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Twin studies indicate that dyscalculia (or mathemat-

ical disability) is caused partly by a genetic compo-

nent, which is yet to be understood at the molecu-

lar level. Recently, a coding variant (rs133885) in the

myosin-18B gene was shown to be associated with math-

ematical abilities with a specific effect among children

with dyslexia. This association represents one of the

most significant genetic associations reported to date

for mathematical abilities and the only one reaching

genome-wide statistical significance. We conducted a

replication study in different cohorts to assess the effect

of rs133885 maths-related measures. The study was con-

ducted primarily using the Avon Longitudinal Study of

Parents and Children (ALSPAC), (N = 3819). We tested

additional cohorts including the York Cohort, the Spe-

cific Language Impairment Consortium (SLIC) cohort and

the Raine Cohort, and stratified them for a definition

of dyslexia whenever possible. We did not observe any

associations between rs133885 in myosin-18B and math-

ematical abilities among individuals with dyslexia or

in the general population. Our results suggest that the

myosin-18B variant is unlikely to be a main factor con-

tributing to mathematical abilities.
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Mathematical ability is a skill essential for an individual’s aca-
demic and employment outcomes as well as everyday activ-
ities. Dyscalculia is a condition where mathematical ability is
severely impaired and is recognized as a clinical syndrome in
the World Health Organisation (WHO) International Classifica-
tion of Diseases (Mental and Behavioural Disorders, ICD-10)
and Diagnostic and Statistical Manual of Mental Disorders
(DSM-5). Individuals with dyscalculia have profound difficul-
ties in acquiring basic mathematical skills, in the absence of a
general cognitive impairment and despite access to adequate
educational opportunities (Butterworth et al. 2011). Dyscalcu-
lia is characterized by high heterogeneity of symptoms and
impairment on a range of basic computational skills, such
as counting, number fact knowledge, written calculation and
mathematical reasoning. Dyscalculia usually presents early in
childhood (Kaufmann & Von Aster 2012), with a prevalence
estimate of 3–6% (Devine et al. 2013). These deficits per-
sist into adulthood and cause major challenges for academic
performance and occupational opportunities, particularly if
untreated.

Similar to other neurodevelopmental disorders, such as
dyslexia, attention deficit hyperactivity disorders (ADHD) or
specific language impairment (SLI), dyscalculia has a clear
neurobiological and genetic basis (Butterworth & Kovas
2013). Twin studies have demonstrated that mathematical
ability is a trait determined, at least partly, by genetic factors
with estimated heritability for low mathematical performance
of 0.65 (Haworth et al. 2009) and 0.69 (Oliver et al. 2004).
Dyscalculia presents significant comorbidity with other neu-
rodevelopmental disorders such as dyslexia (Landerl & Moll
2010; Moll et al. 2014b), ADHD (Czamara et al. 2013) and SLI
(Donlan et al. 2007).

Dyscalculia can be considered as the lower tail of the
phenotypic distribution of mathematical abilities across
the general population. Hypothesizing a shared biological
component, it is possible that the same genetic factors
contributing to mathematical abilities are also implicated
in dyscalculia. Such hypothesis is supported by what is
observed for dyslexia, a specific impairment in learning
to read (Habib & Giraud 2013). It has been shown that
some dyslexia candidate genes also influence reading
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abilities in the general population, both including as well
as excluding individuals who met a definition for dyslexia
(Paracchini 2011). For example, the KIAA0319 gene, origi-
nally identified in independent cohorts selected for dyslexia
(Newbury et al. 2014), was associated with single word
reading and single word spelling in the Avon Study of Parents
and Children (ALSPAC), a longitudinal cohort representing
the general population (Paracchini et al. 2008; Scerri et al.
2011).

Molecular genetic studies for dyscalculia have been
sparse and, so far, a limited number of genetic variants
have been proposed to influence mathematical abilities.
Two genome-wide association studies (GWASs) for math-
ematical abilities did not report any significant associations
(Baron-Cohen et al. 2014; Docherty et al. 2010). A third GWAS
confirmed a significant genetic component underlying math-
ematical abilities, but did not identify specific risk factors
(Davis et al. 2014).

The rs133885 variant in the myosin-18B (MYO18B) gene
is the only marker that has been found to be associated
with mathematical ability at statistically significant level, as
reported in a separate study (Ludwig et al. 2013). The asso-
ciation was identified in an initial discovery sample of 200
individuals diagnosed with dyslexia and then replicated in
two other dyslexia cohorts of German or Austrian origin
(N = 699 total, effect size 4.87%, P = 7.71×10−10). The asso-
ciation and relatively large effect size appear to be specific
in dyslexia cohorts. The same variant showed a weaker, but
still statistically significant, association in a general popula-
tion cohort from the UK (Twin Early Development study or
TEDS) (N =1080, effect size 0.26%, P = 0.048) and the same
trend was observed in a combined general population sam-
ple (N =1471, effect size 0.007%, P =0.075). rs133885 is a
missense variant and was therefore indicated to be directly
causative. Neuroimaging of 79 healthy adults showed that
carriers of the rs133885 risk genotype, associated with low
mathematical performance, displayed a reduced depth of the
right intraparietal sulcus. Numerical processing has long been
understood to be localized to the parietal lobes (Nieder &
Dehaene 2009) but more recent studies suggest that this
occurs more specifically in the intraparietal sulcus (Bugden
et al. 2012). The MYO18B association is possibly the most
robust association with mathematical abilities reported so far;
however, it has not been independently replicated. Replica-
tion of this association is particularly challenging as it requires
the availability of large cohorts characterized with a wide
range of cognitive tests including both mathematical and
reading measures.

We conducted the first replication analysis of the genetic
association between rs133885 and mathematical ability
in several cohorts: the Avon Longitudinal Study of Par-
ents and Children (ALSPAC) (N = 3819), the York Cohort
(Ntotal = 291), the Specific Language Impairment Consortium
(SLIC) (Ntotal =367) and the Raine cohort (N =667), for a total
of N = 5144 individuals. These cohorts were stratified for a
dyslexia definition where possible and relevant. We found
no evidence of association and our data suggest rs133885
is not a major and common factor contributing to maths
skills.

Materials and methods

Samples

The ALSPAC cohort
ALSPAC is a longitudinal cohort representing the general population
living in the Bristol area. The ALSPAC cohort consists of over 15 000
children from the southwest of England that had expected dates of
delivery between 1 April 1991 and 31 December 1992. From age 7,
all children were invited annually for assessments on a wide range
of physical, behavioural and neuropsychological traits, including cog-
nitive (reading and mathematics related) measures. DNA is available
for approximately 11 000 ALSPAC children. Informed written consent
was obtained from the parents after receiving a complete description
of the study at the time of enrolment into the ALSPAC project, with
the option for them or their children to withdraw at any time. Ethical
approval for the present study was obtained from the ALSPAC Law
and Ethics Committee and the Local Research Ethics Committees
(Boyd et al. 2013).

We used two maths scores; (1) the arithmetic subtest of the Wech-
sler Intelligence Scale for Children (WISC) (Wechsler 1992), which
consists of verbal maths problems that require basic calculation skills
and (2) a maths achievement factor score (MA; Nunes et al. 2012),
derived from UK national curriculum maths tests taken between 10
and 14 years of age (Table 1). The variables were selected because
they predominantly focused on basic computational skills, similar to
those used in the TEDS study (Ludwig et al. 2013). Data on these
measures approximate a normal distribution.

We included ALSPAC participants with white European ethnicity
to avoid confounding effects of population stratification, and with a
performance IQ>85 to avoid the possibility that low reading and
maths performance were related to a general cognitive impairment,
similarly to our previous analysis in the same cohort (Scerri et al.
2011). These criteria led to a sample of 5460 individuals (Fig. 1).
From this group participants were considered to have dyslexia if they
scored<−1 standard deviation (SD) for single word reading at both
7 and 9 years of age. In total, N =467 individuals met criteria for
dyslexia, while N =4149 were assigned to the unaffected subgroup.
The remaining individuals had incomplete reading data, and were
excluded from subgroup analysis (N =844).

The ALSPAC study website contains details of all the data that is
available through a fully searchable data dictionary http://www.bris.
ac.uk/alspac/researchers/data-access/data-dictionary/.

The York cohort
The York cohort is a longitudinal cohort designed to study the develop-
ment of reading and language difficulties in young children (Nash et al.
2013). It includes 116 families for a total of 304 individuals. Families of
probands with a performance IQ less than 85, or of non-white Euro-
pean origin, were excluded from the analysis. The analysis was run in
the complete filtered dataset (N =109 families; N =291 individuals)
as well as in a subgroup of families with a history of dyslexia and/or
having a child with language impairment (impaired subgroup; N =72
families; N =201 individuals). The individual phenotypes selected for
association analysis were: (1) numerosity judgement (NJ) derived
from two tests, dot counting and number transcoding (NT, composite
of number recoding and writing), (2) mathematical calculation (MC)
(Moll et al. 2014a) based on timed addition and subtraction tests
and on the numerical operation subtest of the Wechsler Individual
Achievement Test (WIAT-NO; Wechsler 2005; Table 1). NJ and MC
(i.e. the timed addition and subtraction subtests) are analogous to
the constructs investigated in the original study. Principal compo-
nents analysis indicated that all four variables contributed to a sin-
gle global maths factor (GMF), in accordance with a previous report
(Schulte-Korne et al. 2007). This GMF was used as an additional phe-
notype for association analysis (Table 1). Correlation between these
measures showed a R2 value ranging from 0.4 and 0.7 (Table 2).

The study was approved by NHS Research Ethics (Yorkshire &
The Humber Bridge – Humber Bridge) and the University of York
Department of Psychology Ethics Committee.
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Figure 1: Definition of ALSPAC children cohort samples used

for analysis. An initial subgroup of N = 5460 was identified after
filtering out individual of non-White European origin and with
a performance IQ≤ 85. Within this subgroup we stratified the
sample upon a definition of dyslexia. Numbers of individuals
included in the association analysis for having a complete set of
genotypes and phenotypes are in brackets.

The SLIC cohort
The SLIC cohort is a family-based cohort collected to study lan-
guage impairment. This cohort has been described previously in
detail (Falcaro et al. 2008; Specific Language Impairment Consortium
(SLIC) 2002; Specific Language Impairment Consortium (SLIC) 2004).
Briefly, these nuclear families were collected from five sites around
the UK (Guys Hospital, London, Cambridge, Manchester, Edinburgh
and Aberdeen). All selected families had a single proband showing
language skills≥1.5 SD below the mean for their age and nonverbal
IQ scores within the specified normal range (>80). DNA was collected
from all immediate family members regardless of language status.
Ethical approval was given by local ethics committees. A subsample
was extracted for the current study on the basis of families for whom
data was available for the arithmetic subtest of the WISC-III (Wech-
sler 1992) (verbal maths problems as score (1) in the ALSPAC sample)
or the Wechsler Adult Intelligence Test (WAIS-III) (Wechsler 1997) as
appropriate. In total, the subsample consisted of 681 individuals from
169 nuclear two-generation families and included 367 individuals with
phenotype data (308 children and 59 adults) and 605 individuals with
genotype data for rs133885.

The Raine cohort
The Western Australian Pregnancy Cohort (Raine) Study was started
as a randomized controlled trial to evaluate the effects of repeated

ultrasound in pregnant women in Perth, Western Australia. In total,
2900 pregnant women were recruited between 1989 and 1991 prior
to 18 weeks gestation at the King Edward Memorial Hospital (Perth,
Western Australia) (Newnham et al. 1993). Women were randomized
to repeated ultrasound measurements at 18, 24, 28, 34 and 38 weeks
gestation or to a single ultrasound assessment at 18 weeks. Children
have been assessed at average ages of 1, 2, 3, 5, 8, 10, 14 and 17 and
both height and weight were collected at each assessment. The study
was conducted with appropriate institutional ethics approval (ethics
approval number for DNA collection and storage: EC03-14.7 and
EC06-29), and written informed consent was obtained from mothers
at all follow-ups and participants at the year 17 follow-up. Included
individuals (N =667) had (1) no known intellectual or neurosensory
disability, (2) a nonverbal IQ score≥4th percentile on the Raven’s Col-
ored Progressive Matrices, corresponding to approximately>−1.75
SD the population average of the 50th centile, and (3) biological par-
ents who were both of white European origin. The phenotype used
was the numeracy outcome variable, which is similar to the math-
ematical achievement (MA) score used in ALSPAC, and is derived
from The Western Australian Literacy and Numeracy Assessment
(WALNA) (Western Australian Government Department of Education
and Training 2012) (Table 1). The WALNA is composed of word prob-
lems, testing a range of constructs which include maths reasoning,
geometry and calculation.

Genotyping and statistical analysis
Genotype data for rs133885 in the ALSPAC, SLIC and Raine cohorts
were extracted from genome-wide genotyping dataset previously
generated and filtered following standard quality control procedures
(Anderson et al. 2010; Nudel et al. 2014). The York cohort was
genotyped using a TaqMan assay (LifeTechologies, Paisley, UK). All
cohorts, including a significant subsets of the York cohort for which
genome-wide genotype data were available, have been checked for
population stratification in previous analyses. The few outliers were
removed before we conducted the analysis. Quantitative association
analysis was conducted using PLINK (Purcell et al. 2007) in unrelated
individuals and QTDT for families (Abecasis et al. 2000), modelling
for an additive effect unless otherwise specified. Power calculations
were conducted using the Genetic Power Calculator (Purcell et al.
2003).

Results

We assessed whether our samples had sufficient genetic
power to find genuine associations between rs133885 and
mathematical abilities based on the study that originally
reported this association (Ludwig et al. 2013; Fig. 2).

Ludwig and colleagues reported different effect sizes in
the subgroups they analysed on the basis of a dyslexia
definition. We assumed an effect size of 4.87% which
was reported in the combined sample of individuals with
dyslexia (N = 699) and an effect size of 0.26% in a gen-
eral population sample (N =1080). We assumed the variant

Table 2: Correlations coefficients (r ) between maths scores in cohorts in which participants underwent multiple tests

WISC MA NT NJ MC WIAT-NO GMF

ALSPAC WISC 1
MA 0.5036 1

York NT 1
NJ 0.5480 1
MC 0.5408 0.4992 1

WIAT-NO 0.5285 0.4507 0.7231 1
GMF 0.7983 0.7600 0.8629 0.8304 1

372 Genes, Brain and Behavior (2015) 14: 369–376
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Figure 2: Power calculations. The graph shows the sample
sizes required to detect different effect sizes as predicted by
power calculations assuming a minor allele frequency of 0.45 and
with 𝛼 =0.05. The green triangle and the red square indicate that
samples of 157 and 3015 have> 80% power to detect an effect
size of 4.87% and 0.26% respectively.

was directly functional, as suggested in the original study,
and we modelled the calculation for a singleton cohort,
an allele frequency of 0.45 based on our general popula-
tion cohort (ALSPAC) with 𝛼 =0.05 (Fig. 2). The observed
allele frequency is very similar to what is reported for a
European population (MAF=46%) by the HapMap project
(http://hapmap.ncbi.nlm.nih.gov/index.html.en). The analysis
predicted that sample sizes of 157 and 3015 were required to
achieve> 80% power to detect an effect size of 4.87% and
0.26% respectively. The ALSPAC subgroups (Table 1), which
are our primary sample for investigation, were therefore
predicted to have sufficient power to detect the previously
reported association between rs133885 and mathematical
abilities in the general population cohort (N =3819), as well
as in the unaffected group (N =3027), following stratification
for dyslexia, with an effect size of 0.26% . The dyslexia sub-
group (N = 329) had more than 80% power to detect an effect
size of 4.87%, which however is a very large effect on the
basis of what we would expect for complex traits. The small-
est effect size our general population sample (N =3819) was
predicted to detect was 0.21% (>80% power) and 0.275%
(>90% power). The smallest effect sizes the dyslexia sub-
group (N =329) could detect was 2.4% (>80% power) and
3.2% (>90% power).

We conducted an association analysis selecting available
phenotypes that would best match those used in the orig-
inal report (Table 1). The analysis in the discovery sample
used a ‘basic mathematical ability factor’, combining scores
of ‘mathematical calculation’ and ‘numerosity judgement”
(Ludwig et al. 2013), which was not available in ALSPAC.
The arithmetic (WISC) and the MA phenotypes used in the
ALSPAC cohort were comparable to the phenotypes of the

TEDS sample which was used as replication cohort and was
representative of the general population. These two maths
scores had a correlation of r = 0.5036 (Table 2). We ran the
association analysis using both an additive and a genotypic
model. We could not detect any association signal, either in
the general population cohort (WISC, N =4302, P =0.8571,
𝛽 =−0.004; MA, N = 3819, P =0.3206, 𝛽 =−0.023), the
unaffected general population (WISC, N =3378, P =0.7798,
𝛽 = 0.007; MA, N = 3027, P = 0.3091, 𝛽 =−0.025) or in the
dyslexia subgroup (WISC, N = 369, P =0.6172, 𝛽 =−0.033;
MA, N = 329, P =0.6444, 𝛽 =0.034). The statistics above
refer to results obtained under an additive model which
yielded relatively smaller P-values compared to a genotypic
model.

To further investigate this association we then extended
the analysis to additional cohorts for which both mathemat-
ical and reading measures were available. The York cohort
has been characterized with a large number of cognitive tests
including mathematical measures. The cohort has been pri-
marily collected to study the development of language and
reading development in young children with a family history
of dyslexia and/or exhibiting a language deficit. We analysed
both the entire cohort (N =109 families, N = 291 individuals)
and a subgroup of families selected for the proband having
language difficulties or a family history of dyslexia, as a sin-
gle group to avoid analyzing very small sample sets (N = 74
families, N =201 individuals). We tested a wider range of
maths-related phenotypes (Table 1) and we did not detect any
association (minimum P-value=0.1312, NJ, impaired sub-
group). Under the same assumptions reported in Fig. 2,
and therefore modelling for N =109 unrelated singletons, the
minimum effect size that could be detected in this small
cohort ( >80% power) is 7%.

The SLIC cohort was recruited on the basis of a language
impairment diagnosis and, as predicted by the comorbidity
across SLI and dyslexia, many children in this cohort present
reading difficulties. We therefore did not split this cohort
according to the presence or absence of dyslexia. Of the
348 individuals with mathematics and reading/spelling data
(59 parents and 289 children), 21% had reading or spelling
ability greater than 1.5 SD below than that expected for their
age. Of the children alone, 22.8% had reading or spelling abil-
ities more than 1.5SD below that expected for their age. No
association (minimum P-value=0.8836 , WISC-III arithmetic)
was found for rs133885 and the available maths measures
(Table 1). Under the assumptions shown in Fig. 2, the min-
imum effect size that could be detected in this cohort is
4.75%. This is smaller than the effect size reported in the
dyslexia cohort by Ludwig et al. (2013).

The Raine cohort is an epidemiological longitudinal cohort
representing the general population. The cohort was filtered
for ethnicity and to remove individuals presenting sensory or
neurological problems that would have impacted their maths
scores for specific reasons. We did not filter the cohort for a
dyslexia definition, because that would have led to a sample
size too small to be analysed. We ran association analysis
in 667 individuals for a MA score (Table 1) and detected no
association (P-value=0.737). Under the assumptions shown
in Fig. 2, the minimum effect size that could be detected
in this cohort is 1.18%. This is larger than the effect size
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reported for the general population sample by Ludwig et al.
(2013) (0.26%).

Discussion

We have conducted the first independent replication study
for the previously reported associations between rs133885
in the myosin-18B gene and mathematical abilities identified
through a GWAS (Ludwig et al. 2013). We used several inde-
pendent cohorts including ALSPAC (N =3819 individuals), the
York cohort (N = 109 families, N =291 individuals) and the
SLIC (N =169 families, N =367 individuals) and Raine cohorts
(N = 667 individuals). Consistently with the original study, we
conducted our analysis stratifying the samples for a dyslexia
definition, when possible. We could not detect any associa-
tion between rs133885 and maths abilities.

Power calculations predicted that sample sizes of 157
and 3015 were required to replicate the original finding in
a dyslexia and general population cohort, respectively. The
sample size in the ALSPAC cohort exceeded these num-
bers. One difference in our analysis stems from the dif-
ferent phenotypes used for quantitative association analy-
sis (Table 1). The phenotype data collected in the ALSPAC
study was selected to mirror as closely as possible the tests
used in the original investigation (Ludwig et al. 2013), but the
measures available in ALSPAC were largely restricted to UK
National Curriculum maths examination results. These are
designed to test a range of mathematical abilities, including
basic calculation skills, word problems, number concept and
perception of shape, space and time. The measures we used
in ALSPAC (arithmetic subtest of the WISC and MA score,
Table 1) are sufficiently comparable to the phenotypes used in
the UK-based TEDS general population replication cohort as
reported by Ludwig and colleagues (Ludwig et al. 2013). We
would have expected to see an effect in the ALSPAC general
population and unaffected cohorts (N =3819 and N =3027
respectively) which were approximately 3 times the size of
TEDS (N =1080). Therefore, our analysis does not support
the role of this variant in contributing significantly to maths
abilities. It is possible that the lack of replication can be
attributed to an over estimation of the effect size in the discov-
ery sample according to the well-established phenomenon
known as ‘winner’s curse’ (Zollner & Pritchard 2007). This
could be very well the case in the light of the large effect size
reported for the MYO18B variant of 4.87% in the combined
sample of individuals (N =699) with dyslexia. This unusually
large effect size and strength of association compared with
what is generally observed for other complex traits is driven
by the discovery sample (N =200) where the reported effect
size was of 15.78%. This is an extremely large effect size
especially for a common marker (rs133885 MAF=45%) and
was most likely an overestimation of any potential genuine
associations. The associations observed in the replication
samples showed consistent trends of associations but with
weaker strengths and effect sizes, only marginally contribut-
ing to the global association. Given the small sample size, it is
possible the association in the discovery sample was a false
positive, driving the signal of the combined dataset.

In addition to the ALSPAC samples we investigated other
cohorts, smaller in size and therefore underpowered to
detect small effects, but which allowed further exploration of
any possible trend of association. The York cohort is smaller
in size but has been characterized extensively for numeri-
cal skills and is enriched for children presenting language
and reading difficulties. In particular, the maths phenotypes
of the York cohort are in line with those used by Ludwig
et al. (Ludwig et al. 2013) presenting both components of the
combined measure used in the original study: mathematical
calculation (MC, i.e. timed arithmetic skills) and numeros-
ity judgement (NJ, i.e. counting) abilities. We analysed both
the whole cohort, which included typically developing chil-
dren, and a subset selected on the basis of reading and
language impairment. We extended our subgroup to include
language impaired children because of the extensive comor-
bidity between reading and language disorders, and to avoid
running the analysis in a very small sample. On this point it
is worth mentioning that the original finding (Ludwig et al.
2013) detected association in the dyslexia subgroup because
dyslexia was the phenotype of interest. The phenotypes avail-
able in the dyslexia cohort of the original study were different
from those used in the replication samples. Therefore, it is
possible that the strength of the MYO18B association in the
discovery sample is specific to the phenotype used, rather
than to a dyslexia definition. Ethnicity is another factor that
could explain lack of replicability. The original study (Ludwig
et al. 2013) included cohorts of individuals with dyslexia with
German or Austrian origin. This factor may not simply indi-
cate an ethnic-specific effect but may underlie differences in
dyslexia definition and in ascertainment criteria for study par-
ticipants. In Germany, a dyslexia diagnosis is based mainly
on reading fluency and spelling abilities, while in the UK it
relies mainly on reading accuracy. Therefore, even if we strat-
ified for a dyslexia definition, we might have selected a dif-
ferent population subset in which the rs133885 effect is not
detectable. The SLIC (N = 367) and Raine (N = 667) cohorts
are larger than the York cohort but less well-characterized
with mathematical measures making direct comparisons
more challenging because of inconsistency across available
phenotypes. The high variability of measures described here
also highlights a particular challenge for genetic investiga-
tions of cognitive traits. Our analysis demonstrates how diffi-
cult it is to make direct comparisons across different studies
collected and assessed under variable criteria. Establishing
universal or more directly comparable strategies, which will
make it possible to match different studies and ideally to com-
bine samples, would be an important advance for the field of
cognitive and neurodevelopmental trait genetics.

The field of complex trait genetics, as other research areas,
is becoming increasingly aware of publication bias towards
positive findings (Munafo 2009) and the importance of report-
ing negative replications. Therefore our study, conducted in
an adequately powered sample, contributes to a balanced
interpretation of the significance of genetic findings.

In this study, we were unable to replicate the association
between rs133885 in the myosin-18B gene and mathemat-
ical abilities. Although we could not reconstruct the exact
study design, we based our analysis on a large sample and
extended our investigations to several independent cohorts.
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We conclude that the MYO18B variant is not contributing to
mathematical skills in general.
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