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Abstract

This  present  paper  aims  to  answer  the  question  whether 
forced-alignment  speech  recognition  can  be  used  as  an 
alternative to humans in generating reference Voice Activity 
Detection (VAD) transcriptions. An investigation of the level 
of agreement between automatic/manual VAD transcriptions 
and  the  reference  ones  produced  by  a  human  expert  was 
carried out.  Thereafter,  statistical  analysis  was employed on 
the  automatically  produced  and  the  collected  manual 
transcriptions.  Experimental  results  confirmed  that 
forced-alignment speech recognition can provide accurate and 
consistent VAD labels. 

Index  Terms: voice  activity  detection,  speech  recognition, 
speech segmentation

1. Introduction
Voice  activity  detection  (VAD)  attempts  to  distinguish  the 
presence or  absence of human speech in  an acoustic signal. 
VAD  is  used  as  a  front-end  component  in  many  speech-
enabled  systems,  like  in  robust  speech  recognition,  speech 
coding  and  compression  systems  for  low-bandwidth 
transmission.  Detected  non-speech  segments  can  be 
subsequently discarded to improve the overall performance of 
such  systems,  saving  on  computation  and  on  network 
bandwidth [1].

In  general,  VAD  implements  feature  calculation  and 
classification  of  an  acoustic  signal  segment  as  speech  or 
non-speech.  Standard  VAD  methods  are  based  on  energy 
thresholds  (non-adaptive  and  adaptive),  waveform  and 
spectrum analysis (pitch and harmonic detection,  periodicity 
measures, zero crossing rate, spectral entropy, etc.) [1] or on 
statistical models [2],[3]. Another type of VAD is supervised 
VAD, which requires a large amount of speech data labeled by 
humans, i.e. data along with VAD transcriptions [1].

To evaluate a VAD system, its output produced on a test  
corpus is compared with a reference VAD, which is created 
manually by humans. Producing reference VAD is costly and 
time consuming and in some cases, not possible at all, such as 
for  very large  speech  databases.  Moreover,  labeling  carried 
out on the same speech corpus by different persons (including 
experts) can lead to significant differences,  inconsistent and 
erroneous transcriptions. 

Reference  VAD  can  also  be  generated  by  using 
energy-based or statistical VAD on a clean speech corpus. In 
this  case,  the  evaluation  of  VAD methods  is  performed on 
noisy  versions  of  the  speech  corpus.  These  approaches 
certainly introduce bias towards one class of VAD methods 
while evaluating the methods. 

The  quality  of  human  VAD  labelling  is  frequently 
neglected and the inconsistency of human annotations makes 
it  difficult  to  reliably interpret  experimental  results.  On the 
other  hand,  forced-alignment  automatic  speech  recognition 
(ASR) is more consistent although dependent on the acoustic 
model as well. ASR systems are extensively used for the initial 
segmentation of speech. A HMM based phonetic recognizer is 
commonly  employed  for  phoneme  segmentation  and  for 
estimating  the  phoneme  boundaries  by  means  of  Viterbi 
forced-alignment [5],[6].

While  there  are  numerous  studies  dealing  with  the 
accuracy of automatic versus manual phoneme segmentation, 
e.g.  [7],[8],  to  our  best  knowledge  the  agreement  between 
forced-alignment  ASR  and  manually  provided  VAD 
transcriptions has not been investigated in the literature.

Based on some preliminary investigations and experiments 
as  well  as  on  the  results  of  various  studies  on  phoneme 
segmentation,  e.g.  [4],[5],  we  hypothesize  that  Viterbi 
forced-alignment for transcribing VAD can be as precise as a 
human expert and better than most non-expert annotators, at 
the  same time  providing  consistent  VAD labels.  Automatic 
VAD transcription is commonly used without any systematic 
study  [9],[10],  and  the  present  work  should  provide  a 
foundation for employing it. 

Specifically,  we  investigate  whether  forced-alignment 
speech recognition can be an alternative to human annotations 
in  generating  reference  VAD.  The  level  of  agreement  of 
automatic as well as of manual VAD transcriptions with the 
reference  ones  (generated  by  a  human  expert)  was 
investigated. A set of sentences was prepared and experiment 
participants  were  asked  to  perform  VAD  annotations. 
Statistical  analysis  was  carried  out  on  the  automatically 
produced and the collected manual transcriptions. 

The paper is organized as follows: Section 2 describes the 
creation  of  the  automatic  VAD  transcriptions,  the  speech 
databases used for acoustic  modeling,  the feature  extraction 
and the speech recognition engine that was used.  Section 3 
presents the methodology of the human labeling experiment, 
Section 4 the results of the statistical analysis, and Section 5 
the conclusions.

2. Automatic VAD Transcription

2.1. Speech and Language Databases

For ASR acoustic modeling, the database we used comprises 
mixed  speech  corpora  in  German:  Phonedat  I  read  speech 
corpus  [11]  and  Verbmobile  I  spontaneous  speech  corpus 
[12]. The total duration of the speech database is approx. 53 
hours and 15 minutes. 
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The phoneme transcription of the words from the original 
database  was  generated  by  means  of  an  automatic 
grapheme-to-phoneme (G2P) procedure  and  included  in the 
training  dictionary  in  order  to  ensure  consistent 
pronunciations for  acoustic model training.  The G2P model 
that  we  used  was  trained  on  a  lexicon  derived  from  the 
WebCelex database [13]. 

The  speech  data  used  in  the  VAD  transcription 
experiments  consist  of  34  sentences  recorded  by  a  native 
German  speaker  in  a  studio  environment.  The  data  were 
selected  from  a  domain-specific  corpus  recorded  for 
investigating pathological speech and pronunciation errors by 
speech-impaired patients [14].

2.2. ASR system

For the forced-alignment segmentation and VAD labeling, the 
Sphinx/pocketsphinx [15] framework and its Gstreamer [16] 
realization  were  employed  without  using  the  VAD 
functionality. Acoustic modeling was conducted using Sphinx 
training tools  and customized procedures for model training 
and testing were established.

The  basic  requirement  for  forced-alignment  ASR-based 
VAD  transcription  is  that  the  corresponding  phoneme 
sequence  has  to  be  known  in  advance.  The  recognizer  is 
configured for phoneme recognition, where the pronunciation 
dictionary that is used consists only of phonemes. 

Forced-alignment  is  performed  by  means  of  separate 
finite-state  grammars  containing  a  single  state  sequence 
without alternatives. Pauses between words are optional, as is 
presence/inclusion of the glottal stop, thus providing a more 
accurate speech/non-speech segmentation.

2.3. Feature extraction

Mel-Frequency Cepstral  Coefficients  (MFCC) were  used  as 
standard features with different stream types depending on the 
acoustic model employed (continuous or semi-continuous). 

Some  of  the  parameters  we  used  were:  pre-emphasis 
coefficient of 0.97, Hamming window of 32 ms, frame rate of 
10  ms,  cepstral  mean  normalization  (CMN)  subtracting  an 
average  computed  over  the  whole  processed  utterance, 
filter-bank  with  40  overlapping  frequency  bands  with 
triangular response for 16 kHz, 13 MFCCs with c0, completed 
by  dynamic  and  acceleration  coefficients  for  single  stream 
features continuous acoustic models.

2.4. Acoustic models

The standard procedure for acoustic modeling was used with 
additional modifications: 

1) Forced-alignment was employed to properly align the 
transcriptions  to  the  utterances  prior  to  training,  providing 
better acoustic modeling by excluding the sentences that could 
not  be aligned.  Excluding non-aligned  sentences resulted in 
more consistent data used in the training. 

2)  Linear  Discriminative  Analysis  combined  with 
Maximum Likelihood Linear Transformation as feature-space 
transformations provided word error rate (WER) reduction (up 
to 25% relative in some of the tests). 

A number of acoustic models were trained with different 
training  configurations:  mono-phone,  tri-phone,  different 
feature streams, a different number of Gaussian distributions 
(4-32) and of senones (1000 and 4000), i.e. sets of Gaussian 
mixtures.

3. Experimental set-up

3.1. VAD Transcription Experiments

In  general,  VAD  annotators  label  speech  data  using  the 
implicit  rules  they  believe  and  these  rules  are  rarely 
documented.  Because  of  that,  the  instructions  that  the 
participants  received  for  this  labeling  experiment  were kept 
simple, in order not to introduce too much bias and to reflect 
real world annotation practices. 

In  order  to  collect  VAD  transcriptions  from  human 
annotators with different experiences in speech technologies, a 
simple labeling protocol was established. Wavesurfer [17] was 
chosen as the labeling tool,  because of its simple but  quite  
powerful  user  interface,  also  suitable  for  less  experienced 
participants. The recordings and the tool were provided in a 
package containing a user guide to ensure correct procedure 
for transcriptions. The non-speech segments were labeled with 
“0” and the speech segments with “1”. The participants could 
visualize the spectrogram and play the audio of the speech. 

Normally,  in  the  case  of  manual  labeling  by  expert 
phoneticians,  labeling  criteria  are  defined  beforehand, 
depending on the purpose of the transcriptions. In the present 
case,  no  specific  guidelines  were provided.  To  some extent 
this simulates the reality in creating VAD transcriptions where 
it  is  common  to  simply state  that  speech  data  is  manually 
labeled,  without  mentioning  any specific  guidelines  for  the 
labeling process [3],[18].

The  labelers  with  non-German  language  background 
reported  no  difficulties  in  carrying out  the task on  German 
speech. They reported using audio-visual clues to label speech 
and  non-speech  segments.  A  total  of  19  subjects  were 
recruited  (age range  22  to  40).  Four  of them were rejected 
because  their  transcriptions  were  erroneous  (using  wrong 
symbols) and could not be used in the statistical analysis. Of 
the fifteen remaining participants, five declared their level of 
experience  in  labeling  speech  as  beginner,  three  as 
intermediate, five as advanced and two as proficient (expert). 

3.2. Reference transcriptions

One  of  the  proficient  labelers  was  chosen  as  reference, 
because  of  her  experience  in  segmenting  and  transcribing 
speech  as  an  expert  phonetician  (the  third  author).  In  the 
reference transcriptions, silence, breath and other non-speech 
sounds (cough,  clicks, etc.) were categorized as non-speech. 
However,  since  there  were  no  specific  recommendations 
regarding the minimal duration of the segments and the way to 
handle  pauses,  the  reference  labeler  also  transcribed  short 
silent stretches as non-speech.

While labeling plosives, the reference labeler considered 
their dynamic articulation. Plosives start with a closure, during 
which the airflow is blocked, indicated by a silent phase in the 
spectrogram. The closure is followed by a burst, at the point at 
which the airflow is released, whose acoustic energy is visible 
in the spectrogram. In some cases, if a plosive was located at 
the beginning of an utterance preceded by silence, it was not  
possible to know exactly when the plosive closure started. In 
this case, the reference label included some silence before the 
burst, corresponding to the plosive closure, so that the whole 
plosive duration would approximately match the duration of 
the following sounds. Non-expert human labelers, not aware 
of  plosive  structure,  might  have  excluded  plosive  closures 
from the  speech  labels  if  this  was  the  first  speech  activity 
visible in the spectrogram after silence. 
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Table 1. Manual labels for non-speech and speech  
(VAD 0-1) compared to the reference across increasing  

level of experience (EXP)

EXP VAD HR
(%)

ACC
(%)

ST
(+)

ST
(+)%

SD
(+)

ST
(-)

ST
(-)%

SD
(-)

I
0 72.3 31.6 68 13.9 57 58 86.1 42

1 78.4 20.1 29 34.2 48 62 65.8 32

II
0 90.1 65.4 25 6.7 43 33 93.3 32

1 93.8 66.8 17 33.3 18 57 66.7 28

III
0 91.7 67.5 54 30.9 47 30 69.1 31

1 89.7 72.8 18 23.3 19 55 76.7 31

IV
0 94.0 94.5 03 2.3 2 33 97.7 31

1 93.4 94.5 16 34.9 12 61 65.1 27

ALL
0 85.9 58.6 51 17.3 49 36 82.7 35

1 87.9 57.5 18 29.1 23 57 70.9 30

The reference labeler labeled onset glottal stops according 
to  the  above-mentioned  criteria  and  included  a  short  silent 
portion before them in the speech labels, indicating the glottal 
closure. However, glottal stops were considered as non-speech 
by  the  ASR  (Section  2.2),  so  this  introduced  differences 
between the reference and the ASR labeling. 

3.3. Evaluation criteria

In order to evaluate the quality of the VAD transcriptions, the 
manual  and  the  automatic  labels  were  compared  with  the 
reference to measure detection accuracy and the differences in 
the segment boundaries. 

The methodology employed is different compared to the 
one  commonly  used  in  phoneme  segmentation,  where  the 
accuracy is generally measured in terms of the percentage of 
the  automatic  boundaries  which  are  within  a  given  time 
tolerance from the manually labeled boundaries, as in [4]. 

Relevant performance indicators for VAD are the speech 
hit rate (HR1) and the non-speech hit rate (HR0) [1]. Hit rate is 
defined as the ratio of speech frames (respectively non-speech 
frames)  correctly  identified  as  speech  frames  (respectively 
non-speech frames):

HR0=N0,0 / N0ref , HR1=N1,1 / N1ref (1)

where  N0,0 is  the  number  of  speech  frames  labeled  as 
non-speech, N0ref is the number of frames which are actually 
non-speech according to the reference transcription. N1,1 is the 
number of frames identified as speech, and N1ref is the number 
of  frames  which  actually  contain  speech  according  to  the 
reference. Values close to 1 for both hit rates are indicators of 
good speech/non-speech discrimination. 

For  the  evaluation,  the  following  procedure  was 
employed: for each segment of the reference annotations, the 
closest left boundary in the tested annotations belonging to a 
segment with the same label was searched for within a 200 ms 
time  tolerance  from the  reference  left  boundary.  Since  the 
automatic  VAD  labels  are  derived  from  the  automatic 
phonetic  segmentation,  they were mapped to an appropriate 
speech/non-speech symbol. 

If a label was matched, this was considered as a positive 
identification,  otherwise  it  was  considered  to  be a  negative 
one. Detection accuracy is defined as the ratio of the number  
of labels matching the reference and the total number of labels 
in the reference. 

Table 2. Automatic labels for non-speech and speech  
(VAD 0-1) compared to the reference across different  

acoustic models 

VAD HR
(%)

ACC
(%)

ST
(+)

ST
(+)%

SD
(+)

ST
(-)

ST
(-)%

SD
(-)

PHO
0 85.8 73.6 14 11.9 16 65 88.1 35

1 96.1 73.6 41 31.3 27 38 68.7 20

C104
0 87.0 75.8 15 13.0 10 59 87.0 33

1 96.2 75.8 30 36.2 22 37 63.8 22

C108
0 86.5 75.8 13 17.4 12 61 82.6 38

1 96.3 76.9 32 38.6 22 35 61.4 22

C116
0 85.5 72.5 23 13.6 10 67 86.4 39

1 96.4 73.6 35 38.8 22 36 61.2 22

C132
0 85.3 73.6 18 13.4 10 69 86.6 38

1 96.4 73.6 38 37.3 22 37 62.7 24

S15C
0 84.9 74.7 7 14.7 6 63 85.3 33

1 96.4 72.5 30 31.8 22 36 68.2 21

S45C
0 85.2 73.6 8 10.4 7 64 89.6 35

1 96.2 72.5 33 28.8 22 36 71.2 20

ALL
0 85.7 74.3 14 13.5 11 64 86.5 36

1 96.3 74.1 34 34.7 23 36 65.3 21

For  all  labels  matching  the  reference,  independently  of 
speech and non-speech segments, the time differences of the 
left  boundaries  between  the  reference  and  the  observed 
transcriptions  were  calculated.  The  time  offset  of  the  left 
boundary was distinguished between positive (the boundary of 
the  tested  annotation  occurs  earlier  than  the  reference 
annotation boundary) and negative (the boundary of the tested 
annotation  occurs  later  than  the  reference  annotation 
boundary).

4. Results
The evaluation results presented in Table 1 were obtained by 
comparing the reference with the manual VAD transcriptions 
for non-speech and speech left boundaries (VAD 0-1). They 
include  hit  rate,  accuracy,  mean  of  positive  and  negative 
shifts (ST + and –, boundaries placed earlier and later than the 
reference respectively)  in  milliseconds,  their  percentage and 
standard deviation.

The  participants  were  divided  into  groups  according  to 
their  declared  level  of  experience  in  labeling  speech 
(I-beginner,  II-intermediate,  III-advanced and IV-proficient). 
In  total,  476  files  were  processed,  with  2548  manually 
annotated segments included in the statistical analysis. 

From Table 1 it can be seen that the VAD transcriptions 
provided  by  the  proficient  annotator  (level  IV)  match  the 
reference most closely in terms of high and balanced hit rates 
and detection accuracies for speech and non-speech segments. 

Accuracy decreases along with the decrease of experience 
level.  In  most  cases,  labelers  placed  the  left  segment 
boundaries later than the reference (in 70.9% cases for speech 
and  82.7% for  non-speech  segments).  One reason  could  be 
that  they  did  not  label  the  closure  portion  of  plosives  as 
speech (see Section 3.2). 
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Figure  1:  Distributions  of  the  left  boundary  
differences  between  the  reference  labels  and  the  
manual and automatic labels for (a) non-speech and  
(b) speech segments.

A  Shapiro-Wilk  test  showed  that  the  left  boundary 
differences  have  non-normal  distribution  and  the 
Kruskal-Wallis  non-parametric  test  reported  significant 
differences across labeling experience levels (p<0.001).

Table 2 presents the result of the comparison of 238 files 
(that  is 1274 automatic annotated labels) with the reference 
annotation set, for non-speech and speech left boundaries of 
the annotated intervals (VAD 0-1),  across different acoustic 
models and feature streams, the phoneme model, continuous 
Gaussian densities of 4, 8, 16, 32 (noted as C104 to C132), 
and 512 Gaussians semi-continuous model with 1000 (S15C) 
and 4000 (S45C) senones. The table shows hit rate, accuracy, 
mean  of  positive  and  negative  shifts  (ST  +  and  – )  in 
milliseconds, their percentage and standard deviation. 

The automatic detection accuracies are lower than those 
by a proficient/expert annotator (level IV), and the hit rates for 
speech  segments  are  higher  than  those  for  non-speech 
segments.  One  reason  for  this  difference  between  the 
automatic and human annotations might be that the reference 
transcriptions  included  several  short  non-speech  segments 
between words. In the FSG grammars the pauses are defined 
as  optional  after  each word,  and  the forced-alignment  ASR 
system  could  not  label  such  short  pauses.  Therefore  short 
pauses were missing,  introducing more detection  errors  and 
unbalanced  hit  rates.  In  addition,  forced-alignment  could 
produce  erroneous  results  due  to  incorrect  transcriptions, 
variations in the pronunciation, non-optimal feature extraction 
(large frame shift etc.) or noisy recordings. 

The detection accuracies of the forced-alignment approach 
are higher than those of human annotators with an advanced 
level  of  experience,  and  far  better  than  those  of  annotators 
with an intermediate level of experience and beginners. 

From Table 2, it is obvious that automatic transcriptions 
are more consistent and the left boundary variability is in the 
same range as in most human transcriptions. 

Figure 1 confirms this observation about the consistency 
of left boundary annotation in automatic and manual as it can 
be seen that manual VAD transcriptions are characterized by 
more  outliers  than  the  automatic  ones  for  non-speech 
segments. For the speech segments the automatic labels were 
closer  to  the  reference.  A significant  difference  was  found 
between  manual  and  automatic  boundaries  (p<0.05, 
Kruskal-Wallis non-parametric test). 

Table 3. Manual and automatic labels for non-speech and  
speech (VAD 0-1) compared to the reference after  

merging segments shorter than 10 and 300 ms with their  
neighboring segments 

Segment duration threshold of 10 ms

VAD HR
(%)

ACC
(%)

ST
(+)

ST
(+)%

SD
(+)

ST
(-)

ST
(-)%

SD
(-)

AUT
0 85.7 74.3 14 13.5 11 64 86.5 36

1 96.3 74.1 34 34.7 23 36 65.3 21

HUM
0 85.9 58.6 51 17.3 49 36 82.7 35

1 87.9 57.5 18 29.1 23 57 70.9 30

Segment duration threshold of 300 ms

AUT
0 89.5 92.7 31 1.3 19 81 98.8 34

1 98.1 88.0 43 40.8 23 43 59.2 20

HUM
0 90.7 85.1 56 15.2 51 47 84.8 37

1 89.0 75.1 19 32.1 22 62 67.9 31

As shown also in Tables 1 and 2, forced-alignment speech 
recognition  provided  accurate  and  consistent  VAD 
transcriptions  which  match  the  reference  better  than  the 
transcriptions produced by most human annotators. 

In  order  to  avoid  errors  due  to  segments  that  were  too 
short  in  the transcriptions  (see above),  a duration  threshold 
was  introduced.  Manual,  automatic  and  reference  labels 
shorter than a defined threshold (300 ms) were merged with 
the neighboring segments.  It was observed, that the detection 
accuracy reaches maximum values with a duration threshold 
around 300 ms, after which it decreases.

Table 3 presents the comparison of human and automatic 
labels with the reference to the left boundaries of non-speech 
and speech intervals (VAD 0-1) after merging segments of 10 
and  300  milliseconds.  The  table  shows  hit  rate,  accuracy, 
mean  of  positive  and  negative  shifts  (ST  +  and  –)  in 
milliseconds, their percentage and standard deviation.

In  addition,  VAD transcriptions  by  a  proficient  human 
annotator  (level  IV)  and  the  best  performing  ASR  setup 
(C108) in terms of detection accuracies were compared.  No 
significant  differences  were  found  in  terms  of  the  left 
boundaries  offsets  from  the  reference  (Kruskal-Wallis 
non-parametric test).

5. Conclusions

The  current  study  compared  forced-alignment  speech 
recognition  and  human  generated  VAD  transcriptions. 
Statistical  analysis  was  carried  out  after  comparing 
automatically  and  manually  created  transcriptions  with  the 
reference ones created by a human expert labeler. It has been 
shown  that  forced-alignment  can  provide  transcriptions  as 
good as or  even better than most  human labelers,  matching 
closely transcriptions made by an expert labeler. We conclude 
that forced-alignment speech recognition can provide accurate 
and consistent VAD labels.

Further  investigations  should  be  conducted  on  noisy 
speech as well as in scenarios where the human annotators are 
given labeling criteria.
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