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Abstract 

It has recently been shown that presenting additional visuospatial information 

alongside to-be-remembered numbers in a digit span task enhances participants memory for 

those items. However, the mechanisms behind this ‘visuospatial bootstrapping’ effect 

remained unspecified. In this paper we report evidence that this effect involves an integration 

of information from verbal and visuospatial temporary memory with long-term-memory 

representations, and that the existence of a relevant LTM representation is necessary for 

bootstrapping to occur.  

 

Keywords: Working memory; Visuospatial working memory; Phonological working 

memory; Episodic buffer. 
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Visuospatial Bootstrapping: Long Term Memory Representations are Necessary for Implicit 

Binding of Verbal and Visuospatial Working Memory 

Early theoretical frameworks of Working Memory (e.g.Baddeley & Hitch, 1974) 

assert that visuospatial working memory (VSWM) and verbal working memory (VWM) 

represent discrete subsystems. There is a range of evidence supporting the segregation of 

verbal and visuospatial temporary memory systems (e.g. Smith, Jonides, & Koeppe, 1996; 

Baddeley, Lewis , & Vallar, 1984; Quinn & McConnell, 1996; Cocchini, Logie, Della Sala, 

MacPherson & Baddeley, 2002). Nonetheless, there is also evidence that under certain 

circumstances verbal and visuospatial working memory do not operate entirely 

independently: for example, Morey and Cowan (2004, 2005; see also Mate, Allen, & Baques, 

in press) reported a number of studies where verbal articulations impaired memory on a 

VSWM task. These findings point to the involvement of domain-general processes in 

ostensibly domain-specific Working Memory (WM) tasks, and hence suggest a limit on the 

independence of WM subsystems. 

In order to account for findings like this, original models of the relationship between 

working memory subsystems have been modified to incorporate a new component, the 

‘Episodic Buffer’ (EB: Baddeley, 2000; Baddeley, Allen & Hitch, 2011). This represents a 

limited capacity store that is recruited when information from different sources, including the 

WM subsystems and LTM, has to be bound together and temporarily retained.  

An alternative and influential theoretical perspective is offered by Cowan (2005, 

1998, 1988), in which working memory processes are conceived of as interactive activations 

of LTM and STM that fall within a focus of attention. Within such a model, there is no 

specific need to segregate component memory processes such as a visuo-spatial sketch pad or 

phonological loop, and thus no need for an EB: Cowan, Saults and Morey (2006) argue that 

when task demands require retention of combinations of verbal and spatial material (such as 
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‘Ann lives here’), this is greatly facilitated (in adults) by parallel matching based on serial 

order. However, they also identified a residual capacity for representations combining verbal 

and spatial materials, consistent with Cowan’s notion of a focus of attention, and also with 

Baddeley’s episodic buffer.  

Baddeley’s initial conception of the Episodic Buffer (Baddeley, 2000) was a 

component that required executive resources to function. However, research has not 

supported that position, with evidence of automatic binding in both verbal and visuospatial 

memory (Allen, Hitch & Baddeley, 2009; Baddeley, Hitch & Allen, 2009). Consequently the 

latest description of the working memory model (Baddeley et al., 2011) characterizes many 

forms of binding as developing within the EB or feeding into it from other subcomponents of 

WM, in both cases without the intervention of executive attentional processes. Instead, basic, 

rule-governed and automatic filtering mechanisms are proposed which function to select 

which features are held as bound representations (Ueno, Mate, Allen, Hitch & Baddeley, 

2011), with long-term memory support capable of impacting on WM representations 

independently of attentional control (Baddeley et al., 2011). This specific aspect of the EB – 

its lack of requirement for attention – is a potential point of distinction between Baddeley’s 

approach and Cowan’s: the focus of attention model implies a more important role for 

explicit attention in feature binding of this type, and the question of whether attention is 

critical in binding remains disputed due to reports of contradictory findings, such as the 

observation that binding between individual letters and locations was reduced by a tone 

memory load (Elsley & Parmentier, 2009).  

A surprisingly limited amount of research has focused on binding of verbal and 

spatial material, despite the fact that the distinction of VSWM and VWM is one of the key 

features of the multicomponent working memory model. Nonetheless, there is evidence that 

verbal and spatial information can be bound together (Bao, Li & Zhang, 2007; Prabhakaran, 
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Narayanan, Zhao & Gabrieli, 2000). Binding has also been observed between colour words 

and shapes (Allen, et al., 2009).  Recently, our group has reported interactions between verbal 

and visuospatial working memory in task that does not explicitly ask participants to bind 

information, and that therefore demonstrates the presence of implicit cross-modality feature 

binding. We refer to an effect termed ‘visuospatial bootstrapping’, which was observed on a 

visually presented verbal digit recall task (Darling & Havelka, 2010). Participants were 

shown sequences of digits for immediate recall; when these were presented by highlighting a 

sequence of digits in a spatial array that was arranged as a traditional telephone keypad, digits 

were better remembered than if they were presented as single digits in the centre of the 

screen. This was assumed to reflect the fact that visuospatial information, either in WM or 

LTM, was bound to the verbal digit information, facilitating performance.  

Most studies of binding have focused on tasks that required participants to remember 

two features of a stimulus (e.g. shape and appearance): the bootstrapping task differs from 

these because it ostensibly requires participants to only remember a single (verbal) attribute, 

but allows in some conditions the opportunity of retaining information which can assist 

performance from the visuospatial modality. In this way the bootstrapping task is a method 

which can be used to observe implicit binding effects in a naturalistic setting. Similarly 

naturalistic studies have been conducted before entirely within the visuospatial domain: 

implicit extraction of redundancies within sets of stimuli facilitated performance in an 

ongoing visuospatial WM task (Brady, Konkle & Alvarez, 2009). A related finding is that 

made by Jiang, Olson and Chun (2000) indicating that spatial configuration information was 

an important component of performance on a colour memory task. Crucially, though, 

bootstrapping represents a linkage between theoretically separate visuospatial and verbal 

memory systems.  
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One key aspect of the EB proposal was its role in handling bindings between WM and 

LTM. Whilst our earlier study clearly indicated implicit binding of information in VWM and 

VSWM, it was suggestive but ultimately inconclusive as to the role of LTM. The study 

included a condition in which the digits were presented in a horizontal line from 0 – 9. There 

was no evidence of memory facilitation in this condition, an observation which was 

considered likely to implicate LTM, as it implied the presence of bindings with 

representations of numerical keypads. Had binding occurred between VWM and VSWM in 

the absence of LTM involvement, then the linear display should also have produced a 

bootstrapping effect. However, alternative explanations for these findings are possible. For 

example, the benefit of keypads over linear arrays could have been a consequence of the 

keypad incorporating a richer 2-dimensional spatial array, or the fact that tracing a spatial 

path through the 1 x 10 item linear display would involve far more path crossing and 

overwriting than in a 3 x 3 (+1) keypad display, leading to interference caused by trace 

overwriting.   

The aim of the experiment reported in the current paper was to explore the nature of 

the ‘visuospatial bootstrapping’ effect, and in particular to establish more firmly whether it is 

attributable purely to visuospatial coding in temporary memory or whether LTM 

representations have a key role. Four display conditions were investigated: a single digit (SD) 

display and a typical keypad (TKP) display, replicating the conditions in which the original 

bootstrapping effect had been observed (Darling & Havelka, 2010). A third, novel static 

keypad (NSKP) display, employed a keypad shaped grid where digits were located randomly 

on the first trial, but then stayed in the same place throughout all trials in the condition. The 

purpose was to see if participants would be able to develop a LTM representation of the array 

over the course of several trials that would benefit their digit recall performance. Finally, as a 

strong test of the hypothesis that bootstrapping facilitation could occur between VWM and 
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VSWM with no influence of LTM, a novel changing keypad (NCKP) display was also used. 

This adopted a similar keypad, but digit-location mappings changed randomly with every 

presentation of an item, so there was no possibility of an existing LTM representation being 

present to facilitate recall performance. The four conditions are illustrated in Figure 1. 

There is a long literature going back to Miller (1956) on interactions between LTM 

and WM focusing on the way that stored knowledge can integrate new material into ‘chunks’ 

which can facilitate storage. One of the purposes of developing the EB component was to 

specify a mechanism by which such ‘chunks’ might be formed or integrated (Baddeley et al., 

2011). Should LTM be shown to have a critical involvement in the bootstrapping paradigm, 

though, this would go beyond traditional chunking by demonstrating the existence of 

processes that, on the basis of task demands, can implicitly bind together not just LTM and 

VSWM traces (e.g. Chase & Simon, 1973) or VWM traces (e.g. Miller, 1956), but instead 

LTM, VWM and VSWM traces in a complex multimodal representation that facilitates task 

performance.  

Figure 1 around here 

Method 

Participants 

Forty-eight participants (mean age = 23.5, SD = 8.13: 4 males) took part. All were 

staff or students attending Queen Margaret University (QMU).  

Design 

There were four display conditions for the digit span task: SD, TKP, NSKP and 

NCKP. All participants took part in all conditions in a fully counterbalanced order. The 

dependent variable was the proportion of trials in which all items were recalled correctly in 

their original order.  
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Materials and Procedure 

Digit serial recall tasks. 

The digit serial recall tasks involved immediate serial recall of a sequence of seven 

digits.  In each sequence, the digits 0 - 9 were randomly sampled without replacement seven 

times. In any given condition, six practice trials were presented, followed by 24 experimental 

trials. 

A standard laptop PC with a 1024 x 768 px display was used to present the stimuli. 

Each trial was initiated by the participant pressing a key, then a fixation cross was displayed 

for 500ms, followed by a blank screen interval of 250ms, and then digit sequence 

presentation. Digits were always presented in Arial Font, point size 18, and presented 

centrally within squares of side 60px.  

In the TKP condition, the digits 0 - 9 were presented in the style of a traditional 

telephone keypad. The middle digit of the keypad was aligned centrally in the screen. There 

was a spacing of 12px between the outlines surrounding each digit. The sequence of digits 

was indicated in turn by highlighting the background of each digit, in green. Each digit was 

highlighted for 1000ms. Between items, the entire screen was cleared for 250ms. Once all 

seven digits had been indicated, the screen cleared for a 1000ms retention interval, and then 

the message ‘RECALL’ was presented in the middle of the screen. At this point participants 

attempted to verbally recall the digits of the sequence in the correct order. 

The NSKP keyboard condition was identical to the TKP condition, with the digits 

appearing within the same grid as in the TKP condition, except that digits were arranged in 

one of four pseudorandom patterns (counterbalanced across participants) so that the digit-

location mapping was unfamiliar. Digit positions stayed constant across all trials, so 

participants could learn the digit locations mappings as they progressed through the trials. 
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The NCKP display was also based on the TKP display, but digit locations changed on 

an item-by-item basis. Not only were digit positions randomised at the start of every trial, but 

also after every time a digit was presented within a trial. Hence there was no opportunity to 

establish long-term mappings of digits to locations. 

In the SD condition, the 7 digits were presented one after the other in the middle of 

the screen, in a single square outline. Each digit was visible on a green background for 

1000ms, and there was a 250ms interval between digits, during which the screen was blank. 

Results 

Five participants had to be excluded on the basis of being close to floor (total 

proportion correct across all 4 conditions <.1) or ceiling (>.9).  Separate scores were derived 

for trials 1-12 and trials 13 – 24 of each block. Figure 2 shows memory performance across 

the display conditions. A 4 (condition) x 2(trial subset) ANOVA demonstrated a significant 

main effect of display type (F(3,126) = 11.71, p < .001,   
 =.22). Direct comparisons showed 

that more sequences were correctly recalled in the TKP condition than in all other conditions 

(all punadjusted < .0005). There were no significant differences between performance in the SD, 

NSKP and NCKP conditions (all punadjusted >.05). There was also a main effect of trial subset, 

with performance on trials 1-12 being significantly worse than on trials 13-24 (F(1,42) = 

5.99. p =.019,   
 =.13).  

These two main effects need to be interpreted in the light of a significant interaction 

between trial subset and display condition (F(3,126) = 3.07, p = .030,   
 =.07). Planned 

comparisons between performance on Trials 1-12 and on Trials 13-24 indicated that 

participants recalled significantly more sequences correctly in the later trials than the earlier 

ones in the NSKP condition (p = .001) but not in the SD condition (p = .307), the TKP (p = 

.451) or the NCKP condition (p = .368).  
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Discussion 

Replicating Darling and Havelka (2010), we found a significant and robust 

bootstrapping effect, with recall using the typical keypad display being significantly higher 

than all other conditions. In other words, immediate serial recall of digits is facilitated by 

incorporating additional spatial information available in the display. We estimate (based on 

the number of correctly recalled sequences) that additional visuospatial information can 

expand the effectiveness of digit sequence memory by around 9 %.  There was no evidence 

that verbal memory was enhanced in either the NSKP or NCKP conditions, relative to the SD 

condition, but there was clear facilitation in the TKP condition. The only major difference 

between the TKP and the NSKP conditions is the fact that the standard typical keypad is a 

familiar stimulus that is likely to be represented in LTM. Thus these results demonstrate that 

the bootstrapping effect requires linkages of information between working memory and 

LTM. The NCKP condition facilitated a strong test of the hypothesis that an STM trace could 

support visuospatial bootstrapping in the absence of any LTM involvement, and the lack of 

any evidence of improved performance is a strong indicator that the bootstrapping effect 

requires at least some LTM involvement. Although this claim was asserted tentatively by 

Darling & Havelka (2010), on the basis of the comparison of linear and keypad stimuli, other 

explanations remained plausible. The current data permit the conclusion that bootstrapping 

represents the joining together of feature traces in VWM and VSWM utilizing LTM 

knowledge (of the typical keypad) to create ‘chunks’. In contrast with chunking reported 

previously in the literature (e.g. Chase & Simon, 1973; Miller, 1956) the LTM support is 

bound not just to a single type of STM material, but instead LTM, VWM and VSWM are all 

bound together. 

 The EB is held to be a single component that maintains bound representations from 

throughout memory, both LTM and STM, in the absence of attention or executive input 
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(Baddeley, et al., 2011). The majority of studies of binding that have been used to develop the 

EB model have been based on tasks that explicitly require binding between pairs of features 

held in WM. For example, Allen, Baddeley and Hitch (2006) required participants to 

remember the shape and colour of a set of objects, and Baddeley, et al. (2009) reported 

evidence of binding between verbal WM and LTM.  However, the model suggests that 

integrated bindings of some complexity should be possible: in this context our identification 

of a binding between verbal, spatial and visual semantic (LTM) features is informative.  

Participants’ performance improved in the NSKP condition between the earlier and 

later trials. As can be inferred from Figure 2, performance on the initial 12 trials of the NSKP 

condition was poorer than in the baseline SD condition, whilst in later trials it was in line 

with performance in the SD and NCKP conditions. This pattern may suggest a conflict 

between an established digit-location mapping schema (the typical keypad) and a novel one, 

which was overcome as a new representation became established. It is also possible that 

experimentally induced interference caused by recent activation of the typical keypad 

representation might have impaired performance in the NSKP condition; however, a 

comparison between participants who took part in the TKP condition before the NSKP 

condition and those who did the TKP condition before the NSKP condition showed virtually 

identical levels of performance over the first 12 trials (MTKP-NSKP = .44, SD=.24; MNSKP-TKP = 

.44, SD = .25, t = .005, p = .99) suggesting that this was not the case. Consequently, it is 

likely that the source of this interference was the established presence in LTM of a keypad 

representation, rather than a consequence of its recent activation. A further alternative is that 

the regularity of digit positions in the NSKP condition was detected and that the pattern 

reflects an attentional cost of attempting to learn the novel verbal-spatial conjunctions.  

The current results are potentially consistent also with the theoretical approach of 

Cowan (2005). The EB model itself is not inconsistent with the focus of attention approach, 
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so perhaps this is not surprising. One area where these approaches potentially differ is in 

terms of the role of attention in handling bindings across features: the EB is now (Baddeley et 

al., 2011) thought to be largely free from attentional involvement, whilst Cowan’s approach 

implicates attention more. Given that our task probably invokes implicit binding (at least for 

TKP representations), it tends to favour the EB approach, but further research is certainly 

needed to strengthen this argument, as the possibility that attention is recruited in learning 

novel displays remains open.  

The selective advantage for TKP displays over all other conditions in this study is the 

principal evidential basis for the strong claim we make that visuospatial bootstrapping tasks 

invoke LTM representations. However, given that such LTM representations do exist then the 

question is raised as to how they are established: it should be possible to experimentally 

create them de novo. It is clear that it would take more exposures than occurred in the current 

study, as performance in the later trials in the NSKP condition did not exceed the later trials 

in the SD condition. Future research should seek to characterize exactly what the parameters 

are by which these kinds of representations are learnt. 

Overall, this experiment suggests that information held in separate subcomponents of 

working memory can be linked together to enhance performance on the verbal span task, and 

that information from representations in LTM can be used to achieve this. It is exactly this 

type of operation that is held to be a primary function of the EB (Baddeley, 2000, Baddeley et 

al., 2011). While binding in working memory (e.g. between shapes and colors, or letters and 

locations) has been reported previously, the observation of interactions between VWM, 

VSWM and LTM in this context is novel. These patterns emerge as a consequence of 

participants attempting an explicitly verbal memory task which had no explicit visuospatial 

or LTM content. The current study therefore defines the bootstrapping effect as requiring 

input from LTM representations in order to bind spatial and visual material.  
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Figure 2. Memory performance (proportion of trials remembered correctly) across the 4 display conditions (shown by darkest bars). Breakdown 

of performance on trials 1 – 12 (empty bars) and 13 – 24 (light grey bars) is also shown. Error bars represent standard error of the mean. 
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