c t  can 

only be a t t r ib u te  d to  some change in  flow  c h a r a c te r i s t ic s  of th e  gas .

The r a t io s ,  ob ta ined  f o r  fu rn ace  te inperatu res of from 700 -  800°0, 

wore then  c a lc u la te d  a t  1 mm p re ssu re  and a lso  a t  vary ing  pressure s 

a t  a  co n stan t tem pera tu re  of 1018^K, At th e  h ig h e r  tem peratu res 

th e  to lu en e  decomposes to  some e x te n t so allow ance was made f o r  th e  

l o s s .  Percentage decom position d a ta  on to lu en e  was a v o ila b le  from 

Smith (8 ), and c o rre c tio n s  were a p p lie d . Those c o rre c tio n s  were



GAS DISTRIBUTION.
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WGll within the limits of any exporimental error at all hut the 
highest temperatures•

The g ra p h ic a l r e s u l t s  a re  shown in  f ig u re s  25 and 26# T abulated  

r e s u l t s  a re  i n  Appendix H # Reference to  b o th  of those  graphs i s  

th e re fo re  needed in  o rder to  c a lc u la te  the  re q u ire d  f r a c t io n  of t o t a l  

gas passing  th rough  th e  fu rn a c e .

In  o rd er th a t  th e  d if fe re n c e  between th e  fu rnace  and bypass 

read in g s  d iv id ed  by th e  bypass read ing  should be equal to  th e  

f r a c t io n  decomposed, i t  i s  e s s e n t ia l  th a t  a p lo t  of v o l ts  9b 

ag a in s t th e  p a r t i a l  p ressu re  o f methyl bromide should be a s t r a ig h t  

l i n e ,  assuming th a t  th e  mass spectrom eter s e n s i t i v i t y  does, no t v a ry  

over th e  d u ra tio n  of th e  run# T his graph i s  diown in  f ig u re  27 

which e x h ib its  good l i n e a r i t y .  A ll param eters were h e ld  co n s tan t 

w ith  th e  excep tion  of th e  methyl bromide in je c t io n  p re s su re . Argon
Q

peak was recorded  on th e  10 ohm in p u t i o s i s  to r ,  methyl bromide 

was on th e  10^^ ohm r e s i s t o r ,
•n

The in je c t io n  r a te  most commonly used was between 1 .0  x  10"^^
-72 ,0  X 10 moles p e r  second,

1 2 , T yp ical run procedure.

The mass spectrom eter power su p p lie s  were sw itched on and 

allow ed to  warm up, S o jid  OOg and acetone were th e  co o lan t on 

the  mass spectrom eter t r a p  o r, f o r  g re a te r  s t a b i l i t y  of peak, 

l iq u id  a i r  was used .
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The flow  system was f u l ly  evacuated to  about 10 ^ mm Hg., 

th e  to luene degassed and i t s  w ater b a th  se t to  th e  req u ired  

tem perature and allov/ed to  e q u i l ib r a te . The fu rn ace  would have been 

arranged  to  sv/itcjh on by a tim e sw itch  and to  come up to  th e  re q u ire d  

tem p era tu re . Three f i l l i n g s  of argon were re le a se d  in to  th e  flow  

system from th e  m anostat g iv ing  approxim ately  1 mm p re s su re .

The c i r c u la t io n  pump m etal b a th  was th en  a d ju s te d  to  i t s  

optimum o p era tin g  tem p era tu re , and i t  was th en  s e t  running w ith  i t s  

th re e  a s so c ia te d  l iq u id  a i r  t r a p s  and a l iq u id  a i r  cooled c o l le c t io n  

t r a p , ( o f  la rg e  dimensions to  allow  a run to  proceed f o r  some tim e 

w ithou t a blockage occurring  due to  fro'zen to lu en e),w as  p laced  a f t e r  

th e  m e tro s il le a k  ( tra p  Z i n  f i g .  2 2 ),

The r e a c ta n ts  were th en  in je c te d ,  f i r s t l y  th e  m ethyl bromide 

in je c t io n  valve v/as opened and th e  mass spectrom eter tuned to  th e  

h ig h e r of th e  two methyl bromide p a ren t peaks a t  m/e = 9^^* Noxt 

th e  to luene valve was opened and th e  run allow ed to  s e t t l e  f o r  up 

to  h a l f  an hour (3 hours were allow ed i f  the fu rn ace  had been 

p rev io u s ly  l e t  down to  atm ospharic p ressu re  — see se c tio n  on 

fu rnace seasoning p . 69 ) ,  The s te a d in e ss  of th e  peak was

observed by s tay in g  tuned to  96^ and c o n tin u a lly  backing o ff  to  a 

more s e n s it iv e  range on th e  re c o rd e r . Y/hen s tead y  co n d itio n s were 

a t ta in e d  and th e  peak showed no tendency to  d r i f t ,  th e  values of 

fu rnace tem peratu re T, p re ssu re s  on the  flow  McLeod gauges

and Pg, to lu en e  b a th  tem peratu re  and m ethyl bromide in je c t io n
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p ressu re  were ta k en , a note being  made a lso  of th e  flow  c a p i l la ry  

being  used.

With th e  re c o rd e r  c h a rt running th e  b a l l  v a lv es were operated  

a l to r n a t ’Qiy to  read  bypass and furnace l in e  v a lu es  o f 96'**» Each 

read ing  was recorded  f o r  two m inutes or more depending on th e  

s t a b i l i t y  of th e  in s tru m en t. A fte r  fo u r  or s ix  read ings had been 

tak en , flow p re s su re s , fu rnace tem perature e t c ,  were aga in  reco rded . 

These v a lu es  were u s u a lly  th e  same as a t  th e  s t a r t  of th e  run bu t 

where any s l ig h t  d iscrepancy  occurred  th e  average value was tak en  

f o r  use in  subsequent c a lc u la t io n s .

F in a l ly , w ith  th e  mass spectrom eter s t i l l  tuned  to  96***, the  

methyl bromide valve v;as c lo sed  -  th e  f in a l  p o s i t io n  to  which th e  

96^ peak f e l l  being  tak en  as th e  zero  -  and th en  th e  to luene  valve 

was c losed  and th e  system evacuated .

I t  was q u ite  p o ss ib le  to  perform  sev e ra l runs in  succession  

a t  d if f e re n t  co n tac t tim es sim ply by changing c a p i l l a r i e s .  I t  should 

be po in ted  out th a t  th i s  i s  u n d es irab le  e s p e c ia l ly  a t  th e  h ig h er 

percentage conversions s in ce  th e  methane and hydrogen formed in  th e  

r e a c tio n  w i l l  d i lu te  th e  c a r r i e r  gas and could to  some ex ten t 

in v a lid a te  th e  flow  c a p i l la ry  co n s ta n ts . Although on occasions during 

th e  re se a rch  up to  f iv e  or s ix  runs were performed w ithou t changing 

th e  c a r r ie r  gas , no e r ro rs  could be a t t r ib u te d  to  t h i s  d i lu t io n .  T his 

was probably  because th e  t o t a l  volume of th e  system  was over 20 l i t r e s  

and so th e  d i lu t io n  was in s ig n i f i c a n t .
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A ty p ic a l  r e s u l t  i s  diown in  f ig u re  28. The average of th e  

v a lu es i s  tak en  f o r  use in  c a lc u la t io n s .

Then

% decom position « /GO / X  (mV)_________
B ;^ass T o ta l (mV)

The co n tac t tim es, p a r t i a l  p re ssu re s  and r a te  co n s tan ts  were 

c a lc u la te d  as d escrib ed  in  Appendix 1 .

The above trea tm en t assumes co n s tan t s e n s i t iv i ty  of th e  mass 

spectrom eter during  re a d in g s , A check on AO*** a t  in te rv a ls  d u iin g  

se v e ra l runs showed no v a r ia t io n  during a run ; a lso  th e  constancy o f 

th e  96*̂  peak suggests no s e n s i t iv i ty  v a ri& tio n . The trea tm en t a lso  

-assumes th a t  th e re  w i l l  be no v a r ia t io n  in  96”*" zero le ad in g  when 

decomposing to lu en e  alone ( th e  to lu en e  peaks spread  tow ards th e  96^ 

re g io n ) . This was checked a t  th e  h igh  tem peratu res and th e re  was found 

to  be le s s  th an  0.2JS e r r o r  in  th e  t o t a l  peak h e ig h t from t h i s  cause. 

This c o rre c tio n  was not ap p lied  as i t  v/as considered  to  be w ell 

w ith in  th e  l im i t s  of th e  experim en ta l e r r o r s .

13s# T es ts  f o r  smrface re a c tio n .

A s e r ie s  of experim ents were perform ed as d esc rib ed  above in  a 

fu rnace of h ea ted  volume 280 m l. The fu rnace had a re-*entrant 

therrm couple w e ll which gave a surface/volum e r a t i o  of 1 .8 2 , The 

normal method of ev a lu a tin g  or t e s t in g  f o r  a heterogeneous
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c o n tr ib u tio n  i s  by in c re a s in g  th e  surface/volum e r a t io  ( s /v  r a t i o ) .  

This w i l l  in c re a se  th e  heterogeneous re a c tio n  v e lo c i ty  and one can 

th e n  compute th e  homogeneous component of th e  r a te  con stan t by 

p lo t t in g  th e  r a te  co n stan t f o r  th e  whole re a c tio n  a g a in s t s /v  r a t i o  

and e x tra p o la tin g  to  s /v  == 0. This trea tm en t ho lds so long as th e  

homogeneous and heterogeneous re a c tio n s  are  th e  same o rd e r .

Lapage (lA) found th e  trea tm en t ap p lic a b le  in  th e  case of m ethyl 

io d id e  p y ro ly s is .

Design d i f f i c u l t i e s  u s u a lly  pevont a wide v a r ia t io n  in  s /v  

r a t io  f o r  a p a r t ic u la r  experim ental s e t-u p . The a l t e r a t i o n  of th e  

shape of a v e s s e l  g ives a small b u t sometimes s u f f ic ie n t  change, bu t 

packing th e  v e s se l v /ith  i r r e g u la r  p ieces  o r tubes o r g la s s  wool 

o f th e  same m a te r ia l  as th e  fu rnace  w i l l  g ive a much la rg e r  su rface  

area* Probably th e  most convenient way of packing a r e a c tio n  v e s se l 

i s  th a t  used in  th e  p re se n t work, namely th e  in s e r t io n  of tub ing  

w ith in  th e  fu rn a ce . The c e n tr a l  tube  was supported from touching 

th e  fu rnace over th e  whole le n g th  by a tta c h in g  small, g la s s  lu g s  a t  

th e  ends. Measurements on th e  l in e s  and on th e  fu rn ace  b efo re  i t  

was in s e r te d  allow ed th e  new s /v  r a t i o  to  be c a lc u la te d  a t  5 ,2  

and th e  new fu rnace  volume a t  215 m l. The sharp edges o f th e  tube  

should be f i r e  p o lish ed  as t h i s  w i l l  have a d i f f e r e n t  su rface  

a c t i v i t y  from broken g la s s  (see , f o r  example, V/ood)(l5)#

M elv ille  and Gowenlock (16) suggest and d esc rib e  a thorough 

clean ing  of th e  su rface  to  reduce heterogeneous c o n tr ib u tio n .
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They a lso  recomiTiend th a t  packing m a te r ia ls  s h a l l  have had th e  same 

h is to ry  and h ea t trea tm en t as th e  r e a c tio n  v e s s e l .

P o iso n in g , o f th e  w alls  may a lso  he used to  f u r th e r  e lim in a te  

w a ll re a c tio n s  and se v e ra l trea tm en ts  are  d esc rib ed  by th e  above 

a u th o rs . Trace im p u r it ie s  in  s i l i c a  as a r e s u l t  of ^^unhygienic” 

g lassblow ing can be th e  cause of u n re lia b le  d a ta .

I t  v/as necessary  a t  t h i s  s tage  to  rep ea t th e  c a l ib r a t io n  f o r  th e  

percentage of gas flow ing down th e  fu rnace l i n e .  As expected , s ince  

th e  furnace l i n e r  now p resen ted  a l a r g e r  re s is ta n c e  to  f3,ow th an  b e fo re , 

th e  percentage of gas passing  through  th e  fu rnace was low er. The 

graph i s  shovm in  f ig u re  29# Here ag a in  a p ressu re  e f f e c t  was observed 

and i t  i s  shorn g ra p h ic a lly  in  f ig u re  30, whiah was ob ta ined  a t  a 

co n s tan t tem perature of 1 0 1 8 As befo re , re fe ren ce  to  bo th  

f ig u re s  29 and 30 i s  needed to  determ ine th e  percen tage of th e  t o t a l  

gas passing  down th e  fu rnace l i n e .
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DESCRIPTION OF mPEBllSEmS PERFOmm MD EXPMI?Æ3NTAIi BESULTS.

I .  In tro d u c to ry .

The expected behav iour of m ethyl bromide under p y ro ly tic  

decom position i s  to  produce methyl r a d ic a ls  and bromine atom s. Any
<

subsequent secondaiy re a c tio n s  of th ese  e n t i t i e s  should be quenched 

by th e  in c o rp o ra tio n  of an e f f i c i e n t  r a d ic a l  a c c e p to r. Toluene has 

been used f o r  t h i s  purpose and fo r  small percen tage conversions one 

should o b ta in  a f i r s t  o rd er decom position th e  r a te  of which would be 

expected to  correspond to  th e  r a te  of f i s s io n  of the  0-Br bond in
3:1,

th e  h a l id e . Evidence f o r  the  presence of the  above r a d ic a ls  e x is ts  

in ,  f o r  example, th e  in c re a se d  methane p ro d u ctio n  when m ethyl bromide 

i s  added to  to lu en e  a t  th e  p y ro ly tic  tem p era tu re .

A fte r  th e  f in a l  development of the  appara tu s a check of th e  f i r s t  

o rder n a tu re  of th e  decom position of th e  h a lid e  was made a t  a 

, constan t tem peratu re in  th e  middle of th e  tem peratu re range to  be used .  ̂

P lo ts  of lo g  [^100/(l00 -  fo decom position^ a g a in s t co n tac t time 

showed sb r a ig h t  l in e s  through th e  o r ig in .  The v a r ia t io n  of co n tac t 

tim e v/as ob ta ined  by changing flovf c a p i l l a r i e s .

Having roughly and b r i e f ly  e s ta b lid ie d  a f i r s t  o rder ch a ra c te r  

f o r  the  r e a c t io n  a s e r ie s  of runs throughout th e  tem peratu re range 

were q u ick ly  performed to  ensure th a t  no d i f f i c u l t i e s  would occur 

and to  check th e  g en era l handling  tech n iq u e . A normal A rrhenius 

p lo t  o f th e  r e s u l ta n t  lo g  k^ a g a in s t 1/ t (^K) was a reasonab le
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s t r a ig h t  l in e  w ith  an a c t iv a t io n  energy of about th e  expected o rder of 

magnitude b u t th e  A f a c to r  was low er than  expected on th e  assum ption 

th a t  the  C-Br bond ru p tu re  i s  th e  r a te  determ ining s te p .

A s e r ie s  of more c a re fu l ly  performed rim s was th e re fo re  begun in  

o rder to  e s ta b l i s h  th e  f u l l  k in e t ic s  of th e  reac tio n ,*

2, Seasoning of fu rn a c e ,

I t  was found during th e  e a r ly  experim ents th a t  i f  one c a r r ie d  out 

a re a c tio n  in  th e  fu rnace a f t e r  a i r  had been adm itted  then  th e  re a c tio n  

r a te  was i n i t i a l l y  h igh  b u t g rad u a lly  f e l l  to  a co n stan t l e v e l .  T his 

seasoning e f f e c t ,  vdiioh has been observed by many workers in  p y ro ly s is  

k in e t ic s ,  has u su a lly  been a t t r ib u te d  to  th e  fo rm ation  of a coa ting  

on th e  s i l i c a  furnace v fa ll, The n a tu re  of t h i s  la y e r  has been shovm 

to  be carbon in  th e  case of b e n s i l  p y ro ly s is  by B arraclough ( l )  who 

burned i t  o f f  in  oxygen and analysed  f o r  car bon d ioxide mass 

spe o tro m e tr io a lly ,

Q u an tita tiv e  experim ents to  observe th e  seasoning r a te  were 

perform ed as fo llo v fs. A tem perature of lOOO^K was chosen as being 

s u ita b ly  n ea r to  th e  m iddle of th e  ran g e . A ir was th en  adm itted  

to  th e  ho t fu rnace to  *deseason* i t ,  th e  flow system was evacuated, 

and a i r  was again  adm itted  to  complete th e  deseasoning p ro c e ss .

The re a c tio n  was th en  fo llow ed  as describ ed  under *run procedure* — 

about f iv e  successive  runs being  perform ed b efo re  th e  c a r r i e r  gas
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was changed. T his was considered  q u ite  le g it im a te  since  th e  

percentage conversion  was n o t h ig h .

Readings were tak en  a t  in te rv a ls  of about 20 to  30 m inutes.

The d a ta  i s  g iven  in  Appendix I I I  f o r  bo th  packed and unpacked 

fu rn aces -  d a ta  f o r  th e  form er being  ob ta in ed  l a t e r  i n  th e  re se a rch  

b u t in s e r te d  here f o r  com parison. S im ila r behaviour was observed in  

each case and th e  r e s u l t s  a re  rep re sen ted  g ra p h ic a lly  i n  f ig u re  31# 

Although th e  co n tac t tim es were m aintained  f a i r l y  co n stan t th e re  were 

sm all v a r ia t io n s  due to  s l i g h t ly  vaiy ing  p a r t i a l  p re s s u re s . The 

percen tage conversion  was th e re fo re  r e la te d  to  one second of resid en ce  

tim e in  th e  fu rn a c e . A ll  o th e r  param eters o f the  system were m aintained  

co n s ta n t.

I t  v / i l l  be observed from th e  graph th a t  f o r  r e l ia b le  and 

rep ro d u c ib le  k in e t ic  d a ta  seasoning of th e  fu rnace by th e  r e a c ta n ts  

f o r  about 2 ,5  hours was n ecessa ry  i f  a i r  had been adm itted  to  the  

fu rn a c e . This recommendation was fo llow ed f o r  a l l  runs even i f  th e  

system had no t been l e t  dovm to  atm ospheric p ressu re*  T his ensured 

adequate seasoning and allov/ed th e  system and th e  mass spectrom eter 

to  s e t t l e  dovm” p r io r  to  ta k in g  read in g s .

The n a tu re  of th e  coa ting  was in v e s tig a te d  by thoroughly  

seasoning th e  fu rnace  and th en  allow ing th e  coa ting  to  burn  o ff  

slov/ly by in tro d u c in g  about 0 .5  mm Hg, p ressu re  of oxygen in to  th e  

1 mm of argon c a r r i e r  g as . The exq>eriment was perform ed a t  9 5 3 a t  

which tem peratu re  th e  coa ting  would bum  o ff  slow ly enough to  allow
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th e  process to  he fo llo?/ed  hy mass spectrom eter a n a ly s is .  The 

peaks a t  m/e = 18^ (w a te r), 44^ (carbon d io x ld e ) and 32^(oxygen) were 

fo llow ed on th e  fu rnace  and bypass l i n e s .  The r e s u l t s  a re  shovm 

g ra p h ic a lly  i n  f ig u re s  52a and 32b .

The n a tu re  of th e  v a r ia t io n  i s  r e a d i ly  exp la in ed  by th e  g radual 

burning o ff  of a carbon co a tin g  on th e  w a lls . The bypass l i i .o  shows 

a co n stan t carbon d iox ide p ea k — t h i s  i s  the  mass spectrom eter 

background. The fu rnace value o f 00^^ r i s e s  to  a maximum and th en  s ta y s  

s tead y  corresponding to  uniform  p ro d u ctio n  of carbon dioxide (the  

OOg i s  removed by l iq u id  a i r  cooled tr a p s  l a t e r  in  th e  flow  l in e  so 

i t s  p ressu re  does no t b u ild  u p ) . One may presume th a t  th e  44 m inutes 

of the  experiment i s  not s u f f ic ie n t  time a t  t h i s  tem peratu re to  bum  

o f f  a l l  of th e  c o a tin g . This ex p la in s  why th e  oxygen peak a t  52^ 

c o n tin u a lly  f a l l s  as i t  i s  used  up in  the  combustion re a c t io n  and

why carbon d ioxide from th e  fu rnace  i s  s k i l l  s tead y  a f t e r  t h i s  tim e .
4*The tim e of 14 m inutes tak en  f o r  th e  44- peak to  reach  a maximum 

may be due to  th e  opening up of new o x id a tio n  s i t e s  on th e  su rfa c e . 

Vfater a t  m /e = 18*** i s  co n stan t and th e  same value on bo th  fu rnace  

and bypass l in e s  suggesting  la c k  o f any hydrogen in  th e  co a tin g  

su b stan ce .

Smith (8) a lso  observed a seasoning e f f e c t  i n  th e  p y ro ly s is  

o f to lu en e  a lo n e . I t  i s  in te r e s t in g  to  note th a t  th e  carbon coa ting  

has a Ic in e tic  e f f e c t  on th e  decom position of m ethyl bromide and of 

to lu en e  which shows th e  p a r t ic ip a t io n  of the  w all n a tu re  a t  th ese  

p re s s u re s .
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5* E ffe c t of v a r ia t io n  of methyl bromide p a r t i a l  p re s s u re .

To analyse th e  r a te  dependence of t h i s  param eter, a l l  re a c tio n  

and run  co n d itio n s were m aintained  constan t w ith  th e  excep tion  of th e  

methyl "bromide in je c t io n  p re ssu re  which was ad ju s te d  hy th e  needle 

valve co n tro l (see f i g .  3)*  The r e s u l t s  a re  itioTO in  f ig u re  33 ^nd 

ta h le  I .

TABLE I

P a r t i a l  P ressu re  (mm Hg)

Hun IfeBr T o i. Argon. fo  dec. ta ( s e o 8 .)  fo  d e o ,/s9 0 .

92 0,0125 0,486 0,780 2,00 2.58 0.776

93 0,0193 0.481 0,831 1 .87  2.56 0,731

94 0,0301 0,476 0.835 1 ,87  2.53 0,739

95 0.0511 0.468 0.821 1 .79  2.49 0.720

96 0.0705 P.463 0.825 1 .6 1  2 ,45 0,659

97 0.0900 0.461 0.820 1 .8 4  2 .44 O.754

98 0,1050 0.446 0.818 1 .68 2.36 0.713

"For an e s tim a tio n  of e r r o r s  see Appendix VIII,

I t  w i l l  be observed th a t  th e  percen tage decom position p er 

second has remained v i r t u a l ly  co n stan t f o r  a n in e -fo ld  in c rease  

in  th e  p a r t i a l  p re ssu re  of the  r e a c ta n t .  The experim ents were 

perform ed a t  1 0 1 8 using flow  c a p i l la ry  number 1 . The r e s u l t s



EFFECT OF VARIATION OP CONTACT TIME. (Data o f ta b le  I I . )

% dec.

18

16
at 1087 K

/ a t  1054 K14

12

10

a t 1038 K

8

6

4

2

se c s

0
2 3 4 : 51 60

FIG. 34. C ontact tim e .



73

in d io a te  a f i r s t  o rd er dependence on m ethyl brom ide. The co n tac t 

tim e v a r ie d  s l ig h t ly  s in ce  the  p a r t i a l  p ressu re  was being  a l te r e d  

and th e  sm all c o r re c tio n  r e la t in g  th e  percen tage decom position to  

one second of co n tac t tim e v?as ap p lied  assuming d ir e c t  p ro p o r t io n a li ty  

between th e  two.

4-, E ffe c t of v a r ia t io n  of co n tac t tim e .

The e a r ly  experim ents r e fe r re d  to  above, namely of th e  e f f e c t  

o f co n tac t tim e v a r ia t io n  on th e  decom position r a t e ,  in d ic a t in g  th a t  

f i r s t  o rd e r behaviour was being observed, were perform ed b efo re  th e  

f u l l  s ig n if ic a n c e  o f th e  p re ssu re  d is t r ib u t io n  throughout th e  flow 

system was r e a l iz e d .  T his p ressu re  d is t r ib u t io n  i s  d escrib ed  on 

page 4-6 .  Reassessm ent of th e  decom position r a te  w ith  v a r ia t io n

in  co n tac t time v/as th e re fo re  n ecessa ry . The d a ta  ( fo r  th e  

unpacked fu rn ace) i s  con ta ined  in  ta b le  I I  and ©one of i t  i s  

shown g ra p h ic a lly  in  f ig u re  34. Use of th e  more ac c u ra te  f i r s t  o rder 

trea tm en t by p lo t t in g  log  [100/(100-^ decom position)] r a th e r  th an  ^  

dèoOÈÿDsition a g a in s t t^  se rves only to  s l ig h t ly  in c rease  th e  s lo p e ’ 

g iv in g  a  s im ila r  in te rc e p t ,  assuming a l in e a r  r e la t io n s h ip .  In c lu s io n  

of the  o r ig in  w i l l  give the  graph an upward c u rv a tu re . This i s  con­

t r a r y  to  expected f i r s t  o rd e r behaviour which would show a f a l l  o f f  

v/ith in c re a s in g  ^  decom position.

.-Kg

. .  , , .
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TJfflLE I I  *

Run % dec. tg ( s e o s .) T(°K) P *to l,(im

4 U..02 2.85- 1038 0.327

5 9.4-4- 5 .79  ' !t 0.650

6 2.02 1 .7 0 « 0.196

25 3.33 5.04- 1009 0.804

26 1.46 2,65 u 0.434

27 1 .0 7 1.74-v 0,288

28 1 .7 7 1 .72 1033 0.288

29 2.72 2.59 tf 0.432

30 6.71 4 .97 H 0.804

31 12.24- 4 .9 4 1054 0.808

32 5.00 2.56 fi 0.432

33 2.81 1.68 n 0.280

34 4-.31 1.75- 1069 0*295

35 7.52 2,58 tt 0.437

36 16.94- 4 .78 ff 0,792

37 7.05 1 .70 1087 0.291

38 11x79 2 .5 f ft 0.432

39 25.96 4 .8 4 If 0,803

50 8.82 1 .21 , 1106 0.216

51 10.57 1 .6 1 « 0.286

52 17.73 2.42 ff 0.439

#Por an  es tim a te o f e r ro r s  see Appendix V III ,
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The runs were perform ed w ith  a to luene /m ethÿ i

bromide r a t io  of approxim ately  12 to  15 . V a ria tio n s  in  co n tac t tim e

were ob ta ined  by changing fpLow c a p i l la r ie s .

I t  v / i l l  be observed th a t  th e  reasonab le  s t r a ig h t  l in e s  pass 

through a p o s i t iv e  in te r c e p t  on th e  a b s c is s a  of about 0 .5  sec.,

I t  was a t  f i r s t  thought th a t  t h i s  might have been th e  warm-up time 

f o r  th e  gas en te r in g  th e  fu rn a c e . The gas would be h ea ted  by 

c o l l is io n s  w ith  th e  v /all o r w ith  o th e r  a lre ad y  h ea ted  m olecules. An 

es tim a te  of th e  time re q u ire d  f o r  th e  form er may be made from k in e t ic  

th e o ry . The argument determ ines th e  r a te  of d if fu s io n  of a c e n tr a l ly  

p laced  m olecule to  th e  w a ll and i s  s e t  out in  Appendix V II. The 

c a lc u la tio n s  suggest t h a t  a warm-up tim e of 0.5 s e c s , i s  une:çDctedly 

h igh  f o r  th e  co n d itio n s  u sed  in  th e  p re se n t experim ents,

For a g iven  in je c t io n  r a te  of r e a c ta n ts ,  changing th e  flow 

c a p i l l a r i e s ,  (and hence th e  r a te  o f flow  of c a r r i e r  g a s ) , a l te r e d  th e  

co n tac t tim e and a ls o  th e  ab so lu te  va lues of th e  p a r t i a l  p re ssu re s  of 

r e a c ta n ts .  The p a r t i a l  p re ssu re  of a re a c ta n t in  th e  fu rnace under 

th e se  co n d itio n s  can be shown to  be p ro p o rtio n a l to  th e  co n tac t tim e 

(see Appendix XV).

Since th e  v a r ia t io n s  in  co n tac t tim es produced above were 

ob ta ined  by simply changing c a p i l l a r i e s  i t  i s  no t f u l l y  v a l id  to  

p lo t  co n tac t tim e a g a in s t percen tage decom position, w hile ignoring  

th e  v a r ia t io n  in  to lu en e  p re s su re , s ince  th e re  may be a to lu en e

dependence which could ex p la in  th e  in te r c e p ts .  We had, th e re fo re .
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to  e s ta b l i s h  w hether th e  p a r t i a l  p ressu re  of to luene  a f f e c ts  the  

decom position l a t e ,

5 . E ffe c t of v a r ia t io n  of to lu en e  p a r t i a l  p re s s u re ,

A sequence of runs were perform ed to  produce a  v a r ia t io n  in  

th e  to luene/m ethy l bromide r a t i o  from 6 to  about 4-0. The 

experim ents a t  1018^K were c a r r ie d  out by vary ing  th e  r e s e rv o ir  

tem perature f o r  to lu en e  in je c t io n .  V a ria tio n s  in  co n tac t tim e 

were ag a in  co rrec ted  by r e la t in g  th e  decom position of th e  methyl 

bromide to  one second of res id en ce  tim e . The r e s u l t s  a re  êx>vm in  

Table I I I  and f ig u re  35» For an assessm ent of th e  e r ro rs  i n  th e  

measured q u a n t i t ie s  see Appendix V II I .
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TABLE I I I  

P a r t i a l  Pres sure s(imB Hg* )

Rim MeBr T o i. Argon fo dook t  ( s e e s .). o '  ...../ fo d e c ./s e o . Toi ./Me:

11 0.0872 0.651 0.935 4 .4 0 5.87 0.748 7.47
*

12 0.0430 0.326 1.013 1 .6 7 2.87 0.584 7.58

13 0.0800 0.719 0.951 4 .2 7 5.48 0.779 9.02

14 0.0740 0.804 0.813 4 .36 5.04 0,866 10.90

15 0.0676 0.896 0.836 3 .94 4.61 0.855 13.30

16 0.0675 0.878 0.765 4 .26 4 .6 4 0.917 13.60

17 0.0464 1.255 0.711 3 .34 3.13 I.O 65 26.90

18 0.0446 1.340 0.716 5.20 2.95 1.088 30.20

19 0.0552 1.135 0.866 3.55 3 .74 0.952 20.60

20 0.0386 1.550 0.833 3.15 2.62 1 .200 40.70

*
Run 12 i s  om itted  from the  graphs s im e  i t  was perform ed using  a 

d if fe re n t  flow  o o p il la iy  from th e  re s t»

I t  w i l l  be seen th a t  th e  percen tage  decom position in c re a se s  by 

about 50?? f o r  about a f iv e - fo ld  in c re a se  in  th e  r a t i o  of to lu e n e / 

methyl bromide» 3?or sm all v a r ia t io n s  i n  th e  r a t io  th e  decom position 

ra te  v a r ie s  only s lig h tly *  Prom such d a ta  one can es tim a te  th e  

dependence of th e  r a te  on to lu en e  pressure*  To do t h i s  i t  i s  b e t t e r  

to  p lo t  th e  ab so lu te  p a r t i a l  p re ssu re  of to lu en e  a g a in s t th e  

percen tage decomposition* Such a p lo t  i s  shown in  f ig u re  36*
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E x trap o la tin g  l in o a r ly  “back to  ze ro  to luene  p re ssu re  i t  i s  apparent 

th a t  a r a te  law to  f i t  suuh d a ta  i s  of th e  type

-d[M eB:^/dt = k̂ Ç̂ MeBẑ  + %GBz  ̂ Toi

I t  in d ic a te s  th a t  th e  presence of to luene  a id s  th e  decom position 

p rocess a t  th e se  p ressu res*  This may he hy e n e rg is in g  c o l l is io n s  

w ith  th e  to luene  or hy a chem ical e f f e c t  of to lu en e  o r i t s  

decom position products*

U n fo rtuna te ly  any to lu en e  p ressu re  h ig h e r th an  th e  maximum 

used caused th e  to lu en e  mass spectrum  to  spread in to  th e  reg io n  

under o b se rv a tio n  r e s u l t in g  in  lo s s  of r e s o lu t io n  and inaccuracy  

in  read ing  peak heigh ts*  I t  was th e re fo re  d e s ira b le  fo r  subsequent 

runs to  keep th e  to lu en e  p re ssu re  as lovf as p r a c t i c a l .

6* E ffe c t of v a r ia t io n  of c a r r i e r  gas p re s s u re *

These experim ents, a t  1 0 1 8 were perform ed w ith  co n tac t 

tim es as n e a rly  co n s tan t as p o s s ib le .  Methyl bromide and to lu en e  

in je c t io n  r a te s  were m ain tained  constan t bu t th e  v a r ia t io n  of th e

argon in  th e  flow  system changed th e  co n tac t tim e s l ig h t ly  so th e

decom position was aga in  r e la te d  to  one second of res id en ce  tim e .

The r e s u l t s  are  shown in  f ig u re  37 and Table IV.

 ^ . . / 1:



79

TABLE XV *

P a r t i a l  p re s sures(mm Hg.)

 ̂ ^  's e o .Run MoBr T oi. Argon fn dec. t_ (s e o s . )Û '  ' % doc

99 0.0225 0.4-61 0.200 1.42 2.36 0.60

loo 0.024-3 0.514- 0.489 1.63 2.59 0.63

101 0.0234- 0.4-95 0.882 1.65 2.50 0.67

102 0.0230 0.4-86 1.031 1.79 2.42 0.74

105 0.0207 0.4-36 1 .615 1.44 2.15 0.67

104. 0.0184- 0.398 2.160 1.57 1 .95 0.80

105 0.0160 0.362 2.860 1.33 1 .78 0.75

*
P er an es tim a te  of e r ro rs  see Appendix V III*

I t  w i l l  be seen th a t  the  r a te  of décom position in c re a se s  w ith  

in c re a s in g  c a r r ie r  gas p re s su re . The e x te n t  of th e  in c re a se  i s  not 

as marked as in  th e  case of to lu en e  p ressu re  v a r ia t io n .  The spread 

of p o in ts  about th e  l in e  may be due, in  p a r t  a t  any r a t e ,  to  a s l ig h t  

v a r ia t io n  in  to lu en e  p a r t i a l  p re ssu re  between experim ents . 

C onsidera tion  of t h i s  graph alone suggests a r a te  law 

-d[M oB r]/dt = k^jjÆoBi^ + k ^ j^ B r]  [Argon]

An in te r p r e ta t io n  vfould be th a t  c o l l is io n s  w ith  argon a lso  a id  

th e  decom position of th e  m ethyl brom ide.



o o
en 00 Ô

CO

(DO
Oo
p

r+

IO
3 CQ

CO

■ S -

X

o

CQo

<< <<1 
DO tfe. - ■

DO

60



80

Here again  experim ents o o u li no t be extended beyond about 

3*0 nun v/ithout changing th e  m e tro s il  le a k  since th e  mass spectrom eter 

r e s o lu t io n  was l o s t  as a r e s u l t  of th e  h igher p re ssu re  in  th e  box in  

th e  io n  gun. Subsequent experim ents were perform ed w ith  th e  argon 

p a r t i a l  p ressu re  a t  about 1 mm.

7# E ffe c t of tem peratu re v a r ia t io n  on th e  r e a c t io n  r a te  in  th e  

unpacked fu rn ace .

The above fo rm u la tio n s would suggest th a t  a t  co n stan t to lu e n e /  

m ethyl bromide r a t io s  and about constan t to lu en e  and argon 

p re ssu re s  th e  r e a c t io n  would become p se u d o -f ir s t  o rd er in  methyl 

brom ide. Hence one may determ ine th e  tem perature v a r ia t io n  of th e  

r e s u l ta n t  f i r s t  o rd er r a te  c o n s ta n t. The l a t t e r  was c a lc u la te d  as 

d escrib ed  in  Appendix I  and th e  r e s u l t s  a re  g iven  in  f ig u re  38 and 

in  ta b le  V in  Appendix V.

One n o tic e a b le  f e a tu re  i s  t h a t  th e  th re e  s e ts  of d a ta  ob ta ined  

by th e  use of th e  th ro e  flow  c a p i l l a r i e s  appear to  g ive th re e  

sep ara te  approxinm tely p a r a l l e l  l in e s  w ith  an a c t iv a t io n  energy of 

about 64 kéoals/m olo and an A f a c to r  of about 7 ,0  x 70^^ s e c ,”*̂

The th re e  l in e s  correspond to  th re e  p a r t i a l  p re ssu re s  of to lu en e  

since  th i s  i s  p ro p o rtio n a l to  co n tac t time (sec Appendix IV ), The 

d a ta  i s  diorm in the  composite graph f ig u re  38. There appears to  be 

a  la rg e r  oprc:z,d of v a lues o f k^ a t  the  low er tem peratu re end o f th e
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s c a le . This may bo explcinecL by th e  f a c t  th a t  hero very  sm all 

decom positions are  being  measured w ith  consequently  g re a te r  r e la t iv e  

experim ental e r r o r ,  Comparison of t h i s  vd th  p u b lished  f i r s t  o rder 

r a te  d a ta  w i l l  be l e f t  to  th e  d isc u ss io n .

8 . of v a r ia t io n  of s u r f  ace/volume r a t i o  of r e a c t io n  v e s s e l .

The r e a c t io n  was s tu d ie d  in  two fu rn aces of b a s ic a l ly  id e n t ic a l  

design  and s iz e .  The unpacked fu rnace had a surface/volum e r a t io  of 

1 .82  and th e  o th e r a r a t io  of 5*2 -  t h i s  l a t t e r  w i l l  be r e f e r re d  to  

as the  packed or l in e d  fu rn a c e . The method o f o b ta in in g  th e  in c reased  

s /v  r a t io  i s  f u l ly  d escrib ed  on p ^6 * The in tro d u c tio n  of a l i n e r

was f e l t  to  be more d e s ira b le  th an  th e  use of s i l i c a  wool o r s o lid  ,

s i l i c a  sp h eres . I t  i s  d i f f i c u l t  to  produce a homogeneous packing 

d e n s ity  w ith  th e  wool and th e  use of spheres i s  open to  some doubt i f  

th e  fu rnace i s  not f i l l e d  com pletely , and i f  i t  i s  f i l l e d  th e n  th e  

r e s is ta n c e  to  flow becomes h igh  and one does no t know e x a c tly  how much 

w a ll a rea  i s  b lanked o f f .

The study  of th e  r a te  of seasoning of th e  packed fu rnace  has 

been d escrib ed  abo#e on page 69 , and was v ery  s im ila r  to  the  

unpacked case . I t  v^as apparen t hovæver th a t  th e  in c re a se d  su rface  had 

brought about a h ig h e r decom position r a te  s ig n ify in g  a f a i r  ex ten t 

of w all p a r tic ip o ,tio n  i n  th e  r e a c t io n  r a t e .

Buns were perform ed as d esc rib ed  above to  a s c e r ta in  the  

tem peratu re dependence of th e  o v e ra ll  f i r s t  o rd er r a te  co n stan t in

_____ ' ' Cl' V . . y
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th e  lineci. furnaoe* The d a ta  i s  g iv en  in  Table VI in  Appendix VI 

and i s  p resen ted  in  f i g w e  59 in  com parison w ith  the eq u iv a len t  

data  from th e  unpacked fu rn a ce . The -values appear to  have a marked 

spread a lth ou gh  th e  g en era l tren d  i s  apparent.

I t  should he p o in ted  out th a t th e  ev id en ce  does not prove 

th e  presence o f  a tru e  heterogen eou s component in  th e  r e a c t io n .

Let i t  s u f f ic e  a t  th i s  s tage  to r e f e r  to  th e  ’apparen t h e te ro -  

g e n it y ’ and no te  th a t  the  in c re a se  in  re a c tio n  r a te  r e s u l t in g  

from th e  in c reased  su rface  may not he tru e  h e te ro g e n ity  hu t may 

he exp lained  hy su rface  in te ra c t io n  w ith  a p o ss ib le  chem ical 

e f f e c t .

Any fu r th e r  argument w i l l  he l e f t  to the d is c u s s io n .



Variation of partial pressures of toluene and argon.’

Temperature 1018 K.

% dec ,/sec

Toluene variation for ;
p of 0.71 to 0,95 mm,argon

^ of 0.038 to 0.087 mm
. , |y l  1-3 y *  . . . . .  V»» »,

1.0

0.8
—  -----'  A
* Argon variation for " '

, of 0,36 to 0.51 mmtoluene
0 . 6 of 0,016 to 0,024 mmMeBr

0.4

0. 2

mm Hg
0.0 0.5 ;. 1 .0  I 1.5

Pa rt ialL pres sure
2.0

PIG. 40
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Diæïïssioi]-

A. The em p irio a l r a te  eq u a tio n , ev a lu a tio n  o f th e  r a te  c o n s ta n ts 
and t h e i r  tem perature dependenoe.

The em pirioa l a n a ly s is  o f th e  e f fe c t  of v a r ia t io n  of both 

to luene  and argon p a r t i a l  p re s su re s , taken  a long  w ith  a f i r s t  o rd e r  

dependence on methyl bromide (see f ig u re s  53j 36, 3 7 ), has suggested

th a t  the decom position o f th e  b a lid e  in  excess to luene  and in  argon ï '

c a r r i e r  gas can be rep resen ted  w ith in  the range of p re ssu re s  used  -

by th e  r a te  equations

-  d [MeBr]/dt = [MeBr] kg + k^[Toluene] + [Argon]J

I t  i s  the purpose of t h i s  se c tio n  to  j u s t i f y  the  above a n a ly s is .

ti:
1. The r a te  eq u a tio n I

The d a ta  of f ig u re s  36 and 37 which were ob tained  a t  

1018^K are  drawn to g e th e r  in  f ig u re  40. Also inc luded  i s  run  12 which 

was om itted in  f ig u re  36 because i t  was based on a  very  d i f f e r e n t  

c o n tac t tim e using  ano th er flow  c a p i l la ry .  The f a c t  th a t  i t  i s  in  

accord w ith  th e  o th e r  d a ta  o f th e  graph i s  f u r th e r  support fo r  the  

above trea tm en t.

C le a r ly  from f ig u re  40 the to lu en e  has a g re a te r  in flu en ce  on 

th e  decom position r a te  than  has th e  argon c a r r i e r  gas . The r a te  

o f a c t iv a t io n  o f  a  m olecule, M, ir re s p e c tiv e  of the mechanism must 

be p ro p o rtio n a l to  th e  p a r t i a l  p re ssu re  of M and t  o the  t o t a l  p ressu re  

in  the system  since  th e  p rocess of a c t iv a t io n  i s  e s s e n t ia l ly  bim ole- 

c u la r .  I f  one supposed th a t  a t  th e  p ressu res  being used here th e re

• j‘h ' , I • i ‘ '
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i s  n o t a  f u l l  eq u ilib riu m  quota of a c tiv a te d  methyl bromide m olecules 

to  g ive a  f i r s t  o rd e r  decom position, one could in te r p r e t  the  observa­

t io n s  as being  due to  an energy t r a n s f e r  p rocess from the to luene  

or argon to  the h a l id e .  One would expect the to lu e n e , being a 

la rg e r  molecule w ith  more degrees of freedom fo r  energy s to ra g e , to  

be more e f f i c ie n t  than  th e  argon a t  handing on energy to  the brom ide.

I f  such an in te r p r e ta t io n  was to  be v a lid  fo r  t h i s  work one would 

expect a  term  to  occu r, since mutual c o l l i s io n s  of methyl

bromide m olecules w i l l  a ls o  c o n trib u te  to  the a c t iv a t io n  p ro cess.

The methyl bromide o one e n t r â t ion^ hov/ever, i s  sm all both  in  com parison 

w ith  th e  to luene p ressu re  and w ith the argon p re s s u re . To an a ly se , 

th e re fo re , f o r  the p o s s ib i l i t y  th a t  a  r a te  equation  of the  type 

- d [îfeBr] / d t  = .  kp^[MeBr]^ + k^ [MeBr] [T o i] + kj [îÆeBr] [Argon] 

might have been confused  w ith  the deduced em pirioa l eq u a tio n , we 

must re-exam ine our f in d in g s  ( f ig u re  33) of the  n a tu re  o f tfie de­

pendence on m ethyl bromide p re ssu re .

The d a ta  was obtained v/ith  to lu en e  and orgon bo th  held  

reasonab ly  co n s ta n t a t  0*5 and 0 ,8  ram Hg re s p e c tiv e ly , w hile th e  

methyl bromide p ressu re  was v a rie d  from 0.01 to  0 ,1  mm Hg. The 

questio n  a t  issu e  i s  w hether an em p irio a l equation  

-d[M eBr]/dt ~ [MeBr] ^ k ^  + k,p[Tol. ] + k^^[Argon]^ 

i s  d is t in g u is h a b le  from

-d[M eBr]/dt ~ [MeBr] ^kg[MeBr] + lCrp[Tol. ] + k^[Argon]^ 

when u sin g  our d a ta .
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This would depend upon th e  importanoe o f th e  term s and

kg[MeBr] when compared w ith  the rem aining term s. The maximum 

p ressu re  of m ethyl bromide was only one f i f t h  o f th e  to luene p ressu re  

bu t we would expect k_ to  be la rg e r  than k̂ , i f  th ey  rep re se n t 

r a te  co n s tan ts  f o r  e n e rg is a tio n . In  f a c t  these  f i r s t  term s are 

rep resen ted  by th e  in te rc e p ts  on th e  a x is  in  f ig u re s  36 and 37» ( fo r  

[Toluene] and [Argon] equal to  z e ro ), and th ey  have s u b s ta n tia l  v a lu es . 

M is in te rp re ta tio n  might have occurred i f  th e  f i r s t  terras were very  

sm all but since a te n  fo ld  v a r ia t io n  of [% Br] showed no e f f e c t  under 

the co n d itio n s  of f ig u re  33, i t  has to  be concluded th a t  the  em p irica l 

equa tion  i s  w ell founded. T h is conclusion  argues a g a in s t an e n e rg i­

s a tio n  process being involved as th e  major f a c to r  ex p la in in g  t h i s  

r a te  equation .

The two d if fe re n t  in te r c e p ts  on th e  o rd inate  o f f ig u re  40 may 

bo exp la ined . The in te rc e p t on th e  to luene v a r ia t io n  graph corresponds 

to  a  re s id u a l r a te  a r i s in g  from a  k^ fo r  the f i r s t  o rder decomposi­

t io n  component of the  r a t e  law p lus a component k^[Argon], S im ila rly  

the  in te rc e p t  on the argon v a r ia t io n  graph corresponds to  the k 

and k^ [T oluene ] te rm s.

From the  two graphs i t  i s  p o ss ib le  to  deduce a  value of k^ and 

a t  the same tim e show th e  m utual co n sis ten cy  of the d a ta .  Thus, 

ta k in g  an average value fo r  0,82 mm Hg f o r  graph A

(fig u re  40) one can r e f e r  to  the  slope of graph B to  deduce the 

low ering req u ired  to  re p lo t A f o r  zero c o n tr ib u tio n  from argon.



CORRELATION BETWEEN GRAPHS OF FIGURE 40

% dec./sec

Corrected for.effect
6f argon presentToluene variation

Argon variation
0.8

0 . 6

Corrected for effect
of toluene present0.4 ^

0.0
0.0 0.5 1.0

Pa rt ial—pres sure
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FIG. 41



COMBINED DATA FOR VARIATION OF TOLUENE AND
METHYL BROMIDE PARTIAL PRESSURES

Temperature 1018 K

Toluene, variation data
dec,/sec 
"A

Methyl bromide variation data

1,4

l-;2

1.0

0.8

0.6

mm Hg
0.4

0.0 1.0

Partial pressure,of toluene
FIG. 42



Likewise an average value of 0.43 mm to lu en e  m y be taken  as p re se n t 

fo r  graph B and re fe ren ce  to  th e  slope of A w ill  y ie ld  the low ering  

req u ired  to  r e p lo t  B f o r  zero to luene  c o n tr ib u tio n . The c o rre c tio n s  

a re  drawn in  f ig u re  41 and i t  w i l l  be seen th a t  th e  two l in e s  pass 

through the  same p o in t on the v e r t ic a l  a x is .  This corresponds to  a 

value w ith  no c ont r i  but ion  from to luene  or from argon. Such a 

co n s is ten cy  between the  two i s  good evidence f o r  th e  v a l id i ty  of 

the above suggested r a te  law.

One f u r th e r  p o in t we can make i s  th a t  th e  m ethyl bromide p ressu re  

v a r ia t io n  d a ta  which was ob tained  a t  the same tem perature may be 

shown to  f i t  th e  above graphs. Since the  argon p re ssu re s  f o r  t h i s  

were about th e  same a s  in  the  to luene  v a r ia t io n  th e  p o in ts  a re  seen 

in  f ig u re  42 where th e  d a ta  of runs 92, 93, 9^, 98 and 101 have been 

in co rp o ra ted . They a re  seen to  l i e  about th e  same l in e  -« l̂ioh i s  

ag a in  in  agreement w ith  th e  devised r a te  law. I t  is  a ls o  evidence 

f o r  th e  absence of the  term  in  [MeBr] d iscussed  above since the 

in te rc e p t o f  the  l in e  would, i f  th is  were the case , be p ro p o rtio n a l 

to  th e  methyl bromide p re ssu re . Widely d i f f e r in g  m ethyl bromide 

p ressu res  give d a ta  f a l l i n g  about th e  one l in e .

2 . Toluene dependence o f r a te  law

When the e f f e c t  o f  v a r ia t io n  o f  to lu en e  p a r t ia l  p ressu re  was 

stu d ied  the data ( f ig u r e  36) were d escr ib ed  by the r e la t io n s h ip  

-d[CH^Br] / d t  « -^Constant + [T olu en e] ^  [CH^Br]
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I t  m s t  be s a id , however, t h a t ,  w ith  th e  ran g e  of to luene 

c o n cen tra tio n s  ac h iev ab le , i t  would not be p o ss ib le  to  a s s e r t  th a t  

the  dependence involved p re c ise ly  the f i r s t  power of the to lu en e  

concen tra tion*  I f  we co n sid er a  form ula of th e  type

-d[CH^Br]/dt = + p [T oluene]^J [OH^Br]

the  process of ev a lu a tin g  a , p and n cannot be f a c i l i t a t e d  by 

s e t t in g  the  to lu en e  c o n c e n tra tio n  equal to  zero in  an experim ent, in  

o rd e r  to  f in d  a « The chem ical reason f o r  in c lu d in g  to lu en e  in  the 

re a c tio n  m ixture re q u ire s  th a t  i t  s h a l l  be in  excess co n c en tra tio n  

to  the methyl bromide, and th e  assessm ent o f a depends, th e re fo re ,

on the  d ec is io n  on the  values of n and p , follov?ed by an  extra.-

p o la tio n . I f  we tak e  a given s e t  o f d a ta  fo r  r a te s  of decom position 

a t  v a ry in g  to luene p re ssu re s , and .attem pt c o r r e la t io n s  w ith [to luene  

where n  i s  le s s  th an  u n ity , i t  i s  easy to  v e r if y  th a t  a s  n decreases

so a ls o  does th e  value  of a , w hile B in c re a se s . In  th e  l im it  th i s

makes the term  p[Toluene th e  dominant one. I f  we could  ignore 

a i t  would be easy to  ev a lu a te  n by p lo t t in g  lo g ( ra te )  a g a in s t 

1 og[Toluene ] , The e x te n t of our own data f o r  the  l a t t e r  was lim ite d  

experim en ta lly  b u t in  f ig u re  43 th e  d a ta  a t  h ig h e r to lu en e  p ressu res  

from Szwarc *s work (39)  have been added to  our own. The r e s u l ta n t  

graph gives a reasonab ly  l in e a r  r e la t io n  y ie ld in g  a value of 

n = 0.86* This com bination of d a ta  from two experim ental sources i s  

open to  se v e ra l u n c e r ta in t ie s  a r is in g  from d if fe re n c e s  of method, but 

i t  does suggest th a t  even i f  we ignored the a term  we would no t g e t

 ' '..........  ̂  ̂  ̂ . /' ' -  ̂ f /' Z;}!
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a Value of n much below u n ity . The lim ite d  e x te n t of to luene 

p re ssu re s  of our own d a ta  makes i t  in s e n s i t iv e  to  -variations of n 

n ear u n i ty  and the in d ic a t io n s  o f  f ig u re  56 , th a t  th e  r a te  depends 

on the f i r s t  power o f  the to luene  co n c en tra tio n  have been taken  to  

perm it the  ev a lu a tio n  o f a . This term y ie ld s  the p la in  f i r s t  

o rder r a te  c o n s ta n t (k^) of CH^Br decom position.

3 . The e f f e c t  of v a r ia t io n s  in  co n tac t time and in  the  p ressu re  of 
c a r r i e r  gas

The dependence of the r a te  on argon p a r t i a l  p ressu re  has 

been shown to  be le s s  th an  on th e  p ressu re  o f to lu e n e . The ro le  

the argon p lay s i s  n o t obvious. The p o s s ib i l i ty  o f  i t  a c tin g  a s  an 

en e rg is in g  e n t i ty  has been disproved since no such e n e rg is a tio n  was 

observed f o r  methyl bromide. I f  the  decom position were in  p a r t  due 

to  th e  r e a c t io n  of some ra d ic a l  o r atom w ith  mo chyl bromide, then  

one would expect an  in c rease  in  argon p ressu re  to  impede i t s  

d if fu s io n  to  th e  w all and so to  in c rease  the  s ta tio n a ry  s ta te  con­

c e n tr a t io n  of th e  a^tom or r a d ic a l  and the r a t e .  This may be ihe 

case  end i t  w i l l  be d iscussed  l a t e r -  The p o s s ib i l i ty  of the  argon 

occupying w all s i t e s  and so red u c in g  the  ex ten t of a  w a ll r e a c t io n  

i s  u n lik e ly  since i t  would be a much more weakly adsorbed molecule 

th an  e i th e r  th e  to luene  o r methyl bromide, and in  any case such 

behaviour would reduce th e  r a t e .
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I t  v/ould seem from th e  experim en ta l evidence a v a ila b le ,  th a t  th e  

r a te  eq u a tio n , a t f i r s t  derived  e m p ir ic a lly , i s  w e l l  founded. One 

s tran g e  fe a tu re  d esc rib ed  in  th e  ejçp.sriîîidntal s e c tio n  may be re a d i ly  

exp lained  by the equa,tion. T his was %he presence of a n  in te rc e p t  

of about 0.5  secs i f  one t r e a te d  th e  % decom position /con tac t tim e 

graph a s  l in e a r  o r , of an apparen t a c c e le ra tiv e  e f f e c t  i f  one made 

use of the zero of th e  graph. The p o s s ib i l i ty  o f a  warm-up time of 

0.5 secs was shown to  be unaccep tab le  (see Appendix V l l ) .  However, 

when one a p p rec ia te s  th a t  the  to lu en e  p re ssu re , in  th e  experim ental 

method used, was p ro p o rtio n a l to  co n tac t time (see Appendix IV ), the 

r e la t io n  between ^  decom position and t^ becomes p arab o lic  in

n a tu re  since  ^  dec. ~ + p[T ol. t^
» 2= a t  + B t  c ^ 0

The removal of the  to lu en e  dependence i s  performed in  Appendix 

IX, where i t  i s  shown th a t  a  good l in e a r  behaviour between ^  

decom position and co n tac t tim e i s  obtained in  the i n i t i a l  s tages 

of r e a c t io n .

4 . E valua tion  of k^, and k^ and th e i r  tem perature dependence.

I t  i s  p o ss ib le  to  deduce values of k^, k^ and k^ from the

experim ental d a ta  p re sen ted . Thus f o r  th e  e x te n s iv e  d a ta  a t  1018°E

the  slope o f the to lu en e  v a r ia t io n  y ie ld s  a  value of k^ and the

argon v a r ia t io n  y ie ld s  k. (see f ig u re  40 ) .  The in te rc e p ts  y ie ld

k a f t e r  c o r re c t io n  to  zero  to luene and zero  argon values* o
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In  o rder to  determ ine th ese  slopes and in te rc e p ts  fo r  a l l  

tem peratu res w ith in  our range of in v e s tig a tio n  i t  was necessary  to  

r e s t r i c t  the number of se p a ra te  experim ents which were undertaken . 

Moreover th e re  were c e r ta in  s p e c ia l d i f f i c u l t i e s  which were a con­

sequence o f the tem perature range. Thus a l l  the flow  c a p i l l a r i e s  

could not be used over th e  f u l l  tem perature ran g e5 a t  the lower 

tem peratu res and w ith  the h ig h e r  flow r a te s  ( lower c o n ta c t tim es) 

the  decom positions v/ere too  low to  be measured a c c u ra te ly .

The d a ta  from th e  experim ents gave values fo r  th e  percentage 

decom position a t  v ario u s tem peratures fo r  two or th r e e  values o f 

to luene p re ssu re , and by graphing such d a ta  in  the  manner of 

f ig u re  40 , values fo r  th e  slope p ( in  ^  decom position OBLBr/seo, mm 

to lu en e ) and in te rc e p t  a ( in  ^  deco m p o sitio n /sec ,) were o b ta in ed .

Some o f th e  d a ta  a re  shown in  f ig u re  44. The ex ten s iv e  in fo r ­

m ation a t  1018^ K i s  a lso  graphed. The d a ta  of th e se  and o th e r 

p lo ts  are  given in  Table V II. I t  w i l l  be seen  th a t  p v a r ie s  app réc ia

ab ly  w ith tem perature a s  does ao. The value uq corresponds to ko fo r the 

homogeneous decom position o f CH^Br, and a i s  [Argon].

was obtained from th e  in te rc e p t  by su b tra c tio n  o f a  q u an tity  

[Argon] where [Argon] i s  the  argon p ressu re  used f o r  th e  group 

of ru n s . The value o f was es tim ated  a t  p /6 ,7 1 t n i s  value

being  ob tained  from the ex ten siv e  d a ta  a t  lOlB^K, Although i t  i s
felfte

re a l iz e d  th a t  th e  choice o f ^  f r a c t io n  1 /6 ,7  i s  open to  some doubt 

i f  used over the B i l l  tem perature range, i t  i s  f e l t  th a t  the e r ro r
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in v o lv ed  in  u s in g  t b i s  v a lu e  i s  sm all s in c e  (a ) i t  was obta in ed

a t  a r e p r e se n ta t iv e  tem perature near to  th e  m iddle o f  th e  range and

(b ) th e  v a lu e  o f  a. i s  n o t la rg e  when compared w ith  a
ii. o

TABLE V II

Run Temp.(^K) a / +
Ü - .

[Argon]
(mm)

•jf
_2e_

57,38,59 1087 5.48 2,42 0.362 0.82 5 ,18
9,10 1078 5.50 1.20 0.179 1,00 5.12

34,35,36 1069 1.92 2.10 0.313 0,74 1.69
31,32,33 1054 1.55 1.44 0.215 0 .90 1.14
4 ,5 ,6 1058 1.04 0 .96 0.143 1 .00 0.90

28 ,29 ,30 1055 0. 80 0.66 0.099 0.85 0.72

77,78 1027 0.55 1.20 0.179 0.72 0,20
Ifeny. 1018 0.44 0,50 0.075 0,78 0 .58

75,76 1009 0,25 0.60 0.089 0.75 0.18

25,34 991 0.25 0.14 0.021 0 .68 0.22
21,22 981 0,20 0 .18 0.027 0.90 0.18

#  U n its  are ^  d e c o m p o s it io n /se c .

+ U n its  are ^ dec om p osition /seo  mm.

C o n sid era tio n  o f the e x tr a p o la t io n  procedures in  f ig u r e  44 

showed how s e n s i t iv e  to  e r r o r s  are th e  derived  v a lu es  o f  the s lo p e s  

and in te r c e p ts  on the axes when few  p o in ts  are a v a i la b le  per graph. 

Indeed , a ttem p ts to  d er iv e  e n e r g ie s  o f  a c t iv a t io n  fo r  the two term s 

showed c o n s id e r a b le  s c a t t e r  in  th e  d a ta . I t  was d ec id ed , th e r e fo r e ,  

t o  endeavour to  graph th e  d a ta  in  a manner which would lead  to  th e  

p o s s i b i l i t y  o f a sm oothing procedure. Most o f  the experim ents of
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f ig u r e  44 were conducted, a t  p r e ssu re s  o f  to lu e n e  near t o  0 ,8  and 

0.4  mm* U sing th e  graphs o f f ig u r e  44? the va lu es o f percentage  

decom p osition  p er  second were read o f f  a t var iou s tem peratures fo r  

e x a c t ly  0.4 and 0 ,8  mm to lu en e  p r e ssu re s . The logarith m s o f th e se  

v a lu e s  were th en  p lo t te d  a g a in s t  ]/T^K. T h is showed an alm ost 

l in e a r  r e la t io n s h ip  fo r  the data  a t 0 ,4  mm, one d iscord an t experim ent 

"being q u ite  d isoern i" b le . The d ata  a t  0 .8  mm showed much g r e a te r  

s c a t t e r  hut in  view  of th e  r e la t io n s h ip  app ly in g  to  th e  0 ,4  mm data  

th e  h e st s t r a ig h t  l in e  was drawn in  t h i s  c a se  a ls o  (se e  f ig u re  4 5 ) .

From th e se  l in e s  one can  tak e data  t o  p lo t  th e  v a r ia t io n s  

o f and p w ith  tem p erature. These are drawn (d ata  in  Table V I I l)  

in  f ig u r e s  46 and 47 where th e  tru e  r a te  c o n sta n ts  have been used  

in  A rrhenius typ e  p l o t s .  The s lo p e s  lea d  to  an  a c t iv a t io n  energy  

o f 66.7 k .c a ls /m o le  and a frequ en cy  fa c to r  o f 10^^*^^ sec  ̂ from  

th e  v a r ia t io n  o f and a v a lu e  o f  6 3 .2  k .o a ls /m o le  fo r  th e  

a c t iv a t io n  energy o f  th e  to lu e n e  dependence.
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TABLE V III

(a) Data from F igure 45 to  o b ta in  p and k^,

jo dec. / s e c ,
K̂) X 10^ 0 .8  mm 0.4  mm B (5̂  d e c ./se c . mm)

9.2 6 .40 4 .7 8 4.05

9.5 2.45 1.81 1.61

9 .8 0.946 0,691 0.638
10,0 0.501 0.363 0,345
10,1 0.564 0.263 0.253

&^T°Kl X lo"^ k,̂  (seo h m ”^) ~1k. (seo moles ^ l i t r e s ) logiok^

9.2 0.0413 2.79 X 105 3.446

9.5 0.0163 1.06 X 10? 3 .027
9 .8 0,00640 0,408 X 10^ 2.610
10.0 0.00345 0,214 X 10^ 2.531
10.1 0.00253 0,156 X 10^ 2.194

(b) E v a lu a tio n  of a and k , 
0 0

(i/T°K ) X 10'̂
a

iio dec ./se o  . ) a . [Argon]"
°o

iio dec ,7 seo ) log^O^o
9.2 3.16 0.514 2.646 2.429

9.5 1.17 0.204 0.966 3.985
9 .8 0.436 0,081 0.355 3.550
10.0 0.225 0,044 0.181 3.255
10.1 0.162 0.032 0.130 3.114

')(" An average value of 0,85 mm fo r  [Argon] was used in  the  
c a lc u la t io n s .
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B. P o ss ib le  r e a c tio n  sequences and m eohanistio co n s id e ra tio n s

The p y ro ly s is  of methyl bromide in  the presence o f to luene 

i s  assumed by Szwaro (39) to  fo llo w  f a i r l y  c lo se ly  the  re a c tio n  

scheme t

CBLBr —  3
. _______^

3 + Br“ (1)

OIL- + Ph.Ctb —  
3

CH^ + Ph.CHg- (2)

Br- + Ph.OH^ — .. HBr Ph.CHg- (3)

2 Ph.OEg- r Ph.CHg( CHg.Ph. (4)

R eaction  ( l )  was assumed to  be the slow ra te  determ ining  s tep  in  

the  sequence and re a c tio n s  (2 ) and (3 ) were assumed to  be ra p id . 

F in a lly  d ibenzy l was formed by d im e riza tio n  o f two PhfCHg- r a d ic a ls .  

R eaction  (2 ) has been w idely s tu d ied  (see page 17) and proceeds with 

an a c t iv a t io n  energy of o,bout 10 k .o a ls /m o le . R eaction  (3) s im ila r ly  

proceeds w ith  a low a c t iv a t io n  energy (see page I 9) of about 

7 k .o a ls /m o le . With to lu en e  in  excess the  above re a c tio n s  should 

re p re se n t the f a te  of the m ethyl r a d ic a ls  and bromine atoms.

The re a c t io n , however, i s  no t as  s tra ig h tfo rw a rd  as  one might 

hope o r a n t ic ip a te  on the above scheme. For example, in  the e x p e ri­

ments o f Sshon and Szwarc, the amounts o f d ibenzy l and methane 

produced were sm a lle r than  expected on th e  b a s is  of th e  above 

sequences. T h e ir a n a ly s is  was obtained ly  s u b tra c tin g  the d ib en zy l, 

methane and hydrogen produced by th e  decom position o f th e  to luene  

alone from the decom position products of th e  re a c tin g  m ix tu re . They
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ex p la in  th e  reduced d ihenzy l and methane by th e  p o ss ib le  a s s o c ia tio n  

of methyl and benzyl r a d ic a ls .  They a ls o  observed in c reased  amounts 

of hydrogen compared w ith  th e  y ie ld  from to luene  a lo n e . The 

d ibenzy l formed con ta ined  im p u ritie s  vfhioh led to  one suggestion  

of a  p a r t i a l  d ibenzy l decom position in to  s ti lb e n e  and hydrogen.

T heir a l te r n a t iv e  ex p lan a tio n  v/as th a t  bromine atoms a ttack ed  d i ­

benzyl to  form a d ibenzy l r a d ic a l  and HBi';

m .aHg.0H2.Ph + Br------- — >HBr + Hi.CHg.CH.Hi (5 )

The d ib en zy l r a d ic a l  could then decompose a s  fo llow ss

Ph.OHg.CH.Ph  > Ph.OH = CH.Ph + H- (6)

follow ed by:

H- + P h , C H -----------> Ph.OHg- + Hg (?)

H- + Ph.OH, ------------) Ph.H + CHj" (8a)

OH," + Ph.CHj ----------  ̂ CH  ̂ + Ph.CHg- (8h)

H eaotions (? ) and (s )  produced the lijrdrogen and methane in  the 

r a t io  6 :4 . The workers assumed th a t  HBr produced hy (5) was sm all 

amd th a t  HBr p roduction  was approxim ately  equ iva len t to  th e  r a te  of 

the d is s o c ia t io n  p rocess ( l ) .

We can perhaps make a l te r n a t iv e  suggestions i f  we f i r s t  o f a l l  

examine the to luene  decom position. A thorough exam ination has been 

made by Smith (8 ) , and by o th e rs  (43? 44? 45? 46).
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In  th e  tem peratu re range 1000 to  1150°K the  to luene deoom position 

has been s ta te d  to  fo llo w  th e  re a c tio n  scheme s e t  out below;

H i.C H , 1 Eh.GHg- + H- (9)

H" + P h .O H , > Ph.CHg- + Hg (lO)

H- + Ph.CHg  ---- > Ph.H + GBy- (11)

GH,- + Ph.OH, --- -J. Ph.CHg + GĤ (12)

2 Pb.CHg-  ) D ibenzyl ( i j )

That the décom position i s ,  in  f a c t ,  much more complex th a n  the 

above scheme, has been shown by Smith (s )  who found the com position 

of th e  so lid s  produced to  be not 100^ d ibenzyl but 5^ to  60 mole p e r 

cen t d ibenzy l and th e  rem aining so lid s  a  m ixture of d im ethyl d iphenyls 

and monomethyl d iphenyls in  the ra tio . 4 si*

F u rth e r  she es tim ated  the  h ea t of d is s o c ia t io n  of re a c tio n  ( l4 )  

a t  92 k .o a ls/m o le  compared w ith  th e  84 k .c a ls ./m o le  of re a c tio n  (9 )*

Ph.CHg  5. Ph~ + GH%- (14)

Deducing en tropy  changes fo r  re a c tio n s  (9) and ( l4 )  u s in g  

Trot man-Dic ken son’s method f o r  e s tim a tin g  eitrop ies o f la rg e  r a d ic a ls ,  

namely by the ad d itio n  o f 1.4 e .u .  f o r  the e le c tro n ic  degeneracy o f 

the r a d ic a l  to  th e  p aren t m olecule, and r e la t in g  th i s  en tropy change 

to  the A f a c to r s  suggested th a t  a t  llOO^K r e a c t io n '( l4 )  could approach 

th e  r a te  of ( 9) ,  R eaction  (15) is  a lso  p o s tu la ted  as  a  p o ss ib le  

a d d it io n a l source of methane.

H- + P h .G H ,  > Ph- + OH  ̂ ( l5 )
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For the above reason s Sm ith was c a u tio u s  about id e n t i f y in g  her  

a c t iv a t io n  energy w ith  th e  s id e -c h a in  C-H bond d is s o c ia t io n  energy. 

More r e c e n t  work however a s  d isc u sse d  in  tlie in tr o d u ctio n  to  t h i s  

t h e s i s  has shown th a t  a v a lu e  o f D(Ph.CHg—H) = 84 k .o a ls /m o le  i s  

now g e n e r a lly  a c c e p ta b le .

The deoom position  o f  m ethyl bromide req u ire s  a  f a i r l y  h igh  

tem perature (about lOOO^K) ; a s  a  r e s u l t  th e r e  must be some d e g r ee  o f  

decom p osition  o f to lu e n e . B eing in  ex ce ss  i t s  primary deoom position  

products may be p resen t in  such c o n c en tr a tio n s  as to  i n i t i a t e  decom­

p o s it io n  o f m ethyl bromide and so t o  in te r fe r e  w ith  a sim ple k in e t ic  

scheme whereby the r a d ic a l  produ cts from th e  h a lid e  a r is e  on ly  by 

i t s  d is s o c ia t io n  and a re  q u ick ly  and e f f i c i e n t l y  removed by the  

to lu e n e  present*

We may estim ate  th e  r e la t iv e  e x te n ts  o f th e  to lu e n e  and m ethyl 

bromide d ecom p osition s. Taking to lu en e  to  have a r a te  con stan t g iv e n  

by

^ o l  10^^'exp . (-8470C/RT) seo. ^

as obtained  by Smith ( b ) and assum ing the m ethyl bromide ra te  of

1 I 86 /u n im olecu lar  deoom position  to  be g iven  by ~ 10 ’ x

exp(-66  7 00/RT) seo  ̂ ob ta in ed  in  t h i s  work, one can  s e e  t h a t ,  i f  

the to lu en e /m eth y l bromide r a t io  i s  ab ou t 2 0 / l ,  the r e la t iv e  e x te n ts  

o f decom p osition  a t  1000°K, under our c o n d it io n s , ares

Toluene deoom position  ^ 20 x 10^^’ x  id " 84700/4570
M ethyl bromide deoom position  - 667OO/457O

1 X 10 X 10
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Such a c a lc u la t io n  i l l u s t r a t e s  the ex ten t of the toluene

deoom position  a t the tem peratures u sed . E xperim ental ev id en ce  of

t h is  was a v a ila b le  from the e a r ly  data  when the r e a c t io n  was b e in g

follow ed by methane and hydrogen production  r a te s  as d escrib ed  on

Page 54* F igure 20  shows th a t  the methane from a b lank experiment

was about two th i r d s  of th e  methane obtained in  a run w ith  both

re a c ta n ts  p re se n t.

In view  o f  the above i t  would not be unreasonable to  phopose

th a t the ^ im purities* o f Szwarc may have been deoom position  products

o f to lu en e  a lo n e , or the r e s u l t s  o f such products a tta c k in g  the

methyl bromide. P o ssib le  re a c tio n s  which one might co n s id e r a r e :

CHj -  + CH^Br 

H- -r CH^Br

H- + OE%Br 3

CH  ̂ + -CHgBr

^ HBr t  0H%-

-> -OHpBr t  Eg

( 16)

(17)

(18)

The f a t e  o f the -GHgBr r a d ic a l  could  be rep resen ted  by r e a c t io n  

w ith  to lu e n e  to  reform  a m ethyl bromide m olecule by hydrogen a b s tr a c ­

t io n .  A l t e r n a t iv e ly ,a  u n im olecu lar  deoom position  cou ld  lead  to  a 

bromine atom and a m ethylene r a d ic a l (-C H g-). The former would be 

l o s t  by the d e s ir a b le  r e a c t io n  (3 ) w h ile  m ethylene r a d ic a ls  have 

been sa id  to  produce carbon and methane ( l4 7 ,  1 4 8 ).

R eaction  ( l 6 )  i s  approxim ately  therom oneutral and proceeds w ith  

an a c t iv a t io n  energy o f  about 10 k .o a ls /m o le . S te a c ie  ( l5 0 )  q u otes

1 0 ,1  k .o a ls /m o le  r e la t iv e  to  the m ethyl r a d ic a l com bination r e a c t io n
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and Gordon and Taylor ob tained  a value o f 6*6 k .oals/m ole  (l4 9 )- 

R eaction  ( l? )  i s  exotherm ic to  the ex ten t of about 20 k .o a ls /m o le .

0 had we 11 and T ita n i  ( l4 5 ) quote an a c t iv a t io n  energy o f 6 7 k .o a l s /
■

mole fo r  r e a c tio n  ( I 7 ) assuming a s te r ic  f a c to r  of u n ity .  Polanyi 

e t  a l .  (146) quote a  value not g re a te r  than  3 .2  k .o a ls /m o le . I t  i s  

thus a p o ss ib le  cause o f lo s s  of methyl bromide as i s  the approx i- ^

m ately therm oneutral r e a c t io n  ( i s ) .  I f  in c reas in g  the to luene con­

c e n tra t io n  led  to  in c reased  hydrogen atom co n c en tra tio n s  in  the 

r e a c tin g  system, then  re a c tio n s  (17) and ( I 8) could  ex p la in  the 

inc reased  r a t e .  In  order to  a sse ss  the p o ssib le  ex ten t of re a c tio n s  

(17) and ( i s )  one must compare ttem  w ith  the r a te  of lo ss  of hydro­

gen atonsby the a l te r n a t iv e  r e a c t io n  (lO ).

The a c t iv a t io n  energy fo r  (17) m y  be taken  as about 5 k .o a l s /  \

mole. There appears to  be no r e l ia b le  value f o r  the a c t iv a t io n  

energy fo r  the a t ta c k  of H- on to lu e n e . The r e l a t iv e  e x te n ts  o f 

the hydrogen atom a b s tra c t io n  re a c tio n s  w ith  m ethyl bromide and 

w ith  to lu en e , assuming a 20:1 excess of the l a t t e r  w i l l  be given by:

Rate from to lu en e  _ £0  ̂  ̂ûe/RT 
Rate from CH,Br 1 ’ ^

where AE is  the  d if fe re n c e  in  a c t iv a t io n  en e rg ies  between a t ta c k  on 

to luene and on methyl bromide. Even fo r equal a c t iv a t io n  en erg ies 

the r a te  from to luene w i l l  be 20 tim es g re a te r  sim ply because i t  is  

in  ex cess . One might a n t ic ip a te  an a c t iv a t io n  energy fo r  a t ta c k  

on to luene to  be the same o r s l ig h t ly  la rg e r  than  fo r  the methyl

n:
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bromide c a se  which would tend t o  in c re a se  the above r a t io .

R eaction s o f bromine atoms w ith  methyl bromide have been om itted . 

These are  unfavourable on e n e r g e tic  grounds and the bromine atom  

c o n c en tr a tio n  i s  l ik e l y  to  be very  low s in c e  i t  i s  d er ived  o n ly  from 

the d ecom p osition  o f m ethyl brom ide,

G. A n a ly s is  o f the r a te  e q u a tio n

I t  i s  the purpose o f t h is  s e c t io n  to  attem pt an ex p la n a tio n  

o f the ex p er im en ta lly  observed r a te  equations

-d[M eB r]/dt = k^[IfeBr] + k^[lfeBr] [T o i .]  + k^[MeBr] [Argon]«A'

The a n a ly s is  and v e r i f ic a t io n  of th is  eq u a tio n  p resen ted  so f a r  

in  the d isc u ss io n  has used experim ental d a ta  from the  un lin ed  fu rn ace . 

The d a ta  corresponds to  r a te s  determ ined f o r  a  f ix ed  sur face/volum e 

r a t i o .  U n ti l  i t  was r e a l iz e d  th a t th e  r e a c tio n  was stro n g ly  depen­

dent upon su rface  a re a , th e  p o s s ib i l i ty  of the  second term in  the 

above equation  being  due to  a homogeneous b im olecu lar re a c tio n  in  

the gas phase had no t been re je c te d . Klemm and B ern s te in  (14O), 

showed th a t  the  gas phase decom position of methyl iod ide in  to luene 

a t  326 to  374% was rep re se n ted  in  p a r t  by a b im olecular r e a c t io n :
i /p  1/2

- d [ l f e l ] /d t  = kj_[MeI] [ T o i .]  + kgLlfel] [ T o i .]

Ko su rface  e f f e c t  was observed by B ern ste in , but t h i s  may have been 

due to  th e  h i ^ e r  p re ssu re s  used (18-^78 om Hg, )

An ex p lan a tio n  of our r a te  equa tion  must th e re fo re  involve the 

su rfa ce . The seasoning e f f e c t  o f our re a c tio n  and the r e s u l t s  ob­

ta in ed  have been p resen ted  on page 69 e t  seq, A b r i e f  survey of
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cu rre n t a sp ec ts  of w a ll co a tin g s  i s  given in  Appendix X, Subsequent 

experim ents to  examine the e f f e c t  o f an increased  su rface  area  and 

i t s  v a r ia t io n  w ith tem perature have been given on page 81, The 

tem perature c o e f f ic ie n t  of the o v e ra ll  r a te  co n s tan t fo r  the lin e d  

furnace appears to  have a  lower a c t iv a t io n  energy than  the u n lin ed  

furnace (see f ig u re  59)* Such behaviour would be expected i f  homo­

geneous and heterogeneous re a c tio n s  were o p era tiv e  in  about the  sa ire 

tem perature ran g e ,

From th e  a n a ly s is  o u tlin e d  above whereby we a re  able to  d e riv e
t

r a te  co n s tan ts  f o r  the to luene  dependence and fo r  th e  p la in  f i r s t  

o rd er deoom position of m ethyl bromide, th e  tem perature c o e f f ic ie n t  

of the  form er> a lthough  of the same o rder of magnitude as the 

tem perature c o e f f ic ie n t  of the la t te r »  is  about 3 k .oals/m ole  sm alle r. 

When these  two item s a re  combined in to  an  o v e ra i1 r a te  c o n s ta n t, 

and i f  the to luene term  in  the  em p irica l a n a ly s is  is  a su rface  de­

pendent term , then  we can  see why the su rface  e f f e c t  has appeared to  

be le s s  a t  the h igher tem p era tu res . We have, in  th is  argument, 

ignored the argon dependence but t h i s  i s  small and in  no way a f f e c t s  

the co n c lu sio n s .

I f  one p lo ts  a graph of the type of f ig u re  4-0 bu t th i s  time 

fo r  the  lin e d  fu rn ace , then  a s te e p e r  l in e  is  ob tained i f  the  

"to luene  term ” o f the em p irica l equa tion  is  su rface  dependent. Such 

a  graph i s  shown in  f ig u re  48 where ^  decom position per second is  

p lo tte d  a g a in s t to luene p re ssu re . The argon p re ssu re s  used in  the



102

two fa rm o e s  were about the same. The value of a fo r  the unpacked 

furnace is  shown and the  p o in ts  on the graph a re  seen to l i e  about 

a  s te e p e r  l in e  w ith a f a i r  approxim ation to  the same a fo r  both

fa rn ao es . The r a t i o  of Ppaoked/Unpacked 2 .7 . The surface/volum e 

r a t i o  in c rease  was 2,85* This s tro n g ly  suggests th a t  the to luene  

term i s  the su rface  dependent term  and should s t r i c t l y  be w r i t te n  

a s  k^[Toluene] [îfeBr] [S u rface ],

P re c is e ly  what ro le  the su rface  plays in  th i s  term  i s  a  m atter 

fo r  c o n je c tu re . The r a t e  of such a re a c tio n  w il l  depend upon the  

product of the  c o n c en tra tio n s  of the two re a c ta n ts  and i t  may be 

th a t  the su rface  adsorbs to luene  in  a d is so c ia te d  form which r e a c ts  

w ith  methyl bromide du ring  c o l l i s io n s  of the l a t t e r  a t  the w a ll or 

v ic e  v e rsa . A lte rn a tiv e ly  both r e a c ta n ts  may be chemisorbed on to  

the  w a ll and r e a c t  in  th i s  s t a t e .  This l a t t e r  su g g estio n  would be 

expected to  lead  to  c ro s s  p roducts of the re a c ta n ts  namely e th y l-  

benzene and benzyl bromide. Examination of the furnace e f f lu e n t  

gas by the mass spectrom eter showed th e  presence of a sm all peak 

in c rease  over the bypass gas a t  m/e = 106*̂  suggesting  the presence 

of only a tra c e  of ethylbenzene in  the  gas m ix ture .

I t  was po in ted  out e a r l i e r  th a t the p o s s ib i l i ty  e x is ts  of H- 

atom a tta c k  on the m ethyl bromide. An in c re a se , from any cause , of 

the  s ta t io n a ry  s ta te  co n cen tra tio n  of H- atoms would th e re fo re  be 

r e f le c te d  in  the r a te  of deoom position of the h a l id e .
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The r a te  o f form ation  o f H- atoms i s  k ^ [T o l], The r a te  of l o s s  

of hydrogen atoms a llo w in g  fo r  lo s s  a t  the su rface  a s  w e l l  a s  in  

the gas phase i s  g iv en  by:
s

(k^Q+k^^) [H -] [ T o i .]  + (k  + k^g) [H-] [MeBr] + k^ [H-] [S u r fa c e ]

wheno e

[H-] = k^[T ol] / |(k ^ Q  + k^^)[Tol]+(k^^+k^g)[ifeBr] + k^ [Su rface]^  I

To tr y  to e x p la in  the toluene dependence term o f  the em p ir ica l 

r a te  eq u ation  on the l in e s  o f  a chem ical r e a c t io n  betw een IT- atoms 

and m ethyl bromide %vould lea d  to  a terms
{ “j

k^ [T ol. ] [MeBr]/|^(k^Q+k^^) [Tol]+(k^y+k^g) [MeBr]+k^[Surface ] j

In  order to  understand the e f f e c t  o f  the denom inator, i t  i s  

con ven ien t to  c o n s id e r  extrem e o a se s  i* e ,  for  one term dom inating  

the o th e r s . Thus i f  th e  (k^Q + k^ ^)[T ol] term i s  dom inant, th e  

eq u ation  red uces to  k^[MeBr] and one lo s e s  the to lu en e  r a te  depen­

dence. I f  the second term predom inates, then the f i r s t  order in  '

m ethyl bromide i s  l o s t .  Should th e  l a s t  term dom inate, we observe  

f i r s t  order behaviour in  m ethyl bromide and to lu en e  but the r e a c tio n  

would be su rface  in h ib it e d .

A l l  o f th e se  c a s e s  are a g a in s t  the exp erim en ta l o b ser v a tio n s , 

and one must conclude th a t the su g g e s tio n  of a H- atom r e a c t io n  

accou n tin g  fo r  the to lu e n e  dependence i s  u n j u s t i f i e d .  T h is , a lon g  

w ith  th e  ev id en ce  proposed e a r l i e r ,  em phasises the a c c e p ta b i l i ty  o f  

t h i s  term  b eing  a su rfa ce  dependent term .
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: ' I t  i s  o f in te r e s t  th a t ,  u sin g  the k in e tio  param eters derived  

in  th i s  work and Szwaro*s re a c ta n t co n c en tra tio n s , we are ab le  to  

c a lc u la te  the  ex ten t of h is  r e a c t io n  Szwarc (39) had used h igher 

to luene p ressu res  in  a  s im ila r  type of sytem. The comparison of th e  

two s e ts  of r e s u l t s  i s  shown in  f ig u re  49 u sin g  o v e ra ll f i r s t  o rder 

r a te  c o n s ta n ts . Using run  9 a t  1019°% of Szv/aro *s pub lished  data  

as being  the one n e a re s t to  our own ex tensive  d a ta  a t  10180%, the 

to luene  p ressu re  was 11.45 mm Hg and the methyl bromide p ressu re  

was 0.55 mm. in  th e  absence of a  c a r r ie r  gas we can use our va lues 

of p and to  sy n th e s ise  an e x te n t o f decom position a s  fo llow ss

%  ~ 0.38 ^  dec . / s e c .  

p = 0.5 ^  d e c ,/s e c .  mm.

Then ^  dec . / s e e ?  0,38 + 0 .5  x 11.45

Szwarc’s experim ental v a lu e  i s  3*24/0.41 « 7 $ ^  dec . / s e c .  C onsidering  

th a t  Szwarc’s tem perature i s  s l ig h t ly  h igher and th a t  we have in ­

h e re n tly  assumed a s im ila r  surface/volum e r a t i o  between the two 

s e ts  of work,the agreement i s  v e iy  reaso n ab le . I t  must be emphasised 

th a t  on th e  b a s is  of our a n a ly s is  only 6fo of Szw arc's decom position 

of methyl bromide occurred un im o lecu larly  and w ithou t the a id  of 

to luene as  ai o o - re a c ta n t.

Turning now to  th e  term  k^ [Argon] [îfeBr] in  the  em p irica l ra te

equation  we have to  e x p la in  an observed in c rease  in  r a te  w ith  in ­

c re a s in g  argon p re ssu re . The p o s s ib i l i ty  o f an en e rg is in g  process
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has been d iscussed  and d iscarded  and one can only suggest th a t  the 

argon, a com pletely  in e r t  sp e c ie s , w i l l  a c t in  p rev en tin g  the lo ss  

of some a c tiv e  e n t i ty  a t  the w a ll .  Thus an in c rease  in  argon 

p ressu re  might in c rease  the  H~ atom co n c en tra tio n  in  the bu lk  of 

the  gas by p reven ting  d if fu s io n  to  the w a lls . This w il l  in c rease  

the r a t e  of lo ss  of n e th y l bromide by re a c tio n s  ( l? )  o r  ( l8 ) .  The 

argon term  then  may be analysed  on th e  l in e s  of a homogeneous r e ­

a c tio n  between ÏÏ- and methyl bromide. The k^[Argon] [MeBr ] of the 

em p irica l equation  would becomes 

k^ [H-] [MeBr]

« k*^[MeBr] k^[T o l] /  j^(k^^tk^^)[Tol] + (k^^+k^g)[MeBr] + k ^ [Surface] j"

I t  i s  necessary  to examine the r e la t iv e  im portance of the term s 

in  the denominator# In  view of the evidence on page 49 the hydro­

gen atoms w ill  r e a c t  p r e f e r e n t ia l ly  with the to lu e n e . Since k^^ 

and k^^ rep re se n t th e  r a te s  f o r  r e a c t io n  w ith to luene we may co n s id e r 

th is  term  la rg e r  than  the (k^^ + k^g) term and may, as an approxima­

t io n ,  ignore the l a t t e r .

The e f f e c t  i s  th e re fo re  to  give a to luene and su rface  dependence 

in  the denominator# Such a r e a c t io n  scheme would give a f i r s t  o rder 

dependence in  methyl bromide, approxim ately zero dependence in  

to luene and the e f f e c t  o f the argon would be to  a l t e r  s l ig h t ly  the 

value of k^, which re p re se n ts  th e  d e s tru c tiv e  e f f ic ie n c y  o f the 

su rface  to  the hydrogen atoms. As the  co n c en tra tio n  of argon in ­

c re a se s , the value of k w il l  f a l l  and so the  observed decom position
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rq te  of methyl bromide w i l l  r 'i s e .  One cannot p resen t more than  a 

q u a l i ta t iv e  ex p lan a tio n  of th i s  e f f e c t  w ithout f u r th e r  experim ents.

There remains th e  f i r s t  o rder deoom position term  k^[CH^Br] fo r  

d isc u ss io n . C le a rly  such a term w il l  be the un im olecu lar f i r s t  ;

o rder decom position of the  methyl bromide. I t s  r a te  w i l l  depend 

upon th e  r a te  of f i s s io n  o f th e  CH^—-B r bond and the tem perature 

dependence of the  r a te  co n s ta n t w i l l ,  i f  th e  recom bination re a c tio n  

has zero a c t iv a t io n  energy, give the value of I)(C H ^-^B r), the bond '

d is s o c ia t io n  energy. The value fo r  the  a c t iv a t io n  energy from  

f ig u re  47 i s  66.7  k .oa ls/m o le  and the A f a c to r  i s  10^^*^^sec,

From a thermochemical s tan d p o in t the bond d is s o c ia t io n  energy 

in  methyl bromide is  r e a d i ly  c a lc u la te d  from th e  h e a ts  o f fo rm ation

of the paren t and the r a d ic a l s  formed.

Thus D(CH -B r) = m°  (CHj-) + ÛH° (Ba>) -  AH° (CH^Br)

Szwarc (39) c a lc u la te d  the thermochemical value of D(OH, -  Br)
.V J

a t  67,5 t  0 .5  k .o a ls /m o le . H is v a lu e  fo r  (CH^-) was based on 

the h ea ts  of form ation  of H- and of methane and on the  C - H  bond 

d is s o c ia tio n  energy in  methane. He used a value of -8 .6  fo r

^ (OILBr). j

With reg ard  to  the  above eq u a tio n , (B r-) i s  w ell e s ta b lish e d  %

AH°

a t  26.71 k .ca ls /m o le  ( 151) a t  25% . The value fo r  AB° (CH^Br) a t  

25% is  quoted a t  -8 .5  k .c a ls /m o le (151) , and -8 .6  k .oa ls/m o le  ( l2 6 ) . 

A value of - 1 0 ,0  k .o a ls/m o le  is  quoted by Maslov and Maslov ( l5 2 ) . 

The value -8*5 appears to  be p re fe r re d . The value of AB̂  (CH^-) a t
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25% appears a  l i t t l e  le s s  c e r ta in .  Skinner e t  a l  (127, 128) quote 

32.5 k ,o a ls/m o le  and a  value 3 2 .0  k .o a ls/m o le  i s  a ls o  quoted (151) .  

E ck ste in  (72) used a value 34 .0  k .oals/m o le  and Benson re c e n t]y  

ta b u la te d  34 .0  + 1 k .o a ls /m o le  ( 8O). Trotm n-D iokenson (l53 ) 

quoted 33.9  k .o a ls /m o le . A value of 32,0  k .o a ls /m o le  may be de­

duced from AH° (CH^) « -17 .89  k .c a ls /m o le , AĤ  (H-) *= 52 . 09 k .oals/no le  

B(CH  ̂ -  H) w IO2 k .o a ls /m o le .

Using a  v a lu e  of 32 .0  k#oals f o r  AH° (CH^-) and -8*5 k .o a l s /  

mole f o r  AĤ  (CH^Br), one ob ta in s B(CH^-Br) = 32 ,0  + 26.71 + 8.5

*=» 67.21 k .oa ls/m o le  

An upper l im i t  would use  AĤ  (OH^-) « 34 k .o a ls /m o le  and give 

69,21 k .o a ls  a t  25^0 .

In  order to  compare t h i s  w ith  our experim ental a c t iv a t io n  

energy lËiich was ob tained  a t  h ig h er tem perature we must c a lc u la te  

the c o r re c tio n  involved.

Our tem perature range was cen tered  on about 1030^K* In o rder 

to  f in d  the  AH*̂ f o r  th e  re a c t io n

'^ 3  -

we must have h ea t co n ten t d a ta  f o r  CH^-^Br, GH  ̂ and Br- over the 

tem perature range 298? —^1030^%.

We may t r e a t  the B r- atoms as a p e r fe c t  raonatomic gases w ith 

0^ « G_̂  t  R. Then f o r  B r- atom s;

^1030 “  ^298 "  5/2 R [1030 - 298]
3,62 k .ca ls /m o le
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For methyl bromide, h ea t co n ten t and sp e c if jb  h ea t d a ta  are  

l i s t e d  by G elles and P i tz e r  ( l 54) fo r  th e  te n p e ra tu re  range 

100— ^ 1500^%. In te rp o la t io n  o f t h e i r  d a ta  y ie ld s  a  value fo r

« 1 0 5 0 -  ^298 = 15.87 -  2.54

-  11.33 k .oals/m o le

The m ethyl r a d ic a l  h ea t co n ten t d a ta  is  not so r e a d i ly  a v a ila b le .  

However a value of 8 .9  k .ca ls /m o le  i s  ob ta ined  by in te rp o la t io n  of 

d a ta  by Ribaud (l5 5 ) f o r  th e  value — ®298^ fo r  OH^-,

This value m y c a rry  a  sm all e r r o r .

Thus f o r  th e  d is s o c ia t io n ;

---------^ +  ^ ' ( g )

given by;

'®298 *'^1030 ^298  ̂ (^1030 — ®298^^GHv̂  Br*3
  TJ^ \

^1030  298%H^Br

AB°2^0 + 8 ,9  + 3,62 -  11,33 “  ABg^g + 1,19 k .ca ls/m o le

The experim en ta l value of 66,7  k .o a ls /m o le  obtained  in  th is  

work when c o rre c te d  to 298^K by su b s tra c tin g  1.19 k .oals/m ole  y ie ld s  

a value 65.31 k .c a ls /m o le . In  view of the com plexity of the  

em p irica l r a te  eq u a tio n  and the  d i f f i c u l t i e s  in h e ren t in  deducing the 

f i r s t  order co n s tan t in  such a system, the agreement w ith  o ther 

workers on X)(CĤ  -  Br) must be considered  as f a i r .  With our in ­

creased  understand ing  of the  apparen t mechanism o p era tin g  a t  the

1 .  -
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p r essu res  u se d , th e  d a ta  should  now he capable o f  b e in g  extended  

to  produce a more r e l ia b le  e s t im a te .

The A fa c to r  o f 10^^'^^sec.  ̂ i s  low f o r  a u n im olecu lar  d e­

com p osition . I t  i s  however n ot (abnormal *. Gowenlock (156) con-
11 R lA S

s id e r s  A fa c to r s  o u ts id e  th e  l im i t s  o f 10 and 10 * to  be

abnorm al. We may n o te  here th a t the exp erim en ta l d a ta  has produced

a v a lu e  o f the a c t iv a t io n  energy somewhat sm a ller  than  one might

a n t ic ip a te  on therm ochem ical grounds. Should an e x te n s io n  o f  t h is

work produce a va lu e  more in  keeping w ith  the therm ochem ical v a lu e ,

13 -1an a s s o c ia te d  A fa c to r  would be nearer to  the exp ected  10 s e c .  

fo r  the u n im olecu lar  s p l i t .

B. G eneral a ssessm en t o f th e  method.

T h is survey o f th e  decomposition of m ethyl bromide in  

e x c e ss  to lu en e  was undertaken to  t e s t  for  a p p l ic a b i l i t y  of the  

tech n iq u es developed  in  the e a r ly  p art o f  th e  t h e s i s .  The c o m p le x it ie s  

d is c lo s e d  cannot be regarded a s a f a i lu r e  o f th e  tech n iq u e , but 

r a th e r  a s  an in d ic a t io n  o f i t s  u t i l i t y #  In most s t u d ie s  o f sm all 

f r a c t io n a l  decom p ositions the assum ption of a p a r t ic u la r  s to ic h io m etr y  

i s  a n ecessa ry  s te p  in  d e r iv in g  v e lo c i t y  cons tads s in c e  a n a ly ses  

are u s u a lly  made fo r  p ro d u cts . The p resen t tech n iq u e o f f e r s  the  

op p ortu n ity  o f d e a lin g  w ith  a wide range o f su b stan ces w ithou t the

. V .: .  ;
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n e c e s s ity  to  s tudy  the  sto ich io m etry  a t  a l l  tem peratu res of in te re s t#

So f a r  as can he a sse ssed  from th is  one t e s t  r e a c tio n  the procedures 

adopted seem valuable# I t  would be h e lp fu l i f  th e  technique could  

be ap p lied  to  h ig h e r gas p re ssu re s . This i s  la rg e ly  a t  m atter o f  

the  p o ro s ity  of th e  mass spectrom eter leaks employed, although j

d i f f i c u l t i e s  a re  l ik e ly  to  be encountered ?/hen p ressu res  o f , say
■

lOO mm or h ig h e r , a re  used#

The technique has been ap p lied  here  t o  a flow  system. The 

v a l id i ty  of d a ta  from s im ila r  systems has been c r i t i c i s e d  r e c e n tly  '

and a  re le v a n t survey i s  g iven in  Appendix XI. I t  i s  not im possible 

to  extend th e  method to  a s t a t i c  system in  which one would have to  

inc lude an in e r t  gas a s  a re fe ren ce  co n c en tra tio n  ( in  the flow system , 

the re feren ce  i s  the  bypass g a s ) . We co n s id e r th a t  the technique 

developed in  th i s  work i s  a  d i s t in c t ly  u se fu l to o l .

In  the case of the  t e s t  r e a c t io n  used th e re  a re  c le a r ly  many

f u r th e r  l in e s  of development. S tud ies ought to  be made w ith more ;

w idely varying su rface  a re a s , p a r t ic u la r ly  w ith regard  to  i t s  e f f e c t  

on th e  k , k^ and k^ values# Work a t  h igher gas p re ssu re s  might 

h e lp  to  reduce the e f f e c t  of su rfa ce  and should be undertaken fo r  

c l a r i f i c a t i o n  of the p o s it io n . The u ltim a te !  aim of any such w ork

ought c le a r ly  to  be the estab lishm en t of c o n d itio n s , i f  t h i s  i s  ^

p o s s ib le , where the k term  i s  dominant and the  o th e r term s n eg lig ib le ,

The co n d itio n s  used in  t h i s  work and in  Szwarc *s previous study  are
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c le a r ly  no t f re e  from  com plexity . I t  i s ,  of co u rse , p o ss ib le  th a t 

the s e l f  decom position o f to luene  w il l  always induce a deoom position 

of RX when B(R -  X) i s  as h ig h  as in  methyl bromide. A more ex- ;

h au s tiv e  study  would be of value to  our understand ing  of the p rocesses

inv o lv ed •

'7')% ̂■
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^  The f i r s t  ob jec t of th i s  work was to produce a  technique of 

an a ly s in g  con tinuously  th e  e x i t  gases of flow re a c to r s  under con­

d it io n s  where th e  e x te n t of decom position is  sm all, and to  do th i s  

w ith p a r t ic u la r  re fe re n ce  to  th e  sm all changes in  re a c ta n t concen­

t r a t i o n .  This was p re fe rre d  to  a n a ly s is  fo r p roducts s ince  the 

t r a n s la t io n  of th e  d a ta  fo r  the l a t t e r  in to  k in e tio  r a t e  equations 

re q u ire s  a  knowledge or assum ptions o f th e  sto ichiom etry#

The second aim of th e  work was to  app ly  the technique to ty p ic a l  

systems as used f o r  bond d is s o c ia t io n  energy de term inations and t e s t  

the method on a r e a c tio n  of im portance.

2 . D e ta ils  have been given of th e  development of th e  system  where 

the an a ly ses  can be performed mass spec trome t r i e  a l ly  and con tinuously  

on both  the i n l e t  and ex itii g ases , w ith  about 30 seconds between 

each sampling# The technique minimises the chance th a t  v a r ia tio n s  

in  flow c o n d itio n s  o r changes in  re a c to r  e f f ic ie n c y  w i l l  pass un­

detected# I t  perm its a ls o  v a r ia t io n s  in  k in e tio  param eters to  be 

s tu d ied  w ithout opening up  the re a c to r  but merely by a l te r in g  the  

v a r ia b le s  and w a itin g  fo r new steady  s ta te  cond itions*

In  o rder to  d e a l w ith  the  sm all v a r ia t io n s  in  the la rg e  s ig n a ls  

g iven by the re a c ta n t decom position, an e l e c t r i c a l  backing o ff  de­

v ice  was used a f t e r  s u f f ic ie n t  s t a b i l i t y  had been o b ta in ed . The 

d e t a i l s  of th i s  have been g iven .
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5» In  order to oheok the f l e x i b i l i t y  of the  tech n iq u e , the therm al 

decom position of methyl bromide in  excess to lu en e , p rev io u sly  

in v e s tig a te d  by Szwaro, was c a r r ie d  out in  the flow system#

4# I t  was shorn experim en ta lly  th a t  the r a te  of decom position of 

the m ethyl bromide was g iven by:

-d  [MeBr]/dt » + k^ [Toluene ] + k ^ [ A r g o n [ M e B r ]

when u s in g  up to  0#1 mm CH^Er in  abou t 1 mm o f to luene and 1 mm 

of argon c a r r ie r  g as . The re a c t io n  was shown to  be su rface  dependent 

and was s tu d ied  in  two fu rn aces  of d i f f e re n t  S/V r a t i o .

^  % thods of a n a ly s is  of th e  d a ta  have y ie ld ed  k^, and k^. The 

tem perature c o e f f ic ie n t  of k^ has been shown to  be

k^ = ^q11.86 (—6 6, 700/ r t )  sec ^ in  the range

9 6 0 °  — > 1 0 9 0 ° E .

The a c t iv a t io n  energy from the tem perature v a r ia t io n  i s

65.2 k .c a ls /m o le .

6 . The k in e tic  d a ta  have been d iscussed  and k i s  a sc rib ed  to  the 

f i r s t  o rder decom position p rocess w hile the second term  has been 

considered  to  be a su rface  r e a c t io n . The sm all in c re ase  of the

r a te  w ith  r i s e  in  argon p ressu re  is  thought to  be caused by in c re a se s  

in  the s tead y  s ta te  c o n c en tra tio n  of hydrogen atom s, due to  argon 

impeding the  p a r t i a l  w all removal of th i s  e n t i ty ,

7. The a c t iv a t io n  energy Of 66*7 k .oa ls/m o le  fo r  th e  unim oleoular 

decom position has been compared w ith  other d a ta  on D(0H^ -  B r).
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8, l ’in a l ly ,  suggestions Mve been made fo r  fu r th e r  work in  th e  

study of t h i s  r e a c t io n  to  a id  a more com plete understand ing  of the 

ap p a ren tly  complex mechanism involved#
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APPENDICES

APPENDIX I .  C a lcu la tio n  of o ont a c t  tim e s .

I t  may be x ea d ily  c a lc u la te d  th a t  the resid en ce  tim e in  seconds 

of a gas passing  th rough  a fu rnace i s  given by th e  form ula:

. V X P X 275_______
c ^ n X  22400 X  760 X  T

where V = fu rnace volume in  m l,

= 280 m l, f o r  unpacked fu rn ace ,

P =s fu rnace p ressu re  in  mm, Hg,,

I  = fu rnace tem perature i n  degrees K elvin , 

and n = t o t a l  moles p e r second passing  thio ugh th e  fu rn ace .

The furnace p re s su re , P, i s  c a lc u la te d  fiom  a knovrledge of 

th e  p re ssu re s  a t  th e  flow  McLeod gauges and the  flow  c a p i l la ry  or 

c a p i l l a r i e s  in  use f o r  th e  run . Reference to  th e  ta b le  on page 46  

shows the percentage in c re ase  to  be appS.ed to  th e  McLeod gauge 

reading to  give the  a c tu a l  fu rnace p re ssu re .

I f  th e  t o t a l  moles p er second passing  through th e  furnace and th e  

bypass i s

^  *“ ^MeBr ^ ^ t o l .  ^ ^ \rg o n ' 

th en  n , the  number of moles passing  through the  fu rnace =so<. N where 

oC i s  the  f r a c t io n  p assin g  down th e  furnace l i n e .
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^MeBr ^ to l  ob ta ined  from c a l ib ra t io n  graphs ( f ig u re s

6 and 7 ) , n i s  ob ta ined  from c a l ib r a t io n  graph f ig u re  9 fiom  a'  argon
knowledge of th e  c a p i l la ry  in  use and and P^, th e  flow McLeod 

gauge re a d in g s . The sum o f th e se  q u a n t i t ie s  y ie ld s  the  t o t a l  moles 

p e r second and re fe ren ce  to  f ig u re s  23 and 26 (o r  29 and 30 in  the  

case of the  packed fu rn ace ) allow s th e  f r a c t io n ,  (Xl , of the  gases 

passing  down th e  furnace l in e  to  be c a lc u la te d .

The e x te n t of decom position i s  given by:

^decom posed =

where ^  (mV. ) = (bypass reed in g  -  fu rnace reed in g ) in  m il l iv o lts  of 

peak h e ig h t of 96^#

Bypass (mV. ) = t o t a l  bypass reading in  m il l iv o lts  = (re co rd e r 

sca le  reed in g ) + (backing o f f  read in g ) -  (96* zero r e r d i r g ) .

The average of fo u r  o r  s ix  re a d in g s  o f percen tage decom position was 

taken  as th e  value fo r  a p a r t ic u la r  run .

The p a r t i a l  p ressu re  of siib^anoe x in  th e  fu rnace i s  g iven  by:

^*x ^ ̂ x  ̂  th e  l e t t e r s  having th e  above

d escrib ed  s ig n if ic a n c e .

F i r s t  o rder r a te  co n s tan ts  may then  be c a lc u la te d  from th e  r a te  

equation :

lcj_(30o ."^ ) = ■ â ^ l o g ^ Q  [lOO /(lO O -x)J
0

where x = percen tage decomposition*
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APIENDIX I I .  Gas d is t r ib u t io n  d a ta .

Data on the  d i s t r ib u t io n  of gas between furnaoe and bypass l in e s  

were as fo llo w s ,

(a ) Dnnaokod fu m a o e , E ffe c t of température v a r ia t io n  a t  a constan t 

p ressu re  of 1 ,0  mm. Flow c a p i l la ry  No,4 , Bee f ig u re  25,

Furnace Temp, (°K) fo through fu rnace ( i )

943 45.9
951 45.3
971 45.2
983 45.2

997 44.8
1018 4 5 .0
1037 44.3
1039 44.5
1070 43.8

(b) Unpacked fu rn a c e . E ffe c t of p re ssu re  v a r ia t io n  a t  a constan t 

tem perature of 1037°%, See f ig u re  26.

:ïl«.
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P ressu re (mm Hg*. ) % th rough furnace ^ O apillapy

0.77 4 3 .4 4
1 .05 4̂ 1-. 4 4
1.48 46 .2 4
1 .90 47 .0 4
0.65 46 .5 1
0.91 46 .8 1
1.46 48 .0 1
1 .94 48 .1 1
1.03 48 .0 2
1 .84 48 .0 2
0*83 48 .0 1 4 - 2 + 4

( i )  ■ Tho1 e r ro r  i s esb imatod to1 he not g re a te r  th an  0 .6^

on th e  percen tage quoted . See Appendix V II I ,

(o) Packed fu rn a c e . Tempo ro .tu r0 v a r ia t io n  a t  a co n s tan t p ressu re

1 ram Hg# Plow c a p i l la ry  No. 4 .

Temperature (°K) % through fu rn a c e ,

974 33.5
995 33.8
995 32.2
996 32,8

1017 31.7
1019 32.2
1033 31.8
1034 31.6

., .■  ̂ ^ ■ M
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(d ) PaokGd furno.oe. E ffe c t of p re ssu re  v a r ia t io n  a t  1018°%, See 

f ig u re  30.

P ressu re  (mmHg.) fo through furnace, ( i i )

0.43 29.1 4
0.43 29.3 4
1.09 32.2 4
1 .05 32.9 4
1 .60 34.9 4
2.07 35 .4 4
2.57 36.3 4
2.60 36.4 4
1.20 37.1 1
CL58 34.6 1

(ii) The e r ro r  i s  es tim ated  to  he not g re a te r  than  j;  2#3fo on th e  

percen tage quoted. See Appendix V III .

APPENDIX I I I .  Seasoning r a te  d a ta .

V a ria tio n  of the  e x ten t of decom position w ith  seasoning tim e 

forpgpkod ( s /v  = 5 .2 ) and unpacked (s /v  1 .8 2 ) fu rn a c e s . The values 

have heen r e la te d  to  one second of res id en ce  tim e . Plow c a p i l la ry  

No. 4

.1'.; 4--. . -j-i ■■= ri,



120

_<y.? Sv'

(a )  Urtpackod furnao© a t  1000°K,

Run no* % d e o ,/se o ,(^ ^ ^ ^ Seasoning tim e (mil

56 0,66 15
57 0.57 56
58 0.49 87
59 0.44 111
60 0,46 143
6 l 0.45 169
62 0.46 199
63 0,46 225
64 0,44 283

■’aoked furnaoo a t  1005°%.

Run no. % d e o , / s e o , ^ Seasoning tim e (mins

115 2.55 14
116 1,92 34
117 1 .61 57
118 1.43 80
119 1 .29 117
120 1,22 %
121 1 .1 9 177

0Ü) An avoragG e rro r  of + 2 .0 ^  in  the f ig u re  quoted i s  

estim ated. See Appendix V II I ,
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APPENDIX IV # V a r ia tio n  o f  p a r t ia l  p ressu re  w ith  co n ta ct t im e ,

Let n . and n_ m o le s /s e c , o f  argon c a r r ie r  gas f lo w  through : r
, I

c a p i l la r ie s  1  and 2 r e s p e c t iv e ly  and l e t  n^ and n^ he th e  m o le s /s e c , ''f:

o f  in je c te d  r e a c ta n ts  which rem ains ooastant. The s i t u a t io n  i s  ?.
(

rep resen ted  d iagram m atica lly  below : #

T

\
■P

Argon,
f

Furnace,

/ 2

Trap removes 
M and T,

The j a r t i a l  p ressu re  o f  M in  th e  furnace when u s in g  c o ,p illa r y  1

x s;

n

For c a p i l la r y  2:

n.
p ’ g.  ....—A --------• p*

where P^ and P*^ are th e  fu rn ace p ressu res  in  th e  two o a s e s .
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The o ont a c t  tim e i s  g iv e n  by

K. Pj.
tp  -  ^ " '-------- where K i s  a tem perature dependent

apparatus co n sta n t

Thus

P • “ m

and p

V i
K

I ,

~ K

Thus th e  r a t io  o f th e  p a r t ia l  p re ssu re s  o f a r ea c ta n t under th e  

above c o n d itio n s  a t  a g iv en  tempe rab ure i s  th e  same as th e  r a t io  o f  

th e  co n ta c t t im e s . The partia .1  p r essu res  o f  the o o r r io r  gas in  th e  two 

o a ses are

p ‘ =
4  + n^ K

Mid , t g Ç n .
P

or p '^  n^ t^
I

P “b  2B

thu s in v o lv in g  b oth  th e  mole r a t io  and th e  co n ta c t tim e r a t io .
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Appendix V# Temperature c o e f f ic ie n t  of f i r s t  o rder r a te  c o n s ta n t . in  

unpfloked fu rn a c e .

T/ÆLE V

Run % dec. t^ ( s e c s ) 3+ loS io ï^ i /r ( ° K )x io ^ C a p illa ry

1 3.93 2.86 0.346 1.16 9.606 1
2 3.71 2.81 0.438 1.12 « 1
3 3.29 2 .84 0.334 1 .07 If 1
4 4 .02 2.85 0.327 1 .16 9.643 4
5 9.44 5.79 0.650 1.23 9.625 2
6 2,02 1 .69 0.196 1.08 9.634 4
7 0.82 6,00 0.671 0.56 10.320 4
8 2.49 5.70 0.675 0 ,64 9,970 4
9 22.55 5.46 0.694 1.67 9.276 4

10 9.82 2.65 0.347 1 .59 9.268 1
11 4.39 5.87 0.651 0.88 9.824 4
21 1.43 5.20 0.811 0 .44 10,107 4
22 •0.68 2.69 0.432 0.40 If 1

23 0.80 2.76 0.442 0.46 10,091 1
24 1 .65 5.02 0.777 0.52 If

4
25 3.33 5.04 0.804 0,81 9*911 4
.26 1,46 2.65 0.434 0 .74 « 1
27 1 .0 7 1 .7 4 0.288 0.79 tf 2
28 1 .7 7 1.71 0.288 1.02 9.681 2
29 2.72 2.59 0.432 1 .03 If 1
30 6.71 4 .97 0.804 1 .1 4 ft 4
31 12.24 4 .94 0.808 1 .42 9*488 4
32 5.00 2.56 0.432 1 .30 If 1
33 2.81 1,68 0.280 1.23 ft 2
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Run fo dec. t ^ ( s e o s . ) Hg.) 1 /t (°K)x10^
■«JLUVV

Cep illa,3Çy

34 4.31 1 .73 0,295 1.41 9.352 2
35 7,52 2.58 0,437 1 ,49 11 1
36 16,94 4 .78 0,792 1 ,58 11 4
37 7.05 1 .69 0.291 1 .6 4 9,195 2
38 11.79 2.53 0.432 1 .69 tl 1
39 25,96 4 .84 O.803 1 .79 11 4
45 3.42 5.06 0,824 0.81 9,930 4
46 1.43 2.59 0.437 0.75 9,901 1
47 3.49 5.03 0.824 0.85 H 4
48 1.05 5.19 0,812 0.51 10.290 4
50 8.82 1 .20 0.216 1.88 9*046 1 + 2 + 4
51 10.57 1 .61 0,286 1 .8 4 « 2
52 17.73 2.42 0.439 1.91 « 1
53 12.50 1.51 0,249 1.96 8.979 1 + 2 + 4
54 14.18 1,61 0.288 1 .98 8.971 2
55 0.82 4.98 0,780 0.22 10.370 4
64 2,29 5.16 0.855 0,65 10.000 4
69 0.87 4 .59 0.889 0.28 10.331 4
70 0.96 4 .6 1 0.885 0 .32 11 4
71 0.75 4 .62 C.887 0.21 10.395 4
72 0.63 5.29 0,753 0,07 !? 4

73 1.10 5.10 0.826 0,37 10.309 4

74 1 .21 5.62 0.710 0 .34 11 4
75 3.76 5 ^ 2 0,807 0,88 9.911 4
76 1.39 2.71 0.437 0,71 11 1

77 6.28 4 .85 0.780 1,13 9.737 4
78 2.29 2.61 0.439 0.95 11 1
79 1.37 5.03 0.792 0 . 44. 10.173 4
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TABLE V oontinued*

Slav?
Run fo dee. t ^ ( s e o s . ) P ' ' t o l / “ ® % ') 3 + lo g ^ q l^ l/T (°K )x l0 ^ O ap llla iy

80 1.56 5.04 O i7 9 8 0.49 10.173 4
81 1 .69 5.05 0.812 0.53 tt 4
87 2.58 2.59 0.479 0.97 9.825 1
88 2.21 2.54. 0.486 0 .94 w 1
96 1 .60 2.45 0.463 0.82 11 1

105 1 .44 2.14 0.436 0.83 11 1

(d) Eor an estim ate  of e r ro r s  see Appendix V II I ,

APPENDIX V I, Temperature o o o ff io ie n t of f i r s t  o rd er r a te  co n s tan t 
f o r  p f tc^ d  fuznaoe / ^

TABLE VI

Run fo deo. t ^ ( s e c s . ) p 'to l .^ ™  % ') 3+logiQltj_ l/T (°IC )xi0^.

121 6.14 5.15 0.744 1 .0 9 9.95
122 1.22 5.12 0.748 0.38 10.38
125 2.09 5.15 0.751 0 .62 «

124 9.59 2.84 0.461 1 .5 4 9.55
125 8.57 2.85 0.461 1.50 !1

126 17.64 5.15 0.796 1.58 tf

127 16.45 5 .14 0.461 1 .76 9.55
128 15.18. 5.08 6.478 1.73 M

1.29 9.98 2.05 C.32O 1.71 »

150 5.89 5.80 0.955 1 .00 10.15
151 2.17 2.16 0.619 1 .01 tt

152 5.14 5.85 0.963 0.92 tl

155 8.41 2.14 0.622 1 .61 9.55
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TABLE V I. G o n tin u e  d .

Eun % dec . t ^ ( s e o s , ) Hg.) 3+log^Qk^ l/l(°K )% lo 4 .

134 14*47 3.86 0.954 1 .61 9.55
135 7.88 2.33 0.566 1 .55 IT

136 8.23 2.81 0.454 1 .49 H

137 6 . 2 9 5.22 0.760 1 .09 1 0 , 0 9

138 3.77 2,83 0.446 1 .13 H

139 5.65 5.13 0.739 1 .06 II

140 3.23 2.86 0,449 1 .06 «

141 2.58 1.93 0*672 1.13 11

(e ) For an estim ate  of e r ro rs  sea Appendix V II I .

APPENDIX V II . Rate of m olecular d if fu s io n  to  th e  fum aoe w a l l ,

Consider a molecule p laced  c e n tr a l ly  between th e  o u te r  w all and 
th e  thermocouple w ell w a ll .  In  th e  p re sen t appara tu s t h i s  i s  0 ,5  cm,

from th e  w a ll .

The average number of c o l l is io n s  (n) su ffe re d  by a p a r t ic le  when 

d if fu s in g  through  a d is ta n c e , y , i s  g iven  by (1 7 ):

3 *1*1 v^ \n =  Tq—  where A i s  the  mean f re e  path,
4

The mean f re e  p a th  may be c a lc u la te d  ( l8 )  by;

A /^  2 *= l/ j2  Tf tr" n where n i s  th e  number of m olecules
3p er cm.^.

Thus n =3 i  T T ^  y^ n ^
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’fi
A  value o f n may be ob ta ined  from  th e  r e la t io n  (16);

n* m oleonles/om ).

where p i s  th e  p re ssu re  in  mm Hg. and T i s  the  teiï^oi*atu re  of the  gas,

In s e r t in g  ty p ic a l  v a lues of 2 mm pressure a t  1000°K vm have 

n. = 19,3  % 10^^ m olecules cm.”^

Continuing to  estim ate  th e  d if fu s io n  time by basing  our 

c a lc u la tio n s  on argon we have ^  « 3 .7  % 10*“^ cm., and a m olecular 

TfGight of 40.

Then th e  number of c o l l is io n s  a c e n tr a l ly  p laced  molecule w il l  

meice in  d if fu s in g  th e  0*5 cm. to  th e  w all i s ;

n = ^ T T ^ (0. 5 )^ [ 3 .7  X [ 19.3  X 10^^

^  ^*11 % 10^ c o l l i s i o n s .

The number of c o l l is io n s  one molecule makes p e r  second i s  given 

"by (18):

2 n  = J ^ T T t r 2 -  *0 n

where c i s  th e  average mole cu la r  v e lo c ity  and i s  g iven by; 

0 » 8BT
TTM

where the symbols have t h e i r  u su a l s ig n if ic a n c e .

Then

= / z  7T ( 3 .7  X 10" ® )^  X ( 1 9 ,3  X 10^ ® )

7 “*1= 8 .5  X 10 c o l l is io n s  soc,"’
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Thus th e  tim e tak en  f o r  th e  c e n tr a l ly  p la ced  m olecu le  t o  reach the  

w a ll i s  g iv en  hy th e  v a lu e  o f  n /  2 ;^ *

n/Zn = 8.11 X 10V s .5  X 10^
-3

9*5 X 10 s e c s .

The r e s u l t ,  had th e  c a lc u la t io n  been based on to lu e n e  ta k in g  %
-1 4

<r”^ l l A ,  and M = 92, would have g iv e n  an n /^  v a lu e  o f  1*3 x  10*" s e c s ,  v  

Such v a lu e s  v/ould, w ith  a t y p ic a l  accommodation c o e f f i c i e n t  o f  

about 0 .2 ,  su ggest th a t  in  tim es o f th e  order o f  0 ,5  s e c .  even  

m olecu les which are i n i t i a l l y  p la c ed  c e n tr a l ly  w i l l  have reached w a ll  

tempe ra tu re  by d ir e c t  c o n ta c t w ith  th e  w o l l .  T his t im e , th en , 

r e p r e se n ts  an upper l i m i t .

The va lu e  o f  n v a r ie s  w ith  th e  square o f  th e  d is ta n c e , y ,  and 

th e  m a jo r ity  o f  m o lecu les  in  th e  furnace w i l l  th e r e fo r e  have a much 

low er  va lu e  o f  n than  th e  above c a lc u la t io n  s u g g e s ts . Many o f th e  

c o l l i s i o n s  made on th e  vmy to  th e  w a ll  w i l l  be w ith  m o lecu les which  

have a lrea d y  v i s i t e d  th e  w a ll  and p o s se s s  h igh er  e n e r g ie s .  T his "Bill 

have th e  e f f e c t  o f  h e a tin g  th e  m o lecu les b e fo re  th e y  even g e t to  th e  

w a ll  or o f  in c r e a s in g  the va lu e  o f  th e  accommodation c o e f f i c i e n t  

tov/ards u n ity . Such q u a n t it ie s  are d i f f i c u l t  to  a s s e s s  but i t  i s

f e l t  th a t  in  view  o f  th e  above c a lc u la t io n s  a warm-up tim e o f 0 ,5  s e c s ,

i s  not c o n c e iv a b le .

APPENDIX V I II , An assessm en t o f  e rro rs  and erro r  l im i t s ,

The erro r  l im i t s  quoted a t th e  fo o t  o f the t a b le s  in  Appendix I I
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I
were estim ated  from th e  ex ten t of th e  spread of th e  re ad in g s . The -‘̂

' I
e r r o r  involved  in  weighing th e  to luene  to  o b ta in  the  percen tage

.'3
through fu rnace f ig u re  was of the  o rder of O.l^j. In  a d d itio n  c o l le c t io n  f

■ -A'4
e r ro rs  caused by p o ss ib le  d if fe re n c e s  in  t r a p  e f f ic ie n c ie s  gave r i s e  VS

to  th e  e r ro r  l im i ts  quoted. A g re a te r  spread was observed in  th e  packed

fu rn a ce . The m a jo rity  of v a lues f a l l  w ith in  a much sm alle r range th an
Ith e  e r ro r  quoted, 3.;a

E rro rs  in  th e  percen tage decom position f ig u re  were estim ated  by V
-3

c a lc u la tin g  the  standard  d e v ia tio n  of th e  se v e ra l esqperioent&l read in g s ù

o b ta in ed , The a r ith m e tic  mean of th e  read ings was th e  f ig u re  used in  

c a lc u la t io n s .  The standard  d ev ia tio n s  c a lc u la te d  v a r ie d from b e t te r  than  

+ 1 ,0 ^  to  about In stru m en ta l i n s t a b i l i t i e s  were a co n trib u tin g

f a c to r  to  th e se  d e v ia tio n s .

The p a r t i a l  p re ssu re s  o f th e  re a c ta n ts  quoted a re  considered

to  bo w ith in  + 2 .0 ^ , They were estim ated  from th e  p o ss ib le  e r ro rs
-I

involved in  read ing  the  manometer in  the  case of th e  methyl bromide
•3

in je c t io n  and in  the  s te a d in e ss  of th e  w ater b a th  tem peratu re  i n  th e  :;i

case of th e  to luene  in je c t io n .  The c a r r ie r  gas p a r t i a l  p ressu re  v

e r ro r  was of about th e  same o rder since th e  McLeod gauges were I

considered  accu ra te  to  about + l.O/o. :1

An e r ro r  in  th e  knowledge of th e  fu rnace tem perature of one ^
' v

degree a t  750^0 w il l  produce an u n c e r ta in ty  of 0.01 x 10 |

in  th e  re c ip ro c a l tem pera tu res quoted. The fu rnace te ïî^ o ra tu re  

co n tro l was to  w ith in  4- 0 ,5  0 ° , The smoothing of th e  furnace on
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th e  o th e r  hand was known to  he + 1 0 ^  producing an  u n c e r ta in ty  o f 

+ 0.01 X 10"V °“^ .

The probable e r r o r  in  the co n tac t time may be deduced by the 

normal method (6 4 ). In s e r t i« n  of the above quoted e r ro r s  in to  

the  form ula in  Appendix I  lead s to  a probable e r ro r  in  t^  of about 

A A*Ofo, T his produces a maximum probable e r r o r  in  th e  value of 

the r a te  co n s tan t o f about t  5#C t̂#

APPENDIX IX. E ffe c t of co n tac t time v a r ia t io n  and removal of 
Toluene dependence.

The d a ta  fo r  decom position r a te  ag a in s t c c n ta c t tim e drawn in  

F igure 34> i f  t r e a te d  a s  a l in e a r  graph showed in te rc e p ts  cf the 

o rder of 0,5 seconds on the time a x is .  As po in ted  out e a r l i e r  

these  d a ta  were obtained  befo re  i t  was e s ta b lis h e d  th a t  the  r a t e  

of (iecomposition increased  w ith  inc rease  in  the  p ressu re  of to lu en e , 

and th e  d a ta  of F igure 34 involved h igher to luene  p re ssu re s  as 

co n tac t tim es in c reased  — because of the method of ex p erim en ta tio n . 

In th i s  s e c tio n  a c o r re c t io n  i s  ap p lied  to  th e  d a ta  of F igure 34 

in  o rd e r to  remove th e  d is tu rb in g  in flu en ce  of the v a r ia t io n  in  

to lpene p re ssu re . The c o r re c t io n  w il l  be based on th e  e s ta b lish e d  

ra te  equations

- d [MeBr] / dt =■ [M] + k^[M] [T] + k^[M] [A],
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where [M] «* methyl hromide concent r a t  io n , [T] = to luene co n c en tra tio n  ¥i

and [a ] « argon o' one e n trâ t  ion . v*
'I

R ew riting  th is  we have

io deo, / 1^ “  + p [ t ]  + [A] g

where t^  i s  the co n tac t time and th e  equation  ap p lie s  to  s m l l  ex- g:

te n ts  of decom position, i s  th e  in te ro e p t ( in  ^  decom position /sec) ^

corresponding  to  zero  c o n tr ib u tio n  from to luene  and from argon 4

and p and a. a re  the s lo p es  ( in  /ô decom position/sec p er mm p ressu re )ji. Ï

f o r  th e  to luene  and argon v a r ia t io n s  r e s p e c tiv e ly . An accu ra te  

trea tm en t would req u ire  the  equation

l o g [ l / ( l  -  f r a c t io n  decomposed)] 4- p [T] + o^[A]j" t^

la th e r  than  m erely (^ decom position)/1^ . An expansion o f the 

logarithm ic term  a llo w s one to  c a lc u la te  the e r r o r  involved in  th e  

approxim ate trea tm en t. Thus fo r  a  f r a c t io n a l  decom position of 0 .1  

( i . e .  10^)> the e r r o r  involved i s  about 5^ in  the decom position 

f ig u re  and fo r  2C^ decom position the e r ro r  r i s e s  to  about IC^.

For most of the ru n s , [A] was about co n s tan t a t  0.7 to  0 .8mm Hg 

and a ls o  th e  e f f e c t  cf v a r ia t io n  of argon p ressu re  i s  sm all com­

pared w ith  the to lu en e  e f f e c t .  We may th e re fo re  w rite  a s  a  good 

appr ox im  t  i  on

decom position) -  + p [T]J" t^

where a re p re se n ts  (&o + [A] ) .

I t  can be shown th a t fo r  th e  experim ental technique used the  

to luene p a r t i a l  p re ssu re  i s  p ro p o rtio n a l to  the co n tac t time (see
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Appendix IV) i . e .  a s  we in c rease  t  , so [T] in c rease s  i f  th e  g
-f

in je c t io n  ra te  i s  unchanged. .?

A p lo t of ^  decom position a g a in s t time of co n tac t w i l l  ih e re -
.1

fo re  he expected to  show an upward cu rv a tu re  w ith  in c reas in g  tim e %
, V" "Z;

of c o n ta c t. The p o in ts  shown in  F igure 34 cou ld  reaso n ab ly  be held  %

to  l i e  on an upward curve through the o rig in  r a th e r  than  on th e  

s t r a ig h t  l in e  drawn in  th a t  g raph . The more accu ra te  trea tm en t 

o u tlin ed  above would have the  e f f e c t  of in c reas in g  s l ig h t ly  the  

upward cu rv a tu re  of the  p lo ts .  Since the  p[T] c o n tr ib u tio n  amounts 

to  some 50^ of the t o t a l  (a + p[T])and since no q u a n t i ta t iv e  use i s  

to  be made of d a ta  obtained from t h i s  c o r re c t io n , th e  le s s  ac cu ra te  

trea tm en t i s  co n sid ered  to  be adequate»

We can now c o r re c t  th e  p o in ts  fo r  th e  e f f e c ts  caused by to luene  

p ressu re  v a r ia t io n s  by the fo llo w in g  procedure. Since we have th ree  

p o in ts , obtained from each of th e  th ree  flow  c a p i l l a r i e s  a t  sev era l 

tem pera tu res, we may w rite  th ree  sim ultaneous eq u a tio n s. For ex­

ample, c o n s id e r  ru n s 31, 32, 35 a t  1054^K. We can se t up th ree  

equations from th e  experim en ta l d a ta , u sin g  co n cen tra tio n s  o f to luene 

in  mm Hg, a s  fo llow s s

12.24 == (a  + 0.808 p) 4#94 ( l )

5 ,0  « (a  + 0.432 p) 2.56 (2)

2.81 = (a  + 0.280 p) 1 ,68  (3)
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REMOVAL OF TOLUENE DEPENDENCE PROM CONTACT TIME VARIATION.

% dec.
Runs 50, 51, 52 
at 1106°K.

Runs 37, 38, 39 
at 1087°K,

A

14

12

10

Runs 31, 32, 33 
at 1054°K.

at 1038 K

secs.

O 1 2 3 4 5 6

PIG. 5 '
Contact time, t .c
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Sinoe th e  values in  th e  equations a re  a c tu a l  experim ental 

v a lu es i t  i s  u n lik e ly  th a t  th ey  w i l l  f i t  th e  curve e x a c tly . The 

values of a and p were th e re fo re  determ ined by so lv in g  equations 

( l )  and (2 ) , (2 ) and ( 3 ) ,  and (3 ) and ( l )  and averag ing  the values 

of a and p so o b ta in ed . The v alues fo r  the above se t were ; 

a -  1 ,34 , 1*16, 1.24 5 average value 1,23 

P ~ 1 .4 1 , 1 .8 4 , 1.53 9 average value 1.59 

The percentage decom position c o rre c te d  f o r  zero  to luene c o n t r i ­

b u tio n  th e n  becomes

Observed ^  decom position x a
(Ct + p[T])

Such c o rre c te d  d a ta  f o r  se v e ra l s e ts  of runs are  given in  

Table IX and p lo ts  o f co rrec ted  percentage decom position are shown 

in  f ig u re  50 as good s t r a ig h t  l in e s  through the o r ig in  w ith  slope 

a . The upper p o in t of th e  1 0 8 7 dat a  may be in  e r r o r  because of 

too  h i ^  a  decom position f ig u re .
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I t  w il l  be no ted  th a t  a  la rg e  spread  e x is ts  i n  the in d iv id u a l 

values of a and p , T h is  i s  a common fe a tu re  then  qne i s  curve 

f i t t i n g  to  experim ental p o in ts  by exac t m athem atical tre a tm e n ts . 

Small e r ro r s  in  the v a lu es become la rg e  percen tage e r ro r s  when 

su b s tra o ted . However, averag ing  th e  a and p v a lu es  Should give 

a reasonably  r e l i a b le  r e s u l t ,  and sinoe th e  a /p  r a t i o  i s  about 

u n ity  a t  s e v e ra l tem peratu res the co rre c te d  decom position i s  r e la ­

t iv e ly  in s e n s i t iv e  to  v a lu es of a /p  and more s e n s itiv e  to  [T].

One should c o r r e c t ly  app ly  a  s t a t i s t i c a l  trea tm en t in v o lv in g  the 

minimizing of the  sum of the  standard  d ev ia tio n s from a c a lc u la te d  

s t r a ig h t  l in e .

That th e  above described  trea tm en t would appear v a l id  i s  shown

by ta k in g  the  average values of a and p and c a lc u la t in g  values

of ^ 0  decom position f o r  the experim ental [T] and t^  v a lu es . The
2c a lc u la te d  cu rve , a  parabo la  of th e  form y » ax+bx , may be drawn. 

The co n s tan t of p ro p o r t io n a li ty  between [T] and t^  i s  found by a  

p lo t  of th ese  q u a n t i t ie s .  Thus the equation  f o r  runs 31 > 5^5 33 

bee ome s : -

^ 0  decom position « 1.23 + 0. 24?t^^  ,

since [T] = 0.166 t^  in  t h i s  c a se .

The curve is  shown in  F igure 51* The experim ental p o in ts  a re  

seen to  be in  good agreement w ith the th e o r e t ic a l  cu rve.
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APPEKDIX X Furnace se a so n in g .

The p roduction  of furnace w all co a tin g s  by the  re a c ta n ts  to  

produce r e la t iv e ly  in e r t  su rfaces  has been widely noted^ The 

genera l tendency i s  fo r  a su rfa ce  to  be more a c tiv e  when c le a n  and 

so , as a  re a c tio n  proceeds and th e  w alls  become co a ted , the rO 'te 

slows down* B rea rley  e t .  a l . (145) in  work on t-am yl c h lo rid e  showed 

th a t  prolonged trea tm en t in  a  packed v e s se l w ith a surface/volum e 

r a t io  of lO tim es the unpacked furnace r a t i o  was neoess^xy to  b ring  

the  r a te  down to  the  value f c r  the unpacked v e s s e l .  As has .been 

shown by experim ents in  th is  re sea rch  the co a tin g  appears to  be 

e s s e n t ia l ly  of ca rb o n  from th e  decom position of methyl bromide in  

the  presence o f to lu e n e . A s im ila r  e f f e c t  fo r  th e  p y ro ly s is  of 

to lu en e  was observed by Smith ( s ) .  Szwaro (39)> to o , in  th e  p a r t i ­

c u la r  case of m ethyl bromide p y ro ly s is  in  to lu en e  a s  a  c a r r i e r  r e ­

p o rted  a carbonaceous d ep o sit on the  w a l l s .  I t  is  of in te r e s t  to  

note th a t  he d id  no t observe t h i s  f o r  the  pyrolyses of o th e r ■ 

halom ethanes. In  p y ro ly tic  work on methyl iodide alone ( in  pyrex 

v e s s e ls ) ,  Klemm and B ern s te in  ( 14O) rep o rted  an ex ten s iy e  carbon 

d ep o s itio n  but when to luene was p resen t the  re a c tio n  whp c le an  

w ith  no su rface  f ilm  a t  a l l*

C u l l is  e t  a l .  ( 14I )  w ith  th e  a id  of e le c tro n  d i f f r a c t io n  

photographsj have s tu d ied  the s tru c tu re s  of p y ro ly tic  carbon c ry ­

s t a l l i t e  d ep o s its  produced in  a s i l i c a  furnace a t  850 to  930 0̂ .
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They suggested th a t  halogen oan remain in  the so lid  and so a f f e c t  

the p ro p e r tie s  of the  c o a tin g . Holbrook (142) emphasized the ca re  

needed in  assuming th a t  carbon d e p o s its  a re  in e r t  and shewed th a t  

su rfaces  from  e th y l  c h lo rid e  p y ro ly s is  behaved d i f f e r e n t ly  from 

those produced by p y ro ly s is  o f a l l y l  bromide. He produced e* s* r, 

evidence f o r  f re e  r a d ic a ls  in  the carbon d ep o s its  from the a l l y l  

h a lid e  and warned of th e  use of such a oonrpound in  the production  

of in a c tiv e  su r fa c e s .

In  genera l a  heterogeneous décom position w i l l  have a lower 

a c t iv a t io n  energy th an  a  correspond ing  homogeneous decom position, 

th u s , i f  both a re  p re s e n t, th e  ex ten t of the  former w il l  be g re a te r  

a t  the lower tem pera tu res . Rice and H erzfeld  ( l4 4 ) have d iscussed  

the  e f f e c t  of su rface  on supposedly homogeneous gas re a c tio n s  and 

a ls o  the e f f e c t s  of d i f f e r e n t  su rfaces  on the rsac tlo n  r a te s .

The process of seasoning i s  probably not s u f f i c ie n t ly  w ell 

understood to  fo rm u la te  th e o r ie s .  However, the  importance th a t  

su rfaces  can  p lay  in  gas phase decom position s tu d ie s  has to  be 

noted and one must ensure th a t  th e  su rface in  use i s  y ie ld in g  r e ­

producib le  d a ta .

APPENDIX XI* Plow co n d itio n s  and design c h a r a c t e r i s t i c s .

The conven tiona l method of studying a re a c tio n  w ith  reasonably  

sh o rt re a c tio n  tim es in  a flow system  involves flow ing the  m a te r ia l 

through a re a c tio n  v e s s e l ,  e i t h ^  with o r w ithout a c a r r i e r
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C a lcu lâ t ion of the co n tac t tim e i s  made by assuming the flow  to  be 

lam inar or p lug  flow along th e  leng th  of the  re a c tio n  v e s s e l .  

S ev era l workers have re c e n tly  po in ted  out the p o ss ib le  sources o f  

e r r o r  in  such an assum ption, G ilb e rt ( l2 0 ) in  a re-exam ination  of 

th e  decom position of hydrazine showed i t  to  fav o u r a second o rder 

p ro cess , which was in  l in e  w ith c a lc u la tio n s  from flame th e o ry > 

r a th e r  than  the f i r s t  o rder re a c tio n  a s  deduced by Szwarc. G ilb e r t  

suggested th a t  Szwarc *s (123) experim ents were n o t under iso therm al 

re a c tio n  c o n d itio n s  and t h a t  a s tro n g  e f f e c t  was p resen t due t o  

heat t r a n s f e r  in  the  r e a c to r  en trance reg io n . Re in te rp r é tâ t  ion  of 

Szw arc's d a ta  by assuming th e  tu b u la r  r e a c to r  to  be iso therm al 

only downstream of th e  en tran ce  led  to  a co n s is ten cy  w ith flame 

th e o ry .

B atten  ( 152) has in v e s tig a te d  the v a l id i ty  of the assumed p lug  

flow* By photographing the  mixing of bromine vapour w ith  carbon 

te tr a c h lo r id e  vapour a t  v a rio u s flow  r a te s  he concluded th a t  over 

a wide range of c o n d itio n s  th e  bu lk  of the ^ s  flowed th ro u ^ i 

w ithou t d if fu s in g  l a t e r a l l y  to  the  w alls* However, th e  flow would 

appear to  be lam inar f o r  v a lu es o f Reynolds number (R^) of b s s  than  

about th re e  * I t  should  be po in ted  out th a t  h i s  photographs were 

taken  s h o r tly  a f t e r  th e  bromine vaj our was allowed to  e n te r  th e  

re a c tio n  zone and th a t  th e re fo re  steady  s ta te  co n d itio n s  mny n o t 

apply*
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A o a lo u la t io n  on ty p io a l  flow co n d itio n s  w ith  th e  r e a c to r  

used in  t h i s  re se a rch  in d ic a te s  R^ values of co n s id erab ly  le s s  

than  u n ity .  For example, a flow ra te  o f about 3 .0  x 10~^ m oles/sec 

a t  1 .7  mm Hg p ressu re  through a furnace a t  1 0 2 3 becomes a vo lu­

m etric flow  r a te  of 110 m is /sec .

Reynolds number i s  defined  by R^ = ^  u à/ f j  , a  d im ensionless 

q u a n tity  where ^  i s  th e  d e n s ity  of the f lu id ,  d the tube d ia ­

m eter, u  the l in e a r  v e lo c ity  and ^  the v is c o s i ty .  The value 

R^ in d ic a te s  the l im it in g  reg ion  between lam inar and tu rb u le n t flow . 

Thus fo r  va lues o f ^  u  à/ f j  g re a te r  than  t h i s  l im itin g  value 

(e#g, w ith  h i ^  flow  v e lo c i t i e s ) ,  tu rb u le n t flow w i l l  be p resen t 

and f o r  lam inar flow the value R^ must not be exceeded.

Basing our c a lc u la t io n  on argon, the c a r r i e r  gas, u s in g  ty p io a l 

va lu es ” 550 jxP a t  750*̂ 0 and d = 3 .0  cm, th e  Reynolds number i s  

c a lc u la te d  a t  0,09* This i s  two orders o f  m gnitude le s s  than th e  

value req u ired  by B atten  fo r  lam inar flow , furtherm ore the  re a c to r  

was equipped w ith  a r e - e n tr a n t  thermocouple w ell which would tend 

to  p reven t ch an n e llin g  and probably  a ls o  in troduce a sw ir lin g  a c tio n  

i f  th e  w ell was not mounted e x a c tly  c e n tra lly *  This would help  the 

l a t e r a l  d if fu s io n  to  th e  w a lls .

Malcahy and Pethard  ( l3 3 )  have a ls o  estim ated  p o ss ib le  e r ro rs  

in  flow  system s. They base th e i r  c a lc u la tio n s  on to luene vapour, 

because o f  i t s  p o p u la rity  a s  a c a r r i e r  in  flow  work, a t  1000*^K
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in  a 2 om diam eter fum aoe and deduce th a t  fo r  a r a te  co n stan t 

to  he accu ra te  to  w ith in  ISsfo then  the value of t^ /p  must l i e  be­

tween the l im its  2 i^ t^ /p ^ O ,5  where Z is  5 f o r  50^  conversion ,

10 a t  25^  conversion  and i n f in i t y  a t  Qfo conversion , t  (seos) is  

the  c o n ta c t time and p (cms Hg) is  the re a c to r  p re ssu re ,

Typioal v a lues o f t^ /p  from the  p resen t work a re  15 a t ' 8 .^  

conversion  and 18 a t  1*2^ conversion . These v a lu es  along w ith  

Reynolds number c a lc u la tio n s  suggest no se rio u s e r ro rs  in  the  

methods of c î^ lcu la tin g  residence  tim es and in  assuming lam inar flow, 

Such work, however, em phasises the need fo r  ca re  in  the  design  

of gas flow  re a c to rs , M elv ille  and Gowenlock ( 16) have d iscussed  

the problem b r ie f ly *  A steady" s ta te  o r c a p a c ity  flow re a c to r  fo r  

the  study of homogeneous gas phase re a c tio n s  has been described  

by De G raaf and Kwart (l5 4 ) in  which they  claim ed e lim in a tio n  of 

the no rn a l flow re a c to r  d i f f i c u l t i e s ,  Mulcahy and W illiam s (l55) 

a ls o  d escribed  a  s t i r r e d  flow  re a c to r  to  remove th e  u n c e r ta in t ie s  

of t e npera tu re  and flow co n d itio n s  in  conven tiona l flow  methods. 

K inetic d a ta  deduced in  these  r e a c to r s , in  the form er case  on 

e th y l a c e ta te  p y ro ly s is  and in  th e  l a t t e r  d i t e r t i a r y  b u ty l  peroxide 

p y ro ly s is , agree w ell w ith  o th e r  a u th o rs . The methods involve 

e s s e n t ia l ly  vigorous mixing and s t i r r e d  flow*

Other au th o rs u s in g  s t i r r e d  flow  gas phase re a c to rs  are  

Hemdon e t  a l ,  (156, 157? 158) who claim ed a much more s im p lif ied  

arrangem ent than De G raaf and Kwart and th e y  obtained good
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o o n s is te n o y  w ith  o th er  w orkers on p y r o ly s is  o f  oh lorocyo loh exan e .

A d is c u s s io n  o f t h e  e r r o r s  r e s u lt in g  from tem perature g ra d ien ts  

in  s p h e r ic a l  r e a c t io n  v e s s e l s  fo r  the c a se  o f  slow er r e a c tio n s  has 

been g iv en  by Benson (159). The treatm ent a p p lied  to  both liq u id  

and gaseou s system s and attem pts to c a lc u la te  th e  q u a n t ita t iv e  

e f f e c t  o f  c o n v e c tio n  were made. The method in v o lv ed  the e s t im a tio n  

e f  Reynolds number by assum ing t h a t  ih e  f lo w  w ith in  th e  r e a c tio n  

v e s s e l  c o n s is te d  o f  a  c e n t r a l  column o f  low d e n s ity  f lu id  moving 

upwards and an eq u al f lo w  o f  h igh  d e n s ity  f lu id  moving downwards.
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