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Abstract
In the repertoire of an experimental condensed matter physicist,
the ability to tune continuously through features in the electronic
structure and to selectively break point-group symmetries are both
valuable techniques. The experimental technique at the heart of
this dissertation, uniaxial stress, can do both such things.

The thesis will start with a thorough discussion of our new
technique, which was continually developed over the course of this
work, presenting both its unique capabilities and also some guidance
on the best working practices, before moving on to describe results
obtained on two different strongly correlated electron materials.

The first, Sr2RuO4, is an unconventional superconductor, whose
order parameter has long been speculated to be odd-parity. Of
interest to us is the close proximity of one of its three Fermi sur-
faces to a Van Hove singularity (VHs). Our results strongly suggest
that we have been able to traverse the VHs, inducing a topological
Lifshitz transition. Tc is enhanced by a factor ∼2.3 and measure-
ments of Hc2 open the possibility that optimally strained Sr2RuO4
has an even-parity, rather than odd-parity, order parameter. Mea-
surements of the normal state properties show that quasiparticle
scattering is increased across all the bands and in all directions, and
effects of quantum criticality are observed around the suspected
Lifshitz transition.

Sr3Ru2O7 has a metamagnetic quantum critical endpoint, which
in highly pure samples is masked by a novel phase. Weak in-plane
magnetic fields are well-known to induce strong resistive anisotropy
in the novel phase, leading to speculation that a spontaneous,
electronically driven lowering of symmetry occurs. Using magnetic
susceptibility and resistivity measurements we can show that in-
plane anisotropic strain also reveals the strong susceptibility to
electronic anisotropy. However, the phase diagram that these
pressure measurements reveal is consistent only with large but
finite susceptibility, and not with spontaneous symmetry reduction.
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1Introduction

1.1 Electrons in metals 2
1.2 Landau’s Fermi liquid 6

The interactions between particles in nature can present a
bewildering array of exotic states and phenomena, each fascinating
in their own right, but also in terms of their potential applications.
Condensed matter systems with as many as 1022 atoms in a single
cubic centimetre are a prime example. Of interest for this thesis
are a group of materials in which the interactions between electrons
are particularly strong, such that one must consider the behaviour
of the electrons as correlated. These interactions can drive the
formation of states such as superconductors, strange metals and a
variety of different magnetic states, to name just a few.

H = Hi +He +He−i

Hi =
∑

i

P2
i

2Mi
+ 1

2
∑

i6=j

ZiZje
2

|Ri −Rj |
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i
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∑

j

Zje
2
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Hamiltonian describing simple metals.
Hi describes the positive ion subsystem
with masses Mi and charges Zi. Pi is
the momentum of ion i. He similarly
describes the electron subsystem and
He−i accounts for the coulomb poten-
tial between the electrons and positive
ions at positions r and R, respectively.

To understand the behaviour of a complex system one often
turns to the individual building blocks. In condensed matter physics
these are the atoms making up the solid. When considering metals
we are concerned with the positive ions which form the crystal
lattice and the conduction electrons that move through it. The
positive ions comprise the nuclei of the constituent atoms plus
the core electrons. The conduction electrons are the outer most
electrons which can lower their kinetic energy by travelling through
the lattice. This energy benefit is key to the cohesion of atoms in
metals [1].

It is simple to account for the motion of each of the individual
building blocks and the Coulomb interactions between them but
this fully reductionist approach runs into complications [2]. The
equations can describe a vast number of properties in condensed
matter but the interaction terms put exact solutions for all but
the simplest systems out of reach. Instead we must simplify the
situation and look for ‘emergent’ phenomena. As experimentalists
we can try to understand these emergent states by measuring their
physical properties, but given the ability to perturb the systems
we can play with the underlying interactions and make the best
tests of theories.

In this thesis I will present measurements on two materials,
the first Sr2RuO4, known for its unconventional superconductivity,
and the second Sr3Ru2O7, for its quantum critical behaviour and
large nematic-like susceptibility, and show how their properties can
be manipulated through carefully applied uniaxial stress. Both
materials are exquisitely clean, so to perturb them without destroy-
ing the fragile nature of the emergent phenomena a suitably clean
tuning parameter is required. Significant technical development
was needed to be able to apply a sufficiently homogeneous uniaxial
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pressure, so as well as the results a thorough discussion on the
improvements to the technique that made this work possible will
be given. Before this, though, I will start by briefly introducing
how we describe the behaviour of electrons in metals, which will
later form the basis for the specific discussions of each material
presented in their respective chapters.

1.1 Electrons in metals
To start the discussion of electron correlations in metals it is intu-
itive to begin with the free non-interacting case and then slowly
introduce the correlations. In adopting this procedure, one must
trust that reintroducing electron correlations later will not render
the insights from the non-interacting case meaningless. In fact
there are good reasons for this and a proper justification will be
given in the section on Fermi liquids. Now also leaving the lattice
of ions behind briefly, or better assuming a uniform positive back-
ground charge to maintain charge neutrality, we begin with the free
Fermi gas and follow the Sommerfeld model. Conduction electron
densities in metals are typically of the order 1022 cm−3 at room
temperature [3]. At these densities the interparticle separations are
less than the thermal de Broglie wavelength of the electrons. So
to correctly describe the nature of this gas of electrons, quantum
effects must be included and the electron gas will obey Fermi-Dirac
statistics. Electrons occupy quantised energy states and obey the
Pauli exclusion principle. Imagining a gas of electrons in a box of
side L with periodic boundary conditions, the wave-functions of
the electrons are plane waves with energy

εk = ~2k2

2me
(1.1)

with quantised values of the wave-vector k in units of (2π/L). The
ground state is built up by filling up from the lowest energy state
to the Nth lowest state where N is the number of electrons. The
highest occupied energy is called the Fermi energy εF with the
corresponding Fermi wave-number kF. In reciprocal space the
surface separating the volume containing all the filled states from
the unoccupied states is called the Fermi surface, see figure 1.1 [3–5].

Fig. 1.1: Free electron Fermi surface.
Each k point within the sphere is oc-
cupied by one up- and one down-spin
electron.

At non-zero temperature the population of states follows the
Fermi-Dirac distribution. Thermal energy can excite an electron
from within the filled Fermi surface to a state just outside creating
an electron-hole pair. In a ‘free electron metal’ the typical Fermi
temperature, εF/kB ∼ 3 × 104 K, is much much higher than
ambient temperature so only a small number of states within an
energy of ∼kBT of the Fermi energy are ever excited. The Pauli
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exclusion principle prevents the excitation of the lower states since
there are no unoccupied final states within ∼kBT . This leads to a
T linear specific heat, unlike the constant value for a classical gas,
and a temperature independent magnetic susceptibility unlike the
Curie-Weiss behaviour of the classical gas, both of which can be
observed in real materials.

Reintroducing the periodic lattice, the wave-functions for the
electrons are no longer plane waves but instead are described by
Bloch waves [5]. The wave-vector or momentum used in the free
electron picture no longer makes sense for the Bloch states because
of the translational symmetry breaking. Instead, the electron states
can be described by a quantity called crystal momentum.

The real space crystal structure is completely defined within
the definition of the primitive unit cell. This irreducible volume
can map out the whole structure by copying it along each of the
translation vectors of the lattice. The same periodicity must exist
in reciprocal space where the irreducible volume is now called the
Brillouin zone. All momentum states can be mapped back to the
first Brillouin zone through the reciprocal lattice vectors giving us
the first idea of an electronic band structure, i.e. multiple bands
of the electron dispersion, each at higher energy, within the first
Brillouin zone. Each band has its own dispersion relationship,
E = E(k), but the number of possible states in each band is
always equal to the number of allowed crystal momenta in the first
Brillouin zone. This is always two times the number of primitive
unit cells in the crystal, with the factor of two for spin degeneracy.
Filling the allowed states proceeds as in the free electron gas and
Sommerfeld model; starting from the lowest energy but now filling
a new band when it is the next lowest in energy.

−π
a

π
a

k

ε

First
allowed

band

Second
allowed

band

Eg

Fig. 1.2: Nearly-free electron disper-
sion. The free electron dispersion,
dashed line, transforms into a set of
discrete bands with energy gaps in be-
tween when a periodic potential with
lattice constant a is weakly introduced.
Adapted from [4].

Between each of the bands an energy gap develops, i.e. there
are regions of energy where no Bloch wave solutions exist [4]. At
wave-vectors satisfying the Bragg reflection condition of the lattice,
the two left and right travelling wave-functions combine to form two
different standing waves. The two standing waves have different
probability densities, with one having higher probability at the
lattice sites, and the other between lattice sites. There is therefore
a difference in potential energy between the two solutions and this
is the origin of the energy gap.

From the idea of Bloch waves we can extract a mean velocity
for each of the electron states. At the Fermi energy we define the
Fermi velocity

vF = 1
~
∇kε|kF

, (1.2)

and from this we can identity a band mass

m∗ =
(

1
~2kF

∇kε|kF

)−1
. (1.3)
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This measures the impact of the lattice on the motion of the
electrons by how much it differs from the bare electron mass me.
We will see later that electron correlations can also enhance the
effective mass further above the band mass.

When filling up states up to the Fermi level we can think of
filling up to a surface with electrons but if only a few empty states
remain close to the top of the band it is equally sensible to describe
the band in terms of only the unoccupied states, or holes, at the top
of the band. A hole is the absence of an electron so carries opposite
charge and momenta to the electron states they are replacing.

There are two common limiting cases when continuing this
discussion further; the periodic potential can be added to the
free electron gas as a weak perturbation in a model called the
nearly-free electron model, or we can start with atomic orbitals and
slowly bring the lattice closer together allowing the electrons to hop
between atomic sites described by the tight-binding model [5]. In
this case, the itineracy is a perturbation on the atomic limit. The
nearly-free electron model works very well for the alkali metals [5].
Although the Coulomb attraction to the lattice should at first
sight be large, the Pauli exclusion principle keeps the conduction
electrons in higher orbitals, further away from the ion cores on
average, where the interaction is lower and the core electrons can
additionally screen the ion’s charge. So in some scenarios the
nearly-free electron model is entirely valid. For the alkali metals,
with only one valence electron per atom, it is particularly good,
because the Fermi surface fills only half of the first Brillouin zone,
well away from the zone boundaries, thus avoiding the distortions
of the band due to the band gaps [3].

For the materials we will be discussing later, Sr2RuO4 and
Sr3Ru2O7, both transition metal oxides, we are mainly concerned
with the d-electron shell. For example, at the normal valencies for
strontium and oxygen in Sr2RuO4, Sr2+ and O2– , the ruthenium
ion with a valency of Ru4+ is left in a 4d4 electronic configuration
[6]. The d-electron shells have small orbital radii meaning the
interatomic overlap of the orbitals will be small and there will be
a large potential penalty for double occupancy [7]. These factors
take us away from the nearly-free electron limit. Many d-electron
systems remain localized, forming a magnetic insulating state as
opposed to a metallic one, especially in the 3d series [7]. The
strontium ruthenate series is an exception and each remains metallic,
but it is constructive to view them in a tight-binding fashion. I will
now continue with a more formal description of the tight-binding
model which will be useful for the derivations of the Fermi surfaces
for both materials later.

In the tight-binding description we build the Bloch wavefunc-
tions for the electrons from the atomic orbitals [3]. We assume
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the extent of the atomic orbitals, φ(r), is close to or smaller than
the interatomic separation so they are mostly unperturbed when
assembled into the lattice. The tight-binding wavefunction is a
linear combination of approximately atomic orbitals [5]

Ψk(r) =
∑

R
eik·Rφ(r−R) . (1.4)

The real space positions of the atoms determine how the bands
develop. To illustrate this I will start with a simple cubic lattice,
lattice constant a, of s states. We take a small perturbation, V (r),
to the atomic Hamiltonian which captures the periodicity of the
lattice and look for the first-order corrections to the energy.1 1 The wavefunctions are assumed to

already be normalised here. 〈Ψk|Ψk〉 =
1.∆E = 〈Ψk|V |Ψk〉 (1.5)

=
∑

n

∑

m

eik·(Rn−Rm)
∫
φ∗(r−Rm)V φ(r−Rn)dV (1.6)

=
∑

m

e−ik·am

∫
φ∗(r− am)V φ(r)dV (1.7)

where am = Rm −Rn. The integral is dominated by the on-site
terms, am = 0, and the six nearest neighbour terms, am = ±ax̂,
±aŷ, ±aẑ. We can drop all other terms because the atomic orbital
overlap will be negligible. Thus we end up with

E(k) = Eφ −B − 2t(cos(kxa) + cos(kya) + cos(kza)) , (1.8)

where
B = −

∫
φ∗(r)V φ(r)dV (1.9)

t = −
∫
φ∗(r− a)V φ(r)dV . (1.10)

The parameter t is known as the transfer integral, a measure of the
ease of hopping from one atom to the next. In general, starting from
n atomic levels on each atom, these will combine to form n separate
bands. The bandwidth of the band is directly related to the transfer
integral. A smaller atomic overlap, with a correspondingly smaller
transfer integral, has a narrower bandwidth and a higher effective
mass. In this way the effects of the real-space crystal structure are
seen in the band structure; if in a certain direction the atoms are
further apart, the bandwidth will be narrower for motion along
that direction as is expected. The shape of the bands will also
reflect the character of atomic orbitals they are made up from [5].

We have just seen two extreme cases for electrons in a metal; a
scenario where the periodic potential is only a very weak perturba-
tion to otherwise free electrons and the opposite extreme where the
potential is so strong the electrons can hardly hop from one atom
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to the next. Both cases give rise to bands with corresponding gaps
between them but crucially they are qualitatively similar. This im-
plies that real materials, which will fall somewhere in between these
two extremes, must also have qualitatively similar band structures.

1.2 Landau’s Fermi liquid
Up until now we have been ignoring the electron-electron Coulomb
interaction but without foresight this should not have seemed like
a sensible thing to do. By no means is the Coulomb interaction
weak. Just making a quick back of the envelope calculation we
can compare the scale of the Coulomb interaction with the kinetic
energy of the electrons, which is the other important energy scale.
From the electron density we can define a characteristic length,
the radius of a sphere occupied by one electron, which sets the
approximate kinetic energy EK ≈ ~2/8mer

2
s and the Coulomb

repulsion between two electrons EC ≈ e2/8πε0rs. The ratio gives
us the importance of the electron-electron Coulomb interaction
EC/EK ≈ rsmee

2/πε0~2 = 4rs/a0, where a0 is the Bohr radius.
For typical metallic densities rs is order Ångströms [3] whereas a0 is
half an Ångström. The electron-electron Coulomb interaction is not
weak so how did we get on so well when we ignored it? The answer
comes from Landau and his notion of a Fermi liquid [8–10]. If we
start from a Fermi gas and turn on a mutual repulsion between all
the electrons the Fermi gas turns into a Fermi liquid. The naming
is in analogy to classical gases and liquids whereby introducing
inter-particle interactions condenses the gas to a liquid. The beauty
is that the Fermi liquid retains some of the key properties of the
Fermi gas.

By allowing the electrons to interact and exchange momentum
the Fermi surface, in its original state, is no longer stable [11].
The insight of Landau was rather than caring about the individual
electron states, to instead see what happens to the excitations
of the Fermi gas as the electron-electron interaction is ‘turned
on’. An electron excited above the Fermi level can now Coulomb
scatter with another below the Fermi level resulting in an additional
electron-hole pair. This process can continue creating additional
electron-hole pairs until some equilibrium is reached. This original
excitation can now be described as the superposition of the bare
electron, the bare electron and an electron-hole pair, the bare
electron and two electron-hole pairs, and so forth [12].

|Ψqp〉 =
√
Z|φel〉+ |particle-hole excitations〉+ . . . (1.11)

The insight of Landau was that if we turn on the interaction slowly
enough we can evolve smoothly from one picture to the other as
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the strength of the Coulomb interaction is increased. This concept
is referred to as adiabatic continuity and we call the excited states
of the interacting system Landau quasiparticles to remind us that
the wavefunctions and energies are different from the corresponding
electrons in the non-interacting problem. The quasiparticles do
however retain the same charge and spin as the bare electron but
neither the mass nor the interactions between quasiparticles need to
remain the same. This one-to-one mapping of the interacting states
with those of the non-interacting Fermi gas retains the picture of
Fermi particles and a Fermi surface but one that is now stable since
the Coulomb interaction has already been taken into account.

By producing the quasiparticles in this way they are made
out of states which are no longer exact eigenstates of the system.
Thus they cannot be infinitely long lived and the quasiparticles can
scatter off one another. Their inverse lifetime can be calculated from
Fermi’s golden rule. Making reference to figure 1.3, a quasiparticle
at energy ε scatters off one in the Fermi sea and looses energy ω.
The total decay rate 1/τε for these processes is Fermi sea

E quasiparticle

ε
ω

ε′ ω

Fig. 1.3: Quasiparticle Scattering. A
quasiparticle with energy ε above the
Fermi surface can scatter off another
from within the Fermi sea to create an
additional particle-hole pair. Repro-
duced from [12].

1
τε

= 2π
~
∑

f

|Vif |2 δ(ε− εf ) (1.12)

where the sum is over all possible final states. We assume the
scattering matrix elements |Vif | are constant and make use of
conservation of energy and momentum to restrict the possible final
states. The Pauli exclusion principle also puts strict phase space
restraints on the possible scatterings. There must be an unoccupied
final state for the electron to scatter into so ω must be less than
ε and the second electron must be within ω of the Fermi energy
such that is can also reach an unoccupied state with the promotion
of energy ω. Using the density of states at the Fermi level, gF, to
turn this into an integral

1
τε
∼ 2π

~
|V |2

∫ ε

0
gFdω

∫ ω

0
gFdε

′
∫ ∞

−∞
δ(ε− ω − ε′ + ε′′)gFdε′′

(1.13)
1
τε
∝ g3

Fε
2 . (1.14)

We can now see that at sufficiently small energies close to the Fermi
surface the quasiparticle is well defined. Here the quasiparticle’s
decay rate, ∝ ε2, is much less than its excitation energy ε. Further
from the Fermi surface adiabatic continuity no longer holds, i.e.
the quasiparticles scatter before the interaction can be completely
turned on. Quasiparticles are therefore only well defined around
the Fermi energy.

We are now in a position to see why the non-interacting case
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worked so well. The same phenomenology of electron-hole excita-
tions from an electron Fermi sea applies for the Fermi liquid, but
now the excitations are quasiparticle-quasihole excitations from
the quasiparticle Fermi sea, and we recover the same qualitative
predictions as those of the Sommerfeld model. Figure 1.4 shows
how we can schematically think of this transformation. The elec-
tron probability distribution is modified under the presence of a
weak mutual interaction but the sharp discontinuity at the Fermi
wavevector survives. If instead we talk of the quasiparticles we
recover the ordinary Fermi-Dirac distribution but as the quasipar-
ticles are only well defined near the Fermi surface, we can only talk
of small excitations from the Fermi energy.

kF

1

|k|

nk,e
A

kF

1

Z

|k|

nk,e
B

kF

1

|k|

nk,qp
C

Fig. 1.4: Particle probability distribu-
tions. A. The probability that any
given energy state is occupied by an
electron at T = 0 in a Fermi gas,
the Fermi-Dirac distribution. B. The
probability distribution of electrons at
T = 0 in a Fermi liquid, the disconti-
nuity at kF remains. C. The probabil-
ity distribution of quasiparticles in the
Fermi liquid recovers the Fermi-Dirac
distribution. Reproduced from [12].

Calculating the total energy of the interacting system by just
summing up the contributions from each of the individual excita-
tions will not now in general yield the total energy of the system.
A quasiparticle’s energy will also depend on the distribution of the
other quasiparticles. The energy can be written as a function of
the quasiparticle distribution δnk,σ [12]

E =
∑

kσ

~kF
m∗

(|k| − kF)δnkσ +
∑

kσ,k′σ′

fkσ,k′σ′δnkσδnk′σ′ . (1.15)

The Fermi liquid is described by a number of parameters. Its
effective mass m∗, a measure of how easily quasiparticles can move,
and Landau’s f functions. In an isotropic system, a circular Fermi
surface in 2D or a spherical Fermi surface in 3D, these can be
expanded as Legendre polynomials and quantify the angular depen-
dence of the interactions of the quasiparticle system. Using this
terminology the specific heat and magnetic susceptibility can be
re-expressed as [12]

CV = m∗kF
3~2 k2

BT = m∗

me
CV,Fermi gas (1.16)

χ = m∗kF
π2

1
1 + F a0

µ2
B = m∗

me

1
1 + F a0

χFermi gas .
2 (1.17)2 F a0 is a Landau parameter.

The Fermi liquid’s specific heat and susceptibility are both en-
hanced over the Fermi gas values by the effective mass, and for
the susceptibility also the Wilson ratio 1/(1 + F a0 ). Both these are
measures of the strength of the correlations.

The electrical resistivity of a Fermi liquid has a characteristic
T 2 dependence [13, 14]. We saw from equation 1.14 that the decay
rate of quasiparticles goes like the square of their energy measured
from the Fermi energy. At finite temperature the excitations are
of order kBT so the decay rate is proportional to the tempera-
ture squared. However in equation 1.14 we originally discussed
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normal quasiparticle-quasiparticle interactions that conserve mo-
mentum so do not produce a finite resistivity, but the decay rate
for quasiparticle-quasiparticle umklapp scattering, which can relax
the momentum to the lattice, has similar phase space constraints
so produces the same T 2 dependence of the decay rate and the T 2

resistivity in the simplest picture.
Although it is a phenomenological theory, Landau’s Fermi liquid

theory works remarkably well. Experimental verification has been
seen in a whole variety of systems, including those where you
might suspect interactions to be too strong. An example is UPt3
which shows particularly strong correlations with effective masses
enhanced in the range 10 to 30 above the band mass, yet still
follows the predictions from Landau’s Fermi liquid theory [15–18].
However, Fermi liquid theory does not always work and because
of the robustness of the theory the cases where it fails are all the
more interesting.

If the interparticle interactions are long range the idea of adia-
batic continuity breaks down; a finite speed of propagation means
the interaction takes infinite time to ‘turn on’ so there can be no
stable quasiparticles. The bare Coulomb interaction is long range
but in metals the Fermi liquid is saved by screening. Electron
screening means that at large distances, greater than the Thomas-
Fermi screening length k2

TF = 4πe2N0, only the background charge
level is felt. In special cases long range interactions can still be
observed which break apart the Fermi liquid. Near to a continu-
ous phase transition order parameter fluctuations slow down and
become increasingly long range. One quasiparticle can then quite
easily affect a large number of other quasiparticles increasing the
scattering cross section. If the continuous phase transition can be
suppressed to zero temperature by a non-thermal tuning parameter
such as pressure or chemical doping, the quasiparticle interaction
range can grow without limit. We call such a zero temperature
continuous phase transition a quantum critical point and in the
vicinity of the quantum critical point the quantum fluctuations
cause a break-down of the Landau Fermi liquid phenomenology.

Weakly repulsive interactions in the metallic phase are well
accounted for by Fermi liquid theory, but if the interparticle inter-
actions are attractive Fermi liquid theory can become invalid as
bound states of quasiparticles can be stabilised. An example is the
retarded electron-phonon interaction which is attractive and below
a critical temperature the Fermi surface is unstable to forming
bound states of electrons. These bound states of two fermions can
then condense into a new ground state, namely superconductivity.

The materials being studied in this thesis both have well charac-
terised Fermi liquid phases but are unstable to different instabilities.
Sr2RuO4 develops an unconventional superconducting state at low
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temperatures but one where the paring symmetry has not yet been
unambiguously determined. Sr3Ru2O7 can be tuned to a quantum
critical end point with applied magnetic field and there a novel
phase with suspected spontaneous C4 to C2 symmetry breaking
develops. Further discussions of the physics of both systems is pre-
sented in their respective chapters, 3 and 4, but in the next chapter
I will switch gears and first discuss the experimental technique that
my research so heavily relied on.
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Advances in condensed matter physics come, often, from new
material discoveries. The field of superconductivity is one such
example, marked by the discovery of each new family of supercon-
ductors. Since the first observation of superconductivity in mercury
by Onnes in 1911 [19] there was a gradual increase in the highest
critical temperature for over 50 years, up to what was thought at
the time to be a theoretical limit of ∼30 K [20]. These supercon-
ductors are now termed conventional superconductors. Then in
1986 the first high temperature cuprate was discovered [21] leading
to a flurry of material discoveries bringing Tc at ambient pressure
up to ∼133 K [22]. Similar developments occurred when the fam-
ilies of heavy fermion superconductors [23,24,16] and iron-based
superconductors were found [25–28]. In parallel to these material
discoveries, experimental techniques were continually improving
and new techniques developed. For instance stronger magnetic
fields allowed the Fermi surface of the underdoped high tempera-
ture cuprate superconductors to be seen with quantum oscillations
measurements for the first time [29–31] and ever increasing hydro-
static pressures have produced superconductivity at 203 K in H2S
at a pressure of ∼150 GPa [32]. These advances in experimental
techniques allow us to probe deeper into the physics of both new
and old materials, guiding the way for future developments.

Here I will discuss one such development. The technique of
uniaxial pressure has been employed in condensed matter physics
for a long time but it appears to be wholly underused, especially
in comparison to its hydrostatic counterpart. This could chiefly be
due to the extreme technical challenges associated with traditional
methods for applying uniaxial pressure. However this technique
was recently reenvisioned by Clifford Hicks et al. in a landmark
experiment on Sr2RuO4 [33, 34]. By moving away from the typical
sample measurement geometries and instead shaping samples into
long thin bars, that are fixed across the jaws of a vice, exceptional
homogeneity, tunability and precision of the applied strain can be
achieved.

Uniaxial strain or pressure can be a powerful tool for investigat-
ing the electronic properties of correlated matter. In the simplest
picture the crystal lattice is deformed anisotropically influencing
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the overlap between atomic orbitals on neighbouring sites. For
a correlated electron system the effect can be particularly strong
since the overlap integral is very important for electron hoppings
between neighbouring sites.

This effect can be much larger in uniaxial pressure compared
to equal hydrostatic pressures. Uniaxial pressure is also a direc-
tional technique so different lattice distortions can be selected and
compared. It can also be used to lift point-group symmetries of
the crystal and perturb finely balanced systems. In this sense it is
a combination between an experimental technique and something
that creates new materials that are not available to equilibrium
chemistry under ambient conditions.

In this chapter I will start by introducing the stress and strain
formalism then describe the finite element method (FEM) used for
carrying out realistic simulations. In the next section I will describe
existing uniaxial stress and strain techniques before introducing our
new uniaxial pressure cell. I will use simple analytic expressions
accompanied by in-depth finite element simulations to highlight
the improvements of this technique and provide readily achievable
guidelines for experiments.

2.2 Stress and strain
The deformation an object undergoes when subject to a load can
be described in terms of two quantities; the stress and the strain
within the object. These are both tensor fields over the extent
of the object. Stress is a measure of how the force is distributed
internally throughout the object in units of N/m2 and strain is a
dimensionless quantity that measures the relative displacements
within the object referenced to the original size. Stress and strain
are in a way analogous to pressure and volume, a thermodynamic
conjugate pair for a non-viscous fluid, but are applicable for viscous
fluids and elastic solids where the stress tensor can be thought
of as a generalisation of the pressure and the strain tensor as a
generalisation of the change in volume.

Fig. 2.1: Stress and Strain Defini-
tions of engineering normal stress
and strain, and engineering shear
stress and strain.
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For any given plane in the object the internal forces acting on
that plane can be decomposed into a normal component and two in-
plane components. These forces, divided by the original area of the
plane, define the engineering normal and shear stresses respectively
(see figure 2.1 for a schematic representation). Engineering strain
is defined in a similar manner; displacement divided by original
object size. A more general representation of the strain field can
be obtained from the displacement field u, where u is a three
component vector field defining the displacement at any point
within the object. The different components of the strain tensor
are given by,

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (2.1)

where x is the coordinate and the two indices label the three
orthogonal coordinate directions.

The six components of the strain tensor explicitly are:

εxx = ∂u

∂x
εyz = 1

2

(
∂w

∂y
+ ∂v

∂z

)
= 1

2γyz

εyy = ∂v

∂y
εzx = 1

2

(
∂u

∂z
+ ∂w

∂x

)
= 1

2γzx

εzz = ∂w

∂z
εxy = 1

2

(
∂v

∂x
+ ∂u

∂y

)
= 1

2γxy

(2.2)

where u, v and w are the three components of the displacement
field u in the x, y and z directions respectively.

The full tensor is given by:

ε =



εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


 , (2.3)

in which, by symmetry, the off-diagonal components εij = εji.
Stress and strain are intimately linked. At low strains where the

response is still elastic, stress and strain are directly proportional.
For a uniaxially loaded object the relationship is

σ = Eε . (2.4)

This is just Hooke’s Law where E is the Young’s Modulus of the
material. The analogous equation for shear stress and strain is
τ = Gγ where G is the shear modulus. In three dimensions E
and G generalise to a 6 by 6 tensor, C, called the stiffness tensor;
σi = Cijεj . The stiffness tensor is symmetric so at most there can
be 21 independent components, but if the material possess further
symmetries this number is reduced. One example, for instance, is
the tetragonal lattice
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σxx
σyy
σzz
σyz
σzx
σxy




=




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)







εxx
εyy
εzz
2εyz
2εzx
2εxy



. (2.5)

Since this is no longer an isotropic system, the Young’s modulus
is direction-dependent and takes on a different value along each
of the high-symmetry directions; Ex = σxx/εxx and Ez = σzz/εzz.
Poisson’s ratio must be defined in a similar manner. Poisson’s
ratio is the coefficient of transverse expansion, i.e. it is the ratio of
transverse strain to longitudinal strain for a longitudinal loading.
In the tetragonal lattice Poisson’s ratio is defined along the high
symmetry directions as νxy = −εyy/εxx and νzx = −εzz/εxx when
σxx 6= 0 and all other σij = 0. The Young’s moduli and Poisson’s
ratios are included in the stiffness tensor in the following way:

C−1 =




1
Ex

−νyx
Ex

−νzx
Ez

0 0 0

−νxy
Ex

1
Ex

−νzx
Ez

0 0 0

−νxz
Ex

−νxz
Ex

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gyz

0

0 0 0 0 0 2(1 + νxy)
Ex




. (2.6)

When applying these ideas to real life models the analytical
equations introduced above quickly become very complex. In all
but only the very simplest cases approximations must be made.
I will show later on in this chapter some ways a model can be
simplified but more often than not it is necessary to move away
from analytics and turn to numerical simulations. In the next
section I will introduce one such method for numerical simulations
and outline how to use it to solve for the stress and strain of a
complex geometry.

2.3 Finite element method

Domain, V

Boundary, S

Discetised
domain

Subdomain
(finite element)

Node

Fig. 2.2: Discretisation of a domain.
The domain V is discretised by tessel-
lating triangular elements. Reproduced
from [35].

In its most general form, the finite element method is a frame-
work for calculating approximate numerical solutions to boundary
value problems for partial differential equations. A key feature
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is the subdivision of the problem into simpler parts called finite
elements [35]. By doing this we can easily represent a complex
geometry with simple standardised building blocks, see figure 2.2.
It also allows us to keep track of different material properties for
different parts of the geometry. For each finite element an approx-
imate solution to the global differential equation is found, built
from linear combinations of the nodal values using approximating
functions. The relationships between the nodes are then used to
assemble all the elemental solutions into a solution over the whole
domain.

I will now outline briefly how this procedure works for linear
elasticity and calculating stresses and strains for objects under load.
See Reddy [35] or Cook [36] for a more in-depth discussion of the
theory behind this technique.

The potential energy associated with elastic deformation is

U = 1
2

∫

V

εTσdV , (2.7)

where ε and σ are the strain and stress vectors, respectively, and
the integral is over the volume of the object. When the deformation
is due to external forces acting on the surfaces of the object the
contribution to the total potential energy due to the work done by
the external forces F is given by

U = −
∫

S

uTF dS , (2.8)

where this time the integration is over the surfaces of the object and
u is the displacement. The stationary solution for the unknown
displacements is found by minimising the total potential energy
with respect to the displacements.
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N4(ξ, η, ζ) = ζ

Fig. 2.3: Natural coordinates and shape
functions. Natural coordinates of a lin-
ear tetrahedral element and the shape
functions for this element.

As per the FEM formalism we represent the displacement at
any given point by interpolating from the nodal displacements for
each element. Within a given element the displacement vector, ue,
is calculated by

ue(x, y, z) ≈Nqe

=




n∑

i=1
Ne
i (x, y, z) qei,x

n∑

i=1
Ne
i (x, y, z) qei,y

n∑

i=1
Ne
i (x, y, z) qei,z




=



Ne

1 0 0 Ne
2 0

0 Ne
1 0 0 · · · 0

0 0 Ne
1 0 Ne

n


 qe .

(2.9)
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Ni are the shape functions for the element and they specify how
to interpolate between the nodal displacements qe. The shape
functions depend on the type of element used; see figure 2.3 for
an example using tetrahedral elements. Figure 2.3 also shows the
transformation to the natural coordinates of the element which
makes processing easier.

Turning back to the equations for potential energy we can now
represent ε in terms of the nodal displacements

εe = Due

=




∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y

∂

∂z
0

∂

∂x

∂

∂y

∂

∂x
0




ue

= DNqe = Bqe ,

(2.10)

from which we can then minimise the total potential energy with
respect to displacement to find the equilibrium equation

UeT = 1
2

∫

V e

εTσdV e −
∫

Se

uTF edSe

UeT = 1
2

∫

V e

(qe)T BTCBqedV e −
∫

Se

(qe)T NTF edSe

∂UeT
∂qe

=
∫

V e

BTCBqedV e −
∫

Se

NTF edSe = 0

0 = keqe − fe .

(2.11)

ke is known as the element stiffness matrix

ke =
∫

V e

BTCBdV e . (2.12)

The global stiffness matrix,K, is obtained by adding the individual
coefficients in the elemental stiffness matrices keij to Kkl in such a
way that that the subscripts ij, indicating the nodal displacements
qei and qej , match with the global nodal displacement indices. The
components of the force vector are added in a similar way and this
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leads the the final equation

Kq = f . (2.13)

So in practice the first step is to divide the object up into small
elements, then calculate the stiffness matrix for each. The inte-
gration can be performed efficiently by making use of Gaussian
quadrature rules and the Jacobian to perform the integration in the
natural coordinates. The elemental stiffness matrices are combined
to form the global stiffness matrix and the boundary conditions are
applied to the problem by generating the force vector before solving
equation 2.13 for q with any of the variety of suitable algorithms.

Commercial software is available for finite element analysis, but
it is either too restrictive to be applied to the full range of problems
relevant to the research described in this thesis, or prohibitively
expensive. I therefore wrote a program to perform the calculation
myself with the desired level of flexibility. Using MATLAB® [37]
this could be achieved in under 500 lines of code.

2.4 Uniaxial stress and strain techniques
Uniaxial pressure studies have presented themselves in many forms.
Here I will outline some of the techniques that have been developed
as well as their accomplishments and pitfalls that motivated the
development of a new technique.

2.4.1 Indirect determination using Ehrenfest
relations

The fragile nature of some materials makes direct uniaxial pres-
sure measurements challenging. Fortunately information about the
pressure derivatives of transition temperatures can be obtained
indirectly from thermal expansion and heat capacity measurements
combined with the thermodynamic Ehrenfest relation. In the
Ehrenfest classification of phase transitions a first-order transition
exhibits a discontinuity in the first derivative of the free energy.
An example is the liquid-gas transition, which has a discontinuity
in the density between the liquid and gas phases. The density
relates to the first derivative of free energy with respect to pres-
sure, ρ = m(∂G/∂p)−1

T
3. A second order phase transition shows 3 Where m is the mass, G the Gibbs

free energy, p pressure and T tempera-
ture.

no discontinuity in the first derivative of free energy. The order
parameter of the transition, which is related to the first derivative
of free energy, is continuous across the transition. However quanti-
ties that depend on the second derivatives of the free energy show
discontinuities. The differential form of the Gibbs free energy is
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dG = V dp− SdT (2.14)

so at a second-order phase transition

dG1 = V1dp− S1dT = V2dp− S2dT = dG2 (2.15)

were 1 and 2 indicate the two phases. Substituting in the values for
the volume thermal expansion coefficient, β, and the heat capacity,
CP ,

β = 1
V

(
∂V

∂T

)

p

, CP = T

(
∂S

∂T

)

p

(2.16)

this can be written
(
∂V1
∂T

)

p

dp−
(
∂S1
∂T

)

p

dT =
(
∂V2
∂T

)

p

dp−
(
∂S2
∂T

)

p

dT (2.17)

V1β1dp−
CP,1
T1

dT = V2β2dp−
CP,2
T2

dT (2.18)

∆CP
T

dT = V∆βdp . (2.19)

At the transition temperature, where there is a jump in β and CP ,

dTc
dp

= ∆βTcV
∆CP

, (2.20)

or for uniaxial pressure

dTc
dpi

= ∆αiTcV
∆CP

(2.21)

were pi now denotes a uniaxial pressure direction and αi is the
linear thermal expansion coefficient along that direction. These
are the Ehrenfest relations which can be used to calculate the zero-
pressure limit of the derivative of Tc with pressure from the the
size of the discontinuities in thermal expansion and heat capacity.
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Fig. 2.4: Temperature dependence of
thermal expansivities. Change in expan-
sivities for YBa2Cu3O7-δ near the su-
perconducting transition temperature.
Reproduced from [38].

One example where this technique has been put to good use is
cuprate high-temperature superconductors. Meingast et al. [38, 39]
used an ultrahigh resolution capacitive dilatometer to measure the
lattice response as superconductivity sets in, in the YBa2Cu3O7-δ
system. They found a highly anisotropic response of the expan-
sivities in the CuO2 plane, and very little effect out of plane.
YBa2Cu3O7-δ has an orthorhombic crystal structure and the de-
rived pressure derivatives of Tc suggest a more tetragonal lat-
tice is favourable for superconductivity. The uniaxial pressure
dependence has opposite sign along the two in-plane crystal axes,
dTc/dpa = −1.9 K/GPa and dTc/dpb = +2.2 K/GPa, and almost
no response along the c-axis, dTc/dpc ≈ 0 K/GPa. The a- and
b-uniaxial pressure dependences almost cancel out for hydrostatic
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pressure, which is in good agreement with measurements [40].
Thermal expansion measurements are relatively simple to carry

out, especially once the infrastructure has been built up, and sample
turn around time can be very quick [41]. The sample also remains
intact and can be reused but direct observation of any changes
in Tc cannot be seen. This makes for a good first indication of
whether uniaxial pressure might have an interesting effect, except
for systems where a possible nonlinear response would be missed in
this zero-pressure limit, and so to actually influence the material,
and make changes to its properties, pressure needs to be applied.

2.4.2 Anvil-based pressure cells
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Fig. 2.5: La1.64Eu0.2Sr0.16CuO4 temper-
ature dependence of magnetization un-
der [110] uniaxial pressures. [110] ori-
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conductivity and a strong Tc enhance-
ment is seen. Reproduced from [42].
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Fig. 2.6: Susceptibility against temper-
ature for CeCoIn5 under c-axis uniaxial
pressure. The transition width ∆Tc is
strongly pressure dependent, whereas
the onset temperature Tc is not. Re-
produced from [43].

The most obvious way to uniaxially pressurise a sample is to
just squeeze it between two anvils, and hence this is also the most
common way to apply uniaxial pressure. However, this technique
does need to be performed with care if the pressure is to be homo-
geneously distributed across the sample. The sample faces are in
direct contact with the anvil faces. A typical sample might have
a Young’s modulus of 100-200 GPa and a thickness of hundreds
of microns to millimetres. Typically achieved pressures are in the
kbar range, so for a 0.5 mm thick sample with a Young’s modulus
of 200 GPa pressurised to 1 kbar the anvils should be compressed
250 nm. In order for the pressure to be equally distributed across
the sample the sample faces and the anvil faces must both be
parallel, smooth, and flat on a scale well below this displacement.
Some surface irregularities can be smoothed out by using soft in-
terface layers between the sample and anvil but this is still no easy
feat, and for many interesting materials these constraints are espe-
cially challenging to achieve because of small or irregularly shaped
samples, and or poor mechanical properties for fine polishing.

However, even when this can be achieved it does not solve the
homogeneity problem completely. When the sample is compressed
it will try to expand transversely according to its own Poisson’s
ratio, but the faces of the sample will be frictionally locked to the
anvils introducing a strain inhomogeneity once more. The strain
homogeneity is improved if samples with either a large or small
aspect ratio are used. For small aspect ratio samples the transverse
expansion will be locked to the anvils and for large aspect ratio
samples the effect of the sample-anvil locking will die away towards
the centre giving a homogeneous centre. The soft metal films that
can be added between the sample and anvils to reduce the effect of
surface defects can also help to reduce frictional locking to some
extent. Despite these efforts the effects of strain inhomogeneity are
still apparent in many experimental studies; some typical results
are shown in figures 2.5, 2.6 and 2.7. The role of inhomogeneity is
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not particularly emphasised by the respective authors. However,
the increasing transition widths, at least in part, allow us to infer
inhomogeneity is a problem.4

4 There are a few honourable ex-
ceptions achieving less broadening than
the typical examples I reproduced here,
for instance the work of Welp et al. [44]. In a typical uniaxial pressure cell the pressure is set at room

temperature and locked in place with a nut. The pressure is then
fixed for the duration of the measurement and the experiment
must be thermal cycled to make adjustments. Implementations
that offer in situ adjustment have been achieved by using helium-
activated bellows to set the pressure [45] but this adds additional
complications.
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Fig. 2.7: Heat capacity for CeIrIn5 un-
der a- and c-axis uniaxial pressure. Uni-
axial pressure causes a linear change in
Tc with opposite slope for a- and c-axis
pressures. Reproduced from [45].

Despite the complications of anvil based uniaxial pressure cells
they have been successfully incorporated with a wide range of
measurement techniques. To name just a few: AC magnetic sus-
ceptibility and DC magnetisation are possible when the device is
made from a material with a suitably low magnetic background
signal [42, 43]; electrical resistivity is possible with access to the
sides of the sample [46]; heat capacity when the sample is thermally
isolated from the pressure cell, for instance by making some or all of
the cell from a superconductor [45,47]; and neutron scattering when
the pressure cell is made from a material sufficiently transparent
to neutrons [48,49].

2.4.3 Sample on piezo stack
Another common technique to apply uniaxial pressure, or more
strictly in this case anisotropic biaxial strain, is to fix the sample
directly to a piezoelectric actuator. This offers a much simpler
route for in situ strain adjustment. This technique was originally
developed for low temperature strain tuning of semiconductors [50]
but has also been used with great success for correlated electron
systems after the work of Fisher et al. [51].

In this technique samples are prepared as thin slabs and glued to
the side wall of a piezoelectric lead zirconate titanate (PZT) stack,
in Fisher et al.’s work with a 5-minute epoxy. Strain is applied
to the sample as the piezo actuator deforms when subjected to a
bias voltage. For a positive bias voltage the stack extends along
its poling direction and contracts in the transverse direction. The
strain in the sample is typically measured by affixing a resistive
strain gauge to the upper surface of the sample or estimated from a
strain gauge on the piezoelectric stack itself. The achievable strain
range with this technique is not very large. For a typical PZT stack
at room temperature the strain within the stack can reach ∼0.1 %5

5 Part number P-885.51 from PI
Ceramic GmbH, taken from the specifi-
cation sheet [52] and checked with an
interferometer.

.
However, as the temperature is lowered the displacement per volt is
severely reduced and at cryogenic temperatures these piezoelectric
actuators can only achieve 10–15 % of the room temperature value.
The coercive field strength does however increase with cooling, so
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it is possible to operate the stacks at higher voltages and against
the poling direction without depoling the stack [53]. For a stack
with the manufacturer’s recommended voltage limits of −20 to 120
V we found we could repeatably and reliably operate between −400
and 600 V at 1 K.

Another concern for measurements with the sample fixed di-
rectly on the piezo stack is differential thermal expansion. The
thermal expansion coefficient of PZT along its poling direction
is approximately −2.5 10−6 K−1, i.e. the stack lengthens as it is
cooled [53,54]. This is in contrast to typical materials which con-
tract by 0.1 - 0.5 % between room temperature and 4 K. If there is
no plastic deformation of the epoxy layer, a typical sample will be
severely tensioned as it is cooled down, and beyond the range that
could be brought back to zero strain by operating the piezo stack.
In reality plastic deformation with 5-minute epoxy is observed and
the strain is not well transmitted above about 100 K [50,51].
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Fig. 2.8: PZT thermal expansion. The
thermal expansion of PZT measured
both parallel and normal to the poling
direction. Reproduced from [54].

By fixing the sample to the piezo’s surface the sample is con-
strained to follow the deformation of the stack, but in reality the
epoxy is nearly always softer than the sample and stack, so signifi-
cant strain can be lost in the epoxy layer. A typical measurement
for this apparatus is differential longitudinal elastoresistance. For
this two separate samples, cut into bars for transport measurements,
are mounted perpendicularly to one another on the stack [55]. This
allows the longitudinal elastoresistivities to be measured in both
directions, parallel and perpendicular to the applied stress, and
the differential longitudinal elastoresistance to be determined from
the difference. However, an accurate measurement relies on equal
strain transmission, which is not trivial to achieve. A simulation
of the strain transmission is shown in figure 2.9 for a bar sample
mounted parallel and perpendicular to the poling direction of the
stack. The strain is not transmitted over the full area of the sample.
For instance with the specific dimensions and parameters used in
this simulation, the strain builds up over about the first 20% of the
ends of the sample mounted parallel to the poling direction but is
homogeneous in the middle portion. However the sample mounted
perpendicular to the poling direction is much shorter along the
strained direction and not long enough to give a homogeneous
region in the middle.
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Fig. 2.9: Sample on piezo stack fi-
nite element simulations. Finite ele-
ment simulations of the strain trans-
mitted to samples mounted parallel
and perpendicular to the poling direc-
tion of the piezo stack. Samples are
800×200×20 µm with a Young’s mod-
ulus of 50 GPa and Poisson’s ratio of
0.35. The epoxy is 20 µm thick and has
a Young’s modulus and Poisson’s ratio
of 10 GPa and 0.3, respectively. The
stack is strained to +0.1 % and has a
Poisson’s ratio of 0.45. Deformations
are exaggerated 200×.

This technique is therefore best suited for making measure-
ments where the resistive response is linear with strain and can be
measured with small strain perturbations. Strain offsets due to dif-
ferential thermal expansion are not important when the derivative
with strain is taken and the response is linear. Strain homogeneity
is always an issue, however, particularly for bar shaped samples
such as those shown in figure 2.9. An alternative mounting method
is to use a square shaped sample and measure using the Mont-
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gomery method [56]. This gives the same strain transmission in
both directions but neither would be as homogeneous as that in
a parallel-mounted bar sample. Information about the nematic
susceptibility can also be obtain more directly using a single sample
and a transverse resistivity configuration as set out by Shapiro et
al. in [57].

The simplicity and compactness of this technique mean it is
particular straightforward to implement. Overall this technique
has proved particularly fruitful for the Fe-based superconductors.
Ubiquitous nematic behaviour has been seen and nematic quantum
criticality has been observed in the optimal doping regime of these
materials [56].

2.4.4 Other techniques
There are still other techniques for applying uniaxial or biaxial
strain and I will mention just two more here. Thin film samples are
nearly always prepared on a substrate. This gives the opportunity
to strain the sample by first straining the substrate either by
stretching or bending. Since the sample is very thin the strain
homogeneity can be very high. One such example is graphene
prepared on a PET substrate where ∼0.8 % tensile strains were
achieved and provided a way to experimentally tune the band gap
of single-layer graphene [58,59].

Another way to achieve strain for thin films is to grow the film
using molecular beam epitaxy on a substrate with a mismatched
lattice constant. By choosing the right substrate a certain amount of
strain can be selected, however, usually only biaxial. This technique
was used to double the superconducting critical temperature of
La1.9Sr0.1CuO4 [60]. By growing the sample on SrLaAlO4 the
sample is compressed in-plane and expanded out of plane, providing
the largest Tc enhancement.

2.5 New uniaxial stress cell

0
anisotropic strain (εxx − εyy)

Temperature

py or pxpx or py

px ± ipy

Fig. 2.10: Hypothesis for px ± ipy
superconductivity. General phase dia-
gram expected for px ± ipy supercon-
ductivity in a tetragonal crystal sub-
ject to a small, volume-preserving, but
symmetry-breaking strain εxx − εyy.
Reproduced from [33].

I have shown there are a large variety of techniques for applying
uniaxial stress and strain. However, to test a specific hypothesis for
the material Sr2RuO4, Clifford Hicks was motivated to propose a
new technique. Sr2RuO4 is an unconventional superconductor but
of particular significance since it may host a unique superconducting
state. A body of accumulated evidence has led to the proposal that
the pairing in Sr2RuO4 is spin-triplet with an odd-parity chiral
order parameter, px ± ipy [61]. This would be a superconducting
analog of the A-phase of superfluid 3He. Sr2RuO4 has a tetragonal
lattice so the two components px and py would have the same
transition temperatures, but this degeneracy could be lifted by
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Fig. 2.11: Principle of operation. A. The sample is compressed by extending the middle piezoelectric
actuator. B. Sample at zero strain. C. The sample is tensioned by extending both outer actuators and
pushing the bridge piece out.

breaking the symmetry between the x and y directions. This
can be achieved using in-plane uniaxial strain. Based purely on
symmetry considerations the phase diagram in figure 2.10 was
predicted for the Tc dependence on anisotropic strain [62,63].

To test this hypothesis a device capable of applying both tension
and compression is needed. High homogeneity and continuous in
situ adjustability were also among the aims. The implementation
devised by Clifford Hicks is described in detail in reference [34].
My personal contribution to that ‘phase 1’ development was a
series of finite element calculations that enabled the calibration
of the sample strain and helped optimise the strain homogeneity
by changing the way samples were mounted (see section 2.5.1).
Here I will only discuss the salient features and mention some
improvements implemented to the original device for my main PhD
research. A schematic of the device is shown in figure 2.11, and the
principle of operation is also detailed.

For this technique the sample is first shaped into a long thin
bar and then firmly fixed across the gap between the two sample
plates using epoxy. One end is fixed stationary to the main body of
the device while the other is movable. The position of the movable
sample plate is controlled by the three piezoelectric actuators.
A positive voltage to the central actuator causes it to extend,
compressing the sample. Tensioning the sample is achieved by
applying a positive voltage on the outer two stacks, pushing the
bridge piece out, and pulling on the sample through the central
stack. All three stacks have equal lengths so, in principle, since
they are offset from the sample, their thermal expansion should
not affect the sample while the temperature of the rig is varied. In
practice differences between stacks mean that this is considerably
reduced but not completely eliminated.

Since the piezo stacks are much longer than the sample a large
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sample strain can be achieved. This was the first improvement made
over the original device for the work I report. In the first iteration of
the device 4 mm stacks were used, but now we have a cryostat with
a much large bore and we upgraded to 18 mm stacks. In addition to
the longer stacks I first used a fibre-based interferometer to compare
the performance of an alternative manufacturer of piezoelectric
actuators at cryogenic temperatures, where there is generally no
technical data specified, and found significant improvement with
actuators from PI Ceramic GmbH.

The sample strain is given by the stroke length of the stack
divided by the strained length of the sample. The ‘strained length’
of the sample will be described in detail later but because the
sample is held with a soft epoxy the length over which the strain is
applied is not exactly the same as the gap between the sample plates.
Typically the strained length is ∼1 mm, and at 1 K with 18 mm
stacks6 the stroke length is up to ∼50 µm (−400 to +600 V), so a6 Part number P-885.51 from PI Ce-

ramic GmbH. strain range of 5 % is possible if the sample and epoxy mounting are
able to withstand this. In practice I have achieved tensile strains
of ∼0.25 % before the sample breaks, and compressive strains up
to 1 % before the epoxy starts to give way.

A few other improvements were made to the device for the work
in this thesis. The main body of the device is now made from
one piece of titanium as opposed to many pieces held together
with screws and epoxy as in the first iteration. Making the device
in this way makes it overall much stiffer and easier to assemble;
however, differential thermal expansion between the sample and
the device is now an important consideration. Titanium has an
atypically small thermal expansion for a metal. Between 4 K and
300 K it is only ∼0.15 % [64], much less than that of the typical
samples we have measured. The consequence of this is that even
though the sample is mounted at zero strain at room temperature,
by the time the rig is cooled down to cryogenic temperatures the
sample is put under severe tension. In the original device copper
foils were incorporated to try and match the thermal expansion
of the device to that of Sr2RuO4. With the device now made as
one solid block, incorporating additional foils to compensate the
differential thermal expansion is no longer possible. Instead, the
piezo actuators must be used to actively compensate the differential
thermal expansion and maintain the sample close to zero strain
while cooling the device to cryogenic temperatures. With the larger
range of the longer stacks the sample can still always be brought
back to zero strain.

T = 1.2 K

Displacement (µm)

C
ap

ac
it

an
ce

(p
F

)

To FPS3010

−20 −10 0 10 20

5

10

15
y =

ε0 15.95 mm2

x + 25.12 µm

Fig. 2.12: Capacitor calibration. A her-
metic feedthough at the top of the cryo-
stat brings the fibre heads of the at-
tocube FPS3010 interferometer down
to low temperatures. The FPS3010 in-
terferometer is a Fabry-Pérot type and
takes the first reflection from the sensor
head itself and the second from mirrors
attached to the uniaxial stress device.
By using multiple fibres and mirrors
placed at different points on the device
an accurate calibration of the capaci-
tive displacement sensor was achieved.

Since the piezo stacks are very hysteretic an independent mea-
sure of the strain is required. The resistive strain gauge used in the
first generation device has now been replaced by a capacitive strain
gauge. The capacitor is a parallel plate capacitor in line with and
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Fig. 2.13: Uniaxial stress cell. A. Overview of the whole device including frame and wiring. B.
Detailed section of the main body of the device. C. A typical sample mounted for electrical resistivity
measurements.

underneath the sample. To check the linearity and accuracy of the
capacitive sensor a fibre-based interferometer was adapted for use
in our cryostat to make an accurate calibration. The calibration
of the capacitor against the interferometer is shown in figure 2.12.
The characteristic inverse plate separation dependence can clearly
be seen. By incorporating a capacitive strain gauge instead of a
resistive one the applied strain is known to much higher precision.
With the capacitive gauge the resolution is ∼0.1 nm compared to
∼2 nm with the resistive gauge. The capacitive strain gauge is also
much less sensitive to temperature and magnetic field, which was
important for this work. It is well known that piezoelectric actua-
tors creep; after a step change in voltage the displacement changes
with time even with an unchanging drive voltage. The amount of
creep decreases logarithmically with time and is well characterised
by the form ∆L(t) ≈ ∆Lt=0.1 s(1 + γ ln(t/0.1 s)) [54,53]. γ is the
creep factor and can range from tens of seconds to weeks [54]. The
relaxation mechanisms responsible for creep slow down significantly
at low temperatures but it is still necessary to use the capacitor in a
feedback loop to keep the strain in the sample constant throughout
a measurement.

An assembled device used for the work in this thesis is shown
in figure 2.13. This whole part can be detached from the cryostat
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and worked on separately while preparing the sample.
When a sample is uniaxially loaded it is characterised as being

under uniaxial stress. With the contact only on two opposing end
faces it will not deform completely uniaxially since, in its central
section, the sample is free to expand in the transverse direction
according to its own Poisson’s ratio. To achieve strictly uniaxial
strain the transverse expansion would have to be held at zero.

Our device, that has the sample supported only at the ends,
therefore puts the sample under conditions of uniaxial stress. How-
ever, the device is not a controlled stress device. The whole device
is much stiffer than the sample, including the piezos, and the force
applied to the sample is typically less than 50 N. What is controlled
is the displacement of one end of the sample. A voltage is dialled
in, the piezos deform, and the sample must comply or give up the
ghost. We therefore have a sample under conditions of uniaxial
stress but, in general, we know the strain along the pressure axis
more accurately than the stress.

This new technique gives many opportunities for measurements.
The sample is exposed and visible once mounted in the device and
can have an unobstructed upper surface. This makes the device
compatible with a large number of experimental techniques. I have
concentrated on resistivity and AC magnetic susceptibility but
it would also be possible to measure many other properties such
as Seebeck and Nernst effect, thermal conductivity, heat capacity
using an AC technique or the 3ω technique, Raman spectroscopy,
optical conductivity and nuclear magnetic resonance (NMR). The
accessible upper surface should allow in principle surface sensitive
techniques to be measured such as angle-resolved photoemission
spectroscopy (ARPES), scanning tunnelling microscopy (STM)
and scanning squid or hall probe measurements. Additionally in
a cleverly designed rig with access from both sides, scattering
techniques such as soft and hard X-ray scattering are possible.

2.5.1 Sample mounting
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Fig. 2.14: Model for the effective sam-
ple length. A. Schematic of the sym-
metric sample mounting. B. When a
force F is applied to the sample, the
load is transferred through the epoxy
to the sample plates over a characteris-
tic length scale λ. See text for further
details.

One of the key improvements of this device is the sample mount-
ing. Relative to the other techniques discussed in section 2.4, it is
the sample mounting which, in principle, allows significantly better
strain homogeneity to be achieved. The sample is held in the device
using epoxy such that it can be put under tension or compression.
The epoxy is important as it conforms to the shape of the sample
and sample plates, which alleviates the need for precise polishing.
However the sample should still have a constant cross-section. The
epoxy prevents the sample ends from pivoting, which increases the
buckling limit of the sample, allowing higher strains to be achieved
or higher length-to-width aspect ratios to be used. And as I will
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show later a softer epoxy is beneficial for strain transmission as it
deforms over a certain length of the sample, reducing stress concen-
tration at the mounting points and hence minimises the possibility
of sample failure.

The sample should always be mounted as symmetrically as
possible to eliminate bending. This is best achieved by using
two sample plates sandwiching the sample. A spacer needs to be
included at the back of the sample plates, behind the sample, to
prevent the sample being crushed during assembly but also to set
the correct epoxy thickness. See figure 2.14 for a schematic of the
sample mounting.
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Fig. 2.15: Effect of strain inhomogene-
ity. A comparison of two mounting con-
ditions on the superconducting transi-
tion of Sr2RuO4. At zero strain the
sample mounted asymmetrically in a
soft epoxy droplet (blue curves) has a
much sharper transition than the sam-
ple mounted more symmetrically with
a cap foil (black curves). However, de-
spite the asymmetrically mounted sam-
ple being the cleaner of the two, under
strain it broadens significantly more
and has a larger transition width than
the less broadened but dirty symmet-
rically mounted sample. Reproduced
from [65].

Figure 2.15 shows the effect of suboptimal sample mounting.
Superconducting transitions for two different samples of Sr2RuO4
are shown at zero strain and at 0.12 % tension. The first sample
was mounted by embedding the ends of the sample in an epoxy
droplet only and it can be seen that this led to significantly more
broadening of the transition as the sample is strained compared to
a sample mounted more symmetrically with a capping foil. Since
the epoxy is quite soft, the load is mostly transmitted by the lower
side of the epoxy droplet, as indicated by the red shading in the
figure, and this causes the sample to bend inducing a strain gradient
though the whole sample.

The epoxy is nearly always going to be softer than the typical
samples and the sample plates. This means the displacement of the
sample plates, as measured by the strain gauge, is not all applied to
the sample since the epoxy is also deforming. An approximation for
the load transfer length, the length over which the epoxy deforms
and the force is transmitted to the sample, can be calculated
analytically after a few assumptions. Starting from the geometry
set out in figure 2.14B we make the following approximations. The
sample’s width, w, is much greater than its thickness, t, such that
bonding on the side walls of the sample is insignificant. We also
assume the epoxy has much lower elastic constants than both the
sample and and sample plates. After this approximation we can
take the sample plates to be perfectly rigid and also neglect any
shear strains in the sample. This simplification sets εxx to be
constant in both y and z. After these approximations the force at
any point in the sample, given by Hooke’s Law, is

F (x) = Ewtεxx , (2.22)

where E is the Young’s modulus of the sample. Additionally, we
know how the force varies along the length of the sample due to
the shearing of the epoxy layers as

dF (x)
dx

= 2wσxz(x) ≈ 2wGD(x)
d

, (2.23)
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where σxz is the shear stress of the epoxy layer, G the shear
modulus of the epoxy, and d and D(x) are the epoxy thickness
and displacement of the sample at position x from its unloaded
position, respectively, as defined in the figure. Equating these two,
we can solve for the displacement, D(x), of the sample

dF

dx
= Ewt

dεxx
dx

= 2wGD(x)
d

d2D(x)
dx2 = 2G

Etd
D(x)

(2.24)

D(x) = D(0) exp(−x/λ) , λ =
√
Etd

2G . (2.25)

The strain therefore decays exponentially into the epoxy mounts
with a characteristic length scale λ. For an epoxy we work with
Stycast® 2850FT7 with catalyst 23LV. The elastic properties of7 Henkel Loctite, formally Emerson and

Cuming. Stycast 2850FT do not appear to have been measured at cryo-
genic temperatures. Ojeda et al. used dynamic mechanical analysis
(DMA) to study the viscoelastic properties of Stycast 2850FT hard-
ened with catalysts 24LV and 9 [66]. They carried out measurements
down to −130 ◦C looking for the glass transition temperature and
to determine the complex modulus. For both hardeners the storage
modulus, E′, increases as the temperature is lowered but begins to
saturate at lower temperatures after the glass transition tempera-
ture at ∼− 40 ◦C. By −130 ◦C the storage modulus for the Stycast
cured with catalyst 24LV reached ∼ 11.7 GPa and for catalyst 9
∼16.2 GPa.

The elastic properties of Stycast 1266, an unfilled version of
2850FT, have been measured at cryogenic temperatures [67]. It has
similar behaviour; the Young’s modulus increases with decreasing
temperature before starting to saturate, this time at around 100 K.
The low temperature value, approximately constant below 77 K, is
∼4.5 GPa.

If Stycast 2850FT cured with catalyst 23LV behaves similarly,
we can expect a Young’s modulus of approximately 15-20 GPa at
low temperatures. The shear modulus, G, is related to the Young’s
modulus, E, and Poisson’s ratio, ν, of an isotropic material by
G = E/2(1 + ν). Taking the Young’s modulus of Stycast to be
15 GPa and the Poisson’s ratio as 0.3 the shear modulus would be
∼6 GPa.

Using a typical sample as an example, in this case Sr2RuO4
with E = 176 GPa [68], and dimensions t = 100 µm and d = 25 µm
the characteristic length is λ ∼ 200 µm. The strain falls to ∼ 1/e of
the average value of the exposed portion of the sample in the first
200 µm of the epoxy. Therefore it is best to mount the sample with
an overlap between the sample and sample plates of at least 2-3×λ
to ensure enough epoxy length for proper strain transmission to
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the sample.
From equation 2.25 we can also calculate the shear stress in the

epoxy layer. The largest shear will be at the end of the sample
plates

σxz(0) = G
D(0)
d

. (2.26)

In order to optimise the mounting we want to compare the maximum
shear stress in the epoxy for a given amount of strain achieved in
the sample. In this approximation scheme the strain achieved in
the sample is the same as the strain at the edge of the mounts

εxx(x) = dD(x)
dx

= −D(0)
λ

exp
(
−x
λ

)
, (2.27)

εsample = εxx(0) = −D(0)
λ

. (2.28)

So the maximum stress in the epoxy is given by
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Fig. 2.16: Epoxy slippage. With the
strain increasing steadily a jump in the
capacitance is observed whenever the
epoxy slips.

σxz,max = G
εsampleλ

d
= εsample

√
EtG

2d . (2.29)

The shear strength of Stycast 2850FT has been measured, for
instance by Camp et al. [69] and Ojeda et al. [66]. It is found to
be in the range of 10-50 MPa increasing slightly towards lower
temperatures. But the results show quite some deviation which is
likely to do with the exact care in the preparation of the Stycast.
These tests typically used much thicker layers, up to 3 mm, and so
it is easier to include air bubbles leading to a failure point [69]. By
carefully preparing the Stycast, i.e. making sure to use the exact
mix ratio, mixing thoroughly, then degassing the epoxy before
baking at elevated temperatures to achieve the strongest bond, we
have reliably been able to achieve strains of −1 % for a sample
cross section of 100 µm × 300 µm, corresponding to a pressure
of ∼1.8 GPa and a shear stress in the epoxy of ∼500 MPa. This
value was not actually the limit of the Stycast but was the limit of
motion of the device before the capacitor plates shorted, meaning
even higher strains should still be possible. This shear stress is
significantly higher than previously measured values but the very
thin layer and the very low temperatures may well increase the
yield stress of the epoxy. The response of the Stycast was not
completely elastic up to these highest strains, in fact we quite
regularly saw the epoxy start to slip around a strain of ∼−0.3 %
(a shear stress of ∼150 MPa). This can be seen during a strain
increase; the voltage is smoothly ramped up but there is a sudden
jump in the capacitance when the epoxy slips, see figure 2.16. The
slippage in the epoxy, however, is not fatal. Instead, it seems to
find a stronger bonding point further back in the mount. We know
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this by comparing the sample properties before and after the slip
and each time we go to a new highest strain the sample length
must be redetermined by comparing to the initial properties of the
sample at low strains before the epoxy slipped for the first time.

As well as the sample failing due to the limit of the epoxy, the
sample can also fail if you reach the intrinsic buckling limit. The
critical load for buckling a beam is given by Euler’s formula

Fcr = π2EI

(KL)2 , (2.30)

where E is the Young’s modulus of the material, I is the minium
area moment of inertia of the cross section of the beam, L is the
length of the beam and K is an effective length factor for the
beam to take into account the constraints at the ends. For our
sample mounting, both the rotational and translational motion of
both ends of the sample are fixed. This makes the K factor equal
to 0.5. The area moment of inertia of a beam with rectangular
cross-section, width and thickness, w and t, is I = t3w/12. So the
critical strain for buckling, εcr, is

εcr = π2t2

3L2 . (2.31)

This depends on the aspect ratio (t:L) squared and for the typical
dimensions I used earlier, L/t = 10.5, the theoretical critical strain
for bucking is 3 %.

So far I have shown only analytical estimations of the strain
transmission, but for a complete analysis a finite element simula-
tion was programmed to determine the strain transmission more
precisely. This will be the subject of the next section.

2.5.2 Sample mounting models
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Fig. 2.17: Mounting models. Mounting
models used in the finite element anal-
ysis. Red faces have applied displace-
ment constraints, and blue volumes are
epoxy. Reproduced from [34].

In order to optimise the sample mounting scheme I used finite
element analysis to investigate the possible mounting scenarios. For
each I will quantify once more the load transfer length and assess
each in terms of the strain homogeneity and the sample bending.

Here I will discuss four models for the sample mounts, all
depicted in figure 2.17. They are: (1) “Rigid:” here the sample is
fixed with hard, perfectly rigid epoxy on its top and bottom surfaces
at both ends. (2) “Symmetric epoxy:” a softer epoxy bonded on
both the top and bottom surfaces to perfectly rigid sample plates.
(3) “Asymmetric epoxy:” the same soft layer of epoxy but only the
bottom surface is bonded to a sample plate. (4) “Symmetric thick
epoxy:” the same as model 2 but with thicker layers of epoxy on
both sides. For all the models the sample and epoxy are taken to be
isotropic. We set the Young’s modulus of the sample to be 10× that
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of the epoxy, and the sample and epoxy to both have a Poisson’s
ratio of 0.3. We use aspect ratios close to those of the typically
mounted samples: the sample’s width, w, is set to 3× the sample’s
thickness, t, and the length (gap between the sample plates) to
3.5w. The thin layers of epoxy are 0.25t and the thick layers in
model 4 are equal to the sample’s thickness. The sample plates
are not directly modelled but the boundary conditions imposed
on the models are such to sufficiently capture their effect. Only
the faces of the epoxy that would make contact with the sample
plates, or the end portions of the sample in the rigid epoxy model,
have applied displacement constraints; the constrained faces are
illustrated in figure 2.17. The bulk of the epoxy and sample is not
constrained. Displacement rather than force constants are used
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Fig. 2.18: Fea simulations. Strain εxx for samples mounted as in the models of figure 2.17. In all the
models the sample plates, represented by the thick red lines, were moved towards each other by 0.1 %
of L. The deformations have been exaggerated 200 times. A. Cuts through the centre xz-plane of the
sample. B. Cut through the centre xy-plane of the sample for mounting model 2.
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Fig. 2.19: Strain along the centre-
line of the sample. Strain εxx along
the centreline of the sample for the
mounting models in figure 2.17. The
legend includes the load transfer
lengths, λ, from fits to the portion of
the sample inside the mounts. Nega-
tive x/t corresponds to where there
is epoxy, the scale is the same as in
figure 2.18.
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since it is the strain that is controlled by the device, not the stress.
These faces have constrained x, y and z displacements. Their y and
z displacements are held at zero, i.e. we assume the sample plates
are not expanding or contracting transversely. The x displacement
sets the applied strain, and for a model with an applied strain of
−0.1 % the constrained faces are displaced towards each other by
0.05 % ×L.

For these calculations I programmed a custom FEA simulation
incorporating the meshing capabilities of Gmsh [70] and matrix
solvers in MATLAB® [37]. Each model had on the order of 106

elements, all linear tetrahedrons. The end portions of the sample
were always made much longer than the load transfer length λ

to negate effects due to only partial transmission of the load. No
effects of differential thermal expansion are included in the models
presented in this thesis.

The simulation results of the models in figure 2.17 are shown in
figures 2.18 and 2.19. Figure 2.18 shows the strain εxx. The thick
red lines mark the constrained faces which were moved towards each
other by 0.1 % of L and the deformations have been exaggerated
200 times. The three plots in part A of figure 2.18 show cuts in the
centre xz-plane of the sample for mounting models 1, 2 and 3. The
plot in panel B shows a cut the centre xy-plane for mount model 2.

Figure 2.19 shows the εxx strain along the centreline of the
sample for all the mounting models. Here one can clearly see the
exponential decay of the strain into the mount as well as the highly
homogeneous region in the centre of the sample. The load transfer
length, λ, is shown for each model and is taken from a fit to the
strain along the centreline of the sample in region of the sample
within the mount.

The load transfer length is shortest for the rigid epoxy model and
correspondingly the highest strain is achieved in this sample, but
the cross-section through the xz-plane in figure 2.18 clearly shows
very high stress concentration right at the edge of the mounts. This
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Fig. 2.20: Bending induced strain inhomogeneity. The difference in strain between the top and bottom
of a bent sample at the centre divided by the average strain across the central plane of the sample
plotted against the sample’s aspect ratio. The three cases from top to bottom are: (a) rigid epoxy
holding only the lower sample face; (b) soft epoxy on the under side of the sample with a thickness
equal to 0.25t; (c) a sample mounted asymmetrically between top and bottom sample plates. The
sample is off centre by 0.125t and the total space between the two plates is 1.5t.

would be the failure point for a sample mounted with this scheme.
In the models with the layers of soft epoxy the stress concentration
is reduced and, we expect, higher strains can ultimately be achieved.
However, the exact thickness of the epoxy leads to some uncertainty
in the exact amount of strain achieved in the sample; take note of
the range of strains seen at the middle of the sample for the models
with soft epoxy in figure 2.19.

Table 2.1: Guide for the end portions
of the sample to exclude from measure-
ments. Length at the end of the sample
to exclude in order to achieve a given
level of strain homogeneity. Mounting
models and dimensions as per figure
2.17.

% Inhomogeneity

Mounting
model 5 % 1 %

1 0.5w 0.9w
2 0.2w 0.5w
4 0.1w 0.4w

For samples mounted in symmetrical mounts the strain ho-
mogeneity is very high, see both figures 2.18B and 2.19. The
inhomogeneity dies away moving towards the sample centre so
measurements should be designed to be sensitive only to the central
region of the sample. A guide for the length of sample to exclude
from both ends of the sample is given in table 2.1. This length
says that after excluding this amount at the ends of the sample,
the strain εxx across the rest of the volume of the sample does not
differ from the average strain at the centre of the sample by more
than the given percentage. So to achieve a strain inhomogeneity
less than 5 % for a sample mounted using model 2, a length equal
to 0.2w of the sample needs to be excluded from both ends of the
sample. With suitable sample mounts it is therefore possible to
achieve very high strain homogeneity over almost the entire exposed
region of the sample.

Any asymmetry in mounting causes the sample to bend as shown
in figure 2.18A(3) and this introduces further strain inhomogeneity;
there is a clear strain gradient between the bottom and top of
the sample. This inhomogeneity can be quantified by taking the
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difference in strain between the top and bottom divided by the
average strain across the central plane of the sample. This quantity
is plotted in figure 2.20 for a range of sample aspect ratios and three
different asymmetric mounting models. The inhomogeneity is worst
for a sample mounted with rigid epoxy from a single side. There
is improvement with a softer epoxy but the inhomogeneity is still
large. For example with an aspect ratio (L/t) of 20, not far below
the buckling limit, the inhomogeneity is still above 10 %. It is clear
then that symmetric sample mounting should always be aimed for.
The final curve in figure 2.20 shows a problem that might occur
when symmetrical mounting is aimed for but the sample ends up
off centre in the mount. Here the total space between the mounting
plates encasing the sample is 1.5t so a symmetrically mounted
sample would have layers of epoxy 0.25t thick on each side but here
the bending induced inhomogeneity is shown for the case when the
sample moves half this distance off centre. The inhomogeneity is
still better than the sample mounted only from a single side, but
for small aspect ratio (L/t) samples the inhomogeneity can still be
quite significant.

2.6 Recommended working parameters
Throughout the work for this thesis we were aiming to push the
limit of achievable strain. With the longer stacks of the new devices,
the range of motion of the device is no longer the limiting factor
in terms of the achievable strain and we had to consider the other
possible modes of failure carefully. As a summary, I will outline
these considerations in a step by step recipe for preparing and
mounting samples to reach high strains.

1 mm

Fig. 2.21: Buckled sample. Photograph
showing the stumps of the sample that
remain after the sample buckles and
the central portion breaks away.

Three main modes of failure can limit the applied strain. First,
if the stress within the sample reaches the yield strength, permanent
deformation will occur. This is an intrinsic limit of the sample
and cannot be controlled, thus setting an upper limit of strain.
It is important however to ensure that the sample surfaces are
prepared as well as possible, free from chips and cracks in the
surface, as these lead to points of stress concentration and premature
failure. The sample must also be of uniform cross section to achieve
a homogeneous strain distribution. During measurement it is
necessary periodically to release the strain and check to see if the
elastic limit has been exceeded. If it has, the sample’s properties
will not return to the previous values once it has been brought
back to a lower strain. During my measurements on Sr2RuO4 and
Sr3Ru2O7 presented in the following chapters I never observed such
effects and thus always remained within the elastic limit, for these
measurements the yield strength was not yet the limiting factor.

The second mode of failure is through sample buckling. The
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sample is a long thin bar only supported at the ends so after a
certain level of compressive strain the sample is susceptible to
buckling as described in section 2.5.1. The critical load for buckling
is given by Euler’s formula. For a sample fixed without allowing
rotation or translation of both ends and with a rectangular cross-
section, width and thickness, w and t, the theoretical critical strain
is εcr = π2t2/3L2, where L is the length of the strained part of the
sample. The recommended useable range, however, is only 60 %
of this [71]. A shorter sample therefore is better for reaching the
absolute highest strains, but the strain homogeneity also needs to be
kept in mind. The portions of the sample inside the epoxy mounts
are not strained so between these and the middle of the sample
there are regions of inhomogeneous strain. Through guidance from
my simulations we know it is best to leave a length roughly equal to
the width of the sample at each end and try to measure exclusively
in the central portion of the sample. For my measurements I
chose to use a width of 300 µm and make the sample length, the
gap between the sample plates, 1 mm. This gives a large enough
measurement region where the strain should be homogeneous and
leaves enough space for all the wires to the sample and some space
for susceptibility coils. For the measurements on Sr2RuO4 I was
aiming for a maximum strain of −1.5 %, requiring that the sample’s
thickness be at least 90-100 µm.
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Fig. 2.22: Effect of epoxy depth and
shear modulus. A. A thin layer of epoxy
with a large shear modulus leads to
stress concentration in the sample and
epoxy near the edge of the sample plate.
B. By increasing the depth of the epoxy
layer the shear stress in the epoxy is
reduced and the length over which the
strain transmission occurs is increased.
However the depth of the epoxy should
not be increased so far that the trans-
mission length exceeds the size of the
sample plates else only partial trans-
mission will occur. C. Reducing the
shear modulus of the epoxy also reduces
the shear stress in the epoxy and the
stress concentration at the sample ends
but the shear strain in the epoxy is in-
creased so care must be taken to stay
within the limits of the epoxy.

The third failure point is the epoxy holding the sample to the
sample plates. The thickness of the epoxy layer between the sample
and sample plates can be varied to limit the shear stress in the epoxy,
see section 2.5.1 and figure 2.22. The maximum shear stress in the
epoxy, when there are sample plates above and below to transmit
the applied force, is approximately τmax = εsample

√
EtG/2d, where

E is the sample’s Young’s modulus, G is the shear modulus of the
epoxy, d is the epoxy depth. It is therefore best to increase the
depth of the epoxy to limit the maximum shear stress, but one
must also bear in mind that the length of sample that needs to
be embedded in the epoxy to ensure adequate strain transmission
also increases as the epoxy depth is increased. This means the
epoxy depth should only be increased while there is a long enough
length of spare sample at each end held in the epoxy. Increasing
the epoxy depth further reduces the amount of strain transmitted.
The shear stress decays roughly exponentially with the distance
from the end of the mount with a characteristic length scale of
λ =

√
Etd/2G, so a distance of 2-3×λ is desirable to achieve

adequate strain transmission.
As first mentioned in section 2.5.1, for my measurements I

used Stycast 2850FT with catalyst 23LV as the epoxy as it is well
suited to cryogenic temperatures and has a relatively high shear
strength. Stycast is much softer than the sample with a shear
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modulus estimated to be ∼6 GPa at low temperatures. The sample
plates used in our strain device offer up to 400-500 µm of overlap
with the ends of the sample so by fixing the epoxy depth to 25 µm
this space is utilised to its full potential. To achieve this separation
accurately a foil was fixed to one of the sample plates, further back
on the plate than the sample, and polished to 150 µm thick so that
when it was combined with the second sample plate sandwiching
the sample the correct separation was achieved, see figure 2.14.
There still is some uncertainty in making sure the sample sits in the
centre between the sample plates above and below the sample but
I found in practice that careful application of the epoxy with equal
distribution above and below the sample without excess meant the
sample naturally found the centre as the epoxy cured. Stycast
2850FT is also a filled epoxy with specified particle diameters up
to 45 µm, but in practice, probably due to our preparation and
application method, the larger particles tended to be absent but
the smaller particles may have been helping to centre the sample.
It was difficult to verify if the sample was centred directly after the
mounting stage since there was no line of sight to the side of the
sample in our device, but after samples were removed from the rig
this was always checked.

The shear stress in the epoxy can also be reduced by using a
softer epoxy but at the expense of also increasing the shear strain
in the epoxy. A softer epoxy needs to have a proportionally larger
yield strain in order to achieve the same sample strains. Stycast
2850FT appears to be ideally suited in this range with a low enough
shear modulus to prevent serious stress concentration in the sample,
but a large enough yield strength to reach high sample strains. For
most epoxies the elastic properties are only known close to room
temperature but even comparing these values Stycast is well suited,
see table 2.2. Some caution should be taken though when comparing
these results directly since the shear tests on which this data are
based can be strongly affected by surface preparation, material
choice, and epoxy thickness. However once coupled with fact that

Table 2.2: Mechanical properties of
select epoxies. Shear modulus and
lap shear strength of several epoxies
tested at room temperature. Where
the shear modulus was unknown,
the measured Young’s modulus with
an assumed Poisson’s ratio of 0.3
was used to calculate the shear mod-
ulus.

Shear modulus Lap shear strength

Stycast® 2850FT [69] ∼4 GPa ∼40 MPa
(Blasted stainless steel)

EPO-TEK® H74 [72] ∼2 GPa ∼11 MPa
(Unknown)

EPO-TEK® H20E [73] ∼2 GPa ∼10 MPa
(Unknown)

Araldite® [74] ∼1 GPa ∼18 MPa
(Blasted stainless steel)

MasterBond®

EP29LPSP [75] ∼1 GPa ∼15 MPa
(Aluminium)
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Stycast’s thermal expansion is matched to that of brass it seems an
ideal epoxy for our purpose and perhaps had another epoxy been
chosen instead during the initial tests of the first uniaxial stress
device, a premature failure may have written off the whole idea.

2.7 Conclusions
Traditional uniaxial pressure measurements are technically chal-
lenging and extreme care must be taken to ensure high strain
homogeneity. The technique described here, where a long narrow
bar is strained across a vice, offers significant improvements and
can achieve very high strain homogeneity in the central portion of
the sample. When experiments are designed to be sensitive to this
central portion of the sample this is then a very effective technique.

The strain range now achievable is no longer a weak perturbation
but can be a very significant energy scale. To put it in perspective,
one would expect that a strain of 1 % can change the Fermi level by
approximately 1 % of the band width. For Sr2RuO4 and straining
along the [100] direction the band width in this direction for the γ
band is ∼3 eV [6]. The energy scale of the achievable strain range
is therefore order ∼30 meV equivalent to a temperature of ∼300 K
or a magnetic field of ∼600 T.
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Fig. 2.23: YBa2Cu3O6.92 susceptibility
against temperature. Real part of the
susceptibility χ against temperature for
a sample of YBa2Cu3O6.92 compressed
along the b-axis.

Figure 2.23 shows preliminary measurements on the high tem-
perature superconductor YBa2Cu3O7−δ made with this uniaxial
stress technique. Small concentric coils with diameters 250 µm
for the pick-up coil and 1.5 mm excitation coil were placed above
the centre of the sample to measure AC magnetic susceptibility.
Over a strain range of close to 1 %, an equivalent pressure range of
∼1.6 GPa [76], there is very little broadening of the superconducting
transition, rather just a rigid shift of Tc to higher temperatures.

After carrying out some simple analytic approximations for the
strain transmission and further detailed FEA simulations we can
provide some guidelines, readily achievable in experiments, for the
best procedure for mounting samples. High strain is best achieved
by using soft and moderately thick layers of epoxy, bonding a thin
sample to rigid sample plates, encasing the sample from above and
below. The inhomogeneity from these sample mounts decays over
a distance roughly equal to the width of the sample, so length to
width aspect ratios greater than ∼3:1 should be used to provide a
large enough homogeneous portion in the centre of the sample. Any
asymmetry in the sample mounting causes the sample to bend when
strained, creating a strain gradient across the sample’s thickness.
The strain inhomogeneity can be large if the correct care is not
taken but the bending inhomogeneity can be minimised by using
long, thin samples. Care must still be taken to stay below the
bucking limit however. The soft epoxy leads to some uncertainty
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in the exact sample strain achieved so a finite element simulation
is required to determine the strain transmission more precisely.
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ticular importance in the study of condensed matter physics as it is
here where conventional theories are often seen to be violated and
exotic phases such as superconductivity and magnetism emerge.
The transition metal oxide Sr2RuO4 shares the same layered per-
ovskite crystal structure as the parent compound of the prototypical
high-Tc superconductor La2-xSrxCuO4 and attracted considerable
interest after superconductivity was also found here by Maeno et
al. in 1994, albeit at much lower temperatures [77]. Since then the
superconductivity has been established to be unconventional in
nature, but many open questions remain regarding the microscopic
origin of the superconductivity and the exact pairing symmetry.
What is known is that the superconductivity condenses from a
firmly established and well characterised Fermi liquid [6].

To better understand mysteries such as the order parameter
symmetry of an unconventional superconductor it can be beneficial
to venture into neighbouring phase space. Hydrostatic pressure
is often used, but in Sr2RuO4 its effects are disappointing. It is
known to suppress the superconducting transition temperature and
at the same time reduce the quasiparticle mass enhancements [78].
What may prove to be of particular importance in Sr2RuO4 is the
close proximity of one of its three conduction bands to a Van Hove
singularity. This is a special point in the band structure where the
group velocity of the quasiparticles goes to zero and the density of
states diverges (in 2D systems). Tuning towards a Van Hove singu-
larity is of interest not just in terms of superconductivity but also
for the study of a more general problem. Strong quasiparticle renor-
malization and quasiparticle-quasiparticle scattering can occur near
such singularities in the density of states and it has been postulated
that for the cuprate superconductors some of the unusual behaviour
observed may be the consequence of a Van Hove singularity close
to the Fermi level. For Sr2RuO4 the Fermi level can be made to
traverse the Van Hove singularity by electron doping, heterovalent
substitution of La3+ for Sr2+ [79, 80], or by introducing biaxial
strain though lattice mismatch of epitaxially grown thin films [81].



40 The Physics of Sr2RuO4 Approaching a Van Hove Singularity

These experiments provided useful information about the metallic
properties, but the extreme sensitivity of the superconductivity
of Sr2RuO4 to disorder meant that no superconductivity could be
observed in either study.

Applying uniaxial stress to bulk samples has also demonstrated
the importance of the Van Hove singularity in Sr2RuO4 [33]. An
applied strain of ∼ −0.2 % was shown to cause an enhancement
of the superconducting critical temperature by ∼40 %, which was
argued to be caused predominately by the increase in density of
states as the Van Hove singularity is brought closer to the Fermi
energy.

Uniaxial stress is particular well suited, at least in principle,
for tuning towards Van Hove singularities compared to hydrostatic
pressure or even biaxial stress. Under uniaxial stress a smaller
volume change takes place so it is a lower-energy distortion, and
crucially a circular Fermi surface becomes elliptical extending out
towards the zone boundaries in two opposite directions. In com-
parison, any distortions to the Fermi surface on a square lattice
under biaxial stress must be four-fold symmetric. Without a sig-
nificant volume change of the Fermi surface, the only way for
the Fermi surface to get closer to the zone boundary is for four
lobes to grow out in a cross shape, overall a much higher energy
configuration than the two fold distortion under uniaxial stress.
In terms of hopping integrals, uniaxial pressure directly affects
the ratios of nearest-neighbour hoppings, whereas biaxial stress or
hydrostatic pressure can only alter the balance between nearest-
and next-nearest-neighbour hopping, which has a generally weaker
effect.

As stressed earlier in this thesis, uniaxial stress has the benefits
that it is both a clean and continuous tuning parameter. We are
now in the situation where we can achieve much larger uniaxial
stresses motivating a continuation and extension of the previous
study. We extended the strain range all the way to −1 %, higher
than was thought possible for this rather brittle metal oxide.

At a strain of −0.55 %, I observe a maximum in Tc of ∼3.5 K
after which Tc decreases again rapidly with higher strains. I have
also measured resistivity, magnetoresistance and Hall effect, all of
which are consistent with the Fermi level traversing the Van Hove
singularity, producing a Lifshitz transition. We observe signatures
of quantum criticality as the transition is approached, thus provid-
ing the unique opportunity to study a topological Lifshitz transition
in a system which is exquisitely clean and with a continuous tuning
parameter that introduces minimal disorder. We see that the den-
sity of states changes in a very restricted part of the Brillouin zone
due to the Van Hove singularity affect the temperature-dependent
scattering of all the quasiparticles.
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This chapter will continue with an introduction to the salient
features of Sr2RuO4 relevant to the discussion of the results later on
along with the necessary background physics. Section 3.3 will detail
the experimental methods and measurements undertaken before
the results are presented in section 3.4 along with complementary
discussions.

3.2 Background physics for Sr2RuO4

3.2.1 Fermi liquid properties of Sr2RuO4

Fig. 3.1: Crystal structure of Sr2RuO4.
Perovskite structure with RuO2 layers
separated by SrO spacer layers. Each
Ru ion is at the centre of a RuO6 oc-
tahedron. The low temperature lattice
constants are a = 3.86 Å and c = 12.72
Å, tetragonal space group I4/mmm
[82].

The majority of the work on Sr2RuO4 has focused on the uncon-
ventional nature of the superconducting state. However the normal
state has also been extensively studied and firmly established as a
quasi-two-dimensional strongly correlated Fermi liquid [6].

As was first introduced in section 1.1, the nominal valence of
the ruthenium ion in Sr2RuO4 is Ru4+, leaving four remaining
electrons in the 4d shell. In the layered perovskite structure of
Sr2RuO4, shown in figure 3.1, the ruthenium ions are at the centres
of RuO6 octahedra. The crystal field of the oxygen ions splits the
five degenerate 4d states into a low-lying triplet, namely the t2g
levels dxy, dxz, and dyz, and a higher doublet, the eg states dx2−y2

and dz2 . The four valence electrons are distributed amongst the
three bands formed from the t2g levels [83].

The large interplane separation of this layered structure means
there is very little overlap of the orbitals along the c-axis and there-
fore very little dispersion along the c-axis, so the band structure
is approximately two dimensional. The dxz atomic orbitals are
mostly oriented in the xz-plane, giving a significant overlap be-
tween nearest neighbours along the x-axis but not along the y-axis.
The band formed from these orbitals is therefore expected to be
almost one dimensional; an open sheet roughly perpendicular to
the x-axis. Similarly, the dyz states produce a sheet perpendicular
to the y-axis. The dxy orbitals on neighbouring rutheniums have
a strong overlap along both the x- and y-directions through their
shared oxygens and also with the next-nearest neighbours since
their lobes are at 45° to the crystal axes. They combine to produced
an approximately cylindrical sheet.

Mixing between the dxy derived band and the dxz or dyz bands
will be weak because they have different parity under the reflection
z → −z but the two one-dimensional surfaces can hybridise and
these combine to form an electron like cylinder, β, around the
centre of the zone and a hole like cylinder, α, centred around the
zone corners, see figure 3.2 B and C. The dxy derived band is also
electron like and is centred in the zone [6]. It is given the name γ.

This simple tight-binding picture matches qualitatively and
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Fig. 3.2: Fermi surfaces of Sr2RuO4.
A. In-plane Fermi surface cross sec-
tions obtained from an εF intensity
map in an ARPES study by Dama-
scelli et al. [84]. The first Brillouin
zone is shown and the naming of the
three surfaces α, β and γ. B and
C. The dxz and dyz bands hybridise
to form the the α and β surfaces.
Adapted from [6].
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semi-quantitatively with the measured band structure [6]. Angle-
resolved photoemission spectroscopy by Damascelli et al. [84] con-
firmed the k-space structure of the Fermi surfaces and extensive
quantum oscillation [6, 83,85–87] and angle-dependent magnetore-
sistance oscillations (AMRO) measurements [88,86] have provided
an extremely detailed experimental determination of the Fermi
surface, including the interlayer dispersions [6]. While the simple
picture described above and shown in figure 3.2 provides a good
starting point for the electronic structure of Sr2RuO4, in order to
quantitatively understand the behaviour and unconventional super-
conductivity of Sr2RuO4, more detailed knowledge was required.
Further details can be found in the comprehensive compilation of
results given by Bergemann et al. [6] where they also discuss the
intricate peculiarities of the Fermi surface which are thought to be
responsible for some of the competing instabilities.

The first indications of Fermi liquid behaviour in Sr2RuO4 came
from measurements of the specific heat, Pauli spin susceptibility
and resistivity [89]. The T -linear part of the specific heat γ is quite
large at 38 mJ mol−1K−2 [89] and so is the T -independent spin
susceptibility χs at 1.7 × 10−4 [90]. The ratio of these two is the
Wilson ratio RW = (π2k2

BNAV/6µ0µ
2
B)× (χs/γ) = m∗susc/m

∗, and
is equal to 1.5. For a free electron gas RW is unity. In Sr2RuO4 RW
is larger but still suggests a common origin for the enhancements
of the electronic specific heat and the spin susceptibility [89].

At low temperatures the resistivity follows the characteristic
ρ0 +AT 2 form, suggesting that the low temperature T dependence
is dominated by the quasiparticle-quasiparticle umklapp processes
of the Fermi liquid. T 2 behaviour is seen up to almost 25 K in both
the in-plane resistivity ρab and the out-of-plane resistivity ρc with
A-coefficients of Aab ∼ 6 nΩ cm/K2 and Ac ∼ 5.5 µΩ cm/K2 [6],
see figure 3.3. The resistivity is highly anisotropic, as expected
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Fig. 3.3: Resistivity against temper-
ature. In-plane ρab and out-of-plane
ρc resistivity for Sr2RuO4. The in-
set show the T 2 dependence at low
temperatures, the dashed line is a
linear guide for the eye. Reproduced
from [92].
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from the crystal structure, with a low temperature anisotropy as
high as ρ0,c/ρ0,ab ∼ 4000 [91].

The most definitive evidence for the Fermi liquid state comes
from quantum oscillation measurements [83] which were also used
to refine the experimentally determined Fermi surfaces. In a suf-
ficiently large magnetic field quasiparticles can be driven around
the Fermi surfaces by the Lorentz force. The cyclotron orbits of
the quasiparticles are quantised due to the wave-like nature of
the quasiparticle wavefunctions and the quasiparticles reside on a
series of discrete cylinders in k-space called Landau levels. The
radius of a Landau level is inversely proportional to the strength
of the magnetic field and as the field is swept these Landau levels
pass successively through the Fermi energy, causing oscillations in
the material’s properties. The Shubnikov-de Haas effect refers to
quantum oscillations in the resistivity and the de Haas-van Alphen
effect refers to oscillations in the magnetization but virtually all
properties dependent on the density of states at the Fermi level
should show some level of oscillation.

The oscillation frequencies yield the areas of extremal Fermi
surface cross sections normal to the applied field direction. From the
amplitudes of the oscillation more information can also be extracted
including the quasiparticle masses [93]. Fermi liquid theory predicts
a particular form for how the oscillation amplitude is attenuated
with increasing temperature. The Fermi surface becomes more
smeared out at higher temperatures due to thermal excitations
and the amplitude of the oscillations is exponentially reduced. By
fitting to the temperature dependence of the osculatory amplitude,
the mass can be extracted for each band individually.

For Sr2RuO4 the cyclotron masses are determined as m∗α/me =
3.3, m∗β/me = 7.0 and m∗γ/me = 16 where me is the bare electron
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mass [6]. From the quasiparticle masses the individual specific heat
contributions of the three Fermi surfaces can be calculated and
their sum provides another consistency check which matches well
with bulk measurements [83]. The accumulation of all this evidence
leads logically to the conclusion that the normal state of Sr2RuO4
is well described by Fermi liquid theory and strong correlations lead
to moderately heavy Landau quasiparticles, with masses enhanced
in all bands by a factor of 3-4 [83].

3.2.2 Superconductivity of Sr2RuO4

In Sr2RuO4 the Fermi liquid is unstable to the formation of a
superconducting state below 1.5 K in the clean limit [61]. Here
the low lying excitations are no longer the Landau quasiparticles
but instead bound states of Cooper pairs are formed at the Fermi
energy.

After superconductivity was first discovered in mercury by
Onnes in 1911 [19] two defining characteristics became apparent:
firstly the superconductor is a zero resistance state and secondly the
superconductor expels magnetic field, not as consequence of the zero
resistance but a defining property though an effect known as the
Meissner-Ochsenfeld effect which showed that the superconducting
state must be a new equilibrium thermodynamic phase, accessible
only through a phase transition. A phenomenological model of
superconductivity was first proposed by Ginzburg and Landau [94]
in 1950. Then just a few years later Bardeen, Cooper, and Schrieffer
jointly proposed the first microscopic theory for superconductivity;
their BCS theory [95]. The essence of their ingenuity was to move
away from the independent electron thinking of the day and consider
a state where the electrons acted together as one inseparable entity.
BCS theory is a beautiful example of emergence where something
so simple can emerge from the complexities of the many particle
soup.

k,↑

−k,↓

εF

εF + ~ωD

Fig. 3.4: Cooper Pairs. The Cooper
problem with two electrons outside a
filled Fermi sea and an interaction that
is attractive while the electron energies
are within ~ωD of the Fermi energy.
Reproduced from [96].

Cooper first attacked the problem by showing that two electrons
above a filled Fermi sea are unstable towards pairing up in the
presence of any arbitrarily small attractive interaction. The two
particle wave function for these extra electrons can be written in
terms of Bloch waves as

Ψ(r1, r2) = 1√
2

(| ↑1↓2〉 − | ↓1↑2〉)
∑

|k|≥kF

ϕke
ik·(r1−r2) (3.1)

where a zero total momentum state has been chosen as it seems most
likely to be lowest in energy. The spin part of the wavefunction is
antisymmetric with respect to particle exchange and the spatial part
is symmetric, maintaining an overall antisymmetric state for these
two fermions. Subject to a weak attractive interaction V (r1 − r2)
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the eigenvalues of the Schrödinger equation become
[
− ~2

2m∗∇
2
1 −

~2

2m∗∇
2
2 + V (r1 − r2)

]
Ψ(r1, r2) = EΨ(r1, r2) (3.2)

∑

|k|≥kF

(2εk + V (r))ϕke
ik·r = E

∑

|k|≥kF

ϕke
ik·r1 (3.3)

2εkϕk +
∑

k′

Vk′−kϕk′ = Eϕk . (3.4)

We assume a weak attractive interaction in only a thin shell around
the Fermi surface such that

Vk′−k =
{
−|V0| εF < εk < εF + ~ωD
0 otherwise

. (3.5)

Then solving 3.4 self-consistently

−|V0|
∑

k′

ϕk′ = (E − 2εk)ϕk (3.6)

1 = −|V0|
∑

k

1
E − 2εk

(3.7)

1 = −|V0|
εF+~ωD∫

εF

1
E − 2εk

g(εF)dε (3.8)

E = 2εk − 2~ωDe−2/|V0|g(εF) . (3.9)

The energy as a pair is lowered compared to the two independent
states; a bound state exists. We call these bound states of two
electrons Cooper pairs.

The question still remains how there can be an attractive itera-
tion to facilitate paring up when naively we think of the electrons
repelling each other due to Coulomb repulsion? BCS found the
answer in the coupling between the electrons and the lattice. In a
metal the ions forming the lattice are not stationary, in reality they
can vibrate and oscillate about their minimum energy positions.
Collective excitations of the ions exist, waves that move though the
lattice, called phonons and each phonon will produce a modulation
in the charge density. An electron moving through the lattice is
therefore subject to these periodic potential modulations and can
undergo diffraction. When an electron scatters off a phonon the
momentum of the Bloch wave changes as it exchanges momentum
with the lattice but importantly the total crystal momentum is
still conserved. In this way two electrons can indirectly interact.
One electron can scatter producing a phonon which propagates



46 The Physics of Sr2RuO4 Approaching a Van Hove Singularity

for a while before it is absorbed by a second electron. The elec-
trons exchange momentum though the creation and annihilation
of phonons. The effective iteration that exists turns out to be
attractive at small energies and is just what we were looking for to
facilitate paring.
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Fig. 3.5: Electron phonon interaction.
An electron travelling though the lat-
tice disturbs the ions’ positions creat-
ing an excess positive charge behind
the electron. Reproduced from [97].

A simplified but more intuitive picture is sketched in figure 3.5.
The electrons not only repel each other but they are also attracted
to the positively charged ions making up the lattice. As an electron
passes through the lattice the ions in the lattice are pulled towards
the electron. The electrons are travelling relatively fast and the
ions are much heavier so it takes longer for the disturbance of the
ions to relax and a tube of excess positive charge follows behind
the electron. A second electron can be attracted to the first by the
retarded distortion of the lattice.

The importance of the electron-phonon interaction and con-
firmation of BCS’s ideas came from the isotope effect. It is seen
experimentally that for many superconductors the superconduct-
ing transition temperature depends on the mass of the crystal
lattice, Tc ∝ M−1/2. The superconducting critical temperature
depends on the binding energy of the Cooper pairs and for the
electron-phonon interaction this depends on the Debye energy ωD
which not coincidentally has the same dependence on the isotope
mass. It also helps explain why the inherently worse conductors are
better superconductors. The strong electron-phonon interactions
that increase the resistivity in the normal state also increase the
superconducting binding energy and transition temperature.

So far all that was said above applied only to two electrons
above a filled Fermi sea so these ideas still needed to be extended
to real metals with many electrons. The last piece of the puzzle
came from Schrieffer and his idea of a macroscopic wavefunction.
Continuing from Cooper’s findings the true ground state is expected
to involve some coherent state of Cooper pairs. Looking for uniform
translationally invariant solutions it is more convenient to work in
k space and continue with second quantised notation. The pair
creation operator P̂ †k = c†k↑c

†
−k↓ creates a pair of fermions with zero

total crystal momentum and total spin zero. The operators c† and
c satisfy the commutation rules for fermions. The conjecture of
Schrieffer was that the ground state should be a coherent state of
Cooper pairs

|ΨBCS〉 ∝ exp
(∑

k
αkP̂

†
k

)
|0〉 (3.10)

where |0〉 is the empty vacuum state. Using the fact that the
operators commute and c†k↑c

†
k↑ = 0 it is more straight forward to
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write
|ΨBCS〉 ∝

∏

k

(
1 + αkP̂

†
k

)
|0〉 (3.11)

and after normalising we end up with the BCS wavefunction

|ΨBCS〉 =
∏

k

(
u∗k + v∗kP̂

†
k

)
|0〉 , |uk|2 + |vk|2 = 1 . (3.12)

The BCS wavefunction is based on a variational method where the
parameters u∗k and v∗k are found by minimising the total energy. The
relevant Hamiltonian, for this, including the attractive interaction
between the Cooper pairs is

Ĥ =
∑

k,σ
εkc
†
kσckσ − |V |

∑

k,k′

c†k′↑c
†
−k′↓c−k↓ck↑ . (3.13)

Instead of minimising E = 〈ΨBCS|Ĥ|ΨBCS〉 we can apply an approx-
imation and look for the mean-field ground state which, although
not the exact solution, is almost exact in the limit of weak coupling.
After the substitution

c†k↑c
†
−k↓c−k↓ck↑ ≈ 〈c†k↑c

†
−k↓〉c−k↓ck↑ + c†k↑c

†
−k↓〈c−k↓ck↑〉 (3.14)

the Hamiltonian becomes

Ĥ =
∑

k,σ
(εk − µ)c†kσckσ −

∑

k

(
∆c†k↑c

†
−k↓ + ∆∗c−k↓ck↑

)
(3.15)

and we see the gap function for the first time

∆ = |V |
∑

k
〈c−k↓ck↑〉 . (3.16)

The Hamiltonian is quadratic and can thus be solved exactly by a
suitable change of basis to diagonalise the Hamiltonian. In this case
it is a Bogoliubov transformation bkσ = ukakσ + vka

†
−k−σ. The

energy eigenvalues for the states created by these new operators
are ±Ek where

2∆

+Ek

−Ek

−ξk
holes

ξk
electrons

k − kF

EkA

1
|uk|2|vk|2

k − kF

B

Fig. 3.6: Energy Gap. A. Energy eigen-
values ±Ek of the BCS wavefunction
near the Fermi energy. The dashed lines
show the electron and hole energies in
the normal metal. B. BCS quasipar-
ticle weights, |vk|2 for electrons and
|uk|2 for holes. Reproduced from [96].

Ek =
√

(εk − µ)2 + |∆|2 . (3.17)

Making reference to figure 3.6 we now have the following situation.
Above the the critical temperature, in the normal state, ∆ = 0.
Here the quasiparticle excitations are the normal particle and hole
excitations from the Fermi sea, the dashed lines in the figure. But
below the superconducting transition temperature the excitation
spectrum is modified to ±Ek and there is now a minimum energy
of 2∆ for excitations. This is the energy gap of the superconductor.
The Bogoliubov quasiparticles are slightly strange; they are a
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mixture of the electron creation and annihilation operators. Each
state can be thought of as a quantum superposition of both electrons
and holes without a fixed number. The fermion weights for these
states are plotted in panel B of figure 3.6.

Tc

1
∆BCS(0) = 1.76kBTc

T

∆(T )
∆(0)

BCS

Tantalum

Niobium

Tin

Fig. 3.7: BCS gap. The BCS gap as a
function of temperature. Reproduced
from [98].

At finite temperature the quasiparticle energy levels have occu-
pations according to the Fermi-Dirac distribution 〈b†kbk〉 = f(Ek).
The gap function, equation 3.16, can thus be rewritten in terms
of these new quasiparticles to find the finite temperature value of
the BCS gap. A plot of the temperature dependent gap is shown
in figure 3.7. The gap grows continuously from zero at Tc to its
maximum value of ∆(0) = 1.76kBTc at zero temperature. The gap
is a representation of the condensed phase, and its growth is loosely
analogous to that of the superconducting order parameter below a
continuous phase transition at Tc.

For most simple metallic superconductors the predictions of
BCS theory such as the ratio of the zero temperature gap to Tc and
the magnitude of of the jump in specific heat at Tc are strikingly
accurate, but this is not yet the end of the story. As it was
introduced above BCS theory applies and works extraordinarily
well for phonon mediated weak coupling superconductors. However,
for materials with strong electron-electron correlations the larger
Coulomb repulsion precludes the pairing by exchange of phonons.
Superconductivity is, however, still observed in some cases and
extensions to BCS’s original ideas are needed to describe these new
superconductors.

When writing down the wavefunction of the Cooper pairs, equa-
tion 3.1, a spin singlet state was chosen but this was with some
foresight and is not in general a requirement. A more general
wavefunction can be written as the product of the pair’s orbital
and spin wavefunctions

Ψ(r1, σ1, r2, σ2) = f(r1 − r2)χ(σ1, σ2) . (3.18)

We only need to be sure to maintain overall anticommutation of
the two fermions. The spin part χ(σ1, σ2) can have total spin
S = 0, a singlet, or S = 1, a triplet state. The orbital part can
be expanded in Laplace’s spherical harmonics Y ml and the orbital
parity is then (−1)l. The antisymmetric spin-singlet state must
be accompanied by a symmetric orbital wavefunction, L = 0 (s
wave), 2 (d wave), etc., where the names are in analogy to those
of the atomic orbitals. The spin-triplet state must take L = 1
(p wave), 3 (f wave), etc.8 Decomposing the wavefunction into8 In the presence of a crystal lattice

one cannot strictly expand in terms of
these spherical harmonics anymore but
this has become the convention for the
naming scheme so I stick with it here.

spin and orbital parts, although instructive here, is in general not
always possible due to the presence of spin-orbit coupling. Strictly
speaking it is better, rather than talking about a spin-singlet or
spin-triplet state, to describe the parity of the state as this still
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remains after the addition of spin-orbit coupling. However despite
this, the convention of describing an odd-parity superconductor as
spin-triplet and an even-parity state as spin-singlet is still widely
used.

Strongly interacting electron systems are characterised by large
on-site Coulomb repulsion, so naively wavefunctions with a high
probability of the electrons being close together are unfavourable
and the wavefunctions with finite orbital angular momentum are
expected.

By extending BCS theory like this it can be used to describe
more general interaction terms with both k- and spin-dependence.
The gap structure needs no longer to be isotropic, instead it can
vary around the Fermi surface. There can be phase and amplitude
changes as well as nodes in the gap structure. Nodes in the gap
structure mean there are excitations at specific k states that do
not possess a gap even at zero temperature. In the first 70 years
after the discovery of superconductivity all new superconductors
were spin-singlet s-wave superconductors, and so after the discovery
of something different, these superconductors with higher orbital
angular momentum were termed unconventional. Nowadays a more
precise definition of unconventional superconductivity is one where
the gap averages to zero over the Fermi surface

∑

k
∆(k) = 0 . (3.19)
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Fig. 3.8: Impurity effect on supercon-
ductivity in Sr2RuO4. The supercon-
ducting transition temperature as func-
tion of residual resistivity for a variety
of samples with different purity levels.
The solid line is a fit of the Abrikosov-
Gor’kov pair-breaking function to the
data. Superconductivity is destroyed
when the mean free path becomes sim-
ilar to the superconducting coherence
length. The extreme sensitivity of the
superconductivity to non-magnetic im-
purities is expected only for unconven-
tional pairing. Reproduced from [99].

There is considerable evidence that the superconducting state
in Sr2RuO4, a strongly interacting Fermi liquid, is indeed uncon-
ventional. Non-magnetic impurities lead to a strong suppression
of Tc [99]. In a conventional s-wave superconductivity Tc is unaf-
fected by elastic impurity scattering as shown by Anderson [100].
Elastic impurity scattering acts to mix all the different k states
and so for a conventional superconductor with an uniform gap the
superconductivity is not affected. However for an unconventional
superconductor this averaging drives the gap to zero as per equa-
tion 3.19. Sr2RuO4 is perhaps the most disorder-sensitive of all
known superconductors; a residual resistivity of less than 1 µΩ cm
is required to observe superconductivity, a corresponding mean free
path of ∼0.1 µm. The extreme sensitivity of the superconductivity
to disorder prompted the growth of exquisitely clean samples which
can now have mean free paths as long as several microns [61].

Since the establishment of the unconventional nature of the
superconductivity there has been considerable speculation as to
the exact pairing symmetry but after more than two decades of
research this has still not been nailed down with certainty. At first,
the similarity of the enhancements of specific heat and spin suscep-
tibility in Sr2RuO4 to that of 3He led to the exciting suggestion
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that superconductivity could be spin-triplet, an electron analogue
of superfluid 3He [101]. Much work has focused on this possibility,
but the results thus far are still not definitive [61].

A study of the superconducting properties of Sr2RuO4 was not
the primary aim of the work in this thesis. Therefore I do not wish
to dwell too much longer on the current state of established super-
conducting properties but only give perhaps the most important
results to date. For further background on the superconductivity in
Sr2RuO4 readers are referred to one of the many extensive reviews
on the topic [61,102–104].

To test the prediction of spin-triplet superconductivity measure-
ments can either look for an odd parity orbital part of the wave
function and then infer the spin part must be triplet or measure-
ments can directly tackle the spin part. It is now known, however,
that spin-orbit coupling is important in Sr2RuO4. The fact that it
is important means that the orbital and spin parts cannot strictly
be separated like this, however, this language is still widely used
for Sr2RuO4 as it is helpful with interpretation, so I will continue
with it here but some level of caution should be kept in mind.
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Fig. 3.9: Knight Shift against temper-
ature. The temperature dependence
of the Knight shift measured at the
two different oxygen sites as the sam-
ple is cooled through Tc. The dashed
lines are the expected form should the
Cooper pairs be spin singlet paired
as dx2−y2 . The independence of the
Knight shift on temperature is strong
evidence for triplet pairing. Repro-
duced from [105].

The Meissner effect normally precludes measurements of the spin
susceptibility in the superconducting state but nuclear magnetic
resonance (NMR) still has access to the spin susceptibility within
the superconducting state. In an itinerant system spin susceptibility
in a magnetic field is due to the Zeeman splitting of the Fermi
surface. The Fermi surface splits into a spin-up surface lowered in
energy by µBH and an spin-down surface raised in energy by µBH
but overall the free energy is lowered by 1

2χsH
2. Shifting of the

Fermi surfaces mean the states k↑ and −k↓ no longer exist together
at the Fermi level. The singlet Cooper pair cannot form unless the
gain in free energy from superconductivity condensation overcomes
this spin splitting. In a weak field this is typically possible and the
spin susceptibility is reduced to zero as temperature goes to zero.
For spin-triplet Cooper pairs the components with equal spin paring
are unaffected by the spin polarisation of the Fermi surface so the
spin susceptibility is typically unaffected at Tc. The exact response
depends on the type of p-wave order parameter but the change can
be predicted. Ishida et al. [105] used the Knight shift measured
by NMR to determine the spin susceptibility. As direct evidence
against singlet superconductivity they observe no change in the
Knight shift as the temperature is lowered through Tc, see figure
3.9. Complementary results from polarized neutron scattering by
Duffy et al. [106] confirm the unchanging spin susceptibility as
superconductivity sets in, suggesting a spin-triplet state and hence
an odd parity state.

Evidence from parity sensitive measurements also seems to
corroborate these results. Nelson et al. [107] joined Sr2RuO4 to a
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conventional superconductor Au0.5In0.5. The interface between two
superconductors makes a Josephson junction, a device in which
a supercurrent flows between the two superconductors because of
any differences in the phase of the superconducting wave function
from one superconductor to the next. Even though the parity
of the Cooper pairs is expected to be different in Sr2RuO4 and
conventional superconductors the tunnelling of Cooper pairs is still
possible in the presence of spin-orbit coupling [108, 109]. Nelson
et al. put one such junction on opposite ac-faces of a Sr2RuO4
single crystal. For a spin-triplet superconductor the orbital part
of the Cooper pair wavefunction must be antisymmetric, i.e. it
changes phase by π through a rotation of 180°. By placing two
Josephson junctions on opposite faces and connecting them with
an additional superconducting link there is a overall phase shift of
π when traversing the ring. There must then be an accompanying
supercurrent and this type of junction is known as a π-junction. By
measuring the magnetic field dependence of the current that can
be passed through such a device the parity of the superconductor
can be identified. The results of Nelson et al. suggest an odd parity
orbital wavefunction in agreement with the NMR and polarized
neutron scattering, although the presence of domains in the junction
could complicate the analysis.

If Sr2RuO4 is a spin-triplet superconductor the orbital part of
the pair wavefunction needs to be specified for each of the three
triplet states. The same is true for the gap function and this is
typically done by introducing some additional notation

∆(k) =
(

∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

)
= i(∆kI + d(k) · σ)σy (3.20)

where σ = (σx, σy, σz) is a vector of Pauli matrices, I is the
2×2 unit matrix, ∆k is a scalar and d(k) is a three component
complex vector. A singlet superconductor is described by setting
∆↑↑ = ∆↓↓ = 0 and ∆↑↓ = −∆↓↑ = ∆k, equivalently setting d(k)
to zero and leaving ∆k finite. In the triplet case ∆↑↓ = ∆↓↑ = ∆0
and ∆k is zero. In full
(

∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

)
=
(−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)
.

(3.21)
The d-vector notation introduced by Balian and Werthamer [110] as
above is useful since it now transforms just like a vector under spin
rotations. The d-vector fully describes the triplet superconducting
state including all symmetries, spin and orbital angular momentum
and the nodes in the gap structure. In a crystalline environment
the d-vector must match the point group symmetry of the crystal
but for Sr2RuO4 there are still numerous choices remaining, a list
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of which can be found in [61], and it is left up to experimental
determination to identity the exact order parameter.

Fig. 3.10: d Vector. A sketch of the
Cooper pair d-vector d = ∆0ẑ(kx±iky)
showing the pairs angular momentum
L and the spins of the electrons in the
pair s.

One of the most promising candidates is the d-vector

d = ∆0ẑ(kx ± iky) . (3.22)

ẑ points along the normal to the ab-plane. The spin is zero along
the direction of d so the spins of the Cooper pair are confined
to the ab-plane and are both in a spin aligned state. The orbital
part has angular moment l = 1 with both orientations Lz = ±1
possible. This implies the relative orbital motion of the electrons
forming the Cooper pair can be either clockwise or anticlockwise.
The two orientations are degenerate but within a given domain
all the Cooper pairs have the same rotation direction. This state
is termed chiral because picking out a specific direction breaks
another symmetry, namely time-reversal symmetry.

Tc=1.45 K

Pµ ⊥ c

Tc=1.1 K

Pµ ‖ c

Temperature (K)

R
el

ax
at

io
n

R
at

e
( µ

s−
1
)

0.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3
0.00

0.01

0.02

0.03

0.04

Fig. 3.11: Muon spin-relaxation rate.
The muon-spin relaxation rate shows an
abrupt change on cooling at Tc in zero
applied magnetic field. Two different
samples with different Tc’s show it is
a feature of the superconductivity sug-
gesting the development of spontaneous
magnetic fields breaking time-reversal
symmetry. Reproduced from [111].

Some experimental probes are sensitive to the effects of broken
time-reversal symmetry and the results suggest that Sr2RuO4 may
indeed be a chiral superconductor. The chiral Cooper pair wave-
function has an overall magnetic moment but no bulk magnetic
moment is expected since there must still be a Meissner effect and
a screening current should be set up. However in the vicinity of
impurities and domain edges the Meissner screening may not always
be perfect and small local fields are expected. In the technique
of muon spin rotation a muon is incident on the sample, it comes
to rest, interacts with the local magnetic field, and then decays
emitting a positron in a direction correlated with the spin’s direc-
tion, and so is sensitive to local magnetic field distribution. The
first studies of µSR on Sr2RuO4 by Luke et al. [112] in 1998 found
the appearance of spontaneous magnetic fields coinciding with the
onset of Tc. This was verified by looking at samples with varying
Tc’s [111].

Evidence for broken time-reversal symmetry has also been seen
in measurements of the polar Kerr effect. The polar Kerr angle
measures the polarisation rotation between incoming and reflected
linearly polarised light. A non zero angle occurs when right and
left circularly polarized light are reflected with a different phase
shift. The magnitude and direction of rotation depend on the
magnetisation of the surface. Polar Kerr effect measurements on
Sr2RuO4 see an increase of rotation coinciding with Tc increasing
to approximately 100 nrad at zero temperature [113].

Although these measurements give strong evidence for broken
time-reversal symmetry, the story is not so clear. The currents
thought responsible for the additional muon relaxation rate should
be detectable with other local magnetisation measurements. Scan-
ning SQUID and Hall probe microscopy have not be able to identify
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these fields at the level of even 1 % of the predicted values by theory,
and by µSR [114–117].
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Fig. 3.12: Polar Kerr effect. The po-
lar Kerr angle vs. temperature in zero
applied magnetic field along with the
samples electrical resistance showing
that the increase in rotation coincides
with Tc. The non zero rotation angle
below Tc is further evidence for time-
reversal symmetry breaking. Repro-
duced from [118].

Other physical properties also add to the puzzle. The electronic
specific heat of Sr2RuO4 gives a clear signature of unconventional
superconductivity [119]. The specific heat of a conventional su-
perconductor, which depends on the quasiparticle density at low
temperatures, grows exponentially from zero at low temperatures.
The specific heat of Sr2RuO4 on the other hand clearly shows lin-
ear behaviour down to below 100 mK, see figure 3.13. This, in
combination with several other results, including thermal conduc-
tivity [120–122], NQR [123], London penetration depth [124,125]
and ultrasound attenuation [126], all point towards a quasiparticle
density that varies linearly in temperature from Tc/2 to at least
100 mK. This suggests that there may well be nodes in the gap
structure or at the very least zeros or very deep minima, but no
consensus has been reached about where and in what direction
these nodes might be.
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Fig. 3.13: Electronic specific heat of
Sr2RuO4. The electronic specific heat
divided by temperature. The specific
heat varies linearly with temperature
over a large range, inconsistent with a
fully gapped superconductor. Repro-
duced from [119].

The superconducting phase diagram for Sr2RuO4 in applied
magnetic fields also adds to the mystery. Increasing magnetic
field, at some point, will destroy the superconducting state. For
a spin singlet superconductor this can happen when the Zeeman
energy from spin polarizing the Fermi surface, as discussed earlier
in relation to the spin susceptibility, outweighs the condensation
energy gain. For spin triplet superconductors certain Cooper pairs
with equal spin pairing should be exempt from this breakdown,
known as the Pauli limit. The d-vector most commonly used
for Sr2RuO4 is one such example. The alternative mechanism
for the eventual destruction of the superconducting state involves
the creation of vortices in the superconducting state. In a type of
superconductor, known as a type-II superconductor, above a certain
critical field strength it becomes energetically unfavourable to keep
screening the entirety of the magnetic field and some magnetic
field enters the superconductor in concentrated lines called vortices.
The core of a vortex returns to the normal metallic state and
superconducting screening currents flow around the vortex. Each
vortex concentrates one flux quantum of magnetic field and as the
applied field is increased further, more and more vortices enter the
material until the entire material returns to the normal state at
the upper critical field, also known as the orbital limiting field.

Sr2RuO4 is a type-II superconductor but the anisotropy of the
upper critical field is highly unusual. The critical field for field
applied along the c-axis is 0.07 T and increases as the field is
rotated towards the ab-plane. From Ginzburg-Landau theory the
upper critical field is given by Hc2 = Φ0/2πξ2, where the coherence
length ξ depends on the effective mass as ξ ∝ 1/

√
m∗. The two

dimensional band structure of Sr2RuO4 has a much larger effective
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mass along the out of plane direction so there should also be an
anisotropy of the upper critical field [127]. For angles larger than 2°
from the ab-plane this Ginzburg-Landau theory with an anisotropic
effective mass fits the data well [128], see figure 3.14, although
the fitted anisotropy is smaller than that obtained in the dHvA
band structure measurements [6]. Within 2° of the ab-plane the
increase of the critical field is cut-off and the transition turns first
order below ∼0.8 K suggesting something else is at play rather
than normal orbital limiting.
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Fig. 3.14: Field angle dependence of
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to the ab-place compared to the pre-
dictions from Ginzburg-Landau theory
with an anisotropic effective mass. Re-
produced from [128].
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Fig. 3.15: The superconductivity of
Sr2RuO4 under strain. Tc versus strain
for strain applied along the [100] direc-
tion and [110] direction. The strong
increase in Tc for both [100] oriented
compression and tension is thought to
be due to increased density of states
at the Fermi level as the γ band ap-
proaches a Van Hove singularity in the
band structure. Reproduced from [33].

One last experiment which is of direct importance to the work
being presented in this thesis is the first uniaxial strain study by
Hicks et al. [33]. In the tetragonal crystal symmetry of Sr2RuO4
the d-vector d = ∆0ẑ(kx±iky) is degenerate but upon breaking the
symmetry by applying an orthorhombic distortion, the degeneracy
is lifted and either the d = ∆0ẑkx or ∆0ẑky state is favoured
[62,63]. Hicks et al. set out with the aim to apply an orthorhombic
distortion and search for the predicted discontinuity in dTc/dε of
the superconducting Tc at zero strain (see figure 2.10), a v-shaped
kink between the px and py states. No such kink was observed as
can be seen in figure 3.15, but the strong increase in Tc for [100]
oriented strain was part of the motivation for this work. Almost no
change in Tc is observed for [110] oriented strain. After comparison
to band structure calculations it appeared that the dominant effect
increasing Tc is the change in density of states as the γ band
approaches a Van Hove singularity when the strain is applied along
a [100] direction. The importance of Van Hove singularities in
Sr2RuO4 will be further discussed in the following section.

In conclusion, after extensive experimental efforts there is still
no consensus on a pairing symmetry compatible with all the exper-
imental results. Some key experiments point towards a spin-triplet
paired state but even these can be put under scrutiny. Knight shift
measurements of spin susceptibility see no change though Tc when
the field is in the ab-plane but no change is also seen when the
field is along the sample’s c-axis and this is not expected for the
d = ∆0ẑ(kx ± iky) state where the spins lie in the ab-plane. It was
proposed that the probing field may have been strong enough to
rotate the d-vector but several arguments against this have been
laid out by Zutić and Mazin and once the NMR measurements have
been put under question they point out that a spin-triplet state
is not the only compatible choice but also the chiral spin-singlet
∆0(k) ∝ (kx + iky)kz is equally consistent with many experimental
results [129].

Much work has focused on the superconducting properties of
Sr2RuO4 as they appear very unusual and confirmation of the usual
triplet pairing state would be a worthy accomplishment in its own
right but if the preferred chiral p-wave state is confirmed there
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could also be important practical applications. A chiral p-wave
superconductor should host quasiparticle excitations which are
Majorana fermions, a quasiparticle which is also its own hole, in
analogy to Majorana fermions in particle physics which are their
own antiparticles. The unusual particle statistics associated with
Majorana fermions offers a route to quantum computing if there
are no nodes in the gap function and they are suspected to be
especially well suited for low-decoherence quantum information
processing [130,131].

3.2.3 Van Hove singularities and Lifshitz
transitions and their connection to Sr2RuO4

The density of states as a function of energy of a material is a key
quantity for determining its electronic properties. The number of
available states constrains the possible excitations, but when large
enough, it can be a facilitator for a number of instabilities of the
Fermi liquid. We saw the example of superconductivity in section
3.2.2 and later, in section 4.2.1, we will come across the Stoner
criterion in relation to the instability to magnetic ordering as well
as forming charge and spin density waves. With a high density of
states at the Fermi level a small perturbation lowering the energy
of the occupied states can contribute a significant energy saving,
overcoming the competing penalties of ordering.

The density of states is the number of allowed wave vectors per
unit energy at each energy of the system. Mathematically this is

g(ε) =
∫

S(ε)

1
4π3

1
|∇ε(k)|dS , (3.23)

where S(ε) is the contour of constant energy ε, the integral is
over this surface and a continuum approximation is justified. The
density of states in energy depends inversely on the gradient of the
band’s dispersion, |∇ε(k)|. For a simple free electron like band this
point is also easy to see using the notion of the Fermi velocity as
introduced in section 1.1

g(εF)3D = k2
F

π2~vF
, g(εF)2D = kF

π~vF
. (3.24)

In non-free electron like bands the density of states is largest at
points were the dispersion is flat. These critical points can be
maxima, minima or saddle points in the band structure and are
called Van Hove singularities (VHs) after their first identification by
Van Hove in 1953 for the case of the phonon density of states [132].
In three dimensions the singularity in the integrand is integrable,
yielding a finite density of states but with a kink where the density
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Fig. 3.16: Van Hove singularities in
Sr2RuO4. The γ band in Sr2RuO4
lies very close to a saddle point
Van Hove singularity. A. Tight
binding model of the band struc-
ture at energies close to the Fermi
level. The tight-binding parametri-
sation is from a fit to the experi-
mentally determined band structure
by Bergemann et al. [6] with the
correct many-body renormalization
from Shen et al. [80]. B. With this
tight-binding description the density
of states peaks at ∼14 meV above
the Fermi energy where the γ band
changes character from electron like
to hole like.
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of states is not differentiable [3]. In two dimensions the density of
states diverges logarithmically at a saddle point VHs.

A two dimensional tight-binding model on a square lattice, side
a, with nearest and next-nearest neighbour hoppings, t and t′, has
saddle points at the M points of the Brillouin zone (±π/a, 0) and
(0,±π/a) 9

9 When counting the number of
VHs’s language complications can lead
to some confusion. The M points at
the edge of the zone are shared with
the adjacent zones so strictly speak-
ing this means there are a total of two
equivalent Van Hove points per tetrago-
nal zone which would become two non-
equivalent points if the lattice was dis-
torted orthorhombically.

.

E(k) = E0−2t(cos(kxa)+cos(kya))−4t′cos(kxa)cos(kya) . (3.25)

This is the scenario for the γ band in Sr2RuO4, and a plot of the
energy landscape for the two dimensional approximation of the
γ band is shown in figure 3.16. The natural filling level of the
band lies very near to the VHs and the properties of Sr2RuO4 are
expected to be influenced by this proximity to a diverging density
of states.

If the filling of the band can be raised, bringing the Fermi level
to higher energy, the density of states will diverge as the Van Hove
singularity is approached and the band will change character from
electron like to hole like as the Van Hove singularity is passed. The
Fermi surfaces before and after passing the Van Hove singularity
are topologically distinct. They cannot be transformed into one
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another by only continuous deformations alone, such as stretching
and bending. Instead, a hole/neck must be be opened in the surface.
This type of topological transition of the Fermi surface is known
as a Lifshitz transition and it occurs concomitant with the Fermi
level traversing a VHs [133]. Lifshitz classified two such types of
transition; in a three dimensional system the collapse/join of a
neck in the Fermi surface or the appearance/disappearance of a
detached region of the Fermi surface, see figure 3.17.

A

B

Fig. 3.17: Lifshitz transitions. A. The
collapse of a neck in a Fermi surface.
B. Appearance/disappearance of a new
detached region of Fermi surface. Re-
produced from [133].

A cornerstone for understanding classical phase transitions was
the concept of symmetry. The ordering in a particular phase
can be described by the symmetry properties it possesses and to
change into another distinct phase at least one of the symmetries
must change. Landau developed a general theory for continuous
transitions between phases with different symmetries and showed
that one must encounter a singularity in the free energy density at
the phase transition [134]. The symmetry that is broken between
the two phases describes an order parameter for the phase transition;
zero in one phase and growing continuously in the other, starting
from zero at the phase transition. The low energy properties
of a system can also be described as the consequence of broken
symmetries; well-known examples are phonons and spin waves [135].

Landau’s symmetry breaking theory proved very successful
and has had a profound impact on the understanding of phase
transitions, but it cannot describe the type of transition identified
by Lifshitz. A Lifshitz transition is not connected with any broken
symmetry or associated long-range order. The distinction between
the phases is rather described by their topology. The idea is that a
phase transition can exist not only between states with different
symmetry but also between states that have different topological
order but still maintain the same symmetries. For a system of free
fermions, like the free electron gas, the topological order is the
topology of the Fermi surface.

A Lifshitz transition, strictly speaking, can only take place at
zero temperature. Only here can the Fermi surface itself can be
defined precisely. As such a Lifshitz transition cannot be connected
to any finite temperature transition, however, since usually T �
εF/kB the effects of such a transition can still be apparent at finite
temperatures but with the singularity slightly smoothed out.

A continuous phase transition at zero temperature is a quantum
phase transition. At zero temperature the energy density of the
ground state plays the role of the free energy density in Landau’s
theory. And just as a singularity in the free energy marks a
symmetry breaking phase transition, a singularity in the ground
state energy density as a function of the tuning parameters of the
Hamiltonian of the system, such as the chemical potential, signifies
a quantum phase transition.
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Lifshitz transitions provide an exciting benchmark for modern
physics highlighting the need for an understanding of physics be-
yond the paradigm of Landau’s theories, both of non-symmetry
breaking continuous phase transitions and the breakdown of Fermi
liquid theory. They have been used to explain anomalous pres-
sure dependencies of superconductivity in a variety of materials
including, for example, thallium [136–138], rhenium [139] and nio-
bium [140]. In each of these materials the non-linear dependence
of Tc on pressure was explained due to a varying density of states
due to the Fermi level crossing critical points in the band structure
associated with the appearance or disappearance of new parts of
the Fermi surface. Some features of the high-Tc cuprate phase
diagram can also be attributed to Lifshitz transitions. Benhabib
et al. [141] could follow the closing of the unusual normal-state
pseudogap state with doping on the highly overdoped side of the
superconducting dome. A Lifshitz transition was argued to coin-
cide with the closing of the pseudogap where the active hole-like
Fermi surface becomes electron-like at a Van Hove singularity. In
high magnetic field a change in sign of the Hall coefficient with
doping was observed by LeBoeuf et al. [142] and is attributed to
another Lifshitz transition, this time on the far underdoped side
of the phase diagram. The metal-insulator crossover was argued
to coincide with this transition and to be due to the emergence
of an electron pocket in the Fermi surface at low temperature.
The complexity of the cuprate phase diagram, however, especially
once including doping, temperature, field and different material
specific peculiarities, means there is not yet an accepted consensus
across the whole phase diagram for the variety of competing phases
present.
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Fig. 3.18: Resistivity of Sr2-yLayRuO4.
A. In-plane resistivity against T 2 for
y=0 to 0.27. The inset shows ρ vs.
T 1.4 for y=0.20, the doping closest to
the Van Hove singularity. B. Resistivity
temperature exponent, α, for a nominal
temperature dependence ρ = ρ0 +ATα

calculated from the logarithmic deriva-
tive of the resistivity. Reproduced from
[79].

The Lifshitz transition in Sr2RuO4 can be induced by het-
erovalent substitution of La3+ for Sr2+ in Sr2-yLayRuO4. Each
lanthanum adds one extra electron, raising the filling of the Fermi
level. Quantum oscillation measurements showed that the effect is
a rigid band shift up to at least y=0.06, which was the limit for
observing the oscillations due to the increased disorder with further
substitution [143,80]. Angle resolved photoemission spectroscopy
(APRES) measurements on the substitution series show that the
Lifshitz transition, where the γ band changes from electron-like to
hole-like, occurs between y=0.18 and 0.27 [80].

Biaxial strain can also be used to reach the Van Hove singular-
ity. By tuning the balance between the nearest and next-nearest
neighbour hopping terms the shape of the Fermi surface can be
adjusted. Reducing the relative strength of the next-nearest neigh-
bour hopping term decreases the circularity of the γ Fermi surface
and the band approaches closer to the M points of the Brillouin
zone. The multiband nature of Sr2RuO4 also allows interorbital
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electron transfer from the dxz and dyz orbitals into the dxy orbital
changing the relative filling of the three bands. Biaxial strain is
possible by growing thin films of Sr2RuO4 using molecular beam
epitaxy (MBE) on a substrate with a mismatched lattice constant.
Burganov et al. [81] used APRES to study such films and track
the approach to the Van Hove singularity. They found it was only
possible to grow Sr2RuO4 on a substrate with a mismatched lattice
constant of up to 1.0 % before the films relaxed but by exchanging
Sr for Ba, a larger ion, the strain range could be increased. The
Ba2RuO4 films were found to be isostructural and isoelectronic to
Sr2RuO4 and the Van Hove point was reached almost exactly for
Ba2RuO4 on SrTiO3.
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Fig. 3.19: Resistivity of biaxial strained
thin films. Temperature dependence
of resistivity for a set of Sr2RuO4 and
Ba2RuO4 films. The inset shows the
film closest to the Van Hove singular-
ity with a low temperature fit to the
Fermi liquid model with weak locali-
sation scattering in 2D. Reproduced
from [81].

The tuning method at the heart of this thesis, uniaxial stress,
should also be capable of inducing the Lifshitz transition. It directly
affects the nearest neighbour hoppings, enhancing the hopping along
the pressurised direction and suppressing it along the perpendicular
direction. This decreases the bandwidth along the direction perpen-
dicular to the pressure axis and increases it parallel to the pressure
axis, thus extending the Fermi surface out towards the M points
perpendicular to the direction of the applied pressure. The Lifshitz
transition induced by uniaxial stress changes the Fermi surface from
a closed electron-like surface to an open one as the band passes
through only one of the two, now non-equivalent, pairs of Van
Hove singularities at the M points of the zone. Even though these
methods for reaching the Van Hove singularities are different, it is
still beneficial to make comparisons between the three techniques.

Even in the presence of disorder for both the substitution series
and the thin films, resistivity measurements suggest a breakdown of
Fermi liquid behaviour as the Van Hove singularity is approached.
Away from the Van Hove singularity, on both the high and low side,
a T 2 dependence of the resistivity is observed but close to the Van
Hove singularity T 1.4 behaviour is observed for both techniques (see
figures 3.18 and 3.19). However, the level of disorder in both these
samples is rather high, such that the impurity scattering accounts
for a large proportion of the resistivity. At its most in the lanthanum
series it is almost two times as large as the temperature dependent
contribution even over this already quite large temperature range,
and therefore any detailed analysis based on the exact temperature
dependent resistivity exponent should be sceptical.

For the lanthanum substituted samples an enhancement of the
linear term in the specific heat is also observed, and it peaks at the
same doping as the largest deviation from Fermi liquid behaviour
in the resistivity [79]. ARPES measurements on the lanthanum
substituted samples show that the large mass renormalisation in
Sr2RuO4 is mostly unaffected by the doping but biaxially strained
films show a monotonically increasing mass enhancement with
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increasing Ru-O bond distance. The difference here is chiefly due
to the way the γ band is brought towards the Van Hove singularity
but the key point from both measurements is that the system can
be tuned to a quantum critical regime where deviations from Fermi
liquid theory are observable at the topological Lifshitz transition
of the γ band.

Uniaxial stress is ideally suited for continuing this study of
Sr2RuO4 tuned to the Van Hove singularity. As stressed earlier,
uniaxial stress is both a continuous tuning parameter and one that
does not add additional disorder, so should add valuable insight to
this intriguing problem not only of the normal state physics but
also for the first time the superconducting properties.

3.3 Experimental methods001

A

100

B

110

C

Fig. 3.20: Sample alignment. Pictures
of X-ray back-reflection Laue diffrac-
tion patterns with simulated fits from
OrientExpress [144] overlaid in red. A
c-axis aligned with the X-ray beam, B
a-axis and C the [110] direction.

We use uniaxial stress as our method of choice for tuning elec-
tronic properties. The apparatus, and the modifications made for
this work, were thoroughly described in chapter 2 of this thesis.
The method for mounting a sample is also described in detail in
chapter 2 so here I just refer the reader to figure 3.21 where a
schematic diagram highlights the key features.

Guided by the first uniaxial strain study and band structure
calculations, the Van Hove singularity is expected to be reached
with a strain of 0.5–1 % applied along a [100] direction [33]. This
is a very large strain, especially for something as brittle as the
oxide Sr2RuO4. There seemed to be no chance of reaching the Van
Hove singularity through tensioning the sample, as it was seen that
samples break at significantly lower strains than this in tension,
but we believed that with careful preparation compressive strains
of this magnitude may be viable.

As was highlighted in chapter 2 precise sample preparation is
key for reaching high strain. The samples used in this study, grown
by Alexandra Gibbs in St. Andrews and Yoshi Maeno’s group in
Kyoto, were first aligned using the back-reflection Laue method, see
figure 3.20, before being moved to a lapping saw to be cut to size.
The samples were then finished using fine mechanical polishing
to bring them to their final dimensions and produce the highest
quality surfaces. This accuracy in cutting and polishing is essential
in order to reach high strain. See figure 3.22 for an example of a
finished sample. It was suggested that the cutting and polishing
steps can introduce unwanted dislocations at the edges and that
post cutting and polishing the samples should be annealed to relieve
these stresses. This was carried out for one sample, annealing at
500 ◦C for 2 days in air, however no noticeable differences were
observed.

When aiming for very high strains the sample dimensions and
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Fig. 3.21: Mounted Sample. A. Mounting schematic showing the epoxy holding the sample between
the sample plates and the numbering of electrical contacts. B. Electrical resistivity setup for sample 3.
C and D. AC magnetic susceptibility setup. Concentric coils of diameter ∼300 µm and ∼600 µm are
mounted on a flexible cantilever and positioned above the sample.
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mounting procedure need to be carefully considered. The procedure
to follow when deciding on these dimensions is laid out in section
2.6. With the aim of reaching compressive strains up to −1.5 %, the
sample needed to be at least 90-100 µm thick to prevent buckling
when the sample is 1 mm long, a length chosen to leave enough
space for all the measurement wires and AC susceptibility coils.
Stycast 2850FT was used to secure the sample to the sample plates.
An epoxy thickness of 25 µm was used such that the full length
of the sample plates was utilised for transmitting the strain and
therefore reducing the stress concentration at the edges of the
sample plates as much as possible.

[010]
[100]

A

[001]
[100]

B

Fig. 3.22: Cut and polished sample.
Sample 3 before attaching electrical
contacts and mounting in the rig.
Square millimetre paper for scale.

The main aim of this investigation was to observe what effect
passing though the Van Hove singularity has on the resistivity, but
since the resistive signature of superconductivity can be unreliable
in Sr2RuO4, due to percolating paths that appear to be especially
present in strained samples shorting out the contacts, I also mea-
sured the magnetic response of superconductivity. With careful
planning both measurements can be incorporated into the strain
rig simultaneously.

AC magnetic susceptibility was used to detect the superconduct-
ing Tc. Two concentric coils were wound and mounted on a flexible
cantilever so they could be positioned exactly above the centre of
the sample, see figure 3.21 panels C and D. The larger of the two
coils, used for the driving field, was made from superconducting
NbTi wire to introduce minimal heating and had a diameter of
∼600 µm. Fixed within this coil was the pick-up coil, made from
15 µm diameter copper wire, with a diameter of ∼300 µm. By mea-
suring the mutual inductance between these two coils the sample’s
magnetic susceptibility can be determined. There is no counter-
wound compensation coil here and the uncertainty in the exact
geometry means that this technique is only sensitive to relative
changes in susceptibility and cannot easily be calibrated. The large
offset voltage present is not a problem for measurement when a
lock-in amplifier with a high enough resolution is used. Depending
on the dynamic reserve in use, something with a 16 bit or higher
analog-to-digital converter is desirable. The superconducting tran-
sitions are then resolvable without noticeable quantization noise.
The standard method for low noise AC susceptibility measurements
is to use an impedance matching transformer mounted at low tem-
peratures. Unfortunately the cryostat used for this study cannot
incorporate such low temperature transformers so all amplifica-
tion had to be carried out at room temperature. When using an
AC driving current, amplitude I, the measured voltage across the
pick-up coil is V = 2πMfI with a 90 degree phase lag. M is the
mutual inductance between the two coils and f is the AC driving
frequency. When the frequency dependence of the measurements
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is not significant, running at higher frequencies can increase the
signal-to-noise ratio back to what is possible with the best low
temperature transformers which are themselves frequency limited.
The typical excitation field was ∼0.2 Oe RMS, mostly parallel to
the sample’s c-axis, at a frequency between 1 kHz-10 kHz.

To measure the resistivity six electrical contacts where made
to the sample. The standard procedure for Sr2RuO4 is to use high
temperature curing silver loaded epoxy 6838 from DuPont which
produces reliably low resistance contacts. Six 25 µm diameter gold
wires were joined to the sample with the silver epoxy before curing
at 450 ◦C for 5 minutes. All contacts were verified <0.3 Ω. All
the wires are added to the sample before it is mounted in the
rig because the device cannot be heated above 150 ◦C. Once the
sample was loaded into the rig the other end of the gold wires were
soldered to bonding pads on the device.

The restrictions put on the sample’s geometry from the buckling
limit and the strain homogeneity are particularly unfavourable for
resistivity measurements. The sample has to be quite thick and
the contacts must be placed close together in the homogeneously
strained region. This is the exact opposite of the normal procedure
for high-sensitivity resistivity measurements. The resistivity of
Sr2RuO4 is also very highly anisotropic, ρ0,c/ρ0,ab ∼ 4000, so
meticulous care must be taken when placing the contacts. Any
asymmetry in the current contacts leads to inhomogeneous current
flow with a component along the sample’s c-axis, and this becomes
much easier to inadvertently include as the samples get thicker.
The scale of this problem is best pictured in a simple geometrical
representation. For an equivalent sample with isotropic resistivity
to possess the same value of c-axis resistance, its thickness along
the c-axis needs to be bigger by the square root of the resistive
anisotropy, ∼

√
4000. A homogeneous current is only achieved if the

contacts inject current uniformly over the entire end faces of the
sample and the challenge in achieving this is clearly apparent in the
geometrical representation where the sample is now notably thicker
than its own length. For isotropic samples typically one just places
the voltage contacts a distance greater than one width from the end
of the sample and any inhomogeneity in the current distribution is
ignored. The inclusion of a c-axis component to the measurement is
easy to identify in Sr2RuO4. The overall magnitude of the measured
voltage will be too large and in addition the temperature profiles
for the in-plane and c-axis resistivity are quite different, noticeably
there is a turn over in the c-axis resistivity around 100 K. For the
first sample measured in this study this feature was observed so
only the susceptibility data is analysed for sample 1.

The resistivity measurements are further complicated by the
extremely high quality of the samples. The samples used in this
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study had residual-resistivity ratios up to 1200, a low temperature
resistivity of ∼0.1 µΩcm. Once a thicker sample is used and the
contacts are placed close together in the middle, the voltage signal is
significantly reduced. In fact the effect is so drastic that it puts the
measurement outside the capabilities of most standard measurement
systems. A typical single-ended current source combined with a
modern high performance preamplifier and lock-in amplifier can
only provide 100 dB of common mode rejection. If the end of the
sample could be held only 1 Ω from ground a CMRR of at least
120 dB is still required to bring the common mode signal down to
10 % of the real signal and in a real cryostat with long wires coming
out to room temperature the resistance to ground is typically in
the range 20-50 Ω. Here the signal from the common mode that is
added by the preamplifiers alone is ∼20-50 times larger than the
signal from the sample.

To overcome these limitations I designed and built a custom
dual end current source with active common mode rejection. This
is capable of keeping the common mode signal to less than ∼0.5 %
compared to the signal from the residual resistivity alone. Details
of the design can be found in appendix A.

Noise was always going to be an important consideration for
these measurements of a highly conducting sample with an un-
favourable geometry. As for the susceptibility measurements the
use of low temperature transformers was excluded because none
could be mounted in the cryostat used for the measurements. Nor-
mally the next best choice for amplification is a room temperature
transformer, but the cryostat presents a relatively large source
impedance due to beryllium-copper wiring and this influences the
gain of the transformer as well as the noise. Instead, active pream-
plifiers were used and once combined with a lock-in amplifier noise
levels slightly better than 2 nV/

√
Hz at the input to the preamp

could be achieved, a corresponding RMS noise of ∼0.7 nV with a
1 s 12 dB/octave phase sensitive detector. At its worst the cor-
responding signal-to-noise ratio was slightly better than 20, and
therefore still adequate for these measurements.

In total three samples were measured during this study, each
from a different crystal growth. The first sample suffered from
inhomogeneous current flow, as mentioned above, so only the sus-
ceptibility data are presented.

For the second sample, in addition to the regular longitudinal
resistivity measurement, I measured the transverse resistivity. Mak-
ing reference to figure 3.21, if instead of passing the current along
the bar between contacts 1 and 2 and current is passed between
contacts 3 and 5, a qualitative measure of the transverse resistivity
can be obtained from the voltage across contacts 4 and 6. This is
only a qualitative measure of the transverse resistivity since it is
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Table 3.1: Sample dimensions. Relevant parameters for calculating the strain transmission to the
sample through the epoxy. The strain of the peak in Tc for each sample is also listed.

number growth w (µm) t (µm) Lgap (µm) depoxy (µm) transmission (%) εxx,peak (%)
1 WDO3 295 100 1000 ≈25 70 -0.50
2 A1 310 100 1000 ≈25 70 -0.59
3 C362 320 90 1100 ≈25 73 -0.56

not independent of the longitudinal resistivity which determines the
spreading out of the current stream lines across the sample. The
voltage measured between contacts 4 and 6 decreases exponentially
as the contact separation, 3 to 4, increases. Placing the contacts
closer together is therefore better for the transverse measurement,
but the longitudinal measurement signal decreases linearly if this is
done so a balance between the two must be picked. I chose to use
a separation of 300 µm, biasing the measurement towards the lon-
gitudinal response since optimising the signal-to-noise ratio for the
longitudinal resistivity measurement was my main priority. Double
wiring was used for all contacts, providing twisted pairs for both
the longitudinal and transverse geometries. This also facilitates
the simultaneous measurement of magnetresistance and Hall effect
in magnetic field. A computer controlled switch was installed and
programmed to automatically change between all three measure-
ment geometries during operation allowing for almost simultaneous
measurements of longitudinal and transverse resistance as well as
Hall effect in the presence of an external magnetic field.

For the third sample the contacts were placed further apart
at 500 µm and the sample was made 100 µm longer to keep the
contacts one width from the ends. This was to achieve still cleaner
measurements of the longitudinal resistivity and the transverse
measurements were not attempted. The same wiring was however
still used so that the Hall effect could also be measured.

The strain device used for this study uses a parallel plate ca-
pacitor to monitor the applied strain. From the capacitance we
can determine the applied displacement to the sample plates but
two further pieces of information are required to convert this to
a strain. The first is the zero position of the scale. Even if in
principle the sample is mounted at zero strain at room temperature
the corresponding capacitance value will not be that of zero strain
at cryogenic temperatures because there will nearly always be a
differential thermal contraction between the sample and the tita-
nium device (see section 2.5). A separate determination of the zero
strain position is required. This can typically be identified from a
feature that is symmetric with applied strain or a quantity that is
isotropic at zero strain but not at finite strain. For Sr2RuO4 we
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can use the fact that Tc is highly symmetric with applied strain to
identify a zero position of the sensor.

The second piece of information is the strained length of the
sample. Dividing the measured displacement by this length gives
the sample strain. As described in chapter 2 the strained length of
the sample is not the same as the gap between the sample plates,
as the soft epoxy holding the sample to the plates also deforms.
I used finite element simulations to estimate the magnitude of
the displacement lost in the epoxy. However due to uncertainties
in the elastic properties of the epoxy all quoted strains have an
uncertainty of ∼20 % (a systematic error affecting all measured
strains equally). Table 3.1 lists all the sample dimensions necessary
for implementing these finite element simulations and the calculated
strain transmission values. The elastic properties of Sr2RuO4 were
taken from Paglione et al. [68] and the epoxy was assumed to have
a Young’s modulus of 15 GPa and Poisson’s ratio of 0.3.

4 K
IVC
flange

1 K
Pot

Uniaxial
Stress
cell

Fig. 3.23: Low temperature cryostat.
Business end of a 1 K pot sample in
vacuum cryostat. This cryostat has a
large 75 mm internal diameter to ac-
commodate large uniaxial stress cells.

All measurements were carried out with the sample in vacuum,
thermally anchored to a 1 K pot. By pumping on a small pot
of liquid helium evaporative cooling reduces the temperature of
the liquid helium below its atmospheric pressure boiling point of
4.2 K. A small flow is allowed between the main helium reservoir
and the 1 K pot to continuously replenish the helium pumped
away and a stable base temperature of 1.2 K can be reached. By
using resistive heaters to work against the cooling power of the
1 K pot the temperature of the cryostat can then be varied. With
this system it is possible to operate up to almost 100 K. At the
higher temperatures there is obviously no longer liquid helium in
the 1 K pot but it just acts as a heat exchanger with the helium
gas flowing though. One notable design feature of the cryostat is
the large internal space, a diameter of 75 mm. This was useful for
incorporating large strain rigs. The cryostat sits within a large
bore superconducting magnet producing fields up to ±6 T. Figure
3.23 shows the inside of the vacuum can. This cryostat was used
for the majority of the measurements but in addition to installing
this cryostat and the accompanying measurement rack I also set up
a second cryostat with an adiabatic demagnetisation cooling stage
and this was used for the initial characterisation of the samples
before cutting using AC susceptibility.

In our laboratory the type of measurements and the measure-
ment protocols change quite frequently so I programmed a computer
control system that could straightforwardly accommodate these
changes with no hindrance to flexibility. This flexibility also allows
the software to be employed for different cryostats straightforwardly
and is currently running on at least four cryostats. The software
suite uses a modular structure to accomplish this goal. There are
three main parts. First each instrument requires its own class file
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which acts as an interpreter between the instrument and the core
codebase. Mnemonics can also be used here to help recall common
message strings for each instrument. Secondly a set of functions
implementing common routines such as PID control, data recording
and live plotting are implemented and these make for easy control
of the temperature, magnetic field, sample strain, etc. Lastly all
the parts of the suite are linked together through a graphical user
interface (GUI). The GUI allows a user to take immediate con-
trol of the cryostat or program measurement scripts which can be
scheduled as the user requires, enabling easy continuous operation.
The flexibility remains in the scripting language as well, because
the full programming syntax of Matlab is at the users disposal; for
and while loops, if and else statements, local variable creation, etc.
This allows for both quick and simple measurement scripts but also
scripts as complex as can be imagined. New features can easily be
added without having to modify any existing parts of the program.
For instance a new instrument only needs its own class file and
none of the existing code needs to be modified to begin using the
instrument and recording data.

The software allows for automatic control of the experiment
for several days at a time, with measurement only needing to be
interrupted to keep the level of liquid helium in the main bath
topped up. Data analysis scripts can also be run from within the
GUI on the measured data and given a set of rules, there is nothing
in principle preventing the computer from making a measurement,
running the data analysis script, and then determining the next
step of the measurement from the result. This type of procedure
could be used, for instance, to locate the peak in Tc with strain
without requiring any human interaction.

3.4 Results and discussions
The results for Sr2RuO4 under uniaxial stress will be presented
in two parts. First I will describe the effect of uniaxial stress
on the superconductivity, presenting measurements of magnetic
susceptibility and showing the dependence of Tc on strain and the
upper critical field at strain. Then a second part will be dedicated to
the normal state properties under strain, focusing on the resistivity,
magnetoresistance and Hall effect measurements.

3.4.1 Superconducting properties under strain
3.4.1.1 Change in Tc with strain
Figure 3.24 shows AC susceptibility measurements against tem-
perature at a series of compressive strains. When the sample is
subject to either uniaxial compression or tension the superconduct-
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Fig. 3.24: Susceptibility against
temperature. Real part of the sus-
ceptibility χ for sample 3 against
temperature. A Strains below the
peak Tc, B above the peak. No nor-
malisation or offsets are applied to
the curves.
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ing transition temperature is enhanced, corroborating the results
of Hicks et al. [33]. As can be seen from the figure the transitions
become somewhat broader as the transition temperature moves to
higher temperature with increasing strain. The amount and shape
of this broadening varies from sample to sample, see figures B.1
and B.2 in appendix B for comparison, so it is likely this effect is
extrinsic and is most probably due to differing strain homogeneity.
As described in detail in section 2.5, imperfections in mounting
can cause the sample to bend, imposing a strain gradient across
the thickness of the sample when it is strained. The presence of
dislocations or ruthenium inclusions in Sr2RuO4 could also present
some local strain disorder producing variations between samples.
However it is clearly apparent that the transition temperature
reaches a maximum with applied strain and that as the maximum
Tc is approached the transitions become very sharp. The maxi-
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Fig. 3.25: Tc against strain for all three samples. The points are the mid points (50% levels) of the
transitions shown in figures B.1, B.2 and 3.24. The 20 and 80% levels of the transitions are shown as
lines to give a measure of the transition width. Here the strain scales have been normalised so the
peaks in Tc coincide at their average value of (−0.55±0.06) %.

mum Tc is enhanced by a factor of ∼2.3 over the unstrained value.
Compressing beyond this maximum causes a rapid suppression
of Tc, causing it to fall below even its zero strain value, and the
transitions broaden substantially once more. For broadening as the
result of strain inhomogeneity the width of a particular transition
at strain should be related to the slope of the Tc vs. strain curve
at that strain. Qualitatively this is in agreement with the observed
broadening, suggesting the dominant cause of the broadening is
indeed strain inhomogeneity.

The response to applied strain was fully elastic. In fact the
curves in figure 3.24 are not from one single sequence with increas-
ing strain but rather are only a small subset of the total number
of measurements where the strain was cycled four times over the
maximum and back to zero, measuring both while increasing and
releasing the strain, and each time reproducing the same results.
This is in contrast to measurements by Taniguchi et al. [145] where
there is strong evidence for plastic deformation in samples pres-
surised at room temperature in traditional uniaxial pressure cells.
Dislocations are known to induce local higher-Tc superconductiv-
ity [146] so by applying strain at low temperatures we reduced
the risk of plastic deformation. The stringent requirements on
sample preparation for traditional uniaxial pressure cells, as de-
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Fig. 3.26: Density of states and Fermi surface calculations. The density of states at the Fermi energy
as a function of applied anisotropic strain as calculated from a tight-binding model including strain
dependent hopping terms, see main text for details. Three representative Fermi surfaces show the effects
of applied strain on the band structure and highlight the Lifshitz transition as the γ-band reaches the
Van Hove point.

scribed in section 2.4, may also be playing a role in the Taniguchi
measurements.

The nominal strain at which the peak in Tc was observed varied
slightly between the three samples, see table 3.1, but within our
uncertainty in determining the strain scale. The profile of Tc against
strain for all three samples is plotted in figure 3.25. Here the strain
scales have been normalised so that the peaks in Tc all coincide at
their average value of εxx=(−0.55±0.06) %.

The combined strain data from these three new strained samples
of Sr2RuO4, and from measurements on Sr3Ru2O7 presented in
the next chapter, suggest that the strains determined by Hicks
et al. in Ref. [33] are ∼30 % too low. This is most probably
due to the technique used to measure the strain. In Ref. [33] a
resistive strain gauge was used to monitor the displacement of the
device but it now seems likely that this may have imposed some
mechanical resistance on the motion of the device. Additionally, a
temperature dependence of the gauge coefficient could have skewed
results. The capacitive sensor used in this new strain rig is less
affected by temperature and imposes no mechanical resistance so
more confidence can be placed in the results presented here.

Band structure calculations show that anisotropic strain will
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drive the γ-band towards the Van Hove singularity and increase
the density of states at the Fermi level. This can also be seen
in a simple tight-binding model which incorporates the effects of
anisotropic strain through strain dependent hopping parameters.
To first approximation at low strains the hopping parameters can
be taken to change linearly with applied strain. Using the tight-
binding parametrisation by Bergemann et al. [6] from fits to the
experimentally determined band structure and the correct band
renormalization from Shen et al. [80] as a starting point, the effects
of anisotropic strain can be included by scaling all hoppings along
the pressurised direction by (1 − αεxx) and along the transverse
direction by (1+ανxyεxx). νxy is the in-plane Poisson’s ratio which
has been experimentally determined by Paglione et al. [68] and α
is an adjustable parameter to scale the effect of applied strain. In
this model the chemical potential must also be adjusted slightly
with strain to keep the total electron count constant. A plot of the
density of states at the Fermi level against strain in this model is
shown in figure 3.26 along with the Fermi surfaces predicted as the
γ-band reaches the Van Hove point and at a much higher strain
beyond the Van Hove point. The density of states diverges for the
γ-band as the Van Hove singularity is approached and the band
changes character from a closed electron pocket to an open orbit
running along ky in the Brillouin zone at the Lifshitz transition.

In BCS theory the BCS gap, |∆|, grows with increasing density
of states at the Fermi level. Tc is related to the size of the BCS
gap and in a material with a k-dependent gap it is proportional to
the k-space average of |∆(k)|. The experimental observation of an
enhanced Tc is therefore qualitatively expected as the density of
states grows with applied strain. However, for the widely favoured
p-wave pairing symmetry the gap must change phase by π under
inversion. This leads to frustration as the γ-band approaches the
Van Hove point which is inversion invariant, and therefore the
gap must locally be zero at the Van Hove point. In contrast, an
even-parity pairing symmetry is not subject to the same frustration
constraints and one might expect a stronger enhancement of Tc for
an even-parity state as the density of states is increased by the Van
Hove point.10

10 BCS estimates are expected to
be accurate for a single band metal
with a small gap but in a multiband
system like Sr2RuO4 these estimates
refer only to the average gap which can
already be a big approximation when,
like in Sr2RuO4, there are large changes
around the Fermi surface. This analysis
also completely overlooks the potential
for interband coupling, so it should only
be taken as a guide.

Bearing this in mind, the peak in Tc may be a result of the
peaking density of states and coincide with the Lifshitz transition or
frustration may take over before the Van Hove singularity is reached
and the enhancement could be cut off at a lower strain. Weak-
coupling calculations by T. Scaffidi [147] on a similar tight-binding
parametrisation of the strained Fermi surface suggest that, even in
the presence of this frustration, odd-parity order is still enhanced
and Tc peaks as the Van Hove singularity is surpassed. The slow
fluctuations associated with the proximity of the γ-band to the Van
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Hove singularity are seen to contribute to superconductivity on
the α and β bands through inter-orbital interaction terms. Further
evidence supporting the coincidence of the peak in Tc and the Van
Hove singularity comes from normal state resistivity measurements
which will be presented in the next part of this section. One
other alternative proposed by Liu et al. [148] is competition with
a spin density wave state that is predicted to be stabilized with
compressive strain, and whose formation cuts off the increase in
Tc. However, the transport data in the next section seems to
be inconsistent with this and together with the resistivity results
about to be presented it seems most likely that the peak in Tc does
coincide with the Van Hove singularity.

3.4.1.2 Upper critical field at the peak in Tc

Valuable information on the density of states related effects on the
superconductivity can also be extracted from the upper critical
field. For all my measurements the sample was aligned with its
c-axis parallel to the applied field direction, mainly to facilitate
transverse magnetoresistance and Hall effect measurements, but
I also measured Hc2‖c(T ). Following the suppression of Tc with
applied magnetic field is quite easy for optimally strained Sr2RuO4.
Since the transitions are so sharp, the clear kink can be identified as
the onset temperature, see figures 3.27 and B.3. Figure 3.28 shows
the curve Hc2‖c(T ) for Sr2RuO4 strained to its peak Tc. There is
a clear upward curvature of Hc2‖c(T ), with a slope |dHc2‖c/dT |
increasing down to the lowest temperatures measured. This is in
contrast to a typical BCS type superconductor where a downward
curvature is expected but similar behaviour has been observed
in other materials which have multicomponent order parameters
with significantly different gap magnitudes on different parts of

Fig. 3.27: Susceptibility measured
at the peak in Tc at various applied
fields H ‖ c. Real part of the sus-
ceptibility χ measured as the tem-
perature is swept up and down for
sample 1. The y axis is the mutual
inductance between the two coils of
the susceptibility sensor. The field
was incremented at the bottom of
each temperature ramp, in the su-
perconducting phase. This disrupts
the vortex lattice and is responsible
for the apparent hysteresis.
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Fig. 3.28: Hc2 against temperature
at the peak in Tc. Hc2‖c against
temperature for samples 1 and 2
compressed to the peak in Tc to-
gether with Hc2‖a at the peak in
Tc with compressive strain applied
along a measured by A. Steppke
[147].
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the Fermi surfaces [149, 150]. For reference the critical field of
unstrained Sr2RuO4 is shown in figure 3.29 and there is very little
to no upward curvature.
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Fig. 3.29: c-axis critical field of un-
strained Sr2RuO4. Reproduced from
[151].

For an orbitally limited type-II superconductor, the field that
completely fills the sample with vortices and destroys superconduc-
tivity depends on the coherence length, Hc2 = Φ0/2πξ2. From BCS
theory we know that the coherence length is proportional to the
ratio of the Fermi velocity and the magnitude of the superconduct-
ing gap; ξ = ~vF/π∆. Relating vF to the density of states using
equation 3.24 it can be seen that the upper critical field depends
on the product of the density of states and the gap magnitude
squared (|∆|g(EF))2, averaged around the Fermi surface. Tc, on
the other hand, is proportional to the average of the gap. Therefore
if Hc2 increases more than linearly with T 2

c this amounts to further
evidence for the importance of the diverging density of states for
the superconductivity and that the regions of Fermi surface where
the density of states is large must coincide more with the regions
where the gap also has a large magnitude.

From figure 3.28, extrapolating Hc2‖c(T ) to zero temperature
shows that Hc2‖c is enhanced by more than a factor of twenty
relative to its unstrained value of ∼0.07 T. Tc itself is only enhanced
by a factor of∼2.3 soHc2‖c increases significantly more than linearly
with T 2

c . In fact Hc2‖c/T 2
c is enhanced by a almost a factor four.

The shape of the critical field lineHc2‖c(T ) is quite different between
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unstrained and strained Sr2RuO4 so in case different field limiting
mechanisms are playing a role another check is to compare the
initial slopes dHc2‖c/dT right at Tc. Extrapolating this slope to
zero temperature for unstrained Sr2RuO4 yields a field of ∼0.09 T
and for optimally strained Sr2RuO4 a field of ∼1.0 T. Even using
this criterion the critical field is enhanced over T 2

c by a factor of 2.
It seems then, by either method of comparison, that the locally

diverging density of states, which is restricted to the M point of the
Brillouin zone, is helping to boost the upper critical field. But for
a odd-parity superconducting state, where the gap must go to zero
at the M point of the zone, this statement seems contradictory and
opens the question of whether optimally strained Sr2RuO4 could
be even-parity.

For an orbitally limited superconductor, an increase in the zero
temperature critical field by a factor of twenty implies a decrease in
the coherence length by a factor of

√
20. Sr2RuO4 is such a disorder

sensitive superconductor that this should have implications on the
Abrikosov-Gor’kov disorder-induced pair breaking at optimal strain.
We observe that quantitatively these predictions do agree within
experimental error. The Tc of the slightly disordered sample 1 is
0.18 K lower than that of sample 3 at zero strain. At the optimal
strain, where the coherence length is shorter and the sensitivity to
disorder is accordingly reduced, the two Tc’s should come closer
together, which indeed they do; sample 1 has a Tc lower than
sample 3 by only 0.11 K.

Concurrently with my critical field measurements, another group
member, A. Steppke, was working on additionally measuring the in-
plane critical field at strain. By using a dilution fridge mounted in a
three axis vector magnet the in-plane direction could be accurately
found and the critical field followed to the lowest temperatures.
Steppke’s data for the in-plane field direction additionally support
the possibility of an even-parity state in strained Sr2RuO4 so I will
discuss them briefly here.

Figure 3.28 also includes the data of Hc2‖a(T ). The in-plane
critical field is also larger in optimally strained Sr2RuO4, but rather
unusually, the enhancement is not as substantial as for the out
of plane direction. The Hc2‖a critical field is only enhanced by a
factor of ∼3, from 1.5 T to 4.7 T. The critical field in optimally
strained Sr2RuO4 is therefore significantly less anisotropic than
in unstrained Sr2RuO4. Γ = Hc2‖c/Hc2‖a ≈ 20 in unstrained
Sr2RuO4 is reduced to ∼3 in optimally strained Sr2RuO4. This
reduction in anisotropy is difficult to reconcile with only orbital
limiting effects due to a reduction of the mass anisotropy. DFT
calculations show there is still a strong 2D character to the band
structure under strain [147] and the initial slope of Hc2 at Tc,
dHc2/dT , does still show a much stronger deviation between the
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in-plane and out-of-place field directions compared to the zero
temperature values.

The first order nature of the transition, present in unstrained
samples at low temperatures, is also seen in optimally strained
Sr2RuO4, and persists to higher temperatures. The mechanism
responsible for this change to a first order transition must therefore
be promoted in optimally strained Sr2RuO4, allowing it to take over
at higher energy scales. The observed change to first order suggests
Pauli limiting effects. Quantitatively the measured in-plane critical
field enhancements also agree with Pauli limiting. Both the Pauli
limited critical field and Tc should scale linearly with the gap
magnitude. So in unstrained Sr2RuO4 where Hc2‖a/Tc ≈1 T/K,
a value of Hc2‖a/Tc ≈1.3 T/K in optimally strained Sr2RuO4 is
consistent with a Pauli limited critical field.

In a perfectly 2D odd-parity superconductor with a d-vector
along the c-axis the in-plane critical field should be infinite. So after
taking all these observations together there is a strong case for the
possibility that optimally strained Sr2RuO4 could be even-parity.
This possibility is further discussed in Steppke et al. [147] where the
authors use weak-coupling calculations to compare different gap
symmetries and determine the expected Tc and Hc2‖c variations
with strain. The calculations indicated that a strong enhancement
of Hc2/T

2
c is indeed expected for an even-parity state strained to

the Van Hove singularity but the same enhancement is not observed
for an odd-parity state where the density of states increases most
strongly at points where the gap is held at zero by symmetry.

Additional limiting mechanisms could also be responsible for
the unusual critical fields. Ramires et al. [152,153] have proposed
that interorbital effects in the presence of strong spin orbit coupling
can in principle lead to limiting of the in-plane critical field, which
might reconcile the observed critical fields with an odd-parity state.
However, the magnitude of the proposed effect still needs to be
investigated by microscopic calculations, and it still does not help
to explain the contradiction of the density of states diverging where
the gap must be zero by symmetry but somehow still producing a
substantial enhancement of the c-axis critical field.

This new strain study may also shed some light on the peculiar
‘3 K phase’ found in eutectic crystals containing embedded ruthe-
nium microdomains [154]. The 3 K phase is spatially non-uniform
superconductivity that onsets at around 3 K near the interface
between bulk Sr2RuO4 and ruthenium inclusions [155–157]. The
similarities of the observed Tc’s (a maximum of 3.5 K is also seen
in the eutectic crystals [156]), the fact that that transitions are
always very broad, and that the critical fields of the 3-K phase are
similar to those shown in figure 3.28 [155] suggest it may well be
the result of local internal strain around the inclusions. However,
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direct observation of the strain field around the inclusions would
be needed to fully confirm this hypothesis.

To summarise, a strong enhancement of the Tc of Sr2RuO4 is
observed with compressive strain and Tc peaks at close to half a
percent strain before falling off again rapidly. The maximum Tc
is enhanced by factor of ∼2.3 and the c-axis critical field by more
than a factor of twenty. The substantially larger enhancement of
Hc2‖c than of T 2

c signifies the importance of the density of states
change at the Van Hove singularity for the superconductivity. An
odd-parity superconductor must have a parametrically small gap in
the vicinity of the Van Hove point so this raises the possibility that
optimally strained Sr2RuO4 might be even-parity. In the optimally
strained sample a reduced critical field anisotropy further evidences
this possibility, because Pauli limiting is a natural mechanism to
explain the lower than expected in-plane critical field. However,
multiband effects may mean that this analysis is too naive, and still
allow the observations to be reconciled with an odd parity state.

If a even-parity state is indeed realised in optimally strained
Sr2RuO4 two possibilities for the connection to the superconductiv-
ity of unstrained Sr2RuO4 exist. Either the evolution is continuous
with strain and unstrained Sr2RuO4 is also even-parity, in which
case a significant accumulation of results acquired in over twenty
years of experimental study will require an alternative explanation,
or there may be a transition at intermediate strain between the
odd- and even-parity states. If this is the case a kink should exist in
Tc vs. strain at the transition, however this may possibly be weak,
and a similar kink or even a jump in Hc2‖c should also be present.
Investigating this should be a priority for future work, although
strain inhomogeneity remains as an important complication for
analysing data at intermediate values of Tc.

3.4.2 Normal state properties under strain
3.4.2.1 Resistivity temperature dependence
In figure 3.30 I show the principal normal state measurement results;
a set of resistivity measurements over long temperature ramps from
∼1.3 K to 40 K at a series of applied strains. These measurements
were repeated in two samples and are consistent with each other, see
figure B.4 for the results from the second sample. Figures 3.31 and
3.32 represent the same data in alternative forms to help visualise
the changes. In figure 3.31 a 3D surface map of the resistivity
against strain and temperature is made by interpolating between
all the measured temperature ramps. Figure 3.32 is a surface map
of the elastoresistance, (ρxx(εxx, T )− ρxx(0, T ))/ρxx(0, T ), made
by subtracting the measurement at zero strain from all the others
and then interpolating between each of the curves.
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Fig. 3.30: Resistivity against temperature. A Longitudinal resistivity against temperature at strains
below the peak in resistivity for sample 3. The inset shows the resistivity plotted against T 2 at zero
strain, highlighting the Fermi liquid behaviour with a straight line as a guide to the eye, and for the
strain where the lowest temperature exponent is observed. B At strains above the maximum in the
resistivity, T 2 behaviour is recovered at high compression. The inset shows the larger extent of the T 2

region for the highest strain measured.

The inset to panel A of figure 3.30 highlights the zero strain
T 2 Fermi liquid behaviour which is resolved up to almost ∼20 K,
in agreement with the literature. Under compression the extent
of the quadratic temperature dependence is reduced and a lower
temperature exponent is observed in the vicinity of the peak in
Tc. T 2 behaviour is recovered on the high compression side and is
observed over a larger temperature range than previously at zero
strain.
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Fig. 3.31: Resistivity against temperature and strain. Longitudinal resistivity for sample 3 plotted
against temperature and strain.

Fig. 3.32: Elastoresistance against temperature and strain. Elastoresistance (ρxx(εxx, T ) −
ρxx(0, T ))/ρxx(0, T ) of sample 3 plotted against temperature and strain.
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3.4.2.2 Resistivity strain dependence
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Fig. 3.33: Elastoresistance against
strain. Change in longitudinal resistiv-
ity with strain at various temperatures
for sample 3. Values are calculated
by interpolating between separate tem-
perature ramps at a series of constant
strains except for 4.5 K where the strain
was swept continuously.

The change in resistivity with strain at a fixed temperature
is shown in figures 3.33 and 3.34. The curves in figure 3.33 are
cuts through the surface plot in figure 3.32 at select temperatures
whereas the measurements in figure 3.34 are from continuous strain
ramps at fixed temperatures. Figure 3.34 shows both the longitudi-
nal and transverse measurements as depicted in the top corners of
the figure panels.

The resistivity at a given temperature peaks in the vicinity of
the peak in Tc before falling again rapidly at higher strains even
below its zero strain value, similar to the observed behaviour of
Tc. This is seen in both the longitudinal and transverse resistivity
measurements. Metallic behaviour is observed over the full range of
strain tested. There are no signatures associated with competition
from a spin density wave phase, as suggested by Liu et al. [148],
where the opening of a gap is generally expected to increase the
resistivity sharply.

The increase in ρxx with strain closely resembles the increase

Fig. 3.34: Longitudinal and trans-
verse resistivity against strain.
Strain sweeps at constant temper-
atures for sample 2. A. Longitudi-
nal resistivity measured in the tra-
ditional geometry. B. A qualitative
measure of the transverse resistiv-
ity, see text for further details. This
measurement geometry over exag-
gerates the intrinsic anisotropy.
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in Tc, see figure 3.35. Much as Tc is enhanced by the increasing
density of states at the Fermi level, inelastic scattering in the normal
state is also expected to scale with the density of states at the
Fermi level, thus resulting in a peak in resistivity at the Lifshitz
transition. ρxx is increased by ∼40-50 % at the peak, with a slight
variation between the two samples. The two samples have slightly
different residual resistivities, sample 2 being the cleaner with a
resistivity at 4.5 K of ∼0.12 µΩ cm and sample 3 ∼0.19 µΩ cm,
but both resistivities increase by approximately the same amount
∼0.07 µΩ cm at the peak.
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Fig. 3.35: Comparison between Tc and
resistivity enhancements. Normalised
change with strain of Tc, ρxx at 4.5 K
and transverse resistivity at 4.5 K, e.g.
(Tc(εxx) − Tc(0))/(Tc(max) − Tc(0)).
The strain scales of the two samples
have been adjusted so that their peaks
in Tc coincide at the same strain, the
resistivity data is also adjusted accord-
ingly.

The resistivity measured in a direction transverse to the di-
rection of applied strain is expected to increase as a result of the
geometric change but a clear peak is also apparent with applied
strain. The quasiparticle scattering is therefore affected in all di-
rections by the approach to the Van Hove singularity of only the γ
band at just the (0,±π/a) point of the Brillouin zone. Intriguingly
the maximum in the transverse resistivity does not seem to coin-
cide exactly with the peak in ρxx, instead occurring at a slightly
higher strain. However, it is important to bear in mind what is
being measured in the transverse geometry. The current is passed
between two of the voltage contacts on opposite sides of the sample
and the remaining two contacts, also opposite each other, are used
to measure the voltage drop. This means there is always some
component of ρxx in the measurement since this sets how far the
current spreads out along the sample. The meaning of transverse is
to describe a current direction predominately perpendicular to the
direction of applied strain but here it does not necessarily imply
the current is flowing purely in the ab-plane. The extreme resistive
anisotropy in Sr2RuO4, ρ0,c/ρ0,ab ∼4000, means that any slight
vertical misalignment of the contacts on each side of the sample will
lead to a small c-axis component of the current but a significant
voltage because of the much higher out of plane resistivity. Finite
element simulations show that the voltage actually measured for
the transverse geometry of sample 2 at low temperature is approx-
imately ten times larger than expected for when the current is
fully within the ab-plane, and the measured RRR also shows this
discrepancy. A contact misalignment of only ∼5 µm in opposite
directions on each side of the sample is enough to provide a ten fold
increase of the simulated voltage so over a 100 µm thick sample this
is entirely feasible, especially as the silver paint may be physically
contacting the full height of the sample but the electrical contact
resistance might be varying slightly across each contact. At room
temperature where the resistive anisotropy is only ∼120 the finite
element simulation and measured voltage match well, but at low
temperatures a significant contribution of the c-axis resistivity is
expected to be contributing to the measured transverse resistivity.
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To compare the longitudinal and transverse resistivities quantita-
tively, the Fermi surfaces must in principle be considered in three
dimensions. The slight warpings of the Fermi surfaces in the kz
direction mean the Van Hove singularity is actually reached over
a range of strain as different parts of the Fermi surface reach the
Brillouin zone boundary at slightly different strain, however, DFT
calculations suggest this width is less than the discrepancy observed
here [147].

At elevated temperatures the peak in the longitudinal resistivity
is flattened out as one would expect when thermal population of
higher energy states above the Fermi surface smooths out the dis-
continuity in the density of states but a strong decrease in resistivity
is still observed at strains above the suspected Lifshitz transition.
The position of the peak also moves slightly with temperature, but
extrapolating to find the zero temperature position still leaves a
discrepancy with the strain of the Tc peak.

The peak in ρxx is also much narrower than that of Tc. This
is not so surprising, because Tc can be affected by more than just
the change in density of states. If for instance the pairing strength
is also modified as the Fermi surface is distorted, this could result
in a variation between the ρxx(εxx) and Tc(εxx) curves. It is then
perhaps more likely that the peak in ρxx would coincide with the
Lifshitz transition and Tc may peak close to but be extended around
the Lifshitz transition.

3.4.2.3 Resistivity temperature exponent
So far we have good evidence we are seeing a clean Lifshitz transition
in a multiband system that we can study with resistivity, arguably
for the first time, but certainly for the first time at this level of
purity. Because we have such a clean system, it is important to

Fig. 3.36: Resistivity temperature
exponent. The resistivity exponent,
α, for sample 3 plotted against tem-
perature and strain. ρ0 was first
extracted from fits of the type ρ =
ρ0 + ATα and then α is calculated
as a function of temperature by
d ln(ρ−ρ0)/d lnT . The figure is cut
off below 4 K, due to percolating su-
perconducting paths that can affect
the resistivity strongly.
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try and see how much physical significance we can give to the
changes in resistivity. When the resistivity starts to deviate from
the expected Fermi liquid T 2 temperature dependence it is usual to
inspect the new temperature exponent to try and help interpret the
results. A fit of the form ρ = a+ bT c can be made to data where
a, b and c are fitting parameters and a log derivative plot of the
resistivity minus the residual resistivity can be made to inspect the
change in temperature exponent. This plot can be seen in figure
3.36. Here the change in temperature exponent is presented more
straightforwardly; Fermi liquid like T 2 behaviour is observed at
both strains below and above the peak in ρxx but a lower power is
observed in the vicinity of the resistivity peak, reducing to ∼1.5 at
the lowest point.

Qualitatively similar behaviour is observed when the Lifshitz
transition is induced by either La doping or epitaxial biaxial strain
in thin films. However the power observed in both these experi-
ments decreases to ∼1.4, lower than that observed at first sight
here. This difference might be intrinsic. The Van Hove singularity
is reached simultaneously in both the x and y directions of the
Brillouin zone for the other two techniques whereas uniaxial pres-
sure only approaches the Van Hove singularity along one direction.
Significantly higher levels of disorder are also present in both the
La doped system and the MBE films. To be vigilant however, it
is worthwhile examining the quality of the fit used for extracting
the exponent presented in figure 3.36 before addressing alternative
interpretations. For reasons given in appendix B.1 regarding the
possible effects of strain inhomogeneity and comparing with alter-
native trial fitting functions, at present we can only put an error of
0.1 on the exponent of 1.5 close to the suspected Lifshitz transition.

It is remarkable that for this multiband system in which only
one out of its three Fermi surfaces passes through the Van Hove
singularity, which itself is only one critical point on the surface
at (0,±π/a), such large changes in the temperature dependent
resistivity occur. This shows that the ‘hot’ regions of the Fermi
surface are not just shorted out by the unaffected sections and large
regions of the Fermi surface must be affected by the approach to
the Van Hove singularity.

Qualitatively a T 1.5 power law resistivity is also observed in
polycrystalline spin-glass systems once the disorder has been frozen
in [158]. The single crystals of Sr2RuO4 used here are not expected
to exhibit this sort of behaviour, we note the particular low residual
resistivity, ρ0 ∼0.1 µΩcm, and that at zero pressure in comparably
clean samples large quantum oscillation signals have been seen. A
temperature dependence of the resistivity ρ(T )−ρ0 ∝ Tα with α <
2 is evidence for anomalous quasiparticle scattering not captured by
the conventional quasiparticle interactions of Fermi liquid theory.
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One such example is when a long range interactions increase the
cross section for quasiparticle scattering. When I introduced Fermi
liquid theory back in section 1.2 I used Fermi’s golden rule to show
that the lifetime of the quasiparticles goes like their energy squared
so they are stable and well defined. In deriving this I made the
assumption that the scattering matrix element is constant. This,
however, is not always the case. For example near to a second-
order phase transition fluctuations slow down as well as becoming
increasingly long range, enhancing the scattering cross section. At
a quantum critical point these fluctuations can grow without limit
and the form of the scattering matrix element becomes important
for determining the exact quasiparticle decay processes.

Quasiparticle-quasiparticle interactions by themselves are un-
able to relax the total momentum of the system which is required
for a finite resistivity, and in normal Fermi liquid theory it is the
umklapp processes that provide this. In the presence of critical
fluctuations the scattering rate of fermions near the Fermi surface
can still be calculated but the temperature dependence of the scat-
tering rate does not necessarily straightforwardly translate to a
temperature dependence of the resistivity [159]. In some studies
that specifically concentrated on the possible mechanisms for relax-
ing the momentum, they found that the temperature exponents can
be quite different for the momentum relaxing processes [160,161].
Theory still remains unsettled on how best to account for the
quantum-critical fluctuations on the temperature dependent resis-
tivity, so instead this leaves us only to make empirical comparisons
here.

Many intermetallic heavy fermion compounds host magnetic
states at low temperatures and are also susceptible to pressure
tuning. The Curie temperature of itinerant-electron ferromagnets
MnSi, ZrZn2 and Ni3Al can be suppressed to absolute zero using
hydrostatic pressure and near to the critical pressure power laws
in the resistivity lower than 2 are observed, ranging from 1.5 to
1.7 depending on the purity and the material [162–166]. Some
heavy fermion antiferromagnets also show similar behaviour. The
Néel temperature of both CePd2Si2 and CeIn3 can be driven to
absolute zero using hydrostatic pressure whereupon non-Fermi
liquid behaviour is observed in the vicinity of the QCP [167,163,
168]. CePd2Si2 shows an anomalously low power amongst of these
materials with a temperature exponent of 1.2± 0.1 for over nearly
two decades in temperature.

In NbFe2, a material reported to host a low temperature spin
density wave near stoichiometry, a QCP can be reached this time
not by using hydrostatic pressure but rather through varying its
composition away from stoichiometry, suppressing the SDW order
before giving rise to a ferromagnetic phase [169]. At the slightly Nb-
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rich FM-AFM QCP, a T 1.5 power law dependence of the resistivity
on temperature was also observed [170].

In Sr2RuO4 the quantum criticality evidenced by the lowered
resistivity exponent is suspected to coincide with the strain induced
Lifshitz transition and hence the additional scattering processes
resulting in the breakdown of Fermi liquid theory may well have
their origin in the proximity of the Van Hove singularity to the Fermi
level. Band structure calculations of NbFe2 have also highlighted
this possibility as an explanation for the critical behaviour seen at
the magnetic QCP in NbFe2. Neal et al. [171] identified a critical
point in the band structure and suggested that the underlying
origin of criticality at the magnetic QCP may also be a result of
the critical fluctuations associated with a vanishing quasiparticle
velocity.

Fig. 3.37: Magnetoresistance. A
Transverse magnetoresistance field
sweeps at strains below the peak in
resistivity for sample 3. B The same
measurements at strains above the
peak in resistivity.

0.00 %εxx:

−0.10 %
−0.20 %

−0.30 %
−0.40 %

−0.49 %

A

H ‖c, 5 K

∆
ρ

x
x
(B

)/
ρ

x
x
(0

)

−0.49 %εxx:
−0.56 %

−0.60 %
−0.66 %

−0.69 %

−0.73 %
−0.78 %
−0.82 %

−0.92 %
−0.94 %

−1.01 %B

H ‖c, 5 K

(µ0H)2 (T2)

∆
ρ

x
x
(B

)/
ρ

x
x
(0

)

0 10 20 300.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8



3.4 Results and discussions 85

3.4.2.4 Magnetoresistance
The transverse magnetoresistance (H ‖c, I ‖a) measured at 5 K
for a series of applied strains is shown in figure 3.37. The mag-
netoresistance grows the fastest at low fields, almost proportional
to the field squared, and crosses over to an approximately linear
dependence at higher fields but no saturation is reached within the
6 T limit of the magnet system used for this strain study. The mag-
netotransport properties also show a marked change at the same
strain as the resistivity peak. Compressive strain initially decreases
the observed magnetoresistance reaching a minimum at the same
strain as the peak in ρxx. Then at strains above the peak in ρxx
the magnetoresistance increases again, but not monotonically, and
around −0.8 % the shape of the magnetoresistance curves changes
slightly.

Magnetoresistance measurements can be used for Fermi surface
determination, not only from the Shubnikov-de Haas effect but also
from saturation/non-saturation behaviour revealing open orbits
in the Fermi surface. A classic example is that of copper where
the positions at which the approximately spherical Fermi surface
touches the Brillouin zone boundary can be identified by the field
orientations that lead to a non-saturating magnetoresistance [172].
A closed orbit in general leads to a saturated magnetoresistance
at sufficiently high fields whereas extended orbits drastically in-
crease the saturation field and for field directions with open orbits
saturation is not necessarily ever achieved [173].

In Sr2RuO4 the γ band is suspected to change from a closed
electron orbit to an open orbit with applied strain. With the field
along the c-axis of the sample an open orbit exists in the band
structure only after the Lifshitz transition. However to observe
the possibility of a non-saturating magnetoresistance the current
direction is also important and when the open orbit lies along the
y-axis in k-space, ρyy is expect to increase quadratically without
limit but ρxx still saturates. Compressive strain leads to the γ
band running along the ky direction and therefore saturation of ρxx
magnetoresistance resistance is still expected. A sensible extension
would be to try and measure the transverse resistivity in field to
see if the non-saturation behaviour can be observed. However,
complications with the uncertain current direction may result in
an inadvertent measurement of the longitudinal c-axis magnetore-
sistance and additional Hall voltage contributions that can appear
if the geometry of the four contacts is not exactly square must be
carefully subtracted.

3.4.2.5 Hall effect
The measured Hall effect is shown in figure 3.38. The low field Hall
coefficient is mostly unchanged at low strain and the higher field
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Fig. 3.38: Hall Effect. A Hall effect
measurements at strains below the
peak in resistivity for sample 3. B
The same measurements at strains
above the peak in resistivity.
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Hall effect is only slightly reduced, reaching a minimum once again
at the same strain as the peak in ρxx. At higher strain the Hall
effect becomes larger and more negative, and is also non-monotonic,
showing a deviation around −0.8 % strain.
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Fig. 3.39: Weak-field Hall coefficient
against strain. The Hall effect coeffi-
cient below 1 T for sample 3 at 5 K plot-
ted against strain. The star marks the
Hall coefficient determined by Macken-
zie et al. [174] in a dirtier sample.

Analysis of the weak-field Hall effect can conveniently be per-
formed using the geometrical interpretation realised by Ong [175].
However, in such a clean sample the weak-field limit is small. De-
pending on what approximation one uses to calculate the scattering
time and how one averages the three bands, the point where ωcτ
is unity covers quite a range. However, making the simplest esti-
mate using only the residual resistivity and the electron density
ωcτ = B/neρ0, ωcτ reaches unity at a field of ∼6 T. The weak-field
limit is then when ωcτ � 1, i.e. B � 6T. The field needed to
suppress superconductivity at optimal strain, ∼1.5 T, is quite a
large fraction of this so to have a hope of measuring the weak-field
limit at all strains the measurements were carried out at 5 K to
avoid any effects of superconductivity. As best we can tell the Hall
effect is linear below ∼1 T so the data below this field were used
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to calculate the weak-field Hall coefficient shown in figure 3.39.
It is approximately flat until ∼−0.5 % strain then it decreases,
becoming more electron like.

Naively one would expect a discontinuity in the Hall effect at the
Lifshitz transition as one species of Fermi surface changes character.
One approximation for carrying out the Ong analysis is to use
an isotropic scattering length ` for all parts of the Fermi surface.
This approximation makes most sense for very low temperatures
where the resistivity is dominated by impurity scattering. As
an illustration of the Ong construction I will outline how this is
realised.

Making reference to figure 3.40, we consider moving a point k
around the Fermi surface and track `(k) the scattering length at
each point. The vector `(k) maps out a closed area in the `x-`y
plane and this area is directly proportional to the weak-field Hall
conductivity

σxy = e3

2π2~2B ·
∫

FS

d`(k)× `(k)
2 . (3.26)

For Sr2RuO4 we must do this mapping for each Fermi surface
separately and then it is assumed that the conductivities of the three
bands can be added in parallel. With a k-independent scattering
length the area mapped out by `(k) as the point k is moved
around the Fermi surface is simply a circle with area π`2. But
the circulation of the hole pocket is in the opposite sense to the
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Fig. 3.40: Isotropic-` analysis of the Hall effect. Using the geometric interpretation of the Hall
conductivity by Ong the area swept out by the scattering length `(k) as k is moved around the Fermi
surface defines the Hall conductivity. Pannel B shows this area for each of the three Fermi surfaces
of Sr2RuO4 at zero strain in the isotropic-` approximation. The circulation of the α band is in the
opposite direction to the other two bands and adds to the overall conductivity with the opposite sign.
Above the Lifshitz transition the γ band no longer contributes to the Hall conductivity and the Hall
coefficient is expected to fall to zero.
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electron pockets, see figure 3.40. In the isotropic-` approximation
once the neck in the γ band is opened the area mapped out by `(k)
on the γ band falls to zero. One would therefore expect the Hall
coefficient, BRH ≈ σxy/(σxxσyy), to jump to zero at the Lifshitz
transition in the approximation of isotropic-` scattering.

The measurements reported here are at higher temperatures
than those at which the isotropic-` approximation should really be
applicable. Another possible simplification is to assume an isotropic
scattering time, τ , rather than length, `(k) = vkτk. At sufficiently
high temperatures this is expected to be realised.

Mackenzie et al. [174] achieved good consistency in applying the
isotropic-` approximation to mK data in the unstrained material
but the partial compensation of the three bands means that the
interpretation of the Hall effect can be extremely difficult. This can
be seen from the multiple sign reversals between low temperature
and room temperature. The good agreement of the measured Hall
coefficient and the calculated value in the isotropic-` approxima-
tion by Mackenzie et al. does not still hold in these much cleaner
samples. It is clear then that detailed interpretation of the Hall
effect in Sr2RuO4 should be treated with scepticism. This is fur-
ther evidenced from the magnetotransport measurements on the
La substitution series [176]. In a similar vein to the uniaxial pres-
sure effect, as the Lifshitz transition is reached with heterovalent
substitution the circulation of the `(k) area should change from
positive to negative for the γ band as it becomes a hole like orbit.
This change of the Hall effect was however not observed and the
Hall coefficient was positive for all the La doping levels measured.

To show that the effect of uniaxial pressure on the Hall coefficient
at higher temperatures could be still more subtle I also show the
results of a calculation of the weak-field Hall effect in the isotropic-
τ approximation. Using the measured ρxx values to infer how τ

could change with strain, the Ong construction can then be used
to calculate σxy, this time taking into account the k variation of
vF in `(k) = vF(k)τ based on the tight-binding model introduced
in section 3.4.1.1. The area swept out by `(k) on the γ band at
various strains is show in figure 3.41 B and C. At zero strain the
four fold symmetry of the Fermi surface can be seen where the
Fermi velocity is lowest along the <100> directions. As the strain is
increased the Fermi velocity close to the M point in the y-direction
is reduced and the area swept out by the `(k) curve is pinched
off at the Lifshitz transition. Above the Lifshitz transition two
separate lobes of the `(k) curve exist, one from each part of the
open orbit. In panel B of figure 3.41 the `(k) curves are scaled
by τ at each strain so the pinching off can be seen more clearly.
However by including a strain dependent τ this also changes the
area of the `(k) curves and panel C shows the unscaled result. The
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Fig. 3.41: Isotropic-τ analysis of the Hall effect. Using the measured ρxx resistivity from figure 3.34
an isotropic τ can be calculated and then used with the geometric interpretation by Ong to calculate
the Hall effect. Panel A shows the γ Fermi surface at a series of strains and the area swept out by the
scattering length `(k) around the Fermi surface at each strain is shown in panels B and C, where in
B the data has been scaled by τ at each strain. The α and β Fermi surfaces are much less affected
by uniaxial pressure and there is little change to the shape of the `(k) curves. The contributions of
all three bands to the conductivities σxx and σxy, within the isotopic-τ approximation, are shown in
panels D and E. The calculated weak-field Hall coefficient is shown in panel F and shows very little
change with strain within the isotopic-τ approximation.

calculated σxy for each band is shown in panel E along with their
sum, the overall conductance of the three bands. σxy decreases
above the Lifshitz transition but since the Hall coefficient is the
ratio of σxy with σxxσyy which changes in the opposite direction,
the resultant Hall coefficient shows very little change.
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εxx

R
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0

Fig. 3.42: Comparison of isotropic-`
and τ Hall effect calculations. A sum-
mary of isotropic-` and isotropic-τ cal-
culations showing the weak-field Hall
coefficient variation with strain.

The isotropic-τ approximation should become valid at suffi-
ciently high temperatures. This may be reached when the resistivity
is at least an order of magnitude larger than its residual value. For
the measurements presented here at 5 K, this ratio varies from 2 to
6 depending on the strain. Our data can therefore be expected to lie
somewhere between the predictions of the two regimes that I have
discussed, but be extremely sensitive to details of the scattering
not included in either model.

The two calculations highlight the complications in interpreting
Hall effect measurements in a multiband system, and show quali-
tatively that the picture can be quite varied and detail sensitive.
However the overall picture of the Hall measurements is consistent
with the other results. The most drastic change occurs at the
same strain as the maximum in resistivity which is also the strain
where the lowest temperature exponent is observed. This is also in
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close vicinity to the maximum in Tc and is highly suggestive that
a common origin for all these effects exists.

3.5 Conclusions
In this chapter I have demonstrated the usefulness and the unique
capabilities of the uniaxial stress technique. I reported achieving
the highest yet attained strains in Sr2RuO4, measuring magnetic
susceptibility simultaneously with resistivity, both longitudinal and
transverse to the applied strain direction. These measurements
firstly confirm the enhancement of Tc under both in-plane com-
pression and tension. By extending the strain range I have also
identified that a maximum Tc is reached after which Tc drops
steeply at higher strain. The highest Tc of ∼3.5 K is reached at
a strain of εxx = (−0.55 ± 0.06) %. Measurements of the upper
critical field Hc2‖c highlight the significance of the density of states
increase at the Van Hove singularity for the superconductivity as
it is even more strongly enhanced than T 2

c , raising the possibility
that optimally strained Sr2RuO4 is an even-parity, rather than an
odd-parity, superconductor. Detailed measurements at intermedi-
ate strains will be useful for determining if such a change in order
parameter occurs.

Measurements of the normal state properties show an apparent
breakdown of Fermi liquid behaviour as the sample is strained
close to the peak in Tc and the overall resistivity enhancement
strongly suggests that we have indeed been able to reach the Van
Hove singularity with uniaxial stress. The approach to the VHs
appears to affect all the quasiparticles, increasing the scattering
for all current directions, and affecting all the bands despite the
density of states increase being localised to the M points of the zone
along only one direction and only for the γ band. In the future,
measurements of electronic heat capacity being pioneered by my
colleagues You-Sheng Li and Michael Nicklas may also provide
important information on the density of states increase as the
sample is strained. Heat capacity measurements are still possible
despite the strong thermal connection through the sample mounts
by using AC methods at kilohertz frequencies.

Ultimate confirmation of the Lifshitz transition by experimental
techniques directly sensitive to the Fermi surface topology may
also be possible in the future but significant technical development
will be necessary first. A miniaturised dHvA set up with suitable
amplification may enable quantum oscillation measurements under
strain or a significant increase in signal-to-noise ratio may allow
Shubnikov-de Haas oscillations to be observed. Additionally, since
the upper surface of the sample can remain exposed, ARPES
measurements may also be possible, but the sensitivity of this
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technique to electric fields would require a purely mechanical version
of the device (i.e. one in which piezoelectric actuators are not used)
to be developed first.

In a wider perspective these measurements highlight the sig-
nificance of uniaxial stress as a new technique for tuning band
structures, especially towards Van Hove singularities. Our work
demonstrates that uniaxial pressure offers a much cleaner solution,
for instance compared to chemical doping, and often a much more
effective one, for instance compared to hydrostatic pressure. Hope-
fully then, this technique can be put into good use when applied
to a whole host of other interesting materials.
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trons is dominated by emergent phenomena exhibiting exotic and
intriguing properties. Identifying and characterising these phases
has been the challenge for condensed matter physicists for the last
few decades. One particularly fruitful avenue for discovering them
has been to search in the vicinity of quantum critical points. By
suppressing a second-order phase transition to absolute zero using
a non-thermal tuning parameter, such as pressure or chemical dop-
ing, a quantum phase transition at zero temperature is produced.
Here the effective electron-electron interactions become increasingly
strong as the strength of quantum critical fluctuations diverges and
as such, quantum critical points have become a breeding ground
for new stable phases of matter.

The bilayer ruthenate, Sr3Ru2O7, possesses much of this in-
teresting behaviour. At low temperatures the properties are well
described by Landau’s Fermi liquid theory, a cornerstone of con-
densed matter physics, but strong interactions are clearly evident
by the enhanced quasi-particle masses, giving a large heat capac-
ity of 110 mJ/(Ru-mol K2), and an even more strongly enhanced
magnetic susceptibility with a Wilson ratio of ∼10 [177]. Magnetic
fields reveal metamagnetic behaviour between 5–8 T depending on
the orientation of the field [178]. At low temperatures quantum
criticality is observed with field applied along the crystallographic
c direction [179]. In the purest samples novel phase formation
occurs, masking the quantum critical end point [180]. Two different
spin density waves have been identified [181] and both are strongly
susceptible to in-plane symmetry breaking magnetic fields, produc-
ing a large apparent electron nematic susceptibility in transport
measurements [182].

Maintaining extremely low levels of disorder is crucially impor-
tant for Sr3Ru2O7 so any experiment designed to tune its properties
must introduce no extra inhomogeneity at new scattering centres.
For the first time we are able to use our new experimental capabil-
ities to apply precisely controlled homogeneous uniaxial in-plane
stress. It has previously been found that hydrostatic pressure
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increases the metamagnetic transition fields for in-plane fields, ulti-
mately reaching a QCEP at ∼9.3 T for ∼14 kbar [183,184]. Uniaxial
pressure applied normal to the RuO2 layers acts in the opposite
direction, driving the metamagnetism to lower fields and ultimately
inducing ferromagnetism at a moderate pressure of 0.1 GPa [185].
With the new uniaxial stress technique described in chapter 2 of
this thesis, samples are shaped into long narrow bars and fixed
across the jaws of a vice suitable for applying in-plane pressure.

We investigate the effect of in-plane pressure on the metamag-
netism and associated quantum criticality but also use the precisely
applied anisotropic strain to make detailed tests of the symmetry of
the novel phases which are known to host orthogonally oriented den-
sity waves. Using these results we address the question of whether
a spontaneous lowering of symmetry occurs at the formation of
the novel phase or microscopic coexistence of the orthogonally ori-
ented density waves maintains a weak C4 symmetry that is highly
susceptible to C2 symmetry breaking fields.

The remainder of this chapter will be split into several sections,
starting with an introduction to the relevant properties of Sr3Ru2O7
and a discussion of the necessary background physics. Following
this, in section 4.3, I will describe the experimental technique
and the measurements undertaken before presenting the results in
section 4.4 with accompanying discussions.

4.2 Background physics for Sr3Ru2O7

The oxide strontium ruthenate has a layered perovskite structure
built out of RuO4 octahedra layers interspersed with Sr spacer
layers. The variety of stacking options makes up a family following
the Ruddlesden-Popper series [186, 187]. Sr3Ru2O7 is the bilayer
member of this series; n=2 in the general formula Srn+1RunO3n+1.
Here n identifies the number of RuO4 octahedra in the unit cell
and a higher n corresponds to a more three-dimensional structure.
The electrical properties are dominated by the planes of RuO2
so as the crystal structure becomes more three-dimensional so
does the resistivity. The n=1 member, Sr2RuO4, has a resistive
anisotropy ρc/ρa≈ 4000 at low temperatures [91], in Sr3Ru2O7 it
is >500 [188], whilst in the n=∞ material, SrRuO3, the resistivity
is isotropic [189]. The n=1 member, the subject of the third
chapter of this thesis, is an unconventional superconductor but as
the crystal structure becomes more three dimensional there is a
tendency towards magnetic ordering. SrRuO3 is ferromagnetic with
a Curie temperature of ∼160 K [190] and so is the n=3 member
Sr4Ru3O10 which has a lower Curie temperature of ∼105 K [191–
193]. Sr3Ru2O7 is not ferromagnetic but is a strongly enhanced
paramagnet thought to be in close proximity to a ferromagnetic
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instability [177]. This is evidenced by the large Wilson ratio ∼10
[177] and also when only moderate uniaxial pressure is applied along
the c-axis the ferromagnetic ordering that occurs below 80 K [185].

The crystal structure of Sr3Ru2O7 is shown in figure 4.1,

Fig. 4.1: Crystal structure of Sr3Ru2O7.
A tetragonal representation of the lay-
ered perovskite structure without in-
cluding any rotation of the RuO4 oc-
tahedra. The undistorted unit cell be-
longs to the space group I4/mmm with
lattice constants a ∼ 3.9 Å and c ∼ 20
Å [194].

in which the bilayers of RuO4 octahedra can be seen. This is
a tetragonal representation of the unit cell but in reality each
RuO4 octahedron is slightly rotated about the c-axis [195,194,196].
The rotations are correlated within and between each layer of the
bilayers. This means that, although an individual bilayer would
retain four fold rotation symmetry, as a whole the cooperative
rotations mean the unit cell is no longer C4 symmetric. The new
crystal structure has an orthorhombic unit cell with space group
Bbcb and the principle axes are rotated 45° from the tetragonal cell,
see figure 4.2. The single layer Sr2RuO4 does not possess the same
rotation except at pristine cleaved surfaces [197,198]. The rotation
has important consequences for the electronic band structure but
the orthorhombicity induces almost no anisotropy between the two
Ru-O-Ru bond directions. In practice no discernible difference is
observed in the electronic transport along the in-plane principle
axes of the unit cell and to fairly high experimental resolution the
transport is isotropic within the ab-plane [199].

The band structure can be intuitively derived following the ideas
from Sr2RuO4. At the normal valencies for strontium and oxygen
the ruthenium ion is left in a 4d4 electronic configuration but once
in the octahedral crystal field the lower lying states come from
the t2g manifold. The dxz and dyz orbitals form quasi-1D sheets
running along kx and ky in the Brillouin zone respectively and the
dxy orbital leads to a circular sheet. For Sr3Ru2O7 the number
of bands is doubled and interlayer coupling leads to substantial
bilayer splitting for some parts of the Fermi surface. After including
the RuO4 octahedra rotations the size of the unit cell is doubled
and the bands are backfolded into the now smaller first Brillouin
zone. Hybridizing the remaining bands leads to a qualitative
similarity with the measured band structure [200] although the
lowered symmetry also introduces a small dx2−y2-derived pocket
near the zone centre. Neighbouring bilayers are only weakly coupled
and the Fermi surfaces are quasi-two-dimensional. The observed
Fermi surfaces are shown in figure 4.2. In total there are six
distinct Fermi surfaces and the labels for each can be seen in
the figure. There is good agreement between the Fermi surface
measured by ARPES and with quantum oscillations [201, 200].
Combining traditional dHvA quantum oscillations and bespoke
magnetocaloric effect measurements, all the bands and their masses
can be measured. Once the multiplicity of some of the bands due
to the bilayer splitting is included, the Fermi surface areas satisfy
the Luttinger count consistent with observing all the bands, and
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more conclusively adding up the masses of each band to find their
contribution to the electronic specific heat gives good agreement
with the measured value [177]. I note here that although the γ2
band is the smallest in area, it contributes almost half of the total
electronic specific heat chiefly due to its high multiplicity and
quasiparticle mass.

The history of Sr3Ru2O7 is a classic example of how increasing
material purity can be important to reveal new behaviour. A
systematic crystal growth study by Perry et al. [202] produced
single crystals with mean-free paths up to approximately 3000 Å
as revealed by dHvA measurements [200]. The result is a fairly
complex phase diagram with intertwined features resulting from
strong electron-electron interactions, metamagnetism, quantum
criticality, possible electronic nematicity and density waves. It is
therefore quite instructive to follow the discoveries chronologically
as an introduction to the material, as I will outline in the following
sections.

4.2.1 Itinerant Metamagnetism
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Fig. 4.3: Metamagnetism in Sr3Ru2O7.
Magnetisation against applied mag-
netic field in the ab-plane. At low tem-
peratures there is a sudden rise in the
magnetisation at approximately 5 T; a
metamagnetic transition. Reproduced
from [188].

Initial characterisation measurements of the first single crystals
of Sr3Ru2O7 revealed a strongly correlated, quasi-two-dimensional
Fermi liquid ground state with strongly enhanced paramagnetism
[177]. The electrical transport is metallic and below ∼10 K a
coherent Fermi liquid like T 2 dependence is observed for both
the in-plane and out-of-plane resistivity. Strong electron-electron
correlations are suggested by the rather large low temperature
electronic specific heat γ=110 mJ/(Ru-mol K2) and the large Wilson
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ratio of ∼10. In high applied magnetic fields, itinerant electron
metamagnetism was observed by Perry et al. [203].

Metamagnetism is empirically defined as a super-linear rise
in the magnetisation occurring over only a short field range. Its
origin can have quite different mechanisms for different metam-
agnets. Quite often, staggered local-moment materials exhibit
metamagnetism when certain applied fields drive spin-flip or spin-
flop transitions causing the sudden change in magnetisation [204].
However, the effect can also be observed in itinerant electron mate-
rials, such as Sr3Ru2O7, in which its origin is the detailed structure
of the density of states. Usually it is connected with a peak in the
density of states in close proximity to the Fermi level.

g(E)g(E)
2µBB

EF

E

Fig. 4.4: Pauli Paramagnetism. The
density of states of a band spin-split
by the presence of a magnetic field B.
Reproduced from [205].

In an itinerant electron system each of the allowed Bloch states
is doubly degenerate because of the electron’s spin, but in the
presence of a magnetic field the states are split, lowering the energy
of those with spin aligned with the field and raising that of the
states that are anti-aligned to it. The chemical potential must
remain constant across the spin split bands, so a small surplus of
electrons develops in one band, as shown in figure 4.4. The number
of electrons per unit volume of each spin band is given by

n↑ = 1
2

∫ ∞

−∞
g(E + µBB)f(E)dE (4.1)

n↓ = 1
2

∫ ∞

−∞
g(E − µBB)f(E)dE (4.2)

where g(E) is the density of states at energy E and f the Fermi-
Dirac distribution. This splitting is responsible for Pauli param-
agnetism and can be used to calculate the magnetic susceptibility
of the free electron gas when the orbital motion of the electrons
is ignored. Working at T=0 K to neglect the smearing of the
Fermi surface with temperature, and with small fields such that
the splitting of the bands is also small (not a serious restriction
given the scale of the Fermi energy in most metals), the num-
ber of electrons shifted from the minority- to majority-band is
approximately 1

2g(EF)µBB. The net magnetisation is given by
M = µB(n↑ − n↓) ≈ g(EF)µ2

BB and the Pauli magnetic suscepti-
bility is χP = M/H = µ0µ

2
Bg(EF) [205].
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H > Hc

Fig. 4.5: Metamagnetism caused by a
peak in the density of states. Magneti-
sation against field of an illustrative one
band model with a peak in the density
just above the Fermi level. The insets
show the density of states splitting be-
tween the majority and minority spin
band for various fields.

In a material where the electronic density of states peaks in
close proximity to the Fermi level, the application of a magnetic
field spin splitting the bands can have a pronounced effect on the
magnetisation if the peak is reached by the Zeeman splitting. The
differential susceptibility χ = ∂M/∂H, or equivalently the rate at
which the surplus electrons switch from the minority-band to the
majority-band with applied field, depends on the density of states.
Thus if the peak in the density of states approaches the chemical
potential, the magnetisation will increase more steeply with field.
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An illustrative one band model with a peak in the density is shown
in figure 4.5. The magnetisation rises steeply in only a short field
range as the peak in the density of states is sampled. Here the
transition between the low- and high-polarised state is a continuous
crossover and not a thermodynamic transition but in a suitably
exchange-enhanced paramagnet this can turn into a first-order
discontinuous jump.

Stoner postulated that the effect of the exchange interaction
between electron spins can be taken into account by an additional
average molecular field λM produced by all the neighbouring spins
[206]. The potential energy can therefore be lowered by aligning
spins

∆Eex = −
M∫

0

µ0(λM ′)dM ′ = −1
2µ0λM

2 . (4.3)

The magnetic susceptibility is enhanced by the exchange interaction
and, if it is large enough, spontaneous ferromagnetism can occur.
At zero field there is a kinetic energy penalty for developing a
spontaneous magnetisation. In order to flip a small number of spins
within δE of Fermi surface they must be raised in energy by δE
to occupy the lowest available states above the Fermi level in the
other spin band. There are 1

2g(EF)δE down-spin electrons within
δE of Fermi surface so the total kinetic energy penalty would be
∆EK.E. = 1

2g(EF)(δE)2. However this can be balanced by the
interaction of the spontaneous magnetisation with the molecular
field as described above

∆Eex = −1
2µ0λM

2 (4.4)

= −1
2µ0λµ

2
B(n↑ − n↓)2 = −1

2µ0µ
2
Bλg(EF)2(δE)2 (4.5)

and hence the total energy change is

∆E = 1
2g(EF)(1− µ0µ

2
Bλg(EF))(δE)2 (4.6)

= 1
2g(EF)(1− λχP)(δE)2 . (4.7)

Spontaneous ferromagnetism will occur when ∆E < 0 which gives
us the Stoner criterion for a ferromagnetic instability λχP > 1.

In a band that is not parabolic but does have a peak in the
density of states close to the Fermi level it is still possible to
achieve a field polarised exchange-split state when λ < 1/χP and
this occurs as a first order metamagnetic transition [207]. Including
the magnetic exchange interaction the magnetisation at a given
field can be found by minimising the free energy
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Fig. 4.6: Exchange-enhanced meta-
magnetism. A. Free energy den-
sity against magnetisation at sev-
eral applied fields for an exchange-
enhanced Pauli paramagnet with a
peak in the density of states close
to the Fermi energy. Vertical bars
mark minima in the free energy and
crosses mark inflection points. B.
Magnetisation curve in applied field
showing the first order metamag-
netic jumps at H ′′c for increasing
field sweeps and H ′c for decreasing
field sweeps. Reproduced from [208].
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given the constraints

n↑ = 1
2

∫ µ↑

0
g(E)dE , n↓ = 1

2

∫ µ↓

0
g(E)dE , n = n↑ + n↓ .

(4.9)
Figure 4.6 shows the free energy density for a similar illustrative
band to that used in figure 4.5 with a peak in the density of states
close to the Fermi level but now including the exchange interaction.
At a sufficiently large field, H ′′c in the figure, the local maximum in
the free energy density at finite magnetisation becomes an inflection
point upon which the magnetisation discontinuously jumps to the
now accessible global minimum. The transition is first order and is
hysteretic as is evident in panel B. Shimizu [207,208] analysed this
sort of behaviour in a Landau-type expansion of the free energy in
even powers of M

∆F (M) = 1
2aM

2 + 1
4bM

4 + 1
6cM

6 −HM . (4.10)

He showed that the necessary conditions for which the first-order
metamagnetic transition can take place are a > 0, b < 0 and
c > 0 with 3/16 < ac/b2 < 9/20. Wohlfarth and Rhodes [209]
had previously shown that a sufficient curvature of the density of
states is necessary to observe the first-order transition and their
condition gg′′ > 3(g′)2 makes sure b < 0 [210]. The first-order jump
occurs because there is a sufficient number of states just above
the chemical potential which do not present a large kinetic energy
penalty but can result a large reduction of the Coulomb energy by
aligning spins. This is the same idea as for the Stoner criterion but
here the magnetisation only continues to increase while the density
of states curvature is high enough.

Band structure investigations of Sr3Ru2O7 by both ARPES
and density-functional calculations identified heavy bands confined
to a small energy window just below the Fermi surface for large
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parts of the Brillouin zone [201,211]. In particular, the top of the
small hole pocket γ2 is so close to the Fermi level that when first
identified with ARPES it could not be determined unambiguously
whether it contributed to the Fermi surface as it was below the
energy resolution of the instrument. Later determination by dHvA
and comparison to the specific heat [200] showed the γ2 pockets do
make up part of the Fermi surface and they play an important role
since there are sharp peaks in the density of states just below the
Fermi surface within the scale of Zeeman splitting achievable in the
laboratory [201]. These peaks, the result of a saddle-type Van Hove
singularity, can be attributed as the underlying cause of the observed
metamagnetism, as proposed by Binz and Sigrist [212], before even
their experimental identification. Since then Van Hove singularities
have also been invoked to describe the metamagnetic behaviour in
many other theoretical investigations of Sr3Ru2O7 [213–218].
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Fig. 4.7: Sr3Ru2O7 density of states.
Density of states for the dxy derived
bands in Sr3Ru2O7 close to EF. The
γ2 band has a saddle-type Van Hove
singularities just below the Fermi en-
ergy. Reproduced from [201].
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Empirical phase diagram for Sr3Ru2O7
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In samples with a residual resistivity of 2.4 µΩcm Grigera et
al. found one first-order metamagnetic transition at ∼5 T with the
field directed in the ab-plane [178]. By analysing both the real and
imaginary parts of the AC susceptibility they could identify the
critical endpoint terminating the line of first-order metamagnetic
phase transitions at ≈1.25 K. What sparked particular interest was
that rotating the field away from the ab-plane acts as a continuous
tuning parameter for the critical endpoint. The critical endpoint
moves to slightly higher fields as the field is rotated towards the
c-axis but when the field is aligned within 10° of the c-axis the
endpoint is depressed to below 50 mK, the base temperature of
the measurements. With the field oriented along the c-axis there is
clear evidence for quantum criticality, and this will be the subject
of the next section.

4.2.2 Quantum criticality
Phase transitions are abundant in nature and associated with them
are certain critical phenomena which, even though the microscopic
orders may be completely different, give rise to many fundamental
characteristics [219]. Phase transitions appear due to the necessity
to balance ordering energy against the entropy of thermal fluctu-
ations. For example, in a ferromagnet the exchange interaction
favours the alignment of spins reducing the internal energy but at
higher temperatures thermal fluctuations can maximise the entropy
and the system prefers the disordered paramagnetic state. At such
a second-order phase transition the order parameter, in this case
the magnetisationM , is on average zero in the disordered phase and
grows continuously from zero once the ordered phase is entered at
the transition temperature. Even though the spatial average of the
order parameter is zero in the disordered state, upon approaching
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the phase transition droplets of order start to grow and fluctuate
in and out of existence, i.e. some short range order develops. In
the case of a ferromagnet one can say the spins are correlated over
a short range called the correlation length. As the critical point is
approached the correlation length diverges, ξ ∼ |(T − Tc)/Tc|−ν 11

11 ν is a critical exponent. It char-
acterises the nature of the phase transi-
tion and is an experimental observable.

,
and at the critical point the system becomes scale invariant. The
critical nature of a thermal phase transition is only observed very
close to the transition. The microscopic details become unimpor-
tant once there is no length scale other than the correlation length
and the system is averaged over large distances. Here the behaviour
falls into a universality class which only depends on the dimension-
ality and the symmetry of the order parameter, and the relevant
statistical physics can be treated classically.

quantum
critical

ordered
phase

quantum
disordered

p

T

QCP

thermally
disordered

classical
critical

Fig. 4.9: Quantum critical point.
Schematic phase diagram of a second-
order phase transition giving rise to
a quantum critical point. p is a non-
thermal tuning parameter that sup-
press a second-order phase transition,
thick black line, to absolute zero at the
quantum critical point. At finite tem-
perature and sufficiently close to the
transition a classical critical region ex-
ists where the critical fluctuations are
much lower in energy than the temper-
ature and the thermal phase transition
is universal. The effect of the quantum
critical fluctuations, however, can be
observed over a much larger region of
phase space, see text for further details.

All this changes though if there exists a non-thermal tuning
parameter, such as pressure, doping or magnetic field, that can
suppress the transition temperature to absolute zero (see figure 4.9).
A quantum phase transition is accessed at absolute zero and here it
is no longer the thermal fluctuations that melt the order but rather
the abrupt change of ground state is due to quantum fluctuations
arising from Heisenberg’s uncertainty principle. Since the critical
nature of a thermal phase transition is only observed very close
to the transition, one might ask why a quantum phase transition
should be any more than just an academic curiosity since absolute
zero temperature is never a practically achievable temperature.
The answer is because unlike a thermal phase transition the effects
of quantum criticality can be felt over a surprisingly much larger
range.

The time scale of quantum critical fluctuations also depend
on the distance from the critical point, but here the distance is
along the tuning axis, τ ∼ |p − pc|−νz 12

12 z is the dynamical critical expo-
nent.

. The energy of these
fluctuations goes to zero at the critical tuning, but even away from
this tuning sufficiently high temperatures allow thermal population
of finite-time modes associated with the quantum mechanically
driven phase change, so the system can still look critical. In this
scenario the dominant fluctuations are thermally driven but the
fluctuations are those of a scale invariant quantum-critical ground
state. This region defines the cone of quantum criticality shown in
figure 4.9.

low
density

high
density

QCEP

first
order

critical end
point

p

B

T

Fig. 4.10: Quantum critical end point.
Schematic of a first-order transition
giving rise to a quantum critical end
point. A first-order transition with tun-
ing parameter B has a critical end point
when there is no symmetry breaking.
If a second non-thermal tuning param-
eter, p, can suppress the critical end
point to absolute zero a quantum criti-
cal end point is produced. In the case
of Sr3Ru2O7 p can be related to the
angle of the applied field.

Pronounced effects due to quantum critical fluctuations have
been observed experimentally and extensively studied, especially
in heavy fermion materials [220, 221]. Here, relatively low tempera-
ture magnetic states are often found and these can be successfully
suppressed to absolute zero by the application of magnetic field,
doping, or pressure, leading to a quantum critical point (QCP).
Some common behavioural traits are observed. The residual spe-
cific heat coefficient γ diverges upon approaching the quantum
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critical point, and this along with the observation of the resistivity
exhibiting a linear temperature dependence seems to imply that
the mass of the quasiparticles is diverging, and their characteristic
energy scale vanishing, leaving only temperature as the remaining
energy scale [219].

The fermionic criticality that creates this strange metallic state
is still not fully understood, but QCPs provide more than just an
exciting opportunity for modern theory because they are also a
breeding ground for new stable phases of matter. Rather than face
the mass divergence close to the QCP, more often than not it is
observed that the electrons reorganise themselves into novel forms
of order.
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Fig. 4.11: Resistivity power law. Tem-
perature dependence of resistivity mea-
surements of Sr3Ru2O7 near the meta-
magnetic transition for fields applied
along the c axis. The exponent of the
temperature dependent part of the re-
sistivity is plotted under the assump-
tion that the resistivity varies as ρ =
ρ0 +ATα. Reproduced from [222].

Sr3Ru2O7 also shows quantum critical behaviour, but through
a slightly different route. The quantum critical point as introduced
above was achieved by suppressing a classically critical second-
order phase transition to absolute zero using a non-thermal tuning
parameter. The situation in Sr3Ru2O7 is slightly different. As we
saw in section 4.2.1, Sr3Ru2O7 shows a first-order metamagnetic
transition. Normally there are no critical fluctuations at the dis-
continuous jump of a first-order transition but since there is no
symmetry breaking there is generally a critical endpoint terminat-
ing the line of first-order transitions and here critical fluctuations
responsible for critical opalescence are observed. By suppressing
the critical endpoint to absolute zero a quantum critical endpoint
(QCEP) is obtained, exhibiting all the hallmarks of a quantum
critical point.
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Fig. 4.12: Electronic specific heat.
The low temperature electronic specific
heat of Sr3Ru2O7 with magnetic field
aligned along the sample’s c axis. Close
to the metamagnetic transition field
7.9 T the specific heat diverges loga-
rithmically. Reproduced from [203].

With the field directed along the sample’s c-axis, the QCEP is
reached with a field of ∼8 T, and the magnitude of the field acts
as a tuning parameter for the quantum critical fluctuations [222].
Measurements of the temperature-dependent resistivity at a series
of applied fields spanning the quantum critical region show the
classic behaviour of a QCP, see figure 4.11. At both low and high
fields Fermi liquid T 2 temperature dependence is observed but
over a smaller and smaller temperature window as the QCEP is
approached and at the critical field T -linear resistivity is observed.
Thermodynamic measurements are also consistent with the quan-
tum critical scenario. Measurements of the temperature-dependent
electronic specific heat show that in the vicinity of the critical field
the low temperature specific heat diverges logarithmically [203], see
figure 4.12.

As pointed out earlier, bare QCPs are not often observed in
clean systems. Instead, a phase transition usually preempts the
QCP. When the sample quality is high enough in Sr3Ru2O7 this
is also observed. There is often a tendency for superconductivity
to form around a QCP [223] but the large magnetic fields used to
reach the QCEP in Sr3Ru2O7 prohibit superconductivity and an
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alternative form of order develops. The next section will discuss
the unusual properties of this novel phase.

4.2.3 Novel ordered phase
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Fig. 4.13: Resistivity and susceptibility
signatures of the novel phase masking
the QCEP. A. The resistivity jumps by
almost a factor of 2 upon entering the
phase at∼7.9 T and drops again steeply
as the phase is exited at ∼8.1 T. B.
AC susceptibility shows two first order
transitions, one entering and exiting
the phase, and an additional crossover
at a lower field ∼7.5 T. Reproduced
from [224].

The appearance of the new phase in ultraclean samples was first
identified by its striking resistive response and its magnetic suscep-
tibility signature shown in figure 4.13 [224]. This novel phase is only
observed in samples with residual resistivities less than ∼1 µΩcm
so is highly disorder sensitive [224,202]. Instead of the single meta-
magnetic jump at around 8T when the field is along the c-axis it is
seen to bifurcate into two, one at approximately 7.85 T and 8.1 T.
Between these fields the in-plane resistivity is enhanced by almost a
factor of 2 with a sharp jump upon entering and leaving the phase.
Later, a thorough series of thermodynamic measurements, including
magnetisation, susceptibility, magnetostriction and thermal expan-
sion, firmly established the thermodynamic phase change [180].
The phase is bounded by first-order transitions on both the low
and high field sides which terminate at critical endpoints and are
connected by a second-order line defining the roof of the phase.
The appearance of this stable phase, in a region of phase space
where electron-electron correlations are know to be particularly
strong, received much attention, and it has been extensively studied.
However there are still many puzzling questions which mean the
order parameter has not yet been firmly established. I will now
discuss the main experimental results, outlining the established
properties of the novel phase and outline some of the remaining
questions.

4.2.3.1 Electron nematicity
After an in-depth study of the magnetoresistivity not only as a
function of field and angle to the c-axis but also the angle between
the current and field by Borzi et al. [182] a large magnetoresistive
anisotropy was identified in the region of novel phase formation.
The observed transport properties demonstrate the key features of
an electronic nematic state. This name comes from analogy with
the nematic phase found in classical liquid crystals where elongated
cigar-shaped molecules self-organise, breaking rotation symmetry
but remaining spatially homogeneous, preserving translational sym-
metry. The equivalent state in an electronic system is developed
when, due to the effects of electron correlations alone, the elec-
tronic degrees of freedom spontaneously develop a lower rotational
symmetry than the lattice, breaking its point group symmetry. In
a tetragonal crystal for example, this could be when the resistivity
shows C2 rotational symmetry while the lattice remains C4 symmet-
ric 13

13 In the presence of any finite cou-
pling between the outer electrons and
the lattice, this electronic symmetry
breaking will cause a lattice symme-
try breaking, so in practice it comes
down to a question of degree. If there
is a small electronic change and a large
structural one, the transition should be
thought of as structural; if the reverse,
it is described as an electronic state.. This behaviour appears to be exhibited by the novel phase
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of Sr3Ru2O7. Figure 4.14 shows the magnetoresistance measured
along both the a and b crystallographic directions. In panel A,
when the field is aligned with the c-axis, no in-plane anisotropy
is observed but with a small tilt of the applied field, panel B, a
significant anisotropy develops in the region of phase formation
while the resistivity remains isotropic outside. Accompanying neu-
tron diffraction measurements could not resolve any deviation from
the square lattice, strongly suggesting that the anisotropy is elec-
tronically and not structurally driven. However, a small in-plane
component of field is still required for the two-fold symmetric state
to reveal itself. This last point though was attributed to possible
domain formation that might occur when the field is first applied
along the c-axis. In such a picture the effect of the in-plane field is
merely to align the domains of orthogonally oriented order.
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Fig. 4.14: Electron nematic transport.
The two in-plane principle resistivity
components, ρa and ρb, measured with
different angles between the applied
field and crystal axis. A. For field ap-
plied along the c-axis there is almost
no anisotropy. B. With the field 13°
from the c-axis tilted towards a a pro-
nounced anisotropy is seen. The easy
direction for current is along b, and the
hard direction along a. Tilting the field
towards b rather than a reverses the
hard and easy directions. Reproduced
from [182].

Electron nematic behaviour is usually considered from two dif-
ferent viewpoints, depending on whether the electrons are strongly
or weakly coupled [225–227]. In the strongly coupled picture large
Coulomb repulsion and exchange interaction terms tend to favour
the localisation of the charge carriers but the addition of a small
number of holes to the mix, which due to zero-point kinetic energy
prefer to be delocalised, can lead to phase separation and the ap-
pearance of stripe phases [228]. Under the right circumstances one
can imagine the melting of these stripe phases where the global
translational symmetry breaking is lost but some resemblance to
the striped phase is retained and a special orientation is picked out
breaking rotational symmetry [229]. This state would be an electron
nematic and can be thought of as a melted smectic phase [230,231],
see figure 4.15.

smectic or
stripe phase

melting
stripes

Fermi liquid

Pomeranchuk
instability

nematic
phases

Fig. 4.15: Electron nematics. Two dif-
ferent mechanisms for producing elec-
tron nematic phases, see text for details.
Reproduced from [226].

The physics of more weakly coupled electrons is well described
by Fermi liquid theory, but there are many known instabilities of
the Fermi liquid, a general phenomenological description of which
was given by Pomeranchuk [232]. Fermi liquid theory quantifies
the strength of the various possible interactions by the Landau
parameters, also know as the f functions (see section 1.2). It is
well known that the stability of the Fermi liquid requires that
none of these interaction terms become too negative, i.e. attractive,
because if they do, a distortion of the Fermi surface can occur,
known as a Pomeranchuk instability. For an isotopic interaction
term the Pomeranchuk instability is that of ferromagnetism spin
splitting the Fermi surfaces. In the case of higher order interactions,
such as a quadrupolar interaction, nematic instabilities can develop
and anisotropic deformations of the Fermi surface can occur. In
Sr3Ru2O7 possible spherical to elliptical deformations of the Fermi
surface have been proposed to be stabilised by the close proximity
of Van Hove singularities and through spin-orbit coupling related
effects [213–218].
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It is difficult to reconcile the magnitude of the observed resistive
anisotropy with the intrinsic anisotropy from a distorted Fermi
surface due to a Pomeranchuk instabilities, especially considering
this is a multiband material. However, considering there ought to
be domains with orthogonally oriented nematic order, domain wall
scattering could account for a substantial fraction of the enhanced
resistivity. As I will show later on, this may not be the whole
picture, and an alternative explanation may still be needed.

4.2.3.2 Spin density waves
It is now known from a recent breakthrough magnetic neutron scat-
tering experiment that, in addition to the uniform metamagnetism
associated with the novel phase, there exists spatially modulated
magnetic order within the region of phase formation [181]. In the
discussion of the Stoner criterion and metamagnetism in section
4.2.1 an isotropic magnetisation was always assumed. In general,
however, periodic spatially varying magnetic states can also be
stabilised in certain situations and are called spin density waves
(SDW). The susceptibility at a certain modulation wavevector de-
pends on the properties of the Fermi surface. When large sections
of Fermi surface are parallel such that they can be connected by the
same vector in reciprocal space the susceptibility will be strongly
peaked at this wavelength which can easily mix these states, open-
ing a gap and lowering their energy [205]. These special vectors are
called nesting vectors and are generally found in quasi-1D systems.
Sufficiently strong nesting can also lead to charge density waves
(CDW). The mechanism is similar, though this time driven by a
spatial modulation of the charge density, i.e. a Peierls distortion

Fig. 4.16: Spin density wave or-
dering in Sr3Ru2O7. A. Phase dia-
gram determined from neutron scat-
tering measurements. Open sym-
bols are the boundaries determined
from the scattering measurements
whereas the solid symbols are from
resistivity and susceptibility mea-
surements. The two blue shaded re-
gions mark the regions with SDWs of
different wavevectors. B. Proposed
structure of the spin density wave
within a single domain. C and D.
Magnetic field and temperature de-
pendence of the SDW Bragg peak
intensities. Reproduced from [181].
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of the lattice. SDWs and CDWs can occur simultaneously but
in suitably exchange-enhanced materials such that the suscepti-
bility is sufficiently large that the q-dependent Stoner criterion
is satisfied, spin ordering can occur alone. CDWs are primarily
driven by electron-phonon coupling whereas SDWs arise from the
electron-electron exchange interaction.

Lester et al. observed magnetic scattering peaks associated with
an incommensurate spin density wave (SDW), i.e. its wavelength is
not a rational fraction or integer multiple of the lattice constant,
and stable at least on time scales shorter the instrument resolution
of ∼1 GHz with a coherence length of at least 350 Å. Within
the main novel phase described above the scattering peaks were
observed at (±δ, 0, 0) and (0,±δ, 0) with δ=0.233. Above the
second metamagnetic transition a spin modulation was still observed
but with a slightly smaller wavevector, δ=0.218, persisting up to
approximately 8.5 T. Comparing with the resistivity, figure 4.13A,
this new phase corresponds to the tail observed on the high field side
of the phase. Bruin et al. [233] had also previously reported resistive
anisotropy extending outside of the main phase up to these fields.
The formation of the SDW and the enhanced resistivity appear
intimately linked. Panel C of figure 4.16 shows the intensities of
the two scattering peaks, and once summed together they look
remarkably like the observed resistivity enhancement. Further
evidence corroborating this comes from the influence of a tilted
field on the SDWs. When the field is along the c-axis the scattering
peaks are C4 symmetric, showing equal intensity at (±δ, 0, 0) and
(0,±δ, 0), but once the field is tilted 10° towards the a axis only the
peaks at (±δ, 0, 0) remain, mirroring the hard and easy directions
observed in in-plane resistivity. A spin density wave gapping part
of the Fermi surface provides a natural mechanism for enhancing
the resistivity in the novel phase. The wavevector approximately
matches the nesting vector of the α1 and the γ2 sheets. However,
in this multiband material the number of states that can be gapped
out in this simple weak-coupling picture still seems to be at odds
with the 100 % resistivity increase.

The addition translational symmetry breaking of a spin den-
sity wave means the phase should no longer be described as a
truly nematic state. However, a question of time scales means
this cannot be irrefutably proven, especially since nuclear magnetic
resonance measurements that are sensitive to much slower charac-
teristic frequencies than the resolution limited neutron scattering
measurements did not detect any divergence of the inverse relax-
ation rate associated with critical slowing down at the boundary
of the A phase [234]. This means that a more slowly fluctuating
smetic or melted smetic can not be indisputably ruled out.
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4.2.4 Latest developments and motivation
Further investigation of the wider phase diagram has recently high-
lighted the possibility of a much richer phase diagram still to be
discovered. Sun et al. [235] managed to measure heat capacity and
magnetocaloric effect to much lower temperatures than had previ-
ously been attainted in Sr3Ru2O7 and by following the signatures
associated with each metamagnetic transition to lower tempera-
tures could identify the first metamagnetic peak at ∼7.5 T, initially
believed to be a crossover, with a second QCEP. There is evidence
for a second lower energy scale suppressed to zero temperature at
7.5 T in addition to the QCEP already identified at 7.9 T which
in the highest purity samples is masked by the novel phase for-
mation. Measurements of the magnetic Grüneisen parameter by
Tokiwa et al. [179] also demonstrated the same behaviour. Weak
thermodynamic signatures for the second SDW-B phase can also be
identified in the specific heat and magnetocaloric effect, however,
the confidence with which the phase boundary can be identified is
much lower than in the case of the A phase. Perhaps, then, even
though these samples are considered to be of very high purity, there
may still be an opportunity to uncover more phase formation in
the remaining parts of the phase diagram which may be even more
disorder sensitive. This might also help to explain the curvature
of the first-order transition line at 7.85 T which implies that the
entropy is higher in the ordered phase than that on either the high
or low field sides of the phase.

What is clear though, is that any further investigations on
Sr3Ru2O7 should be wary of disorder as it is clearly very important.
Magnetic field is a clean tuning parameter, ideal for tuning through
the quantum critical region, and as such has been studied in great
depth. Uniaxial stress is another clean and continuous tuning
parameter so can be used as a secondary tool to investigate quantum
criticality in combination with a c-axis oriented magnetic field.
It is suspected that the metamagnetism is related to Van Hove
singularities that can be reached in an ∼8 T field. The influence
of uniaxial stress might therefore be quite strong so a study of
the interaction between uniaxial stress and magnetic field on the
metamagnetism and the influence around quantum criticality is of
interest.

The properties of the novel phase are also known to be highly
susceptible to in-plane fields lifting the tetragonal symmetry. Uni-
axial pressure can provide an alternative method for tuning this
symmetry breaking and it can, in principle, provide a much larger
strength change than the previously used in-plane magnetic fields
which simultaneously detune from the QCEP as the in-plane field
is increased. However, it is not easy to predict what effect uniaxial
pressure might have as the band structure is much more compli-
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cated in Sr3Ru2O7 than in Sr2RuO4, so the initial investigations
will rather be somewhat exploratory.

4.3 Experimental methods

001
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Fig. 4.17: Sample alignment. Pictures
of X-ray back-reflection Laue diffrac-
tion patterns with simulated fits from
OrientExpress [144] overlaid in red. A
c-axis aligned with the X-ray beam, B
[100] direction and C the [110] direction
of the tetragonal unit cell.

The core method used for the experiments on Sr3Ru2O7 is the
uniaxial stress technique described in chapter 2 of this thesis. In this
technique the direction along which the uniaxial pressure is applied
is set by the direction along which the long bar shaped sample is
cut. For the remainder of this chapter I will use the tetragonal
unit cell of Sr3Ru2O7 where the a and b directions, [100] and [010],
are along the Ru-O-Ru bond directions. The neutron scattering
results indicate that the 〈100〉 directions are the principal axes of
the possible C2 symmetric order. Resistivity measurements in a
fully rotatable vector magnet field also suggest this, showing strong
anisotropic transport when the field has a component along [100]
or [010] but very little [110]/[11̄0] anisotropy when the field is at
45° to the Ru-O-Ru bond directions. Guided by these observations
we chose to cut the samples along 〈100〉, defining the pressure
axis. Only the ends of the sample are supported in the device,
meaning that for instance when a compression is applied along
[100], the [010] direction in the centre of the sample is free to
expand according to the sample’s own Poisson’s ratio. The applied
stress is uniaxial but the design of the device means that we can
more accurately determine the applied strain along the pressurised
direction.

In total four different Sr3Ru2O7 samples were strained. The
first three samples were measured in collaboration with another
student, Daniel Brodsky, and the results have been published in
references [236,237]. After this first run of measurements I came
back to the project to add magnetic measurements in addition
to resistivity, and to also carry out a wider investigation covering
more than just one temperature and going to much larger strains.
In doing this, the measurements from the first three samples were
necessarily repeated as part of this larger data set but since these
have been described elsewhere I will only present data from this
fourth sample in this thesis. I mention the other three samples to
show that consistency, at least in the resistivity measurements at
low strains, is observed.

4.3.1 Sample preparation
The sample was cut from a well characterised growth, C697B, from
R. Perry. This batch was chosen because of its particularly low
residual resistivity and low impurity content, as characterised by
J.-F. Mercure [238]. The novel phase in this batch of crystals has
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also been extensively studied by resistivity measurements [199].
As stressed earlier in this thesis precise sample preparation is a
necessity for reaching high strain. To prepare the sample, the main
growth rod was first aligned using the Laue method, figure 4.17,
and then transferred to a lapping saw to cut out a bar shape of
roughly the required size. The sample was then finished using fine
mechanical polishing on all faces to bring the sample to its final
dimensions and produce the highest quality surfaces. The result
can be seen in figure 4.18.
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Fig. 4.18: Cut and polished sample.
Sample before attaching electrical con-
tacts and mounting in the rig. A. ab-
face. B. ac-face. Crystallographic di-
rections are labelled as per the tetrag-
onal unit cell. The sample has dimen-
sions: length 3.2 mm, width 295 µm,
and thickness 110 µm.

Details of the sample mounting are described in chapter 2 along
with the procedure for determining the optimal dimensions of the
sample and epoxy thickness to prevent sample buckling or epoxy
failure. For these measurements the range of the device was not
pushed to its upper limits because a thorough investigation at
different temperatures and fields, all on the same sample, was more
important than the absolute highest strain. I therefore decided
to reduce the strain range to decrease the risk of breaking the
sample or epoxy. In fact, Sr3Ru2O7 appears to be slightly softer
than Sr2RuO4, because no slippage of the epoxy was observed so
there should be slightly less risk in going to higher strains in the
future. The fact that the RuO4 octahedra are already buckled in
Sr3Ru2O7 may be the cause of the softer in-plane modulus but the
elastic tensor of Sr3Ru2O7 has not been measured to verify this.

Fig. 4.19: Mounted Sample. A.
Mounting schematic showing the
epoxy holding the sample between
the sample plates. The schematic
is the same as that given in chapter
3 but it is included here because it
defines the resistivity contact num-
bering. B. Mounted sample showing
the electrical resistivity setup. The
gap between the two sample plates
was set to 1.1 mm and the epoxy was
25 µm thick giving a strain transmis-
sion of ∼70 %.
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4.3.2 Resistivity measurements
The aim of these measurements was to observe the resistivity re-
sponse to strain simultaneously with the magnetic response. It
would also be ideal to measure both principal in-plane resistivity
components and determine any nematic-like behaviour. The geom-
etry of the sample means that measurements of the longitudinal
resistivity are straightforward. The ends of the sample are acces-
sible through holes in the sample plates for current contacts, see
figure 4.19, and voltage contacts placed in the central region of
the sample can measure the voltage drop in the homogeneously
strained region of the sample. From this an accurate measurement
of ρxx can be made were x is the direction along which the pressure
is applied.

Measurements of the transverse resistivity can also be made
using only the four contacts in the centre of the sample. Making
reference to figure 4.19, instead of passing current along the bar
between contacts 1 and 2, current can be passed between contacts
3 and 5 measuring the voltage drop between contacts 4 and 6. This
measured voltage is not independent of the longitudinal resistivity
ρxx, which sets the distance that the current stream lines spread out
along the length of the sample, but with precise enough information
on the contact geometry finite element simulations should be able
to disentangle the different resistivity components. The measured
voltage at contacts 4 and 6 decreases exponentially with their
distance from the current contacts 3 and 5. It is therefore best
for the transverse measurement to have the contacts on the sides
of the sample close together, however, the measured longitudinal
voltage decreases linearly with the contact separation so a balance
between the two must be made. As in the study reported in
chapter 3 for Sr2RuO4, for this Sr3Ru2O7 sample the contacts were
placed approximately 300 µm apart, making their overall placement
approximately square as a compromise between the two.

To prevent buckling the sample must be relatively thick. This,
in combination with the close proximity of the contacts to facilitate
the transverse measurement, means that the resistance of the
measured part of the sample is very small. At low temperatures it
is approximately 45 µΩ. Driving a current though the sample and
back into ground through the long resistive wires on the cryostat
insert leads to a large common mode voltage beyond the maximum
rejection ratio of standard preamplifiers. To prevent this common
mode signal artificially leaking into the differential measurement I
used the balanced dual end current source which I designed and
built for the resistivity measurements on Sr2RuO4. The details of
this can be found in appendix A. The key point is that by using a
balanced current source with active feedback the common mode
can be reduced to less than ∼0.5 % of the signal compared to the
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residual resistivity and the effects of common mode voltage can
then be ignored.

An absolute measurement of the transverse voltage is needed
before attempting any sort of finite element analysis but so far all
the transverse measurements published in [236] had an extrinsic field
dependent background that dominated the signal. I managed to
remove the source of this background by identifying wire vibration
as its source and taking much more care when wiring up the sample.
I made all the wires as direct and as short as possible, removing
the possibility of any large oscillatory modes which could vibrate
in the strong magnetic field. All the contacts also had twisted pairs
for both measurement geometries, doubling the amount of wiring
required for the experiment, but achieving the best noise levels.

4.3.2.1 Finite element simulations
A finite element simulation of the resistivity to extract ρyy from the
measured transverse voltage needs to include the effects of magnetic
field and anisotropic resistivity. This is something that is not always
included with simple software packages so to facilitate this analysis
I programmed a complete finite element simulation myself. Chapter
2 of this thesis provides a basic introduction to the finite element
technique but with the aim of solving elastic deformation problems.
The basic principles of a resistivity simulation are the same but
the partial differential equation that needs to be solved is different.

From classical electrostatics we known that the electric potential,
φ, at any point within the sample can be calculated from the electric
field, E, by

E = −∇φ . (4.11)

The current density at any point within the sample, assuming we
are in a linear transport regime, only depends on the conductivity
tensor σ

J = σE , (4.12)

where the conductivity of an anisotropic material is expressed as

σ =




ρxx −ρxy −ρxz
ρxy ρyy −ρyz
ρxz ρyz ρzz



−1

. (4.13)

The off-diagonal terms are the field dependent Hall terms which, if
the Hall effect is linear, can be written

ρij = BkRH,ij , (4.14)

where Bk is the perpendicular component of magnetic field. Charge
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conservation necessitates that

∇ · J = −∂ρq
∂t

, (4.15)

but for a steady state solution the charge density, ρq, is constant
so the differential equation we need to solve over the volume of the
sample, Ω, is

∇ · (σ∇φ) = 0 . (4.16)

Neumann boundary conditions are imposed on the surfaces of the
sample, ∂Ω,

J⊥ = (−σ∇φ) · n(x) = f(x) ∀x ∈ ∂Ω (4.17)

where n(x) is the normal to the samples surface at x and the scalar
function f(x) is zero everywhere except at the current contacts
where it equals the applied current density. The formalism from
here on in is as per the standard finite element approach: the partial
differential equation is rephrased in its weak form, the geometry
discretised, and the electric potential solved numerically.
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Fig. 4.20: Finite element electrical re-
sistivity simulations. A. Finite element
simulation of the longitudinal resistiv-
ity setup. Real sample dimensions from
figure 4.18 were used and the room
temperature resistivity tensor. At zero
field the components are ρaa = ρbb =
232 µΩ cm and ρcc ≈ 8.5 mΩ cm [188].
The simulations are with an applied cur-
rent of 1 mA. B and C. A simulation
of the transverse resistivity setup show-
ing the electric potential and current
density stream lines.

My original aim was to measure ρxx and V46/I35 then use finite
element simulations to calculate ρyy across the whole phase diagram
as a function of temperature, field and strain. This information can
provide important insights into the nature of phase transitions and
can be used to calculate several components of the elastoresistivity
tensor [239], a fourth-rank tensor relating normalised resistivity
changes with applied strain,

mij,kl = ∂(∆ρ/ρ)ij
∂εkl

∣∣∣∣
ε=0

, (4.18)

which therefore incorporates more information than the resistivity
tensor alone. Anomalies in the resistivity in regular transport mea-
surements do not in general help when trying to identify the type
of symmetry breaking at a phase transition but the elastoresistivity
tensor is a probe for this and can be used as a direct measure of
thermodynamic susceptibilities. However in order to test specific
symmetry breaking susceptibilities an experimental probe of the
same symmetry is required. In-plane anisotropic strain is one such
probe and would be of a great importance here as it can be used
as a direct probe of nematic susceptibility and electronic nematic
phase transitions.

Unfortunately this complete nematic susceptibility analysis was
not possible for Sr3Ru2O7 with the current experimental setup,
because of the large ρc/ρa resistive anisotropy. Layered materials
with large resistivity anisotropies are known to be particularly prob-
lematic for measuring the in-plane resistivity accurately, because
it is easy to accidentally incorporate a component of ρc into the
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measurement. For longitudinal resistivity measurements this prob-
lem is generally solved by taking meticulous care when painting
the silver paste contacts at the ends of the sample, making sure to
short out all the planes over the thickness of the sample. The long
length of the sample is enough to compensate for any slight varia-
tions in contact resistance across the contact and a good in-plane
resistivity measurement can be made. For the transverse resistivity
measurement I also made sure the silver paste contacts covered the
full height of the sample but it appears that the current flow still
had a small c-axis component which is almost unavoidable when
trying to keep the contact area as small as possible. The effect
is additionally amplified by the short width of the sample in this
direction. At room temperature where the resistive anisotropy is
not so high, ∼40, the measured transverse voltage is in good agree-
ment with finite element simulations. However at low temperatures
where the resistive anisotropy is substantially higher, in excess of
500 [188] (but this has not been measured for the purest samples so
it may be higher still as was seen in Sr2RuO4 [6]), there is a large
discrepancy between the measured voltage and the simulations,
with the measured voltage being over a factor of two larger than
the prediction. Correspondingly, the measured residual resistivity
ratios for the longitudinal and transverse measurements show the
same discrepancy. If a small offset is made to the position of the
contacts in the simulation, moving the contacts up on one side of
the sample and down on the other, the contacts only need to be
displaced as little as 4 µm to induce this difference. For a sample
that is 100 µm thick it is entirely possible that slight variations in
the contact quality can account for this.

In light of this, the data presented here will not be converted
from measured transverse voltage to resistivity as the uncertainty in
exact contact geometry means the contributions from ρzz and ρyy
cannot be fully disentangled. When the measurement is described as
transverse it refers only to the predominant current direction being
transverse to the pressure axis but it does not imply that the current
flow is purely within the ab-plane of the sample. The data published
on the first three samples also have contributions of a similar
nature, but these samples were more than twice as thin (sufficient
when not aiming for such high strains), so the unwanted c-axis
contribution is slightly smaller. In future, accurate measurements
of the elastoresistivity tensor are still highly desirable, but whether
this is ultimately achieved just by screening many samples to find
one with more symmetrical contacts or by something much more
sophisticated such as using a focused ion beam to produce samples
with a well defined geometry is still to be determined. This is
certainly a key direction to pursue, by whichever route works best.
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4.3.3 Magnetic measurements
One of the main aims of this work was to combine magnetic mea-
surements with those of resistivity for a direct measure of how the
metamagnetism responds to strain. However, the space around the
sample in the strain device is very limited. Whilst AC susceptibility
has been used previously for measuring superconducting transitions,
measuring normal state magnetic susceptibility is far more challeng-
ing. For example, the strongest metamagnetic peak in Sr3Ru2O7
with the field aligned along the c-axis (Grigera et al. measuring at
300 mK [178]) is 50 times smaller than the susceptibility signal of
a perfect diamagnet. In order to be sensitive to this small change
some improvement in the technique was required. I decided to
simulate various coil geometries to work out how to best utilise the
available space.

A simulation with an arbitrary coil geometry, number of turns,
sample size and alignment, etc, is relatively straightforward using
the principles of reciprocity and superposition. After approximating
both the excitation and pick-up coils as stacks of single-turn circular
current loops, the field at any arbitrary point can be calculated
analytically using, for instance, the work of Simpson et al. [240].
The sample is also divided up into many small finite elements and
the moment of each element can be calculated from its volume, the
material’s susceptibility and the field at the centre of the element
due to the sum of the fields from each of the segments of the
excitation coil. For an AC excitation current the AC moment of
each finite element induces an AC voltage across the pick-up coils.
Calculating the flux threading through each of the pick-up coils
due to the sample’s moment is quite computationally intensive
so a better tactic is to use the principle of reciprocity. The flux
threading the coil from the moment is the same as the flux at the
moment if the current was in the pick-up coil, this is to say the
mutual inductance between the two is identical. The field generated
at the position of the sample by unit current in the pick-up coil
can be used to calculate the mutual inductance, then from the
moment of the sample the induced voltage in the pick-up coil can
be calculated without any additional laborious integration steps.
This is repeated for all the finite elements of the sample and all
the pick-up coils, summing the voltage each time, to find the total
signal

Vac = 2πf
∫

sample

pick-up∑

i


Bi(x)
|Îi|

·




excitation∑

j

χBj(x)
µ0




 dV .

(4.19)
Here, f is the AC driving frequency, Bi(x) is the magnetic field at
position x due to unit current |Îi| in pick-up coil i, χ is the volume
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magnetic susceptibility of the sample and Bj(x) is the field at
position x in the sample from the excitation current flowing around
excitation coil j. When the coils are not compensated this is the
additional voltage due to the sample, on top of the background
signal from the mutual inductance between the excitation and
pick-up coils. Typically the background is much larger than the
signal from the sample; it can be calculated using Babic’s formula
[241]. Demagnetisation effects from the sample’s geometry are not
included in this simple model but as a first approximation it can
provide an adequate comparison of different coil geometries. The
code to run these simulations is not very long but may be useful
to other groups measuring susceptibility, so it is included in full in
appendix D.

excitaion
coil

pick-up coil
sample

800 µm

1 mm

B

2 mm

excitation
coil

pick-up
coil

BeCu
foil

C

A

Fig. 4.21: Susceptibility Coils. A.
Model of the susceptibility coils used
in the simulation. The excitation coil
has 15 turns of 50 µm wire wound in
three layers with diameters 550, 650
and 750 µm. The pick-up coil fits
within the excitation coil and consists
of 50 turns of 15 µm wire in five lay-
ers with diameters from 315 to 435 µm.
The pick-up coil rests on the surface
of the sample which is 250 µm wide
and 80 µm thick. B and C. The ac-
tual susceptibility setup. The coils are
mounted on a flexible cantilever so they
can be easily positioned above the sam-
ple.

The chosen coil geometry is shown in figure 4.21. Superconduct-
ing NbTi wire was used for the excitation coil because it enables
a large field to be produced without requiring a large number of
turns which would take up valuable space; a relatively large current
can be used without causing unmanageable heating. With 15 turns
of 50 µm wire starting from an internal diameter of 500 µm and
making three layers, the field at centre of the coil is ∼9 G with a
current of 30 mA (RMS). The pick-up coil diameter was maximised
to fill the space inside the excitation coil and was made using 50
turns of 15 µm copper wire. I decided to couple the pick-up coil
to a low temperature transformer mounted inside the vacuum can
at 4 K. For susceptibility measurements the signal-to-noise ratio
can be increased by increasing the driving frequency but because
I was wary of finite frequency effects [242, 178] this time I opted
for a low temperature transformer with a limited frequency range
but capable of achieving a better noise level of ∼40 pV/

√
Hz. I

was only interested in the additional susceptibility signal due to
the metamagnetism, so a slowly varying background signal was
subtracted from all the data sets using a 3rd-degree polynomial fit
to the susceptibility data away from the regions of metamagnetism.
This background includes both the background signal from the
coils and the normal paramagnetic response of the sample. The
coils are not calibrated, so changes in susceptibility are quoted in
arbitrary units in all the figures. However the relative amplitude
at different strains can still be directly compared since for all the
measurements the excitation current and frequency, and all the
measurement electronics, remained the same.

4.3.4 Strain transmission
As described in chapter 2, a finite element simulation must be used
to estimate how much of the displacement measured by the device
is transmitted to the sample through the softer epoxy. Using a
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shear modulus of 6 GPa for the epoxy and the elastic modulus
of Sr2RuO4 [68] in the absence of a measurement for Sr3Ru2O7,
the strain at the centre of the sample is approximately 70 % of
that calculated using the actual gap between the sample plates
(the dimensions of the sample are given in figure 4.18). This is
perhaps a slight under estimate as Sr3Ru2O7 may well be softer than
Sr2RuO4 but uncertainty in the exact properties of the epoxy at low
temperatures mean all strains are quoted with a 20 % uncertainty,
a systematic error affecting all measured strains equally.

4.3.5 Low temperature cryostat
To reach the temperatures needed to observe the novel phase a

4 K
IVC
flange

Low T
transformer

Sorb

1 K
Pot

3He
Pot

Uniaxial
Stress
cell

Fig. 4.22: Low temperature cryostat.
Business end of a 3He sample in vac-
uum cryostat. This cryostat has a large
75 mm internal diameter bore to accom-
modate large uniaxial stress cells.

3He cryostat was used. The inside of the vacuum can is pictured
in figure 4.22. This cryostat, which we specified, ordered and
commissioned for this project, has a particularly large bore sample
space, 75 mm diameter, providing enough space to have the large
strain rig perpendicular to the magnetic field and the magnetic
field along the sample’s c axis. The requirement of the large bore
means the maximum field of this system is 10 T. The 3He part of
the cryostat is a closed system which can operate down to 270 mK
in single-shot mode or in a higher temperature mode up to ∼50 K.
The basic principles of the two modes of operation are shown
schematically in figure 4.23.

For low temperature operation a regular 1 K pot pumping on
4He from the main reservoir of the cryostat is used to reach ∼1.4 K.
This is used as a cold source to condense a small amount of liquid
3He. Heating up the sorb above 25 K causes it to outgas, releasing
the adsorbed 3He which then condenses in the column through
the centre of the 1 K pot collecting in the lower 3He pot. After
about 45 minutes with the sorb at 45 K all the 3He is condensed
into the 3He pot, but the temperature is still the same as the 1 K
pot. Allowing the sorb to cool starts to pump on the liquid 3He
as the 3He vapour is adsorbed back onto the sorb’s large surface
area, evaporatively cooling the 3He pot. Using 3He much lower
temperatures can be reached from evaporative cooling than for 4He.
Superfluidity limits the ultimate base temperature and since 3He is
a fermion this develops at lower temperatures than in 4He. In this
cryostat a base temperature of 270 mK can be reached when the
sorb is cooled back to 1.5 K. By varying the temperature of the
sorb and/or in combination with resistive heaters at the sample
stage the temperature can be controlled precisely between 270 mK
and 1.5 K. The sorb continues to pump on the 3He pot until all the
3He has evaporated and the 3He must be recondensed to continue
operation. In our cryostat the run time for a single condensing cycle
gives us more than 100 continuous hours at 270 mK. After a few
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A Low temperature operation
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Fig. 4.23: Principle of operation of the 3He refrigerator. A and B. To reach temperatures below 1 K
the condensing cycle begins by warming up the sorb to 45 K, outgassing the adsorbed helium-3 which
then condenses through the 1 K pot into the lower helium-3 pot. Once the sorb is cooled back down it
also acts as a pump, evaporatively cooling the 3He pot by readsorbing the helium-3 gas. C. To operate
at higher temperatures the sorb is held at 22–25 K maintaining a small pressure of helium-3 gas which
provides a heat link between the 1 K pot and the sample stage which is heated using a resistive heater.
See text for further details.

modifications to accommodate the strain rigs, the additional wires
required increase the heat load and limit the base temperature to
∼320 mK. During operation with excitation currents for all the
different measurements and a sweeping magnetic field the system
warms up a little more to ∼350 mK. To keep the temperature
stable throughout the measurement I decided to use a heater at the
sample stage running off a PID loop which warms the sample stage
up a further 20 mK. The PID control can keep the temperature
constant to within ±1 mK while ramping the field up and down to
10 T.

When operating at higher temperatures no liquid 3He remains
in the pot. Instead the sorb is held at approximately 20–25 K to
provide a small pressure of 3He gas in the system providing a heat
link between the sample stage and the 1 K pot. Restive heaters at
the sample stage are then used to heat against the cooling power
of the 1 K pot and temperatures up to approximately 50 K can be
safely reached. It is possible to transition between these the two
regimes but while ramping the temperature from 50 K to 300 mK
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a stop at 1.5 K must be made to recondense the 3He.
Before starting these measurements I installed and set up the

cryostat, measurement rack and computer control for all the in-
struments. The details of this computer program are described in
section 3.3. A key feature of the software was the automation of
nearly all measurement routines. This meant the cryostat could be
left unattended for several days at a time continuing to record data
and, importantly, the control software was capable of automatically
recondensing 3He once the pot became empty and then continuing
the measurements once the stable base temperature was reached
again. The main human interaction needed during the course of
this essentially autonomous measurement run was to refill the main
helium bath of the cryostat.

4.4 Results and discussions
I will start by presenting the results from the resistivity measure-
ments under strain first and then show the susceptibility data for
comparison.

4.4.1 Magnetoresistance
The longitudinal resistivity ρxx for the strained sample at 370 mK
and a series of applied εxx strains is shown in figure 4.24A. The
origin of the strain scale was determined from a number of factors.
First, the measurement nearest zero strain should preserve the
overall shape that is seen in strain free samples mounted on flexible
wires, see for example figure 4.13. Secondly, but less subjective,
the transition fields and temperatures of the region of enhanced
resistivity should coincide at zero strain for the longitudinal and
transverse measurements. Determining these transition fields and
temperatures is described later on, see figure 4.36. We estimate
the error in identifying zero strain for these measurements to be
±0.02 %. For the field ramps plotted here the strain was incre-
mented between each field ramp at 10 T, outside the field range, at
least initially, of phase formation. This is important because if the
phase does involve spontaneous symmetry breaking, increasing the
strain within the region of phase formation may lead to metastable
domain configurations.

A small lattice distortion has a dramatic effect on the resistivity.
In an unstrained sample the resistivity increases by almost 100 %
upon entry to the phase with field at low temperatures, but when the
sample is compressed to only 0.1 % this enhancement is increased
by almost a factor of two. The extent of the field range showing
enhanced ρxx also increases with strain, albeit not so substantially
at low strains, and perhaps one of the most striking features is the
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Fig. 4.24: Magnetoresistance. A.
Longitudinal resistivity ρxx against
c-axis magnetic field for a series
of applied strains at 370 mK. B.
Transverse resistivity measurement
against c-axis magnetic field for the
same sample and strains. The mea-
surement configuration is depicted
in the upper right corner, contact
numbers are as per figure 4.19. V46
is the voltage difference between con-
tacts 4 and 6 when current I35 is
passed between contacts 3 and 5.
The transverse measurements were
at 380 mK. The black curves in both
panels are the measurements closest
to zero strain.
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vast growth of the B region, which at zero strain is only a tail on
the high field side of the main A phase between 8.1 and 8.5 T As
the strain is increased its visibility grows, becoming comparable in
magnitude to that of the A region. Above about 0.2 % compression
the breadth of the region of enhanced resistivity in field starts to
grow substantially faster to both lower and higher fields, covering
almost the whole of the measured field window. This can be seen
most clearly in an alternative representation of the data in figure
4.25A as a contour map. Under tension the resistivity enhancement
is rapidly suppressed. 0.07 % tension is already enough to almost
completely eliminate any resistivity enhancement.

The results of the transverse measurements are shown in panel B
of figures 4.24 and 4.25. The effect is the mirror of the longitudinal
response. Under εxx compression the phase-induced enhancement
in the transverse response is suppressed whereas tension strengthens
the enhancement. The approximate mirroring of the longitudinal
and transverse responses is also clearly evident in the contour maps
in figure 4.25 and in 3D surface plots of the resistivity in figures
4.26 and 4.27. As discussed earlier, the transverse measurement
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Fig. 4.25: Magnetoresistance con-
tour plots. Contour plots of the lon-
gitudinal (A) and transverse (B) re-
sistivities from figure 4.24 as a func-
tion of c-axis magnetic field and ap-
plied strain.
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is likely not a measure of only the in-plane resistivity ρyy; some
component of ρzz is mixed in. If the current was directed completely
within the ab-plane and the contacts aligned as a perfect square,
the voltage measured in the transverse geometry at zero strain
should be an exact scaled copy of the longitudinal response. The
shape observed here, even at zero strain, is quite different. This
discrepancy might be due to the additional component of c-axis
resistivity, however the c-axis magnetoresistance of Sr3Ru2O7 has
not been well studied so no quantitative comparison can be made.
Preliminary investigations by Perry [188] show that the c-axis
resistivity is influenced by the metamagnetism but a study of how
the novel phase formation affects the c-axis magnetoresistance has
not been undertaken. Before analysing the transverse measurements
in too much detail, characterisation of the c-axis resistivity would
be desirable.

Misalignment of the magnetic field with respect to the crystalline
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Fig. 4.26: Magnetoresistance. Surface plot of the longitudinal resistivity ρxx against c-axis magnetic
field and applied strain at 370 mK.

Fig. 4.27: Transverse magnetoresistance. Surface plot of the transverse resistivity against c-axis
magnetic field and applied strain at 380 mK. See figure 4.24 for the measurement configuration.
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c-axis could also influence the shape of the resistivity enhancement.
The rig is mounted horizontally in the bore of the magnetic and the
holder attaching the rig fixes this alignment. Here the alignment
should be better than ±3°. However the sample can also be slightly
misaligned with the rig as its orientation is not held rigidly while
the epoxy cures. The two ends of the samples are fixed at the
same height in the rig but there is the possibility for the sample to
rotate about its long axis as the epoxy cures since the gap between
the sample plates sandwiching the ends of the sample is larger
than the thickness of the sample. When curing the epoxy the
pre-attached voltage wires were positioned to try and prevent the
sample from rotating but a small misalignment might still occur.
Any misalignment of the field will be noticeable as a change in the
onset field of the phase; rotating the field off axis decreases both
field boundaries of the phase [199]. By comparison to data from
Bruin [199] who used a vector magnet with very precise control
of the field alignment, the onset field we observe here suggests
the sample is aligned better than ±3° from axis. At the moment
we cannot definitively identify the cause of the different shape
observed in the transverse response and it would be best to repeat
these measurements on more samples and also perhaps carry out a
dedicated more accurate study of the c-axis resistivity which would
now be possible using the precision of a Focus Ion Beam (FIB) to
fabricate samples of the correct geometries.

4.4.2 Metamagnetism
Figure 4.28 shows the AC susceptibility measurements after the
smoothly varying background subtraction described in section 4.3.
What is left is the additional susceptibility due to the metamag-
netism. As a reminder, at zero strain susceptibility measurements
show three metamagnetic jumps, see for example figure 4.13. The
first at 7.5 T is a broad crossover, the second is the largest in
magnitude and signifies the transition into the A phase at ∼7.8 T
and the third at ∼8.1 T occurs at the transition between the A
and B phases. At 370 mK the transitions at 7.5 T and 8.1 T
are very weak. They are still observable above the background at
zero strain but under both compression and tension they quickly
become lost in the background. Without being able to follow these
transitions to lower temperatures I will mainly be concerned with
the metamagnetic transition at the entrance to the A phase. The
susceptibility behaviour under compression and tension is in stark
contrast to the approximate mirroring of the longitudinal and trans-
verse resistivity between compression and tension. Under tension
the peak in the real part of the susceptibility moves to lower fields
without changing in magnitude significantly. At zero strain this
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Fig. 4.28: Susceptibility against field. A and B. Real part of the AC susceptibility χ against c-axis
magnetic field for a series of applied strains at 370 mK. The black curves are the measurement closest
to zero strain. A shows measurements under tensioned and B compression. All measurements are
of increasing field sweeps and are quoted as ∆χ because of a background subtraction procedure
detailed in the text. C and D. The imaginary part of the susceptibility for the same measurements.
The susceptibility is expressed in arbitrary units but the scale divisions for the real and imaginary
susceptibilities are the same.

transition is first-order and a peak in the imaginary part of the
susceptibility is observed due to hysteresis-related dissipation [178].
This peak in the imaginary part of the susceptibility can be seen
for the strained sample too, albeit with a low signal-to-noise ratio.
However, unlike the corresponding peak in χ′ it does not seem to
move to lower fields with tensile strain rather it very quickly dies
out and stays centred on approximately the same field value.

Under compression something different occurs. The main peak
stays at approximately the same field but changes magnitude ini-
tially, then as it is decreasing in magnitude a shoulder starts to
protrude on the lower field side. This develops into a second weaker
peak before also becoming lost into the background by ∼0.4 %
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Fig. 4.29: Susceptibility contour
plots. Contour plots of the AC sus-
ceptibility measurements from fig-
ure 4.28 as a function of c-axis mag-
netic field and applied strain. The
dashed white line is the H1 line of
the anomalous phase from the loci
of maxima in dρxx/dH. The dotted
white line is the equivalent maxima
in the transverse resistivity measure-
ment.
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compression. The peak in χ′′ also disappears with only a small
amount of compressive strain. As a better comparison with the
resistivity, figure 4.29 shows a contour plot of the susceptibility
with the lower field boundary of the A phase, H1, as identified
by the maximum slope in the magnetoresistance, overlaid on top.
The H1 line from the magnetoresistance tracks well with the peak
in susceptibility and loses definition at a similar strain as that at
which the peak in susceptibility can no longer be resolved. From
this plot it might appear that zero strain is wrongly identified and
the sample is really under slight tension at what we are calling
zero strain. However, this is still an open question and it will be
addressed again when the temperature ramp data is presented.

To help visualise how the susceptibility changes with strain, the
data is also plotted as 3D surfaces in figures 4.30 and 4.31.
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Fig. 4.30: Susceptibility. Surface plot of the real part of the AC susceptibility χ against c-axis magnetic
field and applied strain at 370 mK.

Fig. 4.31: Susceptibility. Surface plot of the imaginary part of the AC susceptibility χ against c-axis
magnetic field and applied strain at 370 mK.
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4.4.3 Strain ramps
So far all the data presented were recorded while ramping the
magnetic field. It is also possible to traverse phase space in an
orthogonal direction, sweeping the strain at fixed field and tem-
perature. Figure 4.32 shows a series of strain ramps at fixed fields
covering the field range of the novel phase. Outside the region of
phase formation there is no measurable hysteresis between increas-
ing and decreasing strain runs and the data overlap with the data
recorded during the field ramps. However, in the field range of the
phase, some hysteresis is observed at high compression but close to
zero strain almost no measurable hysteresis is detected at any field.

To investigate the effect of strain over a wider field range a series
of short strain ramps spanning zero strain were carried out at fields
between 0 and 10 T both at 370 mk and 4.5 K. The elastoresistance
(also known as the gauge factor), determined from the slope of these

Fig. 4.32: Resistivity against strain.
Longitudinal resistivity ρxx at a
series of constant c-axis magnetic
fields and constant temperature as
the strain is swept through the
anomalous phase. A. Fields up to
7.9 T. B. Fields above 7.9 T. Solid
lines for decreasing strain sweeps
(towards higher compression) and
dashed lines for increasing strain (to-
wards tension).
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Fig. 4.33: Elastoresistance. Gauge
factor against c-axis magnetic field
at 4.5 K and 370 mK. The gauge fac-
tor is highly nonlinear with strain
and is evaluated at zero strain from
the derivative of the elastoresistance
(1/R)dR/dεxx|εxx=0. The circle
and square points are calculated
from short strain sweeps through
zero strain at fixed field and temper-
ature. The solid line is calculated
by interpolating between different
field sweeps at fixed strain and tem-
perature but at fine enough strain
spacing to accurately capture the
slope at zero strain.
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measurements at zero strain is plotted in figure 4.33. Even if the
resistivity of a material is unaffected by strain, the elastoresistance
still includes a contribution from the geometrical change of the
sample. For an isotropic material with a Poisson’s ratio ν this
contribution is 1 + 2ν, which in a normal metal is about 2, and
is typically the dominant contribution. In a correlated system,
however, the changes in hopping strength with applied strain can
have a much larger effect on the resistivity. For Sr3Ru2O7 at
zero field the gauge factor is ∼15, not a surprising result due to its
known strong correlations and narrow bandwidth. The gauge factor
increases towards the critical field but is cut off by the formation of
the phase which shows a dramatically large and negative response.
At 8 T the gauge factor is close to −2000. For comparison the
gauge factor of another nematic material, BaFe2As2, peaks at
∼−90 at the nematically driven structural transition [51]. At 4.5 K,
above the temperature for phase formation, the gauge coefficient
for Sr3Ru2O7 remains positive at all fields and peaks at ∼7 T with
a value of ∼35.

4.4.4 Higher temperatures
Up until now the main measurements of Sr3Ru2O7 under strain
have been carried out at base temperature. Mapping out the
complete boundary of the phase in temperature as well as strain
and field is an important experimental task but a formidable one.
The data already presented cover a cut through phase space in the
field-strain plane, so a sensible start for investigating the wider
phase space is a cut in the temperature-strain plane. A field of
7.95 T was chosen, right in the centre of the A phase, and a series
of temperature and strain ramps was performed.
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Fig. 4.34: Resistivity against tem-
perature. A. Longitudinal resistiv-
ity against temperature at 7.95 T
for a series of applied strains. The
upturn in resistivity marks the on-
set of the anomalous phase. The
transition temperature is identified
by the maximum in d2ρ/dT 2 and is
shown by the dashed line. A sec-
ond transition is seen at lower tem-
peratures for compressions above
∼−0.1 % and the second dashed
line follows the corresponding ex-
tremum in the second derivative.
The inset shows the resistivity tem-
perature exponent at high temper-
atures calculated from a fit of the
form ρ = ρ0 + ATα above 3 K. B.
Transverse resistivity measurement
against temperature at 7.95 T for a
series of applied strains. See figure
4.24 for the measurement configu-
ration. The dashed line marks the
maximum in the second derivative
with temperature.

A

H ‖c, 7.95 T

I
V

[100]2

3

4

5

6

7

ρ
x
x

(µ
Ω

cm
)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

ε x
x

(%
)

−0.4 −0.2 0.0
1.1

1.3

1.5

εxx (%)

α
B

H ‖c, 7.95 T

I
V

0 2 4 6

20

40

60

80

Temperature (K)

V
46
/I

35
(n

V
/m

A
)

Figure 4.34 shows the longitudinal and transverse resistivity
between 400 mK and 7 K for a series of applied strains. This field
is very close to the QCEP at 7.9 T and the effect on the resistivity
is clearly apparent. Above the temperature of phase formation at
zero strain the resistivity is almost linear in temperature for the
whole measurement range. At higher compression the exponent of
the temperature dependent part of the resistivity increases. The
inset to panel A of the figure shows this exponent extracted from
a ρ = ρ + ATα fit of the resistivity between 3 and 8 K. Slightly
puzzlingly the exponent keeps decreasing under slight tension. It
would be interesting to attempt to reach higher tensile strains to
see at what point the exponent saturates or starts to increase again.
In resistivity the entrance into the novel phase with temperature
is marked by a saturation or slight upturn [224,199]. This can be
identified in both the longitudinal and transverse measurements.
To identify the transition temperature in a fully consistent manner,
the peak in the second derivative of the resistivity minus the high
temperature fit with respect to temperature was used. An example
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Fig. 4.35: Resistivity against strain.
A. Longitudinal resistivity against
strain at 7.95 T for a series of fixed
temperatures. The resistivity is
largest in the anomalous phase and
the transition is identified by the
maximum in d2ρ/dε2

xx. The dashed
line follows this maximum in the
second derivative. B. Transverse re-
sistivity measurement against strain
at 7.95 T for a series of fixed temper-
atures. The transition to the high
resistivity phase is identified in the
same manner.
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is shown in figure C.2A in the appendix. The dashed black line in the
figure shows the position of this peak in the second derivative. At
high compressions a second feature appears at a lower temperature
and can also be identified by a corresponding extremum in the
second derivative.

Strain sweeps at a selection of temperatures, all at 7.95 T,
are shown in figure 4.35. Here the strain range is smaller than
before and no hysteresis was observed between the increasing and
decreasing strain runs. The boundary of enhanced resistivity is not
as sharp in strain ramps as in temperature ramps, but a weak peak
in the second derivative with strain can still be seen, see figure
C.2B. The calculated strain values coincide well with those from
the temperature ramps suggesting some validity to this analysis.

From the temperature and strain ramps at 7.95 T an empirical
phase boundary can be drawn defining the regions of enhanced
longitudinal and transverse resistivity. The field ramps described
earlier can also be used to identify this phase boundary but this
time in the strain-field plane at 0.37 K. Guided by the analysis of
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Fig. 4.36: Boundaries of enhanced ρxx and transverse resistivity. Empirical phase diagrams for the
boundaries of enhanced longitudinal and transverse resistivity in A the field-strain plane at 0.37 K
and B the temperature-strain plane at 7.95 T. The boundaries are identified through both resistivity
and susceptibility measurements. Left triangles are the loci of the peak in χ′, upright triangles are
the loci of maxima in dρ/dH, and these mark the H1 line. The resistive transition features are shown
in the inset. H2 marked by right triangles and H3 by inverted triangles are the loci of maxima in
d2ρ/dH2. The boundary is also identified by maxima in d2ρ/dε2

xx from strain sweeps and marked with
squares. Open symbols are from measurements of the longitudinal resistivity and closed symbols the
transverse resistivity. The roof of the phase is identified by temperature ramps and more strain ramps.
Diamonds mark the loci of maxima in d2ρ/dT 2 and circles the loci of maxima in d2ρ/dε2

xx. Above
∼−0.1 % compression a second transition is observed at lower temperatures and is marked by stars
following the loci of a maxima in |d2ρ/dT 2|.
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Fig. 4.37: Boundaries of enhanced ρxx and transverse resistivity. An empirical phase diagram for
the bounding surfaces of enhanced longitudinal and transverse resistivity, in blue and red respectively,
based on the resistivity and susceptibility measurements presented in figures 4.24, 4.28, 4.34 and 4.35.
The symbols are the loci of peaks in susceptibility or maxima in derivatives of the resistivities with
respect to temperature, field or strain as follows: 4 dρ/dH,5 d2ρ/dH2, � and ◦ d2ρ/dε2

xx, � d2ρ/dT 2

and 4 peaks in χ′. Open symbols are from measurements of the longitudinal resistivity and closed
symbols the transverse resistivity. The shaded surfaces are guides to the eye only. The region encloses
both the A and B phases with the boundary between them H2 drawn with

4

symbols only while it
can be identified from the corresponding feature in d2ρ/dH2. The solid lower bounding lines are H1
and H3.

Grigera et al. [180] the field defining the entry to the phase, H1,
coincides with a maximum in dρ/dH, the same field as that at
which the peak in susceptibility is seen. Here I make the assertion
that the transition between the A and B phase, H2, and the upper
line of the B phase, H3, can be identified by peaks in the second
derivative d2ρ/dH2, i.e. where the slope of the magnetoresistance
changes. Both the first and second derivatives of an example
magnetoresistance curve are shown in figure C.1 in the appendix
along with the identified fields H1, H2 and H3. The accumulation
of all these points is presented as an empirical phase diagram in
figures 4.37 and 4.36.

4.4.5 Discussion
The measurements presented here reveal the rather complex de-
velopment of the novel phase of Sr3Ru2O7 with strain. As with
small in-plane magnetic fields, small orthorhombic lattice distor-
tion also reveals the large susceptibility of magnetotransport to
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Fig. 4.38: Phase diagram of a two-
component vector order parameter.
The Landau free energy for a two-
component order parameter, where
each component is C2 symmetric.
The phase diagram of temperature
(T ) against h, a C2 symmetric field,
shows (A) a bicritical point (BP)
when uaub < u2

ab and (B) a tetra-
critical point (TP) when uaub > u2

ab.
The double line marks a first-order
transition, all other transition lines
are second-order. Reproduced from
[243].
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C2-symmetric fields. The complex nature of the novel phase is not
understood theoretically to date, and as such an in-depth analysis
of the influence of strain on all aspects of the phase is not yet
manageable. There are however some key points we can draw from
these measurements and these should be useful for constraining
further theoretical investigations.

The first question we address is the symmetry of the novel phase.
It was suspected that much of the unusual behaviour observed in
magnetotransport could be explained by domains of spontaneous
C2-symmetric order. The 100 % increase in resistivity as the phase
is entered suggests an additional scattering channel which could
be domain walls, additionally small in-plane fields induce a strong
resistive anisotropy suggesting reorientation of either the order or
domain walls. However, despite detailed investigations searching
for definitive signatures of domains and domain wall movement, no
conclusive evidence has been discovered. In light of the new results
from uniaxial pressure tuning we now also discuss the possibility
of a ground state with a large albeit finite susceptibility towards
C2-symmetry and overall C4-symmetry. In terms of a Landau free
energy for a multicomponent order parameter, say x- and y-oriented
density waves, we are asking the question of whether the two com-
ponents can microscopically coexist or whether the development
of one precludes the condensation of the other, thus resulting in a
lowering of rotational symmetry of the ground state. The Landau
free energy for the two scenarios is shown in figure 4.38. When the
prefactors satisfy uaub < u2

ab, a first order phase transition sepa-
rates the states of orthogonal polarisation and at zero C2-symmetry
breaking field, i.e. strain or in-plane field, domains of both polari-
sations are expected. When uaub > u2

ab, the two order parameters
are not in direct competition and they can microscopically coexist
over a region of applied C2-symmetry breaking field.

It is not clear from the neutron scattering work whether the
scattering peaks that correspond to orthogonally oriented spin
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density waves arise from separate domains of a single density wave or
from their microscopic coexistence. Thermodynamic measurements
establish some form of symmetry breaking through the second-order
roof of the phase [180,244,245] but this could be the translational
symmetry breaking of the density waves or the possible lowering of
rotational symmetry C4 to C2, or both.

The results that put the strongest constrains on possible domain
formation are from a series of resistivity measurements in a fully
rotatable vector magnetic field by Bruin and Borzi [199,237]. The
vector magnet’s unique capabilities allow both the field orientation
and strength to be changed precisely and smoothly without, for
instance, affecting the sample temperature. By rotating the in-
plane field slowly through 90° they could follow how the hard and
easy transport axes are exchanged. In the scenario of domains
the naive expectation is a sharp jump in the resistance as the
orientation of the order flips when the field is rotated. It was found,
however, that the in-plane resistances vary smoothly as the field
direction is rotated. If there were many small domains one might
expect a series of much smaller steps, however, no such jumps or
excess noise from domain reorientation were resolvable at all above
the background noise level of the measurements.

If domain reorientation were also responsible for the large C2-
symmetric susceptibility, hysteresis might be expected when the
applied field is varied. To test for this Bruin and Borzi started
with the field applied along the sample’s c-axis and then rotated
the field far enough off axis to exit phase and then re-enter with
the strongest possible in-plane field. In their measurements they
could not resolve any hysteresis and the same conclusion was made
when comparing clockwise and anticlockwise field rotations. They
observed that when the magnetic field is tilted off axis there is still
a region of overlap where both ρa and ρb are enhanced and this
region extends out to at least 1.7 T.

In the uniaxial pressure measurements presented here there is
also an absence of hysteresis at small strains when crossing from the
regions of enhanced longitudinal to transverse resistance and vice
versa. The large overlap in strain of both enhanced longitudinal to
transverse resistance is also clear. In both these measurements the
region of phase formation was repeatedly entered and exited in the
presence of non-zero C2 field. Approaching the phase in this way
should mean that any domain formation is at or at least very close
to its ground state configuration with respect to the applied C2
field. This means that for the resistive properties of Sr3Ru2O7 to
still be explainable in terms of domains, the formation of domains
must be energetically favourable up to at least the upper limits of
the overlap regions; ∼1.7 T for in-plane field and ∼0.08 % strain.
Given that the associated lattice distortion in the presence of an
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in-plane field component is only ∼4·10−6 [246] and the size of the
largest metamagnetic jump is only 0.008 T [244], domain formation
stabilised by long-range elastic or magnetic interactions up to the
required limits seems naively rather unlikely. Disorder could extend
the region of domain formation, be it from local sample defects or
inhomogeneously applied strain, but the observed broadening of
the transitions is not more than the width of the overlap region.
The data do not appear like they could be the result of a disorder
broadened transition at zero C2 field but rather it seems more likely
there is a real transition at a small but finite C2 field.

The key point of the discussion so far is that any domains must
result in extremely weak hysteresis, below the resolution of the mea-
surements, but if domains are the origin of the large C2-symmetric
susceptibility they must also be robust against substantial C2 fields.
In general these requirements will not be satisfied simultaneously
and the data seem to suggest that the measured resistivity is intrin-
sic to the phase. If this is the case then the data is most naturally
explained by a multi-component order parameter with microscopic
coexistence of [100]- and [010]-oriented components at low applied
C2 fields.

The close connection between the intensity of spin density wave
scattering peaks in neutron scattering and the resistivity adds some
validity to this interpretation and suggests the two components
of the order parameter are associated with the orthogonal spin
density waves. Their microscopic coexistence could take on many
forms. The simplest would be when both orthogonal density waves
coexist within each layer but the two components could also exist
spatially separated with the direction of the density wave rotating
90° between the layers within each bilayer or between the bilayers
themselves.

Even though spontaneous C2-symmetry breaking now seems
unlikely the particularly large susceptibility of the C4-symmetric
ground state to C2-symmetric fields is striking and deserves further
investigation. It may be a result of fine-tuning or only weakly
stabilised density waves but this is an interesting avenue for further
measurements.

After excluding domains, explaining the origin of the resistive
enhancement remains a considerable challenge. At high strains the
ratio of the resistivity along the hard and easy axes is ∼2.5. This
is particularly large. For comparison, in another spin-density wave
system, elemental chromium, a three-dimensional spin-density wave
induces a maximum resistive anisotropy of only 8 % [247,248]. In Cr,
a spin density wave matching a nesting vector of the Fermi surface
opens a gap on those parts of the Fermi surface, but in Sr3Ru2O7,
a multiband material, the number of states that must be gapped
away to realise the large resistive anisotropy seems unrealistic.
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Thermodynamic measurements also show that the entropy and
specific heat are highest in the region of phase formation, directly
arguing against widespread gapping. To further our understanding
of Sr3Ru2O7 it is of great importance to determining the origin of
the large changes in resistivity and this should be a key focus for
future investigations.

The addition of magnetic measurements allowed me to measure
the influence of strain on the metamagnetic quantum criticality
directly. Pressure along the c-axis is known to rapidly suppress
the transition fields but these measurements show the effect of
in-plane pressure is much weaker. Simultaneous measurements of
the resistivity and susceptibility confirm that the onset of enhanced
resistivity under strain tracks the metamagnetic transition, and
that the phase is still bounded by a metamagnetic transition, at
least on the low field side. In-plane strain lowers the field of the
metamagnetic transition at ∼7.8 T at a maximum rate of 1.6 T/%,
something of the order of 1 T/GPa. It is suspected that the
metamagnetism is related to a Van Hove singularity in close enough
proximity to the Fermi surface that can be reached by the Zeeman
splitting of an ∼8 T field. Since the metamagnetic fields change
very little under strain, the effect of in-plane anisotropic strain on
the part of the Fermi surface close the Van Hove singularity must
be weak, or else a vastly different metamagnetic field might be
expected.

The positions of the susceptibility peak and the onset of en-
hanced resistivity track together well under strain but there is no
good connection between the strength of the peak in χ and the
magnitude of the resistivity enhancement. The susceptibility peak,
which relates to some q=0 physics, becomes weaker with strain, by
either measure of its height or area, whereas the enhancement in ρ
increases. It is often assumed that the metamagnetism in Sr3Ru2O7
is associated with a peak in the density of states that can satisfy
the Stoner criterion once sampled by the Zeeman splitting of an
applied field. If the peak in the density of states occurs along the
x- and y-directions in the band structure, anisotropic strain could
naturally lead to a weakening of the associated metamagnetism.
Under the application of anisotropic strain the bandwidth would
increase along one direction and decrease along the perpendicular
direction, changing the energy of the peaks in the density of states.
Under applied field the density of states at the Fermi energy would
therefore peak at a different energies due to the now non-equivalent
peaks along the x- and y-directions. Depending on the strength
of the peaks two scenarios can be imagined. If neither peak alone
provides a strong enough divergence of the density of states the
Stoner criterion may only remain satisfied at low strain while there
is a large enough overlap from both peaks and at higher strains
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the metamagnetism might then be expected to reduce to a smooth
crossover. If, however, the peaks are strong enough alone to satisfy
the Stoner criterion metamagnetism at two separate fields might
be expected, but each smaller in magnitude than at zero strain. To
address these scenarios in any more detail better knowledge of the
band structure and how it changes under both applied field and
strain would be necessary.

In Sr3Ru2O7 the physical property that shows the most dra-
matic change is the resistivity. In spite of this, the new phases/phase
transitions that appear or disappear with strain and magnetic field
all lead to a resistivity of very similar order of magnitude. Either
this implies only small changes to the Fermi surface are ever being
induced, or that the mechanism by which the resistivity is being
increases is always the same.

4.5 Conclusions
In this work I have applied in-plane uniaxial stress to Sr3Ru2O7,
reaching more than a factor of two higher strain than that in
the previous study. Additionally, by significantly improving the
resolution of magnetic susceptibility measurements under strain, I
could measure the magnetic response directly, simultaneously with
resistivity.

The strong susceptibility of the novel phase to in-plane magnetic
fields is also found for in-plane anisotropic strain. The magnetic
susceptibility measurements show that the novel phase under strain
is still bounded by a metamagnetic transition, at least on the low
field side. The entrance to the phase, H1, moves to lower fields
with either compression or tension but at high compression the
signature of the metamagnetic transition in susceptibility loses
definition. This occurs at a similar strain to that at which the
jump in resistivity at the entrance to the novel phase also starts to
broaden more rapidly. At the highest strains measured in this work,
the region of enhanced resistivity covers almost the entire measured
field window from 7 T to 10 T and more detailed structure also
appears to develop.

Close to zero strain we can identify a clear region of overlap
where both the longitudinal and transverse resistivity are enhanced.
The extent of this region puts strong bounds on the energetics of
any possible domain formation. In addition, with the absence of
any hysteresis at low strains, the phase diagram that these uniaxial
pressure measurements reveal is most easily explained by a state
that does not involve any spontaneous symmetry reduction and
rather only a large but finite susceptibility to in-plane symmetry
breaking fields.

These measurements show the importance of using external
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probes to selectively break underlying symmetries when investigat-
ing novel physics, and these techniques should be applicable to a
wide range of other materials. The evidence against spontaneous
symmetry breaking in Sr3Ru2O7 also strongly motivates the need
for a better understanding of the origin of the resistive enhancement
in the region of novel phase formation, something that will be of
paramount importance for future investigations of Sr3Ru2O7. Com-
pleting the phase diagram in the rest of field-temperature-strain
space would be a formidable task but some select cuts may prove
to be useful, for instance to investigate the resistivity temperature
exponent at high compression and tension in more detail. The
combination of both vector-magnetic field and uniaxial stress si-
multaneously may also provide important information of how these
two symmetry breaking fields compete or interact, and whether
they have the same underlying effect on the novel phase.





5Conclusions and
Outlook
I hope that during the course of this thesis I have demonstrated
that the new uniaxial stress technique that I describe is now coming
out of its infancy. The first successful adaptation of the device by
another group has now been reported, and used by Stern et al. [249]
to study SmB6 under strain. I know that a number of other groups
world-wide are also working on implementing the technique, and
versions of the Hicks design are now being sold commercially by
Razorbill Instruments.

I would like to conclude by summarising how the uniaxial stress
technique has developed and what I envision for the future; what
physics it can help tackle and some key directions for further techni-
cal development. For the scientific conclusions regarding Sr2RuO4
and Sr3Ru2O7, the reader is referred back to the conclusions at the
end of each of the respective chapters.

The work in this thesis has hopefully demonstrated that the
device as it stands now is already a powerful tool for condensed
matter physics research. Two of its key uses have been demon-
strated; its brute force is useful for Van Hove singularity tuning,
and its fine precision is useful for controlled symmetry breaking.
I would like to reiterate once more the significance of the energy
changes possible with this technique. We are now quite routinely
able to reach strains of 1 %, but to put it in perspective it is useful
to compare to more common energy scales. Roughly, one can say
that a strain of 1 % can change the Fermi level by approximately
1 % of the band width. For Sr2RuO4 the band width of the γ band
along the [100] direction is ∼3 eV, so a 1 % change of strain along
the [100] direction is equivalent to a temperature change of ∼300 K
or the Zeeman splitting from a magnetic field of ∼600 T.

I have looked mainly at ruthenates using both resistivity and
magnetic susceptibility but this uniaxial stress technique is applica-
ble in principle to a far wider range of materials and experimental
techniques. As outlined in chapter 2, techniques such as heat ca-
pacity, thermal conductivity, Seebeck and Nernst effect, nuclear
magnetic resonance (NMR), and many more, are all in principle
possible. Additionally, since the upper face of the sample remains
exposed, even techniques like angle-resolved photoemission spec-
troscopy (ARPES) and scanning tunnelling microscopy (STM) may
be possible. Even if experiment specific restraints impose a smaller
strain range, quite significant changes have still been demonstrated
at lower strains, and integrating these techniques with uniaxial
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stress will open up a whole host of new experimental possibilities.
Much novel physics will benefit from the new perspective of

uniaxial stress. For example, in the high temperature cuprate
superconductors the proximity of a Van Hove singularity to the
Fermi level is well-established [250–253]. If possible, tuning through
this Van Hove singularity with uniaxial pressure may provide a
novel way to explore the phase diagram with more control and
less disorder than chemical doping. Uniaxial pressure may also
be useful for more direct investigations into the superconductivity
and competing instabilities. It is well-established in certain regions
of the phase diagram that charge order is stabilised [254, 255],
and nematic fluctuations are reported in certain regions of the
phase diagram too [256, 226, 257]. Both these phenomena may
have a strong coupling to uniaxial pressure and thus could reveal
further insights into the cuprates. For example, in rare-earth doped
La2−xSrxCuO4, a system with an analogous stripe phase to x=1/8
doped La2−xBaxCuO4, uniaxial pressure applied at a 45° to the
Cu-O-Cu bond direction has been demonstrated to rapidly enhance
Tc by almost a factor of 2, and was attributed to a suppression of
the competition with stripe ordering [42,258].

Many other novel superconductors would also be suitable for
uniaxial stress measurements. The multiple superconducting phases
of UPt3 are known to respond differently and anisotropically under
uniaxial stress [259–261]. A reinvestigation with higher homo-
geneity, precision and range could be quite fruitful. So too could
investigations on another possible time-reversal symmetry-breaking
superconductor PrOs4Sb12 [262], and on the strongly nematic iron-
based superconductors [227,56].

Other puzzles such as the hidden order parameter in URu2Si2
might also be amenable to study under high uniaxial pressure, but
hopefully this technique can find uses across a far wider range of
fields than the quite closely related examples suggested here.

As already discussed, we are now routinely capable of reaching
1 % level strains. The yield strain of some materials, however, can
be much higher still and a key direction for future developments
will be to see how much higher we can push this. Single crystal
silicon and several other silicon containing ceramics have yield
strains greater than 3 % [263] and ab initio calculations for pristine
silicon nitride suggest this could even be in excess of 10 % for higher
purity samples [264]. As part of this development process, two key
aspects should be the development of controlled stress rather than
controlled strain devices and miniaturisation.

Currently the largest uncertainty in determining the sample
strain comes from the epoxy. This rather imprecise strain scale
means it is not possible to compare subtle differences between many
samples. In a device where stress rather than strain is applied and
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controlled, the relatively softer epoxy does not hinder the accuracy,
since all the force applied to the epoxy must also be transmitted
through the sample. Controlling the applied stress is beneficial for
other reasons too. It simplifies identifying zero strain and eliminates
the complications that arise from differential thermal expansion in
the controlled strain devices. Additionally the range of materials
that can be measured is expanded. Materials which undergo struc-
tural changes involving a large change in lattice constant between
the mounting temperature and measuring temperature would now
be suitable for study, avoiding the complications that could arise
when the sample length is held constant in a controlled strain
device.

For a truly controlled stress device the spring constant of the
device must be lower than that of the sample. Inherently this
requires the device to produce a much larger displacement in order
to apply the force to the sample, for instance, by pushing on one
end of a soft spring. To facilitate this a purely mechanical solution
may be needed or perhaps some form of mechanical amplification
for the piezo actuators.

Miniaturisation would also be useful on many fronts. Currently
there are rather stringent requirements on sample size, with a min-
imum sample length of approximately 1 mm. For many interesting
samples it is simply not possible to grow samples big enough for
this method and routes to expand the capability, for instance by
mounting samples to a platform that is then strained, should be
explored. The upper limits of strain will also be limited by the
quality of the sample’s surface. Currently all samples are prepared
with mechanical cutting and polishing but more pristine surfaces
and geometries may be possible using new fabrication techniques
such as xenon plasma or liquid gallium focused ion beam milling.
However, restrictions on reasonable cutting time limit the overall
size of samples that can be prepared in this way. In the current
device the achievable strain range is also limited by the strength of
the epoxy holding the sample between the sample plates. By reduc-
ing the thickness of the sample, the force required and therefore
the shear stress in the epoxy can also be reduced. However, the
length of the sample must also be reduced proportionally for the
same buckling limit to be maintained. The highest ultimate strain
may therefore come by utilising a combination of these ideas.

Overall we are still at an early stage in terms of the expected
development of the uniaxial pressure technique, and there is still
plenty of room for advancement as well as exciting opportunities
for measurements to come. I hope then that the work presented
in this thesis provides strong motivation for tackling these new
challenges and experimental frontiers.
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Appendix A

Details of the Dual End Current
Source with Active Common-Mode
Rejection
Common-mode voltage present on both measurement leads of a
differential four point resistance measurement can lead to signifi-
cant offset errors if the common-mode voltage exceeds the level at
which the preamplifier or lock-in amplifier can successfully reject it.
Typically preamplifiers can be sourced with common-mode rejec-
tion ratios (CMRR) up to 100–120 dB, but if the common-mode
ratio is larger than this, which can happen with very conductive
samples and long resistive wiring in a cryostat, the common-mode
voltage itself must be reduced before a reliable measurement can
be achieved. This is a known problem and companies like Lake
Shore Cryotronics, Inc. and Quantum Design, Inc. incorporate
symmetrical current sources in some of their products to reduce
common-mode voltages and allow smaller resistances to be mea-
sured behind long resistive wires [265, 266]. The current source
built for this set of measurements follows most closely the imple-
mentation from Lake Shore Cryotronics, Inc. in their model 370
and 372 resistance bridges, but with a few key modifications. As
well as reducing common-mode voltage, a balanced current source
also helps to reduce the effects of a noisy environment capacitively
coupled to the current leads. By providing equal impedances to
ground at both ends of the sample, the common-mode noise is not
converted to differential noise as occurs with a single ended source.
This is actually one of the main reasons why dual end current
sources are incorporated into many commercial devices. In the
following section I will introduce how the common-mode problem
can appear, and then show the necessary steps to reduce it, before
coming to our final implementation of the current source.

Lock-in amplifiers typically provide a sinusoidal output voltage
at their reference frequency. Models like the SR830 from Stanford
Research can also provide a few tens of milliamps on this output
so, in combination with a shunt resistor, this output can be used
directly as a current source for a grounded load. If the shunt resistor
is chosen to be of much higher resistance than that of the sample
plus wiring, the current through the sample is approximately the
ratio of the output voltage and the shunt’s resistance. A spare
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lock-in amplifier or AC voltmeter can also be used to measure
the voltage drop across the shunt and calculate the current more
accurately. An improvement is to use a dedicated current source
rather than voltage source plus shunt. An example that can still
be driven from the sinusoidal voltage reference of the lock-in is the
modified Howland bipolarity current source-sink from Horowitz
and Hill p.230 [267], see figure A.1. However, when using any single
ended current source to drive a grounded load there is always a
common-mode voltage present at the voltage contacts of a four
point resistance measurement. The common-mode voltage depends
on the resistance to ground of the return current path, Vcm =
1
2 (V+ + V−) ≈ I(Rlead + Rsample/2). The voltage measured in
an ideal four point resistance measurement depends only on the
sample’s resistance but the output of a real differential amplifier is
better described by

Vout = G(V+ − V−) + G

CMRR
1
2(V+ + V−) , (A.1)

where G is the differential gain of the amplifier and CMRR the
common-mode rejection ratio of the amplifier, normally expressed
in decibels. A common-mode signal of 100 mV is only cancelled to
1 part in 105 by a preamplifier with a CMRR of 100 dB and so it
appears as if there is still a 1 µV differential signal at the input.

A better current source can be made by taking two of the

A
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R0 R0

−

+
1

R1

−

+

2
R0 R0

Iout

V+ V−
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Iout = Vac
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V C
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1
2 (V− + V+)
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Fig. A.1: A modified Howland bipolarity current source-sink. A. Circuit diagram for a single
ended voltage to current converter for driving a grounded load. B and C. In a four point resistance
measurement with long resistive wires in the cryostat, the large lead resistance to ground produces a
large common-mode voltage in addition to the normal sample voltage drop.
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modified Howland current sources, inverting the input voltage
for one of them, and joining their outputs together through the
sample. Each half of the current source still provides the full current
output but with opposite sign. This centres the load between the
two current sources/sinks but a feedback mechanism must also be
incorporated to keep the current sources centred around ground,
reducing any DC offset at the sample. The average DC voltage at
the output of the current sourcing op-amps can be calculated by
two slow integrators and then fed back to the non-inverting inputs
of each of the op-amps, driving the output back towards ground.

In the ideal case, when the two halves are identical, the load
remains centred between the two current sources. However, if the
sample is not exactly the centre of the load, i.e. the current leads or
contacts have unequal resistance, or if the two halves of the current
source are not strictly identical then there will still be a small
but finite common-mode voltage in the measurement. Our current
source can sense this common-mode voltage and it uses additional
active feedback to drive this back towards zero. We sense the
common-mode voltage directly between two of the voltage contacts
of the four point resistance measurement. This ensures that exactly
the central point of the sample is held at ground, not the central
point of the wires plus contacts and sample which would be the
case if the current contacts were used instead. The common-mode
voltage is first amplified and then used as the reference point for
the two integrators. Feeding back in this way causes each half of
the current source to move in an opposite direction when there is
a common-mode voltage present, thus driving the common-mode
voltage back towards zero.

A simplified circuit diagram is pictured in figure A.2. The
complete design includes a few additional features to expand its
functionality and I will describe them here. The output current is
set by the combination of the input voltage and the resistor R. So
that currents over many orders of magnitude can be sourced using
the same 0–5 V reference from a lock-in amplifier, a switch was
included to select R from a range of resistors providing currents
from <100 nA to ∼20 mA at frequencies between ∼10 Hz and
∼10 kHz. The active common-mode rejection can also be disabled
so that the current source can still be used to drive a grounded load.
With the common-mode rejection disabled, each side of the current
source can operated independently. The final modification allows
switching of the common-mode feedback from the voltage leads to
the current leads. The inverting-inputs of the second op-amps in
each of the modified Howland current sources are summed to give
the common-mode voltage. This provides a further option in case
the feedback mechanism influences the phase sensitive measurement
or the voltage contacts cannot be easily accessed.
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Appendix B

Supplementary Materials for Sr2RuO4
Under Strain
In the main body of this thesis most of the experimental results
presented were from one sample, namely sample 3, to avoid un-
wanted repetition of essentially similar results. For completeness
the remaining data sets from the first two samples are presented in
this appendix.

To begin with, the susceptibility data for samples 1 and 2 at
a series of strains is presented in figures B.1 and B.2. Figure B.3

Fig. B.1: Susceptibility against
temperature. Real part of the sus-
ceptibility χ for sample 1 against
temperature. A Strains below the
peak Tc, B above the peak. No nor-
malisation or offsets are applied to
the curves. The y axis is the mutual
inductance between the two coils of
the susceptibility sensor.

50

52

54

56

58

0.
00

%

εxx:

−0
.1

8
%

−0
.3

0
%

−0
.38

%
−0

.41
%

−0
.45

%

−0.47 %
−0.48 %
−0.51 %

A

M
(n

H
)

1 2 3 4
50

52

54

56

58

−0.51 %
−0.53 %
−0.55 %

εxx:

−0
.5

8
%

−0
.6

2
%

−0
.65

%

−0.6
8 %

B

Temperature (K)

M
(n

H
)



176 Supplementary Materials for Sr2RuO4 Under Strain

Fig. B.2: Susceptibility against
temperature. Real part of the sus-
ceptibility χ for sample 2 against
temperature. A Strains below the
peak Tc, B above the peak. No nor-
malisation or offsets are applied to
the curves. The y axis is the mutual
inductance between the two coils of
the susceptibility sensor.
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Fig. B.3: Susceptibility measured
at the peak in Tc at various applied
fields H ‖ c. Real part of the sus-
ceptibility χ measured as the tem-
perature is swept up and down for
sample 2. The y axis is the mutual
inductance between the two coils of
the susceptibility sensor. The field
was incremented at the bottom of
each temperature ramp, in the su-
perconducting phase. This disrupts
the vortex lattice and is responsible
for the apparent hysteresis.

1 2 3 450

52

54

56

58 0.
00

T
0.

02
T

0.
04

T

0.
08

T

0.
16

T

0.
25

T

0.
35

T

0.
45

T

0.
55

T

0.
65

T

0.
75

T
0.

80
T

µ
0
H

Temperature (K)

M
(n

H
)



177

shows the susceptibility measurements made at the peak in Tc for
sample 2 with various c-axis applied fields used for determining
Hc2‖c(T ) presented in the main text in figure 3.28.

The resistivity measurements on sample 2 are presented in full
in figure B.4 and as a colour map of the logarithmic derivative with
respect to temperature in figure B.5, highlighting the change in tem-
perature exponent. Figure B.6 shows the Hall effect measurements
on sample 2.

Fig. B.4: Resistivity against tem-
perature. A Longitudinal resistivity
against temperature at strains below
the peak in resistivity for sample 2.
The inset shows the resistivity plot-
ted against T 2 at zero strain, high-
lighting the Fermi liquid behaviour
with a straight line as a guide to
the eye, and for the strain where
the lowest temperature exponent is
observed. B At strains above the
maximum in the resistivity, T 2 be-
haviour is recovered at high com-
pression. The inset shows the larger
extent of the T 2 region for the high-
est strain measured.
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Fig. B.5: Resistivity temperature
exponent. The resistivity exponent,
α, for sample 2 plotted against tem-
perature and strain. ρ0 was first ex-
tracted from fits of the type ρ =
ρ0 + ATα and then α was calcu-
lated as a function of temperature
by d ln(ρ− ρ0)/d lnT . The figure is
cut off below 4 K, due to percolat-
ing superconducting paths that can
affect the resistivity strongly.
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Fig. B.6: Hall Effect. A Hall effect
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B.1 Resistivity temperature exponent
analysis

As noted in the main text, we are in the unique situation of be-
ing able to tune continuously through a Lifshitz transition in a
multiband and exquisitely clean system. To see how much physical
significance can be assigned to the changes in the temperature
dependence of the resistivity, it is worthwhile examining the quality
of the fit used for extracting the exponent presented in figure 3.36.
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Fig. B.7: Resistivity fitting. Two fits
to the temperature dependence of the
resistivity at −0.49 % strain, see text
for discussion. The colour coding is the
same for all panels.

Figure B.7 shows a fit of the form a+ bT c through the data in
the range 4 to 12 K at −0.49 % strain. The fit rapidly deviates
from the data above ∼10 K but even below 10 K the residual plot
indicates that the trial form is not a satisfactory fit. The green
trace in figure B.7C seems to deviate systematically from zero by
more than its random error.

A better fit can be achieved by adding a parallel conducting
channel with a fixed T 2 temperature dependence. The now larger
number of fitting parameters quite rightly produces a better fit,
but to determine if this is physically conceivable a few consistency
checks can be carried out. The Lifshitz transition opens up the γ
sheet whereas the shape of the α and β bands are mostly unaffected
by the applied strain. If there is complete decoupling of the three
bands the relative weight that each band adds to the conductiv-
ity must be consistent. At zero strain a simple estimate for the
conductivity contributed by each band can be calculated from the
Fermi surface properties. In the limit of isotropic scattering time
τ , the conductivity for a circular Fermi surface is proportional to
τk2

F/m
∗. Making this assumption for Sr2RuO4, the γ band should

carry ∼30 % of the total conductivity. The conductivity could then
decrease by only as much as ∼30 % and the resistivity increase
by as much as 1/0.7 ∼ 40 %. This is at the low end of what was
observed, see figure 3.34, but in an isotropic scattering length ap-
proximation, applicable at very low temperatures, the conductivity
is proportional to `kF and a larger change could be expected, as
much as an 80 % increase in the resistivity.

As well as the overall resistivity enhancement being affected by
the weight each band contributes to the resistivity in an idealised
completely decoupled picture, the temperature dependence of the
resistivity captured by the extended fitting function with one T 2

term and one free power should match with the relative weights
of each band. Although the fit is much better with this extended
function, the fitting parameters for the two halves of the fit are not
consistent with the overall resistivity enhancement discussed above,
and a better explanation for the systematic deviations of the first
fit comes from considering the influence of strain inhomogeneity.

Strain inhomogeneity can arise for instance through imperfec-
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tions in the sample mounting which can cause the sample to bend
once strained, therefore creating a strain gradient through the sam-
ple. With a range of strains present throughout the thickness of
the sample any sharp features, such as the lowest power reached at
the Lifshitz transition, will be rounded out. A qualitative analysis
of this effect can be seen in a rudimentary simulation.
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Fig. B.8: Simulation for the effect of
strain inhomogeneity. A and B. Sim-
ulation results for the effect of strain
inhomogeneity on the measured resis-
tivity as discussed in the text. The trial
functions A(ε) and α(ε) are used to cal-
culate the resistivity of a sample with
a Gaussian strain distribution centred
at the nominally applied strain with a
FHWM that depends on the applied
strain as (0.05 % + 0.2εapplied). The
open circles are the values extracted
from the measured resistivity curves,
the purple curve the assumed intrinsic
resistivity, and the blue curve the re-
sult after inhomogeneity broadening. C.
The simulated data at −0.49 % strain
and the residual once refitted with a
a+ bT c fit.

Making the simplest assumption about the strain inhomogeneity
variation we can look at an example where the strain only varies
over the thickness of the sample but not across its width or length
and the variation over the thickness is described by a Gaussian
distribution centred at the nominally applied strain. The measured
resistance for a sample with this strain distribution is given by the
integral over the strain distribution with the resistivities added in
parallel

1
R(ε, T ) = wt

L

∞∫

−∞

f(x|ε, σ) dx

ρ(x, T ) . (B.1)

Here f(x|ε, σ) is a Gaussian distribution with mean ε and standard
deviation σ setting the level of strain inhomogeneity. ρ(ε, T ) is the
intrinsic resistivity at a strain of ε and temperature T . Some as-
sumption must be made about how the intrinsic resistivity changes
with strain. Here we pick the form

ρ(ε, T ) = ρ0 +A(ε)Tα(ε) (B.2)

not based particularly on any physical reasoning but a useful exam-
ple and one that is simple to calculate. A(ε) and α(ε) are two trial
functions that are picked by hand to make the broadened result
match the measured data. In figure B.8 A and B they are the two
dashed purple curves. The result of this calculation once refitted
with a a+ bT c fit shows quite a similar systematic deviation of the
residual around zero to that seen in the data.

Since already the most simple assumptions about the strain
inhomogeneity variation can reproduce qualitative similar discrep-
ancies when trying to fit the exponent, it seems that it could at least
be possible that this, or some other slightly more complicated strain
variation, could be affecting the measurements, and complicating
the extraction of the real exponent.

This analysis suggests that the observed power is only an up-
per limit on the real power which could only be observed if true
homogeneity is achieved. It is difficult to infer exactly how much
lower the power might be without a quantitative measure of the
inhomogeneity. A trial form with a much lower power but subject to
a larger inhomogeneity could produce qualitatively similar results
to a higher power with lower sample inhomogeneity. The suggested
inhomogeneity from the width of the susceptibility curves implies
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the inhomogeneity could be as large as 20 %, but probably not
all accountable to a depth variation of strain. Using this level
of inhomogeneity and the trial forms for A(ε) and α(ε) shown in
figure B.8, a temperature exponent as low as 1.4 is still consistent
with the measured results. Therefore, because of the presence of
these uncertainties, at present I do not believe that we can put an
uncertainty better than 0.1 on the exponent close to the suspected
Lifshitz transition.

Strain inhomogeneity may also account for some of the dis-
crepancy between the resistivity and Tc peaks, see figure 3.35.
The resistivity measurement is an average over the whole sample
whereas the susceptibility measurement can be influenced by the
exact nature of the inhomogeneity. If for instance the top part of
the sample close to the coil has a higher Tc than the bulk, then
this part of the sample will screen the magnetic field from the rest
of the sample and will lead to a higher Tc measurement than the
average Tc. In future local probe techniques and better characteri-
sation of the devices will be useful for quantifying the amount of
inhomogeneity actually introduced by the device when straining
the sample.





Appendix C

Phase boundaries from the
derivatives of resistivity in Sr3Ru2O7
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Fig. C.1: Phase boundaries from field ramps. A method for identifying the boundaries of the A and
B phases from magnetoresistance measurements. H1, the entrance to the A phase, is identified with the
maximum slope of the magnetoresistance, i.e. a peak in the first derivative as introduced by Grigera et
al. [180]. Transitions H2 and H3 are identified by changes in slope of the magnetoresistance, i.e. a peak
in the second derivative.
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Fig. C.2: Phase boundaries from temperature and strain ramps. A The transition into the A phase
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AC susceptibility coils simulation
1 function Signal=ACSusceptibilitySimulation(ExcitationCoils,IExcitation,IFreq,PickupCoils,X,Y,Z,Chi)
2 %ACSUSCEPTIBILITYSIMULATION Susceptibility signal simulation
3 % This simulation returns two voltages: one the voltage induced across
4 % the pick-up coil of the susceptibility setup due to the sample in the
5 % presence of an oscillating magnetic field from the excitation coils and
6 % secondly the voltage due to only the mutual inductance between the
7 % excitation and pick-up coils, the empty coils background signal.
8 %
9 % Input parameters:
10 % ExcitationCoils: Cell of position, size and orientation of excitation
11 % coils in meters
12 % Position Radius Orientation (coil normal)
13 % { [x,y,z], r, [nx,ny,nz];
14 % [x,y,z], r, [nx,ny,nz];
15 % ... }
16 %
17 % IExcitation: Excitation coil current in Amperes
18 %
19 % IFreq: Excitation frequency in Hertz
20 %
21 % PickupCoils: Cell of position, size and orientation of pickup
22 % coils in meters
23 % Position Radius Orientation (coil normal)
24 % { [x,y,z], r, [nx,ny,nz];
25 % [x,y,z], r, [nx,ny,nz];
26 % ... }
27 %
28 % X,Y, Z: Mesh grid of the sample elements in meters
29 %
30 % Chi: Dimensionless volume susceptibility of the sample
31
32 muzero=4*pi()*1e-7; % H/m
33
34 Voltage=0;
35
36 % Loop over the size of the sample
37 for i=1:(size(X,1)-1)
38 for j=1:(size(X,2)-1)
39 for k=1:(size(X,3)-1)
40 % Find centre of this element
41 Xcentre=0.5*(X(i,j,k)+X(i+1,j+1,k+1));
42 Ycentre=0.5*(Y(i,j,k)+Y(i+1,j+1,k+1));
43 Zcentre=0.5*(Z(i,j,k)+Z(i+1,j+1,k+1));
44
45 % Find the volume of this element
46 V=(X(i+1,j+1,k+1)-X(i,j,k))*(Y(i+1,j+1,k+1)-Y(i,j,k))*(Z(i+1,j+1,k+1)-Z(i,j,k));
47
48 % Find the field from the excitation coils at the centre of
49 % this element
50 BExcitation=zeros(1,3);
51 for e=1:size(ExcitationCoils,1)
52 % Distance between element and coil
53 XSep=Xcentre-ExcitationCoils{e,1}(1);
54 YSep=Ycentre-ExcitationCoils{e,1}(2);
55 ZSep=Zcentre-ExcitationCoils{e,1}(3);
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56
57 % Rotate so z-axis is along the coil normal to calculate
58 % the field
59 Orientation=ExcitationCoils{e,3}/norm(ExcitationCoils{e,3});
60 Theta=acos(Orientation(3));
61 RotationAxis=cross(Orientation,[0 0 1]);
62
63 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);
64
65 B=coilField(ExcitationCoils{e,2},IExcitation,R(1),R(2),R(3));
66
67 % Rotate field back to sample orientation
68 BExcitation=BExcitation+rodriguesRotation(B,RotationAxis,-Theta);
69 end
70
71 % Magnetisation of this element
72 M=Chi*BExcitation/muzero;
73
74 % Find the field from each of the pickup coils at the centre of
75 % this element
76 for p=1:size(PickupCoils,1)
77 % Distance between element and coil
78 XSep=Xcentre-PickupCoils{e,1}(1);
79 YSep=Ycentre-PickupCoils{e,1}(2);
80 ZSep=Zcentre-PickupCoils{e,1}(3);
81
82 % Rotate so z-axis is along the coil normal to calculate
83 % the field
84 Orientation=PickupCoils{e,3}/norm(PickupCoils{e,3});
85 Theta=acos(Orientation(3));
86 RotationAxis=cross(Orientation,[0 0 1]);
87
88 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);
89
90 B=coilField(PickupCoils{e,2},1,R(1),R(2),R(3));
91
92 % Rotate field back to sample orientation
93 Voltage=Voltage+2*pi()*dot(M,rodriguesRotation(B,RotationAxis,-Theta))*V;
94 end
95 end
96 end
97 end
98
99 Signal(1)=Voltage*IFreq;
100
101 Voltage=0;
102 for e=1:size(ExcitationCoils,1)
103 for p=1:size(PickupCoils,1)
104 if ExcitationCoils{e,2}>=PickupCoils{p,2}
105 % Seperation between the coils
106 XSep=PickupCoils{p,1}(1)-ExcitationCoils{e,1}(1);
107 YSep=PickupCoils{p,1}(2)-ExcitationCoils{e,1}(2);
108 ZSep=PickupCoils{p,1}(3)-ExcitationCoils{e,1}(3);
109
110 % Rotate so z-axis is along the coil normal to calculate
111 % the mutual inductance
112 Orientation=ExcitationCoils{e,3}/norm(ExcitationCoils{e,3});
113 Theta=acos(Orientation(3));
114 RotationAxis=cross(Orientation,[0 0 1]);
115 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);
116
117 % Rotate noraml of pick-up coil
118 N=rodriguesRotation(PickupCoils{p,3}/norm(PickupCoils{p,3}),RotationAxis,Theta);
119
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120 M=Babic_24(ExcitationCoils{e,2},PickupCoils{p,2},R,N);
121 else
122 % Seperation between the coils
123 XSep=ExcitationCoils{e,1}(1)-PickupCoils{p,1}(1);
124 YSep=ExcitationCoils{e,1}(2)-PickupCoils{p,1}(2);
125 ZSep=ExcitationCoils{e,1}(3)-PickupCoils{p,1}(3);
126
127 % Rotate so z-axis is along the coil normal to calculate
128 % the mutual inductance
129 Orientation=PickupCoils{p,3}/norm(PickupCoils{p,3});
130 Theta=acos(Orientation(3));
131 RotationAxis=cross(Orientation,[0 0 1]);
132 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);
133
134 % Rotate normal of excitation coil
135 N=rodriguesRotation(ExcitationCoils{e,3}/norm(ExcitationCoils{e,3}),RotationAxis,Theta);
136
137 M=Babic_24(PickupCoils{p,2},ExcitationCoils{e,2},R,N);
138 end
139 Voltage=Voltage+M*IExcitation*2*pi();
140 end
141 end
142
143 Signal(2)=Voltage*IFreq;
144 end
145
146 function RRot=rodriguesRotation(R,RotationAxis,Theta)
147 %RODRIGUESROTATION Rotate vector R about axis RotationAxis Theta degrees
148 RRot=R*cos(Theta)+(cross(RotationAxis,R))*sin(Theta)+(RotationAxis*dot(RotationAxis,R))*(1-cos(Theta)

);
149 end
150
151 function B=coilField(A,I,X,Y,Z)
152 %COILFIELD Field from a coil radius A and carrying current I at position
153 % (X,Y,Z). The coil is in the x-y plane centred at the origin.
154 rhosqu=X.^2+Y.^2;
155 rsqu=X.^2+Y.^2+Z.^2;
156 alphasqu=A.^2+rsqu-2*A*sqrt(rhosqu);
157 beta=sqrt(A.^2+rsqu+2*A*sqrt(rhosqu));
158 ksqu=1-alphasqu/(A.^2+rsqu+2*A*sqrt(rhosqu));
159 C=4*(1e-7)*I;
160 [K,E]=ellipke(ksqu);
161 if X*Z==0
162 Bx=0;
163 else
164 Bx=((C*X*Z)/(2*alphasqu*beta*rhosqu))*((A.^2+rsqu)*E-alphasqu*K);
165 end
166 if Y*Z==0
167 By=0;
168 else
169 By=((C*Y*Z)/(2*alphasqu*beta*rhosqu))*((A.^2+rsqu)*E-alphasqu*K);
170 end
171 Bz=((C)/(2*alphasqu*beta))*((A.^2-rsqu)*E+alphasqu*K);
172 B=[Bx,By,Bz];
173 end
174
175 % Following code adapted from S. Babic et al.
176 function M=Babic_24(Rp,Rs,Pc,N)
177 %BABIC_24 Mutual inductance between two circular loops
178 % Returns the mutual inductance between two circular loops of radius Rp
179 % and Rs (with Rp >= Rs), whose centres are separated by a vector
180 % pc=[xc,yc,zc], and normal to the plane of secondary loop is n=[a,b,c],
181 % with absolute tolerance 1e-13.
182 %
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183 % All dimensions must be in "meters" and angles in "radians".
184 %
185 % The formula used in this function is the one provided by: S. Babic, F.
186 % Sirois, C. Akyel and C. Girardi, IEEE Trans. Magn., 2010, at press.
187 %
188 % The units have been adapted to the S.I. system.
189 %
190 % Programmed by F. Sirois and S. Babic Ecole Polytechnique de Montreal,
191 % June 2009.
192 Tol=1e-13;
193
194 % Recovery of parameters
195 Xc=Pc(1); Yc=Pc(2); Zc=Pc(3);
196 A=N(1); B=N(2); C=N(3);
197
198 % Preliminary computations
199 Alpha=Rs/Rp; Beta=Xc/Rp; Gamma=Yc/Rp; Delta=Zc/Rp;
200
201 % Integration, Romberg method (adaptation from author below)
202 % Author: Martin Kacenak,
203 % Department of Informatics and Control Engineering,
204 % Faculty of BERG, Technical University of Kosice,
205 % B.Nemcovej 3, 04200 Kosice, Slovak Republic
206 % E-mail: ma.kac@post.cz
207 % Date: february 2001
208 Decdigs=abs(floor(log10(Tol)));
209 Rom=zeros(2,Decdigs);
210 Romall=zeros(1,(2^(Decdigs-1))+1);
211 Romall=feval('f24',0:2*pi/2^(Decdigs-1):2*pi,Alpha,Beta,Gamma,Delta,A,B,C);
212 H=2*pi;
213 Rom(1,1)=H*(Romall(1)+Romall(end))/2;
214 for i=2:Decdigs
215 Step=2^(Decdigs-i+1);
216 % trapezoidal approximations
217 Rom(2,1)=(Rom(1,1)+H*sum(Romall((Step/2)+1:Step:2^(Decdigs-1))))/2;
218 % Richardson extrapolation
219 for k=1:i-1
220 Rom(2,k+1)=((4^k)*Rom(2,k)-Rom(1,k))/((4^k)-1);
221 end
222 Rom(1,1:i)=Rom(2,1:i);
223 H=H/2;
224 end
225 M=4e-7*Rs*Rom(1,Decdigs);
226 end
227
228 % Integrand function
229 function F=f24(p,h,e,g,d,a,b,c)
230 h2=h*h; e2=e*e; g2=g*g; a2=a*a; b2=b*b; c2=c*c;
231 l2=(a*a+c2); l=sqrt(l2); L2=(l2+b*b); L=sqrt(L2); l2L2=L2*l2; lL=l*L;
232 sp=sin(p); cp=cos(p); cp2=cp.*cp; sp2=sp.*sp;
233 if l==0,
234 p1=0; p2=-g*sign(b); p3=0; p4=-e*sign(b); p5=d;
235 V=sqrt(e2+g2+h2*cp2-2*h*e*sign(b)*cp);
236 else
237 p1=g*c/l; p2=-(e*l2+g*a*b)/lL; p3=h*c/L; p4=(g*l2-e*a*b-d*b*c)/lL; p5=(d*a-e*c)/l;
238 V=sqrt((e2+g2)+h2*((1-b2*c2/l2L2)*cp2+c2/l2*sp2+a*b*c/(l2*L)*sin(2*p))-2*h/lL*(e*a*b-g*l2)*cp-

2*h*e*c/l*sp );
239 end
240 A=(1+e2+g2+h2+d*d)+2*h*(p4*cp+p5*sp);
241 m=4*V./(A+2*V); k=sqrt(m);
242 [K,E]=ellipke(m);
243 PSI=(1-0.5*m).*K-E;
244 F=(p1*cp+p2*sp+p3).*PSI./(k.*V.^1.5);
245 end
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