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ABSTRACT 

Patterns of coarticulation between onset and rime in the speech of six Scottish English speaking 
children aged 4 years is examined in the words dye /dai/ and sty /stai/. F2 is 272Hz lower at the 
burst following /st/ than following /d/. The lower F2 after /st/ in the onset-rime transition is 
accompanied by a higher F2 during /ai/’s diphthongal offglide. Moreover, the overall shapes of the 
F2 trajectories are similar, and the frequency difference in F2 at the stop burst correlates with 
difference in duration between complex and singleton onset. These facts suggest that in the /st/-
initial word the diphthong is apparently initiated earlier with respect to the stop burst — and 
therefore that the intial portion of the vowel opening gesture is masked acoustically by the 
preceding stop to a greater extent after the cluster than after the singleton. This interpretation 
supports models of intergestural timing in which hierarchical prosodic nodes (in this case, the 
onset) enable non-local gestural organisations. The syllable onset provides a fixed anchoring point 
for the following vowel (a "C-centre") which results in greater acoustic masking when the onset is 
complex.  

 
 

1. Introduction 
 

1.1 Background 

This study is part of a long term programme motivated by a desire to understand the acquisition of (a) phonetic 
systems, (b) phonological systems and in particular, (c) their inter-relationship. To put it simply, the central 
goal of the programme is to address how children acquire an adult-like phonetics/phonology interface. This 
simple statement is rather misleading, however. The first complicating factor is that we do not know what the 
adult interface is like in any detail. The second is that there is so little work of the appropriate kind on the 
linguistic speech motor development of children or on language-specific phonetics in child speech that it can be 
hard to disentangle aspects of phonetic development that are under linguistic control (i.e. language specific) 
from those that are universal. In this short paper I present preliminary results of work in progress, reporting 
only on child speech. 

One aspect of phonetic/phonological development of interest is the relative weighting of different cues to 
phonological contrasts. For example, vowel duration is a cue in most English dialects to both the phonological 
voicing of a following consonant and to the moraic/bimoraic status of the vowel itself. Stoel-Gammon, Buder 
& Kehoe (1995), for example, report that at 2½ years old, American English children vary the duration of /i/ to 
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signal the voicing of a following consonant but not to differentiate it from //. Swedish children do basically the 
opposite. Though the American English vowels realising /i/ and // are approximately the same duration before 
voiceless stops, the contrast is conveyed using large spectral differences. The Swedish /i/ and // were produced 
with only a very small spectral difference.  

Mastery of the inventory of cues and their relative weighting (the « cue-grammar ») appears to take many 
years, and relies crucially on more general developments in gestural co-ordination that extend from pre-speech 
behaviour right through into skilled adult speech. In canonical babbling (and in the early stages of phonological 
development) a fairly small set of relatively rigid articulatory routines are available to the child (Menn 1983; 
Vihman and Velleman 1989). The subsequent rapid expansion of phonological diversity towards an adult 
inventory reflects improvements in articulatory skill and the possibilities arising from the availability of more 
complex gestural organisations (e.g. Davis & MacNeilage 1990 ; Studdert-Kennedy and Goodell 1995 ; 
Nittrouer, Studdert-Kennedy and Neely 1996; Browman and Goldstein 1998). A typical view is that « the 
holistic, undifferentiated syllable appears to be the initial unit of speech production from which (we 
hypothesise) segments gradually emerge, first by differentiation of the syllable into its gestural components, 
then by integration of those gestures into the recurrent articulatory-acoustic patterns that we know as 
consonants and vowels » (Nittrouer et al. 1996).1 Naturally, much of the research into these developments 
compares child and adult productions using instrumental methods, but indirect evidence from transcribed child 
speech is also highly relevant (e.g. Ferguson & Farwell 1975 ; Waterson 1971 ; Stoel-Gammon 1983; Macken 
1979).  

The emergence of intergestural co-ordination has usually been approached in instrumental studies through 
studies of vowel-vowel and consonant-vowel anticipatory coarticulation. Observed age-related differences in 
coarticulation (or « co-production ») are taken as evidence that all speech sounds develop towards stable adult-
like articulatory constellations (Goodell and Studdert-Kennedy 1993 ; Nittrouer 1993 ; Nittrouer et al. 1996 ). 
The literature is rather inconclusive : see Goodell and Studdert-Kennedy (1993) and Kühnert and Nolan (1999) 
for reviews. This is partly because coarticulation is not a unitary phenomenon, and cannot be expected to 
develop in a unitary way (Repp 1986). It also appears that even when one type of coarticulation is examined, 
there is a great deal of inter-subject variability and lack of agreement between different studies (Kühnert and 
Nolan 1999). With respect to anticipatory coarticulation from vowel to onset, however, it seems likely that the 
large, well-controlled studies of Studdert-Kennedy and his colleagues can be relied on. They suggest that 
children from the ages of 2-3 have a great deal more intra-syllabic co-production of consonants and vowels 
than older children and adults. 

The work outlined above is still at a relatively preliminary stage, and only examines a limited range of 
coarticulatory phenomena in segmentally simple structures. This reflects a lack of knowledge about gestural 
coordination in more complex structures in adult language. Within the theory of Articulatory Phonology (which 
is compatible in many respects with the developmental work of Studdert-Kennedy and his colleagues) a 
number of articulatory studies indicate that there are different methods of phasing gestures with respect to each 
other in adult speech. Browman and Goldstein (1988), Honorof and Browman (1995) and Byrd (1995) found 
that the most stable timing relationship between an onset and a following vowel was defined on the articulatory 
midpoint of the onset (the « c-centre »), because the c-centre generalises over singleton and cluster onsets. This 
« global » relationship appears to differ from the « local » intergestural timing applicable to coda-vowel or 
vowel-onset sequences which cross a word boundary, in which the most stable timing relationship is defined 
between the vowel and the nearest edge of the consonant sequence. From articulatory (x-ray microbeam) data, 
it appears as if the c-centre is half-way through the onset. Byrd’s (1995) study suggests that tautosyllabic vowel 
and coda may also be globally timed, at least for some speakers, but Honorof and Browman (1995) find no 



 

evidence for this. Recent work by Browman and Goldstein (1998) attempts to reconcile these differences using 
a « bonding » analysis in which the c-centre effect is derived as the optimal configuration in a model which 
minimises the violation of several local CV relationships resulting from articulating consonant clusters in the 
correct sequence. Whatever the exact explanation underlying the c-centre, in adult speech, the important point 
here is that it has been demonstrated in adult speech that the onset retains a stable articulatory relationship with 
the following vowel irrespective of the number of consonants in it.  

We might hypothesise that complex gestural phasing of this kind might be harder to learn and more liable 
to misacquisition than simpler types of intergestural timing, such as local timings. Local timings are 
presumably sufficient for words containing no clusters. Under this hypothesis, the later age of acquisition of 
consonant clusters could therefore be due in large part to their complex articulation. Unfortunately there are 
very few instrumental studies of cluster acquisition and very few adult studies of gestural coproduction in 
clusters, so such a hypothesis must remain tentative, despite its superficial attractiveness. Of course, standard 
phonological accounts which rely at heart on the intuitive appeal of the greater structural complexity of 
branching vis-a-vis non-branching structures are equally tentative. 

 
1.2 Cluster acquisition in normally-developing and phonologically disordered children 

The work reported here forms part of an ongoing research programme looking at the normal and disordered 
acquisition of word-initial consonant clusters by Bill Hardcastle, Fiona Gibbon and Jim Scobbie at Queen 
Margaret University College, and Paul Fletcher at the University of Hong Kong. This paper examines second 
formant (F2) transtions from the stop burst into the following vowel in words with initial /d/ (a voiceless 
unaspirated coronal stop) and /st/ (a voiceless coronal fricative followed by a voiceless unaspirated coronal 
stop). At this preliminary stage there is no attempt to compare child and adult productions. Rather, this study 
addresses normally developing children with a view to gaining a greater understanding of developmental 
phonological disorder (p.d.). I follow up a result reported by Baker (1998), who investigated onset/rime 
formant transitions in a four year old child (DB) with phonological disorder (previously described in Scobbie, 
Gibbon, Hardcastle & Fletcher 1998, in press). DB produced /st/ as an unaspirated stop [t] which was 
homophonous with /d/ as part of a pattern of cluster reduction. Our working hypothesis was that, rather than 
phonological neutralisation of the /st/-/d/ contrast, DB might have had a disorder of phonetic implementation 
rendering /st/ and /d/ nearly identical in production such that both would be transcribed [t]. Nevertheless, 
imperceptible differences might have existed in duration, constriction location, voicing characteristics or degree 
of stricture — a « covert contrast. »2 To test this hypothesis using spectral information, Baker sampled F2 at the 
burst, at burst+16ms and burst+30ms, but in fact no covert contrast was discovered for this particular 
parameter. 

However, since the p.d. subject was followed longitudinally, Baker was also able to examine the transitions 
associated with /d/ and /st/ in those sessions in which DB had acquired the « correct » production of /st/ as [st]. 
Interestingly, F2 was lower after /st/ than after /d/ in the two minimal pairs studied in detail: dye/sty and 
door/store. A measurement of F2 at a point 100ms after voicing onset did not reveal any difference, suggesting 
that the same vowel target was attained, albeit via different transitions.  

There are a number of possible explanations for this difference. Most obviously, the stops in /st/ and /d/  
could have been articulated at different place of articulation. This could be due to coarticulation of the cluster 
stop to the child’s production of /s/, or to a greater perseverative coarticulation on the stop exponent of /d/ from 
the preceding vowel /i/ (in the carrier phrase give me___please). Another explanation might be that there was a 
greater amount of tongue blade lowering posterior to the constriction in /st/ at the time of the burst. This could 



 

be due to greater anticipatory coarticulation with the vowel following /st/ following an earlier onset to the 
vowel opening gesture.  

If the lower F2 following the cluster were due only to small differences in the place of articulation of the 
stop, the F2 movement schematised in the left panel of Figure 1 would be more likely : F2 following /st/ would 
begin at a lower point but approach the vowel target at approximately the same moment relative to the burst as 
F2 following /d/. The right panel of Figure 1 would be expected if the attainment of the rime target were not 
timed locally to the stop, but globally, to the midpoint of the onset, say. Given the small sample of points, it 
was not clear whether the equivalent low vowel targets following /d/ and /st/ were reached at the same time 
relative to the burst, indicating different starting points and rates of transition (which would have looked like 
the left panel of Figure 1), or whether the rates of transition were the same for each onset, leading to an earlier 
target following /st/ (right panel).  

 

 
Figure 1. Two models of F2 transition from different y-intercepts. Vertical axis indicates frequency (Hz), 
horizontal axis indicates time from burst (ms). Left panel : both words time the vowel target to the burst 

of the onset stop. Right panel : both words have the same rate of transition. 
 
As part of a more extensive study of onset-rime coarticulation prompted by Baker’s finding, I decided to 

examine the speech of normally developing children. In this paper I will look at the movement of F2 in a 
sample of four year olds’ productions of /dai/ and /stai/, sampling F2 at the burst and throughout the entire 
word. This should reveal whether the sample of normally developing children behave like DB in having a 
lower frequency of F2 after /st/ than /d/ and the extent of normal intra-subject variability. Furthermore, if the 
control subjects do display F2 lowering after the cluster, we may be able to uncover the underlying mechanism. 
This point is hard to determine, because the CV transitions are not linear as in Figure 1 but gradually reduce 
their rate of movement as the vowel target is attained.  

As noted above, the literature on coarticulation between a complex onset and a following vowel is 
somewhat limited. Browman and Goldstein's (1988) model of gestural coordination posits an anchor to which 
the vowel opening gesture is attached, called the c-centre, a concept we will find useful below. The particular 
gestural sequences studied in the c-centre literatue have tended to be hetero-organic, enabling detection by the 
instrumentation of the end-points of the gesture even under conditions of overlap. Since a homorganic cluster is 
addressed here (/st/), the mutual influence of /s/ on /t/ and vice versa may involve a rather different underlying 
articulatory mechanism. Furthermore, only the acoustic record is available for study. Nevertheless, with care, 
the results can be interpreted in the light of what is already known about intergestural coordination. 
 
2. Method 

 
2.1 Data collection 

The data discussed here form part of a larger study designed to investigate the developing 
phonetic/phonological systems of children with phonological disorder. Other results, relating to subjects with 
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phonological disorder, can be found in Scobbie, Hardcastle, Gibbon & Fletcher (1995) and Scobbie, Gibbon, 
Hardcastle & Fletcher (1997, 1998, in press). In this paper, as part of a larger project on the acquisition of 
Scottish Standard English, I consider data from six children, aged approximately four years old, living in 
Edinburgh, with no known speech or hearing difficulties.3,4   

In the dataset the /d/-/st/ contrast appears in three rime contexts : before /ai/, /or/ and /ir/. It was felt that 
looking at a complex rime would provide more information than is usually available from a monophthongal 
vowel. The diphthong /ai/ has two targets, and two transitional phases: the CV transition between onset and the 
first target, and an internal VV transition between the two diphthongal targets. Since /ai/ is realised as a 
diphthong by all the children in what appears to be a relatively adult-like manner, a meaningful measurement of 
the entire F2 contour of /ai/ in dye and sty was feasible. The other available minimal pairs in the dataset were 
door/store and deer/steer. The adult form of these in Scottish Standard English is a rhotic monosyllable, but 
children of this age frequently produce non-rhotic monosyllables and disyllables, so the decision was made to 
exclude these data from general analysis at this stage and focus on /ai/.  

The children played games involving picture naming, and had to speak the word associated with a picture in 
the phrase « Give me ____ please. » Full details of data collection and annotation are given in Scobbie et al 
(1995), but some points are of note here. Six repetitions of each word were digitised using KAY CSL at 
40,960Hz. Annotation of various acoustic landmarks was made, the ones relevant here being the onset of stop 
closure (after a preceding vowel or fricative), the release of closure (nearly always with a noticeable burst), the 
onset of voicing to the vowel, the end of the vowel (corresponding to the onset of the labial stop in please) and 
additionally, in sty, the onset of friction. Durational analysis of these acoustic segments was performed, but will 
only be referred to here when relevant. All annotation was performed by the author. 

 
2.2 Spectral analysis  

For spectral analysis, the digitised tokens were low-pass filtered and downsampled at 10,240Hz. A section of 
waveform corresponding to the vowel was displayed, from 1ms before the burst annotation point up to the end-
of-vowel annotation point. A spectrogram was drawn of the displayed portion of the waveform, supplemented 
by automatic formant analysis using the FMT command. The spectrogram showed frequencies up to 5kHz, 
with the expectation that three formants would be displayed. The parameters of the LPC-based formant tracker 
were as follows. The autocorrelation method was used, with 20ms frames at 25ms steps. Pre-emphasis of 0.8 
was used, and 8 poles used in the calculation of the formants. Visually, the formants were indicated 
superimposed on the spectrogram as points, and if it was felt that they successfully tracked the formant that had 
been identified impressionistically as F2, then the values of F2 determined by the CSL formant tracker were 
copied into a spreadsheet unaltered, though every value had to be checked. This was the appropriate action for 
more than half the tokens (evenly spread among the two targets and six subjects). On many occasions, however 
(particularly during transitions and in tokens with a high fundamental frequency) the formant tracker did not 
appear to give good results, so the token was measured by hand from the spectrogram.5 In total, 801 
measurements were made, approximately 11 measurements per token (corresponding to 250ms). The average 
duration of the rimes was in fact 241ms for sty and 256ms for dye.  

This is not to imply that 11 measurements were made from every token. On the contrary, there was a great 
deal of token-to-token and subject-to-subject variation in rime duration, and, consequently, in the number of 
points measured. To illustrate the former case, consider that some tokens were as long as 425ms, some as short 
as 100ms. As an example of the latter, MM’s rimes were short, at about 170ms long, while EC’s were long, at 
about 310ms. Measurements were made at 25ms intervals for as long as possible. It might appear, therefore, 
that a better measurement technique would be to sample F2 at, say, 10% intervals throughout the rime, which 



 

would give the same number of analysis points for every vowel. While this normalisation would undoubtedly 
give more homogenous results for the measurement points late in the rime, it is a more time-consuming 
procedure and offers no normalisation benefits during the initial CV transition immediately after the burst 
which was expected to provide the most important data. 

Each measurement frame was 20ms long. The so-called «  burst » measurement actually began 1ms before 
the burst annotation point, so was centered 9ms after the burst. At this point in the rime the formant was excited 
by a mixture of aperiodic and periodic energy in most cases. This position was chosen as the centre of the first 
frame rather than the burst annotation point itself after some experimentation, because it provided a more 
reliable measure of F2. LPC measurements made right on the burst were too variable to be relied upon, 
probably because they reflecting burst spectra rather than the cavity-related spectra which were being tracked. 
This first F2 measurement was therefore more strictly speaking based on F2 in the period just after the burst, 
while the articulators are separating. Subsequent measurement frames follow at 25ms intervals, so the second 
was centred 34ms after the burst, and so on. In presenting the results, I will stick with the simpler naming 
scheme of 0ms, 25ms, 50ms etc unless greater accuracy is required.  

 
3. Results and discussion 
The mean value of F2 at the burst measurement point for /dai/ (2660Hz) was 272Hz higher than for /stai/ 
(2388Hz), reflected as a strong main effect in a 2-way ANOVA, F(1,60)=54.54, p<0.001. Each of the six 
individual subjects displays a similar pattern, although there is some variation : the smallest difference in F2 is 
101Hz (subject 4EC) and the greatest 434Hz (subject 4GB), and this variation is reflected in the statistical 
analysis in a significant interaction between subject and onset factors F(5,60)=3.28, p<0.05, as well as a strong 
main effect for subjects, F(5,60)=8.21, p<0.001. 

 

Figure 2. Mean F2 trajectories for two different onsets preceding /ai/. 
 

Figure 2 clearly demonstrates that sampling F2 at the absolute interval of 25ms and then taking an average 
at each interval gives rise to noisy results towards the end of the vowel. The number of tokens being averaged 
remains at the maximum 36 till 100ms for sty and 150ms for dye, after which the number falls away to two 
tokens of sty and a single token of dye at 425ms. The alternative approach, sampling each token a fixed number 
of times in intervals defined relative to the duration of that token, would have given a more meaningful F2 
contour for the second half of the vowel. Figure 2 contains clear artifactual sudden jumps in F2. There is also a 
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general lowering of the F2 peak, due to brief but large lowering offglides in F2 being included in the mean F2 
track. However, we are more concerned with the earlier parts of the diphthong, and in particular the first 
meaurement point, which is unaffected by the sampling method. The main effect of onset is the same in both 
cases, and since both words pattern in a similar way, the absolute 25ms interval method still allows useful 
comparison to be made. As for intersubject differences, these affect the size of the F2 lowering effect, not its 
occurrence. Note that the difference in F2 is not due to differences in VOT. Mean VOT for sty is 21ms, and for 
dye it is 20ms. 

The general shape of the F2 contours in Figure 2 in the first 200ms is particularly interesting. The 
difference in the CV transition can be seen quite clearly, and, as predicted, is difficult to model linearly in the 
manner of Figure 1. The F2 contour in /stai/ begins lower and then reaches the low target of the diphthong 
earlier. Inspection of individual subjects confirms this, except in the case of 4EC, where there appears to be no 
onset-determined timing difference in the attainment of the low F2 target. Examining data from all tokens, it 
appears that both words have similar low F2 targets for the diphthong : the mean /a/ F2 target for /st/ is 2086Hz 
(n=36) and for /d/ is 2168Hz (n=36) (a difference which is just insignificant in a t-test).  

So, the diphthong following the cluster has a lower F2 at the burst than the diphthong following the 
singleton, and the first F2 target following the cluster seems to be achieved earlier than the F2 target for the 
diphthong following the singleton, but is at the same frequency.  

Consider now the VV transition within the diphthong (from /a/ to /i/). The diphthongal transitions begin 
some 75ms-100ms after the burst, and move in the opposite direction to the CV transitions. The transition to 
the second vowel target begins earlier in /st/-initial words. Moreover, it shows the opposite effect to the CV 
transition: because it rises sooner, F2 is higher in the /st/-initial words. Note that this pattern is less uniform, 
and 4DB and 4EC appear to have no difference in the VV transition,6 but in general F2 is higher in the cluster-
initial word from 125ms-200ms after the burst (after which point the contours become too irregular and 
unreliable to use). From this I conclude that diphthongal opening gesture and the diphthongal closing gesture 
are both begun earlier, relative to the stop burst, in the cluster initial word. This is a very important point, since 
it implies a difference between dye and sty which is not merely located in the articulation of the stop, for 
example, without reference to the following rime. 

My interpretation of the results is that the diphthongal rime as a whole is timed to begin with respect to the 
syllable onset and not the preceding segment, the stop. This hypothesis holds that the gestural timing in each 
word is, at a prosodic level, identical. A fixed coordination of the rime to some point in the onset (perhaps an 
immature correlate of the c-centre) will derive apparent differences in the timing of F2 relative to the burst, 
because complex onsets are longer than simplex onsets in duration. For example, the mean difference in 
duration between the obstruent intervals /st/ and /d/ is 96ms, so if the acoustic midpoint of the onset were the 
appropriate locus for timing, we might expect the diphthong gestures in sty and dye to be out of sync by about 
50ms. In fact, this figure is a little high, on the basis of the results, but is in the right approximate area. The 
children’s timing anchor may be nearer the end of the /st/ onset. When analysis of all 12 subjects is complete, a 
more accurate figure may emerge, but since it will, by necessity, be calculated acoustically, it's not clear how 
comparable it will be to the results of the articulatory studies in any case.  

Meantime, consider Figure 3, which shows that the mean durational difference in the onset (/st/-/d/) 
correlates with the mean difference (/d/-/st/) at the burst in F2. The c-centre model proposed above predicts that 
a subject with a larger mean durational difference between /st/ and /d/ would therefore time the onset of the 
vowel gesture earlier than a subject with a smaller durational difference, giving rise in turn to a larger  mean 
difference in F2 at the burst. (The five-year-olds’ results also seem to fit this pattern and it appears that there is 



 

a strong statistical correlation when all 12 subjects are examined, although with so few speakers, this 
correlation must be treated cautiously.) 

As a final point, note that a c-centre type model might predict that the overall duration of the vowel /ai/ is 
less after /st/ than after /d/. This prediction is not upheld, however. As was mentioned above, /ai/ is is 256ms in 
/dai/ and 241ms in /stai/, and indeed all six four-year-olds follow the pattern of /ai/ being longer after /d/, but 
the five-year-olds appear to pattern the opposite way, giving rise to overall vowel duration means that are very 
similar. Perhaps this is due to the overall variability in the data and the small size of the predicted difference.  

Figure 3. Scatterplot of the mean difference in duration between /st/ and /d/ (y-axis) against the mean difference 
in F2 at the burst (x-axis) for six four-year-old subjects. 

 
Two studies of fricative-stop coarticulation by Noel Nguyen and colleagues (Nguyen, Gibbon & 

Hardcastle, 1996; Nguyen, Wrench, Gibbon & Hardcastle, 1998) provide some normative data with which to 
compare the results presented above. Noting the lack of published coarticulatory data on clusters, Nguyen et al 
undertake perception and production studies to investigate further the results of Repp & Mann (1982) (which 
need not concern us here).  

Nguyen et al. (1996) investigated a variety of CV and FCV sequences using EPG in the speech of an adult 
male phonetically trained speaker of Southern British English. Of interest here is the difference between /da/ 
and /sta/. They found that the fricative [s] exerts a coarticulatory influence on the following stop [t] as follows : 
in the first frame of complete closure, [t]’s pattern of tongue-palate contact has a less anterior score for centre 
of gravity (COG) when it is a singleton (4.18) compared to when it is part of a cluster (5.32). Qualitatively, the 
difference is that [ta] has more lateral contact in the three backmost rows than [sta]. In the final frame of 
complete closure, there is almost no difference between the in-cluster and singleton stops.  

Nguyen et al. (1998) is a perception and production study. It looks at two adult female phonetically trained 
speakers (Southern British English and Australian English). The speech analysis component makes use of 
EMA, EPG and acoustic analysis. The /d/ vs. /st/ materials (pup dump vs. muss dump) are not comparable with 
those in this study because the /s#d/ cluster is heterosyllabic and indeed heterolexical. Nevertheless, the results 
are worth mentioning. From the EMA analysis it appears that at the release of the stop consonant and at the 
onset of the following vowel, the midsaggital profile of the tongue dorsum was slightly higher in the cluster 
environment muss dump than in the singleton environment pup dump. Acoustic analysis of F2 at the start of the 
vowel showed a very slight lowering after /s/ (1714Hz vs. 1766Hz for speaker 1, 1738Hz vs. 1747Hz for 
speaker 2). Nguyen et al. conclude that their results are compatible with findings that there is hollowing of the 
tongue immediately behind an [s] constriction. In other words, the differences in word-initial /d/ caused by a 
preceding word-final fricative are not limited to primary place of articulation, but also involve factors 
influencing the shape of the tongue posterior to the constriction. 
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One interpretation of these results, mentioned in Section 1.2, is that the stop in /st/ is simply articulated in a 
different way to the stop in /d/ without the temporal dimension introduced above. The influence of /s/ may have 
had a direct effect in that coarticulation of the stop to /s/, resulting in a different articulatory pattern of closure 
for the stop, could account for the lower F2 at burst. An analysis of the difference in F2 which is based only on 
constriction patterns without any aspect of intergestural timing will not account well either for the earlier 
attainment of the low F2 target nor the earlier timing of the VV transition following /st/.  

The presence of /s/ may also have had a more indirect effect, lowering F2 in this particular experiment by 
blocking coarticulation. The segment in the carrier phrase immediately preceding the target words was /i/ : the 
stop is not adjacent to /i/ in sty and so again a lower F2 is not unreasonable just due to the greater temporal 
distance from that vowel in the cluster case. Clearly, data with a different preceding vowel context would ideal 
to test this hypothesis, but that is not possible with this dataset. I do not think this hypothesis is partiularly 
compelling however. It assumes that the children exhibit consistent intermorphemic, intersyllabic 
coarticulation. As discussed in Section 1.1, this is not likely. I think an explanation which rests on strong, 
syllabically timed intrasyllabic coarticulation sits better with the known findings about children’s intergestural 
timing and adult coarticulation within the syllable.  

Nguyen et al.’s EPG results are, moreover, entirely compatible with the timing model outlined above, 
because they suggest that the tongue dorsum is actively lowering during the stop closure in both the clustered 
and singleton words, but that the lowering and hollowing out begins earlier in [sta]. In the case of [ta], there is 
no lowering in the first closure frame, but in [sta], on the other hand, the first frame of closure follows the 
fricative phase, and the tongue dorsum has had time to begin lowering already by the time the first frame of 
closure is reached. The lowering means that there is a reduced amount lateral contact in the posterior rows of 
the palate. In the final frame of closure, EPG records the same amount of tongue-palate contact in both cases, 
though on the basis of the F2 results reported above, I presume that the cavity would be larger in [sta]. 

 
4. Conclusion 
The specific impetus for this study was Baker’s (1998) study of a child with developmental phonological 
disorder (DB). I wanted to see whether his « phonological » disorder was responsible for his having a lowered 
F2 at the stop burst of /st/ (compared to the related singleton /d/). It appears that it was not, because the six 
normally developing children beteween 4 and 4½ years of age reported here also have lowered F2 in the cluster 
context.7 Both the initial and the final vowel targets appear to be unaffected by whether the onset is /st/ or /d/. 
Given the overall pattern of F2 movement, both in the initial CV transition and in the VV transition inherent to 
the diphthong, as revealed by measuring F2 in 25ms increments, it is likely that the articulatory vowel gestures 
underlying /ai/ are temporally advanced (relative to the burst) after /st/ compared to /d/. Further analysis (of six 
more subjects, aged five years old) is on-going, and the results so far are comparable to those mentioned here. 

These results support models of gestural timing in which some consistent point defined by reference to a 
prosodic entity such as the syllable onset can serve as a temporal anchor. The greater duration of /st/ suggests a 
model in which aspects of the opening gesture of the diphthong (such as the increase in cavity size posterior to 
the closure) have progressed further in a cluster in the time available before stop closure is released. Hence 
when F2 is measured, it is lower during the first 75ms or so following a cluster. The second transition, between 
the two diphthongal targets, provides evidence that there is an apparently earlier initiation of the diphthong 
during the cluster-intitial word (though with more individual variation). The exact point during the obstruent 
interval at which the vowel is initiated remains to be discovered, but even without any articulatory data, the 
correlation between the durational difference between /st/ and /d/ and their F2 difference at the burst supports 
the contention that there is a consistent location during that interval which is an anchor for intergestural timing.  



 

 
 
EndNotes 

 
1. Katz, Kripke & Tallal (1991), on the other hand, holds that children’s speech is more segmental than adult speech. 
2. See Scobbie (in press) for a review of the covert contrast literature. 
3. Three of the children (4DB, 4RM, 4EC) were within a month of their fourth birthday and three (4CK, 4MM, 4GB) were 
within a month of 4;6 at the time of recording. The age difference is collapsed here, and the subjects referred to as being 
« four years old, » although more accurately the mean age of the subjects is 4;3. Six other control subjects (in groups approx 
five years old and five and half years old) have been analysed, and the results are extremely similar to those presented here. 
Further analysis is ongoing. Of particular interest are the word pair store and door, which, on the basis of measurements by 
Lesley Baker, exhibit a similar pattern of F2 lowering. 
4. In broad phonological terms, there are no differences in the consonant systems of Scottish Standard English (SSE), 
GenAm and RP that is relevant here, nor are there any relevant onset/rime phonotactics that require mention. I will therefore 
refrain from presenting a description of SSE. For details, see the papers on SSE in Foulkes & Docherty (1999). Note, 
however, that the patterns described in this paper might not occur in other dialects of English, considering the typologically 
unusual phonological and phonetic characteristics of the diphthong /ai/ (Scobbie, Turk & Hewlett, 1999). 
5. All the spectral measurements reported here were performed by the author. Similar measurements were performed by 
Lesley Baker, and though they are not reported here, are in broad agreement with my results.  
6. This is not the p.d. subject DB but a normally developing child with the same initials. 
7. Further analysis is required to determine whether the degree of DB’s lowering was atypical and whether children with 
phonological disorder (at least, those who apparently have normal exponents of /st/ and /d/) typically master this aspect of 
the phonetic grammar. This is a topic for future research. 
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