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Abstract  

Epidemiological evidence suggests that due to its high isoflavone (genistein and 
daidzein) content a diet rich in soy could protect against breast cancer, particularly 
tumours expressing oestrogen receptor alpha (ERα+).  Isoflavones are weakly 
oestrogenic, and have other wide ranging cellular activities.   Contradictory in vitro 
evidence means that isoflavones’ mechanism(s) of action remain to be elucidated.   

ERα+ MCF7 and ERα-/ERβ+ MDA-MB-231 cell proliferation and apoptosis were 
quantified at a range of achievable serum concentrations of genistein or daidzein 
(0.01nM to 31.6µM) with or without pre-/post-menopausal 17β-oestradiol (E2) levels 
(1nM and 1pM).  Additionally, cell volume regulation and macroscopic K+ current 
modulation by isoflavones and E2 in MCF7 cells were investigated.  

In MCF7 cells isoflavones (≥1µM) induce apoptosis, even in the presence of E2, but 
this did not reverse the synergistic effect of postmenopausal E2 and isoflavones on 
proliferation.  Isoflavones slightly reduced MDA-MB-231 proliferation at all 
concentrations, dropping dramatically at 31.6µM.  This response was partially 
maintained in the presence of postmenopausal E2.  Isoflavones also induced 
markers of apoptosis.  Treating MCF7 with 1nM E2 or 1µM genistein resulted in cell 
swelling, and a significant increase in whole cell current (E2 only), indicating a 
proliferative response.  Conversely, treatment with 31.6µM genistein resulted in 
shrinkage, and inhibition of outward K+ current (not statistically significant).  
Daidzein treatment inhibited current to a lesser extent.  Co-treatment with K+ 
channel blockers indicated the hEAG channel as a potential molecular target of 
genistein in MCF7.  

These results suggest that in ERα+ breast cancers, isoflavones may act by inducing 
apoptosis, shrinkage, and inhibition of hEAG current.   There was no evidence 
suggesting that isoflavones reduce E2-promoted ERα+ cancer cell proliferation.  
Importantly, the inhibition of K+ channel activity by isoflavones represents a novel 
target for anti-cancer therapies.  However, even low levels of isoflavones may be 
beneficial chemotherapeutic agents against ERα-/ERβ+ breast cancer, indicating an 
urgent requirement for further characterization of the effects of isoflavones in these 
breast cancers. 

 

 

 

 

 

 

Key words: breast cancer, soy, isoflavones, proliferation, apoptosis, potassium 
channel 
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CHAPTER 1. Introduction 

1.1 Overview of breast cancer 

Breast cancer is defined as a malignant tumour of the breast, and is classified by the 

International Classification of Diseases (ICD10) code C50 (WHO 2012).  It is 

typically a painless lump in the breast or under the armpit.  Bleeding or discharge 

from the nipple can occur, but are not diagnostic.  Fibrosis around the tumour can 

lead to pitting or discoloration of the skin.  The tumour can metastasize further to the 

other breast, bones, lungs or liver.  Diagnosis is typically by mammography and 

physical examination, and confirmed by biopsy (Baum and Schipper 2000).  Breast 

cancers can be classified according to their invasiveness, and site, but also by the 

presence or absence of various hormone receptors, including oestrogen receptors 

(positive or negative; ER+/-) progesterone receptors (PR+/-) and human epidermal 

growth factor receptor 1 or 2 (HER1/HER2+/-).  A tumour is classed as receptor 

positive if over 5% of the cells express that receptor.  The receptor status of the 

disease affects rate of invasion and has implications for treatment choices (Smith 

and Chua 2006a; Smith and Chua 2006b; Suzuki et al. 2008). 
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1.1.1 Incidence and mortality 

In the United Kingdom, breast cancer is the most common female cancer, 

accounting for 37% of all female cancer incidence between 2007 and 2009, at a rate 

of 124.2 incident cases per 100 000 adults in the age adjusted female population 

(Office for National Statistics 2012).  Rates in males are very low and will not be 

discussed.  Female breast cancer mortality rates are relatively low, at 21% of the 

incidence rate, or 26.1 deaths per 100 000 adults, with female mortality from lung 

cancer occurring at a higher rate.  Since 1993 the incidence rate of breast cancer in 

the UK has been steadily increasing.  During the same period mortality rates have 

fallen by 22% (Westlake and Cooper 2008).  Data from developed countries 

worldwide is similar (Jemal et al. 2011).  The introduction of breast screening, which 

reached full UK coverage in the mid-1990s has made a significant contribution to 

both trends, allowing earlier diagnosis and treatment, resulting in an improved 

prognosis for affected women (Reddy and Given-Wilson 2006).  Developments in 

treatment have also contributed the downward trend in mortality (Westlake and 

Cooper 2008).  

Most breast cancers are ER+, with one cohort reporting over 70% (Balfe et al. 2004; 

Suzuki et al. 2008; Ziv et al. 2004).  However, in human tissue two ERs are 

expressed.  The classical ER is known as ERα.  In the mid-1990s a second ER, 

referred to as ERβ was identified.  Their expression levels vary throughout the body, 

but they are both expressed in breast and most female reproductive tissues (Taylor 

and Al-Azzawi 2000).  Traditionally, the ER status of a patient is determined based 

on their ERα expression level.   This ER is the dominant form in human breast 

cancer (Balfe et al. 2004).  However, both ER+ and ER- tumours have been found 

to express ERβ, complicating classification (Skliris et al. 2008).   
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1.1.2 Breast cancer treatment 

Effective treatment for breast cancer depends on the size, stage and characteristics 

of the tumour.  Frequently, treatment is surgery to remove the tumour (lumpectomy) 

or the entire affected breast (mastectomy), with or without radiotherapy, followed by 

a course of adjuvant chemotherapy.  For large inoperable tumours, adjuvant therapy 

is used first, to attempt to slow growth or even promote regression (NICE 2009a; 

NICE 2009b; Pollak 2001; Smith and Chua 2006a).  However each causes 

additional physiological and psychological challenges for the patient, including the 

physical risks associated with any surgery, and the side effects of chemotherapy 

which may include alopecia, nausea, fatigue, weight gain and early menopause 

(Miller et al. 2007; Smith and Chua 2006a).   

Endocrine chemotherapy regimes, designed to block either the production or actions 

of oestrogens, are well established treatments for postmenopausal women with 

ERα+ breast cancer (NICE 2009b)1.  Modern endocrine breast cancer treatments 

are diverse (Miller et al. 2007; NICE 2009b).  Selective oestrogen receptor 

modulators (SERMs), such as tamoxifen, reduce breast cancer proliferation by 

competitively binding to the ER and partially inhibiting its signaling, although they act 

as agonists in some other tissues.  Selective oestrogen receptor down-regulators 

(SERDs) act similarly but more completely inhibit the ER-signal.  Aromatase 

inhibitors selectively bind to and inhibit aromatase, a key enzyme in the synthesis of 

oestrogens, thereby reducing oestrogen levels.   

However, around a third of breast cancers are ERα-, which are frequently more 

aggressive but fail to respond to endocrine therapies (Balfe et al. 2004; Suzuki et al. 

2008; Ziv et al. 2004).  Alternative chemotherapies exist, such as the HER2-receptor 

antibody trastuzumab (Herceptin).  This treatment is advised for women with early 

stage ER-/HER2+ breast cancer, but it is associated with cardiotoxicity, and is 

unsafe for women with cardiac disease (NICE 2006).  Furthermore, a major obstacle 

to the treatment of breast cancer is the development of resistance to therapies over 

long term treatment regimes, resulting in relapse, and requiring a switch to another 

                                                 
1
 The pioneer of these treatments was the physician George Beatson, who discusses in his 

1896 letter to The Lancet how the removal of the ovaries reversed the progression of three 
cases of breast cancer (Beatson 1896).    
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therapy (Miller et al. 2007).  There is a great need to develop more effective 

preventative strategies and therapeutic treatments for breast cancer.  
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1.1.3 Unmodifiable risk factors 

Being female is the major risk factor for breast cancer, closely followed by 

increasing age, with relative risk doubling every 10 years (Information Services 

Division Scotland 2012; Kurian et al. 2010; McPherson et al. 2000).  In addition, 

genetic predisposition for the condition is implicated in around 10% of cases in 

Western countries, with mutations in the genes BRCA1 and BRCA2 accounting for 

much of this (McPherson et al. 2000).  Many of the remaining risk factors relate to a 

woman’s reproductive history.  Risk is reduced by late onset of menstruation, early 

menopause (natural or induced), pregnancy (reducing further with each subsequent 

pregnancy after the first), being younger at first pregnancy, and breast feeding 

(Chlebowski et al. 2009; Clavel-Chapelon and the E3N-EPIC group 2002).  

Extended use of Hormone Replacement Therapy (HRT) or oral contraceptives can 

lead to an increase in risk, although this decreases upon cessation of use (Beral 

2003; Collaborative Group on Hormonal Factors in Breast Cancer 1997).  Many of 

these risk factors are inter-related, and have a complex relationship with risk, 

depending on receptor status of the cancer, and whether pre- or post-menopausal 

breast cancer risk is being assessed.  Importantly, they are all unmodifiable, or 

difficult/unethical to modify.  Each of these factors affects a woman’s levels of serum 

sex hormones.   

In postmenopausal women not taking HRT, serum total concentrations of 17β-

oestradiol (E2), the main circulating human oestrogen,  are typically between 40 and 

100 pM (Braunstein et al. 2008; Kaaks et al. 2005a; Rock et al. 2008).  

Premenopausal women (not taking oral contraceptives) have higher levels, ranging 

between 0.1 to 1 nM depending on the point in their menstrual cycle (Eliassen et al. 

2006; Gruber et al. 2002; Kaaks et al. 2005b; Rubin et al. 2005).  However, a 

proportion of this E2 is bound in the serum by sex hormone binding globulin (SHBG) 

preventing its biological activity, or albumin (Fortunati et al. 2010; Gruber et al. 

2002).  Accordingly, the levels of unbound, or free, bioavailable E2 are lower.  In 

premenopausal women, the level of serum SHBG was found to be between 50 and 

60nM, and does not vary with the menstrual cycle (Eliassen et al. 2006; Kaaks et al. 

2005b).  Levels were slightly lower in postmenopausal women: closer to 35nM 

(Kaaks et al. 2005a).  Consequently, in postmenopausal women free E2 has been 

determined to be between 1 and 30 pM (Braunstein et al. 2008; Kaaks et al. 2005a; 
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Rock et al. 2008).  In premenopausal women free E2 varied between around 200pM 

during the follicular phase, and 500pM during the luteal phase (Eliassen et al. 2006).   

In a nested case-control group comprising nearly 2000 postmenopausal women 

taking part in the European Prospective Investigation into Cancer and Nutrition 

(EPIC) cohort study, elevated levels of both E2 and free E2 were positively 

associated with breast cancer risk (p < 0.0001) while SHBG levels were inversely 

related to risk (p = 0.04) (Kaaks et al. 2005a).   Likewise, elevated levels of 

oestrogens and testosterone (a precursor of oestrogen) have been linked to risk of 

breast cancer independent of other risk factors (Cummings et al. 2005; Dorgan et al. 

2010; Eliassen et al. 2006; Mady 2000; Platet et al. 2004).   

There are two mechanisms through which E2 exposure may cause breast cancer.  

Firstly, oestrogens promote mitotic cell growth in the breast epithelium, directly 

promoting  the growth of the cancerous tissue (Matsumura et al. 2005; Schmidt et 

al. 2005), and by increasing the number of cell divisions also result in a 

proportionately larger number of possibilities for DNA mutation (Yager 2000).  

Secondly, oestrogens may be metabolized into genotoxic products, resulting again 

in DNA damage (Jefcoate et al. 2000).  These two mechanisms are likely to be 

synergistic, with mutations caused by carcinogenic oestrogens propagated rapidly 

by oestrogen enhanced growth, with insufficient time for repair.   

Genetic predisposition accounts for approximately 10% of breast cancer cases in 

western countries.  Additionally, a history of previous benign breast disease, such as 

cysts, can increase breast cancer risk.  Previous breast cancer greatly increases a 

woman’s chances of developing a tumour in the other breast (contralateral) 

(McPherson et al. 2000).  There is growing evidence to suggest that exposure to 

xenoestrogens (chemicals which mimic oestrogens), found in some plastics, 

packaging and pesticides, can increase risk of breast cancer also (Mitra et al. 2004).   
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1.1.4 Modifiable risk factors 

The modifiable risk factors for breast cancer are few, and often have little influence 

on final risk compared to the factors discussed above.  Smoking divides opinion 

regarding breast cancer.  Iwasaki and Tsugane (2011) argue that it is a risk factor, 

although others suggest that it is not (McPherson et al. 2000).  Among 

postmenopausal women who are not using HRT, adult weight gain or high Body 

Mass Index (BMI) contributes to increased risk (Feigelson et al. 2004).  For most 

dietary factors, such as dietary fat, fruit, vegetables, antioxidant vitamins or whole 

grains, there is no, or very limited evidence for an affect on breast cancer risk (World 

Cancer Research Fund / American Institute for Cancer 2007).  However, high levels 

of alcohol consumption may increase risk by as much as 10% per 10 g/day ethanol 

(Iwasaki and Tsugane 2011; World Cancer Research Fund / American Institute for 

Cancer 2007).   

However, there is a considerable field of research demonstrating an inverse 

relationship between breast cancer risk and the consumption of high levels of plant-

derived oestrogens known as phytoestrogens, and in particular the isoflavones 

found in soy.  There are countless proposed mechanisms through which isoflavones 

might mediate these effects.  These include but are not limited to modulating 

oestrogen responsive gene expression, oestrogen synthesis, cell cycle control, 

induction of apoptosis, breast tissue development, antioxidant actions, angiogenesis 

and protein tyrosine kinase inhibition (Steiner et al. 2008).  However the precise 

mechanisms of isoflavone action in breast cancer remain to be elucidated. 
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1.2 Soy isoflavone phytoestrogens 

Isoflavones are natural, plant metabolites with weak oestrogenic activity (Hwang et 

al. 2006; Kuiper et al. 1998).  For this reason they are often referred to as 

phytoestrogens.  Many plants produce oestrogenic compounds (Table 1.1), but, of 

the types consumed by humans, the isoflavones and lignans are most relevant for 

health.   Phytoestrogens have a structure similar to mammalian oestrogens like E2 

(Figure 1.1).  The main groups of plant derived phytoestrogens are the isoflavones, 

flavonoids, lignans and coumestans (Dixon 2004).  They each arise naturally in a 

range of grains, legumes and fruits.   

Of these phytoestrogens, the isoflavones have received the most scientific attention.  

They are a distinctive class of flavonoids, almost entirely limited to the subfamily 

Papilionoideae of the Leguminosae family, and all sharing the same diphenolic 

skeleton.  There are many hundreds of isoflavone chemical structures discovered to 

date, differentiated by their substituent groups, oxidation levels and the presence of 

extra heterocyclic rings (Dewick 1994).  Most significant to human health are the soy 

isoflavones genistein and daidzein, the chickpea isoflavone biochanin A, and equol, 

a metabolite of daidzein which around half of the population can synthesize.  

Genistein differs from daidzein only by the presence of an additional hydroxyl group 

on the 5 position.   

Table 1.1: Classification of the main types of plant-derived phytoestrogens 

Class of 

phytoestrogen 

Main types Main sources 

Isoflavone Genistein, daidzein, 

glycitein  

Soybean, clover 

Biochanin A Chickpea 

Flavonoid Resveratrol Grapes (and wine), peanuts 

Quercetin Tea, onions, fruits 

Lignan Enterodiol, 

enterolactone 

Whole cereals and grains 

(especially rye and flaxseed), 

berries, garlic 

Coumestans Coumestrol Alfalfa sprouts, clover, soybean 

(Adlercreutz 1995; Dixon 2004) 
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Figure 1.1: Structure of the main isoflavones and 17β-oestradiol 
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1.2.1 Food sources of isoflavones 

The main dietary sources of isoflavones are soy foods.  Miso, tofu, natto and soy 

beans are particularly rich sources, as is texturized vegetable protein (Bhagwat et al. 

2008).  These soy foods contain between 100 and 200 mg/100g total genistein and 

daidzein.  In addition, products such as doughnuts made with soy flour contain 

isoflavones, although to a lesser extent, as does red clover extract.  Finally, other 

legumes such as mung beans, and kidney beans contain low levels, as do some 

nuts, and fruits (Bhagwat et al. 2008; Kuhnle et al. 2008; Liggins et al. 2000).  There 

is likely to be variation in preparation techniques and brands used, which will affect 

the ultimate isoflavone content (Fletcher 2003).  Furthermore, within a product, the 

isoflavone content varies over time, possibly due to changes in the cultivar and 

growing conditions of the soy plants (Setchell and Cole 2003).  Despite this, it is 

clear that soy products contain more isoflavones than other sources, by several 

orders of magnitude, and that the method of processing can influence the isoflavone 

content.   Soy based infant formulas are also rich sources of isoflavones, although 

the precise content can vary greatly by brand (Setchell et al. 1997).  Some infant 

formulae can contain up to 30 mg/100g dry (powder) weight (Bhagwat et al. 2008).  

Isoflavones can also pass from a soy-consuming mother to her infant, through 

breast milk (Franke et al. 2006). 

  



11 | P a g e  

 

1.2.2 Intakes of isoflavones 

Soy foods, including tofu and miso, are associated with a “traditional” Eastern-Asian 

diet, such as Japanese, North Korean and some parts of China, and so isoflavone 

intakes are much higher in these populations than in Western countries.  Average 

Eastern Asian intakes have been shown to range between 25 and 50 mg/day 

isoflavones (Arai et al. 2000; Iwasaki et al. 2008; Lee et al. 2009; Shu et al. 2009).  

In these populations intake increases with age and rural location (Messina et al. 

2006).  Consumption of two cups of soy milk, 20g roasted soy beans or 120g tofu 

will provide around 40mg of isoflavones (Zhan and Ho 2005).  

Western countries have lower isoflavone intakes, typically between 0 and 3 mg/day, 

and often highly skewed towards the lower end of this scale (dos Santos Silva et al. 

2004; Grace et al. 2004; Hedelin et al. 2008; Horn-Ross et al. 2002; Linseisen et al. 

2004; Travis et al. 2008; Ward et al. 2010).  This is due, for the most part, to lack of 

familiarity with soy foods and the feeling that they are bland compared to the animal 

products they substitute (Schyver and Smith 2005).  Asian migrants to Western 

countries maintain relatively high isoflavone intakes, although these are higher in 

direct migrants than their descendants, and decrease with increasing length of time 

since migration (Wu et al. 2002).  Vegetarian women (Travis et al. 2008), and 

postmenopausal breast cancer patients (Lammersfeld et al. 2009) are also more 

likely to consume isoflavones than the general population.  In the latter group, use of 

isoflavone supplements can lead to intakes of over 100 mg/d isoflavones.  Only a 

very few in Asian countries achieve this level through diet alone. 

In Western countries soy foods such as tofu and miso are available, but they are not 

consumed widely beyond small sub-groups of the population.  For most European 

and American consumers the soy in their diet comes from other sources.  Small 

quantities of isoflavones are consumed in other (non-soy) legumes and vegetables.  

However, the bulk of isoflavone consumption for these populations can be split into 

two categories: ‘second-generation soy foods’, and ‘hidden’ soy ingredients 

(Fletcher 2003).  The first category largely comprises soy analogues of familiar 

Western foods, particularly dairy and meat products, such as milk, yogurt, cheese, 

sausages and bacon.  These are sold as lactose-free, healthier, or vegetarian 

alternatives, again to small, defined groups within the population.  The second 

category is where soy derivatives are used in manufactured foods often for 
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economic or technological reasons, such as soy flour in bread to improve the quality 

of the loaf, and texturised soy protein (texturised vegetable protein) as a meat 

extender.  In particular this latter group of foods makes dietary analysis of isoflavone 

intake in the West difficult due to the unavailability of sufficient data (Fletcher 2003; 

Horn-Ross et al. 2000). 
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1.2.3 Bioavailability and metabolism 

Dietary assessment may not provide an accurate picture of physiological isoflavone 

levels due to differences in bioavailability between individuals.  In the plant, the 

isoflavones exist mostly in a glycoside form (genistin, daidzin).  These have 

relatively low oestrogenic activity, but are hydrolyzed by food processing, or gut wall 

enzymes and gut bacteria into their aglycone forms (genistein, daidzein), with 

greater activity (Kano et al. 2006; Peterson et al. 1998).  The bioavailability (based 

on plasma levels of genistein and daidzein up to 48 hours after ingestion) is 

comparable regardless of whether the aglycone or glycoside forms are consumed 

(Zubik and Meydani 2003).  In general, studies have shown that daidzein is more 

bioavailable that genistein, but that between individuals absorption can vary greatly 

depending on the gut bacteria present (Xu et al. 1995; Xu et al. 1994).   

In the human liver and intestine a large proportion (as high as 99%) of these 

aglycones are further conjugated to glucuronic or sulphate (Bloedon et al. 2002; Gu 

et al. 2006; Peterson et al. 1998; Setchell 1998; Setchell et al. 2011).  In addition to 

modification by gut enzymes and microflora, the ratio of glycosides, aglycones and 

conjugates can be altered by cooking and processing method (Coward et al. 1998).  

This is of particular significance for equol, a metabolite of daidzein.  Its formation is 

entirely dependent on gut microflora (germ-free animals and human infants do not 

produce it), and 30-50% of human adults do not excrete it (Setchell et al. 2002).  

The precise bacteria and reasons behind this are unclear.  There is evidence of 

further metabolism of these metabolites into other forms, and deconjugation back 

into the aglycones (Yuan et al. 2012).   

Many of these have been found to have biological effects of their own.  Equol acts in 

a similar, although more oestrogenic, manner to genistein and daidzein (Setchell et 

al. 2002).  The glucuronides of genistein and daidzein are less oestrogenic than 

their aglycone counterparts, but can activate human natural killer cells (Zhang et al. 

1999).  Sulfate 4’- and 7-conjugation of genistein and daidzein also reduced the 

oestrogenic capacity of the parent compounds (Pugazhendhi et al. 2008). 

A supplementation trial in healthy postmenopausal women (n=24) found that the 

plasma half-life of free (unconjugated) genistein and daidzein to be relatively short, 

averaging at 3.8 and 7.7 hours respectively (Bloedon et al. 2002).  The half-life for 
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total genistein and daidzein (including metabolites) was found to be slightly longer 

(10.1 and 10.8 hours respectively for genistein and daidzein).  However, in each 

case the range of values measured was large, varying from 1.7 to 21 hours between 

individuals.  A parallel intervention in a group of 30 men of comparable age 

produced similar results (Busby et al. 2002).  This argues against progressive 

accumulation of these isoflavones upon repeated consumption.   
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1.2.4 Biomarkers of intake 

Due to the difficulties associated with measuring intake, urine or plasma isoflavone 

levels are frequently used as biomarkers of intake.  They are relatively non-invasive, 

and a variety of assessment methods have been used, including gas 

chromatography-mass spectrometry (GC-MS) and High Pressure Liquid 

Chromatography (HPLC).  Unlike the dietary assessment methods, serum and urine 

measurements are found to be consistent and reproducible (Zeleniuch-Jacquotte et 

al. 1998).  In addition, they correlate well with the results of dietary assessment 

(Grace et al. 2004; Lampe 2003; Verkasalo et al. 2001; Wu et al. 2004).  

Furthermore, 24 hour urinary isoflavone levels correlate strongly with plasma values 

(Arai et al. 2000; Grace et al. 2004), and with dose in supplementation interventions 

(Perez-Jimenez et al. 2010).  Age and gender had no significant effect (Kunisue et 

al. 2010).   

Mean plasma levels of genistein and daidzein from Western populations consuming 

low levels of isoflavones are typically beneath 10nM (Adlercreutz et al. 1993; Grace 

et al. 2004; Piller et al. 2006; Verheus et al. 2007; Verkasalo et al. 2001; Wu et al. 

2004).  As with the dietary intakes, this remains highly skewed towards the lower 

end of the scale.  Plasma levels measured in Eastern-Asian, high soy consuming 

populations were several orders of magnitude higher, with the mean level typically 

between 0.1 and 1µM for both genistein and daidzein (Adlercreutz et al. 1993; Arai 

et al. 2000a; Iwasaki et al. 2008).  UK women consuming a high soy diet achieved 

comparable mean levels to these Eastern Asian individuals (Verkasalo et al. 2001).  

Concerningly, American (caucasian) infants four months old fed exclusively on soy-

based infant formulae had particularly high mean plasma isoflavone levels of over 

1µM (Setchell et al. 1997).  As the safe high doses have been determined 

historically, based on traditional eastern-Asian diets in adults, this could have 

implications for the reproductive development of these infants (see section 1.2.6). 

While blood or urine samples are relatively non-invasive to collect, it may be the 

case that the effects of isoflavones in breast cancer are related specifically to their 

levels in the breast.  Nipple Aspirate Fluid is secreted into the breast ducts 

continuously in non-pregnant and non-lactating women.  It can be collected, and 

may better reflect hormone and isoflavone levels within the breast than serum 

concentrations.  However, to date there has been very little research in this field, 
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participant numbers were small, drop-out rates were high, and the results are 

contradictory (Hargreaves et al. 1999; Maskarinec et al. 2008).  Additionally these 

results still do not inform directly about the distribution of isoflavones within breast 

epithelial tissue. 

Among two groups of women taking soy or isoflavone supplements (between 50 and 

70mg isoflavones per day) or a placebo for five days prior to undergoing elective 

breast reduction surgery, no significant relationships were seen between the 

serum/urine levels of isoflavones, and the levels detected in the breast tissue 

(homogenised), breast adipocytes, or mammary gland epithelial cells (Bolca et al. 

2010; Maubach et al. 2004).  However as before, numbers were small, and there 

were problems with compliance.   

Overall, the only conclusion that can be drawn from these studies is that further 

investigation is required to establish whether serum and urine concentrations of 

isoflavones correlate with tissue levels, and if tissue levels reflect dietary exposure 

at all.  Studies suffer from low numbers, large inter-individual variation in 

bioavailability, differences in the length of time from supplementation to sampling, 

varied dosing regimens, and differing formulation of the supplement given (i.e. ratio 

of glycoside:aglycone, or genistein:daidzein).  In addition, due to the invasive nature 

of the investigations, these studies suffer from a high level of recruitment bias.  

Considerably more research is required to determine whether isoflavones 

accumulate in the breast tissue, and if so, whether this is limited to discrete regions. 
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1.2.5 Health benefits of isoflavones 

Evidence exists suggesting that isoflavones could provide benefits for numerous 

health conditions.  Most of the protective effects of isoflavones against 

cardiovascular disease (CVD) are related to their ability to improve lipid profiles.  

There is considerable evidence, including a number of recent meta-analyses, 

suggesting that intake of soy or isoflavones lowers serum total and low density 

lipoprotein (LDL) cholesterol, may reduce serum triglycerides, and can increase high 

density lipoprotein (HDL) cholesterol (Taku et al. 2007; Zhan and Ho 2005).  

Together these changes lower both the total:HDL and LDL:HDL cholesterol ratios, 

reducing CVD risk.  Additionally, these effects are much greater in 

hypercholesterolemic individuals than in healthy adults.  Animal studies, including 

those using primates, have yielded similar results (Anthony et al. 1998). Based on 

data such as these, the US Food and Drugs Administration made the health claim 

that foods containing at least 6.25g of soy protein per serving could be of benefit to 

heart health (Food and Drug Administration 1999).  The cardio-protective role of 

isoflavones may be supported by their antioxidant effects, reducing oxidative DNA 

damage and lipid oxidation (Djuric et al. 2001; Wiseman et al. 2000) although results 

of other groups are contradictory (Heneman et al. 2007; Vega-Lopez et al. 2005). 

The evidence that isoflavones could protect against osteoporosis is inconclusive.  A 

number of studies have demonstrated that isoflavones, either habitual dietary or 

supplemental, can attenuate femoral and spinal bone loss in peri- and post-

menopausal women (Alekel et al. 2000; Mei et al. 2001; Ye et al. 2006).  However, a 

recent meta-analysis shows little overall effect after several months of 

supplementation with an average of 56mg isoflavones on markers of bone turnover 

in this population (Taku et al. 2010).  Likewise, evidence for similar effects in 

premenopausal women is contradictory (Ho et al. 2001; Mei et al. 2001).   

There is a suggestion that isoflavones may be protective against other endocrine 

cancers such as prostate cancer in men.  Urinary excretion of isoflavones, in 

particular daidzein, was significantly lower in prostate cancer cases than controls 

(Park et al. 2009).  In prostate cancer cell lines genistein down-regulates growth and 

survival genes such as survivin, DNA topoisomerase II and cell cycle progression 

genes (Suzuki et al. 2002).  In addition, isoflavone supplementation reduced 

Prostate Specific Antigen (PSA) levels in prostate cancer patients (Hussain et al. 
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2003).  However, many human dietary studies have failed to show a link between 

dietary isoflavones and prostate cancer (Park et al. 2008; Ward et al. 2010). 

In the last decade there have been a number of large and well designed studies 

looking into the effects of HRT on breast cancer risk (Beral 2003; Chlebowski et al. 

2003).  These showed conclusively that current and recent use of HRT, regardless 

of the specific oestrogens and progestins prescribed, increased risk of breast cancer 

and delayed diagnosis.  The latter trial was very publicly halted before completion 

due to safety concerns.  This had a dramatic and immediate effect on HRT use, with 

current users discontinuing, and less new users (Kim et al. 2005).  Upon breast 

cancer diagnosis, HRT use is now contraindicated (NICE 2009b).  This is of 

particular significance, since breast cancer chemotherapy can often induce 

menopause (Smith and Chua 2006a).   

In light of this, many studies have been conducted looking into the effectiveness of 

plant extracts as ‘safe’ and ‘natural’ ways to treat menopausal symptoms, including 

soya isoflavone extracts.  One small study found that soy isoflavone 

supplementation (60 mg/day for 3 months, n = 51) reduced hot flushes and night 

sweats (Cheng et al. 2007).  However, on the whole there is little evidence with 

regard to isoflavone remedies, with comparison between studies difficult due to trials 

providing limited data, and suffering from methodological shortcomings such as 

being underpowered or lacking control groups.  It is generally agreed that there are 

few side effects to isoflavone supplementation, unless a very large dose is taken 

long-term (150 mg a day for five years).  However, the effects of isoflavones on 

menopausal symptoms appear minimal or non-existent (Low Dog 2005; Tice et al. 

2003; Van Patten et al. 2002).  Due to their possible oestrogenic effects, and little or 

no evidence supporting their efficacy, soy or isoflavones are currently not 

recommended for treatment of menopausal symptoms in women with, or survivors 

of, breast cancer (NICE 2009b). 
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1.2.6 Isoflavone toxicity 

Epidemiological evidence suggests that dietary levels of isoflavones are safe for 

humans.  In addition, a supplementation intervention where women consumed a 

single genistein dose of 2, 4, 8 or 16 mg/kg body weight (approximate total genistein 

intakes of from 100 to 1000mg), resulting in plasma levels peaking at approximately 

10µM and 0.1µM total and free (unconjugated) genistein respectively, found that 

there was no change in lymphocyte apoptosis 24 hours after supplementation, and a 

slight (non-significant) drop in blood pressure observed in one group (Bloedon et al. 

2002).  Despite observing several isolated cases of pedal oedema and breast 

tenderness, they concluded that there was very minimal clinical toxicity as a result of 

this treatment.  The long term toxicity of these doses in women is not known. 

The feeding of soy formulas to infants is a relatively new practice, and little is known 

about its long term safety.  However, preliminary data from an American longitudinal 

prospective study of around 300 children suggests that all formula fed infants, 

regardless of whether it is soy or milk-based, grow and develop normally (Badger et 

al. 2009).  Similarly, Gilchrist et al. (2010) found no evidence that soy formula 

feeding produces any oestrogenic effects on the reproductive organs of four month 

old infants. 

Toxicity studies in rats suggest that pharmacological doses of 1000x higher than a 

typical Japanese isoflavone intake (calculated as mg per kg body weight) reduced 

adult body weight and slightly altered reproductive development, although did not 

affect fertility (Guan et al. 2008; Lamartiniere et al. 2002). This raises some 

concerns about the safety of high dose isoflavone supplementation, especially in 

women of child bearing age, as a safe upper dose is yet to be established.   
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1.3 Isoflavones and breast cancer risk in vivo 

1.3.1 Human epidemiological evidence 

The possible protective effect of soy and isoflavones originated from epidemiological 

studies which consistently showed lower rates of breast cancer among women in 

Eastern Asian countries than in the West (Parkin et al. 2002; Parkin et al. 2005).  

The most recent data available estimates that in Western Europe in 2008 the rate of 

breast cancer incidence (age standardized per 100 000 population) was 89.9 while 

in Eastern Asia the rate was 25.3 (Jemal et al. 2011).  Evidence that this might be 

related to lifestyle rather than genes comes from numerous sources.  Migration 

studies demonstrated that when Asian women moved to the West, their breast 

cancer rates increased quickly with each successive generation born in the new 

home country (Ziegler et al. 1993).  This suggests that exposure to a Western 

lifestyle and environment, including reduced consumption of soy, is responsible.  

Additionally, since the 1970s many Eastern Asian countries such as South Korea, 

and more recently China, have rapidly become ‘Westernised’ in terms of their 

economies, lifestyle and diets.  This has brought with it an increase in saturated fat 

intake, and a fall in use of cereals, with animal products replacing soy as the main 

dietary protein.  In parallel, their breast cancer rates have quickly risen to near-

Western levels (Kim et al. 2000; Popkin and Du 2003).  It is important to note that in 

a Western lifestyle, soy is a marker for a healthier lifestyle, with lower energy intake, 

less saturated fat, and more fruit and vegetables, not smoking (Nechuta et al. 2012).   

There have been many studies looking for an association between isoflavone intake 

and breast cancer.  However, comparison is difficult, and should be interpreted with 

caution, since they are often highly variable in the population studied, exposure 

measures and the level of controlling for confounders.  Study design varied, with 

some being prospective cohorts, some nested case-controls, and some population- 

or hospital-based case-controls.  A number of the studies have stratified their results 

according to menopausal status or the oestrogen receptor status of the tumour, but 

this has been carried out inconsistently.  In addition, in many of the studies the 

subgroups had relatively small numbers of breast cancer cases, meaning that the 

results may have occurred by chance.   
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These studies have been collated in a meta-analysis carried out by Trock et al. 

(2006). This review of 23 studies reported an overall significant, although slight, 

inverse association between soy intake and breast cancer risk (odds ratio, OR = 

0.86, 95% confidence interval (CI) = 0.75 to 0.99).  They found that this inverse 

association was stronger for breast cancers diagnosed premenopausally (OR = 

0.70, 95% CI = 0.58 to 0.85) than post menopausal women (OR = 0.77, 95% CI = 

0.60 to 0.98), and similarly was stronger among women from Western countries 

(including two studies of Asian Americans; OR = 0.84, 95% CI = 0.70 to 1.00) than 

in Asian women (OR = 0.89, 95% CI = 0.71 to 1.12).  However, the latter two odds 

ratios did not differ significantly.  It is possible that the slightly greater inverse 

association between soy intake and breast cancer risk in Western women may be 

because soy intake in Asian countries is fairly universal, and that even low intake 

(which is similar to high Western intakes) may be enough to reduce risk.  

Alternately, in Western countries soy intake may act as a marker for other risk 

reducing behaviour. 

A more recent publication described a separate meta-analysis for the Asian (n = 8) 

and Western (n = 11) studies (Wu et al. 2008), as each set of populations possess 

distinct lifestyle characteristics relating to breast cancer, and consume very different 

amounts and sources of soy, which may reduce the value of any direct comparison.  

Their findings contradicted those of Trock et al. by proposing a significant protective 

effect of consuming high levels of soy in Asian but not Western populations.  Among 

Asian consumers, compared to the lowest level of soy food intake (≤ 5 mg/day 

isoflavones), breast cancer risk was intermediate (OR = 0.88, 95% CI = 0.78 – 0.98) 

for those with modest isoflavone intake (around 10 mg/day) and lowest (OR = 0.71, 

95% CI = 0.60–0.85) among those with high isoflavone intake (≥20 mg/day).  In 

contrast, the 11 Western populations (with average highest and lowest soy 

isoflavone intakes of 0.8 and 0.15 mg/day) included in the analysis demonstrated no 

relationship between isoflavone intake and breast cancer.  However, it must be 

noted that this meta-analysis excluded much of the prospective cohort data 

available, on the grounds that they contained an insufficient level of detail about the 

soy foods consumed.  Much of the remaining evidence came from case-control 

studies.  Additionally, and perhaps significantly, Wu et al. included Asian American 

women in the Asian group, and not the Western group.  The result is that while a 

relationship between soy intake and breast cancer risk can be proposed, inferences 

regarding the mechanism must be interpreted with caution. 
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Although data is limited, where the results have been stratified according to the 

oestrogen receptor status of the tumour, protective effects of isoflavones have been 

limited to the ERα+ subgroup, having no effect on ERα- tumours, although 

individuals in this group may have tumours expressing ERβ (Linseisen et al. 2004; 

Suzuki et al. 2008).   

Interestingly, these groups and a third meta-analysis reporting similar findings (Dong 

and Qin 2011) did not observe any dose-response relationship associated with soy 

intake and breast cancer risk, other than that reported as the difference between 

high and low intakes.  This may relate to the study designs used, and a limited 

number of eligible studies for each meta-analysis, or it could imply a threshold 

isoflavone level is required for protective effects to be seen. 

High intake of soy isoflavones has been associated not only with reduced risk of 

breast cancer, but also reduced breast cancer mortality (Zhang et al. 2012).  

Although they did not find a linear relationship between soy intake and mortality, 

they suggested that intakes above 17.3mg isoflavones per day might reduce 

mortality by 36% (n = 616 breast cancer cases), after adjusting for other factors 

which may have an influence such as age, smoking, alcohol consumption, physical 

activity and treatment regime. 

In humans, there has only been one occasion where a significant relationship 

between high urinary and serum isoflavones (equol and daidzein) and increased 

breast cancer risk has been observed in a prospective (UK) cohort (Grace et al. 

2004).  They determined the log2 odds ratios (where the risk estimates represent a 

doubling in phytoestrogen exposure) to be 1.220 (1.005–1.481; p = 0.044) and 

1.455 (1.051–2.017; p = 0.024) for serum daidzein and equol respectively.  The 

effect of genistein did not achieve statistical significance.  However, this study 

included a small number of breast cancer cases (n = 114 out of 333 women) 

increasing the chance that the results were coincidental.   
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1.3.2 Adolescent isoflavone intake 

Several studies have looked retrospectively at adolescent soy intake in women of 

different backgrounds (Shu et al. 2001; Thanos et al. 2006; Wu et al. 2002).  In a 

case-control study of Chinese (Shanghai) women with 1459 cases of breast cancer 

and 1556 controls, adolescent soy intake was found to be inversely associated with 

breast cancer risk, with ORs for the second to the highest quintiles of soy intake 

compared to the lowest reported as 0.75 (95% CI, 0.57– 0.93), 0.69 (95% CI, 0.55– 

0.87), 0.69 (95% CI, 0.55– 0.86), and 0.51 (95% CI, 0.40–0.65) respectively (p for 

trend < 0.001; Shu et al. 2001). Similar ORs were reported for breast cancer 

diagnosed both pre- and postmenopausally.  Adolescent soy intake was assessed 

by FFQ, with measures for portion size as well as frequency, of intake of 17 soy 

food ingredients or food groups.  This group attempted to control for confounding 

issues arising from recall of historical diet by assessing not only self reported 

adolescent intake, but also using the same FFQ with mothers of study participants 

(where possible) regarding their daughter’s adolescent intake.  Significant 

correlations were reported between maternal and self reported adolescent soy 

intakes among both cases and controls. 

Similar ORs were reported for Asian American women (Los Angeles; Wu et al. 

2002) and white Canadian women (Thanos et al. 2006).  This reduction in risk is 

independent of adult isoflavone intake, and the effects combine additively, leading to 

the greatest reduction in risk among women with high adult and adolescent intakes 

(Wu et al. 2002). 

It is thought, through work in rats and mice, that in prepubertal mammary tissue, 

genistein upregulates the epidermal growth factor (EGF) signaling pathway, 

promoting differentiation and proliferation.  The resulting adult mammary cells 

experience reduced proliferation and less EGF signaling, and the adult tissue has 

more lobules and branching, and fewer terminal end buds, rendering it less sensitive 

to carcinogens (Brown et al. 2010; Lamartiniere et al. 1998; Rowell et al. 2005). In 

humans, self reported high soya or isoflavone intake, over the long term, is 

associated with reduced mammographic parenchymal patterning (a function of the 

breast density and structure) and consequently, reduced breast cancer risk (Jakes 

et al. 2002; Maskarinec et al. 2004; Ziv et al. 2004).   
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There have been no studies to date considering the impact of maternal soy 

consumption during pregnancy, and subsequent breast cancer risk in the female 

offspring.  However, due to the ability of isoflavones to modify the hormone 

environment (see Section 1.3.4) it is possible that they can alter the oestrogen 

environment in utero.  Furthermore, a study of maternal and neonatal isoflavone 

levels during birth found comparable total and individual isoflavone levels in the 

plasma of the mother (Japanese women aged 20 to 30 years, n = 7), umbilical cord, 

and amniotic fluid, suggesting that isoflavones can freely pass the placental barrier 

and may influence development of the foetus (Adlercreutz et al. 1999).   
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1.3.3 Contradictory results from animal studies  

There are numerous studies showing the protective effects of isoflavone feeding 

(between 50 and 250 mg/kg diet) or treatment (intraperitoneal injection) on both 

chemically induced and spontaneous mammary tumours in rats, and xenografts in 

mice.  In each of these studies isoflavones have reduced tumour size, latency, or 

aggressiveness, although they have had little or no effect on tumour incidence rate 

(Gallo et al. 2001; Garvin et al. 2006; Hewitt and Singletary 2003; Jin and 

MacDonald 2002; Kang et al. 2009; Moon et al. 2008).   

Interestingly, dietary genistein or daidzein (200 mg/kg diet) alone or combined (100 

mg/kg each) had very little in the way of chemoprotective effects on 

dimethylbenzanthracene (DMBA)-induced mammary tumours in female Sprague-

Dawley rats (Constantinou et al. 2001).  However, in the same study, a soy protein-

containing diet reduced tumour number, weight, incidence and latency.  This diet 

had similar isoflavone content to the above diets, each resulting in serum genistein 

and daidzein levels of around 1µM.  This suggests that it was some other 

unforeseen component of soy that was responsible for the protective effect in this 

case.  It is important to note, that in this, and many of the previously mentioned 

studies, soy/isoflavone feeding and tumour induction began when the mammary 

tissue of the rats was fully developed, so any protective effects seen were on mature 

breast tissue, and not in the tissue differentiation and development stage.  

Furthermore, the mouse models used implanted tumours, such as MCF7, so do not 

provide any information regarding the transformation of normal breast tissue into 

tumours.    

A recent study suggested that feeding a regimen to neonatal and prepubertal female 

Sprague-Dawley rats (via lactating dam) of equol or genistein (250 mg/kg diet) 

resulted in significantly altered regulation of 23 proteins involved in a range of 

pathways including metabolism, structure, motility, cell cycle control and transport at 

either (or both) 21 (prepubertal) and 50 days (young adult) post partum, again for 

female Sprague-Dawley rats (Wang et al. 2011).  This group found that prepubertal 

genistein significantly reduced proliferation (determined by K i67 antigen staining) in 

the 50 day old rat mammary gland, although not at 21 days.   
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In addition, a study by Brown et al. (2010) suggests that neonatal or prepubertal 

exposure of rats to equol (250mg/kg diet) resulted in a significant increase in the 

differentiation of mammary tissue (i.e. a greater number of mature lobules and 

significantly reduced numbers of immature terminal end buds) which should confer 

protection against carcinogens.   

However, numerous groups failed to demonstrate any long term protective effect of 

isoflavones in female rats against chemically induced breast tumour development 

(Brown et al. 2010; Cohen et al. 2000; Ueda et al. 2003).  In addition, under certain 

experimental conditions soy isoflavones stimulated the growth of oestrogen-

sensitive breast tumours in rodents due to their oestrogen-like effects.   Ju et al. 

(2001) found that the growth of implanted ERα+ MCF7 breast cancer cells in mice 

was promoted in an oestrogenic manner by dietary genistein between 125 and 1000 

mg/kg diet (resulting in serum levels between 0.39 and 3.36 µM).  Similar results 

were also seen in mice with dietary isoflavones (Allred et al. 2001) and E2 or 

chemically induced (MNU: 1-methyl-1-nitrosourea) mammary tumours in rats (Allred 

et al. 2004; Ju et al. 2001; Singh et al. 2010).   

Concerningly, the inhibitory effect of tamoxifen on E2-induced implanted MCF7 

tumours in ovariectomised athymic mice was abrogated by genistein feeding (250 or 

500 p.p.m. in their standard diet) (Du et al. 2012).  The serum levels of genistein and 

its metabolites that this regimen led to was not determined, but the higher dose used 

(1000 p.p.m.) did not interfere with the inhibitory tamoxifen effect.  This echoes the 

biphasic effect of isoflavones on breast cancer cell proliferation often seen in vitro 

(see Section 1.4).  Similar results were seen in earlier studies, also using this model 

(Ju et al. 2002; Liu et al. 2005).  In this case they determined the total (conjugated 

and aglycone) plasma genistein after four weeks of feeding to be between 4 and 5 

µM (Ju et al. 2002), and again, the treatments began when the mice were adult.  

On the contrary, a study looking DMBA induced mammary tumours in rats (female 

Sprague-Dawley) found daidzein to improve the tumour-preventing capacity of 

tamoxifen (Constantinou et al. 2005).   Again, the study began once the rats were 50 

days old, so only looked at the effects of isoflavones on adult breast tissue.  

Daidzein or genistein were provided in the diet (140 and 105 mg/kg diet) as was 

tamoxifen (0.125 mg/kg diet), and serum levels of total genistein, and total daidzein 

and equol, were determined to be approximately 0.5µM after prolonged feeding.  
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Tamoxifen was found to reduce tumor multiplicity, latency and weight, and as 

before, genistein slightly reduced the efficacy of tamoxifen.  However, daidzein 

alone was slightly beneficial, and the combination of daidzein and tamoxifen 

resulted in the greatest protection against mammary DMBA-induced carcinogenesis 

in each case.  The relevance of DMBA-induced mammary tumours in rats to women 

is not apparent.  However this result suggests that in terms of their interaction with 

tamoxifen, genistein and daidzein may not act in the same manner. 

Overall, the impact of genistein and daidzein on the development of mammary 

tumours in rat or mouse models of the disease is inconclusive.  In some cases a 

protective effect is seen, but this could depend upon the dose, age upon 

commencement of treatment, and route of tumor induction.  Furthermore, genistein 

and daidzein appear to interact in opposite manners with tamoxifen, and there could 

be other as yet undiscovered elements of a high soy diet that provide protection 

against mammary carcinogenesis to rodents. 

It must be noted that in many cases the doses described which induce the 

proliferation of mammary tumours in rodents are comparable to the protective doses 

used in other rodent studies.  In particular, one study found that while 10 mg/kg 

body weight dietary daidzein increased mammary tumour growth and the level of 

metastasis to other organs of green fluorescent protein tagged MDA-MB-435 

tumours implanted into mice, the same dose of genistein reduced both tumour 

growth and metastasis compared to a vehicle only control (Martinez-Montemayor et 

al. 2010).   

There are a number of major criticisms of rodent models of breast cancer, which 

must be borne in mind when considering these results.  Firstly, murine models of 

breast cancer are rarely hormone responsive, unlike the majority of human cases, 

due to low expression of ERα and PR (Cardiff 2001).  In addition, spontaneous 

murine breast tumours tend to develop while the mouse is fertile, which again differs 

from human breast cancer.  Finally, the mouse tumours are known to develop and 

metastasise differently than the human variants.  With regard to NMU induced 

tumours, their validity compared to human breast tumours has been assessed by 

comparative gene expression profiling (Chan et al. 2005).  Of the 25 NMU-induced 

tumours assessed, they were found to be largely ERα+, and not invasive or 

metastatic.  They were most similar to non-invasive human ERα+ breast tumours of 
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a low or intermediate grade.  This suggests that this model may be of some value 

when considering the impacts of isoflavones upon this type of breast cancer, but the 

results should not be generalized. 

A number of other criticisms can be leveled at these rodent isoflavone studies which 

may be the cause of this inconsistency.  These are described in detail by Messina 

and Wood (2008) but will be summarized here.  Firstly, numerous rodent studies 

used doses of isoflavones of over 50 times higher than is found in traditional Asian 

diets, and many injected purified isoflavones directly into the animals.  Both result in 

comparatively higher serum levels that are found in humans.   

In addition, while the levels used in animals are based on doses known to induce 

oestrogenic effects in these animals, the corresponding level in humans is unknown 

despite years of investigation.  In order to investigate oestrogenic effects of 

isoflavones ovariectomised animals are frequently utilized, to minimize the impact 

endogenous oestrogens.  Consequently, these animals have considerably lower 

circulating levels of oestrogens than postmenopausal women, meaning that the 

effect seen is of isoflavones in an oestrogen-depleted environment, of questionable 

physiological relevance.  Primate or human models would generate more 

representative results, but both bring ethical concerns and complications. 

Finally, the rate of isoflavone absorption and metabolic profile of soy isoflavones is 

strikingly different between species (Gu et al. 2006; Setchell et al. 2011).  Both the 

extent of isoflavone metabolism, and the range of metabolites detected after a 

comparable soy meal fed to human women, and female Sprague-Dawley rats, 

Hampshire/Duroc Cross pigs and cynomolgus monkeys differed (Gu et al. 2006).  

Presumably mice would metabolise isoflavones differently to humans also.  Of the 

species tested, pigs provided the closest metabolite profile to humans, although 

even then there were considerable differences noted.  This implies that soy feeding 

of rodents would not generate a human-like profile of isoflavone metabolites, and 

consequently the implications for breast cancer incidence, proliferation and 

protective mechanisms may not be the same, and the relevance of inter-species 

comparison of specific dose-effects is limited.   
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1.3.4 Human isoflavone supplementation trials and breast cancer risk 

factors 

Increased mammographic density is a risk factor for breast cancer (Ziv et al. 2004).  

It has been shown that self reported high levels of soy intake, determined by FFQ, is 

associated with higher breast density in a study of over 500 pre- and post-

menopausal women (Maskarinec and Meng 2001).  The same effect was found with 

recalled lifetime soy intake (Maskarinec et al. 2004).  However, in three separate 

interventions this group found no significant effect of a range of daily isoflavone 

supplement doses from 50 to 100 mg/day over one or two years in pre- or post-

menopausal women (Maskarinec et al. 2003; Maskarinec et al. 2004; Maskarinec et 

al. 2009).  These results offer some reassurance that isoflavone supplements may 

not increase breast density.  On the other hand, it is possible that the adult and 

lifetime intakes of soy described by Maskarinec et al. (2001; 2004) are markers for 

adolescent intakes, which could modify breast development and consequently 

increase risk.   

Another three interventions are described where women of varying age, 

menopausal status, and breast cancer status, underwent an exploratory breast 

biopsy before and after a period of isoflavone supplementation with doses ranging 

from 36 to 200 mg/day, and durations between two weeks and three months (Cheng 

et al. 2007; Hargreaves et al. 1999; Sartippour et al. 2004).  None of these groups 

reported any change in breast epithelial cell proliferation as a result of the 

supplementation intervention.  A study of premenopausal women suggested that 

isoflavone supplementation (n = 14, 45mg isoflavones daily for 14 days) enhanced 

proliferation of non-malignant breast cells, and increased expression of 

progesterone receptors and the number of cells in S-phase (McMichael-Phillips et 

al. 1998).  However, once again numbers were small, and the invasive nature of 

each of these procedures is likely to introduce considerable selection bias.   

Supplementation studies in women have highlighted several other physiological 

mechanisms through which isoflavones may reduce breast cancer risk.  A recent 

meta-analysis has shown that isoflavone supplementation reduces circulating levels 

of luteinizing hormone and SHBG in premenopausal women, although it has no 

significant effects in postmenopausal women (Hooper et al. 2009).  Moreover, 

isoflavone supplementation increased menstrual cycle length by one day due to 
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lengthening of the follicular phase, which reduces overall exposure to the luteal 

phase, where breast tissue proliferation is more rapid due to higher progesterone 

levels (Kumar et al. 2002).  Finally, while no significant effects on overall circulating 

oestrogen levels were seen, isoflavones have been demonstrated to alter the ratios 

of various oestrogen metabolites, increasing the benign 2(OH) forms, while reducing 

the levels of the more carcinogenic 16α (OH)-oestrone and 4(OH)-oestrogens (Xu et 

al. 2000).  

The insulin-like growth factors IGF1 and IGF2 are important regulators of mammary 

gland proliferation at key developmental stages including pregnancy, lactation and 

involution (Hadsell 2003).  Furthermore they are potent mitogens, and both IGF1 

and its associated receptor tyrosine kinase (IGF1-R) play key roles in breast cancer 

cell proliferation, survival, and metastasis (Jin and Esteva 2008).  High levels of 

IGF1 and its main binding protein IGFBP-3 are associated with an increased risk of 

premenopausal breast cancer incidence and mortality (Burgers et al. 2011; 

Renehan et al. 2004).  A two year soy isoflavone supplementation reported no 

significant impact of isoflavone supplementation on IGF1, IGFBP-3, or their molar 

ratio at any point during the intervention (Maskarinec et al. 2005).  In this study 196 

premenopausal Hawaiian women consumed two servings of soy foods daily 

(equivalent to approximately 100mg isoflavones daily) for two years, as a 

replacement for a meat, dairy, or snack food.  Likewise, there was no correlation 

between habitual soy intake and serum IGF1 and IGFBP-3 in a group of 261 

premenopausal Japanese women (Nagata et al. 2003).   

However, one smaller intervention (55 American postmenopausal women) found 

that 10 week supplementation with a powdered soy product (approximately 75g soy 

protein per day; isoflavone content unknown) resulted in a slight, although significant 

increase in serum IGF1 and IGFBP-3 (increased by 21.6 and 154.7 µM respectively, 

p = 0.001 for both), and a reduction in SHBG by 5.4µM (p < 0.001; McLaughlin et al. 

2011).  The implications of this result are unclear, as elevated IGF1 levels do not 

appear to be a risk factor for postmenopausal breast cancer (Renehan et al. 2004). 

Overall, isoflavone supplementation appears safe, and interventions show no 

increased risk of breast cancer.   None-the-less, concerns remain regarding the 

safety of supplements, as isoflavones are known to act oestrogenically, and could 

increase risk of recurrence.   
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1.3.5 Isoflavones and recurrence in breast cancer survivors 

Little is known about the effects of isoflavones on cancer recurrence in breast 

cancer survivors, or regarding how they interact or interfere with the oestrogen 

antagonists used to treat breast cancer, such as tamoxifen.  Animal research gives 

contradictory results (Constantinou et al. 2005; Ju et al. 2002) and human evidence 

is scant.   

However, there exist a number of prospective cohorts where isoflavone intake and 

breast cancer recurrence have been examined.  A pooled analysis of these cohorts, 

where n = 4856 (China) and 4658 (United States) breast cancer cases found a net 

reduction in risk of breast cancer specific mortality (HR: 0.83; 95% CI: 0.64, 1.07) 

and a statistically significant reduction in risk of recurrence (HR: 0.75; 95% CI: 0.61, 

0.92) associated with isoflavone intakes of ≥ 10mg/day (Nechuta et al. 2012).  By 

country, a slight reduction in risk associated with consumption of ≥10mg/day 

isoflavones remained for the Chinese women, although non-significant, but in the 

United States the effect of consumption of this level of isoflavones maintained its 

statistical significance.  

The results of individual cohorts tend to agree (Kang et al. 2012), and furthermore, 

suggest that the reduction in mortality and recurrence seen occurs irrespective of 

anastrozole, an inhibitor of aromatase, a key enzyme in E2 biosynthesis (Kang et al. 

2010) or tamoxifen use (Shu et al. 2009).  Where a protective effect was seen, it 

was stronger among women with ERα+ or PR+ breast cancers, and 

postmenopausal women (Guha et al. 2009; Kang et al. 2010). 

One prospective study (n = 339 breast cancer cases in South Korean women) found 

that high soy of isoflavone intakes increased risk of cancer recurrence in women 

with HER2+ cancer (Woo et al. 2012).   However these increases in risk failed to 

achieve statistical significance, and the numbers with recurring HER2+ cancer were 

very low (n = 8 out of 25 recurrent cases). 

Overall, this data implies that dietary soy may reduce risk of breast cancer 

recurrence, particularly among postmenopausal women diagnosed with ERα+ 

cancers, although its effects in cancers of differing receptor statuses may vary.  

More importantly, these studies suggest no increased risk associated with dietary 

soy intake in breast cancer survivors regardless of endocrine therapy use, and that 
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soy does not appear to abrogate the effects of these therapies.  The use of 

isoflavone supplements in post menopausal breast cancer survivors is currently 

contraindicated in the UK (NICE 2009b) and accordingly, reported supplement 

usage amongst this group is low.  Likewise, the level reported in an American cohort 

(n = 1954) was 2.7% (Guha et al. 2009), and 4% reported isoflavone supplement 

use (soy and/or red clover) in a Canadian (n = 417) group of breast cancer patients 

(Boucher et al 2012).  However, this remains an area where further study is 

required, as very little is known about the effects or safety of isoflavone supplements 

(pharmacological doses) in breast cancer survivors.   
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1.4 Proliferative effects of oestrogen and isoflavones in vitro  

1.4.1 Expression levels of the oestrogen receptors in breast cancer 

cell lines 

In an attempt to understand the mechanisms behind the effects of isoflavones on 

breast cancer risk, there have been many investigations in vitro, typically using the 

human breast cancer cell lines MCF7, T47-D, MDA-MB-231, and several others with 

varying genetic make-up (Table 1.2).  The use of cultured breast cancer cell lines as 

a model for breast cancer will be discussed in section 6.5.2.  It is apparent that 

many of the effects of isoflavones on the growth of cultured cell lines are mediated 

through the ERs.   Where present, oestrogens and isoflavones bind to ERs and 

initiate transcription of oestrogen responsive genes.  Typically, genistein and 

daidzein bind to the ERs dose responsively, with around 100- to 1000-fold lower 

affinity than E2 (Hwang et al. 2006; Sotoca et al. 2008).    

Table 1.2: Expression levels of ERα and ERβ in the breast cancer cell lines 

discussed in this review (Tong et al. 2002) 

Cell line Source1 ERα2 ERβ2, 3 

BT20 Breast carcinoma - + 

BT474 Ductal carcinoma + + 

MCF7 Breast adenocarcinoma, pleural effusion + + 

MDA-MB-231 Breast adenocarcinoma, pleural effusion - + 

MDA-MB-361 Breast adenocarcinoma derived from brain 

metastatic site 

+ + 

MDA-MB-

435(s) 

Melanocyte – previously described as pleural 

effusion, ductal carcinoma 

- + 

MDA-MB-468 Breast adenocarcinoma, pleural effusion - ? 

SK-BR-3 Breast adenocarcinoma, pleural effusion - - 

T47D Ductal carcinoma, pleural effusion + + 

ZR75-1 Ductal carcinoma,  malignant ascitic effusion  + + 

1 References (Health Protection Agency 2012; LGC-ATCC 2012) 

2 (Tong et al. 2002) 

3 Refers to ERβ1 expression, the full length isoform (Moore et al. 1998) 
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In human breast tissue, normal, non-malignant breast epithelial cells are significantly 

more likely to be ER-, or solely express ERβ, than cells from malignant breast tissue 

which frequently express ERα (Speirs et al. 1999).  The levels of the two ERs differ 

between cultured breast cancer cell lines (Table 1.2).  Along with the majority of 

breast cancers, MCF7 cells express both ERs, although with much lower levels of 

ERβ mRNA (Kurebayashi et al. 2000; Le Corre et al. 2004; Tong et al. 2002; Yuan 

et al. 2012).  Similarly, ER+ T47D and BT474 cells express both receptors (Lattrich 

et al. 2011; Strom et al. 2004; Yuan et al. 2012).  In MDA-MB-231 breast cancer 

cells, traditionally thought to be ER-, expression of ERα is absent but low level ERβ 

expression occurs (Kurebayashi et al. 2000; Lattrich et al. 2011; Rajah et al. 2009; 

Tong et al. 2002).  In breast tumour biopsy samples ERβ protein was also present, 

although at a lower level in most cases than ERα protein (Saunders et al. 2002). 

It is important to note that although the full length ERβ isoform (ERβ1) is the 

dominant form, there exist 4 truncated isoforms, ERβ2, -3, -4 and -5 (Skliris et al. 

2008).  They have varying transcriptional activating ability, and are expressed at a 

range of levels in cancerous tissue and cell lines (Lattrich et al. 2011; Tong et al. 

2002; Wong et al. 2005; Zhao et al. 2007).  Representations of the five isoforms are 

provided in Figure 1.2.  Their expression levels, on the whole, display no clear 

relationship to tumor invasiveness or ERα expression level.  The cell lines MCF7 

and MDA-MB-231 each express the ERβ1, 2, 4 and 5 isoforms (Tong et al. 2002).  

Little is known about the function of the truncated ERβ isoforms.  The full length 

isoform, ERβ1, will be referred to as ERβ throughout this document. 

As with E2, isoflavone treatment can moderate the expression level of numerous 

proteins, including the ERs.  Treatment of MCF7 cells for 48 hours with 25 µM 

genistein reduced the expression level of ERα mRNA (Lavigne et al. 2008).  

Similarly, 24 hour treatment with 1µM genistein or apigenin reduced the mRNA and 

protein levels of ERα in MCF7 (Seo et al. 2006).  However, 48 hour treatment with 

the phytoestrogen resveratrol (30 µM) increased mRNA levels of ERβ in MCF7, 

MDA-MB-231 and a fibrocystic mammary cell line MCF10A (50 µM), although the 

reported increase in MCF7 was non-significant (Le Corre et al. 2006; Le Corre et al. 

2004).  This group found that resveratrol treatment had no impact upon ERα mRNA 

levels in MCF7.   
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Figure 1.2: Known isoforms of human ERβ  

Based on the description by Moore et al. (1998).  The main, wild type, human ERβ 

(ERβ1, 530 amino acids long), and its four isoforms (ERβ2-5), generated by 

alternate exon splicing.  N-D (black bar) represents the N-terminal domain, DBD 

(grey bar) is the DNA binding domain, and LBD represents the ligand binding 

domain.  Of the latter, the white bar represents the conserved LBD sequence, and 

the striped bars show where sequences diverge between the isoforms. 

However, an in vivo study investigating the effect of a soy phytochemical-rich diet on 

MCF7 tumour xenografts in mice showed that the isoflavone diet reduced levels of 

ERα protein (by Western blot), but had no effect on transfected wild-type ERβ 

protein levels (Zhou et al. 2004).  Genistein (up to 30 µM), or E2 (0.01 to 1 µM) 

treatment both increased the levels of the full length and β2 isoforms of ERβ in 

T47D cells, whilst reducing the levels of β5 (Cappelletti et al. 2006).  At the same 

time, quercetin had slight but not significant effects, and only E2 treatment increased 

the levels of ERα present.  Three or six months tamoxifen treatment reduced the 

level of ERα antibody staining observed in tumour biopsy samples from women with 

ERα+ breast cancer (n = 33). However, at the same time, this treatment had no 

impact upon the level of ERβ, or ERβ2 antibody staining (Miller et al. 2006).  

Furthermore, this group found no correlation between ERα, ERβ, and ERβ2 levels. 
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This suggests isoflavones, and other SERMS such as tamoxifen regulate the levels 

of ERα and ERβ differently in these breast cancer models.  There may be an 

additional effect of the type of isoflavones used, or differences post-transcription in 

the transfected mouse model compared to the human colorectal and bovine models 

described previously.  This would require further study to confirm. 

In humans, the presence of ERα remains an important biomarker in breast cancer 

as it indicates a possible beneficial effect to the patient of endocrine treatment, 

although much remains to be determined regarding its precise role in mammary 

development and carcinogenesis (for review see Palmieri et al. 2002).  Studies 

using individual or combined knock-outs of ERα and ERβ in mice have 

demonstrated that the two receptors have different roles in mouse fertility.  These 

two knockout mouse lines, known as αERKO and βERKO respectively, are widely 

used, and their reproductive phenotype is well established.  They both display 

differing sexual behaviour, and both αERKO males and females are infertile, but 

βERKO males have normal fertility, and βERKO females are subfertile to varying 

degrees (Dupont et al. 2000; Hewitt and Korach 2003; Kudwa and Rissman 2012).   

Although the role of ERα and ERβ in mammary development is difficult to measure 

due to the presence of ERβ splice variants, and also the likelihood of ovarian 

disruption which is common in ERKO mice, prepubertally, βERKO female mice 

develop mammary glands which appear normal (Hewitt and Korach 2003).  

However, sexually mature βERKO female mammary glands are less developed with 

less branching than wild type, although often able to function and lactate near-

normally, and have a normal proliferation response upon E2 treatment (Hewitt and 

Korach 2003; Palmieri et al. 2002).  By contrast, αERKO females do not develop 

mammary glands (Hewitt and Korach 2003).  This implies that ERβ has a role in the 

differentiation of the mammary gland during puberty, but is not required for E2-

induced mammary proliferation or pre-pubertal mammary gland formation, while 

ERα has an indispensable role early on in mammary gland development.   

The two receptor subtypes have overlapping and yet unique sets of downstream 

oestrogen responsive target genes, as shown by gene expression profiling 

microarrays (Zhao et al. 2008).  Similarly, gene expression profiling of aortas 

isolated from mice with either ERα or ERβ knockout have shown that while ERα is 

essential for the majority of E2-mediated increases in gene expression, ERβ 
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mediates nearly 90% of E2-induced decreases in gene expression (O'Lone et al. 

2007). 

In human breast cancer cells it is generally agreed that ERα mediates the 

proliferative effects of E2 and isoflavones (Maggiolini et al. 2001), and transfection 

with an antisense ERα gene to silence ERα expression inhibited E2 induced 

proliferation in human BG-1 and 2008 ovarian cancer cells (Albanito et al. 2007). 

Regrettably there have been few quality studies examining the role of ERβ in breast 

cancer, and its role is not fully understood.  Expression of full length ERβ (wild type; 

ERβ1) appears to relate to more aggressive tumor types, such as HER2+ or triple 

negative (ERα-, PR-, HER2-) cancers, and acts as an independent predictor of 

recurrence, but also indicates promising response to endocrine therapy and overall 

survival (Skliris et al. 2008; Speirs 2008).  This positive association with good 

response to endocrine therapy and promising prognosis may relate to the fact that in 

approximately 58% of breast tumours ERβ1 is co-expressed with ERα, or 60% in 

the case of total ERβ (Skliris et al. 2008).  However, a further 18% of all breast 

tumours can be classified as ERα-/ERβ+ (Skliris et al. 2008).  Evidence also exists 

to suggest that ERβ is a tumor suppressor gene: compared to normal or benign 

breast tissue, expression of ERβ is lost or reduced in the majority of malignant 

breast tumours (Rody et al. 2005; Zhao et al. 2003).    
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1.4.2 Techniques for assessing the impact of isoflavones on breast 

cancer cell proliferation in vitro 

Numerous techniques have been used to assess the effect of isoflavones on the 

proliferation of breast cancer cell lines (Table 1.3).  Traditionally, cell counting using 

a haemocytometer with or without Trypan Blue dye has been widely used in this 

field (Maggiolini et al. 2001; Ying et al. 2002).  This method is discussed in detail in 

(Sections 2.2 and 2.3).  However, it is relatively insensitive and open to error (Burton 

2005).  This can be overcome by use of an automated cell counter (Matsumura et 

al. 2005).   

Frequently, labeled thymidine (3H-thymidine) is incorporated into cell growth 

medium, allowing proliferation to be quantified by the degree of incorporation of the 

radioactive label into newly synthesized DNA during cell division (Hwang et al. 2006; 

Kang et al. 2009).  While this method considered valid for this use by some (Burton 

2005), considerable evidence exists suggesting that the presence of the low energy 

β-irradiation emitting tracer can inhibit proliferation, induce apoptosis, and reduce 

DNA synthesis (Hu et al. 2002).   

However, the most widely used method in this subject area is the MTT assay 

(Cherdshewasart and Sriwatcharakul 2008; Liu et al. 2010; Rajah et al. 2009; Theil 

et al. 2011; Umehara et al. 2009; Yang et al. 2010; Ying et al. 2002; Yuan et al. 

2012).  This technique is discussed further in sections 2.4 and 6.11).  Briefly, it 

utilizes a yellow, water soluble dye, 3-(4, 5-dimethylthiazol-2-yl)2, 5-diphenyl 

tetrazolium bromide (MTT), which is metabolized by viable, actively metabolizing 

cells into a purple product.  The intensity of the purple colour can be quantified using 

a spectrophotometer, and directly reflects the number of actively metabolizing cells 

present.  Other groups have used the WST-1 assay (Ying et al. 2002), or the MTS 

assay (Seo et al. 2006), which are related techniques, with slight variations to the 

tetrazolium-type dye used.  The AlmarBlue dye used by Umehara et al. (2009) 

works by a similar mechanism, whereby the stain is metabolized by viable cells into 

a fluorescent product.  



 

Table 1.3: Summary of methods used to investigate the effects of isoflavones on breast cancer cell proliferation 

Study Cell line Vehicle (dose used 
for control) 

Proliferation assay Isoflavone 
treatment (days) 

Cherdshewasart 

and Sriwatcharakul 

(2008) 

MCF7 DMSO (2%) MTT 3 

Choi et al. (2009) MCF7 DMSO (x) MTT 1 

Constantinou et al. 

(1998) 

MCF7,        

MDA-MB-468 

DMSO (x) Haemocytometer / Trypan Blue dye 

exclusion 

3 

Davis et al. (2008) MCF7,         

MDA-MB-231 

DMSO (x) CellTiter 96® aqueous non-radioactive 

cell proliferation assay (MTS) 

6  

Ferenc et al. (2010) MCF7,         

MDA-MB-231 

Vehicle unknown -   

Untreated control 

MTT / automated cell counter 1, 2 

Hwang et al. (2006) MCF7 Vehicle unknown (x) Labelled thymidine incorporation 2 

Jacobs et al. (2000) MCF7, T-47D, 

MDA-MB-231 

DMSO (0.2%) MTT 5-14 * 

Jin et al. (2010) MCF7 DMSO (0.1%) MTT 1, 2, 3 

Kang et al. (2009) MCF7,         

MDA-MB-231 

Vehicle unknown (x) Labelled thymidine 3 
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Study   
  

Cell line  Vehicle (dose used 
for control) 

Proliferation assay  Isoflavone 
treatment (days) 

Li et al. (2008) MDA-MB-231 Ethanol (0.1%) MTT 2 

Liu et al. (2010) MCF7,        

MDA-MB-231 

Ethanol (0.1%) MTT 3 

Maggiolini et al. 

(2001) 

MCF7 Vehicle unknown (x) Haemocytometer, MTT 6 

Matsumura et al. 

(2005) 

MCF7 Ethanol (0.1%) Automated cell counter 7, 14 

Peterson and 

Barnes (1996) 

MCF7, T47D, 

BT20, ZR75-1 

DMSO (1%) MTT, labelled thymidine incorporation 4 

Rajah et al. (2009) MDA-MB-231, 

T-47D 

DMSO (0.1%) MTT 3 

Sakamoto et al. 

(2010) 

MCF7 DMSO (x) Colony formation assay 14 

Schmidt, Michna 

and Diel (2005) 

MCF7 DMSO - untreated 

control 

Flow cytometry - % cells in S phase of 

cell cycle 

5 

Seo et al. (2006) MCF7 Ethanol (0.1%) CellTiter 96® aqueous non-radioactive 

cell proliferation assay (MTS) 

2, 3, 6, 8  

Seo et al. (2011) MDA-MB-231 DMSO (0.2%) Haemocytometer 3 
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Study Cell line Vehicle (dose used 

for control) 

Proliferation assay Isoflavone 

treatment (days) 

Shim et al. (2007) MCF7 DMSO/Ethanol, 1:1 

(0.05%) 

MTT 1 

Shon et al. (2006) MCF7,        

MDA-MB-231 

Vehicle unknown (x) MTT 2, 4, 6 

So et al. (1997) MCF7 DMSO (0.6%) MTT, labelled thymidine incorporation 3 

Song et al. (2007) MCF7 Ethanol (x) Automated cell counter 4  

Theil et al. (2011) MCF7, BT20 Ethanol (1%) MTT, BrdU 1 

Umehara et al. 

(2009) 

MCF7, T47D DMSO (1%) AlmarBlue fluorescence 4 

Yang et al. (2010) MCF7, ZR75-1, 

MDA-MB-435,  

Vehicle unknown (x) MTT 6  

Ying et al. (2002) T47D DMSO (0.1%) WST1, Trypan Blue dye exclusion 1, 2 

Yuan et al. (2012) MCF7, T47D DMSO/Ethanol,    

1:4 (0.1%) 

MTT 3 

Zava and Duwe 

(1997) 

MCF7, T47D, 

MDA-MB-468 

Ethanol (0.1%) Total DNA content (by propidium iodide 

fluorescence assay) 

10 

* Not isoflavones, E2 only; (x) dose for control not given 
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1.4.3 Oestrogen and isoflavones at physiological concentrations 

enhance the proliferation of ERα+ breast cancer cells similarly 

Numerous animal and in vitro studies suggest that E2 induces proliferation in a 

range of mammalian cell types (Dos Santos et al. 2010; Kumar et al. 2010; Miki et 

al. 2009; Ren et al. 2010).  Likewise, in ERα+ breast cancer models such as MCF7, 

ZR75-1 or T47D cells, at its range of physiological concentrations (between 1 pM 

and 10 nM) E2 stimulates proliferation (Davis et al. 2008; Jacobs et al. 2000; Lau et 

al. 2009; Matsumura et al. 2005; Rajah et al. 2009; Schmidt et al. 2005; Song et al. 

2007; Sotoca et al. 2008; Zava and Duwe 1997).  However, E2 (1nM) had no 

significant effect on the proliferation of ERα-/ERβ+ MDA-MB-231 cells (Jacobs et al. 

2000; Rajah et al. 2009). 

Similarly, low doses of isoflavones (ranging from 1 nM to 10 µM, reflecting serum 

levels seen with low to high consumers of soy) induce the proliferation of ERα+ 

breast cancer cells including MCF7 and T-47D dose dependently.  This effect 

occurs with genistein, daidzein, equol, and other isoflavones, although daidzein 

frequently results in a lower magnitude effect than genistein.  This effect of the 

isoflavones is similar to that of E2, although at least 1000-fold higher concentrations 

of isoflavones are required to achieve comparable proliferation (Cherdshewasart 

and Sriwatcharakul 2008; Hendrix et al. 2006; Hwang et al. 2006; Kang et al.  2009; 

Liu et al. 2010; Maggiolini et al. 2001; Matsumura et al. 2005; Rajah et al. 2009; Seo 

et al. 2006; Umehara et al. 2009; Yang et al. 2010; Ying et al. 2002; Yuan et al. 

2012; Zava and Duwe 1997).  Microarray gene expression analysis confirms that 48 

hour treatment of MCF7 cells with 1 or 5 µM genistein elicits gene expression 

patterns indicative of increased mitotic growth (Lavigne et al. 2008). 

A wide range of techniques have been used to generate this information, 

summarized in Table 1.3.  On the whole, broadly similar growth conditions have 

been used in each instance.  These comprise a period of 1 to 3 days oestrogen 

washout prior to treatment, in phenol red free2 growth medium supplemented with 

dextran/charcoal stripped fetal bovine serum (DC-FBS), to eliminate the possibility 

of the oestrogenic content of these components confounding the oestrogenic effects 

                                                 
2
 Phenol red, a pH indicator commonly added to tissue culture medium has a weak 

oestrogenic effect (Katzenellenbogen et al. 1987). 
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seen.  This is followed by isoflavone treatment for between one and 14 days, then 

measurement.  On the one hand the range of methods and time scales used argues 

that the effects of isoflavones on the proliferation of breast cancer cells is 

reproducible regardless of method used, and stands up to scrutiny.  However, as 

different methods have been used, care must be taken when comparing their 

results.   

Notable exceptions are Ying et al. (2002), who conducted their experiments with 

standard media containing phenol red, and Kang et al. (2009) used FBS that was 

not stripped of hormones.  While their results do not appear to differ from those of 

the other groups, the presence of phenol red and standard serum in the media can 

increase the growth rate of MCF7 cells in a weakly oestrogenic manner, and this 

could influence their results (Katzenellenbogen et al. 1987).  

Most groups have compared their treatments to a control treated with the ligand 

vehicle alone: dimethyl sulfoxide (DMSO), ethanol, or a mixture of both.  The 

majority of these groups used these solvents at a dose of 0.1% in the final solution, 

which is unlikely to cause any significant effects.  However, in some cases, 

discussed in further detail in section 6.1.2, the choice and dose of solvent may have 

an impact on cell proliferation.  Furthermore, in several cases it is not apparent 

which solvents and doses were used.    

It is interesting to note that the phase II metabolites of genistein (genistein-7-

glucuronide, genistein-7-sulfate and genistein-4’-sulfate) had very little impact upon 

the proliferation of MCF7 or T47D cells after 72 hour treatment with 5.1nM to 80µM 

doses (Yuan et al. 2012).  However, the overall impact of these metabolites can only 

be guessed at, as the preparations used in this study were not pure.  In addition, this 

group demonstrated that even in the cell lines, genistein was quickly and extensively 

metabolized to these products, and others, which also demonstrated metabolism 

back into the aglycone form.  Based on this, and the low oestrogenic activity of 

numerous of the metabolites compared to the parent aglycones (Pugazhendhi et al. 

2008; Zhang et al. 1999), Yuan et al. concluded that the metabolism of genistein 

had no discernible impact upon its effects on the proliferation of the cell lines tested. 

Concerningly, these proliferation-enhancing concentrations of isoflavones echo the 

circulating levels seen in most European and American women.  However, this 
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growth-enhancing effect is limited to ERα+ cells.  Addition of oestrogen receptor 

blockers such as tamoxifen or ICI 182780, also known as fulvestrant or Faslodex, 

prevents isoflavones from inducing proliferation (Hwang et al. 2006; Liu et al. 2010; 

Maggiolini et al. 2001).  This suggests that isoflavones may act on proliferation 

through the ERs, and are acting as oestrogen agonists.   

Interestingly, tamoxifen (10 nM) also promotes the proliferation of MCF7 breast 

cancer cells (Coiret et al. 2007).  This effect has been shown in a number of ERα+ 

breast cancer cell models, and is associated with the development of tamoxifen 

resistance (Clarke et al. 2001; Keeton and Brown 2005).  Higher concentrations of 

tamoxifen, from 1μM upwards, inhibit the growth of both MCF7 and MDA-MB-231 

breast cancer cells, in addition to a number of human prostate and colon cancer cell 

lines (Abdul et al. 2003; Tanos et al. 2002).  On the contrary, the full oestrogen 

antagonist ICI 182 780 inhibits proliferation and induces apoptosis in MCF7 cells at 

all doses tested between 10 nM and 10 µM (Schmidt et al. 2005). 
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1.4.4 Physiological doses of isoflavones and ERα-/β+ cell proliferation 

As ERα-/β+ cell lines such as MDA-MB-231 have traditionally been regarded as ER-

negative, there has been very little research into the effects of the doses of 

isoflavones known to promote proliferation in an oestrogenic manner (≤ 1 μM).  

However, the few studies identified yield some very interesting results.  Rajah et al. 

(2009) showed that while 1 nM to 1 μM genistein treatment for 72 hours resulted in 

a dose-dependent increase in the proliferation of T47D cells, compared to the 

vehicle (0.1% DMSO) alone, the same regime with MDA-MB-231 cells resulted in 

approximately 20% inhibition of proliferation.  Similar results have been generated 

by Kang et al. (2009) using MCF7 and MDA-MB-231 cells, although with the higher 

dose of 18 μM genistein.  

A different approach was taken by Sotoca et al. (2008).  This group used T47D 

cells, with or without a tetracycline-inducible ERβ gene.   This cell line normally 

expresses ERβ at a relatively low level compared to ERα (Tong et al. 2002).  With 

this low level of ERβ expression, 48 hours of genistein or quercetin treatment (0.001 

to 5 μM) increased proliferation compared to a DMSO only control.  However, 

increasing the expression of ERβ reduced the isoflavone induced enhancement of 

proliferation previously seen.  Similarly, it was found that by artificially increasing 

ERβ levels in a number of ERα-dominant breast cancer models (including MCF7 

and T47D cell culture, and MCF7 tumours implanted into mice) E2 treatment began 

to exert a negative effect on cell proliferation as ERβ expression levels increased to 

match ERα (Chang et al. 2006; Paruthiyil et al. 2004; Sotoca et al. 2008; Strom et 

al. 2004).   A variety of different methods were used in these studies to quantify ERβ 

expression and protein levels, including use of FLAG antibodies, polymerase chain 

reaction (PCR), and quantification of the levels of fluorescence from a luciferase 

reporter gene product stably transfected along with the ERβ gene.  It has been 

hypothesised that ERα mediates the growth promoting effects of physiological levels 

of isoflavones, while through ERβ they act in a growth inhibitory manner, with the 

outcome depending upon the ratio of ERα:ERβ  This will be further discussed in 

section 6.1.5. 

In the apparently ERα-/ERβ- cell line MDA-MB-435, genistein treatment at levels 

between 0.1 and 10 μM had no significant effect on cellular proliferation (Seo et al. 

2006; Yang et al. 2010).  Similar results were also demonstrated with the 
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phytoestrogen apigenin (Seo et al. 2006).  Interestingly, genistein up to 10µM had 

no effect on the proliferation of MDA-MB-435 cells transfected with ERβ (Yang et al. 

2010).   However, the relevance of these results are debatable.  Firstly, a variant of 

this cell line known as MDA-MB-435s is known to express ERβ, calling into question 

its ERβ- status.  Secondly, evidence exists suggesting that this cell line is in fact of 

melanoma origin, not breast (Rae et al. 2007).   

Likewise, genistein treatment at levels up to 10µM had no impact upon the 

proliferation of the breast cancer cell line BT20 (Theil et al. 2011).  They proposed 

this cell line to be ERα-/β-, as it showed no reaction with an ERβ antibody.  

However, ERβ mRNA for a number of the known ERβ isoforms (β1, β2 and β4) is 

present in BT20 cells (Tong et al. 2002).  This discrepancy may relate to post-

transcriptional events, or may be an artefact introduced by the choice of antibody 

used by Thiel et al., and as a result the ERβ status of BT20 remains unclear.   

Similarly, genistein treatment up to and including 1µM had no significant impact 

upon the proliferation of MDA-MB-468 cells (Zava and Duwe 1997).  This cell line is 

known to be ERα-, but its levels of ERβ are not known (Table 1.2). 
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1.4.5 Inhibition of proliferation by isoflavones in breast cancer cells 

The effect of isoflavones on the growth of ERα+ breast cancer cells is biphasic.  At 

higher concentrations (10 µM upwards), similar to the circulating levels in the very 

highest soy consuming Eastern-Asians (Arai et al. 2000), isoflavones are cytotoxic, 

reducing proliferation in MCF7 (Table 1.4), ZR75-1 and T47D breast cancer cell 

lines in a dose responsive manner (Choi et al. 2009; Constantinou et al. 1998; Davis 

et al. 2008; Ferenc et al. 2010; Jin et al. 2010; Kang et al. 2009; Liu et al. 2010; 

Maggiolini et al. 2001; Peterson and Barnes 1996; Sakamoto et al. 2010; Shim et al. 

2007; Shon et al. 2006; Theil et al. 2011; Yang et al. 2010; Ying et al. 2002).   

As with the lower isoflavone concentrations, a wide range of techniques and time 

scales have been used to investigate the impact of this higher concentration range 

of isoflavones on breast cancer cell proliferation (Table 1.4).  Most studies have 

used phenol red free medium supplemented with 10% DC-FBS for the duration of 

their experiments.  Exceptions to this are Liu et al. (2010), who used 5% FBS, and a 

number of groups used standard phenol-red containing medium and 10% FBS for 

experimental treatments (Choi et al. 2009; Ferenc et al. 2010; Seo et al. 2011; Shon 

et al. 2006).   

These differences in protocol make direct comparisons between these studies 

difficult.  Accordingly, the groups propose a wide range of concentrations at which 

genistein ceases to promote MCF7 proliferation, and begins to inhibit it.   In MCF7 

the IC50 (dose required for inhibition of the maximal response by 50%) for the 

inhibition of proliferation by 24 hour genistein treatment has been proposed to be 

27.5µM (Shim et al. 2007).   This figure seems broadly representative of the studies 

described, with the exceptions of Liu et al. (2010) and Yuan et al. (2012) which 

suggest that genistein concentrations vastly in excess of this would be needed to 

see an inhibitory effect on proliferation.  The treatment duration does not appear to 

have an impact upon the concentration of genistein required to inhibit proliferation in 

MCF7.   
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Table 1.4: Inhibition of MCF7 proliferation by genistein, summary of previous 

results 

Study  Lowest genistein conc. at which 

growth inhibition occurs 

Time (days) 

Choi et al. (2009) 3.5µM 1 

Constantinou et al. (1998) 10µM 3 

Davis et al. (2008) 10µM 6 

Shim et al. (2007) 15µM 1 

Yang et al. (2010)  17µM 6 

Kang et al. (2009) 37µM 3 

Ferenc et al. (2010) 50µM 1, 2 

Shon et al. (2006) 50µM 2, 4, 6 

Maggiolini et al. (2001) >10µM* 6 

Sakamoto et al. (2010) >10µM* 14 

Liu et al. (2010) >50µM* 3 

Yuan et al. (2012) >80µM* 3 

* Proliferation at these concentrations was still greater than with the control 

treatment, although it had peaked at a lower concentration and was dropping. 
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Microarray gene expression analysis has shown that 48 hour treatment of MCF7 

cells with 25 µM genistein results in a reduced proliferative gene expression profile 

(Lavigne et al. 2008).  However, often the isoflavone doses used are very high, up to 

150 μM.  These doses are not achievable in the blood through diet alone, making 

their physiological relevance questionable.   

Where daidzein has been used the effect is comparable (Jin et al. 2010; Ying et al. 

2002), although possibly slightly higher concentrations may be required to have the 

same effect (Constantinou et al. 1998).  This again is dose dependent.   

A similar effect is seen in the ERα-/ERβ+ breast cancer cell lines MDA-MB-231 

(Table 1.5), and BT20 and MDA-MB-468 (ERβ-status not known), with treatment 

with isoflavones above 10 μM reducing proliferation in a dose responsive manner 

(Constantinou et al. 1998; Ferenc et al. 2010; Kang et al. 2009; Li et al. 2008; 

Peterson and Barnes 1996; Rajah et al. 2009; Seo et al. 2011; Shon et al. 2006; 

Theil et al. 2011; Zava and Duwe 1997).  Most studies have used genistein for this, 

although resveratrol, daidzein, equol and biochanin A act similarly.  As discussed, 

lower concentrations of genistein (down to 1nM) have only been used with MDA-

MB-231 cells on one occasion, and were also found to inhibit proliferation (Rajah et 

al. 2009).   

Interestingly, 2’ hydroxylation of genistein by the enzyme isoflavone 2’-hydroxylase 

made it approximately twice as effective at decreasing MCF7 viability at the same 

dose of unhydroxylated genistein (Choi et al. 2009).    This genistein metabolite also 

has greater antioxidant capacity than its parent molecule, and may more closely 

reflect the impact of partial metabolism of genistein by gut microflora.   

Concentrations of genistein above 10µM have not been widely used to assess their 

impact on proliferation of breast cancer cell lines with other hormone receptor 

status.  However, 17 and 50µM genistein reduced the proliferation (MTT assay) of 

MDA-MB-435, ZR75-1 and SK-BR-3 breast cancer cells (Tong et al. 2002; Yang et 

al. 2010).  This suggests that the inhibition of proliferation by high (upwards of 10 or 

50µM) concentrations of isoflavones may be a universal phenomenon in breast 

cancer cell lines, regardless of ER status.  Furthermore, inhibition of MCF7 

proliferation by the pharmacological dose of 100µM genistein was not abrogated by 
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the ER-antagonist ICI 182780 (Maggiolini et al. 2001).  However, the significance of 

the use of this very high dose is limited, as it was likely to be acting in a non-specific 

cytotoxic manner. 

Table 1.5: Inhibition of MDA-MB-231 proliferation by genistein, summary of 

previous studies 

Study  Lowest genistein conc. at which 

growth inhibition occurs 

Time (days) 

Rajah et al. 2(009) 1nM 3 

Li et al. (2008) 5µM 2 

Kang et al. (2009) 18.5µM 3 

Ferenc et al. (2010) 50µM 1, 2 

Seo et al. (2011) 100µM 3 
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1.4.6 Combinatory effects of isoflavones and oestrogen on breast 

cancer cell proliferation  

These studies do not explain why in epidemiological studies isoflavones appear to 

be more protective against premenopausal, and ERα+ breast cancers, or why 

dietary isoflavones do not significantly increase breast cancer risk when in low 

doses.  The interactions between isoflavones and endogenous oestrogens have 

been investigated to attempt to answer some of these questions. 

At high isoflavone concentrations previously shown to reduce proliferation (5µM and 

above) several laboratories have shown that in ERα+ MCF7 and T47D cells, 

genistein partially or fully reversed the growth stimulatory effect of premenopausal 

and postmenopausal E2 levels (Maggiolini et al. 2001; Matsumura et al. 2005; 

Miodini et al. 1999; Peterson and Barnes 1996; So et al. 1997; Wang and Kurzer 

1998; Zava and Duwe 1997).  This ability of the isoflavones is unrelated to their 

oestrogenic activity, as an identical response was seen in a hormone insensitive 

strain of MCF7 (Maggiolini et al. 2001), and in ERα- MDA-MB-231 cells (Rajah et al. 

2009).   In a more recent study, 10 nM E2 and 10 µM glycitein (and genistein and 

daidzein to a lesser extent) resulted in significantly less MCF7 proliferation than the 

control (vehicle only) or E2 alone (Sakamoto et al. 2010).   These results correspond 

with data from epidemiological studies showing a reduction in breast cancer risk 

(premenopausally) associated with high isoflavone intake (Section 1.3.1), although 

the isoflavone concentrations used in vitro are frequently higher than those 

observed in vivo.   

However, the results of studies looking at the effects of lower (more relevant to 

Western populations) concentrations of isoflavones at physiological E2 levels are 

less conclusive.  At postmenopausal E2 concentrations (10pM), one study 

suggested that expression of a reporter gene tagged to an oestrogen responsive 

(ERα or ERβ) promoter in human embryonic kidney 239 cells was increased by 

treatment of 1 nM to 1 µM daidzein or several of its metabolites (tetrahydrodaidzein, 

equol and O-desmethylangolensin), making them oestrogen agonists in these 

conditions, and acting in an additive manner with E2 (Hwang et al. 2006).  With 

premenopausal E2 (1 nM) equol and tetrahydrodaidzein tended to inhibit oestrogen 

induced reporter transcription via ERα, and to a greater extent via ERβ (Hwang et 

al. 2006).   The same group reported a similar pattern of results for proliferation in 
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MCF7 cells, although did not show the results.  Likewise, activity of rat ERα and 

ERβ-mediated luciferase reporter gene (where the ERs and reporter were 

transfected into human hepatoma HepG2 cells) was enhanced in an additive 

manner by genistein (0.1µM to 1nM) at low concentrations of E2 (10pM and 

100pM), but at E2 concentrations above this (1nM to 100nM) there was maximal 

reporter activity which was not affected by the presence of genistein (Casanova et 

al. 2012).   

In MCF7 cells, 24 hour treatment with genistein up to 1µM and low levels (10pM or 

100pM) of E2 had a synergistic effect on DNA synthesis (labeled thymidine 

incorporation), which was not apparent at higher E2 concentrations (Wang and 

Kurzer 1998).  Similarly, others present data demonstrating that the ability of these 

lower concentrations of genistein to induce MCF7 proliferation or expression of 

ERE-reporter gene constructs in MCF7 was lost when they were treated with 

genistein or daidzein in combination with physiological levels of E2 between 0.1 and 

1nM (Matsumura et al. 2005; Schmidt et al. Diel 2005).   

Overall, these studies imply that in vitro, post-menopausally, low (1nM to 1µM) 

levels of isoflavones may function as oestrogen agonists, promoting ERα-induced 

transcription and the growth of ERα+ breast cancer cells, while pre-menopausally 

they are masked by the stronger oestrogenic effect, or may have some slight 

inhibitory effect.   

On the other hand, Rajah et al. (2009) present evidence for a synergistic inhibitory 

effect of genistein (1nM to 100µM) and 1nM E2 on MDA-MB-231 proliferation.  In 

this case they report approximately 40% reduction in proliferation with the combined 

treatments, compared to around 17% with genistein alone.   

These studies provide some evidence for the mechanism through which high levels 

of isoflavones, similar to those achieved in the diet of Eastern-Asians consuming 

‘traditional’ high-soy diets, could protect against breast cancer.  Additionally, lower 

levels of genistein may be of benefit against ERα- tumours, and ERα+ breast cancer 

in a premenopausal E2-environment, but could increase risk postmenopausally.  

However, many of the conclusions regarding the effects of lower levels of 

isoflavones at physiological E2 levels are based on ER-induced transcription 

(including that mediated by the rat homologues of ERα and ERβ) rather than cell 

proliferation, and what remains regarding MCF7 proliferation, particularly at 
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postmenopausal E2 levels, is less convinving.  Many of the studies have replicated 

either pre- or postmenopausal E2 concentrations (not the full set) and there is no 

data available regarding the effect of daidzein at postmenopausal E2 levels on 

proliferative outcomes.  Additionally, in epidemiological studies, the protective effect 

of isoflavones appears stronger for ERα+ breast cancers, but in vitro the anti-

proliferative and cytotoxic properties of isoflavones are independent of the ER status 

of the cells.  Furthermore, the majority of studies described are limited by only using 

ERα+ cell lines.   
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1.4.7 Summary of the effects of isoflavones on breast cancer cell 

proliferation 

Overall, the impact of isoflavones on breast cancer cell proliferation relates to the 

oestrogen environment and relative levels of the receptors ERα and ERβ.  E2 alone 

at its physiological range of concentrations promotes the proliferation of ERα+ cell 

lines such as MCF7, but not ERα-/ERβ+ MDA-MB-231 cells. 

Likewise, in the absence of E2, isoflavones promote the proliferation of ERα+ breast 

cancer cell lines in a dose responsive manner up to concentrations of around 10µM.  

This occurs oestrogenically, via ERα, and is inhibited by the addition of ER 

antagonists.  Proliferation is biphasic in these cell lines, and peaks at around 10µM 

then begins to drop.  The inhibition of proliferation in MCF7 is not mediated by the 

ERs. 

In MDA-MB-231 and other ERα-/ERβ+ cell lines however, even relatively low 

concentrations of genistein (1nM to 1µM) result in a slight inhibition of proliferation, 

although more dramatic inhibitory effects are seen at higher concentrations 

(>10µM).  The inhibitory effect appears to be related to the ratio of ERα:ERβ, with 

increasing expression of ERβ resulting in a more pronounced inhibitory effect on 

proliferation.   

As many of the effects of isoflavones are oestrogen-agonistic, and are mediated by 

the ERs, it follows that the presence of endogenous oestrogens will impact upon 

their effectiveness.   However, there is little data regarding their impact upon 

proliferation in the presence of E2, and what exists to date is of questionable value.  

In MCF7 high (>10µM) concentrations of genistein antagonize the proliferative effect 

of physiological E2 levels, in an ER-independent manner.  However, depending on 

the concentration of E2 present, lower (more physiologically relevant) genistein 

concentrations have been shown variously to act synergistically with E2 

(postmenopausally), have no net effect, or act as E2 antagonists (premenopausally).   

As discussed, much of this is based on data regarding ER-mediated transcription of 

reporter genes rather than proliferation.  This requires clarification. 

Many questions remain regarding the effects of isoflavones at endogenous E2 

levels, particularly postmenopausally, and in ERα-/ERβ+ cell lines.  In addition to 

this, caution must be exercised when directly translating in vitro results to in vivo 



55 | P a g e  

 

effects, as many factors may affect the physiological response in the different 

systems.  It is vital that evidence regarding the mechanisms through which 

isoflavones act in vitro is confirmed in vivo before recommendations are made.  

However, it remains possible that much of the proposed anti-proliferative activity of 

isoflavones lies in their ability to compete with endogenous oestrogens for oestrogen 

receptor binding sites.   

However, it is apparent that they may also moderate breast cancer risk through their 

pro-apoptotic, anti-angiogenic, antioxidant and numerous other non-genomic 

mechanisms. 
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1.5 Induction of apoptosis in breast cancer cells 

The mechanisms through which isoflavones have been proposed to mediate their 

anti-proliferative effects are many, and cannot all be discussed in this review.  Some 

of these effects include acting as antioxidants (Choi et al. 2009), modifying the 

activity of growth factor signaling including the Mitogen Activated Protein Kinase 

(MAPK) and IGF1 pathways (Chen et al. 2007; Liu et al. 2010; Lucki and Sewer 

2011), antagonizing oestrogen and androgen mediated signaling (Banerjee et al. 

2008), inhibition of angiogenesis (Garvin et al. 2006; Yu et al. 2012) and inhibition of 

oestrogen biosynthesis (Brooks and Thompson 2005).  Furthermore, E2 and 

isoflavones have been shown to regulate a number of the intracellular processes 

required for apoptosis in breast cancer cells.  These include modifying intracellular 

calcium levels and caspase activation, both of which may be central to their effects 

on the induction of apoptosis.  
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1.5.1 Morphological definition of apoptosis 

The term ‘apoptosis’3 was first coined in 1972 to describe a distinct series of well 

defined morphological events known as programmed cell death (Kerr et al. 1972).  

Apoptosis is a highly regulated process, which is essential to growth and 

development.  It is triggered extrinsically by membrane bound ‘death’ receptors or 

ligand deprivation-induced dependence receptor, or intrinsically by intracellular 

stress conditions, leading to the permeablization of the mitochondrial outer 

membrane which triggers mitochondria mediated signaling pathways (Galluzzi et al. 

2011; Roy and Hajnoczky 2008).   

Following this are the morphological events which give apoptosis its name.  This 

begins with the severing of attachments to other cells and extracellular matrix and 

the cell becoming more round.  In parallel, the cell shrinks.  This is followed by the 

plasma membrane forming protrusions known as “blebs” whilst retaining its integrity.  

Meanwhile chromatin condenses (pyknosis) then DNA and the nucleus fragments 

(karyorrhexis).  Vacuoles have been observed in the cytoplasm of dying cells.  

Finally the cell disintegrates into membrane bound apoptotic bodies which are taken 

up by phagocytes (Hacker 2000; Kroemer et al. 2009; Krysko et al. 2008; Maeno et 

al. 2000; Orrenius et al. 2003). 

These morphological changes, along with changes to mitochondrial  outer 

membrane permeability (MOMP), externalization of phosphatidyl serine on the outer 

leaflet of the plasma membrane, and activation of caspases make apoptosis readily 

distinguishable from other forms of cell death (Galluzzi et al. 2011; Krysko et al. 

2008).  Most notably this differs from necrosis, which is characterized by the 

unregulated swelling and bursting of cells, release of their contents, and resulting 

inflammation in neighbouring tissue.   

  

                                                 
3
 word “apoptosis” is derived from the Greek word “απόπτώσις” describing the “dropping off” 

of petals from flowers or leaves from trees. 
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1.5.2 Biochemical events leading to intrinsic apoptosis 

Intracellular stress such as DNA damage, oxidative stress and cytosolic Ca2+ 

overloading can result in the triggering of intrinsic apoptosis.  Intracellular Ca2+ 

concentrations are a particularly versatile signaling mechanism in cells.  Ca2+ levels 

can be controlled locally and at a cellular or tissue level by plasma membrane Ca2+ 

channels and the release of intracellular stores in the endoplasmic reticulum.  

Extracellular [Ca2+] is usually over 1 mM, and under normal growth conditions 

cytoplasmic [Ca2+] is around 100 nM (Roy and Hajnoczky 2008).  Nuclear and 

mitochondrial matrix concentrations are typically similar, and concentrations inside 

the endoplasmic reticulum between 100 and 500 μM.  Low amplitude transient 

fluctuations in concentrations activate processes such as secretion into vesicles and 

muscle contraction, and longer term oscillations in Ca2+ levels control many 

processes including proliferation and smooth muscle contraction.  However, 

prolonged high levels of cytoplasmic Ca2+ result in apoptosis (Berridge et al. 1998; 

Roy and Hajnoczky 2008).   

Sustained high concentrations of free intracellular Ca2+ induce Ca2+ uptake into the 

mitochondria, triggering the intrinsic apoptotic pathway (Figure 1.3).  This is 

characterised by an increase in MOMP, as the Bcl2 family proteins, Bax and Bak, 

activated by Bid, form mitochondrial pores.  This allows the release of the pro-

apoptotic molecules cytochrome C, apoptosis inducing factor (AIF), apoptotic 

protease activating factor (APAF-1) and second mitochondrial activator of caspases 

(SMAC).  Cytochrome C triggers the formation of the apoptosome, which recruits 

and mediates auto-activation of caspase 9 (Galluzzi et al. 2011; Orrenius et al. 

2003; Roy and Hajnoczky 2008; Yigong 2009).  Caspase 9 belongs to the cysteine-

aspartic protease (caspase) family.  Caspase 9, along with the extrinsically activated 

caspases 8 and 10 are known as initiator caspases.   They exist as monomers in 

their inactive forms, and in response to various signals oligomerise into proteolytic 

caspases.  They in turn cleave and activate a cascade of inactive effector caspase 

zymogens (Figure 1.4) into active proteins (Boatright and Salvesen 2003; 

Kauffmann et al. 2008; Riedle and Scott 2009).  The effector caspases have over 

400 substrates within the cell, and result in the morphological changes discussed, 

including DNA fragmentation and chromatin condensation.  Inhibitors of apoptosis 

such as survivin and X chromosome-linked inhibitor of apoptosis (XIAP) bind to 
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caspases and deactivate them (Boatright and Salvesen 2003; Kauffmann et al. 

2008; Yigong 2009).  

 

Figure 1.3: Genistein activates the intrinsic apoptotic pathway in MCF7 cells 

AIF: Apoptosis inducing factor, G: genistein, SMAC: second mitochondrial activator 

of caspases 

The triggering of the proteolytic caspase cascade results in activation of the pro-

apoptotic proteins.  Also among their many target proteins are the usually anti-

apoptotic Bcl2 and Bcl-xl, which are converted to pro-apoptotic forms by proteolysis, 

and are then known to deactivate cyclin D1, DNA polymerase and several other 

growth and survival proteins (Orrenius et al. 2003).   

In their anti-apoptotic forms, Bcl2 and Bcl-xl bind to Bax and Bak, preventing 

formation of the mitochondrial pore to release cytochrome C.  Bcl2 can also block 

the release of Ca2+ from the endoplasmic reticulum.  Both are oncogenes which are 

frequently overexpressed in tumours (Wen-Xing and Xiao-Ming 2009).  E2 treatment 

of MCF7 cells has been shown to down-regulate expression of Bcl2 antagonists and 



60 | P a g e  

 

caspase 9, preventing induction of apoptosis by the intrinsic pathway in these cells 

(Frasor et al. 2003). 

 

Figure 1.4: Role of the caspase activation cascade in apoptosis 

During extrinsically induced apoptosis, the ligand activated death receptor (such as 

Fas receptor bound to Fas ligand) triggers the dimerization of caspase 8 (or 

caspase 10) from inactive zymogen monomers, forming a Death Inducing Signaling 

Complex (DISC).  Intrinsic apoptosis is triggered by extracellular cues such as 

radiation and chemotherapeutic drugs, developmental cues, or mitochondrial stress.  

The mitochondrion triggers the formation of the apoptosome, including cytochrome 

C (Cyt C), apoptotic protease activating factor (Apaf-1), and dimerized, active 

caspase 9.  Both caspase 8 and caspase 9 trigger proteolytic cleavage and hence 

exposure of the active sites of caspases 3 and 7.  Activation of caspases 3, 7 and 9 

can be inhibited by X-chromosome-linked inhibitor of apoptosis (XIAP).  Active 

caspases 3 and 7 have many downstream targets, leading to the regulated death of 

the cell. 
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1.5.3 Techniques to assess apoptosis in breast cancer cells 

The previously discussed morphological changes undergone by most apoptotic cells 

are very similar, and well defined.  The key events of shrinkage of the cell, plasma 

membrane “blebbing”, chromatin and nuclear condensation, nuclear fragmentation, 

and then disintegration of the cell into membrane bound ‘apoptotic bodies’  can be 

identified by microscopy (light or fluorescent), and are cheap and widely used 

methods for measurement of apoptosis (Hacker 2000; Krysko et al. 2008).  However 

they are subjective and laborious to assess and fail to detect the early stages of 

lethal cascades which often do not result in gross morphological changes (Doonan 

and Cotter 2008; Galluzzi et al. 2009; Martin 2008).  At the magnification levels used 

for light microscopy healthy cells containing large granules, and some cells which 

have recently undergone mitosis can appear apoptotic (Doonan and Cotter 2008).  

This can be avoided by using electron microscopy (Krysko et al. 2008), but many 

laboratories lack the facilities for this.  So while light microscopy remains the 

simplest and most cost effective method to detect apoptosis, it must be used in 

combination with biochemical methods to generate reliable data. 

Furthermore, many microscopy techniques (light, fluorescent and electron) require a 

fixation step prior to visualization.  However, all fixatives modify cell structure to a 

greater or lesser extent (Bacallo et al. 2006).  In particular, ethanol, methanol and 

acetone fixation result in cell shrinkage in the “z” dimension, and glutaraldehyde 

renders tissue auto-fluorescent so is of no use for fluorescence techniques.  

Formaldehyde/formalin fixation avoids these issues and it crosslinks nucleic acids, 

recommending it for the study of nuclear changes.  However it can lead to extensive 

vesiculation of the plasma membrane.    

Gross morphological changes in apoptotic cells can also be detected by flow 

cytometry.  This is a laser based technique routinely used for cell sorting and 

biomarker detection.  Cells are suspended in a stream of liquid and passed through 

a detection apparatus.  This technique allows simultaneous detection of multiple 

parameters in 1000’s of cells per minute.  It can be used to assess the size of cells, 

presence of blebs, and granularity (Krysko et al. 2008).  However, it requires the 

cells to be in suspension.  Treatment of adherent cell lines such as MCF7 with 

trypsin can result in damage or permeablisation of the plasma membrane, 
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influencing the result, and their ability to grow in suspension may be limited so 

should be tested in advance. 

Changes in nuclear morphology unique to apoptosis are widely used in its 

assessment, due to the ease with which they are detected with light, or fluorescence 

microscopy using DNA intercalating dyes such as Hoescht (Akter et al. 2012) or 

4',6-diamidino-2-phenylindole (DAPI; Lai et al. 2003; Miglietta et al. 2006).  Initially 

this comprises chromatin condensation around the nuclear membrane, which then 

spreads to encompass the whole nucleus (Hacker 2000).  The condensation 

appears firstly as a brighter ring of fluorescence around the outside of the nucleus, 

then the whole nucleus becomes smaller, more circular and more brightly stained.  

The condensed nucleus then fragments within the cell.  In MCF7 cells DAPI is 

known to bind to DNA with greater affinity than Hoechst, and is less toxic (Bielawski 

et al. 2001).   The use of DAPI to assess apoptosis is described further in section 

2.6.  Apoptotic nuclei can appear smaller than normal nuclei, and this can be 

assessed by calculating the Nuclear Area Factor (NAF), which is a ratio of the size 

of the nucleus and its circularity (Daniel and DeCoster 2004; DeCoster 2007).  

However, this method is only effective in the very early stages of apoptosis (a matter 

of hours after the inducing treatment), before the nucleus fragments (Daniel and 

DeCoster 2004). 

Nuclear morphological changes occur in parallel to caspase dependent 

fragmentation of chromosomal DNA.  One widely used and sensitive method to 

assess this is the identification of the extensive fragmentation of nuclear DNA by 

Terminal deoxynucleotidyl transferase-mediated d-UTP Nick End Labeling (TUNEL) 

staining (Darzynkiewicz et al. 2008).  An alternate way to identify this was to look for 

“DNA laddering” when DNA is extracted and separated by agarose gel 

electrophoresis.  However, both methods are labour intensive, with the risk of 

disrupting or losing much of the signal.  Furthermore, while DNA breaks are 

common in apoptosis, they are not a universal event, and the degree to which they 

occur can vary (Hacker 2000; Martin 2008).  Searching for DNA ladders is now 

considered obsolete in this field (Kroemer et al. 2005). 

Fragmentation and loss of nuclear DNA can also be assessed by flow cytometry 

using fluorescent DNA binding agents such as DAPI.  Propidium iodide (PI), while 

frequently used as a counterstain to  determine cell viability as it is excluded from 
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viable cells, is also widely used to assess cellular DNA content (Krysko et al. 2008).  

In this instance it allows classification of cells according to the quantity, and degree 

of fragmentation of DNA that they possess.  Cells in the G1 stage of the cell cycle 

are diploid, and contain a uniform quantity of DNA.  Cells in G2/M phase contain 

twice as much DNA as G1 cells (tetraploid).  Apoptotic cells are hypodiploid, 

containing less DNA, which is fragmented.  These cells are described as sub-G1 or 

sub-G0, and can be readily identified by this method.  It is rapid and reproducible, 

and allows simultaneous use of other flurochromes such as Annexin V.  However, 

as with the above techniques, there are a number of criticisms to consider.  The 

non-universal nature of DNA fragmentation is a concern, and with this method the 

group of sub-G1 cells can also represent nuclear fragments and cells with abnormal 

chromatin structure (Riccardi and Nicoletti 2006).  Additionally, the process 

recognizes apoptosis based on a reduced amount of DNA, but if the cell enters 

apoptosis from the tetraploid G2 or M stage then it is likely to have a greater DNA 

content than the diploid G1 population (aneuploiud) and so will not appear in the 

sub-G1 peak. 

For these reasons a growing number of biochemical methods have been developed 

to measure features of apoptotic cells.  The activation of caspases is commonly 

considered to be an unambiguous sign of apoptosis, detected either 

immunologically or fluorochrometrically, by cleavage of specific substrates or of the 

caspases themselves (Krysko et al. 2008).  The initiator pro-caspases 8 or 9 are 

widely activated during apoptosis, but this feature is not universal (Galluzzi et al. 

2011; Shim et al. 2007).  Likewise, different downstream effector caspases can be 

activated in different caspase cascades depending upon the cell line and method of 

induction of apoptosis (Galluzzi et al. 2011).  Effector caspase 3 is very widely 

involved in apoptosis in many cell lines (Jakob et al. 2008) but is absent in MCF7 

(Janicke et al. 1998).  Similarly, caspases 2, -6 and -7 are not universal (Galluzzi et 

al. 2011; Kauffmann et al. 2008).  Care must be taken to make an appropriate 

choice of marker caspase.   

Additionally, caspases are known to participate in non-death related scenarios 

meaning that specific substrates must be examined which are only cleaved by 

caspases in death scenarios (Galluzzi et al. 2009; Martin 2008).  However, even the 

use of specific caspase substrates is limited, due to variable background caspase 

activity, and considerable overlap in the substrates available to each caspase 
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(Kauffmann et al. 2008).  Immunoblotting to detect cleaved (active) forms of the 

effector caspases is an important approach to assess their activity.  But this does 

not take into account the variable stability of the active form, or the presence of 

inhibitors such as XIAP inside the cell, meaning that the amount of cleaved caspase 

present may not reflect the amount that has been activated, or indeed whether they 

retain their activity (Kauffmann et al. 2008).  Additionally, as discussed, some 

caspases acquire at least some of their activity without proteolytic cleavage.  Taken 

together, complementary caspase assays should be used to demonstrate caspase 

activation.   

Where caspase inhibitors have been used to disrupt apoptosis, caution is also 

required.  The “universal” caspase inhibitor Z-VAD-fmk does not in fact inhibit all 

caspases to the same extent.  In addition, while caspase inhibition does prevent 

some caspase-dependent signs of apoptosis such as chromatin condensation of 

DNA fragmentation, it has been shown to only retard, and not prevent death 

(Kroemer et al. 2005). 

Fluorescent or immunofluorescent microscopy is more sensitive than light 

microscopy and can allow simultaneous or independent analysis of multiple 

apoptotic parameters as long as care is taken to ensure that emission spectra of 

dyes do not overlap (Galluzzi et al. 2009).  Likewise, numerous fluorescent 

techniques have been modified for use with flow cytometry.  Annexin V coupled 

fluorochromes are frequently used to detect phosphatidyl serine (PS) externalisation 

on the plasma membrane, and use of counterstains such as DAPI, PI or hoescht are 

common to detect nuclear changes.   However, while fluorescence techniques are 

popular, they have several limitations which must be considered (Cannel and 

Thomas 1994).  Firstly, the photons supplied to the cells will interact with any 

molecule which absorbs in the range of that photon, which can lead to false 

positives or autofluorescence.  This energy supplied to the cell generates heat which 

can lead to cell damage, and bleaching of the fluorescent probe.  Finally, frequently, 

the fluorescent molecule is required to be inside the cell.  This can disturb the 

system, influencing the cells viability or other parameters.  There may also be the 

issue of getting the probe to the correct compartment within the cell.  These 

limitations must be addressed in any technique utilizing fluorescent probes. 
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Quenching of fluorescent probes can lead to the reduction or loss of signal.  

Quenching refers to any process which reduces the intensity of fluorescence, such 

as energy transfer or complex formation.  Oxygen, iodide or acrylamide ions are 

common quenchers.  However, quenching does not appear to be a concern for the 

commonly used fluorescent dyes such as PI, DAPI, Annexin V-conjugates, or 

Hoescht under the experimental conditions commonly used (Galluzzi et al. 2009).  

However, leakage and bleaching of the fluorescent molecule may occur.  To reduce 

the impact of these, rapid capture of images and minimal exposure to ultraviolet light 

sources are necessary. 

PS is normally almost completely confined to the inner leaflet of the plasma 

membrane (Martin et al. 1995).  During apoptosis it is actively and rapidly 

transported to the outer leaflet.  This is a widespread apoptotic event, occurring 

regardless of the route of induction of apoptosis, and it occurs early in the process, 

preceding nuclear changes and loss of membrane integrity by several hours.  

Externalised PS acts as a “flag” to attract macrophages, facilitating the engulfment 

of the cell preventing membrane rupture and release of cytoplasmic contents.   

Annexins, of which there are 12 known, are human proteins which are membrane 

impermeable, and have a high affinity for aminophospholipids in the presence of 

calcium.  Annexin V (Annexin A5) is a 36 kDa member of this family which 

preferentially binds to PS.  It can be conjugated with fluorescent or radio-labelled 

moieties and used to specifically label externalised PS.  The results of this can be 

quantified using microscopy or flow cytometric techniques (Krysko et al. 2008; 

Martin et al. 1995; Martin 2008).  Use of Annexin V to quantify apoptosis is a rapid, 

reliable, and widely used tool, and will be discussed in greater detail in sections 2.5 

and 6.2.1.   

This list is by no means exhaustive, and new techniques and fluorescent dyes or 

antibodies allowing the detection of numerous apoptotic events are continuously 

being developed.  However, there are a number of major limitations which can be 

leveled at any apoptosis assay.  Firstly, each method discussed is hampered by the 

fact that in the absence of phagocytes (i.e. pure cultured cell lines) apoptotic cells 

eventually proceed to secondary necrosis, which shares many features with primary 

necrosis, including cell swelling and membrane rupture (Krysko et al. 2008).  

Secondly, the term “apoptosis” covers a range of morphologically similar apoptotic 
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subtypes which are distinct in their triggering and biochemistry, and differences in 

phenotype occur between in vitro and in vivo apoptosis, and with different cell lines 

and stimuli (Hacker 2000; Kroemer et al. 2009).  Finally, discussed are some of the 

drawbacks associated with each specific technique.  Taken together, along with the 

lack of any absolute “gold standard” assay for apoptosis, the Nomenclature 

Committee on Cell Death (NCCD) emphasises the importance of combining at least 

two distinct methods to quantify apoptosis in vitro, which are complementary but 

unrelated (Galluzzi et al. 2009; Galluzzi et al. 2011).  Likewise they advise against 

use of terms like “percentage apoptosis” instead opting for specific definitions such 

as “percentage Annexin V-binding” or “percentage cells with condensed chromatin” 

(Kroemer et al. 2005).   
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1.5.4 Isoflavones regulate apoptosis, intracellular calcium, and the 

activity of caspases and calpain in breast cancer cell lines 

Isoflavones, in particular genistein, are thought to trigger a novel alternative to the 

intrinsic apoptotic pathway (Figure 1.3).  Treatment of MCF7 cells with 50 or 25µM 

genistein or daidzein up to 100μM caused an increase in the prevalence of 

numerous apoptotic markers including fragmented DNA, accumulation of subG0/G1 

cells in the cell cycle, apoptotic nuclear morphology and PS externalization (Davis et 

al. 2008; Ferenc et al. 2010; Jin et al. 2010; Sergeev 2004; Shim et al. 2007).  This 

occurred at a range of treatment durations from 24 to 72 hours.  There is little 

information available regarding the effect of lower, more physiologically relevant 

isoflavone concentrations on the induction of MCF7 apoptosis.  However, under 

these conditions, 5 day treatment with genistein or daidzein between 0.1 and 10µM 

resulted in a slight inhibition of apoptosis compared to an untreated control (Schmidt 

et al. 2005).  These studies are summarized in Table 1.6.   

Under low serum conditions (0.5% FBS, 24 hours) 10µM genistein was also found 

to induce apoptosis (Sakamoto et al. 2010).  Silencing of the ERα gene in MCF7 

cells had no effect on this (Sakamoto et al. 2010).  Similar apoptotic events were 

seen in response to genistein in ERα- MDA-MB-231 cells (Davis et al. 2008; Li et al. 

2008; Seo et al. 2011), although in this case concentrations of as low as 5µM were 

effective.  Furthermore, addition of the ER-blocker ICI 182780 caused an additional 

increase in the number of apoptotic cells (Sakamoto et al. 2010).  These factors 

suggest that ER-independent mechanisms may be involved in the induction of 

apoptosis by isoflavones.   

Genistein also induced apoptosis in fibrocystic mammary MCF10A cells (Seo et al. 

2011) and neuroblastoma cells (Mohan et al. 2009).  Additionally, the 

phytoestrogens resveratrol and glycitein induced apoptosis in MCF7 and MDA-MB-

231 cells (Garvin et al. 2006; Sakamoto et al. 2010), and daidzein in MDA-MB-453 

cells (Choi and Kim 2008).   

  

 



 
 

Table 1.6: Summary of the methods used to investigate the induction of apoptosis by isoflavones in breast cancer cell lines 

Reference  Cell line Vehicle (control 

dose used) 

Apoptosis assay Isoflavone 

treatment  

Davis et al. 

(2008) 

MDA-MB-231, 

MCF7 

Vehicle? (Control 

untreated) 

- ELISA: ssDNA 48h 

Ferenc et al. 

(2010) 

MCF7, MDA-

MB-231 

Vehicle? (Control 

untreated) 

- Flow cytometry: cell cycle analysis 

- Caspase 7 activity (cleaved fluorescent substrate MCA-

VDQVDGWK(dnp)-NH2) 

- DAPI nuclear morphology 

- Relative expression and protein levels of Bcl2/Bax 

6h to 48h 

Garvin et al. 

(2006) 

MDA-MB-231 Ethanol (0.46%) - Caspase 3 activity (substrate Ac-DEVD-AMC) 

- Nuclear morphology (Giesma staining and electron microscopy) 

- Flow cytometry of PI stained cells 

- TUNEL staining of implanted tumour sections from mice 

48h 

Jin et al. (2010) MCF7 DMSO (0.1%) - Nuclear morphology (Hoechst and PI) 

- Flow cytometry: Annexin V-FITC, PI 

- Measurement of MOMP with DiOC6 

- Western blot: cleaved caspases 7 and 9, Bcl2, Bax, subcellular location 

of cytochrome C 

24h 
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Study Cell line Vehicle (control 

dose used) 

Apoptosis assay Isoflavone 

treatment  

Li et al. (2008) MDA-MB-231 Ethanol (x) - Flow cytometry: Annexin V-FITC, PI 

- Caspase 3 activity (substrate DEVD-pNA) 

- Western blot: Bcl2, Bax, cleaved caspases 3 and 8 

48h 

Sakamoto et 

al. (2010) 

MCF7 DMSO (x) - Flow cytometry (PI) cell cycle analysis 

- PCR: Bcl2/Bax transcription level  

- p53 dependent transcription: luciferase reporter plasmid 

24h 

Schmidt et al.  

(2005) 

MCF7 DMSO (untreated 

control) 

- Flow cytometry: cell cycle analysis 120h 

Seo et al. 

(2011) 

MDA-MB-231 

MCF10A 

DMSO (0.2%) - Flow cytometry (PI) cell cycle analysis 

- PCR: p53 and Bcl-xL transcription 

24h, 72h 

Sergeev (2004) MCF7 DMSO (0.1%) - Brd-U TUNEL assay kit 

- Plasma membrane changes: Annexin V staining for PS externalisation, 

YOPRO-1 and PI for membrane disruption 

- Nuclear fragmentation: Hoechst 33258 

- Calpain/caspase12 activity: substrates BOC-LM-CMAC and ATAA-AFC 

respectively 

72h 

Shim et al. 

(2007) 

MCF7 Ethanol and DMSO 

1:1 v/v (0.05%) 

- DNA laddering 

- Calpain activity (substrate DABCYL-TPLKSPPPSPR-EDANS) 

- Western blot: pro- and cleaved caspase 7 and poly(ADP ribose) polymerase 

(PARP) 

24h (up to 

48h for DNA 

laddering) 

(x) vehicle dose for control unknown 

6
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The apoptosis assays have been carried out at a range of different time-points, 

between six hours and three days depending on the method used, and the results 

are similar.  This allows both early and late apoptotic events to be characterized.  

However, a wide range of methods has been used to quantify apoptosis.  This can 

make cross-study comparison difficult, but it shows that numerous apoptotic 

markers are induced by isoflavone treatment, and avoids the individual drawbacks 

associated with each specific technique.  Notably, numerous groups used multiple 

assays to quantify apoptosis, in accordance with the advice of the NCCD.   

Treatment of MCF7 cells with 50 µM genistein for up to 6 days showed that 

genistein-induced apoptosis was associated with a sustained increase in 

intracellular [Ca2+], and co-treatment with thapsigargin (prevents Ca2+ re-entry into 

the endoplasmic reticulum) or ionomycin (a Ca2+ ionophore) suggested that this may 

be the result of the release of intracellular Ca2+ from the endoplasmic reticulum 

(Sergeev 2004).  Treating MCF7 cells with dantrolene, an inhibitor of Ca2+ release 

from the endoplasmic reticulum, or the cytosolic Ca2+ buffer BAPTA prevented 

genistein induced apoptosis (Sergeev 2004; Shim et al. 2007).  A number of other 

studies have also implicated Ca2+ deregulation and a rise in intracellular Ca2+ levels 

in apoptosis in MCF7 cells and lung carcinoma cell lines (Gil-Parrado et al. 2002; 

Mathiasen et al. 2002).  One study determined that the antioestrogen tamoxifen (2 

to 10µM) induced an increase in intracellular Ca2+ in the breast cancer cell line 

ZR75-1, which was suggested to be due not only to Ca2+ release from the 

endoplasmic reticulum, but also to increased influx from the extracellular medium 

(Chang et al. 2002).  It is not known whether isoflavones act similarly.   

In MCF7 cells 50 µM genistein treatment activated the protease µ-calpain (Sergeev 

2004; Shim et al. 2007).  The calpains, like the caspases, are cysteine proteases, 

although they differ in their target sequence specificity.  There are two isoforms, µ-

calpain and m-calpain, which are both Ca2+ activated, but require relatively high (µM 

and mM respectively) Ca2+ concentrations for their activity, hence their names 

(Orrenius et al.  2003). Treatment of MCF7 cells with dantrolene reduced genistein-

enhanced calpain and caspase 7 activity (Shim et al. 2007).  Additionally, treatment 

of MCF7 cells with a calpain inhibitor (PD 151746) reduced apoptosis in genistein 

treated cells (Sergeev 2004).  In vitro, both µ- and m-calpain cleaved Bid, Bcl2 and 

Bcl-xl into their pro-apoptotic forms, resulting in the release of cytochrome C from 
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the mitochondria (Gil-Parrado et al. 2002; Nakagawa and Yuan 2000; Orrenius et al.  

2003).   

Interestingly, initial studies into the role of calpains in apoptosis indicated a possible 

role for them as negative regulators, as they also cleaved pro-caspases 3, 7, 8 and 

9 into inactive fragments (Chua et al. 2000).  Further investigation suggested a 

complex pattern of cross-talk between the caspase and calpain apoptotic pathways.  

An endogenous calpain inhibitor exists, calpastain, which is cleaved by caspase 3, 

activating the calpains (Orrenius et al.  2003). Overexpression of calpastain reduced 

calpain activity, increased caspase 3 activity, and accelerated apoptosis (Neumar et 

al. 2003).  In wild type human neuroblastoma cells (SH-SY5Y), calpain initially 

slowed the execution phase of apoptosis, but was necessary in the later stages, 

adding to the effects of the caspases (Neumar et al. 2003).   

In MCF7 cells this is possibly the case, as inhibition of either the calpains or 

caspases reduced apoptosis (Sergeev 2004), and treatment with 100 µM genistein 

resulted in the activation and cleavage of both µ-calpain and caspase 7 (Shim et al. 

2007), and cleavage of a caspase 7 substrate (Ferenc et al. 2010).  However Shim 

et al. (2007) found no activation of caspases 8 or 9 by genistein treatment up to 200 

µM (results were not shown)4.  On the contrary, both caspase 7 and 9 were cleaved 

into active forms in MCF7 and MDA-MB-453 (ERα-) cell lines upon 24 hour 

treatment with daidzein between 10 and 100µM compared to untreated controls 

(Choi and Kim 2008; Jin et al. 2010).  As caspase 9 is known to activate caspase 7 

in the intrinsic apoptotic pathway (see Figure 1.4) it is probable that it plays a role in 

isoflavone-induced apoptosis in MCF7.  Genistein treatment (50 µM) of  MCF7 cells 

also resulted in an increase in the cleavage of a specific caspase 12 substrate 

(Sergeev 2004).  Finally, treatment of MCF7 with the pan-caspase inhibitor Z-VAD-

FMK prevented or reduced genistein induction of apoptosis (Jin et al. 2010; Sergeev 

2004).   

Downstream of these events, 24 hour treatment with pro-apoptotic concentrations of 

daidzein in MCF7 has been observed to result in an increase in the ratio of Bax:Bcl2 

proteins (Jin et al. 2010), and genistein (10μM for 24 hours) resulted in a 

corresponding increase in Bax:Bcl2 mRNA levels, which occurred irrespective of the 

                                                 
4
 MCF7 does not express caspase 3 (Janicke et al. 1998; Janicke 2009).  This may partly 

explain its carcinogenicity (i.e. the cells are resistant to some apoptosis inducing factors), 
although to a certain extent other caspases compensate. 
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presence or absence of 10 nM E2, and was unaffected by ERα silencing (Sakamoto 

et al. 2010).  This was associated with a dose-responsive increase in cytochrome C 

relocation to the cytoplasm, and a reduction in mitochondrial transmembrane 

potential (Jin et al. 2010).  However, no change was reported in Bcl2 mRNA levels 

after 24 hour 50μM genistein treatment (Ferenc et al. 2010). 

In MDA-MB-231 breast cancer cells a very similar series of apoptotic events occurs.  

Treatment with 50μM genistein for 24 hours resulted in an increase in cleavage of a 

caspase-7-specific substrate and an increase in the ratio of Bax:Bcl2 protein and 

mRNA (Ferenc et al. 2010).  The higher dose of 100μM also reduced protein levels 

of anti-apoptotic Bcl-xL (Seo et al. 2011).  Longer treatment with a lower dose (48 

hours of 5 to 20μM genistein) also increased the Bax:Bcl2 protein ratio, and 

increased the levels of active caspase 3 and cleavage of a specific caspase 3 

substrate (Li et al. 2008).  As in MCF7, no effect on caspase 8 activity was observed 

by this group.   

In MDA-MB-231 cells 100 µM genistein treatment induced phosphorylation of p53 

tumour suppressor protein (Seo et al. 2011).  This increases the stability and 

transcriptional activating ability of the protein, and accordingly, pro-apoptotic 

concentrations of genistein (and other isoflavones) result in an increase in the 

amount of p53 protein and p53-induced transcriptional activity in MDA-MB-231 and 

MCF7 cells respectively (Ferenc et al. 2010; Sakamoto et al. 2010).  Studies have 

shown that in MCF7 cells, Bcl2 promoter activity is downregualted by the p53 

transcription factor, while it enhances Bax promoter activity (Kim et al. 2008).  This 

suggests that the impact of genistein on Bax:Bcl2 may be mediated by p53 activity.  

Additionally, Bcl2 promoter activity is negatively regulated by the nuclear 

transcription factor κB (NF-κB), and 5 to 20 µM genistein treatment dose 

dependently reduces NF-κB levels in MDA-MB-231 cells suggesting another 

mechanism of action (Kim et al. 2008; Li et al. 2008).   

Finally, genistein resulted in the activation of apoptosis signaling kinase 1 (ASK1) 

and p38 MAPK (Shim et al. 2007), the latter leading to phosphorylation of various 

downstream apoptotic activators.  Simultaneous treatment with dantrolene 

diminished these latter responses.  Additionally, expression levels of the MAPK 

family growth genes were reduced by treatment of MDA-MB-231 cells with 5 to 20 

µM genistein (Li et al. 2008). The involvement of numerous genes such as these 
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has been confirmed by microarray gene expression analysis, showing that overall 

48 hour treatment of MCF7 cells with 25 µM genistein results in a pro-apoptotic, 

reduced proliferation gene expression profile (Lavigne et al. 2008). 

Overall, in MCF7 cells genistein in µM concentrations appear to increase 

intracellular Ca2+ levels, associated with depletion of the endoplasmic reticulum 

stores.  The result is calcium-dependent µ-calpain activation, which then cleaves 

and activates caspases 7 and 12.  These feed into the intrinsic pathway, increasing 

Bax:Bcl2, inducing MOMP and the subsequent release of cytochrome C from the 

mitochondria.  Daidzein treatment had similar results, and activated initiator caspase 

9.  The inclusion of this step in genistein-induced MCF7 apoptosis should not be 

ruled out.   Caspase 8 is not involved.  The latter mitochondrial events may be 

mediated by the activity of the transcription factors p53 and NF-κB, which also are 

modulated by genistein treatment.  There is no apparent involvement of the ERs 

during any stage of this, and events unfold in the ERα-/ERβ+ MDA-MB-231 cell line 

similarly. 
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1.5.5 17β-oestradiol, and isoflavone/17β-oestradiol combinations 

regulate the induction of apoptosis in MCF7 breast cancer cells 

In MCF7 cells, physiological concentrations of E2 (10 and 100pM) have been 

demonstrated to inhibit the induction of apoptosis (Schmidt et al.  2005; Song et al. 

2007).  This is in line with the protective / growth promoting effect that E2 is known 

to have on this cell line (section 1.4.4).  These studies are summarized in Table 1.6.   

Information regarding the impact of isoflavone/E2 combinations of the induction of 

MCF7 apoptosis is scant.    Schmidt et al. (2005) present evidence suggesting that 

1µM genistein or daidzein in a physiological E2 environment (1 to 100pM E2) inhibit 

apoptosis to a greater extent than the untreated control.  However they present no 

comparison of these results to those of any treatment individually, so although it 

appears that the isoflavone/E2 combinations act in a similar manner to the 

isoflavones alone, this should only be concluded with caution.    

Sakamoto et al. (2010) demonstrated that alone, a premenopausal E2 concentration 

(10 nM) prevented apoptosis during serum starvation (0.5% FBS, 24 hours), and 

treatment with genistein (10 µM) caused more apoptosis than the control cells 

(serum starvation, no treatment).  Combinations of E2 and genistein, or E2 and 

daidzein, at these concentrations induced apoptosis to a similar extent to the 

isoflavone treatment alone. 

Although these results suggest that isoflavone/E2 combinations induce apoptosis in 

MCF7 to a similar extent to the isoflavones alone, it is important to note that one 

investigates basal (no stress) induction of apoptosis, while the latter has used serum 

starvation induced apoptosis, and each has focused on a single isoflavone 

concentration. In particular, there is very little information available regarding the 

impact of daidzein on MCF7 apoptosis in the presence of physiological E2 levels, or 

lower (Western) levels of isoflavones.  A comprehensive study in this field is urgently 

required, as the induction of apoptosis by dietary levels of isoflavones represents a 

potential route through which their protective effects in vivo may be mediated. 
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1.5.6 Summary of the apoptotic effects of isoflavones 

Overall, what is known regarding the induction of apoptosis in breast cancer cell 

lines by isoflavones appears to feed into their net effect on proliferation.  In MCF7, 

concentrations of genistein and daidzein previously shown to reduce proliferation 

(>25µM) induce many markers of apoptosis.  They trigger the intrinsic apoptosis 

pathway, including activation of µ-calpain and caspase 7, an increase in the ratio of 

Bax:Bcl2 and cytochrome C release.  Similar events occur in MDA-MB-231, 

although lower concentrations of isoflavones (>5µM) are equally effective.  There 

does not appear to be any involvement of the ERs in these processes, although E2 

does inhibit apoptosis in MCF7 cells. 

However, common experimental practice is to use pharmacological concentrations 

of isoflavones (>50µM), and the physiological relevance of this is not known.  

Nothing is known regarding the impact of isoflavones on the induction of apoptosis 

at physiological concentrations more relevant to Western women (<1µM), or how the 

presence of E2 may interact with these responses. 
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1.6 Potassium channels and breast cancer 

1.6.1 The role of potassium channels in cell physiology 

The membrane potential (Em) of a cell is the difference in voltage between the 

interior and exterior of the plasma membrane.  As the membrane itself is 

impermeable to ions, the membrane potential arises from the actions of various ion 

channels and pumps embedded in the lipid bilayer.  The majority of these channels 

regulate the flow of K+, Na+, Cl- and Ca2+ ions.  Ion channels are classified according 

to how they are regulated.  The main groups consist of: ligand gated channels, 

voltage gated channels, channels which respond to sensory stimuli such as 

stretching or temperature, and finally leakage, or rectifier channels.  The latter group 

are the simplest, with very little in the way of regulation, although they frequently 

operate better in one direction (rectification) than the other, and may be closed by 

some ligands.  In addition to being gated in these manners, the majority of voltage 

and ligand gated channels are susceptible to regulation by tyrosine phosphorylation.  

This allows intracellular signaling pathways and growth factors to acutely regulate 

the electrophysiological properties of both excitable and non-excitable cells (Davis et 

al. 2001 and references therein).  Further information regarding the activities of ion 

channels can be found in the comprehensive handbook by Hille (2001).    

In excitable cells such as neurons or muscle cells (resting Em = -70mV; Schwarz and 

Bauer 2004), ion channels (voltage gated Na+ and Ca2+ channels) are used to 

generate action potentials, where an electric current transmits signals through the 

cell.  Non-excitable cells on the other hand, are characterized by their inability to 

generate action potentials due to a lack of voltage gated Na+ or Ca2+ channels 

(Mahaut-Smith et al. 1999). Resting Em in these cells varies widely with cell type, 

from -20 to -40mV (human and murine neuroblastoma cells; Arcangeli et al. 1995), 

and -33mV in cells from mouse mammary epithelial tissue (Enomoto et al. 1986), to  

-85mV (MCF7; Klimatcheva and Wonderlin 1999; Wonderlin and Strobl 1996), and 

generally corresonds to the ability of the cell to proliferate (Sundelacruz et al. 2009).  

In numerous non-excitable cell types, including breast cancer cells, regulation of Em 

is key to many processes including osmolarity, proliferation and apoptosis (Davis et 

al. 2001; Felipe et al. 2006; Ouadid-Ahidouch and Ahidouch 2008).  The interactions 
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between membrane potential regulation and various physiological cellular processes 

are summarized in the review by Sundelacruz et al. (2009). 

In addition, through their ability to regulate the osmolarity of cells, and consequently 

the inward and outward flow of water and osmolytes, ion channels play an important 

role in cell volume regulation.  It is widely accepted that swelling is necessary for S 

phase progression during proliferation (Dubois and Rouzaire-Dubois 2004; 

Hoffmann 2011), and that shrinkage inhibits proliferation and is an essential early 

step in apoptosis (Vu et al. 2001).  There is a role in cell volume regulation for the 

aquaporins, a family of membrane proteins which facilitate transport of water across 

the plasma membrane, and these proteins have been linked to proliferation and 

migration (Chen et al. 2011; Ishibashi et al. 2011).  However, more relevant to this 

work is the fact that a number of ion channel types are implicated in volume 

regulation, including the potassium channels (Bortner and Cidlowski 1999; Gow et 

al. 2005; Hughes, Jr. et al. 1997; Storey et al. 2003; Wang 2004). 

Potassium is maintained in the cytosol at a considerably greater concentration than 

in the extracellular fluid.  Typical mammalian cells have an intracellular K+ level of 

139mM, compared to extracellular (blood) concentrations of 4mM (Lodish et al. 

2008).  Inward movement of K+ into the cell to maintain this high intracellular 

concentration is mediated by the Na+ K+-ATPase pump.  This ubiquitous protein 

uses the energy from the hydrolysis of ATP to move K+ ions into the cell against 

their concentration gradient, in exchange for Na+ ions.  This channel has been 

identified as a potential target for breast cancer drugs, due to its roles in signal 

transduction and cancer progression (for a review see Chen et al. 2006).  However, 

far more versatile regulation of K+ currents and intracellular K+ concentrations lies 

with the role of the K+ channels themselves. 

Potassium channels are the largest and most diverse family of ion channels.  They 

play well established roles in many diseases such as congenital deafness, 

arrhythmias, and multiple sclerosis, and show cell and tissue-specific regulation of 

expression levels (Felipe et al. 2006).  In addition, the deregulation of potassium 

channels is implicated in breast cancer development and progression (Ouadid-

Ahidouch and Ahidouch 2008; Wang 2004; Wonderlin and Strobl 1996).  Table 1.7 

lists all the K+ channels referred to within this text.    
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Table 1.7: Potassium channel nomenclature and gene names 

IUPHAR
1 

HUGO
2 

Other names 

Kv1.1 KCNA1 Shaker-related 

Kv1.2 KCNA2 

Kv1.3 KCNA3 

Kv1.5 KCNA5 

Kv1.6 KCNA6 

Kv7.1 KCNQ1 KVLQT 

Kv10.1 KCNH1 Human ether-a-go-go K
+
 channel, hEAG, eag1 

Kv11.1 KCNH2 Human ether-a-go-go related gene, hERG, erg1 

KCa1.1 KCNMA1 Large conductance calcium-activated K
+
 channel, BK, 

BKCa 

KCa2.1 KCNN1 Small conductance calcium-activated K
+

 channel, SK, 

SKCa KCa2.2 KCNN2 

KCa2.3 KCNN3 

KCa3.1 KCNN4 Intermediate conductance calcium-activated K
+
 

channel, IK, IKCa 

K2P5.1 KCNK5 Two-pore domain K+ channel subunit, TWIK-related 

acid sensitive channel 2, TASK2 

K2P9.1 KCNK9 Two-pore domain K
+
 channel subunit, TWIK-related 

acid sensitive channel 3, TASK3 

Kir3.1 

  

KCNJ3 G-protein coupled inwardly rectifying K+ channel, 

GIRK1 

Kir3.2 KCNJ6 G-protein coupled inwardly rectifying K
+
 channel, 

GIRK2 

Kir3.3 KCNJ9 G-protein coupled inwardly rectifying K
+
 channel, 

GIRK3 

Kir6.1 KCNJ8 ATP-sensitive K
+
 channel 

Kir6.2 KCNJ11 ATP-sensitive K
+
 channel 

  ---- KCNE1 mink/ IsK, voltage gated potassium channel auxiliary 

subunit associated with Kv7.1 and Kv11.1 

1 Protein names assigned by the International Union of Pharmacology (IUPHAR) 
(International Union of Pharmacology 2010) 

2HUGO Gene Nomenclature Committee (HGNC) approved gene name (HUGO 
Gene Nomenclature Committee 2011) 
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Potassium channels can be broadly grouped into four families (Felipe et al. 2006).  

These are the voltage gated, calcium-activated, inward rectifier (Kir), and two pore 

domain K+ channels (K2P).  The voltage gated potassium channels (VGKCs) form 

the largest group, comprising the peptides Kv1 to Kv12 (Gutman et al. 2005).  Each 

Kv peptide forms a channel subunit, of which four are required to act as a functional 

K+ channel.  These can be as homo- or hetero-tetramers.   Their structure is 

summarized in Figure 1.5.  The activity of these channels is voltage dependent.  

They tend to be closed at resting potential and open upon membrane depolarization 

to mediate an outward K+ current, resulting in hyperpolarization.   The current that 

this family of channels mediates is a well defined delayed rectifier K+ current (Ik) 

(Wang 2004). 

There are two groups of calcium-activated K+ (KCa) channels.  The small 

conductance (SK) and intermediate conductance (IK) calcium activated channels 

are voltage insensitive and are activated by low concentrations of internal calcium 

(<1 μM).  These channels do not directly bind Ca2+, but instead detect it using a 

calmodulin-dependent mechanism.   On the contrary, the large conductance (BK) 

calcium activated K+ channel is activated by voltage and internal Ca2+.  The latter it 

detects not via calmodulin, but probably utilizing several cation binding sites on the 

C terminal domain of each channel subunit (Wei et al. 2005).  

The K2P group can be regulated by a range of chemical and physical stimuli 

including pH, mechanical stretch, lipids, and various ligands.  They are active at 

resting potentials, and mediate background, or “leak” outwardly rectifying K+ 

currents that stabilize membrane potential and allow repolarisation (Enyedi and 

Czirjak 2010; Goldstein et al. 2005).   Finally, the Kir channels mediate an inward K+ 

current activated upon hyperpolarization (Kubo et al. 2005).  Significant amongst 

this group of channels are the ATP-sensitive inwardly rectifying channels (Kir6.1 and 

Kir6.2) which perform the important role of linking ion channel physiology to the 

metabolic state of the cell, as they are closed by the presence of ATP and opened 

by ADP (Seino and Miki 2003). 
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Figure 1.5: Voltage gated potassium channel structure 

This diagram is based on work by Jiang et al. (2003), Sanguinetti et al. (2006) and 

Yellen (2002), characterising the relatively conserved structure of the VGKCs.  The 

same colour scheme for subunits is used throughout the image.  Each channel is a 

homotetramer or heterotetramer of 4 subunits (A), each with 6 transmembrane α-

helices, and C and N terminal domains for protein-protein interactions or other 

regulatory functions.  Helices 1 to 4 form the voltage sensing mechanism, and 

helices 5 and 6 make up the channel pore.  The “Shaker” channels (Kv1. to Kv4.) 

share a similar structure (C), with the N-terminal domains combining to form a 

“tetramerisation domain” which determines the specific subunits which bind, and 

acts as an anchor for additional β-subunits.  The hEAG and hERG channels have a 

related structure (D), although their N and C terminal domains have differing 

regulatory functions.  These frequently are the sites for binding other regulatory 

subunits, and in hERG, the C-terminal domain binds cAMP.  The voltage gating 

mechanism of these channels is thought to be similar (B), whereby upon membrane 

depolarization the gating charges (+ signs) are carried across the membrane from 

bottom to top by voltage sensing “paddles”, which as they turn, open the pore.  
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1.6.2 Techniques to investigate potassium channel physiology in 

breast cancer cells 

1.6.2..1 Whole cell patch clamping 

Patch clamping is considered to be the gold standard method with which to measure 

ion currents as it allows the channels to be gated by physiologically relevant 

membrane potentials (Birch et al. 2004).  This technique and its limitations are 

discussed further in sections 4.3 and 6.4.2.  It is based on the principle that 

variations in channel activity (i.e. opening or closing of channel proteins) results in 

changes in membrane resistance, which can be studied by measuring the resulting 

current at a constant (clamped) membrane voltage (Sontheimer and Olsen 2007).  

Modifications have been made to the patch clamping procedure to allow analysis of 

the activity of channels in excised patches, or single channels.  The latter facilitates 

the investigation of particular parameters of individual channel proteins, such as the 

durations of opening and shutting, or the rate of flow of ions.   

However, whole cell patch clamping assesses the net activity of thousands of 

channels present in the whole cell membrane, generally of multiple types (the 

macroscopic current).  A critical step in the analysis of macroscopic currents is their 

separation into component parts.  Numerous methods exist to facilitate this, 

however five are commonly used (Sontheimer and Olsen 2007; Standen et al. 

1994).  

1.6.2..1.1 Kinetic 

The speed of activation or inactivation of a channel can vary substantially, so 

assessing macroscopic currents at different time points following stimulation can 

facilitate isolation of different current types.  For instance, Na+ currents activate and 

inactivate more rapidly than other channel types, typically becoming activated within 

300µs, and inactivating completely by 5ms.  On the other hand, K+ currents are 

slower, taking several milliseconds to activate, and inactivating very slowly or not at 

all.  Measuring current 500µs after activation will determine Na+ current activity, and 

tens or hundreds of milliseconds later K+
 current amplitude can be assessed.  
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1.6.2..1.2 Stimulus protocols 

The voltage dependence of activation or inactivation of certain ion channels can 

allow separation of the activities of some subpopulations using voltage stepping 

protocols.  Large or small amplitude Ca2+ currents can be separated depending 

upon the holding potential used for the voltage stepping.  Similarly, voltage steps 

applied from particularly negative potentials (-110mV) activates the transient and 

delayed rectifying K+ currents.  However stepping from a more positive holding 

potential (-50mV) inactivates the transient K+ currents whilst not affecting activation 

of the delayed rectifying K+ channels.  The latter group includes numerous VGKCs.   

1.6.2..1.3 Ion dependence 

The compositions of bath and pipette solutions are commonly manipulated to favour 

movement of the ions of interest, and inhibit others.  Replacement of K+ ions in the 

pipette solution with impermeable N-methyl-D-glucamine prevents the majority of K+ 

channel activity allowing isolation of the Na+ currents.  Similarly, tetramethyl-

ammonium chloride can replace Na+, allowing isolation of the K+ currents.   

1.6.2..1.4 Pharmacology 

Numerous toxins and synthetic agents are utilized to inhibit specific or broad groups 

of ion channels.  The best practice is to record the current trace in the presence and 

absence of the pharmacological agent, and the difference in current represents the 

effect of the drug.  An advantage of this technique is the elimination of capacitance 

and leak currents.  However, in numerous instances, doses of pharmacological 

agents used have been in vast excess of their IC50 to guarantee an effect.   They 

may be cytotoxic or generate non-specific effects at these high doses.  Validation of 

the relevance of the doses used is required, possibly by comparison of the patch 

clamp results with results of other methods of assessing K+ movement, such as use 

of radiolabelled rubidium or fluorescent probes, such as potassium-binding 

benzofuran isophthalate (PBFI), although these methods too are not without their 

limitations. 
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1.6.2..1.5 I-V curves 

Current-voltage relationships are an effective way to summarize the activity of ion 

channels.  These allow dissemination of a number of key parameters which are not 

apparent from the raw data, such as reversal potential (the potential at which the 

current reverses direction: goes from negative to positive), voltage dependence 

(rectification), activation threshold, and quality of the clamp. 

1.6.2..2 Fluorescent methods to assess potassium movement 

The most widely used potassium sensing fluorescent probe is PBFI, used in several 

of the studies previously described (Bortner and Cidlowski 1999; Hughes, Jr. et al. 

1997; Vu et al. 2001) either by conventional fluorescent microscopy or flow 

cytometric analysis.  Dyes such as this are theoretically useful tools due to the 

complex and time consuming nature of patch clamping.  They are considerably 

easier to use than patch clamping, and allow simultaneous measurement of 

numerous cells (Sundelacruz et al. 2009).  However PBFI is limited in its biological 

applications due to a relatively low fluorescence level and low selectivity for K+ over 

other actions such as Na+ (Hirata et al. 2011).  Novel fluorescent potassium probes 

such as B3TAC which overcome some of these problems are available, but are not 

widely used.  This may relate to the fact that even a very sensitive fluorescent probe 

will only detect net changes in intracellular K+, compared to the wealth of kinetic, 

voltage-sensitive, and single channel data that is it possible to extract from a patch 

clamped cell.  In addition, a major disadvantage to using fluorescent dyes to assess 

membrane potential is that they are difficult to calibrate, and so most data is 

reported as percentage changes in fluorescence, rather than absolute potential 

values (Sundelacruz et al. 2009). 

A different approach is to use fluorescent probes to detect changes in plasma 

membrane potential directly such as the bis-barbituric acid oxonol, DiBAC4, with or 

without flow cytometric analysis.  This is relatively widely used, and robust to 

changes in cell volume influencing intracellular dye concentration.  However, as with 

the potassium sensing dyes it is limited in the sense that it can only detect overall 

changes in potential.  Furthermore, dyes such as DiBAC4 are relatively slow to 

respond to changes in potential, so they are only of value to study steady state 

membrane potential, or slow- and non-inactivating ion channels (Wolff et al. 2003).  
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A number of novel dye systems based on fluorescence resonance energy transfer 

(FRET) have been developed which are sensitive to rapid changes in membrane 

potential.  However, none are ideal, and the choice of which should depend on the 

target channel and equipment available (Wolff et al. 2003).  

The intensity of fluorescence can be influenced by changes in protein content, which 

will modify the levels of bound to free dye.  Fixation of the cells will increase the 

number of dye binding sites and consequently fluorescence. The results of this 

method can also be influenced by depolarization of organelle membranes such as 

the mitochondria.   However, as Klapperstruck et al. (2009) suggest, with careful 

calibration, this method is capable of generating results that are comparable with 

patch clamping.  Each of these fluorescent methods is further constrained by the 

general limitations of use of fluorescent molecules, discussed previously (section 

1.5.3). 

1.6.2..3 Modification of expression levels of ion channels 

Effective isolation of an ionic current through a given channel is frequently possible 

by expressing artificially that channel in a cell type which contains few or no intrinsic 

ion channels, so that measured currents represent the pure current through the 

channel of interest.  The most commonly used system is Xenopus oocytes, which 

have very little in the way of endogenous ion channel activity.   However, a limitation 

of this is that the cloned channel activity may not always reflect the behaviour of the 

native channel due to alterations in subunit structure or lack of certain regulatory 

proteins (Standen et al. 1994).  This is particularly relevant for the VGKCs which 

exist as functional hetero-tetramers (Gutman et al. 2005).  

1.6.2..4 Radiolabelled rubidium as a potassium tracer 

Use of radiolabelled rubidium (86Rb+) as a tracer is a relatively common method to 

assess K+ flux, and has been used several times in the studies described, both with 

MCF7 and MDA-MB-231 breast cancer cell lines, and other cell types (Caplanusi et 

al. 2006; Gow et al. 2005; Huang et al. 2011; Kirkegaard et al. 2010).  This method 

allows real time measurements of net K+ movements to be made, by loading the 

cells with  86Rb+, washing them, then scintillation counting of the extracellular 

supernatant can be carried out at various time-points to determine its 86Rb+ content.  
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It is based on the assumption that 86Rb+ will behave in the same manner as K+, and 

is not toxic at the doses used.  Again, as with the use of fluorescent dyes, this 

method cannot extract data on the kinetic, voltage activated and single channel 

scale.  However, in addition to the inherent safety concerns when working with 

radioisotopes, numerous laboratories do not have the facilities to safely store and 

dispose of these materials. 

1.6.2..5 Changes in cell volume 

Due to the regulatory role of K+ channels in cell volume regulation, measurement of 

volume changes is frequently carried out alongside K+ channel activity assessment.   

However, this must not be used as a direct measure of K+ channel activity, as other 

ions including Na+ and Cl- are also involved in volume regulation.    

The most widely used method of assessing changes in cell volume is electronic 

sizing using a Coulter-type multisizer (Feranchak et al. 2003; Hoffmann 2011; 

Huang et al. 2011; Kirkegaard et al. 2010; Kossler et al. 2012).   This technique is 

based on the principle that when particles flow through a small aperture over which 

an electric current is passed, they will displace their own volume of liquid, increasing 

the resistance to the current flow by a tiny, but proportional and measurable amount.    

This is a reproducible and automatable method which is sensitive enough to detect 

very small changes in cell size.   However, due to the nature of the technique it is 

only possible to measure populations of cells in suspension before or after a 

treatment, and changes to individual cells cannot be followed over time.  Care must 

be taken regarding the choice of time-points measured to ensure that compensatory 

mechanisms such as regulatory volume decrease (RVD) do not obscure results. 

Another frequently used and reproducible method is the assessment of light 

scattering by flow cytometry (Bortner and Cidlowski 1999; Storey et al. 2003; Vu et 

al. 2001).  However a criticism of this technique is that it is limited by variations in 

cell surface geometry and intracellular refractive indices (Farinas and Verkman 

1996).  As with the coulter method, changes in cells cannot be followed over time, 

and only inferred to by measurements taken in populations treated for different 

timescales. 
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There exist techniques to assess changes in size over time, using microscopy, with 

or without fluorescent dyes.  A number of groups have used light microscopy 

together with image analysis software to measure the cross sectional area of cells 

(Okumura et al. 2009; Roy et al. 2008; vanTol et al. 2007).  However, with numerous 

software types this is limited to the analysis of spherical objects, which may not 

represent the entire population, and the method is relatively labour-intensive.  

Another group used height (z axis dimension of a composite image) as an index for 

volume (Caplanusi et al. 2006), however this too assumes a uniformity of shape 

across the population. 

To avoid these limitations several groups have utilized fluorescent intracellular dyes, 

frequently calcein-AM (-acetomethoxy derivative).  Dyes such as this will be taken 

up into the cell in ester form.  The ester group is then cleaved making them plasma 

membrane impermeable, so the content inside the cell is relatively constant.  In this 

manner, changes in cell volume will be expressed by changes in fluorescence 

intensity, i.e. shrinkage will make the intracellular dye more concentrated and so 

fluoresce brighter, with the opposite occurring upon swelling.  This technique was 

first described in 1995 (Crowe et al. 1995), and is considered to be a sensitive 

technique for the measurement of volume changes in single cells.  This is discussed 

further in sections 4.1 and 6.3.1.  Changes in the intensity of fluorescence can be 

assessed by image analysis software (Chen et al. 2011), or using the higher 

throughput microplate method (Pan et al. 2007).  Either method is reproducible and 

accurate.  However, as previously, there are a number of general limitations of 

fluorescent techniques which apply to these methods also (section 1.5.3). 
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1.6.3 Expression levels of potassium channels in MCF7 breast cancer 

cells and cancerous mammary tissue 

In MCF7 breast cancer cells many plasma membrane K+ channels have been 

identified (Table 1.8).  A number of these channels have been found to have roles in 

the proliferation of breast cancer cells, and their overexpression is associated with 

the promotion of tumour formation and resistance to apoptotic stimuli (Abdul et al.  

2003; Brevet et al. 2008; Mu et al. 2003).  

Of particular note is the human ether-a-go-go5 (hEAG) K+ channel, also known as 

KCNH1 or Kv10.1.  This was found, by use of both reverse transcription real time 

PCR (RT-PCR) and immunostaining, to be overexpressed in over 80% of breast 

carcinoma biopsies.  In normal tissue its distribution was restricted to areas of the 

brain and several other tissues (Hemmerlein et al. 2006).   

A related channel is human ether-a-go-go related gene (hERG), also known as 

KCNH2 or Kv11.1.  This channel carries a rapidly activated delayed rectifier K+ 

current.  Like hEAG, hERG is expressed in numerous human cancer cell lines and 

tissues but not in corresponding healthy cells (Bianchi et al. 1998; Cherubini et al. 

2000; Lastraioli et al. 2004; Pillozzi et al. 2002), suggesting that it may also confer 

some selective advantage to the tumour cells.  In cancer cell lines hERG expression 

varies greatly, but appears to relate to chemosensitivity, with the highest expression 

levels corresponding with the greatest sensitivity to anticancer drugs (Chen et al. 

2005).  In colonic cancerous tissue hERG expression level and activity appears to 

correlate with the invasiveness of the cancer (Lastraioli et al. 2004). 

 

 

 

 

                                                 
5
 The gene was named in the 1960s by William Kaplan and William Trout of the City of Hope 

Medical Centre, Duarte, California.  From their work in the Drosophila fly they discovered a 
mutation which resulted in convulsions in the legs when the flies were anaesthetized with 
ether, which reminded them of the style of dancing at the Whisky A-Go-Go nightclub in West 
Hollywood (Kaplan and Trout, III 1969) 
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Table 1.8: Potassium channels found in MCF7 breast cancer cells 

Channel 

Family 

K+ Channel References 

Voltage gated hEAG (Human ether-a-go-go; 

Kv10.1) 

Borowiec et al. 2007; 

Hemmerlein et al. 2006; Roy et 

al. 2008 

hERG (Human ether-a-go-go 

related gene; Kv11.1) 

Bianchi et al. 1998; Chen et al. 

2005; Roy et al. 2008; Wang et 

al. 2002 

Kv1.1 Ouadid-Ahidouch et al. 2000 

Kv7.1 vanTol et al. 2007 

Ca2+ activated IK (Intermediate Ca2+ 

activated channel) 

Ouadid-Ahidouch et al. 2004b 

BK (Large Ca2+ activated 

channel) 

Khaitan et al. 2009; Lee et al. 

2012; Ouadid-Ahidouch et al. 

2004a; Roger et al. 2004 

SK (Small conductance Ca2+ 

activated K+ channel)  

Abdul et al. 2003  

Inwardly 

rectifying 

Kir3.1 (GIRK1; G-protein 

inwardly rectifying) 

Dhar and Plummer, III 2006 

Kir3.2 (GIRK2) Dhar and Plummer, III 2006 

Kir3.3 (GIRK3) Dhar and Plummer, III 2006 

Two pore 

domain 

K2P9.1 (TASK3) Lee et al. 2012 

 

Similarly, the Shaker family potassium channel subunit Kv1.3 was detected by 

immunostaining in high or moderate levels in nearly 90% (53 out of 60) of breast 

cancer biopsy epithelial samples, while none was detected in four corresponding 

non-cancerous samples (Abdul et al. 2003).  However, Brevet et al. (2008) found the 

opposite, suggesting that both Kv1.3 and related Kv1.1 proteins were present at 

lower levels in cancerous tissue than normal tissue.  For this study immunostaining 

methods were used on 33 primary invasive breast carcinomas of varying stages and 

invasiveness, and 31 normal breast specimens.  They related the reduction in Kv1.1 
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and Kv1.3 to their role in apoptosis in breast epithelial cells.  Kv1.3 channel protein 

was not detected in MCF7 cells by immunohistochemical analysis (Ouadid-Ahidouch 

et al. 2000), indicating its absence from this cell line.   

Jang et al. (2009) proposed that this discrepancy in results may be because 

expression of the Kv1.3 gene depends upon the invasiveness and stage of the 

cancer.  This group found that weakly invasive M13SV1R2 cells showed 

considerable and significantly greater Kv1.3 mRNA expression levels than in normal, 

untransformed M13SV1 cells, but that in the highly invasive line M13SV1R2-N1, 

Kv1.3 gene expression was half of that seen in the normal line.  They also 

discovered that compared to normal breast tissue, the expression of Kv1.3 was only 

higher during early (I, IIA, and IIB), late (IIIC), and metastatic (IV) stage breast 

cancer tissue.  Expression during the mid-stages IIIA and IIIB, was not significantly 

different from normal tissue.  However, Jang et al. (2009) also analyzed protein 

levels of Kv1.3 using Western blot analysis, and found that this was significantly 

higher in both the weakly and highly invasive cell lines compared to the 

untransformed cells, and that protein levels were related to the tumourigenicity of 

the cell line.  Kv1.3 protein levels did not correlate with mRNA levels.  This is not an 

uncommon occurrence, and suggests differences in translation regulation, post-

translational events, or protein half-life.   

This data suggests a possible explanation for the discrepancies in results between 

Abdul et al. (2003) and Brevet et al. (2008).  However, it must be noted that the 

latter group did not find any significant relationships between the levels of Kv1.1 or 

Kv1.3 and markers of tumour grade or invasiveness, such as ER status or Ki67 

levels.  Clearly further research into the regulation of Kv1.3 is required.  Whether the 

regulation of Kv1.3 levels according to tumour stage and invasiveness can account 

for the apparent absence of Kv1.3 in MCF7 cells reported by Ouadid-Ahidouch et al. 

(2000) is not known. 

Similarly, the K+ channel K2P9.1 (TASK3), encoded by the gene KCNK9,  was found 

to be overexpressed at least 5-fold and up to over 100-fold in 44% (28 out of 64) 

human breast cancer biopsy samples (Mu et al. 2003).  It was also overexpressed in 

35% of lung cancer samples analyzed (Mu et al. 2003).  In the breast cancer 

samples, the KCNK9 locus was amplified between 3- and 10-fold in 10% of the 

samples.  Immunohistochemical analysis of the same samples confirmed the 
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presence of high levels of K2P9.1 protein in the samples where the gene was 

overexpressed, and Mu et al. (2003) also found overexpression of KCNK9 to be 

associated with tumour formation, increased viability in low-serum conditions, and 

resistance to hypoxia.  Conversely, reduced cellular levels of both gene expression 

and protein for this channel have been linked with increased cell migration (Lee et 

al. 2012).  In this study, relatively high levels of K2P9.1 were found in MCF7 (non-

invasive), while considerable lower levels of both its mRNA and protein were 

present in MDA-MB-231 (invasive).  Modifying K2P9.1 levels by either 

overexpression or knock-out (siRNA) generated corresponding results.  This 

suggests that K2P9.1 can act either oncogenically or to reduce tumour invasiveness 

depending on the cancer model used, and could potentially be more oncogenic in 

vivo than in cell culture.  Alternately, its levels may change depending on tumor 

stage, with high protein levels present during the tumor formation and initial non-

invasive stages, but dropping as the tumor becomes metastatic. 

Kir3.1 has been found to be overexpressed in cancerous breast tissue compared to 

normal tissue, using immunostaining methods (Brevet et al. 2008).  Unlike the other 

K+ channels differentially expressed in cancerous compared to normal breast tissue, 

which mediate outward K+ currents, Kir3.1 facilitates an inwardly rectifying K+ 

current.  Kir3.1 levels related to tumour grade, with significantly higher expression 

seen in grade II than grade III tumours (Brevet et al. 2008).  These results agree 

with those of Stringer et al. (2001), who used a gene expression profiling technique 

with a paired sample of breast carcinoma and adjacent normal breast tissue from 

the same patient, followed by RT-PCR with 56 separate benign and invasive breast 

carcinomas and 6 normal, non-malignant breast tissue samples.  In the latter 

investigation, Kir3.1 overexpression was found to correlate significantly with the 

presence of lymph node metastasis.  Kir3.1 has also been identified by both 

immunostaining and RT-PCR in a number of breast cancer cell lines including 

MCF7, MDA-MB-453, and ZR75-1 (Dhar and Plummer, III 2006).   

Of the SK channels, the expression of SK1 (KCNN1) is restricted to neuronal tissues 

(Chen et al. 2004).  While SK2 (KCNN2) is more widespread, there remains very 

little or no expression in the mammary epithelium.  On the contrary, SK3 (KCNN3) 

was detected in almost every tissue tested, including the mammary gland.  However 

this study was limited to healthy, not cancerous tissue samples.  At the time of 
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writing, the protein or expression levels of the SK channels have not been compared 

between healthy and cancerous breast epithelial cells. 

Similarly, the IK channel (KCNN4) mRNA is expressed in the normal mammary 

gland (Chen et al. 2004), but no comparison to cancerous breast tissue has been 

made by this group.  IK channel mRNA, protein, and functional channel activity have 

been detected in human breast cancer epithelial primary cell cultures and breast 

cancer tissue samples (Haren et al. 2010).  However, again no non-cancerous 

controls were used for comparison so how the levels of IK compare between 

cancerous and non-cancerous breast tissue is not known.  However, Haren et al. 

(2010) also demonstrated that IK expression level correlates significantly with 

tumour grade, indicating that this channel may contribute to tumour formation or 

progression. 

Khaitan et al. (2009) documented very low levels of both expression and protein 

levels for the BK channel in normal mammary tissue and untransformed mammary 

cell line MCF10A.  They found slightly higher expression levels in primary breast 

cancer tissue samples (n = 6).  On the contrary, Brevet et al. (2008) found lower 

levels of BK protein among 33 primary invasive ductal breast carcinomas compared 

to normal breast tissue from the same individuals.  Regrettably, the low numbers of 

specimens used by both groups makes it impossible to reach a definitive conclusion 

regarding the relative levels of BK in cancerous and normal breast tissue at this 

stage.   However, BK expression appears to be considerably higher among tissue 

samples of breast cancer metastasised to other organs, particularly the brain (n=4), 

suggesting a role for the BK channel in brain metastasis (Khaitan et al. 2009).  BK 

channel mRNA is present in MDA-MB-231 cells at a similar level as was seen in 

MCF7 (Lee et al. 2012). 
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1.6.4 The involvement of potassium channels in the proliferation of 

MCF7 breast cancer cells 

K+ currents are frequently studied in the MCF7 breast cancer cell model.  Treatment 

of MCF7 cells with the ATP-sensitive K+ channel opener minoxidil resulted in an 

increase in cell proliferation (Abdul et al.  2003).  Similarly, treatment of other cell 

lines with agents known to increase proliferation, such as 5nM prolactin added to the 

LNCaP prostate cancer cell line, increased the macroscopic K+ current and open 

probability of individual K+ channels in a tyrosine kinase dependent manner (Van 

Coppenolle et al. 2004).  This has not been repeated with MCF7 cells. 

In addition, treatment of MCF7 cells with a number of specific and non-specific K+ 

channel blockers results in inhibition of proliferation, as summarized in Table 1.9.  

This data implicates the SK channels, ATP sensitive channels (K ir6.1 and Kir6.2) and 

the voltage-gated channels (Pardo 2004; Wonderlin and Strobl 1996) in the 

proliferation of MCF7 cells.  Interestingly, the role of K+ channels in proliferation 

appears to be cell line-specific, as in colorectal adenocarcinoma cells, blocking 

VGKC activity, but not calcium activated- or ATP sensitive K+ channel activity, 

significantly inhibited proliferation (Yao and Kwan 1999).  This means that results 

from one cell line should not be generalized to other cell types. 

Incubation with iberiotoxin or charybdotoxin (both Ca2+ activated K+ channel 

blockers) had no effect on MCF7 proliferation, even at doses far in excess of their 

IC50 for the reduction of K+ channel activity (Abdul et al.  2003; Ouadid-Ahidouch et 

al. 2000; Ouadid-Ahidouch et al. 2004a).  Neither did E-4031, a specific hERG 

blocker, have any effect, even though the drug was shown to be stable in the cells 

over the duration of proliferation assessment, and this channel is known to be 

present in MCF7 and is functional in the regulation of cell volume in this cell line 

(Roy et al. 2008).  Given that astemizole (AST) treatment reduces MCF7 

proliferation, and is known to block both hERG and hEAG, this connects hEAG, but 

not hERG, with the proliferation of these cells.   

Another VGKC with a potential role in the proliferation and cell cycle progression of 

MCF7 cells is Kv1.1.  This channel is expressed in these cells, while a number of 

other VGKCs, including Kv1.2 and Kv1.3, have not yet been identified, or are absent 

(Ouadid-Ahidouch et al. 2000; Ouadid-Ahidouch and Ahidouch 2008).  



 
 

Table 1.9: The effects of K+ channel blockers on MCF7 proliferation and channel activity 

Channel Blocker Channel  Inhibition of MCF7 

proliferation 

K+ channel activity IC50  

(cell line1) 

References 

4-amino-pyridine 

(4-AP) 

VGKCs 

 

IC50  1.6 mM2 Between 0.1 and 4 mM 

(range of cell types including 

3T3, human T lymphocytes 

and human melanoma cells) 

Grissmer et al. 1994; Wonderlin and Strobl 

1996; Yao and Kwan 1999 

α-Dendrotoxin  

(α-DTx) 

Kv1.1 30% inhibition: 10 

nM 

0.6 nM Ouadid-Ahidouch et al. 2000 

Amiodarone Non-specific ion 

channel blocker 

IC50 1 μM (approx)  Abdul et al. 2003  

Astemizole 

(AST) 

hEAG and hERG IC50 between 5 and 

30 μM 

hEAG: 196nM (HEK-293), 

5µM effective in MCF7 

hERG: 0.9nM (HEK-293) 

Borowiec et al. 2007; Garcia-Ferreiro et al. 

2004; Ouadid-Ahidouch et al. 2004b; Roy et 

al. 2008; Salata et al. 1995; Zhou et al. 

1999 

Charybdotoxin 

(CTx) 

BK and IK No effect up to 100 

nM 

50 nM Coiret et al. 2005; Ouadid-Ahidouch et al. 

2000; Ouadid-Ahidouch et al. 2004a; 

Ouadid-Ahidouch et al. 2004b 

Clotrimazole IK 25% inhibition: 5μM 2 μM (approx.) Ouadid-Ahidouch et al. 2004b 
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Channel Blocker Channels 

affected 

Inhibition of MCF7 

proliferation 

K+ channel activity IC50  

(cell line1) 

References 

Dequalinium SK  IC50 1 μM (approx.)  Abdul et al. 2003 

E-4031 hERG No effect < 300 nM 7.7 nM (HEK-293) Roy et al. 2008; Zhou et al. 1998 

Glibenclamide ATP-sensitive K+ 

channels 

IC50 50 μM <0.05nM (pancreatic type in 

HEK-293) 51 nM (cardiac 

type in HEK-293) 

Abdul et al. 2003; Stephan et al. 2006; 

Wonderlin and Strobl 1996 

Iberiotoxin (IbTx) BK No effect up to 500 

nM 

100 nM approx. Ouadid-Ahidouch et al. 2000; Coiret et al. 

2005; Ouadid-Ahidouch et al. 2004a 

Tetraethyl-

ammonium 

(TEA) 

VGKCs,          

ATP-sensitive K+ 

channels,                

BK 

 

IC50 5.8 mM 2 mM 

500 μM blocks BK channel 

Coiret et al. 2007; Coiret et al. 2005; 

Grissmer et al. 1994; Ouadid-Ahidouch et 

al. 2000; Ouadid-Ahidouch et al. 2004a; 

Wonderlin and Strobl 1996; Yao and Kwan 

1999 

1 if no data available for MCF7 

2 Doses ≤1mM were not found to inhibit MCF7 proliferation (Abdul et al. 2003) 
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Care must be taken when extrapolating the IC50 data summarized in Table 1.9, as in 

several cases (indicated) no data exists for MCF7 cells.  However, in general, the 

data for MCF7 cells corresponds with other cell lines (Wonderlin and Strobl 1996).   

This highlights areas where the effects of these compounds in MCF7 require further 

characterization. 

Where dose-response relationships have been studied, the IC50 for inhibition of 

proliferation is frequently higher than the IC50 for inhibition of K+ current activity.  

This suggests that inhibition of proliferation may be through non-specific, or 

cytotoxic actions of the channel blocker, rather than through inhibition of K+ channel 

activity, or that the effects on channel activity contribute a proportion of the response 

only.  However, serum is added to the proliferation media but not the solutions used 

to record K+ movement, and it is thought that components of  the serum (e.g. 

albumin, the major FBS protein; Zheng et al. 2006) may either bind the channel 

blocker, reducing its effectiveness, or further promote proliferation (Wonderlin and 

Strobl 1996).  In addition, where these channels have been ablated by silencing the 

gene (Koeberle et al. 2010; Weber et al. 2006), or transfected into cells known to not 

normally express them, similar results have been achieved (Cayabyab and 

Schlichter 2002; Dong et al. 2010; Gierten et al. 2008; Grissmer et al. 1994; Szabo 

et al. 2008; Zhang and Wang 2000) .  These studies add strength to the argument 

that the channel blockers inhibit proliferation through blockade of K+ channels, rather 

than through non-specific mechanisms. 

Work is ongoing to understand the mechanisms through which these channels and 

channel blockers affect proliferation in breast cancer cells.  As discussed, IGF1 is an 

important regulator of mammary gland development, and plays a key role in the 

initiation and progression of breast cancer (Hadsell 2003; Jin and Esteva 2008; 

Weinstein et al. 2009).  Treatment of MCF7 with the growth factor IGF1 (0.1 to 

20ng/ml for 48 hours) results in an increase in proliferation (Allan et al. 2006; 

Borowiec et al. 2007).  This increase in proliferation was associated with a rapid 

(within 1 to 2 minutes) increase in K+ current, membrane hyperpolarisation, and an 

increase in levels of the K+ channel hEAG mRNA  (Borowiec et al. 2007).  IGF1 

stimulated increase in proliferation was prevented by AST treatment, showing that 

hEAG is not only regulated by IGF1, but also plays a vital role in IGF1 mitogenic 

signaling in breast cancer cells.  However, as discussed, AST is a relatively non-

specific channel blocker, and has been shown to block hERG also (Pardo et al. 
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2005; Roy et al. 2008).  It is possible that the results of these studies may reflect the 

combined activities of the two channels, although the lack of any effect of the hERG 

antagonist E4031 may suggest that hEAG is physiologically more important in this 

instance.   

Activation of hEAG in MCF7 cells, by membrane depolarization to potentials higher 

than -20 mV, results in membrane hyperpolarisation.  This is associated with cell 

cycle progression from G1 to S phase (Borowiec et al. 2007; Ouadid-Ahidouch and 

Ahidouch 2008; Ouadid-Ahidouch et al. 2004b; Strobl et al. 1995).  Membrane 

hyperpolarisation is generally accepted to be involved in cell cycle progression, in 

what is known as the “membrane potential model” of proliferation (Ouadid-Ahidouch 

and Ahidouch 2008; Pardo 2004).   Blocking hEAG or IK by silencing with small 

interfering RNA (siRNA) or use of inhibitors AST (blocks hEAG and hERG) and 

clotrimazole (IK blocker), leads to membrane depolarization, reduced intracellular 

Ca2+ [Ca2+]i  and accumulation of the cell cycle progression inhibitor p21 (Ouadid-

Ahidouch and Ahidouch 2008; Ouadid-Ahidouch et al. 2004b).  Their inhibitory effect 

was additive, but blocking hEAG resulted in greater proliferation inhibition and G1 

phase arrest, than did blocking IK, leading to the suggestion that progression 

through G1 towards S phase is dependent on hEAG activity, while IK regulates 

membrane potential at the G1/S transition.   

The relationship between calcium and potassium channels in breast cancer cells is 

complex, at times paradoxical, and poorly understood.  Both hEAG and IK are 

regulated by an increase in [Ca2+]i  and calmodulin (CaM), a Ca2+ binding protein.  

However, while hEAG activity is inhibited by Ca2+/CaM binding to its N-terminal 

domain (Ziechner et al. 2006), IK is activated by Ca2+/CaM (Fanger et al. 1999).  

These effects can occur simultaneously in MCF7 cells (Ouadid-Ahidouch and 

Ahidouch 2008). 

Calmodulin is required for the proliferation of numerous breast cancer cell lines 

including MCF7, T47D and MDA-MB-231, regardless of E2 treatment or ER status.  

This is demonstrated by incubation with CaM antagonists (Jacobs et al. 2000).  In 

addition, inhibition of the calcium-calmodulin-dependent kinases (CaM-Ks) by siRNA 

or antagonists  also reduced proliferation and caused G1 phase arrest in MCF7 cells 

(Rodriguez-Mora et al. 2005), possibly by inhibiting cyclin D1 synthesis and 

retinoblastoma protein phosphorylation.  Interestingly, CaM also binds to the ERs, 
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increasing their stability and cellular levels, in a Ca2+-dependent, E2-independent 

manner (Li et al. 2001), and calcium-calmodulin-dependent kinase IV was 

determined to be activated by ERα/E2 in MCF7 cells, although not by ERα in 

combination with resveratrol or a number of xenoestrogens (Li et al.2006).  

Ouadid-Ahidouch et al. (2008) propose the following basic model for the regulation 

of hEAG and IK by Ca2+/CaM, and their role in proliferation, which is summarized in 

Figure 1.6.  In early G1 phase membrane potential is depolarized (around -20mV) 

and [Ca2+]i is low, resulting in the activity of hEAG but not IK.  The Ca2+ channels are 

inactive at this point.  Mitogenic stimuli result in an increase in hEAG expression, 

and activity (hEAG is depolarization activated, so operational at this potential).  The 

result is that the membrane becomes hyperpolarized (more negative) as G1 phase 

progresses.  This deactivates hEAG, but causes an influx of Ca2+ into the cell 

cytoplasm from internal stores, and from the external environment by way of the 

increased electrochemical driving force for Ca2+ promoting its movement through 

inwardly rectifying (voltage-insensitive) plasma membrane channels (depolarisation 

induced an increase in [Ca2+]i in rat megakaryocytes even in Ca2+ free medium; 

Mahaut-Smith et al. 1999).  Increasing levels of [Ca2+]i and Ca2+/CaM activate IK, 

resulting in stronger membrane hyperpolarization.  As G1 progresses to S phase, 

CaM and the CaM-Ks are also involved in the regulation of levels of cell cycle 

proteins such as cyclin D1 and p21.  The end result is progression to s phase, and 

enhanced proliferation of the breast cancer cells. 

In MCF7 cells, a non-inactivating outward K+ current was found which was inhibited 

dose- and voltage-dependently by α-dendrotoxin (α-DTx), with maximal inhibition 

being obtained at 10nM  α-DTx after 7 minutes of treatment, and an IC50 of 0.6 ± 0.3 

nM (Ouadid-Ahidouch et al. 2000).  Alpha-DTx is a toxin from the Black Mamba 

(Dendroaspis augusticeps), and blocks the channels Kv1.1, Kv1.2 and Kv1.6 (Harvey 

and Robertson 2004).  RT-PCR and immunocytochemical methods have shown that 

Kv1.1 is present in MCF7 cells, but anti-Kv1.2 antibodies did not label these cells 

(Ouadid-Ahidouch et al. 2000), indicating that Kv1.1 may be the pharmacological 

target of α-DTx in this case.  Kv1.6 was not included in this examination, and it is not 

known whether this channel is present in MCF7.  [3H]-Thymidine labeling of DNA 

was used to determine that α-DTx inhibited MCF7 proliferation in a dose-dependent 

manner, at the same doses which inhibited K+ current.  Ouadid-Ahidouch et al. 

(2000) suggest that this implicates Kv1.1 in the proliferation of MCF7 breast cancer 
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cells, however, the involvement of Kv1.6 cannot be ruled out.  Down-regulation of 

Kv1.1 expression by siRNA significantly reduced the proliferation of rat gastric 

mucosal epithelial cells, also measured by [3H]-Thymidine incorporation (Wu et al. 

2006).   

 

Figure 1.6: Membrane potential model of breast cancer cell proliferation 

Ast, Astemizole; CaM, Calmodulin; Clt, Clotrimazole; CTx, Charybdotoxin; hEAG, 

Human ether-a-go-go K+ channel; IGF1, Insulin-like growth factor 1; IK, Intermediate 

conductance K+ channel; TEA, Tetraethyl Ammonium 

Membrane depolarization and mitogenic stimuli in early G1 resuslts in the activation 

of hEAG.  The resulting K+ efflux causes membrane hyperpolarization, and an 

increase in [Ca2]i due to an influx along  its the electrochemical gradient (through 

voltage-insensitive inwardly rectifying Ca2+ channels, and the release of internal 

stores. This activates the IK channel, resulting in further hyperpolarization and the 

cell progresses to S phase. 
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The BK channels appear to have only a minor role in the normal proliferation of 

MCF7 cells, and their blockade induces only weak depolarization.  However, their 

expression level and activity is cell cycle dependent, both peaking at the end of G1 

phase (Ouadid-Ahidouch et al. 2004a).  The relevance of this linkage to the cell 

cycle is unknown, but may signify that they have small a regulatory role.  However, 

BK expression may relate to the invasiveness of breast cancer cell lines.  MDA-MB-

361 cells, with high levels of both KCNMA1 mRNA and BK protein, were 

considerably more invasive on a matrigel coated membrane than either MDA-MB-

231 or MCF7 cells, which both display much lower levels of the protein and mRNA.  

Un-transformed mammary epithelial cell line MCF10A was not invasive and had 

very low levels of BK protein present (Khaitan et al. 2009). 
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1.6.5 Potassium channels mediate an essential early stage of 

apoptosis 

Interestingly, the K+ channels have also been implicated as key regulators of 

apoptosis in many cell types (Wang 2004).  Cell shrinkage under isotonic conditions 

is known to be an essential early stage in apoptosis in a wide range of mammalian 

cell types including MDA-MB-231 breast cancer cells, Jurkat T lymphocytes and 

human renal HEK239 cells, epithelial HeLa cells, lymphoid U937 cells and the 

neuronal cell lines NG-108-15 and PC12 (Gow et al. 2005; Kossler et al. 2012; 

Maeno et al. 2000; Vu et al. 2001).   It is also referred to as apoptotic volume 

decrease (AVD).   AVD occurs prior to other hallmarks of apoptosis such as 

cytochrome C release, caspase activation and DNA degradation (Maeno et al. 

2000).   A number of studies have shown that AVD is attributable largely to K+ efflux, 

on the basis that net changes in cell osmolarity regulates the flow of water (Bortner 

and Cidlowski 1999; Bortner and Cidlowski 2004; Gow et al. 2005; Hughes, Jr. et al. 

1997; Storey et al. 2003). However, Cl- efflux, and the activity of the sodium-

potassium exchanger (Na+/K+-ATPase) also play a role in this process (Bortner and 

Cidlowski 2004; Maeno et al. 2000).   

In vitro studies have shown that K+, at normal, non-apoptotic intracellular levels, 

directly inhibits apoptotic DNA fragmentation and caspase 3 activation in rat 

thymocytes (Hughes, Jr. et al. 1997).  In the same study, disrupting K+ efflux in these 

cells by incubating them in high K+ medium inhibited apoptosis and caspase 3 

activation in response to apoptotic agents, suggesting that K+ efflux is a necessary 

event in apoptosis.   

The interaction between caspase activation, shrinkage and K+
 efflux is complex.  

Caspase activation correlates with K+
 efflux in lymphocytes treated with Fas 

apoptosis inducer or UV exposure (Vu et al.  2001).  This laboratory found that 

caspase 3 and 8 inhibitors blocked DNA degradation in lymphocytes treated with 

Fas, but failed to prevent AVD and K+
 efflux, suggesting that K+ efflux is an early 

cellular response which occurs prior to caspase activation (Bortner and Cidlowski 

1999).  Refer to Figure 1.4 for a summary of Fas (extrinsic) and UV (intrinsic) 

apoptotic pathways.  In apparent contradiction to this, the same group later 

demonstrated that the polycaspase inhibitor z-VAD-fmk abrogated AVD and K+
 

efflux, in addition to preventing DNA damage and caspase activation in Fas-treated 
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lymphocytes (Vu et al.  2001). However, it was less effective at preventing UV-

induced apoptosis.  They went on to show, using specific caspase inhibitors and 

mutants lacking individual caspase genes, that caspase 8 is required for Fas-

induced AVD, K+
 efflux, and programmed cell death.  This confirms the role of 

caspase 8 described in the literature (Medema et al. 1997).  Correspondingly, 

caspase 9 has similar indispensable roles in UV induced apoptosis (Vu et al. 2001).  

In EATC cells, AVD mediated by the loss of K+, Na+, Cl- and amino acids is essential 

for caspase 3 activation in response to 5µM cisplatin (Hoffmann 2011).   Together, 

these findings suggest that apoptotic K+
 efflux and caspase activation are tightly 

coupled but differentially regulated depending on the route of apoptosis induction, 

and are possibly also cell line specific. 

In a number of human tumour cell lines functional hERG K+ channels are required 

for effective induction of apoptosis in response to H2O2, and H2O2 treatment 

increased the outward flow of K+ (Wang et al. 2002).  In this study, cells lacking 

functional hERG required much higher concentrations of H2O2 to induce apoptosis, 

and in cells with functional hERG, co-treatment with the hERG blocker dofetilide 

(1µM) caused a dramatic reduction in the number of apoptotic cells after H2O2 

treatment.  It is possible that this function of hERG relates to the relationship 

between the expression levels of this channel and the increasing sensitivity to 

anticancer drugs described by Chen et al. (2005).  However, while the hERG 

channel protein is present in MCF7, this effect has not been investigated in these 

cells.   

Expression of hERG is similarly required for tumour necrosis factor α (TNFα; 1 and 

10 ng/ml) induced apoptosis (Wang et al. 2002).  Interestingly, lower doses of TNFα 

(1 and 0.1 ng/ml), which were less effective at inducing apoptosis, also enhanced 

proliferation.  Again, this effect was more pronounced in cells expressing hERG, but 

was not affected by dofetilide treatment.  Fluorescent antibodies were then used to 

suggest that hERG recruits the TNF-receptor (TNFR1) to the plasma membrane.  

The TNFRs (TNFR1 and TNFR2) have complex roles in the regulation of both 

apoptosis and proliferation, which are incompletely understood (Baxter et al. 1999; 

Haider and Knofler 2009).  In apoptosis TNFR1 activates caspase 3, triggering the 

caspase cascade in this manner.  The TNFRs induce proliferation through the 

transcription factor NF-κB (Haider and Knofler 2009).  In accordance with this, cells 

expressing hERG showed higher levels of NF-κB activity than cells lacking hERG 
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expression, and that TNFα treatment induced a further increase in NF-κB activity 

(Wang et al. 2002).  Interestingly, hERG has also been implicated in tumour 

proliferation (Pardo et al. 2005). 

In T lymphocytes activity of the IK channel appears to be an essential early stage in 

calcimycin induced apoptosis and AVD (Elliott and Higgins 2003).  This apoptosis 

inducer acts by increasing the inward flow of Ca2+ into the cell, initiating the Ca2+ 

dependent intrinsic apoptotic pathway.  In this cell line at least, an increase in [Ca2+]i 

triggered AVD via IK-mediated K+ current, which was essential for the induction of 

apoptotic PS externalization, and later, increased membrane permeability. 

In addition to their roles in the proliferation of breast cancer, there is also evidence 

to suggest that the channels Kv1.1 and Kv1.3 are involved in apoptosis in some cell 

lines.  One group used the lymphocyte cell line CTTL-2, which is known to be 

deficient in Kv channels, and transfected them with a Kv1.3 expression vector or 

control expression vector.  It was found that the presence of Kv1.3 specifically on the 

mitochondrial membrane both amplified and accelerated the ability of the 

lymphocytes to induce apoptosis in response to a number of stimuli, including TNFα, 

actinomycin-D and staurosporine (Bock et al. 2002; Szabo et al. 2008).  They also 

demonstrated that overexpression of Bax triggered massive apoptosis in the Kv1.3-

positive cells, but had no effect in cells lacking Kv1.3. Similarly, in rat retinal 

ganglions which constitutively express Kv1.3, blocking this channel with the relatively 

specific channel blockers agitoxin-2 or margatoxin greatly inhibited the ability of 

these cells to undergo apoptosis, and reduced the expression of the pro-apoptotic 

genes encoding caspase 3, caspase 9 and Bad, as determined by RT-PCR.  

Silencing the gene with siRNA had the same effect (Koeberle et al. 2010).  

Likewise, in Jurkat T lymphocytes K+
 efflux through KV1.3 was stimulated by Fas 

ligand (inducer of extrinsic, death receptor-stimulated apoptosis), accompanied by 

cell shrinkage and DNA degradation (Storey et al. 2003).  This increase in current 

was prevented by Kv1.3-specific margatoxin or Shk-Dap22 (a mono-substituted 

analogue of a sea anemone toxin).  Activity of caspase 8, but not caspase 3, was 

required for Fas-activated Kv1.3 channel activity, as demonstrated by use of broad 

and caspase 8 specific pharmacological inhibitors, and a line of lymphocytes which 

did not express caspase 8. 
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Kv1.1 has also been identified on the mitochondrial membrane in addition to the 

cytoplasmic membrane and, like Kv1.3, appears to have a role in the induction of 

apoptosis in lymphocytes (Szabo et al. 2008) and retinal ganglions (Koeberle et al. 

2010).  However, the mechanisms through which the two channels induce apoptosis 

may be different, as siRNA silencing of the Kv1.1 gene in rat retinal ganglions had 

no significant effect on the expression levels of caspase 3, caspase 9 and Bad (pro-

apoptotic member of the Bcl2 family), but increased the levels of the anti-apoptotic 

gene Bcl-xl (Koeberle et al. 2010).  Neither Kv1.1 nor Kv1.3 knockdown was found to 

affect the levels of Bcl2 mRNA. 

Silencing of the gene encoding Kv1.2 in rat retinal ganglions caused some reduction 

in their ability to undergo apoptosis, although this was to a much lesser extent than 

Kv1.1 or Kv1.3 silencing, and ablation of Kv1.5 was found to have no effect (Koeberle 

et al. 2010).  The VGKCs  are also involved in induction of apoptosis in pulmonary 

artery smooth muscle cells, where incubation with 4-AP prior to an apoptotic stimuli 

reduces apoptosis significantly, increases intracellular K+ concentration, inhibits 

caspase activity and prevents mitochondrial cytochrome c release (Park et al. 2010).  

Breast cancer cells have been demonstrated to express a number of VGKCs at 

different levels to untransformed cells or normal tissue.  While the involvement of 

Kv1.3 in breast cancer cells is controversial, it has been reported in lower levels in 

cancerous breast tissue compared to normal breast tissue by one group (Brevet et 

al. 2008).  In addition, Ouadid-Ahidouch et al. (2000) confirmed that the protein is 

not present in MCF7 cells.  Absence or low levels of this K+ channel may be related 

to the low levels of apoptosis seen in cancerous cells.  However, surprisingly, the 

involvement of the VGKCs in the induction of apoptosis in breast cancer cells has 

not been investigated. 
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1.6.6 Effect of oestrogen and anti-oestrogens on MCF7 potassium 

channel activity 

In MCF7 cells 10 nM E2 rapidly and irreversibly induced the BK channels (Coiret et 

al. 2005).  This induction was not prevented by co-treatment with the ER antagonist 

ICI 182780 (1 µM).  The rapid induction of BK channel activity by E2 treatment was 

considered likely to occur extra-cellularly since membrane impermeable BSA-

conjugated E2 (10 nM) also caused the same effect.  This study argues that E2 and 

BSA-E2 non-genomically and dose dependently stimulate proliferation of MCF7 

cells.  They also found that BSA-E2 stimulated proliferation was reduced by non-

toxic doses of the BK channel blockers iberiotoxin (100 nM), charybdotoxin (50 nM) 

and TEA (500 µM), implicating this channel in E2-induced proliferation.   

Interestingly, the same channels in MCF7 breast cancer cells were also induced by 

10 nM treatment with the partial oestrogen antagonist tamoxifen (Coiret et al. 2007).  

This effect was not additive to the effects of E2 or BSA-E2, and it was unaffected by 

the presence of ICI 182780.  Together, these results suggest that tamoxifen also 

acts independently of the ERs, possibly through the same extra-cellular mechanism 

as E2 in this case.  Both 10nM E2 and 10nM tamoxifen induced proliferation of 

MCF7 cells, but similarly this effect was not additive.  In addition, the BK  channel 

blockers significantly reduced the 10nM tamoxifen effect on proliferation, 

suggesting, as with E2-induced proliferation, this channel may play a role in (low 

dose) tamoxifen-induced growth of MCF7 cells.  It is important to note that this study 

was carried out using a low dose of tamoxifen, which was known to induce 

proliferation in MCF7 cells.  In patients receiving tamoxifen as chemotherapy, there 

is considerable inter-individual variance in serum levels, but generally it is in the 

range of 0.1 to 5µM (Fahey et al. 1994). 

The effects of higher, growth-inhibitory concentrations of tamoxifen, from 1μM 

upwards, on K+ channel activity in breast cancer cells have not been investigated.  

However, the growth inhibitory effects of tamoxifen, and amiodarone (1μM) or 

dequalinium (1μM) strengthened each other, suggesting that tamoxifen may inhibit 

growth of MCF7 cells in a manner unrelated to ion channel activity (Abdul et al. 

2003).   
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The effects of tamoxifen and ICI 182780 on the BK channels in other cell lines vary.  

They have both been shown to activate this channel in canine colonic smooth 

muscle cells (1 μM tamoxifen and 10 μM ICI 182780) (Dick et al. 2001; Dick 2002), 

but 10µM tamoxifen treatment had no effect on BK activity in vascular endothelial 

(HUVEK) cells (Li et al. 2000).  ICI 182780 had an inhibitory effect on BK channel 

activity in human coronary artery epithelial cells, with all doses between 1 and 30 

µM rapidly reducing channel activity in a dose dependent manner, with an IC50 of 3 

µM (Liu et al. 2003).  However, in human coronary artery smooth muscle cells, ICI 

182780 caused a bell shaped dose-response for BK channel activity, with doses 

below 3 µM increasing the number of open channels, while higher doses reduced 

channel activity (Dick 2002; Liu et al. 2003). 

Evidently, the effects of oestrogen and antioestrogens on BK channel activity are 

complex and differ depending on cell type, but are unlikely to relate to their ability (or 

otherwise) to activate transcription through the ERs.  In MCF7 cells, the ability of E2 

and low dose-tamoxifen to induce proliferation is associated with their ability to 

activate BK channel activity, but the effect of ICI 182780, which does not induce 

proliferation, or growth-inhibitory doses of tamoxifen, on BK in MCF7 cells is 

unknown. 
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1.6.7 Effects of isoflavones on the activity of potassium channels: a 

possible breast cancer protective mechanism 

Due to its non-specific protein tyrosine kinase (PTK) inhibitory actions, genistein is 

frequently utilized in studies investigating the regulation of K+ channel activity.  In 

this manner it has been determined that genistein and other isoflavones, at 

concentrations ranging from 10 to 100 µM inhibit K+ current through many channels 

in a number of expression models or excitable cardiac cells and lymphocytes, with 

resting membrane potentials of around -70 mV.   In the majority of these cases the 

response to genistein, or other protein tyrosine kinase inhibitors has been very rapid 

(within seconds or minutes of treatment) arguing for a direct influence on signaling 

pathways or the channel proteins themselves, rather than changes in gene 

expression.   

Since many of these channels have roles in proliferation and apoptosis, the impact 

of K+ channel inhibition by isoflavones may be relevant to the pro-proliferative or 

pro-apoptotic actions of these compounds.  However, as far as can be ascertained, 

no studies to date investigating the effects of isoflavones on K+ channels in breast 

cancer cells (resting membrane potential of around -50 mV) have been conducted, 

so their impact on breast cancer proliferation or apoptosis is unknown.  The next 

section addresses current knowledge regarding the impact of soy isoflavones on the 

potassium channels known to be associated with breast cancer proliferation, 

apoptosis, or the MCF7 cell line.   

1.6.7..1  hERG and the rat homologue rERG 

Using human embryonic kidney (HEK293) cells stably transfected with hERG, it was 

found that the K+ current through this channel was inhibited by 30 μM genistein 

(Zhang et al. 2008).  Co-treatment with 1 mM orthovanadate, a protein tyrosine 

phosphatase (PTP) inhibitor, countered the suppression of current, signifying that 

hERG K+ current inhibition by genistein is dependent upon its ability to inhibit protein 

tyrosine kinase activity.  Orthovanadate alone failed to have the opposite, current 

promoting effect suggesting that basal levels of TK-substrate phosphorylation may 

be saturated.  Daidzein (a PTK inactive analogue of genistein) treatment resulted in 

some current inhibition at higher doses, although this was much less pronounced, 
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making it impossible to rule out the possibility that higher doses of genistein may 

have some direct channel blocking properties also.   

Additionally, Zhang et al. (2008) demonstrated that the hERG current was inhibited 

by the selective PTK inhibitors AG556 and PP2 (both at 10 μM).  These compounds 

inhibit epidermal growth factor receptor (EGFR) and Src-family tyrosine kinase 

activity respectively, and consequently implicate both kinases in the regulation of 

hERG.  Whether genistein, AG556 and PP2 inhibit current through hERG in the 

same manner was not investigated.  However, Western blots demonstrate that 

genistein, AG556 and PP2, at the doses described, each reduce phosphorylation of 

the channel protein in a manner antagonized by orthovanadate (Zhang et al. 2008).  

Again the PTP inhibitor alone had no effect on channel phosphorylation suggesting 

that under control conditions hERG phosphorylation is saturated. 

Whole cell patch clamp recordings taken from MSL-9 cells derived from rat microglia 

identified a depolarization activated inwardly rectifying current that was fully and 

specifically blocked by 1 μM E-4031 treatment, suggesting that it was mediated by 

the rat homologue of hERG (rERG; 99% homology) (Cayabyab and Schlichter 

2002).  Following 15 to 20 minutes of treatment with the broad spectrum PTK 

inhibitors lavendustin A or genistein (each at 50 μM) current amplitude was reduced 

to a significantly greater extent than the spontaneous rundown effect (35% and 60% 

respectively).  Daidzein (50 μM) had no significant effect. The same group 

demonstrated that treatment with the Src-selective PTK inhibitor herbimycin A for 

over 12 hours, reduced current amplitude by around 70%.  This data indicates that 

rERG K+ current is inhibited by broad and Src-specific PTK inhibitors.  Using 

Western blots with anti-rERG and anti-phosphotyrosine antibodies, Cayabyab and 

Schlichter (2002) proceeded to show that rERG was constitutively tyrosine 

phosphorylated in these circumstances, and that 12 hours of pre-treatment with 

genistein (50 μM) or herbimycin A (3 μM) significantly reduced tyrosine 

phosphorylation of rERG, by 40% or 25% respectively.   

These studies together suggest that hERG, and the rat homologue rERG, are 

regulated by PTK activity, including by the EGFR and Src-related kinases, and that 

genistein treatment inhibits h/rERG K+ current through its ability to inhibit a broad 

spectrum of PTK activity.  No attempt has been made to distinguish between direct 

inhibition of PTK phosphorylation of the channel or upstream interactions with other 



108 | P a g e  

 

signaling molecules.  The precise mechanism of inhibition is not known in either 

case.  The close homology between rERG and hERG makes it likely that the two 

channels are regulated in a similar manner, although caution must be used when 

making direct comparisons.   

The hERG channel does not appear to have a role in the proliferation of breast 

cancer cells (Roy et al. 2008), so its inhibition by genistein is unlikely to directly 

relate to the growth inhibitory effects of this isoflavone.  Instead, the inhibition of 

hERG by genistein may dampen the pro-apoptotic effects of this channel, and so in 

this manner relate to the growth-promoting properties of isoflavones.  Although the 

doses of genistein used to inhibit hERG K+ current are comparable to the range of 

doses used to inhibit proliferation and induce apoptosis in both ERα+ and ER- 

breast cancer cell lines, as discussed it may be of little value to directly compare 

effective concentrations between patch clamping and proliferation experiments.  

Regrettably, neither of the above groups has provided data for a dose-response or 

IC50 for genistein and hERG activity.  It would be of considerable interest to 

investigate the effect of genistein on the activity of hERG in breast cancer tissue or 

cell lines. 

1.6.7..2  Kv1.3  

 Whole cell voltage-sensitive K+ current amplitude was reduced to below 50% by 

40µM genistein in circulating human T lymphocytes by the whole cell patch clamp 

method (Teisseyre and Michalak 2005).  Current blockade by genistein was dose-

dependent, with half-maximal blockage occurring in the concentration range 

between 10 and 40 μM.  Current activation was also slower after genistein 

treatment.  In these cells the VGKC current is carried predominantly by the Kv1.3 

channel (Cahalan et al. 2001), and the current was completely blocked by addition 

of 5 mM 4-AP, suggesting that these channels may be the target of genistein 

inhibition in lymphocytes.   

Teisseyere and Michalak (2005) also found that the current measured, after co-

treatment with 10 μM genistein and 1 mM orthovanadate, was not significantly 

different to that after genistein treatment alone.  This suggests that in the case of 

Kv1.3 channels in human T lymphocytes, current inhibition by genistein occurs in a 

predominantly PTK-independent manner.  Kv1.3 current was unaffected by 
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treatment with 40 μM daidzein.  In both T lymphocytes and breast cancer cells 

expressing Kv1.3, treatment with the VGKC blocker tetraethyl ammonium (TEA) 

inhibited proliferation, as measured by the MTT assay and [3H]-thymidine 

incorporation into DNA respectively (Cahalan et al.2001; Jang et al. 2009).  In both 

cases the doses of TEA used were non toxic.   

The doses of genistein used in to inhibit current through Kv1.3 (10 to 40 μM) 

correspond with the range of doses known to inhibit proliferation and induce 

apoptosis in breast cancer cell lines.  These doses are slightly higher than the 

physiologically relevant high serum levels (1 to 10μM), however, as discussed, 

differences in experimental conditions and media may account for incongruities 

between the IC50s for genistein on K+ channel activity and proliferation.  Bearing this 

in mind it is possible that genistein may inhibit breast cancer proliferation via 

inhibition of the Kv1.3 channel.  Kv1.3 is also involved in the induction of apoptosis in 

a number of cell lines, but there is no evidence to suggest that genistein treatment 

inhibits the induction of apoptosis.  However, while this channel is expressed in 

many breast cancer tissues, it has not been detected in MCF7 cells (Ouadid-

Ahidouch et al. 2000).  It is interesting to note that Kv1.3 in human T lymphocytes 

was also inhibited in a similar manner by resveratrol, a phytoestrogen found in 

grapes and wine, with an IC50 value calculated to be 40.9 ± 5.0 μM (Teisseyre and 

Michalak 2006). 

1.6.7..3  BK channel 

Resveratrol has been demonstrated to dose dependently stimulate outward BK  and  

IK channel activity in vascular endothelial HUVEC cells, with an EC50 (concentration 

required for a half-maximal effect) of 20 µM, using the whole cell patch clamp 

technique. This same group found that quercetin (30 µM) had no effect (Li et al. 

2000).  Resveratrol appeared to enhance channel activity by increasing the length of 

time that each channel was open for, rather than raising the conductance of 

individual channels.  

Puerarin, the main isoflavone found in the root of the leguminous creeper Kudzu 

(Pueraria lobata), also potently and rapidly activated the BK channel in Xenopus 

oocytes, when applied to the cytoplasmic side of an excised cell membrane patch at 

negative potentials in a Ca2+ dependent manner, with EC50s of 12.6nM and 0.8nM 
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with and without 10 μM Ca2+ respectively (Sun et al. 2007).  This indicates either 

that calcium may facilitate BK activation by puerarin, or that puerarin increases the 

Ca2+ sensitivity of the channel.  Daidzein, a hydrolysate of puerarin, lacking a 

glycosyl residue at the 8-position, also increased the BK current, but to a lesser 

extent than puerarin, suggesting that the 8-glucosyl residue has a role in the 

activation of the channel. 

To the author’s knowledge, the effect of genistein on the activity of the BK channel is 

not known.  While BK channel activity appears to be unrelated to the regulation of 

proliferation in breast cancer, there is evidence suggesting that it plays a role in 

invasiveness or metastasis (Khaitan et al. 2009).  This may be a mechanism 

through which isoflavones exert some of their protective effects against breast 

cancer. 

1.6.7..4 The delayed rectifier K+ current (IKS)  

The slowly activated delayed rectifier current IKS in Guinea pig ventricular myocytes 

is an outward K+ current carried by a channel formed from KCNQ1 (Kv7.1) and 

KCNE1 subunits (Chen et al. 2009; Vanoye et al. 2010).  Mutations in these proteins 

are implicated in severe hereditary cardiac arrhythmias such as long QT syndrome.  

Kv7.1 was dose-dependently inhibited by treatment with genistein at concentrations 

between 3 and 100μM (Dong et al. 2010).  This team used the perforated patch 

clamp technique6 with HEK293 cells stably expressing recombinant Kv7.1.  Daidzein 

(100μM; PTK inactive analogue of genistein) treatment resulted in some current 

inhibition, although it was much less pronounced than lower doses of genistein, 

making it impossible to rule out the possibility that higher doses of genistein may 

have some direct channel blocking properties also.  Co-treatment with 1mM 

orthovanadate (PTP inhibitor) countered the suppression of current by 30 μM 

genistein, suggesting that Kv7.1 current inhibition by genistein is dependent upon its 

ability to inhibit PTK activity.  Orthovanadate alone failed to have the opposite, 

current promoting effect suggesting that basal levels of TK-substrate 

phosphorylation may be saturated.   

                                                 
6
 Perforated patch: whereby the pipette pulls back once the gigaseal is formed, rupturing the 

membrane and leaving a membrane-vesicle over the end of the pipette tip.  As the 
membrane is now inside out, this allows changes to the bath solution composition to reflect 
changes in the cytosol. 
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By using the selective PTK inhibitors PP2 (Src-related kinase inhibitor; 1 μM) and 

tyrphostin AG556 (EGFR kinase inhibitor; 20 μM) at doses vastly in excess of their 

IC50 for PTK inhibition, it was determined that Kv7.1 was regulated by EGFR kinase 

but not the Src kinases.  Similarly, immunoprecipitation and Western blotting 

revealed that both genistein (30 μM) and AG556 (30 μM) significantly reduced 

phosphorylation of Kv7.1 in a manner reversible by addition of 1 mM orthovanadate, 

while PP2 had no effect.  Interestingly, Dong et al. (2010) demonstrated that the 

higher dose of 20 μM PP2 substantially inhibited the current, but this effect was not 

countered by addition of orthovanadate, implying that it acts through PTK-

independent mechanisms at these doses, or again masks the weaker opposing 

effect of orthovanadate. 

Overall, it appears that genistein reduces IKS by inhibiting the tyrosine 

phosphorylation of Kv7.1, either directly or by inhibiting EGFR kinase, while 

daidzein, with far lower PTK-inhibitory action, had a significantly reduced effect.  

However, no significant alterations in EGFR phosphorylation were seen after 

treatment with genistein concentrations up to twice the IC50 for growth inhibition 

(Peterson and Barnes 1996).  This points to direct inhibition of PTK phosphorylation 

of the channel by genistein, possibly in a similar manner to AG556.  However in this 

case the hypothesis was not investigated further.   

Similarly IKS in guinea pig ventricular myoctyes was dose-dependently and reversibly 

inhibited by genistein, with an IC50 of 64 ± 4 μM (Missan et al. 2006).  The Hill 

coefficient of this response was significantly different from one, indicating that other 

molecules may be involved in regulation of IKS.  On this occasion the current was 

measured by voltage clamping using the whole cell method.  They found that 

treatment of myocytes with the non-specific PTK inhibitors tyrphostin A25 and A23 

also suppressed IKS (IC50 12.1 ± 2.1 and 4.1 ± 0.6 μM respectively).  Current 

inhibition was likely to be caused by the PTK–inhibitory actions of each of these 

compounds, as the PTK-inactive analogues genistin, tyrphostin A1 and tyrphostin 

A63 had no effect on current amplitude up to doses of 200 μM.  Daidzein inhibited 

current dose-dependently but to a substantially lesser extent, again suggesting that 

genistein may also have some direct channel-blocking activity.   

In agreement with Dong et al. (2010), Missan et al. (2006) demonstrated that current 

inhibition by 50 μM genistein was significantly reduced by co-treatment with 
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orthovanadate (1 mM), while the PTP inhibitor alone had no effect.  This confirms 

that genistein regulates IKS through its PTK inhibitory properties.  They present data 

which appears to rule out the possibility of orthovanadate acting through parallel 

mechanisms, by regulating the activity of serine/threonine kinases such as PKA.  

This tends to suggest simply that a stronger inhibition of PTK activity by higher 

doses weakens the ability of orthovanadate to restore IKS.  Inhibition of the 

serine/threonine kinases PKA, PKB, PKC, ERK1/2 and the stress-activated protein 

kinase p38 had no effect on the inhibition of IKS by PTK inhibitors, although these 

experiments used tyrphostin A25 in the place of genistein, suggesting that IKS is not 

regulated by any of these signaling kinases.   

Missan et al. (2006) demonstrate that treatment with the Src-related kinase inhibitor 

PP2 (10 μM) reduced the amplitude of IKS while AG1478, another EGFR PTK 

inhibitor (10 μM) had little effect, suggesting that Src-PTK activity is involved in 

regulating IKS activity, but EGFR-PTK is not.  This directly contradicts the results of 

Dong et al. (2010) who proposed that EGFR but not Src played a role in the 

regulation of this current.  The discrepancies between these results may relate to 

the different cell line used by each group.  However, it is possible that it reflects 

different regulatory mechanisms of the two channel subunits, KCNQ1/Kv7.1 and 

KCNE1.  While Missan et al. (2006) studied “wild type” currents in cardiac cells, 

Dong et al. (2010) transfected the Kv7.1 subunit into another cell line to study it in 

isolation. 

Overall, these two groups have generated clear evidence for the tyrosine kinase 

regulation of IKS, and each concludes that genistein inhibits K+ flux through this 

channel via its ability to inhibit PTK activity.  In each case daidzein, with weaker PTK 

activity than genistein, resulted in weaker inhibition of current, and inactive genistin 

(precursor molecule) had no effect at the doses used.  Their conclusions regarding 

the mechanisms of inhibition are inconclusive.   However, while Kv7.1 is known to be 

present in MCF7 cells, any involvement it may have in the regulation of proliferation 

or apoptosis is yet to be documented. 
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1.6.8 Osmotic volume regulation 

It is apparent that an element of the involvement of K+ channels in proliferation, and 

more so in apoptosis, is related to their effects on osmolarity and volume regulation.  

Alterations in the osmolarity of the extracellular medium result in rapid movements 

of water in or out of the cell, driven by the osmotic gradient, and resulting in volume 

change.  Swelling is induced by a change into a hypotonic solution, and shrinkage 

by a hypertonic solution.  Following this, in numerous cell types plasma membrane 

ion pumps or channels are activated, resulting in a loss or gain (as appropriate) of 

intracellular ions, and corresponding osmotic movement of water returning cell 

volume to its former level (Dubois and Rouzaire-Dubois 2004).  Regulatory Volume 

Increase (RVI) refers to the process of the cell swelling after shrinkage in a 

hypertonic solution, and is largely related to the activity of Na+-K+-Cl- cotransporters 

and/or the Cl--H+ and Cl- HCO3
- exchangers.  The corresponding pathway 

Regulatory Volume Decrease (RVD) occurs after hypotonic-induced swelling, and is 

mediated by the Cl- and K+ channels (Caplanusi et al. 2006; Dubois and Rouzaire-

Dubois 2004).  

RVD occurs in numerous cell types, including MCF7 and MDA-MB-231 breast 

cancer cells (Gow et al. 2005; Roy et al. 2008; vanTol et al. 2007), and can reduce 

cell volume back to near isotonic levels within 30 minutes (Huang et al. 2011; Pan et 

al. 2007).  It is regulated by the MAPKs, although in a tissue specific manner, and 

can be prevented by agents which block these pathways.  Little is known about the 

regulation of RVI.  Although RVD is a response to a non-physiological stimulus, very 

similar regulatory mechanisms are proposed to play a role in volume regulation 

during proliferation and apoptosis (Wonderlin and Strobl 1996).  Likewise, RVD is 

coupled to AVD, and both are regulated by similar mechanisms in numerous 

cancerous cell lines (Hoffmann 2011; Maeno et al. 2000). 

1.6.8..1 Regulatory volume decrease in MCF7 

Upon treatment of MCF7 with relatively non-specific K+ channel blockers such as 

BaCl (5mM), quinine (0.5mM), TEA (10mM), and imipramine (100µM) in a hypotonic 

solution, the cells underwent swelling as expected, but RVD was reduced or 

prevented (Roy et al. 2008; vanTol et al. 2007).  This helps to confirm the role of K+ 

channels in RVD in MCF7.  Charybdotoxin (100nM) and clotrimazole (30µM) had no 
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effect, ruling out the BK and IK channels in this response.  However treatment with a 

hypotonic solution and 300nM E4031 or 30µM AST both prevented RVD, 

suggesting that the hERG, and perhaps hEAG channels are involved in this 

response (Roy et al. 2008).  This supports the role of hERG in AVD and apoptosis. 

Similarly, the Kv7.1 channel blockers 293B and XE991 were also found to prevent 

MCF7 RVD (vanTol et al. 2007).  To confirm the role of this channel in volume 

regulation, this group transfected MCF7 with a dominant-negative KCNQ1 (Kv7.1 

gene), which also prevented RVD.  In MCF7 (wild type) they were able to record a 

small 293B-sensitive current using whole cell patch clamping under hypotonic but 

not isotonic conditions, and overexpression of KCNQ1 increased this current 

component.  The apparent parallels between RVD and AVD indicate that Kv7.1 may 

have a role in the induction of apoptosis in MCF7, although this is circumstantial, 

and yet to be proven. 

1.6.8..2 Isoflavones and regulatory volume decrease 

Treatment with upwards of 100µM genistein has been shown to attenuate RVD and 

swelling induced K+ efflux in a wide range of cell types, including human bronchial 

epithelial 16HBE14o- cells (Caplanusi et al. 2006), Ehrlich ascites tumour cells 

(EATC; Kirkegaard et al. 2010) and the human erythroleukemic cell line K562 

(Huang et al. 2011).  Other K+ channel inhibitors such as gadolinium and quinine 

(both 0.5mM), the PTK inhibitor tyrphostin (100µM) and other Src and EGFR-kinase 

specific inhibitors acted similarly (Caplanusi et al. 2006; Huang et al. 2011).   In 

addition, the PTK inhibitor monoperoxo(picolinato)-oxo-vanadate (mpVpic; 10µM) 

prevented genistein-inhibition of K+ efflux and RVD in EATC cells (Kirkegaard et al. 

2010).  The latter group also present evidence to suggest that RVD in this cell line is 

mediated by the TASK2 channel, and does not involve the K+-Cl- cotransporter as 

K+ efflux continued to occur when all extracellular Cl- was replaced with NO3
-.  It is 

possible based on this that PTK regulation of RVD is cell line specific.  Regardless, 

in each of these studies discussed a large, non-physiological genistein dose has 

been used, which may have non-specific or cytotoxic effects.  In the case of 

Kirkegaard et al. (2010) this went as high as 371µM (at least 10-fold greater than a 

physiological dose).   
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There was only one instance of use of a lower, genistein dose to study cell volume 

regulation.  Treatment with 30µM genistein inhibited the swelling activated chloride 

current in isolated rabbit articular chondrocytes (Okumura et al. 2009).  The same 

concentration of daidzein had a related, although lower magnitude effect.  Treatment 

of rat hepatoma HTC cells with 10µM genistein prevented RVI (Feranchak et al. 

2003).  However this was related to an effect on Na+ channels rather than K+.   The 

impact of these concentrations of isoflavones on K+- related volume regulation is not 

known.   
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1.6.9 Summary of the impact of isoflavones on K+ current and volume 

regulation 

This section has discussed the growing body of evidence supporting the theory that 

K+ channels, through their ability to regulate Em and cell volume regulation, have 

roles in the proliferation of breast cancer cell lines, and progression of the disease in 

patients.  Of the numerous K+ channels discovered, some of those to show altered 

expression in cancerous breast tissue biopsies include hEAG, hERG and Kv1.3.  

While the latter channel is not present in MCF7 cells, hEAG and hERG are, along 

with Kv1.1, and a number of Ca2+ activated and inwardly rectifying K+ channels. 

Through altering their expression levels, and pharmacological blockade or 

activation, hEAG, Kv1.1, and several of the Ca2+ activated K+ channels have been 

demonstrated to play important roles in MCF7 proliferation.  This is conjectured to 

be through the mitogen-stimulated “membrane potential model of breast cancer 

proliferation”, whereby altered patterns of K+ channel activity result in changes in 

membrane potential on a large scale, stimulating cell cycle progression. 

However, paradoxically, a number of the K+ channels (often the same ones that are 

involved in proliferation) have indispensable roles in the induction of apoptosis in a 

range of cell types including some tumour cell lines.  The major players in this 

process appear to be hERG, the IK channel, and some VGKCs.  Their involvement 

in apoptosis seems to relate not to their impact on membrane potential, but their 

ability to regulate osmolarity, and consequently cell volume (shrinkage is widely 

accepted to be an essential early stage in apoptosis). 

In its capacity as a tyrosine kinase inhibitor, genistein is frequently called upon to 

block the activity of numerous K+ channels in a wide range of cell types, although 

never in cultured breast cancer cell lines.  A number of these channels have 

significance to breast cancer, in the context discussed.  Genistein blocks the activity 

of the hERG channel, and in this manner may lessen the role of hERG in the 

induction of apoptosis. Likewise, genistein inhibits the activity of several of the other 

VGKCs (Kv1.3 and Kv7.1), which may relate to inhibition of breast cancer cell 

proliferation seen with higher concentrations of isoflavones.  On the whole, 

pharmacological concentrations of genistein have been used (typically in excess of 

50µM).  The effect of physiological concentrations is not known.  The impact of 
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daidzein on K+ channel activity is not widely known, but where it has been 

investigated it tends to be less active than genistein.  Interestingly, E2 and the 

selective antioestrogen tamoxifen have been found to activate the BK channel in 

MCF7.  In each case, genistein, daidzein and E2 have acted upon the K+ channels 

quickly (within minutes of treatment) arguing a direct interaction with the channel 

protein or activation of a rapid signaling cascade rather than a genomic response. 

An element of the role of K+ channels is linked to their impact on cell volume.  This is 

of particular significance for shrinkage and the induction of apoptosis.  AVD is 

coupled in its regulatory mechanisms to the non-physiological process of RVD, 

which is widely studied in MCF7 and other cell lines.  There is evidence supporting 

the role of hERG in apoptosis, and also Kv7.1, through their implication in RVD.   

Genistein attenuates RVD in many cell types, although once again often very high 

concentrations are used.  The prevention of RVD by genistein, and accordingly 

prevention of AVD, may contribute to a pro-proliferative mechanism of isoflavones.  

However considerable further testing of these hypotheses is required, importantly, at 

physiologically relevant isoflavone concentrations. 
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1.7 Proposed investigations 

1.7.1 Study design and aims 

The aim of this project was to further investigate the effects of common dietary soy 

isoflavones on breast cancer cell proliferation, apoptosis, and potassium channel 

activity. 

To achieve this there were two main objectives: 

 

1.  To determine the effect of achievable levels of specific isoflavones, at pre- and 

post- menopausal oestrogen concentrations, on breast cancer cell apoptosis and 

proliferation 

 

2.  To characterize the effect of isoflavones on volume regulation and K+ channel 

activity in breast cancer cells, and to investigate whether this contributed to their 

pro-apoptotic or pro-proliferative properties 

 

This was a two phase project.  Both stages were conducted in vitro.  Firstly 

apoptosis and proliferation were measured in ERα+ and ERα-/ERβ+ breast cancer 

cell lines after treatment with a range of concentrations of genistein and daidzein, 

the main isoflavone phytoestrogens in soy, and either pre- or post-menopausal E2.  

These were as single treatments or in combination with each other.  Secondly, the 

impact of several concentrations of genistein, daidzein and 17β-oestradiol identified 

in the first stage was investigated on cell volume (mediated by ion movement, 

including K+) and the activity of the VGKCs, specifically hEAG and hERG.  How 

these factors related to the proliferative effects of these isoflavones was explored.   
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1.7.2 Rationale and study design for the investigation of the 

proliferative and apoptotic effects of isoflavones and oestrogen, 

alone and in combination 

The proliferative effects of the soy isoflavones genistein and daidzein at a wide 

range of physiologically relevant concentrations (<10µM) are well defined in ERα+ 

and ERα-/ERβ+ breast cancer cell lines.  Furthermore, there is a considerable body 

of evidence suggesting that the induction of apoptosis may be a mechanism through 

which the soy isoflavones mediate their putative breast cancer protective effects. 

However, the induction of apoptosis by isoflavones in these cell lines has not been 

reported on at physiologically relevant concentrations of the isoflavones below 5µM.  

Likewise, their effects on proliferation and apoptosis in combination with pre-and 

post-menopausal oestrogen levels are relatively unclear.  It has been suggested that 

at premenopausal E2 levels high concentrations of isoflavones, comparable to those 

seen in the blood of individuals consuming a very high soy diet, reduce proliferation 

and induce apoptosis in breast cancer cells.  However the effects of soy isoflavones 

on ERα-/ERβ+ breast cancer cells and at post-menopausal E2 levels is less clear.  

Research in these areas is a priority as this population of women are at greater risk 

of the disease, and frequently consume isoflavone supplements for relief of 

menopausal symptoms.   

The neoplastic human breast epithelial cell lines MCF7 and MDA-MB-231 were 

used as models of ERα+ and ERα-/ERβ+ breast cancer, respectively.  While this 

environment may not be identical to that of an in vivo model of the disease, they are 

regarded as valid for this use, are well characterized, and behave reproducibly.  The 

cell lines were treated with physiologically relevant levels (serum levels achievable 

through the diet) of two soy isoflavones at pre- and post-menopausal 17β-oestradiol 

levels, to determine the effects of these combinations of treatments on the ability of 

the cells to proliferate and/or induce apoptosis. 

Proliferation was assessed in both cell lines using the MTT assay. This is a very 

widely used method, which is sensitive, reproducible, and relatively high throughput.  

This method, and the rationale behind its choice is discussed fully in sections 2.4 

and 6.1.1.  The method was also validated against the Trypan blue dye exclusion 

assay in both cell lines for a range of the treatments used.  The impact of the vehicle 

solvent, genistein and daidzein at a range of physiological concentrations, and pre- 
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and post-menopausal E2 concentrations on proliferation were investigated.  

Following this, the effect of combined treatments of genistein or daidzein at pre- and 

post-menopausal E2 levels was assessed. 

In accordance with the advice of the NCCD, two methods to assess the impact of 

the isoflavones on the induction of apoptosis in MCF7 and MDA-MB-231 cells were 

used.  The first was the Annexin V-Cy3™ Apoptosis Detection Kit (Sigma), which 

identified apoptotic cells externalizing phosphatidyl serine on their plasma 

membrane (sections 2.5 and 6.2.1).  Following this the DAPI fluorescent nuclear 

stain was used to characterize nuclear morphology and identify apoptotic changes 

(sections 2.6 and 6.2.1).  Hydrogen peroxide was used as a positive control for the 

induction of apoptosis.  Following this, the effect of the solvent, and a range of 

physiological concentrations of genistein, daidzein, and E2 (alone and in 

combination with each other) was assessed on the induction of apoptosis in both 

cell lines using the two techniques. 
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1.7.3 Rationale and study design for the investigation into the effects 

of isoflavones on K+ channel activity and volume regulation in 

breast cancer cells 

Potassium channels appear to have a central role in the regulation of proliferation 

and apoptosis in breast cancer, in both breast tissue and breast cancer cell lines 

such as MCF7.  Their role in apoptosis appears to relate particularly to their 

involvement in cell volume regulation. To date, much remains to be determined 

regarding their mechanisms of action.   

An enhancing effect of 17β-oestradiol has been demonstrated on K+ channel activity 

in MCF7 cells, and this appears to relate directly to its proliferation promoting 

properties.  Genistein, through its ability to inhibit protein tyrosine kinase activity and 

other mechanisms, has been shown inhibit K+ channel activity in a number of cell 

lines, but surprisingly never in neoplastic breast epithelial cells.  Likewise, 

isoflavones may induce apoptotic volume changes, which, as discussed, are largely 

mediated by the osmoregulatory effects of the K+ channels (including hERG).  

Evidence suggests that an early event in the mechanism through which soy 

isoflavones reduce proliferation may involve their ability to inhibit key membrane 

potassium channels.  Similarly, their impact on other K+ channels and cell volume 

regulation may relate to their pro- or anti-apoptotic properties.  However, this is a 

new field and currently only based on conjecture.   

Pilot data regarding the impact of isoflavones on potassium channels in breast 

cancer cells, and how this relates to their regulation of proliferation or apoptosis 

could open up a new avenue of investigation in the field of isoflavone therapy in the 

prevention and treatment of breast cancer.  K+
 channels show some promise as a 

pharmacological target against breast cancer, and may represent a mechanism 

through which isoflavones act on these cells.  Since a major characteristic of many 

tumours is the development of resistance to therapies, the discovery of treatments 

targeting alternative key processes such as this in breast cancer cells is much 

needed. 

Only the MCF7 cell line was used for this part of the investigation, as the K+ 

channels it expresses are relatively well characterized.  The intention was to focus 

on the activity of the VGKCs, in particular hEAG and hERG, as these channels are 
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known to be expressed in MCF7 cells, and they have demonstrated an involvement 

in the processes of proliferation and apoptosis.  Additionally, several VGKCs, 

including hERG have previously been shown to be inhibited by genistein in other cell 

lines, suggesting that this channel may be a target of genistein in MCF7 breast 

cancer cells also.   

Firstly, the impact of key concentrations of soy isoflavones and E2, identified in the 

previous stage of the project, on MCF7 volume regulation was ascertained.  Due to 

the known roles of swelling and AVD in cell proliferation and apoptosis, and the 

potential involvement of K+ ion flux in these processes, it was hypothesized that 

genistein and E2 treatment could regulate MCF7 volume accordingly.  Changes in 

MCF7 volume were assessed using the Calcein fluorescence volume change assay 

(sections 4.1 and 6.3.1).  This technique was chosen based on its reproducibility 

and its ability to assess volume changes in cells regardless of their shape.  

In parallel, the effect of a number of specific and broad range K+ channel blockers 

was tested with regard to their influence on the proliferation in MCF7 cells (section 

6.4.1).  The MTT assay was again used for this purpose.  This was to confirm their 

presence and proliferative role in MCF7. 

Finally, the impact of the soy isoflavones and E2 on K+ channel activity was 

investigated.  If the isoflavones were found to influence K+ channel activity then the 

intention was to explore whether the VGKCs, specifically hEAG and hERG, are their 

targets.  This was conducted using the whole cell patch clamping technique 

(sections 4.3 and 6.4.2), which is the gold standard technique for measuring the 

characteristics of ion channels, as it allows the channels to be gated by 

physiologically relevant membrane potentials. 
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CHAPTER 2. Methods: proliferation and apoptosis  

Apoptosis and proliferation were assessed in MCF7 and MDA-MB-231 breast 

cancer cell lines at a range of physiological isoflavone concentrations in the 

presence and absence of E2.  The MTT assay was used to measure proliferation 

(section 2.4).  This is a standard and widely used procedure.  Two methods of 

apoptosis quantification were utilised: the Annexin V-Cy3™ apoptosis kit (Sigma: 

APOAC) and staining with DAPI to assess nuclear morphological changes (sections 

2.5 and 2.6).  There exist numerous techniques to measure apoptosis in cultured 

cells, and regrettably no “gold standard” method.  However, the use of two 

complementary but unrelated techniques to quantify apoptosis is in accordance with 

the advice of the NCCD (Galluzzi et al. 2009; Galluzzi et al. 2011).  The protocol for 

each assay was optimised prior to use with positive and negative controls. 
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2.1 Culture techniques for MCF7 and MDA-MB-231 cell lines 

To investigate the effects of isoflavones on breast cancer, MCF7 and MDA-MB-231 

cell culture models of the disease were used.  Both cell lines were held in storage at 

-70oC, and were a gift from Strathclyde University (Prof. D. Flint, Hannah Research 

Institute, Ayr).    

All work with cell lines, or medium and solutions required for the growth of the cell 

lines, was conducted in a class two biological safety hood (Microflow MS1310/1).  

All surfaces and containers upon entering and leaving the hood were sterilised with 

70% ethanol and allowed to dry.  When changing from one cell line to the other, all 

equipment and surfaces were sterilised, and left for a minimum of ten minutes to 

prevent cross-contamination.  All waste was decontaminated by autoclave (121oC 

for 15 minutes) or soaking overnight in a hypochlorite solution (1 x 2.5g Presept 

tablet in a maximum of 500ml water, 2500ppm). 
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2.1.1 Preparation of growth and experimental medium 

Growth medium 

Growth medium for the MDA-MB-231 cell line was prepared in sterile conditions.  To 

a 500ml bottle of Dublecco’s Modified Eagle’s Medium (DMEM, Sigma) with phenol 

red, 1000 mg/L glucose, and sodium bicarbonate, without L-glutamine: Foetal 

Bovine serum (FBS; Biosera), L-Glutamine (Sigma) and penicillin/streptomycin 

(BioWhittaker) were added to final concentrations of 10%, 2mM, 100 units/ml 

(penicillin) and 100µg/ml (streptomysin) respectively.   

Growth medium for the MCF7 cell line was identical to this other than the addition of 

1 mM non-essential amino acids (NEAA; Sigma). 

Experimental medium 

All experimental treatments were conducted in medium made with phenol red free 

DMEM and dextran/charcoal-stripped FBS (DC-FBS; Biosera) to minimise the 

possibility of weak oestrogenic effects of endogenous serum oestrogens and phenol 

red in the medium confounding results.  Both cell lines used the same experimental 

medium, which was prepared as follows.  In sterile conditions, to a 500ml bottle of 

phenol red free DMEM with 1000 mg/L glucose, and sodium bicarbonate, without   

L-glutamine (Sigma), 10% DC-FBS, 2 mM L-Glutamine  and 0.1% 

penicillin/streptomycin were added.  Extended periods of growth in phenol red free 

medium with DC-FBS can result in MCF7 cells adapting to the low oestrogen 

environment and losing their ability to exhibit stimulated growth in response to 

added oestrogen (Katzenellenbogen et al. 1987), so this medium was used for 

experimental treatments only.   
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2.1.2 Resuscitation of frozen cell samples 

Polypropylene cryogenic vials (0.5ml; Wheaton Science Products) of MCF7 and 

MDA-MB-231 cells were stored at -70oC in a freezing medium comprising 10% 

DMSO (Fisher Scientific) in FBS until needed.  To reanimate, vials were thawed in a 

waterbath set at 37oC for around 1 minute, whereupon the contents of the vial were 

pipetted into a 75cm2 culture flask with a filtered cap (Greiner) containing 20ml of 

the appropriate pre-warmed growth medium.  These were placed in a humidified 

incubator (Sanyo MCO-17AIC) at 37oC with a 5% CO2/95% air atmosphere.  After 

24 hours, any dead cells and debris were removed by careful extraction of the 

growth medium, and replaced with 20ml pre-warmed, fresh medium. 
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2.1.3 Maintenance of cell lines – normal growth and experimental 

Cells were maintained at 37oC in an incubator (as above) in 75cm2 culture flasks 

(Greiner) with 20ml of growth medium.  All cells, whether in growth medium or 

experimental medium were maintained under these conditions, and only removed 

from the incubator environment for the minimum required time.  To ensure sufficient 

nutrients, medium was changed every three to four days.  Cells were maintained in 

exponential growth phase and passaged as they approached 90% confluence, 

assessed visually using a Nikon Phase Contrast microscope at a total magnification 

of x100.  This also verified the absence of contamination.   

All medium, solutions and reagents used were warmed to 37oC in a waterbath prior 

to use.  As both cell lines were adherent, to subculture they were rinsed gently with 

10ml PBS (Sigma) and then treated with 3ml of 0.25% trypsin-EDTA (Sigma) at 

37oC for 5 minutes to detach.  Once all cells were dislodged, the trypsin was 

deactivated by addition of 10 ml of culture medium (as above).  The cell suspension 

was decanted into a centrifuge tube and centrifuged (Biofuge Primo, Heraeus) at 

161xG for 5 minutes at room temperature.  The spent medium was then removed.   

The cells were then subcultured or prepared for freezing as appropriate.  To 

subculture, the cells were resuspended in 3 ml of fresh medium and divided equally 

into three flasks containing pre-warmed medium, and placed in an incubator.  To 

freeze, the cells were resuspended in 3ml chilled freezing medium (4oC; 10% DMSO 

in FBS).  Aliquots of this suspension were pipetted quickly into each of three cooled 

cryo-vials.  These were immediately placed on ice then removed to a -70oC freezer. 
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2.2 Enumeration of cells using the haemocytometer  

To ensure accurate and reproducible seeding, cells were counted using a 

haemocytometer (Neubauer Improved, Hawksley, Sussex).  The flask of cells was 

trypsinized as above, and resuspended in 5ml of medium.  The haemocytometer 

and cover slip were wiped clean using a lens wipe, and the cover slip was then 

placed tightly over the counting squares.  Appearance of Newton’s rainbow rings 

indicates that this was achieved satisfactorily.  A small pipette was used to place a 

drop of cell suspension next to the cover slip, which then filled the counting chamber 

by capillary action.  The haemocytometer was viewed with a standard microscope 

(Nikon Phase Contrast) at a total magnification of x100 so that a single square filled 

the viewing field (see Figure 2.1: where the single squares are numbered 1 to 5).  

The number of cells was counted in 5 of the 9 large squares, including cells on the 

top and right boundary lines (represented by the labels A and B in Figure 2.1), and 

excluding those on the bottom or left boundary lines (labels C and D in Figure 2.1).  

Care was taken to ensure the same five squares were always counted.   This was 

repeated for the other counting chamber.  If the results for each chamber differed by 

over 20%, a third counting chamber was prepared to validate.  

The number of cells per ml of sample was calculated with the following formula: 

Cell number = mean number of cells per square x 104 x dilution factor (if 

appropriate) 

(104 corrects for the size of the counting square) 
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Figure 2.1: Diagrammatic representation of the Neubauer Improved 

haemocytometer counting chamber 

Large squares to be counted are numbered 1 to 5.  Cells of the top and right-hand 

boundary lines of any square (labelled A and B) are included in the count. 
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2.3 Viability assay: Trypan Blue dye exclusion method 

2.3.1 Background to method 

This is a routinely used technique to count the number of viable and non-viable 

cells, based on their membrane integrity.  It is considered to be valid in the cell lines 

to be investigated here (Cherdshewasart and Sriwatcharakul 2008; Maggiolini et al. 

2001; Shim et al. 2007).  In order to determine the number of viable cells present, 

the cells were treated with Trypan Blue dye.  This is membrane-impermeable for 

healthy viable cells, so these do not take up the dye, and remain opalescent.  

However, non-viable, or dead cells, can take up the dye and appear dark blue.  

Visualisation of the cells using a standard microscope and haemocytometer allows 

the number of viable cells in a given volume of medium to be counted.   

As this method it based on the loss of membrane integrity as the cell becomes non-

viable, it has a number of limitations.  Firstly, damage to the membrane may allow 

the dye to enter the cell, making it appear non-viable in the short term, however the 

cell may be able to repair itself and restore viability.  More likely, the cell may be 

non-viable without yet losing membrane integrity, making it impermeable to they dye 

and appear viable for a short time.  Finally, as the determination of viability is 

subjective, by visualisation, small amounts of damage, leading to small amounts of 

dye entering the cell, may go unnoticed. For these reasons, this method is 

considered too insensitive to accurately determine proliferation.  However, for the 

purposes of cell counting, when they have been used together, the results of the 

Trypan Blue dye exclusion assay and the MTT assay to assess proliferation in 

MCF7 and MDA-MB-231 cells correlate well (Simoes-Wust et al. 2002). 
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2.3.2 Procedure for Trypan Blue viability assay 

The procedure was as for standard haemocytometer counting, however, once the 

cell suspension was prepared, 50μl was placed in a microfuge tube, with 75μl PBS 

and 125μl (0.4%) Trypan blue solution (Sigma) and vortexed briefly to mix.  The 

total dilution factor was 5.  This was left at room temperature for 5 minutes, vortexed 

again to resuspend the cells, then counted using the haemocytometer method as 

described. 

Viable cells (those which have excluded the blue stain) and total cells were counted, 

and percentage viability calculated as: 

% viability  =  (number viable cells  /  total number of cells counted)  x  100 
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2.4 MTT proliferation assay 

2.4.1 Background to MTT assay method 

The MTT assay is a widely used, robust, reproducible, and high throughput method 

to determine the degree of cellular proliferation (Twentyman and Luscombe 1987).  

It utilizes a tetrazolium-type dye (MTT) which is yellow, water soluble, and can cross 

both the plasma and mitochondrial membranes of cells.  In the mitochondria of 

viable, actively metabolising cells, MTT is reduced into an insoluble purple formazan 

product by mitochondrial dehydrogenase enzymes.  The amount of purple formazan 

produced depends on the number of cells present and their viability.  As the reaction 

progresses, the cells die, and the formazan can be dissolved by addition of a 

solvent.  The intensity of the purple colour in solution is measured as optical density 

(OD), using a multiwell plate reader, and reflects the number of viable cells present 

after the given period of proliferation (Burton 2005).  The absorption maximum for 

formazan solubilised in DMSO is in the range of 560 to 570 nm (Plumb et al. 1989).  

The same 96 well plate is used for both cell growth and measurement, reducing the 

number of steps needed.   

This assay was first developed by Mosmann (1983), with later modifications to 

include use of DMSO as the solvent (Carmichael et al. 1987; Twentyman and 

Luscombe 1987).  The method here has also been used by others (Cherdshewasart 

and Sriwatcharakul 2008; Jin et al. 2010; Li et al. 2008) in both MCF7 and MDA-MB-

231 cells for similar isoflavone screening assays. 

While the MTT assay is frequently used to assess proliferation in MCF7 and MDA-

MB-231 cells, there is a question as to whether the isoflavones themselves cause 

an overestimation of the MTT assay results (see section 6.1.1).   For this reason, the 

assay was validated for use here by comparison to the Trypan Blue cell counting 

method, with isoflavones present (see section 2.4.6).  It was also optimised during 

the pilot phase for cell seeding density and treatment duration (see section 2.4.3).  

Additionally, an aliquot of the purple formazan DMSO solution was analysed with a 

scanning spectrophotometer (Thermo Helios α) to determine that maximal 

absorption was achieved between around 550 and 570 nm, confirming that 550nm 

was an appropriate wavelength with which to analyse the plates. 
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2.4.2 Preparation of solutions 

Stock solutions 

A stock solution of 1x10-2M (10mM) E2 (Sigma) was prepared in DMSO.  Stock 

solutions of 5x10-2 M (0.0316M) genistein and daidzein (both Sigma) were also 

prepared in DMSO.  Each was filtered using sterile 22μm polytetrafluoroethylene 

(PTFE; Whatman) syringe filters and stored in sterile glass universals at -20oC until 

use and thawed at room temperature.  Serial dilutions were prepared in filtered 

DMSO down to concentrations of 1x10-8M (10nM) for the phytoestrogens and 1x10-

9M (1nM) for E2.  A 5μl of the relevant stock dilution was added to 5ml of 

experimental medium to give the relevant ligand dose in a final DMSO concentration 

of 0.1% (i.e. to prepare medium with a genistein concentration of 1nM, 5μl of the 

1μM stock was added to 5ml medium) . In the case of the combined treatments the 

final DMSO concentration was 0.2%.  This was impossible to avoid because the E2 

and isoflavones were dissolved to their maximum concentrations.  These stock 

solutions were stored at -20oC and used for all experiments to follow.  

MTT working solution 

MTT working solution (100μl of 0.5 mg/ml MTT in DMEM without FBS) was 

prepared fresh on the day of use, from a stock solution of 5 mg/ml MTT (Sigma) in 

PBS.  The stock solution was filtered using a 0.22µm mixed cellulose ester (MCE) 

syringe filter (Millex Millipore) and stored in the dark at 4-8oC.  The working solution 

was prepared fresh on a weekly basis, although this preparation may be stable for 

up to six weeks (Twentyman and Luscombe 1987).   
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2.4.3 Optimisation of the MTT proliferation assay 

To generate the protocol described, the MTT proliferation assay required 

optimisation prior to use.  In order to do this, the MCF7 cell line was seeded in 96 

well tissue culture plates (Nunc) at a range of densities from 1000 to 9000 cells per 

well, and treated for a range of durations (from 24 to 96 hours) with experimental 

medium or medium containing 1nM E2.  The latter acted as a positive control for the 

induction of proliferation in this cell line.  The MTT assay was then conducted as 

described in the next section.  Optimisation of this protocol was carried out with 

MCF7 cells only. 

Sample results are described in Figure 2.2.  Based on this, the experimental 

conditions of a 72 hour treatment and seeding density of 6000 cells per well were 

selected.  These conditions allowed for maximum effect of the E2 treatment without 

being negatively impacted by overcrowding and lack of nutrients or being overly 

sparse preventing accurate measurement. 

Additionally prior to data collection, the effect of various doses of solvents on the 

proliferation of MCF7 cells was examined (Figure 2.3).  This was to confirm that the 

chosen dose of vehicle had no effect on proliferation by itself.  Both ethanol and 

DMSO were examined, at doses ranging from 0.1 to 5%, and compared to untreated 

cells.  DMSO was toxic in a dose-responsive manner, with percentage proliferation 

compared to untreated cells dropping at concentrations above 1%.   

This suggests that 0.1 and 0.2% DMSO were appropriate under these 

circumstances, as no effect on proliferation was observed up to 0.5%.  However, 

ethanol at concentrations of 0.5% and above promoted the proliferation of the cells.  

This is an interesting result which could have implications for the results of many 

studies, as ethanol is a frequently used solvent.  This data is in agreement with that 

of Singletary et al. (2001).  For this research, use of ethanol as a solvent was 

discontinued. 
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Figure 2.2: Impact of seeding density and treatment duration on MCF7 

proliferation 

Mean optical density (measured at 550nm) after MTT assay of MCF7 cells 

incubated with or without 1nM E2 over a period of time up to 96 hours.  Cells were 

initially seeded in 96 well plates in oestrogen free media at a range of cell densities 

per well (A: 1000, B: 3000, C: 6000 and D: 9000 cells per well) and incubated for 24 

hours to allow washout of oestrogenic effects.  Following this, medium was replaced 

with fresh media in the presence (grey line) or absence (black line) of 1nM E2, and 

incubated for up to 96 hours.  Data shown is the mean optical density (read at 

550nm) of at least three wells prepared on three separate occasions (n=3). 
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Figure 2.3: Effect of various solvents on the proliferation of MCF7 

MCF7 cells were prepared as described, before the addition of fresh medium 

containing the stated concentrations of ethanol or DMSO, and incubated for 72 

hours.  Data presented is the mean + standard deviation of the value from 8 wells 

prepared on the same day.  a: significant difference from the untreated control (p 

<0.05). 
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2.4.4 MTT proliferation assay protocol 

Upon reaching 80 to 90% confluence, the cells were rinsed with PBS, trypsinised, 

and counted using a haemocytometer.  They were then seeded in 96 well tissue 

culture plates at a density of 6000 cells per well, in 0.2 ml experimental media.  The 

cells were returned to the incubator and allowed to adhere for a period of 24 hours.  

This also served to wash out oestrogenic compounds in the growth media.  At this 

time, the medium was removed by inverting and gentle tapping, and 0.2ml fresh 

experimental medium added to each well, with the inclusion of the compounds to be 

tested.  Once prepared, the plates were returned to the incubator.  On each plate at 

least 3 “blank” wells were included, containing medium but no cells, which were 

treated in the same manner as the cell-containing wells throughout.   

Following treatment for 72 hours, the medium was removed by inverting and gentle 

tapping, and replaced with 100μl of MTT working solution.  The cells were incubated 

at 37oC in the dark for a further 4 hours to allow reduction of the MTT.  From this 

point sterile conditions were no longer required.  The MTT solution was removed by 

inversion and gentle tapping.  Formazan crystals were solublised by addition of 

100μl DMSO to each well, and after 5 to 10 minutes and gentle tapping, the density 

of the purple colour determined in a multiwell-plate spectrophotometer (Dynex MRX) 

at a wavelength of 550nm. 

Each treatment was replicated in at least 3 wells on the plate, and in at least 3 

plates prepared on different occasions.  No treatments contained more than 0.2% 

DMSO. Results were presented as the percentage of the appropriate vehicle-only 

control.   

% change in proliferation for each well was calculated as: 

(OD* reading – blank) ÷ (mean control OD – blank) x 100 

*OD: Optical Density 
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2.4.5 Test conditions for the MTT assay 

Controls 

The single treatments of isoflavone and E2 were compared with their vehicle-only 

control (0.1% DMSO).  The combined E2 and isoflavone treatments contained 0.2% 

DMSO, so this slightly higher concentration of the vehicle was used as the control 

treatment in these instances.  To determine the appropriateness of these solvent 

levels as controls, proliferation was assessed in both MCF7 and MDA-MB-231 cells 

grown with no additions, or the vehicle only (0.1% and 0.2% DMSO) for 72 hours.   

Oestrogen Treatment 

Proliferation was assayed in both cell lines after treatment with 1 pM (1x10-12M; 

postmenopausal) and 1 nM (1x10-9M; premenopausal) E2.  These values were 

chosen based on published serum levels of total E2 (Gruber et al. 2002).  In 

premenopausal women E2 levels vary with the menstrual cycle, with 1nM 

representing the mid-point of this range.  This was intended to confirm past results 

and act as a positive control for the induction of proliferation in ERα+ (MCF7) cells. 

Isoflavone Treatment 

Following this, both cell lines were treated with genistein and daidzein between 

0.01nM (1x10-11M) and 31.6µM (1x10-4.5M) to allow confirmation of their effects on 

proliferation as single treatments.  This concentration range is physiologically 

achievable in serum through diet alone, and represents both very high and 

low/never consumers of soy products, and women taking isoflavone supplements 

(Arai et al. 2000; Verkasalo et al. 2001).  It was hoped that this would allow the full 

range of stimulatory and inhibitory dose-dependent effects of these isoflavones on 

proliferation to be seen (Maggiolini et al. 2001; Matsumura et al. 2005).   

Combined Treatment 

Finally, the proliferative and apoptotic effects of genistein and daidzein were 

measured again, at the concentration ranges described, in combination with 1nM or 

1pM E2.  The results of these combined treatments were compared to the effect of 

the relevant E2 treatment alone, to characterise whether the isoflavone is capable of 

modifying proliferation in a physiologically relevant E2 environment. 
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2.4.6 Validation of the MTT assay 

To validate the results of the MTT assay, key treatments in both MCF7 and MDA-

MB-231 cells were compared with the results of the Trypan Blue dye exclusion 

viability assay. 

Both cell lines were seeded in 12 well plates (Greiner) in 1ml experimental medium 

per well, at a density of 5 x 104 cells/ml.  As with the MTT assay, the cells underwent 

a 24 hour oestrogen washout period, then the medium was replaced with 1ml fresh 

medium containing the experimental treatments.   

These comprised: 

 Untreated medium 
 

 0.1nM genistein 
 

 0.1% DMSO 
 

 1µM genistein 
 

 1nM E2 
 

 31.6µM genistein 
 

 

After three days of incubation, the medium was removed, and the cells were 

trypsinised by addition of 300µl trypsin per well.  Once all cells were in suspension, 

the trypsin was deactivated by addition of 300µl medium per well, and each cell 

suspension was transferred to a 1.5ml polypropylene microcentrifuge tube (Fisher).  

These were centrifuged (Eppendorf 5415 R) for 5 minutes at 150xG (room 

temperature).  Following this, the supernatant was removed, and the pellet was 

resuspended in 75µl PBS and 125µl Trypan Blue, as described in Section 2.3.  The 

total volume in each tube, including the pellet was around 250µl. 

The number of viable cells (per ml) in each sample was calculated as described 

(section 2.3.2).  This value was divided by four to determine the total number of 

viable cells per well (i.e. each 250µl sample contained all the detached cells from a 

1ml well). 

This procedure was carried out on two separate occasions.   The results for the 

MCF7 Trypan Blue viability assay are provided in Figure 2.4 , and for the MDA-MB-

231 in Figure 2.5.  In each case the data is compared with the results of the same 

experimental treatments in the MTT assay.   
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Figure 2.4: Comparison of MTT and Trypan blue validity assay results in MCF7 

cells 

MCF7 cells were assayed using the MTT assay and Trypan Blue dye exclusion 

assay as described, after 72 hour incubation in medium with no additions, vehicle-

only, 1nM E2, or genistein (0.1nM, 1µM and 31.6µM).  A: Numbers of cells per well 

(left hand side; mean ± range) and optical density at 550nm (right hand side; mean 

± SD for each).  For the MTT assay n = 3, and for the Trypan Blue assay n = 2.  B: 

Mean cell numbers and optical densities for each treatment, and the Pearson’s 

correlation coefficient (r, n = 12) describing the relationship between the two 

datasets. 
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Figure 2.5: Comparison of the MTT and Trypan blue validity assay results in 

MDA-MB-231 cells 

MDA-MB-231 cells were assayed using the MTT assay and Trypan Blue dye 

exclusion assay as described, after 72 hour incubation in medium with no additions, 

vehicle-only, 1nM E2, or genistein (0.1nM, 1µM and 31.6µM).  A: Numbers of cells 

per well (left hand side; mean ± range) and optical density at 550nm (right hand 

side; mean ± SD for each).  For the MTT assay n = 3, and for the Trypan Blue assay 

n = 2.  B: Mean cell numbers and optical densities for each treatment, and the 

Pearson’s correlation coefficient (r, n = 12) describing the relationship between the 

two datasets. 
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Pearson’s correlation coefficients (r) were calculated (SPSS version 19, IBM 

Statistics, 2010) to determine the relationship between the mean OD values and cell 

counts for each cell line and treatment (see Figure 2.4B and Figure 2.5B), along with 

the significance of this relationship (p, n = 12). 

For both cell lines the results of the two assays followed similar patterns.  In MCF7 

the Pearson’s correlation coefficient was 0.502 (p one tailed <0.05, n = 12) 

indicating a fairly strong positive correlation between the MTT and Trypan Blue 

assay results, although this just failed to achieve significance at the two tailed level 

(p = 0.096).  A stronger correlation was achieved with the MDA-MB-231 results (r = 

0.665, p two tailed <0.05, n = 12).  This suggests that the MTT assay is valid for use 

in determining the effects of isoflavone treatments on the proliferation of MCF7 and 

MDA-MB-231 breast cancer cells. 
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2.4.7 Statistical analysis 

All values are the mean result of at least nine wells.  Data is assumed to be normally 

distributed.  Data is represented as the mean percentage change in proliferation 

compared to the control (0.1% DMSO unless otherwise stated) and standard 

deviation.  Significant variation from the control results was determined using one 

way ANOVAs, with post hoc Bonferroni correction for multiple comparisons (SPSS 

version 19, IBM Statistics, 2010), and a value of p < 0.05 (two-tailed) was 

considered to be significant.  The EC50 (concentration required for a half-maximal 

effect) for each isoflavone on proliferation was determined by nonlinear regression 

using Graphpad Prism software (Graphpad Software Inc, Version 5.01, 2007). 
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2.5 Annexin V-Cy3 Apoptosis Assay  

2.5.1 Background to the Annexin V-Cy3 Apoptosis Assay method 

The Annexin V-Cy3™ Apoptosis Detection Kit (Sigma, APOAC) is quick to use, and 

detects apoptosis earlier in the apoptotic pathway than DNA-based methods such 

as TUNEL staining.  The assay is based on a 15 minute incubation with a solution 

containing Ca2+, labelled Annexin V, and a counter-probe.  It allows differentiation, 

using fluorescence microscopy, between early apoptotic, necrotic and viable cells.  

The Annexin V-Cy3.18 conjugate fluoresces more brilliantly for fluorescent 

microscopy that its Annexin-FITC counterpart used for flow cytometric methods.   

The kit contains two fluorescent dyes.  The first, Cy3.18 conjugated to Annexin V, 

binds to PS on the surface of apoptotic and necrotic cells.  The second dye is the 

non-fluorescent compound 6-carboxyfluorescein diacetate (6-CFDA), which enters 

the cell and is hydrolyzed by the esterases present in living cells into the fluorescent 

compound 6-carboxyfluorescein, indicating that the cells are viable.  The 

combinations of these dyes allow the state of the cells to be determined by 

fluorescence microscopy, as summarised in Table 2.1.  Annexin V positive, 6-CFDA 

positive cells are still actively engaged in metabolism but also externalising PS so 

are in the early stages of apoptosis.  Necrotic cells stain as Annexin V positive 6-

CFDA negative.  Finally viable cells are Annexin V negative, 6-CFDA positive.  The 

results of random microscopic fields were photographed and quantified. 

Table 2.1: Summary of Annexin V-Cy3 dye combination results 

Cell type Dye result Cell colour               

(composite image) 

Annexin V-Cy3 

(red)  

6-CFDA (green) 

Viable - + Green 

PS externalising 

(apoptotic) 

+ + Yellow                              

(Green + Red) 

Necrotic + - Red 
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The Annexin V-Cy3 kit been used successfully to determine apoptosis in both MCF7 

and MDA-MB-231 cell lines by other laboratories (Perillo et al. 2000; Wiebe et al. 

2010), and a related adherent breast cancer cell line MD- MB-435 (Castillo-Pichardo 

et al. 2009).  A similar kit designed for flow cytometric analysis, Annexin V-FITC, has 

also been used with both cell lines in studies similar to this, investigating the role of 

isoflavones in apoptosis (Li et al. 2008; Sergeev 2004).  There was no evidence that 

the isoflavones interfered with the activity of the fluorescent stains.  This suggests 

that this kit is an appropriate method of quantification for apoptosis in the present 

investigation. 

The binding buffer should contain Ca2+ between 1 and 3mM (1.8mM is optimal for 

many cell lines, higher concentrations will promote non-specific binding of Annexin V 

to other aminophospholipids), and simple salts.  Phosphate buffers should be 

avoided (Krysko et al. 2008).   For this reason RPMI growth medium is not advised 

due to its low Ca2+ high phosphate content.  DMEM medium satisfies the PS-binding 

properties of Annexin V (Krysko et al. 2008). 
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2.5.2 Preparation of Solutions 

The Annexin V-Cy3 kit contained the following:  

• Annexin V-Cy3.18 conjugate (10 µg protein, 100 µg/ml) dissolved in 

50mM Tris HCl, pH 7.5,  

• 6-Carboxyfluorescein diacetate (6-CFDA) 10 mg 

• 10x binding buffer 20ml containing 100mM HEPES/NaOH, pH 7.5 with 

1.4M NaCl and 25mM CaCl2 

In advance, the following solutions were prepared from the kit, according to 

manufacturer’s instructions: 

1x binding buffer  

10 fold dilution of 10x binding buffer with deionised water 

50mM 6-CFDA in acetone solution 

Dissolve 2.32mg 6-CFDA in 0.1ml acetone, store in amber vial at -20oC, protected 

from light 

Double label staining solution (1 µg/ml Annexin V-Cy3 and 500 µM 6-CFDA in 1x 

binding buffer) 

Mix 20µl of the Annexin V-Cy3 100µg/ml solution, 20 µl of 50 mM 6-CFDA acetone 

solution, 200µl 10x binding buffer, and 1.76ml deionised water.  Store in amber vial 

and protect from light 
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2.5.3 Optimisation and positive control 

Exposure levels for capturing red and green fluorescence were optimised with the 

positive and negative control cells and then used throughout.   In addition, at an 

early stage, cells treated with genistein or E2 (but not stained) were exposed to the 

excitation light source.   There was no auto-fluorescence detected (results not 

shown).   

Seeding conditions were optimised by testing a number of seeding densities (1 x 104 

to 1 x 106 cells per well) and durations (24 to 72 hours) to determine the conditions 

which would yield approximately 100 cells per microscopic field.  This was assessed 

visually using the Nikon Eclipse TS100 microscope (data not shown).  Optimum 

conditions required to give the appropriate final cell numbers were determined to be 

a 48 hour washout and seeding density of 5 x 104 cells per well.  This is similar to 

conditions used in several related studies (Jin et al. 2010; Schmidt et al. 2005). 

Treatment with hydrogen peroxide is known to induce apoptosis in a number of cell 

lines, including human leukaemia HL-60 cells (Wagner et al. 2002), human 

histiocytic lymphoma U937 cells (Perez et al. 2004) and various tumour cell lines 

(Wang et al. 2002).  In MCF7 cells treatment with 5mM H2O2 for 90 minutes resulted 

in approximately 50% of cells to become apoptotic (Perillo et al. 2000).  Likewise, in 

murine lymphocyte FL5.12 cells lower doses of 0.25 to 1mM H2O2 also induced 

apoptosis although over a longer timeframe (Hockenbery et al. 1993).  Based on 

these studies a one hour incubation in medium containing either 1mM or 5mM H2O2 

treatment was used as a positive control for the induction of apoptosis in this project. 

Plates (12 well) were prepared as described with both MCF7 and MDA-MB-231 

cells, in 1ml experimental medium, and incubated at 37oC in a humidified 5% CO2 

incubator for 72 hours.  H2O2 was added to the medium from a stock of 0.09M, to 

achieve a final concentration of 1mM or 5mM.  These doses were tested for 

durations ranging from one to four hours.  These were initially assessed visually, 

and then several treatments were stained and examined as described (see section 

2.5.4).   

Sample images are provided in Figure 2.6 and results are displayed in Figure 2.7.  

Significant increases were seen in the percentage of apoptotic MCF7 cells after 

treatment with both 1 and 5mM H2O2 compared with no treatment.  The impact H2O2 



148 | P a g e  

 

treatment on MDA-MB-231 cells was lower in magnitude, but a significant increase 

in PS-externalising apoptosis was still observed in the MDA-MB-231 cells after 5mM 

H2O2 treatment for an hour.   This suggests that the test is capable of generating 

comparable results to those seen in other published studies for the induction of 

apoptosis in these cell lines (Perillo et al. 2000). 

 

Figure 2.6: Representative images showing the results of the Annexin V-Cy3 

apoptosis assay on hydrogen peroxide treated MCF7 cells 

MCF7 cells prepared as described then treated with 1mM H2O2 for 1 hour, stained 

with the Annexin V-Cy3 apoptosis detection kit, and fluorescent images captured. A: 

green fluorescence from 6-CFDA dye.  B: red fluorescence from Annexin V 

conjugate dye.  C: Composite image.  In each image 1 indicates a number of viable 

cells, stained by 6-CFDA only, and 2 indicates apoptotic cells stained with both.  In 

this region of the slide apoptosis was calculated to be 68.54%. 
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Figure 2.7: Induction of apoptosis by hydrogen peroxide treatment (1 hour) 

Cells were seeded in oestrogen free medium and incubated for 48 hours to allow 

oestrogens to wash out.  Following this, medium was replaced with fresh oestrogen 

free medium.   After a further 24 hour incubation, hydrogen peroxide was added at 1 

and 5 mM, for 1 hour, to induce apoptosis.  Results presented as mean % PS 

externalising apoptotic cells per treatment and SD (n=3).  Significant variation from 

the relevant untreated controls are indicated by a (p < 0.001) or b (p < 0.05).  

Subsequently, treatment with various test ligands was piloted using the described 

protocol for both 24 hours and 48 hours (results determined visually, data not 

shown).  Both time periods are frequently used to generate significant results in 

MCF7 and MDA-MB-231 cell lines for the induction of apoptosis by isoflavone 

treatment, although to date this has not been assessed by the Annexin V-Cy3 

method (Garvin et al. 2006; Jin et al. 2010; Li et al. 2008; Sergeev 2004; Shim et al. 

2007).  Based on this pilot testing, 24 hour treatment was chosen. 
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2.5.4 Annexin V-Cy3 apoptosis assay protocol 

This procedure for MCF7 and MDA-MB-231 cells is based on the manufacturer’s 

instructions and the method used by Castillo-Pichardo et al. (2009) for adherent 

MDA-MB-435 breast cancer cells.  Optimisation of conditions were described 

previously in section 2.5.3. 

Upon reaching 80 to 90% confluence, the cells were rinsed with PBS, trypsinised, 

and counted using a haemocytometer.  They were then seeded in 12 well plates 

(Greiner) at a density of 5 x 104 cells per well in 1 ml  experimental medium, on 10 

mm glass cover slips (Agar Scientific).  Prior to placing in the wells, the cover slips 

were sterilised by autoclaving. 

The plates were returned to the incubator and the cells allowed to adhere and grow 

for a period of 48 hours.  This also served to wash out oestrogenic compounds in 

the growth media.  Following this, the medium was gently removed by pipette, and 

replaced with 1 ml of experimental, oestrogen free medium containing appropriate 

doses of the ligands under scrutiny.  The plates were then returned to the incubator 

for another 24 hours. 

The following stages did not require sterile conditions.  To stain, each cover slip was 

extracted gently from the well with watchmaker’s forceps, and washed twice gently 

with 100µl PBS.  Excess liquid was blotted off with a tissue gently at the side of the 

cover slip, not directly on top, as this would damage or dislodge the cells.  

Subsequently, the surface of the cover slip with the adherent cells was washed 

gently three times with 50µl 1x binding buffer, blotted each time as before, and 

placed cell side up on a slide or Petri dish.  50µl double staining solution was 

dropped onto the cover slip, which was then covered with foil and incubated for 15 

minutes at room temperature.  After staining, each cover slip was washed five times 

with 50µl 1x binding buffer as before, to remove excess label.  Following this, 35µl of 

1x binding buffer was dropped onto the cover slip, which was then inverted over a 

glass slide. 

The results were observed and rapidly photographed using a fluorescence 

microscope (Nikon Eclipse TS100) with a 20x/0.50 Nikon Plan Fluor objective.  6-

CFDA is excited by light at 485nm, and emitted light is transmitted through a 505 nm 

dichroic mirror and long-pass 520 nm emission filter (B-2A filter, Nikon) to be 
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observed as green fluorescence.  Annexin V-Cy3.18 is excited by light at 530 nm, 

and emitted light is transmitted through a 575 nm dichroic mirror and 580 nm 

emission filter (G-2A filter, Nikon) appearing as red fluorescence.   Images were 

captured using a Diagnostic Spot RT Colour 2.2.1 camera, and thresholded and 

analysed with Image J software (NIH: Version 1.44).  This stage was completed 

rapidly, with minimum exposure of the cells to the light source, to reduce the 

potential for leakage and bleaching of the dye.  The analyst was blinded to the 

treatment as far as possible, by assigning all images a numerical name unrelated to 

the experimental conditions.  A sample set of images is provided in Figure 2.8. 

Three random areas from each cover slip were analysed, and at least three 

separate cover slips were prepared on different occasions for each treatment.  At 

x200 magnification approximately 100 cells were visible per field, resulting in 

approximately 900 to 1000 cells being assessed for each treatment.   

Percentage induction of PS externalising apoptotic cells for each cover slip field was 

determined as follows: 

% apoptotic cells = (no. apoptotic cells) ÷ (total no. cells*) x 100 

* Total no. cells = viable + apoptotic + necrotic 
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Figure 2.8: Sample images of Annexin V-Cy3 kit results 

MCF7 cells seeded as described then treated with 1µM genistein for 24 hours.  

Following this, the Annexin V-Cy3 apoptosis assay was carried out and digital 

images acquired.  6-CFDA fluoresces green (A) and Annexin V-Cy3 fluoresces red 

(B).  A composite image (C) has been generated for illustrative purposes.  Cells 

which fluoresce green only (1) are viable and cells which fluoresce in both colours 

(2; appear yellow in composite image) are apoptotic.    
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2.5.5 Test conditions 

Positive and negative controls 

Untreated cells, and cells grown for 24 hours in medium containing the vehicle only 

treatments of 0.1% DMSO were tested for induction of apoptosis in MCF7 and MDA-

MB-231 cell lines.  In addition, the impact of 0.2% DMSO was assessed in MCF7 

cells.  The DMSO-only controls were compared to the untreated cells to verify that 

they did not significantly modify levels of apoptosis in either cell line.  This confirmed 

their appropriateness to act as controls for the other test conditions. 

Oestrogen and isoflavone single treatments 

Apoptosis and was quantified in both cell lines after 24 hour treatment with 1 pM and 

1 nM E2.  Similarly, both cell lines were treated with physiological levels of genistein 

and daidzein (0.1, 1, 10 and 31.6 µM).  These treatments were intended to confirm 

the results in the scientific literature. 

Combined Treatment 

Finally, the apoptotic effects of genistein and daidzein were assayed again, at the 

concentration ranges described, in combination with 1nM and 1pM E2.  This was 

conducted in the MCF7 cells only due to financial constraints.  As the combination of 

E2 and isoflavones had little further effect on proliferation of MDA-MB-231 cells over 

that of the isoflavones alone, this treatment was not expected to modify the levels of 

apoptosis in these cells.  The results of the combined MCF7 treatments were 

compared to the effect of the relevant E2 treatment alone and isoflavone 

concentration alone, to characterise whether the isoflavone was capable of inducing 

apoptosis in a physiologically relevant E2-containing environment. 
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2.5.6 Statistical analysis 

For all conditions the mean and standard deviation of the percentage induction of 

apoptosis data was determined.  Data is assumed to be normally distributed.  The 

single treatments of isoflavone and E2 were compared to their vehicle only control 

(0.1% DMSO).  Combined E2 and isoflavone treatments were compared to the 

relevant E2 only treatment as a control.  Significant variation from the control results 

was determined using one way ANOVAs with Bonferroni post hoc corrections 

(SPSS version 19, IBM Statistics, 2010), and a value of p < 0.05 (two-tailed) was 

considered to be significant. 
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2.6 DAPI staining and determination of apoptotic nuclear 

morphology 

2.6.1 Background to method 

The second measure of apoptosis used was DAPI staining and subsequent 

determination of changes to nuclear morphology: namely the appearance of a bright 

fluorescent ring of condensed DNA around the outside of the nucleus, subsequent 

spreading of this to encompass the whole nucleus, which becomes smaller and 

more brightly stained, before fragmenting (Hacker 2000).   

DAPI is a blue fluorescent dye that fluoresces brightly when bound to the minor 

groove of double-stranded DNA.  In this state its fluorescence is approximately 20-

fold greater than when unbound. This selectivity for DNA, along with cell 

permeability, allows the staining of nuclei with little background interference, making 

DAPI a classic nuclear dye for assessing apoptosis.  Use of DAPI staining followed 

by assessment of the percentage of cells displaying apoptotic nuclear morphology 

has been used in a number of cell lines, including MDA-MB-231 (Miglietta et al. 

2006), the human gastric cancer cell line SGC7901 (Wang et al. 2010) and several 

human ovarian cancer cell lines (Lai et al. 2003) to quantify apoptosis.  On several 

of these occasions apoptosis was also assessed by other methods, and the results 

were comparable (Miglietta et al. 2006; Wang et al. 2010). 

Briefly, the MCF7 and MDA-MB-231 cells were treated with vehicle only, genistein, 

daidzein and 17β-oestradiol both alone and in combination, and then stained with 

DAPI after 3 hours to assess any early apoptotic nuclear changes.  Following this, 

digital images of the fluorescent cells were collected and analysed, and the 

percentage of cells displaying nuclear apoptotic morphology was calculated.   
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2.6.2 Preparation of Solutions 

10% Formalin (Formaldehyde) solution 

Formalin (37%; Sigma) diluted with deionised H2O. 

60% Isopropanol (2-propanol / isopropyl alcohol) 

Isopropanol (≥ 99.7%; Sigma) diluted with deionised H2O. 

DAPI stock solution 

DAPI was dissolved in deionised H2O (1mg/ml), then stored at -20oC in the dark. 

DAPI working solution 

Add 100µl DAPI stock to 9.9ml PBS (10µg/ml final concentration) and filter using a 

0.22µm MCE syringe filter (Millex Millipore).  Store at -20oc in the dark 
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2.6.3 Optimisation of the DAPI apoptosis assay 

As with the Annexin V assay (optimisation section 2.5.3), auto-fluorescence was 

assessed and determined to be of no concern. 

Initial observations (not shown) indicated the necessity of the formalin fixation step, 

and allowed optimisation of the DAPI concentration used and cell seeding density. 

The latter was of particular importance as sufficient cell numbers were needed to 

ensure generation of reproducible results, while attempting to avoid large numbers 

of overlapping cells.  Overlapping was of particular concern for the MCF7 cell line as 

they had a tendency to clump.   

The positive control for induction of apoptosis (H2O2) and untreated MCF7 cells 

were used to optimise the DAPI assay (Figure 2.9).    Treatment with 1mM H2O2 

resulted in a significant increase in the percentage of apoptotic cells after 120 mins, 

although not 60 minutes.  All the durations tested with 5mM H2O2 resulted in an 

increased percentage of apoptotic cells, and this was statistically significant at 120 

minutes.  This suggests that apoptotic changes in nuclear morphology (nuclear 

condensation and fragmentation) were taking place, and that this method was valid 

for their quantification.   

Following this stage, genistein (1 and 31.6μM), 0.1% DMSO, and 1nM E2 were 

assayed after two, three and four hours of treatment in MCF7 and MDA-MB-231 

cells  to determine the timescale which would allow any changes in nuclear 

morphology to be reproducibly measured (assessed visually, data not shown).  

Based on this, three hour incubation was deemed to be optimum. 
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Figure 2.9: Induction of apoptotic nuclear morphology in MCF7 by hydrogen 

peroxide treatment  

MCF7 cells were seeded as described and incubated for 48 hours to allow 

oestrogens to wash out.  Following this, medium was replaced with fresh oestrogen 

free medium.   This was either left with no additions for 120 mins, or H2O2 (1 and 

5mM) for between 30 and 120 mins, to induce apoptosis.  The percentage of 

apoptotic cells was determined after DAPI staining.  Results are presented as mean 

and SD (n=3) for each treatment.   Significant variation from the untreated control is 

indicated by a (p < 0.01) and b (p < 0.05). 
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2.6.4 DAPI apoptosis assay protocol 

This procedure is based on that described by Doonan and Cotter (2008).  Similar 

techniques have been used in other human cancerous cell lines (Lai et al. 2003; 

Wang et al. 2010). 

MCF7 and MDA-MB-231 cells were seeded in 24 well plates (Greiner) at a density 

of 1 x 104 cells per well in 0.5ml experimental (oestrogen free) medium.  They were 

incubated for 48 hours at 37oC in a humidified 5% CO2 environment to allow for 

oestrogen washout.  The medium was removed and each well was washed once 

with 1ml PBS (37oC). 

Positive control for apoptosis (MCF7 only): 

Each well was filled with 0.5 ml experimental medium and H2O2 (1 and 5mM) and 

incubated at 37oC in a humidified 5% CO2 environment for up to two hours.   

For test compounds (MCF7 and MDA-MB-231): 

To each well 0.5ml of experimental medium was added with appropriate 

concentrations of the test compounds or vehicle only to get a final DMSO 

concentration of 0.1 or 0.2%.  Plates were incubated for 3 hours at 37oC in a 

humidified 5% CO2 environment. 

For all plates: 

Formalin fixation 

After 3 hours (or the stated duration), the medium was removed from the wells, and 

0.3ml of 10% formalin was added to each well.  This was incubated for 10 minutes 

at room temperature, then the formalin was discarded and the same volume of fresh 

formalin was added.  This was incubated for at least an hour, although at this stage 

the plates could be left for a couple of days, wrapped in Parafilm to prevent 

evaporation.  The formalin was then removed, wells were washed with 60% 

isopropanol (0.3ml per well) and allowed to air dry completely. 
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DAPI staining 

Following fixation, each well was washed twice gently with warmed PBS, this was 

removed, and 200μl DAPI working solution was added to each well.  This was 

incubated at room temperature in the dark for 20 minutes, agitating gently 

occasionally to ensure complete coverage.  Each well was washed five times gently 

with warmed PBS to remove any unbound DAPI.   

The results were observed and photographed using a fluorescence microscope 

(Nikon Eclipse TS100) with a 20x/0.50 Nikon Plan Fluor objective.  The excitation 

wavelength for DAPI was 345nm, and the emission wavelength was 455nm, 

observed as blue fluorescence using UV-2A filter (Nikon) with 400nm dichroic mirror 

and barrier filter of 420nm.  Images were captured using a Diagnostic Spot RT 

Colour 2.2.1 camera, and analysed with Image J software (NIH, Version 1.44).  Six 

images from each well were captured, each containing approximately 50 cells.  This 

stage was completed rapidly, with minimum exposure of the cells to the light source, 

to reduce the potential for leakage and bleaching of the dye.  Each treatment was 

repeated on three separate occasions, meaning that for each experimental 

treatment approx. 1000 cells were analysed. 
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2.6.5 Calculation of the percentage of cells displaying apoptotic 

morphology 

Images were analysed using ImageJ software.  As far as possible, the analyst was 

blinded to the experimental treatment, by assigning each digital image a numerical 

identifier independent of the treatment.  For each image, the total number of cells, 

and the number displaying apoptotic nuclear condensation, punctuated nuclei or 

fragmentation (Figure 2.10) as defined by Hacker (2000) was determined.    

The percentage of cells displaying apoptotic morphology for each image was 

calculated as follows: 

% apoptotic cells = (no. apoptotic cells) ÷ (total no. cells*) x 100 

* Total no. cells = apoptotic + non-apoptotic 
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Figure 2.10: Breast cancer cells displaying normal or apoptotic nuclear 

morphology  

Following treatment, MCF7 (A, B, C) and MDA-MB-231 (D, E, F) cells were stained 

with DAPI and nuclear morphology was assessed by fluorescence microscopy. A, D: 

0.1% DMSO.  B: 31.6µM daidzein.  C: 1mM H2O2.  E:  31.6µM genistein.  F: 31.6µM 

daidzein + 1pM E2.  Cells with evenly stained, rounded nuclei (white arrows) were 

counted as non-apoptotic.  Cells displaying condensed chromatin (blue arrows) or 

punctuated nuclei (red arrows) were considered to be apoptotic. 
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2.6.6 Test conditions 

Positive and negative controls 

Positive controls for MCF7 apoptosis of 1 and 5mM H2O2 were used based on the 

results of the Annexin V-Cy3 apoptosis assay.  These were tested at half, one and 

two hours, to ensure the capture of early apoptotic nuclear morphological changes.  

Following this, untreated cells, and cells treated with 0.1 and 0.2% DMSO were 

used to quantify the level of apoptosis measured by this method under control 

conditions in both MCF7 and MDA-MB-231 cells. 

Oestrogen and isoflavone single treatments 

As with the Annexin V-Cy3 apoptosis assay, nuclear morphology was assessed in 

MCF7 and MDA-MB-231 cells after a three hour treatment with 1pM and 1nM E2.  

Both cell lines were then treated with a physiological range of concentrations of 

genistein and daidzein (0.01, 1, 10 and 31.6 µM).   

Combined Treatments 

Changes to nuclear morphology were assessed in both MCF7 and MDA-MB-231 at 

the concentrations of genistein and daidzein described, in combination with 

premenopausal and postmenopausal E2 levels.  The decision to extend this assay 

to the MDA-MB-231 cell line was based on the results of the Annexin V-Cy3 

apoptosis assay suggesting a slight increase in the levels of PS externalising 

apoptosis in these cells by both isoflavones and E2 as single treatments.   
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2.6.7 Statistical analysis 

For all conditions the mean and standard deviation of the percentage of apoptotic 

cells were determined.  Normal distribution of the data was assumed.  The single 

treatments of phytoestrogen and E2 were compared with their vehicle-only control 

(0.1% DMSO).  Combined E2 and phytoestrogen treatments were compared with 

the 0.2% DMSO vehicle only control, and the relevant E2 only and single isoflavone 

treatments.  Significant variation was determined using one way ANOVAs with 

Bonferroni post hoc corrections (SPSS version 19, IBM Statistics, 2010), and a 

value of p<0.05 (two-tailed) was considered to be significant. 
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CHAPTER 3. Results: proliferation and apoptosis  

3.1 MTT proliferation assay  

3.1.1 MCF7 proliferation results 

3.1.1..1 Impact of control treatments and oestradiol on MCF7 proliferation  

72 hour treatment with 0.1% DMSO had no significant affect on proliferation 

compared to an untreated control (Figure 3.1).  Treatment with 0.2% DMSO caused 

a slight reduction in proliferation compared to the untreated cells, but this did not 

achieve statistical significance.  The relative values for proliferation were 100 

±10.34%, 96.96 ± 10.35% and 74.03 ± 12.18%, for untreated, 0.1% DMSO and 

0.2% DMSO respectively.   
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Figure 3.1 Impact of DMSO treatment on MCF7 proliferation 

MCF7 cells were prepared as described.  After a 24 hour oestrogen washout, their 

medium was replaced with medium containing no additions, or DMSO at 0.1 and 

0.2%.  They were incubated in this for 72 hours.  Results were expressed as 

percentage of the untreated value (mean + standard deviation, n=3).  

The single treatments of E2 and isoflavone used the DMSO vehicle at 0.1%, and 

consequently this treatment is considered appropriate as a control for these 
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conditions.  The combined E2/isoflavone treatments described to follow contained 

DMSO at 0.2%.  As this dose of the solvent did not have a significant impact upon 

MCF7 proliferation it was also considered to be an appropriate vehicle and control 

treatment for these experiments.   

Treatment for 72 hours with 1pM E2 promoted the proliferation of MCF7 significantly 

(p <0.05; Figure 3.2 and Table 3.1).  The higher dose of 1nM E2 had an even 

greater effect (p <0.001). 
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Figure 3.2: Impact of 17β-oestradiol on MCF7 proliferation 

MCF7 cells were prepared as described.  After a 24 hour oestrogen washout, their 

medium was replaced with medium containing vehicle-only, or E2 at 1pM or 1nM.  

They were incubated in this for 72 hours.  Results were expressed as a percentage 

of the control treatment (mean + standard deviation, n=3).  a: significance of 

difference from vehicle-only control (p) < 0.05, b: significant difference from vehicle-

only control (p) <0.001.  
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3.1.1..2 Biphasic effect of isoflavones on MCF7 proliferation 

The results of the experiments looking at the effects of isoflavones on MCF7 

proliferation are shown in Figure 3.3, and Table 3.1.   
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Figure 3.3: Effect of genistein and daidzein on MCF7 proliferation 

MCF7 cells were prepared as described.  After a 24 hour oestrogen washout, their 

medium was replaced with medium containing the vehicle only, or genistein or 

daidzein between 1x10-11 M (0.01nM) and 5x10-4M (31.6µM) and incubated in this 

for 72 hours.  Proliferation was assessed by MTT assay and expressed as a 

percentage of the control treatment (mean + SD).  a: significance of difference from 

vehicle-only control (p) < 0.01, b: significant difference from vehicle-only control (p) 

<0.001. 

Genistein between 0.01 and 1nM had no significant effect on MCF7 proliferation 

compared to the 0.1% DMSO control.  However, from 10nM up to the highest 

concentration tested of 31.6µM, proliferation was significantly increased, peaking at 

10µM (p < 0.001).  Up to and including 10µM a clear dose response can be seen, 
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with an EC50 of 12.88nM.  The biphasic effect seen by some groups was not 

completely apparent here, as the highest concentration of genistein used (31.6µM) 

still resulted in some increase in proliferation compared to the control, but the trend 

is heading in a downward direction, and it is very likely that if higher doses were 

used then a toxic effect would become apparent. 

Very similar effects, although slightly lower in magnitude (this difference never 

achieved statistical significance), were seen with 72 hour daidzein treatments for 

MCF7.  Doses up to and including 1nM had no significant effect on proliferation. 

Higher doses significantly promoted proliferation in a dose-responsive manner, 

peaking at 1µM (p < 0.001).  The EC50 for the effect of daidzein on MCF7 

proliferation was calculated to be 72.1nM, suggesting that genistein was five times 

more effective at promoting MCF7 proliferation than daidzein.  As with genistein, 

higher doses of daidzein continued to have a significant positive effect on 

proliferation compared to the control although again the trend was heading in a 

downward direction.  As above, if higher doses were used then it is likely that a toxic 

effect would become apparent. 
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Table 3.1: Results of single treatments on MCF7 proliferation 

Treatment % Proliferation1 SD P2 

No treatment 103.14 11.29 NS 

0.1% DMSO 100.00 11.25 - 

0.2% DMSO 76.35 13.24 NS 

G 0.01nM 116.37 17.79 NS 

G 0.1nM 116.52 12.94 NS 

G 1nM 120.42 22.51 NS 

G 10nM 142.21 18.31 <0.01 

G 100nM 164.74 29.60 <0.001 

G 1µM 177.90 29.54 <0.001 

G 10µM 178.04 41.76 <0.001 

G 31.6µM 139.49 20.55 <0.01 

D 0.01nM 103.14 21.20 NS 

D 0.1nM 114.33 14.84 NS 

D 1nM 121.44 25.12 NS 

D 10nM 138.62 36.41 <0.01 

D 100nM 143.99 18.12 <0.01 

D 1µM 160.73 29.80 <0.001 

D 10µM 147.83 20.80 <0.001 

D 31.6µM 140.53 24.05 <0.001 

E2 1pM 126.80 16.19 <0.05 

E2 1nM 162.24 31.19 <0.001 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: standard deviation, NS: not 

significant (p ≥ 0.05) 

1 % proliferation compared to control cells treated with vehicle only (0.1% DMSO) 

2 significance of difference compared to cells treated with vehicle only (0.1% DMSO) 
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3.1.1..3 Synergistic effect of isoflavones and oestradiol on MCF7 

proliferation  

The effects of the combined isoflavone/E2 treatments on MCF7 are displayed in 

Figure 3.4 and Table 3.2.  Compared with the 0.2% DMSO control, all of the 

combined E2/isoflavone treatments resulted in a significant increase in MCF7 

proliferation. 

The combinations of postmenopausal E2 (1pM) and genistein appear to affect 

proliferation in additive manner (Figure 3.4A), with most of the genistein treatments 

increasing proliferation significantly on top of the effect of the oestrogenic effect.  

Percentage proliferation peaked at 10µM genistein, mirroring the effects seen with 

the single treatments.  The impacts of these combined treatments on proliferation 

are very similar numerically to the sum of the relevant single treatments. 

The impact of daidzein and 1pM E2 on proliferation was comparable to that seen 

with genistein (Figure 3.4B), again peaking at the same concentration as the single 

daidzein treatment (1µM).  Genistein and daidzein in combination with 

premenopausal E2 (1nM) levels was less dramatic.  There is a trend towards an 

additional effect but in many cases the isoflavone fails to induce any statistically 

significant increases in proliferation on top of the effect of 1nM E2.   

Furthermore, virtually all of the E2-isoflavone combinations resulted in significantly 

greater induction of MCF7 proliferation that the relevant isoflavone alone treatment.  

For p values see Table 3.2. 
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Figure 3.4: Effect of isoflavones at physiological E2 levels on MCF7 

proliferation 

MCF7 cells were prepared as described.  After a 24 hour oestrogen washout, their 

medium was replaced with medium containing genistein (A) or daidzein (B) between 

1x10-11M (0.01nM) and 5x10-4M (31.6µM) with pre- or post-menopausal E2 

concentrations (1nM and 1pM respectively) and incubated for 72 hours.  

Proliferation was assessed by MTT assay and results were expressed as a 

percentage of the control treatment (mean ± SD, n = 3). Significant differences 

indicated from 1nM E2 (a: p <0.05, b: p <0.001) or from 1pM (d: p <0.05, e: p 

<0.001).   



 
 

Table 3.2: Results for combined treatments on MCF7 proliferation 

Treatment Mean % change 

compared to 0.2% DMSO 

Standard 

Deviation 

Significance (p) compared to: 

0.2% DMSO 1nM E2 1pM E2 corresponding ISF alone 

0.2% DMSO 100 13.24 - - - - 

G 0.01nM + 1nME2 180.94 28.49 <0.001 NS - <0.01 

G 0.1nM + 1nME2  202.19 43.70 <0.001 NS - <0.001 

G 1nM + 1nME2 220.55 36.17 <0.001 <0.05 - <0.001 

G 10nM + 1nME2 208.44 48.37 <0.001 NS - <0.01 

G 100nM + 1nME2 215.79 44.65 <0.001 0.086 - <0.05 

G 1µM + 1nME2 214.85 49.16 <0.001 NS - NS 

G 10µM + 1nME2 207.66 40.31 <0.001 NS - NS 

G 31.6µM + 1nME2 167.63 57.94 <0.001 NS - NS 

G 0.01nM + 1pME2 154.08 22.64 0.014 - NS NS 

G 0.1nM + 1pME2 209.60 49.86 <0.001 - <0.01 <0.001 

G 1nM + 1pME2 215.92 50.68 <0.001 - <0.01 <0.001 

G 10nM + 1pME2 232.42 66.51 <0.001 - <0.001 <0.001 

G 100nM + 1pME2 264.31 94.75 <0.001 - <0.001 <0.001 

G 1µM + 1pME2 264.76 77.33 <0.001 - <0.001 <0.01 

G 10µM + 1pME2 287.63 71.61 <0.001 - <0.001 <0.001 

G 31.6µM + 1pME2 187.53 34.30 <0.001 - NS NS 
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Treatment Mean % change 

compared to 0.2% DMSO 

Standard 

Deviation 

Significance (p) compared to: 

0.2% DMSO 1nM E2 1pM E2 corresponding ISF alone 

D 0.01nM + 1nME2 188.08 28.48 <0.001 NS - <0.01 

D 0.1nM + 1nME2 221.51 45.58 <0.001 <0.05 - <0.001 

D 1nM + 1nME2 225.63 37.10 <0.001 <0.01 - <0.001 

D 10nM + 1nME2 203.08 42.54 <0.001 NS - <0.01 

D 100nM + 1nME2 211.50 38.17 <0.001 NS - <0.01 

D 1µM + 1nME2 253.63 41.15 <0.001 <0.001 - <0.001 

D 10µM + 1nME2 248.52 59.46 <0.001 <0.001 - <0.001 

D 31.6µM + 1nME2 178.61 29.18 <0.001 NS - NS 

D 0.01nM + 1pME2 160.21 23.36 <0.001 - NS <0.05 

D 0.1nM + 1pME2 188.01 32.69 <0.001 - <0.05 <0.001 

D 1nM + 1pME2 216.91 57.61 <0.001 - <0.001 <0.001 

D 10nM + 1pME2 200.34 45.51 <0.001 - <0.001 <0.01 

D 100nM + 1pME2 253.38 37.82 <0.001 - <0.001 <0.001 

D 1µM + 1pME2 305.02 53.79 <0.001 - <0.001 <0.001 

D 10µM + 1pME2 246.40 56.70 <0.001 - <0.001 <0.001 

D 31.6µM + 1pME2 197.37 28.01 <0.001 - <0.01 <0.01 

G: genistein, D: daidzein, E2: 17β-oestradiol, ISF: isoflavone, NS: not significant (p ≥ 0.05) 
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3.1.2 MDA-MB-231 proliferation results 

3.1.2..1 Impact of control treatments and oestradiol on MDA-MB-231 

proliferation 

The result of 72 hour treatment with 0.1% DMSO on MDA-MB-231 proliferation was 

not significantly different from the untreated control (Figure 3.5).  0.1% DMSO is 

considered as an appropriate control for the rest of the data.  However, 0.2% DMSO 

treatment for 72 hours resulted in a significant reduction in proliferation compared to 

the untreated control.  This must be borne in mind while considering the results of 

the combined treatments, which use this DMSO level as a vehicle and control.   The 

relative values for proliferation were 100 ± 25.35%, 90.15 ± 19.31% and 75.93 ± 

13.48%, for untreated, 0.1% DMSO and 0.2% DMSO respectively.   
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Figure 3.5: Impact of DMSO on MDA-MB-231 proliferation 

MDA-MB-231 cells were prepared as described.  After a 24 hour oestrogen 

washout, their medium was replaced with medium containing no additions, or DMSO 

at 0.1 and 0.2%.  They were incubated in this for 72 hours.  Proliferation was 

assessed by MTT assay and results expressed as a percentage of the untreated 

control (mean + standard deviation, n=3).  a: significance of difference from 

untreated control (p) < 0.05. 
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72 hour treatment of MDA-MB-231 with pre- and post-menopausal concentrations of 

17β-oestradiol inhibited the proliferation of MDA-MB-231 cells compared to the 0.1% 

DMSO control (Figure 3.6).  With postmenopausal E2 (1 pM) this difference 

achieved statistical significance.   
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Figure 3.6: 17β-oestradiol reduces MDA-MB-231 proliferation 

MDA-MB-231 cells were prepared as described.  After a 24 hour oestrogen 

washout, their medium was replaced with medium containing vehicle-only, or E2 at 

1pM or 1nM (1000pM).  They were incubated in this for 72 hours.  Proliferation was 

assessed by MTT assay and results expressed as a percentage of the control 

treatment (mean + standard deviation, n=3).  a: significance of difference from 

vehicle-only control (p) < 0.05. 

3.1.2..2 Isoflavones inhibit proliferation of MDA-MB-231 

The results for the experiments looking at the impact of single treatments on the 

proliferation of MDA-MB-231 are shown in Table 3.3 and Figure 3.7.  All 72 hour 

genistein treatments between 0.01 nM and 10µM slightly inhibited proliferation, 

although did not reach statistical significance.  The highest dose (31.6µM) caused a 

dramatic and significant (p<0.01) decrease in proliferation.   Daidzein treatment 

resulted in a broadly similar pattern, with the exception that 0.01nM significantly 

inhibited proliferation also (p<0.001). 
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Figure 3.7: Effect of genistein and daidzein on MDA-MB-231 proliferation 

MDA-MB-231 cells were prepared as described.  After a 24 hour oestrogen 

washout, their medium was replaced with medium containing the vehicle only or 

genistein or daidzein between 1x10-11 M (0.01nM) and 5x10-4M (31.6µM) and 

incubated in this for 72 hours.  Proliferation was assessed by MTT assay and 

expressed as a percentage of the control treatment (mean + standard deviation, 

n=3).  a: significance of difference from vehicle-only control (p) < 0.01, b: 

significance of difference (p) from vehicle-only control <0.001. 
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Table 3.3: Impact of single treatments on MDA-MB-231 proliferation 

Treatment % 

proliferation1  

SD P2 

No treatment 109.05 26.38 NS 

0.1% DMSO 100 20.43 - 

0.2% DMSO 84.97 15.25 NS 

G 0.01nM 75.34 6.83 NS 

G 0.1nM 76.59 16.39 NS 

G 1nM 77.97 16.68 NS 

G 10nM 77.19 22.96 NS 

G 100nM 86.92 14.21 NS 

G 1µM 83.59 25.85 NS 

G 10µM 84.68 13.19 NS 

G 31.6µM 48.53 12.57 <0.01 

D 0.01nM 58.26 9.40 <0.001 

D 0.1nM 87.09 18.82 NS 

D 1nM 88.52 14.53 NS 

D 10nM 80.11 16.18 NS 

D 100nM 94.00 23.08 NS 

D 1µM 88.45 19.04 NS 

D 10µM 98.21 16.16 NS 

D 31.6µM 48.40 13.06 <0.001 

E2 1pM 76.95 16.34 <0.05 

E2 1nM 86.46 26.62 NS 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: standard deviation, NS: not 

significant (p ≥ 0.05) 

1 % proliferation compared to control cells treated with vehicle only (0.1% DMSO) 

2 significance of difference compared to cells treated with vehicle only (0.1% DMSO) 
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3.1.2..3 Absence of synergy between isoflavones and oestradiol with MDA-

MB-231 proliferation 

The results for the MTT assays undertaken with combined treatments of genistein 

(A) and daidzein (B) with pre- and post-menopausal E2 concentrations are shown in 

Figure 3.8, with the p values for all comparisons in Table 3.4.     

Although the majority continue to demonstrate a trend towards inhibition of 

proliferation compared with the 0.2% DMSO control, no value was significantly 

different from the control, or from the E2-alone treatment.  Likewise, only three of 

the combinations tested differed significantly from the relevant isoflavone single 

treatment, and there was no pattern to them.  These were 10nM genistein / 1nM E2 

(p < 0.05), 1nM daidzein / 1nM E2 (p < 0.01) and 10µM daidzein / 1pM E2 (p< 0.05).   

The combinations of 1pM E2 and daidzein were more effective at reducing 

proliferation in MDA-MB-231 cells than any other combined or single treatment, 

resulting in values of around 70% of the control level of proliferation, although the 

only significant difference achieved was between 10µM daidzein and the combined 

10µM daidzein/1pM E2 treatment (p < 0.05; Figure 3.8B).  This set of combined 

treatments showed a trend towards a synergistic inhibitory effect, with the majority of 

the sets of conditions resulting in slightly lower proliferation than either daidzein or 

1pM E2 alone.  The other E2/isoflavone combinations were less effective at 

reducing proliferation than the isoflavones alone, although in several cases there 

was still a slight effect. 
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Figure 3.8: The effects of isoflavones at physiological E2 levels on MDA-MB-

231 proliferation 

MDA-MB-231 cells were prepared as described.  After a 24 hour oestrogen 

washout, medium was replaced with medium containing the vehicle only (0.2% 

DMSO) or genistein (A) or daidzein (B) between 1x10-11 M and 5x10-4M with pre- or 

post-menopausal E2 concentrations (1nM and 1pM respectively) and incubated in 

this for 72 hours.  Proliferation was assessed by MTT assay and expressed as the 

percentage of the control treatment (mean + SD, n=3).  Significant difference from 

the relevant isoflavone-only treatment is indicated by a (p < 0.05) or b (p < 0.01). 



 
 

Table 3.4 Results for the combined treatments on MDA-MB-231 proliferation 

Treatment Mean % change 

compared to 0.2% DMSO 

Standard 

Deviation 

Significance (p) compared to: 

0.2% DMSO 1nM E2 1pM E2 corresponding ISF alone 

0.2% DMSO 100.00 17.95 - - - - 

G 0.01nM + 1nME2 101.01 34.38 NS NS - NS 

G 0.1nM + 1nME2  111.99 29.16 NS NS - NS 

G 1nM + 1nME2 101.71 27.61 NS NS - NS 

G 10nM + 1nME2 118.20 37.05 NS NS - <0.05 

G 100nM + 1nME2 98.78 26.86 NS NS - NS 

G 1µM + 1nME2 107.05 32.33 NS NS - NS 

G 10µM + 1nME2 93.96 25.98 NS NS - NS 

G 31.6µM + 1nME2 84.62 28.95 NS NS - NS 

G 0.01nM + 1pME2 102.48 35.39 NS - NS NS 

G 0.1nM + 1pME2 86.91 37.65 NS - NS NS 

G 1nM + 1pME2 111.82 35.77 NS - NS NS 

G 10nM + 1pME2 87.62 25.52 NS - NS NS 

G 100nM + 1pME2 105.12 35.28 NS - NS NS 

G 1µM + 1pME2 92.77 29.33 NS - NS NS 

G 10µM + 1pME2 102.52 32.35 NS - NS NS 

G 31.6µM + 1pME2 85.18 28.73 NS - NS NS 
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Treatment Mean % change 

compared to 0.2% DMSO 

Standard 

Deviation 

Significance (p) compared to: 

0.2% DMSO 1nM E2 1pM E2 corresponding ISF alone 

D 0.01nM + 1nME2 92.60 25.57 NS NS - NS 

D 0.1nM + 1nME2 97.62 34.56 NS NS - NS 

D 1nM + 1nME2 102.86 36.37 NS NS - NS 

D 10 nM + 1nME2 99.65 37.32 NS NS - NS 

D 100nM + 1nME2 99.99 40.75 NS NS - NS 

D 1µM + 1nME2 106.84 38.98 NS NS - NS 

D 10µM + 1nME2 91.97 29.86 NS NS - NS 

D 31.6µM + 1nME2 98.36 18.33 NS NS - <0.01 

D 0.01nM + 1pME2 75.98 19.07 NS - NS NS 

D 0.1nM + 1pME2 77.40 18.52 NS - NS NS 

D 1nM + 1pME2 73.40 15.87 NS - NS NS 

D 10 nM + 1pME2 71.47 15.66 NS - NS NS 

D 100nM + 1pME2 71.11 16.98 NS - NS NS 

D 1µM + 1pME2 73.90 12.26 NS - NS NS 

D 10µM + 1pME2 69.59 20.05 NS - NS <0.05 

D 31.6µM + 1pME2 65.20 20.62 NS - NS NS 

G: genistein, D: daidzein, E2: 17β-oestradiol, ISF: Isoflavone, NS: not significant (p ≥ 0.05) 

1
8

1
 | P

a
g

e
 



182 | P a g e  

 

3.2 Annexin V-Cy3™ Apoptosis Assay Results 

3.2.1 MCF7 Annexin V-Cy3 apoptosis results 

3.2.1..1 Impact of control treatments on PS externalisation in MCF7  

Neither 0.1% or 0.2% DMSO had any significant effect on the percentage of PS 

externalising apoptotic cells compared to no treatment in MCF7 (Figure 3.9). A 

representative set of images is provided in Figure 3.10, suggesting that at these 

levels DMSO is an appropriate vehicle for the ligands and does not impact upon the 

induction of MCF7 PS-externalising apoptosis.   
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Figure 3.9: Induction of PS-externalising apoptosis in MCF7 by control 

treatments 

MCF7 cells were prepared as described.  Following 48 hours of oestrogen washout, 

medium was replaced with fresh oestrogen free medium with no addition, or 0.1 or 

0.2% DMSO, and incubated for a further 24 hours.  Results presented as mean % 

PS externalising apoptotic cells per treatment + SD (n=3).  There were no significant 

differences between these results. 
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Figure 3.10: Captured images of MCF7 cells treated with 0.1% DMSO 

MCF7 cells were prepared as described then incubated for 24 hours with medium 

containing 0.1% DMSO, stained with the Annexin V-Cy3 apoptosis detection kit, and 

fluorescent images captured. A: green fluorescence from 6CFDA dye.  B: red 

fluorescence from Annexin V-conjugate dye.  C: Composite image where yellow 

indicates overlap of the two colours.  In each image 1 indicates a number of viable 

cells, stained by 6-CFDA only, and 2 indicates PS externalising apoptotic cells 

stained with both.  In this region of the slide apoptosis was calculated to be 5.21%. 

3.2.1..2 Effect of 17β-oestradiol treatments on PS externalisation in MCF7   

24 hour treatment with pre- or post-menopausal concentrations of 17β-oestradiol 

(1nM and 1pM respectively) had no significant impact on the percentage of PS 

externalising apoptotic cells calculated for MCF7 (Figure 3.11).   
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Figure 3.11: Induction of MCF7 PS-externalising apoptosis by 17β-oestradiol 

MCF7 cells were prepared as described.  Following 48 hour oestrogen washout, 

medium was replaced with fresh oestrogen free medium containing vehicle only, or 

1pM (1x10-12) or 1nM (1x10-9) E2, and incubated for a further 24 hours.  Results 

represented as mean % PS externalising apoptotic cells per treatment + SD (n=3).  

There were no significant differences between these results. 

3.2.1..3 Isoflavones increase PS externalising apoptosis in MCF7  

A sample set of images from the Annexin V-Cy3 assay in MCF7 with single 

isoflavone treatments are displayed in Figure 3.12.  The results of these assays and 

the p values for comparisons to 0.1% DMSO are given in Figure 3.13 and Table 3.5.   

There is a trend towards a greater rate of apoptosis with PS externalisation in MCF7 

cells after 24 hour genistein or daidzein treatment, between 0.1 and 31.6µM 

compared to the vehicle only.  With 1 and 10µM daidzein and 1µM genistein this 

increase in the percentage of apoptotic cells became statistically significant (p 

<0.05).  The highest rate measured was with 1µM genistein.  However, there is no 

dose effect or appreciable difference between the two isoflavones.  Each data point 

has a wide SD, reflecting great variation in the levels of apoptosis seen in the cells 

on the separate occasions that the tests were repeated. 
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Figure 3.12: Captured images of MCF7 cells treated with 1µM genistein 

MCF7 cells were prepared as described then incubated for 24 hours with medium 

containing 1µM genistein, stained with the Annexin V-Cy3 apoptosis detection kit, 

and fluorescent images captured. A: green fluorescence from 6CFDA dye.  B: red 

fluorescence from Annexin V conjugate dye.  C: Composite image where yellow 

indicates overlap of the two colours.  In each image 1 indicates a number of viable 

cells stained by 6CFDA only, and 2 indicates apoptotic PS externalising cells 

stained with both.  In this region of the slide apoptosis was calculated to be 21.3%. 
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Figure 3.13: Induction of PS-externalising apoptosis in MCF7 by isoflavones 

MCF7 cells were prepared as described.  Following 48 hour oestrogen washout, 

medium was replaced with fresh oestrogen free medium with vehicle only (0.1% 

DMSO), genistein or daidzein, between 0.1µM and 31.6µM, and incubated for a 

further 24 hours.  Results presented as mean % PS externalising apoptotic cells per 

treatment + SD (n=3).  Significant variation from the vehicle-only control (p < 0.05) 

indicated by a.   
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Table 3.5: Results for induction of PS-externalising apoptosis by single 

treatments in MCF7 

Treatment MCF7 

% apoptosis1 SD P2 

No treatment 4.56 4.48 NS 

0.1% DMSO 6.16 4.91 - 

0.2% DMSO 8.43 7.32 NS 

G 0.1µM 13.37 9.06 NS 

G 1µM 29.77 15.74 <0.05 

G 10µM 16.09 7.12 NS 

G 31.6µM 21.89 19.17 NS 

D 0.1µM 8.91 8.99 NS 

D 1µM 29.62 20.28 <0.05 

D 10µM 28.41 15.42 <0.05 

D 31.6µM 16.04 6.50 NS 

E2 1pM 6.99 3.92 NS 

E2 1nM 7.90 5.09 NS 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: Standard Deviation, NS: not 

significant (p ≥ 0.05) 

1 mean percentage apoptotic PS externalising cells per treatment 

2 significant differences compared to cells treated with vehicle only (0.1% DMSO) 

3.2.1..4 Combinations of isoflavones and 17β-oestradiol induce PS 

externalising apoptosis in MCF7  

The impact of combinations of isoflavones and E2 on PS-externalising apoptosis in 

MCF7 is shown in Figure 3.14A (genistein) and B (daidzein) and Table 3.6.  Each of 

the combination treatments resulted in a greater percentage of PS-externalising 

apoptosis than the 0.2% DMSO control.  This achieved statistical significance on a 

number of occasions (highlighted in Table 3.6).    
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B: Daidzein and 17-oestradiol
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Figure 3.14: Induction of PS-externalising apoptosis in MCF7 by isoflavones 

combined with 17β-oestradiol 

Cells were prepared as described.  Following 48 hour oestrogen washout, medium 

was replaced with fresh oestrogen free medium with vehicle only, genistein (A) or 

daidzein (B) between 0.1µM and 31.6µM, with or without E2 at pre- and post-

menopausal concentrations, and incubated for a further 24 hours.  Results 

presented as mean % apoptotic PS externalising cells per treatment and SD (n=3).   

Significant difference from 1nM E2 is indicated by a (p < 0.05) and b (p < 0.01).  

Significant difference from 1pM E2 is indicated by c (p < 0.05) and d (p < 0.01).   



 
 

Table 3.6: Induction of PS externalising apoptosis in MCF7 by combinations of isoflavones and E2 

Treatment % apoptosis1 SD Significance (p) compared to: 

0.2% DMSO 1nM E2 1pM E2 corresponding isoflavone alone 

0.2% DMSO 8.43 19.19 - - - - 

G 0.1µM + 1nME2 28.45 12.31 NS <0.05 - NS 

G 1µM + 1nME2 18.98 9.83 NS NS - NS 

G 10µM + 1nME2 22.81 6.68 NS NS - NS 

G 31.6µM + 1nME2 19.03 7.86 NS NS - NS 

G 0.1µM  + 1pME2 31.33 19.14 0.061 - <0.05 NS 

G 1µM + 1pME2 31.68 20.52 <0.05 - <0.05 NS 

G 10µM + 1pME2 36.29 21.35 <0.01 - <0.01 NS 

G 31.6µM + 1pME2 32.39 19.02 <0.05 - <0.01 NS 

D 0.1µM  + 1nME2 19.29 18.01 NS NS - NS 

D 1µM + 1nME2 28.41 14.37 0.099 <0.05 - NS 

D 10µM + 1nME2 31.96 16.22 <0.05 <0.01 - NS 

D 31.6µM + 1nME2 25.21 17.14 NS NS - NS 
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Treatment % apoptosis1 SD Significance (p) compared to: 

0.2% DMSO 1nM E2 1pM E2 corresponding isoflavone alone 

D 0.1µM  + 1pME2 16.46 12.90 NS - NS NS 

D 1µM + 1pME2 16.42 12.31 NS - NS NS 

D 10µM + 1pME2 17.73 15.36 NS - NS NS 

D 31.6µM + 1pME2 23.66 19.19 NS - NS NS 

1 mean percentage of apoptotic PS externalising cells per treatment  

G: genistein, D: daidzein, E2: 17β-oestradiol, SD: Standard Deviation, NS: not significant (p ≥ 0.05) 
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Likewise, the combined treatments each resulted in a greater level of PS 

externalisation that the relevant E2-alone treatment, reaching statistical significance 

on the occasions indicated.  The combination of genistein and 1pM E2 

(postmenopausal) appeared to be particularly effective at inducing PS externalising 

apoptosis in MCF7 compared to 1pM E2 alone (Figure 3.14A).  Furthermore, each 

genistein and 1pM E2 combination also resulted in a higher percentage of PS 

externalising apoptotic cells than genistein alone at the same concentrations, 

although none of these comparisons achieved significance.    

The lack of statistical significance for many of the combined treatments compared to 

either the 0.2% DMSO or appropriate E2-alone treatment reflects the variability in 

the data (see the SDs, in Table 3.6).  Despite this, virtually all the individual values 

were numerically higher. 

None of the isoflavone/E2 combination results differed significantly in their effect on 

PS-externalising apoptosis compared to the relevant isoflavone alone.  However, 

there is variability in the results, with no consistent pattern.  A number of the 

isoflavone/E2 combinations induce a lower level of apoptosis than the isoflavone 

alone (not significant), and some had no clear impact upon the induction of PS 

externalising apoptosis in either direction.  The results for genistein and daidzein at 

both E2 concentrations are largely comparable, and no clear dose-related patterns 

emerge.   
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3.2.2 MDA-MB-231 Annexin V-Cy3 apoptosis results 

3.2.2..1 The impact of DMSO on PS-externalising apoptosis in MDA-MB-231 

cells 

After 24 hours treatment, 0.1% DMSO had no significant impact upon PS-

externalisation compared to medium with no additions.  The respective values 

(mean ± standard deviation, n = 3) for untreated and 0.1% DMSO treated cells were 

9.66 ± 8.22% and 6.74 ± 6.15% PS externalising apoptosis.   All Annexin V-Cy3 

assays in this cell line were conducted at the 0.1% solvent dose.  As this had no 

significant impact upon PS-externalising apoptosis, it is considered to be an 

appropriate control. These results are summarised in Table 3.7.    

3.2.2..2 Effect of 17β-oestradiol on PS-externalising apoptosis in MDA-MB-

231 cells 

The impact of physiological concentrations of E2 on the induction of PS-

externalising apoptosis in this cell line is shown in Figure 3.15 and Table 3.7.  These 

treatments had no impact on the percentage of PS externalising apoptotic cells after 

24 hours. 

3.2.2..3 Isoflavones increase PS externalising apoptosis in MDA-MB-231 

In MDA-MB-231, 24 hour treatment with genistein or daidzein led to a slight increase 

in the rate of PS externalising apoptotic cells compared to vehicle only controls, 

however this effect is not statistically significant (Figure 3.17; representative images 

in Figure 3.16).  The full dataset is provided in Table 3.7.  Daidzein was slightly 

more effecting at inducing apoptotic PS externalisation than genistein at each 

concentration used, with the highest rate recorded after 10µM daidzein treatment, 

although the difference between the isoflavones is non-significant.  The very wide 

range of actual results on the different occasions that the tests were repeated, 

reflected by the wide standard deviations seen, may underpin the lack of statistical 

significance to the results.  As with the MCF7 cells, there is no clear dose-effect. 
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Figure 3.15: The effect of 17β-oestradiol on PS-externalising apoptosis in 

MDA-MB-231 cells 

MDA-MB-231 cells were prepared as described.  Following 48 hour oestrogen 

washout, medium was replaced with fresh oestrogen free medium with vehicle only 

(0.1% DMSO), or 1pM or 1nM E2, and incubated for a further 24 hours.  Results 

represented as mean % PS externalising apoptotic cells per treatment and SD 

(n=3).  There were no significant differences between these results. 
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Figure 3.16: Captured images of MDA-MB-231 cells treated with 1µM daidzein 

MDA-MB-231 cells were prepared as described then incubated for 24 hours with 

medium containing 1µM daidzein, stained with the Annexin V-Cy3 apoptosis 

detection kit, and fluorescent images captured. A: green fluorescence from 6CFDA 

dye.  B: red fluorescence from Annexin V conjugate dye.  C: Composite image 

where yellow indicated overlap of the two colours.  In each image 1 indicates a 

number of viable cells, stained by 6CFDA only, 2 indicates apoptotic cells stained 

with both, and 3 indicates necrotic cells stained with the Annexin V conjugate only.  

In this region of the slide apoptotic PS-externalisation was calculated to be 65.56%. 
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Figure 3.17: Induction of PS-externalising apoptosis in MDA-MB-231 by 

isoflavones 

Cells were prepared as described, then the medium was replaced with fresh 

oestrogen free medium with vehicle only (0.1% DMSO), or genistein or daidzein 

between 0.1µM and 31.6µM, and incubated for a further 24 hours.  Results 

presented as mean percentage PS externalising apoptotic cells per treatment and 

SD (n=3).  There were no significant differences between treatments and control. 
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Table 3.2: Results for the induction of PS-externalising apoptosis in MDA-MB-

231 cells by single isoflavone and oestradiol treatments 

Treatment % 

apoptosis1 

SD P2 

No treatment 9.66 8.22 NS 

0.1% DMSO 6.74 6.15 - 

G 0.1µM 15.90 12.32 NS 

G 1µM 13.15 12.23 NS 

G 10µM 13.52 12.18 NS 

G 31.6µM 18.30 11.14 NS 

D 0.1µM 17.52 14.31 NS 

D 1µM 22.60 24.52 NS 

D 10µM 22.67 18.35 NS 

D 31.6µM 20.43 18.38 NS 

E2 1pM 11.41 12.84 NS 

E2 1nM 9.86 9.89 NS 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: Standard Deviation, NS: not 

significant (p ≥ 0.05) 

1 mean percentage apoptotic PS externalising cells per treatment 

2 significant differences compared to cells treated with vehicle only (0.1% DMSO) 
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3.3 Results of DAPI Staining and Determination of Nuclear 

Changes 

3.3.1 MCF7 DAPI results 

3.3.1..1 Effect of control treatments on MCF7 nuclear morphology 

Results for the control experiments on the percentage of MCF7 cells displaying 

apoptotic nuclear morphology are depicted in Figure 3.18.  DMSO up to 0.2% had 

no significant effect on the percentage of apoptotic cells compared to untreated cells 

after three hours.  Representative sets of fluorescent, bright field and composite 

images showing no evidence of apoptotic nuclear changes are provided for 0.1% 

DMSO treatment (Figure 3.19).   
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Figure 3.18: The impact of various concentrations of DMSO on the percentage 

of MCF7 cells displaying apoptotic nuclear morphology 

MCF7 cells were prepared as described, and incubated for 48 hours to allow 

oestrogens to wash out.  Following this, medium was replaced with fresh oestrogen 

free medium with no additions, 0.1 or 0.2% DMSO.  The percentage of apoptotic 

cells after DAPI staining was determined.  Results are presented as mean + SD for 

each treatment (n=3).  There were no significant variations (p < 0.05) in results.   
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Figure 3.19: MCF7 

breast cancer cells 

treated with 0.1% DMSO 

Representative images of 

MCF7 cells treated as 

described with 0.1% 

DMSO.  A: DAPI 

fluorescent image, B: 

bright field, C: composite.  

No evidence of apoptotic 

nuclear changes.   
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3.3.1..2 17β-Oestradiol does not induce apoptotic nuclear morphology in 

MCF7  

The results of the experiments looking at the effects of physiological concentrations 

of E2 on the induction of apoptotic nuclear morphology are shown in Figure 3.20 

and Table 3.8.  There was no effect apparent after three hour treatment with either 

concentration compared to the vehicle only control. 
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Figure 3.20: Induction of apoptotic nuclear morphology by 17β-oestradiol in 

MCF7 

MCF7 cells were prepared as described.  Following this, medium was replaced with 

fresh oestrogen free medium with 0.1% DMSO or 17β-oestradiol at pre- and post-

menopausal concentrations (1 x 10-9M and 1 x 10-12M respectively).  Levels of 

apoptosis were quantified after DAPI staining, by calculation percentage of cells 

displaying apoptotic nuclear morphology and results presented as mean and SD for 

each treatment (n=3).  There were no significant variations from the vehicle-only 

control (p < 0.05). 
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3.3.1..3 The effect of isoflavones on nuclear morphology in MCF7 

The impact of isoflavones on apoptotic nuclear morphology in MCF7 is shown in 

Figure 3.21 and Table 3.8.  Three hour treatment of MCF7 with genistein between 

10nM and 10µM had no significant effect on apoptotic nuclear morphology.   

However, the highest concentration of genistein used (31.6μM) resulted in a 

significant increase in the percentage of apoptotic cells (p < 0.01).  Daidzein had no 

significant effect at any concentration.    
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Figure 3.21: The effect of isoflavones on apoptosis in MCF7 breast cancer 

cells 

MCF7 cells were prepared as described, and incubated for 48 hours to allow 

oestrogens to wash out.  Following this, medium was replaced with fresh oestrogen 

free medium with 0.1% DMSO, or genistein or daidzein at 0.01, 1, 10 and 31.6μM.  

Induction of apoptosis was quantified by calculation of the percentage of cells 

displaying apoptotic nuclear morphology after DAPI staining, and results presented 

as mean + SD for each treatment (n=3).  a indicates significant variation from the 

vehicle-only control (p < 0.01). 
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Table 3.8: Effect of single isoflavone and 17β-oestradiol treatments on 

apoptotic nuclear morphology in MCF7 cells 

Treatment % apoptosis1 SD   P2 

untreated  6.12 6.08 NS 

0.1% DMSO 6.28 12.36 - 

0.2% DMSO 9.75 13.82 NS 

1pM E2 5.78 11.84 NS 

1nM E2 7.82 11.30 NS 

10nM G 5.92 15.39 NS 

1μM G 6.24 8.85 NS 

10μM G 7.24 8.66 NS 

31.6μM G 18.90 21.63   <0.01 

10nM D 9.18 16.32 NS 

1μM D 6.40 8.59 NS 

10μM D 9.01 14.58 NS 

31.6μM D 9.71 11.22 NS 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: Standard Deviation, NS: not 

significant (p ≥ 0.05) 

1 mean percentage of cells displaying apoptotic nuclear morphology per treatment 

2 significant differences compared to cells treated with vehicle only (0.1% DMSO) 

3.3.1..4 The effect of combined isoflavones and E2 on MCF7 apoptotic 

nuclear morphology  

The results for the effect of combinations of isoflavones at physiological 

concentrations with pre- or postmenopausal E2 levels on apoptotic nuclear 

morphology in MCF7 breast cancer cells are described in Figure 3.22 and Table 3.9.   



202 | P a g e  

 

A: Genistein and 17-oestradiol

0 - 8 - 6 - 5 - 4.5
0

10

20

30

40

50

Genistein concentration (logM)

%
 a

p
o

p
to

tic
 c

e
lls

B: Daidzein and 17-oestradiol
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Figure 3.22: The effect of combinations of isoflavones and 17β-oestradiol on 

apoptotic nuclear morphology in MCF7 

MCF7 cells were prepared as described.  After 48 hours the medium was replaced 

with fresh oestrogen free medium with 0.2% DMSO, 1nM or 1pM E2 with or without 

genistein (A) or daidzein (B) at (0.01, 1, 10 and 31.6μM).   Induction of apoptosis 

was quantified by percentage of apoptotic cells after DAPI staining, and results 

presented as mean + SD for each treatment (n=3).  There were no significant 

variations (p < 0.05) between any results.  
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Table 3.9: Results for the percentage of MCF7 cells displaying apoptotic 

nuclear morphology after treatment with combinations of isoflavones and 17β-

oestradiol 

Treatment mean 

% 

SD Significance (p) compared to: 

0.2% 

DMSO 

1nM 

E2 

1pM 

E2 

corresponding 

ISF alone 

1pM E2 10nM D 3.17 4.82 NS - NS NS 

1pM E2 1μM D 3.98 7.80 NS - NS NS 

1pM E2 10μM D 7.88 15.29 NS - NS NS 

1pM E2 31.6μM D 15.87 27.48 NS - 0.075 NS 

1nM E2 10nM D 3.73 5.68 NS NS - NS 

1nM E2 1μM D 2.62 3.11 NS NS - NS 

1nM E2 10μM D 5.05 3.74 NS NS - NS 

1nM E2 31.6μM D 8.40 12.00 NS NS - NS 

1pM E2 10nM G 5.38 8.54 NS - NS NS 

1pM E2 1μM G 4.37 5.92 NS - NS NS 

1pM E2 10μM G 5.29 8.66 NS - NS NS 

1pM E2 31.6μM G 11.80 20.10 NS - NS NS 

1nM E2 10nM G 0.28 1.14 NS NS - NS 

1nM E2 1μM G 5.50 11.71 NS NS - NS 

1nM E2 10μM G 3.43 8.14 NS NS - NS 

1nM E2 31.6μM G 9.61 13.37 NS NS - NS 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: Standard Deviation, ISF: 

Isoflavone, NS: not significant (p ≥ 0.05) 

None of the combination isoflavone/E2 treatments differed significantly from the 

0.2% DMSO control, or the relevant single concentrations of isoflavone or E2 with 

regard to the percentage of cells displaying apoptotic nuclear morphologies. As with 

the single isoflavone treatments, the combinations of the highest concentration of 

genistein and daidzein used (31.6µM) with 1pM or 1nM E2 tended to induce a 

slightly greater percentage of apoptotic cells compared to the control, and the 

combination of 1pM E2 / 31.6µM daidzein approached a significant difference from 

the E2 alone treatment (p = 0.075). 
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3.3.2 MDA-MB-231 DAPI apoptosis results 

3.3.2..1 Effect of control treatments on MDA-MB-231 nuclear morphology 

DMSO up to 0.2% had no significant effect on the percentage of MDA-MB-231 cells 

displaying apoptotic nuclear morphology after DAPI staining (Figure 3.23).  

Representative images of this treatment are shown in Figure 3.24. 
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Figure 3.23: Effect of DMSO on the percentage of MDA-MB-231 cells 

displaying apoptotic nuclear morphology 

MDA-MB-231 cells were prepared as described.  Following this, medium was 

replaced with fresh oestrogen-free medium with no additions, 0.1 or 0.2% DMSO.  

Induction of apoptosis was quantified by calculating the % of apoptotic cells after 

DAPI staining.  Results are presented as mean and SD for each treatment (n=3).  

There were no significant variations (p < 0.05) in results.   
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Figure 3.24: MDA-MB-

231 treated with 0.1% 

DMSO 

Representative images of 

MDA-MB-231 cells treated 

as described with 0.1% 

DMSO.  A: DAPI 

fluorescent image, B: 

bright field, C: composite.  

No evidence of apoptotic 

nuclear changes and cells 

maintain elongated 

shapes indicative of 

normal growth. 
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3.3.2..2 The effect of 17β-oestradiol on nuclear apoptotic morphology in 

MDA-MB-231 cells 

The results for the impact of E2 at physiological concentrations on the percentage of 

MDA-MB-231 cells displaying apoptotic nuclear morphology are displayed in Figure 

3.25 and in Table 3.10.  Although these treatments had very little impact, there was 

a slight trend towards increasing induction of apoptosis with increasing E2 

concentration. 
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Figure 3.25: The impact of E2 on apoptotic nuclear morphology in MDA-MB-

231 cells 

MDA-MB-231 cells were prepared as described.  Following this, medium was 

replaced with fresh oestrogen-free medium with vehicle only or 17β-oestradiol at 

pre- and post-menopausal concentrations (1 x 10-9M and 1 x 10-12M respectively).  

Levels of apoptosis were quantified after DAPI staining, by calculation percentage of 

cells displaying apoptotic nuclear morphology and results presented as mean and 

SD for each treatment (n=3).  There were no significant variations from the vehicle-

only control (p < 0.05). 

3.3.2..3 Isoflavones induce apoptotic nuclear morphology in MDA-MB-231 

Sample images of this cell line after treatment with 1nM and 31.6μM genistein are 

provided (Figure 3.26 and Figure 3.27).  The results showing the percentage of 
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MDA-MB-231 cells displaying apoptotic nuclear morphology after three hour 

treatment with isoflavones are displayed in Table 3.10 and Figure 3.28.  Treatment 

for three hours with isoflavones resulted in a trend towards increasing levels of 

apoptotic nuclear morphology in this cell type, at all concentrations tested.  This 

achieves statistical significance with 31.6µM genistein (p < 0.01) and 10nM daidzein 

(p < 0.001).   In addition, the increase seen after 31.6µM daidzein treatment 

approached significance (p = 0.09).  With genistein treatment, there is a slight dose 

effect.   

Table 3.10: Full results showing the effect of single isoflavone and 17β-

oestradiol treatments on the induction of apoptotic nuclear morphology in 

MDA-MB-231 cells 

Treatment % apoptosis SD P1 

Untreated  6.59 11.87 NS 

0.1% DMSO 9.94 10.74 - 

0.2% DMSO 5.87 6.02 NS 

1pM E2 13.25 16.11 NS 

1nM E2 15.25 17.88 NS 

10nM G 15.68 18.88 NS 

1μM G 12.17 12.88 NS 

10μM G 17.78 16.21 NS 

31μM G 23.46 23.05 <0.01 

10nM D 28.61 24.89 <0.001 

1μM D 18.43 17.86 NS 

10μM D 18.53 19.52 NS 

31.6μM D 21.44 21.04 0.09 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: Standard Deviation, NS: not 

significant (p ≥ 0.05) 

1 Significance of difference compared to 0.1% DMSO 
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Figure 3.26: MDA-MB-

231 cells treated with 

10nM genistein 

Representative images of 

MDA-MB-231 cells treated 

as described with 10nM 

genistein.  A: DAPI 

fluorescent image, B: 

bright field, C: composite.  

No evidence of apoptotic 

nuclear morphology, and 

cells show characteristic 

elongated shape 

indicative of normal 

growth.  
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Figure 3.27: MDA-MB-231 

cells treated with 31.6μM 

genistein 

Representative images of 

MDA-MB-231 cells treated 

as described with 31.6μM 

genistein.  A: DAPI 

fluorescent image, B: bright 

field, C: composite.  There 

is evidence of apoptotic 

nuclear fragmentation, 

resulting in irregular nuclear 

forms, and nuclear 

condensation.  Blebbing of 

the plasma membrane is 

also apparent. 
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Figure 3.28: The effect of isoflavones on apoptosis in MDA-MB-231 cells 

MDA-MB-231 cells were prepared as described.  Medium was replaced with fresh 

oestrogen free medium with 0.1% DMSO, or genistein or daidzein at 0.01, 1, 10 and 

31.6μM.  Induction of apoptosis was quantified by calculating the percentage of cells 

displaying apoptotic morphology after DAPI staining, and results presented as mean 

and SD for each treatment (n=3).  Where results differed significantly from the 

vehicle-only control this is indicated by a (p < 0.01) or b (p < 0.001). 
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3.3.2..4 The combination of isoflavones and 17β-oestradiol induces 

apoptotic nuclear morphology in MDA-MB-231 

A representative image of these cells treated with 1nM E2 and 31.6μM genistein is 

provided in Figure 3.29.  The results for the effect of combinations of isoflavones at 

physiological concentrations with pre- or postmenopausal E2 on the percentage of 

cells displaying apoptotic nuclear morphology in MDA-MB-231 breast cancer cells 

are described in Figure 3.30 and Table 3.11.  As with the single isoflavone 

treatments in this cell line, the combined E2/isoflavone treatments show a trend 

towards an increase in the level of apoptotic nuclear morphology apparent after 

three hours, with a number of these being significantly higher than the control value 

(see Table 3.11). 

Several of the combined treatments also induced significantly greater levels of 

apoptosis than the relevant single E2 treatments.  These were daidzein at 31.6µM 

with both E2 concentrations, and 31.6µM genistein with 1pM E2 (p < 0.001 for 

each), and the combination of 10µM genistein with 1pM E2 (p < 0.05).  In addition, a 

number of the combined treatments also induced a greater level of apoptosis than 

the relevant isoflavone alone (largely the same combinations as above; see table 

3.11).   
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Figure 3.29: MDA-MB-231 

treated with 1nM E2 and 

31.6μM genistein 

Representative images of 

MDA-MB-231 cells treated 

as described with a 

combination of 31.6μM 

genistein and 1nM E2.  A: 

DAPI fluorescent image, B: 

bright field, C: composite.  

Apoptotic nuclear 

condensation and 

fragmentation are apparent, 

resulting in irregular nuclear 

forms.  Plasma membrane 

blebs are evident on some 

cells, indicating apoptosis.  
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B: Daidzein and 17-oestradiol
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Figure 3.30: The effect of combinations of isoflavones and 17β-oestradiol on 

apoptosis in MDA-MB-231 cells 

MDA-MB-231 cells were seeded as described.  After 48 hours, the medium was 

replaced with fresh oestrogen free medium with 0.2% DMSO, 1nM or 1pM E2 with 

or without genistein (A) or daidzein (B) at (0.01, 1, 10 and 31.6μM).   Induction of 

apoptosis was quantified by calculation of the percentage of cells displaying visible 

signs of apoptotic nuclear morphology after DAPI staining, and results presented as 

mean and SD for each treatment (n=3).  Significant variation from the 1nM E2-alone 

treatment is indicated by a (p < 0.05) and b (p < 0.001), and from the 1pM E2-alone 

treatment by c (p < 0.05) and d (p < 0.001).  Significant variation from the relevant 

isoflavone-alone treatment is indicated by e (p < 0.05) and f (p < 0.001).    
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Table 3.11: Full results for isoflavone/17β-oestradiol combinations on the 

induction of apoptotic nuclear morphology in MDA-MB-231 breast cancer cells 

Treatment mean % 

apoptosis 

SD Significance (p) compared to: 

0.2% 

DMSO 

1nM 

E2 

1pM 

E2 

corresponding 

isoflavone alone 

1pM E2 10nM D 8.30 11.90 NS  NS <0.05 

1pM E2 1μM D 22.01 26.16 NS  NS NS 

1pM E2 10μM D 19.14 24.34 NS  NS NS 

1pM E2 31.6μM D 40.21 19.96 <0.001  <0.001 <0.05 

1nM E2 10nM D 25.46 20.72 <0.05 NS  NS 

1nM E2 1μM D 22.40 17.64 NS NS  NS 

1nM E2 10μM D 24.49 14.17 <0.05 NS  NS 

1nM E2 31.6μM D 50.10 25.59 <0.001 <0.001  <0.001 

1pM E2 10nM G 11.54 13.36 NS  NS NS 

1pM E2 1μM G 16.43 16.35 NS  NS NS 

1pM E2 10μM G 28.08 11.21 <0.001  <0.05 NS 

1pM E2 31.6μM G 45.61 27.99 <0.001  <0.001 <0.001 

1nM E2 10nM G 7.41 7.80 NS NS  NS 

1nM E2 1μM G 13.13 12.49 NS NS  NS 

1nM E2 10μM G 28.32 18.28 <0.01 NS  NS 

1nM E2 31.6μM G 33.51 32.93 <0.001 NS  NS 

G: Genistein, D: Daidzein, E2: 17β-oestradiol, SD: Standard Deviation, NS: not 

significant (p ≥ 0.05) 
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3.4 Summary of the effects of soy isoflavones on 

proliferation and apoptosis in MCF7 and MDA-MB-231 

cells 

This section briefly summarises the impact of genistein and daidzein, in the 

presence and absence or premenopausal and postmenopausal E2 levels, on the 

proliferation and apoptosis outcomes measured here in MCF7 and MDA-MB-231 

breast cancer cells.  For a full discussion of these results see sections 6.1 and 6.2. 

3.4.1 MCF7 

The MTT proliferation results confirm the biphasic effect of isoflavones on this cell 

line that was expected.  Maximal proliferation was achieved between 1 and 10µM 

for both isoflavones, and was similar in magnitude to that observed after E2 

treatment, although approximately 1000-fold greater isoflavone concentrations were 

required for a comparable effect.  Genistein was slightly more effective at promoting 

proliferation than daidzein, as evidenced by their EC50 concentrations.  This 

confirms the validity of the growth conditions used and suggests that the cell line is 

behaving as expected, and has not experienced genetic drift or contamination.  In 

each case, a higher concentration of isoflavone would be required (outwith the 

physiological range) to inhibit proliferation. 

The combined isoflavone/E2 treatments at both premenopausal (1nM) and 

postmenopausal (1pM) levels resulted in very high rates of proliferation in MCF7.  

Numerically, the evidence for an additive effect for isoflavones and the 

postmenopausal E2 dose is strong.  This suggests a synergistic effect on 

proliferation rather that the protective mechanism hypothesised.  Some synergy 

remains between the isoflavones and the higher premenopausal E2 dose, although 

the effect is less striking.   

Both measures of apoptosis used suggested that premenopausal and 

postmenopausal E2 levels had no effect on the induction of apoptosis in MCF7.  

However, physiological levels of genistein and daidzein, particularly at the higher 

concentrations tested, did result in an increase in the percentage of apoptotic cells 

both externalising PS and displaying distinctive apoptotic nuclear morphology.  The 

characteristics of this response differ according to the analysis method used.  Either 
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way, this increase in the induction of apoptosis seen especially with the higher 

concentrations may relate to the decrease in proliferation observed with the highest 

isoflavone concentrations. 

The impacts of the combined isoflavone/E2 treatments on the induction of apoptosis 

were largely similar to that seen with the single isoflavone treatments, regardless of 

assay method.  This is perhaps unsurprising since in both cases E2 was found to 

have little effect on apoptosis.   
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3.4.2 MDA-MB-231 

As expected, premenopausal and postmenopausal E2, and the single isoflavone 

treatments up to and including 10µM all resulted in a trend towards inhibition of 

MDA-MB-231 proliferation compared to the control treatment.  There was no dose 

effect apparent.  As with the MCF7 cells, this confirms that the conditions used are 

valid for the experiments to follow, and suggests that the cell line has not 

experienced genetic drift or contamination with other cells.  The highest 

concentrations of genistein and daidzein used resulted in a sharp drop in 

proliferation to around 50% of control levels. 

The addition of E2 to the isoflavones seemed to largely abrogate the inhibitory effect 

of the lower concentrations, although the drop seen at the highest isoflavone 

concentration was still apparent.  The exception to this was the combination of 

daidzein and postmenopausal E2, which was particularly effective at inhibiting 

proliferation.  As the level of solvent used in these latter experiments (0.2% DMSO) 

was found to have a slight inhibitory effect on MDA–MB-231 proliferation itself, it is 

possible that this confounds or masks the results slightly, and must be considered in 

this context. 

Both methods of assessing the induction of apoptosis agree that E2 had very little 

impact upon the induction of apoptosis in MDA-MB-231 cells.  However, the 

isoflavones at all single concentrations tested result in a slight increase in the 

percentage of apoptotic cells, which achieved significance on several occasions.  No 

dose effects were observed.  This corresponds with the inhibition of proliferation 

seen and may suggest a mechanism. 

The combinations of E2 and isoflavones were not assessed by the Annexin V-Cy3 

method.  However, the DAPI assay suggests that the addition of E2 does not 

prevent the isoflavone-induced induction of apoptosis observed, and indeed hints at 

a possible synergistic effect with the higher isoflavone concentrations.   
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CHAPTER 4. Methods: volume regulation and potassium 

channel activity  

The impact of physiological levels of isoflavones and E2 on MCF7 volume regulation 

and macroscopic voltage gated K+ channel activity was assessed.  Volume changes 

were measured using the calcein volume change assay (section 1.6.2..5), and the 

whole cell patch clamping technique was used to identify and analyse macroscopic 

K+ currents (section 1.6.2..1).  Measuring changes in fluorescence intensity is one of 

several standard and sensitive techniques used to infer volume change in cultured 

cells.  Whole cell patch clamping is the “gold standard” technique with which to 

assess the characteristics of ion channels under physiological membrane potential 

conditions.  In addition, the MTT assay (described previously; section 2.4) was used 

to assess the role of these K+ channels in general, and several specific channels, on 

the proliferation of MCF7 breast cancer cells.   

These experiments were conducted with MCF7 cells only, and not the MDA-MB-231 

cell line.   This was partly due to time constraints, but also because very little is 

known regarding the types and activities of K+ channels in the MDA-MB-231 cell line 

(consequently no data exists to compare any results with).  
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4.1 Calcein cell volume assay 

4.1.1 Background to method 

Isoflavones are known to inhibit RVD in numerous cell types (Section 1.6.8..2), but 

this is a response to non-physiological environmental changes.  Whether they 

directly modulate cell volume over the short term in MCF7 is not known.  This may 

relate to their ability to regulate proliferation or apoptosis (see Chapter 3), either as a 

regulatory mechanism or as a downstream effect.   Here, acute changes in MCF7 

volume were assessed over 30 minutes (the maximum time period during which the 

cells remained viable) during treatment with genistein or E2 by measuring the 

changes in intensity of intracellular calcein fluorescence, in a method initially 

described by Crowe et al. (1995), and used recently by Chen et al. (2011) to assess 

volume changes in lung adenocarcinoma cells (SPC-A1).  Volume changes have 

been measured in MCF7 previously (Roy et al. 2008; vanTol et al. 2007), although 

not by this method.  Both groups used a similar process of light microscopy, digital 

photography, and analysis of the area of the cell based on the radius measured.  

However, this method is based on the assumption that the cells are spherical, which 

is rarely the case. 

After a two day oestrogen washout, the cells were loaded with the dye in its 

membrane permeable ester (AM) form.  Once internalized, intracellular esterases 

remove the acetomethoxy group, and the molecule becomes trapped within the cell.  

Upon hydrolysis, calcein fluoresces green.  Prior to experimentation, the absorption 

wavelength of 480nm was determined to be optimal, and was used throughout.  

Emission peaked at 515nm.  Once the remaining extracellular dye was washed 

away, the quantity of calcein within the cells remained relatively constant over the 

short term (up to approximately 45 minutes; data not shown).  Fluorescence 

intensity varied directly with dye concentration (and cell volume), and so acted as a 

marker for cell size. 

In accordance with standard procedures, these experiments were conducted at 

37oC.  Volume regulation is known to occur at measurable levels in MCF7 at both 

this and room temperature, but the magnitude of the response is greater at the 

higher temperature (vanTol et al. 2007). 
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4.1.2 Preparation of solutions 

Normal Tyrode (NT) 

The following were dissolved in 1l deionised water: NaCl (Fisher Scientific; 7.831g, 

134mM), KCl (Sigma; 0.447g, 6mM), MgCl2.6H2O (Sigma; 1mM), CaCl2.6H2O 

(Sigma; 1mM) and HEPES (Sigma; 2.383g, 10mM).  This was titrated to pH 7.4 at 

37oC with 4M NaOH (Fisher Scientific; approximately 1.29ml was required for 1l 

buffer), and stored at 4oC.  Glucose (Sigma; 10mM, 180mg per 100ml) was added 

immediately prior to use. 

 

Zero Sodium Tyrode 

The following were dissolved in 1l deionized water: MgCl2.6H2O (1mM), CaCl2.6H2O 

(1mM) and HEPES (2.383g, 10mM).  This was titrated to pH 7.4 at 37oC with 4M 

KOH (BDH Prolabo; approximately 1.29ml was required for 1l buffer).  This was 

stored at 4oC. 

 

Hyposmotic buffer (50% Na Tyrode) 

This was prepared by mixing 50% each of the NT and zero sodium Tyrodes, and 

was also stored at 4oC.  Again, glucose (10mM, 180mg per 100ml) was added 

immediately prior to use. 

 

Test Tyrodes 

To 100ml NT, glucose (180mg) and 100µl of DMSO (0.1%) or the appropriate stock 

concentration of genistein or E2 (also in DMSO) were added (i.e. to prepare 100ml 

of 1nM E2 Tyrode, 100µl of 1x10-6M E2 was added to 100ml NT).  In each case 

0.1% DMSO was present.  This was stored for a maximum of 4 days at 4oC. 

Calcein-AM stock 

A 1mM stock of calcein-AM (Molecular Probes) was prepared in DMSO, and stored 

in the dark at -20oC. 
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4.1.3 Calcein volume change protocol  

MCF7 cells were seeded in six well plates (Greiner) on 10mm sterile glass cover 

slips (Agar Scientific).  Prior to placing in the wells, the cover slips were sterilised by 

autoclaving (121oC for 15 minutes).  The cells were seeded at an initial density of 

1x105 cells per well, in 3ml of experimental medium.  This was returned to the 

incubator for 48 hours to allow the cells to grow and adhere, and for the washout of 

any oestrogenic compounds. 

Following this, sterile conditions were no longer required, and all reagents were 

warmed to 37oC prior to use. 

4.1.3..1 Calcein loading 

After incubation, the medium was removed, and cells were washed twice gently with 

1ml NT.  Fresh NT was added (1ml) along with 5µl of 1mM calcein-AM stock (final 

calcein concentration 5µM).  This is well below the concentrations which would 

trigger calcein self-quenching (section 1.6.2..5).  The dye was allowed to load for 1 

hour, incubated in the dark at 37oC.  Following this, any dye not taken up by the 

cells was removed by washing three times each with 1ml NT, and 1ml fresh NT was 

added to the well.  Intracellular calcein-AM was allowed to esterify to calcein during 

a further 30 minute incubation period (37oC in the dark) as per standard 

proceedures (Pan et al. 2007). 

4.1.3..2 Perfusion and measurement of fluorescence 

The perfusion and assessment of fluorescence intensity was carried out using a 

Cairn Optoscan Monochromator (Cairn Research Ltd., Kent) mounted to an inverted 

microscope (Olympus, OM-2; Japan).  Perfusion of the cells with various Tyrodes 

was carried out by a peristaltic pump (Gilson Minipuls 3) and in-line thermostatically 

controlled stage heating system (Warner Instrument Corporation, TC-324B).  This 

was calibrated prior to use to maintain a constant flow rate and temperature of 

1ml/min and 37oC.  Images were captured at a rate of two per second using a digital 

camera (Hamamatsu C4742-95), which was controlled, along with the excitation 

wavelength (480nm) and bandwidth (10nm), by WinFluor software (V.3.0.8, John 

Dempster, University of Strathclyde Electrophysiology Software). 
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Prior to the addition of cells, the microscope chamber was flushed with pre-warmed 

NT for at least five minutes, to allow the temperature of the NT in the dish to reach 

37oC.  Once this was achieved, a coverslip of loaded cells was removed gently from 

its well with watchmaker’s forceps, and placed (cell side up) on the bottom of the 

microscope chamber.  Using the forceps, the plate was carefully pressed to the 

bottom of the dish, so that capillary suction would hold it in place.  Cells were 

visualized by light microscopy (magnification x100) to find an appropriate region of 

the coverslip to assess, with sufficient cells which were not densely packed and so 

able to change in volume freely.  The microscope light was then switched off and the 

equipment curtained off with black curtains to prevent extraneous light “noise” 

affecting the image. 

The cells were illuminated with the excitation light (480nm) and light emitted at 

>515nm was collected by the microscope dichroic and filter system (Omega 

XF2058) and transmitted to the camera.  Regions of interest (ROIs) in the live image 

were monitored using the software to show gross changes and confirm that the 

intensity of fluorescence was stable prior to analysis, but this data was discarded, 

and not used for the later analysis. 

Once fluorescence with NT perfusion had stabilized, recording was initiated.  

Solutions were perfused over the cells as described below.  The system has an 

approximate lag time of two minutes due to the physical dead volume of the tubing, 

from changing a solution to it reaching the cells.  This was considered when 

analyzing the results.  Once the end of a protocol was reached, the coverslip was 

discarded and the perfusion system flushed before re-use. 

At an early stage, as with pervious fluorescence protocols (Annexin optimisation 

Section 2.5.3), cell auto-fluorescence was assessed and determined to have 

negligible effect (i.e. was the same as the background of a cell-free area of the 

coverslip). 

4.1.3..3 Image analysis 

Images were analysed using ImageJ software (NIH: Version 1.44).  Files containing 

every third frame or more were too large for ImageJ to process.  Mean fluorescence 

intensity from a three minute interval of an image set of MCF7 cells (n = 3 cells: the 
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same ones were selected on each occasion) was compared following the export and 

analysis of every 4th, 6th, 8th and 10th frame (Figure 4.1). 

Mean fluorescence intensity at varying frame intervals
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Figure 4.1: Comparison of results after exporting every ‘n’th frame 

MCF7 cells were prepared and assessed for calcein fluorescence as described. The 

mean fluorescence intensity of the same three cells over a three minute interval 

(minus background) was determined using ImageJ after the export and analysis of 

every 10th, 8th, 6th and 4th frame, as indicated.   

The results from every 4th, 6th and 8th frame followed a similar pattern, which was not 

apparent after the export of every 10th frame.  Why the results obtained after the 

export of every 8th frame were higher than the other sets of data is not known, 

although it is possible that slightly different regions of the cells were selected for 

analysis, resulting in greater mean fluorescence intensity.  Based on this the export 

and analysis of every 8th frame into ImageJ was deemed appropriate. 

Each file was assessed as an 8 bit greyscale image.  Circular ROIs were chosen in 

the centre of at least ten cells, and a further one in an area of cell-free background 

(Figure 4.2).  Cells were excluded from the analysis on the basis of being cropped 

by the edge of the image, death or dislodgement from the cover slip prior to the end 

of the recording, or excessive movement excluding the possibility of finding a 

constant region within the cell.   
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Figure 4.2: Representative image of calcein-loaded MCF7 cells 

ImageJ analysis of MCF7 cells.  ROIs (indicated) are selected inside cells which 

meet the criteria, ensuring that they remain within the cell as the image series 

progresses.  A cell-free background ROI (a) is also selected. 

The background value was subtracted from the cell values at each time point.  

Following this, ImageJ was used to calculate the fluorescence intensity (mean grey 

value; arbitrary units from 0 to 255) in each selected cell region, every four seconds 

(from every 8th frame) for the duration of the experiment.  For each treatment, this 

procedure was repeated on three independent occasions, on different days and with 

different cell preparations, so that n = 3, and includes data from at least 30 cells. 

Data is presented as a graph of the mean fluorescence intensity over time. 

To determine the rate of change of fluorescence intensity (Δf per second), and thus 

the rate of cell swelling or shrinkage, for each cell the slope of the line between two 

points (indicated) was determined by linear regression using Graphpad Prism 

software (Graphpad Software Inc, Version 5.01, 2007).  Mean slope (ratio between 

the change in time and the change in fluorescence) and SD were calculated, and 
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expressed as the rate of fluorescence intensity change per second (Δf).  For the test 

conditions, the slope was calculated in the final two minutes of DMSO treatment (8 

to 10 minutes DMSO), then at 10 to 12 minutes, and 15 to 17 minutes into the 

experimental treatment.  These are referred to as Δf0, Δf10, and Δf15 respectively. 

The adjusted rates of change (aΔf10 and aΔf15) were determined for each treatment 

at 10-12 and 15-17 minutes respectively to show the impact of that treatment alone, 

without any background or DMSO effects.  This was calculated as follows: 

aΔf = Δf(treatment) – Δf0(same treatment) 
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4.1.4 Test conditions 

Hyposmotic shock 

MCF7 cells are known to undergo RVD rapidly after an initial swelling phase during 

hyposmotic shock (Roy et al. 2008; vanTol et al. 2007).  This was used as a positive 

control to determine that the above protocol was appropriate for assessing volume 

changes in this cell line.  

Images were captured during perfusion for 10 minutes with NT, then perfusion was 

switched to the hyposmotic buffer for 30 minutes, then returned to NT for 20 

minutes.  These time points were chosen to ensure that the full hypotonic swelling 

and ensuing RVD response were captured (Roy et al. 2008; vanTol et al. 2007). 

17β-oestradiol and genistein 

To determine the effect of E2 and genistein on MCF7 volume, the cells were 

perfused with these compounds following Calcein loading.  Images were recorded 

for 5 minutes in NT, then 10 mins 0.1% DMSO so each cell acted as its own control.  

Following this the cells were perfused for 30 minutes with the test Tyrode (either 

1nM E2, or 1 or 31.6µM genistein).  If the cells remained viable following this 

treatment, then they were followed for a further 10 minutes in normal Tyrode to 

determine if the effects were reversible, but cell damage due to the UV light 

prevented this from occurring frequently enough to generate usable data. 

  



227 | P a g e  

 

4.1.5 Statistical analysis 

For the hyposmotic shock data, the fluorescence values from 1 minute regions in the 

centre of the sections of the trace of interest were collated, and the mean and SD 

calculated.  These were compared with each other by paired Student’s t test (SPSS 

version 19, IBM Statistics, 2010), and significant variations (p, two tailed < 0.05) 

were indicated. 

In addition, the Δf values were compared by paired t tests as above, and significant 

variations (p, two tailed < 0.05) indicated. 
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4.2 MTT assay: assessing the role of potassium channels in MCF7 

proliferation  

The activities of the VGKCs on proliferation were pharmacologically identified using 

broad and specific channel blockers (see Table 1.9 for more information).  These 

comprised Tetraethyl ammonium (TEA; a non-specific K+ channel blocker), 4-amino 

pyridine (4-AP; VGKC blocker), astemizole (AST; blocks hEAG and hERG channels) 

and dofetilide (DOF; blocks hERG). 

MCF7 proliferation was assessed using the previously optimized MTT assay, as 

described in Section 2.4, after treating the cells with a range of concentrations of the 

channel blocking compounds.   
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4.2.1 Preparation of solutions 

TEA 

A stock solution of 1M TEA (Sigma) was prepared in deionised water (d.H2O), and 

filtered using a 0.22 µm mixed cellulose ester (MCE) syringe filter (Millex Millipore).   

4-AP 

The lower concentration of 0.5M was used for the stock solution of 4-AP (Tocris 

Bioscience).  Again this was prepared in d.H2O and filtered as above.  

AST 

AST (Sigma) was dissolved to the maximum stock concentration of 50mM in sterile 

DMSO.  This was filtered using a 0.22μm Polytetrafluoroethylene (PTFE) syringe 

filter (Whatman). 

DOF 

DOF (Sigma) would only dissolve in DMSO to the stock levels of 10mM.  This was 

filtered using a 0.22µM PTFE syringe filter. 

Serial dilutions of each compound were prepared in sterile DMSO or sterile water as 

appropriate.  These were stored at -20oC until use, and thawed at room 

temperature.  For experimental use, 5μl of the appropriate AST or DOF stock 

dilution was added to 5ml of experimental medium to give the relevant channel 

blocker, with DMSO concentration never exceeding 0.1%.   As higher final 

concentrations of 4-AP and TEA were required, but their solubility in water was a 

limiting factor, a maximum final solvent concentration of 4% was unavoidable.  The 

impact of this change in osmolarity upon the growth of the cells was inescapable but 

minimal. 
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4.2.2 MTT assay protocol 

As previously, MCF7 cells were seeded into 96 well plates at a density of 6000 cells 

per well in 0.2ml experimental medium, and incubated at 37oC in a humidified 5% 

CO2 environment.  After a 24 hour period of oestrogen washout, the medium was 

replaced with fresh experimental medium containing a range of concentrations of 

the K+ channel blockers.  Care was taken to ensure that DMSO never exceeded 

0.1% in any preparation.  After incubation for 72 hours, the MTT assay was carried 

out using the protocol described (Section 2.4).  Again, proliferation was expressed 

as the percentage of proliferation compared to the appropriate control treatment.   
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4.2.3 Test conditions  

Controls 

DMSO (0.1%) was used as the control for the AST and DOF experiments.  The 

impact of this on the proliferation of MCF7 had been assessed previously, and was 

not found to affect growth. 

TEA and 4-AP were dissolved in d.H2O, containing up to a maximum of 4% of the 

solvent.  Accordingly, a series of treatments containing from 0.1% to 4% d.H2O were 

prepared, to determine the effect of this on MCF7 proliferation.   

K+
 channel blockers 

Cells were incubated with the following: 

 TEA between 1μM and 20mM 

 4-AP between 1μM and 20mM (adjusted where necessary to contain 4% 

filtered d.H2O) 

 AST between 1nM and 50μM 

 DOF between 1nM and 10μM 

 

As no specific blockers of the hEAG channel were available, the combination of AST 

and DOF was used to pharmacologically identify the activity of this channel.  That is, 

it was hypothesized that if an activity is prevented by AST treatment but not DOF, 

then it is likely to be the hEAG-blocking component of AST that is responsible in that 

instance. 
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4.2.4 Statistical analysis 

AST and DOF results were compared to the 0.1% DMSO control.  The TEA 

treatments were compared to the 2% H2O control.  To determine the effects of the 

4-AP treatments the 4% H2O control was used for comparison.  The treatments 

containing 0.1 to 4% d.H2O were compared to the untreated control from Section 

3.1.1..1.  The impact of 0.1% DMSO on MCF7 proliferation had been determined 

previously (Section 3.1.1..1).   The significance of variation from the appropriate 

control treatment was determined by ANOVA (SPSS version 19, IBM Statistics, 

2010) with Bonferroni post hoc corrections for multiple comparisons, and significant 

values (p, two tailed, <0.05) are indicated. 

Where a compound was found to inhibit proliferation sufficiently, the IC50 was 

determined by non-linear regression using Graphpad Prism software (Graphpad 

Software Inc., Version 5.01, 2007). 
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4.3 Whole cell patch clamping to assess potassium channel 

physiology  

4.3.1 Background to method 

In parallel to this, the impact of genistein and E2 on MCF7 K+ current was identified, 

by whole cell patch clamping, and preliminary attempts were made to 

pharmacologically identify the specific channels through which they might be acting. 

Electrophysiological measurement using the patch clamping technique is the gold 

standard technique for measuring the characteristics of ion channels, as it allows the 

channels to be gated by physiologically relevant membrane potentials (Birch et al. 

2004).  This is particularly important as the gating (opening and closing) of 

numerous channels is affected by voltage.  This technique is used to measure ionic 

currents in whole cells under a voltage clamp, in which near-perfect control of 

membrane potential is possible.  It is routinely used to measure ion channels in 

virtually any cell type, including MCF7 breast cancer cells (Ouadid-Ahidouch et al. 

2000; Roy et al. 2008; Sontheimer and Olsen 2007).  It operates along the principle 

that channel activity results in changes in membrane resistance, which can be 

studied by measuring current at a constant (clamped) membrane voltage.  In these 

conditions, membrane resistance is directly proportional to the current under 

scrutiny (Sontheimer and Olsen 2007).  This is the fundamental principle of Ohm’s 

law, dictating that the current between two points is directly proportional to the 

potential difference between those points, and indirectly proportional to the degree 

of resistance (opposition to current flow).  A comprehensive discussion of this 

technique can be found in the Plymouth Workshop Handbook (Ogden 1994).   

Ohm’s law:   I = V ÷ R 

I = current (Amps), V = voltage / potential difference (Volts),       

R = resistance (Ohms) 

With cells bathed in the appropriate media and test compounds, a glass micro-

pipette electrode is used to form a seal with the surface of one cell, and electrical 

continuity is achieved.  From this point, voltage is manipulated and current 

continuously recorded and analysed.  The whole cell patch clamp technique is most 
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widely used to measure macroscopic currents.   It is common practice to design the 

composition of the bathing solution to resemble the extracellular environment that 

the cell would be exposed to in vivo, whilst reducing all ionic currents with the 

exception of the current of interest.  Many natural toxins and pharmacological 

agents can be used to reduce or eliminate the activity of specific channels or a 

broader range of channels.  This allows the isolation and assessment of specific 

currents (Sontheimer and Olsen 2007).  It is a limitation of this technique that this 

treatment of the cell will result in its death, so recordings must be made quickly, 

within 20 minutes, before the results are affected (Coiret et al. 2007). 

Firstly the K+ channel signature of untreated MCF7 cells was measured at a range of 

voltages.  This allowed confirmation that the system was functional and that the 

currents present were mostly due to K+ flux and not other ions (Ouadid-Ahidouch et 

al. 2000).  Following this, the effect of the non-specific K+ channel blocker, TEA, and 

the VGKC blocker 4-AP on the patch clamp signature for MCF7 cells was assessed 

at a range of voltages, confirming the role of the VGKCs on K+ current in these cells.  

Finally, the effect of the specific channel blockers for the hEAG and hERG K+ 

channels on the patch clamp signature was assessed at a range of voltages.  This 

was intended to confirm the presence of these channels in the cells studied, and 

also that their activity was as expected (Ouadid-Ahidouch and Ahidouch 2008).  The 

specific activity of each channel was measured by blocking it and subtracting the 

resulting trace from an untreated K+ channel signature (Cayabyab and Schlichter 

2002; Ouadid-Ahidouch et al. 2000).   

The next step was to investigate whether E2, genistein and daidzein influenced K+ 

flux and the activities of the VGKCs, including hEAG and hERG in MCF7.  As far as 

possible following this, the intention was to begin to elucidate which of the channels 

they affect.  This was done by whole cell patch clamping before and after co-

incubation with both the specific channel blocker and the isoflavone.  If the 

isoflavone and the channel blocker inhibit the activity of different K+ channels, their 

effects on the K+ signature would be expected to be additive.  There would be no 

further inhibitory effect if they both act on the same channel (Coiret et al. 2007).   

The following experiments were carried out at room temperature (21 to 23oC), 

although this is non-physiological.  As discussed (section 1.6.2) the impact of this 

reduced temperature compared to 37oC is likely to be minimal.  Additionally, the use 
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of room temperature made these results comparable with other groups looking at K+ 

current in MCF7 (Coiret et al. 2007; Ouadid-Ahidouch et al. 2000; Ouadid-Ahidouch 

et al. 2004b), and it reduces the potential for electrical interference from the heating 

equipment. 

This was a complex, multistage procedure, with a number of steps built in to ensure 

the standardization of the settings used and measurements taken throughout.  The 

stages were carried out in the order described in Sections 4.3.3 and 4.3.4. 
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4.3.2 Preparation of solutions 

Normal Tyrode buffer  

Extracellular solution, described in section 4.1.2.  

 

Intracellular / pipette solution  

This was intended to match the intracellular environment as closely as possible in 

terms of the concentration of the main ions present.  The following were dissolved in 

d.H2O: KCl (150mM), HEPES (10mM), EGTA (Sigma; 0.1mM), MgCl2 (2mM).  It was 

the titrated to pH7.2 with 4M KOH at room temperature. 

 

 

Test Tyrodes 

As required, appropriate quantities of K+ channel blocker solutions, genistein, E2 or 

DMSO were added to the perfusing NT buffer.  DMSO concentration never 

exceeded 0.1%. 
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4.3.3 Whole cell patch clamp protocol 

4.3.3..1 Optimisation of seeding conditions 

Seeding density and duration of incubation were optimized prior to experimentation 

to allow sufficient cells in each dish whilst avoiding the cells reaching confluence, or 

becoming too densely packed to select individual target cells.  Densities between 

1x104 and 1x106 cells per dish were assessed visually after 24 and 48 hours growth 

(data not shown).  An optimal density of 1x105 cells per dish was selected. 

4.3.3..2 Preparation of cells 

For whole cell patch clamping, MCF7 cells were seeded at a density of 1x105 cells 

per dish in experimental media in individual glass bottomed ethanol sterilised 35mm 

dishes.  Each dish contained 2ml media.  The cells were then incubated at 37oC in a 

humidified 5% CO2 environment for 48 hours. 

The remaining steps were conducted at room temperature, and did not require 

sterile conditions.  All removal and addition of solutions was conducted with care to 

avoid dislodging cells.  When required, medium was removed from the dish by 

pipette.  The cells were washed once with 1ml NT buffer, this was removed, and 

replaced with 2ml fresh NT. 

4.3.3..3 Pulling pipette electrodes 

Micropipettes for the intracellular electrode were prepared from 1.5mm diameter 

filamented borosilicate glass thin walled capillaries 100mm long (GF150, Harvard 

Apparatus UK).  Each capillary made two pipettes.  A Narashige PB-7 two stage 

vertical pipette puller was used for this.  The first pull and heating stage extends the 

tube by 5 to 8mm, thinning the middle section to around 0.1mm diameter, but not 

allowing this to shear.  During the second heating and pull stage the tube is pulled 

apart by gravity.  A tip of around 1µM with electrical resistance of between 3 and 

10MΩ is optimal for whole cell patch clamping (Ogden and Stanfield 1994).  

Reducing the weight applied and increasing the temperature of the second pull 

made a thinner electrode with higher tip resistance.   
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The settings for the first and second pull, and applied weight, were optimised for the 

capillaries used, with the procedure described to measure tip resistance in Section 

4.3.3..5.  To compensate for drift, tip resistance was checked each time, and the 

settings adjusted if necessary.   

Following the manufacturer’s instructions, the capillary was inserted so that 1.5cm 

(approximately) appeared above the top of the apparatus.  No weights were used.  

The first pull was set to have a drop of 6mm, with the temperature set to 88.  

Following this the capillary was adjusted to be 3mm lower, so that the filament was 

in the centre of the thinned region.  For the second pull the temperature was set to 

93.  With these settings the tip resistance was consistently between 3 and 7MΩ.  

With careful storage the pipettes can be prepared several hours or a day in advance 

of use. 

4.3.3..4 Preparing the platform 

MCF7 cells were patch clamped using a Cairn Optopatch amplifier rig (Cairn 

Research Ltd., Kent) with a microscope (Olympus OM-2, Japan; Figure 4.3), inside 

a Faraday cage to reduce airborne electromagnetic radiation, and on an 

antivibration table (TMC Vibration Control, Massachusetts).   The latter uses a 

cushion of air to prevent vibrations from the surroundings being transferred to the 

cell and electrode, as this would be fatal to the stability of the seal.  Cells were 

visualised at x200 using light microscopy. 

A fresh dish of MCF7 cells in NT buffer was inserted into the stage of the 

microscope.  This was perfused with NT using a peristaltic pump (Gilson Minipuls 3) 

at a rate of 1ml/min to wash away debris or non-adherent cells.  The AgCl bath 

electrode was submerged in the NT solution in the dish.   During current recordings 

the pump was required to be switched off as it introduced electrical interference 

(noise) into the circuitry. 
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Figure 4.3: Olympus microscope and headstage inside the Faraday cage 

Bath electrode (A), pipette holder / internal electrode (B), headstage (C) and coarse 

manipulator (D) are indicated. 

When handling and using the micropipettes, great care was required at all times to 

avoid damaging the tips.  A pre-prepared micropipette was filled to about 2/3 full 

with intracellular solution using a syringe needle fitted with a 0.22µm PTFE filter.  

The internal filament allows a continuous liquid circuit through the pipette, 

uninterrupted by bubbles due to capillary action.  However large bubbles in the tip 

were dislodged by tapping.  Once filled, the pipette was attached to the electrode 

holder on the headstage, ensuring that the silver electrode wire was in contact with 

the solution inside the pipette.  The pipette was then lowered into the bath using the 

course manipulator.  This completes the electrical circuit (Figure 4.4).  Slight 

pressure (0.5ml of displaced air) was applied and locked in place using a syringe 

attached to the air line to prevent debris contacting the electrode tip.  The amplifier, 

camera and antivibration table were switched on at this stage.   
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Figure 4.4: Basic schematic of whole cell patch clamp circuitry 

Image from Molleman (2002).  The voltage is “clamped” by the experimenter, and 

the current between the bath and pipette electrodes is continuously measured.  Any 

change in plasma membrane resistance (i.e. channel activity) is immediately 

compensated for by a change in current, which is then recorded. 

4.3.3..5 Checking pipette resistance 

Pipette resistance was checked regularly to determine consistency.  With the 

electrode in the bath, whether using the Cairn amplifier or the seal test window in 

the associated computer software (WinWCP: V.4.4.1, John Dempster, University of 

Strathclyde Electrophysiology Software, 2011) a 10mV pulse was applied from a 

holding potential of 0mV, for 35ms.  This will be referred to as pulse 1.  The junction 

potential was adjusted to compensate for the difference in ionic compositions 

between the bath and electrode solutions (this generates an ion bridge potential) 

using the amplifier until there was no current at zero applied voltage (junction 

potential will be approximately 160mV using the solutions described).  The electrode 

resistance was noted.  The ideal range was between 3 and 10MΩ, corresponding 

with the appropriate tip diameter for whole cell patching large cells such as MCF7.  

Pipettes with tip resistances outwith this range were discarded.  The junction 

potential settings were then switched off, as when the pipette is in contact with the 

cell there should be no junction potential. 
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The system was initially calibrated with a “dummy cell” (Cairn) of known resistance 

and capacitance, so the readings generated were considered accurate. 

4.3.3..6 Generating the Giga-ohm seal on the cell 

A cell was selected visually which sat isolated from other cells, as immediate 

neighbours could interfere with the signal measured.  Care was taken to select cells 

of similar sizes on each instance.  Using the coarse manipulators, then the fine 

micromanipulator (Narashige MWH-3 water hydraulic 3 way) the cell was 

approached with the tip of the pipette, until the tip sat just above the centre of the 

cell, as viewed on the monitor.  Another 0.5ml of pressure was gently applied using 

the syringe and air line, to slightly depress the surface of the cell.  Using only the 

micromanipulator, the tip was lowered incrementally towards the plasma membrane. 

Contact with the membrane is determined by watching the current signal and 

resistance generated by pulse 1.  This is indicated by a sudden (although slight) 

increase in resistance at the tip of the pipette electrode and a drop in current by 

around 10%.  Quickly, the plasma membrane was pulled onto the pipette by 

releasing the pressure on the air line.   

If the membrane seals around the tip (if both the tip and membrane are un-

occluded) the resistance will rise to above 3GΩ (the gigaseal, or giga-ohm seal), 

reflecting the very close association between the pipette and the membrane.  Seals 

of less than 3GΩ were insufficient for the integrity of the circuit, and would result in 

overwhelming leakage of electrolytes from the cell.  Seals of 10GΩ or more were 

optimal.  Once the gigaseal had formed, the current recorded from pulse 1 was 

virtually zero (Figure 4.5 and Figure 4.6A).  Where the cell failed to form a seal 

around the pipette tip (or at later stages the seal ruptured), the pipette was 

discarded, a new cell selected, and the process repeated. 

Once a stable 10GΩ seal was generated, the software was used to change the 

holding potential to -50mV (closely matching the membrane potential of the cell).  

The 10mV 35ms pulse was maintained.  These settings will be referred to as pulse 

2.  The seal was allowed to stabilise at the new settings. 
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Figure 4.5: Schematic representation of a whole cell patch clamp 

4.3.3..7 Creating the whole cell patch 

With a tight and stable seal formed around the pipette, the next stage was to rupture 

the plasma membrane inside the tip.  This was achieved by applying sharp suction 

to the air line.  Successful formation of the whole cell patch was indicated by a 

sudden increase in current, a drop in resistance, and the formation of fast transient 

spikes of current at either side of the trace generated by pulse 2 (Figure 4.6B). 

The trace generated by pulse 2 was then adjusted electrically to get a square 

current pulse and compensate for the capacitance currents and series resistance.  

This was carried out by switching the amplifier to resistance capacitance 

compensation mode, and adjusting the series resistance and capacitance. The fast 

and slow mag and tau settings were used to eliminate transient elements of the 

current.  The series resistance and capacitance were noted, since these were 

characteristic to MCF7.   

The membrane capacitance of biological membranes is relatively predictable, and is 

determined roughly by cell size (approximately 1pF per 100µm2 of membrane).  The 

average surface area of MCF7 is around 800µm2 (Nassarre et al. 2003) so the 

capacitance was predicted to be approximately 8pF.  Cells were discarded if 

uncompensated series resistance exceeded 25mV.    
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Figure 4.6: Example traces generated during whole cell patch clamping 

The very high resistances generated when the giga-seal forms result in virtually no 

current during the 10mV pulse for 35ms from a holding potential of 0mV (A; pulse 1).  

When the membrane within the pipette is ruptured and a successful whole cell patch 

is achieved, resistance drops and a current is generated with fast transient 

capacitance spikes when pulse 2 is applied (B; 10mV pulse for 35ms from a holding 

potential of -50mV). 

4.3.3..8 VGKC activating voltage stepping protocol 

Whole cell currents were allowed to stabilize for up to five minutes after patching, 

due to gradual equilibration of pipette contents and cell cytoplasm.  Following this, a 

voltage stepping protocol was then applied to the cell to determine the activity of the 

VGKCs.  The same protocol was used throughout.  From the holding potential of -

50mV, voltage was sequentially stepped up from -70mV to 120mV in 10mV 

increments for 250ms, with 250ms between each step at the holding potential 

(Figure 4.7A).  Similar protocols are widely used in MCF7 to assess VGKCs (Coiret 

et al. 2007; Ouadid-Ahidouch et al. 2000). 
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Figure 4.7: Voltage stepping protocol and resulting voltage sensitive current 

recording from MCF7 

Schematic representation of the voltage stepping protocol (A) from a holding 

potential of -50mV voltage was sequentially stepped from -70mV to 120mV in 10mV 

increments held for 250ms.  The resulting current from a whole cell patch clamped 

MCF7 cell (B) showing very little current response at and around the holding 

potential, but increasingly activating as the cell becomes more depolarized. 
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4.3.4 Test conditions 

For each successfully patched cell the above voltage stepping protocol was applied 

prior to treatment.  If this confirmed the activity of VGKCs (Figure 4.7B), then the cell 

was perfused for up to 20 minutes with NT containing test compounds in the 

appropriate concentrations.  Table 4.1 describes the concentrations of the various 

channel blockers, control and test agents chosen, in relation to their IC50 

concentration for proliferation (determined in Section 5.2.2) where appropriate and 

any previously published information regarding an impact on K+ channel activity.   

The concentrations of the K+ channel blockers used were based on similar studies, 

as they were sufficient to block the channels in question to a greater or lesser extent 

without showing significant cytotoxicity (under the IC50, or resulted in no significant 

inhibition of proliferation) over the time-scales used (Coiret et al. 2007; Coiret et al. 

2005; Roy et al. 2008; Yao and Kwan 1999). 

Table 4.1: Concentrations of test agents used for patch clamping 

Treatment IC50 for MCF7 

proliferation 

IC50 for K+ channel activity1 Dose used 

TEA 18.8mM 5mM 10mM 

4-AP 2.69mM Between 0.1 and 4 mM 1mM 

AST 4.91µM 200nM 1µM 

DOF  1μM (effective concentration)2 1µM 

Genistein  30 to 100µM (effective 

concentration)3 

31.6µM 

Daidzein   31.6µM 

E2   1nM 

DMSO   0.1% 

Untreated (NT)   N/A 

Genistein + 4-AP  31.6µM + 1mM 

Genistein + AST  31.6µM + 1µM 

1 See Table 1.9 

2 (Wang et al. 2002) 

3 See Section 1.6.7 
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The voltage stepping protocol was applied again at 1, 3, 5, 7, 9, 12, 15, 17, and 20 

minutes into the treatment, or as long as the seal integrity remained.  Note that at 

each time point the perfusion pump was required to be briefly switched off to prevent 

interference, and that the pump had a two minute lag time due to the volume of the 

tubes.  In the instances where normal Tyrode was in the tubing, 2 minutes was 

subtracted from all the measurement time points post-treatment to compensate. 
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4.3.5 Analysis of results 

WinWCP software (John Dempster, University of Strathclyde Electrophysiology 

Software, 2011) was used to determine the current at each voltage step.  At each 

voltage level the mean current was calculated for a section of the trace in the 

second half of the 250ms step, as the current was generally more stable than early 

in the step, and this avoids the effects of the Na+ channels. 

The effect of each treatment on the macroscopic MCF7 current was initially 

assessed at each time point, and 5 minutes treatment (not including the 2 minute lag 

time) was chosen for the comparison of treatments.  This allowed for maximum 

effect of the treatment (when evident) and avoided the subsequent degradation of 

the seal interfering with results. 

Each treatment was repeated on at least three independent occasions on different 

days.  Current/voltage (I/V) curves showing the mean I/V relationship before and 5 

minutes into the treatment were plotted.   

There was an unavoidable element of current leakage in many of the cells.  Whether 

this was due to the cells and the presence of secreted matrix proteins, their 

treatment, or the equipment was not known.  It is standard practice to assume that 

leakage is relatively constant over time as long as the seal retains integrity, so to 

determine the net effect of the treatment on the outward curent, the recorded current 

after treatment was subtracted from the initial (untreated) current at each voltage 

step, in the manner of Ouadid-Ahidouch et al. (2000).  With some equipment, leak 

subtraction can be carried out automatically (Grissmer et al. 1994; Ouadid-Ahidouch 

et al. 2000).  This I/V response generated is referred to as the “treatment” sensitive 

current.  In this manner, when the treatment inhibited current, the element sensitive 

to it was positive, and when the treatment increased current the sensitive element 

appeared negative.  The effect of current over the course of the protocol was 

illustrated for each treatment, at the voltage which induced the greatest magnitude 

of treatment-sensitive effect (i.e. the greatest difference before and 5 minutes after 

treatment).  
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4.3.6 Statistical analysis 

For each treatment, the results for each cell before and 5 minutes into the protocol 

were compared using the General Linear Model (GLM; SPSS version 19, IBM 

Statistics, 2010) for repeated measures, using the within subject (cell) variables of 

treatment (before and after) and voltage (20 levels).  Since there were only two 

levels in the treatment variable, sphericity was assumed.  Results are quoted as the 

F value, degrees of freedom of the model (dfM) and residual degrees of freedom of 

the model (dfR) and the significance (p) of F.  Where p<0.05 F was assumed to be 

significant.  Where a significant effect of 5 mins treatment on response to voltage 

was found, further analysis was conducted by MANOVA (Simple Effects Analysis) to 

determine the effect of treatment at each level of voltage within a cell (F and p). 

The treatment-sensitive elements of the combined treatments (genistein and 4-AP 

or AST) were compared to the relevant single treatments using ANOVA (SPSS 

version 19, IBM Statistics, 2010) with Bonferroni post hoc corrections for multiple 

comparisons, and significant values (p, two tailed, < 0.05) are indicated. 
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CHAPTER 5. Results: volume regulation and potassium 

channel activity 

5.1 Results of the calcein cell volume assay in MCF7 

5.1.1 Hyposmotic shock 

The response of MCF7 cells (n=3) to a hyposmotic shock is shown in in Table 5.1 

and Figure 5.1, highlighting four specific regions of interest (1, 2, 3, 4). 

Table 5.1: MCF7 fluorescence levels during hyposmotic shock 

Region of 

trace 

Time 

(secs) 

Mean 

fluorescence 

SD p(2)* p(4)* 

1 240-300 91.00 5.31 <0.001  

2 566-626 94.60 6.62 - NS 

3 962-1022 92.05 8.99 <0.001  

4 1426-1480 94.83 10.76 NS - 

* Significance of difference compared with region 2 or 4 as indicated 

The increase in fluorescence (1 to 2) was significant (p < 0.001), and occurred 

approximately 2.5 minutes into the hyposmotic treatment, taking into account the 2 

minute lag.  This may be an early effect of the treatment.  An increase in 

fluorescence can suggest cell shrinkage, however cell size appeared unaffected 

(visual observation; Figure 5.1B). 

Approximately seven minutes after the change to hypotonic solution, fluorescence 

intensity dropped as the cells underwent hypotonically induced swelling (2 to 3).  

This continued for around five minutes, and the difference between the mean values 

at 2 and 3 was significant (p < 0.001).   The mean rate of fluorescence intensity 

change per second (Δf) during this time (700 to 1000 seconds) was -0.008 ± 0.021. 
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Figure 5.1: MCF7 calcein fluorescence during hyposmotic shock 

MCF7 cells were prepared as described.  Fluorescent images (excitation at 480nm) 

taken at four second intervals were analysed, following initial perfusion with NT, then 

30 minutes in a 50% Na (hyposmotic) Tyrode.  Sample images are provided in A, 

and the results of the analysis are shown in B (mean of three independent 

experiments, following 54 cells).  Indicated are 60 second regions representing the 

cells prior to hyposmotic shock (1), after an initial increase in fluorescence (2), 

following swelling and resulting fluorescence drop (3) and after RVD (4).  The 

numbered images in A correspond with these regions in B. 
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Immediately after this, the cells underwent a period of RVD (3 to 4), as the 

fluorescence, and their volume, returned to the levels seen in 2, by approximately 16 

minutes after the change to hypotonic solution.  This increase in fluorescence was 

again significant (p < 0.001), and Δf for this (1004 to 1300 seconds) was 0.010 

±0.020.  Comparison between the two slopes (2-3 and 3-4) by paired t test indicated 

that they were significantly different (p < 0.001).   
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5.1.2 17β-oestradiol and genistein induce opposing changes in MCF7 

cell volume 

The mean results of the experiments looking at calcein fluorescence intensity in 

MCF7 after treatment with 1nM E2, 1µM genistein and 31.6µM genistein are shown 

in Figure 5.2, Figure 5.3 and Figure 5.4 respectively (n = 3 for each).  For each 

treatment Δf for region 1 (Δf0; after 8 minutes treatment with 0.1% DMSO), region 2 

(Δf10; after 10 minutes treatment with the test agent) and region 3 (Δf15; 15 minutes 

into treatment) are provided in Figure 5.5.   

The background change in fluorescence or the impact of 0.1% DMSO varied greatly 

between treatments.  Prior to 1nM E2 treatment (Figure 5.2) mean fluorescence was 

relatively stable, and did not appear to be impacted upon by the vehicle-only 

treatment.  Prior to the 1µM genistein treatment (Figure 5.3), mean fluorescence 

intensity was increasing.  Again this was not affected by the presence of the control 

treatment.  However, prior to the 31.6µM genistein treatment (Figure 5.4) there was 

a decrease in mean fluorescence associated with the addition of 0.1% DMSO.  

Whether these changes were in response to the solvent or the treatment protocol 

was unknown.  Overall the mean fluorescence change during 0.1% DMSO 

treatment was slight (Δf0 = 0.003 ± 0.017; Figure 5.5).   

To eliminate the variable background or vehicle-effects on fluorescence seen, Δf for 

each treatment/time was compared to its own pre-treatment 0.1% DMSO value in a 

paired fashion, rather than the mean Δf0.  Likewise, adjusted Δf values (aΔf10 and 

aΔf15) for each treatment/time point were calculated as the difference between the 

slopes in regions 1 and 2, or 1 and 3 (Figure 5.6). 

Overall, 1nM E2 treatment resulted in a drop in fluorescence intensity (Figure 5.2) 

associated with a significant reduction from a positive Δf0 to negative values at both 

10 and 15 minutes into treatment (p <0.001 and <0.01 respectively), and 

consequently negative values for aΔf (Figure 5.5 and Figure 5.6).   Together this 

suggests that by 10 minutes into this treatment, an increase in cell volume has 

resulted. 
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Figure 5.2: MCF7 calcein fluorescence during treatment with 1nM E2 

MCF7 cells were prepared as described.  Fluorescent images (excitation at 480nm) 

taken at four second intervals  were analysed, following initial perfusion with NT, 

then 10 minutes in a 0.1% DMSO Tyrode, and 30 minutes in Tyrode containing 1nM 

E2.  Results shown are the mean of three independent experiments, following 39 

cells.  Indicated are 2 minute regions representing the cells after 8 minute perfusion 

with 0.1% DMSO (1; 920 to 1040 seconds) and 10 (2; 1640 to 1760 seconds) and 

15 (3; 1940 to 2060 seconds) minutes perfusion with 1nM E2. 

There was no evidence of E2 auto-fluorescence, determined by assessing the 

background fluorescence in a cell-free area before and during perfusion with 1nM 

E2 Tyrode, mean and SD fluorescence were 14.08 ± 3.22 and 14.01 ± 3.31 

respectively, p (Student’s t test, two tailed) ≥ 0.05. 

The strong background upward trend in mean fluorescence intensity seen in the 

1µM genistein-treated cells continued after treatment, although to a lesser extent 

(Figure 5.3).  This is reflected by a drop in Δf from Δf0, which achieved statistical 

significance (p < 0.001) by 15 minutes into the treatment regime (Δf15), although not 

at 10 minutes (Δf10; Figure 5.5).   Likewise, aΔf has a small negative value after 10 
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minutes treatment, but this has become more negative by 15 minutes (Figure 5.6).  

This indicates that despite the background upward trend in fluorescence, 1µM 

genistein treatment results in an increase in MCF7 cell volume, although this is 

slightly slower to take effect than that seen with 1nM E2.   
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Figure 5.3: MCF7 calcein fluorescence during 1µM genistein treatment 

MCF7 cells were prepared as described.  Fluorescent images (excitation at 480nm) 

taken at four second intervals  were analysed, following initial perfusion with NT, 

then 10 minutes in a 0.1% DMSO Tyrode, and 30 minutes in Tyrode containing 1µM 

genistein.  Results shown are the mean of three independent experiments, following 

34 cells.  Indicated are 2 minute regions representing the cells after 8 minute 

perfusion with 0.1% DMSO (1; 880 to 1000 seconds) and 10 (2; 1600 to 1720 

seconds) and 15 (3; 1900 to 2020 seconds) minutes perfusion with 1µM genistein.   

In the 31.6µM genistein treated cells there was an initial (pre-treatment) trend 

towards decreasing fluorescence intensity (Figure 5.4).  The genistein treatment 

rapidly reversed this, initially resulting in the fluorescence stabilising, and then after 

10 minutes intensity began to increase, suggesting shrinkage.  This is confirmed by 
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a significant increase from negative to positive values for Δf10 (p <0.001), and a 

subsequently large positive aΔf at this time point (Figures 5.5, and 5.6). 
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Figure 5.4: MCF7 calcein fluorescence during 31.6µM genistein treatment 

MCF7 cells were prepared as described.  Fluorescent images (excitation at 480nm) 

taken at four second intervals  were analysed, following initial perfusion with NT, 

then 10 minutes in a 0.1% DMSO Tyrode, and 30 minutes in Tyrode containing 

31.6µM genistein.  Results shown are the mean of three independent experiments, 

following 22 cells.  Indicated are 2 minute regions representing the cells after 8 

minute perfusion with 0.1% DMSO (1; 1000 to 1120 seconds) and 10 (2; 1720 to 

1840 seconds) and 15 (3; 2020 to 2140 seconds) minutes perfusion with 31.6µM 

genistein.   

However, by 15 minutes into the 31.6µM genistein treatment, fluorescence intensity 

had returned to its downward trend.  Accordingly Δf15 has a small negative value.  

However, this is still significantly lower in magnitude to the downward rate of change 

seen in Δf0 (p <0.01), and accordingly aΔf15 still has a positive value, although lower 

than that seen at aΔf10.  This suggests that although the MCF7 cells continued to 
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shrink after 15 minutes, it was not rapid enough to counter the background loss in 

fluorescence seen in these cells. 
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Figure 5.5: Rate of MCF7 calcein fluorescence change per second, prior to, 

and 10 and 15 minutes into treatment 

Values were calculated as described for the mean and standard deviation of Δf after 

8 to 10 minutes of 0.1% DMSO treatment (Δf0), 10 to 12 minutes (Δf10) and 15 to 17 

minutes (Δf15) treatment with 1nM E2, 1µM genistein, and 31.6µM genistein.  

Significant differences from the indicated Δf0 value (p < 0.05) are provided.  The 

control value is the mean of the 0.1% DMSO Δf0 results.  Positive Δf indicates 

increasing fluorescence, and negative Δf indicates reducing fluorescence. 
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Figure 5.6: Adjusted rate of MCF7 calcein fluorescence change after treatment 

Adjusted Δf (aΔf) was calculated as described  at 10 and 15 minutes into treatment 

of MCF7 with 1µM genistein, 31.6µM genistein, and 1nM E2 (mean and standard 

deviation). Positive aΔf indicates shrinkage, and negative aΔf indicates swelling. 
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5.2 Results of the MTT assays assessing the role of K+ channels in 

MCF7 proliferation  

5.2.1 Control treatments 

TEA and 4-AP used water as a solvent, so for reference it was determined whether 

this had an effect on proliferation.  The addition of water up to and including 2% did 

not affect proliferation, but 4% water resulted in a slight reduction in proliferation 

compared to the untreated control (Figure 5.7).  This may have been due to dilution 

of nutrients. 
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Figure 5.7: The impact of increasing quantities of added water on MCF7 

proliferation 

MCF7 cells were prepared as described, and incubated for 72 hours in experimental 

medium containing d.H2O added at levels between 0 and 4%, then cell proliferation 

was assessed by the MTT assay.  The impact of these treatments on percentage 

proliferation, compared to the untreated (0%) control are shown (mean ± SD, n=3).  

Significant variation from the untreated control (p< 0.01) is indicated (a). 

The TEA experiments used a maximum of 2% water.  As this level had no impact on 

MCF7 proliferation, it was considered appropriate as a control treatment, and the 

effect of each concentration of TEA on proliferation was compared to this.  However, 

a higher level of 4% water was unavoidable for the highest of the 4-AP 
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concentrations, due to limitations of its solubility.  To factor in the impact of this level 

of water on MCF7 proliferation, all remaining 4-AP treatments were adjusted to 

contain 4% H2O, then this level of water was used for control comparison with these 

treatments.  The channel blockers DOF and AST used DMSO as a solvent.  This did 

not exceed 0.1% in any instance, and had already been shown to have no effect on 

MCF7 proliferation at this dose (Section 3.1.1..1).    
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5.2.2 The impact of various K+ channel blockers on MCF7 proliferation 

Treatment with increasing concentrations of TEA reduced the proliferation of MCF7 

in a dose-responsive manner, compared to the control (Figure 5.8).  This achieved 

statistical significance at 10 and 20mM (p <0.01 and <0.001 respectively).  The IC50 

for the effect of TEA on MCF7 proliferation was determined to be 18.84mM.   
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Figure 5.8: The impact of TEA on MCF7 proliferation 

MCF7 cells were prepared as described, and incubated for 72 hours in experimental 

medium containing TEA between 1µM and 20mM, then proliferation was assessed 

by the MTT assay.  The impact of these treatments on percentage proliferation, 

compared to the 2% d.H2O control are shown (mean ± SD, n=3).  Significant 

variation from the control is indicated (a; p < 0.001, b; p < 0.01). 

Treatment with 4-AP reduced MCF7 proliferation to a comparable extent (Figure 

5.9), with significantly lower percentage proliferation values calculated at all 

concentrations above and including 1mM (p <0.001).  The IC50 for this channel 

blocker on MCF7 was the slightly lower value of 2.7mM.  This implies that of the K+
 

channels involved in MCF7 proliferation, the VGKCs undoubtedly play an important 

role.   
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Figure 5.9: The impact of 4-AP on MCF7 proliferation 

MCF7 cells were prepared as described, and incubated for 72 hours in experimental 

medium containing 4-AP between 1µM and 20mM, then proliferation was assessed 

by the MTT assay.  The impact of these treatments on percentage proliferation, 

compared to the 4% d.H2O control are shown (mean ± SD, n=3).  Significant 

variation from the control (p< 0.001) is indicated (a). 

To narrow down some of the individual K+ channels implicated in MCF7 proliferation, 

the specific channel blockers AST and DOF were also tested.   AST, a blocker of the 

hEAG and hERG channels, resulted in a dose responsive inhibition of MCF7 

proliferation (Figure 5.10), which achieved statistical significance at all 

concentrations tested above 1µM (p <0.001).  The IC50 for this treatment on MCF7 

proliferation was calculated to be 4.9µM.   
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Figure 5.10: The impact of AST on MCF7 proliferation 

MCF7 cells were prepared as described, and incubated for 72 hours in experimental 

medium containing AST between 1nM and 50µM, then proliferation was assessed 

by the MTT assay.  The impact of these treatments on percentage proliferation, 

compared to the 0.1% DMSO control are shown (mean ± SD, n=3).  Significant 

variation from the control (p< 0.001) is indicated (a). 

However, there was no significant effect of DOF on the percentage of MCF7 

proliferation measured at any of the concentrations tested up to and including 10µM 

(Figure 5.11).  Together these last two experiments illustrate that AST but not DOF 

inhibit the proliferation of MCF7 cells, and so accordingly suggest that the hEAG 

channel, but not hERG, are involved in this response. Alternatively, higher 

concentrations of DOF may be required to have an impact on proliferation, but due 

to limitations in its solubility, this would have required unacceptable quantities of 

solvent present. 
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Figure 5.11: The impact of DOF on MCF7 proliferation 

MCF7 cells were prepared as described, and incubated for 72 hours in experimental 

medium containing DOF between 1nM and 10µM, then proliferation was assessed 

by the MTT assay.  The impact of these treatments on percentage proliferation, 

compared to the 0.1% DMSO control are shown (mean ± SD, n=3).  There was no 

significant variation from the control.  
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5.3 Results of the whole cell patch clamping experiments assessing 

the impact of isoflavones on K+ channel activity in MCF7 cells 

5.3.1 Cell characteristics  

The characteristics of the patched cells and electrodes used in the following 

experiments are provided in Table 5.2. 

Table 5.2: Characteristics of cells and electrodes used in MCF7 patch clamp 

experiments 

 Mean SD 

Electrode resistance (MΩ) 3.56 0.34 

Uncompensated series resistance (MΩ) 9.16 5.34 

Uncompensated capacitance (pF) 25.74 14.99 

 

The electrode resistances measured were well within the tolerable range of 3 to 

10MΩ, and as such were appropriate for whole cell patch clamping.   

The series resistance value confirms that cells were excluded if the uncompensated 

series resistance exceeded 25MΩ.  Series resistance relates to the degree of 

clogging that occurs inside the pipette tip, and is further discussed in section 6.4.2.  

Although it was compensated for electronically, it cannot be completely eliminated, 

and is consequently a source of error.  The values here indicate that this was 

reduced as far as possible.   

Finally, the capacitance figures give an indication of the size of cells used.  The 

average surface area of MCF7 is 800µm2, providing an approximate capacitance 

reading of 8pF (section 4.3.3..7).  The readings generated here suggest that the 

cells being used were larger than average, although they were roughly 

representative of the individual cells observed which were not constrained by the 

proximity of their neighbours. 
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5.3.2 The impact of control treatments on macroscopic current in 

MCF7 

The voltage sensitivity of the macroscopic current was assessed in MCF7 cells 

under untreated control conditions (Figure 5.12).   
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Figure 5.12: Current/voltage relationship in untreated MCF7 cells  

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cells were perfused with normal 

Tyrode.  The voltage sensitivity of the current was recorded again at various time 

points into the treatment.  The effect of voltage on current is shown after 0 and 5 

minutes treatment (A), and the time-course of the current at 50mV (mean and SD) is 

provided (B).  The net effect of 5 minutes treatment with normal Tyrode is shown in 

C.  All graphs are the mean result of three MCF7 cells assessed on different days. 
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In normal Tyrode with no additions, depolarization from -50mV to 110mV resulted in 

an increase in outward current at 0 and 5 minutes (Figure 5.12A).  The magnitude of 

this current increased over time slightly, with the greatest increase occurring 

between 1 and 3 minutes into the protocol (Figure 5.12B).  The resulting impact of 5 

minutes perfusion with NT on the current/voltage (I/V) relationship is shown in 

Figure 5.12C.  Analysis of variance for repeated measures (GLM) indicated that the 

effect of 5 minutes further treatment on the response to voltage within cells was 

significant, F (19, 38) = 2.782, p < 0.01. Further scrutiny by Simple Effects Analysis 

showed that this achieved significance within cells at voltages equaling and above    

-20mV (Table 5.3). 

Table 5.3: Simple Effects Analysis of the impact of the protocol on voltage 

sensitivity 

Voltage F p  Voltage F p 

-70 0.21 NS  30 486.23 <0.01 

-60 0.09 NS  40 345.52 <0.01 

-50 1.16 NS  50 404.00 <0.01 

-40 3.82 NS  60 524.60 <0.01 

-30 11.04 NS  70 133.37 <0.01 

-20 29.94 <0.05  80 96.59 <0.05 

-10 93.53 <0.05  90 61.05 <0.05 

0 338.43 <0.01  100 50.55 <0.05 

10 4336.39 <0.001  110 42.77 <0.05 

20 2368.33 <0.001  120 27.36 <0.05 

 

Extrapolation of the initial untreated I/V curve predicts that the reversal potential 

(point at which there is no current before it reverses direction) would be 

approximately -80mV.  The reversal potential is close to the resting membrane 

potential of the cell.  In MCF7 this is largely dictated by the K+ equilibrium potential, 

and is known to be around -85mV (Klimatcheva and Wonderlin 1999; Ouadid-

Ahidouch et al. 2000; Wonderlin and Strobl 1996).   This suggests that while other 

ions are likely to play a role in the current recorded here, it is largely due to 

movement of K+ ions.    
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The impact of 5 minutes treatment with 0.1% DMSO on the macroscopic current in 

MCF7 was similar to that of normal Tyrode (Figure 5.13).   
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Figure 5.13: Current/voltage relationship in 0.1% DMSO treated MCF7 cells 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -50mV to 110mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 0.1% DMSO.  The voltage sensitivity of the current was recorded again at 

various time points into the treatment.  The effect of voltage on current is shown 

after 0 and 5 minutes treatment (A), and the time-course of the current at 110mV 

(mean and SD) is provided (B).  The net effect of 5 minutes treatment is shown in C.  

All graphs are the mean result of three MCF7 cells assessed on different days. 

Example traces before and after 5 minutes 0.1% DMSO treatment are provided in D. 

This treatment resulted in a slight increase in the depolarization-activated element of 

the current, however, within cells the effect of five minutes treatment with 0.1% 

DMSO on the current response to voltage was not significant, F (16, 32) = 1.187.  

The reversal potential of the current here (approximately -10mV) is more positive 
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than previously recorded, but it remains negative.  This suggests that while 

movement of K+ ions contributes to the current, it has other elements also.  Figure 

5.13B shows the time-course for current at 110mV during perfusion with 0.1% 

DMSO.  This indicates that current was relatively stable over time with this 

treatment. 
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5.3.3 The effect of K+ channel blockers on the MCF7 macroscopic 

current 

Having identified the impact of the solvent, and the treatment protocol on the voltage 

sensitivity of the macroscopic MCF7 current, the next step was to determine to what 

extent it was mediated by the potassium channels.  Accordingly, following initial 

perfusion with normal Tyrode, the cells were perfused with a range of general and 

specific K+ channel blockers.  

Perfusion with 10mM TEA (non-specific K+ channel blocker) resulted in a sudden 

(within 1 minute) drop in depolarization activated current (Figure 5.14).  This 

suggests that the K+ channels mediate an element of this current, shown in Figure 

5.18.  The reversal potentials of these currents were negative (between -20 and       

-30mV) suggesting again that K+ ion movement played a role.  The inhibition of 

current then remained stable.  This treatment also reduced the leakage seen at 

negative potentials.  The effect of 5 minutes treatment with TEA on the voltage 

response of MCF7 was significant, F (14, 42) = 4.396, p < 0.001.  Further analysis 

(Table 5.4) indicated that this became significant within cells for all potentials above 

20mV. 
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Figure 5.14: Current/voltage relationship in MCF7 treated with TEA 50mV 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -60mV to 110mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 10mM TEA, and the voltage sensitivity of the current was recorded again.  

The effect of voltage on current is shown after 0 and 5 minutes treatment (A), and 

the time-course of the current at the potential which showed the greatest impact of 

treatment (50mV; mean and SD) is provided (B). Both graphs are the mean result of 

four MCF7 cells assessed on different days. Example traces before and after 5 

minutes TEA perfusion are shown in C.   
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Table 5.4: Simple Effects Analysis of the impact of TEA on voltage sensitivity 

Voltage F p  Voltage F p 

-60 1.77 NS  20 14.11 <0.05 

-50 0.97 NS  30 23.27 <0.05 

-40 0.41 NS  40 29.88 <0.05 

-30 0.04 NS  50 29.99 <0.05 

-20 0.07 NS  60 27.41 <0.05 

-10 1.11 NS  70 24.11 <0.05 

0 3.25 NS  80 21.32 <0.05 

10 7.06 NS     

 

Treatment of MCF7 for 5 minutes with the VGKC specific blocker 4-AP (1mM) 

resulted in a similar, if lower in magnitude inhibition of voltage activated current 

(Figure 5.15), suggesting that the VGKCs were responsible for an element of this 

(the 4-AP sensitive current; Figure 5.18).  Again, extrapolation of the I/V curves 

suggests that the reversal potential would be approximately -90mV, confirming that 

K+ is responsible for the majority of the current in this case.  The inhibition of current 

attributed to 4-AP treatment acted within the first minute of treatment then remained 

relatively stable.  The effect of 5 minutes treatment with 4-AP on the voltage 

response of MCF7 was significant, F (19, 38) = 2.747, p < 0.01.  Further analysis 

indicated that there was a significant within-cell effect of treatment at each voltage 

tested (Table 5.5). 
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Figure 5.15: Current/voltage relationship in MCF7 cells treated with 4-AP 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 1mM 4-AP.  The voltage sensitivity of the current was recorded again at 

various time points into the treatment.  The effect of voltage on current is shown 

after 0 and 5 minutes treatment (A), and the time-course of the current at the 

potential which showed the greatest impact of treatment (120mV; mean and SD) is 

provided (B).  Both graphs show the mean result of three MCF7 cells assessed on 

different days.  Example traces before and after 5 minutes 4-AP perfusion are 

shown in C.   
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Table 5.5: Simple Effects Analysis of the impact of 4-AP on voltage sensitivity 

 

 

 

 

 

 

 

 

Treatment of MCF7 with 1µM AST for 5 minutes also resulted in a reduction of the 

voltage activated outward current (Figure 5.16).  The reversal potential of these 

currents was approximately -30mV, suggesting that K+ movement was responsible 

for a large part of it.  The AST-sensitive current observed is shown in Figure 5.18.  

This confirms that hEAG and hERG are responsible for some of the K+ current 

observed.  Again this effect was rapid, acting within a minute of treatment, and the 

reduction in current was stable following this.  However, analysis with GLM for 

repeated measures  found that within individual cells the effect of AST treatment on 

the voltage sensitivity of the MCF7 macroscopic current failed to achieve 

significance, F (17, 34) = 0.096, p ≥ 0.05.   

Voltage F p  Voltage F p 

-70 28.77 <0.05  30 144.73 <0.01 

-60 47.85 <0.05  40 182.82 <0.01 

-50 70.96 <0.05  50 218.48 <0.01 

-40 77.98 <0.05  60 182.29 <0.01 

-30 83.47 <0.05  70 199.31 <0.01 

-20 84.48 <0.05  80 204.84 <0.01 

-10 86.66 <0.05  90 202.49 <0.01 

0 93.65 <0.05  100 365.74 <0.01 

10 109.73 <0.01  110 405.73 <0.01 

20 135.66 <0.01  120 203.16 <0.01 
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Figure 5.16: Current/voltage relationship in MCF7 cells treated with AST 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -50mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 1µM AST.  The voltage sensitivity of the current was recorded again at 

various time points into the treatment.  The effect of voltage on current is shown 

after 0 and 5 minutes treatment (A), and the time-course of the current at the 

potential which showed the greatest impact of treatment (40mV; mean and SD) is 

provided (B).  Both graphs show the mean result of three MCF7 cells assessed on 

separate occasions.  Example traces before and after 5 minutes perfusion with AST 

are provided in C. 

There was no observable effect of 1µM DOF on the macroscopic current recorded in 

MCF7 at any voltage over the entire treatment period (Figure 5.17).  The reversal 

potential of these currents were between -70 and -80mV, indicating that it was 

largely due to K+ flux.  GLM repeated measures analysis confirmed this, F (19, 38) = 

0.351, p ≥ 0.05.  This indicates that the current AST-sensitive current observed 

above was mediated by the hEAG channel, and hERG had no measurable impact. 
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Figure 5.17: Current/voltage relationship in MCF7 cells treated with DOF 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 1µM DOF.  The voltage sensitivity of the current was recorded again at 

various time points into the treatment.  The effect of voltage on current is shown 

after 0 and 5 minutes treatment (A), and the time-course of the current at the 

potential which showed the greatest impact of treatment (110mV; mean and SD) is 

provided (B).  Both graphs show the mean result of three MCF7 cells assessed on 

separate occasions.  Example traces before and after 5 minutes perfusion with DOF 

are provided in C. 

When the currents sensitive to the various channel blockers are compared (Figure 

5.18), it is apparent that 10mM TEA has the greatest impact on macroscopic K+ 

current in MCF7, inhibiting current at positive potentials and enhancing it at negative 

potentials.   
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Treatment with 1mM 4-AP has resulted in slight inhibition of an outward  K+ current, 

which becomes more active at more depolarized potentials.  A similar profile to TEA 

treatment was achieved with 1µM AST, although smaller in magnitude.  This 

suggests inhibition of a current which becomes active at depolarization to potentials 

of around -10mV or more positive.  Finally, treatment with 1µM DOF did not inhibit 

macroscopic current in MCF7, having even less impact than the DMSO-only control.  
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Figure 5.18: I/V relationships of potassium channel blocker sensitive currents 

The voltage dependent current in MCF7 was assessed using a voltage stepping 

protocol as described.  The I/V curve after 5 minutes treatment with various K+
 

channel blockers (and 0.1% DMSO for reference) was subtracted from  the 

current/voltage curve recorded prior to commencing treatment (time = 0 minutes) to 

show the element of the current that was sensitive to each channel blocker.  The I/V 

curves shown are the mean of at least 3 cells.   
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5.3.4 Treatment with 17β-oestradiol enhances the MCF7 macroscopic 

current 

Treatment of MCF7 cells with 1nM E2 for 5 minutes resulted in a significant increase 

in the voltage activated current (Figure 5.19A), F (17, 34) = 7.927, p < 0.001.   
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Figure 5.19: Current/voltage relationship of MCF7 cells treated with E2  

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 1nM E2.  The voltage sensitivity of the current was recorded again at 

various time points into the treatment.  The effect of voltage on current is shown 

after 0 and 5 minutes treatment (A), and the time-course of the current at the 

potential which showed the greatest impact of treatment (50mV; mean and SD) is 

provided (B).  The net effect of 5 minutes E2 treatment on the I/V response is shown 

in C.  All graphs show the mean result of three MCF7 cells assessed on different 

days.  Example traces before and after 5 mins perfusion with E2 are provided in D. 
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Further analysis found that the effect of treatment was significant at the within-cell 

level (p < 0.05) at depolarization to levels between 40 and 90mV (Table 5.6).  The 5 

minute E2-induced element of the current is shown in Figure 5.19C.   The increase 

seen occurred rapidly (within 1 minute of treatment at 110mV) and continued rise 

beyond 5 minutes treatment (Figure 5.19B).  Again, the reversal potential of the 

recorded currents was approximately -20mV, suggesting that K+ was responsible for 

an element of this. 

Table 5.6: Simple Effects analysis of the impact of E2 treatment on voltage 

sensitivity in MCF7 

Voltage F p  Voltage F p 

-50 2.21 NS  40 34.76 <0.05 

-40 1.01 NS  50 74.6 <0.05 

-30 0.27 NS  60 117.73 <0.01 

-20 0 NS  70 101.51 <0.05 

-10 0.26 NS  80 44.65 <0.05 

0 1.43 NS  90 26.85 <0.05 

10 3.55 NS  100 18.29 NS 

20 8.11 NS  110 15.97 NS 

30 15.47 NS  120 14.49 NS 
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5.3.5 Soy isoflavones inhibit the macroscopic MCF7 current 

Treatment of MCF7 cells with 31.6µM genistein for 5 minutes resulted in a 

significant reduction in the voltage activated current (Figure 5.20), F (149, 38) 

=2.431, p < 0.05.   
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Figure 5.20: Current/voltage relationship in MCF7 cells treated with genistein 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 31.6µM genistein.  The voltage sensitivity of the current was recorded 

again at various time points into the treatment.  The effect of voltage on current is 

shown after 0 and 5 minutes treatment (A), and the time-course of the current at the 

potential which showed the greatest impact of treatment (100mV; mean and SD) is 

provided (B).  Both graphs show the mean result of three MCF7 cells assessed on 

different days.  Example traces from before and after 5 minutes genistein perfusion 

are provided in C. 
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However, further analysis of each individual depolarization level found that the effect 

of treatment failed to achieve statistical significance at any individual voltage point.  

The genistein sensitive current after 5 minutes is shown in Figure 5.22.   The time-

course of inhibition of macroscopic current at 100mV suggests that the inhibitory 

effect of genistein was slow to develop; taking 5 minutes to reach its maximum level 

(Figure 5.20B).   The reversal potential of the currents recorded in these 

experiments averaged at around 0mV.  These were the greatest (most positive) 

reversal potentials identified.  This implies that while genistein treatment appears to 

inhibit K+ current, it is likely that it inhibits the movement of other ions also. 

Treatment of MCF7 with 31.6µM daidzein for 5 minutes resulted only in a very slight 

inhibition of voltage activated current (Figure 5.21A) which was not significant, F (18, 

36) = 1.295.  There was no clear effect over time (Figure 5.21B).  The daidzein 

sensitive element of the voltage sensitive macroscopic current is shown in Figure 

5.22.  The reversal potentials of these currents were more negative, averaging 

around -20mV.  This indicates that while K+ flow was a factor in the current, it may 

also have other elements. 

  



281 | P a g e  

 

-50 0 50 100

-400

-200

0

200

400

600

800

1000

A

5 mins

0 mins

Voltage (mV)

I 
(p

A
)

0 1 2 3 4 5 6 7 8 9 10

-500

0

500

1000

1500

2000

2500

B

Time (mins)

I 
(p

A
)

C

50ms

200pA

Control Daidzein

 

Figure 5.21: Current/voltage relationship in MCF7 cells treated with daidzein 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing 31.6µM daidzein.  The voltage sensitivity of the current was recorded 

again at various time points into the treatment.  The effect of voltage on current is 

shown after 0 and 5 minutes treatment (A), and the time-course of the current at the 

potential which showed the greatest impact of treatment (110mV; mean and SD) is 

provided (B).  Both graphs show the mean result of three MCF7 cells assessed on 

different days.  Example traces from before and after 5 minutes perfusion with 

daidzein are provided in C. 
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Figure 5.22: I/V relationships of isoflavone sensitive currents in MCF7 

The voltage dependent current in MCF7 was assessed using a voltage stepping 

protocol as described.  The I/V curve after 5 minutes treatment with genistein or 

daidzein (31.6µM)  was subtracted from  the current/voltage curve recorded prior to 

commencing treatment (time = 0 minutes) to show the element of the current that 

was sensitive to each isoflavone.  The I/V curves shown are the mean result from 3 

cells. 
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5.3.6 The impact of combinations of genistein and K+ channel blockers 

on the macroscopic MCF7 current 

To begin to elucidate which channels were the molecular targets of genistein in 

MCF7, the cells were treated with combinations of genistein and 4-AP or genistein 

and AST.  TEA was considered too non-specific to provide any information 

regarding target specificity, and DOF had no measurable effect on K+ current in this 

cell line. 

Treatment of MCF7 cells for 5 minutes with the combination of 31.6µM genistein 

and 1mM 4-AP resulted in a slight increase in current at the more depolarized 

voltages tested (Figure 5.23A), although this effect did not achieve statistical 

significance, F (19, 38) = 0.671, p ≥ 0.05.   

The reversal potential of the current was between -50 and -60mV, indicating that it 

was largely due to movement of K+ ions.  Up to and including 5 minutes into the 

treatment regime, the current measured at 40mV was relatively stable, however 

after this point the seal began to lose integrity in two of the three cases (Figure 

5.23B), suggesting that this combined treatment may have been toxic to the cells. 

Overall the I/V curve for the element of the current sensitive to the combination of 4-

AP and genistein was lower than that calculated for either genistein or 4-AP alone 

(Figure 5.23C), suggesting that rather than acting synergistically, the two treatments 

interfered with each others activity.  However, the net impact of the combined 

treatment was not significantly different from either of the corresponding single 

treatments at any voltage (p ≥ 0.05, ANOVA).   
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Figure 5.23: Current/voltage relationship in MCF7 cells treated with the 

combination of 4AP and genistein  

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing the combination of 31.6µM genistein (GEN) and 1mM 4-AP.  The voltage 

sensitivity of the current was recorded again at various time points into the 

treatment.  The effect of voltage on current is shown after 0 and 5 minutes treatment 

(A), and the time-course of the current at the potential which showed the greatest 

impact of treatment (40mV; mean and SD) is provided (B).  C: the I/V responses of 

the elements of the current sensitive to the various treatments.  Each graph shows 

the mean result of three MCF7 cells assessed on different days, with the exception 

of one point (a) for which n=2. 
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Treatment of MCF7 with the combination of 31.6µM genistein and 1µM AST led to a 

reduction in the depolarization-activated element of the macroscopic current after 3 

minutes treatment (Figure 5.24A and B).  However, the difference in the effect of 

voltage before and after the treatment failed to achieve significance, F (18, 36) = 

0.245, p ≥ 0.05.  The reversal potential of this current was around -70mV suggesting 

that it was largely mediated by K+ ion movement.   After this time point the seal on 

the patched cells became unstable in two of the three cases.  For this reason, the 3 

minute time point was used for comparison in this case.   

Recorded current was not significantly different after 3 minutes treatment with 

genistein compared to 5 minutes, with the sole exception of at 0mV (Table 5.7).  The 

I/V curve for the genistein and AST-sensitive current at 3 minutes was similar to that 

obtained after 3 minutes treatment with 1µM AST alone or 31.6µM genistein (no 

significant differences, p ≥ 0.05, ANOVA; Figure 5.24C).  Since there was no 

additional effect of AST over that of genistein, this suggests that the hEAG channel 

is potentially a molecular target of genistein in MCF7.  Furthermore, the combination 

of AST and genistein appeared to be particularly toxic to the cells in these 

experimental conditions. 
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Figure 5.24: Current/voltage relationship in MCF7 cells treated with the 

combination of AST and genistein 

The voltage dependent current in MCF7 was elicited by whole cell patch clamping 

and a series of depolarizing voltage steps from a holding potential of -50mV, 

ramping from -70mV to 120mV in 10mV steps.  After recording the initial (time = 0 

minutes) current with no additional treatment, the cell was perfused with Tyrode 

containing the combination of 31.6µM genistein (GEN) and 1µM AST.  The voltage 

sensitivity of the current was recorded again at various time points into the 

treatment.  The effect of voltage on current is shown after 0 and 3 minutes treatment 

(A), and the time-course of the current at the potential which showed the greatest 

impact of treatment (110mV; mean and SD) is provided (B).  C: the I/V responses of 

the elements of the current sensitive to the various treatments.  Each graph shows 

the mean result of three MCF7 cells assessed on different days, with the exception 

of the points indicated with a (n=2) and b (n=1).  Example traces from before and 

after 3 minutes perfusion with AST + genistein are provided in C. 
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Table 5.7: Current recorded after 3 and 5 minutes of treatment with 31.6µM 

genistein 

Voltage 3 minutes 5 minutes p 1 

Mean SD Mean SD 

-80 -506.04 260.46 -530.33 204.89 NS 

-70 -434.32 240.86 -470.85 185.38 NS 

-60 -375.17 214.02 -402.62 156.03 NS 

-50 -311.35 174.72 -335.03 128.94 NS 

-40 -245.56 147.35 -275.93 101.07 NS 

-30 -181.65 117.89 -211.44 83.21 NS 

-20 -120.76 93.93 -147.22 66.92 NS 

-10 -57.67 68.50 -90.42 46.32 NS 

0 38.44 22.43 -18.36 26.01 < 0.05 

10 102.65 34.21 51.00 37.32 NS 

20 165.83 65.78 119.47 71.55 NS 

30 223.30 94.81 180.41 103.02 NS 

40 297.96 140.91 245.19 137.12 NS 

50 361.78 181.91 307.18 171.06 NS 

60 437.84 230.96 372.95 210.78 NS 

70 508.50 279.66 442.19 258.28 NS 

80 577.01 334.02 509.91 308.45 NS 

90 628.92 390.13 580.90 376.05 NS 

100 698.91 456.06 642.46 422.33 NS 

110 769.94 525.52 705.97 480.32 NS 

1 significance of difference between current recorded after 3 and 5 minutes 

(ANOVA) 

SD: standard deviation 
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5.4 Summary of the changes in MCF7 cell volume and K
+
 

channel activity observed 

This section briefly summarizes the changes in MCF7 cell volume and K+ channel 

activity recorded upon treatment with soy isoflavones or E2.  For a full discussion of 

the results see sections 6.3 and 6.4. 

Treatment of MCF7 for 10 minutes with 1nM E2 resulted in swelling of the cells.  In 

parallel to this, a significant increase in voltage sensitive whole cell current was 

observed.  Treatment of MCF7 with 1µM genistein (proliferative concentration) also 

increased cell volume.  These treatments and responses are in line with the 

expected proliferative response. 

On the contrary, short term treatment with the higher concentration of 31.6µM 

genistein resulted in a brief period of cell shrinkage, and inhibition of outward 

macroscopic MCF7 current.  Daidzein treatment inhibited current also, although to a 

considerably lesser extent.   

DOF treatment had no effect on MCF7 proliferation or whole cell current.   However, 

the K+ channel blockers TEA, 4-AP and AST each resulted in dose-responsive 

inhibition of MCF7 proliferation.  This implicated the VGKCs, and in particular the 

hEAG channel in the proliferation of this cell line.  To begin to determine if the 

inhibition of specific K+ channels by soy isoflavones could be a mechanism through 

which they may be protective against breast cancer proliferation, preliminary 

attempts were made to characterize which K+ channels were the specific targets of 

genistein.  To this end, several combined treatments of K+ channel blockers and 

genistein were used.  The combination of 4-AP and genistein appeared to have a 

negative effect on the stability of the cells, and as a result lead to extraneous results 

that little can be concluded from.  However, the combination of AST and genistein 

lead to comparable current inhibition to each individual treatment.  This suggests 

that the hEAG channel (a target of AST) is likely to be a key molecular target of 

genistein in MCF7, and accordingly a potential mechanism through which genistein 

could reduce the proliferation of this cell line.  
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CHAPTER 6. Discussion 

6.1 Isoflavones and breast cancer cell line proliferation  

6.1.1 Technique: the MTT assay 

A major criticism of the MTT assay (described in sections 1.4.2 and 2.4) and related 

techniques such as the MTS or WST-1 assays, is that they measure proliferation 

indirectly, by assessing the rate of metabolism (or viability) of the cells.  While cell 

number will have a great impact on the quantity of MTT (or other dye) that is 

metabolised, other factors will also have an effect, such as the size and age of the 

cells, and the number of mitochondria.  None-the-less, the above methods are less 

labour intensive, and higher throughput than the traditional alternative method of 

counting viable cells using the Trypan Blue dye exclusion assay.    

A number of groups report that the MTT assay routinely overestimates viability or 

cell numbers when compared to other methods, in a number of cell types including 

human lung cancer cells (Carmichael et al. 1987; Ulukaya et al. 2008), Chinese 

hamster lung  fibroblast V79 cells,  and Manin–Darby canine kidney cells (Vellonen 

et al. 2004).  The reasons behind this discrepancy are unclear, although it has been 

suggested that compared to Trypan Blue cell counting the MTT assay is more 

sensitive, as is not open to subjective errors by the observer.  However, the two 

methods correlate well where they are both used (Carmichael et al. 1987; Simoes-

Wust et al. 2002). 

Another proposed limitation of the MTT assay is that isoflavones themselves may 

lead to an overestimation of the amount of growth or viability of the cells.  This effect 

has been demonstrated in a number of cell types including MCF7 breast cancer 

cells, Jurkat cells, L-929 transformed mouse fibroblasts (Pagliacci et al. 1993) and 

lymphocytic leukaemia cells (Bernhard et al. 2003) with genistein, resveratrol, and 

quercetin at concentrations above 20µM.  Very high concentrations (100µM 

genistein) appear to be able to reduce MTT even in the absence of cells (Bernhard 

et al. 2003).  This may relate to the antioxidant capacity of the isoflavones, as this 

group found that vitamin C acted similarly.  Others suggest that genistein at these 

concentrations may influence mitochondrial number and function (Pagliacci et al. 
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1993) and induce swelling in isolated rat mitochondria (Salvi et al. 2002).  In each 

case the net result has again been an overestimation of viability by the MTT method.  

However, it must be noted that the very high concentrations of isoflavones which 

have been associated with this effect (>100µM) are not associated with the present 

study.  Importantly, in MCF7 cells, the presence of genistein between 3.7 and 74µM 

was shown to have no impact upon mitochondrial reduction of MTT (Peterson and 

Barnes 1996). 

On the contrary, numerous groups demonstrate unequivocally that concentrations of 

isoflavone phytoestrogens above 10µM reduce the proliferation of a range of breast 

cancer cell lines, including the MCF7 and MDA-MB-231 lines used in this study 

(section 1.4.5).  Likewise, the effects of lower concentrations appear to relate to the 

ER-status of the cell line (sections 1.4.3 and 1.4.4), and there is no evidence of an 

overestimation of growth when the MTT assay has been used.  Indeed, in the 

present investigation MDA-MB-231 cells treated with 1nM to 10µM genistein 

resulted in around 80% of the control level of proliferation when measured by the 

MTT assay (section 3.1.2..2), confirming that there was no inherent overestimation 

of proliferation associated with the MTT assay in this case.   

To further validate the use of the MTT assay to accurately determine the extent of 

cell proliferation in this investigation, it was compared to the results of the Trypan 

blue dye exclusion assay in both MCF7 and MDA-MB-231 cells (see section 2.4.6).  

In each cell line, the correlations between cell number and optical density were 

positive and significant.  Furthermore, others have found the results of the MTT 

assay and the Trypan blue dye exclusion assay to correlate well in the above two 

cell lines (Simoes-Wust et al. 2002).  Altogether, this suggests that the MTT assay is 

a valid method to assess proliferation under these circumstances, and that the 

concerns discussed regarding overestimation of proliferation appear to be 

unfounded. 
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6.1.2 The solvent and control treatments 

Due consideration was given to the choice of solvent used for the isoflavones and 

E2, and the concentration of solvent to be present in the control (vehicle only) 

experiments.  Ethanol was rejected as a solvent despite its wide use (Table 1.3) as 

preliminary investigations found it to promote MCF7 proliferation (Figure 2.3).  

These results agree with those of Singletary et al. (2001), who demonstrated that 

ethanol, at a range of physiologically relevant concentrations (10 to 100 mM) can 

induce the proliferation of MCF7 cells.  This is likely to have implications for some of 

the other work discussed where groups have used ethanol as a solvent and control 

treatment. 

Furthermore, it was apparent that DMSO inhibited MCF7 proliferation in a dose-

responsive manner (Figure 2.3).  However, compared to an untreated control, doses 

of DMSO up to and including 0.2% were found to have no significant impact on the 

proliferation of MCF7 (Figure 3.1).  As 0.1% DMSO was the most widely used 

solvent and dose in previous studies (Table 1.3), it was felt that levels of 0.1% and 

0.2% were appropriate for use in the current investigation, and that they would 

impart minimal impact on the proliferation of the cells.  The related studies 

presented by Umehara et al. (2009) and Cherdshewasart et al. (2008) describe 

using DMSO in MCF7 cells at 1 and 2% respectively.  These doses are likely to be 

toxic and may interfere with the results.  Interestingly, Blom et al. (1998) found that 

0.8 and 1% DMSO decreased MCF7 cell proliferation, but 0.1 to 0.6% DMSO had a 

growth promoting effect. They propose a reason for this:  since proliferation was 

assessed after only 24 hours in the experimental medium, in some cases the cells 

may have still been in the initial “lag” phase of growth, while in others they may have 

passed more quickly into the “exponential” growth phase.  The effect of various 

organic solvents on MCF7 proliferation does not appear to have been published on 

any other occasions. 

Use of 0.1% DMSO in MDA-MB-231 cells had no significant impact upon 

proliferation, but 72 hour treatment with the 0.2% dose resulted in a significant, if 

slight, reduction in cell proliferation (Figure 3.5).  There do not appear to be any 

instances where the impact of solvents on the proliferation of this cell line has been 

published.  Use of the 0.2% DMSO dose was unavoidable in the combined 

treatments, due to limitations in the solubility of the isoflavones.  The additional 
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impact upon the level of MDA-MB-231 cell proliferation of this level of solvent over 

and above that of any treatment, must be considered in the analysis of the results.  

Furthermore, in two of the MDA-MB-231 proliferation studies discussed, 0.2% 

DMSO was used for the vehicle-only control treatment (Jacobs et al. 2000; Seo et 

al. 2011), and may have had an unforeseen effect on their results.  When 

considering the current results for this cell line, and indeed for the MCF7 cells, in the 

context of other published studies, it is essential to note the choice and dose of 

solvent used, the presence or absence of experimental controls, and the potential 

impact this may have on the results. 
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6.1.3 MCF7 proliferation – single isoflavone and 17β-oestradiol 

treatments 

The results of the single treatments of genistein, daidzein and E2 on MCF7 (ERα+) 

proliferation were very much in line with previous findings.  Both the pre- and post-

menopausal E2 doses resulted in a significant increase in proliferation (Figure 3.2).  

This confirmed that the MCF7 cells obtained were capable of responding to E2 in 

the manner expected and described on numerous occasions (Davis et al. 2008; 

Jacobs et al. 2000; Lau et al. 2009; Matsumura et al. 2005; Rajah et al. 2009; 

Schmidt et al. 2005; Song et al. 2007).  Furthermore, this acted as a positive control 

for the induction of MCF7 proliferation, allowing optimisation of the assay and 

confirming that the protocol used was appropriate for the measurement of changes 

in the proliferation of this cell line. 

Likewise, the effects of the single isoflavone treatments on MCF7 proliferation 

(Figure 3.3) confirmed previous findings, whereby doses up to 10µM genistein and 

daidzein increased proliferation in a dose responsive manner (Hwang et al. 2006; 

Kang et al. 2009; Liu et al. 2010; Maggiolini et al. 2001; Matsumura et al. 2005; Seo 

et al. 2006; Yang et al. 2010; Yuan et al. 2012), and at concentrations above this 

point proliferation begins to drop (Table 1.4).   

The proliferative effects of genistein and daidzein are mediated, at least in part, 

through their ability to bind with and induce E2-like transcription of genes through 

ERα (Hwang et al. 2006; Kuiper et al. 1998; Maggiolini et al. 2001), the dominant 

ER in MCF7 (Section 1.1.4).  Typically, they bind to ERα with around a hundred to 

thousand-fold lower affinity than E2.  The relative binding affinities (RBAs) compared 

to E2, and the ability of the soy isoflavones and E2 to induce the binding of the ERs 

to the oestrogen responsive element (ERE; a conserved region of oestrogen 

induced gene promoters), as a measure of the ability of the various ligands to 

induce ER-mediated transcription, are provided in Table 6.1.   

The more strongly an isoflavone binds to an ER, the more effective it is at inducing 

E2-responsive transcription of reporter genes or proliferative genes (Hwang et al. 

2006; Kuiper et al. 1998; Sotoca et al. 2008). This was reflected in the proliferation 

results, with approximately a thousand-fold more isoflavone required to induce a 

comparable proliferation response to E2 (1µM compared to 1nM).  Furthermore, the 
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lower maximum impact of daidzein on MCF7 proliferation than genistein may reflect 

its lower ERα RBA.  

Table 6.1: Ability of isoflavones and E2 to bind to the ERs and induce ER-ERE 

interaction 

Ligand ERα ERβ 

RBA1 ER-ERE EC50
2 RBA1 ER-ERE EC50

2 

17β-oestradiol 100 0.03 100 0.01 

Genistein 3.10 50 18.13 0.03 

Daidzein 0.25 >300 0.79 0.35 

1 RBA – relative binding affinities of isoflavones, calculated as a ratio of the 

concentration required to displace radiolabelled [3H]-E2 by 50% from ERα in a liquid 

phase competition binding assay (Hwang et al. 2006) 

2 EC50 – in µM, the half maximal concentration of the ligand determined for 

promoting the interaction between the ER and the oestrogen response element 

(ERE), using Surface Plasmon Resonance (Kostelac et al. 2003).  Note: this 

technique uses purified receptors and ligands, so concentrations may not be an 

exact reflection of the response in vivo or in cell culture.  

 

The magnitude of the peak effect of genistein was in the range expected.  In the 

current study peak genistein-induced proliferation was at 178% of the control level 

after 3 days treatment with 10µM isoflavone.  Similarly, previous studies using the 

MTT assay reported MCF7 proliferation of approximately 300% (after 6 days of 1µM 

genistein treatment) and 180% (after 3 days of 3.2µM genistein) of the control level 

(Maggiolini et al. 2001; Yuan et al. 2012). 

As described in Table 1.4, the growth inhibitory effects of genistein in MCF7 cells 

were reported after a range of different treatment durations and isoflavone 

concentrations, between 1 and 14 days, and with 3.5µM up to 50µM genistein 

required to see an inhibitory effect.  However, in two cases, although proliferation 

had peaked at a lower concentration and was dropping with increasing genistein 

dose, the proliferation recorded at the maximum dose was still greater than that of 
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the control treatment (50uM and 80uM respectively; Liu et al. 2010; Yuan et al. 

2012).  The results of the current investigation sit in approximately the middle of this 

range.  While proliferation had peaked at 1µM (daidzein) and 10µM (genistein), and 

was dropping, no net inhibitory effect of either was recorded even at the highest 

concentration used of 31.6µM.  Extrapolation of the graph suggests that an 

inhibitory effect would be seen with higher concentrations, but as the purpose of this 

project was to investigate the impact of physiological concentrations of isoflavones, 

and the stated issues regarding isoflavone solubility and vehicle doses, this was not 

pursued. 

Overall, this implies that the results of 72 hour treatment with genistein and daidzein 

(single treatments) on MCF7 proliferation, assessed by the MTT assay, agree with 

the many other studies in this field.   As was the intention, this confirms the ability of 

the cell line to respond to these treatments at their physiological (dietary) levels, and 

indicates that the assay and protocol described are appropriate for their intended 

use. 
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6.1.4 MCF7 proliferation after combined treatments 

Genistein or daidzein at the range of physiological concentrations tested, in 

combination with E2 at the postmenopausal level, had a synergistic, additive effect 

on MCF7 proliferation, which achieved statistical significance in numerous cases 

(Figure 3.4).  Where the isoflavones were added in combination with a 

premenopausal E2 level, the results were less dramatic.  Although higher than either 

the isoflavone or E2 treatments alone, the magnitude of this effect was less than 

was observed with the lower, postmenopausal E2 concentration, and in many cases 

(genistein and premenopausal E2 particularly) failed to achieve statistical 

significance from the single treatments.  This is summarized in Figure 6.1.  

 

Figure 6.1: MCF7 proliferation after treatment with isoflavone/E2 combinations 

The single treatments of genistein, daidzein or E2 (at pre- or postmenopausal 

levels) each induced MCF7 cell proliferation.  In combination, the effect of the 

isoflavones was mostly masked by the stronger proliferation-enhancing effect of the 

premenopausal E2 level (1nM), although there was a slight additive effect.  However 

the postmenopausal E2 level (1pM) and isoflavones showed a clear synergistic 

effect on MCF7 proliferation. 

This is the first instance, according to the published literature, that the impact of 

genistein and daidzein on the proliferation of MCF7 cells has been determined in a 

full range physiologically relevant isoflavone and E2 concentrations.  Much of the 
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previous research has used the higher E2 levels, better reflecting premenopausal 

women, genistein only, or selected isoflavone concentrations rather than a 

physiological range.  The majority of the evidence supporting the role of isoflavones 

in postmenopausal E2 concentrations on cell proliferation is based on ER-mediated 

reporter gene transcription rather than proliferation itself.  There are no previous 

studies available where the effect of low physiological concentrations of daidzein on 

the proliferation of any breast cancer cell line at postmenopausal E2 levels has been 

discussed.   

The synergistic effect of genistein and daidzein with postmenopausal E2 levels on 

MCF7 proliferation is in agreement with the reported additive effect of 10pM E2 and 

daidzein (and several of its metabolites including equol and tetrahydrodaidzein) 

between 1nM and 1µM on the activity of an ERα promoter reporter gene construct in 

HEK239 cells (Hwang et al. 2006).  Genistein was not tested on that occasion, and 

while this group claimed that similar results were seen for MCF7 cell proliferation, 

they did not publish their results. Likewise, these results are strengthened by the 

increase in DNA synthesis seen in MCF7 after treatment for 24 hours with genistein 

and postmenopausal E2 levels compared to E2 (10pM) alone (Wang and Kurzer 

1998).   

As previously discussed (Section 1.4.6), many of the other studies published in this 

field have used isoflavones with premenopausal E2 (10 to 0.1 nM) concentrations, 

and their results fail to reach a consensus.  The confusing state of the literature 

appears to reflect the varying experimental conditions and outcome measures used.  

Low concentrations of isoflavones can act as ER antagonists in ERα+ cell lines such 

as MCF7, dampening its effect due to their high concentrations but lower 

oestrogenic activity (Casanova et al. 2012; Hwang et al. 2006).  Alternately, in some 

experimental situations the effect of the isoflavones is masked by the stronger effect 

of E2 (Matsumura et al. 2005; Schmidt et al. 2005).  Meanwhile, higher isoflavone 

concentrations (>10µM) inhibited proliferation in a manner which was not mediated 

by the ERs, and unaffected by the presence of E2 (section 1.4.6).  It is important to 

note that several of the key studies described have used ER-mediated expression of 

a reporter gene as their outcome measure (Casanova et al. 1999; Hwang et al. 

2006).  This may not be the only mechanism through which isoflavones impact upon 

cell proliferation. 
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Accordingly, it has been reported that 10µM glycitein (and genistein and daidzein to 

a lesser extent) resulted in considerably reduced MCF7 proliferation compared to 

the vehicle-only control, even in the presence of 10nM or 0.3nM E2 (Sakamoto et al. 

2010; Zava and Duwe 1997).  Alternately, a number of groups suggest that 

treatment with 10µM genistein and other isoflavones can reverse the growth 

promoting effect of premenopausal E2 levels on MCF7 cells, resulting in no net 

change in proliferation compared to a control (Maggiolini et al. 2001; Matsumura et 

al. 2005; Miodini et al. 1999; Peterson and Barnes 1996; So et al. 1997; Wang and 

Kurzer 1998).  Similarly, tetrahydrodaidzein (1nM to 1µM) inhibited 1nM E2-induced 

activation of the ERα promoter reporter gene construct described by Hwang et al. 

(2006).  Finally, there exists a third body of evidence suggesting that any effect of 

isoflavones (0.1nM to 1µM) on MCF7 proliferation (and the activity of an E2-

responsive reporter gene construct transfected into MCF7) is masked by the 

presence of 1nM E2 (Matsumura et al. 2005; Schmidt et al. 2005; Wang and Kurzer 

1998). 

With the current results, the trend towards a reduction in MCF7 proliferation by the 

highest concentrations of genistein and daidzein is still apparent in the presence of 

both 1pM and 1nM E2 levels, although as with the single isoflavone treatments, 

higher doses would be required to see inhibition of proliferation compared to the 

vehicle-only control.  However, this agrees with the investigations described above, 

suggesting that higher concentrations of isoflavones could reverse E2-induced 

MCF7 proliferation, in this case at both pre- and post-menopausal E2 

concentrations.  However the isoflavone levels required for observation of these 

effects would be outwith the range of physiologically relevant concentrations which 

are the focus of this project. 

The combinations of isoflavones with the premenopausal E2 level generated some 

interesting results with regard to MCF7 proliferation.  No oestrogen-antagonistic 

activity was observed, unlike several of the studies described.  However, the 

reduced synergy observed with the premenopausal E2 combinations, in comparison 

to the postmenopausal E2 combinations, particularly with genistein, bears a marked 

resemblance to several other studies which proposed that any effect of isoflavones 

on the proliferation of MCF7 was negated by the stronger E2 effect of this 

concentration (Matsumura et al. 2005; Schmidt et al. 2005; Wang and Kurzer 1998).   

Furthermore, it was reported that with postmenopausal E2, isoflavones acted 
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synergistically on E2-responsive promoter activity, but when premenopausal E2 was 

added the isoflavones inhibited the effect of E2 (Casanova et al. 2012; Hwang et al. 

2006).  A mechanism for the reduction in premenopausal breast cancer risk 

described in section 1.3.1 cannot be directly inferred from these results.  However, 

they do imply that premenopausally, isoflavones may confer no additional breast 

cancer risk (or only a slight increase) over and above the carcinogenic effect of 

endogenous oestrogens.   

A criticism of a number of the studies previously described is that either the final 

solvent content is not provided, or it greatly exceeds the 0.2% DMSO level used in 

this study (see Table 1.3; Hwang et al. 2006; Maggiolini et al. 2001; Peterson and 

Barnes 1996; Sakamoto et al. 2010; So et al. 1997).  In two cases, an untreated 

control was used (Miodini et al. 1999; Schmidt et al. 2005), and others did not report 

the make-up of their control treatment (Wang and Kurzer 1998).  As discussed in 

section 6.1.2, use of these levels of solvent may have unforeseen effects on 

proliferative outcome measured. 

However, overall, this data suggests that genistein and daidzein, at a range of 

physiologically achievable concentrations between 0.01nM and 31.6µM, are capable 

of inducing the proliferation of MCF7 cells over and above that seen with 

postmenopausal E2, and to a lesser extent with premenopausal E2.  There is no 

evidence from this current project to suggest that either isoflavone can reduce 

oestrogen-induced proliferation of the MCF7 cell line, although higher, non-

physiological concentrations may have this effect.  This appears to suggest that soy 

isoflavones could increase the proliferation of ERα+ (medically classified as ER+) 

breast tumours, particularly among postmenopausal women (the group most likely 

to consume isoflavone supplements for the relief of menopausal symptoms; see 

Section 1.2.5).  This supports the advice provided by UK Health Boards 

contraindicating use of isoflavone supplements in post menopausal breast cancer 

survivors (NICE 2009b). 

Based in the results of this one cell line, there is no explanation for the discrepancy 

between the epidemiological evidence, which suggests that consumption of soy 

isoflavones can reduce the risk of incidence, mortality, and recurrence, particularly 

for ERα+ tumours  (see Sections 1.3.1 and 1.3.5), and the in vitro evidence from 

ERα+ cell lines discussed.  However, the increased benefit of dietary soy seen for 



300 | P a g e  

 

premenopausal breast cancer, compared to postmenopausally, may be partly 

explained by the reduced additional proliferative capacity of the isoflavones in MCF7 

over the effect of the higher dose of E2, in comparison to the clearly oestrogen 

agonistic synergistic behaviour seen at the lower postmenopausal E2 level.  

Furthermore, it is important to note that there is no epidemiological evidence for any 

health risks associated with dietary soy.  However, the long term safety of the higher 

isoflavone intakes associated with supplement use has yet to be determined 

(Section 1.2.6). 
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6.1.5 MDA-MB-231 proliferation - single treatments of isoflavones and 

17β-oestradiol 

The effect of E2 on the proliferation of MDA-MB-231 cells has not been widely 

assessed, as they have traditionally been regarded as ER- and so not responsive to 

E2.  However, as discussed, they do express ERβ (Section 1.4.1).  The current 

finding, whereby 72 hour treatment with 1nM E2 had no significant impact on the 

proliferation of this cell line (Figure 3.6), is in agreement with previous research 

showing that 1 and 10nM E2 (72 hours; Rajah et al. 2009), and that 1nM treatment 

(5 to 14 days; Jacobs et al. 2000) did not affect MDA-MB-231 cell proliferation. 

This was the first study to assess MDA-MB-231 cell proliferation after treatment with 

the lower (postmenopausal) level of 1pM E2. This treatment reduced proliferation to 

77% of the control level.  One explanation for the apparent disparity between the 

results of the two E2 levels is that 1nM E2 treatment did result in a reduced mean 

level of percentage proliferation (86%) compared to the control, but that the 

individual results were particularly variable for this treatment (see Table 3.3) and the 

net effect failed to achieve statistical significance.    

This investigation showed a slight, if non-significant reduction in MDA-MB-231 cell 

proliferation after 72 hour genistein treatment at its range of physiological levels 

from 0.01nM up to 10µM (Figure 3.7).  This agrees with the only other similar study 

in this field to use a wide range of physiologically achievable genistein levels (Rajah 

et al. 2009).   

There exists a greater body of evidence to support the sharp drop in MDA-MB-231 

cell proliferation observed after 72 hour treatment with 31.6µM genistein (Figure 

3.7).  Related studies have shown that genistein treatment, at a range of relatively 

high concentrations between 25 and 100µM (between 1 and 3 days) reduced the 

proliferation of this cell line to approximately 50% of the control level (Ferenc et al. 

2010; Kang et al. 2009; Li et al. 2008; Rajah et al. 2009; Seo et al. 2011).  Apigenin 

and quercetin were reported to have no impact upon MDA-MB-231 cell proliferation 

after 3 day treatment with 1 or 10µM, but again 100µM treatment of either caused a 

dramatic reduction in MDA-MB-231 proliferation (Seo et al. 2011).   

The impact of daidzein on MDA-MB-231 proliferation was broadly similar to that of 

genistein, both in pattern and magnitude (Figure 3.7).  This study represents the first 



302 | P a g e  

 

instance where the effect of daidzein on MDA-MB-231 proliferation has been 

reported. 

As discussed in section 1.4.4, the relative levels of ERα and ERβ may explain the 

differences seen in proliferative differences between ERα+ MCF7 cells (expressing 

a small amount of ERβ) and ERα-/ERβ+ MDA-MB-231 cells: with ERα mediating 

many of the pro-proliferative effects of E2 and the isoflavones (up to 10µM), while 

through ERβ these treatments have a negative impact on proliferation.  Meanwhile, 

the universal cytotoxic effects seen with higher isoflavone concentrations, above 

10µM, are independent of the ERs (section 1.4.5). 

Microarray analysis revealed that the two receptors regulated the expression of 

distinct sets of genes in response to E2 treatment, both positively and negatively, 

and that only half of the E2-regulated genes were common to both receptors (Chang 

et al. 2006).  Among the genes known to be differentially regulated in this manner 

are a number with roles in cell cycle regulation.  Cyclin D1 is a cell cycle progression 

gene.  In the models described above (breast cancer cell lines with and without ERβ 

transfection), and in ER- HeLa cells transfected either ER, E2 enhanced cyclin D1 

expression through ERα.  However, through ERβ, E2 inhibited cyclin D1 expression, 

even in the presence of ERα (Liu et al. 2002; Paruthiyil et al. 2004; Strom et al. 

2004).  Associated with this was differential regulation of the cell cycle progression 

genes cyclin E, CDK25a and p45skp2, and the cell cycle inhibitor p27 (Strom et al. 

2004).  Interestingly, ERβ potently activated the cyclin D1 promoter after treatment 

with the antioestrogens ICI 182780, tamoxifen or raloxifene, suggesting a regulatory 

role for ERβ on ERα induced activation of pro-proliferative gene targets (Liu et al. 

2002; Paruthiyil et al. 2004).   

These factors may be significant to the protective effects of isoflavones on breast 

cancer cells, as while ERα is the dominant receptor subtype in most tumours and 

the MCF7 cell line (Balfe et al. 2004; Kurebayashi et al. 2000; Ziv et al. 2004), ERβ 

is often present also, and isoflavones are known to bind to it with greater affinity 

than to ERα (Table 6.1).  In addition, isoflavones may also have stronger 

transcriptional-inducing activity through the ERβ receptor.  Specifically, genistein 

creates an Activation Function-2 (AF-2) surface on ERβ which recruits the GRIP1 

co-activator (activating regulatory protein) more efficiently than on ERα, while 17β-

oestradiol promotes GRIP1 recruitment non-selectively to both ERs (An et al. 2001).  
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However, while the negative regulatory effect of physiological levels (up to 10µM) of 

isoflavones and E2 on cell proliferation can be explained by the presence of ERβ in 

the MDA-MB-231 cell line, the absence of any dose-effect of the isoflavones up to 

10µM, observed in the current study and by Rajah et al. (2009) is interesting.  On 

several occasions, maximal activity of ERβ-luciferase induction  by genistein was 

reported to be three times greater than was seen with E2 (Legler et al. 1999; Sotoca 

et al. 2008).  This was due both to the relatively high affinity of the isoflavone for that 

particular receptor, and the higher ERβ receptor-mediated induction of gene 

expression by genistein described, and led to the term “superagonist” being coined 

for isoflavones such as genistein acting via ERβ (Legler et al. 1999).  If, due to 

“superagonism”, maximal isoflavone/ERβ mediated inhibition of MDA-MB-231 

proliferation had been achieved at a lower concentration threshold that was not 

tested, then no dose effect would be observed.  This corresponds with the 

epidemiological studies discussed earlier (section 1.3.1), which found no dose effect 

for breast cancer incidence other than the difference between the highest and 

lowest soy consumers.  This again suggests a threshold isoflavone level is required 

to achieve a protective effect. 

This phenomenon is of significance to the use of isoflavones in the treatment of 

ERα-/ERβ+ breast cancer, and warrants further study.  In particular, it is necessary 

to determine the impact of ER antagonists on the inhibition of MDA-MB-231 

proliferation by low dose isoflavones, to confirm the role of ERβ in this.  Regrettably 

no specific ERβ antagonists have yet been developed, however several specific 

ERβ agonists exist which may be interesting to test, referred to as SERM-beta1 and 

SERM-beta2 (Clark et al. 2012).  Furthermore, it would also be of value to 

investigate the effect on proliferation of transfecting the MDA-MB-231 cell line with 

ERα or silencing the ERβ gene in this cell line with siRNA.  An alternate line of study 

would be to assess the impact of soy isoflavones on mammary tissue and mammary 

tumourigenesis in the βERKO (ERβ knockout) mouse line.  This could be compared 

to wild-type mice, but regrettably the αERKO mouse line would not be appropriate 

for use, as these mice do not develop mammary glands beyond the rudimentary 

ductal structure which is present from birth (Hewitt and Korach 2003). 

. 

6.1.6 MDA-MB-231 proliferation after combined treatments 
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With the exception of the combination of premenopausal E2 concentration (1nM) 

and genistein at a range of physiological concentrations (Rajah et al. 2009), the 

impact of combinations of genistein or daidzein with pre- or post-menopausal E2 

concentrations on MDA-MB-231 cell proliferation does not appear to have been 

previously investigated. 

The synergy reported by Rajah et al. between genistein and 1nM E2 to inhibit MDA-

MB-231 proliferation to a greater extent than either as single treatments, was not 

present in this investigation, and so consequently, their suggestion that genistein-

ERβ / E2-ERβ heterodimers may be more effective at reducing proliferation than 

genistein-ERβ homodimers is unlikely to be the case.  Indeed it is possible that the 

opposite occurs, and the heterodimer has less impact than the isoflavone-ERβ 

homodimers, although there is no evidence to support this. 

The current results indicate that for the combinations of 1nM E2 with genistein or 

daidzein (≤ 10µM), and 1pM E2 with genistein, any inhibitory effect on MDA-MB-231 

proliferation induced by the corresponding single treatments has been lost in 

combination (Figure 3.8).  However, with the combinations of daidzein and 1pM E2 

there was still a trend towards reduction in proliferation, to around 70% of the control 

value, although these comparisons were non-significant.  Furthermore, these values 

were lower than either the daidzein (≤ 10µM) or 1pM E2 as single treatments (i.e. 

proliferation was reduced to approximately 90% and 77% with daidzein and E2 

respectively; although again the comparisons failed to achieve statistical 

significance) suggesting possible synergy between the two compounds.  This is 

summarized in Figure 6.2. 

In all but one case (31.6µM daidzein and 1nM E2) the combined treatments 

including the highest isoflavone concentrations continued to demonstrate the drop in 

proliferation associated with 31.6µM isoflavone alone, although this drop was less 

dramatic than that seen with the single isoflavone treatments.  As this effect occurs 

regardless of the ER status of the cell line, and does not appear to be mediated by 

the ERs (see Section 1.4.6), it is not surprising that it was still apparent here.  Again, 

this effect was observed in the only comparable investigation, where genistein 

(≥25µM) in the presence of 1nM E2 resulted in a sharp decrease in MDA-MB-231 

proliferation (Rajah et al. 2009).  Why this effect would be apparent but muted in the 

current investigation is not known, however it may have been obscured by the 
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variability of the data generated, as evidenced by the large standard deviations 

calculated for the mean results. 

 

Figure 6.2: MDA-MB-231 proliferation after treatment with isoflavone/E2 

combinations 

The single treatments of genistein, daidzein or postmenopausal E2 each reduced 

MDA-MB-231 cell proliferation.  In combination with premenopausal E2 (1nM) the 

inhibitory effect of the isoflavones was largely lost.  However the postmenopausal 

E2 level (1pM) and some of the isoflavone treatments (in particular daidzein and the 

highest concentrations used) showed a slight synergistic effect on the inhibition of 

cell proliferation. 

An explanation for the apparent interference between the isoflavones and E2 in 

MDA-MB-231 may be that the isoflavones (particularly daidzein) are acting as 

oestrogen agonists at low (1pM) doses of E2, further contributing to any ERβ-

mediated proliferation inhibitory effect.  However, at higher (1nM) E2 concentrations 

they become antagonistic, competing with E2 for ERβ binding sites, due to their high 

affinity for the receptor, and weakening the effect of E2.  This suggestion is 

supported by the results of Hwang et al. (2006).  Their paper describes a situation 

where human embryonic kidney (293) cells were transfected with either ERα or ERβ 

tagged with a luciferase reporter gene and treated with premenopausal (1nM) or 

postmenopausal (10pM) E2 concentrations, and daidzein or its metabolites, 

including equol and tetrahydrodaidzein.  At postmenopausal levels, the isoflavones 
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acted as E2 agonists, and further increased the E2-induction of luciferase activity 

through either ER.  However, premenopausally, particularly through ERβ, they 

inhibited E2 induced luciferase activity.  This scenario can explain why daidzein and 

E2 are synergistic in a postmenopausal environment, but premenopausally they 

have no net effect.  However, it does not explain the lack of effect of genistein and 

1pM E2.  Alternately, E2, genistein and daidzein may each be acting through 

different, as yet unresolved mechanisms to regulate the proliferation of MDA-MB-

231 cells.  The physiological or phenotypic effects of soy isoflavones and E2 

together in vivo has not been investigated. 

In addition, it is possible that the slight toxicity of the 0.2% DMSO level used 

throughout (Figure 3.5) may be masking any effects of the isoflavone-E2 

combinations in this cell line, although to limit the impact of this, 0.2% DMSO was 

used as the control for comparisons for these treatments.  As discussed, this was 

impossible to reduce due to limitations in the solubility of the isoflavones and the use 

of serial dilutions of stock solutions.  A potential alternative to prevent this for future 

investigations would be to dissolve the E2 in ethanol, and compare the results of the 

combined treatments to a 0.1% DMSO / 0.1% ethanol control.  However, for the 

present study it was felt that for the effects of soy isoflavones and E2 to be 

comparable, the same solvent should be used. 

The results generated by this section of the investigation were fairly variable, and 

resulted in large SDs for the calculated means.  It is likely that this contributed to the 

lack of statistical significance demonstrated for the comparisons.  It is possible that 

the multiple variables including the isoflavones and E2 acting on the MDA-MB-231 

cell line through different mechanisms, and also the slightly toxic effect of 0.2% 

DMSO have contributed to the variability seen.  In future investigations, use of a 

different solvent, further optimisation of the protocol, or use of a different method to 

assess MDA-MB-231 proliferation may circumvent this. 

The slight inhibitory effect of the single isoflavone treatments on ERα-/ERβ+ MDA-

MB-231 cells, which was statistically significant in some cases even at relatively low 

physiologically achievable concentrations, suggests that soy isoflavones may be of 

potential chemotherapeutic benefit to the sizeable group of women with breast 

cancer of the same receptor status (18%; Skliris et al. 2008).  However, there are a 

number of important issues which must first be addressed. 
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Firstly, their potentially reduced efficacy in a physiologically relevant premenopausal 

oestrogen environment must be considered. Other models for premenopausal ERα-/ 

ERβ+ breast cancer must be found, to pursue the contradictory results generated by 

this and the only other study in this field.  Due to the concerns discussed regarding 

the appropriateness of rodent models of breast cancer (Section 1.3.3), primary 

tissue samples may be a more beneficial route to follow.  However, soy isoflavones 

may still be of benefit to postmenopausal women with ERα-/ERβ+ breast cancer 

due to their ability to work differentially as oestrogen agonists and antagonists 

depending on the level of oestrogen present.  Furthermore, it is possible that higher, 

non-physiological doses of isoflavones may have a greater inhibitory effect.  

However this was outwith the mandate of this project to investigate, and as 

discussed, raises questions regarding the safety of such pharmacological doses. 

One factor that is evident is from this and other studies, is that there is no evidence 

that soy isoflavones could increase the proliferation of ERα-/ERβ+ cell lines such as 

MDA-MB-231.  This could cautiously be extrapolated to the population of women 

with ERα-/ERβ+ breast cancer, suggesting that even relatively high levels of dietary 

isoflavones may be safe for consumption.  

However, as discussed (Section 1.1.1), the presence of ERβ is not routinely 

assessed in breast tumours, as it is has traditionally been regarded to be of little 

clinical relevance.  For there to be any potential benefit of soy isoflavones to women 

with breast cancer, ERβ expression levels would have to be routinely assessed in 

the tumours, in parallel to ERα.    Regrettably, no clinically significant downstream 

marker of ERβ expression has been identified (Skliris et al. 2008).  Furthermore, 

although the full length ERβ isoform is the dominant form in breast tumours, the 

presence of its truncated isoforms (Section 1.1.4) can complicate its assessment.  

Depending on their target sequence, various ERβ antibodies vary in their isoform 

specificity (Skliris et al. 2008). 
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6.2 Isoflavones and the induction of apoptosis in breast 

cancer cell lines 

6.2.1 Techniques: The Annexin V-Cy3 and DAPI nuclear morphology 

assays  

As discussed (Section 1.5.3), due to the lack of any “gold standard” method with 

which to assess apoptosis, and the slight morphological and biochemical variations 

seen in apoptosis across different cell types and apoptotic induction methods, the 

best practice is to use two complementary techniques which assess different 

apoptotic markers.  The Annexin V-Cy3 kit, assessing PS exposure on the outer 

plasma membrane, and DAPI fluorescent dye, to quantify apoptotic changes in 

nuclear morphology, were used in this project. 

Use of Annexin V-based dyes to assess apoptosis is commonplace.  As the dye is 

membrane impermeable, and only required to bind to externalised PS, no fixation or 

processing of the cells is required, resulting in minimal manipulation and loss of the 

sample (Brumatti et al. 2008; Galluzzi et al. 2009).   The Annexin V-Cy3 dye emits 

light of a relatively long wavelength (red; >570nm) which permits the use of 

counterstains emitting in the blue or green spectral range.  In this case the dye 6-

CFDA was used.  This is a membrane permeable fluorescein derivative, which 

permits cell viability to be assessed simultaneously, as described (section 2.5).   

However, this method does have a number of limitations.  Damage to the plasma 

membrane by intense scraping or trypsinisation (standard tissue culture techniques 

to remove adherent cells from a surface) can cause non-specific binding of Annexin 

V (Brumatti et al. 2008).  This was minimised by growing the cells on a cover slip, 

which was then stained directly.  PS externalisation can be a feature of some other 

forms of regulated cell death (Galluzzi et al. 2011) and can become accessible 

during certain stages of necrosis where the cell membrane becomes permeable, 

leading to false positive results (De Saint-Hubert et al. 2009).  Counterstaining with 

6-CFDA prevented this population of cells from confounding the results.   

Finally, PS is not externalised when certain autophagy deficient cells undergo 

apoptosis (Qu et al. 2007).  Autophagy is a pathway often accompanied by massive 

vacuolation of the cytoplasm.  It has several physiological roles, including 
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cytoprotection in cells undergoing stress, and it can be responsible for cell death in 

some cancer cell lines deficient in certain apoptotic regulatory proteins like Bax, Bak 

and caspases (Galluzzi et al. 2011).  However, both MCF7 and MDA-MB-231 cells 

are known to be able to undergo autophagy (Cui et al. 2007; Indelicato et al. 2010), 

so this was of no concern in this case.   

Similarly, use of membrane permeable DNA-binding fluorescent dyes, such as DAPI 

or Hoechst, to assess changes in nuclear morphology is widely used in apoptosis 

detection (sections 1.5.3 and 2.6).  In bacterial cells (E. coli) DAPI and Hoechst 

have been shown to give comparable quality results for the quantity of DNA present, 

as assessed by flow cytometry, over much of their concentration ranges (Bernander 

et al. 1998).  However, in MCF7 DAPI demonstrates greater DNA binding activity 

than Hoechst, and is less cytotoxic (Bielawski et al. 2001).   

In MCF7, apoptotic nuclear changes (Hoechst method) have been demonstrated to 

occur in parallel to numerous other apoptotic events including gross morphological 

changes such as membrane blebbing and changes in membrane permeability 

determined by Yo-PRO-1 and PI staining (Akter et al. 2012).  Likewise, in primary 

neuronal cultures, nuclear changes (DAPI NAF method; see section 1.5.3) and 

double stranded DNA breaks (TUNEL staining) both occurred after treatment with 

phospholipase A2 (a potent apoptotic inducer), although  each achieved significance 

at different time points after treatment (Daniel and DeCoster 2004).  This 

emphasizes the importance of timing for the measurement of apoptosis, as many 

apoptotic events occur chronologically.   A range of treatment time scales were 

assessed during the optimisation phase of this study, to determine a treatment 

duration which would allow reproducible induction of apoptosis to be measured 

(section 2.6.3). 

Fixation prior to staining with DAPI is common practice with numerous cell types, 

including MCF7 and MDA-MB-231 (Daniel and DeCoster 2004; Koch and Stratling 

2004; Miglietta et al. 2006; Wang et al. 2010).   It is widely accepted that although 

DAPI is membrane permeable, and so can stain both live and fixed cells, the fixation 

process aids its passage through the plasma membrane and so improves the 

efficiency of staining.  This was upheld during the optimisation of this protocol 

(section 2.6.3), and fixation was deemed to be necessary.  Numerous techniques 

exist for fixation of cells prior to microscopy, discussed in section 1.5.3.  Formalin 
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(formaldehyde) fixation was chosen, due to its nucleic acid crosslinking 

characteristics which commend it for the study of nuclear changes (Bacallo et al. 

2006). 

It has been suggested that one of the intracellular triggers for apoptotic nuclear 

condensation and fragmentation is caspase 3 (Hacker 2000).  This caspase is 

known to be absent from MCF7 cells (see section 1.5.3). Furthermore, although 

widespread, apoptotic nuclear changes are not considered to be an essential 

apoptotic event (Hacker 2000).  Based on this, it is possible that apoptotic nuclear 

changes do not occur in MCF7 cells.  However, this was not the case, as they have 

been observed in this cell line (Akter et al. 2012), and also in MDA-MB-231 

(Miglietta et al. 2006).  Hacker et al. propose that caspase 6 or 2 may provide an 

alternate triggering method. 

As with any technique assessing a morphological change, this method is operator 

dependent, and prone to underestimation of the degree of apoptosis, since cells in 

the early stages of apoptotic pathways may not yet display morphological changes 

(Galluzzi et al. 2009).   In addition, there are a number of non-specific issues which 

relate to the use of fluorescence in both the Annexin V and DAPI assays.  As 

discussed, quenching is a concern during any fluorescence technique (section 

1.5.3).  This was of particular relevance to the DAPI technique, as the fluorescence 

of this dye is known to be quenched by high concentrations of divalent cations 

(Mg2+, Ca2+) and heavy metals  (Arbildua et al. 2006).  However, DAPI fluorescence 

is largely stable between pH4 and 11, and in the current study pH was buffered at 

7.4 by PBS.  Under standard experimental conditions, quenching of Annexin V-Cy3 

does not occur (Galluzzi et al. 2009).   

Auto-fluorescence (section 1.5.3) was assessed in the case of each dye used and 

determined to be absent.  However, the issues of bleaching by UV light, or leakage 

of the dye from the cell could not be so easily eliminated.  To minimize their impact, 

images were collected rapidly, and UV exposure was reduced.  When not required 

the UV light source was cut off. 

As a further level of control for both apoptosis assays, H2O2 (at various 

concentrations and times) was used as a positive control for apoptosis.  As 

discussed (section 2.5.3), this treatment is known to induce apoptosis in a range of 

cell types, presumably due to oxidative stress.  Significant induction of apoptotic 
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nuclear morphology was identified in MCF7 cells (section 2.6.3), and PS-

externalising apoptosis was recorded in both MCF7 and MDA-MB-231 after this 

treatment (section 2.5.3).  This indicates that both techniques are capable of 

measuring changes in the level of apoptosis induced under the experimental 

conditions described. 
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6.2.2 Solvents 

To allow comparison between the results of the proliferation and apoptosis assays, 

the same range of DMSO concentrations were used.  Accordingly, the effect of 0.1% 

DMSO on the induction of both PS-externalising apoptosis and apoptotic nuclear 

morphology was assessed in both MCF7 and MDA-MB-231 cells, and the impact of 

0.2% DMSO was assessed by both techniques in MCF7, and on DAPI nuclear 

morphology in MDA-MB-231 cells, as described (sections 3.2.1..1, 3.2.2..1, 3.3.1..1 

and 3.3.2..1).  Neither DMSO concentration had any impact on the induction of 

either apoptotic marker measured in either cell line.  Accordingly, use of DMSO up 

to 0.2% as a solvent and control treatment was considered appropriate in MCF7 

cells for both the Annexin V-Cy3 PS externalisation assay and DAPI nuclear 

morphology assay.  Likewise, in the MDA-MB-231 cell line, 0.1% DMSO was valid 

for use with both apoptosis techniques, and the higher solvent level of 0.2% DMSO 

was appropriate for the nuclear morphology assay. The impact of 0.2% DMSO on 

the induction of PS-externalising apoptosis in MDA-MB-231 cells was not assessed 

as this solvent level and cell line combination was not used in any of the Annexin V-

Cy3 assays. 

However, higher solvent doses have been found previously to result in an increase 

in the level of apoptosis recorded by several groups.  After 12 hour treatment with 

2% (v/v) DMSO an increase in apoptosis (DNA laddering) was measured in mouse 

macrophages (Marthyn et al. 1998).  A similar increase in DNA laddering was 

recorded in MCF7 cells after 48 hour treatment with 1% polyethylene glycol / ethanol 

mixture (55 and 45% respectively; Vandhana et al. 2010).  Furthermore, many of the 

previous investigations looking at the induction of apoptosis in both MDA-MB-231 

and MCF7 (Table 1.6) have not disclosed the maximum solvent level used. As 

DMSO may have either an influence on the induction of apoptosis at higher levels, 

this could have an impact, and should be considered in the analysis of these results.   
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6.2.3 MCF7 apoptosis - single treatments of isoflavones and            

17β-oestradiol 

The E2 treatments (both pre- and postmenopausal levels) had no significant impact 

on the induction of apoptosis in MCF7 cells, by either assay method (sections 

3.2.1..2 and 3.3.1..2).  The agreement between the two sets of results, and 

consequently, two different markers of apoptosis, adds strength to these results.   

Conversely, previous studies (section 1.5.5) suggested that E2 treatment, at 

physiological levels such as these would reduce the induction of both basal 

(Schmidt et al.2005; Song et al. 2007) and serum starvation induced apoptosis 

(Sakamoto et al. 2010).  However, the two studies above looking at basal (without 

stress) induction of apoptosis used longer time scales (4 and 5 days E2 treatment) 

compared to the 3 and 24 hour treatments described for the current investigation.  

This implies that any inhibitory effects of E2 on apoptosis in MCF7 may take longer 

than 24 hours to manifest. 

The single isoflavone treatments showed a tendency towards increasing the level of 

PS-externalising apoptosis at all concentrations tested (0.1µM upwards; Figure 

3.13), and a significant increase in the presentation of apoptotic nuclear morphology 

was observed with the highest genistein concentration used.  These results, and 

those of the other treatments in this cell line are summarized in Table 6.2.  This 

contradicts the results of Schmidt et al. (2005) who found an inhibitory (oestrogen-

like) effect of genistein and daidzein (0.1 to 10µM) on MCF7 apoptosis.  However, 

they are more in line with the results of numerous other studies (although lower in 

the magnitude of the result) which indicate that soy isoflavones above 25µM can 

induce numerous apoptotic markers in this cell line (section 1.5.4).  The lesser 

degree of apoptosis observed in the current study is not surprising given the dose-

effect for apoptotic induction demonstrated with both genistein (Shim et al. 2007) 

and daidzein (Jin et al. 2010) in this cell line.   

There are a number of factors which could potentially underpin the discrepancy in 

the results of lower isoflavone concentrations, casting doubt on the results of 

Schmidt et al. (2005).  Firstly, they treated the MCF7 cells for five days in the test 

conditions, which may have resulted in the depletion of nutrients, or the cells 

approaching confluence, especially for the faster growing cultures.  This could have 

influenced their results, but is not addressed in the publication.  Secondly, their 
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results are compared to an untreated control, rather than vehicle-only.  Although 

0.1% DMSO was the maximum solvent level used in their study, and is unlikely to 

influence the results, it could still have had a slight impact.  Furthermore, contrary to 

the advice of the NCCD, they only used one measure of apoptosis: flow cytometry to 

assess the proportion of cells in sub-G1 phase of the cell cycle.  This technique is 

widely used, but it has some key limitations which are discussed in section 1.5.3.  

Use of multiple distinct measures of apoptosis (see section 1.5.3) would strengthen 

the evidence that they present. 

Table 6.2: Summary of apoptosis results in MCF7 cells (both methods) 

 Annexin V-Cy3:                      

PS externalisation 

DAPI: apoptotic 

nuclear morphology 

E2 NE NE 

Genistein ++ ++ (31.6µM only) 

E2 + genistein ++ (as genistein) + (31.6µM only) 

Daidzein ++ NE 

E2 + daidzein ++ (as daidzein) + (31.6µM only) 

E2: 17β-oestradiol, NE: no effect, + non-significant increases in apoptosis,             

++ significant increases in apoptosis seen at some doses.  

 

On the whole, the data generated here regarding the generation of apoptotic nuclear 

morphology and externalization of PS provides an explanation for some of the 

proliferative properties of E2 and isoflavones.  The lack of effect (or inhibitory effect) 

of E2 on the induction of MCF7 apoptosis corresponds with its strong positive 

impact on the proliferation of this cell line.  Similarly, low doses of soy isoflavones 

(up to 10µM) which cause the dose-responsive increase in MCF7 proliferation, have 

very minimal (or indeed a slight inhibitory) impact upon apoptosis.  However, higher 

levels, such as 31.6µM genistein (section 3.3.1..3) or 25µM daidzein (Jin et al. 2010) 

result in more pronounced induction of apoptosis.  This will have a negative effect 



315 | P a g e  

 

on cell numbers, resulting in the biphasic effect of isoflavones seen on MCF7 

proliferation.   

This supports the theory proffered by Sakamoto et al. (2010), whereby in MCF7 

ERα is heavily involved in the proliferative effects of soy isoflavones, but that their 

pro-apoptotic effects are mediated by other, ER-independent mechanisms.  They 

support this with evidence showing that silencing of ERα (siRNA) had no impact on 

the apoptotic effects of isoflavones.  The ER-blocker ICI 182780 alone (10nM to 

10µ) resulted in a dramatic and significant dose-responsive increase in the rate of 

apoptosis, and co-incubation with ICI 182780 and genistein or daidzein resulted in a 

further increase in apoptosis over and above that caused either individually 

(Sakamoto et al. 2010; Schmidt et al. 2005).  Much is already known regarding the 

mechanisms through which the soy isoflavones induce apoptosis in MCF7 cells.  

This has been discussed previously (section 1.5.4).    

As the impact of soy isoflavones on MCF7 proliferation is known to be both dose- 

and time-dependent (Shim et al. 2007), it stands to reason that higher isoflavone 

concentrations or longer treatment times would result in the more pronounced 

induction of MCF7 apoptosis.  However, higher concentrations would be of limited 

physiological relevance, and very long term isoflavone treatment in cell culture is 

both impractical and unrealistic.  The longest treatment duration in the studies 

described was five days (Schmidt et al. 2005).  A different approach was taken by 

Garvin et al. (2006), who implanted MDA-MB-231 cells into female athymic mice, 

and then treated them with daily injections of the isoflavone resveratrol 

(25mg/kg/day) for three weeks.  This treatment resulted in a striking and significant 

increase in the level of apoptotic DNA fragmentation in the tumour (TUNEL 

staining).  However, as discussed, it is difficult to compare the isoflavone doses 

provided in vitro and in vivo (section 1.3.3).  Furthermore, it must be noted that this 

was a model of ERα-/ERβ+ breast cancer (see section 6.2.5), and used resveratrol, 

not the soy isoflavones.  None of the other animal studies described (section 1.3.3) 

investigated the effect of soy isoflavones on markers of apoptosis in any ER-status 

model of the disease. 

There is very little information regarding the effect of isoflavone intake on the rate of 

apoptosis in human breast cancer.  However, one small pilot study of breast cancer 

patients undergoing a core needle breast biopsy (n=17), and then a two week soy 
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isoflavone supplementation (50mg/day) prior to surgery investigated the induction of 

apoptosis (Sartippour et al. 2004).  Although no significant effects were seen 

compared to a historical control group (n=26), possibly due to the subjective 

apoptosis assessment method (microscopy), small numbers and short intervention 

duration, the intervention did result in a trend towards inhibition of proliferation 

associated with an increase in the ratio of apoptotic to mitotic cells.  This data 

suggests that the induction of apoptosis in vivo (human) by soy isoflavones warrants 

further investigation, as this may be a mechanism through which their protective 

effects are mediated. 
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6.2.4 MCF7 apoptosis – the combination of isoflavones and 17β-

oestradiol  

The results described in sections 3.2.1..4 and 3.3.1..4 represent the first 

documented occasion where the induction of MCF7 apoptosis by genistein and 

daidzein in a physiologically relevant E2 environment has been reported, with the 

exception of a series of experiments by Schmidt et al. (2005).  However, while this 

group used a range of E2 concentrations (1, 10 and 100pM) for their combined 

treatments, they only included one concentration of genistein and daidzein (10µM).  

Although this represents the high serum levels of isoflavones seen in very high soy 

consumers, it cannot be related to more moderate or low consumption of 

isoflavones, and imparts little about isoflavone/E2 interactions in most women. 

In the current results for the MCF7 cell line, treatment with the combinations of 

isoflavones and E2 had largely the same impact as the single genistein and daidzein 

treatments on the induction of either apoptotic PS-externalisation (Figure 3.14) or 

apoptotic nuclear morphology (Figure 3.22).   As with the single isoflavone 

treatments (discussed in section 6.2.3), time- and concentration-dependent were 

apparent.  After 3 hours treatment (DAPI nuclear morphology assay) there was no 

impact on apoptosis until the highest isoflavone concentration (31.6µM) was 

reached.  However, after 24 hour treatment (Annexin V-Cy3 PS externalization 

assay) each isoflavone/E2 combination resulted in some induction of apoptotic PS-

externalisation compared to the control.  In each combined treatment case, where 

an increase in the rate of apoptosis was observed compared to the control 

treatment, it was also higher than the rate documented after treatment with the 

relevant E2-only treatment.  This is not surprising given that E2 alone had no impact 

on levels of MCF7 apoptosis in this investigation (Figures 3.11 and 3.20). 

The lack of significant differences in the PS-externalising apoptosis data described 

for many of the combined treatments when compared to the control or E2 alone, 

despite considerably higher mean percentage values reported reflects the large 

range of actual values calculated (Table 3.6).  Its roots may lie in error introduced by 

the apoptosis detection method.  However, the optimisation proceedures and 

positive control treatments were designed to prevent this as far as possible.  

Consequently, this variability in the data probably reflects natural variation in the 

system.  
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These results are comparable to the only previous study, which suggested that 

10µM genistein or daidzein in combination with E2 (1pM to 100pM) induced 

apoptosis in MCF7 to a similar extent than was seen with the isoflavones alone 

(Schmidt et al. 2005).  However, in addition to the limitations of this study discussed 

in section 6.2.3, they have not directly compared the level of apoptosis calculated 

after the single isoflavone treatments and the isoflavone/E2 combinations.  For one 

data set (single treatments) they reported the rate of apoptosis, and for the other 

(combined treatments) the results are in the form of the percentage of apoptotic 

cells out of the total population.  It is apparent that each set of results follows a 

similar pattern, but the inconsistency in their outcome measures is not explained, 

and it rules out a direct comparison.   

Further confirming the lack of any modulatory effect of E2 on the induction of MCF7 

apoptosis by genistein or daidzein is work by Sakamoto et al. (2010).  In their study 

of serum starvation-induced MCF7 apoptosis, they demonstrated that treatment with 

combinations of genistein or daidzein (10µM) with 1nM E2 induced apoptosis to a 

similar degree than with the isoflavone alone.  However, their focus on apoptosis 

induced by serum starvation (5 days in 0.5% serum conditions) limits the 

physiological relevance of these results.  As discussed (section 1.5.3), apoptosis 

induced by different stimuli can present many of the same morphological and 

biochemical characteristics, but the route of induction can lead to slight changes in 

the biochemistry and apoptotic phenotype observed  (Hacker 2000; Kroemer et al. 

2009).   It is possible that this non-physiological apoptotic stimulus could result in a 

different role for isoflavones than with another stimulus in MCF7. 

Overall, the data generated in this study builds on the previous studies, to further 

confirm that soy isoflavones are capable of inducing apoptosis in the MCF7 breast 

cancer cell line, despite the presence of E2 and even at relatively low, 

physiologically relevant concentrations.  However, these pro-apoptotic effects occur 

in parallel (probably regulated by different mechanisms) to the massive synergistic, 

proliferation enhancing effect that both isoflavones and E2 have on MCF7 at these 

concentrations.  At the isoflavone concentrations which represent the serum levels 

seen in low to even relatively high soy consumers (up to 10µM), the slight induction 

of apoptosis observed is insufficient to counter the strong, ERα-mediated  impact of 

both the isoflavones and E2.  However, there was a trend towards increasing 

induction of apoptosis with the highest isoflavone concentration used (31.6µM), 
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confirming the dose-effects documented previously.  This may provide a mechanism 

for the growth inhibitory component of the biphasic effect of the isoflavones on 

MCF7 proliferation, which was apparent with both single and combined treatments.   

While the ability of the isoflavone concentrations used in this study to induce 

apoptosis was limited, this data suggests that greater concentrations of genistein or 

daidzein (outwith the remit of this investigation) could induce apoptosis at a high 

enough rate to reverse these growth promoting properties.   Furthermore, regulatory 

and mechanistic differences between in vitro models of breast cancer and the 

tumour environment in women mean that the ability of even relatively low levels of 

isoflavones to induce breast cancer cell apoptosis may contribute to their 

epidemiological protective effect.  In addition, the cumulative effect of time on the 

apoptosis inducing effect of isoflavones argues for a greater benefit with longer term 

exposure in different models of breast cancer.  However, as mentioned, evidence in 

this field from more complex models of breast cancer, such as humans or rodents, is 

scant.  This argues that further research into the ability of soy isoflavones to induce 

apoptosis in ERα+ breast tumours is warranted. 
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6.2.5 MDA-MB-231 apoptosis - single treatments of 17β-oestradiol and 

isoflavones 

Previous publications have described how genistein, at concentrations above 5µM, 

induces various apoptotic markers in MDA-MB-231 cells, including the proportion of 

cells in sub-G1/G0 phase of the cell cycle (Seo et al. 2011), the presence of single 

stranded DNA (Davis et al. 2008), PS externalisation and caspase 3 activity (Li et al. 

2008).  This was associated with a reduction in Bcl2 protein levels, and a 

corresponding increase in Bax (Li et al. 2008).  These treatments ranged between 

48 and 72 hours, and the response was dose-dependent.  However, prior to the 

current study, nothing was known regarding the impact of lower levels of genistein 

on the induction of apoptosis in this cell line. 

The current results show that even relatively low levels of genistein (10 and 100nM) 

are capable of inducing a trend towards increasing the level of apoptosis in MDA-

MB-231 cells over 3 and 24 hours of treatment.  These results were comparable for 

both the induction of nuclear morphology (Figure 3.28) and PS externalisation 

(Figure 3.17), and the effect on nuclear morphology became statistically significant 

at the highest genistein concentration used (31.6µM).  The remainder of the results 

failed to achieve statistical significance.   However, despite the variability in the 

generated data points, the majority were numerically higher than the control mean.  

All the apoptosis results in the MDA-MB-231 cell line are summarized in Table 6.3. 

Very similar results were seen for daidzein treatment with this cell line.  This too 

achieved statistical significance on one occasion (10nM) with regard to the impact 

on nuclear morphology (Figure 3.28).  This represents the first occasion where 

daidzein at any concentration has been shown to induce apoptosis in an ERα-/ERβ+ 

cell line.  This is an important result, as it shows that the induction of apoptosis by 

isoflavones in MDA-MB-231 cells is not limited to genistein. 
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Table 6.3: Summary of apoptosis results in MDA-MB-231 (both methods) 

 Annexin V-Cy3:                  

PS externalisation 

DAPI: apoptotic 

nuclear morphology 

E2 NE NE 

Genistein + ++ 

E2 + genistein  ++ (31.6µM, synergy?) 

Daidzein + ++ 

E2 + daidzein  ++ (31.6µM, synergy?) 

E2: 17β-oestradiol, NE: no effect, + non-significant increases in apoptosis,             

++ significant increases in apoptosis seen at some doses.  

 

These results correspond with the reduction in proliferation of MDA-MB-231 cells 

observed at the same concentrations (Figure 3.7).  Although the inhibition of MDA-

MB-231 proliferation by isoflavones is thought to relate to a genomic effect mediated 

by ERβ (see section 6.1.5), this data suggests that the induction of apoptosis may 

also play a part in the reduction in cell numbers observed. 

It was shown that E2 at its pre- and post-menopausal concentrations had little or no 

impact on the level of either apoptotic marker tested in MDA-MB-231 cells (Figures 

3.15 and 3.25).  This represents the first occasion where this has been tested.  The 

implication is that apoptosis has no role in E2-inhibiton of proliferation in this cell line 

(Figure 3.6), and that other mechanisms, such as an ERβ-mediated genomic effect 

are responsible. 

The induction of apoptosis by high (≥10µM) soy isoflavone concentrations is widely 

agreed to occur to a similar extent in both ERα+ cell lines such as MCF7 and    

ERα-/ERβ+ MBA-MB-231 cells (section 1.5.4; current results).  This study has 

generated novel data illustrating that the same occurs at lower isoflavone 

concentrations, of more physiological relevance to the serum levels observed in 

women.  However, in keeping with the dose-responses observed, the magnitude of 



322 | P a g e  

 

the apoptotic effect of these lower concentrations was reduced compared to very 

high, non-physiological doses.  This suggests that despite the strong proliferative 

effect of physiological levels of isoflavones seen in vitro with ERα+ cell lines, in 

parallel they also induce apoptosis, in a manner which is not mediated by ERα.  

Where ERα is absent, such as in MDA-MB-231 cells, there is nothing to mask the 

pro-apoptotic effect seen.  The role of ERβ in breast cancer cell apoptosis is 

unknown and as yet un-tested.   

Several possible alternate (non-ER) mechanisms for the induction of MDA-MB-231 

apoptosis by isoflavones have been investigated.  Genistein treatment at apoptosis-

inducing levels between 5 and 20µM was associated with a reduction in the levels of 

NF-κB protein and activity, and protein levels of MEK5, ERK5 and phospho(active)-

ERK5 (Li et al. 2008).  Although many questions remain regarding the role of these 

signaling kinases in breast cancer, evidence exists supporting a role for them as 

anti-apoptotic in murine thymocytes and porcine aortic endothelial cells 

(Lennartsson et al. 2010; Sohn et al. 2008).  Inhibition of the MEK5/ERK5/NF-κB 

signaling pathway may be a key mechanism through which isoflavones are acting to 

induce apoptosis in MDA-MB-231 cells.  Genistein treatment has also been shown 

to increase the level of active p53 (a tumour suppressor) and p21 (a pro-apoptotic 

and cell cycle inhibiting regulatory protein) in MDA-MB-231 cells (Seo et al. 2011), 

although these may be downstream of MEK5/ERK5/NF-κB signaling. 

Overall, this field of study appears promising with regard to understanding one of the 

mechanisms through which isoflavones may be protective against breast cancer.  In 

particular, it is important to elucidate whether ERβ mediates the induction of 

apoptosis by isoflavones.  This could be resolved by reassessing apoptosis with 

isoflavones in the presence of an ER antagonist, or silencing the ERβ gene.  

Furthermore, as with the anti-proliferative effects of isoflavones in MDA-MB-231 

cells, it would be of value to identify whether their pro-apoptotic effects in vitro are 

mirrored in more comprehensive models of the disease, such as animals, primary 

tissue samples, or even in women.  However, difficulties arise with the latter due to 

the large number of women that it would be necessary to recruit in order to have 

sufficient ERα-/ERβ+ cases for analysis after stratification by ER status. 
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6.2.6 MDA-MB-231 apoptosis – the combination of isoflavones and 

17β-oestradiol 

As seen in MCF7, the ability of soy isoflavones to induce apoptosis in MDA-MB-231 

cells at concentrations ≤10µM was not affected by the presence of E2.  However, 

with the highest concentrations of genistein and daidzein (31.6µM) there was clear 

evidence of synergy between the isoflavones and E2, with the combined treatments 

all inducing considerable levels of apoptosis, which was significantly higher than the 

isoflavone or E2 single treatments in virtually all of the comparisons.  The conclusion 

to be drawn from this is that in a physiological E2 environment (either pre- or post-

menopausal) levels of genistein and daidzein that can be achieved in the serum of 

high soy consumers or women consuming isoflavone supplements can induce a 

considerable level of MDA-MB-231 cell apoptosis.   

In addition to the ERβ-mediated effects of isoflavones discussed previously, this 

increase in the rate of apoptosis could partly explain the anti-proliferative effect of 

isoflavone/E2 treatments on MDA-MB-231 cells.  This provides evidence for a 

protective mechanism for isoflavones in ERα-/ERβ+ breast cancer.  However, this 

study was the first of its kind to investigate the impact of isoflavones in 

physiologically relevant E2 conditions on the induction of apoptosis in an            

ERα-/ERβ+ breast cancer model.  These promising results pave the way for further 

studies.  Firstly this effect requires confirmation in MDA-MB-231 cells by assessing 

a second apoptotic marker (this set of conditions were only tested with the DAPI 

nuclear morphology assay, PS exposure was not assessed).  Secondly, as 

discussed, little is known regarding the mechanism for the effect of isoflavones and 

E2 on apoptosis in this cell line, or indeed the reason for the synergistic effect at 

high isoflavone concentrations.  As genistein and daidzein have potential as 

chemotherapeutic agents against ERα-/ERβ+ breast cancer, this area should be a 

priority.  
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6.3 Volume changes in MCF7  

6.3.1 Technique: Calcein fluorescence 

Although numerous techniques have been used to asses volume change in cultured 

cells (see section 1.6.2..5), the most reproducible and widely used is electronic 

sizing (Coulter Counter): measuring changes in the volume of liquid displaced as 

suspended cells pass an aperture of known size.  However, this requires specialist 

equipment which was not available for the current research.  Many alternate 

methods utilize light microscopy, and as cells are perfused with various test agents 

image analysis software is used to assess their area based on changes in radius or 

height.  This technique has been used to assess volume regulation in MCF7 (Roy et 

al. 2008; vanTol et al. 2007).  However, this assumes a degree of circularity, and 

uniformity of shape which is not representative of the majority of cultured cells.  

Assessment of changes in Calcein fluorescence intensity (sections 1.6.2..5 and 4.1) 

produced reproducible results which were not limited to the uniformly circular cells in 

the population.  Where this method has been previously used in rabbit corneal 

epithelial cells (Pan et al. 2007) and human lung adenocarcinoma cells (Chen et al. 

2011) it has generated comparable results to the other techniques. 

However, there were several key limitations to the technique which required 

addressing.  Firstly, unlike the fluorescent dyes discussed previously, Calcein is 

susceptible to self-quenching.  This is a phenomenon whereby fluorescence 

intensity decreases with increasing dye concentration above a threshold of 3mM 

(Hamann et al. 2002).  This is around 1000 times more concentrated than the typical 

levels used to load the cells in most experiments (5µM Calcein was used in the 

current investigation), and it is generally considered impossible for dyes such as 

Calcein to accumulate inside cells to concentrations >1mM, unless microinjection of 

the dye is undertaken (Hamann et al. 2002; Verkman 2000).  Self-quenching was 

not observed on any occasion in this research.   

Furthermore, despite the use of regulatory volume decrease during hyposmotic 

shock as a reference for measurable volume change in MCF7 to confirm the 

appropriateness of the test conditions, background changes in Calcein fluorescence 

intensity were found to be variable.  In particular this was apparent with the 0.1% 

DMSO control treatment used prior to each test condition.  This may have related to 
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slight changes in temperature, or incomplete esterification of Calcein.  As discussed, 

WinFluor software was used to assess the stability of fluorescence prior to 

beginning the test protocol.  This software was only capable of measuring changes 

in individual pixels rather than whole cell regions due to the ROI selection method, 

and as a result it failed to detect the background changes in fluorescence which 

were later detectable using ImageJ.  This was accepted as an unavoidable limitation 

of the equipment used, but it is apparent from these results that WinFluor live image 

analysis was considerably less sensitive than ImageJ.  Future investigation in this 

field will require further optimisation to determine the balance between time taken to 

allow dye esterification and avoiding fluctuations in the stability of cells brought on 

by extended periods of Tyrode perfusion.  Alternately, more accurate software could 

be acquired to assess the stability of fluorescence prior to experimentation. 

To reduce the impact of background changes in cell Calcein fluorescence on the 

treatment effect, the mean rate of fluorescence change per second was calculated 

during the control treatment and test treatment for each experiment (Δf0, Δf10 etc.) 

and the net effect of the treatment over that of the background change was 

calculated (aΔf), as described in section 4.1.3..3.  Similar calculations were used in 

related studies where Calcein fluorescence intensity was used to determine volume 

changes in SPC-A1 human lung adenocarcinoma cells (Chen et al. 2011) and rabbit 

corneal epithelial cells (Pan et al. 2007). 

RVD in response to hyposmotic shock in MCF7 has been widely investigated, and is 

relatively well understood (section 1.6.8..1).  The results described in section 5.1.1 

show an initial phase of swelling in MCF7 cells from approximately 10 to 16 minutes 

into the hypotonic stress, illustrated by the reduction in Calcein fluorescence 

intensity observed.  Following this, RVD occurred, restoring fluorescence intensity 

(and hence cell volume) to close to the pre-swelling values by around 23 minutes in 

the hyposmotic solution.  These results are in agreement with those of other groups 

assessing RVD in MCF7 cells, and are over a similar time scale (Roy et al. 2008; 

vanTol et al. 2007).  This suggests that the protocol described is appropriate for the 

measurement of volume changes in MCF7 cells over the time scales described. 

However, each of the previous studies has focused on RVD after hyposmotic stress.  

As discussed previously (section 1.6.8) although the response is based on the 

mechanisms which regulate shrinkage during apoptosis, this stimulus is non-
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physiological.  In the current research the main focus was to identify acute changes 

in volume after isoflavone or E2 treatment.  Despite the links between swelling and 

proliferation, and shrinkage and apoptosis being well established (section 1.6.5; 

Chen et al. 2011; Ishibashi et al. 2011) the impact of E2 and isoflavone treatments 

on these responses in cancer cell lines has not previously been studied. 
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6.3.2 The impact of 17β-oestradiol and genistein on MCF7 volume 

6.3.2..1 Swelling 

Treatment with both 1nM E2 and 1µM genistein resulted in a significant reduction in 

Δf compared to the pre-treatment value (Figure 5.5), and accordingly negative 

values for aΔf (Figure 5.6).  This implies that these treatments have caused a 

reduction in fluorescence intensity over and above any background effects, and are 

causing Calcein concentration within the cell to drop due to an increase in size.  

This result is not surprising in the face of data which suggests that swelling is a 

necessary step in S phase progression during proliferation (Dubois and Rouzaire-

Dubois 2004; Hoffmann 2011), and both treatments have previously been shown to 

result in a dramatic increase in MCF7 proliferation (sections 3.1.1..1 and 3.1.1..2.).  

The specific ion channels thought to be involved in proliferative swelling of MCF7 

cells are not known, although the Na+-K+-Cl- co-transporters and the Cl--H+ and Cl- 

HCO3
- exchangers may play a role (Dubois and Rouzaire-Dubois 2004).  It is not 

known whether E2 and isoflavones directly act upon the channels mediating the 

swelling of MCF7, and thus further promote proliferation in this manner over and 

above their other known mechanisms, or whether swelling is a down-stream effect. 

It is relevant to note the speed with which E2 and genistein have begun to induce 

proliferation-like responses in MCF7 cells.  In each case the difference achieved 

statistical significance after 10 or 15 minutes of treatment.  This argues for a rapid 

induction of the proliferative signaling kinase pathways, or direct interaction with the 

membrane ion channel proteins which regulate cell volume.  Slower induction of 

ERα-mediated transcription of pro-proliferative genes may occur in parallel to this, or 

downstream.   

The suggestion that E2 treatment may induce very rapid signaling responses in 

MCF7 is not new.  Treatment of MCF7 cells with 0.1nM E2 induces the activation 

(phosphorylation) of the signaling kinases IGF-1R and EGFR within 5 minutes (Song 

et al. 2007).  By subsequent knockout (siRNA) of IGF-1R then EGFR, this group 

suggested that E2 sequentially induces the activation of IGF-1R, EGFR, then 

MAPK, in a cascade of activation.   
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MAPK signaling is also integral to the induction of MCF7 proliferation by genistein 

(Mawson et al. 2005; Yang et al. 2010), although the speed of the activation of these 

kinase signaling cascades by genistein treatment is not so clear.  It has been 

suggested that up-regulation of ERα transcriptional activity by isoflavones requires 

MAPK / ERK1/2 signaling (Liu et al. 2010; Yang et al. 2010).  Supporting this, Yang 

et al. (2010) present evidence suggesting that treatment with 10μM genistein 

induces phosphorylation of ERα in MCF7 cells. 

This may relate to the hypothesis that even in the absence of ligands, 

phosphorylation of Ser118 of ERα by various signaling kinases increases its 

transcriptional efficiency (Deblois and Giguere 2003; Lucki and Sewer 2011; Yang et 

al. 2010).  Phosphorylation of MCF7 Ser118 in ERα is induced rapidly (within 15 

minutes) in response to 10 nM E2 treatment (Hamilton-Burke et al. 2010).   The role 

of phosphorylation at this site in breast cancer is complex, with studies reporting 

paradoxical results with regard to its impact upon prognosis (Kok et al. 2009; Sarwar 

et al. 2006; Yamashita et al. 2008).   

In addition to this, there is considerable evidence suggesting that both isoflavones 

and E2 can act on K+
 channel activity rapidly, within minutes or seconds (sections 

1.6.6).  As discussed, the activity of these channels can directly impact upon cell 

volume (see sections 1.6.1, 1.6.5 and 1.6.8).  It has been suggested that E2 

interacts directly with the plasma membrane BK channels of MCF7 (Coiret et al. 

2005).  To this end evidence was presented showing that 10nM membrane 

impermeable E2 (conjugated with BSA) had a comparable impact upon MCF7 

proliferation to unconjugated E2 (10nM), and that both E2 and BSA-E2 induced BK 

channel activity to a similar extent.  Furthermore, E2-induction of BK activity was 

rapid (within a minute) and not mediated by the ERs, as the addition of the ER 

antagonist ICI 182780 did not prevent E2-induction of BK activity.  In addition, the 

BK channel blockers iberiotoxin, charybdotoxin and TEA prevented E2-induced 

MCF7 proliferation.  However, although the expression levels of BK are cell cycle 

dependent (Ouadid-Ahidouch et al. 2004a), its role in basal (non-stimulated) MCF7 

proliferation appears minimal.  Blockade of BK by the same agents in the absence 

of E2 has no impact upon MCF7 proliferation (Coiret et al. 2005; Ouadid-Ahidouch 

et al. 2000; Ouadid-Ahidouch et al. 2004a; Ouadid-Ahidouch et al. 2004b).   
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Whether E2 works in the same extracellular manner on other ion channels is not 

known.  Neither has the activity of a membrane impermeable form of genistein been 

investigated with regard to any aspect of MCF7 proliferation, apoptosis, or ion 

channel activity.   

6.3.2..2 Shrinkage 

In contrast to the other treatments, 31.6µM genistein treatment resulted in a 

significant shift in the rate of fluorescence change, from a negative to positive value, 

and a positive value for aΔf after 10 minutes treatment.  This indicates that the dye 

is becoming more concentrated, and the MCF7 cells are shrinking. This corresponds 

with the previous results, showing that this treatment induced apoptosis in MCF7 

(Figures 3.13 and 3.22).  This may be evidence of apoptotic volume decrease 

(AVD), proposing a mechanism through which high concentrations of isoflavones 

could induce apoptosis in breast cancer cell lines such as MCF7.  If so, then this 

could relate to the protective effect of dietary isoflavones against breast cancer 

discussed previously.  Mechanisms such as this are potentially important to the anti-

cancer properties of isoflavones, and provide information regarding novel 

pharmacological targets for future chemotherapeutic treatments. 

As discussed (section 1.6.5), AVD is an essential early stage of apoptosis, it occurs 

prior to many of the other key apoptotic events, and requires K+ efflux.  In particular, 

the K+
 channels hERG, Kv1.1 and Kv1.3 appear to be involved in this process. In this 

manner, the apoptosis inducer would result in plasma membrane depolarization, 

activating the above K+ channels.  The resulting K+ efflux hyperpolarizes the plasma 

membrane.  As with the membrane potential model of proliferation (see section 

1.6.4), this results in an increase in [Ca2+]i following its electrochemical gradient into 

the cell.  However, this increase is greater in magnitude than is seen during 

proliferation, sustained, and bolstered by the release of endoplasmic reticulum Ca2+ 

stores.  The sudden and sustained increase in [Ca2+]i that ensues activates the 

mitochondrial apoptotic pathway (Figure 1.3) and calpains (Ca2+ activated apoptotic 

proteases; see section 1.5.4).  This activates the caspase cascade as described.   

However, there is cross-talk between the elements of this pathway, as caspase 8 or 

9 activity is required for the induction of AVD, depending upon the route of apoptotic 

induction (Vu et al. 2001).  For a summary of this potential pathway see Figure 6.3. 
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Figure 6.3: Revised model for the induction of intrinsic apoptosis, including 

the proposed role for K+ channels  

Apoptotic stimuli result in membrane depolarization, triggering the activity of hERG 

and Kv1.1 (and Kv1.3).  The resulting plasma membrane hyperpolarisation causes 

an increase in [Ca2+]i largely due to the release in intracellular stores.  This triggers 

formation of the apoptosome by mitochondria, and the activation of calpains.  The 

resulting caspase cascade results in apoptosis.  There is an element of cross-talk, 

as caspase 9 activity is required for the initial efflux of K+. 

By 15 minutes into the treatment, the trend towards a reduction in fluorescence 

intensity has resumed, although to a lesser extent than prior to the treatment.  

However, aΔf still has a positive value, implying that the treatment still retains some 

of its net fluorescence-increasing capacity over and above the background changes.  

It is possible that the treatment has resulted in a loss of membrane integrity in these 

experimental conditions, resulting in loss of Calcein from the cell.  Alternately, the 

shrinkage observed may be a temporary phenomenon, and the MCF7 cells 

recovered.   
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6.4 K
+
 channel activity in MCF7 cells  

6.4.1 The role of the VGKCs in MCF7 proliferation 

The experiments looking at the impact of various VGKC blockers on the proliferation 

of MCF7 used the previously validated and optimised MTT assay, which is 

discussed in full in sections 1.4.2..1, 2.4 and 6.1.1.   

By using pharmacological K+ channel blocking agents of increasing specificity, it 

was possible to identify the impact of specific channels or groups of channels on the 

proliferation of this cell line.  Firstly, TEA was calculated to have an IC50 for MCF7 

proliferation of 18.84mM (Figure 5.8).  TEA is a non-specific blocker of numerous K+ 

channels.  This indicates that K+ channels are present in MCF7 and play a role in 

proliferation.  Although slightly higher, this is generally comparable to the results of 

others showing that the IC50 for MCF7 proliferation with TEA is around 6mM 

(Ouadid-Ahidouch et al. 2004a; Wonderlin and Strobl 1996).  In agreement with 

Coiret et al. (2007), lower concentrations below 1mM had little impact on the 

proliferation of this cell line.  

Treatment with 4-AP confirmed that among the K+ channels involved in MCF7 

proliferation, the VGKCs played a role.  The IC50 for MCF7 proliferation by 4-AP was 

calculated to be 2.7mM (Figure 5.9).  This value is very similar to that previously 

published by Wonderlin and Strobl (1996) of 1.6mM.  However, it must be noted that 

due to limitations in the solubility of 4-AP, a solvent (water) dose of 4% was required 

for the highest 4-AP concentration (20mM).  The earlier finding that the addition of 

this level of water to the growth medium reduced MCF7 proliferation (Figure 5.7) 

was a concern.  To minimize the impact of this, 4% d.H2O was added to each 4-AP 

treatment and the control used. Although this may have affected the result, any 

influence was universal to all 4-AP concentrations.  At this level, it is probable that 

the reduction in MCF7 proliferation associated with the addition of water was related 

to the dilution of nutrients or an osmotic effect.  

As the intention of this research was to study the K+ currents mediated by the 

VGKCs hEAG and hERG, it was necessary to confirm the role of these channels on 

MCF7 proliferation also.  The hERG blocker DOF was used for this purpose, along 

with AST, which blocks both hEAG and hERG.  No specific hEAG blockers exist.  
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This technique is similar to that used by Roy et al. (2008), although in that case the 

hERG blocker E-4031 was used. 

AST was found to inhibit MCF7 proliferation with an IC50 of 4.9µM (Figure 5.10).   

This is comparable with the finding of Ouadid-Ahidouch et al. (2004b) who observed 

approximately 50% reduction in MCF7 proliferation with 5µM AST.  However, others 

have found 10µM AST to be ineffective at reducing MCF7 proliferation, or 30µM to 

be required to reduce it to 50% (Borowiec et al. 2007; Roy et al. 2008).  The 

variation in results seen may reflect the different treatment durations and assays 

used.  While Ouadid-Ahidouch et al. used an MTS assay kit after four days of 

treatment, Borowiec et al. used this assay after only 48 hours, and Roy et al. used 

the 3H-thymidine incorporation proliferation assay after 72 hours of treatment. 

Meanwhile DOF treatment up to 10µM had no impact on MCF7 proliferation after 72 

hour treatment (Figure 5.11).  While the effect of this K+ channel blocker on MCF7 

proliferation has not been assessed previously, the lower dose of 1µM DOF was 

sufficient to virtually completely prevent hERG current in the murine atrial tumor cell 

line HL-1 (Wang et al. 2002).  Another specific hERG blocker E-4031 (300nM) had 

no effect on MCF7 proliferation (Roy et al. 2008) despite having an IC50 for hERG 

current of 7.7 nM (HEK-293 cells; Zhou et al. 1998).   

Both the hEAG and hERG channels are known to be expressed in MCF7 (Table 

1.8).  As discussed previously, it was hypothesized that if an activity was blocked by 

AST (blocked hEAG and hERG) but not a specific hERG blocker, then it is likely to 

be the hEAG-specific component of AST’s activity that is responsible.  In this 

manner, the data suggests that the K+ channel hEAG, but not hERG, has a role in 

MCF7 proliferation.  This same conclusion was reached by Roy et al. (2008).  In 

summary, this data confirms that the MCF7 cells in use respond to the K+ channel 

blockers TEA, 4-AP, AST and DOF in the manner expected from previous 

publications. 
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6.4.2 Technique: whole cell patch clamping  

Whole-cell patch clamping is a technique which can be applied to virtually any cell or 

tissue type, and has allowed great advances in the field of cell electrophysiology.   

As previously discussed in sections 1.6.2..1 and 4.3, it is the gold standard 

technique with which to assess the activity of ion channels, both in cultured cells and 

tissue, due to the ability to assess minute changes in the current across the plasma 

membrane in real time, under physiologically relevant membrane potentials.  

However, because of the nature of the technique, it is error-prone and may not 

always generate accurate recordings. There are a number of limitations which must 

be understood and corrected for in order to make accurate recordings.   

Series resistance relates to the physical properties of the pipette tip, and clogging of 

the tip, introducing another source of resistance in series with the plasma membrane 

resistance under scrutiny.  This is a major source of error in patch clamp recordings.  

To minimise this, voltage clamping is only considered to be successful when the 

membrane resistance greatly exceeds series resistance.  As described by 

Sontheimer and Olsen (2007), uncompensated series resistance introduces error in 

the current recorded, which increases with the amplitude of the current.  The patch 

clamp amplifier hardware can be used to compensate for series resistance to a 

certain extent, but not fully.  Thus, to reduce this source of error several steps are 

essential.  A maximum uncompensated series resistance (often 10MΩ) should be 

set as a cut off (Ouadid-Ahidouch et al. 2004a) and should be declared in the 

methodology.  High concentrations of ethylene glycol tetracidic acid (EGTA) in the 

pipette solution can help to reduce “healing” of the plasma membrane inside the 

pipette, which can be a major source of clogging. 

In addition, whole cell patch clamping requires several assumptions to be made 

regarding the plasma membrane.  Firstly, it assumes that the membrane potential is 

equal at all points on the cell surface, and secondly, that current or voltage clamping 

(which affects the potential) is universally disseminated to all points on the plasma 

membrane. However, under most experimental (and naturally occurring) 

circumstances these are not necessarily appropriate (Sontheimer and Olsen 2007). 

Furthermore, many experiments have looked in real time at the acute effects of 

compounds on channel activity, usually recording events occurring within 10 or 20 

minutes of treatment.  It is in the nature of the patch clamp methodology that 
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membrane integrity begins to deteriorate after this time, as the cell dies.  Pre-

treatment for longer periods would be required to occur in advance, and therefore 

longer term effects on K+ currents cannot be measured in real time (Sundelacruz et 

al. 2009).  The result is that only short term effects are seen, which are more likely 

to reflect post-translational regulation, direct channel gating, and activation 

cascades, rather than changes in gene expression, translational regulation, or 

protein half-life.  In addition, as most systems, including the current one, are 

designed to study single cells, one at a time, the technique is laborious, low-

throughput, and does not reflect cell-cell interactions.  However, systems are being 

developed allowing electrophysiological recordings of many cells to be recorded in 

parallel, using microchips with numerous apertures serving as patch electrode tips 

(Sundelacruz et al. 2009).   

Another potential limitation of patch clamping methodology is that typically, the 

experiments are carried out at room temperature rather than 37oC.  Reportedly, the 

lower temperature increases the stability of the patch.  Where the effect of 

temperature on current under patch clamp has been assessed, large drops in 

temperature (29oC to 9oC) had a measurable impact on some elements of the 

macroscopic current particularly the transient components, but the change from 

20oC to 29oC had little effect on the overall current recording (snail neurons; Lux and 

Brown 1984).  This suggests that the difference in temperature between room 

temperature and 37oC may not have a significant impact.  However this has not 

been fully assessed in all cell types.   

Finally, it is unrealistic to compare the concentrations of compounds used for K+ 

channel experiments with the concentrations known to regulate other cellular 

processes in vivo or in cell culture conditions, such as a PTK inhibitory IC50 or doses 

which promote proliferation.  This is due to the requirement for slightly different 

experimental conditions.  While every attempt is made to make the media for a 

patch clamp experiment as physiologically relevant as possible, in order to 

accurately manipulate currents, the serum normally added to cell culture media is 

absent, and various ion concentrations and pharmacological agents are frequently 

used to allow the experimenter to isolate individual currents.  It was suggested that 

serum may bind drugs such as 4-AP, and can reduce both their channel blocking 

and anti-proliferative properties (Wonderlin and Strobl 1996).  Also, the pipette 

solution which bathes the intracellular space needs to mimic the normal intracellular 
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milieu as closely as possible, but it is at best a compromise.  The result is that while 

comparable IC50 doses for reducing channel activity and proliferation might be used 

to argue for a common target, different values cannot be proposed as evidence to 

reject this hypothesis (Wonderlin and Strobl 1996).   This makes it impossible to 

make direct links between K+ flux effects and alterations in the proliferative or 

apoptotic activity of cells.  However, as discussed, studies which have silenced 

specific channel genes, or transfected them into cells known to not normally express 

them, add strength to the arguments here.  

Due to the diverse nature of plasma membrane ion channels, a number of standard 

measures were built into the patch clamp protocol used to optimise the recording of 

K+ currents, and not those mediated by other ions.  These have been discussed in 

greater detail in section 1.6.2..1, but are summarized briefly here.  The speed of 

activation and inactivation of ion currents can vary greatly.  In these experiments, 

each voltage step was relatively slow, lasting 250ms, and current was assessed in 

the second half of this.  This minimised interference from the Na+ currents, which 

typically activate and inactivate quickly, within 5ms (Sontheimer and Olsen 2007; 

Standen et al. 1994).  Likewise, the choice of holding potential from which the 

voltage steps are applied from can separate different current types.  Many K+ 

currents will activate from a range of holding potentials, but the level of  -50mV used 

here allows the activation of the delayed rectifier K+ currents, including numerous 

VGKCs, whilst preventing many transient K+ currents. 

Pharmacological agents of varying specificity can be used to block undesirable 

currents, leaving the one under scrutiny.  However, this can have unforeseen effects 

on the activity of the cell.  Instead, the best practice is to assess the current in the 

presence and absence of the ligand under scrutiny, and subtract to observe the 

responsive element.  This approach was adopted in this study, and was discussed 

in greater detail in section 4.3.5.   

Finally, the use of current/voltage (I/V) curves to assess the data can generate 

information regarding the characteristics of the current which can aid in its 

identification.  As discussed, these parameters include the reversal potential, 

voltage dependence, and quality of the patch clamp.  Much of this information is 

difficult to infer from the raw patch clamp data. 
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The use of statistical analysis (General Linear Model for repeated measures; GLM) 

and discussion of the mean result of a number of repeated experiments (n ≥ 3) to 

determine the significance of the effect of treatment on the voltage-response of the 

current (section 4.3.6) strengthens the results generated here in comparison to 

many related investigations.  In contrast, numerous key studies in this field have 

elected simply to use descriptive statistics to describe the currents recorded, and 

discuss the results of individual, apparently representative, sets of results (Borowiec 

et al. 2007; Coiret et al. 2005; Garcia-Ferreiro et al. 2004; Ouadid-Ahidouch et al. 

2004a).  This is a key short-fall of these studies. 

As discussed, in several cases an observed effect failed to achieve statistical 

significance despite showing a clear trend towards an increase or decrease in 

macroscopic current after treatment.  This is likely to relate to the variability between 

cells in the recorded current.  It is possible that a factor in this is differences in size 

of the cells used (section 5.3.1; a cell with greater surface area may have more ion 

channels present in the plasma membrane and hence, larger whole-cell current).  

Although measures were taken to reduce the impact of this, a degree of variability in 

cell size persisted due to visual observation of cell size.  In future studies, this can 

be minimized further by reporting current density as a ratio of current and 

size/capacitance (i.e. pA/pF), in the manner of the Ouadid-Ahidouch group 

(Borowiec et al. 2007; Ouadid-Ahidouch et al. 2004a).  Regrettably this was not 

possible for the current dataset.  Alternately, this variation may reflect differences in 

the growth cycle stage of the selected cells.  Many K+ channels in MCF7 are known 

to be expressed differentially at various stages of the growth cycle, including hEAG 

(Ouadid-Ahidouch and Ahidouch 2008) and BK (Ouadid-Ahidouch et al. 2004a).  

Synchronization of the cell cycle prior to experimentation may reduce this.  A final 

possible explanation for this variability is that MCF7 cells are known to secrete 

numerous proteins into the extracellular matrix, including metalloproteinases and the 

glycoprotein fibrinogen, each with roles in tumour invasiveness (Liu et al. 2002; 

Rybarczyk and Simpson-Haidaris 2000).  Trypsinisation prior to patch clamping is a 

standard technique used by some groups to minimize interference from secreted 

protein (Ouadid-Ahidouch et al. 2000; Ouadid-Ahidouch et al. 2004a), however it 

provided no additional benefit in the current research, so was omitted from the 

protocol.   
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The reversal potential (i.e. potential where the net current flow was 0mV) of the 

recorded currents was often around -80mV, indicating that the current recorded was 

largely due to K+ ions (see section 5.3.2; the equilibrium potential for K+ is around -

85mV, so at potentials more negative than this, K+ ions will flow inward, and at more 

positive potentials K+ will flow outward).  However on several occasions the reversal 

potential was more positive.  This may reflect the activation or inactivation of other 

ion channels by that treatment, in addition to the K+ channels.  Alternately, this 

variation may reflect slight methodological variations between the experiments, such 

as slight inconsistencies in the K+ ion content of the extracellular and intracellular 

solutions used. 
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6.4.3 Control treatments  

As shown in Figure 5.12, the patch clamping protocol with no additional treatment 

did impact upon the recorded MCF7 K+ current significantly.  Overall, the within cell 

effect of treatment became significant after depolarization from -50mV to -20mV, 

and all potentials greater than this.  However, by higher potentials (≥80mV) the 

mean magnitude of this effect became minimal compared to that of the increasing 

applied voltage.  By the highest membrane potential applied (120mV) the mean 

difference in current before and after treatment was negligible (although within 

individual cells is was still significant).  This data implies that the protocol, and 

possibly handling of the cells, does have an impact upon the recorded K+ current. 

In the published literature (section 1.6) there was no occasion where the effect of 

the control treatment over time on the recorded current was discussed.  It is not 

known how wide spread this phenomenon is. 

Furthermore, even at very negative potentials there was a slight current recorded, 

which in some cases was negative.  This suggests that despite achieving the 

prerequisite Giga-Ohm seal, the seal of the plasma membrane around the 

micropipette suffered from some leakage.  In a hypothetically ideal voltage gated ion 

current (see Figure 4.7), there is virtually no current at very negative potentials, and 

as the potential steps up past the activation potential of the channels in question, 

positive current flows.    However, this was not always the case.  It was thought this 

may relate to the secretion of matrix proteins by MCF7 (observed visually).  

Attempts were made to minimize the impact of this, including trypsinisation of the 

cells prior to patch clamping (a standard technique to remove extracellular protein), 

and using newly passaged cells which had not had the opportunity to secrete fresh 

protein.  Regrettably they provided no benefit.  For future studies, further time taken 

during the optimisation stages should reduce the impact of this. 

As the time-course shows (Figure 5.12B) after the initial increase in current between 

one and three minutes, there was minimal further degradation of the seal (which 

would be indicated by a further increase in current).  To allow analysis of the 

remaining results, it was assumed that leakage occurred at a constant rate for each 

cell.  This is an unavoidable limitation of the present study, and possibly the 

technique in general. 
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Both the pre-treatment I/V trace, and the 5 minute I/V trace show a response to the 

increasing voltage steps (voltage sensitivity).  Furthermore, both have a reversal 

potential (the voltage at which the recorded current changes from negative, flowing 

into the cell, to positive, flowing out of the cell) of between approximately -50 and -

80mV.  As described in section 5.3.2, this indicates that the majority of the current is 

due to the flow of K+ ions, as this value is close to the K+ equilibrium potential. 

As illustrated in Figure 5.13, 0.1% DMSO treatment for 5 minutes resulted in a slight 

increase in the depolarization activated current, as with the untreated cells.  

However this never achieved statistical significance, and after the initial increase (in 

the first minute) it too stabilised.  This suggests that the presence of DMSO could 

act to stabilise the seal between the pipette and the MCF7 plasma membrane.  

However, it is more likely that at 0.1% in the perfusing Tyrode, DMSO has no 

significant impact upon K+ current or seal integrity. 

  



340 | P a g e  

 

6.4.4 Pharmacological characterization of the whole cell MCF7 current 

using K+ channel blockers 

The impact of the K+ channel blockers TEA, 4-AP, AST and DOF on macroscopic 

current in MCF7 was investigated.  This was to confirm that the system and the cell 

line were capable of generating reproducible results that were in line with what was 

previously published. 

TEA and 4-AP are both fairly broad spectrum channel blockers: TEA blocks the 

majority of the K+ channels, while 4-AP prevents VGKC activity (Table 1.9).  At the 

selected concentrations, both resulted in rapid (within 1 minute) and significant 

reduction in voltage activated current (Figures 5.14 and 5.15), which remained 

stable for several minutes following this.  In both cases the difference within cells 

before and after treatment was statistically significant. 

The concentration of TEA used (10mM) for this was below the IC50 for MCF7 

proliferation calculated previously (18.8mM; section 5.2.2), so the impact on channel 

activity was unlikely to be due to a non-specific cytotoxic effect.  The IC50 for current 

inhibition by TEA has been previously calculated as around 2mM (Ouadid-Ahidouch 

et al. 2004a), which is comparable to the 10mM dose used here.   Previously, after 3 

minutes perfusion with 5mM TEA, whole cell MCF7 current was reduced by 

approximately 88% (400ms depolarising step to +60mV from a holding potential of   

-60mV; Ouadid-Ahidouch et al. 2000).  In the current study, on depolarization 

stepping to +60mV current was reduced by TEA by 26% (777.3 to 574.9 pA).  A 

greater percentage reduction (32%) was seen on depolarization to +40mV.  These 

results are more in line with those of Coiret et al. (2007), who describe a reduction in 

MCF7 current of around 40% after perfusion with 0.5mM TEA, upon stepping the 

potential from -100 to +100mV.  In all cases, treatment with TEA inhibits current 

mediated by the movement of K+ ions, confirming that this ion plays a significant role 

in whole cell MCF7 current. 

As with TEA, the chosen 4-AP concentration of 1mM is below its IC50 for MCF7 

proliferation (2.7mM; Figure 5.9). Again, this was selected to minimize the potentially 

cytotoxic effects of higher concentrations.   The impact of 4-AP on K+ current in 

MCF7 has not been determined prior to this.  Accordingly, there is no calculated IC50 

for the inhibition of MCF7 macroscopic current by 4-AP.  In other cell types it has 
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been calculated as between 0.1 and 4mM (Table 1.9).  After 5 minutes perfusion 

with 1mM 4-AP K+ current was inhibited by approximately 11% (388.4 to 346.0pA), 

upon a voltage step from the holding potential of -50mV to 120mV.  Although there 

are no other published results to compare this to, this suggests that the K+ current 

measured in MCF7 is partly mediated by the VGKCs.  It stands to reason that the   

4-AP sensitive VGKC element of the current would be less than the TEA-sensitive 

current element, as it is one of many components to this current (the K+ channel 

types inhibited by TEA are listed in Table 1.9.) 

Perfusion of MCF7 with 1μM AST (blocker of hEAG and hERG currents) for 5 

minutes inhibited a macroscopic current which became active upon depolarization to 

potentials of -10mV or more positive (Figures 5.16 and 5.18).  The non-significance 

of this result may relate to variation in the size of cell selected for experimentation, 

as discussed in section 6.4.2.  It is known that the hERG channel has a greater 

sensitivity to AST than the hEAG channel.  The whole cell current in HEK293 cells 

with cloned hEAG was determined to have an AST IC50 of 196nM (Garcia-Ferreiro 

et al. 2004), while in HEK293 transfected with hERG the AST IC50 was 0.9nM (Zhou 

et al. 1999).   This suggests that 1μM AST treatment should be able to inhibit both 

channels adequately.  As discussed, treatment with 1μM DOF (blocks only hERG) 

had no impact upon MCF7 whole cell current (Figures 5.17 and 5.18).  The 

conclusion is that the AST-sensitive current recorded is mediated by the hEAG 

channel, and not hERG. 

The voltage sensitivity of the AST-sensitive hEAG current in MCF7 has not 

previously been demonstrated, despite 5μM AST being shown to inhibit whole cell 

MCF7 current on several occasions.  The sensitivity of the current to AST was 

dependent on cell cycle stage, with the maximum effect being seen in G1 phase 

(Ouadid-Ahidouch et al. 2004b).  This group later demonstrated that 5μM AST 

inhibited MCF7 current by 21% in cells arrested in G1 phase by 24 hour serum 

starvation (Borowiec et al. 2007).  Although the conditions of this experiment were 

not analogous to the current study, the observed magnitude of the AST-sensitive 

current was similar.  In this case, 5 minute perfusion with 1μM AST inhibited the 

MCF7 current recorded during a voltage step from -50mV to 40mV by 27.9% (note 

that these cells were not synchronized to any cell cycle stage). 
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Where the hEAG channel was cloned into HEK293 cells, depolarization steps 

between 0 and 120mV (from a holding potential of -70mV) showed that hEAG 

current was activated by depolarization but became insensitive to voltage at 

potentials above 60mV (Garcia-Ferreiro et al. 2004).  This was consistent with the 

current results, which showed AST-sensitive current in MCF7 reaching a peak at 

40mV, and reducing at membrane potentials ≥ 50mV.  

Assuming that the activity of the hEAG channel is comparable between MCF7 cells 

and HEK293 model described above, the selected concentration of 1μM is above 

the IC50 for AST inhibition of hEAG current calculated by Garcia-Ferriero et al. 

(2004), but below its IC50 for MCF7 proliferation (4.9μM; Figure 5.10).  As with 4-AP 

and TEA, this maximizes the effect of AST on the recorded current, whilst reducing 

the impact of non-specific cytotoxic effects of the agent.   

Interestingly, no DOF-sensitive current was observed in MCF7, despite the 

presence of hERG channels being previously shown in these cells (Table 1.8).  This 

suggests that either this channel is absent in this particular MCF7 strain, or it is not 

active under the basal conditions used.  The latter corresponds with the known role 

of hERG in apoptosis in a number of cell types (section 1.6.5).  This requires 

confirmation either by seeking hERG protein in the MCF7 cell line, or the 

assessment of hERG (DOF-sensitive) current under pro-apoptotic conditions.  

Furthermore, it would be of value to determine whether incubation with DOF 

impeded the ability of MCF7 cells to undergo apoptosis. 

Current mediated by the hERG channel is known to be temperature sensitive, and 

increased in HEK293 cells transfected with hERG upon increasing temperature from 

23 to 35oC (Zhou et al. 1998).  The DOF experiments were conducted at room 

temperature.  Although a higher temperature may increase the DOF-sensitive 

current, the cost would be a reduction in the stability of the patch seal (section 

6.4.2).  Again this would be interesting to follow up. 

Due to the lack of effect of the range of DOF concentrations used on MCF7 

proliferation (1nM to 10μM; Figure 5.11), and corresponding inability of E-4031 

(another hERG blocker; see Table 1.9) to impact upon the proliferation of this cell 

line, it was difficult to select an appropriate dose for the patch clamp experiments. 

Likewise, no published data regarding the inhibitory effect of this agent on MCF7 

whole cell current was available.  However, 1μM DOF was effective at inhibiting 
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hERG current in a number of cell types including HEK293 and HL-1 cells during 2.5 

second depolarization steps from -60 to +40mV from the holding potential of -80mV 

(Wang et al. 2002).  Based on this it is likely that this dose is appropriate for use in 

MCF7.  In a more comprehensive study based on this initial data, higher 

concentrations of DOF could be tested for an effect on MCF7 hERG current. 

Wang et al. (2002) reported that hERG current in SK-BR-3 breast cancer cells, 

HEK293 and HL-1 cells under control conditions was active at potentials more 

positive than -40mV.  However, they found that the addition of H2O2 to the perfusing 

solution both increased the magnitude of the hERG current, and lowered its 

activation potential to -60mV.  These experiments were conducted at 36oC, in cell 

lines which do not express VGKCs, which were then stably transfected with vectors 

containing the hERG gene.  The result is that all the observed current activity can be 

attributed to the hERG channel, but that the protein is in a non-physiological 

environment, and consequently, may not be regulated in a wild-type manner.    In 

the MCF7 model used, numerous K+ channels may be involved in any given current.  

While this makes analysis of the results more complex, it is more physiologically 

relevant, as no channel will act in isolation, and all are regulated by the correct 

mechanisms.  It is possible that in the MCF7 model, the activity of other channels 

masks any effect of DOF on the hERG channel.  Alternately, in MCF7 this channel 

may only become active upon pro-apoptotic stimulation.  

Overall, this data from four K+ channel blockers of varying target specificity confirms 

that the VGKCs, and in particular the hEAG channel are active in MCF7, and play a 

role in the proliferation of this cell line.  It also confirms that the hERG channel is not 

involved in basal MCF7 proliferation.  Furthermore, in non-stimulated and 

unstressed conditions this channel is not active in this cell line. 
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6.4.5 17β-oestradiol enhances MCF7 macroscopic current 

Treatment of MCF7 cells with 1nM E2 resulted in a rapid (within 1 minute) and 

significant increase in outward K+  current (Figure 5.19).  This continued to increase 

for up to 10 minutes into the treatment.  After 5 minutes treatment, upon voltage 

stepping from the holding potential of -50mV to +120mV, current was increased by 

approximately 35%, from 762.9 pA to 1032.3 pA. 

E2 treatment is known to increase the activity of MCF7 BK channels (section 1.6.6).  

This effect of E2 was not mediated by the ERs, largely because it occurred very 

rapidly, but in addition, co-treatment with the ER-antagonist ICI 182780 had no 

effect (Coiret et al. 2007; Coiret et al. 2005).  Furthermore, tamoxifen, in its growth 

promoting concentrations also increased BK current.  

However, the role of the BK channels in MCF7 proliferation is not straightforward.  

The BK channel blockers IbTx (100nM) and CTx (50nM) have previously been 

shown to have no impact on basal MCF7 proliferation (Table 1.9).  They also did not 

inhibit 10nM E2-stimulated MCF7 proliferation, but did reduce BSA-E2 (10nM; does 

not enter the cell) induced proliferation (Coiret et al. 2005).  Interestingly, IbTx and 

CTx also inhibited 10nM tamoxifen-stimulated MCF7 proliferation (Coiret et al. 

2007).  This suggests that E2 acts to promote MCF7 proliferation by two parallel 

mechanisms: the classical genomic (ER driven) mechanism which is independent of 

the K+ channels, and a non-genomic mechanism, which is driven by extracellular E2 

and tamoxifen, comprising direct or indirect activation of the BK channels.  The E2-

mediated increase in macroscopic MCF7 current described above may to relate to 

E2-induced proliferation by the second pathway. 

The K+ current recorded here that was enhanced by E2 treatment is outwardly 

rectifying (passes current more readily in the outward direction).  How it relates to 

the E2-induced inward flow of osmolytes, and hence the swelling observed is not 

apparent from this data, although it seems clear that the VGKCs (mediating outward 

flow of K+ ions) do not play a role, at least in the first few minutes after treatment.  It 

would be interesting to determine whether inhibition of the inwardly rectifying K+ 

channels such as the GIRK channels is capable of preventing E2-induced swelling 

of MCF7.   
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It is possible that E2 treatment is enhancing the current mediated by other outward 

K+ channels known to be involved in MCF7 proliferation, in addition to BK activity, 

such as the hEAG or Kv1.1 channels.   However, the specific MCF7 K+ channel 

targets of E2 continue to require elucidation.  Knockout or silencing of the specific 

channels in MCF7, or treatment with specific channel inhibitors along with E2 would 

help to achieve this end in the future.  However, even without that information, this 

study provides evidence for a rapid, non-genomic mechanism through which E2 

could promote the proliferation of MCF7 cells. 
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6.4.6 Soy isoflavones inhibit MCF7 macroscopic current 

As discussed in section 1.6.7, the impact of genistein and daidzein on K+ channel 

activity, including many of the key channels involved in proliferation and apoptosis, 

is widely studied.  However, this investigation represents the first instance where the 

impact of soy isoflavones on K+ channel activity has been considered in a breast 

cancer cell line. 

Treatment with 31.6µM genistein appeared to inhibit an outwardly rectifying voltage-

sensitive K+ current in MCF7 cells (Figures 5.20 and 5.22), although this failed to 

achieve statistical significance.  The genistein-sensitive current was particularly 

apparent upon depolarization steps from the holding potential to 0mV or more 

positive potentials.  After 5 minutes genistein treatment the current recorded at the 

100mV voltage step was inhibited by 24.4%.   

Daidzein treatment (31.6µM) had a similar impact upon outward whole cell MCF7 K+ 

current; although the magnitude of the effect was considerably lower (Figures 5.21 

and 5.22).  In this case 5 minutes treatment resulted in only 7.6% inhibition of the 

current recorded upon voltage stepping from the holding potential to 110mV.   

Previously, genistein has been shown to inhibit current carried by a number of the 

K+ channels known to be expressed in breast cancer cell lines, including the hERG 

channel transfected into HEK293 cells (Zhang et al. 2008) and its rat homologue 

rERG in rat microglial cells (Cayabyab and Schlichter 2002), Kv1.3 in human T 

lymphocytes (Teisseyre and Michalak 2005), the delayed rectifier K+ current carried 

by Kv7.1 and KCNE1 in HEK293 cells (Dong et al. 2010), and a similar current in 

guinea pig ventricular myocytes (Missan et al. 2006).  In each case genistein was 

apparently acting as a PTK inhibitor, although whether it acts directly on the channel 

protein or on upstream signaling pathways is not known.   

The genistein concentration used in many of these studies (10 to 40µM) was 

comparable with the dose used in this investigation, described in sections 4.3 and 

5.3 of this thesis.  However, in some cases up to 100µM genistein has been used 

(Dong et al. 2010; Missan et al. 2006).  The physiological relevance of these very 

high doses is limited.  The sensitivity of the current to genistein appears to be 

channel and cell type specific.  Kv1.3 current in human T lymphocytes was 

approximately half blocked by genistein between 10 and 40µM (Teisseyre and 
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Michalak 2005). Likewise, in HEK293 cells stably expressing the Kv7.1/KCNE1 

channel, the delayed rectifier K+ current was inhibited by approximately 50% by 

30µM genistein (Dong et al. 2010).  However, a similar current in guinea pig 

ventricular myocytes (specific channels not identified) was less sensitive to 

genistein, as the IC50 was calculated to be around 64µM (Missan et al. 2006).  It 

would be of value to determine the dose-response for genistein on the MCF7 

macroscopic current recorded. 

The studies described in section 1.6.7 use similar voltage stepping protocols to the 

protocol used here to analyse the impact of genistein on various VGKCs.  These 

comprise a holding potential of -80mV, then voltage steps lasting up to two seconds 

from -60mV up to +60 or +70mV (Dong et al. 2010; Missan et al. 2006; Teisseyre 

and Michalak 2005; Zhang et al. 2008).  In each case they found that genistein 

inhibited the voltage activated element of the whole cell current, the effect took 5 to 

8 minutes to reach its full magnitude, and upon genistein washout the current 

inhibition reversed.  The relatively long time taken for the inhibitory effect of 

genistein to develop was mirrored in the present study, during which the current 

reduced gradually over 5 minutes treatment before stabilising.    

The minimal inhibitory effect of daidzein observed in MCF7 cells echoes previous 

studies in other cell types, where daidzein was found to have considerably less 

current inhibitory effect than genistein (Dong et al. 2010; Missan et al. 2006), or 

none at all (Cayabyab and Schlichter 2002; Teisseyre and Michalak 2005).  In each 

case this was related to the lack of PTK-inhibitory properties of daidzein compared 

to genistein.  Furthermore, genistin, the PTK-inactive precursor of genistein also had 

no impact upon K+ current (Missan et al. 2006). 

The mechanisms through which genistein, and to a lesser extent daidzein, may be 

working on MCF7 plasma membrane K+ channels are not known.  There is some 

evidence that both may have some direct K+ channel blocking activity, although this 

is dependent on the channel type and cell line (section 1.6.7).   Furthermore, a 

number of tyrosine kinases, including the Src-family kinases and/or EGFR have 

been implicated in the regulation of a number of K+ channel types (section 1.6.7).  

However, despite the known PTK-inhibitory action of genistein (Peterson 1995), very 

high concentrations of 190µM were required to see significant inhibition of EGFR 

tyrosine phosphorylation in MCF7, and these concentrations also caused massive 
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and rapid cell death (Peterson and Barnes 1996).  Furthermore, genistein up to this 

concentration had no effect on tyrosine phosphorylation of a number of other key 

signaling kinases in MCF7, including MAPK and phosphatidylinositol 3-kinase (PI-3-

K; Peterson and Barnes 1996).  Lower concentrations of genistein (≤10µM) actually 

increased the phosphorylation (activation) of a number of key signaling kinases 

including ERK1/2 and Src (Liu et al. 2010; Lucki and Sewer 2011; Maggiolini et al. 

2004; Yang et al. 2010).  This suggests that at the concentrations used in the 

present and previous studies, K+ current inhibition by genistein is not mediated by 

PTK inhibition of these signaling kinases.  However, there is considerable indirect 

evidence suggesting that numerous K+ channels are directly or indirectly regulated 

by tyrosine phosphorylation, including studies involving a range of PTK inhibitors.   

It is possible that genistein inhibits direct phosphorylation, and hence activation, of 

the channel proteins.  These are described in section 1.6.7.  Many of the K+ 

channels do appear to be regulated by direct phosphorylation of the channel protein.  

The mammalian 2-pore domain K+ channels, including several members of the 

TASK channel family, are inhibited by direct channel phosphorylation by protein 

kinase A (PKA) and PKC (Patel and Honore 2001).  On the other hand, the 

Kv7.1/KCNE1 channel forms a macromolecular complex with a number of proteins 

including PKA, resulting in the serine phosphorylation of a residue on the amino 

terminus of the Kv7.1 protein, and activation of the channel (Chen and Kass 2011).  

Tyrosine phosphorylation of the amino terminal of a number of VGKCs increases 

channel activity, including the Kv1.2 and Kv1.3 channels (Davis et al. 2001 and 

references therein).  Tyrosine phosphorylation is also implicated in the regulation of 

other K+ channel groups, including BK, and the Kir channels (Davis et al. 2001).  

However, to date, the effect of genistein on direct phosphorylation of the various K+ 

channel proteins is as yet unknown.  Whether phosphorylation has a positive or 

negative influence on channel activity appears to depend upon the channel type and 

site of phosphorylation. 

Preliminary attempts were made to characterize some of the channels on which 

genistein might be acting.  Combining treatments is a frequently used method in this 

field, designed to highlight synergy, interference, or no additional effect between 

compounds with known channel targets, such as AST, IbTx and TEA, and an 

uncharacterized molecule, in the manner of the Ouadid-Ahidouch group (Borowiec 

et al. 2007; Coiret et al. 2007; Coiret et al. 2005; Ouadid-Ahidouch et al. 2004a; 
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Ouadid-Ahidouch et al. 2004b).  In this manner the K+ channel targets of E2 have 

been ascertained (section 1.6.6).   However, this technique has not previously been 

used to identify the K+ channel targets of genistein. 

The combination of 4-AP and genistein was intended to confirm that genistein 

inhibited the VGKCs in MCF7.  However, 5 minute treatment resulted in a non-

significant increase in whole cell current (Figure 5.23).  Upon stepping voltage to 

+40mV, the current was increased by 21.7%.  Three minute treatment had a similar 

effect (not shown).  While it is possible that the two agents interfered with each 

others activity, what is more likely, due to the rapid degradation of the patch clamp 

seal following this point, is that the treatment had a toxic effect upon the cells, and 

resulted in their early death.  

Equally, the patched cells were unstable with the combined genistein-AST 

treatment, and only 3 minutes of recordings were achieved at the n=3 level (Figure 

5.24).  However, after 3 minutes this combined treatment inhibited a voltage gated 

current which was apparent upon depolarization to potentials of -40mV or more 

positive.  The current was calculated to be reduced by 15.4% at the 100mV voltage 

step after treatment.  This current was very similar both in characteristics and 

magnitude to the AST-sensitive current.  This suggests that the hEAG channel is 

potentially a key molecular target of genistein in MCF7 cells.  Future experiments 

looking at the effects of combined genistein and K+ channel blockers may benefit 

from the use of lower concentrations of both agents, once dose-responses have 

been characterized in MCF7. 

The role of the hEAG channel in MCF7 has previously been confirmed (Figure 5.10).  

Furthermore, MCF7 proliferation with genistein concentrations >10µM was sub-

maximal and reducing as concentration increased (Figure 3.3).  The current data 

suggests that in addition to the slight increase in the induction of apoptosis seen in 

MCF7 with 31.6µM genistein, in parallel this treatment inhibits hEAG current in a 

rapid non-genomic manner, which has a further negative impact on cell proliferation. 

The mechanism through which genistein inhibits hEAG current is not known. 

Others have described genistein mediated inhibition of hERG current also, although 

not in MCF7 cells to date (section 1.6.7..6).  Although this channel had no activity 

under basal conditions in MCF7, it would be of interest to investigate the activity of 
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hERG in pro-apoptotic genistein concentrations, due to the known role of this 

channel in apoptosis (section 1.6.5). 

The role of the VGKCs, including hEAG, in volume regulation is not yet known, and 

unfortunately little can be inferred from the current results with genistein for cell 

volume and K+ channel activity.  One set of data shows that 31.6µM genistein 

results in (apoptotic) shrinkage of MCF7 cells, which is frequently mediated by an 

outward flux of ions including K+, but in parallel, this concentration of genistein 

inhibits outward K+ current, including that mediated by the hEAG channel.   This 

implies that hEAG is not involved in genistein-induced AVD in MCF7.  However, it is 

apparent that many of the K+ channels are involved in both pro-apoptotic and pro-

proliferative responses in some cell lines, depending upon the stimulus, intermediate 

regulatory mechanisms, and potential for cross-talk between pathways.  It is hoped 

that this pilot data will lead to further research regarding the mechanisms through 

which soy isoflavones regulate ion channel activity, and hence proliferation and 

apoptosis in breast cancer cells. 
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6.5 The discrepancy between the in vitro and in vivo effects 

of soy isoflavones  

The aims of this investigation were two-fold.  Firstly, the intention was to better 

characterize the proliferative and apoptotic effects of physiologically relevant 

concentrations of genistein and daidzein on two breast cancer cell lines of differing 

ER status, and to understand more clearly the impact of pre- and post-menopausal 

E2 concentrations on these responses. Secondly, this project was designed to begin 

to elucidate several novel mechanisms through which the soy isoflavones may be 

mediating these proliferative and apoptotic effects.  

In ERα+ MCF7 cells, the increase in proliferation due to the isoflavones was 

compounded by the presence of physiological postmenopausal E2 levels, and 

premenopausal to a lesser extent, suggesting that in this particular breast cancer 

model, physiological levels of isoflavones are associated with an increase in breast 

cancer risk.  However, this contradicts gathering epidemiological evidence which 

points to a protective effect of even relatively modest intakes of soy isoflavones 

against breast cancer incidence, recurrence, and mortality.  Furthermore, this 

benefit appears to be greater for ERα+ breast cancer.   

In the course of this research, a number of possible reasons behind this discrepancy 

have been uncovered and investigated, which will be discussed in the following 

section. 
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6.5.1 Recommendation to re-classify ER status in breast cancer 

This study builds on the evidence suggesting that soy isoflavones could be of 

benefit for breast cancers expressing greater levels of ERβ than ERα.  The current 

evidence is in the form of the reduction in proliferation, and associated increase in 

the induction of apoptosis described in the ERα-/ERβ+ breast cancer cell line MDA-

MB-231.  This supports the hypothesis that ERβ mediates many of the protective 

effects of soy isoflavones seen, while through ERα they act to enhance proliferation. 

There is a case for the actions of ERβ explaining some of the discrepancies 

between the in vitro and epidemiological effects of soy isoflavones on breast cancer.  

The level of ERβ expression in the breast tumours of the women involved in all the 

epidemiological studies regarding isoflavones and breast cancer is not known.  As 

described, the epidemiological studies categorized the women according to their 

ERα expression level as either ER+ or ER-, according to standard medical practice, 

due to the clinical significance of ERα expression levels indicating the potential for 

benefit from endocrine therapy.  However, to better understand the impact of soy 

isoflavones on breast cancer in the future, if possible four categories should be 

used, based on the relative levels of both ERs (Figure 6.4). 

This hypothesis may explain the net reduction in risk and recurrence of ERα+ (ER+) 

breast cancer associated with a high intake of isoflavones.  It is possible that, 

despite the potential for an increase in risk in the minority ERα+/ERβ- subgroup of 

this population, for the majority of the ERα+ women, their tumours would also 

express ERβ, potentially at high enough levels to be associated with a reduction in 

risk with high isoflavone intakes. 

Likewise, the ERα-/ERβ+ sub-population could also benefit from high isoflavone 

intakes, for the reasons described.  This was not evident from the epidemiological 

evidence for the ERα- (ER-) population, possibly due to low numbers or masking by 

the lack of any effect of physiological levels of isoflavones in the final ERα-/ERβ- 

group. 

However, before clinical practice can be changed, or recommendations can be 

made, considerable further research is needed in this field.  While a great deal is 

understood regarding the mechanisms through which isoflavones may modulate 

breast cancer risk, much more research is required.   
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Figure 6.4: Conventional and suggested new categories for breast cancer ER 

classification 

Diagrammatical representation of how the conventional breast cancer ER 

classifications of ER+ and ER- would subdivide into four new categories, based on 

the levels of both ERs.  The percentages represent the estimated frequency of that 

ER subtype occurring, as published by Skliris et al. (2008). 

As discussed, this must include unequivocal confirmation of the role of ERβ.  Initially 

steps should include knockout or silencing of the ERβ gene in MDA-MB-231, or 

isoflavone feeding to βERKO mice to confirm that ERβ mediates the protective 

effects of isoflavones in ERβ-dominant scenarios.  If specific ERβ antagonists can 

be developed than they would aid this field also.  Furthermore, the epidemiological 

evidence for the protective effect of isoflavones should be revisited, with a focus in 

the expression levels of ERβ. 

In the longer term, it must be determined whether the cost of routine testing for ERβ 

outweighs its potential benefit to women with breast cancer.  This would require 

clinical testing.  Furthermore, this would likely highlight the difficulties surrounding 

testing for ERβ.  Due to its many isoforms (Figure 1.2), the various ERβ antibodies 



354 | P a g e  

 

currently in use vary in their isoform specificity depending on their target sequence.  

To date there are no specific downstream clinical markers of ERβ expression which 

can be used diagnostically (Clark et al. 2012).  Many questions remain which must 

be addressed, regarding the physiological roles of the individual isoforms, which 

vary in their ligand binding and transcriptional activating abilities (section 1.4.2; 

Cappelletti et al. 2006; Maruyama et al. 1998; Ogawa et al. 1998).  
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6.5.2 Isoflavones and breast cancer survivors: interactions with 

treatment regimes 

It is of key importance to further investigate whether isoflavones interact with any 

chemotherapeutic treatments that women with breast cancer may undergo.  As 

many of these agents work as oestrogen antagonists, or interfere with oestrogen 

synthesis or other key signaling pathways, any interaction between them and 

isoflavones has the potential to be of great benefit or harm to the women.    

In one prospective cohort of Chinese breast cancer survivors, among the group with 

ERα+ cancer (n =3181), a protective effect was associated with high soy intake for 

mortality (all causes) and breast cancer recurrence and mortality, in both tamoxifen 

and non-tamoxifen users (Shu et al. 2009).  Among non-tamoxifen users the hazard 

ratio (HR) and 95% CI for breast cancer recurrence and mortality with the highest 

quartile of total soy intake compared to the lowest (1: reference) was 0.65 (0.36-

1.17).  For women using tamoxifen these values were 0.93 (0.58-1.51) for women in 

the lowest quartile of soy intake and 0.66 (0.40-1.09) for the highest soy intake 

quartile.  Interestingly, this suggests that among the women in the highest soy intake 

quartiles, use of tamoxifen did not appear to provide any additional protection.  

When the HR was calculated for isoflavone intake (mg/day) instead of total soy, the 

values were similar. 

However, another smaller prospective cohort of Chinese women with breast cancer 

reported no additional benefit of postmenopausal ERα+ breast cancer recurrence 

with increasing isoflavone intake (Kang et al. 2009).  Importantly, they did not 

observe any increased risk associated with interference between the isoflavones 

and tamoxifen.  It may be of relevance that numbers in this study were low (438 

women received tamoxifen).   

Overall, a pooled analysis of breast cancer survivor cohorts (which did not include 

the above study, reported no significant effect of soy intake on the inverse 

relationship between tamoxifen use and breast cancer recurrence and mortality 

(Nechuta et al. 2012).  This study pooled the results of four cohorts from both the 

US and China, and included 9514 breast cancer cases.  

On the other hand, high soy intake appeared to have an additional benefit for breast 

cancer recurrence among postmenopausal women receiving anastrazole, an 
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aromatase inhibitor which interferes with E2 biosynthesis (Kang et al. 2009).  Among 

anastrazole users (n=86) compared to the lowest quartile of soy intake, women in 

the highest quartile had significantly reduced risk of recurrence (HR 0.65, 95% CI 

0.47-0.85, p for trend = 0.005).  

As both tamoxifen and E2 are known to act similarly on the activity of the BK 

channel (section 1.6.6; Coiret et al. 2007), it would be interesting to characterize the 

impact of genistein and daidzein on this channel.  In each case where they have 

been tested, daidzein has shown considerably reduced or no effect on K+ current, 

compared to genistein.  It is possible that this difference between the two molecules 

may provide a mechanism for their opposing effects on tamoxifen-inhibition of 

cancer cell proliferation observed in animal models of the disease (section 1.3.3). 

Overall, these studies are promising, and argue that dietary isoflavones do not 

antagonize the effects of tamoxifen and anastrazole treatment.  In addition, 

depending upon the treatment regime, they may be able to reduce the risk of breast 

cancer recurrence or mortality independently, conferring an additional benefit.  

Regrettably, animal studies using various rodent models have failed to conclusively 

back this up (section 1.3.3).  However, as discussed, the use of rodent models for 

breast cancer may be of limited value.  There have been no studies in other model 

systems, including both primary tissue and cultured cells which were specifically 

designed to investigate this outcome. 
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6.5.3 The choice of breast cancer model: in vitro versus in vivo  

In an attempt to understand some of the mechanisms behind the effects of 

isoflavones on breast cancer risk, two in vitro models of breast cancer were used: 

the cell lines MCF7 and MDA-MB-231.  MCF7 cells are the most widely used cell 

line in the world (Burdall et al. 2003), although MDA-MB-231 cells are commonly 

used also.  As described, they differ in their ER status (Table 1.2).  Both cell lines 

were a gift from the Hannah Research Institute (Prof. D. Flint).   There are many 

advantages to using cultured cell lines.  In particular, due to their wide use, they 

allow reproducible results, and aid comparison between studies.   However they are 

prone to contamination, genetic drift over time, and their phenotypes can change 

when they are continuously cultured (see section 2.1.1, regarding the use of phenol 

red free experimental medium for MCF7 cells). 

An alternative for future study is the use of primary cell culture, directly derived from 

tumours.  Their characteristics more accurately reflect the original tumour.  

However, they have a finite lifespan, often only surviving several passages, and they 

are easily contaminated by non-cancerous cells.  Both cell lines and primary cells 

will behave differently to the parent tissue as the cell-cell interactions present in the 

organ are lost in vitro (Burdall et al. 2003).  Whichever model is used, it is important 

to bear in mind its limitations.  In addition, comparison between studies in vitro is 

often complicated by the use of a diverse range of growing conditions, cell lines, and 

tests.  In this field, rodent models are not particularly appropriate, for a number of 

reasons, discussed previously (section 1.3.3).  Furthermore, clinical trials in women 

with breast cancer are complicated by the burden of their disease, and the potential 

for the increase in ERα+ cancer proliferation, and as discussed, supplementation in 

this group continues to be contraindicated for this reason (NICE  2009b). 

In the current cell culture models a number of potentially protective mechanisms of 

soy isoflavones were documented, including the induction of apoptosis (MDA-MB-

231 and MCF7), shrinkage, which may relate to AVD (MCF7), and inhibition of 

hEAG current (MCF7).  In addition, numerous other protective mechanisms of soy 

isoflavones have been proposed, including modulation of oestrogen synthesis, cell 

cycle control, breast tissue development, antioxidant activity, angiogenesis and 

protein tyrosine kinase inhibition (Steiner et al. 2008).  These are too numerous to 

discuss in any detail.   
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However, despite the innumerable protective mechanisms frequently associated 

with physiological isoflavone levels such as those used in this investigation, the 

inhibition of breast cancer cell growth by isoflavones is outweighed by their ability to 

induce ERα-mediated cell proliferation, at all but the very highest (non-physiological) 

concentrations.  There is growing evidence to suggest that the balance between the 

protective and proliferative effects of soy isoflavones may be in greater favour of 

their growth-inhibitory pro-apoptotic properties in a human in vivo model of the 

disease. 

As discussed above, there are the obvious differences between cell culture and 

women, including the cell-cell interactions, organs, and immune system, which could 

impact upon the efficacy of isoflavones.  Furthermore, genistein and daidzein do not 

circulate in the serum of soy consumers in isolation, but exist with alongside a 

number of secondary metabolites with varying activities (discussed in section 1.2.3). 

The report by Hwang et al. (2006) highlights the fact that the impact of the 

isoflavone metabolites frequently differed to that of the parent molecule, and thus 

they had varying abilities to promote ERα-mediated proliferation, and act as E2 

agonists or antagonists.   Due to the significant inter-species and inter-individual 

variation in isoflavone metabolism it is difficult to design studies and draw 

conclusions regarding this.  However, Hwang et al. (2006) suggested that many of 

the key metabolites of soy isoflavones, including dihydrogenistein, O-

demethylangolensin and tetrahydrodaidzein induce MCF7 proliferation to a 

considerably lower extent that the parent isoflavones.   

In addition, a study feeding male and female Sprague-Dawley rats with genistein, 

firstly via the lactating dam, then post-weaning with supplemented feed (5 and 500 

µg/g genistein) for 140 days from birth compared the serum and tissue levels of total 

genistein and the free (aglycone) form (Chang et al. 2000).  They found that 

compared to the serum levels, mammary gland tissue levels of genistein had a 

greater proportion of the free genistein fraction, and less total genistein.  This 

suggests that the non-polar aglycone form accumulates more readily in mammary 

tissue, due to the high adipose content, than the more polar conjugates. 

The impact of the varying levels of certain metabolites on the protective 

mechanisms observed in MCF7, including the induction of apoptosis and hEAG 

current identified in this project, requires characterization.  It is possible that some 
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metabolites of genistein and daidzein may retain the protective roles of the parent 

molecules, whilst having a minimal impact on proliferation at physiological 

concentrations.  In this manner, metabolism of isoflavones may explain some of the 

discrepancy between the conclusions drawn from in vitro and in vivo research.  

However, the impact and degree of isoflavone metabolism varies between 

individuals. 

In addition to the issue of isoflavone metabolism, questions have been raised 

regarding the impact of long term isoflavone exposure, specifically adolescent soy 

intake (discussed fully in section 1.3.2).  This seems to provide lifelong benefit by 

altering the development of breast tissue during puberty, rendering it less 

susceptible to carcinogens.  Importantly, this protective effect of soy is independent 

of, and acts in addition to the cancer reducing properties of adult isoflavone intake.  

Indeed, where adolescent and current adult soy intakes have been assessed, high 

levels of each had a cumulative beneficial effect on breast cancer risk (Wu et al. 

2002).   

Finally, the isoflavone concentrations used in this and many other studies were 

based upon the serum levels seen in women consuming various quantities of soy.  

However, as covered in section 1.2.4, the levels of isoflavones in the breast tissue 

itself may not reflect the serum levels.  It is possible that isoflavones accumulate in 

the breast tissue, to greater levels than are seen in the serum, allowing them to 

achieve the ≥50µM concentrations associated with the greatest inhibition of breast 

cancer cell proliferation observed in vitro.  However, equally, tissue levels could be 

lower than that measured in the serum.  Studies to date, assessing the isoflavone 

levels in nipple aspirate fluid (Hargreaves et al. 1999; Maskarinec et al. 2008) or in 

tissue samples from biopsies (Bolca et al. 2010; Maubach et al. 2004) are 

inconclusive.  These studies are limited by the invasiveness of the respective 

procedures, resulting in very low numbers, high drop out rates, and experimental 

population selection bias.   A larger and more comprehensive study looking at the 

tissue levels of isoflavones and their metabolites is required, but for these reasons, 

may be difficult to undertake.  Until this is forthcoming, the serum concentrations of 

isoflavones remain the best available evidence of their in vivo levels.   

Due to the reasons discussed, there is no ideal model with which to study the 

interactions between soy isoflavones and breast cancer.  Despite the limitations 
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associated with cell culture models of the disease, such as MCF7 and MDA-MB-231 

cells, their use continues to be necessary, as part of a multifaceted, multidisciplined 

approach, including cell culture, primary tissue, animal studies, epidemiological 

studies, and clinical trials with greater numbers of women with and without breast 

cancer. 
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CHAPTER 7. Summary and conclusions 

The aims of this research were to determine the effect of achievable (physiological 

serum) levels of genistein and daidzein, at pre- and post- menopausal oestrogen 

concentrations, on breast cancer cell apoptosis and proliferation in two cell lines: 

MCF7 and MDA-MB-231.  Following this, to begin to characterize some of the 

mechanisms through which genistein and daidzein may be acting, preliminary 

results were gathered regarding their impact upon MCF7 volume regulation and K+ 

channel activity, as both these are known to influence proliferation and apoptosis. 

This project makes a significant contribution to the analysis of the proliferative and 

apoptotic effects of soy isoflavones in competition with E2.  Indeed, to date, it is the 

most comprehensive study undertaken where physiological levels of genistein and 

daidzein have been investigated at both pre- and postmenopausal E2 levels.  No 

previous study has gathered data regarding such a comprehensive range of 

conditions.  Of particular note amongst the proliferation experiments are the 

combinations of postmenopausal E2 and daidzein in MCF7, and in MDA-MB-231 

cells daidzein alone, all the E2-daidzein combinations, and genistein at 

postmenopausal E2 levels.  The effect of these treatments on cell proliferation has 

not previously been investigated.  In addition, very little was previously known 

regarding the effects of physiological concentrations of isoflavones on the induction 

of apoptosis in these cell lines.  This study contributes key new information 

regarding the effect of genistein and daidzein, both alone and in combination with 

E2, on MDA-MB-231 apoptosis.  In addition, with the exception of one very limited 

study, this was the first occasion where the induction of MCF7 apoptosis by a range 

of achievable concentrations of genistein and daidzein in a physiologically relevant 

E2 environment has been described.  As many of the effects of the soy isoflavones 

are thought to relate to their oestrogen agonistic or antagonistic properties, how they 

compete with or displace endogenous oestrogens was thought to be an important 

potential mechanism for their protective effects in vivo, and so this element of the 

research was highly relevant. 

Investigation of the impact of E2 and genistein on MCF7 volume regulation by the 

calcein fluorescence method was a novel field of research, based on existing 

knowledge regarding the roles of shrinkage and swelling in apoptosis and 

proliferation respectively (i.e. shrinkage is an essential early step in apoptosis, and 
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swelling is required for S phase progression during proliferation).  Volume regulation 

has been characterized in MCF7 previously in response to non-physiological 

osmotic stimuli, but never due to a physiologically relevant E2 or isoflavone 

treatment.  Mechanisms such as this may be valuable in understanding the 

protective effects of isoflavones in breast cancer cells, and provide important 

information regarding potential pharmacological targets for future chemotherapeutic 

treatments. 

Finally, despite the well established ability of genistein to block current through 

numerous K+ channels, and the known role of many of these channels in 

proliferation and/or apoptosis in non-excitable cell lines such as MCF7 or MDA-MB-

231, K+ channel blockade by the soy isoflavones has never previously been 

considered in breast cancer cells.  In addition to the inhibitory effect of genistein, 

and to a lesser extent daidzein, on macroscopic MCF7 current, there were a number 

of other elements to this section of the project which contribute novel and important 

information to this field.  Firstly, there is no documented evidence of the impact of 

control treatments (vehicle only and no solvent) or DOF on whole cell MCF7 current 

over time.  In addition, the impact of 4-AP and DOF on MCF7 proliferation has never 

previously been characterized. Overall, this section of the project has provided 

important pilot information regarding a novel mechanism through which the soy 

isoflavones, in particular genistein, as a novel mechanism through which they may 

mediate some of their chemoprotective properties. 

In the MCF7 cell line (representative of ERα+ breast cancer) evidence is presented 

showing that at physiologically relevant concentrations soy isoflavones induce 

several anti-cancer protective mechanisms: namely the induction of apoptosis, cell 

shrinkage, and the inhibition of outward macroscopic K+ current through a number of 

channels including hEAG.  K+ current through a number of channels, including 

hEAG, has an established role in the proliferation of a number of cell types and 

lines, including MCF7.  Furthermore, the increase in the induction of apoptosis 

observed after treatment with the isoflavones in combination with pre- or 

postmenopausal E2 was comparable to increase recorded after treatment with the 

isoflavones alone.  However, in this model of breast cancer, these protective 

mechanisms were insufficient to counter the ERα-mediated increase in proliferation 

observed, although at the highest concentrations used a dramatic downward shift in 

proliferation was documented.  Had higher isoflavone concentrations been tested 
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then a significant inhibition of cell proliferation would likely have been observed, 

although this was outwith the remit of the investigation and would have had limited 

physiological relevance.   

In addition, rather than antagonize E2-induced MCF7 proliferation as hypothesized, 

genistein and daidzein acted in an additive, synergistic manner with 

postmenopausal E2 levels, and to a lesser extent premenopausally, to further 

increase the proliferation of this cell line.  This data suggests that in a physiologically 

relevant E2-enviroment, soy isoflavones might increase ERα+ breast cancer cell 

proliferation.  This conclusion is repeatedly echoed in the relevant published in vitro 

literature.  However, it contradicts with a growing body of epidemiological evidence, 

including several meta-analyses of large prospective cohorts.  The possible reasons 

behind this have been discussed in the previous section. 

However, in the MDA-MB-231 model of ERα-/ERβ+ breast cancer used, evidence is 

presented for a protective effect of the soy isoflavones genistein and daidzein in 

their physiological concentrations, particularly postmenopausally.  In this cell line the 

isoflavones induced apoptosis and inhibited proliferation at concentrations which are 

achievable in the serum through diet alone.  It is hypothesized that this effect may 

be mediated by ERβ.  In accordance with the documented E2-insensitivity of this 

cell line, the presence of E2 had no impact upon isoflavone-induced apoptosis.  In 

many cases the combined E2/isoflavone treatments had a reduced inhibitory effect 

on MDA-MB-231 cell proliferation compared to the single isoflavone treatments, but 

a downward trend in proliferation was still observed with the combinations of 

postmenopausal E2 and daidzein, and where the highest isoflavone concentrations 

were used.  This argues for a protective role of soy isoflavones against ERα-/ERβ+ 

breast cancer.  As discussed, there is no epidemiological evidence to support or 

contradict this to date, as ERβ is not routinely assessed upon breast cancer 

diagnosis.  However, this receptor status group is believed to account for around 

18% of all breast tumours (Skliris et al. 2008). 

As identified in the previous sections, a most pressing continuation of this research 

will be to confirm or reject the role of ERβ in the isoflavone-induced reduction of 

proliferation observed in the MDA-MB-231 model.  To this end, the use of ER 

antagonists can be used, although no specific ERβ antagonists exist to date.  

Alternatively, silencing of the ERβ gene by use of siRNA may be a useful technique.  
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Furthermore, whether soy isoflavones inhibit the proliferation of other ERα-/ERβ+ 

models of breast cancer would be of value to determine.  In particular, if sufficient 

numbers are achievable, it would be of great value to determine the impact of 

dietary isoflavones on survival and recurrence in a clinical trial or prospective 

manner with women with ERα-/ERβ+ cancer, although understandably this currently 

would be very difficult to accomplish.  Confirmation of the role of ERβ in the 

inhibition of ERα-/ERβ+ breast cancer by levels of isoflavones achievable in the 

serum through diet alone would be powerful evidence supporting the case for 

routine assessment of ERβ expression levels in breast cancer.  This would allow 

this large group of women to benefit from the potential chemotherapeutic properties 

of soy isoflavones, a cheap, safe, and readily available treatment. 

In the MCF7 model, and indeed in MDA-MB-231 cells, it is important to follow up the 

preliminary findings presented here regarding the ability of the soy isoflavones, and 

in particular genistein, to inhibit current through numerous K+ channels.  While the 

link between K+ current and proliferation and/or apoptosis in breast cancer cell lines 

is not new, this represents the first of hopefully many investigations looking into K+ 

current modulation as a novel mechanism for the chemotherapeutic benefits of 

isoflavones.  In particular, it would be of benefit to characterize the modulation of 

other K+ channels by isoflavones, including Kv1.1, Kv1.3 and the Ca2+ activated K+ 

channels (BK, IK and SK), as each of these has a suggested role in proliferation.   

Furthermore, it still remains to identify hERG channel activity in MCF7.  It is possible 

that in this cell line the hERG channel is only active under apoptotic stimulation.  In 

this vein, it would be interesting to determine whether genistein and daidzein at their 

pro-apoptotic concentrations can induce hERG current, or whether the hERG 

blocker DOF can prevent isoflavone-induced apoptosis in MCF7.   In each case 

these experiments can be conducted using specific K+ channel blockers in the 

manner of this investigation.  However, further characterization of the activities of 

the various channels can also be attempted by silencing the channel gene (such as 

with siRNA).  To date little is known regarding the expression of K+ channels in 

MDA-MB-231 cells.  To follow up whether inhibition of K+ current in this cell line is a 

mechanism through which isoflavones mediate their proliferation-reducing 

properties, this would also require clarification. 
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In summary, there continue to exist two contradictory hypotheses regarding soy and 

breast cancer which are both supported by aspects of this research.  These are: 

1.  Soy isoflavones are protective against breast cancer, and can reduce its 

incidence, recurrence and mortality, through numerous mechanisms.  The 

potential for benefit may be greater for some groups (i.e. women with ERα-

/ERβ+ tumours) but as yet these populations are not defined on a large 

scale.  As a result soy should be consumed by healthy women and women 

with breast cancer as part of a healthy diet and lifestyle. 

 

2. Evidence shows that soy isoflavones can increase the proliferation of ERα+ 

(ER+) breast cancer cells and as such should be avoided by women with, or 

at high risk of breast cancer. 

However, to date there remains no really convincing supporting evidence for either 

case, with many of the mechanisms for both only occurring in vitro.  Furthermore, for 

each hypothesis there exists a great deal of contradictory evidence.  Until further 

research can be conducted, the only conclusion which can be drawn regarding soy 

isoflavones is that for the general population, and women with breast cancer, normal 

dietary levels appear safe, do not incur any additional risk for breast cancer or other 

conditions, and can be a healthy way to reduce saturated fat intake in the Western 

diet by replacing meat products.  On the other hand, the safety of the higher levels 

of isoflavones achieved by supplement use is not yet established.  In conclusion, if 

healthy women, or breast cancer patients and survivors enjoy soy foods, then there 

is no reason why they should not continue to consume them, in moderation, and as 

part of a healthy balanced diet and lifestyle, and they may contribute towards a 

reduction in breast cancer risk.  However, in line with current medical guidance, 

isoflavone supplementation for the relief of menopausal symptoms should be 

avoided by certain groups of women, such as breast cancer survivors or those with 

a strong family history of the disease, as the risks and benefits are not yet 

established clearly. 

  



366 | P a g e  

 

CHAPTER 8. References 

Abdul, M., Santo, A. and Hoosein, N. 2003. Activity of potassium channel-blockers 
in breast cancer. Anticancer Research, 23 (4), pp.3347-3351.  

Adlercreutz, H., Yamada, T., Wahala, K. and Watanabe, S.  1999.  Maternal and 
neonatal phytoestrogens in Japanese women during birth.  American Journal of 
Obstetrics and Gynecology, 180, pp.737-743. 

Adlercreutz, H. 1995. Phytoestrogens: epidemiology and a possible role in cancer 
protection. Environmental Health Perspectives, 103 Suppl 7 pp.103-112.  

Adlercreutz, H., Markkanen, H. and Watanabe, S. 1993. Plasma concentrations of 
phyto-oestrogens in Japanese men. Lancet, 342 (8881), pp.1209-1210.  

Akter, R., Hossain, M. Z., Kleve, M. G. and Gealt, M. A. 2012. Wortmannin induces 
MCF7 breast cancer cell death via the apoptotic pathway, involving chromatin 
condensation, generation of reactive oxygen species, and membrane blebbing. 
Breast Cancer: Targets and Therapy, 4 pp.103-113.  

Albanito, L., Madeo, A., Lappano, R., Vivacqua, A., Rago, V., Carpino, A., Oprea, T. 
I., Prossnitz, E. R., Musti, A. M., Ando, S. and Maggiolini, M. 2007. G protein-
coupled receptor 30 (GPR30) mediates gene expression changes and growth 
response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer 
cells. Cancer Research, 67 (4), pp.1859-1866.  

Alekel, D. L., Germain, A. S., Peterson, C. T., Hanson, K. B., Stewart, J. W. and 
Toda, T. 2000. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar 
spine of perimenopausal women. The American Journal Of Clinical Nutrition, 72 (3), 

pp.844-852.  

Allan, G. J., Tonner, E., Szymanowska, M., Shand, J. H., Kelly, S. M., Phillips, K., 
Clegg, R. A., Gow, I. F., Beattie, J. and Flint, D. J. 2006. Cumulative mutagenesis of 
the basic residues in the 201-218 region of insulin-like growth factor (IGF)-binding 
protein-5 results in progressive loss of both IGF-I binding and inhibition of IGF-I 
biological action. Endocrinology, 147 (1), pp.338-349.  

Allred, C. D., Ju, Y. H., Allred, K. F., Chang, J. and Helferich, W. G. 2001. Dietary 
genistin stimulates growth of estrogen-dependent breast cancer tumors similar to 
that observed with genistein. Carcinogenesis, 22 (10), pp.1667-1673.  

Allred, C. D., Allred, K. F., Ju, Y. H., Clausen, L. M., Doerge, D. R., Schantz, S. L., 
Korol, D. L., Wallig, M. A. and Helferich, W. G. 2004. Dietary genistein results in 
larger MNU-induced, estrogen-dependent mammary tumors following ovariectomy 
of Sprague-Dawley rats. Carcinogenesis, 25 (2), pp.211-218.  

An, J., Tzagarakis-Foster, C., Scharschmidt, T. C., Lomri, N. and Leitman, D. C. 
2001. Estrogen receptor beta-selective transcriptional activity and recruitment of 
coregulators by phytoestrogens. Journal Of Biological Chemistry, 276 (21), 

pp.17808-17814.  



367 | P a g e  

 

Anthony, M. S., Clarkson, T. B. and Williams, J. K. 1998. Effects of soy isoflavones 
on atherosclerosis: potential mechanisms. American Journal of Clinical Nutrition, 68 
(6 Suppl), pp.1390S-1393s.  

Arai, Y., Uehara, M., Sato, Y., Kimira, M., Eboshida, A., Adlercreutz, H. and 
Watanabe, S. 2000. Comparison of isoflavones among dietary intake, plasma 
concentration and urinary excretion for accurate estimation of phytoestrogen intake. 
Journal Of Epidemiology, 10 (2), pp.127-135.   

Arbildua, J. J., Brunet, J. E., Jameson, D. M., Lopez, M., Nova, E., Lagos, R. and 
Monasterio, O. 2006. Fluorescence resonance energy transfer and molecular 
modeling studies on 4',6-diamidino-2-phenylindole (DAPI) complexes with tubulin. 
Protein Science, 15 (3), pp.410-419.  

Arcangeli, A., Bianchi, L., Becchetti, A., Faravelli, L., Coronnello, M., Mini, E., 
Olivotto, M. and Wanke, E. 1995. A novel inward-rectifying K+ current with a cell-
cycle dependence governs the resting potential of mammalian neuroblastoma cells. 
Journal of Physiology, 489 ( Pt 2) pp.455-471.  

Bacallo, R., Sohrab, S. and Phillips, C.  2006. Guiding principles of specimin 
preservation for confocal fluorescence microscopy. In: Pawley, J. B. ed. Handbook 
of confocal microscopy. 3 ed. New York: Springer, pp. 368-380. 

Badger, T. M., Gilchrist, J. M., Pivik, R. T., Andres, A., Shankar, K., Chen, J. R. and 
Ronis, M. J. 2009. The health implications of soy infant formula. American Journal of 
Clinical Nutrition, 89 (5), pp.1668S-1672S.  

Balfe, P., McCann, A., McGoldrick, A., McAllister, K., Kennedy, M., Dervan, P. and 
Kerin, M. J. 2004. Estrogen receptor alpha and beta profiling in human breast 
cancer. European Journal Of Surgical Oncology, 30 (5), pp.469-474.  

Banerjee, S., Li, Y., Wang, Z. and Sarkar, F. H. 2008. Multi-targeted therapy of 
cancer by genistein. Cancer Letters, 269 (2), pp.226-242.  

Baum, M. and Schipper, H.  2000. Breast Cancer: Fast Facts. London: Oxford.  

Baxter, G. T., Kuo, R. C., Jupp, O. J., Vandenabeele, P. and MacEwan, D. J. 1999. 
Tumor necrosis factor-alpha mediates both apoptotic cell death and cell proliferation 
in a human hematopoietic cell line dependent on mitotic activity and receptor 
subtype expression. Journal Of Biological Chemistry, 274 (14), pp.9539-9547.  

Beatson, G. T. 1896. On the tretament of inoperable cases of carcimoma of the 
mamma: suggestions for a new method of treatment, with illustrative cases. Lancet, 

148 (3803), pp.162-165.  

Beral, V. 2003. Breast cancer and hormone-replacement therapy in the Million 
Women Study. Lancet, 362 (9382), pp.419-427.  

Bernander, R., Stokke, T. and Boye, E. 1998. Flow cytometry of bacterial cells: 
comparison between different flow cytometers and different DNA stains. Cytometry, 
31 (1), pp.29-36.  



368 | P a g e  

 

Bernhard, D., Schwaiger, W., Crazzolara, R., Tinhofer, I., Kofler, R. and Csordas, A. 
2003. Enhanced MTT-reducing activity under growth inhibition by resveratrol in 
CEM-C7H2 lymphocytic leukemia cells. Cancer Letters, 195 (2), pp.193-199.  

Berridge, M. J., Bootman, M. D. and Lipp, P. 1998. Calcium--a life and death signal. 
Nature, 395 (6703), pp.645-648.  

Bhagwat S., Haytowitz D. B., and Holden J. M. (2008). USDA Database for the 
Isoflavone Content of Selected Foods. U.S. Department of Agriculture. Maryland, 
2.0. 

Bianchi, L., Wible, B., Arcangeli, A., Taglialatela, M., Morra, F., Castaldo, P., 
Crociani, O., Rosati, B., Faravelli, L., Olivotto, M. and Wanke, E. 1998. herg 
encodes a K+ current highly conserved in tumors of different histogenesis: a 
selective advantage for cancer cells? Cancer Research, 58 (4), pp.815-822.  

Bielawski, K., Wolczynski, S. and Bielawska, A. 2001. DNA-binding activity and 
cytotoxicity of the extended diphenylfuran bisamidines in breast cancer MCF-7 cells. 
Biological & Pharmaceutical Bulletin, 24 (6), pp.704-706.  

Birch, P. J., Dekker, L. V., James, I. F., Southan, A. and Cronk, D. 2004. Strategies 
to identify ion channel modulators: current and novel approaches to target 
neuropathic pain. Drug Discovery Today, 9 (9), pp.410-418.  

Bloedon, L. T., Jeffcoat, A. R., Lopaczynski, W., Schell, M. J., Black, T. M., Dix, K. 
J., Thomas, B. F., Albright, C., Busby, M. G., Crowell, J. A. and Zeisel, S. H. 2002. 
Safety and pharmacokinetics of purified soy isoflavones: single-dose administration 
to postmenopausal women. American Journal of Clinical Nutrition, 76 (5), pp.1126-
1137.  

Blom, A., Ekman, E., Johannisson, A., Norrgren, L. and Pesonen, M. 1998. Effects 
of xenoestrogenic environmental pollutants on the proliferation of a human breast 
cancer cell line (MCF-7). Archives Of Environmental Contamination And Toxicology, 
34 (3), pp.306-310.  

Boatright, K. M. and Salvesen, G. S. 2003. Mechanisms of caspase activation. 
Current Opinion in Cell Biology, 15 pp.725-731.  

Bock, J., Szabo, I., Jekle, A. and Gulbins, E. 2002. Actinomycin D-induced 
apoptosis involves the potassium channel Kv1.3. Biochemical And Biophysical 
Research Communications, 295 pp.526-531.  

Bolca, S., Urpi-Sarda, M., Blondeel, P., Roche, N., Vanhaecke, L., Possemiers, S., 
Al-Maharik, N., Botting, N., De Keukeleire, D., Bracke, M., Heyerick, A., Manach, C. 
and Depypere, H. 2010. Disposition of soy isoflavones in normal human breast 
tissue. American Journal of Clinical Nutrition, 91 (4), pp.976-984.  

Borowiec, A. S., Hague, F., Harir, N., Guenin, S., Guerineau, F., Gouilleux, F., 
Roudbaraki, M., Lassoued, K. and Ouadid-Ahidouch, H. 2007. IGF-1 activates 
hEAG K(+) channels through an Akt-dependent signaling pathway in breast cancer 
cells: role in cell proliferation. Journal Of Cellular Physiology, 212 (3), pp.690-701.  



369 | P a g e  

 

Bortner, C. D. and Cidlowski, J. A. 1999. Caspase independent/dependent 
regulation of K(+), cell shrinkage, and mitochondrial membrane potential during 
lymphocyte apoptosis. Journal Of Biological Chemistry, 274 (31), pp.21953-21962.  

Bortner, C. D. and Cidlowski, J. A. 2004. The role of apoptotic volume decrease and 
ionic homeostasis in the activation and repression of apoptosis. Pflugers Archive: 
European Journal Of Physiology, 448 pp.313-318.  

Boucher, B.A., Cotterchio, M., Curca, A., Kreiger, N., Harris, S.A., Kirsh, V.A. and 
Goodwin, P.J.  2012.  Intake of phytoestrogen foods and supplements among 
women recently diagnosed with breast cancer in ontario, Canada.  Nutrition and 
Cancer, 64 (5), pp.695-703. 

Braunstein, G. D., Johnson, B. D., Stanczyk, F. Z., Bittner, V., Berga, S. L., Shaw, 
L., Hodgson, T. K., Paul-Labrador, M., Azziz, R. and Merz, C. N. B. 2008. Relations 
between endogenous androgens and estrogens in postmenopausal women with 
suspected ischemic heart disease. Journal Of Clinical Endocrinology And 
Metabolism, 93 (11), pp.4268-4275.  

Brevet, M., Ahidouch, A., Sevestre, H., Merviel, P., El Hiani, Y., Robbe, M. and 
Ouadid-Ahidouch, H. 2008. Expression of K+ channels in normal and cancerous 
human breast. Histology And Histopathology, 23 (8), pp.965-972.  

Brooks, J. D. and Thompson, L. U. 2005. Mammalian lignans and genistein 
decrease the activities of aromatase and 17beta-hydroxysteroid dehydrogenase in 
MCF-7 cells. Journal Of Steroid Biochemistry And Molecular Biology, 94 (5), pp.461-

467.  

Brown, N. M., Belles, C. A., Lindley, S. L., Zimmer-Nechemias, L., Witte, D. P., Kim, 
M. O. and Setchell, K. D. R. 2010. Mammary gland differentiation by early life 
exposure to enantiomers of the soy isoflavone metabolite equol. Food And Chemical 
Toxicology, 48 (11), pp.3042-3050.  

Brumatti, G., Sheridan, C. and Martin, S. J. 2008. Expression and purification of 
recombinant annexin V for the detection of membrane alterations on apoptotic cells. 
Methods, 44 (3), pp.235-240.  

Burdall, S. E., Hanby, A. M., Lansdown, M. R. J. and Speirs, V. 2003. Breast cancer 
cell lines: friend or foe? Breast Cancer Research: BCR, 5 (2), pp.89-95.  

Burgers, A. M., Biermasz, N. R., Schoones, J. W., Pereira, A. M., Renehan, A. G., 
Zwahlen, M., Egger, M. and Dekkers, O. M. 2011. Meta-analysis and dose-response 
metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. Journal 
Of Clinical Endocrinology And Metabolism, 96 (9), pp.2912-2920.  

Burton, J. D.2005. The MTT assay to evaluate chemosensitivity. In: Blumenthal, R. 
D. ed. Methods in Molecular Medicine: Chemosensitivity Volume 1. Totowa, New 

Jersey: Humana Press, pp. 69-78. 

  



370 | P a g e  

 

Busby, M. G., Jeffcoat, A. R., Bloedon, L. T., Koch, M. A., Black, T., Dix, K. J., 
Heizer, W. D., Thomas, B. F., Hill, J. M., Crowell, J. A. and Zeisel, S. H. 2002. 
Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose 
administration to healthy men. The American Journal Of Clinical Nutrition, 75 (1), 
pp.126-136.  

Cahalan, M. D., Wulff, H. and Chandy, K. G. 2001. Molecular properties and 
physiological roles of ion channels in the immune system. Journal Of Clinical 
Immunology, 21 (4), pp.235-252.  

Cannel, M. B. and Thomas, M. V.  1994. Intracellular ion measurement with 
fluorescent indicators. In: Ogden, D. ed. Microelectrode Techniques. 2 ed. 
Cambridge: The Company of Biologists Ltd, pp. 317-345. 

Caplanusi, A., Kim, K. J., Lariviere, E., Van Driessche, W. and Jans, D. 2006. 
Swelling-activated K+ efflux and regulatory volume decrease efficiency in human 
bronchial epithelial cells. Journal Of Membrane Biology, 214 (1), pp.33-41.  

Cappelletti, V., Miodini, P., Di Fronzo, G. and Daidone, M. G. 2006. Modulation of 
estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells. 
International Journal Of Oncology, 28 (5), pp.1185-1191.  

Cardiff, R. D. 2001. Validity of mouse mammary tumour models for human breast 
cancer: comparative pathology. Microscopy Research And Technique, 52 (2), 
pp.224-230.  

Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. 1987. 
Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of 
chemosensitivity testing. Cancer Research, 47 (4), pp.936-942.  

Casanova, M., You, L., Gaido, K. W., Archibeque-Engle, S., Janszen, D. B. and 
Heck, H. d. 2012. Developmental effects of dietary phytoestrogens in Sprague-
Dawley rats and interactions of genistein and daidzein with rat estrogen receptors 
alpha and beta in vitro. Toxicological Sciences, 51 pp.236-244.  

Castillo-Pichardo, L., Martinez-Montemayor, M. M., Martinez, J. E., Wall, K. M., 
Cubano, L. A. and Dharmawardhane, S. 2009. Inhibition of mammary tumor growth 
and metastases to bone and liver by dietary grape polyphenols. Clinical & 
Experimental Metastasis, 26 (6), pp.505-516.  

Cayabyab, F. S. and Schlichter, L. C. 2002. Regulation of an ERG K+ current by Src 
tyrosine kinase. Journal Of Biological Chemistry, 277 (16), pp.13673-13681.  

Chan, M. M., Lu, X., Merchant, F. M., Iglehart, J. D. and Miron, P. L. 2005. Gene 
expression profiling of NMU-induced rat mammary tumors: cross species 
comparison with human breast cancer. Carcinogenesis, 26 (8), pp.1343-1353.  

Chang, E. C., Frasor, J., Komm, B. and Katzenellenbogen, B. S. 2006. Impact of 
estrogen receptor beta on gene networks regulated by estrogen receptor alpha in 
breast cancer cells. Endocrinology, 147 (10), pp.4831-4842.  



371 | P a g e  

 

Chang, H. C., Churchwell, M. I., Delclos, K. B., Newbold, R. R. and Doerge, D. R. 
2000. Mass spectrometric determination of Genistein tissue distribution in diet-
exposed Sprague-Dawley rats. The Journal Of Nutrition, 130 (8), pp.1963-1970.  

Chang, H. T., Huang, J. K., Wang, J. L., Cheng, J. S., Lee, K. C., Lo, Y. K., Liu, C. 
P., Chou, K. J., Chen, W. C., Su, W., Law, Y. P. and Jan, C. R. 2002. Tamoxifen-
induced increases in cytoplasmic free Ca2+ levels in human breast cancer cells. 
Breast Cancer Research And Treatment, 71 (2), pp.125-131.  

Chen, J., Zheng, R., Melman, Y. F. and McDonald, T. V. 2009. Functional 
interactions between KCNE1 C-terminus and the KCNQ1 channel. Plos One, 4 (4), 

p.e5143.  

Chen, J-Q., Contreras, R.G., Wang, R., Fernandez, S.V., Shoshani, L., Russo, I.H., 
Cereijido, M. and Russo, J.  2006.  Sodium/potassium ATPase (Na+, K+-ATPase) 
and oubain/related cardiac glycosides: a new paradigm for the development of anti- 
breast cancer drugs?  Breast Cancer Research and Treatment, 96, pp.1-15. 

Chen, L. and Kass, R. S. 2011. A-kinase anchoring protein 9 and Iks channel 
regulation. Journal of Cardiovascular Pharmacology, 58 pp.459-461.  

Chen, M. X., Gorman, S. A., Benson, B., Singh, K., Hieble, J. P., Michel, M. C., 
Tate, S. N. and Trezise, D. J. 2004. Small and intermediate conductance Ca(2+)-
activated K+ channels confer distinctive patterns of distribution in human tissues 
and differential cellular localisation in the colon and corpus cavernosum. Naunyn-
Schmiedeberg's Archives Of Pharmacology, 369 (6), pp.602-615.  

Chen, S. Z., Jiang, M. and Zhen, Y. s. 2005. HERG K+ channel expression-related 
chemosensitivity in cancer cells and its modulation by erythromycin. Cancer 
Chemotherapy And Pharmacology, 56 (2), pp.212-220.  

Chen, W. F., Gao, Q. G. and Wong, M. S. 2007. Mechanism involved in genistein 
activation of insulin-like growth factor 1 receptor expression in human breast cancer 
cells. British Journal Of Nutrition, 98 (6), pp.1120-1125.  

Chen, Z., Zhang, Z., Gu, Y. and Bai, C. 2011. Impaired migration and cell volume 
regulation in aquaporin 5-deficient SPC-A1 cells. Respiratory Physiology & 
Neurobiology, 176 (3), pp.110-117.  

Cheng, G., Wilczek, B., Warner, M., Gustafsson, J. A. and Landgren, B. M. 2007. 
Isoflavone treatment for acute menopausal symptoms. Menopause, 14 (3 Pt 1), 
pp.468-473.  

Cherdshewasart, W. and Sriwatcharakul, S. 2008. Metabolic activation promotes 
estrogenic activity of the phytoestrogen-rich plant. Maturitas, 59 (2), pp.128-136.  

Cherubini, A., Taddei, G. L., Crociani, O., Paglierani, M., Buccoliero, A. M., Fontana, 
L., Noci, I., Borri, P., Borrani, E., Giachi, M., Becchetti, A., Rosati, B., Wanke, E., 
Olivotto, M. and Arcangeli, A. 2000. HERG potassium channels are more frequently 
expressed in human endometrial cancer as compared to non-cancerous 
endometrium. British Journal Of Cancer, 83 (12), pp.1722-1729.  



372 | P a g e  

 

Chlebowski, R. T., Hendrix, S. L., Langer, R. D., Stefanick, M. L., Gass, M., Lane, 
D., Rodabough, R. J., Gilligan, M. A., Cyr, M. G., Thomson, C. A., Khandekar, J., 
Petrovitch, H. and McTiernan, A. 2003. Influence of estrogen plus progestin on 
breast cancer and mammography in healthy postmenopausal women: the Women's 
Health Initiative Randomized Trial. Journal Of The American Medical Association, 

289 (24), pp.3243-3253.  

Chlebowski, R. T., Kuller, L. H., Prentice, R. L., Stefanick, M. L., Manson, J. E., 
Gass, M., Aragaki, A. K., Ockene, J. K., Lane, D. S., Sarto, G. E., Rajkovic, A., 
Schenken, R., Hendrix, S. L., Ravdin, P. M., Rohan, T. E., Yasmeen, S. and 
Anderson, G. 2009. Breast cancer after use of estrogen plus progestin in 
postmenopausal women. New England Journal Of Medicine, 360 (6), pp.573-587.  

Choi, E. J. and Kim, G. H. 2008. Daidzein causes cell cycle arrest at the G1 and 
G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. 
Phytomedicine, 15 (9), pp.683-690.  

Choi, J. N., Kim, D., Choi, H. K., Yoo, K. M., Kim, J. and Lee, C. H. 2009. 2'-
hydroxylation of genistein enhanced antioxidant and antiproliferative activities in 
mcf-7 human breast cancer cells. Journal Of Microbiology And Biotechnology, 19 

(11), pp.1348-1354.  

Chua, B. T., Guo, K. and Li, P. 2000. Direct cleavage by the calcium-activated 
protease calpain can lead to inactivation of caspases. Journal Of Biological 
Chemistry, 275 (7), pp.5131-5135.  

Clark, J. A., Alves, S., Gundlah, B., Rocha, B., Birzin, E. T., Cai, S.-J., Flick, R., 
Hayes, E., Ho, K., Warrier, S., Pai, L.-P., Yudkovitz, J., Fleischer, R., Colwell, L., Li, 
S., Wilkinson, H., Schaeffer, J., Wilkening, R., Mattingly, E., Hammond, M. and 
Rohrer, S. P. 2012. Selective estrogen receptor beta (SERM-beta) compunds 
modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and 
cause antidepressent-like effects in the forced swim test. Neuropharmacology, 63 
(6), pp.1051-1063.  

Clarke, R., Leonessa, F., Welch, J. N. and Skaar, T. C. 2001. Cellular and molecular 
pharmacology of antiestrogen action and resistance. Pharmacological Reviews, 53 
(1), pp.25-71.  

Clavel-Chapelon, F. and the E3N-EPIC group 2002. Differential effects of 
reproductive factors on the risk of pre- and postmenopausal breast cancer. Results 
from a large cohort of French women. British Journal Of Cancer, 86 (5), pp.723-727.  

Cohen, L. A., Zhao, Z., Pittman, B. and Scimeca, J. A. 2000. Effect of intact and 
isoflavone-depleted soy protein on NMU-induced rat mammary tumorigenesis. 
Carcinogenesis, 21 (5), pp.929-935.  

Coiret, G., Borowiec, A. S., Mariot, P., Ouadid-Ahidouch, H. and Matifat, F. 2007. 
The antiestrogen tamoxifen activates BK channels and stimulates proliferation of 
MCF-7 breast cancer cells. Molecular Pharmacology, 71 (3), pp.843-851.  

Coiret, G., Matifat, F., Hague, F. and Ouadid-Ahidouch, H. 2005. 17-beta-estradiol 
activates maxi-K channels through a non-genomic pathway in human breast cancer 
cells. FEBS Letters, 579 (14), pp.2995-3000.  



373 | P a g e  

 

Collaborative Group on Hormonal Factors in Breast Cancer 1997. Breast cancer 
and hormone replacement therapy: collaborative reanalysis of data from 51 
epidemiological studies of 52,705 women with breast cancer and 108,411 women 
without breast cancer. Lancet, 350 (9084), pp.1047-1059.  

Constantinou, A. I., Krygier, A. E. and Mehta, R. R. 1998. Genistein induces 
maturation of cultured human breast cancer cells and prevents tumor growth in nude 
mice. American Journal of Clinical Nutrition, 68 (6 Suppl), pp.1426S-1430s.  

Constantinou, A. I., Lantvit, D., Hawthorne, M., Xu, X., van Breemen, R. B. and 
Pezzuto, J. M. 2001. Chemopreventive effects of soy protein and purified soy 
isoflavones on DMBA-induced mammary tumors in female Sprague-Dawley rats. 
Nutrition And Cancer, 41 (1-2), pp.75-81.  

Constantinou, A. I., White, B. E. P., Tonetti, D., Yang, Y., Liang, W., Li, W. and van 
Breemen, R. B. 2005. The soy isoflavone daidzein improves the capacity of 
tamoxifen to prevent mammary tumours. European Journal Of Cancer (Oxford, 
England: 1990), 41 (4), pp.647-654.  

Coward, L., Smith, M., Kirk, M. and Barnes, S. 1998. Chemical modification of 
isoflavones in soyfoods during cooking and processing. The American Journal Of 
Clinical Nutrition, 68 (6 Suppl), pp.1486S-1491s.  

Crowe, W.E., Altamirano, J., Huerto ,L., Alvarez-Leefmans, F.J. 1995. Volume 
changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe.  
Neuroscience, 51 (1), pp.283-296. 

Cui, Q., Tashiro, S. i., Onodera, S., Minami, M. and Ikejima, T. 2007. Autophagy 
preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biological 
& Pharmaceutical Bulletin, 30 (5), pp.859-864.  

Cummings, S. R., Lee, J. S., Liu, L., Stone, K., Ljung, B. M., Cauleys, J. A. and 
Study of Ostoeporotic Fractures Research Group 2005. Sex hormones, risk factors, 
and risk of estrogen receptor-positive breast cancer in older women: a long term 
prospective study. Cancer Epidemiology, Biomarkers & Prevention, 14 (5), pp.1047-
1051.  

Daniel, B. and DeCoster, M. A. 2004. Quantification of sPLA2-induced early and late 
apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI 
staining. Brain Research Brain Research Protocols, 13 (3), pp.144-150.  

Darzynkiewicz, Z., Galkowski, D. and Zhao, H. 2008. Analysis of apoptosis by 
cytometry using TUNEL assay. Methods, 44 (3), pp.250-254.  

Davis, D. D., Diaz-Cruz, E. S., Landini, S., Kim, Y. W. and Brueggemeier, R. W. 
2008. Evaluation of synthetic isoflavones on cell proliferation, estrogen receptor 
binding affinity, and apoptosis in human breast cancer cells. Journal Of Steroid 
Biochemistry And Molecular Biology, 108 (1-2), pp.23-31.  

Davis, M. J., Wu, X., Nurkiewicz, T. R., Kawasaki, J., Gui, P., Hill, M. A. and Wilson, 
E. 2001. Regulation of ion channels by protein tyrosine phosphorylation. American 
Journal Of Physiology Heart And Circulatory Physiology, 281 (5), p.H1835-H1862.  



374 | P a g e  

 

De Saint-Hubert, M., Prinsen, K., Mortelmans, L., Verbruggen, A. and Mottaghy, F. 
M. 2009. Molecular imaging of cell death. Methods, 48 (2), pp.178-187.  

Deblois, G. and Giguere, V. 2003. Ligand-independent coactivation of ERalpha AF-1 
by steroid receptor RNA activator (SRA) via MAPK activation. Journal Of Steroid 
Biochemistry And Molecular Biology, 85 (2-5), pp.123-131.  

DeCoster, M. A.  2007. The Nuclear Area Factor (NAF): a measure for cell 
apoptosis using microscopy and image analysis. Modern Research and Education 
Topics in Microscopy, 1, pp. 378-384. 

Dewick, P. M.  1994. Isoflavonoids. In: Harborne, J. B. ed. The Flavonoids: 
Advances in Research Since 1986. 1 ed. London: Chapman & Hall, pp. 117-238. 

Dhar, M. S. and Plummer, H. K., III 2006. Protein expression of G-protein inwardly 
rectifying potassium channels (GIRK) in breast cancer cells. BMC Physiology, 6 p.8.  

Dick, G. M., Rossow, C. F., Smirnov, S., Horowitz, B. and Sanders, K. M. 2001. 
Tamoxifen activates smooth muscle BK channels through the regulatory beta 1 
subunit. Journal Of Biological Chemistry, 276 (37), pp.34594-34599.  

Dick, G. M. 2002. The pure anti-oestrogen ICI 182,780 (Faslodex) activates large 
conductance Ca(2+)-activated K(+) channels in smooth muscle. British Journal Of 
Pharmacology, 136 (7), pp.961-964.  

Dixon, R. A. 2004. Phytoestrogens. Annual Review Of Plant Biology, 55 pp.225-261.  

Djuric, Z., Chen, G., Doerge, D. R., Heilbrun, L. K. and Kucuk, O. 2001. Effect of soy 
isoflavone supplementation on markers of oxidative stress in men and women. 
Cancer Letters, 172 (1), pp.1-6.  

Dong, J. Y. and Qin, L. Q. 2011. Soy isoflavones consumption and risk of breast 
cancer incidence or recurrence: a meta-analysis of prospective studies. Breast 
Cancer Research And Treatment, 125 (2), pp.315-323.  

Dong, M. Q., Sun, H. Y., Tang, Q., Tse, H. F., Lau, C. P. and Li, G. R. 2010. 
Regulation of human cardiac KCNQ1/KCNE1 channel by epidermal growth factor 
receptor kinase. Biochimica Et Biophysica Acta, 1798 (5), pp.995-1001.  

Doonan, F. and Cotter, T. G. 2008. Morphological assessment of apoptosis. 
Methods, 44 (3), pp.200-204.  

Dorgan, J. F., Stanczyk, F. Z., Kahle, L. L. and Brinton, L. A. 2010. Prospective 
case-control study of premenopausal serum estradiol and testosterone levels and 
breast cancer risk. Breast Cancer Research, 12 (6), p.R98.  

dos Santos Silva, I., Mangtani, P., McCormack, V., Bhakta, D., McMichael, A. J. and 
Sevak, L. 2004. Phyto-oestrogen intake and breast cancer risk in South Asian 
women in England: findings from a population-based case-control study. Cancer 
Causes & Control: CCC, 15 (8), pp.805-818.  

 



375 | P a g e  

 

Dos Santos, E., Dieudonne, M. N., Leneveu, M. C., Serazin, V., Rincheval, V., 
Mignotte, B., Chouillard, E., De Mazancourt, P., Giudicelli, Y. and Pecquery, R. 
2010. Effects of 17beta-estradiol on preadipocyte proliferation in human adipose 
tissue: Involvement of IGF1-R signaling. Hormone And Metabolic Research, 42 (7), 
pp.514-520.  

Du, M., Yang, X., Hartman, J. A., Cooke, P. S., Doerge, D. R., Ju, Y. H. and 
Helferich, W. G. 2012. Low-dose dietary genistein negates the therapeutic effect of 
tamoxifen in athymic nude mice. Carcinogenesis, 33 (4), pp.895-901.  

Dubois, J.-M. and Rouzaire-Dubois, B. 2004. The influence of cell volume changes 
on tumour cell proliferation. European Biophysics Journal, 33 pp.227-232.  

Dupont, S., Krust, A., Gansmuller, A., Dierich, A., Chambon, P. and Mark, M. 2000. 
Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) 
and beta (ERbeta) on mouse reproductive phenotypes. Development, 127 (19), 

pp.4277-4291.  

Eliassen, A. H., Missmer, S. A., Tworoger, S. S., Spiegelman, D., Barbieri, R. L., 
Dowsett, M. and Hankinson, S. E. 2006. Endogenous steroid hormone 
concentrations and risk of breast cancer among premenopausal women. Journal Of 
The National Cancer Institute, 98 (19), pp.1406-1415.  

Elliott, J. I. and Higgins, C. F. 2003. IKCa1 activity is required for cell shrinkage, 
phosphatidylserine translocation and death in T lymphocyte apoptosis. EMBO 
Reports, 4 pp.189-194.  

Enomoto, K., Cossu, M. F. and Oka, T. 1986. Induction of distinct types of 
spontaneous electrical activities in mammary epithelial cells by epidermal growth 
factor and insulin. Proceedings Of The National Academy Of Sciences, 83 pp.4754-
4758.  

Enyedi, P. and Czirjak, G. 2010. Molecular background of leak K+ currents: two-
pore domain potassium channels. Physiological Reviews, 90 (2), pp.559-605.  

Fahey, S. M. L., Jordan, C., Fritz, N. F., Robinson, S. P., Waters, D. and Tormey, D. 
C.1994. Clinical pharmacology and endocrinology of long-term tamoxifen therapy. 
In: Jordan, V. C. ed. Long-term tamoxifen treatment for breast cancer. 1 ed. 
Madison, Wisconsin: University of Wisconsin Press, pp. 28-50. 

Fanger, C. M., Ghanshani, S., Logsdon, N. J., Rauer, H., Kalman, K., Zhou, J., 
Beckingham, K., Chandy, K. G., Cahalan, M. D. and Aiyar, J. 1999. Calmodulin 
mediates calcium-dependent activation of the intermediate conductance KCa 
channel, IKCa1. Journal Of Biological Chemistry, 274 (9), pp.5746-5754.  

Farinas, J. and Verkman, A. S. 1996. Cell volume and plasma membrane osmotic 
water permeability in epithelial cell layers measured by inferometry. Biophysical 
Journal, 71 pp.3511-3522.  

  



376 | P a g e  

 

Feigelson, H. S., Jonas, C. R., Teras, L. R., Thun, M. J. and Calle, E. E. 2004. 
Weight gain, body mass index, hormone replacement therapy, and postmenopausal 
breast cancer in a large prospective study. Cancer Epidemiology, Biomarkers & 
Prevention: A Publication Of The American Association For Cancer Research, 
Cosponsored By The American Society Of Preventive Oncology, 13 (2), pp.220-224.  

Felipe, A., Vicente, R., Villalonga, N., Roura-Ferrer, M., Martinez-Marmol, R., Sole, 
L., Ferreres, J. C. and Condom, E. 2006. Potassium channels: new targets in cancer 
therapy. Cancer Detection And Prevention, 30 (4), pp.375-385.  

Feranchak, A. P., Kilic, G., Wojtaszek, P. A., Qadri, I. and Fitz, J. G. 2003. Volume-
sensitive tyrosine kinases regulate liver cell volume through effects on vesicular 
trafficking and membrane Na+ permeability. Journal Of Biological Chemistry, 278 
(45), pp.44632-44638.  

Ferenc, P., Solar, P., Kleban, J., Mikes, J. and Fedorocko, P. 2010. Down-regulation 
of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in 
human breast cancer cells. Journal Of Photochemistry And Photobiology, 98 (1), 
pp.25-34.  

Fletcher, R. J. 2003. Food sources of phyto-oestrogens and their precursors in 
Europe. British Journal Of Nutrition, 89 Suppl 1 p.S39-S43.  

Food and Drug Administration (1999). Food labeling: health claims, soy protein and 
coronary heart disease; final rule. Federal Register. 64. 

Fortunati, N., Catalano, M. G., Boccuzzi, G. and Frairia, R. 2010. Sex Hormone-
Binding Globulin (SHBG), estradiol and breast cancer. Molecular And Cellular 
Endocrinology, 316 (1), pp.86-92.  

Franke, A. A., Halm, B. M., Custer, L. J., Tatsumura, Y. and Hebshi, S. 2006. 
Isoflavones in breastfed infants after mothers consume soy. American Journal of 
Clinical Nutrition, 84 (2), pp.406-413.  

Frasor, J., Danes, J. M., Komm, B., Chang, K. C. N., Lyttle, C. R. and 
Katzenellenbogen, B. S. 2003. Profiling of estrogen up- and down-regulated gene 
expression in human breast cancer cells: insights into gene networks and pathways 
underlying estrogenic control of proliferation and cell phenotype. Endocrinology, 144 
(10), pp.4562-4574.  

Gallo, D., Giacomelli, S., Cantelmo, F., Zannoni, G. F., Ferrandina, G., Fruscella, E., 
Riva, A., Morazzoni, P., Bombardelli, E., Mancuso, S. and Scambia, G. 2001. 
Chemoprevention of DMBA-induced mammary cancer in rats by dietary soy. Breast 
Cancer Research And Treatment, 69 (2), pp.153-164.  

  



377 | P a g e  

 

Galluzzi, L., Aaronson, S. A., Abrams, J., Alnemri, E. S., Andrews, D. W., 
Baehrecke, E. H., Bazan, N. G., Blagosklonny, M. V., Blomgren, K., Borner, C., 
Bredesen, D. E., Brenner, C., Castedo, M., Cidlowski, J. A., Ciechanover, A., 
Cohen, G. M., De Laurenzi, V., De Maria, R., Deshmukh, M., Dynlacht, B. D., El-
Deiry, W. S., Flavell, R. A., Fulda, S., Garrido, C., Golstein, P., Gougeon, M. L., 
Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., 
Ichijo, H., Jaattela, M., Kepp, O., Kimchi, A., Klionsky, D. J., Knight, R. A., Kornbluth, 
S., Kumar, S., Levine, B., Lipton, S. A., Lugli, E., Madeo, F., Malomi, W., Marine, J.-
C. W., Martin, S. J., Medema, J. P., Mehlen, P., Melino, G., Moll, U. M., Morselli, E., 
Nagata, S., Nicholson, D. W., Nicotera, P., Nunez, G., Oren, M., Penninger, J., 
Pervaiz, S., Peter, M. E., Piacentini, M., Prehn, J. H. M., Puthalakath, H., 
Rabinovich, G. A., Rizzuto, R., Rodrigues, C. M. P., Rubinsztein, D. C., Rudel, T., 
Scorrano, L., Simon, H. U., Steller, H., Tschopp, J., Tsujimoto, Y., Vandenabeele, 
P., Vitale, I., Vousden, K. H., Youle, R. J., Yuan, J., Zhivotovsky, B. and Kroemer, G. 
2009. Guidelines for the use and interpretation of assays for monitoring cell death in 
higher eukaryotes. Cell Death And Differentiation, 16 (8), pp.1093-1107.  

Galluzzi, L., Vitale, I., Abrams, J., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, 
M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, 
D. R., Hengartner, M., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., 
Madeo, F., Malorni, W., Mehlen, P., Nunez, G., Peter, M. E., Piacentini, M., 
Rubinsztein, D. C., Shi, Y., Simon, H.-U., Vandenabeele, P., White, E., Yuan, J., 
Zhivotovsky, B., Melino, G. and Kroemer, G. 2011. Molecular definitions of cell 
death subroutines: recommendations of the Nomenclature Committee on cell Death 
2012. Cell Death And Differentiation, pp.1-14.  

Garcia-Ferreiro, R. E., Kerschensteiner, D., Major, F., Monje, F., Stuhmer, W. and 
Pardo, L. A. 2004. Mechanism of block of hEag1 K+ channels by imipramine and 
astemizole. Journal Of General Physiology, 124 (4), pp.301-317.  

Garvin, S., Ollinger, K. and Dabrosin, C. 2006. Resveratrol induces apoptosis and 
inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Letters, 

231 (1), pp.113-122.  

Gierten, J., Ficker, E., Bloehs, R., Schlomer, K., Kathofer, S., Scholz, E., Zitron, E., 
Kiesecker, C., Bauer, A., Becker, R., Katus, H. A., Karle, C. A. and Thomas, D. 
2008. Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine 
kinase inhibitor genistein. British Journal Of Pharmacology, 154 (8), pp.1680-1690.  

Gil-Parrado, S., Fernandez-Montalvan, A., Assfalg-Machleidt, I., Popp, O., 
Bestvater, F., Holloschi, A., Knoch, T. A., Auerswald, E. A., Welsh, K., Reed, J. C., 
Fritz, H., Fuentes-Prior, P., Spiess, E., Salvesen, G. S. and Machleidt, W. 2002. 
Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family 
members. Journal Of Biological Chemistry, 277 (30), pp.27217-27226.  

Gilchrist, J. M., Moore, M. B., Andres, A., Estroff, J. A. and Badger, T. M. 2010. 
Ultrasonographic patterns of reproductive organs in infants fed soy formula: 
comparisons to infants fed breast milk and milk formula. Journal Of Pediatrics, 156 
(2), pp.215-220.  

  



378 | P a g e  

 

Goldstein, S. A. N., Bayliss, D. A., Kim, D., Lesage, F., Plant, L. D. and Rajan, S. 
2005. International Union of Pharmacology. LV. Nomenclature and molecular 
relationships of two-P potassium channels. Pharmacological Reviews, 57 (4), 
pp.527-540.  

Gow, I. F., Thomson, J., Davidson, J. and Shennan, D. B. 2005. The effect of a 
hyposmotic shock and purinergic agonists on K+(Rb+) efflux from cultured human 
breast cancer cells. Biochimica Et Biophysica Acta, 1712 (1), pp.52-61.  

Grace, P. B., Taylor, J. I., Low, Y. L., Luben, R. N., Mulligan, A. A., Botting, N. P., 
Dowsett, M., Welch, A. A., Khaw, K. T., Wareham, N. J., Day, N. E. and Bingham, S. 
A. 2004. Phytoestrogen concentrations in serum and spot urine as biomarkers for 
dietary phytoestrogen intake and their relation to breast cancer risk in European 
prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiology, 
Biomarkers & Prevention, 13 (5), pp.698-708.  

Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., 
Karmilowicz, M. J., Auperin, D. D. and Chandy, K. G. 1994. Pharmacological 
characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, 
and 3.1, stably expressed in mammalian cell lines. Molecular Pharmacology, 45 (6), 

pp.1227-1234.  

Gruber, C. J., Tschugguel, W., Schneeberger, C. and Huber, J. C. 2002. Production 
and actions of estrogens. New England Journal Of Medicine, 346 (5), pp.340-352.  

Gu, L., House, S. E., Prior, R. L., Fang, N., Ronis, M. J. J., Clarkson, T. B., Wilson, 
M. E. and Badger, T. M. 2006. Metabolic phenotype of isoflavones differ among 
female rats, pigs, monkeys, and women. Journal Of Nutrition, 136 (5), pp.1215-
1221.  

Guan, L., Huang, Y. and Chen, Z. Y. 2008. Developmental and reproductive toxicity 
of soybean isoflavones to immature SD rats. Biomedical And Environmental 
Sciences: BES, 21 (3), pp.197-204.  

Guha, N., Kwan, M. L., Quesenberry, C. P., Jr., Weltzien, E. K., Castillo, A. L. and 
Caan, B. J. 2009. Soy isoflavones and risk of cancer recurrence in a cohort of breast 
cancer survivors: the Life After Cancer Epidemiology study. Breast Cancer 
Research And Treatment, 118 (2), pp.395-405.  

Gutman, G. A., Chandy, K. G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L. 
A., Robertson, G. A., Rudy, B., Sanguinetti, M. C., Stuhmer, W. and Wang, X. 2005. 
International Union of Pharmacology. LIII. Nomenclature and molecular relationships 
of voltage-gated potassium channels. Pharmacological Reviews, 57 (4), pp.473-508.  

Hacker, G. 2000. The morphology of apoptosis. Cell And Tissue Research, 301 (1), 
pp.5-17.  

Hadsell, D. L. 2003. The insulin-like growth factor system in normal mammary gland 
function. Breast Disease, 17 pp.3-14.  

Haider, S. and Knofler, M. 2009. Human tumour necrosis factor: physiological and 
pathological roles in placenta and endometrium. Placenta, 30 (2), pp.111-123.  



379 | P a g e  

 

Hamann, S., Kiilgaard, J. F., Litman, T., Alvarez-Leefmans, F. J., Winther, B. R. and 
Zeuthen, t. 2002. Measurement of cell volume changes by fluorescence self-
quenching. Journal of Fluorescence, 12 (2), pp.139-145.  

Hamilton-Burke, W., Coleman, L., Cummings, M., Green, C. A., Holliday, D. L., 
Horgan, K., Maraqa, L., Peter, M. B., Pollock, S., Shaaban, A. M., Smith, L. and 
Speirs, V. 2010. Phosphorylation of estrogen receptor beta at serine 105 is 
associated with good prognosis in breast cancer. American Journal Of Pathology, 
177 (3), pp.1079-1086.  

Haren, N., Khorsi, H., Faouzi, M., Ahidouch, A., Sevestre, H. and Ouadid-Ahidouch, 
H. 2010. Intermediate conductance Ca2+ activated K+ channels are expressed and 
functional in breast adenocarcinomas: correlation with tumour grade and metastasis 
status. Histology And Histopathology, 25 (10), pp.1247-1255.  

Hargreaves, D. F., Potten, C. S., Harding, C., Shaw, L. E., Morton, M. S., Roberts, 
S. A., Howell, A. and Bundred, N. J. 1999. Two-week dietary soy supplementation 
has an estrogenic effect on normal premenopausal breast. Journal Of Clinical 
Endocrinology And Metabolism, 84 (11), pp.4017-4024.  

Harvey, A. L. and Robertson, B. 2004. Dendrotoxins: structure-activity relationships 
and effects on potassium ion channels. Current Medicinal Chemistry, 11 (23), 
pp.3065-3072.  

Health Protection Agency. 2012.  European Collection of Cell Cultures.  [online] 
Available at: http://www.hpacultures.org.uk/ [Accessed September 11, 2012]. 
 
Hedelin, M., Lof, M., Olsson, M., Adlercreutz, H., Sandin, S. and Weiderpass, E. 
2008. Dietary phytoestrogens are not associated with risk of overall breast cancer 
but diets rich in coumestrol are inversely associated with risk of estrogen receptor 
and progesterone receptor negative breast tumors in Swedish women. Journal Of 
Nutrition, 138 (5), pp.938-945.  

Hemmerlein, B., Weseloh, R. M., Mello de Queiroz, F., Knotgen, H., Sanchez, A., 
Rubio, M. E., Martin, S., Schliephacke, T., Jenke, M., Heinz, J. R., Stuhmer, W. and 
Pardo, L. A. 2006. Overexpression of Eag1 potassium channels in clinical tumours. 
Molecular Cancer, 5 p.41.  

Hendrix, S. L., Wassertheil-Smoller, S., Johnson, K. C., Howard, B. V., Kooperberg, 
C., Rossouw, J. E., Trevisan, M., Aragaki, A., Baird, A. E., Bray, P. F., Buring, J. E., 
Criqui, M. H., Herrington, D., Lynch, J. K., Rapp, S. R. and Torner, J. 2006. Effects 
of conjugated equine estrogen on stroke in the Women's Health Initiative. 
Circulation, 113 (20), pp.2425-2434.  

Heneman, K. M., Chang, H. C., Prior, R. L. and Steinberg, F. M. 2007. Soy protein 
with and without isoflavones fails to substantially increase postprandial antioxidant 
capacity. Journal of Nutritional Biochemistry, 18 (1), pp.46-53.  

Hewitt, S.C. and Korach, K.S.  2003.  Oestrogen receptor knockout mice: roles for 
oestrogen receptors alpha and beta in reproductive tissues.  Reproduction, 125, pp. 

143-149. 



380 | P a g e  

 

Hewitt, A. L. and Singletary, K. W. 2003. Soy extract inhibits mammary 
adenocarcinoma growth in a syngeneic mouse model. Cancer Letters, 192 (2), 
pp.133-143.  

Hille, B.  2001. Ion channels of excitable membranes. 3 ed. Sunderland, MA: 
Sinauer Associates Inc.  

Hirata, T., Terai, T., Komatsu, T., Hanaoka, K. and Nagano, T. 2011. Development 
of a potassium ion-selective fluorescent sensor based on 3-styrylated BODIPY. 
Bioorganic & Medicinal Chemistry Letters, 21 (20), pp.6090-6093.  

Ho, S. C., Chan, S. G., Yi, Q., Wong, E. and Leung, P. C. 2001. Soy intake and the 
maintenance of peak bone mass in Hong Kong Chinese women. Journal Of Bone 
And Mineral Research, 16 (7), pp.1363-1369.  

Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L. and Korsmeyer, S. J. 
1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 75 (2), 

pp.241-251.  

Hoffmann, E. K. 2011. Ion channels involved in cell volume regulation: effects on 
migration, proliferation, and programmed cell death in non adherent EAT cells and 
adherent ELA cells. Cellular Physiology And Biochemistry: International Journal Of 
Experimental Cellular Physiology, Biochemistry, And Pharmacology, 28 (6), 
pp.1061-1078.  

Hooper, L., Ryder, J. J., Kurzer, M. S., Lampe, J. W., Messina, M. J., Phipps, W. R. 
and Cassidy, A. 2009. Effects of soy protein and isoflavones on circulating hormone 
concentrations in pre- and post-menopausal women: a systematic review and meta-
analysis. Human Reproduction Update, 15 (4), pp.423-440.  

Horn-Ross, P. L., Lee, M., John, E. M. and Koo, J. 2000. Sources of phytoestrogen 
exposure among non-Asian women in California, USA. Cancer Causes & Control, 

11 (4), pp.299-302.  

Horn-Ross, P. L., Hoggatt, K. J., West, D. W., Krone, M. R., Stewart, S. L., Anton, 
H., Bernstei, C. L., Deapen, D., Peel, D., Pinder, R., Reynolds, P., Ross, R. K., 
Wright, W. and Ziogas, A. 2002. Recent diet and breast cancer risk: the California 
Teachers Study (USA). Cancer Causes & Control: CCC, 13 (5), pp.407-415.  

Hu, V. W., Black, G. E., Torres-Duarte, A. and Abramson, F. P. 2002. 3H-thymidine 
is a defective tool with which to measure rates of DNA synthesis. FASEB Journal, 
16 pp.1456-1457.  

Huang, C. C., Lim, P. H., Hall, A. C. and Huang, C. N. 2011. A key role for KCl 
cotransport in cell volume regulation in human erythroleukemia cells. Life Sciences, 
88 (23-24), pp.1001-1008.  

Hughes, F. M., Jr., Bortner, C. D., Purdy, G. D. and Cidlowski, J. A. 1997. 
Intracellular K+ suppresses the activation of apoptosis in lymphocytes. The Journal 
Of Biological Chemistry, 272 (48), pp.30567-30576.  



381 | P a g e  

 

HUGO Gene Nomenclature Committee. 2012.  HUGO Gene Nomenclature 
Committee Database. [online] European Bioinformatics Institute. Available at: 
http://www.genenames.org. [Accessed September 11, 2012].  
 
Hussain, M., Banerjee, M., Sarkar, F. H., Djuric, Z., Pollak, M. N., Doerge, D., 
Fontana, J., Chinni, S., Davis, J., Forman, J., Wood, D. P. and Kucuk, O. 2003. Soy 
isoflavones in the treatment of prostate cancer. Nutrition And Cancer, 47 (2), 
pp.111-117.  

Hwang, C. S., Kwak, H. S., Lim, H. J., Lee, S. H., Kang, Y. S., Choe, T. B., Hur, H. 
G. and Han, K. O. 2006. Isoflavone metabolites and their in vitro dual functions: they 
can act as an estrogenic agonist or antagonist depending on the estrogen 
concentration. Journal Of Steroid Biochemistry And Molecular Biology, 101 (4-5), 
pp.246-253.  

Indelicato, M., Pucci, B., Schito, L., Reali, V., Aventaggiato, M., Mazzarino, M. C., 
Stivala, F., Fini, M., Russo, M. A. and Tafani, M. 2010. Role of hypoxia and 
autophagy in MDA-MB-231 invasiveness. Journal Of Cellular Physiology, 223 (2), 
pp.359-368.  

Information Services Division Scotland. 2012. Cancer Information Program.  2010.  
[online] NHS National Services Scotland, Edinburgh. Available at:  
http://www.isdscotland.org/Health-Topics//Cancer/Publications/index.asp#839. 
[Accessed September 11, 2012]. 
 
International Union of Pharmacology. 2012.  IUPHAR Committee on Receptor 
Nomenclature and Drug Classification Database. [online] International Union of 
Pharmacology.  Available from: http://iuphar-db.org. Accessed September 11, 2012. 
 
Ishibashi, K., Kondo, S., Hara, S. and Morishita, Y. 2011. The evolutionary aspects 
of aquaporin family. American Journal Of Physiology Regulatory, Integrative And 
Comparative Physiology, 300 (3), p.R566-R576.  

Iwasaki, M., Inoue, M., Otani, T., Sasazuki, S., Kurahashi, N., Miura, T., Yamamoto, 
S. and Tsugane, S. 2008. Plasma isoflavone level and subsequent risk of breast 
cancer among Japanese women: a nested case-control study from the Japan Public 
Health Center-based prospective study group. Journal of Clinical Oncology, 26 (10), 

pp.1677-1683.  

Iwasaki, M. and Tsugane, S. 2011. Risk factors for breast cancer: epidemiological 
evidence from Japanese studies. Cancer Science, 102 (9), pp.1607-1614.  

Jacobs, E., Bulpitt, P. C., Coutts, I. G. and Robertson, J. F. 2000. New calmodulin 
antagonists inhibit in vitro growth of human breast cancer cell lines independent of 
their estrogen receptor status. Anti-Cancer Drugs, 11 (2), pp.63-68.  

Jakes, R. W., Duffy, S. W., Ng, F. C., Gao, F., Ng, E. H., Seow, A., Lee, H. P. and 
Yu, M. C. 2002. Mammographic parenchymal patterns and self-reported soy intake 
in Singapore Chinese women. Cancer Epidemiology, Biomarkers & Prevention, 11 
(7), pp.608-613.  



382 | P a g e  

 

Jakob, S., Corazza, N., Diamantis, E., Kappeler, A. and Brunner, T. 2008. Detection 
of apoptosis in vivo using antibodies against caspase-induced neo-epitopes. 
Methods, 44 pp.255-261.  

Jang, S. H., Kang, K. S., Ryu, P. D. and Lee, S. Y. 2009. Kv1.3 voltage-gated K(+) 
channel subunit as a potential diagnostic marker and therapeutic target for breast 
cancer. BMB Reports, 42 (8), pp.535-539.  

Janicke, R. U., Sprengart, M. L., Wati, M. R. and Porter, A. G. 1998. Caspase-3 is 
required for DNA fragmentation and morphological changes associated with 
apoptosis. Journal Of Biological Chemistry, 273 (16), pp.9357-9360.  

Janicke, R. U. 2009. MCF-7 breast carcinoma cells do not express caspase-3. 
Breast Cancer Research And Treatment, 117 (1), pp.219-221.  

Jefcoate, C. R., Leihr, J. G., Santen, R. J., Sutter, T. R., Yager, J. D., Yue, W., 
Santner, S. J., Tekmal, R., Demers, L., Pauley, R., Naftolin, F., Mor, G. and 
Berstein.L. 2000. Chapter 5: Tissue-specific synthesis and oxidative metabolism of 
estrogens. Journal of the National Cancer Institute Monographs, 27 pp.95-112.  

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. 2011. Global 
cancer statistics. CA Cancer Journal For Clinicians, 61 (2), pp.69-90.  

Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T. and MacKinnon, R. 
2003. X-ray structure of a voltage-dependent K+ channel. Nature, 423 (6935), 
pp.33-41.  

Jin, Q. and Esteva, F. J. 2008. Cross-talk between the ErbB/HER family and the 
type I insulin-like growth factor receptor signaling pathway in breast cancer. Journal 
Of Mammary Gland Biology And Neoplasia, 13 (4), pp.485-498.  

Jin, S., Zhang, Q. Y., Kang, X. M., Wang, J. X. and Zhao, W. H. 2010. Daidzein 
induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Annals 
Of Oncology, 21 (2), pp.263-268.  

Jin, Z. and MacDonald, R. S. 2002. Soy isoflavones increase latency of 
spontaneous mammary tumors in mice. Journal Of Nutrition, 132 (10), pp.3186-
3190.  

Ju, Y. H., Allred, C. D., Allred, K. F., Karko, K. L., Doerge, D. R. and Helferich, W. G. 
2001. Physiological concentrations of dietary genistein dose-dependently stimulate 
growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in 
athymic nude mice. Journal Of Nutrition, 131 (11), pp.2957-2962.  

Ju, Y. H., Doerge, D. R., Allred, K. F., Allred, C. D. and Helferich, W. G. 2002. 
Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-
dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer 
Research, 62 (9), pp.2474-2477.  

  



383 | P a g e  

 

Kaaks, R., Rinaldi, S., Key, T. J., Berrino, F., Peeters, P. H. M., Biessy, C., Dossus, 
L., Lukanova, A., Bingham, S., Khaw, K. T., Allen, N. E., Bueno-de-Mesquita, H. B., 
van Gils, C. H., Grobbee, D., Boeing, H., Lahmann, P. H., Nagel, G., Chang-Claude, 
J., Clavel-Chapelon, F., Fournier, A., Thiebaut, A., Gonzalez, C. A., Quiros, J. R., 
Tormo, M. J., Ardanaz, E., Amiano, P., Krogh, V., Palli, D., Panico, S., Tumino, R., 
Vineis, P., Trichopoulou, A., Kalapothaki, V., Trichopoulos, D., Ferrari, P., Norat, T., 
Saracci, R. and Riboli, E. 2005a. Postmenopausal serum androgens, oestrogens 
and breast cancer risk: the European prospective investigation into cancer and 
nutrition. Endocrine-Related Cancer, 12 (4), pp.1071-1082.   

Kaaks, R., Berrino, F., Key, T., Rinaldi, S., Dossus, L., Biessy, C., Secreto, G., 
Amiano, P., Bingham, S., Boeing, H., Bueno de Mesquita, H. B., Chang-Claude, J., 
Clavel-Chapelon, F., Fournier, A., van Gils, C. H., Gonzalez, C. A., Gurrea, A. B., 
Critselis, E., Khaw, K. T., Krogh, V., Lahmann, P. H., Nagel, G., Olsen, A., Onland-
Moret, N. C., Overvad, K., Palli, D., Panico, S., Peeters, P., Quiros, J. R., Roddam, 
A., Thiebaut, A., Tjonneland, A., Chirlaque, M. D., Trichopoulou, A., Trichopoulos, 
D., Tumino, R., Vineis, P., Norat, T., Ferrari, P., Slimani, N. and Riboli, E. 2005b. 
Serum sex steroids in premenopausal women and breast cancer risk within the 
European Prospective Investigation into Cancer and Nutrition (EPIC). Journal Of 
The National Cancer Institute, 97 (10), pp.755-765.   

Kang, H. B., Zhang, Y. F., Yang, J. D. and Lu, K. L. 2012. Study on soy isoflavone 
consumption and risk of breast cancer and survival. Asian Pacific Journal Of Cancer 
Prevention, 13 (3), pp.995-998.  

Kang, X., Jin, S. and Zhang, Q. 2009. Antitumor and antiangiogenic activity of soy 
phytoestrogen on 7,12-dimethylbenz[alpha]anthracene-induced mammary tumors 
following ovariectomy in Sprague-Dawley rats. Journal Of Food Science, 74 (7), 

p.H237-H242.  

Kang, X., Zhang, Q., Wang, S., Huang, X. and Jin, S. 2010. Effect of soy isoflavones 
on breast cancer recurrence and death for patients receiving adjuvant endocrine 
therapy. Canadian Medical Association Journal, 182 (17), pp.1857-1862.  

Kano, M., Takayanagi, T., Harada, K., Sawada, S. and Ishikawa, F. 2006. 
Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. The 
Journal Of Nutrition, 136 (9), pp.2291-2296.  

Kaplan, W. D. and Trout, W. E., III 1969. The behavior of four neurological mutants 
of Drosophila. Genetics, 61 (2), pp.399-409.  

Katzenellenbogen, B. S., Kendra, K. L., Norman, M. J. and Berthois, Y. 1987. 
Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 
human breast cancer cells grown in the short-term and long-term absence of 
estrogens. Cancer Research, 47 (16), pp.4355-4360.  

Kauffmann, S. H., Lee, S.-H., Wei Meng, X., Loegering, D. A., Kottke, T. J., 
Henzing, A. J., Ruchaud, S., Samejima, K. and Earnshaw, W. C. 2008. Apoptosis-
associated caspase activation assays. Methods, 44 (3), pp.262-272.  

Keeton, E. K. and Brown, M. 2005. Cell cycle progression stimulated by tamoxifen-
bound estrogen receptor-alpha and promoter-specific effects in breast cancer cells 
deficient in N-CoR and SMRT. Molecular Endocrinology, 19 (6), pp.1543-1554.  



384 | P a g e  

 

Kerr, J. F., Wyllie, A. H. and Currie, A. R. 1972. Apoptosis: a basic biological 
phenomenon with wide-ranging implications in tissue kinetics. British Journal Of 
Cancer, 26 (4), pp.239-257.  

Khaitan, D., Sankpal, U. T., Weksler, B., Meister, E. A., Romero, I. A., Couraud, P. 
O. and Ningaraj, N. S. 2009. Role of KCNMA1 gene in breast cancer invasion and 
metastasis to brain. BMC Cancer, 9 p.258.  

Kim, H., Chung, H., Kim, H. J., Lee, J. Y., Oh, M. Y., Kim, Y. and Kong, G. 2008. Id-
1 regulates Bcl-2 and Bax expression through p53 and NF-kappaB in MCF-7 breast 
cancer cells. Breast Cancer Research And Treatment, 112 (2), pp.287-296.  

Kim, N., Gross, C., Curtis, J., Stettin, G., Wogen, S., Choe, N. and Krumholz, H. M. 
2005. The impact of clinical trials on the use of hormone replacement therapy. A 
population-based study. Journal Of General Internal Medicine, 20 (11), pp.1026-
1031.  

Kim, S., Moon, S. and Popkin, B. M. 2000. The nutrition transition in South Korea. 
The American Journal Of Clinical Nutrition, 71 (1), pp.44-53.  

Kirkegaard, S. S., Lambert, I. H., Gammeltoft, S. and Hoffmann, E. K. 2010. 
Activation of the TASK-2 channel after cell swelling is dependent on tyrosine 
phosphorylation. American Journal Of Physiology Cell Physiology, 299 (4), p.C844-
C853.  

Klapperstuck, T., Glanz, D., Klapperstuck, M. and Wholrab, J. 2009. Methodological 
aspectes of measuring absolute values of membrane potential in human cells by 
flow cytometry. Cytometry Part A, 75A pp.593-608.  

Klimatcheva, E. and Wonderlin, W. F. 1999. An ATP-sensitive K(+) current that 
regulates progression through early G1 phase of the cell cycle in MCF-7 human 
breast cancer cells. Journal Of Membrane Biology, 171 (1), pp.35-46.  

Koch, C. and Stratling, W. H. 2004. DNA binding of methyl-CpG-binding protein 
MeCP2 in human MCF7 cells. Biochemistry, 43 (17), pp.5011-5021.  

Koeberle, P. D., Wang, Y. and Schlichter, L. C. 2010. Kv1.1 and Kv1.3 channels 
contribute to the degeneration of retinal ganglion cells after optic nerve transection 
in vivo. Cell Death And Differentiation, 17 (1), pp.134-144.  

Kok, M., Holm-Wigerup, C., Hauptmann, M., Michalides, R., Stal, O., Linn, S. and 
Landberg, G. 2009. Estrogen receptor-alpha phosphorylation at serine-118 and 
tamoxifen response in breast cancer. Journal Of The National Cancer Institute, 101 

(24), pp.1725-1729.  

Kossler, S., Nofziger, C., Jakab, M., Dossena, S. and Paulmichl, M. 2012. Curcumin 
affects cell survival and cell volume regulation in human renal and intestinal cells. 
Toxicology, 292 (2-3), pp.123-135.  

Kostelac, D., Rechkemmer, G. and Briviba, K. 2003. Phytoestrogens modulate 
binding response of estrogen receptors alpha and beta to the estrogen response 
element. Journal of Agricultural and Food Chemistry, 51 (26), pp.7632-7635. 



385 | P a g e  

 

Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., 
Zhivotovsky, B., Blagosklonny, M. V., Malorni, W., Knight, R. A., Piacentini, M., 
Nagata, S. and Melino, G. 2005. Classification of cell death: recommendations of 
the Nomenclature Committee on Cell Death. Cell Death And Differentiation, 12 
pp.1463-1467.  

Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, 
E. H., Blagosklonny, M. V., El-Deiry, W. S., Golstein, P., Green, D. R., Hengartner, 
M., Knight, R. A., Kumar, S., Lipton, S. A., Malorni, W., Nunez, G., Peter, M. E., 
Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B. and Melino, G. 2009. 
Classification of cell death: recommendations of the Nomenclature Committee on 
Cell Death 2009. Cell Death And Differentiation, 16 (1), pp.3-11.  

Krysko, D. V., Vanden Berghe, T., D'Herde, K. and Vandenabeele, P. 2008. 
Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods, 44 

(3), pp.205-221.  

Kubo, Y., Adelman, J. P., Clapham, D. E., Jan, L. Y., Karschin, A., Kurachi, Y., 
Lazdunski, M., Nichols, C. G., Seino, S. and Vandenberg, C. A. 2005. International 
Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly 
rectifying potassium channels. Pharmacological Reviews, 57 (4), pp.509-526.  

Kudwa, A.E. and Rissman, E.F.  2012.  Double receptor alpha and beta knockout 
mice reveal differences in neural oestrogen-mediated progestin receptor induction 
and female sex behaviour.  Journal of Neuroendocrinology, 15, pp. 978-983. 

Kuhnle, G. G. C., Dell'Aquila, C., Aspinall, S. M., Runswick, S. A., Mulligan, A. A. 
and Bingham, S. A. 2008. Phytoestrogen content of beverages, nuts, seeds, and 
oils. Journal Of Agricultural And Food Chemistry, 56 (16), pp.7311-7315.  

Kuiper, G. G., Lemmen, J. G., Carlsson, B., Corton, J. C., Safe, S. H., van der Saag, 
P. T., van der Burg, B. and Gustafsson, J. A. 1998. Interaction of estrogenic 
chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139 (10), 
pp.4252-4263.  

Kumar, A., Klinge, C. M. and Goldstein, R. E. 2010. Estradiol-induced proliferation of 
papillary and follicular thyroid cancer cells is mediated by estrogen receptors alpha 
and beta. International Journal Of Oncology, 36 (5), pp.1067-1080.  

Kumar, N. B., Cantor, A., Allen, K., Riccardi, D. and Cox, C. E. 2002. The specific 
role of isoflavones on estrogen metabolism in premenopausal women. Cancer, 94 

(4), pp.1166-1174.  

Kunisue, T., Tanabe, S., Isobe, T., Aldous, K. M. and Kannan, K. 2010. Profiles of 
phytoestrogens in human urine from several Asian countries. Journal Of Agricultural 
And Food Chemistry, 58 (17), pp.9838-9846.  

Kurebayashi, J., Otsuki, T., Kunisue, H., Tanaka, K., Yamamoto, S. and Sonoo, H. 
2000. Expression levels of estrogen receptor-alpha, estrogen receptor-beta, 
coactivators, and corepressors in breast cancer. Clinical Cancer Research, 6 (2), 
pp.512-518.  



386 | P a g e  

 

Kurian, A. W., Fish, K., Shema, S. J. and Clarke, C. A. 2010. Lifetime risks of 
specific breast cancer subtypes among women in four racial/ethnic groups. Breast 
Cancer Research, 12 (6), p.R99.  

Lai, J., Chien, J., Staub, J., Avula, R., Greene, E. L., Matthews, T. A., Smith, D. I., 
Kaufmann, S. H., Roberts, L. R. and Shridhar, V. 2003. Loss of HSulf-1 up-regulates 
heparin-binding growth factor signaling in cancer. Journal Of Biological Chemistry, 
278 (25), pp.23107-23117.  

Lamartiniere, C. A., Zhang, J. X. and Cotroneo, M. S. 1998. Genistein studies in 
rats: potential for breast cancer prevention and reproductive and developmental 
toxicity. American Journal of Clinical Nutrition, 68 (6 Suppl), pp.1400S-1405s.  

Lamartiniere, C. A., Wang, J., Smith-Johnson, M. and Eltoum, I. E. 2002. Daidzein: 
bioavailability, potential for reproductive toxicity, and breast cancer chemoprevention 
in female rats. Toxicological Sciences, 65 (2), pp.228-238.  

Lammersfeld, C. A., King, J., Walker, S., Vashi, P. G., Grutsch, J. F., Lis, C. G. and 
Gupta, D. 2009. Prevalence, sources, and predictors of soy consumption in breast 
cancer. Nutrition Journal, 8 p.2.  

Lampe, J. W. 2003. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. 
Journal Of Nutrition, 133 Suppl 3 pp.956S-964s.  

Lastraioli, E., Guasti, L., Crociani, O., Polvani, S., Hofmann, G., Witchel, H., Bencini, 
L., Calistri, M., Messerini, L., Scatizzi, M., Moretti, R., Wanke, E., Olivotto, M., 
Mugnai, G. and Arcangeli, A. 2004. herg1 gene and HERG1 protein are 
overexpressed in colorectal cancers and regulate cell invasion of tumor cells. 
Cancer Research, 64 (2), pp.606-611.  

Lattrich, C., Lubig, J., Springwald, A., Goerse, R., Ortmann, O. and Treeck, O. 2011. 
Additive effects of trastuzumab and genistein on human breast cancer cells. Anti-
Cancer Drugs, 22 (3), pp.253-261.  

Lau, W. S., Chen, W. F., Chan, R. Y.-K., Guo, D. A. and Wong, M. S. 2009. 
Mitogen-activated protein kinase (MAPK) pathway mediates the oestrogen-like 
activities of ginsenoside Rg1 in human breast cancer (MCF-7) cells. British Journal 
Of Pharmacology, 156 (7), pp.1136-1146.  

Lavigne, J. A., Takahashi, Y., Chandramouli, G. V. R., Liu, H., Perkins, S. N., 
Hursting, S. D. and Wang, T. T. Y. 2008. Concentration-dependent effects of 
genistein on global gene expression in MCF-7 breast cancer cells: an oligo 
microarray study. Breast Cancer Research And Treatment, 110 (1), pp.85-98.  

Le Corre, L., Chalabi, N., Delort, L., Bignon, Y. J. and Bernard-Gallon, D. J. 2006. 
Differential expression of genes induced by resveratrol in human breast cancer cell 
lines. Nutrition And Cancer, 56 (2), pp.193-203.  

Le Corre, L., Fustier, P., Chalabi, N. r., Bignon, Y. J. and Bernard-Gallon, D. 2004. 
Effects of resveratrol on the expression of a panel of genes interacting with the 
BRCA1 oncosuppressor in human breast cell lines. Clinica Chimica Acta; 
International Journal Of Clinical Chemistry, 344 (1-2), pp.115-121.  



387 | P a g e  

 

Lee, G. W., Park, H. S., Kim, E. J., Cho, Y. W., Kim, G. T., Mun, Y. J., Choi, E. J., 
Lee, J. S., Han, J. and Kang, D. 2012. Reduction of breast cancer cell migration via 
up-regulation of TASK-3 two-pore domain K+ channel. Acta Physiologica, 204 (4), 
pp.513-524.  

Lee, S. A., Shu, X. O., Li, H., Yang, G., Cai, H., Wen, W., Ji, B. T., Gao, J., Gao, Y. 
T. and Zheng, W. 2009. Adolescent and adult soy food intake and breast cancer 
risk: results from the Shanghai Women's Health Study. American Journal of Clinical 
Nutrition, 89 (6), pp.1920-1926.  

Legler, J., van den Brink, C. E., Brouwer, A., Murk, A. J., van der Saag, P. T., 
Vethaak, A. D. and van der Burg, B. 1999. Development of a stably transfected 
estrogen receptor-mediated luciferase reporter gene assay in the human T47D 
breast cancer cell line. Toxicological Sciences, 48 (1), pp.55-66.  

Lennartsson, J., Burovic, F., Witek, B., Jurek, A. and Heldin, C. H. 2010. Erk 5 is 
necessary for sustained PDGF-induced Akt phosphorylation and inhibition of 
apoptosis. Cellular Signalling, 22 (6), pp.955-960.  

LGC-ATCC. 2012.  ATCC Cultures and Products.  [online] LGC-ATCC. Available 
from:  http://www.lgcstandards-atcc.org/.  Accessed September 21, 2012. 
 
Li, H. F., Chen, S. A. and Wu, S. N. 2000. Evidence for the stimulatory effect of 
resveratrol on Ca(2+)-activated K+ current in vascular endothelial cells. 
Cardiovascular Research, 45 (4), pp.1035-1045.  

Li, X., Zhang, S. and Safe, S. 2006. Activation of kinase pathways in MCF-7 cells by 
17beta-estradiol and structurally diverse estrogenic compounds. Journal Of Steroid 
Biochemistry And Molecular Biology, 98 (2-3), pp.122-132.  

Li, Z., Joyal, J. L. and Sacks, D. B. 2001. Calmodulin enhances the stability of the 
estrogen receptor. Journal Of Biological Chemistry, 276 (20), pp.17354-17360.  

Li, Z., Li, J., Mo, B., Hu, C., Liu, H., Qi, H., Wang, X. and Xu, J. 2008. Genistein 
induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated 
protein kinase pathway. Toxicology In Vitro, 22 (7), pp.1749-1753.  

Liggins, J., Bluck, L. J., Runswick, S., Atkinson, C., Coward, W. A. and Bingham, S. 
A. 2000. Daidzein and genistein content of fruits and nuts. Journal of Nutritional 
Biochemistry, 11 (6), pp.326-331.  

Linseisen, J., Piller, R., Hermann, S. and Chang-Claude, J. 2004. Dietary 
phytoestrogen intake and premenopausal breast cancer risk in a German case-
control study. International Journal Of Cancer, 110 (2), pp.284-290.  

Liu, B., Edgerton, S., Yang, X., Kim, A., Ordonez-Ercan, D., Mason, T., Alvarez, K., 
McKimmey, C., Liu, N. and Thor, A. 2005. Low-dose dietary phytoestrogen 
abrogates tamoxifen-associated mammary tumor prevention. Cancer Research, 65 
(3), pp.879-886.  

  



388 | P a g e  

 

Liu, H., Du, J., Hu, C., Qi, H., Wang, X., Wang, S., Liu, Q. and Li, Z. 2010. Delayed 
activation of extracellular-signal-regulated kinase 1/2 is involved in genistein- and 
equol-induced cell proliferation and estrogen-receptor-alpha-mediated transcription 
in MCF-7 breast cancer cells. Journal of Nutritional Biochemistry, 21 (5), pp.390-
396.  

Liu, M. M., Albanese, C., Anderson, C. M., Hilty, K., Webb, P., Uht, R. M., Price, R. 
H., Jr., Pestell, R. G. and Kushner, P. J. 2002. Opposing action of estrogen 
receptors alpha and beta on cyclin D1 gene expression. Journal Of Biological 
Chemistry, 277 (27), pp.24353-24360.  

Liu, Y. C., Lo, Y. C., Huang, C. W. and Wu, S. N. 2003. Inhibitory action of ICI-
182,780, an estrogen receptor antagonist, on BK(Ca) channel activity in cultured 
endothelial cells of human coronary artery. Biochemical Pharmacology, 66 (10), 
pp.2053-2063.  

Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H. 
and Matsudaira, P.  2008.  Molecular Cell Biology.  6th ed. New York: W.H. Freeman 
and Company. 

Low Dog, T. 2005. Menopause: a review of botanical dietary supplements. American 
Journal Of Medicine, 118 Suppl 12B pp.98-108.  

Lucki, N. C. and Sewer, M. B. 2011. Genistein stimulates MCF-7 breast cancer cell 
growth by inducing acid ceramidase (ASAH1) gene expression. Journal Of 
Biological Chemistry, 286, pp.19399-19409.  

Lux, H. D. and Brown, A. M. 1984. Patch and whole cell calcium currents recorded 
simultaneously in snail neurons. Journal Of General Physiology, 83 (5), pp.727-750.  

Mady, E. A. 2000. Association between estradiol, estrogen receptors, total lipids, 
triglycerides, and cholesterol in patients with benign and malignant breast tumors. 
Journal Of Steroid Biochemistry And Molecular Biology, 75 (4-5), pp.323-328.  

Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A. and Okada, Y. 2000. Normotonic 
cell shrinkage because of disordered volume regulation is an early prerequisite to 
apoptosis. Proceedings Of The National Academy Of Sciences Of The United 
States Of America, 97 (17), pp.9487-9492.  

Maggiolini, M., Bonofiglio, D., Marsico, S., Panno, M. L., Cenni, B., Picard, D. and 
Ando, S. 2001. Estrogen receptor alpha mediates the proliferative but not the 
cytotoxic dose-dependent effects of two major phytoestrogens on human breast 
cancer cells. Molecular Pharmacology, 60 (3), pp.595-602.  

Maggiolini, M., Vivacqua, A., Fasanella, G., Recchia, A. G., Sisci, D., Pezzi, V., 
Montanaro, D., Musti, A. M., Picard, D. and Ando, S. 2004. The G protein-coupled 
receptor GPR30 mediates c-fos up-regulation by 17beta-estradiol and 
phytoestrogens in breast cancer cells. Journal Of Biological Chemistry, 279 (26), 
pp.27008-27016.  

Mahaut-Smith, M. P., Hussain, J. F. and Mason, M. J. 1999. Depolarization-evoked 
Ca2+ release in a non-excitable cell, the rat megakaryocyte. Journal of Physiology, 

515 ( Pt 2) pp.385-390.  



389 | P a g e  

 

Marthyn, P., Beuscart, A., Coll, J., Moreau-Gachelin, F. and Righi, M. 1998. DMSO 
reduces CSF-1 receptor levels and causes apoptosis in v-myc immortalized mouse 
macrophages. Experimental Cell Research, 243 (1), pp.94-100.  

Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., Rader, J. A., van Schie, R. 
C., LaFace, D. M. and Green, D. R. 1995. Early redistribution of plasma membrane 
phosphatidylserine is a general feature of apoptosis regardless of the initiating 
stimulus: inhibition by overexpression of Bcl-2 and Abl. Journal Of Experimental 
Medicine, 182 (5), pp.1545-1556.  

Martin, S. J. 2008. Getting the measure of apoptosis. Methods, 44 (3), pp.197-199.  

Martinez-Montemayor, M. M., Otero-Franqui, E., Martinez, J., De La Mota-Peynado, 
A., Cubano, L. A. and Dharmawardhane, S. 2010. Individual and combined soy 
isoflavones exert differential effects on metastatic cancer progression. Clinical & 
Experimental Metastasis, 27 (7), pp.465-480.  

Maruyama, K., Endoh, H., Sasaki-Iwaoka, H., Kanou, H., Shimaya, E., Hashimoto, 
S., Kato, S. and Kawashima, H. 1998. A novel isoform of rat estrogen receptor beta 
with 18 amino acid insertion in the ligand binding domain as a putative dominant 
negative regular of estrogen action. Biochemical And Biophysical Research 
Communications, 246 (1), pp.142-147.  

Maskarinec, G. and Meng, L. 2001. An investigation of soy intake and 
mammographic characteristics in Hawaii. Breast Cancer Research, 3 (2), pp.134-
141.  

Maskarinec, G., Williams, A. E. and Carlin, L. 2003. Mammographic densities in a 
one-year isoflavone intervention. European Journal Of Cancer Prevention, 12 (2), 
pp.165-169.  

Maskarinec, G., Hebshi, S., Custer, L. and Franke, A. A. 2008. The relation of soy 
intake and isoflavone levels in nipple aspirate fluid. European Journal Of Cancer 
Prevention, 17 (1), pp.67-70.  

Maskarinec, G., Takata, Y., Franke, A. A., Williams, A. E. and Murphy, S. P. 2004. A 
2-year soy intervention in premenopausal women does not change mammographic 
densities. Journal Of Nutrition, 134 (11), pp.3089-3094.  

Maskarinec, G., Takata, Y., Murphy, S. P., Franke, A. A. and Kaaks, R. 2005. 
Insulin-like growth factor-1 and binding protein-3 in a 2-year soya intervention 
among premenopausal women. British Journal Of Nutrition, 94 (3), pp.362-367.  

Maskarinec, G., Verheus, M., Steinberg, F. M., Amato, P., Cramer, M. K., Lewis, R. 
D., Murray, M. J., Young, R. L. and Wong, W. W. 2009. Various doses of soy 
isoflavones do not modify mammographic density in postmenopausal women. 
Journal Of Nutrition, 139 (5), pp.981-986.  

Mathiasen, I. S., Sergeev, I. N., Bastholm, L., Elling, F., Norman, A. W. and Jaattela, 
M. 2002. Calcium and calpain as key mediators of apoptosis-like death induced by 
vitamin D compounds in breast cancer cells. Journal Of Biological Chemistry, 277 
(34), pp.30738-30745.  



390 | P a g e  

 

Matsumura, A., Ghosh, A., Pope, G. S. and Darbre, P. D. 2005. Comparative study 
of oestrogenic properties of eight phytoestrogens in MCF7 human breast cancer 
cells. Journal Of Steroid Biochemistry And Molecular Biology, 94 (5), pp.431-443.  

Maubach, J., Depypere, H. T., Goeman, J., Van der Eycken, J., Heyerick, A., 
Bracke, M. E., Blondeel, P. and De Keukeleire, D. 2004. Distribution of soy-derived 
phytoestrogens in human breast tissue and biological fluids. Obstetrics And 
Gynecology, 103 (5 Pt 1), pp.892-898.  

Mawson, A., Lai, A., Carroll, J. S., Sergio, C. M., Mitchell, C. J. and Sarcevic, B. 
2005. Estrogen and insulin/IGF-1 cooperatively stimulate cell cycle progression in 
MCF-7 breast cancer cells through differential regulation of c-Myc and cyclin D1. 
Molecular And Cellular Endocrinology, 229 (1-2), pp.161-173.  

McLaughlin, J. M., Olivo-Marston, S., Vitolins, M. Z., Bittoni, M., Reeves, K. W., 
Degraffinreid, C. R., Schwartz, S. J., Clinton, S. K. and Paskett, E. D. 2011. Effects 
of tomato- and soy-rich diets on the IGF-I hormonal network: a crossover study of 
postmenopausal women at high risk for breast cancer. Cancer Prevention 
Research, 4 (5), pp.702-710.  

McMichael-Phillips, D. F., Harding, C., Morton, M., Roberts, S. A., Howell, A., 
Potten, C. S. and Bundred, N. J. 1998. Effects of soy-protein supplementation on 
epithelial proliferation in the histologically normal human breast. American Journal of 
Clinical Nutrition, 68 (6 Suppl), pp.1431S-1435s.  

McPherson, K., Steel, C. M. and Dixon, J. M. 2000. ABC of breast diseases. Breast 
cancer-epidemiology, risk factors, and genetics. BMJ (Clinical Research Ed ), 321 
(7261), pp.624-628.  

Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. 
H. and Peter, M. E. 1997. FLICE is activated by association with the CD95 death-
inducing signaling complex (DISC). EMBO Journal, 16 (10), pp.2794-2804.  

Mei, J., Yeung, S. S. and Kung, A. W. 2001. High dietary phytoestrogen intake is 
associated with higher bone mineral density in postmenopausal but not 
premenopausal women. Journal Of Clinical Endocrinology And Metabolism, 86 (11), 

pp.5217-5221.  

Messina, M., Nagata, C. and Wu, A. H. 2006. Estimated Asian adult soy protein and 
isoflavone intakes. Nutrition & Cancer, 55 (1), pp.1-12.  

Messina, M. J. and Wood, C. E. 2008. Soy isoflavones, estrogen therapy, and 
breast cancer risk: analysis and commentary. Nutrition Journal, 7 p.17.  

Miglietta, A., Bozzo, F., Bocca, C., Gabriel, L., Trombetta, A., Belotti, S. and Canuto, 
R. A. 2006. Conjugated linoleic acid induces apoptosis in MDA-MB-231 breast 
cancer cells through ERK/MAPK signalling and mitochondrial pathway. Cancer 
Letters, 234 (2), pp.149-157.  

Miki, Y., Suzuki, T., Nagasaki, S., Hata, S., Akahira, J. I. and Sasano, H. 2009. 
Comparative effects of raloxifene, tamoxifen and estradiol on human osteoblasts in 
vitro: estrogen receptor dependent or independent pathways of raloxifene. Journal 
Of Steroid Biochemistry And Molecular Biology, 113 (3-5), pp.281-289.  



391 | P a g e  

 

Miller, W.R., Anderson, T.J., Dixon, J.M. and Suanders, P.T.K.  2006. Oestrogen 
receptor beta and neoadjuvant therapy with tamoxifen: prediction of response and 
effects of treatment.  British Journal of Cancer, 94 (9), pp.1333-1388.   

Miller, W. R., Bartlett, J. M. S., Canney, P. and Verrill, M. 2007. Hormonal therapy 
for postmenopausal breast cancer: the science of sequencing. Breast Cancer 
Research And Treatment, 103 (2), pp.149-160.  

Miodini, P., Fioravanti, L., Di Fronzo, G. and Cappelletti, V. 1999. The two 
phytoestrogens genistein and quercetin exert different effects on estrogen receptor 
function. British Journal Of Cancer, 80 (8), pp.1150-1155.  

Missan, S., Linsdell, P. and McDonald, T. F. 2006. Tyrosine kinase and 
phosphatase regulation of slow delayed-rectifier K+ current in guinea-pig ventricular 
myocytes. Journal of Physiology, 573 (Pt 2), pp.469-482.  

Mitra, A. K., Faruque, F. S. and Avis, A. L. 2004. Breast cancer and environmental 
risks: where is the link? Journal Of Environmental Health, 66 (7), p.24.  

Mohan, N., Karmakar, S., Choudhury, S. R., Banik, N. L. and Ray, S. K. 2009. Bcl-2 
inhibitor HA14-1 and genistein together adeptly down regulated survival factors and 
activated cysteine proteases for apoptosis in human malignant neuroblastoma SK-
N-BE2 and SH-SY5Y cells. Brain Research, 1283 pp.155-166.  

Molleman, A.2002. Basic Theoretical Principles. Patch Clamping: An Introductory 
Guide to Patch Clamp Electrophysiology. Hoboken, NJ: John Wiley & Sons, pp. 5-
42. 

Moon, Y. J., Shin, B. S., An, G. and Morris, M. E. 2008. Biochanin A inhibits breast 
cancer tumor growth in a murine xenograft model. Pharmaceutical Research, 25 (9), 
pp.2158-2163.  

Moore, J. T., McKee, D. D., Slentz-Kesler, K., Moore, L. B., Jones, S. A., Horne, E. 
L., Su, J. L., Kliewer, S. A., Lehmann, J. M. and Willson, T. M. 1998. Cloning and 
characterization of human estrogen receptor beta isoforms. Biochemical And 
Biophysical Research Communications, 247 (1), pp.75-78.  

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: 
application to proliferation and cytotoxicity assays. Journal Of Immunological 
Methods, 65 (1-2), pp.55-63.  

Mu, D., Chen, L., Zhang, X., See, L. H., Koch, C. M., Yen, C., Tong, J. J., Spiegel, 
L., Nguyen, K. C. Q., Servoss, A., Peng, Y., Pei, L., Marks, J. R., Lowe, S., Hoey, T., 
Jan, L. Y., McCombie, W. R., Wigler, M. H. and Powers, S. 2003. Genomic 
amplification and oncogenic properties of the KCNK9 potassium channel gene. 
Cancer Cell, 3 (3), pp.297-302.  

Nagata, C., Shimizu, H., Takami, R., Hayashi, M., Takeda, N. and Yasuda, K. 2003. 
Dietary soy and fats in relation to serum insulin-like growth factor-1 and insulin-like 
growth factor-binding protein-3 levels in premenopausal Japanese women. Nutrition 
And Cancer, 45 (2), pp.185-189.  



392 | P a g e  

 

Nakagawa, T. and Yuan, J. 2000. Cross-talk between two cysteine protease 
families. Activation of caspase-12 by calpain in apoptosis. Journal Of Cell Biology, 
150 (4), pp.887-894.  

Nassarre, P., Constantin, B., Rouhaud, L., Harnois, T., Raymond, G., Drabkin, H. A., 
Bourmeyster, N. and Roche, J. 2003. Semaphorin SEMA3F and VEGF have 
opposing effects on cell attachment and spreading. Neoplasia, 5 (1), pp.83-91.  

Nechuta, S. J., Caan, B. J., Chen, W. Y., Lu, W., Chen, Z., Kwan, M. L., Flatt, S. W., 
Zheng, Y., Zheng, W., Pierce, J. P. and Shu, X. O. 2012. Soy food intake after 
diagnosis of breast cancer and survival: an in-depth analysis of combined evidence 
from cohort studies of US and Chinese women. American Journal of Clinical 
Nutrition, 96 (1), pp.123-132.  

Neumar, R. W., Xu, Y. A., Guttmann, R. P. and Siman, R. 2003. Cross-talk between 
calpain and caspase proteolytic systems during neuronal apoptosis. Journal Of 
Biological Chemistry, 278 (16), pp.14162-14167.  

NICE. 2006. Trastuzumab for the adjuvant treatment of early-stage HER2-positive 
breast cancer: NICE technology appraisal guidance 107. [online] London: NHS, 
National Institute for Health and Clinical Excellence (NICE). Available at: 
http://www.nice.org.uk/nicemedia/live/11586/33458/33458.pdf. [Accessed 
September 11, 2012]. 

NICE. 2009a. Advanved breast cancer: NICE Clinical Guideline 81. [online] London: 
NHS, National Institute for Health and Clinical Excellence (NICE). Available from: 
http://guidance.nice.org.uk/CG81. [Accessed September 11, 2012]. 

NICE (2009b). Early and locally advanced breast cancer: NICE Clinical Guideline 
80. [online] London: NHS, National Institute for Health and Clinical Excellence 
(NICE). Available from: http://guidance.nice.org.uk/CG80. [Accessed September 11, 
2012]. 

 O'Lone, R., Knorr, K., Jaffe, I. Z., Schaffer, M. E., Martini, P. G. V., Karas, R. H., 
Bienkowska, J., Mendelsohn, M. E. and Hansen, U. 2007. Estrogen receptors alpha 
and beta mediate distinct pathways of vascular gene expression, including genes 
involved in mitochondrial electron transport and generation of reactive oxygen 
species. Molecular Endocrinology, 21 (6), pp.1281-1296.  

Office for National Statistics (2012). Cancer indicence and mortality in the UK, 2007 
- 2009. Office for National Statistics. London. 

Ogawa, S., Inoue, S., Watanabe, T., Orimo, A., Hosoi, T., Ouchi, Y. and Muramatsu, 
M. 1998. Molecular cloning and characterization of human estrogen receptor betacx: 
a potential inhibitor ofestrogen action in human. Nucleic Acids Research, 26 (15), 
pp.3505-3512.  

Ogden, D.  1994. Microelectrode Techniques: The Plymouth Workshop Handbook. 2 
ed. Cambridge: The Company of Biologists Ltd.  

Ogden, D. and Stanfield, P.1994. Patchclamp techniques for single channel and 
whole-cell recording. In: Ogden, D. ed. Microelectrode Techniques: The Plymouth 
Workshop Handbook 2 ed. Cambridge: The Company of Biologists Ltd, pp. 53-78. 



393 | P a g e  

 

Okumura, N., Imai, S., Toyoda, F., Isoya, E., Kumagai, K., Matsuura, H. and 
Matsusue, Y. 2009. Regulatory role of tyrosine phosphorylation in the swelling-
activated chloride current in isolated rabbit articular chondrocytes. Journal of 
Physiology, 587 (Pt 15), pp.3761-3776.  

Orrenius, S., Zhivotovsky, B. and Nicotera, P. 2003. Regulation of cell death: the 
calcium-apoptosiis link. Nature Reviews, 4 pp.552-565.  

Ouadid-Ahidouch, H., Chaussade, F., Roudbaraki, M., Slomianny, C., Dewailly, E., 
Delcourt, P. and Prevarskaya, N. 2000. KV1.1 K(+) channels identification in human 
breast carcinoma cells: involvement in cell proliferation. Biochemical And 
Biophysical Research Communications, 278 (2), pp.272-277.  

Ouadid-Ahidouch, H. and Ahidouch, A. 2008. K+ channel expression in human 
breast cancer cells: involvement in cell cycle regulation and carcinogenesis. Journal 
Of Membrane Biology, 221 (1), pp.1-6.  

Ouadid-Ahidouch, H., Roudbaraki, M., Ahidouch, A., Delcourt, P. and Prevarskaya, 
N. 2004a. Cell-cycle-dependent expression of the large Ca2+-activated K+ channels 
in breast cancer cells. Biochemical And Biophysical Research Communications, 316 
(1), pp.244-251.  

Ouadid-Ahidouch, H., Roudbaraki, M., Delcourt, P., Ahidouch, A., Joury, N. and 
Prevarskaya, N. 2004b. Functional and molecular identification of intermediate-
conductance Ca(2+)-activated K(+) channels in breast cancer cells: association with 
cell cycle progression. American Journal Of Physiology: Cell Physiology, 287 (1), 

p.C125-C134. 

Pagliacci, M. C., Spinozzi, F., Migliorati, G., Fumi, G., Smacchia, M., Grignani, F., 
Riccardi, C. and Nicoletti, I. 1993. Genistein inhibits tumour cell growth in vitro but 
enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of 
the MTT assay for evaluating cell growth and survival. European Journal Of Cancer, 
29A (11), pp.1573-1577.  

Palmieri, C., Cheng, G.J., Saji, S., Zelada-Hedman, M., Warri, A., Weihua, Z., Van 
Noorden, S., Wahlstrom. T., Coombes, R.C., Warner, M. and Gustafsson, J.A. 2002.  
Estrogen receptor beta in breast cancer. Endocrine-Related Cancer, 9, pp.1-13. 

Pan, Z., Capo-Aponte, J. E., Zhang, F., Wang, Z., Pokorny, K. S. and Reinach, P. S. 
2007. Differential dependence of regulatory volume decrease behavious in rabbit 
corneal epithelial cells on MAPK superfamily activation. Experimental Eye 
Research, 84 (5), pp.978-990.  

Pardo, L. A., Contreras-Jurado, C., Zientkowska, M., Alves, F. and Stuhmer, W. 
2005. Role of voltage-gated potassium channels in cancer. Journal Of Membrane 
Biology, 205 (3), pp.115-124.  

Pardo, L. A. 2004. Voltage-gated potassium channels in cell proliferation. 
Physiology, 19 pp.285-292.  

  



394 | P a g e  

 

Park, S. Y., Wilkens, L. R., Franke, A. A., Le Marchand, L., Kakazu, K. K., 
Goodman, M. T., Murphy, S. P., Henderson, B. E. and Kolonel, L. N. 2009. Urinary 
phytoestrogen excretion and prostate cancer risk: a nested case-control study in the 
Multiethnic Cohort. British Journal Of Cancer, 101 (1), pp.185-191.  

Park, S. Y., Murphy, S. P., Wilkens, L. R., Henderson, B. E. and Kolonel, L. N. 2008. 
Legume and isoflavone intake and prostate cancer risk: The Multiethnic Cohort 
Study. International Journal Of Cancer, 123 (4), pp.927-932.  

Park, W. S., Firth, A. L., Han, J. and Ko, E. A. 2010. Patho-, physiological roles of 
voltage-dependent K+ channels in pulmonary arterial smooth muscle cells. Journal 
Of Smooth Muscle Research, 46 (2), pp.89-105.  

Parkin D. M., Whelan S. L., Ferlay J., Teppo L., and Thomas D. B. (2002). Cancer 
Incidence in Five Continents Vol. VIII. International Agency for Research on Cancer 
(IARC). Lyon, France. 

Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. 2005. Global cancer statistics, 2002. 
CA Cancer Journal For Clinicians, 55 (2), pp.74-108.  

Paruthiyil, S., Parmar, H., Kerekatte, V., Cunha, G. R., Firestone, G. L. and Leitman, 
D. C. 2004. Estrogen receptor beta inhibits human breast cancer cell proliferation 
and tumor formation by causing a G2 cell cycle arrest. Cancer Research, 64 (1), 
pp.423-428.  

Patel, A. J. and Honore, E. 2001. Properties and modulation of mammalian 2P 
domain K+ channels. Trends in Neuroscience, 24 (6), pp.339-346.  

Perez, R., Melero, R., Balboa, M. A. and Balsinde, J. 2004. Role of group VIA 
calcium-independent phospholipase A2 in arachidonic acid release, phospholipid 
fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen 
peroxide. Journal Of Biological Chemistry, 279 (39), pp.40385-40391.  

Perez-Jimenez, J., Hubert, J., Hooper, L., Cassidy, A., Manach, C., Williamson, G. 
and Scalbert, A. 2010. Urinary metabolites as biomarkers of polyphenol intake in 
humans: a systematic review. American Journal of Clinical Nutrition, 92 (4), pp.801-
809.  

Perillo, B., Sasso, A., Abbondanza, C. and Palumbo, G. 2000. 17beta-estradiol 
inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-
responsive elements present in the coding sequence. Molecular And Cellular 
Biology, 20 (8), pp.2890-2901.  

Peterson, G. 1995. Evaluation of the biochemical targets of genistein in tumor cells. 
Journal Of Nutrition, 125 (3 Suppl), pp.784S-789s.  

Peterson, G. and Barnes, S. 1996. Genistein inhibits both estrogen and growth 
factor-stimulated proliferation of human breast cancer cells. Cell Growth & 
Differentiation, 7 (10), pp.1345-1351.  

Peterson, T. G., Ji, G. P., Kirk, M., Coward, L., Falany, C. N. and Barnes, S. 1998. 
Metabolism of the isoflavones genistein and biochanin A in human breast cancer 
cell lines. American Journal of Clinical Nutrition, 68 (6 Suppl), pp.1505S-1511s.  



395 | P a g e  

 

Piller, R., Chang-Claude, J. and Linseisen, J. 2006. Plasma enterolactone and 
genistein and the risk of premenopausal breast cancer. European Journal Of Cancer 
Prevention: The Official Journal Of The European Cancer Prevention Organisation 
(ECP), 15 (3), pp.225-232.  

Pillozzi, S., Brizzi, M. F., Balzi, M., Crociani, O., Cherubini, A., Guasti, L., Bartolozzi, 
B., Becchetti, A., Wanke, E., Bernabei, P. A., Olivotto, M., Pegoraro, L. and 
Arcangeli, A. 2002. HERG potassium channels are constitutively expressed in 
primary human acute myeloid leukemias and regulate cell proliferation of normal 
and leukemic hemopoietic progenitors. Leukemia, 16 (9), pp.1791-1798.  

Platet, N., Cathiard, A. M., Gleizes, M. and Garcia, M. 2004. Estrogens and their 
receptors in breast cancer progression: a dual role in cancer proliferation and 
invasion. Critical Reviews In Oncology/Hematology, 51 (1), pp.55-67.  

Plumb, J. A., Milroy, R. and Kaye, S. B. 1989. Effects of the pH dependence of 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on 
chemosensitivity determined by a novel tetrazolium-based assay. Cancer Research, 
49 (16), pp.4435-4440.  

Pollak, M.  2001. How do anti-oestrogens work? In: Tobias, J. S., J. Houghton and I. 
C. Henderson eds. Breast Cancer: New Horizons in Research and Treatment. 
London: Arnold, pp. 72-80. 

Popkin, B. M. and Du, S. 2003. Dynamics of the nutrition transition toward the 
animal foods sector in China and its implications: a worried perspective. Journal Of 
Nutrition, 133 (11 Suppl 2), pp.3898S-3906S.  

Pugazhendhi, D., Watson, K. A., Mills, S., Botting, N., Pope, G. S. and Darbre, P. D. 
2008. Effect of sulphation on the oestrogen agonist activity of the phytoestrogens 
genistein and daidzein in MCF-7 human breast cancer cells. Journal Of 
Endocrinology, 197 (3), pp.503-515.  

Qu, X., Zou, Z., Sun, Q., Luby-Phelps, K., Cheng, P., Hogan, R. N., Gilpin, C. and 
Levine, B. 2007. Autophagy gene-dependent clearance of apoptotic cells during 
embryonic development. Cell, 128 (5), pp.931-946.  

Rae, J. M., Creighton, C. J., Meck, J. M., Haddad, B. R. and Johnson, M. D. 2007. 
MDA-MB-435 cells are derived from M14 melanoma cells--a loss for breast cancer, 
but a boon for melanoma research. Breast Cancer Research And Treatment, 104 
(1), pp.13-19.  

Rajah, T. T., Du, N., Drews, N. and Cohn, R. 2009. Genistein in the presence of 
17beta-estradiol inhibits proliferation of ERbeta breast cancer cells. Pharmacology, 
84 (2), pp.68-73.  

Reddy, M. and Given-Wilson, R. 2006. Screening for breast cancer. Women's 
Health Medicine, 3 (1), pp.22-27.  

Ren, Z., Zou, C., Ji, H. and Zhang, Y. A. 2010. Oestrogen regulates proliferation and 
differentiation of human islet-derived precursor cells through oestrogen receptor 
alpha. Cell Biology International, 34 (5), pp.523-530.  



396 | P a g e  

 

Renehan, A. G., Zwahlen, M., Minder, C., O'Dwyer, S. T., Shalet, S. M. and Egger, 
M. 2004. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: 
systematic review and meta-regression analysis. Lancet, 363 (9418), pp.1346-1353.  

Riccardi, C. and Nicoletti, I. 2006. Analysis of apoptosis by propidium iodide staining 
and flow cytometry. Nature Protocols, 1 pp.1458-1461.  

Riedle, F. and Scott, F. L.  2009. Caspases: activation, regulation and function. In: 
Xiao-Ming Yin, Zheng Dong eds. Essentials of Apoptisis: A Guide for Basic and 
Clinical Research. 2 ed. New York: Humana Press, pp. 3-24. 

Rock, C. L., Flatt, S. W., Laughlin, G. A., Gold, E. B., Thomson, C. A., Natarajan, L., 
Jones, L. A., Caan, B. J., Stefanick, M. L., Hajek, R. A., Al-Delaimy, W. K. and 
Stanczyk, F. Z.. 2008. Reproductive Steroid Hormones and Recurrence-Free 
Survival in Women with a History of Breast Cancer. Cancer Epidemiology, 
Biomarkers & Prevention, 17 (3), pp.614-620.  

Rodriguez-Mora, O. G., LaHair, M. M., McCubrey, J. A. and Franklin, R. A. 2005. 
Calcium/calmodulin-dependent kinase I and calcium/calmodulin-dependent kinase 
kinase participate in the control of cell cycle progression in MCF-7 human breast 
cancer cells. Cancer Research, 65 (12), pp.5408-5416.  

Rody, A., Holtrich, U., Solbach, C., Kourtis, K., von Minckwitz, G., Engels, K., 
Kissler, S., Gatje, R., Karn, T. and Kaufmann, M. 2005. Methylation of estrogen 
receptor beta promoter correlates with loss of ER-beta expression in mammary 
carcinoma and is an early indication marker in premalignant lesions. Endocrine-
Related Cancer, 12 (4), pp.903-916.  

Roger, S., Potier, M., Vandier, C., Le Guennec, J. Y. and Besson, P. 2004. 
Description and role in proliferation of iberiotoxin-sensitive currents in different 
human mammary epithelial normal and cancerous cells. Biochimica Et Biophysica 
Acta, 1667 (2), pp.190-199.  

Rowell, C., Carpenter, D. M. and Lamartiniere, C. A. 2005. Chemoprevention of 
breast cancer, proteomic discovery of genistein action in the rat mammary gland. 
Journal Of Nutrition, 135 (12 Suppl), pp.2953S-2959S.  

Roy, J., Vantol, B., Cowley, E. A., Blay, J. and Linsdell, P. 2008. Pharmacological 
separation of hEAG and hERG K+ channel function in the human mammary 
carcinoma cell line MCF-7. Oncology Reports, 19 (6), pp.1511-1516.  

Roy, S. S. and Hajnoczky, G. 2008. Calcium, mitochondria and apoptosis studied by 
fluorescence measurements. Methods, 46 (3), pp.213-223.  

Rubin, M. R., Schussheim, D. H., Kulak, C. A. M., Kurland, E. S., Rosen, C. J., 
Bilezikian, J. P. and Shane, E. 2005. Idiopathic osteoporosis in premenopausal 
women. Osteoporosis International, 16 (5), pp.526-533.  

Rybarczyk, B.J. and Simpson-Haidaris, P.J. 2000 Fibrinogen assembly, secretion 
and deposition into extracellular matric by MCF-7 human breast carcinoma cells.  
Cancer Research, 60, pp.2033-2039. 



397 | P a g e  

 

Sakamoto, T., Horiguchi, H., Oguma, E. and Kayama, F. 2010. Effects of diverse 
dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-
positive breast cancer cells. Journal of Nutritional Biochemistry, 21 pp.856-864.  

Salata, J. J., Jurkiewicz, N. K., Wallace, A. A., Stupienski, R. F., III, Guinosso, P. J., 
Jr. and Lynch, J. J., Jr. 1995. Cardiac electrophysiological actions of the histamine 
H1-receptor antagonists astemizole and terfenadine compared with 
chlorpheniramine and pyrilamine. Circulation Research, 76 (1), pp.110-119.  

Salvi, M., Brunati, A. M., Clari, G. and Toninello, A. 2002. Interaction of genistein 
with the mitochondrial electron transport chain results in opening of the membrane 
transition pore. Biochimica Et Biophysica Acta, 1556 (2-3), pp.187-196.  

Sanguinetti, M. C. and Tristani-Firouzi, M. 2006. hERG potassium channels and 
cardiac arrhythmia. Nature, 440 (7083), pp.463-469.  

Sartippour, M. R., Rao, J. Y., Apple, S., Wu, D., Henning, S., Wang, H., Elashoff, R., 
Rubio, R., Heber, D. and Brooks, M. N. 2004. A pilot clinical study of short-term 
isoflavone supplements in breast cancer patients. Nutrition & Cancer, 49 (1), pp.59-
65.  

Sarwar, N., Kim, J. S., Jiang, J., Peston, D., Sinnett, H. D., Madden, P., Gee, J. M., 
Nicholson, R. I., Lykkesfeldt, A. E., Shousha, S., Coombes, R. C. and Ali, S. 2006. 
Phosphorylation of ERalpha at serine 118 in primary breast cancer and in 
tamoxifen-resistant tumours is indicative of a complex role for ERalpha 
phosphorylation in breast cancer progression. Endocrine-Related Cancer, 13 (3), 

pp.851-861.  

Saunders, P.T.K., Millar, M.R., Williams, K., Macpherson, S., Bayne, C., O'Sullivan, 
C., Anderson, T.J., Groome, N.P. and Miller, W.R. 2002.  Expression of oestrogen 
receptor beta (ERbeta1) protein in human breast cancer biopsies.  British Journal of 
Cancer, 86 (2), pp.250-256. 

Schmidt, S., Michna, H. and Diel, P. 2005. Combinatory effects of phytoestrogens 
and 17beta-estradiol on proliferation and apoptosis in MCF-7 breast cancer cells. 
Journal Of Steroid Biochemistry And Molecular Biology, 94 (5), pp.445-449.  

Schwarz, J. R. and Bauer, C. K. 2004. Functions of erg K+ channels in excitable 
cells. Journal Of Cellular And Molecular Medicine, 8 (1), pp.22-30.  

Schyver, T. and Smith, C. 2005. Reported Attitudes and Beliefs toward Soy Food 
Consumption of Soy Consumers versus Nonconsumers in Natural Foods or 
Mainstream Grocery Stores. Journal of Nutrition Education & Behavior, 37 (6), 
pp.292-299.  

Seino, S. and Miki, T. 2003. Physiological and pathophysiological roles of ATP-
sensitive K+ channels. Progress In Biophysics And Molecular Biology, 81 (2), 

pp.133-176.  

Seo, H. S., DeNardo, D. G., Jacquot, Y., Lanos, I., Vidal, D. S., Zambrana, C. R., 
Leclercq, G. and Brown, P. H. 2006. Stimulatory effect of genistein and apigenin on 
the growth of breast cancer cells correlates with their ability to activate ER alpha. 
Breast Cancer Research And Treatment, 99 (2), pp.121-134.  



398 | P a g e  

 

Seo, H. S., Ju, J. H., Jang, K. and Shin, I. 2011. Induction of apoptotic cell death by 
phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and 
malignant estrogen receptor α-negative breast cells. Nutrition Research, 31 (2), 
pp.139-146.  

Sergeev, I. N. 2004. Genistein induces Ca2+ -mediated, calpain/caspase-12-
dependent apoptosis in breast cancer cells. Biochemical And Biophysical Research 
Communications, 321 (2), pp.462-467.  

Setchell, K. D. 1998. Phytoestrogens: the biochemistry, physiology, and implications 
for human health of soy isoflavones. American Journal of Clinical Nutrition, 68 (6 

Suppl), pp.1333S-1346s.  

Setchell, K. D., Zimmer-Nechemias, L., Cai, J. and Heubi, J. E. 1997. Exposure of 
infants to phyto-oestrogens from soy-based infant formula. Lancet, 350 (9070), 
pp.23-27.  

Setchell, K. D. R., Brown, N. M. and Lydeking-Olsen, E. 2002. The clinical 
importance of the metabolite equol-a clue to the effectiveness of soy and its 
isoflavones. Journal Of Nutrition, 132 (12), pp.3577-3584.  

Setchell, K. D. R., Brown, N. M., Zhao, X., Lindley, S. L., Heubi, J. E., King, E. C. 
and Messina, M. J. 2011. Soy isoflavone phase II metabolism differs between 
rodents and humans: implications for the effect on breast cancer risk. The American 
Journal Of Clinical Nutrition, 94 (5), pp.1284-1294.  

Setchell, K. D. R. and Cole, S. J. 2003. Variations in isoflavone levels in soy foods 
and soy protein isolates and issues related to isoflavone databases and food 
labeling. Journal Of Agricultural And Food Chemistry, 51 (14), pp.4146-4155.  

Shim, H. Y., Park, J. H., Paik, H. D., Nah, S. Y., Kim, D. S. H. L. and Han, Y. S. 
2007. Genistein-induced apoptosis of human breast cancer MCF-7 cells involves 
calpain-caspase and apoptosis signaling kinase 1-p38 mitogen-activated protein 
kinase activation cascades. Anti-Cancer Drugs, 18 (6), pp.649-657.  

Shon, Y. H., Park, S. D. and Nam, K. S. 2006. Effective chemopreventive activity of 
genistein against human breast cancer cells. Journal Of Biochemistry And Molecular 
Biology, 39 (4), pp.448-451.  

Shu, X. O., Jin, F., Dai, Q., Wen, W., Potter, J. D., Kushi, L. H., Ruan, Z., Gao, Y. T. 
and Zheng, W. 2001. Soyfood intake during adolescence and subsequent risk of 
breast cancer among Chinese women. Cancer Epidemiology, Biomarkers & 
Prevention, 10 (5), pp.483-488.  

Shu, X. O., Zheng, Y., Cai, H., Gu, K., Chen, Z., Zheng, W. and Lu, W. 2009. Soy 
food intake and breast cancer survival. Journal Of The American Medical 
Association, 302 (22), pp.2437-2443.  

Simoes-Wust, A. P., Schurpf, T., Hall, J., Stahel, R. A. and Zangemeister-Wittke, U. 
2002. Bcl-2/bcl-xL bispecific antisense treatment sensitizes breast carcinoma cells 
to doxorubicin, paclitaxel and cyclophosphamide. Breast Cancer Research And 
Treatment, 76 (2), pp.157-166.  



399 | P a g e  

 

Singh, B., Mense, S. M., Bhat, N. K., Putty, S., Guthiel, W. A., Remotti, F. and Bhat, 
H. K. 2010. Dietary quercetin exacerbates the development of estrogen-induced 
breast tumors in female ACI rats. Toxicology And Applied Pharmacology, 247 (2), 
pp.83-90.  

Singletary, K. W., Frey, R. S. and Yan, W. 2001. Effect of ethanol on proliferation 
and estrogen receptor-alpha expression in human breast cancer cells. Cancer 
Letters, 165 (2), pp.131-137.  

Skliris, G. P., Leygue, E., Watson, P. H. and Murphy, L. C. 2008. Estrogen receptor 
alpha negative breast cancer patients: estrogen receptor beta as a therapeutic 
target. Journal Of Steroid Biochemistry And Molecular Biology, 109 (1-2), pp.1-10.  

Smith, I. and Chua, S. 2006a. Medical treatment of early breast cancer. I: adjuvant 
treatment. BMJ (Clinical Research Ed ), 332 (7532), pp.34-37.  

Smith, I. and Chua, S. 2006b. Medical treatment of early breast cancer. IV: 
neoadjuvant treatment. BMJ (Clinical Research Ed ), 332 (7535), pp.223-224.  

So, F. V., Guthrie, N., Chambers, A. F. and Carroll, K. K. 1997. Inhibition of 
proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by 
flavonoids in the presence and absence of excess estrogen. Cancer Letters, 112 

pp.127-133.  

Sohn, S. J., Lewis, G. M. and Winoto, A. 2008. Non-redundant function of the 
MEK5-ERK5 pathway in thymocyte apoptosis. EMBO Journal, 27 (13), pp.1896-
1906.  

Song, R. X. D., Zhang, Z., Chen, Y., Bao, Y. and Santen, R. J. 2007. Estrogen 
signaling via a linear pathway involving insulin-like growth factor I receptor, matrix 
metalloproteinases, and epidermal growth factor receptor to activate mitogen-
activated protein kinase in MCF-7 breast cancer cells. Endocrinology, 148 (8), 

pp.4091-4101.  

Sontheimer, H. and Olsen, M. L.  2007. Whole Cell Patch Clamp Recordings. In: 
Walz, W. ed. Patch Clamp Analysis. 2 ed. New York: Humana Press, pp. 35-68. 

Sotoca, A. M., Ratman, D., van der Saag, P., Strom, A., Gustafsson, J. A., Vervoort, 
J., Rietjens, I. M. C. M. and Murk, A. J. 2008. Phytoestrogen-mediated inhibition of 
proliferation of the human T47D breast cancer cells depends on the 
ERalpha/ERbeta ratio. Journal Of Steroid Biochemistry And Molecular Biology, 112 
(4-5), pp.171-178.  

Speirs, V., Parkes, A. T., Kerin, M. J., Walton, D. S., Carleton, P. J., Fox, J. N. and 
Atkin, S. L. 1999. Coexpression of estrogen receptor alpha and beta: poor 
prognostic factors in human breast cancer? Cancer Research, 59 (3), pp.525-528.  

Speirs, V. 2008. The evolving role of oestrogen receptor beta in clinical breast 
cancer. Breast Cancer Research, 10 (5), p.111.  

Standen, N. B., Davies, N. W. and Langton, P. D.1994. Separation and analysis of 
macroscopic currents. In: Ogden, D. ed. Microelectrode Techniques. 2 ed. 
Cambridge: The Company of Biologists Ltd, pp. 37-52. 



400 | P a g e  

 

Steiner, C., Arnould, S., Scalbert, A. and Manach, C. 2008. Isoflavones and the 
prevention of breast and prostate cancer: new perspectives opened by 
nutrigenomics. British Journal Of Nutrition, 99 E Suppl 1 p.ES78-ES108.  

Stephan, D., Winkler, M., Kuhner, P., Russ, U. and Quast, U. 2006. Selectivity of 
repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) 
channels. Diabetologia, 49 (9), pp.2039-2048.  

Storey, N. M., Gomez-Angelats, M., Bortner, C. D., Armstrong, D. L. and Cidlowski, 
J. A. 2003. Stimulation of Kv1.3 potassium channels by death receptors during 
apoptosis in Jurkat T lymphocytes. Journal Of Biological Chemistry, 278 (35), 

pp.33319-33326.  

Stringer, B. K., Cooper, A. G. and Shepard, S. B. 2001. Overexpression of the G-
protein inwardly rectifying potassium channel 1 (GIRK1) in primary breast 
carcinomas correlates with axillary lymph node metastasis. Cancer Research, 61 

(2), pp.582-588.  

Strobl, J. S., Wonderlin, W. F. and Flynn, D. C. 1995. Mitogenic signal transduction 
in human breast cancer cells. General Pharmacology, 26 (8), pp.1643-1649.  

Strom, A., Hartman, J., Foster, J. S., Kietz, S., Wimalasena, J. and Gustafsson, J. A. 
2004. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the 
breast cancer cell line T47D. Proceedings Of The National Academy Of Sciences Of 
The United States Of America, 101 (6), pp.1566-1571.  

Sun, X. H., Ding, J. P., Li, H., Pan, N., Gan, L., Yang, X. L. and Xu, H. B. 2007. 
Activation of large-conductance calcium-activated potassium channels by puerarin: 
the underlying mechanism of puerarin-mediated vasodilation. Journal Of 
Pharmacology And Experimental Therapeutics, 323 (1), pp.391-397.  

Sundelacruz, S., Levin, M. and Kaplan, D.L.  2009.  Role of membrane potential in 
the regulation of cell proliefration and differentiation.  Stem cell Reviews and 
Reports, 5, pp.231-246. 

Suzuki, K., Koike, H., Matsui, H., Ono, Y., Hasumi, M., Nakazato, H., Okugi, H., 
Sekine, Y., Oki, K., Ito, K., Yamamoto, T., Fukabori, Y., Kurokawa, K. and 
Yamanaka, H. 2002. Genistein, a soy isoflavone, induces glutathione peroxidase in 
the human prostate cancer cell lines LNCaP and PC-3. International Journal Of 
Cancer, 99 (6), pp.846-852.  

Suzuki, T., Matsuo, K., Tsunoda, N., Hirose, K., Hiraki, A., Kawase, T., Yamashita, 
T., Iwata, H., Tanaka, H. and Tajima, K. 2008. Effect of soybean on breast cancer 
according to receptor status: a case-control study in Japan. International Journal Of 
Cancer, 123 (7), pp.1674-1680.  

Szabo, I., Bock, J., Grassme, H., Soddemann, M., Wilker, B., Lang, F., Zoratti, M. 
and Gulbins, E. 2008. Mitochondrial potassium channel Kv1.3 mediates Bax-
induced apoptosis in lymphocytes. Proceedings Of The National Academy Of 
Sciences Of The United States Of America, 105 (39), pp.14861-14866.  

  



401 | P a g e  

 

Taku, K., Umegaki, K., Sato, Y., Taki, Y., Endoh, K. and Watanabe, S. 2007. Soy 
isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 
randomized controlled trials. American Journal of Clinical Nutrition, 85 (4), pp.1148-
1156.  

Taku, K., Melby, M. K., Kurzer, M. S., Mizuno, S., Watanabe, S. and Ishimi, Y. 2010. 
Effects of soy isoflavone supplements on bone turnover markers in menopausal 
women: systematic review and meta-analysis of randomized controlled trials. Bone, 
47 (2), pp.413-423.  

Tanos, V., Brzezinski, A., Drize, O., Strauss, N. and Peretz, T. 2002. Synergistic 
inhibitory effects of genistein and tamoxifen on human dysplastic and malignant 
epithelial breast cells in vitro. European Journal Of Obstetrics, Gynecology, And 
Reproductive Biology, 102 (2), pp.188-194.  

Taylor, A. H. and Al-Azzawi, F. 2000. Immunolocalisation of oestrogen receptor beta 
in human tissues. Journal Of Molecular Endocrinology, 24 (1), pp.145-155.  

Teisseyre, A. and Michalak, K. 2005. Genistein inhibits the activity of kv1.3 
potassium channels in human T lymphocytes. Journal Of Membrane Biology, 205 
(2), pp.71-79.  

Teisseyre, A. and Michalak, K. 2006. Inhibition of the activity of human lymphocyte 
Kv1.3 potassium channels by resveratrol. Journal Of Membrane Biology, 214 (3), 
pp.123-129.  

Thanos, J., Cotterchio, M., Boucher, B. A., Kreiger, N. and Thompson, L. U. 2006. 
Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer 
Causes & Control, 17 (10), pp.1253-1261.  

Theil, C., Briese, V., Gerber, B. and Richter, D. U. 2011. The effects of different 
lignans and isoflavones, tested as aglycones and glycosides, on hormone receptor-
positive and -negative breast carcinoma cells in vitro. Archives Of Gynecology And 
Obstetrics, 284 (2), pp.459-465.  

Tice, J. A., Ettinger, B., Ensrud, K., Wallace, R., Blackwell, T. and Cummings, S. R. 
2003. Phytoestrogen supplements for the treatment of hot flashes: the Isoflavone 
Clover Extract (ICE) Study: a randomized controlled trial. Journal Of The American 
Medical Association, 290 (2), pp.207-214.  

Tong, D., Schuster, E., Seifert, M., Czerwenka, K., Leodolte, S. and Zeillinger, R. 
2002. Expression of estrogen receptor beta isoforms in human breast cancer tissues 
and cell lines. Breast Cancer Research And Treatment, 71 (3), pp.249-255.  

Travis, R. C., Allen, N. E., Appleby, P. N., Spencer, E. A., Roddam, A. W. and Key, 
T. J. 2008. A prospective study of vegetarianism and isoflavone intake in relation to 
breast cancer risk in British women. International Journal Of Cancer, 122 (3), 

pp.705-710.  

Trock, B. J., Hilakivi-Clarke, L. and Clarke, R. 2006. Meta-analysis of soy intake and 
breast cancer risk. Journal Of The National Cancer Institute, 98 (7), pp.459-471.  



402 | P a g e  

 

Twentyman, P. R. and Luscombe, M. 1987. A study of some variables in a 
tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. British 
Journal Of Cancer, 56 pp.279-285.  

Ueda, M., Niho, N., Imai, T., Shibutani, M., Mitsumori, K., Matsui, T. and Hirose, M. 
2003. Lack of significant effects of genistein on the progression of 7,12-
dimethylbenz(a)anthracene-induced mammary tumors in ovariectomized Sprague-
Dawley rats. Nutrition And Cancer, 47 (2), pp.141-147.  

Ulukaya, E., Ozdikicioglu, F., Oral, A. Y. and Demirci, M. 2008. The MTT assay 
yields a relatively lower result of growth inhibition than the ATP assay depending on 
the chemotherapeutic drugs tested. Toxicology In Vitro, 22 (1), pp.232-239.  

Umehara, K., Nemoto, K., Matsushita, A., Terada, E., Monthakantirat, O., De-
Eknamkul, W., Miyase, T., Warashina, T., Degawa, M. and Noguchi, H. 2009. 
Flavonoids from the heartwood of the Thai medicinal plant Dalbergia parviflora and 
their effects on estrogenic-responsive human breast cancer cells. Journal Of Natural 
Products, 72 (12), pp.2163-2168.  

Van Coppenolle, F., Skryma, R., Ouadid-Ahidouch, H., Slomianny, C., Roudbaraki, 
M., Delcourt, P., Dewailly, E., Humez, S., Crepin, A., Gourdou, I., Djaine, J., Bonnal, 
J.-L., Mauroy, B. and Prevarskaya, N. 2004. Prolactin stimulates cell proliferation 
through a long form of prolactin receptor and K+ channel activation. Biochemical 
Journal, 337 pp.569-578.  

Van Patten, C. L., Olivotto, I. A., Chambers, G. K., Gelmon, K. A., Hislop, T. G., 
Templeton, E., Wattie, A. and Prior, J. C. 2002. Effect of soy phytoestrogens on hot 
flashes in postmenopausal women with breast cancer: a randomized, controlled 
clinical trial. Journal of Clinical Oncology, 20 (6), pp.1449-1455.  

Vandhana, S., Deepa, P. R., Aparna, G., Jayanthi, U. and Krishnakumar, S. 2010. 
Evaluation of suitable solvents for testing the anti-proliferative activity of triclosan - a 
hydrophobic drug in cell culture. Indian Journal Of Biochemistry & Biophysics, 47 
(3), pp.166-171.  

Vanoye, C. G., Welch, R. C., Tian, C., Sanders, C. R. and George, A. L., Jr. 2010. 
KCNQ1/KCNE1 assembly, co-translation not required. Channels, 4 (2), pp.108-114.  

vanTol, B. L., Missan, S., Crack, J., Moser, S., Baldridge, W. H., Linsdell, P. and 
Cowley, E. A. 2007. Contribution of KCNQ1 to the regulatory volume decrease in 
the human mammary epithelial cell line MCF-7. American Journal Of Physiology 
Cell Physiology, 293 (3), p.C1010-C1019.  

Vega-Lopez, S., Yeum, K. J., Lecker, J. L., Ausman, L. M., Johnson, E. J., Devaraj, 
S., Jialal, I. and Lichtenstein, A. H. 2005. Plasma antioxidant capacity in response to 
diets high in soy or animal protein with or without isoflavones. American Journal of 
Clinical Nutrition, 81 (1), pp.43-49.  

Vellonen, K. S., Honkakoski, P. and Urtti, A. 2004. Substrates and inhibitors of efflux 
proteins interfere with the MTT assay in cells and may lead to underestimation of 
drug toxicity. European Journal Of Pharmaceutical Sciences, 23 (2), pp.181-188.  



403 | P a g e  

 

Verheus, M., van Gils, C. H., Keinan-Boker, L., Grace, P. B., Bingham, S. A. and 
Peeters, P. H. M. 2007. Plasma phytoestrogens and subsequent breast cancer risk. 
Journal of Clinical Oncology, 25 (6), pp.648-655.  

Verkasalo, P. K., Appleby, P. N., Allen, N. E., Davey, G., Adlercreutz, H. and Key, T. 
J. 2001. Soya intake and plasma concentrations of daidzein and genistein: validity of 
dietary assessment among eighty British women (Oxford arm of the European 
Prospective Investigation into Cancer and Nutrition). British Journal Of Nutrition, 86 
(3), pp.415-421.  

Verkman, A.S. 2000.  Water permeability measurement in living cells and complex 
tissues.  Journal of Membrane Biology, 173, pp.73-87. 

Vu, C. C., Bortner, C. D. and Cidlowski, J. A. 2001. Differential involvement of 
initiator caspases in apoptotic volume decrease and potassium efflux during Fas- 
and UV-induced cell death. Journal Of Biological Chemistry, 276 (40), pp.37602-

37611.  

Wagner, B. A., Britigan, B. E., Reszka, K. J., McCormick, M. L. and Burns, C. P. 
2002. Hydrogen peroxide-induced apoptosis of HL-60 human leukemia cells is 
mediated by the oxidants hypochlorous acid and chloramines. Archives Of 
Biochemistry And Biophysics, 401 (2), pp.223-234.  

Wang, C. and Kurzer, M. S. 1998. Effects of phytoestrogens on DNA synthesis in 
MCF-7 cells in the presence of estradiol or growth factors. Nutrition And Cancer, 31 
(2), pp.90-100.  

Wang, H., Zhang, Y., Cao, L., Han, H., Wang, J., Yang, B., Nattel, S. and Wang, Z. 
2002. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. 
Cancer Research, 62 (17), pp.4843-4848.  

Wang, J., Betancourt, A. M., Mobley, J. A. and Lamartiniere, C. A. 2011. Proteomic 
discovery of genistein action in the rat mammary gland. Journal Of Proteome 
Research, 10 (4), pp.1621-1631.  

Wang, L., Yin, F., Du, Y., Chen, B., Liang, S., Zhang, Y., Du, W., Wu, K., Ding, J. 
and Fan, D. 2010. Depression of MAD2 inhibits apoptosis and increases 
proliferation and multidrug resistance in gastric cancer cells by regulating the 
activation of phosphorylated survivin. Tumour Biology, 31 (3), pp.225-232.  

Wang, Z. 2004. Roles of K+ channels in regulating tumour cell proliferation and 
apoptosis. European Journal Of Physiology, 448 (3), pp.274-286.  

Ward, H. A., Kuhnle, G. G. C., Mulligan, A. A., Lentjes, M. A. H., Luben, R. N. and 
Khaw, K. T. 2010. Breast, colorectal, and prostate cancer risk in the European 
Prospective Investigation into Cancer and Nutrition-Norfolk in relation to 
phytoestrogen intake derived from an improved database. American Journal of 
Clinical Nutrition, 91 (2), pp.440-448.  

Weber, C., Mello de Queiroz, F., Downie, B. R., Suckow, A., Stuhmer, W. and 
Pardo, L. A. 2006. Silencing the activity and proliferative properties of the human 
EagI Potassium Channel by RNA Interference. Journal Of Biological Chemistry, 281 

(19), pp.13030-13037.  



404 | P a g e  

 

Wei, A. D., Gutman, G. A., Aldrich, R., Chandy, K. G., Grissmer, S. and Wulff, H. 
2005. International Union of Pharmacology. LII. Nomenclature and molecular 
relationships of calcium-activated potassium channels. Pharmacological Reviews, 
57 (4), pp.463-472.  

Weinstein, D., Simon, M., Yehezkel, E., Laron, Z. and Werner, H. 2009. Insulin 
analogues display IGF-I-like mitogenic and anti-apoptotic activities in cultured 
cancer cells. Diabetes/Metabolism Research And Reviews, 25 (1), pp.41-49.  

Wen-Xing, D. and Xiao-Ming, Y.2009. The Bcl-2 family proteins. In: Xiao-Ming Yin, 
Zheng Dong eds. Essentials of Apoptisis: A Guide for Basic and Clinical Research. 

2 ed. New York: Humana Press, pp. 25-62. 

Westlake S. and Cooper N. (2008). Cancer Incidence and Mortality: Trends in the 
United Kingdom and Constituent Countries, 1993-2004.  (In: Office for National 
Statistics.  Health Statistics Quarterly: no. 38.). Palgrave Macmillan. Basingstoke. 

WHO. 2012.  ICD-10: Version 2010.  [online] World Health Organisation (WHO). 
Available from: http://www.who.int/classifications/icd/en/. [Accessed September 11, 
2012]. 
 
Wiebe, J. P., Beausoleil, M., Zhang, G. and Cialacu, V. 2010. Opposing actions of 
the progesterone metabolites, 5alpha-dihydroprogesterone (5alphaP) and 3alpha-
dihydroprogesterone (3alphaHP) on mitosis, apoptosis, and expression of Bcl-2, 
Bax and p21 in human breast cell lines. Journal Of Steroid Biochemistry And 
Molecular Biology, 118 (1-2), pp.125-132.  

Wiseman, H., O'Reilly, J. D., Adlercreutz, H., Mallet, A. I., Bowey, E. A., Rowland, I. 
R. and Sanders, T. A. 2000. Isoflavone phytoestrogens consumed in soy decrease 
F(2)-isoprostane concentrations and increase resistance of low-density lipoprotein to 
oxidation in humans. American Journal of Clinical Nutrition, 72 (2), pp.395-400.  

Wolff, C., Fuks, B. and Chatelain, P. 2003. Comparative study of membrane 
potential-sensitive fluorescent probes and their use in ion channel screening assays. 
Journal Of Biomolecular Screening, 8 (5), pp.533-543.  

Wonderlin, W. F. and Strobl, J. S. 1996. Potassium channels, proliferation and G1 
progression. Journal Of Membrane Biology, 154 (2), pp.91-107.  

Wong, N. A. C. S., Malcomson, R. D. G., Jodrell, D. I., Groome, N. P., Harrison, D. 
J. and Saunders, P. T. K. 2005. ERbeta isoform expression in colorectal carcinoma: 
an in vivo and in vitro study of clinicopathological and molecular correlates. Journal 
Of Pathology, 207 (1), pp.53-60.  

Woo, H. D., Park, K. S., Ro, J. and Kim, J. 2012. Differential influence of dietary soy 
intake on the risk of breast cancer recurrence related to HER2 status. Nutrition And 
Cancer, 64 (2), pp.198-205.  

World Cancer Research Fund / American Institute for Cancer (2007). Food, 
nutrition, physical activity, and the prevention of cancer: a global perspective. AICR. 
Washington DC. 



405 | P a g e  

 

Wu, A. H., Yu, M. C., Tseng, C. C. and Pike, M. C. 2008. Epidemiology of soy 
exposures and breast cancer risk. British Journal Of Cancer, 98 (1), pp.9-14.  

Wu, A. H., Wan, P., Hankin, J., Tseng, C. C., Yu, M. C. and Pike, M. C. 2002. 
Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. 
Carcinogenesis, 23 (9), pp.1491-1496.  

Wu, A. H., Yu, M. C., Tseng, C. C., Twaddle, N. C. and Doerge, D. R. 2004. Plasma 
isoflavone levels versus self-reported soy isoflavone levels in Asian-American 
women in Los Angeles County. Carcinogenesis, 25 (1), pp.77-81.  

Wu, W. K. K., Li, G. R., Wong, H. P. S., Hui, M. K. C., Tai, E. K. K., Lam, E. K. Y., 
Shin, V. Y., Ye, Y. N., Li, P., Yang, Y. H., Luo, J. C. and Cho, C. H. 2006. 
Involvement of Kv1.1 and Nav1.5 in proliferation of gastric epithelial cells. Journal Of 
Cellular Physiology, 207 (2), pp.437-444.  

Xu, X., Duncan, A. M., Wangen, K. E. and Kurzer, M. S. 2000. Soy consumption 
alters endogenous estrogen metabolism in postmenopausal women. Cancer 
Epidemiology, Biomarkers & Prevention, 9 (8), pp.781-786.  

Xu, X., Harris, K. S., Wang, H. J., Murphy, P. A. and Hendrich, S. 1995. 
Bioavailability of soybean isoflavones depends upon gut microflora in women. 
Journal Of Nutrition, 125 (9), pp.2307-2315.  

Xu, X., Wang, H. J., Murphy, P. A., Cook, L. and Hendrich, S. 1994. Daidzein is a 
more bioavailable soymilk isoflavone than is genistein in adult women. Human & 
Clinical Nutrition, 24 pp.825-832.  

Yager, J. D. 2000. Chapter 3: Endogenous estrogens as carcinogens through 
metabolic activation. Journal of the National Cancer Institute Monographs, 27 pp.67-
73.  

Yamashita, H., Nishio, M., Toyama, T., Sugiura, H., Kondo, N., Kobayashi, S., Fujii, 
Y. and Iwase, H. 2008. Low phosphorylation of estrogen receptor alpha (ERalpha) 
serine 118 and high phosphorylation of ERalpha serine 167 improve survival in ER-
positive breast cancer. Endocrine-Related Cancer, 15 (3), pp.755-763.  

Yang, X., Yang, S., McKimmey, C., Liu, B., Edgerton, S. M., Bales, W., Archer, L. T. 
and Thor, A. D. 2010. Genistein induces enhanced growth promotion in ER-
positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and 
p27/kip1 downregulation. Carcinogenesis, 31 (4), pp.695-702.  

Yao, X. and Kwan, H. Y. 1999. Activity of voltage-gated K+ channels is associated 
with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer. Life 
Sciences, 65 (1), pp.55-62.  

Ye, Y. B., Tang, X. Y., Verbruggen, M. A. and Su, Y. X. 2006. Soy isoflavones 
attenuate bone loss in early postmenopausal Chinese women : a single-blind 
randomized, placebo-controlled trial. European Journal Of Nutrition, 45 (6), pp.327-
334.  

Yellen, G. 2002. The voltage-gated potassium channels and their relatives. Nature, 
419 (6902), pp.35-42.  



406 | P a g e  

 

Yigong, S.  2009. Structural biology of programmed cell death. In: Xiao-Ming Yin, 
Zheng Dong eds. Essentials of Apoptisis: A Guide for Basic and Clinical Research. 
2 ed. New York: Humana Press, pp. 95-118. 

Ying, C., Hsu, J. T., Hung, H. C., Lin, D. H., Chen, L. F. O. and Wang, L. K. 2002. 
Growth and cell cycle regulation by isoflavones in human breast carcinoma cells. 
Reproduction, Nutrition, Development, 42 (1), pp.55-64.  

Yu, X., Zhu, J., Mi, M., Chen, W., Pan, Q. and Wei, M. 2012. Anti-angiogenic 
genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK 
activity and MAPK activation. Medical Oncology, 29 (1), pp.349-357.  

Yuan, B., Wang, L., Jin, Y., Zhen, H., Xu, P., Xu, H., Li, C. and Xu, H. 2012. Role of 
metabolism in the effects of genistein and its phase II conjugates on the growth of 
human breast cell lines. Americal Association of Pharmaceutical Scientists Journal, 
14 (2), pp.329-344.  

Zava, D. T. and Duwe, G. 1997. Estrogenic and antiproliferative properties of 
genistein and other flavonoids in human breast cancer cells in vitro. Nutrition And 
Cancer, 27 (1), pp.31-40.  

Zeleniuch-Jacquotte, A., Adlercreutz, H., Akhmedkhanov, A. and Toniolo, P. 1998. 
Reliability of serum measurements of lignans and isoflavonoid phytoestrogens over 
a two-year period. Cancer Epidemiology, Biomarkers & Prevention, 7 (10), pp.885-
889.  

Zhan, S. and Ho, S. C. 2005. Meta-analysis of the effects of soy protein containing 
isoflavones on the lipid profile. American Journal of Clinical Nutrition, 81 (2), pp.397-
408.  

Zhang, D. Y., Wang, Y., Lau, C. P., Tse, H. F. and Li, G. R. 2008. Both EGFR 
kinase and Src-related tyrosine kinases regulate human ether-á-go-go-related gene 
potassium channels. Cellular Signalling, 20 (10), pp.1815-1821.  

Zhang, Y., Song, T. T., Cunnick, J. E., Murphy, P. A. and Hendrich, S. 1999. 
Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate 
human natural killer cells at nutritionally relevant concentrations. Journal Of 
Nutrition, 129 (2), pp.399-405.  

Zhang, Y. F., Kang, H. B., Li, B. L. and Zhang, R. M. 2012. Positive effects of soy 
isoflavone food on survival of breast cancer patients in China. Asian Pacific Journal 
Of Cancer Prevention, 13 (2), pp.479-482.  

Zhang, Z. H. and Wang, Q. 2000. Modulation of a cloned human A-type voltage-
gated potassium channel (hKv1.4) by the protein tyrosine kinase inhibitor genistein. 
Pflugers Archive, 440 (5), pp.784-792.  

Zhao, C., Dahlman-Wright, K. and Gustafsson, J. A. 2008. Estrogen receptor beta: 
an overview and update. Nuclear Receptor Signaling, 6 p.e003.  

  



407 | P a g e  

 

Zhao, C., Lam, E. W. F., Sunters, A., Enmark, E., De Bella, M. T., Coombes, R. C., 
Gustafsson, J. A. and Dahlman-Wright, K. 2003. Expression of estrogen receptor 
beta isoforms in normal breast epithelial cells and breast cancer: regulation by 
methylation. Oncogene, 22 (48), pp.7600-7606.  

Zhao, C., Matthews, J., Tujague, M., Wan, J., Strom, A., Toresson, G., Lam, E. W. 
F., Cheng, G., Gustafsson, J. A. and Dahlman-Wright, K. 2007. Estrogen receptor 
beta2 negatively regulates the transactivation of estrogen receptor alpha in human 
breast cancer cells. Cancer Research, 67 (8), pp.3955-3962.  

Zheng, X., Baker, H., Hancock, W. S., Fawaz, F., McCaman, M. and Pungor, E., Jr. 
2006. Proteomic analysis for the assessment of different lots of fetal bovine serum 
as a raw material for cell culture. Part IV. Application of proteomics to the 
manufacture of biological drugs. Biotechnology Progress, 22 (5), pp.1294-1300.  

Zhou, J. R., Yu, L., Mai, Z. and Blackburn, G. L. 2004. Combined inhibition of 
estrogen-dependent human breast carcinoma by soy and tea bioactive components 
in mice. International Journal Of Cancer, 108 (1), pp.8-14.  

Zhou, Z., Gong, Q., Ye, B., Fan, Z., Makielski, J. C., Robertson, G. A. and January, 
C. T. 1998. Properties of HERG channels stably expressed in HEK 293 cells studied 
at physiological temperature. Biophysical Journal, 74 (1), pp.230-241.  

Zhou, Z., Vorperian, V. R., Gong, Q., Zhang, S. and January, C. T. 1999. Block of 
HERG potassium channels by the antihistamine astemizole and its metabolites 
desmethylastemizole and norastemizole. Journal Of Cardiovascular 
Electrophysiology, 10 (6), pp.836-843.  

Ziechner, U., Schonherr, R., Born, A. K., Gavrilova-Ruch, O., Glaser, R. W., 
Malesevic, M., Kullertz, G. and Heinemann, S. H. 2006. Inhibition of human ether a 
go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N- and C-
termini. FEBS Journal, 273 (5), pp.1074-1086.  

Ziegler, R. G., Hoover, R. N., Pike, M. C., Hildesheim, A., Nomura, A. M., West, D. 
W., Wu-Williams, A. H., Kolonel, L. N., Horn-Ross, P. L., Rosenthal, J. F. and Hyer, 
M. B. 1993. Migration patterns and breast cancer risk in Asian-American women. 
Journal Of The National Cancer Institute, 85 (22), pp.1819-1827.  

Ziv, E., Tice, J., Smith-Bindman, R., Shepherd, J., Cummings, S. and Kerlikowske, 
K. 2004. Mammographic density and estrogen receptor status of breast cancer. 
Cancer Epidemiology, Biomarkers & Prevention, 13 (12), pp.2090-2095.  

Zubik, L. and Meydani, M. 2003. Bioavailability of soybean isoflavones from 
aglycone and glucoside forms in American women. American Journal of Clinical 
Nutrition, 77 (6), pp.1459-1465.  
 


