# THE INORGANIC STRUCTURAL CRYSTALLOGRAPHY OF ANTIMONY TRICHLORIDE 1HALONAPHTHALENE MOLECULAR COMPLEXES 

Juan Ladislao Arroyo Cuyubamba
A Thesis Submitted for the Degree of PhD at the University of St Andrews


1980

Full metadata for this item is available in St Andrews Research Repository at:

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/14777

This item is protected by original copyright

# FHEE INORGANIC STRUGTURAL CRYSTALLOGRAFHY 

 OF ANTIMONY TRICHLORIDE*I-HALONA.PHTHALENEMOLECULAR CCMPLEXES

being a thesis presented by<br>JUAN LADISLAO ARROYO CUYUBAMBA<br>to the University of st. Andrews in application for the degree of Doctor of Philosophy

ProQuest Number: 10171139

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 10171139
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
\text { Th } 9555
$$

CERTIFLCATE

I certify that Mr.Juan L. Arroyo C. has spent nine terms at the University of St.Andrews in research under my supervision, that he has fulfilled the conditions of Ordinance No. 12 and of Kesolution No. 1 of the St.Andrews Court 1967 and that he is qualified to submit this Thesis in application for the degree of Doctor of Philosophy.

DECLARATION

I declare that this Thesis is a record of my own work, that it is my own composition and that it has not previously been presented for a higher degree.

The research was carried out in the Department of Chemistry, the University of St.Andrews, under the direction of Mr.R.Hulme.

## ACKNOWLDDGZHNTS

The author wishes to express his sincere thanks to his supervisor, Mr. R. Hulme, for his help, guidance and encouragenent throughout the course of this investigation, and for the use of many of his computer programmes.

To Professor I.A.H. Wyatt and Frofessor Lotd J.M. Tedder for the provision of Laboratory facilities.

For the grants provided by the Furdie Fund of the Chemistry Department of the University of St. Andrews, The Bradley Trust and the Anglo Peruvian Society, which made possible this research.

For the facilities provided by the St. Andrews. University Computing Laboratory, Dundee University Computing Centre and Aberdeen University Computing Centre.

To M. C. Glidewell and D. Liles for their help and encouragement in several circumstances of this research.

To those who in one way or another were helpful and encouraging during my time spent in this University, and to Mrs. P. Cooper who kingly typed the manuscript.

The compounds formed by $\mathrm{SbCl}_{3}$ and the l-halonaphthalene in the crystalline state may provide information on some of the factors involved in molecular complex formation.

The granation in both the size and the electronegativity of the naphthalene substituent permits comparisons internally and externally with the parent $2 \mathrm{SbCl}_{3} \cdot$ naphthalene complex. Other molecular complexes are briefly surveyed.
(l:1) $\mathrm{SbCl}_{3} \cdot 1$-bromonaphthalene forms triclinjc crystals, $\overline{\mathrm{II}}$. with $a=9.08, b=11.98, c=12.72 \AA, \alpha=113.1, \beta=93.6, \gamma=91.5^{\circ}$
$\mathrm{V}=1268 \AA^{3}, \quad \mathrm{Z}=4$. Thotographic Mo data refined to $\mathrm{R}=0.14$ for 591 reflections. The crystal structure is built up of double layers of $\mathrm{SbCl}_{3}$ molecules alternating in the "c" direction with double layers of l-bromonayhthalene molecules, tilted $25^{\circ}$ to [010]. The $\mathrm{SbCl}_{3}$ molecules form dimers, further bridged into infinite chains. The Sb atoms are in a distorted pentagonal biryramid environment, with a bonded chlorine atom and the axomatic $\pi$ "system in axial positions at 2.38 and $3.32 \AA$. The lone pair of electrons is stereochemically inactive.
(2:1) $\mathrm{SbCl}_{3} \cdot 1$-chloronaphthalene forms monoclinic crystals, Cc, with $a=16.059, b=9.525, c=11.674 \AA, \beta=93.63^{\circ}, v=1765 \AA^{3}, z=4$. Diffractometer Mo data refined to $R=0.125$ for 1035 reflections. The structure is built up of double layers of $\mathrm{SbCl}_{3}$ molecules alternating in the "a" direction with single layers of l-chloronaphthalene molecules, tilted $\sim 25^{\circ}$ to [001]. $\mathrm{SbCl}_{3}$ molecules form dimers, further bridged into infinite chains. Two non-equivalent $\mathrm{SbCl}_{3}$ molecules are situated near to the l-chiloronaphthalene molecule ( $\sim 3.32 \AA$ ). $\mathrm{sb}(1)$ is close to the ring carrying the chlorine atom whereas $\mathrm{Sb}(2)$ is close
to the other ring on the opposite side. The Sb atom is in a distorted pentagonal bipyramid environment, with a bonded chlorine atom and the aromatic $\pi$-system in axial positions at 2.32 and $3.32 \AA$ respectively. Again the lone pair of electrons is stereochemically inactive.
( $1: 1$ ) $\mathrm{SbCl}_{3} \cdot 1$-iodonaphthalene forms triclinic crystals, $P 1$, with $a=13.15, \quad b=7.65, \quad c=15.01 \AA, \quad \alpha=104.7^{\circ}, \quad \beta=102.2^{\circ}, \quad \gamma=108.5^{\circ}, V=1312 \AA \AA^{3}, z=4$. Thotographic Mo data refined to $\mathrm{R}=0.20$ for 678 reflections having \& even. With lodd serious streaks appear suggesting a partly disordered structure. The crystal structure is built up of double layers of $\mathrm{Sbal}_{3}$ molecules alternating in the "3" direction with double layers . of 'l-iodonaphthalene molecules, tilted $\sim 25^{\circ}$ to [010] . The two $\mathrm{SbCl}_{3}$ molecules are linked to one another by Sb...Cl bridging, which are part of an infinite chain. Flane-to-plane molecular stacking of $1-C_{10} H_{r} I$ is observed. The Sb environment is similar to that in the 1-bromonaphthalene compound.

It seems that the $\mathrm{SbCl}_{3}$ :l-halonaphthalene complexes may be linked by an electron-donor-acceptor interaction where an electron donation occurs from the $\pi$ - system to the antimony a.toin.

## CONTENTS

## CHAFTER

PAGE
I INTRODUCII ON ..... 1
1.1 Features of molecular complexes ..... 1

1. 2 Characteristics of Electron-Donor-Acceptor (EDA) complexes ..... 3
1.3 Quantum Mechanical treatment of EDA complexes ..... 4
1.4 Classification of donors and acceptors ..... 10
2. 5 Crystal stmucture of EDA complexes ..... 12
2.6 Molecular complexes of $\mathrm{SbCl}_{3}$ ..... 16
1.7 Disorder phenomena in crystals ..... 27
2 METHODS FOR STUDYING MOLECULAR COMPIEXES IN THE SOLID STATE ..... 42
2.1 Determination of melting-point-composition diagrams ..... 42
2.2 Component analysis ..... 46
3. 3 Structural Detexmination (Single Caystal X-ray Diffraction) ..... 53
3 INTRODUCTION TO THE EXPERTMENTAL STUDY OF $\mathrm{SbCl}_{3} \cdot \mathrm{I}-\mathrm{HAL} O N A P H T H A L E N E ~ C O M F T E X E S ~$ ..... 79
4 STUDY OF IHE ( $1: 1$ ) $\mathrm{SbCl}_{3} \cdot 1$-BROMONAPHTHALENE COMPIEX ..... 80
4.1 The phase diagram for the $\mathrm{SbCl}_{3} \cdot \mathrm{I}_{-10} \mathrm{G}_{2} \mathrm{H}$ 万Br system ..... 80
4.2 Preparation and analysis of the complex ..... 80
4.3 Ireliminary information and unit cell determination ..... 81
4.4 Determination of the structure ..... 84
4.5 Refinement of the structure ..... 86
4.6 Description and discussion of the stmucture ..... 94
5 STUDY OF (2:1) $\mathrm{SbCl}_{3} \cdot 1$-GHLORONAPHTHALENE COMPLEX ..... 101
5.1 Thase diagram for $\mathrm{SbCl}_{3}-1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ system ..... 101
5.2 Preparation and analysis of the crystals ..... 1.01
5.3 Preliminary information and unit cell determination ..... 102
5.4 Determination of approximate structure ..... 103
5.5 Alternative cells ..... 107
5.6 Measurement of intensity ..... 112
5.7 Refinement of the structure ..... 113
5.8 Description and discussion of the structure ..... 126
6 STUDY OF THE ( $1: 1$ ) $\mathrm{SbCl}_{3} \cdot 1$-IODONAPHTHALENE COMPLEX ..... 131
6.1 Preparation of l-iodonaphthalene ..... 131
6.2 The phase diagram for the $\mathrm{SbCl}_{3}-1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}$ system ..... 132
6.3 Preparation and analysis of the (1:1) $\mathrm{SbCl}_{3} \cdot I-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}$ complex ..... 133
6.4 Preliminary information and unit cell determination ..... 134
6.5 Determination of the approximate structure ..... 138
6.6 Refinement of the structure ..... 140
6.7 Description and discussion of the structure ..... 147
7 GENERAL DISCUSSION AND CONGLUSION ..... 153
REFERENCES
COMPUTER PROGRAMMES

## APPENDIX

A , Computing rrogram to calculate the best fit of a rigid molecule in a triclinic cell.
$B \quad$ Observed structure amplitudes and calculated structure factors for (1:1) $\mathrm{SbCl}_{3} \cdot$--bromonarhthalene complex.

C Observed and calculated structure amplitudes for the (2:1) $\mathrm{SbCl}_{3} \cdot 1$-chloronaththalene complex.

D Observed and calculated structure amplitudes for the (1:1) $\mathrm{SbCl}_{3} \cdot 1$-iodonalhthalene complex.

Molecular Complexes present the current valence theory with a challenge. The reason for their formation is not fully understond and several factors affect their formation. This thesis will be concerned with one yarticular type of molecular complex formed by antimony trichloride with aromatic hydrocarbon systems. The existence of complexes may be established analytically and by the construction of the appropriate phase diagram, but structural information depends upon $x$-ray diffraction studies of these crystalline molecular complexes.

The particular aromatic systems chosen for study are the l-halonaphthalenes, part.ly because they may be compared with the $2 \mathrm{SbCl}_{3} \cdot$ naphthalene complex whose structure has been determined, and partly because they present a gradation both in the size and the electronegativity of the substituent. Such controlled change may make possible the understanding of some of the factors involver in complex formation, and the type of interaction which occurs between the two components of a molecular crystal.

This chapter will be concerned to outline chemical aspects of molecular complexes and to mention some structural features.

### 1.1 EEATURES OF MOLECULAR COMFLEXES

A molecular complex is defined as an association of molecules with definite stoichiometry. The association is customarily taken to be stronger than Van der Waals interactions between closed electronic shell structures.

Four classes of molecular complexes are known:
a) Inclusion Compounds: which are based on the tendency to form a phase of highest possible density by the inclusion of foreign molecules in order to reach a state of lowest energy content (Ketelaar, 1958,p364). In this group are the clathrates, the gas hydrates and certain compounds of urea.
b) Compounds which are held together by hydrogen bonding (Cameron, 1975). For example the 1:1 complex of urea and barbital $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ (Gariland and Graven, 1974).

Compounds which are 'polarization bonded', in which no formal electron transfer is involved, but only dipole interaction, for example the purinehydrocarbon systems (Claverie, Pullman and Caillet, 1966; Foster, 1969,p356).
d) Those compounds in which molecules of low ionizationpotential are associated with molecules of high electron affinity to form Electron-Donor-Acceptor (EDA) complexes, also called 'charge-transfer' complexes. The present survey is mainly concerned with this class of complex.

Some authors have suggested that EDA complexes play an important
role in biology jarticularly in hormone action (Alison and Nash, 1959; Karreman, Isenberg, et.al., 1959; Sheina, Radchenko, et.al., 1979). Others (Epstein, et.al., 1964) have thought that the formation of EDA complexes might explain the observed correlation between the electron-donor-acceptor capacity of some compounds and their carcinogenic activity. It has been suggested also that the action of certain drugs may be related to the formation of this type of compound (Foster, 1969, p335; Kill and Widdowson, 1976).

In chemistry, molecular complexes have been proposed as reaction intermediates (Kosower,1965;Foster, 1969;p303; Colter and Dack, 1973), e.g. in some photochemical reactions (Foster, 1969, p326;Tsujimoto, et.al., 1976; Nonhebel and Walton, 1976; Ohashi and Tsujimoto, 1976). They are thought also to participate in kinetic processes (Corriu and Coste, 1967; Kubota, 1976); in catalysis (Satchel, 1970; Brieger and Tzuu-Heng, 1976) and in the construction of semiconductor materials (Hertler, 1976; Glazov and Kiselev, 1976; Lyalikova, et.al., 1975).

In particular complexes of $\mathrm{SbCl}_{3}$ with organic substrates have played an important role in similar processes (Corriu and Coste, 1967; Corriu, Coste and Guerin, 1970; Lyalikova, et.al., 1975), and have some use as model compounds for certain classes of conducting polymers (Baughman, R.H., et.al., 1979).

### 1.2 CHARAGTERISTTCS OF ELECTRON-DONOR-ACGEPTOR COMPLEXES

 EDA complexes share the following features:a) Their composition as shown in phase diagrams corresponds to integral mole ratios of the components. The complex constitutes a new phase with a structure distinct from either of the components
b) The distances separating component molecules in the crystalline state are shorter than the Van der Waals distances but greater
than those of covalent bonds.
c) They have, usually, small heats of formation and definite formation constants (Prout and Kamenar, 1973).
d) The presence of a new charge-transfer band in the visible or UV spectrum of the complex which is not found in the spectrum of either component.

### 1.3 QUANTUM MECHANICAL TREATMENT OF ELECTRON-DONOR-ACCEYTOR COMPIEXESS

It was Mulliken (1952, a, b) who formulated a quantum-mechanical explanation for the stability, spectral features and dipole moment of such complexes. Mulliken's treatment applies only to cases in which the donor and acceptor are neutral closed-shell species and both are in totally symmetrical singlet electronic states.

In the case that donor and acceptor are even-electron systems, the lowest energy wave function of the combined system $\Psi_{N}$, is:

$$
\begin{equation*}
\Psi_{N}(D: A) \approx \text { a } \Psi_{0}(D, A)+b \Psi_{1}\left(D^{+}-A^{-}\right)+c \Psi_{2}\left(A^{+}-D^{-}\right) \tag{1.3.1}
\end{equation*}
$$

Where the no-bond wave function $\Psi_{0}(D, A)$ is an antisymmetrized product of $\Psi_{D}$ and $\Psi_{A}$, and the 'dative' wave function $\Psi_{1}\left(D^{+}-A^{-}\right)$ represents transfer of an electron from donor to acceptor. The third term $\Psi_{2}\left(A^{+}-D^{-}\right)$may arise when the donor $D$ (a weak base) and acceptor A (a weak acid) are in their symmetrical ground states, but $c<b \leqslant a$ and $c \rightarrow$ zero if donor or acceptor are strong.

In the case of 'self-complexes', where both components have similar donor and acceptor properties, $b=c$, and,

$$
\begin{equation*}
\int \Psi_{N}^{2} d r=a^{2}+b^{2}+2 a b S_{01}=1 \tag{1.3.2}
\end{equation*}
$$

Where the overlap integral $S_{01}=\int \Psi_{0} \Psi_{1} d \tau$
Apportioning the overlap term evenly the fractional amounts of no-bond and dative character in $\Psi_{N}$ are (Mulliken and Person, 1969a):

$$
\begin{equation*}
F_{01}=a^{2}+a b S_{01}, \quad F_{1 N}=b^{2}+a b S_{01} \tag{1.3.4}
\end{equation*}
$$

$F_{1 N}$ is equal to the fraction of an electronic charge which has been transferred from $D$ to $A$ in the complex.

Regarding configurational properties of EDA complexes, Mulliken and Person (1969b) have suggested the 'principle of compromise geometry', by which the configurations of $D$ and $A$ in the complex are compromises between those expected in free $D$ and $A$ and those expected in the dative structure.

For example in the weak benzene. $\mathrm{Cl}_{2}$ complex, the $\pi$ electron removed from the $\pi$-donor benzene goes into an antibonding $\sigma{ }^{*}$ MO of $\mathrm{Cl}_{2}$. Hence, by the principle of compromise geometry, the contribution of ${ }^{-} \Psi_{1}$ to $\Psi_{N}$ during the formation of the complex should lead to a weakening of the internal bonding both in D and in A In practice d(Cl-Cl) changes from 2.99 to $2.98 \AA$. (Hassel and Strpmme, 1959). The complex as a whole is nevertheless more stable than $D$ and $A$ separately because the intexnal losses are compensated by resonance stabilization due to the mixing of the dative and no-bond structures.

THE EXCITED-STATE AND CHARGE-TRANSFER SPECIRA.
Complementary to $\Psi_{N}$ a corresponding excited state exists which is primarily dative in character and is given by:

$$
\begin{equation*}
\Psi_{E} \approx a^{*} \Psi_{2}\left(D^{+}-A^{-}\right)-b^{*} \Psi_{0}(D, A)+\ldots \tag{1.3.5}
\end{equation*}
$$

and, for weak complexes, $b^{*} \ll a^{*}$.

The excited state can be attained by the absorption of either UV or visible light. The transition from the ground state to the excited state which accompanies the absorption of light of appropriate wavelength corresponds to the transfer of an electron from the donor to the acceptor. Thus an intense absorption band (The charge-transfer band) corresponding to $\Psi_{N} \rightarrow \Psi_{\mathrm{E}}$ is predicted, even for "loose" complexes. This probably accounts for the colour observed when some molecular complexes are formed.

## ENERGIES OF THE NORMAL AND CHARGE-TRANSFER (CT) STATES

The energies $W_{N}$ and $W_{E}$ associated with the total wave function of the ground state and CT state are given by:

$$
\begin{equation*}
w_{N}=\left\langle\Psi_{N}\right| H\left|\Psi_{N}\right\rangle \quad \text { and } \quad w_{E}=\left\langle\Psi_{E}\right| H\left|\Psi_{E}\right\rangle \tag{1.3.6}
\end{equation*}
$$

Solving these equations after substituting for $\Psi_{N}$ and $\Psi_{E}$ from equations (1.3.1) and (1.3.5) gives the solution for $W$ whose two roots are to be identified as $W_{E}$ and $W_{N}$ :

$$
\begin{equation*}
W=\left[1 /\left(1-S_{01}^{2}\right)\right]\left\{\frac{1}{2}\left(W_{0}+W_{1}\right)-S_{01} W_{01} \pm\left[(\Delta / 2)^{2}+\beta_{0} \beta_{1} 1^{\frac{1}{2}}\right\}\right. \tag{1.3.7}
\end{equation*}
$$

where

$$
\begin{array}{ll}
S_{01}=\int \Psi_{0} \Psi_{1} d \tau & \text { and } \\
w_{i j}=H_{i j}=\int \Psi_{i}^{*} H \Psi_{i} d \tau  \tag{1.3,8}\\
\beta_{0}=w_{01}-w_{0} S_{01} & \left(\beta_{0}<0\right)
\end{array}
$$

$$
\begin{equation*}
\beta_{1}=w_{01}-w_{1} S_{01} \quad\left(\beta_{1}<0\right) \tag{1.3.9}
\end{equation*}
$$

$$
\begin{equation*}
\Delta=W_{1}-W_{0} \tag{1.3.10}
\end{equation*}
$$

From (1.3.8) and (1.3.9) one can find that,

$$
\begin{equation*}
\beta_{1}-\beta_{0}=-S_{01} \Delta \text {, and }\left|\beta_{1}\right|>\left|\beta_{0}\right| \text { if } \Delta>0 \text { and } S_{01}>0 \tag{1.3.11}
\end{equation*}
$$

The frequency of the CT band is then given by:

$$
\begin{equation*}
h \nu_{C T I}=W_{E}-W_{N}=\left[2 /\left(1-S_{01}^{2}\right)\right] \cdot\left[(\Delta / 2)^{2}+\beta_{0} \beta_{1}\right]^{\frac{1}{2}} \tag{1.3.12}
\end{equation*}
$$

and the related wave functions are:

$$
\begin{gather*}
\psi_{N}=\left(\psi_{0}+\rho \psi_{I}\right) /\left[1+2 \rho S_{01}+\rho^{2}\right]^{\frac{1}{2}}  \tag{1.3.13}\\
\Psi_{E}=\left(\psi_{1}-\rho^{*} \psi_{0}\right) /\left[1-2 \rho^{*} S_{01}+\rho^{*}\right]^{\frac{1}{2}}  \tag{1.3.14}\\
\text { where } \quad \rho=b / a=\frac{-\left(W_{0}-W_{N}\right)}{\left(W_{01}-S_{01} W_{N}\right)}=-\frac{\left(W_{01}-S_{01} W_{N}\right)}{\left(W_{1}-W_{N}\right)}  \tag{1.3.15}\\
\rho^{*}=\frac{b^{*}}{a^{*}}=\frac{\left(W_{01}-S_{01} W_{I}\right)}{\left(W_{0}-W_{E}\right)}=\frac{\left(W_{I}-W_{E}\right)}{\left(W_{01}-S_{01} W_{E}\right)} \tag{1.3.16}
\end{gather*}
$$

Fig. 1.3.1a, indicates schematically the energies and wave functions when $\Delta$ is small.

For weak complexes the approach between $D$ and $A$ molecules is not much closer than the van der Wails distance, so that $S_{01}^{2}, \beta_{0}$, and $\beta_{1}$ are small; besides $\Delta$ is usually large so that $\left.(\Delta / 2)^{2}\right\rangle \beta_{0} \beta_{1}$. So according to Mulliken by using 'Perturbation Theory' one finds approximate energies:

$$
\begin{align*}
& w_{N}=w_{0}-\beta_{0}^{2} / \Delta+\text { small correction terms }  \tag{1.3.17a}\\
& w_{E}=w_{1}+\beta_{1}^{2} / \Delta+\text { small correction terms } \tag{1.3.17b}
\end{align*}
$$

The energy of the CT band is therefore,

$$
\begin{equation*}
h \nu_{G T}=\Delta+\left(\beta_{0}^{2}+\beta_{1}^{2}\right) / \Delta+\ldots, \tag{1.3.18}
\end{equation*}
$$

in this case,

$$
\begin{align*}
& \rho=\mathrm{b} / \mathrm{a}=-\beta_{0} / \Delta \quad(\rho>0 \text { if } \Delta>0) \quad(1.3 .19 \mathrm{a}) \\
& \rho^{*}=\mathrm{b}^{*} / \mathrm{a}^{*}=-\beta_{1} / \Delta\left(\rho^{*}>0 \text { if } \Delta>0\right) \quad(1.3 .19 \mathrm{~b}) \tag{1.3.19b}
\end{align*}
$$

Fig 1.3.1b shows the perturbation theory solution when $\Delta^{2} \gg \beta_{0} \beta_{1}$.

(a)

(b)

Fig l.3.1. Energy level diagrams.
(a) For $\Delta \approx 0$ (b) Perturbation theory solution for $\Delta^{2} \gg \beta_{0} \beta_{1}$

The results of this resonance interaction are: (i) stabilization of the ground state by the mixing in of the CT state, hence the formation of a complex; and (ii) absorption of light for the transition ground state $\rightarrow$ CT-state with transfer of an electron from an orbital associated with the electron donor to an orbital associated with the electron acceptor. The size of the Cr resonance interaction is proportional to the overlap integral between orbitals $D$ and $A, S_{D A}$, defined by (Poleshchuk and Maksyutin, 1976):

$$
\begin{equation*}
s_{0.1}=\sqrt{2} s_{D A} /\left(1+s_{D A}^{2}\right)^{\frac{1}{2}} \tag{1.3.20}
\end{equation*}
$$

$\Psi_{(D, A)}$ and $\Psi_{\left(D^{+}-A^{-}\right)}$are sensitive to the relative orientations of the donor and acceptor, and only if $\psi\left(D^{+}-A^{-}\right)$is much more sensitive to the relative orientations of donor and acceptor than $\Psi(D, A)$ will the $C T$ interaction be largely responsible for determining the structure of the complex (Frout and Kamenar, 1973). Thus the CT interaction will vary with orientation due to the dependence of $S_{D A}$ on: (a) The distances between atomic centres on the donor and acceptor molecules. (b) The MO coefficients of the relevant donor and acceptor orbitals which may by symmetry partly or totally negate the overlap integral $S_{D A}$ even though there is a large degree of 'overlap' between donor and acceptor molecules.

Experimentally, the orientation of $D$ with respect to $A$ in the complex, and the changes in the internal geometry of $D$ or $A$, may be found in principle by x-ray diffraction studies of the solid complex. Theoretically, the orientation is determined by a balance of several factors within $\Psi_{0}$, such as electrostatic and dispersion attractive forces, and exchange repulsion forces (Mulliken and Person, 1969b).

## ALTERNATIVES TO MULLIKEN'S THEORY

The current Mulliken's theory outlined above, has been questioned by several authors. Thus, Weiss $(1942,1943)$ would emphasise interaction between the ground states of the components giving compounds with ionic ground states, i.e. coulombic interaction between the partners of the complex. However Dewar and Thompson (1966) and Lefevre et.al. (1968) have argued that a more important contribution comes from dispersion and polarization forces. Other authors (Briegleb, 1961,p2ff. Herbstein, 1971; Hanna and Li.ppert, 1973; Sheina, Radchenko et.al., 1979; Kaplan, 1979) have supported both ideas in different degrees.

The final word is still to be said. Nevertheless, it is convenient to attempt a classification of donor and acceptor molecules.

### 1.4 GIASSIFICAIION OF DONORS AND ACCEPTORS

Donor (D) and acceptor (A) are relative terms since particular compounds act as donors in some circumstances and as acceptors in others. Mulliken and Person (1969) have clasified electron donors and electron acceptors into increvalent and sacrificial type according to the functional and structural type. Increvalent donors are lone-pair ( $n$ ) donors for which electrons are donated from an essentially non-bonding orbital with the subsequent increase of bonds without affecting the bonding in D. Sacrificial $\sigma$ or $\pi$ electron donors or sacrificial $\sigma^{*}$ or $\pi^{*}$ electron acceptors are molecules in which electrons are donated from bonding $\sigma$ or $\pi$ MO's or accepted by antibonding $\sigma^{*}$ or $\pi^{*}$ MO's respectively with the consequent weakening of the intramolecular bonding of the $D$ or $A$. Increvalent electron acceptors (v) are molecules with a vacant valence shell orbital. See Table 1.4.1.

TABIE 1.4.1

MAJOR CLASSES OF ELECTRON-DONOR AND AGCEPTOR MOLECULESS ${ }^{\text {a }}$

| SYMBOL | STRUCTURE TYPE <br> SITE OF DONOR/ACCEPTOR ACTION | NATURE OF DONOR/ ACCEPTOR AGTION | EXAMPLES |
| :---: | :---: | :---: | :---: |
| ELECTRON DONORS |  |  |  |
| ǹ | valence-shell lone pair | increvalent | Amines, ethers, halides, etc. |
| $\mathrm{b} \sigma$ | $\sigma$ bonding electrons | sacrificial | Aliphatic hydrocarbons and RX |
| b $\pi$ | $\pi$ bonding electrons | sacrificial | Aromatic and unsaturated hydrocarbons |
| ELECTRON ACCEPTORS |  |  |  |
| v | vacant valence-shell | increvalent | $\mathrm{BCl}_{3}, \mathrm{Ag}^{+}$, etc. or compounds of $B$. |
| $a, \sigma^{*}$ | $\sigma \star$ antibonding electrons | sacrificial | $X_{2}^{\mathrm{b}}, \mathrm{XY}, \mathrm{HX}, \mathrm{RX}$ |
| a. $\pi^{*}$ | \%* antibonding MO | sacxificial | Unsaturated and aromatic hydrocarbons fortified with electron withdrawing groups |
| a After Mulliken and Person (1969b) |  |  |  |
| b $\mathrm{X}, \mathrm{Y}$ represent any halogen atom. |  |  |  |

Much of this classification is debateable and uncertain. What is unambiguous is the relative arrangement of molecules in crystal structures, which therefore provide test data with which to evaluate interpretations and classifications of EDA complexes. Thus a review of some EDA type crystal structures is relevant at this point.

### 1.5 GRYSTAL STRUCTURES OF DONOR-ACCEPTOR COMPLEXES

Most of the geometrical configurations in the solid state have been determined by x-ray diffraction technique. Following Prout and Kamenar (1973), complexes of $n-\sigma^{*}, n-\pi^{*}, \pi-\sigma^{*}$ and $\pi-\pi^{*}$ types are considered here.

### 1.5.1 GRYSTAL STRUCTURES OF $n-\sigma *$ TYPE

In the ma,jority of the structures of this kind of complex, the donor is a nitrogen atom of an amine or aromatic nitrogen heterocycle; oxygen, sulphur or selenium atoms may act similarly. The electron acceptors include the halogens, halogen-rich halo-alkanes, and the antimony (III) halides.
e.g. Trimethylamine-iodine (Str申mme, 1959); 1,4-dioxane with bromine (Hassel and Hvoslef, 1954) and (1:2) 1,4-dithiane antimony triiodide (Bjфrvatten,1966).

The structure of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \cdot \mathrm{I}_{2}$ consists of isolated molecules in which the nitrogen is bound to iodine. $d(N \cdots I)$ is $2.27 \AA$, which is $1.4 \AA$ less than the sum of Van der Waals radii and only about $0.3 \AA$ greater than the sum of covalent radii. $d(I-I)$ is $2.83 \AA, 0.17 \AA$ longer than in a free $I_{2}$ molecule. The nitrogen atom has a fairly regular tetrahedral coordination and the N...I-I system is linear. The second iodine atom is involved in intermolecular binding by Van der Waals forces only.

In the case of 1,4 -dioxane $\cdot \mathrm{Br}_{2}$, the most significant feature is the formation of halogen-bridges between pairs of oxygen-donor atoms. $\alpha(0 \cdots B r)$ is $2.71 \AA$ equatorial and the $0 \cdots \mathrm{Br}-\mathrm{Br} \cdots 0$ system is approximately linear. $D(B r-B r)$ 2.31 $\AA$. Fig. 1.5.1a.

In 1,4-dithiane $\cdot \mathrm{SbI}_{3}$, each Sb atom is bound to 2 sulphur atoms of different molecules and two such 'antimony bridges' link neighbouring dithiane molecules together, resulting in endless chains of $\mathrm{SbI}_{3}$ and
dithiane molecules. $\quad \mathrm{d}(\mathrm{Sb} \cdots \mathrm{s}) 3.27$ and $3.34 \AA \mathrm{~A}(\mathrm{Sb}-\mathrm{I})$ at $2.78,2.75$ and $2.77 \AA$, are all significantly longer than the value ( $2.72 \AA$ ) in $\mathrm{SbI}_{3}$ itself, which supports the idea that Sb in $\mathrm{SbI}_{3}$ may act as an acceptor towards n donors. Fig. 1.5.1b.


Obr oo oc

Fig 1.5.la Structure of the 1,4-dioxane-bromine complex. (After Hassel and Hvoslef, 1954)


01 Osb os oc

Fig 1.5.1b Structure of $\mathrm{SbI}_{3}-$ 1,4-dithiane complex
(After Bjprvatten, 1966).

### 1.5.2 CRYSTAL STRUCTURES OF $\pi-\sigma^{*}$ TYPE

This kind of complex is formed when a $\pi$ donor (usually . an aromatic hydrocarbon) interacts with a $\sigma^{*}$ acceptor (a halogen molecule or halogen-rich halo-alkane).

Representative examples are the 1:l complexes of benzene with bromine and chlorine (Hassel and Stromme, 1958, 1959), and of p-xylene with carbon tetrabromide (Strieter and Templeton, 1962).

The benzene- $\mathrm{Br}_{2}$ complex is formed with $\mathrm{Br}-\mathrm{Br}$ bond co-incident with the perpendicular through the controid of the benzene ring plane (Fig. 2.5.2). The Br atom is $3.36 \AA$ out of the $c$ plane and $d(B r-B r)$ is $2.28 \AA$ the same as that found in the free molecule.


Fig 1.5.2 Structure of the benzene-bromine complex
(After Hassel and Strpmme, 1958).

### 1.5.3 THE CRYSTAL STRUCTURES OF $n-\pi^{*}$ TYYE

This type of complex is formed by the interaction of an n-donor (a lone-pair electron donor) with a $\pi$ acceptor (aromatic hydrocarbon with electron withdrawing substituents). Few examples have been reported in the literature. The $1: 1$ complex of $\mathrm{N}_{2} \mathrm{O}_{4} \cdot 1,4$-dioxane (Groth and Hassel, 1965) has been classified under this type by Prout and Kamenar (1973), assuming that the $\pi^{*}$ orbital of the oxygen makes the more important contribution (Fig. 1.5.3a). A second example is that of triethylphosphate-benzotrifurazan (Cameron and Prout, 1968). In this complex the phosphate $\mathrm{P}=0$ group lies along the perpendicular to the ring plane at its centroid and the oxygen atom is only $2.49 \AA$ above the ring. (Fig. 1.5.3b)


Fig 1.5.3a Structure of
$\mathrm{N}_{2} \mathrm{O}_{4} \cdot 1,4$-dioxane
(After Groth and Hassel, 1965).



Op OO On OC

Fig 1.5.3b Molecular Arrangement of the structure of triethy? phosphatebenzotrifurazan complex (After Cameron and Frout, 1968).

(a)
(b)
(c)

Fig 1.5.4 Typical donor-acceptor stacks in $\pi-\pi^{*}$ complexes.
(After Prout and Wright, 1968).

### 1.5.4 THE CRYSTAL STRUCTURE OF $\pi-\pi^{*}$ COMPLENSS

The $\pi$-electron-donor molecules cover a wide group of aromatic hydrocarbons, substituted hydrocarbons and heterocycles. Likewise the $\pi$-electron acceptor molecules can be classified into several groups (Herbstein, 1971): (a) olefinic compounds: e.g. Tetracyanoethylene (TCNE) and hexacyanobutadiene. (b) substituted aromatic compounds: substituted benzenes and some polynitronaphthalenes, and (b) substituted aromatic ketones and quinones.

Most of the donor and acceptor molecules in $\pi-\pi^{*}$ EDA complexes of known structure are planar. They crystallize in plane-to-plane stacks of donor and acceptor molecules occurring alternately (Prout and Wright, 1968) as shown in fig. 1.5.4.

A comnon feature in $\pi-\pi^{*}$ EDA Complexes is disorder, possibly associated with twinning phenomena. This may be due to either regular or irregular faults in the molecular packing within the stack(s).

Some examples of $\pi-\pi^{*}$ complexes are 1,3,5-triaminobenzene.TNB (Iwasaki and Saito, 1970); Naphthalene•TCNE (Williams and Wailwork, 1967); and p-benzoquinone•phenoquinone (Sakurai, 1968) as illustrated below.

(a)

(b)

Naphthalene•TCNE Fig 1.5.5

(c)

1,3,5 TAB 1 TNB

### 1.6 MOLECULAR COMPLEXES OF SBCl 3

### 1.6.1 BONDTNG AND STRUCTURE OF SbCl 3

The crystal structure of $\mathrm{SbCl}_{3}$, determined first by Lindqvist and Niggli (1956) and later confirmed by Lipka (1979), belongs to the orthorhombic space group Pnma with cell dimensions $a=8.111(2)$, $b=9.419(1)$ and $c=6.313(1) \AA ;$ and $z=4$. Least squares refinement lead to $R=0.045$ for 963 independent reflections obtained with Mokas radiation.

The molecules of $\mathrm{SbCl}_{3}$ have pyramidal geometry with two equivalent $\mathrm{Sb}-\mathrm{Cl}$ bonds of $2.368(1) \AA$ and a third $\mathrm{Sb}-\mathrm{Cl}_{3}$ of $2.340(2) \AA$. The bond angle opposite the shoxt bond is $90.58(2)^{\circ}$ while the other two are at $95.70(5)^{\circ}$.

The $\mathrm{SbCl}_{3}$ molecules pack to give some intermolecular $\mathrm{Sb} \cdot \mathrm{Cl}$ contacts which are shorter than the sum of the Van der Vaals radii (4.0 $\AA$ ). This suggests that the coordination number of the Sb atom has increased to eight, as shown below.

Fig 1.6.1

Crystal structure of $\mathrm{SbCl}_{3}$.
(After Lipka, 1979).


Osb OCl
'Bonding' is primarily between the three p electrons of antimony and a $p$ electron from each chlorine (Kolditz, 1967). Mutual repulsion results in valence angles greater than $90^{\circ}$.
1.6.2 DONOR AND ACCEPTOR PROPTRTTES OF SBCl 3
$\mathrm{SbCl}_{3}$ is structurally analogous to the similar halides of
group $V$, all of which are pyramidal (see Table 1.6.2), wi.th a lone pair of electrons at the apex.

## TABLE 1.6 .2

BOND ANGLES OF THE PYRAMIDAL GEOMETRY FOR THE TRIHYDRIDES AND TRIHALIDES OF GROUP $\mathrm{V}^{(a)}$

|  | N | P | As | Sb |
| :---: | :---: | :---: | :---: | :---: |
| H | 107.8 | 93.3 | 91.8 | 91.3 |
| F | 102.1 | 97.8 | 96.2 | 88.2 |
| Cl | $106.8{ }_{2}^{(c)}$ | 100.3 | 98.5 | $90.6,95.7{ }^{(b)}$ |
| Br |  | $99.0(2), 101.3(2)^{(e)}$ | 99.6 | $\begin{array}{ll} \alpha & 97.495 .5 .93 .6 \\ \beta & 97.592 .8(d) \end{array}$ |
| I |  | 102.0 | 100.2 | 95.8 (f) |

(a) Gillespie (1972).
(d) $\quad \alpha-\mathrm{SbBr}_{3}$ (Cushen \& Hulme (19,64)).
(b) Lipka (1979).
$\beta-\mathrm{SbBr}_{3}$ (Cushen \& Hulme (1962)).
(c) Hartl H., et.al., (1975).
(e) Enjalbert P., et.al. (1979).
(f) Trotter \& Zobel (1966).

However, $\mathrm{SbCl}_{3}$ has less tendency to utilize its unshared pair of electrons in donor-acceptor complexes than the lighter elements in the group (Kolditz, 1967). In a few compounds like $\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{SbCl}_{3}$ and $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{SbCl}_{3}\right)_{2}$, Wilkinson (1951) has inferred an electron-donor behaviour.

Many authors have reported that in molecular complexes of $\mathrm{SbCl}_{3}$ with organic molecules, $\mathrm{SbCl}_{3}$ behaves as an electron acceptor. This has been confirmed by different means.

Thus, $\mathrm{SbCl}_{3}$ behaves as an electron acceptor towards Nitrogen, Oxygen and Sulphur atoms e.g. The geometry axound the antimony atom in the crystal structure of $\mathrm{SbCl}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (Hulme and Scruton, 1968) is distorted trigonal-bipyramidal with one chlorine and the $N$ atom
occupying the axial sites. The lone pair of electrons of the antimony together with two chlorines are in the equatorial position. Furtner expansion occurs, in the case of $\mathrm{SbCl}_{3} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (Scruton, 1965), where the sixth site is occupied by the lone pair (see Table 1.6.4a). Also for the complex of (1:1) $\mathrm{SbCl}_{3} \cdot 1,4$-dithiane (Kiel and Engler, 1974) the Sb aton is in a distorted octahedral geometry. Interaction with two S atoms in cis positions and two chloxine atoms complete the equatorial sites; the axial positions are occupied by the lone pair of electrons and one chlorine atom. The complex (1:1) $\mathrm{SbCl}_{3}$. terephthaldehyde (Baker and Williams, 1978) is an example of interaction with an oxygen as donor. Sb atom is in a distorted pentagonal bipyramidal environment with its lone pair of electrons in axial position (see Table 1.6.4a). The acceptor propexty towaxds $\pi$-electron donor systems has been found in several compounds. Some examples are $2 \mathrm{SbCl}_{3}{ }^{\text {an }}$, naphthalene (Hulme and Szymanski, 1969); $2 \mathrm{SbCl}_{3}$ p-xylene (Hulme and Mullen, 1976); $2 \mathrm{SbCl}_{3} \cdot$ phenanthrene (Demaldé, et.al., 1972); $2 \mathrm{SbBr}_{3}$ pyrene (Bambieri, et.al. 1972); $2 \mathrm{SbCl}_{3}$ diphenyl (Lipka and Mootz, 1978a), where the basic feature of the interaction of $\mathrm{SbCl}_{3}$ and the organic molecule in their crystal structure is that the Sb and two chlorine atoms are in a plane parallel to the plane of the aromatic ring. Furthermore, the direction of Sb and the third chloxine atoms is approximately perpendicular to the plane of the ring; and, the lone pair in most of the cases is in an equatorial position.

Poleshchuk et.al. (1979) have carried out a'quantum-chemica, ${ }^{\prime}$ calculation of the charge-transfer and charge distribution for complexes of (1:1) $\mathrm{SbCl}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ and (1:1) $\mathrm{SbCl}_{3} 3^{\circ}$ benzene. In both cases they have confirmed the electron-acceptor behaviour of Sb in $\mathrm{SbCl}_{3}$.

However, in many crystal structures of the compounds shown in
Table 1.6.4a,b, the lone pair of electrons of the Sb atoms were not.
located; instead an interaction with chlorine atoms from other $\mathrm{Sbul}_{3}$ molecules (often forming bridges) have been found. In most af the cases the distances of these interactions lie between the sum of the Van der Waals radii and the sum of the covalent radii. This seems to suggest that, at least in some cases, the Sb atom acts in two ways simultaneously: as an acceptor and as a donor.

### 1.6.3 DONOR AND ACCEPTOR PROPERTIES OF AROMATIC HYDROCARBONS

Aromatic hydrocarbons are regarded mainly as $\pi$ electron donors and they can be divided into two groups:
(a) UNSUBSTIITUTED AROMATTC HYDROCARBONS

Benzene and naphthalene act as electron donors to form molecular complexes with inorganic and many organic acceptors, e.g. the molecular complexes of benzene with $\mathrm{SbCl}_{3}$ (Poleshchuk, et.al., 1979) and naphthalene with $\mathrm{SbCl}_{3}$ (the crystal structure of which was determined by Hulme and Szymanski, 1969), have been found.

Naphthalene, pyrene, anthracene and phenanthrene, equally form molecular compounds with polynitrobenzenes (Sinomiya, 1940a). In each case the hydrocarbons acts as $\pi$-electron donors (Shostakovski, et.a.l., (1973). (b) SUBSTITUTED AROMATIC HYDROCARBONS

Electron-donating substituents enhance donor strength and electron withdrawing ones diminish it, (Herbstein, 1971).

Qualitative study of the effect of substituents in aromatic hydrocarbons on their capacity to form molecular complexes has been carried out by Sinomiya (1940b). In particular, he studied the effects of substituents in positions 1 and 2 of naphthalene in compounds formed with various polynitrobenzenes. Taking into account both the nature and position of the substituent he arrived at the following sequence for the ability to favour molecular complex
formation: $\mathrm{NH}_{2}>\mathrm{CH}_{3}>\mathrm{OH}>\mathrm{C}_{2} \mathrm{H}_{5}>\mathrm{OCH}_{3}>\mathrm{Cl}>\mathrm{Br}>\mathrm{OC}_{2} \mathrm{H}_{5}>\mathrm{H}>\mathrm{COOH}>\mathrm{COOCH}_{3}>$ $\mathrm{OC}_{6} \mathrm{H}_{5}>\mathrm{CN}>\mathrm{COOC}_{6} \mathrm{H}_{5}>\mathrm{NO}_{2}$. He concludes that substitution in position 1 always favours molecular complex formation while the reverse is sometimes true for substituent in position 2.

Park (1969) for the particular case of complexes of $\mathrm{SbCl}_{3}$ with organic molecules concluded that in general $\mathrm{SbCl}_{3}$ molecules are coordinated with $\boldsymbol{\pi}$-donors rather than $n$-donors. In most of the cases, according to his conclusion, $\mathrm{SbCl}_{3}$ seems to prefer delocalized electron density in the aromatic ring rather than localized electron density at one atom. This is in some contrast to the conclusion of other authors. Thus, Hulme and Mullen (1976), found the particular atom carrying a methyl group to be most closely associated with Sb in the (1:1) $\mathrm{SbCl}_{3^{\circ}}{ }^{p}$-xylene complex. Also Baker (1976) has found an $\mathrm{Sb} . . .0$ interaction for molecular complexes of $\mathrm{SbCl}_{3}$ with some aromatic hydrocarbons containing carbonyl groups.

### 1.6.4 CRYSTAL STRUCTURE OF MOLECULAR COMPLEXES OF SBCl 3 WITH ORGANIC

## MOLECULES

In general the stronger CT complexes tend to be between donors and acceptors that are both increvalent (i.e. $n-v$ or $\pi-v$ types which increase the number of bonds). See Section 1.4. With this in view, moleculax complexes of $\mathrm{SbCl}_{3}$ with organic compounds may be clasified into these two groups, n -v type complexes are formed when the donor atoms are the nitrogen of an aromatic amine, aromatic nitrogen heterocycles, oxygen or sulphur atoms, and probably ion Cl ${ }^{-}$. (See Table 1.6.4a) $\pi-v$ type complexes mostly involve aromatic hydrocarbons as donors. The basic feature of these structures is that the Sb and two chlorines are in a plane parallel to that of the aromatic ring, with the third $\mathrm{Sb}-\mathrm{Cl}$ bond perpendicular to and away from it, (see Table 1.6.4b.
TABLE No. 1.6.4a
CRYSTAI STRUCTURE OF $\mathrm{m} \mathrm{SbCl}_{3} \cdot \mathrm{n}$ ORGANIC COMPOUND

| $\begin{aligned} & \text { ORGANIC COMPOUND } \\ & \text { AND } \\ & \text { STOICHIOMETRY ( } \mathrm{m}: \mathrm{n} \text { ) } \\ & \hline \end{aligned}$ | R FACTOR AND OTHER REMARKS |  |  |  | INTERMOLECULAR CONTACTS $\mathrm{d}(\mathrm{Sb} \ldots \mathrm{D})(\AA)$, aNGLES $\left({ }^{\circ}\right)$ | RELEVANT GEOMETPICAL FEATURES | REFERENCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANILINE (1:1) | 0.136 for 637 Refns. Low T. Yhotog. $\mathrm{Mok}_{\alpha}$ |  | $\begin{aligned} & 2.510 \\ & 2.322 \\ & 2.335 \end{aligned}$ | $\begin{array}{lll} 1,2 & 86.8 \\ 1,3 & 86.7 \\ 2,3 & 96.1 \end{array}$ | $\begin{array}{ll} \mathrm{Sb} \ldots \mathrm{~N} & \mathrm{Cl}_{1}-\mathrm{Sb} \ldots . \mathrm{N} \\ 2.525 & { }_{166.3} \end{array}$ | Sb in distorted trigbipyramid. N \& Cl axial; lone pair in equatorial. Infinite chains. | HULME \& SCRUTON (1968) |
| ANILINE ( $1: 2$ ) | 0.136 for .459 Refns. Low T. Fhotog. $\mathrm{Mok}_{\alpha}$ |  | 2.36 | $\begin{array}{lll} 1,2 & 86.1 \\ 1,3 & 90.2 \\ 2,3 & 90.2 \end{array}$ |  | Sb in distor. octahedr. Two N from 2 diff. molec. in equatorial cis posit; lone pair in sixth site. Infinite chains. | $\begin{array}{\|l} \text { SCRUTON } \\ (1965) \end{array}$ |
| DIACETYLBENZENE (1:1) | $\begin{aligned} & 0.051 \text { for } 2489 \\ & \text { Refns. } \\ & \text { Diffract. } \\ & \text { Mok }_{\infty} \end{aligned}$ | 1 2 3 | $\begin{aligned} & 2.36 \\ & 2.39 \\ & 2.37 \end{aligned}$ | $\begin{array}{ll} 1,2 & 89.5 \\ 1,3 & 93.4 \\ 2,3 & 93.2 \end{array}$ | Sb...0 $\mathrm{Cl}-\mathrm{Sb}-0$ <br> 1 2.67 <br> 2 $1,2170.7$ <br> $\mathrm{Sb} . \mathrm{Cl}$ $2,1127.5$ <br> 3.21 $0-\mathrm{Sb}-0$ <br>  $1,2101.6$ | Sb in distor. Octahedr. Two 0 from 2 DAB molec. in equatorial cis posit., coord. Axó type lone pair no located. Infinite chains. | $\begin{aligned} & \text { BAKER \& } \\ & \text { IILLIAAMS } \\ & \text { (1978) } \end{aligned}$ |
| DIEHENYIAMMONIUMCHLORIDE (1:1) | 0.049 for 1771 Refs. Diffractometer. Moka | 1 2 3 | $\begin{aligned} & 2.388 \\ & 2.358 \\ & 2.374 \end{aligned}$ | $\begin{aligned} & 1,292.0 \\ & 1,395 \cdot 5 \\ & 2,393.5 \end{aligned}$ |   <br>  $\mathrm{Sb}^{-}$ <br> 4 3.04 <br> 5 3.13 <br> 2, 3.42 | Sb in distor. <br> Octahedr. with $\mathrm{Cl}^{-}$; lone pair no located. $\mathrm{SbCl}_{3}$ \& anion-cation chains are bridged by $\mathrm{Cl}^{-}$giving Sq. tubes. | $\begin{aligned} & \text { LI FKA \& } \\ & \text { MOOTZ } \\ & (1978) \end{aligned}$ |

TABLEE No. 1.6.4a (cont.)

| $\begin{aligned} & \text { TEREPHTHALDEHYDE } \\ & \text { TEPTD }(1: 1) \end{aligned}$ | 0.062 for 1693 Refns. Diffractometer. Mok ${ }_{\alpha}$ |  | $\begin{aligned} & 2.345 \\ & 2.391 \\ & 2.345 \end{aligned}$ | $\left\lvert\, \begin{array}{ll} 1,2 & 94.4 \\ 1,3 & 91.3 \\ 2,3 & 89.4 \end{array}\right.$ | Sb...0  <br> 1 2.932 <br> 2 2.934 <br> $\mathrm{Sb} \ldots \mathrm{Cl}$  <br> 3.507  | $\begin{array}{cc} \mathrm{Cl} & -\mathrm{Sb} . . .0 \\ 1,1 & 78.5 \\ 3,1 & 74.3 \end{array}$ | Sb in distor. pentag. bipyramid. Two 0 from 2 TEITD in equatorial posit. Lone pair in axial. Infinite chains. | $\begin{aligned} & \text { BAKER \& } \\ & \text { WILLIAMS } \\ & \text { (1978) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,3,5-TRIACETYLBENZENE TAB (1:1) | 0.039 for 2235 Refns. Diffractometer. $\mathrm{Mok}_{\alpha}$ | $\begin{aligned} & 1,1 \\ & 1,2 \\ & 1,3 \\ & 2,4 \\ & 2,5 \\ & 2,6 \end{aligned}$ | $\begin{aligned} & 2.323 \\ & 2.368 \\ & 2.350 \\ & 2.327 \\ & 2.310 \\ & 2.377 \end{aligned}$ | $\begin{array}{ll} 1,2 & 97.1 \\ 1,3 & 92.1 \\ 2,3 & 93.4 \\ 4,5 & 93.1 \\ 4,6 & 89.3 \\ 5,6 & 95.9 \end{array}$ | $\begin{aligned} & \mathrm{Sb}_{7} \ldots .0 \\ & 1, \pm 3.040 \\ & 1,22.694 \\ & 1,33.023 \\ & 2,22.85 \end{aligned}$ | $\begin{array}{ll} \mathrm{Sb}_{2} \ldots \mathrm{Cl} \\ 2.2 & 3.323 \\ 2.3 & 3.320 \end{array}$ | Both Sb in distor. Octahedr. $\mathrm{Sb}_{7}$ coord. to 30 from 3 TAB molec. Lone pair no located. $\mathrm{Sb}_{2}$ coord to 2 Cl \& 0 . Lone pair no located. Infinite chains. | BAKER \& WILLIAMS, (1978) |
| 1,4-DITHIANE (1:1) | 0.060 for 2426 Refns. Diffractometer. Mok ${ }_{\alpha}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 2.420 \\ & 2.386 \\ & 2.441 \end{aligned}$ | $\begin{array}{ll} 1,2 & 91.2 \\ 1,3 & 94.6 \\ 2,3 & 90.3 \end{array}$ | $\begin{array}{ll} \text { Sb...S } \\ 1 & 3.135 \\ 2 & 3.065 \end{array}$ |  | Sb in distor. Octahedr. Two S from diff. dithiane in equator. sites. Lone pair in the 6th site. Infinite chains. | $\begin{aligned} & \text { KIEL \& } \\ & \text { ENGIER, } \\ & (1974) \end{aligned}$ |
| 1,4-DITHIACYCLOMEPTANE ( $1: 1$ ) | 0.034 for 1028 Refns. Diffractometer. $\mathrm{Mok}_{\alpha}$ |  | $\begin{aligned} & 2.40 \\ & 2.36 \\ & 2.39 \end{aligned}$ | $\begin{aligned} & 1,294 \cdot 3 \\ & 1,394 \cdot 0 \\ & 2,392.1 \end{aligned}$ |   <br> Sb...S  <br> 1 3.23 <br> 2 3.13 <br> $2^{\prime}$ 3.40 | $\begin{array}{rr} \text { S }-S b-S \\ 1.2 & 87.6 \\ 1.2 & 112.9 \end{array}$ | Sb in distor. Octahedr. 3 S from 3 diff mokec. Lone pair no located. Infinite chains. | $\text { . } \begin{aligned} & \text { SCHMIDT et.al., } \\ & (1979) \end{aligned}$ |
| $\frac{1,3,5-\mathrm{TRITHIAN}}{(1: 1)}$ | 0.032 for 524 Refns. Diffractometer. $\mathrm{Mok}_{\propto}$ |  | 2.375 | 92.9 | $\begin{aligned} & \mathrm{Sb} . \mathrm{S} \\ & 3.258 \end{aligned}$ | $\begin{gathered} \mathrm{S}-\mathrm{Sb}-\mathrm{S} \\ 54.7 \end{gathered}$ | Sb in distort. Octahedr. 3 S from 3 diff trithian. Infinite chains. | IINDEMANN et.al. |

TABLE No. 1.6.4a (cont.)

| FYRIDINE (2:1) | 0.149 for 285 Refns. <br> Fhotog. Mok $\propto$ | $\begin{array}{llll} 1,1 & 2.36 & 1,2 & 80.8 \\ 1,2 & 2.37 & 1,3 & 97.8 \\ 1,3 & 2.68 & 2,3 & 82.0 \\ 2,4 & 2.64 & 4,5 & 81.2 \\ 2,5 & 2.31 & 4,6 & 73.8 \\ 2,6 & 2.33 & 5,6 & 81.4 \end{array}$ | $\mathrm{Sb} \ldots \mathrm{N}$ $\mathrm{Cl} \ldots \mathrm{Sb} \ldots \mathrm{Cl}$  <br> 2.49 1.4 106.9 <br> $\mathrm{Sb} \ldots \mathrm{Cl}$ 2.4 94.5 <br> $1,42.79$   <br> 2,3 3.21  | Sb in distor. Octahedr. Lone pair no located. $\mathrm{Sb}_{2}$ in distor. trigon. bipyramid. Lone pair in equatorial. Infinite layers $\mathrm{py}^{-" \mathrm{Sb}_{4} \mathrm{Cl}_{12} \text { " }}$ (tetramers). | MULIEN (1970) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PYRIDINE (2:3) | 0.110 for 329 Fhotog. Mokoc | $\begin{array}{lllr} 1,1 & 2.258 & 1,2 & 77.7 \\ 1,2 & 2.405 & 1,3 & 105.5 \\ 1,3 & 2.395 & 2.3 & 95.6 \\ 2,4 & 2.141 & 4,5 & 97.3 \\ 2,5 & 2.513 & 4,6 & 100.4 \\ 2,6 & 3.003 & 5,6 & 159.4 \end{array}$ | $$ | $\mathrm{Sb}_{\mathrm{y}}$ in distor. Octahedr. Lone pair in axial site. The $\mathrm{Sb}_{2}$ is attached to 2py in trans position Infinite chains. | MULIEN (1970) |

TABLE 1.6.4b
CRYSTAL STRUCTURE OF $\mathrm{m} \mathrm{SbCl}_{3} \cdot \mathrm{n}$ ORGANIC COMPOUND
2. COMPLEXES WITH AROMATIC $\pi$-ELECTRON DONORS.

| $\begin{gathered} \text { ORGANIC COMPOUND } \\ \text { AND } \\ \text { STOICHIOMETRY ( } \mathrm{m}: \mathrm{n} \text { ) } \end{gathered}$ | $\begin{aligned} & \text { R FACTOR AND } \\ & \text { OTHER } \\ & \text { REMARKS } \end{aligned}$ | $\begin{gathered} \text { ACGEPTOR INTERATOMIC } \\ \text { PARAMETERS } \\ \mathrm{Sb}-\mathrm{Cl}(\AA) \mid \mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}\left({ }^{\circ}\right) \end{gathered}$ |  |  | Intermolecular contagis $\operatorname{Sb} \ldots \mathrm{D}(\AA) \quad \operatorname{ANGLES}\left({ }^{\circ}\right)$ | RELEVANT GEOMETRICAL FEATURES | REFERENCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIBENZYL (2:1) | $\begin{aligned} & 0.138 \text { for } 169 \\ & \text { Refns. } 2 \mathrm{D} \\ & \text { photog Cuk } \alpha \end{aligned}$ | 1,1 2.31 <br> 1,2 2.32 <br> 1,3 2.40 <br> 2.4 2.32 <br> 2.5 2.36 <br> 2,6 2.28 | $\begin{aligned} & 1,2 \\ & 1,3 \\ & 2,3 \\ & 4,5 \\ & 4,6 \\ & 5,6 \end{aligned}$ | $\begin{aligned} & 96.0 \\ & 92.3 \\ & 92 \cdot 3 \\ & 97 \cdot 7 \\ & 90.2 \\ & 95 \cdot 2 \end{aligned}$ | Sb. Cl <br> 5 3.37 <br> 2 3.27 | Sb in dist. trig. bipyrad. One Cl and interact. with $\pi$ syst. in apical sites. Lone pair in equatorial. $\mathrm{SbCl}_{3}$ forms dimer; plañe parallel to benzene to benzene ring. Alternating layers. |  |
| DIBENZYL (4:1) | 0.196 for limited Refs. Photog. $\mathrm{Mok}_{\boldsymbol{\alpha}}$ | $\begin{array}{ll} 1 & 2.34 \\ 2 & 2.32 \\ 3 & 2.25 \end{array}$ | 1,2 1,3 2,3 | $\begin{aligned} & 92.7 \\ & 91.0 \\ & 95.6 \end{aligned}$ | $\begin{aligned} & \text { Sb...ring-plane } \\ & 3.40 \end{aligned}$ | Possibiy Sb in trigon. bipyramid. Sb \& 2 Cl in a plane parallel to plane-ring on either side; $\mathrm{Cl}_{3}$ perpendicular and awas from it. Lone pair in equat. Alternating layers | $\begin{aligned} & \text { HURSTHOUSE } \\ & \text { (1965) } \end{aligned}$ |
| DIIHENYL (2:1) | $\begin{aligned} & 0.051 \text { for } 3306 \\ & \text { Refns. Diffrac } \\ & \text { tometer. Mok } \end{aligned}$ | 1,1 2.367 <br> 1,2 2.382 <br> 1,3 2.369 <br> 2,4 2.355 <br> 2,5 2.353 <br> 2,6 2.342 | $\begin{aligned} & 1,2 \\ & 1,3 \\ & 2,3 \\ & 4,5 \\ & 4,6 \\ & 5,6 \end{aligned}$ | $\begin{aligned} & 93.48 \\ & 94.32 \\ & 91.41 \\ & 93.88 \\ & 96.36 \\ & 93.03 \end{aligned}$ | Sb...ring-plane 1,1 2.26 2,2 3.08 $\mathrm{Sb} \ldots . . \mathrm{cl}$ 1,1 2.1 2.44 2.46 | Sb in a distor. Octahedr. Each $\mathrm{SbCl}_{3}$ yoints to a phenyl ring. Lone pair no located. $\mathrm{SbCl}_{3}$ forms dimer. Alternating layers. | LIHKA \& MOOTZ (1978a) |
| DIPHENYLAMINE (2:1) | $\begin{aligned} & 0.060 \text { for } 2829 \\ & \text { Refns. Diffrac } \\ & \text { tometer. Mok } \boldsymbol{\alpha}_{\boldsymbol{\alpha}} \end{aligned}$ | 1,1 2.377 <br> 1,2 2.356 <br> 1,3 2.357 <br> 2,4 2.380 <br> 2,5 2.382 <br> 2,6 2.365 | 1,2 1,3 2,3 4,5 4,6 5,6 | $\begin{aligned} & 92.4 \\ & 95.2 \\ & 93.2 \\ & 92.2 \\ & 94.3 \\ & 91.7 \end{aligned}$ | $\begin{aligned} & \text { Sb...ring-plane } \\ & 1,1 \\ & 3.08 \\ & 2,2 \\ & 3.09 \\ & \text { Sb...cI } \\ & 2,1 \\ & 2.351 \\ & 2,5 \\ & 3.499 \end{aligned}$ | Sb in distor. Octahedr. Two $\mathrm{SbCl}_{3}$ point to a phenyl ring each. Lone pair no located. $\mathrm{SbCl}_{3}$ forms dimer. <br> Alternating layers. | $\begin{array}{\|l} \text { IIPKA \& } \\ \text { MOOTZ } \\ \text { (1978b) } \end{array}$ |

TABLE 1.6.4b (cont.)

| NAFHTHALENE (2:1) | 0.091 for 2566 Refns. Diffractometer. $\mathrm{Mok}_{\alpha}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 2.348 \\ & 2.347 \\ & 2.367 \end{aligned}$ | $\begin{aligned} & 1,2 \\ & 1,3 \\ & 2,3 \end{aligned}$ | $\begin{aligned} & 91.59 \\ & 94.41 \\ & 94.70 \end{aligned}$ | $\begin{aligned} & \text { Sb...ring-plane } \\ & 3.20 \\ & \text { Sb...c } \\ & 1 \quad 3.36 \\ & 2 \quad 3.39 \end{aligned}$ | Sb in distor. trigon. bipyramid. 2Cl \& Lone pair in equatorial sites. Interact. with $\pi$-syst. and $\mathrm{Cl}_{3}$ in axial. Alternating layers. |  <br> SZYMANSKI <br> (1969) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHENANTHRENE (2:1) | 0.038 for 4013 Refns. Diffractometer. $\mathrm{Mok}_{\boldsymbol{c}}$ | 1,1 1,2 1,3 2,4 2,5 2,6 | $\begin{aligned} & 2.350 \\ & 2.349 \\ & 2.359 \\ & 2.338 \\ & 2.398 \\ & 2.359 \end{aligned}$ | $\begin{aligned} & 1,2 \\ & 1,3 \\ & 2,3 \\ & 4,5 \\ & 4,6 \\ & 5,6 \end{aligned}$ | $\begin{aligned} & 92.0 \\ & 914.4 \\ & 95.1 \\ & 92.2 \\ & 93.7 \\ & 92.4 \end{aligned}$ | Sb...ring-plane 1,1 3.27 2,3 2.94 Sb...c1 2,3 3.49 2,5 3.26 1,6 3.41 1,1 3.55 | Possibly Sb in distor. Octahedr. Each $\mathrm{SbCl}_{3}$ points to a rind. lCl \& interact. with $\pi$-syst. in axial sites. Lone pair no located. $\mathrm{SbCl}_{3}$ form dimer. Alternating layers. | $\begin{aligned} & \text { DEMILLDE et.a } \\ & (1972) \end{aligned}$ |
| STILBENE ( $4: 1$ ) | 0.139 for 1938 Refns. Low T. inotog. Mok ${ }_{c}$ | 1,1 1,2 1,3 2,4 2,5 2,6 | $\begin{aligned} & 2.35 \\ & 2.39 \\ & 2.36 \\ & 2.36 \\ & 2.42 \\ & 2.36 \end{aligned}$ | $\begin{aligned} & 1,2 \\ & 1,3 \\ & 2,3 \\ & 4,5 \\ & 4,6 \\ & 5,6 \end{aligned}$ | $\begin{aligned} & 94.07 \\ & 91.49 \\ & 94.67 \\ & 01.77 \\ & 93.47 \\ & 95.85 \end{aligned}$ | $\begin{aligned} & \text { Sb...ring-plane } \\ & 1,1 \quad 3.40 \\ & 2,2 \quad 3.40 \end{aligned}$ | lossibly Sb in distor. Octahedr. Sb \& 2Cl in a plane parallel to ringplane. Each phenyl ring is'sandwiched' by $\mathrm{2SbCl}_{3}$. lone pair no located. Alternating layers. | $\begin{aligned} & \text { HURSTHOUSE } \\ & (1965) \end{aligned}$ |
| P-XYLENE (2:1) | 0.110 for 920 Refns. Low T. Photog. Mok ${ }_{\alpha}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 2.304 \\ & 2.320 \\ & 2.369 \end{aligned}$ | $\begin{aligned} & 1,2 \\ & 1,3 \\ & 2,3 \end{aligned}$ | $\begin{aligned} & 94.1 \\ & 92.8 \\ & 93.1 \end{aligned}$ | $\begin{aligned} & \text { Sb. . ring~plane } \\ & 3.09 \\ & \mathrm{Sb} \ldots \mathrm{Cl} \\ & 3.24 \end{aligned}$ | Yossibly Sb in distor. Octahedr. $\mathrm{SbCl}_{3}$ points to the ring. Lone jair in equatorial site. $\mathrm{SbCl}_{3}$ forms dimer. Alternating layers. | HULME \& MULIEN (1976) |

### 1.7 DISORDER PHENOMENA IN CRYSTALS

It has been stated (Bernal, 1959 and Refs. there; Jagodzinski, 1963), that as a general rule all crystals are disordered to a certain degree. In particular disorder phenomena often occur in solid-state molecular compounds. One of the features of the crystal chemistry of some $\pi$-molecular compounds is the order-disorder transformation due to changes in temperature or due to growth faults (Herbstein, 1971). Little consideration has been given to the relation between this feature and the nature of bonding, stability and structure in these compounds. Therefore, it is important to study this associated phenomena as it may lead to a better understanding of the nature of some molecular complexes.

The following survey is a brief introduction to disorder phenomena in crystals and their relation to the diffraction pattern.

### 1.7.1 TYFES OF DISORDER

Two general types of disorder may occur in crystals (Wooster, 1964; Jagodzinski, 1964; Herbstein, 1971). The first type is a thermodynamic disorder, where the equilibrium degree of order varies with temperature and pressure. At elevated temperatures no crystal is perfectly ordered because of the thermal vibration of the atoms and molecules or reorientation of the molecules.

The second general type is non-equilibrium in nature. This i.s associated with lattice defects which are observable in the diffraction pattern. The lattice distortions normally observed in crystals are due to growth faults which axe "frozen-in" during crystallization. This type of disorder does not change with temperature. Here the
imperfection can involve substitution as well as displacement disorder.

### 1.7.2 BRIEF INTRODUCTTON TO THE DIFFRACTTON OF X-RAYS BY AN IDEAL

## AND A DISORDERED CRYSTAL

The position of lattice point of a periodic three-dimensional lattice may be defined by the vector:

$$
\begin{equation*}
\hat{t}_{n}=\hat{t}_{n_{1} n_{2} n_{3}}=n_{1} \hat{a}+n_{2} \hat{b}+n_{3} \hat{c} \tag{1.7.1}
\end{equation*}
$$

where $n_{1}, n_{2}, n_{3}$ are integers and $\hat{a}, \hat{b}, \hat{c}$ define the unit cell translations. A lattice may be expressed by an array of $\delta$ functions ${ }^{(1)}$ of the type $\delta\left(\hat{t}-\left[n_{1} \hat{a}+n_{2} \hat{b}+n_{3} \hat{c}\right]\right)$, in which $n_{1}, n_{2}$ and $n_{3}$ take on all allowed values corresponding to each lattice point.

The lattice function, $Z(\hat{t})$, is defined as:

$$
\begin{equation*}
\sum_{n_{1} n_{2} n_{3}} \delta\left(t_{n} \cdot\left[n_{1} \hat{a}+n_{2} \hat{b}+n_{3} \hat{c}\right]\right) \tag{1.7.1a}
\end{equation*}
$$

In which the summation signifies that for every allowed value of $n_{1}, n_{2}, n_{3}$ all lattice points are generated.

In reciprocal space a reciprocal lattice vector, $\hat{r}^{*}$, is given by

$$
\hat{r}^{*}=\hat{s}=h \hat{a}^{*}+k \hat{b}^{*}+1 \hat{c}^{*} \quad(h, k, 1 \text { integers })
$$

## MATHEMATICAL EXPRESSION OF THE DIFFRACTION OF X-RAYS BY CRYSTALS

A perfect crystal is built up by successive equal parallel
displacements of the three dimensional unit cell. The structure factor
(1) A $\delta$ function at the point $x$ relative to $x_{0}$ is expressed as $\delta\left(x-x_{0}\right)$, which equals unity at $x=x_{0}$ and zero for all other values of $x$. A $\delta$ function is thus the mathematical description of a point or of a phenomenon at a point.
(see p68) for such crystals can be expressed (Woolfson, 1970, p80)by:

$$
\begin{equation*}
F_{h k I}(\operatorname{or} F(\hat{s}))=\sum_{j=1}^{N} f_{j} \exp \left(2 \pi i \hat{s} \cdot \hat{r}_{j}\right) \tag{1.7.2}
\end{equation*}
$$

Where $\hat{r}_{j}=x_{j} \hat{a}+y_{i} \hat{b}+z_{j} \hat{c}$, defines the atomic position of the $j$ th atom with atomic scattering factor $f_{j}$. The summation is extended over a.ll N atoms in the unit cell.

In a molecular crystal, where molecules have individuality, it is of interest to express the structure factor, $F(\hat{S})$ as a function of the transforms of the different molecules referred to their centers (J. and M. Amorós,1968,p82). Thus with $P$ molecular centers at $\hat{r}_{p}$ and related atomic coordinates, $r_{j, p}$ (for Jp atoms relative to the centre, P) we have:

$$
\begin{equation*}
\dot{F}(\hat{S})=\sum_{p=1}^{P} \sum_{j=1}^{J} f_{j} \exp \left[2 \pi i \hat{S} \cdot\left(\hat{r}_{j, p}+\hat{r}_{p}\right)\right] \tag{1.7.3}
\end{equation*}
$$

Equation (1.7.3) may be rewritten as:

$$
F(\hat{S})=\sum_{p=1}^{P} F_{p}(\hat{S}) \exp (2 \pi i \hat{S} . \hat{r})
$$

where $\quad F_{p}(\hat{S})=\sum_{j=1}^{J_{p}} f_{j} \exp \left(2 \pi i \hat{S} \cdot \hat{r}_{j, p}\right)$, is the contribution of the $p$ th molecule to the total structure factor $F(\hat{S})$.

As the intensity for a molecular crystal involves imaginary quantities, the complex conjugate of $\mathrm{F}(\hat{\mathrm{S}})$, i.e. $\mathrm{F}^{*}(\hat{\mathrm{~S}})$ will be involved in the expression for the intensity given by:

$$
\begin{equation*}
I(\hat{\mathrm{~S}})=F(\hat{\mathrm{~S}}) \cdot \mathrm{F}^{*}(\hat{\mathrm{~S}}) \tag{1.7.4}
\end{equation*}
$$

Replacing values for $F(\hat{S})$ of eq. (1.7.3a) in eq. (1.7.4), then performing the respective summation, eq. (1.74) becomes:

$$
\begin{equation*}
I(\hat{S})=\sum_{==1}^{P} I_{p}(\hat{S})+\sum_{p=1} \sum_{p^{\prime}=1} F_{p}(\hat{S}) F_{p^{\prime}}(\hat{S}) \exp \left[2 \boldsymbol{i} \dot{\hat{S}} \cdot\left(\hat{r}_{p}-\hat{r}_{p^{\prime}}\right)\right] \tag{1.7.4a}
\end{equation*}
$$

Where $I(\hat{S})$ is the total intensity due to the contribution of the $p$ and $P^{\prime}$ molecules in the cell and $I_{p}(\hat{S})=F_{p}(\hat{S}) \cdot F_{p}^{*}(\hat{S})$.

An example will illustrate this. Adipic acid, $\mathrm{HO}_{2} \cdot \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}$, crystallizes in the monoclinic cell with space group $P_{2_{1}} /$ a. Amorós, (1968), p 83 . The unit cell contains two centrosymmetric molecules in special positions. One molecule has a center at the origin, and the second has a center of symmetry at $\frac{11}{2} 0$. Considering the projection of the structure on (010), the contribution of the second molecule to the structure factor can be calculated from eq. (1.7.3a):

$$
\begin{equation*}
\mathrm{F}_{2}(\mathrm{hOl})=\mathrm{F}_{1}(\mathrm{hOl}) \exp \left[2 \pi i \hat{\mathrm{~s}} . \hat{r}_{\mathrm{p}}\right]=\mathrm{F}_{1}(\mathrm{hOl}) \exp \left\{2 \pi i\left[\mathrm{~h} \hat{a}^{*}+1 \hat{c}^{*}\right]\left[\frac{\hat{e}}{2}, \frac{\hat{b}}{2}\right]\right\} \tag{1.7.5}
\end{equation*}
$$

where $F_{1}$ (hOl) is the contribution of the first molecule.
In the unit cell both molecules diffract together, therefore the total structure factor will be given by:

$$
\begin{equation*}
F_{h O 1}=F_{1}(h 01)+F_{2}(h 01)=F_{1}(h 01)\left\{1+\exp \left[2 \pi i\left(\frac{h}{2}\right)\right]\right\} \tag{1.7.5a}
\end{equation*}
$$

$$
\text { as } \quad \begin{aligned}
\hat{a}^{*} \cdot \hat{a} & =1 \\
\hat{a}^{*} \cdot \hat{b} & =0 \\
\hat{a}^{*} \cdot \hat{c} & =0 \quad \text { etc. }
\end{aligned}
$$

## THE DITFFRACTION OF X-RAYS BY A DITSORDERED CRYSTAL

Under the general classification of disorder which occurs in crystals stated earlier, we consider here cases where the disorder is an orientational one, this occurs when the molecules are statistically distributed in certain molecular sites with different orientations. The Bragg intensities are sentitive to this kind of disorder but are not altered in position. The intensity may in the extreme be zero due to interference and so may suggest pseudo absences and symmetry corresponding to an "average structure".

Another form of disorder associated wi.th diffuse scattering around Bragg angles may arise because of static defects in the crystal lattice in one, two and three-dimensions. Thus Jagodzinski (1963) identifies one-dimensional disorder as a disorder in the stacking sequence of layers, as one Laue condition fails to be fulfilled A statistical displacement of rows of unit cells from the ideal position correspond to a two-dimensional one. A threedjmensional occurs when by insertion or depletion of an atom, ion or a group of them; the structure is locally swollen or contracted.

## GENERAL MATHEMATICAL EXPRESSION FOR DIFFRACTION BY DISORDERED CRYSTALS

The electron density of an atom can be expressed as

$$
\begin{equation*}
\rho(\hat{r})=\int_{v^{*}} F_{h k l} \exp (-2 \pi i \hat{s} \cdot \hat{r}) d v^{*} \tag{1.7.6}
\end{equation*}
$$

where $F_{h k l}$ is the structure factor and $v^{*}$ the reciprocal volume.

$$
\hat{r}=x \hat{a}+y \hat{b}+z \hat{c} \text { expresses the atomic position }
$$

By definition also:

$$
\begin{equation*}
F_{h k I}=F(\hat{S})=\int_{v} \rho(\hat{r}) \exp (2 \pi i \hat{s} \cdot \hat{r}) d v \tag{1.7.7}
\end{equation*}
$$

which is the Fourier Transform of (1.7.6); conversely equation (1.7.6) is the Fourier Transform of (1.7.7).

The convolution, (*), of two functions $f(\hat{x})$ and $g(\hat{x})$ is defined by (Guinier, 1963):

$$
\begin{equation*}
Y(\hat{x})=f(\hat{x}) * g(x)=\int f(\hat{R}) g(\hat{x}-\hat{R}) d \hat{R} \tag{1.7.8}
\end{equation*}
$$

a particular property is:

$$
\begin{equation*}
P(\hat{x})=f(\hat{x}) * f(-\hat{x})=\int f(\hat{R}) f(\hat{x}+\hat{R}) d \hat{R} \tag{1.7.9}
\end{equation*}
$$

A Patterson function in terms of $\rho(\hat{x})$ can be calculated using eq. (1.7.9):

$$
P(\hat{r})=\int \rho(\hat{R}) \rho(\hat{r}+\hat{R}) d \hat{R}=\rho(\hat{r}) * \rho(\cdots \hat{r})
$$

where $\hat{r}$ represent atomic position of an atom $A$
$\hat{R}$ represent any other atomic position of atom $A$ or $B$. At the origin, $\hat{r}=0, P(0)=\int \rho^{2}(\hat{R}) d \hat{R}=\int|F(\hat{S})|^{2} d \hat{S}$

For an imperfect crystal, for which it is possible to define an average periodic lattice; the electron density of the crystal can be expressed by (Cowley, 1975):

$$
\begin{equation*}
\rho(\hat{r})=\langle\rho(\hat{r})\rangle+\Delta \rho(\hat{r}) \tag{1.7.12}
\end{equation*}
$$

Where $\langle\rho(\hat{r})\rangle$ is the electron density distribution for the average lattice, defined to be time independent and periodic. $\Delta \rho(\hat{r})$ represents the deviation from the average lattice, which is nonperiodic, (this could be time dependent or not).

By definition the averaging process involving $\langle\Delta \rho\rangle=0$.

From eq. (1.7.12) and using expression (1.7.10) we may write the Patterson function as:

$$
\begin{aligned}
& P(\hat{r})=\{\langle\rho(\hat{r})\rangle+\Delta \rho(\hat{r})\} *\{\langle\rho(-\hat{r})\rangle+\Delta \rho(-\hat{r})\} \text { or } \\
& P(\hat{x})=\{\langle\rho(\hat{r})\rangle \underset{(1)}{*}\langle\rho(-\hat{r})\rangle\}+\{\langle\rho(\hat{x})\rangle \underset{(2)}{* \Delta \rho(-\hat{r})}\}+ \\
& \{\Delta \rho(\hat{x}) \underset{(3)}{*} \Delta \rho(-\hat{r})\}+\{\Delta \rho(\hat{r}) * \lll(-\hat{r})\rangle
\end{aligned}
$$

The electron density of a collection of atoms may be written as:

$$
\begin{equation*}
\rho(\hat{r})=\sum_{l, m, n} \rho_{0}(\hat{r}) * \delta\{\hat{r}-(l \hat{a}+m \hat{b}+n \hat{c})\} \tag{3.7.14}
\end{equation*}
$$

Where $P_{0}(\hat{r})$ is the electron density in the unit cell.
The delta function $\delta\{\hat{x}-(1 \hat{a}+m \hat{b}+n \hat{c})\}$ defines the lattice. $\hat{r}=x \hat{a}+y \hat{b}+z \hat{c}$ is the atomic position.

Eq. (1.7.14) can be expressed also as:

$$
\begin{equation*}
\rho(\hat{r})=\rho_{0}(\hat{r}) * \sum_{i} \delta\left\{\hat{r}-\hat{r}_{i}\right\} \tag{1.7.15}
\end{equation*}
$$

In eq. (1.7.13) in terms of spatial averaging, the second term of the equation may be written by using (1.7.15) as:

$$
\rho_{o}(\hat{r}) * \sum_{r} \delta\left(\hat{r}-\hat{h}_{n}\right) * \Delta \rho(-\hat{r})=0
$$

Where $\hat{R}_{n}$ is a lattice vector of the average lattice.
The convolution of $\Delta \rho(-\hat{x})$ with $\sum \delta\left(\hat{r}-\hat{R}_{n}\right)$ represents the superposition of the function $\Delta \rho(-\hat{x})$ with the lattice vector shifts. There is, thus an averaging of $\Delta \rho(-\hat{r})$ values at every point of the unit cell and by definition is zero. The same principle can be applied
to the convolution of the fourth term.
Therefore eq. (1.7.13) is reduced to:

$$
P(\hat{r})=\{\langle\rho(\hat{r})\rangle *\langle\rho(-\hat{r})\rangle\}+\{\Delta \rho(\hat{r}) * \Delta \rho(-\hat{r})\}
$$

The Fourier transform of eq. (1.7.17) will give:

$$
I(\hat{s})=\left|\bar{F}_{h k l}\right|^{2}+\left|\Delta F_{h k l}\right|^{2}
$$

which is the expression for the total scattering power by disordered crystals. $\quad \bar{F}_{h k l}$ and $\Delta F_{h k l}$ are the Fourier Transforms of $\langle\rho(\hat{r})\rangle$ and $\Delta \rho(\hat{x})$ respectively.

In eq. (1.7.18) $\left|\bar{F}_{\mathrm{hkl}}\right|^{2}$ will be periodic and therefore will give sharp reflections. But since $\Delta \rho(\hat{r})$ is not periodic, $\left|\Delta F_{h k l}\right|^{2}$ will represent a continuous distribution of intensity between the reciprocal lattice points and will produce diffuse scattering in the diffraction pattern.

### 1.7.3 THE STRUCTURE FACTOR FOR TWO CASES OF ORIENTATIONAL DISORDER

(a) Abrahams and Lipscomb (1952), give an example of orientational disorder in the structure of thiophene, $\mathrm{H}_{4} \mathrm{C}_{4} \mathrm{~S}$. The structure has 4 molec/unit cell, and was interpreted in space group Bmab (in standard orientation, Cmca, No.64), which has the following space-group diagram:


Fig 1.7.1. Bmab space group.

In order to accomodate the 4 molecules in 16 general positions, the following explanation is given: Each molecule could occupy any one of four different orientations axound a common position (see fig. 1.7.2), so that the center of gravity of the disordered molecule lies at the special positions, $000, \frac{11}{2} 0, \frac{1}{2} 0 \frac{1}{2}$, $0 \frac{11}{2}$.

The general positions are related to each other by two perpendicular mirror planes mutually normal to the molecular plane. One mirror plane is parallel to a and the other parallel to the axis [011], the angle made by the molecular plane with the b axis is $47.8^{\circ}$.


Fig 1.7.2 Schematic representation of the disorder of a molecular orientation in crystal of thiophene. (Abraham and Lipscomb, 1952).

The observed diffraction corresponds to a statistical distribution - of the molecules equally over these four positions, so that on average there appears to be a quarter molecule in each orientation.

The contribution of the ith atom in a particular orientation of the thiophene molecule will be given by:

$$
\begin{equation*}
F_{1}(h k l)=\sum_{j}^{4} \sum_{i=1}^{5}\left(f_{i} / 4\right) \cos 2 \pi\left(h x_{i, j}+k y_{i, j}+1 z_{i, j}\right) \tag{1.7.19}
\end{equation*}
$$

Where $f_{j}$ is the atomic scattering factor of the ith atom, and $h x_{i, j}+k y_{i, j}+l z_{i, j}$, defines the position of the $i$ th atom in the $j$ th orientation.

The total structure factor $F(h k I)$, will be given by:

$$
\begin{equation*}
F(h k I)=\sum_{P=1}^{4} F_{1}(h k l) \exp \left[2 \pi i \hat{s} \cdot \hat{x}_{p}\right] \tag{1.7.20}
\end{equation*}
$$

Where $\hat{s}=h \hat{a}^{*}+k \hat{b}^{*}+1 \hat{c}^{*}$, (hkl integers), and $\hat{r}_{p}=x_{p} \hat{a}+y_{p} \hat{b}+z_{p} \hat{c}$, defines the center of the molecule. $x_{p}, y_{p}$ and $z_{p}$ are the fractional coordinates of the centers and $\hat{a}, \hat{b}$, and $\hat{c}$ are the cell. unit translations.
(b) The second example of a disordered structure is that of chloropentamethylbenzene, (Charbonneau and Trotter, 1968). The crystals were interpreted as monoclinic, space group $\mathrm{P}_{2_{1}} / \mathrm{m}$ with two molecules per unit cell. The space group can be represented by the following diagram:


Fig 1.7.3
Diagram of space group $\mathrm{F}_{1} / \mathrm{m}$.

According to the space group considered, there are four general equivalent positions per unit cell where we can accommodate molecules of chloropentamethylbenzene. The fact that there are only two molecules in the cell suggests the presence of disorder to simulate a pseudocentric structure.

In the structure analysis, the three-dimensional Patterson function did not show any outstanding peaks corresponding to Cl-Cl vectors, but an interpretation was possible in terms of a composite molecule corresponding to six positions for the chlorine atom on the benzene molecules, lying exactly in the mirror plane of the space group $\left(P_{2_{1}} / \mathrm{m}\right)$ at $y=\frac{1}{4}$.

Therefore, the total structure factor can be calculated in the following steps:
(i) The partial contribution from the two aromatic rings of carbons can be represented by:

$$
\begin{equation*}
F_{1}(h k I)=\sum_{j=1}^{12} f_{c} \exp \left(2 \pi i \hat{s}, \hat{r}_{j}\right) \tag{1.7.21}
\end{equation*}
$$

where $f_{c}$ represents the atomic scattering factor for the carbon atoms; and $\hat{r}_{j}=x_{j} \hat{a}+j_{i} \hat{b}+z_{j} \hat{c}$ is the atomic position and $\hat{s}=h \hat{a}^{*}+k \hat{b}^{*}+l \hat{c}^{*}$ for hkl integers.
(ii) The partial contribution from the substituents of the benzene will be given by:

$$
\mathrm{F}_{2}(\mathrm{hkl})=\sum_{\mathrm{k}=1}^{12}\left(\frac{1}{6} f_{\mathrm{Gl}}+\frac{5}{6} f_{\mathrm{c}}\right) \exp \left(2 \pi i \hat{\mathrm{~s} . \hat{r}_{\mathrm{k}}}\right) \quad(1 \cdot 7 \cdot 22)
$$

where $f_{C l}$ is the atomic scattering factor for the clorine atom. Therefore the total structure factor, (excluding $H$ atoms), will be represented by:


This disorder makes possible a centrosymmetric structure so that $\mathrm{F}_{\mathrm{hkI}}$ reduces to
$F_{h k l}=\sum_{j=1}^{6} f_{C} \cos 2 \pi\left(h x_{j}+k y_{j}+l_{z_{j}}\right)+\sum_{k=1}^{6}\left(\frac{1}{6} f_{C l}+\frac{5}{6} f_{C}\right) \cos 2 \pi\left(h x_{k}+k y_{k}+1_{z_{k}}\right)$

A projection of the structure along $b$ is illustrated in fig. 1.7.4:


Fig. 1.7 .4
Projection of the structure of chloropentamethylbenzene along b .
$S_{i}, i=1,2, \ldots, 6$. , are the substituents represented by a pseudo-atom with scattering factor ( $\frac{1}{6} f_{C l}+\frac{5}{6} f_{C}$ ).

### 1.7.4 DIFFRAGIION PATIERN FOR ONE DIMENSIONAL CASE OF DISORDER IN THE CRYSTAL LATTITCE.

A Qualitative Illustration.
In the case of statistical arrangement of parallel layers having ordered cell dimensions in $b$ and $c$, only one Laue-condition fails to be valid; according to the diffraction theory diffuse streaks along $\mathrm{a}^{*}$ are to be expected in reciprocal space (see fig. 1.7.5abc). The diffuseness depends strongly on the degree of disorder.

(a) Real Lattice

(b) Undistorted Reciprocal Lattice

(c) Distorted Reciprocal Lattice (Weissenberg)

Fig 1.7.5 Real and Reciprocal Lattice or a Crystal

An example of this kind of disorder may be given by a crystal of cobalt, (Iipson, 1942). It was reported that for hkl reflections, sharp reflections will occur when:

$$
\begin{array}{lll} 
& h-k=3 n & n=0,1,2, \ldots, n \\
\text { and } \quad 1 & =2 m & m=0,1,2, \ldots, m .
\end{array}
$$

Diffuse spots occur when these conditions are not satisfied and they consist of streaks elongated parallel to the z-axis.

The distribution lattice which produces this diffraction pattern can be deduced from these results (Wooster, 1964). Fig. 1.7.6 shows a lattice net foracrystal of cobalt. The hexagonal unit cell is represted by $A_{0} A_{1} A_{2} A_{3}$.


Fig 1.7 .6
Lattice net for normall and disordered cobalt structure. (After Wooster, 1964)

According to the rules mentioned above, sharp reflections will occur for planes $300,030,110,410,520$, etc. The fact that $1=2 \mathrm{~m}$ means that the length in the z-axis direction of the distribution
lattice is half the height of the original unit cell (i.e. c/2).
At room temperature cobalt forms a hexagonal close-packed arrangement (i.a., two layers of atoms, symbolized by ABAB... or ACAC...), therefore atoms lie on $A$ and $B$ only (or ${ }^{\circ n} A$ and $C$. only). The $B$ or $C$ points being occupied only at the points $c / 2$ above the A points. If the points were occupied in the sequence ABCABC... (a cubic close-packed arrangement), the layers A, B and C being identical with one another, then we obtain a cubic close packing. The fact that the diffuse spots are elongated along z-axis means that the crystals of cobalt consist of parallel layers of atoms which are arranged sometimes in a hexagonal and sometimes in a cubic closepacked manner.

In many cases the disorder is a multiple one, where there is a mixture of the different types of disorder mentioned above or associated with other defects, such as the twinning phenomena, substitution disorder, etc. that is the case of the disorder found in crystals of wollastonite, $\mathrm{CaSiO}_{3}$ (Jeffrey, 1353).
2. METHODS FOR STUDYING MOLECULAR COMPLEXES IN THE SOLID STATE.

In studying crystalline molecular complexes of $\mathrm{SbCl}_{3}$ wi.th organic compounds, the following methods were used:
(a) Melting-point-composition diagrams to detect of compound formation and stoichiometry,
(b) chemical and physico-chemical analysis to confirm the stoichiometry, and
(c) x-ray diffraction to determine the spatial relationships between the components.

### 2.1 DETERMINATION OF NEITING POINT-COMPOSITION DIAGRAMS.

The study of the equilibria of systems containing more than one component is based on the phase-rule developed by Gibbs:

$$
f+p=c+2
$$

where $f$ is the number of independent variables which must be specified to characterize the equilibrium system of $c$ independent components in p phases.

At equilibrium (Fig. 2.1.2a), a simple binary ( $\mathrm{c}=2$ ), two-phases ( $p=2$ ) system has $f=2$ so that to characterize the equilibrium system two independent variables need to be specified. i.e. two of temperature, $T$, pressure, $p$, and mole fraction composition $\mathrm{x}_{\mathrm{i}}$. The choice of two of these fixes the other. If we choose the pressure to be fixed (say latm), then temperature and composition must be uniquely related, and one can plot a temperature vs. composition curve for equilibrium mixture of the two components.

Experimentally, the determination of equilibrium curves is usually carried out by taking the cooling curves (temperature vs. time) of mixtures of various compositions and noting the initial and the final solidification temperatures. These, plotted for several compositions, constitute the phase diagram.

When a pure (one-component) substance is allowed to cool without phase change its temperature falls at an exponentially decreasing rate as represented in the ideal cooling curves (Fig. 2.1.1.a). In practice fig. (2.1.lb) is often observed, due to supercooling, but ideality may be approached by cooling slowly with adequate stirring. More complex curves (fig. 2.1.lc) may be observed if' compound formation occurs.

The temperature of the system can be measured by means of thermocouples (for high temperatures) or ordinary thermometers for the relatively low temperatures.


Fig 2.1 .1

### 2.1.1 TYFES OF PHASE-DIAGRAM

When the two components of a binary system are completely miscible in the liquid state, the following types may be distinguished:
a) COMPLETE MISCIBILITY IN THE SOLID STAYE

Here the components form a solid solution which exhibits
characteristics similar to liquid solutions. On structural grounds such solid solutions may arise either by atom substitution or by atom occupation of interstitial positions within the host structure.

A typical diagram where complete miscibility occurs in the solid state is shown in Fig. 2.1.2a for the copper-nickel system.
b) A SIMPLE EUTEGTIC SYSTEM

This is characterized by the fact that upon cooling, the mixed constituents, A and B, of a system yield only pure A or pure $B$ as solid phases. An example occurs in the p-nitrophenol-p-nitroaniline system (Falepu and Moore, 1978) as shown in Fig. 2.1.2b.
c) EUTECTIC SYSTEM WITH FOLYMORPHOUS COMPONENT

The effect of polymorphism in one of the components is to cause a "break" in the liquidus curve (Mckie and Mckie, 1974,p515). An example for $\mathrm{AlCl}_{3}-\mathrm{WCl}_{4}$ system (Korshunov and Gol'din, 1961) is shown in Fig. 2.1.2c. This feature is also found in the $\mathrm{SbCl}_{3}$-sulphur system (Lipka, 1979a).
d) PARTIAL MISCIBILITY IN SOLID STATE WITH EUZECTIC

When two constituents $A$ and $B$ of a system are partially miscible in the solid state to form stable solid solutions, the standard diagram is modified to that shown in Fig. 2.1.2d. The points $D$ and $E$ represent the limits of solutions of $\alpha, \alpha^{\prime-}$ dipyridyl in diphenyl and of diphenyl in $\boldsymbol{\alpha}, \alpha^{\prime-m i p y r i d y l}$ respectively. (Kitaigorodsky, 1973, p.96).

(e)

$\mathrm{SbCl}_{3}$-Aniline
hydrochloride system (ibid, 1979 a )

Fig 2.1.2 Phase Diagram for Different Systems.
e) FORMATION OF COMPOUND WITH CONGRUENT MELTING FOINT

When component $A$ and $B$ are melted together in, suitable proportions, a definite compound crystallizes on cooling. Such a compound is said to have a congruent melting point. Three typical examples are shown in Fig. 2.1.2f,g,h. In the simplest case it can be considered that the diagram is made up of two diagrams of the simple eutectic type placed side-by-side.
f) EUTECTIC SYSTEM WJTH AN INCONGRUENTLY MELTING INTERMEDIATE COMFOUND

A binary compound A.B is said to melt incongruently if at a certain temperature it dissociates into a liquid and a solid phase of different composition. Thus in the $\mathrm{NaCl}^{-}-\mathrm{YbCl}_{3}$ system (Fig. 2.1.2e), an incongruent melting compound $\left(\mathrm{Na}_{3} \cdot \mathrm{YbCl}_{6}\right)$ is formed (at $75 \%$ mole NaCl). The 'reaction point', $P$, is at $580^{\circ} \mathrm{C}$. The liquid phase corresponding to $P$ is at 70 mole \% NaCl.

### 2.2 COMPONENT ANALYSIS

Various methods of analysis may be used in quantifying components of molecular complexes of $\mathrm{SbCl}_{3}$ with organic molecules. Titration vs $\mathrm{KIO}_{3}$ or atomic absorption for Sb (III); Ultra-violet, Infra-red and Nucleax Magnetic Resonance for the organic component. Selection of a suitable method depends uion such factors as interference, convenience, speed and accuracy.

### 2.2.1 QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS BY NMR

Certain nuclei possess a spin angular momemtum which is described by a nuclear spin quantum number, $I$, which can take the value $n / 2$, $n=1,2, \ldots$.

When a nucleus which has a magnetic moment is placed in a magnetic field, $B$, it takes up one of a number of quantized orientations with
respect to that field. Each nuclear orientation has an associated energy level, the lowest corresponding to the orientation in which the nuclear magnetic moment is most closely aligned with the field.

For a nucleus with $I=\frac{1}{2}$, two values for the nuclear spin angular monentum, $m_{I}= \pm \frac{1}{2}$, indicate the allowed orientations of the nuclear magnetic moment vector in an external magnetic fjeld. The value $+\frac{1}{2}$ corresponds to alignment of the vector with the applied magnetic field and $-\frac{1}{2}$ opposed to it. The first is the more stable state of lower energy
$(\alpha)$; the second is the less stable state of higher energy $(\beta)$.
The energy difference between the two states $(\alpha \& \beta)$ will be given by:

$$
\begin{equation*}
\Delta E=2 \mu B_{0}=h \nu \tag{2.2.1}
\end{equation*}
$$

where $\mu$ is the resolved part of the magnetic dipole moment $\vec{\mu}$ in the direction of the applied homogeneus magnetic field, $B_{0},\left(\sim 10^{4}\right.$ gauss) (Drago, 1965).

There are two allowed transitions: (a) $\alpha \rightarrow \beta$ which corresponds to an absorption of energy and (b) $\beta \rightarrow \alpha$, which correspond to induced. emission. The difference in energy between these two states is very small relative to kT (Boltzman's constant and temperature), so that at room temperature the states are very nearly equally populated, and the observation of transitions between them necessitates the use of intense fields and of a resonance effect. Thus for NMR with frequencies in the Radio Frequency region ( $\nu=4.3 \times 10^{6} \mathrm{~Hz}$.), the excess population of spins in the lower state is only about 1 in $10^{5}$.

Obtaining an NMR signal affects the populations of the spins states, but this is compensated by thermal relaxation of the nuclear spins,

Absorption intensity of electromagnetic radiation is then plotted against the change in the applied field strength. For a given nucleus
the field strength and NMR frequency are linearly proportional, so that an NMR spectra may be measured in either field or frequency units.

## CHEMICAL SHIFIS

When a molecule containing the nuclei under observation is placed in the magnetic field, the electrons within the molecule shield the nuclei from the external applied field. That is, the field at the nucleus, is not equal to the applied field. This difference, called the nuclear shielding, is proportional to the applied field.

The chemical shift, $\delta$, is thus defined as the nuclear shielding divided by the applied field. It is always measured with respect to suitable reference ( $\mathrm{Me}_{4} \mathrm{Si}$ for the proton):

$$
\delta=\frac{\left(B_{\text {reference }}-B_{\text {sample }}\right)}{B_{\text {reference }}} \times 10^{6} \mathrm{ppm}
$$

Eq.(2.2.2) can be written also as:

$$
\begin{equation*}
\delta=\frac{\left(\nu_{\text {sample }}-\nu_{\text {reference }}\right)}{\text { Oscillation frequency }(\mathrm{Hz})} \times 10^{6} \mathrm{ppm} \tag{2.2.2a}
\end{equation*}
$$

$\delta=0$ for TMS (tetramethylsilane), increasing downfield. Occasionally $\tau=10-\delta$ is used.

## INTENSITY OF ABSORPTION AND SFIN-SPIN SPLITTITNG

One of the most useful aspects of Proton NMR is the fact that the integrated NMR signal obtained is directly proportional to the number of hydrogen nuclei producing it. This is particularly important in quantitative analysis (Abraham and Loftus, $1978, \mathrm{pl50}$ ).

Another phenomenom, observed in NMR spectra, is the occurrence of spin-spin splitting. Thus the proton spectrum of dichloroacetaldehyde ( $\mathrm{CHCl}_{2} \mathrm{CHO}$ ), consjists of four peaks - each of the two expected peaks
corresponding to different protons ( $\delta$ values) is split by the influence of the neighbouring proton. Thus does not however affect the quantitative use of NMR spectra.

## APPLICATION OF NMR TN QUANTITATTVE ANALYSIS

Whatever the split, the total integrated absorption is directly proportional to the number of H atoms whatever their environment (Pasto and Johnson, 1969). Thus, the analysis of mixtures (Cerfontain, et.al., 1974), may be accomplished, provided that the absorptions of H atoms in one molecule are distinct from the absorptions due to $H$ atoms in the others.

## EXPERTMENTAL EXAMPIES

a) The composition of a mixture of three known components, 2-propanol, N-methyl-2-pyrrolidone and water has been determined (Chamberlain, 1974).

The spectrum consists of six well-separated bands, with band overlap only in the case of the exchangeable hydrogen (band f). See Fig. 2.2.1.

The procedure consists in identifying the bands and assigning them, by reference to their $\delta$ values, the particular hydrogen atoms associated. with the parent components. Then, from the peak-areas the composition may be found.


Fig 2̈.2.1 NMR spectrum of mixture for quantitative anolysis.

## b) DEIERMINATION OF 1-CHLORONAPHTHALENE IN A COMPOUND USTING AN INTERNAL STANDARD (MEI).

The stoichiometry of a molecular complex may be determined if the weight of one component is known. This may be achieved by adding a known weight of an internal reference whose peaks are not near those of the organic material being determined. The weight is then obtained from the integrated peak ratios. A typical spectrum of ${ }^{1-C_{10}} \mathrm{H}_{7} \mathrm{Cl}$ recorded in a Varian EM-360 60 MHz NMR-spectrometer is shown in Fig. 2.2.2.


Fig 2.2.2
NMR spectrum of $1-\mathrm{C}_{10} \mathrm{H}^{\mathrm{H}} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{I}$ (Intermal standaxd) in $\mathrm{CCl}_{4}$.

Carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ was found to be a suitable solvent because this compound neither reacts with the components in the sample to be anallyzed nor produces a peak in the NMR spectrum being used.

Results of analysis for $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ with and without $\mathrm{SbCl}_{3}$ mresent in the sample are shown in Table 2.3.2. Each sample was diluted up to lomi in $\mathrm{CCl}_{4}$.

## TABLE 2.2 .3

RESULTS OF ANALYSIS FOR $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}(\alpha)$ BY NMR (Taking MW $\alpha=162.6$ and $\mathrm{CH}_{3} \mathrm{I}=141.9$ )

| ```Presence of SbCl}``` | Wt. Ratio $\alpha / \mathrm{CH}_{3} \mathrm{I}$ | Peak Area <br> Ratio $\alpha / \mathrm{CH}_{3} \mathrm{I}$ | Moles of $\begin{array}{r} \mathrm{CH}_{3} \mathrm{I} \\ \times 10^{-3} \end{array}$ | $\begin{gathered} \text { Moles of } \\ \times 1 \text { ( }) \\ \times 10^{-3} \end{gathered}$ | Wt. of ( $\stackrel{\alpha}{\varepsilon})$ | $\begin{gathered} \% \\ \text { ERROR } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | 0.2602/0.4550 | 41.25/35.0 |  |  |  |  |
|  | $=0.5719$ | $=1.178$ | $=3.20$ | 1.616 | 0.2628 | $+1.0$ |
| Yes | $0.2608 / 0.4548$ | 55.0/47.5 |  |  |  |  |
| (0.7300g) |  | $=1.158$ | 3.20 | 1.588 | 0.2582 | -1.0 |

(I) Moles $\alpha=$ Peak area Ratio $\times 3 / 7 \times$ Moles of $\mathrm{CH}_{3} \mathrm{I}$.

### 2.2.2 QUANTITATIVE ANALYSIS OF Sb (III) BY IITRATION AGAINST KIO 3

Potassium Iodate is a powerful oxidising agent (Vogel, 1978). In solutions of moderate acidity ( $\sim 0.1 \mathrm{M} \mathrm{HCl}$ ) it is reduced to iodine. e.g.

$$
\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \longrightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Whereas in more strongly acid solutions ( $\sim 6 \mathrm{M} \mathrm{HCl}$ ) reduction occurs to $I^{+I}$

$$
\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+}+2 \mathrm{I}^{-}+3 \mathrm{CI}^{-} \longrightarrow \underset{\substack{ \\3 \mathrm{ICl}_{2}^{-}}}{3 \mathrm{ICl}_{2}^{-}}+3 \mathrm{H}_{2} \mathrm{O}
$$

However the optimum acidity for reasonably rapid reaction varies somewhat from one reductant to another.

## APPLICATION TO THE ANALYSIS OF Sb(III)

In $3.0-4.5 \mathrm{M} \mathrm{HCl}, \mathrm{Sb}^{\text {III }}$ may be estimated according to the equation

$$
\mathrm{IO}_{3}^{--}+2 \mathrm{Sb}^{\mathrm{III}} \mathrm{Cl}_{3}+6 \mathrm{H}^{+}+8 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{ICl}_{2}^{-}+2\left(\mathrm{Sb}^{\mathrm{V}} \mathrm{Cl}_{6}^{-}\right)+3 \mathrm{H}_{2} \mathrm{O}
$$

Typically 7 ml of 4 M HCl is added to $0.02 \mathrm{~g} \mathrm{SbCl}_{3}$ for titration with $0.025 \mathrm{M} \mathrm{KlO}_{3}$ using $\mathrm{CCl}_{4}$ or Chloroform as indicator (violet colour of iodine oxidised to colourless IGl at equivalent point), to a final volume, including washings of 25 ml .

Test results of analysis are given below.

TABIE 2.3.2
RESULIS OF TEST ANALYSIS FOR $\mathrm{SbCl}_{3}$

| Weight of <br> $\mathrm{SbCl}_{3}(\mathrm{~g})$ | Vol. $0.025 \mathrm{M} \mathrm{KlO}_{3}$ <br> employed (ml) | Experimental <br> Weight of $\mathrm{SbCl}_{3}^{(玉)}$ <br> $(\mathrm{g})$ | ERROR <br> $(\%)$ |
| :--- | :---: | :---: | :---: |
| 0.0209 | 1.822 | 0.0208 | -0.43 |
| 0.0209 | 1.822 | 0.0208 | -0.43 |
| 0.0721 | 6.300 | 0.07198 | -0.17 |

(玉) Based on $\mathrm{KlO}_{3} \equiv 2 \mathrm{SbCl}_{3}$

$$
\therefore \quad 1 \mathrm{ml} 0.025 \mathrm{M}=\frac{2 \times 228.5}{40,000}=11.425 \mathrm{mg} .
$$

### 2.3 STRUCTURAL DETERMINATION (SINGLE GRYSTAL X-RAY DIFFRACTION).

X -ray diffraction is one of the most important methods in the study of molecular complexes in the solid state, and the main one to provide information about the spatial arrangement of the atoms.

A crystal is a periodic three-dimensional array of atoms which act as a three-dimensional diffraction grating for $x$-rays of wavelength comparable to the interatomic distances and interplanar spacing wjithin it. When a beam of $x$-rays of wavelength, $\lambda$, passes through the crystal, the $x$-rays at angle incidence $\theta$ to the hkl plane are diffracted. The diffracted beams from successive planes wi.ll mutually interfere unless they are in phase according to the Bragg relationship:

$$
n \lambda=2 d_{h k l} \sin \theta
$$

Where $d_{h k l}$, the interplanar spacing is directly related to the dimensions of the unit cell and the Miller indices of the reflecting planes.

As $\sin \theta \quad \alpha 1 / d$, interpretation of a diffraction pattern is facilitated by refering to the reciprocal lattice (Buerguer, 1966, p.107f; Jeffery, 1971, p.24), where the hkl plane is represented by a reciprocal lattice point $\lambda / \alpha_{h k l}$ from the origin.

### 2.3.1 CRYSTAL STRUCTURE ANALYSIS - INTRODUCTION

A suitable single crystal must be selected for structural analysis. Some factors which need to be considered to obtain good diffraction photographs are: (a) Stability: according to the stability of the crystal under normal conditions one decides whether it is necessary to
employ a special device or not, e.g. to avoid decomposition of the molecular compounds of $\mathrm{SbCl}_{3}$ with moisture, the crystal must be sealed off in a Lindemonn tube. (b) Size and shape of the crystal. Ideally the crystal should be spherical, and, in order to keep absorption exrors below $10 \%$, it should have an optimum size of $2 / \mu \mathrm{mm}$, where $\mu$ is the linear absorption coefficient (Buerguer, 1966, p.179). (c) Singularity, the selected crystal must, if possible, have clean outlines with no other adhering crystals. (d) Freedom from twining (Buerguer 2960,p53; Glasser, 1977 , p69).

## SINGIE CRYSTAL CAMERAS

All single crystal diffraction cameras have certain features in common. The crystal is bathed in a narrow beam of approximately parallel collimated $x$-rays, usually monochromatic. The undiffracted beam is caught in a lead trap to minimise film blackening. The diffracted beam is recorded on a film protected from light.

The selected crystal is mounted on a set of arcs with angular and linear movements attached to the goniometer head. Adjustments of the arcs and slides enables one to orient a prominent axis of the crystal suitable for the chosen recording method.

### 2.3.2 CFELL PARAMETERS AND SPACE GROUP DETERMTNATION

There are several methods of evaluating the unit cell parameters $(a, b, c, \alpha, \beta$, and $\gamma)$.
(a) The Oscillation Method (Buerguer,1966,pl88;Woolfson,1970,p134;McKie and McKie, 1974,p214) permits determination of one dimension for the layer spacings: e.g. using x-rays of wavelength, $\lambda$,

$$
c=\frac{\ell \lambda}{\sin \left[\tan ^{-1}\left(\frac{Y}{2 R}\right)\right]}=\frac{\ell \lambda}{\zeta_{c}}
$$

Where $l$ is the index of the layer-line considered. $Y$ is the separation in mm between corresponding layer-lines and $R$ is the radius of the camera (usually $2 \mathrm{R}=57.296 \mathrm{~mm}$ ).

The process of determining the remaining cell parameters from an oscillation photograph is tedious (Mckie and Mckie, 1974, p.226; Glasser, 1977, p.90).
(b) The Weissenberg Method

- This is a more convenient method (Woolfson,1970pi41;Jeffery, 1971, p.188f ), both in terms of assigning indices to the plane generating a particular reflection and for determining cell parameters. There is the additional advantage that it enables one to collect information from one complete layer at one time without the overlap difficulty inherent in a simple oscillation procedure. Other layers are screened off.

A typical zero-layer wejssenberg photograph obtained by synchronous movenent of film and crystal oscillation is shown in fig. 2.3.4a.

(a.) Zero-layer Weissenberg photograph.
(b) Diagram of the $b$ axis on the zero--layer Weissenberg photograph. Fig 2.3 .4

Some cell parameters can be calculated directly from ${ }^{\text {zero -layer }}$ Weissenberg photograph (Buerguer, 1964, p.377ff; Jeffery, 1971, p.264). From figs. 2.3.4a,b., where $Y^{\prime}$ is in mm.

$$
\mathrm{d}_{010}^{*}=\mathrm{kb}^{*}=2 \sin \theta=2 \sin \left(Y^{\prime} / 2 R\right)
$$

Since $X^{\prime \prime}=s^{\prime} / \sqrt{5}$ and usually $2 R=57.296 \mathrm{~mm}$.

$$
\xi_{\mathrm{b}}=d_{\mathrm{Ok} 0}^{*}=2 \sin \left(\mathrm{~s}^{\prime} / \sqrt{5}\right)
$$

where $s^{\prime} / \sqrt{5}$ is in degrees, and $Y^{\prime} / 2 R$ in radians.
The reciprocal angle $\gamma^{*}$ can be calculated from the relation:

$$
\gamma^{*}=D \times \sqrt{5}
$$

Where $D$ is the separation (in mm) between the two reciprocal axes given the construction that $\tan \Omega=2$.

So far only $c, \xi_{a}, \xi_{b}$ and $\gamma^{*}$ have been determined. To evaluate the remaining constants one must find $\alpha$ and $\beta$ from an upper layer equiinclination photograph about the same axis using the method of "angular lag" (Buerguer, 1942).

The basis of the "angular lag" calculation is the location of the upper-layer origin with respect to the rotation axis. This is defined in terms of two shifts $\delta_{a}$ and $\delta_{b}$, parallel to the lattice axes.

According to the Buerguer's procedure, $\delta a$ and $\delta b$ are evaluated from measurements which involve low-index reflections from two superposed Weissenberg films of the zero w and first layers. Direct cell angles then can be calculated from:

$$
-\tan \alpha=\frac{n \zeta_{0}}{\delta_{a}} \text { or }-\tan \beta=\frac{n \zeta_{0}}{\delta_{b}}
$$

Where $\zeta_{c}$ is evaluated from an oscillation photograph (about $c$ ). This procedure suffers from two practical disadvantages. It requires two precisely superposed Weissenberg films of the zero and first layers and the measurements are made on low-index reflections which may be weak and unobservable.

A second approach has been developed by Hulme (1966). This treatment involves the measurement of angles between general hkl reflections, which complemented by other constants obtained from oscillaton and zero-layer Weissenberg photograph permits calculation of the rest of the cell constants either graphically or analytically using a least-square computer program. The graphical procedure is illustrated below (Fig. 2.3.5).

This procedure is free from the disadvantages present in the Buerguer's method and is still useful when split-film casettes are employed in low temperature work. Accuracy is best using reflections with $\theta \leq 20^{\circ}$ having interangles $\phi_{n}$ in the $60-120^{\circ}$ range.
$\mathrm{An}^{\prime}$ other procedure has been described by Herbert (1978). Here measurements are made on festoons representing either axes of the reciprocal lattice or lattice lines runing parallel to these axes.

For a crystal rotating about the $b$ axis, $\delta_{c, 0}$ is calculated from:

$$
\delta_{c, 0}=\cos \mu_{n}\left(1-\cos \chi_{n, 0}\right)
$$

where $\mu_{n}$ is the equi-inclination angle of the nth layer, and $X_{n, 0}$ is the distance between the symmetrically distributed points $s_{1}$ and $s_{1}$ ' in axis as is shown in Fig. 2.3.6.

When a reciprocal-lattice line paxallel to the axes is used, e.g. $s_{2}, s_{2}{ }^{\prime} \quad \delta_{c, 0}$ is obtained from:

$$
\begin{equation*}
\delta_{c, 0}=\delta_{c}=\cos \mu_{n}\left(1-\cos X_{n, 1}\right)-c^{*} \sin \beta^{*} \tag{2.3.6}
\end{equation*}
$$

where $c^{*}$ and $\beta^{*}$ can be obtained from the zero-layer Weissenberg photograph. Then cell angles can be calculated from

$$
-\tan \alpha=\frac{n \zeta_{b}}{\delta_{c, 0}}, \text { etc. }
$$

$\zeta_{b}$ is calculated from an oscillation photograph.
This procedure has two main disadvantages. It is sensitive to exrors when festoon extrapolation has to be performed, especially if the reciprocal spacing are large: and, this method is not applicable when a split-film casette is employed.

An oscillation, a zero Weissenberg and an n-layer Weissenberg photograph thus yield $c, \xi_{a}, \xi_{b}, \gamma^{*}$ and $\alpha, \beta$.

$$
\begin{array}{cc}
\text { The cell parameter } a=\lambda / \xi_{a} \sin \beta \sin \gamma^{*} & 2 \cdot 3 \cdot 7 \mathrm{a} \\
\mathrm{~b}=\lambda / \xi_{\mathrm{b}} \sin \gamma^{*} \sin \alpha & 2 \cdot 3 \cdot 7 \mathrm{~b} \\
\text { and } \gamma=\cos ^{-1}\left(\cos \alpha \cos \beta-\sin \alpha \sin \beta \cos \gamma^{*}\right) & 2 \cdot 3 \cdot 7 \mathrm{c} \\
\text { so that all parameters have been determined. }
\end{array}
$$

Since $\mathcal{F}$ and $\mathcal{Y}$ are Mroportional to $s^{\prime}$ (in Wejssenberg photograih) and $Y$ (in oscillation photograinh) respectively, better accuracy may be obtained by measurement of the highest observable reflection in the axis or highest layer-line distance respectively. However factors such as the divergence of the incident $x$-ray beam and the progressive reduction in angle between the diffracted beam and the surface of the film as the reflections increase the use of the highest reflections does not make much difference. In general measurement of layer-line spacing in oscillation photograph or from a Weissenberg photograph yield unit cell dimensions of accuracy about $1 \%$ and angles with an exror of about $0.5^{\circ}$.


Fig 2.3 .5

Angular lag method for calculation of cell parameters: Graphical evaluation of $\delta_{a}$ and $\delta_{b}$, and hence $\alpha$ and $\beta$, for the following pair of reflections:

$$
\begin{aligned}
& 111-1 \overline{1} 1: 91.50^{\circ} \\
& 1 \overline{1} 1-\overline{12} 1: 83.50^{\circ} \\
& \overline{1} 11-\overline{3} 11: 75.50^{\circ}
\end{aligned}
$$

(Data for SbCl3.1-chloronaphthalene compound,triclinic setting).


Fig 2.3.6 Schematic drawing of an upper-layer equi-inclination Weissenberg photograph about b.

## (c) A Method Without Reciprocal Lattice Distortion

An undistorted picture of the reciprocal lattice (RL) may be obtained using two methods (DeJong-Boumann, 1938; Buerguer, 1944). The common feature of these methods is the nechanical linkage coupling the movement of a flat film casette and the rotation of the arcs carrying the crystal (the "dial" axis) which is measured on a dial. Such coupling fulfils the requirement for recording an undistorted reciprocal lattice i.e. A principal axis of the crystal is always kept perpendicular to the film, so that the film remains parallel to a set of RL layers during movement.

When a layer is to be photographed, unwanted reflections from other layers of the RL are excluded by positioning of a layer screen having an annular slit such that only reflections from the cone subtended at the crystall by the chosen layer are allowed to reach the film.

The scale of the undistorted picture of the RL depends on the cxystal-to-film distance, $M$, so that typically $1 \mathrm{~cm}=1 \mathrm{r} .1$. unit.

The basic feature of the De Jong-Boumann camera is that the relative position of cxystal, screen and the rotation axis of the film are unchanged (see fig. 2.3.6a). The upper-layer is brought into the recording position by altering the angle of incidence of the x-ray beam, and the position
of the film.
In the precession method, the crystal is set initially with a principal axis parallel to the $x$-ray beam. This axis is then tilted (to be perpendicular to the film) to make an angle $\mu$ with the $x$-ray beam and caused to precess about it, so that the axis travels around the beam on the surface of a cone of semi-vertical angle $\mu$. The layer screen attached to the arcs and the film similarly inclined, follow the motion of the crystal axis (fig. 2.3.6b).

Upper layers are recorded by changing the position (and sometimes the size) of the layer screen and the film position (Buerguer, 1964;p76).


Evaluation of Lattice Parameters (Buerguer, 1964,p83ff).
From a photograph obtained rotating the crystal about the c-axis, $a^{*}, b^{*}$ and $\gamma^{*}$ can be determined by measurement of the row spacing and the angle between them, respectively.

In a similar way from a second photograph obtained rotating about the a-axis, $b^{*}, c^{*}$ and $\alpha^{*}$ can be found. The difference between the corresponding dial settings is the angle $\beta$. The rest of the parameters can be evaluated from the following equations.

$$
\begin{align*}
& \beta^{*}=\cos ^{-1}\left(\cos \alpha^{*} \cos \gamma^{*}-\sin \alpha^{*} \sin \gamma^{*} \cos \beta\right) \\
& \cos \alpha=\left(\cos \beta^{*} \cos \gamma^{*}-\cos \alpha^{*}\right) /\left(\sin \beta^{*} \sin \gamma^{*}\right)  \tag{2.3.9}\\
& \cos \gamma=\left(\cos \alpha^{*} \cos \beta^{*}-\cos \gamma^{*}\right) /\left(\sin \alpha^{*} \sin \beta^{*}\right) \\
& a=\lambda /\left(a^{*} \sin \beta \sin \gamma^{*}\right) ; b=\lambda /\left(b^{*} \sin \alpha \sin \gamma^{*}\right) \\
& c=\lambda /(2 \cdot 3.10)  \tag{2.3.12}\\
&(2.11) \\
&(2.3 .12)
\end{align*}
$$

## (d) Accurate Determination of Cell Constants Using An X-Ray Diffractometer

 Best accuracy in parameters evaluation by any of the above procedures requires appropriate choice of $\theta$ range (or reflections), and is usually improved by subjecting some dozen independent measurements to a Least Square treatment. Such an approach is particularly relevant when evaluating cell paxameters using a diffractoneter (Jeffery, 1971, p.170; Manual of Instruction for 2-circle x-ray diffractometer STADI 2).
### 2.3.3 THE SEACE GROUP

In any object there may be some points which are related to others by rotation of the object about an axis or its reflection in a plane. A particular combination of such symmetry elenents, each acting at the same point is known as the point group. In space, an object may be related to others by additional translational symmetry elements (screw axes and glide planes), which are not restricted to passing through a single point. There are 230 possible combinations of symmetry elements
involving translations (Vol. I of International Tables for x-ray Crystallography, 1952), which are known as space groups.

Translational symmetry elements are revealed by the 'systematic absences' caused in the diffraction pattern by destructive interference. Recognition of these absences often leads to complete determination of the space-group which describes the intra spatial relationship of atoms or molecules. In some cases ambiguity may arise depending, for example, upon whether or not there is a centre of symmetry. Thus the systematic absences for $C c$ and $C 2 / c$ are the same. Some physical features (pyro and piezo electricity) however occur only in non-centrosymmetric crystals i.e. in space group Cc. Statistical examination of reflection intensities (Howells, E.R., et.a.l, 1950; Lipson and Cochcan,1966 p.46) or packing consideration may also help to discriminate between possible alternatives.

### 2.34 CRYSTAL DENSITY AND GELL, CONTENTS

The observed density, $D_{0}$, can be determined in various ways. Normally it is measured by using a mixture of liquids whose composition can be varied until the crystals neither sink nor float. Then by comparison with the liquid density that of the crystal is established.

This density ( $D_{0}$ ) is related to the number of moles in the cell ( $Z$ ), the volume of the cell (V) and the "Mol. Weight" (M) by the expression:

$$
\begin{equation*}
z=\frac{V D_{0}}{1.660 \mathrm{M}} \tag{2.3.13}
\end{equation*}
$$

Which may be variously used to calculate $Z, M$ or the density. Where $V$ in $\AA^{3}$, $D_{0}$ in $M_{g} m^{-3}$ and $H$ in $g / m o l$.

### 2.3.5 MEASUREMENT AND CORRECTIONS OF INTENSTTY

There axe two methods for recording intensities.
(a) THE PHOTOGRAPHIC METHOD

Intensities are usually measured from multiple films taken in one of the moving film cameras. The Weissenberg method is the most usual, because of the large volume of reciprocal space accessible to it, the applicability of multiple film technique in collecting data without further difficulty and the uncomplicated nature of the Lorentz factor correction. The methods used for intensity measurements by photographic means may be clasified (Jeffery, 1971) as:
i) Eye estimation against a standard scale, preferably made from a reflection of the crystal concerned.
ii) Photometry of non-integrated reflections. This may be necessary if minimum exposure times are required for any reason.
iii) Photonetry of integrated reflections produced by an integrating Weissenberg camera. This involves increasing the exposure time to obtain reflections with a uniform central area whose optical density is proportional to the integrated intensity.

Suitable film blackening, corresponding to the region of linear proportionality to intensity is ensured by selection of the appropriate member of the multiple film pack.
(b) THE COUNTER METHOD

X -ray photons may either cause ionisation or scintillation. These two facts are the basis of the construction of counters. In the first case, the electrons ejected as a result of the ionisation process may be collected to give an electrical signal in a suitable circuit. Counters like the 'ionisation chamber', the 'proportional' and 'Geiger-Mullex' counters (operating at $\sim 100,500$ and 1000 v. respectively) belong to this group.

In the second case, with scintillation counters, light emitted by a photoactive solid due to the scintillation phenomenon may be intercepted by a photocathode which releases electrons to be subsequently amplified.

Both Proportional and Scintillation counters can provide energy discrimination as the electrical pulses are proportional to the energy of the photon, in contrast to the Geiger-Mijller tube and ionisation chamber where this is not the case.

The counting of photons is subject to "response" and "dead time" errors in the counter (for which corrections may be made), but the proportinnality to the intensity of the diffracting $x$-ray beams also involves background corrections.

The corrected integrated intensity will be given by:

$$
\begin{equation*}
I_{0}(h k l)=N_{c}-\frac{t_{c}}{2 t_{b}}\left(B_{I}+B_{2}\right) \tag{2.3.14}
\end{equation*}
$$

Where $N_{c}$ is the total count at the peak in a scan of time $t_{c} ; B_{1}$ and $B_{2}$ are the backgrounds, each obtained in a time $t_{b}$.

In practice, $I_{0}(h k l)$ is rejected when $I_{0}(h k I)<S \times \sigma(I)$ or when $\left|B_{1}-B_{2}\right|>D \times I_{0}(h k I)$. Where $\sigma(I)=\sqrt{N_{c}}+\frac{t_{c}}{2 t_{b}}\left(\sqrt{B_{1}}+\sqrt{B_{2}}\right)$
$S$ is normally 2 or 3 and $D$ can take values of $0.100,0.200, \ldots$, etc.

## CORREGIIONS TO THE INIENSITY

Measured intensities ( $\left.I_{0}(h k l)\right) r e q u i r e ~ c o r r e c t i o n s ~ f o r: ~$
(a) The 'Lorentz Factor' (L). Due to crystal non-ideality x-rays axe diffracted over an angular range. The L factor corrects for the relative time during which different reflections can occur.

The correction has the form:

$$
L^{-1}=\frac{\sin 2 \theta\left(\sin ^{2} \theta-\sin ^{2} \mu\right)^{\frac{1}{2}}}{\sin \theta}
$$

Where $\theta$ is the Bragg angle and $\mu$ is the equi-inclination angle for data obtained in a Weissenberg type geometry (International tables for x-ray Crystallography Vol. III p. 266).
(b) The 'Polarization Factor' ( $p$ ). - which allows for the state of polarization of the incident and diffracted beans. This can be expressed in the following way:
i) For rotation and Weissenberg cameras (Buerguer, 1960, 175 ff.$)$ :

$$
p^{-1}=\frac{2}{\left(1+\cos ^{2} 2 \theta\right)}
$$

ii) With monochromatized radiation as in the present work.

$$
p^{-1}=\frac{2}{\cos ^{2} 2 \theta^{\prime}+\cos ^{2} 2 \theta_{\operatorname{mon}}\left(1-2 \sin ^{2} \mu\right)^{2}}
$$

Where $\theta^{\prime}=\tan ^{-1}\left[\frac{\left(\sin ^{2} \theta-\sin ^{2} \mu\right)^{\frac{1}{2}}}{\cos \theta}\right]$ and $\theta_{\text {mon }}$ is the Bragg
angle for the monochromator.
Since $L$ and $p$ are both geometrical factors they are combined into a single $L p$ factor and the observed $I_{0}(h k l)$ is multiplied by ( $\left.L p\right)^{-1}$.
(c) Absorption (A). In addition to being scattered x-rays are absorbed by matter, i.e. the electromagnetic radiation energy is converted to thermal energy (Woolfson, 1970). Thus the parts of a crystal far from the x-rays source are irradiated by a beam which is less intense than that incident on the near parts. This reduces the total reflected energy below the theoretical value. The factor A by which it is reduced is given by $A=\frac{I}{v} \int e^{-\mu L} d v$, where $\mu$ is the linear absorption coefficient, $L$ is the path length in the crystal of a beam diffracted from the volume
element $d v$, and $v$ is the volume of the crystal. The observed intensity must be multiplied by $A^{-1}$ to give the theoretical value.

In certain circumstances it is difficult to apply this correction. Thus in the present case the absorption correction was ignored because the crystal was sealed in a Lindemann-glass tube and was coated with hydrolysis products. Absorption can be minimised by using an optimum size of crystal (cf. 2.3.1) and the optimal orientation of the Lindemann tube with respect to the $x$-ray beam.
(d) Extinction
"Primary Extinction", arises when x-rays scattered by different domains within the crystal destructively interfere.
'Secondary Extinction', occurs when a reflected beam, encounters another set of planes in the reflecting position, so that a proportion suffers a second reflection.

Primary extinction is significant only if the "mosaic" blocks are large (Darwin, 1922; Taylor et.al., 1956); secondary extinction may be important even when they are small if there are enough blocks in parallel orientation.

Both primary and secondary extinction weaken the observed intensity of the diffracted beam relative to the ideal. Both effects become more important as the fraction of energy that passes into the diffracted beam increases, and the errors are therefore most serious for the strongest reflections. These effects axe not easy to eliminate, but may be minimised by using small crystals.

In crystal structure refinement, it has been recognized that reflections affected in large degree by extinction must either be discarded or corrected for the effect (Azaroff, et.al. 1974). This is done by examination of observed and calculated $F^{\prime}$ s. If reflections at
low angles with large Fc values have Fo consistently lower than Fc they are assumed.to be affected by extinction, and they are excluded or given zero weights or corrected by an apmopriate correction factor (Taylor, et.al., 1956).

## 2.3 .6 THE STRUCTURE FACTOR, $F(h k]$ )

The intensity of an x-ray beam reflected by a plane is dependent on the types of atoms diffracting (the atomic scattering factor $f_{i \theta}$ ), their positions ( $\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}}$ ) and the Miller indeces of the plane (hkl). This dependence is sumarised in the structure factor:

$$
\begin{align*}
& F(h k l)=\sum_{j=1}^{N} f_{j} \exp 2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)  \tag{2.3.19}\\
& F(h k l) \text { is complex, and may be written as: } \\
& F(h k l)=A(h k l)+i B(h k l)  \tag{2.3.20}\\
& \text { where } A(h k l)=\sum_{\substack{j=1}}^{N} \cos 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right) \\
& B(h k l)=\frac{\Gamma_{j=1}}{j=1} \sin 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)
\end{align*}
$$

Its modulus or structure amplitude will be given by:

$$
|F(h k I)|=\left(A^{2}(h k l)+B^{2}(h k l)\right)^{\frac{1}{2}}
$$

which has an associated phase angle:

$$
\begin{equation*}
\alpha_{h k l}=\tan ^{-1}(B(h k l) / A(h k l)) \tag{2.3.23}
\end{equation*}
$$

## EFFECT OF THERMAL VIBRATION ON THE STRUCTURE FACTOR

The thermal motion of the atoms, has the effect of 'smearing out' the atoms so causing a certain amount of destructive interference in the radiation diffracted by the atoms.

This reduces the value of the atomic scattering factor $f_{j}$ by the
factor, $D$, causing the intensity to fall off more rapidly with $\theta$. For a spherically symmetric (isotropic) vibration,

$$
D=\exp \left[-\bar{B}\left(\sin ^{2} \theta\right) / \lambda^{2}\right]
$$

where $\bar{B}=8 \pi^{2} \bar{u}^{2}, \bar{u}^{2}$ is the mean square displacement of the structure from its rest position and it is determined by the statistical method used to obtain a scale factor (Wilson, 1942).

If the vibration is asymmetric (anisotropic),
$D=\exp -\left(\beta_{11} \mathrm{~h}^{2}+\beta_{22^{k}} \mathrm{k}^{2}+\beta_{33^{1}}{ }^{2}+2 \beta_{12 \mathrm{hk}}+2 \beta_{13} \mathrm{hl}+2 \beta_{23} \mathrm{kI}\right)(2 \cdot 3 \cdot 25)$ where $\quad u_{11}=\frac{\beta_{11}}{2 \pi^{2} a^{*}}, \quad u_{22}=\frac{\beta_{22}}{2 \pi^{2} b^{*}{ }^{2}} \quad u_{33}=\frac{\beta_{33}}{2 \pi^{2} c^{*} 2} \quad$ (2.3.25)

$$
u_{12}=\frac{\beta 12}{2 \pi^{2} a^{*} b^{*}} \ldots, \text { etc., are elements of a matrix } u .
$$

The temperature factor is usually refined by least-squares procedures along with the other structure parameters.

## RELATION OF STRUCTURE FAGTOR TO THE INTENSITY

The observed diffracted intensity is related to the structure factor by the following expression:

$$
|F(h k I)|^{2}=\frac{I}{K} \quad \frac{I}{(I p)_{h k I}} I_{0}(h k I)
$$

Where $K$ can be evaluated statistically by means of the Wilson plot (Wilson, 1942), $\sin ^{2} \theta / \lambda^{2}$ vs. $\log \left(\left\langle I_{\theta}\right\rangle / \Sigma_{\theta}\right) .^{(*)}$

The observed structure amplitude:

$$
|F \circ(h k I)|=\left(|F(h k I)|^{2}\right)^{\frac{1}{2}}
$$

(*) $\left\langle I_{\theta}\right\rangle$ is the mean intensity in a range around $\theta$ $\sum_{\theta}=\sum_{i=1}^{n} f_{i}$ at centre range $\theta$

From eq. (2.3.19), when the structure, i.e. atomic positions $x_{j}, y_{j}, z_{j}$ are known, values of $F(h k l)$ can be calculated ( $\mathrm{Fc}(\mathrm{hkl})$ ). Comparison with the corresponding observed quantities, Fo(hkl) constitutes a test of the correcteness of the atomic positions.

In practice we do not know the atomic positions. However, since the intensities are related to the structure amplitudes, $\mid$ Fhkl $\mid$ by the expression (2.3.26), they can provide information so that the crystal structure can be solved.

An initial "trial structure" can be obtained from jacking considerations (i.e. by considering the accommodation of the number of atoms or molecules in the unit cell according to the space group, so that they do not overlap). Alternatively one may solve a Patterson function (referred to later) when packing considerations alone are not enough. In either case the obtained structure may be used in the calculation of the structure factor, $F_{c}(h k l)$ and in the computation of the electron density. .

### 2.3.7 THE ELECTRON DFNSITY AND FATIERSON FUNGTION

Because the electron density withinacrystal is single valued, finite and continuous it may be expressed as a three-dimensional Fourier series:

$$
\rho(x, y, z)=\frac{I}{v} \sum_{h} \sum_{k} \sum_{I} F(h k I) \exp [-2 \pi i(h x+k y+l z)]
$$

which is the Fourier Transform of the structure factor $F(h k l)$. In reality the sum extends over all observed reflections, $v$ is the volume of the unit cell.

The maxima in the function $\rho(x, y, z)$, the electron density, at point $x, y, z$, are at or very near to atomic positions.

Once a trial structure is established by one of the above methods, a Fourier synthesis for the electron density using the observed amplitudes $\left|F_{o}(h k l)\right|$ with signs (or phases) taken from the calculated structure factors, $\mathrm{F}_{\mathrm{c}}$ (hkl), can be evaluated, from which improved atomic parameters may be deduced or positions of missing atoms located.

## THE PATIERSON FUNGTION

One method for determining a trial structure involves the evaluation of a function derived by Patterson (1934):

$$
\begin{equation*}
P(u, v, w)=\frac{I}{v} \sum_{h} \sum_{k} \sum_{I}|F(h k l)|^{2} \cos 2 \pi(h u+k v+1 w) \tag{2.3.29}
\end{equation*}
$$

which is particularly helpful if heavy atoms are present.
The function can be computed directly from the observed $\left|F_{0}(h k l)\right|^{2}$ without any knowledge or assumptions about the signs of phases of the structure factors, $F(h k l)$.

Eq. (2.3.29) is obtained from the product of the electron densities $\rho(x, y, z)$ and $\rho(x+u, y+v, z+w)$.

Fhysically the function $P(u, v, w)$ is large whenever both $\rho(x, y, z)$ and $\rho(x+u, y+v, z+w)$ are large i.e. when both ( $x y z$ ) and $(x+u$, $y+v, z+w)$ correspond to atomic sites. Hence $P(u, v, w)$ is a vector map showing interatomic separations, $u, v, w$ starting from the origin. It is always centrosymmetric. The magnitude of the vector peak is proportional to the product of the atomic number of the pair of atoms concerned.

There are several methods for deducing atomic positions from a vector map, e.g. by simple inspection, by superposition, or by calculation of the minimum function (Buerguer, 1959.,p239).

### 2.3.8 REFTNEMENT OF THE STRUCTURE

A convenient measure of the agreement between observed and calculated structure factors is a quantity called the 'reliability index' or 'residual' defined by:

$$
R_{1}=\frac{\sum| | F_{0}(h k I)\left|=\left|F_{c}(h k I)\right|\right|}{\sum\left|F_{0}(h k l)\right|} \text { or } R_{W}=\frac{\sum_{W} \Delta F(h k I)}{\sum W F_{0}(h k I)} \text { (2.3.30) }
$$

where $F_{o}(h k l)$ and $F_{c}(h k l)$ are the observed and calculated structure factors.

The process of refinement is, then, a procedure to make the value of $R$ as low as possible.

There are several methods for improving agreement between $F_{o}$ (hkl) and $F_{c}(\mathrm{hkl})$ once an approximate structure has been found.

## a) FOURTER METHODS

These involve the computation of electron density or difference maps. The process of refinement by this method starts with some model of the crystal structure which is usually known partially or imperfectly. From the Electron Density map computed atomic coordinates can be improved and it may reveal the position of other atoms not included in calculating the structure factors. The process is repeated until the coordinates no longer change, and all atoms have been included.

This method is relatively insensitive once the coordinates are approximately correct for the following reasons: Firstly because adjustment of the temperature factor is ignored when an electron density is computed; secondly because a series termination error is introduced when an infinite series is approximated by a finite one; and thirdly, because nearby atoms may not be resolved in the electron density map.

Furthermore it is usually a time consuming (Buerguer, 1960, p. 590) process to define the exact centre of a peak, and the computed electron density is regarded as a 'hybrid' between that of the true structure and that of the assumed one.

One way to avoid some of the problems is to use ( $\mathrm{F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}}$ ) as the Fourier coefficient. This produces a difference map which consists essentially of the true E.D., with the E.D. due to the assumed structure sub-tracted. If the assumed structure is correct, the difference map should be zero everywhere, but in practice random errors in the observed data make this only approximately true even for fully refined structures. If an atom is slightly misplaced (Fig. 2.3.7), its assumed position will lie on a steep gradient in the difference map not far from the zero contour, with a large negative region to one side of it and a large positive one to the other. To improve the coordinates a shift proportional to the gradient at the assumed position and towards the positive region is made.


Fig 2.3.7
The relationship between the assumed position Pa, the true position Pt and the difference synthesis.

If an atom is completely misplaced, the difference map will show a large negative region at its assumed position, with corresponding positive regions to which it might be moved.
b) PARAMETER SHTFT METHOD

Bhuija and Stanley (1963) describe a structure in terms of $j$ parameters
whose initial values $u_{i}, u_{2}, \ldots, u_{j}$ give a residual $R=\sum| | F_{0}\left|-\left|F_{c}\right|\right| \sum\left|F_{0}\right|$ The true structure will correspond to the minimal value of $R$.

Assuming that all the parameters are independent, we may vary each parameter systematically from $u_{j}-n \Delta u_{j}$ to $u_{j}+n \Delta u_{j}$ in $2 n$ steps of $\Delta u_{j}$, calculating $R$ at each step. Initially the steps can be quite large. The first parameter is shifted to the value which gives the lowest residual and the other parameters are treated in turn in the sane way. In this way the value of $R$ can be systematically reduced.

The advantage of this method is that scale and thermal parameters may be improved. Also it may be used to move atoms away from false positions, because the increment, $\Delta u_{j}$, can be adjusted to be appropriate to the circumstances. This is not likely to happen with the other methods considered here. Therefore the parameter-shift method can be used to advantage in the early stages of a refinement.

## c) THE LEAST-SQUARES METHOD OF RHFTNEMENT

This is probably the most satisfactory method of refinement of structures once the approximate coordinates are known with sufficient accuracy. It consists in varying systematically the atomic pacameters and the scale factors so as to minimize the quantity ${ }^{(1)}$ :

$$
R_{2}=\sum_{i=1}^{n} w_{i}\left(s_{j}\left|F_{o}\right|_{i}-\left|F_{c}\right|_{i}\right)^{2}=\sum_{i=1}^{n} w_{i}(\Delta F)^{2}
$$

Where the sum is taiken over all independent structure amplitudes, $w_{j}$ is the weight alloted to an observation and $s_{j}$ is the scale factor.

Each $w$ is to be taken as the inverse of the variance, $\sigma_{i}^{2}\left(F_{o}\right)_{i}$ of $F_{o}$. In practice only relative weights can be estimated in advance depending on the method used to collect the data (Lipson and Cochran, 1966,p 340 ff).
(1) In most expressions, hkl have been omitted for simplicity.

Thus, for film data, Hughes (1941) has suggested:

$$
\begin{aligned}
& W \propto 1 /\left|F_{0}\right|^{2} \quad \text { for } \quad\left|F_{0}\right| \geqslant 4\left|F_{\min }\right| \\
& W \propto 1 / 16\left|F_{\min }\right| \quad \text { for }\left|F_{0}\right| \leqslant 4\left|F_{\min }\right|
\end{aligned}
$$

where $\quad\left|F_{m i n}\right|$ is the minimum observable $\left|F_{o}\right|$.
In the present work $w=\mathrm{sF}^{\prime} / \mathrm{F}_{\mathrm{av}}$ or $\mathrm{w}=\mathrm{F}_{\mathrm{av}} / \mathrm{sF}_{\mathrm{o}}$ whichever is $<1$, where $\mathrm{F}_{\mathrm{av}}$ is the average of the observed $\mathrm{F}_{\mathrm{o}}$.

For data recorded by the counter method $w_{i}$ is commonly set equal to $I / \sigma^{2}(I)$, where $\sigma(I)$ can be estimated statistically from eq. (2.3.15). Also the approximation suggested by Cruickshank et.al. (1961): $w \propto\left(a+\left|F_{o}\right|+c\left|F_{o}\right|^{2}\right)^{-1}$ is often used, where $a$ and $c$ are about $2 F_{\min }$ and $2 / F_{\max }$. respectively. Such parameters permit the even distribution of error over various ranges of $\left|F_{o}\right|$ magnitude and $\sin \theta$ value.

The correctness of a weighting scheme used may be tested statistically. e.g. By an analysis of $w(\Delta F)^{2}$ as a function of scattering angle and of $\left|F_{0}\right|$ magnitude when both should correspond to an essential constant magiiude Let $\left|F_{c}(h k I)\right|$ be the calculated structure factor which can be expanded using Taylor's series and expressed as:

$$
\left|F_{c}(h k l)\right|=\left|F_{c}(h k l)\right|+\sum_{i} \frac{\partial\left|F_{c}(h k l)\right|}{\partial p_{i}} \delta p_{i}+\ldots \text { (2.3.32) }
$$

Where ${ }^{\delta} p_{i}$ is the change in the $i$ th parameter $p_{i}$.
From (2.3.31) and (2.3.32) we express as (Lipscomb and Jacobson, 1972, p68),

$$
\begin{align*}
R=\sum_{j} & w_{j}\left(s_{j}\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}=\sum_{j} w_{j}\left[s_{j}\left|F_{o}\right|-\left|F_{c}\right|-\right. \\
& \left.\sum_{i} c_{i j} \delta_{p_{i}}\right]^{2}
\end{align*}
$$

Where $C_{i j}=\partial\left|F_{c}\right| / \partial p_{i}$.

Differentiating(23.33) with respect to the $p_{i}$ th parameter gives:

$$
\partial R / \partial p_{i}=2 \sum_{j} w_{j}\left[|\Delta F|-\sum_{j} c_{i j} \delta p_{i}\right] c_{i j}=0(2.3 .34)
$$

Since this is the condition for a minimum in $R$ relative to some particular $\delta p_{i}$, it can be expressed as a set of linear simultaneous equations:

$$
\begin{aligned}
& \sum_{j} w_{1} c_{1 j}{ }^{2} \delta p_{1}+\sum_{j} w_{1} C_{1 j}{ }^{c_{2 j}} \delta p_{2}+\ldots+\sum_{j} w_{1} C_{1 j} a_{k j} \delta p_{k}=\sum_{j} w_{1} C_{1 j} \Delta F_{j}
\end{aligned}
$$

$$
\begin{align*}
& \sum_{j=1}\left\{\sum_{k} w_{k} C_{k j}{ }^{C_{k j}}{ }^{\prime}\right\} \delta p_{j}=\sum_{j} w_{k} C_{k j}, \Delta F_{j} \tag{2.3.35}
\end{align*}
$$

These are the normal equations which can be expressed in matrix form as:

$$
\hat{M} \cdot \hat{p}=\hat{E} \Rightarrow \hat{p}=\hat{M}^{-1} \cdot \hat{E}
$$

Eq. (2.3.35) can be solved simultaneously. The $c_{k j}$, $s$ have been assumed to be constant in this approach, but their values are different once a new parameter $p_{k}^{\prime}$ is obtained from the above equations. Hence the whole process is repeated with these new values of $p_{k}$ as starting values, until the changes in $p_{k}$ are well within their probable errors.

One of ten does not use the full matrix in the solution of the normal equations but rather approximations in order to save storage space or computing time when a high speed computer is being used.

Thus the off-diagonal coefficients in the normal equations (2.3.35) may be neglected.if they fulfil certain conditions (International Tables for x-ray Crystallography, VO1. II). This approximation is known as the 'off-diagonal approximation'. Each parameter correction is then given by an equation of the type:

$$
\begin{equation*}
\hat{m}_{j j} \cdot \hat{\delta}_{\hat{p}}^{j}=\hat{E}_{j} \tag{2.3.37}
\end{equation*}
$$

From which values of $\hat{\delta}_{p}$ and the variance can be calculated using the equations (Lipson and Cochran, 1966):

$$
\begin{align*}
& \hat{\delta} \hat{p}_{j}=\hat{M}_{j j}^{-1} \cdot \hat{\mathbb{E}}_{j} \\
& \sigma^{2}\left(\hat{p}_{j}\right)=\hat{M}_{j j} \sum_{w_{j}}(\Delta F)^{2} /(s-m) \tag{2.3.38}
\end{align*}
$$

where $s$ (the number of observations) and $m$ (number of parameters involved) are the number of matrix elements in the row and column respectively.

A second approximation consists in decomposing the matrix $M$ (of order $9 \mathrm{~N} \times 9 \mathrm{~N}$ ) into $N 3 \times 3$ and $N 6 \times 6$ submatrices, where $N$ is the number of atoms in the asymmetric unit. Each submatrix corresponds to a set of 3 or of 6 simultaneous equations for the correction to the parameters of one atom and can be treated independently of the others. The problem is then reduced to solving $N$ matrices of order 3 and $N$ or order 6. This is the 'block-diagonal' approximation (Cruickshank, et.a.l., 1961).

Additional simplification can be achieved by using a rigid-body leastsquares refinement. In this case the rigid molecule atomic coordinates are expressed in terms of six parameters: the coordinates $x, y, z$ of a point in the molecule and the angles $\theta, \phi, \psi$ defining the orientation of the rigid
molecule with respect to an orthogonal coordinate system.
Refinement by the least-square procedure has in general the added advantage of refining scale and thermal parameters and allowing individual reflections to be weighted in proportion to the experimental exrors in the observations.

## ACCURACY OF COORTHNATES AND BOND-IENGTH-ANGLDS

When a crystal structure has been solved and refined, the final solution appears as a set of fractional coordinates for each atomic site from which bond-distances and angles and other distances can be callculated. The accuracy of these quantities will depend on the accuracy of the atomic coorcinates and on the accuracy of the unit cell parameters.

Thus, the variance of the length $I_{12}$ of a bond between two atoms is given by the relation (Iipson and Cochran, 1966, p.355):

$$
\sigma^{2}\left(1_{12}\right)=\sigma^{2}\left(x_{1}\right)+\sigma^{2}\left(x_{2}\right)
$$

where $x_{1}$ and $x_{2}$ are the atomic coordinates measured in the direction of the bond. If the atoms are related by a mirror plane or a centre of symmetry:

$$
\sigma\left(I_{1_{2}}\right)=2 \sigma\left(x_{1}\right)
$$

The accuracy of an angle (say $\beta$ ) at an atom (2), between bonds $1_{12}$ and $\mathrm{l}_{23}$, will be given by:

$$
\sigma^{2}(\beta)=\frac{\sigma^{2}\left(x_{1}\right)}{I_{12}^{2}}+\frac{1_{13}^{2}}{I_{12}^{2} 1_{23}^{2}} \sigma^{2}\left(x_{2}\right)+\frac{\sigma^{2}\left(x_{3}\right)}{I_{23}^{2}}
$$

In this exiression $x_{1}$ and $x_{3}$ are measured in directions ferpendicular to $I_{12}$ and $I_{23}$ resjectively and $x_{2}$ is measured in the direction of the centre of the circle passing through the three atoms.

## 3. INTRODUCTION TO THE EXEERIMENTAL STUDY OF SbCI $3 \cdot$-HALONAEHTHALENE

 COMELEXSS.Because of high deliquescence property of antimony trichloride, most of the experimental work was carried out in a dry box. The box which is made from transparent perspex includes a microscope for preliminary examination of crystals and an electrical-heating system for sealing off Lindemann glass tubes. In every case Phosphorus pentoxide was used as drying agent.

Carbon tetrachloride and chloroform were used as solvents. Both of then were purified by distillation after being dried over $\mathrm{P}_{2} \mathrm{O}_{5}$.

The antimony Trichloride (HV Laboratory Reagent) was purified by recrystallisation from dry chloroform. l-Chloronaphthalene (BDH Laboratory Reagent), and 1 -Bromonaphthalene (HN GPR) were used without further purification. l-Iodonaphthalene was synthesised (p. 101) and redistilled before use.

Crystallisation of the molecular complexes was carried out in small test tubes of 5 ml .capacity.

Crystalline aggregates for microscopic examination were extracted and were kept with their mother-liquor on the microscope slide. The aggregates were crushed prior to examination to select a crystal. which seemed to be single.

A suitable single crystal was put in a Lindemann tube and was carefully sealed off using the electrical heater.

Some of the remaining crystals were dried by pressing between filter paper and after weighing dissolved in carbon tetrachloride to be used for the quantitative analysis of the components.
4. STUDY OF THE ( $1: 1$ ) SbCI 3 . 1-BROMONAPHTHALENG COMPLIXX

### 4.1 THE PHASE DIAGRAM FOR THP SbC13, 1-G10 $\mathrm{H}_{7}$ Br SYSTEM

The phase diagram, determined by Menschutkin (1912), shows antimony trichloride to form a $1: 1$ compound with 1 -Bromonaphthalene. In order to confirm this conclusion a phase diagram was constructed (see p. 42). The result is shown in fig 4.1 (Table 4.1) and confirms formation of a l:I compound.

Table 4.1


### 4.2 PREPARATTON AND ANALYSIS OF THE COMPIEX

Crystals of $\mathrm{SbCl}_{3}$ were dissolved in $10-15 \%$ excess of l-bromo-. naphthalene at about $40^{\circ} \mathrm{C}$. Slow cooling of the system yielded a
variety of yellow ill-formed crystals.
Analysis for Sb (III) was carried out by titration vs. 0.025 M $\mathrm{KIO}_{3}$ and 1-bromonaphthalene was determined by the $\operatorname{MMR}$ technique described in Chapter 2. Results of such analysis are shown in Table 4.2

Table 4.2

| Sample Wt. (g) | $\underset{(\mathrm{ml.})}{\mathrm{Vol} .}$ | $\begin{gathered} \% \\ \mathrm{SbCl}_{(\mathrm{w}}(\mathrm{w}) \end{gathered}$ | $\begin{aligned} & \text { NMR RGF.; } \\ & \text { wt. (g) } \end{aligned}$ | NMR <br> Integrated <br> Height. <br> Ref. Compd. | $\begin{aligned} & \frac{\%}{1-\mathrm{C}_{10} \mathrm{O}_{r} \mathrm{Br}} \mathrm{Br} \\ & (\mathrm{w} / \mathrm{w}) \end{aligned}$ | $\begin{aligned} & \text { Mole } \\ & \text { Ratio } \\ & \mathrm{SbCl}_{3}: 1-\mathrm{Ca}_{3} \mathrm{H}, \mathrm{~B} 9 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1925 | 8.80 | 52.2 | 2. 1873 | 52.5040 .66 | 47.1 | 1.01:2.02 |
| 0.1824 | 8.55 | 53.6 | 0.1744 | 53.5041 .50 | 46.4 | 1.05:1.20 |
| 0.2275 | 10.50 | 52.7 | 0.1679 | 38.5047 .00 | 48.0 | 1.00:1.00 |

(*) NMR reference compound was $\mathrm{CH}_{3} \mathrm{I}$.

### 4.3 PRELTMINARY TNFORMATION AND UNIT CELL DETARMTNATION

A crystal which appeared to be single was sealed off in a Lindemann tube ( $\varnothing=0.25 \mathrm{~mm}$ ). Optical examination through crossed polars showed straight extinction. The crystal must be non-cubic therefore and one of the crystallographic axes may coincide with the direction of extinction.

Oscillation and Weissenbery photographs were taken, using Guk $\propto$ Nickel filtered $x$-radiation, with the crystal oscillating about "c", the length of the crystal corresponding to the extinction direction. The asymmetry of these photographs showed that the crystal belonged to the triclinic system. Approximate cell
parameters (see Table 4.3) were evaluated directly from measurements of the oscillation and Weissenberg filins, but others involved computation using a least square angular lag program as stated in Chapter 2. More accurate parameters were obtained after careful resetting of the crystal, when Zr filtered $\mathrm{Mok}_{\alpha}$ radiation was used.

## Table 4.3

a) MEASURED CELL PARAMBTERS FOR CRYSTALS OF SbCl $3 \cdot{ }^{1-C_{10}} H_{1} H_{r} B r$
(Using Mo $K_{\alpha}, Z x$ filtered Radiation)

| n | $Y(\mathrm{~mm})$ | $\tan \phi=Y / 2 \pi$ | $\phi\left({ }^{\circ}\right)$ | $\sin \phi \mathrm{n}$ | $\sum_{c}=\operatorname{Sin} \phi n / n$ | $\zeta_{m e a n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $16.67 \% 0.02$ | 0.29089 | 16.209:9 | 0.2793 .1 | $0.05586(7)$ |  |
| 4 | $13.13 \pm 0.02$ | 0.22922 | 12.91031 | 0.22343 | $0.05586(8)$ |  |
| 3 | $9.75 \div 0.01$ | 0.17017 | 9.65751 | 0.76776 | 0.05592 (6) |  |
| 2 | $6.42 \pm 0.02$ | 0.111199 | 6.38993 | 0.171 .129 | 0.05565 (18) |  |
| . 1 | $3.22 \pm .02$ | 0.05614 | 3.21.32. | 0.05605 | $0.05605(36)$ | $0.05587(10)$ |
| n | $\mathrm{s}^{\prime}$ (mm) | $\theta^{\circ}=\mathrm{s}^{\prime} / 2$ | $2 \sin \theta_{\mathrm{n}}$ | $\xi=2 \sin$ | $\theta_{n} / n$ | (mean) |
| 6 | $22.35{ }^{+0} 0.01$ | 11.175 | 9:38762 | 0.36460 | $0.00503 \mathrm{~b}^{*} 0$ | 460(3) |
| 6 | $27.3 n \pm 0.02$ | 13.65 | 0.47198 | 0.07866: | $\pm 0.00006$ | - |
| 4 | 1.8.10 ${ }^{ \pm 0} 00$ | 9.05 | 0.31458 | 0.97865 | $\pm 0.0001$ |  |
| 2 | 9.00さい. 01 | 4.50 | 0.1 .5692 | 0.07846 | $6 \pm 0.00009$ a* $^{*}$ | .7859(10) |

$2 R=57.296 m \mathrm{~m}$
$Y$ is the sefacation in mm between corresponding layer-lines in the oscilllation photogra,ph.
For s' see fig. 2.3.4b (1. 55)

| ANGLE | ANGUE MEASURED | MEAN ANGLE |
| :---: | :---: | :---: |
| $\gamma^{*}$ | $86.87^{\circ}$ | $86.83^{\circ} 0.04$ |
|  | $86.76^{\circ}$ |  |
|  | $86.87^{\circ}$ |  |

b) MEASURED AND CALCULATED CELL PaRAMETERS FOR CRYSTALS OF


| DIRECT |  | PARAMETGT | - RECI PROSAL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (RIU and |  |
| Mok $\alpha$ | $\mathrm{Cuk}_{\alpha}$ |  | Mok ${ }_{\alpha}$ |  | $\mathrm{Cuk}_{\alpha}$ |


| $9.078(10)$ | 9.104 | a | $0.07859(10)$ | 0.1698 |
| :---: | :---: | :---: | :---: | :---: |
| $11.975(20)$ | 11. 919 | b | $0.06460(10)$ | 0.1410 |
| $12.721(50)$ | 12.677 | c | 0.06084 | 0.1328 |
| 113.08(3)* | 113.33 * | $\alpha$ | 66.91 | 66.56 |
| $93.60(3)^{*}$ | 93.30* | $\beta$ | 86.40 | 86.08 |
| $91.50(5)$ | 90.74 | $\gamma$ | 86.83 (4) | 87.77 |
| $1267.98{ }_{\text {A }}$ | $1260 . \AA^{3}$ | $\checkmark$ | $7.886 \times 10^{-4}$ | $7.936 \times 10^{-4}$ |
|  | , | $\zeta_{0}$ | 0.05587 (20) | 0.1216 |

* By angular procedure (see p. 56).

The crystals neither sank nor floated in 1,2-dibromoethane so that $D_{0}=2.18 \mathrm{Mg} \mathrm{m}{ }^{-3}$ for the density of the complex. Hence $Z=3.3(\approx 4)$ for SbCl $_{3}$. $\quad 1-C_{10} H_{7} \mathrm{Br}(M=435.1)$ leading to $D C=2.30 \mathrm{Mg} \mathrm{m}^{-3}$.

Confirmation of the triclinic system followed from the systenatic calculation of various distances and angles within the cell, which gave no evidence for higher symmetry. The space group must therefore be PI or PI.

Intensity data were collected from a particular crystal (about $0.1 \times 0.1 \times 0.2 \mathrm{~mm}$ ) using zirconium filtered $\mathrm{Mok} \alpha$ radiation on a multiple film pack. Layers 0 to 6 oscillating about'c'were recorded on an integrating Neissenberg camera.

The intensities of the reflections were measured visually, and were corrected for Lorentz and Polarisation effects but not for a.bsorption or extinction ( $\mu_{\mathrm{MoK}_{\alpha}} \approx 61.0 \mathrm{~cm}^{-1}$ ). This gave a set of 691 structure amplitudes.

### 4.4 DETERMINATION OF THE STRUCTURE

A three-dimensional Patterson map was computed using all the hkl reflections. The vector map showed the following highest peaks:

## Table 4.3

Patterson Coordinates and Relative Height of Peaks Within half cell ( $\mathrm{a}, \mathrm{b}, \mathrm{c} / 2$ ).

| No. | U | V | W | Height |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 0.500 | 0.135 | 0.067 | 820 |
| 2 | 0.000 | 0.000 | 0.180 | 750 |
| 3 | 0.581 | 0.518 | 0.000 | 683 |
| 4 | 0.194 | 0.314 | 0.415 | 483 |

Interpretation of the vector map was carried out assuming the space group, PI. Considering four formula units of $\mathrm{SbCl}_{3} \cdot \mathrm{C}_{10} \mathrm{H} 7 \mathrm{H}^{\mathrm{Br}}$ in the unit cell, there are 4 antimony, 4 bromine, 12 chlorine and 40 carbon atoms (if we ignore the H atoms).

Thus one would expect $60 \times 59=3540$ peaks in $P(u, v, w)$. Because $\mathrm{Sb}-\mathrm{Sb}$ vectors will be the greatest of the set (unless there is overlapping), the rest of peaks can be ignored initially in the interpretation of the vector map. There are 12 expected $\mathrm{Sb}-\mathrm{Sb}$ vectors in the cell or 6 vectors within the half cell. Not all of these can be identified. (See Table 4.3).

Since there are two non-equivalent Sb atoms within the cell $\mathrm{Sb}(\mathrm{l})\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Sb}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$, one of the vector peaks could be due to the $\mathrm{Sb}_{(2)}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)-\mathrm{Sb}(1)\left(-\mathrm{x}_{1},-\mathrm{y}_{1},-\mathrm{z}_{1}\right)$ vector, and a second peak due to the $\mathrm{Sb}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)-\mathrm{Sb}(1)\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ vector. The coordinates of each vector peak in terms of ( $x, y, z$ ) will be given by Peak (1) $\left(x_{2}+x_{1}, y_{2}+y_{1}, z_{2}+z_{1}\right)$ and Peak (2) $\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$. From these two peaks (1 and 3 in rable 4.3), two asymmetric antimony atoms could be deduced by the half of the sum and half of the difference of the vector coordinates. In this way coordinates of $\mathrm{sb}(1)$ and $\mathrm{Sb}(2)$ were calculated. Attempted interpretations involving the rest of peaks in Table 4.3 gave no satisfactory results.

A three-dimensional electron density map was then computed using all the observed amplitudes with signs calculated from the $\mathrm{Sb}(1)$ atom at $\mathrm{x}_{1}=0.541 \mathrm{y}_{1}=0.327, \mathrm{z}_{1}=0.034$ and the $\mathrm{Sb}(2)$ atom at $x_{2}=0.041, y_{2}=0.192$ and $z_{2}=\overline{0.034}$. This showed an improved position of the Sb atoms and two additional peaks which were interpreted as due to the bromine atoms at $B x(1)(0.151,0.503,0.397)$ and
$\operatorname{Br}(2)(-0.345,0.044,0.391)$. A second three-dimensional electron density synthesis , was computed in a similar way with signs calculated. from two Sb atoms and two bromine atoms. This revealed the position of five chlorine atoms which gave resonable bond distances and angles corresponding to $5 / 3$ molecules of $\mathrm{SbCl}_{3}$. At this stage the $R_{1}$ factor was 0.31 .

A theee-dinensional difference synthesis using coordinates of two antimony, two bromine and five chlorine atoms showed the position of the sixth chlorine atom. Another 3D-difference synthesis was calculated using improved positions for all antimony, bromine and chlorine atoms in order to locate individual caribon atoms. This was difficult, but from the map and from packing considerations approximate positions for the bromonaphthalene molecules (assumed rigid) were deduced.

### 4.5 REFTNENENT OF THE STRUCTURE

The Stanley parameter shift method ${ }^{(a)}$. was first used for a mixture of free atoms $(2 S b+6 \mathrm{Cl})$ and two idealised rigid bromonaphthalene molecules. (Taken as a bromine atom linked to an idealised naphthalene molecule i.e. $\operatorname{Br}-\mathrm{C}(1.90 \AA), \mathrm{C}-\mathrm{C}\left(1.397\right.$ A) and $\mathrm{C}-\mathrm{C}-\mathrm{C}\left(120^{\circ}\right)$ (Chem.So., 1958). The input coordinates of the rigid molecules in the $x y$ plane were taken in $\AA$ units relative to a chosen center referred to an orthogonal set of axes, ( $X=x, Y$ in $x y$ plane, $z$ perpendicular to $x y$ plane), and the rigid molecules were subjected to angular rotations $\theta_{x}, \phi_{y}, Y_{z}$, about these three axes. The bromine atoms wexe chosen to be the origins of the rigid molecules. The initial origins and. rotation angles were respectively, $\operatorname{Br}(1)(0.1509,0.5011,0.3956)$,

[^0]$\operatorname{Br}(2)(0.6546,0.044,0.3913)\left(5.0^{\circ}, 180.0^{\circ}, 100.0^{\circ}\right)$ and $\left(2.0^{\circ} 180.0^{\circ} 100.0^{\circ}\right)$. After three rounds of refinement, the positions of the rigid molecules in relation to the orthogonal axes wexe $\left(5.0^{\circ}, 190^{\circ}, 95.0\right)$, and $\left(10^{\circ}, 190^{\circ}, 105.0^{\circ}\right)$ with centers at $\operatorname{Br}(1)(0.1495,0.5036$, 0.3978 ) and $\operatorname{Br}(2)(0.6478,0.0007,0.3896)$. The $R_{1}$ factor was 0.22 .

The process of refinement was then continued by using an off diagonal least squares procedure ${ }^{(I)}$. This procedure allowed isotropic least squares refinement of antimony and chlorine atoms and refinement of the orientations of the two independent idealised bromanathalene molecules defined in a similar way to the rigid molecules in the shift procedure.

After four rounds the overall $R_{1}$ factor dropped to 0.19 , but jit was observed that the R factor corresponding to the hk 4 reflections was excessively high in relation to the remaining data. After several unsuccessful attempts to improve the fourth layer it was realised that the corresponding photographs were of poor quality and further refinement omitted all (~95) hk4 reflections. In addition five misindexed reflections on other layers were detected and eliminated.

A number of consecutive refinements reduced $R_{1}$ to 0.139 for 591 reflections. At this stage position and temperature factor shifts for the antimony and chloxine atoms were all quite small, e.g. the shifts were less than $0.001 \AA$. Fior the bromonaphthalene molecules the center and orientation shifts were also small, but the temperature factors for some of the caxbon atoms were rather large. This suggested that the bromonaphthalene molecule might be distorted
(王) Computer Program, "Partial Rigid. Three Bodies Least Squares", or' PAR3BLES' written by R. Hulme. :

## from ideality.

When all the atoms were freed for a final round of least squares refinement, it was found that all the resulting parameter shifts were l.ess than the corresponding standard deviations although some lengthening of four $\mathrm{C}-\mathrm{C}$ bonds and shortening of the others in the aromatic rings were observed.

The final $R_{1}$ factor for 591 independent observed reflections was 0.138. The final position and thermal parameters of the atoms are listed in Table 5.4. A table of observed structure anplitudes and calculated structure factors is shown in appendixB.


Fi.g.4.4. A view of the structure from a point between $b$ and $c$ close to [011]. The atom notation and dimensions were added to the figure for clarity. (Plotted using Comp. Prog. PAriole).

## TABLE 4.4

## Fractional Atomic Triclinic Coordinates and

Thermal Parameters ( $\AA^{2}$ ) with e.s.d.'s in Parentheses
(for atom numbering see fig 4.4 (p. 89 ))

| Atom | x | y | z | $B^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Sb}_{1}$ | $1.0499(5)$ | 0.1871.(6) | -0.0284(8) | $1.770(0.36)$ |
| $\mathrm{Sb}_{2}$ | $0.5548(5)$ | $0.3129(6)$ | $0.0308(8)$ | $1.761(0.36)$ |
| Cl. 1 ( | $1.1652(20)$ | $0.3747(25)$ | 0.0622(34) | $5.200(1.745)$ |
| Cl(2) | $1.2752(18)$ | $0.0955(22)$ | -0.0664(32) | $3.300(1.581)$ |
| C.1.3) | $1.0185(21)$ | $0.1530(26)$ | 0.1381 (35) | 6.15 ? (1.947) |
| CII(4) | 0.7941 (17) | $0.4 .124(21)$ | 0.2639(29) | 2.15)(1.481) |
| Cl(5) | $0.6457(1.7)$ | $0.1254(21)$ | -0.0582(30) | 1.95)(1.484) |
| 61(6) | $0.5067(23)$ | 9.3518(28) | -7.1414(38) | 7.85)(2.139) |
| $B r(1)$ | 0.1458(8) | 0.5053(10) | ).3969(14) | $4.302(0.649)$ |
| $\operatorname{Br}(2)$ | $0.6449(8)$ | $0.2008(10)$ | ).3850(13) | $3.88:$ ( .629 ; |
| C(1) | $0.3518(56)$ | $0.5332(71)$ | $0.3922(1.1)$ | 2.100(5.222) |
| C(2) | 0.4137 (57) | $0.6519(70)$ | 0.4322 (99) | 9.100(5.320) |
| C(3) | $0.5650(142)$ | 0.6729(167) | 0.4291 (212) | 21.851(16.134) |
| c(4) | $0.6552(56)$ | $0.5743(70)$ | $0.3850(101)$ | 2.12(5.114) |
| c(5) | $0.5934(68)$ | 0.4560 (86) | $0.3453(118)$ | $3.550(6.385)$ |
| a(6) | $0.6833(107)$ | $0.3570(125)$ | 2.3008(171) | 13.520(11.281) |
| c(7) | $0.6214(76)$ | 0.2389 (91) | 0.2616(127) | 5.620 (7.35) |
| c(8) | $0.4697(56)$ | $0.2182(71)$ | 0.2648(1)1) | 9.100(5.254) |
| O(9) | 0.3798(74) | $0.3164(92)$ | ).3984(129) | 5.16) (7.25) |
| c(10) | 0.44.25(69) | $0.4350(84)$ | $0.3485(118)$ | $3.650(6.41)$ |
| c(11) | $0.8524(56)$ | $0.0245(71)$ | 10.3839(101) | $2.102(5.058)$ |
| a(12) | 2.9184 (58) | $0.1423(70)$ | 0.4277(101) | $0.310(5.129)$ |
| c(13) | 1.9709(120) | $0.1604(.140)$ | 0.427)(183) | 16.800(13.119 |
| c(.14) | $1.1 .580(67)$ | $0.0598(81)$ | 0.3821 (116) | $3.020(6.266)$ |
| c(15) | 1.0923(9.1) | -0.0573(91) | 0.3386 (121) | $4.600(6.812)$ |
| c(16) | $1.1796(136)$ | -0.1581(160) | 2.2933(212) | $20.700(15.448$ |
| c(17) | $1.1134(97)$ | -0.2749(114) | $0.2502(154)$ | 11.550(10.26) |
| C(18) | $0.9605(80)$ | -0.2928(98) | ग. $2578(134)$ | $6.850(7.928)$ |
| c(19) | $0.8736(94)$ | -0.1929(115) | $0.2952(134)$ | 10.56)(9.614) |
| C(20) | 0.9393 (61) | -0.0753(75) | 2.3392.(155) | $1.050(5.4 .44)$ |

TABIE 4.5
Bond Distances ( $\AA$ ) and Angles ( ${ }^{\circ}$ )
a) In the $\mathrm{SbCl}_{3} 3^{\circ}$

$$
\begin{array}{lllll}
\mathrm{Sb}(1) \ldots \mathrm{Cl}(1) & 2.270(57) & \mathrm{Sb}(2) \ldots \mathrm{Cl}(4) & 2.377(50) \\
\mathrm{Sb}(1) \ldots \mathrm{Cl}(2) & 2.334(53) & \mathrm{Sb}(2) \ldots \mathrm{Cl}(5) & 2.288(49) \\
\mathrm{Sb}(1) \ldots \mathrm{Cl}(3) & 2.335(59) & \mathrm{Sb}(2) \ldots \mathrm{Cl}(6) & 2.422(64) \\
\mathrm{Sb}(1) \ldots \mathrm{Cl}(4) & 3.488(50) & \mathrm{Sb}(2) \ldots \mathrm{Cl}(11) & 3.646(57) \\
\mathrm{Sb}(1) \ldots \mathrm{Cl}(5) & 3.682(49) & \mathrm{Sb}(2) \ldots \mathrm{Cl}\left(2^{\pi}\right) & 3.387(53) \\
\mathrm{Sb}(1) \ldots \mathrm{Cl}\left(3^{I V}\right) 3.770(27) & \mathrm{Sb}(2) \ldots \mathrm{Cl}\left(6^{\mathrm{V}}\right) & 3.770(27) \\
& & \mathrm{Sb}(2) \ldots \mathrm{C}(7) & 3.399
\end{array}
$$

$\mathrm{Sb}(1)$... Perpendicular distance to naphthalene plane: 3.344 A $\mathrm{Sb}(2) . .$. Perpendicular distance to naphthalene plane: $3.304 \AA$

## Angles Around $\mathrm{Sb}(1)$

|  | $\mathrm{Cl}(2)$ | $\mathrm{Cl}(3)$ | $\mathrm{Cl}(4)$ | $\mathrm{Cl}(5)$ | $\mathrm{Cl}\left(3^{\mathrm{IV})}\right.$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cl}(1)$ | $91.76(16)$ | $96.10(17)$ | $68.90(18)$ | $124.49(17)$ | $159.97(14)$ |
| $\mathrm{Cl}(2)$ |  | $96.18(17)$ | $160.60(15)$ | $1.43 .70(14)$ | $71.23(18)$ |
| $\mathrm{Cl}(3)$ |  |  | $87.74(18)$ | $79.69(1.5)$ | $76.31(18)$ |
| $\mathrm{Cl}(4)$ |  |  |  | $55.69(18)$ | $128.25(18)$ |

## Angles Around $\mathrm{Sb}(2)$

|  | C, 1 (5) | G1(6) | GI( $\mathrm{J}^{\text {II }}$ ) | al ( $\left.2^{\text {II }}\right)$ | $\mathrm{Cl}\left(6^{\mathrm{V}}\right.$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C.1.4) | 91.91(14) | 90.81(16) | 142.16(14) | 161.57(13) | $74.38(17)$ |
| al(5) |  | 96.42(16) | 125.78(14) | 69.87(17) | 163.84 (14) |
| a. (6) |  |  | 82.46(18) | 88.64(17) | 75.6\% (18) |
| $\mathrm{Cl}(1$. |  |  |  | 55.92(18) | $67.86(17)$ |

b) In the Free 1-Bromonaphthalene (Iypical $\sigma_{\mathrm{c}-\mathrm{c}} 0.28 \AA$ and

$$
\left.\sigma=1.7^{\circ}\right)
$$

| $\mathrm{Br}(1)-\mathrm{C}(1)$ | 1.90 | $\operatorname{Br}(1)-C(1)-C(2)$ | 120.1 | $a(8)-c(9)-a(10)$ | 119.8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $a(1)-C(2)$ | 1.40 | $B r(1)-C(1)-C(4)$ | 179.9 | $a(9)-C(10)-C(1)$ | 119.9 |
| $a(2)-a(3)$ | 1.40 | $B r(1)-C(1)-C(10)$ | 220.7. | $C(5)-G(10)-C(1)$ | 1.19 .9 |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.41 | $C(2)-C(1)-C(10)$ | 119.9: | c(4)-C(5)-c(10) | 120.3 |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 2.39 | $C(1)-C(2)-C(3)$ | 120.3 |  |  |
| $c(5)-c(6)$ | 1.40 | $C(2)-C(3)-C(4)$ | 119.9 |  |  |
| $a(6)-C(7)$ | 1.39 | $c(3)-a(4)-a(5)$ | 119.8 |  |  |
| $\mathrm{c}(7)-\mathrm{C}(8)$ | 1.40 | $c(4)-C(5)-a(6)$ | 119.9 |  |  |
| $C(8)-C(9)$ | 2.40 | $c(5)-c(6)-c(7)$ | 119.8 |  |  |
| c(9)--a(10) | 1. 40 | $c(6)-C(7)-C(8)$ | 120.3 |  | , |
| $\mathrm{C}(5)-\mathrm{c}(10)$ | 1.40 | $c(7)-C(8)-C(9)$ | 120.0 |  |  |
| c(1)-C(10) |  |  |  |  |  |


| $\mathrm{Br}(2)-\mathrm{C}(11) 1.90$ | $B r(2)-C(11)-C(12)$ | 120.00 | $C(17)-C(18)-C(19)$ | 120.00 |
| :---: | :---: | :---: | :---: | :---: |
| $a(11)-G(12) 1.40$ | $\mathrm{Br}(2)-\mathrm{C}(11)-\mathrm{C}(20)$ | 120.2 | $c(18)-C(19)-C(20)$ | 119.9. |
| C(12)-C(13) 1.40 | $B x(2)-C(11)-C(14)$ | 179.9 | $c(19)-\mathrm{C}(20)-\mathrm{C}(11)$ | 119.9 |
| c(13)-c(14) 1.40 | $\mathrm{a}(11)-\mathrm{C}(12)-\mathrm{c}(13)$ | 120.3 |  |  |
| G(.14)-C(15) 1.39 | $C(12)-C(13)-C(14)$ | 119.7 |  |  |
| $a(15)-C(16) 1.41$ | C(13)-C(14)-C(15) | 120.0 |  |  |
| $C(16)-C(17) 1.40$ | $C(14)-C(15)-C(16)$ | 119.9 | * |  |
| $\dot{c}(17)-a(18) 1.40$ | $a(14)-c(15)-c(20)$ | 120.2 |  |  |
| a(18)-a(19) 1.40 | C(15)-C(16)-C(19) | 119.6 |  |  |
| $C(19)-C(20) 1.40$ | $C(16)-C(19)-C(18)$ | 120.5 |  |  |
| c(11)-c(20) 1.39 |  |  |  |  |



Fig. 4.2 A view or the structure from a point close to the a-axis.
Piolec. heisht in $\AA$ indicated approximately. Plotted using Comp. Prog. PaMOLE.


Fig. 4.2 a
A projection of one double-layer of $\mathrm{SbCl}_{3}$ molecules along [001]. Dotted lines were added to show intermolecular interactions between $\mathrm{SbCl}_{3}$ molecules. Plotted using Computer Program STeReo.
c) Equation of Selected Planes and Out of Plane Distances ( $\AA$ ) (*)
i) First Bromiunaphthalene: $0.103 \mathrm{X}-0.392 \mathrm{Y}+0.0142-2.729=0$

$$
\mathrm{Sb}_{2}: 3.304 \quad \mathrm{Cl}_{4}: 3.131 \quad \mathrm{Cl}_{5}: 3.449 \AA
$$

ii) Second Promonaphthalene: $0.072 \mathrm{X}-0.421 \mathrm{Y}+0.904 z-5.268=0$

$$
\mathrm{Sb}_{1}: 3.343 \quad \mathrm{Cl}_{1}: 3.611 \quad \mathrm{Cl}_{2}: 3.475 \AA
$$

iii) $\mathrm{So}(1), \mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Cl}(4), \mathrm{Cl}(5), \mathrm{Cl}\left(3^{\mathrm{IV})}: 0.046 \mathrm{x}+0.411 \mathrm{Y}\right.$ $-0.911 Z=1.6 .24$
(0.093, +0.091, $-0.221,+0.088,-0.001,+0.208)$
iv) $\mathrm{Sb}(2), \mathrm{Cl}(4), \mathrm{Cl}(5), \mathrm{Cl}\left(\mathrm{I}^{\mathrm{II}}\right), \mathrm{Cl}\left(2^{\mathrm{II}}\right), \mathrm{Cl}\left(6^{\mathrm{V}}\right):-0.008 \mathrm{X}+0.420 \mathrm{Y}$ $-0.907 z=1.258$
$(+0.116+0.058-0.063,+0.173,-0.044,-0.174)$
The plane refer to these orthogonal $\AA_{\text {coordinates. }}$

### 4.6 DESCRI TION AND DISCUSSION OF TIE STRUTIURE

1-Bromonaphthalene forms a l:l complex with antimony trichloride, the crystal structure of which is brilt up of dcuble layers of $\mathrm{Sbcil}_{3}$ molecules alternating with doubls layers of l-Bromonaphthalene tilted about $25^{\circ}$ to [010] (see Fig 4.2). By halogen bridging pairs of $\mathrm{SbCl}_{3}$ molecules form dimers which ane themselves part of an infinite chain of molecules by further halogen bridging and these chains in turn are cross linked to others to produce the double sheet. (Fig 4.2a). Finally the structure contains plane-to-plane molocular stacks of $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$ molecules in a similar arrangement to that found in the crystal structure of naphthalene. The layers of antinony trichloride and organo component are parallel to the ab plane and alternate in the
(*) The transformation matrix from triclinic $x y z(\AA)$ to orthogonal $X Y Z(\AA)$ is given by:

$$
\left[\begin{array}{lll}
1 & \cos \gamma & \cos \beta \\
0 & \sin \gamma & -\cos \alpha \\
\sin \gamma \\
0 & 0 & \sin \beta \\
\sin \alpha^{*}
\end{array}\right]
$$


(a)

(b)

Fig.4.5 A view of the equatorial arrangement around the Sb atoms. view down $\mathrm{Cl}_{3}-\mathrm{Sb}_{1}$ and $\mathrm{Cl} 6-\mathrm{Sb} 2$ respectively.
c direction. Fig (4.2).
Bond distances and angles in the Sbal. 3 and $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$ molecules are quoted in Table 4.5a,b. There axe two pairs of non-equivalent molecules. Both the non-equivalent antimony atoms are bonded to three chlorine atoms, (average 2.31 and 2.37 §) and are close to a further three chlorine atoms - two from a non-equivalent molecule ( $3.49,3.68$ and $3.39,3.65 \AA$ ) and one from a symmetrically related molecule ( 3.77 and 3.77 A ) - and are situated near a bromo-naphthalene molecule $(3.34,3.30 \AA)$.

The usual criterion used to decide if a neighbouring atom is coordinated or not is the shortness of the interaction distance relative to the usually expected sum of the van der Naals radii. Generally $\mathrm{Sb} . . \mathrm{Br}, \mathrm{Sb} . . \mathrm{Cl}$, and $\mathrm{Sb} . . \mathrm{C}$ contacts are $4.05,3.95$ and 3.9? respectively (Pauling, 1960; Bondi A., 1964). In the present structure all the above mentioned distances are appreciably shorter the sum of the van der Naals radii so that the coordination number of the two atoms becomes seven. Geometrically this corresponds to a distorted pentagonal bipyramidal amrangenent around the Sb atoms. The $\mathrm{Sb}(1)$,
 $\mathrm{Cl}\left(2^{I I}\right), \mathrm{Cl}\left(6^{\mathrm{V}}\right)$ are approximately in the equatorial plane (see Table 4.5 c and Fig. $4.5 \mathrm{a}, \mathrm{b}$ ) with average out of plane distances 0.12 and 0.10 A.

The crystal structure of $\mathrm{SbCl}_{3}$, has been described in terms of an eight fold coondination (Iipka, 1979) i.e. a 3:2:3 coordination (see diagram 1.6.1 p 17). The change of coordination number to 1:5:1 in the present case could be due to the interaction with a relatively large organic molecule which blocks further approach. According to the proposed geometry it would seem that the lone electron-pair is stereochemically inactive.


Fig.4.3.1
A view of $\mathrm{SbCl}_{3} \cdot 1-\mathrm{Bromonaphthalene} \mathrm{down} \mathrm{Cl}_{3}-\mathrm{Sb} \mathrm{S}_{1}$ and at right angle. Plotted using Comp. Prog. STEREO.


Fig.4.3.2
A view of $\mathrm{SbCl}_{3} \cdot 1$-Bromonaphthalene down $\mathrm{Cl}_{6}-\mathrm{Sb}_{2}$ and at right angle. Plotted using Comp. Prog. STEREO.

In each $\mathrm{SbCl}_{3}$ molecule, one of the $\mathrm{Sb}-\mathrm{Cl}$ bonds is significantly shorter ( 2.270 and 2.288 \& respectively) than those found ( 2.34 and $2.37 \AA$ ) in the $S b C l 3$ molecule alone (Lipka, 1979), and. a long $\mathrm{Sb}-\mathrm{Cl}$ bond ( $2.422 \AA$ ) is also observed in the second molecule. These phenomena seem to be related in some way to the donor-acceptor nature of the interaction of $\mathrm{SbCl}_{3}$ and l-bromonaphthalene.

In both molecules of $\mathrm{SbCl}_{3}$, two bonds lie in a plane nearly parallel to that of the organic molecule, which the third bond is apmoximately perpendicular to that plane (see Fig 4.2,4.3,4.4); more exactly, the $\mathrm{Cl}(3)-\mathrm{Sb}(1)$ bond directs towards the mid-point of the $C(8)-C(9)$ bond, (see Fig 4.3.1), while the $C 1(6)-\mathrm{Sb}(2)$ bond points almost exactly to $C$ (7) (Fig 4.3.2). The perpendicular distances from the two independent antimony atoms to the plane of the corresponding bromonaphthalene molecule are 3.34 and 3.30 A respectively. A similar situation is found in the $2 \mathrm{SbCl}_{3}$. naphthalene (Hulme and Szymanski, 1969), but in this compound two $\mathrm{SbCl}_{3}$ molecules related by a centre of symmetry are situated on opposite sides of the plane of the aromatic molecule, giving an alternating distribution of organic and inorganic layers. In addition to this, in $2 S b c l_{3}$. naphthalene the distances between Sb atoms and the plane of the organic component ( $3.20 \AA$ ) is of the same order of magnitude as that found in the present work. Therefore, in the $\mathrm{SbCl}_{3} \cdot{ }^{1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}}$ compound, it seems there may also be electron donation from the aromatic $\pi$-system to the sb atom. The $\mathrm{Sb}-\mathrm{Cl}$ bonds apposite to the interaction with the $\pi$-systems are not of the same length. For the longer Sb-maromatic ring contact, the $\mathrm{Si}(1) \cdots \mathrm{Cl}(3)$ distance is essentially the same as the other $\mathrm{Sb}-\mathrm{Cl}$ bonds. On the other hand, the shorter Sb -aromatic ring contact is opposite a much longer $\mathrm{Sb}(2)$ $\mathrm{Cl}(6)$ bond. Such an extension of an Sb-halogen bond has been already
observed in other compounds. For example, ( 2.37 A ) in $2 \mathrm{SbCl}_{3} \cdot{ }^{n}$ naththalene (Hulme and Szymanski, 1969); (2.37 §) in $23 \mathrm{bCl} \mathrm{l}_{3}$-p-xylene (Hulme and Mullen, 1976); (2.44 \&) in 2SbCl. 3.1 ,4-dithiane (Kiel and Engler, 1974); (2.51 \&) in $\mathrm{SbCl}_{3}$.aniline (Hulme and Scruton, 1968) and (2.39 8) in $2 \mathrm{SbCl}_{3}$. phenanthrene (Demaldé, et.al. 1972). This lengthening of the $\mathrm{Sb}-\mathrm{Cl}$ bonds give some support to the view that antimony in the $\mathrm{SbCl}_{3}$ molecule may act as an acceptor towards $\pi$-donors.

The large values of some carbon atom temperature factors (especially $C_{3(13)},^{C_{6(16)}}$ ) suggests some departure from ideality, but could also be due to residual errors (e.g. absorption ( $\mu \sim 61$ ), and extinction effects) uncorrected in the experimental data.

There is no significant shortening of $C-C$ bond in the region to which the Sb atom is pointing in contrast with the situation found in the $2 \mathrm{SbCl}_{3}$.nainthalene complex. Instead slight alterations of some other C-C bonds as well as some angles were observed (see Table 4.5b).

### 5.0 STUYY OF (2:1) SBCl, 3 .1-CHLORONAPHYHALENE COMPLEX

### 5.1 PHASE DIAGRAM FOR $\mathrm{SbCl}_{3}-1-\mathrm{C}_{10} \mathrm{H}_{7} \xrightarrow{\mathrm{Gl}} \mathrm{SYSTEM}$

Determination of the phase diagram for this system was carried out according to the method described in Chapter 2. During the experiment a considerable amount of supercooling occurred in spite of continuous agitation.

The results in Table 5.1 permit the construction of a phase diagram as shown in $\mathbb{F i g}$ (5.1) and suggest (2:1) $\mathrm{Sbal}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ compound formation with melting point ca. $42^{\circ} \mathrm{C}$. This is in good agreement with earlier results mentioned in the literature (Menschutkin, 1912).


Fig. 5. $1 \begin{aligned} & \text { SbCl3-1..Chloronaphtha- } \\ & \text { lene system. }\end{aligned}$.

TABLEE 5.1

| $8 \mathrm{MOI} \mathrm{SbOL}_{3}$ | $\mathrm{~T}_{\mathrm{C}} \mathrm{C}$ |
| :---: | :---: |
| 0 | $-2 \pm 0.5$ |
| 30 | $16^{ \pm} 1.0$ |
| 45 | $23^{ \pm} 1.0$ |
| 50 | $28 \pm 1.0$ |
| 60 | $32 \pm 2.2$ |
| 70 | $35^{ \pm}-2.0$ |
| 80 | $27 \pm 1.0$ |
| 90 | $30 \pm 1.5$ |
| 100 | $73 \pm 1.0$ |

### 5.2 PRIPPARATTON AND ANALYSIS OF TYE CRYSTALS

On the basis of the results summarised in Figg (5.1), $2 \mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ was prepared following a procedure described below.

Antimony trichloride was dissolved in 10-15\% excess of̂ l-chloronaphthalene at about $45^{\circ} \mathrm{C}$ under anhydrous conditions away from the atmosphere. When the solution was allowed to cool to room temperature, yellowish
crystals started to grow. A variety of crystals were obtained after several hours.

Analyses for Sb (III) and l-chloronaphthalene were carried out by titration vs. $0.025 \mathrm{M} \mathrm{KIO}_{3}$ and by NMR respectively as described in Chapter 2. Results which are shown in Table 5.2 , confirm the mole ratio obtained from the phase diagram.

TABLE 5.2

$$
\text { RESULTS OF ANALYSIS FOR } \mathrm{Sb}(I I I) \text { AND } 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}
$$

| Sample (g) | $\begin{aligned} & \mathrm{Vol} 0.025 \mathrm{n} \\ & \mathrm{KIO}_{3}(\mathrm{mll}) \end{aligned}$ | $\begin{gathered} \% \\ \mathrm{SbCl}_{3} \\ (\mathrm{w} / \mathrm{w}) \end{gathered}$ | $\begin{gathered} \text { NMR Ref } \\ \text { Wt(g) } \end{gathered}$ | NMR <br> Integrated Height <br> Reference Compound |  | $\begin{gathered} \% \\ 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cll} \\ (\mathrm{w} / \mathrm{w}) \end{gathered}$ | $\begin{gathered} \text { Mole ratio } \\ \mathrm{SbCl}_{3}: \mathrm{C}_{10} \mathrm{H}_{7}^{\mathrm{Cl}} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 0.1117 | 7.11 | 72.73 | 0.08960 | 55.4 | 39.35 | 27.97 | 1.85:1.00 |
| 0.1102 | 7.33 | 76.00 | 0.18380 | 68.0 | 22.50 | 27.11 | 1.99:1.00 |
| 0.0819 | 7.27 | 73.59 | 0.08996 | 70.5 | 35.00 | 26.79 | 1.96:1.00 |

(*) NMR reference compound wa.s $\mathrm{CH}_{3} \mathrm{I}$

### 5.3 FRRLIMINARY INFORMATION AND UNIT CBLL DETERMINATION

A crystal elongated in one direction ${ }^{+}$and which seemed reasonably single was chosen and sealed in a Lindemann tube ( $\phi=0.25 \mathrm{~mm}$ ). The tube containing the crystal. was taken out of the dry box for further observation through the polarizing microscope. The crystal showed straight extinction. The crystal is thus non-cubic and one of the crystallographic axes may be parallel to the direction of extinction.

The crystal was then mounted about an axis (" $\mathrm{c}_{\mathrm{T}}$ ") lying between the extinction dixections. Oscillation and Weissenbexg photographs were taken using CuKor nickel filtered $x$-radiation. These photographs showed no mirror symmetry and suggested that the crystal was probably triclinic, + Needle axis is [112] triclinic, equivalent to " $c$ " in the monoclinic cell," C ".
space group Pl or PI .
From the oscillation photograph, zero and upper layer Weissenberg photographs, approximate cell parameters were calculated by direct measurement and by the angular-lag procedure as described in Chapter 2. Results obtained by these procedures are shown below (Table 5.3).

TABLE 5.3
LATMTCC CONSTANTS FOR THE FIRST SATTING
GELL (TRICLINIG) USING CuKoc-RADIATION

| DIRECT ( $\AA$ ),$\left({ }^{\circ}\right.$ ) | PARAMETER | RECIFROCAL (RLU) |
| :---: | :---: | :---: |
| 11.458 | $a_{T}$ | 0.1356 |
| 9.245 | $\mathrm{b}_{T}$ | 0.1964 |
| 9.241 | ${ }^{\text {c }}$ T | 0.1976 |
| 121.7 | $\alpha_{T}$ | 58.13 |
| 96.1 | $\beta_{T}$ | 82.99 |
| 89.7 | $\gamma_{T}$ | 86.54 |
|  | $\zeta_{C T}$ | 0.1669 |
| 828. $\AA^{3}$ | $\mathrm{V}_{\mathrm{T}}$ | 0.00122 |

Flotation in a (1:1) mixture of $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (1,2-dibromo-ethane) and $\mathrm{CH}_{3} \mathrm{I}$ (iodomethane) gave an observed density, $\mathrm{D}_{\mathrm{O}}=2.23 \mathrm{Mg} . \mathrm{m}^{-3}$. The calculated density was, $D_{c}=2.48 \mathrm{Mg} . \mathrm{m}^{-3}$ for $\mathrm{z}=1.80$ ( $\sim 2.0$ ) units of $2 \mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl} \quad(\mathrm{M}=618 \cdot 9)$.

### 5.4 DETERMTNATTON OF APPROYTMATE STRUCTURE

Intensity data were collected using nickel filtered Cuk $\propto$ radiation on a multiple film 'pack. Layers 0 to 2 about " $\mathrm{C}_{\mathrm{T}}$ " exis were recorded.

Corrections for Lorentz and Polarization factors were applied in
computing the structure amplitudes, $\mid$ Fhkl $\mid$, but no corrections were made for absorption or extinction, $\left(\mu_{\mathrm{Cu}_{\mathrm{K} \alpha}}=339 \mathrm{~cm}^{-1}\right)$.

All the hkl reflections (191 in total) were used to compute a threedimensional patterson map in order to locate the heavy atoms. This showed the following highest vector peaks:

TABLE $5.4^{*}$
PATTERSON COORDINATES ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) OF HIGHEST
PEAKS FOR SbCl. $3.1-\mathrm{C}_{20} \mathrm{H}_{7} \mathrm{Cl}$.
Fractional vector
coordinate
Interpreted

| No. | Height | U | V | W | Source of Vector |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 730 | 0.51 | 0.61 | 0.01 | $\mathrm{Sb}_{1}-\mathrm{Sb}_{2}$ |
| 2 | 710 | 0.11 | 0.46 | 0.88 | $\mathrm{Sb}_{1}-\mathrm{Sb}_{2}^{\prime}$ |
| 3 | 440 | 0.00 | 0.00 | 0.50 |  |
| 4 | 390 | 0.41 | 0.17 | 0.12 | $\mathrm{Sb}_{2}^{\prime}-\mathrm{Sb}_{2}$ |
| 5 | 360 | 0.15 | 0.12 | 0.27 |  |
| 6 | 350 | 0.34 | 0.75 | 0.16 |  |
| 7 | 350 | 0.40 | 0.92 | 0.08 | $\mathrm{Sb}_{1}{ }^{\prime}-\mathrm{Sb}_{1}$ |
| 8 | 280 | 0.34 | 0.37 | 0.17 |  |
| 9 | 270 | 0.24 | 0.57 | 0.15 |  |
| 10 | 270 | 0.65 | 0.53 | 0.23 |  |

where $x^{\prime}=-x, y^{\prime}=-y$ and $z^{\prime}=-z$. Equivalent centrosymmetrically related peaks are not listed.

Interpretation of the vector map was carried out assuming the space group $\overline{\mathrm{PI}}$. Considering two formula units of $2 \mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ in the unit cell, there are 4 Antimony, 14 Chlorine and 20 Clarbon atoms (leaving out the $H$ atoms).

Out of the expected total of $38 \times 37=1.406$ vector peaks in $P(U, V, W)$, the $S b-S b$ vectors will be the greatest in height (apart from possible overlapping). Thus in the interpretation of the vector map peaks of smaller value can be ignored to leave an expected 12 $\mathrm{Sb}-\mathrm{Sb}$ vectors in the unit cell. Less than this number is observed due to overlapping.

The space group PI requires two types of antimony atoms in the cell. Vectors between non-related Sb atoms will be augmented (doubled, vector $\mathrm{Sb}_{1}-\mathrm{Sb}_{2}$ overlaps $\mathrm{Sb}_{2}^{\prime}-\mathrm{Sb}_{1}$ ') relative to those between related Sb atoms. Thus with $\mathrm{Sb}_{1}$ at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Sb}_{2}$ 'at $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ generating $\mathrm{Sb}_{1}{ }^{\prime}$ at $\left(-\mathrm{x}_{1},-\mathrm{y}_{1},-\mathrm{z}_{1}\right)$ and $\mathrm{Sb}_{2}$ at $\left(-\mathrm{x}_{2},-\mathrm{y}_{2},-\mathrm{z}_{2}\right)$ the largest peaks, F , will be peak 1 ( Tab 5.4 ), $\mathrm{Sb}_{1}-\mathrm{Sb}_{2}$ at $\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)$ etc. and peak $2 \mathrm{Sb}_{1}-\mathrm{Sb}_{2}$ at $\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)$, etc. The coordinates of the two asymnetric Sb atoms may be evaluated as half the sum and half the difference of the vector coordinates for jeak 1 and $2, \frac{x_{1}}{\frac{-2}{2}-1} \frac{2}{2}$, $x_{2} \frac{F_{2}-W_{1}}{2}$ i.e. $\mathrm{Sb}_{1}$ at $(0.310,0.535,0.445)$ and $\mathrm{Sb}_{2}$ at $(\overline{0.200}, \overline{0.075}, 0.435)$ so that $\mathrm{Sb}_{2}^{\prime}$ is at $(0.200,0.075,0.565)$. A lower vector due to $\mathrm{Sb}_{1}{ }^{\prime}-\mathrm{Sb}_{1}$ at $(-0.62,-0.07,-0.89) \equiv(0.33,0.93,0.11)$ is then equated to peak ? and that due to $\mathrm{Sb}_{2}{ }^{\prime}-\mathrm{Sb}_{2}$ att ( 0.400 .150 .13 ) is peak 4.

To locate the remaining atoms an electron-density synthesis was computed using all the observed structure amplitudes with signs calculated from the Sb atoms as located. This showed some peaks corresponding to the chlorine atoms $\mathrm{Cl}_{3}$ at $(0.369,0.700,0.355), \mathrm{Cl}_{1}$ at $(0.444,0.629,0.703), \mathrm{Cl}_{2}$ at $(0.846,0.290,0.387)=(0.1540 .710$ 0.6 .13 ) and $\mathrm{Cl}_{6}$ at ( 0.1280 .3230 .581 ). A second 3D electron density synthesis with structure factors given by two antimony atoms and four chlorine atoms showed the fifth chlorine atom $\mathrm{Cl}_{4}$ at $(0.954 \mathrm{I} .0400 .69$ ) $=$ ( 0.0460 .9520 .306 ). From a third 35 electron density synthesis the remaining chloxine atoms were located.

They were $\mathrm{Cl}_{5}$ at $(0.330,0.087,0.368)$ and $\mathrm{Cl}_{\mathrm{N}}$ at $(0.68 \%, 0.752,0.039)$.
At this stage it was decided to refine the position of antimony and chlorine atoms using a stanley Shift parameter method. After several cycles the overall $R_{1}$ factor was 0.175 .

A difference synthesis calculated using all hkl reflections with signs calculated for two antimony and seven chlorine atoms in the asymmetric unit did not show outstanding peaks corresponding to the carbon atoms. Therefore it was thought that packing consideration might suggest the possible position of the $1-C_{10} H_{7} \mathrm{Cl}$ molecule. With this in view it was decided to calculate the best position of the $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ rigid molecule to fit in the cell space available and then to use it in further refinements. Thus a FORTRAN IV (HONEYWESL/TSS) computer program was written to perform such a calculation (see appendix (A.) .

The strategy for this consists in taking the known Gl ${ }_{\text {N }}$ coordinates and rotating the rigid molecule about this point (angles $\theta, \phi, \Psi$ about three orthogonal axes $X, Y, Z$ respectively). Atoms belonging to the $4 \mathrm{SbCl}_{3}$ molecules ( 4 Sb and 12 Cl ) are kept in fixed positions so that distances from these atoms to the rigid molecule can be calculated after each rotation step. Frovided all these distances exceed a minimal value (the distance limit) there is space for the rigid molecule to fit into the structure. Such acceptable positions are expressed by the magnitudes of the rotation angles $\theta, \phi, \Psi$. A typical example of computer output is given in Table 5.5. From the acceptable rotations of the rigid molecule, triclinic fractional coordinates for each carbon atom were then calculated. Each set of coordinates were compared with the difference map and false unacceptable coordinates were taken to be those in markedly negative regions. In this way only two of the possible positions of the rigid molecule remained acceptable
(3 and 9 in Table 5.5).

## TABLE 5.5

IOSSIBLE ROTATIONS OF THE RIGID MOLECULE COMIUTED FOR A DISTANGE-LIMIT $=3.30 \AA$

| No. | $\theta$ | $\phi$ | $\psi$ |
| ---: | ---: | ---: | ---: |
| 1 | 0.0 | 0.0 | 240.0 |
| 2 | 145.0 | 190.0 | 70.0 |
| 3 | 150.0 | 35.0 | 250.0 |
| 4 | 180.0 | 180.0 | 60.0 |
| 5 | 190.0 | 355.0 | 210.0 |
| 6 | 310.0 | 170.0 | 75.0 |
| 7 | 340.0 | 150.0 | 80.0 |
| 8 | 345.0 | 345.0 | 280.0 |
| 9 | 350.0 | 170.0 | 75.0 |
| 10 |  | 80.0 | 280.0 |

The Stanley Shift Parameter procedure was used to refine the rigid molecule starting from the deduced positions. Only set 9 was capable of refinement to the angles ( $328.2,157.90,69.1$ ) with CI $_{N}$ shifted from $(0.687,0.752,0.039)$ to $(0.7404,0.7476,0.0464)$ and corresponded to an $\mathrm{R}_{\mathbf{1}}$ factor $=0.165$ for 19.1 reflections.

### 5.5 ALTERNATTVE CRILSS

At this stage because it was realised that the temperature factor of one Sb atom went to a near -zero value and attempts to further improve the $R_{1}$ factor were not successful it was decided to calculate cell distances and angles in the hope that they might suggest a different cell of higher symmetry. The following results were found (Table 5.6).

## TABLEE 5.6

SOME CELL DISTANCES AND ANGLES TN CRYSTALS
OF $2 \mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$.

| Direction (1) | Distance (1) <br> $\AA$ | Direction (2) | Distance (2) <br> $\AA$ | Interangle ( ${ }^{\circ}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| $[112]$ | 18.297 | $[012]$ | 15.732 | 141.6 |
| $[0.12]$ | 15.732 | $[010]$ | 9.245 | $91.0 \sim 90.0$ |
| $[112]$ | 18.297 | $[010]$ | 9.245 | $89.0 \sim 90.0$ |

These suggest a possible monoclinic cell confirmed by subsequent oscillation and Weissenberg photographs (oscillating about the extinction direction - the longer axis of the crystal, named "c"). Other monoclinic cells axe also possible (see $T_{a b l e} 5.7$ and Fig 5.2).


Fig 5. 2
Relation between the different cells.
------ Cell A -.- Txicijnic
Cell B fc Monoclinitc

- Cell C bc Monoclinic
......... Ce11. D fe Monoclinic.

The cell with $\beta=98.625^{\circ}$ was confirmed by Delaunay. Reduction (Inter. Tables For X-Ray Crystallography, Vol 1 p.530) and was chosen for resolving the structure as $\beta$ is close to $90^{\circ}$. However since alignment of the crystal about one of the axis of this cell was not physically convenient for data collection, it was necessary to use the cell with $\beta=120.263^{\circ}$ for this purpose, and to oscillate about "c".

TABLE $5 \cdot 7$
RELATIONSHIP BETWEEN THE DIFFERENT CEILS

|  | A | $\stackrel{B}{\beta=141.50}$ | $\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{i} 20.3^{\circ}$ | $\stackrel{D}{D}=98.6^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| Ce. 11 | First Setting | Second setting | Third Setting | Monoclinic |
| Para- | Triclinic PI | Monoclinic | Monoclinic $I_{2}$ | Cc |
| meter | CuK $\boldsymbol{c}$, photog. | $\mathrm{Cc} /$ or $\mathrm{C}_{2}{ }^{\text {. }}$ | or J ; Diffrac- | Transformed |
| $\AA \&\left({ }^{\circ}\right)$ |  | MoKa , photog. | tometer, MoKor | from C |
| a | 11.458 | 15.853 | $11.6735(10)$ | $16.059(6)$ |
| b | 9.245 | 9.370 | 9.5247(10) | 9.525 (1) |
| c | 9.241 | 18.228 | 18.3833(11) | 1.1.674(1.) |
| $\alpha$ | 121.7 | 90.0 | $90.00^{\circ}$ | 90.000 |
| $\beta$ | 96.1 | 141.5 | $120.263{ }^{\circ}$ (20) | 98.63(5) |
| $\gamma$ | 89.7 | 90.0 | 90.00 | 90.000 |
| V | 82. | 1687. | $1765.34 \mathrm{~A}^{3}$ | $1.765 .34 \AA^{3}$ |
| $\mathrm{a}^{*}$ | 0.1356 rlu | 0.07195 | 0.07049 | 0.044776 |
| $\mathrm{b}^{*}$ | 0.1964 | 0.07585 | 0.07462 | 0.07462 |
| c* | 0.1976 | 0.062 .58 | 0.04476 | 0.06158 |
| $\alpha^{*}$ | $58.13{ }^{\circ}$ | $90.00^{\circ}$ | $90.00^{\circ}$ | $90.00^{\circ}$ |
| $\beta^{*}$ | $82.99^{\circ}$ | $38.54{ }^{\circ}$ | $59.737^{\circ}$ | $81.375^{\circ}$ |
| $\gamma^{*}$ | $86.54{ }^{\circ}$ | 90.00 | $90.00^{\circ}$ | $90.00^{\circ}$ |
| $J_{c}$ | 0.1669 | 0.03899 | 0.03866 |  |

TABLT 5.7 (continued)
MATRICES FOR INDEX AND CELL TRANSFORMATION:

$$
\begin{aligned}
& I \quad[\overrightarrow{A B}]=\left[\begin{array}{lll}
0 & 1 & \overline{2} \\
0 & 1 & 0 \\
\bar{I} & \overline{1} & \overline{2}
\end{array}\right] \quad[\overrightarrow{A C}]=\left[\begin{array}{lll}
\bar{I} & 0 & 0 \\
0 & I & 0 \\
1 & 1 & 2
\end{array}\right] \quad[\overrightarrow{A D}]=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & \bar{I} & 0 \\
1 & 0 & 0
\end{array}\right] \\
& {[\overrightarrow{C D}]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad[\overrightarrow{D A}]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & I & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]} \\
& {[\overrightarrow{C B}]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & I & 0 \\
0 & 0 & \bar{I}
\end{array}\right]}
\end{aligned}
$$

The recognition of monoclinic symmetry raised the possibility of significant systematically absent reflections. In cell $D$ it was found that

$$
\begin{aligned}
\mathrm{h}+\mathrm{k} & =\text { odd was absent in } \mathrm{hkl}, \text { therefore } \mathrm{C} \\
\text { and } \quad \mathrm{l} & =\text { odd was absent in } \mathrm{hOl}, \text { therefore } \mathrm{c},
\end{aligned}
$$

correspond to space groups $C c$ or $C_{2 / c}$. The equivalent space group in cell "C" would be $I_{2}$ or $I_{c}$.

More accurate cell dimensions were then calculated using an automatic Stoe STADI-2, two-circle diffractometer (Mok $\mathcal{N}_{\alpha}$ radiation), equipped with scintillation counter and controlled by a PDP 8/A computer. This involved two main steps: (i) The precise adjustment of the crystal, which was carried out firstly by optical means ( - Telescopic and microscopic), and secondly by using the x-ray counter. The adjustment by this last procedure uses zero layer reflections with small $2 \theta$ values corresponding to reflection by lattice planes coinciding approximately with one of the arcs of the goniometer head. Then the peak of the particular reflection (at $W_{j}$ ) was sought using a large counter aperture by rotating the $W$-circle. At position $W_{1}$ a namrow vertical slit was placed centrally in front of the counter to determine the extent of miss-set by measuring the $\mu$
angle of the counter arm, $\mu_{1}$, needed to remaximise the peak. Additional values, $W_{2}, \mu_{2}$, of $W$ and $\mu$ were found for the related reflection ca. $180+W_{1}$ and $-\mu_{1}$.

From $\mu_{1}$ and $\mu_{2}$ an arc correction was calculated, and the whole process repeated until the average absolute value of $\mu$ is zero.

The process was then repeated with a new reflection in the same $2 \theta$ range appropriate to the other arc and at $W \approx\left(W_{1}+90\right)$.
(ii) The precise determination of lattice constants depends on the accurate measurement of $W$ and $\mu$ for selected reflections. First $W_{0}$ is defined from the best values above as $\left(W_{1}-\theta_{1}\right)$ or $\left(W_{2}-90-\theta_{2}\right)$. For rotation about c, known h00 and OkO reflections were selected, initially with low $2 \theta$ values, and approximate $W$ values as estimated from a zero layer Weissenberg photography. The inclination angle was set to zero, approximate cell parameters and the indices chosen were input to the computer which calculated the $2 \theta_{c}$ and $W_{c}$ values. W was then manually rotated around $W_{c}$ and the $2 \theta$ circle also was manually rotated around $2 \theta_{c}$ to maximise intensity with the naxrow slit in position.

In this way a number of further h 00 and $0 k 0$ reflections were identified and their best $2 \theta$, $W$ values determined and used to compute new and improved cell dimensions, as well as an improved $W_{0}$ value $\left[\right.$ as $\left.W_{0}=W_{h O O}-\frac{1}{2}\left(2 \theta_{h O O}\right)\right]$.

Accurate $2 \theta_{\text {h00 }}$ permits the computation of a number of $a^{*}$ values $=$ $\frac{\sin \theta_{h 00}}{h} \frac{2}{\lambda}$, from which $\bar{a}^{*}$ was calculated. $\bar{b}$. was found in a similar way. $c$ was determined from the 001 reflections, optinising for maximum intensity the values $2 \theta$, $W$ and $\mu l . a=1 \lambda / 2 \sin \mu_{I}$. Then $W_{0}$ was found for 001 (as for $h 00$ and $0 k O$ ) or $\operatorname{Fxom}$
$W_{0}=W_{001}-\theta_{002}=W_{0}\left(c^{*}\right) \quad$ Also $\zeta_{1}=W_{0}\left(\mathrm{c}^{*}\right)-W_{0}\left(\mathrm{a}^{*}\right)$ and $\zeta_{2}=W_{0}\left(c^{*}\right)-W_{0}\left(b^{*}\right)$. As $\alpha^{*}=\gamma^{*}=90^{\circ}$ the projection of $c \quad\left(c^{* \prime}\right)$
on the $a^{*} b^{*}$ plane should lie along $a^{*}$. Therefore $\zeta_{1}=0^{\circ}$ and $\zeta_{2}=90^{\circ}$. $c^{*}$, was calculated as for $a^{*}$ and $b^{*}$. and $c^{*}$ from the expression:

$$
c^{*}=\sqrt{\frac{1}{c^{2}}+c^{*}, 2}
$$

and $\quad \boldsymbol{\beta}^{*}$ from:
$\cos \beta^{*}=c^{*} \cdot \cos \zeta_{1} / c^{*}=c^{*} 1 / c^{*}$

### 5.6 MEASUREMENT OF INTENSITTIS

Intensity data were collected using carbon monochromatised Mok $\alpha_{\alpha}$ radiation. The $\theta-2 \theta$, step-scan technique, $0.01 \% /$ step counting for $0.500 \mathrm{sec} / \mathrm{step}$, was employed. The measurement was carried out with constant W-range. Individual backgrounds were obtained from stationary counter measurements for one-half the total through one spot scan time ( 100 sec ) at each end of the scan. Filters were used where they were necessary in order to attenuate intensities with factors of $\mathrm{F}_{1}=2.032$, $F_{2}=4.443, F_{3}=17.069$.

As a general check on the electronic and crystal stability, the intensities of standard reflections were measured periodically during the data collection. Typical results for the 200 reflection are

| hkl | $\mathrm{Bgd}(1)$ | Counts | $\operatorname{Bgd}(2)$ |
| :---: | :---: | :---: | :---: |
| 200 | 297 | 155247 | 356 |
| 200 | 299 | 155665 | 366 |
| 200 | 295 | 155891 | 366 |

A total of 1307 reflections were reconded in this manner from $I=0$ to $I=22$.

The intensity data were corrected. ${ }^{(I)}$ for Lorentz-polarization effects, allowing for use of monochromatised radiation (2) (eq. 2.3.16 2.3.18) but not for absorption or extinction $\left(\mu_{\mathrm{MoK} \alpha}=38.26 \mathrm{~cm}^{-1}\right)$. 80 equivalent reflections were averaged. Standard deviations were estimated from the average intensity and background values by using equation 3.15 (Ch.3) ${ }^{(3)}$. of the 1227 independent reflections 1048 had $|F O|^{2}>3 \sigma(I)$. These were considered observed and were used in the refinement.

### 5.7 REFTNENENT OF THE STRUCTURE.

Assuming that the present structure has $a . a 2 / c$ space group in the D cell ( $\beta=98.63^{\circ}$ ); the indices as they were collected in the monoclinic cell " C " and the atomic coordinates obtained for Sb and Cl atoms in the triclinic cell were transformed to relate to the monoclinic cell "D", according to the following transformation matrices:
a) For indices $C \rightarrow D$ :

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

b) For coordinates $(\mathrm{A} \rightarrow \mathrm{D})$ :

$$
\left[\begin{array}{lll}
0 & 0 & \frac{1}{2} \\
0 & \overline{1} & \frac{1}{2} \\
1 & 0 & 0
\end{array}\right] \quad \text { or } \quad \begin{aligned}
& x_{M}=\frac{1}{2} z_{T} \\
& y_{M}=\frac{1}{2} z_{T}-y_{T} \\
& z_{M}=x_{T}
\end{aligned}
$$

The old and the new coordinates are listed in Table 5.8.
In cell $\mathrm{D}, D_{0}=2.230 \mathrm{Mg}_{\mathrm{g}} \cdot \mathrm{m}^{-3}$ and $D_{\mathrm{C}}=2.328 \mathrm{Mg} \cdot \mathrm{m}^{-3}$ for $\dot{i}=3.83(\sim 4.0)$, units of $2 \mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}(\mathrm{M}=618.8)$.
(1) Using a computex program "LIDRED" written by DAVID LTLES.
(2) Ip for monochromatised beam $=\frac{\sin 2 \theta\left(\sin ^{2} \theta-\sin ^{2} \mu\right)^{\frac{2}{2}}}{\sin \theta}[$ $\left.\frac{\cos ^{2} 2 \theta^{\prime}+\cos ^{2} 2 \theta \operatorname{mon}\left(1-2 \sin ^{2} \mu\right)^{2}}{}\right] \sin \theta$ where
$\theta^{\prime}=\tan ^{-1}\left[\frac{\left(\sin ^{2} \theta-\sin ^{2} \mu\right)^{2}}{\cos \theta}\right]$ and $\theta_{\text {mon }}$ is the Bragg angle for the monochromator.
(3) $\sigma(I)=\sqrt{N}_{c}+\frac{t_{c}}{2 t_{\mathrm{b}}}\left(\sqrt{B_{1}}+\sqrt{B_{2}}\right), N_{c}$ is the total count at the peak in a scan of time $t_{c} ; B_{1}$ and $B_{2}$ are the backgrounds, each obtained in a time $t_{b}$.

TABLE 5.8
TRANSFORMATION OF TRICLINIG COORDINATES INTO

$$
\begin{aligned}
& \text { MONOCLINIC }\left(\beta=98.63^{\circ}\right) \\
& x_{M}=\frac{1}{2} z_{T} \quad y_{M}=\frac{1}{2} z_{T}-y_{T} \quad z_{M}=x_{T}
\end{aligned}
$$

| ATOM | TRICIINIG |  | COORDINATES | MONOCLINIC Cc |  | COORDINATES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{x}_{\text {T }}$ | $\mathrm{y}_{T}$ | $z_{\text {T }}$ | $\mathrm{X}_{\mathrm{M}}$ | $\mathrm{y}_{\mathrm{M}}$ | $\mathrm{z}_{\mathrm{Fi}}$ |
| * $\mathrm{Sb}_{1}$ | 0.306 | 0.538 | 0.464 | 0.232 | 0.306 | 0.306 |
| $\mathrm{Sb}_{2}$ | 0.193 | 0.079 | 0.539 | 0.270 | 0.191 | 0.193 |
| ${ }^{*} \mathrm{Cl}_{1}{ }_{1}$ | 0.444 | 0.616 | 0.7 .27 | 0.364 | 0.252 | 0.444 |
| $\mathrm{Cl}_{4}$ | 0.046 | 0.919 | 0.317 | $0.159^{\prime}$ | 0.76 | 0.046 |
| $*_{\mathrm{Cl}}^{2}$ | 0.172 | 0.702 | 0.644 | 0.322 | 0.380 | 0.172 |
| $\mathrm{Cl}_{5}$ | 0.338 | 0.104 | 0.415 | 0.208 | 0.104. | 0.338 |
| ${ }^{*} \mathrm{Cl}_{3}$ | 0.380 | 0.734 | 0.413 | 0.207 | $\overline{0.527}$ | 0.380 |
| $\mathrm{Cl}_{6}$ | 0.124 | 0.322 | 0.562 | 0.281 | 0.041 | 0.124 |

As an atom in C2/c (see Fig. 5.3) at xyz (I) generates one at $\frac{1}{2}-x \frac{1}{2}+y \frac{1}{2} \sim_{Z}$ (IV) the structure is now adequately described in $\mathrm{C} 2 / \mathrm{c}$ by reference to the asterisked coordinates in Tab. 5.8 (cf. Tab, 5.9, LH set).


Fig. 5.3. Relationship between Cc and $\mathrm{C} 2 / \mathrm{c}$ space groups.
$\mathrm{Sb}+3 \mathrm{Cl}$ coordinates were then refined isotropically by full-matrix least squares procedure ${ }^{(*)}$. Two cycles gave an $R=0.310\left(R^{G}=0.353\right.$, where $\mathrm{R}^{\mathrm{G}}=\left[\sum\left(\mathrm{w}^{2}\right) / \sum\left(\sqrt{F^{2}}{ }_{0}^{2}\right)\right]^{\frac{2}{2}}$ with $w=$ unity and defined by $\left.W=K /\left(\sigma^{2}(F)+|g| \times F^{2}\right)\right)$ for all the observer reflections.

## 115

A difference synthesis showed the chlorine attached to the naphthalene molecule to be in a special position at ( $0.000,0.6200$, 0.2500). The inclusion of this atom resulted in $R=0.304$ and acceptable bond-distances and angles.

Anisotropic refinement of antimony and three chlorine atoms performed for two additional cycles lowered $R$ to $0.224 \quad\left(R^{G}=0.266\right)^{(* *)}$. At this stage there were 5 reflections showing a large difference between $F_{o}$ and $F_{c}$. These were omitted in further calculations. The inclusion of six fixed carbon atoms constituting a ring attached to $\mathrm{CL}_{\mathrm{N}}$ resulted in $R=0.161$.

Since there are only four molecules of $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ in the cell, in order to "generate 8 molecules" to simulate a centric structure ( $\mathrm{a}_{2 / \mathrm{c}}$ ), the organic component of l-Chloronaphthalene was assumed to be disordered about the $\mathrm{Cl}_{\mathrm{N}}$, which is in a special position on the 2 fold axis. In this way a naphthalene molecule (with site occupational factor of 0.5 ) was included. The disordered components were related by the two-fold axis.

Two more cycles of refinement, maintaining the organic molecule geometrically constrained gave $R=0.147\left(R^{G}=0.155\right)$ for all reflections. At this point the bond distances and angles were all reasonable but attempts to further reduce the R factor were not successful.

At this stage, since the difference synthesis and packing considerations did not show any other possible alternative position for the organic molecule, it was decided to refine the structure in the noncentric (cc) space group. The coordinates of antimony and chlorine atoms were transformed into the new space group, as they are
(*) In solving this structure, computer program SHELX from University of Carnbridge was used.
(* *) A Hamilton test (Hamilton, 1965) for the hypothesis that the atoms vibrate iso-tropically ( $\mathrm{R}=1.344$ ) gave $\mathrm{R}_{20,977,0.005}=1.021$, from which we conclude that there is an anisotropic motion.
shown in Table 5.9. (Also see Fig. 5.3 for relationship between Cc and $\mathrm{C}_{2 / \mathrm{c}}$ ).

TABLE 5.9
COORDINATES OF Sb AND CI IN THE CENTRIG ( $\mathrm{C}_{2} / \mathrm{c}$ ) AND
NON-CENTRIG (CC) SPACE GROUIS. FIG. (5.3)
$x y z(I) \longrightarrow x \bar{y} \frac{1}{2}+z(I I)$ and $\frac{1}{2}-x \frac{1}{2}-y 1-z($ IIII $)$

| ATOM | OLD CENTRIG ( $\mathrm{C}_{2 / \mathrm{c}}$ ) |  |  | NEW NON-CENTRIC (Cc) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathrm{z}^{*}$ |
| $\mathrm{Sb}_{1}$ | 0.2330 | $\overline{0.3060}$ | 0.3057 | 0.2330 | 0.3060 | 0.8057 |
| $\mathrm{Sb}_{2}$ | . |  |  | 0.2670 | 0.8060 | 0:69143 |
| $\mathrm{Cl}_{1}$ | 0.3529 | 0.2668 | 0.4394 | 0.3529 | 0.2668 | 0.9394 |
| $\mathrm{Cl}_{4}$ |  |  |  | 0.147 .1 | 0.7668 | 0.5606 |
| $\mathrm{Cl}_{2}$ | 0.3080 | $\overline{0.3992}$ | 0.1596 | 0.3080 | 0.3992 | 0.6596 |
| $\mathrm{Cl}_{5}$ |  |  |  | 0.1920 | 0.8992 | 0.8404 |
| $\mathrm{Cl}_{3}$ | 0.208 .2 | $\overline{0.5316}$ | 0.3707 | 0.2081 | 0.5316 | 0.8707 |
| ${ }^{0} 7.6$ |  |  |  | 0.29 .2 | 1.0316 | 0.6293 |
| $\mathrm{Cl}_{\mathrm{N}}$ | 0.000 | $\overline{0.6195}$ | $\frac{1}{4}$ | 0.000 | 0.6195 | 0.2500 |

* Subsequently all z values were reduced by $\frac{1}{2}$ of. Tab. 5.10.

Two cycles of isotropic refinement of two Sb and seven chlorine atoms resulted in $R=0.270\left(\mathrm{R}^{\mathrm{G}}=0.293\right)$; when anisotropic refinement was applied to two Sb atoms R became $0.190\left(\mathrm{R}^{\mathrm{G}}=0.216\right)$ and with six anisotropic chlorine atoms $R$ was $0.161\left(R^{G}=0.168\right)^{(2)(3)}$.
(2) From a Hamilton test we concluded that the Sb and Cl atoms are involved in the anisotrojic motion
$\left(R_{35}, 960,0.005=1.031\right.$ against Ratio $\left.=1.740\right)$.
(3) Because $\mathrm{Cl}_{5}$ was giving an ill-defined anisotropic motion it was decided to refine isotropically.

The inclusion of the carbon atoms of a rigid naphthalene molecule gave a $R=0.144$. However it was observed that e.s.d. of some temperature factors of some carbon atoms were large and that their positions shifted a little. At this stage 8 more reflections were omitted from further calculations because of large differences between. Fo and Fc. Five cycles of refinement refinement resulted in $R=0.127 \quad(R G=0.128)$ for 1035 independent reflections. Freeing the carbon atoms from fixed geometry but with constrained bond-distances for 4 cycles of full-matrix least squares refinement resulted in $R=0.125$ (RG $=0.126$ ) for 1035 reflections. At this point shifts were smaller than the corresponding e.s.d. A Hamilton test for the structure in $C_{2 / c}$ compared with that in Cc (Ratio: $0.155 / 0.126=1.2241$ ) gave an $R_{36,932,0.005}=1.032$; from which we conclude that we can confidently reject the structure in the centric space group. The observed structure factors are shown in Appendix $C$.

Table 5.10 lists the final positional and thermal parameters along with their standard deviations. Standard deviations were obtained from the inverse matrix of the final least-squares refinement cycle.


TABLE 5.10
FRACTIONAL ATOMIC COORDINATES AND THERMAL PARAMETERS
WITH e.s.d's BELOW OF EACH PARAMETER
(FOR ATOM NUMBERING SEE FIG 5.4)

| Atom | x | y | z | $\mathrm{U}_{11}$ | $\mathrm{U}_{22}$ | $\mathrm{U}_{33}$ | $\mathrm{U}_{23}$ | $\mathrm{U}_{13}$ | $\mathrm{U}_{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Sb}_{1}$ | $\begin{array}{r} 0.2330 \\ 0 \end{array}$ | $\begin{array}{r} 0.3064 \\ 8 \end{array}$ | 0.3057 | $\begin{array}{r} 0.1620 \\ 66 \end{array}$ | $0.0727$ | $0.0217$ | -0.0050 | $\begin{array}{r} 0.0216 \\ 25 \end{array}$ | $-0.027_{5}^{0}$ |
| $\mathrm{Cl}_{2}$ | $\begin{array}{r} 0.3534 \\ 24 \end{array}$ | $\begin{array}{r} 0.2663 \\ 30 \end{array}$ | $\begin{array}{r} 0.4361 \\ 25 \end{array}$ | $\begin{array}{r} 0.1152 \\ 287 \end{array}$ | 0.1000 184 | $\begin{array}{r} 0.0734 \\ 140 \end{array}$ | $\begin{array}{r} 0.0435 \\ 137 \end{array}$ | $\begin{array}{r} 0.0153 \\ 171 \end{array}$ | $\begin{array}{r} -0.0054 \\ 185 \end{array}$ |
| $\mathrm{Cl}_{2}$ | $\begin{array}{r} 0.3042 \\ 20 \end{array}$ | $\begin{array}{r} 0.3977 \\ 32 \end{array}$ | $\begin{array}{r} 0.1614 \\ 17 \end{array}$ | $\begin{array}{r} 0.2100 \\ 267 \end{array}$ | 0.1065 167 | $\begin{array}{r} 0.0327 \\ 73 \end{array}$ | $\begin{array}{r} 0.0157 \\ 89 \end{array}$ | $\begin{array}{r} 0.0690 \\ 121 \end{array}$ | $\begin{array}{r} -0.0252 \\ 158 \end{array}$ |
| $\mathrm{Cl}_{3}$ | $\begin{array}{r} 0.2091 \\ 21 \end{array}$ | $\begin{array}{r} 0.5272 \\ 32 \end{array}$ | $\begin{array}{r} 0.3739 \\ 24 \end{array}$ | 0.0979 252 | 0.1022 210 | 0.0773 132 | -0.0262 127 | 0.0070 157 | 0.0150 171 |
| $\mathrm{Sb}_{2}$ | $\begin{array}{r} 0.2666 \\ 5 \end{array}$ | 0.8053 7 | 0.1941 | 0.0972 36 | 0.0668 43 | 0.0902 43 | 0.0245 35 | 0.0704 33 | $\begin{array}{r} 0.0312 \\ 38 \end{array}$ |
| $\mathrm{Cl}_{4}$ | $\begin{array}{r} 0.1478 \\ 19 \end{array}$ | $\begin{array}{r} 0.7823 \\ 43 \end{array}$ | $\begin{array}{r} 0.0526 \\ 22 \end{array}$ | $\begin{array}{r} 0.1449 \\ 180 \end{array}$ | $\begin{array}{r} 0.1739 \\ 355 \end{array}$ | $\begin{array}{r} 0.0481 \\ 112 \end{array}$ | $\begin{array}{r} 0.0327 \\ 168 \end{array}$ | $\begin{array}{r} 0.0508 \\ 117 \end{array}$ | $\begin{array}{r} 0.0669 \\ 214 \end{array}$ |
| $\mathrm{Cl}_{5}$ | $\begin{array}{r} 0.1950 \\ 17 \end{array}$ | $\begin{array}{r} 0.8965 \\ 30 \end{array}$ | $\begin{array}{r} 0.3366 \\ 22 \end{array}$ | $\begin{array}{r} 0.0797 \\ 74 \end{array}$ |  |  |  |  |  |
| $\mathrm{Cl}_{6}$ | $\begin{array}{r} 0.2955 \\ 19 \end{array}$ | $\begin{array}{r} 1.0318 \\ 33 \end{array}$ | $\begin{array}{r} 0.1274 \\ 25 \end{array}$ | 0.1709 227 | 0.0591 228 | $\begin{array}{r} 0.0684 \\ 165 \end{array}$ | 0.9199 141 | 0.0967 161 | $\begin{array}{r} 0.0342 \\ 168 \end{array}$ |
| ClN | $\begin{array}{r} 0.0000 \\ 33 \end{array}$ | $\begin{array}{r} 0.6182 \\ 18 \end{array}$ | $\begin{array}{r} 0.2350 \\ 45 \end{array}$ | $\begin{array}{r} 0.2254 \\ 342 \end{array}$ | $\begin{array}{r} 0.0805 \\ 141 \end{array}$ | $\begin{array}{r} 0.1919 \\ 319 \end{array}$ | $\begin{array}{r} 0.0383-245 \\ 24 \end{array}$ | $\begin{array}{r} -0.0124 \\ 243 \end{array}$ | $\begin{array}{r} 0.0934 \\ 271 \end{array}$ |
| ${ }^{\text {a }}$ (1) | $\begin{array}{r} 0.0192 \\ 37 \end{array}$ | $\begin{array}{r} 0.4381 \\ 24 \end{array}$ | $0.2019$ | $\begin{array}{r} 0.0663 \\ 160 \end{array}$ |  |  |  |  |  |
| ${ }^{\text {c }}$ (2) | $\begin{array}{r} 0.0686 \\ 40 \end{array}$ | $\begin{array}{r} 0.4028 \\ 35 \end{array}$ | $\begin{array}{r} 0.1171 \\ 47 \end{array}$ | $\begin{array}{r} 0.0654 \\ 202 \end{array}$ |  |  |  |  |  |
| ${ }^{\text {c }}$ (3) | $\begin{array}{r} 0.0745 \\ 56 \end{array}$ | $\begin{array}{r} 0.2626 \\ 40 \end{array}$ | $\begin{array}{r} 0.0839 \\ 60 \end{array}$ | $\begin{array}{r} 0.0841 \\ 287 \end{array}$ |  |  |  |  |  |
| C 4 ) | $\begin{array}{r} 0.0406 \\ 39 \end{array}$ | $\begin{array}{r} 0.1561 \\ 31 \end{array}$ | $\begin{array}{r} 0.1456 \\ 39 \end{array}$ | $\begin{array}{r} 0.0623 \\ 185 \end{array}$ |  |  |  |  |  |
| ${ }^{c}(5)$ | $\begin{array}{r} 0.0034 \\ 47 \end{array}$ | $\begin{array}{r} 0.1913 \\ 21 \end{array}$ | $\begin{array}{r} 0.2429 \\ 44 \end{array}$ | $\begin{array}{r} 0.0573 \\ 111 \end{array}$ |  |  |  |  |  |

TABLE 5.10 cont.
$\begin{array}{lrrrr}\text { c } & -0.0205 & 0.0847 & 0.3138 & 0.0783 \\ & 45 & 23 & 46 & 222\end{array}$
$\begin{array}{lrrrr}\mathrm{a} & (7) & -0.0617 & 0.1199 & 0.4072 \\ & 53 & 37 & 52 & 284\end{array}$
$\begin{array}{lrrr}\text { a } \\ \text { (8) } & -0.0682 & 0.2604 & 0.4389 \\ 53 & 41 & 47 & 246\end{array}$
$\begin{array}{lrrrr}\text { c } & -0.0437 & 0.3667 & 0.3684 & 0.1071 \\ 60 & 30 & 57 & 357\end{array}$
$\begin{array}{rrrr}\mathrm{a} \\ (10) & -0.0053 & 0.3313 & 0.2724 \\ 52 & 20 & 150 & 214\end{array}$

ANISOTROPIC THERMAL FAGTOR = $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{*}+U_{22^{k}} \mathrm{k}^{2} b^{*} 2+U_{33} I^{2} c^{*}+2 U_{12} h a^{*} k b^{*}+2 U_{13} h a^{*} I c^{*}+\right.\right.$
$B=8 \pi^{2} U$, where isotropic thermal factor is $\left.\exp \left[-B\left(\frac{\sin \theta}{\lambda}\right)^{2}\right]_{23^{2}} \mathrm{~kb}^{*} 1 c^{*}\right]$. TABLE 5.11
BOND DISTANCES ( $\AA$ ) AND ANGLES ( ${ }^{\circ}$ ) (SEE FIG. 5.5)
a) IN THE $\mathrm{SbCl}_{3}$

$$
\begin{array}{lll}
\mathrm{Sb}_{1}-\mathrm{Cl}_{1} 2.307(38) & \mathrm{Sb}_{2}-\mathrm{Cl}_{4} & 2.339(27) \\
\mathrm{Sb}_{1}-\mathrm{Cl}_{2}-2.341(16) & \mathrm{Sb}_{2}-\mathrm{Cl}_{5} & 2.335(26) \\
\mathrm{Sb}_{1}-\mathrm{Cl}_{3} 2.301(28) & \mathrm{Sb}_{2}-\mathrm{Cl}_{6} & 2.356(31) \\
\mathrm{Sb}_{1} \ldots \mathrm{Cl}_{4}^{\mathrm{I}} 3.475 & \mathrm{Sb}_{2} \ldots \mathrm{Cl}_{1} \mathrm{~V} & 3.569 \\
\mathrm{Sb}_{1} \ldots \mathrm{Cl}_{6}^{I V} 3.584 & \mathrm{Sb}_{2} \ldots \mathrm{Cl}_{3} & 3.586 \\
\mathrm{Sb}_{1} \ldots \mathrm{Cl}_{5}^{I V} 3.958 & \mathrm{Sb}_{2} \ldots \mathrm{Cl}_{2} & 3.956
\end{array}
$$

$\mathrm{Sb}_{1} \ldots$ Perpendicular distance to naphthalene plane: 3.273.
$\mathrm{Sb}_{2}$... Perpendicular distance to naphthalene plane: $3.374 \AA$.


Fig. 5.5.Composite view $\mathrm{Cl}_{1}-\mathrm{Sb}_{1}$ and $\mathrm{Cl}_{4}-\mathrm{Sb}_{2}$. The bond-distances-angles of second $\mathrm{SbCl}_{3}$ molecule are. shown in parenthesis.
$A N G L E S A R O U N D \mathrm{Sb}_{2}$

|  | $\mathrm{Cl}_{2}$ | $\mathrm{Cl}_{3}$ | $\mathrm{Cl}_{4}^{\mathrm{I}}$ | $\mathrm{Cl}_{6}^{\mathrm{IV}}$ | $\mathrm{Cl}_{5}^{\mathrm{IV}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cl}_{1}$ | $94.87(1.00)$ | $95.15(1.20)$ | 78.91 | 88.97 | 84.42 |
| $\mathrm{Cl}_{2}$ |  | $91.96(1.10)$ | 169.36 | 69.17 | 121.93 |
| $\mathrm{Cl}_{3}$ |  |  | 80.12 | 160.99 | 146.06 |
| $\mathrm{Cl}_{4}^{\mathrm{I}}$ |  |  |  | 118.89 | 66.45 |
| $\mathrm{Cl}_{6}^{\mathrm{II}}$ |  |  |  |  | 52.77 |

ANGIES AROUND $\mathrm{Sb}_{2}$

|  | $\mathrm{Cl}_{5}$ | $\mathrm{Cl}_{6}$ | $\mathrm{Cl}_{1}{ }^{\mathrm{V}}$ | $\mathrm{Cl}_{3}$ | $\mathrm{Cl}_{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cl}_{4}$ | $95.86(1.00)$ | $91.85(1.20)$ | 76.50 | 95.15 | 87.71 |
| $\mathrm{Cl}_{5}$ |  | $91.78(1.00)$ | 166.00 | 70.50 | 122.71 |
| $\mathrm{Cl}_{6}$ |  |  | 76.95 | 161.49 | 145.38 |
| $\mathrm{Cl}_{1}$ III |  |  |  | 121.35 | 69.30 |
| $\mathrm{Cl}_{3}$ |  |  |  |  | 52.26 |

SYMMETRY CODE:

| I $(x, 1-y, 0.5+z)$ | IV | $x, y-1, z$ |
| :--- | :--- | ---: | :--- |
| II $(x+0.5, y-0.5, z+0.5)$ | V | $x, 1-y, z-0.5$ |
| III $(0.5+x, 0.5+y, z)$ |  |  |

b) IN THE 1 I-CHLORONAIMTHALSNE

| $\mathrm{Cr}_{\mathrm{M}^{-}-\mathrm{C}_{7}}$ | 1.795(18) | Cun $\mathrm{Cl}_{1}-\mathrm{C}_{2}$ | 121.0(1.2) | $\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{C}_{10}$ | 119.5(0.9) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{1}-\mathrm{C}_{2}$ | 1.399 (.22) | Cusin $-\mathrm{C}_{1}-\mathrm{C}_{4}$ | $1779.5(1.0)$ | $\mathrm{C}_{9}-\mathrm{C}_{10}-\mathrm{C}_{1}$ | 119.4(0.8) |
| $\mathrm{C}_{2}-\mathrm{CO}_{3}$ | $1.398(13)$ | CLin- $\mathrm{C}_{1} \mathrm{C}_{1} 0$ | 119.7 7(1.2) | $\mathrm{C}_{5}-\mathrm{c}_{10}-\mathrm{C}_{2}$ | 120.2(0.9) |
| $\mathrm{C}_{3}-\mathrm{Ca}_{4}$ | 1.400 (12) | $\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{10}$ | 1.18.7(1.3) | $\mathrm{C}_{4}-\mathrm{c}_{5}-\mathrm{c}_{3}$ | 120.1.(0.8) |
| $\mathrm{C}_{4}-\mathrm{C}_{6}$ | 1.400 (10) | $\mathrm{C}_{2}-\mathrm{C}_{2}-\mathrm{C}_{3}$ | 11.19.6(1.2) |  |  |
| $\mathrm{C}_{5}{ }^{-c_{6}}$ | 1.399 (8) | $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$ | 1.20.3.(1.1) |  |  |
| $\mathrm{C}_{6}-\mathrm{C}_{7}$ | 1.399 (.10) | $\mathrm{c}_{3}-\mathrm{c}_{4}-\mathrm{c}_{5}$ | 219.3 (1.1) |  |  |
| $\mathrm{c}_{7} \mathrm{~m}^{-\mathrm{Cl}_{8}}$ | 1.396(9) | $c_{4}-c_{5}-c_{6}$ | 119.6(0.9) |  |  |
| $\mathrm{C}_{8}-\mathrm{CO}_{9}$ | 1.398(9) | $\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{Ca}_{7}$ | 119.4(0.9) |  |  |
| $\mathrm{C}_{9}-\mathrm{C}_{10}$ | 1.399 (8) | $\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{C}_{8}$ | $1119.9(1.0)$ |  |  |
| $\mathrm{C}_{10}-\mathrm{C}_{5}$ | 1.390(10) | $\mathrm{Cr}_{7}-\mathrm{Ca}_{8}-\mathrm{Ca}_{9}$ | $120 .(0.9)$ |  |  |

 and our-or-wlane distances ( $\AA$ ) ).
i.) Chloronaphthalene: $0.807 \mathrm{x}+0.017 \mathrm{y}+0.590 z-1.445=0$
i.i) $\mathrm{Sb}_{2} \mathrm{Cl}_{2} \mathrm{Cl}_{3} \mathrm{Cl}_{4}{ }^{I} \mathrm{Cl}_{5}{ }^{\mathrm{IV}} \mathrm{Cl}_{6}{ }^{\mathrm{IV}}: 0.820 \mathrm{x}-0.065 \mathrm{x}+0.569 \mathrm{z}-4.487=0$ i.i. $) \mathrm{Sb}_{2} \mathrm{Cl}_{5} \mathrm{Cl}_{6} \mathrm{Cl}_{2}{ }^{\mathrm{V}} \quad \mathrm{Cl}_{2} \mathrm{Cl}_{3}: 0.825 \mathrm{X}+0.069 \mathrm{Y}+0.562 \mathrm{Z}-5.016=0$ DISTANGES OUTMOR-IANE ( $\AA$ )

| ATOM | DIST ( ${ }_{\text {( }}^{\text {® }}$ ) | ATOM | DISST ( ${ }^{\text {( }}$ ) | ATOM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CL}_{\mathrm{N}}$ | 0.079 | $\mathrm{Sb}_{7}$ | 0.041 | $\mathrm{Sb}_{2}$ | -0.020 |
| $\mathrm{C}_{1}$ | 0.037 | $\mathrm{Cl}_{2}$ | -0.098 | $\mathrm{Cl}_{5}$ | 0.148 |
| $\mathrm{c}_{2}$ | -0.140 | $\mathrm{Cl}_{3}$ | 0.143 | $\mathrm{Cl}_{6}$ | -0.215 |
| $\mathrm{C}_{3}$ | -0.0.15 | $\mathrm{Cl}_{4}{ }^{\text {I }}$ | -0.1.61 | $\mathrm{Cl}_{1}{ }^{\mathrm{V}}$ | 0.177 |
| $\mathrm{C}_{4}$ | 0.108 | $\mathrm{Cl}_{5}^{\mathrm{IV}}$ | 0.128 | ${ }^{03} 2$ | -0.086 |
| $\mathrm{C}_{5}$ | 0.060 | $\mathrm{Cl}_{6} \mathrm{IV}^{\text {IV }}$ | -0.037 | $\mathrm{Cl}_{3}$ | 0.018 |
| $\mathrm{c}_{6}$ | 0.003 |  |  |  |  |
| $\mathrm{C}_{7}$ | 0.028 |  |  |  |  |
| $\mathrm{C}_{8}$ | -0.081 |  |  |  |  |

$\mathrm{C}_{9} \quad-0.035$
$\mathrm{C}_{10} \quad-0.009$
(i) The transformation matrix from monoclinic $x, y, z(A) t o$ or... thogonal. $X, Y, Z(\AA)$ coordinates is:

$$
\left[\begin{array}{lll}
1 & 0 & \cos \beta \\
0 & 1 & 0 \\
0 & 0 & \sin \beta
\end{array}\right]
$$











Fic.5.6 A view of the structure down b-axis. Plotted using comp. program. PLUTO.

### 5.8 DRSCRTPTTO AND DISCUSSTON OF THE STHUOYURE

The formation of the compound $25 b \mathrm{Cl} 3_{3} \cdot \mathrm{l-C} \mathrm{C}_{1} \mathrm{H}_{7}$ Cll has been confinmed. The crystal structure is built up of double layers of $\mathrm{SbCl}_{3}$ nolecules alternating with a single layer of l-chloconaphthalene molecules which are tilted $25^{\circ}$ to [001] (see Fig 5.6). Eairs of SbGl 3 molecules form dimens by halogen bridging, at the same time they are part of an infinite chain of molecules by further halogen bridging and these chains in turn are cross linked to others to produce the double sheet already observed in ( $1: 1$ ) $\mathrm{Sbal}_{3} \cdot{ }^{1 \cdots \mathrm{C}_{10}} \mathrm{H}_{7} \mathrm{Br}$. The layens of antimony trichloride and chloronaphthalene are parallel to the bc plane and a. lemate in the "a" direction.

Bond distances and angles in the $\mathrm{SbCl}_{3}$ and $\mathrm{J}_{\mathrm{m}}-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ molecules are listed in Table $5.11 \mathrm{a}, \mathrm{b}, \mathrm{c}$. There are two sets of non-equivalent $\mathrm{SbCl}_{3}$ molecules. Each set contains four molecules related by symetry and both sets simulate a pseudo centric structure. Each non-equivalent antimony atom is bonded to three chlorine atoms (average 2.32 and $2,34 \AA$ respectively), and are close to three further chlorine atons -- from non-mequivalent molecules ( $3.48,3.58,3.96 \AA, 3.57$, 3.58 and 3.95 \&) - and are situated near to a chloronaphthalene molecule $\left(3.27\right.$ and $3.37 \AA$ ). $\mathrm{Sb}_{2}$ is closer to the first ring caxrying (17 (\%) $\mathrm{Sb}_{2}$ to the second one from the opposite side of the aronatic molecule (5.g. 5.7) in a similar arrangement to that found in the naphthalene compound, $2_{2 S b l}^{3}{ }_{3} \mathrm{C}_{10} \mathrm{H}_{8}$ (Hulme and Szymanski, 1969).

The two distances of interaction, Sb...Cl, are appreciably shorter than the corresponding Van der Waals radil, and one is approxinately equal to it, so that the coordination number of the two antimony atoms becomes seven instead of eight found in the crystal structure of $\mathrm{SbOl}_{3}$ alone (I,ipka, 1979). It seems that the interaction with the large
(*) Cl and $\mathrm{Cl}_{7}$ are usen interchangeabiy to denote the chilorine
atached to the naphthyl group.


Fig 5.7.The projection of the antimony trichloride molecule onto the 1 -chloronaphthalene plane.
Plotted using Comp. Prog. Pluto.
$\pi$-system of $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ blocks further interaction. The geometry around the Sb atoms is similar to that found in the $\mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$ complex, that is a distorted pentagonal bipyramidal axrangement, where $\mathrm{Sb}_{1}$, $\mathrm{Cl}_{2}, \mathrm{Cl}_{3}, \mathrm{al}_{4}{ }^{\mathrm{I}}, \mathrm{Cl}_{5}^{\mathrm{IV}}, \mathrm{Cl}_{6}^{\mathrm{IV}}$ and $\mathrm{Sb}_{2}, \mathrm{Cl}_{5}, \mathrm{Cl}_{6}, \mathrm{Cl}_{3}, \mathrm{Cl}_{2}, \mathrm{Cl}_{1} \mathrm{~V}$ are approximately located in the equatorial plane (Table 5.11c, Fig. 5.5). The out-of-plane distances for each atom are listed in Table
5.11c. According to the proposed geometry, it would seem that the lone electron-pair on each Sb atom is stereochemically inactive.

In both molecules of $\mathrm{SbCl}_{3}$, two bonds lie in a plane approximately parallel to that of chloronaphthalene with the third nearly perpendicular and away from that plane (see Fig 5.8). Thus $\mathrm{Cl}_{1}-\mathrm{Sb}_{\mathcal{L}}$ is directed towards $\mathrm{C}_{2}$, while $\mathrm{Cl}_{4}-\mathrm{Sb}_{2}$ points towards the $\mathrm{C}_{8}-\mathrm{C}_{9}$ bond. (Fig. 5.7). The distances from the two independent antimony atoms to the plane of the corresponding chloronaphthalene molecule are 3.27 and 3.37 A respectively, which axe shorter than the van der waals radii. A similac situation is found in the $2 \mathrm{SbCl}_{3}{ }^{\circ}$ naphthalene (Hulme and Szymanski, 1969), where the two $\mathrm{SbCl}_{3}$ molecules related by a centre of symmetry (located in the naphthalene molecule plane) axe situated on oppossite sides of the plane of the axomatic molecule, giving an alternating distribution of organic and inorganic layers. The distance between Sb atoms and the plane of the organic component of the compound under investigation has an average of $3.32 \AA$. The fact that this distance is of the seme order of magnitude ( $3.20 \AA$ ) as that of the $2 \mathrm{SbCl}_{3} \cdot \mathrm{C}_{10} \mathrm{H}_{8}$ complex seems to suggest that wi.thin the $2 \mathrm{SbCl}_{3}$. $1-\mathrm{C}_{10} \mathrm{H}_{\mathrm{H}} \mathrm{Cl}$ compound there is also electron donation from the aromatic $\pi$-system to the Sb atoms. There is no significant alteration in the Sbual bonds opposite to the interaction with the $\pi$ "system as obsexved
 that the electron-donor-acceptor interaction between the $\pi$-rystem and the antimony atom is weaker in $2 \mathrm{SbCl}_{3} \cdot{ }^{1} \cdots \mathrm{C}_{1} 0^{\mathrm{H}_{7}}$, Cl , compared with that of




Fig. 5.8 A view of the structure down $\mathrm{Cl}(6)-\mathrm{Sb}(2)$. plotted using Comp. Prog. PLUTO.
 the interaction for different systems could be found in the type of substituent in the naphthalene molecule. More detailed discussion of this point will be given later in the general conclusion.

There is no significant variation in the bond distances and angles of the chloronaphthalene which could suggest any interaction between
 contrast to that found in the $2 \mathrm{SbCl}_{3} \cdot \mathrm{C}_{10} \mathrm{H}_{8}$ complex, where there are remarkable a.lterations in the bond distances and angles adjacent to the possible sites of interaction between Sb and carbon atoms of the naphthalene molecule. This might suggest that the interaction in the present compound is with the delocalized $\pi$-system rather than with any particular atom, or that interaction is much weaker in the present case.

### 6.0 STUTY OF THS ( $1: 1$ ) SbCl $3 \cdot 1$ IODONASHPHALANE COMPJEX.

### 6.1 PREPARATION OE 1-IONONAFHTHALENE

1-iodonaphthalene was prepared following a standard procedure described in the literature (Birchanbach and Goubeau, 1932).

The method of preparation consisted in the iodination of naphthalene in the presence of silver perchlorate. An altexnative method (Varma et.al. 1933) via nitration, reduction and diazotation was tried but gave much less pure product.
0.22 mol of naphthalene was dissolved in half its weight of ether to which solution $0.1 \mathrm{~mol} \mathrm{AgClO}_{4}, 0.2 \mathrm{~mol}$ iodine and 0.1 mol magnesium oxide were added. The mixture mas stimend and aerluxed $a \div 55^{\circ} \mathrm{C}$ until all the iodine had been used as evidenced by the disappearance of the dark colour.

The solution was filtered, poured into water and residual jodine was extracted from the organic layer with sodium thiosulphate. The organic layer and several ethereal extracts of the aqueous layer were combined. The ether and any excess ot' naphthalene were distilled off under reduced pressure a.t $150^{\circ} \mathrm{C}$, leaving the I-iodonajhthalene to distil as an oily liquid at $200^{\circ} \mathrm{C}$. The l-iodonaphthalene was purified by redistill ation.

The mass spectrum of the final product showed two main peaks. The first at $\mathrm{m} / \mathrm{e}=127$ which was interpreted as overlapped peaks due to [I] and [ $\left.\mathrm{C}_{10} \mathrm{H}_{7}\right]^{7}$, and a second one at $\mathrm{m} / \mathrm{e}=254$ due to $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}\right]$. The purity of the product was checked by a Gas Cromatography method, using a $20 \%$ EGSS $-Y 5^{\prime} \times \frac{1}{4}$ " column at $200^{\circ} \mathrm{C}$ with $N_{2}$ as carrier at 22 psi. Two spectra were obtained. One for naphthalene alone and the other for the l-jodonaphthalene sample. From the comparison of the two spectra
no naphthalene peak was noticed in the l-iodonaphthalene spectrum although there was a small additional peak probably due to 2-iodonaiphthalene (see Table 6.1). It is debateable whether or not this very small \% impurity could be the cause of the disorder subsequently observed.

TABLE 6.1

FREPARATION $\operatorname{TF}$ I-IODONAYHTHAIENE
 $\begin{array}{lllllllll}28.16 & 50.8 & 20.75 & 4.03 & 15.0 \mathrm{ml} & 51.4 & 99.8 & 0.2\end{array}$
(I) cf. the theoretical yield of $80 \%$ mentioned in the literature.(Birchenbach and Goubeau, 1932).

### 6.2 THE EHASE DIAGRAM FOR THE SbCl $3 \cdot 1-\mathrm{C}_{10} 0^{\mathrm{H}} \mathrm{I}$ I SYSTEM.

A phase diagram was constructed, following similar iroceduces to those for the frevious systems (Ch. 4 and 5), in order to establish compound formation and the appropriate stojchsometry. Results shown in Table 6.2 and Fig. 6.1 indicate that antimony trichloride forms a (1:1) compound with l-iodonaphthalene.

TABE 6.2


Fig. 6. $1 \mathrm{SbCl}_{3}{ }^{-1 \text { - Iodonaph- }}$ thalene system.

| \% MOI $\mathrm{SbCl}_{3}$ | $\mathrm{P}^{\circ} \mathrm{C}$ |
| :---: | :---: |
| 5.0 | $-7.5 \pm .0$ |
| 22.4 | 6.01 .5 |
| $27 \cdot 3$ | $10.0^{ \pm} 1.5$ |
| 37.2 | $20.0 \pm 2.0$ |
| 44.7 | $25.0 \pm 1.0$ |
| 52.7 | $21.0 \pm 1.0$ |
| 61.2 | $27 \cdot 0 \pm 0.5$ |
| 68.8 | $25.0 \pm 2$ |

## 

Crystals of antimony trichloride were dissolved in $10-1.5 \%$ excess of l-iodonaphthalene at about $40^{\circ} \mathrm{C}$. On cooling, the systern gave a vaxiety of yellow crystals.

Analysis for the components in the crystals was carried out in the usual way, i.e. for Sb (III) by titration vs. 0.02 gM KLO 3 and for 1-iodonaphthalene by the NHa method described in Chapter 2. Results of these analysis are shown in Table 6.3.

TABLE 6.3

(2) NMR Reference compound was $\mathrm{CH}_{3}$ I.
(3) Although the ratios suggest (1:1) both sbriz and I-I Iod nachthalene percentages are high (Theory: $47.3: 52.7 \%$ ).

### 6.4 PRRLTMTNARY TNPORWATION AND UNIT CELL DETYERMTNATYON

A square prismatic orystal which seemed single was chosen and sealed off in a Jindemann tube (diam. $=0.25 \mathrm{~mm}$ ). Examination through the polarizing microscope showed straight extinction, from which it may be inferred that the crystal must be non-cubic and that one of the crystallographic axes may coincide with the direction of extinction.

The crystal was mounted on the gonioneter head of the x-ray diffraction apparatus with the prismatic axis "c" parallel to the oscillation dicection.

Oscillation and Weissenberg photographs were taken using Zirconium filtered $M o-K \propto x$-radiation, with the cxystal oscillating about " C ". These photographs did not show any mirror symmetry, from which it was deduced that the crystal belonged to the triclinic system, space group PI. or PII. On the oscillation Phutograph odd layers showed horizontal streaks with specific reflections embedded. The odd level Weissenberg photographs showed continuous streaks parallel to $a^{*}$ which suggested the presence of disorder.

Nevertheless cell paxaneters (Table 6.4) were evaluated from the measurements of the oscillation and even-layer Weissenberg photographs, the angles $\alpha$ and $\beta$, involving computation using a least squaxe angular lag progran (Ch. 2).

## TABLE 6.4

a) Measured Gell Pacaneters For Crystals of $\mathrm{Sbal}_{3} \cdot{ }^{1 \cdots \mathrm{C}_{20}} \mathrm{H}_{7} \mathrm{I}$ (using MoKco, Zx filtered Radiation).

(*) $2 \mathrm{R}=57.296 \mathrm{~mm}$

| $\pm_{n}$ | $s^{t}$ (min) | $\theta^{0}=s_{s} / 2$ | $2 \sin \theta_{n}$ | $\xi$ a | $\xi_{a}$ (mean) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 38.60 | 19.300 | 0.66103 | 0.06009 |  |
| 9 | 31.42 | 15.710 | 0.54154 | 0.06017 |  |
| 6 | 20.83 | 10.415 | 0.36155 | 0.06026 |  |
| 5 | 17.27 | 8.635 | 0.30028 | 0.06010 |  |
| 4 | 13.85 | 6.925 | 0.24114 | - 0.06028 |  |
| 3 | 10.35 | 5.175 | 0.18039 | 0.06013 |  |
| 2 | 6.88 | 3.440 | 0.12001 | 0.06000 | $0.06015^{ \pm} 0.00012$ |
| $\pm_{n}$ | $s^{\prime}(\mathrm{mm})$ | $\theta^{\circ}=s^{t} / 2$ | $2 \sin \theta_{n}$ | $\xi$ b | $\xi_{\mathrm{b}}$ (mean) |
| 6 | 36.56 | 18.280 | 0.62732 | 0.10455 |  |
| 5 | 30.28 | 15.140 | 0.52236 | 0.1044 4 |  |
| 4 | 24.17. | 12.085 | 0.41873 | 0.10468 |  |
| 3 | 18.02 | 9.010 | 0.31321 | 0.10440 |  |
| 2 | 12.00 | 6.000 | 0.20906 | 0.10453 | - |
| 1. | 6.00 | 3.000 | $0.1046 \%$ | 0.1 .0467 | $0.10455^{10} 0.00012$ |

(1) $Y$ is the respective inter-layer separation in the oscillation photograph.
$s^{\prime}$ is definer in fig. 2.3.4 p.55.

Measurement of $\gamma^{*}$

| $\begin{aligned} & \text { DIST. (D) BETWEMN } h_{0} \mathrm{k}_{1} \mathrm{O} \\ & \text { \& } \mathrm{h}_{2} \mathrm{k}_{-2} \mathrm{O} \quad(\mathrm{~mm}) \end{aligned}$ | $\begin{gathered} 1 . x \sqrt{5} \\ \left(^{\circ}\right) \end{gathered}$ | $\begin{gathered} \text { Mean } \gamma^{\prime *} \\ \left({ }^{\circ}\right) \end{gathered}$ |
| :---: | :---: | :---: |
| 29.90 | 66.858 |  |
| 29.85 | 66.747 |  |
| 29.95 | 66.970 | $66.86 \pm 0.10$ |

Measurement of $\alpha$ and $\beta$ (Ang. Lao Method):

| Reflections |  | Angle ( ${ }^{\circ}$ ) |  |
| :---: | :---: | :---: | :---: |
| $h_{2} k_{1}{ }_{1}$ | $\mathrm{n}_{2} \mathrm{k}_{2}{ }_{2}$ | $\psi_{0}$ | $\psi_{c}$ |
| 1 $\overline{2} 2$ | 3 I2 | 63.84 | 63.34 |
| $1 \overline{3} 2$ | 3 І̆2 | 74.01 | 74.09 |
| $\overline{3} 02$ | \} \overline { 2 } 2 | 66.30 | 66.36 |
| З 02 | $0 \overline{2} 2$ | 83.07 | 83.13 |
| 3. 12 | 工 $\overline{2} 2$ | 105.43 | 105.42 |
| $\overline{2} 12$ | こЈ 2 | 97.83 | 77.99 |
| 312 | З ${ }^{\text {T }}$ | 69.32 | 69.3 .1 |
| З 12 | $2 \overline{32}$ | 75.91. | 75.78 |
| $3 \overline{1} 4$ | 014 | 66.42 | 66.45 |
| $3 \overline{2} 4$ | 104 | 62.39 | 62.42 |
| $1 \overline{2} 4$ | 104 | 94.47 | 94.33 |
| $\overline{3} 04$ | 12 2 | 85.42 | 85.30 |
| $\overline{314 .}$ | 314 | 79.94 | 79.94 |
| $\overline{3} 14$ | $\overline{3} 24$ | 99.28 | 99.25 |

Hence: $\langle\alpha\rangle=104.70^{\circ}$

$$
\langle\beta\rangle=102.19^{\circ}
$$

b) Measured and Calculated Cell Paxameters for Crystals of $\mathrm{SbCl}_{3} \cdot \mathrm{Il}^{-\mathrm{C}_{10}}{ }^{\mathrm{H}} \mathrm{H}^{\mathrm{I}}$ (using MoK $\alpha \quad$ Zr-filtered radiation).

| DIRECT$\text { IN } \AA \operatorname{AND}\left({ }^{\circ}\right)$ |  | CRLL <br> PARAMETER | RECIPROCAL <br> IN RLJ. |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 13.15 (4) | 1.3 .15 | a | 0.06015 (12) |
| $7.65(3)$ | 7.65 | b | 0.10455 (12) |
| 15.01 (9) | 7.51 | c | 0.05163 |
| 104.7(1) | 104.7 | $\alpha$ | - 69.74 |
| 102.2 (1) | 102.2 | $\beta$ | 7.1 .45 |
| 108.5 (1) | 108.5 | $\gamma$ | 66.86 (10) |
| 1312.4 | 656.2 | V | 0.000762 |
|  |  | $\zeta_{0}$ | 0.04738 (30) |

The Delaunay reduction procedure (Int. Tables for X-ray Crystallography ; p. 626 Vol.I), did not simplify the cell to one of higher symmetry.

Flotation in a mixture of (2:1:1) Bromoform + Iodoethane + 1,2 -dibromoethane gave $D_{0}=2.29 \mathrm{Mgm}^{-3}$ for the observed density of the complex. Hence $Z=3.75(\sim 4.0)$ for $S b b l l_{3} \cdot 1-G_{10} H_{7} I(M=482.0)$, leading to $D_{c}=2.44 \mathrm{Mgm}^{-3}$.

Intensity data corresponding to even layers 0 to 6 about " c " were collected from a particular crystal (about $0.1 \times 0.1 \times 0.2 \mathrm{~mm}$ ) using zirconium filtered $M o K_{\alpha}$ radiation and a multiple film pack in a Weissenberg camera. The intensities of the reflections were evaluated visually and were corrected for Lorentr and polarisation effects but not for absorption or extinction ( $\mu_{\text {NoK }}=44.96 \mathrm{~cm}^{-1}$ ). This gave a set of 680 structure amplitudes.

### 6.5 DETERMINATION OF THE APPROXTHATE STRUCMURE( $\%$ )

A threemdimensional Patterson map was computed using all the hkl reflections in order to locate the heavy atoms in a pseudo cell half the size of the real cell. This showed the following highest vector peaks (Table 6.5a):

TABITH 6.5a
PATVERSON COORJINATES ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) O TH TH STRONGEST
PEAKS IN 'THE FULI CRLL AND HALF CRIL.

| No. |  |  | $\begin{aligned} & \operatorname{fullil}_{\text {cell. }}(2) \\ & \hline \end{aligned}$ | $\begin{gathered} \text { half } \\ \text { ce.l1 } \\ W^{\prime} \end{gathered}$ | Felative <br> Height |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | U | V |  |  |  |
| 1 | 0.000 | 0.000 | 0.000 | 0.000 | 3601 |
| 2 | 0.000 | 0.000 | 0.177 | 0.354 | 1104 |
| 3 | 0.580 | 0.709 | 0.248 | 0.496 | 922 |
| 4 | 0.420 | 0.194 | 0.189 | 0.378 | 860 |
| 5 | 0.635 | 0.139 | 0.061 | 0.122 | 850 |
| 6 | 0.635 | 0.230 | 0.110 | 0.220 | 782 |
| 7 | 0.780 | 0.050 | 0.138 | 0.276 | 775 |
| 8 | 0.000 | 0.000 | 0.323 | 0.646 | 1104 |
| 9 | 0.420 | 0.291 | 0.252 | 0.504 | 922 |
| 10 | 0.580 | 0.805 | 0.312 | 0.622 | 860 |
| 11 | 0.365 | 0.861 | 0.439 | 0.878 | 850 |
| 12 | 0.365 | 0.770 | 0.390 | 0.780 | 782 |
| 13 | 0.220 | 0.950 | 0.362 | 0.724 | 775 |
| 14 | 0.00 | 0.00 | 0.500 | 3.00 | 3605 |

(*) Comp. Irog. "PATTI3D", "jARIBIES" wxitten by R. Hulme and and SHELX-78 written by G. Sheldrick were used in solving
this structure.
(2) Equivalent centrosymmetrically related leaks are not listed.

Considering four formula units of $\mathrm{SbCl}_{3} \cdot{ }^{-1-\mathrm{C}_{10}} \mathrm{H}_{7} \mathrm{I}$ in the uni.t cell, there are 4 iodine, 4 antimony, 12 chlorine and 40 caxbon atoms (ignoring hydrogen) or two formula units of $\mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7}$ I in the half cell, with 2 iodine, 2 antimony, 6 chlorine and 20 carbon atoms.

Of the expecter total of $60 \times 59=3540$ vector peaks in $P(U, V, W)$, the $56 I-T, I-S b, S b-S b$ vectors will be the greatest in height (except when overlapping occurs)." This number would fall to 28 vector peaks in the half cell, although a smaller number of peaks were observed, probably due to overlapping.

Attenpts to interpret the vector map in the full cell did not give a reasonable result either in space group Pl ox FI. Thexefore an intexpretation was sought in the pseudo cell (half cell) initially assuming $\overline{Y I}$ and later a non-centric PI. structure. Attempts to evaluate a trial position for the iodine or antimony atoms using the strongest vector peaks gave no satisfactory results in texms either of the R factor (which renained above 0.55 for 680 reflections) or of structural features. However a reasonable a factor ( $\sim 0.35$ ) resulted when vector peak No. 13 (at 0.220 .950 .72 ) was assumed to be an $I_{1}-I_{2}$ vector, so defining the coordinates of these two iodine atoms. As the structure is assumed to be non"centric, one iodine (1) may be fixed randomly (at 0.2500 .97000 .7600 ) so that iodine (2) must be placed at ( $0.030,0.020,0.036$ ).

A difference synthesis, computed using 8,11 the observed structure amplitudes with signs calculated from the two iodine atoms as located, showed positions corcesponding to the two antimory atoms and two attached chlorine atoms (one on each antinony). They were $\mathrm{Sb}(1)$ at $(0.6050,0.8100,0.6320), \mathrm{sb}(2)$ at $(0.680,0.270,0.270) \mathrm{cl}(2)$ at ( $0.770,0.990,0.500$ ) and $01 .(6)$ at ( $0.507,0.012,0.234$ ). Sma.1. adjustment was also made to the iodine rositions.

From further difference syntheses, calculated using all the observed amplitudes with signs given by , the already located atoms it was possible to find the remaining chlorine atoms. A final difference synthesis computed with signs calculated from two iodine, two antimony and six chlorine atoms suggested a possible position for the naphthalene groups. At this stage $R$ factor was 0.250 for 680 reflections and the structure corresponded to reasonable bond-distances and ang:les.

### 6.6 REPTNEMENT OF THE STRUCTURE.

Two Iodine, two antimony and six chlorine atoms were first refined isotropicall.ly by a full-matrix least squares procedure. Two cycles gave an $R=0.230$ for a,ll the observed reflections.

It was noticed that the differences between $F$ observed and $F$ calculated of two particular reflections were very lange and therefore they were omjitted in further calculations. Two more cyoles of isotropic refinement lowered $R$ to 0.210 .

At this stage the najhthyl groujs were introduced as idealized units associater with the iodine atoms. Their lositions were a,llowed to refine isotrojically while they were geometrically constrained to give ideal molecules of $1-\mathrm{C}_{10} \mathrm{H}, \mathrm{I}$. Several cycles of least squares refinement gave an R factor of 0.196 for 678 reflections.

At this point it was observed that some of the bond-distances in the $\mathrm{SbCl}_{3}$ molecules had increased. Several attempts were made to find a. structure with a geometry nearer to that of the "ideal" $\mathrm{SbCl}_{3}$ molecule (Ii.pka, A., 2979). However refinement of such structures was unsuccessful both in terms of $R$ factor and geometry. Since the structure is known to be disordered it was decided to stop refinement here. The observed structure amplitudes and calculated structure factors are shown in Appendix D.

The final positional and themal parameters with theix respective standard deviations (obtained from the inverse matrix of the final. cycle of least squares refinement) are listed in Table 6.6. Bond distances and angles are in Table 6.\%


Fig. 6.2
Plotted using Comp. Prog. STEREO

TABMTi 6.6

## 

TO THE HALE CREL. esd's IN PAREMTHSTS
(For atom numbering see Fig 6.2)

| ATOM | x | y | $z$ | U* |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{1}$ | $0.2584(6)$ | 0.971 .5(). | 0.76418() | $0.0010(4.77)$ |
| $I_{2}$ | 1.0419(13) | $0.0262(25)$ | $0.0321(40)$ | $0.0010(40)$ |
| $\mathrm{Sb}_{1}$ | $0.61194(16)$ | $0.8335(28)$ | 0.6319 (42) | $0.0067(40)$ |
| $\mathrm{Cl}_{1}$ | $0.7501(60)$ | $0.8680(125)$ | $0.9935(.180)$ | $0.0432(242)$ |
| $\mathrm{Cl}_{2}$ | $0.7688(58)$ | 0.9924 (94) | $0.5335(140)$ | $0.0295(179)$ |
| $\mathrm{Cl}_{3}$ | $0.5955(4.1)$ | 1.1435(71) | $0.8353(110)$ | $0.0010(129)$ |
| $\mathrm{Sb}_{2}$ | $0.6813(16)$ | $0.2714(27)$ | 0.2743 (42) | 0.0034 (39) |
| $\mathrm{Cl}_{4}^{4}$ | 0.6909 (33) | $0.4237(160)$ | $0.6269(180)$ | 0.11 .55 (350) |
| $\mathrm{Cl}_{5}$ | 0.5846 (49) | $0.5122(83)$ | $0.1992(139)$ | $0.0209(150)$ |
| $\mathrm{Cl}_{6}$ | 0.5066 (48) | $0.0130(80)$ | 0.2399 (130) | 0.0031 (140) |
| $\mathrm{a}_{11}$ | 0.2784 | $0.807!$ | 0.5053 | $0.0010(500)$ |
| $\mathrm{C}_{12}$ | 0.2410 | 0.8357 | 0.3302 | $0.4400 \div 1500)$ |
| $\mathrm{C}_{13}$ | 0.2540 | 0.7288 | 0.1612 | 0.0010 (568) |
| $\mathrm{C}_{14}$ | 0.3044 | 0.5937 | 0.1673 | 0.0757 (850) |
| $\mathrm{C}_{15}$ | 0.3418 | 0.5655 | 0.3424 | 0.1986 (1500) |
| ${ }^{1} 6$ | 0.3921 | 0.4304 | 0.3485 | $0.1504(1100)$ |
| $\mathrm{C}_{17}$ | 0.4295 | 0.4022 | 0.5236 | 0.0075 (64.9) |
| $\mathrm{C}_{18}$ | 0.4165 | 0.5090 | 0.6926 | $0.1958(1500)$ |
| $\mathrm{C}_{19}$ | 0.3661 | 0.644 .1 | 0.6865 | $0.0410(800)$ |
| $\mathrm{C}_{10}$ | 0.3287 | 0.6723 | 0.5714 | $0.5903(1500)$ |
| $\mathrm{C}_{21}$ | 1.0281 | 0.1984 | 0.2953 | 0.0063 (593) |
| $\mathrm{a}_{22}$ | 1.0603 | 0.1643 | 0.4689 | $0.003 ?$ (700) |
| $\mathrm{c}_{23}$ | 1.0512 | 0.2772 | 0.6390 | $0.0549(700)$ |
| $\mathrm{c}_{24}$ | 1.0100 | 0.4242 | 0.6355 | $0.0042(500)$ |
| $\mathrm{c}_{25}$ | 0.9778 | 0.4582 | 0.4619 | $0.0010(500)$ |
| $\mathrm{C}_{26}$ | 0.9366 | 0.6052 | 0.4584 | $0.0456(800)$ |
| $\mathrm{c}_{27}$ | 0.9045 | 0.6393 | 0.2848 | $0.0020(8))$ |
| $\mathrm{c}_{28}$ | 0.9135 | 0.5264 | 0.1147 | 0.1439 (300) |
| $\mathrm{C}_{29}$ | 0.9543 | 0.3794 | 0.312 | $0.0280(651)$ |
| $\mathrm{a}_{30}$ | 0.9869 | 0.3453 | 0.2918 | $0.0010(497)$ |

(*) $B=8^{\prime} \pi^{2} U$, where isotropic thermal factor is $\exp \left[-B\left(\frac{\sin \theta}{\lambda}\right)^{2}\right]$

## TABLE 6.7

BOND DISTANGES ( $\AA$ ) AND ANGLES ( ${ }^{\circ}$ )
a) IN $\mathrm{THEE} \mathrm{SbCl}_{3}{ }^{\circ}$

$$
\begin{aligned}
& \mathrm{Sb}_{1}-\mathrm{Cl}_{\mathrm{J}}: 2.78(9) \quad \mathrm{Sb}_{2}-\mathrm{Cl}_{4}: 2.57 \text { (9) } \\
& \mathrm{Sb}_{1}-\mathrm{Cl}_{2}: 2.33(8) \quad \mathrm{Sb}_{2}-\mathrm{Cl}_{5}: 2.65(6) \\
& \mathrm{Sb}_{1}-\mathrm{GI}_{3}: 2.62(5) \quad \mathrm{Sb}_{2}-\mathrm{Cl}_{6}: 2.42(6) \\
& \langle\mathrm{Sb}-\mathrm{Cl}\rangle \mathrm{2} .58 \quad\langle\mathrm{Sb}-\mathrm{Cl}\rangle: 2.57 \\
& \mathrm{Sb}_{1} \ldots \mathrm{Cl}_{5}: 3.40(8) \quad \mathrm{Sb}_{2} \ldots \mathrm{Cl}_{2}^{\mathrm{II}}: 3.52 \text { (8) } \\
& \mathrm{Sb}_{1} \ldots \mathrm{Cl}_{4}: 3.54(8) \quad \mathrm{Sb}_{2} \ldots \mathrm{Cl}_{3}^{\mathrm{TIT}}: 3.01 \text { (7.) } \\
& \mathrm{Sb}_{1} \ldots \mathrm{Cl}_{6}^{1 \mathrm{C}}: 3.77 \text { (7) } \quad \mathrm{Sb}_{2} \ldots \mathrm{cl}_{1}^{\mathrm{ITI}}: 3.75 \text { (7) } \\
& \mathrm{Sb}_{1} \ldots \text { plane of aromatic molecule }(1)=3.01 \\
& \mathrm{Sb}_{2} \ldots \text { plane of aromatic molecule }(2)=3.18
\end{aligned}
$$

ANGUSS AROUND Sb.

|  | $\mathrm{Cl}_{2}$ | $\mathrm{Cl}_{3}$ | $\mathrm{Cl}_{4}$ | $\mathrm{Cl}_{5}$ | $\mathrm{Cl}_{6}^{\mathrm{I}}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{Cl}_{1}$ | $96.9(2.8)$ | $83.1(2.4)$ | $66.3(2.5)$ | $125.9(2.1)$ | $156.6(1.8)$ |
| $\mathrm{Cl}_{2}$ |  | $98.3(2.0)$ | $95.3(2.5)$ | $75.0(2.2)$ | $71.9(2.4)$ |
| $\mathrm{Cl}_{3}$ |  |  | $147.5(2.5)$ | $1.50 .5(2.0)$ | $78.7(1.7)$ |
| $\mathrm{Cl}_{4}$ |  |  |  | $61.6(2.0)$ | $133.8(3.0)$ |
| $\mathrm{Cl}_{5}$ |  |  |  |  | $72.2(1.5)$ |

ANGLES AROUND $\mathrm{Sb}_{2}$

|  | $\mathrm{CI}_{5}$ | $\mathrm{Cl}_{6}$ | $\mathrm{CII}_{2}^{\mathrm{II}}$ | $\mathrm{CIII}_{3}^{\mathrm{III}}$ | CIII |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CI}_{4}$ | $86.6(2.8)$ | $84.5(3.0)$ | $71.3(2.8)$ | $158.3(2.5)$ | $136.5(3.0)$ |
| $\mathrm{Cl}_{5}$ |  | $94.7(1.9)$ | $156.4(2.4)$ | $75.0(2.1)$ | $137.4(2.8)$ |
| $\mathrm{Cl}_{6}$ |  |  | $75.7(2.0)$ | $85.8(2.2)$ | $85.7(1.9)$ |
| $\mathrm{Cl}_{2}$ |  |  |  |  | $124.7(1.6)$ |
|  |  |  |  |  | $64.1(2.2)$ |

b) IN THE $1-I O D$ WAPHPAL ME BOUCUBS Constrained values used are I-C:2.15 and i-i:1.40, all angies $120^{\circ}$.
c) $I_{1} \ldots I_{2}^{I I}: 3.88 \quad I_{1}-a p$ plane (2) $=3 \cdot 71$.
$I_{2}-$ a plane $(1)=3.99$

i) l-Iodonarithalene (1):
$0.692 X+0.691 Y+0.21 .0 z-4.510=0$
Out of plane distances $\mathrm{Sb}_{2}: 3.01$. $\left.\mathrm{Cl}_{1}: 3.81 \quad \mathrm{Cl}\right]_{2}: 5.04 \quad \mathrm{Cl}_{3}: 3.55$
I(1) and C atoms all zero
ii) I-Iodonaththalene (2):
$0.748 x+0.627 X+0.217 Z-10.275=0$
Out of plane distances $\quad \mathrm{Sb}_{2}: 3.18 \quad \mathrm{cl}_{4}: 3.20 \quad 01_{5}: 3.38 \quad 01_{6}: 5.57$ $I(2)$ and $C$ atoms all. zero.

SYTMATRY COEE:
I) $x \quad y * 1 \quad z$
II) $x \quad y^{-1} \quad z$

IIII) $x y^{-1} . z^{-1}$
(3) The transformation matrix from triclinic x y $z(\AA)$ to orthogonal $X Y Z(\AA)$ coordinates i.s :

$$
\left[\begin{array}{l}
X \\
X \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
1 & \cos & \cos & \\
0 & \sin & -\cos & \sin \\
0 & 0 & \sin & \sin
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$



### 6.7 WSGRIETION ABD DISCUSSTON OR CHE STRUCTURE

 established. The $x$-ray diffraction pattem of its crystal suggests a disordered structure. Thus the oscillation photographs showed continuous lines together with sharp reflections in the odd layers. Also, continuous streaks parallel to the $a^{* /-a x i s}$ in the odd layers of the Neissenberg photographs about ' C ' were observed. This seems to suggest that there is an ordered cell assembled wi.th another in a disordered full cell $(a=13.15, b=7.65, c=15.01 \quad \alpha=104.7$, $\beta=102.2, \gamma=108.5$ ). The disordered structure relates to the a direction. This is probably one of the reasons for the difficulties found in solving the structure in the full cell. The present structure was solved by reference to a halforcell with dimensions $a=13.1 .53, b=7.646, c=7.506, \alpha=104.7, \beta=102.2$ and $\gamma=108.5$. The approximate nature of the structure of the conplex limits any description to a consideration of general featuces.

The crystal structure is built up of double layers of $\mathrm{Sbll}_{3}$ molecules alternating with double layers of l-iodonaphthalene tilted about $25^{\circ}$ to $[010]$ (see Fi.g 6.3). The two $\mathrm{Sbal}_{3}$ molecules are linked to one another by $\mathrm{Sb} . \mathrm{Cl}$ bridging $\left(\mathrm{Sb}_{2} \ldots \mathrm{Cl}_{5}: 3.40 \AA, \mathrm{Sb}_{2} \ldots \mathrm{Cl}_{3}: 3.01 \AA\right.$, et. see Fig 6.4) so that an infinite chain of molecules axe observed. These chains in tum are more loosely cross linked to others to produce the molecular sheet.

The structure suggests plane-to-plane molecular stacking
of $1-G_{10} H_{r}$ I. moleciules (The separation between molecules $P$ and $Q$ (Fig 6.3) is about 3.208), in an arrangement similar to that found in the crystal structure of 1 -Bromonaphthalene $\cdot \mathrm{Sbal}_{3}$ comolex. The layers of antimony trichloride and l-iodonaphthalene molecules are


Fig. $6.4^{\circ} \mathrm{Sb}-\mathrm{Cl}$ Bonding and $\mathrm{Sb} . . \mathrm{Cl}$ interac. tions in the $\mathrm{SbCl}_{3}$ molecules.
approximately paxallel to the be plane and alternate in the a direction. Bond distances and angles in the $\mathrm{SbOl}_{3}$ and ${ }^{1-\mathrm{C}_{1}} \mathrm{Cl}_{7} \mathrm{I}$ I molecules are listed in lable 6.7. There are two non-equivalent molecules. Both the non-equivalent antimony atoms are bonded to three chlorine atoms, and are close to a further three chlorine atoms - $\mathrm{Sb}_{1}$ is close ${ }^{(*)}$ to $\mathrm{Cl}_{4}\left(3.54 \mathrm{~A}_{\mathrm{A}}\right), \mathrm{Cl}_{5}(3.40 \AA)$ and $\mathrm{Cl}_{6}^{\mathrm{I}}$ ( 3.77 A ); $\mathrm{Sb}_{2}$ to $\mathrm{Cl} \mathrm{II}_{2}^{I I}(3.54 \AA)$, $\mathrm{CI}_{3}^{\operatorname{ITT}}\left(3.01 \AA\right.$ ) and $\mathrm{CI}_{2}^{\operatorname{III}}(3.75 \AA)$. Furthermore the Sb atoms are situated near to an iodonaphthalene molecule (3.0.1 and $3.18 \AA$ respectively). These distances are appreciably shortex than the sum of the corresponding van der Waals radii ( 4.05 A, Bondi, A., 1964), so that the coordination number of the two Sb atoms becomes seven. The geonetrical environment in both Sb atoms thus corresponds to a distorted pentagonal bipyramid. This geometrical arrangement around the Sb atoms clearly differs from that in the crystal structuee of $\mathrm{SbOl}_{3}$ alone (Lipka A., 1979), but is similar to those found in the $\mathrm{SbCl}_{3}{ }^{\circ}$ $1-\mathrm{C}_{10} \mathrm{H}_{7} 3 \mathrm{Br}$ and $2 \mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$ compounds.

In each $\mathrm{SbCl}_{3}$ molecule, two of the $\mathrm{Sb}-\mathrm{cl}$ bonds are simnificaritly Ionger ( $2.79,2.62,2.65$ and 2.56 A) than those found in $\mathrm{SbCl}_{3}$ a.lone (nean $\mathrm{Sb-al}=2.35 \AA$, Li.pka, A., 1979). Such an extension of an Sb-halogen has been already observed in other conpounds. Thus ( $2.44 \AA$ ) in $2 \mathrm{SbCl}_{3} \cdot 1,4$-dithiane (Kiel and Engler, 1974), (2.51 §) in Sbcl. $3^{\circ}$ aniline (Hulme and scruton, 1968). But these elongations occurred in the presence of interactions with strong electron donors atons (such as $S$ and $N$ ) which were located trans" to the longer Sb-al bond. Elongation in case of the disondered 1,4-Butanediyldianmonium Manganese Tetrachloride (Ti.chy R., Benes J.
(\%) Superscripts defined at end of Table 6.7.


PrG.6.5. Projection of the $\mathrm{SbCl}_{3}$ molecules onto
the 1-Iodonaphthalene plane. Plotted using Comp. Prog. Stbreo.
et.al., 1980) has been observed, and a similar explanation may well apply here, although there is no necessary relationshij, between elongation and disorder (e.g. complexes involving Histidine and Aspartic acid, Bhat T., and Vijayan, 1978).

One of the structural features observed in most of the complexes of $\mathrm{SbCl}_{3}$ with aromatic molecules is that of two $\mathrm{Sb}-\mathrm{Cl}$ bonds in each $\mathrm{SbCl}_{3}$ molecule lying in a plane approximately parallel to that of the organic molecule with the third $\mathrm{Sb}-\mathrm{Cl}$ bond approximately perpendicular and away from that plane. This does not seem to be the case in the $\mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}$ compound. Although one $\mathrm{Sbal}_{3}(2)(5 i s \cdot 6.2)$, approximates to the mentioned feature (out of plane distances from the $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}(2)$ molecule are $\mathrm{Sb}(2): 3.18 \AA, \mathrm{Cl}(4): 3.21 \AA, 01(5): 3.38 \AA$ and $\mathrm{Cl}(6): 5 \cdot 57 \AA$ ), the other $\mathrm{SbCl}_{3}(1)$ shows a greater deviation with out-of-plane distances from the $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}(1)$ of $\mathrm{Sb}(1): 3.01 \AA$, $\mathrm{Cl}(3): 3.55 \AA, \mathrm{Cl}(1): 3.81 \AA$, and $\mathrm{Cl}(2): 5.04 \AA$. Each $\mathrm{SbCl}_{3}$ molecule is located nearest to the ring of the iodona,phthalene molecule which does not carry an attached iodine atom (see Fig. 6.5). The perpendicular distances from the two independent antimony atoms to the plane of the corresponding organic molecule are: 3.01 and 3.18 $\%$ respectively. Both these distances are of the same order of magnitude as those found in other similar structures. Thus $3.20 \AA$ was reported for $2 \mathrm{SbCl}_{3} \cdot$ naphthalene (Hulme and Szymanski, 1969), $3.09 \AA$ for $2 \mathrm{SbCl}_{3} \cdot \mathrm{D}-\mathrm{xylene}$ (Hulme and Mullen, 1976), 3.11 \& for $2 \mathrm{SbCl}_{3} \cdot$ phenanthrene (Demaldé, Nardelli, et.al., 1972), 3.17 \& for $2 \mathrm{SbCl}_{3} \cdot$ diphenyl ( Li pka and Mootz, 1978a) and $3.09 \AA$ for $2 \mathrm{SbCl}_{3} \cdot$ diphenylamine (Lipka A., 1978), which seems to suggest an interaction between Sb atom and the $\pi$-systen of the aromatic molecule. More precisely this interaction is localized in an area between $C_{18}-C_{19}$ in the 1-iodonaphthalene (1) i.e. $C_{7}$ and $C_{8}$ (Fig. 6.6)
and around $\mathrm{C}_{27}$ in the l-iodonaphthalene (2). (i.e. $\mathrm{C}_{6}$ in Fig 6.6) which both correspond to the same area of the l-bromonaphthalene molecule.


Fig. 6.6
Standard numbering of an 1-iodonaphthalene molecule

### 7.0 GENERAL DISCUSSTON AND CONCTUSTONS

The purpose of the investigations stated early in this thesis was the structural study of the crystalline molecular complexes formed by antimony trichloride with l-ha.lonaphthalenes, to compare them with the $2 \mathrm{SbCl}_{3}$ naphthalene complex whose structure is known, and to understand some of the factors involved in complex formation when a substituent of graded size and electronegativity is atached to the naphthalene molecule.

By the application of three main methods, such as the construction of thase-diagrams, chemical and physico-chemical analysis, and $x$-ray diffraction structural studies, formation of (1:1) $\mathrm{SbCl}_{3}{ }^{\cdot 1 \text {-bromo- }}$ naphthalene and ( $2: l$ ) $\mathrm{SbCl}_{3} \cdot$ l-chloronarhthalene complexes have been confirmed, and in a similar manner the formation of the ( $1: 1$ ) $\mathrm{SbCl}_{3} \cdot 1-$ iodona, Yh thalene complex was established.

The results may be discussed from two asjects. The first is the orientation and interaction of one of the components of the complex with respect to its neighbouring molecules. The second is related to the changes in the internal geometry of both components.

It seems relevant to mention at this point the disorder observed in the $\mathrm{SbCl}_{3} \cdot I-\mathrm{C}_{10} \mathrm{H}_{7}$ I complex which rroduced diffuse streaks paralle to $a^{*}$ in the odd layers of Weissenberg lhotographs (taken oscillating about "c"). Probably this is related to the disorder in the josition of some of the heavy atoms. However this does not invalidate a discussion of the structural features of the complexes at ${ }^{2}$ general level.

A common feature observed in the crystal structure of these compounds is that the structure consists of layers of $\mathrm{SbCl}_{3}$ alternating with layers of l-halonaphthalene molecules. Depending
on the mole ratio of the components, the alternating layers in the
 $2 \mathrm{SbCl}_{3} \ldots$ for a ( $2: 1$ ) $\mathrm{SbCl}_{3} \cdot$.l-halonaphthalene complex, and $\ldots 2 \mathrm{Sbal}_{3} \ldots 2$ (l-halonaphthalene) $\ldots 2 \mathrm{SbCl}_{3} \cdot \ldots$ for a (l:1) $\mathrm{Sbal}_{3} \cdot 1$ halonaphthalene complex. Furthermore pairs of $\mathrm{SbCl}_{3}$ molecules form dimers by halogen bridging so that an infinite chain of molecules are formed by further-halogen bridging. These chains in turn are loosely cross linked to others to produce the molecular sheet.

The (l:1) $\mathrm{Sbal}_{3} \cdot 1$-halonaphthalene complexes also show plane-toplane molecular stacking, (the axproximate distance between is in the order of $3.25 \AA$ ), in an arrangement similar to that found in the crystal structure of naphthalene alone (Fruikshank D.W.J and Sparks, R.H., 1960).

In each compound, the antimony atoms are bonded to three chlorine atoms and ${ }^{\text {are }}$ close to a further three chlorine atoms. (From a nonequivalent molecule and/or from a symmetrically related one), and are situated near an axomatic $\pi$-system with a perpendicular mean (Sb... plane $\pi$-system) distance of $3.25 \AA$, so that the coordination number of the antimony atom becomes seven. Geometrically this corresponds to a distorted yentagonal bipyramid arrangement axound the Sb atoms. Five chlorine atoms (two of which are bonding chlorine atoms) are approximately located in the equatorial plane. The third. bonding chloxine atom and the interaction with the $\pi$-system are in axial positions. Greater distortion of this geometrical feature is observed around of one of the Sb atoms in the (1:1) $\mathrm{SbCl}_{3} \cdot 1$-iodona.phthalene complex. This could be due to the disorder mentioned above. According to the observed geometry it seems that the lone electronpair in the $\mathrm{SbCl}_{3}$ is stereochemically inactive. Similar geometrical features are al.so found in the $2 \mathrm{SbCl}_{3} \cdot \mathrm{C}_{10} \mathrm{H}_{8}$ complex (Hulme and

Szymanski, 1969), if one takes account the long Sb...Cl interactions. A summary of bond-distances-angles and the Sb...Cl interaction distances less than the sum of the van der Waals radii around the Sb atoms for several compounds, are shown in Table 7.1

According to the results shown in Table 7.1, the bond-distanceangles in the $\mathrm{SbCl}_{3}$ forming a complex are slightly different than those found in $\quad \mathrm{SbCl}_{3}$ alone (Lipka, 1979). These variations seem to be related in some way to the donor-acceptor nature of the interaction between the $\mathrm{SbCl}_{3}$ and l-halonaphthalenes.

The perpendicular distances from the Sb atom to the plane of the aromatic molecule, are very similar for the three molecular complexes under investigation (mean $3.25 \AA$ ) and are shorter than the corresponding sum of the van der Waals radii ( $4.05 \AA$, Pauling L., 1960 and Bondi, A., 1964). Similar distances were found in several other complexes of $\mathrm{SbCl}_{3}$ with aromatic molecules by different authors. A comparative list of perpendicular Sb...plane of aromatic molecule distances are shown in Table 7.2.

These distances seem to indicate an interaction of electron donor-acceptor tye between the $\mathrm{SbGl}_{3}$ molecule and the delocalized. $\pi$-system of the aromatic molecule, in which electron donation occurs from the $\pi$-system to the Sb atom. These interactions between $\mathrm{SbCl}_{3}$ and l-halonaiththalene molecules are localized in areas as shown in Table 7.3. For atom numbering in the l-halonaphthalene see Fig. 7.1.
TABLE 7.1
33N343134
THIS THESIS
$=$
"

| SbCL3 | 2.34 | 2.37 | 2.37 | 3.46 | 3.74 | 3.60 | 90.58 | 95.70 | 95.70 | LIPKA | A. (1979) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2SBCL3.C10H8 | 2.35 | 2.35 | 2.37 | 3.58 | 3.83 | 3.66 | 91.59 | 94.41 | 94.70 | HULPE | \& SZYMANSKI,1969 |
| 258CL3.1-C10H7CL | 2.30 | 2.31 | 2.34 | 3.48 | 3.96 | 3.58 | 91.96 | 94.90 | 95.15 | THIS | THESIS |
|  | 2.34 | 2.34 | 2.36 | 3.57 | 3.96 | 3.59 | 91.85 | 91.80 | 95.86 | " | " . |
| SBCL3.1-C10H7BR | [2.27 | 2.33 | 2.33 | 3.49 | 3.77 | 3.68 | 91.76 | 96.10 | 96.18 | " | $n$ |
|  | 2.29 | 2.37 | 2.42 | 3.39 | 3.77 | 3.65 | 90.81 | 91.91 | 96.42 | " | " |
| SBCL3.1-C1OH71 | \{2.33 | 2.62 | 2.79 | 3.40 | 3.75 | 3.54 | 83.10 | 96.90 | 98.30 | ${ }^{\prime}$ | " |
|  | 2.42 | 2.56 | 2.65 | 3.01 | 3.75 | 3.54 | 84.50 | 86.60 | 94.70 | * | " |

(o) the corresponiing sum of the van der hahls radil for sb...cl is 3.95 å,(pauling l.,1960)

## COMPOUND



## TABLEE 7. 3

Areas of Interaction localized in the
Compound Halonaiphthalene molecule (I)
fi) Near to C(6)
$\mathrm{SbCl}_{3} \cdot 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$
ii) Near to mid point of $C(7)-C(8)$
i) Near to C(2)
$2 \mathrm{SbCl}_{3} \cdot{ }^{1-\mathrm{C}_{10}} \mathrm{H}_{7}^{\mathrm{Cl}}$
ii) Near to mid point of $C(7)-G(8)$
i) Near to $\mathrm{G}(6)$
$\mathrm{SbCl}_{3} \cdot{ }^{\mathrm{I}-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}}$
ii) Near to a point between $C(7)-C(8)$
(1) For atom numbering:Fig. 7.1.


Standard numbering of a l-halonajthalene molecule.

An explanation on the areas of interaction may be attempted by using results of theoretical studies on the electron density in the organic molecules (Higasi, et.al., 1965, p.264).

According to Coulson and Longuet-Higgins, (Coulson, C.A., and Longuct-Higgins, 1947), an electrophilic reaction will occur at carbon atom having the maxinum value of $\pi$-electron density and the maximum absolute value of self-polarizability. Thus a molecular
diagram for l-chloronaphthalene (see Fig. 7.2a) will show that position 2, 4, 5, 7 and 9 are the possible sites of interaction by an acceptor molecule. From these, site 2 is the most preferred because higher electron density. This interaction will probably induce changes in the electron density population so that further interaction occurs near to $C(7)$. In this way the formation of $2 \mathrm{Sbal}_{3} \cdot 1-\mathrm{C}_{10} 0^{\mathrm{H}} \mathrm{Cl}$ (l may be explained.


Fig. 7.2a Electron density distribution in the l-Chloronaphthalene molecule (Ketelaax, 1958, p.302).

In the case of substituents with smaller electronegativity than chlorine, such as bromine and iodine, the molecular diagrams will have some differences in the charge distribution and polarizability. It seems that in these complexes $C(2)$ is not the most preferred site of interaction but between $C(5)-C(6)$ and $d(7)-C(8)$, where the population of $\pi$-electrons is higherwith a similar distribution to that in l-naphthylamine (Baba H.m and Suzuki, S., 1961). See Fig 7.2b. Although this is not an accurate comparation,it gives an idea on the electron density distribution in the naphthalene molecule having a non-electron withdrawing substituent.


Fig.7.2b Electron density distribution and bond orders in the l-naphthylamine.

There is no significant change of C-C bonds in the region wi.th which the Sb atom is interacting, except for $\mathrm{C}_{2}$ of the lmchloronaph.thalene molecule in the $2 \mathrm{SbCl}_{3}$.l-chloronaphthalene complex which is $\sim 0.14 \AA$ out of the aromatic plane and away from the Sb atom. Bu t alterations of some other C-C bonds as well as some angles are ob-served in the $\mathrm{SbCl}_{3.1-b r o m o n a p h t h a l e n e ~ a n d ~}^{2 S b C l} 3.1$-chloronaphthalene complexes which could be due to some residual errors, such as absorption (e.g. in the $\mathrm{SbCl}_{3} \cdot \mathrm{l}-\mathrm{ClOH}_{7} \mathrm{Br}$ it is considerably high: $\mu=61.0$ ) and extinction, uncorrected in the experimental data. Calculation of the electron density distribution in the mophthalone molecule carried out by using Computer Program GAUSSIAN80, with the 3-21G basis set of Binkley J.s.,et. al., (1980), gave the results shown in the following diagram(Ball J., 1980):
$-$


From Fig. 7.3, one may explain the areas of interaction in the $2 \mathrm{SbCl}_{3} \cdot$ najhthalene complex. According to it, $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(6)$, $G(7)$ are the most preferred sites. Thus in the crystal structure of this complex, the interactions are localized near $G(2)$ and $\mathbb{C}(6)$ and they are related by ${ }^{2}$ centre of symmetry. The introduction of an electronegative substituent changes this electronic distribution as that shown in Fig. 7.2.

No special structural reason was found to explain the difference between the structural features in the $\mathrm{SbCl}_{3} \cdot \mathrm{I}-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}$ complex and the structure of the other $\mathrm{SbCl}_{3}$. 1 -halonaphthalene compounds. This seems to support the idea of disorder in the position of some heavy atoms'as mentioned above. If it is real it could suggest that the $l-C_{10} H_{7} I$ and some chlorine atoms are disordered in a. direction and are responsible for the continuous streaking parallel to $a^{*}$ observed in the odd-layer of Weissenberg photographs.

## REFERENCES

ABRAFAM R.J. and LOFrCUS P., (1978), Proton and Carbon-13 NMR:
Spectroscopy, Heyden, London.
ABRAHAMS S.C. and LIPSCOMB W.N., (1952) Acta Crybt., 5,93 - ALISON A.C. and NASH T., (1959), Nature (London), 197,758. AMORÓS J. \& M.(1968), 'Molecular Crystals', John Wiley \& sons New York-mondon.

AZAROFF L.V., et.al., (1974), 'X-ray Diffraction', McGraw Hill, (4) New York. p573.

BABA H. and SUZUKI S., (1961), BuJ1.Chem.Soc.,Japan, 34, 82. BAKER W.,(1976),Ph.D. Thesis,University of Louisville,U.S.A. BAKER W., and WILIIAMS D.E., (1978), Acta Cryst., B34, 1111; B34, 3739.

BALI J., (1980), Personal Communication.
BAMBIERI, et.al., (1972), Inorg.Chim.Acta., 6, 349 .
BAUGHMAN R.H., et. al., (1979), 3rd. Symposium on Organometallic Polymers,ACS Washington,Sept. 1979.

BERNAL J.D., (1959), Z. Krist, ,1,4.
BHAT T. and VIJAYAN, (1978), Acta Cryst., B34, 2556.
BHUIJA A.K. and STANLEX E.,(1963), Acta Cryst.,16,981.
BINKLEY J.S. et.al., (1980), J.Am.Chem.Soc., 102 (3),939-47.
BIRCHENBACH L. $\because$, and GOUBEAU J., (1932), Ber., 65, 395.
BJ $\phi$ RVATTEN T., (1966), Acta Chem. Scand.,20, 1863.
BONDI A., (1964), J. Phys.Chem. 68,441.
BRIEGER G. and TZUU-HENG FU, (1976), J.C.S. Chem. Comm.,757. BRIEGLEB G., (1961), Electronen-Donator-Acceptor-Komplexe, Springer, Berlin-Gottingen-Heildelberg.

BUERGUER M.J., (1942), X-ray Crystallography, John Wiley,New York. BUERGUER M.J.,(1944), The photography of the reciprocal lattice, ASXRED,Monograph No. 1,37 pages.

BUERGUER M.J. (1.959), Vector Space and its application in Crystal-Structure investigation, John Wiley \& Sons, New York.

BUERGUER M.J. (1960), Crystal Structure Analysis, John Wiley \& Sons, New York.

BUERGUER M.J. (1964), The Precession Method, John Wiley \& Sons, New York.

BUERGUER M.J. (1966), X-Ray Crystallography, 7th írinting, John Wiley, New York.

CAMERON A.F. (1975), Mol.Struct. Diffr.Methods, 2, 120-7.
CAMERON T.S., and EROUT G.K. (1968), Chem.Comm., 684.
CERFONTAIN H., et.al., (1974), Anal.Chem., 46, 72.
CHAMBERLAIN N.F., (1974), The sractice of NMR Siectroscoly, Plenum Press, New York, London,p. 53.

CHARBONNEAU G. and TRJTTIER J., (1968) J.Chem. Soc., (A), 1267. CLAVERIE F., FULIMAN B. and CAILLET J. (1966), J.Theor. Biol. 12, 419-34.

COLTER A.K., and DACK M.R.J., (1973) in R. FOSTER: Molecular Complexes, Londonnp. 301.

CORRIU R. and COSTE C., (1967), Bull.Soc.Chim.France, 2, 2568.
COULSON C.A., and LONGUET-HIGGINS (1947), Froc.Roy.Soc. Al9.l, 34; A192, 16.

COWLEY J.M., (1975), Diffraction Physics, North-Holland. sub. Co., Amsterdam. p. 139 ff .

CRUICKSHANK et.al., (1961), Comp. Methods in the rhase iroblem, Oxford-1ergamon Press.

CRUICKSHANK D.W.J. and SFARKS R.H. (1960), Proc. Royal Soc., A258, 270.

CUSHEN and HULME R., (1962), J.Chem.Soc., 221.8-22.
CHEM.SOG. (1958), Tables of Interatonic Distances, special pub. No. 11. p. M223.

CUSHEN and HULME.R., (1964), J.Chem.Soc., 4162-66.
DARMIN G.G., (1922), Fhil.Mag. 43, 800-829.
DEMALDE and NARDELLI, et.a.l., (1972), Acta Cryst., B28, 147. DENAR M.J.S., and THOMPSON, Jr., C.C. (1966), Tetrahedron Suppl., 2. 97.

DE JONG-BOUMANN J. (1938), 2. Krist (A), 98, 456-9, Physica 5, 188.

DRAGO R.S. (1965), lhysical Methods in Inorganic Chemistry, Reinhold Publ., New Yơrk., p. 240 ff.

DROBOT, KORSHUNJV, and BORODULENKO, (1968), Russ.J.Inorg. Chem., 3(6), 855.

ENJALBERT R. and GALY J. (1979), Acta Cryst., B35, 546.
EISTEIN S.E., et.al., (1964), Nature (Iondon), 204, 750.
FOSTER R., (1969), Organic Charge-Transfer Jom\&lexes, Academic Fress, Iondon-New York.

GALLAGHER M.J., GRADDEN D. P. and SHEIKH A.R. (1978), Thermochim. Acta, 27, 269.

GARTLAND and GRAVEN, (1974), Acta Cryst., B30, 980. GILIESFIE R.J. (1972), Molecular Geometry, Van Nostrand Reinhold Co. London.

GLASSER D. (1977), Crystallograihy, Van Nostrand-Reinhold, London-New York.

GLAZOV V.M., KISELEV A.I. (1976), Zh.Fiz.Khim, 50(3), 602; Chem.Abs., (1976) 84, 185516u.

GROTH F. and HASSEL O. (1965), Acta Chem.Scand., 10, 120. GUTMANN V. and CZUBA H., (1969), Monatsh. Chem., 100(2), 708. HANNA M.W. and LIPFERT J.L. (1973). Theory of the Ground State Structure of Molecular Complexes, in R. FOSTER: Molecular Complexes; Vol. I Eilek-Science, London. plff. HAMILTON W.C. (1965), Acta Cryst., 18, 502.

HaRTL H., et.al.' (1975), z. Anorg. Allg. Chem. 413, 61.
HASSEL O., and HV中SLhF J. (1954), Acta. Chem. Scand., 8, 873.
HASSEL O., and STR $\phi M I E$ K. O. (1958), Acta.Chem.Scand., 12, 1146.
HASSEL O., and STRDMME K.O. (1959), Acta.Chem.Scand., 13, 1781.
HERBERT H. (1978), Acta. Cryst., A34, 946-49.
HERBSTEIN F.H. (1971), IN DUNITZ J.D. and IBERS J.A.:
Perspectives in Structural Chemistry, Vol. IV, pp 167 , John Wiley \& Sons, New York.

HERTLER W.R. (1976), J.Ong.Chem., 41 (8), 1412.
HIGASI K et.al. (1965), Quantum Organic Chemistry, Interscience, London. HOWEILLS E.R., et.al., (1950), Acta Cryst., 3, 210.

HULME R. and SCRUTON J.C. (1968), J.Chem. Soc. (A), 2448.
HULME R. and SZYMANSKI J.T. (1969), Acta Cryst., B25, 753. HULME R and MUiLEN D. (1976), J.Chem.Soc., Dalton, 802. HULME R. (1966), Acta Cryst., 21, 898. HURSTHOUSE (1965), Ph.D. Thesis University of London. IWASAKI F. and SAIT Y. (1970), Acta Cryst., B26, 251. JAGODZINSKI H. (1963), On Disorder fhenomena in Crystals,
in: G.N. FAMACHANDRAN, Grystallography \& Crystal
Perfection, Academic Fress, London-New York, p. 177 ff.". JAGODZINSKI H. (1964), in G.N. RAMACHANDRAN, Advanced Methods of Crystallograyhy, Academic Fress, New York.p.181. JEFFREY J.W. (1953), Acta Cryst., 6, 821. JEFFREY J.W. (1971), Methods in X-Ray Crystallography, Academic lress, London.

KAPLAN I.G. (1979), Int. J. Quant. Chem. XVI, 445 ff. KARREMAN G., ISENBERG I. et.al. (1959), Science 130, 1191. KASHINO S. (1973), Acta Cryst., B29, 1836.

KETELAAR J.A.A. (1958), Chemical Constitution, Elsevier Fublishing Co., 2nd Ed., Arsterdam.

KIEI G. and ENGEER R. (1974), Chem.Ber., 107, 3444.
KILI R.J. and WIDDOWSON D.A. (1976), J.C.S. Chem. Comm:, 755. KISLIUK, (1954), J.Chem. Phys. 22, 86.

KITAIGORODSKY A.I. (1973), Molecular Crystals and Molecules, Academic Press, London-New York.

KOLDITZ L. (1967), Halogen Chemistry, Vol.2, .150 , Academic Press, London.

KOLDITZ L. (1968), Adv. in Inorg. and Radiochem., Vol.3. KORSHUNOV B. G. and GJL'DIN V.I. (1961), Russ.J.Inorg. Chem., 6, 840.

KOSOWER E.M. (1965), in ixogress In hysical Organic Themistry, Vol.3, p.81. New York.

KUBOTA Y. (1976), Yukagaku, 25, 257; C. A., 85, 93375. Le FEVRE F.J.N., RADFORD D.W. and STILES ت̈.J. (1968), J.Chem.Soc., B, 1297.

LINIEMANN et.al. (1977), z. anorg.allg. Chem., 437, 155-58. IINDQVIST I. and NIGGI A. (1956), J.Inorg.Nucl. Chem., 2, 345 . LIPKA A. (1978a), A. Anorg. Allg. Chem. 440, 2l7; (1978b), ibid, 440, 224.

LIFKA A. (1979), Acta Cryst., B35, 3020-22.
LIPKA A. (1979a), Thermochim. Acta., 22, 269.
LIPKA A. and MOOTZ D. (1978c), Z.Anorg. Allg. Chem., 440, 231. LIPSCOMB W.N. and JACOBSON R.A. (1972), X-Ray Grystal Structure Analysis in WEISSBERGER and ROSSITER B., Physical Methods of Chemistry. Vol.I, Wiley-Interscience, New York.

LIPSON H. and EDWARDS O.S.(1942),Proc.Roy.Soc.,A180,268.

LIESON H. and COCHRAN W. (1966), The Determination of Crystal STRUCTURES, 3rd Ed.., Bell, London.

LYALIKOVA R. YU. et.al. (1976), Fiz.Khim.Slozhnykh, 223; Chem. Abs. $85,152383 \mathrm{v}$.

McKIE and McKIE D. (1974), Crystalline Solids, Nelson Ltd., London.

MENSCHUTKIN B.N. (1912), Chem.Zentr.I, 408, 807; II, 1436. MULLEN E. (1970), Ph.D. Thesis University of St. Andrews. MULLIKEN R.S. (1952a), J.Am.Chem.Soc. 74, 811.

MULIIKEN R.S. (1952b), J. Fhys.Chem., 56, 801. MULLIKEN R.S. and FERSON W.B., (1969a), Molecular Complexes: A Lecture and Reprint Volume, Wiley \& Sons, New York ibid. (1969b) in D. HENDERSON: Hyysical Chemistry (An Advanced Treatise), Vol.III, Academic Zress, London-New York.

NONHEBEL D.C. and WAITON J.G. (1976) in BUTLER A.R. and $f$ ERKINS M.J., Organic Reactions Mechanisms, Interscience, London. p83. OHASHI M., SUWA S. and TAUJIMOTO K. (1975), J.C.s., Chem. Comm. 404.

PALEPU R. and MOORE L. (1979), Thermochim. Acta. 30, 384-390. FARK, W.C. (1969), Ph.D. Thesis, University of Louisville, U.S.A. PASTO D.J. and JOHNSON C.R. (1969), Organic Structure Determination, Frentice-Hall Inc., p. 207.

PATTERSON A.L. (1934), Hhys.Rev. 46, 372.
PAULING L. (1960), Nature of the Chemical Bond, 3xd Ed.,p260 Cornell Univ. iress.

POLESHCHUK O.KH. and MAKYUTIN YU.K.,(1976),Russian Chemical Reviews 45(12),1077.

FOL ESHCHUK O.K., KIZHNER D.M. añ MAKSYUTIN Y.K. (1979), Zh.Fiz. Khim, 53 (7), 178.
frout c. . and KAMENAR B. (1973), Crystal Structures of electronDONOR COMPlexes, in FOSTER R.: Molecular Complexes, VOl.I p. 15 lff . Elek-Science, London.

FrouT C. K. and WRIGHT J.D. (1968), Angew. Chemie., Int. Ed. Engl. .2, 659.

SAKURAI T. (1968), Acta Gryst., B2'4, 403.
SATCHELL R.S. and EVANS S. (1970), J. Chem.Soc. B(9), 1667. SCHMIDT et.al. (1979), Z.anorg.allg. Chem., 454, 160-66.

SHEINA G. G., RADCHITNKO E.D. et.al. (1979), Int.J.Quantum Chem. 26, 387.

SHOSTAKOVSKII M.F. and FOLESHCHUK D.K.H. et.al., (1973), Izv. Adak. Nauk.SSSR, Sev. Khim., (1), 15-21. SCRUTON J.C. (1965), Ph.D. Thesis, University of London. SINOMIYA T., (1940a), Bull Chem. Soc. Japan, 15, 259. SINOMIYA T., (1940b), ibid, 15, 28.1. STADI-2, Manual of Instruction for 2-circle X-Ray Diffractometer. STRIETER F.J. and TEMFLETON D.H. (1962), J.Chem. Fhys., 32, 161. STROMME K. O. (1959), Acta Chem.Scand. 13, 268.

TAYLOR C.A. et.al. (1956) Acta. Cryst. 2, 175.
TICHY K., BENES J. et.al. (1980), B36, 1355-67.
TROTTER J. and ZOBEL T. (1966), Z. Krist., 123, 67.
TSUJIMOTO K. et.al. (1976) J.C.s. Chem. Comm., 386.
VARMA P.S. et.al. (1933), J.Indian Chem.Soc., 10, 595.
VOGFL A. (1978), Textbook of Quantitative Inorganic Analysis, 4 theed.
Rev. by BASSETT et.al., longman Gcoup, London. p. 387 .
WEISS J. (1942), J.Chem.Soc., 245.
WEISS J. (1943), J.Chem.Soc., 462.

WILKINSON G. (1951), J.Am.Chem.SOC., 73, 5502.
WILSON A.J.C. (1942a), Froc.Roy.Soc. A180, 277-85.
WILSON A.J.C. (1942b), Nature, $150,152$.
WILIIIAMS R.M. and WALIWORK s.c. (1967), Acta Cryst., 22, 899.
WOULPSON M.M. (1970), An Introd. to X-Ray Crystallograrhy,
Cambridge University Lress, Cambridge.
WOOSTER N.A. (1962), Diffuse X-Ray Reflections from Crystals, Clarendom Fress, Oxford.

WOOSTER W.A.(1964),In G.N. RAMACHANDRAN:Advanced Methods of Crystallography,pl21, Academic Press,New York.

```
LIST OF COMPUTER PROGRAMMES
USBD IN THE PRESENT THESIS:
```

1.- Angular Lag, (1.970) by Hulme R., University of St. Andrews. 2.- Data reductionq"3DDP",Hulme R., " " " "
3.- Data reduction,"LIDRED",Liles D., " " "
4... Packing, "BFIT", Arroyo J., " " " "
5.- Patterson map, "PAT31",Hulme R., " " "
6.- Electron density map, Hulme R., " " "
7.- Stanley shift-parameter, Hulme R., " " "
8.- Least Squares refinnement,Hulme R., " " "
9.- Multiple calculations, "SHELX",Sheldxick G.,University of Cambridge.
10.- Mean Plane, "YOPLAN",Hulme R., University of St Andrews.
11..- Bond distancesmangles, "BONDANG",Hulme R., Univ. of St. Andrevs.
12.- Molecule plots, "PAMOLE",Adamson P.,Univ. of St. Andrews.
13.. " " "STEREO",Hulme R., " "
14.- " " "PTUMO", Clegg B.,University of Newcastle.

## APPENDIX A

COMPUTING PROGRAM TO CALCULATE THE BEST FIT OF A RIGID MOLECULE IN A TRICLINIC CELL WHEN SOME ATOMIC POSITIONS ARE KNOWN. FORTRAN IV FOR HONEYWELL/TSS.


```
    T0c Calculation of the best fit of a rigid nolecule in a
    20c triclinic cell. Some atoms in fixed position.
    30c axis a vertical,b down,c across
        dimension ab(100),x(100),y(100),z(100)
        diAension xo(100),yo{100),zo(100)
        dinension xk({00),yk(100),zk(100)
        dimension xj(100),yj(100),zj(100)
        dimensian xi(100),yi(100),zi(100),ist(36)
        dimension xl(4),yl(4),zl(4),xs(2),y5(2),zs(2)
        dinension att(20), xu(20),y\cup(20),zv(20)
Read cell dimensions,distance linit and delta
            read(5,1) a,b,c,alph,bet,gam,ral,nv,dlim,del
    1 forknt(3P7.3,4f7.2,i4,2f10.7)
    Read initial distance-limit control and variation of
    rotation angles
            read(5,5) tt,nph,nth,nps
    5 \text { format(17.2,3i3)}
            icomi
            radm1./57.296
            almalph*rad
            be=bet*rad
            ga=gam*rad
            ra=ral*rad
            camcos(al)
            cb=cos(be)
            cg=cos(ga)
            cra=cos(ra)
            sa=sin(al)
            sb=sin(be)
            5g=sin(ga)
            sra=sin(ra)
            bsg=b*sg
            abcg=a+b*cg
            it=0
            11=0
        read coordinates cin and carbons in orthog. space(in A)
            do 55 jjj=1,nv
    55 read(5,1f) att(jj), xv(jj),yv(jj), zv(jj)
    1) format(a3,3f7.4)
        urite(6,4)
    A format(/, input coordinates ',/)
    Read shifts to generate equivalent positions
            read(5,3)(xl(j),yl(j),z1(j), j=1,4)
        3 format(12f5.2)
            i=0
        Read fractional triclinic coordinates of fixed atoms
        9 read(5,7) at(1),xs(1),ys(1),zs(1)
            if(xs{1).gt.9.0) go to 30
        7 format(a3,3f7.4)
        write(6,22) at(1),\times5(1),ys(1),zs(1)
    22 forkat(2x,a3,3f7.4)
        x5(2)=1.-x5(1)
        ys(2)=1.-ys(1)
        z5(2)=1.-z5(1)
        15 do 25 k=1,2
        if(zs(k)*zs(k).,9,t.0.292) go to 25
```

```
570
580
590
6 0 0
6 1 0
6 2 0
630
640
650
660
670
680
6 9 0
7 0 0
7 1 0
7 2 0
7 3 0
740
750
7 6 0
770c
780
7 9 0
800
810
820c
830
840
850
860
870
880
890
900
910
9 2 0
9 3 0
740
9 5 0
960c
9 7 0
980
9 9 0
1000
1010
1020
1030
1040
1050
1060t
1070
1080
1090
1100 cth=cos(th)
1110 sth=sin(th)
```

```
    do 320 1=1,nv
    xJ(1)=xk(1)*cth+2k(1)*sth
    yj(1)=yk(1)
320 zj(1)=zk(1)*cth-xk(1)*sth
    nst=0
rotate about C an angle psi
    do 500 i=n00,350,nps
    ai=i
    p5xai*rad
    cps=cos(ps)
    sps=sin(ps)
    do 330 1=1,nv
    xi(1)=xj(1)*cps-yj(1)*gps+xp(nf)
    yi(1)=yj(1)*cps+xj(1)*sps+yo(nf)
330 zi(1)=zj(1)+zo(nf)
    do 340 kk=1,nk
    do 510 ii=2,n
    pa=xi(kk)-xo(ii)
    pb=yi(kk)-yo(ii)
    pezzi(kk)-zo(ii)
    icozico+1
    d=pa*pa+pb*pb+pc*pc
    if(d.1t.dsliM) go to 500
5 1 0 \text { continue}
    5xx=atcg-xi(kk)
    syy=bsg-yi(kk)
    5zz=-zi(kk)
    do 360 11=kk,nv
    qx=5xx-xi(11)
    qy"syy-yi(11)
    qz=5zz-zi(11)
    d=qx*qx+qy*qy+qz*qz
    if(d.1t.dsliA) go to 500
    360 continue
    340 continue
    nst=nst+1
    ist(nst)=i
500 continue
    if(n5t.gt.0) urite(6,10) k,j,(ist(i),i=1,nst)
    10 format(1x,2i4,2%,36i3)
    inst=inst+nst
    if(inst.gt.t) go to }70
    if(inste.eq.0.and.j.gt.10) go to 750
    400 continue
    4 4 0 \text { continue}
    write(6,12) ico
    12 fornat(1x,' all job finished ',' rounds m',i8,/)
    go to }99
    700 if(it.gt.0) de1=0.5*del
    il=1
    dlin=dlin+del
    go to 399
750 if(il.gt.0) del=0.5*del
    it=1
    dlin=dlim-del
    go to 399
999 stop
    end
```


## APPENDIX B

OBSERVED STRUCTURE AMPLITUDES
AND CALCULATED STRUCTURE FACTORS(x5)
FOR ( $1: 1$ ) $\mathrm{SbCl}_{3}$. 1 -BROMONAPHTHALENE COMPLEX.

$$
\text { Scale }=5 \quad F(000)=816
$$

$h k\left|F_{0} \quad F_{c} \quad h k\right| \quad F_{0} \quad F_{c} \quad h k$ । $F_{0} \quad F_{c}$

|  | -2 | 0 | 542.4 | 509.8 | 3 | 2 | 0 | 388.5 | -353.2 | 4-6-1 | 377.5 | 310.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -1 | 0 | 501.7 | 457.0 | 3 | , | 0 | 809.9 | 920.8 | 4-5-1 | 329.1 | -239.5 |
|  | -5 | 0 | 594.8 | -593.2 | 4 | 7 | 0 | 460.2 | -554.1 | 4-4-1 | 400.7 | 284.8 |
| 7 | 4 | 0 | 484.6 | -362.9 | 4 | 4 | 0 | 422.5 | -401.0 | $4-1-1$ | 663.9 | 636.3 |
| 7 | -1 | 0 | 425.0 | -258.6 | 4 | 2 | 0 | 697.4 | -578.0 | $0-1$ | 627.3 | 527.5 |
| 6 | -8 | 0 | 507.3 | 460.1 | 4 | 1 | 0 | 738.7 | -686.0 | 1-1 | 661.1 | -715.2 |
| 6 | -7 | 0 | 524.1 | 572.3 | 4 | 0 | 0 | 384.6 | -314.5 | 2-1 | 278.0 | 216.2 |
| 6 | -4 | - | 363.1 | 178.1 | 5 | 1 | 0 | 516.1 | 585.8 | 3-1 | 314.1 | 226.1 |
| 5 | 4 | 0 | 737.8 | -656.3 | 5 | 2 | 0 | 785.4 | -743.7 | 7-1 | 409.7 | -375.3 |
| 5 | -2 | 0 | 836.5 | 738.0 | 5 | 1 | 0 | 413.3 | -229.8 | 9-1 | 503.6 | 535.4 |
| 4 | -8 | 0 | 482.1 | -393.7 | 6 | 7 | 0 | 502.9 | -524.3 | 3-9-1 | 350.0 | $-336.5$ |
|  | 7 | 0 | 445.8 | 454.4 | 6 | 3 | 0 | 410.5 | 296.2 | 3-7-1 | 398.0 | -327.5 |
| 1 | 6 | 0 | 366.4 | -270.3 | 6 | 2 | 0 | 450.5 | 405.4 | 3-6-1 | 332.5 | 377.1 |
| 4 | 4 | 0 | 688.8 | -497.1 | 6 | 1 | 0 | 540.8 | -479.3 | 3-4-1 | 704.3 | -762.7 |
|  | -3 | - | 347.9 | -228.0 | 6 | 0 | 0 | 387.6 | 177.9 | 3-3-1 | 653.4 | -975.4 |
| 1 | -2 | 0 | 690.9 | -575.0 | 7 | 5 | 0 | 483.7 | -535.2 | 3-2-1 | 497.5 | 358.7 |
|  | 1 | 0 | 782.9 | 720.3 | 7 | 4 | 0 | 478.2 | 440.7 | $3 \begin{array}{lll}3 & 1 & -1\end{array}$ | 314.9 | 179.4 |
| 3 | 7 | - | 451.6 | 372.8 | 7 | 2 | 0 | 454.4 | -306.3 | 3 2-1 | 281.3 | $-243.3$ |
| 3 | 6 | 0 | 477.9 | 501.6 | 7 | 1 | - | 483.3 | -479.1 | $\begin{array}{lll}3 & 3 & -1\end{array}$ | 974.2 | -1167.0 |
| 3 | -5 | 0 | 444.7 | 444.5 | 10 | -2 | -1 | 466.9 | 477.3 | 3 4-1 | 657.4 | 660.0 |
| 3 | -4 | 0 | 738.7 | -760.2 | 10 | 2 | -1 | 428.7 | 497.6 | 3 5-1 | 523.2 | -397.2 |
| 3 | -3 | 0 | 495.5 | -339.4 | 9 | -5 | -1 | 458.1 | -405.5 | $366-1$ | 562.6 | -458.0 |
| 3 | 2 | 0 | 333.8 | 270.6 | 9 | -1 | -1 | 432.4 | -390.0 | $37-1$ | 317.8 | -365.1 |
| 3 | 1 | 0 | 914.8 | 919.7 |  | -1 | -1 | 447.7 | 423.9 | 2-6-1 | 815.6 | 928.2 |
| 2 | -8 | 0 | 627.4 | -628.4 | 8 | - | -1 | 364.8 | -373.2 | 2-5-1 | 398. ${ }^{\text {d }}$ | -310.5 |
| 2 | -6 | 0 | 638.5 | 565.3 | - | 1 | -1 | 417.8 | -358.3 | 2-4-1 | 658.0 | 601.4 |
| 2 | -5 | , | 408.4 | -374.5 | 7 |  | -1 | 450.4 | -414.5 | 2-2-1 | 465.0 | -359.4 |
| 2 | -2 |  | 825.8 | -824.1 | 7 |  | -1 | 329.5 | 296.0 | 2-1-1 | 558.1 | 610.8 |
| 2 | -1 | 0 | 649.3 | 690.7 |  | -2 | -1 | 373.2 | 250.6 | $200-1$ | 853.4 | 1000.9 |
|  | -9 | 0 | 663.2 | -728.4 | 7 | 1 | -1 | 301.8 | 224.5 | $2 \begin{array}{lll}1 & -1\end{array}$ | 540.9 | -669.4 |
|  | -7 | 0 | 450.5 | -406.1 | 7 | 2 | -1 | 324.3 | -251.7 | 2 3-1 | 274.9 | 204.3 |
| $1$ | -6 | 0 | 315.3 | 274.8 | 7 | 3 | -1 | 454.8 | 499.0 | 2 4-1 | 496.7 | 438.3 |
|  | -5 | - | 556.7 | 383.0 | 7 | 4 | -1 | 423.9 | 415.0 | $25-1$ | 304.9 | 313.3 |
| 1 | -3 | 0 | 988.4 | -1291.9 |  | -7 | -1 | 501.5 | 563.5 | $266-1$ | 653.4 | 727.1 |
| 1 | -2 | 0 | 378.8 | 279.5 |  | -6 | -1 | 391.9 | -291.5 | $27-1$ | 372.7 | -316.5 |
|  | -1 | 0 | 438.9 | 332.8 | 6 | -5 | -1 | 325.8 | -306. 2 | 1-10-1 | 361.7 | -349.5 |
| 0 | 10 | 0 | 510.7 | 530.1 |  | -4 | -1 | 591.7 | -592.5 | 1-8-1 | 333.7 | -193.6 |
| 0 | 6 | 0 | 854.0 | 875.5 | 6 | -3 | -1 | 405.3 | -361.1 | -5-1 | 806.6 | 868.0 |
| 1 | 9 | - | 423.4 | -470.9 | d | -2 | -1 | 504.0 | -356.3 | 1-3-1 | 846.0 | -934.6 |
| 1 | 6 | 0 | 319.2 | -270.8 |  | -1 | -1 | 496.1 | 438.1 | 1-2-1 | 273.4 | 164.6 |
| 1 | 5 | 0 | 493.6 | 484.0 | 6 | 0 | -1 | 512.3 | -439.7 | $1-1-1$ | 297.0 | 176.4 |
| 1 | 3 | 0 | 990.8 | -1246.8 | 6 | 1 | -1 | 196.5 | -407.2 | 2-1 | 322.8 | $-262.3$ |
| 1 | 2 | 0 | 322.9 | -270.8 | d | 2 | -1 | 297.0 | -131.2 | 3-1 | 584.3 | -555.0 |
|  |  | 0 | 451.1 | 112.9 |  | 3 | -1 | 430.7 | 365.5 | 1 5-1 | 568.7 | 465.3 |
| 2 | 8 | 0 | 452.1 | -482.2 | 6 |  | -1 | 554.9 | -486.4 | 81 | 641.1 | -7.47.7 |
| 2 | 7 | - | 357.4 | -297.4 |  | 7 | -1 | 474.2 | -496.4 | 41 | 694.8 | -752.8 |
| 2 | 6 | 0 | 477.0 | 471.1 |  | -5 | -1 | 453.9 | 308.0 | 2 | 826.9 | -1002.2 |
| 2 | 5 | 0 | 383.7 | 355.3 |  | -4 | -1 | 530.7 | $-551.5$ | $0-4$ | 891.8 | -942.4 |
| 2 | 2 | 0 | 786.3 | -953.1 | 5 | -2 | -1 | 763.0 | 793.7 | $0-8$ | 467.9 | -516.0 |
| 2 | 1 | 0 | 582.8 | -646.5 | 5 | 2 | -1 | 695.2 | -712.2 | 110 | 365.0 | 316.4 |
| 2 | 0 | 0 | 610.1 | 671.2 | 5 | 3 | -1 | 293.2 | 199.6 | 161 | 303.2 | -243.5 |
| 3 | 7 | 0 | 392.2 | 331.2 | 5 |  | -1 | 546.4 | 587.4 | , | 238.3 | 194.5 |
| 3 |  | - | 425.7 | -390.3 | 5 |  | -1 | 515.9 | 461.9 |  | 490.4 | -420.6 |
| 3 | 5 | 0 | 458.1 | 451.1 | 5 |  | -1 | 368.3 | -291.8 |  | 304.1 | -221.4 |
| 3 | 4 | 0 | 740.4 | 714.6 | 4 |  | -1 | 398.2 | $-516.1$ | 11 | 641.5 | 735.9 |
|  | . 3 | 0 | 342.1 | -210.5 |  | -7 |  | 478.7 | 529.4 | i-2 | 339.6 | 244.4 |



|  | $K$ | 1 | $F_{0}$ | $F_{c}$ | h K | 1 | $F_{0}$ | $\mathrm{F}_{\mathrm{c}}$ | h | K | 1 | $F_{0}$ | $F_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2 | 2 | 666.8 | -635.6 | 02 | 3 | 376.8 | 382.6 |  | -4 | 5 | 585.0 | 577.3 |
| 5 | 4 | 2 | 459.8 | 397.1 | 08 | 3 | 556.9 | -630.9 | 2 | -3 | 5 | 601.7 | $-533.9$ |
| 5 | 5 | 2 | 521.5 | 550.5 | 1-7 | 3 | 533.1 | -533.5 | 2 | -2 | 5 | 467.9 | -306.7 |
| 6 | -4 | 2 | 528.1 | -482.1 | $1-5$ | 3 | 700.6 | 729.8 | 2 | -1 | 5 | 530.1 | 503.3 |
| 6 | -3 | 2 | 547.4 | -404.3 | 1 -3 | 3 | 206.6 | 151.0 | 2 | 0 | 5 | 512.3 | 436.4 |
| 6 | 0 | 2 | 493.9 | -431.6 | 1 | 3 | 405.2 | 430.0 | 2 | 4 | 5 | 668.4 | -699.4 |
| 6 | 1 | 2 | 518.9 | -488.6 | 1 | 3 | 256.5 | -200.4 | 3 | -8 | 5 | 486.9 | -485.9 |
| 7 | -5 | 2 | 687.6 | -726.2 | 1 | 3 | 350.3 | -324.1 | 3 | -6 | 5 | 617.8 | 576.1 |
|  | 1 | 2 | 548.0 | - 111.6 | 14 | 3 | 307.1 | 101.4 | 3 | -5 | 5 | 945.3 | 989.6 |
| 8 | -2 | 2 | 739.5 | 732.0 | 15 | 3 | 561.2 | 677.7 | 3 | -1 | 5 | 430.6 | -365.8 |
| 8 | 2 | -3 | 579.7 | 597.3 | 2-8 | 3 | 766.2 | -791.0 | 3 | , | 5 | 408.3 | 324.3 |
| 8 | -4 | -3 | 461.2 | 427.7 | $2-7$ | 3 | 388.1 | 307.3 | 3 | 1 | 5 | 680.0 | 764.7 |
| 7 | 5 | -3 | 493.7 | -621.3 | 2-6 | 3 | 682.6 | -643.1 | 3 | 2 | 5 | 678.0 | -700.7 |
| 7 | 3 | -3 | 406.3 | 99.7 | $2-4$ | 3 | 293.7 | 151.1 | 4 | -8 | 5 | 459.2 | -329.1 |
| 7 | -1 | -3 | 518.6 | -474.3 | $2-3$ | 3 | 531.7 | -505.2 | 4 | -3 | 5 | 612.7 | -640.9 |
| 7 | -3 | -3 | 394.8 | 303.5 | 2-2 | 3 | 666.5 | -666.6 | 4 | -2 | 5 | 857.6 | -810.6 |
|  | -4 | -3 | 454.5 | -393.2 | 2-1 | 3 | 552.3 | 614.5 | 4 | -1 | 5 | 597.2 | 552.8 |
| 6 | 3 | -3 | 447.6 | 451.4 | 20 | 3 | 284.1 | -196.5 | 5 | -6 | 5 | 654.4 | 619.3 |
| 6 | -1 | -3 | 458.8 | 444.6 | 21 | 3 | 254.6 | -228.0 | 5 | -4 | 5 | 562.9 | -487.2 |
| 5 | 1 | -3 | 595.5 | 592.9 | 22 | 3 | 774.5 | -852.0 | 5 | 0 | 5 | 746.8 | 742.8 |
| 5 | 3 | -3 | 596.3 | 661.5 | 24 | 3 | 514.8 | -550.8 | 6 | -3 | 5 | 450.9 | -432.2 |
| 5 |  | -3 | 396.4 | -330.3 | 3-9 | 3 | 423.7 | 326.6 | 6 | -1 | 5 | 413.6 | 332.2 |
| 5 | 1 | -3 | 343.8 | 257.6 | 3-6 | 3 | 673.2 | 707.5. | 2 | 1 | -5 | 520.3 | -506.4 |
| 5 | 0 | -3 | 436.6 | -469.6 | 3-5 | 3 | 556.4 | 558.5 | 2 | -2 | -5 | 129.4 | -323.8 |
| 5 | -2 | -3 | 628.7 | 682.1 | 3-4 | 3 | 366.6 | -354.2 | 2 | -3 | -5 | 367.1 | 227.5 |
| 5 | -3 | -3 | 377.9 | 386.3 | 3 | 3 | 262.4 | 181.8 | 2 | -4 | -5 | 655.6 | -669.6 |
| 5 | -5 | -3 | 415.7 | 366.1 | 31 | 3 | 695.5 | 735.8 | 1 | 5 | -5 | 627.3 | 487.2 |
| 1 | - | -3 | 429.3 | -481.3 | 32 | 3 | 559.0 | -532.4 | 1 | 4 | -5 | 349.6 | 247.5 |
| 1 |  | -3 | 318.1 | $-238.3$ | 33 | 3 | 335.8 | 318.5 | 1 | -1 | -5 | 647.6 | 580.3 |
| 1 | 3 | -3 | 428.5 | 417.0 | 34 | 3 | 441.9 | 566.9 | 1 | -3 | -5 | 802.8 | -814.9 |
| 1 | 2 | -3 | 631.7 | -594.5 | 4-9 | 3 | 482.1 | -535.9 | 0 | -6 |  | 736.7 | 710.8 |
| 4 | 1 | -3 | 637.6 | -678.2 | -6 | 3 | 369.8 | -286.6 | 0 | -4 | 5 | 941.1 | 1158.4 |
| 4 | 0 | -3 | 387.0 | -429.8 | -3 | 3 | 590.1 | -525.1 | 0 | 0 | 5 | 575.4 | 730.2 |
| + | -1 | -3 | 398.5 | 314.7 | 4-1 | 3 | 623.6 | 591.3 | 0 |  | 5 | 791.8 | 939.0 |
|  | -2 | -3 | 531.7 | -377.3 | 41 | 3 | 389.7 | -348.1 | , | 6 |  | 499.4 | 604.8 |
| 5 | 5 | -3 | 365.8 | 345.0 | 48 | 3 | 532.0 | -113.3 | 1 | -7 | 5 | 877.9 | -1027.6 |
| 3 |  | -3 | 566.3 | -639.5 | 5-9 | 3 | 524.5 | -167.5 | 1 | -5 | 5 | 316.2 | 205.7 |
| 3 | 5 | -3 | 325.6 | 273.3 | 5-6 | 3 | 486.7 | 486.6 | 1 | -4 |  | 280.7 | -207.6 |
| 3 | 1 | -3 | 426.7 | 407.0 | 5-5 | 3 | 417.0 | -306.7 |  | 0 | 5 | 272.4 | 191.9 |
| 3 | 3 | -3 | 453.2 | $-435.9$ | 5-4 | 3 | 715.3 | -649.9 | 1 | 1 | 5 | 521.2 | 427.6 |
| 3 | 1 | -3 | 328:6 | -274.1 | 5-1 | 3 | 415.9 | -295.5 | 1 | 3 | 5 | 845.4 | -974.1 |
| 3 | -1 | -3 | 511.9 | 510.8 | 50 | 3 | 616.9 | 618.6 | 2 | -9 | 5 | 450.0 | -258.8 |
|  | -2 | -3 | 515.4 | 532.6 | 51 | 3 | 589.6 | -533.0 | 2 | -8 | 5 | 466.4 | -444.2 |
| 3 | 4 | -3 | 513.5 | -587.0 | 52 | 3 | 415.1 | -536.3 | 2 | -7 |  | 384.1 | 269.1 |
| 2 | 4 | -3 | 802.9 | 946.9 | 53 | 3 | 530.4 | -397.9 | 2 | -5 | 5 | 344.5 | 283.0 |
| 2 | 3 | -3 | 446.2 | 441.1 | $6-6$ | 3 | 467.4 | 365.5 | 6 | 3 | -5 | 541.2 | 476.6 |
| 2 | 1 | -3 | 550.5 | -588.2 | $6-5$ | 3 | 391.3 | 323.4 | b | 2 | -5 | 488.4 | 358.1 |
| 2 | 0 | -3 | 647.2 | 609.4 | $6-4$ |  | 420.8 | 344.8 | 6 | -2 | -5 | 627.9 | 599.2 |
| 2 | -1 | -3 | 263.4 | 238.7 | $6-3$ | 3 | 448.4 | -382.9 | 5 | 7 | -5 | 524.8 | -461.9 |
| 2 | -6 | -3 | 670.3 | 807.2 | $6-2$ | 3 | 52.1 | 552.6 | 5 | 6 | -5 | 515.8 | -590.0 |
| 1 | -1 | -3 | 498.2 | -422.3 | $6-1$ | 3 | 389.1 | 308.3 | 5 | 4 | -5 | 627.3 | 560.5 |
| 1 | -3 | -3 | 843.7 | -1055.4 | 6 | 3 | 439.8 | -341.5 | 5 | 0 | -5 | 728.9 | -766.0 |
| 1 | -9 | -3 | 470.1 | -731.7 | 2 | 3 | 452.1 | 434.0 | 5 | -2 | -5 | 427.3 | 451.3 |
| 0 | -6 | 3 | 351.9 | 319.6 | $7-6$ | 3 | 457.7 | 359.6 |  |  | -5 | 671.4 | 680.1 |
|  | -4 | 3 | 503.0 | 537.5 |  | , | 414.6 | -471.8 | 4 |  | -5 | 566.2 | -537.0 |
|  | -2 | 3 | 164.0 | -462.0 | 7 | 3 | 424.0 | $-390.3$ | 4 |  | -5 | 584.7 | -552.2 |


| h K l | $F_{0}$ | $\mathrm{F}_{6}$ | h K |  | Fo | $\mathrm{F}_{\mathrm{c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-5 | 356.1 | -278.8 | 20 | -6 | 780.4 | 859.2 |
| 4-2-5 | 423.5 | -219.8 | 2 -2 | -6 | 642.2 | 625.9 |
| $388-5$ | 402.3 | 387.1 | $2-3$ | -6 | 374.8 | 335.7 |
| $6-5$ | 711.3 | -629.0 | $2-4$ | -6 | 451.9 | -391.3 |
| $5-5$ | 942.3 | 1036.2 | 17 | -6 | 1010.6 | -959.6 |
| 4-5 | 297.7 | 245.9 | 5 | -6 | 513.1 | 378.9 |
| 3. $0-5$ | 348.1 | -283.8 | 10 | -6 | 339.4 | -291.6 |
| 3-1-5 | 826.1 | 863.3 | $1-1$ | -6 | 781.5 | 721.0 |
| 3-2-5 | 601.8 | 644.4 | $1-3$ | -6 | 568.9 | -674.0 |
| $\begin{array}{llll}3 & -3 & -5\end{array}$ | 419.9 | 191.3 | 0. -8 | 6 | 601.0 | -522.7 |
| 8-5 | 643.1 | -648.5 | 00 | 6 | 411.0 | -200.8 |
| 7-5 | 316.2 | -329.1 | 02 | 6 | 374.5 | 308.4 |
| $6-5$ | 352.5 | -288.1 | 01 | 6 | 565.5 | -636.9 |
| 5-5 | 290.3 | -261.3 | $1-9$ | 6 | 546.2 | 651.8 |
| 4-5 | 574.8 | 366.8 | 1-5 | 6 | 820.0 | 1016.7 |
| $3-5$ | 603.7 | 531.0 | 11 | 6 | 852.4 | 1135.6 |
| 2-5 | 759.6 | -728.6 | $2-8$ | 6 | 517.5 | -500.7 |
| 1-6 | 477.6 | -330.5 | $2-6$ | 6 | 592.9 | -590.6 |
| 1-6 | 464.8 | -342.8 | $2-5$ | 6 | 352.2 | 278.5 |
| 1-6 | 497.9 | -385.9 | $2-3$ | 6 | 572.9 | -607.4 |
| 6 6-b | 545.5 | -421.5 | $2-2$ | 6 | 633.8 | -664.9 |
| 5 6-6 | 539.8 | $-524.6$ | $2-1$ | 6 | 312.6 | 251.5 |
| 5 5-6 | 436.7 | 300.7 | 20 | 6 | 312.0 | 188.5 |
| 5 4-6 | 461.7 | 533.6 | 23 | 6 | 521.5 | -427.3 |
| $\begin{array}{llll}5 & 1 & -6\end{array}$ | 409.7 | 355.9 | $3-8$ | 6 | 464.8 | -539.9 |
| 5 5 0-6 | 647.9 | -658.4 | 3-7 | 6 | 471.2 | -367.1 |
| 5-1-6 | 410.3 | 221.6 | $3-6$ | 6 | 596.6 | 572.5 |
| $5-2-6$ | 451.2 | 529.8 | $3-5$ | 6 | 509.4 | 436.3 |
| 3-6 | 635.4 | 604.8 | $3-1$ | 6 | 640.8 | $-585.3$ |
| 2-6 | 507.3 | -383.3 | 3.0 | 6 | 528.6 | 538.2 |
| 4 1-6 | 584.7 | -602.0 | 32 | 6 | 483.3 | -537.4 |
| $\begin{array}{ll}4 & -5\end{array}-6$ | 499.6 | -554.3 | 4-5. | 6 | 380.3 | 296.3 |
| $388-6$ | 489.4 | 428.2 | $4-4$ | 6 | 457.3 | 336.8 |
| $\begin{array}{llll}3 & 7 & -6\end{array}$ | 490.8 | -492.6 | 4-3 | 6 | 656.1 | -644.3 |
| $3 \mathrm{6}-6$ | 591.9 | -195.3 | 4-1 | 6 | 457.0 | 424.6 |
| 35050 | 434.7 | 301.2 | 40 | 6 | 438.4 | 393.4 |
| 3 3-6 | 734.8 | -688.8 | $5-6$ | 6 | 541.5 | 590.5 |
| 3 1-6 | 849.1 | -966.2 | $5-5$ | 6 | 442.1 | -418.9 |
| $\begin{array}{lll}3 & 0 & -6\end{array}$ | 404.9 | -337.3 | $5-4$ | 6 | 472.2 | -395.3 |
| 3-1-6 | 337.3 | 345.8 | 5 -2 | 6 | 466.4 | -425.2 |
| 3-2-6 | 595.9 | 651.3 | 50 | 6 | 686.8 | 597.5 |
| 3-3-6 | 394.1 | -309.1 | $7-7$ | 6 | 602.3 | 655.7 |
| 2 5-6 | 388.0 | -264.4 |  |  |  |  |
| $24-6$ | 827.1 | 904.6 |  |  |  |  |
| $21-6$ | 382.3 | $-335.7$ |  |  |  |  |

## reflections not used in refine:ient

| h | $k$ | 1 | Fn | Fc |
| ---: | ---: | ---: | :---: | ---: |
| 6 | -3 | 0 | 468.5 | -355.0 |
| 6 | -2 | 0 | 502.2 | 377.5 |
| 3 | -9 | 0 | 475.6 | 81.7 |
| 0 | 4 | 0 | 291.3 | -34.9 |
| 9 | 0 | 0 | 562.5 | -44.3 |
| 5 | 1 | -1 | 448.1 | 249.6 |
| 2 | 2 | -1 | 198.7 | 92.8 |
| $2-10$ | 1 | 349.1 | 192.8 |  |
| 8 | 2 | 2 | 661.7 | 252.1 |
| 6 | .7 | -2 | 456.6 | 513.7 |
| 3 | -6 | 2 | 793.0 | 678.0 |


| $h$ | $k$ | 1 | Fo | $F \mathrm{Fc}$ |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 3 | -3 | 586.6 | -593.8 |
| 0 | 4 | 3 | 299.6 | -39.1 |
| 4 | 0 | 3 | 301.2 | -152.4 |
| 2 | 0 | -5 | 265.8 | 122.8 |
| 2 | 3 | -6 | 520.9 | 555.6 |
| 2 | 2 | -6 | 574.3 | -122.9 |
| 3 | -9 | 6 | 447.9 | 10.4 |

## non observed reflections for sbclu.1-brohonaphthalene

BS=Back Stop, OR=Out of the observable Range NA=Not Available

| h | $k$ | 1 | Fo | Fe | h | $k$ | 1 | Fo | Fc | $h \mathrm{k}$ | 1 | Fo | Fc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 137.4 | 4.4 | 5 | 6 | $\checkmark$ | 3.91 .5 | -157.1 | $1-1$ | -1 | 129.6 | 176.4 |
| 3 | 0 | 0 | 240.5 | $-9.3$ | 6 | 6 | 0 | 416.7 | 84.9 | 1-4 | -1 | 209.5 | -125.1 |
| 5 | 0 | 0 | 316.2 | 120.6 | 5 | -7 | 0 | 398.0 | 205.1 | $1-6$ | -1 | 255.2 | 217.6 |
| 7 | 0 | 0 | 384.4 | -39.2 | 2 | -7 | 0 | 350.2 | 267.0 . | $1-7$ | $-1$ | 277.1 | -41.8 |
| 8 | 0 | 0 | 417.6 | -257.5 | 0 | 7 | 0 | 342.3 | 36.1 | $0-7$ | 1 | 260.2 | 24.2 |
| 5 | -1 | 0 | 316.9 | 17.1 | 1 | 7 | 0 | 347.0 | $-270.5$ | $0-6$ | 1 | 237.5 | 56.7 |
| 8 | 1 | 0 | 420.4 | -278.4 | 5 | 7 | 0 | 411.9 | 150.2 | $0-5$ | 1 | 213.7 | 12.6 |
| 7 | -2 | 0 | 387.6 | 242.3 | 5 | -8 | 0 | 418.8 | -100.2 | $0-3$ | 1 | 159.2 | -48.1 |
| 8 | 2 | 0 | 426.2 | 252.4 | 3 | -8 | 0 | 386.7 | 145.5 | $0-2$ | 1 | 125.0 | -1381.9 BS |
| 8 | -3 | 0 | 425.5 | 37.7 | 0 | 8 | 0 | 370.1 | -185.4 | $0-1$ | 1 | 77.6 | 2.7 |
| 7 | -3 | 0 | 394.1 | 46.5 | 1 | 8 | 0 | 374.5 | 41.1 | 00 | 1 | 59.3 | 696.6 BS |
| 5 | -3 | 0 | 331.9 | 113.1 | 3 | 8 | 0 | 396.9 | -136.7 | 01 | 1 | 114.4 | 29.7 |
| 2 | -3 | 0 | 244.2 | $-173.4$ | 5 | 8 | 0 | 433.6 | 25.4 | 03 | 1 | 130.9 | 13.3 |
| 0 | 3 | 0 | 217.1 | -5.1 | 2 | -9 | 0 | 402.9 | -177.8 | 05 | 1 | 231.4 | 17.7 |
| 2 | 3 | 0 | 251.1 | 127.3 | 0 | 7 | 0 | 397.6 | 58.5 | 06 | 1 | 254.4 | 67.9 |
| 5 | 3 | 0 | 340.3 | 6.2 | 2 | 9 | 0 | 410.0 | 145.9 | 07 | $\dagger$ | 276.5 | 24.8 |
| 7 | 3 | 0 | 402.6 | 93.7 | 7 | 0 | -1 | 300.3 | -7.1 | $1-7$ | 1 | 261.3 | 118.8 |
| 8 | -4 | 0 | 433.6 | 124.0 | 7 |  | -1 | 301.2 | 75.9 | 1-6 | 1 | 239.2 | 184.3 |
| 2 | -4 | 0 | 270.5 | $-30.9$ | 5 | 0 | -1 | 246.7 | -37.2 | $1-4$ | 1 | 192.2 | -93.3 |
| 1 | -4 | 0 | 255.9 | -90.7 | 5 |  | $-1$ | 262.8 | 70.6 | 1-1 | 1 | 114.6 | 402.4 BS |
| 1 | 4 | 0 | 260.3 | 59.9 | 4 | 5 | -1 | 265.5 | 128.8 | 10 | 1 | 112.7 | 109.1 |
| 2 | 4 | 0 | 277.7 | -102.7 | 4 | 4 | -1 | 250.6 | 39.5 | 17 | 1 | 280.1 | 250.5 |
| 6 | 4 | 0 | 384.2 | 52.2 | 4 | -2 | -1 | 228.9 | 54.8 | 2. 3 | $\dagger$ | 205.1 | -8.6 |
| 8 | 4 | 0 | 444.9 | 139.2 | 4 | -3 | -1 | 239.8 | -186.5 | 24 | 1 | 226.0 | -10.8 |
| 6 | -5 | 0 | 387.2 | $-105.7$ | 3 | 0 | -1 | 187.4 | 2.7 | 3-7 | 1 | 277.2 | -89.7 |
| 5 | -5 | 0 | 360.6 | 180.2 | 3 | -1 | -1 | 192.2 | 41.1 | 3-5 | 1 | 240.6 | -140.4 |
| 4 | -5 | 0 | 336.1 | $-137.6$ | 3 | -5 | -1 | 252.9 | -97.7 | 30 | 1 | 190.7 | 4.5 |
| 0 | 5 | 0 | 283.9 | -1.9 | 2 | -3 | - | 198.3 | 18.9 | 35 | 1 | 261.3 | 61.5 |
| 4 | 5 | 0 | 347.0 | 207.2 | 1 | 7 | -1 | 264.0 | -366.80R | 36 | 1 | 279.9 | -222.2 |
| 5 | 5 | 0 | 372.1 | $67 \times 4$ | 1 | 6 | -1 | 241.9 | $-138.8$ | 4-5 | 1 | 258.6 | -24.5 |
| 6 | 5 | 0 | 399.6 | 355.5 | 1 | -4 | -1 | 209.5 | -125.1 | 43 | 1 | 248.3 | 126.7 |
| 6 | -6 | 0 | 402.6 | 142.5 | , |  | -1 | 114.4 | $-139.8$ | 55 | 1 | 298.0 | -186.4 |
| 5 | -6 | 0 | 378.4 | 221.6 | 1 | 0 | -1 | 107:7 | -69.2 | t-2 | 1 | 277.8 | 159.0 |



| h $k$ | 1 | Fo | Fc | h | $k 1$ | Fo | Fic | $h \mathrm{k}$ | 1 | Fo | Fi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | -3 | 157.0 | -120.9 | 5 - | $\begin{array}{ll}-3 & 5\end{array}$ | 333.5 | 183.2 | 5-1 | -5 | 335.5 | -35.7 |
| 11 | -3 | 136.1 | -161.9 BS | 5 - | $\begin{array}{ll}-5 & 5\end{array}$ | 349, 6 | 144.6 | 51 | -5 | 320.5 | -51.7 |
| 10 | -3 | 160.0 | -192.7 BS | 4 | 35 | 358.8 | $-275.3$ | 52 | -5 | 320.9 | 6.1 |
| 1-2 | -3 | 235.6 | 114.0 | 4 | 25 | 339.1 | -269.1 | 53 | -5 | 325.7 | 80.6 |
| $1-4$ | -3 | 301.2 | -158.8 | 4 | 15 | 321.8 | -114.9 | 55 | -5 | 348.7 | 1.0 |
| $1-5$ | -3 | 331.5 | 120.1 | 4 | 05 | 307.8 | -351.1 | 6-1 | -5 | 367.7 | 315.4 |
| 1 -6 | -3 | 360.7 | 181.2 | 4 - | -4 5 | 305.5 | -210.5 | 60 | -5 | 360.3 | 114.9 |
| $1-7$ | $-3$ | 389.1 | -408.3 OR | 4 - | -5 5 | 318.3 | 234.2 . | 61 | -5 | 356.4 | -322.0 |
| $0-7$ | 3 | 324.0 | 64.8 | 4 - | -6 5 | 335.0 | -190.4 | 63 | -6 | 433.0 | 397.3 |
| $0-5$ | 3 | 259.4 | 12.6 | 3 | 45 | 357.9 | 229.8 | 62 | -6 | 429.6 | -280.8 |
| $0-3$ | 3 | 179.3 | 17.1 | 3 | 35 | 334.1 | 160.9 | $6-1$ | -6 | 448.2 | 292.3 |
| $0-1$ | 3 | 48.0 | 92.9 BS | $3-$ | -2 5 | 254.8 | -136.8 | $6-2$ | -6 | 462.7 | $-258.8$ |
| 00 | 3 | 136.9 | 1416.1 BS | $3-$ | $\begin{array}{ll}-3 & 5\end{array}$ | 258.7 | 41.3 | 53 | -6 | 390.1 | 255.2 |
| 01 | 3 | 189.2 | 56.6 | $3-$ | -4 5 | 270.6 | -207.5 | 52 | -6 | 386.3 | 242.1 |
| 03 | 3 | 266.9 | 47.8 | $3-$ | -7 5 | 331.7 | 23.7 | $5-3$ | -6 | 448.9 | 105.0 |
| 05 | 3 | 330.4 | 69.3 | 2 | 35 | 312.6 | $-224.4$ | 46 | -6 | 397.5 | 2.9 |
| 06 | 3 | 360.2 | 431.3 NA | 2 | 25 | 285.8 | -4.7 | 45 | -6 | 375.2 | $-303.6$ |
| 07 | 3 | 389.1 | 14.3 | 2 | 15 | 259.3 | 70.2 | 44 | -6 | 357.3 | 111.1 |
| $1-6$ | 3 | 296.4 | 74.4 | 2 | -6 5 | 286.7 | -63.2 | 40 | -6 | 355.6 | 217.1 |
| $1-4$ | 3 | 231.3 | -181.6 | 1 | 45 | 326.0 | 147.2 | 4-1 | -6 | 373.2 | -46.1 |
| $1-2$ | 3 | 162.7 | 123.2 | 1 | 25 | 265.8 | -247.0 | 4-2 | -6 | 394.8 | 195.4 |
| $1-1$ | 3 | 150.6 | 692.1 BS | 1 - | -1 5 | 166.6 | -753.1 BS | 4-3 | -6 | 419.5 | 187.2 |
| 10 | 3 | 173.4 | 110.3 | 1 - | $\begin{array}{ll}-2 & 5\end{array}$ | 152.6 | -87.1 | 34 | -6 | 313.0 | 183.2 |
| 16 | 3 | 365.6 | $-274.0$ | 1 | $\begin{array}{ll}-3 & 5\end{array}$ | 171.6 | -295.1 PS | 32 | -6 | 290.0 | 120.8 |
| 17 | 3 | 394.0 | 209.2 | 1 - | -6 5 | 271.2 | 30.3 | $3-4$ | -6 | 424.5 | -182.6 |
| 2-5 | 3 | 281.1 | $-33.0$ | 0 | 55 | 348.7 | $-27.2$ | 27 | -6 | 369.4 | -176.8 |
| 23 | 3 | 294.5 | -206.0 | 0 | 45 | 319.2 | 32.8 | 26 | -6 | 335.0 | 92.0 |
| 25 | 3 | 349.5 | 313.1 | 0 | 35 | 288.5 | -23.9 | 2-1 | -6 | 306.2 | -19.9 |
| 26 | 3 | 376.5 | 249.6 | 0 | 15 | 218.4 | -22.6 | 16 | -6 | 314.0 | -95.8 |
| 3-3 | 3 | 267.2 | 17.8 | 0 - | -1 5 | 119.2 | -34.0 | 14 | -6 | 225.8 | 115.4 |
| 3-2 | 3 | 257.0 | 16.4 | 0 - | $-2 \quad 5$ | 58.7 | -590.0 BS | 13 | -6 | 177.1 | -295.3 NA |
| 3-1 | 3 | 255.1 | 35.0 | 0 | $\begin{array}{ll}-3 & 5\end{array}$ | 138.7 | $-24.4$ | 12 | -. 6 | 154.1 | -31.0 |
| 35 | 3 | 367.2 | 372.6 OR | 0 | $\begin{array}{ll}-5 & 5\end{array}$ | 230.4 | 27.8 | 11 | -6 | 191.3 | -450.0 B. |
| 36 | 3 | 392.4 | 0.2 | 0 - | -7 | 298.0 | -17.0 | 1-2 | -6 | 325.8 | -2.8 |
| $4-5$ | 3 | 331.8 | 131.4 | 0 | $\begin{array}{ll}-8 & 5\end{array}$ | 328.4 | -81.8 | 1-4 | -6 | 400.2 | -240.6 |
| $4-4$ | 3 | 315.7 | -10.1 | 1 - | -4 -5 | 319.8 | $-93.3$ | $0-7$ | 6 | 346.8 | 31.7 |
| $4-2$ | 3 | 296.7 | -120.0 | $1-$ | $-2-5$ | 257.5 | 164.1 | $0-6$ | 6 | 306.6 | 15.4 |
| 42 | 3 | 327.5 | 27.3 | 1 | 0-5 | 184.5 | -127.9 | $0-5$ | 6 | 261.6 | 113.5 |
| 43 | 3 | 346.0 | $-139.0$ | 1 | $1-5$ | 145.4 | -546.0 BS | $0-4$ | 6 | 208.9 | 572.4 PS |
| 44 | 3 | 366.4 | 81.0 | i | $2-5$ | 131.1 | 68.9 | $0-3$ | 6 | 139.6 | 78.5 |
| 45 | 3 | 388.6 | 314.3 | 1 | 3-5 | 162.4 | -66.6 | 0-2 | 6 | 81.5 | -1257.2 BS |
| 5-3 | 3 | 338.8 | -29.2 | 1 | $6-5$ | 271.8 | -5i. 8 | $0-1$ | 6 | 172.7 | 69.3 |
| 5-2 | 3 | 333.7 | 144.3 | 1 | 7-5 | 303.1 | -748.9 OR | $1-7$ | 6 | 352.2 | -275.1 |
| 54 | 3 | 392.9 | 333.0 | 2 | -5 -5 | 355.2 | -335.1 | 1-6 | 6 | 314.7 | 65.4 |
| 63 | 3 | 405.2 | -11.7 | 2 - | $-1-5$ | 243.2 | -64.5 | 1-4 | 6 | 233.8 | -184.0 |
| 64 | 3 | 421.0 | 237.3 | $3-$ | $-4-5$ | 342.1 | -346.9 OR | 1-3 | 6 | 197.7 | 303.1 PS |
| $7-2$ | 3 | 404.1 | -9.2 | 3 | $1-5$ | 243.2 | -168.3 | $1-2$ | 6 | 188.9 | -61.0 |
| $\begin{array}{rr}7 & -1 \\ 6 & 2\end{array}$ | 3 | 404.1 | -51.0 | 3 | $2-5$ | 241.7 | 108.6 | 1-1 | 6 | 216.7 | 155.2 |
| $\begin{array}{ll}6 & 2 \\ 6 & 1\end{array}$ | 5 | 399.0 | 282.5 | 3 | 3-5 | 250.3 | 47.7 | 10 | 6 | 257.2 | 231.9 |
| $\begin{array}{ll}6 & 1 \\ 6 & 0\end{array}$ | 5 | 386.2 | -256.2 | 4- | $-4-5$ | 360.9 | -336.5 | 12 | 6 | 336.3 | -161.4 |
| $\begin{array}{ll}6 & 0 \\ 6 & -2\end{array}$ | 5 | 376.7 367.1 | 7.9 168.7 | 4 - | $\begin{array}{lll}-3 & -5\end{array}$ | 339.7 | 259.7 | 13 | 6 | 372.8 | -136.5 |
| $\begin{array}{rrr}6 & -2 \\ 5 & 2\end{array}$ | 5 | 367.1 368.6 | 168.7 -308.5 | 4 - | $-1-5$ | 303.4 | 151.0 | 2-7 | 6 | 368.4 | 95.9 |
| 51 | 5 | 354.0 | -308.5 | 4 | $\begin{array}{ll}4 & -5 \\ 5 & -5\end{array}$ | 301.3 | -81.9 | $2-4$ | 6 | 277.5 | 91.8 |
| 5-1 | 5 | 335.0 | 16 | 4 | $\begin{array}{ll}5 & -5 \\ 6 & -5\end{array}$ | 317.4 | -204.4 | 21 | 6 | 326.5 | 22.9 |
| 5-2 | 5 | 332.0 | -191.4 | 4. |  | 336:4 | -340.7 OR | 22 | 6 | 358.6 | 89.3 |
|  |  |  | -191.4 |  |  | 365.0 | - 23.7 | 3-4 | 6 | 322.8 | -7.8 |



This layer was omitted in refinenent due to poor Fo \& Fc agreement.


THE FOLLOUING REFLECTIONS WERE NOY USED IN CAMPUTINE LEAET SQUARES REFINEHENT OF THE FUURTH LAYER:

| 0 | -9 | 4 | 399.7 | -17.7 |
| ---: | ---: | ---: | ---: | ---: |
| 0 | -7 | 4 | 530.8 | 22.4 |
| 0 | -3 | 4 | 254.4 | -58.5 |

$\begin{array}{rrrrr}3 & -5 & 4 & 553.6 & 90.4 \\ 3 & -2 & 4 & 557.9 & -58.4 \\ 5 & -5 & 4 & 439.3 & -20.9\end{array}$

## NOH-OBSERUED REFLECTIONS

FOURTH LGYER

| 1 | Fo | Fis | h k | 1 | Fo | 5 F | h k | 1 | Fo | Fc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 4-4 | 550.7 | 264.7 | 2-1 | -4 | 317.1 | 204.7 | $1-2$ | 4 | 209.3 | 148.8 |
| $7 \quad 2-4$ | 532.8 | 51.2 | $2-2$ | -4 | 354.6 | -224.4 | $1-1$ | 4 | 211.5 | -740.2 |
| $\begin{array}{llll}7 & 0 & -4\end{array}$ | 532.8 | $-185.3$ | $2-3$ | -4 | 392.6 | 365.1 | 10 | 4 | 250.9 | 331.2 |
| 7-1-4 | 539.8 | -109.3 | $2-5$ | -4 | 468.2 | -203.3 | 12 | 4 | 343.4 | -55.5 |
| 7-2-4 | 550.7 | 305.2 | $2-7$ | -4 | 542.1 | 192.7 | 14 | 4 | 426.9 | 288.3 |
| 6 5-4 | 522.9 | -335.8 | 8 | -4 | 465.6 | 268.5 | 15 | 4 | 465.9 | 265.8 |
| $6{ }^{6}$ 4-4 | 50.2 | -268.9 | 7 | -4 | 425.9 | -467.5 NA | 16 | 4 | 504.3 | -4.4.3 |
| 6 2-4 | 486.1 | 43.0 | - | -4 | 384.6 | -80.8 | 17 | 4 | 542.4 | 245.8 |
| 6-1-4 | 495.0 | 270.1 | 14 | -4 | 293.1 | 105.0 | 2-8 | 4 | 474.2 | $-380.2$ |
| 6-2-4 | 508.2 | -122.0 | 2 | -4 | 191.7 | -98.3 | $2-6$ | 4 | 401.0 | 6.1 |
| $6-3-4$ | 525.4 | -26.2 | 11 | -4 | 185.3 | -189.9 | $2-5$ | 4 | 364.5 | 103.2 |
| 6. $-4-4$ | 546.2 | 7.0 | 10 | -4 | 231.7 | -260.5 | 2-4 | 4 | 329.9 | 999.3 |
| 5 5-4 | 481.0 | -97.5 | 1-2 | -4 | 332.2 | 86.1 | 21 | 4 | 337.3 | -175.3 |
| 5 3-4 | 446.7 | 154.1 | $1-4$ | -4 | 418.6 | -191.6 | 22 | 4 | 372.5 | 156.3 |
| 5 5-4 | 437.8 | -75.0 | $1-6$ | -4 | 497.3 | 127.0 | 23 | 4 | 409.0 | -281.3 |
| 5 1-4 | 435.2 | $-187.3$ | $0-9$ | 4 | 493.9 | -17.7 | 24 | 4 | 445.3 | -95.4 |
| 5-3-4 | 487.0 | -260.6 | $0-8$ | 4 | 459.5 | -734.5 | 5 | 4 | 482.2 | 257.0 |
| 5-4-4 | 511.0 | -187.4 | $0-6$ | 4 | 376.3 | $-231.6$ | $3-7$ | 4 | 460.2 | -587. ${ }^{\text {d }}$ |
| 5-5-4 | 537.6 | -156.0 | $0-5$ | 4 | 330.2 | 5.4 | 3 - | 4 | 428.5 | 709.1 |
| 4 7-4 | 493.3 | -158.8 | $0-4$ | 4 | 278.1 | 159.5 | $3-4$ | 4 | 373.1 | -243.5 |
| 4 6-4 | 467.2 | 276.2 | 0-2 | 4 | 127.4 | -2577.6 35 | 3 | 4 | 381.8 | 58.0 |
| 4 5-4 | 440.3 | -180.9 | $0-1$ | 4 | 121.9 | 30.0 | 3 | 4 | 439.7 | -232.3 |
| $\begin{array}{llll}4 & -1 & -4\end{array}$ | 405.4 | 206.8 | 00 | 4 | 212.2 | -206.5 | 35 | 4 | 505.0 | $-280.2$ |
| 4-3-4 | 451.2 | 130.2 | 0 | 4 | 275.5 | -67.7 | 4-7 | 4 | 488.6 | 101.5 |
| 4-5-4 | 509.1 | -371.2 | 02 | 4 | 328.0 | 32.8 | 4-6 | 4 | 401.8 | 166.8 |
| 3 5-4 | 401.3 | 106.2 | 0 | 4 | 374.4 | -26.0 | 4-5 | 4 | 437.8 | 26.3 .3 |
| 3 2-4 | 331.8 | 29.5 | 05 | 4 | 457.9 | -61.8 | , | 4 | 426.8 | -108.8 |
| 3-1-4 | 360.3 | 203.5 | 06 | 4 | 497.0 | 59.5 | 4 | 4 | 449.0 | 278.0 |
| 3-3-4 | 413.9 | -219.6 | 07 | 4 | 535.7 | -106.2 | d | 4 | 474.6 | -115.4 |
| 3-5-4 | 485.4 | -199.0 | 08 | 4 | 573.8 | -538.6 | 44 | 4 | 502.7 | 214.3 |
| 3-6-4 | 520.0 | -112.5 | 09 | 4 | 611.8 | 2.6 | 5-6 | 4 | 443.2 | 518.7 |
| $3 \begin{array}{llll}3 & -7 & -4\end{array}$ | 554.9 | -178.3 | $1-7$ | 4 | 423.4 | -580.4 | 5-4 | 4 | 462.7 | -664.5 |
| $27-4$ | 442.6 | r280.8 | $1-5$ | 4 | 339.2 | 804.7 | 51 | 4 | 472.0 | -61.4 |
| 2 5-4 | 366.7 | -30.9 | $1-3$ | 4 | 246.7 | 10.7 | 53 | 4 | 512.3 | 124.1 |
|  |  |  |  |  |  |  | 6 -2 | 4 | 495.7 | -140.9 |
|  |  |  |  |  |  |  | $6-1$ | 4 | 497.9 | 354.9 |

APPENDIX

OBSERVED AND CALCULATED
STRUCTURE AMPHITUDES FOR THE
(2:1) SbC1.3.1-CHLORONAPHTHALIENE COMPLEX.

$$
\text { Scale }=1.0 \quad F(000)=1152
$$

$-\infty+5$

-








 a 1 ○

伿








品




















a






$\Rightarrow N \mathrm{~N}$
$=$
























以


 ェ



































 -


















-







\#





エ







$\therefore \quad \mathrm{N}$

－
2
 け b


 $x$
$=$
 $\stackrel{9}{5}$






 3








 エ 9

롣

















－－MONNMNNNNNNNNNNNNNNNNNNMMMMMMMMMMMM

ェ Т


」 ツツツツツツツすすすすすすすすすすずか

エ


－


I

以



刃 $\%$
\％







1．으으으으으으으으으으으으으으으
$=$


APPENDIX $\underline{D}$

OBSERVED AND CALCULATED
STRUCTURE AMPLITUDES FOR THE
(1:1) $\mathrm{SbCl}_{3} \cdot 1$-IODONAPHTHALENE
COMPLEX REFERRED TO THE HALF CELL.

$$
\text { Scale=1.0 } F(000)=444
$$




$\therefore 00000$－－－－－NNNNNNNNNNMMMMMMMMM女母女母女





工
















而






$x$
$\pm$
 은 - NNNNNNNNNNNNNNNNNNINNNNNNNNNNNNNNNNM
 I






















[^0]:    (a) Computing Program's HSTAN' written by R. Hulme.

