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Summary

The phase behaviour of a system of binary hard spheres was calculated over an wide 

range of diameter ratios, 0.33 ^ a  < 0.75 and densities. At each diameter ratio, the 

thermodynamic properties of a number of different crystalline binary superlattices 

were calculated using a Lennard-Jones cell model. Equilibrium phase diagrams were 

derived by combining these solid free energies with accurate fluid equation of states. 

The resulting predictions were found to be in excellent agreement with extensive 

simulations performed by Frenkel et a l for systems of size ratio a = 0.6. The 

Lennard-Jones model offered two advantages over conventional simulations. First, its 

computational efficiency enabled accurate calculations to be made over a more 

extensive range size ratios than previously reported and, secondly the stability of a 

much wider range of crystalline structures could be explored.

In the second portion of the thesis, the Lennard-Jones cell model was applied to the 

freezing transition of a polydisperse system of hard spheres. The thermodynamic 

properties of a polydisperse FCC crystal were calculated using an extension of the 

Lennard-Jones cell model. A continuous distribution of particle diameters was 

approximated by a finite number of discrete points. In order to perform the calculation 

efficiently, symmetry was taken into account and a fast analytical algorithm was used 

to calculate the pressure and Helmholtz free energy. This model predicted a terminal 

polydispersity of 0.055.

The stabilities of the polydisperse HCP and FCC structures were compared. The HCP 

structure was shown be more stable with increasing polydispersity.
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Chapter 1 Hard Sphere Freezing

1.1 Hard Spheres, Simulation and Experiment

1.1.1 The Hard Sphere Model.

The hard sphere model of the atom is one familiar to most students of science. Atoms 

are assumed to posses a finite mass and volume, while interactions are simplified by 

assuming there are no attractive forces. The only force ever present is an infinite 

repulsive force when the hard spheres touch (fig. 1.1.1). The only model conceptually 

simpler is the ideal gas model, where atoms are assumed to posses a finite mass, but 

no volume, i.e. they are assumed to be points.

By their nature, no model is an exact copy of the system being modelled. Some 

models are closer to the system than others. The purpose of a model is to give an 

insight into the behaviour of the system by studying the properties of the model. It 

may be thought that the hard sphere model is too basic to be of any benefit. Since the 

conception of the hard sphere model, many more sophisticated models have been 

considered. Yet the properties of the fundamental hard sphere model still remains an 

area of investigation.

In recent years new equations of state have been proposed1'3 for the hard sphere fluid, 

so that there are, at present, at least twenty two expressions for the equation of state4 . 

Pronk and Frenkel5 have investigated the density of point defects in hard sphere 

crystals, calculating that, at melting point, the concentration of interstitials is three 

orders of magnitude lower than the concentration of vacancies. The relative stability 

of the FCC and HCP crystal structures is still being debated (section 1.3). The nature
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of the binary hard sphere fluid equation of state is not fully known (section 3.4). And 

the random close packing fraction of binary and polydisperse systems is still being 

investigated6.

There has been much interest, in recent year, in the kinetics of transitions in hard 

sphere system. Dixit et al? and Wild et al.8 both examined the kinetics of nucleation. 

While Davidchack and Laird9 studied the crystal melt interface, finding that the 

crystal to fluid transition occurred over 2-3 crystal planes.

  ►
\ r ! a

Figure 1.1.1 The hard sphere potential, separation, r, is given in terms of the diameter 

of the hard spheres. As the spheres touch when r / cr = 1, the potential jumps from 0 to

00  .

The critical temperature for hard spheres is at absolute zero. This is determined by the 

total lack of any attractive forces between the spheres. Consequently no liquid phase 

exists for hard spheres. It was once assumed that hard spheres would not exist in any 

solid state (ordered crystalline phase or disordered glassy phase). The basis of this 

assumption was that the hard spheres lacked the cohesive forces thought vital to hold 

a crystal or a glassy state together. Thus the hard sphere model was initially confined 

to studies of the fluid phase.
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1.1.2 Computer Simulation of the Hard Sphere Model

A model may be classified into one of two categories, physical or mathematical. An 

example of the former is the use of gelatine balls by Morrell and Hildebrand10 to 

model a liquid. The hard sphere model comes into the second category, the properties 

being defined by a set of equations. Until the 1950’s it was only possible to build 

analytical theories upon such mathematical models11'15. Simulation of a mathematical 

model was impractical due to the number, rather than the complexity, of numerical 

calculations required.

The advent of programmable computers removed this barrier. Mathematical models 

were first simulated on computers such as the Los Alamos MANIAC15,16.

Metropolis et a l}5 utilised a simulation method based upon the random movement of 

particles. The purpose of this “Monte Carlo” method was to randomly sample the 

configuration space of the system. To do this they used Markov chains, if  the random 

movement of a particle led to an increase in energy of the system it was accepted with

_A£*
probability, e kT , where AEk is the change in potential energy of the system. In this

.El
way configurations were chosen with probability proportional to e kT, where Ek is

the potential energy of the configuration. Simulating just 244 particles, using periodic 

boundary conditions, they were able to calculate an equation of state and a radial 

distribution function for a two-dimensional hard disk system.

Following on from this, Rosenbluth et a l}6 simulated a three-dimensional hard sphere

system. Using the same Monte Carlo method, they were able to calculate the equation

of state of the fluid phase of hard spheres. This initial simulation of 256 hard spheres,

again using periodic boundary conditions, produced an equation of state for the fluid
7



phase. In these early simulations no evidence was found of any fluid-solid phase 

transition, i.e. there was no evidence of a first order transition in the equation of state.

The Monte Carlo method is restricted to calculating equilibrium properties, as 

particles trajectories are not calculated. Alder and Wainwright17 devised a method to 

exactly calculate the behaviour of a system of particles. Although their molecular 

dynamical method was later extended to study a system of particles with a Lennard- 

Jones potential, initial studies were on a system of hard spheres18. In this method 

particle trajectories are calculated exactly. In the hard sphere system, a particle is 

moved in a straight line at constant velocity until it collides with another particle. 

When a collision occurs, the velocities of the particles involved are changed 

accordingly.

These calculations were restricted to systems containing from 4 to 500 particles. In 

order to represent a macroscopic system with so few particles, periodic boundary 

conditions were employed. It was found that there were two branches to the equation 

of state. The system occasionally jumped from one branch to the other. This 

suggested the possibility of a first order phase transition, although they were unable to 

observe the two phases in co-existence. It must be remembered that the timescales of 

these calculations was extremely short (~ 1 nanosecond). For 500 particles it took half 

an hour to calculate on average, just one collision per particle. Because of this there 

was some concern that metastable states were being observed. Consequently they 

were reluctant to suggest that their results were a definite proof of the crystallisation 

of hard spheres. But their results aroused much interest. Subsequent Monte Carlo 

simulations upon hard sphere systems using longer calculation times confirmed the 

existence of two branches to the equation of state19. After vigorous debate and further
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calculations, including many using density functional theory20 (for a review see 

Oxtoby21) it was finally generally accepted that hard spheres do undergo a first order 

phase transition from a fluid to a crystalline phase.

In the solid phase, the structure observed was that of the face centred cubic crystal 

(FCC -  see section 1.3). In this close packed structure each particle is surrounded by a 

total of twelve neighbours (fig. 1.1.2).

Figure 1.1.2 The first co-ordination shell of neighbours for a particle arranged in an 

FCC structure.

The suggestion that hard spheres were able to crystallise under suitable conditions 

was initially cause for scepticism. This was something long held as being impossible. 

Sceptics correctly argued that the only driving force for such a phase transition would 

be entropy, but they wrongly assumed that there could not be an increase of entropy 

on crystallisation.

As the only force between hard spheres is an infinite repulsion upon contact, the 

internal energy may be ignored. As spheres lack any rotational or vibrational modes 

only the translational degrees of freedom need be considered. Therefore the entropy of 

hard spheres depends only upon their ability to explore space. The entropy may be 

split into two parts, configuartional and correlational (fig. 1.1.3). Configurational
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entropy relates to the freedom of the particles to move throughout the entire system 

and thus alter the overall configuration. This is always lower in the solid phase as 

spheres are tied to their lattice sites. Correlational entropy relates to the freedom of 

particles to move in the vicinities of their average lattice sites. The correlational 

entropy is determined by the nearest neighbours that restrict this localised movement.

Figure 1.1.3 A) Configurational entropy depends on the ability of the particles to

move throughout the entire system and thus alter the overall configuration. B) 

Correlational entropy depends on the ability of particles to move in the vicinities of 

their average lattice sites.

Whilst the configurational entropy is always higher in the disordered fluid than in the 

ordered solid, the correlational entropy may well be higher in the solid. This is the 

case at high densities when the fluid phase is “crowded”. Greater local movement is 

achieved in the ordered solid phase. At high enough densities the higher correlational 

entropy in the solid phase offsets the lower configurational entropy, so that, counter 

intuitively the overall entropy is higher in the ordered solid phase.

1.1.3 Colloidal System s That Approximate Hard Spheres

Whilst mathematical models may be tailored to exact requirements, they may well be

unwieldy. Even with today’s computers, simulations are restricted to a limited number
10



of particles and short time spans. In contrast a great number of particles may be 

studied using a physical model and there are no great time constraints. Obviously 

there are advantages and disadvantages with each type of model, but physical models 

may not be ignored.

Steel ball bearings are amongst the examples of physical models that have been used. 

Whilst the ball bearings are not exact hard spheres, their behaviour is very similar. 

Pieranski et al?1 performed some useful simulations using 631 steel ball bearings 

upon a flat surface to approximate a hard disc system. They were able, for example, to 

observe a first order phase transition and obtain an image of the pair distribution 

function.

Another useful physical model is a colloidal system. Colloids are large enough (10- 

lOOOnm) to be observed with microscopes. At the same time their smallness allows a 

large number of colloidal particles to be used at any one time. Meanwhile, the 

timescale of transitions (these can take days) is also slow enough to allow the 

observation of nucleation events and meta-stable states. Techniques, such as phase- 

contrast, allow the structures formed to be examined more easily. Recently confocal 

microscopy has been used to determine the positions of individual particles beneath 

the surface of crystals23.

Hachisu et al.24 examined systems of charged polystyrene colloidal particles, with

strongly screened coulombic interactions as an approximation to hard spheres. Other

interactions may be modelled, but the hard sphere like interaction is of particular

interest. One method to form colloidal hard spheres is to graft of a thin layer of

poly(12-hydroxystearic acid) (PHSA) onto poly(methyl methacrylate) (PMMA)

spheres25 (fig. 1.1.4). When two such colloidal particles come into contact the PHSA
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“brushes” entangle, generating a steep repulsive potential26 . Whilst this may not be an 

exact hard sphere potential it is very close. The refractive index of the suspension 

medium is matched to that of the colloidal particles. This minimises the Van der 

Waals forces and also allows light scattering experiments to take place by reducing 

cloudiness. Pusey25 observed the occurrence of crystallisation in such systems. 

Gravitational sedimentation is avoided by slowly rotating the samples so that particles 

expierience “time-averaged zero gravity”27.

PHSA

PMMA

Figure 1.1.4 The thinly grafted layer (~10nm) of PHSA prevents the PMMA spheres 

from coming too close and is responsible for the hard sphere like repulsive potential.

Experiments on systems of colloidal hard spheres (PMMA grafted with PHSA) have 

taken place aboard the Space Shuttle Columbia28. The purpose of these experiments 

was to observe the behaviour in the absence of normal gravity. Under the conditions 

of micro gravity, the colloidal hard spheres crystallised at a faster rate and formed 

larger crystallites than on earth. Glassy samples, which had failed to crystallise on 

earth, crystallised in two weeks under microgravity. Crystals were also found to adopt 

the RHCP structure (see section 1.3). A comparison of crystallisation in gravity and 

microgravity has been carried out by Cheng et al .
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Elliot et al.30 imaged a nucleating crystal at single particle resolution. Gasser et al?1 

were able to examine a nucleating crystal in three dimensions with the use of laser 

scanning confocal microscopy.
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1.2 The Lennard-Jones Cell Model

In order to calculate the properties of a system using statistical mechanics, it is 

necessary to know how the atoms or particles in that system interact. In a gas, only 

binary interactions need be considered, as particles are too widely spaced for there to 

be many multiple encounters. It is relatively easy to model the interaction between 

just two particles, and so the statistical mechanics is correspondingly easier. However, 

as the density of the system increases, interactions between groups of particles begin 

to predominate. It becomes much harder to model the interaction as the number of 

particles involved increases.

1.2.1 Fundamental Approximations of the Cell Model

Lennard-Jones and Devonshire32 initially conceived the cell model with denser 

gaseous systems in mind. Rather than allowing particles to migrate throughout the 

gas, this model confines atoms to individual cells. This reduces the many body 

problem down to a number of single body ones. The boundaries of the cell are 

determined by the positions of the neighbours, which are fixed at their lattice sites.

The lattice chosen for the application of their model was face centred cubic.

One further approximation made was the “smeared” approach, where it was assumed 

that each atom in its cell was in a spherically symmetrical field (see section 1.2.5).

Without making any specific application there are three fundamental approximations, 

which will be considered in the following pages, in the cell model of Lennard-Jones 

and Devonshire. These are:-
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1) Single occupancy - Particles are placed in individual cells, which are arranged 

according to a regular lattice.

2) No co-operative movement -  All other particles in the phase are fixed in 

space.

3) Smeared potential -  The particle occupying the cell is in a spherically 

symmetrical potential field.

Once a model for the interaction of the particle has been chosen, statistical mechanics 

may be applied to calculate, amongst other things, the equation of state.

1.2.2 The Single Occupancy Approximation

Lennard-Jones and Devonshire derived their cell model on an empirical basis. By 

deriving it from general statistical mechanics, Kirkwood33 was able to place it on a 

firm basis.

The expression for The Gibbs phase integral, ZN is given by

where J3 = —  and VN is the potential of the system. In all but the simplest of cases 
kT

this expression in intractable.

The volume, v , is spanned by a lattice of N cells, Aj ...A^. Now the integral over v is 

replaced by the sum of the integrals over the individual cells. So that

V V N

1
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where particle k is in cell lk.

It is not necessary to make the number of cells to be equal to the number of particles. 

Neither is it imperative that the size of the cells be equal. This step is not, in itself, an 

approximation.

The approximation is introduced when it is assumed that each cell is occupied by only 

one particle (in which case the number of cells must equal the number of particles). 

The Gibbs phase integral becomes

By restricting particles to occupy single cells, which are arranged on a regular lattice, 

order is imposed on the system. If this model is applied to a disordered fluid state, as 

was initially intended, there is of necessity a loss of entropy. Calculating the loss in 

non-trivial and is the downfall of this model, which was initially meant to be one for 

the fluid state.

There is no intention to resolve this issue here. Rather than attempting to adapt the 

model to the fluid state, the model is applied to a crystalline state. It could be said that 

in effect the system has been adapted to the model.

Recently Cottin and Monson34 have applied cell theory, with some success, to a 

number of solid systems. They studied binary hard sphere systems with diameter 

ratios approaching unity (-0.97). These may be expected to form a substitutionally

(1.2.3)
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disordered FCC arrangement of hard spheres. They also used cell theory to study 

single component and binary Lennard-Jones systems35. In both cases they found that 

there results were in good agreement with Monte Carlo simulations. Cell theory has 

also been applied to systems of two dimensional hard cyclic hexamers36 and confined 

hard spheres37

1 0 0 -

x Molecular Dynamics 
-  Free Volume

8 0 -

6 0 -

bz
>  4 0 -

2 0 -

0.70.4 0.5 0.6

Volume Fraction, <t>

Figure 1.2.1 Equation of state obtained by molecular dynamical calculations18 (96 

particles, solid branch) compared to equation of state obtained using free volume 

theory38.

1 7  18The work of Alder and Wainwright ’ in molecular dynamics was an early indicator 

that cell theory was more applicable to solid than fluid phases. The results from these 

first molecular dynamical calculations were compared to results obtained using the 

cell or “free volume” theory. The system under investigation was one consisting of 

hard spheres. They found that the free-volume theory was “just not applicable” at low 

densities. Much better agreement was obtained at higher densities in the region of the
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1 fisolid branch. The results obtained by Alder and Wainwright using a system of 96 

particles are compared to calculations using cell theory in fig. 1.2.1.

When applying cell theory to a fluid state, the choice of the lattice was arbitrary. 

Obviously this is no longer the case for the crystalline state, where the lattice is 

chosen to match that of the crystal.

In summary the Lennard-Jones and Devonshire cell model has been applied to a 

system where the single occupancy approximation is a good one.

1.2.3 The No Co-operative Movement Approximation

Even with the single occupancy approximation of the cell model, the Gibbs phase 

integral is not easily calculated. Even though particles have been restricted to 

individual cells, it is still a many body problem as all particles are free to move within 

their own cells.

The second approximation used by Lennard-Jones and Devonshire is that neighbours 

remained fixed on average at their lattice sites. It is assumed that there is no co­

operative movement of particles to be considered. It is this approximation that truly 

reduces the problem to a single bodied one as the dynamics of each particle is now 

independent of its neighbours.

Kirkwood33 states this approximation in a more formal manner. The probability 

density, PN is given by

*=i
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j?(r)rfv = l. (1.2.5),

where r* is the position vector of particle k and cp{rk) is the probability density 

function.

Here, <p(fk) depends solely on the position of particle k inside its cell. By neglecting 

co-operative movement it is possible to evaluate the cell configuration integrals, zk, 

independently. The Gibbs phase integral is now given by

The effective potential for particle k, <X>* is determined by the fixed neighbours. The 

important point to note is that the particle in the middle of the cell is now moving in a 

fixed potential field. It is not too difficult to evaluate the corresponding cell 

configuration integral using analytical or numerical methods.

Although there is no intention to remove this approximation, it is interesting to note 

the calculations performed by Hoover et al.39. Hoover et al. pointed out that adjusting 

the masses of individual particles would not alter the overall properties of a system. 

Accordingly he made the mass of the particle in the cell to be very small, whilst 

making that of its neighbours to be great. The lighter particle would naturally move at 

greater speed than the heavier neighbours, which would effectively be fixed in space. 

This is equivalent to the cell model. As long as the neighbours are moved eventually

N

ZN = ]^[zk , where (1.2.6)

(1.2.7)
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no approximation has been made. To allow for some movement of the neighbours, the 

average of a fluctuating arrangement of neighbours was taken. It is also noted that this 

fluctuating cell model is equivalent to a Monte Carlo average, where the neighbours 

are moved with far less frequency than the central particle. Again it is important that 

the neighbours are moved eventually. This model was applied by Hoover39 to both 

solid and fluid phases of hard spheres.

1.2.4 The Concept of Free Volume

Before a consideration of the third approximation made in the original application of 

the cell model it is useful to consider the potential that is to be used.

Whilst a variety of potentials may be used, the hard sphere potential is particularly 

suited to the cell model, as the cell configurational integral,

a*
z t  =  ( 1.2 .8)

may be readily obtained.

<X>(r), the effective single particle potential energy function, takes one of two possible 

values, r is a vector describing the position of the centre of the particle in the cell, the 

tagged particle. If the particle in the cell is not overlapping with any of its neighbours 

then <b(r) = 0 and hence = 1. Conversely if the tagged particle is overlapping 

with one or more of its neighbours so 0 (r) = oo and = 0. Thus zk is equal to the

volume in which the centre of the tagged particle is free to move about inside the cell. 

This is known as the free volume, vf  (fig. 1.2.2).

20



Figure 1.2.2 An illustration of free volume in two dimensions. The tagged particle is 

marked by the central cross. The neighbours (dark grey) are surrounded by exclusion 

spheres (light grey). The resulting area (the free volume) marked in white is that 

accessible by the centre of the tagged particle.

1.2.5 The Smeared Potential Approximation

The third approximation used by Lennard-Jones and Devonshire is the one that is 

most easily removed.

They used the smeared approximation in their application of the cell model. The 

smeared approximation is the assumption that the tagged particle was in a spherically 

symmetrical field. Whilst this might be a useful approximation to make when dealing 

with more complicated potentials, it is unnecessary with a hard sphere system in view. 

For a hard sphere system the smeared approximation simply means that the free 

volume is a sphere.

It is well within the capabilities of modem computers to calculate the exact free 

volume. When applying the cell model to hard sphere systems, the smeared 

approximation is unnecessary.

Buehler et al.40 were the first to calculate the exact free volume. They used analytical

methods. Still applying the cell model to hard spheres forming a dense gas, Buehler et
21



al. calculated the exact free volume for a particle in a face centred cubic lattice. The 

walls of the cell were defined by the planes that bisected the lines joining the lattice 

sites of the tagged particle and those of its neighbours (i.e. a Voronoi polyhedron). 

The cell thus took on the shape of a dodecahedron. At low densities the tagged 

particle was free to explore its entire cell, so that the free volume was equal to that of 

the dodecahedron. As the density increased, it was found the proximity of 

neighbouring particles prevented the tagged particle from exploring its entire cell. 

Eventually the movement of the tagged particle was found to be determined solely by 

the steric hindrance of the neighbours. The shape of the free volume at these densities 

is that of a dodecahedron with concave sides.

Figure 1.2.3 The tagged particle in an FCC structure (A), coloured blue is surrounded 

by its nearest neighbours coloured green (B). The corresponding exclusion spheres are 

shown in cyan (C). The free volume may be seen when most of the exclusion spheres

22



are cut away (D). At a volume fraction of 0.545 (the volume fraction at which crystals 

are first formed), the free volume is approximately one quarter of the width of a 

particle.

A useful concept, when calculating the free volume is that of “exclusion” spheres. In 

fig. 1.2.3.A, the tagged particle is shown, marked in blue. It is surrounded by its 

twelve nearest neighbours, highlighted in green. In this case it is only these twelve 

nearest neighbours that determine the free volume (fig. 1.2.3.B). Note that the volume 

at the centre of the “cage” is not of interest. It is only the volume accessible to the 

centre of the tagged particle that is of relevance. The surfaces of any two hard spheres 

are not allowed to overlap; so that the closest those two spheres may approach is 

determined by the sum of their radii. Therefore the centre of the tagged particle is 

excluded from a spherical volume surrounding the centre of each neighbour. The 

radius of this “exclusion” sphere is equal to the sum of radii of the neighbour and the 

tagged particle (fig. 1.2.4). When determining the free volume it is possible to replace 

the neighbours with the appropriate exclusion spheres and reduce the tagged particle 

to a point. The free volume is then equal to that volume remaining at the centre of the 

arrangement of overlapping exclusion spheres. In fig. 1.2.3.C, the exclusion spheres 

corresponding to the twelve neighbours are shown in cyan. The free volume, in blue, 

is seen when some of the exclusion spheres are cut away (fig. 1.2.3.D).

Figure 1.2.4 The radius of the exclusion sphere (light grey) is the sum of the radii of

the tagged particle and the neighbouring particle (dark grey).
23



1.2.6 The Restriction of Particles to Individual Cells

The free volume is normally determined by the neighbouring particles. However, at 

low densities, a particle may appear to be free to leave the vicinity of its equilibrium 

lattice site and wander throughout the crystal. If the particle were allowed to do this, 

then it would be able to leave its own cell and enter into another. This would break the 

first approximation of single occupancy. It is therefore assumed that each particle will 

stay inside the confines of its own cell that is centred upon its lattice site. This also 

ensures that the definition of model does not contradict that of a crystal, i.e. that 

particles are localised and not free to wander through space. At the freezing densities 

of monodisperse systems, this consideration may be safely neglected as the 

neighbours restrict each particle to the vicinity of its lattice site. However in a binary 

systems where the diameter ratio is small, it is quite possible that a small particle may 

pass by its neighbours. Hence the restriction of the tagged particle to its own cell 

becomes important. Buehler et al. needed to enforce this restriction, as they were 

considering systems at low density.

Each cell takes on the form of a Voronoi polyhedron, i.e. The plane that 

perpendicularly bisects the line joining the particle under consideration to its 

neighbour defines each face. Within that cell, the tagged particle is always closer to its 

own lattice site than another’s.
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1.3 A Com parison of FCC and HCP

It has long been known that spheres can pack into one of two close packed 

arrangements. These being face centred cubic (FCC) and hexagonal close packed 

(HCP). These two arrangements are very similar, both being based upon layers of 

hexagonally close packed spheres (fig. 1.3.1).

Figure 1.3.1 A) The arrangement of spheres in a hexagonal close packed layer. B) A 

second layer lies over the interstitial gaps in the first layer. The third layer either lies 

directly over the first layer (C) -  the HCP arrangement or is offset from both the 

previous layers (D) -  the FCC arrangement.

Adjacent layers in both structures are staggered, spheres being placed above the 

interstitial gaps in the preceding layer. Having placed two layers, there are two 

options for the position of the third. In HCP (fig. 1.3.2) the third layer lies directly
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above the first. In FCC the third layer is offset from the first as well as the second 

layers. The FCC structure is observed in nature slightly more often than HCP As 

many as 25% elements crystallise into the FCC structure, with 20% preferring to 

adopt the HCP structure.

Both these structures as labelled as close packed structures as they have the maximum 

possible packing fraction obtainable by monodisperse spheres. The fraction of the

TC
volume occupied by the spheres in either of these arrangements is — — « 0.7405.

Figure 1.3.2 The hexagonal close packed structure, the close packed layers are 

marked.

When interatomic forces are present it is understandable that one structure may be 

favoured above another. What is not so clear is whether any one structure should be 

the favoured arrangement for hard sphere crystals. Based purely upon packing ability 

there is no distinction between the two alternatives.
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In the majority of calculations involving hard sphere crystals, the preferred choice of 

structure has been FCC17,18,40. This choice has been somewhat arbitrary, being based 

only upon the slight predominance of FCC in nature.

Should there be no preference for either close packed structure, then a hybrid may 

form. This is known as the random hexagonally close packed (RHCP) structure. The 

spheres in the second close packed layer lie over the gaps in the first layer. The 

spheres in the third layer either lie over the spheres in the first layer (as with HCP) or 

they may be offset from both the previous layers (as with FCC).

1.3.1 A Comparison Using the Cell Model

The free volume approach of the cell model is incapable of resolving any difference 

between the two structures. This is not due to a lack of accuracy in the numerical 

calculation, but rather to the symmetry of the two cells involved.

HCP

Figure 1.3.3 The arrangement of spheres in the FCC and HCP cells. The tagged 

particle is shown in blue. The arrangement of the neighbours shown in green is the 

same in the FCC and HCP arrangements. The only difference is in the positions of the 

neighbours shown in red. The planes divide the cells in two.

The cell for the FCC structure may be split into two halves. If the lower half is rotated

by 60° about the normal to the plane used to split the cell, then the HCP cell is
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obtained (fig. 1.3.3). The only difference is the positioning of the spheres marked in 

red.

To calculate the free volume, the neighbours are replaced with exclusion spheres and 

the tagged particle is reduced to a point (fig. 1.3.4).

Figure 1.3.4 The arrangement of exclusion spheres corresponding to the arrangement 

of neighbours in fig. 1.3.3.

The free volume is equivalent to the volume of the vacancy at the centre of the 

arrangement of resulting exclusion spheres shown (fig. 1.3.5). The shape of the free 

volume is that of a dodecahedron with concave sides.

Figure 1.3.5 The free volume for the tagged particles in the FCC and HCP cells.

The shapes of the free volumes for the two cells are different, but they share the same

“symmetry” relationship as the original arrangement of neighbours in the cell. i.e. The
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free volume for HCP may be obtained by rotating the lower half of the FCC free 

volume by 60°. This holds true as long as the sides of the free volume shown in red do 

not extend into the upper half. When this does not occur, then the two halves of the 

free volume are independent. The geometry of the two arrangements dictates that this 

is the case. Therefore the quantity of the free volume for the two arrangements is 

identical. As free energy, in this model, ultimately depends upon this free volume, 

then no difference in the free energy of the two structures may be found.

1.3.2 A Comparison in Experimental Systems

A preference for the FCC structure has been observed in experiments with colloidal 

hard spheres26. It was observed that crystals that grew quickly formed the RHCP 

structure, whilst those that grew more slowly formed the RHCP structure, but with 

FCC regions. It was suggested that the equilibrium structure was FCC, but that the 

metastable RHCP phase was forming. As the difference between the two structures, if  

any, is small, the authors were cautious in putting this down to pure hard sphere 

effects. They speculated that the balanced could be tipped by any Van der Waals 

forces present.

In the microgravity experiments carried out aboard the Space Shuttle Columbia28, it 

was found that colloidal hard spheres formed the RHCP structure. This led them to 

suggest that any preference for the FCC structure was due to gravity. However it is 

worth noting that, under microgravity, crystallisation occurred fairly rapidly in these 

systems. This suggests that the RHCP structure may have formed due to the speed of 

crystallisation.
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1.3.3 A Comparison Using Molecular Dynamics

Woodcock41 calculated an entropy difference between the two structures using 

molecular dynamics. By integrating the P-V isotherms for the two arrangements to a 

common point, he found a free energy difference of 0.005RT between the two 

structures. FCC being marginally more stable than HCP.

The magnitude of his result, though not the sign was disputed by Bolhuis et al.42 

Using Monte Carlo techniques, they found the free energy difference to be only 

0.0009 RT, considerably smaller than the result reported by Woodcock.

Although the size of the difference between the two structures is debated, the fact that 

FCC is slightly more stable is generally accepted. However any difference is so 

marginal that under normal experimental conditions no structure will be favoured. In 

which case the positioning of the third layer relative to the first and second layers will 

be unpredictable, i.e. RHCP arrangements will form.

The difference between these two arrangements will be considered again in sections

5.1.3 and 9.3. Factors that may influence the difference are the occupation of the 

octahedral holes in a binary structures and polydispersity.
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Chapter 2 Binary Superlattices

It is now well known that a system of monodisperse hard spheres will form a face 

centred crystal under suitable conditions (section 1.1). Those conditions being high 

enough density and the absence of sedimentation. There are many different crystals 

that could, potentially, be formed from a binary system of hard spheres. This is, in 

itself fascinating, given that the formation of such structures is entropically driven. 

However, of fundamental interest is the ability to form binary colloidal crystals, as 

this enables the fabrication of novel nano-scale structures43 beyond the capabilities of 

lithography. Applications include, for example, the construction of an electronic 

device that is able to measure the resistance of a single organic molecule 44. Photonic45 

materials and biochemical sensors46 have also been constructed using self-assembling 

colloidal particles. Further uses may include the manufacture of ceramics and 

composites or the construction of lithographic templates.

2.1 Initial Observation in a Sample of Gem Opal

Binary superlattices were discovered in a naturally occurring sample of gem opal.

Gem opals consist of a close packed array of silica spheres, which are typically 

uniform in size (in the range of 150-400 nm). In the course of examining some 

samples of gem quality opal from Brazil, Sanders47 came across an unusual sample. In 

this sample, a mixture of silica spheres with two distinct diameters, 362 nm and 210 

nm, was found. The ratio of diameters being 0.580.

By examining etched cross sections of the gem opal with an electron microscope, 

Sanders was able to identify two different structures present within the sample, which 

he labelled AB13 and AB2. Whilst neither of these structures is simple, the AB13
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structure is particularly unusual. The larger spheres, labelled “A”, form a primitive 

cubic lattice, with the smaller spheres forming icosahedral clusters that occupy the 

centre of each cube. Adjacent icosahedral clusters are rotated by 90° relative to each 

other. A small sphere at the centre of each icosahedral cluster ensures the 

stochiometry is AB13. In the AB2 structure the large spheres form hexagonal close 

packed layers that lie directly over each other. The small spheres sit in the centres of 

the triangular prisms formed. Diagrams of both of these structures may be found in 

section 3.2.2 (AB13) and 3.2.4 (AB2).

Gem opal is believed to form by the slow, steady precipitation of silica from an 

aqueous solution47. The maximum possible packing fraction of a random arrangement 

of hard spheres is 0.64. However if  the spheres sediment slowly they are able to form 

close-packed crystalline arrays, with a packing fraction of 0.74. In the monodisperse 

system the formation of the crystalline phase depends only on the volume fraction of 

the hard spheres present. In contrast in a binary system the formation of superlattices 

depends upon the diameter ratio, a, the mole fractions of the two species present as 

well as the overall volume fraction. Murray and Sanders speculated that the formation 

of these phases was dependant on the ability of the hard spheres to pack efficiently48. 

Samples of gem opal with monodisperse particles in the FCC arrangement are 

common. So Murray and Sanders reasoned that the binary structures formed if the 

volume fraction of such a structure was higher than that of the two separate FCC 

structures. As is shown in section 3.2 AB2 comfortably satisfies this criterion, while 

the ABn system must be modified slightly to ensure it also fits the criteria. One 

possible distortion is to assume that the sphere at the centre of the icosahedral cluster 

was marginally smaller than those at the edge. They argued that the sedimenting

32



systems maximised their packing fractions in order to minimise their gravitational 

potential energy.

2.2 Observation in Colloidal Systems

Following on from the discovery of these structures in gem opal, Hachisu et al.A9 

studied systems of highly charged colloidal spheres using optical microscopy. The 

repulsive potential was characterized by an effective hard sphere potential. Unable to 

look much further than the surface of their samples, due to the opaqueness, they were 

still able to observe a number of superlattices. Amongst these were, the AB2 and AB13 

structures already discovered in gem opal. They also discovered two structures that 

followed the arrangement of ions in the MgCu2 (<r = 0.77) and CaCus 

(0.72 < cr < 0.75) crystals. The potential of the charged colloidal spheres and surface 

effects may well have influenced the formation of some of these structures, as both 

MgCu2 and CaCus have poor packing fractions (sections 3.2.6 and 3.2.7).

Later, Bartlett et al .50 studied a binary colloidal system with diameter ratio of 0.58. 

The phase behaviour was studied of a mixture of poly(methyl methacrylate) (PMMA) 

spheres. By adjusting the densities of the two differently-sized colloidal spheres 

present, they were able to observe both AB13 and AB2 crystals by optical 

crystallography. The refractive index of the suspension medium was matched to that 

of the particles to avoid turbidity and to minimize the attractive van der Waals forces. 

A phase diagram was constructed from their experimental data. One of the most 

noteworthy aspects of this study is the time scales involved for crystallization. AB2 

crystals took in the region of five weeks to form (compared to a few hours needed for 

monodisperse crystals). This introduces the possibility that the formation of binary
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superlattices may be kinetically hindered. The structures were identified using powder 

light crystallography and electron microscopy.

Pusey et al.51 also studied a binary system of colloidal hard spheres (PMMA grafted 

with PHSA) at a diameter ratio, cr = 0.36, and observed the formation of AB6 crystals 

(section 3.2.8). In more recent studies, Schofield52 observed the formation of a binary 

hard crystal with the CsCl structure at a diameter ratio, a  = 0.736 (section 3.2.9). 

However the crystals disappeared over time, leading him to suggest that this structure 

was metastable.

Hunt and Jardine53 studied a number of binary systems with different diameter ratios. 

At a diameter ratio, cr = 0.39, they observed the formation of binary hard sphere 

crystals with the structure of NaCl or NiAs (sections 3.2.10,3.2.11 and 5.1.3). At a 

diameter ratio, a  = 0.52 they observed the AB2 and AB13 superlattices, whilst at 

cr = 0.72 they found that the two phases were immiscible and no superlattices were 

formed.

2.3 Computer Simulation

Inspired by the observation of superlattices in colloidal systems, Frenkel et.al. 54,55 

performed an extensive range of computer simulations of binary hard sphere systems 

(0.5 < cr < 0.625). Dependent on the diameter ratio and number densities of the 

species present, they showed that both the AB2 and AB13 phases could be stable 

relative to other possible binary phases. Recall that the formation of these complex 

crystals is entropy driven, this is remarkable given that entropy is always thought of 

as a force for disorder. They found good agreement between their simulations and the 

earlier experimental work56. The discrepancies that were observed were put down to

34



kinetic effects, for instance the speed at which nucleation and subsequent growth 

occurs. They found that AB2 was stable in the range of diameter ratios,

0.5 < cr < 0.625 and AB13 was stable in the range, 0.54 < cr < 0.625.

Trizac et al.51 performed simulations of binary systems at the more extreme diameter 

ratios 0.414 and 0.45. It is at these ratios that the NaCl structure is expected to form 

(as it has a high packing fraction). In the NaCl structure, the large spheres form an 

FCC lattice with the small spheres occupying the octahedral vacancies. From their 

simulations they predicted that under suitable conditions the NaCl phase would be 

thermodynamically stable relative to other competing phases.

2.4 Summary

The AB2 and AB13 structures are only observed in experiment and simulation within a 

limited range of diameter ratios. Outside those diameter ratios a rich variety of phases 

seems possible. The binary superlattices that have been observed in experiment or 

simulation are summarised in figure 2 .1 .

The ability of a given structure to pack efficiently is a first guide to the likelihood of 

that structure forming. For instance, at diameter ratios, cr > 0.8, the AB13 structure has 

a low maximum packing fraction and would not be expected to form. On the other 

hand, the FCC structure has interstitial vacancies which may accommodate a sphere 

of diameter ratio, cr = 0.414 (octahedral holes). An FCC arrangement of large spheres 

with the smaller spheres occupying the octahedral holes will have a high packing 

fraction, when the diameter ratio is near 0.414. This structure, which is formed by 

NaCl, is a prime candidate for consideration. Although this may be a good “rule of 

thumb”, to properly predict the thermodynamic stability of a particular structure
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statistical mechanics is used. Even then, the thermodynamic stability of a given 

structure under certain conditions is not enough to predict its existence with certainty. 

Other factors, such as kinetic stability58,59 may come into play.

I— | CaCus, Hachisu et al. (charged colloids)

O  MgCu2, Hachisu et al. (charged colloids)

O AB6, Pusey and Schofield (colloidal hard spheres)

O  CsCl, Schofield (colloidal hard spheres,
metastable)

I •—'| NaCl Trizac (molecular dynamics)

O  NaCl/NiAs Hunt and Jardine (colloidal hard spheres)

I ~i AB13 Eldridge and Madden (molecular dynamics)

I |  i AB2 Eldridge and Madden (molecular dynamics)

q  AB13 and AB2, Hunt and Jardine (colloidal hard spheres)

O  AB13 and AB2, Bartlett (colloidal hard spheres) 

q  AB13 and AB2, Sanders (gem opal)

 I--------------1-------------- 1--------------I----->
0.4 0.5 0.6 0.7 0.8 0.9

diameter ratio

Figure 2.1 A summary of binary superlattices observed in experiment (grey) and 

simulation (red). The circles mark the diameter ratio at which the superlattice was 

observed, whilst the rectangles shows a range of diameter ratios.

2.5 Plan of action

In the following section (3.1), the application of statistical mechanics, in particular the 

cell model, to binary systems is considered. Before any calculations involving the cell 

model may be carried out, it is necessary to work out the relative positions of the hard 

spheres in the structure under consideration. These, as well as the close packing 

fractions, are evaluated in section 3.2. A number of structures are considered, many of
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which have been observed in various systems. In section 3.2 an attempt to predict new 

structures is made. The calculation of the phase behaviour of binary hard sphere 

systems is considered in section 3.3. The equation of state of the binary fluid is 

examined in section 3.4. The method used to calculate the free volumes is described 

in chapter 4 and some general results are given in section 5.1.

The phase diagrams for binary hard sphere systems with a range of diameter ratios are 

given in section 5.2.
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Chapter 3 Theory of Binary Systems

3.1 The Application of the Cell Model

3.1.1 Statistical Mechanics

The theory behind the cell model is considered in the introduction (section 1.2). In 

this section, the specific application to binary systems is considered.

All the structures considered in this study have stochiometry ABn, where the large 

spheres are denoted A and the smaller spheres B. In each case, considered in this 

thesis, the large spheres are in identical environments. This is also true for the smaller 

spheres in the majority of instances but it there are exceptions. For instance, the AB13 

structure, considered in section 3.2.2 in which twelve of the small spheres sit at the 

verticies in the icosahedral cluster, whilst the thirteenth occupies the centre. Hence 

this structure may be defined as an AB'^C type. Note that this is not a true ternary 

structure as the particles labelled B' and C have the same diameter. To cover all 

eventualities the denotation AB'mCp is used in the following pages. In all cases,

n = m + p  (3.1.1)

The ratio of the diameters of the large spheres, aA to the small spheres, aB is defined 

by

cr = ̂ - .  (3.1.2)

Writing the semi-classical partition function,
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Z „ = f K ' ,(3.1.3)
i

where z, is the semi-classical partition function of cell type z, for a structure, AB'mCp, 

we have

Zn = zan*Zb Nb'zcNc, (3.1.4)

where z, is given by

z( = -L jr fV e-w « , (  3.1.5)
At

O is the potential energy function and Xt is the thermal wavelength for the particles 

occupying cell /. is a scaling factor, whose value does not influence the final 

results. Hence for convenience we chose to define

Xt =<j a for all i. (3.1.6)

Choosing a A, the diameter of the large spheres, as the unit length throughout all 

calculations, so that all volumes are measured in units of a A . This leads to the scaled 

expression for z/,

z, = j d 3r e - ^ r), (3.1.7)

or z ,= ? ,,  (3.1.8)

where qt is the cell configurational integral.

39



For a hard sphere system, in the cell model, qt and consequently z t are equal to the 

volume in which the centre of the tagged particle is free to move about inside the cell. 

This is known as the free volume, vf . Since the volume of each particle type is

independent,

%N = v/ANAvJB'Nb vJCNc • (3* 1-9)

The Helmholtz free energy, A is then given by

4  = - In Z„.  (3.1.10)
kl

So that

= InVj;,- N b, \nvfl. - N c lnVjc (3.1.11)

A
o r  ’m r =~Xj' XnVfA ~ x " ' l n V ; s ' _ J C c  l n V / c ’  ( 3 1 1 2 )

where xt is the mole fraction of particles in cell type i. 

The pressure is then obtained from the standard result,

P = -
r dA^ 

\ d V  j T n
(3.1.13)

The volume fraction of the system is a more useful measurement than the volume. 

The volume fraction is that fraction of the volume occupied by the particles, not 

including any interstial spaces. The volume fraction, ^ , is given by.
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, - § ( * ■ )  (3.1.14)

From this the expression

d_ = _ ± _ d  
d V ~  V d(j>

is obtained. So the pressure is given by

p  = —
V

r dA'

J t , N

(3.1.16)

Consequently,

—  = (lnv .) .(3.1.17)
NkT d p  ’

This differential is evaluated numerically by the algorithms described in section 5.1.

The Gibbs free energy may now be obtained using

G -  A + P } L  (3.1.18)
NkT NkT NkT

3.1.2 The Excess Helmholtz Free Energy

It is frequently more instructive to split the ideal from the non-ideal terms in the free 

energy. The excess Helmholtz free energy, A ex, is defined by

A e x = A - A id, (  3.1.19)

where A id is the Helmholtz free energy for an ideal system.
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The semi classical partition function for an ideal binary system, Z.j*, is given by

A ' 1 '  B'

The pre-factor accounts for the entropy of mixing two species of different size. We 

note, in passing that the notation AB'mCp is not needed when considering an ideal 

system as individual small spheres are by definition always indistinguishable. The 

partition function for the individual species, zt_id, with / = A or B, is given by

VNi

Utilising the definition of (3.1.6) leads to the result,

VNz*=—------ , (3.1.22)
" N A\NB\

where, as before the volume, V, is measured in units of a / .  The ideal free energy is 

therefore

Abin
- ^ r  = - ln  Z * ,  (3.1.23)

AkJ  , T, N .  InN , - N .  NB\nNB - N B
o r —^ -  = - ln F  + — --------------4. + —5-------2--------------- (3.1.24)

NkT N  N

Substitution of the expression for the volume fraction,

= -T-{NA + N Bo i ) (3.1.25) 
6V
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and the mole fractions,

N.
jcf = — (3.1.26) 

' N

yields a final expression for the ideal Helmholtz free energy,

a bin 
id

NkT
= ln ^ - l  + ln

Jl(xA +Xb(7 )
+ xA In xA + xB InxB. (3.1.27)

The excess Helmholtz free energy for a binary system is consequently

I bin

NkT
= - x A InvfA- x B, lnv~, - x c lnv^ - ln ^  + 1

-In
n{xA + x Ba  )

(3.1.28)
- xA \nxA - x B Injĉ
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3.2 Binary Superlattices

3.2.1 Selection of Candidate Structures

The purpose of the cell model is not to generate binary structures. It is used to 

determine the stability of a number of possible structures. There are a very large 

number of possible arrangements within a binary system. Molecular shape and bond 

angles determine the form of many complex structures. These complex structures are 

unlikely to be formed by a simple hard sphere system, as was pointed out by Murray 

and Saunders48. Other structures may be ruled out due to steric hindrance. For 

instance the CaF2 structure has the smaller spheres occupying the tetrahedral 

vacancies left by an FCC arrangement of large spheres. At diameter ratios greater than 

0.5 the smaller spheres would be too large for the holes, which are ideally suited for a 

diameter ratio of 0.225.

A good quantitative measure of the likelihood of a particular structure is the 

maximum packing fraction. When Murray and Saunders examined samples of gem 

opal containing the AB2 and AB13 structures48, they speculated that the maximum 

packing fraction was the deciding factor in the formation of different arrangements. 

Their hypothesis was that a structure formed if its maximum packing fraction was 

greater than that of the monodisperse FCC structure. This was based on the postulate 

that the system attempted to maximise its density.

Comparison of the stabilities of different structures is carried out at constant density. 

If a structure is capable of packing at a high density, then it follows that by the time 

the density is reduced the particles will have greater freedom to move about. Hence 

the free volume will be greater and the Helmholtz free energy lower. For this reason,



the packing fraction is a good indicator of the stability of a structure. For instance, the 

CaF2 structure has a packing fraction of only 0.484 at diameter ratio 0.56 whilst AB13 

has one of 0.735. It is, therefore, not surprising that it is the AB13 and not the CaF2 

structure that is found to be more stable at these diameter ratios.

Note that structures are sometimes referred to by their ionic analogues. The “CaF2” 

structure refers to the binary hard sphere superlattice having the same structure as the 

CaF2 crystal.

When considering a structure, the primary step is the calculation of the close packing 

curve, i.e. the maximum packing fraction vs. the diameter ratio. The maximum 

packing fraction occurs at the point where any further increase in the density would 

result in the overlap of any pair of particles. The minimum distance between pairs of 

hard spheres is fixed by their diameters. These minimum distances may be expressed 

in terms of the unit cell dimensions. The constraints on the separation between pairs 

of particles leads to the minimum possible unit cell dimensions and so to the 

maximum packing fractions.

To determine whether or not to include a structure at the diameter ratio under 

consideration, the criterion of a close packing fraction greater than 0.65 was used. i.e. 

only those structures with a maximum packing fractions greater than 0.65 at the 

appropriate diameter ratio were included. The volume fraction of 0.65 is 

approximately halfway between the close packing fraction and melting fraction of 

FCC. A structure with such a low maximum packing fraction will have a small free 

volume and thus will be thermodynamically unstable relative to the FCC phases. 

Naturally, some exceptions were made to this crude selection criterion.
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In the following sections all the various binary superlattices used in these calculations 

are introduced. Whilst the list of structures given is by no means exhaustive, a large 

number of possible structures have been taken into account. These structures may be 

broadly classified into four groups according to the arrangement of the large spheres. 

These being cubic, trigonal prismatic, close packed and body centred cubic (There is a 

fifth type based upon the diamond lattice, but only one structure adopts this 

arrangement). Many of the structures have been observed in nature or have been 

suggested in literature47-49 as possible arrangements for binary hard sphere systems. 

However a number of the structures described have not been observed in nature and 

are put forward as possible arrangements. In this manner, it is hoped a comprehensive 

collection of arrangements has been generated.

3.2.2 AB13 Structure and Close Packing Curve

As AB13 has been observed in samples of gem opal, no study would be complete 

without the inclusion of this structure. Murray and Saunders have calculated the close 

packing curve. This is one of four structures considered where the larger spheres form 

a simple cubic array. Two parameters, a and b, are used to define the unit cell (fig.

3.2.1). The width of the unit cell is given by a and the distance of the small spheres 

from the centre is given by b. Note that the unit cell parameter, b, is not strictly 

dependent on a. When the spheres forming the icosahedral cluster are quite small, b 

may vary without altering the close packing characteristics. In these cases it is 

normally assumed that at close packing b is at a minimum. The close packing curve 

for AB13 is shown in fig. 3.2.3. It is typical of some of the curves in that it has three 

branches. Packing is determined, in the first branch by contact between large spheres,

46



in the last branch by small spheres. In the middle branch it is contact in-between small 

and large spheres that governs the packing characteristics.

a

tf/2±0.8516 a/2±0.8516

Figure 3.2.1 Diagram showing arrangement of large and small spheres in the unit cell 

of ABi3. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres.

Figure 3.2.2 Unit cell for ABn, showing (001) face.
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Figure 3.2.3 Close packing curves for ABn and its variant AB12 (see section 3.2.3). 

The dotted line is the maximum packing fraction of a monodisperse FCC crystal.

3.2.3 AB12 Structure and Close Packing Curve

This structure is almost identical to AB13, the only difference being the removal of the 

small sphere at the centre of the icosahederal cluster. It was thought that the removal 

of the sphere at the centre of the icosahedral cluster would allow the structure to pack 

more efficiently, by allowing the size of the cluster to be reduced. There is a very 

small advantage in doing so at low diameter ratios, as may be seen in fig. 3.2.3. 

However, this advantage is lost at the higher diameter ratios where AB13 is actually 

seen to occur.
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a /2  ±0.851/> a/2±0.851Z>

0,fl
Figure 3.2.4 Diagram showing arrangement of large and small spheres in the unit cell 

of AB12. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres.

3.2.4 AB2 Structure and Close Packing Curve

Figure 3.2.5 Unit cell portion of AB2, (010) face. The large spheres, A, are shown in

green, the small spheres, B are shown in red.
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The other structure observed by Murray and Saunders is also a vital inclusion. Less 

complex than ABn it is one of three structures where the larger spheres form a 

trigonal prism. In this case, the first coordination sphere of large spheres surrounding 

each small sphere is trigonal prismatic. It is one of the structures explored with the 

best close packing characteristics having a maximum packing fraction of 0.779 at a 

diameter ratio of 0.558.

The hexagonal unit cell of AB2 has two parameters a and c. At the maximum packing 

fraction, these parameters are dependent upon each other. Murray and Saunders also 

calculated the close packing curve for this structure. The packing curve for AB2 does 

not follow the typical three branch construction of AB13. This is due to the fact that 

AB2 has two cell parameters to be minimised. Packing is determined by contacts in 

the basal plane as well as contacts across the basal plane.

Figure 3.2.6 Diagram showing arrangement of large and small spheres in the unit cell 

of AB2. The co-ordinates perpendicular to the plane of the diagram are given adjacent 

to the spheres.

a
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Figure 3.2.7 Close packing cure for two of the structures based upon a trigonal 

prismatic arrangement of large spheres, AB2 and AB3. The dotted line is the 

maximum packing fraction of a monodisperse FCC crystal and is shown for 

comparison.

3.2.5 AB3 Structure and Close Packing Curve

The second of three structures based upon a trigonal prism, AB3 is obtained by an 

alteration of the AB2 structure. Instead of placing one small sphere at the centre of the 

trigonal prism, three small spheres are placed at the centres of the three rectangular 

faces of the prism. The purpose of this was to utilize the close packing characteristics 

of AB2 at slightly lower diameter ratios. AB3 has reasonably good close packing 

characteristics, peaking at diameter ratios near 0.5. In fact between the diameter ratios
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0.465 and 0.48 it has the highest packing fraction of all structures considered (fig. 

3.2.7).

The packing curve is determined by calculating the values of the cell parameters, a 

and c. These parameters are constrained by the need to avoid any overlap between 

neighbouring spheres. The greatest packing fraction is achieved by minimising the 

volume of the whole unit cell. As this volume is proportional to a c ,  the minimum 

will be achieved by finding, first, the smallest value of a , then of c.

Possible contacts in the basal plane are the first to be considered. Large spheres are 

separated by a distance, a, so

a >  1. (3.2.1)

The gap between adjacent small spheres is ^ , therefore

a>2cr.  (3.2.2)

There are no possible contacts between large and small spheres in the basal plane, so 

these two constraints are sufficient to determine a.

The separation of large spheres across the basal plane is c. The first constraint upon 

this cell parameter is therefore

c > l .  (3.2.3)

This constraint makes it unnecessary to add a second to avoid overlap between small 

spheres across the basal plane. But it is necessary to avoid overlap between large and

small spheres, which are separated by a distance . Accordingly
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As a is already determined, this may be rearranged to give

c i-J( l  + o f - a 2 . (3.2.5)

The maximum packing fraction is then given by

^ 7r(l + 3<73)
K   2 ■ (3.2.6)

3<J3a- c.min min

The four branches of the packing curve corresponding to the four different sets of 

constraints which actually determine the values of a and c as shown in table 3.2.1.

Range a c

0 < < T <  V2 - 1 a = 1 c = 1

V 2-1  <  £7 < a = 1 c -  ^(l + cr)2 -  a2

y ^ A
a — 2ct c -  y j ( \  +  cr)2 -  a2

^ < £ T < 1 a -  2cr c = 1

Table 3.2.1 Constraints which apply to cell parameters for the unit cell of AB3 at 

different diameter ratios.
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c/2c/2 c/2

c/2

a
Figure 3.2.8 Diagram showing arrangement of large and small spheres in the unit cell 

of AB3. The co-ordinates perpendicular to the plane of the diagram are given adjacent 

to the spheres.

Figure 3.2.9 Unit cell for AB3, (010) face.

3.2.6 CaCus Structure and Close Packing Curve

This is one of two structures observed in systems of charged colloids with strongly 

screened coulombic attractions49. These systems were intended as approximations to 

hard sphere systems. However, the formation of the structures observed was possibly 

affected by the nature of the potential. Never the less, they were initially included for
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completeness. It is not immediately apparent from the unit cell, but this structure is 

also based upon a trigonal prism arrangement of the larger spheres. The unit cell 

dimensions are given by a and c (fig. 3.2.10).

Figure 3.2.10 Diagram showing arrangement of large and small spheres in the unit 

cell of CaCus. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres. Note that the small spheres shown in red are in a distinct 

environment to those shaded grey.

The CaCus structure contains small spheres in two distinct environments (fig. 3.2.10). 

Therefore the generalisation that packing curves have three branches does not apply. 

Close packing occurs when the cell parameters a and c are at their minima. As unit 

cell volume is proportional to a 2, this parameter is minimised first. The minimum 

value of c is then found given that a is already at its minimum possible value.

cl 2

a
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Figure 3.2.11 The CaCus structure, (001) face.

There are two distinct layers shown in the unit cell. The first at height c/2 contains the 

large spheres. Adjacent hard spheres are separated by a distance >/3a . Therefore

a t j . .  (3.2.7)

In the same layer, the separation between the small and large spheres is a,  so

a > I ± £ .  (3.2.8)

Small spheres are also separated by a distance a , which would give the constraint

a > a  (3.2.9)

but as <7 < 1 this constraint is satisfied as long as the other constraints are met and 

may be safely ignored.
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By considering the layer which contains only small spheres at height 0 the final 

constraint upon the value of a is obtained. In this layer, small spheres are separated by

V3
a distance of —  a . Accordingly

a > % .  (3.2.10)
V3

a may be determined by the set of relationships,

a -  — when a  < ~^= - 1  (3.2.11)
&  &

a =  ̂+ <T when-rJ— < cr < — = (3.2.12) 
2 V 3-1 4 -V 3

a = when cr > - — a- (3.2.13)
V3 4--J3

The second cell parameter may now be determined. The separation between the large 

spheres in alternate layers is c , so

c > l .  (3.2.14)

Contact between the large and small spheres is avoided as long as

- 3 a 2 . (3.2.15)

The final constraint upon c is in order to prevent small spheres in adjacent layers

Ĵa 2 + c2
coming into contact. Their separation i s  , so that
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c>-v/4o-2- a 2 . (3.2.16)

In practise overlap of small and large spheres is avoided when overlap between 

spheres of the same size is. Therefore only the first and last constraints upon c apply. 

c is then determined by the pair of relationships,

c = 1 when<7 < ^ + (3.2.17)
30 V '

c = V4<t2 - a 2 when cr>^ + (3.2.18)
30
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Figure 3.2.12 Close packing curve for CaCus. The dotted line is the maximum 

packing fraction of a monodisperse FCC crystal.
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The set of three constraints upon a and two upon c bring about a total of four 

branches to the close packing curve, which is given by

** 9 f ia  V  ' (3'219)v  min min

As may be observed from its close packing curve, (fig. 3.2.12) CaCu5 does not have a 

high packing fraction. Its greatest packing fraction is obtained at high diameter ratios 

where binary structures are less likely to occur.

3.2.7 MgCu2 Structure and Close Packing Curve

MgCu2 is the second of the structures examined that were observed in the systems of 

charged colloids49.

Figure 3.2.13 Unit cell for MgCu2, (010) face.
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The basis for this structure is the diamond lattice. The large spheres occupy the 

positions that in diamond are taken by carbon atoms. In this structure the large atoms 

form six membered rings with the same chair confirmation as cyclohexane. A small 

sphere sits in the middle of each of these rings (fig. 3.2.13). This is a poorly packed 

structure at diameter ratios below 0.8. Even at the optimum diameter ratios its close 

packed volume fraction barely exceeds 0.7. For this reason, it is not expected that this 

structure will be observed in systems of true hard spheres.

3.2.8 AB6 Structure and Close Packing Curve

As with AB13, the large spheres in the AB6 arrangement form a primitive cubic array. 

The difference is that in this structure the small spheres form octahedral clusters to sit 

at the centre of each cube.

a

0 ,a 0,a

a/2

a/2 b,a-b

a/2

a/2

Figure 3.2.14 Diagram showing arrangement of large and small spheres in the unit 

cell of AB6. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres.
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This structure was included for consideration as it was thought to be a possible 

arrangement for binary crystals at diameter ratio, cr = 0.36 observed in experiments in 

Edinburgh by Pusey and Schofield51.

Two parameters a and b define the unit cell for AB6 (fig. 3.2.14). These are the 

width of the cubic unit cell, a, and the distance of the small spheres forming the 

octahedral cluster from the face of the unit cell, b. In the ideal structure b is fixed 

relative to a such that the distance between any two neighbouring small spheres is 

constant. That is

As the separation between neighbouring large spheres is a , then

a >  1. (3.2.22)

The separation between neighbouring small spheres being constant, we have

2b > cr , or in terms of a , (3.2.23)

2b = V 2^2 ” )̂> which may be rearranged to give (3.2.20)

 ■== > cr. Standard manipulation gives (3.2.24)
2 + 2-y2

Finally, adjacent small and hard spheres give the constraint that

a1/^  + b2 > • Leading to (3.2.26)
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i  (3-2-27>

The unit cell, being a cube with sides length a , contains six small spheres and eight 

eighths of large spheres. At close packing, the volume fraction is given by

j. tf(l + 6<t3)
9cP =—  3—  (3.2.28)

6a ■_rain

0 .8 -

a b 6 
FCC

0.2 0.4

D iam eter ratio, a

Figure 3.2.15 Close packing curve for AB6. The dotted line is the maximum packing 

fraction of a monodisperse FCC crystal.

There are two branches to this close packing curve (fig 3.2.15). Each branch 

corresponds to a different constraint. At low diameter ratios it is the large spheres that 

are in contact, the small spheres are relatively free, a is determined by the constraint
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a > 1. At higher diameter ratios, the small spheres come into contact and the 

important constraint becomes a > (l + V2 )cr, as the large spheres have some space to 

“rattle about” in. In this case the small spheres never come into contact with the large 

spheres, so the third constraint becomes irrelevant. Hence there are only two branches 

to this packing curve. The peak in the curve occurs at the point where the two 

branches overlap. This corresponds to the case when neither the large nor the small 

spheres have any unused space to move about in. If the AB6 arrangement is to occur at 

all, it is expected to be near this diameter ratio where packing is most efficient.

3.2.9 CsCI Structure and Close Packing Curve

The fourth and simplest of structures based upon the cubic arrangement of the large 

spheres, CsCI has only one small sphere at the centre of each cube.

a

,0,o

o/2

0,o0,o
Figure 3.2.16 Diagram showing arrangement of large and small spheres in the unit 

cell of CsCI. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres.
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Only one cell parameter, a , is needed to uniquely define the structure (fig. 3.2.16). 

The closest packing is obtained when o -  V3 - 1 . The close packed volume fraction is 

then 0.729009 (6dp), which is relatively low. The packing curve is determined by the 

constraints,

a > \  and (3.2.29)

a > i ± 5 . G  iving (3.2.30)
v 3

_ ;r(l + o-3)
P A 36 a -

(3.2.31)

CsCI
0.8 n FCC

QlO-e-
c
o
B  0 7 '
CD

O)C
o
CDQ.
£  0 .6 -  
D
E
x
CD

0.5
0.0 0.2 0.4 0.6 0.8 1.0

Diameter ratio, a

Figure 3.2.17 Close packing curve for CsCI. The dotted line is the maximum packing 

fraction of a monodisperse FCC crystal.
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CsCI is another structure that does not pack well until higher diameter ratios (fig. 

3.2.17). Consequently it was thought unlikely that this structure would be 

thermodynamically stable in a binary system.

3.2.10 NaCI Structure and Close Packing Curve

NaCl is one of three structures based upon a close packed arrangement of the large 

spheres. The large spheres form a face centred cubic arrangement, with the small 

spheres occupying the octahedral interstitial vacancies.

K---------------a-----------------^
allall 0 ,a

a ll
0 ,a

0 ,aall

all0,a

0,a allall

all

Figure 3.2.18 Diagram showing arrangement of large and small spheres in the unit 

cell of NaCl. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres.

There are only two constraints upon the cell parameter, a (fig. 3.2.18). The first 

prevents overlap between hard spheres,

a > V 2 .  (3.2.32)

Whilst the second prevents any overlap in-between small and large spheres,
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a> l + (j. (3.2.33)

Consequently the packing fraction is given by

Figure 3.2.19 Unit cell for NaCl, (001) face showing.

The best packing arrangement is achieved when the two branches of the curve

overlap. Clearly this will occur when <* = ^2 ~1, which corresponds to the diameter 

ratio where the small spheres exactly fill the octahedral holes. The packing fraction at 

this point is 0.7931. The characteristics of this structure would suggest that if any 

superlattice is to be observed at this diameter ratio, it should be this one. Along with 

NiAs it has the joint highest packing fraction of any of the structures examined in this 

study. However as monodisperse systems of hard spheres are known to prefer to form 

face centred cubic arrangement, it may be expected that NaCl will be more favoured 

than NiAs. This idea will be explored later (section 5.1.3).
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Figure 3.2.20 Close packing curve for the structures based upon a close packed 

arrangement of large spheres, NaCl, NiAs and CaF2. The dotted line is the maximum 

packing fraction of a monodisperse FCC crystal.

3.2.11 NiAs Structure and Close Packing Curve

The second of the structures based upon the close packed arrangement of the large 

spheres, NiAs differs from NaCl in that the large spheres form an hexagonal close 

packed arrangement. Thus the large spheres form ABAB repeating layers. The small 

spheres still occupy the octahedral vacancies.

67



' ~  7 0.816a

3 a £  0,1.633a
a

Figure 3.2.21 Diagram showing arrangement of large and small spheres in the unit 

cell of NiAs. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres.

Figure 3.2.22 NiAs Structure, showing (001) face.

NiAs has exactly the same close packing characteristics as NaCl. The small spheres 

are also in the same environment as they are in NaCl, being situated at the centre of 

octahedral arrangement of large spheres. However in NaCl the large spheres are 

surrounded by an octahedral arrangement of small spheres, whilst in NiAs this 

arrangement takes the form of a triagonal prism.
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3.2.12 CaF2 Structure and Close Packing Curve

The third and perhaps the least likely of the structures based upon the close packing of 

the large spheres, CaF2 has the small spheres occupying the tetrahedral vacancies. The 

diameter ratio favoured for this arrangement is 0.225. This structure does not seem 

likely, as there is no obvious reason why the small spheres should occupy the 

tetrahedral vacancies and leave the large octahedral vacancies unfilled. Never the less 

it is included for completeness. It was tested as a possible structure at low diameter 

ratios, but not predicted to be stable.

a
K------------------------------------X

all .0,a
0 ,a

all0,*all

all 0 ,a

Figure 3.2.23 Diagram showing arrangement of large and small spheres in the unit 

cell of CaF2. The co-ordinates perpendicular to the plane of the diagram are given 

adjacent to the spheres.

3.2.13 BCC-6 Structure and Close Packing Curve

Some pure elements are known to form the BCC structure. The following two 

structures have the large spheres in a BCC arrangement with the small spheres filling 

the vacancies. It is not immediately apparent where the vacancies are in the BCC
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structure. When deciding where the small spheres should lie, care must be taken to 

ensure all large spheres remain in identical environments to maintain the true nature 

of the BCC arrangement. BCC-6 has a stochiometry of AB6.

The packing curve for BCC-6 follows the typical three branch construction of AB13. 

There is only one cell parameter, a, which is constrained by the need to avoid overlap.

*j3a
Large spheres are separated by a distance of — . This gives the first constraint,

a t ^ = .  (3.2.35)
V3

Small spheres are quite close together, the smallest gap between them being only 

a . Consequently
2->/2

a > I'Jlcr . (3.2.36)

q^5
Finally the space between small and large spheres i s  . Requiring that

4

a^  ^+ G , which is rearranged to give (3.2.37)
4 2

a > 2 (l + er) (3.2.38) 
v5

The packing fraction is given by



a/4, 3a/4 a/4, 3a/4

a/4, 3a/4

a/ 2  a/4, 3a/4 a/2 V __ ^  0 ,a

Figure 3.2.24 Diagram showing arrangement of large and small spheres in the unit 

cell of BCC( AB6). The co-ordinates perpendicular to the plane of the diagram are 

given adjacent to the spheres.

Optimum packing occurs at when large spheres are in contact both with other large 

spheres and small spheres. This occurs when both of the constraints for these contacts 

are just satisfied, i.e.

a = —=, and (3.2.40) 
V 3

a -  Giving (3.2.41)
V5

2 2(1 + 0 -) 

V3 =
, or (3.2.42)

<r = J j ~ h  0.2.43)
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At this diameter ratio (-0.3) the close packed volume fraction approaches 0.78.

Figure 3.2.25 The BCC(AB6) structure, showing (001) face.

BCC(6)
BCC(3)
FCC0.8 -

CLO-e-

|  0 7 -
CO

O)

1  0 .6 -  
CO 
Q .

E

I 0 5  -CO

0.4
0.0 0.2 0.4 0.6 0.8 1.0

Diam eter ratio, c

Figure 3.2.26 Close packing curves for BCC structures. The dotted line is the

maximum packing fraction of a monodisperse FCC crystal.
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3.2.14 BCC-3 Structure and Close Packing Curve

As the BCC-6 structure must expand in order to accommodate the small spheres, it 

was thought that more favourable packing characteristics might be obtained by 

removing some small spheres and freeing up the structure. The BCC-3 structure is 

formed by removing alternate small spheres from the BCC-6 structure. This does 

indeed allow the unit cell to be more compact at higher diameter ratios. However any 

advantaged gained is offset by the empty spaces left by the small spheres that are 

removed. BCC-3 only has a higher packing fraction than BCC-6 at fairly high 

diameter ratios, where neither has particularly good packing ability.

a

0 ,a

a/2 a/2

a! 2
0 ,a 0 ,a

a/2
a/2

0 ,a
Figure 3.2.27 Diagram showing arrangement of large and small spheres in the unit 

cell ofBCC(AB3). The co-ordinates perpendicular to the plane of the diagram are 

given adjacent to the spheres.

As half the small spheres have been removed from the BCC-6 structure, the constraint 

to avoid overlap between small spheres becomes
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a>2<r. (3.2.44)

The packing curve for BCC-3 is given by

K . ! 2 ± t £ L .  (3.2.45)
3a.nun

3.2.15 The Arrangement of Neighbours Around Each Tagged Particle

In the cell model, the positions and sizes of the neighbouring hard spheres determine 

the free volume of the particle under consideration. It is important not to exclude any 

spheres from the calculations that may have an influence on the calculation of the free 

volume. The inclusion of spheres that have no relevance will not adversely affect the 

results. For this reason, if there is a possibility that a neighbour will influence the 

calculation, it was included. The small spheres become more relevant as the diameter 

ratio increases. Note it is not necessarily only the nearest neighbours that are included 

in the calculation.

After placing each “tagged” particle at the origin of its cell, the coordinates of the 

neighbours were calculated in terms of the unit cell dimensions. The unit cell 

dimensions depend on the diameter ratio and are thus variable. For this reason 

algorithms were written to generate the positions of the neighbours for each cell type 

considered. In most structures there were only two cell types to be considered, e.g. 

NaCl has two different cells, one for the large and one for the small spheres. AB13 is 

one of the few exceptions, having cells for the large, small vertex and small central 

spheres.

The positions of neighbours relative to the particle under consideration were

calculated first at close packing. To analyse the stability at volume fractions less than
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the close packing limit, the system is expanded uniformly until the required volume 

fraction is obtained. The monodisperse system first forms the solid at a volume 

fraction of 0.545. If Binary systems are to crystallise, it is expected to be at similar 

volume fractions. Allowing a generous margin either side, the properties of each 

structure were calculated between the volume fraction, ^ = 0.45 and the close 

packing limit.

The restriction of the free volume by the Voronoi polyhedron is of greatest relevance 

when considering cells containing small spheres at low diameter ratios. Without this 

restriction, the small sphere would be free to “escape” from the cage formed by its 

nearest neighbours. If it were to do this then that particle could not be said to be 

located on its lattice site, but would be free to wander throughout the crystal structure 

(fig. 3.2.28).

Figure 3.2.28 At low densities and low diameter ratios, the small sphere may be able 

to escape from the “cage” of large spheres, to escape from the “cage” of large spheres. 

In the calculations detailed here, the possible escape of the particle is removed by 

restricting the sphere to a Voroni polyhedron formed by the neighbouring spheres.
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Figure 3.2.29 Arrangement of spheres used when calculating the free volume of the 

large sphere (shaded blue) in the BCC(AJB6) structure. The neighbours are shaded 

green (large) and red (small).

Figure 3.2.30 Arrangement of spheres used when calculating the free volume of the 

small sphere (shaded blue) in the BCC(AJ36) structure. The neighbours are shaded 

green (large) and red (small).

The arrangements of neighbours used for the BCC-6 arrangement are shown in figs. 

3.2.29 and 3.2.30. In each case the tagged particle is shown in blue. The free volume 

may be determined by all the neighbours or by just a few depending on their size and 

proximity. The algorithm used to calculate the free volume allows for either situation.

76



3.3 Evaluation of Phase Behaviour

The properties of the binary superlattices, are on their own of limited interest. Rather, 

it is the phase behaviour of binary systems that is of most interest. In order to 

calculate this, the properties of the binary fluid phase must be obtained.

3.3.1 Binary Fiuid Equation of State -  MCSL

The equation of state of Mansoori, Carnahan, Starling and Leyland60 (MCSL) has 

been tested against both Monte Carlo and molecular dynamics simulations61 and 

found to be in good agreement. Although some alternatives are discussed in a later 

section (3.4), it is this equation of state that will be primarily used here in the 

evaluation of the phase behaviour. The pressure of the binary fluid is obtained using

(NA+ N M)kT
P fvr

( W , ) 3
(3.3.1)

where y l =

y 2 = / 3 . 3s2(xAo A + xB<yB )
(3.3.2)

and v -ana y 3 -  3 3 .
(xA<rA + x Ba B )

Here Vf , <f>f  and p f  are the volume, volume fraction and pressure of the binary fluid 

respectively. xA and xB are the mole fractions of the two species present.



The Helmholtz free energy for the fluid phase, Af , may then be obtained by a 

straightforward integration as

Pf =
Jt.na,nb

, (3.3.3)

—  = - f -^ -d V f + A s - ,  (3.3.4) 
NkT 3 NkT f  w r

Ai_
NkT

But

d V fS .L L d ^ f , (3.3.5) 
9f

—  = (  PfVf d<j,f  + A l ._ (3.3.6) 
NkT 3 NkT<j>f  1 NkT

Standard manipulation leads to the expression,

4 —  (y, - l ) l n ( l - ^ ) + ^ ± ^ +m T  TJ ,  ( 1 _ ^ )  2 ( 1 _ ^ } .

+ \n</>f  +
NkT

A
The integration constant, , is obtained the low density limit, where the ideal free 

energy is approached.

A A 
A s r f , - » 0 , ^ — (3.3.8) 

f  NkT NkT

With the standard state ZA -  AB = crA, used for the binary solid,
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7 ^  = * 4  \n{xAp )  + xB ln(xBp ) - 1 , (3.3.9)
NkT

where p -  —  . Then,

.4 _ 5 e_ >0>- A  
r NkT

(^, -  l) ln (l- $ , )  + — 3 + 3?2 V̂ 3 ; v r / /  ( l _ ^ )

+ 3(1 - * - * > - * -Hn^. 
2(1 7

-  ̂  M ^ /o ) -  ln(jfs>o) +1

(3.3.10)

Evaluation of this expression leads to

A  3
j22-  = t O i “ 3*2 -  J'j-1) + ̂  ln*i +*« ln^eM r  2

7t-1  -  ln ~  -  ln(x  ̂+ xBo 3) 
6

(3.3.11)

The final expression for the Helmholtz free energy is then

- 4 -  = C*-l)ln(l-^)+^ ± ^ +^ Z iiZ > ^ 2 i  
M r  3 7 ( l - ^ )  2 ( i - ^ ) 2

3
+ In p +-(>>, -  y t -  _y3 -1) + xA In*, + xB In xB -1

(3.3.12)

The method detailed below for evaluating the phase behaviour does not directly 

require expressions for the chemical potentials of the individual species, but instead 

uses expressions for the Gibbs free energy per particle,

Gf  Af  + p f Vf
NkT NkT NkT

(3.3.13)
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3.3.2 Common Tangent Construction

The three conditions that must be satisfied in order for fluid-solid equilibrium to be 

obtained are

P s = P f

Mb/ 8N b 8N b

(3.3.14)

As is demonstrated later in this section, these conditions may be satisfied

“graphically” by plotting against xA at constant pressure. In such a plot, the
NkT

free energy of the fluid phase appears as a curve and that of the solid phases as points, 

as each solid has a constant mole fraction. Such a plot is shown in fig. 3.3.1, where in 

this example the diameter ratio under consideration is 0.39 and the dimensionless

Consider the diameter ratio of 0.39. Note first, that not every possible binary crystal 

has been considered. For instance, the CsCl structure is ignored, as at this diameter 

ratio it has a maximum packing fraction of only 0.5547, which is low when compared 

to the packing fractions obtainable by other structures. Table 3.3.1 shows the 

maximum packing fractions of various structures at a diameter ratio, a  = 0.39. All 

structures, with a maximum packing fraction greater than 0.65, were included in the 

calculations. The only exception being AB12 (the variant of the AB13 structure), as it 

was known that AB13 was unstable at diameter ratios in this region. The monodisperse 

FCC phases were always considered. In this way, the only structures that have been 

ignored to save calculation time are those with particularly low close packing

pressure, = 150.
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fractions and those known to be unstable. According to Murray and Saunders 

hypothesis, no structure with a close packing fraction below 0.745 should be stable. 

The results will prove that this is not the case.

Structure Maximum packing fraction at 

diameter ratio, cr = 0.39

NaCl/NiAs 0.784405 Considered

BCC (AB6) 0.738893 Considered

a b 3 0.712193 Considered

a b 6 0.709955 Considered

a b 2 0.676328 Considered

ABn 0.67419 Ignored

a b 13 0.673748 Considered

CaF2 0.566625 Ignored

CsCl 0.554658 Ignored

CaCus 0.54098 Ignored

MgCu2 0.380435 Ignored

Table 3.3.1 Structures chosen for consideration at diameter ratio, cr = 0.39
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Secondly, note that the true value of — ^ ranges from 10 to 120. So, purely to ease

visualisation, - -skew is plotted, where
NkT

ŝlcew G GA
NkT NkT NkT

(3.3.15)

G G
Here, — — and —— are the Gibbs free energies of the pure FCC phases of the large

NkT NkT

and small phases respectively. Consequently, the two pure FCC phases correspond to

q
= 0. As this is a linear transformation, there is no effect upon the positions of

any common tangents. This transformation is unnecessary in any computational 

calculations and was therefore not used in the algorithms written to determine the 

phase behaviour.

In the example shown (fig. 3.3.1), the points for the binary structures, AB13, AB2 and 

BCC(AB6) lie above the fluid curve. Therefore, none of these crystals would exist 

under these conditions, as they remain thermodynamically unstable with respect to the 

corresponding fluid. The implication is that they have a higher free energy than the 

fluid with the same mole fraction and pressure. This is unsurprising in the case of 

AB13 and AB2, as they do not have particularly high maximum packing fractions 

((f>cp -0.67 at this diameter ratio). The point for BCC(AB6) lies above the curve even

though BCC(ABe) has a high maximum packing fraction ( <j)cp -0.739). AB3, which

has a lower maximum packing fraction ( <j>cp -0.712), lies below the fluid free energy

curve. This demonstrates that crystal stability does not depend entirely upon the 

maximum packing fraction. The point for NaCl/NiAs lies well below the fluid curve,



as may be expected from the high maximum packing fraction seen in table 3.3.1. The 

free energies of these two structures are sufficiently close to be indistinguishable in 

fig. 3.3.1 (NiAs is more stable than NaCl by just 0.0007kT at these conditions).

4-i
 Fluid (MSCL)
+  Solid

2 -

AB,AB

Fcc(S) BCC
rh Fcc(L)Z

1
O AB.

-2 -

- 3 -
NiAs/NaCI

0.60.0 0.2 0.4 0.8 1.0

Figure 3.3.1 vs- x a  f°r diameter ratio, cr = 0.39 and dimensionless pressure,

— = 150. The dotted line represent the lowest free energy path. The dashed line
kT

represent the lowest free energy path if NiAs/NaCl is ignored.

The Gibbs free energy for a binary fluid is given by,

— • (3.3.16)
NkT kT

The slope of the tangent to any point on the fluid curve may be determined using
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The intercept of that tangent with the Y-axis then occurs at — . The slope and
kT

intercept of the tangent to the curve at any point uniquely determine the chemical 

potentials of the two species at that point. If any two curves share a common tangent, 

then their chemical potentials must be equal. As the graph is plotted at constant 

pressure, all three necessary conditions are satisfied and equilibrium is established 

when this occurs.

In this representation the solid phases are shown as discrete free energy points rather 

than as curves. Since any deviation in the composition of the binary crystal leads to a 

steep increase in the free energy of that crystal, the solids are more accurately 

represented as steep parabolic curves with minima at the points plotted. Not having 

any information on the dependence of the free energy of the solid phases on 

composition, only the minima are shown, represented by points in fig. 3.3.1. Any line 

passing through such a point will form a tangent with the corresponding curve. Fluid- 

solid equilibrium is therefore established when any tangent to the fluid curve passes 

through a solid “point”.

The positions of all fluid-solid equilibria are determined in this manner. Example 

phase equilibria and the corresponding tangent construction are shown in fig. 3.3.1. 

The behaviour of the fluid curve means that a common tangent is found for any free 

energy point beneath it. The existence of a common tangent, although necessary for 

two phases to co-exist, is not sufficient since a lower free energy equilibrium may 

exist with an alternative phase. The system will, o f course, seek to minimise its free



energy for all mole fractions. The behaviour of the system at constant pressure and 

variable mole fraction is determined by the lowest “free energy path” from xA - 0  to 

xA = 1. This path consists of portions of the fluid curve, common tangents between 

the fluid and solid or in-between solid points.

The phase existing at xA = 0 is determined solely by a comparison of the free energy 

of the fluid with composition xA = 0 and the FCC phase of small spheres. In the 

example shown, the fluid phase has lower free energy and would be selected as the 

“initial” phase. Having determined the initial phase, the next step is to determine the 

lowest free energy equilibrium involving that phase. Of the possible fluid-solid 

equilibrium, the most favourable will be the first one, as tangents to the fluid always 

lie beneath the fluid curve and so will lead to the lowest free energy path. That is the 

NaCl/NiAs equilibrium in the example shown. The next step is to determine the solid- 

solid or solid-fluid equilibrium tangent with the most negative gradient. Only the 

equilibriums with increasing xA are of interest. In the example, there is no further 

solid-fluid equilibrium and the only possible further equilibrium is with the pure FCC 

phase of large spheres. The “path” is therefore completed from xA = 0 to xA = 1.

In the example shown, the lowest “free energy path” commences with the fluid phase 

and moves onto the AB phase (either NaCl, NiAs or a hybrid, see section 5.1) before 

ending with the FCC phase of large spheres. This is shown in fig. 3.3.2 By varying the 

value of the constant pressure is it thus possible to construct a phase diagram in the 

pressure-mole fraction plane.
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Figure 3.3.2 Phase behaviour at diameter ratio = 0.39 and dimensionless pressure,

M =150.
kT

Determine correct 
volume fraction of 
fluid/crystal given 
pressure using Netwon 
Raphson method

Algorithm flow

Information

Close packing 
curves

Possible 
Binary Crystals

Free Volume Theory 
MCSL EoS

Starting at X a = 0, 
determine lowest 
"free energy path"

Find "common 
tangent" solid-fluid 
equilibriums for 
remaining crystals

Eliminate Crystals 
with higher free 
energy than 
corresponding fluid

Figure 3.3.3 Flow diagram illustrating algorithm used to determine phase behaviour. 

This whole process is illustrated in fig. 3.3.3
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Figure 3.3.4 Phase behaviour for binary system with diameter ratio, cr = 0.39 in the 

pressure-mole fraction representation.

An example of a phase diagram constructed in this way is shown in fig. 3.3.4. The 

fluid phase appears as the section adjacent to the origin, bounded by a curve. The 

solid phases appear as vertical lines. Note that at dimensionless pressures below 188, 

the AB phase is in equilibrium with the fluid phase. At higher pressures, it is in 

equilibrium with the FCC phase of small spheres. The changeover occurs at 188.4 at 

which pressure all three phases are in equilibrium (AB, FCC(B) and fluid). On the 

phase diagram a horizontal line represents this triple “point”.

When comparing these theoretical results to experiment, the phase diagram in the 

pressure-mole fraction plane is not immediately useful. Experimental results are more 

often presented in the volume fraction-volume fraction plane. It is easier to convert 

the theoretical phase diagram to that used by experimentalist than visa-versa. The 

corresponding phase diagram is shown in fig. 3.3.5.
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Figure 3.3.5 Phase behaviour for binary system with diameter ratio, cr = 0.39 in the 

volume fraction representation.

Again the section adjacent to the origin bounded by a curve represents the fluid. The 

lines radiating out from the origin represent the solid phases. Triple “points” are seen 

as triangles and correspond to the horizontal lines on the phase diagram in the 

pressure-mole fraction plane. The discussion of these results and others is reserved for 

section 5.2.
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3.4 Equations of State for the Binary Hard Sphere Fluid

As mentioned in section 3.3.1, it is the MSCL equation of state that has been used to 

obtain the properties of the binary fluid. The accuracy of the calculated phase 

behaviour depends upon the accuracy of this equation of state as well as the cell 

model used to calculate the properties of the solid phases. In most cases the MSCL 

equation of state is sufficiently accurate over the range it is required. As will be 

shown the equation of state becomes less accurate at higher densities. But in most 

cases freezing occurs before these high densities are reached. A number of different 

equations of state have been proposed for the binary system of hard spheres62"69. In 

this section, just three alternatives to the MSCL equation of state are examined, in 

order to determine if there is any significant affect on the calculated phase behaviour.

3.4.1 The Rescaled Virial Expansion

For low densities, a virial expansion may be used to accurately represent the equation 

of state.

<j>f  is the volume fraction of the fluid. The virial coefficient, Bn is dependent upon the 

composition of the binary mixture. bn is the reduced virial coefficient and is related to

oo 00

ZA = £ 5 »p”‘' = Z W  * where(3.4.1)

B. by

B.
(3.4.2)
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£k are the moment of the diameter distribution given by

4k = * 1  +x2ffk (3-4.3)

The first three virial coefficients are known exactly.

1

>̂3=1 + 6

b2 = 1 + 3 (3.4.4)

The next two coefficients have been evaluated numerically by Saaji64-65.

In region of density where freezing is expected to occur, the virial expansion is 

inaccurate. The form of the equation of state does not allow for any divergence as 

higher densities are reached. Coussaert and Baus67 used a perturbation improvement 

of the MSCL equation of state in order to keep the divergent properties whilst taken 

the fourth and fifth virial coefficients into account. The form of the equation state 

became

In later studies, Coussaert and Baus68 used a rescaled virial expansion, rather than the 

perturbed MSCL equation of state. This is given by

z*  = + £o3A£4 + (i  A Ss, Where (3.4.5)

AB4 — Ba BamscI

ABs — Bs — Bsmscl
_ _ 3 --------2 —3 — (3.4.6)

£ w =  ^ 3 + 9 ^ 3  4 -8 ^ 3

B5mscl=Z  0^ + 1 2 ^ 3 + 1 5 # 32£3
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z ^ r

z ^ = 7 7 7 ’ where (3A7)

c„= 6„-36„ .,+ 36„.2 -6 „ .3.(3.4.8)

When n < 1, bn = 0. The form of this equation of state means that Zfrs will diverge as 

1.

60

Rescaled Virial Expansion
50

Volume Explicit

MSCL40

30

20

10

0
0.790.39 0.49 0.59 0.69

Volume Fraction

Figure 3.4.1 A comparison of the alternative binary hard sphere fluid, equations of 

state, at a diameter ratio, and a mole fraction of larger spheres, X A -  0.4. See section 

3.4.2 for explanation of the volume explicit equation of state.

As may be seen from fig. 3.4.1 the rescaled virial equation of state does not differ 

greatly from the MSCL equation of state. Consequently the position of phase 

boundaries are not greatly effected when either of these alternatives are used.
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This is bome out in fig. 3.4.2 when the phase diagram for diameter ratio 0.36 is 

shown. Even the postion of the metastable AB6 phase is not greatly effected (compare 

to fig. 5.2.5). This phase is only marginally stable relative to the binary fluid, so 

would be expected to be most sensitive to any change.

M etastable AB6 \ A(FCC)
NiAs - Therm odynam ically  stable

300-

Fcc(B)/NiAS
2 5 0 -<D

2 0 0 -

Q_
8  150-  0)

■I 1 0 0 -
c<1)
|  5 0 -

Fluid/AB,

NiAS/Fcc(A)Fluid/NiAS

Fluid/Fcc(A)

Fluid/Fcc(A)

o-

0.0 0.2 0.6 0.8 1.00.4

* A

Figure 3.4.2 Phase diagram, diameter ratio, cr = 0.36. The Rescaled virial expansion 

equation of state69 has been used to describe the binary fluid of hard spheres.

One change that the introduction of the alternative equations of state brings, is to the 

behaviour of the binary fluid. Analysis of the binary fluid shows that there is a 

demixing transition present under certain conditions. It was only when the fourth and 

fifth virial coefficient were calculated that this transition came to notice. However 

these transitions occur at very high pressures and are thus Metastable relative to the 

freezing transition. It was initially thought that these transitions occurred at much
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lower pressures67, but an error was found in the fifth virial coefficients used for these 

calculations66.

Of more significance to these studies is the behaviour of the binary fluid at high 

densities. All the equations of state specified so far do not diverge until a volume 

fraction of unity is reached. In contrast the equations of state of all the solid phases 

diverge at their close packing fractions. The failure of the fluid equation of state to 

diverge at a lower volume fraction leads to some unreasonable phase behaviour being 

calculated. For instance, the phase behaviour of a binary system with diameter ratio 

0.36 is calculated, where it is assumed that the AB phase is kinectically hindered. The 

fluid is calculated as being the most thermodynamically stable phase at volume 

fractions above 0.7. For a monodisperse fluid random close packing occurs at 0.63. 

Even allowing for the fact that a binary system can be expected to have a higher 

random close packing value, it is unreasonable to expect the fluid to still be stable at 

0.7 or above.

3.4.2 The Volume Explicit Equation of State

The volume explicit equation of state of Hamed69 addresses this problem. This 

equation of state, unlike those preceding, is based on a pressure expansion, rather than 

a density expansion.

The final form of the equation of state is given by

3
ZA.= l+ r f a^ + - / « / t o

r 3+hy/ ' 
^3+25 hy/ j

, where (3.4.9)
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Although this equation of state does diverge at volume fractions lower than unity and 

was compared favourably to some simulation data of Alder70, this alone is not a proof 

of its accuracy. It is possible to calculate the volume fraction at which the equation 

will diverge for a given diameter ratio and mixture composition. As can be seen from 

fig. 3.4.5 even this equation of state predicts the stability of binary fluids at high 

volume fractions (>0.7).
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Figure 3.4.5 The volume fraction at which equation of state will diverge plotted 

against diameter ratio. The mole fraction of the larger spheres is 0.3. The upper limit
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for binary random close packing is calculated by assuming that the small spheres 

randomly close pack in the void left by the randomly close packed large spheres. This 

crude model provides an upper limit to binary random close packing.

Changing the equation of state naturally brings about a change in the form of the 

curve in the constant pressure, Gibbs free energy vs. mole fraction plot (fig. 3.4.6). At 

diameter ratio 0.36, the effect of this is exclude the rnetastable AB6 phase and to 

enlargen the size of the monodisperse FCC regions (fig. 3.4.7).
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Figure 3.4.6 vs. x A for diameter ratio, a  = 0.36 and dimensionless pressure,

NkT A

P ° a _
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= 150 (see section 3.3.2). The binary fluid is described by the volume explicit

equation of state. The dotted line represents the lowest free energy path.
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Although there may be some certainty as to the accuracy of the various binary fluid 

equations of state at high density. The accuracy of the MSCL equation of state at 

lower densities is not in question. Therefore the qualitative predictions made about the 

thermodynamic phase behaviour are not in doubt. It is the metastable phase behaviour 

which is effected by these differences.
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Figure 3.4.7 Phase diagram at diameter ratio 0.36. The volume explicit equation of 

state was used to describe the fluid. Note, there is no metastable AB6 phase.
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Chapter 4 The Calculation of Free Volume in a Binary System

In the case of the hard sphere system, the free volume is a shape that may be formed 

by constructive solid geometry. This volume may be calculated using methods that 

could be applied to any other shape, regardless of its final purpose. In this case the 

volume was calculated by a trapezium rule integration. The algorithms used to 

calculate the free volume are detailed in the following pages.

4.1 Geometrical C onstraints

Recall that the free volume is that volume in which the centre of the tagged particle is 

free to wander about in (section 1.2). As no two particles may overlap, then the 

closest distance which the centres of two particles may approach is given by the sum 

of their radii. Consider a neighbour to the tagged particle. The centre of the tagged 

particle is excluded from a sphere, with the same centre as that neighbour and radii 

equal to the minimum approach distance. The diameter of this exclusion sphere being 

the sum of the tagged particle diameter and that of its neighbour. For each of the 

neighbours there is an equivalent exclusion sphere. The free volume is then that 

volume left at the centre of the arrangement of exclusion spheres (fig. 4.1).

Figure 4.1 The centre of the tagged particle (cross) is excluded from a sphere (grey) 

that has radius equal to the sum of the radii of the tagged particle and the neighbour 

(black)
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As the tagged particle is confined to its own cell, there is a set of planes beyond which 

the centre of the tagged particle may not pass. It is these planes, which together form a 

Voronoi Polyhedron, and the exclusion spheres that determine the geometry and 

extent of the free volume.

4.2 Determination of the Boundaries

There is no simple way to calculate each free volume analytically. It is necessary to 

determine the free volume numerically. Whether the Monte Carlo method (section 

4.3) or trapezium rule method is used (section 4.4), the extreme limits of the free 

volume must be estimated. It is important to obtain a good idea of the magnitude of 

the free volume as underestimation as well as overestimation may lead to errors in the 

numerical procedures used (fig. 4.2).

Figure 4.2 The correct choice of a boundary (black box) when determining the free 

volume avoids errors from either underestimation or overestimation (hatched areas).

As there are a large number of possible arrangements and neighbour diameters a 

general algorithm is needed to determine these limits.
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The algorithm, “GAP” was designed for this task. The principal is that the tagged 

particle “walks” in a straight line towards the position that is the mean of the centres 

of groups of three or four particles (fig. 4.3). Any “gaps” in the cage of exclusion 

spheres are most likely to be found in this direction, as are the vertices. Periodically 

the tagged particle “wanders” off in a random direction to explore another section of 

the free volume. All walks are terminated when the tagged particle attempts to overlap 

with a neighbour or go beyond the bounds imposed by the Voronoi polyhedron. The 

furthest directions along the X, Y and Z axes in which the tagged particle was able to 

venture are then recorded. The limits thus obtained are expanded slightly and used in 

the determination of the free volume.

Figure 4.3 Boundary determination, the limits are set by the GAP algorithm, which 

searches for the extent of the free volume.

4.3 Calculations Using a Monte Carlo Algorithm

This simple method was used as a check on the more sophisticated (and potentially 

more error prone) method discussed in section 4.4.
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The tagged particle is placed at a random point within a box with predetermined limits 

allocated by GAP (fig. 4.4). The distance from this point to each of the centres of the 

neighbours is then calculated. If the tagged particle has been placed at a “legitimate” 

site then firstly, the calculated distance must be greater than the radius of the 

associated exclusion sphere. Secondly the distance must also exceed that to the tagged 

particle’s lattice site, the origin. This ensures that any overlap is avoided as well as 

confining the tagged particle to its Voronoi polyhedron. The successful “hits” and 

attempts are enumerated. The determined free volume, ,is then given by

where vb is the volume of the box, nh is the number of successful hits and n the 

number of attempts.

Figure 4.4 The Monte Carlo algorithm works by randomly selecting points within the 

boundaries to determine if they are part of the free volume.

If the true free volume is v/  then the probability of a “hit” is given by

n
(4.1)

O

1 0 0



Ph = Vj- -  (4-2) 
v*

Therefore nh varies according to a binomial distribution. The standard deviation of 

nh is the standard result

The standard deviation of the calculated free volume, an indicator of the uncertainty

samples is needed to reduce the uncertainty of the result. This method is not 

particularly accurate when the number of samples is restricted by limited computing 

power. An error of 0.06% (relative to an analytical expression40) was recorded in a 

result that took one minute to compute using the Monte Carlo algorithm on a 486, 

66Mhz PC. In comparison, using the following algorithm the error was only 0.01% 

and the calculation took just 0.06 seconds.

4.4 Calculation Using the Trapezium Algorithm

In this method the free volume is split into many sections according to a grid in the 

XY plane. The sections are made to be narrow enough that they approximate cuboids, 

The volume of each cuboid may then be calculated by determining the height of that 

cuboid along the Z-axis. This is illustrated in fig. 4.5. In practice the cuboids are far 

narrower, so that the error associated with this method is greatly reduced. The total

SD(nh) = 4nph( \ - p h) . (4.3)

From this the standard deviation of the calculated free volume is obtained,

S D (y^ ) =  r  • (4-4)

of the result, is inversely proportional to 4n  . This means that a very large number of
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number of cuboids used in each calculation was 1,000 ,000 , corresponding to the 

division of the X and Y-axes into 1000 parts each.

Figure 4.5 The Trapezium algorithm calculates the height and depth of the free

volume across a grid.

The restriction of the tagged particle to a Voronoi polyhedron determines the initial 

height and depth of the cuboids under consideration. Each exclusion sphere is 

examined to see if it overlaps with the cuboid under consideration. If so, then an 

exclusion section is generated. The exclusion sections are then compared with each 

other and any duplication or overlap is eliminated to attain the minimum number of 

exclusion sections. Some exclusion sections lie partially outside the cuboid, in which 

case the height or depth of the cuboid is reduced such that the section is completely 

outside so that it may be ignored. The volume of the cuboid minus the sum of the 

exclusion sections is then calculated.

If the correct boundaries have been chosen then the sum of the volumes of the cuboids 

at the edge of the box will be zero. For this reason, as well as summing the volumes of 

all cuboids to determine the overall free volume, the sum of the volumes of cuboids at

1 0 2



the edge of the box is determined. If this latter sum is greater than zero then the 

calculation is redone with increased boundaries.

In the majority of cases the algorithm worked without any cause for further 

investigation, although there were a few exceptions. Problems occured at small 

diameter ratios when the shape of the free volume becomes significantly concave. In 

these cases the free volume may well be split into two parts joined by a narrow neck. 

Both parts are within the Voronoi polyhedron and may thus be considered as part of 

the free volume. However as the density increases, the neck may be broken, leaving 

two distinct parts of the free volume. Strictly speaking only the part that contains the 

lattice site of the tagged particle should be considered. Determining the boundary so 

as to only include this part involves some extra intervention. However, this generates 

a discontinuity in the free volume of the tagged particle in that particular arrangement. 

This is not to be mistaken for a phase transition of any sort. It is a product of the fixed 

neighbour cell model. The fitting functions used ensure that this data was smoothed 

out to avoid spurious results.

Figure 4.6 Given certain arrangements of neighbours, it is possible that the free

volume is broken in two disconnected parts at high densities.
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Chapter 5 Results for Binary Systems

5.1 Primary R esu lts

The purpose of this section is to demonstrate how useful thermodynamic information 

is obtained from the initial free volume calculations. Results are compared to those 

obtained by molecular dynamics; a comparison is made between the NaCl and NiAS 

structures and the AB6 structure is examined.

5.1.1 AB2, A Comparison with Results from Molecular Dynamics
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Figure 5.1.1 Free volume of the large spheres (A) in the AB2 structure at a diameter 

ratio, g  -  0.56, vs. volume fraction, (j>.

Calculations were performed on a Pentium II, 266 MHz running Windows NT

Workstation™. For each structure and diameter ratio of interest, the free volume for
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all distinct particles was calculated at volume fraction intervals of 0.0025. The lowest 

value of the volume fraction at which the calculation was run was 0.45, the highest 

value was determined by the close packing limit. All free volumes were measured in

units of o A3 (diameter of larger sphere cubed) and written out to disk. Results were 

saved in both “formatted” text and “unformatted” double precision (64bit) files. 

Double precision stores numbers precise to 14 or 15 significant places, which amply 

covers the accuracy of the original results.

22-
Free volume theory 
Molecular Dynamics

20-

1 8 -

1 6 -

1 4 -

12-
<D

<  10-

6 -

0.40 0.45 0 .50  0 .55 0 .60 0 .65 0 .70  0 .75  0 .80

4>

Figure 5.1.2 Excess Helmholtz free energy against volume fraction for AB2 at a 

diameter ratio, cr = 0.56. The results calculated using free volume theory are 

compared to those from molecular dynamics54.

The calculated free volume for the large spheres in AB2 at diameter ratio 0.56 is 

shown in fig. 5.1.1. The free volume approaches zero near the close packing fraction,
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which for a diameter ratio of 0.56, in AB2, is at 0.779. The Helmholtz free energy may 

then be directly calculated from the free volume. As the free volume approaches zero, 

the Helmholtz free energy, which is dependent upon the logarithm of the free volume, 

approaches infinity.

In fig. 5.1.2 the excess Helmoltz free energy for AB2 at a diameter ratio of 0.56 is 

plotted against the volume fraction, (j) . The free volume theory results are compared 

to those obtained from molecular dynamics54. Agreement is very good, especially in 

the range where AB2 may be expected to form, 0.55 < <j> < 0.70. These results 

illustrate the accuracy of the simple free volume theory.
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Figure 5.1.3 Dimensionless pressure of AB2 vs. volume fraction at a diameter ratio, 

cr = 0.56.
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The pressure was obtained by numerical differentiation after fitting the free volume to 

a cubic spline. The pressure was then obtained by differentiation of the fitted function. 

To avoid any erroneous results from function fitting the calculations were commenced

3

at low volume fractions. Pressure is given in the dimensionless units, — —- .
5 kT

5.1.2 AB13, A Comparison with Results from Molecular Dynamics

The second structure, for which molecular dynamical calculations have been 

performed is AB1355. Here the diameter ratio used was 0.558. As is clear from fig.

5.1.4 the comparison between the results from the two different methods is very 

favourable. The comparison is, also near quantitative at a diameter ratio of 0.58.

1 4 -

12-

10-

I— 
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<u
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Free Volume Theory 
Molecular Dynamics

0.55 0.60 0.65 0.70 0.750.45 0.50

<!>

Figure 5.1.4 Excess Helmholtz free energy against volume fraction for AB13 at a

diameter ratio, a  = 0.558. The results calculated using free volume theory are

compared to those from molecular dynamics55.
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5.1.3 A Comparison of the NaCI and NiAs Structures.

In both NaCI and NiAs, the large spheres are arranged in hexagonally close packed 

layers, with small spheres occupying the octahedral vacancies (the interstitial gaps in 

the FCC or HCP crystal that are surrounded by six spheres). The differences between 

the two structures lie in the orientation of the close packed layers. In NaCI, the large 

spheres adopt the FCC structure, whilst in NiAs the large spheres are in the HCP 

arrangement (section 1.3).

Considering the debate over the relative stabilities of the one component FCC and 

HCP structures, as discussed in section 1.3, it is interesting to compare the stabilities 

of the binary analogues. Note that the free volume theory can find no difference 

between the monodisperse FCC and HCP crystals.

In the free volume model any difference between the two structures depends upon the 

difference between the cells occupied by the large spheres, as small spheres occupy 

identical octahedral vacancies in both cases. In the NaCI structure the large spheres 

are surrounded by an octahedral arrangement of small spheres (fig. 5.1.5. A). Whereas 

in the NiAs structure the arrangement is that of a trigonal prism (fig. 5.1.5.B). The 

corresponding arrangements of exclusion spheres are shown in figs. 5.1.5.C and 

5.1.5.D respectively. The distance of the exclusion spheres from the centre of the free 

volume is identical at every diameter ratio and volume fraction. However, the trigonal 

prism arrangement leads to a greater overlap of exclusion spheres. The more 

exclusion spheres overlap with each other, the more the total amount of excluded 

volume decreases and hence the larger the free volume. This results in the free volume 

being marginally greater in the NiAs structure.
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Figure 5.1.5 The first coordination shell of small spheres (red) surrounding each large 

sphere (blue) in the NaCI (A) and NiAs (B) structures. At a diameter ratio, 

cr = 0.42 and a volume fraction, ^ = 0.685 which is close to freezing. The 

corresponding arrangement of exclusion spheres for NaCI (C) and NiAs (D) are also 

shown.

In fig. 5.1.6 the free energy difference between the two structures is plotted against 

volume fraction. For comparison, the free energy difference between the 

monodisperse HCP and FCC structures is also shown. The entropic advantage gained 

by NiAs is indeed small, being of the order 0.038 kT at the volume fraction that NaCI 

or NiAs is first observed, 0.695. This is about seven times greater than the difference 

found by Woodcock41 and over forty times that found by Bolhuis42 for the



monodisperse case and is in the opposite direction, i.e. it is the structure where the 

large spheres are in the HCP arrangement that is more stable.

Free Energy difference, NaCI - NiAS (ANaCI- A ^ )
Woodcock
Bolhuis

0.07-1

0.06-

0.05-

0.04-

I—
z 0.03-
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0.00

- 0.01
0.4 0.6 0.8
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Figure 5.1.6 Difference in free energies of NaCI and NiAs as a function of volume 

fraction. The results are compared with the difference in free energy found in the 

monodisperse FCC and HCP structures by Woodcock and Bolhuis (in both cases FCC 

was found to have a lower free energy).

5.1.4 Stability

Having obtained the thermodynamic data, it is possible to predict whether or not a

structure would be stable relative to the fluid phase, at a given volume fraction and

diameter ratio. Of course this is not a prediction that this structure would be globally

stable, as other solid phases may be more favoured. The Helmholtz free energy is

plotted against volume fraction in fig. 5.1.7 for NiAs at a diameter ratio of 0.36. On

the same graph the Helmholtz free energy for the corresponding fluid is plotted (The
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MSCL equation of state was used for the binary fluid, section 3.3). i.e. the fluid with 

the same diameter ratio and mole fractions (in this case the mole fraction of both 

species is 0.5). Wherever the free energy of the fluid is lower than that of the solid, 

the solid cannot be stable. Whereas if the solid has a lower free energy, the solid may 

exist. Figure 5.1.7 predicts that in binary systems with a diameter ratio of 0.36, NiAs 

can only occur at volume fractions of 0.6 or above. In order to ascertain whether or 

not this is the case, the complete phase behaviour of a binary mixture, with this 

diameter ratio must be determined. This is covered in section 3.3.
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Figure 5.1.7 Free energy of NiAs at a diameter ratio of 0.36 compared with a binary 

hard sphere fluid with identical composition and volume fraction. The MSCL 

equation of state was used for the binary fluid.

Whilst, it is not possible to predict the existence of NiAs with certainty, it is possible 

to predict the instability of AB2 at these diameter ratios as illustrated by fig. 5.1.8. The

i l l



solid free energy is never below the corresponding fluid. Hence any AB2 solid would 

melt into the equivalent fluid rather than remain in its crystalline state.

AFIuid 
+ ASolid14-i AB2 Sig=0.36

1 0 -

l-
z
<

0.50 0.55 0.60 0.65 0.70 0.75

<i>

Figure 5.1.8 Free energy of AB2 at diameter ratio 0.36 compared to binary fluid with 

same mole fractions of each species present. The MSCL equation of state was used 

for the binary fluid.

5.1.5 AB6

AB6 is an interesting case. The free energy was determined at a range of diameter 

ratios assuming an undistorted structure. In each of the diameter ratios studied AB6 

was less stable than the corresponding fluid. This can be seen in fig. 5.1.9, where for a 

diameter ratio of 0.36 the free energy difference between the solid and the 

corresponding fluid is plotted. For the undistorted structure the difference is always 

positive although it is close to zero at certain densities. However it is possible to 

distort AB6 to lower the free energy of the crystal. Recall that AB6 is based upon a
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primitive cubic lattice of large spheres with octahedral clusters of small spheres 

(section 3.2.8). As long as each octahedral cluster remains inside its own cube, then it 

is possible to vary its dimensions. The properties of this cluster-expanded AB6 crystal 

were also calculated. In this distorted structure each octahedral cluster was expanded 

to just slightly less than the maximum size possible. Although the free volume of the 

large spheres dropped, that of the more prevalent small spheres increased. The gain 

was sufficient to lower the free energy. As shown in fig. 5.1.9 the free energy of the 

cluster-expanded variant drops below that of the corresponding fluid, indicating that 

the variant is stable with respect to the fluid. The relevance of this is considered in 

section 5.2.
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Figure 5.1.9 Difference in free energy of AB6 at diameter ratio 0.36 and binary fluid 

with same mole fractions of each species present. Also shown are the results obtained 

for a distortion of the normal structure of AB6.
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5 .2  P h a se  Diagram s

In the following section, the phase diagrams for binary systems with a range of 

diameter ratios are presented. In the majority of cases, the phase diagram is given in 

the pressure - mole fraction and volume fraction -  volume fraction planes. The lowest 

diameter ratio for which a phase diagram is calculated is 0.33. Although it is possible 

to calculate phase diagrams for diameter ratios lower than this, they are not presented 

as they fail to take into account the possibility of a phase where the small spheres 

remain as a fluid inside the crystalline arrangement of large spheres. Again, emphasis 

is put on the fact that not every single possible binary arrangement has been 

considered in calculating these phase diagrams, but the ones that have been 

considered are that are those more likely ones to occur.

5.2.1 Diameter Ratios 0.33 to 35

3 0 0 -

2 5 0 -
£
=3</)
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£
Fcc(A)/NiAs200-

CL

S 150- 0
•| 100-
(/>0
• i 5 0 -"O

luid/NiAs

o.o 0.4 0.60.2 0.8 1.0

Figure 5.2.1 Phase diagram, diameter ratio 0.33, metastable phases shown in red 

occur when NiAs and NaCI are removed.
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The only binary crystal phase that is predicted to be stable in this region is the AB 

(NaCl/NiAs) phase (fig. 5.2.1). Although this phase appears to be thermodynamically 

stable over a range of diameter ratios, until recently53 it had never been observed in 

any experiments involving hard sphere like colloidal systems. For this reason, the 

“metastable phase diagram” is also shown. This is simply the predicted phase 

behaviour when the AB phase is excluded from the calculations, so that any 

metastable phases will emerge.
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0 .5 -

0 .4 -

Fcc(A)/NiAs/FluidNiAs/Fluid
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Fcc(A) + Fluid Fcc(A)/NiAs

0.0-

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 5.2.2 Phase diagram, diameter ratio 0.33, metastable phases marked in red 

occur when NiAs and NaCI are removed.

As expected at these small diameter ratios, the FCC phase of small spheres does not 

occur until quite high pressures.
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Figure 5.2.3 Phase diagram, diameter ratio 0.35, metastable phases marked in red 

occur when NiAs and NaCI are removed.
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Figure 5.2.4 Phase diagram, diameter ratio 0.35, metastable phases marked in red 

occur when NiAs and NaCI are removed.
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The phase behaviour at a diameter ratio of 0.35 is qualitatively the same as 0.33. Note 

that if the possibility of the existence of the AB phase is excluded, then there are some 

regions at quite high pressures and densities where the fluid phase would still exist 

(fig. 5.2.3). Though in reality it would be expected that a glassy phase would occur at 

high densities and pressures. The list of structures considered at these diameter ratios 

is AB6, ABis, ABi2> AB3, AB (NaCI, NiAs), BCC (AB6). None of these apart ffom the 

AB phase was found to be stable.

5.2.2 Diameter Ratio 0.36
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Figure 5.2.5 Phase diagram, diameter ratio 0.36, metastable phases marked in red 

occur when NiAs and NaCI are removed.
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As the diameter ratio is increased from 0.35 to 0.36, the metastable phase behaviour 

changes. At this diameter ratio, the AB2 structure was considered as a possibility. 

Again the AB phase is predicted to be the most stable. But when this phase is 

excluded, the AB6 phase emerges. Note that this is the variant of the AB6 structure 

discussed in section 5.1. This AB6 phase is only stable for a small region, so that the 

metastable phase diagram is incomplete (fig. 5.2.5 and 5.2.7). This is the only 

diameter ratio where AB6 is predicted to be stable in any form. It is interesting to note 

that AB6 only has a packing fraction of -0.670 at this diameter ratio. Its highest

packing fraction of 0.747 occurs at diameter ratios of 0.414 ( V? -1 ), where AB6 is 

unstable relative to the corresponding fluid over all volume fractions (fig. 5.2.6).
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Figure 5.2.6 Helmholtz free energy for AB6 at diameter ratio 0.414 and the 

corresponding fluid phase.
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Figure 5.2.7 Phase diagram, diameter ratio 0.36, metastable phases marked in red 

occur when NiAs and NaCI are removed.

5.2.3 Diameter Ratio 0.39-0.42

The AB phase continues to dominate as the diameter ratio reaches 0.39. The predicted 

thermodynamically stable phase behaviour is qualitatively the same as that at lower 

diameter ratios. Of more interest is the metastable phase behaviour shown in figs.

5.2.8 and 5.2.9.

When the AB phase is excluded the AB3 phase emerges. Unlike AB6 at diameter ratio 

0.36, AB3 remains stable at higher pressures and densities. It is not possible to predict 

that the AB3 phase will be observed from these calculations alone. It would only be 

observed if the AB phase is indeed hindered from forming and the AB3 phase does 

not suffer from similar hindrance.
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Figure 5.2.8 Phase diagram, diameter ratio 0.39, showing the metastable phases that 

occur when NiAs and NaCI are removed.
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Figure 5.2.9 Phase diagram, diameter ratio 0.39, showing the metastable phases that

occur when NiAs and NaCI are removed.
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The phase behaviour at diameter ratio 0.414 is of particular interest because a number 

of structures have their highest possible packing fractions. The AB phases have a 

packing fraction of 0.7931 at this diameter ratio, the highest packing fraction of all 

binary structures at all diameter ratios considered. Notably even though AB6 has a 

packing fraction of 0.7469 at this diameter ratio (the second highest at this ratio) it is 

not observed. In figs. 5.2.10 and 5.2.11, the thermodynamically stable and metastable 

phase diagrams are overlaid. There is a third possible phase at this diameter ratio. If 

all the AB3 and AB phases are excluded, then the BCC(AB6) phase is seen to emerge. 

This is the only diameter ratio where there is any suggestion that the BCC(AB6) phase 

will be at all stable.
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Figure 5.2.10 Phase diagram, diameter ratio 0.414, metastable phases marked in red

occur when NiAs and NaCI are removed.
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Figure 5.2.11 Phase diagram, diameter ratio 0.414, metastable phases marked in red 

occur when NiAs and NaCI are removed.
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Figure 5.2.12 Diameter ratio 0.414, comparison of phase diagrams obtained using free 

volume theory and molecular dynamical calculations71.

1 2 2



In fig. 5.2.12 a comparison is made between the phase behaviour calculated using free 

volume theory and that calculated using molecular dynamics by Trizac et al71. The 

agreement between the two different methods is excellent.
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Figure 5.2.13 Phase diagram, diameter ratio 0.42.

At a diameter ratio of 0.42 the AB phase is still the only phase to be 

thermodynamically stable, as shown in figs. 5.2.13 and 5.2.14 Again the AB3 phase is 

predicted to be metastable at this diameter ratio.
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Figure 5.2.14 Phase diagram, diameter ratio 0.42

5.2.4 Diameter Ratios 0.43 to 0.44

a = 0.43 Thermodynamic
200

1 5 0 -<L)
3(08
2>
a. 100
(0(00)
c
o
'w 50

o-

Fcc(B)/AB

Fcc(A)/AB

Fluid/AB
AB2/Fcc(A)

Fluid/AB.

AB2/AB
Fcc(A)/Fluid

0.0
— i---------------•--------------- 1---------------•---------------1--------------- •---------------1--------------->---------------1—
0.2 0.4 0.6 0.8 1.0

Figure 5.2.15 Phase diagram, diameter ratio 0.43
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Once the diameter ratio is increased from 0.42 to 0.43 a new thermodynamically 

stable phase is seen to appear alongside the AB phases. This is the AB2 phase, which, 

unlike the AB phases, has been observed in experiments with colloidal hard spheres26. 

But at this diameter ratio, the AB phase still dominates, being favoured at higher 

pressures and densities (figs. 5.2.15 and 5.2.16). There is no equilibrium between the 

AB2 phase and the FCC phase of small spheres.
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Figure 5.2.16 Phase diagram, diameter ratio 0.43

As the diameter ratio is increased further still to 0.44, a transition is seen to begin to 

occur as the domination of the AB phases decreases (figs. 5.2.17 and 5.2.18). At this 

diameter ratio equilibrium between AB2 and the FCC phase of small spheres may be 

observed. However the AB phase continues to dominate at higher pressures.
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Figure 5.2.18 Phase diagram, diameter ratio 0.44.
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Figure 5.2.19 Phase diagram, diameter ratio 0.44, showing metastable phases that 

occur when NiAs and NaCl are removed.
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Figure 5.2.20 Phase diagram, diameter ratio 0.44, showing metastable phases that

occur when NiAs and NaCl are removed.
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In keeping with the phase diagrams for lower diameter ratios, the metastable phase 

behaviour is also considered. When the AB phase is excluded at these diameter ratios, 

the AB3 phase once more emerges. There is little purpose in excluding the AB2 phase, 

as this is known to occur. The metastable behaviour for diameter ratio 0.44 is shown 

in figs. 5.2.19 and 5.2.20. Note that the metastable AB3 phase is only seen at high 

pressures and densities. This is the highest diameter ratio at which AB3 is seen in any 

form. It is only ever seen as a metastable phase, the AB phase if it were allowed to 

form, would always exclude it.

5.2.5 Diameter Ratios 0.45 to 0.48

The range from 0.45 to 0.48 is straightforward, in that there are no metastable phases 

to be considered. The only phase present is the experimentally observed AB2 phase. 

There is no significant difference between the phase behaviour at the two diameter 

ratios. In this range none of the structures have very high packing fractions. AB has a 

packing fraction o f-0.75 at diameter ratio 0.45, whilst AB2 has a packing fraction of 

only -0.715. The other structure considered at diameter ratio 0.45, AB3, has a packing 

fraction of -0.733. In this case, of the three structures considered, it is the one with 

the lowest close packing fraction, AB2, not the highest, AB that is found to be stable.

At diameter ratio 0.48, none of the binary structures have a packing fraction higher 

than the monodisperse FCC structure, but AB2 is still predicted to be stable.
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Figure 5.2.21 Phase diagram, diameter ratio 0.45
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Figure 5.2.22 Phase diagram, diameter ratio 0.45
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5.2.6 Diameter Ratio 0.52

As at diameter ratios 0.45-0.48, it is AB2 that is predicted to be the most stable phase 

at diameter ratio 0.52. However it is interesting to note the emergence of the AB13 

phase when AB2 is artificially excluded. AB]3 is, perhaps, the most unusual of the 

binary structures considered and has a packing fraction o f-0.714 at this diameter 

ratio. Although it is not expected to form at this diameter ratio due to the presence of 

the AB2 phase, the position of the metastable ABo phase is shown on the pressure - 

mole fraction plane phase diagram (fig. 5.2.25). Only the thermodynamically stable 

AB2 phase is shown on the volume fraction -  volume fraction diagram (fig. 5.2.26).
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Figure 5.2.25 Phase diagram, diameter ratio 0.52, metastable phases marked in red 

occur when AB2 is removed.
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Figure 5.2.26 Phase diagram, diameter ratio 0.52.

5.2.7 Diameter Ratio 0.558 to 0.6
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Figure 5.2.27 Phase diagram, diameter ratio 0.558.
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Figure 5.2.28 Phase diagram, diameter ratio 0.558.
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Figure 5.2.29 Phase diagram, diameter ratio 0.58.

In the ratio of diameter ratios from 0.558-0.6, there is a rich variety of phases. At the 

diameter 0.558, AB13 has a packing fraction of 0.738. This is the highest packing
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fraction that AB13 can achieve and it is less than the packing fraction of the FCC 

phase. Murray and Saunders48 suggested that a distortion from the ideal structure was 

needed to increase the packing fraction of AB13, so that it could form. No such 

distortion has been carried out in these calculations; AB13 is predicted to form even 

though it has a relatively low packing fraction.
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Figure 5.2.30 Phase diagram, diameter ratio 0.6.

As the diameter ratio increases to 0.6, the ABj3 phase begins to diminish on the phase 

diagram (figs. 5.2.30 and 5.2.31). The equilibrium between the fluid and the AB2 

phase also disappears as the binary phases are pushed to higher pressures and 

densities.
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Figure 5.2.31 Phase diagram, diameter ratio 0.6.

5.2.8 Diameter ratio 0.61

The diameter ratio 0.61 marks the transition from binary phases to monodisperse 

phases. The only binary phase present in the AB2 phase, which only appears at high 

pressures and densities. The fluid is only in equilibrium with the monodisperse phases 

and for the first time, the two monodisperse phases are seen to be in equilibrium with 

each other. Note that these diagrams give the most thermodynamically stable phases. 

The presence of a phase on any of these diagrams by no means indicates that it will 

certainly occur, as kinetic effects, amongst others may hinder its formation. None of 

the binary structures in this study have very good packing fractions at diameter ratios 

greater than 0.61.
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5.2.9 Diameter Ratio 0.62 and Higher
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Figure 5.2.34 Phase diagram, diameter ratio 0.65.
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Figure 5.2.35 Phase diagram, diameter ratio 0.65.

No binary structures are observed in the phase diagrams for diameter ratios greater

than 0.62. The only crystalline phases present are the two FCC phases (large and
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small spheres). The only change noted as the diameter ratio increases further is the 

position of the eutectic, which approaches a mole fraction of 0.5. However, this study 

has not taken into account the possibility of a substitutionally disordered FCC phase. 

This phase has been considered by Cottin and Monson72 and is only applicable at 

higher diameter ratios.

5.2.10 Summary and Conclusions

Diameter Ratio Structures Tested Phase Behaviour 

[Metastable]

0.33 AB6,AB13̂ B i 3^ B 3,AB,BCC(AB6) AB

0.36 AB6, AB i3,AB3,AB,BCC(AB6),AB2 A B [A B 6]

0.39 AB6,ABi3,AB3,AB,BCC(AB6),AB2 A B [A B 3]

0.414 AB6,ABi3,AB3,AB3 CC(AB6),AB2 AB [AB33 CC(AB6)]

0.42 AB3,AB,BCC(AB6),AB2 A B [A B 3]

0.43 AB3,AB,AB2 a b 2,a b  [AB2,AB3]

0.44 AB3,AB,AB2 AB2,AB [AB2,AB3]

0.45 AB3,AB,AB2 a b 2

0.48 ABi3,AB2,AB a b 2

0.52 ABi3,AB2,AB a b 2 [AB13]
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0.558 ABi3,ABi3,AB2 AB2,ABi3

0.56 ABi3,AB2 AB2,ABi3

0.58 ABi3,AB2 AB2,ABi3

0.6 ABi3,AB2 AB2,ABi3

0.61 ABi3,AB2 FCC(L),FCC(S),AB2

0.62

0.65-0.75

a b 2 FCC(L),FCC(S)

FCC(L),FCC(S)

Table 5.2.1

Calculations have been performed over a range of diameter ratios, 0.33 < <r < 0.75. 

At each diameter ratio at which calculations were performed, the thermodynamic 

properties of a number of structures was calculated using the Lennard-Jones cell 

model. The thermodynamically stable phase behaviour was then calculated using the 

MSCL equation of state to represent the binary fluid. The list of structures tested is 

listed in table 5.2.1. As some structures may be kinectically hindered, the metastable 

phase behaviour has also been calculated. The predictions of this thesis are 

summarised in figure 5.2.36. These may be compared to the predictions made in 

chapter 2 that are summarised in figure 2.1.

Using cell theory, AB2 is predicted to be stable over a range of diameter ratios,

0.43 < cr < 0.61. This is consistent with the observations of AB2 at diameter ratios of 

cr = 0.58 by Bartlett50 and cr = 0.52 by Hunt and Jardine53. These results are also in 

agreement with the predictions made by Eldridge and Madden54,55.
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Figure 5.2.36 The predictions of the cell model. Thermodynamically stable phases are 

shown in black, while Metastable phases are shown in red. Compare this to figure 2.1.

Eldridge and Madden predicted that AB13 would be stable in the range,

0.54 <cr< 0.625. Again the results of the cell theory are in quite good agreement 

with these findings. AB13 is predicted to be thermodynamically stable in the range 

0.558<cr<0.6 and metastable with respect to the AB2 phase in the range 

0.52 < cr < 0.558. The predictions of cell theory are also consistent with the 

observation of AB13 at cr = 0.58 by Bartlett50. Hunt and Jardine53 observed AB13 at 

cr = 0.52, these results would suggest that this is a metastable structure.

The observation of NaCl/NiAs structures at cr = 0.39 by Hunt and Jardine53 is 

consistent with the predictions made. The NiAs/NaCl structures are predicted to be 

thermodynamically stable in the range, 0.33 < cr < 0.44. This is also in agreement 

with the results of Trizac et al57, who predicted that NaCl would be stable at 

cr = 0.414. They predicted that NaCl would also be stable at cr = 0.45, which is just 

outside the limit predicted by cell theory.

AB6 has been observed at a diameter ratio of cr = 0.36 by Pusey et al.51. The results

of these calculations would suggest that this is a metastable phase being observed,

relative to the more stable NaCl/NiAs phase.
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These results also suggest the possibility of metastable BCC(AB6) and AB3 structures 

occurring. But it is difficult to predict their formation with any certainty.

These calculations have found no evidence of binary superlattices at diameter ratios 

greater than 0.62. This is in disagreement with the observation of MgCu2 and CaCus 

in systems of charged colloids by Hachisu et al49. However the observation of these 

structures may well be due to the nature of the charged potential.

Schofield52 observed the formation of a binary hard crystal with the CsCl structure at 

a diameter ratio, cr -  0.736. No evidence is found of any structures at these diameter 

ratios. These results would concur with the suggestion that CsCl is metastable. The 

absence of any binary superlattices at higher diameter ratios is also consistent with the 

observations of Hunt and Jardine53 at cr = 0.72.
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Chapter 6 Polydisperse Systems

6.1 Polydisperse Experimental Systems

As mentioned in the introduction there is great deal of interest in systems of colloidal 

hard spheres. Theories that have been successfully applied to the hard sphere model have 

also been applied to these suspensions in order to predict, amongst, other things their 

phase behaviour.

However although colloidal particles may have a near hard sphere potential, there is 

significant difference between colloidal systems and the theoretical hard sphere systems 

discussed in chapter 1. Simulated hard spheres are made to be monodisperse (i.e. they are 

uniform in size), whilst colloidal particles have a continuous distribution of particle 

diameters.

Experimentalists are not able to produce colloidal hard spheres that are monodisperse. 

There is always some degree of polydispersity (i.e. there is a variation in size). If 

colloidal systems are to be modelled by a hard sphere system, then the effects of 

polydispersity upon that system must first be understood. Polydispersity may, potentially, 

alter the entire phase behaviour of hard spheres. This may in some cases be used to an 

advantage. For instance it may be possible to prevent crystallisation by increasing the 

polydispersity. If it is the aim to form hard spheres crystals, then it is important to know 

the degree of polydispersity that will be tolerated.

Polydispersity, if/ , is defined as the standard deviation of the distribution of particle 

diameters divided by the mean.
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It might naively be assumed that the effects of small degrees of polydispersities are 

negligible. However even relatively low polydispersities, y/ < 0.05, may have a 

significant effect on the position and width of the freezing transition. Freezing occurs 

because a crystalline arrangement of spheres utilises the available space most efficiently, 

giving individual particles greater freedom to move about and consequently maximises 

their entropy. Any variation in particle diameter reduces the efficiency of packing of an 

ordered array so that the entropy of the crystal is reduced. Thus the crystal becomes less 

favourable than before. Increasing polydispersity favours the disordered fluid phase.

6.2 The Freezing Of Polydisperse Fluids

Barrat and Hansen were the first to theoretically analyse this problem. In 1986 they 

applied a density functional theory of freezing to polydisperse colloidal crystals. They 

considered the effects of a triangular diameter distribution. They found that there was a 

polydispersity above which the crystal was unstable at all packing fractions. Above a 

“terminal” polydispersity of 0.067 the crystal was predicted to be mechanically stable but 

thermodynamically unstable. Calculations using a rectangular diameter distribution gave 

similar results. For both of these calculations it was assumed that the distribution of 

diameters was the same in the fluid and solid phases.

McRae and Haymet74 applied density functional theory to the freezing of a polydisperse

fluid of hard spheres. Interestingly they considered the formation of both FCC and HCP



crystals (sections 1.3 and 9.3). The used both the Schulz (section 7.1.1) and Gaussian 

distributions to describe the diameters of the particles. They found a terminal 

polydispersity of 0.05, above which no freezing took place. As this polydispersity was 

approached, the densities of the phases in the freezing transition were found to increase

75markedly. Bolhuis and Kofke have carried out a Monte Carlo study of the freezing of 

polydisperse hard spheres. They imposed a chemical potential distribution on the hard 

spheres. They then used an isobaric semi-grand ensemble, where the identities 

(diameters) of particles were changed. This avoided the problems with particle insertion 

at high densities associated with the grand canonical ensemble. Gibbs-Duhem integration 

was used to trace the phase boundary from the well-known monodisperse transition to the 

unknown polydisperse transitions. They did not assume that the diameter distribution was 

identical in the two phases. Instead they found that there was a higher degree of 

polydispersity in the fluid than in the solid. They also found there was a terminal 

polydispersity above which no solid formed. They found this polydispersity to be 0.057, 

whilst the corresponding polydispersity in the fluid was 0.118.

76Bartlett has made a calculation based upon the assumption that the thermodynamic 

properties of a polydisperse distribution depend on the number, mean diameter, surface 

area and volume of the particles. These properties depend on the zeroth to third moments 

of the diameter distribution. This method has been labelled “scaled particle theory”. The 

basis of this approximation is that the energy required to insert a particle into a given 

phase (i.e. the chemical potential) will depend only upon these four properties. Using this 

assumption, a polydisperse distribution may be approximated by a binary mixture. Binary

77mixtures of hard spheres have been well studied . Using results for the solid phase and
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the Mansoori, Carnahan, Starling and Leland (MCSL) equation of state of the fluid phase; 

the phase behaviour was evaluated. The terminal polydispersity was found to be 0.083. 

No evidence was found for any substantial difference in the distribution of diameters in 

the two phases.

7RPhan and Russel performed a molecular dynamics simulation of 500 polydisperse hard 

spheres. Diameters were distributed according to a Gaussian distribution. By finding the 

intersect of the maximum packing fractions of the polydisperse solid and fluid, they 

predicted an upper limit to the terminal polydispersity of 0.12. In the polydisperse crystal 

it was found that larger particles tended to be surrounded by smaller ones. i.e. there was 

some degree of substitutional ordering occurring.

6.3 Other Effects of Polydispersity

Polydispersity may well have more effects than altering the location of or preventing the 

freezing transition. A number of studies have concerned themselves with other effects.

Sear79 calculated that a fluid of hard spheres with polydispersity above 0.082 might phase 

separate and crystalise leading to two solid factions with polydispersities approximately 

half of the original. However, it was pointed out that such a transition may not be seen in 

experiment due to the intervention of the glass transition.

Cuesta80 examined the behaviour of polydisperse fluids following the Boublik-Mansoori- 

Camahan-Straling-Leland equation of state. He predicted that a system where the particle 

diameters followed a log-normal size distribution would demix if polydisperse enough. 

The threshold for demixing was estimated to be 0.12 polydispersity.
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81Bartlett found similarly to Sear that if a fluid was sufficiently polydisperse (greater than 

0.085), then crystallisation would occur simultaneously with fractionation. As the 

polydispersity increased, it was predicted that the fluid would split into a greater number 

of fractions.

O'?

Bartlett and Warren ' carried out calculations that predicted an interesting phenomenon. 

At low polydispersities a single fluid to crystal transition is expected. However, as higher 

polydispersities, near to the terminal polydispersity are reached, it was predicted that 

there would exist a density above which the crystal would melt back into an amorphous 

phase. These re-entrant transitions were found to converge at the terminal polydispersity.

Williams et al.83 used molecular dynamics to investigate the possibility that the formation 

of a hard sphere colloidal glass is as a result of polydispersity. They discovered that 

polydispersity decreased the speed of crystallisation and in some cases prevented it, so 

that a glassy phase was formed.

Evans et al.84 predicted that a polydisperse colloidal system would never reach its true 

equilibrium state. As the smaller particles will diffuse more quickly through a system, 

they are more likely to incorporated into the crystal. They argued that once a crystal has 

been formed, steric hindrance prevents further particle movement, so that the mean size 

of the particles in the crystal will be smaller than that predicted.

Elliot et al.85 examined the effects of polydispersity on the geometrical packing of 

spherical particles.
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It is the intention of this study to apply Lennard-Jones Cell theory to a polydisperse 

crystal of hard spheres.

6.4 Plan of Action

The purpose of these calculations is twofold.

i) To develop a simple yet robust computational approach to calculate the 

properties of a polydisperse solid as a function of volume fraction and 

polydispersity.

ii) To develop a technique to handle polydisperse phase equilibrium.

Of particular interest will be the value obtained for the terminal polydispersity using this 

model.

There are a number of issues to consider in the application of Lenanrd-Jones cell theory 

to a polydisperse system. In section 7.1 the choice of diameter distribution is discussed. 

The specifics of the application of the cell model to a polydisperse system are detailed in 

section 7.2.

As the calculation of free volume in a polydisperse system proved to be expensive, 

techniques to reduce the calculation time are examined in sections 8.1 and 8.2.

Primary results are given in section 9.1 and the phase behaviour of a polydisperse system 

is examined in section 9.2.



Finally, in section 9.3 the influence of polydispersity upon the relative stability of the 

FCC and HCP structures is considered.
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Chapter 7 Theory of Polydisperse Systems

7.1 Diameter Distributions

7.1.1 The Schulz Distribution

In order to perform any meaningful calculations on a polydisperse system, a 

mathematical description for the distribution of particle sizes is required. Two 

different distributions were initially considered. One of these was the Schulz 

distribution (fig. 7.1.1). The distribution of the diameters being given by

The Schulz distribution is preferable to a simple triangular or rectangular distribution 

in that it is more likely to accurately reproduce the distribution of diameters of a 

natural system. But it does have one unrealistic feature, as the distribution tails off to 

infinity, there is always a finite probability that a diameter may be unusually large. At 

a given volume fraction it is possible to calculate the separation distance, c between 

two neighbouring hard spheres.

/ (D )  = _L £ Z £ D ze D , 0 < D < co (7.1.1)l f r + lY *  2 ^

(7.1.3)

where </> is the volume fraction and (d ^  is the mean of the cube of the diameter 

distribution.
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Figure 7.1.1 The Schulz Distribution, y/ = 0.1, D = 1

From this the probability that two neighbours will overlap may be calculated. As the 

particles are hard spheres, any overlap is forbidden. To avoid overlap between 

neighbours there should be zero probability of a particle diameter being greater than 

the separation distance between particles. However there will always be a finite 

probability of particle overlap with any “long tailed” distribution. To overcome these 

problems a truncated Shultz distribution was considered. A cut-off point for the 

distribution was predetermined to ensure no particle overlap occurred. This presented 

two problems. Firstly this created a distribution that was irregular. At high volume 

fractions, the cut off point was quite close to the distribution peak. Secondly, 

calculations using a truncated Schulz distribution proved to be intractable. 

Consequently truncating the distribution was abandoned.
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7.1.2 The Triangular Distribution

As an alternative the triangular distribution was considered. The triangular 

distribution (fig. 7.1.2) is given by

/(Z>) = ^ ( l - M | )  \ - W < D < \  + W (? 1 4 )

= 0 Otherwise

W = y[6cr (7.1.5)

m

D1

Figure 7.1.2 -  The triangular distribution.

But this distribution, whilst avoiding the possibility of any overlap, is not one that 

may be expected to accurately describe an experimental system. Consequently the 

Shultz distribution was retained as the distribution used to describe the diameters of  

the particles.

7.1.3 Numerical Integration

As will be discussed in section 7.2.1. the Helmholtz free energy is given by

a** __
—  = - Y ^ l n v fl, (7.1.6)
M r  v  * y ’
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where Pt is the probability of observing a cell of type i. Cells are characterized by the

diameters of the tagged particle and its neighbours. In each FCC or HCP cell there 

are, in total, thirteen particles. Each particle, labelled 0 to 12 has a diameter that 

comes from the distribution. Hence 7.1.6 becomes

Such an expression may not be readily evaluated. It is necessary to resort to a form of 

numerical integration (effectively a summation),

The continuous distribution of particle sizes is approximated by a distribution with a 

finite number of discrete diameters, where wt is the probability of observing a particle

with diameter xt.

As it is still necessary to perform the summation over each particle present in the cell, 

it is not possible to use a large number of discrete diameters to approximate the 

continuous distribution. The number of different cells generated by n discrete particle 

diameters being n13. As only a few discrete diameters may be used, it is important to 

choose them carefully.

A distribution, continuous or discrete, is characterised by its moments. The 

moments, c;. are defined by

Cj = f f ( D ) D JdD,  (7.1.9)
—00
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for a continuous distribution, where f { D )  is the distribution function. For a discrete 

distribution, with n points, they are given by

The discrete diameters are chosen in such a way as to match as many moments of the 

discrete distribution to the continuous.

Gaussian Quadrature is utilized to match the first 2 n - \  moments of the distributions 

using n discrete points.

In this method, the roots of one of a series of orthogonal polynomials determine the 

discrete diameters. The polynomials, Pj are generated by a recurrence relationship.

The series of polynomials depends on the original distribution used. Some notation 

used is

n

c j  =  X  W l X :J > ( 7 1 1 0 ) -

P-i = 0 , (7.1.11)

P0 = l ,  (7.1.12)

where a
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{ P A P K ) = \ f ^ ) P j P Kdx. (7.1.16)
-00

Once the polynomials had been generated and the roots found, the weights, wt , 

corresponding to the discrete diameters, xt, were found by solving the set of linear 

equations.

£ > , * / =  c, j  = 0,1...2n-l (7.1.17)
M

Initially an attempt was made to generate the polynomials numerically. Whilst this is 

theoretically possible, problems were encountered when attempting to evaluate 

expressions like a2. a2 is given by

(7.1.18)
( P2\P2}

In practise (xP2\P2) = {P2\P2) ,  (7.1.19)

so a , = 1. (7.1.20)

But the algorithm used was evaluating the numerator and denominator numerically. 

Although the calculation was accurate to about six significant figures, slight 

inaccuracies were present. The calculation proved to be very sensitive to these 

inaccuracies and larger errors were thus produced. In order to get around this problem 

it was decided to do the calculations analytically. These analytical calculations are 

reproduced in appendix A.
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Once the continuous distribution is approximated by a discrete one, the possibility of 

overlap between particles with larger diameters is removed for most cases. This was 

another reason why it was decided to stick with the non-truncated Schulz distribution 

to describe the particle diameters in the polydisperse system. Note that there always 

remains a possibility of particle overlap at high densities and polydispersities. This 

issue is considered in section 9.1.4.

If three diameter points are used (using the roots of P3), then the number of cells that

are generated is 313 = 1,594,323. Initially the calculations were performed on a 

486\66Mhz P.C. The algorithm used to calculate the free volumes was the 

“Trapezium rule”, which was used when calculating the free volume of binary 

systems (chapter 4). In this algorithm the free volume is split into sections by a grid in 

the XY plane. The height of each section is then determined analytically to obtain an 

approximate free volume. To obtain even approximate results requires an absolute 

minimum of 1502 sections. 10002 sections are required for accurate results. As there 

were 1,594,223 free volumes to calculate for each set of values of the polydispersity 

and free volume, this meant that it would have taken 18 days to compute approximate 

results for each set of values.
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7.2 The Application of the Cell Model

7.2.1 Statistical M echanics

The cell model was introduced in section 1.2, so here we details its application to a 

polydisperse system.

In the binary case the different types of cells present had to be accounted for (section 

3.1). This was not a large obstacle for the binary system as there were at most three 

different types of cells. In the polydisperse case, there is an infinite number of 

different types of possible cells. Even after the continuous distribution is split into a 

number of different size components there remain a large number of different cells.

For an 77-component mixture, the semi-classical partition function, ZN is used. If 

there are Ny molecules of type j then the total number of particles, N , is given by

= (7.2.1)
y=i

and the partition function (assuming the occupation of each cell is independent of its 

neighbours)

z » = „ . J*! (7.2.2)

where z, is the semi-classical partition function of cell i. z, is given by the standard 

result
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where ft -  — , O is the potential energy function and Xa , the thermal wavelength 
kBT

is given by

Pt is the probability of observing a cell of type i. If no substitutional ordering is 

assumed then

P, V "  ’ (7 2 '5)

where Sy is the number of particles of type j  in cell [ (including the tagged particle) 

and xj is the mole fraction (or weight) of particle j . Since each cell is the unit cell of 

the FCC or the HCP structure,

£ 5 ,  =13. (7.2.6)
M

The cell configurational integral, qt is defined as

q, = j'rfVe-'®'®. So (7.2.7)

z = — — — n
f \ NP‘ 

Vi . (7.2.8)

As discussed in the introduction, the cell configurational integral, qt is equivalent to 

the free volume, vfi.
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To calculate the pressure and the chemical potentials the excess Helmholtz free

energy,

A‘X = A - A ideal, (7.2.9)

where Aldeal = In*,!,3 , (7.2.10)

was calculated.

Standard statistical mechanics gives the result

NkT = - £ / 5lnv„ (7-2.11)

The pressure is given by

dA
dV

(7.2.12)
J  T,n,

This gives the result

NkT
 i________

dV
(7.2.13)

The volume fraction, (j> is given by

NnlD )
# = ---- *— so (7.2.14)
y 6V '

d(j> - N n ( p  )
—  = -------V - A  (7.2.15)
dV 6V

158



So that the pressure may be obtained by

This differential was evaluated numerically from a two point calculation where the 

separation of the two volume fractions were carefully chosen to give an accurate 

representation of the gradient at the mid-point.

The pressure can also be obtained by differentiation of the cell model free volume. 

This gives the expression for the pressure86

where sf  is the surface area of the free volume.

This expression was the motivation for the development of the analytical algorithm 

discussed in section 8.2. Note all volumes and areas are measured relative to the mean 

diameter (D).

The chemical potential of a species i is given by

(7.2.18)



N.
x, =

' H n j
(7.2.20)

dxt _ 1 *L

1 * 0
V J V

(7.2.21)

= — (l - * , )
N k l f

dxt -  xt
dNj N

l ± j  (7.2.22)

d  x~~s d X j d  _ s
= Z T r f — .so  (7.2.23)

^ d N t dx,

d 1
dxk i*k N dxt

p A - N '
Nlcell

2 > , in* , - X > >
j =1 M

y A

v C y
(7.2.25)

p M - = M . + N  8
dNk N  dNk

n NctU
Y,Xj\ax] -'£JpA’a
7=1 1-1

r \
3 l
1 : \ Aa

(7.2.26)

Pnt = ^ + ( l - x t )(\nxk + ! ) - £ * ,  (tax, +1 ) - N
N j* k dNt

Nn
Z ^ lnj=l

Nlcell 

i= l

(  \ a Nlcell (  Yl/orQi N  « y > > ■ ■ ■ >

\ A* dNt 1
M I v j j

r w
<lt

l  3 \ Aa yj

(7.2.27)

as the cell partition functions qt are independent o f Nk then
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PVk = l n * * - E
i= l

Pt + N —— Pi
dN

In
*

r \
3 l  
x ~\ A Ci

The probability of observing a cell, i  is given by

Pl = x1s‘'x2s‘1.. . .x/1’ , (7.2.29)

where Sik is the number of particles of type k in cell i (including the centre tagged 

particle). So

N ~ - p t = (i -  *k) W i:

+ Z  - xjW “- ■ k  (7.2.30)
j* k

-I VS
j* k

p' + N ^ r p> = s * T - ' Z s «p‘ +p‘
'k X k ali j

(7.2.31)

as =Z  + l ,s o  (7.2.32)
all j

Nn

<=1

(a  1 ( \
pti - ^ - Z In <li

\ 1*4 1., W )
(7.2.33)

where Z is the nearest neighbour number. In this current case Z = 12.
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7.2.2 Moment Chemical Potentials

As phase equilibria in polydisperse systems is complex, it is initially convenient to 

focus on just on the cloud and shadow boundaries. The shadow curve represents the 

line of the minority phase that just separates from the majority phase, described by the 

cloud curve. In these studies, the polydisperse fluid was chosen as the majority phase, 

with the polydisperse solid the emerging minority phase. For completeness the 

Schultz distribution was chosen. The mean diameter of the particles in the majority 

phase is used as the unit of length throughout the calculations.

To establish the conditions under which the phases coexist, the particle chemical 

potentials must be matched as well as the osmotic pressure. Given the infinite number 

of species present in a polydisperse system, this is not a trivial task. Sollich and 

Cates87 proposed a method to reduced the dimensionality of polydisperse systems, 

thus making them more manageable. They suggested that the original multi­

dimensional free energy surface might be projected onto a reduced subspace of 

variables. The moment densities,

nij = J p(D)DJdD = pCj (7.2.34)

being the most convenient set of variables.



the equality of particle chemical potentials implies also the equality of “moment” 

chemical potentials,

<7-2-36)dmk

in coexisting phases. As Sollich and Cates indicated, equilibrium may be established 

by equating these moment chemical potentials in the analogous to the conventional 

methods by which “normal” chemical potentials are balanced.

There being an infinite number of moment densities, this is still however not a trivial 

problem. Sollich and Cates argued that the most important moments were those that 

affect the excess free energy. Accordingly the infinite-dimensional space was split 

into two subspaces, a “moments” subspace and an orthogonal “transverse subspace” 

containing the remaining degrees of freedom. Phase equilibria was determined by 

establishing coexistence planes in the moments subspace, while free energy was 

minimized in the transverse subspace.

In particular it was suggested that the zeroth and first moment of the diameter 

distribution be used to define a moment space. The zeroth moment being equivalent to 

the particle density, p . As only these two moments are used, the shape of the 

distribution is identical in the coexisting phases.

Since ^  , then the moment chemical potentials are the coefficients of the
k

polynomial describing the relationship between the chemical potential of a species 

and its diameter.
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In this study, the continuous distribution is approximated by a discrete one, the excess 

portion of the chemical potentials of particles with certain diameters are obtained 

from the calculations. The excess portion of the moment chemical potentials is 

therefore readily obtained by fitting a suitable polynomial to the data obtained.

Finding the ideal portion of the moment chemical potentials is not so straightforward, 

it being necessary to project the ideal free energy surface onto the reduced subspace. 

This was done by maximizing the entropy whilst assuring the two moments of the 

distribution being used are fixed. Warren has derived analytical results for the one and 

two moment cases88, we use these to find the ideal portion of the moment chemical 

potentials. For the Schulz distribution,

f t *  = I n p -a \n (D )  (7.2.37)

//,“ = -a (D )  (7.2.38)

a  = l/<T2 (7.2.39)

7.2.3 Calculating Equilibrium Conditions

Using a projected free energy surface, we are now able to establish the conditions for 

the cloud-shadow curve by satisfying just three equations.

P , = P j  (7.2.40)

Msmd =  MfinO (7.2.41)

A-1 (7.2.42)
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The properties of the fluid phase are obtained by use of the well known MSCL 

equation of state already discussed in sections 3.3 and 3.4.

As there are three equations to be satisfied, there must of course be three 

thermodynamic variables to describe the position of equilibrium. The number 

densities of the fluid and solid phases are two of them. The third variable is the mean 

particle diameter of the emerging solid phase, relative to the fluid phase. This will 

give a measure of the degree of fractionation that accompanies the phase transition. 

Strictly speaking this should be fixed at unity so that the shape of the distribution is 

the same as in the majority phase. But this rule is only broken infinitesimally by the 

emerging solid phase.
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Chapter 8 Calculation of Free Volume in a Polydisperse 

System

8.1 U se  of the Sym metry to R edu ce the Length o f the Calculations

Given the large number of cells that are generated by three diameter points, it is very 

necessary to avoid any duplication of effort when calculating the free volume. This 

may be done by taking the high degree of symmetry, present in the FCC and HCP 

arrangements, into account.

8.1.1 Symmetry of a Face Centred Cubic Arrangement

There are twelve neighbours that surround the tagged particle in its cell. The tagged 

particle’s diameter varies, as do the neighbours’. The positions of the neighbours may 

be labelled from 0 to 11 (fig. 8.1.1). As the diameter of the particle at each position 

changes in turn, a new “arrangement” is formed. The total number of arrangements 

generated in this way is 312.

Figure 8.1.1 The labelling used for neighbour positions in the FCC arrangement
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It is possible to perform a variety of transformations on an arrangement of neighbours 

that only changes the labelling of the positions not the actual positions in space 

themselves. Such a transformation will have no effect on the magnitude or shape of 

the free volume. Therefore an arrangement that may be produced by a transformation 

on another arrangement will lead to the same free volume as the original, i.e. The free 

volumes will be similar. Consequently, methodically stepping through all possible 

arrangements leads to many unnecessary calculations being performed. To avoid this 

replication of effort, the set of arrangements that produces no similar free volumes, 

was compiled as follows.

For the FCC cell, there are a total of 48 different possible transformations that only 

alter the labelling.

Every arrangement (0 to 11) may be rotated in one of twelve ways, such that each 

neighbour ends up in a predefined position (position 0). Following this one of four 

“secondary” transformations may be performed (fig. 8.1.2).

i) Unitary transformation (no change)

ii) Reflection (mirror plane going through positions 0,2,8,10)

iii) Two-fold rotation (axis of rotation going through positions 0,10)

iv) Combined transformation, reflection (ii) followed by rotation (iii).

By combining each of the twelve rotations with each of the other four secondary 

transformations, a total of 12 x 4 = 48 combined transformations are thus possible.



Figure 8.1.2 Transformations (mirror & rotation) performed on the arrangements.

Using a spreadsheet a matrix was produced to perform these transformations. Each 

particle size was given a digit to identify it. When using the three-point Gaussian 

Quadrature approximation, the smallest was 0, the largest 2. An identification number 

was then calculated for each cell arrangement. If dt is the digit of the particle at 

position i then the identification number is given by

W= f id i x3‘ .(8.1.1)
1=0

This is equivalent to writing out the arrangement as a ternary number,

d\ ld l0d9d%d1d6dsd4d3d2dld0.

Every possible arrangement was then stepped through starting from w = 0 and ending

up at w = 312 -1 . This was done using a recursive subroutine, i.e. The particle size at

position 0 was varied, then for each variation the subroutine called itself to vary

position 1 and so on. The 48 transformations were performed on each arrangement

generated. If the lowest identification number achievable was that of the arrangement

started with then that arrangement was added to a list. Else, if it was possible to
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generate an arrangement with a lower identification number than the original then that 

arrangement was found in the list (using a quick search) and the count for that 

arrangement incremented (fig. 8.1.4).

In this way a unique set of arrangements of neighbours was produced. The total set of 

arrangements and their counts was written to a file in binary format to be used by the 

algorithm doing the main calculation.

In this fashion it was discovered, there are 12111 ways of arranging twelve 

neighbours for a FCC cell, when each neighbour may be one of three sizes. This 

means that the total number of cells that had to be considered was 3x12111 = 36333, 

as the tagged particle had to be varied as well. At this rate each data point would have 

taken 10 hours to compute (reduced from 18 days). Since at least 250 data points were 

required, this constituted an impracticably long time.

8.1.2 Symmetry of a Hexagonal Close Packed Arrangement

HCP does not have as high a degree of symmetry as FCC. The arrangement of 

neighbours and the labelling of their positions used is shown in fig. 8.1.3. The 

positions were classified into two types, “end types” (0,1,4,6,10,11) and “middle 

types” (2,3,5,7,8,9).
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111

10

Figure 8.1.3 The labelling used for neighbour positions in the HCP arrangement and 

three of the mirror planes present.

The transformations that were used to generate the list of arrangements were

i) Three-fold rotation (axis perpendicular to plane containing middle types)

ii) Reflection (mirror is plane containing middle types)

iii) Reflection (mirror plane A in fig. 8.1.3)

iv) Reflection (mirror plane B in fig. 8.1.3)

v) Reflection (mirror plane C in fig. 8.1.3)

Combining these transformations gives a total of 24 unique transformations. Using the 

same algorithm that was used for the FCC arrangement, it was discovered the total 

number of ways of arranging three distinct diameters in a HCP cell is 46674.
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Figure 8.1.4 Flow diagram illustrating the algorithm used to search for congruent 

arrangements of neighbours.
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8 .2  T he Calculation of Free Volum e in a P olyd isperse S ystem

8.2.1 Techniques to Calculate Free Volume

The free volume of a polydisperse system of spheres was calculated by the trapezium 

rule method detailed in section 2.4.4.The free volume is split up into many sections 

with a rectangular grid in the XY plane (fig. 8.2.1). The height of each section was 

then calculated analytically, while integration in the X and Y planes was evaluated 

using the trapezium rule. This method provides more accurate results than the Monte 

Carlo method (section 4.3). The Monte Carlo method converged very slowly with the 

number of points used. Note that in the trapezium rule method, an analytical 

calculation is performed over one dimension and approximate integration is used over 

the remaining two. The code for the algorithm that performed the trapezium rule 

integration, TRAPINT, is given in appendix C.l.

Figure 8.2.1 When using the trapezium rule integration method, the free volume is 

effectively approximated by set of cuboids. The set of cuboids corresponding to the 

upper half of the free volume is shown.
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A brief attempt was also made at developing a method that split the free volume into 

slices. The idea being that the area of each slice was calculated analytically with a 

numerical integration along one dimension. This method, however, proved to be too 

complicated. The shape of each slice is determined by a number of overlapping circles 

and it is not trivial to calculate the area.

While the trapezium rule is notably faster than the Monte Carlo method it however 

was not sufficiently computationally efficient considering the number of free volume 

calculations necessary. Typically it takes, of order, one second to calculate each free 

volume (using 1502 sections). Since each polydisperse sample required the calculation 

of 36,333 free volumes, this was taking in excess of ten hours (twenty to calculate the 

pressure by numerical differentiation). Even then, numerical differentiation was not 

proving to be a very favourable method to calculate the pressure. Consequently it was 

decided to evaluate the pressure via an alternative more rapid route.

8.2.2 Calculation of the Pressure in a Polydisperse Face Centred Cubic 

Crystal

As discussed in section 7.2, the pressure is dependent on the ratio of the free area to 

the free volume, where the free area is the surface area of the free volume shape. The 

trapezium rule method did not appear to be suitable to accurately calculate the free 

area. For this reason it was decided to develop an analytical method to calculate the 

free area. Having started to develop this method it was decided to extend it to 

calculate the free volume analytically as well.

The analytical algorithm was first developed to calculate the free volume of a particle 

in an FCC arrangement.



As there are twelve exclusion spheres in each arrangement, there are twelve concave 

faces to the free volume. Each face was examined separately and the associated free 

volume and free area calculated. The other eleven exclusion spheres determine the 

shape and thus the contribution each face makes to the free volume/area. In fig. 8.2.2 

the face under consideration is the face belonging to the sphere shaded in black. The 

only sphere, which does not affect this face, is the sphere shaded in yellow.

It was initially envisaged that only the four spheres shown in blue in fig. 8.2.2 would 

affect the face of the free volume of the sphere in black (fig. 8.2.3). The view shown 

is the view looking from the centre of the arrangement towards the black sphere. The 

exclusion spheres overlap with each other to form circles. It is these circles whose 

arcs form the edges to each face. The characteristic shape of the face is shown in fig. 

8.2.3.

Figure 8.2.2 The arrangement of twelve exclusion spheres that determine the shape of 

the free volume. There are twelve faces corresponding to each of the exclusion 

spheres. The shape of each face is determined by the other eleven exclusion spheres.
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Figure 8.2.3 The hatched regions shows the shape of one face of the free volume. The 

shape is determined by the overlapping exclusions spheres from the four spheres 

outlined in blue.

Figure 8.2.4 The positions of the overlapping circles which define the characteristic 

shape of each face.

OQ

Non-Euclidean spherical geometry was used to analyse the area of each face . The 

principle axis was defined as the line going from the centre of each sphere towards the 

centre of the arrangement. Figure 8.2.4 shows the view looking from the centre of the 

arrangement towards the black sphere. It shows the positions of the various circles



that make up the edges of the face. The positions and distance between the centres of 

the circles are measured in terms of the angles subtended at the centre of the sphere of 

interest (in this case the black sphere). These angles remain unchanged throughout all 

calculations and were thus calculated and supplied as constants in the algorithm.

Figure 8.2.5 A section of the free volume. The area shaded yellow is part of the face 

of the free volume and lies on the face of the exclusion sphere, shown in blue. The red 

circle is an overlapping exclusion sphere that determines the shape of the face. The 

section of the free volume is the pyramid with base shaded yellow and vertex at O.

In order to calculate the free volume and area it is necessary to know the exact details 

of the arcs, which bound each face. Each arc is split by the line radiating out from the 

centre of the face to its own centre. Each half arc encompasses a section of the face of 

the free volume (fig. 8.2.4). Once all the dimensions shown in fig. 8.2.6 are known, as 

well as the distance, c between neighbours, the radius, Rnof  each exclusion sphere

and the angle /?,, then the contribution to the free volume and free area of that section

may be calculated.
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O,
Figure 8.2.6 Dimensions of concave face of section of free volume. The free area is 

hatched. Oc is the centre of the face and is the centre of the arc with radius r ,.

The first step of the algorithm is to form a complete loop out of the circles, which 

bound each face. To do this the algorithm starts at circle 2 or 8 if it is not covered by 2 

(fig. 8.2.4). It then calculates the overlap with all circles up to, but not including the 

circles diagonally opposite. The circle, which forms the next part of the loop, is the 

one, which overlaps the most with the original circle. The algorithm then moves onto 

this circle and proceeds until a complete loop has been formed (fig. 8.2.8).

Figure 8.2.7 The angle p  formed by the triangle whose points are the centres of two 

overlapping circles and the point at which they overlap. The free area is hatched.
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Figure 8.2.8 Algorithm used to form a complete loop out of the circles bounding the

face.

It is possible that two opposing circles may overlap. If this occurs then either the face 

is split into two or the face is completely covered over (fig. 8.2.9). The algorithm 

checks for both of these possible conditions and adjusts the calculation to compensate. 

After considering and allowing for any possible combinations of overlaps between 

circles, the algorithm finally calculates the free volume and area for each section. The 

free surface area sf  is given by

= 1 2 7T + Tl(.r,,i+r,,2')Cosri-0i
\  •

*R„2 (8.2.1)

where n labels the face and / the sections.
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Figure 8.2.9 If the overlapping circles are large enough then it is possible that either 

one face of the free volume is a) split into two halves (hatched) or b) disappears 

completely.

The free volume, v f is given by

/-- S

z
k = \ , l

V V

-T an -i

+

i,k  y

(Cos2r, - lk *  Cos

Cot iHik +Ca )

S* 2 Su

c . . Sin 2r.^ Sind, -S m y a |r ,— T i J - r L

-  ((ru + r ,,2) Cos r , - p ) y . R N

- 2  7rR,

x cR.

where

(8.2 .2 )

S u = V1+V .  (8-2-3)
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Tan //,,»= Sin
"Tan 
 ̂Tan dt

-C os Ca
/

\
(8.2.5)

The derivation of these expressions is detailed in appendix B. The code for the 

algorithm that performed this calculation is given in appendix C.2.

8.2.3 Analytical Technique to Calculate the Free Volume in a 

Polydisperse Hexagonal Close Packed Crystal

The analytical algorithm used to calculate the free volume for an HCP arrangement is 

different to that used for the FCC arrangement in a number of respects.

Figure 8.2.10 The arrangement of exclusion spheres in the HCP structure. The face 

under consideration is that of the black sphere, which is one of the spheres in the 

“end” group.

Firstly, the twelve neighbours are split into two distinct groups according to the 

symmetry of the HCP arrangement. The two groups were labelled “middle” and
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“end”. The distinction between the groups lies in the relative positions of the other 

neighbours. The positions of the other neighbours determines the shape of the face of 

the free volume and so the groups are treated differently.

As with FCC, each face is considered individually. The positions of the circles, which 

determine the nature of the face, are calculated from the positions of the spheres by 

the algorithm. The positions of the spheres which determine the shape of each face 

and their corresponding circles are shown in figs. 8.2.10 - 8.2.13.

The range of possible overlaps between the circles needs to be considered for each 

case and is more complex than for the FCC arrangement. Once all possible overlaps 

have been taking intro consideration, the algorithm again calculates the contribution 

towards the free volume and area made by each section.

Figure 8.2.11 The position of overlap circles for spheres from the “end” group, see 

fig. 8.2.10
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Figure 8.2.12 The arrangement of exclusion spheres in the HCP structure. The face 

under consideration is that of the black sphere, which is a sphere from the “middle” 

group.

Figure 8.2.13 The position of overlap circles for spheres from the “middle” group, see 

fig. 8.2.12
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C h a p te r  9  R e s u l t s  fo r  a P o ly d is p e r s e  S y s t e m

9.1 Primary R esu lts

9.1.1 The Accuracy of Analytical Calculations

o
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Figure 9.1.1 Graph showing the calculated free volume vs. the number of slices used 

for the trapezium rule. The dotted line represents the analytical result. This calculation 

was performed at a polydispersity of 0.04 and volume fraction of 0.6 using an 

arbitrary arrangement.

Before the analytical algorithm to calculate the free volume was developed, the 

trapezium rule method was used. This uses the same method to calculate the free 

volume as used for the binary systems. The accuracy of the calculation depends on the 

number of sections used. The calculated results converge when the free volume is
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split into a thousand slices across both the X and Y planes. The total number of 

sections being one million. Even after Gaussian quadrature is used and symmetry is 

taken into account, there are a large number of possible arrangements of neighbours in 

a polydisperse system. Therefore to use this number of sections is unfeasible. A 

calculation using a million sections would have taken years to complete using the 

available resources (initially a 486 66 Mhz PC).

It would have been necessary to compromise the accuracy of the calculations in order 

to reduce the time it took to complete them. A practical number of slices would have 

been just 150, giving a reduced total of 22500 sections. Each free volume took one 

second to compute using this number of slices. The length of time required to 

calculate the properties of the polydisperse system under any given conditions was ten 

hours.

The analytical algorithm was of immense use as it was able to very accurately 

calculate the free volume in a fraction of the time. It also provided a method to 

calculate the pressure of the system without relying on numerical differentiation.

The analytical algorithm was able to calculate the free volumes at a rate of 65 per 

second on the same computer. When a Pentium II (266Mhz) became available, this 

rate increased to about 400 per second. The combination of improved software and 

hardware made it more practical to perform these calculations using three diameter 

points. It also made it possible to calculate the thermodynamic properties using four 

diameter points.
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9.1.2 Number of Points Used in Gaussian Quadrature

The convergence of the results with the number of diameter points used is examined 

next.

As previously discussed, the continuous distribution of particle sizes associated with a 

polydisperse suspension of colloid particles was approximated by a finite number of 

discrete particles. The number of different particle sizes used to make this 

approximation is naturally important.
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Figure 9.1.2 Graph of pressure vs. Volume fraction at constant polydispersity of 0.04, 

showing difference between various calculations. Dashed and solid vertical lines mark 

maximum volume fractions for three and two point system respectively.

The pressure was calculated at 0.04 polydispersity over a few volume fractions using 

two, three and four different particle sizes. The results of this calculation are shown in 

fig. 9.1.2.

Note that at lower volume fractions, up to 0.57, the results are in good agreement,

differing by less than 0.02. There is a clear divergence at higher volume fractions.

This difference is due to the size of the particles used to approximate the continuous
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distribution. When using two points, the size of the larger particle is 4.2% larger than 

the mean particle diameter. In the three-point approximation, the particle diameters 

are spread further apart, the largest being 7.3% larger than the mean particle diameter. 

It has been assumed that neighbouring particles are fixed at their lattice sites. 

Accordingly there is a volume fraction at which the largest hard spheres would begin 

to overlap. This leads to asymptotic behaviour in the pressure. Further, the position of 

this asymptote depends on the number of particle diameters used in the 

approximation. As will be seen, this difference becomes increasingly important at 

higher polydispersities.
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Figure 9.1.3 Graph showing pressure against volume fraction at increasing levels of 

polydispersity.
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Recall that using Gaussian quadrature the first five moments of the polydisperse 

distribution are matched, when using three points and the first three when using two 

points.

The pressure, excess Helmholtz free energy and chemical potentials were calculated 

for a range of polydispersities and volume fractions. The polydispersity was varied 

from 0 to 0.097 in steps of 0.001. For all polydispersities, the initial volume fraction 

was 0.45. This was increased in steps of 0.05 until the density was reached where it 

was no longer possible to pack the hard spheres together. This limit decreases as the 

polydispersity increases. Due to the fact that it is assumed that neighbours are fixed on 

their lattice sites, this limit is, again, dependent on the size of the largest particles.

In fig. 9.1.3 the pressure is plotted against the volume fraction for a number of 

polydispersities. For comparison the pressure for a polydispersity of 0, that is 

monodispersity, is also shown. As expected, pressure increases more rapidly at higher 

polydispersities. Even at lower volume fractions, where particles have plenty of space, 

the pressure is higher as the system is more polydisperse.

In fig. 9.1.4 the excess moment chemical potentials are plotted for 0.03 polydispersity. 

The results obtained using a two and a three point Gaussian quadrature approximation 

are compared. There is good agreement between the results at lower volume fractions, 

which is encouraging as it supports the hypothesis that the properties of polydisperse 

systems depend only on the first few moments of the distribution. However, the 

results diverge at higher volume fractions. This may be attributed to the difference in 

the maximum volume fraction obtainable, using the different approximations.
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Figure 9.1.4 A comparison of the excess moment chemical potentials at 0.03 

polydispersity, calculated using a two and a three point approximation.

9.1.3 Geometric Constraints

The maximum found in the three-point approximation is not a true reflection of a real 

system. It is a result of the “inability” of particles to move, even slightly from their 

lattice sites. The limit upon the volume fraction is unrealistic.

Consider the two-dimensional analogy. In the three-point approximation, the largest 

particles account for at most 15% of the particles. So the probability of finding two 

adjacent large particles is low. However, when this does happen they may well 

overlap if the volume fraction is high enough. Only a very slight distortion of the 

crystal lattice would be required to allow the large particles to move apart, as may be 

seen by comparing figs. 9.1.5 and 9.1.6.
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Figure 9.1.5 Two-dimensional crystal of polydisperse (approximated with three 

differently sized points) hard disks. Note the two overlapping large disks at the 

bottom right.
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Figure 9.1.6 Two-dimensional crystal of polydisperse hard disks that has been 

“relaxed” so that no overlap is taking place.

By “relaxing” the rule that neighbours are fixed at their lattice sites, it should be 

possible to reach higher, more realistic volume fractions. This was done in the two 

dimensional case.

Particles of different sizes were randomly placed in a two-dimensional crystal array. 

A very simple algorithm was used to randomly move particles to ensure they were as
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evenly spaced as possible. In fig. 9.1.7 pressure is plotted against number density for a 

relaxed system. For comparison the “original” fixed system is shown. Note that the 

relaxed system does not reach as high a pressure as the fixed system.

This demonstrates the principal of relaxing a system. However relaxing a three 

dimensional system proved to be far more complicated. Moving one particle away 

from another could often lead to overlap with another. Calculating the free volume for 

particles in a distorted array was not trivial. The algorithm used previously, relied on 

the neighbours being fixed. It appeared that without carrying out a full Monte Carlo 

simulation, it would not be possible to relax the system in the same way the two- 

dimensional system was. This was not the original intention, so this was carried no 

further.

Figure 9.1.7 Pressure against number density at 0.04 polydispersity, comparing a 

fixed and a relaxed two-dimensional crystal.
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9.2 Phase Behaviour

9.2.1 Evaluation of Phase Behaviour

Having obtained the thermodynamic properties of a crystal of polydisperse hard 

spheres, it was then possible to evaluate the phase behaviour of a polydisperse system. 

Recall that the phase behaviour of monodisperse hard spheres is very simple (section

1.1). The phase behaviour of a polydisperse system is potentially far more 

complicated, but is simplified by the use of the projected free energy surface (section

7.2).

The properties of the polydisperse solid, as calculated by the application of the cell 

model, were exported to a file in binary format. The algorithm that calculated the 

phase behaviour imported the data in this file. Recall that it is the cloud-shadow curve 

that is been determined. It was assumed the shape of the distribution and hence the 

polydispersity of the emerging solid phase matched that of the fluid. Equilibrium 

between the fluid and solid was then calculated at any given polydispersity. The 

properties of the solid phase at each polydispersity were fitted to a cubic spline to 

enable interpolation of the data.

Recall that the excess portions of the moment chemical potentials are the coefficients 

of the polynomial describing the relationship between the chemical potential of a 

particle and its diameter. Given that just two moment chemical potentials are required, 

then it is a linear relationship that is being used. It is trivial to find the coefficients and 

hence the moment chemical potentials when the two point approximation is used. 

However when the three-point approximation is used, there are various options to 

consider. It would be possible to use a quadratic to describe the relationship. This may
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seem appealing as a quadratic could be fitted exactly to the data. However, as only 

two moment chemical potentials are being used it may be more sensible to fit the data 

directly to a line. There still remain two ways to do this for three points. A 

straightforward line of best fit is a simple option. The alternative is a weighted line of 

best fit, where the mole fractions of the species present are taken into account. As the 

particle with the medium diameter has the highest mole fraction, this will have the 

effect of lowering the position of the line, as is seen from fig. 9.2.1. The consequences 

of both of these approaches will be considered.

Chemical potential vs. Diameter

H

.2•*-c

21
20.5 

20
19.5 
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16.5 

16
0.94 0.99 1.04

X Excess Chemical 
Potentials

 Line of best fit

Weighted line of 
best fit

Diameter

Figure 9.2.1 The use of two moment chemical potentials is equivalent to fitting the 

excess chemical potentials to a line of best fit. The weighted line of best fit takes the 

mole fractions into account.

The algorithm that established the conditions of equilibrium did so by first finding the 

number densities of the fluid and solid phase where the moment chemical potentials
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were matched. Secondly the mean diameter of the particles in the emerging solid 

phase was determined by equating the pressure to that of the fluid phase.

9.2.2 Phase Diagrams

As the polydispersity gets higher the densities of the fluid and solid phases in 

equilibrium with each other increase, this is to be expected as polydispersity decreases 

the stability of the ordered crystal (fig. 9.2.3). Of much interest, is the terminal 

polydispersity, the polydispersity above which the crystal is found to be 

thermodynamically unstable at all densities.
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£  0.03
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0.9 0.95 1.05 1.21 1.1 1.15

* Fluid 
+ Solid

Number density

Figure 9.2.3 Phase diagram, tielines are horizontal. Using a three point approximation 

for the polydisperse solid.

Using the data obtained using the three point Gaussian quadrature approximation and 

a line of best fit to describe the diameter dependence of the chemical potential, the
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highest polydispersity at which co-existence of a solid and fluid phase could be 

established was just 0.038, considerably lower than the values predicted by other

studies73'76-78

However as this “terminal” polydispersity is approached, the volume fraction of the 

solid phase (0.595) found to be in equilibrium with the fluid phase nears the 

maximum possible (0.608 at 0.038 polydispersity). As discussed previously, this 

maximum is dependent on the properties of the model used. These results may 

therefore be distorted. Hence we consider the results obtained using a two-point 

approximation.
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Figure 9.2.4 Phase diagram, tielines are horizontal. Using a two point approximation 

for the polydisperse solid.
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The two-point approximation has the advantage that the maximum packing density is 

much higher. Interestingly, there is no significant difference the two and three point 

results at polydispersities below 0.03 and only a minor difference above 0.03.

With the two-point approximation the “terminal” polydispersity is found to be at 

0.0388, only slightly higher than the value obtained using the three-point 

approximation and a line of best fit. Above this polydispersity, no equilibrium may be 

established. Note that the density of the solid phase is significantly lower than the 

maximum packing value for this model.
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Figure 9.2.5 Number density difference between the solid and fluid phase, two point 

approximation. Converges to zero at 0.0388 polydispersity.

As the terminal polydispersity is approached, the number densities of the fluid and 

solid phase in equilibrium rapidly come close to equality, as shown in fig. 9.2.5 This 

is not analogous to a critical point as the transition from a disordered fluid to an

90ordered solid is generally first order. It is a point of equal concentration . At
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polydispersities higher than the terminal polydispersity the model would predict only 

the existence of the fluid or an amorphous glass at higher densities.

Recall that the mean diameter of particles in the solid phase is a variable. In fig. 9.2.6 

the ratio of solid phase mean diameter to fluid phase mean diameter is plotted against 

polydispersity. Note that as polydispersity increases, the mean diameter of particles in 

the emerging solid phase is marginally larger.
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Figure 9.2.6 Mean diameter ratio, solid to fluid phase, two point approximation.

The phase behaviour shown in fig. 9.2.4 is shown in the polydispersity-volume 

fraction plane in fig. 9.2.7.

Now we consider the results obtained by using a weighted line of best fit to describe 

the diameter dependence of the chemical potentials, using the data from the three- 

point approximation.
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Figure 9.2.7 Phase diagram, two point approximation used for the polydisperse solid.

The results obtained are significantly different. The deviation of the number densities 

of the co-existing phases to higher values is less prominent. Also the value obtained 

for the terminal polydispersity is higher. As a first estimate for this value, it was found 

that it was not possible to establish equilibrium at polydispersities higher than 0.0498.

However, once more the maximum packing obtainable with this particular model has 

an influence on these results. This is best seen in fig. 9.2.9, where the phase diagram 

is plotted in the polydispersity -  volume fraction plane. At 0.05 polydispersity, the 

maximum packing fraction for the three point approximation model is just 0.572. The 

volume fraction of the phase in equilibrium is found to be 0.563.
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Figure 9.2.8 Phase diagram, three point approximation used for the polydisperse solid. 

A weighted best fit was used to calculate the moment chemical potentials.
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Figure 9.2.9 Phase diagram, three point approximation used for the polydisperse solid.

A weighted best fit was used to calculate the moment chemical potentials.
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In order to get a better estimate for the terminal polydispersity, in fig. 9.2.10 the 

number density difference between the two phases in equilibrium is plotted. When 

this graph is extrapolated, the number densities are in equality at 0.055. This value is a 

more realistic estimate of the terminal polydispersity.

In fig. 9.2.11 the diameter ratio of the solid phase to the fluid phase. Once more, it 

may be noted that the emerging solid phase has a marginally higher mean diameter at 

higher polydispersities.
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Figure 9.2.10 Number density difference between the solid and the fluid phase, three 

point approximation used for the polydisperse solid. A weighted best fit was used to 

calculate the moment chemical potentials. The difference converges to zero at a 

polydispersity of 0.055
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Figure 9.2.12 Mean diameter ratio, solid to fluid phase, three point approximation 

9.2.3 Summary and Conclusion

The properties of a polydisperse FCC crystal have been calculated using the Lennard- 

Jones cell model. The continuous distribution of particle diameters was approximated 

by a finite number of discrete points. In order to perform the calculation efficiently, 

symmetry was taken into account and a fast analytical algorithm was used to calculate 

the pressure and Helmholtz free energy. The advantage of the cell model is its 

simplicity. However the application to a polydisperse system is non-trivial. In this 

application of the cell model, particles are fixed at their lattice sites in a systematic 

manner. While it may be possible to adapt the cell model to allow substitutional 

ordering and some relaxation of the crystal, to do so would make a simple model 

excessively complicated.

Using the cell model a terminal polydispersity of about 0.055 is predicted, however 

the different results obtained show their sensitivity to variations in method. Any
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advantage the three-point approximation may have had over the two-point 

approximation is lost in the low maximum packing fraction, which appears to distort 

the results. The value obtained for the terminal polydispersity is therefore amongst the 

lower values predicted in literature. It is in agreement with the value predicted by 

McRae and Haymet74 using density functional calculations and that predicted by 

Bolhuis and Kofke75 using Monte Carlo calculations. However it is much lower than 

the value of 0.083 predicted by Bartlett76. It is also significantly different to the result 

of Phan and Russel78, who performed a simulation of polydisperse hard spheres and 

predicted the terminal polydispersity to have an upper limit of 0.12.

Polydisperse phase behaviour is potentially very complex. The use of the projected 

free energy surface is an attempt to simplify it. The nature in which any 

approximation is made is bound to affect the outcome of the results. The relationship 

between the chemical potential of a particle and its diameter is not truly linear as may 

be seen in fig. 9.2.12. A number of different methods could have been used to derive a 

linear relationship, of which two have been considered. While it may be argued that 

the weighted line of best fit is the best method, it is still an approximation.

While these difficulties may have prevented good quantitative results being obtained. 

The results still give a good qualitative indication of the polydisperse phase behaviour 

of hard spheres.
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Figure 9.2.12 Excess chemical potential against diameter at 0.03 polydispersity and 

volume fraction 0.55. These results were obtained using an eight point approximation, 

where the central six points are shown. A randomly generated 20x20x20 crystal of 

polydisperse hard spheres was used to calculate this data. Not enough data was 

generated to accurately calculate the chemical potentials of the two outlying points.
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9 .3  T he Effect of Polydispersity on the Relative Stability of FCC and HCP

In section 1.3 these two structures and their relative stability were discussed. As was 

pointed out, the structures formed by monodisperse hard spheres are equally as stable 

according to the free volume model, but the FCC structure is marginally more stable 

according to molecular dynamics.

9.3.1 Basis for a Distinction

In their density functional theory studies of the freezing of polydisperse hard spheres, 

McRae and Haymet74 observed that close to the terminal polydispersity there was 

“persistent numerical evidence” that the HCP structure was more stable than the FCC 

structure. They felt unable to make any conclusive predictions on the grounds of their 

calculations alone.

The application of free volume theory to this interesting problem may be able to 

provide a basis for the HCP structure being more stable.

FCCHCP

Figure 9.3.1 the arrangements of neighbours in the HCP and FCC structures. The top 

layer is non-shaded, the middle layer is hatched and the bottom layer is grey.
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In fig. 9.3.1 the arrangements of neighbours for the HCP and FCC structures are 

shown. Recall it is these neighbours that determine the free volume. Note the only 

difference is in the position of the spheres in the top layer (non shaded).

Consider the hypothetical arrangement of exclusion spheres in fig. 9.3.2. In A and B 

the sum of the areas of the exclusion spheres in the box is the same. However the 

remaining free area is greater in B because the exclusion spheres are overlapping to a 

greater extent.

In D there is more overlap between exclusion spheres occurring than in C. However, 

the free area is D is not greater than that in C, because this additional overlap occurred 

in a region where overlap was already occurring.

A B

C D

Figure 9.3.2 A hypothetical arrangement of exclusion spheres.
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The potential for difference between the polydisperse FCC and HCP structures lies in 

the overlap of the exclusion spheres from the top and bottom layers. When the spheres 

are monodisperse all overlap between these exclusion spheres occurs in regions where 

overlap with the middle layer is already occurring (case D). When the spheres and 

hence the exclusion spheres are polydisperse then it is possible that the exclusion 

spheres from the top and bottom layers may overlap in a region where there is no 

overlap with the middle layer (case B). This requires there to be larger spheres in the 

top and bottom layers and smaller spheres in the middle layer. The exclusion spheres 

in the top and bottom layers are closer together in the HCP structure than in the FCC 

structure. This means that this is more likely to happen in the HCP structure. If this 

does occur, then this would lead to an additional stability of the polydisperse HCP 

structure over the corresponding HCP structure.
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Figure9.3.3 The levels of the overlap effect.

This effect, which from now on will be referred to as the overlap effect, is dependent

on the size of the exclusion spheres. As a two or three point Gaussian quadrature
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approximation is being used, then it is possible to calculate at what densities and 

polydispersities it is likely to be noticed. In fig. 9.3.3 the progressive levels of the 

overlap effect are shown for a three-point Gaussian quadrature approximation. At 

level 0 there will be no effect. At level 1 a small effect will start to be seen due to 

large spheres in the top and bottom layers and small spheres in the middle layer. At 

level 2 an additional effect caused by large top and bottom spheres and medium 

spheres in the middle layer will begin to emerge. At level 3 medium sized spheres in 

the top and bottom layers and small spheres in the middle layer will start to contribute 

to the overlap effect. Note for a true polydisperse system, this influence of the overlap 

effect would be gradual, not stepped.

9.3.2 Results

In order to make this comparison it was necessary to first analytically calculate the 

free volume for polydisperse arrangements in the HCP structure. The overlap effect is 

very small and would have been lost in the uncertainties associated with any 

approximate technique used.

In fig. 9.3.4 a plot is made of the difference in stability of the FCC and HCP structures 

at a volume fraction of 0.545 as the polydispersity increases. The volume fraction of 

0.545 was chosen, as this is the volume fraction at which hard spheres crystallise 

when monodisperse. The overlap effect is significant in comparison to the results 

calculated by Woodcock41 and Bolhuis42. At 0.032 polydispersity the HCP structure is 

about 0.0046 RT more stable than the FCC structure. This is in contrast to the values 

of 0.005 RT and 0.0009 RT in the opposite direction found by Woodcock and Bolhuis 

respectively.
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Figure 9.3.4 Free energy difference of the polydisperse FCC structure against the 

polydisperse HCP structure. Note the values plotted for Woodcock and Bolhuis are 

for the monodisperse structures.

Note the stepped nature of the energy difference plot. According to calculations based 

upon the size of the exclusion spheres, the overlap effect should first be noticed at 

0.015 polydispersity, then increase first at 0.023 polydispersity and then again at 

0.042. The steps are consistent with these predictions. Difficulties with the analytical 

calculations for the HCP structure prevented higher polydispersities being examined.

From these results, it may be concluded that the overlap effect is significant. It is 

difficult to put a qualitative value on it due to the nature of the three-point 

approximation being used in these calculations. However the effect is of the same 

order of magnitude as the difference found by Woodcock and Bolhuis. More over it is 

in the opposite direction. Accordingly the HCP structure should be more stable as 

polydispersity increases.
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Appendix A Gaussian Quadrature Method

A.1 Gaussian Quadrature for a Triangular Distribution

The Triangular distribution is defined by

/(Z>) = y p - ( 1 - M |)  \ - W  < D  < \  + W (A1)

= 0 Otherwise

where 2 W is the width of the distribution. An expression for the moments, Cj may be 

obtained.

1+w

Cj = \ f (D)D>dD
1 -w

■* 1+fT
-D^D JdD sub y - D - 1

W  i-w  

1 +w 

w -W
* o -• w  ( A .2 )

= ^ \ ( W  + y)(y + X)Jdy + - ± - \ ( W - y ) ( y  + \ y d y
** -W ” 0

2
w2

n+1 _.n+2 x ^
t  y  n

„=o^c„U + l j  n + 2 PnJ

j WnD
= 2 X

n=0,n even (P  1 ) ( ^

p n J is nj th coefficient from Pascal’s triangle

Pi,i 1

Pl,2 P i ,2 = 1 1  (A.3)

Pl,3 P i ,3 ^ 3,3 1 2  1

Therefore
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c0= 1 
c, =1

Cj = 1 + -1F 2 (A.4) 
2 6

c, =i+-r2 
3 2

The following recurrence relationship was used to evaluate the polynomial whose 

roots are required.

P , = 0 (A.5)

P0 = 1 (A.6)

PJ+1 = J=0,l,2.... (A. 7)

a,  = V - /  (A.8)

//> |P \
6, = /  J , / / . y ^ l  (A.9)

b0 = 0 (A. 10)

From these relationships it follows that

{P0\P0) = \ (A. 11)

and ( ^ 0|i>0) = l ,  (A. 12)

therefore Pl = x - 1. (A. 13)

The next polynomial in the series was evaluated as follows.
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(Pl \Pi) = \ f ( x ) P iP,dx
, (A. 14)

= ^f{x)Px{ x -  l)ft

But a property of orthogonal polynomials is

J f ^ P j X 1 = 0 when I  < J  (A. 15)

(Pi | Pi ) = \ f { x ) P lxdx

= J /O X * 2 -x)dx  

= c2 -Ci (A. 16)

= l + - W 2 - l

= - W 2 
6

<ai7>
(xPj I Pi) = J f(x)Px (x2 -  x)dx

-  f f(x)[x3 - 2 x 2 + x\ix
(A  18)

= c3 -  2 c2 + cx

= - w 2
6

f c P i h )  = l ( A J 9 )

f t  f t )

Which means that
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P2 = ( x - a l )Pl - b lP0 
\
6

=  ( * - 1  )Pl- \w 2P,
(A.20)

x -
&

1 + A—W
A

1 - ( | r

So the roots of P2 are given by.

xl 2 = l  ± A - W  (A.21)

It is these roots that are used as points in the Gaussian Quadrature method. The 

corresponding weights wx and w2 may be found by applying the relationship-

= c j9 y =0,1...2 » - l  (A.22)
i=1

This gives the weights for the two-point formula as

W i = W 2 = J -  (A-23)

It was found that

(xPJ \PJ) = (PJ \PJ),  (A.24)

so that Qj = 1 all J. (A.25)

b2 = — W2, (A.26) 
2 30
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P3 = x 3 -  3x2 + r 2 2 }  ( 23 - —W

therefore
= M * -

5

i S w
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\

W2 - 1 
5 y

\ f
" JJ 1

x - 1+ J - w
\ V3 y

(A.27)

The roots of are

c, x2 =l,  x3 = l  + ̂ ( V ,  (A.28)

5 14 r* oo\
W,=W3 = 24 2 = 24

are the corresponding weights.

The polynomials, their roots and weights were evaluated applying the above method 

for the polynomials Pl to P4.
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A.2 Gaussian Quadrature for a Schultz Distribution

For a given polydispersity, a , the Schultz distribution is defined by

Z = \ - 1 (A.30)
<7

f  {R) = —((z + l)i?)z R >  0 (A.31)
z!

The general procedure for finding the appropriate points and weights for a Gaussian 

quadrature summation is the same as for the triangular distribution.

The moments, Cj are given by

c, = -------
z + 1

„ _(z + 3)(z + 2)
3 ~ ~ 1 7 T W ~  (A32)

_ (z + 4)(z + 3)(z + 2)
C 4 "  (TTTy5

_ (z + 5)(z + 4)(z + 3)(z + 2)
C s "  ( 7 ^ 7

As with the triangular distribution,

Px= x - \ .  (A.33)

So that,

213



(̂ 1 |^1) =  C2 ~ C1 

_ z + 2 
z + 1 

1
z + 1

1 (A. 34)

( j c P, | / J )  =  c 3 -  2 c 2 + cx

(z + 3)(z + 2) A z  + 2)
(z + 1)2 

z + 3

- 2 -

(z + 1)
+ 1

(z+1 y

The calculation then proceeds as follows

Which means that

(A.36)
1

Z  + 1

(A.37)
z + 3
z + 1

P2 = ( x - a ))Pl - b iPa

x -
z + 3
z + 1

1

-  x2 -  2 z + 2 
z + 1

X  +  ■

z + 1 
z + 2 
z + 1

{P2 \P2) = c 4 - 2
z + 2
z + 1

c3 +
z + 2 
z + 1

= 2-
z + 2

(TTIy

(A. 3 5)

(A. 3 8)

(A. 39)
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(xP2| /» , ) - 2 ^ ? X f  + S  (A. 40)

z + 5 .. . . .a2 = -----  (A.41)
Z  + 1

b2 = 2  Z + 2, (A.42)
(z + 1)

p3 = x 1- 3 (£±21xi + 3 ( z + 3Xz + :2> _ (z +?Xz+:2) 
3 (z + 1) (z + 1)2 (z + 1)2

A pattern emerges so that the other polynomials may be found using the general 

expressions,

< i4 4 >

” (z + 1)2

Once the roots of the required polynomial have been found, the weights may be 

calculated using equation A.22.
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Appendix B Analytical Expression for the Free Volume

B.1 Breakdown of a Section of the Free Volume

0N

0 T
Figure B. 1 The triangular based bypryramid (irregular tetrahedron) from which each 

section of the free volume is calculated.

When deriving an analytical expression for the free volume, the starting point is the 

triangular bypyramid OtOcOxAOn . Strictly speaking this is an irregular tetrahedron

as the vertex Oc lies along the edge 0 T0 N. But for convenience it is treated as a 

bypyramid. The vertex 0 T is the lattice site of the tagged particle, whose free volume 

is under consideration. It is therefore also the centre of the free volume. The free 

volume is first split into twelve faces corresponding to the twelve neighbours. The 

lattice site of the neighbour being considered is labelled 0 N. Each face is bounded by

edges, which are arcs. The centre of the arc having radius, r , being labelled Ox. The 

arc itself is labelled A B . Each face of the free volume is concave, being formed out a 

portion of the surface of the exclusion sphere whose centre lies at On , having radius,

Rn (referred to as sphere 0 N hereafter). For this reason it is necessary to use non- 

Euclidean spherical geometry when analysing the areas and deriving expressions for

the volume. The centre of each face, Oc , is defined by the intersect of the line OtOn
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and the exclusion sphere centred at 0 N. Thus all the points shown in fig. B.l lie on 

the surface of the sphere 0 N. Accordingly, all “lengths” are measured in terms of the 

angles subtended at the centre of sphere 0 N. Any straight lines in these diagrams are 

in fact arcs of shortest possible length on the surface of the sphere.

The length of the line 0 T0 N is given by c and is the separation between 

neighbouring spheres.

Figure B.2 The triangular base of the bypyramid. Triangle lies on surface of the 

sphere On .

The portion of the free area is OcA B . This area may be calculated using

Area OcAB = Area Spherical Triangle OcAOl (B. 1)

- Area Sector OxAB .

The area of the spherical triangle OcAOl is a standard result, given by

(C + y  + OcA 0 1 -  7t)RN2 (B.2)
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The expression for the area of the sector, which lies on the surface of the sphere, was 

derived by integration. In fig. B.3, the area of the infinitesimal increment is given by

dAs = yRN2 Sin xdx. (B.3)

The area of the whole sector, As is obtained using

r

As = ^yRN2 Sin.x*£t
o

= A 2[-C os*]o (B.4)

= ^ 2(l-C o sr)

r

x + dx

Figure B.3 Sector on surface of sphere 0 N.

The final expression for the portion of the free area is thus given by

Area OcAB = (C + y  + 0 CA 0 1 -  tz)Rn2 -  jRn2(1 -  Cos r)

= (C + 0 CA 0 1 - K  + y  Cos r)R
(B.5)

■N

The section of the free volume may be thought of as a pyramid with concave 

basqOcAB and vertex 0 T. This volume may be calculated using

Volume Oc ABOt = Volume bypyramid 0 N AOxOcOT
-  Volume bypyramid OnOxAB (B.6)
- Volume spherical sector 0 N0 CAB
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The spherical sector OnOcAB has a base OcAB that is the portion of the free area 

previously calculated. The volume is given by

Volume spherical sector ON0 C AB -  (C + Oc AOl -  n  + y  Cos r)RN3. (B.7)

The volume of a pyramid is normally given by the formula,

Volume = x area of base x perpendicular height. (B. 8)

But the base is assumed to be flat. This is not the case with the two bypyramids being 

considered, where the bases are curved. The volumes of both by-pyramids are 

therefore obtained by integration.

B.2 Volume of By-pyramid Whose Base is a Triangle on the Surface of a 

Sphere

Figure B.4 Triangle on surface of sphere 0 N, where one point is at Oc .

The point F  lies along the line A 0 1 such that FOcA = e . The length of the line OcF 

that cuts through the by-pyramid is given by g . The cross sectional view of the 

pyramid cut by the plane OnOcOt F  may be seen in fig. B.5.
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F

Figure B.5 Cross sectional view of bypyramid, where base is triangle lying on surface 

of sphere.

The area of triangle OnFOt is given by

Area OnFOt  = RNc Sin g  . (B.9)

The volume of the slice formed as e is increased by 8s  is given by

SVT = V 6 c R /  Sin2 g S e . (B. 10)

The total volume of the by-pyramid may therefore be obtained by integrating over e . 

But first the function which maps e  onto g  must be found.

Using standard trigonometry it is possible to derive the relationship,

Cotg = ArSin(£ + //) ,(B .ll)

where K  and // are constants whose values may be found by a consideration of the 

values of g  when s  = 0 and s - C .  Leading to
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r  SinCTan/d =
TanL -CosC

K  =

Tand (B.12)
1

TanL x Sinn 

A standard results in trigonometry is

■.•,2 „ _  Tan2 g  
1 + Tan2 g

Sin2 g = : f - . (B.13)

This may be manipulated to give

K z Sin"(s + /i) + lSin2g =  ~ 2c,  2 / —  ~  C6 1 4 )

We can now write

vt = ) ) 4 cRn2 Sin2 gSe

, /  2 (B. 15)
c  V C c R , 1

= f ,  /6a --------&i  AT2Sin2(e + //) + l

Let >> = Cot(f + //) , so that

Sin2(* + /i)=  1
1 + v2

(B16>

i + y

By substitution it is now possible to obtain the expression for the volume of the 

bypyramid with its base on the surface of the sphere On .
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Cot(C+/0

U  + .V )

Cot(C+ft)

/ J c o t (C+p)

(B.17)

= R»c2 Tan- i f  Cot
6 j l  + K 26>/l + K 2 I [ tIu I c2 ,

T"" -  f  Cot(C + m) \
ViTF" J

B.3 Volume of By-pyramid Whose Base is a Sector on the Surface of a 

Sphere

Figure B.6 Sector AOxB lying on the surface of sphere 0 N, the base of a by-pyramid.

Consider some sector AOxB lying on the surface of the sphere 0 N. Note that none of 

the three points lie along the line 0 N0 T. A point P is defined such that OxP  = x ,

OcP  = <j> and BOxP -  s  (fig. B.6). The cross sectional view is shown in fig. B.7.

(j> is related to x by the spherical trigonometric relationship,

Cos^ = Cos*Cos<i + Sin*Sin<iCos£. (B.18)
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Figure B.7 Cross sectional view of bypyramid, where base is sector lying on surface 

of sphere.

The area on the surface of the sphere formed by an infinitesimally small increase of s  

and x is given by

8AS =Sin;cR n 28 x S s . (B.19)

The volume of the by-pyramid with base at P  having area SAs and vertices at 0 N 

and 0 T is then given by

5VS = y^cC as <t>8As (B.20)

Substituting in equations B. 18 and B. 19 gives

SVs = c(Cosx Cos d  + Sin x Sin d  Cos s )Sin xRN28s8x (B.21)

The volume of the by-pyramid may then be obtained by integrating over e  and x . So 

that
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~ l f  }3  c(^os x ̂ os ̂  + Sin jc Sin d  Cos s)  Sin xRN28x8s 
0 0

r r
-  y 2 cRn2 11 (Sin x Cos x Cos d  + Sin2 x Sin d  Cos s)8x8s

0 0 
Y r

~ y $ cR» i l l
o o v

(  Sin2jc Cosi/ + 1 -  Cos 2x „.Sin d  Cos s Sx8s

(B.22)

Carrying out the integration over x leads to

V s - % c R / \
-C os 2.x j  , 2x-S in 2x  Jr, _  _ 

Cos a H----------------bin a Cos £
4

8s

= ) i cR/ \ y  (C° S42,~ 1)Cosaf+ 4
2r -  Sin 2r . \

-Sind Cos £ 8s
y

(B.23)

Finally integrating over s  gives

ys = / 3 crn-

= XA < -

- (C o s 2 r - l)  , 2r-S in 2r  — ------------ -Cos d x s  + -------------- Sin d  Sin s

- (C o s 2 r - l)  2 r -S in 2 r c . , c .—1 ----------- -Cos d  x y  + --------------- SinJSin^

(B.24)

Combining the various parts according to equation B.6 gives the final expression for 

one portion of the free volume,

y  _  R n C
fP .  L „ 2&Jl + K

Tan-i Cot fJL

■Jl + K
-(C o s2 r -l)

-T an'1/ Cot(C + / / )N
■Jl + K'

o  j 2r-S in 2r_ .Cos d x y  + --------------Sin d  Sin y (B.25)

- ( C + OcA01 -?r + yCosr)R■N
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SinCTan 11 = — —-----------
TanL-CosC

K =

Tand (B.26)
1

TanL x Sin/j,

This expression for just one portion of the free volume is the basis of the equation for 

the whole of the free volume given in section 8.2.
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Appendix C Algorithm Code

All code presented here is written in FORT AN 90.

C.1 Code for TRAPINT Algorithm

SUBROUTINE TRAPINT (BOUND,MINSQ,FREE V,SLCS)
DOUBLE PRECISION BOUND
DOUBLE PRECISION X,Y,Z,FREEV,FREEZ
DOUBLE PRECISION W ID,XYAREA,M INSQ( 12)
INTEGER SLCS

FREEZ=0D0 
W ID=2*BOUND/SLCS  
XYAREA=WID* *2 
X=-BOUND
DO WHILE (X.LT.BOUND)

Y=-BO UND
DO WHILE (Y.LT.BOUND)

CALL ZVAL(X,Y,BOUND,Z,M INSQ)
FREEZ=FREEZ+ZY=Y+WID
ENDDOX=X+WTD

ENDDO
FREEV=FREEZ*XYAREA
RETURN
END

SUBROUTINE ZVAL(X,Y,ZBOUND,Z,M INSQ)
DOUBLE PRECISION ZBOUND,X,Y,Z,SR,SQ,HIGH,LOW ,DELTAM  
INTEGER NUM
DOUBLE PRECISION POSN(12,3),MINSQ(12),A,PI,ASQ,HIGHQ,LOW Q  
LOGICAL MIDD
COMMON/XT AL/POSN,A,PI,ASQ

MIDD=.FALSE.
DELTAM=0D0 
HIGH=ZB OUND  
LO W=-ZB OUND  
NUM =12  
D O N = l,4
SQ =M INSQ (N+4)-((X-PO SN(N+4,l))**2+(Y-PO SN(N+4,2))**2)

IF (SQ.GE.0D0) THEN  
MIDD=.TRUE.
SR=SQRT(SQ)
IF (SR.GT DELTAM) DELTAM=SR

ENDIF
SQ =M INSQ (N)-((X-PO SN(N,l))**2+(Y-PO SN(N,2))**2)
IF (SQ.GE.0D0) THEN  

SR=SQRT(SQ)
HIGHQ=POSN(N,3)-SR  
IF (HIGHQ.LT.HIGH) HIGH=HIGHQ

ENDIF
SQ =M INSQ (N+8)-((X-PO SN(N+8,l))**2+(Y-PO SN(N+8,2))**2) 
IF (SQ.GE.0D0) THEN  

SR=SQRT(SQ)
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LOW Q=POSN(N+8,3)+SR  
IF (LOWQ.GT.LOW) LOW=LOWQ

ENDIF
ENDDO
IF (.NOT.M IDD) THEN

IF (HIGH.GT.LOW) THEN  
Z=HIGH-LOW  
RETURN

ELSE
Z=0D0

RETURN
ENDIF
ELSE IF (HIGH.LT.(DELTAM)) THEN 

HIGH=-DELTAM  
ELSEIF (LOW.GT.(-DELTAM)) THEN 

LOW=DELTAM
ELSE

Z=HIGH-LOW-(2DO*DELTAM)
RETURN

ENDIF
IF (HIGH. GT.LOW) THEN  

Z=HIGH-LOW  
RETURN

ELSE
Z=0D0

RETURN
ENDIF

ENDIF
END

C.2 Code for FREEAREA Algorithm

FREEAREA(C,EXC,AREA, VOL,ERR)
DOUBLE PRECISION RA,GAP(10),THTPOSS,GAPOSS,RADPOSS 
DOUBLE PRECISION AREA,NAREA,SA,C,CRNR(2:1 l),SINPOSSSQ  
DOUBLE PRECISION PI,EXC(0:11),RAD(2:11),THT(2,2:15),ALF,BETA(2:15)
DOUBLE PRECISION TANMU,K,GAM,CEN,MU,SQ1PK,SINPID3
DOUBLE PRECISION INTCOS,VOL,NVOL,SQ2,SMCOS,M XTHT,MXSA,MXGAP ,MXRAD  
DOUBLE PRECISION
COSGAM,COSRA,SINRA,COSLNG,COSCEN,TANCEN,TANLNG,CENGAP
DOUBLE PRECISION MXTHTPLUS,ANGLE( 1 l),SINPOSS,TANCPMU,KAP,BACKTHT
LOGICAL INC(2:15),CLOSED,INCSM (8:11), AFT,OPPOVR(2),ZERO,OVRLAP,ERR,ERRGPN,

TWICEROUND
INTEGER(1) ROTOP(l 1,12),N,GPN,PN,POSSOVR(4,2:11),PSTHP(4,2:11)
INTEGER(1) CNTPOSS,NXT,INIT,PSTHPRV(4,2:11),PSGAP(4,2:11),CIREF,CENGAPTYP(2:11) 
INTEGER(1) HFCNRTYP(2,2:11),M XNXT,AFTSH,CCNTDATA  
RO TO P/0,1,3,7,4,2,8,5,6,11,9,&
6 1 .2 .0 .4 .5 .3 .9 .6 .7 .8 .10 .6
62 .3 .1 .5 .6 .0 .1 0 .7 .4 .9 .1 1 .6
6 3 .0 .2 .6 .7 .1 .11 .4 .5 .10 .8 .6
6 4 .9 .1.0.8.5.7.10.2.3.11 .6
6 7 .3 .11.8.0.6.4.2.10.9.1 ,&
6 5 .9 .1.2.10.4.6.8.0.3.11 .6
6 6 .3 .11 .10 .2 .7 .5 .0 .8 .9 .1 .6
6 8 .9 .11.7.4.10.0.5.6.3.1 .6
6 9 .10.8.4.5.11.1.6.7.0.2.6
& 10,11,9,5,6,8,2,7,4,1,3,&
& 11,8,10,6,7,9,3,4,5,2,0/&
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& POSSOVR/6,3,9,8,&
6 4 .1 0 .7 .9 .6
6 7 .5 .1 1 .1 0 .6
6 2 .8 .6 .1 1 .6
6 3 .9 .4 .1 0 .6
6 5 .1 1 .2 .8 .6
6 2 .6 .3 .9 .6
6 3 .4 .1 0 .7 .6
6 4 .7 .5 .1 1 .6  
& 5,2,8,6/&
& PSTHP/1,1,2,3,&
& 1,4,4,5,&
& 1,1,2,3,&
& 1,4,4,5,&
& 1,6,6,7,&
& 1.6,6 ,7,&
& 1,8,9,10,&
& 1,8,9,10,&
& 1,8,9,10,&
& l,8 ,9 ,10/&
& PSGAP/1,2,3,4,&

& 5,6,2,4,&
& 1,2,3,4,&
& 5,6,2,4,&
& 1,7,2,8,&
& 1,7,2,8,&
6 4 .7 .3 .9 .6  
& 4,6,10,8,&
6 4 .7 .3 .9 .6  
& 4,6 ,10 ,8 /&
&PSTHPRV/1,1,9,1 ,&
& 1,8,6,1,&
& 1,1,9,1,&
& 1,8,6,1,&
& 1,8,4,10,&
& 1,8,4,10,&
& 5,6,2,10,&
& 3,4,9,7,&
& 5,6,2,10,&
& 3,4,9,7/&
& CENGAPTYP/5,5,5,5,1,1,4,4,4,4/&  
& HFCNRTYP/3,5,5,3,3,5,5,3,&
&8,8,8,8,11,11,11,11,11,11,11,11/

ERR=.FALSE.
PI=ASIN(1D0)*2D0
SQ2=SQRT (2D0)
SINPID3=SQRT(3D0)/2D0
CRNR=ACOS(- 1D0/SQRT(3D0))
CRNR(6)=PI
CRNR(7)=PI
CRNR(8)=2D0*PI
CRNR(9)=2D0*PI
CRNR(10)=2D0*PI
CRNR(11)=2D0*PIANGLE(1)=0D0
ANGLE(2)=ACOS(3DO/SQRT(11D0))
ANGLE(3)=ACOS(1DO/SQRT(3DO))
ANGLE(4)=ACOS(SQRT(2DO/3DO))
ANGLE(5)=ACOS(1DO/3DO)
ANGLE(6)=PI/4D0



ANG LE(7)=AC0S( 1D0/SQRT(5D0))
ANGLE(8)=PI/2D0
ANGLE(9)=ACOS(-SQRT(3DO/11D0»
ANGLE( 10)=A C O S(-1 DO* SQRT (3DO/5DO))
ANGLE(11 )=PIGAP( 1 )=PI/4D0 
GAP(2)=PI/2D0
GAP(3)=ACOS( 1 D 0/(2D0* SQRT (3DO»)
GAP(4)=PI/6D0
GAP(5)=PI/3DO
GAP(6)=ACOS( 1D0/SQRT(3D0))
GAP(7)=ACOS(SQRT (2D0/3D0))
GAP(8)=ACOS( 1DO/SQRT (6D0))
GAP(9)=ACOS(2DO/3DO)
GAP( 10)=ACOS(5DO/6DO)
AREA=ODO
VOL=ODO
D O N = l,1 2

NAREA=2D0*PI 
INTCOS=ODO 
IN O .F A L SE .
CLOSED=.FALSE.
DO GPN=2,5

RAD(GPN)=ACOS((C**2+EXC(ROTOP(l,N))**2-EXC(ROTOP(GPN,N))**2)&
& /(2DO*C*EXC(ROTOP(l,N)»)
SM COS=(3DO*C**2+EXC(ROTOP(1,N))**2-EXC(ROTOP((GPN+6),N))**2)&
&/(2DO*SQRT(3DO)*C*EXC(ROTOP(l,N)))
SMCOS=SMCOS-INT(SMCOS)*(SMCOS-1DO)
RAD(GPN+6)=ACOS(SM COS)
INCSM (GPN+6)=((RAD(GPN+6)-RAD(GPN)+PI/6D0).GT.0D0)

ENDDO  
DO GPN=6,7

RAD(GPN)=ACOS((2DO*C**2+EXC(ROTOP(1,N))**2-
EXC(ROTOP(GPN,N))**2)/(2DO*SQRT(2DO)*C*EXC(ROTOP(1,N)»)

ENDDO
NXT=2
IF (INCSM (8)) NXT=8  
INIT=NXT  
THT=0D0 
AFT=.FALSE.
AFTSH=0CCNT=1
TWICEROUND=.FALSE.
DO WHILE ( NOT.CLOSED)

CCNT=CCNT+1
IF (CCNT.GT.20) TWICEROUND=.TRUE.
RA=RAD(NXT)
M XTHT=0D0 
M XNXT=0  
DO CNTPO SS=l,4

IF (((NXT.GT.5).OR.(CNTPOSS.LE.3).OR(.NOT.AFT)).AND.&  
& ((POSSOVR(CNTPOSS,NXT).NE.6).OR.INC(6).OR.(M OD(NXT,6).NE.5))) THEN

GAPOSS=GAP(PSGAP(CNTPOSS,NXT))
RADPOSS=RAD(POSSOVR(CNTPOSS,NXT))
SA=(RA+RADPOSS+GAPOSS)/2DO
SINPOSSSQ=SIN(SA-GAPOSS)*SIN(SA-RA)/&
& (SIN(GAPOSS)*SIN(RA))
IF ((SINPOSSSQ.LE. 1D0).AND.(SINPOSSSQ.GE.ODO))

THEN
SINPOSS=SQRT(SINPOSSSQ)
THTPOSS=2DO*ASIN(SINPOSS)+

ANGLE(PSTHP(CNTPOSS,NXT))
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IF (THTPOSS.GT.MXTHT) THEN  
MXTHT=THTPOSS 
MXNXT=POSSOVR(CNTPOSS,NXT) 
M XSA=SA  
MXGAP=GAPOSS 
MXRAD=RADPOSS
MXTHTPLUS=ANGLE(PSTHPRV(CNTPOSS

,NXT))
ENDIF

ENDIF
ENDIF

ENDDO
THT (1 ,NXT+AFT SH)=MXTHT
BETA(NXT+AFTSH)=2D0*ASIN(SQRT(SIN(M XSA-M XRAD)*

SIN(M XSA-RA)/(SIN(M XRAD)*SIN(RA))))
BACKTHT=2D0*ASIN(SQRT(SIN(M XSA-M XGAP)*SIN(M XSA-M XRAD)/&
& (SIN(MXGAP) * SIN(MXRAD))))+MXTHTPLUS  
AFT=((M XNXT.LE.5).AND.(INCSM (M XNXT+6)).AND.

(BACKTHT.GT.ANGLE(HFCNRTYP(2,MXNXT))))
IF (AFT) THEN

AFTSH=10
ELSE

AFTSH=0
ENDIF
THT(2,MXNXT+AFTSH)=BACKTHT
INC(MXNXT+AFTSH)=.TRUE.
CLOSED=((MXNXT.EQ.INIT).OR.((MXNXT.EQ.6).&
& AND.(NXT.NE.2).AND.(NXT.NE.8))&
&.OR.((M XNXT.EQ.2).AND.(NXT.NE.8).AND.(AFT))&
&.OR.(TWICEROUND))
NXT=M XNXT

ENDDO
OPPO VR( 1 )=((RAD(2)+RAD(4)). GT. (2D0 *PI/3D0)) 
OPPOVR(2)=((RAD(3)+RAD(5)).GT.(2DO*PI/3DO))
ZERO=(OPPOVR( 1). AND.OPPOVR(2))
IF ( NOT.ZERO) THEN

IF (OPPOVR(l)) THEN
IF ((.NOT.INC(2)).OR.(.NOT.INC(4))) THEN  

ZERO -. TRUE.
ELSE

INC(12)=.TRUE.
THT(1,12)=THT(1,2) 
SA=(RAD(2)+RAD(4))/2D0+PI/3D0 
KAP=2D0*ASIN(SQRT(SIN(SA-2D0*PI/3D0)*SIN(SA- 

RAD(2))/(SIN(2D0*PI/3D0)*SIN(RAD(2))))) 
THT (1 ,2)=ANGLE(3)+KAP  
IH T (2 ,12)=ANGLE(5)+KAP  
BETA( 12)=BETA(2)
BET A ( 14)=BET A(4)
BETA(2)=2D0*ASIN(SQRT(SIN(SA-RAD(4))*SIN(SA-

RAD(2))/(SIN(RAD(4))*SIN(RAD(2)))))
INC(14)=.TRUE.
THT(1,14)=THT(1,4)
BLAP=2D0*ASIN(SQRT(SIN(SA-2D0*PI/3D0)*SIN(SA-

RAD(4))/(SIN(2D0*PI/3D0)*SIN(RAD(4))))) 
THT (1,4)=ANGLE(3)+KAP  
THT(2,14)=ANGLE(5)+KAP  
BETA(4)=BETA(2)
IF (((THT(2,12)+THT(1,12)).GE.CRNR(2)).

O R.((THT(2,4)+THT(l,4)).G E.CRNR(4)» THEN
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INC(12)=.FALSE.
INC(4)=.FALSE.
INC(6)=.FALSE.
INC(8)=.FALSE.
INC(3)=.FALSE,
INC(9)=. FALSE.
INC( 13)=.FALSE.

ENDIF
IF (((THT(2,2)+THT(l,2)).GE.CRNR(2)).OR.

((THT(2,14)+THT(1, 14)).GE.CRNR(4))) THEN  
JNC(2)=.FALSE.
INC( 14)=.F ALSE.
INC(7)=.FALSE.
INC( 10)=.F ALSE.
INC(5)=.FALSE.
INC(11)=.FALSE.
INC( 15)=.FALSE.

ENDIF
IF (INC(2).AND.INC(4)) THEN  

NAREA=4D0*PI 
ELSEIF (INC(2).OR.INC(4)) THEN  

NAREA=2D0*PI
ELSE

ZERO=.TRUE.
ENDIF

ENDIF
ELSEIF (0P P 0V R (2)) THEN

IF ((.NOT.INC(3)).OR.(.NOT.INC(5))) THEN  
Z E R O .T R U E .

ELSE
INC(13)=. TRUE.
THT(1,13)=THT(1,3)
SA=(RAD(3)+RAD(5))/2D0+PI/3D0
KAP=2D0*ASIN(SQRT(SIN(SA-2D0*PI/3D0)*SIN(SA-

RAD(3))/(SIN(2D0*PI/3D 0)*SIN (RAD(3))))) 
THT(1,3)=ANGLE(5)+KAP 
TH T(2,13 )=ANGLE(3 )+KAP 
BETA( 13)=BETA(3)
BET A( 15)=BET A(5)
BETA(3)=2D0*ASIN(SQRT(SIN(SA-RAD(5))*SIN(SA-

RA D(3))/ (SIN (RA D (5))*SIN(R AD (3))»)
INC(15)=. TRUE.
THT(1,15)=THT(1,5)
KAP=2D0*ASIN(SQRT(SIN(SA-2D0*PI/3D0)*SIN(SA-

RAD(5))/(SIN(2D0*PI/3D0)*SIN(RAD(5))))) 
THT (1 ,5)=ANGLE(5)+KAP 
TH T(2,15)=ANGLE(3)+KAP 
BETA(5)=BETA(3)
IF (((THT(2,15)+THT(1,15)).GE.CRNR(5)).OR.

((THT(2,3)+THT(1,3)).GE.CRNR(3))) THEN  
INC(15)=.FALSE.
INC(3)=.FALSE.
ENC(6)=.FALSE.
INC(9)=.FALSE.
INC(2)=.FALSE.
INC(8)=. FALSE.
INC(12)=.FALSE.

ENDIF
IF (((THT(2,5)+THT(l,5)).GE.CRNR(5)).OR.

((THT(2,13)+THT(1,13)).GE.CRNR(3))) THEN
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INC(5)=.FALSE.
INC(13)=.FALSE.
INC(7)=.FALSE.
INC(11)= FALSE.
INC(4)=.FALSE.
INC( 10)=.FALSE.
INC( 14)=. FALSE.

ENDIF
IF (INC(3).AND.INC(5)) THEN  

NAREA=4D0*PI 
ELSEIF (INC(3).OR.INC(5)) THEN 

NAREA=2D0*PI
ELSE

Z E R O .T R U E .
ENDIF

ENDIF
ENDIF

ENDIF
IF ( NOT.ZERO) THEN

OVRLAP=. TRUE.
DO GPN=2,15

ERRGPN=.FALSE.
IF (INC(GPN)) THEN

CIREF=M 0D((GPN-2), 10)+2 
CENGAP=GAP(CENGAPTYP(CIREF))
RA=RAD(CIREF)
ALF=CRNR(CIREF)-(THT( 1 ,GPN)+THT(2,GPN))
IF (ALF.GE.ODO) THEN

OVRLAP=.FALSE.
COSRA=COS(RA)
SINRA=SIN(RA)
DO PN=1,2

GAM =AN GLE(HF CNRT YP(PN, CIREF))-
THT(PN,CPNO

COSGAM=COS(GAM)
COSLNG=COSRA*COS(CENGAP)+SINRa

*SIN(CENGAP)*COSCAAVI
COSCEN=(COSRA*SIN(CENGAP)-

SINRA*COSGAM*COS(CENG\P)))
/SQRT(1DO-COSLNG*2)

COSCEN=COSCEN-INT(COSCEN)
♦(COSCEN-DCO)

CEN=ACOS(COSCEN)
IF (CEN.NE.ODO) THEN

T ANCEN=T AN(CEN) 
TANLNG=SQRT( 1 DO/

(COSLNG* *2)- DC0)

TANM U=SIN(CEN)/(TANLNG/
TAN(CENGAP)-COS(ENs0

M U=ATAN(TANM U)
K=1D0/(TANLNG*SIN(M U))
SQ 1 PK=SQRT (1 D0+K*K) 
TANCPMU=(TANCEN+TANMU)

/(1DO-T ANCEN*TAN4UJ) 
INTCOS=INTCOS+SIGN((ATAN(DOO 

/(SQ1PK*TANMU))-ATAN(1D0/(SQPKA* 
TANCPM U)))/(SQlPK*2D0),GAl)-»+  

(COS(2DO*RA)-1DO)*G<M**
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COS(CENGAP)/4DO- 
SIN(GAM )*(RA-SIN(2D0*RA)/2D0) 

* SIN(CENGAP)/2D0
ENDIF

ENDDO
ENDIF
NAREA=NAREA+ALF*COS(RA)-BETA(GPN)
IF (ALF.LE.-2D-15) ERRGPN=.TRUE.

ENDIF
ENDDO
IF ( NOT.OVRLAP) THEN

AREA=AREA+NAREA*EXC(ROTOP( 1 ,N))* *2 
NVOL=(C*INTCOS-EXC(ROTOP(1,N))*NAREA)/3DO  
IF ((NAREA.LT.ODO).OR.(ERRGPN)) THEN 

ERR=.TRUE.
ENDIF
VOL=VOL+EXC(ROTOP(l ,N))* *2*NVOL

ENDIF
ENDIF

ENDDO
RETURN
END
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