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Abstract

Part I comprises three chapters (2-4) that analyse the optimal combination of a univer-

sal benefit (B ≥ 0) and categorical benefit (C ≥ 0) for an economy where individuals

differ in both their ability to work and, if able to work, their productivity. C is ex-ante

conditioned on applicants being unable to work, and ex-post conditioned on recipients

not working.

In Chapter 2 the benefit budget is fixed but the test awarding C makes Type I and

Type II errors. Type I errors guarantee B > 0 at the optimum to ensure all unable

individuals have positive consumption. The analysis with Type II errors depends on the

enforcement of the ex-post condition. Under No Enforcement C > 0 at the optimum

conditional on the awards test having some discriminatory power; whilst maximum

welfare falls with both error propensities. Under Full Enforcement C > 0 at the

optimum always; and whilst maximum welfare falls with the Type I error propensity

it may increase with the Type II error propensity.

Chapters 3 and 4 generalise the analysis to a linear-income tax framework. In Chapter

3 categorical status is perfectly observable. Optimal linear and piecewise-linear tax

expressions are written more generally to capture cases where it is suboptimal to fi-

nance categorical transfers to eliminate inequality in the average social marginal value

of income. Chapter 4 then derives the optimal linear income tax for the case with

classification errors and Full Enforcement. Both equity and efficiency considerations

capture the incentives an increase in the tax rate generates for able individuals to apply

for C.

Part II (Chapter 5) focuses on the decisions of individuals to work when receiving C,

given a risk of being detected and fined proportional to C. Under CARA preferences

the risk premium associated with the variance in benefit income is convex-increasing

in C, thus giving C a role in enforcement.
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Introduction

The extent to which cash benefits should be targeted at those in need, as opposed

to being made more universally available, is a subject of much debate across welfare

states. Targeted transfers play a prominent role and can take a number of forms, where

eligibility may be conditioned on (i) a means test; (ii) belonging to some categorical

group such as the disabled or involuntarily unemployed; or (iii) some combination of

the two. A well-established result in economic theory is that ‘tagging’ individuals

who belong to some categorical group that the policymaker wishes to assist is welfare

improving because it provides the neediest individuals in society with greater support

than they would receive under a simple negative income tax system and does so without

resorting to high marginal tax rates (Akerlof, 1978).

There are, however, a number of caveats associated with targeting that the model

generating this result does not account for.1 First, categorical transfers can be both

complex and costly to administer. Take the case of disability benefits: What is the

appropriate definition of disability? How much weight should be placed on medically

verifiable criteria as opposed to an applicant’s alleged discomfort at work? Should the

benefit be means tested? These complex issues lead us to a second point: wherever the

eligibility ‘line’ is drawn, classification errors of both Type I (false rejection) and Type

II (false award) are likely to be made. Broadly speaking, these errors may be made

because (i) the ‘line’ is incorrect but the tests correctly classify individuals around the

line; (ii) the ‘line’ is correct but the tests are imperfect and misclassify individuals

around the line; or (iii) some combination of both.2 However classification errors arise,

1Akerlof (1978) does discuss a number of these issues in his summary and conclusions.
2In line with the second case, consider an awards technology that has fixed propensities to mis-

classify individuals around an eligibility threshold that accurately distinguishes between needy and
non-needy individuals. It follows that any adjustment in the eligibility threshold will involve a tradeoff
between Type I and Type II errors. The relevant authority may therefore adjust the threshold to ‘err
on the side of harshness...or on the side of generosity’ (see Goodin, 1985, p.141).

8



INTRODUCTION 9

they diminish the effectiveness of targeted programmes in providing support to those

in need, in addition to generating incentives for non-needy individuals to masquerade

as needy. Third, because targeted programmes focus on specific subgroups of society

they may impose stigma on their intended recipients: this may arise due to accusatory

eligibility tests or subsequent conditions placed on recipients (Moffitt, 1983). Fourth

and finally, the complex and time-consuming nature of application forms present costs

to those who apply, and these costs may greatest for those most in need (Currie,

2004). Both stigma and application costs give rise to non-take-up in targeted welfare

programmes, as the very individuals that the programmes are designed to assist are

deterred from applying.

At the other end of the spectrum, a universal benefit3 provides all individuals in society

with the same unconditional4 cash benefit. Such schemes are often advocated on the

grounds that they (i) provide all individuals in society with a guaranteed source of

income that is independent of their employment status and financial circumstances;

(ii) enhance work incentives because the benefit is not ‘withdrawn’ or ‘phased-out’

through working; (iii) are administratively simple; and (iv) are unlikely to suffer from

the take-up related issues of targeted programmes (Van Parijs, 2004). The first point

may be particularly important for individuals who are either ineligible for targeted

welfare benefits or are incorrectly denied them by Type I classification error. If the

universal benefit is financed by a linear (flat) income tax - as analysed by Atkinson

(1995) - then both the second and third points may become stronger as flat taxes

are argued to enhance work incentives whilst also lowering the administrative burden

relative to more complex piecewise schedules (Paulus and Peichl, 2009; Peichl, 2014).

In addition to these four points, Goodin (1992) advocates universal benefits on the

grounds that they are ‘minimally presumptuous’. Contrastingly, means tests often

presume that families share earnings equitably among their members; whilst categorical

benefit programmes may presume that certain conditions warrant support because they

prohibit work, whilst other conditions do not. Whenever presumptions are made they

3A number of alternative names for the universal benefit are given in the literature, such as ‘basic
income’, ‘demogrant’ or ‘citizens income’ (see Van Parijs, 2004).

4There is of course some eligibility condition: an individual must have citizenship to receive the
benefit. In this sense a universal benefit is not entirely unconditional. Atkinson (2015, p.219) discusses
how the citizenship condition may be too broad, in the sense that it can include individuals who live
abroad and do not pay taxes. In part for this reason, Atkinson proposes replacing the citizenship
condition with a participation condition; where participation may take the form of working, education,
or some other type of social contribution.
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may be either incorrect or become incorrect over time as society and the nature of

employment changes.

A key issue surrounding universal benefit proposals is their affordability and, in turn,

the level of taxation that would be required to finance payments to all individuals.

This does, of course, depend on the nature of exactly what is being proposed. As

discussed by both Atkinson (1995) and Van Parijs (2004), proposals typically take the

form of a ‘partial’ universal system whereby a universal benefit replaces some but not

all existing cash benefits.5 There is reason to think that such proposals will garner

more political support than the polar extremes of purely targeted or purely universal

welfare provision.6 Indeed, Skocpol (1991) refers to partial schemes as ‘targeting within

universalism’ and, in examining the social policy history of the U.S., points to the

relative support enjoyed by programmes that spread benefits over many individuals,

whilst also leaving room for additional support to those most in need.

With these points in mind, this thesis is structured as follows. Part I contains three

chapters (2,3 and 4) which model the optimal provision of a universal benefit (B) and

categorical benefit (C) for an economy in which individuals differ in both their ability

to work and, conditional on being able to work, their productivity (gross wage) when at

work. The categorical benefit is targeted at unable individuals and is conditioned in two

dimensions: ex-ante an applicant must be unable to work to be awarded the benefit;

whilst ex-post a recipient must not work. Applications for the categorical benefit are

taken to be costless in terms of money, stigma and time. If the benefit is only received by

unable individuals then both dimensions of conditionality are automatically satisfied.

However, the benefit may be administered with both Type I and Type II classification

errors. A Type I error arises when an unable individual is incorrectly denied the

categorical benefit, whilst a Type II error arises when an able individual is incorrectly

awarded the categorical benefit. In the case of the latter error type, the ex-post no-work

condition becomes relevant because individuals who are able to work are receiving the

categorical benefit. Whether or not they will actually choose to work while receiving

5The state of Alaska provides the primary example of an existing partial universal benefit pro-
gramme. In place since 1982, all residents of Alaska (including children) receive the same yearly cash
benefit, the size of which is a function of the five year average interest on the Alaska Permanent Fund.
This fund was set up in 1976 using oil revenue from the Trans-Alaska Pipeline System.

6To get a sense of the range of levels of taxation that may be considered, it is useful to note that
Atkinson (1995, pp.114-129) simulates the distributional effect of two alternative partial schemes. The
first scheme has a flat tax of 25 percent and a universal benefit of £10 per week; whilst the second
scheme has a flat tax of 40 percent and a universal benefit of £35.60 per week.
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it will depend on the enforcement of this condition.

A number of papers have analysed imperfectly targeted transfers in frameworks sim-

ilar to that described above (see Parsons, 1996; Salanié, 2002). These papers make

polar assumptions with regard to the enforcement of the ex-post ‘no-work’ condition,

but the full implications of these differing assumptions are not directly comparable

due to other differences in the modelling frameworks. First, Parsons (1996) adopts

quasilinear preferences over consumption and leisure and assumes a homogenous able

subpopulation where each individual has a marginal product of unity. In this setting

able individuals who are tagged as unable by Type II error are allowed to work. From

an analytical perspective this corresponds to the assumption that the ex-post ‘no-work’

condition is not enforced. Indeed, a ‘dual negative income tax’ system in which tagged

able individuals are incentivised to work for less than their marginal product is found

to be optimal. The greater the accuracy of the tagging technology the closer the op-

timum comes to the full insurance outcome.7 Contrastingly, Salanié (2002) employs a

more general framework with standard preferences and an able subpopulation where

individuals differ over a productivity continuum. The ex-post condition that individu-

als do not work is fully enforced such that no tagged able individual will work. Given

this, the surprising feature of the analysis is that there are no application decisions to

be tagged. Instead, a fraction of the able subpopulation (corresponding to the Type

II error propensity) are tagged and do not work. This must, however, be incentive in-

compatible for higher productivity able individuals who would choose not to be tagged

because they are better off working and receiving the lower untagged/unconditional

benefit.

Chapter 2 contributes to this literature by providing a systematic comparison of optimal

welfare provision for the binary cases where the ex-post no-work condition is either (i)

not enforced; or (ii) fully enforced. To pin down the intuition for how the optimal

benefits change with classification errors, it is assumed that the government has a

fixed budget for benefit expenditure (later chapters illustrate that many of the results

generalise to an optimal tax analysis). In the baseline case where C is administered

without error the standard result arises: if the benefit budget exceeds a critical level

at which inequality in the average social marginal value of income (smvi)8 between

7The full insurance outcome corresponds to the case where consumption is independent of ability
status.

8Notice that we abstract from the term ‘net’ because the response of individual earnings to unearned
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the unable and able subpopulations is eliminated through categorical transfers, it will

be optimal to set both C > 0 and B > 0. This corresponds to a partial universal

system because both targeted and universal benefits are provided. Contrastingly, if

the budget falls at or below this critical level it will be optimal to set C > 0 but B = 0,

thus corresponding to a purely targeted system. With perfect targeting, there is thus a

clear ordering of priorities: spending should be purely categorical so long as the smvi of

the unable exceeds the average smvi of the able (see also Beath et al., 1988; Diamond

and Sheshinski, 1995; Parsons, 1996; Viard, 2001a,b).

In the main analysis C is administered with both Type I and Type II classification

errors. Under No Enforcement of the ex-post condition benefit policy is one-dimensional

in the sense that individuals receive a monetary benefit with no subsequent restriction

on labour supply. Consequently, all able individuals will apply for C and, if awarded

it, those of sufficiently high productivity will work when receiving it. Contrastingly,

under Full Enforcement of the ex-post condition benefit policy is two-dimensional in

the sense that individuals receive both a monetary benefit and a fully enforced zero

quantity constraint on labour supply. In this case the only able individuals who will

choose to apply for C will be those whose individual welfare is highest when receiving

C and not working, and thus those of sufficiently low productivity (and therefore low

opportunity cost). Application decisions in this latter setting will consequently be

endogenous to the benefit levels.

The key results from Chapter 2 are as follows. Whenever Type I errors are made it will

be optimal to set B > 0 so as to ensure that unable individuals who are incorrectly

rejected C have some source of income to consume. Under No Enforcement it is optimal

to set C > 0 only if the awards test has some discriminatory power.9 In this case the

optimal benefits are chosen so as to equate the average smvi of ‘categorical recipients’

with the average smvi of ‘non-categorical recipients’10, respectively, where classification

errors mean that both groups may be composed of unable and able individuals. If

however, the test has no discriminatory power, it is optimal to set C = 0 and spend

the entire per capita budget on the universal benefit. It is shown that maximum welfare

income has no effect on the available budget for benefit expenditure. This assumption will be relaxed
in the subsequent Chapters 3 and 4, where the benefit budget is determined endogenously by tax
revenue.

9The awards test will have discriminatory power so long as it is more likely to award the categorical
benefit to an unable applicant than to an able applicant.

10I.e. individuals who do not receive the categorical benefit.
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falls with both Type I and Type II error propensities.

Contrastingly, under Full Enforcement it is optimal to set C > 0 at all levels of dis-

criminatory power, therefore including the case of no discriminatory power. The Full

Enforcement optimum is characterised by the condition that (i) the aggregate smvi of

non-categorical recipients be equal to (ii) the aggregate smvi of categorical recipients

multiplied by the increase in their total benefit income per unit reduction in the uni-

versal benefit.11 In general, one cannot guarantee a unique solution to this condition

because application decisions are endogenous to the benefit levels. The consequence of

this endogeneity is that the two components of either aggregate smvi (i.e. individual

smvi × number of individuals) may move in opposite directions. Consider the aggre-

gate smvi of non-categorical recipients: an increase in the universal benefit lowers an

individual’s smvi but also reduces the number of individuals who apply for the categori-

cal benefit, in turn increasing the number of non-recipients. Alternatively, consider the

aggregate smvi of categorical recipients: an increase in the universal benefit may lower

their total benefit income and thus increase their individual smvi, but also reduces

the number of applicants and thus the number of categorical recipients. The overall

effect on either aggregate smvi is ambiguous: it will depend on unspecified properties

of both the utility function (e.g. third derivatives) and the distribution function (e.g.

derivatives of the pdf).

Turning to the welfare effects of classification errors under Full Enforcement, it is

shown that whilst welfare unambiguously falls with the Type I error propensity, there

are conditions where it can increase with the Type II error propensity. The intuition

here is that ‘leakage’ of the categorical benefit to lower productivity able individuals

may play a redistributive role within the able subpopulation. This will depend in part

on the proportion of able applicants who would be voluntarily unemployed when just

receiving the universal benefit, and thus on the number of able applicants whose smvi

is the same as that of unable applicants.

Finally, under both enforcement regimes between-group inequality in the average smvi

will persist at the optimum whenever classification errors are made. Extensive nu-

merical simulations with the CES preferences adopted by Stern (1976) illustrate how

the optimal benefit levels change with the propensity to make classification errors.

11An implication of this is that at the Full Enforcement optimum the average smvi of categorical
recipients will exceed that of non-categorical recipients due to the incentives that an increase in C
generates for able individuals to apply.
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Examples where welfare may increase with the Type II error propensity are also pro-

vided.

Chapters 3 and 4 proceed to generalise the analysis from Chapter 2 to an optimal linear

income tax framework. Chapter 3 analyses the case of perfect discrimination, whilst

Chapter 4 analyses the case with classification errors. In this richer setting, the benefit

budget is determined endogenously by tax revenue (net of any revenue requirement for

spending outside of welfare). In addition to choosing the optimum benefit levels, the

optimum tax rate must therefore be chosen as well.

To the best of this author’s knowledge, the analysis of categorical transfers within the

standard optimal linear income tax framework12 has thus far been restricted to the

case of perfect discrimination. In this case optimal tax formulae are typically reported

under the assumption that inequality in the average net smvi across categorical groups

is eliminated through categorical transfers at the optimum (Viard, 2001a,b). This as-

sumption allows the optimal tax expression to be written as in the uni-dimensional

model where individuals differ only in productivity: the numerator (equity consider-

ations) is the negative of the covariance between earnings and the net smvi; whilst

the denominator (efficiency considerations) captures the response of (compensated)

earnings to a change in the net-of-tax rate (see Atkinson and Stiglitz, 1980; Atkinson,

1995).

It is not immediately clear, however, that this will always be a valid assumption. There

may be cases where it is suboptimal to finance categorical transfers to the point that

inequality in the average net smvi across categorical groups is eliminated. For example,

if a sufficiently large fraction of the population are dependent on categorical transfers

for consumption then the level of taxation required to equate the average net smvi of the

unable and able subpopulations may be too harmful to the latter group. This will also

depend on the size of any revenue requirement in place for spending outside of welfare.

Further, this argument is likely to hold beyond a simple linear income tax framework.

For example, progressive piecewise linear tax systems13 provide the government with

additional tools to redistribute within categorical groups; but if shifting some of the

tax burden away from lower earners in an able group (i) pushes the average net smvi

of that group further below that of the unable group; and/or (ii) lowers tax revenue

12I.e. where in the productivity dimension there are a continuum of types.
13The term progressive is here used to refer to the case of increasing marginal tax rates.
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relative to the flat tax case, this may limit further the cases where it is optimal to

eliminate between-group inequality in the average net smvi.

Chapter 314 therefore derives more general expressions for (i) the optimal linear income

tax rate; and (ii) the optimal two-bracket progressive piecewise linear tax rates, that

allow for the persistence of between-group inequality at the optimum. The optimal lin-

ear income tax rate is derived under general preferences over consumption and leisure.

The equity considerations in the numerator are now composed of both ‘between-group’

and ‘within-group’ terms. The first term is not found in standard tax expressions,

whilst the latter term is now the negative of the covariance between relative earnings

and the net smvi; where relative earnings refer to individual gross earnings as a fraction

of aggregate gross earnings.15 Numerical examples where between-group inequality in

the average net smvi persists at the flat tax optimum are provided using a variant of

framework employed by Stern (1976) (i.e. CES preferences, lognormal productivity

distribution).

Turning to the piecewise analysis, individual utility is taken to be a concave transfor-

mation of preferences that are quasilinear in consumption. There is thus no income

effect (see also Apps et al., 2014). Implicit expressions for the lower and upper tax

rates are derived, in addition to that for the earnings threshold above which individuals

face the upper marginal tax rate. Interestingly, the possibility that between-group in-

equality remains at the optimum enters into the equity considerations of the lower tax

rate, but not the upper tax rate. The intuition here would seem to be that an increase

in the lower tax rate is non-distortionary for those who choose to earn above the earn-

ings threshold, and is thus an effective tool to help reduce between-group inequality.

Numerical examples where between-group inequality persists at the piecewise optimum

(and, for comparison, the flat tax optimum) are provided using preferences with a con-

stant labour elasticity (see Atkinson, 1990; Saez, 2001).16 Individual productivity is

taken to be Pareto distributed as this is known to give rise to increasing marginal tax

rates (Diamond, 1998). For cases where between-group inequality persists under both

14A shorter version of this chapter is published in the journal Economics Letters: See Slack (2015).
15If between-group inequality is eliminated at the optimum, the expression reduces to the well-

documented optimal tax expression in the literature (see Atkinson and Stiglitz, 1980).
16Under these isoelastic preferences one can also establish analytically the cases where between-

group inequality in the average smvi will persist at the flat tax optimum (for the special case where
taxation is purely redistributive). Indeed, there is a critical level of the unable subpopulation size
above which it will be suboptimal to eliminate this inequality.
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flat tax and piecewise linear tax systems, the level of between-group inequality is typ-

ically higher under the piecewise system for any given unable subpopulation size and

revenue requirement. Further, there are more cases where between-group inequality

persists under the piecewise system than under the flat tax system.

The purpose of Chapter 4 is to tread new ground and derive an expression for the

optimal linear tax rate when the categorical transfer is administered with both Type

I and Type II classification errors. In this case it is assumed that the ex-post ‘no-

work’ condition is fully enforced such that only able individuals of lower productivity

will choose to apply.17 Crucially, the application decisions of able individuals will be

endogenous to the tax rate. Indeed, an increase in the tax rate will generate both direct

and indirect behavioural responses that affect the government budget constraint. The

direct effect enters only the tax revenue side of the budget constraint and is found in

all conventional analyses: it is simply the response of gross earnings in the intensive

margin to a marginal increase in the tax rate. The indirect effect, meanwhile, captures

the fact that a marginal increase in the tax rate increases the critical productivity

at or below which an able individual chooses to apply for the categorical benefit.

Intuitively, this affects both the tax revenue and benefit expenditure sides of the budget

constraint.

To simplify the analysis, individual utility is - as in the piecewise analysis of Chapter 3 -

taken to be a concave transformation of preferences that are quasilinear in consumption.

There are thus no income effects associated with a working individual’s smvi and,

further, the size of the universal benefit does not directly influence an able individual’s

decision to apply for the categorical benefit. This assumption is of great assistance

in interpreting the optimal tax expression because a precise relationship between the

average smvi of able applicants and the shadow price of public expenditure can be

established.

In the resulting expression that characterises the optimal tax rate, an important com-

ponent of both equity (numerator) and efficiency (denominator) considerations is the

elasticity of the distribution function with respect to individual productivity, evaluated

at the critical productivity at or below which able individuals choose to apply for the

categorical benefit. Type II errors generate conflicting effects in both the equity and

17An analysis of the less realistic No Enforcement regime is documented in the appendix to this
chapter.
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efficiency considerations. In the equity dimension, Type II errors (i) mean that some

able individuals of lower productivity - who the government would not wish to tax

highly - receive the categorical benefit and do not work, which acts to raise the tax

rate; but also (ii) redistribute ‘within’ the able subpopulation through ‘leaking’ cate-

gorical transfers to these lower productivity individuals, which acts to lower the tax

rate because there may be less need to redistribute through the universal benefit. In

the efficiency dimension, Type II errors (i) mean that some able individuals of lower

productivity are awarded the categorical benefit and thus do not respond in the inten-

sive margin to the tax rate, which acts to increase the tax rate; but (ii) result in both

foregone tax revenue and additional benefit expenditure as able individuals depart the

labour force because they are awarded the categorical benefit, both of which act to

reduce the tax rate because the number of applicants for the categorical benefit are,

ceteris paribus, an increasing function of the tax rate. The efficiency considerations are

thus composed of both the direct and indirect effects discussed above.

Numerical simulations using the same isoelastic preferences employed in Chapter 3

suggest that an increase in either error propensity (i) increases the optimal marginal

tax rate; (ii) increases the optimal universal benefit; but (iii) decreases the optimal

categorical benefit. Whilst optimal welfare provision always includes some targeting,

it becomes overall more universal as the propensity to make classification errors in-

creases.

In Part I of this thesis the enforcement of the ex-post ‘no-work’ condition is binary: it

is either not enforced or fully enforced. Both are strong assumptions. In particular,

without explicitly modelling the enforcement parameters we cannot state all the condi-

tions under which full enforcement can be achieved. The size of the categorical benefit

will surely play a role in this enforcement. In reality, an individual who works (and

pays taxes18) will certainly face some risk of detection, but it is unlikely that they will

be detected with certainty. This would require perfect information sharing between the

tax authority, benefit authority and local government. There is ample evidence that

this is not the case (see Fuller et al., 2015).

With these enforcement issues in mind, Part II of this thesis abstracts from optimal

welfare design and instead focuses on the decisions of individuals to violate ex-post

conditionality, given a risk of being detected and sanctioned. In this regard, a small

18This thesis abstracts from ‘cash-in-hand’ work in the shadow economy.
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existing literature analyses individual decisions to fraudulently claim unemployment

benefits (Yaniv, 1986, 1997). Fraud is here taken to be the act of working whilst

receiving benefits. Within this literature, relatively little focus is placed on the role

that the benefit level plays in enforcement when penalties are made proportional to

the benefit level itself. The most work in this area comes from Yaniv (1986), who

analyses two alternative penalty structures from the tax evasion literature. Individual

preferences are taken to exhibit decreasing absolute risk aversion. The author finds

that an increase in the benefit level (i) increases incentives to fraudulently claim when

the fine is proportional to the number of claiming days (i.e. independent of the benefit

size); but (ii) has an ambiguous effect on incentives when the fine is proportional to the

benefit size. In this latter case, an increase in the benefit level increases the expected

fine. The model abstracts from both extensive and intensive labour supply decisions:

in particular, there is no voluntary unemployment due to the disability benefit.

Chapter 5 aims to draw out more explicitly the role that the benefit level may play in

exposing fraudulent recipients to risk. Once more, there is a continuum of productivity

differentiated able individuals who may choose to apply for a categorical benefit that

is ex-ante conditional on an applicant being unable to work; and ex-post conditional

on a recipient not working. Recipients may also be required to spend a fraction of the

‘working day’ at the benefit office. There are no checks or penalties in place for an

able individual who is incorrectly awarded the categorical benefit and does not work.

This assumption is made for two reasons. First, such behaviour is extremely difficult

to detect because the able recipient exactly mimics the unable recipient (Yaniv, 1986).

Second, on the grounds of legal uncertainty applicants may be unaware of their true

eligibility. However, the act of working is detectable and provides the benefit authority

with the ‘smoking gun’ that a recipient is able to work and knowingly breaking the

rules. Any recipient detected working is made to repay the categorial benefit and also

fined at a rate proportional to the benefit size. This form of financial sanction mirrors

that ‘offered’ by benefit authorities in reality (see, for example, Department for Work

and Pensions, 2015).19

Drawing on the seminal work of Arrow (1970) and Pratt (1964), the analysis captures

19In the U.K., for example, a benefit recipient who is found to be fraudulent may be offered this type
of financial sanction as an alternative to prosecution. In addition to reclaiming the benefits incorrectly
received, the benefit authority imposes a fine corresponding to 50% of the overpaid benefits (up to a
maximum of £2000) (Department for Work and Pensions, 2015).
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the expected utility of a working recipient via the utility of their expected income net

of the risk premium associated with the variance in benefit income. In general, the

risk premium is approximated as the coefficient of absolute risk aversion multiplied by

half the variance in benefit income. This variance is convex-increasing in the benefit

level. If preferences exhibit constant absolute risk aversion the risk premium is also

convex-increasing in the benefit level, and independent of individual productivity. An

able individual who would choose to work conditional on receiving the categorical

benefit will only apply for it if the expected benefit income exceeds the risk premium.

Given that (i) the expected benefit is linearly increasing in the benefit size; but (ii)

the risk premium is convex increasing in the benefit size, there is a critical benefit

level above which full enforcement is attained. Further, the more lenient the standard

enforcement parameters (detection probability, penalty rate), the higher this critical

benefit level.

An unsatisfactory implication of this result is that for any benefit set below the critical

level, all individuals who would choose to work conditional on receiving the benefit will

apply. If, however, recipients are required to spend a fraction of the working day at

the benefit office, those of higher productivities will not apply because the opportunity

cost of foregone earnings is too large. In this analysis the categorical benefit can still

be set to attain full enforcement, but even if it is not the range of wages for which

fraud occurs will be bounded above by a critical wage at which the opportunity cost

of foregone earnings offsets the expected benefit net of risk premium.

The remainder of this thesis is structured as follows. Chapter 1 precedes the main

analyses in Parts I and II through providing an overview of the existing economics

literature on tax/benefit programmes. Where possible, a common notation is adopted

to facilitate comparison across the various works. Part I then contains Chapters 2, 3

and 4. These chapters focus on the optimal choice of categorical and universal benefits,

given differing assumptions on both the benefit budget and tagging technology available

to the government. In Chapter 2 the benefit budget is exogenously fixed, whereas in

Chapters 3 and 4 it is endogenously determined by tax revenue. Part II contains

Chapter 5, which analyses the decision of ineligible individuals to violate an ex-post

‘no-work’ condition, given a probability of being detected and fined proportional to the

benefit size. Finally, Chapter 6 concludes the thesis.



Chapter 1

Literature Review

The design and behavioural implications of welfare programmes have received much

attention in the economics literature, both theoretically and empirically.1 This litera-

ture can be partitioned into three broad strands. First, a large theoretical literature

analyses the optimal design of welfare benefits under the alternate assumptions that

the benefit authority has (i) no formal awards technology to determine eligibility, but

instead chooses consumption bundles that satisfy incentive compatibility constraints

and induce self revelation; (ii) an awards technology that uses categorical information

to ‘tag’ only eligible individuals, but may make Type I (false rejection) errors; or (iii) an

awards technology that makes both Type I and Type II (false award) errors in tagging.

The analyses that fall under the second of these informational assumptions are firmly

grounded in the optimal income tax framework originating from Mirrlees (1971).

A small second strand of literature largely abstracts from design issues and instead

focuses on the decisions of truly ineligible individuals to fraudulently claim welfare

benefits. This literature draws from the economics of crime (Becker, 1968) and, re-

latedly, the tax-evasion literature. It does, however, recognise that there are ex-post

conditions associated with receiving benefits; such as spending a fraction of the working

day ‘signing on’ at the benefit office. These will influence individual behaviour.

Related to the second strand, a third empirical literature assesses both (i) the disincen-

tives provided by; and (ii) the scope for classification errors, in the U.S. Social Security

1Design issues and behavioural incentives are of course intrinsically related.

20
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Table 1.1: Some Common Notation

Notation Interpretation

θ Population proportion (typically unable or low ability)
x Individual consumption
H Labour supply
n Individual productivity/ gross wage

nl, nh Low productivity, High productivity (Unskilled, Skilled)
f(n), F (n) Productivity density function, productivity distribution function

y Individual gross earnings
ȳ Aggregate/Average gross earnings
T Tax/Transfer
t Linear income tax rate

M ;B, C Unearned income (general); Welfare benefit, Categorical benefit

Disability awards process2. In the latter case, a number of studies indicate there are

non-negligible propensities to make both Type I and Type II classification errors.

This review discusses some of the key contributions in each of these three bodies of lit-

erature. Where possible, a common notation has been adopted to facilitate comparison

across the various works (see Table 1.1).

1.1 The Design of Welfare Benefits

1.1.1 No Awards Technology: Mechanism Design

A body of literature focuses on the design of welfare benefits when the benefit au-

thority has no formal discriminatory test to determine eligibility. Instead, it chooses

consumption bundles/transfer levels which satisfy incentive compatibility constraints,

and thus prevent the non-needy from masquerading as the needy.

Diamond and Mirrlees (1978) model the optimal provision of social insurance when a

population of size 1 ex-ante identical individuals face an exogenous probability θ of

becoming unable to work. The government cannot observe whether an individual is

2This literature analyses both the insurance and assistance components of disability welfare pro-
vision.
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unemployed voluntarily or due to disability: it is therefore restricted to choosing con-

sumption levels for workers and non-workers. An able individual who works has utility

ve(xe); where xe denotes the consumption level a worker receives. Contrastingly, an

able individual who does not work has utility vo(xo); where xo denotes the consumption

level a non-worker receives. Finally, an unable individual also receives the consumption

bundle xo but faces utility u(xo). An able individual who chooses to work produces

an output of 1 such that, were there no disability or voluntary unemployment, total

resources in the economy would be 1.

The government problem is therefore described by3:

max
xe,xo

W = (1− θ)ve(xe) + θu(xo)

s.t. θxo + (1− θ)xe = (1− θ) (Budget Constraint)

ve(xe) ≥ vo(xo) (Incentive Compatibility constraint)

(1.1)

The assumption is made that an able individual will choose to work if ve(xe) = vo(xo):

This guarantees positive resources in the economy even if the incentive compatibility

constraint is binding. Given an indifference curve between the two consumption states

of (1− θ)ve(xe) + θu(xo) = k, where k is a constant, it is straightforward to establish

that:

dxo

dxe
= −

(
1− θ
θ

)
︸ ︷︷ ︸

budget slope

(ve)′

u′
(1.2)

One of two types of optimum can emerge depending on whether (ve)′ > u′ or (ve)′ ≤ u′

when evaluated at the point of indifference ve = vo. This is illustrated in Figure 1:

Panel (a) shows that if (ve)′ > u′ at this point the incentive compatibility is non-

binding and the ‘Full Optimum’ where (ve)′ = u′ can be obtained. Contrastingly, if

(ve)′ ≤ u′ the incentive compatibility constraint will bind.

Nichols and Zeckhauser (1982) argue that optimal transfer programmes should place

restrictions on intended transfer beneficiaries. For example, restrictions may be placed

3Note that, because individuals are identical, the objective function here is the expected utility of
an individual who faces an exogenous probability of becoming unable to work.
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Figure 1.1: Optima from Diamond and Mirrlees (1978)

(a) Full Optimum: MRS = (1− θ)/θ

xe

xo

xo = xe

Budget Line →

ve = v0

Indiff.
curve

Full Optimum:
(ve)′ = u′

(b) Binding IC constraint optimum

xe

x0

xo = xe

Budget Line →

ve = v0

Indiff.
curve

Notes. See Diamond and Mirrlees (1978, pp.333-334)

on earnings or the consumption of goods ‘indicating’ low ability. In a simple two-

person setting, individuals differ in their wage and possibly preferences. Let nl denote

the productivity (wage) of a low ability individual, and nh the productivity of a high

ability individual, where nl < nh. Individuals have preferences over consumption (x)

and labour (H), as given by ui(xi, Hi) ; i ∈ {l, h}. Suppose that the government only

has income information and operates a tax/transfer system giving rise to the individual

budget constraint:

x =

niHi + T : niHi ≤ Z

niHi − T : niHi > Z

where T is a tax/transfer depending on where earnings lie relative to the threshold

Z.

Letting H∗i denote an individual’s optimal labour supply and y∗i = niH
∗
i their resulting

gross earnings, the authors show that the optimal choice of Z is slightly smaller than

y∗l . To qualify for the welfare payment then, a low ability individual has to restrict their

labour supply to Z/nl < H∗l . This, however, only imposes a second-order welfare loss
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on them because they are still in the neighbourhood their optimal choice of H:

ul(Z + T, Z/nl) ≈ ul(y∗l + T, y∗l /nl) (Second-order welfare loss) (1.3)

However, under the assumption that uh(y∗l +T, y∗l /nh) = uh(y∗h−T, y∗h/nh) - such that

a high skilled individual would be indifferent between masquerading or working their

optimal amount were Z = y∗l - it must hold that setting Z < y∗l imposes a first-order

welfare loss on a masquerader because they are pushed even further from their optimum

choice of H (conditional on receiving T ). Formally:

uh(Z + T, Z/nh) < uh(y∗l + T, y∗l /nh) = u(y∗h − T, y∗h/nh) (First-order welfare loss)

(1.4)

Such a restriction rules out masquerading and further, allows the government to finance

a higher (compensatory) transfer to the low type through increasing the tax rate.

Developing the argument further, should low ability individuals also consume more

of an ‘indicator’ good such as medical care than a high ability person, there may be

a role for in-kind transfers. In this case, converting part of the cash transfer into

a quantity of the indicator good set slightly higher than the low income individual

would optimally consume generates, analogous to the first case, (i) a second-order

welfare loss for the low income type; but (ii) a first-order welfare loss for the high type

whose consumption of the indicator good is far in excess of their optimum (Nichols and

Zeckhauser, 1982).

Drawing on the work of Nichols and Zeckhauser (1982) and others, Blackorby and

Donaldson (1988) are also concerned with the role non-cash transfers can play in the

prevention of non-needy individuals masquerading as needy. Their analysis takes place

in a simple two-person (able, infirm/ill), two-good (yams, medical care) model. Whilst

both the able and infirm desire yams, only the infirm desires medical care. Specifically,

the utility of an able person is given by the quantity of yams they consume, whilst

the utility of an infirm is a general strictly-quasiconcave function of yams and medical

care. For simplicity, an exogenous linear production possibility frontier constrains the

quantity of yams and medical care in the economy. The authors establish, and compare,

the first-best; second-best; and third-best Pareto optima which can arise. In a first-best
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setting, the government observes individual preferences and agents know this. The first-

best frontier can be attained as a decentralised Walrasian equilibrium where the price

of medical care relative to yams is unity (with yams normalised to price one). Next, in a

second-best setting the government only knows the population proportion of individual

types and cannot observe preferences. It designs (rations) consumption bundles which

satisfy self-selection constraints for the able and infirm4. Any second-best optima which

do not coincide with first-best allocations are characterised by overprovision of medical

care because this does not violate incentive compatibility, whilst an increase in yams

rationed to the infirms may. Turning to a third-best setting, the government faces the

same informational asymmetry but now chooses (i) a price for medical care; and (ii) an

equal income for both population types, so as to maximize the indirect utility function

of the infirm subject to the production possibility frontier. Any deviation in the price

of medical care relative to that in first-best corresponds to a tax or subsidy on medical

care and generates optima that are Pareto dominated by some second-best optima. So

with informational constraints, in many cases rationing (second-best) may be superior

to a market-solution (third-best).

Building further on the Nichols and Zeckhauser (1982) analysis of restrictions on welfare

recipients, a number of papers explore the role of conditioning transfers on unproduc-

tive work requirements (Cuff, 2000; Kreiner and Tranaes, 2005). Most recently, Kreiner

and Tranaes (2005) explore the use of workfare requirements to restrict unemployment

insurance to individuals in the labour force who become involuntarily unemployed, as

opposed to those out of the labour force who are voluntarily unemployed. In particular,

they are concerned with whether an unemployment insurance system with unproduc-

tive workfare requirements can be Pareto improving relative to a purely pecuniary

unemployment insurance system. Individual preferences over consumption (x) and

labour (H) are represented by ui(xi, Hi) i ∈ {f, v}, where f denotes an individual in

the labour force (working or involuntarily unemployed) whilst v denotes a voluntarily

unemployed individual. Letting ni denote individual productivity, a type v individual

will never choose to work because nv < uvH(0, 0)/uvx(0, 0) 5. Contrastingly, a working

type f individual optimises labour supply, H∗f , such that:

4So for the able to choose their intended consumption bundle they must receive more yams than
an infirm. Meanwhile, for an infirm to choose their intended bundle their utility from the yams and
medical care rationed to them must exceed that for consuming the yams allocated to the able.

5The right side is simply the reservation wage rate above which an individual would choose to
supply labour, as derived by setting H = 0 in the first order condition for labour supply.
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nf =
ufH(nfH

∗
f − T,H∗f )

ufx(nfH∗f − T,H∗f )
≡MRSf (nfH

∗
f − T,H∗f )

where T denotes a tax on workers necessary to finance an unemployment insurance

scheme (and other transfers) and MRS is the marginal rate of substitution. In the

population a fraction θ ∈ (0, 1) of individuals are of type f ; whilst the remainder are

of type v. For those of type f ; a fraction ρ ∈ (0, 1) receive a job offer.

An unemployment insurance scheme provides a consumption-workfare bundle {B,HR}
to involuntarily unemployed individuals, where B denotes the pecuniary benefit and

HR the work requirement. For type v individuals there is an unconditional income

support B0 ≤ B. With knowledge of the population proportion θ, the government’s

problem is described by:

max
B,B0,T,HR

E(uf ) = ρ uf (nfH
∗
f − T,H∗f )︸ ︷︷ ︸

utility from working

+(1− ρ) uf (B,HR)︸ ︷︷ ︸
utility from UI

s.t. uf (nfH
∗
f − T,H∗f ) ≥ uf (B,HR) (I1: Type f prefers work to UI)

uv(B0, 0) ≥ uv(B,HR) (I2: Type v prefers B0 to UI)

θ(1− ρ)B + (1− θ)B0 ≤ θρT (I3: Benefit Budget Constraint)

B ≤ B0 (I4: Minimum Type N support)

(1.5)

Under a pure pecuniary unemployment insurance scheme, {B, 0}, it is straightforward

to see from I2 that B0 = B , whilst from I3 we have T = B(1 − θρ)/θρ such that,

provided I1 holds:6

1−
ufx(nfH

∗
f − T,H∗f )

ufx(B, 0)︸ ︷︷ ︸
MB of increasing B

=
1− θ
1− θρ︸ ︷︷ ︸

MC of increasing B

≤ 1 (1.6)

6With no work requirements, the only choice variable is B, and thus the first order condition
resulting from (1.5) is:

−ufx(nfH
∗
f − T,H∗f ) ·

{
1− θρ
θ

}
+ (1− ρ)ufx(B, 0) = 0 :

Rearranging and adding 1 to both sides gives the result in the text.
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The left-side captures how much a type f individual values, in monetary terms, a

marginal increase in B. The right side, meanwhile, captures the extent to which

an increase in taxes necessary to increase B are misspent ‘leaking’ unemployment

insurance to individuals of type v.

The relevant question is now whether a workfare scheme, {B,HR}, can improve upon

the pure pecuniary system, for a given B0. Totally differentiating E(uf ) and evaluating

at HR = 0 yields the below condition for dE(uf ) > 0: 7

1−
ufx(nfH

∗
f − T,H∗f )

ufx(B, 0)︸ ︷︷ ︸
MB of increasing B

≥ −u
f
H(B, 0)

ufx(B, 0)
· u

v
x(B, 0)

uvH(B, 0)
≡ MRSf (B, 0)

MRSv(B, 0)
(1.7)

Notice that whilst the marginal benefit (left side) is identical to the optimality condition

for the pecuniary unemployment insurance scheme {B, 0}, the marginal cost (right side)

now captures the reduction in welfare from increased workfare. If the marginal utility

of leisure of Type f individuals is sufficiently different (lower) from that of Type v

individuals, then the introduction of workfare into a unemployment insurance scheme

can be Pareto improving (Kreiner and Tranaes, 2005).

There has also been some work exploring the role of workfare when the objective is

poverty alleviation. Besley and Coate (1992) analyse the standard screening argument

for the imposition of workfare, in addition to a deterrent argument whereby ability

enhancing effort is encouraged earlier in life to avoid welfare (and thus the requirement

to engage in workfare). In a population of N individuals, a fraction θ ∈ (0, 1) are of low

earning ability, nl, whilst the remaining proportion (1− θ) are of high earning ability,

nh. Quasilinear individual preferences are given by u(x,H) = x − g(H) ; g′(·) >

0, g′′(·) > 0, where x is consumption and H is labour supply. Let H∗i ; i = {l, h}
7Totally differentiating (1.5) given the choice variables T,B and HR gives:

dE(uf ) = ρufx(nfH
∗
f − T,H∗f ) · −dT + (1− ρ)

{
ufx(B,HR)dB + ufH(B,HR)dHR

}
Noting that (i) from I2: 0 = uvxdB + uvHdH

R ⇒ dHR = −dBuvx(B,HR)/uvH(B,HR); whilst (ii) from
I3: θ(1− ρ)dB = θρdT ⇒ dT = dB(1− ρ)/ρ; and so:

= (1− ρ)dB

{
−ufx(nfH

∗
f − T,H∗f ) + ufx(B,HR)− ufH(B,HR) · uvx(B, 0)

uvH(B,HR)

}
Evaluating at HR = 0, it is straightforward to obtain (1.7).
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denote optimal labour supply, where at an interior solution H∗i satisfies ni = g′(H∗i ).

The resulting indirect utility function for a type i individual is v(ni) = niH
∗
i − g(H∗i ).

Letting Z denote an arbitrary poverty line, it is assumed that nlH
∗
l ≤ Z < nhH

∗
h ,

thereby giving the government a reason to implement a poverty reduction programme

to assist the low types. A welfare consumption bundle, (Bi, H
R
i ), consists of a welfare

payment, B, and an unproductive workfare requirement, HR. Notably, an individual

of either ability type receiving welfare may still work in the private sector. Intuitively,

they will choose to do so if the work requirement does not exceed their optimal labour

supply, and thus if HR
i ≤ H∗i .

Turning to information structure, the government knows the distribution parameter θ

but cannot identify the type of a given individual, thereby giving rise to the problem

of incentive compatibility. The indirect utility of an individual receiving their intended

welfare package is v(ni, Bi, H
R
i ), whilst if they receive that intended for the other type

it is v(ni, B−i, H
R
−i). Putting this all together, the objective of the government is to

choose expenditure minimising consumption bundles that eliminate poverty and satisfy

incentive compatibility constraints. The incentive compatibility constraints depend on

whether individual earnings can be observed. Should earnings be unobservable then

we have the following incentive compatibility(IC) constraints :

v(nh, Bl, H
R
l ) ≤ v(nh, Bh, H

R
h )

v(nl, Bh, H
R
h ) ≤ v(nl, Bl, H

R
l )

(Earnings Unobservable IC constraints) (1.8)

Contrastingly, should earnings be observable then there is now a cost to high types

masquerading, as they must restrict their labour supply to H̄h satisfying nHH̄h =

nl(MAX[0, H∗l −HR
l ]). The IC constraint is thus:

Bl+nhH̄h−g(H̄h+HR
l ) ≤ v(Bh, H

R
h , Nh) (Earnings Observable IC constraint) (1.9)

In both cases, there exists a work requirement level that separates the two types.

Necessarily, this requirement is lower with observable earnings because masquerading

individuals are already harmed through restricting their labour supply. The optimality

of workfare relative to a purely pecuniary welfare programme rests on the extent to

which workfare reduces, or ‘crowds out’, private earnings, thereby exacerbating the

poverty gap. Intuitively, the greater nl and the lower θ, the more likely workfare
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is to be optimal. Further, workfare is more likely to be optimal where earnings are

unobservable. It may therefore be more relevant in a developing country context, as

opposed to a developed one. Where poverty is partly endogenous, in the sense that

ability is determined partly by effort earlier in life, it may be optimal to impose a

‘maximal’ work requirement that leaves a low type indifferent to welfare programme

participation, thereby incentivising effort earlier in life (Besley and Coate, 1992).

1.1.2 Awards Technology that ‘Tags’ only Needy Individu-

als.

In each of the frameworks considered so far there have been two types of individual and

the aim has been to design a mechanism that prevents the non-needy from claiming

benefits. In this section we now discuss optimal transfers when the government can

use categorical information to ‘tag’ individuals as needy and award them categorical

transfers. It will be assumed that only needy individuals are tagged, though not neces-

sarily all needy individuals. Issues surrounding masquerading are therefore abstracted

from and the awards technology does not make false award errors.

These analyses are firmly grounded in the optimal income tax framework originat-

ing from Mirrlees (1971). It is therefore natural to first discuss the standard uni-

dimensional model of optimal taxation; where individuals differ over a continuum of

productivities. This has the benefit of allowing us to explore optimal universal welfare

provision. Following the seminal contribution of Akerlof (1978), we then introduce

categorical heterogeneity into the optimal tax framework. The government will have

access to technology that allows it to partition society into categorical groups and

design tax/transfer schedules using this information.

The Uni-Dimensional Optimal Tax Framework

The standard optimal nonlinear tax framework originates from Mirrlees (1971). It also

provides the framework for optimal linear taxation (Sheshinski, 1972). Individuals have

identical preferences over consumption, x ≥ 0, and labour, H ∈ [0, 1], as represented

by the utility function u(x,H). The standard assumptions apply: u is continuous,

increasing in x (ux > 0), decreasing in H (uH < 0) and strictly concave (uxx < 0 ,
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uHH < 0 , uxxuHH − u2
xH > 0). Individuals differ in the sole dimension of productivity

(n); where n is continuously distributed with density function f(n) and associated

distribution function F (n).

Social welfare takes the (generalised) utilitarian form W =
∫
G(u)f(n)dn, where G

is a monotonic concave (or linear) transformation of individual utility.8 Note that if

G(u) = u (or equivalently if G′(u) = 1) the government is strictly utilitarian and

a desire for redistribution arises solely from the concavity of individual utility. For

simplicity, we throughout focus on this case. Given this objective, the government

wishes to design a redistributive tax schedule but is constrained by the fact that it

only observes earnings (which are endogenous to the tax system) and not the two

drivers of these earnings: productivity and labour supply (effort). This gives rise to the

fundamental tradeoff between redistributive gains (equity) and behavioural responses

(efficiency). Redistribution from high earners to low earners is desirable on the grounds

of diminishing marginal utility of income, but taxes have a distortionary affect on

individual behaviour.

Benchmark: First-Best (Lump-Sum) Taxation

As a benchmark case it is useful to first outline the first-best tax optimum which

would arise if the government could in fact observe individual productivity. This will

also prove useful for the later discussion of categorical transfers, which share a number

of similarities with first-best taxation (Viard, 2001a). Note that a tax on individual

productivity is non-distortionary in the sense that individuals cannot alter the amount

of tax they pay through adjusting their labour supply.

Let M(n) be a lump-sum tax/transfer that is conditioned on individual productivity.

Individual labour supply (H∗) and the resulting indirect utility function (v) are:

H∗[n,M(n)] ≡arg max
H∈[0,1]

u[nH +M(n), H]

v[n,M(n)] ≡u[nH∗ +M(n), H∗]
(1.10)

8This welfare function is the dominant approach in much of public finance. For useful discussions
see Beath et al. (1988); Lewis and Ulph (1988); Mankiw and Weinzierl (2010); Piketty and Saez (2012);
Saez and Stantcheva (2013).
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where at an interior solution H∗ > 0 satisfies n = −uH/ux. By the envelope theorem

we have:

∂v

∂n
=uxH

∗ +
∂H∗

∂n
(nux + uH)︸ ︷︷ ︸

=0

= uxH
∗

∂v

∂M
=ux +

∂H∗

∂M
(nux + uH)︸ ︷︷ ︸

=0

= ux

(1.11)

from which we obtain Roy’s identity vn = vMH
∗ and thus vnM = vMMH

∗+vMH
∗
M . By

the concavity of utility and the normality of leisure it is straightforward to establish

that H∗M < 0 and thus vnM < 0: i.e. the marginal indirect utility of unearned income

is decreasing in productivity.

From (1.11) we can readily establish that:

dv

dn
=
∂v

∂n
+

∂v

∂M
M ′(n) = ux (H∗ +M ′) (1.12)

dH∗

dn
=
∂H∗

∂n
+
∂H∗

∂M
M ′(n) =

∂Hc

∂n
+
∂H∗

∂M
(H∗ +M ′) (1.13)

where Hc is compensated labour supply satisfying the Slutsky-Hicks equation:9

∂Hc

∂n
=
∂H∗

∂n
+H∗

∂H∗

∂M
(1.14)

With this by way of background, the ability-dependent tax transfer schedule M(n) is

9The expenditure minimisation problem is:

min
x,H

x− nH s.t. u(x,H) ≥ ū

Let xc(n, u) , Hc(n, u) and the lagrange multiplier µc(n, u) denote the optimal choices. The FOC’s
characterising these choices are:

(x) : 1− µcµx = 0 , (H) : n+ µcuH = 0 , (µ) : u− ū = 0

Let E(n, u) = xc − nHc denote the resulting expenditure function. By the envelope theorem:

∂E

∂n
=
∂xc

∂n
(1− µcux)︸ ︷︷ ︸

=0

−∂H
c

∂n
(n+ µcuH)︸ ︷︷ ︸

=0

−∂µ
c

∂n
(u− ū)︸ ︷︷ ︸

=0

−Hc = −Hc

Differentiating the identity Hc(n, u) = H∗(n,E(n, u)) w.r.t. n then gives (1.14) in the main text.
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chosen so as to:

max
M(n)

W =

∫ ∞
0

v[n,M(n)]f(n)dn (1.15)

s.t.

∫ ∞
0

M(n)f(n)dn−R = 0

Letting M̂(n) denote the resulting optima, we have:

vM [n, M̂(n)] = λ ∀ n (1.16)

The left side of (1.16) is the social marginal value of income (smvi) of a productivity n

individual, whilst the right side is the shadow price of public expenditure. Intuitively,

the condition states that the tax/transfer schedule M should be chosen so as to equate

the smvi of all ability types (Viard, 2001a,b).

Differentiating (1.16) with respect to n gives:

M ′(n) = −H∗ −
{
vM
vMM

}
︸ ︷︷ ︸
≤0

HM ≤ 0 (1.17)

The optimal lump-sum transfer is therefore decreasing in productivity: i.e. higher

ability individuals will pay taxes (M < 0) to finance transfers (M > 0) to those of

lower ability. Substituting (1.17) into (1.12) and (1.13) clearly illustrates that at the

optimum we have dv/dn < 0 and dH∗/dn > 0 for all those who work. This arises

because it is efficient to encourage the most productive individuals in society to work

(see Hellwig, 1986; Helpman and Sadka, 1978; Viard, 2001a,b).10

10Suppose preferences are separable in consumption and labour and take the form u(x,H) = v(x)−
γH, where v′ > 0 and v′′ < 0. The first-best problem is now:

max
M(n)

∫ ∞
0

v[nH +M(n)]− γHf(n)dn s.t.

∫ ∞
0

M(n)f(n)dn−R = 0

The resulting FOC is v′[nH + M(n)] = λ ∀ n. This states that the marginal utility of consumption
should be equated across productivity types, and thus so too should be consumption. At the optimum
then, those with above average productivity will be taxed, whilst those with below average productivity
will receive transfers (Mankiw and Weinzierl, 2010). More eloquently: ‘the solution to this problem
in the abstract is that the richer should be taxed for the benefit of the poorer up to the point at which
complete equality of fortunes is attained’ (Edgeworth, 1897, p.553).
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Optimal Linear Income Tax Framework

In his seminal contribution on nonlinear taxation, Mirrlees (1971, p.208) discusses the

desirability of approximately linear income taxation and the administrative advantages

this would bring. Indeed, proponents of linear (flat) income taxes cite their administra-

tive simplicity and enhanced work incentives (Paulus and Peichl, 2009; Peichl, 2014).

Analytically, the analysis of linear income taxes captures the equity-efficiency tradeoff

inherent in income taxation more tractably than nonlinear taxation.

Individuals face the budget constraint x = n(1− t)H+B; where t ∈ (0, 1) is a constant

marginal tax rate on earnings and B is a tax-free universal benefit. B receives many

names in the literature, such as ‘demogrant’ or ‘basic income’ (see Van Parijs, 2004).

Atkinson (1995) employed this framework in his analysis of ‘the basic income/flat tax

proposal’.

An implication of providing a universal benefit is that there will be a reservation

productivity n̄ satisfying n̄(1−t) = −uH(B, 0)/ux(B, 0) at or below which an individual

will choose not to work. So for all n ≤ n̄: H∗ = 0; whilst for all n > n̄: H∗ > 0. To

save on notation, let y∗(n, 1 − t, B) = nH∗[n(1 − t), B] be individual gross earnings;

whilst ȳ∗ =
∫
yf(n)dn is the average earnings in the economy.

In a population of size 1, the government’s problem is now described by:

max
t,B

W (t, B) =

∫ ∞
0

v[n(1− t), B]f(n)dn (1.18)

s.t. B = t

∫ ∞
0

y∗f(n)dn−R

where R is an exogenous revenue requirement for spending outside of welfare.

For the purpose discussing the results which follow, let the net smvi of a produc-

tivity individual be given by (Atkinson and Stiglitz, 1980; Atkinson, 1995; Viard,

2001a,b):

s(n, t,M, λ) =

ux(M, 0) : n ≤ n̄

vM [n(1− t),M ] + λty∗M(n, 1− t,M) : n > n̄
(1.19)

where λ is the shadow price of public expenditure. For individuals who do not work s
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is simply the social marginal utility of income. Contrastingly, for individuals who do

work s also captures - in welfare units - the fact that an increase in unearned income

induces an individual to reduce their labour supply and thus lowers tax revenue. We

let s̄(t,M, λ) =
∫
sf(n)dn.

Let B̂ and t̂ denote the optimal choices which result from (1.18). The first order

conditions (FOCs) characterising these optima are:

(B) : s̄
(
t̂, B̂, λ̂

)
= λ̂ (1.20)

(t) :

∫ ∞
0

{
−nvω + λ̂

[
y∗ − t̂ ∂y∗

∂(1− t)

]}
f(n)dn = 0 (1.21)

where λ̂ is the shadow price of public expenditure at the optimum.

Condition (1.20) states that at the optimum the average net smvi associated with an

increase in the universal benefit must equate with, in welfare units, the marginal cost of

increasing the benefit (given a population of size 1 this enters as unity). Next, following

(Atkinson and Stiglitz, 1980) we can use Roy’s identity (vω = vMH
∗ = vMy

∗/n) and

the Slutsky-Hicks equation11 to write (1.21) as:∫ ∞
0

y∗
(

1− vM

λ̂
− t̂ ∂y

∗

∂M

)
f(n)dn = t̂

∫
∂yc

∂(1− t)f(n)dn

⇒
∫ ∞

0

y∗
(
λ̂− s

)
f(n)dn = t̂λ̂

∫
∂yc

∂(1− t)f(n)dn (1.22)

From (1.20) we know that s̄ = λ̂ and so the left side of (1.22) can be written as

ȳ∗s̄−
∫
y∗sf(n)dn = −Cov(y∗, s). Finally, dividing both sides of (1.22) by the net-of-

tax rate (1− t) thus gives the well-documented expression:

t̂

1− t̂ =
−Cov(y, s)

λ̂
∫
yEcf(n)dn

i.e.

(
Equity

Efficiency

)
(1.23)

11In terms of earnings, the Slutsky-Hicks equation can be written as:

∂yc

∂(1− t) =
∂y∗

∂(1− t) − y
∗ ∂y

∗

∂M
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where:

Ec =
1− t
y
· ∂yc

∂(1− t)
is the compensated elasticity of earnings with respect to the net-of-tax rate.

The optimal tax expression in (1.23) has equity considerations in the numerator and

efficiency considerations in the denominator. The numerator is the negative of the

covariance between individual gross earnings and the net smvi. Under the frequently

employed assumption of agent monotonicity earnings will rise with productivity. Con-

trastingly, by ordinal properties the net smvi will fall with productivity. The intuition

is that the government would like to redistribute from those of high productivity (and

thus low smvi) towards those of low productivity (and thus high smvi).

This redistribution is constrained, however, by the efficiency considerations in the

denominator. Ceteris paribus, larger compensated elasticities of earnings favour lower

tax rates; with emphasis placed on both high productivities and productivities where

the population is most dense (Kaplow, 2008).

Moving Beyond the Uni-Dimensional Framework

Suppose that we modify the linear income tax framework so that a fraction θ ∈ (0, 1)

of the population faces a zero quantity constraint on labour supply and is thus unable

to work. The model remains otherwise the same.

In this case the government’s problem is:

max
t,B

W (t, B; θ) = θu(B, 1) + (1− θ)
∫ ∞

0

v[n(1− t), B]f(n)dn (1.24)

s.t. B = tȳ∗ −R

The FOCs characterising the optimal universal benefit and tax rate are now:

(B) : θux(B̂, 1) + (1− θ)s̄
(
t̂, B̂, λ̂

)
f(n)dn = λ̂ (1.25)

(t) :
t̂

1− t̂ =

∫∞
0
y∗(λ̂− s)f(n)dn

λ̂
∫
Ecf(n)dn

(1.26)

The presence of a dependent population means that we can no longer use the FOC
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characterising B̂ to write the numerator of the optimal tax expression as the negative

of the covariance between earnings and the net smvi. Further, at the optimum we

can see that ux(B̂, 1) > λ̂ > s̄(t̂, B̂, λ̂) because the universal benefit does not remove

inequality in the average net smvi between the unable and able subpopulations. If the

government could condition transfers on disability, it would certainly seem desirable to

provide a categorical transfer to the unable (Atkinson, 1995).

Tagging Transfers: Categorical Heterogeneity

In the standard optimal tax model individuals differ in the sole dimension of produc-

tivity. However, the value of introducing additional dimensions of heterogeneity into

tax/transfer models - and exploiting this through categorical information - has been

known since Akerlof (1978). Akerlof considers a simple model in which there is a pop-

ulation composed of an equal share of high ability and low ability individuals. Low

ability individuals may only work in an easy job and earn (pre-tax/transfer) ne. Con-

trastingly, high ability individuals may choose to work in either (i) a difficult job and

earn (pre-tax/transfer) nd ; or (ii) an easy job and earn ne.

In the absence of any categorical information on ability, the government has in place

a tax/transfer system whereby those in difficult jobs pay a tax td ≥ 0 , whilst those in

easy jobs receive a transfer te ≥ 0. The utility of an individual working in an easy job

is u(ne + te), where u′(·) > 0 and u′′(·) < 0. Meanwhile, the utility of an individual

working in a difficult job is u(nd− td)−γ, where γ captures the disutility of working in

the harder job. The assumption is made that u(nd)− γ > u(ne) such that, in absence

of any taxes or transfers, a high ability individual would always choose a difficult job.

Putting this all together, the government’s problem is described by:

max
te,td

W (td, te) =
1

2
max[u(nd − td)− γ, u(ne + te)] +

1

2
u(ne + te)

s.t. u(nd − td)− γ < u(ne + te)⇒ te = 0 (Incentive compatibility)

u(nd − td)− γ ≥ u(ne + te)⇒ td = te (Taxes = Transfers)

(1.27)
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The first condition states that if the tax system is such that high ability individuals pre-

fer easy jobs to difficult jobs then no tax revenue will be generated and consequently

te = 0. The second condition, meanwhile, states that tax revenue is used entirely

to finance transfers and, given the equal population shares, taxes equate with trans-

fers. Letting t̂d and t̂e denote the optimum transfers, it is straightforward to establish

that:12

t̂d = t̂e , u(nd − t̂d)− γ = u(ne + t̂e) (No Tagging Optimum) (1.28)

Next, when the government has can identify the fraction α ∈ (0, 1]13 of low ability

individuals as low ability, it chooses t′d, t
′
e (which may now be a tax or transfer) in

addition to a tagged transfer tl so as to:

max
t′d,t
′
e,tl
WTAG(t′d, t

′
e, tl) =

1

2
max {u(nd − t′d)− γ, u(ne + t′e)}

+
1

2
{αu(ne + tl) + (1− α)u(ne + t′e)}

s.t. u(nd − t′d)− γ < u(ne + t′e)⇒ αtl = −(2− α)t′e (Incentive compatibility)

u(nd − t′d)− γ ≥ u(ne + t′e)⇒ t′d = αtl + (1− α)t′e (Taxes = Transfers)

(1.29)

The incentive compatibility condition simply states that if everyone chooses easy jobs

then any tax on easy jobs must finance transfers to tagged individuals. Akerlof (1978)

12Drawing on Akerlof (1978), the proof tests two hypotheses.

(i) First, suppose that u(nd − t̂d) − γ > u(ne + t̂e) and let t̃d = t̂d + ε. From (1.27), a Taylor
approximation of W (t̃d, t̃e) around ε = 0 yields W (t̂d, t̂e) + 1

2 [u′(ne − t̂e) − u′(nd − t̂d)] · ε + σε,

where limε→0 σε = 0. Next, the assumption that u(nd − t̂d) − γ > u(ne − t̂e) implies, via the
fact that u′′ < 0, that u′(nd − t̂d) < u′(ne + te). From the Taylor approximation, this implies
that W (t̃d, t̃e) > W (t̂d, t̂e) for small ε. But this contradicts the fact that t̂d and t̂e are optimum.
The assertion that u(nd − t̂d) − γ > u(ne + t̂e) must therefore be false. (ii) Next, suppose that
u(nd − td) − γ < u(ne + te) and thus t∗e = 0 because no high skilled individuals works in a difficult
job. Total welfare thus becomes u(ne). But by the concavity of welfare this can be easily improved
upon 1

2u(nd)− γ + 1
2u(ne). Putting this all together, it must hold that u(nd − td)− γ = u(ne + te).

13Note that if α < 1 some low ability individuals are not tagged. This is analogous to a Type I
(false rejection) error.
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demonstrates that, at the optimum:

t̂l > t̂e , u(nd − t′d)− γ = u(ne + t′e) (1.30)

So it is welfare enhancing to award tagged individuals higher transfers than untagged

workers in easy jobs. An increase in the transfer size provides less of an incentive for

skilled workers to move to an easy job than in the no tagging case, where all those in

an easy job receive a non-negative transfer.

Following Akerlof (1978) , a number of papers introduce categorical transfers into the

optimal tax framework (both linear and nonlinear). These papers assume that the

government can perfectly partition society into categorical groups and thus has two

tools available to it: categorical transfers and income based taxes/transfers.

Categorical Transfers in the Linear Income Tax Framework

Viard (2001a,b) analyses categorical transfers in the the optimal linear income tax

framework. Using categorical information on exogenous characteristics which are cor-

related with ability, the planner can perfectly classify individuals into J disjoint groups,

each with its own ability distribution, fj(n). Each group represents the proportion

θj ; j = 1, ..., J of the total population, where
∑

j θj = 1 and
∑

j θjfj(n) = f(n).

In terms of information structure, the planner cannot observe ability but does know

the distribution of abilities for each group. However, because it knows the categori-

cal group to which an individual belongs, it can provide a categorical transfer Cj to

individuals in each group.

Putting this all together, the planner’s optimisation problem is described by:

max
Cj ,t

W =
∑
j

θj

∫ ∞
0

v[n(1− t), Cj]fj(n)dn

s.t.
∑
j

θjCj ≤
∑
j

θj · t
∫ ∞

0

nH∗[n(1− t), Cj]fj(n)dn−R
(1.31)

where R is an exogenous revenue requirement14.

14Viard (2001a, p.489) notes in his numerical analysis that Cj ≥ 0: a negative transfer would
harm too much the very low productivity individuals in a categorical group. Categorical transfers are
therefore financed entirely through tax revenue.



CHAPTER 1. LITERATURE REVIEW 39

Letting Ĉj and t̂ denote the optimal choices, the FOC characterising optimal categorical

transfers is:

∫ ∞
0

s
(
n, t̂, Ĉj, λ̂

)
fj(n)dn = λ̂ ∀ j (1.32)

At the optimum then, the role of categorical transfers is to eliminate inequality in the

average net smvi between categorical groups. Viard (2001a) notes the ‘fundamental’

similarity between categorical transfers and first-best lump-sum transfers, as can be

seen from comparing (1.32) with (1.16). Whilst lump-sum transfers eliminate inequal-

ity in the smvi between indivdiuals, categorical transfers aim to (if feasible) eliminate

inequality in the average net smvi between categorical groups. In the first case, the

planner has information on each individual, whilst in the second it only has infor-

mation on categorical groups. In the extreme case where the planner has categorical

information on characteristics which are perfectly correlated with earnings ability, the

two types of transfers coincide and the planner can eliminate inequality in the smvi

across all individuals. Analogous to first-best, optimal categorical transfers are shown

to be decreasing in group average ability under the assumption that HMM < 0 and

HMω < 0. This assumption guarantees that the net smvi is decreasing in both ω and

M . Further, categorical transfers can induce some quantiles of higher ability groups

to have greater labour supply and lower utility levels than their counterparts in lower

ability groups.

In reporting the optimal tax formula Viard (2001a,b) implicitly assumes that (1.32)

holds: this allows the optimal tax expression to be written analogously to that in

the unidimensional model where individuals differ only in productivity (i.e. equation

1.23). Chapter 3 of this thesis will return to discuss the appropriateness of this as-

sumption.

Viard (2001b) notes that categorical transfers and the income tax are imperfect substi-

tutes: The former remedies between-group inequality but not within-group inequality,

whilst the latter plays some role in addressing both. Numerical simulations using a

log-normal ability distribution and CES utility function are used to provide some sup-

port to propositions which follow from linear approximations of first-order conditions.

Whenever there is low within-group inequality or labour supply is highly elastic, the

importance of categorical transfers relative to the income tax as a redistributive tool
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is increased. Because the income tax is used to a lesser extent, a greater proportion

of the between-group inequality is remedied by the perfectly administered categorical

transfers, as captured by larger differences in transfers between-groups.

Categorical Transfers in the NonLinear Income Tax Framework

In a nonlinear income tax framework, Immonen et al. (1998) explore a similar issue to

Viard (2001a,b). Specifically, categorical information is used identify a proportion θ ∈
(0, 1) of the population as belonging to categorical group a, whilst the remaining (1−θ)
of the population fall into categorical group b. The distribution of ability within each of

the two groups is given by the density function fj(n) ; j ∈ {a, b}, with corresponding

distribution function Fj(n). There may also be heterogeneity in individual preferences,

as given by uj(x,H), where x denotes consumption and H labour time. An individual

from group j faces the budget constraint x = nH − Tj(nH), where Tj denotes the

group specific nonlinear tax schedule. An individual’s resulting indirect utility function

is vj(n). Given this, the government’s overall problem is to choose group specific tax

schedules and revenue requirements, given an overall exogenous revenue requirement

of R, so as to:

max
Tj ,Rj

W =

∫ ∞
0

[θva(n)fa(n) + (1− θ)vb(n)fb(n)]dn

s.t. Ra +Rb = R =

∫ ∞
0

[θTafa(n) + (1− θ)Tbfb(n)]dn

(1.33)

This overall problem can, however, be decomposed into a two-stage problem. In the

first stage, the government solves the within-group standard Mirrlees problem, taking

as arbitrarily fixed Rj:

max
Tj

W j =

∫ ∞
0

vj(n)fj(n)dn s.t.

∫ ∞
0

Tjfj(n)dn = Rj (1.34)

Given the optimal tax schedules from the first stage, the government then chooses the

optimal group specific revenue requirements so as to:

max
Ra

W = W a(Ra) +W b(R−Ra) (1.35)
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The authors reconcile tensions between the Dilnot et al. (1984) argument of increasing

(decreasing) marginal tax rates in the poor (rich) groups and the conventional optimal

income tax literature result of decreasing marginal rates in income. Through numerical

simulations employing CES preferences15 and lognormal ability distributions, Immonen

et al. (1998) argue that the intuition relating the two-dimensional and one-dimensional

problems respectively, lies in group-specific revenue requirements and intergroup re-

distribution. Specifically, the revenue requirement for the poor group will differ in

magnitude and potentially sign, thereby capturing intergroup transfers.

Next, in a setting where individual ability is revealed through successful job search,

Boone and Bovenberg (2006) model the optimal combination of (i) an out-of-work

(welfare) benefit; and (ii) in-work benefits , with the latter delivered directly through

the nonlinear tax-schedule individuals face. There are two sources of inequity in the

model: disparities in ability and involuntary unemployment. Formally, ability, n, is

distributed continuously in the interval [n, n̄] with density function f(n). Individuals

have quaslinear preferences u(x,H) = v(x) − H ; v′ > 0 , v′′ < 0, where x is con-

sumption and H is labour supplied16. An individual who does not work therefore has

utility v(B), where B is the out-of-work welfare benefit. Contrastingly, an individual

who does work has utility u(n) = v[x(n)]− y∗(n)/n, where y∗ = nH∗ is gross earnings

and x(n) = y∗(n)− T (n) is net earnings.

In this static model individuals search for a job and the probability of finding a job

is given directly be the search effort e ∈ [0, 1]. The costs involved in searching with

intensity e are given by the cost function k(e).17 Individuals choose search intensity e

so as to:

ũ = max
e

e · u(n) + (1− e)v(B)− γ · e (1.36)

Note that through finding a job an individual’s ability is revealed to the government.

15Specifically, they use functions where the elasticity of substitution between consumption and
leisure is 1 (i.e. Cobb-Douglas) and 0.5, respectively.

16As Boone and Bovenberg (2006) state, the assumption of quaslinear preferences that are concave
in consumption and linear in labour renders a utilitarian government concerned with the distribution
of consumption, but not the distribution of labour effort.

17For simplicity, we omit the precise properties of the cost function, which are stated in detail in
Boone and Bovenberg (2006, p.169).
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The utilitarian government’s problem is formally described by:

max
s,y,x

∫ n̄

n
ũ(n)f(n)dn (1.37)

s.t. B

∫ n̄

n
[1− s(n)]f(n)dn︸ ︷︷ ︸

Benefit expenditure on those

who do not find a job

=

∫ n̄

n
s(n)T (n)f(n)dn−R︸ ︷︷ ︸

Tax Revenue net

of Revenue requirement

The conclusions reached in the paper depend - among other things - on whether the

government can optimise with respect to both the welfare benefit level and the nonlinear

tax-schedule, or just the latter (taking the welfare benefit level as exogenously given).

In the first case, the in-work benefits may exceed the welfare benefit due to the effect

that the welfare benefit has on tax rates. Whilst high welfare benefits assist the most

needy (the unemployed), they require the tax rate to be lowered on high productivity

workers to prevent these workers departing the labour force in favour of receiving the

welfare benefit. In contrast, in-work benefits have no such disincentive effects because

the government can observe the ability of workers. Meanwhile, in the second case

the authors describe a U-shaped relationship between welfare benefits and in-work

benefits: A marginal increase in the welfare benefit from low levels substitutes for in-

work benefits because the labour force participation constraint of high ability workers is

non-binding (i.e. they are not incentivised to depart the labour force). However, higher

levels of the welfare benefit require higher in-work benefits because the participation

constraint becomes binding.

1.1.3 Awards Technology with Two-Sided Classification er-

rors

A third strand of literature explores optimal transfers when the test, or monitoring

technology, administering a given benefit makes two-sided classification errors. The

propensity to make classification errors is largely taken to be exogenous, though a few

papers do endogenize the propensities by making the test accuracy a function of the

resources dedicated to it.
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Exogenous Awards Technology

Diamond and Sheshinski (1995) model the optimal provision of (i) a disability benefit;

and (ii) a retirement benefit, when the test determining disability makes both Type I

and Type II classification errors. All individuals have the same marginal product of

unity but differ over a continuum of labour disutilities, γ ≥ 0 , which are distributed

by the continuous density function f(γ) and corresponding distribution function F (γ).

An individual who works derives utility ũ(xw) − γ, where ũ′(·) > 0 , ũ′′(·) < 0 and

xw is the consumption level associated with working. Contrastingly, an individual who

does not work will have utility u(xi) , i ∈ {d, r} , where u′(·) > 0 , u′′(·) < 0; xd

is the consumption when receiving the disability benefit; and xr is the consumption

when receiving the retirement benefit. The retirement benefit is received automatically

by anyone who is (a) not working and (b) not receiving the disability benefit. The

disability benefit, however, must be applied for. The assumption is made that xd ≥ xr.

The probability that a given individual with imperfectly observable labour disutility

γ is awarded the disability benefit is given by ρ(γ), where ρ′(γ) > 0. Drawing this all

together, we can establish that:

1. An individual will choose to work over all other options (apply for disability,

retire) if ũ(xw)−γ > u(xd) ≥ u(xr). This implies that there is a critical disutility

level, γ̄d above which an individual will apply for disability benefits, and which

satisfies:

ũ(xw)− γ̄d ≡ u(xd) (1.38)

2. Conditional on applying for the disability benefit (i.e. γ > γ̄d) and being rejected

it, an individual will work if γ̄d ≤ γ ≤ γ̄r, where γ̄r satisfies:

ũ(xw)− γ̄r ≡ u(xr) (1.39)

3. Conditional on applying for the disability benefit and being rejected it, an indi-

vidual will choose to retire if γ̄r ≤ γ.

Given a fixed budget of size β, the government chooses the consumption levels xw, xd
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and xr so as to maximize the utilitarian social welfare function:

max
xw,xd,xr

W =

∫ γ̄d

0

[ũ(xw)− γ]dF (γ)︸ ︷︷ ︸
Those who always work

+

∫ γ̄r

γ̄d

[ρ(γ)u(xd) + (1− ρ(γ))(ũ(xw)− γ)]dF (γ)︸ ︷︷ ︸
Those who apply for the disability benefit but work if rejected it

+

∫ ∞
γ̄R

[ρ(γ)u(xd) + (1− ρ(γ))u(xr)]dF (γ)︸ ︷︷ ︸
Those who apply for the disability benefit and are retired

s.t. β =

∫ γ̄d

0

[xw − 1]dF (γ) +

∫ γ̄r

γ̄d

[ρ(γ)xw + (1− ρ(γ))(xw − 1)]dF (γ)

+

∫ ∞
γ̄r

[ρ(γ)xd + (1− ρ(γ))xr]dF (γ)

(1.40)

Diamond and Sheshinski (1995) demonstrate that, provided ũ′(xw) < u′(xd) ≤ u′(xr),

a sufficient condition to have x̂d > x̂r is that ρ′(γ) > 0, as assumed. In choosing the

optimal benefit levels there is a tradeoff between (i) the reduction in labour supply

(in the extensive margin) that a marginal increase in benefits brings; and (ii) the aim

to efficiently allocate consumption across individual types. The optimal consumption

levels are chosen so as to balance the labour supply reduction associated with an in-

crease in benefits. Were labour disutility perfectly observable then it would be optimal

to provide a single benefit which equates the marginal utility of workers with that of

non-workers. However, because labour disutility is in fact imperfectly observed, the

optimal disability and retirement benefits are optimally set at lower levels to encourage

labour supply.

Within this literature, a number of papers alternatively model disability as a (0,1)

phenomenon and impose a zero quantity constraint on labour supply for the disabled.

When the benefit authority makes two-sided classification errors in tagging individuals

as disabled, Parsons (1996) shows, under a number of specific assumptions, that a ‘dual

negative income tax’ system providing incentives for tagged able individuals to work

is optimal. Individuals are ex-ante identical but face a probability θ ∈ (0, 1) of being

disabled and unable to work. Contrastingly, with probability (1−θ) an individual is able

to work. Any able individual who works has a marginal product of unity. Conditional
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on ability status, the probability that an individual is tagged is given by:

Prob. (Tagged when Disabled) = (1− pI) ; 0 ≤ pI ≤ 1

Prob. (Tagged when Able) = pII ; 0 ≤ pII ≤ 1
(1.41)

A Type I error (false rejection) is thus made with probability pI , whilst a Type II

error (false award) is made with probability pII . The assumption is made that (1 −
pI) > pII ⇔ pI + pII ≤ 1 and thus that the test awards the disability benefit to a

disabled individual with at least as high a probability as it awards it to a truly able

individual.

Individual preferences are given by u(x)−ζ ·γ, where u′ > 0; u′′ < 0; x is consumption;

γ is labour disutility; and ζ ∈ {0, 1} is a binary variable taking the value 1 if the

individual works. By definition, ζ = 0 for a disabled individual.

A ‘dual negative income tax’ system is characterised by the consumption levels xto , xo ,

xtw and xw, where the subscripts w and o capture the working and non-working states,

whilst the superscript t, or lack thereof, indicates whether or not an individual is tagged.

Under the assumption that all able individuals do in fact work, the government chooses

consumption levels so as to maximise a utilitarian social welfare function (which in this

case is equivalent to an individual’s expected utility):

max
xtn,xn,x

t
w,xw

W = (1− θ)
{

(1− pII)[u(xw)− γ] + pII [u(xtw)− γ]
}

+ θ
{
pIu(xo) + (1− pI)u(xto)

}
s.t. (1− θ) = θ

{
(1− pII)xw + pIIx

t
w

}
+ (1− θ)

{
pIxo + (1− pI)xto

}
,

u(xo) ≤ u(xw)− γ (Incentive compatibility constraint for untagged able),

u(xto) ≤ u(xtw)− γ (Incentive compatibility constraint for tagged able).

(1.42)

Note that resources in the economy are given by (1 − θ) because all individuals who

work produce a marginal product of unity. The analysis in Parsons proceeds as follows.
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It is first shown that the ‘dual negative income tax system’ {xto, xo, xtw, xw} must be

welfare superior to the single negative income tax system {xo, xw} with no tagging

because the latter is a available under the former (i.e. through setting xto = xo and

xtw = xw), but is not chosen whenever pI + pII < 1 - and thus whenever tagging brings

some useful information. Second, a dual negative income tax system can be welfare

improving over a ‘three price’ system {xo, xto, xw} if tagged able individuals - who are

voluntarily unemployed under the three price system because xo < xw < xto - can be

induced to work for less than their marginal product. Formally then, there are gains

to be had from a dual negative income tax system relative to a three price system if

u(xto + 1)− γ > u(xto).

In a more general exposition than Parsons (1996) - and with the additional restriction

that tagged individuals are not allowed to work - Salanié (2002) shows that a higher

benefit (demogrant) should be awarded to those who are tagged relative to those who

are not. Once more, the proportion θ (resp. (1−θ)) of the population are unable (resp.

able) to work, and the terms pI and pII denote the propensity of the test awarding the

disability benefit to make Type I and Type II errors respectively, where pI + pII ≤ 1.

However, able individuals now differ over a continuum of productivities, n ≥ 0, with

distribution function F (n). All individuals who are not tagged as disabled receive a

demogrant B and are taxed T (nH) on any earnings, where the function T (·) may

be nonlinear and is treated as exogenous and fixed. Meanwhile, any individual who

is tagged as unable to work is (i) not allowed to work; and (ii) receives the tagged

demogrant Bt.

The disabled have preferences ud(x, l) = ud(M, 1) over consumption, x ≥ 0, and leisure,

l ∈ [0, 1], where M ∈ {B,Bt} depending on whether the individual is tagged or not.

Meanwhile, the able have utility:

va(n,M) ≡

ua[nH∗ − T (nH∗) +B, 1] if untagged

ua(Bt, 1) it tagged
(1.43)

The social utility of an unable individual is given by sd(M) = gd[ud(M, 1)], whilst

that of an able individual is given by sa(n,M) = ga[va(n,M)], where the function

gi; i ∈ {a, d} satisfies (gi)′(·) > 0 and (gi)′′(·) < 0. To proceed in the analysis,

Salanié (2002) makes the following standard assumptions:
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T ′(nH) ≥ 0 (A1)

H∗M(n,M) ≤ 0 (A2)

sanM(n,M) ≤ 0 (A3)

sdMM(M) ≤ 0 (A4a)

saMM(M) ≤ 0 (A4b)

saM(0,M) ≤ sdM(M) ∀M (A5)

(1.44)

Assumption 1 (i.e. A1) simply states that the marginal tax rate is non-negative;

A2 is the normality of leisure; A3 states that social marginal utility is decreasing in

productivity; A4 states that social utility is concave in M ; whilst A5 assumes that the

social marginal utility of an able individual with zero productivity is no higher than

that of an unable individual. Putting this all together, the government’s objective is

to choose B and Bt so as to:

max
B,Bt

W = θ
{

(1− pI)sd(Bt) + pIs
d(B)

}
+ (1− θ)

{
pIIs

a(0, Bt) + (1− pII)
∫ ∞

0

sa(n,B)dF (n)

}
s.t. Bχ+Bt(1− χ)t ≤ (1− θ)(1− pII)

∫ ∞
0

tnH∗(n,M)dF (n)−R

(1.45)

where χ = θpI + (1− θ)(1− pII).

Under assumptions A1 - A5, Salanié (2002) demonstrates that B ≤ Bt (i.e. tagged

individuals should receive a higher benefit). Given that tagged individuals are not al-

lowed to work, the unusual feature of this model is the absence of application decisions.

Indeed, it can be seen from the second line of (1.45) that the proportion pII of all able

individuals are tagged. This must however, be incentive incompatible: all those with

productivity exceeding some critical level would rather receive the lower benefit B and

be allowed to work, as opposed to receiving the higher benefit Bt with the imposed

zero quantity constraint on labour supply.

In the Salanié (2002) analysis the tax schedule is exogenous and consequently no focus

is placed on how the propensity to make classification errors may affect the optimal
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tax schedule (and the benefit levels). To gain some insights into this question we turn

to Stern (1982), who compares (i) imperfect lump-sum taxation and linear income tax-

ation; with (ii) optimal nonlinear income taxation. For the purpose of this discussion,

we are concerned with the first of these. There are two ability types in the economy:

unskilled and skilled. Let nl denote the gross wage of an unskilled individual, whilst

nh > nl denotes the gross wage of a skilled individual. These wages are endogenous

to the model and are determined as the marginal product of a given production func-

tion. Both types of individual have identical preferences u(x,H) over consumption and

labour. In terms of the population, there are θ unskilled individuals and (2− θ) skilled

individuals.18

A lump-sum tax system provides a tax/transfer Ci; i ∈ {l, h} to each individual that

is conditioned on ability type. Earned income is taxed at the linear (flat) rate t ∈
(0, 1). The consumption of an individual of type i is therefore given by xi = (1 −
t)niHi + Ci. Let H∗i and v denote optimal labour supply and the resulting indirect

utility function, respectively. Importantly, the lump sum grants are administered with

classification errors such that (i) an unskilled individual is incorrectly classified as

skilled with probability pl; whilst (ii) a skilled individual is incorrectly classified as

unskilled with probability ph.

Given these classification error propensities, it is straightforward to see that the average

labour supply of the unskilled and skilled ability types is given by:

H̄l = (1− pl)H∗l [(nl(1− t), Cl] + plH
∗
l [nl(1− t), CH ]

H̄h = (1− ph)H∗h[(nh(1− t), Ch] + phH
∗
h[nh(1− t), Cl]

(1.46)

The wages nl and nh are driven endogenously by the production function Y = F [θH̄ l, (2−
θ)H̄h], where nl = F1 and nh = F2:

Putting this all together, the government chooses the parameters t and Cl so as to:

18For much of the analysis Stern (1982) restricts attention to the case where θ = 1 such that there
are any equal number of low and high ability individuals.
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max
t,Cl

W = θ {(1− pl)vρ[nl(1− t), Cl] + plv
ρ[nl(1− t), Ch]}

+ (2− θ) {(1− ph)vρ[nh(1− t), Ch] + phv
ρ[nh(1− t), Cl]}

s.t. χlCl + χhCh = tY −R

(1.47)

where χl = [(2 − θ)(1 − pl) + θph] denotes the number of individuals classified as

unskilled; whilst χh = [(2 − θ)pl + θ(1 − ph)] denotes the fraction classified as skilled.

The parameter ρ captures the government’s concern for equity (i.e. a concern for equity

beyond that of deceasing marginal utility of income).19 The term R is an exogenous

revenue requirement.

Adopting Constant Elasticity of Substitution (CES) preferences and a Cobb-Douglas

production function, Stern numerically simulates the optima (t, Cl, Ch) under various

parameter assumptions. With no classification errors it may be optimal to impose

a lump-sum tax on skilled individuals to finance transfers to the unskilled, with the

optimum income tax rate set at zero. So in this case Cl = −Ch > 0. However, a

positive propensity to misclassify the unskilled and skilled exposes the former to the

risk of receiving a smaller and even negative transfer. This is welfare reducing and,

consequently, the linear income tax may rise to ensure that transfers to the skilled are

positive. In summary, the simulations illustrate that the optimal linear tax rate tends

to increase with the propensity to make either error type.20

Endogenous Awards Technology Accuracy

A number of papers explore an endogenous eligibility test (monitoring technology)

that makes two-sided classification errors. First, Kleven and Kopczuk (2011) explicitly

19So if ρ = 1 we have the standard utilitarian case whereby the concern for equity arises solely from
individual risk aversion (concavity).

20In terms of the comparison between (i) imperfect lump sum taxation and (ii) nonlinear taxation,
the numerical results in Stern (1982) illustrate that the critical error propensity at which lump-
sum taxation and optimum income taxation become equally desirable is highly dependent on the
distributional values that the government has, as embodied in ρ. In particular, the greater the concern
the government exhibits for equality, the lower the size of classification errors that will be tolerated
before optimum taxation becomes preferable to an imperfect lump-sum system. In general, whenever
classification errors are sufficiently small, it is optimal to rely on lump-sum taxation.
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model the eligibility test adopted by the benefit authority and capture the interplay

between screening intensity - or test complexity - and benefit applications. Whilst

screening intensity improves the estimation of individual ability, it also imposes a cog-

nitive cost on applicants. This cognitive cost may deter some truly eligible individuals

from applying for a given benefit. The paper therefore goes beyond the standard def-

initions of Type I (false rejection) and Type II (false award) errors around a given

eligibility threshold - both of which are conditional on applying for a benefit - to also

include ‘Type Ia’ errors arising from incomplete take-up by eligibles.

Individuals differ in both (i) their innate ability (n); and (ii) the ‘precision’ with which

this innate ability can be measured (σ). Any individual who applies for a benefit B is

subject to tests which provide the unbiased estimate of their true ability ne = n+ ε/π;

where ε ∼ N (0, σ2) and π is the screening intensity (e.g. number of tests). Given an

eligibility threshold of ñ, an applicant will only be awarded the benefit B if ne ≤ ñ;

and thus if ε < (ñ − n)π. Let ε/σ be distributed with distribution function A(ε/σ).

The probability that an individual with characteristics n and σ will, conditional on

applying, be awarded benefits is therefore:

Award Probability = A

{
(ñ− n)π

σ

}
(1.48)

Individual preferences over consumption (x) and application costs (K(π)) are given

by, u[x − µK(π)], where u′ > 0; u′′ ≤ 0; K ′ > 0; and µ ∈ {0, 1} denotes whether an

application has been made. Application costs are therefore an increasing function of

complexity. An individual will thus apply for the benefit B if;

A

{
(ñ− n)π

σ

}
· {u[n+B −K(π)]− u[n−K(π)]} ≥ u(n)− u[n−K(π)]

and therefore if:

A

{
(ñ− n)π

σ

}
> Ā

{
(ñ− n)π

σ

}
≡ u(n)− u[n−K(π)]

u[n+B −K(π)]− u[n−K(π)]
(1.49)

To simplify the analysis, Kleven and Kopczuk (2011) impose constant absolute risk

aversion (CARA) preferences on the utility function. This eliminates the dependence of

the reservation probability, Ā, on individual ability. The function Ā therefore depends
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only on σ and π. Accordingly, the threshold precision level , σ̄n at which A = Ā (i.e.

at which the award probability renders an individual indifferent between applying or

not) is given by21:

σ̄n =
(ñ− n)π

A−1Ā
(1.50)

Turning to the population, there are two ability types: low (nl) and high (nh). Both

ability groups has a distribution of precision parameters, σ ∈ [0,∞), as given by

Fi(σ) ; i =∈ {l, h}. Now, given an exogenously fixed budget size, β, and an income

maintenance objective of providing a minimum benefit B to those of low ability, the

government chooses (i) the screening intensity; (ii) the eligibility threshold; and (iii)

the benefit level parameters so as to:

max
π,n̄,B

∫ σ̄l

0

A

[
(ne − n)π

σ

]
dFl(σ)

s.t.

{∫ σ̄l

0

A

[
(ne − n)π

σ

]
dFl(σ) +

∫ σ̄h

0

A

[
(ne − n)π

σ

]
dFl(σ)dFh(σ)

}
B ≤ β ,

B ≥ B

(1.51)

Kleven and Kopczuk (2011) go on to show that (i) optimal targeting programmes

feature high screening intensity for the purposes of restricting the conventional Type

I and Type II errors and (ii) to go some way to combatting the negative effect of high

screening intensity on take-up by eligibles, the government can use its two remaining

instruments.

Jacquet (2014) models the optimal provision of disability and income-based (welfare)

benefits when the monitoring technology administering the disability benefit is costly

and classification errors are a function of the resources dedicated to the monitoring

technology. Individual applications are, however, taken to be costless. Individuals

differ along the two dimensions of productivity at work and labour disutility. First, an

21Setting A = Ā gives 1
σ (ne − n)π = A−1Ā⇒ σ̄n = (ne−n)π

A−1Ā
.



CHAPTER 1. LITERATURE REVIEW 52

individual may be disabled or able bodied and disability status is perfectly correlated

with productivity. That is, a disabled individual commands a low productivity, nl,

whilst an able individual commands a high productivity, nh, where of course nh >

nl > 0. Whilst a disabled person can only engage in low productivity work, an able

person may choose to engage in either low or high productivity work22. Turning to

the second dimension of heterogeneity, individuals differ continuously in the disutility

they experience at work - where work is modelled in the extensive margin. Notice

that this approach to modelling disability is similar to that in Diamond and Sheshinski

(1995).

However, the source of this disutility depends on whether an individual is disabled or

able. The disutility a disabled individual endures working - denoted by γd - arises due

to physical or mental pain. Contrastingly, the disutility an able individual experiences

when working - as denoted by γa - is due to distaste for work. These parameters are

distributed with density functions fd and fa and corresponding distribution functions

Fd and Fa respectively. The benefit authority is taken to know these distributions but

cannot observe an individual’s γ. Finally, individual utility takes the quasilinear form

u(x)− γ , where x denotes consumption and u′(x) > 0, u′′(x) ≤ 0.

The awards technology administering the disability benefit makes Type I errors with

probability pI(K) and Type II errors with probability pII(K), where K(pI , pII) is the

cost per applicant of running the test. It is assumed that ∂K/∂pI < 0 and ∂K/∂pII < 0.

Intuitively, this captures the idea that a reduction in the resources devoted to the

test lower its accuracy . Let xh ≥ xl > xd ≥ xw denote consumption levels when (i)

working in a high productivity job; (ii) working in a low productivity job; (iii) receiving

disability benefits; and (iv) receiving welfare benefits, respectively. Applications for

the disability benefit are costless. It is therefore straightforward to see that application

decisions are driven by labour disutilities and are independent of error propensities.

Specifically, a disabled individual with disutility γd who has been rejected the disability

benefit will only work if γ ≤ γ̄d, where:

u(xl)− γ̄d ≡ u(xw) (1.52)

In terms of application decisions, a disabled individual will only apply for xd in the

22In the model Jacquet (2014) demonstrates that it is never optimal for an able individual to choose
low productivity employment.
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first place if γ > ¯̄γd, where:

u(xl)− ¯̄γd ≡ u(xd) (1.53)

where ¯̄γd ≤ γ̄d because u(xd) ≥ u(xw) ⇔ xd ≥ xw. Analogous definitions of γ̄a and ¯̄γa

hold for able individiuals.

Jacquet (2014) adopts a ‘paternal’ objective function which gives no weight to the

disutility of able individuals (i.e. that arising from distaste for leisure). Where θ ∈
(0, 1) denotes the proportion of disabled individuals in the population, paternal welfare

is:

W P

= θ



∫ ¯̄γd

0

[u(xl)− γd]dFd(γd)︸ ︷︷ ︸
Non-take-up

+pI

〈∫ γ̄d

¯̄γd

[u(xl)− γd]dFd(γd)︸ ︷︷ ︸
Rejected disabled who work

+

∫ ∞
γ̄d

u(xw)dFd(γd)︸ ︷︷ ︸
Rejected disabled not working

〉

+ [1− F (¯̄γd)]u(xd)︸ ︷︷ ︸
Disabled awarded the benefit



+ (1− θ)


Fa(¯̄γa)u(xh)︸ ︷︷ ︸
Non Applicants

+(1− pII)
〈

[Fa(γ̄a)− Fa(¯̄γa)]u(xh)︸ ︷︷ ︸
Rejected able who work

+ [1− F (γ̄a)]u(xw)︸ ︷︷ ︸
Rejected able not working

〉

+ pII [1− Fa(¯̄γa)]u(xd)︸ ︷︷ ︸
Able awarded the benefit


(1.54)

The problem is then to:

max
{xh,xl,xd,xw,pI ,pII}

W P s.t.[1− Fd(¯̄γd)] {[(1− pI)xd] +K(pI , pII)}+ (1− F (γ̄d)xl

+ [1− Fa(¯̄γa)] {pIIxd +K(pI , pII)}+ (1− F (γ̄d))xw

= {Fd(¯̄γd) + pI [Fd(γ̄d)− Fd(¯̄γd)]} (nl − xl)

+ {Fa(¯̄γa) + (1− pII)[Fa(γ̄a)− Fa(¯̄γa)]} (nh − xh)
(1.55)



CHAPTER 1. LITERATURE REVIEW 54

The author demonstrates that optimum Type I errors balance the trade-off between (i)

the increased tax revenue due to some disabled individuals working and lower resources

devoted to monitoring; and (ii) the welfare loss associated with Type I errors. Optimum

Type II errors, meanwhile, balance the trade-off between (i) the benefit that more

accurate monitoring induces able individuals who would have previously received the

benefit to work, thus increasing tax revenue; and (ii) the monitoring costs of reducing

Type II errors (Jacquet, 2014).

In an alternative approach, Boadway et al. (1999) endogenise classification errors

through the effort that social workers exert in applying a monitoring technology (awards

test) on applicants. The population consists of (i) N high ability individuals, (ii) N low

ability individuals and (iii) N disabled individuals, where the latter are unable to work.

The high ability types pay taxes, whilst the low ability and disabled types receive trans-

fers of some fashion. For high and low ability individuals preferences are described by

ui(x, y) ; i ∈ {l, h} ;ux > 0 , uy < 0 where x is consumption and y earnings. Regarding

earnings, there is a minimal earning requirement of ymin which may or may not bind.

The disabled, meanwhile, have preferences ud(x) ; (ud)′(x) > 0 , (ud)′′(x) < 0 over con-

sumption. The government chooses (x, y) bundles for individuals and may operate a

two-tier welfare system composed of a general welfare benefit - where recipients may or

may not be allowed to work - and a targeted welfare benefit for the disabled. In either

case the high ability are offered a bundle (xh, yh) and those tagged as disabled receive

a bundle (xt, 0). Under a system where general welfare recipients are allowed to work

(system A), both the bundles (xl, yl) and (xd, 0) are offered. Untagged low ability indi-

viduals choose between these, whilst untagged disabled must receive the second bundle.

For their to be incentive compatability, the bundles must satisfy uh(xh, yh) ≥ ul(xl, yl)

(to induce the high ability to work) and ul(xl, yl) ≥ ul(xd, 0) (to induce the low abil-

ity to work). Contrastingly, under a system where general welfare recipients are not

allowed to work (system B), only the bundle (xd, 0) is offered. Under this system the

only incentive compatibility constraint to satisfy is uh(xh, yh) ≥ uh(xd, 0).

Regarding the awards test, let pi denote the probability that an individual of type i is

tagged, where ph = 0 and 0 ≤ pl ≤ 1/2 ≤ pd ≤ 1, where the latter two propensities will

depend on the effort exerted by social workers. Boadway et al. (1999) further assume

that:

p ≡ (1− pd)︸ ︷︷ ︸
Pr(Type I error)

= pl︸︷︷︸
Pr(Type II error)

(1.56)
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So the term p captures the effectiveness of the awards process - where p = 1/2 cor-

responds to the case where a disabled individual is tagged with the same probability

as a low skilled individual. This arises when the social worker exerts no effort. Social

workers are risk neutral and paid ns per client, which may be a low skilled or disabled

individual with equal probability.23 However, if the social worker is found to have

made an award error (of either Type I or Type II), an absolute fine of ns is invoked

upon them. There are two ways in which errors may be detected. First, under system

A where recipients are allowed to work, any untagged welfare recipients who are not

working must be disabled and untagged by Type I error. So the identification of Type I

errors is costless under system A. Second, the government may audit welfare recipients

with probability e and, in doing so, ascertain their true ability. Auditing, however, is

costly. Tagging therefore induces administrative costs, both in terms of paying social

workers to administer the awards test and in terms of auditing welfare recipients. The

costs of targeting a benefit may outweigh the benefits of discerning the disabled from

the low skilled, and lead the government to instead operate simple negative income tax

system.

Finally, the government wishes to maximise the welfare of the disabled, and so adopts

the social welfare function:

W = plu
d(xt, 0) + (1− pd)ud(xd, 0) (1.57)

Briefly, a number of conclusions emerge from the Boadway et al. (1999) analysis. First,

if social worker effort is observable and the minimum income constraint is non-binding,

system A will always be preferable to system B because low ability individuals can be

incentivised to work even with a positive marginal tax rate. Second, if the minimum

income constraint is binding it may be difficult to incentivise untagged low ability

individuals to work without resorting to a negative income tax scheme. Accordingly

system B may be preferred to system A depending on the cost of monitoring social

workers. Third, if the earnings constraint is not binding but effort is not observable,

the balance of considerations becomes more complicated. On the one hand, system

A may allow Type I errors to be identified through separation, but this implies that

social workers should simply tag everyone. It may therefore be optimal to adopt system

B.

23Because there are N low income and N disabled individuals who would like to be tagged.
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1.2 Individual Behaviour and Risk-Taking.

A small literature explores the fraudulent receipt of welfare benefits when individuals

risk being detected and fined. This literature predominantly focuses on unemploy-

ment insurance schemes and the specific costs that benefit conditionality places on

recipients.

The most notable contribution in this literature is that of Yaniv (1986), who considers

the decision of employed individuals to claim unemployment insurance benefits for a

duration of their time endowment. Individual preferences over consumption (x) are

given by u(x); where u′ > 0 and u′′ < 0. Further, for r(x) = −u′′(x)/u′(x) preferences

satisfy r′(x) < 0 and thus exhibit decreasing absolute risk aversion. Let ω denote

an individual’s wage rate and D their full time allocation in days, giving rise to an

earned income of ωD. The worker may choose to fraudulently claim an unemployment

insurance benefit of B < ω per day, by sacrificing a proportion k of each claiming day

to labour exchange duties. The model does not feature voluntary unemployment, such

that any departure from providing labour for the full time endowment arises only due

to the decision to claim unemployment insurance and the resulting labour exchange

commitments. There is also a waiting period of q days before benefits can be received

such that, for z days of claiming, benefits are only received for z − q days.

Of course, claiming unemployment insurance for days spent working comes with the

risk of being detected and fined. Let ρ denote the detection probability and Fi the

fine imposed if detected. In this simple setting, Yaniv (1986) explores two alternative

fines from the tax evasion literature: the first is proportional to the duration of fraud-

ulent claims but independent of the benefit size (à la Allingham and Sandmo, 1972);

whilst the second is proportional to the total benefit income fraudulently claimed (à la

Yitzhaki, 1974). Formally;

Fi =

πz ; π > B : i = 1

φB(z − q) ; φ > 1 : i = 2
(1.58)

There are two states of the world: detected and not detected. Consumption when not

detected is given by xN = ω(D− kz) +B(z − q). Meanwhile, consumption if detected

will depend on the fine structure in place and is given by:
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xDi =

ωD −Bq + z(B − ωk − π) : if i = 1

ωD −Bq(1− φ) + z[B(1− φ)− ωk] : if i = 2
(1.59)

The individual problem is given by:

max
z
ρu(xDi) + (1− ρ)u(xN) ; i ∈ {1, 2} (1.60)

Assuming that the conditions for an interior solution (z > 0) are satisfied under both

penalty structures, the optimal number of claiming days under the respective schemes

- denoted by z1 and z2 - are characterised by:

ρu′(xD1)[B − ωk − π] + (1− ρ)u′(xN)(B − ωk) = 0

ρu′(xD2)[B(1− φ)− ωk] + (1− ρ)u′(xN)(B − ωk) = 0

(1.61)

Through comparative statics exercises on these optimality conditions, Yaniv (1986)

generates the following results. First, dzi/dB differs with the fine structure due to

differences in income and substitution effects. Unsurprisingly, we have dz1/dB > 0

because (i) the expected fine remains unchanged such that the gains to fraud increase

with the benefit (positive substitution effect); and (ii) because preferences exhibit de-

creasing absolute risk aversion the greater expected income induces more fraud (via a

positive income effect). Contrastingly, the sign of dz2/dB is ambiguous because the

expected fine is increasing with the benefit level, thus generating income and substitu-

tion effects of opposing signs. Second, the sign of dzi/dω is ambiguous under both fine

structures because an increase in the wage increases the opportunity cost of labour ex-

change time (negative substitution effect), but encourages risk taking (positive income

effect)24. Turning to the effect of the enforcement parameters on the extent of fraud,

we have dzi/dρ < 0 ∀ i, dz1/dπ < 0, dz2/dφ < 0 and dzi/dk < 0. However, the affect

24Yaniv (1986) shows how dzi/dω would change if the unemployment insurance benefit was propor-
tional to earnings, and thus given by B = βωD ; 0 < β < 1. Under fine structure F1, an increase
in the wage increases in the benefit level but has no affect on the penalty, thereby generating only a
positive substitution effect. Contrastingly, under fine structure F2, an increase in the wage increase
both the benefit level and the fine level.
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of an increase in the waiting period differs between the two schemes, with dz1/dq < 0

and dz2/dq > 0. Under the second fine structure, an increase in q serves to, ceteris

paribus, reduce the expected penalty which generates a substitution effect which more

than offsets the income effect.

Next, Wolf and Greenberg (1986) analyse the binary choice of a benefit recipient to

either (i) fully report or (ii) not report any earned income to the welfare authority, given

an earnings stream of n per month for D months and zero thereafter. Individuals know

that the formula adopted by the benefit authority for determining monthly welfare

payments is max(0, B−tn), where B is the maximum monthly benefit and t is the ‘tax’

rate on earnings. So notice that if B = tn then the individual has no welfare entitlement

for the D months each earning n. Individual utility is linear in consumption and, for

those who do not report income, includes a linear disutility/stigma term, γ > 0, which

enters negatively. Further, an individual who does not report income faces a constant

probability ρ of being detected in any period j and being fined at a rate φj proportional

to the welfare income fraudulently obtained, as given by jmin(B, tn). Whilst it is

beyond the scope of this discussion to go into further detail, note that φj will depend

on (a) whether the benefit income incorrectly obtained exceeds a fraud prosecution

threshold; and (b) what the recipient’s true entitlement is.

Putting this all together, should an individual fully comply (C) with earnings reporting

then, given a monthly discount rate of δj, their present discounted value of utility is

simply given by:

uC = δ1[n+ max(0, B − tn)] + ...+ δD[n+ max(0, B − tn) + δD+1B + ... (1.62)

Contrastingly, should non-compliance (N ) be chosen the present discounted value of

utility takes into account that an individual may be detected in any period and, once
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detected, receives only their true entitlement thereafter. Formally, we have:

uN = ρ

{
δ1[n+B − φ1 min(B, tn)− γ] + δ2[n+ max(0, B − tn)]+

...+ δD[n+ max(0, B − tn)] + dD+1B + ..

}

+(1− ρ)ρ

{
δ1[n+B − γ] + δ2[n+B − φ2 min(B, tn)− γ] + δ3[n+ max(0, B − tn)]

+...+ δD[n+ max(0, B − tn)] + dD+1B + ...

}
...

+ (1− ρ)D−1ρ

{
δ1[n+B − γ] + ...+ δD−1[n+B − γ]+

δD[n+B − φD min(B, tn)− γ] + δD+1B + ..

}

+ (1− ρ)D {δ1[n+B − γ] + ...+ δD[n+B − γ] + δD+1B + ...}
(1.63)

Note that the welfare recipient makes the compliance decision once at the start of

earnings stream. Non-compliance will thus only be chosen over full compliance if uN >

uC. Unsurprisingly, the incentive to commit fraud is decreasing in the penalty imposed

if detected, φj, the detection probability, ρ, and on the disutility, γ, an individual

endures through committing fraud.

In the literature discussed so far the fraudulent activity involves either working or

not reporting earnings. However, given that benefits benefits may be conditioned on

spending time at the benefit office and/or providing evidence of job search, there is

another compliance decision to be made. Whilst Yaniv (1986) assumes that individuals

fully comply with this dimension of ex-post conditionality, other authors do not. We

proceed to discuss this below.

Burgess (1992) develops and empirically tests a simple theoretical model capturing

the eligibility compliance decision of unemployment insurance recipients, where main-

tained benefit receipt is conditional on job-search and filing requirements. Risk-neutral

recipients make their compliance decision by comparing the net gains of compliance

(C) with those of non-compliance (N). In both cases, the net gains can be decom-

posed into (i) benefit size, (ii) search and (iii) cost components. Compliant individuals

receive a benefit of B per week with certainty, whilst non-compliant individuals face
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an expected benefit of B(1 − ρφ), where ρ is the detection probability and (1 − φ)

is the proportion of the weekly benefit payment that can be retained. The present

discounted value of engaging in job search is given by δC[F (sC, e)] and δN [F (sN , e)],

respectively, where F (·) denotes the distribution of wage offers given a chosen search

intensity, sCor sN , and e is the employment state of the labour market. Unsurprisingly,

δC[f(sC, e)] > δN [F (sN , e)]. Let an individual’s weekly time opportunity costs be k.

A compliant individual who spends the fraction sC of the week searching for employ-

ment and the fraction a ‘filing’ at the benefit office has a weekly time cost k(sC + a).

Contrastingly, a non-compliant individual does not incur a and has weekly time cost

k(sN ).

Putting this all together, the probability that an individual will choose to comply is

given by:

Prob

Bρφ︸︷︷︸
Benefit

+ δC[F (sC, e)]− δN [F (sN , e)]︸ ︷︷ ︸
Search

− k(a+ sC − sN )︸ ︷︷ ︸
Cost

> 0


Burgess (1992) notes that even when ρ = 0 compliance may still be chosen should the

gains in the present discounted values of job search exceed the cost of compliance. It is

straightforward to see that the returns to benefit compliance are increasing in ρ and φ

(i.e. decreasing in (1−φ)). Notice that the conditionality parameter a - corresponding

to time spent filing - enters only through the cost term and plays no productive role

through search. Accordingly, the tightening of this eligibility requirement actually

serves to reduce compliance.

1.3 Empirical Studies: Classification Error Estimates

and Labour Force Participation Disincentives.

In the models discussed in Section 1.1.3 it is assumed that the technology awarding

benefits has a propensity to make classification errors of both Type I (false rejection)

and Type II (false award). These error propensities are either exogenously given or

endogenously determined by the resources dedicated to the monitoring technology (and

the effort exerted by employees). A natural question to ask is therefore; are there
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estimates of error propensities in real-world welfare programmes? Further, how is the

scope for these errors related to the design of welfare programmes?

Both the Social Security Disability Insurance (DI) and Supplemental Security Income

(SSI) programmes in the U.S. provide rich case studies to answer these questions.

Both benefits are administered by the U.S. Social Security Administration (SSA) and

the disability criterion for awards is common to both programmes. Under the Social

Security Act, an individual is considered disabled if their medically verifiable physical

or mental condition prevents them from engaging in ‘substantial gainful activity’ (see

SSA, 2012, p.2)25. Further, this condition should be expected to be terminal or last

for no less than one year.

1.3.1 Estimating Classification Error Propensities

A number of studies have attempted to estimate the propensity of the SSA to make

classification errors of both Type I and Type II in awarding both DI and SSI. The first

is Nagi (1969), who used external audit data on the independent health assessment

of DI applicants by professionals (such as doctors and psychologists) and compared

these with the ultimate award decision of the SSA. Based on these comparisons, the

author inferred a Type I error propensity of approximately 48% and a Type II error

propensity of approximately 19%.

More recently, Benitez-Silva et al. (2004) treat (i) the self-declared disability status

of DI/SSI applicants in the Health and Retirement Study; and (ii) the ultimate SSA

awards decision (post any appeals), as noisy but unbiased indicators of true disability

status. They estimate the Type I error propensity to be approximately 60%, whilst

the Type II error propensity is estimated at approximately 22%. Their results are thus

quantitatively similar to those in Nagi (1969).

1.3.2 Labour Force Participation Disincentives

A growing empirical literature focuses on the labour force participation (LFP) disin-

centives generated by both Social Security Disability Insurance (DI) and Supplemental

25Substantial gainful activity was in 2011 a monthly income of $1,000 for a non-blind individual
(SSA, 2012).
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Security Income (SSI) programmes in the United States. There are a number of moti-

vating factors behind the research in this literature. First, legislation changes in 1984

required the SSA to place greater emphasis on an applicant’s ability to function in

the workplace and any pain experienced in doing so, as opposed to basing assessments

solely on strict medical criteria. With regard to difficult to verify conditions such as

mental illness and musculoskeletal disease (i.e. back pain), these changes are argued to

correspond to a reduction in the screening intensity of applicants (Autor and Duggan,

2003, 2006; Von Wachter et al., 2011). Second, the earnings replacement rate26 has

also risen markedly since 1984. The concern is that both of these changes account for

(i) the large increase in DI recipients following the 1984 legislation change; (ii) mental

illness and musculoskeletal disease being the two most prevalent claimant categories

(SSA, 2012); and (iii) the increased propensity of younger individuals to exit the labour

force and claim benefits.

The impact of the DI programme on LFP is far from clear in the literature. The basis

for this discussion stems from the method developed by Bound (1989), who uses the

labour force participation of rejected DI applicants as a control, or upper bound, for

that which could be expected from awarded applicants. The assumption is therefore

made that the tests run by the benefit authority have some discriminatory power, and

thus that rejected applicants are more capable of work than awarded applicants. Using

data on the labour market performance of rejected applicants between 1972 and 1978,

Bound shows that less than half of rejected prime age (45-64) male applicants provide

labour for a sustained period.27 He thus argues that the majority of DI recipients are

in fact disabled.

Parsons (1991), however, argues that Bounds’ analysis is flawed because it does not

factor in the persistent role that the DI programme plays in the lives of applicants

beyond an initial rejection. Owing in part to the difficulties in precisely defining the

eligibility criterion, the programme features an extensive appeals system whereby a

number of successive appeals through different bodies can be made prior to an ultimate

rejection. Given the lags between an applicant filing an appeal and the response of

the relevant authority, coupled with the numerous appeals that can be made, the

appeals process is a lengthy one. Parsons notes three reasons - that are acknowledged,

26I.e. Disability income relative to earnings.
27Bound (1989) does not consider those below 45 because less than 20% of recipients in the studied

period were younger than this age.
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but given little weight in Bounds’ analysis - as to why a rejected applicant may not

return to work. First, rejected applicants may be filing an appeal. Second, they may

be enduring a period of unemployment to strengthen a future reapplication. Third

and finally, rejected applicants may face difficulty in finding employment due to their

sustained period out of work.28

More recent studies provide little consensus. On the one had, the analysis of Chen

and van der Klaauw (2008) points to relatively low LFP disincentives induced by the

DI programme and thus supports Bound (1989). These authors adopt Bound’s com-

parator group approach on a data-set which features a number of important differences

from that used in Bound (1989). First, merged survey and administrative data from

the 1990s is used, whilst Bound only used survey data which can be unreliable given

potential misreporting. Second, data is not restricted to the DI programme, but also

includes the SSI programme. Finally, both male and female applicants are included in

the data set. The analysis suggests that, in absence of any disability benefit provision,

the LFP of recipients would be at most twenty percent higher.

On the other hand, however, the most recent study of Von Wachter et al. (2011) finds

substantial LFP for rejected younger applicants and rejected applicants who claimed for

musculoskeletal diseases and/or mental health conditions. The authors use a database

containing (i) DI administrative information on applications and awards (from 1981-

1999); in addition to (ii) information on earnings pre- and post-applications (from

1978-2006). The results depend on the age group of applicants. Whilst the conclusions

of Bound (1989) continue to hold for those in the older age category of 45-64; it is

shown that younger rejected applicants aged 30-44 exhibit substantial post-rejection

employment. As discussed in the opening of this section, younger applicants form a

much larger proportion of total applicants in the data used by Von Wachter et al.

(2011) than in that from the 70’s for Bound (1989).

Finally, Autor and Duggan (2003) estimate that the combined effects of (i) the 1984

28In a reply, Bound (1991) readdresses each of these three issues. Concerning the appeals process,
he notes that most rejected applicants in his data-set had applied at least 18 months prior to the
survey, and very few appeals processes take this period of time. Turning to reapplications, it is not
clear that enduring a sustained period of unemployment can enhance an application. In fact, it may
have the opposite effect. Whilst some rejected applicants may behave this way, it is unlikely to play
a large role. Finally, concerning the impact of processing lags lowering the employment prospects of
rejected applicants, Bound notes that, on average, the applicants studied had been unemployed for
seven months prior to making an application.
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changes to disability assessment; (ii) increasing replacement rates; and (iii) a reduc-

tion in the demand for low-skilled labour, have served to double the propensity of

high-school dropouts to exit the labour force over the period 1984-2001. The authors

identify instrumental variables to capture exogenous variation in both the ‘supply’ and

‘demand’ for DI. On the supply side, it is noted that the benefit formula is a func-

tion of the average wage in the U.S. - which has risen relative to low-skilled wages -

but does not account for state level differences in wages. As a consequence, the re-

placement rate is higher in some states than others. The supply effect of programme

expansions and contractions may thus have different effects in different states. Next,

to capture exogenous variation in the demand for DI, the authors project national

industry employment changes onto state level industry composition. In summary, the

analysis suggests that state level contractions in DI supply generate large increases in

LFP among high-school dropouts; whilst DI applications are much more responsive to

state level demand shocks following the 1984 legislation changes to eligibility.

1.4 Concluding Remarks

The purpose of this chapter has been to review some of the important contributions in

the economics literature relating to cash welfare programmes. The emphasis has been

largely placed on targeted categorical programmes and the scope for classification errors

in administering these benefits. Along the way, a number of interesting questions have

emerged.

First, the discussion in Section 1.1.2 illustrated the important contributions on categor-

ical transfers in the optimal income tax framework. These analyses typically assume

that categorical status can be perfectly observed.29 In this case, a well-established

result is that categorical transfers should be set so as to eliminate inequality in the

average net social marginal value of income across categorical groups (Viard, 2001a,b).

For the purpose of writing the optimal linear tax expression, it is assumed that categor-

ical transfers do indeed eliminate this between-group inequality at the optimum. This

allows the tax expression to be written as in unidimensional model where individuals

differ only in productivity. However, is there a more general way to write the optimal

29Indeed, Immonen et al. (1998, p.181) state that ‘individuals are unable to alter or disguise the
group to which they belong, which is observed costlessly by the government ’.
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linear tax tax expression to allow for cases where between-group inequality persists at

the optimum? Under what cases is this likely to arise?

Second, the discussion in Section 1.1.3 illustrated that a number of the analyses of

imperfectly targeted categorical transfers make different assumptions as to whether

recipients of an incapacity benefit are ‘allowed’ to work, but the full implications of

these differing assumptions are not directly comparable due to other differences in the

modelling frameworks. In particular, able individuals who are incorrectly tagged as un-

able are allowed to work in Parsons (1996); but not allowed to work in Salanié (2002).

These polar assumptions can be interpreted as no enforcement and full enforcement,

respectively, of an ex-post ‘no-work’ condition. Whilst the framework in Salanié is

more general (continuum of productivities, standard preferences) than in Parsons, it

abstracts from individual application decisions. Instead, a fraction of the able subpop-

ulation are simply tagged as unable and not allowed to work. This must, however,

be incentive incompatible for higher productivity individuals who would rather not be

tagged and allowed to work. With these points in mind, it would be useful to analyse

imperfectly targeted categorical transfers in a framework that both endogenises appli-

cation decisions and allows for a systematic comparison across enforcement regimes.

We could then ask the following questions: (i) How do the optimal combinations of

targeted (categorial) and non-targeted (universal) benefits differ across enforcement

regimes? (ii) What are the welfare effects of classification errors and how do these

differ across enforcement regimes?

Third, to the best of this author’s knowledge there has been no analysis of imperfectly

targeted categorical transfers in the optimal income tax framework where individuals

differ in both some categorical dimension and over a continuum of productivities.

Indeed, we saw in Section 1.1.2 that the analysis of categorical transfers in the optimal

linear income tax framework assumes perfect targeting. How would Type I and Type

II classification errors affect the equity and efficiency considerations in the optimal tax

expression? Suppose that there is an unable subpopulation who cannot work and an

able subpopulation of individuals who can work and differ continuously in productivity.

Further, suppose that the categorical benefit targeted at the unable has a fully enforced

‘no-work’ condition and individuals must choose to apply for the categorical benefit.

In this setting the additional efficiency considerations that we need to account for seem

quite clear: an increase in the tax rate may incentivise able individuals to apply for

the categorical benefit and, if awarded it, stop working.
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Chapter 2

Optimal Universal and Categorical

Benefit Provision:
Classification Errors and Imperfect

Enforcement.1

2.1 Introduction

Partial universal welfare programmes can be defined as those which (i) provide all

members of society with an unconditional universal cash benefit; but also (ii) allow for

additional, targeted, assistance to those considered by the policymaker to be most in

need. The concept of a universal benefit has a rich history and is known under various

alternative guises in the economic and social policy literature, such as ‘demogrant’ or

‘basic income’ (Van Parijs, 2004). The state of Alaska provides the primary example

of a real-world universal benefit programme.2 Targeted benefits take centre stage in

modern welfare systems. Of these, categorical transfers (e.g. unemployment benefits,

disability benefits) play a prominent role. The optimal balance between these two

types of support (universal, targeted) is likely to depend on the effectiveness of targeted

1This chapter represents a significant extension that I have made to the discussion paper of Slack
and Ulph (2014).

2In place since 1982, all residents of Alaska receive the same yearly cash benefit, whose size is a
function of the five year interest on the Alaska Permanent Fund. This fund was set-up in 1976 using
oil revenue from the Trans-Alaska Pipeline System.
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benefits at reaching those in need. In particular, the less that needy individuals are

assisted by targeted benefits, the more important universal provision may become in

ensuring those in need in have some form of financial support. Both types of transfers

have been extensively analysed in the economics literature (Atkinson and Sutherland,

1989; Atkinson, 1995; Callan et al., 1999; Diamond and Sheshinski, 1995; Parsons,

1996; Salanié, 2002; Viard, 2001a,b). Further, the merits of schemes which feature

both targeted and universal dimensions have been widely discussed in the social policy

and political science literature (Mkandawire, 2005; Skocpol, 1991).3

Two important and related features of any benefit system that involves targeting are

(i) the conditions attached to targeted benefits; and (ii) the degree to which these

conditions are enforced. We discuss both in turn.

Double Conditionality. Targeted benefits are typically conditioned in two dimen-

sions: ex-ante an applicant must satisfy certain eligibility conditions to be awarded a

given benefit; whilst ex-post a recipient must comply with certain behavioural require-

ments or restrictions. For example, disability benefits may be ex-ante conditioned on

an applicant having a disability that substantially affects their ability to work; but

also ex-post conditioned on, among other things, a recipient not working or only work-

ing low permitted amounts.4 In many cases these two dimensions of conditionality

will be linked under the presumption that an individual who satisfies the former will

automatically satisfy the latter.5

Enforcement Errors. In large and complex welfare programmes both ex-ante and

ex-post dimensions of conditionality may be imperfectly enforced.

3Skocpol (1991, p.414) refers to such programmes as ‘targeting within universalism’. Drawing on
the social policy history of the United States, she notes that whilst targeted programmes in isolation
have been politically unsustainable, those that are more universal and spread benefits across groups
have received broad political support and have been effective at targeting benefits to the needy.

4Whether or not a no-work condition is imposed will depend on the nature of the disability ben-
efit. For example, the Employment and Support Allowance benefit in the U.K. allows recipients to
undertake certain permitted work activities, such as earning very low amounts per week; potentially
as part of a rehabilitation programme.

5Consider the following two examples, one more clear-cut than the other. First, an individual who
is unable to work and awarded a disability benefit on this basis will automatically satisfy any ex-post
‘no-work’ condition. Second, an involuntarily unemployed individual who is actively searching for
work, and awarded unemployment benefits on this basis, will likely satisfy any ex-post requirement
to provide evidence of job search (this will of course depend on the stringency of the job search
requirement).
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• In the case of ex-ante conditionality, classification errors of Type I (false rejec-

tion) and Type II (false award) may be made in the awards process. A number

of papers analyse the scope for classification errors in the U.S. Social Security

Disability Insurance programme. Benitez-Silva et al. (2004) estimate a Type I

error propensity of approximately 60% and a Type II error propensity of ap-

proximately 20%. These results are quantitatively similar to the earlier study of

Nagi (1969). Classification errors may arise for two broad reasons: (i) the awards

technology is imperfect and misclassifies individuals around a given eligibility

threshold; and/or (ii) the eligibility threshold itself may be incorrect (e.g. too

harsh or too lenient).6

• In the case of ex-post conditionality, the enforcement mechanisms put in place by

the benefit authority may be insufficient to fully deter recipients from breaking

the conditions placed on benefit receipt. This may arise because authorities (i)

fail to detect all recipients who break the requirements; and, further, (ii) the

sanctions imposed if detected are too lenient.

To the extent that ex-ante eligible individuals automatically satisfy ex-post conditions,

Type II errors and the subsequent behaviour of ineligible recipients will be the source

of ex-post enforcement issues.

In the context of partial universal benefit programmes three central questions therefore

arise:

1. How does the propensity of the benefit system to make Type I and Type II

errors affect (a) the decision of whether or not to provide a targeted benefit; and

(b) conditional on providing both targeted and universal benefits, the respective

levels of each?

2. How do these error propensities affect the resulting level of social welfare?

3. How do the answers to both of these questions depend on how well the ex-post

conditionality is enforced?

6Disability benefits once more provide a good example where these sources of error can arise because
(i) certain medical conditions are difficult to diagnose and verify (such as musculoskeletal illness and
mental disorders) and (ii) the eligibility definition, or ‘threshold’, will determine the weight given
to both strict medical criteria and the subjective assessment of ability to function in the workplace.
Indeed, there has been much work exploring Type II errors and the work capability of recipients in the
U.S. Social Security Disability Insurance programme (Autor and Duggan, 2006; Bound, 1989, 1991;
Chen and van der Klaauw, 2008; Parsons, 1991, 1980; Von Wachter et al., 2011).
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The existing literature on the targeting of benefits has tended to focus on part (a) of

the first question. In doing so a particular enforcement structure in relation to ex-post

conditionality has been assumed, but there has been no comparison across enforcement

regimes. Moreover, while different papers have made different assumptions about the

way ex-post conditionality is enforced, other differences in the modelling frameworks

have not facilitated direct comparison. This is illustrated in the two related contri-

butions of Parsons (1996) and Salanié (2002), where both papers explore the optimal

provision of targeted benefits that are administered with classification errors. Parsons

uses a framework where individuals are ex-ante identical7 but face an exogenous prob-

ability of becoming unable to work. Individuals who are incorrectly tagged as unable

by Type II error are allowed to work. Indeed, the author demonstrates that a ‘dual

negative income tax system’ in which tagged able individuals are incentivised to work

will be optimal, provided these individuals can be incentivised to work for less than

their marginal product.8 However, in a more general framework where able individu-

als differ over a productivity continuum, Salanié imposes the opposite restriction that

tagged able individuals are not allowed to work, and shows that it is optimal to award

a higher benefit to tagged individuals than those who are not tagged. Notably, Salanié

does not model the decision of individuals to apply for the targeted benefit: instead,

a fixed proportion - corresponding to the Type II error probability - of able individu-

als are tagged and do not work. Yet, this must be incentive incompatible for higher

productivity able individuals who would rather receive the lower unconditional benefit

and be allowed to work. Were application decisions modelled, these higher productivity

individuals would not choose to apply.

The contribution of this chapter is to address the three questions raised above within

a framework that allows for a systematic comparison of how the answer to the first

two questions depends on how well the ex-post conditionality is enforced. We consider

a framework where individuals differ in two dimensions. First, there is a categorical

dimension: Individuals are either able to work or unable to work - modelled as a

zero-hours quantity constraint on labour supply. Second, individuals who are able to

work differ over a continuum of productivities. The government operates a tax/benefit

system that comprises four elements: (i) a constant marginal tax rate on earned income;

7In particular, Parsons (1996) assumes that all individuals have the same productivity.
8From a technical perspective, allowing tagged individuals to work corresponds to not enforcing

an ex-post ‘no-work’ requirement.
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(ii) a tax-free universal benefit (B) which is received automatically by all individuals

in society; (iii) a tax-free categorical benefit (C) which is targeted at those who are

unable to work; and, for simplicity, (iv) a fixed budget for benefit expenditure.9

The categorical benefit is ex-ante conditional on an applicant being unable to work;

and ex-post conditional on a recipient not working. Upon receiving an application, the

benefit authority applies a test to determine whether or not an applicant is eligible

to receive the benefit10. However, this test may make Type I and Type II classifica-

tion errors with fixed (exogenous) probabilities that are independent of productivity

(Salanié, 2002). The awards test will be said to have (i) perfect discriminatory power

if the propensities to make Type I and Type II errors are both zero; (ii) no discrimi-

natory power if unable and able applicants face the same probability of being awarded

the benefit; and (iii) some discriminatory power for all intermediate cases where an

unable applicant is more likely to be awarded the benefit than an able applicant, but

there is a positive propensity to make at least one type of error.

Applications for the categorical benefit are taken to be costless in terms of money,

stigma and time. This frequently employed assumption eliminates the direct depen-

dence of application decisions on the propensity of the awards test to make errors

(Jacquet, 2006, 2014). It is assumed that no checks or penalties are in place for an

able individual who is incorrectly awarded the categorical benefit but does not work

when receiving it. There are two reasons for this: (i) such behaviour is highly difficult

to detect because the recipient does not reveal their true type through working (Yaniv,

1986); and, further, (ii) it is not immediately clear that such behaviour is ‘fraudulent’

as the applicant may be unsure of their own eligibility upon applying. The implication

is that some able individuals with low productivities may always choose to apply for

the benefit and, if awarded it, not work.

However, the application decisions of individuals with higher productivities will in-

tuitively depend on how effectively the ex-post no-work condition is enforced. As

9Note that some countries such as the U.K. now operate a welfare cap on (forecasted) benefit
expenditures. Programmes which fall under the cap include, to name a few, incapacity benefits,
income support and child benefits. One of the motivations for such a policy is that it increases
the monitoring of welfare spending and elicits policy decisions on the ‘appropriate’ level of welfare
spending (see Crawford et al., 2014; Rhodes and Mcinnes, 2014).

10No penalty attaches to an individual whose application is rejected because they are deemed to
be able-bodied. Indeed, on the grounds of legal uncertainty an applicant may be unsure of their own
eligibility upon applying.
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indicated, a number of different enforcement assumptions are made in the literature

on categorical transfers administered with classification errors.11 In this chapter we

consider two discrete alternative enforcement regimes: No Enforcement and Full En-

forcement.

• Under the No Enforcement regime there are no effective mechanisms in place to

deter able recipients of C from subsequently working. The categorical benefit

policy is therefore one dimensional: individuals receive a monetary amount C

with no enforced restriction on labour supply. In this case all able individuals

will apply: both those who would choose not to work when receiving C, and

those who would choose to work when receiving C.

• Under the Full Enforcement regime it is assumed that the probability of detec-

tion and the penalty regime are sufficiently tough that no able individual who

is wrongly awarded the categorical benefit will choose to subsequently work.

The categorical benefit policy is therefore two-dimensional: individuals receive a

monetary amount C and also a fully enforced zero quantity constraint on labour

supply. Accordingly, the only able individuals who will choose to apply for the

categorical benefit will be those of lower productivity, and thus those for whom

the opportunity cost of not working is low. The exact range of productivities

for which individuals choose to apply will be endogenous to the benefit size.

Moreover, some of those who do apply would have chosen to work under the

No Enforcement set-up and so are constrained by the fully enforced no-work

requirement.

The government’s optimisation problem is to choose the levels of categorical (C) and

11The literature on optimal benefits/transfers can be partitioned into three related strands. The
first strand focuses on the design of welfare benefits when the benefit authority has no formal discrim-
inatory test to determine eligibility. It instead chooses consumption bundles/transfer levels such that
the non-needy opt against masquerading as the needy (see Besley and Coate, 1992; Blackorby and
Donaldson, 1988; Cuff, 2000; Diamond and Mirrlees, 1978; Kreiner and Tranaes, 2005; Nichols and
Zeckhauser, 1982). An important second strand analyses transfers within the optimal income taxa-
tion framework (Mirrlees, 1971; Sheshinski, 1972). In the standard model where individuals differ only
through unobservable ability, Atkinson (1995) models a universal benefit financed by a linear income
tax and allows for an unable subpopulation that cannot work. Following Akerlof (1978), a number of
papers have modelled taxes and transfers when categorical information can be perfectly observed (see
Immonen et al., 1998; Mankiw and Weinzierl, 2010; Viard, 2001a,b). The third important strand -
and most related to this chapter - models categorical transfers administered with classification errors
(see Diamond and Sheshinski, 1995; Jacquet, 2006, 2014; Kleven and Kopczuk, 2011; Parsons, 1996;
Salanié, 2002; Stern, 1982).
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universal (B) benefits that maximise a strictly utilitarian social welfare function subject

to its budget constraint. Both the welfare function and expenditure component of the

budget constraint will depend on the enforcement regime in place and, in turn, on

the propensity of the benefit authority to make classification errors. The assumption

of a fixed benefit budget simplifies the exposition because labour supply responses to

unearned income do not affect the budget size. The purpose of making this assumption

is that it allows us to pin down more clearly the intuition for the conditions under which

it is optimal to provide a categorical benefit. Many of the key results do, however,

generalise to the cases where (a) the benefit budget is driven by tax revenue; and (b)

the government also optimises with respect to the tax rate. Indeed, characterising

the optimal linear tax rate - both with and without classification errors - deserves

more space than can be afforded here and is the subject matter of the following two

chapters.

In the absence of any form of welfare provision, there are two types of inequality in

this model.

1. Within-group inequality in the able subpopulation: Those with higher produc-

tivity have higher absolute utility but lower marginal indirect utility of income,

or social marginal value of income (smvi).12

2. Between-group inequality: Those who are able to work will have a higher average

level of utility but lower average smvi than those who are unable able to work.

As is well established from the literature on categorical transfers (Viard, 2001a,b), the

purpose of the categorical benefit in this model is to reduce and, if possible, eliminate,

inequality in the average smvi between the two subpopulations. When the benefit

authority can perfectly discriminate between unable and able applicants this chapter

demonstrates (as a baseline case) that it is always optimal to set C > 0 ; but B > 0

only if the benefit budget exceeds a critical level which, if spent entirely on categorical

transfers, would equate the smvi of the unable with the average smvi of the able. There

is thus an ordering of priorities: the first aim is to eliminate between-group inequality in

the average smvi through categorical spending, whilst the second is to reduce inequality

in the smvi throughout the population through universal spending.13 Contrastingly,

12Under a strictly utilitarian objective function the social marginal value of income is simply the
marginal (indirect) utility of income.

13Intuitively, social welfare will be raised more through categorical spending than universal spending
so long as the smvi of an unable individual exceeds the average smvi of the able subpopulation.
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whenever the test administering the categorical benefit makes Type I and/or Type II

errors, this chapter demonstrates that between-group inequality the average smvi will

never be eliminated at the optimum.

The major conclusions of this chapter are as follows:

• Under a No Enforcement regime:

1. It is optimal to set C > 0 whenever the test administering C has some discrimi-

natory power. In this case the optimal benefits are chosen to equate - if budget

feasible - the average smvi of categorical recipients with the average smvi of those

not receiving the categorical benefit. A positive propensity to make Type I er-

rors guarantees B > 0 at the optimum to ensure rejected unable individuals have

some source of income to consume. However, if Type I errors are never made

and the benefit budget is insufficiently large for categorical spending to equate

the average smvi of categorical recipients with that of non-recipients, it will be

optimal to set B = 0. Finally, if the test administering C has no discriminatory

power it is optimal to set C = 0 and spend the entire benefit budget on B.14 The

intuition is that whenever the test has no discriminatory power (i) a targeted

system does no better between-group than a pure universal system because the

unable and able receive, on average, the same in benefit income; and further (ii)

a targeted system does worse within group than a pure universal system because

classification errors introduce horizontal inequities.

2. The associated value function of social welfare (i.e. maximum social welfare) is

decreasing in the propensity to make both Type I and Type II errors, respectively.

• Under a Full Enforcement regime:

1. It is optimal to set C > 0 for all levels of discriminatory power, thus including

the case of no discriminatory power. The intuition rests on the fact that, even

if the test administering the categorical benefit has no discriminatory power, a

targeted system (i) provides the unable with more in benefit income, on average,

than the able; and (ii) redistributes within the able subpopulation through leak-

14An exception arises in the extreme case where the test has a zero propensity to make Type I errors
but always makes Type II errors. In this case of no discriminatory power there is no optimisation
problem to solve because all individuals in the economy receive the same benefit income. Consequently,
any budget-feasible combination of B and C generates the same level of welfare.
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age of the categorical benefit to lower productivity individuals. If Type I errors

occur with positive propensity then it is always optimal to set B > 0. So under

Full Enforcement it is always optimal to adopt a system with targeting: a pure

universal system is never chosen.

2. Whilst maximum welfare is unambiguously decreasing in the propensity to make

Type I errors, there are conditions under which it can be increasing in the propen-

sity to make Type II errors. In particular, this is more likely to occur the larger

the proportion of able applicants who are voluntarily unemployed (due to the

universal benefit) and who thus have the same smvi as the unable.

One cannot in general guarantee a unique solution to the Full Enforcement optimisation

problem. The optimal benefits are characterised by the condition that (i) the aggregate

smvi of those not receiving the categorical benefit be equal to (ii) the aggregate smvi

of categorical recipients multiplied by the increase in their total benefit income per

unit reduction in the universal benefit. However, because the number of individuals

who apply for the categorical benefit is endogenous to the benefit levels an increase

in the universal benefit may generate conflicting effects on the two components of

either aggregate smvi (i.e. individual smvi × number of individuals). For example,

an increase in the universal benefit lowers the smvi of each individual who does not

receive the categorical benefit, but also reduces the number of individuals who apply

for - and thus receive - the categorical benefit. The overall effect is ambiguous: it will

depend on unspecified properties of both the utility function (e.g. third derivatives)

and the distribution function (e.g. derivatives of the pdf). As will be discussed below,

numerical simulations suggest that the assumption of a unique optimum is valid in

most cases - and identify the cases where it is not.

In line with much of the literature on optimal tax/benefits, we turn to numerical simu-

lation methods to gain further comparative statics insights (see, for example, Immonen

et al., 1998; Viard, 2001a,b). The purpose of the simulations is twofold: (i) to establish

how the optimal benefit levels change with the propensity to make Type I and Type II

classification errors, respectively; and (ii) to provide examples where maximum welfare

increases with the Type II error propensity under the Full Enforcement regime. For

this, we employ CES preferences and take individual productivity to be exponentially

distributed. The numerical results we obtain are consistent with those established in
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the theory. The analysis of the Full Enforcement case is particularly sensitive to the

value of the elasticity of substitution between leisure and consumption, which we sys-

tematically vary between 0.5 and 0.99. At lower values of the elasticity the welfare

function may not be concave in the benefit levels and, consequently, care has to be

taken in searching for a global optima.

The remainder of this chapter is structured as follows. Section 2.2 sets out the model

and discusses how the different enforcement assumptions affect individual application

decisions for the categorical benefit. Section 2.3 then presents the main analysis: here

the optimum benefit levels are characterised and the effects of errors on maximum

social welfare are determined under both enforcement assumptions. Section 2.4 then

numerically simulates the optimal benefits under both enforcement regimes. This pro-

vides insights into how the optimal benefit levels change with the propensity to make

classification errors. Finally, Section 2.5 concludes the chapter.

2.2 The Model

2.2.1 Background: Individuals

Individuals in the economy have identical preferences given by the utility function

u(x, l), where x ≥ 0 denotes consumption and l ∈ [0, 1] denotes leisure respectively.

The standard assumptions apply: u is continuous, differentiable, strictly increasing in

both arguments (ux > 0, ul > 0) and strictly concave (uxx < 0, ull < 0, uxxull−u2
xl > 0);

with both goods normal (uluxx − uxuxl < 0).

We also assume:

lim
x→0

ux(x, l) = +∞ (2.1)

An individual with net wage ω ≥ 0 and unearned income M ≥ 0 chooses labour supply,

H ∈ [0, 1], so as to maximise utility. The resulting optimal labour supply (H∗) and

indirect utility (v) functions are given by:
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H∗(ω,M) ≡ arg max
H∈[0,1]

u(ωH +M, 1−H)

v(ω,M) ≡ max
H∈[0,1]

u(ωH +M, 1−H) = u(ωH∗ +M, 1−H∗)
(2.2)

Formally, H∗ satisfies:

ω ≤ ul (ωH
∗ +M, 1−H∗)

ux (ωH∗ +M, 1−H∗) ; H∗ ≥ 0

where the pair of inequalities hold with complementary slackness.

Let ω̄(M) ≡ ul(M, 1)/ux(M, 1) denote the reservation wage at or below which an

individual with lump sum unearned income M will choose not to work. Formally,

ω̄ satisfies H∗[ω̄(M),M ] = 0. Furthermore, given that leisure is normal ω̄′(M) >

0.15

For ω ≤ ω̄(M) we have H∗(ω,M) ≡ 0 which implies v(ω,M) ≡ u(M, 1), from which

it follows that vM(ω,M) ≡ ux(M, 1) and vMM(ω,M) = uxx(M, 1) < 0. So, over this

range of net wage rates the marginal indirect utility of unearned income is constant

and independent of the wage rate.

For ω > ω̄(M) we have H∗(ω,M) > 0. Further, by the normality of leisure:

H∗M =
ωuxx − uxl

2ωuxl − ω2uxx − ull
=

(uluxx − uxuxl)/ul
[2uxl − (ul/ux)uxx − (ux/ul)ull]

< 0 (2.3)

16By the envelope theorem the marginal indirect utility of unearned income is vM(ω,M) =

ux(ωH
∗ +M, 1−H∗), whilst from (2.3) it also follows that:

vMM = uxx +H∗M (ωuxx − uxl) =
u2
x(u

2
xl − uxxull)

uxul[2uxl − (ul/ux)uxx − (ux/ul)ull]
< 0 (2.4)

15Formally, ω̄′(M) = (uxuxl − uluxx) /u2
x > 0.

16The denominator of (2.3) is positive by the concavity - and thus quasiconcavity - of the utility
function. See, for example, Simon and Blume (1994).
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Roy’s identity (i.e. vω = vMH
∗) and the assumption that leisure is normal together

imply that vωM = vMω = vMMH
∗ + vMH

∗
M < 0. So over this range of net wages the

marginal indirect utility of unearned income is a strictly decreasing function of the net

wage. Formally:

∀ ω > ω̄(M) : vωM < 0⇒ vM(ω,M) < vM(ω̄(M),M) = ux(M, 1) (2.5)

2.2.2 The Population and Tax-Benefit System

In a population of size 1, there are two distributional issues. First, the fraction θ ∈ (0, 1)

of individuals face a zero quantity constraint on labour supply and are thus unable to

work. Absent any provision of state financial support, these individuals would have

no source of income to consume. Second, the remaining fraction (1− θ) of individuals

are able to work, but differ continuously in their productivity, thereby giving rise to

earned income inequality.

There is a tax-benefit system comprising four elements:

1. A constant marginal tax rate, t ∈ (0, 1), on all earned income;

2. A tax-free universal benefit, B ≥ 0, paid automatically to everyone17 ;

3. A tax-free categorical benefit, C ≥ 0, that is targeted - potentially imperfectly -

at those who are unable to work and is received in addition to B ;

4. A fixed benefit budget, β > 0, to be spent on the universal and/or the categorical

benefits.

In all that follows we take the tax rate as exogenously fixed. Assuming a constant

marginal tax rate allows productivity and productivity differences to be captured

through the net wage, ω ≥ 0. Net wages are distributed with density f(ω), where

f(ω) > 0 ∀ ω ≥ 0 and
∫∞

0
f(ω)dω = 1. The associated distribution function is

F (ω) =
∫ ω

0
f(z)dz , where 0 ≤ F (ω) ≤ 1. Note from (2.5) that:

∫ ∞
0

v(ω,M)f(ω)dω > u(M, 1) ;

∫ ∞
0

vM(ω,M)f(ω)dω < ux(M, 1) (2.6)

17With just these first two elements, we would have effectively a simple negative income tax system.
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Conditional on everyone receiving the same unearned income, this simply states that

the average utility of the able exceeds that of the unable and, by diminishing marginal

utility of income, the average marginal utility of income for the able must be lower than

that of the unable. This latter inequality can be reduced through targeting additional

resources at the unable subpopulation (we have of course yet to specify the objective

function of the government).

Whilst B is automatically received by everyone, C must be applied for and is subject

to the following double conditionality :

• Ex-ante conditionality: An applicant for C must be unable to work to be awarded

it.

• Ex-post conditionality: A recipient of C must not subsequently work.18

An individual who has applied for C is subject to a test to determine whether they

are indeed unable to work. If deemed unable to work, they are awarded the benefit.

However, this test may be imperfect and, in statistical parlance, subject to Type I

(false rejection) and/or Type II (false award) classification errors. A Type I error

occurs when an individual who is unable to work is incorrectly classified as being able

to work and consequently rejected C. We denote the probability of a Type I error

occurring by pI ∈ [0, 1]. Contrastingly, a Type II error arises when an individual who

is able to work is incorrectly awarded C. For simplicity, we assume that the probability

of Type II error is independent of productivity and denote this by pII ∈ [0, 1] . In what

follows, we confine our attention to error propensities satisfying:

pI + pII ≤ 1 (2.7)

The level of discriminatory power that the test has can be simply characterised by:

pI + pII


= 0 : Perfect Discriminatory Power

∈ (0, 1) : Some Discriminatory power

= 1 : No Discriminatory power

So the test has perfect discriminatory power if no classification errors are made. In this

18Indeed, since C is targeted at the unable, it is de facto conditional on not subsequently working.
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setting the categorical benefit is only awarded to unable applicants and, further, all

unable applicants are awarded it. Contrastingly, the test has no discriminatory power

if it awards the categorical benefit to an able applicant with the same propensity that

it does an unable applicant - i.e. the test brings no useful information in distinguishing

between the two types of applicant. Finally, for all intermediate cases where p1 +pII ∈
(0, 1), we say that the test has some, but not perfect, discriminatory power; because

it is more likely to award the categorical benefit to an unable applicant than an able

one.

Trivially, if pII = 0 ex-post conditionality is automatically satisfied because all recip-

ients of the categorical benefit are unable to work. Contrastingly, pII > 0 generates

a host of enforcement issues: whether or not an able recipient of C will choose to

work will depend on - in addition to their underlying productivity - the strength of the

enforcement regime in place. We turn to discuss this in the following section.

2.2.3 Benefit Applications and Enforcement.

Applications for C are taken to be costless in terms of money, stigma and time. This

frequently employed assumption eliminates the direct dependence of application deci-

sions on pI and pII because individual welfare in the rejected state coincides with that

from having not applied (Jacquet, 2006, 2014).19

It follows that an unable individual will always choose to apply for C. Contrastingly,

the application decision of an able individual will depend on the enforcement mecha-

nisms in place to detect ineligible recipients and, conditioning on this, their underlying

productivity. First, it is assumed that there are no checks or penalties in place for

an able individual who applies for C and, if awarded it, subsequently complies with

ex-post conditionality through not working. There are two reasons for making this

assumption: (i) such behaviour is highly difficult to detect because the recipient does

not reveal their true type through working (Yaniv, 1986); and, further, (ii) it is not

immediately clear that such behaviour is ‘fraudulent’ as the applicant may be unsure

of their own eligibility upon applying. Given this assumption, all able individuals with

19As will be discussed, which able individuals will apply for the categorical benefit will depend on
the size of the benefit itself, which - at the optimum - will in turn be an implicit function of pI and
pII . There will therefore be an indirect dependency of application decisions of the able on pI and pII .
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ω ≤ ω̄(B + C) will apply for C for sure, where ω̄(B + C) > ω̄(B) ∀ C > 0.20

However, which individuals commanding the higher productivities ω̄(B + C) < ω will

choose to apply for C will depend on how effectively the no-work condition is enforced.

In this regard, we analyse two binary enforcement assumptions where the no-work

requirement is either (i) not enforced at all; or is (ii) fully enforced. Both alternative

assumptions are detailed below.

No Enforcement

In this first case we assume that there are no effective mechanisms in place to deter

an able recipient of C from working should they wish to. In this sense, benefit policy

is one-dimensional because recipients receive only the monetary amount C, with no

subsequent restrictions on labour supply. Accordingly, all able individuals along the

net wage continuum will choose to apply for C. Of the proportion (1 − pII) who are

correctly denied the benefit, all those with ω ≤ ω̄(B) will choose not to work, whilst

those with ω̄(B) < ω will work. Turning to the proportion pII who are awarded C,

all those with ω ≤ ω̄(B + C) will not work, whilst those with ω̄(B + C) < ω will

work.

Full Enforcement

In this second case, we alternatively assume that there are totally effective mechanisms

in place that fully deter any able individual from working whilst receiving C. The

benefit policy now has two dimensions: individuals who are awarded the benefit receive

both the monetary amount C and a fully enforced zero quantity constraint on labour

supply. As under No Enforcement, all those with ω ≤ ω̄(B+C) will apply for C because

they would choose not to work when receiving it even if there were no restrictions on

labour supply. However, those with ω > ω̄(B + C) will only choose to apply for C if

ω ≤ ¯̄ω(B,C), where:

v[ ¯̄ω(B,C), B] ≡ u(B + C, 1) (2.8)

20Recall that ω̄(M) = ul(M, 1)/ux(M, 1) is the reservation wage at or below which an individual
chooses voluntary unemployment.
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Figure 2.1: Work Decision and Utility under Alternative Enforcement Regimes

(a) No Enforcement

ω0

Utility

u(B, 1)

ω̄(B)

u(B + C, 1) v(ω,B)

¯̄ω(B,C)

v(ω,B + C)

ω̄(B + C)

(b) Full Enforcement

ω0

Utility

u(B, 1)

ω̄(B)

u(B + C, 1) v(ω,B)

¯̄ω(B,C)

v(ω,B + C)

ω̄(B + C)

Policy Constrained Individuals

Notes. The bold unbroken lines denote recipients of the categorical benefit; whilst the bold broken
lines denote non-recipients of the categorical benefit. Under No Enforcement (panel (a)) all individuals
choose to apply for C. Of those awarded it all those with ω ≤ ω̄(B+C) choose not to work; whilst all
those with ω > ω̄(B + C) instead work. Alternatively, under Full Enforcement (panel(b)) only those
with ω ≤ ¯̄ω(B,C) apply for C. Of the individuals awarded it, notice that those with ω̄(B+C) < ω ≤ ¯̄ω
would have chosen to work under the No Enforcement regime.
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Figure 2.2: The critical wages ω̄(B), ω̄(B + C) and ¯̄ω(B,C)

l0

x

1

B

B + C

B + ω̄(B)

B + ω̄(B + C)

B + ¯̄ω(B,C)

1−H∗(ω,B)

u1

u0

Notes. The figure provides graphical intuition for the critical net wages ω̄ and ¯̄ω. u0 is the indifference
curve associated with the utility level u(B, 1); whilst u1 is the indifference curve associated with the
utility level u(B+C, 1). The function ω̄(M) captures the corner solution case where H∗[ω̄(M),M ] =
0 and thus v(ω,M) = u(M, 1). Contrastingly, ¯̄ω(B,C) captures the interior solution case where
H∗[¯̄ω(B + C), B] > 0 and thus v(ω,B) > u(B, 1) but v(¯̄ω,B) = u(B + C, 1).

So ¯̄ω(B,C) is the net wage at which an able individual is just indifferent between (i) not

working and receiving total benefit income B+C, and (ii) working as much as desired

and receiving only B in benefit income. It is straightforward to show that:

¯̄ωC =
ux(B + C, 1)

H∗(¯̄ω,B) · vM(¯̄ω,B)
> ¯̄ωB =

ux(B + C, 1)− vM(¯̄ω,B)

H∗(¯̄ω,B) · vM(¯̄ω,B)
> 0 (2.9)

and thus ¯̄ωC − ¯̄ωB = 1/H∗(¯̄ω,B). Note that ¯̄ωB > 0 by the normality of leisure;

which implies that the marginal utility of consumption is increasing in leisure along an

indifference curve.21

Finally, given that v[ω̄(B + C), B + C] ≡ v[ ¯̄ω(B,C), B] ≡ u(B + C, 1), it must hold

21Let x(l) satisfy u[x(l), l] = k, where k is a constant. Differentiating w.r.t. l thus gives x′(l) =
−ul/ux. From this it follows that:

dux[x(l), l]

dl
= uxxx

′(l) + uxl =
uxuxl − uluxx

ux
> 0

by the normality of leisure.
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that:

ω̄(B + C) < ¯̄ω(B,C) ∀ C > 0 (2.10)

where limC→0 ¯̄ω(B,C) = ω̄(B).

Policy Constrained Individuals

Under Full Enforcement, the only recipients of C for whom the enforced zero quantity

constraint on labour actually binds are those with ω̄(B+C) < ω ≤ ¯̄ω(B,C). To see this,

note that under the No Enforcement regime these individuals would optimally choose

to work when receiving C. They are therefore constrained by the fully enforced benefit

policy. Figure 2.1 illustrates this: the figure depicts the work decision and resulting

utility of individuals over the net wage continuum under both the No Enforcement and

Full Enforcement regimes. The bold unbroken lines denote utility when receiving the

categorical benefit, whilst the bold broken lines denote utility when not receiving it.

Figure 2.2, meanwhile, illustrates that the budget constraints with slope ω̄(B+C) and

¯̄ω(B,C), respectively, are tangent to the same indifference curve, but the tangency in

the former case occurs at a corner solution (H = 0), whilst the latter occurs at an

interior solution (H > 0).

2.3 Analysis

We now turn to the main theoretical analysis. When the test administering the categor-

ical benefit makes Type I and/or Type II classification errors with positive propensity

the key questions we wish to answer are:

1. For what levels of discriminatory power would it be optimal to adopt: (i) a pure

universal system (B > 0, C = 0); (ii) a partial universal system (B > 0, C > 0);

or (iii) a pure targeted system (B = 0, C > 0)?

2. How does maximum social welfare change with the propensity to make classifi-

cation errors?

3. How do the answers to these questions differ between the No Enforcement and

Full Enforcement regimes?

In all cases, the social welfare (objective) function that the government seeks to max-
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imise is strictly utilitarian, and thus given by the sum of individual (expected) utilities.

A desire for redistribution therefore arises solely from the concavity of individual util-

ity. We will throughout adopt the notational convention of letting the superscripts

P , N and F denote Perfect Discrimination, No Enforcement and Full Enforcement,

respectively.

To proceed, we initially analyse the first design question under the baseline case of

Perfect Discrimination.

2.3.1 Perfect Discrimination

When the test administering C can perfectly discern unable applicants from able ap-

plicants, social welfare is given by:

W P (B,C; θ) = θu(B + C, 1) + (1− θ)
∫ ∞

0

v(ω,B)f(ω)dω (2.11)

Given the fixed budget size β available for expenditure on B and C, the problem is to

choose B and C so as to maximise social welfare. Formally:

max
B,C

W P (B,C; θ) s.t. B + θC = β ,B ≥ 0 , C ≥ 0 (2.12)

Notice that the budget constraint must hold with equality because, if underspent,

welfare could always be raised through paying a higher B to all individuals. If we

denote the optimum benefit levels by B̂P (β, θ) and ĈP (β, θ) respectively, we have:

Proposition 1. ĈP > 0 and B̂P ≥ 0 satisfy:

∫ ∞
0

vM(ω, B̂P )f(ω)dω ≤ ux(B̂
P + ĈP , 1) ; B̂P ≥ 0 (2.13)

where the pair of inequalities hold with complementary slackness.

Proof: See Appendix.
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Corollary 1.

B̂P

{
>

=

}
0 if β

{
>

≤

}
β̄P (2.14)

where β̄P is defined by:

∫ ∞
0

vM(ω, 0)f(ω)dω ≡ ux

(
β̄P

θ
, 1

)
(2.15)

Proposition 1 states that (i) it is always optimal to provide a categorical benefit; but

(ii) it will only be optimal to provide a universal benefit if categorical transfers have

been financed up the point where inequality in the average smvi between the unable

and able subpopulations is eliminated. It thus follows directly from Corollary 1 that

there will be a critical budget (β̄P ) which, if spent solely on categorical transfers, will

equate the smvi of the unable with the average smvi of the able. For any budget

exceeding this level it will be optimal to provide a universal benefit.22 Finally, notice

that in any optimum B̂P + ĈP > β > B̂P .23

The result that the categorical benefit should be set so as to equate the average smvi

across categorical groups (in our case the unable and able) is well established in the

optimal tax-benefit literature (Atkinson, 1995; Beath et al., 1988; Immonen et al., 1998;

Viard, 2001a,b)

To provide some intuition for Proposition 1, let V P (β, θ) ≡ W P (B̂P , ĈP ; θ) denote

maximum social welfare and let WU denote welfare under a pure universal system (i.e.

22There is therefore an ordering or priorities. The first priority is to eliminate, budget allowing,
between-group inequality in the average smvi - i.e. support unable individuals because they are the
most needy in society from the perspective of smvi. Conditional on the benefit budget being sufficiently
large for this to be achieved and, further, there being money left over, the second priority is to spend
the remainder of the benefit budget on the universal benefit. This in turn reduces inequality in the
smvi within the able subpopulation.

23Perfect Discrimination One Dimensional Problem. From the budget constraint we could
alternatively define CP (B;β, θ) = (β − B)/θ and solve the unconstrained one-dimensional problem
maxB∈[0,β]W

P (B,CP ; θ). This yields the first order condition:

θux(B̂P + CP , 1) · (1 + ∂CP /∂B) + (1− θ)
∫ ∞

0

vM (ω, B̂P )f(ω)dω ≤ 0 ; B̂P ≥ 0

If we substitute in ∂CP /∂B = −1/θ the results in the main text directly follow.
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B = β, C = 0), where:

WU(β, θ) ≡ θu(β, 1) + (1− θ)
∫ ∞

0

v(ω, β)f(ω)dω (2.16)

Since the pure universal system is always a feasible choice, but is rejected in favour

of a system which targets a categorical benefit at the unable, it must follow that

V P (β, θ) −WU(β, θ) > 0. To see this, note that a first-order Taylor approximation

around β gives:

V P −WU ≈ θux(β, 1) ·
(
B̂P + ĈP − β

)
+ (1− θ)

∫ ∞
0

vM(ω, β)f(ω)dω ·
(
B̂P − β

)
= θ(1− θ)

[
ux(β, 1)−

∫ ∞
0

vM(ω, β)f(ω)dω

]
ĈP > 0

By diminishing marginal utility of income, social welfare can always be raised aboveWU

by transferring some benefit income away from those who are able to work towards the

unable. Of course, the relative amounts that we would choose to transfer will depend

on the proportion of the population who are unable.

With this section serving as a baseline case, we now turn to analyse optimal welfare

provision when the test administering the categorical benefit makes classification errors.

We first study the No Enforcement regime, and then subsequently turn to the Full

Enforcement regime.

2.3.2 Imperfect Discrimination: No Enforcement

With no enforcement mechanisms in place to restrict the work behaviour of able in-

dividuals who receive C, we know that all able individuals will apply for C. Social

welfare is therefore now given by:
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WN(B,C; θ, pI , pII)

= θ {(1− pI)u(B + C, 1) + pIu(B, 1)}

+ (1− θ)


pII

〈
F [ω̄(B + C)]u(B + C, 1) +

∫∞
ω̄(B+C)

v(ω,B + C)f(ω)dω
〉

+(1− pII)
〈
F [ω̄(B)]u(B, 1) +

∫∞
ω̄(B)

v(ω,B)f(ω)dω
〉



(2.17)

Notice that WN(B,C; θ, 0, 0) = W P (B,C; θ) - i.e. when there are no classification

errors in the awards process the welfare function in (2.17) reduces to its Perfect Dis-

crimination counterpart in (2.11).24 The first line on the right side of (2.17) illustrates

that horizontal inequity in utility levels is introduced into the unable subpopulation

through Type I errors. These individuals derive consumption solely from unearned

income and so any disparities in their utility arise due to unequal treatment by the

benefit system. The proportion pI are incorrectly denied C, whilst the proportion

(1− pI) are correctly awarded it. The second line, meanwhile, concerns the able sub-

population. Again, classification errors introduce inequalities into this subpopulation

as the individual welfare rankings now differ from the case where pII = 0. Consider,

for example, those with ω ≤ ω̄(B): these individuals are voluntarily unemployed and

share the same welfare level u(B, 1) when pII = 0, but when pII > 0 some have welfare

u(B + C, 1) whilst others have welfare u(B, 1).

The government budget constraint is given by:

B + [θ(1− pI) + (1− θ)pII ]C ≤ β (2.18)

24Writing social welfare as in (2.17) illustrates the voluntary unemployment induced by Type II
classification errors. We could instead write social welfare more compactly as:

WN = θ {(1− pI)u(B + C, 1) + pIu(B, 1)}+(1−θ)
{∫ ∞

0

〈pIIv(ω,B + C) + (1− pII)v(ω,B)〉f(ω)dω

}
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Properties of the budget constraint. Let CN(B; β, θ, pI , pII) denote the level

of categorical benefit that exhausts the budget constraint for any B ∈ [0, β]. For-

mally:

CN(B; β, θ, pI , pII) =
β −B

[θ(1− pI) + (1− θ)pII ]
(2.19)

It is straightforward to see that ∂CN/∂B < −1 and thus d[B + CN ]/dB = 1 +

∂CN/∂B < 0. An increase in the universal benefit therefore reduces the total benefit

income of categorical recipients.25

Optimisation problem. The optimisation problem of the government is given by:

max
B,C

WN(B,C; θ, pI , pII)

s.t. B + [θ(1− pI) + (1− θ)pII ]C = β ,

B ≥ 0 , C ≥ 0.

(2.20)

To proceed, let us define (i) the aggregate smvi of those not receiving the categorical

benefit (henceforth ‘non-categorical recipients’) and (ii) the aggregate smvi of categor-

ical recipients, respectively, by:

σNNR(B; θ, pI , pII) ≡ θpIux(B, 1) + (1− θ)(1− pII)
∫ ∞

0

vM(ω,B)dF (ω)

(2.21)

σNR (B,C; θ, pI , pII) ≡ θ(1− pI)ux(B + C, 1) + (1− θ)pII
∫ ∞

0

vM(ω,B + C)dF (ω)

The subscript NR denotes ‘non-categorical recipients’, whilst the subscript R denotes

categorical recipients. We let the corresponding averages be given by σ̄NNR ≡ σNNR/[θpI+

(1 − θ)(1 − pII)] and σ̄NR ≡ σNR /[θ(1 − pI) + (1 − θ)pII ], respectively. It is useful to

note that ∂σ̄NNR/∂pI > 0 and ∂σ̄NNR/∂pII > 0. Intuitively, a ceteris paribus increase in

25The choice set of B and C is clearly convex because ∂CN/∂B < 0 whilst ∂2CN/∂B2 = 0.
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either pI or pII acts to increase the proportion of non-categorical recipients who are in

fact unable, and thus acts to increase the average. By parallel argument, it also holds

that both ∂σ̄NR /∂pI < 0 and ∂σ̄NR /∂pII < 0.

If we now denote the optimal benefit levels by B̂N(β, θ, pI , pII) and ĈN(β, θ, pI , pII)

respectively, we have:

Proposition 2a:

(i) ∀ pI + pII < 1 ĈN > 0 and B̂N ≥ 0 satisfy:

σ̄NNR

(
B̂N ; θ, pI , pII

)
≤ σ̄NR

(
B̂N , ĈN ; θ, pI , pII

)
; B̂N ≥ 0 (2.22)

where the pair of inequalities in (2.22) hold with complementary slackness.

(ii) ∀ pI + pII = 1 (a) ĈN = 0 and B̂N = β if pI > 0; but (b) any (B,C) satisfying

B + C = β will be optimal in the extreme case where pI = 0 (and pII = 1).

Proof: See Appendix 26

Corollary 2: B̂N > 0 if pI > 0 ; otherwise B̂N

{
>

=

}
0 as β

{
>

≤

}
β̄N , where β̄N is the

critical budget level satisfying

σ̄NNR(0; θ, 0, pII) =

∫ ∞
0

vM(ω, 0)dF (ω) = σ̄NR

(
0,

β̄N

θ + (1− θ)pII
; θ, pI , pII

)
(2.23)

Proof: See Appendix

To discuss Proposition 2a, it is useful to distinguish between the cases where pI > 0

and pI = 0. Suppose first that pI > 0: Proposition 2a states that a necessary and

sufficient condition to provide a categorical benefit is that the test administering it has

26Unconstrained uni-dimensional problem. We could alternatively substitute the func-
tion CN into the welfare function in (2.17) and solve the unconstrained uni-dimensional problem
maxB∈[0,β]W

N (B,CN ; θ, pI , pII). This yields the first order condition:

θpIux(B̂N , 1) + (1− θ)(1− pII)
∫
vM (ω, B̂N )f(ω)dω

≤
{
θ(1− pI)ux(B̂N + CN , 1) + (1− θ)pII

∫
vM (ω, B̂N + CN )f(ω)dω

}
· −(1 + ∂CN/∂B) ; B̂N ≥ 0

Substituting in (1 + ∂CN/∂B) = −[θpI + (1 − θ)(1 − pII)]/[θ(1 − pI) + (1 − θ)pII ] and rearranging
then gives the same expression as in (2.22).
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some positive discriminatory power. If this holds then the benefit levels are chosen

in accordance with (2.22). The term to the left of the first inequality in (2.22) is the

average smvi of non-categorical recipients, whilst the term to the right is the average

smvi of categorical recipients. The complementary slackness condition implies that

spending should be exclusively categorical up to the point where the average smvi

of categorical recipients is equated with that of non-categorical recipients. Corollary

2 immediately follows from (2.22). Given our assumption in (2.1) that limx→0 ux =

+∞ a universal benefit will always be provided to ensure rejected unable individuals

have some source of income to consume. At the optimum then, the average smvi of

non-categorical recipients is equated with the average smvi of categorical recipients.

However, if the awards test has no discriminatory power it will be suboptimal to

provide a categorical benefit. Instead, the entire benefit budget should be spent on

the universal benefit.

Suppose alternatively that pI = 0: in this case the story in Proposition 2a is a little

more nuanced, but the main message remains. If the awards test has positive discrimi-

natory power it will certainly be optimal to provide a categorical benefit. Given that all

able individuals receive the categorical benefit, there is no guarantee that it will be opti-

mal to provide a universal benefit. Indeed, it follows from (2.23) and Corollary 2 that it

will only be optimal to provide a universal benefit if the benefit budget exceeds a critical

level (β̄N) which - if spent entirely on categorical transfers - would equate the average

smvi of non-categorical recipients with the average smvi of categorical recipients. How-

ever, if the awards test has no discriminatory power then the social welfare function to

be ‘maximised’ is simply WN(B,C; θ, 0, 1) = θu(B+C, 1)+(1−θ)
∫
v(ω,B+C)f(ω)dω,

such that any combination of B and C satisfying B +C = β is ‘optimal’. Any budget

feasible combination of the benefit levels yields the same level of welfare and there is

no optimisation problem to solve. Note that within this framework this is equivalent

to a pure universal system.27

For the ease of exposition, we assume that pI > 0 for the remainder of the No Enforce-

ment analysis.

27That is, we abstract from any differences in costs there may be between administering a universal
benefit and administering a categorical benefit.
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Intuition for Proposition 2a To provide the intuition for Proposition 2a we com-

pare welfare under an arbitrary budget feasible targeted system (B ∈ [0, β), CN > 0)

with that under a pure universal system (B = β, CN = 0):

WN −WU

= θ


〈(1− pI)u(B + CN , 1) + pIu(B, 1)〉 − u[B + (1− pI)CN , 1]

+〈u[B + (1− pI)CN , 1]− u(β, 1)〉



+ (1− θ)


∫∞

0

〈
pIIv(ω,B + CN) + (1− pII)v(ω,B)

〉
− v[ω,B + pIIC

N ]f(ω)dω

+
∫∞

0

〈
v[ω,B + pIIC

N ]− v(ω, β)
〉
f(ω)dω


(2.24)

The two curly braces multiplied by θ and (1 − θ) concern the unable and able sub-

populations, respectively. Within both pairs of braces the first line captures within-

group considerations, whilst the second line captures between-group considerations. By

the concavity of individual utility the first line must be negative in both cases: i.e.

the utility of consuming the average benefit must exceed the expected utility; where

B + (1 − pI)C
N is the average benefit income for the unable and B + pIIC

N is the

average benefit income for the able. Within-group, therefore, an imperfectly targeted

programme does worse than a pure universal programme. Next, the sign of the second

line will differ between the two pairs of braces whenever pI + pII < 1. In this case the

unable receive a higher benefit income on average through targeting than under a pure

universal system, whilst the able receive a lower benefit income on average through

targeting than under a pure universal system. However, both second lines are instead

zero if pI + pII = 1. This arises because a targeted system provides no more benefit

income on average to the unable than the able.28 Consequently, if pI + pII = 1 a

28Note that we can write the benefit budget as:

β = B + [θ(1− pI) + (1− θ)pII ]C = θ [B + (1− pI)C]︸ ︷︷ ︸
Average benefit

(unable)

+(1− θ) [B + pIIC]︸ ︷︷ ︸
Average benefit

(able)
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targeted system does worse than a pure universal system within-group and no better

between-group. This explains why ĈN = 0 when pI + pII = 1. Finally, one can also do

a Taylor Approximation of WN −WU around β and make use of the budget constraint

to obtain:

WN −WU ≈ θux(β, 1) · [B + (1− pI)C − β]

+ (1− θ)
∫ ∞

0

vM(ω, β)f(ω)dω · [B + pIIC − β]

= θ(1− θ)[1− pI − pII ]
{
ux(β, 1)−

∫ ∞
0

vM(ω, β)f(ω)dω

}
C

This will be positive so long as pI + pII < 1, which further illustrates that the pure

universal welfare level can be improved upon through targeting a categorical benefit

at the unable whenever the test administering it has some discriminatory power.

The intuition for Corollary 2 is twofold. First, if Type I errors are made but no uni-

versal benefit is provided then unable individuals who have been wrongly denied the

categorical benefit would have no source of income to provide consumption. Accord-

ingly, a universal benefit must be provided whenever Type I errors are made. Second,

even if there are no Type I errors, the first priority of a benefit system is to support

the most needy - in this case those who are unable to work - and a universal benefit

should be used only if the budget is above a critical level.

Recall that at the Perfect Discrimination optimum inequality in the average smvi be-

tween the unable and able subpopulations will be eliminated if the benefit budget is

sufficiently large. The following proposition asserts that this no longer holds when

classification errors are made.

Proposition 2b: Let inequality in the average smvi between the unable and able sub-

So: B+ (1− pI)C > β > B+ pIIC ∀ pI + pII < 1, but B+ (1− pI)C = β = B+ pIIC ∀ pI + pII = 1.
To see that welfare is improved through the unable receiving more on average than the per capita

budget (but consequently the able receiving less), note that a Taylor Approximation of θ〈u[B + (1−
pI)C]− u(β, 1)〉+ (1− θ)

∫
〈v[ω,B + pIIC]− v(ω, β)〉f(ω)dω around β yields:

θ[B + (1− pI)C − β]

[
ux(β, 1)−

∫ ∞
0

vM (ω, β)f(ω)dω

]
≥ 0
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populations be given by:

δN ≡ [pIux(B, 1) + (1− pI)ux(B + C, 1)]︸ ︷︷ ︸
Average smvi (unable)

−
∫ ∞

0

[(1− pII)vM(ω,B) + pIIvM(ω,B + C)]f(ω)dω︸ ︷︷ ︸
Average smvi (able)

(2.25)

Then if pI > 0 and/or pII > 0 it will hold that δN > 0 at the optimum because:

ux(B̂
N , 1) > ux(B̂

N+ĈN , 1) ≥ λ̂N ≥
∫
vM(ω, B̂N)f(ω)dω >

∫
vM(ω, B̂N+ĈN)f(ω)dω

(2.26)

where (i) ux(B̂
N + ĈN , 1) = λ̂N only if pII = 0; whilst (ii)

∫
vM(ω, B̂N)f(ω)dω = λ̂N

only if pI = 0 and β is sufficiently large.

Proof: See Appendix

We now turn our attention to how classification errors affect maximum social welfare,

as defined by the value function V N(β, θ, pI , pII) ≡ WN(B̂N , ĈN ; θ, pI , pII). Using

(2.26) we can establish the following result:

Proposition 2c: Maximum social welfare is decreasing in the propensity to make

classification errors of either Type I or Type II. Formally :

∂V N

∂pI
< 0 ,

∂V N

∂pII
< 0 ; ∀ 0 ≤ pI + pII < 1 (2.27)

Proof: See Appendix

Proposition 2c implies that improvements in the discriminatory power of the awards

technology - corresponding to a ceteris paribus reduction in pI and/or pII - will be

unambiguously welfare improving. Suppose, alternatively, that genuine improvements

in discriminatory power are not possible, but instead a reduction in pI (pII) can only

be brought about through making the awards test more lenient (stringent), which

in turn implies an increase in pII (pI). There would therefore be a tradeoff be-

tween error propensities, discriminatory power held fixed (see Goodin, 1985). The

welfare effects of a change in the propensity to make either error type would then de-
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pend on the relative size of |∂V N/∂pI | and |∂V N/∂pII |, respectively. In particular, if

|∂V N/∂pI | > |∂V N/∂pII | then an increase in the leniency of the awards test may be

welfare improving. Contrastingly, if |∂V N/∂pI | < |∂V N/∂pII | then an increase in the

stringency of the awards test may be welfare improving.

Without adopting restrictive assumptions on the third derivatives uxxx and vMMM ,

comparative statics results concerning the effect of pI and pII on the optimal benefit

levels are scarce. The exception is the effect of an increase in the Type I error propensity

on the optimal universal benefit:

Proposition 2d: ∂B̂N/∂pI > 0

Proof: See Appendix

The intuition for this result follows directly from the optimality condition in (2.22).

Indeed, consider the effect of an increase in pI on both σ̄NNR and σ̄NR , when evaluated

at (B,C) = (B̂N , CN):

dσ̄NNR(B̂N , CN ; θ, pI , pII)

dpI
=
∂σ̄NNR
∂pI︸ ︷︷ ︸
>0

+
∂σ̄NNR
∂B︸ ︷︷ ︸
<0

·∂B̂
N

∂pI
(2.28)

dσ̄NR (B̂N , CN ; θ, pI , pII)

dpI
=
∂σ̄NR
∂pI︸︷︷︸
<0

+
∂σ̄NR
∂B︸︷︷︸
<0

·


∂B̂N

∂pI

[
1 +

∂CN

∂B

]
︸ ︷︷ ︸

<0

+
∂CN

∂pI︸ ︷︷ ︸
>0

 (2.29)

where in writing (2.29) we have used the property that ∂σ̄NR /∂B = ∂σ̄NR /∂C. Sup-

pose that ∂B̂N/∂pI = 0. Then one can readily establish from (2.28) and (2.29) that

dσ̄NNR/dpI > 0 whilst dσ̄NR /dpI < 0. The average smvi of the two groups thus move

in opposite directions and we are no longer at an optimum. Similarly, if we suppose

∂B̂N/∂pI < 0 it will also be the case that dσ̄NNR/dpI > 0 whilst dσ̄NR /dpI < 0. Ac-

cordingly, the only way to restore balance (i.e. σ̄NNR = σ̄NR ) following an increase in

pI is to lower the average smvi of those non-categorical recipients through increasing

B, which explains why ∂B̂N/∂pI > 0. Indeed, setting (2.28) equal to (2.29) we can

readily establish that:
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∂B̂N

∂pI
=

∂σ̄NNR
∂pI

−
[
∂σ̄NR
∂pI

+
∂σ̄NR
∂B
· ∂C

N

∂pI

]
∂σ̄NR
∂B

[
1 +

∂CN

∂B

]
− ∂σ̄NNR

∂B

> 0 (2.30)

Notice that the result ∂B̂N/∂pI > 0 does not guarantee that ∂ĈN/∂pI < 0. Indeed,

because an increase in pI means that fewer unable individuals receive the categorical

benefit we can establish from the budget constraint that:

∂ĈN

∂pI


>

=

<

 0 if
∂B̂N

∂pI


<

=

>

 θ(β − B̂N)

[θ(1− pI) + (1− θ)pII ]
= θĈN

Remark: If we make the strong assumption that vMM = −k ∀ ω ≤ ω̄(M); but

vMM = 0 ∀ ω > ω̄(M), where k > 0 is a constant, then:

∂ĈN

∂pI
< 0

This would arise under quadratic preferences u(x, l) = [x − αx2] − γ(1 − l); where α

and γ are constants and k = 2α. A well documented feature of these preferences is that

ux > 0 only if x < 1/(2α). Viard (2001a) similarly assumes that vMM is a negative

constant to obtain comparative statics predictions.

The effects of an increase in pI or pII on the optimal benefit levels are discussed further

in the numerical analysis of Section 2.4.

This concludes our discussion of the No Enforcement regime. We now proceed to

analyse the Full Enforcement regime.

2.3.3 Imperfect Discrimination: Full Enforcement

When the condition that recipients of C do not work is fully enforced, we know from

(2.8) that the only able individuals who apply for C will be those with ω ≤ ¯̄ω. For

individuals with ω > ¯̄ω the opportunity cost of not working is simply too high. Given

that the unable always apply for C, we can therefore write social welfare under the
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Full Enforcement regime as:

W F (B,C; θ, pI , pII) = θ {(1− pI)u(B + C, 1) + pIu(B, 1)}

+ (1− θ)


∫∞

0
v(ω,B)f(ω)dω

+pII
∫ ¯̄ω

0
〈u(B + C, 1)− v(ω,B)〉 f(ω)dω


(2.31)

The first line is the aggregate welfare of unable individuals and is written exactly as

under the No Enforcement analysis. The second line, meanwhile, is the aggregate

welfare of able individuals. Within the second pair of curly braces the first term

captures the average welfare over the able subpopulation were no able individuals to

be awarded the categorical benefit, whilst the second term captures the welfare gain

to able applicants who are awarded the categorical benefit by Type II error.29

The government budget constraint is given by:

B + χ(B,C; θ, pI , pII)C ≤ β (2.32)

where χ ≡ θ(1− pI) + (1− θ)pIIF (¯̄ω) denotes the number of categorical recipients in

the economy. Conversely, 1 − χ = θpI + (1 − θ)[1 − F (¯̄ω)pII ] denotes the number of

individuals not receiving the categorical benefit.

Properties of the budget constraint. Let CF (B; β, θ, pI , pII) denote the level of

the categorical benefit that exhausts the budget constraint for any given B ∈ [0, β].

Formally:30

29To arrive at the expression for welfare in (2.31), note that average welfare over the able subpop-
ulation when the fraction F (¯̄ω) apply for the categorical benefit is:∫ ¯̄ω

0

[pIIu(B + C, 1) + (1− pII)v(ω,B)] f(ω)dω +

∫ ∞
¯̄ω

v(ω,B)f(ω)dω

= pII

∫ ¯̄ω

0

[u(B + C, 1)− v(ω,B)] f(ω)dω +

∫ ∞
0

v(ω,B)f(ω)dω

30There must be a unique root C = CF to the condition χ(B,C; θ, pI , pII) ·C = β−B because the
left side is unambiguously increasing in C (and zero when C = 0) whilst the right side is constant.
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B + χ(B,CF ; θ, pI , pII) · CF = β (2.33)

Differentiating (2.33) w.r.t B thus gives:

∂CF

∂B
= −

[
1 + (1− θ)f(¯̄ω)pII ¯̄ωBC

F
]

χ+ (1− θ)f(¯̄ω)pII ¯̄ωCCF
≤ 0 (2.34)

From this we can directly establish that:

d ¯̄ω(B,CF )

dB
= ¯̄ωB + ¯̄ωC ·

(
∂CF

∂B

)
=

χ ¯̄ωB − ¯̄ωC
χ+ (1− θ)f(¯̄ω)pII ¯̄ωCCF

< 0 (2.35)

The total effect of an increase in the universal benefit is therefore to reduce the number

of individuals who apply for the categorical benefit. Note that this does not necessarily

imply that the total benefit income of categorical recipients falls. This requires d[B +

CF ]/dB = 1 + ∂CF/∂B < 0 and thus ∂CF/∂B < −1, which in turn corresponds to

the condition that:

(1− θ)f(¯̄ω)pIIC
F < (1− χ)H∗(¯̄ω,B)

For simplicity, we will throughout assume this to be the case.

Finally, to guarantee convexity of the feasible set of choices of B and C it is throughout

assumed that ∂2CF/∂B2 ≤ 0, which requires:

2f(¯̄ω)
d ¯̄ω(B,CF )

dB

∂CF

∂B
≥ CF

 f ′(¯̄ω)

[
d ¯̄ω(B,CF )

dB

]2

+f(¯̄ω)[¯̄ωBB + 2¯̄ωBCC
′
F + ¯̄ωCC(∂CF/∂B)2]

 (2.36)

The left side is unambiguously positive, but the sign of the terms within curly braces

on the right side depend on as yet unspecified properties of (i) the distribution func-

tion (necessary to sign f ′(ω)) and (ii) the third derivatives of individual preferences

(necessary to sign ¯̄ωBB, ¯̄ωCC and ¯̄ωBC). For this reason one cannot conclusively show

that ∂2CF/∂B2 ≤ 0. However, the subsequent numerical analysis in Section 2.4 will
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illustrate that the convexity assumption is readily satisfied in all considered cases.

Optimisation Problem. The optimisation problem of the government is thus now

given by:

max
B,C

W F (B,C; θ, pI , pII)

s.t. B + χ(B,C; θ, pI , pII) · C = β ,

B ≥ 0 , C ≥ 0

(2.37)

We will assume that there is a unique solution to the above optimisation problem.

However, the concavity of the welfare function W F with respect to the choice vari-

ables is not guaranteed under Full Enforcement due to the endogeneity of application

decisions. We will return to discuss this both below and in the numerical analysis in

Section 2.4. The latter will illustrate that this assumption is appropriate in a large

range of cases - and identify cases where it is not.

Analogous to the analysis of No Enforcement, let us define the aggregate smvi of non-

categorical recipients and categorical recipients by, respectively:

σFNR(B,C; θ, pI , pII) =

θpIux(B, 1) + (1− θ)
{∫ ∞

0

vM(ω,B)dF (ω)− pII
∫ ¯̄ω

0

vM(ω,B)dF (ω)

}
,

(2.38)

σFR(B,C; θ, pI , pII) = ux(B + C, 1) · χ

Once more the subscript NR denotes non-categorical recipients, whilst the subscript

R denotes categorical recipients.

If we now denote the optimal benefit levels by B̂F (β, θ, pI , pII) and ĈF (β, θ, pI , pII),

we have:
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Proposition 3a: ĈF > 0 ∀ pI + pII ≤ 1 and B̂F ≥ 0 satisfy:

σFNR

(
B̂F , ĈF ; θ, pI , pII

)

≤ σFR

(
B̂F , ĈF ; θ, pI , pII

)
·
{

(1− χ) + (1− θ)pIIf(¯̄ω)(¯̄ωB − ¯̄ωC)ĈF

χ+ (1− θ)pIIf(¯̄ω)¯̄ωCĈF

}
, B̂F ≥ 0

(2.39)

where the pair of inequalities hold with complementary slackness.

Proof: See Appendix.

Corollary 3: B̂F > 0 if pI > 0, but otherwise B̂F > 0 if :

σFNR
(
0, CF ; θ, 0, pII

)
> ux

(
CF , 1

)
· χ
{

(1− χ) + (1− θ)pIIf(¯̄ω)(¯̄ωB − ¯̄ωC)CF

χ+ (1− θ)pIIf(¯̄ω)¯̄ωCCF

}

The principal message from Proposition 3a is that it is optimal to provide a categor-

ical benefit at all levels of discriminatory power, therefore including the case of no

discriminatory power. Condition (2.39) characterises the optimum. The left side is

the aggregate smvi of individuals not receiving the categorical benefit. Contrastingly,

the right side is the aggregate smvi of categorical recipients multiplied by the increase

in their total benefit income per unit reduction in the universal benefit. This is made

more transparent through the below remark.

Remark: From (2.34) we can write the terms within curly braces on the right side of

(2.39) more compactly as · −
(
1 + ∂CF/∂B

)
> 0. 31

31Unconstrained uni-dimensional problem (Full Enforcement). Analogous to footnote 26
we could alternatively substitute the function CF into the welfare function in (2.31) and solve the
unconstrained uni-dimensional problem maxB∈[0,β]W

F (B,CF ; θ, pI , pII). The resulting first order
condition is:

θpIux(B̂F , 1) + (1− θ)
{∫ ∞

0

vM (ω, B̂F )f(ω)dω − pII
∫ ¯̄ω

0

vM (ω, B̂F )f(ω)dω

}
≤ ux(B̂F + CF , 1) · −(1 + ∂CF /∂B)χ ; B̂F ≥ 0
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The increase in total benefit income associated with a reduction in the universal benefit

is a function of the terms ¯̄ωB and ¯̄ωC , capturing the fact that a ceteris paribus increase

in either benefit generates incentives to apply for the categorical benefit. However,

because ¯̄ωB < ¯̄ωC a direct implication of (2.39) is that at the optimum the smvi of

categorical recipients will exceed the average smvi of non-categorical recipients.

To see why we cannot in general guarantee a unique solution to the optimality condition

in (2.39), it is useful to substitute the function CF into both σFNR and σFR and establish

how these functions change with the universal benefit. Formally:

dσFNR(B,CF ; θ, pI , pII)

dB
= θpIuxx + (1− θ)

{∫ ∞
0

vMMdF (ω)− pII
∫ ¯̄ω

0

vMMdF (ω)

}
︸ ︷︷ ︸

<0

+ (1− θ)pIIf(¯̄ω) · −d
¯̄ω(B,CF )

dB
vM(¯̄ω,B)︸ ︷︷ ︸

>0

(2.40)

whilst:

dσFR(B,CF ; θ, pI , pII)

dB
= χ ·

[
uxx(1 + ∂CF/∂B)

]︸ ︷︷ ︸
>0

+ux ·
[
(1− θ)pIIf(¯̄ω)

d ¯̄ω(B,CF )

dB

]
︸ ︷︷ ︸

<0

(2.41)

The total effect of an increase in the universal benefit on σFNR and σFR is in both cases

composed of two conflicting effects. In the case of σFNR an increase in the universal ben-

efit (i) increases the benefit income of each individual and thus lowers their individual

smvi; but also (ii) increases the number of non-categorical recipients through reducing

the number of individuals that apply for the categorical benefit. Alternatively, in the

case of σFR an increase in the universal benefit (i) lowers the total benefit income of

each individual and consequently increases their smvi; but also (ii) reduces the number

of categorical recipients. Notice that in either case the size of the second effect will

depend on the responsiveness of ¯̄ω to changes in benefit income. Ceteris paribus, the

less responsive this critical net wage is the lower the absolute size of this effect. In

Substituting in (2.34) for ∂CF /∂B then gives the expression in (2.39).
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both cases the overall effect is ambiguous and will depend on unspecified properties

of both the utility function (e.g. third derivatives) and the distribution function (e.g.

the derivative of the pdf). These conflicting effects can result in non-concavity of the

welfare function and multiple stationary points.32 We will discuss this in greater depth

in the numerical analysis of Section 2.4.

The conditions under which a universal benefit should be provided follow directly from

(2.39) and are given in Corollary 3. As under the No Enforcement analysis, it is

optimal to provide a universal benefit whenever the test administering the categorical

benefit has a positive propensity to make Type I errors. This ensures that unable

individuals who are incorrectly denied the categorical benefit have some source of

income to consume. Contrastingly, if Type I errors never occur it is only optimal to

provide a universal benefit if, when evaluated at (B,C) = (0, CF ), the total welfare

gain of a marginal increase in the universal benefit to non-categorical recipients exceeds

the total welfare loss to categorical recipients.

Intuition for Proposition 3a. To provide the intuition for the main result in Propo-

sition 3a, which states that a categorical benefit should be provided no matter what

the discriminatory power of the test administering it, we take a Taylor approximation

of W F −WU around β to obtain:

W F −WU ≈ (1− θ)C


θ[1− pI − F (¯̄ω)pII ]

〈
ux(β, 1)−

∫∞
0
vM(ω, β)f(ω)dω

〉
+ pIIF (¯̄ω)

〈
F [ω̄(β)]

F (¯̄ω)
ux(β, 1)−

∫∞
0
vM(ω, β)f(ω)dω

〉


(2.42)

The first line within curly braces is always positive because a targeted system awards,

on average, the unable with more benefit income than the able for all levels of discrim-

32It is also useful to note that:

d

dB

{
σFR(B,CF ; θ, pI , pII) · −(1 + ∂CF /∂B)

}
= χ ·

{
uxx · −(1 + CF )2 − ux∂2CF /∂B2

}︸ ︷︷ ︸
>0

+ux · −(1 + ∂CF /∂B)

{
(1− θ)f(¯̄ω)pII

d ¯̄ω(B,CF )

dB

}
︸ ︷︷ ︸

<0

The assumption that ∂2CF /∂B2 < 0 thus acts to compound the effect of a reduction in total benefit
income on a categorical recipient’s smvi.
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inatory power. This arises because able individuals of high productivity (i.e. ω > ¯̄ω)

choose not to apply for C. Next, the second line within curly braces is likely to be

positive for a small categorical benefit where ¯̄ω ∼ ω̄(β)⇒ F (ω̄) ∼ F (¯̄ω). This line cap-

tures the fact that Type II errors actually redistribute within the able subpopulation

because only those with ω ≤ ¯̄ω will apply for the benefit. Indeed, the closer F (ω̄)/F (¯̄ω)

to unity the larger this effect is and this arises precisely because able individuals with

ω < ω̄ are formally equivalent to unable individuals from the perspective of smvi.

In terms of benefit design then, the principal difference between the No Enforcement

and Full Enforcement regimes is that under the latter a targeted system (pure or

partial) is chosen in all cases, whereas under the former a targeted system (pure or

partial) is only chosen if the test administering C has some discriminatory power.

From the first order conditions characterising the optimal benefit levels (see Appendix)

we can establish the following result.

Proposition 3b: Let inequality in the average smvi between the unable and able sub-

populations be written as:

δF = [pIux(B, 1) + (1− pI)ux(B + C, 1)]︸ ︷︷ ︸
Average smvi (unable)

−
{∫ ∞

0

vM(ω,B)f(ω)dω + pII

∫ ¯̄ω

0

[ux(B + C, 1)− vM(ω,B)] f(ω)dω

}
︸ ︷︷ ︸

Average smvi (able)

(2.43)

Then for pI > 0 and/or pII > 0 it will hold that δF > 0 at the optimum because:

1

F (¯̄ω)

∫ ¯̄ω

0

vM(ω, B̂F )f(ω)dω > ux(B̂
F+ĈF , 1) ≥ λ̂F >

1

1− F (¯̄ω)

∫ ∞
¯̄ω

vM(ω, B̂F )f(ω)dω

(2.44)

where ux(B̂
F + ĈF , 1) = λ̂F only if pII = 0.

Proof: See Appendix

Proposition 3b states that classification errors of either type prevent the elimination

of between-group inequality in the average smvi, even if the benefit budget would be

sufficiently large to eliminate the inequality under Perfect Discrimination.

We now turn to discuss how classification errors affect maximum social welfare, as
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defined by the value function V F (β, θ, pI , pII) ≡ W F (B̂F , ĈF ; θ, pI , pII). From (2.44)

we can write the following result.

Proposition 3c: Maximum social welfare is decreasing in the propensity to make

Type I classification errors, but can be increasing in the propensity to make Type II

classification errors. Formally:

∂V F

∂pI
< 0 ,

∂V F

∂pII

{
≤
>

}
0 (2.45)

where: (i)

∂V F

∂pII
= (1− θ)F (¯̄ω)·{[

u(B̂F + ĈF , 1)− u(B̂F , 1)− λ̂F ĈF
]

︸ ︷︷ ︸
Benefit to individual of receiving C

conditional on facing zero labour

constraint (net of exchequer cost)

−
∫ ¯̄ω

ω̄(B)

[
v(ω, B̂F )− u(B̂F , 1)

] f(ω)

F (¯̄ω)
dω︸ ︷︷ ︸

Cost of facing zero labour constraint

conditional on receiving B

}

and (ii) a sufficient condition for welfare to be increasing in Type II errors is that:

F (ω̄(B))

θ(1− pI)
(1− θ)pII

+ F (¯̄ω)

·
¯̄ωf(¯̄ω)

F (¯̄ω)︸ ︷︷ ︸
elasticity of F w.r.t. ω,

evaluated at ¯̄ω

· ĈF ¯̄ωC
¯̄ω︸ ︷︷ ︸

elasticity of ¯̄ω w.r.t. C
evaluated at ĈF

−
[
1− F (ω̄(B))

F (¯̄ω)

]
> 0

(2.46)

Proof: See Appendix

We can make a number of observations from (2.46). First, the closer F (ω̄(B))/F (¯̄ω)

is to unity the more likely that ∂V F/∂pII > 0. This arises precisely because the

categorical benefit is being ‘leaked’ predominantly to able applicants who have the

same smvi as unable applicants. Second, the higher pI and/or pII the larger the

first term in (2.46) and thus the more likely that ∂V F/∂pII > 0. We will see from

the numerical examples which follow that an increase in the propensity to make either

error type is likely to lower the categorical benefit, which in turn will increase ω̄ relative

to ¯̄ω. Finally, the smaller θ is - and thus the fewer unable individuals in society - the



CHAPTER 2. OPTIMAL BENEFITS WITH IMPERFECT ENFORCEMENT 105

more likely that ∂V F/∂pII > 0.

2.3.4 Welfare Comparison: No Enforcement vs. Full Enforce-

ment

Given our analysis of optimal welfare provision under the alternative enforcement

regimes of No Enforcement and Full Enforcement, it is natural to ask under which

regime is social welfare highest? Clearly, if pII = 0 then there are zero enforcement

issues and welfare under both regimes will coincide. Contrastingly, if pI + pII = 1 then

it must hold that V F > V N = WU because the pure universal outcome is not chosen

under the Full Enforcement regime. We are therefore concerned with the intermediate

cases where 0 < pI + pII < 1 and pII > 0.

Suppose that we fix B at any budget feasible value B̄ ∈ (0, β). From (2.19) and (2.33)

the resulting categorical benefit sizes under the alternative enforcement regimes are

then CN and CF , respectively. For a finite benefit budget it must hold that F (¯̄ω) < 1

and so CN < CF .

For a given B̄ there will be a critical productivity at which the welfare of a categorical

recipient under No Enforcement equates with the welfare of a categorical recipient

under Full Enforcement. Formally, let ω̄NF satisfy u(B̄+CF , 1) ≡ v
(
ω̄NF , B̄ + CN

)
.33

This critical net wage is illustrated graphically in Figure 2.3. A comparison of the two

welfare regimes (B̄, CN) and (B̄, CF ) thus yields:

33Note that ∀ ω < ω̄(B̄ + CN ) we have v(ω, B̄ + CN ) = u(B̄ + CN , 1) < u(B̄ + CF , 1). There will
therefore be a critical productivity ω̄NF as asserted in the main text.
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Figure 2.3: Welfare comparison and the critical productivity ω̄NF .

ω

u

u(B̄, 1)

u(B̄ + CN , 1)

u(B̄ + CF , 1)
v(ω, B̄)
v(ω, B̄ + CN )

ω̄(B̄) ω̄(B̄ + CN ) ω̄NF ¯̄ω

Notes: From the relationship v(ω, B̄ + CN ) = u(B̄ + CF , 1) = v(¯̄ω, B̄) it must hold that ω̄NF < ¯̄ω

W F (B̄, CF ; θ, pI , pII)−WN(B̄, CN ; θ, pI , pII)

= θ(1− pI)[u(B̄ + CF , 1)− u(B̄ + CN , 1)︸ ︷︷ ︸
>0

]

+ (1− θ)pII



∫ ω̄NF
0

[
u(B̄ + CF , 1)− v(ω, B̄ + CN)

]︸ ︷︷ ︸
>0

f(ω)dω

+
∫ ¯̄ω

ω̄NF

[
u(B̄ + CF , 1)− v(ω, B̄ + CN)

]︸ ︷︷ ︸
<0

f(ω)dω

+
∫∞

¯̄ω

[
v(ω, B̄)− v(ω, B̄ + CN)

]︸ ︷︷ ︸
<0

f(ω)dω



(2.47)

34The first line concerns the unable subpopulation and is unambiguously positive. Un-

34It is important to stress that we are not comparing the value functions for No Enforcement and Full
Enforcement here. However, we can always (and will below) set B̄ = B̂N and compare an arbitrary
Full Enforcement system with the optimum No Enforcement system (or vice versa). If there are
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able individuals are on aggregate better of under Full Enforcement than No Enforce-

ment because (i) those awarded the categorical benefit receive CF > CN ; whilst (ii)

those not awarded the categorical benefit receive the same as they would under No

Enforcement (i.e. B̄) and are thus no worse off. The second line concerns the able

subpopulation: as can be seen from the terms within curly braces there are three

considerations. First, categorical recipients with ω ≤ ω̄NF are by definition better off

under Full Enforcement than under No Enforcement. Within this range of wages notice

that recipients with ω̄(B̄ + CF ) < ω ≤ ¯̄ω would like to work under the Full Enforce-

ment regime, but they would not be willing to accept a reduction of (CF − CN) in

their benefit income in return for a full relaxation of the no-work requirement. Second,

however, categorical recipients with ω̄NF < ω ≤ ¯̄ω are worse off under Full Enforce-

ment than under No Enforcement. These individuals would be willing to accept the

lower categorical benefit size in return for a full relaxation of the no-work requirement.

Third, individuals with ω > ¯̄ω do not apply for the categorical benefit under Full En-

forcement because they are better off working and receiving only the universal benefit.

They are therefore worse off than their counterparts under No Enforcement who work

and receive the categorical benefit.

Suppose that we set B̄ = B̂N (and consequently CN = ĈN). In this case (2.47)

becomes a comparison of (i) welfare under an arbitrary Full Enforcement system where

B = B̂N and C > ĈN ; with (ii) maximum welfare under No Enforcement. An arbitrary

Full Enforcement system thus does better than an optimal No Enforcement system for

both the unable subpopulation and, within the able subpopulation, individuals of lower

productivity (i.e. ω ≤ ω̄NF ). If the welfare losses to those with higher productivities

(i.e. ω > ω̄NF ) do not offset the redistribute gains from awarding higher transfers to

the unable and those of lower productivity, it will certainly be the case that a Full

Enforcement scheme with optimally chosen welfare benefits can improve upon a No

Enforcement scheme.

We shall revisit this question in the numerical analysis which follows.

conditions where the former exceeds the latter then there will certainly be conditions where optimal
Full Enforcement welfare exceeds optimal No Enforcement welfare.
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2.4 Numerical Simulations

The purpose of this section is twofold: (i) to obtain insights into how the optimal

benefit levels change with the propensity to make classification errors of either type;

and (ii) to provide examples where welfare under the Full Enforcement regime can

indeed be increasing in the propensity to make Type II classification errors. To satisfy

both objectives, we turn to numerical methods.

In line with much of the optimal tax/benefit literature (Immonen et al., 1998; Mirrlees,

1971; Stern, 1982; Viard, 2001a,b), we take individual preferences to be of the constant

elasticity of substitution (CES) form:

u(x, l) =


[
αx

E−1
E + (1− α)l

E−1
E

] E
E−1

: E 6= 1

xαl1−α : E = 1
(2.48)

where E is elasticity of substitution between leisure and consumption. The properties

of this function are well documented in the literature (see Appendix for the derivation

of labour supply and indirect utility.).

The choice of productivity distribution is influenced by the sufficient condition in (2.46),

which is more likely to hold the closer F (ω̄)/F (¯̄ω) < 1 is to unity. This suggests that

a productivity distribution with a thick lower tail may give rise to conditions where

welfare can be increasing in the propensity to make Type II errors. There are a number

of candidates that satisfy this criterion; such as the Exponential Distribution or the

Pareto Distribution. The former does not require the imposition of a minimum pro-

ductivity and so we choose this. Individual productivities are therefore exponentially

distributed with density function:

f(n) = µe−µn (2.49)

and distribution function

F (n) = 1− e−µn (2.50)

where µ > 0 is a scale parameter and n = ω/(1− t) is individual productivity.
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We note at the outset that many of the results obtained in this section concerning

the effect of classification errors on optimal benefits continue to hold under alternative

distributional assumptions.35

In the simulations that follow the choices of parameter values are: µ = 3; E ∈
{0.5, 0.6, 0.7 0.8, 0.9, 0.99}; α = 0.6; θ ∈ {0.05, 0.1} ; t = 0.3; and β = 0.1. For

µ = 3 the average productivity (maximum earnings) in the economy is 1/3. Analogous

to Stern (1976), the parameter α = 0.6 is chosen such that the average productivity

individual works roughly two-thirds of their time endowment (unity) when E = 0.5.

The choices of the unable subpopulation size (θ) seems sensible in light of real-world

statistics. For example, Mcinnes (2012, p.4) reports that 6.7% of those in the United

Kingdom aged 16-64 (i.e. working age) claimed Incapacity Benefit/ Earnings and Sup-

port Allowance (ESA) in 2011. Note that higher values of θ would also be permissible36:

Atkinson (1995, Ch.2) - who refers to those who are unable to work as the ‘sick and

retired’ - considers θ = 0.15 (and higher). Finally, the chosen budget size of β = 0.1

corresponds to 30% of maximum earnings. This value is slightly larger than tax rev-

enue at t = 0.3 (when able individuals receive no unearned income), but the results do

not qualitatively change at lower budget sizes. Indeed, examples at the lower budget

size β = 0.05 are available from the author upon request.

2.4.1 Baseline Case: Perfect Discrimination Simulations

To provide baseline numerical results, Figures 2.4 and 2.5 display the Perfect Discrim-

ination optima for the cases where E = 0.5 and E = 0.99, respectively. Both figures

contain four subplots. The subplots on the left side are drawn for θ = 0.05, whilst the

subplots on the right side are drawn for θ = 0.10. Each subplot has the budget size β

on the horizontal axis. Subplots (a) and (b) illustrate how the average smvi of the two

subpopulations change with β, where for each value of β the optimal benefit levels are

chosen. Subplots (c) and (d) illustrate how the optimal benefit levels change with β.

35Simulation results under the frequently employed assumption that productivity is lognormally
distributed are available from the author upon request.

36To put these values further in context, the UK population size was estimated at 63.2 million in
2011/12, with 66 percent (42.1 million) of working age. Of these, approximately 13 percent (5.7 mil-
lion) were estimated to be disabled, where the disability definition adopted includes, non-exhaustively,
those with a long term illness or substantial difficulties engaging in daily activities (see ONS, 2012;
ODI, 2014).
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Figure 2.4: Perfect discrimination optima and average smvi (E = 0.5)
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Notes. This figure captures how the average smvi of the unable and able subpopulations changes with
the budget size when the benefits are optimally chosen. The subplots on the left side are drawn for
an unable subpopulation size of θ = 0.05; whilst the subplots on the right side are drawn for θ = 0.10.
β̄ is the critical budget level satisfying ux

(
β̄/θ, 1

)
≡
∫
vM (ω, 0)f(ω)dω. Whenever β < β̄ we have

B̂P = 0 whilst ĈP > 0 increases with β. At β = β̄ - and thus ĈP = β̄/θ - categorical spending
eliminates inequality in the average smvi between the unable and able subpopulations. For β > β̄ we
have B̂P > 0 and ĈP > 0, such that a combination of the universal and categorical transfers are used
to keep the average smvi of the two subpopulations equal.
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Figure 2.5: Perfect discrimination optima and the average smvi (E = 0.99)
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Notes. A comparison with Figure 2.4 illustrates that β̄ is lower when E = 0.99 than when E = 0.5.
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Figure 2.6: Variation of β̄ with E .
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Notes: On the horizontal axis is the elasticity of substitution between leisure and consumption (E),
whilst on the vertical axis is the budget size (β̄) required to eliminate inequality in the average smvi
between the unable and able subpopulations, when spent entirely on categorical transfers.

The vertical line labelled β̄ corresponds to β̄P in (2.15). It is thus the critical budget

size at which there are just enough resources to eliminate inequality in the average

smvi between the unable and able subpopulations through categorical transfers.

Both figures illustrate that whenever β < β̄ the smvi of the unable exceeds the av-

erage smvi of the able at the optimum. In this case the optimal universal benefit is

zero and the optimal categorical benefit is increasing in the budget size. Increasing

categorical transfers lower the smvi of the unable towards the average smvi of the able.

Consequently, the smvi of the unable is falling with the budget size. At β = β̄ the

average smvi of the two subpopulations is equated. For β > β̄ it is optimal to provide a

universal benefit, where both the universal and categorical benefits are chosen to keep

the average smvi of the two subpopulations equated.

Comparing the left and right columns within both figures illustrates, unsurprisingly,

that an increase in the unable subpopulation size increases the critical budget β̄. This is

easily verified: differentiating the identity ux(β̄/θ, 1) ≡
∫
vM(ω, 0)f(ω)dω with respect
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to θ gives ∂β̄/∂θ = β̄/θ > 0. Comparing Figure 2.4 with Figure 2.5 illustrates that an

increase in the elasticity of substitution between leisure and consumption increases the

universal benefit and lowers the categorical transfer. This arises because an increase in

E lowers inequality in the average smvi between the two subpopulations. This can be

seen from the fact that, ceteris paribus, β̄ falls with E , as illustrated in Figure 2.6.

2.4.2 No Enforcement Simulations

Figures 2.7 to 2.12 display how the No Enforcement optimum benefit levels and maxi-

mum social welfare change with the propensity to make both Type I and Type II errors.

Each figure is drawn for a different E ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. Within each figure

there are six subplots. The subplots on the left side (a,c, and e) are drawn for θ = 0.05;

whilst those on the right side (b,d and f) are drawn for θ = 0.10. Subplots (a) and (b)

display the optimal universal benefit; subplots (c) and (d) display the optimal categor-

ical benefit; whist subplots (e) and (f) display maximum welfare under these choices as

a proportion of welfare under the Perfect Discrimination optimum (this ensures values

are between 0 and 1). On the horizontal axis in each subplot is the propensity to make

Type II errors; varied in between 0 and 1. The different curves within a given subplot

are drawn for different Type I error propensities, where pI ∈ {0, 0.1, 0.2, 0.3, 0.4}. To

generate each subplot pII was increased from 0 to 1 in discrete intervals of 0.02 and at

each stage the optimal benefit levels were simulated.

The most immediate observation from each figure is that the simulation results are con-

sistent with the underlying theory in Proposition 2a. At the point of no discriminatory

power (i.e. pI +pII = 1) we observe that: (i) if pI > 0 then ĈN is set at zero whilst B̂N

is set at the per capita budget size β; but (ii) if pI = 0 any combination of C and B

that satisfy the budget constraint will be optimal. The intuition is clear: when Type

I errors are never made but Type II errors are always made the categorical transfer is

effectively administered as a universal transfer because it is received by all individuals

in society. It is useful to note, however, that setting pI at a very low value such as

0.0001 will guarantee that B̂N = β and ĈN = 0 at the point of no discriminatory

power.

Within each figure, subplots (a) to (d) illustrate that a ceteris paribus increase in pI

increases B̂N and tends to decrease ĈN . The observation that B̂N increases with pI
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Figure 2.7: No Enforcement Optima for E = 0.5
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(d) ĈN (θ = 0.10)

pI = 0.3

0.0 0.2 0.4 0.6 0.8 1.0
pII

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

V
N
/V

P

WU/V P

(e) V N/V P (θ = 0.05)

pI = 0.4

0.0 0.2 0.4 0.6 0.8 1.0
pII

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

V
N
/V

P

WU/V P

(f) V N/V P (θ = 0.10)

Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.8: No Enforcement Optima for E = 0.6
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(d) ĈN (θ = 0.10)

pI = 0.3

0.0 0.2 0.4 0.6 0.8 1.0
pII

0.970

0.975

0.980

0.985

0.990

0.995

1.000

V
N
/V

P

WU/V P

(e) V N/V P (θ = 0.05)

pI = 0.4

0.0 0.2 0.4 0.6 0.8 1.0
pII

0.970

0.975

0.980

0.985

0.990

0.995

1.000

V
N
/V

P

WU/V P

(f) V N/V P (θ = 0.10)

pI = 0.4

Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.9: No Enforcement Optima for E = 0.7
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.10: No Enforcement Optima for E = 0.8
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.11: No Enforcement Optima for E = 0.9
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.12: No Enforcement Optima for E = 0.99
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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is thus consistent with the theoretical result of ∂B̂N/∂pI > 0 in Proposition 2d. The

intuition is as described in that section.

Next, the effect of Type II errors on the optimal benefit levels is somewhat more

complicated. In particular, each figure illustrates that B̂N is non-monotonic in pII

whenever pI > 0. B̂N tends to initially fall with pII when pII is low and discriminatory

power is reasonably high; but then rises with pII at higher values of pII and thus lower

levels of discriminatory power. As discriminatory power approaches zero B̂N converges

to the per capita budget size β. Overall, ĈN tends to fall with pII ; but falls less steeply

in the region where B̂N is falling.

To provide the intuition for how B̂N and ĈN change with pII we return to the optimality

condition in (2.22). Recall this states that at the optimum the average smvi of non-

categorical recipients (i.e. σ̄NNR) should equate with the average smvi of categorical

recipients (i.e. σ̄NR ). Consider the effect of an increase in pII on both σ̄NNR and σ̄NR ,

when evaluated at (B,C) = (B̂N , CN):37

dσ̄NNR(B̂N , CN ; θ, pI , pII)

dpII
=
∂σ̄NNR
∂pII︸ ︷︷ ︸
>0

+
∂σ̄NNR
∂B︸ ︷︷ ︸
<0

·∂B̂
N

∂pII
(2.51)

dσ̄NR (B̂N , CN ; θ, pI , pII)

dpII
=
∂σ̄NR
∂pII︸︷︷︸
<0

+
∂σ̄NR
∂B︸︷︷︸
<0

·


∂B̂N

∂pII

[
1 +

∂CN

∂B

]
︸ ︷︷ ︸

<0

+
∂CN

∂pII︸ ︷︷ ︸
<0

 (2.52)

At an interior optimum it must hold that dσ̄NNR/dpII = dσ̄NR /dpII . We can therefore

establish that:

∂B̂N

∂pII
=

∂σ̄NNR
∂pII

−
[
∂σ̄NR
∂pII

+
∂σ̄NR
∂B
· ∂C

N

∂pII

]
∂σ̄NR
∂B

[
1 +

∂CN

∂B

]
− ∂σ̄NNR

∂B

(2.53)

The denominator is unambiguously positive and so the the sign of ∂B̂N/∂pII will

37Recall that, as defined in (2.19), CN is the level of categorical benefit that exhausts the benefit
budget for any B ∈ [0, β].
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depend on the relative sizes of the terms in the numerator. In this regard it is useful

to note that ∂2σ̄NNR/∂p
2
II > 0 but both ∂2σ̄NR /∂p

2
II < 0 and ∂2CN/∂p2

II < 0. This helps

explain why we observe that ∂B̂N/∂pII < 0 when pII is low, but ∂B̂N/∂pII > 0 at

higher values of pII .

To complete this part of the discussion, each figure illustrates that the extent to which

B̂N falls with pII (when pII is low) is decreasing in the size of pI . The intuition for

this observation follows directly from the theoretical result that ∂B̂N/∂pI > 0.

Notice that in both Figure 2.7 (E = 0.5) and Figure 2.8 (E = 0.6) there are cases where

B̂N = 0 despite the fact that pI > 0. This implies that at the corner solution B = 0

the average smvi of categorical recipients must (weakly) exceed that of non-recipients.

At higher values of E (i.e. Figures 2.9-2.12) this does not arise and B̂N > 0 whenever

pI > 0. Recall that in the theory there are no corner solutions when pI > 0 due to

the assumption that limx→0 ux = +∞. To shed some light as to why corner solutions

can occur under CES preferences it is useful to note that we can write the smvi of an

unable individual/non-worker as:

ux = αM− 1
E

[
αM

E−1
E + (1− α)

] 1
E−1

= α
{
M

1−E
E

[
αM

E−1
E + (1− α)

]} 1
E−1

= α
[
α + (1− α)M

1−E
E

] 1
E−1

and thus:

lim
x→0

ux = α
E
E−1 (2.54)

which is finite and increasing in E . In particular, this limiting case takes the values:

1.67 when E = 0.5; 2.15 when E = 0.6; 3.29 when E = 0.7; 7.72 when E = 0.8; 99.23

when E = 0.9 and 9.18 × 1021 when E = 0.99. It is the lower values when E = 0.5

and E = 0.6 that result in their being corner solutions when B̂N = 0 despite pI > 0.

Consider, for example, subplot (a) in Figure 2.7. We can see that B̂N is zero - or

very close to identically zero - when pI = 0.1 and pII = 0.4. As stated, this can

only arise if the average smvi of categorical recipients weakly exceeds that of non-
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recipients under a purely targeted system. This can be easily verified: setting B = 0,

C = β/[θ(1− pI) + (1− θ)pII ] and choosing parameters pI = 0.1, pII = 0.4, β = 0.1 ,

θ = 0.05 and µ = 3 gives:

σ̄NNR = 0.96989 < σ̄NR = 0.97663

which explains why B̂N = 0 at the optimum despite pI > 0.

The effects of changes in the values of the parameters E and θ are analogous to the

Perfect Discrimination simulations. First, a comparison across Figures 2.7 to 2.12

illustrates that an increase in E tends to increase the universal benefit and lower the

categorical benefit. Conversely, within each figure it can be seen that a ceteris paribus

increase in θ from 0.05 to 0.10 serves to increase the resources devoted to the categorical

transfer and, consequently, lower the resources dedicated to the universal transfer.

Unsurprisingly, an increase in the unable subpopulation size raises the importance

of categorical transfers due to the greater need for redistribution between the two

subpopulations.

Subplots (e) and (f) of each figure plot maximum social welfare under No Enforcement

as a proportion of that under Perfect Discrimination. This has the attractive property

that the scale on the vertical axis is between 0 and 1, with 1 capturing the Perfect

Discrimination outcome. Each figure illustrates that social welfare under the optimal

choices B̂N and ĈN is unambiguously decreasing in the propensity to make Type I

and/or Type II classification errors. The results are thus consistent with the theory in

Proposition 2c. The horizontal line in both subplots is labelled WU/V P and therefore

captures the Pure Universal level of welfare as a fraction of the Perfect Discrimination

welfare level. The purpose of including this line in the subplots is to illustrate that

whenever pI + pII = 1 (including the case where pI = 0) a Pure Universal system is

chosen and, consequently, V N = WU .

Finally, Figures 2.13 to 2.15 illustrate how the average smvi of categorical recipients

and non-recipients change with pII for various values of pI . Figure 2.13 is drawn for

E = 0.8, Figure 2.14 is drawn for E = 0.9 and Figure 2.15 is drawn for E = 0.99. Within

each figure, the subplots on the left column are drawn for θ = 0.05, whilst those on the

right column are drawn for θ = 0.10. Each figure clearly illustrates that for all cases

where pI + pII < 1 (i.e. some discriminatory power) the average smvi of categorical
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Figure 2.13: σ̄NNR and σ̄NR evaluated at the Optimum. (E = 0.8, β = 0.1)
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Notes. The purpose of this figure is to illustrate that the numerical results satisfy the optimality
condition in Proposition 2a. On the horizontal axis in each subplot pII is varied between 0 and 1
in discrete increments of 0.1. For each value of pII (and other parameters) the optimal benefits are
calculated and substituted into the functions σ̄NNR and σ̄NR . In all cases where pI + pII < 1 we observe
σ̄NNR = σ̄NR , thus satisfying the optimality condition in Proposition 2a.
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Figure 2.14: σ̄NNR and σ̄NR evaluated at the Optimum. (E = 0.9, β = 0.1)
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(h) pI = 0.3 (θ = 0.1)
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Figure 2.15: σ̄NNR and σ̄NR evaluated at the Optimum. (E = 0.99, β = 0.1)
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recipients and non-recipients are equated, thus satisfying the optimality condition in

Proposition 2a. These figures therefore provide a useful validation of the optimal

benefits simulated in Figures 2.10 - 2.12 and this is the reason for including them. Of

course, when pI + pII = 1 only a universal benefit is provided and, consequently, the

average smvi of ‘recipients’ and ‘non-recipients’ departs.

This completes our discussion of the No Enforcement simulation results. We now

proceed to discuss the case of Full Enforcement.

2.4.3 Full Enforcement Simulations

Under No Enforcement the constraint set is unambiguously convex and the objec-

tive function is unambiguously concave. This rendered the search for an optimum

in the numerical analysis relatively straightforward given the single stationary point

corresponding to a global (interior) optimum. Turning to the Full Enforcement case,

however, we know from Section 2.3.3 that - without specific assumptions on both the

productivity distribution and third derivatives of individual preferences - we cannot

guarantee either the convexity of the constraint set or the concavity of the objective

function.

To proceed with the Full Enforcement numerical analysis we must therefore exercise a

little caution and first examine both the convexity of the constraint set and how the

welfare function changes with the choice variables. It is below demonstrated that the

constraint set is indeed convex in all considered cases. However, social welfare is not

always concave in the choice variables. Whilst this is not a problem in itself provided

a sufficient number of starting points are employed in the search for a global optima,

there are a small number of cases in which multiple optima emerge. These cases are

restricted to lower values of E and are detailed below.

Convexity of the constraint set For the constraint set to be convex it must hold

that ∂2CF/∂B2 ≤ 0 ∀B ∈ [0, β], where CF is as defined in (2.33). Figure 2.16 plots

how the function ∂CF/∂B < 0 changes with B ∈ [0, β] for both E = 0.5 and E = 0.99.

The figure is composed of eight subplots, where each successive subplot has a higher
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Figure 2.16: The Function ∂CF/∂B over B ∈ [0, β].
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Notes: CF is the level of the categorical benefit that exhausts the budget constraint for any given
level of B ∈ [0, β]. ∂CF /∂B < 0 therefore captures how CF changes with B. For the budget
constraint to be convex we require that CF either decreases linearly (such that ∂CF /∂B < 0 is
constant and ∂2CF /∂B2 = 0) or CF decreases more rapidly as B increases (such that ∂CF /∂B < 0
is decreasing and ∂2CF /∂B2 < 0). In subplot (a) ∂CF /∂B is a negative constant because pII = 0
and, consequently, the budget constraint is linear. In the remaining subplots ∂CF /∂B < 0 becomes
more negative with B and thus ∂2CF /∂B2 < 0.
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value of pII . In all cases pI = 0 and θ = 0.138. Each subplot in which pII > 0 clearly

illustrates that ∂CF/∂B is negative and falling with B, from which we can directly

infer that ∂2CF/∂B2 < 0. Notice that in all cases ∂CF/∂B < −1 such that an increase

in B unambiguously lowers the total benefit income of categorical recipients.

The objective function Figure 2.17 plots how the welfare functionW F (B,CF ; θ, pI , pII)

changes with B. The figure is generated as follows: for a given value of B ∈ [0, β] we

calculate the resulting level of C that satisfies the budget constraint (i.e. CF ) and

substitute both benefit levels into the Full Enforcement welfare function. The subplots

on the first row are generated for E = 0.5, those on the second row are generated for

E = 0.7, whilst those on the third row are generated for E = 0.99. The subplots on

the left column are drawn for pI = 0, whilst those on the right column are drawn for

pI = 0.2. Finally, the different curves within each subplot are drawn for different values

of pII . Subplots (a) and (b) clearly illustrate that there is a critical value of pII at which

there are two global optima. In subplot (a) this critical value is given by pII ≈ 0.213.

The first of these optima is a purely targeted system (corner solution), whilst the sec-

ond is a partial system providing a small categorical benefit. In subplot (b) the critical

value is pII ≈ 0.154 and both equilibria are partial systems. For values of pII at or

just above these two critical values welfare provision will therefore shift between the

two equilibria. In the simulation results which follow we will thus observe a ‘jump’ in

the benefit levels around these critical values of pII . Importantly, this behaviour of

the objective function is not observed at higher values of E - as illustrated through

subplots (c) to (f) - and there are thus no further problems of multiple equilibria.

The intuition for the multiple equilibria observed in subplots (a) and (b) of Figure 2.17

follows from our discussion in Section 2.3.3 concerning how the functions σFNR and σFR ·
−(1 + ∂CF/∂B) change with the universal benefit, when evaluated at (B,CF ). Recall

from (2.40) and (2.41) that in both cases an increase in B generates two conflicting

effects. In terms of σFNR an increase in B (i) lowers the smvi of each individual;

but also (ii) increases the number of non-categorical recipients through reducing the

number that apply for the categorical benefit. In terms of σFR · −(1 + ∂CF/∂B) an

increase in B (i) increases a categorical recipient’s smvi because their total benefit

income falls; but also (ii) reduces the number of categorical recipients. Notice that the

38Extensive examples with variation in both θ and pI are available from the author upon request
but are omitted to save on space.
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Figure 2.17: Full Enforcement Objective Function
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(b) E = 0.5 (pI = 0.2)
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(d) E = 0.7 (pI = 0.2)
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(e) E = 0.99 (pI = 0)
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(f) E = 0.99 (pI = 0.2)

Notes: In each subplot θ = 0.1. Subplots (a) and (b) are drawn for E = 0.5. In subplot (a) the
parameter value pII ≈ 0.213 gives rise to two global optima. The first of these optima is a purely
targeted system (corner solution) whilst the second is a partial system with a small value of the
categorical benefit. In subplot (b) the parameter value pII ≈ 0.154 gives rises to two global optima.
Both optima are this time partial systems (i.e. interior solutions). Contrastingly, for the cases where
E = 0.7 (subplots (c) and (d)) and E = 0.99 (subplots (e) and (f)) no problems of multiple equilibria
arise at any value of pII .
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Figure 2.18: σFNR and σFR · −(1 + ∂CF/∂B) evaluated over (B,CF ). (E = 0.5)
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(f) pII = 0.154 (pI = 0.2)
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Notes: In each subplot E = 0.5 and θ = 0.1. The subplots in the left column are generated for pI = 0,
whilst those in the right column are generated for pI = 0.2. The parameter pII is increased as we
move down the columns. Note that in subplots (e) and (f) pII is set at the critical values established
in Figure 2.17. Intersections between the functions σFNR and σFR · −(1 + ∂CF /∂B) correspond to
stationary points on the welfare function.
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Figure 2.19: σFNR and σFR · −(1 + ∂CF/∂B) evaluated over (B,CF ). (E = 0.99)
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(f) pII = 0.2 (pI = 0.2)

0.00 0.02 0.04 0.06 0.08 0.10

B

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

sm
vi

(g) pII = 0.3 (pI = 0)

0.00 0.02 0.04 0.06 0.08 0.10

B

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

sm
vi

(h) pII = 0.3 (pI = 0.2)

Notes: In each subplot E = 0.99 and θ = 0.1. The structure of the figure is as in Figure 2.17.
In all cases σFR · −(1 + ∂CF /∂B) monotonically increases with B and there is unique intersection -
corresponding to a stationary point on the welfare function - between σFNR and σFR · −(1 + ∂CF /∂B).
The value of B (and resulting value of C) at each unique intersection gives rise to a global maximum
of the welfare function.
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first effect is compounded by the fact that ∂2CF/∂B2 < 0. These conflicting effects can

given rise to non-monotonicity in either function. This non-monotonicity can lead to

multiple stationary points and, in the special cases illustrated in Figure 2.17, multiple

optima.

To illustrate this, Figure 2.18 plots how both σFNR and σFR · −(1 + ∂CF/∂B) change

with the benefit levels. The purpose of this figure is to explain subplots (a) and (b) in

Figure 2.17 and so the parameter values are chosen accordingly (i.e. E = 0.5, θ = 0.1).

The subplots on the left column are generated for pI = 0, whilst those on the right

column are generated for pI = 0.2. The value of pII is increased as we move down

the columns. In the special case where pII = 0 the effect of an increase in B on the

number of individuals who apply for the categorical benefit necessarily disappears and

so σFR ·−(1+∂CF/∂B) unambiguously increases with B; whilst σFNR unambiguously falls

with B, thus resulting in a unique intersection between the two functions. However,

as pII is increased from zero the two conflicting effects associated with an increase in

B result in a point of inflexion in σFR · −(1 + ∂CF/∂B). This in turn can result in

multiple values of B for which σFNR = σFR · −(1 + ∂CF/∂B). Indeed, in subplots (e)

and (f) the parameter pII is set at the critical values illustrated in subplots (a) and

(b) of Figure 2.17, respectively. In subplot (e) there are two intersections between

the the two functions: the benefit levels at the first of these corresponds to a global

minima, whilst those at the second correspond to maxima that generate the same

welfare level as the corner solution where B = 0. Contrastingly, in subplot (f) we

observe three intersections: the benefit levels at the first and third are both interior

optima, whilst those at the second correspond to minima. Finally, as pII is increased

further (subplots (g) and (h)) the effect of an increase in B on the number of benefit

applicants (i.e. reduced applications) initially dominates the increase in the smvi of

categorical recipients, thus causing σFR · −(1 + ∂CF/∂B) to initially fall. In these cases

there is a unique value of B at which σFNR = σFR · −(1 + ∂CF/∂B).

That we do not observe multiple optima at higher values of E would seem to stem from

the fact that ¯̄ω is increasing in E when M < 1 (see Figure 2.20). If we re-examine

equation (2.41) we can note that higher values of ¯̄ω (i) increase χ and thus place more

weight on the effect of a reduction in total benefit income on the smvi of categorical

recipients; but also (ii) will imply a lower value of f(¯̄ω) under the Exponential distri-

bution, thus lessening the effect of a reduction in the number categorical recipients.

Further, at higher values of E the number of applicants for the categorical benefit tends
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Figure 2.20: ¯̄ω and E .

l0

x

x(l)|E0

B + C

x(l)|E1

B

B + ¯̄ω|E1
B + ¯̄ω|E0

Notes: The figure provides graphical intuition for how ¯̄ω changes with E , where E0 < E1 denote
different levels of the elasticity of substitution. Notice that the indifference curve x(l)|E0 is shallower

than x(l)|E1 at high values of l. This arises because the reservation wage, ω̄ = ( 1−α
α )M

1
E , is increasing

in E when M < 1.

to be less responsive to changes in the level of B (and in turn the total benefit income of

categorical recipients). The implication of both of these observations is that, at higher

values of E , the effect of a reduction in the total benefit income of categorical recipients

and their corresponding increase in smvi will tend to dominate the effect of a reduc-

tion in the number of applicants, thus causing σFR · −(1 + ∂CF/∂B) to monotonically

increase with B (see Figure 2.19).

Discussion of the numerical results We now proceed to discuss the numerical

results. Figures 2.21 to 2.26 illustrate how the Full Enforcement optimal benefit lev-

els and resulting maximum welfare change with the propensity to make classification

errors. Each figure is generated for a different E ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. The

format of these figures parallels Figures 2.7 to 2.12 from the No Enforcement analysis.

The subplots in the left column of each figure are generated for θ = 0.05, whilst those in

the right column are generated for θ = 0.10. The parameter pII is increased in discrete

increments of 0.02 from 0 to 1 on the horizontal axis. The different curves within each
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Figure 2.21: Full Enforcement Optima for E = 0.5
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Notes. The vertical lines in subplots (a) to (d) capture discontinuities in the optimal benefit functions.
Note that the results in subplots (b) and (d) are consistent with the discussion surrounding Figure
2.17: i.e. we observe discontinuities at the parameters (pI , pII) = (0, 0.213) and (pI , pII) = (0.2, 0.154),
respectively. The horizontal line WU/WP in subplots (e) and (f) gives the Pure Universal welfare
level as a fraction of the Perfect Discrimination welfare.
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Figure 2.22: Full Enforcement Optima for E = 0.6
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.23: Full Enforcement Optima for E = 0.7
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Notes. WU/V P is the horizontal line in panels (e) and (f).



CHAPTER 2. OPTIMAL BENEFITS WITH IMPERFECT ENFORCEMENT 137

Figure 2.24: Full Enforcement Optima for E = 0.8
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.25: Full Enforcement Optima for E = 0.9
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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Figure 2.26: Full Enforcement Optima for E = 0.99
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(c) ĈF (θ = 0.05)

pI = 0.4

0.0 0.2 0.4 0.6 0.8 1.0
pII

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ĉ
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Notes. WU/V P is the horizontal line in panels (e) and (f).
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subplot are generated for a different value of pI ∈ {0, 0.2, 0.4}.39 The subplots on the

first row of each figure illustrate how the optimal universal benefit changes with pII .

Those on the second row illustrate how the optimal categorical benefit changes with

pII . Finally, those on the third row illustrate how optimal welfare as a fraction of the

Perfect Discrimination welfare level changes with pII .

Given our pre-emptive discussion of the multiple equilibria that arise when E = 0.5,

we will primarily focus the present discussion on Figures 2.22 to 2.26 (i.e. E = 0.6 to

E = 0.99). In these figures the optimal benefit functions are smooth and continuous.

With respect to Figure 2.21 (E = 0.5), it is comforting to note that the optimal

benefit functions exhibit discontinuities are the critical parameters (pI , pII) established

in Figure 2.17. This is discussed further in the caption immediately immediately below

the figure.

The first point to make is that the simulation results are consistent with the theory

in Proposition 3a. That is, the optimal categorical benefit is positive for all levels of

discriminatory power; including the case of no discriminatory power (i.e. pI + pII =

1).

Subplots (a)-(d) in each figure illustrate that an increase in pI serves to increase B̂F and

lower ĈF . The intuition remains the same as before: because some unable individuals

are incorrectly rejected the categorical benefit more resources are devoted towards the

unconditional transfer to prevent the consumption of these individuals becoming too

low (and consequently their smvi becoming too large).

The effect of an increase in pII on the optimal benefit levels is more complicated.

Figures 2.21 to 2.26 illustrate that B̂F is non-monotonic in pII , whilst ĈF tends to fall

with pII throughout much of the interval pII ∈ (0, 1].40 In more detail, B̂F tends to (i)

fall with pII when pII is small; (ii) rise with pII as pII is increased further; and may

also (iii) fall with pII at higher values of pII . The initial fall in B̂F limits the extent to

which ĈF falls with pII at low values of pII . The intuition would seem to be that when

pII is small few able individuals receive the categorical benefit and so a reduction in the

universal benefit can be used to keep the categorical support near the level when pII =

0. The extent of the initial fall in B̂F will depend negatively on the size of pI ; and thus

39To ensure that the differences between each curve are visible we have restricted pI to these values
(i.e. we have omitted pI = 0.1 and pI = 0.2).

40At higher values of pII the optimal categorical benefit may rise.
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on the number of unable individuals who are incorrectly denied the categorical benefit

and rely on the universal benefit for consumption. The increase in B̂F as pII increases

further is accompanied by a necessary large decrease in ĈF . Here, the intuition would

seem to be that it is optimal to lower the categorical benefit so as to restrict the number

of able individuals who apply down to those of lower productivities.41 Indeed, Table

2.1 illustrates that for each E ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}; F (¯̄ω) falls with both pI

and pII .

We now turn to discuss the effect of Type I and Type II classification errors on maxi-

mum welfare. In line with Proposition 3c subplots (e) and (f) in each figure illustrate

that an increase in pI lowers maximum welfare for all values of pII . The intuition

remains the same as under No Enforcement: Type I errors introduce horizontal in-

equity into the unble subpopulation and consequently raise their average smvi. Unlike

the No Enforcement regime, however, the simulations illustrate that an increase in pII

may not be welfare decreasing. In particular, Figures 2.23 through to 2.26 illustrate

that welfare is increasing in pII for pII sufficiently high. The intuition rests on the

fact that ‘leakage’ of the categorical benefit into the able subpopulation still plays a

redistributive role because it is received only by lower productivity able individuals.

As pII increases the welfare gain to this portion of the able subpopulation may become

sufficiently large so as to offset any further welfare losses to the unable who are harmed

by receiving lower transfers than they would under Perfect Discrimination.

This effect of Type II errors on maximum welfare is more pronounced the larger is E
and the smaller is θ. The intuition for why welfare is more likely to be increasing in

pII at higher values of E can be seen from the sufficient condition in (2.46) and Table

2.1. Expression (2.46) implies higher values of F (ω̄)/F (¯̄ω) are more likely to give rise

to the result that welfare is increasing in pII ; precisely because higher values of this

ratio imply that able applicants for the categorical benefit are very similar to unable

applicants in terms of their smvi. Table 2.1, meanwhile, clearly illustrates that at the

optimum F (ω̄)/F (¯̄ω) is increasing E . This effect is predominantly driven by the fact

that the reservation productivity ω̄ is unambiguously increasing in E when M ∈ (0, 1)

(recall our discussion of Figure 2.20).

Comparing the subplots in the left and right columns of Figures 2.21 - 2.26 once

41Note that the effect of a reduction in the categorical benefit on the number of able individuals
who choose to apply for the categorical benefit was not available under the No Enforcement regime
because there all able individuals apply irrespective of the benefit size.
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more illustrates that an increase in θ tends to lower the universal benefit as more

resources are devoted to categorical transfers. Note that this does not imply that

the categorical benefit size necessarily increases, because targeted resources are spread

over more unable individuals. Next, comparing Figures 2.21 - 2.26 illustrates that

an increase in E serves to increase the universal transfer and lower the categorical

transfer.

Finally, Figures 2.27 to 2.29 provide useful confirmation that the simulated Full En-

forcement optima satisfy with equality the optimality condition in equation (2.39) of

Proposition 3a. Figure 2.27 is drawn for E = 0.8, Figure 2.28 is drawn for E = 0.9,

whilst Figure 2.29 is drawn for E = 0.99. Each figure plots how both σFNR and

σFR · −(1 + ∂CF/∂B) change with pII , when evaluated at the optimal benefit levels. In

all cases the two functions are equated.

2.4.4 Welfare Comparison Simulations

This section provides numerical examples of how maximum welfare under the No En-

forcement regime compares with that under the Full Enforcement regime. Figures 2.30

to 2.32 display maximum welfare under the two regimes as a fraction of the Perfect

Discrimination welfare level. Figure 2.30 is drawn for E = 0.8; Figure 2.31 is drawn for

E = 0.9; whilst Figure 2.32 is drawn for E = 0.99. On the horizontal axis in the each

subplot pII is varied from 0 to 1. The subplots on the left column are generated for

θ = 0.05, whilst those in the right column are generated for θ = 0.10. The parameter

pI is increased as we move down through the subplots.

At higher levels of discriminatory power we observe cases where maximum welfare

under No Enforcement exceeds that under Full Enforcement. In these cases the Full

Enforcement system provides a lower benefit income to categorical recipients so as to

reduce the number of able individuals who apply for the categorical benefit and, in turn,

the number of quantity constrained able individuals in the economy. The welfare losses

relative to No Enforcement for the unable are not offset by the redistributive welfare

gains within the able subpopulation and, consequently, welfare under Full Enforcement

is lower than under No Enforcement. Contrastingly, at lower levels of discriminatory

power we observe that the Full Enforcement system outperforms the No Enforcement

system in all cases. Note that in some of these cases the benefit income for categorical
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Figure 2.27: σFNR and σFR · −(1 + ∂CF/∂B) evaluated at the Optimum (E = 0.8)
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Notes. The purpose of this figure is to illustrate that the numerical results satisfy the optimality
condition in Proposition 3a. That is, in each subplot (i) the aggregate smvi of non-categorical recipients
is equated with (ii) the aggregate smvi of categorical recipients multiplied by the reduction in their
total benefit income associated with an increase in the universal benefit.
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Figure 2.28: σFNR and σFR · −(1 + ∂CF/∂B) evaluated at the Optimum (E = 0.9)
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Figure 2.29: σFNR and σFR · −(1 + ∂CF/∂B) evaluated at the Optimum (E = 0.99)
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Figure 2.30: Welfare Comparision E = 0.8, β = 0.1.
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Figure 2.31: Welfare Comparision E = 0.9, β = 0.1.
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Figure 2.32: Welfare Comparision E = 0.99, β = 0.1.
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recipients is still lower than under No Enforcement, but the redistributive gains within

the able subpopulation are sufficiently large.

2.5 Concluding Remarks

Real world targeted benefits typically feature what this chapter terms double condi-

tionality : ex-ante the award of a benefit is conditioned on an applicant meeting some

initial eligibility conditions, whilst ex-post a recipient must typically conform with cer-

tain behavioural requirements. For example, an ex-ante condition for being awarded a

disability benefit may be that an individual faces significant physical or mental diffi-

culties in working; whilst an ex-post condition may be that a recipient does not work

when receiving the disability benefit.

In large and complex welfare systems where ex-ante eligibility may be difficult to

ascertain, the test awarding benefits is likely to be susceptible to, in statistical parlance,

classification errors of both Type I (false rejection) and Type II (false award). The latter

error type gives rise to enforcement issues because benefits are awarded to individuals

for whom they are not intended, and thus individuals who may choose not to comply

with the ex-post requirements in place. Both the propensity of an awards test to make

classification errors and the effectiveness of the enforcement of ex-post requirements

will influence the design of welfare programmes, in particular with regard to the weight

placed on targeted transfers over those that are made universally available.

The literature on optimal transfers administered with classification errors typically

assumes specific enforcement structures in relation to ex-post conditionality: recipients

of a disability benefit that is targeted at those unable to work are either allowed to

work (as in Parsons, 1996); or not allowed to work (as in Salanié, 2002). Moreover, the

models employed differ sufficiently so as not to allow for a systematic comparison across

enforcement regimes. There has also been little attention devoted to understanding

how the propensity of the awards test to make classification errors of either type affects

maximum social welfare and, further, how this differs depending on the enforcement

regime in place.

In relation to these gaps in the literature, this chapter posed three questions at the

outset. First, how does the propensity of an awards test to make classification errors
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of Type I and/or Type II affect the choice between (i) a pure universal system; (ii)

a partial universal system where both targeted and universal benefits are provided;

and (iii) a purely targeted welfare system? Further, conditioning on providing both

benefits, how does the propensity to make these errors affect the optimal levels of

the universal and targeted benefits, respectively? Second, how does an increase in

the propensity to make either type of error affect maximum social welfare? Third,

how do the answers to both of these questions depend on how effectively the ex-post

conditionality is enforced?

To answer these questions this chapter has considered a framework where individuals

differ in both their ability to work - modelled as zero quantity constraint on labour

supply - and, conditional on being able to work, their productivity when at work.

Given a fixed benefit budget the government chooses the optimal combination of (i)

a universal benefit received unconditionally by all; and (ii) a categorical benefit that

is imperfectly targeted at the unable and has an ex-post no-work requirement. We

analyse the cases where the ex-post no-work requirement is either not enforced at all,

or is fully enforced.

The principal messages are as follows:

• Under a No Enforcement regime:

1. It is optimal to provide a categorical benefit whenever the test administer-

ing it has some discriminatory power. In this case the optimal benefits are

chosen so as to equate - if budget feasible - the average smvi of categorical

recipients with the average smvi of those not receiving the categorical bene-

fit. A positive propensity to make Type I errors guarantees the provision of

a universal benefit, such that a partial universal system is optimal. However,

if Type I errors are never made and the benefit budget is not large enough

to finance categorical transfers to the level that equates the average smvi of

categorical recipients with that of non-recipients, a purely targeted system

will be optimal. Finally, if the awards test has no discriminatory power a

pure universal system is chosen.

2. Maximum social welfare is decreasing in the propensity to make both Type

I and Type II classification errors.

• Under a Full Enforcement regime:
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1. It is optimal to provide a categorical benefit at all levels of discriminatory

power, thus including the case of no discriminatory power. It is therefore

never optimal to adopt a pure universal system. The optimal benefits are

chosen to equate (i) the aggregate smvi of those not receiving the categorical

benefit with (ii) the aggregate smvi of categorical recipients multiplied by

the increase in their total benefit income per unit reduction in the universal

benefit. A positive propensity to make Type I errors once more guarantees

the provision of a universal benefit, such that a partial universal system is

optimal.

2. Whilst maximum welfare is unambiguously decreasing in the propensity to

make Type I errors, there are conditions under which it can be increasing

in the propensity to make Type II errors. In particular, this is more likely

to arise the larger is the fraction of able applicants who are voluntarily

unemployed (due to the universal benefit), as these individuals have the

same smvi as unable applicants.
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Appendix A Proofs

Proof of Proposition 1

Solving the maximisation problem in (2.12) yields the following FOCs characterising

B̂P and ĈP :

(B) : θux(B̂
P + ĈP , 1) + (1− θ)

∫ ∞
0

vM(ω, B̂P )f(ω)dω ≤ λ̂P , B̂P ≥ 0

(C) : ux(B̂
P + ĈP , 1) ≤ λ̂P , ĈP ≥ 0

(A.1)

The pairs of inequalities hold with complementary slackness and λ denotes the shadow

price of public expenditure. Given that the budget constraint must be exhausted (i.e.

B̂P + θĈP = β), we now test the following two hypotheses:

(i) B̂P = β, ĈP = 0 (Pure universal system)

If B̂P = β and ĈP = 0 the FOCs in (A.1) become:

θux(β, 1) + (1− θ)
∫ ∞

0

vM(ω, β)f(ω)dω = λ

ux(β, 1) ≤ λ

Combining both equations gives the contradictory statement:∫ ∞
0

vM(ω, β)f(ω)dω ≥ ux(β, 1)

It cannot hold that the average smvi of the able weakly exceeds that of the unable

when both subpopulations receive the same benefit income. The assertion that ĈP = 0

must therefore be false. Instead, we must have ĈP > 0. The shadow price of public

expenditure is therefore equal to the smvi for the unable at the optimum.

(ii) B̂P = 0, ĈP = β/θ (Pure targeted system)
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If B̂P = 0 and ĈP = β/θ the FOCs in (A.1) become:

θux

(
β

θ
, 1

)
+ (1− θ)

∫ ∞
0

vM(ω, 0)f(ω)dω ≤ λ

ux

(
β

θ
, 1

)
= λ

Combining both equations gives:∫ ∞
0

vM(ω, 0)f(ω)dω ≤ ux

(
β

θ
, 1

)
The right side is unambiguously decreasing in β. Further, given that limx→0 u(x, l) =

+∞ it must hold that there is a critical budget level β̄P satisfying:∫ ∞
0

vM(ω, 0)f(ω)dω ≡ ux

(
β̄P

θ
, 1

)

Proof of Proposition 2a

Solving the maximisation problem in (2.20) yields the FOCs:

(B) : θ
[
(1− pI)ux(B̂N + ĈN , 1) + pIux(B̂

N , 1)
]

+ (1− θ)
∫ ∞

0

[
pIIvM(ω, B̂N + ĈN) + (1− pII)vM(ω, B̂N)

]
f(ω)dω

≤ λ̂N ; B̂N ≥ 0

(A.2)

(C) :
θ(1− pI)ux(B̂N + ĈN , 1) + (1− θ)pII

∫∞
0
vM(ω, B̂N + ĈN)f(ω)dω

θ(1− pI) + (1− θ)pII
≤ λ̂N ; ĈN ≥ 0

(A.3)

where the pairs of inequalities in (A.2) and (A.3) hold with complementary slackness.

Note that in deriving these FOCs we have used property that u(M, 1) ≡ v[ω̄(M),M ]

in differentiating the integral limits (Leibniz rule).

The left side of (A.2) is the average smvi over the entire population. This captures

how much, on average, welfare will increase with a marginal increase in the universal

benefit. On the right side is the shadow price of public expenditure (λ̂N) multiplied
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by 1, which is the marginal expenditure cost of increasing each individual’s universal

transfer (in an economy of size 1).

The left side of (A.3) is the average smvi of categorical recipients, as composed of both

unable and able individuals. Notice that this is an average because the denominator -

i.e. θ(1 − pI) + (1 − θ)pII - is the total number of categorical recipients in the econ-

omy. This captures how much, on average, welfare will increase with an increase in

the categorical transfer size. On the right side is the shadow price of public expendi-

ture multiplied by unity (the per capita marginal cost associated with increasing the

categorical benefit).

With respect to the pairs of inequalities in (A.2) and (A.3), we proceed to test the

following two hypotheses: (i) (B̂N > 0 , ĈN = 0) ; and (ii) (B̂N = 0 , ĈN > 0).

(i) B̂N = β, ĈN = 0 (Pure universal system)

If ĈN = 0 then it must hold from the budget constraint (B+[θ(1−pI)+(1−θ)pII ]C = β)

that B̂N = β. In this case, the FOCs for B and C reduce to:

θux(β, 1) + (1− θ)
∫ ∞

0

vM(ω, β)f(ω)dω = λ

θ(1− pI)ux(β, 1) + (1− θ)pII
∫∞

0
vM(ω, β)f(ω)dω

[θ(1− pI) + (1− θ)pII ]
≤ λ

Writing the first of these equations as θux(β, 1) = λ− (1− θ)
∫∞

0
vM(ω, β)f(ω)dω and

substituting into the second gives:

(1− pI)
[
λ− (1− θ)

∫∞
0
vM(ω, β)f(ω)dω

]
+ (1− θ)pII

∫∞
0
vM(ω, β)f(ω)dω

[θ(1− pI) + (1− θ)pII ]
≤ λ

⇒ (1− pI)(1− θ)
[
λ−

∫∞
0
vM(ω, β)f(ω)dω

]
pII(1− θ)

[
λ−

∫∞
0
vM(ω, β)f(ω)dω

] ≤ 1

⇒ 1− pI ≤ pII

Given our discriminatory power assumption (i.e. pI + pII ≤ 1), this condition can only

hold with equality, and thus when pI + pII = 1. It follows that ĈN = 0 only if the test

awarding C has no discriminatory power. Otherwise, ĈN > 0 ∀ pI + pII < 1.

It follows that at any optimum where pI + pII < 1 the average smvi of categorical
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recipients should equate with the shadow price of public expenditure:

θ(1− pI)ux(B̂N + ĈN , 1) + (1− θ)pII
∫∞

0
vM(ω, B̂N + ĈN)f(ω)dω

θ(1− pI) + (1− θ)pII
= λ̂N (A.4)

from which we can immediately ascertain that, by diminishing marginal utility of

income:

ux(B̂
N + ĈN , 1) ≥ λ̂N >

∫ ∞
0

vM(ω, B̂N + ĈN)f(ω)dω (A.5)

where ux(B̂
N + ĈN , 1) = λ̂N only if pII = 0.

Substituting (A.4) into (A.2) then gives:

θpIux(B̂
N , 1) + (1− θ)(1− pII)

∫∞
0
vM(ω, B̂N)f(ω)dω

θpI + (1− θ)(1− pII)

≤ θ(1− pI)ux(B̂N + ĈN , 1) + (1− θ)pII
∫∞

0
vM(ω, B̂N + ĈN)f(ω)dω

θ(1− pI) + (1− θ)pII
; B̂N ≥ 0

= λ̂N

(A.6)

which in turn implies that, by diminishing marginal utility of income:

ux(B̂
N , 1) > λ̂N ≥

∫ ∞
0

vM(ω, B̂N)f(ω)dω (A.7)

where
∫∞

0
vM(ω, B̂N)f(ω)dω = λ̂N only if pI = 0 and B̂N > 0.

(ii) B̂N = 0, ĈN = β/[θ(1− pI) + (1− θ)pII ] (Pure targeted system)

From the budget constraint (B+ [θ(1− pI) + (1− θ)pII ]C = β) it follows that if B = 0

then C = β/[θ(1 − pI) + (1 − θ)pII ]. First off, it must hold that B̂N > 0 whenever

pI > 0 because limx→0 ux(x, l) = +∞. Suppose otherwise, then the left side of (A.2)

or (A.6) blows up to infinity whenever some unable individuals have zero income to
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consume. Next, if pI = 0 but pII ≥ 0 then (A.6) becomes:∫ ∞
0

vM(ω, 0)f(ω)dω

≤
θux

(
β

θ + (1− θ)pII
, 1

)
+ (1− θ)pII

∫∞
0
vM

(
ω,

β

θ + (1− θ)pII

)
f(ω)dω

θ + (1− θ)pII

The left side is independent of β, whilst the right side is unambiguously decreasing in

β. Suppose that β → 0, then limβ→0 ux(β/[θ + (1 − θ)pII ], 1) = +∞ such that the

right side approaches +∞ and the condition must hold with strict inequality. There

must therefore be a critical budget level β̄N for which the condition holds with equality.

Using the definition of β̄P from (2.15), we can implicitly define β̄N by:

ux

(
β̄P

θ
, 1

)
≡
θux

(
β̄N

θ + (1− θ)pII
, 1

)
+ (1− θ)pII

∫∞
0
vM

(
ω,

β̄N

θ + (1− θ)pII

)
f(ω)dω

θ + (1− θ)pII

It is straightforward to see that this implies ux(β̄
N/[θ+(1−θ)pII ], 1) > ux(β̄

P/θ, 1)⇒
β̄N < β̄P · [θ + (1− θ)pII ]/θ. Note that pII = 0⇒ β̄P = β̄N .

Proof of Proposition 2b.

To establish that δN > 0 at the optimum whenever pI > 0 and/or pII > 0, we proceed

in three cases: (i) (pI > 0, pII = 0) ; (ii) (pI = 0, pII > 0) ; and (iii) (pI > 0,

pII > 0).

(i) (pI > 0, pII = 0)

In this case δN = [pIux(B, 1)+(1−pI)ux(B+C, 1)]−
∫∞

0
vM(ω,B)f(ω)dω. From (A.5)

and (A.7) we have ux(B̂
N + ĈN , 1) = λ̂N >

∫∞
0
vM(ω, B̂N)f(ω)dω. Further, by dimin-

ishing marginal utility of income ux(B̂
N , 1) > ux(B̂

N+ĈN , 1) ∀pI < 1 and so δN > 0 for

pI < 1. If pI = 1 then B̂N = β and ĈN = 0 such that ux(β, 1) >
∫∞

0
vM(ω, β)f(ω)dω.

So δN > 0 when pI = 1.

(ii) (pI = 0 , pII > 0)
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In this case δN = ux(B + C, 1) −
∫∞

0
[pIIvM(ω,B + C) + (1− pII)vM(ω,B)] f(ω)dω.

From (A.5) and (A.7):

ux(B̂
N + ĈN , 1) > λ̂N ≥

∫ ∞
0

vM(ω, B̂N)f(ω)dω >

∫ ∞
0

vM(ω, B̂N + ĈN)f(ω)dω

So for all pII < 1 : δN > 0. Once more, if pII = 1 then welfare provision effectively

takes a pure universal form and δN > 0 because ux(β, 1) >
∫
vM(ω, β)f(ω)dω.

(iii) (pI > 0, pII > 0)

In this case δN = [pIux(B, 1) + (1 − pI)ux(B + C, 1)] −
∫∞

0
[pIIvM(ω,B + C) + (1 −

pII)vM(ω,B)]f(ω)dω. From (A.5) and (A.7):

ux(B̂
N , 1) > ux(B̂

N+ĈN , 1) > λ̂N >

∫ ∞
0

vM(ω, B̂N)f(ω)dω >

∫ ∞
0

vM(ω, B̂N+ĈN)f(ω)dω

(A.8)

and thus δN > 0 at the optimum. If pI +pII = 1 then a pure universal system is chosen

and δN > 0 because ux(β, 1) >
∫
vM(ω, β)f(ω)dω.

In summary then, we have δN > 0 whenever pI > 0 and/or pII > 0. Q.E.D.

Proof of Proposition 2c

To establish the effect of classification errors on social welfare, we make use of the

following standard property of concave functions:

ux(B, 1) · C > u(B + C, 1)− u(B, 1) > ux(B + C, 1) · C (A.9)

Figure 2.33 illustrates this. From (2.26) in the main text and the above property in
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Figure 2.33: Property of Concave Utility

Unearned Income(M)0

Utility

B B + C

u(B, 1)

u(B + C, 1)
ux(B + C, 1) · C

ux(B, 1) · C

(A.9), it must therefore hold that:

∂V N

∂pI
= θ

{[
u(B̂N , 1)− u(B̂N + ĈN , 1)

]
+ λ̂N ĈN

}
< θĈN

[
λ̂N − ux(B̂N + ĈN , 1)

]
≤ 0

∂V N

∂pII
= (1− θ)

{∫ ∞
0

[
v(ω, B̂N + ĈN)− v(ω, B̂N)

]
f(ω)dω − λ̂N ĈN

}
< θĈN

[∫ ∞
0

vM(ω, B̂N)f(ω)dω − λ̂N
]
≤ 0

(A.10)

Q.E.D.

Proof of Proposition 2d (Comparative Statics)

To save on notation, let uB = u(B, 1); uC = u(B + C, 1); vB = v(ω,B) and vC = v(ω,B + C). The

notation for the income derivatives also follows this convention.
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Differentiating the system of FOCs in (A.2) and (A.3) (and the budget constraint) w.r.t. pI gives:

(B) : − ∂λ̂N

∂pI
+

{
θ[(1− pI)uCxx + pIu

B
xx] + (1− θ)

∫ [
pIIv

C
MM + (1− pII)vBMM

]
f(ω)dω

}
∂B̂N

∂pI

+

{
θ(1− pI)uCxx + (1− θ)

∫
pIIv

C
MMf(ω)dω

}
∂ĈN

∂pI
= θ

[
uCx − uBx

]

(C) : − [θ(1− pI) + (1− θ)pII ]
∂λ̂N

∂pI

+

{
θ(1− pI)uCxx + (1− θ)pII

∫
vCMMf(ω)dω

}[
∂B̂N

∂pI
+
∂ĈN

∂pI

]
= θ

[
uCx − λ̂N

]

(λ) :
∂B̂N

∂pI
+ [θ(1− pI) + (1− θ)pII ]

∂ĈN

∂pI
= θĈN

In matrix form this system of equations is:

0 −1 −[θ(1− pI) + (1− θ)pII ]

−1
θ[(1− pI)uCxx + pIu

B
xx]+

(1− θ)
∫ [
pIIv

C
MM + (1− pII)vBMM

]
f(ω)dω

θ(1− pI)uCxx+

(1− θ)
∫
pIIv

C
MMf(ω)dω

−[θ(1− pI) + (1− θ)pII ]
θ(1− pI)uCxx+

(1− θ)
∫
pIIv

C
MMf(ω)dω

θ(1− pI)uCxx+

(1− θ)
∫
pIIv

C
MMf(ω)dω



·


∂λ̂N

∂pI
∂B̂N

∂pI
∂ĈN

∂pI

 =


−θĈN

θ
(
uCx − uBx

)
θ
(
uCx − λ̂N

)


The determinant of the bordered Hessian is thus:

=−
{
θ(1− pI)uCxx + (1− θ)

∫
pIIv

C
MMf(ω)dω

}
[θpI + (1− θ)(1− pII)]

+

{
θ(1− pI)uCxx + (1− θ)

∫
pIIv

C
MMf(ω)dω

}
[θ(1− pI) + (1− θ)pII ][1− θ(1− pI)− (1− θ)pII ]

−
{
θpIu

B
xx + (1− θ)

∫
(1− pII)vBMMf(ω)dω

}
[θ(1− pI) + (1− θ)pII ]2

=−
{
θ(1− pI)uCxx + (1− θ)

∫
pIIv

C
MMf(ω)dω

}
[θpI + (1− θ)(1− pII)][1− θ(1− pI)− (1− θ)pII ]

−
{
θpIu

B
xx + (1− θ)

∫
(1− pII)vBMMf(ω)dω

}
[θ(1− pI) + (1− θ)pII ]2
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and thus

=−
{
θ(1− pI)uCxx + (1− θ)

∫
pIIv

C
MMf(ω)dω

}
[θpI + (1− θ)(1− pII)]2

−
{
θpIu

B
xx + (1− θ)

∫
(1− pII)vBMMf(ω)dω

}
[θ(1− pI) + (1− θ)pII ]2 > 0

By Cramer’s rule, the sign of ∂B̂N/∂pI is thus given by (because the determinant of the bordered

Hessian is positive):

det



0 −θĈN −[θ(1− pI) + (1− θ)pII ]

−1 θ(uCx − uBx )
θ(1− pI)uCxx+

(1− θ)
∫
pIIv

C
MMf(ω)dω

−[θ(1− pI) + (1− θ)pII ] θ(uCx − λ̂N )
θ(1− pI)uCxx+

(1− θ)
∫
pIIv

C
MMf(ω)dω


=θĈN

{
−
[
θ(1− pI)uCxx + (1− θ)

∫
pIIv

C
MMf(ω)dω

]
[θpI + (1− θ)(1− pII)]

}
− [θ(1− pI) + (1− θ)pII ]

{
−θ(uCx − λ̂N ) + θ(uCx − uBx )[θ(1− pI) + (1− θ)pII ]

}
> 0

where we have used the fact that uCx > λ̂N when pI > 0 and pII > 0. It follows that ∂B̂N/∂pI >

0.

Next, the sign of ∂ĈN/∂p1 is given by:

det



0 −1 −θĈN

−1
θ[(1− pI)uCxx + pIu

B
xx]+

(1− θ)
∫ [
pIIv

C
MM + (1− pII)vBMM

]
f(ω)dω

θ(uCx − uBx )

−[θ(1− pI) + (1− θ)pII ]
θ(1− pI)uCxx+

(1− θ)
∫
pIIv

C
MMf(ω)dω

θ(uCx − λ̂N )



=θ

(λ̂N − uCx )︸ ︷︷ ︸
<0

+ (uCx − uBx )[θ(1− pI) + (1− θ)pII ]︸ ︷︷ ︸
<0


− θĈN

{
−
〈
θ(1− pI)uCxx + (1− θ)pII

∫
vCMMf(ω)dω

〉
[θpI + (1− θ)(1− pII)]

+
〈
θpIu

B
xx + (1− θ)(1− pII)

∫
vBMMf(ω)dω

〉
[θ(1− pI) + (1− θ)pII ]

}
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This can be written as:

=θ
{

(λ̂N − uCx ) + (uCx − uBx )[θ(1− pI) + (1− θ)pII ]
}

− θĈN


θ2pI(1− pI)

(
uBxx − uCxx

)
+θ(1− θ)pIpII

(
uBxx −

∫
vCMMf(ω)dω

)
+θ(1− θ)(1− pI)(1− pII)

(∫
vBMMf(ω)dω − uCxx

)
+(1− θ)2pII(1− pII)

∫ (
vBMM − vCMM

)
f(ω)dω


A sufficient condition for ∂ĈN/∂pI < 0 will therefore be that the terms within curly braces in

the second line be positive. To make further progress, suppose that vMM = −k ∀ ω ≤ ω̄; but

vMM = 0 ∀ω > ω̄ (where k > 0 is a constant )42. Then the terms within the second pair of braces

become:

k


θ2pI(1− pI)(1− 1)

+θ(1− θ)pIpII
[
F (ω̄C)− 1

]
+θ(1− θ)(1− pI)(1− pII)

[
1− F (ω̄B)

]
+(1− θ)2pII(1− pII)

[
F (ω̄C)− F (ω̄B)

]

 = k


θ(1− θ)pIpII

[
F (ω̄C)− F (ω̄B)

]
+θ(1− θ)[1− pI − pII ][1− F (ω̄B)]

+(1− θ)2pII(1− pII)[F (ω̄C)− F (ω̄B)]

 > 0

and thus ∂ĈN/∂pI < 0

Proof of Proposition 3a

Solving the optimisation problem described in (2.37) yields the following FOCs:

(B) : θ
[
(1− pI)ux(B̂F + ĈF , 1) + pIux(B̂

F , 1)
]

+ (1− θ)
{∫

vM(ω, B̂F )f(ω)dω + pII

∫ ¯̄ω [
ux(B̂

F + ĈF , 1)− vM(ω, B̂F )
]
f(ω)dω

}
≤ λ̂F

[
1 + (1− θ)f(¯̄ω)¯̄ωBpIIĈ

F
]

; B̂F ≥ 0 (A.11)

and:

(C) : ux(B̂
F + ĈF , 1) ≤ λ̂F

{
1 +

(1− θ)f(¯̄ω)¯̄ωCpIIĈ
F

θ(1− pI) + (1− θ)F (¯̄ω)pII

}
; ĈF ≥ 0 (A.12)

42Details of preferences satisfying these (stringent) properties are given below.
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where the pairs of inequalities hold with complementary slackness. Note that in writing

these FOCs we have made use of the fact that v(¯̄ω,B) ≡ u(B + C, 1).

The FOCs have the following interpretations. The left side of (A.11) is the marginal

welfare gain associated with a marginal increase in B. Notice that because all indi-

viduals in the population receive B, the marginal gain is the sum of each individual’s

smvi. Next, the right side captures in welfare units (i.e. multiplied by the shadow

price of public expenditure, λ) the marginal cost associated with a marginal increase

in B. Once more, because the government budget is exogenously fixed there are no

tax revenue effects but simply an expenditure effect. The expenditure effect can be de-

composed into two sub-effects: first, a marginal increase in B increases the amount of

money spent on all individuals ; second, a marginal increase in B increases the number

of individuals who would choose to apply for C and not work if awarded it.

The left side of (A.12) is the average marginal welfare gain associated with a marginal

increase in C. On the right side is the marginal cost in welfare units of an increase in

C, divided by the number of categorical recipients. The first term within curly braces

captures the fact that a marginal increase in C results in a higher categorical payment

to an existing recipient. The second term within curly braces captures the fact that

an increase in C induces more individuals to apply for C.

We proceed to test the following two hypotheses: (i) (B̂F > 0, ĈF = 0); and (ii)

(B̂F = 0, ĈF > 0).

(i) B̂F = β , ĈF = 0 (Pure universal system):

Suppose that ĈF = 0 - and thus B̂F = β - such that ¯̄ω(β, 0) = ω̄(β). It follows

∀ ω ≤ ¯̄ω(β, 0) = ω̄(β) : H∗(ω, β) = 0 → u(β, 1) = v(ω, β) → vM(ω, β) = ux(β, 1).

The FOCs (A.11) and (A.12) therefore become:

[θ + (1− θ)F (ω̄)]ux(β, 1) + (1− θ)
∫ ∞
ω̄

vM(ω, β)f(ω)dω = λ̂F ,

ux(β, 1) ≤ λ̂F .

Combining these equations implies the contradictory statement:

1

1− F (ω̄)

∫ ∞
ω̄

vM(ω, β)f(ω)dω ≥ ux(β, 1)
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The average smvi for those with ¯̄ω = ω̄ < ω cannot exceed that of the unable and

so the assertion that ĈF = 0 must therefore be false. Instead, it must hold that

ĈF > 0 ∀ pI + pII ≤ 1.

An immediate implication of this result is that the FOC for C in (A.12) must hold

with equality and thus:

ux(B̂
F + ĈF , 1) = λ̂F

{
1 +

(1− θ)f(¯̄ω)¯̄ωCpIIĈ
F

[θ(1− pI) + (1− θ)F (¯̄ω)pII ]

}
≥ λ̂F (A.13)

From this we can directly ascertain that:

ux(B̂
F , 1) >

1

F (¯̄ω)

∫ ¯̄ω

0

vM(ω, B̂F )f(ω)dω > ux(B̂
F + ĈF , 1)

≥ λ̂F >
1

1− F (¯̄ω)

∫ ∞
¯̄ω

vM(ω, B̂F )f(ω)dω

where ux(B̂
F + ĈF , 1) = λ̂F only if pII = 0.

Prior to addressing the second hypothesis, it is useful to substitute (A.13) into (A.11)

to obtain:

θpIux(B̂
F , 1) + (1− θ)

{∫ ∞
0

vM(ω, B̂F )f(ω)dω − pII
∫ ¯̄ω

0

vM(ω, B̂F )f(ω)dω

}
≤ ux(B̂

F + ĈF , 1)χ

{
(1− χ) + (1− θ)f(¯̄ω)pII(¯̄ωB − ¯̄ωC)ĈF

χ+ (1− θ)f(¯̄ω)¯̄ωCpIIĈF

}
(A.14)

≤ ux(B̂
F + ĈF , 1)

where the final inequality arises because ¯̄ωB < ¯̄ωC . Recall that χ = [θ(1 − pI) +

(1 − θ)F (¯̄ω)pII ] denotes the number of individuals receiving the categorical transfer.

Conversely, (1 − χ) = [θpI + (1 − θ)(1 − F (¯̄n)pII ] denotes the number of individuals

not receiving the categorical transfer.

We are now in a position to address the second hypothesis.

(ii) B̂F = 0, ĈF = β/[θ + (1− pII)F (¯̄ω)] (Pure targeted system):

Suppose now that B̂F = 0. If pI > 0 then some unable individuals have no income to
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consume and so the left side of (A.14) blows up because limx→ ux(x, l) = +∞. The

weak inequality cannot hold and so the assertion that B̂F = 0 must be false.

However, if pI = 0 then we can write (A.14) with B = 0 as:∫∞
0
vM(ω, 0)f(ω)dω − pII

∫ ¯̄ω

0
vM(ω, 0)f(ω)dω

1− F (¯̄ω)pII

≤ ux
(
CF , 1

)
χ ·
{

(1− χ) + (1− θ)f(¯̄ω)pII(¯̄ωB − ¯̄ωC)CF

χ+ (1− θ)f(¯̄ω)¯̄ωCpIICF

}
(A.15)

Proof of Proposition 3b.

To establish that δF > 0 at the optimum whenever pI > 0 and/or pII > 0, we proceed

to check three cases: (i) (pI > 0, pII = 0) ; (ii) (pI = 0, pII > 0) ; and (iii) (pI > 0,

pII > 0).

(i) (pI > 0 , pII = 0)

In this case δF = [pIux(B, 1) + (1− pI)ux(B +C, 1)]−
∫∞

0
vM(ω,B)f(ω)dω. Given no

Type II errors are made the enforcement structure does not matter and the proof that

δF > 0 simply follows that under the No Enforcement case.

(ii) (pI = 0 , pII > 0)

In this case inequality in the average smvi between the unable and able subpopulations

can be written as:

δF =ux(B + C, 1)[1− F (¯̄ω)pII ]−
{∫ ∞

0

vM(ω,B)f(ω)dω − pII
∫ ¯̄ω

0

vM(ω,B)f(ω)dω

}
=[1− F (¯̄ω)pII ]

{
ux(B + C, 1)−

∫∞
0
vM(ω,B)f(ω)dω − pII

∫ ¯̄ω

0
vM(ω,B)f(ω)dω

1− F (¯̄ω)pII

}
(A.16)

The first term inside the curly braces is the smvi of categorical benefit recipients,

whilst the second term is the average smvi of able individuals who do not receive the

categorical benefit.

Substituting pI = 0 into the equation defining optimal transfers in (A.14) we can

immediately see that the term within curly braces will be positive and thus δF >
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0.

(iii) (pI > 0 , pII > 0)

In this case we can write δF as:

δF =ux(B + C, 1)[1− F (¯̄ω)pII − pI ]

−
{∫ ∞

0

vM(ω,B)f(ω)dω − pII
∫ ¯̄ω

0

vM(ω,B)f(ω)dω − pIux(B, 1)

}
=[1− F (¯̄ω)pII − pI ]·{

ux(B + C, 1)−
∫∞

0
vM(ω,B)f(ω)dω − pII

∫ ¯̄ω

0
vM(ω,B)f(ω)dω − pIux(B, 1)

1− F (¯̄ω)pII − pI

}

From (A.14) we know that the smvi of categorical recipients (i.e. ux(B + C, 1)) will

exceed the average smvi of non-categorical recipients. It follows that if the second term

within curly braces is less than the average smvi of non-categorical recipients (i.e. the

left side of (A.14)) then for sure δF > 0. We check this below:

θpIux(B̂
F , 1) + (1− θ)

{∫∞
0
vM(ω, B̂F )f(ω)dω − pII

∫ ¯̄ω

0
vM(ω, B̂F )f(ω)dω

}
θpI + (1− θ)[1− F (¯̄ω)pII ]

−
{∫∞

0
vM(ω,B)f(ω)dω − pII

∫ ¯̄ω

0
vM(ω,B)f(ω)dω − pIux(B, 1)

1− F (¯̄ω)pII − pI

}

=

pI [1− F (¯̄ω)pII ]

{
ux(B̂

F , 1)−
∫∞

0
vM(ω, B̂F )f(ω)dω − pII

∫ ¯̄ω

0
vM(ω, B̂F )f(ω)dω

1− F (¯̄ω)pII

}
{θpI + (1− θ)[1− F (¯̄ω)pII ]} {1− F (¯̄ω)pII − pI}

> 0

(A.17)

because the smvi of unable individuals receiving only the universal benefit will always

exceed the average smvi of able individuals also receiving only the universal benefit. It

must therefore hold that δF > 0 at the optimum.

In summary, whenever pI > 0 and/or pII > 0 it must hold that δF > 0. Q.E.D.



CHAPTER 2. OPTIMAL BENEFITS WITH IMPERFECT ENFORCEMENT 167

Proof of Proposition 3c.

To establish the sign of ∂V F/∂pI we use (A.9) (i.e. u(B, 1)−u(B+C, 1) < ux(B+C, 1)C

) to obtain:

∂V F

∂pI
= θ〈[u(B̂F , 1)− u(B̂F + ĈF , 1)] + λ̂F ĈF 〉 < θĈF [λ̂F − ux(B̂F + ĈF , 1)] < 0

Turning to the affect of Type II errors on maximum welfare, we have:

∂V F

∂pII

= (1− θ)F (¯̄ω)

{[
u(B̂F + ĈF , 1)− 1

F (¯̄ω)

∫ ¯̄ω

0

v(ω, B̂F )f(ω)dω

]
− λ̂F ĈF

}

= (1− θ)F (¯̄ω)


[
u(B̂F + ĈF , 1)− u(B̂F , 1)− λ̂F ĈF

]
− 1

F (¯̄ω)

∫ ¯̄ω

0

[
v(ω, B̂F )− u(B̂F , 1)

]
f(ω)dω


= (1− θ)F (¯̄ω)


[
u(B̂F + ĈF , 1)− u(B̂F , 1)− λ̂F ĈF

]
− 1

F (¯̄ω)

∫ ¯̄ω

ω̄(B)

[
v(ω, B̂F )− u(B̂F , 1)

]
f(ω)dω


To transition from the first line to the second line we add and subtract u(B̂F , 1). In

the second line there are two effects in square braces: the first is the benefit to an

individual - net of exchequer costs - of receiving the categorical benefit conditional on

facing a zero quantity constraint on labour supply; the second measures the cost of

facing a zero quantity constraint on labour conditional on only receiving the universal

benefit. The transition from the second to third line is made through recognising that

vM(ω,B) = ux(B, 1) ∀ ω ≤ ω̄(B).



CHAPTER 2. OPTIMAL BENEFITS WITH IMPERFECT ENFORCEMENT 168

But since v(ω,B) < v(¯̄ω,B) = u(B + C, 1) ∀ ω̄(B) ≤ ω < ¯̄ω it must hold that:

∂V F

∂pII
> (1− θ)F (¯̄ω)

{〈
1− F (¯̄ω)− F (ω̄(B̂F )

F (¯̄ω)

〉[
u(B̂F + ĈF , 1)− u(B̂F , 1)

]
− λ̂F ĈF

}

= (1− θ)F (¯̄ω)

{
F [ω̄(B̂F )]

F (¯̄ω)

[
u(B̂F + ĈF , 1)− u(B̂F , 1)

]
− λ̂F ĈF

}

> (1− θ)F (¯̄ω)ĈF

{
F [ω̄(B̂F )]

F (¯̄ω)
ux(B̂

F + ĈF , 1)− λ̂F
}

= (1− θ)F (¯̄ω)ĈF

{
F [ω̄(B̂F )]

F (¯̄ω)
λ̂F

〈
1 +

(1− θ)f(¯̄ω)¯̄ωCpIIĈ
F

θ(1− pI) + (1− θ)F (¯̄ω)pII

〉
− λ̂F

}

= (1− θ)F (¯̄ω)ĈF


F [ω̄(B̂F )]

F (¯̄ω)
λ̂F

〈
(1− θ)f(¯̄ω)¯̄ωCpIIĈ

F

θ(1− pI) + (1− θ)F (¯̄ω)pII

〉

−λ̂F
[

1− F [ω̄(B̂F )]

F (¯̄ω)

]


The transition from the first line to the second follows from simple manipulation of

fractions, whilst to transition from the second to third line we use the property that

u(B + C, 1) − u(B, 1) > ux(B + C, 1)C. Next, the transition from the third through

to fifth line uses the definition of ux(B̂
F + ĈF , 1) from (A.13). Rewriting the terms in

curly braces in the final line in terms of elasticities then gives:

∂V F

∂pII
> (1− θ)F (¯̄ω)ĈFE (A.18)

where:

E ≡ F [ω̄(B̂F )]
θ(1−pI)
(1−θ)pII

+ F (¯̄ω)
·

¯̄ωf(¯̄ω)

F (¯̄ω)
· Ĉ

F ¯̄ωC
¯̄ω
−
[

1− F [ω̄(B̂F )]

F (¯̄ω)

]
(A.19)

The sufficient condition is therefore: E > 0 ⇒ ∂V F/∂pII > 0. If (1 − θ)pII ≈ 0 then

the first term on the right side is approximately zero such that E < 0. Yet, given

that ∂V F/∂pII > (1 − θ)F (¯̄ω)ĈFE this is insufficient to sign ∂V F/∂pII . However, if

θ(1− pI) ≈ 0 then:

E ≈ F (ω̄(B))

F (¯̄ω)
·

¯̄ωf(¯̄ω)

F (¯̄ω)
· Ĉ

F ¯̄ωC
¯̄ω
−
[
1− F (ω̄(B))

F (¯̄ω)

]
(A.20)
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If the product of (i) the elasticity of F with respect to ω - evaluated at ¯̄ω - and (ii)

the elasticity of ¯̄ω with respect to C - evaluated at ĈF - are sufficiently high, then we

can have E > 0 and thus ∂V F/∂pII > 0. Since these elasticities depend on as yet

unspecified properties of the distribution and utility functions respectively, we have

enough degrees of freedom to choose parameters so that E > 0.

Appendix B Numerical Simulations

This section (i) derives some key properties of the CES utility function in (2.48) in the

main text; and (ii) presents the numerical code generating the simulation results in the

main text.

The CES Utility Function

Given preferences u(x, l) =
[
αx

E−1
E + (1− α)l

E−1
E

] E
E−1

(where E 6= 1) and a budget

constraint x = ωH +M , an individual’s optimal choice of H ∈ (0, 1] satisfies 43

H∗ = Arg max
H∈(0,1]

[
α(ωH +M)

E−1
E + (1− α)(1−H)

E−1
E

] E
E−1

43It is straightforward to show that the elasticity of substitution of the CES utility function is given
by E . Writing the individual budget constraint as x + ωl = ω + M and noting that at any interior
optimum ω = ul/ux, we can define the elasticity of substitution between l and x by (where x∗ and l∗

denote optimal choices):

E =
d(x∗/l∗)/(x∗/l∗)

d(pl/px)/(pl/px)
=
pl/px
x∗/l∗

· d(x∗/l∗)

d(pl/px)
=

ω

x∗/l∗
· d(x∗/l∗)

d(pl/px)
=
ul/ux
x∗/l∗

· d(x∗/l∗)

d(ul/ux)

From the CES preferences above we have:

ul
ux

=
(1− α)l−

1
E

αx−
1
E

=
(1− α)

α
·
(x
l

) 1
E ⇒ x

l
=

(
α

1− α

)E (
ul
ux

)E
Substituting this into the definition of E gives:

E =
E
(

α
1−α

)E (
ul
ux

)E−1

(
α

1−α

)E (
ul
ux

)E−1
= E
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Thus yielding the FOC:

αω

(
1

ωH∗ +M

) 1
E

− (1− α) ·
(

1

1−H∗
) 1
E

≤ 0 ; H∗ ≥ 0

⇒ αω − (1− α)

(
ωH∗ +M

1−H∗
) 1
E

≤ 0 ; H∗ ≥ 0 (B.1)

where the pair of inequalities hold with complementary slackness.

Setting H∗ = 0 it is straightforward to verify that the reservation wage ω̄(M) at or

below which an individual chooses not to work is given by:

ω̄(M) =

(
1− α
α

)
M

1
E (B.2)

It is useful to note that:

∂ω̄

∂E = −(1− α)M
1
E log (M)

αE2


>

=

<

 0 if M


>

=

<

 1

Next, for all ω > ω̄(M) it must hold that H∗ > 0 such that the FOC in (B.1) holds

with equality (i.e. αEωE(1 −H∗) − (1 − α)E(ωH∗ + M) = 0). Optimal labour supply

in this case is therefore:

H∗ =
αEωE − (1− α)EM

αEωE + (1− α)Eω
=
αEωE

[
1−

(
1−α
α

)E
Mω−E

]
αEωE + (1− α)Eω

=
1−

(
1−α
α

)E
Mω−E

1 +
(

1−α
α

)E
ω1−E

(B.3)

which is analogous to that in Stern (1976). Notice that if M = 0 then labour supply

will for sure be falling in the net wage rate.44

44Note that if E = 1 preferences are Cobb-Douglas and given by u(x, l) = xαl1−α. The FOC for
optimal labour supply is:

αω − (1− α)

(
ωH∗ +M

1−H∗
)
≤ 0 ; H∗ ≥ 0

Setting H∗ gives rise to the reservation wage ω̄(M) = (1−α
α )M (i.e. as in (B.2)). Similarly, for ω > ω̄
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Indirect Utility Function

If ω ≤ ω̄(M) then H∗ = 0 and so indirect utility is simply v(ω,M) = u(M, 1) =[
αM

E−1
E + (1− α)

] E
E−1

; with partial derivatives:

vM = α
[
α + (1− α)M

1−E
E

] 1
E−1

> 0

vMM = −
(

1

E

)
α(1− α)M

1−2E
E

[
α + (1− α)M

1−E
E

] 2−E
E−1

< 0

and

vMMM = −
(

1

E2

)
α(1− α)

{
(1− 2E)M

1−3E
E [α + (1− α)M

1−E
E ]

2−E
E−1

−(2− E)(1− α)M
2−4E
E [α + (1− α)M

1−E
E ]

3−2E
E−1

}

Note that it will certainly hold that vMMM > 0 whenever E ∈ [1/2, 1).

Meanwhile, for ω > ω̄(M) we substitute (B.3) into individual preferences to ob-

tain:

v =

α
[
ω −

(
1−α
α

)E
Mω1−E

1 +
(

1−α
α

)E
ω1−E

+M

]E−1
E

+ (1− α)

〈
1−

[
1−

(
1−α
α

)E
Mω−E

1 +
(

1−α
α

)E
ω1−E

]〉E−1
E


E
E−1

=

α
[

ω +M

1 +
(

1−α
α

)E
ω1−E

]E−1
E

+ (1− α)

[(
1−α
α

)E
ω−E(ω +M)

1 +
(

1−α
α

)E
ω1−E

]E−1
E


E
E−1

= (ω +M)
{
αE + (1− α)Eω1−E} 1

E−1 (B.4)

where vM = [αE + (1−α)Eω1−E ]
1
E−1 . As vM is not a function of M we necessarily have

vMM = vMMM = 0.45

we obtain:

H∗ =
αω − (1− α)M

ω
= α− (1− α)M/ω

45Under Cobb Douglas preferences (E = 1) indirect utility when ω ≤ ω̄(M) is simply v = Mα; with
partial derivatives vM = αM−(1−α) > 0 and vMM = α(α − 1)Mα−2 < 0. Next, for ω > ω̄(M) we
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Derivation of ¯̄ωB and ¯̄ωC

For the CES utility function the condition defining the critical net wage ¯̄ω is:

[¯̄ω +B]
{
αE + (1− α)E ¯̄ω1−E} 1

E−1 ≡
[
α(B + C)

E−1
E + (1− α)

] E
E−1

Differentiating this identity with respect to B gives:

∂ ¯̄ω

∂B

[
αE + (1− α)E ¯̄ω1−E] 1

E−1 ·
{

1− (1− α)E ¯̄ω−E(¯̄ω +B)

[αE + (1− α)E ¯̄ω1−E ]

}
= α(B + C)−

1
E

[
α(B + C)

E−1
E + (1− α)

] 2−E
E−1 −

[
αE + (1− α)E ¯̄ω1−E] 1

E−1

⇒ ∂ ¯̄ω

∂B

[
αE + (1− α)E ¯̄ω1−E] 2−E

E−1
{
αE − (1− α)E ¯̄ω−EB

}
= α

{
(B + C)

1−E
E

[
α(B + C)

E−1
E + (1− α)

]} 1
E−1 −

[
αE + (1− α)E ¯̄ω1−E] 1

E−1

From which it is straightforward to establish that:

∂ ¯̄ω

∂B
=
α
[
α + (1− α)(B + C)

1−E
E

] 1
E−1 −

[
αE + (1− α)E ¯̄ω1−E] 1

E−1

[αE + (1− α)E ¯̄ω1−E ]
2−E
E−1 · [αE − (1− α)E ¯̄ω−EB]

(B.6)

Similarly, we can readily establish that:

∂ ¯̄ω

∂C
=

α
{
α + (1− α)(B + C)

1−E
E

} 1
E−1

{αE + (1− α)E ¯̄ω1−E} 2−E
E−1 [αE − (1− α)E ¯̄ω−EB]

(B.7)

Upper and Lower Bounds of ¯̄ω(B,C)

For the purpose of numerically simulating ¯̄ω we want to put lower and upper bounds

on the search region. Given that v[ω̄(B+C), B+C] = u(B+C, 1) = v(¯̄ω,B) and thus

substitute (B.3) into u = (ωH +M)α(1−H)1−α to obtain:

v =

{
ω +M

1 +
(

1−α
α

)}α{( 1−α
α

)
(1 +M/ω)

1 +
(

1−α
α

) }1−α

=

(
1−α
α

)1−α
1 +

(
1−α
α

) · ω +M

ω1−α = αα(1− α)1−α
(
ω +M

ω1−α

)
(B.5)

with partial derivative vM = αα(1− α)1−α/ω1−α.
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Figure 2.34: Upper and Lower Bounds of ¯̄ω

l0

Income

¯̄̄ω

1

ū

B + C
B

B + ¯̄ω

B + C + ω̄

l∗(¯̄ω)l∗(¯̄̄ω)

Notes: At the critical wage ¯̄̄ω an individual’s optimal labour/leisure choice is such that they are in-
different between: (i) working whilst receiving no unearned income; and (ii) not working and receiving
B + C in unearned income.

ω̄(B + C) < ¯̄ω, the function ω̄(B + C) serves as a suitable lower bound for ¯̄ω. Under

the CES preferences in (2.48) we already have an explicit expression for ω̄, as given by

(B.2). To establish an expression for an upper bound, let the function ¯̄̄ω(B,C) satisfy

v(¯̄̄ω, 0) ≡ u(B +C, 1), where clearly ¯̄̄ωB > 0 and ¯̄̄ωC > 0. Given that v(¯̄̄ω, 0) = v(¯̄ω,B)

it must hold that ¯̄̄ω > ¯̄ω whenever B > 0, whilst ¯̄̄ω = ¯̄ω if B = 0. The function ¯̄̄ω is

therefore an upper bound for ¯̄ω. Figure 2.34 graphically illustrates the upper (¯̄̄ω) and

lower (ω̄) bounds, respectively.

For the CES preferences in (2.48) we can derive an explicit expression for ¯̄̄ω. Formally,
¯̄̄ω satisfies:

¯̄̄ω
[
αE + (1− α)¯̄̄ω1−E] 1

E−1 =
[
α(B + C)

E−1
E + (1− α)

] E
E−1
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which can be written more conveniently as:

{
¯̄̄ωE−1

[
αE−1 + (1− α)E ¯̄̄ω1−E]} 1

E−1 =
{
α(B + C)

E−1
E + (1− α)

} E
E−1

⇒ αE ¯̄̄ωE−1 + (1− α)E =
{
α(B + C)

E−1
E + (1− α)

}E
⇒ ¯̄̄ωE−1 =

{
αM

E−1
E + (1− α)

α

}E
−
(

1− α
α

)E
and thus, finally:

¯̄̄ω =

{[
(B + C)

E−1
E +

(
1− α
α

)]E
−
(

1− α
α

)E} 1
E−1
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p
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Chapter 3

Revisiting the Optimal Linear

Income Tax with Categorical

Transfers.1

3.1 Introduction

When individuals differ in both their productivity and some categorical dimension such

as disability, a well-established result is that categorical transfers should be set so as

to eliminate inequality in the average social marginal value of income (smvi) between

categorical groups (Diamond and Sheshinski, 1995; Parsons, 1996). The linear income

tax framework has played an important role in the analysis of categorical transfers:

proponents of flat tax schedules cite their administrative simplicity and enhanced work

incentives; whilst analytically a flat tax captures the equity-efficiency tradeoff of income

taxation more tractably than nonlinear taxation (Atkinson, 1995; Paulus and Peichl,

2009; Peichl, 2014).2 The resulting optimal tax formulae are typically reported under

the assumption that inequality in the average net smvi is indeed eliminated at the opti-

mum (Viard, 2001a). This assumption allows the optimal tax expression to be written

as in the uni-dimensional model where individuals differ only in their productivity:

the numerator (equity considerations) is the negative of the covariance between gross

1A shorter version of this chapter is published in Economics Letters: see Slack (2015). This
publication presents some of the key results derived in this chapter.

2Mirrlees (1971, p.208) discusses the desirability of approximately linear tax schedules.
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earnings and the net smvi; whilst the denominator (efficiency considerations) captures

the response of compensated gross earnings to a change in the net wage rate.

However, it is not immediately clear that this between-group inequality will always

be eliminated at the optimum. Indeed, where categorical transfers are financed by tax

revenue there may be cases where it is suboptimal to do so. For example, if a sufficiently

large fraction of the population are dependent on categorical transfers for consumption

then the level of taxation required to equate the average net smvi of dependent and

non-dependent groups may be too harmful to the latter group. This will also depend

on the size of any revenue requirement in place for spending outside welfare.

Moreover, this is likely to hold beyond a simple flat tax framework. For example,

progressive piecewise linear tax systems provide the government with additional tools

to redistribute within categorical groups; but if shifting some of the tax burden away

from lower earners in an able group: (i) pushes the average net smvi of that group

further below that of a dependent group; and/or (ii) lowers tax revenue relative to

the flat tax case, this may limit further the cases where it is optimal to eliminate

between-group inequality in the average net smvi.

This chapter addresses this issue in both linear and piecewise linear income tax frame-

works. It demonstrates that the optimal tax expressions can be written more generally

to allow for cases where the average net smvi of categorical groups are not equated

at the optimum. In these cases welfare provision is purely categorical, such that no

universal benefit is provided. Alternatively, if between-group inequality is eliminated

and there are resources left over a universal benefit is also provided. Extensive numer-

ical simulations provide examples where between-group inequality is not eliminated at

the optimum. Further, they indicate that it is more likely to arise under a progressive

piecewise system for the reasons outlined above.

The remainder of this chapter is structured as follows. Section 3.2 sets up the model

and analyses the flat tax case. Within this section, numerical examples where between-

group inequality persists at the optimum are provided using a variant of the framework

employed by Stern (1976) (i.e. CES preferences, lognormal productivity distribution).

Section 3.3 then extends the analysis to the less restrictive case of piecewise linear

taxation with two tax brackets and increasing marginal tax rates. To simplify the

exposition preferences are taken to be quasilinear in consumption (see also Apps et al.,
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2014). As agent monotonicity3 is readily satisfied under these preferences there will be

a bunching of earners at the earnings threshold that separates the two tax brackets.

Numerical examples where between-group inequality persists under the piecewise op-

tima (and, for comparison, the flat tax optima) are obtained using preferences with a

constant labour elasticity (see Atkinson, 1990; Saez, 2001).4 Individual productivity is

taken to be Pareto distributed, as this is known to give rise to increasing marginal tax

rates (Diamond, 1998). Finally, Section 3.4 concludes the chapter.

3.2 The Model

3.2.1 Background

Individual preferences over consumption, x ≥ 0, and leisure, l ∈ [0, 1], are represented

by the utility function u(x, l). The standard assumptions apply: u is continuous;

differentiable; increasing in both arguments (ux > 0, ul > 0) and concave (uxx < 0 ,

ull < 0 , uxxull − u2
xl > 0); with both goods normal (uluxx − uxuxl < 0).

For an individual with net wage ω ≥ 0 and unearned income M ≥ 0 , optimal labour

supply (H∗) and the resulting indirect utility function (v) are defined by:

H∗(ω,M) ≡ arg max
H∈(0,1)

u(ωH +M, 1−H) ,

v(ω,M) ≡ u(ωH∗ +M, 1−H∗) .

Let ω̄(M) = ul(M, 1)/ux(M, 1) be the reservation wage satisfying: H∗ = 0 ∀ ω ≤ ω̄

and H∗ > 0 ∀ ω > ω̄ ; where ω̄′ > 0. It follows that ∀ ω ≤ ω̄ : v(ω,M) = u(M, 1)

and thus vM(ω,M) = ux(M, 1). Contrastingly, Roy’s identity (vω = vMH
∗) and the

normality of leisure (H∗M < 0) imply that ∀ ω > ω̄ : vωM = vMMH
∗ + vMH

∗
M < 0. So

for ω > ω̄ the marginal indirect utility of unearned income is strictly decreasing in the

3Agent monotonicity requires that indifference curves in gross income - consumption space become
flatter in individual productivity (see, for example, Seade, 1982).

4These isoelastic preferences also allow one to derive analytical results for the conditions under
which between-group inequality will persist under the flat tax optimum. Specifically, for the special
case where taxation is purely redistributive (i.e. no revenue requirement) this chapter demonstrates
that the optimal flat tax will fall below that required to eliminate inequality in the average smvi if
the unable subpopulation is too large.
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net wage rate.

3.2.2 The Tax-Benefit System

Consider a population of size 1, where a fraction θ ∈ (0, 1) of individuals face a zero

quantity constraint on labour supply and are thus unable to work. Absent any form

of state financial provision these individuals would have zero income to consume. The

remaining (1−θ) individuals are able to work but differ in their underlying productivity

n ≥ 0, where n is distributed with density function f(n) and associated distribution

function F (n).

The government operates a tax-benefit system comprising (i) a constant marginal in-

come tax rate t ∈ (0, 1); (ii) a tax-free universal benefit B ≥ 0 received unconditionally

by all individuals in society; and (iii) a tax-free categorical benefit C ≥ 0 that is

perfectly targeted at unable individuals.

To save on notation, let y = nH and ȳ =
∫∞

0
yf(n)dn. Evaluated at the optimal labour

choices of individuals, we thus define the gross earnings of a productivity n individual

by y∗(n, 1 − t,M) ≡ nH∗[n(1 − t),M ]; whilst the average gross earnings over able

individuals are ȳ∗(1− t,M) ≡
∫∞

0
y∗f(n)dn.

Under a strictly utilitarian criterion, social welfare is:

W (t, B, C; θ) = θu(B + C, 1) + (1− θ)
∫ ∞

0

v[n(1− t), B]f(n)dn (3.1)

The first term is the welfare of unable individuals multiplied by their population share;

whilst the second term is the average welfare of able individuals multiplied by their

population share.

The government’s optimisation problem is thus described by:

max
t,B,C

W (t, B, C; θ)

s.t. B + θC = (1− θ)t · ȳ∗(t, B)−R ,

t ∈ (0, 1) , B ≥ 0 , C ≥ 0 .

(3.2)
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where R ≥ 0 is an exogenous revenue requirement.

To discuss the results which follow, let the net smvi of a productivity n individual be

(Viard, 2001a):

s(n, t,M, λ) =

ux(M, 1) : n ≤ n̄(t,M)

vM [n(1− t),M ] + λty∗M(n, 1− t,M) : n > n̄(t,M)
(3.3)

where n̄ ≡ ω̄/(1 − t) and λ is the shadow price of public expenditure.5 For the

voluntarily unemployed, s is simply the social marginal utility of income. However,

for working individuals s also captures - in welfare units - the fact that an increase

in unearned income induces a worker to reduce their labour supply and, consequently,

lowers tax revenue.

Let t̂, B̂ and Ĉ denote the optimal choices resulting from the maximisation problem

in (3.2). We state the following result:

Result 1:

(i) Ĉ > 0 and B̂ ≥ 0 satisfy :

s̄
(
t̂, B̂, λ̂

)
≤ ux

(
B̂ + Ĉ, 1

)
= λ̂ ; B̂ ≥ 0 (3.4)

where the pair of inequalities hold with complementary slackness and λ̂ is the

shadow price of public expenditure at the optimum.

(ii) For δ ≡ (λ− s̄) and r = y∗/ȳ∗; t̂ is implicitly characterised by:

t̂

1− t̂ =



δ − Cov(r, s)

λ̂
∫
rEcf(n)dn

: δ > 0

−Cov(y∗, s)

λ̂
∫
yEcf(n)dn

: δ = 0

(3.5)

where Ec is the compensated elasticity of individual gross earnings with respect to

the net of tax rate.

Proof: See Appendix

5Atkinson and Stiglitz (1980, p.387) normalise s by λ and define it as the net social marginal
valuation. In terms of deriving the optimal tax expression the two approaches are equivalent.
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Result 1(i) states that, budget allowing, C should be set so as to eliminate inequality in

the average net smvi between the unable and able subpopulations (see Viard, 2001a).

Further, so long as there is inequality in this dimension it is optimal to set B =

0 because social welfare can be increased more through targeting resources at the

unable.

Next, Result 1(ii) provides a general expression for the optimal linear tax rate that

captures the equity (numerator) - efficiency (denominator) tradeoff inherent in income

taxation. This differs from standard linear tax expressions whenever δ > 0, and thus

whenever there is inequality in the average net smvi between the unable and able

subpopulations. In this case, the numerator is composed of two terms. The first is δ

itself, which will be larger the greater is the between-group disparity at the optimum.

The second is the covariance between relative earnings (r) and the net smvi. Notice

that Cov(r, s) · ȳ = Cov(y, s), where the latter term is found in all linear tax formulae

and captures a desire to redistribute from those of high productivity to those of lower

productivity.6 The intuition for these two terms is that the presence of a dependent

subpopulation shifts the equity focus away from disparities in earnings ability within

the able subpopulation, and towards the between-group disparity in the average net

smvi.

The denominator in (3.5) captures the efficiency considerations involved in setting the

optimal tax rate and is unambiguously positive. Ceteris paribus, higher compensated

elasticities of labour supply imply lower tax rates, with emphasis placed on both very

high productivities and productivities at which the population is most dense.

Finally, if δ = 0 then between-group inequality is eliminated at the optimum and the

tax formula reduces to the standard representation in the literature (Atkinson and

Stiglitz, 1980; Atkinson, 1995; Viard, 2001a,b).

6This covariance will be negative if: (i) yn ≥ 0; and (ii) sn < 0. The requirement that the net smvi
falls with productivity is formally given by:

∂s

∂n
= (1− t)vω + λtynM = (1− t)vω + λt {H∗M + n(1− t)H∗ωM}

As stated in the main text, we have vωM < 0 ∀ n > n̄ and similarly H∗M < 0 ∀ n > n̄. However, the
sign of H∗ωM is unclear and requires assumptions on third derivatives.



CHAPTER 3. INCOME TAXATION AND CATEGORICAL TRANSFERS 193

3.2.3 Numerical Results: Flat Tax

The purpose of this section is to provide examples where between-group inequality in

the average net smvi persists at the flat tax optimum. In line with the key numerical

studies on linear income taxation - both those with and without categorical transfers

- we take preferences over consumption and leisure to be of the constant elasticity of

substitution form (see Immonen et al., 1998; Stern, 1976; Viard, 2001a,b):

u(x, l) =
[
αx

E−1
E + (1− α)l

E−1
E

]
; E 6= 1 (3.6)

where E is the elasticity of substitution between leisure and consumption.

The social welfare function is given by:

W =

(
1

1− η

){
θu(B + C, 1)1−η + (1− θ)

∫ ∞
0

v[n(1− t), B]1−ηf(n)dn

}
(3.7)

Notice that the parameter η determines the degree of concavity of the social welfare

function: setting η > 0 allows for express concern with regard to the distribution of

utilities. We will consider η ∈ {0, 2}. The smvi of an unable or voluntarily unemployed

individual is thus u−η · ux; whilst the net smvi of a worker is v−η · vM + λty∗M .

Whilst the main properties of (3.6) are well established in the literature, it is useful to

note that the optimal earnings function is given by:

y∗ =
n− (1−α

α
)En1−E(1− t)−EM

1 + (1−α
α

)E [n(1− t)]1−E (3.8)

from which it follows that ∂y∗/∂M < 0 whilst ∂2y∗/∂M∂(1− t) > 0.

If M = 0 for workers - which from Result 1 would arise if between-group inequality

in the average (net) smvi is not eliminated through categorical transfers - then (3.8)

illustrates that earnings will be falling in the net-of-tax rate. Conversely, earnings will

be rising in the tax rate, as will be tax revenue.

In the simulations which follow we consider the following parameter values: n ∼
lnN (µ = −1, σ = 0.39); α = 0.614; E ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}; θ = 0.1 and

R ∈ {0, 0.05, 0.10}. The key studies of categorical transfers within an optimal tax
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Table 3.1: Numerical results: optimal linear income tax and between-group inequality.

η = 0 η = 2

E tR t̂ B̂ Ĉ δ tδ t̂ B̂ Ĉ δ tδ

(a) R = 0

0.5 0 0.304 0 0.755 0.014 0.311 0.458 0.087 0.139 0 0.087
0.6 0 0.289 0 0.700 0.022 0.302 0.416 0.076 0.134 0 0.083
0.7 0 0.274 0 0.647 0.029 0.293 0.382 0.067 0.129 0 0.079
0.8 0 0.259 0 0.597 0.035 0.285 0.353 0.060 0.123 0 0.075
0.9 0 0.245 0 0.551 0.040 0.276 0.329 0.054 0.117 0 0.072
0.99 0 0.233 0 0.512 0.044 0.268 0.310 0.049 0.112 0 0.069

(b) R = 0.05
0.5 0.205 0.473 0 0.724 0.055 0.499 0.526 0.060 0.130 0 0.274
0.6 0.209 0.460 0 0.654 0.078 0.501 0.484 0.048 0.128 0 0.275
0.7 0.213 0.446 0 0.583 0.102 0.506 0.449 0.038 0.124 0 0.277
0.8 0.218 0.432 0 0.515 0.126 0.513 0.419 0.030 0.120 0 0.279
0.9 0.223 0.419 0 0.451 0.153 0.524 0.393 0.023 0.115 0 0.281
0.99 0.228 0.408 0 0.397 0.177 0.540 0.373 0.017 0.111 0 0.284

(c) R = 0.10
0.5 0.394 0.629 0 0.703 0.114 0.674 0.601 0.036 0.118 0 0.446
0.6 0.403 0.619 0 0.615 0.165 0.696 0.562 0.025 0.117 0 0.453
0.7 0.414 0.608 0 0.524 0.223 0.736 0.529 0.015 0.114 0 0.462
0.8 0.426 0.597 0 0.435 0.293 * 0.500 0.006 0.111 0 0.472
0.9 0.440 0.588 0 0.352 0.376 * 0.485 0 0.105 0.571 0.485
0.99 0.454 0.583 0 0.283 0.470 * 0.497 0 0.094 2.730 0.499

Notes: tR denotes the tax rate that generates just enough tax revenue to satisfy the revenue require-
ment. t̂, B̂ and Ĉ denote the optimal choices. tδ is the critical tax rate that generates just enough
tax revenue - net of any revenue requirement - to eliminate between-group inequality in the average
net smvi through categorical spending. Cases where tδ does not exist are denoted by an ∗: this arises
because the average net smvi may fall with the tax rate at high tax rates. Values ≤ 10−7 are reported
as 0.
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framework take individual productivity to be lognormally distributed, and we follow

convention here (see Immonen et al., 1998; Viard, 2001a,b). We set the mean of log n

equal to -1 and the standard deviation of log n equal to 0.39; as has been the stan-

dard since Mirrlees (1971). The choice of α follows from Stern (1976): at α = 0.614

the average productivity individual works exactly 2/3 of their time endowment when

E = 0.5 and t = M = 0. Turning to the proportion of unable individuals in society,

the choice of θ = 0.1 seems sensible in light of statistics on real-world benefit pro-

grammes (Mcinnes, 2012). Finally, the choices of positive revenue requirement can be

written as a proportion of maximum earnings when t = 0. When E = 0.5 aggregate

earnings in the economy are 0.235. A value of R = 0.05 thus corresponds to roughly

21% of maximum earnings, whilst R = 0.10 corresponds to roughly 43% of maximum

earnings.

The numerical results are presented in Table 3.1.7 The column labelled tR denotes the

tax rate that generates just enough tax revenue to satisfy the revenue requirement,

with benefit expenditure set at zero. This is independent of η. The columns labelled

t̂, B̂ and Ĉ denote the optimal choices of the tax rate and benefit levels. The columns

labelled δ denote the level of between-group inequality in the average (net) smvi at the

optimal choices. Given the welfare function in (3.7), δ is formally defined as:

δ = u−ηux(B + C, 1)−
∫ ∞

0

{
v−ηvM [n(1− t), B] + λty∗M

}
dF (n)

Relatedly, the columns labelled tδ denote the critical tax rate that generates just enough

tax revenue - net of any revenue requirement - to eliminate between-group inequality

through categorical spending and thus set δ = 0. Formally, tδ satisfies:

u−ηux

[
(1− θ)tδȳ(1− tδ, 0)−R

θ
, 1

]
=

∫ ∞
0

{
v−ηvM [n(1− tδ), 0] + λtδy

∗
M

}
dF (n)

The implication is that t < tδ ⇒ δ > 0, but t ≥ tδ ⇒ δ = 0. Figure 3.1 provides the

graphical intuition for the critical flat tax tδ.

7Note that if we set θ = 0 - such that there is no need for categorical transfers - the numerical
results in Table 3.1 collapse down to those in Stern (1976). This exercise provides a useful additional
check on the accuracy of the simulation results.
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Figure 3.1: The Critical Tax Rate tδ
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The most immediate observation from Table 3.1 is that when η = 0 we observe δ > 0

and t < tδ in all cases. Consequently, optimal welfare provision is purely targeted

and the universal benefit is set at zero in all cases. Note that when R = 0.10 there

is no tδ that eliminates between-group inequality. The intuition is as follows: because

high levels of R imply high levels of taxation (see tR) without any form of benefit

expenditure, the term λty∗M from the net smvi of an able individual may become

sufficiently negative that the average net smvi over the able subpopulation falls with

the tax rate (recall from our discussion of the earnings function in (3.8) that y∗M < 0

becomes more negative with the tax rate). If this fall is sufficiently large there will be

no way to eliminate inequality in the average net smvi.

Turning to the case where η = 2, we only observe cases where t < tδ when R = 0.10.

Higher levels of the revenue requirement thus still render it suboptimal to eliminate

inequality in the average net smvi between the unable and able subpopulations. Notice

that - in contrast to the case where η = 0 - the critical tax rate tδ exists in all cases.

The reason for this is that when η = 2 more weight is placed on the marginal indirect

utility of lower productivity workers who are being taxed highly but receive no benefit

income. Consequently, the average net smvi of the able subpopulation tends to rise

with the tax rate.

Turning to the remaining observations from Table 3.1, it is interesting to note that tδ
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is (i) falling in E when R = 0; but (ii) increasing in E when R > 0. The intuition

for this follows from the well-established result (see Stern, 1976) that tR rises with E .

Finally, we observe that the optimal tax rate, t̂, falls with E in almost all considered

cases, as do the the optimal benefit levels.

3.3 A Progressive Piecewise Linear Income Tax Sys-

tem

Whilst a number of countries adopt a flat income tax, the majority employ progressive8

piecewise linear tax schedules (see Paulus and Peichl, 2009; Peichl, 2014). This section

first motivates the idea that the above discussion is likely to hold in the more general

setting of piecewise taxation, where the set of instruments available to the government

are less restrictive than in the simple flat tax case. We then proceed to demonstrate

this numerically.

3.3.1 A two-bracket progressive piecewise linear tax sched-

ule

Consider a simple progressive piecewise linear tax system with two tax brackets and

an earnings threshold Y . Individuals are taxed at the rate t1 on all earnings y ≤ Y ;

but are taxed at the rate t2 ≥ t1 on any additional earnings (y − Y ) in excess of the

threshold. Formally, an individual’s budget constraint is given by:

x =

(1− t1)y +B : y ≤ Y

(t2 − t1)Y + (1− t2)y +B : y > Y
(3.9)

The tax-benefit system remains otherwise as in Section 3.2.2.

To progress it is helpful to abstract from income effects9 through assuming preferences

take the form:

8The term progressive is used here to refer to increasing marginal tax rates.
9This ensures that the first order condition for earnings y > Y is unaffected by t1, which simplifies

the analysis (see Apps et al., 2014).
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Figure 3.2: ‘Bunching’ of earnings at the bracket threshold Y

y

x

(1− t1)

(1− t2)

Y

I(ñ)

I
(
˜̃n
)

Note: This figure illustrates that under the preferences in (3.10) indifference curves in (y, x) space
become flatter in n, resulting in the productivity interval n ∈ [ñ, ˜̃n] where individuals choose to earn
exactly Y (see the Appendix for a more detailed discussion). Apps et al. (2014) refer to this progressive
piecewise tax system as the ‘convex case’ because the budget set in (y, x) space is convex. Notice that
in drawing the figure we have abstracted from unearned income (if M > 0 an individual would still
have positive consumption when y = 0).

U(x,H) = u (x− g(H)) (3.10)

where u′ > 0; u′′ < 0; g′ > 0; and g′′ > 0. In addition, we assume that g(0) = g′(0) = 0.

The implication of this latter assumption is simply that there is no reservation wage

at or below which an able individual chooses voluntary unemployment.

As is well documented (see Apps et al., 2014), there will be a ‘bunching’ of earnings at

Y for individuals who would earn more than Y if additional earnings were still taxed

at rate t1; but choose not to because they are in fact taxed at rate t2. Formally, this

bunching occurs for ñ(1− t1, Y ) < n ≤ ˜̃n(1− t2, Y ); where:

ñ(1− t1) ≡ g′ (Y/ñ) , ˜̃n(1− t2) ≡ g′
(
Y/˜̃n

)
(3.11)

It follows directly from (3.11) that both ∂ñ/∂(1− t1) < 0 and ∂ ˜̃n/∂(1− t2) < 0, whilst

both ∂ñ/∂Y > 0 and ∂ ˜̃n/∂Y > 0. Figure 3.2 provides some intuition for the two
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critical productivities ñ and ˜̃n.

Taking into account the bunching of earnings at the ‘kink’ point in the budget con-

straint, we define the optimal earnings function of a productivity n individual by:

y∗(n, 1− t1, 1− t2, Y )

≡


Arg maxy∈(0,Y ) u [(1− t1) +M − g(y/n)] : ∀ n ∈ (0, ñ)

Y : ∀ n ∈ [ñ, ˜̃n]

Arg maxy∈(Y,∞) u [Y (t2 − t1) + y(1− t2) +M − g(y/n)] : ∀ n ∈ (˜̃n,∞)

(3.12)

From (3.11) and (3.12) one can readily verify that y∗ satisfies:

n(1− t1) = g′(y∗/n) : ∀ n ∈ (0, ñ]

(1− t1) > g′(Y/n)/n > (1− t2) : ∀ n ∈ (ñ, ˜̃n)

n(1− t2) = g′(y∗/n) : ∀ n ∈ [ñ,∞)

(3.13)

where ∀ n ∈ (0, ñ) : ∂y∗/∂n > 0 and ∂y∗/∂(1 − t1) > 0; whilst ∀ n ∈ (˜̃n,∞) :

∂y∗/∂n > 0 and ∂y/∂(1− t2) > 0.

If we let v(n, 1 − t1, 1 − t2, Y,M) denote the resulting indirect utility function we can

establish that:

∂v

∂(1− t1)
=

vM · y∗ : ∀ n ∈ (0, ñ]

vM · Y : ∀n ∈ (ñ,∞)
,

∂v

∂(1− t2)
=

0 : ∀n ∈ (0, ˜̃n]

vM(y∗ − Y ) : ∀n ∈ (˜̃n,∞)

(3.14)

whilst:

∂V

∂Y
=


0 : ∀n ∈ (0, ñ]

vM · [(1− t1)− g′(Y/n)/n] : ∀n ∈ (0, ˜̃n]

vM · (t2 − t1) : ∀n ∈ (˜̃n,∞)

(3.15)
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where vM = u′. Ceteris paribus, a reduction in the lower net-of-tax rate (i.e. 1 − t1)

benefits all individuals in the economy; whilst a reduction in the upper net-of-tax

rate (i.e. 1 − t2) benefits only those for whom y > Y and thus those with n ∈
(˜̃n,∞). Meanwhile, a ceteris paribus increase in the earnings threshold benefits both

those bunched at the earnings threshold and those who earn above it. In particular,

individuals with n ∈ (ñ, ˜̃n] can optimally increase their earnings; whilst individuals

with n ∈ (˜̃n,∞) have less of their earnings taxed at the higher rate t2.

Optimisation Problem. The government’s optimisation problem is now described

by:

max
t1,t2,Y,B,C

W = θu(B + C) + (1− θ)
∫ ∞

0

v(n, 1− t1, 1− t2, Y, B)f(n)dn

s.t. B + θC

= (1− θ)
{
t1

〈∫ ñ

0

y∗f(n)dn+ Y [1− F (ñ)]

〉
+ t2

∫ ∞
˜̃n

(y∗ − Y )f(n)dn

}
−R ,

t1 ∈ (0, 1) , t2 ∈ (0, 1) , t1 ≤ t2 , Y ≥ 0 , B ≥ 0 , C ≥ 0 . (3.16)

As we are abstracting from income effects, an able individual’s smvi is simply their

marginal indirect utility of income. However, to be consistent with the notation from

Section 3.2.2 we let s = vM be a productivity n individual’s smvi and s̄ =
∫
sf(n)dn

be the average smvi over the able subpopulation.

Letting t̂1,t̂2,Ŷ ,B̂ and Ĉ denote the resulting optima, we can state the following:

Result 2:

(i) Ĉ > 0 and B̂ ≥ 0 satisfy:

s̄
(
t̂1, t̂2, Ŷ , B̂

)
≤ u′

(
B̂ + Ĉ

)
= λ̂ ; B̂ ≥ 0 (3.17)

where the pair of inequalities hold with complementary slackness.
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(ii) For Ei =
(1− ti)
y∗

∂y∗

∂(1− ti)
; i ∈ {1, 2}, t̂1, t̂2 and Ŷ are characterised by:

(t1) :
t̂1

1− t̂1
=
δŶ +

∫ ñ
0

(Y − y) (s− λ̂)f(n)dn

λ̂
∫ ñ

0
yE1f(n)dn

(3.18)

(t2) :
t̂2

1− t̂2
=

∫∞
˜̃n

(
y − Ŷ

)
(λ̂− s)f(n)dn

λ̂
∫∞

˜̃n
yE2f(n)dn

(3.19)

(Y ) :

∫ ˜̃n

ñ

(
∂v

∂Y
+ λ̂t̂1

)
f(n)dn =

(
t̂2 − t̂1

) ∫ ∞
˜̃n

(
λ̂− s

)
f(n)dn (3.20)

Proof: See Appendix.

Result 2(i) parallels Result 1(i): a universal benefit will only be provided conditional

on categorical transfers eliminating inequality in the average smvi; and there being

resources left over. Result 2(ii) characterises the optimal tax parameters and is anal-

ogous to Apps et al. (2014). The important difference with these authors is that the

presence of a dependent population changes how we write the expression for t̂1. In

particular, whilst both the expressions for t̂1 and t̂2 have equity concerns in the numer-

ator and efficiency concerns in the denominator, it is only the numerator of the former

that contains δ; entering as δY . The intuition is seemingly that an increase in t1 has

no distortionary effect on the gross earnings of those with n ∈ (ñ,∞) and is therefore

an effective tool to help reduce δ. This does, of course, come at the cost of imposing

a higher tax rate on those with n ∈ (0, ñ) and thus those with lower productivities.

Finally, (3.20) illustrates that Y should be set so as to equate (i) the marginal benefit

of allowing individuals with n ∈ (ñ, ˜̃n) to work more at rate t1 (and in welfare units the

associated increase in tax revenue); with (ii) the marginal cost of foregone tax revenue

from those with n ∈ (˜̃n,∞), weighted by the positive term
∫∞

˜̃n
(λ− s)f(n)dn.

3.3.2 Numerical Results: Piecewise Linear Taxation

To provide examples where δ > 0 at the piecewise taxation optimum, we once more

turn to numerical methods.

In line with the preferences adopted in (3.10), let preferences take the frequently em-

ployed isoelastic form (see Atkinson, 1990; Saez, 2001):
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u(x,H) = log

(
x− αH

1+k

1 + k

)
(3.21)

where in this setting 1/k is the constant elasticity of labour supply with respect to the

net wage rate and α is a constant.10 Low labour elasticities are observed empirically

and we follow convention by setting 1/k = 0.25 and thus k = 4. The literature typically

adopts values of the labour elasticity between 0.1 and 1.

Productivities are Pareto distributed where f(n) = µnµ/nµ+1 ∀ n ≥ n. The Pareto

distribution captures well the upper tail of observed income distributions and its adop-

tion in the more recent optimal tax literature has supported increasing marginal tax

rates on higher earners (see Diamond, 1998). It would therefore seem appropriate for

simulating progressive piecewise tax schedules.11 To capture how the spread of abilities

affects the results, we consider two alternative distributions: (i) n = 1, µ = 4 ; and (ii)

n = 1.067, µ = 5, where n is adjusted so that the average productivity is 1.333 in both

cases. The second distribution has a smaller spread of abilities than the first.

The remaining parameter choices are α = 8 ; θ ∈ {0.10, 0.15} andR ∈ {0, 0.10, 0.15, 0.20}.
Analogous to the numerical analysis in Section 3.2.3, the leisure preference parameter

α is set so that the average worker has a labour supply of roughly 2/3. Again, the val-

ues of the unable subpopulation size θ seem sensible following statistics on real-world

welfare programmes (Mcinnes, 2012). Finally, the choices of revenue requirement fall

well within maximum tax revenue under the two considered distributions. The revenue

maximising tax rate is given by t = k/(1 + k) and is thus 80% when k = 4.12 Setting

10Under the preferences in (3.21) optimal labour supply is given by H∗ = [n(1 − t)/α]
1
k . Letting

ω = n(1− t) denote the net wage, the elasticity of labour supply with respect to the net wage rate is
thus:

ω

H∗
· ∂H

∗

∂ω
=
(
ω
k−1
k α

1
k

)
·
((

1

k

)
ω

1−k
k α−

1
k

)
=

1

k

where the term within the first pair of braces is ω/H∗, whilst the term within the second pair of
braces is ∂H∗/∂ω.

11Slemrod et al. (1994) demonstrate that extending the framework of Stern (1976) (a variant of
which we applied in Section 3.2.3) to a two bracket piecewise setting gives rise to t1 > t2 in all cases.
Apps et al. (2014) discuss how the assumption that productivities are lognormally distributed may
bias results in favour of decreasing marginal tax rates.

12Individual earnings are given by y∗ = nH∗ = (1− t) 1
kn

1+k
k α−

1
k . The revenue maximising tax rate

is thus defined as:

tL = Arg max
t
t(1− t) 1

kα−
1
k

∫ ∞
0

n
1+k
k dF (n) = Arg max

t
t(1− t) 1

k
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θ = 0.15 we find that maximum revenue under the first distribution (µ = 4, n = 1)

is 0.393; whilst maximum revenue under the second distribution (µ = 5, n = 1.067) is

0.391.

In the numerical results to be presented below it is useful to compare the piecewise

optima with the flat tax optima. Intuitively, the flat tax is always available under the

piecewise system (i.e. through setting t1 = t2) and so where it is not chosen welfare

must be higher under the piecewise system. We once more let tδ denote the critical

flat tax that generates just enough tax revenue (net of any revenue requirement) to

set δ = 0 through categorical transfers. In this regard, the isoelastic preferences in

(3.21) simplify the flat tax problem sufficiently that we can establish conditions where

between-group inequality will persist at the optimum for the purely redistributive case

with no revenue requirement. We discuss this in the below remark and subsequent

result.

Remark: Under the isoelastic preferences in (3.21) the explicit solution for tδ when

R = 0 is:

tδ =
θ

(1− θ)(1+k
k

)
∫∞

0
n

1+k
k dF (n) ·

∫∞
0
n−

1+k
k dF (n) + θ

(3.22)

which is unambiguously increasing in the unable subpopulation size θ.

Result 3: Consider the pure targeting problem when R = 0:

max
t
W = θu(C(t), 1) + (1− θ)

∫ ∞
0

v[n(1− t), 0]dF (n)

where C(t) =

(
1− θ
θ

)
t

∫ ∞
0

y∗(n, 1− t)dF (n)

(3.23)

Then under the isoelastic preferences in (3.21) the optimal tax rate, denoted by t̂c, is

thus given by:

t̂c = θ

(
k

1 + k

)
(3.24)

which is increasing in both the size of the dependent population and in the inverse

labour elasticity. A simple comparison between (3.22) and (3.24) illustrates that for θ

which yields the first order condition 1− (1/k)tL(1− tL)−1 = 0.
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Figure 3.3: Between-group inequality and θ when R = 0.
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(b) n = 1.067, µ = 5

Notes: This figure plots the functions tδ and t̂c (as defined in (3.22) and (3.23)) over θ. As discussed
in Result 3, there is a critical unable subpopulation size above which it is suboptimal to eliminate
inequality in the average smvi between the unable and able subpopulations. In subplot (a) the critical
value of θ is 0.35, whilst in subplot (b) the critical value of θ is 0.25.

large enough it will be suboptimal to eliminate inequality in the average smvi between

the unable and able subpopulations. This is illustrated in Figure 3.3.

Proof: See Appendix

Table 3.2 displays the numerical results and its structure is described in the caption

immediately below the table. The most immediate observation from Table 3.2 is that

there are indeed cases under both the flat tax and piecewise linear tax schedules where

δ > 0 at the optimum. Moreover, there are a number of cases where δ = 0 under the

flat tax schedule, but δ > 0 under the corresponding piecewise schedule. The intuition

here is that the additional tools available to the government under the piecewise system

allow it to lower the tax burden on individuals of lower productivity, which in turn acts

to lower the average smvi over the able subpopulation (as illustrated by the observation
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that s̄ takes a lower value at the piecewise optimum than at the flat tax optimum in

all cases). Even though the unable receive a similar benefit income to the flat tax case

(and thus have a similar smvi) δ is necessarily higher due to the fall in s̄. In these cases

net tax revenue is also lower under the piecewise schedule. Note that where δ > 0 under

both types of system, the unable tend to receive a slightly lower level of categorical

support under the piecewise system than they do under the flat tax system. Finally,

given that the flat tax is always available but not chosen, welfare is higher under the

piecewise system (to save on space this is omitted from the table).

Table 3.2 illustrates that an increase in θ or R increases the number of cases where

δ > 0. Further, for cases where δ > 0 prior to the increase, we observe that an increase

in either parameter increases the size of δ. With respect to the piecewise system, we

note that an increase in R (i) raises the average smvi of the able (because the tax

parameters t̂1, t̂2 and Ŷ rise whilst B̂ either falls or remains at zero); and (ii) raises the

smvi of the unable (because Ĉ falls). Given that δ rises in all cases the latter effect

must dominate the first. A parallel argument holds in the flat tax case. Interestingly,

a mean-preserving reduction in the spread of abilities increases (i) the number of cases

where δ > 0; and (ii) the magnitude of δ for cases where δ > 0 already. This is best

explained in terms of the flat tax system. For any given value of t, both s̄ and tax

revenue fall. Consequently, the critical tax rate tδ at which between-group inequality

is eliminated rises.13 Figure 3.4 summarises the conditions where δ > 0 in (R, θ)

space.

3.4 Concluding Remarks

The analysis of categorical transfers in optimal linear and piecewise-linear income tax

frameworks will depend on whether categorical transfers are financed so as to eliminate

between-group inequality in the average net smvi at the optimum. If one simply as-

sumes this to hold then the resulting optimal tax expressions can be written as in the

uni-dimensional model where individuals differ only in productivity. The purpose of

this chapter has been to demonstrate that this may not always be a good assumption.

For example, the presence of a sufficiently large unable subpopulation dependent on

13Note that tδ would still rise even if we did not adjust n so as to keep mean productivity constant
(for any given t: s̄ may increase but tax revenue falls).
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Figure 3.4: Between-Group Inequality at the Optimum in (R, θ) Space
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Notes: For optimum flat tax and optimum piecewise tax schedules, this figure illustrates the cases
in (R, θ) space where between group inequality in the average smvi is not eliminated. Notice that
when R = 0 the critical values of θ above which between-group inequality will persist in the flat tax
optimum correspond to those established in Figure 3.3.

categorical transfers, coupled with spending commitments outside welfare, may render

it suboptimal to spend on categorical transfers up to this point because doing so would

be too harmful to the non-dependent working subpopulation. Numerical examples

have illustrated cases where this arises.

This chapter has demonstrated that optimal income tax expressions can be written

more generally to allow for cases where it is indeed suboptimal to eliminate between-

group inequality in the average net smvi. In these cases the equity considerations in

the numerator of optimal tax expressions are composed of both between-group and

within-group terms. Further, if one employs preferences with a constant labour elas-

ticity (see Atkinson, 1990; Saez, 2001) it is also possible to derive analytical results

for the conditions under which between-group inequality will persist under the flat tax
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optimum. Specifically, in the special case where taxation is purely redistributive the

optimal flat tax will fall below that required to eliminate inequality in the average

smvi whenever the unable subpopulation exceeds a critical level. How these optimal

tax expressions change when categorical transfers are administered with classification

errors - and thus where it may not be possible to eliminate inequality in the average

net smvi - warrants investigation.



CHAPTER 3. INCOME TAXATION AND CATEGORICAL TRANSFERS 209

Appendix A Linear Income Taxation

Proof of Result 1

From the optimisation problem described in (3.2), the first-order conditions (henceforth

FOCs) characterising the optimal benefits B̂ and Ĉ are:

(B) : θux

(
B̂ + Ĉ, 1

)
+ (1− θ)s̄

(
t̂, B̂, λ̂

)
≤ λ̂ ; B̂ ≥ 0 (A.1)

(C) : ux

(
B̂ + Ĉ, 1

)
≤ λ̂ ; Ĉ ≥ 0 (A.2)

where the pairs of inequalities hold with complementary slackness.

We test the following two hyotheses:

(i) B̂ > 0 , Ĉ = 0 (Pure Universal System)

Setting Ĉ = 0 in both (A.1) and (A.2) gives:

θux(B, 1) + (1− θ)s̄(t, B, λ) = λ

ux(C, 1) ≤ λ

Taken together, these equations imply that s̄(t, B, λ) ≥ ux(B, 1). This is clearly a

contradiction because the average net social marginal value of income (smvi) of the

able cannot exceed that of the unable when receiving the same benefit income. The

assertion that Ĉ = 0 is therefore false and it must instead hold that Ĉ > 0.

(ii) B̂ = 0, Ĉ > 0 (Pure Targeted System)

Alternatively, setting B̂ = 0 in the FOCs in (A.1) and (A.2) gives:

θux(C, 1) + (1− θ)s̄(t, 0, λ) ≤ λ

ux(C, 1) = λ

Combining these equations gives the condition:

s̄(t, 0, λ) ≤ ux(C, 1) (A.3)

This simply states that it will not be optimal to provide a universal benefit if, at
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the optimum, categorical spending does not eliminate between-group inequality in the

average net smvi. Intuitively, it is optimal to expend resources on the most needy in

society, and this is the unable so long as the aforementioned between-group inequality

persists.

The FOC for the interior tax rate optimum is given by:

(t) :

∫ ∞
0

{
−nvω + λ̂

〈
y∗ − t̂ · ∂y∗

∂(1− t)

〉}
f(n)dn = 0 (A.4)

where ∂y∗/∂(1− t) = n2H∗ω. Note that because y∗ = 0 ∀ n ≤ n̄ we could equivalently

use n̄ as the lower integral limit.

By standard methods (Atkinson and Stiglitz, 1980) we use Roy’s identity (vω =

vM(y∗/n)) and the Slutsky-Hicks equation 14 ( ∂y∗

∂(1−t) = ∂yc

∂(1−t) + y∗My
∗) to write (A.4)

as: ∫ ∞
0

y∗
(

1− s

λ̂

)
f(n)dn = t̂

∫ ∞
0

∂yc

∂(1− t)f(n)dn

Letting Ec =
(1− t)
y

∂yc

∂(1− t) be the compensated elasticity of earnings with respect to

14The expenditure minimisation problem is:

min
x,y

x− y(1− t) s.t. u(x, 1− y/n)

yielding the FOCs:

(x) : 1− γux = 0

(y) : − (1− t) + γul/n = 0

(γ) : u− ū = 0

Let xc(n, 1 − t, ū) , yc(n, 1 − t, u) and γc(n, 1 − t, γ) denote the optimal ‘compensated’ choices and
further, let the expenditure function be E(n, 1− t, ū) = xc − yc(1− t). By the envelope theorem:

∂E

∂(1− t) =
∂xc

∂(1− t) (1− γcux) +
∂yc

∂(1− t)
[
−(1− t) + γc

ul
n

]
− yc − ∂γc

∂(1− t) (u− ū) = −yc

Next, differentiating the identity yc(n, 1− t, ū) ≡ y∗ (n, 1− t, E(n, 1− t, ū)) w.r.t. (1− t) gives:

∂yc

∂(1− t) =
∂y∗

∂(1− t) +
∂y∗

∂M

∂E

∂(1− t) =
∂y∗

∂(1− t) − y
∗ ∂y

∗

∂M
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the net of tax rate we obtain:

t̂

1− t̂ =

∫∞
0
y∗
(
λ̂− s

)
f(n)dn

λ̂
∫∞

0
yEcf(n)dn

(A.5)

The numerator will reduce to the negative of the covariance between gross earnings

(y∗) and the net smvi (s) only if λ̂ = s̄, and thus if between-group inequality in the

average net smvi is eliminated through categorical spending at the optimum. Indeed,

to see this note that if λ̂ = s̄ then
∫
y∗(λ̂− s)f(n)dn =

∫
y∗f(n)dn · s̄−

∫
y∗sf(n)dn =

ȳ∗s̄−
∫
y∗sf(n)dn = −Cov(y∗, s).

Letting δ = (λ − s̄) denote between-group inequality in the average net smvi and

r = y∗/ȳ∗ relative income; the numerator of (A.5) can be written as:∫ ∞
0

y∗(λ̂− s)f(n)dn =

∫ ∞
0

y∗
[
(λ̂− s̄) + s̄

(
1− s

s̄

)]
f(n)dn

= δȳ∗ + s̄

∫ ∞
0

y∗
(

1− s

s̄

)
f(n)dn

= δȳ∗ + s̄

{∫ ∞
0

y∗f(n)dn

∫ ∞
0

(s
s̄

)
f(n)dn−

∫ ∞
0

y∗
(s
s̄

)
f(n)dn

}
= δȳ∗ +

{∫ ∞
0

y∗f(n)dn

∫ ∞
0

sf(n)dn−
∫ ∞

0

y∗sf(n)dn

}
= δȳ − Cov(y∗, s) (A.6)

Substituting (A.6) into the optimal tax expression in (A.5) and then dividing both

the numerator and denominator by ȳ gives the optimal tax expression in the main

text.

Appendix B Piecewise Linear Income Taxation

Properties of Preferences

Suppose preferences are of the form U(x, y/n) = u[x − g(y/n)] ; where u′ > 0 ,

u′′ < 0 ; g′ > 0 and g′′ > 0. This is simply a concave transformation of quasi-linear
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preferences.15 Let the function x(y) satisfy the indifference condition U(x(y), y/n) = ū.

Differentiating this expression with respect to y yields x′(y) = g′(y/n)/n > 0 and

x′′(y) = g′′(y/n)/n2 > 0, such that indifference curves in (y, x) space are convex-

increasing in y. From this it immediately follows that:

dx′(y)

dn
=
−
(y
n

)
g′′
(y
n

)
− g′

(y
n

)
n2

< 0 (B.1)

such the slope of indifference curves in (y, x)-space is decreasing in n. This is illustrated

in Figure (3.2) in the main text.

Given the piecewise tax system described in (3.9) in the main text, it follows from

(B.1) that there will be (i) a critical productivity ñ(1 − t1, Y ) at which an individual

facing the marginal tax rate t1 has an optimal unconstrained gross earnings of Y ; and

(ii) a critical productivity ˜̃n(1− t2, Y ) at which an individual facing the marginal tax

rate t2 has optimal unconstrained earnings of Y . Formally:

ñ(1− t1) = g′
(
Y

ñ

)
; ˜̃n(1− t2) = g′

(
Y
˜̃n

)
Differentiating w.r.t. the net of tax rates gives:

∂ñ

∂(1− t1)
=

−(ñ)2

(1− t1)ñ+ g′′(Y/ñ) · (Y/ñ)
< 0

∂ ˜̃n

∂(1− t2)
=

−(˜̃n)2

(1− t2)˜̃n+ g′′(Y/˜̃n) · (Y/˜̃n)
< 0

(B.2)

Alternatively, differentiating w.r.t. the earnings threshold Y gives:

∂ñ

∂Y
=

g′′(Y/ñ)

(1− t1)ñ+ g′′(Y/ñ) · (Y/ñ)
> 0

∂ ˜̃n

∂Y
=

g′′(Y/˜̃n)

(1− t2)˜̃n+ g′′(Y/˜̃n) · (Y/˜̃n)
> 0

(B.3)

15Alternatively, we could write U(x, l) = u[x− g(1− l)]. It is straightforward to verify that:

Ul = u′ · αg′ > 0 , Ull = u′′ · [αg′(1− l)]2 − u′αg′(1− l) < 0
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Properties of indirect utility. Substituting the optimal earnings function y∗ (as

defined in (3.12) in the main text) into preferences gives the indirect utility function

v(n, 1− t1, 1− t2, Y,M). Differentiating v w.r.t. the net of tax rates and the earnings

threshold thus gives:

∂v

∂(1− t1)
=


u′ ·
〈
y∗ + ∂y∗

∂(1−t1)
[(1− t1)− g′(y∗/n)/n]︸ ︷︷ ︸

=0

〉
= u′y∗ : n ∈ (0, ñ]

u′ · Y : n ∈ (ñ,∞)

whilst

∂v

∂(1− t2)
=


0 : n ∈ (0, ˜̃n]

u′ ·
〈

(y∗ − Y ) + ∂y∗

∂(1−t2)
[(1− t2)− g′/n]︸ ︷︷ ︸

=0

〉
= u′(y∗ − Y ) : n ∈ (˜̃n,∞)

and finally:

∂v

∂Y
=


0 : n ∈ (0, ñ)

u′ · [(1− t1)− g′(Y/n)/n] > 0 : n ∈ (ñ, ˜̃n)

u′

〈
(t2 − t1) + ∂y

∂Y
[(1− t2)− g′/n]︸ ︷︷ ︸

=0

〉
= u′(t2 − t1) : n ∈ (˜̃n,∞)

Given that vM = u′ it follows that ∂v/∂(1− t1) = vM min(y∗, Y ) ∀n; whilst ∂v/∂(1−
t2) = vM(y∗ − Y ) ∀ n ∈ (˜̃n,∞).

Proof of Result 2

Optimal benefits (B̂, Ĉ). The FOCs characterising the optimal benefit levels are:

(B) : θu′
(
B̂ + Ĉ

)
+ (1− θ)s̄

(
t̂1, t̂2, Ŷ , B̂

)
≤ λ̂ ; B̂ ≥ 0 (B.4)

(C) : u′
(
B̂ + Ĉ

)
≤ λ̂ ; Ĉ ≥ 0 (B.5)
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where the pairs of inequalities hold with complementary slackness. Suppose that Ĉ = 0

but B̂ > 0: then (B.4) and (B.5) together imply that u′(B) = s̄(t1, t2, Y, B) which is a

contradiction given that the smvi is falling in n. It must therefore hold that Ĉ > 0 at

the optimum.

Optimal lower tax rate (t̂1). The FOC characterising the optimal lower tax rate

(t1) is16:

(t1) :

∫ ∞
0

− ∂v

∂(1− t1)
f(n)dn+ λ̂

〈∫ ñ

0

[
y∗ − t̂1

∂y∗

∂(1− t1)

]
f(n)dn+ Ŷ [1− F (ñ)]

〉
= 0

where the only individuals who adjust their labour supply in response to an increase t1

are those with n ∈ (0, ñ]. Taking this into account and using the fact that ∂v/∂(1−t1) =

vM min(y, Y ) ∀ n we can write this as:

∫ ñ

0

y
(

1− vM
λ

)
f(n)dn+

∫ ∞
ñ

Ŷ

(
1− vM

λ̂

)
f(n)dn = t̂1

∫ ñ ∂y∗

∂(1− t1)
f(n)dn

Letting Ei =
(1− ti)
y∗

∂y∗

∂(1− ti)
i ∈ {1, 2} we obtain:

t̂1

1− t̂1
=

∫ ñ
y∗
(
λ̂− vM

)
f(n)dn+

∫∞
ñ
Y
(
λ̂− vM

)
f(n)dn

λ̂
∫ ñ

y∗E1f(n)dn
(B.6)

=

∫ ñ
(y∗ − Y )

(
λ̂− vM

)
f(n)dn+

∫
Y
(
λ̂− vM

)
f(n)dn

λ̂
∫ ñ

y∗E1f(n)dn

=
Y (λ− s̄) +

∫ ñ
(y∗ − Y ) (λ− s)f(n)dn)

λ̂
∫ ñ

y∗E1f(n)dn

=
δY +

∫ ñ
(Y − y∗)

(
s− λ̂

)
f(n)dn

λ̂
∫ ñ

y∗E1f(n)dn
(B.7)

where to progress from (B.6) to (B.7) we simply added and subtracted
∫ ñ

Y (λ̂ −
vM)f(n)dn and then subsequently used the definitions s = vM and s̄ =

∫
sf(n)dn.

16In the unidimensional model where individuals differ only in their underlying productivity, Apps

et al (2013) add and subtract
∫ ñ

Y (λ−s) and use the property that λ = s̄ at the optimum. Of course,
in our setting with categorical transfers this may not be the case.
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Optimal upper tax rate (t̂2). Next, the FOC charactering the upper bracket tax

rate (t2) is:

(t2) :

∫ ∞
˜̃n

− ∂v

∂(1− t2)
+ λ̂

〈(
y∗ − Ŷ

)
− t̂2

∂y∗

∂(1− t2)

〉
f(n)dn = 0 (B.8)

where of course ∂y∗/∂(1 − t2) = 0 ∀n ∈ (0, ˜̃n). Using the fact that ∂v/∂(1 − t2) =

vM(y − Y ) this becomes;

∫ ∞
˜̃n

(
y∗ − Ŷ

)(
1− vM

λ̂

)
f(n)dn = t̂2

∫ ∞
˜̃n

∂y

∂(1− t2)
f(n)dn (B.9)

From which we obtain:

t̂2

1− t̂2
=

∫∞
˜̃n

(
y − Ŷ

)(
λ̂− vM

)
f(n)dn

λ̂
∫∞

˜̃n
yE2f(n)dn

(B.10)

Optimal earnings threshold (Ŷ ). Finally, the FOC with respect to the earnings

threshold (Y ) is:

(Y ) :

∫ ∞
ñ

∂v

∂Y
f(n)dn+ λ̂

〈
t̂1[1− F (ñ)] + t̂2[1− F (˜̃n)]

〉
(B.11)

Using the fact that ∂v/∂Y = −(t2 − t1)vM ∀n ∈ [˜̃n,∞) this becomes:

∫ ˜̃n

ñ

∂v

∂Y
f(n)dn+ (t̂2 − t̂1)

∫ ∞
˜̃n

vMf(n)dn = λ̂
{

(t̂2 − t̂1) + t̂1F (ñ)− t̂2F (˜̃n)
}

⇒
∫ ˜̃n

ñ

∂v

∂Y
f(n)dn+ (t̂2 − t̂1)

∫ ∞
˜̃n

(vM − λ̂)f(n)dn = λ̂t̂1
[
F (ñ)− F (˜̃n)

]
and thus:

∫ ˜̃n

ñ

(
∂v

∂Y
+ λ̂t̂1

)
f(n)dn = (t̂2 − t̂1)

∫ ∞
˜̃n

(λ̂− vM)f(n)dn (B.12)
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Appendix C Numerical Simulations with Isoelastic

Preferences

Properties of preferences with constant labour elasticity

Under the isoelastic preferences u(x,H) = log[x − αH1+k/(1 + k)] specified in (3.21)

in the main text, the optimal labour supply function is defined as:

H∗ = arg max
H∈[0,1]

log

(
nH(1− t) +M − αH

1+k

1 + k

)
This yields the explicit labour supply and optimal earnings functions:

H∗[n(1− t)] =

[
n(1− t)

α

] 1
k

y∗(n, 1− t) = nH∗ = α−
1
k (1− t) 1

kn
1+k
k (C.1)

from which we can immediately see that
∂y∗

∂n
> 0 and

∂y∗

∂(1− t) > 0. We can also

directly establish from (C.1) that the indirect utility function is given by:

v(n, 1− t,M) = log

[
(1− t)y∗ +M − α(y∗/n)1+k

1 + k

]
= log

[
n

1+k
k (1− t) 1

kα−
1
k

(
k

1 + k

)
+M

] (C.2)

Agent Monotonicity. Let the function x(y) satisfy the indifference condition u (x(y), y/n) =

ū and thus:

x(y) = eū + α

(
(y/n)1+k

1 + k

)
⇒ x′(y) = α

(y
n

)k
/n

⇒ dx′(y)

dn
= −α

(y
n

)k
(k + 1) /n < 0 (C.3)

So indifference curves in (y, x) space are (i) convex-increasing in y but (ii) flatter in n

(i.e. agent monotonicity).



CHAPTER 3. INCOME TAXATION AND CATEGORICAL TRANSFERS 217

Piecewise Tax System. Consider a piecewise system with two tax rates t1 ≤ t2 and

earnings threshold Y generating an individual budget constraint:

x =

y(1− t1) +M : y ≤ Y

Y (t2 − t1) + y(1− t2) +M : y > Y

Consider an individual facing the portion of the budget constraint for which y ≤
Y . From (C.1) and (C.3) it is straightforward to establish that there will be critical

productivity ñ at which an individual will choose to earn exactly Y . Formally:

ñ =

[
Y k

(
α

1− t1

)] 1
1+k

(C.4)

Next, consider an individual facing the upper part of the budget constraint with

marginal tax rate t2. Once more, from (C.1) and (C.3) we can establish that there

is a critical productivity ˜̃n at which an individual will choose to earn exactly Y . For-

mally:

˜̃n =

[
Y k

(
α

1− t2

)] 1
1+k

(C.5)

where for t1 < t2 : ñ < ˜̃n.

Note that:
∂ñ

∂t1
> 0 ;

∂ñ

∂Y
> 0 ;

∂ ˜̃n

∂t2
> 0 ;

∂ ˜̃n

∂Y
> 0

Proof of Result 3

Optimal Tax Rate under pure targeting scheme (when R = 0). Under the isoe-

lastic preferences in (3.21) the optimisation problem in (3.23) can be written as:

max
t∈(0,1)

θ log

[(
1− θ
θ

)
t(1− t) 1

kα−
1
k

∫ ∞
0

n
1+k
k dF (n)

]

+ (1− θ)
∫ ∞

0

log

[
(1− t) 1+k

k α−
1
k

(
k

1 + k

)
n

1+k
k

]
dF (n)

(C.6)
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This yields the FOC for the optimal tax rate (t̂c):

θ
[
(1− t̂c)

1
k − ( 1

k
)t̂c(1− t̂c)

1−k
k

]
t̂c(1− t̂c)

1
k

= (1− θ) (1+k
k

)

(1− t̂c)

⇒ θ

[
1−

(
1

k

)
t̂c(1− t̂c)−1

]
= (1− θ)

(
1 + k

k

)
t̂c(1− t̂c)−1

⇒ θ

[
(1− t̂c)−

(
1

k

)
tc

]
= (1− θ)

(
1 + k

k

)
t̂c

and thus t̂c = θ(k/(1 + k)).

The critical tax rate tδ (when R = 0). When R = 0 the elimination of between-

group inequality in the average smvi requires:[(
1− θ
θ

)
tδ(1− tδ)

1
kα−

1
k

∫ ∞
0

n
1+k
k dF (n)

]−1

=

[
(1− tδ)

1+k
k α−

1
k

(
k

1 + k

)]−1

·
∫ ∞

0

n−
1+k
k dF (n)

and thus:

θ

(
k

1 + k

)
= tδ

[
(1− θ)

∫ ∞
0

n−
1+k
k dF (n)

∫ ∞
0

n
1+k
k dF (n) + θ

(
k

1 + k

)]
Simple manipulation then yields:

tδ = θ

[
(1− θ)

(
1 + k

k

)∫ ∞
0

n
1+k
k dF (n)

∫ ∞
0

n−
1+k
k dF (n) + θ

]−1
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p
o
p
u
l
a
t
i
o
n
i
s
:

1
8
0

d
e
f
w
a
(
t
1
,
t
2
,
y
c
h
e
c
k
,
m
,
a
,
k
,
m
u
,
m
i
n
n
)
:

1
8
1

r
e
t
u
r
n
q
u
a
d
(
v
p
d
f
,
m
i
n
n
,
1
0
0
,

1
8
2

a
r
g
s
=
(
t
1
,
t
2
,
y
c
h
e
c
k
,
m
,
a
,
k
,
m
u
,
m
i
n
n
)
)
[
0
]

1
8
3

1
8
4

#
T
h
e
m
a
r
g
i
n
a
l
i
n
d
i
r
e
c
t
u
t
i
l
i
t
y
o
f
a
n
a
b
l
e
i
n
d
i
v
i
d
u
a
l
i
s
:

1
8
5

d
e
f
v
m
p
w
(
n
,
t
1
,
t
2
,
y
c
h
e
c
k
,
m
,
a
,
k
)
:

1
8
6

i
f
n
<
n
t
i
l
d
e
(
t
1
,
y
c
h
e
c
k
,
a
,
k
)
:

1
8
7

r
e
t
u
r
n
1
/
(
(
(
n
*
(
1
-
t
1
)
/
a
)
*
*
(
1
/
k
)
)
*
n
*
(
1
-
t
1
)
+
m
-

1
8
8

a
*
(
(
(
(
(
n
*
(
1
-
t
1
)
/
a
)
*
*
(
1
/
k
)
)
)
*
*
(
1
+
k
)
)
/
(
1
+
k
)
)
)

1
8
9

e
l
i
f
(
n
t
i
l
d
e
(
t
1
,
y
c
h
e
c
k
,
a
,
k
)
<
=
n
<
=

1
9
0

n
t
i
l
d
e
2
(
t
1
,
t
2
,
y
c
h
e
c
k
,
a
,
k
)
)
:

1
9
1

r
e
t
u
r
n
1
/
(
y
c
h
e
c
k
*
(
1
-
t
1
)
+
m
-

1
9
2

a
*
(
(
(
y
c
h
e
c
k
/
n
)
*
*
(
1
+
k
)
)
/
(
1
+
k
)
)
)

1
9
3

e
l
s
e
:

1
9
4

r
e
t
u
r
n
1
/
(
y
c
h
e
c
k
*
(
t
2
-
t
1
)
+
(
(
n
*
(
1
-
t
2
)
/
a
)
*
*
(
1
/
k
)
)
*
n
*

1
9
5

(
1
-
t
2
)
+

1
9
6

m
-
a
*
(
(
(
(
(
n
*
(
1
-
t
2
)
/
a
)
*
*
(
1
/
k
)
)
)
*
*
(
1
+
k
)
)
/
(
1
+
k
)
)
)

1
9
7

#
M
u
l
t
i
p
l
y
i
n
g
t
h
i
s
b
y
t
h
e
p
r
o
d
u
c
t
i
v
i
t
y
d
i
s
t
r
i
b
u
t
i
o
n
p
d
f

t
h
e
n
g
i
v
e
s
:

1
9
8

d
e
f
v
m
p
w
p
d
f
(
n
,
t
1
,
t
2
,
y
c
h
e
c
k
,
m
,
a
,
k
,
m
u
,
m
i
n
n
)
:

1
9
9

r
e
t
u
r
n
(
v
m
p
w
(
n
,
t
1
,
t
2
,
y
c
h
e
c
k
,
m
,
a
,
k
)
*

2
0
0

p
a
r
e
t
o
.
p
d
f
(
n
,
m
u
,
l
o
c
=
0
,
s
c
a
l
e
=
m
i
n
n
)
)

2
0
1

2
0
2

#
T
h
e
a
v
e
r
a
g
e
s
m
v
i
o
v
e
r
t
h
e
a
b
l
e
s
u
b
p
o
p
u
l
a
t
i
o
n
i
s
t
h
u
s
:

2
0
3

d
e
f
s
b
a
r
p
w
(
t
1
,
t
2
,
y
c
h
e
c
k
,
m
,
a
,
k
,
m
u
,
m
i
n
n
)
:

2
0
4

r
e
t
u
r
n
q
u
a
d
(
v
m
p
w
p
d
f
,
m
i
n
n
,
1
0
0
,
a
r
g
s
=

2
0
5

(
t
1
,
t
2
,
y
c
h
e
c
k
,
m
,
a
,
k
,
m
u
,
m
i
n
n
)
)
[
0
]

2
0
6

2
0
7

#
B
e
t
w
e
e
n
-
g
r
o
u
p
i
n
e
q
u
a
l
i
t
y
i
n
t
h
e
a
v
e
r
g
a
e
s
m
v
i
i
s

d
e
f
i
n
e
d
b
y
:

2
0
8

d
e
f
b
e
t
a
p
w
(
t
1
,
t
2
,
y
c
h
e
c
k
,
m
a
,
m
u
n
,
a
,
k
,
m
u
,
m
i
n
n
)
:

2
0
9

r
e
t
u
r
n
u
x
(
m
u
n
)
-
s
b
a
r
p
w
(
t
1
,
t
2
,
y
c
h
e
c
k
,
m
a
,
a
,
k
,
m
u
,
m
i
n
n
)

2
1
0

2
1
1

#
2
.
1
)
P
I
E
C
E
W
I
S
E
O
P
T
I
M
I
S
A
T
I
O
N
P
R
O
B
L
E
M

2
1
2

#
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2
1
3

2
1
4

#
L
e
t
x
=
(
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
x
[
3
]
,
x
[
4
]
)
=
(
t
1
,
t
2
,
y
c
h
e
c
k
,
b
,
c
)

d
e
n
o
t
e
t
h
e
v
a
r
i
a
b
l
e
s
w
e
a
r
e
o
p
t
i
m
i
s
i
n
g
o
v
e
r
.

2
1
5

#
W
r
i
t
t
e
n
i
n
t
e
r
m
s
o
f
t
h
e
c
h
o
i
c
e
v
e
c
t
o
r
,
n
e
t
t
a
x
r
e
v
e
n
u
e

i
n
t
h
e
e
c
o
n
o
m
y
i
s
g
i
v
e
n
b
y
:

2
1
6

d
e
f
b
u
d
g
e
t
(
x
,
a
,
k
,
t
h
e
t
a
,
m
u
,
m
i
n
n
,
r
)
:

2
1
7

r
e
t
u
r
n

(
1
-
t
h
e
t
a
)
*
(
x
[
0
]
*
(
q
u
a
d
(
y
p
d
f
,
m
i
n
n
,
n
t
i
l
d
e
(
x
[
0
]
,
x
[
2
]

2
1
8

,
a
,
k
)
,
a
r
g
s
=
(
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
a
,
k
,
m
u
,
m
i
n
n
)
)
[
0
]
+

2
1
9

x
[
2
]
*
p
r
o
p
o
y
c
h
e
c
k
(
x
[
0
]
,
x
[
2
]
,
a
,
k
,
m
u
,
m
i
n
n
)
)
+

2
2
0

x
[
1
]
*
q
u
a
d
(
y
d
i
f
f
p
d
f
,
n
t
i
l
d
e
2
(
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
a
,
k
)
,

2
2
1

1
0
0
,
a
r
g
s
=
(
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
a
,
k
,
m
u
,
m
i
n
n
)
)
[
0
]
)
-
r

2
2
2
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2
2
3

#
T
h
e
o
p
t
i
m
i
s
a
t
i
o
n
p
r
o
b
l
e
m
i
s
g
i
v
e
n
b
y
t
h
e
b
e
l
o
w

f
u
n
c
t
i
o
n
.

2
2
4

d
e
f
r
e
s
u
l
t
p
w
(
a
,
k
,
t
h
e
t
a
,
m
u
,
m
i
n
n
,
r
,
s
)
:

2
2
5

c
o
n
s
p
w
=
(
{
’
t
y
p
e
’
:
’
e
q
’
,

2
2
6

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
x
[
3
]
+
t
h
e
t
a
*
x
[
4
]
-

2
2
7

b
u
d
g
e
t
(
x
,
a
,
k
,
t
h
e
t
a
,
m
u
,
m
i
n
n
,
r
)
]
)
}
,

2
2
8

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
2
9

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
x
[
0
]
]
)
}
,

2
3
0

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
3
1

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
1
-
x
[
0
]
]
)
}
,

2
3
2

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
3
3

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
x
[
1
]
]
)
}
,

2
3
4

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
3
5

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
1
-
x
[
1
]
]
)
}
,

2
3
6

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
3
7

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
x
[
1
]
-
x
[
0
]
]
)
}
,

2
3
8

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
3
9

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
x
[
2
]
]
)
}
,

2
4
0

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
4
1

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
x
[
3
]
]
)
}
,

2
4
2

{
’
t
y
p
e
’
:
’
i
n
e
q
’
,

2
4
3

’
f
u
n
’
:
l
a
m
b
d
a
x
:
n
p
.
a
r
r
a
y
(
[
x
[
4
]
]
)
}
)

2
4
4

d
e
f
o
b
j
p
w
(
x
,
a
,
k
,
t
h
e
t
a
,
m
u
,
m
i
n
n
)
:

2
4
5

r
e
t
u
r
n
(
-
t
h
e
t
a
*
u
(
x
[
3
]
+
x
[
4
]
)
-

2
4
6

(
1
-
t
h
e
t
a
)
*
w
a
(
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
x
[
3
]
,
a
,
k
,
m
u
,
m
i
n
n
)
)

2
4
7

r
e
s
=
m
i
n
i
m
i
z
e
(
o
b
j
p
w
,
[
0
.
1
,
0
.
1
,
s
,
0
.
1
,
0
.
1
]
,

2
4
8

a
r
g
s
=
(
a
,
k
,
t
h
e
t
a
,
m
u
,
m
i
n
n
)
,
c
o
n
s
t
r
a
i
n
t
s
=
c
o
n
s
p
w
,

2
4
9

m
e
t
h
o
d
=
’
S
L
S
Q
P
’
,

2
5
0

o
p
t
i
o
n
s
=
{
’
f
t
o
l
’
:
1
e
-
1
0
,
’
d
i
s
p
’
:
F
a
l
s
e
}
)

2
5
1

r
e
t
u
r
n
(
’
(
t
1
,
t
2
,
Y
,
b
,
c
)
=
’
,
r
e
s
.
x
,
’
b
e
t
a
=
’
,

2
5
2

b
e
t
a
p
w
(
r
e
s
.
x
[
0
]
,
r
e
s
.
x
[
1
]
,
r
e
s
.
x
[
2
]
,
r
e
s
.
x
[
3
]
,
r
e
s
.
x
[
3
]
+

2
5
3

r
e
s
.
x
[
4
]
,
a
,
k
,
m
u
,
m
i
n
n
)
,

2
5
4

’
s
b
a
r
=
’
,

s
b
a
r
p
w
(
r
e
s
.
x
[
0
]
,
r
e
s
.
x
[
1
]
,
r
e
s
.
x
[
2
]
,
r
e
s
.
x
[
3
]
,
a
,
k
,
m
u

2
5
5

,
m
i
n
n
)
,
’
G
=
’
,
b
u
d
g
e
t
(
r
e
s
.
x
,
a
,
k
,
t
h
e
t
a
,
m
u
,
m
i
n
n
,
r
)
,

2
5
6

’
y
b
a
r
=
’
,
y
b
a
r
(
r
e
s
.
x
[
0
]
,
r
e
s
.
x
[
1
]
,
r
e
s
.
x
[
2
]
,
a
,
k
,
m
u
,
m
i
n
n
)
,

2
5
7

’
W
=
’
,
-
o
b
j
p
w
(
r
e
s
.
x
,
a
,
k
,
t
h
e
t
a
,
m
u
,
m
i
n
n
)
)

2
5
8

2
5
9

#
T
h
e
d
i
c
t
i
o
n
a
r
y
o
f
c
o
n
s
t
r
a
i
n
t
s
i
s
g
i
v
e
n
b
y
’
c
o
n
s
p
w
’
.

T
h
e
f
i
r
s
t
c
o
n
s
t
r
a
i
n
t
i
s
a
n
e
q
u
a
l
i
t
y
c
o
n
s
t
r
a
i
n
t
a
n
d

s
p
e
c
i
f
i
e
s
t
h
a
t
b
e
n
e
f
i
t
e
x
p
e
n
d
i
t
u
r
e
m
u
s
t
e
q
u
a
t
e
w
i
t
h

n
e
t
t
a
x
r
e
v
e
n
u
e
a
t
t
h
e
o
p
t
i
m
u
m
.
T
h
e
r
e
m
a
i
n
i
n
g

c
o
n
s
t
r
a
i
n
t
s
a
r
e
i
n
e
q
u
a
l
i
t
y
c
o
n
s
t
r
a
i
n
t
s
s
p
e
c
i
f
y
i
n
g

t
h
a
t
:
(
i
)
t
h
e
u
p
p
e
r
a
n
d
l
o
w
e
r
t
a
x
r
a
t
e
s
m
u
s
t
b
e

i
n
t
e
r
i
o
r
a
n
d
f
a
l
l
b
e
t
w
e
e
n
z
e
r
o
a
n
d
o
n
e
;
(
i
i
)
t
h
e

u
p
p
e
r
t
a
x
r
a
t
e
m
u
s
t
b
e
a
t
l
e
a
s
t
a
s
g
r
e
a
t
a
s
t
h
e

l
o
w
e
r
t
a
x
r
a
t
e
;
a
n
d
(
i
i
i
)
t
h
e
o
p
t
i
m
a
l
b
e
n
e
f
i
t

l
e
v
e
l
s
m
u
s
t
b
e
n
o
n
-
n
e
g
a
t
i
v
e
.

2
6
0

2
6
1

#
T
h
e
t
e
r
m
’
s
’
i
s
a
s
t
a
r
t
i
n
g
p
o
i
n
t
i
n
t
h
e
s
e
a
r
c
h
f
o
r
t
h
e

o
p
t
i
m
a
l
e
a
r
n
i
n
g
s
t
h
r
e
s
h
o
l
d
’
y
c
h
e
c
k
’
.
T
h
e
s
t
a
r
t
i
n
g

p
o
i
n
t
c
a
n
b
e
(
a
n
d
i
s
)
v
a
r
i
e
d
s
y
s
t
e
m
a
t
i
c
a
l
l
y
i
n
t
h
e

s
e
a
r
c
h
f
o
r
t
h
e
o
p
t
i
m
a
l
p
i
e
c
e
w
i
s
e
s
y
s
t
e
m
.

2
6
2

2
6
3

#
2
.
2
.
O
P
T
I
M
I
S
A
T
I
O
N
P
R
O
B
L
E
M
F
O
R
A
G
I
V
E
N
V
A
L
U
E
O
F

’
y
c
h
e
c
k
’
.

2
6
4

#
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2
6
5

#
A
s
a
f
u
r
t
h
e
r
c
h
e
c
k
o
n
t
h
e
r
e
s
u
l
t
s
g
e
n
e
r
a
t
e
d
b
y
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’
r
e
s
u
l
t
p
w
’
,
w
e
a
l
s
o
c
o
n
s
i
d
e
r
t
h
e
t
w
o
-
s
t
a
g
e

o
p
t
i
m
i
s
a
t
i
o
n
p
r
o
b
l
e
m
.
T
h
i
s
i
n
v
o
l
v
e
s
f
i
r
s
t
t
a
k
i
n
g

’
y
c
h
e
c
k
’
a
s
g
i
v
e
n
a
n
d
s
o
l
v
i
n
g
t
h
e
o
p
t
i
m
i
s
a
t
i
o
n
f
o
r

t
h
e
o
p
t
i
m
a
l
t
a
x
r
a
t
e
s
a
n
d
a
n
d
b
e
n
e
f
i
t
l
e
v
e
l
s
.
W
e

t
h
e
n
v
a
r
y
t
h
e
f
i
x
e
d
v
a
l
u
e
o
f
’
y
c
h
e
c
k
’
a
n
d
d
e
t
e
r
m
i
n
e

t
h
e
v
a
l
u
e
o
f
’
y
c
h
e
c
k
’
a
t
w
h
i
c
h
w
e
l
f
a
r
e
i
s
h
i
g
h
e
s
t
.

2
6
6

2
6
7

#
T
o
p
r
o
c
e
e
d
,
w
e
n
o
w
l
e
t
t
h
e
v
e
c
t
o
r

x
=
(
x
[
0
]
,
x
[
1
]
,
x
[
2
]
,
x
[
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Chapter 4

The Optimal Linear Income Tax

with Imperfectly Administered

Categorical Transfers

4.1 Introduction

When the linear income tax framework is augmented with categorical heterogeneity

that the planner can perfectly observe, there is a well-defined ordering of priorities be-

tween tax financed categorical transfers and a universal benefit (demogrant): net tax

revenue should be spent solely on categorical transfers up to the point that inequality in

the average social marginal value (smvi) across categorical groups is eliminated.1 Con-

ditional on it being optimal to raise enough tax revenue to achieve this, and there being

tax revenue left over, a universal benefit (demogrant) will be provided to all individuals

in society. The resulting optimal tax expression captures the equity-efficiency tradeoff

inherent in income taxation; with equity terms in the numerator and those of efficiency

in the denominator. In general, the equity considerations will be a function of both (i)

any between-group disparity in the average smvi; and (ii) the ‘within-group’ negative

of the covariance between individual earnings and their smvi. The efficiency consider-

ations, meanwhile, capture the aggregate (compensated) responsiveness of individual

1The result that categorical transfers should be set to eliminate inequality in the average smvi
between categorical groups is well-established (see Diamond and Sheshinski, 1995; Viard, 2001a)
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gross earnings to the tax rate.

In reality, however, the complexities of determining an individual’s categorical status

(e.g. disability or involuntary unemployment) mean that categorical benefits are likely

to be administered with both Type I (false rejection) and Type II (false award) clas-

sification errors.2 The extent to which these errors are made will affect the ordering

of priorities between categorical and universal benefits and, in turn, have implications

for the optimal tax rate. This chapter is concerned with the additional equity and

efficiency considerations that classification errors introduce into the optimal tax ex-

pression. For example, if an increase in the tax rate induces an additional ineligible

individual to apply for - and ultimately be awarded - a categorical benefit, this may

give rise to both (i) losses in tax revenue from this individual and (ii) additional welfare

expenditure costs.

This chapter considers an economy where a fraction of the population is unable to

work, whilst the remaining fraction is composed of individuals who are able to work

but differ continuously in their productivity. The government operates a three-part

tax-benefit system comprising (i) a constant marginal tax rate on all earned income;

(ii) a tax-free universal benefit received unconditionally by all individuals in society;

and (iii) a tax-free categorical benefit that is ex-ante conditional on an applicant being

unable to work and ex-post conditional on a recipient not working. The test awarding

the categorical benefit makes Type I and Type II classification errors. However, it

is assumed that the ex-post ‘no-work’ condition is fully enforced such that no able

individual who is awarded the benefit by Type II error will subsequently work. This

therefore restricts the able individuals who apply for the categorical benefit to those

of lower productivities.3 Moreover, the critical productivity at or below which an able

individual chooses to apply for the categorical benefit will be an increasing function of

the tax rate.

An increase in the tax rate will therefore generate both direct and indirect behavioural

responses that affect the government budget constraint. The direct effect is simply

that found in all conventional analyses: an increase in the tax rate induces individuals

2A growing empirical literature analyses the scope for Type II errors in the U.S. Social Security
Disability Insurance programme (see Autor and Duggan, 2003, 2006; Benitez-Silva et al., 2004; Chen
and van der Klaauw, 2008; Von Wachter et al., 2011).

3Applications for the categorical benefit are taken to be costless in terms of money, stigma and
time.
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to adjust their labour supply in the intensive margin. The indirect effect, meanwhile,

captures the fact that an increase in the tax rate will induce additional able individuals

to apply for the categorical benefit and, if awarded it, stop working and generating tax

revenue. This will also affect the expenditure side of the budget constraint because

more individuals receive the categorical benefit.

The key contributions of this chapter are (i) to provide an expression for the optimal

linear tax rate that captures the additional equity and efficiency considerations of

income taxation that arise with classification errors; and (ii) to numerically simulate

how the optimal tax rate (and benefit levels) changes with the propensity to make

classification errors of either type.

With regard to the optimal tax expression, an important consideration in both the

numerator (equity terms) and denominator (efficiency terms) becomes the elasticity of

the distribution function with respect to individual productivity, evaluated at the crit-

ical productivity at or below which able individuals choose to apply for the categorical

benefit. Type II errors generate conflicting effects in both the equity and efficiency

dimensions. In the equity dimension, Type II errors (i) mean that some able individ-

uals of low productivity - who the government would not wish to tax highly - receive

the categorical benefit and do not work, which acts to raise the tax rate; but also

(ii) redistribute within the able subpopulation through ‘leaking’ categorical transfers

to lower productivity individuals, which acts to lower the tax rate because there may

be less need to redistribute via the universal benefit. In the efficiency dimension (i)

Type II errors mean that some individuals of lower productivity do not work and thus

their response to taxation can be disregarded, therefore acting to increase the tax rate;

but (ii) the number of applications for the categorical benefit is, ceteris paribus, an

increasing function of the tax rate, and because the government must pay each new

recipient the categorical benefit in addition to losing tax revenue from this individual,

this acts to lower the tax rate.

Individual utility is throughout taken to be a concave transformation of quasilinear

preferences (linear in consumption and convex-decreasing in labour). The implications

of this assumption are that (i) there are are no income effects associated with a working

individual’s smvi; and (ii) the size of the universal benefit does not influence an able

individual’s decision to apply for the categorical benefit. This allows us to establish a

precise relationship between the average smvi of an able applicant for the categorical
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benefit and the shadow price of public expenditure, which in turn greatly assists in

interpreting the equity considerations in the optimal tax expression.

To gain comparative statics insights into how the optimal tax rate changes with the

propensity to make classification errors, we turn to numerical methods. Preferences

take a frequently employed isoelastic form (see Atkinson, 1990; Saez, 2001) that is

consistent with those adopted in the theoretical section of the chapter. Individual

productivity is lognormally distributed. This has been the distribution of choice for the

key studies of categorical transfers within the optimal income tax framework (Immonen

et al., 1998; Viard, 2001a). For varying values of the constant labour supply elasticity

the results all suggest that an increase in the propensity to make either error type

(i) increases the optimal tax rate; (ii) increases the optimal universal benefit; but (iii)

decreases the optimal categorical benefit. Welfare provision thus becomes increasingly

universal as the the discriminatory power of the test awarding the categorical benefit

decreases. As in the theory, however, the categorical benefit always remains positive

such that some form of targeting is always desirable.

Whilst a number of papers have analysed perfectly administered categorical transfers in

a variant of the standard linear income tax framework where individuals differ over both

a productivity continuum and some categorical attribute4, there has been little work

on imperfectly administered transfers in this setting. Indeed, the literature typically

restricts individual heterogeneity in the productivity dimension to two types (Jacquet,

2014; Stern, 1982). In this regard, the closest precursor to this chapter dates back to

Stern (1982), who compares social welfare under (i) imperfect lump-sum taxation5 and

a proportional income tax; with (ii) optimal non-linear income taxation. It is the first

case that is related to this chapter: individual earnings are taxed linearly at source and

the government can classify, albeit with error, individuals into ‘skilled’ and ‘unskilled’

groups. With no classification errors it may be optimal to impose a lump-sum tax on

skilled individuals to finance transfers to the unskilled, with the income tax set at zero.

However, a positive propensity to incorrectly classify the unskilled as skilled exposes

4See, for example, Viard (2001a,b).
5Whilst there is a clear distinction between categorical transfers and lump-sum transfers in the

general case where the categorical attribute (e.g. disability) is imperfectly correlated with ability,
it is also important to stress that the two converge in the extreme case where there is a perfect
correlation. This would arise, for example, in a simple two-type setting where disability status is
perfectly correlated with low ability. For a further discussion on the similarity between categorical
transfers and lump-sum transfers see Viard (2001a,b).
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the former to the risk of receiving a smaller and even negative transfer, which is welfare

reducing. Consequently, the linear income tax - which is independent of ‘categorical’

status and thus the same for both types - may rise to ensure transfers to the skilled

are sufficiently large. As in the current chapter, the numerical simulations in Stern

illustrate that the optimal linear income tax rate increases with the propensities to

misclassify either type of individual.

The remainder of this chapter is structured as follows. Section 4.2 presents the model

and the main theoretical analysis. Section 4.3 then presents the numerical analysis.

Finally, Section 4.4 concludes the chapter.

4.2 The Model

4.2.1 Individuals

Let individual preferences over consumption (x ≥ 0) and labour (H ≥ 0) be represented

by the utility function:

U(x,H) = u (x− g(H)) (4.1)

where u′ > 0 ; u′′ < 0 and limx→0 u
′ = +∞; whilst g′ > 0 ; g′′ > 0 and limH→0 g =

limH→0 g
′ = 0. This last assumption simply ensures that there will always be an interior

optimum for H.6

An individual with net wage ω ≥ 0 and unearned income M ≥ 0 has an optimal labour

supply function H∗(ω) that satisfies ω ≡ g′(H∗). Notice that this is independent

of unearned income. By the assumptions placed on g, it follows directly that H∗ is

increasing in ω.7

We denote an individual’s indirect utility function by v(ω,M) ≡ u[ωH∗+M − g(H∗)].

It follows follows from the envelope theorem that vω = u′H∗ and vM = u′, which in

turn implies vω = vMH
∗ (i.e. Roy’s identity). In addition, vωM = u′′H∗ < 0 such that

the marginal indirect utility of income is decreasing in the net wage.

6The implication is therefore that there will be no reservation wage.
7Differentiating both sides of ω = g′(H∗) w.r.t. ω gives dH∗(ω)/dω = [g′′(H∗)]−1 > 0.
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With this by way of background we proceed to define the population and tax-benefit

system in place.

4.2.2 The Population and Tax-Benefit System

Consider an economy of size 1 where a fraction θ ∈ (0, 1) of the population face a

zero quantity constraint on labour supply and are thus unable to work. The remaining

(1−θ) individuals are able to work but differ in their underlying productivity, n ; where

n ∈ (0,∞) is continuously distributed with density function f(n) and distribution

function F (n).

The government operates a three-part tax-benefit system comprising (i) a constant

marginal tax rate t ∈ (0, 1) on all earned income; (ii) a tax-free universal benefit

B ≥ 0 that is received unconditionally by all individuals in society; and (iii) a tax-free

categorical benefit C ≥ 0 that is ex-ante conditioned on applicants being unable to work

and ex-post conditioned on recipients not working. Applications for the categorical

benefit are taken to be costless in terms of money, time and stigma. The test awarding

the benefit makes Type I (false rejection) and Type II (false award) classification

errors with probabilities pI and pII , respectively. We assume that pI + pII ≤ 1, which

guarantees that the test is never more likely to award the categorical benefit to an able

applicant than an unable applicant.

Enforcement and the critical application productivity. In what follows, we

assume that the ex-post no-work condition is fully enforced such that no able individual

who is incorrectly awarded C by Type II error ever chooses to work. The implication

is that only those of sufficiently low productivity will choose to apply for C. With this

in mind, let the critical productivity ¯̄n(1− t, C) satisfy u(B+C) ≡ v[¯̄n · (1− t), B] and

thus:

C = ¯̄n(1− t)H∗ (¯̄n(1− t))− g [H∗ (¯̄n(1− t))] (4.2)

It follows that all able individuals with n ∈ [0, ¯̄n] will choose to apply for C; whilst

those with n ∈ (¯̄n,∞) will not apply because the opportunity cost of not working is
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Figure 4.1: The Critical Productivity ¯̄n(1− t, C)
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Notes. This figure illustrates how the critical productivity ¯̄n changes with both the tax rate (left
subplot) and the categorical benefit size (right subplot).

too high8. Differentiating (4.2) with respect to (1− t) and C, respectively, yields:

∂ ¯̄n

∂(1− t) = −
¯̄n

1− t < 0 ;
∂2 ¯̄n

∂(1− t)2
=

2¯̄n

(1− t) > 0 . (4.3)

and

∂ ¯̄n

∂C
=

1

(1− t)H∗ > 0 ;
∂2 ¯̄n

∂C2
= − 1

(1− t)g′′(H∗) · (H∗)3
< 0 (4.4)

A marginal increase in either t or C thus increases the critical productivity at or below

which an able individual chooses to apply for C and, if awarded it, stop working (see

Figure 4.1).

Aggregate gross earnings and the tax tate. Let aggregate gross earnings over

the able subpopulation be given by the composite function:

Z (1− t, ¯̄n; θ, pII) = (1− θ)
{∫ ∞

0

y(n, 1− t)dF (n)− pII
∫ ¯̄n

0

y(n, 1− t)dF (n)

}
(4.5)

8We assume that at the point of indifference an able individual will choose to apply for C.
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where y(n, 1 − t) denotes individual optimal gross earnings. The direct and indirect

effects of an increase in the net-of-tax rate are given by, respectively:

∂Z

∂(1− t) = (1− θ)
(∫ ∞

0

∂y

∂(1− t)dF (n)− pII
∫ ¯̄n

0

∂y

∂(1− t)dF (n)

)
> 0 , (4.6)

∂Z

∂ ¯̄n
· ∂ ¯̄n

∂(1− t) = (1− θ)F (¯̄n)pIIEf (¯̄n)y|n=¯̄n(1− t)−1 > 0 . (4.7)

where Ef (n) ≡ nf(n)/F (n) is the elasticity of the distribution function with respect

to individual productivity.

The direct effect of an increase in the net-of-tax rate is simply that found in all con-

ventional analyses: it captures the aggregate intensive margin response of working

individuals to the increased work incentives, holding constant the critical productivity

¯̄n. Meanwhile, the indirect effect of an increase in the net-of-tax rate is captured by

the fact that ¯̄n falls with the net-of-tax rate, and thus so too do the number of ap-

plicants for the categorical benefit. This increases the number of working individuals

in the economy. Notice that the size of the indirect effect depends on the elastic-

ity of the distribution function with respect to individual productivity, evaluated at

the critical productivity ¯̄n. Both direct and indirect effects act to increase aggregate

earnings.

Government Budget Constraint. The government budget constraint is given

by:

B + χ (t, C; θ, pI , pII) · C ≤ t · Z (1− t, ¯̄n; θ, pII)−R (4.8)

where χ ≡ θ(1 − pI) + (1− θ)F (¯̄n)pII denotes the number of categorical recipients in

the economy, whilst R ≥ 0 is an exogenous revenue requirement for spending outside

of welfare. One can readily establish that:

∂χ

∂t
= (1− θ)F (¯̄n)pIIEf (¯̄n)(1− t)−1 > 0 (4.9)
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Intuitively, a ceteris paribus increase in the tax rate reduces the gain to working and,

consequently, incentivises additional able individuals to apply for the categorical ben-

efit. The size of this effect is increasing in the elasticity of the distribution function

with respect to individual productivity, evaluated at the critical productivity ¯̄n.

Let CF (t, B; θ, pI , pII , R) be the value of the categorical benefit that exhausts the bud-

get constraint for any pair (t, B) and exogenous parameters (θ, pI , pII , R). Formally,

CF is defined by:

t · Z [1− t, ¯̄n(1− t, CF ); θ, pII ]− χ(t, CF ; θ, pI , pII) · CF ≡ (B +R) (4.10)

Written in this way, we can see that the left side is unambiguously decreasing in

C (because ∂Z/∂C < 0, ∂χ/∂C > 0), whilst the right side is independent of C.

Differentiating (4.10) with respect to t gives:

∂CF
∂t

=

Z − t
(

∂Z

∂(1− t) +
∂Z

∂ ¯̄n

∂ ¯̄n

∂(1− t)

)
− ∂χ

∂t
CF

∂χ

∂C
CF + χ− t∂Z

∂ ¯̄n

∂ ¯̄n

∂C

=

Z − t ∂Z

∂(1− t) − (1− θ)F (¯̄n)pIIEf (¯̄n)(ty|n=¯̄n + CF )/(1− t)

χ+ (1− θ)pIIf(¯̄n)
∂ ¯̄n

∂C
(CF + ty|n=¯̄n)

(4.11)

The numerator in (4.11) captures the effect of an increase in the tax rate on the benefit

budget, holding constant the categorical benefit size. The first term, Z, captures the

effect of an increase in the tax rate on tax revenue in the absence of any behavioural

responses. Were this the only term it would unambiguously be the case that ∂CF/∂t >

0. There are of course behavioural responses and these are captured by the remaining

terms. The second term is the negative of the direct effect in (4.6). It thus corresponds

to the reduction in aggregate earnings caused by individuals reducing their labour time

in the intensive margin. The third term captures the fact that ¯̄n increases with the

tax rate, and thus so too do the number of categorical applicants (and recipients) from

the able subpopulation. As discussed in both (4.7) and (4.9), this results in both (i)
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a loss in tax revenue as individuals who previously worked now do not; and (ii) the

expenditure cost of paying the categorical benefit to the new recipients. Overall, the

sign of the numerator - and in turn the sign of ∂CF/∂t - will depend on whether or

not any rise in tax revenue generated by the increase in t is offset by the additional

benefit expenditure costs it induces.

The denominator in (4.11) captures the effect of an increase in the categorical benefit

on the benefit budget. It is unambiguously positive. An increase in the categorical

benefit requires paying all existing categorical recipients a higher benefit level. This

in turn incentivises additional individuals to apply, which generates both (i) a loss in

tax revenue as individuals who previously worked now do not; and (ii) the expenditure

cost of paying new recipients the categorical benefit. The extent to which CF changes

with the tax rate (for a given B) will be decreasing in both the number of existing

recipients; and the size of tax revenue effects and expenditure effects associated with

new applicants.

Notice that differentiating (4.10) with respect to B yields:

∂CF
∂B

= −
[
χ+ (1− θ)pIIf(¯̄n)

∂ ¯̄n

∂C
(ty|n=¯̄n + CF )

]−1

< 0 (4.12)

This is simply the negative of the denominator in (4.11). Unsurprisingly, an increase

in B necessarily lowers CF because there are less resources to spend on categorical

transfers.

In all that follows we assume that ∂CF/∂B < −1, which requires:

(1− χ) > (1− θ)pIIf(¯̄n)
∂ ¯̄n

∂C
(ty|n=¯̄n + CF )

The implication is that the total benefit income of categorical recipients will fall with

an increase in the universal benefit.

Laffer Rate. The revenue maximising (or ‘Laffer’) tax rate is defined as:

tL(B; θ, pI , pII , R) = Arg max
t∈(0,1)

t · Z [1− t, ¯̄n (1− t, CF ) ; θ, pII ] (4.13)
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Notice that whilst individual earnings are not directly affected by the level of B, the

categorical benefit size CF is. Because a ceteris paribus increase in B lowers CF it

will increase the number of able individuals who work (through lowering the number

that apply for the categorical benefit). The revenue maximising tax rate will therefore

depend on B.

The resulting first-order-condition (henceforth FOC) characterising tL yields:

tL = Z

[
∂Z

∂(1− t) −
∂Z

∂ ¯̄n

(
∂ ¯̄n

∂C
· ∂CF
∂t
− ∂ ¯̄n

∂(1− t)

)]−1

(4.14)

Dividing both sides (1−t) allows us to write the expression in terms of elasticities.

tL
1− tL

=

{[
(1− t)
Z

· ∂Z

∂(1− t)

]
+

[(
¯̄n

Z
· ∂Z
∂ ¯̄n

)
·
(

(1− t)
¯̄n
· d

¯̄n(1− t, CF )

d(1− t)

)]}−1

(4.15)

The first term within curly braces is the partial elasticity of aggregate earnings with

respect to the net-of-tax rate. It captures the aggregate responsiveness of earnings in

the intensive margin to an increase in the net-of-tax rate. In all that subsequently

follows we will denote this by EZ ≡ (1 − t)Z−1∂Z/∂(1 − t).9 The second term within

curly braces, meanwhile, is the product of two elasticities. The first of these is the

elasticity of aggregate earnings with respect to the critical productivity ¯̄n. The second,

meanwhile, is the elasticity of this critical productivity with respect to the net-of-tax

rate. Intuitively, larger values of the aforementioned elasticities imply a lower revenue

maximising tax rate.

4.2.3 The Optimisation Problem

Let the social welfare function be strictly utilitarian and given by:

9Notice that if pII = 0 the first-order-condition characterising the Laffer Rate would simply be
Z − tL∂Z/∂(1− t) = 0, thus giving rise to the familiar expression (Saez, 2001):

tL
1− tL

=
1

EZ
.
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W (t, B, C; θ, pI , pII) = θ [(1− pI)u(B + C) + pIu(B)]

+ (1− θ)


∫∞

0
v[n(1− t), B]f(n)dn

+pII
∫ ¯̄n

0
〈u(B + C)− v[n(1− t), B]〉f(n)dn


(4.16)

The first line is the average welfare of an unable individual - accounting for the fact

that with probability pI they are incorrectly denied the categorical benefit - weighted

by their population share. The second line, meanwhile, is the average welfare of unable

individuals multiplied by their population share. The first term within curly braces is

the average welfare of able individuals in the case that all receive the universal benefit,

whilst the second term captures the welfare gain to able individuals who are awarded

the categorical benefit with probability pII .

Given the government’s budget constraint described in (4.8), the optimisation problem

is therefore:

max
{t,B,C}

W (t, B, C; θ, pI , pII)

s.t. B + χ(t, C; θ, pI , pII) · C = t · Z [t, ¯̄n(1− t, C); θ, pII ]−R ,

t ∈ (0, 1) , B ≥ 0 , C ≥ 0

(4.17)

In what follows we let t̂, B̂ and Ĉ denote the optimal choices resulting from (4.17). In

addition, λ̂ will denote the shadow price of public expenditure at the optimum. To save

on notation, we will henceforth denote the aggregate smvi of non-categorical recipients

by:

σ(t, B, C) = θpIu
′(B) + (1− θ)

[∫ ∞
0

vMdF (n)− pII
∫ ¯̄n

0

vMdF (n)

]
(4.18)

The solution to the optimisation problem in (4.17) is characterised in the below re-



CHAPTER 4. INCOME TAXATION, TRANSFERS AND ERRORS. 238

sult.10

Result 1:

(i) Ĉ > 0 ∀ pI + pII ≤ 1 and B̂ ≥ 0 are characterised by:

σ
(
t̂, B̂, Ĉ

)
≤ u′

(
B̂ + Ĉ

)
χ · −

[
1 +

∂CF (t̂, B̂; ·)
∂B

]
︸ ︷︷ ︸

<0

; B̂ ≥ 0 (4.19)

where the pair of inequalities hold with complementary slackness.

(ii) λ̂ < u′(B̂ + Ĉ) = vM [¯̄n(1− t̂), B̂] and so:

vM [n(1− t̂), B̂] > λ̂ ∀ n ∈ (0, ¯̄n] (4.20)

(iii) t̂ ∈ (0, 1) is implicitly defined by:

t̂

1− t̂ =

[∫∞
0
y
(
λ̂− vM

)
dF (n)− pII

∫ ¯̄n

0
y
(
λ̂− vM

)
dF (n)

]
− F (¯̄n)pII λ̂Ef (¯̄n)Ĉ

λ̂
[
Z̄EZ + F (¯̄n)pIIEf

(
y|n=¯̄n + Ĉ

)]
(4.21)

where Z̄ = Z/(1− θ) denotes average gross earnings over the able subpopulation.

Proof: See Appendix

Corollary 1: If pI > 0 then B̂ > 0 by the property limx→0 u
′ = +∞ and, consequently,

(4.19) holds with equality.

Result 1 is composed of three related parts, culminating with the optimal tax expression

in part (iii). We proceed to discuss each in turn.

Result 1(i) states that a categorical benefit should be provided at all levels of discrim-

inatory power11, whilst the optimality condition in (4.19) characterises the conditions

under which it is optimal to provide a universal benefit. The left side of (4.19) is the

aggregate smvi of individuals who do not receive the categorical benefit, as composed

of both unable and able individuals. This captures the aggregate welfare gain to these

10In line with the discussion of the Full Enforcement regime in Chapter 2, we cannot in general
guarantee a unique solution to this optimisation problem. However, in the numerical analysis which
follows welfare is always concave and, consequently, no problems of multiple optima arise.

11Therefore including the case of no discriminatory power where pI + pII = 1.
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individuals from an increase in the universal benefit. The right side, meanwhile is the

aggregate smvi of categorical recipients multiplied by the negative of the total change

in their benefit income associated with an increase in the universal benefit. Given our

assumption that ∂CF/∂B < −1, an increase in the universal benefit acts to reduce

the total benefit income of categorical recipients. The right side therefore captures

the aggregate welfare gain to categorical recipients associated with a reduction in the

universal benefit. The complementary slackness condition implies that it will only be

optimal to provide a positive universal benefit if the left side of (4.19) exceeds the right

side, when evaluated at B = 0. As stated in Corollary 1, this is guaranteed to hold

whenever the propensity to make Type I errors is positive because unable individuals

would otherwise have zero income to consume.

A direct implication of (4.19) is that:

u′
(
B̂ + Ĉ

)
> σ

(
t̂, B̂, Ĉ

)
/(1− χ) (4.22)

I.e. at the optimum the smvi of categorical recipients will exceed the average smvi of

non-categorical recipients. This arises because:

χ ·−
[

1 +
∂CF (t̂, B̂; ·)

∂B

]
= (1−χ) ·

[
1− (1− θ)pIIf(¯̄n) ∂ ¯̄n

∂C
(ty|n=¯̄n + CF ) /(1− χ)

1 + (1− θ)pIIf(¯̄n) ∂ ¯̄n
∂C

(ty|n=¯̄n + CF ) /χ

]
< 1

Result 1(ii) states that at the optimum the smvi of an able applicant for the categorical

benefit exceeds the shadow price of public expenditure. The reason for including this

as part of the main result is that it assists us in interpreting the optimal tax expression

in Result 1(iii), which we turn to discuss now.

Result 1(iii) provides an implicit expression for the optimal tax rate, as given by (4.21).

As is standard, the implicit expression characterising the optimal tax rate has equity

considerations in the numerator and efficiency considerations in the denominator. We

start by discussing the numerator. The two terms inside square braces are aggregates

of y(λ̂ − vM): i.e. the difference between the shadow price of public expenditure and

an individual’s smvi, weighted by gross earnings. The first term is the aggregate (or in

this case average) of y(λ̂ − vM) over the entire able subpopulation; whilst the second
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term - which enters negatively - is the aggregate of y(λ̂ − vM) over able applicants.

From (4.20) we know that this aggregate must itself be must be negative because the

smvi of each able applicant exceeds the shadow price of public expenditure at the

optimum. This second term therefore acts to increase the tax rate because those who

the government would not wish to tax highly are - due to Type II error - receiving the

categorical transfer and not working. However, a further equity implication of Type

II errors on the tax rate is that ‘leaked’ categorical transfers do play a redistributive

role within the able subpopulation, which may lessen the need to employ higher tax

rates to redistribute through the more expensive universal transfer. This is captured

by the third term outside square brackets, which acts to lower the tax rate. Notice that

the size of this third term is an increasing function of the elasticity of the distribution

function with respect to individual productivity, evaluated at ¯̄n (i.e. Ef ).

We now turn to discuss the efficiency considerations in the denominator of (4.21). The

first term within square brackets (i.e. Z̄EZ) is the partial elasticity of aggregate gross

earnings with respect to the net-of-tax rate, weighted by average gross earnings over the

able subpopulation. Recall that this elasticity captures the responsiveness of individual

earnings in the intensive margin to the net-of-tax rate, holding constant the number

of applicants for the categorical benefit. This consideration is present in all standard

optimal tax expressions.12 Ceteris paribus, higher values of this elasticity act to lower

the optimal tax rate. Notice also that a ceteris paribus increase in pII will act to reduce

this term because fewer lower productivity individuals work and respond to the tax rate.

The second and final term within square brackets (i.e. F (¯̄n)pIIEf (y|n=¯̄n +C)) captures

the fact that a marginal increase in the tax rate increases ¯̄n and thus the number

of applicants for the categorical benefit. This in turn generates the dual efficiency

considerations of (i) foregone tax revenue from individuals who previously worked but

12Note that there a number of equivalent notational conventions in the literature to capture efficiency
considerations. Specifically, the first term in the denominator of (4.21) will often appear in terms of
individual elasticities. To see that this is equivalent to the formulation here, which draws from Piketty
and Saez (2012), note that:

Z̄EZ =
Z

(1− θ)

(
1− t
Z
· ∂Z

∂(1− t)

)
= (1− t)

[∫ ∞
0

∂y

∂(1− t)dF (n)− pII
∫ ¯̄n

0

∂y

∂(1− t)dF (n)

]

=

∫ ∞
0

yEydF (n)− pII
∫ ¯̄n

0

yEydF (n)

where Ey ≡ (1 − t)y−1∂y∂(1 − t) is the elasticity of individual gross earnings with respect to the
net-of-tax rate.
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now receive the categorical benefit by Type II error; and (ii) the expenditure effect of

paying each new recipient the categorical benefit. Notice that the size of this effect is

increasing in the gross earnings of the marginal ¯̄n individual; the categorical benefit size;

and the elasticity of the distribution function with respect to individual productivity,

evaluated at ¯̄n. Higher values of any of these these considerations act to lower the

optimal tax rate.

4.2.4 Between-group inequality in the average smvi

By way of background, in the case where categorical transfers are perfectly targeted

at the unable it will only be optimal to provide a universal benefit if inequality in

the average smvi between the unable and able subpopulations is eliminated through

categorical spending and there are resources left over. However, as illustrated in Result

1(i) and Corollary 1, the conditions under which it is optimal to provide a universal

benefit change with classification errors. In particular, Type I errors guarantee the

provision of a universal benefit. The purpose of this section is to also demonstrate that

whenever classification errors are made inequality in the average smvi will remain at

the optimum.

Formally, let inequality in the average smvi between the unable and able subpopulations

be given by:

δ = [(1− pI)u′(B + C) + pIu
′(B)]︸ ︷︷ ︸

average smvi (unable)

−

−
{∫ ∞

0

vMdF (n) + pII

∫ ¯̄n

0

[u′(B + C)− vM ] dF (n)

}
︸ ︷︷ ︸

average smvi (able)

(4.23)

Result 2: Whenever pI > 0 and/or pII > 0 we have δ > 0 at the optimum.

Proof: We proceed to check that δ > 0 at the optimum in three cases.

(i) (pI > 0, pII = 0)
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Given that pI > 0 the expression in (4.19) must hold with equality such that:13

θpIu
′(B̂) + (1− θ)

∫∞
0
vMdF (n)

θpI + (1− θ) = u′(B̂ + Ĉ)

which directly implies u′(B) > u′(B̂+Ĉ) >
∫∞

0
vMdF (n), in turn implying δ > 0.

(ii) (pI = 0, pII > 0)

In this case δ = u′(B +C)[1− F (¯̄n)pII ]− [
∫∞

0
vMdF (n)− pII

∫ ¯̄n

0
vMdF (n)] and conse-

quently δ > 0 at the optimum if:

u′(B̂ + Ĉ) >

∫∞
0
vMdF (n)− pII

∫ ¯̄n

0
vMdF (n)

1− F (¯̄n)pII

which is guaranteed to hold by expression (4.19).

(iii) (pI > 0, pII > 0)

In this case δ > 0 at the optimum if:

u′(B̂ + Ĉ) >

∫∞
0
vMdF (n)− pII

∫ ¯̄n

0
vMdF (n)− pIu′(B)

1− F (¯̄n)pII − pI

From (4.19) it follows that a sufficient condition for δ > 0 is:

∫∞
0
vMdF (n)− pII

∫ ¯̄n

0
vMdF (n)− pIu′(B)

1− F (¯̄n)pII − pI

<
θpIu

′(B) + (1− θ)[
∫∞

0
vMdF (n)− pII

∫ ¯̄n

0
dF (n)]

θpI + (1− θ)[1− F (¯̄n)pII ]

which requires:

u′(B̂) >

∫∞
0
vMdF (n)− pII

∫ ¯̄n

0
vMdF (n)

1− F (¯̄n)pII

When receiving the same benefit income (i.e. B), the smvi of an unable individual will

always be at least as great as that of an able individual and so this condition must

13Note that when pII = 0 we have −(1 + ∂CF /∂B) = (1− χ)/χ and (1− χ) = θpI + (1− θ).
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hold. Q.E.D.

4.3 Numerical Simulations

Recall that (4.21) is an implicit expression for the optimal tax rate: gross earnings,

indirect utility and, importantly, the critical productivity ¯̄n are all functions of the

(net-of) tax rate. We therefore turn to numerical methods to gain insights into how

the propensities to make Type I and Type II errors affect the optimal tax rate.

To do so, let individual preferences over consumption and labour be given by the

frequently employed isoelastic form:

u(x,H) = log

(
x− αH

1+k

1 + k

)
(4.24)

where 1/k is a constant elasticity of labour supply with respect to the net wage rate

(see also Atkinson, 1990, 1995; Saez, 2001). In line with the more general preferences in

(4.1), the resulting optimal labour supply function H∗ = [n(1− t)/α]1/k is independent

of unearned income and gives rise to the indirect utility function:

v[n(1− t),M ] = log

{
[n(1− t)] 1+kk α− 1

k

(
k

1 + k

)
+M

}
From this it can be readily established that the critical productivity ¯̄n at or below

which able individuals apply for the categorical benefit is:

¯̄n ≡
{(

1 + k

k

)
α

1
kC

} k
1+k

/(1− t) (4.25)

This is clearly increasing in both t and C.

In the simulations which follow we assume: n ∼ lnN (µ = −1, σ = 0.39); α = 1;

k ∈ {1, 2, 3}; θ = 0.1. The assumption that productivities are lognormally distributed

with mean of log n set at -1 and standard deviation of log n set at 0.39 is frequently

adopted in the literature (see Immonen et al., 1998; Mirrlees, 1971; Stern, 1976; Viard,

2001a,b). Further, the key analyses of categorical transfers within the optimal income
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tax framework typically employ the lognormal distribution.14 The choice of α = 1

gives rise to H∗ = 0.63 for the average productivity (n = 0.3969) individual when

k = 2. Finally, the choices of k correspond to labour elasticities of 1,1/2 and 1/3

respectively: these are broadly consistent with those adopted by other authors (see, for

example Atkinson, 1995; Saez, 2001). For simplicity, it is assumed that the government

has no revenue generating commitments and thus R = 0. Taxation is thus purely

redistributive.

The simulation procedure is as follows: for a given value of pI ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}
we systematically increase pII in intervals of 0.025 from 0 to 1; at each stage calculating

the optimal tax rate and benefit levels. Table 4.1 reports the resulting optima over

the stated values of k and pI , for the cases where pII ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. We

discuss the results below.

A ceteris paribus increase in pI tends to increase the optimal tax rate; increase the

universal benefit; but lower the categorical benefit. Whilst the increase in the tax rate

will act to increase ¯̄n, the fall in the categorical benefit acts in the opposite direction and

is sufficiently large that ¯̄n falls with pI in all cases. Next, the effect of an increase in pII

on the optimal choices is more pronounced but the directions of movement remain the

same. Indeed, a ceteris paribus increase in pII tends to increase the optimal tax rate;

increase the universal benefit; but lower the categorical benefit. In particular, notice

that an increase in pII from 0 to 0.1 (for any pI) results in all cases in a reduction of over

50% in the categorical benefit, which in turn reduces the proportion of able individuals

who would choose to apply for the categorical benefit (were pII > 0) from around

50% to less than 20%. For all the examples given in Table 4.1 the value function of

social welfare (i.e. welfare at the optimum choices given exogenous error propensities)

is falling in the propensity to make either error type.

Finally, notice that Ĉ is increasing in k in all cases: this arises because an increase in k

corresponds to a reduction in the elasticity of labour supply, which in turn generates a

reduction in the number of able individuals who would choose to apply for C. Formally,

we have:

14Detailed numerical results under the alternative assumption that productivity is exponentially
distributed are available from the author upon request.
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∂ ¯̄n

∂k
=

[
α

1
k (1 + k)C

k(1− t) 1+k
k

] k
1+k
{

[k2 − (1 + k)k − (1 + k) log a]

(1 + k)2k
+

1

(1 + k)2
log

[
α

1
k (1 + k)C

k

]}

When evaluated at α = 1 the term log(α) drops out such that it will unambiguously

hold that ∂ ¯̄n/∂k < 0 so long as C(1 + k)/k < 1; which is certainly the case from Table

4.1.

As discussed, a key observation from Table 4.1 is that an increase in pII above zero

induces a large proportional fall in the optimal categorical benefit and, in turn, in

the number of able individuals who choose to apply for the categorical benefit. It is

therefore important to note that in all considered cases the optimum benefit functions

are smooth and continuous. Figure 4.2 provides useful examples for the case where

k = 2. The figure graphically illustrates how t̂, B̂, Ĉ and F (¯̄n) change with the

propensity to make classification errors. On the horizontal axis in each subplot pII is

varied from 0 to 0.6 in discrete increments of 0.025, whilst the different curves within

each figure are generated for a different value of pI .

Finally, Figure 4.3 provides a useful check that the simulated optimal tax rates are in

fact global optima and that the welfare function is ‘well-behaved’ with classification

errors. The figure illustrates how welfare changes with the tax rate, for different values

of pI and pII . In each of the six subplots the tax rate is varied on the horizontal

axis and welfare is given on the vertical axis. The different subplots are generated

for successively higher values of pI , whilst the different curves within each subplot are

generated for a different value of pII . For any given tax rate the optimal benefit levels

were chosen and then substituted into the welfare function. As can be seen, in each

case there is a unique optimal choice of t.

4.4 Concluding Remarks

As outlined in the introduction to this chapter, many of the key results from the

analysis of categorical transfers in a linear income tax framework are derived under the

strong assumption that the government can perfectly identify the categorical group to

which an individual belongs. In this case there is a well-defined ordering of priorities
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Figure 4.2: Graphical Illustration of Optima for k = 2
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Notes: Subplots (a), (c) and (d) illustrate how the optimal choices (t̂, B̂, Ĉ) change with the propen-
sity to make classification errors; whilst subplot (b) illustrates how these changes in the choice vari-
ables affect the number of individuals from the able subpopulation who choose to apply for the
categorical benefit. The different curves within each figure are generated for a different value of
pI ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
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Figure 4.3: Welfare and the Tax Rate (k = 2)
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Notes: This figure serves as a useful check that the simulated optimal tax rates correspond to global
optima. Within each subplot the diamond marker (i.e. �) denotes welfare at the optimal tax rate, t̂.
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between categorical (targeted) and universal benefits. Welfare provision should be

purely categorical up to the point that inequality in the average smvi across categorical

groups is eliminated. If it is optimal to generate enough tax revenue to achieve this,

and there are resources left over, an unconditional universal benefit will be provided

to all individuals in society.

In reality, however, an individual’s true categorical status (e.g. disability, involuntary

unemployment) may be difficult to identify and this will inevitably lead to misclassi-

fications; in turn generating both Type I (false rejection) and Type II (false award)

errors. These errors are likely to change the ordering of priorities between targeted and

universal welfare provision, and in turn have implications for the equity and efficiency

considerations that characterise the optimal tax rate. The implications for the optimal

tax rate have been the subject matter of this chapter.

This chapter considered a framework where a fraction of the population is unable to

work, whilst the remaining fraction are able to work but differ continuously in their

productivity. The government operates a tax-benefit system comprising (i) a linear in-

come tax on all earned income; (ii) a tax-free universal benefit received unconditionally

by all individuals in society; and (iii) a tax-free categorical benefit that is targeted at

the unable, albeit imperfectly. The categorical benefit is administered with both Type

I and Type II classification errors. Any able individual who applies for the categorical

benefit and is incorrectly awarded it is not allowed to work. This condition is fully

enforced, such that the only able individuals who choose to apply for the categorical

benefit are those of lower productivities, and thus those for whom the opportunity

cost of not working is insufficiently high. An important implication is that the critical

productivity at or below which individuals choose to apply for the categorical benefit

will be, ceteris paribus, an increasing function of the tax rate.

The key contribution of this chapter has been to derive an expression for the optimal

linear tax rate when the categorical benefit is administered with two-sided classification

errors. In setting the tax rate, the government must now factor in the additional equity

and efficiency considerations that arise through classification errors. In particular,

Type II errors generate conflicting effects in both the equity and efficiency dimensions.

In the equity dimension, Type II errors (i) mean that some able individuals of low

productivity - who the government would not wish to tax highly - are not working,

and this acts to raise the tax rate; but also (ii) play a redistributive role through
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‘leaking’ the categorical benefit to lower productivity individuals, which may in turn

reduce the need to redistribute through the universal benefit and thus act to lower

the tax rate. In the efficiency dimension (i) individuals who would have worked and

adjusted their earnings in response to the tax rate now do not work due to Type II

errors, which acts to raise the tax rate; but (ii) the number of individuals who choose

to apply for the categorical benefit is, ceteris paribus, increasing in the tax rate, which

acts to lower the tax rate so as to avoid the dual efficiency concerns of reducing the

tax base whilst also paying more individuals the categorical benefit.

Numerical simulations suggest that an increase in the propensity to make either error

type (i) increases the optimal tax rate; (ii) increases the optimal universal benefit; but

(iii) lowers the optimal categorical benefit. For any given propensity to make Type

I errors, an increase from zero in the propensity to make Type II errors generates a

large proportional fall in the categorical benefit size, thus reducing the proportion of

the able subpopulation that would choose to apply for it.
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Appendix A Derivations and Proofs

Derivatives of the function ¯̄n.

Differentiating both sides of (4.2) in the main text with respect to (1 − t) and C,

respectively, yields:

(1− t) :

[
∂ ¯̄n

∂(1− t) · (1− t) + ¯̄n

]H∗ +
dH∗

dω
[¯̄n(1− t)− g′(H∗)]︸ ︷︷ ︸

=0

 = 0

(C) :
∂ ¯̄n

∂C
· (1− t)

H∗ +
dH∗

dω
[¯̄n(1− t)− g′(H∗)]︸ ︷︷ ︸

=0

− 1 = 0

from which it directly follows that ∂ ¯̄n/∂(1 − t) = −¯̄n/(1 − t) < 0, whilst ∂ ¯̄n/∂C =

1/[(1− t)H∗] > 0. Taking second derivatives then yields:

∂2 ¯̄n

∂(1− t)2
= −

[
(1− t) ∂ ¯̄n

∂(1−t) − ¯̄n

(1− t)2

]
=

2¯̄n

(1− t)2
> 0

∂2 ¯̄n

∂C2
= − 1

(1− t)(H∗)3
· dH

∗

dω
= − 1

(1− t)(H∗)3g′′(H∗)
< 0

Proof of Result 1(i).

From the optimisation problem in (4.17) the first-order-conditions (henceforth FOCs)

characterising the optimal benefits B̂ and Ĉ are:

(B) : χu′
(
B̂ + Ĉ

)
+ σ(t̂, B̂, Ĉ) ≤ λ̂ ; B̂ ≥ 0 (A.1)

(C) : χu′
(
B̂ + Ĉ

)
≤ λ̂

(
χ+

∂χ

∂C
Ĉ − t̂ · ∂Z

∂ ¯̄n

∂ ¯̄n

∂C

)
; Ĉ ≥ 0

⇒ u′
(
B̂ + Ĉ

)
≤ λ̂

1 +
(1− θ)f(¯̄n)pII

∂ ¯̄n

∂C

[
Ĉ + t̂y|n=¯̄n

]
χ

 ; Ĉ ≥ 0 (A.2)
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where the pairs of inequalities hold with complementary slackness. Notice that in

writing (A.2) we have substituted in both ∂χ
∂C
C = (1 − θ)pIIf(¯̄n) ∂ ¯̄n

∂C
C and ∂Z

∂ ¯̄n
∂ ¯̄n
∂C

=

−(1− θ)pIIf(¯̄n) ∂ ¯̄n
∂C
y|n=¯̄n.

We briefly discuss both of these FOCs in turn. Given that incentives to apply for the

categorical benefit are unaffected by the level of universal benefit, the FOC character-

ising B̂ is simple. The left side of (A.1) is the average smvi over the entire population

and thus corresponds to the marginal benefit of increasing B. The right side of (A.1)

is the marginal cost - in welfare units - of increasing B: this cost simply enters as

unity (i.e. the shadow price multiplied by 1) because every individual is paid a higher

universal benefit. As illustrated by the complementary slackness condition, whether or

not it will be optimal to provide a universal benefit will depend on whether or not the

average smvi over the population equates with or exceeds the shadow price of public

expenditure (λ) when B = 0.

The shadow price is in turn pinned down by the FOC characterising Ĉ. The left side

of (A.2) is the average smvi of a categorial recipient.15 The right side captures - in

welfare units - the average marginal cost associated with increasing the categorical

benefit. This marginal cost is composed of two effects. First, a marginal increase in

the categorical benefit means that the government pays each existing recipient a higher

benefit and so this effect simply enters as unity. Second, a marginal increase in the

categorical benefit induces an additional able individual to apply for the categorical

benefit, where they did not prior to the increase. This second effect generates both

an expenditure cost and a loss in tax revenue, because: (i) the government pays an

additional individual the categorical benefit where it did not before (this effect enters

as Ĉ); and (ii) the new recipient stops working as a result of the fully enforced no-work

requirement (this effect enters as t̂y|n=¯̄n). As this is an average marginal cost, these

second effects enter as a fraction of the number of existing recipients (i.e. χ).

With respect to the FOCs for B and C in (A.1) and (A.2) we test two hypotheses: (i)

B̂ > 0, Ĉ = 0; and (ii) B̂ = 0, Ĉ > 0.

(i) (B̂ > 0, Ĉ = 0)

15All recipients of the categorical benefit of course have the same marginal welfare because they do
not work.
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If we set C = 0 then ¯̄n = 0 and so:

χ = θ(1− pI) ; σ = θpIu
′(B, 1) + (1− θ)

∫ ∞
0

vMdF (n)

The FOCs in (A.1) and (A.2) thus become:

θu′(B) + (1− θ)
∫ ∞

0

vM [n(1− t), B]dF (n) = λ ,

u′(B) ≤ λ .

Taken together, however, this implies that:

θu′(B) + (1− θ)
∫ ∞

0

vMdF (n) ≥ u′(B)⇒
∫ ∞

0

vM [n(1− t), B]dF (n) ≥ u′(B)

This must be a contradicton because for any interior tax rate able individuals are

better-off than unable individuals and thus their average smvi must be lower than that

of unable individuals. The assertion that Ĉ = 0 is therefore false and, instead, at all

levels of discriminatory power we have Ĉ > 0.

Given that Ĉ > 0 the FOC in (A.2) must hold with equality such that:

λ̂ = u′(B̂ + Ĉ) ·
{

χ

χ+ (1− θ)f(¯̄n)pII
∂ ¯̄n
∂C

[Ĉ + t̂y|n=¯̄n]

}
(A.3)

Substituting (A.3) into (A.1) then gives:

σ(t̂, B̂, Ĉ) ≤ u′(B + C) · χ
{

1

χ+ (1− θ)f(¯̄n)pII
∂ ¯̄n
∂C

[Ĉ + t̂y|n=¯̄n]
− 1

}
; B̂ ≥ 0

= u′(B + C) · χ
{

(1− χ)− (1− θ)f(¯̄n)pII
∂ ¯̄n
∂C

[Ĉ + t̂y|n=¯̄n]

χ+ (1− θ)f(¯̄n)pII
∂ ¯̄n
∂C

[Ĉ + t̂y|n=¯̄n]

}
; B̂ ≥ 0

(A.4)

Finally, it is straightforward to establish that the term within curly braces corresponds

to −(1 + ∂CF
∂B

), where CF is as defined in (4.10) in the main text.

(ii) (B̂ = 0 , Ĉ > 0)

Given that limx→0 u
′(x) = +∞ it is straightforward to see from (4.19) in the main
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text that B̂ > 0 whenever pI > 0. Otherwise, it will only be optimal to provide a

universal benefit if (i) the aggregate smvi of non-recipients exceeds (ii) the aggregate

smvi of categorical recipients multiplied by the (negative of) the change in their total

benefit income associated with an increase in the universal benefit, when evaluated at

B = 0.

Proof of Result 1(ii)

It is straightforward to establish from (A.3) that u′(B̂ + Ĉ) > λ̂ at the optimum. This

arises because the term within curly braces is less than unity. Now, from the definition

of ¯̄n in (4.2) an able individual with n ∈ [0, ¯̄n) has u[n(1−t)H∗+B−g(H∗)] < u(B+C)

and so:

vM [n(1− t), B] = u′[n(1− t)H∗ +B − g(H∗)] > u′(B + C) ; ∀ n ∈ [0, ¯̄n) (A.5)

Putting u′(B̂ + Ĉ) > λ̂ and (A.5) together thus gives:

vM [n(1− t̂), B̂] > u′
(
B̂ + Ĉ

)
> λ̂ ; ∀ n ∈ [0, ¯̄n) ,

vM [¯̄n(1− t̂), B̂] = u′
(
B̂ + Ĉ

)
> λ̂ ; if n = ¯̄n

(A.6)

This assists us in interpreting the optimal tax expression derived below.

Proof of Result 1(iii) (Optimal Tax Expression)

From the optimisation problem in (4.17), the FOC characterising an interior solution

for the optimal tax rate is given by:

(t) : (1− θ)
{∫ ∞

0

−nvωdF (n) + pII

∫ ¯̄n

0

nvωdF (n)

}
= λ̂

{
∂χ

∂t
Ĉ − Z + t̂

[
∂Z

∂(1− t) +
∂Z

∂ ¯̄n
· ∂ ¯̄n

∂(1− t)

]}
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Note that in writing this FOC we have used the identity u(B + C) ≡ v[¯̄n(1 − t), B]

when differentiating the integral limits in the welfare function. Substituting in both

Roy’s identity (i.e. vω = vM(y/n) and the definition of aggregate earnings Z then

gives:

λ̂(1− θ)
{∫ ∞

0

y

(
1− vM

λ̂

)
dF (n)− pII

∫ ¯̄n

0

y

(
1− vM

λ̂

)
dF (n)

}
=λ̂

{
∂χ

∂t
Ĉ + t̂

[
∂Z

∂(1− t) +
∂Z

∂ ¯̄n
· ∂ ¯̄n

∂(1− t)

]}

To progress we recall that ∂χ
∂t
Ĉ = −(1 − θ)pIIf(¯̄n) ∂ ¯̄n

∂(1−t)Ĉ whilst ∂Z
∂ ¯̄n

∂ ¯̄n
∂(1−t) = −(1 −

θ)pIIf(¯̄n) ∂ ¯̄n
∂(1−t)y|n=¯̄n. Substituting in these terms and using the property that ∂ ¯̄n

∂(1−t) ·
(1− t) = −¯̄n⇒ ∂ ¯̄n

∂(1−t) = t · ∂ ¯̄n
∂(1−t) − ¯̄n, gives:

1

λ̂
(1− θ)

{∫ ∞
0

y(λ̂− vM)dF (n)− pII
∫ ¯̄n

0

y(λ̂− vM)dF (n)− λ̂pII ¯̄nf(¯̄n)Ĉ

}
= t̂

{
∂Z

∂(1− t) − (1− θ)pIIf(¯̄n)
∂ ¯̄n

∂(1− t)
[
y|n=¯̄n + Ĉ

]}
(A.7)

Substituting in the definition ∂ ¯̄n
∂(1−t) = −¯̄n/(1 − t) and dividing both sides by (1 − t)

yields:

t̂

1− t̂ =

∫∞
0
y
(
λ̂− vM

)
dF (n)− pII

∫ ¯̄n

0
y
(
λ̂− vM

)
dF (n)− λ̂F (¯̄n)pII

(
¯̄n

F (¯̄n)
f(¯̄n)

)
Ĉ

λ̂

{
Z̄ ·
(

(1− t)
Z

∂Z̄

∂(1− t)

)
+ pIIF (¯̄n) ·

(
¯̄n

F (¯̄n)
f(¯̄n)

)[
y|n=¯̄n + Ĉ

]}
(A.8)

where Z̄ = Z/(1− θ) is simply the average gross earnings over the able subpopulation.

Substituting in EZ̄ ≡ (1−t)
Z̄

∂Z̄
∂(1−t) and Ef ≡ nf(n)/F (n) then gives the expression in the

main text.
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Appendix C Optimal Tax Under No Enforcement

In the main text we assume that the ex-post no-work condition is fully enforced. It is

also of interest, however, to derive the optimal tax rate for the polar case where the ex-

post condition is not enforced. In this case all able individuals choose to apply for the

categorical benefit. Further, under the preferences specified in (4.1) labour supply is

independent of unearned income such that an individual’s labour supply is independent

of whether or not they receive the categorical benefit. Consequently, aggregate earnings

in the economy are a function of solely the tax rate and given by:

Z(1− t; θ) = (1− θ)
∫ ∞

0

y(1− t)dF (n) (C.1)

The optimisation problem becomes much simpler and is given by:

max
t,B,C

W = θ[(1− pI)u(B + C) + pIu(B)]

+ (1− θ)
∫ ∞

0

〈pIIv[n(1− t), B + C] + (1− pII)v[n(1− t), B]〉 dF (n)

s.t. B + [θ(1− pI) + (1− θ)pII ]C = t · Z(1− t; θ)−R ,

t ∈ (0, 1) , B ≥ 0 , C ≥ 0 .

(C.2)

The resulting FOCs for B and C are:

(B) : θ[(1− pI)u′(B̂ + Ĉ) + pIu
′(B̂)]

+ (1− θ)
∫ ∞

0

〈
pIIvM [n(1− t̂), B̂ + Ĉ] + (1− pII)vM [n(1− t̂), B̂]

〉
dF (n)

≤ λ̂ ; B̂ ≥ 0

(C.3)
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(C) :
θ(1− pI)u′(B̂ + Ĉ) + (1− θ)pII

∫∞
0
vM [n(1− t̂), B̂ + Ĉ]dF (n)

θ(1− pI) + (1− θ)pII
≤ λ̂ ; Ĉ ≥ 0

(C.4)

As usual, we test two hypotheses: (i) (B̂ > 0, Ĉ = 0); and (ii) (B̂ = 0, Ĉ > 0)

(i) (B̂ > 0, Ĉ = 0)

Setting Ĉ = 0 the two FOCs become:

(B) : θu′(B) + (1− θ)
∫ ∞

0

vM [n(1− t), B]dF (n) = λ (C.5)

(C) :
θ(1− pI)u′(B) + (1− θ)pII

∫∞
0
vM [n(1− t), B]dF (n)

θ(1− pI) + (1− θ)pII
≤ λ (C.6)

Substituting (C.6) into (C.5) gives:

u′(B)[1− pI − pII ] ≤ s̄[1− pI − pII ] (C.7)

which can clearly only hold when pI + pII ≥ 1. So Ĉ > 0 ∀ pI + pII < 1; whilst

Ĉ = 0 ∀ pI + pII = 1.

Given that Ĉ > 0 whenever the test administering C has positive discriminatory power

we an combine (C.3) and (C.4) to obtain:

θpIu
′(B̂) + (1− θ)(1− pII)

∫∞
0
vM [n(1− t), B̂]dF (n)

θpI + (1− θ)(1− pII)

≤λ̂ =
θ(1− pI)u′(B̂ + Ĉ) + (1− θ)pII

∫∞
0
vM [n(1− t̂), B̂ + Ĉ]dF (n)

θ(1− pI) + (1− θ)pII
; B̂ ≥ 0

(C.8)

(i) (B̂ = 0, Ĉ > 0)

From (C.8) we can see that B > 0 only if the average smvi of non-categorical recipients

exceeds the average smvi of categorical recipients when B = 0. If pI = 0 then this

certainly holds because limx→0 u
′ = +∞.
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From (C.8) it must hold that for pI > 0 and pII > 0:

u′(B̂ + Ĉ) > λ̂ >

∫ ∞
0

vM [n(1− t̂), B̂]dF (n) (C.9)

This will assist us in interpreting the optimal tax expression which follows.

The FOC for the optimal tax rate is:

(t) :

∫ ∞
0

〈
pII · −nvω[n(1− t̂), B̂ + Ĉ] + (1− pII) · −nvω[n(1− t̂), B̂ + Ĉ]

〉
dF (n)

− λ̂
∫ ∞

0

〈
y − t̂ ∂y

∂(1− t)

〉
dF (n) = 0

and thus:

t̂

1− t̂ =

∫∞
0
y
〈
λ̂−

{
pIIvM [n(1− t̂), B̂ + Ĉ] + (1− pII)vM [n(1− t̂), B̂]

}〉
f(n)dn

λ̂Z̄EZ
(C.10)

Notice that by (C.9) the numerator is unambiguously positive.
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Chapter 5

Enforcing Ex-Post Conditionality:

Categorical Benefit Size and

Risk

5.1 Introduction

Type II (false award) classification errors in the administration of welfare benefits give

rise to a range of enforcement issues because they provide incentives for abuse of the

welfare system.1 This abuse can take a number of forms, some more detectable than

others. First, individuals may choose to apply for a benefit and, if incorrectly awarded

it, comply with any subsequent ex-post conditions. This behaviour is very difficult to

detect (Yaniv, 1986). In this regard, a growing empirical literature analyses the work

capability of recipients on the U.S. Social Security Disability Insurance programme,

where the two most prevalent recipient categories are those with the difficult to detect

and monitor conditions of musculoskeletal disease (back pain) or mental illness (Autor

and Duggan, 2003; Von Wachter et al., 2011) 2. Second, ineligible benefit recipients may

1Two principal studies provide estimates of the propensity of the U.S. Social Security Adminis-
tration to make Type II errors in awarding disability insurance (see Benitez-Silva et al., 2004; Nagi,
1969). Both generate quantitatively similar estimates of around 20% (22% and 19%, respectively).

2Modern welfare programmes typically do not focus exclusively on strict medical criteria, but also
on the subjective assessment of ability to function in the workplace. For example, the US Social
Security Administration places significant emphasis on an applicant’s reported discomfort (Autor and
Duggan, 2006)
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choose to violate ex-post conditions, taking into account the risk of being detected and

sanctioned in some way. This may take the form of working when receiving a disability

benefit or unemployment benefit. Whilst it may seem natural to assume that all

working recipients work ‘cash-in-hand’ in the informal economy, Fuller et al. (2015)

provide evidence that a substantial degree of fraud occurs through official/registered

employment. This may arise due to inadequacies in the integration of I.T. systems

across tax authorities, benefit authorities and local government.3

This chapter analyses the decision of individuals who are able to work - but differ

continuously in their wage - to apply for a categorical benefit, C, that is ex-ante condi-

tional on an applicant being unable to work; and ex-post conditional on a recipient not

working. Benefit recipients may be also be required to spend a fraction of the working

day at the benefit office. It is assumed that there are no checks or penalties in place

for an able individual who is incorrectly awarded C but does not work when receiving

it. There are two reasons for making this assumption. First, as discussed above, such

behaviour is likely to be highly difficult to detect as an able recipient exactly mimics

an unable recipient. Second, in reality some individuals may be unsure as to their own

eligibility and, consequently, their being awarded the benefit by administrative error

does not constitute fraud. However, the act of working when receiving C is detectable

and provides the ‘smoking gun’ necessary for the benefit authority to identify, ex-post,

a benefit recipient as able to work and, importantly, actively violating the rules. This

constitutes detectable fraud in this chapter.4 An individual who is detected working

is made to repay the benefit in its entirety, in addition to paying a fine proportional

to the benefit size. This falls in line with the type of sanction benefit authorities may

‘offer’ in reality.5

3Many governments now cite the need to improve the degree of information sharing across relevant
authorities. In the U.K., for example, this takes the form of the ‘Single Fraud Investigation Service’.

4Yaniv (1986) refers to this as ‘outright fraud’; whilst Fuller et al. (2015) refer to it simply as
‘concealed earnings’.

5In reality, sanctions can take a number of non-mutually exclusive forms, including exclusion from
the welfare programme for a given period; a fine of a fixed absolute amount; a fine proportional to the
monetary amount incorrectly received; the repayment of benefits; or even prosecution. Note that each
type of sanction imposes a financial loss on the individual: either directly through a fine or indirectly
through the loss of future benefit payments. For example, in the U.K. the Department of Work and
Pensions may, in addition to recovering overpayments (i) disqualify a recipient for periods including
13 weeks, 26 weeks or 3 years, depending on the number of previous offences committed; (ii) offer a
fine proportional to 50 percent of the overpayment (up to a maximum of £2000); or (iii) prosecute.
The administrative fine is offered as an alternative to prosecution. Fines and repayments may be
either deducted from benefit payments (if still receiving the benefit) or, if disqualified, paid directly
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In the main framework labour supply is modelled in the extensive margin, such that

individuals either work a fixed amount or they do not work at all. Such an assumption

seems reasonable given that many studies emphasise the importance of the extensive

margin relative to the intensive margin for labour supply responses to tax/benefit

programmes, in particular for those with lower incomes (Eissa and Liebman, 1996;

Saez, 2001; Jacquet, 2006, 2014). As will be detailed below, this assumption greatly

simplifies the analysis of individual decisions to engage in the risky activity of working

when receiving the categorical benefit.

Within this framework, we ask the following related questions.

(i) For cases where the standard enforcement parameters (detection probability,

penalty rate) do not alone deter applications from individuals who would choose

to work when receiving the categorical benefit, how does the benefit level affect

deterrence? In particular, are there enforcement parameter-benefit level combi-

nations such that full deterrence can be achieved?

(ii) How does the decision of an able individual to apply for the categorical benefit

and, if awarded it, their subsequent work decision, differ with the wage rate?

(iii) How do the answers to the above two questions differ depending on whether

preferences exhibit constant absolute risk aversion (CARA) or decreasing absolute

risk aversion (DARA)?

To analyse these questions, we capture the risk attached to working when receiving the

categorical benefit by the risk premium associated with the variance in benefit income,

as approximated by standard methods (Arrow, 1970; Pratt, 1964). The assumption

that a working individual’s labour supply is fixed in the intensive margin allows us to

use these methods.

In answering these questions, this chapter relates to two strands of literature. First,

drawing on the economics of crime (Becker, 1968), a small number of papers model

the decision of individuals to claim unemployment insurance when actually employed

(Yaniv, 1986; Fuller et al., 2015). The closest precursor to this chapter is Yaniv (1986),

who employs a static model in which individuals with preferences over income that

exhibit decreasing absolute risk aversion must choose the number of days of their time

endowment to fraudulently claim. Recipients must spend a fraction of the working day

by the individual (see Department for Work and Pensions, 2010, 2011, 2015).
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at the benefit office, in addition to waiting a fixed period before benefits are received.

The author considers two alternative fine structures from the tax evasion literature (see

Allingham and Sandmo, 1972; Yitzhaki, 1974). When the fine is proportional to the

number of claiming days - and thus independent of the benefit size - a ceteris paribus

increase in the benefit level increases the claiming duration via positive substitution

and income effects. Contrastingly, when the fine is proportional to total benefit income,

an increase in the benefit level increases the expected fine, thus generating an overall

ambiguous effect on incentives. Notably, Yaniv does not allow for the possibility that

the benefit itself may induce voluntary unemployment. In reality, the size of a benefit

is likely to not only influence which ineligible individuals choose to apply, but also

whether or not they choose to fully comply with ex-post conditions when receiving

it.

A related second strand of literature focuses on the design of welfare benefits when the

benefit authority has no formal technology to determine eligibility, but instead chooses

consumption bundles/transfer levels that satisfy incentive compatibility constraints and

induce self-revelation (Besley and Coate, 1992; Blackorby and Donaldson, 1988; Cuff,

2000; Diamond and Mirrlees, 1978; Kreiner and Tranaes, 2005; Nichols and Zeckhauser,

1982). In particular, the works of Besley and Coate (1992), Cuff (2000), and Kreiner

and Tranaes (2005) use unproductive workfare - which is analogous to the ex-post

condition of spending time at the benefit office - as a tool to deter non-needy individuals

from applying for a given benefit. An important distinction that separates the current

chapter from this literature is that, given an exogenous eligibility test and a continuum

of potential ineligible applicants, there will always be some individuals who apply for

a benefit and, if incorrectly awarded it, choose the riskless activity of not working.

Even if individuals were required to spend the full working day at the benefit office,

those with a sufficiently low wage may still choose to apply. Focus in our setting is

therefore placed on investigating conditions under which individuals can be deterred

from breaking ex-post conditionality.

The analysis in this chapter proceeds via backwards induction. Conditional on receiving

C, we first determine which individuals would choose voluntary unemployment and

which individuals would choose to work; taking into account the risk of being detected

and fined. Then given this behaviour, we determine which individuals would choose to

apply for C. In the main analysis the only condition placed on benefit recipients is that

they do not work. An individual who would choose to work conditional on receiving C
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will only apply for C if the expected benefit income exceeds the risk premium associated

with the variance in benefit income. In a subsequent section we then adopt a simpler

framework to analyse the case where benefit recipients are also required to spend a

fraction of the ‘working day’ at the benefit office. The time requirement is taken to be

fully enforced. In this framework individuals have preferences only over consumption

(see Yaniv, 1986). An individual who would choose to work when receiving C will

only choose to apply for it if the expected benefit income net of earnings foregone

through time spent at the benefit office exceeds the risk premium. With this by way

of background, the key results are as follows:

1. Constant Absolute Risk Aversion: Under the class of utility functions sat-

isfying −uxx/ux = η, where 0 < η < 1 is a constant and x is consumption, the

risk premium associated with the variance in benefit income is independent of

an individual’s wage and convex-increasing in C. So whilst an increase in C

(i) linearly increases a working benefit recipient’s expected income; it also (ii)

exposes them to increasingly greater risk through raising the risk premium. For

any enforcement parameters (detection probability, penalty rate) which do not

fully deter applications from those who would choose to work when receiving

C, there is a critical level of C set above which full deterrence can in fact be

attained. Further, the lower the level of enforcement provided by the standard

enforcement parameters, the higher this critical level is. If C is set below this

critical level, all able individuals above a threshold productivity level will apply

for C and continue to work if awarded it.

2. Decreasing Absolute Risk Aversion: Under the class of utility functions sat-

isfying −uxx/ux = η/x 6, the risk premium associated with the variance in benefit

income is a decreasing function of an individual’s wage and convex-increasing in

C. A necessary though not sufficient condition to deter individuals who would

work when receiving C from applying is that the enforcement parameters be set

sufficiently high - where the required level is independent of C and productiv-

ity. Conditional on this being achieved, full deterrence can only be attained if C

exceeds its critical value at each productivity level.

3. Extension with fully enforced time requirement: When the only ex-post

condition imposed on recipients is that they do not work, an unsatisfactory im-

6i.e. Constant Relative Risk Aversion preferences.
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plication of both the CARA and DARA analyses is that higher earners will apply

for C if the enforcement of the no-work condition is too lenient. In reality, higher

earners are unlikely to apply for benefits even if they face a positive probability of

being awarded them. One of many explanatory factors for this is that receiving

benefits can be a time consuming activity. Within a framework where individuals

have CARA preferences, we impose the requirement that recipients of C must

spend a fraction of the working day at the benefit office. This (i) preserves the

result that a benefit set sufficiently high can fully enforce the no-work require-

ment; but now also (ii) generates a critical wage above which no able individual

will apply for C because the opportunity cost of foregone earnings is too high.

The remainder of this chapter is structured as follows. In Section 5.2 we set up the

model. Section 5.3 then presents the main analysis under both CARA and DARA

preferences. Section 5.4 then extends the analysis to a framework where there is a fully

enforced condition that benefit recipients spend a fraction of the day at the benefit

office. Concluding remarks are provided in Section 5.5.

5.2 The Model

5.2.1 Individuals

Individual preferences over consumption, x ≥ 0, and leisure, l ∈ [0, 1], are represented

by the utility function u(x, l). The standard assumptions apply: u is continuous,

differentiable, increasing in both arguments (ux > 0 , ul > 0) and strictly concave

(uxx < 0 , ull < 0 , uxxull−u2
xl > 0). Any additional properties will be later determined

by assumptions placed on risk aversion.

Let there be a subpopulation of individuals who are able to work, but differ continuously

in their net wage, ω ≥ ω0; where ω0 > 0 is the lowest wage in the economy. Individual

labour supply is modelled in the extensive margin7, such that an individual either

works the fixed amount H ∈ (0, 1) of their time endowment, or enjoys full leisure.

The assumption is made that, in absence of any form of unearned income, all able

7Once more, extensive margin labour responses to tax/benefit programmes are shown to be im-
portant relative to intensive margin responses, particularly for those commanding lower wages (Eissa
and Liebman, 1996; Saez, 2001; Jacquet, 2006, 2014).
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individuals will work and have consumption x = ωH.

However, these individuals may choose to apply for a categorical benefit, C ≥ 0, that

is targeted at an unable subpopulation of individuals who cannot work, but which is

administered with Type II (false award) classification errors. The categorical benefit

is ex-ante conditional on an applicant being unable to work; and ex-post conditional

on a recipient not working.8

For simplicity, it is assumed that applications for C are costless in terms of money,

stigma and time. Under this frequently employed assumption (see Jacquet, 2006, 2014)

the utility of a rejected applicant coincides with their utility from having not applied

in the first place. Application decisions are therefore independent of the positive Type

II error propensity, instead depending solely on whether the (expected) utility from

receiving C exceeds that from not. This renders the analysis more tractable.

5.2.2 Enforcement Issues

Type II errors in the awards process violate ex-ante conditionality, and in turn generate

enforcement issues with respect to ex-post conditionality because individuals who are

able to work are receiving the categorical benefit. Whether or not they will in fact

choose to work will depend on the enforcement mechanisms in place.

It is assumed that there are no checks or penalties in place for an able recipient of

C who does not work and who thus complies with ex-post conditionality. There are

two reasons for making this assumption. First, in reality it is not immediately clear

that such behaviour is ‘fraudulent’ because an applicant may be uncertain of their own

eligibility. Second, and of more importance for this chapter, such behaviour is likely

to be highly difficult to detect because the truly ineligible recipient exactly mimics the

behaviour of a truly eligible recipient (Yaniv, 1986).

However, the act of working whilst receiving C is detectable and provides the ‘smoking

gun’ necessary for the benefit authority to identify, ex-post, a benefit recipient as able to

work and, importantly, actively violating the rules. This constitutes detectable fraud

in this chapter. Any recipient of C who does work risks being detected with probability

ρ ; 0 ≤ ρ ≤ 1. If detected the ineligible recipient is made to repay C in its entirety

8In a subsequent section we will explore a framework where recipients are also required to spend
a fraction of the working day at the benefit office.
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and, in addition, is imposed with a fine of size φC, where 0 ≤ φ ≤ 1. Putting this all

together, the expected categorical benefit when working is given by:

C̃(C, ρ, φ) = C[1− ρ(1 + φ)] ≥ 0 (5.1)

We note immediately the partial derivatives: C̃C ≥ 0, C̃ρ ≤ 0 and C̃φ ≤ 0. For any

enforcement pairs (ρ, φ) satisfying ρ(1 +φ) > 1 it is straightforward to see that no able

individual will apply for C with the intention of working because C̃ < 0. Accordingly,

we henceforth restrict attention to lenient enforcement pairs satisfying ρ(1 + φ) ≤ 1

(and thus C̃ ≥ 0) and wish to identify the conditions under which individuals will

apply for C and, if awarded it, violate ex-post conditionality by working.

5.3 Analysis

Given the assumptions laid out, the purpose of the main analysis is to determine

how the enforcement parameters and benefit size determine which able individuals

will choose to apply for the categorical benefit and, importantly, whether or not they

will choose to work when receiving it. By backwards induction we first establish how

an able individual would behave (work/do not work) conditional on receiving C. To

determine application decisions, we then compare their utility when receiving C with

that when not receiving C.

To proceed, however, we need a convenient way to write the expected utility of a

working recipient of C. We denote the risk associated with working - as captured by

deviations around C̃ - by the random variable:

α =

α0 : Prob(ρ)

α1 : Prob(1− ρ)
(5.2)

where:

α0 = −(1− ρ)(1 + φ)C , α1 = ρ(1 + φ)C (5.3)

and thus E(α) = 0.
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The detected state therefore corresponds to C̃ + α0 = −φC, whilst the undetected

state corresponds to C̃ + α1 = C. To save on notation, let A ≡ ωH + C̃ denote the

expected income of an individual who works when receiving C. Because labour supply

is exogenously fixed in the intensive margin, we can employ the standard methods of

Arrow (1970) and Pratt (1964) to show that the risk premium, χ(A, σ) , associated

with the variance in benefit income, σ, satisfies:

u(A− χ, 1−H) ≡ ρu(A+ α0, 1−H) + (1− ρ)u(A+ α1, 1−H) (5.4)

where:9

χ(A, σ) =
1

2
r(A) · σ(ρ, φ, C);

σ(ρ, φ, C) = E(α2) = ρ(1− ρ)(1 + φ)2C2,

r(A) = −uxx(A, 1−H)

ux(A, 1−H)

(5.5)

So, in general, the risk premium is the coefficient of absolute risk aversion10 , r, mul-

tiplied by half the variance in categorical income11 , σ (see Pratt, 1964, p.125). Once

more, because labour supply is constant in the intensive margin, the curvature of the

utility function over income is given by the standard formula for r (Chetty, 2006). Note

that σ is convex-increasing in both C and φ, but may be increasing or decreasing in ρ.

Formally:

9Our use of the mean-zero random variable α follows directly from Pratt (1964, p.124, see equations
(1) and (2)).

10Given that labour supply is constant, we could define a(x) ≡ u(x, 1−H), so that r = −a′′/a′ .
11Note that the variance in α is equivalent to the variance in benefit income. Formally:

E[α− E(α)]2 = ρα0
2 + (1− ρ)α1

2 = ρ[(C̃ + α0)− C̃]2 + (1− ρ)[(C̃ + α1)− C̃]2
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σC > 0, σCC > 0, σφ > 0, σφφ > 0 ,

σρ


>

=

<

 0⇔ ρ


<

=

>

 1

2
.

(5.6)

We can also see from (5.5) that individual productivity - the sole source of heterogeneity

across able individuals - only enters χ via r. The decision of an able recipient of C to

work will therefore depend on how r changes with ω, via changes in A. To proceed, we

analyse both the cases where risk aversion is (i) independent of ω and thus constant

across individuals; and (ii) a decreasing function of ω.

5.3.1 Constant Absolute Risk Aversion (CARA)

In this section we eliminate the dependence of r on A (and thus ω) through assuming

r = η, where 0 < η < 1 is a constant. By standard methods, the class of utility

functions satisfying this assumption is given by the solution to the second-order lin-

ear differential equation uxx + ηux = 0. Formally, let preferences take the CARA

form12:

u(x, l) = 1− ψ(l)e−ηx (5.7)

where r = −uxx/ux = η, ψ(l) > 0 ; ψ′ < 0; ψ′′ > 0 and ψψ′′ > (ψ′)2. The last

assumption guarantees that u is strictly concave (see Appendix).13 An implication of

these preferences is that uluxx−uxuxl = 0, such that the marginal utility of consumption

is independent of leisure along an indifference curve. Further, no individual with ω ≤
ω̄ ≡ −(1/η)Log[ψ(1)/ψ(1 − H)]/H > 0 will work. For simplicity we assume ω0 = ω̄,

such that all able individuals who do not receive C choose to work.14

12This functional form is also employed by Berloffa and Simmons (2003). For an application of
CARA preferences in an analysis of benefit fraud, see Fuller et al. (2015).

13Suppose, for example, that ψ(l) = 1/l. In this case ψ′(l) = −1/l2 whilst ψ′′(l) = 2/l3. We
therefore have ψψ′′ = 2/l4 > (ψ′)2 = 1/l4 and the assumption is readily satisfied.

14The main results remain unchanged if we allow ω < ω̄: in this case voluntarily unemployed
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The risk premium in (5.5) now becomes:

χ(σ) =
1

2
ησ (5.8)

So χ is now a constant multiplied by half the variance in categorical income. It is

independent of the individual wage rate and thus takes the same value for all individ-

uals. Under this assumption then, the enforcement parameters and benefit level will

affect the risk premium solely through their effect on the variance in benefit income.

Indeed, from (5.5) we can see that χ is convex-increasing in both φ and C, but may

be increasing or decreasing in ρ.

Work Decision Conditional on Receiving C

An able recipient of C will only choose to work if u(A−χ, 1−H) > u(C, 1). Given that

A is unambiguously increasing in ω, let the critical net wage ω(ρ, φ, C) satisfy:

u
[
ω(ρ, φ, C) · H + (C̃ − χ), 1−H

]
≡ u(C, 1) (5.9)

We assume that at the point of indifference an individual will choose not to work.

An able recipient of C will therefore not work if ω ≤ ω; but will work if ω > ω.

Differentiating (5.9) with respect to C, ρ and φ, respectively, we obtain:

ωC =
1

H

{[
ux(C, 1)

ux(ωH + C̃ − χ, 1−H)
− C̃C

]
+ χ′σC

}
> 0

ωφ =
1

H(χ′σφ − C̃φ) > 0

ωρ =
1

H(χ′σρ − C̃ρ)
{
≥
<

}
0

(5.10)

individuals with ω ∈ [ω0, ω̄] will all apply for C and, if awarded it, remain voluntarily unemployed
(if they do not work when receiving no benefit income, they will certainly not work when receiving
benefit income).
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where ωρ > 0 ∀ ρ ≤ 1/2 , whilst ∀ ρ > 1/2:

ωρ


<

=

>

 0⇔ C


>

=

<

 C̄(ρ, φ) ≡ 2

η(2ρ− 1)(1 + φ)
(5.11)

From (5.10) it can be readily verified (see Appendix) that an increase in C unambigu-

ously increases ω. There are two effects at work. First15, an increase in C increases

both the certain consumption of a non-working recipient and the expected consump-

tion of a working recipient. However, because C̃C < 1 the increase in consumption for

a non-worker exceeds that for a worker, thus driving ω to rise. Second, an increase in

C increases χ and thus the risk that a working individual faces. To compensate for

this, ω must further rise.

Turning to the enforcement parameters, an increase in φ unambiguously increases ω

because χ′σφ > 0 and C̃φ < 0 (i.e. it increases the risk premium and lowers the

expected benefit), whilst the affect of an increase in ρ depends on whether ρ ≤ 1/2

or ρ > 1/2. In the former case, ω unambiguously increases for the same reasons as

for φ. In the latter case, however, we have χ′σρ < 0, such that ω only increases if the

reduction in χ is offset by the reduction in C̃, thereby causing (χ− C̃) to rise. Given

that χ′σCC > 0, this will only hold if C is sufficiently small.

Decision to Apply for C

With knowledge of individual behaviour conditional on receiving C, we now determine

who will apply for C and under what conditions. Because applications are taken to be

costless, an individual’s utility from having an application for C rejected is identical

to that from having not applied. Accordingly, application decisions are independent of

the propensity of the benefit authority to make Type II errors (which is assumed to

be positive). An individual commanding wage ω will therefore make an application if

the utility from receiving C exceeds that from working, given that all able individuals

work when not receiving C.16

15Note that under the CARA preferences in (5.7) the implication of uluxx − uxuxl = 0 is that

ux(C, 1)/ux(ωH+C̃−χ, 1−H) = 1. We could thus alternatively write ωC = (1/H)
{

[1− C̃C ] + χ′σC

}
.

16Following the assumption that ω0 = ω̄ ≡ ( 1
η )Log

[
ψ(1)
ψ(1−H )

]
/H.
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As established, there are two important subgroups to consider: (i) those with ω < ω

who would not work conditional on receiving C; and (ii) those with ω > ω who would

work conditional on receiving C.

(i) ω < ω

First off, an individual with ω < ω will apply for C only if u(C, 1) ≥ u(ωH, 1 − H),

and thus if ω ≤ ¯̄ω(C), where ¯̄ω is implicitly defined by:

u[ ¯̄ω(C) · H, 1−H] ≡ u(C, 1) (5.12)

It follows immediately from (5.12) that ¯̄ω > C/H > C and:

¯̄ωC =
1

H
ux(C, 1)

ux(¯̄ωH, 1−H)
> 1 (5.13)

Unsurprisingly then, an increase in C increases the critical wage at or below which an

able individual chooses to apply for C and not work if awarded it.

(ii) ω < ω

Turning to those with ω < ω, an application for C will be made only if u[ωH + (C̃ −
χ), 1 −H] > u(ωH, 1 −H), which holds if χ < C̃. Given that χ is independent of ω,

it follows that all individuals with ω < ω will apply for C if χ < C̃.

Combining the definitions of ω and ¯̄ω in (5.9) and (5.12), respectively, we have:

u[ωH + (C̃ − χ), 1−H] ≡ u[ ¯̄ωH, 1−H] ≡ u(C, 1) (5.14)

Recall that ω is a function of the enforcement parameters and the benefit level, whilst

¯̄ω is a function of only the benefit level. Accordingly, the combination of enforcement

parameters and the benefit size will determine the position of ω relative to ¯̄ω on the

net wage continuum. It follows immediately from (5.14) that the relationship between

ω and ¯̄ω is:
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ω − ¯̄ω


>

=

<

 0⇔ (χ− C̃)


>

=

<

 0 (5.15)

If χ > C̃ then ω > ¯̄ω and so (i) all those with ω ∈ [ω0, ¯̄ω] apply for C and do not work

if awarded it; whilst (ii) no individual with ω ∈ (¯̄ω,∞) applies. Notice that in this

case there are individuals who belong in the wage interval ω ∈ (¯̄ω, ω] who would not

work if awarded the benefit, but choose not to apply for it. If χ = C̃ then ω = ¯̄ω and

applications are otherwise as described above. However, if χ < C̃ then ω < ¯̄ω such that

(i) all those with ω ∈ [ω0, ω] apply for C and do not work if awarded it; whilst (ii) all

those with ω ∈ (ω,∞) apply for C and do work if awarded it. Figure 5.1 graphically

depicts the relationship between these two critical wages.

The parameters under which ex-post conditionality is fully enforced

Following (5.15), a natural question to investigate is the conditions under which χ ≥ C̃

(respectively χ < C̃). Intuitively, this will depend on the relationship between the

enforcement parameters and the benefit level in determining the relative sizes of χ

and C̃. Indeed, equating χ and C̃, it is straightforward to establish the following

result.

Result 1: For any lenient enforcement pair (ρ, φ);

(χ− C̃)


>

=

<

 0⇔ C


>

=

<

 ∗
C(ρ, φ) (5.16)

where:

∗
C(ρ, φ) ≡ 2[1− ρ(1 + φ)]

ηρ(1− ρ)(1 + φ)2
(5.17)

An immediate corollary from (5.16) is:

Corollary 1: For enforcement parameters which either (i) fully deter , or (ii) provide

zero deterrence, against applications from those with ω < ω, the size of C has no impact
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Figure 5.1: The relationship between ω and ¯̄ω.

(a) Utility and the critical wages (C̃ > χ)

ωω0

u

u(C, 1)

u(A− χ, 1−H)

u(ωH, 1−H)

ω ¯̄ω

(b) Utility and the critical wages (C̃ < χ)

ωω0

u

u(C, 1)

u(ωH, 1−H)

u(A− χ, 1−H)

¯̄ω ω

Notes. This figure provides graphical intuition for the critical net wages ω and ¯̄ω. Subplot (a) depicts
the case where C̃ > χ, whilst subplot (b) depicts the case where C̃ < χ. Both subplots plot individual
utility over the net wage continuum. The horizontal line in each subplot gives the utility level of
an individual who receives the categorical benefit and does not work. If C̃ > χ then the (expected)
utility of a working categorical recipient must, at all wage levels, exceed the utility of a worker who
does not receive the categorical benefit. It must therefore hold that ω < ¯̄ω. Contrastingly, if C̃ < χ
then the (expected) utility of a working categorical recipient must be less than that of a worker who
does not receive the categorical benefit. In this case it must therefore hold that ω > ¯̄ω. The filled
region between ¯̄ω and ω illustrates that some individuals who would choose not to work conditional
on receiving C do not in fact apply for C.
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on application decisions. Formally:

lim
ρ(1+φ)→1

∗
C = 0 ,

lim
ρ(1+φ)→0

∗
C = +∞.

Much more interesting however, are the intermediate cases, 0 < ρ(1 + φ) < 1, where

the enforcement parameters in isolation provide neither full or zero deterrence against

applying for C and subsequently working. In these cases, the size of C matters in

deterring such applications. In particular, (5.16) and (5.17) show that C must be set

sufficiently high to achieve deterrence. The intuition for this initially surprising result

rests on the fact that:

d2

dC2
(χ− C̃) =

d2

dC2
χ = χ′σCC > 0 (5.18)

So whilst C̃ is linearly increasing in C, χ is convex-increasing in C and this drives the

main result. Intuitively, increases in C expose working benefit recipients to greater

and greater risk such that, for C set above the critical level
∗
C , χ more than offsets

C̃. Figure 5.2 illustrates why this result arises. Exactly how high C would need to be

set to achieve deterrence depends on the leniency of the enforcement parameters. In

particular:

∗
Cρ < 0,

∗
Cφ < 0,

∗
Cρφ > 0 ∀ 0 < ρ(1 + φ) < 1 (5.19)

So
∗
C is increasing in the leniency of enforcement. The less effective the enforcement

parameters are at deterring able benefit recipients from working, the higher the benefit

level would need to be set. Note that
∗
Cρ < 0 implies that d(χ− C̃)/dρ > 0 whenever

C <
∗
C. Indeed, from (5.11) and (5.17) it is straightforward to show that:

C̄(ρ, φ) ≤
∗
C(ρ, φ) (5.20)

The detection probability is therefore effective at raising ω - and thereby reducing the
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Figure 5.2: The Critical Categorical Benefit,
∗
C(ρ, φ)

C0

χ, C̃

C̃

χ

∗
C

Full Deterrence

C

Notes. The point C ≡
∗
C/2 simply satisfies d(χ− C̃)/dC = 0.

number of individuals who would choose to apply for C and subsequently work - for

all cases where χ ≤ C̃.

5.3.2 Decreasing Absolute Risk Aversion (DARA)

Under the assumption of CARA, changes in the enforcement parameters and the benefit

level only affect the risk premium via changes in the variance in benefit income. Let

us now relax this assumption and instead suppose that risk aversion is decreasing over

income and, in turn, the individual wage. We first re-write the general expression for

the risk premium in (5.5) as:

χ(A, σ) =
1

2
r(A)σ(ρ, φ, C) ; r′(A) < 0 (5.21)

Given that χ is now a function of ω, where ω is continuously distributed, there must now

be a continuum of risk premia. Note that dχ/dω = χA ·∂A/∂ω = (1/2)r′(A)σ∂A/∂ω <

0. Differentiating χ with respect to C, there are now two conflicting effects:
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dχ(A, σ)

dC
=
r(A)σ

2C

{
C

σ
σC +

C

r(A)

(
r′(A) · C̃C

)}{≥
<

}
0 (5.22)

The first term in braces is the elasticity of σ with respect C. This term is positive

because σC > 0 and it captures the standard effect from the CARA analysis. The

second term, meanwhile, is the elasticity of r with respect to C. This term must be

negative because C̃C > 0, thus capturing the fact that an increase in expected income

lowers the coefficient of risk aversion. So whether or not an increase in C will increase

χ(A, σ) will depend on the aggregate of these two opposing effects.

We can also write the affect of the enforcement parameters on χ in terms of elastici-

ties:

dχ(A, σ)

dφ
=
r(A)σ

2φ

{
φ

σ
σφ +

φ

r(A)
(r′(A) · C̃φ)

}
> 0 ,

dχ(A, σ)

dρ
=
r(A)σ

2ρ

{
ρ

σ
σρ +

ρ

r(A)
(r′(A) · C̃ρ)

}{≥
<

}
0 .

(5.23)

Given that σφ > 0 and r′(A)C̃φ > 0, an increase in φ unambiguously increases χ at

each productivity level. In words, an increase in the penalty rate serves to (i) increase

the variance in benefit income, which in isolation increases the risk premium; and

(ii) increase the coefficient of absolute risk aversion through lowering expected benefit

income, which in isolation also serves to increase the risk premium. Once more, the

effect of an increase in ρ on χ depends on whether ρ ≤ 1/2 or ρ > 1/2. If ρ < (=)1/2

then σρ > (=)0 and, because r′(A)C̃ρ > 0, χ unambiguously increases for the same

two reasons as discussed for φ. However, if ρ > 1/2 then σρ < 0 such that the variance

in benefit income and coefficient of absolute risk aversion move in opposite directions,

thereby generating an overall ambiguous effect. So unlike in the CARA case, it may

not always hold that χ is decreasing in ρ for all ρ > 1/2, where this arises because high

values of ρ decrease expected assets which, in turn, increase risk aversion.

To trace through in more detail some of the implications of DARA on individual

decisions to apply for C, a more explicit expression for the risk premium than that in
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(5.22) is required. We now assume that:

r =
η

A
; 0 < η ≤ 1 (5.24)

By standard differential equation methods once more, we thus assume that preferences

take the form:

u(x, l) =
x1−ηψ(l)

1− η ; η 6= 1 , ψ′ > 0 , ψ′′ < 0 (5.25)

Substituting (5.24) into (5.21) gives:

χ(A, σ) =
1

2

( η
A

)
σ (5.26)

Differentiating (5.26) respect to C, it can be readily established that the risk premium

is once more convex-increasing in C. Formally:

dχ

dC
=

1

2
η

{
AσC − σC̃C

A2

}
=

1

2
η

{
(A− C̃)σC + σC̃C

A2

}
> 0 ,

d2χ

dC2
=

1

2
η

(A− C̃)2

A3
σCC > 0 .

(5.27)

Turning to the affect of the enforcement parameters on the risk premium, we have

dχ/dφ > 0 as established in (5.23), whilst:

dχ

dρ
> 0 ∀ρ ≤ 1

2
,
dχ

dρ


>

=

<

 0⇔ C


>

=

<

 (2ρ− 1)ωH
(1− ρ)2 + ρ2φ

∀ρ > 1

2
(5.28)

So for all ρ > 1/2, C must be set sufficiently high at each wage level in order for an

increase in ρ to raise χ. When C is large an increase in ρ generates a reduction in A

- and thus an increase in r - that is sufficiently large so as to offset the reduction in

σ.
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Work Decision Conditional on Receiving C

A recipient of C will only choose to work if u(A−χ, 1−H) > u(C, 1).17 Differentiating

the left side with respect to ω gives ux ·H(1−χA) > 0, which implies that we can once

more define a critical net wage ωD(ρ, φ, C) above which an individual will work when

receiving C. Formally, ωD satisfies:

u
[
A(ωD)− χ(A(ωD), σ), 1−H

]
≡ u(C, 1) (5.29)

An individual with ω ∈ [ω0, ω
D] will thus not work when receiving C; whilst someone

with ω ∈ (ωD,∞) will work when receiving C.

Differentiating (5.29) with respect to C,ρ and φ, respectively, gives:

ωDC =
1

H(1− χA)

{[
ux(C, 1)

ux(ωDH + C̃ − χ, 1−H)
− C̃C

]
+ [χAC̃C + χσσC ]

}
> 0

ωDφ =
1

H

{
χσσφ

1− χA
− C̃φ

}
> 0

ωDρ =
1

H

{
χσσρ

1− χA
− C̃ρ

}
>

=

<

 0

(5.30)

An increase in C unambiguously increases ωD. Analogous to (5.10), there are two

effects at work. First, an increase in C increases both the certain consumption of a non-

working categorical recipient and the expected consumption of a working categorical

17Note that under the preferences specified in (5.25) we have uluxx−uxuxl < 0, such that leisure is
a normal good. An immediate implication of this is that there will be a critical wage ω̄(C) satisfying
u(C, 1) ≡ u(ω̄H + C, 1 − H) at or below which no individual will choose to work. Explicitly, this
critical wage is given by:

ω̄(C) =
C

H

{
1

(1−H)
1

1−η
− 1

}
; ω̄′(C) > 0 .
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recipient. However, because C̃C < 1 the increase in consumption for the non-worker

exceeds the increase in expected consumption for the worker, thus causing ωD to rise.18

Second, we know from (5.27) that the total effect of an increase in C on χ is positive,

which further acts to increase ωD. Next, an increase in φ unambiguously increases ωD

because a working recipient’s expected benefit income falls; whilst the risk premium

increases. Finally, if (i) ρ ≤ 1/2 an increase in ρ will unambiguously increase ωD; but

if (ii) ρ > 1/2 an increase in ρ will only increase ωD if χσσρ > C̃ρ(1− χA).

Decision to Apply for C

We now turn to address application decisions. Analogous to the the CARA analysis,

all those with ω ≤ ωD (ω ≤ ω in the CARA analysis) will apply for C if ω ≤ ¯̄ω, where

¯̄ω is as defined in (5.12). Further, an individual with ωD < ω will once more only apply

for C if χ(A, σ) ≤ C̃. A key difference between the CARA and DARA cases is that

this condition is now a function of the net wage rate. It is straightforward to show

that:

(χ− C̃)


>

=

<

 0⇔ Γ(ρ, φ)


>

=

<

 ωH
C

; Γ ∈ [−1,+∞) (5.31)

where the function Γ is explicitly given by (see Appendix for the derivation);

Γ(ρ, φ) ≡
1
4
ησCC − C̃2

C

C̃C

=
−(1 + φ)2(η

2
+ 1)ρ2 + (1 + φ)[η

2
(1 + φ) + 2]ρ− 1

[1− ρ(1 + φ)]
∀ ρ(1 + φ) ≤ 1

(5.32)

18Under the preferences in (5.25) the marginal utility of consumption is increasing in leisure, such
that ux(C, 1)/ux(ωH+ C̃ − χ, 1−H) > 1.
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and satisfies:

lim
ρ(1+φ)→0

Γ(ρ, φ) = −1 ,

lim
ρ(1+φ)→1

Γ(ρ, φ) = +∞ ,

Γρ > 0 , Γφ > 0 ∀ ρ(1 + φ) ≤ 1 .

(5.33)

Notice that Γ is a function of only the enforcement parameters (and the constant η).

Furthermore, it is increasing in both of these parameters for all lenient enforcement

cases. An immediate implication of (5.31) is therefore that, for any enforcement param-

eters that render Γ < 0, there will be no level of the categorical benefit that can deter

an individual with ωD < ω from applying for C and subsequently working if awarded

it. That is, if enforcement is sufficiently lenient so as to render Γ < 0, there will be no

way to achieve deterrence because the right side of (5.31) is always positive.

Given that Γ is a quadratic equation in ρ (equivalently, a quadratic equation in φ),

let the function ρ̌(φ) satisfy Γ[ρ̌(φ), φ] ≡ 0. From the properties of Γ in (5.33) it must

hold that ρ̌(φ) is the first, or lower, root of Γ for a given φ. The second root occurs

for enforcement parameters satisfying ρ(1 + φ) > 1 and is thus not considered. Figure

5.3 graphically depicts the function Γ and provides some numerical examples of ρ̌ for

various values of φ and η.

Drawing this all together, the following result must hold:

Result 2:

(i)

ρ ≤ ρ̌(φ)⇒ χ < C̃ ∀ ω (5.34)

(ii)

ρ > ρ̌(φ)⇒ (χ− C̃)


>

=

<

 0 if C


>

=

<

 ∗
CD(ω, ρ, φ) ≡ ωH

Γ
(5.35)

where limΓ→0

∗
CD = +∞ and limΓ→+∞

∗
CD = 0
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Figure 5.3: Properties of the Function Γ(ρ, φ)

(a) Graphical Depiction of Γ

ρ0

Γ

−1

ρ̌(φ)

Γ(ρ, φ)

1
1+φ

ρ̌(φ′)

Γ(ρ, φ′)

1
1+φ′

Notes: φ′ > φ and the points (1 + φ)−1 and (1 + φ′)−1 are the lenient enforcement upper bounds

(b) Critical Detection Probability, ρ̌

φ ρ̌ (η=0.25) ρ̌(η=0.5) ρ̌(η=0.75)

0 0.889 0.800 0.727
0.1 0.758 0.675 0.610
0.2 0.667 0.587 0.528
0.3 0.596 0.519 0.464
0.4 0.538 0.465 0.413
0.5 0.490 0.420 0.371
0.6 0.450 0.382 0.336
0.7 0.414 0.350 0.306
0.8 0.384 0.322 0.280
0.9 0.357 0.298 0.258
1 0.333 0.276 0.239
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It follows directly from this result that:

Corollary 2: A necessary - though not sufficient - condition to deter an individual

with ω < ω from applying for C is that ρ > ρ̌(φ), and thus that the level of enforcement

be set sufficiently high.

The key message from this analysis is Result 2(i) and the proceeding Corollary 2. The

intuition for this can be seen from the denominator in the definition of χ in (5.26):

Higher levels of the enforcement parameters limit the impact of the size of C on A and

thus limit the extent to which an increase in C reduces the coefficient of absolute risk

aversion. Contrastingly, in the CARA case A is absent from the coefficient of absolute

risk aversion and consequently this necessary condition does not arise.

5.3.3 Discussion

An unrealistic implication of the results obtained in both Section 5.3.1 (CARA analysis)

and Section 5.3.2 (DARA analysis) is that, for enforcement-benefit level combinations

that expose working recipients to insufficient risk, all higher earners will apply for the

categorical benefit and, if awarded it, work. Yet, in reality higher earners are unlikely

to want to apply for a categorical benefit even if they face some positive probability of

being awarded it. This is likely to arise because neither (i) applying for the benefit, or

(ii) receiving the benefit, are actually costless as so far assumed. Whilst applications

are a one-time cost and abstracting from them renders the analysis more tractable,

actually receiving C is likely to involve non-negligable time costs because recipients

are typically required to spend a fraction of their day at the benefit office or engaging

in certain activities. We turn to discuss this in the following section.

5.4 Time Opportunity Costs

The purpose of this section is to take seriously the real-word facet of welfare pro-

grammes that there are time costs associated with receiving categorical benefits. These

time costs can take a multitude of forms depending on the nature of the benefit, such

as regular meetings with a benefit officer; medical reassessments; work-capability tests;
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work-preparation activities or providing evidence of job search.19 Under the realis-

tic assumption that such requirements are imposed during the working day, they also

present opportunity costs to fraudulent recipients who work since their net earnings are

lowered through taking time off work to fulfil these conditions (Yaniv, 1986)20.

To analyse the implications of time opportunity costs we adopt a simpler framework

where preferences are defined over consumption only21 and given by u(x); where u′ > 0

and u′′ < 0 (see also Yaniv, 1986). We further assume that −u′′/u′ = η such that,

analogous to Section 5.3.1, preferences exhibit constant absolute risk aversion.

In this setting, an individual who does not receive the categorical benefit has consump-

tion x = ω. Meanwhile, an individual who receives the categorical benefit and works

has expected consumption x = ω(1 − k) + C̃; where k ∈ (0, 1) denotes the fraction

of the day that a benefit recipient must spend attending meetings/reassessments with

a benefit officer. This time requirement is taken to be fully enforced such that any

recipient who does not conform with it automatically loses the benefit.

The analysis proceeds as in the previous sections: we first establish which individuals

would choose to work/not work conditional on receiving C; and then, given this be-

haviour, determine which individuals will choose to apply for C. Given our assumption

of CARA preferences, the risk premium in (5.8) applies.

19Whilst some benefits - such as incapacity payments - do not require frequent reassessment, many
others do. For example, in the U.K. individuals who have some form of (non-terminal) illness or
disability and receive Employment and Support Allowance (ESA) are required to attend frequent
meetings with a ‘benefits adviser’ if they are placed in a ‘work-related activity group’. An aim of such
programmes is to eventually transfer recipients - via work capability assessments - into job search
programmes and ultimately employment. Indeed, individuals receiving Jobseekers Allowance must
‘sign on’ every two weeks and provide evidence of job search. The transition between these benefit
programmes is characterised by a shift from ‘work preparation conditionality’ (i.e. ESA) to ‘full
conditionality’ (i.e. Jobseekers allowance) (see Department for Work and Pensions, 2010).

20Benefit offices such as JobCentre Plus in the U.K. will typically be open 9am-5pm (i.e. the typical
working day.)

21In the context of the framework employed in Section 5.3.1, where preferences were defined over
both over consumption and leisure, there would be a certain inconsistency in maintaining the assump-
tion of fixed working hours but then allowing individuals to take the fraction k of their working day
off from work (to attend the benefit office). In this case some individuals would have incentives to
take time off and simply enjoy more leisure, thus getting closer to their optimal labour supply. Whilst
the framework adopted in the current section is more restrictive, it avoids these conceptual issues.
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5.4.1 Work decision when receiving C.

When receiving C an individual may choose to either comply with the no-work condi-

tion and have utility u(C), or instead work and have (expected) utility u[ω(1 − k) +

C̃ − χ]. Let ωk(ρ, φ, C) denote the critical wage at which an individual is indifferent

between these two choices. Formally:

ωk =
(C − C̃) + χ

1− k (5.36)

We once more assume that at the point of indifference an individual will choose not to

work. All those with ω ∈ [ω0, ω
k] will therefore not work when receiving C; whilst all

those with ω ∈ (ωk,∞) will work when receiving C. The properties of ωk with respect

to ρ, φ and C parallel that for ω in (5.9):

ωkC > 0 ; ωkCC > 0 ; ωkφ > 0 ωkφφ > 0 ; ωkρ

{
≥
<

}
0 ; ωkρρ < 0

It is also straightforward to see that ωk is increasing in k.

5.4.2 Application decisions

Turning to application decisions, there are thus two groups to consider: (i) those with

ω ≤ ωk who do not work when receiving C; and (ii) those with ω > ωk who do work

when receiving C. The decision to apply for the former group is straightforward; they

will apply if ω ≤ ¯̄ωk ≡ C. Contrastingly, an individual with ω > ωk will only apply for

C if C̃ − ωk > χ, and thus if ω ≤ ¯̄̄ωk, where ¯̄̄ωk satisfies:

¯̄̄ωk(ρ, φ, C, k) ≡ C̃ − χ
k

(5.37)

The intuition is as follows.22 An individual who would choose to work when receiving C

22The assumption of CARA preferences greatly simplifies the analysis of the condition C̃−ωk > χ.
Indeed, because χ is independent of ω we can solve for a unique ¯̄̄ω above which an individual who
would work when receiving C will not apply. If χ were to take the DARA form in (5.26) there may
be multiple solutions to C̃ − ωk > χ.
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Figure 5.4: The Upper Bound ¯̄̄ωk∗.

C
0

χ

− ¯̄̄ωk∗k

C̃ − ¯̄̄ωk∗k

C

C̃

∗
C

Notes. This figure graphically illustrates the upper bound ¯̄̄ωk∗. This is simply ¯̄̄ωk = (C̃ − χ)/k
evaluated at the value of C which maximises (C̃ − χ), i.e. C.

will only apply if the expected benefit (C̃) net of foregone earnings (ωk) exceeds the risk

premium associated with the variance in benefit income. However, for an individual

with ω > ¯̄̄ωk the opportunity cost of foregone earnings is too high, thus rendering

an application suboptimal. Straight away then, we can see that the imposition of a

time requirement generates more realistic application decisions because higher wage

individuals will not apply.

An upper bound on ¯̄̄ωk. From (5.37), we can take the analysis a step further by

recognising that ¯̄̄ωk must, ceteris paribus, take its maximum value at the value of C

which maximises C̃−χ. For any given enforcement parameter pair (ρ, φ), the expected

benefit net of the risk premium is maximised at C(ρ, φ), where:

C(ρ, φ) ≡
∗
C(ρ, φ)

2
=

1− ρ(1 + φ)

ηρ(1− ρ)(1 + φ)2
(5.38)

Given that C is as stationary point it will hold that χ′σC(ρ, φ, C) = C̃C(ρ, φ, C). From
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Figure 5.5: The critical categorical benefit
∗
Ck

C
0

χ
C̃

C̃ − ¯̄ωkk

− ¯̄ωkk

∗
Ck

∗
CC

− ¯̄̄ωkk

−ωkk

Notes. This figure illustrates that the critical benefit size
∗
Ck occurs at the point where ωk = ¯̄ωk = ¯̄̄ωk.

The negative portion of the figure captures this in terms of the earnings that these marginal individuals
would forego were they to work when receiving the categorical benefit. The value of C at which these
foregone earnings intersect will intuitively depend on the size of k. Indeed, one can readily establish
that ∂ωkCk/∂k > 0, ∂ ¯̄ωCk/∂k > 0, but ∂ ¯̄̄ωkCk/∂C = 0. An increase in k thus lowers the value of the
categorical benefit at which the intersection occurs.

this it follows that we can define a critical net wage which is independent of C, above

which no able individual will choose to apply for C and work.

Result 3a. ∀ C <
∗
C(ρ, φ), ¯̄̄ωk is bounded above by a critical productivity ¯̄̄ωk∗ that

depends only on the standard enforcement parameters (and k). Formally:

¯̄̄ωk∗(ρ, φ, k) ≡ ¯̄̄ωk (ρ, φ, C(ρ, φ), k) (5.39)

where ¯̄̄ωk(ρ, φ, C, k) < ¯̄̄ωk∗(ρ, φ, k) ∀ C 6= C

This upper bound is graphically illustrated in Figure 5.4.

Whether or not an individual who would work when receiving C will apply for it will

clearly depend on where ωk lies relative to ¯̄̄ωk on the net wage continuum. Intuitively,
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if ¯̄̄ωk < ωk then no such individual will apply. With this in mind, we state the following

result.

Result 3b.

ωk


>

=

<

 ¯̄ωk


>

=

<

 ¯̄̄ωk if C


>

=

<

 ∗
Ck ≡ 2[1− ρ(1 + φ)− k]

ηρ(1− ρ)(1 + φ)2
(5.40)

An immediate implication of (5.40) is that
∗
Ck <

∗
C ∀ k > 0, such that the imposition of

time costs lowers the critical categorical benefit above which no individual who would

work when receiving C will choose to apply. Notice further that if k ≥ 1 − ρ(1 + φ)

then enforcement is independent of the categorical benefit and no individual who would

work when receiving C will ever apply. Figure 5.5 provides the graphical intuition for

this result. In addition, Figure 5.6 depicts how application choices differ over the net

wage continuum for the three cases depicted in (5.40).

5.5 Concluding Remarks

This chapter has analysed the decisions of workers - who differ continuously in their

wage - to apply for a categorical benefit that is targeted at individuals who are unable

to work, but administered with Type II (false award) classification errors. The cate-

gorical benefit is ex-ante conditional on an applicant being unable to work; and ex-post

conditional on a recipient not working. Recipients may also be required to spend a

fraction of the working day at the benefit office. Any recipient who works risks being

detected. Upon detection a fraudulent recipient is required to repay the benefit in its

entirety, in addition to paying a fine that is proportional to the benefit size.

Under both CARA and DARA (CRRA) preferences, the risk premium associated with

the variance in benefit income is convex-increasing in the benefit size. This yields the

interesting (and initially surprising) result that individuals who would work conditional

on receiving the categorical benefit can be deterred from applying for it through setting

the benefit level sufficiently high. In the case of CARA preferences the risk premium

is independent of the individual wage rate and so one risk premium characterises the
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Figure 5.6: The relationship between ωk , ¯̄ωk and ¯̄̄ωk
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Notes. This figure graphically depicts the three cases stated in (5.40). Note that Ak = ω(1−k)+C̃−χ.
Subplots (a) and (b) illustrate that if ωk ≥ ¯̄̄ωk (i) all those with ω ∈ [ω0, ¯̄ωk] will apply for C and,
if awarded it, not work; whilst (ii) all those with ω ∈ (¯̄ωk,∞) will not apply for C. Contrastingly,
subplot (c) illustrates that if ωk < ¯̄̄ωk (i) all those with ω ∈ [ω0, ω

k] will apply for C and, if awarded
it, not work; (ii) all those with ω ∈ (ωk, ¯̄̄ωk] will apply for C and, if awarded, continue to work; whilst
(iii) those with ω ∈ (¯̄̄ωk,∞) do not apply for C.
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attitudes of all individuals to risk. For all cases where the standard enforcement param-

eters (detection probability, penalty rate) alone do not provide full deterrence, there

is a critical categorical benefit level above which no able individual will apply for the

categorical benefit and work when receiving it. This critical benefit level is increasing

the leniency of the standard enforcement parameters. Contrastingly, for DARA pref-

erences which exhibit constant relative risk aversion, the risk premium is decreasing

in the individual wage. A necessary but not sufficient condition to deter individuals

from applying for the categorical benefit and subsequently working is that the standard

enforcement parameters be set sufficiently high. Conditional on this being achieved, a

categorical benefit set sufficiently high can be used to provide deterrence.

When the only ex-post condition imposed on recipients is that they do not work, an

unsatisfactory implication of the above results is that higher earners will all apply for

the benefit if enforcement is too lenient. In reality, however, higher earning individuals

are unlikely to apply for categorical benefits even if they face a positive probability of

being awarded them. One explanatory factor for why is that receiving benefits is in

many cases a time consuming activity. A simple extension imposing a fully enforced

time requirement on recipients (i) preserves the result that a benefit set sufficiently

high can achieve deterrence; but now also (ii) generates a critical wage above which no

able individual will apply because the opportunity cost of foregone earnings is simply

too high.

Imposing a fine proportional to the benefit incorrectly obtained parallels how real-world

systems operate. It is, however, precisely because the fine is an increasing function of

the benefit size that we obtain the result that a benefit set sufficiently high can fully

deter individuals from violating ex-post conditionality.



CHAPTER 5. ENFORCEMENT: WELFARE BENEFIT SIZE AND RISK 298

Appendix A Derivations and Proofs

Derivation of the risk premium χ(A, σ)

By the standard method established in Pratt (1964), we take first- and second- order

Taylor approximations around (A, 1−H) on the left- and right- sides of equation (5.4)

in the main text, respectively, to obtain:

u[A− χ, 1−H] ≈ u[A, 1−H]− χ · ux[A, 1−H] , (A.1)

E(u) ≈ ρ

{
u(A, 1−H) + α0ux(A, 1−H) +

1

2
uxxα

2
0(A, 1−H)

}
+ (1− ρ)

{
u(A, 1−H) + α1ux(A, 1−H) +

1

2
α2

1uxx(A, 1−H)

}
= u[A, 1−H] + ux[A, 1−H] · E(α)︸ ︷︷ ︸

=0

+
1

2
uxx[A(ω), 1−H] · E(α2) .

(A.2)

where, defining σ(ρ, φ, C) ≡ E[(α− E(α))2] = E(α2):

σ = ρ(α0)2 + (1− ρ)(α1)2 = [ρ(1− ρ)2 + ρ2(1− ρ)](1 + φ)2C2

= ρ(1− ρ)(1 + φ)2C2 (A.3)

Through substituting (A.3) into (A.2) and subsequently combining (A.1) and (A.2), it

is straightforward to arrive at the risk premium as defined in (5.5).

CARA Preferences

Preferences satisfying uxx + ηux = 0

The solution to uxx + ηux = 0 simply follows standard second-order linear differential

equation methods (see Simon and Blume, 1994, pp.647-648). Given that labour is
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exogenously fixed in the intensive margin, let ũ(x) ≡ u(x, l). The differential equa-

tion defining absolute risk aversion is therefore ũ′′(x) + ηũ′(x) = 0. Substituting in

ũ = ezx (and thus ũ′ = zezx and ũ′′ = z2ezx) yields ezx[z2 + ηz] = 0 and thus the

characteristic equation z(z + η) = 0, which has roots z = 0 and z = −η. The solution

is therefore:

ũ(x) = ae0 − beηx = a− be−ηx

It is straightforward to show that a utility function in consumption and leisure (fixed)

which satisfies these properties - and the initial assumptions placed on preferences -

is:

u(x, l) = 1− ψ(l)e−ηx ; ψ(l) > 0 , ψ′ < 0 , ψ′′ > 0 , ψψ′′ > (ψ′)2

We can readily establish that:

ux = ηψ(l)e−ηx > 0 ; uxx = −η2ψ(l)e−ηx < 0 ; −uxx/ux = η > 0

ul = −ψ′(l)e−ηx > 0 ; ull = −ψ′′(l)e−ηx < 0 ; uxl = ηψ′(l)e−ηx

Strict concavity requires uxxull − u2
xl > 0. We have:

uxxull − u2
xl = η2ψ(l)ψ′′(l)e−2ηx − η2[ψ′(l)]2e−2ηx

= η2e−2ηx
{
ψ(l)ψ′′(l)− [ψ′(l)]2

}
> 0

by the assumptions placed on u.23

23Normality of leisure requires uluxx − uxuxl < 0. With these preferences, note however that
uluxx − uxuxl = 0. We can readily show that any reservation wage in the economy is independent of
unearned income. Suppose all individuals in society receive an unconditional universal benefit (B):
then the reservation wage (ω̄) satisfies:

1− ψ(1)e−ηB = 1− ψ(1−H)e−(ω̄H+B) ⇒ ψ(1)e−ηB = ψ(1−H)e−η(¯̄ωH)e−ηB

⇒ ψ(1)

ψ(1−H = e−ηω̄H

⇒ ω̄ = −
(

1

η

)
Log

[
ψ(1)

ψ(1−H)

]
/H > 0
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The derivatives of the critical net wage ω

Totally differentiating the definition of ω in (5.9) in the main text with respect to C,

ρ and φ gives:

ux(ωH + C̃ − χ, 1−H) · (ωCH + C̃C − χ′σC) = ux(C, 1)

ux(ωH + C̃ − χ, 1−H) · (ωφH + C̃φ − χ′σφ) = 0

ux(ωH + C̃ − χ, 1−H) · (ωρH + C̃ρ − χ′σρ) = 0

(A.4)

Solving for ωC , ωφ and ωρ respectively, gives the derivatives in (5.10).

It is straightforward to establish from (5.10) that ωC > 0. From the properties of the

CARA preferences in (5.7) we can write ωC as:

ωC =

(
1

H

)[
(1− C̃C) + χ′σC

]
Noting that C̃C = 1 − ρ(1 + φ) is maximised at ρ = 0 ; whilst χ′σC is minimised at

ρ = 0, it must be the case that ωC is minimised at ρ = 0, where ωC |ρ=0 = 0. Since we

only consider ρ > 0 it follows that ωC > 0.

With respect to the enforcement parameters, it is unambiguously the case that ωφ > 0

and ωρ ≥ 0 ∀ ρ ≤ 1/2. However, because χ′σρ < 0 ∀ ρ > 1/2, we can see that the sign

of ωρ when ρ > 1/2 will depend on:

ωρ


>

=

<

 0 if
d

dρ
(χ− C̃)


>

=

<

 0⇔ 1

2
η (1− 2ρ)︸ ︷︷ ︸

<0

(1 + φ)2C2 + (1 + φ)C


>

=

<

 0

⇔ C


<

=

>

 C̄ ≡ 2

η(2ρ− 1)(1 + φ)
∀ ρ > 1

2

(A.5)

Derivation of the Critical Benefit Level
∗
C and its Properties

The relationship between χ and C̃ is simply given by:
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χ


>

=

<

 C̃ ⇔ 1

2
ηρ(1−ρ)(1+φ)2C2


>

=

<

 [1−ρ(1+φ)]C ⇔ C


>

=

<

 ∗
C ≡ 2[1− ρ(1 + φ)]

ηρ(1− ρ)(1 + φ)2

(A.6)

Differentiating C∗ with respect to ρ and φ, respectively, gives:

∗
Cρ = −

{
2

η(1 + φ)2

}{
ρ(1− ρ)(1 + φ) + [1− ρ(1 + φ)](1− ρ)

ρ2(1− ρ)2

}
= −

{
2

η(1 + φ)2

}
·
{
ρ2(1 + φ) + (1− 2ρ)

ρ2(1− ρ)2

}
= −

{
2

η(1 + φ)2

}
·
{
ρ2φ+ (1− ρ)2

ρ2(1− ρ)2

}
< 0

∗
Cφ =

{
2

ηρ(1− ρ)

}
·
{−ρ(1 + φ)2 − 2[1− ρ(1 + φ)](1 + φ)

(1 + φ)4

}
=

{
2

ηρ(1− ρ)

}
·
{
ρ(1 + φ)2 − 2(1 + φ)

(1 + φ)4

}
=

{
2

ηρ(1− ρ)

}
·
{
ρ(1 + φ)− 2

(1 + φ)3

}
< 0

∗
Cρφ =

{
2

η(ρ(1− ρ))

}
·
{
ρ(1 + φ)3 + 3(2− ρ(1 + φ))(1 + φ)2(1 + φ)6

}
> 0

(A.7)

Proof that
∗
C ≤ C̄

Suppose, contrary to (5.20), that
∗
C > C̄. This implies:{

2[1− ρ(1 + φ)]

ηρ(1− ρ)(1 + φ)2

}
>

{
2

η(2ρ− 1)(1 + φ)

}
⇔ [1− ρ(1 + φ)](2ρ− 1) > ρ(1− ρ)(1 + φ)

⇔ (2ρ− 1) > ρ2(1 + φ)

⇔ −(1− ρ)2 > ρ2φ

(A.8)

This is a contradiction and thus
∗
C < C̄. Q.E.D.
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Derivation of Explicit Risk Premium under CARA preferences

The purpose of this section is to illustrate why the Taylor approximation of the risk-

premium greatly increases the tractability of the analysis. Under the stated CARA

preferences the condition defining the risk premium, χ, is:

1− ψ(1−H)e−η(A−χ) = ρ[1− ψ(1−H)e−η(A+α0)] + (1− ρ)[1− ψ(1−H)e−η(A+α1)]

which reduces to the condition:

e−η(A−χ) = ρe−η(A+α0) + (1− ρ)e−η(A+α1)

⇒ e−ηAeηx = ρe−ηAe−ηα0 + (1− ρ)e−ηAe−ηα1

⇒ eηχ = ρe−ηα0 + (1− ρ)e−ηα1

Taking Logs (to the base e) thus gives:

ηχ = Log

ρe−ηα0 + (1− ρ)e−ηα1︸ ︷︷ ︸
>1


and finally:

χ(ρ, φ, C) =

(
1

η

)
Log

{
ρe−ηα0 + (1− ρ)e−ηα1

}
(A.9)

Figure 5.7 illustrates that this is convex-increasing in C.

DARA preferences

Preferences satisfying uxxx+ ηux = 0

Drawing from Simon and Blume (1994), once more let ũ(x) = u(x, l) where l is a

constant. Letting q(x) = ũ′(x) the second-order differential equation ũ′′(x)x+ηu′(x) =

0 becomes (dq/dx)x+ηq = 0 and thus dq/q = −η(dx/x). Integrating both sides yields

ln q = −η(lnx+ c) where c is an integration constant. Taking the exponential of both
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Figure 5.7: Explicit CARA Risk Premium
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(b) φ = 0.5, η = 0.5

Notes: The values of η chosen here are 0.25 (panel a) and 0.5 (panel b). Higher values are permitted
in the literature (see Berloffa and Simmons, 2003).

sides yields q = e−η(lnx+c) = elnx−ηe−ηc = x−ηb; where b = e−ηc is a constant. Given that

q = ũ′(x) and thus ũ′(x) = x−ηb we integrate both sides to obtain:

ũ =

a+ bx
1−η

1−η : 0 < η < 1

a+ b lnx : η = 1

A utility function in consumption and leisure (fixed) which satisfies these properties -

and the initial assumptions placed on preferences - is:

u(x, l) =
x1−ηψ(l)

1− η ; η 6= 1 , ψ(l) > 0 , ψ′(l) > 0 , ψ′′(l) < 0
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We can readily establish that:

ux = x−ηψ(l) > 0 , uxx = −ηx−η−1ψ(l)/x < 0 , −uxx
ux

=
η

x
> 0

ul =
x1−ηψ′(l)

1− η > 0 , ull =
x1−ηψ′′(l)

1− η < 0 ; uxl = x−ηψ′(l) > 0

Notice that strict concavity requires − η
(1−η)

ψ(l)ψ′′(l) > [ψ′(l)]2. Formally24:

uxxull − u2
xl = − η

1− ηx
−2ηψ(l)ψ′′(l)− x−2η[ψ′(l)]2

= −x−2η

{
η

1− ηψ(l)ψ′′(l) + [ψ′(l)]2
}
> 0

Finally, note that normality of leisure is satisfied because:

uxuxl − uluxx = x−2ηψ(l)ψ′(l)
{

1 + ηx−1/(1− η)
}
> 0

Proof that χ is convex increasing in C

To proceed, we note that: C̃C = [1−ρ(1+φ)] = C̃/C; whilst σC = ρ(1−ρ)(1+φ)2C =

2σ/C. Taken together we obtain C̃σC = 2σC̃C . It then follows that:

dχ

dC
=

1

2
η

{
AσC − σC̃C

A2

}
=

1

2
η

{
(A− C̃)σC + C̃σC − σC̃C

A2

}

=
1

2
η

{
(A− C̃)σC + 2σC̃C − σC̃C

A2

}

=
1

2
η

{
(A− C̃)σC + σC̃C

A2

}
24Suppose ψ(l) = lα(1−η) α ∈ (0, 1) such that ψ′(l) = α(1−η)lα(1−η)−1 and ψ′′(l) = α(1−η)[α(1−

η) − 1]lα(1−η)−2. Then it is straightforward to check that the condition for strict concavity becomes
η[1− α(1− η)] > α(1− η)2.
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We can now use the fact that σCC = ρ(1− ρ)(1 + φ)2 = σC/C to show that:

d2χ

dC2
=

1

2
η

{
A[(A− C̃)σCC + σCC̃C ]− 2C̃C [(A− C̃)σC + σC̃C ]

A3

}

=
1

2
η

{
(A/C)[(A− C̃)σC + 2σC̃C ]− 2C̃C [(A− C̃)σC + σC̃C ]

A3

}

=
1

2
η

{
A[(A− C̃)σC + 2σC̃C ]− 2C̃[(A− C̃)σC + σC̃C ]

CA3

}

=
1

2
η

{
(A− C̃)σC(A− 2C̃) + 2σC̃C(A− C̃)

CA3

}

But of course 2σC̃C = 2C̃σ/C = C̃σC and thus:

=
1

2
η

{
(A− C̃)[σC(A− C̃) + C̃σC − C̃σC ]

CA3

}

and thus finally

(A.10)

=
1

2
η

(A− C̃)2

A3
σCC > 0
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Derivation and sign of dχ/dρ

dχ

dρ
=

1

2
η ·
{
Aσρ − σC̃ρ

A2

}
⇔ dχ

dρ


>

=

<

 0⇔ σρA


>

=

<

σC̃ρ

⇔ (1− 2ρ)(ωH + C̃)


>

=

<

− ρ(1− ρ)(1 + φ)C

⇔ (1− 2ρ)ωH


>

=

<

− C
{

(1− 2ρ)[1− ρ(1 + φ)]

+ρ(1− ρ)(1 + φ)

}

⇔ (2ρ− 1)ωH


<

=

>

C
{

1− 2ρ+ ρ2(1 + φ)
}

⇔ (2ρ− 1)ωH


<

=

>

C[(1− ρ)2 + ρ2φ]

(A.11)

If ρ ≤ 1/2 it must always be the case that dχ/dρ > 0. Otherwise, dχ/dρ > 0 requires

C > (2ρ− 1)ωH/[(1− ρ)2 + ρ2φ] as stated above and in (5.28).

The derivatives of the critical net wage ωD

Differentiating the definition of ωD in (5.29) with respect to C, ρ and φ yields:

ux[A(ωD)− χ(A(ωD), σ), 1−H] ·
{

(ωDCH + C̃C)(1− χA)− χσσC
}

= ux(C, 1)

ux[A(ωD)− χ(A(ωD), σ), 1−H] ·
{

(ωDφH + C̃φ)(1− χA)− χσσφ
}

= 0

ux[A(ωD)− χ(A(ωD), σ), 1−H] ·
{

(ωDρ H + C̃ρ)(1− χA)− χσσρ
}

= 0

(A.12)

Solving for ωDC , ωDρ and ωDφ gives (5.30). We now demonstrate that ωDC > 0. Given

that ux(C, 1)/ux(A−χ, 1−H) > 1, it suffices to show that 1 +χσσC > C̃C(1−χA) to
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establish ωDC > 0. Substituting in χA = −1
2
η
A2σ, we can write 1 + χσσC − C̃(1 − χA)

as:

1 +
η

A

σ

C
− C̃

C

{
1 +

1

2

η

A2
σ

}
=

(
1− C̃

C

)
+
η

A

σ

C

{
1− 1

2

C̃

A

}
> 0 (A.13)

because C/C̃ < 1 and C̃/A < 1 ∀ ρ > 0.

Derivation of the Function Γ(ρ, φ)

To derive the function Γ(ρ, φ) we write:

χ ≥ C̃ ⇔ 1

2

{
ηρ(1− ρ)(1 + φ)2C

ωH + C[1− ρ(1 + φ)]

}
≥ [1− ρ(1 + φ)]

⇔ ηρ(1− ρ)(1 + φ)2C ≥ 2ωH[1− ρ(1 + φ)] + 2C[1− ρ(1 + φ)]2

⇔
{
ηρ(1− ρ)(1 + φ)2 − 2[1− ρ(1 + φ)]2

}
C ≥ 2ωH[1− ρ(1 + φ)]

⇔
{−(1 + φ)2(η + 2)ρ2 + [η(1 + φ)2 + 4(1 + φ)]ρ− 2

2[1− ρ(1 + φ)]

}
C ≥ ωH

⇔
{−(1 + φ)2(η

2
+ 1)ρ2 + (1 + φ)[η

2
(1 + φ) + 2]ρ− 1

[1− ρ(1 + φ)]

}
C ≥ ωH

⇔ Γ(ρ, φ) · C ≥ ωH

(A.14)

where:

Γ(ρ, φ) ≡ −(1 + φ)2(η
2

+ 1)ρ2 + (1 + φ)[η
2
(1 + φ) + 2]ρ− 1

[1− ρ(1 + φ)]
(A.15)

We can immediately establish that:

lim
ρ(1+φ)→0

Γ(ρ, φ) =
−1

1
= −1

lim
ρ(1+φ)→1

Γ(ρ, φ) =

{
−η

2
− 1 + η

2
(1 + φ) + 1

}
0

=
ηφ/2

0
= +∞

(A.16)
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The derivatives of Γ with respect to ρ and φ are given by:

∂Γ

∂ρ
=

{
[1− ρ(1 + φ)]〈−2ρ(1 + φ)2(η

2
+ 1) + (1 + φ)

[
η
2
(1 + φ) + 2

]
〉

+(1 + φ)〈−(1 + φ)2(η
2

+ 1)ρ2 + (1 + φ)
[
η
2
(1 + φ) + 2

]
ρ− 1〉

}
/[1− ρ(1 + φ)]2

=


−2ρ(1 + φ)2(η

2
+ 1) + η

2
(1 + φ)2 + 2(1 + φ)

+2ρ2(1 + φ)3(η
2

+ 1) + η
2
ρ(1 + φ)3 + 2ρ(1 + φ)2

−ρ2(1 + φ)3(η
2

+ 1) + η
2
ρ(1 + φ)3 + 2ρ(1 + φ)2 − (1 + φ)

 /[1− ρ(1 + φ)]2

=

{
ρ(1 + φ)2(2− η) + η

2
(1 + φ)2 + (1 + φ)

+ρ2(1 + φ)3(η
2

+ 1) + ηρ(1 + φ)3

}
/[1− ρ(1 + φ)]2 > 0

and

∂Γ

∂φ
=

{
[1− ρ(1 + φ)]〈−2ρ2(1 + φ)(η

2
+ 1) + [η(1 + φ) + 2]ρ〉

−ρ3(1 + φ)2(η
2

+ 1) + ρ2
[
η
2
(1 + φ)2 + 2(1 + φ)

]
− ρ

}
/[1− ρ(1 + φ)]2

=


−2ρ2(1 + φ)(η

2
+ 1) + ρ [η(1 + φ) + 2]

+2ρ3(1 + φ)2(η
2

+ 1)− ρ2 [η(1 + φ)2 + 2(1 + φ)]

−ρ3(1 + φ)2(η
2

+ 1) + ρ2[η
2
(1 + φ)2 + 2(1 + φ)]− ρ

 /[1− ρ(1 + φ)]2

=

{
ρ3(1 + φ)2(η

2
+ 1)− ρ2(1 + φ)[η(1 + φ) + η + 2]

+ρ[η(1 + φ) + 1]

}
/[1− ρ(1 + φ)]2

=
1

2
ρ
{
η(ρ− 1)(1 + φ)〈ρ(1 + φ)− 2〉+ 2〈ρ(1 + φ)− 1〉2

}
/[1− ρ(1 + φ)]2 > 0



Chapter 6

Concluding Remarks

6.1 A summary of the thesis

This thesis has focused on an economy where a fraction of the population is unable to

work, whilst the remaining fraction is composed of individuals who are able to work

but differ continuously in their productivity (as in Mirrlees, 1971). The unable subpop-

ulation provides the basis for targeted, or categorical, transfers within this framework.

Indeed, under the strong assumption that categorical status (unable, able) is perfectly

observable, it will be optimal under a utilitarian welfare criterion to target resources

solely at the unable so long as the social marginal value of income (smvi) of these indi-

viduals exceeds the average smvi of the able.1 In reality, however, categorical status is

difficult to identify and this gives rise to classification errors. Further, targeted benefits

are typically conditioned not just on initial eligibility, but also in an ex-post dimension

whereby recipients must comply with certain behavioural requirements or restrictions.

These may also be imperfectly enforced. Taking seriously these real-world facets of

welfare provision allows one to analyse both design and enforcement issues within this

framework.

Part I of this thesis focused on the design issues. The starting point (chapter 2) was

to abstract from tax revenue considerations and analyse the optimal division of a fixed

benefit budget between (i) a tax-free categorical benefit that is ex-ante conditional on

1Whether or not this will be achieved will depend on the size of the budget in place for benefit
expenditure.
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an applicant being unable to work and ex-post conditional on a recipient not working;

and (ii) a tax-free universal benefit that is received unconditionally by all. Importantly,

the categorical benefit is administered with Type I (false rejection) and Type II (false

award) classification errors. The latter error type gives rise to enforcement issues

because individuals who are truly able to work are receiving the categorical benefit.

Whether or not these ineligible recipients will choose to work will depend crucially

on the enforcement of the ex-post condition. In this regard, the two binary cases of

No Enforcement and Full Enforcement were considered. Under the former there are

no effective mechanisms in place to deter individuals from working, such that all able

individuals apply for the benefit. However, under the latter there are fully effective

mechanisms in place. The application decisions of able (ineligible) individuals are thus

endogenous to the benefit size and only those of lower productivity will choose to

apply because they are better off receiving the categorical benefit and not working.

The two enforcement structures yield different results for optimal welfare provision

and, relatedly, the welfare effects of classification errors. Whilst Type I errors are

always welfare reducing, the effect of Type II errors on social welfare may differ across

the enforcement regimes. An increase in the propensity to make Type II errors (i)

unambiguously reduces social welfare under the No Enforcement regime; but (ii) may

increase social welfare under the Full Enforcement regime. The intuition is that under

Full Enforcement ‘leakage’ of the categorical benefit is restricted only to able individuals

of lower productivity and, consequently, may play a redistributive role within the able

subpopulation. Numerical examples where this arises were provided.

The following two chapters (3 and 4) then proceeded to relax the assumption of a

fixed benefit budget and analyse the case where income tax revenue is used to finance

benefit expenditure (and any exogenous revenue requirement for spending outside of

welfare). The natural starting point was the Perfect Discrimination case where cat-

egorical transfers are perfectly targeted at unable individuals. A key result in the

literature is that the optimal linear income tax expression with perfectly administered

categorical transfers can be written as in the uni-dimensional model where individuals

differ solely in productivity (Viard, 2001a,b). This result depends, however, on the as-

sumption that categorical transfers eliminate inequality in the average net smvi across

categorical groups (in our case the unable and able). Yet, if categorical transfers are

financed by tax revenue there may be cases where it is suboptimal to impose a tax rate

that generates enough revenue to eliminate this inequality. This is particularly likely
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to hold if there is a large dependent population in need of transfers and/or the gov-

ernment has significant spending commitments outside of welfare. With this in mind,

the contribution of Chapter 3 was to (i) provide expressions for optimal linear and

piecewise linear tax rates that allow for the persistence of between group inequality at

the optimum; and, importantly, (ii) provide numerical examples where between-group

inequality does indeed persist at the optimum. Analytical examples where between-

group inequality persists at the flat tax optimum were also provided for the special

case where (i) preferences have a constant labour elasticity (see Atkinson, 1990; Saez,

2001); and (ii) taxation is purely redistributive (i.e. no revenue requirement).

Chapter 4 then reintroduced classification errors into the analysis and provided an

expression for the optimal linear tax rate for the case where the ex-post ‘no-work’

condition is fully enforced. The full enforcement assumption ensures that the decision

of an able individual to apply for the categorical benefit is endogenous to the tax

rate. Consequently, an increase in the tax rate generates both direct and indirect

behavioural effects. The direct effect is simply that found in all conventional analyses:

i.e. individuals adjust their labour supply in the intensive margin in response to a

change in the tax rate. The indirect effect, meanwhile, captures the fact that a ceteris

paribus increase in the tax rate induces additional able individuals to apply for the

categorical benefit. This has implications for both the tax revenue side of the budget

constraint (because additional individuals are awarded the categorical benefit and stop

working) and the benefit expenditure side of the budget constraint (because additional

individuals are awarded the categorical benefit). In the optimal tax expression that

results an important term in both equity (numerator) and efficiency (denominator)

considerations is the elasticity of the distribution function with respect to individual

productivity, evaluated at the critical productivity at or below which able individuals

choose to apply for the categorical benefit.

Part II of this thesis focused on individual decisions under risk and contained Chapter

5. This chapter modelled the decision of able individuals to apply for the categorical

benefit, conditioning on whether or not they would choose to comply with the ex-

post ‘no-work’ requirement if awarded it. Drawing on the economics of crime (see

Becker, 1968), working recipients risk being detected with some probability and, if

detected, they are sanctioned. The sanction considered here mirrors that available to
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actual benefit authorities: the fraudulent recipient is required2 to repay the benefit

in its entirety in addition to paying a fine proportional to the benefit size3. The

proportionality of the fine to the benefit size plays a crucial role in the analysis of risk.

Indeed, following Arrow (1970) and Pratt (1964) this chapter captures the risk that

a working recipient faces via the risk premium associated with the variance in benefit

income, the latter of which is convex-increasing in the benefit size. Under CARA

preferences the risk premium is therefore also convex-increasing in the benefit size. The

implication is that there will be a critical benefit level above which no able individual

who would choose to work conditional on receiving the benefit will choose to apply.

Intuitively, this critical level is increasing in the leniency of the standard enforcement

parameters (detection probability, penalty rate). For any categorical benefit set below

this critical level all able individuals in the economy will choose to apply, with those

of higher productivity choosing to work. This result is readily made more realistic

through requiring recipients to spend a fraction of the ‘working’ day at the benefit

office, thereby imposing an opportunity cost on ineligible claimants. In particular, this

places an upper bound on the productivity type at or below which able individuals

choose to apply for the categorical benefit.

6.2 Going Forwards

There are a number of interesting directions in which the framework presented in thesis

could be furthered.

Heterogeneity in disability. Throughout this thesis the unable subpopulation has

taken on a passive role. They are unable to provide any labour and, consequently, do

not respond to incentives of the tax system. A richer - but more complex - model may

therefore consider an economy where individuals differ in the extent of their disability,

as could be captured through differing quantity constraints on labour supply. The

benefit structure and ex-post conditions placed on benefit receipt would necessarily

change to capture the differing degrees of disability. In such a setting Type I errors may

take on a more significant role. In particular, individuals who are incorrectly denied a

2In many cases the financial sanction will be ‘offered’ as an alternative to prosecution.
3In the U.K., for example, fraudulent recipients may be offered an administrative penalty of 50%

of the overpaid benefit (see Department for Work and Pensions, 2015).
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categorical benefit may be forced to work more than they would in the optimum with

no such errors. This would also introduce new equity and efficiency considerations into

the optimal tax expression.

Societal concern for the unable beyond economic status. Under a standard

utilitarian social welfare function an able individual who is voluntarily unemployed

will have the same smvi as an unable individual when both receive the same in benefit

income. It would, however, be of interest to analyse a case where society expressly

cares about the distinction between voluntary unemployment and disability/quantity

constraints. Indeed, it would seem likely that many people would place greater value

on a transfer received by an individual who is unable to work, rather than someone

who can work as much as they wish but choose to be unemployed. Some initial work

in this area has been undertaken by Saez and Stantcheva (2013).
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