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Abstract 

There is concern that, as participation of non-traditional entrants widens, many university 
students do not have the mathematical preparation required to learn skills vital for 
professional work. The purpose of this paper is to examine the relationship between 
mathematical attainment at secondary school and the outcomes of university study in 
quantitative disciplines. 
 
An ‘engagement’ theory of higher-education study is used to investigate academic 
performance and progression among students who gained entry on the basis of Scottish 
Higher examinations to a university that has embraced widening participation. Within this 
environment there is considerable diversity. For example, although most students were 18 
on entry, students were aged from 16 to 38. While pre-entry preparation in mathematics 
was not extensive, this varied. At the university, assistance with mathematical skills is 
embedded in programmes and is discipline specific. 
 
Students with better pre-entry attainments in mathematics had better average marks, 
maintained greater study loads and were more likely to progress. However, non-
traditional university students with poorer mathematical backgrounds were able to attain 
comparable outcomes.  
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Introduction 
Hawkes and Savage (1999, ii), concluded that there is a decline in student ‘mastery of 
basic mathematical skills and levels of preparation for mathematics-based degrees’. 
Further, ‘the decline in skills and the increased variability within intakes are causing 
acute problems for those teaching mathematics-based modules across the full range of 
universities’ (Hawkes & Savage 1999, iii). This decline has been associated with the 
drive to widen participation in higher education, which has increased participation among 
those over 21, those from disadvantaged socio-economic groups and those from 
postcodes where the proportion in higher education is low (Randall 2005; Houston, Knox 
& Rimmer 2007). 
 
While those charged with lecturing mathematics-based content are in little doubt about 
declining mathematical skills among entrants and the need to accommodate this in day-
to-day teaching, the overall effect is not so clear. Yorke (2002) studied changes in the 
proportions of good degrees (firsts and upper seconds) over a five year period in the 
1990s. He noted that mathematical sciences was one in which an upward drift was 
apparent across the university sector. Simonite (2003) associated this with increasingly 
better grades at school. 
 
Using data on two universities, researchers have formulated and tested an engagement 
model of higher-education study that links academic performance, study effort and 
progression (Houston & Rimmer 2005; Houston, et al 2007; Donnelly, McCormack & 
Rimmer 2007). In this paper the model is applied to entrants admitted in 2000 on the 
basis of Scottish Higher examinations to the University of the West of Scotland (UWS). 
Data were available on 276 students who enrolled in first-level programmes where the 
normal full-time load involved the study of more than four modules with quantitative or 
scientific elements. These programmes are referred to as ‘quantitative programmes’. With 
this data, the links between school mathematics and university outcomes can be 
investigated in a population which exceeds benchmarks on widening participation. 
 
Method 
The approach is underpinned by the observations that: students choose or decide how 
much effort to apply to study; in general, grades improve with effort (Szafran 2001); 
better grades in turn induce increased effort; and greater effort increases the probability of 
progression (Houston & Rimmer 2005; Houston et al 2007). With UWS data, effort was 
observed in the form of ‘load’, the number of modules in which at least one assessment 
was attempted. The link from load to performance is given by: 

110)log( Xloadave tΑ++= αα ,     (Equation 1) 
where: ave is a performance measure1; 10 ,αα  are coefficients to be estimated; and tΑ  is 
a column of coefficients for the row 1X  of factors (other than ave) that influence 
university performance. The reverse link is: 

)),(log( 2XaveFload = ,      (Equation 2) 
where 2X  consists of variables (other than ave) that influence load.2 Because the values 
of load range over the ‘truncated counts’ 1, 2, 3, …, 8 (see Table 1), the method of 
estimation involves nonlinear regression (Greene 2003) and so F is nonlinear in a 



 

constant 0β , the coefficient 1β  of ave and the coefficients tB  of other variables. The 
equations form a simultaneous system involving feedback between performance and load. 
 
Progression is defined as being re-enrolled in the next level of study one month after the 
commencement of the next academic session, 2001-02. Obviously, some students do not 
satisfy progression rules. However at UWS, many students who could have progressed 
chose not to do so (Houston, et al 2007). Progression is related to load as follows: 
 XageloadOdds tΗ+++= 210 )log()log( γγγ ,   (Equation 3) 
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Pr(progression) is the probability of progressing; X  denotes a row vector containing all 
of the variables included in 1X  and 2X  and tΗ  is a column of coefficients. 
 
The system defined by Equations 1 to 3 contains dynamic elements. First, students enrol 
and work out a form of engagement with study, which results in their load and academic 
performance for the session; and second, once this is worked through, students decide 
whether to progress. Both elements are assumed to be influenced by student- and 
institutional factors. The data available on these are summarised in Table 1. The main 
focus in the current paper is school performance, measured by Scottish Highers, which 
are awarded as letter grades A, B or C. These were converted to numeric scores via the 
mapping A  →  3,   B  →  2   and   C  →  1. To obtain an overall Higher score, the best 
three were summed. This is ‘score over best three Highers’ in Table 1. Restricting 
attention to three is consistent with research elsewhere (Houston et al 2007).  
 
‘Best three Highers’ was not used directly, but two of its components were: one for the 
Higher ‘mathematics score’, which was assigned value zero if mathematics had not been 
attempted; and one for the total over ‘non-quantitative Highers’, that is, Highers other 
than quantitative subjects, such as science and IT. On average, the UWS mathematics 
score was modest (Table 1), due to the 41% who did not attempt Higher mathematics and 
because most who did were awarded a C grade. Next, ordinary least squares was used to 
regress the two scores on Higher score less mathematics score. Predicted and residual 
components were retained for use in estimating Equations 1 to 3. The residuals are 
interpreted as being associated with particular skills in mathematics or non-quantitative 
areas that are not associated with general or overall academic ability. 
 
Results 
The results of estimations are shown in Tables 2 and 3. In Table 2, the overall Higher 
score (excluding mathematics) has little correlation with mathematics score (p = 0.307), 
but is correlated with the non-quantitative score (p = 0.000). That the non-significant 
coefficient of the overall score was negative in the mathematics estimation can be 
attributed to this Higher being studied generally in isolation from other quantitative or 
scientific Highers.3 Note that gender and age have influences (p = 0.001 and p = 0.086) 
on the non-quantitative score, while gender affects the mathematics score (p = 0.001).  
 



 

The results of estimating Equations 1 to 3 are shown in Table 3. The coefficients of load 
in the performance estimation (p = 0.000), of performance in the load estimation (p = 
0.000) and of load in the progression equation (p = 0.000) are different to zero. In 
estimating the simultaneous system consisting of Equations 1 and 2, each possible 
combination of predicted and residual components for the two Higher scores was tried. 
The results shown are for the combination that had the greatest impact on performance, 
assessed using goodness-of-fit and t statistics. There was no support for including 
combinations of Higher components in estimating load. Residual mathematics and 
predicted non-quantitative Higher score had effects on performance (p = 0.000 and p = 
0.000). Residual mathematics is associated with progression (p = 0.013), but predicted 
non-quantitative score is not (p = 0.490). 
 
Age and gender influence load (p = 0.003 and p = 0.088), which because of the feedback 
mechanism provides one means for these characteristics to affect performance. Another 
avenue is via Higher outcomes (Table 2). Neither age nor being female have significant 
effects on progression (p = 0.291 and p = 0.249), which might be suspected is due to 
colinearity. However, dropping load did not produce significance at conventional levels 
for either age or gender, while substantially reducing the explanatory power of the model. 
Being white was not included in the estimations for load and performance (as it had little 
influence), but it affects progression (p = 0.007). 
 
Only one institutional factor is included in the estimations – faculty of enrolment. The 
students on quantitative programmes were enrolled in either: Paisley Business School 
(PBS); Communications, Engineering and Science; or Education and Media (E&M). On 
average, PBS students (who were studying accounting, economics, finance or land 
economics) incur a penalty relative to CES and E&M students. 
 
Discussion 
Features of the regressions are demonstrated in Figure 1 and Table 4. In the figure, graphs 
are given for Equations 1 and 2 in the simultaneous system for load and performance. 
The schedules are for white males, aged 18, admitted to quantitative programmes in CES 
or E&M with a Higher score of six. Two schedules are shown for Equation 1. The dashed 
one is for students as described, but whose best-three Highers did not include 
mathematics; the solid schedule is for students whose Higher points included a B in 
mathematics. The latter is further to the right, as these students have better average marks 
at any effort level. Only one curve is shown for Equation 2, as Higher scores have no 
direct influence. 
 
The dynamics implied in Equations 1 and 2 can be demonstrated in the figure. The 
mechanism is discussed in greater detail in Houston and Rimmer (2007). Consider two 
students, with the different Higher mathematics attainments, who were working towards 
loads of six modules. One way this arose at UWS was that students attempted 
assessments in three modules per semester. Suppose the students have information, such 
as first-semester results, that suggest they will attain one of the average marks at A. If 
they revise load on the basis of information on performance to date, then they would 
increase load to B (as shown by the arrows emanating from A in the figure), because they 



 

expect that performance will increase to C. For the student with a B in mathematics 
among the best-three Highers, load becomes 7.1 and average mark becomes 45.5; for the 
other student, load increases to 6.9 and average mark becomes 39.0. On average, the 
student with the better Higher mathematics is simulated to have a passing average; the 
other student fails at least some modules in the overall load. 
 
At UWS all modules include a coursework component. Hence students may receive 
feedback frequently and so may revise expected study outcomes frequently. This implies 
that the dynamic adjustments involve more than two iterations, which converge on the 
stable attractor at E1 (Houston & Rimmer 2007). Similarly, a student intending to pursue 
a load less than four and behaving as assumed above, would follow a trajectory in which 
average marks and load decline along the dashed arrows away from E2. 
 
Values at the intersection E1 of Equations 1 and 2 are shown in Table 4 for a range of 
students. The values for males with a mathematics B among the best-three Highers (the 
comparator group in the table) are load = 7.7 and average = 57.4. On the other hand, the 
values at E1 for a male without a mathematic Higher among the best three are load = 7.6 
and average = 53.7. That is, the two students have similar loads, but averages that differ 
by 3.7. Together, the first four rows demonstrate that greater attainment in Higher 
mathematics is associated with better average marks in quantitative programmes (see also 
Simonite 2003). Further, it is clear that greater attainment in Higher mathematics is 
associated with increased likelihood of progression. Note that the probability of 
progression is 0.73 for a student whose best-three Highers did not include mathematics. 
That is, the probability that such a student would not progress is estimated to exceed one 
quarter. It is only about one in 11 for the comparator group. 
 
Also shown in Table 4 are the outcomes for students who would be in the comparator 
group, except that they differ on one pre-entry characteristic. Four things are notable. 
First, women with the same school mathematics achievement attain higher average marks 
and are more likely to progress in the study of quantitative programmes. Second, non-
white students take the same loads as comparable white students, have about the same 
average mark, but have substantially lower progression probability. This demonstrates 
that progression does not depend solely on academic performance (Houston et al 2007). 
Third, older students attempt greater loads, have better average marks and are more likely 
to progress than students in the comparator group. 
 
Fourth, students studying quantitative programmes in the Business School are at a 
disadvantage, even though they have the same Higher grade of B in mathematics. One 
explanation of this is that assessment standards are more severe in PBS than in other 
schools. This is consistent with other evidence (Yorke 2002; Houston et al 2007). 
However, in addition it may be that different teaching and learning cultures pervade 
university schools, as dealing with deficiencies in mathematical skills are handled 
differently within each discipline.  
 
At the bottom of Table 4, two rows of outcomes are shown for women with low 
attainments in Higher mathematics. Recall from Table 2 that, on average, females 



 

incurred a penalty in the estimation of mathematics Higher score. This is because women 
admitted to quantitative programmes were less likely to have studied Higher mathematics 
and they were less likely to attain grades of A or B. However, women with no Higher 
mathematics or a grade of C, attain average marks and progression probabilities that are 
about the same as, or exceed those of, males who had a Higher mathematics grade of B. 
Thus in the case of females, poorer mathematics preparation has not severely constrained 
university performance, even though it might be argued that they could have done even 
better with comparable outcomes for study of Higher mathematics. It is possible that the 
efforts women exert once at university lead to substantial pay-offs, including overcoming 
any shortcomings in mathematical background.  
 
External examiners at UWS have not suggested that academic standards are compromised 
to allow students with poor preparations in mathematics to pass and progress. The reverse 
is the case, with externals remarking that standards are high. Thus, allowing standards to 
slip is unlikely to explain the results. 
 
Conclusion 
The aim in this paper was to examine the role of school mathematics in university 
outcomes at an institution that has widened participation, emphasising the loads full-time 
students choose to study, their average marks in quantitative programmes and whether 
they progress from first- to second level at the earliest opportunity. The approach 
involved a model of student engagement and the precedent in earlier research of using 
best-three school results. This allowed us to conclude that the findings are in line with 
earlier research. It also provided a dynamic mechanism which set this research into 
mathematical preparation within the context of student effort. 
 
Within this context, it emerged that non-traditional entrants to quantitative programmes, 
notably women, can overcome weaker preparations in school mathematics to perform 
creditably in quantitative programmes. Further, provided engagement with study is 
strong, in the form of attempting near full loads, students are on pathways to enrolling 
again next session in the second level of their programmes. A notable exception to this is 
students who were classed as non-white in the research. 
 
It is hoped that the approach of this paper is applied in other settings to explore the 
importance of pre-entry mathematics. Clearly, at institutions where school mathematics 
results are less modest and the incidence of studying other quantitative or science subjects 
is more widespread than at UWS, the findings may be different. 
 
In the case of older Higher entrants, their experiences, after first leaving school and 
before doing Highers, may have further equipped them for quantitative programmes. This 
might go some way to explaining outcomes for those non-traditional UWS entrants who 
were over 21. Even if the finding of the current research on older students is associated 
with non-school experience, this does not invalidate the conclusion that many types of 
entrants to a widening-participation institution can succeed. Moreover, one purpose of 
widening participation is to provide opportunities to those who traditionally have not 
attended university. That some ultimately arrive with relevant experience reinforces the 



 

notion that alternative entry routes – other than arriving at university immediately after a 
single episode of schooling – are valid. 
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 Average Standard 

deviation 
Range 

Age 18.3 2.5 16 to 38 

Load 7.5 1.4 1 to 8 
Average mark 53.0 13.5 4.0 to 81.0 

Score over best three Highers  4.4 1.6 1 to 9 
Non-quantitative Higher score 2.7 1.7 0 to 8 
Mathematics score 0.81 0.80 0 to 3 
Distribution of mathematics attainments  Per cent  
 None (Score = 0)  40.9  
 C (Score = 1)  38.4  
 B (Score = 2)  18.8  
 A (Score = 3)  1.8  

Female  37.7  
White  92.8  
School of enrolment    
 Paisley Business School  21.4  
 Communication, Engineering & Science  77.9  
 Education & Media  0.7  

Progressed to next level  75.7  

N  276  
Table 1 Summary statistics for students enrolled in first-level quantitative 
programmes at University of Paisley in 2000/01 
 



 

 
 Mathematics 

Higher score 
Non-quantitative 

Higher score 
Score on best three Highers less 
mathematics Higher 

-0.0301 
(-1.02) 

0.651 
(12.00)* 

Female -0.335 0.500 
 (-3.37)* (3.33)* 
Age -0.00662 0.0390 
 (-0.39) (1.72)† 
White 0.0685 0.140 
 (0.34) (0.54) 
Constant 1.12 -0.871 
 (2.99)* (-1.83)† 

Adjusted R2 0.0363 0.461 
F 3.59* 59.88* 
N 276 276 

t-statistics in parentheses. * and † denote significance at one and 10 per cent or better 
Table 2 Explaining mathematics- and non-quantitative Higher scores  
 
 



 

 
 Performance 

 
Load Progression 

Load 0.387  1.60 
 (2.89)*  (5.44)* 
Performance  1.34  
  (6.52)*  
Residual mathematics 
Higher score 

0.0437 
(3.86)* 

 0.655 
(2.47)‡ 

Predicted non-quantitative 
Higher score 

0.0252 
(5.95)* 

 0.120 
(0.69) 

PBS -0.0737  -0.446 
 (-4.33)*  (-1.01) 
Female  0.176 0.492 
  (1.70)† (1.15) 

Age  0.0847 0.110 
  (2.94)* (1.06) 
White   1.55 
   (2.72)* 
Constant 0.846 -3.37 -14.57 
 (2.39)‡ (-3.53)* (-4.49)* 

R2 0.421 0.592  
System R2 (McElroy) 0.939  
χ2   110.1* 
Hosmer-Lemeshow χ2   8.75 
McFadden R2   0.360 
Per cent correctly classified   85.9 
N 276 276 276 
t-statistics in parentheses. *, ‡ and † denote significance at one, five and 10 per cent or 
better.  
Table 3 Estimations for performance, load and progression among students enrolled 
in quantitative programmes 
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Figure 1 Simulating effort and average mark 
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 Load Average Progression 
Comparator group 1 7.7 57.4 0.91 

Comparator group except    
 no Higher in mathematics 7.6 53.7 0.73 
 mathematics Higher grade of C 7.7 55.5 0.85 
 mathematics Higher grade of A 7.7 59.2 0.94 

 female 7.8 60.8 0.96 
 not white 7.7 57.3 0.68 
 aged 25 7.9 61.8 0.97 

 enrolled in PBS 7.6 52.3 0.84 
    
White female, aged 18, Higher score = 6 with    
 no Higher in mathematics 7.7 57.2 0.91 
 mathematics Higher grade of C 7.8 59.0 0.93 

1 The comparator group consists of 18 year old, white males, who entered with a Higher 
score of 6, including a B in mathematics, and who were enrolled in CES or E & M. 
Table 4 Load, average mark and progression for groups of first-year entrants 
 



 

 

 
                                                 
1 For consistency with Donnelly, et al (2007) and Houston et al (2007), ave was taken to be 
(total mark + 1)/(load + 1). Thus the relationship between ave and the performance measure average, the 
quotient of total mark and load, is ave = (average × load + 1)/(load + 1). Average was used in constructing 
Tables 1 and 4 and Figure 1. 
2 1X  and 2X  consist of different variables so that nonlinear, three-stage, least-squares can be applied to 
solve the system of equations (Greene 2003).  
3 In the UWS sample, many students did not have science or other-quantitative (non-mathematics) subjects 
among their best three, so that predicted and residual components of ‘quantitative Higher score’ had 
insignificant influences in estimating university performance, even in the absence of components of 
mathematics and non-quantitative Higher scores. 


