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Abstract 
Background/Aims. There is growing evidence that coarticulation development is 

protracted and segment-specific, and yet very little information is available on the changes in 

the extent of coarticulation across different phonemes throughout childhood. This study 

describes lingual coarticulatory patterns in six age groups of Scottish English speaking 

children between three and thirteen years old. 

Methods. Vowel-on-consonant anticipatory coarticulation was analysed using 

ultrasound imaging data on tongue shape from four consonants that differ in the degree of 

constraint, i.e., the extent of articulatory demand, on the tongue. 

Results. Consonant-specific age-related patterns are reported, with consonants that 

have more demands on the tongue reaching adolescent-like levels of coarticulation in older 

age groups. Within-speaker variability in tongue shape decreases with increasing age.  

Conclusion. Reduced coarticulation in the youngest age group may be due to 

insufficient tongue differentiation. Immature patterns for lingual consonants in 5-to-11-year-

olds are explained by the goal of producing the consonant target overriding the goal of 

coarticulating the consonant with the following vowel. 
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Introduction 
Coarticulation in children has been studied for several decades, using different 

methodologies. In particular, lingual coarticulation has been demonstrated to be present since 

at least the age of two years old (Goodell & Studdert-Kennedy 1993). And yet, the 

development of lingual coarticulation has been shown to be protracted, with certain non-

adult-like patterns observed in children up to twelve years old (e.g., Zharkova et al., 2014). A 

growing number of studies have also shown that coarticulation development is segment-

specific (Katz and Bharadwaj 2001; Zharkova et al., 2012, 2014; Reidy, 2015). There is, 

however, very little information on the developmental course of segment-specific lingual 

coarticulatory patterns throughout childhood (see, e.g., Rubertus et al., 2015; Zharkova, 

2017). This study aims to provide such information, using ultrasound imaging data on lingual 

coarticulation in four different consonants, produced by several groups of Scottish English 

speaking children between the ages of three and thirteen years old. 

Two influential theories of coarticulation development, both formulated in the 1980s, 

compete with each other in relation to the nature of the units of speech production in children, 

and, consequently, on whether the extent of coarticulation increases or decreases during 

childhood. The theoretical view proposed by Kent (1983) is that children start with the 

segment as a unit of production, and that the skill of overlapping adjacent segments develops 

later. It follows that the amount of coarticulation between neighbouring segments should 

increase with increasing age, and Kent (1983) provided acoustic data from adults and 

children, supporting this idea. On the other hand, Nittrouer et al. (1989) claim that motor 

planning of speech in young children is carried out at the syllabic level. This idea is based on 

the observed reduction with age of the extent of anticipatory vowel-on-consonant 

coarticulation within a consonant-vowel (CV) syllable. The amount of within-syllable 

coarticulation, according to this approach, is larger in children than in adults. Both these 

theories are compatible with the premise that children’s productions are limited by their 

general motor abilities, which undergo continuous development during childhood. Such 

protracted maturation of speech motor abilities, in particular, has been demonstrated in a 

number of acoustic and articulatory studies (e.g., Smith and Goffman, 1998; Walsh and 

Smith, 2002; Koenig et al., 2008; Zharkova et al., 2011, 2012, 2014; Romeo et al., 2013). For 

the children in their first two years of life, the dependence of speech production on 

developing motor skills has been formulated in terms of language-specific “opportunities and 

challenges” (Vihman, 2010: 279), which enhance or inhibit, respectively, the likelihood of 

children’s phonetic realisations corresponding to adult targets (see also Vihman, 2014). In 

this paper we will argue that neither of the two main theories of coarticulation development 

can fully account for the actual production patterns, because the development of 

coarticulation during childhood is subject to the challenge of articulatory demands on the 

tongue for the target speech sound. 

 

Segment-specific coarticulation 

Segment-specific patterns of coarticulation have been relatively well described for adult 

speech. They have often been explained by referring to the concept of coarticulation 

resistance, “a uniform control principle upon whose information the speech encoding 

mechanism continuously draws” (Bladon & Al-Bamerni 1976, p. 149). The idea that phonetic 

properties of speech sounds matter in their interactions with neighbouring sounds is central to 

the Degree of Articulatory Constraint (DAC) model of lingual coarticulation (Recasens et al., 

1997), which has been used in the literature to account for coarticulatory patterns in adult 

speech across languages. The model postulates that the extent of coarticulation in a given 

speech sound conditioned by neighbouring sounds reduces with increasing constraint on the 

tongue for the target sound. According to the DAC model, labial consonants, which have no 
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constraint on tongue position in many languages, experience more influence from 

neighbouring vowels in CV syllables than alveolar and alveolopalatal consonants (e.g., 

Recasens, 1985; Recasens et al., 1997; Recasens and Espinosa, 2009). During the production 

of lingual consonants, the tongue is constrained due to closure or constriction requirements, 

and therefore has less freedom to adapt to the vocalic influence (e.g., Recasens et al., 1997; 

Recasens, 2002). The alveolar fricative /s/ has been shown to be more resistant to 

coarticulation than /t/, due to additional constraints on the lateral margins of the tongue 

required for producing sustained frication, thus increasing its potential to resist the vocalic 

influence, compared with the alveolar stop (Stone et al., 1992; Recasens et al., 1997; 

Recasens & Rodríguez, 2016). Postalveolar consonants, such as the English //, which has a 

requirement that the tongue predorsum is raised, may be less affected by neighbouring sounds 

than alveolars. For example, // has been shown in a number of languages to resist to the 

influence from neighbouring sounds, experiencing less lingual coarticulation than /s/ in adult 

speech (Tabain 2001; Recasens & Espinosa 2009; Niebuhr and Meunier 2011; Niebuhr et al. 

2011; Pouplier et al., 2011; Recasens & Rodríguez, 2016; see also Pouplier & Hoole, 2016). 

The DAC model has been developed for adult speech, and testing the model for child speech 

has yet to be carried out. Age-related segment-specific differences in coarticulation, 

increasingly reported in the literature (e.g., Sussman et al., 1999; Katz & Bharadwaj, 2001; 

Zharkova et al., 2012, 2014, 2015b; Reidy, 2015; Noiray et al., 2017; Rubertus & Noiray, 

2017), provide evidence that does not support either of the two theoretical models of 

coarticulation development described above, since the extent of coarticulation can increase or 

decrease with age depending on the speech sound and/or on the specific gestures involved in 

coarticulating the sound. In this study, vowel-on-consonant coarticulation in CV syllables was 

documented throughout childhood, using consonants which differ in their DAC properties: 

/p/, /t/, /s/ and //. 
In previous studies, segment-specific patterns of coarticulation have been observed 

already in very young children. For 22-month-olds and 32-month-olds, an acoustic study of 

vowel-on-consonant coarticulation including the consonants /b/, /d/ and /g/, and the vowels 

/a/ and /i/, reported differences across stop consonant places of articulation, with evidence of 

reduced vowel effects on the alveolar stop (Goodell and Studdert-Kennedy, 1993). Adult-like 

segment-specific coarticulatory patterns for stop consonants have been demonstrated across 

languages for children aged 3-4 years old, in a number of studies (e.g., Sussman et al., 1992; 

Noiray et al., 2013; Rubertus et al., 2015). These studies used locus equations, which assess 

the extent of tongue advancement at the end of the consonant, specifically at the time point 

where any aspiration ends, i.e., the following vowel’s voicing onset, and compare it to the 

extent of tongue advancement at the middle of the following vowel (Rubertus et al., 2015, 

included mid-consonant as well as the consonant offset, with the same results). Using F2 

measurements and/or articulatory information from ultrasound tongue imaging, locus 

equation studies have shown that by the offset of the consonant the articulatory characteristics 

of the following vowel are anticipated in labial and velar stops more than in alveolar stops. 

Interestingly, changes in the extent of coarticulation during the first three years of age and 

into the fourth year were demonstrated in an acoustic study by Sussman et al. (1999) to be 

non-uniform across stop places of articulation. The observed changes in one child’s alveolar 

stop coarticulation from more-than-adult to less-than-adult during the first three years of life 

were explained by Sussman et al. (1999) by reference to a trade-off between “articulatory 

effort” needed for attaining the stop closure and “coarticulatory overlap” in contrasting vowel 

contexts, a balance that may be hard to achieve for young children due to developmental 

immaturities in lingual motor control. 
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Further developmental differences concerning tongue control for alveolar stop 

coarticulation were recently demonstrated in 5-year-old children, in an ultrasound study by 

Zharkova et al. (2015b). In that study, 5-year-old children and 13-year-old adolescents had a 

similar amount of tongue shape adaptation at mid-closure to the vowels /a/ or /i/ for the 

bilabial stop /p/, but the alveolar stop /t/ patterned differently in the two age groups. 

Specifically, 5-year-olds, like the adolescents, adjusted the tongue to the upcoming vowel by 

raising the tongue dorsum, but unlike the adolescents, the younger children did not have 

additional modifications of the front and back of the tongue in anticipation of the vowel. This 

was interpreted to mean that 5-year-olds have less mature control of the tongue than 

adolescents. Protracted maturation of tongue control has also been suggested to account for 

vowel-on-fricative coarticulation development patterns. A recent acoustic study by Reidy 

(2015), which involved 2-5-year-old children and adults, reported a non-uniform direction of 

age-related differences in the magnitude of vocalic coarticulatory effects on the sibilants /s/ 

and //. Specifically, the effect of vowel frontness (i.e., the difference in spectral 

characteristics of the consonant depending on whether the conditioning vowels were front or 

back) decreased developmentally, and the effect of vowel height (i.e., the conditioning 

vowels being high versus non-high) increased with age. Reidy ascribed the latter finding to 

the maturation of articulator control involved in coordinating different articulators, namely 

the tongue and the jaw (see also Nittrouer, 1993, for a similar suggestion regarding the 

acquisition of stop consonants). Alveolar fricatives have been shown to have immature 

coarticulatory patterns in 3-year-olds (Katz et al., 1991), as well as in older children 

(Nittrouer et al., 1989; 1996; Katz and Bharadwaj, 2001), up to the age of nine years old 

(Zharkova et al., 2011, 2012). Perhaps due to methodological differences, these studies 

provide a somewhat contradictory picture of the nature of the developmental process, with 

both smaller- and greater-than-adult spatial coarticulation reported for children (note that 

similar-to-adult patterns of fricative coarticulation in children have also been found: e.g., Katz 

et al., 1991; Katz and Bharadwaj, 2001; Munson, 2004). By 10-12-years old, however, /s/ 

appears to have reached an adult-like extent of spatial and temporal lingual coarticulation, as 

reported in an ultrasound study by Zharkova et al. (2014). On the other hand, the postalveolar 

fricative //, in the same study, was demonstrated to still have age-related differences, 

specifically in temporal coarticulatory patterns, with the coarticulation onset in the 

preadolescent child group observed later in the consonant than in the adult group. For 13-

year-old adolescents from Zharkova et al. (2015a), the postalveolar fricative was found to 

have segment-specific coarticulatory patterns similar to those previously reported for adult 

speech, with less evidence of coarticulation than alveolar consonants /t/ and /s/. In particular, 

the alveolars had vowel-related changes on a measure of the extent of tongue bunching, as 

well as on a measure of the relative location of bunching along the tongue curve, while // 
only exhibited tongue shape adjustment to the upcoming vowels on the former measure. 

 

Tongue differentiation 

It has been claimed in a number of studies that immature coarticulation patterns may be 

due to the lack of tongue differentiation in children (e.g., Gibbon, 1999; Gick et al., 2008; 

Zharkova et al., 2012), i.e., to their inability to differentiate between parts of the tongue and 

therefore to produce contrasting tongue shapes. Articulatory studies using 

electropalatography have described patterns of tongue-to-palate contact for lingual 

consonants, when contact is registered over most of the artificial palate. These patterns, 

referred to as “undifferentiated lingual gestures” (Gibbon, 1999), suggest simultaneous 

involvement of the tongue tip/blade and the tongue body in the articulation. Undifferentiated 

gestures observed for target alveolar consonants produced by children have been interpreted 
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to mean that “the basic control mechanism that allows the tongue apex, lateral margins and 

tongue body systems to operate relatively independently is not yet developed” (Gibbon, 2003: 

261). One of the aims of the present study was to establish whether an increase in tongue 

differentiation with increasing age would be observed in ultrasound data on tongue 

movements. As ultrasound does not register tongue-to-palate contact, changes in tongue 

shape over time were used to infer the extent of differentiating between parts of the tongue. 

Tongue differentiation was assessed in this study independently of coarticulation. While 

coarticulation was measured by comparing tongue curves at mid-consonant across two vowel 

contexts, differentiation was quantified by comparing tongue curves within a consonant 

token, at two different time points. 

The ability to differentiate between the tip/blade of the tongue and the rest of the 

midsagittal part of the tongue is required when producing a consonant-vowel syllable 

consisting of an alveolar consonant and a high front vowel. Specifically, the speaker needs to 

be able to separately control the tip/blade of the tongue, which is making the constriction for 

the consonant, and the rest of the tongue, which is involved in achieving the raised and 

advanced position required for the following vowel gesture. In consonant-/i/ syllables, 

substantial midsagittal tongue shape adjustments have been documented for adults and for 

preadolescent children in fricative consonants, with gradual changes towards the vowel 

tongue shape (Zharkova, 2016). Particularly, between mid-/s/ and the consonant offset, there 

was a noticeable change on a measure reflecting progressive raising and advancement of the 

tongue predorsum towards the high front vowel (cf. nearly no midsagittal tongue movement 

during /s/ before the low vowel /a/, reported in the same study). In the present paper, a change 

in consonant tongue shape over time before the vowel /i/ was taken as an indication of the 

ability to differentiate between parts of the tongue. Differentiation was quantified by 

comparing tongue curves for /t/ in the context of /i/, within token, at the middle versus the end 

of the closure. The alveolar stop was chosen because of its short duration, creating a 

challenge for adjusting the tongue shape towards the vowel between the middle and the end 

of the closure. 

If patterns of reduced coarticulation in lingual consonants produced by younger 

children were observed, we would be able to explain those patterns by one of two alternative 

scenarios. In one scenario, if the younger children did not show tongue differentiation, then 

the lack of coarticulation would likely be due to motor constraints related to independently 

controlling different parts of the tongue. In the other scenario, if there was a lack of 

coarticulation while the children did show tongue differentiation, it would suggest that 

insufficient coarticulation may have occurred not because of inability to adjust the consonant 

to the vowel, but rather because the priority for the children was to produce the consonant 

itself in a perceptually appropriate way. 

 

Variability 

Variability in speech is potentially a measure of oral motor control, and reduction in 

within-speaker variability on different parameters has been shown to happen during 

childhood. Previous studies have demonstrated developmental decreases in variability in 

durational and spectral measures (e.g., Kent and Forner, 1980; Nittrouer 1993; Lee et al., 

1999; Nijland et al., 2002; Nittrouer et al. 2005), labial and mandibular articulation (e.g., 

Sharkey and Folkins, 1985; Smith and Goffman, 1998; Walsh and Smith, 2002), as well as 

lingual articulation (e.g., Zharkova et al., 2011, 2012; Barbier et al., 2015; Yip et al., 2015). 

This study for the first time described age-related changes in variability of tongue shape over 

repetitions of the same speech segment, between three and thirteen years old. 
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Predictions for the current study 

For the consonants targeted in this study, based on the DAC model premises, if we 

assumed children behaved exactly like adults, the predictions would be that all child age 

groups will have the same coarticulation patterns, with /p/ coarticulated more than lingual 

consonants, and the postalveolar being most resistant to coarticulation. However, given 

previously reported developmental findings, segment-specific coarticulatory patterns may be 

expected to differ across age groups. The study used a dataset consisting of productions by 

children between 3 and 13 years old, with six tightly spaced age groups, and two year 

intervals between successive groups. This made it possible to trace the development of 

coarticulation throughout childhood, in order to better understand the nature of any age-

related changes in consonant-specific patterns. Some comparisons of the four consonants 

across the two vowel contexts produced by 13-year-old adolescents from this dataset have 

been reported in Zharkova et al. (2015a), described above. Zharkova et al. (2015b), who 

compared 13-year-olds’ and 5-year-olds’ productions, also used this dataset, although they 

only reported the data on /p/ and /t/. The current study extends the analyses to all age groups 

and consonants; several earlier reported within-group comparisons will be included here for 

completeness, accompanied by specific references in the relevant tables and in the text. 

In this study, based on the literature reviewed above, lingual coarticulation is expected 

to be observed for /p/ in all groups of children. A similar relationship between the consonants 

across age groups, namely more coarticulation in /p/ than in the lingual consonants, is 

predicted. For /t/, a vowel effect on a measure capturing the extent of tongue bunching is 

predicted for the 7-, 9- and 11-year-olds, based on the results for 5-year-olds from Zharkova 

et al. (2015b). The effect on a measure of the relative location of tongue bunching for /t/, not 

observed in Zharkova et al. (2015b) for 5-year-old children, in this study is expected to 

emerge in one of the older groups between 7 and 11 years old. Vowel-related coarticulation 

for the alveolar fricative is predicted to be observed in older age groups than for the alveolar 

stop, due to the challenges associated with additional articulatory constraints required for 

producing sustained frication (cf. Zharkova et al., 2012). Additional constraints on //, i.e., 

predorsum raising, are expected to result in less adjustment between tongue front and back, 

compared with /t/ and /s/, across age groups. Tongue differentiation is predicted to increase 

with increasing age, and in at least some of the younger age groups the lack of differentiation 

is expected to accompany immature coarticulation patterns. Variability in tongue shape across 

repetitions is expected to decrease with increasing age. 

The hypotheses for the study are as follows. 

1. There will be more vowel-related influence on the bilabial stop than on each of the lingual 

consonants in every age group, because of the lack of constraint on the tongue for the bilabial 

stop. 

2. For the lingual consonants, age-related differences will be observed, with most protracted 

development of coarticulatory patterns for //, and more for /s/ than for /t/, since the extent of 

constraint on the tongue for a given consonant is expected to differentially affect 

coarticulation across age groups. 

3. The ability to differentiate between contrasting tongue positions will increase with 

increasing age, as part of the general progress in motor development. 

4. Within-speaker variability in tongue shape over repetitions of the same segment will 

decrease with increasing age, indicating age-related maturation in controlling the tongue. 

 

2. Method 
Participants and experimental stimuli 

The participants were 60 typically developing children speaking Scottish Standard 

English, without parent-reported speech or hearing disorders, ten speakers in each of the 



7 
 

following age groups: 3-year-olds; 5-year-olds; 7-year-olds; 9-year-olds; 11-year-olds; 13-

year-olds. The details on the six age groups are presented in table 1. The stimuli used in the 

study were CV syllables with the consonants /p, t, s, / and the vowels /a, i/, produced in the 

carrier phrase “It’s a ..., Pam” (“Pam” was the name of a toy penguin, which was introduced 

to the children at the beginning of the session). The stimuli consisted of real words /pi/ 

(“pea”), /ti/ (“tea”), /si/ (“sea”), /i/ (“she”), and /a/ (“shah”), as well as the following 

nonsense words, which were presented to the participants as names of imaginary creatures: 

/pa/ (“Pa”), /ta/ (“Tah”), /sa/ (“Sah”)
1
. The phonological structure of the target CV syllables 

was selected to provide minimal pairs for analysing vowel-on-consonant coarticulation for 

each of the four consonants, and to make it easier to compare the results with those from 

previous studies (e.g., Sussman et al., 1992; Nittrouer et al., 1996; Zharkova et al., 2012; 

Noiray et al., 2013; Reidy, 2015). The two vowels were chosen to provide sufficiently 

contrasting lingual articulations, while avoiding a confounding factor of lip rounding. 

 

<table 1 about here> 

 

Data collection 

Synchronised midsagittal ultrasound tongue movement and acoustic data were collected 

in a sound-treated studio, and the equipment producing noise (i.e., the ultrasound scanner and 

the computer recording the data) was located in an adjacent room. An Ultrasonix Sonix RP 

scanner was used for ultrasound data collection, and the synchronisation of ultrasound and 

acoustic data was performed through Articulate Assistant Advanced (AAA) software 

(Articulate Instruments Ltd, 2012). Ultrasound data were recorded at the rate of 100 Hz, and 

the acoustic signal was sampled at 22050 Hz, using a lavalier microphone. Experimental 

stimuli were presented to the participants in the orthographic form (see above), as well as in 

the form of pictures (images for the three nonsense words were created to have no 

resemblance to any existing animate or inanimate objects). All participants were familiarised 

with the target pictures, and it was ensured that the child could clearly see the information 

presented on the screen. Before the recording began, the experimenter produced the carrier 

phrase several times, as part of the familiarisation procedure, to ensure that the speakers 

followed the same model with respect to prosody and speech rate. All participants were 

prompted to produce five repetitions of each target CV syllable. The prompts were presented 

in random order. The tokens of a consonant from a given child were included in quantitative 

analyses of tongue shape only if the child produced at least three repetitions of the target 

consonant in each vowel context. 

 Participants were seated opposite the computer screen on a chair, with the exception of 

nine 3-year-olds and two 5-year-olds, who sat on their carer’s lap. Due to the large overall 

age range of the participants in this study, there were some further differences in the 

recording procedure across age groups, aimed to facilitate the data collection by using the 

                                                           
1
 In order to establish whether including a combination of real words and nonsense words, as well as any 

differences in frequency, might have affected the consistency of tongue shape across repetitions of the target 

consonants (see, e.g., Beckman & Edwards, 2000; Edwards et al., 2004), an investigative sensitivity analysis 

was carried out on the Coefficient of Variation. First, nonsense words were compared with real words, using 

linear mixed models with Speaker and CV Type as random effects, and there was no significant difference in 

variability of articulatory indices depending on whether the syllable was a real word or a nonsense word. The 

next step involved analysing only five real words, taking frequency into account, using information on word 

occurrences in the CHILDES Parental Corpus (MacWhinney, 2000; Li & Shirai, 2000). Results from linear 

mixed models comparing variability across word types (with Speaker as a random intercept), did not support the 

hypothesis that lower frequency words would have increased variability in tongue shape. Finally, the Coefficient 

of Variation was compared across the three nonsense words (also with Speaker as a random intercept), and there 

was no significant difference in variability across CV types. 
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most age-appropriate set-up for each age group. The older participants read the sentences, 

while the younger children (3-year-olds and most 5-year-olds) repeated the sentences after 

their carers. The carers of the younger speakers were instructed to read the entire sentence for 

the children to repeat
2
. For the youngest participants, the recording procedure was presented 

as a game, which involved teaching a toy penguin to say new words. The penguin was a 

passive listener in the game, while the child had to focus on the sentences to produce. The 

child was informed at the onset of the experiment that the new words, which Pam the penguin 

had to learn, would appear on the screen, and the child would need to repeat each sentence 

after the carer. 

In the recordings of the age groups between 7 and 13 years old, the ultrasound 

transducer was stabilised in relation to the head, by means of a headset (Articulate 

Instruments Ltd, 2008). In total, out of the maximum of 400 tokens per age group, all 400 

tokens were used in quantitative analyses for 7-, 11- and 13-year-old groups. For the 9-year-

old group, 398 tokens were used, as one 9-year-old participant produced only three tokens of 

/s/ in the context of /a/. 

The recordings of the two youngest age groups did not involve the headset, as it would 

have been too uncomfortable for the children due to its weight. For 3- and 5-year-olds, the 

ultrasound transducer was instead hand-held by the experimenter (see other ultrasound studies 

of young children’s speech using hand-held recordings: e.g., Song et al., 2013; Lin & 

Demuth, 2015; Magloughlin, 2016). It was possible to use the same measures in this study for 

quantifying tongue shape in both stabilised and hand-held ultrasound data, because the 

measures have previously been shown to produce the same results for these two types of data 

(Zharkova et al., 2015a). All participants whose data were collected without head stabilisation 

were simultaneously video recorded in two planes, as shown in figure 1. The video data were 

used to guide the selection of tokens for further analyses (see the next subsection). 

 

<figure 1 about here> 

 

Selection of tokens recorded from the two youngest groups of speakers 

As the study focussed on how contrasting vowel contexts affect the realisation of 

different consonants, only perceptually correct productions of the target consonant phonemes, 

as judged by the experimenter, were included in quantitative analyses. One 3-year-old 

participant did not have an audible contrast between the two sibilant fricatives, consistently 

producing both /s/ and // as a voiceless glottal fricative, so all fricative tokens by this child 

were excluded from quantitative analyses. Despite the fact that all other 3-to-5-year-old 

children produced perceptible contrasts between the four target consonants, further exclusions 

related to the nature of fricative production were made for three children. Two 3-year-old 

participants consistently produced an interdental /s/, as confirmed by the video recording of 

the face. All /s/ tokens produced by these two children were excluded from the analyses, 

because the visible tongue tip protrusion could have affected the overall tongue shape, thus 

confounding the results. One five-year-old girl realised most // tokens as somewhat 

palatalised, likely due to the fact that her lower centre incisors were missing. In order to avoid 

a possible confounding effect from any compensatory lingual articulations on tongue shape 

variability, it was decided to exclude from quantitative analyses all fricative tokens produced 

by this child. Finally, two children from the 3-year-old group did not produce the beginning 
                                                           
2
 Within the recording software, every presentation of the new stimulus is followed by saving the ultrasound 

video, which takes a comparable amount of time to the duration of the video. In the event, in order to keep the 

young children’s attention focussed on the task, the carers of all 3-year-olds and one 5-year-old produced the 

stimulus several consecutive times for the child to repeat at each presentation of the new stimulus, thus reducing 

the number of separate individual recordings, and consequently the waiting time between recordings. 
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of the carrier phrase (i.e., “It’s a”), therefore stop tokens from these two children had to be 

excluded from quantitative analyses of tongue shape, as it would have been impossible to 

identify the onset of the stop closure, necessary for establishing mid-closure.  

Video recordings of the two youngest groups were qualitatively examined in order to 

establish whether the tokens were suitable for quantitative analyses of tongue shape (see 

Zharkova et al., 2017, on the methodological challenges of analysing ultrasound data 

recorded without head stabilisation). In the tokens that were included, the ultrasound 

transducer was relatively stable under the chin during the target syllable, with the tongue 

curve flanked by the shadows of the chin and of the hyoid bone (see an example in Fig. 1). 

For the 5-year-olds, five tokens of /p/ produced by four different children did not satisfy these 

criteria. Thus, after applying all exclusion criteria, for the 5-year-old group the total of 375 

tokens were included in quantitative analyses (48 tokens of /pa/, 47 tokens of /pi/, 45 tokens 

of each of the four CVs with fricatives, and 50 tokens of each of the CVs with /t/). For the 3-

year-old group, the total of 240 tokens were included, and their details are as follows: 31 

tokens of /pa/ and 30 tokens of /pi/ produced by seven different children; 28 tokens of /ta/ and 

35 tokens of /ti/ (seven different children); 24 tokens of /sa/ and 25 tokens of /si/ (five 

different speakers); 33 tokens of /a/ and 34 tokens of /i/ (seven different speakers).  

 

Annotations and tongue curve tracing 

The middle of the consonant (for the stops, the middle of the closure) was annotated for 

every token. Mid-consonant was located automatically within AAA software, using manual 

annotations of the consonant duration. The consonant onset was located at the end of the 

periodic waveform for the vowel, which coincided with the closure onset and the onset of the 

frication noise for stops and fricatives, respectively. Across age groups, 22% of tokens were 

realised with preaspiration (ranging from 11% to 35% per age group). Between 6 and 10 

children per group produced preaspirated tokens, and lingual consonants accounted for 97% 

of those tokens. The preaspirated interval, if it were present, was not included in the 

consonant duration. In such tokens, the consonant onset was located at the beginning of the 

closure for the stops, and, for the fricatives, at the abrupt increase of the frication noise. The 

offset of the closure for the stop consonants was located at the onset of the stop burst, and the 

offset for the fricatives was at the end of the frication noise. 

Tongue curves at mid-consonant were automatically traced for every token in AAA, 

with some manual correction. In order to analyse tongue differentiation, tongue curves were 

additionally traced at the offset of the stop closure for all tokens of /t/ from /ti/. Then xy 

coordinates of the resulting tongue curves were used to calculate indices of tongue shape. 

Technical details on the procedure of exporting tongue curve coordinates from AAA are 

available in Zharkova et al. (2014). 

 

Quantitative indices for analysing tongue shape 

Tongue shape indices were calculated in R (R Development Core Team, 2013), using 

the scripts written by the author. The calculations of the two indices are illustrated in Fig. 2. 

 

<figure 2 about here> 

 

An index called LOCa-i (Zharkova et al., 2015a) quantified the location of bunching 

along the tongue curve. This index has been reported to have higher values in the context of 

/i/ than in the context of /a/ for /p/, /t/ and /s/ in typically developing adolescents (Zharkova et 

al., 2015a). In the left panel of Fig. 2, LOCa-i is a ratio of the straight line f (a perpendicular 

from one third of line n, starting from the front, to the tongue curve) to line b (a perpendicular 

from two thirds of line n to the tongue curve).  
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Curvature Degree, an index introduced by Aubin and Ménard (2006), was used to 

quantify the extent of tongue bunching. Curvature Degree has been shown by Zharkova et al. 

(2015a) to produce higher values in the context of /i/ than in the context of /a/ for /t/, /s/ and 

// produced by adolescents. This index was not used for analysing data from the bilabial 

consonant, as Zharkova et al. (2015a) showed that the index can produce different results for 

vowel-on-/p/ coarticulation depending on whether the participant’s head is stabilised in 

relation to the transducer. In the right panel of Fig. 2, Curvature Degree is a ratio of the line 

CD (a perpendicular from the point on the tongue curve furthest away from AB, the straight 

line between two ends of the tongue curve) to the line AB. Curvature Degree was preferred in 

this study to another measure of tongue bunching, Dorsum Excursion Index, used in some of 

our previous studies (e.g., Zharkova et al., 2015b; Zharkova 2016), because the latter measure 

was shown in Zharkova et al. (2015a) to be affected by head-to-transducer stabilisation in the 

case of //, while Curvature Degree had similar results for // across the two stabilisation 

conditions. 

For our /a/-/i/ vowel context comparisons, the two indices represented different aspects 

of the contrasting vowel articulations that were expected to have an effect on the consonants. 

The /i/-like articulation involves advancing and raising the tongue blade, predorsum and 

dorsum, in conjunction with advancing the tongue root. The /a/-like articulation, by contrast, 

involves lowering the tongue front and dorsum, and retracting the root. In these articulations, 

LOCa-i captures the difference between the two vowels that consists in the relative positioning 

of the tongue front and the tongue back, while Curvature Degree captures the difference in 

lowering versus raising of the dorsum and predorsum. Both indices are ratios, so they could 

be compared across speaker groups without the need for normalisation. 

 

Measuring coarticulation, tongue differentiation, and variability 

LOCa-i and Curvature Degree were calculated for each token included in the 

quantitative analyses. Index values at mid-consonant across the two vowel contexts were used 

to assess whether a significant coarticulatory effect was present, and if so, to quantify the 

magnitude of effect. In order for an effect to be deemed present for a given age group and 

consonant, there had to be a significant difference between index values across the two vowel 

contexts. The magnitude of any significant effects was calculated by taking a ratio of the 

index value in the context of /i/ to that in the context of /a/. A higher ratio signified a greater 

effect magnitude, i.e., a larger difference between tongue shapes for a given consonant across 

the contrasting vowel contexts. To measure tongue differentiation, LOCa-i values were 

calculated for each token of /t/ from /ti/ at the end of the closure, and then compared with 

those from the middle of the closure. LOCa-i was chosen to quantify tongue differentiation 

because this measure has been previously shown to capture the raising and advancement of 

the tongue predorsum towards /i/ during the consonant articulated with the tip/blade of the 

tongue (Zharkova 2016). Variability was measured by calculating Coefficient of Variation 

values on the two indices of tongue shape at mid-consonant, separately for each speaker, and 

including only the Coefficient of Variation values based on five repetitions of a given target, 

the total of 211 and 218 observations in the contexts of /a/ and /i/, respectively. 

 

Statistical analyses 

Linear mixed models (LMMs) were carried out in R (R Development Core Team, 

2013), with speaker modelled using both random slopes and intercepts, for all analyses except 

where explicitly specified. Determining the denominator degrees of freedom for the LMMs 

(see Baayen, 2008) was based on the approach described in Reubold et al. (2010). For the 

analyses of the presence of effect and of differentiation, the denominator degrees of freedom 

were set at 40, and LMM results were taken as significant at the 0.01 level if the value of F in 
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the analysis of variance table (upper one-tailed) was greater than 7.31. To assess the presence 

of effect, LMMs were fitted within age group and separately for each consonant, for LOCa-i 

and Curvature Degree. The ratios representing magnitude of any coarticulatory effects were 

compared within age group across consonants, to establish any consonant-specific patterns 

for each group of children; only random intercepts were used in these LMMs, because there 

was one ratio value per speaker per consonant. For the LMMs on the magnitude of 

coarticulatory effects, estimates of the numbers of degrees of freedom in the denominator 

were obtained using df = n – k – 1, where n represents the number of observations, and k 

represents the number of degrees of freedom (Reubold et al., 2010; see also Baayen, 2008). In 

the comparisons of the magnitude of any effect across age groups, it was not possible to use 

speaker as a random effect, because mean values per speaker were used in the analyses, so 

ANOVAs were carried out on the ratios, rather than LMMs. For analysing tongue 

differentiation, comparisons were carried out within age group, across the two time points of 

/t/ from /ti/. Finally, to compare token-to-token variability in tongue shape across age groups, 

LMMs were run on the Coefficient of Variation for LOCa-i and for Curvature Degree, with 

speaker as a random intercept, separately for each vowel context, with the data from the 

different consonants pooled together (for the 5-to-13-year-olds, the data from all ten speakers 

per age group were represented in both models for at least two CV targets, while for the 3-

year-old group, the data including between one and four different CVs were used for eight 

speakers in the model for the context of /a/, and for nine speakers in the model for the context 

of /i/). In the analyses of variability across age groups, a conservative value of 60 was 

selected for the denominator degrees of freedom, with LMM results taken as significant at the 

0.01 level if the value of F in the analysis of variance table was greater than 3.34. For a more 

detailed comparison of the magnitude of any significant coarticulatory effects, as well as 

variability, across age groups, Tukey post-hoc tests were run in R, using multcomp package 

(Hothorn et al., 2008). 

 

Results 
Figures 3 – 6 show tongue contours at mid-consonant in a representative speaker from 

each age group, for each of the four consonants in turn. Tongue contours within the same 

consonant and vowel context in the children from the youngest two groups are more spread in 

absolute position than in the children from the other age groups, because of the nature of the 

recordings without head stabilisation. As the focus of the quantitative analyses in this paper is 

on the shape of each individual curve, rather than on variability in absolute position of the 

tongue curves, the following description of the figures also concentrates on within-curve 

tongue shapes. In all age groups, including the two youngest groups of children, visual 

observation makes it possible to see certain differences in the consonant tongue shape 

conditioned by the two vowel contexts. For example, for /p/ represented in figure 3, the 

difference in the relative location, along the tongue curve, of the most bunched part tongue 

across the two vowel contexts is visible, with more bunching towards the front of the tongue 

in the context of /i/, and towards the back of the tongue in the context of /a/. All lingual 

consonants have smaller differences in tongue shape than the bilabial stop, across age groups. 

For /t/ in figure 4, more tongue bunching appears to be present in the context of /i/ than in the 

context of /a/ in all age groups. A similar vowel-related difference seems to exist for /s/ 

(figure 5), although it appears to grow more prominent with increasing age. For // (figure 6), 

there are quite small differences in tongue shape across vowel contexts, with the children 

aged seven years old and above having a somewhat advanced tongue root in the context of /i/, 

compared with the context of /a/. 

 

<figure 3 about here> 
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<figure 4 about here> 

<figure 5 about here> 

<figure 6 about here> 

 

Presence of effect 

Table 2 shows LOCa-i values for each consonant in each vowel context, for every age 

group. The table also has the results of LMMs that established whether each age group had a 

significant coarticulatory effect on each consonant. The only consonant that had a significant 

effect in every age group was the bilabial stop. For the alveolar stop, the effect was present in 

the 9-year-old group and older, but not in three youngest groups. For the alveolar fricative, 

the effect was only observed in the oldest age group. The postalveolar fricative did not show a 

significant vowel-related effect on LOCa-i in any age group. These results provide some 

support for the first two hypotheses on cross-consonantal differences, i.e., that the bilabial 

stop will be more affected by the vowels than the lingual consonants, and that coarticulatory 

patterns will be most protracted for //, and more for /s/ than for /t/. 

 

<table 2 about here> 

 

In table 3, results of the analyses on Curvature Degree are presented for /t/, /s/ and // 
for every age group. The coarticulatory effect on /t/ was significant in every age group, as 

opposed to LOCa-i, which showed no effect for 3-to-7-year-olds. For /s/, there was no 

significant effect in the youngest age group, while for //, no significant effect was observed 

in the two youngest groups. The fact that a significant effect was observed in progressively 

older age groups for /t/, /s/ and //, in this sequence, provides support for the hypothesis that 

the lingual consonants with more constraint on the tongue would show a more protracted 

development of vowel-on-consonant coarticulation. 

 

<table 3 about here> 

 

Magnitude of effect 

Results on the magnitude of significant coarticulatory effects are presented in table 4. 

When comparing the magnitude of effect across two different consonants, the number of 

degrees of freedom in the denominator was estimated at 17 (based on the comparison with the 

smallest number of observations, /t/ versus /s/ in 5-year-olds), and the result was deemed 

significant if the value of F in the analysis of variance table was greater than 8.40, at the 0.01 

level; for a comparison of the magnitude of effect across three different consonants, the 

number of degrees of freedom in the denominator was estimated at 27, and the result was 

taken as significant with the F value greater than 5.49, also at the 0.01 level.  

 

<table 4 about here> 

 

For the 9-year-old group and the 11-year-old group, both of which had a significant 

coarticulatory effect on /p/ as well as on /t/, as measured by LOCa-i, the magnitude of this 

effect was significantly greater for /p/ than for /t/ (9-year-olds: F = 11.64; 11-year-olds: 

F = 14.61). For the 13-year-old group, which, on LOCa-i, had a significant coarticulatory 

effect on /p/, /t/ and /s/, the magnitude of effect was significantly different across consonants 

(F = 15.13), with /p/ being different from both /t/ and /s/ at the 0.001 level (note that the 

results of this LMM for the 13-year-olds were originally reported in Zharkova et al., 2015a). 

These results, in addition to the fact that in the three younger groups /p/ was the only 
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consonant showing a significant vowel-related coarticulatory effect through LOCa-i, support 

the hypothesis that, due to the lack of constraints on the tongue, /p/ will undergo more 

coarticulation in all age groups than each of the lingual consonants. The importance of tongue 

constraints will be discussed below in relation not only to coarticulatory patterns, but also to 

the order of acquisition of consonants during early years of phonological development. 

For Curvature Degree, in those cases where a coarticulatory effect was observed 

within the same age group on more than one lingual consonant, there were no significant 

differences in the magnitude of effect across the consonants in any age group except the 9-

year-olds (5-year-olds: F = 2.75; 7-year-olds: F = 2.93; 9-year-olds: F = 6.83; 11-year-olds: 

F = 3.20; 13-year-olds: F = 3.36 (the results for the 13-year-olds were, as above, originally 

reported in Zharkova et al., 2015a)). In those age groups which had a significant 

coarticulatory effect for all lingual consonants, the magnitude of effect was greater for the 

two alveolar consonants than for the postalveolar fricative, although this difference only 

reached significance in the 9-year-old group (p < 0.01 for both /t/-// and /s/-// post-hoc 

comparisons). 

Across-group comparisons on LOCa-i were performed through carrying out ANOVAs 

for /p/ and /t/. A significant effect on LOCa-i for /s/ was only observed in the oldest age group, 

so no across-group comparisons were possible. For both stops, the results were not significant 

(/p/: F = 0.32; /t/: F = 0.08), suggesting that there was no difference in the magnitude of 

coarticulatory effect across age groups. For Curvature Degree, across-group ANOVA results 

were significant for /t/ (F = 3.60, p < 0.01). Post-hoc tests showed significant differences 

between 3-year-olds and 13-year-olds (p < 0.01), 3-year-olds and 9-year-olds (p < 0.05), 3-

year-olds and 7-year-olds (p < 0.05), and a marginally significant difference between 3-year-

olds and 5-year-olds (p = 0.06). Across-group comparisons for /s/ and // on Curvature 

Degree did not produce significant results (F = 0.87 and F = 1.55, respectively). 

 

Tongue differentiation 

Table 5 presents the results of LMMs analysing tongue differentiation. The table 

shows that 3-year-old children were the only age group that did not have a significant 

difference on LOCa-i between tongue shapes at the middle versus the end of /t/ closure. This 

result supports Hypothesis 3, which predicts an increase in tongue differentiation with 

increasing age. 

 

<table 5 about here> 

 

Variability 

Results on within-speaker variability in tongue shape are reported for each age group 

in table 6. The general pattern of reducing Coefficient of Variation values with increasing age 

was observed. 

 

 <table 6 about here> 

 

LMM results of the comparison of Coefficient of Variation on LOCa-i yielded a 

significant difference across age groups both in the context of /a/ (F = 10.16) and in the 

context of /i/ (F = 7.54). Post-hoc tests in the context of /a/ showed significant differences at 

the 0.001 level between 3-year-olds and each age group starting from the age of seven years 

old. Also, 5-year-olds were significantly different from 13-year-olds (p < 0.001), and from 

11- and 9-year-olds (p < 0.05 in both cases); the difference between 5-year-olds and 7-year-

olds was marginally significant (p = 0.06). In the context of /i/, significant results of the post-

hoc tests were as follows: 3-year-olds versus 13- and 11-year-olds (p < 0.001 in both cases); 
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3-year-olds versus 7-year-olds, and 5-year-olds versus 13-year-olds (p < 0.01 in both 

comparisons); 9-year-olds versus 13-year-olds (p < 0.05); also, the difference between 3-year-

olds and 9-year-olds was marginally significant (p = 0.05). 

 For Curvature Degree, variability was also significantly different across age groups in 

both vowel contexts (the context of /a/: F = 11.84; the context of /i/: F = 8.68). Post-hoc 

comparisons produced significant results in the context of /a/ for the comparison between 13-

year-olds and 7-year-olds (p < 0.05), as well as for each age group starting from the age of 

seven years old versus each of the two youngest age groups: p < 0.05 for the comparisons of 

7-year-olds with 5- and 3-year-olds, and p < 0.001 for all other significant results. In the 

context of /i/, the following post-hoc test results were significant: 3-year-olds versus 7- and 9-

year-olds (in both cases, p < 0.05); each of the two youngest groups versus each of the two 

oldest groups (p < 0.001, except the comparison of 5-year-olds versus 11-year-olds, which 

was signigicant at the 0.01 level). 

 
Discussion 
This study focussed on coarticulation, tongue differentiation and tongue shape 

variability in six child age groups between three and thirteen years old. The results provided 

support for all hypotheses, showing that lingual coarticulation develops during childhood in a 

segment-specific fashion, conditioned by the maturation of motor abilities and by the 

articulatory challenges presented by the speech segments. Below, the findings will be 

discussed in relation to each hypothesis.  

The labial stop was clearly different in coarticulatory patterns from the lingual 

consonants, across age groups, so Hypothesis 1 was supported. As shown in tables 2 and 4, 

the effect on /p/ was observed for LOCa-i for all age groups, with no significant difference in 

the magnitude of effect across age groups. For the lingual consonants, the extent of influence 

from the contrasting vowels on the consonant tongue shape, as measured by LOCa-i, was 

either not statistically significant, or the magnitude of any effect was significantly smaller 

than for the bilabial. These results suggest that constraints on the tongue related to the 

consonant production affect lingual coarticulation already in young children. The results from 

Scottish English speaking children in this study agree with previous findings on coarticulation 

in children speaking American English (Sussman et al., 1992; Goodell & Studdert-Kennedy, 

1993; Sussman et al., 1999), Canadian French (Noiray et al., 2013), and German (Rubertus et 

al., 2015), showing that this aspect of the development of coarticulation is present across 

languages, as well as across varieties of the same language. 

The nature of age-related differences in coarticulation across the three lingual 

consonants provided support for Hypothesis 2. For lingual consonants, adjusting tongue 

dorsum/predorsum height for coarticulation (captured by Curvature Degree) was used already 

by three-year-old children, while further shape changes reflecting progressive tongue 

advancement versus retraction in anticipation of the different vowels (represented by LOCa-i) 

was only employed by older children, starting from the age of nine years old. The 

development of these strategies of tongue shape adjustment for lingual coarticulation has 

been demonstrated in this study to be segment-specific. The coarticulatory patterns as 

measured by LOCa-i had some age-related differences in the predicted direction. For /t/, a 

significant effect on LOCa-i emerged in the 9-year-old group, while for /s/, only 13-year-olds 

had a significant vowel effect on LOCa-i. As expected, the most protracted development of 

coarticulatory patterns was reported for //. On Curvature Degree, a measure that showed a 

significant coarticulatory effect for both alveolar consonants starting from at least the age of 

five years old, a significant effect for // was only observed starting from seven years old. 

The cross-consonant age-related differences reported in this study cannot be accounted 

for by either of the two competing theories of coarticulation development postulating that the 
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extent of coarticulation uniformly increases or decreases during childhood (Kent, 1983; 

Nittrouer et al., 1989). Instead, the study has demonstrated that coarticulation development is 

dependent on consonant properties. In those cases where more than one age group exhibited a 

significant effect for a given consonant on a given measure of tongue shape, four out of five 

across-group comparisons of magnitude of coarticulatory effects did not produce significant 

results. Specifically, there were no age-related differences in the magnitude of effect on /p/ 

and on /t/ for LOCa-i, nor on /s/ and on // for Curvature Degree. These data also do not 

support the theoretical claims about unidirectional changes in coarticulation with increasing 

age. Nor, however, can the coarticulatory patterns observed in this study be fully explained by 

the existing “adult” version of the DAC model of coarticulation (Recasens et al., 1997). 

While the data on the bilabial stop versus the lingual consonants generally support the DAC 

model, the non-uniform patterns of segment-specific coarticulation in different age groups 

suggest that other, “child-specific”, constraints have played a role in the observed patterns. 

Suggestions of possible constraints explaining the reported developmental differences are 

outlined and discussed below. Before proceeding to the details of specific constraints, it is 

worth noting that the order in which the children in this study progress towards more mature 

coarticulatory patterns is reminiscent of the order of acquisition of consonant phonemes 

during the first two years of phonological development (see Vihman, 2014, and references 

cited there), particularly regarding generally early acquired bilabial consonants, and relatively 

later acquired sibilant fricatives, which are often substituted by stops in children with 

typically developing speech (see also Smit, 1993). These parallels suggest that the limitations 

defined by articulatory requirements associated with individual segments apply to the 

children’s productions both at the early stage of phonological development and in later pre-

school and early school years, with the impact from different articulatory challenges 

gradually reducing with the maturation of speech motor abilities. 

In the analyses of tongue differentiation, the results showed that the only group unable 

to differentiate between contrasting target tongue postures at mid-/t/ versus end of /t/ closure 

in the context of /i/ was the group of 3-year-olds. Thus, Hypothesis 3 received support from 

the data, in that tongue differentiation increased with increasing age. We take this lack of 

differentiation in tongue shape as an indicator that the level of speech motor development in 

our 3-year-old children was not as advanced as in older age groups. This could conceivably 

be a reason for the lack of lingual coarticulation across vowel contexts on LOCa-i in the 

youngest age group. This interpretation agrees with the idea that the lack of tongue 

differentiation may be a stage in typical child speech development (cf. Gibbon, 1999; Gick et 

al., 2008). The results from older age groups suggest that protracted development of 

coarticulation in those age groups was not due to inability to differentiate between tongue 

tip/blade and dorsum/predorsum (as hypothesised by Zharkova et al., 2012, as a possible 

explanation for the lack of vowel-on-/s/ coarticulation in 6-9-year-old children that they 

found). An alternative explanation for immature coarticulatory patterns in all other age groups 

up to 11 years old is that the goal of reaching the target for the consonant is more important 

for the children than the goal of coarticulating the consonant with the adjacent vowels. In 

other words, the children are able to differentiate between parts of the tongue to accommodate 

vocalic influence on the consonant, but prefer to concentrate on articulating the consonant at 

the expense of adjusting the tongue to the contrasting vowels. The different immature 

coarticulatory patterns in 3-year-olds versus older children might in fact constitute two 

successive stages of lingual motor control maturation in typically speaking children, forming 

a developmental continuum (Fiona Gibbon, personal communication). A further finding from 

this study that singles out the youngest age group is that the 3-year-olds coarticulated the 

alveolar stop consonant on Curvature Degree more than the older groups of children, despite 

having reduced tongue differentiation and the absence of coarticulatory effects on the lingual 
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consonants as measured by LOCa-i. It is possible that the 3-year-olds raised the tongue 

dorsum in anticipation of the vowel /i/ already by mid-closure, which would have led to a 

greater vowel-conditioned difference in tongue shape that was captured using Curvature 

Degree. The overshoot in the magnitude of coarticulation on Curvature Degree observed for 

the 3-year-old group could have been a manifestation of the developmental process described 

by Sussman et al. (1999), which consists in fine-tuning of “the interaction of articulatory 

effort and coarticulatory overlap” (p. 1094) that is required for adult-like coarticulation of 

alveolar stops. 

Token-to-token variability in tongue shape was shown to decrease with increasing age. 

These results support Hypothesis 4, and agree with previous studies (e.g., Kent and Forner, 

1980; Sharkey and Folkins, 1985; Nittrouer, 1993; Smith and Goffman, 1998; Lee et al., 

1999; Nijland et al., 2002; Walsh and Smith, 2002; Nittrouer et al., 2005; Zharkova et al., 

2011, 2012). The results were statistically significant for both measures of tongue shape in 

both vowel contexts. The two youngest age groups were often different from most other age 

groups, as shown by the post-hoc tests. There was a possibility that these results were affected 

by the fact that only the two youngest groups were recorded without head-to-transducer 

stabilisation. In order to investigate this possibility, variability in the 3-year-olds and the 5-

year-olds was compared with the variability data on the 13-year-old group also recorded 

without head stabilisation. The latter data were collected at the same time as the head-

stabilised recordings of the adolescent group (for more information on these data, see 

Zharkova et al., 2015a). Comparisons of 13-year-old data without stabilisation with the data 

from the two youngest groups were carried out for each tongue shape index in each vowel 

context. All four LMMs produced a significant age-related difference. In the post-hoc tests, 

the adolescents were significantly less variable than each of the two child groups, except the 

tests for LOCa-i in the context of /i/, where this difference reached significance only in the 

comparison of the youngest group with the adolescents. These findings suggest that the 

difference in variability between the two youngest groups and the other age groups is unlikely 

to have been influenced by the presence versus absence of head-to-transducer stabilisation. 

Another potential effect of the different stabilisation conditions on the articulatory measures 

could have been observed if variability due to hand-held transducer obscured any vowel-

related coarticulation. However, this suggestion is not supported by the data, with the pattern 

of results for LOCa-i showing that there was no significant coarticulation for lingual 

consonants even for older children, who did wear the stabilisation headset. We can also draw 

confidence in our results on variability from the fact that they converge with the findings 

from recent ultrasound studies of speech production in young Canadian French speaking 

children (Barbier et al., 2015) and Cantonese speaking children (Yip et al., 2015). Despite 

using different recording methodologies (the former study used optical tracking head 

correction without stabilising the head, while in the latter study the head was stabilised 

relative to the ultrasound transducer), both studies reported a substantial amount of token-to-

token variability in 3-to-5-year-old children, compared with older speakers. 

Applying the exclusion criteria to the younger groups of children resulted in a 

noticeable difference in the amount of analysed data between the 3-year-old group and the 

older groups, to a considerable extent due to immature fricative production in some of the 

children (cf. Smit, 1993). There is a possibility that the large variability in the youngest group 

was in part due to the smaller data size for that group. In order to investigate this possibility, 

the Coefficient of Variation values for the 3-year-old group were compared with those for the 

older groups with a comparable amount of data per group. Five speakers were selected at 

random from each of the age groups between 5 and 13 years old, and LMMs were run across 

age groups, for each vowel context and articulatory index. The results of all comparisons still 

yielded significant age-related differences between the 3-year-old group and all the other age 
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groups starting from seven years old. These findings suggest that the difference in variability 

between the youngest speakers and older groups is quite robust. The choice of perceptually 

appropriate productions in this study had a clear methodological reason, as in order to be able 

to compare tongue adjustment during a consonant to the neighbouring vowel it was important 

that the consonant itself was the same across speakers and age groups. The data on 

phonological errors and phonetic distortions were not included for reasons of space, but they 

constitute an important source of information, which could usefully contribute to studying the 

development of motor control in children, and they will be investigated in our future research. 

While this study did not address any effects on lingual coarticulation from prosody, 

word or morphological structure (cf. an ultrasound study by Song et al., 2013, exploring the 

influence of morphological structure on lingual coarticulation in 2-year-old children), the 

results raise interesting questions on how these factors might interact with the extent of 

articulatory constraint on the tongue for individual speech segments during childhood. For 

example, in this study the target CV syllable words were in a prominent position in the carrier 

phrase; the age-related pattern of results on coarticulation might have been different if the 

target words had been in a less prominent position (see, e.g., Beckman et al., 1992). 

Designing future experiments to include varying prosodic conditions for the target word 

would make it possible to investigate how segmental articulatory constraints may 

differentially affect coarticulation across age groups and prosodic conditions, given that 

prosodic abilities continually develop throughout childhood and adolescence (Filipe et al., 

2017). 

The study for the first time used ultrasound imaging for analysing speech data from a 

wide range of child ages, extending into adolescence (cf. Rubertus et al., 2015, who reported 

data from German speaking children aged 3, 4, 5 and 7 years old). One of the challenges in 

this task was ensuring the reliability of quantitative comparisons of tongue contours across 

age groups, which required recording the same stimuli from all children. In order to keep the 

data collection procedure maximally ecologically valid for all age groups, the elicitation 

procedures differed across groups, taking into account age-related psychological differences, 

as well as the challenges involved with collecting articulatory data from young children (see 

Zharkova et al., 2017). For recording sufficient numbers of repetitions from the youngest 

participants, the optimal procedure was found to be repeating after the child’s carer. While 

different elicitation methods have been used in some previous studies of young children’s 

speech production, including those using ultrasound (e.g., Song et al., 2013; Lin & Demuth, 

2015; McAllister Byun et al., 2016), in the present study repeating after the carer was the 

most natural behaviour for young children involved in playing a game together with the carer. 

All CV syllable tokens by the 3- and 5-year-old participants included in across-group 

comparison were perceptually correct realisations, which ensured comparability with older 

children’s productions. The fact that the 3-year-olds produced some of the tokens 

consecutively within a single stimulus presentation could have arguably led to increased 

coarticulation; however this was not the case, as on most combinations of articulatory index 

and consonant the 3-year-olds did not have more coarticulation than the other groups. 

Moreover, the 3-year-olds had similar cross-consonant (particularly labial stop versus 

alveolar stop) coarticulatory differences to other groups, and they patterned largely with the 

5-year-old group on variability; both these findings agree with previous reports (e.g., Goodell 

& Studdert-Kennedy, 1993; Barbier et al., 2015). The difference across age groups in reading 

versus repeating the stimuli might have affected the results, with potentially more careful 

productions in read speech (e.g., Koopmans-van Beinum, 1991), which could have led to 

reduced coarticulation (cf. Krull, 1989). The results, however, present largely the opposite 

picture, namely that younger age groups did not demonstrate any evidence of coarticulation 

on several combinations of articulatory indices and consonant types where older age groups 
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did. Another potential factor related to the elicitation methods is that the younger 7-year-olds, 

as potentially less fluent readers, might have displayed reduced coarticulation. During the 

recordings care was taken to elicit fluent productions from all children, particularly the 

younger 7-year-olds. Reassuringly, the 7-year-old children did not show any within-group 

differences in coarticulation when precise age in months was taken into account (see below). 

Age distributions within group had some differences across groups of children, which is 

a potential limitation of the study. In the 3-year-old group, eight children were older than 

three years six months, and only two children were aged three years four months; we need to 

bear this information in mind when interpreting the results for the youngest age group. Also, 

age ranges were not the same across groups, with the range for the 7-year-old group larger 

than for all other groups. In order to investigate whether these differences could have led to 

any within-group differences in coarticulation, analyses on the presence of coarticulatory 

effect for each age group and each consonant were run including precise age in months as an 

additional factor. There were no significant effects of age in months or significant interactions 

with this factor, except two, which are described below. On LOCa-i, there was a significant 

interaction between vowel and age in months for the 11-year-olds for /s/, with larger values 

for /a/ than for /i/ in the three youngest children, and the opposite pattern, showing evidence 

of vowel-related coarticulation, in the older children. Given that the LMM reported in Table 2 

did not show a coarticulatory effect on /s/ in the 11-year-olds as a group on this measure, this 

pattern might illustrate a gradual change in controlling tongue dynamics in preadolescents. 

On Curvature Degree, there was a significant interaction between age in months and vowel 

for the 9-year-olds for //, with the younger children demonstrating a more pronounced 

vowel-related difference than the older children. While this within-group difference needs to 

be interpreted with caution due to the fact that 9-year-olds as a group did not have 

significantly less coarticulation on // than 7-year-olds or more than 11-year-olds, this pattern 

might represent ongoing changes in motor control, related to the vocal tract maturation (cf. 

Zharkova et al., 2011; Romeo et al., 2013). It also needs to be acknowledged that this study 

reports production data up to early adolescence, but not for older adolescent and adult 

productions. Such information would usefully complement the data reported in this paper, as 

it has been demonstrated in a number of studies that speech motor development is protracted, 

with even 14- to 16-year-old adolescents showing differences from adults (e.g., Lee et al., 

1999; Sadagopan & Smith, 2008; Romeo et al., 2013). 

An advantage of ultrasound imaging is that the technique allows for relatively direct 

articulatory measurements when the acoustic signal provides only limited information, e.g., 

during stop closure; when formants cannot be measured, such as at mid-consonant for 

voiceless fricatives; or when spectral information would not be sufficient to determine the 

exact tongue shape behind the closure or constriction. This made it possible in the current 

study to analyse lingual coarticulation at mid-consonant across voiceless stop and fricative 

consonants. In the data analysed in the study, information on the tongue-palate constriction 

was not included, due to the nature of the recording procedure for the youngest participants. 

In previous developmental studies, such information has been inferred from the acoustic 

signal, which represents combined activity of different parts of the vocal tract (e.g., Nittrouer, 

1993). Other articulators, including particularly the lips and the jaw, as well as the lateral 

margins of the tongue, would have contributed to the coarticulatory patterns reported in the 

study (cf. Reidy, 2015). Because of the inability of ultrasound tongue imaging to 

simultaneously show other vocal tract structures, and because the study focussed on 

midsagittal tongue images without tracking lip or jaw movements, conclusions on the 

observed coarticulatory patterns are necessarily limited to midsagittal tongue movements. 

Also, the study focussed on a single time point at mid-consonant, unlike some previous 

studies that have traced vowel-on-consonant coarticulation over time (e.g., Katz & 
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Bharadwaj, 2001; Goffman et al., 2008; Zharkova et al., 2014; Reidy, 2015). Detailed 

dynamic analyses that are currently ongoing will make it possible to investigate the 

development of coarticulation in the temporal domain during childhood and into adolescence, 

including any changes in the effects of prosody and grammar on lingual coarticulation. 

The measures of tongue shape used in this work, which are independent of head-to-

transducer stabilisation, were employed for the first time to study the development of lingual 

coarticulation throughout childhood. While the obvious advantage of such measures is that 

they can be used with very young children, their limitation is that they may not be as 

powerful as the measurements based on the whole tongue contour (see a discussion in 

Zharkova et al., 2017). This may have been the reason why the difference between consonant 

contours conditioned by contrasting vocalic environments was not captured for // by LOCa-i 

in any age group, and also for the lack of significant differences in the magnitude of effect on 

Curvature Degree across lingual consonants in most age groups. However the results 

produced by using a combination of these two measures of tongue shape and a selection of 

consonants provided a sufficient amount of information to draw a coherent picture of the 

development of lingual control from the age of three years old to early adolescence, that 

could be expanded in future studies. 

 

Conclusion 

The results of this study suggest that developmental shifts in the degree of 

coarticulation of individual speech sounds are affected by changes in articulatory constraints 

on the tongue with age. Specifically, the study showed that coarticulating lingual consonants 

with adjacent vowels, unlike coarticulating the labial consonant, presented some challenges 

for all age groups except the adolescents. The group of 3-year-old children was the only age 

group where immaturities in coarticulatory patterns could be explained by the lack of tongue 

differentiation. For the older age groups, the findings on reduced coarticulation suggest that 

the goal of producing an alveolar consonant target may override the goal of coarticulating the 

consonant with the following vowel. The adjustment of the tongue shape reflecting tongue 

advancement/retraction involved with coarticulating the alveolar fricative was protracted 

compared with the alveolar stop. This finding was interpreted to mean that the articulatory 

difficulty involved with producing a perceptually appropriate alveolar fricative may limit the 

extent of vowel-related coarticulation until the age of 11 years old. The use of contrasting 

degrees of the tongue dorsum/predorsum bunching for coarticulating // was shown to be not 

in place until seven years old, as opposed to /t/ and /s/, which demonstrated this pattern by 

the ages of three years old and five years old, respectively. Decreased tongue shape 

variability was observed with increasing age. The patterns of coarticulation development for 

the different consonants throughout childhood show some similarities to the findings from 

the literature on the order of acquisition of consonant phonemes by children. The consonants 

that are generally acquired later were demonstrated in this study to take longer to develop 

mature coarticulatory patterns, with those consonants that have more articulatory demands on 

the tongue showing the most protracted development of vowel-related coarticulation. The 

evidence of protracted development in controlling tongue movements by children with 

typical speech reported in this study has implications for clinical practice, with some fine 

adjustments of tongue shape not expected to be present in typically coarticulated speech 

sounds, depending on age and on the speech sound. 
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Table 1. 

 

Age group Mean age 

[years;months] 

and SD 

Min age –  

Max age 

[years;months] 

Median age 

[years;months] 

Gender 

distribution 

3-year-old Mean = 3;9 

SD = 3 months 

3;4 – 4;1 3;10 4 girls, 6 boys 

5-year-old Mean = 5;8 

SD = 2 months 

5;5 – 5;11 5;9 5 girls, 5 boys 

7-year-old Mean = 7;7 

SD = 5 months 

6;11 – 8;2 7;7 1 girl, 9 boys 

9-year-old Mean = 9;5 

SD = 4 months 

9;0 – 9;9 9;5 5 girls, 5 boys 

11-year-old Mean = 11;5 

SD = 3 months 

11;0 – 11;10 11;5 7 girls, 3 boys 

13-year-old Mean = 13;5 

SD = 5 months 

13;0 – 13;11 13;4 6 girls, 4 boys 

 

 

 

Table 2. 

 

 /p/ /t/ /s/ // 
/a/ /i/ /a/ /i/ /a/ /i/ /a/ /i/ 

3-year-old 

1.03 

0.41 

1.42 

0.29 

1.05 

0.37 

1.26 

0.37 

0.95 

0.22 

1.09 

0.29 

1.50 

0.37 

1.55 

0.54 

F = 16.16 F = 1.25 F = 1.91 F = 0.24 

5-year-old 

0.93 

0.23 

1.29 

0.24 

1.11 

0.25 

1.11 

0.18 

0.99 

0.33 

0.96 

0.21 

1.40 

0.37 

1.45 

0.40 

F = 27.15 ^ F = 0.00 ^ F = 0.27 F = 0.49 

7-year-old 

0.87 

0.14 

1.26 

0.29 

1.10 

0.25 

1.19 

0.23 

0.86 

0.19 

0.95 

0.19 

1.58 

0.40 

1.57 

0.38 

F = 51.79 F = 2.59 F = 4.15 F = 0.03 

9-year-old 

0.90 

0.16 

1.38 

0.29 

1.11 

0.31 

1.31 

0.35 

0.86 

0.25 

0.99 

0.31 

1.55 

0.44 

1.65 

0.55 

F = 42.96 F = 17.72 F = 3.08 F = 2.08 

11-year-old 

0.81 

0.18 

1.19 

0.27 

0.96 

0.23 

1.11 

0.24 

0.84 

0.19 

0.89 

0.20 

1.65 

0.76 

1.61 

0.68 

F = 54.90 F = 11.97 F = 1.13 F = 0.41 

13-year-old 

0.86 

0.16 

1.29 

0.32 

1.00 

0.21 

1.19 

0.29 

0.83 

0.23 

1.00 

0.27 

1.43 

0.33 

1.43 

0.32 

F = 28.05 ^ F = 9.37 ^ F = 19.90 ^ F = 0.01 ^ 
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Table 3. 

 

 /t/ /s/ // 
/a/ /i/ /a/ /i/ /a/ /i/ 

3-year-old 

0.22 

0.07 

0.35 

0.08 

0.24 

0.07 

0.30 

0.07 

0.30 

0.05 

0.33 

0.06 

F = 31.52 F = 4.83 F = 5.61 

5-year-old 

0.24 

0.05 

0.31 

0.06 

0.22 

0.05 

0.26 

0.05 

0.28 

0.06 

0.29 

0.06 

F = 15.39 F = 18.13 F = 5.00 

7-year-old 

0.25 

0.05 

0.32 

0.05 

0.24 

0.07 

0.31 

0.06 

0.30 

0.05 

0.34 

0.07 

F = 24.57 F = 13.75 F = 12.96 

9-year-old 

0.25 

0.07 

0.31 

0.06 

0.25 

0.06 

0.31 

0.06 

0.33 

0.04 

0.35 

0.05 

F = 35.99 F = 17.11 F = 15.64 

11-year-old 

0.25 

0.07 

0.33 

0.07 

0.23 

0.06 

0.30 

0.07 

0.31 

0.07 

0.36 

0.06 

F = 48.64 F = 24.13 F = 21.15 

13-year-old 

0.27 

0.04 

0.33 

0.03 

0.26 

0.05 

0.31 

0.04 

0.34 

0.06 

0.37 

0.07 

F = 18.33 ^ F = 45.86 ^ F = 7.52 ^ 

 

 

 

Table 4. 

 

 LOCa-i Curvature Degree 

 /p/ /t/ /s/ // /t/ /s/ // 
3-year-old 1.51 N/S N/S N/S 1.68 N/S N/S 

5-year-old 1.42 N/S N/S N/S 1.33 1.19 N/S 

7-year-old 1.45 N/S N/S N/S 1.29 1.30 1.14 

9-year-old 1.56 1.19 N/S N/S 1.26 1.25 1.07 

11-year-old 1.48 1.17 N/S N/S 1.36 1.32 1.15 

13-year-old 1.51 1.19 1.21 N/S 1.22 1.19 1.09 

 

 

 

Table 5. 

 

Age group LOCa-i at end of closure LOCa-i at mid-closure LMM results 

3-year-old Mean: 1.39; SD: 0.43 Mean: 1.26; SD: 0.37 F = 3.39 

5-year-old Mean: 1.20; SD: 0.24 Mean: 1.11; SD: 0.18 F = 7.85 

7-year-old Mean: 1.33; SD: 0.28 Mean: 1.19; SD: 0.23 F = 10.30 

9-year-old Mean: 1.58; SD: 0.47 Mean: 1.31; SD: 0.35 F = 26.84 

11-year-old Mean: 1.24; SD: 0.26 Mean: 1.11; SD: 0.24 F = 18.62 

13-year-old Mean: 1.33; SD: 0.32 Mean: 1.19; SD: 0.29 F = 12.05 
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Table 6. 

  

LOCa-i 

 Context of /a/ Context of /i/ 

 /p/ /t/ /s/ // /p/ /t/ /s/ // 
3-year-old 0.23 0.34 0.15 0.12 0.15 0.17 0.20 0.23 

5-year-old 0.13 0.14 0.19 0.18 0.12 0.10 0.12 0.18 

7-year-old 0.09 0.11 0.11 0.09 0.12 0.09 0.13 0.09 

9-year-old 0.09 0.09 0.11 0.08 0.10 0.12 0.15 0.15 

11-year-old 0.11 0.10 0.08 0.08 0.10 0.08 0.12 0.09 

13-year-old 0.05 0.06 0.09 0.05 0.06 0.06 0.08 0.06 

Curvature Degree 

 Context of /a/ Context of /i/ 

 /p/ /t/ /s/ // /p/ /t/ /s/ // 
3-year-old 0.12 0.21 0.16 0.11 0.09 0.11 0.18 0.16 

5-year-old 0.14 0.13 0.18 0.11 0.13 0.11 0.16 0.12 

7-year-old 0.09 0.11 0.11 0.07 0.09 0.09 0.11 0.07 

9-year-old 0.08 0.08 0.08 0.06 0.09 0.09 0.10 0.06 

11-year-old 0.07 0.10 0.08 0.04 0.06 0.07 0.08 0.07 

13-year-old 0.05 0.05 0.05 0.05 0.04 0.05 0.06 0.05 

 

 

 

Table headings 

 

Table 1. Detailed information on the participants. 

 

Table 2. LOCa-i values for each group (Standard Deviation in italics), and F values from 

LMMs. Significant results are in bold. The results of four LMMs for 13-year-olds from 

Zharkova et al. (2015a) and two LMMs for 5-year-olds from Zharkova et al. (2015b) are 

marked by a “^” sign. 

 

Table 3. Curvature Degree values for each group (with Standard Deviation), and F values 

from LMMs. Significant results are in bold. The results of three LMMs for 13-year-olds from 

Zharkova et al. (2015a) are marked by a “^” sign. 

 

Table 4. Mean group values for the magnitude of effect. “N/S” refers to those cases where in 

tables 2 and 3 there was no significant vocalic coarticulatory effect on the consonant. 

 

Table 5. Mean LOCa-i values and Standard Deviation values at the end of the stop closure for 

/t/ from /ti/; mean and Standard Deviation values at mid-closure, from table 2, are also 

provided here, for easier reference. F values from LMMs comparing LOCa-i at mid-closure 

and at the end of the closure can be found in the last column. Significant results are in bold. 

 

Table 6. Mean group values for the Coefficient of Variation on the two tongue shape indices. 
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Figure legends 

 

Fig. 1. Left panel: still synchronised images of a participant from two video cameras during 

the recording, from the ultrasound recording software. Right panel: a midsagittal ultrasound 

tongue image recorded from a three-year-old participant. The front of the tongue is on the 

right in this figure and in all other figures in the paper. The acoustic shadows of the chin and 

of the hyoid bone are indicated by arrows. 

 

Fig. 2. Example tongue curves from a 13-year-old participant, illustrating calculations of the 

two indices of tongue shape. Both panels show the same tokens of /s/ from /sa/ (solid curve) 

and /s/ from /si/ (dashed curve). 

 

Fig. 3. Tongue curves for the bilabial stop produced by a representative speaker from each 

age group: solid lines for the context of /a/; dotted lines for the context of /i/. For each age 

group, data from the same speaker are provided for /p/ (this figure) and for the other three 

consonants (figures 4 – 6). 

 

Fig. 4. Tongue curves for the alveolar stop produced by a representative speaker from each 

age group: solid lines for the context of /a/; dotted lines for the context of /i/.  

 

Fig. 5. Tongue curves for the alveolar fricative produced by a representative speaker from 

each age group: solid lines for the context of /a/; dotted lines for the context of /i/. 

 

Fig. 6. Tongue curves for the postalveolar fricative produced by a representative speaker from 

each age group: solid lines for the context of /a/; dotted lines for the context of /i/. 
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Figure 1 

 

 
 

 

 

 

 

Figure 2 
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Figure 3 

 

 
 

 

 

 

 

Figure 4 
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Figure 5 

 

 
 

 

 

 

 

Figure 6 

 

 


