
 
Abstract: Smartphone mediated voice monitoring 
has the potential to support voice care by 
facilitating data collection, analysis and 
biofeedback.  

To field-test this approach we have developed a 
smartphone app that allows recording of voice 
samples alongside voice self-report data. Our long-
term aim is convenient and accessible voice 
monitoring to prevent voice problems and 
disorders. Our current study focussed on the 
automatic detection of voice changes in healthy 
voices that result from common transient illnesses 
like colds.  

We have recorded a database of approximately 
700 voice samples from 62 speakers and selected a 
subset of 225 voice samples from 8 speakers who 
had submitted at least 10 recordings and reported 
at least one instance of a moderate cold. We 
extracted 12 acoustic parameters and applied 
multivariate statistical process control procedures 
(Hotelling’s T2) to detect whether instances of cold 
caused violations of distributional control limits. 

Results showed significant association between 
control limit violations and reporting of a cold. 
While there is scope for further improvement of 
sensitivity and specificity of the procedure, it could 
already support early detection of voice problems, 
especially if mediated by voice experts. 
Keywords:  voice problems, monitoring, acoustic 
analysis, smartphones 

 
I. INTRODUCTION 

 
Modern smartphones offer entirely new approaches to 
personal health by facilitating data collection, 
analysis and biofeedback. This offers new methods 
for tackling occupational voice problems, which are 
endemic in some professions [1], [2].  

Most occupational voice problems are behavioural 
(i.e. arising from ineffective voice use) [3], so can 
potentially be prevented through early recognition 
and behavioural changes. We aim to develop an early 
warning system for voice problems via a smartphone 
app, whereby people in vocally demanding 

professions can routinely monitor their voice and 
receive tailored advice if necessary. Smartphones are 
widely used nowadays and a number of studies 
suggest smartphone audio recordings can reliably be 
used to extract acoustic voice parameters (see e.g. [4], 
[5]). 

Health monitoring systems often consider patterns 
of deviation from baseline performance as well as 
static thresholds. Many human physiological factors 
(e.g. blood pressure, body temperature) show 
fluctuation patterns that can be indicative of health 
state [6]. For voice, too, fluctuation patterns in 
acoustic parameters could be indicative of vocal 
health. To study acoustic voice fluctuation patterns 
we are currently recording a longitudinal database of 
typical and ‘at risk’ voices, sampled frequently over 
several weeks through a smartphone app. This app 
records voice samples and a number of voice-related 
self-reports alongside each recording. 

To monitor voice condition in individuals we are 
employing statistical process and quality control 
procedures [7]. These procedures are designed to 
detect variations in patterns that indicate non-random 
or ‘special’ causes and can be applied to univariate 
and multivariate situations. 

We assume that stability over time is an indicator 
of system integrity for healthy voices. Our current 
aim is to analyse whether acoustic parameters derived 
from mobile phone recordings are a) robust enough to 
remain stable under normal conditions, i.e. do not 
exceed limits expected due to normal cause variation 
and b) sensitive enough to pick up minor variations in 
the acoustic voice profile of voice users, i.e. 
successfully detect special cause variation that is due 
to changes in the user’s voice.  

As a test case for detecting deviations from 
regular voice patterns we chose instances of self-
reported common colds and similar illnesses by 
participants, as we have so far mainly recorded 
speakers who do not report regular problems with 
their voices. Upper respiratory tract infections 
(URTIs), especially when accompanied by acute 
laryngitis, have effects on the voice that may be 
similar to those encountered in occupational voice 
problems (e.g. hoarseness, weak voice or voice loss). 
Successful detection of cold-related voice symptoms 
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would therefore indicate a level of sensitivity that 
could support a broader range of applications.  

Detection of such changes could also have more 
direct benefits. URTIs are a recognized risk factor in 
development of voice disorder [8], so if detection of 
cold-related changes could trigger provision of 
appropriate advice when most needed (e.g. reduction 
of voice use and techniques for reducing vocal fold 
impact), this could help to prevent occupational voice 
problems. In addition, the ability to track whether 
voices return to baseline after a cold may help to 
differentiate transient voice changes from longer 
lasting or chronic ones.  
 

II. METHODS 
 
To collect frequent voice samples from a range of 
speakers we developed a mobile phone app, the 
‘voicecheck’ app, which is available for Apple iOS 
and Google Android devices in UK app stores. The 
app records audio data in uncompressed wav (pcm) 
format with a sampling frequency of 44 kHz, and 
prompts a survey alongside each recording.  

For the current study the app prompted the 
recording of two sustained [a] vowels at a 
comfortable pitch and loudness, with each vowel 
sustained for at least 3 seconds. Afterwards 
participants read 9 sentences and a short passage of 
text (a modified and shortened version of the ‘dog 
and duck story’ [9]). 

Participants were instructed to control microphone 
distance by holding the phone approximately a 
handspan (20 cm/8 inches) from their mouth. 

The survey consisted of 12 questions that 
addressed voice use prior to recording, psychological 
stress, room size/configuration, current state of the 
participant’s voice, recent throat sensations and 
whether the participant currently had a cold on a scale 
with four levels: no cold, mild, moderate, severe. For 
further analysis in the present study, the ‘cold’ 
variable was transformed into a binary variable by 
counting “no cold” or “mild cold” as 0 and all other 
instances of “cold” as 1.   

After audio recording and survey completion, all 
data was securely transferred to a central server.  

Participants signed up and provided consent for 
the project through a website (voicecheck.org.uk). 
After sign-up, participants received an electronic 
schedule of 50 recordings as a calendar (ics) file for 
integration into their smartphone calendar app of 
choice.  

Success for triggering automatic reminders by this 
method was variable as some calendar apps did not 
recognise the trigger. Recording events were 
distributed over twelve weeks, with more intensive 
and less intensive weeks and 2-3 recordings per 
recording day. Triggers prompted recordings at 7am, 

1pm and 7pm on weekdays and 9 am and 7 pm on 
weekends. Over the course of the project it turned out 
that many participants found it difficult to stick to the 
schedule and were therefore instructed to provide 
recordings whenever suitable, but leaving at least 4h 
between recordings. 

The database currently contains around 700 
recordings from 62 speakers. For the present study we 
selected data from 8 speakers who had completed at 
least 10 recordings and had recorded instances of a 
cold or similar illness once or more at moderate level 
over the course of their recordings. Table 1 provides 
general information about the individual speakers. 

We extracted 12 acoustic parameters from the 
connected speech samples, using Praat [10]. Audio 
processing was performed in two steps, using two 
different Praat scripts. The first script separated 
sustained vowels from both sentences and connected 
speech, and removed pauses and unvoiced stretches 
from the signal, applying the method described and 
using parts of the script published in [11]. Only these 
pre-processed connected speech samples (i.e. 
sentences and passage of text combined) were used 
for further analysis in the current study. 

The second script extracted the 12 acoustic 
parameters from the pre-processed audio files. These 
comprised all AVQI parameters as described in [12], 
using the implementation in [11]. These were 
smoothed cepstral peak prominence (CPPS), 
harmonics-to-noise ratio (HNR) as implemented in 
Praat, shimmer local (Shim) and shimmer local dB 
(ShdB), the general slope of the spectrum (Slope) and 
the tilt of the regression line through the spectrum 
(Tilt). To this we added mean F0 (Praat’s cross-
correlation algorithm), jitter (RAP), jitter (PPQ5), 
Glottal Noise Excitation Ratio [13], [14] and 
uncorrected (H1-H2) and corrected (H1*-H2*) first 
and second harmonic difference in our own 
implementation, following the procedure described in 
[15].  

Prior to analysis we calculated correlations for all 
extracted parameters and inspected correlations of 
Pearson’s r above 0.7. This led to the exclusion of 
both jitter measures as they showed high correlation 
with CPPS. Shim correlated highly with ShdB and the 
latter was kept as it showed less correlation with 
CPPS. H1-H2 showed high correlation with H1*-
H2*. We kept the corrected version as it should 
provide a better estimate of harmonic energy at the 
glottis.  

For the remaining 8 parameters we constructed 
multivariate Hotelling T2 control charts using the 
‘hm’ method and alpha-levels of .05 and .01 [7] and 
recorded speaker-specific upper control limit (UCL) 
violations. T2 UCL violations were then compared to 
the presence or absence of a cold in order to see 



whether instances of colds and similar illnesses would 
affect the acoustic profile of individuals.  

 Performance of the procedure was evaluated by 
analyzing sensitivity and specificity at group and 
individual level. 

 

 
III. RESULTS 

 
 Table 2 shows the contingency tables for presence of 
a cold and T2 UCL violations across all speakers for 
p-values of .05 and .01. Fisher’s exact test showed a 
significant association between cold state and UCL 
violations for p=.05 (p=.007) and p=.01 (p=.001). Hit 
rate/sensitivity for p=.05 was 62%, specificity 66%, 
for p=.01  sensitivity was 55%, specificity 76%.  

 Results for individuals show large differences in 
performance of the procedure. Table 3 shows 
individual values for sensitivity and specificity.  We 
investigated whether individual sensitivity and 
specificity values were connected to the number of 
recordings per participant. Figure 1 shows both 
sensitivity and specificity as a function of the number 
of submitted recordings. The graph shows that 
specificity increases with sample size, suggesting that 
false alarms become rarer when speakers provide 

more data. Acceptable specificity values are reached 
for both approaches (p=.01 and p=.05) with a sample 
size around 30.  

 
The pattern for sensitivity does not show a clear 

relationship with sample size but there is a tendency 
for the p=.05 method outperforming the p=.01 
method with higher sample sizes.  
 

 
IV. DISCUSSION 

 
 Our first analyses indicate that longitudinal 
monitoring of voice recordings via smartphones has 
potential for providing important information about 
the state of a voice. The current setup still generates 
too many misses and false alarms for unsupervised 
monitoring, but could be useful for supervised 
monitoring with voice expert support.  

We have so far not excluded any recordings based 
on background noise levels, and we have not yet 
considered field effects like background noise and 
room size. Incorporation of these variables is likely to 
decrease false alarm rates in the future.  

Table 2: Contingency table for ‘hm’ method and 
p-levels of .05 and .01 
 No cold Cold Sum 
 .05 .01 .05 .01 .05 .01 
Below 
UCL 129 149 11 13 140 162 

Above 
UCL 67 47 18 16 85 63 

Sum 196 29 225 

Table 1: Speaker age range (Age), gender (Gen),  
smartphone type (Phone), number of recordings 
(Rec) and instances of cold (Cold). 
Nr Age Gen Phone Rec Cold 
1 25-29 M Samsung 

Galaxy S6 
Edge+ 

33 2 

2 60-64 F iPhone 5s 66 11 
3 45-49 M iPhone 6s 34 4 
4 45-49 M HTC One 

(M8) & 
Samsung 

Galaxy S7 
Edge 

22 3 

5 25-29 F Galaxy S6 21 3 
6 35-39 F iPhone 5c & 

iPhone 6s 
24 2 

7 35-39 F HTC One 15 2 
8 25-29 M iPhone 6 10 2 
 Sum   225 29 

Table 3: Sensitivity and specificity per speaker 
for each p-level 
Speaker Sensitivity Specificity 

 .05 .01 .05 .01 
2 0.5 0.5 0.8 0.8 
6 0.6 0.5 0.9 0.9 
9 0.3 0.0 0.9 0.9 
18 1.0 1.0 0.5 0.5 
40 1.0 1.0 0.5 0.5 
43 1.0 1.0 0.9 0.9 
61 0.0 0.0 0.5 0.5 
67 0.5 0.5 0.1 0.1 

 
 

Figure 1: Changes in sensitivity  and specificity   of 
cold detection  with number of recordings (sens01 – 
sensitivity with alpha level .01 etc).  
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Another important future aim will be increasing 
the sensitivity of the method. The current acoustic 
parameters have not yet been analysed for their 
individual contributions to outlier patterns, and 
exclusion or addition of parameters, alongside 
alternative analytical approaches (e.g. machine 
learning) could improve hit rate.  

Besides further development of the database and 
incorporating speakers with frequent voice problems, 
future research will focus on increased calibration of 
the method, e.g. by developing normative thresholds 
for acoustic parameters collected with various types 
of smartphones and quantifying the effects of various 
potential confounds that can occur in the field, e.g. 
background noise and room size. 
 

V. CONCLUSION  
  

This study presented evidence that semi-regular 
monitoring of voices with smartphones has potential 
to provide important cues about the health state of a 
voice. This information could be used to trigger 
tailored advice provided by voice experts via remote 
channels and thus make an important contribution to 
the prevention of voice problems and disorders. 
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