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ABSTRACT

IZA DP No. 11872 OCTOBER 2018

Cross Cohort Evidence on Gendered Sorting 
Patterns in the UK: 
The Importance of Societal Movements 
versus Childhood Variables

We consider the extent to which societal shifts have been responsible for an increased 

tendency for females to sort into traditional male roles over time, versus childhood factors. 

Drawing on three cohort studies, which follow individuals born in the UK in 1958, 1970 

and 2000, we compare the magnitude of the shift in the tendency of females in these 

cohorts to sort into traditionally male roles as compared to males, to the combined effect of 

a set of childhood variables. For all three cohorts we find strong evidence of sorting along 

gendered lines which has decreased substantively over time. We also find that there has 

been no erosion of the gender gap in the tendency to sort into occupations with the highest 

share of males. Within cohort, we find little evidence that childhood variables change the 

tendency for either the average or highest ability female to sort substantively differently. 

Our work underlines the importance of societal shifts, over and above childhood variables, 

in determining the sorting patterns we have seen over the last number of decades, and 

also those that remain today.
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 “The first resistance to social change is to say it's not necessary”. Gloria Steinman  

 

I. BACKGROUND:  

For decades economists have contributed to a literature that seeks to explain the gender wage 

gap1. A well accepted conclusion is that the lack of women in high paying, male dominated 

professions is one major cause of this gap (Bayard et al., 2003; Goldin, 2014 and Blau and 

Kahn, 2016). This has led to a search for the underlying causes of gender-based sorting.  

Explanations include differential human capital investments, (Altonji and Blank, 1999), 

discrimination (Becker, 1957), a lack of flexibility to combine a career and family in male 

dominated jobs (Goldin, 2014 and Bertrand, 2018) and differences in tastes and preferences 

(Lordan and Pischke, 2016 and Cortés and Pan 2017). In this work, we build on this literature, 

and consider the extent to which societal shifts have been responsible for an increased 

tendency for females to sort into traditional male roles over time, versus childhood factors 

that have already been shown by economists to shape the future successes of children in other 

life domains2.  

The importance of societal movements for gendered sorting is intuitive. A convincing 

narrative points to the fact that until the 1970’s there were many more male dominated roles, 

than today. Between 1970 and 2018, a few stylised facts emerged. First, females sorted into 

many occupations that were traditionally male dominated. Examples include law, 

accountancy and pharmacy. Second, females failed to converge into other occupations. In 

white collar occupations examples mainly fall under the science, technology and engineering 

categories where the share of males in the UK, US and across the EU still exceed 80%3.  Third, 

the revolution has been an asymmetric one, with males failing to sort into occupations that 

were traditionally female, such as social work, nursing and primary school teaching. These 

stylised facts are also visible in Figure 1, which plots the occupations of three cohorts born in 

1958, 1970 and 2000 in the UK respectively4. There is a downward trend in the share of males 

in law over time, but no real change to engineering. The proportion of males in nursing is flat 

                                                             
1 See Daymont and Andrisani (1984); Blau and Kahn (1997); Fortin (2008) and Blau and Kahn (2016).  
2 For example Akee et al (2013); Angrist and Lavy (1999); Black et al, (2007); Becker and Tomes (1986); Blau 
(1999); Datcher, (1982); Heckman et al (2013); Luo and Waite (2005); Van Den Berg et al (2006) 
3 Based on calculations from the quarterly Labour Force Survey in the UK (years 2015-2017 combined), the 
Current Population Survey in the US (years 2015-2017 combined) and the EU Labor Force Survey (2014-2016 
combined).  
4 This cohort data is used in this paper and is subsequently described. For the 1958 and 1970 cohorts occupations 
are measured based on data collected when they were in their early 30’s. For the cohort born in 2000 occupations 
are measured based on aspirations reported at age 12.  



over the three periods, with the share of males planning to go into teaching decreasing to even 

lower levels for the most recent cohort. This highlights that the asymmetric gender revolution 

remains firmly in place.  

Gendered sorting is intuitively influenced by social movements over time. Human capital 

investments, both of type and quantity, are affected by social norms.  Systemic changes in 

attitudes over time can cause females to invest in different career paths if preferences are 

shaped by social norms. For example, the tolerance of discrimination has changed radically 

over the last five decades5. The current view among economists is that the remaining obstacle 

to more equal labor market outcomes between the sexes is a lack of flexibility to combine a 

career and family. Goldin (2014) argues this point most forcefully but it is also shared by 

Bertrand (2018). A systemic movement which causes males and females to share family 

responsibilities more equally removes constraints for females allowing them have a wider 

career choice. The influence of tastes and preferences on gendered sorting is also being 

explored (Lordan and Pischke, 2016 and Cortés and Pan 2017). While these papers do suggest 

that tastes and preferences have a role to play in occupational sorting, they may be socially 

constructed.  This fits with the idea that individual decisions are influenced by the opinions 

of others of which ultimately shape identity (Akerlof and Kranton, 2000). A systemic change 

in the attitudes of society regarding what jobs fit each gender has the potential to change the 

career choices of females.  

At a more local level gendered sorting has the potential to be influenced by childhood 

variables given that experiences in that period vary by gender. So why do experiences vary? 

First, some people may have preferences for a particular gender6, or indeed have a preference 

for engaging children in different activities depending on whether they are a boy or a girl. 

Second, people may hold a belief7 that boys and girls have different production functions, and 

because of this engage them in different activities. Third, there may be differential monetary 

                                                             
5 Becker (1985), Katz and Murphy (1992) and Goldin (2006) have all suggested that the effects of gender 
discrimination are now much less relevant than other factors when it comes to explaining occupational 
segregation as compared to previous time periods.  
6  Suggestive evidence that father’s strictly prefer sons can be found in Dahl and Moretti (2008) for the US and 
Kohler et al. (2005) for Denmark.  

7 We intentionally write “belief” given a recent meta-analyses highlights that, among both children and adults, 
females perform equally to males on math assessments, and the gender difference in verbal skills is small and 
varies depending on the type of skill assessed (Hyde 2016). Of course, there are other skills in which the sexes 
may differ, and the cause may be innate or psychosocial, regardless of whether these differences are real it is the 
belief among others in differences which drives how a child is treated.  



and/or opportunity costs of engaging with boys over girls in specific activities. These three 

explanations are not mutually exclusive but together capture the underlying causes of why 

boys and girls are exposed to different experiences which ultimately may shape their futures.  

Examples of differential treatment by gender abound in the literature8. Differential 

treatment has the potential to impact cognitive development, including soft skills and motor 

skills. We are interested in the extent these experiences, which vary within cohorts, change 

gendered sorting patterns as compared to systemic changes which occur across cohorts. 

Drawing on three British cohort studies, which follow children born in the UK 1958, 1970 

and 2000 we compare the magnitude of the shift in the tendency of females in these cohorts 

to sort into traditionally male roles as compared to males, to the combined effect of a set of 

childhood variables which can be reasonably expected to be correlated with both gender and 

sorting patterns. These childhood variables capture cognitive, soft and motor skills, alongside 

socioeconomic variables, health status, parental influences and peer influences. We consider 

a number of proxies which capture the differential aspects of traditional male jobs. For those 

individuals born in 1958 and 1970, these proxies are based on their occupations in their early 

30s. For the individuals born in 2000 the proxies are based on their aspirations for the future 

(when they turn 30 years old). These proxies range from the share of males in an occupation, 

to variables which capture an occupation’s content.   

A number of stylised facts emerge from our analyses. First, for all three cohorts we find 

strong evidence of sorting along gendered lines, regardless of the childhood variables we 

include in our regressions. Second, the tendency to sort along gendered lines has decreased 

substantively over time. That is, the gender gap has narrowed. Conversely, we find little 

evidence that childhood variables change the tendency within a cohort for the average female 

to sort substantively differently. Third, the same conclusions emerge if we focus only on 

individuals with the highest childhood cognitive ability. These are the individuals who we 

intuitively expect to subsequently sort into the top jobs. We view our work as underlining the 

importance of societal shifts, over and above childhood variables, in determining the sorting 

patterns we have seen over the last number of decades, and also those that remain today.  

                                                             
8 See Lundberg (2005), Lundberg et al. (2007) and Yeung et al. (2001) work on parental time allocation; 

Aznar and Tenenbaum (2015) research on parental communications; Mondschein et al. (2000) work on parental 
assessments of ability and Dee’s (2007) work on teach assignment. 



 

II. ANALYTICAL FRAMEWORK AND EMPIRICAL DESIGN:  

We are interested in the extent to which societal shifts have altered a female’s tendency to 

pursue traditional male roles, versus childhood factors. The outcome variables considered in 

this study are proxies for aspects of work where we expect the sexes will bifurcate in sorting 

tendencies. These proxies cover income, hours, flexibility, job content and job 

competitiveness alongside the share of males. Drawing on individual level data for cohorts of 

individuals born in the UK in 1958, 1970 and 2000 we relate each proxy in turn to a female 

dummy variable, and sequentially add groups of childhood variables which we may expect to 

be correlated with both gender and the proxy. We take a holistic approach to specifying these 

childhood factors and examine demographic and socioeconomic variables from early 

childhood, alongside measures of cognitive and non-cognitive ability, childhood health, 

parental inputs and external influences.  We are interested in the extent to which the 

coefficient on the female dummy is attenuated with the addition of these childhood factors. 

To the extent that the coefficient is attenuated substantively, we argue that it reveals that 

malleable factors at the individual level – many of which can be readily influenced by parents, 

schools and policy makers – play a large role in determining gendered sorting across 

generations for the average female. However, to the extent that the female coefficient is 

relatively stable, it is highly suggestive that the childhood factors that we usually view as 

important in determining adult outcomes matter little for explaining gendered sorting9.  

Specifically, our initial analysis relies on:  

Yij,adult = ai + Fi δ’ + Xi,child β’ +εij, adult       (1)  

where Y is a proxy for a component of job j for respondent i in adulthood, and F is equal to 1 

if individual i is female and 0 otherwise. Xi,child is then a vector of individual control variables 

during childhood, which will be subseqently discussed. We run equation (1) separately for 

each cohort and obtain the estimate of δ’, which indicates the extent of being a female 

influences occupational sorting across cohorts. We note here that we care most about how δ 

changes across cohorts, when we sequentially add childhood variables. We are not seeking to 

put structural interpretations on the coefficients of control variables (β’). However if Fi is 

                                                             
9 The major threat to this argument is that all of our childhood variables are measured with error. This seems 
highly unlikely, given the quantity of variables that we do consider, but later we come back to this point.  



attenuated by a particular Xi,child we view this as evidence that something which is correlated 

with this same Xi,child is driving sorting. Hence, childhood variables, in the general sense,  

matter in determine sorting.   

It is also interesting to consider whether the same general patterns identified by equation 

(1),  hold for the most intelligent children in the three cohorts. After all, these are the 

individuals we would expect to be most likely to reach the most prestigious jobs in society, 

where we may care more about having a better representation of women. To consider this, we 

follow the psychometric literature and use exploratory factor analysis to reduce the 

dimensionality of our proxies for childhood intelligence in each cohort study into one variable 

(Gorsuch, 1983; Thompson, 2004). A clear structure of one latent factor emerges in the first 

rotation (see Appendix A2). From this factor, we repeat the analysis documented above on 

individuals who are in the top quantile of this distribution only. We note that the female share 

in this decile is 51.9%, 49.4% and 49.12% for children born in 1958, 1970 and 2000 

respectively. 

An issue with estimating equation (1) is that there is a risk of overfitting, given we add a 

large number of childhood variables. We also estimate equation (1) applying LASSO 

regression analysis10 and document the full results in Appendix D. We report only the 

coefficient, δ’, on the female dummy from the LASSO regressions in the main text. LASSO 

is useful here given that many of the variables we sequentially add are highly correlated, so 

disentangling their true coefficient size given potential issues with multicollinearity is 

difficult. For our purposes LASSO is a useful as a check as to whether δ’ remains non zero 

after the shrinkage process, emphasising that of all the variables included in the regression it 

is one of the most strongly associated with the outcome variable. 

The first outcome we consider is the share of males in an individual’s chosen occupation. 

This allows us to ask directly whether occupational segregation by gender has changed 

substantively for the three cohorts we are examining, and how these changes relate to the 

childhood variables we usually think of as determining a person’s future. We complement 

                                                             
10LASSO is a shrinkage and variable selection method for linear regression models whose goal is to obtain the 
subset of predictors that minimizes prediction error for a quantitative response variable. The LASSO does this 
by imposing a constraint on the model parameters that causes regression coefficients for some variables to shrink 
toward zero. Variables with a regression coefficient equal to zero after the shrinkage process are excluded from 
the model. Variables with non-zero regression coefficients variables are most strongly associated with the 
response variable. Thus, the variables that are left over are the variables that most explain Y.  



this with regressions that model the probability that a job with a share of males 80%+ is 

chosen, to allow us to quantify how this has changed over the three generations. We also 

consider an outcome that is equal to 1 if a female has opted out of the labour force and zero 

otherwise. This is our only outcome that is generated at the individual level, rather than the 

occupation level.  

The next proxy we consider is average occupational income. For many years economists 

have contributed to a literature that seeks to explain just why there is a gender wage gap.  It 

is now clear that the lack of women in high-paying, male dominated professions contributes 

significantly to this gap11. Therefore, considering average income of an individual’s chosen 

occupation as an outcome in equation (1) allows us to examine directly whether females have 

been choosing jobs with significantly higher average income over time and how this is 

mediated by childhood variables.  

We also consider the average hours in an individual’s occupation as an outcome. Women 

who find it hard to juggle family and children – or indeed hard to imagine juggling in the 

future - may ‘opt out’ of occupations that make this more difficult. This suggests a constrained 

choice, with the constraints being potentially perceived and internalised as early as high 

school. Therefore, we re-estimate equation (1) with average hours as the dependent variable. 

δ’ is then indicative of how important it is for females to be in occupations with lower average 

hours as compared to males. This fits with work that suggests that females ‘opt elsewhere’, 

choosing occupations that allow them to accommodate family responsibilities (Polachek 

1981; Belkin 2003; and Stone 2007) or choose to work fewer hours to balance family 

responsibilities (Antecol 2010)12.   

We complement the average hours proxy with another variable which captures non-linear 

returns to hours worked. This follows, Goldin (2014) who presents evidence for full-time 

college graduate workers in 95 high paying occupations. Goldin’s metric for the flexibility of 

                                                             
11 See Blau (1977); Bielby and Baron (1984); Macpherson and Hirsch (1995); Carrington and Troske (1998); 
Bayard et al (2003) and Blau and Kahn (2016).  
12 We note that a number of other studies have also considered whether ‘opt out’ of the labour market occurs 
conditional on having children and do not find any differences by education level (Boushey (2005); Goldin 
(2006); Vere (2007); Cohany and Sok (2007); Fortin (2008) and Percheski (2008). For us, females do not 
necessarily opt out. Rather they may ‘opt elsewhere’ to allow them to better manage their current or expected 
family commitments, into occupations with lower average hours and enhanced flexibility. This is supported by 
Kie, Shauman and Preston (2003) who highlight that marriage and children move women from the male 
dominated fields of science and engineering towards other types of work. 

 



an occupation is the elasticity of individual earnings with respect to hours worked: high 

elasticities imply a penalty for workers seeking short hours and indicate a lack of flexibility. 

Goldin (2014) demonstrates that less flexible occupations have a larger pay gap. By 

estimating equation (3) with the Goldin (2014) measure of flexibility as an outcome we can 

assess empirically, how the tendency to choose occupations with differential levels of 

flexibility has changed for females across the three cohorts, and how this is predicted by 

childhood characteristics.  

Our remaining proxies capture occupational content. This complements a recent 

emergence of explanations for occupational segregation which suggest that males and females 

have different tastes when it comes to the content of the work that they do.  The psychologist 

Susan Pinker (2008) has pushed the idea that differences in the preferences of women and 

men are the main driver of gendered labour market choices. Pinker’s (2008) work, based on 

qualitative research, highlights that women may not like the nature of male dominated jobs, 

preferring ‘people’ content over making ‘things’. Lordan and Pischke (2016) provide 

quantitative evidence from three countries and a discrete choice experiment which backs up 

this claim. Overall their work suggests that females are more extrinsically motivated opting 

for jobs that are high in ‘people’ and ‘brains’ content, like medicine and law, over jobs that 

are relatively high in ‘brawn content’, like engineering. In contrast males care less about the 

job content.  Cortes and Pan (2017) investigate the predictive power of a variety of 

occupational indexes in regressions that model the rate of females in an individual’s 

occupation and show that social contribution and physical skill dominate. In other words, their 

research supports the thesis of Pinker, and the ‘people’ versus ‘things’ divide. Evidence is 

also provided by Grove, Hussey and Jetter (2011) who examine the pay gap of MBA 

graduates and find that female MBAs have a wage penalty owed to choosing occupations that 

contribute to society and have high ethical standards. Su, Rounds, and Armstrong (2009) also 

emphasis sex differences in occupations preferences in an overview of the psychology 

literature on this topic. Together, these results raise the question of whether on average women 

prefer jobs with a societal contribution. These differences in tastes by gender can be innate, 

evolutionary or socialised.  

Evidence that females differentially select into work of different content, but with a pattern 

changing over time, point to a societal role in the formation of preferences.  This we can 

model using equation (1). For example, if engineering and being a CEO are viewed as ‘male 

roles’, as argued by Akerlof and Kranton (2000), females may experience a loss of identity 



should they work in one of these occupations. We note that no change over time does not 

necessarily suggest innate tastes and preferences. This trend could equally be explained by 

sticky ideas in society about the type of work that is (and is not) done by women.  

We create three proxies for job context, based on an approach introduced by Lordan and 

Pischke (2016) and drawing on O*NET activities and context data. Overall, these proxies 

represent ‘People’, ‘Brains’ and ‘Brawn’ context. That is, occupations with relatively high 

people content involve engaging with customers, clients or co-workers routinely (for example 

nurses, physicians, social workers and teachers). Occupations with relatively high brains 

content are economists, financial managers, aerospace engineers and CEOs. Finally, 

occupations that are relatively high on ‘brawn’ include explosives workers, mechanical 

engineers and surveyors. Given the empirical analysis of Lordan and Pischke (2016), we may 

expect females to choose jobs that are high in people and brains, and avoid jobs that are high 

in brawn context. If these preferences are socialised we should see attenuation in how the 

sexes bifurcate in choices over the cohorts if norms have also changed.  

Experimental evidence has highlighted that females are more averse to competition as 

compared to males (Croson and Gneezy 2009). However, this evidence concerns small stake 

decisions where the avoidance of competition does not cost the participant significantly in the 

long run. This contrasts to an individual choosing to enter and stay in an occupation, which 

has a highly competitive environment where the stakes are high. Our last proxy, therefore is 

a measure of competitiveness at the occupational level from the O*NET database. We 

complement a large and influential experimental literature, which has shown that females 

avoid or do not perform as well as males if the environment is competitive13. We also build 

on Cortes and Pan (2016), who use the same measure of competiveness as we do here, and 

find that controlling for competitiveness there is a reduction in the magnitude of the observed 

correlation between the returns to working long hours and the gender pay gap. In more recent 

work, Cortes and Pan (2017) pin down competition against a variety of occupational indexes 

from the O*NET database, including social contribution, inflexibility of the job, interactional 

skills, cognitive skills and physical skills. Specifically, they find that competition and 

cognitive skills dominate in log wage regressions.  

 

                                                             
13 For example see Dohmen and Falk (2011), Niederale and Vunderland (2008), Gneezy and Rusticini (2004) 
and Gneezy et al. (2003).  



III. DATA:  

We draw on the National Child Development Study (NCDS), a continuing study that follows 

the lives of 17,000 people living in Great Britain who were born in the week of March 3, 

1958. The survey added about 700 children who were born in the same week and immigrated 

to Great Britain before their sixteenth birthday. Sweeps were carried out in in 1965 (age 7), 

1969 (age 11), 1974 (age 16), 1981 (age 23), 1991 (age 33), 1999-2000 (age 41-42), 2004-

2005 (age 46-47) and in 2008 (age 50). We use data from the survey at birth, and ages 7, 11 

and 16. We measure the NCDS child’s occupation variables at age 33.  

We also draw on the 1970 British Cohort Study (BCS70). The BCS70 began by including 

more than 17,000 children born between April 5-11 in 1970. It is estimated that these births 

represent more than 95% of births over these days in England, Scotland, Wales and Northern 

Ireland. Currently data are available for eight major follow-up surveys: 1975, 1980, 1986, 

1991, 1996, 2000, 2004 and 2008. Added to the three major childhood surveys (ages 5, 10 

and 16) are any children who were born outside of the country during the week of April 5-11 

and could be identified from school registers at later ages. We use the data from the survey at 

birth, and at ages 5, 10 and 16. We measure the BCS child’s occupation variables at age 3414. 

In order to examine gender based occupational sorting for a cohort entering the workforce 

soon we draw on the Millennium Cohort Study (MCS). This group is now 17/18 years old 

and are about to make the decision on what to do after their schooling finishes. The MCS 

follows the lives of around 19,000 children born in the UK in 2000 and 2001. The sample was 

selected from a random sample of electoral wards using a stratified sampling strategy to 

ensure that the sample is over-represented of disadvantaged and ethnically diverse areas. We 

use the data from the survey at 9 months old (2001) and at ages 3 (2003/4), 5 (2005/6), 8 

(2008/9) and 12 (2012/13). We draw on aspired occupation, reported by the cohort member 

in the 2012/13 sweep.  

Outcome Variables:  

For the NCDS and the BCS, the information on occupation is measured by four-digit socio-

Economic Classification 2000 codes (SOC2000) at ages 33 and 34 respectively.    

                                                             
14There are two waves of the BCS that surveyed cohort members when they were in their 30s. We use the 2004 
wave (aged 34) as the main source of occupation. We supplement missing occupation information in the 2004 
wave with occupation reported in the 2000 wave (when cohort members were 30 years old). 



For the MCS, the cohort members were asked in the 2012/13 sweep “by the time you are 

30, which of the following would you most likely to achieve?” followed by a list of choices 

which follow the 4-digit UK Socio-Economic Classification 2010 (SOC2010). We convert 

SOC2010 to SOC2000 occupation coding using a cross walk provided by Lordan (2018).  

Our occupation averages are calculated based on 1993-2012 Quarterly Labour Force 

Survey data (QLFS). So, the averages associated with each occupation are the same for the 

three cohorts, ensuring that δ’ captures changing in sorting towards or away from particular 

occupation types rather than composition effects.  

The QLFS is the main survey of individual economic activity in Britain, and provides the 

official measure of the national unemployment rate. It uses SOC90 codes from 1993 through 

2000 and SOC00 from 2001. Thus, we first assign to each SOC90 code a SOC00 value based 

on a crosswalk from the British Household Panel Survey (BHPS)15. We calculate occupation 

averages- log of gross income, average hours and share of males - in a four-digit SOC00 

occupation using the 1993-2012 Quarterly Labour Force Survey (QLFS), and match these 

directly to the NCDS, BCS and MCS’s SOC00 codes.   

We also create a variable to proxy the wage-hours elasticity used by Goldin (2014).  Goldin 

interprets this occupation specific elasticity as capturing the wage penalty arising from 

working shorter hours: high elasticities imply a penalty for workers seeking short hours and 

indicate a lack of flexibility. Specifically, we create this variable by running a regression of 

the log of wages on log hours, occupation fixed effects, the interaction between log hours and 

the occupation fixed effects and a number of other controls16 using the 1992-2012 QLFS and 

consistent British SOC00 codes. The proxy is then the coefficients on the interaction between 

occupation and log hours.   

To complement the proxies constructed so far, we also consider a variable that is assigned 

equal to 1 if an individual is dis-employed and zero otherwise. For the MCS this is based on 

the child’s response (asked at age 11/12) to a question on whether they expect to have a ‘good’ 

job by age 30. We interpret this as a proxy which is likely to be highly positively correlated 

                                                             
15The QLFS uses British SOC90 codes from 1993 through 2000 and SOC00 from 2001. We first assign to each 
SOC90 code a SOC00 value based on a crosswalk created from the BHPS. This is possible because in the BHPS 
after the year 2000 every individual is assigned a SOC90 and SOC00 code simultaneously. This information 
allows for a consistent coding system in the QLFS based on SOC00. 
16 The controls follow Goldin (2014). These are gender, age, age squared, age to the power of three, age to the 
power of four, education, ethnicity and year dummies.   



with labor market attachment. We assign a variable equal to 1 if a good job is expected and 

zero otherwise.  

Our analysis also utlises three variables which capture what a job is about. These variables 

are created following the approach described by Lordan and Pischke (2016).  Specifically, we 

retrieve from O*NET version 5 items relating to the activities and context of an individual’s 

work. These items on activities and context are linked to US Standard Occupation Codes 

(SOC) 2000. These 79 items report the level at which an occupation has a particular 

characteristic from 1 to 7. For example, in activities, an item might describe to which degree 

an occupation involves ‘assisting and caring for others,’ ‘analysing data or information,’ or 

the ‘repairing and maintaining of mechanical equipment.’ Examples for context are the level 

of ‘contact with others,’ ‘the importance of being exact or accurate,’ and ‘being exposed to 

hazardous conditions.’ We match the US SOC00 codes in the O*NET data directly to the 

British SOC00 using a crosswalk provided by Anna Salomons. We then match the O*NET 

items to the QLFS using the British SOC00 codes. Three latent factors ‘people,’ ‘brains,’ and 

‘brawn’ (PBB) are calculated using this data. We match these three factors for each 

occupation to the NCDS, BCS and MCS data using the British SOC00 codes. 

We turn to the O*NET database version 15 for our measure of occupation competiveness. 

Specifically, incumbents are asked: “To what extent does this job require the worker to 

compete or to be aware of competitive pressures?” with response options of ‘not at all 

competitive’ ‘slightly competitive’ ‘moderately competitive’ ‘highly competitive’ and 

‘extremely competitive’. We standardise this variable to have a mean of zero and a standard 

deviation of 1, and match to the NCDS, BCS, and MCS in the same manner described for the 

PBB factors.    

NCDS, BCS and MCS control variables:  

Our aim is to consider a holistic set of controls that capture as many of possible of the 

childhood variables that are simultaneously correlated with gender and the outcomes we 

consider. Across all three surveys efforts are made for these controls to be measured at similar 

ages and have relatively consistent definitions. Fuller details of all controls, along with the 

relevant means and standard deviations can be found in Appendix A. All covariates described 

below are standardised to have a mean of 0 and standard deviation of 1. We run all our 

specifications using robust standard errors to allow for heteroscedasticity of an unknown 

form. The regression samples contains the same individuals across all specifications. Our 



estimation approach to equation (1) is sequential.  We first estimate equation (1) with the 

female dummy variable and no other controls. Subsequently we add the following variables:  

 

i) Demographics and Socio-Economic Variables (!"#$,&'$()) 

Childhood demographics and the socio-economic status variables are elicited as close to 

birth as possible (for exact timing see Appendix A). These variables are: mother’s age, 

father’s age, social status, a set of marital status dummies indicating whether the child’s 

parents were together or not in each wave, a dummy variable indicating whether the child’s 

mother stayed in school beyond the minimum required age, household income, household 

tenure, a dummy indicating whether or not the child’s mother worked, a dummy variable 

indicating low birthweight, a dummy variable indicating whether the cohort child was the 

first-born, a dummy indicating whether the cohort child was breastfed, region of residence 

and a dummy variable indicating if the cohort child is White and zero otherwise.  

(ii) Cognitive ability scores (verbal and math/science) (&*+$,&'$()),  

We draw on all available measures of the child’s cognitive ability in the three surveys17. Each 

of the measures considered is standardised to have a mean of zero and standard deviation of 

1, unless it is represented by a set of dummy variables where no change is made. These 

measures essentially capture the child’s verbal and math/science abilities.  

In the NCDS, at age 7 the child completed the Southgate Reading Test, a 35 Item Reading 

Comprehension Test and the General Ability Test. At ages 11 and 16 they completed the 35 

Item Reading Comprehension Test. These five proxies of verbal ability are included in our 

regressions.  

The composite verbal ability score in the BCS is derived from tests conducted at ages 5 

and 10. Specifically, at age 5, the 50-item Reading Test score, which is modified from the 

Schonell Reading Test was administered. At age 10, the 21-item Word Similarity subscale of 

the British Ability Scale was administered. We also draw on the 67-item Shortened Edinburgh 

reading test, which assesses vocabulary, syntax, sequencing, comprehension and retention at 

age 10.  

                                                             
17 See Shepherd (2012) for NCDS, Parsons (2014) for BCS and Johnson et al (2015) for the MCS.  



For the MCS, the composite verbal ability score is derived from instruments administered 

at ages 3, 5, 7 and 11. The British Ability Scale (BAS) was administered at ages 3 and 5, the 

Pattern Similarity and the Pattern Construction subscale of the BAS at ages 5 and 7, the 900-

item Word Reading of the BAS at age 7 and the Verbal Similarity subscale of the BAS at age 

11.    

The Math-and-science proxies for the NCDS include three tests measured at ages 7, 11 and 

16, as well as teacher ratings for math and science. Specifically, these tests are the Problem 

Arithmetic Test score at age 7, a 40-item Arithmetic/Mathematic Test at age 11 and a 31-item 

Mathematics test at age 16. We also include the teacher’s ratings which reflect their perception 

of the child’s ability in maths and science. These rating scores equal 3, 2, 1 and 0 if the teacher 

thinks the child’s ability is equivalent to A-level, high-graded GCSE, low-graded GCSE and 

below GCSE, respectively18.  

For the BCS we draw on tests administered at ages 10 and 1619. These are the Friendly 

Maths Test and the Recall of Digit subscale of the BAS administered at age 10, and the actual 

raw GCSE scores for Maths and four science subjects (science, chemistry, physics and 

biology) reported at age 16.  

 Finally, for the MCS we draw on tests administered at age 7 and 11. The NFER Number 

Skills test was taken at age 7. We also include the teacher’s evaluation of the MCS member’s 

ability at age 11 in maths, science and technology. These scores equal to 5, 4, 3, 2 and 1 

respectively, when the teacher evaluated the MCS member to be: well-below average, below 

average, average, above average and well-above average.  

(iii) Motor skills (gross motor and fine motor) (+,*--$,&'$(), !$./$,&'$()	),  

We consider instruments related to both gross motor and fine motor skills, captured across 

childhood as our proxies for motor skills. Specifically, gross motor skills are those which 

require whole body movement and involve the core stabilising muscles of the body to perform 

everyday functions, such as standing, walking, running, and sitting upright. It also includes 

                                                             
18 Students completing A-levels stay in school until roughly 18 years and generally aim for third level education. 
A certificate of secondary education (CSE), O-levels or a general certificate of secondary education (GCSE) 
represent a low-level secondary school qualification that is usually achieved when the student is aged 15. 
19These are the Friendly Maths Test and the Recall of Digit subscale of the BAS administered at age 10, and the 
actual raw GCSE scores for Maths and four science subjects (science, chemistry, physics and biology) reported 
at age 16.  



eye-hand coordination skills such as ball skills. Fine motor skills are smaller movements. 

They include clothing fastenings, cleaning teeth, using cutlery drawing, writing and 

colouring, as well as cutting and pasting.  

For the NCDS we draw on teacher assessed measures of gross motor skills at ages 7 and 

11 that follow definitions by Sigurdsson et al (2002)20. This definition is consistent in the 

BCS with measurements taken at age 10. In the MCS, gross motor skills are estimated using 

a subset of the Denver Developmental screening test  (see Frankenburg and Dodds, 1967), 

and are assessed at age 1 by the child’s parent.  

We have two measures of fine motor skills in the NCDS. These are based on the teacher 

assessment of the Human Figure Drawing test (taken at age 7) and the Copying-Design test 

(taken at ages 7 and 11). The same measures of fine motor ability are available in the BCS 

(measured at age 10).  For the MCS, we again draw on relevant sub components of the Denver 

Developmental screening test, assessed at age 1 by the primary carer.  

(iv) Non-cognitive skills (externalising and internalising behaviour) (1/'"2$,&'$()),  

We construct two separate measures of non-cognitive skills in childhood which proxy 

externalising behaviour and internalising behaviour respectively. For all three surveys, we 

choose assessments provided by teachers over parents. In the NCDS, the behaviour scores are 

calculated from relevant items taken from the Bristol Social Adjustment Guide (BSAG) at 

age 7 and 11. Essentially we separate the questions into proxies that represent internalising 

and externalising behaviour. For the BCS, we utilize the Rutter’s Behavioural Scale, from age 

10 (Rutter, 1967) in the same way. Finally, measures of internalising and externalising 

behaviour in the MCS are constructed from the Strength and Difficulty Questionnaire (SDQ) 

at age 7. 

(v) Health conditions (childhood physical health issues, psychological health issues) 

(3'4$,&'$(), 3-4$,&'$()):  

We follow Goodman et al (2011) when constructing the measures of psychological and 

physical health in childhood and classify physical health issues into (a) major physical health 

                                                             
20 Because of the absence of direct and positive measures of gross motor skills in the NCDS and BCS, Sigurdsson 
et al (2002) exploit the five measures of gross motor impairment (rated by class teacher) and calculate for the 
average score of gross motor deficiency. Smaller scores indicates more positive gross motor development. In 
the MCS, we can use Denver Developmental Scale to directly measure gross motor skills at early ages. 



and (b) minor physical health issues. For the NCDS, medical assessments were conducted at 

ages 7 and 16. At age 11, the information came from the parent’s report. In the BCS, the 

medical assessment was administrated at ages 5, 10 and 16. For the MCS, we use parental 

reports on the child’s medical conditions at age 3, 5, 7 and 11.  

The psychological health measures in the NCDS are calculated from medical examinations 

capturing emotional maladjustment at ages 7 and 16, as well as parental reports of the child’s 

mental health support visits for ages 11 and 16.  In the BCS, we follow similar classifications 

to the NCDS, drawing on data from parent reports of mental health support visits at ages 10 

and 16. At age 16, the child also went through a number of medical assessments, capturing 

aspects of emotional maladjustment. Finally, for the MCS, psychological maladjustment is 

captured by teacher and parent reports of mental illness at ages11/12, and reports of adolescent 

mental health services utilisation at school. 

(vi) Parental investments ($.2/-5$,&'$())  

We add measures of parental inputs, which mainly capture time inputs.  For the NCDS, we 

draw on parent reported frequencies at age 7 of how often the mother and father reads to their 

child ; teacher-rated levels of parental interest in their child’s education at age 7 years and 

parental reports of engaging in various activities with their child at ages 7 and 11 (see 

Appendix A). For the BCS, we use information on parental-assessed frequency of how often 

the mother and father reads to their child measured at age 5, teacher-rated levels of mother 

and father interest in their child’s education at age 10 years and parental reports of engaging 

in various activities with their child at ages 5 and 10. For the MCS, we draw on frequency of 

reading, and  parent-assessed frequency reports at ages 3 and 5 of whether the parents  i) reads 

to the child ii) tells stories to the child iii)  paints with the child and iv) plays music with the 

child. We also draw on teacher-rated levels of parental interest in the child’s education when 

aged 11 years, and a set of variables on frequencies parent visited various places with child at 

ages 3 and 5 (see Appendix A).   

(vi) Parental Aspirations ($.2/-5$,&'$())  

We also consider measures of parental aspirations. For the NCDS, we draw on parent reports 

at age 16 that are equal to 1 if a parent wishes their child leave school at age 15 years, and 0 

otherwise. We consider additional measures of aspirations, measured at age 16, which 



correspond to how long the parent wishes their NCDS child stay in education (16 years, 18 

years, beyond 18 years or uncertain).  

In the BCS, we draw on parent reports measured at age 16. We create a dummy variable 

that is equal to 1 if a parent advises their child to leave full-time education immediately after 

age 16, and 0 otherwise. We also consider additional measures of aspirations, measured at 

age 16, which correspond to how long the parent wishes the BCS child to stay in education 

(leaves at 16, finishes A-levels, goes to university, uncertain).  

In the MCS, we draw on parent reports when the child is aged 11 on their perception on 

whether their child will attend university. Specifically, parents are asked to estimate the 

likelihood they think the child will attend university: very likely, fairly likely, not very likely 

and not at all. The responses are then added to the regression as a set of dummy variables.  

(vii) External Influences (/65/,."($,&'$()).  

Finally, we try and capture aspects of the child’s external environment. Given the data 

available the variables we consider mainly capture the school environment. For the NCDS, 

we include a set of dummy variables that capture whether the child’s teacher perceives they 

would benefit from further education (measured when the NCDS child is 16. We also include 

a separate set of dummy variables which capture the teacher's expectation of the highest  level 

of education the child the child is likely to attain (university, lower college, advanced course, 

certificate, other further education, part-time professional qualification, other part-time 

education, and no other qualification).  Similarly for the BCS, we include a set of dummy 

variables which capture the BCS child’s teacher report on whether further education will 

benefit the BCS child. A further set of indicator variables are constructed from the teacher's 

expectation of whether the child would attend further education after age 16. For the MCS, 

we also add similar measures. These measures indicate the teacher’s perception of whether 

the MCS child would (a) stay in full-time education after age 16, and (b) attend university. 

These variables were measured at when the MCS child was 11 years.  

For the NCDS and BCS we also capture some characteristics of the child’s classmates.   

For the  NCDS and the  BCS these variables are measured at age 16 and relate to the school 

wide: i)  share of fathers from non-manual occupations, (ii) share of students staying on at 

school last year, (iii) share of girls obtaining at least two pass grades of GCSE or equivalent, 

(iv) share of 15-year old girls studying GCSE or equivalent only, (v) share of boys obtaining 



2 passes of GCSE or equivalent, and (vi) share of 15-year old boy studying GCSE or 

equivalent.  

Inclusion criteria: 

We begin with the total observations from the first sweep of each cohort survey (NCDS = 

18,558, BCS = 18,752, MCS = 19,518). From the full sample, we drop observations with 

missing values on gender (NCDS = 4, BCS=326, MCS =700). We then drop observations 

with missing values on realised occupation around age 33/34 years old (the NCDS and the 

BCS)21. For the MCS, we drop observations with missing values on aspired occupation in the 

fifth sweep (age 11). The exclusions up to this stage reduce the NCDS, the BCS and the MCS 

samples to 11,469, 10,234 and 11,200 observations respectively. We then match the 

occupation around age 33/34 to the associated occupation averages, generated from the 

Labour Force Survey and O*NET. We are then left with the samples of 9,722, 8,973 and 

11,200 observations for NCDS, BCS and MCS respectively. (See Appendix Table B1). 

An issue when working with cohort data, with this many variables and waves, is that there 

are many missing values. To address this problem we apply mean imputation with missing 

indicator variables (the so-called Missing Indicator method) to the control variables described 

in (.i) through (vii) above. When a variable is missing, we replace it with the average value 

from the non-missing sample. In the finalised sample, the share of female is 49.5%, 48.4% 

and 51.3% in the NCDS, the BCS and the MCS respectively. (See Table B1 in the Appendix.) 

 

IV. RESULTS:  

Figure 2 plots the propensity for females to choose occupations with high share of males for 

each cohort. As we move from left to right from (i) to (ix) we are exploring richer variants of 

each model. Three things are worth noting. First, over time females have become more likely 

to choose jobs with higher shares of males as compared to their male peers.  Specifically, the 

gap observed in the share of males between males and females is attenuated by about 5% 

across cohorts. Recall for children born in 2000 our outcome is based on aspirations, so this 

                                                             
21 There are two survey waves on life outcomes around age 30s for the BCS cohort (ages 30 and 34). In this 
analysis, we prioritise the responses given at the 34-year survey (1984). To maintain the size of observations of 
the BCS sample, we supplement any missing values of our variables at age 34 with the information given at age 
30 to the exact questions. This strategy increases the final BCS sample from 6870 to 8973 observations. Running 
the models only with the 6870 observations does not change the results.  



difference may tend towards earlier cohorts once the true constraints of jobs with high shares 

of males are realised by female workers22. Still, it is a clear and significant trend towards less 

gendered sorting over time. Second, even with this convergence, aspirations of females in the 

most recent cohort are still markedly different from their male peers in terms of share of males. 

Specifically, the share of males in jobs aspired to by females is about 35% lower as compared 

to their male peers. Third, the gradient in Figure 2 is flat. This tells us that childhood variables 

have little explanatory power with respect to changing the tendency to sort along gendered 

lines for the average female.  In other words, the influence of being female on occupation 

choice is independent of the childhood variables we consider. 

Turning to Table 1, we can examine these patterns more precisely. Specifically, Table 1 

details the coefficient on the female dummy with its associated standard error, alongside the 

adjusted R squared for each model. As we move through the rows from (i) to (ix) in each 

panel we are estimating richer variants of equation (1). It is again striking that while there are 

significant differences in the female coefficient across all three cohorts, the coefficient is not 

attenuated greatly when childhood variables are added. For example, from panel A (i), a 

female born in 1958 chooses an occupation where the share of males are 45% lower on 

average as compared to their male peers. This compares to 41% for females born in 1970, and 

34% for females born in 2000. Overall, this suggests that over time UK females have been 

more often choosing occupations with higher share of males, however the gap between the 

aspirations of females and males in the most recent cohort is still marked.  

Turning to Table 1 Panel B, there is no difference in the probability that females born in 

1958 or 1970 will choose a job that has a share of males of 80% or higher as compared to 

their male peers. The coefficient on female for those born in 2000 is slightly reduced, implying 

that females in this cohort are 46% less likely to choose occupations with the highest share of 

males as compared to comparable males.  This emphasises that females still shy away from 

occupations with the highest shares of males23. Across all three cohorts the female coefficient 

                                                             
22 Recent work by Lekfuangfu and Odermatt (2018) looks at occupational aspirations of the NCDS 1958 cohorts 
when they were 11 and 16 years old. They find that gender sorting is highly prevalent. For instance, out of 500 
children wishing to become a nurse, only one is a boy. In contrast, among children who wished to work in skilled 
manual jobs, only 10 percent was female. They also show that gender-biased occupational choices are also 
observed in parents and teachers of the NCDS cohorts.   
23 This is consistent with a literature which highlights that females are less likely to finish STEM majors 
(Arcidiacono, Aucejo, and Hotz, (2016) and Ost (2010) and another which highlights that females may 
underestimate the gains from ‘male-dominated’ fields (see Zafar (2011), Zafar (2013) and Arcidiacono, Hotz 
and  Kang  (2012). 



is not markedly attenuated with the addition of childhood variables, and the R squared remains 

flat.  

Table 1 panel C focuses on the probability a female is dis-employed (or in the case of the 

MCS children aspires to have a job that is not ‘good’). For the NCDS, being female is 

associated with a 21% increase in the probability of being dis-employed as compared to male 

peers. This compares to 9% for the BCS. The female coefficient for the MCS is not 

significantly different from zero, emphasising that for the most recent cohort there is no 

difference in aspirations between males and females in their tendency to expect a ‘good’ job 

by age 30.   The addition of the childhood variables does not attenuate the female coefficient 

significantly for any of the cohorts, nor change the R squared notably.  

Table 2 panel A highlights that the BCS cohort have occupations with a smaller wage gap, 

as compared to females in the NCDS cohort. However, the aspirations of the MCS cohort, if 

fulfilled, would cause a greater gender pay gap than those born in 1970 and 1958. Specifically, 

MCS girls are aspiring to do jobs that are paid 31% lower than males. The childhood variables 

do not attenuate the female coefficient significantly for any of the cohorts, and the R squared 

is flat.  For the BCS cohorts, adding the childhood variables actually increases the female 

coefficient, with the addition of cognitive skills having the greatest impacts.  

Table 2 panel B highlights that the propensity for females to sort into jobs with lower 

average hours, as compared to male peers, has declined significantly and substantively over 

the three cohorts. However, the difference between female aspirations and their male peers is 

still substantive for those born in 2000 (with females aspiring to work in jobs that have 3 

hours less on average). The addition of the childhood variables gives modest attenuation 

across the three cohorts, but these additions do increase the R squared for the 1958 cohort 

(from 11% in the most basic model to 14% for the fullest model).  For the other two cohorts 

the R squared is relatively flat.    

Table 2 panel C documents the results for the flexibility regressions. Overtime, the gap 

between males and females in terms of sorting into flexible jobs has narrowed. Notably, the 

coefficient for the aspirations of the 2000 cohort is roughly one third of that for the NCDS 

children. For all three cohorts, the addition of the childhood variables does little to attenuate 

the female coefficient and the R squared is flat. This suggests that changing patterns over time 

determined the movement away from flexibility, over and above childhood factors.  



Table 3 documents the estimates from our models which consider job content. A few 

stylised facts emerge. First, over time females have moved more towards jobs that are high in 

brains as compared to their male peers, with the MCS girls being substantively more likely 

than the MCS boys to choose jobs with high brain content. Females across all three cohorts 

choose jobs with higher people content and lower brawn content, as compared to male peers.  

However, for the MCS cohorts the coefficients are about the half the size. This suggests that 

females in this cohort are still choosing job content along gender lines, but it is not as marked 

as it was for older cohorts. Only time will tell whether these aspirations translate into realised 

sorting. Finally, across all three cohort studies there is a gender gap in the propensity to choose 

jobs that are highly competitive, with males choosing work with higher competitive content.  

Markedly, there is no attenuation in this trend over time, with the MCS girls being 

substantively less likely to aspire to work in jobs that are competitive as compared to MCS 

males.   Second, while there a couple of exceptions (brains for NCDS and brawn for BCS), in 

general the addition of the childhood variables does not attenuate the female coefficient in the 

job content regressions. Third, across the three cohorts there are substantive changes to the R 

squared when we add the childhood variables for the brains and brawn regressions (in both 

cases the addition of the cognitive proxies is the most important). In contrast, the R squared 

is flat with these additions for the people and competitiveness content regressions.    

Tables 4 through 6 document estimates from equation (1) for children who are in the top 

20% of the cognitive distribution. There has always been less of a difference between high 

skilled females and their male peers in their tendency to sort into jobs with high shares of 

males. While the gradient of the coefficient decreases across the three cohorts, it is much 

flatter as compared to the average female regressions. Notably, females with high cognitive 

ability born in 2000 are still aspiring to enter occupations with 27% lower male shares, as 

compared to males.  Panel B, highlights that that high ability females have become less likely 

than their male peers to sort (or aspire in the case of those born in 2000) into jobs with the 

highest shares of males. Given that these regressions pertain to the highest skilled females 

only it seems that that the trend of females sorting into science, technology and engineering 

are not improving across the three cohorts.  

Consistent with the results for the average female, the gender gap in occupational hours 

(Table 5, panel B), flexibility (Table 5, panel C) and the potential to be dis-employed (Table 

4, Panel C) has narrowed over time. High ability females have a lower occupation level 

average pay gap, if we compare the 1970 cohort to the 1958 cohort.  However females born 



in 2000 are choosing jobs that have significantly lower average pay, as compared to their male 

peers. Together, these results suggest that females born in 2000 plan to have higher levels of 

labour force attachment as compared to females in earlier cohorts, but are less extrinsically 

motivated as compared to their current male peers.  

Turning to Table 6, stylised facts consistent with table 3 emerge. First, the gap between 

males and females in terms of job brains content has grown over time, with females choosing 

jobs with higher brain content as compared to their peers. Second, females across all three 

cohorts choose jobs with higher people content, but lower brawn and competiveness content 

as compared to their male peers. Notably, for the MCS cohort the difference between males 

and females in brawn content is lower than for the NCDS and BCS females, but he 

competiveness gap is the larger.  

Across Tables 4 through 6 childhood variables do little to attenuate the coefficient on the 

female dummy. However, the addition of the childhood variables does explain significant 

proportions of the variation for a number of outcomes (log of average occupational income, 

brains content and brawn content for all three cohorts).  

Table 7 documents the LASSO estimates from the fullest model (see Appendix D for the 

full Lasso results). First note that in no case is the coefficient on female shrunk to zero leading 

to the conclusion that gender has been, and is now, a key factor in determining how 

individual’s sort. The narrative from the OLS models remains. Overtime females (both 

average and high ability) have sorted more regularly into male traditionally male dominated 

jobs, have decreased their propensity of being dis-employed as compared to male peers and 

the gender gap has narrowed in terms of flexibility and hours. However, for both average and 

high ability children born in the year 2000 there is a larger greater gender gap in the propensity 

to pursue jobs that  are 80%+ share of males, in average occupational income and occupational 

competiveness. Over time, all females have preferred jobs with higher brains and brawn 

content, as compared to their male peers. The average female also has been choosing jobs 

with less people content over time, as compared to their male peer.  However, for females 

with high ability the preference of the 2000 cohort is for jobs that are higher in people content 

as compared to those born in 1970.  

 

V. ROBUSTNESS CHECKS: 



Measurement errors in childhood variables 

The childhood variables we consider do not explain a significant proportion of the variation 

in any of our outcomes over and above what is explained the gender dummy. So, we conclude 

that the variables we usually think about as being important during childhood do not explain 

sorting, but gender is still a notable and independent determining factor. An obvious 

conclusion is perhaps the childhood variables we consider are simply measured with error. 

An easy way to explore this is to look at other outcomes that we think as important in 

adulthood, and look to see how our childhood variables relate to them. We are specifically 

interested in gauging their impact on the R squared. Table 8 documents estimates from this 

exercise. We document for a number of adult outcomes in the NCDS and BCS (we do not yet 

observe adult outcomes for MCS children) the coefficient on the female dummy and its 

associated standard error, along with the R squared when we estimate regressions with the 

female dummy only and our fullest specification. We note that for most of these outcomes 

adding the full set of the childhood variables explains a significant amount of the variation in 

our outcome. For example, when we add the childhood variables to regressions that seek to 

explain log of net earnings in adulthood the R squared increases by 8% for both the NCDS 

and BCS regressions. The increase in R squared for the regressions that consider the 

likelihood the child attends university increases by about 30% for both cohorts. When we 

consider the regressions that model cognitive ability in adulthood, R squared increases by 

15% and 37% for the NCDS and BCS cohorts respectively. In addition, for many of our adult 

outcomes, the female coefficient does change substantively with the addition of the childhood 

variables. See for example, the regressions that relate to general health status, attitudes 

towards racial issues, smoking behaviour in adulthood and the probability of attending 

university. Overall, we are therefore confident that the variables do measure something 

meaningful about childhood, but that these variables are just not important determinants of 

occupational sorting nor are they correlated with gender.   

Shifting occupational preferences:  

It is interesting to consider whether it is changes in the preferences of males versus females 

that drives the conclusions found in this work. Table 9 documents the average and standard 

deviation of our outcomes for each cohort, alongside the overall change occurred between 

1958-2000. Table 9 highlights that for the most recent cohort, it is males’ increased propensity 

of pursuing high income and competitive work that is causing us to conclude that the sorting 



trends of the most recent cohort in these domains is less comparable to male peers as 

compared to the previous two cohorts. When we look at Table 9 we can see that over time 

females have sorted into occupations that were higher income and more competitive over 

time, but for the most recent cohort not to the same extent of males. Males have also more 

regularly pursued jobs with high people content over time, however for all three cohorts 

females more regularly choose jobs that are high in people content. In contrast, females have 

more regularly pursued jobs with high brawn content over time, however for all three cohort 

males more regularly choose jobs that are high in brawn. Across cohorts, males have remained 

in occupations with similar average weekly work hours (approximately 46 hours), whereas 

females have more regularly chosen occupations with higher average hours. British women 

in the recent cohorts have chosen occupations with less job flexibility, whilst men’s jobs have 

remains highly inflexible over time. Overall, the comparison between the changes across 

cohorts suggests that the shifts in sorting patterns across cohorts are more marked for females 

as compared to males, with the exception of changes in aspirations for high income 

competitive work by males in the most recent cohort.  

 

VI. CONCLUSIONS:  

This study work considers the extent to which societal shifts have been responsible for an 

increased tendency for females to sort into traditional male roles over time, versus individual 

level childhood factors. In other words, we are interested in the extent that childhood factors 

which vary within cohorts, influence gendered sorting patterns as compared to societal 

changes which occur across cohorts.  Overall we find that societal changes had a far greater 

influence on gendered sorting patterns in the UK over and above the childhood variables that 

we consider for children born in 1958, 1970 and 2000. We are aware that our childhood 

variables do not adequately capture every childhood factor that could potentially mediate 

gendered sorting. However, we would expect that most of the relevant omitted factors would 

be correlated with the variables that we do include so their signal should be picked up in our 

regressions. So, we are confident in our conclusion that societal shifts have done the heavy 

lifting with respect to influencing gendered sorting pattern. This holds true for average ability 

and high skilled groups.  

Our analyses has also revealed several interesting stylised facts regarding gendered sorting 

over time.  First, for all three cohorts we find strong evidence of sorting along gendered lines 



but this tendency has decreased substantively over time. That is, the gender gap has narrowed. 

Our analyses also reveals persistent gender gaps in the tendency to sort into occupations with 

the highest shares of males (80%) that have not changed over time. These jobs are often the 

golden pathway to C Suite positions and positions of power, and encapsulate science, 

technology and engineering posts as well as front office trading roles and politics. It may be 

tempting to conclude that the flatness in the gender gap in the tendency to sort into 

occupations with the highest share of males, particularly for children with the highest 

academic ability, reflects innate preferences. However, we note that over time both genders 

have significantly changed their tendency to sort into occupations that are high on people, 

brains and competitiveness content (see Table 9)24. Some of this will be determined by labour 

markets (i.e. it is unsurprising that both genders sort towards jobs that are high in people, 

given the growth in services and jobs that require interpersonal skills), but we also view these 

changes as highly suggestive that preferences are socialised, rather than representing innate 

differences by gender.  

While all eyes are normally on the tendency for females to change their preferences, our 

analysis reveals that the changing preferences of males are contributing to stubborn gender 

gaps in traditionally male dominated positions. Noteworthy, is that males in the most recent 

cohort are aspiring to work in occupations with significantly higher levels of competitiveness 

and larger incomes as compared to previous cohorts and their current female peers. Therefore, 

even though the females born in 2000 have nearly closed the gender gap in terms of the hours 

and flexibility they are demanding, the type of work they are aspiring to sort into suggests 

that the gender pay gap may prevail unless the rewards given to different occupations change, 

or indeed preferences change for even younger cohorts. These conclusions hold if we focus 

only on children with the highest academic ability.  

This study raises questions on what can really be achieved by individuals at a local level, by 

parents to move the needle on gendered sorting in the absence of a more general societal 

movement or a tipping phenomenon.  For example, if a mother encourages their daughter to 

be an astrophysicist, but the society she is growing up in sends different messages the efforts 

may be lost on the average girl.  It is possible that these messages may be dominated by, for 

example, STEM toys being mainly targeted to boys25, the media covering females and males 

                                                             
24 Females have also changed their tendency to sort into jobs with high brawn content 
25 Institution of Engineering and Technology (2016) 



at the height of their careers differently26, a child’s schooling experiences varying by their 

gender and the images society has for its leaders still being male. Overall, we view our work 

as underlying the importance of the role of societal shifts, over and above childhood variables, 

in determining the sorting patterns we have seen over the last number of decades in the UK, 

and also those that remain today.  

 

 

 

 

 

  

                                                             
26 See Fu et al (2016) for evidence of gender bias when covering sports heroes,  Fowler and Lawless (2009) and 
Meeks (2012) for evidence of differential coverage by gender of politicians  
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Figure 1: Share of men in an occupation in the NCDS, BCS and MCS 

 

Notes: For the NCDS (1958) and the BCS (1970), share of men in an occupation is calculated from the 
occupation cohort member held at age 33 and 34 years old, respectively. For the MCS (2000), the 
occupation is the occupation cohort members (at age 11) aspired to be when they turn 30 years old.  
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Figure 2: Coefficients of “female” on “Share of men in the occupation” (Full sample) 

 

Notes: Full sample. i) is the model with only female dummy variable, (ii) is the preceding model with a set of 
baseline variables, (iii) added cognitive skills, (iv) added motor skills, (v) added non-cognitive skills, (vi) 
added health conditions, (vii) added parental investments, (viii) added parent’s aspirations for the child, and 
(ix) added external influences.
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Table 1: Estimates for Share of Males regressions 

Notes: The tables show the estimated coefficient and the standard error associated to the female dummy in each specification. (I) is the regression with only female dummy. (II) is (I) with the family variables. (III) is 
(II) with childhood cognitive skills. (IV) is (III) with childhood motor skills. (V) is (IV) with childhood non-cognitive skills. (VI) is (V) with childhood physical and psychological health conditions. (VII) is (VI) with 
parental investment variables. (VIII) is (VII) with variables indicating parental aspirations for children. Finally, (IX) is (VIII) with external influences from school peer and class teacher around age 16.   

 NCDS (1958) 1991 BCS (1970) 2004 MCS (2000) 2012 
    Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2 
Panel A: Share of men in an occupation        
(i) +Female -0.446 [0.005] 0.458 -0.411 [0.005] 0.412 -0.335 [0.005] 0.306 
(ii) +Baseline -0.446 [0.005] 0.463 -0.41 [0.005] 0.412 -0.335 [0.005] 0.313 
(iii) +Cognitive Skills -0.442 [0.005] 0.469 -0.41 [0.005] 0.413 -0.334 [0.005] 0.314 
(iv) +Motor Skills -0.441 [0.005] 0.47 -0.409 [0.005] 0.414 -0.332 [0.005] 0.314 
(v) + Non Cognitive Skills -0.439 [0.005] 0.47 -0.405 [0.005] 0.416 -0.328 [0.005] 0.316 
(vi) +Health attainment -0.438 [0.005] 0.47 -0.405 [0.005] 0.418 -0.328 [0.005] 0.316 
(vii) +  Parent’s investments -0.438 [0.005] 0.47 -0.399 [0.006] 0.42 -0.328 [0.005] 0.318 
(viii) + Parent’s aspirations -0.437 [0.006] 0.471 -0.398 [0.006] 0.42 -0.327 [0.005] 0.319 
(ix) + External influences -0.452 [0.006] 0.482 -0.4 [0.006] 0.42 -0.325 [0.005] 0.319 
Panel B: Share of men is 80% or higher in an occupation      
(i) +Female -0.486 [0.008] 0.281 -0.486 [0.008] 0.28 -0.459 [0.008] 0.256 
(ii) +Baseline -0.487 [0.008] 0.301 -0.484 [0.008] 0.291 -0.459 [0.008] 0.26 
(iii) +Cognitive Skills -0.488 [0.008] 0.324 -0.481 [0.008] 0.3 -0.455 [0.008] 0.263 
(iv) +Motor Skills -0.486 [0.008] 0.324 -0.48 [0.008] 0.301 -0.452 [0.008] 0.264 
(v) + Non Cognitive Skills -0.482 [0.009] 0.325 -0.473 [0.008] 0.303 -0.447 [0.008] 0.268 
(vi) +Health attainment -0.481 [0.009] 0.325 -0.473 [0.008] 0.305 -0.448 [0.008] 0.268 
(vii) +  Parent’s investments -0.48 [0.009] 0.326 -0.462 [0.009] 0.306 -0.447 [0.009] 0.269 
(viii) + Parent’s aspirations -0.479 [0.009] 0.328 -0.46 [0.009] 0.308 -0.443 [0.009] 0.272 
(ix) + External influences -0.506 [0.009] 0.342 -0.464 [0.009] 0.31 -0.438 [0.009] 0.275 
N of Panels A and B 9722 8973 11200 
Panel C: Probability of Being Dis-Employed        
(i) +Female 0.211 [0.008] 0.082 0.09 [0.005] 0.032 -0.066 [0.008] 0.006 
(ii) +Baseline 0.211 [0.008] 0.085 0.09 [0.005] 0.032 -0.066 [0.008] 0.014 
(iii) +Cognitive Skills 0.204 [0.008] 0.092 0.09 [0.005] 0.032 -0.066 [0.008] 0.019 
(iv) +Motor Skills 0.208 [0.008] 0.091 0.091 [0.005] 0.031 -0.065 [0.008] 0.019 
(v) + Non Cognitive Skills 0.211 [0.008] 0.093 0.091 [0.005] 0.031 -0.061 [0.008] 0.019 
(vi) +Health attainment 0.212 [0.008] 0.096 0.091 [0.006] 0.032 -0.062 [0.008] 0.019 
(vii) +  Parent’s investments 0.211 [0.008] 0.097 0.092 [0.006] 0.032 -0.063 [0.009] 0.018 
(viii) + Parent’s aspirations 0.212 [0.008] 0.095 0.092 [0.006] 0.032 -0.062 [0.009] 0.019 
(ix) + External influences 0.216 [0.009] 0.097 0.094 [0.006] 0.032 -0.062 [0.009] 0.019 
N of Panel C 13610 11695 12271 



Table 2: Estimates for Income, Average Hours, Flexibility and Probability of Being Employed regressions 

  NCDS (1958) 1991 BCS (1970) 2004 MCS (2000) 2012 
    Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2 
Panel A: Log of average gross income        
(i) +Female -0.238 [0.007] 0.1 -0.145 [0.008] 0.033 -0.314 [0.008] 0.126 
(ii) +Baseline -0.237 [0.007] 0.212 -0.149 [0.008] 0.158 -0.313 [0.008] 0.142 
(iii) +Cognitive Skills -0.23 [0.007] 0.327 -0.158 [0.007] 0.231 -0.311 [0.008] 0.148 
(iv) +Motor Skills -0.234 [0.007] 0.329 -0.163 [0.008] 0.238 -0.31 [0.008] 0.148 
(v) + Non Cognitive Skills -0.238 [0.007] 0.33 -0.167 [0.008] 0.24 -0.309 [0.008] 0.154 
(vi) +Health attainment -0.238 [0.007] 0.331 -0.168 [0.008] 0.241 -0.309 [0.008] 0.154 
(vii) +  Parent’s investments -0.237 [0.007] 0.332 -0.175 [0.008] 0.244 -0.308 [0.009] 0.154 
(viii) + Parent’s aspirations -0.238 [0.007] 0.336 -0.174 [0.008] 0.259 -0.313 [0.009] 0.158 
(ix) + External influences -0.244 [0.008] 0.342 -0.173 [0.008] 0.261 -0.312 [0.009] 0.158 
Panel B: Average hours         
(i) +Female -8.213 [0.116] 0.343 -6.917 [0.123] 0.265 -2.71 [0.088] 0.083 
(ii) +Baseline -8.194 [0.116] 0.348 -6.926 [0.122] 0.277 -2.703 [0.087] 0.111 
(iii) +Cognitive Skills -8.125 [0.125] 0.352 -6.954 [0.123] 0.281 -2.71 [0.089] 0.112 
(iv) +Motor Skills -8.127 [0.126] 0.354 -6.969 [0.124] 0.284 -2.695 [0.090] 0.113 
(v) + Non Cognitive Skills -8.107 [0.128] 0.354 -6.881 [0.125] 0.286 -2.628 [0.092] 0.114 
(vi) +Health attainment -8.101 [0.128] 0.354 -6.898 [0.126] 0.287 -2.631 [0.092] 0.113 
(vii) +  Parent’s investments -8.082 [0.130] 0.354 -6.823 [0.131] 0.288 -2.633 [0.094] 0.113 
(viii) + Parent’s aspirations -8.077 [0.130] 0.355 -6.794 [0.133] 0.289 -2.621 [0.094] 0.115 
(ix) + External influences -8.447 [0.143] 0.363 -6.844 [0.135] 0.289 -2.584 [0.095] 0.116 
Panel C: Flexibility of an occupation        
(i) +Female 0.184 [0.005] 0.127 0.164 [0.005] 0.101 0.063 [0.005] 0.014 
(ii) +Baseline 0.183 [0.005] 0.129 0.164 [0.005] 0.106 0.063 [0.005] 0.016 
(iii) +Cognitive Skills 0.174 [0.005] 0.13 0.165 [0.005] 0.106 0.062 [0.005] 0.016 
(iv) +Motor Skills 0.175 [0.005] 0.131 0.165 [0.005] 0.107 0.062 [0.005] 0.016 
(v) + Non Cognitive Skills 0.174 [0.005] 0.131 0.164 [0.005] 0.107 0.059 [0.006] 0.017 
(vi) +Health attainment 0.174 [0.005] 0.13 0.165 [0.005] 0.107 0.059 [0.006] 0.016 
(vii) +  Parent’s investments 0.175 [0.005] 0.13 0.16 [0.005] 0.108 0.057 [0.006] 0.017 
(viii) + Parent’s aspirations 0.174 [0.005] 0.131 0.161 [0.006] 0.11 0.059 [0.006] 0.018 
(ix) + External influences 0.181 [0.006] 0.132 0.161 [0.006] 0.11 0.058 [0.006] 0.018 
Observations 9722 8973   11200   

Notes: See notes to Table 1. For the MCS probability of being employed equals 1 if the child expects to have their own children, and also does expects to have a good job by age 30, and 0 otherwise. 

 



Table 3: Estimates for People, Brains, Brawn and competitiveness regressions 

  NCDS (1958) 1991 BCS (1970) 2004 MCS (2000) 2012 
    Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2 
Panel A: People         
(i) +Female 0.421 [0.019] 0.05 0.439 [0.019] 0.057 0.272 [0.019] 0.02 
(ii) +Baseline 0.42 [0.019] 0.054 0.439 [0.019] 0.06 0.271 [0.019] 0.026 
(iii) +Cognitive Skills 0.418 [0.020] 0.056 0.442 [0.019] 0.062 0.277 [0.019] 0.035 
(iv) +Motor Skills 0.416 [0.020] 0.057 0.442 [0.019] 0.063 0.275 [0.019] 0.035 
(v) + Non Cognitive Skills 0.415 [0.020] 0.057 0.452 [0.020] 0.064 0.277 [0.020] 0.038 
(vi) +Health attainment 0.413 [0.020] 0.056 0.452 [0.020] 0.065 0.276 [0.020] 0.038 
(vii) +  Parent’s investments 0.41 [0.021] 0.058 0.461 [0.021] 0.065 0.277 [0.020] 0.04 
(viii) + Parent’s aspirations 0.411 [0.021] 0.059 0.462 [0.021] 0.065 0.274 [0.020] 0.04 
(ix) + External influences 0.424 [0.023] 0.061 0.464 [0.021] 0.065 0.28 [0.020] 0.04 
Panel B:Brains         
(i) +Female -0.091 [0.019] 0.002 0.06 [0.021] 0.001 0.532 [0.020] 0.066 
(ii) +Baseline -0.089 [0.018] 0.091 0.05 [0.020] 0.097 0.532 [0.020] 0.072 
(iii) +Cognitive Skills -0.058 [0.019] 0.189 0.032 [0.020] 0.147 0.532 [0.020] 0.079 
(iv) +Motor Skills -0.066 [0.019] 0.19 0.024 [0.020] 0.15 0.528 [0.021] 0.079 
(v) + Non Cognitive Skills -0.079 [0.019] 0.192 0.012 [0.020] 0.151 0.522 [0.021] 0.081 
(vi) +Health attainment -0.08 [0.019] 0.192 0.008 [0.021] 0.152 0.525 [0.021] 0.081 
(vii) +  Parent’s investments -0.08 [0.019] 0.193 -0.006 [0.022] 0.153 0.53 [0.021] 0.081 
(viii) + Parent’s aspirations -0.083 [0.019] 0.198 -0.005 [0.022] 0.163 0.516 [0.021] 0.09 
(ix) + External influences -0.056 [0.021] 0.204 -0.001 [0.022] 0.165 0.509 [0.022] 0.09 
Panel C: Brawn         
(i) +Female -0.81 [0.020] 0.149 -0.823 [0.019] 0.167 -0.523 [0.015] 0.104 
(ii) +Baseline -0.812 [0.019] 0.194 -0.816 [0.019] 0.209 -0.523 [0.015] 0.126 
(iii) +Cognitive Skills -0.79 [0.020] 0.258 -0.803 [0.019] 0.238 -0.518 [0.016] 0.138 
(iv) +Motor Skills -0.783 [0.020] 0.259 -0.797 [0.019] 0.24 -0.515 [0.016] 0.139 
(v) + Non Cognitive Skills -0.767 [0.020] 0.26 -0.774 [0.019] 0.244 -0.502 [0.016] 0.143 
(vi) +Health attainment -0.769 [0.020] 0.261 -0.772 [0.019] 0.245 -0.503 [0.016] 0.143 
(vii) +  Parent’s investments -0.761 [0.020] 0.265 -0.742 [0.020] 0.247 -0.502 [0.016] 0.143 
(viii) + Parent’s aspirations -0.755 [0.020] 0.267 -0.739 [0.020] 0.251 -0.491 [0.016] 0.151 
(ix) + External influences -0.791 [0.022] 0.277 -0.748 [0.020] 0.254 -0.48 [0.016] 0.153 
Panel D:Competitiveness        
(i) +Female -0.407 [0.020] 0.041 -0.383 [0.022] 0.033 -0.841 [0.028] 0.084 
(ii) +Baseline -0.406 [0.020] 0.051 -0.386 [0.022] 0.057 -0.842 [0.028] 0.094 
(iii) +Cognitive Skills -0.4 [0.021] 0.058 -0.393 [0.022] 0.063 -0.844 [0.028] 0.094 
(iv) +Motor Skills -0.405 [0.021] 0.058 -0.402 [0.022] 0.066 -0.84 [0.028] 0.095 



(v) + Non Cognitive Skills -0.407 [0.022] 0.06 -0.396 [0.022] 0.066 -0.83 [0.029] 0.099 
(vi) +Health attainment -0.406 [0.022] 0.06 -0.4 [0.023] 0.066 -0.835 [0.029] 0.099 
(vii) +  Parent’s investments -0.408 [0.022] 0.059 -0.397 [0.024] 0.065 -0.843 [0.029] 0.101 
(viii) + Parent’s aspirations -0.41 [0.022] 0.059 -0.392 [0.024] 0.067 -0.836 [0.029] 0.102 
(ix) + External influences -0.388 [0.024] 0.06 -0.395 [0.024] 0.067 -0.84 [0.030] 0.102 
Observations 9722 8973 11200 

 

Notes: See notes to Table 1.  

 

 

  



Table 4 Estimates for Share of Males and probability of dis-employment regressions for children with the highest cognitive ability  

 NCDS (1958)  1991 BCS (1970) 2004 MCS (2000) 2012 
    Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2 
Panel A: Share of men in an occupation         
(i) +Female -0.318 [0.009] 0.297 -0.317 [0.009] 0.3 -0.27 [0.008] 0.225 
(ii) +Baseline -0.318 [0.009] 0.297 -0.317 [0.009] 0.299 -0.271 [0.009] 0.228 
(iii) +Cognitive Skills -0.304 [0.010] 0.301 -0.315 [0.009] 0.3 -0.271 [0.009] 0.229 
(iv) +Motor Skills -0.305 [0.010] 0.302 -0.315 [0.009] 0.301 -0.27 [0.009] 0.228 
(v) + Non Cognitive Skills -0.302 [0.010] 0.302 -0.311 [0.009] 0.304 -0.265 [0.009] 0.229 
(vi) +Health attainment -0.3 [0.010] 0.302 -0.311 [0.009] 0.306 -0.265 [0.009] 0.229 
(vii) +  Parent’s investments -0.297 [0.010] 0.302 -0.307 [0.010] 0.305 -0.262 [0.009] 0.228 
(viii) + Parent’s aspirations -0.297 [0.010] 0.306 -0.306 [0.010] 0.305 -0.26 [0.009] 0.232 
(ix) + External influences -0.327 [0.013] 0.316 -0.307 [0.010] 0.306 -0.258 [0.009] 0.234 
Panel B: Share of men is 80% or higher in an occupation         
(i) +Female -0.279 [0.013] 0.124 -0.359 [0.014] 0.181 -0.380 [0.014] 0.184 
(ii) +Baseline -0.277 [0.013] 0.134 -0.356 [0.014] 0.191 -0.381 [0.014] 0.188 
(iii) +Cognitive Skills -0.265 [0.015] 0.148 -0.357 [0.014] 0.199 -0.377 [0.014] 0.191 
(iv) +Motor Skills -0.265 [0.015] 0.147 -0.357 [0.014] 0.198 -0.376 [0.014] 0.191 
(v) + Non Cognitive Skills -0.262 [0.015] 0.147 -0.349 [0.015] 0.2 -0.374 [0.015] 0.192 
(vi) +Health attainment -0.26 [0.015] 0.146 -0.348 [0.015] 0.2 -0.374 [0.015] 0.191 
(vii) +  Parent’s investments -0.256 [0.015] 0.146 -0.338 [0.016] 0.202 -0.369 [0.015] 0.191 
(viii) + Parent’s aspirations -0.256 [0.015] 0.152 -0.336 [0.016] 0.207 -0.366 [0.015] 0.195 
(ix) + External influences -0.281 [0.019] 0.167 -0.337 [0.016] 0.209 -0.361 [0.015] 0.199 
N of  Panels A and B: 2952 3030 3877 
Panel C: Probability of Being Dis-Employed          
(i) +Female 0.209 [0.012] 0.098 0.098 [0.009] 0.037 -0.075 [0.015] 0.007 
(ii) +Baseline 0.208 [0.013] 0.096 0.098 [0.009] 0.04 -0.074 [0.015] 0.014 
(iii) +Cognitive Skills 0.199 [0.014] 0.095 0.099 [0.009] 0.039 -0.081 [0.015] 0.018 
(iv) +Motor Skills 0.2 [0.014] 0.094 0.099 [0.009] 0.038 -0.081 [0.015] 0.019 
(v) + Non Cognitive Skills 0.203 [0.014] 0.096 0.099 [0.010] 0.037 -0.076 [0.015] 0.018 
(vi) +Health attainment 0.204 [0.014] 0.096 0.099 [0.010] 0.035 -0.078 [0.015] 0.019 
(vii) +  Parent’s investments 0.201 [0.014] 0.096 0.102 [0.010] 0.037 -0.075 [0.016] 0.021 
(viii) + Parent’s aspirations 0.202 [0.014] 0.094 0.101 [0.010] 0.037 -0.074 [0.016] 0.021 
(ix) + External influences 0.216 [0.017] 0.094 0.104 [0.011] 0.032 -0.072 [0.016] 0.022 
N of Panel C N = 4008 N = 3,847     N= 3877  

Notes: See notes to Table 1 and also Appendix A for full details of how the children with highest cognitive ability are determined. 

 



Table 5 Estimates for log of average income, average hours and flexibility regressions for children with the highest cognitive ability 

Notes: See notes to Table 1 and also Appendix A for full details of how the children with highest cognitive ability are determined.   

    Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2 
Panel A: Log of average gross income         
(i) +Female -0.207 [0.013] 0.074 -0.165 [0.014] 0.042 -0.238 [0.013] 0.093 
(ii) +Baseline -0.213 [0.013] 0.125 -0.163 [0.014] 0.138 -0.239 [0.013] 0.105 
(iii) +Cognitive Skills -0.203 [0.014] 0.171 -0.155 [0.014] 0.184 -0.236 [0.013] 0.109 
(iv) +Motor Skills -0.207 [0.014] 0.172 -0.16 [0.014] 0.189 -0.237 [0.013] 0.109 
(v) + Non Cognitive Skills -0.212 [0.014] 0.172 -0.169 [0.014] 0.193 -0.235 [0.013] 0.116 
(vi) +Health attainment -0.211 [0.014] 0.173 -0.17 [0.014] 0.195 -0.236 [0.013] 0.116 
(vii) +  Parent’s investments -0.214 [0.015] 0.176 -0.178 [0.014] 0.198 -0.233 [0.014] 0.116 
(viii) + Parent’s aspirations -0.214 [0.015] 0.179 -0.179 [0.014] 0.22 -0.236 [0.014] 0.121 
(ix) + External influences -0.229 [0.018] 0.183 -0.179 [0.015] 0.22 -0.235 [0.014] 0.122 
Panel B: Average hours          
(i) +Female -5.202 [0.198] 0.194 -4.987 [0.190] 0.182 -1.665 [0.147] 0.035 
(ii) +Baseline -5.233 [0.198] 0.204 -4.973 [0.191] 0.197 -1.701 [0.146] 0.058 
(iii) +Cognitive Skills -4.983 [0.220] 0.213 -4.872 [0.192] 0.201 -1.732 [0.151] 0.057 
(iv) +Motor Skills -5.017 [0.219] 0.212 -4.912 [0.195] 0.206 -1.72 [0.152] 0.057 
(v) + Non Cognitive Skills -4.973 [0.221] 0.212 -4.878 [0.197] 0.207 -1.66 [0.156] 0.057 
(vi) +Health attainment -4.917 [0.221] 0.215 -4.874 [0.198] 0.206 -1.651 [0.157] 0.056 
(vii) +  Parent’s investments -4.877 [0.224] 0.215 -4.84 [0.207] 0.206 -1.605 [0.161] 0.055 
(viii) + Parent’s aspirations -4.875 [0.223] 0.214 -4.816 [0.208] 0.206 -1.575 [0.160] 0.062 
(ix) + External influences -5.349 [0.271] 0.218 -4.873 [0.216] 0.208 -1.545 [0.162] 0.062 
Panel C: Flexibility of an occupation         
(i) +Female 0.17 [0.009] 0.099 0.145 [0.009] 0.079 0.055 [0.009] 0.01 
(ii) +Baseline 0.169 [0.009] 0.1 0.141 [0.009] 0.089 0.055 [0.009] 0.009 
(iii) +Cognitive Skills 0.151 [0.010] 0.108 0.139 [0.009] 0.089 0.054 [0.009] 0.008 
(iv) +Motor Skills 0.154 [0.010] 0.107 0.139 [0.009] 0.089 0.053 [0.009] 0.008 
(v) + Non Cognitive Skills 0.153 [0.011] 0.107 0.136 [0.009] 0.09 0.051 [0.010] 0.008 
(vi) +Health attainment 0.151 [0.011] 0.107 0.137 [0.009] 0.089 0.051 [0.010] 0.009 
(vii) +  Parent’s investments 0.151 [0.011] 0.105 0.138 [0.010] 0.086 0.05 [0.010] 0.011 
(viii) + Parent’s aspirations 0.151 [0.011] 0.107 0.139 [0.010] 0.09 0.051 [0.010] 0.013 
(ix) + External influences 0.176 [0.013] 0.11 0.142 [0.010] 0.09 0.051 [0.010] 0.011 
N 2952 3030 3877 



Table 6 Estimates for People, Brains, Brawn and competitiveness regressions for children with the highest cognitive ability 

 NCDS (1958) 1991 BCS (1970) 2004 MCS (2000) 2012 
    Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2   Coefficient S.E.  Adjusted  R2 
Panel A: People          
(i) +Female 0.28 [0.034] 0.022 0.383 [0.033] 0.042 0.309 [0.034] 0.022 
(ii) +Baseline 0.277 [0.034] 0.028 0.376 [0.033] 0.044 0.308 [0.034] 0.028 
(iii) +Cognitive Skills 0.272 [0.037] 0.032 0.376 [0.034] 0.047 0.315 [0.035] 0.043 
(iv) +Motor Skills 0.259 [0.037] 0.03 0.373 [0.034] 0.048 0.308 [0.035] 0.044 
(v) + Non Cognitive Skills 0.257 [0.038] 0.031 0.375 [0.034] 0.05 0.302 [0.036] 0.045 
(vi) +Health attainment 0.268 [0.038] 0.034 0.376 [0.035] 0.054 0.297 [0.036] 0.044 
(vii) +  Parent’s investments 0.264 [0.039] 0.037 0.381 [0.036] 0.052 0.296 [0.037] 0.047 
(viii) + Parent’s aspirations 0.264 [0.039] 0.045 0.38 [0.036] 0.053 0.29 [0.037] 0.048 
(ix) + External influences 0.259 [0.046] 0.054 0.385 [0.037] 0.054 0.298 [0.037] 0.048 
Panel B: Brains          
(i) +Female -0.32 [0.035] 0.027 -0.163 [0.037] 0.006 0.335 [0.036] 0.024 
(ii) +Baseline -0.33 [0.035] 0.057 -0.154 [0.036] 0.078 0.33 [0.036] 0.027 
(iii) +Cognitive Skills -0.283 [0.038] 0.095 -0.13 [0.036] 0.108 0.336 [0.037] 0.034 
(iv) +Motor Skills -0.286 [0.038] 0.098 -0.139 [0.036] 0.11 0.335 [0.037] 0.034 
(v) + Non Cognitive Skills -0.291 [0.038] 0.098 -0.154 [0.037] 0.11 0.325 [0.038] 0.035 
(vi) +Health attainment -0.295 [0.039] 0.095 -0.16 [0.037] 0.111 0.325 [0.038] 0.037 
(vii) +  Parent’s investments -0.293 [0.039] 0.095 -0.175 [0.039] 0.114 0.323 [0.039] 0.037 
(viii) + Parent’s aspirations -0.29 [0.039] 0.101 -0.179 [0.039] 0.131 0.311 [0.039] 0.047 
(ix) + External influences -0.295 [0.048] 0.104 -0.181 [0.040] 0.129 0.303 [0.039] 0.049 
Panel C: Brawn          
(i) +Female -0.488 [0.033] 0.067 -0.526 [0.032] 0.084 -0.343 [0.028] 0.043 
(ii) +Baseline -0.481 [0.033] 0.08 -0.525 [0.032] 0.108 -0.347 [0.028] 0.056 
(iii) +Cognitive Skills -0.459 [0.036] 0.101 -0.529 [0.032] 0.123 -0.346 [0.028] 0.063 
(iv) +Motor Skills -0.464 [0.037] 0.101 -0.531 [0.032] 0.122 -0.346 [0.028] 0.064 
(v) + Non Cognitive Skills -0.449 [0.037] 0.103 -0.504 [0.032] 0.128 -0.343 [0.029] 0.066 
(vi) +Health attainment -0.44 [0.037] 0.102 -0.498 [0.033] 0.13 -0.347 [0.029] 0.066 
(vii) +  Parent’s investments -0.417 [0.038] 0.108 -0.473 [0.034] 0.13 -0.347 [0.029] 0.066 
(viii) + Parent’s aspirations -0.418 [0.038] 0.111 -0.468 [0.035] 0.139 -0.338 [0.029] 0.076 
(ix) + External influences -0.477 [0.046] 0.118 -0.476 [0.036] 0.143 -0.326 [0.029] 0.081 
Panel D: Competitiveness            
(i) +Female -0.508 [0.038] 0.056 -0.427 [0.039] 0.037 -0.702 [0.046] 0.062 
(ii) +Baseline -0.521 [0.038] 0.061 -0.431 [0.039] 0.057 -0.7 [0.046] 0.07 
(iii) +Cognitive Skills -0.472 [0.042] 0.065 -0.419 [0.040] 0.059 -0.71 [0.047] 0.072 
(iv) +Motor Skills -0.473 [0.042] 0.064 -0.432 [0.040] 0.063 -0.712 [0.047] 0.072 



(v) + Non Cognitive Skills -0.47 [0.043] 0.067 -0.437 [0.041] 0.063 -0.687 [0.048] 0.074 
(vi) +Health attainment -0.47 [0.043] 0.069 -0.438 [0.041] 0.064 -0.693 [0.048] 0.075 
(vii) +  Parent’s investments -0.486 [0.044] 0.068 -0.437 [0.043] 0.062 -0.687 [0.049] 0.077 
(viii) + Parent’s aspirations -0.487 [0.044] 0.067 -0.437 [0.043] 0.061 -0.678 [0.049] 0.079 
(ix) + External influences -0.458 [0.053] 0.071 -0.454 [0.045] 0.062 -0.679 [0.049] 0.08 
N 2952 3030 3877 

Notes: See notes to Table 1 and also Appendix A for full details of how the children with highest cognitive ability are determined. 

 

 

 

 



Table 7 Lasso Regression Results 

  Share of 
Males  

Share of 
Males 
+80%  

Probability of 
Being Dis-
employed  

Log 
Weekly 
Income  

Hours  Flexibility  People  Brains  Brawn  Competitiv
eness  

NCDS (1958)  All Children  
Female  -0.448 -0.485 0.207 -0.235 -8.346 0.179 0.408 -0.060 -0.797 -0.394 
R squared  0.485 0.339 0.100 0.341 0.369 0.135 0.069 0.201 0.279 0.067 
N  9722 9722 13610 9722 9722 9722 9722 9722 9722 9722 

BCS (1970) All Children  
Female  -0.303 -0.329 0.077 -0.167 -6.761 0.158 0.425 0.000 -0.740 -0.371 
R squared  0.313 0.215 0.037 0.264 0.292 0.114 0.065 0.170 0.258 0.071 
N  8973 8973 11695 8973 8973 8973 8973 8973 8973 8973 

MCS (2000) All Children  
Female  -0.325 -0.442 -0.048 -0.307 -2.527 0.055 0.259 0.484 -0.481 -0.808 
R squared  0.321 0.276 0.020 0.160 0.116 0.020 0.044 0.090 0.154 0.104 
N  11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 

NCDS (1958) Children in Top 25% Cognitive Distribution  
Female  -0.317 -0.248 0.193 -0.218 -5.034 0.148 0.200 -0.223 -0.445 -0.405 
R squared  0.330 0.170 0.104 0.204 0.223 0.104 0.070 0.113 0.131 0.065 
N  2952 2952 4008 2952 2952 2952 2952 2952 2952 2952 

BCS (1970) Children in Top 25% Cognitive Distribution 
Female  -0.300 -0.331 0.083 -0.157 -4.721 0.131 0.339 -0.116 -0.455 -0.386 
R squared  0.307 0.218 0.041 0.231 0.206 0.100 0.059 0.138 0.156 0.071 
N  3030 3030 3,847 3030 3030 3030 3030 3030 3030 3030 

MCS (2000) Children in Top 25% Cognitive Distribution 
Female  -0.256 -0.355 -0.055 -0.227 -1.431 0.029 0.273 0.281 -0.297 -0.627 
R squared  0.240 0.198 0.031 0.130 0.069 0.008 0.063 0.061 0.086 0.086 
N  3877 3877 3877 3877 3877 3877 3877 3877 3877 3877 
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Table 8 Estimates for other adult outcome regressions 

 NCDS (1958)  BCS (1970)  

 Coefficient S.E. 
Adjusted  

R2 
Coefficient S.E. 

Adjusted  
R2 

Panel A: Log of net earnings Age 33, N=7653 Age 34, N = 7758 
(i) +Female -0.894 [0.017] 0.255 -0.600 [0.021] 0.097 
(ix) + all childhood variables  -0.904 [0.020] 0.332 -0.645 [0.022] 0.179 
Panel B: General health status Age 33, N=9606 Age 34, N = 8965 
(i) +Female -0.050 [0.020] 0.001 -0.036 [0.020] 0.000 
(ix) + all childhood variables  -0.081 [0.025] 0.056 -0.085 [0.022] 0.022 
Panel C: Malaise score (positive) Age 33, N = 9667 Age 34, N = 8973 
(i) +Female -0.345 [0.020] 0.030 -0.315 [0.023] 0.021 
(ix) + all childhood variables  -0.363 [0.025] 0.078 -0.330 [0.026] 0.027 
Panel D: Attitudes towards 
gender roles 

Age 33, N = 9249 Age 26, N = 6169 

(i) +Female 0.553 [0.020] 0.077 0.623 [0.024] 0.100 
(ix) + all childhood variables  0.565 [0.024] 0.116 0.598 [0.027] 0.106 
Panel E: Attitude towards racial 
issues Age 33, N = 9246 Age 30, N = 8442 

(i) +Female 0.172 [0.021] 0.007 0.255 [0.021] 0.016 
(ix) + External influences 0.195 [0.025] 0.074 0.186 [0.023] 0.07 
Panel F: Smoking behaviour 
(whether or not smoke) 

Age 33, N = 9647 Age 34, N = 8641 

(i) +Female -0.008 [0.009] 0 -0.061 [0.010] 0.005 
(ix) + External influences 0.009 [0.011] 0.105 -0.025 [0.010] 0.061 
Panel G: Attended university Age 33, N = 9719 Age 34, N = 5834 
(i) +Female -0.035 [0.008] 0.002 0 [0.011] 0 
(ix) + External influences -0.024 [0.007] 0.315 -0.020 [0.010] 0.285 
Panel H: Cognitive Ability in 
Adulthood  

Age 50, N = 7167 Age 34, N = 7386 

(i) +Female 0.259 [0.023] 0.017 -0.180 [0.022] 0.009 
(ix) + External influences 0.232 [0.027] 0.150 -0.303 [0.019] 0.372 
 

Notes: (I) is the regression with a female dummy only.  (IX) includes the fullest set of controls.  (See notes for Table 1.) Log of net earnings 
is taken from net family annual income for NCDS and reported as equivalised household income for BCS. General health status is the self-
rated health rating for both NCDS (4 levels) and BCS (5 levels). We use the standardised value (mean = 0 and sd. =1). Malaise score (positive) 
is derived from the self-rated Malaise score (9 items). The raw score is reversed and standardised (mean = 0 and sd. =1).  Attitudes towards 
gender roles is calculated from the opinion on the questions “there should be more women bosses in important jobs in business & industry”, 
“men and women should have the chance to do the same kind of work” (6 levels), and calculate for the average score. Attitude towards racial 
issues is derived from the response to the questions “mixed race marriage is OK”, “wouldn’t mind if family of diff race moved next door”, 
“would mind kids going to school with diff races” (reversed), “wouldn’t mind working with people from other races” and “not want another 
race person as my boss” (reversed) (6 levels: totally disagree to totally agree) and calculate for the average score. Smoking behaviour is an 
indicator variable equals to 1 if the cohort member smoked at all at present and zero otherwise. Attended university is an indicator variable 
with value 1 if cohort member at least attended university and zero otherwise. Lastly, Cognitive Ability in Adulthood of the BCS is taken from 
2 inventories: numeracy score (total score of 23), and literacy score (total score of 37). The composite score is the standardised score of the 
mean of standardised numeracy and literacy scores. Cognitive Ability in Adulthood of the NCDS is taken from 4 inventories: Word list recall, 
Animal naming, Letter cancellation, and Delayed word list recall (see Brown and Dodgeon 2010 for details). The composite score is the 
standardised value of the mean of standardised score of each item.  
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Table 9 Summary statistics for occupational choices across three UK birth cohorts 

  NCDS (1958)  BCS(1970)  MCS(2000) Change (2000 - 
1958)   Average SD Average SD Average SD 

Panel A: Female               
Share of men in an occupation 0.31 (0.24) 0.34 (0.25) 0.40 (0.25) 0.09 
Log of average gross income 2.05 (0.36) 2.18 (0.41) 2.45 (0.4) 0.40 
People 0.09 (1.02) 0.18 (0.97) 0.85 (0.95) 0.76 
Brains -0.17 (0.82) 0.14 (0.89) 0.23 (0.9) 0.40 
Brawn -0.3 (0.85) -0.43 (0.72) 0.06 (0.64) 0.36 
Job competitiveness -0.25 (1.01) -0.13 (1.13) 0.59 (1.33) 0.84 
Flexibility of an occupation -0.02 (0.19) -0.04 (0.21) -0.19 (0.25) -0.17 
Average hours 37.73 (6.73) 38.96 (6.68) 43.57 (4.97) 5.84 
Panel B: Male               
Share of men in an occupation 0.76 (0.24) 0.75 (0.24) 0.74 (0.25) -0.02 
Log of average gross income 2.29 (0.35) 2.32 (0.38) 2.76 (0.42) 0.47 
People -0.34 (0.8) -0.25 (0.82) 0.58 (0.97) 0.92 
Brains -0.07 (1.05) 0.08 (1.13) -0.30 (1.1) -0.23 
Brawn 0.51 (1.07) 0.39 (1.07) 0.59 (0.89) 0.08 
Job competitiveness 0.17 (0.95) 0.25 (0.95) 1.43 (1.45) 1.26 
Flexibility of an occupation -0.21 (0.29) -0.21 (0.27) -0.25 (0.28) -0.04 
Average hours 45.98 (4.35) 45.88 (4.72) 46.28 (3.89) 0.30 
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