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Abstract
This thesis describes the large-time behaviour of partial differential equations by 
studying their similarity solutions. The aim of this work is to try to extend the 
known theory for the heat equation and the semilinear heat equation to more 
complicated models. The particular models considered are as follows:
(i) We consider the porous medium equation (PME)

ut =  A (|u |m-1u) in R^ x R+, u(x, 0) =  u(x) in R ^,

with continuous, compactly supported initial data u. The PME admits various
similarity solutions of the form Uk{x,t) =  t~akipk{x/t^k), k =  0 ,1 ,2 ,__  The
nonlinear eigenfunction subset $  =  {ipk} is shown to be evolutionary complete, 
i.e. describes the asymptotics of arbitrary global Co-solutions of the PME. This 
evolution completeness holds in one dimension and in radial geometry in R ^ .
(ii) We consider the PME with absorption

ut =  Aum — up in R^ x R+, with m ,p  > 1.

It is known that its global L l -solutions change their large-time behaviour at the 
critical absorption exponent p0 = m  +  -ĵ . We extend this by showing that, pro
vided u(x,t )  changes sign, there exists an infinite sequence of critical exponents 
{pk} that generate a countable subset of different non-self-similar asymptotic 
patterns. These results are extended to the dual PME with absorption

ut =  |A u|m-1Au — \u\p~lu in R^ x R+, with m  > 1.

(iii) We consider the semilinear parabolic equation of reaction-diffusion type

ut =  —(—A )mu + \u\p~lu in R N x  R+, with exponents p > l ,m  > 2

and initial data u £ L q(RN)} q > 1. This is an extension of the semilinear heat 
equation that is known to exhibit non-uniqueness for p > 1 4- We show that 
non-uniqueness occurs for the higher order parabolic equations if p > 1 +  ^  by 
describing a discrete subset of similarity solutions u*(x,t) = t~1̂ p~1̂ V (x / t 1̂ 2m). 
We also establish the existence of radially symmetric similarity profiles for p 
close to the bifurcation exponents pi =  1 +  I =  0 ,2 ,. . . ,  and prove that the 
p-bifurcation branches remain in the range p < ps = {M-2m)+ •
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Chapter 1 

Introduction

In this thesis we study four different nonlinear models that are examples of sec
ond and higher order parabolic partial differential equations. Our main tool is 
constructing their similarity solutions and using them to extend the results to 
general solutions by using various mathematical techniques.

1.1 The porous medium equation

The porous medium equation (PME) ut =  A (um) with the exponent m > 1 is one 
of the simplest examples of a quasilinear evolution equation of parabolic type. It 
describes diffusion of liquids and gases in porous media as well as processes of 
electron and ion conductivity in plasma. Physically, the restriction u > 0 applies 
but mathematically it is interesting to allow negative values of u. In this case the 
PME must be redefined for it to remain parabolic: ut =  A (|u |m_1u).

The Cauchy problem for the PME:

ut = A f lu p -1!*) in M.n  x I + ,  u(x,0) =  u(x) in RN (1.1)

does not have classical solutions for u € L l {M.N) since the equation is only 
parabolic when u > 0 (it degenerates at the level u = 0). Finite propagation 
is a direct consequence of this and a solution with compactly supported initial 
data is compactly supported at all times. A free boundary separates the sets 
{u =  0} and {u > 0}. Near such moving interfaces solutions are not smooth. 
The concept of a generalised solution needs to be introduced to ensure that the 
problem is well-posed in this class.

The PME became one of the more important equations of modern mathemat-

1



CHAPTER 1. INTRODUCTION 2

ical physics from the 1950s and was studied by many well known mathematicians 
and experts in mechanics. The investigation of source-type solutions began in the 
1950s with papers by Zel’dovich and Kompaneetz [90], Barenblatt [6] and Pattle 
[73], which introduced the need for generalised solutions. The first study of exis
tence and uniqueness in one dimension was in the paper by Oleinik, Kalashnikov 
and Yui-Lin’ [72]. Since the 1970s there have been many new results including 
Aronson’s paper [3] on regularity at the interface, Benilan [9] on general well- 
posedness and semigroups, and Kamenomostskaya [59] on asymptotic behaviour. 
The study of the regularity of solutions and free boundaries was largely devel
oped by Aronson, Caffarelli, Friedman and coworkers. Existence under optimal 
conditions is due to the combined efforts of Aronson, Caffarelli, Benilan, Cran
dall, Pierre, Dahlberg and Kenig, amongst others. A full list of references and 
a presentation of some of the results can be found in the following books and 
papers: [7, 32, 27, 39, 50, 78].

1.2 The dual porous medium equation
The dual porous medium equation (DPME)

ut =  |Aw|m_1Au in Rn  x M+, with m  > 1, (1.2)

has not been studied in as much detail as the PME, though it can be reduced to 
the PME; see 4. The DPME is of great interest mathematically because it is a 
simple example of a fully nonlinear, degenerate parabolic equation. However, it 
also has practical uses; appearing in some problems in elasticity with damping 
as well as in problems of Bellman-Dirichlet type.

Bernis, Hulshof and Vazquez [11] were the first to treat the asymptotic be
haviour of the DPME in detail. In this paper the nonnegative self-similar solu
tions were classified and shown to describe the large-time behaviour of all non
negative solutions of the DPME defined in Q =  {(#,£) : x  € R, t > 0} whose 
initial data are continuous and compactly supported. This property is analogous 
to that of fundamental solutions of diffusion equations.
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1.3 The porous and dual porous medium equa
tions with absorption

A natural extension to the two previous models is to consider the effects of an 
absorption term. In Chapter 4 we will study the PME with absorption:

Ut — A ( | u | m - 1 ?/) — \U\P~ 1U,  W ith  771 >  1, p  >  777,

which describes thermal propagation in absorbing media, and the DPME with 
absorption:

ut =  |A u|m_1Au — \u\p~lu, with m ,p  > 1. (1.3)

It has been known since 1980’s that global Z^-solutions of the classical PME with 
absorption, change their large-time behaviour at the critical absorption exponent 
Po =  m  +  2 / N  (also known as the Fujita critical exponent in blow-up theory). 
Work has been done in analysing such behaviour; see the references in the book 
[50]. The Fujita critical exponent for the DPME with absorption i n R x R ^ .  was 
calculated in [57].

1.4 A 2mth order semilinear equation with re
action term

The semilinear parabolic equation:

ut =  —(—A ) mu +  \u\p~lu, in x R+, (1.4)

where m  > 2 is an integer and p > 1 is a fixed exponent, is an extension of the 
semilinear heat equation:

ut = A u  + up, (u >  0), (1.5)

which occurs in combustion theory [89] and several other physical applications. 
This equation exhibits various evolution phenomena including blow-up; see the 
books [50, 78] and references therein. The question of local solubility and unique
ness of L9-solutions was studied by Haraux and Weissler, amongst others, in the 
1970s and 1980s. Weissler’s first paper on the subject was published in 1979 [85].
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In it and its sequel [86] he studies the initial value problem associated with (1.4):

u'(t) = Au(t)  +  J(u(t)), t > 0, u(0) =  </>,

(where u(t) is a curve in a Banach space E, A  is the infinitesimal generator of 
a Co semi-group on E,  and J  is a nonlinear function on E  or a subset of E)  by 
means of the corresponding integral equation

u (t) = eiA(f)+ j  e^ s ÂJ(u(s)) ds.
J o

They prove the existence of a semi-flow and thus prove the existence of a solution 
in IP,

In later papers Haraux and Weissler study (1.5) directly. In their paper [54] 
they prove the following non-uniqueness result, l i p  > 1 + 2q/N  then there exists 
a non-trivial global solution of (1.5) in

C([0,oo); L«(R*)) D (7 ^ (0 ,oo); Lg(RN))

such that u(0) =  0. Thus they get at least three different solution curves, u, 
—iz, and 0, emanating from the initial data 0. The particular u they construct 
is positive for t > 0. They also prove a local existence and uniqueness theorem 
showing that this non-uniqueness result is optimal in the sense that if p < pQ 
then there is a unique solution that is local in time.

1.5 Sturm’s theorems

A key ingredient in some of the analysis contained in this thesis is Sturm ’s The
orem concerning the evolution of zero sets of parabolic partial differential equa
tions. In 1836 C. Sturm published two celebrated papers in the first volume of 
J. Liouville’s Journal de Mathematique Pures et Appliquees. The first paper [79] 
on zeros of solutions u(x) of second order ordinary differential equations such as

u" -t- q(x)u = 0, i G l ,  (1.6)

very quickly exerted a great influence on the general theory of ODEs. Then and 
nowadays Sturm ’s oscillation, comparison and separation theorems can be found 
in most textbooks on ODEs with various generalisations to other equations and
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systems of equations. In general, such theorems classify and compare zeros and 
zero sets {x  G R : u(x) = 0} of different solutions U \ ( x )  and u 2 { x )  of (1.6) or 
solutions of equations with different continuous ordered potentials q i ( x )  > q2 ( x ) .

The second paper [80] was devoted to the evolution analysis of zeros and 
zero sets {x  : u(x, t) = 0} for solutions u(x, t) of partial differential equations of 
parabolic type, for instance,

ut =  uxx +  q(x)u, x  E [0, 27t ], t > 0, (1.7)

with the same ordinary differential operator as in (1.6) and the Dirichlet boundary 
condition u =  0 at x  =  0 and x = 2k and given smooth initial data at t =  0. 
Two of Sturm’s results on PDEs like (1.7) can be stated as follows:
First Sturm  Theorem: nonincrease with time of the number of zeros (or sign 
changes) of solutions;
Second Sturm  Theorem: a classification of blow-up self-focusing formations 
and collapses of multiple zeros.

We will refer to both of Sturm’s Theorems together as the Sturmian argument 
on zero set analysis.

We are not going to use the second theorem so no further explanation is 
necessary. The complete statement of the first Theorem is as follows:
First Sturm  Theorem  Let u{x,t)  be a classical solution of a linear, uniformly 
parabolic (a > 0) equation with sufficiently smooth coefficients

ut =  a(x, t)uxx +  b(x, t)ux +  c(x, t)

in Qt  =  (A , B)  x (0, T). If u(x , t) does not change sign on the parabolic boundary 
of Qt , then the number of zeros of u(x, t) does not increase with time.

Unlike the classical Sturm theorems on zeros of solutions of second order 
ODEs, Sturm’s evolution zero set analysis for parabolic PDEs did not attract 
much attention in the nineteenth century and, in fact, was forgotten for almost a 
century. It seems tha t G. Polya (1933) [75] was the first person in the twentieth 
century to revive interest in the first Sturm Theorem for the heat equation. Since 
the 1930s the Sturmian argument has been rediscovered in part several times. For 
instance, a key idea of the Lyapunov monotonicity analysis in the famous KPP- 
problem, by A.N. Kolmogorov, I.G. Petrovskii and N.S. Piskunov (1937) [62] 
on the stability of travelling waves (TWs) in reaction-diffusion equations, was 
based on the first Sturm Theorem in a simple geometric configuration with a
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single intersection between solutions. This was separately proved there by the 
Maximum Principle.

From the 1980s the Sturmian argument for PDEs began to penetrate more and 
more into the theory of linear and nonlinear parabolic equations and was found to 
have several fundamental applications. These include asymptotic stability theory 
for various nonlinear parabolic equations, orbital connections and transversality 
of stable-unstable manifolds for semilinear parabolic equations as Morse-Smale 
systems, unique continuation theory, Floquet bundles and a Poincare-Bendixson 
theorem for parabolic equations and problems of symplectic geometry and curve 
shortening flows. We refer to the books [43], [39] for a detailed exposition and 
history of this PDE theory.

1.6 Overview of the thesis
It is convenient to begin by mentioning a connection with classical partial dif
ferential equation theory. Setting m  = 1 in the PME yields the classical heat 
equation (HE):

ut =  Au in Rn x R+, (1.8)

which is the canonical second order partial differential equation. In Chapter 3 
we set out some preliminary results concerning the HE (1.8) and its associated 
linear self-adjoint operator B =  A — \ y  • V +  y / ,  which will be used in the 
remaining chapters. This operator plays a crucial role in the asymptotic theory 
for the HE, and its eigenfunctions describe all possible asymptotic patterns. We 
refer to this property as evolution completeness. It is known that the subset of 
eigenfunctions of B in a weighted L2-space corresponding to the discrete spectrum 
<r(B) is complete and closed and hence evolutionary complete.

We then consider the porous medium equation (PME) (1.1) and show that 
the set of its nonlinear eigenfunctions is evolutionary complete. The notion of 
evolution completeness for nonlinear equations and operators is introduced in 
order to cover all possible types of asymptotics for arbitrary initial data u. Some 
of this work appears in “On evolution completeness of nonlinear eigenfunctions 
for the porous medium equation in the whole space” (Galaktionov, Harwin), to 
appear in Advances in Differential Equations [41]. It should be noted that the key 
new development of Sturmian Theory for solutions that change sign presented in 
Section 3.6 is my own work except for Lemma 3.11. Lemma 3.11 and the rest of
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the Chapter should be considered as joint work with Prof. Galaktionov.
In Chapter 4 we extend our previous investigations and look at the PME with 

absorption:
ut = A\u\m~lu — \u\p~lu , with m  > 1, p > ra, (1.9)

showing that there exist a countable sequence of critical exponents {pit}. We show 
that, at each p = Pk, the generic asymptotics of solutions can change dramatically, 
and the time scaling factors for t 1 can include extra In ^-scaling in addition to 
the standard asymptotics attached to nonlinear eigenfunctions of the PME with
out absorption (4.26). We then extend these results to the fully nonlinear dual 
porous medium equation (DPME) with absorption ut =  |Aw|m_1Au — |u|p-1^. 
Unlike the PME, the DPME does not have a conservation law for f  u(x , t )dx ,  
so finding its eigenvalues explicitly is more difficult. Some of this work has been 
published in “Spectra of critical exponents in nonlinear heat equations with ab
sorption” (Galaktionov, Harwin), which has been published in Advances in Differ
ential Equations [42]. It should be noted that subsection 4.2.2 concerning centre 
manifold behaviour is the work of Prof. Galaktionov; Propositions 4.2 and 4.5 
are my own work as is Section 4.5. The rest of the Chapter should be considered 
as joint work with Prof. Galaktionov.

In Chapter 5 we consider the higher order semilinear parabolic equation

ut =  —(—A )mu +  \u\p~lu in R^ x R+, m  > 2, p > 1, (1-10)

with initial data u G L ^ R ^ ). We study other asymptotic aspects of such equa
tions when t —» 0+, and show that non-uniqueness occurs if p > po =  1 +

Our analysis is based on the construction of self-similar solutions. For m = 1, 
when (1.10) is the classical semilinear heat equation from combustion theory

ut — Au -|- \u\p~lu,

the non-uniqueness and similarity results are well known and were proved by 
Weissler and Haraux in the 1980s. We show that similar conclusions apply to 
higher order equations, though our techniques are different. Some of this work 
appears in “Non-uniqueness and global similarity solutions for a higher-order 
semilinear parabolic equation” (Galaktionov, Harwin), to appear in Nonlinearity 
[40]. It should be noted that all of the numerical calculation of the similarity pro
files and the bifurcation diagrams is my own work. This includes the discovery of
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a non-standard boundary layer as p —> oo, which seems to be the first one known 
in the theory of second and higher order ordinary differential equations. The rest 
of the Chapter should be considered as joint work with Prof. Galaktionov.



Chapter 2 

N otation  and Prelim inaries

2.1 Notation

W hat follows are some key definitions, theorems and tools that will be used with
out comment throughout this thesis.

C (X , Y)  the set of linear operators from X  to Y
Cq{X)  the set of continuous compactly supported functions on X
H  a Hilbert space with the inner product (•, •)

2.2 Preliminaries

D efin ition  2.1 An operator L  with dense domain D  in H  is said to be symmetric 
if for all f , g  £ D  we have

(L f ,g)  = ( f ,Lg) .

D efin ition  2.2 For an operator L G C(H , H) the adjoint operator L* is deter
mined by the condition that

(L f ,g )  = { f ,L 'g)

for all f , g  6 H.

D efin ition  2 .3  An operator L G C(H , H)  is called self-adjoint if

(L f ,g )  =  ( f ,Lg)

9
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for each / ,  </ 6 H.  We say that L  is essentially self-adjoint if it is symmetric and 
its closure is self-adjoint.

The Friedrichs extension
Every non-negative (or semi-bounded) symmetric operator B has at least one 
non-negative self-adjoint extension. If B is not essentially self-adjoint then this 
extension, called the Friedrichs extension, is one of infinitely many possible self- 
adjoint extensions. We use the Friedrich’s extension as the minimal (extremal) 
extension of symmetric operators through quadratic forms.

D efinition 2.4 An operator L  € C ( X , Y)  is called Fredholm if (a) the range of 
L  is closed in y ,  and (b) the numbers

n(L) = dim(KerL) and d(L) = dim (F \  ImA)

are finite.

D efinition 2.5 Let X  and Y  be Banach spaces. A mapping /  : X  —> V  is 
Frechet differentiable at x q  if there exists g € C ( X , Y)  such that in a neighbour
hood U  of X q

11/0*0 -  f ( x o) -  g(x -  x 0 )||  =  o { \\x -  Zoll).

In this case we write g = f ' { x o), and / ' ( xq) is called the Frechet derivative of /  
at Xo.

D efinition 2.6 An operator A : H  —> H  is said to be potential if there exists a 
C 1 functional $  : H  —> R, called the potential of A, such that A =  where ' 
denotes the Frechet derivative of 4>.

Theorem  2.7 An operator A  : H  -» H  is potential i f  it has a self-adjoint Frechet 
derivative A'(u). I f  this is so then in Definition 2.6 is given as

$ ( u ) =  [  (A(pu),u)dp.
Jo

D efinition 2.8 A functional $  on a normed space E  is called coercive if

^0*0 .I nm—iio' oo as m  —» oo.\\x r
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D efin ition  2.9 The deficiency indices of a symmetric ordinary differential op
erator L  are defined to be the dimensions (possibly infinite) of the deficiency 
spaces

M ± : =  { /  € Dom(L*) : V f  =  ± i/}  (2.1)

=  { /  e  H  : {Lh, f )  = ±\{h, f )  for all h 6 Dom(L)}. (2.2)

D efin ition  2.10 A partial differential equation of rath order is called
(i) quasilinear if it it linear with respect to the highest order deriviative; and
(ii) fully nonlinear if this is not true.

D efin ition  2.11 A semigroup is defined by a set and a binary operator from the 
set itself in which the multiplication operation is associative.

D efin ition  2.12 One space X  is embedded in another space Y  when the prop
erties of Y  restricted to X  are the same as the properties of X .

D efin ition  2.13 Let X  and Y  be normed spaces. L  G C(X, Y)  is compact if, for 
any bounded sequence {xn} in X , the sequence {T xn} in Y  contains a convergent 
subsequence.

D efin ition  2.14 A function /  is in Lpp(RN ), with a given positive weight p, if 

Jrn  p\f\r < oo-

L em m a 2.15 I f  1 <  p < oo and p = e ^ “ , a  > 0, then L^(RW) C LP(RN).

D efin ition  2.16 A function u =  u(x,t)  is called a weak solution of the Cauchy 
problem

ut = Aum in M.n x K+ (2.3)

u(x, 0) =  u(x) in Rn , u  G L1(RiV) (2.4)

if
(i) u, Vitm G Lfoc(R7V;R + ); and
(ii) u satisfies the identity

V um • V(f) — u(f)t dxdt = /  u(x)<t)(x, 0) dx
Jrn

for any test function (j)(x,t) G Co(RN;R+).
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The Lusternik—Schnirel’man theory for potential operators
The essence of the theory is as follows: Any positive even uniformly differentiable 
functional $  in H  has at least a countable subset of critical points on the unit 
sphere. These are eigenfunctions of and satisfy &(uk) = XkUk- Clark [20] 
and Rabinowitz [76] extended this theory to include non-positive functionals. 
Krasnosel’skii’s genus theory [65] gives an insight into the actual structure of the 
nodal sets of eigenfunctions Uk(x). (The complexity of these increases with k.)



Chapter 3

Evolution com pleteness of 
nonlinear eigenfunctions for the  
porous m edium  equation in the  
whole space

God exists since mathematics is consistent, and the Devil exists since 
we cannot prove it. - Andre Weil

In this chapter we ask if there exists any kind of completeness property for 
the nonlinear eigenfunctions of the porous medium equation (PME). This is a 
natural question to ask since the completeness and closure of countable subsets 
of eigenfunctions is common to classes of linear self-adjoint operators in Hilbert 
spaces; see Birman and Solomjak’s book [13]. Thus, we will try to extend this 
notion to some nonlinear partial differential equations.

We consider the PME

ut =  A(|iz|m-1w) in R^ x R+, m > 1,

with continuous, compactly supported initial data u. (We consider only the one
dimensional PME or the PME in radially symmetric geometry.) The PME admits 
various similarity solutions of the form

uk{x, t) = t~akipk(x / tPk), k = 0 , 1 , 2 , . . . ,

13
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where each 'ipk £ C0(RN) satisfies a quasilinear elliptic equation in RN and the 
exponents {ak,fik} are determined from the solubility of the resulting nonlinear 
eigenvalue problem. The nonlinear eigenfunction subset $  = {ipk}, which con
sists of a countable number of continuous families, is rather complicated but is 
known in one dimension. In radial geometry in RN , N  > 2, only the first two 
eigenfunctions are known.

We show tha t the eigenfunction subset $  is evolutionary complete, i.e. de
scribes the asymptotics of arbitrary global Co-solutions of the PME. We prove 
that this evolution completeness holds in one dimension and in radial geometry 
in RN . The analysis uses Sturm’s Theorem on zero sets for parabolic equations, 
scaling techniques and theory of gradient dynamical systems. For m =  1, i.e. for 
the linear heat equation, the evolution completeness is a direct consequence of the 
fact that eigenfunction subset for the linear self-adjoint operator A +  • V +  y /
in a weighted L2-space, is complete and closed. These linear eigenfunctions are 
used as branching points of nonlinear ones for m  «  1+.

The work on evolution completeness is an extension of the work [38] (see 
references therein for previous work in this direction) in which the separable 
solutions of the PME in a bounded domain are shown to be evolutionary complete.

3.1 Introduction: nonlinear eigenfunctions and 
evolution completeness

Completeness and closure of countable orthonormal subsets $  =  {ipp} of eigen
functions of classes of linear differential self-adjoint operators A in a Hilbert 
space H  play an important role in the theory of evolution linear partial differen
tial equations (PDEs)

ut = A u for t > 0, u(0) =  u £ H. (3.1)

Given initial data u = ^cpipp,  the solution is prescribed by the eigenfunction
expansion

=  ] C cJeAjt^ ’ (3-2)

where <r(A) =  {A*,, \P\ = k = 0 ,1,2, . . .} is a monotone decreasing sequence
of eigenvalues of A. (3.2) represents the general solution of the equation and
determines its asymptotic behaviour as t —»■ oo. In this case the solution u(t) ^  0
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approaches, for large times, the separable solution

uk{t) =  ^2 cPeXkt̂ p (3-3)
m=k

where the finite k = k(u) in the expansion (3.2) is such that cp =  0 for all \j3\ < k 
and there exists a c ^ O  for some \(5\ =  k . Then

u(t) = Uk{t) +  0 (e Afc+lt) as £ —> oo. (3.4)

For nonlinear evolution PDEs eigenfunction expansions do not apply. How
ever, various nonlinear PDEs are known to admit countable or continuous subsets 

of particular self-similar or other group invariant solutions, which are not sep
arable as in (3.3) but are obtained from some lower order PDEs or ODEs. Our 
main goal is to consider the well known quasilinear porous medium equation 
(PME) and to explain how such a subset <E> of particular solutions (associated 
with nonlinear eigenfunctions of some operators) can be related to the asymp
totics of the general solution in the sense of the evolution completeness of $  
introduced in [38].

So we consider the Cauchy problem for the classical PME

ut =  A (|^ |m_1w) in x R_|_, m > 1, (3.5)

with continuous compactly supported initial data

u(x, 0) =  u{x) e  C0(Rn ). (3.6)

Problem (3.5), (3.6) has been studied since the 1950s and it is well known that 
there exists a unique global weak continuous bounded solution u =  u(x,t)  de
caying to zero as t -* oo; see books by Lions [67] and DiBenedetto [27] and 
Kalashnikov’s survey [58].

3.1.1 A countable subset of similarity patterns for the 
PM E

We study the asymptotic behaviour of the solution as t —» oo and begin with 
different asymptotic patterns that can occur in the Cauchy problem for arbitrary 
initial functions u € Cq. Some particular asymptotic behaviour results for the



CHAPTER 3. EVOLUTION COMPLETENESS FOR THE POROUS MEDIUM EQUATION 16

PME in M.N have been well known for many years. For instance, for nonnegative 
u, the first general rigorous result is due to Friedman and Kamin [34] establish
ing that as t —>• oo, u(x,t)  approaches the Zel’dovich-Kompaneetz-Barenblatt 
similarity solution (known from the beginning of 1950s, [90, 6]) denoted here by 
u0(x, t) and given by

u0{x,t) = t - N/W m- 1)+2% {y) ,  y = x / t 1/[N{rn~l)+2\  where (3.7) 

V’ofe) =  [£0(fc2 -  l2/|2)+]1/(m_1>. Bb =  5 ^ I T -  (3-8)

Here b > 0 is an arbitrary parameter. The result of [34] says that if U o ( x , t )  has 
the same mass Mq = f  u > 0 (preserved in time) as u (x , t ), then

u(x,t)  =  u0(x,t)  H- o(£-Ar/[yv(m-1)+2]) as t oo. (3.9)

The PME in one dimension admits another explicit solution: the Barenblatt- 
ZeVdovich dipole solution [8]

ui(x,  t) =  y = x / t 1/2m, where (3.10)

V’i(y) =  l2/ r /m[Bo(fc(m+1)/’n - | j / | (ro+1)/m)+]1/(m_l)signs/, b > 0. (3.11)

The stability hypotheses of Ui(x, t) (see references in [46]) are as follows: if M0 =  
J u  =  0 and Mi =  J  xu  /  0, then u(x,t)  converges to the dipole solution with 
the same first momentum Mi,

u(x, t) =  ui(x,  t) +  o(t-1/m) as t —y oo. (3.12)

The solutions (3.7) and (3.10) of the PME are special since they can be 
represented explicitly whilst many other solutions cannot. It turns out that the 
PME in one dimension or in the radial geometry in admits a countable subset 
of different similarity solutions (see [56] and further details in Section 3.3)

uk(x,t)  =  t~ak'ipk(x / t (3h), (3.13)

where k =  0 ,1 ,2 , . . .  in the one-dimensional case and k = 0 , 2 ,4 , . . .  in the radial 
M.N case. Substituting (3.13) into the PME yields that £ C'o(R^) satisfies 
a quasilinear elliptic equation in R^. The exponents are determined
by whether such a nonlinear eigenvalue problem can be solved, as explained
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in Section 3.3. In view of the scaling invariance of the PME, the nonlinear 
eigenfunction subset

$  =  {<M,

consisting of a countable number of continuous families, is rather complicated. 
For N  > 2  the non-radial eigenfunctions are not known except the second dipole
like one [57].

3.1.2 M ain results: evolution com pleteness, connection  
w ith the linear theory and extensions

We show that $  is evolutionary complete, i.e., describes the asymptotics of arbi
trary global solutions of the PME with any u G Co. In Section 3.4 we introduce 
our definition of evolution completeness and next, in Sections 3.5 and 3.6, present 
a proof for the one-dimensional and radial settings, where a key ingredient of the 
analysis is based on Sturm ’s Theorem on the zero set for parabolic equations.

It is worth mentioning a link between evolution completeness and classical 
results in linear operator theory. In the linear case m =  1, where the PME (3.5) 
becomes the canonical heat equation

ut =  A u, (3-14)

the evolution completeness follows from the completeness and closure of the eigen
function subset for the linear self-adjoint operator

Bx =  A +  i j / .  V +  f  /  (3.15)

in a weighted L2-space. For convenience, we present a collection of related “lin
ear” results in Section 3.2. Furthermore in Section 3.7, we show that eigenfunc
tions of B i can be used in a branching analysis of nonlinear eigenfunctions for
the PME occurring at m  =  1+.

The results on the evolution completeness can be extended to the quasilinear 
p-Laplacian equation

ut = V • O V u l ^ V u ) ,  (3.16)

and to the fully nonlinear dual PME

ut =  |Au|m 1A  u, (3.17)
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which admit known subsets of similarity solutions (recall that (3.17) reduces to 
the PME by the change Au u ) .
T he PM E  in a bounded dom ain. It has been known since the 1970s that 
the PME in a bounded domain £2 C M.N with the Dirichlet boundary condition 
u = 0 on the smooth boundary <9£2 admits separable solutions that are simpler 
than (3.13),

uk(x, t) =  t~1/(m_1Vfc(^), k = 0 ,1 ,2 , . . . ,  

where each ipk 7̂  0 satisfies a nonlinear elliptic equation

A ( |^ p - V , )  +  ^ = 0  in £2, ipk = 0 on 50 . (3.18)

The existence of a countable subset $  =  {ipk} of these nonlinear eigenfunctions 
follows from the Lusternik-Schnirel’man theory of calculus of variations. The 
first similarity pattern t~l^ m~^ipo(x), where ip0 > 0 in H, is known to be asymp
totically stable as t —> oo and attracts all nontrivial solutions with integrable 
initial data u > 0 [4]. The eigenfunction subset $  given by (3.18) for the PME 
in £2 is much simpler than that of (3.13) for R^ (in fact, problem (3.18) fixes the 
single eigenvalue Ao =  — of infinite multiplicity). As a consequence, if $  is 
discrete then it is evolutionary complete [38], although proving that $  is discrete 
for almost all smooth domains £1 is a challenging problem.

3.2 Discrete spectrum of a linear self-adjoint 
operator

The evolution completeness analysis leads to a complicated nonlinear eigenvalue 
problem. On the other hand, the linear counterpart for m  =  1 (the heat equa
tion (3.14)) deals with the standard theory of self-adjoint operators, with which 
it is convenient to begin. The spectral analysis of the classical singular linear 
Sturm-Liouville eigenvalue problem given below shows what spatial “shapes” of 
nonlinear eigenfunctions are expected to exist for m > 1, and allows us to observe 
what kind of branching is possible as m —> 1+. These questions will be studied 
in Section 3.7.

For future comparison with properties of nonlinear parabolic equations, we 
briefly describe some well known facts concerning the linear diffusion operator 
with m =  l. Consider the heat equation (3.14) in R N x R+ with initial data
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u(x,  0) =  u(x) € L°°(RN) fl L1(EAr). Let b(x,t) denote the fundamental solution 
of the operator d /d t  — A:

b(x,t) =  t~N/2f(y ) ,  y = x / V t , where f (y )  = (47r)_iV/2e_|y|2/4. (3.19)

Then we have that

u(x,t )  = b(t) * u(x) =  t~N/2 [  f ( ( x  — z)t~1̂ 2)u(z)dz.  (3.20)
Jrh

Here f (y )  satisfies f  f  =  1 and is the unique radial solution of the elliptic equa
tion B i/  =  0 with the operator B i given in (3.15). It admits the symmetric 
representation

B i =  • (pV) +  y /  with weight p =  e ^ 2/4

and B i : H 2(M.N ) L 2(RN) is a bounded self-adjoint operator with compact
resolvent and discrete spectrum cr(Bi), [13] .

In order to classify the asymptotic behaviour of solutions as t —> oo, we 
introduce the rescaled variables corresponding to the fundamental solution (3.19),

u(x,t )  = t~N/2w(y,r) ,  y = x/y/t ,  t  = In t : R+ —> R.

Then the rescaled solution w satisfies the evolution equation

wT =  B i w, (3.21)

where w(y ,r)  is a solution of the Cauchy problem for (3.21) in R^ x R+ with 
initial data given at r  =  0 (hence, at t =  1)

w0(y) =  u(y, 1) =  6(1) * u = f  * u. (3.22)

The linear operator d / d r  — B i is the rescaled version of the parabolic opera
tor d /d t  — A and the corresponding semigroup eBlT is obtained from (3.20) by
rescaling. This gives the eigenfunction expansion of the solution
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where Xp = —^  and 'ippiv) are the eigenvalues and eigenfunctions of B i,

= Xp^p in Rn , </>p G H 2(RN ), (3.23)

and Mp(u) = f  zl3u (z )dz  are the corresponding momenta of the initial datum
Wo (recall the relation (3.22) between w0 and u). We next derive an equivalent
representation of the semigroup by using another rescaling

u = (1 +  t)~N/2w, y =  x / { l  +  t)1/2, r  =  ln(l +  t) : R+ —» R+.

Then w(yt r) solves the Cauchy problem for equation (3.21) with initial data 
Wo(y) = u(y). Rescaling the convolution (3.20) yields

w{y,r) = ( l - e ~ T)~N/2 [  f ( ( y - z e ~ T/2) ( l - e ~ T)~1/2)w0(z)dz  = eBlTwo. (3.24)
JRN

The explicit representation of the resolvent of Bx is then constructed by the 
classical descent method [29]. Let A G C, and consider the auxiliary equation

wT =  Biit; — eXrg for r  > 0, w(0) =  0,

where g G L ^ E ^ ). Setting w =  eXrv, we obtain the equation

vT =  (Bi -  AI)v -  g,

and hence
v (t ) = -  f  eiBl~XI)iT- s)gds.

Jo
Setting t  — s =  77 and passing to the limit r  -> 00  yields that the limit v(oo) = 
~  fo° ^ Bl~XI^ 9 dg =  (Bi — AI )~ lg exists provided that the integral converges. 
Using the semigroup representation (3.24) and performing the change of variable 
e-7* =  z  G (0,1) yields the integral operator

(Bi — AI )~lg — [  K(y,  ()g(()  df, with the kernel (3.25)

0  =  “  /  zx~l {\ -  z)~N/2f ( ( y  -  ( z 1/2)(l  -  z)~1/2) dz. (3.26) 
Jo

This is the integral representation of the resolvent of B i which is known to be 
a compact operator in L 2p(RN) for all A G C \  cr(Bi). We summarise the main
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spectral properties of B i as follows; see [13].

L em m a 3.1 The spectrum of B i in L ^ R ^ ) consists of real eigenvalues

<t(B) =  {A„ =  -If l ,  |/?| =  0 ,1 , 2 , . . .}. (3.27)

The eigenvalues Xp have finite multiplicity with eigenfunctions

M v )  =  cpDpf (y )  =  cpHp(y)f(y),  cp = (2I'J|/3!)“ 1/2, (3.28)

where Hp(y) are Hermite polynomials and f (y )  is the fundamental solution. The 
orthonormal subset of eigenfunctions $  =  {ipp} is complete and closed in L2p(M.N).

For clarity we present a proof of this classical result.
Proof. Let I = \(3\. The existence of such eigenvalues and eigenfunctions follows 
by applying differentiation D& to the elliptic equation (4.6)

D/5B 1/  =  B i£>/5/  +  ^ £ » /,/  =  0. (3.29)

It follows from the asymptotic analysis of the expansion (3.23) as t  —> oo that 
no other eigenfunctions exist, all eigenvalues are real and are given in (3.28).
(ii) Completeness. Let us show that the system of the eigenfunctions {D ^ f}  is 
complete in L2(R^). By the Riesz-Fischer theorem, we have to show that, given 
a function g G L2(R^), the equalities

J  f (x )g(x)dx  =  0 for any ft (3.30)

imply that g =  0. Let F (f)  and (2(f) be the Fourier transforms of /  and g. Then

f  ̂ F ^ ) G ( - e ) ^  =  0 for any /?.

Applying the Fourier transform to equation (4.6) yields

I«I2f  +  ^ - v f  =  o,

and hence F( f )  =  e- ^ 2. Therefore,

f^e ^ 2<2(—f)d f  =  0 for any (3. (3.31)
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The function
M ( z )  =  J  e - |{|2G(-<e)eir{(2S

is entire analytic in (since |elz |̂ < elImzl^). Equality (3.31) means that 
D /3M(0) =  0 for any /?. Therefore, M(z)  = 0. Thus, G(£) =  0 almost everywhere 
and g =  0. □
Evolution com pleteness of eigenfunctions. The eigenfunction expansion of 
w(y,r) ,  which is the solution of equation (3.21) with initial data w0 £ D(Bi) =  
H 2(RN), takes the form

w{y,r)  =  E a/3eA/3TV>/?(y), ap = (u,il>p)pi (3.32)

where (-,*),> is the inner product in L2(RN). Since is complete and closed in 
L 2p(Rn ) we have that, for any initial data Wq £ H 2(RN), w0 ^  0, there exists a 
finite integer k = k(wo) > 0 such that, as r  —> oo,

w(y , r )  =  e~kT/2[ipk(y) +  o(l)], (3.33)

where V'fc is an eigenfunction of Bx with eigenvalue — i.e., ipk =  Yl\/3\=k 
where /  0. Known spectral properties of B x make it possible to give a 
complete description of the asymptotic patterns that can occur in the linear 
evolution equation (3.21). For the original heat equation (3.14) with initial data 
u £ H 2(M.N), this gives a discrete subset of asymptotic patterns

u(x, t)  =  t Xt- N/2ipk(y)(l  +  o(l)), 34^

y = x jV t ,  \ k = - k / 2 ,  k = 0 , 1 , 2 , . . . .

By completeness and closure, the eigenfunction subset 4> is also evolutionary 
complete in the sense that any nontrivial solution u(-, t) £ H 2(RN) has, for t 1, 
the asymptotic behaviour (3.34) with a finite k > 0 that depends on initial data. 
Thus for such linear self-adjoint operators, the evolution completeness is a direct 
consequence of the standard completeness-closure of the eigenfunction subsets.
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3.3 Nonlinear eigenfunctions and eigenvalues for 
the PME in one dimension and radial R

We now return to the PME (3.5) and describe its nonlinear eigenfunctions. The 
PME is invariant under a group of scaling transformations and admits self-similar 
solutions that for convenience will be written in the following form:

u(x, t) = t ^ ^ i p i y ) ,  y = x/tP, (3.35)

where po = and P = 1+(m~12)(A~/x°). In the linear case m =  1 we have
P =  fiQ = y  and these similarity solutions reduce to those given in (3.34). 
Substituting (3.35) into (3.5) yields that ip =  ip(y) is a weak solution of the 
following nonlinear eigenvalue problem in radially symmetric geometry:

B m(V0 =  A(| ip\m~lip) +  Co ip = AC tp in Rn , ip G C ^ R "), ip #  0, (3.36)

where Po =  y f r - i )+2 anc  ̂ ^°» ^  are ^near first-order operators

C0 =  Poy • V +  p0I, C =  - \ { m  -  1 )j/ • V +  / .  (3.37)

In most cases ip(y) is a typical example of similarity solutions of the second 
kind (a term introduced by Ya.B. Zel’dovich [88]), where suitable values A € E  
are obtained from whether the elliptic equation can be solved in the prescribed 
functional class; see details in [7]. For m =  1, where P — 1/2 and C =  / ,  (3.36) 
becomes the Sturm-Liouville eigenvalue problem (3.23) for the linear bounded 
self-adjoint operator B i : H^{RN) —> L2p(RN) with real discrete spectrum (3.27). 
For m > 1, we have that P =  [1 +  (m — 1)(A — Po)]/2 depends on the eigenvalues 
A so that (3.36) is a nonlinear eigenvalue problem for a pencil of two operators, 
where B m is nonlinear and C is a linear. Dealing with the nonlinear operators, we 
continue to denote the real “point” spectrum (real eigenvalues A =  X^) of operator
(3.36) by a(B m), and then ip are eigenfunctions (a standard terminology in the 
theory of nonlinear operators [65]).

3.3.1 Eigenfunctions in one dimension

The following Lemma (essentially Theorem 1.1 in [56]) gives all possible com
pactly supported similarity solutions (3.35) in the one-dimensional case.
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Lem m a 3.2 Let m  > 1 and N  =  1. Then the eigenvalue problem (3.36) has a 
strictly decreasing sequence of eigenvalues

<j(Bm) =  {A*} I  where A0 =  0 and Ai =  ~ m(T̂ +1), (3.38)

in the sense that (3.36) has a compactly supported solution if, and only if, A =  Â  
for some integer k > 0, and we normalise those such that

supp ipk =  [—1,1] for any k = 0 ,1 ,2 , . . .  . (3.39)

Moreover, k equals exactly the number of sign changes of such 'ipkiu), and ipk(y) 
is symmetric (anti-symmetric) i f  k is even (odd).

One can see from the scaling (3.40) below that, for any function ipk(y), there 
exists a b such that (3.39) holds. It follows from (3.38) that the exponents P  =  Pk 
in (3.35) are strictly positive for all k > 0. When N  = I equation (3.36) reduces 
to a first order ODE with the phase-plane studied by Barenblatt in the 1950s [6]. 
In this case the first eigenfunction 'ipo > 0 was proved to exist for more general 
equations including gradient-dependent diffusion. The proof of Lemma 3.2 [56] is 
based on further delicate analysis of the phase-plane for different values of A. In a 
particular representation, the phase-plane of (3.36) is known to admit limit cycles 
(see [17, 44, 83]) that generate a non-compactly supported profile ipoo(y)- This 
profile has an infinite number of isolated zeros which are obtained as a result 
of an infinite number of rotations of the vector field. On this phase-plane the 
eigenfunctions {ipk} with A =  A*, correspond to exactly k rotations around the 
origin; see details in [17].

In view of the scaling symmetry of equation (3.36), each t/;*; defines a one- 
parameter family of eigenfunctions

V'fc(2/5 b) =  6^fc(y/|6 |(m_1)/2) for any b ^  0. (3.40)

Setting m =  1 in (3.38) yields precisely the spectrum (3.27) of the linear operator 
B i in one dimension, and then scaling (3.40) reduces to multiplication by a 
constant b. It follows from (3.38) that in the linear case m  — 1 the spectrum 
{Ak} is unbounded from below (a standard property of spectra of self-adjoint 
operators in Hilbert spaces with compact resolvents, [13]).

In Lemma 3.2 the first two eigenvalues A0 and Ai and the corresponding 
eigenfunctions are obtained explicitly by using two known conservation laws for
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the PME. Namely, A0 =  0 (ft =  l/(m  +  1)) corresponds to the ZKB solution 
(3.7) with TV =  1, [90, 6] satisfying the mass conservation

^  J  u(x,t) dx = 0. (3-41)

The ODE (3.36) is integrated twice leading to the first eigenfunction (3.8) with 
6 = 1 .  For Ai =  — l/m (m  +  1), f t  =  l/2m , the similarity solution is Barenblatt- 
Zel’dovich dipole solution (3.10) with TV =  1 [8], which corresponds to the mo
mentum conservation

^  J  xu(x, t) dx =  0. (3-42)

Integrating the ODE (3.36) leads to the odd eigenfunction (3.11) with 6 = 1 .  
Figure 3.1 shows the third and fourth eigenfunctions of the PME plotted along
side its first two eigenfunctions. These profiles were produced using the Matlab 
boundary value problem solver bvp4c (see Appendix B for details).
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Figure 3.1: Four eigenvalues and their associated eigenfunctions of the PME with 
m  =  3.
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3.3.2 Eigenfunctions in radial geom etry in R^

We now describe similarity patterns in RN, where the results can be formulated 
for radially symmetric solutions. The following Lemma is essentially Theorem 
5.1 in [56].

Lemma 3.3 Let m  > 1 and N  > 1. Then in the radial geometry, there exists 
a strictly monotone decreasing sequence of eigenvalues of the eigenvalue problem
(3.36)

o-(Bm) =  {Afc, k =  0 ,2 ,4 ,...}  I  -  (m_1)[Ar(m_1)+-2j, where A0 =  0, (3.43)

so (3.36) has radially symmetric, compactly supported solutions if, and only if, 
A =  Afc for some even integer k > 0, which is exactly the number of sign changes 
°f  i^kdvl) in R+. The normalisation condition is

supp^fc =  {M < 1} for all k = 0 ,2 ,4 , . . .  . (3-44)

Note that fa > 0 for k >  0. Each profile ^  generates a one-parameter family
(3.40) of solutions. As for N  =  1, the first eigenvalue A0 =  0 corresponds to 
the ZKB solution (3.7) and xpo is given by (3.8) with 6 =  1. Little is known for 
other non-radial eigenfunctions of the PME satisfying the elliptic equation (3.36). 
A multi-dimensional analogy of dipole pattern ip\{y) [57] seems to be the only 
known non-radial nonlinear eigenfunction existing for all m > 1. (In Section 3.7 
we present a branching analysis of nonlinear eigenfunctions applied for m «  1+.)

According to the group of scalings (3.40), we specify the whole subset of 
nonlinear eigenfunctions of operator (3.36) as follows:

$  =  {^k{y‘,b),k > 0,6 G R \  {0}}. (3.45)

Thus, <3> consists of a countable subset of continuous one-parameter families of 
functions.

3.4 Notion of evolution completeness for the ra- 
dial PME in R N

We consider the PME (3.5) in the radial setting with radial initial data u E Co. A
similar analysis applies to the equation in one dimension with arbitrary u E Co,
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as explained below. We need an extra technical assumption on initial data

u =  w(|a;|) has a finite number of sign changes. (3.46)

Since the number of sign changes of u(\x\, t) does not increase with time (Sturm’s 
Theorem, see references in [39]), one can see that u(Q,t) can change sign only a 
finite number of times for all t > 0. We may then assume that u(0,t) > 0 for all 
t 1. Otherwise, we replace u i->- — u and hence u i-> — u. We cannot get rid of 
an assumption like (3.46) since a classification of local structures of zeros for the 
PME is still unknown or not rigorously justified in general. We let C§ denote 
the space of radial compactly supported continuous functions in RN satisfying 
the Sturmian assumption (3.46).

It is convenient to rescale u(x, t) according to (3.35) by setting

u(x,t )  = (1 +  *)“mou(2/ , t ) ,  y = x / ( l  + t)Po, r  =  ln(l +  t), (3.47)

with =  N m̂^ +2 and /?o =  tv - Then v(y ,r )  is a global solution of the rescaled 
equation

vT = B m(u) for r  > 0, v(y, 0) =  v0(y) = u(y), (3.48)

where B m is operator (3.36), so the profile (3.8) is stationary for this operator, 
B m(^o) =  0. Recall that, under the above assumptions,

(f>(r) = u(0, t )  > 0 for all r  1. (3.49)

For this rescaled nonlinear problem, we define evolution completeness as follows.

D efin ition  3.4 The subset (3.45) of nonlinear eigenfunctions of problem (3.36) 
is evolutionary complete, if, for any initial data u G Cq, there exists a finite 
k > 0 and a constant 6 ^ 0  such that, as t —> oo,

w(z ,r )  = v ( z ^ rn~1̂ 2(r),T) —>• ^ ( 2 ; b) uniformly in RN . (3.50)

According to Lemma 3.3, for any fixed k > 0, we introduce the functional subsets

y^k = {vo € Cq : 3 6 / 0  such that w (z , r) —> 'ipkfa b) as t — 0 0 }. (3.51)
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Then the evolution completeness assumes, in particular, that

U*>oM4 =  c 0s \  {0}. (3.52)

This implies that any u0 #  0 belongs to Wk with some finite k = k(v0), and

Woo =  {0}, (3.53)

where Woo is the set of initial data for which solutions u(-,r) have a “super- 
exponential” decay in the sense that, uniformly in

v ( y , r ) =  o(e~Kr) as t  —y oo for any constant K  1. (3.54)

The evolution completeness analysis consists of two parts.

3.5 First half: direct sum decomposition of C q

Note that if u has nonzero mass, i.e., M0 =  f  u ^  0, then by the asymptotic 
stability of the ZKB similarity-solution, v(y ,r )  is known to converge as r  —> oo 
to the similarity profiles (3.8), (3.40) (or their reflection in the y axis if M0 < 0)
with the same mass (see further comments below). For general nonnegative data
u G L 1(RN), this is proved in [34]. For u changing sign with M0 > 0, the “eventual
positivity” for t 1 for compactly supported solutions in radial geometry follows
from intersection comparison techniques (see [77] and an “eventual monotonicity” 
approach in [48]).

We now consider general initial data with zero mass such that

u(*,r) —> 0 as r  —> oo uniformly. (3.55)

In order to clarify a possible asymptotic behaviour of the rescaled solution, we 
perform the extra rescaling for r  1 given in (3.50), where the new rescaled 
function w(z , r )  satisfies the following perturbed parabolic equation:

wT =  B m(w) -  g(r)Cw,  with g(r) =  ^  (3.56)

and C being the linear operator (3.37). Note that, by scaling (3.50), we have

iu(0, r) =  1 for r  1. (3.57)
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We now explain the main ingredients of the asymptotic analysis.
(i) A  b o u n d  on th e  resca led  o rb its . W ithout loss of generality we may 

assume that </)(t ) ~  maxy \v(y,r)\  for r  1, so that the orbit defined in (3.50) 
is uniformly bounded, and hence, by the standard parabolic theory of PME-type 
equations [27, 26], is compact in C\oc(M.N ). (By the Bernstein method, a uniform 
estimate |(|i/|m-1ti)x| < C  is valid for r  1.)

Alternatively, one can use another scaling:

</>(t) =  max \v(y,r)\ 
y

(then |w (z , t ) < 1 for r  1). This causes only minor changes in the analysis: 
Firstly, under hypothesis (3.46) 0 '( t)  exists for r  1. Secondly, passing to the 
limit as in (3.60) we obtain another normalisation condition in (3.61):

m ax \h(y,  s)| =  1 for s  > 0. 
y

It is known that the intersection comparison argument guarantees that /i(-,s) 
must be stationary (this is associated with the non-existence of inflection inter
section points; see [50, p. 74]).

(ii) F irs t  lim it. We claim for that there exists a finite limit along a sequence

g{r) —»• A as r  = Tj -* oo. (3.58)

(The proof of this claim is given by parts (iv) and (v) below. See particularly the 
remark after Proposition 3.5.) Then we claim that (see the oscillation analysis 
below)

g(rj +  s) —> A uniformly on bounded intervals in s. (3.59)

In this case, setting r  =  Tj +  s and passing to the limit in equation (3.56) by 
using the standard regularity PME theory ((3.57) provides us with the crucial 
L°°-estimate which makes it possible to pass to the limit in such PME-type 
equations via the general compactness result, [26]), we obtain that

w(rj +  s) h(s) in L~C(R+; C0), (3.60)

where h(s)  solves the autonomous time-independent equation

hs = B m(h) — ACh for s > 0, h(0, s) =  1. (3.61)
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By construction, h(y, s) is a uniformly bounded weak Co-solution.
The quasilinear parabolic equation (3.61) with a potential ordinary differential 

operator on the right-hand side is known to be a gradient system. The existence 
of a suitable integral Lyapunov function is proved by the general approach [91] 
with necessary modifications related to the degeneracy of the PME operator, 
[35, 19]. Furthermore, Sturm’s Theorem prescribing the number of sign changes 
of solutions as a “discrete” Lyapunov function, guarantees that, in the gradient 
system (3.61), the non-empty o;-limit set uj(wq) of any bounded orbit consists 
of stationary solutions only. Indeed, the boundary condition h{0, s) =  1 implies 
by the strong Maximum Principle that h(-,s) must be a stationary solution. 
Further examples and references can be found in [39]. A different application of 
the Sturmian argument for solutions of changing sign will be presented below.

(iii) A is an  eigenvalue. The radial ODE

B (/)  -  A C / =  0 in Rw, /  € C0, /(0 )  =  1, (3.62)

which coincides with the nonlinear eigenvalue problem (3.36) (note that the nor
malisation condition is different from (3.44)) must admit a solution. By Lemma 
3.3 this means that the constant A in (3.58) must coincide with one of the non
linear eigenvalues of (3.36),

A =  Ak for some k > 0. (3.63)

(iv) N on-osc illa to ry  p ro p erty . We now return to the condition (3.59). As
suming that it is not valid, we obtain a contradiction by the Sturmian intersection 
approach. A more detailed description of various aspects of the intersection com
parison will be presented in later sections, where it is used for refined asymptotic 
estimates.

We may assume that g(r) is oscillating around A =  A*, for r  1 and that 
the oscillations are not small (in the sense that they have some minimum am
plitude £■). We now compare two families of solutions. The first is the rescaled 
solution v(y ,r )  =  eXkTw ( z , r ) } with 2 =  ye- m̂_1 ÂfcT/2; the second is the rescaled 
(according to (3.47)) self-similar solutions (3.35), (3.40) which are denoted by 
v(y ,r )  =  eXkTipk{z]b). The main idea of such a comparison is to show that each 
intersection of g(r) with A*, at some r  1 would mean losing at least one inter
section of w(y,r)  with the corresponding similarity solution 1/^(2 ; 6j), where we 
choose a particular scaling parameter b = bj. To do this we must now prove that
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w(0, t ) oscillates.

g(r) - A * =

T

T

Figure 3.2: Setup and scaling.

We have assumed that g(r) oscillates about some < 0 . We now make the 
transformation

4>(t ) =  eXkT4>, (3.64)

so that g(r) =  g{r) — Xk = 0 '( t) /0 ( t)  oscillates about zero. This is shown in 
Figure 3.2. For r  >  1 we have (f> > 0 and hence <j> > 0. The oscillations of 
</>'(t)/</>(t) about zero now imply that 0 '(t) oscillates. Hence </>(r) =  r)(0 , t )  
oscillates as desired.

Since g(r) oscillates, we may form a sequence {Tj} —>> oo such that, for all 
j  = 2 ,4 ,6 ,...,

=  9'(rj+1) =  0 and g{Tj)g(Tj+l) < 0

(see Figure 3.2). We now chose bj  in (3.40) so that u>(0,T j )  =  v(0 , T j ) .  This
guarantees that at least one intersection between w(y,T)  and ipkiz', bj) disappears 
at r  =  Tj  (since 4 > ( t )  has nonzero derivative here). By { b j }  we denote the 
corresponding sequence of scaling parameters in i pk( z ' ,  b j ) .

First we consider the basic case where { b j }  is uniformly bounded and is uni
formly bounded away from zero. Passing to the limit j —¥ oo and using the 
compactness of the bounded family { i p k ( z ' ,  bj)} of continuous functions, we find 
a profile ^ ( 2 ; b) that has an infinite number of intersections with w(y,r)  for all 
t  1. Since all the oscillations of (j) have an amplitude of at least e >  0 there
exists a family of self-similar solutions {ipk(z\ b), b G (b — e,& +  e)} such that each



CHAPTER 3. EVOLUTION COMPLETENESS FOR THE POROUS MEDIUM EQUATION 32

ipk(z;b) has an infinite number of intersections with w. This is impossible; see 
Proposition 7.1 in [37] which exactly that this cannot happen.

The analysis of the case where bj -» oo is similar but we must perform an 
extra rescaling by using the group of transformations (3.40) with b = bj (leaving 
the rescaled equation invariant) for r  «  Tj to get a bounded sequence and to 
repeat the above argument. We again assume that, after this extra rescaling, the 
oscillations are not small (otherwise we are done). Actually, in this intersection 
approach, the asymptotics of {bj} are not of principal importance since only the 
oscillatory property of w(z, r) plays a key role. The case bj —> 0 is similar with 
the same 6-rescaling according to (3.40).

It now follows that g(r) can only have a finite number of oscillations around 
Afc. If g(r) oscillates around another constant A «  A*, then the same argument 
applies where we have to use the similarity profiles satisfying equation (3.36) with 
the given A. Then for A ^  {A*,}, ip is not a solution in RN and ip(y) is unbounded 
as y —>• oo. This simplifies the intersection comparison analysis with the bounded 
rescaled solution w(y,r).  We then compare the solutions on a bounded interval 
in y such that the necessary comparison is valid on the lateral boundary, where 
the difference does not change sign. In both cases, the assumption (3.58) implies 
(3.59) which makes it possible to pass to the limit Tj +  s  —» oo.

Recalling that (3.63) holds for any partial limit (3.58), in view of discreteness 
of the spectrum {Â  }, if there exists a partial limit (3.58), (3.63), then the function 
has the same limit,

^  -* A* as r  —* oo. (3.65)

Indeed, since g{r) is continuous, the existence of two different partial limits 
A* < A* would mean that any A € (A*, A*) would correspond to a partial limit,
i.e., problem (3.62) would have a nontrivial solution for a continuous interval of
eigenvalues (meaning that u ( w q ) is connected) contradicting Lemma 3.3.

(v) A =  — oo is not possible. We now need to rule out the possibility 
A =  —oo in (3.58). Actually, this shows that the super-exponential decay rate 
where

</>(t) =  o(e~Kr) for t  1 with any K  1 (3.66)

is possible for the trivial solution only, v =  0 .
It follows from the analysis presented above that we need to consider a func

tion <P(t) such that
<?(t) —> —oo as r  —> oo, (3.67)
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so tha t no finite partial limits (3.58) exist. Consider equation (3.56), where for 
convenience we replace g{r) —g{r) so that g(r) > 0 for r  1 . We perform 
the third scaling by setting

z ~  C /V 9 (T)-> where s — — In<j)(r) —> oo as r  —» oo, (3.68)

and then w = w(£,s)  solves the perturbed equation

ws =  BoQ(w) +  p(s)( - V w  + j fo  (^oC ‘ Vw +  fiQw), p(s) =  (3.69)

Boo(u;) =  A|iu|m-1u/ — |(m  — 1)( • Ww +  w. (3.70)

It is important that if g(r) has a super-exponential decay, then

p(s) —y 0 as s —>• oo. (3-71)

Therefore, passing to the limit along a subsequence s =  Sj —> oo, we have to have 
th a t u j ( w o )  =  { /}  is non-empty and consists of nontrivial stationary solutions

B „ ( / )  =  0 in R", /  € C0, /(0 ) =  1. (3.72)

Therefore we arrive at a contradiction in view of the following nonexistence result.

P roposition  3.5 Problem (3.72), (3.70) does not have a solution.

Proof. This follows from Lemma 3.3 describing all possible radial equations (3.36) 
((3.72) belongs to the same type) admitting compactly supported solutions in RN. 
□

Thus, (3.67) cannot happen. A similar argument to this holds to prove that 
g(r) oo and hence the claim (3.58) that g(r) has a partial limit is proved true.

We have now established the first half of the evolution completeness theory 
for the radial PME in

Theorem  3.6 Let (3.46) hold. Then (3.52) is valid.

It is important to note here that Cq cannot be replaced by L1; see Appendix A.

3.6 Second half: uniqueness of the limit

Finally, we need to establish that, after the necessary rescaling in (3.50), (3.65), 
uj(wq) consists of a unique similarity profile xpki'^b). Recall that each nonlinear
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eigenfunction 'ipk generates by (3.40) a one-parameter family of stationary solu
tions, so that the unique choice of the parameter b = b(u) ^  0 is of principal 
importance. Such results based on using Sturm’s Theorem on zero sets are well 
known in the asymptotic theory of PME-type equations but only for nonnegative 
solutions; see [1, 39, 48] and references therein. Below we present a detailed de
scription of the modifications of the Sturmian analysis that are necessary to cover 
the case of solutions of changing sign. The regularity properties of solutions of 
changing sign and their interfaces are well known (though not in as much detail 
as for nonnegative solutions); see [12, 77] and references therein.

We will prove the following result finishing the evolution completeness analy
sis.

Theorem  3.7 Let (3.65) hold with some finite k > 0. Then there exists a unique 
b =£ 0 such that

u(w0) = { ^ k(’\b)}. (3.73)

We begin with the following auxiliary properties of the continuous branches 
of nonlinear eigenfunctions generated by scaling (3.40).

P roposition  3.8 For any bi, 62 E R+, 61 ^  62, the profiles ipk(y', &i) and ifk(y\b2) 
have exactly k intersections.

Proof. We first note that ipk(y) is continuous and has exactly k sign changes [56]. 
W ithout loss of generality we study the one-dimensional problem and consider 
two cases.

Case 1 : ^ k ( y )  is sym m etric, k  is even. Let us label the |  zeros of the profile 
ipk{y\h) in the range y > 0 as yu y2, . . . ,  yfc/2, where yt < yi+1 for all i. Now label 
the zeros of the profile ifk(y\b2) in the same way as y .  Since bi ^  b2 we may 
assume without loss of generality that yi < & for all i\ see the scaling (3.40). We 
have two sub-cases to consider:
(la) 61 is sufficiently close to b2 to ensure that yi E (yi,yi+1) for all i ,
(lb) bi and b2 are such that sub-case (la) is not true.

Sub-case (la). Note that the sign of the derivative with respect to y of ifk(y\ h )  at 
yi is the same as the sign of the derivative with respect to y of ipk(y\b2) at y ,  since 
these zeros are simply scalings of one another. Due to the fact that there is no zero 
of k(y\M  in (2/;+i, yi+1), we have that the sign of ipk(y5 &i) remains the same for 
all y E (2/i+i, 1). For definiteness let’s say ^ (y ; &i) < 0 for y E (y*, &)• Thus at
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y =  Vi, ipk(v\ b2) > ipkiv, bi) since ipkiw, b2) =  0. Now at y =  yi+i, ^ k(y\bi) > 0 
so ipk{y\ b2) < ipk{y\ h ) .  Thus, due to continuity, ipk(y', b2) — i>k(y\ h )  has at least 
one sign change in (y^y i+i) and so the profiles have at least one intersection in 
this interval. It remains to prove that they can have at most one intersection in 
this interval. This is done by means of the Maximum Principle.

Consider only the interval (yi,yi+1) and assume that ipk(y'ibi) < 0 for y e 
(yi,yi+1 ), so ipk(y',b2) < 0 for y E (&,&+1 ) (the proof is similar for the opposite 
sign). Now by the Maximum Principle, neither profile can have a local maxi
mum in the intervals where they are negative. Neither can they have a point 
of inflection since this contradicts the Maximum Principle for their derivative 
with respect to y. Thus, both functions are convex in the region where they 
are negative and may only intersect each other once as a result of this and the 
ordering of their zeros. In the region where one function is positive, there can 
be no intersections since either ipk{y\b\) > 'ipk(y,b2) or vice versa. Hence, they 
may intersect only once in the region (yi,yi+i). This proves that there are |  — 1 
intersections in the range (yi ,yk/2 )-

The profiles must also intersect once in the interval (ykfab?*1*1̂ 2), i.e., be
tween the last zero of 2) and its interface, since yk/2 < b̂ ™~1̂ 2 <
Thus, the profiles have exactly |  intersections for y E (0,£/m_1l/2) and exactly k 
intersections overall.

Sub-case (lb). This is done by means of an evolution argument. Fix bi =  1. 
We pick b2 such that we are in sub-case (la) and then let b2 vary to show that 
evolution in b2 does not destroy or create intersections.

We first note that by the known regularity for ODE (3.36), all the intersections 
between the two profiles are transversal in terms of the variable \ipk\rn~l '̂ Pk, i.e., 
at any point of intersection,

ij[\'tpk(y\b2)\m- 1'ipk(y]b2) -  |</>fc(y;Mr- Vfc(y;&i)] ^ °- (3-74)

We have already showed that this difference cannot have a point of inflection, so 
the only possible type of intersection is transversal. These intersections cannot 
be lost without creating a situation in which one profile is tangent to the other. 
Then we have two solutions of the same ODE, which violates uniqueness, so this 
cannot occur; see Figure 3.3. No intersections may be gained for the same reason. 
Hence, the k transversal intersections found in sub-case (la) remain for all values 
of b2.
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point of tangency
b2 varying

Figure 3.3: Two neighbouring intersections cannot be lost.

Case 2: 'tpki'y) is an ti-sym m etric . This case differs from the symmetric 
case in that ,ipk{y) passes though (0 , 0 ) and thus has a fixed point under scaling
(3.40). However, this does not create any problems since for bi < b2 we have that 
xjjk(y; bi) < ipk{y\ b2) for all y G (0, yi). The proof is very similar to the symmetric 
case and we find that there are exactly k intersections: [ |J  in the domains y > 0 

and y < 0 and one at y = 0 . (Here [*J denotes the floor function for real numbers:
[sj is the largest integer j  such that j  < s . )  □

U n p e rtu rb ed  equation. At this moment, assuming that (3.60) holds and, 
for convenience, replacing h(s) again by it/(r), we study the u;-limit set for the 
rescaled equation (3.56) with g(r) =  A*; according to (3.65),

wT — B m(it/) — XkCw for t  > 0, iu(0) =  /  G u(wo). (3.75)

By the regularity results for the PME [12 , 27, 58, 77], we will use the fact that
the rescaled solution (3.50) satisfies G C l at least for all r  >  1 (cf.
typical results in [77] establishing by Sturm’s Theorem that the solutions and 
interfaces attain extra regularity eventually in time). For ease of notation, we let 
wm(y,t) = \w(y, t)\m~1w(y, t) and prove the following result.

Theorem  3.9 The u-limit set of the orbit of (3.75) consists of a single profile, 
i.e., there exists a unique constant 6 ^ 0  such that u ( f )  =  { ^ ( ’j^)}-

Our study consists of two parts. Firstly, we extend Proposition 3.8 to inter
section comparison with the rescaled solution w(y,r)  of (3.75).
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J- •

Figure 3.4: This situation can arise if \bi — b\ < 62-

Lem m a 3.10 Let ipk{‘]bi) € u(w0) for some b\ /  0, i.e., wm(y,r) —>• i/>™(y\b\) 
uniformly along the sequence {r^} -* oo. Then there exist sufficiently small 
positive £\ and £2 =  £‘2(^1) such that when \\wm(y,T) — ip™(y\M ile1 < £i> w (y,r) 
and ipk(y- b) have exactly k intersections for all b such that |&i — b\ > £2 .

Proof. We know that w{y,r)  can only intersect ipk(y,b) in a set of neighbour
hoods of the intersections between ipk(y\bi) and xpk(y,b) defined by N  = {y : 
IÎ { V i b i )  — k)llc < £i}- We must now prove that w(y,r)  can only inter
sect 'ipkiy, b) once in each of these neighbourhoods. The condition on b is needed 
to avoid

IIVTG/iM --CG /; & )I I  <?■ <  eu

as this means that w(y,r)  could intersect 'ipk(y\b) many times. This difficulty is 
shown in Figure 3.4: 'ipk{y\ M  and ipk(y, b) intersect each other once on this range 
but w(y,r)  intersects both of them twice.

We label all the intersections between y , bi) and y ; b) by y ,  y , . . . ,  yk.
Let us consider a single, but arbitrary, intersection y .  We now consider the subset 
N  C N  that is a neighbourhood of y .  Since all intersections between ^™(y,bi) 
and &) are transversal, there is a positive angle between the gradients of the 
two curves at the point of intersection. Without loss of generality, assume that 
the gradient of ip™{y, &i) is strictly less than the gradient of ip™(y, b) throughout 
N. Now choose £\ small enough to ensure that the gradient of wm(y,T) is also 
strictly less than the gradient of y ; b) for all y G N.  Thus, wm(y, t )  may only 
intersect \p\™(?/; b) once in N  provided £\ is small enough. □
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Secondly, we need an extended version of the “tail lemma” (cf. [48, Lemma 
8 .2]) so we can apply it to solutions changing sign. This is needed to prove 
that the undesirable situation in Figure 3.5 may not occur for large r. Suppose 
that, as shown in Figure 3.5, w(y,r)  is C^-close to ifk{y',b2) but has a small 
negative tail. Now w(y, r) can move freely between b2) and ipk{y\ b\) without 
losing an intersection with any intermediate profile ifk{y\ M- This can be seen by 
recalling that each compactly supported solution is defined in the whole space: 
i p k ( y \ K )  =  0 for y 0  supp i>k{y',K), so w{y,r)  intersects ipk{y,b2) even when 
y 0  supp xpk{y,b2).

Figure 3.5: Our solution can move freely between the profiles ijjk{y,b2) and 
*Pk{y,bi) without losing an intersection with any intermediate profile ipk{y,K).

As above, we assume that ?/>*(•; 6) 6 uj{wq), and, for definiteness, we also 
assume that xfk{y,b) > 0 for y G (2/1, 2/o), where y\ < yo = b̂ m~1̂ 2 and y\ is the 
largest zero of ipk{y\ b)-

Lem m a 3.11 Let e > 0 be small enough and ||w m(y,T)  — ip™{y, &)||ci < £ f or 
some time t  = Tj 1. There exists positive i { e )  ~  e  as e ^  0 such that if 
supp w{y,  Tj) > supp 'ipkil/'i b) + e ,  then there exist s > 0 and small 6 > 0 both 
independent of e such that w(y, Tj +  s) =  0 for all y > yo + 6 and w( y ,  Tj -f s) > 0 
f o ry  > \{yQ + yi).

Proof. We look for a weak super-solution in the form of a travelling wave. Set

w{y, t ) =  h(rj) > 0 , 77 =  y +  At with A > 0 , so that 

D {h) = {hT)" +  {fay ~  A)ti  + akh <  0

in the positivity domain plus typical regularity at the interface (see below). Ac
tually, we need this super-solution for a local comparison in a neighbourhood of
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y =  ?/o, namely for y > |(t/o +  t/i)- Assuming that h! < 0, we have that

D (h) < D (h) = (ihm)" +  (pkVl -  A)ti +  a kh. (3.76)

Here D is an operator with constant coefficients so it admits a standard weak 
super-solution h(r]) =  ^(770 — for some constant A  > 0  and arbitrary
770 > ?/o- Then (3.76) for r  = 0 (77 =  y) reads

+  ^  _  pkyij +  (m _  l)a*.(77o -  y) <  0,

where, for comparison from below, we need only to check this inequality in a 
sufficiently small neighbourhood of y =  77̂ . For instance, we can take

A =  and A”* -1 <  4 ^ 1 ) .  (3.77)

and this provides us with the required super-solution. This super-solution moves 
to the left and destroys the positive part of the tail that is far from the interface 
of tpk{y, b) by the usual comparison, and the tail is destroyed up to a certain small 
right-hand ^-neighbourhood of point y =  y0. This process is shown on Figures 
3.6(a), 3.6(b) and 3.6(c).

Concerning the negative part of the tail, the same comparison idea can be 
used to destroy it completely by means of a sub-solution w = —w. Then, since 
777(7/, t )  > 0  on [7/1 +  6,7/0 — £]> obviously, the negative part of the small tail will 
be destroyed up to y =  7/1 +  S. See Figures 3.6(c) and 3.6(d). □

The rest of the analysis uses the same intersection comparison ideas as for 
nonnegative solutions; cf. [39, 48] and [1].

L em m a 3.12 Let b\ < b2 be fixed. Assume that there exists a small e > 0 such 
that at some time Tj 1, 7/7(7/, r )  is such that \ \wm (y,  Tj) — ip™(ym, W i l e 1 <  £> and  

for some time f j  Tj, we have \\wm(y, f j )  — t/>™(7/; b2)\\c1 < e -
Then w(y, fj )  has lost at least one intersection with all profiles ipk{y\b*) with 

6* satisfying \bi — 6*| > J(e) > 0 and \b2 — b*\ > 6(e) > 0.

Proof. Firstly, note that if we have an ordered system {7/>*(•; b), b > 0} , i.e., none 
of the profiles 7/;k{y; b) intersect each other (this happens for k =  0  only), then it 
is impossible for w(y,r)  to move from being close to 7/^ ( 7/; 61) to being close to 
>lPk{y\b2) by the usual comparison. Thus, there must be at least one intersection 
between all profiles for this movement to occur and this is where the principles
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(a) Initial situation.

—  i ’j

(b) w begins to destroy the tail.

(c) w has destroyed the positive tail (d) Now w  has completely destroyed the
fax from the interface and now com- negative tail,
parison with w  begins to fail. We 
won’t need w  any further.

Figure 3.6: The travelling wave w destroys the tail as it moves in the direction 
of the arrow.

of intersection comparison apply. We now show that one of these intersections 
will be lost during this movement.

We only sketch the idea for the remainder of the proof. Details can be found 
in [48, Lemma 8.2]. Consider only the interfaces of the profiles i p k i y ,  b \ )  and 
i > k { y ] b 2 ) .  We have shown by Lemma 3.11 that if ||w m ( y , T )  — &2)||ci <  £
for some small positive £, then in a region of their interfaces w ( y , r )  and b i )  

have the same sign. Also, if w m ( y , T )  is C 1-close to ' i p F i y ^ b i ) ,  then Lemma 3.10 
implies that w ( y , r )  must have precisely k  zeros with all other profiles 'ipic { y ] b * )  

with intermediate values 6*. Figure 3.7 shows how w ( y , r )  can move from being 
C^-close to i p k { y \ b \ )  to being enclose to i p k ( y ' , b 2 ) .  Note that an intersection 
is lost with any intermediate profile ipk{y\b*) at its interface. This means that 
at least one intersection must be lost with each intermediate profile during this 
transition time. □
Proof of Theorem 3.9. Assume that there are two distinct values 0 < b i  < b 2



CHAPTER 3. EVOLUTION COMPLETENESS FOR THE POROUS MEDIUM EQUATION 41

(a) Passage from ipk{y; &i) to tpk{y\ b2)

(b) Passage from ipk(y; b2) to tpk{y\ h )

Figure 3.7: An intersection is lost with any intermediate profile on its interface. 
The interface of w(y, r) moves in the direction of the arrow as time increases.
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such that ipk{'] ^1,2) £ ^ ( /) -  In this case there must be sequences {rj} 00  and 
{ f j }  —> 0 0  such that

w iTj )  as 3 °°5  but w ( f j )  —> ^ ( ' , 6 2) as j  —> 0 0 .

We may now arrange for an infinite number of profiles to lie between 1)
and ipk(y]b2) close to their interfaces by picking values of 6* in between bi and 
b2• Taking eq, and hence e2, small enough in Lemma 3.10 we may pick 5*, 
61 < 6* < 62, such that |6* — &i| >  e2 and |5* — 621 > so if w(y,r)  is close 
enough to either ipk(y]bi) or ipk{y\b2) then it has exactly k intersections with 
each of the profiles ^k{y\K).

Now at some time Tj 1, \ \ w( y , Tj )  — ^jb(y;6i)|| <  £1 and thus w ( y , T j )  

has exactly k intersections with some Tpk{y\b*). Using Lemma 3.12, we now see 
that if w ( y , r )  were to converge to ^ ( 3/562) it would lose an intersection with 
this intermediate profile. Since we know by Sturm’s Theorem that intersections 
cannot be gained, we have a contradiction to Lemma 3.10, which states that if 
w ( y , r )  is close to ipk{y\b2) then it has exactly k intersections with our ^k{y\M- 
□
Perturbed equation. Returning back to the full rescaled equation (3.56) and 
passing to the limit (3.60), we have that the constant b in Theorem 3.9 does not 
depend on the sequence {r^} —> 0 0  in view of equality (3.57), which itself selects 
the unique limit profile.
C om pleteness in one dimension: the end of the proof for odd k.  For N  =
1 , Lemma 3.2 gives the complete description of all the nonlinear eigenfunctions. 
The asymptotic completeness analysis remains the same if k is even. However, 
for odd values of k , the scaling function (3.49) is not suitable since for the exact 
similarity solutions, ^ (0 ,r) =  0. In this case one needs to pick another scaling 
function, e.g.

(j>{r) = sup €v (f ,r) . (3.78)

Then, in order to ensure that 4>(r) is CUsmooth for r  1 , we need to impose
an extra condition on initial data (cf. (3.46))

u(x) has a finite number of extrema, (3.79)

which guarantees that for r  1 , v(y ,r )  has isolated extrema so that 4>(t ) is
smooth. The proof is similar to the property of eventual monotonicity, [48].
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Thus, scaling (3.50) will provide us with a uniformly bounded rescaled orbit 
and rescaled equation (3.56). The rest of the analysis including the uniqueness 
conclusion contains no novelties.

3.7 The branching of nonlinear eigenfunctions 
at m  =  1

In non-radial geometry, (3.36) is a difficult open nonlinear eigenvalue problem. 
The operators involved are not potential and the problem does not admit a vari
ational setting. Therefore, the classical Lusternik-Schnirel’man category theory 
[65, Chapter 8] does not apply. Nevertheless, we expect (3.36) to admit at least a 
countable subset of nonlinear eigenfunctions (different up to the scaling (3.40)), 
which is a typical feature of potential operators with uniformly differentiable even 
functionals, [65, Theorem 57.2].

3.7.1 Derivation of the branching equation

We will apply the classical perturbation, branching approach to problem (3.36) 
using the known eigenfunctions of the linear eigenvalue problem (3.23) corre
sponding to m  =  1. Bifurcations of non-radial eigenfunctions from known radial 
ones are not expected to occur at a sequence of critical exponents {m  =  ra* > 1}. 
Such an approach is fruitful for other types of nonlinear operators correspond
ing to finite time blow-up (focusing) self-similar phenomena in reaction-diffusion 
problems; see bifurcation scenarios in [17] and [2], where countable sequences of 
bifurcation exponents actually occur.

Thus we set
m  — 1 +  £, where 0 < e 1, (3.80)

and fix an eigenvalue Xp =  — |  with an arbitrary k >  1 from the discrete spectrum 
(3.27) possessing the eigenspace

=  Span{Vvj, \P\ =  k} (3.81)

of finite dimension K  (the number of distinct multi-indices (5 of the fixed length 
k).

Consider the nonlinear eigenvalue problem (3.36), where we estimate the co
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efficients in the operators given in (3.37)

f)0 = l  -  \ N e  + 0 ( e 2), =  N h  + 0 ( e 2) (3.82)

and set
A =  - |  +  /i, (3.83)

where /i =  is a new unknown parameter. We use the representation

A f l^ p - V )  =  Aip +  A (M m- V )  - A i p  = AiP + A G e{iP), 

where in the nonlinear perturbation

Ge(fp)=iP ( W - l ) ,  ' (3-84)

so, as e —> 0+,

Ge(s) = eg(s) +  0 (e 2), where g(s) =  s in  |s|, (3.85)

uniformly on any compact subset bounded away from zero. We have that Ge(ip) 
is continuously differentiable in the variables ip and £ at any point including 
{ip = Q,e = 0}.

We then arrive at the following perturbed problem:

(B, +  I  I)tp = -  AGe{rp) + e { C ^  -  f  y  • Vtf) +  O ^ 2) ^ ,  (3-86)

where Ci is the first order linear operator

A  =  “ } ' V  +  f / ,  (3.87)

and £ 2 is another similar first order differential operator which will play no role 
in the local branching analysis. It follows from the construction that the linear 
operator on the left-hand side has the kernel of dimension K ,

ker(B 1 +  | / )  =  # i .

In view of the completeness of the eigenfunction subset $  in L jj, the range of 
Bx +  11 has the same codimension K.  Then (Bi 1 is a bounded Fredholm
operator with the deficiency index K.  Hence we can use the classical Lyapunov-
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Schmidt method to construct asymptotic expansions of solutions. As standard 
practice, the method applies to the equivalent integral equation with bounded 
and compact operators. To derive this we take the negative invertible opera
tor B i — I  and apply the compact operator (Bi — / ) _1 to both parts of equation
(3.86). This gives compact linear integral operators in the linear terms. Concern
ing the nonlinear term, we assume temporarily that the nonlinearity ip{\ip\e — I) is 
approximated by a uniformly Lipschitz continuous function Ji l {'ip) with a param
eter L^>  1 such tha t hi(\p) < C(1 + |^ |) , /il(V') =  — 1) f°r W  < L, and
hL(ip) —y ^ ( |^ |e — 1) as L  —>• oo uniformly on compact subsets. Fixing an L 1,
we replace i p iM 6 ~  1) by /i£,(?/>). Since we are looking for uniformly bounded
solutions ?/>, such a truncation of the equation does not affect the main results 
of the analysis, though we will need to check that the perturbation techniques 
yield uniformly bounded solutions. Bearing in mind this approximation and con
tinuing to use the original notation for the nonlinearity, we obtain a compact 
Hammerstein operator, [64, Chapter 5].

Thus, we consider a nonlinear integral equation

ip =  A (ip, p), with a parameter p =  (e, p) G R2, (3.88)

where A is compact in L2. The unperturbed (linear) problem has a A-dimensional 
subspace of solutions, i.e.,

ipp = A (^g,0) for any \/3\ =  A;, where (3.89)

A /(0,0) =  - ( l  +  |) ( B 1 - / ) - 1. (3.90)

Since cr((Bi — / ) -1) =  {—(1 +  f ) - \  j  > 0}, 1 is the eigenvalue of A 7(0,0) 
corresponding to j  =  k. Note again that, returning to the differential problem
(3.86), the operator on the left-hand side is self-adjoint in L 2p(RN), but the rest 
of the linear and nonlinear operators on the right-hand side are not self-adjoint 
or potential in this space.

Thus we use the Lyapunov-Schmidt method of asymptotic expansions; see 
[65, Section 54.3] and [82, Section 23] for equations with compact operators. 
According to the general branching theory, for p «  0 we are looking for a solution 
of the form

ip =  u +  v, where u G $k and v G (3.91)
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i.e., we take
u =  ]C|/3|=fc Cpipp, assuming that ||C|| ^  0. (3.92)

According to (3.89), u is a nontrivial solution of the linear equation with p =  0. 
Projecting equation (3.88) onto yields an equation for v which, under the 
given assumptions, is uniquely solved locally to give v = v(u,p) [82, p. 326] 
and substituting this v into the projection of (3.88) onto $k gives the Lyapunov- 
Schmidt branching equation for unknowns {C^, p}. Then (3.91) establishes a 
one-to-one correspondence between the solutions of (3.36) (close to <£*:) and the 
solutions of the branching equation [82, p. 329]. For convenience and without 
loss of rigor, we derive this branching equation using the differential problem
(3.86) instead of the equivalent integral equation (3.88). In view of the specific 
non-analytic structure of the nonlinearity (3.84) for small e > 0, we will use the 
branching theory in the case of finite regularity, [82, Section 27]. Notice that 
compactly supported solutions with m  > 1 are well-suited to the Lj-setting of 
the integral equation (3.88).

By (3.90), 1 is the eigenvalue of the linearised operator. As a natural step, in 
view of the linear dependence on e in the main nonlinear perturbation in (3.85) 
and in (3.82), we consider a similar expansion of the parameter p in (3.83) and 
v in (3.91) by setting

p = ei/ + o(e) and v = e<p + o(s). (3.93)

Here 0 is an unknown function and v is an unknown parameter to be determined 
from the final branching equation. Substituting (3.93) into the differential equa
tion (3.86), using (3.85) and taking into account the terms of order 0(e)  yields 
the following equation for 0:

(Bi +  1 7)0 =  i/u — Ag(u) +  Ciu, 0 G L 2p. (3.94)

In view of kernel (3.81), by Fredholm’s Theorem, the criterion for solubility 
consists of the K  orthogonality conditions obtained via multiplying by any 0 7, 
|7 | =  k, in Zy This gives K  algebraic equations in the unknown coefficients {Cp} 
and v

W +  k{k+42N)]C1 = (giYlCpipp), Aip*) for any | i |  =  k, (3.95)

where, for convenience, we use the scalar product (•, •) in L2(RN). Then the 
adjoint eigenfunctions ip* = pip1 become the orthonormal Hermite polynomials
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c1H 1. To get the left-hand side in (3.95), we observed from (3.28) and (3.87) 
that, by the orthonormality,

=  <E  c ^ ,c ir , )  =  - k- ^ c y,

with the adjoint operator C\ =  • V — ^ T .
Thus, we need to study the solubility of the system (3.95) of K  equations for 

K  unknowns {Cp, \(3\ =  k} plus v with a normalisation condition saying that 
u /  0. For instance, one can impose the normalisation condition

IlCH =  1, (3.96)

though others would do, for instance, (\g(^Cpiljp)\,  =

3.7.2 Preliminary properties of the branching equation

We begin with some preliminary properties of this algebraic branching system.
(i) System (3.95), (3.96) is not gradient and the right-hand side in (3.95) is not 
the gradient of a function —»■ E. One can see that a gradient system can 
occur if 'ijjjA'ijjp =  ippA'ip* for any \(3\ =  |7 | =  k, which is not true if k > 2. 
Therefore, we cannot rely on the critical point variational theory that is known 
to simplify the bifurcation and branching analysis. Indeed, if the problem were 
gradient governed by a sufficiently smooth even functional in E ^ , this would mean 
that the algebraic problem would have at least K  different branches of solutions, 
similar to the linear eigenvalue problem with m  =  1 admitting precisely K  linearly 
independent orthonormal solutions. This is a result we would like to expect for 
the nonlinear problem; see below.
(ii) The following “linear” property of the nonlinear system (3.95) holds:

if C  is a solution of (3.95), then aC  is a solution for any a  € E. (3.97)

Indeed substituting aC  into (3.95) and using the orthogonality property of the 
Hermite polynomials, = Spy, yields that, for any \(5\ =  |̂ y| =  k ,

('ipp,A'ip*) = {A ^ p ,</>*) =  0

since A ipp ~  ipp with \/3\ =  k -I- 2.
(iii) Studying the algebraic system (3.95) with the extra normalisation equation
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(3.96), we should take into account various orthogonal transformations (e.g. ro
tations) in RN under which the nonlinear equation (3.36) is invariant. Namely, 
any transformation

y ^  ay with ||a|| =  1 (3.98)

leaves (3.36) invariant. Obviously, this invariant property affects the dimension
of the manifold of solutions of the corresponding algebraic system (3.95), (3.96).
(iv) The parameter value

V ,  =  (3.99)

plays a special role in the analysis. It follows from (3.95) that v+ is the only pos
sible choice for non-radial solutions. Indeed, in this case, if v ^  v*, then in view 
of the existence of a multi-dimensional Lie group of invariant transformations, 
the system (3.95) becomes overdetermined. On the other hand, in the radial
case, where (3.95) reduces to a single equation, in general, v ^  v+ (see examples
below).
(v) As we know from Lemma 3.3, there must exist bifurcations of the radial solu
tions from radial linear eigenfunctions for all even k =  0 ,2 ,4 , . . .  [For odd values 
of k, the eigenfunctions (3.28) are not even in y and cannot generate even nonlin
ear eigenfunctions.] Obviously, those branches of even nonlinear eigenfunctions 
correspond to the following choice of the unknowns {C/j}:

f i i f /? =  ( o , . . . , o , f c , o , . . . , o )  =  /§,
Cp =  I ^  K '  (3.100)

I 0  otherwise.

It is easy to check that the corresponding algebraic system (3.95) reduces to a 
simple single algebraic equation admitting such a solution.

3.7.3 Existence of nonlinear eigenfunctions for m  «  1

The existence and multiplicity of distinct nonlinear eigenfunctions is associated 
with the existence of different solutions of the branching equation (3.95), (3.96). 
It turns out that the general solubility analysis, and hence existence of various 
non-radial nonlinear eigenfunctions (at least for all m  «  1+) is a difficult algebraic 
problem. We illustrate some typical difficulties by studying the following simple 
example.
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3.7.4 k =  2 on the plane

In R2, according to (3.28), there exist three linearly independent eigenfunctions 
denoted now by

V>i =  c * ( i ^ - i ) e ~ l yl2/4, ip2 =  c * ( |2/2 - l ) e~|y|2/4> ^ 3  =  c4 ?/iS/2e_!y|2/4, (3.101)

where c* =  is the normalisation constant. The general representation of 
u G ker (Bi +  1 1) will be written in the form

u = Ci'lpi +  C2'lp2 T ^3^3' (3.102)

The radial eigenfunction. We begin with the radial case, where

Ci = C2 =  ^  and C3 =  0 .

Calculating Aip{ =  =  c* and substituting into (3.95) yields the single equa
tion

=  ^ 2  J r 2 +  W )  dy =  575 /*> 0 (4 (2  M 2 -  2)e-'i'l2/4) dy.

By the radial change of variable s =  ^  > 0, the last integral denoted by /ir 
reduces to poo

fxr = 2tt / (s — l)e -s In |(s — l)e - s | ds. (3.103)
J o

It seems that this integral cannot be calculated explicitly and its numerical value 
is approximately

Hr = -4.380. (3.104)

This gives the unique value of the parameter v = vra(i in (3.93)

I'rad =  — 3 + \  flr =  —5.190 . (3.105)

As we know from Lemma 3.3, this bifurcation at m  = 1+ leads to the solution
branch existing for all m  > 1 .
Non-radial solutions. For general solutions (3.102), we obtain from (3.95) a 
system of three algebraic equations

{y +  3)Ci =  c*/ g{u) dy, ( v  +  3)C2 =  c*J  g(u) dy, (v 4- 3)C3 =  0 .
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The first two equations mean (v + 3)Ci =  (^ +  3 )C2 so that either C\ =  C2 , which 
leads to the above radial case, or

v — Vi, — —3. (3.106)

The solution (3.102) takes the form

u = §c.[Q(y) -  2 (C, +  C2)]e-M +^>/4, (3.107)

where Q denotes the quadratic form

Q ( y )  =  C iU i  +  ^ 22/2 +  C z y i V 2 - (3.108)

We need to consider three cases depending on the index of Q.
(i) In d ex  zero . Let C1C2 7̂  0. By an orthogonal transformation on the 

{2/1, 2/2}-plane, one can always reduce the quadratic form in (3.107) to a diagonal 
form while the positive definite form \y\2 remains unchanged. Therefore in this 
case, we may set C3 =  0 . Then we obtain a system of two equations

( Jg(Cirp 1 +  C21P2) dy =  0 ,

\  C * + C l  = 1 .

Since the function g(s) is odd, this system admits the obvious non-symmetric 
solution

C1 = - C 2 = ^  => u = c . \ { y l - y l ) e - W l \  (3.110)

for which the index of (3.108) is equal 0 . In the polar coordinates

yi = r cos <7 , 
7/2 =  r sin a,

(3.111)

this solution is angular 7r-periodic,

u = c*| r 2e_r2 / 4 cos 2cr. (3.112)

By the branching theory [82], we conclude that a nonlinear eigenfunction bifur
cates at m  =  1+ from u with v =  — 3 in (3.93). As usual, due to the finite 
propagation for m  > 1, the exponentially decaying linear eigenfunction (3.110) 
for m  = 1 will generate a nonlinear one with bounded support, which inher-
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its the symmetries admitted by the Laplacian. Figure 3.8(a) shows a plausible 
schematic star-shaped support of this nonlinear eigenfunction. This solution of
(3.36) is anti-symmetric relative to the axes yi ±  =  0 and can be obtained in
the quarter plane {yi > 0, —y\ < y2 < yi} with the appropriate conditions at 
?/2 =  ±2/i admitting reflections with the sign change ip i-> — ip.

2/2 n egative  
l  /  m in im umuve

lmmum

(a) A plausible support when k =  2 (b) A plausible support when k =  4

Figure 3.8: Two plausible supports of nonlinear eigenfunctions in R2.

(ii) Index two. We continue to study the solubility of system (3.109). Look
ing for a positive solution

Cx € (0,1) and C2 =  y j \  -  C\  > 0, (3.113)

for which index of (3.108) with C3 =  0 by diagonalisation is equal to 2, yields the 
equation

H (C X) =  J g ( C n h  + dy = 0 . (3.114)

Numerically we have that

t fW  =  J Z c d y 2 -  I\ y 2 -  1| -  \ y 2 -  |]d y  =  1.70.

On the other hand, from the calculations in the radial case we have by (3.104) 
that

< 0 .

Therefore since H ( 1 ) H ( ^ )  < 0, (3.114) has a new solution C\ 6 (0, ^=) by 
continuity.
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(iii) In d ex  one. Finally, consider the last case where the index of (3.108) is 
equal to 1 , e.g. C2 =  C3 =  0 . Then (3.106) holds and C\ ^  0  must satisfy the 
condition f  g{Ci4>i) =  0 , or, equivalently,

Jr> ( h i  _  l)eHs,|2/4In |(jj/i -  lJe-W 2/4! dyidj/2 =  0.

This is equivalent to the equality

A«i =  IZo (hi ~ l)e -v?/4 In \hl ~ 1| dyi =  12,

which is not true (numerically, fix «  1.9512). So the linear eigenfunction u = 
Ci'ipii'y) at m  =  1 cannot generate a nonlinear one for m  & 1+.

Thus we have detected at least three different types of nonlinear eigenfunctions 
existing for m  1+:

(i) the radially symmetric one corresponding to the value (3.105),
(ii) the angular-symmetric one (3.112) with the parameter (3.106), and
(iii) the eigenfunction corresponding to coefficients (3.113) with no obvious 

symmetry.
Notice that the total number three of distinct nonlinear eigenvalues for m  > 1 

coincides with, or at is least not less than, the dimension of the corresponding 
eigenspace for m  =  1 (though of course any linear properties of operators and 
envelopes are no longer valid for m  > 1).

3.7.5 Nonlinear eigenfunctions generated by periodic har
monic polynomials

As a final step towards constructing non-radial nonlinear eigenfunctions, we con
sider the general case of arbitrary even k > 2 in and will describe angular 
periodic eigenfunctions of the linear eigenvalue problem (3.23) with \/3\ = k coin
ciding with (3.112) for k = 2. In polar coordinates y = (r, a) in R ^, the Laplacian 
takes the form

A =  Ar - I - A r =  ^ 3  +  (3.115)

where Â - is the Laplace-Beltrami operator on the unit sphere S N~l in RN, which 
is a regular operator with discrete spectrum in L2(SN~l ) (each eigenvalue re
peated as many times as its multiplicity)

a { - Aa) =  {cj = j ( j  +  N  — 2), j  > 0}, (3.116)
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and an orthonormal, complete, closed subset {/*(a)} of eigenfunctions being kth 
order homogeneous harmonic polynomials restricted to S ^ -1 .

Performing the separation of variables in (3.23), we look for eigenfunctions in 
the form

Mv) = M r)fj(?)< (3.ii7)

where f j  is an eigenfunction of A*,

- A  J j  = Cjfj. (3.118)

Substituting (3.117) into (3.23) yields an ODE problem for the radial function 
(j> = <f>l3

Di</> =  A r<p +  |  r<j>' +  (^y^ — )4> =  0. (3.119)

The spectral properties of such operators are well known and, in particular, occur 
in the study of the Cauchy problem for the heat equation with inverse-square 
potentials; see references in [84]. We need to compute the radial parts <j>(r) of 
eigenfunctions. Setting 4> = e_r2/4</>* yields the eigenvalue problem for the adjoint 
operator

DJ0* =  Ar0* -  |  r(<t>')' +  ( | -  %)4>' = 0. (3.120)

Let us show that, for any even j  < k such that

k — j  = 21 with an I > 0, (3.121)

it admits a polynomial eigenfunction. Looking for a solution of (3.120) in the 
form of Rummer’s series

M r )  = Z Z o Ciri+2i, (3.122)

where the extra exponent j  in the terms r J’+2* is due to the singular inverse-square 
potential ^  in (3.120), it is easy to derive the recurrent relation for the expansion 
coefficients

f0r i *  °- (3 ' 123)

It follows from (3.123) that, in the case (3.121), the coefficients Cj+i vanish for all 
i >  I so that there exists an eigenfunction <j>*(r) that is a kth  order polynomial. 
In particular, for j  — k, this eigenfunction is

<Ao(r) =  r k . (3.124)



CHAPTER 3. EVOLUTION COMPLETENESS FOR THE POROUS MEDIUM EQUATION 54

Hence using (3.117), we obtain the eigenfunctions

M v )  = <l>i(\y\)e li,|2/4/ iW ,  j  = k - 2 i, i = o , i , . . . , (3 .1 2 5 )

For j  =  k (i.e., I =  0) we obtain the following special eigenfunction:

i'aiy) =  |y |fce lv|2/4/i(<r). (3.126)

Returning to the branching equation (3.95) with v given by (3.99), we recall 
that each A ip* is a polynomial of the even order 21 — 2 and is an eigenfunction with 
the eigenvalue — |  +  1 . By the orthogonality of eigenfunctions corresponding to 
mutually distinct eigenvalues, the periodic eigenfunctions (3.125) are orthogonal 
to each of these polynomials. The validity of the branching equation (3.95),
(3.99) for general eigenfunctions (3.125) is not straightforward. But due to the 
“maximal” symmetry and changing sign properties of the eigenfunction (3.126), 
the nonlinear orthogonality (branching) condition holds automatically for any 
lower-order polynomials i.e.,

Hence branching always occurs from the linear eigenfunction (3.126) at m  =  1+.
Notice also tha t the first radial eigenfunction for j  =  0 must also satisfy 

conditions (3.127) (from the ODE theory we know that branching occurs for 
j  =  0). Consider briefly another simple example.

3.7.6 k =  4 on the plane

We take into account three eigenfunctions given by (3.28), where we omit the 
normalisation constants,

(3.127)

The radially symmetric eigenfunction is obtained from the linear combination

Ipi + Ip2 + i>3 = ( | |y |4 -  % | 2 +  4)e ly|2/4. (3.128)
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In the polar coordinates (3.111) we next consider the linear combination

+  ^ 2  — "03 =  j^ r4e_lyl2/ 4 cos 4 a +  | ( | r 4 — 2 r 2 +  4)e_lyl2/4. (3.129)

The first term on the right-hand side corresponds to the adjoint eigenfunction 
(3.124) with k = 4 and (3.129) is the Fourier expansion of the eigenfunction 
that consists of two terms cos j a  with j  = 4 and j  =  0 . Obviously, the linear 
eigenfunction

^ 4  =  |y|4e“ ly'2/ 4 cos 4cr

satisfies the branching equation. The corresponding nonlinear eigenfunction pos
sesses a star-shaped support that has twelve vertices, as Figure 3.8(b) shows.

Despite the above perturbation results that are local in m  «  1+, a complete 
description of all the non-radial nonlinear eigenfunctions of the PME in and 
their evolution completeness remain a challenging open problem where new ideas 
and techniques are necessary.



Chapter 4

Spectra of critical exponents in 
nonlinear heat equations w ith  
absorption

The startling truth finally became apparent, and it was this: Num
bers written on restaurant checks within the confines of restaurants 
do not follow the same mathematical laws as numbers written on any 
other pieces of paper in any other parts of the Universe. This single 
statement took the scientific world by storm. So many mathematical 
conferences got held in such good restaurants that many of the finest 
minds of a generation died of obesity and heart failure, and the sci
ence of mathematics was put back by years. - Douglas Adams. Taken 
from “Life, the Universe and Everything.”

In this chapter we extend the PME by considering an absorption term. It has 
been known since the 1980’s that global Z^-solutions of the classical PME with 
absorption ut = Aum — up in RN x R+, with m ,p  > 1, change their large-time 
behaviour at the critical absorption exponent po = m  +  2 /N  (also known as the 
Fujita critical exponent). Work has been done in analysing such behaviour; see 
the surveys and references in the book [50].

We extend these results by showing that, provided the solution u(x,t)  is 
allowed to change sign, there exists an infinite sequence {pk, k > 0 } of critical 
exponents generating a countable subset of different non-self-similar asymptotic 
patterns. These results are extended to the fully nonlinear dual porous medium 
equation with absorption where only the first critical exponent for the DPME

56
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with absorption in R x R+ was known [57].

4.1 Introduction: critical absorption exponents

We describe new types of asymptotic behaviour of global compactly supported 
solutions of the PME with absorption

ut =  A (|u |m-1u) — \u\p~lu in RN x R+ with exponents m  > 1, p >  1, (4.1)

which was studied extensively in the theory of nonlinear degenerate parabolic 
partial differential equations from the beginning of the 1970’s. The PME and 
related degenerate parabolic PDEs were the main models in the theory of free 
boundaries, [32]. Our aim is to introduce a sequence of critical exponents {p =  
Pk? & > 0} for (4.1) corresponding to non-scaling invariant asymptotic behaviour 
as t —»■ oo. Such critical asymptotic phenomena are not exceptional and are a 
common feature for other equations with power nonlinearities. As the second 
example, we extend the results to the fully nonlinear dual PME with absorption

ut =  |A u|m_1Arj — \u\p~lu in R^ x (m > 1 , p > 1). (4.2)

We consider the Cauchy problem with bounded, integrable, compactly sup
ported initial data u. It is known that such nonlinear heat equations admit solu
tions that are unique, global in time, and vanish as t -» oo with rates depending 
on the exponents m, p  and the space dimension N. We refer to Kalashnikov’s 
survey [58], DiBenedetto’s book [27] and [60], [63], [10] for fully nonlinear equa
tions.

Concerning the precise asymptotic behaviour of global solutions, a complete 
classification was achieved in the 1980-90’s for nonnegative solutions of the PME 
with absorption (4.1). It was proved that p0 = m + 2 /N  is the critical exponent 
in the sense that (see key references in [16], [47], [61] and Chapt. 2 in [78]):

(I) In the subcritical range p E (l,Po) the asymptotic behaviour of u(x , t) >  0 
as t —> oo is governed by the unique very singular self-similar solution;

( i i )  In the supercritical range p > Po the solution converges as t —> oo to the 
self-similar Zel’dovich - Kompaneetz - Barenblatt (ZKB) solution of the PME: 
ut =  Aum\ and

( h i )  In the critical case p = Po the asymptotic behaviour is given by a unique 
ZKB solution with an extra In t scaling in u and x  (see [47] and earlier references
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therein).
The main goal of this chapter is to show that the equations (4.1) and (4.2) 

admit a monotone sequence of critical exponents {pk}, of which po is the first. 
These critical exponents will be shown to generate special asymptotic patterns 
in the Cauchy problem with initial data u that changes sign. Therefore, the 
critical behaviour at p = Pk for any k > 1 cannot be observed in the class of 
nonnegative solutions. It is worth mentioning that critical phenomena are also of 
crucial importance for reaction-diffusion equations with source terms + |ii|p_1w, 
where po, known as the Fujita critical exponent, stays the same and affects various 
blow-up and stability properties; see references in Chapt. 4 of [78].

Concerning free-boundaries, we will show that our patterns for (4.1) at p = Pk 
exhibit the following spectrum of asymptotic behaviour as t —> oo:

|a*(t)| =  C f1/2(flnf)-<m- 1){‘/2(l +  o(l)) for fc =  0 , l , 2 , . . . ,  (4.3)

with a positive sequence of exponents {Sk =  Po ~  Ajt}, where {A*;} are the corre
sponding “nonlinear” eigenvalues and po =  N /[N (m  — 1) +  2]

Similar logarithmically perturbed solutions occur for the semilinear heat equa
tion (m =  1)

ut = Au — \u\p~lu in M.n  x  R+, p > 1 (4.4)

(obviously, the free-boundary phenomena are not exhibited). In this case, the 
sequence of critical exponents can be calculated explicitly (see (4.9) below):

pfc =  l  +  2/(fc +  Ar), A; =  0 ,1 ,2 , . . .  , (4.5)

and is connected with the discrete spectrum of the linear differential operator 
(associated with the heat equation) in a weighted L2-space

B = A +  i</ .V +  y / .  (4.6)

Moreover, similar effects are observed for higher order semilinear equations

ut =  —(—A )lu — \u\p~lu with any integer I > 2,

where po =  1 +  2l /N .  For nonlinear second order diffusion operators, such a con
nection with spectral theory of linear operators is not available to us, though we 
show how a discrete subset of asymptotic patterns ( “nonlinear eigenfunctions”)
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of the purely diffusive equations generate the corresponding sequence of critical 
exponents in reaction-absorption equations (4.1) and (4.2). It is convenient to 
begin with the semilinear equation (4.4) and well established spectral properties 
of the linear operator (4.6). We next extend these ideas to quasilinear and fully 
nonlinear operators using different mathematical tools.

4.2 Critical exponents in the semilinear heat 
equation with absorption

4.2.1 Rescaled equations and a sequence of critical expo
nents

We show how the discrete spectrum of the linear operator B in (4.6) is associated 
with critical phenomena for the semilinear equation (4.4). Bearing in mind the 
typical asymptotic behaviour in the rescaled heat equation (see (3.33), where 
k =  0 ,1 ,. . .)  we perform the following rescaling in (4.4):

u(x, t) =  t~(k+N^ 2v(y, t) ,  y = x / t 1/2, r  =  ln t : (l,oo) —> R+. (4.7)

The rescaled solution v(y ,r)  satisfies the perturbed equation

vT =  (B +  ^ I ) v  -  e~lkTg(v), g(v) = \v\p~lv, 7 * =  i ( p  -  l)(k  +  AT) -  1 . (4.8)

Setting 7 fc =  0  gives us a sequence {p^} of critical exponents:

7 fc =  0 = > P  =  P*: =  l  +  2/(fc +  N).  (4.9)

In these critical cases we arrive at the autonomous parabolic equation

k
vT =  Bjtv-g (v ) ,  where B k = B +  - I ,

(41 °)
with spectrum cr(Bfc) =  {Ajj =  - ( k  — \(3\)}

£

We consider sufficiently small initial data with exponential decay at infinity: 
lvo(y)| ^  ce-a lyl2 in RN with c, a positive and vq € H 2(RN). Let 0 +(v) = 
(u (t) , t > 0} be the corresponding global forward orbit given by the rescaled 
equation (4.10). The linear operator B with the discrete spectrum and a single
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simple eigenvalue Ao with Re Ao =  0, is sectorial in L2p(RN ) and generates a strong 
continuous analytic semigroup {eBT, r  >  0}. The asymptotic behaviour with a 
finite-dimensional centre manifold is covered by the invariant manifold theory in 
[68], Chapt. 9.

By regularity theory for parabolic partial differential equations [29, 33], v(y, r )  

is sufficiently smooth for r  > 0. In view of the completeness and orthonormality
of eigenfunctions, we use the convergent eigenfunction expansion of the solution,

"(j/ .t ) =  5 ^ ais(r )V’/j(y), (4-H)

where the expansion coefficients satisfy the DS

dp =  X ^a p  -  {g{v)^p)p for any 0. (4.12)

4.2.2 Centre manifold behaviour and a generating alge
braic system

We now look for a solution u(*,r) with the behaviour, for r  ^  1 on the centre 
manifold known to be tangent to the centre subspace of the linearised operator 
Bfc =  B  + 11. Such a centre subspace asymptotic dominance assumes that in the 
eigenfunction expansion of v(y, r) of the form (3.32), the leading term as r  —► oo 
is given by

v(r)  =  o,p (t )4>0 +  . . . ,  (4.13)
\p\=k

where we omit higher order terms. Then the expansion coefficients satisfy a 
perturbed finite-order DS

ap = -(g(^2api>p),'ipp)p + ---> \P\ = k. (4.14)

We are interested in looking for asymptotic solutions of (4.14) of the form

v ( t )  = ak{r)(j)k +  o(ajt(r)) with an eigenfunction 4>k =  E  b ^ ,  (4.15)
\ y \ = k

where the leading term consists of functions of the same order of decay as t  —> oo. 
Here d k ( r )  is a single unknown function to be determined together with the 
coefficients {bp} which are not arbitrary (unlike the linear expansion (3.33)). 
Substituting (4.15) into the equation (4.10) and multiplying by 'ipp in L2(RN), we
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have that the coefficients {fyg} satisfy the following generating algebraic system 
(GAS):

= bP for a11 1̂ 1 =  (4-16)

which characterises a subset of centre manifold patterns of the form (4.15). Then
Qjfc(r) is determined from the DS

flfc =  -g(a>k)[ 1 +  o(l)] for r  »  1. (4.17)

Integrating (4.17) (as a standard ordinary differential equation) yields decaying 
solutions with the behaviour

a>k(T) =  ±[(p — 1)t]-1^ p-1)(1 +  o(l)) —> 0 as t  —> 0 0 . (4-18)

In terms of the original (x, t, u)-variables, this behaviour takes the form of a 
logarithmically perturbed linearised pattern as t —> 00

u(x ,t)  =  ± C k(t\nt)~(k+N)/2 [4>k ( x / t l/2) +  o(l)] (4.19)

with Ck =  [2/(A: +  tv)]_^ +7V̂ 2. Let us return to the solubility of the GAS (4.16). 
In general, for arbitrary k > 1 and in sufficiently large dimensions N  > 1, it is a 
complex nonlinear algebraic system of i/* equations with unknowns {fi,\/3\ = k} 
(i/k being the number of distinct multi-indices of the length k). A complete 
description of a (countable) subset of possible distinct solutions is unknown. We 
only consider important particular examples.

The GAS is easily solved for the first critical exponent corresponding to k =  0 
where the centre subspace E c = Span{/} (where /  =  xpo) of the operator B 0 =  B 
is one-dimensional. Then </>0 =  60/ ,  where the constant b0 0 is obtained from 
the equation (4.16):

b0 =  {g(b0f ) ,  /> , s  \b0r \ ( \ f r \  1) , =► 60 = ± ( i / r \  (4 .2 0 )

This gives a unique stable asymptotic pattern on the centre manifold (4.19). Such 
a stable generic asymptotic behaviour has been known about for a long time; see
[45], [52] and Chapter 2 in [78]. In [15], [16] such asymptotic behaviour was
established by using the perturbation theory of linear self-adjoint operators.

Consider the more delicate case k > 0 that corresponds to the higher order 
critical exponents p = Pk, where B* has nontrivial unstable subspace E u =
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Span{t/,/3, \/3\ < k}  and hence the asymptotic behaviour on the centre manifold 
is not stable (though exists).
O n e-d im en sio n a l geom etry . If N  =  1, then for any k = 1 , 2 , . . the centre 
subspace E c = S p an {^}  is one-dimensional and the GAS (4.16) always gives a 
suitable solution

4>k =  bkTpk, with bk =  ±(\'ipk\p+\  l )~ 1/(p_1). (4.21)

M u lti-d im en sio n a l geom etry . For N  > 1, we first restrict our attention 
to the radially symmetric case and fix a unique radial eigenfunction in (4.15), 
<i>k{?) =  bkij)k{r) with r = \y\. It exists for any even k > 0 and is an eigenfunction 
of the ordinary differential operator

+ i t f /r  + j4> = — ip; (4-22)

see [81]. In the radial setting E c =  Span{xpk} is one-dimensional, the GAS (4.16) 
reduces to a single equation and, similar to (4.20), (4.21), we arrive at a unique 
asymptotic pattern with the constant bk:

<t>k(r) = bkipk(r) = > b k = ± ( | ^ | p+1, l ) " 1/(p_1), k = 2 ,4 , . . .  . (4.23)

Let us show tha t there exist non-symmetric patterns in RN . Let k = 1. For 
convenience set 0 1 =  2-1/2 where f j  =  d f /d y j  where /  =  ipo is the
rescaled Gaussian kernel. We now arrive at the GAS

2 -(p+1)/2( f l £ > / )'), { .)p = bh i =  1 ,2 , . . . ,  jV. (4.24)

As a first solution, we choose equal coefficients, bj = bo for all j . Then (4.24) 
reduces to a single equation for &o,

where i is arbitrary by symmetry. On the other hand there exists another solution 
{bj} =  {&i, 0 , . . . ,  0}. Indeed, the system (4.24) reduces to the first equation for 
^1,2 -(p+1)/2|^1|p-1 J  p |/1|p+1 =  1. It is important that in all cases the leading term 
of the asymptotic behaviour of the critical asymptotic patterns (4.19) does not 
depend on the initial data.
R em ark : a  c o u n tab le  su b se t o f ex p o n en tia lly  decay ing  p a tte rn s  on th e
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s ta b le  m an ifo ld . Equation (4.8) can admit orbits on the infinite-dimensional 
stable manifold of the origin, which can be seen by the eigenfunction expansion 
of solutions. The linear diagonal structure of the system (4.12) shows that if the 
nonlinear term g forms an exponentially decaying perturbation as r  —> oo (unlike 
the centre manifold behaviour studied above), then there exist patterns with the 
following exponential decay as r  —¥ oo:

T) = CeXpT( ^ ( y )  +  0(!))5 C = C(u) ±  0, (4.25)

where 'ipp is a suitable eigenfunction with \p  < 0 for \/3\ > 0. Such results are 
well known in linear perturbation theory; see [33], p. 226 and [23].

4.3 Discrete spectra and eigenfunctions for non
linear operators

We now return to the nonlinear parabolic equations (4.1) and (4.2). Following 
the same lines as in the semilinear case, we first study the asymptotic behaviour 
for the purely diffusive equations: the PME

ut = A(|w|m-1w) in Rn  x  R+, m  > 1, (4-26)

and the dual PME

vt = |Au|m_1Av in Rn  x  R+, m >  1. (4.27)

We restrict our attention to a class of bounded compactly supported initial data.

4.3.1 D iscrete spectrum  and similarity patterns for the 
PM E

The PME (4.26) is invariant under various groups of scaling transformations and 
admits self-similar solutions that will be written in the following form:

u(x, t) = y = x/t? ,  (4.28)

where no = N /[N (m  — 1) 4- 2] and (3 =  [1 -I- (m — 1)(A — yo)]/2. In the linear 
case m  = 1 we have ft = 1/2, //0 =  N /2  and these similarity solutions reduce
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to (3.34) with A =  Ajt being the spectrum (3.27). Substituting (4.28) into (4.26) 
yields that ip = ip (y) is a weak solution of the following nonlinear eigenvalue 
problem for the quasilinear elliptic equation

B {ip) =  A(|^|m~V) + PVip - y + p0ip = Xip in RN,
(4.29)

iP (y )^  0 .

Using the results of the phase-plane analysis of the ODE (4.29), we present 
two asymptotics of eigenfunctions at singular points. Let yo = supsupp ipk. Then

ipk(y) = ± A k(y0 -  y)1/{m~l){ 1 +  o(l)) (4.30)

as y -» y^, A k = [(m -  1 )A /m ]1/(m_1).

If ipk(y) vanishes at an internal point yi of supp^fc, then the asymptotics be
haviour is

ipk(y) = B\yi -  y\™~l {yi -  y){ 1 +  o(l)) as y -> yu  (4.31)

where 5 ^  0 is a constant. Actually, (4.30) is the limit case of (4.31) with B  = 0.
Local asymptotic properties of radial eigenfunctions ipk(y) with y = \y\ > 0 

are the same as for N  = 1 and (4.30) and (4.31) hold in the new notation.

4.3.2 D iscrete spectrum  and eigenfunctions for the dual 
PM E

We begin with the one-dimensional case N  = 1 where the transformation of (4.26) 
into the dual PME (4.27) is straightforward. Performing one integration yields 
the p-Laplacian equation in radially symmetric geometry

/ X

u(s,t) ds ==> wt =  (\wx\m~lwx)x , (4.32)
■(X)

and a second integration leads to the dual PME in one dimension

v(x, t) = f  w(s, t) ds vt = (4.33)
J — oo

We then translate the subset of similarity patterns for the PME from Lemma 3.2 
to the dual PME (cf. [11]) and obtain a unique family of nonnegative compactly
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supported similarity solutions of (4.33) for any k — 0 ,1 ,2 , . . .

v(x,t)  =  tAk~^°^k(y), y =  x / t Pk, (4.34)

A k =  ^k+ 2 +  2/^+2 = —(m — l)/io +  1 +  mAjk+2, (4.35)

* * (y )=  [ V r  lfc+2(OdCdC, (4.36)
«/ — oo J  — oo

where eigenfunctions {vÊ } satisfy the nonlinear eigenvalue problem

B ($ ) =  +  pm'y +  ^  =  Atf in R, G Cg(R), $  £  0, (4.37)

with as in (4.28). The transformation (4.36) on first two similarity PME profiles ipo and ipi yields unbounded and non-compactly supported functions respectively, 
which do not belong to our functional class. We next classify the spectrum of 
similarity solutions (4.34). It follows that /3k > 0 for k > 0.

L em m a 4.1 Let m >  1 and N  =  1. Then the spectrum cr(B) of operator (4.37) 
consists of a strictly decreasing sequence of negative eigenvalues

Ak =  2 /(m  +  1) +  mAjt+2 I  - 2 /(m 2 -  1), k = 0 , 1 , 2 , . . . ,  (4.38)

so that problem (4.37) has a compactly supported C2 solution i f  and only if,
A =  A k for some integer k > 0, which is the number of sign changes of ̂ k(y).

It follows from (4.36) that =  ipk + 2  has precisely k +  2 sign changes in R. 
The standard Sturmian property of eigenfunctions is proved below.

P ro p o s itio n  4.2 $ k has k sign changes.

Proof. Recall tha t tyk has k +  2 isolated inflection points. We prove the result in 
three steps.

Step 1: For £ > 0, 4/* has exactly one sign change between any two neigh
bouring inflection points. Suppose not. Then there may exist two neighbouring 
inflection points, say ^ ( a ) ,  Wk(b), such that either ^ ( f )  > 0 or 4 ^ (0  < 0 for 
all £ G (a, b). (We note that an inflection point can only occur when ^'k < 0 
(respectively VÊ > 0) if tyk > 0 (respectively ^ k < 0). This follows from the 
ODE for ^  given by 3 k(^k)  =  B ( ^ fc) — Ak^ k =  0.) When 4^ =  0 we have that

(Afc -  Ato)tyfc(f) =  P k ^ k{0» where A k -  fi0 < 0, (5k > 0. (4.39)
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We assume th a t \I/fc, > 0 on (a, b) and thus tha t 4/'*. is an increasing function 
on this interval (all other combinations of signs of 4^ and ^  require only slight 
variations to the proof below). For some s > 0, there exists intervals (a — e,a), 
(b, b+e) such that < 0, and thus 'F'k is a decreasing function on these intervals. 
Since ty'k < 0 at any inflection point we have that < 0 for £ € (a — e, b +  e).
Thus at 6, 'FJ. achieves a local maximum whilst it is still negative which is a 
violation of the Maximum Principle. Thus, 4/k must have at least one sign change 
between two neighbouring inflection points. The proof that it has at most one 
sign change is a direct consequence of the fact tha t is a convex function on 
(a, b). A similar proof yields that 4^ must have exactly one sign change between 
any two neighbouring inflection points in the domain £ < 0.

Step 2: I f  fc is a symmetric function then it has exactly k sign changes. 
Since k is symmetric and k is even, we know by symmetry that ^k  has k / 2 +  1 
inflection points in the domain £ > 0. By Step 1, VP* has exactly k/2  sign changes 
in the domain £ >  0, and thus k sign changes overall.

Step 3: I f ^ k  is an anti-symmetric function then it has exactly k sign changes. 
Since 'Fk is anti-symmetric, k is odd and we know that * has [fc/2 +  lJ inflection 
points in the domain £ > 0 and one inflection point at f  =  0. (Here [-J denotes 
the floor function for real numbers: [&J is the largest integer j  such that j  < k.) 
Thus it must have \_k/2\ sign changes in the domain £ > 0 by step 1 and thus k 
sign changes overall. □

The one-parameter families of eigenfunctions take the form

^k{y\h)  =  &\I/fc(y/&(m-1^ 2m) for any b > 0. (4.40)

Instead of (4.30) and (4.31) we obtain the following asymptotics of eigenfunctions:

y k{y) =  ± A k(y0 -  y)s( 1 +  o(l)) as y -» % , 5 = > 2, (4.41)

M v )  = -% i -  y |(m+1)/m(l +  o(l)) as y ->■ yu  (4.42)

where Ak = [PkVo^1-m(^ — l ) - ”1]1̂ ”1-1) and 5  ^  0 is an arbitrary constant. 
These expansions show that k £ C 2+a are smooth, classical solutions of the 
ODE (4.37).
R ad ia l e ig en fu n ctio n s in  RN . In the multi-dimensional case N  > 1 the dual 
PME (4.27) is related to (4.26) by the change u =  — Av. Let T denote the
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fundamental solution of Laplace’s operator in

r (x )  =  ;v(2 - V k J x|2~W for N  - 3’ r(x ) =  i ln |x| for N  = 2’

where is the volume of the unit ball in R . Then we have v — — T *u,  and 
Lemma 3.3 gives a unique family of similarity solutions (4.34) of the dual PME 
corresponding to radially symmetric profiles

* k(y) = -  [  T ( y -  0 ^ +2(0  df, k = 0 , 2 , 4 , . . . ,  (4.43)
jRN

where each function is a classical radial C 2 solution of the elliptic eigenvalue 
problem

B (tf) =  | A ^ r _1A ^  +  0 W  -y  + p =  Atf in RN,
(4.44)

Similar to the case iV =  1, for ./V > 3 this transformation of the first radial 
profile ipQ yields a bounded but not compactly supported pattern. For N  = 2 the 
transformation of similarity solutions (4.28) takes the form

v(x, t) = f t  In*
2ir [  ^ ( f ) d ( +  [  r ( y - f ) ^ ( 0 d f

J r 2 J r .2
(4.45)

and therefore for k = 0, where f  'ipo > 0, it does not belong to our functional 
class. From Lemma 3.3 we obtain the following subset of similarity solutions and 
again discover that fit > 0 for k > 0.

L em m a 4.3 Let m  > 1 and N  > 1. Then in radial geometry, operator (4.44) 
has a strictly decreasing sequence of negative eigenvalues

Ak =  N ( m  -  1) + 2 +mA‘+2 ^ (m -  i)[jv(m -  1) + 2]’ = °>2’4-''' ’ (4'46)

so that problem (4.44) has a compactly supported, radially symmetric solution if, 
and only if, A =  A*, and then has exactly k sign changes in R+.

The proof tha t these eigenfunctions satisfy the Sturmian zero property is 
similar to that in Proposition 4.2. The scalings (4.40) determine one-parameter 
families of nonlinear radial eigenfunctions and the asymptotics (4.41) and (4.42) 
remain valid in terms of the radial variable y — \y\.
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4.4 Critical asymptotic behaviour for the PME 
with absorption

Using the above “nonlinear spectral analysis” of operator (4.29), similar to the 
semilinear case in Section 4.2, we study the critical asymptotic behaviour for 
the PME with absorption (4.1). According to (4.28), we introduce the rescaled 
variables (cf. (4.7))

u(x, t) =  tXk~fi°v(y, r ) , y = x / t ,3k, T = \nt, (4.47)

to get the following rescaled equation:

vT = B k(v) -  e~lkTg{v), j k = p(p0 -  Xk) -  (1 +  p0 -  A*), (4.48)

where g(v) =  |u|p-1u, =  B — AkI  and B is as in (4.29). Similar to (4.9) we
obtain a sequence of critical exponents generated by the nonlinear spectrum er(B)

1k = 0 = > p  = pk = l + I / f a ,  -  A*), (4.49)

where k =  0 , 1 ,2 , . . .  for N  =  1 (Lemma 3.2) and k =  0 , 2 ,4 , . . .  for N  > 1 
(Lemma 3.3). It follows from (3.43) that

pk 4.1 +  l / ( m  — 1) as k —> oo. (4.50)

Hence, > 1 if m  > 1 unlike the linear case (4.5), where = 1 due to the 
fact th a t the spectrum (3.27) of the linear self-adjoint operator is unbounded.

In the critical case p = pk we arrive at the autonomous rescaled equation (cf. 
(4.10))

vr = B k{v) -  g(v), T »  1. (4.51)

We will describe a special asymptotic behaviour admitted by equation (4.51), 
where

u ( - , r ) —» 0, not exponentially fast, as r  —► oo. (4.52)

By the construction of the nonlinear eigenfunctions, B k(ipk) =  0) and there
fore, similar to the linear expansion case (4.13), using the scaling invariance 
(3.40) we will study the asymptotic behaviour close to the one-dimensional man
ifold W W  =  { ± ,ipk(y; 6), b > 0}. The existence of a free parameter b implies the
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possibility of the orbits moving along the curve (formally b = b{r) for r  1). 
In order to describe such “slow motion” of these orbits close to W^k\  given a 
solution v (y , r )  of equation (4.51) and an eigenfunction 'ipk(y), we perform an 
extra rescaling (as suggested by (3.40))

v { y , T) — b{T)w (£iT)i f  =  2 //^ (m _1)/2( t ) ,  with a positive function 6 ( t ) ,  (4.53) 

b(r) -» 0, not exponentially fast, as r  —> oo, (4.54)

to be determined in such a way that the new rescaled orbit ( u; ( - , t ) }  stabilises as 
r  —>• oo to a non-trivial limit equilibrium. The assumption (4.54) is essential (we 
will show tha t there exist many “stable manifold patterns” with b(r) decaying 
exponentially).

In view of the scaling invariance (3.40), w satisfies an equation with a non- 
autonomous perturbation

wT = B k(w) +  q ( T ) C w - b p~1(T)g(w), C  =  • V -  /, q{r) =  (4.55)
b[r)

where i \  =  (m — l)/2. If (4.54) holds and q{r) -» 0 as r  -* oo, then (4.55) is an 
asymptotically small perturbation of the autonomous equation

wT =  B k(w) (4.56)

admitting a one-parameter family (3.40) of equilibria. We will show that for a 
particular choice of the scaling function b(r) there exists a unique eigenfunction 
?/>*: such that

w ( - , t ) —> ipk as t  —> oo. (4.57)

In one dimension or in radial geometry in RN, the asymptotic analysis of the per
turbed equation (4.55) for arbitrary k is based on the classical theory of singular 
ordinary differential operators [70].

4.4.1 One-dim ensional case

We consider a class of symmetric (anti-symmetric) solutions u(x ,t)  for even (odd) 
k and choose

^(m-i)/2(r ) =  SUp supp?;(-,T), t  1. (4.58)
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Regularity of interfaces for the PME with reaction-absorption terms are well 
known, see [32], [58], and [12], [77] for solutions changing sign. Hence, we may 
assume tha t b(r) is sufficiently smooth for r  1. Note that equation (4.55) 
is understood in the weak sense so that actually at this stage we do not need 
C'1-regularity of the interfaces. Then (4.58) implies that

We first treat two particular cases.
E x am p le  1: m ass conservation  for k =  0. The analysis becomes easier for

Following [45] and [47], integrating equation (4.55) over R^ we obtain that the 
mass Mq(t)  =  f  w satisfies

Assuming tha t (4.57) holds for the unique ipo satisfying (4.60), we have that

where £i = — J  C'tpo > 0 and e2 =  f  g{ipo) > 0. Since the mass M ( t )  of a

not integrable on (1, oo) by (4.54), we have to have that b(r) satisfies the “ODE” 
tha t corresponds to neglecting M 1 (see proof in [47])

b =  - b p(e2/£i){ 1 +  o(l)) = >  6(r) =  C r  1/(p x)(l +  o(l)) for r  >  1, (4.63)

where C  =  [(p — l ^ A i ] -1^ -1^
E x am p le  2: m o m en tu m  conservation  for k  =  1. We have the momentum 
conservation /£ B  i (w) =  0 when k =  1. Therefore, for the momentum M ( t )  =  

f  we obtain equation (4.62), where £\ = f  £Ci/>i and e2 — f  and
finally the asymptotic behaviour (4.63), which is generic for such anti-symmetric 
solutions of zero mass; see proof in [46].

u / (± l , r )  = 0  and supp?/;(•, r)  C [—1,1] for r  1. (4.59)

Using (3.40), we choose the eigenfunction !/>*(£) such that

SUPP 'Ipk = [“ I, I]- (4.60)

k = 0 when the operator B 0 =  B admits the mass conservation, f  Bo {w)d£ = 0.

(4.61)

M ' =  - £ i y ( l  +  o(l)) -  £2bp X(1 +  o(l)) for r  »  1, (4-62)
o

compact orbit is uniformly bounded and nonzero and the first perturbation b/b is
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A rb itr a ry  k  >  2. No explicit conservation laws for the rescaled operators 
apply and it seems that an independent asymptotic ODE for the scaling function 
b(r) in (4.53) cannot be derived. Therefore, we have to study the behaviour of 
b(r) as r  —y oo together with the rate of convergence in (4.57).

We begin with the “linearisation” by setting

w (t,T )  = ipk(£) + Y(£,T)  f o r r » l ,  suppT(- , r )  C [-1 ,1], (4.64)

leading to the perturbed equation

Yr = A kY  + q {T)Px -  V - \ t )P2 + q (r)C Y  + D (F ) -  6',- 1(r)E (y ), (4.65)

with A t  =  B U « .  A (?) =  c * ( a  P2(0 = g (M S ))

and the nonlinear perturbations

D(V) =  B +  Y ) ~  B'k(tpk)Y, E(K) =  g ty t  + Y )  -  g(iPk), (4.66)

which are quadratic in Y  as Y  —> 0 in the corresponding metrics. We need to 
describe special asymptotic behaviour of global uniformly bounded solutions of 
(4.65) satisfying

Y ( - , t ) —> 0 not exponentially fast as r  —> oo. (4-67)

We now write down the Frechet derivative Ajt in Sturm-Liouville form

A kY  =  m ( |* |m_T ) "  +  A n  +  (ho -  Ak)Y  ee - \(pY ') ' -  qY], (4.68)
P

with p(f) =  |V<fc(U|2(m _1)exP { „  / ( 4 . 6 9 )

P(0 = TO|^(^j|m-i and = P(0[At ~ H o ~  m(hM?)r-1)"]-

We next need spectral properties of this symmetric singular ordinary differential 
operator on the bounded interval (—1,1). It is symmetric relative to the inner 
product (•, ')p in the weighted space L2(I) with the induced norm denoted by 
|| • ||p. It follows from (4.31) that 1 /p(£) is locally integrable, 1/p G L*, in a 
neighbourhood of any internal point E (—1,1), where p(£) vanishes. Hence, 
A* has only two singular points £ =  ±1; see [70], Chapter V. It suffices to consider
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? =  1. Let s = 1 — £ > 0. Then the operator A* takes the following form

A kY  ~  [(s*Y')' -  s ^ Y ] .

We use the asymptotics (4.30) and classical asymptotic ordinary differential equa
tion theory to get that

p(s) ~  sK and p(s), q(s) ~  s'1-1, (4-70)

where k  =  (2m — 3)/(m  — 1). In order to get the deficiency indices of A*, we fix 
A G C\M and, using (4.70), solve equation the A kY  =  AY  by standard asymptotic 
ordinary differential equation techniques to get two linearly independent solutions 
as s —> 0 (the term Ay is negligible)

Y\ =  1 +  O(s) (Y, Y '  are bounded) and ^

y2 ~  s1-K, m / 2 ;  Y2 ~ l n s ,  m =  2.

Since y2 G Lj; and Yi G L2p if, and only if, k > 0, i.e., m  > 3/2 we have that 
the deficiency indices are (2,2) if m  > 3/2 (f =  1 is in the limit-circle case of 
singular end-point) and are (1,1) if m G (1,3/2] (the limit-point case). Therefore, 
for m > 3/2 any real self-adjoint extension of A k has a discrete spectrum, [70], 
p. 84. For m  G (1,3/2] a similar result follows from the L^-integrability of the 
kernel of the inverse operator; see examples in [70], Section 23. One can see, 
by a direct construction via the variation of constants formula, that the inverse 
operator (A^ +  e l)~ l : L2 —> L2 for some e < 0 has a Hilbert-Schmidt kernel; 
see [70], p. 88. We summarise these results in the following Proposition by using 
Naimark’s theory of self-adjoint extensions [70, §18 and §19]

P ro p o sitio n  4.4 (i) I fm  G (1,3/2], then operator (4.68) in L 2(I) has a discrete 
spectrum cr(Ak) = {Ajfc\  j  =  0,1,2, . . .}  which is a strictly monotone decreasing 
sequence of eigenvalues. The corresponding eigenfunctions = {ipjk^} form an 
orthonormal basis in L 2(I).
(ii) I f  m  6 (3/2,2), then the same is true in the class of functions satisfying

y ( ± l )  =  0. (4.72)
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(Hi) I f m > 2 ,  then the same is true with the condition

y(£) is bounded as £ ±1. (4.73)

(iv) For m  G (1,2] the centre subspace E c of such self-adjoint extensions Ak is 
one-dimensional and is spanned by the eigenfunction

=  cfc4 ;M £ ;b) =  -CkC'ipkiZ) with \ {k ] = 0, (4.74)
CIO 6=1

where Ck > 0 is a normalisation constant.

In cases (i) - (iii) of Proposition 4.4, suitable choices of real self-adjoint exten
sions are governed by choosing the corresponding symmetric, unitary 2 x 2  matrix 
[u] tha t describes the singularity behaviour of admitted solutions as f  —» ±1; [70], 
pp. 74-81. Indeed, in all the cases we deal with the unique, extremal Friedrichs 
self-adjoint extension of A* [13] obtained by using the positive quadratic form 
(Cw ,w )p with C =  — A k +  c/, c »  1, in completing Cq°((—1,1)) (m < 2) via 
the induced norm. For m > 2, we take space 1,1)) of functions which are
constant for f  « ± 1 .  This corresponds to the Neumann-type boundary condition 
(4.73). The eigenfunction (4.74) is obtained by differentiating equation (4.29) 
with respect to b and using (3.40). By (4.68) this yields A k ip^  — 0 where ip ^  
satisfies necessary growth conditions at singular endpoints, e.g. (4.72) or (4.73).

We now prove that ip ^  has precisely k zeros on I  so that it is kth. eigenfunction 
by Sturm ’s Theorem.

P ro p o s itio n  4.5 ip ^  has exactly k zeros.

Proof. We know tha t has exactly k zeros (Lemma 3.2). Take an interval 
[c,d] such tha t tpk > 0 on (c,d), ipk{c) =  ip'k(d) =  0 and ipk{£) = 0 for exactly 
one £ G (c, d). We prove that must also have exactly one zero in (c, d). (On 
an interval in which iplk < 0 put ipk =  —̂ k in the proof below to gain a similar 
contradiction.)

When ipk = 0 we have, by (4.74), that sign(^>^) =  s ig n (^ ) . This shows 
tha t i p ^  has at least one zero in [c,d] since ipk{c) < 0 and ipk(d) > 0 by the 
Maximum Principle. Hence, it remains to prove that ip ^  can have at most one 

zero in (c, d). We do this by examining the sign of (ipkk̂  at a zero of ipkk\  Now,
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for f  € (c, d), substituting for xpk using Bkiipk) =  0 yields

(*>Y _  m  ~  1 c.,.»

f (m — 3) (/ m — 1 
-  -Ck < -  — ?

( X k - t i o W - P k W
m\ V V  \

(4.75)

At any zero f0 of 'lPk^ we have that

(m -  1)t/4(£o)6  =  2^fc(fo)- (4.76)

We now have two distinct cases to consider.
Case (i): £0 /  0- Substituting for xp'k in (4.75) using (4.76) yields

( t f ’) (?o) =
(m -  3)a (m -  l)^0(Afc -  Mo)a aA£o 2a
(ra — 1)£0 2 m |a |m-1 ra |a |m_1 £oJ

r4.77)
where a =  ^>(£o)- Noting that A* < 0, (3k > 0 by Lemma 3.2 and that at a zero of 
xp̂k \  sign (a) =  sign (£o) by equation (4.76) we have that (m — 3)a/(m — l)£o < 
2a/£o, (m — l)^o(Xk —/J’o)a/2m\a\m~1 < 0 and a(3k€o/m\a\m~l > 0 if m > 1. 
Thus, at any zero £o € (c, d) of xp^ we know that (xpkk^  is positive. Hence, 
there can be only one. See Figure 4.1.

Case (ii): £o =  0- We have shown that at any other zero £i of xp^ the 
gradient must be positive so a second zero clearly cannot exist. □

Figure 4.1: The zero marked cannot occur since the gradient of xp^ at this 
point is negative.
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A sy m p to tic  p a t te rn s .  It follows from the completeness of the subset of 
eigenfunctions in L2p(I) that

L2p{I) = E u ® E c ® E s, where (4.78)

E u = Span{V>ifc), . . . ,  E c =  S p an {^ fc)}, E s =  S p a n { ^ 15 ^ + 2, .. •}•

Using Proposition 4.4 and (4.59) we get the convergent eigenfunction expansion 
of the bounded, continuous, weak solution

Y (£>T) = ’% 2aA T)'l’jk\Z)-  (4-79)

The expansion coefficients {aj(r)} satisfy the infinite-dimensional dynamical sys
tem obtained by substituting (4.79) into (4.65) and multiplying by in L2(I):

a, = + 9(r)(Pi,V'f)L -  bp_1(T)(7:>2, V’f ’L + Qir){CY,ilif))l,
+ {D (Y ),xp f))p - V ’- 1( T ) C E ( Y ) , ^ \ ,  j  = 0 , 1 , 2 , . . . .  (4.80)

By the PME regularity theory [58], [27], we may assume that (4.67) holds in 
L 2(I) and in H 2(I) and the expansion coefficients are uniformly small:

l|V (-,r)||J =  X ) ai ( r ) -*■ 0 as t -¥  oo. (4.81)

We are interested in the critical asymptotic behaviour corresponding to the 
evolution close to the centre subspace of A^, so that we exclude both the unsta
ble and stable exponentially decaying patterns. Unlike the semilinear equation 
in Section 4.2, in the case of the quasilinear parabolic equation (4.65) with the 
degenerate singular linear operator A*, we do not know that a centre manifold 
exists and we cannot use a standard invariant manifold theory; cf. [68] and 
[74]. Moreover, to our knowledge, for the case of singular operators like (4.68) 
with degenerate non-constant coefficients, the only known rigorous result is An- 
genent’s analysis [71] of the rate of convergence to the ZKB-profiles for the PME 
(i.e., for equation like (4.55) without non-autonomous perturbations), where In t- 
perturbations were shown to exist (but actual convergence of the asymptotic 
series was not achieved).

Therefore we perform further asymptotic analysis under the assumption of 
centre subspace dominance, assuming that the behaviour for r  1 of the A:th
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coefficient is dominant in the sense that

Y{t ) =  a ^ r ) ^  +  o(ajb(r)) as r  ->> oo (4.82)

uniformly on compact subsets and in H 2p. Under this assumption, performing 
necessary expansions on the right-hand side of (4.4.1), we obtain the following 
system:

b b
&j =  -  S i j -  -  e2,]V‘~l +  A ,a l +  B ja \ +  Cjak-

+Dj akV‘~x + 0(ajfc(6')_1 +  a\)), (4.83)

e2,j = (g(i>k) , ^ h))p,

A i  =  \ m im  ~  1)([l^ |m_3V'it(tf))2]",’0 f >)p, Cj  = (Cipl£ \ r p f ))p,

B j  = ^ m ( m  -  1 )(m -  2){[\ipk\m~3(iplf ))3]", ^ k))p, D j  = > 0.

Using asymptotics (4.30) one can see that all the expansion coefficients above are 
finite if m  € (1,3/2). Roughly speaking, this means that the expansion techniques 
apply if the PME operator is not “very nonlinear” . Such a restriction is natural 
when dealing with weak solutions, where, in general, expansion methods are hard 
to apply.

Setting j  =  k in (4.83) with =  0 yields the ODE for describing the 
behaviour close to the centre subspace

flfc =  ~  £2, ^  1 +  Aka\ +  Bka\ +  C'fcajb-

+Djfc£Z*:&p l +0{a\{lP  1 +  a^)), (4.84)

£\,k = -{PuiPkk))P = Ck\\Cipk\\2p > 0, (4.85)

£2 ,k =  (P2, ^ {k ‘])P =  ck(g(ipk), ipk)P ~  ^ ( m  -  l ) c k (g{ipk), ip'k€ )p. (4 -8 6 )

Observe that A k — Bk =  0 for m  =  1 so that these quadratic and cubic terms on 
the right-hand side of (4.84) do not occur in the linear case (cf. (4.14)), which 
makes the centre manifold analysis in Section 4.2 essentially easier.

Consider the dynamical system (4.83), (4.84). It is of crucial importance that 
under assumption (4.54), 6/5 0 L1(M+ ). Therefore, in all the equations this term 
cannot be balanced by the derivatives dj(r) which are integrable by (4.81). We 
then observe a typical “centre manifold” case where all nonintegrable terms on
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the right-hand sides must cancel each other.

P ro p o s itio n  4.6 Let m  G (1,3/2) and (4.54) hold, £2,k > 0? and let the rescaled 
orbit {T(r)} approach the centre subspace in the sense of (4.82) with the rate of 
convergence satisfying

al(r)  =  o(6p_1(r)) as r  —> oo. (4-87)

Then the scaling function b(r) given in (4.53) satisfies

b(T) = Ckr~ 1/ip~1)(l + o( 1)) as r  ^  oo, Ck = [ { p - l ) £ 2,k/£i,k]~1/{p~1)- (4.88)

In view of the existence of infinitely many other patterns on the “stable manifold” 
as well as infinitely many other “centre manifold” patterns (for different A;’s), we 
claim that a sufficiently constructive condition that guarantees the behaviour 
(4.87) cannot be easily achieved.
Proof of Proposition 4-6. Under the assumption (4.87) the last five terms de
pending on the rate of convergence ak(r) on the right-hand side of (4.84) are 
negligible in comparison with the first two terms which thus form nonintegrable 
perturbations. Therefore, 6(r) can be determined from the asymptotic ODE

~ £iA K t ) /K t )\ ~  +  i/(t) =  0 for r  »  1, (4.89)

where i/(t ) G L1((1,cx))) is an integrable function. Writing down (4.89) in the 
form

(<f>(r)by = where 0(r) =  exp { — — [  v(s) dsj ,
£ i ,k I £ \ , k  J o  J

integrating it in terms of the new function B  =  60(r) and using that, by the 
assumption on i/(r) the limit </>(oo) exists, we obtain (4.88). Actually, this means 
that b(r) can be obtained from the following equivalent “autonomous” ODE:

i> = - [ e 2,k/ei,k] ^ (1  +  0(1)), t » 1 ,  (4.90)

which was observed earlier in particular examples. □
It is important that (4.88) establishes the same rate of decay of such asymp

totic patterns as those in (4.63) already known for two particular cases. The 
assumption on the centre subspace dominance and nonexponential decay rate as
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r  —> oo are essential. By Proposition 4.4, equation (4.68) is expected to ad
mit a countable subset of other exponentially decaying patterns corresponding 
to the behaviour close to the infinite-dimensional stable subspaces themselves 
corresponding to negative eigenvalues < 0  for any j  > k.

Finally, bearing in mind the critical exponents (4.49) and going back to the 
original variables, by using the two scalings (4.47) and (4.53) and equality (4.88), 
we obtain the following subset of critical asymptotic patterns as t —> oo:

u(x,t) = Ck(t\n t)~Sk[ipk(r]) +  o(l)],
(4.91)

'n Sk =  p 0 - X k > 0 .

It follows from the rescaled variable 77 in (4.91) that the interface (free boundary) 
has the behaviour given in (4.3).

4.4.2 Radial m ulti-dimensional case

In radial geometry with the single spatial variables y = \y\ > 0 and f  =  |£|, k > 0 
is always even and we keep the same scalings and transformations as for ./V =  1 . 
Example 1 is true [47]. The Frechet derivative A k in (4.65) is a singular ordinary 
differential operator on (0 , 1)

A kY  =  m f1- w( p - 1( | ^ p - 1y ) ') ' +  foY'Z + (no -  Ak)Y, (4.92)

which admits asymmetric Sturm-Liouville representation similar to (4.68), where 
the coefficients include the Jacobian f ^ -1, (4.69) for p reads

=  f 'v~1|i/'*© l2(m~1) exp { m f

and the formula for the weight p stays the same. The singular end-point £ =  1 

has the same properties and deficiency indices as for N  =  1 . In view of the radial 
Laplacian in (4.92), the origin f  =  0 is a singular point (in the limit circle or 
point case) and the symmetry Neumann condition

y ;(0) =  0 (or F (f)  is bounded as f  —)> 0) (4.93)

does not change the spectral properties of necessary self-adjoint extensions for
mulated in Proposition 4.4. As for the radial Laplacian, the Friedrichs extension
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is obtained by completing via the positive quadratic form of the space Co°([0 , 1)), 
where functions are constant near f  =  0. The rest of the critical asymptotic con
struction is the same and finally we arrive at asymptotics (4.91) for even k > 0 
provided tha t £2,k > 0 .

4.5 Critical asymptotic behaviour for the dual 
PME with absorption

Similar to Section 4.4 we study the critical asymptotic behaviour of the dual 
PME with absorption (4.2). Some of the results rely on the transformation (4.32), 
(4.33) but there are some essential differences between the analysis in this Section 
and tha t of Section 4.4 including the linearisations and the spectral analysis. 
According to (4.34) we introduce the rescaled variables (cf.(4.47))

u(x,t)  = tAk~flov(y,T), y = x / t ^k, r  = lnt, (4.94)

to get the following rescaled equation:

vT =  B k(v) -  e~FkTg(v), Tk =  p{p,0 -  A*) -  (1 +  fi0 -  Afc), (4.95)

where g(v) =  and B k(v) =  |Au|m_1Au -I- /3kV v  • y +  (/io — Afc)u. Similar
to (4.49) we obtain a sequence of critical exponents

Tk = 0 = > p  = pk = l + l/(fjL0 -  A*), (4.96)

where k =  0 , 1 , 2 , . . .  for N  = 1 (Lemma 4.1) and k = 0 ,2 , 4 , . . .  for IV > 1

(Lemma 4.3). It follows from (4.46) that (4.50) holds. In the critical case p = pk,
the rescaled equation is exactly (4.51) and is autonomous.

We study exponentially decaying asymptotic patterns of equation (4.51) sat
isfying (4.52). By construction, B k( ^ k) = 0, and by scaling invariance (4.40) 
we describe the asymptotic behaviour close to the one-dimensional manifold 
jy(fc) _  5), b > 0 }. To this end we perform an extra rescaling (cf. (4.53))

v(y,T) = b{r)w(ti,T), f  =  2/ / 6(m" 1)/2m(r), (4.97)

with a positive function 6 (r) satisfying (4.54) such that the rescaled orbit {w(-, r)} 
stabilises as r  —> 00  to a non-trivial limit equilibrium. In view of the scaling
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invariance (4.40), w satisfies the perturbed equation (4.55) with v* =  (ra —l)/2m, 
which is an asymptotically small perturbation of the autonomous equation (4.56) 
admitting equilibria (4.40). We will show that for a particular choice of the 
scaling function b(r) there exists a unique eigenfunction such that

w ( - , t ) —> as t  —y oo.

The operator for any k > 0 does not admit any conservation laws (unlike the 
corresponding operator for the PME) and thus the only simplification occurs in 
the one-dimensional case.

4.5.1 O ne-dim ensional case

In the class of symmetric (anti-symmetric) solutions u(x, t) for even (odd) k we 
set (cf. (4.58))

b̂ m~i)/2m(r ) =  SUp suppu(-,r) ,  r  1. (4.98)

In view of transformation (4.33), we may assume that b(r) is sufficiently smooth 
for r  1 as follows from the PME theory. Then (4.59) holds and by (4.40), 
supp^jt =  [—1,1]. Since we do not have any explicit conservation laws we study 
the behaviour of 6(r) as r  —> oo together with the rate of convergence. The 
linearisation (4.64) gives the perturbed equation (4.65) with the coefficients and 
perturbation terms given by:

A* =  B1(®*), P ,(f)  =  C # * (0 , (4.99)

D(K) =  B*(#* +  Y)  — B ’k(Vk)Y, E (y )  =  g ( * k + Y ) -  g (V k). (4.100)

We study global uniformly bounded solutions of (4.65) satisfying

T(- , r )  —> 0 as t —y oo not exponentially fast. (4.101)

In Sturm-Liouville form
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and q(£) =  p(£)(Ajt — Po)- We now need spectral properties of this singular ordi
nary differential operator in L2p(I) having two singular points £ =  ±1. Consider 
£ =  1. Let s =  1 — £, we use the asymptotics (4.41) to get that (4.70) holds with 
k =  — l / ( m  — 1). Calculating the deficiency indices of A f o r  any fixed A € C \R  
we obtain solutions (4.71) without the extra case for m  =  2, and hence it follows, 
since k < 0, that the deficiency indices are always (1,1). It is not difficult to see 
tha t the inverse operator (A^ +  e / )_1 with a large constant e < 0, has Lj-kernel, 
so we have a discrete spectrum of the Friedrichs extension.

P ro p o s itio n  4.7 (i) The operator (4.102) in L 2(I ) has a discrete spectrum 
a ( A k) = { A f \ j  = 0,1,2, . . .}  which is a strictly monotone decreasing sequence 
of eigenvalues. The corresponding eigenfunctions form an or
thonormal basis in L 2(I).
(ii) The centre subspace E c of such self-adjoint extensions A k is one-dimensional 
and is spanned by the eigenfunction

^ ( f )  =  =  - * C * . ( € ) .  i.e., A'** =  0, (4.103)

where ck > 0 is a normalisation constant and C is as in equation (4-55) with 
v* =  (m — l ) /2  m.

The eigenfunction (4.103) is obtained by differentiating equation (4.44) with 
respect to b and using (4.40). By (4.102) this yields A k^ t ^  =  0. We now prove 
that has precisely k zeros.

P ro p o s itio n  4.8 4 /^  has k zeros.

Proof. We know that 'L* has exactly k sign changes (Proposition 4.2). Take an 
interval [c,d] such that ty'k > 0 on (c,d), ^ ( c )  =  ^ ( d )  =  0 and ^ k(£) =  0 for 
exactly one £ € (c, d). We prove that \I/j^ must also have exactly one zero in 
(c, d). (On an interval in which yJ/J. < 0 put k =  — in the proof below to gain 
a similar contradiction.)

When '&,k =  0 we have, by (4.103), that s ig n ( ^ ^ )  =  sign ( ^ k) (This shows 
tha t has at least one zero in [c, d] since ^ k(c) < 0 and ^ k(d) > 0 by the 
Maximum Principle.) so it remains to prove that \I/j^ can have at most one zero 
in (c, d). We do this by examining the sign of ( ^ ^ ) ; at a zero of Now, for 

€ € (c,d),

( t f W  = ( r o~ 1)€^ ( o  -  — ®lt t )2m 2m kKZI
(4.104)
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Substituting for \£J.' using B k(^k) = 0 yields 

' ( m - l ) f
( * ? > ) '= - Ck 2m \ < * k * k  ~  -  P k & ' k )  ~

m +  1 ,
2m

At any zero f 0 of we have that

m  — 1
2m *i«o)eo =

r,
(4.105)

(4.106)

We now have two distinct cases to consider.
C ase  (i) £0 7  ̂0. Substituting (4.106) into (4.105) yields

(4.107)

(m -  1)£0
2m

Pk m a
771— 1

- - 1
(A* -  no)a -

Pkma
m  — 1

where a =  ^(^o)- Noting that at a zero of 4/j^, sign (a) =  sign (£0) by equation
(4.106), we have that (^^)'(C o) > 0 since both terms in equation (4.107) are 
positive.

Thus at any zero f 0 £ (c, d) of we know that the gradient of is
positive and so there can be only one.
C ase (ii) fo =  0* We have shown that at any other zero fi of the gradient 
must be negative so a second zero clearly cannot exist. □
A sy m p to tic  p a tte rn s . By the completeness in L2(I) of the subset of
eigenfunctions, using Proposition 4.7, equation (4.65) with (4.99) and equation
(4.100), we get the uniformly convergent eigenfunction expansion of the bounded, 
smooth solution T ( f ,r )  =  The expansion coefficients (flj(r)}
satisfy the dynamical system (4.4.1) with replaced by A f \  subject to (4.99),
(4.100). We may assume that the expansion coefficients are uniformly small. 
Being interested in the critical asymptotic behaviour corresponding to the evolu
tion close to the centre subspace of A *, we exclude both the stable and unstable 
exponentially decaying patterns. We perform further formal asymptotic anal
ysis under the assumption of centre subspace dominance and assume that the 
behaviour for r  1 of the kth  coefficient is dominant in the sense that (cf. 
(4.82))

Y ( t ) =  at(r)\t,jj.fc) + o(ak(r)) as r  —1 oo (4.108)
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uniformly on compact subsets and in H 2p. Under this assumption, performing 
necessary expansions on the right-hand side of (4.4.1), with (4.99),(4.100), we 
obtain the dynamical system (4.83) with coefficients

e u  = >)„ e2J = (g(9k),

Aj  =  im(m -  l)<t®2l’”- 8**[(*?>)T , D i  = W ( * k ) ,  t f ? ) ,  >  0,

B, =  im (m  -  1 )(m -  C, =  ( C t f f ,  * « > , .

By asymptotics (4.41) one can see that all the expansion coefficients above are
finite if m  E [1,2). For j  = k with =  0 we obtain the key ODE (4.83) for
flfcM with the coefficients

eij = -(A.®f)L, = C»||C®t||*>0 
«2j  =  (Pi ,  =  ck( g ( * k), <1>*), -  % ( m  -  1 )(ff(®*).

Obviously, A*, =  =  0  for m  = 1 .
The asymptotic analysis of this dynamical system is the same as in Proposition 

4.6 (see also the remark afterwards). Finally, in the original variables we obtain 
the critical asymptotic patterns:

u(x ,t)  = Ck(t In«)-**[«*(»») +  0(1)]. ’? = ^ ( * M (m- 1){‘/2m. (4-109)

where Sk = Vo — A*, > 0 and Ck is as given in (4.88).

4.5.2 Radial geometry.

The analysis is quite similar; see the end of Section 4.4. Ak  is a singular ordinary 
differential operator on (0 , 1 )

A „Y =  +  f a Y '  + (»„ -  Ak)Y  (4.110)

with the symmetric representation (4.102), where

^ {I /  fi w - i f }. ,
One can see that the end-point £ =  1 has the same deficiency indices as for N  = 1 . 
At the origin f  =  0 a symmetry condition (4.93) is imposed. Finally, we obtain
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critical asymptotics (4.109) for any k =  0 ,2 ,4 ,__



Chapter 5

N on-uniqueness and global 
sim ilarity solutions for a higher 
order semilinear parabolic 
equation

According to the Nobel Prize-winning physicist Richard Feynman, any 
theorem, no matter how difficult to prove in the first place, is viewed 
as “trivial” by mathematicians once it has been proven. Therefore, 
there are exactly two types of mathematical objects: trivial ones, and 
those which have not yet been proven.

In this chapter we will extend some of the ideas and techniques used in the 
previous two chapters to a higher order parabolic equation. Most techniques 
fail since they are based on the maximum principle or on comparison theorems. 
Nonetheless, our aim is to show that some techniques apply in a generalised form.

We consider the 2 mth order (m > 2 ) semilinear parabolic equation of reaction- 
diffusion type

ut = — (—A )mu +  |u|p-1w in x M+, with exponent p > 1

and initial data u G L q(RN), q > 1. This is a higher order extension of the 
classical semilinear heat equation for m  =  1 from Combustion Theory. It is well 
known from Weissler’s results (1979, 1980) that, forp < p0 =  1 +  ^ ,  there exists 
a unique local in time solution as a continuous curve u(t) : [0,T] —> Lq(RN) for 
sufficiently small T  > 0. For m =  1, it was proved that local nonexistence can

85
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happen for p > po- In the case m  = 1, which was studied in greater detail 
in the 1980s, the precise range p <  1 4- ^  for uniqueness of such solutions has 
been established. For p > 1 4 -^ ,  the non-uniqueness was proved by Haraux and 
Weissler (1982) by constructing similarity solutions.

Our goal is to show that non-uniqueness takes place for the higher order 
parabolic equations if p > p0. To this end, we describe a discrete subset of 
similarity solutions

u,(x, t) =  r  l/CP-i)V (y), y = x / t l!2m,

where each V  is a radial, exponentially decaying solution of the elliptic equation

- ( - A ) my  +  2~ V F  • y 4- ^  V  4- \V\v~lV  =  0 in RN.

By perturbation techniques, we establish the existence of radially symmetric 
similarity profiles Vj for p close to critical bifurcation exponents pi = 1 +
I =  0 , 2 , .. .,  and prove that all the p-bifurcation branches remain in the subcritical 
Sobolev range p < ps = ^ - 2m)+ • ^  using analytic, asymptotic and numerical 
methods we justify some global properties of the bifurcation diagram. We also 
demonstrate that the similarity profiles satisfy Sturm’s zero property in a certain 
“approximate” sense.

5.1 Introduction: non-uniqueness and similar
ity solutions

5.1.1 A higher order semilinear parabolic equation adm it
ting blow-up

We consider the Cauchy problem for the 2 m th order semilinear parabolic equation 

ut =  — (—A )mu 4- up in RN x R+, u(x, 0) =  u(x) € L9(RN), q > 1, (5.1)

where A denotes the Laplacian in RN , and, for convenience, we use the notation 

up := \u\p~ \  with a fixed exponent p > 1 .
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The second order case m  — 1 corresponds to the classical semilinear heat equation 
from Combustion Theory [89]

ut =  A u +  up. (5.2)

From the 1960s this equation became a crucial nonlinear model describing various 
classes of global and blow-up solutions in reaction-diffusion theory. A number 
of general techniques and results on blow-up, i.e., global (in time) nonexistence 
of solutions, starting from Fujita’s analysis (1966), were first developed for (5.2) 
and for the Frank-Kamenetskii equation with exponential nonlinearity

ut = A u +  eu,

also known as the solid fuel model, [89]. There is a large amount of mathemati
cal literature on this subject; see the survey on blow-up problems for nonlinear 
parabolic equations [49]. The blow-up behaviour is typically studied for suffi
ciently smooth initial data (e.g., bounded and integrable) that guarantee the 
equation can be solved locally in time in the classical sense. Then the solutions 
can blow-up in finite time, as t —» T~, meaning the formation of an evolution 
singularity of a special space-time structure which was carefully studied in the 
last twenty years for m =  1 ; see the above survey and books [78, Chapter 4], [50, 
Chapters 9,10]. For m  > 2 , blow-up singularity formation phenomena have been 
studied less. Self-similar and approximate self-similar blow-up patterns for 2mth 
order equations like (5.1) are described in [18, 36].

5.1.2 Local nonexistence and continuous dependence

The problems of local existence and uniqueness of solutions of (5.1) for general 
initial data u € Lq(M.N) are no less important for general PDE theory. These 
are key questions of the classical theory of parabolic equations; see the books 
by Eidel’man [29], Friedman [33] and Henry [55], which treated wide classes of 
nonlinearities and initial data.

Given general data u € Lq(M.N) (u 0  L°° so that the unbounded nonlinearity 
up in (5.1) can play the crucial role at the initial moment of time t =  0+), by using 
the analogy with blow-up, the Cauchy problem can be treated as the analysis of 
formation (collapse) of the initial singularity posed at t =  0 . The first question 
one must answer is whether we have local existence and uniqueness of solutions,
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which are understood, as standard practice, as proper continuous curves, e.g. 
u : [0 ,T] —> L q(Rn ), satisfying the integral equation

u(t) =  e~(~A m̂tu -f Jo e-(_A)m(f_s)up(s) ds for t > 0, (5.3)

where {e- (-A)mt} is the semigroup with the infinitesimal generator —(—A)m. For 
data u G L ^ R ^ ) with q > 1, these questions were first systematically studied by
Weissler [85, 8 6 ]. In particular, he showed that a unique solution of (5.3) that is
local in time always exists if

p < p0{m,q) = 1 +  (5.4)

see the results in [8 6 , pp. 87-90], for 2mth order equations like (5.1). For m  =  1, 
the end point p = po{l,q) was shown to be included into the local existence- 
uniqueness range. More recent results on local and global existence for higher 
order parabolic equations like (5.1) can be found in [5, 22, 28].

It is im portant that the local existence-uniqueness range (5.4) for m = 1 is 
optimal in the sense that, for

P > P o (l,g )  =  l +  7?, (5-5)

we have that
(i) there exist initial data u G Lq such that no solution as a curve u G 

C([0, T];Lq) fl (^((OjT]; Lq) exists for arbitrarily small T  > 0; see [8 6 , Theorem 
1]; and

(ii) if in addition to (5.5),

p < £>5 (1) =  (n - 2)+ ( ^ e critical Sobolev exponent for m  =  1), (5.6)

then (5.3) (or (5.1)) admits a nontrivial nonnegative solution with u = 0 in 
L ^ R ^ ), i.e., uniqueness fails, at least, for zero initial data. This non-uniqueness 
result was proved in [54] by constructing self-similar solutions of the semilinear 
heat equation under consideration; see more detailed comments below.
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5.1.3 M ain results on non-uniqueness via similarity solu
tions

Note that counterexamples for the uniqueness theory are not known for 2mth 
order equations and require a delicate analysis of the similarity solutions of (5.1) 
to be studied in this chapter.

For the higher order equation (5.1) with m  > 2, we study the existence and 
multiplicity of similarity solutions of the form

u.{x ,t)  = t - l^ - V V { y ) ,  y = x / t 1l2rn, (5.7)

derived by noting that for any A > 0

u \(x ,t)  = X~1̂ p~1̂ u(x/X1̂ 2m,t/X)  (5.8)

is also a solution with compactly supported initial data; and then setting A = t. 
Substituting (5.7) into the PDE yields that V  is a non-trivial solution of the 
elliptic equation

B i V  + V P = - ( - A ) mV  +  d jV k  • y +  + VP = 0 in RN , (5.9)

V{y) decays exponentially fast as \y\ —> oo. (5.10)

R e su lts  for m  = 1 . This second order equation with m  — 1 is well known from 
the 1980s. It was studied in detail by using phase-plane analysis in the radial 
case [54, 85] and by the variational approach in the elliptic setting [87] based on 
the earlier pioneer work [6 6 ] on variational methods in weighted Sobolev spaces. 
For m  =  1 , the linear part B i in (5.9) is symmetric and the equation can be 
written in the form

• (pVV) +  V  +  V p =  0, with exponential weight p(y) = (5.11)

This determines a potential operator in the weighted space L2p(R.N), so the solu
tions of (5.11) are obtained as the critical points of the functional

F (Y ) =  - U  p \D V I2 +  j jJ -j  /  +  j l j  /  p \V r l- (5.12)

The even smooth functional F  is not positive but the well known versions [2 0 , 76] 
that extend the classical Lusternik-Schnirel’man category theory [69] to non
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positive functionals apply. In the subcritical Sobolev range (5.6) (necessary for 
compact embedding of the functional spaces Hp, L2 and lp+1 that are involved 
in (5.12)), this gives a countable subset of different similarity profiles {VJ, Z =  
0 ,1 ,2 ,...} , where, for p > 1 +  the first profile V0 (y) is strictly positive in RN 
by the variational setting, see [87]. The same result is derived by the phase-plane 
analysis (a shooting-type argument) of the second order radial ODE (5.11), [85]. 
In both approaches typical features of the Maximum Principle for the second 
order elliptic and parabolic PDEs are used.
m  >  2 For equation (5.9) with m  > 2 , most known techniques fail because of 
principal difficulties occurring for such higher order operators,

(i) the linear operator B i is not symmetric in I^-spaces, hence
(ii) the nonlinear operator -\-Vp cannot be written in a potential form 

in any weighted L2 space (a proof is available in [51, Section 7]),
(iii) the shooting argument on the phase-plane becomes extremely difficult 

even for m  =  2 where two shooting parameters occur, and the dimension of the 
parameter space increases dramatically if m  gets larger,

(iv) the semigroup corresponding to the PDE (5.1) is not order-preserving 
(this means that all ODE or PDE arguments connected with the Maximum Prin
ciple are no longer valid).

Our main goal is to justify that, nevertheless, several properties of the subset 
of similarity solutions for m > 1 remain the same as for m  =  1. For the higher 
order problem (5.9), (5.10), we apply the approach based on bifurcation analysis 
with respect to the exponent p as a bifurcation parameter. We prove that, under 
suitable assumptions, there exists a continuous p-branch of similarity profiles 
Vo(y) defined in a small right-hand neighbourhood of the first critical Fujita 
exponent

Po =  l  +  ^P ( = p 0(m ,l)). (5.13)

Continuing this branch for p > po, the critical Sobolev exponent

P s M  =  ^  (5-14)

is shown to play a role and this branch does not enter the range p > ps- Further 
global properties of this bifurcation branch are described by asymptotic, analytic 
and numerical methods.

The similarity solutions (5.7) determine typical properties of local solutions
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of (5.1) and the actual range of non-uniqueness. Indeed, one can see that

||u .(-,<)||, =  ^ ||V ||„  with 7 =  - j t i  +  2^  and l l ^ l l ^ 00- (5-15)

Therefore 7  >  0 in the range

P >  l + 2- 7 -  (5.16)

Hence, if (5.1) admits a nontrivial similarity solution (5.7), then u*(-,0 ) =  0  in 
L q so that the uniqueness for (5.1) fails, at least, for zero initial data.

We also study other branches of similarity solutions associated with a count
able number of the critical bifurcation points (see Proposition 5.4)

pt = i  + m i ’ '  =  0 , 1 , 2 , . . . ,  (5 .17)

and show that, in general, problem (5.9), (5.10) can admit various solutions. Ac
tually, in view of the infinite number of bifurcation points (5.17) concentrated at 
p =  1+ for I 1, we expect that, for any p G (l,Ps), there exists an infinite
countable subset of different similarity profiles {V*, Z =  0 , 1 ,2 ,. . .} ,  which can be
obtained via p-parameter continuation from the bifurcation points (5.17). Note 
that in the 2 m th order case, existence of such a countable family cannot be rig
orously connected with the Lusternik-Schnirel’man critical point theory (applied 
to the potential case m  =  1 only), though we show that this theory can be used 
“asymptotically” . The first solution P0 bifurcating at p = Pq is not strictly pos
itive in M.N for m  > 1 , unlike the case m =  1 , where the fact that Vq is positive 
follows from the variational statement associated with the Maximum Principle.

It is im portant that the same critical exponents (5.17) occur in the similarity 
analysis of very singular solutions of semilinear equation with absorption

ut =  - ( - A )mu -  up (5.18)

studied in [51], though the local and global bifurcation diagram are quite differ
ent (in particular, the direction of p-branches is opposite) to say nothing of the 
evolution properties of the solutions. Indeed, (5.18) has the strictly monotone 
and coercive operator in L2(RN) and no blow-up occurs (at least, for p G (l,p s)), 
while in (5.1) the operator is neither monotone nor coercive. A list of references 
concerning equation (5.18) is available in [51].

The plan of this chapter is as follows. In Section 5.2 we briefly describe prop
erties of the fundamental solution of the 2 mth order linear parabolic operator in
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(5.1) and explain spectra and eigenfunctions of linear non-self-adjoint operators 
associated with B i given in (5.9). Section 5.3 is devoted to the asymptotic anal
ysis of the radial ODE (5.9) for similarity profiles. The local bifurcation problem 
for (5.9), (5.10) is studied in Section 5.4 together with a stability analysis, while 
in Section 5.5 we present some results on global continuation of the p-bifurcation 
branches and study some structural properties of the similarity profiles. In partic
ular, we observe tha t Sturm’s property of zeros, which is true for m  = 1 only, can 
be applied to higher order equations in an “approximate” sense to be properly 
introduced. We also present an asymptotic argument concerning the “approx
imate” application of the Lusternik-Schnirel’man critical point theory showing 
why equation (5.9), with the non-potential operator (for m  > 2), can admit a 
countable subset of large solutions in the subcritical range p £ (1 ,ps)-

Finally, in Section 5.6 we study the limit p  —>• oo and derive limit linear 
inhomogeneous “eigenvalue” problems describing the limits of similarity profiles 
{V/}. In particular, we describe the corresponding boundary layer phenomenon 
occurring in the ODE (5.9) as p —> oo in dimension N  < 2m.

5.2 Fundamental solution and spectral proper
ties of linear operators

5.2.1 E stim ate of the fundamental solution

The fundamental solution b(x, t) of the linear parabolic equation

ut =  - ( - A  )mu (5.19)

takes the standard similarity form

b(x, t) =  t~N/2mf ( y ), y = x / t 1/2rn. (5.20)

The rescaled kernel /  is the unique radial solution of the elliptic equation

B/ = - ( - A ) ro/  + £ y . V /  + £ /  =  0  in M.N, with / /  =  1 . (5.21)

Then /( |y |)  is known to be oscillatory as \y\ -» oo and satisfies the estimate [29]

\f{y)\ < £ » e -« "  in RN, where a  = ^ e  (1 , 2 ), (5.22)
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for some positive constants D  and d depending on m  and N.  Such estimates 
are sufficient [28] to establish global existence of small solutions for p > po for 
equations like (5.1) with the lower-order term replaced by ± M P or ±\u\p~1u. For 
the reaction-diffusion equation

ut = - { - A ) mu + \u\p, (5.23)

(5.13) is the first critical Fujita exponent; see [28], [36]. The linear operator Bi 
in equation (5.9) is connected with operator (5.21) for the rescaled kernel /  in
(5.20) by the formula

B i =  B +  c i/, where cx =  ^ E f y -  (5-24)

5.2.2 Point spectrum  of the non self-adjoint operator B

In view of (5.24), in order to study the similarity solutions, we need the spectral 
properties of B and of the corresponding adjoint operator B*. Both are consid
ered in weighted L2-spaces with the weight functions induced by the exponential 
estimate of the rescaled kernel (5.22).

For m  >  2, we consider B in the weighted space L 2(RN) with the exponentially 
growing weight function

p(y) = eo|yl“ > 0  in Rw, (5.25)

where a (E (0 , 2d) is a sufficiently small constant. We ascribe to B the domain 
H 2m(RN) being a Hilbert space with the norm ||u | |2 =  f  p(y) o \Dky(y)\2 
induced by the corresponding inner product. Then H 2m C L2 C L2. The spectral 
properties of B are as follows [28].

L em m a 5.1 (i) B : H 2m is a bounded linear operator with the real point
spectrum

a{B) = { \ l = - ±  I = 0 ,1 ,2 ,...} . (5.26)

The eigenvalues Ai have finite multiplicity with eigenfunctions

M y )  = DPf(v )i  f ° r anv \P\ = 1 (5-27)

(ii) The subset $  =  {ipp, |/3| =  0 ,1 ,2 , . . .}  is complete and the resolvent (B -  
A/ ) " 1 is compact in L 2.
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In the classical case m  =  1, }{y) = (47r)-iV/2e- lyl2/ 4 is the rescaled positive 
Gaussian kernel and the eigenfunctions are ipp(y) =  e ~ ^ 2̂ H p(y),  where Hp are 
Hermite polynomials in RN [13]. The operator B, with the domain H 2, p =  e ^ 2/4, 
is self-adjoint and the eigenfunctions form an orthonormal basis in L2.

By Lemma 5.1, the centre and stable subspaces of B are given by E c =  
Span{ ^ 0 =  /} ,  E* = Span{ipp, \j3\ > 0 }.

5.2.3 Polynom ial eigenfunctions and the spectrum  of the 
adjoint operator B *

Consider the adjoint operator

B* =  - ( - A  r - ^ y V .  (5.28)

For m =  1, B* =  T-V • (p*V), £>(B*) =  i / 2., with weight p*(y) =  e_lyl2/4, 
is self-adjoint in L2* and has a discrete spectrum. The eigenfunctions form an 
orthonormal basis in L2, . For m >  1 , we consider B* in L2. with the exponentially 
decaying weight function p*(y) =  =  e_alyl“ > 0 .

L em m a 5.2 (i) B* : H fl1 is a bounded linear operator with the same
spectrum (5.26) as B. The eigenfunctions </$(y ) with \(3\ = I are Ith order poly
nomials

P,(v) =  * ( - A ) " V ] .  (5.29)

(ii) The subset 4>* =  {'ipp} is complete and the resolvent (B*—A/ ) _1 is compact 
in L2, .

It follows that the orthonormality condition holds

=  (5.30)

where (•,•) denotes the standard L 2(RN) inner product. For m  — 1, these are 
well known properties of Hermite polynomials generated by the corresponding 
self-adjoint Sturm-Liouville problem [13].

Using (5.30), we introduce the subspaces of eigenfunction expansions and 
begin with the operator B. We denote by L 2 the subspace of eigenfunction 
expansions v = cp'tpp with coefficients cp =  (u, i/>*) defined as the closure of the 
finite sums {$Z|/3|<m cPxl)p} norm °f L2. Similarly, for the adjoint operator
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B*, we define the subspace L2* C L2*. Note that since the operators are not 
self-adjoint and the eigenfunction subsets are not orthonormal, in general, these 
subspaces can be different from L2 and L2*, and the equality is guaranteed in the 
self-adjoint case m  =  1 , a =  \  only.

5.2.4 First application: the stability of zero in the rescaled 
equation

Following (5.7), we use the similarity scaling

u =  (1 +  y = x / ( l  +  t )1/2m, r  =  ln(l + 1) : K+ R+ . (5.31)

Then the rescaled solution v = v(y ,r)  solves the autonomous equation

uT =  Biu +  for r  > 0, u(p,0) =  v0(y) =  u(y), (5.32)

and similarity profiles satisfying (5.9), (5.10) are its stationary solutions. We 
show that, at p =  po5 the trivial stationary solution v = 0 changes its stability, 
which is a crucial characterisation of this first critical exponent. As is well known 
in the general stability and bifurcation theory [23, 65], often this means that 
p =  po is a bifurcation point of equilibria, as will be proved in Section 5.4.

P ro p o s itio n  5.3 The trivial solution v = 0 of equation (5.32) is unstable for 
p G (l,Po)> and is stable fo r p  > p0.

Proof. It follows from (5.24), (5.26) that the operator B i in (5.25) that is the 
linearisation about v = 0 of the nonlinear operator in (5.32), has the discrete 
spectrum

<7(B!) =  {v, =  Cl -  I =  0 ,1 ,2 , . . . } ,  (5.33)

so that > 0 for p G (l,Po) (since c\ > 0) and i/0 < 0 for p > pQ (when C\ < 0). 
In view of the known spectral properties of B (see Lemma 5.1 and [28]), this 
stability/instability result follows from the principle of linearised stability, see 
[6 8 , Chapter 9]. □

In view of the blow-up results in [28] establishing that, for any p G (1, po], there 
are blowing-up solutions with arbitrarily small initial data, we have that zero is 
unstable also in the critical case p = pQ. For p > po, there exist global sufficiently 
small solutions of (5.1) decaying as t —> oo at least as 0 ( t~ N^2m). Actually, in
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this case, (5.23) admits a countable subset of various global asymptotic patterns 

[28].

5.3 Exponential bundle as y  —> oo in the ODE

It is important to know the actual dimension of the subset of exponentially de
caying solutions of (5.9). We describe the asymptotics of its small solutions
satisfying V(y) —> 0  as y —> oo, where y now denotes the radial variable \y\ > 0 .
The linearisation of (5.9) about V  = 0  gives

T$iV =  0 for y > 0. (5.34)

For the decaying solutions, (5.9) is an asymptotically small perturbation of the 
linear equation (5.34). The asymptotic analysis of perturbed higher order ODEs 
such as (5.34) is standard in classical ODE theory; see [2 1 , Chapters III-V], and 
general asymptotic methods in [30].

According to [21], we first derive the leading differential operator with con
stant coefficients, which defines the asymptotic behaviour. Starting with the 
ODE (5.34),

( - l ) m+1[V<2m) +  +  ...] +  ±  V 'y + ^  V  =  0, (5.35)

we set z  =  ya to obtain the following equation:

Vr(2m) -  aiV ' -  ± a2v  +  z - ' C W V  = 0 , (5.36)

where a, =  2^;(—l) ma 1-2m, 02 =  ^rx(—l) ma _2m and

C (Z)V  =  E ^ r 17»2,'+ l-2mV «

is a linear operator with bounded coefficients as z  —► oo. In this sum the coeffi
cient of the highest derivative is 72m- i  =  l ) m+1[l + m (N  — l)(2m  —
1)] and the coefficient of the first derivative V' is of order 0 ( z 2~2m) =  o(z~1) as 
z  —> 0 0 . By perturbation theory for higher order linear ODEs, the leading terms 
of exponentially decaying solutions are described via those for the operator in
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(5.36) with constant coefficients,

V (2m) -  01V" =  0. (5.37)

Setting V =  e''2, /u ^  0, gives the characteristic equation /u2m — cq/j = 0 , whence 

ptm-i _  0i _  i ( _ i ) ma r - 2m _ p2m -i(_1 )m) where Po > 0- (5.38)

For any m > 1 , there exist 2m — 1 roots {^oi/q, • ■ • , /qm -2} given by

/ ,oei(2<=+1W (2 m -l ) i m  =  2 / +  l ,
/ijt =  (5.39)

m  =  2l,

where the m roots have negative real parts, Re jit* < 0 . These correspond to 
k = I, I +  1 , . . . ,  3/ for m =  21 +  1 and k = I, I +  1 , . . . ,  3/ — 1 for m  = 21. Bearing 
in mind that, for odd m ’s, the root for k =  m  is real, nm =  — p0, and for any 
complex root the corresponding subspace of solutions is two-dimensional, we have 
an

m-dimensional bundle of exponentially decaying solutions as y —> oo. (5.40)

For the second order case m  =  1, the bundle is simply one-dimensional, which 
made it possible to use a phase-plane analysis or apply a monotone parabolic 
method via simple super- and sub-solutions of (5.2) for p > po = 1 +  see [78, 
Chapter 4].

On the other hand, (5.36) also admits solutions with algebraic decay as 2 —» oo 
(corresponding to the characteristic root n  =  0 ) described by the first order 
operator

- a 1V ’ - ± a 2V  = 0 = »  V(z) = Cz-V*m- 1V b - 1l  

For the linearised equation (5.34), we obtain the algebraic asymptotic behaviour

V(y) = C\y\~2m̂ p~l\ l  +  o(l)) as y —> oo, with any C ^  0 . (5-41)

Such solutions do not satisfy condition (5.10) and represent another family of 
asymptotic similarity patterns for the PDE (5.1).

Thus, if V  solves the problem (5.9), (5.10) with the asymptotics from the
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exponentially decaying bundle, then

|y (y )| < Die~dl^ a in RN, with some constants D\, cfi > 0. (5.42)

Passing to the limit t —> 0+ in (5.7), it follows that such similarity solutions 
satisfy

u*(x, t) —» 0  for x  /  0 , and |w*(x, t) |r —»■ const. S(x), r = ^ ^ - < 1 , (5.43)

in the sense of bounded measures in RN , where <5(a;) denotes Dirac’s mass. Solu
tions with algebraic decay (5.41) form the following initial data with the uniform 
convergence in |rr| on [e,oo), e > 0  as t —► 0+:

«*(x, 0+) =  C|o:|-2m^p_1 .̂ (5.44)

5.4 Existence of similarity profiles close to bi
furcation points

Consider the ODE problem (5.9), (5.10). Using the linear analysis of Section 
5.2, we formulate the bifurcation problems, which guarantee the existence of a 
similarity solution in a neighbourhood of bifurcation points.

5.4.1 Countable subset of bifurcation points {p/}

Taking p  close to the critical values, as defined in (5.17), we look for small solu
tions of (5.9). At p — pi, the linear operator B i has a nontrivial kernel, hence, 
the following result.

P ro p o s itio n  5.4 I f  for an integer I > 0, the eigenvalue A/ =  — ̂  of operator
(5.21) is of odd multiplicity, then the critical exponent (5.17) is a bifurcation point 
for the problem (5.9), (5.10).

Proof Given an n >  1 , we denote by (Vp)n a suitable uniformly Lipschitz 
continuous truncation of the nonlinearity V p such that (Vp)n = Vp for |V| < n 
so

(Vp)n V p as n —>• oo uniformly on compact subsets.
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Consider in L2 the truncated equation

B V  = - ( 1  +  a ) V  -  (V p)n, where B =  B 1 -  (1 +  Cl)I  =  B -  I. (5.45)

It follows from (5.33) that the spectrum cr(B) =  { —1 — consists of strictly
negative eigenvalues. The inverse operator B -1  is known to be compact, [28, 
Proposition 2.4], Therefore, in the corresponding integral equation

V  =  A{V)  =  - ( 1  +  Cl)B - ' V  -  (5.46)

the right-hand side is a compact Hammerstein operator; see [64, Chapter V] or 
[18, 51]. In view of the known spectral properties of B -1  (Section 5.2), bifurca
tions in the problem (5.46) occur if the derivative A'(0) =  — (1 +  Ci)B-1  has the 
eigenvalue 1 of odd multiplicity, [65, 64]. Since cr(A'(0 )) =  {(l +  c i) /( l  +  2̂ )} ,w e 
obtain the critical values (5.17). By construction, the solutions of (5.46) forp «  pi 
are small in L2 and, as can be seen from the properties of the inverse operator, V  
is small in the domain H 2m of B. Since the weight (5.25) is a monotone growing 
function as \y\ —» oo, using the known asymptotic properties of solutions of the 
ODE (5.9) in Section 5.3, V  E H 2m is a uniformly bounded, continuous function 
(for N  < 2m this directly follows from Sobolev’s embedding theorem). Note that, 
for even m ’s, solutions of (5.9) may blow-up at finite y = y0 (a striking contrast 
to second order ODEs) forming singularities \y -  2/oI 2m/(p 1] i  L2p locally. 
Therefore, for p ~  pi, we only have bounded, small solutions. Hence the same 
bifurcations occur in the original non-truncated equation (5.46) corresponding to 
n = oo. D

Thus / =  0 is always a bifurcation point since Ao =  0 is simple. In general,
for / =  1 ,2, . . .  the odd multiplicity occurs depending on the dimension N. For 
instance, for / =  1 , the multiplicity is N , and, for / =  2, it is Â +1^. In the 
case of even multiplicity of A/, extra analysis is necessary to guarantee that a 
bifurcation occurs [65].We do not perform this study here and note that the non
degeneracy of this vector field is not straightforward. It is crucial that, for the 
main applications (N  =  1 and the radial setting in R ^), the eigenvalues (5.26) 
are simple and (5.17) are always bifurcation points. The nonlinear perturbation 
term in the integral equation (5.46) is an odd smooth operator. This implies the 
following result describing the local behaviour of bifurcation branches occurring 
in the main applications; see [64] and [65, Chapter 8].



CHAPTER 5. NON-UNIQUENESS FOR A HIGHER ORDER PARABOLIC EQUATION 100

P ro p o s itio n  5.5 Let A/ be a simple eigenvalue of B with eigenfunction 'ipi, and 
let

(5 -4 7 )

Then: (i) if  aq > 0 , then problem (5.9), (5.10) has precisely two small solutions 
for p «  p f  and no solutions for p «  p f ,  and (ii) i f  m < 0 , then it has precisely 
two small solutions for p «  p f  and no solutions for p «

We next describe the behaviour of solutions for p ~  pi and apply the classical 
Lyapunov-Schmidt method, [65, Chapter 8 ], to equation (5.46) with the operator 
A that is differentiable at 0. Since, under the assumptions of Proposition 5.5, 
the kernel E 0 =  ker A '(0 ) =  Span{0*} is one-dimensional, we set V = Vo + Vi, 
where Vo =  Eiipi E E q and V\ =  Ylk^ie^ k  € P i , here E\ is the complementary 
(orthogonal to 0 Z*) invariant subspace. Let P0 and Pi, Po +  Pi =  / ,  be projections 
onto E0 and P i respectively. Projecting (5.46) (with n — oo) onto E0 yields

T,e, = - ( B - \ V n ^ h  7, =  1 -  ^  = (5.48)

where we denote s =  p — pi. By the bifurcation theory (see [65, p. 355] or [25, p. 
383], note that operator A'(0) is Fredholm of index zero), Vi =  o{e{) as ei -» 0, 
so that ei is calculated from (5.48) as follows

j tEi = - e ’X B - 1' ^ , ^ )  +  o(ef) = »  \Ei\p- x = Ct (p  -  P t ) [ l  + o{l)], Cl =

We have used the fact that (B -1^ ,^ * )  =  (0 f, (B*)- 10?) =  —ki/(1  +  j~ ) (recall 
the identity (B -1)* =  (B*)-1).

From the numerical calculation of the bifurcation diagrams performed in Sub
section 5.5.2 we expect that /q > 0. Indeed, in view of the orthonormality prop
erty (5.30), for p  = 1, we have /q =  1, so that, by continuity with respect to

Ki > 0 for all p «  1+, (5.49)

where the eigenfunctions {0 /} and the adjoint polynomials {-0 *} are given in 
(5.27) and (5.29) respectively. However, deducing that the scalar product (5.47) is 
positive for arbitrary p > 1 is not straightforward, and we shall rely on numerical 
evidence; see below.

By assumption (5.49), we obtain a countable sequence of bifurcation points 
(5.17) satisfying pi —> 1+ as I —> oo, with typical pitch-fork bifurcation branches



CHAPTER 5. NON-UNIQUENESS FOR A HIGHER ORDER PARABOLIC EQUATION 101

in right-hand neighbourhoods for p > pi. The behaviour of solutions in H 2m 
takes the form

Vi(y) = ±  [cz(p -  p/)]1/(p_1) (M y )  +  °(!)) as P Pt- (5.50)

For convenience, we now fix the main result concerning the local (in p) ex
istence and instability of the similarity profile V0 (y) corresponding to the first 
bifurcation point, p  =  po. If «o > 0 , then two bifurcation branches exist for 

P>Po-

T h eo rem  5.6 Forp  «  p j » problem (5.9), (5.10) admits a solution Vo(y) provided 
that is small enough, and it is an unstable stationary solution of the rescaled 
equation (5.32).

Proof. Recall th a t by Proposition 5.3, in the parameter range p > po, the triv
ial solution V  =  0  is asymptotically stable. As we have seen, two continuous 
branches bifurcating at p =  p j  exist if

*0 =  w .  4>Z) =  I  \f\2m/Nf  > 0 (r0 =  !)• (5.51)

Since the rescaled fundamental solution /  satisfies f  f  = 1 , (5.51) holds by con
tinuity provided th a t j  <  1 . Hence, there exists a solution (5.50) with I = 0 
satisfying, for small s =  p — po > 0 ,

V0(y) = (cos)1/(p_1)[ /(2/) +  o(l)], where c0 =  (5.52)

Let us next estimate the spectrum of the linearised operator of equation (5.32)

D0 =  B 1+p|V'0r 1/. (5.53)

Some of the eigenvalues of (5.53) follow from symmetries of the original PDE (5.1). 
Namely, the stable eigenspace with A =  — 1 and ip =  4- ^V V o • y G L2p
follows from the time-translational invariance of the PDE. For N  =  1 , translations 
in x  yield another pair A =  — ip = V0y G L2p. For N  > 1, in the non-radial 
setting, this A has multiplicity N  with eigenfunctions Voyi. This is not the first 
pair with the maximal Re A.
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Bearing in mind that the spectrum (5.26) of the unperturbed operator B has 
the unique, non-hyperbolic eigenvalue A0 =  0 , we use (5.52) to obtain

D 0 =  B — s(l +  o(l))C , (5.54)

where, as follows from (5.51) and (5.52) at p = p0> the perturbation has the form

C =  S ( !  -  % \f\2m/N)I- (5.55)

Therefore, we consider the spectrum of the perturbed operator

D 0 =  B -  sC. (5.56)

Since (B — 7)-1C is bounded,

(D0 -  I ) ' 1 =  (7 -  s {B -  7) " 1 C J -^ B  -  I )~ l

is compact for small |s| as the product of a compact and bounded operators. 
Hence, the spectrum of D 0 is discrete. By the classical perturbation theory of 
linear operators [53], the eigenvalues and eigenvectors of D 0 can be constructed 
as a perturbation of the discrete spectrum a(B) consisting of eigenvalues of finite 
multiplicity. We are interested in the perturbation of the first simple eigenvalue 
Ao =  0  where the computations are simplest. Setting

A0 =  sp0 +  o(s), V>0 =  i/jq +  s(f0 +  o(s) as s ->> 0

and putting these expansions into the eigenvalue equation D q̂ o =  yields

B(£o =  (C +  fJLoI)tpo. (5.57)

We then obtain the solubility (orthogonality) condition

((C +  /i0/)^o,^o> =  ° = *  A*o =  - ( C / , l ) .

Using (5.55) yields no =  — > 0 . Therefore, Re A0 > > 0  for all p «  p j  and
hence Vo(y) is unstable in Hpm. □

Inequality (5.51) is expected to be valid for any m  and N,  and then the whole 
branch of similarity profiles VQ(y) bifurcating from p = Po remains unstable for
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all p > Po, though the proof would require establishing that the eigenvalue of 
with maximal real part does not touch the imaginary axis. In particular, 

this open problem means that a new saddle-node bifurcation never occurs on this 
Po-branch, i.e., it does not have turning points in p. Actually, this means that the 
first bifurcation branch starting at p = p0 describes similarity solutions which are 
border ones between the stable zero solutions and the blow-up solutions, which 
form a generic class for the PDE (5.1). Therefore, V0 cannot be stable for the 
rescaled evolution equation (5.32).

Obviously, the other bifurcation branches are “more” unstable than the first 
one. Taking any I > 1 , instead of (5.54) we now have

D i =  B i +p\Vi\p~1I  =  B  +  [ci + spidi(\'ijji\p~1 +o( l ) ) ]  I, s = p - p t.

From the definition of B i, (5.24), Ci > 0  for all p ~  pi, thus Vi is unstable for any 
I.

5.5 Global p-bifurcation diagram and similarity 
profiles

In this section we describe some global and asymptotic properties of the bifurca
tion diagram and similarity profiles {V/}.

5.5.1 N onexistence of similarity solutions for p  >  p s

We begin with a first estimate establishing that, in the supercritical Sobolev 
p-range, similarity solutions do not exist. Namely, we prove that the Sobolev 
exponent (5.14) is the critical one for existence.

T h eo rem  5.7 Forp > ps, problem (5.9), (5.10) does not have a solution V(y) ^  
0.

Proof. We follow the lines of a similar analysis for m — 1 ; see [54, Section 6] 
and [78, pp. 228-232], where the quasilinear PME diffusion operator was studied. 
Assume for contradiction that there exists a nontrivial similarity profile V  (y ) and 
let u*(x,t) given by (5.7) be the corresponding similarity solution of the PDE, 
where, for convenience, we replace 1 1-* 1 + t. Equation (5.1) is a gradient system
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and the potential
E(t) = \ f  \D™u\2 - J  W * 1 (5.58)

gives a Lyapunov function that is non-increasing on evolution orbits,

E'[u\(t) = - f { u t)2 < 0. (5.59)

The potential is well defined on u =  u*(-, t) € H rnC\Lp+l for t > 0 and substituting 
u*(x, 1 + t) from (5.7) yields

E(t)  =  (1 +  t y E ( 0), where 7  =  ■ (5.60)

Then the constant jE7(0) is bounded by (5.10). In the critical case p = ps, this
immediately leads to a contradiction since 7  =  0 in (5.60), hence E{t) =  constant
contradicting (5.59), where (u*)t /  0.

If p > p s , then 7  > 0 , and in order to have the potential to be strictly 
decreasing according to (5.59), we need E (0) < 0  and then

E(t) <  0 for all t > 0 . (5.61)

Let us show that any solution satisfying (5.61) cannot be global and blows up 
in finite time. Together with (5.59), we will use another identity obtained by 
multiplying (5.1) by u in L2, which by (5.61), (5.58) gives the following estimate 
for G(t) = f  u2(t):

G' =  2 /  uut =  - 2  f  \Dmu\2 + 2 /  \u\p+1 > -2{p  +  1 )E. (5.62)

Next, by the Cauchy-Buniakovskii-Schwarz inequality and (5.62),

-G (t)E '( t)  = J u 2 f ( u , ) 2 > ( /  uutf  = A G'G' > - / iG 'E ,  ft = \  (p + 1).

Therefore,
GE' — pG 'E < 0  = *  ( f )' >  0 . (5.63)

Integrating over (0, t) yields G^(t) < c0E(t) with Co =  < 0. Using (5.62),
we have, for any t > 0 that Gp < |c011£71 < C\G' with C\ =  2( ^ 1) > which is a 
standard ordinary differential inequality G' > C2GP for t > 0 , where c2 =  — > 0. 
Since p > 1 , this means that G = f  u2 blows up in finite time contradicting the 
fact that u =  w* is a global in time solution. □
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5.5.2 The p-bifurcation diagram and similarity profiles

t o

On Figure 5.1 we present the results of the numerical simulation of the problem 
(5.9), (5.10) performed by using Matlab boundary value problem solver bvp4c. 
Details on how this was achieved are in Appendix C. We observe from Figure 
5.1(a) that along the bifurcation branches the parameter p is strictly increasing. 
Figures 5.1(b) and 5.1(c) show the six similarity profiles Vo, Vi, V2 V3, V4, and 
V5 for m  =  2 , p = 6  in one dimension. These profiles V(y) have asymptotics 
as y —> 00 from the exponential bundle described in Section 5.3. Note that all 
the profiles are oscillatory as y —> 00 , which is a property inherited from the 
oscillatory rescaled kernel f(y )  of the fundamental solution (5.20). Sturm’s zero 
property that Vi{y) has precisely I zeros cannot be true for m  > 1 , and is valid 
for m  = 1 only.

The first profile Vo(y) has the simplest spatial shape with the absolute max
imum at the origin y =  0 . As we mentioned, this profile changes sign and is 
oscillatory as y —> 00 . Using the asymptotic analysis in Section 5.3, from formula
(5.39) we have that, for m  =  2 , each Vi(y) has the asymptotics

Vi(y) =  Ci e~ay*/3[cos(by4/3- c i ) + o { l ) ] ,  a =  ^ p 0, b = |p 0, p0 =  |4 -1/3, (5.64)

where Ci 7  ̂0  and q  are some constants depending on L The profile V\(y) belongs 
to the second pi-bifurcation branch and is non-monotone with two essential, 
dominant extremum points. As we know, Vi is more unstable than Vo. The third 
profile V2(y) has three essential extrema, and so on.

One can observe from Figure 5.1(b) that the number of “essential” zeros, 
that are not related to the exponentially small tail oscillations given by (5.64), 
increases with I according to the standard Sturmian property, i.e., Vo has no 
essential zeros, while Vi has one and V2 has two, etc. Furthermore, concerning 
the number of essential extrema, we also observe Sturm’s property: Vq has a 
single essential maximum, Vi has two extrema, V3 has three, etc. In this sense, 
Sturm’s zero and extrema properties remain valid in a certain “approximate” 
sense, where one needs to detect and distinguish essential zeros and extrema of 
Vi from an infinite number of the non-essential ones in the oscillating exponential 
tail with the behaviour (5.64). Other similarity profiles also exhibit approximate 
Sturmian property.

Such an “approximate” Sturm’s theory for higher order nonlinear ODEs such
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Figure 5.1: The Po, Pi, P2 ? P3 , Pa and p 5 branches of the bifurcation diagram when 
m = 2, N  = I and the corresponding similarity profiles when p =  6.
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as (5.9) is not expected to admit an easy rigorous statement though below 
we present some “asymptotic evidence” related to known Sturmian properties 
for higher order, self-adjoint, positive ordinary differential operators and Kras- 
nosel’skii’s genus theory of critical points. An effective approximation and ex
tension of this classical Sturm Theorem for m  = 1 to higher order nonlinear 
operators is a challenging open problem. On the other hand, for practical rea
sons, a straightforward, naive approach can be used. Namely, a hint for distin
guishing the essential zeros from the exponential tail can be formulated by using 
the sharp asymptotics (5.64). We say that the infinite set of ordered positive 
zeros {j/i, y2, • • •} consists of non-essential tail zeros if, with a sufficient relative 
accuracy (with respect to the corresponding differences y2 — yu 1/3 ~  2/2>• • • )> this 
sequence obeys the expansion (5.64), i.e., there exists a constant c; G R and an
integer m  such that b y — q «  |  -I- ir(k +  m) for all k =  1 ,2 ,__  To increase
the accuracy of such a representation of zeros from the exponential tail, one can 
improve the quality of the asymptotic expansion (5.64) by including extra higher 
order exponential terms.

Let us return to the most important first bifurcation branch. Figure 5.1(a) 
shows the po-bifurcation branch when m  =  2 and N  =  1 alongside the pi, p2, P3, 
p4 and ps branches. (Note that ps =  00 here since N  < 2m.) The po-branch has 
several properties of note. Although it is monotone in the bifurcation parameter 
p we note that it is not monotone in ||Vj|oo. In fact, although we have strong 
numerical evidence that its limit asp  —>• 00 is Ĥ Hoo =  1 (see also a boundary layer 
theory in Section 5.6), the branch passes through ||Vj|oo =  1 at approximately 
p =  29, has a maximum at roughly p =  71.5 and then approaches \\VWoo =  1 
from above. This turning point can be seen in Figure 5.2(a) whilst Figure 5.2(b) 
shows the dependence of the similarity profiles V(y) on the exponent p (see 5.6 
for a boundary layer analysis for p 1).

The pi, P2 , P3 , P4 and p5 branches also pass through ||V||oo =  1 before ap
proaching it from above as p —>■ 00 . The following table gives a rough summary 
of the critical points.
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(b) The dependence of Vo(y) on 6  <  p < 
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Figure 5.2: The dependence on p of the similarity profiles.

Bifurcation branch Value at which |V||oo =  1 Turning point

Po p = 28.832 p = 71.572

Pi p = 10.587 p = 25.501

P2 p = 3.795 p =  7.051

Ps p =  2.973 p = 4.702

P\ p = 2.227 p = 3.413

Ps p = 1.964 p = 2.846

The picture remains essentially the same in higher dimensions. On Figure 5.3(b) 
we present the radially symmetric profiles Vo(|y|) and V^dyl) for m  =  2 and 
N  =  3, where, with y as the radial variable,A2V(?/) =  V ^ \ y )  +  J V " \y ). The 
P o  and p 2 branches of the bifurcation diagram for this case are shown in Figure 
5.3(a). We do not expect any great distinction in the general shape of the pi~ 
branches, emanating from the corresponding bifurcation points (5.17), for the 
different values of N  that keep p < ps. Further, the solutions and bifurcation 
diagrams are qualitatively similar for the sixth order equation; see Figure 5.4.

5.5.3 T h e m axim um  points o f the p-b ifurcation  branches

Figures 5.1(a) and 5.4(a) and the related analysis demonstrate that the pi- 
branches have maximum points, thus posing a natural asymptotic problem to



CHAPTER 5. NON-UNIQUENESS FOR A HIGHER ORDER PARABOLIC EQUATION 109

>
>

y

i
>

p

(a) The bifurcation diagram. (b) The first two similarity profiles for p =
10.

Figure 5.3: The po and p2 branches of the bifurcation diagram and their similarity 
profiles when m  =  2, N  =  3.

detect those by an analytic argument. It is remarkable that the functions

hi(p) =  (p ~  Pz)1/(p-1) (5.65)

obtained in (5.50) by the linearised bifurcation theory (and hence applied for p «  
p f  only) have a single maximum and correctly describe the single maximum shape 
of the bifurcation branches. Moreover hi(p) exhibits the following asymptotic 
behaviour:

hi(p) =  1 +  +  . . .  for p »  1. (5.66)

We next show that this is a reasonable estimate of the behaviour of the bifurcation 
branches as p —> oo.

5.6 A lim it linear inhom ogeneous problem  as 

p —> oo for N  <  2 m

In this section we present another asymptotic analysis, which can be used for 
proving the existence of similarity profiles for sufficiently large values of the ex
ponent p. We consider the case N  < 2m, where the critical Sobolev exponent is 
infinite, ps =  oo, and the p-bifurcation branches are expected to be well defined 
for all p 1 (this actually happens in the second order case m = 1, [85, 87]).
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(a) The bifurcation diagram. (b) The first three similarity profiles for
m =  3.

Figure 5.4: The po, pi and P2 branches of the bifurcation diagram and their 
similarity profiles when m  =  3, TV =  1.

Then we obtain an interesting new problem concerning the asymptotic behaviour 
of branches and of profiles Vi(y) as p —> oo.

As above, we concentrate on the one-dimensional case with m  =  2, where the 
ODE is

_ y (4> + 1 V'y  +  ^  V + V” =  0 for y > 0 , V"(0) =  (5.67)

and V(i /)decays exponentially as y  —t oo. For this case, Figure 5.1(a) clearly
shows that the branches approach the limit

HVIloo —> 1 as p —> oo. (5.68)

It follows from the ODE (5.67) that a boundary layer near the origin y = 0 occurs 
as p —> oo and we will study its asymptotic structure. We begin with a detailed 
study of the boundary layer occurring for the most important, first po-branch 
where Vo(y) has the unique dominant maximum at y =  0 and therefore, in view 
of (5.68), we use the fact that

\\y\\oo =  V(0) -> 1 as p -> oo. (5.69)
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5.6.1 Limit linear problem for Vq

We start with an easy observation that in the outer region, where |V| < 8 < 1 
with an arbitrary constant S E (0,1), the ODE (5.9) for p 1 is a regular small 
perturbation of the limit linear ODE containing the first two differential terms 
only

B S  = - y (4) +  \V 'y  =  0, (5.70)

with the condition of exponential decay (5.10). Furthermore, it follows from the 
standard estimates of the ODE theory that, in {|V| < $}, the subset of solutions 
{V ,P  1} is uniformly bounded and equi-continuous and hence compact in 
Cioc(R). Therefore there exists a finite limit

V { y ) ^ V ( y )  as p —> oo, (5-71)

possibly along a subsequence {p — pj}.  The convergence is uniform on any 
bounded interval. Passing to the limit as p = pj —> oo in the equation (5.9) 
yields that V  satisfies the linear ODE (5.70) and the condition (5.10). In view of 
(5.68) and the symmetry condition at the origin posed for V(y),  we impose the 
following conditions at the origin for the limit function:

V’(O) =  1, V"(0) =  0. (5.72)

Obviously, these conditions can apply provided that V(y)  < 1 for small y > 0, 
which we prove next.

P ro p o s itio n  5.8 The problem (5.70), (5.10), (5.72) has the unique solution VQ(y) 
that satisfies

Vq (0) = - 2 a  < 0. (5.73)

Proof. By the analysis of the linearised equation in Section 5.3, we have from
(5.40) that the ODE (5.70) has a two-parameter family of exponentially solutions, 
from which we choose two linearly independent ones denoted below by Y \t2 {y): 
Then taking the general solution of (5.70) V(y) = C\Y\(y) +  C^F^y), we have 
that it satisfies the conditions (5.72) provided that the constants Ci, C2 solve the 
linear system

f CiYi(Q) + C2Y2(Q) = 1,
1 c^yfto) +  c2yh o) =  0.
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Since the Wronskian

w (y i ,y 2)(o) =
Ki(o) r2(o) 
57(o) n'(o)

is not singular, this system has a unique solution {6 1 , 0 2 } which determines the 
limit profile V(y).

Let us prove (5.73). First, multiplying equation (5.70) by V  and integrating 
over R+ yields

V"'(Q) = f[{V ")2 +  \ V 2] > 0 . (5.74)

It is clear from the ODE (5.70) that if ^ " ( 0 ) > 0 , then V(y) is strictly increasing. 
We show this by deriving its analytic expansion. Differentiating the ODE = 
\V 'y ,  we have that, for any k > 0 , V^k+4̂  =  +  lf7(fc+1)y, so at the origin

y(fc+4)(0) =  |f7 (fc)(o). (5.75)

Therefore, for any k > 1 ,

|V « (0 )| <  c o n s t . (5.76)

where 7 * =  1, 2  or 3 depending on k = 41 +  7 *. It follows that the Taylor series 
of the solution,

v ( y )  =  Z Z o b v (kHo)yk, (5.77)

converges uniformly on any bounded interval (obviously V(y) must be analytic 
as a solution of equation (5.70) with analytic coefficients). Now arguing by con
tradiction and assuming that y"(0) > 0, we obtain from (5.75) and (5.74) that 
Vr(fc)(0) >  0 for all k > 0 and then (5.77) determines an analytic function that 
is increasing in y. This contradicts the exponential decay condition (5.10) since 
V(0) =  1. □

By uniqueness of Vo, the convergence (5.71) holds along any subsequence 
f e }  °°. Figure 5.5 shows the graph of V0(y) calculated numerically alongside 
the profile Vo when p = 240. The two graphs are presented on separate figures 
as they would have been indistinguishable otherwise.
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(a) The limit profile Vo(y). (b) The Vo similarity profile when p =
240.

Figure 5.5: The limit profile Vo(y) and an approximation to it.

5.6.2 Lim it linear “eigenvalue” problem s for V/ w ith  I >  1

The limit inhomogeneous problems for any V/ are similar and need some modifi
cations.
T he  second, an ti-sym m etric  “eigenfunction” V \. For solutions on the 
second pi-branch composed of odd profiles V\(y) that are anti-symmetric in y , 
i.e., satisfying V(0) =  W'(0) =  0, we have the convergence (5.71), where the 
limit function V\(y) solves the following problem for the ODE (5.70) with anti
symmetry conditions (cf. (5.72)):

V(Q) = F "(0 ) =  0 , and (5.78)

sup V(y) =  1 is attained at some y = y\ > 0 with V(yi) = 1 , V'(y\) = 0 ,

where yi > 0 is an unknown parameter (“eigenvalue”). Note that, in general, 
V\{y) does not satisfy the ODE (5.70) at y = y\ and we consider the limit linear 
ODE (5.70) in two intervals (0,yi) and (yi,oo). The second, outer problem on 
(?/i,oo) has a unique solution for any fixed parameter y\ > 0. The proof repeats 
that of Proposition 5.8 via the Wronskian of the exponentially decaying solutions 
of (5.70).

We now check what kind of regularity can be imposed on V\(y) at y =  y\. 
The outer problem determines the values V"{yt) and V m(yi)  but we cannot 
guarantee that V"'(y) is continuous at y = y\. Instead, studying the inner 
problem on (0, yi), we use =  V"'(yi) as a parameter and consider the Cauchy
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problem for the limit equation (5.70) with the four conditions at y = y\

V (y i) = l, v'(yi) = 0, V"{y-l ) = V "{yt), V '" fc ) = A , (5.79)

with two free parameters yi and Pi.
We next show how to use these two parameters for “shooting” from y = y\ to 

ensure that two conditions (5.78) hold at the left-hand end point y = 0. In view 
of the fact that the operator (5.70) is analytic, conditions (5.78) provide us with 
two analytic algebraic equations admitting not more than a countable subset of 
“eigenvalues” yi and p\ =  Pi{yi)- It is convenient to choose a branch {V(y) = 
V (y \yi), yi > 0} of solutions on (0, y{) satisfying the second condition F"(0) =  0. 
It is easy to fix such a branch for 0 < yi C  1, where, by continuity, as yi —> 0+, 
the outer solution approaches the function Vo described by Proposition 5.8. This 
fixes the derivative V "{yi)  «  — 2a < 0. Since the interval (0,yi) is arbitrarily 
small, choosing the minimal pi to get ^"(0) =  0 determines the necessary branch 
and we extend it by continuity. One can see that then V"(0) —» 1“ as yi —> 0+, 
so such V(y) cannot satisfy the first condition (5.78) for small y\ > 0. For 
yi 1, we have to use the full general solution of (5.70) consisting of four terms 
V(y) =  CiYi(y) +  C2Y2{y) +  C3Y3(y) +  C4y4(y), where Yh2 are exponentially 
decaying as in (5.64), Y3 = 1 and Y±(y) ~  epoy4/3 is strictly monotone increasing 
for y 1. It can be shown that the first two oscillatory terms are still dominant 
for y < yi (as they are for y > y\ where C3 = C4 =  0), and then V{y\y\) changes 
sign near y =  2/f, and it is a routine calculation to conclude that, by continuity, 
there exists a yi > 0 such that V'(O) =  0. Indeed, on the given branch, ^ ( 0 ;^ )  
then changes sign as yi > 0 increases and then the first zero ( “eigenvalue”) y\ 
gives the second “eigenfunction” V\{y) > 0.

A numerical approximation to the function V\ is given on Figure 5.6(b) which 
shows the convergence to the unique limit function V\ corresponding to a unique 
value of 2/1 > 0 .
Lim it problem s for arbitrary profiles VJ. Let us introduce the linear in- 
homogeneous problem occurring for an arbitrary ^/-branch. (For odd, P2/+1- 
branches, the construction is similar.) Then we have I unknown parameters 
{ y i,...,2 /i} with yo = 0 and consider the ODE (5.70) on I disjoint intervals 
(yk, Pk+i), k = 0 ,1 , wi t h conditions

V(Vk) =  ( - l )k, y'(Vk) = 0, k =  0, l , . . . , l .  (5.80)
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Figure 5.6: Large p approximations to the limit profiles.

Let us show that -yi can be considered as the actual single “eigenvalue”. On 
the last unbounded interval (yi, 0 0 ), we have got a standard problem demanding 
an exponentially decaying solution, which exists and is unique by the Wronskian 
properties (the 2 x 2  Wronskian matrix of the corresponding linear system is non
singular). Next, taking the problem on the interval (yi-i,yi) with 1 =  yi-i(yi) 
to be determined, as above, we use the continuity of the second derivative,

V "(yf)  =  (5.81)

and use the parameter (3i = V"'\yf )  to get (5.80) to hold at some y = yi-\ > 0, 
etc. Finally, we obtain the Cauchy problem on the last interval (0,2/1), where 
Vi = ViiVi) > 0 and use the last parameter fii =  V""(yf) for shooting to get the 
corresponding conditions (5.72), which give two analytic equations on yi and (5\ 
having not more than a countable subset of roots. For arbitrary /, a proof of 
existence of such a yi is a more difficult problem. We have observed existence 
and uniqueness of yi by using numerical methods. With a high level of confidence 
from the numerical calculations of V, we have that Vf, V2 and V3 will be good 
approximations to their limit profiles when p =  240. As such, these profiles are 
presented in Figures 5.6(a) and 5.6(b).

We do not expect essential changes in the construction if the linear inhomo- 
geneous problems in the general radial case N  < 2m. On the other hand, for 
N  > 2m, a singular boundary layer is expected to occur as p —» p j,  as Theorem
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5.7 shows. The asymptotic structure of such a layer is more delicate.
The limit linear inhomogeneous problems for the ODE (5.70) can be used for 

establishing the existence of the “nonlinear” eigenfunctions {V/} for p 1 on 
the basis of a perturbation technique. Then the boundary layer structure plays 
a key role and we will complete our analysis with this study.

5.6.3 The structure of the boundary layer as p  —> oo

We return to convergence (5.71) of the first profile Vo(y) and describe the bound
ary layer, which occurs at the origin y =  0. Performing the linearisation by 
setting V  = Vo + Y  gives two main perturbation terms in the equation

- Y ^ +  \ Y ' y + l-V a + Va* + . . .  = 0. (5.82)

It follows from (5.74) (recall that ^"'(O) =  0 by symmetry) that the derivative 
Vq4̂ (0) cannot be bounded as p -* oo. Indeed, otherwise, Vq" —> Vq" uniformly, 
hence Vq"(0) =  0 contradicting (5.74). In view of the main nonlinear perturbation 
V p in (5.82), we then set

y {y ) = g(p)Vi(y)(l +  o(l)), where 9(p ) >  ;  as p oo.

Substituting this expansion into (5.82) and taking into account the leading terms 
of the order 0(g(p)), we obtain the following expansion in the outer region:

Vo(y) =  (l +  g{p))V0(y) +  • • • (5.83)

with a yet unknown function g(p) —> 0 as p  -» oo. Note tha t by (5.73), as y —> 0,

V0(y) =  1 -  ay2 + 0 ( y 3), where a = V^X0) > 0. (5.84)

We next extend this expansion into the inner region near the origin. Using, as 
the first approximation, the outer expansion (5.83), (5.84) in the nonlinear term 
V p in the original ODE (5.67) yields, for sufficiently small y > 0,

V;(4) ~  (1 +  g{p))p( 1 - a y 2 +  .. ,)p ~  eM<',>e- "roJ+-  +  . . .  .

The last exponential factor determines the rescaled boundary layer variable py2 =
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z2, i.e., y  =  z/y /p , and then, on small compact subsets in 2 , one obtains

K(4) ~  js eP9(p)e-otz2+... + (5.85)

This gives an approximation for large p of the balance between these two leading 
terms of the ODE, -^eP9̂  1 and therefore g(p) ^ ( 1  +  o(l)). Then at the
origin

V(0) =  1 +  for p >  1; (5.86)

cf. (5.66) obtained from the local bifurcation analysis. Such an asymptotic be
haviour is confirmed by numerical experiments suggesting the refined asymptotic 
behaviour

V(0)  =  1 +  M  ^  +  . . .  for 2000 <  p < 10000,

where the correction factor M  satisfies 0.30 < M  < 0.35, is strictly increasing 
with p and its rate of increase decreases with p. This shows that we have suf
ficient accuracy in the boundary layer estimate (5.86). Similar boundary layers 
(determining matching conditions like (5.81)) occur at the “eigenvalue” points 
y  =  yk for solutions V/ on other bifurcation branches.



Chapter 6 

Conclusions and further work

This thesis has primarily described the large-time behaviour of partial differential 
equations by studying their similarity solutions. The foundation of this work has 
been to try to extend the known theory for the heat equation and the semilinear 
heat equation to more complicated models. Chapter 3 has shown that the sub
set of self-similar solutions of the porous medium equation can be evolutionary 
complete, in one dimension and in radial geometry in RN, in the sense that its 
large-time behaviour can be described in terms of its nonlinear eigenfunctions. 
This is an important result because it extends the known theory of evolution 
completeness for the heat equation (completeness and closure of eigenfunction 
subsets for linear self-adjoint operators) and mirrors it in many ways. We also 
managed to calculate the third and fourth nonlinear eigenvalue-eigenfunction 
pairs for the porous medium equation. As an extension, it may be possible to 
translate these into the first and second eigenvalue-eigenfunction pairs for the 
dual porous medium equation. Calculating the eigenvalue-eigenfunction pairs for 
the dual porous medium equation numerically may also be possible, but would 
require more expertise.

Little is known about similarity solutions of higher order quasilinear parabolic 
PDEs. For instance, the fourth order thin film equation (TFE)

ut =  —V • (|if|nVAw), n > 0 ,

admits finite-mass solutions of the ZKB type (see references in [31]), but other 
nonlinear eigenfunctions are difficult to detect even in one dimension, where a 
fourth order ODE occurs. (See also the paper [14] devoted to dipole-type solutions 
of the TFE.) For the 2 /th order p-Laplacian equation with the monotone coercive
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operator (these guarantee existence and uniqueness of a weak solution of the 
Cauchy problem)

«< =  ( - l ) ' +1E k N  D"(\D‘ur-'D°u) (6.1)

{\Dlu\ is the length of the vector {Dau , \a\ =  /}), substituting (3.13) leads to a 
higher order elliptic equation (an ODE in one dimension) with an unknown subset 
of nonlinear eigenfunctions. Furthermore, for any I > 2, the rescaled operators 
are not potential and hence the rescaled equations are not gradient systems. In 
view of the lack of the Maximum Principle, Sturm’s Theorem is not valid. This 
creates an essential difficulty in asymptotic analysis and evolution completeness 
remains an open problem.

Chapter 4 extends the idea of countable sets of critical exponents from the 
quasilinear heat equation to the porous medium equation with absorption and 
then subsequently to the dual porous medium equation with absorption. This 
was an important extension because our theory allows for solutions of changing 
sign, a non physical but interesting property of solutions. We also expect that 
similar critical phenomena occur for a class of quasilinear higher order parabolic 
equations including the thin film equation with absorption

Ut — ( 1̂1 '̂ jxxx )x  1̂ 1̂ ^

(the first critical exponent is p0 =  n +  5 for n G (0,3)), though the corresponding 
mathematical analysis becomes much more involved, as happens with several 
asymptotic results for the thin film equation, generating non-symmetric and non
potential rescaled operators.

Chapter 5 is concerned with extending the non-uniqueness results of Haraux 
and Weissler for the second order semilinear heat equation to the 2mth order 
semilinear equation ut =  —(—A )mu -1- \u\p~lu. This has been successful in the 
sense that similarity solutions have been used to show that non-uniqueness can 
occur in L q(M.N) if p > 1 4 - 2m q/N , at least, for zero initial data. The global 
structure of such similarity solutions has been demonstrated via numerical cal
culation of the bifurcation diagram in one space dimension when m  equals 2 and 
3 and in radially geometry when N  — 3 and m  =  2.

We have not been able to demonstrate numerically that no nontrivial solutions 
exist for p > ps, the Sobolev critical exponent. This is due to the fact that 
we require the dimension N  to be at least five and this makes the numerical
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calculations difficult even in radially symmetric geometry. We expect blow-up in 
the sense of the supremum norm to occur at p = ps and it would be interesting 
to try  test this theory by using more sophisticated numerical techniques. An 
analytic analysis of boundary layers is also a challenging problem.



A ppendix A

Cg cannot be replaced by L1

Oh bother. - Winnie the Pooh.

Let us show that in the completeness analysis, the space C§ cannot be replaced 
by the usual space L1(Ryv) that plays a key role in the general PME regularity 
theory; see [27] and [50, Chapter 2]. This is important for arbitrary initial data 
of changing sign. Obviously, for any integrable data it > 0 , the rescaled solution 
converges to the ZKB profile with the total mass u$. The proof is achieved by 
approximation via compactly supported data, [34]. On the other hand, note 
that the L1-setting is not suitable for the asymptotic analysis of the nonnegative 
solutions of the PME with critical absorption where some delicate logarithmically 
perturbed patterns can occur [50, p. 98].

The following proposition demonstrates that we cannot replace Cq by L1.

P ro p o s itio n  A .l  There exist initial data it 6  L1(RiV) for which the convergence 
(3.50) does not hold for any finite k.

Proof Recall that such data it G L 1 are not compactly supported. Our construc
tion is as follows. We fix two strictly monotone positive sequences, {Kn}, {pn} 
such that

Kn —y oo, Kn+i — Kn —> oo and pn —* 0 , all sufficiently fast. (A.l)

For instance we can take Kn =  en" and pn = exp{—en"}, or take more exponential 
functions if necessary. We determine the following initial function:

o o

&0(a;) =  - S ,(x)-[-'^2pnlS(X- K'2n-l)-^S{x-\-K2n-l)-S{x-K2n)-S(x-{-K2n)], (A.2)
n = l
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i.e., we put at the points x  =  ±K,2n- i  and x  =  ± k2ti Dirac delta functions with 
the weights pn alternating their signs. Next, for any n > 1 we define

u±n = =F nn) -  6{x T  2 nn)].

Finally, we define the initial data by

o o

uo(x) =  ^ 2 ^ ±n(x) ^  0.
n = 0

One can see that, after regular compactly supported approximations to 6, Uo G L1 

and moreover xuq G L 1 and hence there exists the corresponding global solution 
u (x , t) that is a continuous function for t > 0 .

Let us discuss its asymptotic behaviour for large times. We display the be
haviour for t 1 of the central pattern of this solution having a bounded con
nected (almost symmetric) support on the interval x  G [s_(£), s+(£)]. It follows 
tha t if, for some integer n 1 , |s±(£)| £ («2n5^2n+i) and, in addition, no inter
action with the interfaces of the neighbour small solution parts has happened, 
then this part of the solution has in the support [£_(£),£+(£)] the zero mass,

fu (x ,  t) dx =  0 , but fx u (x , t) da: =  1 .

The first moment 1 corresponds to —S' in (A.2 ) since the rest of the (5-functions 
create the resulting zero momentum. Therefore, for sufficiently large t 1 , the 
solution after scaling (3.50) must take the form of the dipole profile (3.11) of the 
same momentum 1 . By the construction of the sequences in (A.l), we can always 
guarantee that there exists a sufficient interval of time to gain this dipole shape 
approximately and moreover with increasing accuracy for n^>  1 .

Then, after this period of stabilisation to a dipole profile ipi, when, similarly, 

under the assumption |s±WI £ (^2n+i, ^ n + 2) with no interaction with neigh
bouring parts, this part of the solution has nonzero mass since

f  u(x, t) dx =  2 pn+i 7  ̂0 .

Therefore, after sufficiently large time, this part of the solution approximately 
takes the form of a ZKB-solution with profile (3.8) of the same mass. We again 
assume that there exists a sufficiently long period of time for such an approximate 
stabilisation. Continuing this asymptotic analysis with n —¥ 0 0  yields that the
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central part of the solution takes with time an alternating sequence of the dipole 
and the ZKB-structures with the arbitrary accuracy depending on the choice 
of sequences (A.l). Since those similarity solutions (3.35) have different scaling 
factors and exponents, eigenvalues Ai and Ao and essentially different nonlinear 
eigenfunctions ^ i and 'ipo, we do not have any chance to observe convergence after 
scaling in (3.50). □



A ppendix B

The M atlab code used to  
calculate the nonlinear 
eigenvalues and eigenfunctions 
for the PM E

On two occasions I  have been asked [by members of Parliament],
“Pray, Mr. Babbage, if you put into the machine wrong figures, will 
the right answers come out?” I  am not able rightly to apprehend the 
kind of confusion of ideas that could provoke such a question.
- Charles Babbage.

Below is my code to find the first three nonlinear eigenvalues and eigenfunctions 
of the PME. In it’s current incantation it will calculate the third eigenvalue- 
eigenfunction pair when m  =  3. Since no parameters can be passed into the 
initial guess function, the initial guess for the nonlinear eigenvalue a  in (3.13) 
and the value of m  must be hard coded into this function.

The code uses Matlab boundary value problem solver bvp4c. We wish to solve 
the ODE

(this is the ODE (3.36) for N  = 1) on the closed interval [0,1] (the support of 
the nonlinear eigenfunction when £ > 0) subject to the boundary conditions

t//(0) =  0, 0(1) = 0 = 0 for even solutions,

-0(0) =  0, 0(1) =  0 ( |0 |m_10 ) /(l) =  0 for odd solutions.
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We cannot solve this ODE directly for ^ ( 0  (since it has an infinite gradient at 
the end point £ =  1) so we use the standard pressure variable:

=  \ m r ~ 2m  = >  w o  = M o i (2~m)/(m~1)̂

(Note that v is Lipschitz continuous.) This yields the modified ODE

<*K0l(2~m)/(m~1MS) -  -^ -M £)|(2“m)/(m-1V(e) = (M£)r/(ra_1)v(S))"m  — 1

We must regularise |u| in this equation so that Matlab can handle this problem. 
We set |u| =  (u2 +  £2)1/2 and let e —> 0. Now dividing by ^ r j ( u 2(f) + e 2)1/(2(m~1)) 
yields

a t <(g)m  -  1________ f c v ' { V ) _ _ _ _ _ _ _ _ _ _ _ _ _ « ( Q  =  , ? ( t \
m(u2(0  +  ^2)1/2 m (v2(£) +  e2)1/2 (m — l)(u2(£) +  e2)

This can then be written as a system of first order equations and solved using 
b v p 4 c  on a closed interval [0,1] subject to the boundary conditions

f/(0) =  0, u ( l )  =  0, u ' ( l )  =  — — — for even solutions,
m

u(0) =  0, u ( l )  =  0, i / ( l )  =  — — — for odd solutions.
m

An initial guess for the nonlinear eigenvalue is passed as parameter to bvp4c 
and it finds a value for this parameter that solves our ODE and boundary con
ditions. The Matlab code:

f u n c t i o n  p l a n e r u n

'/.In t h i s  v e s i o n  we u s e  t h e  p r e s s u r e  v a r i a b l e  v :

' / , \ p s i = a b s  ( v )  ~ ( ( 2 - m ) / ( m - l )  ) v  a n d  we f i n d  v .

'/, p l a n e r u n  S o l v e s  my ODE g i v e n  a  s t a r t i n g  g u e s s  

'/, f o r  a l p h a  ( t h e  n o n l i n e a r  e i g e n v a l u e )  a n d  

' / . r e t u r n s  t h e  a c t u a l  v a l u e  o f  a l p h a

a = i n p u t ( * I n p u t  a  s t a r t i n g  g u e s s  f o r  a l p h a :  O ;

' / , a = - 0 . 2 5  f o r  ZKB, a = - 0 . 3 3  f o r  d i p o l e ,  

y , a = - 0 . 4  f o r  t h e  t h i r d  e i g e n v a l u e
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m = i n p u t ( * I n p u t  a  v a l u e  f o r  t h e  p a r a m e t e r  m: ’ ) ;

'/, E p s i l o n  i s  u s e d  i n  t h e  r e g u l a r i s a t i o n  o f  t h e  ODE.

e = i n p u t ( * I n p u t  a  v a l u e  f o r  t h e  p a r a m e t e r  e p s i l o n :  * ) ;

f = i n p u t ( 11 n p u t  t h e  i n i t i a l  n u m b er  o f  mes h p o i n t s  y o u  r e q u i r e :  * ) ;

g = i n p u t ( ’ I n p u t  t h e  maximum n u m b er  o f  m esh  p o i n t s  y o u  a l l o w :  ’ ) ;

o p t s = b v p s e t ( ’ N m a x * , g , ’ R e l T o l * , l e - 3 , ’ A b s T o l * , l e - 6 ) ;

s o l i n i t = b v p i n i t ( l i n s p a c e ( 0 , 1 , f ) , O p l a n e i n i t , a ) ; 

s o l a = b v p 4 c ( Q p l a n e , O p l a n e b c , s o l i n i t , o p t s , m , e ) ;

f p r i n t f ( ’The v a l u e  o f  a l p h a  i s :  ' / . T . S f A n ’ , s o l a ,  p a r a m e t e r s ) ; 

v = s o l a . y ( l , : ) ;

p s i = ( a b s ( v ) . ^ ( —1 + 1 / ( m - 1 ) ) ) . * v ;  

p l o t ( s o l a . x , p s i , *-* , ’ L i n e W i d t h * , 2 )

' / . ho ld  o n ;

'/.To g e t  a  s m o o t h e r  p l o t .

' / , y y = s p l i n e  ( s o l a ,  x ,  s o l a .  y ( l , : )  , l i n s p a c e ( 0 , 1  , g ) ) ;

' / . p l o t ( l i n s p a c e ( 0 , 1  , g )  , y y , * r ’ , ’ L i n e W i d t h *  , 2 )

l e g e n d ( [ r e p m a t ( ’ \ a l p h a  = * , 1 , 1 ) num2 s t r ( s o l a . p a r a m e t e r s ) ]  )

x l a b e l ( * \ x i * , * F o n t S i z e * , 1 6 )

y l a b e l ( * \ p s i * , * R o t a t i o n  * , 0 ,  ’ F o n t S i z e *  , 1 6 )

s t r = s t r c a t (* m= * , num2 s t r ( m ) ) ;

s t r = s t r c a t ( s t r ,* * ) ;

s t r = s t r c a t ( s t r , * \ e p s i l o n =  * ) ;

s t r = s t r c a t ( s t r , n u m 2 s t r ( e ) ) ;

t i t l e ( s t r ) ;

•/,------------------------------------------------------------------------
'/, S u b f u n c t i o n s

'/,--------------------------------------------------------------------

f u n c t i o n  y p r i m e  = p l a n e ( x , y , a , m , e )

'/. PLANE YPRIME=PLANE(X,Y,ALPHA) e v a l u a t e s  d e r i v a t i v e
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b = ( a * ( m - l ) + l ) / 2 ;

y p r i m e = [ y ( 2 ) ; ( a * ( m - l ) / m ) * y ( l ) * ( a b s ( e ' ' 2 + y ( l ) ~ 2 ) ) ~ ( - l / 2 ) . . .

- ( b / m ) * y ( 2 ) * x * ( a b s ( e ~ 2 + y ( l ) ~ 2 ) ) ~ ( - l / 2 ) - . . .

( y ( 1 ) /  ( m - 1 ) ) * ( y ( 2 ) ~2 ) * ( a b s  ( e ~ 2 +y ( 1 ) '"2 ) ) ~ ( - 1 ) ]  ;

I -------------------------------------------------------------------------------------------------------------

f u n c t i o n  r e s  = p l a n e b c ( y a , y b , a , m , e )

'/.PLANEBC e v a l u a t e s  r e s i d u a l

b = ( a * ( m - l ) + l ) / 2 ;

r e s = [ y a ( 2 ) ; y b ( l ) ; y b ( 2 ) + b * ( m - l ) / m ]  ; '/.even  e i g e n f u n c t i o n s  

7, r e s = [ y a ( l )  ; y b ( l )  ; y b ( 2 ) + b * ( m - l ) / m ]  ; '/ .d ip o le
•/# ---------------------------------------------------------------------------------------------------------------

f u n c t i o n  y i n i t = p l a n e i n i t ( x )

*/, PLANEINIT e v a l u a t e s  t h e  i n i t a l  g u e s s  a t  x

Th e f o l l o w i n g  c o n d i t i o n s  a r e  o n l y  n e e d e d  f o r  

'/, t h e  t h i r d  e i g e n v a l u e  w i t h  m=3

m =3 ;

c = - 0 . 4 ;  T h i r d  e i g e n v a l u e  m=3 

b = ( c * ( m - l ) + l ) / 2 ;  f o r  m=3 

z = 0 . 4 ;  f o r  m=3 

C = ( 2 * c + l ) / ( 6 * ( l - z ~ 2 ) ) ; */, f o r  m=3 

*/,z=0.25 7 ,4 th  e i g e n v a l u e  when m=3 

'/ .S e le c t  t h e  c o r r e c t  i n i t i a l  g u e s s . . .

' / . y i n i t ^ [ s i n ( p i * x )  ; p i * c o s ( p i * x ) ]  ; '/ .d ip o le  

'/ ,y in i t =  [ c o s ( p i * x / 2 ) ; ( - p i / 2 ) * s i n ( p i * x / 2 ) ]  ; '/.ZKB 

y i n i t = [ C * ( x ~ 2 - z ~ 2 ) * ( l - x ~ 2 ) ; . . .

2*C*x*(1-2*x~2+z~2)] ;'/,Third eigenfunction 
' / . y i n i t = [ ( l - x . " 2 ) . * ( x . ~ 2 - z ~ 2 ) . * ( x . ~ 2 - a ~ 2 ) ; . . .

*/, - 6 . * ( x . ~ 5 ) + 4 . * ( x . ~ 3 )  . * ( a ~ 2 ) + 4 . * ( x ~ 3 )  . * ( z ~ 2 )  . . .

'/. - 2 . * x . * ( z ~ 2 ) . * ( a ~ 2 ) + 4 . * ( x ~ 3 ) - 2 . * x .  * ( a ~ 2 ) . . .



APPENDIX B. MATLAB CODE FOR THE POROUS MEDIUM EQUATION 128

7, - 2 . * x . * ( z ~ 2 ) ]  ; 7 ,4 th  e i g e n f u n c t i o n



A ppendix C

The M atlab code used to  
generate the sim ilarity profiles 
and bifurcation diagrams for 
ut =  —(—A  )rnu +  \u\p~~̂ u

To err is human, but to really foul things up requires a computer.
- Farmers’ Almanac, 1978.

Matlab codes have been written to solve the following ODE on closed interval 
[a, b]:

- ( - A )mV{y) +  ■ y +  ~ ^ j V ( y )  + \V ( y ) r 'V { y )  =  0 (C.l)

subject to one of the following two sets of boundary conditions:

V (—b) =  V \b )  =  0, V(b) = V'(b) =  0 for even solutions;

F(O) =  y"(0) =  0, V(b) = V ,(b) = 0 for odd solutions;

using Matlab boundary value problem solver bvp4c. For sufficiently large 6, these 
conditions are enough to approximate the solutions with exponential decay. The 
initial guesses are exponential functions multiplied by trigonometric functions. 
This is because we expect the solutions to mimic the behaviour of the exponential 
kernel observed in the linear case m =  1.

The codes also plot the p-bifurcation diagram by tracing out the desired bi
furcation branch. This is done by providing the program with a good initial guess
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close to one of the bifurcation points, varying the parameter p and feeding in the 
last solution as the initial guess for the next iteration. This is successful in the 
most part but the branches become more unstable as the bifurcation points pk 
become closer to 1. The result is that when you try to get onto a fairly unstable 
branch, even though you provide a fairly accurate initial guess, you immediately 
converge to one of the more stable branches. Thus, at most, I have only managed 
to trace out the first six branches: po,Pi? • • - Ps-

For even values of k the p^th bifurcation branch consist of even solutions with
k +  1 clear maxima. (They also have other maxima but these are inherited from
their exponentially decaying tail.) The odd values of k yield branches from y  = Pk 
consisting of odd solutions with k -f 1 clear maxima. The distinction between the 
maxima and the exponential tail becomes more subtle for large values of k.

The programs are also set up to calculate when the bifurcation branches pass 
through Halloo =  1 and when the have a maximum. This is done by means of a 
simple test.

In the radial setting when m =  2 we have

A 2V  =  F (4) +  ~  y '"  +  ~  ,3) y "  _  (N  ~  1)(^~ ~  3 ) y ,  ^  ^
y  y 2 y 3

Thus when N  = 3 and m  = 2 we have that, in the radial setting, equation (C.l) 
becomes

y(«) +  1 v"" +  —  V' y + — V  +  I V P - ' V  =  0, (C.3)
y 2m p — 1

where y now denotes the radial variable. We impose the boundary conditions

V(0) -  t/'(0) =  0 V(b) = V\b)  = 0.

My Matlab code to plot the bifurcation diagram and similarity profiles for
ut =  —A2u +  \u\p~1u when m  =  2 and N  =  1:

f u n c t i o n  o u t = p l a n e r u n ( i n i t i a l , p i n i t , p e n d , p s t e p )

'/.In  t h i s  v e s i o n  we s o l v e  t h e  ODE r e l a t e d  t o :

'/. u _ t = - ( - \ D e l t a ) '"m u + | u | ~ { p - l }  u

o p ts= bvpse t(*Nmax’ ,1000,*R elT ol’ , l e - 5 , ’AbsTol’ , l e - 8 , . . .
^ J a c o b i a ^  ,<9f j a c ,  , B C J a c o b i a n , , @ b j a c ,  S t a t s ’ , ’ o n ’ ) ; 

i f ( n a r g i n < 2 )

p i n i t = i n p u t ( , E n t e r  an  i n i t i a l  v a l u e  f o r  p : J ) ;  

p e n d = i n p u t  C e n t e r  a  f i n a l  v a l u e  f o r  p : J ) ;
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p s t e p = i n p u t ( ’ E n t e r  t h e  s t e p  s i z e : ’ ) ;  

e n d

p v a l s = [ p i n i t : p s t e p : p e n d ]  ; 

p t p = 0 ; '/ . t u r n in g  p o i n t  i n d i c a t o r .  

b = 0 ; V . b i r f u c a t i o n  b r a n c h  > 1  i n d i c a t o r ,  

f o r  j = l : l e n g t h ( p v a l s )

p = p v a l s ( j )  '/, p i c k  t h e  c o r r e c t  v a l u e  f o r  p 

i f ( j = = l )  '/, f i r s t  t i m e  r o u n d

i f ( n a r g i n < l )  '/, no  u s e r  d a t a  s u p p l i e d  i n  i n i t i a l

s o l i n i t = b v p i n i t ( l i n s p a c e ( - 2 0 , 2 0 , 1 0 0 ) , @ p l a n e i n i t ) ; 

e l s e  '/. u s e r  s u p p l i e d  i n i t i a l  d a t a  

s o l i n i t = i n i t i a l ;

e n d

e l s e  '/, o t h e r w i s e  we h a v e  t h e  i n i t i a l  g u e s s  b e i n g  

'/, t h e  o l d  s o l u t i o n  

s o l i n i t = s o l ;

e n d

s o l = b v p 4 c ( © p l a n e , © p l a n e b c , s o l i n i t , o p t s , p ) ; 

b d ( j ) = m a x ( a b s ( s o l . y ( l , : ) ) ) ;  

i f  ( b d ( j ) < l e - 6 ) '/.S top  t h e  c a l c u l a t i o n  o n c e

'/.you o b t a i n  t h e  z e r o  s o l u t i o n  

f p r i n t f ( 1 , ’The z e r o  s o l u t i o n  h a s  b e e n  f o u n d ’ ) ;  

p l o t ( s o l . x , s o l , y ( l , : ) , ’ - ’ , ’ L i n e W i d t h ’ , 2 )

'/ . p r i n t  o u t  t h e  l a s t  r e s u l t  

x l a b e l ( ’y ’ , ’ F o n t S i z e ’ , 1 6 )  

y l a b e l ( ’ f ( y ) ’ , ’F o n t S i z e ’ , 1 6 )  

s t r = s t r c a t ( ’p = ’ , num2 s t r ( p ) ) ;  

t i t l e ( s t r ) ; 

b r e a k

e n d

i f ( ( b d ( j ) > l ) & ( b = = 0 ) )  

b = l ;

f p r i n t f  ( ’bd= '/,7 . lO f  A n ’ , b d ( j ) ) ;

'/.G ive a n  a p p r o x i m a t i o n  t o  

'/ .th e  c r o s s i n g  p o i n t  

f  p r i n t f  ( ’ p= '/,7 . 3 f  A n  ’ , p v a l s  ( j ) ) ;
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e n d

i f ( ( j > l ) & ( ( b d ( j ) < b d ( j - l ) ) & ( p t p = = 0 ) ) )  

p t p = l ;

f p r i n t f  ( ’ p t p ^ ' / . T . l O f  A n *  , ( b d ( j ) + b d ( j - l ) ) / 2 )  ;

'/.G ive an  a p p r o x i m a t i o n  t o  

'/ . th e  t u r n i n g  p o i n t

f p r i n t f  ( , p = '/ ,7 .3 f  A n } , ( p v a l s ( j ) + p v a l s ( j - l ) ) / 2 )  ;

e n d

i f ( j  = = l e n g t h ( p v a l s ) )

p l o t  ( s o l . x , s o l . y ( l , : ) , >- i , ’L i n e l / i d t h * , 2 )

x l a b e l ( ’ y ’ , F o n t S i z e ’ , 1 6 )

y l a b e l ( ’ f ( y ) ’ , d o t a t i o n ’ , 0 , ’ F o n t S i z e * , 1 6 )

s t ^ s t r c a t ^ p ^  ,num 2 s t r ( p ) ) ;

t i t l e ( s t r ) ;

e n d

e n d

f i g u r e  '/ .P lo t  t h e  b i f u r c a t i o n  d i a g r a m  

p l o t ( p v a l s , b d , * - * )  

x l a b e l ( , p ’ , *F o n t s i z e ’ , 1 6 )

y l a b e K *  I IVI | _ \ i n f t y ’ , * R o t a t i o n } , 0 ,  ’ F o n t S i z e  * , 1 6 )

o u t = s o l ;  '/.To p l o t  t h i s  t y p e  p l o t  ( o u t .  x ,  o u t .  y  ( 1 , : ) )

y%-----------------------------------------------------------------------------------------

'/. S u b f u n c t i o n s
y§ --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

f u n c t i o n  y p r i m e  = p l a n e ( x , y , p )

'/. PLANE YPRIME=PLANE(X,Y,ALPHA) e v a l u a t e s  d e r i v a t i v e  

y p r i m e = [ y ( 2 ) ; y ( 3 ) ; y ( 4 ) ; . . .

( l / 4 ) * y ( 2 ) * x + ( l / ( p - l ) ) * y ( l ) + y ( l ) * a b s ( y ( l ) ) . ~ ( p - l ) ]  ;

yt-------------------------------------------------------------------------------------------------

f u n c t i o n  f j a c = f j a c ( x , y , p )  

f j a c  *  [ 0 , 1 , 0 , 0 ; . . .
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0 , 0 , 1 , 0 ; . . .

0 , 0 , 0 , 1 ; . . .

( 1 / ( p - l ) ) + p * a b s ( y ( l ) ) . ~ ( p - l ) , x . * 1 / 4 , 0 , 0 ] ;

'/,------------------------------------------------------------------------------
f u n c t i o n  r e s  = p l a n e b c ( y a , y b , p )

'/.PLANEBC e v a l u a t e s  r e s i d u a l

r e s =  [ y a ( l )  ; y a ( 2 ) ; y b ( l ) ; y b ( 2 ) ]  ; '/.even  e i g e n f u n c t i o n s  

'/ ,re s =  [ y a ( l )  ; y a ( 3 )  ; y b ( l ) ; y b ( 2 ) ]  ; '/.odd e i g e n f u n c t i o n s

'/.-------------------------------------------------------------------------------------
f u n c t i o n  [ b j a , b j b ] = b j a c ( y a , y b , p )  

b j a = [ l , 0 , 0 , 0 ; . . .

0 , 1 , 0 , 0 ; . . .

0 , 0 , 0 , 0 ; . . .

0 , 0 , 0 , 0 ] ;  

b j b = [ 0 , 0 , 0 , 0 ; . . .

0 , 0 , 0 , 0 ; . . .

1 , 0 , 0 , 0 ; . . .

0 , 1 , 0 , 0 ] ;

7.-------------------------------------------------------------------------------------------------
f u n c t i o n  y i n i t = p l a n e i n i t ( x )

'/, PLANEINIT e v a l u a t e s  t h e  i n i t a l  g u e s s  a t  x

'/ ,'/ , I n i t i a l  g u e s s  f o r  t h e  p _ 0  b r a n c h  -  s t a r t  a t  p = 6  

y i n i t = [ e x p ( - x ~ 2 / 2 0 ) * c o s ( x / 2 ) ; . .  .

( - l / 1 0 ) * e x p ( - x ~ 2 / 2 0 ) * ( x * c o s ( x / 2 ) + 5 * s i n ( x / 2 ) ) ; . . .  

( l / 1 0 0 ) * e x p ( - x ~ 2 / 2 0 ) * ( - 3 5 * c o s ( x / 2 ) + ( x ~ 2 ) * c o s ( x / 2 ) . . .

+ 1 0 * x * s i n ( x / 2 ) ) ; . . .  

( - l / 1 0 0 0 ) * e x p ( - x ~ 2 / 2 0 ) * ( - 1 0 5 * x * c o s ( x / 2 ) - 2 7 5 * s i n ( x / 2 ) . . .  

+ ( x ~ 3 ) * c o s ( x / 2 ) + 1 5 * ( x ~ 2 ) * s i n ( x / 2 ) ) ] ;

'/ ,'/ , I n i t i a l  g u e s s  f o r  t h e  p _ l  b r a n c h  -  s t a r t  a t  p=4  

' / . y i n i t = [ e x p ( - ( x ~ 2 ) / 2 0 ) * s i n ( x / 2 ) ; . . .

'/. ( - 1 / 1 0 ) *  ( e x p ( - ( x ~ 2 ) / 2 0 ) ) * ( x * s i n ( x / 2 ) - 5 * c o s  ( x / 2 ) ) ; . . .

'/. ( l / 1 0 0 ) * ( e x p ( - ( x ~ 2 ) / 2 0 ) ) * ( - 3 5 * s i n ( x / 2 )  + ( x ~ 2 ) * s i n ( x / 2 )  . . .



APPENDIX C. MATLAB CODE FOR A HIGHER ORDER EQUATION 134

7. -10*x*cos (x /2 ) ) ;  . . .
(- l/1 0 0 0 )* (ex p (-(x ~ 2 )/2 0 ))* (-1 0 5 * x * sin (x /2 ) . . .

7. + 2 75*cos(x /2 )+ (x~ 3)*sin (x /2 )-15*(x~ 2)*cos(x /2 ))];

7.7. I n i t i a l  guess fo r  th e  p_2 branch -  s t a r t  a t  p=4 
7 .y in it= [ex p (-x ~ 2 /2 0 )* co s(x ); .  . .
7. (-l/1 0 )* ex p (-x ~ 2 /2 0 )* (x * co s(x )+ 1 0 * sin (x )); . . .
'/. (l/100)*exp(-x~2/20)*(-110*cos(x)+ (x~2)*cos(x)+ . . .
'/. 2 0 * x * sin (x )); . . .
7. (-1 /1 0 0 0 )*exp(-x~2/20)*(-330*x*cos(x)-1300*sin(x). . .
7# +(x~3)*cos(x)+30*(x~2)*sin(x))] ;

7.7. I n i t i a l  guess fo r  th e  p_3 branch -  s t a r t  a t p=2.5 
7,yinit=  [e x p (-(x ~ 2 )/2 0 )* s in (x ) ; . . .
'/, ( l/1 0 )* ex p (-(x ~ 2 )/2 0 )* (x * s in (x )-1 0 * co s(x )) ; .  . .
7. (1 /100)* (ex p (-(x ~ 2 )/2 0 ))* (-1 1 0 * sin (x )+ (x ~ 2 )* sin (x ). . .
7. -2 0*x*cos(x )); .  . .
7. (l/1000)*(exp(-(x~ 2)/20))*(-330*x*sin(x)+ 1300*cos(x) . . .
7. + (x~3)*sin(x)-30*(x '"2)*cos(x))] ;

The same code is used, with suitable modifications to the ODE to be solved, the 
boundary conditions and the initial guess, to plot the bifurcation diagram and 
eigenfunctions when either m  =  3 and TV =  1 or m  = 2 and N  = 3.
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