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Abstract

On a given network, a Patroller and Attacker play the following win-lose game: The Patroller

adopts a periodic walk on the network while the Attacker chooses a node and two consecutive

periods (to attack there). The Patroller wins if he successfully intercepts the attack, that is, if

he occupies the attacked node in one of the two periods of the attack. We solve this game in

mixed strategies for line graphs, the first class of graphs to be solved for the periodic patrolling

game. We also solve the game for arbitrary graphs when the period is even.

Keywords: Game Theory, Networks, Search/Surveillance



1 Introduction

The periodic patrolling game was introduced in Alpern et al. (2011) to model the defense of

the nodes of a network from attack by an antagonistic opponent. This is a discrete game model

in which the network is modeled as a graph, the Patroller chooses a walk on the graph with

a given period and the Attacker picks a node and a discrete time interval of fixed duration

m for his attack. The Patroller wins the game if he is present at the attacked node during

the time interval in which it is attacked, in which case we say that he intercepts the attack.

Otherwise the Attacker wins. Compared with other patrolling models in the literature, for

example Chung et al. (2011), the patrolling game model represents only an idealization of

the patrolling problem. However it is the only model in which the Patroller and Attacker are

treated symmetrically, rather than the more usual Stackelberg approach where the Patroller

picks his strategy first.

This paper considers the periodic patrolling game on general graphs and then in more

detail on the class of line graphs Ln consisting of n nodes 1, 2, . . . , n with consecutive numbers

considered to be adjacent. The case of a unit attack duration m = 1 is covered by the field of

geometric games as defined by Ruckle (1983), so we here consider the next smallest duration

m = 2, which is the only case thus far susceptible to analysis. We note that the easier version of

non-periodic patrolling games is able to handle line graphs for larger values of m, as recently

solved by Papadaki et al. (2016). It is likely that the techniques introduced here will be

extended to larger attack durations in the future, but clearly additional ideas will be required.

In the case of the line graph, our discrete model could be applied for example to the problem

of patrolling, possibly with a sniffer dog, a bank of linearly arranged airport security scanners,

or a mountainous border with a discrete set of passes that can be crossed. In such cases, the

“nodes” can be attacked at any time, around the clock, so the period T is likely to be the

number of nodes that can be patrolled in a day. Other possibilities for defining T might be

the attention span of the sniffer dog or the optimal time between refueling by a mobile vehicle,

robot or UAV. In the last case, it is likely that the refuelling station might not be public

knowledge, so we do not need to assume the Attacker can make use of this.

The paper is organized as follows. In Section 2, we review the related literature, then

in Section 3 we formally define the game. In Section 4 we discuss some results for general

graphs, showing how the game can be solved using notions from fractional graph theory if the

patrol period is even. We then give a complete solution to the game played on a line graph in

Section 5. In Section 6 we consider an extension of the game to the case of multiple patrollers,

and show how our results on the line may be extended to this setting. Finally, we conclude in

Section 7.
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2 Literature Review

The problem of patrolling a border or channel against attack or infiltration goes back to the

classical work of Morse and Kimball (1951). Since then many attempts have been made to

improve the theory and practice of patrolling. Washburn (1982) considers an infiltrator who

wants to maximize the probability of getting across a line in a channel. The case where the

channel is blocked by fixed barriers has been consider by Baston and Bostock (1987) and

the case when the barriers are moving has been analyzed by Washburn (2010). The case

of a thick infiltrator has been considered by Baston and Kikuta (2009). If there are many

infiltrators and they arrive in a Poisson manner, the analysis is given by Szechtman et al.

(2008). Multiple infiltrators are also considered by Zoroa et al. (2012) where the infiltration

is through a circular rather than a linear boundary. Multiple patrollers, when only some

portions of the boundary need to be protected, are considered by Collins et al. (2013), who

show how the problem can be divided up. Papadaki et al. (2016) consider the discrete border

patrol problem, where the infiltration can only be accomplished at certain points of the border

(perhaps mountain passes). When patrollers are restricted to periodic patrols, as here, the

analysis of the continuous problem (with elements such as turning radius included) has been

analyzed by Chung et al. (2011).

The more general problem of patrolling an arbitrary network against attacks at its nodes

has been modeled as a game by Alpern et al. (2011), including a definition of the periodic

patrolling game which we adopt here. Lin et al. (2013) developed more general approximate

methods which cover such extensions as varying values for attacks at different nodes. Their

methods, extended in Lin et al. (2014) to imperfect detection, can solve large scale problems.

In the computer science literature, patrolling games with mobile robots and a Stackelberg

model have been developed by Basilico et al. (2009, 2012). Multi vehicle patrolling problems

have been solved by Hochbaum et al. (2014).

Infiltration games without mobile patrollers are analyzed in Garnaev et al. (1997), Alpern

(1992), Baston and Garnaev (1996) and Baston and Kikuta (2004, 2009).

3 The Periodic Patrolling Game

In this section we formally define the patrolling game. There are three parameters: a graph

Q = Q(N,E) (where N is the set of nodes and E is the set of edges of Q), a period T , and an

attack duration m (which we will take as 2 in this paper). The Attacker chooses a node i of Q

to attack and a time interval of m consecutive periods in which to attack it. These m periods

can be considered as an arc of the time circle T = {1, 2, . . . , T, T + 1 = 1}, on which arithmetic
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is carried out modulo T . So in the periodic game with T = 24 and m = 5, for example, a valid

Attacker strategy would be the “overnight” attack, with attack interval J = {22, 23, 24, 1, 2}.
Note that if Q has n nodes, then the number of possible attacks is given by nT, and the mixed

attack strategy which chooses among them equiprobably will be called the uniform attack

strategy. To foil the attack, the Patroller walks along the graph in an attempt to intercept it,

that is, to be at the attacked node at some time during the attack interval. More precisely,

a patrol is a walk w on Q with period T , that is, w : {1, 2, . . .} → N with w(t) and w(t + 1)

the same or adjacent nodes and w (t+ T ) = w (T ) for all t. A patrol w intercepts an attack at

node i during attack interval J if i ∈ w (J) or equivalently if w (t) = i for some time t in the

attack interval J . In such a case we say that the Patroller wins, and the payoff is 1; otherwise

we say the Attacker wins, and the payoff is 0. Thus the payoff of the game corresponding to

mixed strategies is the probability that the Patroller intercepts the attack. The value V of the

game is the expected payoff (interception probability) with optimal play on both sides.

We note that in Alpern et al. (2011), this game is called the periodic patrolling game

(one of two forms of the game considered there) and the value is denoted V p. We assume

throughout that the period is at least 2 and that the graph Q has at least n = 2 nodes.

4 General Graphs

In this section we obtain some bounds on the value V of the patrolling game on a general graph.

The tools comprise the well known covering and independence numbers and a decomposition

result taken from Alpern et al. (2011).

4.1 Covering and independence numbers I and C.

We recall some elementary definitions about a graph Q. A set of nodes is called independent

if no two of them are adjacent. The maximum cardinality of an independent set is called the

independence number I. Similarly a set of edges is called a covering set if every node of the

graph is incident to one of these edges. The minimum cardinality of a covering set is called the

covering number C of the graph. If I is a set of nodes and C is a covering set of edges there is,

by the definition of covering set, a function f : I → C such that the edge f (i) is incident to

node i for all i ∈ I. If I is an independent set then, by the definition of independent set, the

function f is injective, so that |I| ≤ |C| and hence I ≤ C.
Suppose the Attacker attacks in some fixed time interval {t, t+1} at a node chosen equiprob-

ably from a set of I independent nodes. We call this an independent attack strategy. If a patrol

intercepts one of these attacks at node i ∈ I at time t, he cannot intercept another at time

t + 1, since none of the other attacks are at a node adjacent to i. Hence the probability of
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intercepting an attack cannot exceed 1/I and therefore V ≤ 1/I. Next suppose T is even.

In this case the Patroller fixes a covering set of C edges, picks a single edge amongst these

randomly, and on that edge goes back and forth in an oscillation of length T . We call this

Patroller mixed strategy an unbiased covering strategy, or, if the covering set consists of only

an edge, an unbiased oscillation. Every node is visited by one of these patrols in every pair of

consecutive time periods, and hence every attack of duration m = 2 is intercepted by at least

one of these C patrols. Therefore the Patroller wins with probability at least 1/C. Hence we

have shown the following.

Lemma 1 The value of the Patrolling Game on any graph Q satisfies

V ≤ 1/I, and futhermore (1)

1/C ≤ V ≤ 1/I, if T is even. (2)

A graph is called bipartite if its nodes can be partitioned into two sets such that no two

nodes within the same set are adjacent. For bipartite graphs, we can say more.

Proposition 2 Let Q be a bipartite graph. Then C = I and the value V satisfies

V =
1

C
=

1

I
, if T is even, and (3)(

2T − 1

2T

)
1

C
=

(
2T − 1

2T

)
1

I
≤ V ≤ 1

I
if T is odd. (4)

Proof. The first result (3) follows immediately from (2) and the well known fact (Konig’s

Theorem) that C = I for bipartite graphs. The upper bound of (4) follows from (1). For the

lower bound let {ek}Ck=1 be a covering set of C edges, and let wk denote the randomized walk

of period T which oscillates on ek except that it stays at a randomly chosen node of ek for

two consecutive times, also randomly chosen. We call this strategy of the Patroller a biased

covering strategy. For example if T = 7 and the endpoints of ek are a and b, the repeated

sequence might be ababbab. Consider the Patroller strategy that chooses one of the randomized

walks wk equiprobably. If one of the nodes of ek is attacked then the attack is detected if the

Patroller chooses wk (which happens with probabiliy 1/C) and the Patroller does not happen

to choose to repeat this node for two consecutive periods that coincide with the time of attack

(this happens with probability 1 − 1/(2T ). So the total probabilty the attack is detected is

(1/C) (1− 1/ (2T )), giving the lower bound for the value in (4).
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We now give an example based on Lemma 1 and Proposition 2 for the line graph L7 with

nodes {1, . . . , 7} and edges (i, i+ 1) i = 1, . . . , 6. Since Ln is bipartite we can use the result in

(3). We demonstrate the result for even period T = 12 (any even period would suffice but we

pick 12 to be able to compare it with a later example in Section 5.6). A minimum covering set

is {(1, 2), (3, 4), (5, 6), (6, 7)} and thus C = 4. An unbiased covering strategy for the Patroller

consists of picking an edge at random from a minimum covering set (with probability 1/4) and

performing an oscillation on that edge with period T = 12. Since T = 12 is even the oscillations

performed on the chosen edges are unbiased (nodes are visited equally often). This is shown

in Figure 1. This Patroller strategy intercepts attacks at nodes 1 − 5, 7 with probability 1/4

and at node 6 with probability 1/2. Thus, the Patroller at worst can guarantee interception

probability of at least 1/4. The Attacker would use the independent attack strategy and attack

equiprobably on the independent set {1, 3, 5, 7}, which clearly guarantees him interception

probability of at most 1/4. This gives the value of the game V = 1/C = 1/4.

Figure 1: Unbiased covering strategy for the Patroller to oscillate on edges
{(1, 2), (3, 4), (5, 6), (6, 7)} of this minimum covering set.

The following gives an alternative upper bound to 1/I on V based on the uniform attack

strategy, which chooses equiprobably among the nT possible attacks (pure strategies). The

reason that there are nT pure strategies is because in a game with period T , there are T

periods that the attacker can start the attack: 1, 2, . . . , T, T + 1 = 1, at each node. The new

upper bound is sometimes but not always better (lower) than 1/I.

Proposition 3 By adopting the uniform strategy on a graph Q, the Patroller ensures the value

of the periodic patrol game is bounded above by 2/n. If T is odd and Q is bipartite, then the

upper bound can be strengthened to (2T − 1)/(nT ).

Proof. Suppose the Attacker adopts the uniform strategy on a graph Q, and let w be

any Patroller pure strategy. If w(t) = i and w(t + 1) = j 6= i then in these two periods the

Patroller can intercept at most four pure Attacker strategies, namely [i, (t− 1, t)], [i, (t, t+ 1)]

and [j, (t, t + 1))], [j, (t + 1, t + 2))], so 2 in each period and 2T in all. If i = j then only the
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three attacks [i, (t− 1, t)], [i, (t, t+ 1)] and [i, (t+ 1, t+ 2)] can be intercepted. Since there are

nT possible attacks, we have V ≤ (2T )/(nT ) = 2/n.

If T is odd and Q is bipartite then w(t) = w(t + 1) for some t, so at most 2T − 1 attacks

can be intercepted. Hence V ≤ 2T−1
nT .

Note that it follows from the proof of Proposition 3 that against the uniform attack strategy,

the interception probability will be strictly less than 2/n for any Patroller walk which repeats

a node. This observation can be used to show that in some cases oscillations on an edge cannot

be optimal. Consider the triangle graph shown in Figure 2, with T = 3. If the Patroller adopts

a random cyclic patrol, he intercepts any attack with probability 2/3. Similarly, Proposition

3 shows that the uniform attack strategy is intercepted by any walk with probability not

exceeding 2/3, and so V = 2/3. On the other hand, if the Patroller uses oscillations on edges

(or any walks other than the cycles), then he has repeated vertices and by the above remark

cannot achieve interception probability 2/3. So this example shows that in general, the Patroller

cannot restrict to walks restricted to individual edges.

Figure 2: The triangle graph

The following situation will be important in analyzing the patrolling game on the n node

line graph Ln with n even. For example, consider the edge covering of L4 consisting of the

edges (1, 2) and (3, 4) with C = 2 = n/2. The covering edges are disjoint, unlike the graph of

Figure 1.

Corollary 4 Suppose T is odd, n is even and let Q be a bipartite graph with C = n/2. Then

V = (2T − 1) / (nT ) .

Proof. Since C = n/2, we have from (4) that

V ≥ (2T − 1)

2CT
=

2 (2T − 1)

2nT
=

2T − 1

nT

The result follows since for odd T we have from Proposition 3 that V ≤ (2T − 1) / (nT ).
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4.2 Even periods T

When the period T is even, we can solve the patrolling game on any graph Q = Q (N,E)

(where N is the set of nodes and E is the set of edges of Q) by extending the notions of

covering and independence numbers to fractional forms. A more explicit solution for even T

will be obtained later for line graphs.

Let µ : E → [0, 1] assign edge weights µ (e) to every edge e so that the total weight

µ̂ =
∑

e∈Eµ (e) is minimized subject to the condition that for every node i ∈ N the weights

µ (e) of the edges e incident to i sum to at least 1. Such a µ is called an optimal edge weighting

and µ̂ is called the fractional covering number.

Similarly let ν : N → [0, 1] assign node weights ν (i) to every node i so that the total weight

ν̂ =
∑

iν (i) is maximized subject to the condition that sum of the weights ν (i) of the two

endpoints i of every edge e is at most 1. Such a ν is called an optimal node weighting and ν̂

is called the fractional independence number. It is well known (see Scheinerman and Ullman,

2011) that µ̂ = ν̂, a result that follows from either duality theory or the minimax theorem

applied to the game where the maximizer picks an edge, the minimizer picks a node and the

payoff is 1 if the node is incident to the edge and 0 otherwise. Note that, since the number

of strategies in this game is polynomial in the number of nodes of the graph, an optimal edge

weighting, an optimal node weighting and µ̂ = ν̂ can be found efficiently.

Theorem 5 If T is even, then the value of the patrolling game is given by V = 1/µ̂ = 1/ν̂.

An optimal strategy for the Patroller is to oscillate on edge e with probability µ (e) /µ̂, where

µ is any optimal edge weighting. An optimal strategy for Attacker to fix any interval {t, t+ 1}
and attack at node i with probabiltiy ν (i) /ν̂, where ν is an optimal node weighting.

Proof. Suppose the Patroller chooses the stated mixed strategy and the attack is at node

i, in any time interval. The Patroller will intercept the attack if he has chosen to oscillate

on an interval incident to i, which has probability at least 1/µ̂ because the numerater is the

sum of weights on edges incident to i. Similarly, suppose the Attacker adopts the stated mixed

strategy. Let i and j be the nodes occupied by the Patroller at the attack times t and t + 1.

If i 6= j, and e = {i, j} is the edge determined by i 6= j then the probability of intercepting

the attack is given by ν (i) /ν̂ + ν (j) /ν̂ = (ν (i) + ν (j)) /ν̂ ≤ 1/ν̂. If i = j the same inequality

holds.

Note that if we restrict the weights µ(e) and ν(i) to being 0 or 1 we get the usual covering

number µ̂ = C and independence number ν̂ = I. Thus, from linear programming theory and

duality we have: I ≤ ν̂ = µ̂ ≤ C.
We consider, as an example, the graph depicted in Figure 3. It is not bipartite, so the

covering number and independence number are not equal. The covering number is 3, and an
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Figure 3: A non-bipartite graph

optimal covering is {ab, ac, de} (where, for example ab denotes the edge with endpoints a and

b). The independence number of the graph is 2, and a maximum cardinality independent set

is {a, d}.
One optimal edge weighting is µ (ae) = 1, µ (bc) = µ (cd) = µ (db) = 1/2 and an optimal

node weighting is given by ν (a) = ν (b) = ν (c) = ν (d) = ν (e) = 1/2. Hence µ̂ = ν̂ = 5/2. This

translates to an optimal Patroller strategy that oscillates on ae with probability µ(ae)/µ̂ = 2/5,

and oscillates on bc, cd or bd each with probability µ(bc)/µ̂ = 1/5. And it translates to an

optimal Attacker strategy of attacking at node i with probability ν(i)/ν̂ = 1/5, which is

equivalent to the uniform Attacker strategy. We have V = 1/µ̂ = 1/ν̂ = 1/(5/2) = 2/5.

4.3 Patroller decomposition

As observed earlier in Alpern et al. (2011) the Patroller has the option of decomposing the

given graph Q into subgraphs Q1 and Q2 and randomly choosing whether to play an optimal

patrolling strategy on Q1 or on Q2. Specifically, suppose we write the node set N of Q as the

(not necessarily disjoint) union N1∪N2, and define Qi to be the graph with nodes Ni and edges

between nodes that are adjacent in Q. Let Vi denote the value of the patrolling game on Qi

(with the same parameters as on Q). If the Patroller optimally patrols on Qi with probability

pi, then any attack on a node in Qi will be intercepted with probability at least piVi. If the

Patroller equalizes these two probabilities (p1V1 = p2V2) by choosing p1 = V2/ (V1 + V2), then

he wins with probability at least

p2V2 = p1V1 =
V1V2
V1 + V2

, and hence we have

V ≥ V1V2
V1 + V2

. (5)
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The right-hand side of (5) represents the highest interception probability that the Patroller

can obtain by restricting patrols to one of the two subgraphs Q1 or Q2. So if strict inequality

holds in (5) then it is suboptimal for the Patroller to decompose Q in this way. If (5) holds

with equality, we say that the patrolling game on Q with period T is decomposable. Note that

if the game for Q,T is decomposable this means that removing edges (or barring the Patroller

from using them) connecting nodes in Q1 to nodes in Q2 does not lower the value of the game.

This derivation is simpler than that given in Alpern et al. (2011). We will use this method

to solve one of the cases for the line graph in Section 5.5.

Consider the example in Figure 3. Take N1 = {a, e} and N2 = {b, c, d} . We have V1 = 1

(an oscillation intercepts any attack at a or e) and V2 = 2/3, as shown in the analysis of the

triangle graph in Figure 2. Using the decomposition result (5), we have

V ≥ V1 V2
V1 + V2

=
2/3

1 + 2/3
=

2

5
and Proposition 3 gives

V ≤ 2

n
=

2

5
, so V = 2/5,

as shown earlier in the analysis of Figure 3, using different methods.

5 The Line Graph

We now concentrate our attention on the line graph Ln with node set N = {1, 2, . . . , n} and

edges between consecutive numbers. This graph is bipartite, with the two node sets made up

of the odd numbers and the even numbers. As mentioned in Proposition 2, this implies that

I = C, and we may take the odd numbered nodes as a maximum independent set, giving

I = C =


n
2 , if n is even, and

n+1
2 , if n is odd.

(6)

The solution of the periodic patrolling game on the line breaks up into five cases, as outlined

in Table 1. For the Attacker the strategies are simpler and have been defined earlier. However,

for the Patroller the strategies are more complicated and specific details for some of them can

be found at the corresponding propositions.
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Case Description Value Patroller strategy Attacker strategy
1 T, n even 2

n unbiased covering strategy independent
Proposition 6 Lemma 1 Lemma 1

2 T even, n odd 2
n+1 unbiased covering strategy independent

Propostion 6 Lemma 1 Lemma 1

3 T odd, n even 2T−1
nT biased covering strategy uniform

Proposition 6 Proposition 2 Proposition 3

4 T, n odd, n ≥ 2T + 1 2T−1
nT mixture of p-biased oscillations uniform

Propositions 9, 11 (Prop 9) or decomposed (Prop 11) Prop 7
5 T, n odd, n ≤ 2T − 1 2

n+1 mixture of p-biased oscillations independent

Proposition 10 Proposition 10 Prop 7

Table 1: Solution of Patrolling Game on Ln, period T .

We give in Figure 4 a partition of (n, T ) into the five cases of Table 1. The pattern is quite

complicated.

T \ n 2 3 4 5 6 7 8 9 10 11 12 13

2 1 2 1 2 1 2 1 2 1 2 1 2

3 3 5 3 5 3 4 3 4 3 4 3 4

4 1 2 1 2 1 2 1 2 1 2 1 2

5 3 5 3 5 3 5 3 5 3 4 3 4

6 1 2 1 2 1 2 1 2 1 2 1 2

7 3 5 3 5 3 5 3 5 3 5 3 5

8 1 2 1 2 1 2 1 2 1 2 1 2

9 3 5 3 5 3 5 3 5 3 5 3 5

10 1 2 1 2 1 2 1 2 1 2 1 2

Figure 4: Cases from Table 1 for pairs of (n, T ).

5.1 Cases 1 to 3 (one of T or n is even)

If either T or n is even, there are three different forms for the value, but all follow easily from

previous results.

Proposition 6 For Ln, if T is even, then

V =
1

C
=


2
n if n is even,

2
n+1 if n is odd.

(7)
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If T is odd and n is even we have

V =
2T − 1

nT
. (8)

Proof.

First suppose that T is even. In this case, the result (7) easily follows from Proposition 2

and (6), since Ln is bipartite.

For T odd and n even, there is an edge covering of Ln with C = n/2 disjoint edges of the

form {2i− 1, 2i} , i = 1, . . . , n/2. Thus the result follows from Corollary 4.

Thus the only remaining cases (4 and 5) are when T and n are both odd. These are the

complicated cases.

5.2 Comparison of uniform and independent attack strategies

For the remaining cases when T and n are both odd, we must compare the effectiveness of two

different strategies for the Attacker: the uniform strategy, mentioned above, chooses equiprob-

ably among all the nT possible pure stategies (at all n nodes at all T starting times); the

independent strategy starts at time, say, 1 and chooses equiprobably among the I indepen-

dent nodes. That is, the independent strategy chooses among I simultaneous attacks. We

have already obtained two different upper bounds on V for these cases: (2T − 1) / (nT ) from

Proposition 3, for the uniform attack strategy; and 2/ (n+ 1) from (4), for the independent

strategy (since I = n+1
2 ).

Note that the upper bound (2T − 1)/(nT ) is smaller than the upper bound 2/(n + 1) for

n ≥ 2T + 1 and the reverse holds for n ≤ 2T − 1. Since the Attacker can choose the attack

(uniform or independent) which gives the smaller upper bound on the value, we can summarize

his options as follows.

Proposition 7 Suppose T and n are both odd, and Q = Ln. Then

V ≤ min

(
2T − 1

nT
,

2

n+ 1

)
=


2

n+1 if n ≤ 2T − 1,

2T−1
nT if n ≥ 2T + 1.

We now analyze these two cases in sections 5.3 and 5.4 respectively. For the Patroller

strategies we shall use oscillations which are similar to the walks wk which appeared in the

proof of Proposition 2.
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5.3 Case 4 (T, n odd, n ≥ 2T + 1)

To deal with the case of n ≥ 2T + 1 and noting that the oddness of T requires a stunted type

of oscillation, we define p-biased oscillations as follows.

Definition 8 For p ∈ [0, 1], a right p-biased oscillation
−→
b p(i) (for i = 1, . . . , n − 1) is a

T -periodic walk between i and i+ 1 where i and i+ 1 alternate except that with probability p,

at a random time, the right-hand node i + 1 is repeated (if T = 2q + 1, it is at node i + 1 for

q + 1 periods and at i for q periods); with probability 1 − p, at a random time, the left-hand

node is repeated. For convenience, we define a left p-biased oscillation
←−
b p(i) as

−→
b 1−p(i).

If p = 1/2, we will refer to a right (or left) p-biased oscillation as an unbiased oscillation.

For the following result note that for larger n the uniform attack strategy is better for the

Attacker than the independent attack strategy.

Proposition 9 For Ln, assume that both T and n are odd and that 2T ≤ n − 1. Then

V = 2T−1
nT . The uniform attack strategy is optimal for the Attacker and a probabilistic choice

of biased oscillations is optimal for the Patroller.

The reader is invited to read the example in Table 2 and commentary to obtain some intuition

for the proof.

Proof. From Proposition 7 we know that V ≤ 2T−1
nT , so it is enough to demonstrate a Patroller

strategy which intercepts an attack at any node i with probability at least 2T−1
nT .

For j = 1, . . . , (n + 1)/2, let Aj be the set of edges of the form (2i − 1, 2i) for i < j. For

example, A1 is empty and A3 = {(1, 2), (3, 4)}. Also let Bj be the set of edges of the form

(2i, 2i+1) for i ≥ j, so B1 = {(2, 3), (4, 5), . . . , (n−1, n)} and B3 = {(6, 7), (8, 9), . . . , (n−1, n)}.
Finally let Dj = Aj ∪Bj .

For example when n = 7 we haveA2 = {(1, 2)} , B2 = {(4, 5), (6, 7)} andD2 = {(1, 2), (4, 5), (6, 7)} ,
as shown by the three arrows (for edges) on the second line from the top in Table 2. The arrows

are oriented left for edges in A2 and right for those in B2 to indicate the Patroller’s use of left

or right biased oscillations on these edges in his optimal strategy.

There are (n− 1)/2 edges in Dj , and each node in the line graph except one is incident to

some edge in Dj , for each j.

Consider the following Patroller strategy. First some j is chosen uniformly at random,

j = 1, . . . , (n+ 1)/2 and an edge (i, i+ 1) in Dj is chosen uniformly at random. If (i, i+ 1) is

contained in Aj then the Patroller performs a left p-biased oscillation
←−
b p(i). If (i, i+ 1) is in

Bj then the Patroller performs a right p-biased oscillation
−→
b p(i). This probability p will be

determined later.
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If a node is either on the left of an edge in some Aj that is being patrolled or if it is on the

right of an edge in some Bj that is being patrolled, then an attack at that node is intercepted

with probability:

p · 1 + (1− p) · (T − 1)/T = (T + p− 1)/T. (9)

If a node is either on the right of an edge in some Aj that is being patrolled or if it is on the

left of an edge in some Bj that is being patrolled, then an attack at that node is intercepted

with probability:

p · (T − 1)/T + (1− p) · 1 = (T − p)/T. (10)

We first calculate the probability p2i that an attack at an even numbered node 2i is intercepted,

i = 1, . . . , (n − 1)/2. Observe that for every one of the (n + 1)/2 values of j, the node 2i is

either on the right of an edge in Aj or on the left of an edge in Bj , so

p2i =

(
1

(n− 1)/2

)(
T − p
T

)
=

2(T − p)
(n− 1)T

. (11)

For an odd numbered node 2i − 1, i = 1, . . . , (n + 1)/2, we observe that there are (n − 1)/2

values of j such that the node 2i− 1 is either on the left of an edge in Aj or on the right of an

edge in Bj . There is one value of j such that node 2i− 1 is not incident to any edge in Aj or

Bj . So the probability p2i−1 that an attack at node 2i− 1 is intercepted is

p2i−1 =

(
1

(n− 1)/2

)(
(n− 1)/2

(n+ 1)/2

)(
T + p− 1

T

)
=

2(T + p− 1)

(n+ 1)T
. (12)

Since 2T ≤ n− 1 ≤ n+ 1, we may choose p = (2T + n− 1)/(2n) so that the probabilities p2i

and p2i−1 are equal, and substituting this value of p into (11) or (12), we obtain the bound

V ≥ 2(T − (2T + n− 1)/2n)

(n− 1)T
=

(2T − 1)

nT
.

Combining this with our lower bound, this establishes the proposition.

We illustrate the Patroller’s optimal strategy, taking L7 as an example, with T = 3 in Table

2. The four choices of D1, . . . , D4 correspond to the four rows in Table 2. The left pointing

arrows correspond to the edges in the Aj and the right pointing arrows correspond to the edges

in the Bj . Nodes which are incident to one of the edges in Dj , are indicated by a solid disk,

those which are not, by an outlined disk.

The Patroller picks one of the rows of the table at random, and then one of the arrows

in that row at random, corresponding to an edge (i, i + 1). Equivalently, he picks one of the

12 arrows at random. Then he performs a left or right p-biased oscillation, depending on the
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1 2 3 4 5 6 7
◦ • =⇒ • • =⇒ • • =⇒ • D1

• ⇐= • ◦ • =⇒ • • =⇒ • D2

• ⇐= • • ⇐= • ◦ • =⇒ • D3

• ⇐= • • ⇐= • • ⇐= • ◦ D4

Table 2: Optimal strategy for L7 with T = 3.

direction of the arrow, where p = (2T +n−1)/(2n) = 12/14 = 6/7. If a node has three arrows

pointing toward it (odd nodes), then an attack at that node is intercepted with probability

(3/12)(p+ (1− p)(T − 1)/T ) = (1/4)(6/7 + (1/7)(2/3)) = 5/21. If, on the other hand, a node

has four arrows pointing away from it (even nodes), then an attack at that node is intercepted

with probability (4/12)((1− p) + p(T − 1)/T ) = (1/3)(1/7 + (6/7)(2/3)) = 5/21. So the value

is 5/21 = (2T − 1)/(nT ).

5.4 Case 5 (T, n odd, n ≤ 2T − 1)

We now consider the remaining open case of n and T odd and n ≤ 2T − 1.

Proposition 10 For Ln, assume that both T and n are odd and that n ≤ 2T − 1. Then

V = 2
n+1 . The independent strategy is optimal for the Attacker and a probabilistic choice of

biased oscillations is optimal for the Patroller.

Proof. It follows from Proposition 7 that V ≤ 2/(n + 1). To prove the reverse bound on

the value, we simply use the Patroller strategy described in the proof of Proposition 9, but

this time taking p = 1 in Equations (12) and (11) to obtain

p2i−1 =
2(T + p− 1)

(n+ 1)T
=

2

n+ 1
and p2i =

2(T − 1)

(n− 1)T
≥ 2

n+ 1
,

where the last inequality follows directly from n ≤ 2T − 1. Thus, we have V ≥ 2/(n+ 1).

5.5 Patroller decomposition strategies

We may now also give an alternative optimal strategy for the Patroller in case 4, using a

decomposition of the line graph.

Proposition 11 For Ln, if T and n are odd and n > 2T − 1 then V = 2T−1
nT . The uniform

strategy is optimal for the Attacker. For the Patroller there is an optimal strategy which
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decomposes the graph Q = Ln into a left graph L = LnL with the odd number nL = 2T − 1

of nodes {1, 2, . . . , 2T − 1} and a right graph R =LnRwith the remaining even number nR =

n− (2T − 1) of nodes {2T, 2T + 1, . . . , n} .

Proof. The adoption of the uniform attacker strategy guarantees that V ≥ 2T−1
nT by

Proposition 3. The left graph L satisfies the hypotheses of Proposition 10, because nL ≤ 2T−1

(equality holds) and T and nL are odd. Hence Proposition 10 gives

V (L) =
2

nL + 1
=

2

2T
.

The subgraphR has an even number of nodes nR, so it satisfies the hypothesis of Proposition 6,

hence equation (8) gives

V (R) =
2T − 1

nRT
=

2T − 1

(n− (2T − 1))T
.

It follows from the decomposition estimate (5) that

V = V (Ln) ≥ V (L) V (R)

V (L) + V (R)
=

2T − 1

nT
.

As an example, consider again the case T = 3 and n = 7 > 2T − 1 = 5, as considered in

Section 5.3. As we know, V7 = 5/21. We decompose L7 into L = L5 and R = L2. On L5, the

optimal Patroller strategy is given by Proposition 10. On L2 the optimal Patroller strategy is

an unbiased oscillation on the single edge (6, 7).

According to Section 4.3, the probabilities p5 and p2 of patrolling on L5 and L2 should

satisfy p5V5 = p2V2. Since V5 = 2/(5 + 1) = 1/3 and V2 = (2 · 3 − 1)/(2 · 3) = 5/6, we have

p5 = 5/7 and p2 = 2/7.

We may represent this strategy by the diagram in Table 3, where L7 is decomposed into

L = L5 (on the left) and R = L2 (on the right). The Patroller first chooses L5 with probability

p5 = 5/7 and L2 with probability 2/7. If he chooses L2 then he performs an unbiased oscillation

(indicated by the double-ended arrow) on edge (6, 7). If he chooses L5 then he chooses one of

the single-ended arrows at random and performs a left or right biased p-oscillation, depending

on the direction of the arrow, with p = 1.

We can now determine for which values of T and n the line graph Ln is decomposable

(equality in (5)), in the sense that the Patroller can restrict his patrols to one of two disjoint

subgraphs without loss of optimality.

Proposition 12 The patrolling game on the line is decomposable unless T and n are odd and
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1 2 3 4 5 6 7
◦ • =⇒ • • =⇒ • • ⇐⇒ •
• ⇐= • ◦ • =⇒ • • ⇐⇒ •
• ⇐= • • ⇐= • ◦ • ⇐⇒ •

Table 3: Decomposed strategy for L7 with T = 3.

n ≤ 2T − 1 (case 5).

Proof. First we show that for cases 1 through 4 in Table 1, the patrolling game is de-

composable (by the Patroller). In cases 1, 2 and 3, the Patroller uses what we call covering

strategies, in that his pure patrols are on edges forming a minimum covering set. For n ≥ 4,

such as set can include the edge (1, 2) and (3, 4) and in particular the Patroller can avoid using

the edge (2, 3) . It follows that he is decomposing Ln into L = L2 and R = Ln−2 with disjoint

nodes sets {1, 2} and {3, . . . , n} . (If T is even and n = 3, then instead of using the covering

strategy involving edges (1, 2) and (2, 3) , the Patroller decomposes the game by equiprobably

oscillating on edge (1, 2) and remaining stationary on node 3 to obtain an interception proba-

bility of 1/2 = V (L3) .) For case 4, the optimal Patroller strategy given in Proposition 9 does

not decompose the game. However an optimal strategy which does decompose the game is

given in Proposition 10, where Ln, n odd, is decomposed into L = L2T−1 and R = Ln−(2T−1).

This is a strategy where the Patroller never traverses the edge (2T − 1, 2T ) .

So assume that T and n are odd and n ≤ 2T − 1 (case 5). So any decomposition of Ln is

into an even node line graph L2j , j > 0 and an odd one Ln−2j . The assumptions on T and n

are covered by Proposition 9, so we have

V (Ln) =
2

n+ 1
.

Since 2j is even, it follows from (8) in Proposition 5, that

V (L2j) =
2T − 1

2jT
.

Since n− 2j is odd and n− 2j < n ≤ 2T − 1, it follows from Proposition 9 that

V (Ln−2j) =
2

(n− 2j) + 1
.
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The best the Patroller can do by such a decomposition (see Section 3.2) is to obtain an

interception probability of
V (L2j) ∗ V (Ln−2j)

V (L2j) + V (Ln−2j)
.

The difference between the unrestricted value and the restricted one is given above is

V (Ln)− V (L2j) ∗ V (Ln−2j)

V (L2j) + V (Ln−2j)
=

2

n+ 1
−

(
2T−1
2jT

)
∗
(

2
(n−2j)+1

)
(
2T−1
2jT

)
+
(

2
(n−2j)+1

)
=

4j

(n+ 1) (2j + (2T − 1) (1 + n))
> 0.

5.6 Connections to non-periodic game

Compared with games with simply a fixed time horizon T, the problem with period T is more

difficult for the Patroller, as he has the additional requirement that he has to end at the same

node as he started. However as the period gets large, this restriction is less oppressive to

the Patroller, because the amount of time he must use to get back to his start is the fixed

diameter of the graph. In this subsection we check that the limiting value of V (T, n) for the

game with period T approaches the value V (n) found for the patrolling game on the graph

Ln without periodic patrols. For m = 2 the values found in Papadaki et al. (2016) are simply

V (n) = 1/ dn/2e , that is, 2/n for even n and 2/ (n+ 1) for odd n. If we look at the values

V (T, n) for periodic patrols found for the five cases, looking back at Table 1, for cases 1, 2, 3

and 5 (case 4 does not hold as T goes to infinity), we obtain the same limiting value

lim
T→∞

V (T, n) = V (n) = 1/ dn/2e , for all n.

Of course this is not an easy way of establishing the nonperiodic result, as the periodic case

dealt with here is more complicated.

The solution of the non-periodic game on Ln as given in Papadaki et al. (2016) involves

periodic patrols of different periods T1, . . . , Tk. Setting T ∗ to be the least common multiple of

{T1, T2, . . . , Tk}, we see that the solution has period T ∗. If we were seeking a solution to the

periodic game with set period T ∗ the same solution would be valid.

Let us consider the example with n = 7, m = 2 (in the non-periodic game there is no given

T ). The solution given there is as follows: with probability 1/8 adopt unbiased oscillations on

edges (1, 2) and (6, 7) and with probability 6/8 adopt a tour of Ln of period 2(n−1) = 12 that

goes back and forth between the end nodes. This is illustrated in Figure 5.
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Figure 5: Patroller oscillates between end nodes with probability 6/8 and on edges (1, 2) and
(6, 7) each with probability 1/8 in L7.

It is easy to check that the probability that the tour of Ln (of period 12) intercepts attacks

at nodes 1, 2, . . . , 7 is given respectively by 2/12, 4/12, 4/12, 4/12, 4/12, 4/12, 2/12. The 12-

cycle can be written, starting at say node 3, as 3∗, 4∗, 5∗, 6∗, 7, 6, 5, 4, 3, 2, 1∗, 2∗, . . . , where ∗

indicates going to the right. Note that an attack at node 4 starting at time t will be intercepted

if the Patroller following this cycle is at one of the four steps 5, 4 or 3∗, 4∗ out of the twelve

steps in the cycle, that is, with probability 4/12. The other probabilities are calculated in a

similar manner.

We now calculate the probability that the mixed strategy stated above intercepts an attack

at each node. For node 1 such an attack is intercepted with probability 2/12 by the big

oscillation and with probability 1 by the oscillation on edge (1, 2). Hence, the total interception

probability is given by (6/8)(2/12) + (1/8)(1) = 1/4. Similarly we calculate the probability

at nodes 2 and 3 as 3/8 and 1/4; by symmetry the interception probability for node 4 is

the same as node 3 and the interception probabilities for nodes 5, 6, 7 are the same as nodes

3, 2, 1 respectively. So the overall interception probabilities for nodes {1, 2, ..., 7} are given by

{1/4, 3/8, 1/4, 1/4, 1/4, 3/8, 1/4}. The minimum is 1/4, which is also the value of m/(n+m−
1) = 1/4, given by Papadaki et al. (2016). Note that the Attacker can achieve a successful

attack with probability 1/4 by attacking equiprobably simultaneously at the nodes of the

independent set {1, 3, 5, 7}.
To compare the above analysis with the periodic game of this paper, observe that the three

oscillations used in the optimal mixed strategy above have periods T1 = T2 = 2 and T3 = 12,

with least common multiple of T ∗ = 12. So this also gives a solution to the periodic game with

n = 7 and T = T ∗ = 12. Since T ∗ is even and n is odd our formula given in Proposition 6, case

2, is 2/(n+ 1) = 1/4. The two analyses agree on the value. Note however, that the patrolling

strategy given above differs from that given by our analysis of the periodic game with T = 12

and n = 7 given in Section 4.1, Figure 1. Note also that for both patrolling strategies the

nodes which are unfavourable to attack are the penultimate nodes 2 and 6. This shows that

the Patroller strategies that we give in our analysis are not uniquely optimal. While this gives

18



an alternative method of analyzing the periodic game T = 12, n = 7, it does not solve it in

general. For example it would not solve the game for, say, T = 11.

6 Multiple Patrollers on the Line

We now consider a generalization of the game, where there are k Patrollers. The Attacker’s

strategy set is the same, but his opponent chooses k periodic walks on Ln, corresponding to

k patrols. The attack is intercepted and the payoff is 1 if any of the Patrollers intercept the

attack.

Let V (k) denote the value of the game when there are k Patrollers, and write V
(k)
n for the

value of the k Patroller game on Ln. Suppose in the single Patroller game the Patroller plays

first as in the k game but then picks a Patroller randomly. Thus he wins with probability at

least V (k)/k, and hence

V (k) ≤ kV. (13)

That is, k Patrollers can intercept an attack with probability at most k times the probability

that a single Patroller can intercept an attack.

The estimate holds with equality if and only if the k Patrollers can jointly patrol in such

a way that each one is following an optimal strategy for k = 1 and furthermore no possible

attack is simultaneously intercepted by more than one of the Patrollers.

If we assume k ≤ n/2 then it is easy to adapt our optimal strategies described in the

sections above for k = 1 to the more general game where k > 1. As an example, take case 4,

with n = 7, T = 3 and k = 3. An optimal Patroller strategy for k = 1 is depicted in Table 2:

recall that the Patroller chooses one of the 12 arrows at random and performs a left or right

p-biased oscillation, depending on the direction of the arrow, where p = 6/7.

An optimal strategy for k = 3 simply chooses a row at random and assigns one of the

3 Patrollers to each arrow. This clearly implies that V
(k)
n = 3Vn. For k = 2 the Patroller

chooses a row at random and randomly assigns the 2 Patrollers to 2 of the 3 arrows. Note

that this extension to k > 1 Patrollers works for any k ≤ 3 but not for k > 3. For example

this particular argument does not work for k = 4. Note also that the alternative decomposed

strategy for case 4, described in Section 5.5 cannot be extended to k > 1 Patrollers in the same

way.

Similarly, for the other cases, as long as k ≤ n/2, the Patroller’s strategy for k = 1 can be

extended to k > 1. We omit the details, as the extensions are straightforward. Hence we have

the following theorem.
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Theorem 13 For k ≤ n/2, the value V
(k)
n of the k Patroller game on the line graph Ln

satisfies V
(k)
n = kVn.

It is natural to question whether, for k > n/2, the value of the game is min{kVn, 1}. Indeed,

for T even, it is easy to see that this is true, since for k > n/2, the Patroller can win the game

with probability 1 by oscillating on k covering edges.

But for T odd, it is not true. Consider the same example of n = 7 and T = 3 but this

time with k = 4 Patrollers. In this case, the bound (13) gives V
(4)
7 ≤ 4V7 = 20/21. In fact

we will show that V
(4)
7 = 19/21. Suppose the Attacker employs the uniform strategy, so that

he chooses uniformly between all 21 possible attacks. We will show that the Patrollers can

intercept no more than 19 of the attacks, so that V
(4)
7 ≤ 19/21.

Suppose, for a contradiction, that the Patrollers were able to intercept 20 of the attacks.

Then there must be 6 nodes at which all 3 attacks are intercepted, because if there were only 5

such nodes, then the total possible number of attacks that were intercepted would be at most

5 · 3 + 2 · 2 = 19. This means that each of these 6 nodes must be visited by some Patroller in

at least 2 of the 3 time periods, which accounts for 6 · 2 = 12 pairs of nodes and time periods.

But since there are only 4 Patrollers, they cannot occupy more than 4 · 3 = 12 pairs of nodes

and time periods in total. So none of the 3 attacks at the 7th node can be intercepted, so that

the total number of attacks intercepted is only 18, a contradiction. Hence, V
(4)
7 ≤ 19/21.

To see that the value V
(4)
7 is in fact exactly equal to 19/21, we present a strategy for the

Patrollers that mixes between 21 pure strategies. The strategies are indexed by pairs (i, j)t,

where (i, j) ranges over the values {(1, 3), (2, 3), (2, 4), (1, 7), (5, 7), (5, 6), (4, 6)} and t takes the

values 1, 2 or 3. Strategy (i, j)t has the property that all 21 possible attacks are intercepted

except the two attacks that take place at nodes i and j at times (t, t+ 1) (where addition here

is modulo 3). If such patrols exist, then it is easy to check that any given attack is intercepted

by exactly 19 of the 21 patrols. This means that the mixed strategy that chooses one of these

21 pure strategies uniformly at random guarantees an expected interception probability of at

least 19/21 against any given attack, so that V ≥ 19/21.

So we just need to show that such patrols do indeed exist. Table 4 illustrates seven of the

pure strategies (i, j)t. The nodes are listed in the first row and time in the second column and

the entries in the table correspond to the four Patrollers.

This accounts for 7 of the 21 pure strategies (i, j)t, and the other 14 can be obtained from

these ones by a translation through time. For example, the strategy (5, 6)2 can be obtained

by translating (5, 6)1 in time by +1.

20



Time 1 2 3 4 5 6 7

Strategy (1, 3)1 1 1 2 3 4
2 1 2 3 4
3 1 2 3 4

Strategy (2, 3)1 1 1 2 3 4
2 1 2 3 4
3 1 2 3 4

Strategy (2, 4)1 1 1 2 3 4
2 1 2 3 4
3 1 2 3 4

Strategy (1, 7)1 1 1 2 3 4
2 1 2 3 4
3 1 2 3 4

Strategy (5, 7)1 1 1 2 3 4
2 1 2 3 4
3 1 2 3 4

Strategy (5, 6)1 1 1 2 3 4
2 1 2 3 4
3 1 2 3 4

Strategy (4, 6)1 1 1 2 3 4
2 1 2 3 4
3 1 2 3 4

Table 4: Part of the optimal Patroller strategy for L7 with T = 3 and k = 4.

It is clear that for T = 3 and n = 7, the value of the game is equal to 1 for k ≥ 5, since

the addition of one more suitably placed Patroller in, say strategy (2, 3)1, results in a pure

strategy for the Patrollers that guarantees an interception probability of 1.

7 Conclusions

This paper has begun the study of periodic patrols on the line, by giving a complete solution

to the case of short attack duration m = 2. One reason that the case m = 2 is susceptible

to our analysis is that, at least for even T , the covering number can be identified with the

minimum number of patrols that are required to intercept any attack. This is not true for

large m. The periodic patrolling game is much more difficult to solve than the unrestricted

version of the game (where patrols are not required to have a given period). The latter can

be solved for line graphs of arbitrary size and arbitrary attack duration, as long as the time

horizon is sufficiently large, as shown in Papadaki et al. (2016).
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