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Summary

Demand by users for modern easy-to-use graphical interfaces in the form of Win
dows and the World Wide Web browsers has led to the perfectly reasonable expectation 
tha t all computing should be done this way. In answer to this, many improvements, 
especially in terms of ease of use, have been made to software for solving mathematical 
problems, in particular symbolic packages such as Maple, Mathematica and Axiom, 
in tha t they now come complete with some Windows-type interface. However, many 
mathematical problems either cannot be solved using symbolic methods or such meth
ods are unsuitable and numerical methods are preferable. The user has thus been forced 
to rely on older numerical software. This is proven software where separate numerical 
routines are generally collected together to form libraries, bringing into one package a 
considerable amount of technical and mathematical expertise.

The use of these libraries means tha t the user is forced to employ what can only 
be considered as archaic methods — writing and compiling programs in Fortran etc. 
Due to their historical development, such methods are difficult to use and difficult to 
understand when they should be used. This means tha t they are not suited to use 
by a novice or someone more used to Windows technology and there is little help in 
choosing the appropriate routine for any given problem, should there be a choice.

This thesis describes the construction using new technology of an intelligent inter
face to numerical library routines. In particular, it shows the techniques used in the 
construction of an expert system for choosing and applying NAG numerical routines 
in the fields of numerical integration, numerical solution of differential equations and 
optimization available to the Axiom computer algebra system. It also describes the 
construction of an easy to use windows interface using hypertext technology.
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C hapter 1

Introduction

A piece o f software will not be used voluntarily unless it is easy to use, 
however good it may be internally.

[Kemp, 1978]

1.1 The Nightmare Scenario

An engineer has a problem. In some design process he has to estimate a 
minimum load on some linkages. He has done the mathematical modelling 
and goes to his supervisor to get help on performing the computation. The 
supervisor looks at the problem and tells the engineer th a t he should go 
and look at the NAG Numerical Library [NAG, 1996] since they’re bound 
to have some routine for it.

The engineer goes to the shelf where the manuals are kept, and is faced 
with 12 large volumes, heavily bound, with titles which clearly say “D02” , 
“E04” etc. He doesn’t give up.

After a while he finds the ‘Foreword’ and reads that, for minimization, he 
requires the ‘optimization’ chapter E04 and pulls that volume off the shelf. 
He is then presented with a few hundred pages of technical jargon and 
Fortran 77 code. It starts to dawn on him tha t he’s going to have to write 
a Fortran program. He doesn’t give up.

After wading through the introduction he realises that the problem he has 
is a minimization subject to non-linear constraints and the decision tree
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provided tells him to use E04UCF. He thinks he feels a little happier now 
that he knows he’s on the right track and turns to the section on E04UCF, 

only to find tha t the section is 41 closely-typed pages of items labelled 
OBJFUN, ISTATE(N+NLIN+NCLIN) and CJAC(NROWJ ,N) and that i t ’s not just 
one program, but needs a number of sub-programs. He doesn’t give up.

He realises that there is a sample program tha t he can use to try and 
understand how he can program his own problem. Using tha t, and an 
old Fortran 77 manual, he starts to type. All these variable names are so 
confusing, and all seem to be used quite arbitrarily. I t’s so easy to make 
mistakes. After three attem pts to compile the example code, he breaks out 
in a cold sweat.

And wakes up!

This scenario goes some way towards explaining why programmers, and Fortran pro
grammers in particular, are regarded as strange. They are increasingly thought of as 
the dinosaurs of the computing industry. They appear to live and breathe by the ethic 
tha t “if it’s difficult to  write, it should be difficult to understand!” But we’re talking 
about thirty years of the life and work of brilliant men and women. If they could suffer 
by the rules of a programming language designed in the 50s and 60s which allowed Neil 
Armstrong to walk on the moon, don’t we have a duty to offer our respect?

But computing is a different subject now. We are no longer in general constrained by 
the size of memory, or by a need to use punched cards for input. We can display the 
output of a program on a colour monitor whilst performing further calculations on a 
machine thousands of miles away. But still we cannot throw all this expertise away. 
We also don’t wish to  repeat all their work just to take advantage of more modern 
machines.

The answer is to get those more modern machines to do the work for us.

The same engineer has another problem. Buoyed up by his success in solv
ing the minimization problem, he decides to tackle a problem where he is 
investigating the effect of a number of different loads on the structure over 
a period of time. He knows this is an ordinary differential equation and so 
is directed to the ‘D02’ chapter of the NAG library.

He surmises th a t his is an initial-value problem, but cannot get any further 
without knowing whether the problem is “stiff” or not. There is nothing
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here tha t can tell him how to find out without doing some preliminary cal
culations using one of the routines and “conclusions based on the computer 
time used and the number of evaluations of the derivative function 
So not only does he have to write a Fortran program (and sub-programs) 
to perform the calculation, he has to write a Fortran program (and sub
programs) to  work out which Fortran program he should write to perform 
the calculation.

This illustrates another difficulty with using numerical methods. The method itself is 
often tuned to a specific subset of problems and they are either incapable, or at least 
inefficient, when confronted with a problem outside this minor subset. So as well as 
requiring something which can make the use of Fortran routines a lot easier, there is a 
need for software which can at least give some help on the problem of choice.

This is an area which has been addressed in the past. “There are expert systems 
which attem pt to  analyse the problem as presented by the user and, possibly with user 
interaction, thence decide upon the best means of solution. This type of system is still 
in its infancy and it may be some years before complex numerical problems can be 
solved this way” [Hopkins Sz Phillips, 1988].

1.2 The W indows Revolution and the “N ew  User”

Increasingly, users’ introduction to computing and computing methods is by means of 
the PC running some Windows technology. Therefore many users’ experience is with 
graphical interfaces which ensure tha t complicated programs are implemented in some 
logical and straightforward fashion. Undoubtedly this is how computers should be — 
it is the user who commands, not the computer that demands.

Until recently, all “serious” mathematical computing has been done on mainframes 
and their successors, the workstations, using a range of ‘old’ technologies i.e. Fortran 
programs. This has started to change, firstly with the introduction of improved user 
interfaces to UNIX programs (using, for example, X or its derivative, OpenWindows) 
and increasing use of web technology and hypertext in particular. Modern applications 
designers must s ta rt to take these technologies into account when constructing user 
interfaces for the newly computer literate.

Furthermore, applications builders should consider the premise tha t the user doesn’t
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need or want to know the inner workings of each individual method of computing an 
integral, for example. Such details should be left to the computer program and, whilst 
some explanation of which method has been used could be communicated back, the 
user only wishes th a t the computation be carried out and a sufficient answer reached.

1.3 The Proposal

The aim of this project is to show tha t such an expert system can be created using cur
rent technology. The actual implementation that will be attem pted is to use numerical 
routines of the NAG Fortran Library from within, and using, the Axiom Computer 
Algebra System. This would then provide an intelligent interface to such numerical 
software. However, not all routines in the NAG library require much intelligence to 
decide on their use since any determination of attributes is fairly superficial, if any 
is necessary. For example, there are four routines in the NAG library to determine 
the roots of a polynomial: the user only needs to decide whether a given polynomial 
is quadratic or not and whether its coefficients are real or complex to select the ap
propriate one (although it is more likely that Axiom can efficiently perform such a 
task symbolically obviating the need for such numerical routines, although there are 
exceptions c.f. $6.2.1, p. 49). But there are chapters of the NAG library where there 
is considerable choice and, more importantly, where the criteria for th a t choice is less 
clear cut.

As indicated above, the chapters E04 on Optimization and D02 on Ordinary Differential 
Equations are prime candidates since the use of each requires considerable knowledge 
of numerical analysis as well as the time and patience to create considerable Fortran 
programs. A further chapter for consideration is D01 on Integration, where the user 
must consider such difficulties as the continuity of the integrand or the presence of 
weight functions (c.f. $6.1.2, p. 46). If and when the developers of Axiom can provide 
links to more routines in chapter D03 on Partial Differential Equations or when other 
numerical routines become available, it would be beneficial for its inclusion.

Whilst there is a need for a better interface to many of the other routines in the 
NAG library which are available to the Axiom system, their construction is not a 
suitable subject for this thesis. However, it is eminently reasonable to suggest that 
techniques and ideas used in this thesis, particularly the hypertext-style interface, could 
be implemented at little cost.

5



This thesis is in two sections. The first contains descriptions of the chosen problem 
domains and the technology. It begins by introducing the problems inherent in using 
numerical software and, in particular, the NAG Numerical Library routines. Previous 
attem pts to provide a better and more intelligent way of using such library routines 
are discussed. These include systems which use a form of the decision tree provided 
by NAG in their documentation and early rule-based expert systems’ efforts to provide 
automatic selection of numerical routines.

The rationale behind more modern interfaces to mathematical software is introduced 
using the examples of the Computer Algebra Systems Maple and Axiom, with particular 
reference to calculus and their use of numerical algorithms. This is followed by an 
introduction to expert systems and their construction.

The second section is a step by step guide to the proposed system. It begins with 
a discussion of the computational agents necessary to an expert analysis of the given 
problem and some of the techniques used to perform tha t analysis. For example, the 
algorithms required to answer such questions as Is this function continuous? and How 
stiff is this set of differential equations?

The next four chapters describe the different sections of the expert system. This in
cludes a formal description of the construction of the knowledge base and a description 
of the theoretical basis for the decision process constructed by extending Dempster- 
Shafer theory and combining with Lucks/Glad well intensity, compatibility and aggre
gation functions. Concluding this section on the expert system is a chapter covering 
why an explanation system is required and how such a mechanism is created.

This is followed by a description of the simplified user interface, both the command 
line structure and the hypertext style input process. The conclusion brings together 
all these separate areas and includes an evaluation of the implemented system.
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C hapter 2

T he Problem s o f U sing  
N um erical Software

There are a number of ways to solve numerical problems in Mathematics or Engineer
ing. Hitherto, one of the most reliable methods is to use code previously shown to be 
accurate and sufficiently efficient contained in one or more of the available Numeri
cal Libraries. These house a number of programs or subroutines to perform either a 
complete calculation or part of the calculation.

However, it is not always a simple process:
• The interface to these routines has not substantially changed since the early 1970s.

Whilst technological advances in computers and user interfaces has continued 
apace, the techniques generally associated with numerical computation has re
mained static. Where we see millions of new computer users a year, those able 
to use and understand these routines are dwindling.

• The problem has to be stated in a form similar to tha t which the library routine 
can use.

Even though there may be different routines available for the solution of the 
problem, it is not always the case that they accept the problem statement in the 
same way.

• The language of the code of many of these routines may be unfamiliar to the 
user.

Since it makes sense for the programming language to reflect the purpose and 
style of the originators of the code ([Du Croz, 1982]) and since the routines are

7



likely to have been written before the latest languages and design principles, it is 
quite possible for them to be difficult to understand. See [Dekker, 1980].

• It may not always be apparent which routine is best to solve a given numerical 
problem.

• Due to the diversity of its authors, the interfaces may be inconsistent.

These inconsistencies may be as simple as parameters differently ordered e.g. the 
parameter IFAIL is often the last parameter in the list but occasionally elsewhere. 
It may be tha t two routines to perform the same task have totally different data  
parameters or the names for those parameters are different.

Many of the numerical libraries (NAG, IMSL, LINPACK etc.) use Fortran 77 as a 
programming language, and, however much experienced programmers regret the cur
rent state of affairs, Fortran is not a popular choice among students who would rather 
learn the latest programming fad. There do exist a number of libraries written in 
“more modern” languages, such as C or C + +  but these tend to be smaller in scope 
and availability.

Whilst interoperability (calling Fortran subroutines from a C, C + +  or other program) 
is almost certainly possible, the lack of standards engenders more difficulties than are 
likely to be envisaged [SunSoft, 1995, §12]. For example, array structures would almost 
certainly be different1, the naming schemes for functions and variables are inconsistent2 
and many structures cannot be accommodated3.

2.1 Using and Abusing Fortran

Fortran as a language was created in the late 1950s specifically for mathematical pro
gramming, and, since this was among the first uses of computers, still contains many

1In Fortran, array subscripts by default start at 1 as opposed to 0 in C, C + +  etc. and the dimensions 
are ordered differently — Fortran stores arrays in column m ajor order (usually in contiguous memory) 
and C (C + + )  in row m ajor order. Transposing arrays is not trivial -  it could be expensive as the 
obvious algorithm is cache-pessimal.

2 Sometimes compilers/linkers require an additional underscore character to be added to external 
Fortran subprogram names (library procedures may require tw o  underscore characters) and there is a 
variance with the treatm ent of upper and lower case characters in variables

3C and C + +  allow a far greater range of data structures than is possible in Fortran although Fortran 
has the basic type COMPLEX, missing in most other languages. The CHARACTER type is so different in 
Fortran and C that its use is considered to be inadvisable.



reminders of its past4. It is difficult for today’s programmers to understand the restric
tions with which early implementations of numerical algorithms were created and used, 
particularly with respect to memory management and efficiency. It would be a steep 
learning curve indeed if a modern user was forced to come to grips with a computer 
language older than himself, when the hardware on which it is to be run is considered 
out of date in three years!

One of the major problems with Fortran is tha t since there may be many ways to code 
an algorithm, the demands of efficiency have led to obfuscated code. But fortunately 
the considerable testing process has vindicated each and every one so th a t we can 
almost use the routines as “black boxes” .

However, the arcane naming structure causes great semantic difficulties, with its six 
character limit and implicit typing of variables. For example, the NAG Fortran Library 
Routine D01AJF, a routine for numerical quadrature which implements an adaptive 
scheme due to Piessens and De Doncker5 (its use will be further discussed later in this 
thesis), has the following specification:

SUBROUTINE //D 0 1 A J F // (F , A, B, EPSABS, EPSREL, RESULT,

1 ABSERR, W, LW, IW, LIW, IFAIL)

INTEGER LW, IW(LIW), LIW, IFAIL

/ / r e a l / /  F , A, B, EPSABS, EPSREL, RESULT,

1 ABSERR, W(LW)

EXTERNAL F

In explanation, the user is required to provide:

4 FORTRAN (FORm ula TRA Nslator) was originally created for the IBM 704 as a replacement for 
machine and assembly languages which were the only way of instructing early computers. It held up 
the promise to be easy to use and understand, produce highly efficient machine code and virtually 
eliminate coding and debugging. In its day, it went some way to achieve this considering the incredible 
complexity of hand-written machine instructions [Backus, 1981]. T he compiler (originally called the 
translator) was distributed to all users of the 704 computers in 1957. This was fairly quickly replaced 
by Fortran II, which added the concept of SUBRO UTINE and FUN CTIO N.

Further development led to different version for each of a number o f machines and the first attem pt 
at standardisation in 1966. FORTRAN 66 thus became the preferred tool for m athematical program
ming, but was far from ideal. Due to  the failure of the 1966 standardisation com m ittee to produce a 
consistent and unambiguous document coupled with their concentration on performance issues instead  
of rationalisation, the new ‘standard conforming’ compilers allowed, and even encouraged, programs 
to be written in an increasing number of ‘flavours’ and ‘dialects’. W hilst much of this was confronted 
in the first major revision in 1977, many of the ‘horrors’ (such as Hollerith formatting structures —  
created due to the failure of the 1966 document to institute proposals for a data structure for the 
character string) remained allowable. This can still be seen today in legacy code.

5This is itself base on Kronrod’s version of Gauss-Legendre quadrature using a 10-point Gauss rule 
and a 21-point Kronrod rule.
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F : An external / / r e a l / / 6 Fortran function for the evaluation of the in
tegrand at a given point 

A : The lower limit of integration 

B : The upper limit of integration 

EPSABS : The required absolute accuracy 

EPSREL : The required relative accuracy 

RESULT : On exit, the approximation to the integral 

ABSERR : On exit, an estimate of the absolute accuracy achieved 

W(LW) : On exit, details of the computation 

LW : The dimension of W 

IW(LIW) : On exit, details of the computation 

LIW : The dimension of IW 

IFAIL : Failure warning characteristic

Whilst RESULT and ABSERR (absolute error) might be understandable to a modern 
programmer or mathematician, it is unlikely that any other requirement or parameter 
is obvious. Fortunately, apart from the name of the routine (D01AJF), it is possible with 
many modern compilers which have extensions to the language to use more meaningful 
names in the calling routine.

The problem exists th a t without knowing the data structures required by the individual 
routine and therefore some of the internal workings of the routine, it is difficult to use 
and comprehend. For this purpose, library suppliers produce large user manuals run
ning into thousands of pages (the current NAG Fortran Library manual is a somewhat 
impenetrable 12 volumes). Much of this information is available on-line obviating the 
need for a weight-lifter’s physique, but this does not help when the appropriate routine 
is not known. Furthermore, on-line manuals require different reading and navigation 
techniques or tend to  become difficult to use and understand.

2.2 The Problem  of Choice

For many types of problem, library suppliers produce a single routine to perform a 
single task. For example, to find the zeros of a complex polynomial, the NAG Fortran 
Library has the routine C02AFF. However, for some problem domains, there may be

6 / / r e a l / /  ind icates REAL or DOUBLE PRECISION depending on the im p lem en tation /m ach in e  archi
tecture.
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a choice of routine, as is the case for definite integration and numerical solution of 
ordinary differential equations. This choice of routine usually depends on attributes of 
the input problem, some of which might be easy to identify, others may be difficult or 
even impossible.

“Selecting the ‘best’ mathematical software requires a deep understanding of the prob
lem domain and intimate familiarity with the available software. Since such combined 
expertise is rare, much currently available mathematical software is routinely misused.” 
[Lucks & Gladwell, 1992, p. 12] There have been two traditional methods used by stu
dents and engineers of getting round this problem.

1. Work out the best method by studying the problem specification and the help 
sections of the user manuals. (This may be done by your local friendly Numerical 
Analyst if you can get him/her in the right mood.)

2. Find a routine that works (however inefficiently) by trial and error and continue 
to use th a t routine for all types of problems until the time comes when the the 
library supplier updates or withdraws the routine. Repeat.

As can be imagined, (1) above is probably better than (2) but the time involved could 
be considerable.

2.3 The N AG  Fortran Library

NAG have been one of the foremost suppliers of library routines for numerical and 
statistical work for many years. The algorithms in the Fortran Library has undergone 
much research and improvement since the early 70s. They have become a well respected 
and widely available implementation of much of the best numerical code.

2 .3 .1  T h e  S co p e  o f  th e  L ibrary

In its latest incarnation, Mark 17 of the NAG Fortran Library [NAG, 1996] contains 
nearly 1200 routines, separated into 41 chapters or problem domains. Some of these 
chapters are of “utility routines” , but the range of numerical routines is impressive. A 
major subset of the most used of 22 of these chapters has been incorporated within the 
Foundation Library for use on a wider set of platforms (see table 2.3.1)7.

7On some platforms, due to the nature of any built-in functions or incorporated software, this list 
may be further reduced e.g where there exists built-in functions or software for performing, say, Linear 
Algebra, it would not make sense to provide duplication.
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Chapter Description Routines in 
Full Library

Routines in Foun
dation Library

A02 Complex Arithmetic 3 0

C02 Zeros of Polynomials 4 2

C05 Roots of one or more transcendental 
functions

13 4

C06 Summation of Series 28 12

D01 Quadrature 29 12

D02 Ordinary Differential Equations 61 8

D03 Partial Differential Equations 24 3

D04 Numerical Differentiation 1 0

D05 Integral Equations 7 0

EOl Interpolation 15 10

E02 Curve and Surface Fitting 26 18

E04 Minimizing of Maximizing a Function 42 12

FOl Matrix Factorizations 24 10

F02 Eigenvalues and Eigenvectors 22 15

F03 Determinants 6 0

F04 Simultaneous Linear Equations 34 11

F05 Orthoganalization 1 0

F06 Linear Algebra Support Routines 173 0

F07 Linear Equations (LAPACK) 98 5

F08 Least Squares and Eigenvalue Prob
lems

72 0

F l l Sparse Linear Algebra 10 0
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Chapter Description Routines in 
Full Library

Routines in Foun
dation Library

G01 Simple Calculations and Statistical 
D ata

48 19

G02 Correlation and Regression Analysis 56 10

G03 Multivariate Methods 18 3

G04 Analysis of Variance 7 0

G05 Random Number Generators 40 24

G07 Univariate Estimation 11 0

G08 Nonparametric Statistics 21 9

G10 Smoothing in Statistics 5 0

G il Contingency Table Analysis 6 0

G12 Survival Analysis 2 0

G13 Time Series Analysis 38 16

H Operations Research 6 0

M01 Sorting 17 6

P Error Trapping 1 0

S Special Functions 59 38

X01 Mathematical Constants 2 0

X02 Machine Constants 14 0

X03 Inner Products 2 0

X04 Input/O utput Utilities 18 4

X05 Date and Time Utilities 4 4

Table 2.1: Th’3 NAG Fortran Library and Foundation Library
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For example, there are 25 different top-level quadrature routines (11 in the Foundation 
Library)8 from which the user must choose whichever is most appropriate to the prob
lem in hand. Some of these may be for specific computer architectures, but most will 
depend on the attributes of the problem or the problem specification.

2 .3 .2  P ro g ra m m in g  u sin g  th e  N A G  L ibrary

When calling a library routine from an appropriate program there are a number of 
essential requirements [Hopkins &: Phillips, 1988]:

• The N a m e  of the Subroutine e.g. D01AJF

• D ata parameters such as those which form part of the problem specification, 
e.g. the range of integration. Sometimes this data is in the form of an external 
Fortran function or subroutine to perform some evaluation or calculation.

• A lgorithm ic Control parameters such as error tolerances, iteration limits or 
how to deal with errors.

• H ousekeeping parameters such as workspace or array dimensions.

• Output parameters (which may be combined with a data parameter as an In
p u t/O u tp u t parameter) supplying the results of the calculation or any further 
information.

Many of these parameters will be of basic types i.e. Integer, Real (Double Precision) 
etc. or arrays of basic types. Some, however, may be Fortran subroutines (functions) 
in their own right -  such as a function to evaluate an expression at some given point 
or a subroutine defining the Jacobian of a set of ODEs. These should be included in 
an EXTERNAL statem ent and if a function, the type explicitly declared.

. Within the 12-volume user manual (and on-line from the NAG web site) there are for 
each routine example programs which give pointers towards their use. These exam
ples are carefully chosen to highlight particular aspects of the routine and have the 
appropriate required attributes. The why’s and wherefore’s of such choices may not be 
explained and is therefore left to the user to determine whether a particular routine is 
or is not appropriate.

For example, the example program for the quadrature routine D01AJF is given below 
(DOUBLE PRECISION version). The NAG routines are identified as EXTERNAL (the value

8Not all routines within each chapter are top-level routines -  some are utility routines or routines 
primarily called from within other routines.
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of 7r is also given by an external function) and the expression for the integrand

_  x sin (30a;)
=

is passed to the N A G  routine as a Fortran function.

* D01AJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .,

INTEGER LW, LIW
PARAMETER (LW=800,LIW=LW/4)
INTEGER NOUT
PARAMETER (N0UT=6)

* .. Scalars in Common ..
DOUBLE PRECISION PI 
INTEGER KOUNT

* .. Local Scalars ..
DOUBLE PRECISION A, ABSERR, B, EPSABS, EPSREL, RESULT 
INTEGER IFAIL

* .. Local Arrays ..
DOUBLE PRECISION W(LW)
INTEGER IW(LIW)

* .. External Functions ..
DOUBLE PRECISION FST, X01AAF 
EXTERNAL FST, X01AAF

* .. External Subroutines ..
EXTERNAL D01AJF

* .. Common blocks ..
COMMON /TELNUM/PI, KOUNT

* .. Executable Statements ..
WRITE (NOUT,*) ’D01AJF Example Program Results’
PI = XOIAAF(PI)
EPSABS = O.ODO 
EPSREL = 1.0D-04 
A = O.ODO 
B = 2.0D0+PI 
KOUNT = 0 
IFAIL = -1

*
CALL DO1AJF(FST,A ,B ,EPSABS,EPSREL,RESULT,ABSERR,W ,LW,IW,LIW,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99999) ’A - lower limit of integration = ’, A
WRITE (NOUT,99999) ’B - upper limit of integration = ’, B
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WRITE (NOUT,99998) ’EPSABS - absolute accuracy requested = ’,
+ EPSABS
WRITE (NOUT,99998) ’EPSREL - relative accuracy requested = ’,

+ EPSREL 
WRITE (NOUT,*)
IF (IFAIL.NE.O) WRITE (NOUT,99996) ’IFAIL = ’, IFAIL 
IF (IFAIL.LE.5) THEN

WRITE (NOUT,99997) ’RESULT - approximation to the integral = ’,
+ RESULT

WRITE (NOUT,99998) ’ABSERR - estimate of the absolute error = ’
+ , ABSERR

WRITE (NOUT,99996) ’KOUNT - number of function evaluations = ’
+ , KOUNT

WRITE (NOUT,99996) ’IW(l) - number of subintervals used = ’,
+ IW(1)
END IF 
STOP

*

99999 FORMAT (IX,A,F10.4)
99998 FORMAT (1X,A,D9.2)
99997 FORMAT (1X,A,F9.5)
99996 FORMAT (IX,A,14)

END
*

DOUBLE PRECISION FUNCTION FST(X)
* .. Scalar Arguments ..

DOUBLE PRECISION X
* .. Scalars in Common ..

DOUBLE PRECISION PI
INTEGER KOUNT

* .. Intrinsic Functions ..
INTRINSIC SIN, SQRT

* .. Common blocks ..
COMMON /TELNUM/PI, KOUNT

* .. Executable Statements ..
KOUNT = KOUNT + 1
FST = X*SIN(30.0D0*X)/SQRT(1.0D0-X**2/(4.0D0*PI**2))
RETURN
END

Whilst a good deal of the sample program is concerned with printing the output, it
can be seen that the essentials are too easily hidden by detail and for the untrained or
uninitiated it seems indecipherable. Even though this routine can perform the calcu
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lation, due to the oscillatory nature of the integrand, this is not the ideal routine for 
the given example problem. There is no indication to this effect in the documentation.

Instructions for calling the routines from C or C + +  are equally obtuse, and there are 
a great number of inconsistencies [Hounham, 1996].
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C hapter 3

P revious A ttem p ts to  C onsider  
th e  P rob lem

3.1 Decision Trees -  Help Numerical and GAMS

The NAG Numerical Library documentation contains a section which, in essence, is 
a decision tree for choosing the numerical routines. This supplements the detailed 
descriptions of each individual routine, but still can be intimidating for casual or inex
perienced users. On-line versions of such documents further add to the difficulty since 
users are likely to find more problems navigating and are more difficult to scan.

The HELP Numerical package [Hazel & O’Donohoe, 1980] goes some way to providing 
the user with a keyword matching tree-based help system for the NAG and Harwell 
library routines. These and other library routines have been included in general decision 
tree programs e.g. NITPACK [Gaffney et a/., 1983], KASTLE [NAG, 1989] and the 
Guide to Available Mathematical Software (GAMS) [Boisvert, 1989] which is available 
on-line from the NAG web site.

Unfortunately, these systems suffer badly when choosing from a selection of routines 
which may all perform the, calculation but with varying degrees of efficiency and accu
racy. They are, basically, no more efficient in this respect than the documentation on 
which they are based. They also still require the user to answer some difficult questions 
about the attributes of the problem they require solved.
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3.2 Rule Based System s for Software Selection -  N A X - 
PERT, SAIVS and ODEXPERT

Much effort has been put into providing improved systems for choosing and using 
numerical library routines [Ford et al., 1989]. Many of these use a knowledge base and 
a set of rules to assist in the decision process. Some also provide help in writing the 
program to call the routine [Schulze & Cryer, 1983].

These systems mainly use keyword matching and a set of rules based on the decision 
tree with perhaps a further knowledge base for help in constructing the appropriate 
Fortran code for calling the chosen routine. In this respect, NAXPERT, designed for a 
small mathematical library on IBM personal computers, has a set of about 50 Prolog 
rules along with a list of 160 keywords as a knowledge base. This is insufficient for 
the task since many consultations could not provide a recommendation or sufficient 
analysis.

Two systems, designed and built independently, together provide more insight into the 
requirements of the software selection process. These are SAIVS (Selection Adviser for 
Initial Value Software) [Lucks & Gladwell, 1992] and ODEXPERT [Kamel et al., 1993] 
which both investigate the selection of numerical solvers of Initial Value problems of 
systems of Ordinary Differential Equations.

ODEXPERT uses an inference engine written in the rule-based programming language 
OPS 83 alongside computational processes to investigate the attributes of stiffness and 
structure (Fortran) and generation of the Jacobian matrix (Maple). The approach to 
investigating the problem of stiffness is particularly interesting. They implemented an 
algorithm to integrate the function backwards and compare the effect on the solution 
vector at each stage. The result of this test is then placed into one of the categories 
stiff, mildly s t i f f  or n o n s tif f  since the inference rules could only work with qualitative 
attributes thereby losing much of the quantitative information it had gained.

The creators of the SAIVS system realised that any such inference engine must be 
able to use quantitative analysis of the attributes to get a deeper understanding of the 
problem and therefore instigate a more precise approach to software selection. In their 
view, ODEXPERT and NAXPERT “can be too inflexible, imprecise and qualitative 
for predicting software behaviour” [Lucks & Gladwell, 1992, p 12].

They thus based their system on the premises of feature intensity (e.g. How acute is
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this attribute?), feature compatibility (e.g. How does this affect the performance of the 
code?) and evidence aggregation (e.g. Does this interfere with or reinforce the effect of 
other attributes in the selection process?). Thus attributes that interact competitively 
can be identified and their effects better incorporated into the selection process. This 
system will be further discussed in §6.2.1 and §8.2.

However, SAIVS does not include any computational agents for the automatic testing 
for these attributes, thus requiring the user to perform the appropriate analysis and 
enter the results during the interactive session. [Gladwell & Lucks, 1992]

3.3 Using a Rule Based System to Implement Library 
Routines — IR E N A /A R C

A system was built which integrates a rule-based system for selecting quadrature codes 
with a link to the NAG subroutine library to form a seamless functional interface. The 
Automatic Routine Chooser (ARC) [Dewar, 1992] was written for the Interface between 
REduce and NAg (IRENA) [Dewar, 1991; Davenport et a l, 1991] and contained a 
set of LISP-like production rules and a number of computational agents for testing 
continuity, the presence of weight functions etc. This, together with the ability to 
create the Fortran stubs and call the appropriate routine automatically, simplified the 
interface by matching or pruning routines in the database.

For example, given a numerical integration to perform, ARC considers first the range of 
integration, choosing from its database routines suitable for either finite, semi-infinite 
or infinite ranges. It then considers the rules which can either match or prune routines 
from the list. By ordering all the routines remaining in the list after this process, 
an overall recommendation is made. Control then passes to IRENA which can auto
matically create any Fortran subprograms and call the library routines so solving the 
“having to write Fortran” problem.

The implementation only covered a subset of finite integration routines, but with the 
improved usability of the IRENA system provided a “black box” style using Reduce to 
perform the analysis, ARC to choose the routine which IRENA could call. The results 
are thus passed back to Reduce for display and dissemination.

The rule structure, as in ODEXPERT, was not appropriate for further development 
to other problem domains, especially where quantitative analysis was required, but
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IREN A/ARC did point the way towards integrated software and 
precursor to the project described in this thesis.

a significant
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C hapter 4

C om puter A lgebra System s

4.1 Introduction

In the past thirty years, Computer Algebra Systems (CASs) have gone from the birth- 
pangs of initial research, through an intensive growing phase in the late 1960s and 1970s 
when basic algorithms for algebraic manipulation were refined and implemented, to to
day’s maturing systems, adroit and masterly, each covering a wide area of mathematics 
and all with new and fairly straightforward (albeit very different) interfaces.

The basic tenet has remained, however, the same -  to use symbolic and algebraic ma
nipulation to find closed-form solutions to problems in a number of different domains. 
Various methodologies could be employed such as comparison with known forms, con
trolled simplification, substitutions etc. but in simple form it is the application of 
(mainly algebraic) computational rules on a mathematical object e.g. a polynomial or 
expression.

On the market today there are a number of CASs offering a wide variety of features 
-  Maple, Mathematica, Macsyma, Derive, Reduce, Mupad and Axiom are the most 
common, all of which are available now on a number of computer systems. Some of 
these have extensions which allow them to use numerical methods as well as algebraic 
ones for the solution of Certain problems such as definite integration and numerical 
solution of ordinary differential equations. I will describe some of the workings of 
Maple before concentrating on the CAS Axiom.
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4.2 Maple

The newly released Maple V Release 4 is a fully-fledged interactive general purpose 
Computer Algebra System comprising a core program (short-term memory, manipula
tion tools, basic calculus tools etc.) and libraries of specialist code (compiled mainly 
from Maple programs) together with a relatively user-friendly interface. For a complete 
description see [Heck, 1996].

This interface handles the input and parsing of expressions, output of resulting ex
pressions or function plots as well as displaying the help system, all in linked windows 
called worksheets. These worksheets can contain mathematical expressions, graphics 
or explanatory text with possibly hypertex-style links to other documents.

The commands are descriptions or abbreviations of descriptions of the functionality of 
a procedure. For example, f a c t o r  and F actor  factorise expressions over a given field, 
i n t ,  In t ,  or i n t e g r a t e  are used to integrate a function (there are subtle differences 
to each form) and d s o lv e  is used for the solution of Ordinary Differential Equations. 
The aim is to  make the interface as intuitive as possible.

4 .2 .1  In teg ra tio n

In operation, an integration problem is input as:
> f  := 4 / ( x ~ 2 + l ) ;

/  := — - —J x 2 +  1
> i n t ( f , x ) ;

4 arctan(x)

Or, more readably as:
> I n t ( f ,x ) :  " = valueC);

f  4I — dx = 4 arctan(z)
J  x2 + 1 y }

The definite integral is giyen by:
> Int( f  ,x=0.. 1): " = valueC);

f1 ~ 2~  d x  =  X
Jo X 2 +  1
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For this particular integral, Maple uses look-up tables and substitution. For more 
difficult problems, it can call on firstly the Risch-Norman method [Davenport, 1982] 
or, if tha t fails, the Risch algorithm [Risch, 1969; Davenport, 1981]. However, for every 
integral that has a closed form solution, there are many th a t do not. The only way to 
calculate definite integrals of this form is to use numerical methods.

Maple has a number of strategies for numerical integration. The first is, again, using 
pattern-matching such as for the example:

> g := l / ( l + 3 * s i n ( t ) ~ 2 ) :

> l n t ( g , t = 0 .  . 2 * P i ) : " = v a l u e C ) ;

1r  2 7T 

JOo l  +  3 s i n ( Z ) :
dt =

Whilst the answer is correct, this is, of course, a very dangerous tactic since the integral, 
which is

> In t (g , t ) :  " = valueC);

/ 1 +  3 s i n ( Z ) 2

arctan

dt =  2

/

V

ta n ( -  Z)^

4 +  2 VS
/

4 +  2 \/3

arctan

+

/

V

ta n ( -  Z)^

4 +  2 \/3

4 +  2 >/3

Vs

arctan
( tan(iz)N

4 — 2 VS
Vs arctan

(  ta n ( iz )  
2 1

+ 2 V 4  — 2  V S

4 — 2 VS ' ~ 4 — 2 VS

is discontinuous over the given range (see Figure 4.2.1).
> p l o t ( { g , i n t ( g , t ) } , t = 0 . . 2 * P i ,  d is c o n t  = t r u e ) ;
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i n t ( g , t )

- 0 . 5 - -

- 1 -

Figure 4.2.1: Plot of 1+3s-n(f)2 and its antiderivative.

It is much safer to use numerical methods:
> l n t ( g , t = 0 . .2 * P i) : " = e v a l f ( " ) ;

f ■ , , 1. I M dt = 3.141592654J0 1 +  3sin(t)2

Since there is no discontinuity to the integrand (and even if there were, there are 
techniques to calculate an integral if one exists) it calculates the result using a'Newton- 
Cotes method.

There are two other methods it can use for specific cases. For example:
> h := l o g ( x * x ) :
> I n t ( h , x = - l . . 1) : " = v a l u e C ) ;

J  In (a:2) dx = —4 + 2 I n

This result, calculated symbolically, while not wrong, is misleading since if such an 
integral exists, there exists a real answer1. Maple uses a double exponential method to 
to perform the calculation numerically:

> I n t ( h , x = - l . . 1 ) :  " = e v a l f (" );

1 There are also fundamental questions of the existence of the integral and there is no indication  
that Maple has solved these.
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j  ln (x2) d x  =  -4.000000000

Any particular method can be forced on the integrator using an optional parameter. 
This will usually disable any singularity handling routine.

4 . 2 . 2  O r d i n a r y  D i f f e r e n t i a l  E q u a t i o n s

Maple has a number of tools for the solutions of ordinary differential equations i.e. equa
tions of the form

F ( y ,y \y " i - , y ( n\ z )  = o. (4 .1)

It can solve a limited range of these equations analytically. This depends very much
on the type of equation i.e. ODEs of degree 1 and order < 3 are sometimes possible.
Outside of this range we are obliged to use numerical techniques.

If we take as our example the van der Pol equation ([Birkhoff &; Rota, 1978, p. 134])

y" -  //( l -  y2)y' + y = 0, (4.2)

with fi = 1 and initial values ?/(0) =  2, 2/ ( 0 ) =  0.

Let’s first check tha t Maple cannot find an analytic solution:
> a l ia s ( y = y ( t ) ,y 0 = y ( 0 ) ,y p O = D ( y ) ( 0 ) ) :

> eqn := d i f f ( y , [ t $ 2 ] ) - ( l - y ~ 2 ) * d i f f ( y , t ) + y = 0 ;
q2 ^

eqn := y2) (ft  y) + y = 0
> i n f o l e v e l [ ‘d s o l v e ‘] : = 2 :  # f o r  feed back  in fo rm a tio n
> d s o l v e ( e q n , y ) ;

dsolve/diffeq/linsubs: trying linear substitution
dsolve/diffeq/missbody: solving d.e. with missing variable
dsolve/diffeq/dsoll: -> first order, first degree methods :
dsolve/diffeq/linsubs: trying linear substitution
dsolve: Warning: no solutions found

And now try the default numerical method:
> i n i t v a l s  := y0=2,yp0=0:
> F := d s o l v e ( { e q n , i n i t v a l s } , y , t y p e = n u m e r i c ) ; 

dsolve/numeric: entering
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DEtools/convertsys: converted to first-order system Y*(x) =
f(x,Y(x)) namely (with Y* represented by YP)

[ m  =  y 2, y p 2 =  y 2 - y 2 y 2 -  Vi]

DEtools/convertsys: correspondence between Y[i] names and original
functions:

[K =  » , *  =  £ „ ]

dsolve/numeric: vector Y of initial conditions at xO = 0 array(1
. .  2 , [ ( 1)=2 . , ( 2 )=0] )

F  := proc(rkf45.x) . . .  end

This has automatically changed the equation into a system of first-order odes and used 
a Feylberg 4th-5th order Runge-Kutta method. The output is a set of equations for i, 
y and y '. So, at t = 10:

> F ( 1 0 ) ;
A

[t z= 10 , y  = -2.008340813688926, ^  y =  .03290706311963594]

From this, the function y(t) can be plotted using:
> p l o t ( t  -> r h s ( o p ( 2 , F ( t ) ) ) , 0 . . 2 0 ) ;

i -  •

10 15 20

- 1- -

- 2 -

Figure 4.2.2: van der Pol’s equation with /x =  1, ?/(0) =  2 and y'(0) =  0.
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The Maple ODE solver has the ability to use any of the 28 numerical solvers within the 
ODEPACK package. This includes both general and specific routines for stiff or non
stiff ODEs. The user has to specify the options type -  num eric, method = approach, 
where approach is one of the specified routine names. Whilst the inclusion of such a 
large range of routines is admirable, the user is often left bewildered. However, the 
Livermore Stiff ODE solver (LSODE) is adaptive and can, as necessary, switch from the 
Backward Differential Formula (BDF) method for stiff equations to an Adams method 
for the non-stiff case [Hindmarsh, 1983].

4.3 Axiom

W ithout a doubt, compared to other CASs, Axiom is very different. This manifests 
itself in a variety of ways. Most apparent is its system of Types, Domains and Categories 
and its insistence tha t all things are ‘Objects’ and so have Types. For many users this 
seems to be a hurdle but, for the most part, this only clarifies what is taking place 
behind the scenes and can often be ignored. However, I will quickly describe the raison 
d ’etre of this system before introducing some of the built-in extensions to perform 
numerical computation.

4 .3 .1  T h e  O b jec t O rien ted  P arad igm

Most commentators in the field define a language e l s  object oriented if and only if

• It supports objects tha t are data  abstractions with an interface of named opera
tions and a hidden local state

• Objects have an associated type [class]

• Types [classes] may inherit attributes from supertypes [superclasses].

[Cardelli & Wegner, 1985, p 481]

It can be seen that mathematical structures can fit in with this system. For example, an 
integer is an instance of the class of Integers (Z); a polynomial with integer coefficients 
is an instance of the class of Polynomials over the Integers (Z[a:]). They each have 
allowable operations and, within the confines of the CAS, can maintain a hidden local 
state (i.e. it is not necessary for the user to know exactly how they are stored).
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Each of the two ‘objects’ above belong to the Type Ring and share much of their 
allowable operations. These can thus be inherited from the Type. In this way, the 
complete basic algebra hierarchy can be accommodated. Furthermore, the object ori
ented paradigm was originally created to model data structures and complex elements 
[Booch, 1994], and as such are ideally suited to model structures of mathematical 
objects (lists, arrays, sets and tables).

4 .3 .2  C a teg o r ie s , D om ain s and  P ackages

Basic mathematical types are defined as Axiom2 Domains, e.g. the integer 5 has type 
I n te g e r  and the polynomial x2 - 2 x + l  has type P olynom ial I n te g e r .  However, types 
may not be unique -  the integer 5 could equally well be defined as a P o s i t i v e l n t e g e r ,  

N o n N eg a t iv e ln teg er  (both Subdomains of In teg e r )  or even IntegerM od(7) (in which 
cases the allowable operations are altered since members of the Ring of Integers Modulo 
7 (Z7) have multiplicative inverses, and Positive Integers (Z+) do not have additive 
inverses).

The allowable operations for each domain are either inherited from its class or Category 
as associated with its attributes or they are explicit to the specific domain or subdomain.

The Domains themselves belong to Categories. For example, the category Ring desig
nates the class of all rings. This structure ensures the correctness of type. We can thus 
define functions which operate on, say, Matrix(R: Ring) without needing to specify 
which ring.

So, Domains can be Algebraic ones (like Integer, Polynomial or Matrix) or data  struc
tures (like lists or tables). One can build further types from these such as matrices 
of polynomials, or lists of integers or even lists of matrices of polynomials. However, 
polynomials with coeffients of type list are not possible.

It is the Category structure which ensures that the types are mathematically correct 
and allow functions to be created which operate on arbitrary types. These can be 
collected together within Packages and compiled thus extending the capabilities of the 
system. Indeed, most of the Axiom system has been created using Packages containing 
code for the creation and use of Categories and Domains.

2 For a full description of the technical workings of Axiom, see [Jenks &; Sutor, 1992].
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4 .3 .3  In teg ra tio n

In many ways, the interface to Maple and Axiom are similar. Each attem pt to maintain 
a consistency of expression concordant with mathematical thinking and practice. So 
input of the integration problems in §4.2.1 in Axiom are3:

(1) -> integrate(f := 4/(x~2+l),x)

(1) 4atan(x)
Type: Union(Expression Integer,...)

(2) -> integrate(f,x=0..1)

(2) '/.pi
Type: Union(fl: OrderedCompletion Expression Integer,...)

It can be seen that instead of i n t  we now use i n t e g r a t e  and along with the answer we 
are presented with the domain name. The second example is treated very differently 
to Maple:

(3) -> integrate(g := l/(1.0+3*sin(t)~2), t=0. .2*'/,pi)

(3) potentialPole
Type: Union(pole: potentialPole,...)

If we force it to evaluate as if the pole doesn’t exist we actually get an incorrect answer:

(4) -> integrate(g, t=0. .2*'/pi, "noPole")
(4) 0

Type: Union(fl: OrderedCompletion Expression Integer,...)

However, Axiom is supplied with a link to the NAG subroutine library [Dupee &; 
Davenport, 1996; Broughan et al., 1991; Hawkes & Ready, 1995] allowing the user to 
evaluate the integral numerically. The interface for this is more difficult but successful:

(5) -> dOlajf(0.0 ,'/,pi*2 ,0.0 ,1.0e-4 ,800 ,200 ,-1 ,g :: ASP1(F))

(5)
[w: Matrix(DoubleFloat), abserr: DoubleFloat, iw: Matrix(Integer), 
result: DoubleFloat, ifail: Integer]

Type: Result
(6) -> '/..result

(6) 3.14159265372921
Type: DoubleFloat

3It is unfortunate that the current output style for Axiom using UNIX machines does not have the 
flexibility of Maple.
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4 .3 .4  O rdinary  D ifferen tia l E q u ation s

The Package ElementaryFunctionODESolver provides an operation so lve  for finding 
closed form solutions of equations of type 4.1. Since everything must have a type, 
performing the operation is slightly different than using Maple. Taking example 4.2 we 
input:

(1) -> y := operator ’y

(1) y
Type: BasicOperator

(2) -> deq := D(y(x),x,2) - (l-y(x)~2)*D(y(x),x) + y(x) = 0
2

(2) y (x) + (y(x) - l)y (x) + y(x)= 0

Type: Equation Expression Integer
(3) -> solve(deq,y,x)

»  Error detected within library code:
getfreelincoeff: not a linear ordinary differential equation

This was, of course, a little optimistic [Postel & Zimmerman, 1996]. Numerical meth
ods, using the NAG library, have a completely different interface:

(4) -> d02bbf(20.0, 200, 2, 0, 0.0, [[2 , 0 ]],0.0001, -1,([Y[2] , Y[2]- 
Y[2] *Y[1] ~2-Y[l] ] : : Vector Expression Float) : :ASP7( *FCN) ,( [i/10 for i
in 1..200]::Vector MachineFloat)::ASP8(’OUTPUT))

(4)
[ifail: Integer, tol: DoubleFloat, result: Matrix(DoubleFloat), 
y: Matrix(DoubleFloat), x: DoubleFloat]

Type: Result

This calls the Runge-Kutta routine (d02bbf) directly with the system of first-order 
differential equations, producing output at 200 points between 0.0 and 20.0. These can 
then be plotted (see Fig 4.3.4):

(5) -> draw( [i/10.0 for i in 0. .200] ,column('/,. result, 1))
Graph data being transmitted to the viewport manager...
AXI0M2D data being transmitted to the viewport manager...

(5) TwoDimensionalViewport: "AXI0M2D"
Type: TwoDimensionalViewport
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0.8

Figure 4.3.4: van der Pol’s equation with /z =  1, y(0) =  2 and y'(0) =  0.

4.4 Conclusion

Computer Algebra Systems like Maple and Axiom can indeed perform a lot of calcula
tions for us. They can also call upon the power of numerical methods where closed form 
solutions either do not exist or are difficult to compute. However, there are drawbacks. 
The interfaces to these routines are not intuitive and whereas both systems provide 
help, much of this help is obtuse or uninformative to those “not in the know” .

Given that these methods exist, there must be a better way to implement them to give 
the user much more valuable information and provide an interface more consistent with 
the remainder of the CAS.
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C hapter 5

E xpert System s

5.1 Introduction

The essential characteristics of an expert system are normally regarded as1:

• containing a knowledge base i.e. some knowledge of a problem domain2 contained 
in a distinct and identifiable form representing human or expert learning about 
tha t domain. This could be anything from a simple database, to a set of inter
acting systems.

• having the ability to perform some reasoning on this knowledge (typically simu
lating human reasoning) in addition to performing any mathematical calculation 
or modelling. This would normally use heuristic methods which do not guarantee 
success but exploit rule-of-thumb techniques to achieve propositions with varying 
degrees of certainty.

• having mechanisms to explain its recommendations and justify its reasoning suf
ficiently to convince the user of its correctness.

How these are organised and used varies greatly with the individual requirements. In

JIt is very difficult to find some agreement or consensus amongst experts on the definition of an 
expert system. Some relax the requirement for an explanation mechanism, others insist that the 
knowledge acquisition phase i§ an integral part of the system. Some commentators define expert 
system s only in terms of other expert system s. [Frost, 1986] defines an expert system  as:

... a system which is capable of carrying out a task generally regarded as being difficult 
and requiring some degree of human expertise.

2It is apparent that there could be some confusion of terminology between problem or knowledge 
domain  and Axiom Domains. As far as possible I will use capitalisation on Axiom Domains only.
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some expert systems in the past, various techniques for setting goals and subgoals, 
rule-sets and other control features have been implemented in varying quantities and 
combinations to tailor the particular expert system to the task.

If we consider the Expert System’s knowledge base and inference mechanism as a form 
of Information Processing System, as defined by the Theory of Human Problem Solving 
([Newell & Simon, 1972]), we can look, analogously, at the requirements as part of a 
problem space which consists of:

1. A set of elements, U, which are symbol structures, each representing a state of 
knowledge about the task.

2. A set of operators, Q, which are information processes, each producing new states 
of knowledge.

3. An initial state of knowledge, uq, which is the knowledge about the task tha t the 
problem solver has at the start of problem solving.

4. A problem, which is posed by specifying a set of final desired states, G, to be 
reached by applying operators from Q.

5. The total knowledge available to a problem solver when he is in a given knowledge 
state, which includes (ordered from most transient to most stable):

(a) Temporary dynamic information created and used exclusively within a single 
knowledge state.

(b) The knowledge state itself — the dynamic information about the task.

(c) Access information to the additional symbol structure held in Long Term 
Memory (LTM) or External Memory (EM) (the extended knowledge state).

(d) Path information about how a given knowledge state was arrived at and 
what other actions were taken in this state if it has already been visited on 
prior occasions.

(e) Access information to other knowledge states tha t have been reached previ
ously and are now held in LTM or EM.

(f) Reference information th a t is constant over the course of problem solving, 
available in LTM or EM.

[Newell & Simon, 1972, p. 810]

34



This has led to a representation of an ES which is essentially concentrated in providing 
a large, uniform description of knowledge and a relatively simple inference mechanism. 
There are considerable benefits to such a picture although, by necessity, due to the 
diverse nature of some ESs, this is not always achievable or desirable.

5.2 Examples o f Expert Systems and Expert System  Lan
guages

In many respects, early expert systems have been task-driven, in that there is an easily 
identifiable goal and a set of rules to prove that goal or to prove subgoals leading to 
the goal.

If this is to identify the molecular structure of a chemical compound, as in CONGEN 
[Carhart, 1979] based on the Stanford University project DENDRAL, the goal is to 
identify the structure completely. The rules are constraints, either necessary or forbid
den, so that, given part of the chemical, the next element must either belong to, or not 
belong to, some particular subset of elements. The heuristic is to “test and discard” 
and the knowledge base is restricted to the constraints and the rules on how to change 
these constraints.

The knowledge base for the 1972 expert system for blood infections, MYCIN [Buchanen 
& Shortliffe, 1984], was far more extensive in that it contained rules of the form:

if condition 1 (and condition 2 ... (and condition m)) then 
assert conclusion 1 (and conclusion 2 ... (and conclusion n))

as well as a database of organisms and drugs. The control structures were more complex 
allowing subgoals to be easily verified and leading to a system of backward chaining. 
This is reasoning back from what it wants to prove towards the conditions that it needs 
to satisfy.

These techniques have been extensively used in expert system shells (prototype expert 
systems stripped of their domain knowledge), notably the MYCIN derivative EMYCIN 
(Empty MYCIN) containing the rule-based language, an organisational structure for 
the rules, the backward-chaining control, an interface to both create and edit the rules 
and user-interface. EMYCIN was used to great effect in expert systems such as PUFF 
investigating pulmonary function data.

The alternative rule structure, forward chaining, used in the data-driven expert system

35



created for VAX computer component arrangement, R l/XCON [Jackson, 1992, §17.2], 
written in the expert system shell OPS4 and re-written in OPS5, requires a different 
control mechanism to resolve conflicts where it might happen tha t more than one rule 
may be able to fire a t a particular time. Apart from these 3 (or 4) conflict resolution 
rules, there is no control over the firing of rules. Instead of looking a t the question 
Since we wish to prove A, what do we need to show?, it considers Given that we know 
A, B, ... , what can we assume?, and will that get us nearer our goal?

Many expert system shells have the feature tha t much of the algorithmic control nor
mally contained in computer programs is withdrawn. For many applications this does 
not pose any problem (except in gaining a complete understanding of all the processes 
when used in a large system) but it does have major problems when extensive expla
nation and recovery procedures are required.

Expert systems can also be written in so-called “logic” languages i.e. Lisp (sometimes 
categorised as a “functional” language) or Prolog using all the necessary control struc
tures and algorithmic complexity as required. In recent years, many logic, functional 
and object-oriented languages have been used to create expert systems, notably Lisp, 
Prolog and LOOPS.

5.3 The Knowledge Base

Knowledge can be divided into two forms — Facts i.e. atomic assertions th a t certain 
information is true, and Rules or Heuristics i.e. assertions that given a certain fact or 
facts, what other facts are therefore true, or can be assumed true. For example, given 
the Prolog predicates:

p a r e n t (  f r e d ,  john) . '/, Fred i s  a p aren t o f  John 

p a r e n t (  john , s u s a n ) .  '/, John i s  a p a ren t  o f  Susan  

gra n d p a ren t( X, Z) p a r e n t (  X, Y ) , p a r e n t (  Y, Z ) . 

s i b l i n g (  Y, Z) p a r e n t ( X, Y) , p a r e n t ( X, Z ) .

the first two are facts and the third is a rule such tha t we can infer th a t Fred is a 
grandparent of Susan, but cannot learn anything from the s ib l in g  predicate. If we 
later learn that:

p a r e n t ( joh n , a l a n ) .
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we can immediately (if we so wanted) assert that Fred is also the grandparent of Alan 
and also tha t Alan is a sibling of Susan.

This organisational paradigm does not preclude tha t the ‘fact’ might be tha t we can 
place a given degree of certainty to a particular piece of information. We can therefore 
build judgement into the system. Given the variety of expert systems and knowledge 
domains, the representation of knowledge described above is just one of many possi
bilities. However, the essential feature is tha t it embodies the knowledge of an expert 
within the domain.

Alternative organisations for this knowledge exist. One of these is the Frame whereby 
a collection of ‘slots’ or separate pieces of information associated with a distinct entity 
are brought together as a single ‘symbol structure’. When such information is filled 
i.e. complete, the frame is thus said to  be instantiated.

Obtaining this knowledge can be achieved by:

• Extraction from written sources e.g. textbooks, reports, case-studies etc.

• Interview of the domain expert (s), possibly over considerable time.

• Induction from examples

Where the issues are fairly well documented, if complicated, written sources contain 
a valuable supply of domain knowledge, especially if a consensus is required. Do
main experts would, theoretically, be excellent sources of information but obtaining 
tha t knowledge in usable form is particularly difficult. Examples can also be a useful 
additional source of information.

5.4 The Inference Machine

The main task of the inference machine is to use the knowledge contained within the 
knowledge base, together with any other knowledge it can elicit, to achieve a specified 
goal. This may include exploiting links between certain types of data  as defined by 
any predefined rules or strategies or asking pertinent questions of the user or external 
agents.

It is quite possible tha t this is the smallest part of the expert system but mistakes here 
can have disastrous consequences and can be the most difficult to trace and correct.

It is, however, inextricably linked to the explanation process, since the logic of the
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system and its inference mechanism must be imparted to the user in such a form tha t 
the process is understandable.

5.5 Explanation Mechanisms

The credibility of any expert system is likely to be dependent on its ability to justify 
and explain its reasoning. Since the task allotted to an expert system, or an expert, 
is more likely than not complex both in its demonstration and in its description, the 
user, whether another expert or a novice, must be able to follow the inference steps. 
Many expert systems founder because either too much jargon is used or much of the 
explanation concerns information already known.

[Weiner, 1979] identifies a number of important features including:

• Explanation should be limited to what is not already known to the user. It should 
therefore not be a restatement of the initial problem or its constraints.

• Details should not be given initially. It must be up to the user to ask for expla
nations otherwise the system will be seen as tedious and contrived.

• Details should be given in increments. There should thus be a hierarchy of ex
planation whereby the most technical of details are given only on the express 
command of the user.

• Explanations should be ‘marked’ in some way so tha t the underlying structure 
is more transparent. Thus explanation emanating from different parts of the 
inference process should be separated and identified.

5.6 Language Choice for the Proposed System

Given that the domain of the proposed expert system is Numerical Analysis, Prolog 
is unsuitable without extensive additions since it does not have the richness of math
ematical constructs. Lisp.itself would require large amounts of library code before it 
would be sufficient. So a low level language brings with it considerable development 
time.

A possibility would be the use of an expert system shell. Since our proposed expert sys
tem needs greater control of path-lines and would require many of these extra controls
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to be explicitly reinstated, the use of a shell such as OPS5 [Brownston et al., 1985], 
although written in Lisp and could easily access the Axiom system, would entail such 
re-writing as to be impractical.

As a symbolic language containing many characteristics reminiscent of Lisp, on which 
it is based, the Axiom language has some obvious advantages when we consider the 
domain of the tasks that we expect of it. It has been constructed with mathematical 
concepts, structures and operations in mind. Since it has a full panoply of control 
structures, we can tailor these to the task in hand, using as much, or as little, as 
necessary.

Whilst inference rules must be explicitly written in Axiom, because of its extensive 
library structure, inquiry and manipulation of required information is more logical, 
given the problem domain. The inclusion of computational agents, constructed using 
Axiom, for elicitation of further information would then be much more natural than 
using special inter-language constructs.
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Part II

A N N A
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C hapter 6

C om putational A gents

It is a matter of perfect indifference where a thing originated; the only 
question is: “Is it true in and for itself?”

G. W. F. Hegel (1770 - 1835) Philosophy of History

Computational Agents are programs which can be called by an expert system to an
swer specific questions about the current state. This may be just a simple look-up or 
it may be much more complicated, involving considerable calculation, evaluation or 
interpretation. However involved this may be, within the context of an expert system 
we must always keep in mind tha t efficiency is paramount.

6.1 Integration

There are a number of criteria affecting the choice of routine for numerical integration:

• Is the function continuous?

• How oscillatory is it?

• Is the range finite?

• Is there a weight? i.e. Is the integrand factorisable such tha t one of the factors is 
of a specific form? See §6.1.2.

I have therefore created computational agents to provide answers to these and other 
questions [Dupee & Davenport, 1995].
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6 .1 .1  T estin g  for C o n tin u ity

One of the major differences between algorithms for numerical integration is in their 
treatm ent of singularities. The question of “whether this or tha t function is continuous” 
is fundamental to many areas of mathematical analysis. Techniques have grown up 
through the years to address the problem. The most common method in mathematics, 
tha t of the 8 — e argument, underpins much of analysis today. But abstract arguments 
such as this cannot, yet, be achieved by Computer Algebra systems1. So how can we 
decide whether a function is continuous and, if not, where do its singularities lie? Or 
where might they lie? Added to this we would have to add the question: where might 
there be a problem which, even though it could be continuous, might (due to the nature 
of computers in general, the particular platform used or numerical algorithms per se) 
cause a computational error?

In general, some of these problems have been shown to be undecidable2 [Richardson, 
1968] and whilst various techniques show promise (Pade approximation etc.), compu
tation time has  yet to be considered. As such, a complete answer to these questions 
is not the goal — the requirement is only for a workable algorithm for finding possible 
singularities to a function.3

The functions tha t will be used, i.e. Elem entary R eal Functions, are those real 
valued expressions of a single variable which can be defined relatively easily using a 
finite number of polynomial, logarithmic, exponential, and trigonometric operations 
[Geddes et al., 1992, p. 512], There are two types of test for continuity required. The 
first is allied to the search for end-point singularities of the algebraico-logarithmic type 
i.e. of the form

f  (x) = (x -  a)c(b -  x )d \og(x -  a) \og(b -  x)g(x) \ x £ [a, 6]. (6.1)

1 Whilst theorem provers, today still at a fairly simple experimental level, might be able at some 
stage to mirror these arguments successfully, their use is not an option, given the nature of the problem  
i.e. we are looking for computational continuity or more particularly we are trying to identify where a

S IR  ( j  )
Fortran program could fail. For example, the function f i x )  =  — —- is continuous at x =  0. But if a

• ^
Fortran program attem pted to evaluate /  at 0, it will undoubtedly fail.

2 As in Theorem 3 of [Richardson, 1968], we multiply a discontinuous function by a function whose 
identity to zero is undecidable to prove that continuity is undecidable.

3 Since these tests will be applied in an expert system which chooses numerical routines for the 
solution of various problems, and that these routines require, in the main, Fortran subroutines for the 
evaluation of the function, indeterminate forms, such as 0 /0  need to be flagged as singular points even 
though l ’Hopital’s rule might show that there exist non-singular ways of evaluating this expression. This 
is necessary since, in Fortran, expressions of the form 0 /0  are undefined and therefore will, depending 
on the platform, signal an error.
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This could be satisfied by use of power series methods since it is sufficient tha t if a power 
series limit does not exist at an end point then a singularity exists. The identification 
of the values for c and d in equation (6.1) is considered in §6.1.2.

So let us look at the code to test for continuity of an expression a t a given point.

continuousAtPoint?(f:Expression Fraction Integer, e:Equation OrderedCompletion
Expression Fraction Integer):Boolean ==

1 := limit(f,e)$PowerSeriesLimitPackage(Fraction Integer, Expression Fraction Integer)

—  if the left hand limit equals the right hand limit, or if
—  neither limit can be found, the return type of limit(f ,e) is
—  Union (OrderedCompletion Expression Fraction Integer, "failed")

1 case OrderedCompletion Expression Fraction Integer =>
finite?(coerce(l)GOrderedCompletion Expression Fraction Integer) 

false

This fulfills all the requirements of the definition of continuity at a point4. It handles 
continuity at infinity5 by substitution of the variable to bring it to a finite point. It 
even deals with the problems that occur when the function is not infinitely differentiable 
since if a Puiseux6 series cannot be found, it uses exponential expansion7 to  find the 
limit [Knuth, 1981].

The second need for a test of continuity is a general search for all singularities within 
(interior to) the range of integration. A workable strategy for dealing with functions 
with multiple singularities is to split the function at those points and integrate over 
each segment separately. In this case we need to know not only th a t such singularities 
exist, but also where in the range of definition they are.

Given tha t we know when certain operations give rise to singularities, it is possible to 
search for these within an expression. This technique relies on the pattern matching

4 A function /  is said to be continuous at point c if and only if lim f { x ) =  lim f ( x )  =  / ( c )
x —►c*!- x —+c—

5The Axiom type OrderedCompletion Expression Fraction Integer is the same as Expression 
Fraction Integer with the points '/.pluslnf inity and ‘/iminuslnf inity added.

6 Variations on the Taylor series are the L a u ren t se r ie s  which can have a finite number of terms 
of negative  degree, and the P q ise u x  ser ie s  having terms of fractional  degree [Davenport et al., 1988].

Even at a singularity, many functions have a valid Laurent or Puiseux series w ithout, of course, a 
valid Taylor series. So a useful test for continuity at a particular point is to create a power series and 
test the leading exponent. If it is negative, the function contains a singularity at that point.

7The package writes the expression in the form of a quotient of exponential sums, each sum being 
a Puiseux series multiplied by an exponential of a Puiseux series. Lazy evaluation allows the limits to 
be calculated.
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ability of algebra packages and on our knowledge of functions to give us a complete list 
of singular or problem points.

The first of the techniques involved searches for particular operations in the expression 
which could give a singularity. For example, we know tha t for x = 0, the value of 
the expression ^ is not defined. So anything within the denominator of an expression 
which could be zero should be identified.

This would need to be handled recursively considering the range of definition of the 
input variable. The expression is looked at in terms of its expression tree. It is best to 
consider an example.

E x am p le  6.1.1 The function

f ( x )  = log ^1 + sin

has many singularities between 0 and 1.

jQg The first part to consider is the expression g(x) =
| This has a singularity at x = 0 and g{x) has a range

+ [l,oo)>

1 sin The expression h(g(x)) = l+sin(g(x))  will have zeros
j at g{x) =  -̂n~1̂ 7r but no singularities, but f { x ) =
/  log(h(x)) will have singularities at all o f these zeros.

/  \
1 :

So the singularities o f the function f ( x )  are at the
2 2 2 

3tt’ 7tt ’ TItt*points [0, ^ r, j - ,  t t - ,  • • •].

Thus there is a need for an algorithm which will look for operations for which singu
larities can occur, and search for possible causes of these singularities. Such pattern 
matching may already been done by the input parser and we only need access to the 
parser output. This is not the case with Axiom and we have to create explicitly an 
expression tree.

We can institute a look-up table containing the different elementary functions and 
any points at which they remain undefined together with some simplifying rules for 
expressions with singularities.

Let a,b  be elementary functions and p,cr be functions such tha t p =  SingularitiesOf
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and a — ZerosOf.

p(ab) C p(a)  U p{b)

= a{a)

P(ea) = p(a)

p ( a  +  b) c p{a)  U p(b)

p (lo g a ) = (7(a)

a(ab) c cr(a) U cr(b) U p(ab)

a ( h
a

= p(a)

These form a set of production rules which can be used in the search for singularities 
as well as those of more specific nature such as trigonometric expressions for which the 
look-up table is used (see tables 6.1 & 6.2). Since we are being conservative, we can 
replace the C by =  above. This may overestimate the number of singularities, including 
the possibility of indeterminate forms, but such points can be investigated using series 
methods should the need arise.

Operation f ( x ) Singularities at x  = Other Information

l
(*-«) a

\og(x) 0 Undefined on (—oo,0)

tan(x) 1 n e  Z

sec (a:) \ n e z

csc(x) nir | n  6 Z

cot(x) n7r | n  G Z

Table 6.1: P a r t  o f  a  Look-up T able fo r S ingu la rities

Once a function is found which can have singularities, we need to evaluate both whether 
it is in the given range and which points in the range. Since the input range for each 
function may not necessarily be the same as the range of x, such points must be 
evaluated using inverse functions. These inverse functions can be evaluated recursively.

45



Operation / f ( x )  = 0 at x = f (x)  = 1 at x = Other Information

log(x) 1 e Undefined on (—oo,0]

sin(x) 727T | n 6 Z < ± = ± ^ |n e Z

cos(x) t2"*1).*- I n e z 2n7r | n 6 Z

tan(a:) nir | n £ Z & ± ^ \ n e Z x  (2n+l)7T

sec(x) — 2n7r | n G Z x  (2n+l)7r

esc (a:) — | n e Z x ^  nir

cot(ar) & ^ - \ n e Z x ^  me

arccos(ar) 1 0.54030230586813977 x (—oo,—l) U (l,oo)

arcsin(:c) 0 0.8414709848078965 x 0  (—oo, -1 )  U (1, oo)

Table 6.2: Part o f a Look-up Table for Zeros

So, for the example 6.1.1 above, knowing that the function log(x) has a singularity at 
x =  0, and tha t x =  0 is in the co-domain of h(x), means we can search for the values 
of x responsible for the singularities. So we perform p -1 (/i_1(0)) to get the desired set 
of singular points.

This algorithm is implemented as s in g u la r i t ie s O f  in package dOlAgentsPackage 
(see Appendix A .l).

6 .1 .2  F in d in g  W eigh t F u n ction s

There are three types of height function of interest:

• Algebraic -  of the form giving rise to a singularity at a of degree c. We
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are thus looking for integrals of the form

dx  1

• Logarithmic -  of the form log(x — a) giving rise to an essential singularity a t a 
i.e. an integral of the form

rP
I log {x — a) log (/3 — x)g(x) dx 

J  a

•  Trigonometric -  of the form cosux  or sinux .

The computational agent for each essentially uses a pattern-matching algorithm looking 
for the operator within an expression, although there are slight differences.

An Axiom E xpression  is considered as a list of kernels, each of which have an operator 
and argument. If either log  or '/.power appear as the operator of one of these kernels 
and a singularity exists, further investigation is undertaken to establish if the argument 
contains either one of the end points of the range of integration or is of the form 
where a is within the range of the integral.

If cos or s in  appears as the operator of one or more of the kernels, it is necessary to 
find if it signifies a weight function. This is made more difficult because the internal 
representation of the expression may not be of the form weight X subexpression. 
In such a case, it looks for a common factor of the required type8. If there are two or 
more such weights it chooses the one with highest frequency lo.

A further requirement is to extract the weight from the integrand returning the weight, 
the transformed integrand and an indication of the type of weight found. These com
putational agents are implemented as

exprHasAlgebraicW eight

8W hilst it is eminently reasonable when performing formal integration on, e.g.

r P
I cos(u>x)f (x)  +  g(x)  dx 

J a

to split the integral into an oscillatory part and a non-oscillatory part,

r P  r P
I cos(u>x)f(x) dx +  I g(x)  dx 

J c l J a

there would be no benefit to doing this for numerical integration. The extra cost of splitting and 
numerically integrating the two functions over the same range would by far outweigh any advantage 
from using a special routine on the oscillatory part.
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exprHasLogarithmicW eights

exprHasWeightCosWXorSinWX

in package dOlW eightsPackage (see Appendix A .l).

6 .1 .3  M isce lla n eo u s  A g en ts

The computational agent f u n c t i o n l s O s c i l l a t o r y  estimates the number of zeros in 
the integrand. There are two cases. If there is a s i n  or co s  term, the algorithm 
considers the range of its argument as a multiple of 2n. Otherwise it uses a quick, but 
dirty, method whereby it evaluates the integrand at 30 random points within the range 
and considers the number of sign changes.

Other agents include r a n g e l s F i n i t e  which tests the endpoints of the range for infinities 
and p rob lem P oin ts  which is a quick version of s i n g u l a r i t i e s O f  for functions which 
are of the type, or can be coerced to the type, F r a c t io n  P o lyn om ia l  D o u b leF lo a t .  It 
checks the denominator polynomial for zeros using Sturm sequences [Davenport et al., 
1988, pp 124-128] [Collins &; Loos, 1983]. This also forms part of the algorithm for 
s i n g u l a r i t i e s O f .

6.2 Differential Equations

There are a number of factors which affect the choice of a suitable numerical solver 
for a particular initial value ODE problem. Foremost amongst these is the problem 
of stiffness, tha t is tha t the solution evolves on different time scales [Prothero, 1976]. 
Other attributes could be the stability of the solution, the cost of evaluating the ODE 
or its Jacobian, or the accuracy required of the solution.

Unfortunately, none of these have distinct answers -  the ODE could be partially stiff 
or slightly unstable. Also, these can conflict with each other i.e they interact competi
tively. “For example, if a system is stiff, but very large, the problem may degrade the 
performance of a stiff code to the extent tha t a non-stiff code is preferable” ([Lucks & 
Gladwell, 1992, p. 12]). This conflict will be handled by the inference mechanisms and 
the knowledge rules in sections 7.1 & 8.2. This section deals with the computational 
agents to provide information (in the form of a normalised value) on the intensity of 
an attribute [Dupee & Davenport, 1996]. They are thus called Intensity Functions and 
have the postfix IF.
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6.2.1 Testing for Stiffness and Stability

In dynamics, chemical engineering and electronics, the study of physical systems and 
the modelling process produces differential equations which may have solutions with 
both rapidly and slowly decaying components. One such analogy is to a complex vibrat
ing mass-spring system where the springs are of wildly different stiffness coefficients. 
In trying to obtain a numerical solution to a system of such equations, this differing 
behaviour causes major problems for some standard algorithms such as Runge-Kutta 
and Adams methods since the direction of the solution vector at any particular time 
is swamped by the local behaviour. Certain alternative methods have been found to 
deal with this problem. It is therefore necessary to identify when such a system has a 
degree of stiffness.

Each system of differential equations has an associated Jacobian matrix which can be 
evaluated at, or near, the initial values. The eigenvalues of such a matrix give an 
indication of the stiffness of such a frozen system9 [Lambert, 1973, pp 228-236]. It 
is assumed in many models of dynamic systems tha t the stiffness ratios are constant 
throughout the range. This may not be the case in more arbitrary systems, where one 
might be advised to use alternative, but more expensive, methods. [Dekker & Verwer, 
1984, pp 10-12]. However, this is beyond the scope of current work.

So the computational agent s t i f fn e ssA n d S ta b il i ty O fO D E IF  calculates symbolically 
the Jacobian matrix (if the system is not too large i.e. < 12 x 12) and its real eigen
values. Since symbolic methods can be expensive in finding complex eigenvalues, the 
computational agent uses a technique th a t would seem perverse should it be consid
ered by a numerical analyst. Should the number of distinct real eigenvalues not equal 
the dimension of the Jacobian (or one less than the dimension of the Jacobian since 
complex eigenvalues can only occur in pairs)10, the algorithm calls on the appropriate 
NAG Fortran Library routine (F02AFF) to calculate them numerically. This can be 
considered since, once the link to the NAG Library is in place, its use will not be as 
expensive as it would be either to  create the code manually or to continue to use sym
bolic methods. This, in one way, can be thought of as a form of recursivity — creating 
a Fortran program to find out which form of Fortran program should be created to 
solve the problem.

9If two or more of the eigenvalues have negative real parts, an estim ate of the stiffness is the ratio 
of the most negative to the least negative

10If some of the eigenvalues have multiplicity >  1 such that the number of eigenvalues is less than 
that required, the algorithm cannot distinguish them from complex eigenvalues without calculating the 
eigenvectors. This could be too expensive if the calculation is attem pted symbolically.
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A lgorithm  6.1 (C om putational Agent)

function stiffnessAndStabilityFactor 
if  system is not too big then  

com pute real eigenvalues 
if  number o f eigenvalues is sufficient10 then  

com pute stiffness ratio 
output stiffness ratio (system is stable) 

else
call f02aff
if imaginary coefficients all zero then

output stiffness ratio = zero (system is stable) 
else

com pute eigenvectors 
com pute stiffness ratio 
cdm pute stability factor 
output all

At the same time as investigating the stiffness of the ODE, it calculates a stability 
factor which is the proximity of the negative eigenvalue closest to the imaginary axis. 
This may or may not be one of the eigenvalues responsible for the stiffness coefficient 
previously calculated. The effect of this proximity is a system with a rapid sine or 
cosine factor in its solution. This can also have a detrimental effect on certain routines, 
in particular those implementing the BDF method and, to a smaller extent, the Adams 
method.

6 .2 .2  O th er  A g en ts

The other computational agents associated with ODEs are primarily concerned with 
the cost of calculation and evaluation of the ODE. The function s y s te m S iz e lF  returns 
a value in the range [0,1] as a function of the number of first-order equations in the 
system (e.g. a system of 20 equations is considered neutral and would give a value of 
about 0.5, many more than tha t would give a higher value); ex p en seO fE v a lu a t io n lF  

considers the cost of evaluation of the ODE as a function of the number of mathe
matical operations required (a neutral value would be given by the equivalent of about 
200 multiplications); a ccu racy lF  returns a value for the accuracy requirement and 
in te r m e d ia te V a lu e sIF  returns a value for the number of intermediate values th a t the
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user requires solutions, usually for later plotting or further analysis. Each of these 
affect in some way the possible optimum step-sizes for the numerical solver. These are 
all implemented in the package d02AgentsPackage.

For Partial Differential Equations, one of the essential requirements for some solvers 
is whether the system is elliptic. The computational agent e l l i p t i c ?  in package 
d03A gentsPackage uses the facilities provided by this expert system to utilise a number 
of numerical optimization techniques for testing for this attribute.

6.3 Optimization

An im portant question in mathematical modelling concerns the problem of finding 
the location of the local minima or maxima of a function [Cheney &; Kincaid, 1985]. 
Numerical optimization techniques, specifically minimization, are often required for 
large problems, usually involving a list of constraints. It is not always apparent what 
sort of problem the user has been presented with, so most of the computational agents 
are designed to aid categorisation of the problem and the constraints.

6 .3 .1  C a teg o r is in g  th e  O p tim iza tio n  P ro b lem

The computational agents sim p le? , l in e a r ? ,  q u a d ra tic? , and nonL inear? contained 
in the package e04A gentsPackage test both functions and constraints for these a t
tributes. There is also a computational agent for testing whether a particular (un
constrained, univariate)11 problem could be put in the form of a sum of squares, by 
considering its square-free factorisation12, and thus be applicable to more efficient nu
merical algorithms.

11 The computational agent is required to  test whether a problem that the user assumes  is of a 
type usually solved using standard minimisation techniques, but is probably better solved using least- 
squared approximation. Due to the difficulty of providing in Axiom an efficient mechanism for testing  
multivariate expressions, it will therefore be a single univariate function.

12 Axiom can only consider the square-free factorisation of expressions that can be put into polynom ial 
form, so it is possible that not all sums of squares can be identified.
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6 .3 .2  S o rtin g  C o n stra in ts

Since some routines require constraints to be entered in order of degree, the computa
tional agents above can be used in a sorting algorithm13 to order the constraints. This 
relieves the user from the task of always remembering tha t the numerical routines re
quire the correct order. Since the constraints have the internal representation of three 
lists (the constraint functions, the upper bounds and the lower bounds), care is taken 
to ensure tha t all three lists are ordered simultaneously. This is really a usability issue, 
but an im portant one, considering tha t the aim is to create a more intelligent interface 
to these routines.

6.4 Conclusion

I have described a number of different computational agents, some of which use heuris
tics while others use deterministic methods. In general, these have been designed to 
perform their task with reasonable efficiency. Of course, sometimes this means th a t 
the answers they give may contain errors.

For example, there does not exist a perfect algorithm for calculating all the singularities 
of a function and even if one existed, it would be likely to take a prodigiously long time. 
The difficulty arises with expressions of the form f(x)+g(x) where either f ( x )  or g(x)  is 
an exp-log function and the other is non-constant. In this case the algorithm I have 
implemented may not find the singularity. In such a case where the singularity exists, 
there are three possible outcomes: the chosen routine may fail so an alternative is used 
which succeeds; the chosen routine succeeds since the singularity is either removable or 
not significant; or all routines will fail.

There are cases where the test used for stiffness of a set of ODEs will give misleading 
results, especially if the stiffness is apparent only on a portion of the range. Fortunately, 
since the routines used are adaptive, the effect is unlikely to be disastrous. Another 
possible cause of some inefficiency is if there are real eigenvalues of the Jacobian with 
such multiplicity tha t it forces the computational agent to perform further analysis. 
This extra analysis is not'onerous and will not slow the process greatly.

The test for oscillations of an integrand could fail if all the oscillations are contained in

13I have implemented a bubble-sort since simplicity of algorithm design is im portant and, should 
there be a large number of constraints such that bubblesort is not optimal, the tim e spent ordering the 
constraints is relatively small compared to the tim e performing the numerical stages.
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a small part of the range. Should that be the case, a routine specifically for oscillatory 
functions would not be entirely appropriate.

So, where there are possible traps, I have endeavoured to minimize their effects so as 
to provide as consistent a set of computational agents as is reasonable.
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C hapter 7

T he K now ledge Base

Knowledge is the conformity of the object and the intellect.

Averroes (1126 - 1198) Destructio Destructionum

The major part of the knowledge base is concerned with the possible methods that can 
be used to solve particular problems posed by the user. These fall neatly into the four 
‘chapters’ of numerical integration, ordinary differential equations, partial differential 
equations and optimization. For this reason, the method domains are divided amongst 
the four Axiom Categories (see Appendix B .l). Each of these Categories provide a 
consistent structure, operations and interface to these methods implemented as Axiom 
Domains corresponding to §5.1, p. 34, 1 and 2.

Other parts of the knowledge base are concerned with the current state of the knowl
edge gained about each problem (Dynamic Knowledge — §5.1, p. 34, 5(a) and 5(b)), 
and knowledge about basic elementary functions used by certain computational agents 
rather than the inference engine (§5.1, p. 34, 5(f)).

For ease of use, a further table is used which contains a list of available routines and 
their application areas, together with indications whereby, if a routine has already been 
found which has a good likelihood of being able to be used efficiently, a lazy evaluation 
mechanism is triggered (§5.1, p. 34, 5(c)). This Domain R outinesT able also contains 
details of the IFAIL values and indications of possible fall-back strategies as well as 
initial values for measures which are altered or optimized in the Measure Domain.

These IFAIL instructions often only require the deletion of tha t particular routine from
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the database and re-input the problem. Sometimes, however, it may be necessary to 
alter the required tolerance (either up or down).

The routine d O la jf is listed in this database as:

chapter=  " I n te g r a t io n " ,  

typ e=  "O ne-d im ensional f i n i t e " ,  

domainName3 "dO lajfAnnaType", 

defau ltM in =  0 . 4 ,  

m easure3 0 . 4 ,  

f a i l L i s t  =

[ [ i f a i l =  1 , in s t r u c t io n 3 " d e le te " ] ,

[ i f a i l 3 2 , in s t r u c t io n 3 " d e le te " ] ,

[ i f a i l 3 3 , in s t r u c t io n 3 " d e le te " ] ,

[ i f a i l 3 4 , in s t r u c t io n 3 " d e le te " ] ,

[ i f a i l 3 5 , in s t r u c t io n 3 " d e le te " ] ,

[ i f a i l 3 6 , in s t r u c t io n 3 " d e le te " ]]

The Domain also has a number of functions for both searching this database and 
modifying any entries.

7.1 Knowledge o f M ethods

An Axiom Domain has been created for each method or strategy for solving the prob
lem. These method Domains each implement two functions with a uniform (method 
independent) interface:

m easu re : A function which calculates an estimate of suitability of this particular 
method to the problem if there is a possibility th a t the method under considera
tion is more appropriate than one already investigated.

If it may be possible to improve on the current favourite method, the function 
will call computational agents to analyse the problem for specific features and 
calculate the measure from the results these agents return. It also calculates 
any method-specific parameters, such as weight functions, points and types of 
possible discontinuities etc., for later use.

im p lem en ta tio n : A function which may be one of two distinct kinds. The first kind 
uses the interface to the NAG Library to call a particular routine with the required
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parameters. Some of the parameters may need to be calculated from the data  
provided before the external function call such as workspace parameters. It also 
makes sure tha t all the data are in the correct form i.e. tha t the parameters are 
of the correct types, external functions are properly named and specified and all 
parameters are in the correct order.

The other kind applies a “high level” strategy to try to  solve the problem e.g. a 
transformation of an expression from one that is difficult to solve to one which is 
easier, or a splitting of the problem into several more easily solvable parts. This 
may thus enforce some recursion on the measure function.

For example, the Integration Domain dO lapf AnnaType, a routine for calculating in
tegrals where the integrand is of the form of Equation 6.1 (p. 42) contains the two 
functions m easure and n u m e r ic a lln te g r a t io n .

A lgorithm  7.1 (M ethod D om ain dO lapf A nnaType)

function measure 
in itialise c, d, I 
com pute algebraic weights 
if  integral has algebraic weights then  

set c, d 
com pute logarithmic weights 
if  integral has logarithmic weights then  

set I
if  no weights found then  output

[ 0 ,  "dO lapf: A s u it a b le  s in g u la r i t y  has n o t b een  found"] 
else com pute measure 
output

[ m easure, "Recommended i s  dOlapf w ith  c = " c ",
d = " d " and 1 = " 1 ]

function numericallntegration 
F a d  com pute x — a
Fac2 com pute b — x
#  compute factors 
fac  <— F a clc * Fac2d 

if  I > 1 then  
if  / =  2 then

fac <— fa c  * log(Facl)
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else if  I =  3 then
fac <— fa c  * \og(Fac2) 

else
/ac <— /a c  * log(Facl) * log(Fac2) 

#  reduce integrand 
Fn Fn/fac
/  co n v ert Fn to F o rtra n  
call dOlapf

Within the function measure, it searches for algebraic and logarithmic singularities 
a t the end points of the range of the integrand. If it finds any, this is signaled to 
the inference mechanism as a positive ‘measure’ along with details of the singularities 
found.

If the expert system inferred th a t this was the most appropriate routine to perform 
the integration, the function n u m e ric a lln te g ra tio n  would translate the information 
thus gained into a form suitable for the NAG library routine. It has to separate the 
logarithmic and algebraic weights from the function before it is translated into a Fortran 
function. This is then passed directly to the Fortran routine together with the other 
parameters.

Another Integration Domain of considerable interest is dO lTransf ormFunction. This 
is designed to investigate the appropriateness and perform an algorithm to transform 
an infinite integral into either one or two finite integrals and thus allow the system to 
use a better range of numerical routines. Its measure function is:

A lgorithm  7.2 (M ethod  D om ain dOlTransform Type)

fu n c tio n  measure 
co m p u te  range 
if both ends infinite th e n  

call s p l i t  
if upper end infinite th e n  

if  lower end is positive th e n  
call tran sfo rm  

else
call s p l i t  

if  lower end infinite th e n  
if  upper end is negative th e n
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call transform  
e lse

call s p l i t

This calls on two local agents s p l i t ,  if the function needs to be split into 
two, and tr a n sf  orm to transform it onto a finite region using the mapping 
x i—► 1 / i .

local fu n ction  transformFunction 
Mapping <— co m p u te  x =  1/t 
Integrand <— ap p ly  Mapping to Integrand 
sim p lify  Integrand

local fu n ction  transform 
co m p u te  range 
call transform Function  
m 4— call measure # Top L evel C a ll 
o u tp u t

[ m, "The recommendation i s  to  transform  th e  fu n c tio n
and use " name, L is t  o f H ints ]

local fu n ction  split 
c o m p u te  range
m l <— call measure # Top L evel C a ll 
call transform Function  
co m p u te  range
m2 *—  call measure # Top L evel C a ll
m com b ine m l and m2
ou tp u t

[ m, "The recommendation i s  to  transform  th e  fu n c tio n  
and use " namel " and " name2 , L is t  o f H ints ]

It places all this information in a list for later implementation (should it 
be required) within the function n u m e r ica lln teg ra tio n  which recursively 
calls a top level integrate function on the list:

fu n ction  numericallntegration 
for Hint in List of Hints rep eat  

co m p u te  Integral
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call in te g ra te  # Top Level C all 
co m p u te  Result 
co m p u te  Error Estimate 

o u tp u t All

7.2 Dynamic Knowledge Representation

Each method domain can call any of the computational agents it needs to calculate 
how appropriate tha t method is to the current problem. Some agents will be common 
to more than one method domain or problem category, whereas others may be specific 
to a single domain. For example, the computational agent expHasAlgebraicW eight is 
only used by the Domain investigating the usefulness of the integration routine dOlapf, 
whereas stiffnessA ndStabilityO fO D E IF  is used within all ODE method Domains.

For this reason, to minimize computation, each computational agent places a copy of 
the knowledge it has gained into a keyed table. The key for each item is the current 
problem specification. So before a particular computation agent performs its task, it 
checks to see if it has already been called with this same problem and therefore does 
not need to do any recalculation. It can also tell if this particular problem has already 
been investigated within the current session. This knowledge is used by parts of the 
inference machine and as a significant part of the explanation process, the current 
values of the table being presented as part of the output.

All other storage of dynamic data  (§5.1, p. 34, 5(e)), such as results of previous prob
lems, are handled by the Axiom indexed buffer. For example, the nth result is accessed 
as (n) [Jenks & Sutor, 1992] c.f. Appendix A.
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C hapter 8

M easure Functions

Est modus in rebus.

Horace (65 - 8 B. C.) Satires

In this expert system we are faced with evaluating potential strategies for obtaining 
solutions to a set of mathematical problems. This entails measurement of various 
attributes of each problem for use as evidence. As described in [Dupee, 1996], we 
require a sound theoretical basis for this measurement and therefore use belief functions 
or measure functions to give values to the effectiveness of each strategy.

The requirement is to assign to  each method some measure which tells us how effective 
the method is likely to be given the current problem. The aim is thus to get numerical 
measures for the effectiveness of each of a number of possible methods for automatic 
comparison. If the method applications were disjoint, for example, if for each prob
lem only one method were possible, such measurement would be trivial. Also, if all 
methods were simple i.e. not likely to include multiple strategies, and attributes of the 
given problem did not in any way conflict, Bayesian methods would be appropriate. 
However, as will become apparent, these complications appear and require alternative 
approaches.

Sometimes we use strategies which are themselves multiple strategies i.e. we wish to 
split the problem into a number of pieces and wish to give appropriate values to them 
for comparison with other multiple and singleton strategies. This process forces a 
structure on the underlying singleton values.

Other strategies may have attributes which conflict in some way. We therefore have to
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use functions describing the compatibility of each attribute in combination with each 
possible strategy.

Bayesian theory is restricted to singleton hypotheses and so cannot on its own be 
applied where multiple strategies are possible. For this reason, a more respectable 
solution is applying Dempster-Shafer theory ([Gordon & Shortliffe, 1983; Paris, 1994]) 
whereby we can assign measures to any number of subsets of the set of strategies. 
However, such a set of subsets does not normally include multiple copies of the same 
strategy.

[Gordon h  Shortliffe, 1985], [Pearl, 1986] and [Shafer & Logan, 1987] show us how 
we can construct belief spaces for evidential reasoning using Dempster-Shafer theory 
on a hierarchy of hypotheses. This is used as a basis for considering hierarchies of 
the complete belief space and some of the effects this necessitates on the system. The 
following section is a summary of the main theoretical ideas in [Dupee, 1996] which 
allows the use of limited recursion within Dempster-Shafer theory as a basis for the 
comparison of single and multiple strategies.

8.1 D em pster Shafer Theory with M ultiple Strategies

D efinition  8.1 Let 0  be a M easurable D iscrete Topological Space of the set of 
subsets of a set of methods S . This is the D em pster-Shafer fram e o f  discernm ent.
So the set of hypotheses is 0 .  It is not discounted that two or more members o f S  
represent the same method.

Exam ple 8.1.1 Let the set o f methods S = { A , B , C } X. Also, let A  and B  represent 
the same method and C represent two copies of method A. We can construct 0  as 
all subsets of S . This set 0  contains the subsets {A, B } and {C}; each, ostensibly, 
representing the same strategy i.e. using method A twice. We will have to reconcile 
these and judge their respective values within our proposed model.

*We might wish to consider that A  and B  are both the general integration m ethod d O la jf and C  
represents the m ethod dOlamf, which splits the function and uses d O la jf on each section. S  therefore 
represents all combinations of these i.e. includes the combination of performing the splitting outside  
the routine (as implemented in the Method Domain dOlTransform) and using d O la jf twice, as well as 
the single method dOlamf which splits the function inside the routine
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W hat we propose to do is to work theoretically on multiple levels i.e. treat singleton 
strategies differently from multiple strategies. To do this, we consider S  as the set of 
methods without copies. An element of 0  which represents a multiple method strategy, 
instead of using the singleton elements within 0 , creates a number of copies o f 0 . 
In the terminology of Shafer ([Shafer, 1976]), this is a refinement of 0  such th a t an 
element of 0  is recursively refined as being one or more copies of 0 .

The extension of the Dempster-Shafer frame of reference to include multiple topologies 
has an effect on the inference architecture, since we are now having to work on a number 
of different levels. This forces us to maintain levels of belief in 0  even though we can 
completely assign values to all singleton elements of 0 .  The effect can be seen in an 
example.

E x am p le  8.1.2 Let S  be the set o f strategies {M i, M2 , . .  .M n} where M \ is a strategy 
representing a number o f any o f the methods M2 . . .  Mn . The basic probability assign
ments (b.p.a.) for the singleton methods o f 0  are calculated in the usual way, but the 
b.p.a. of M \ is calculated from one or more copies of 0 ,  say ©1, . .  . 0 m, by combining 
the largest b.p.a.s of the 0 i , .. . 0 m-

This therefore splits the original problem into two or more pieces and a b.p.a. obtained 
for each of these separate subproblems.

The effect of this is to cause difficulties with consistency of the system. This can be 
solved using a further normalisation. Now th a t we have the foundations of a hierarchical 
system, we can investigate some of the features and peculiarities the system provides.

E x am p le  8.1.3 Let S  be as above and M 2 represent a singleton method which splits 
the problem and uses a particular method on each sub-problem.

Furthermore, let the remaining M3 . . .M n be subdivided into two groups i.e. specific 
and general. A specific method is one that is specific to a single type o f problem. A 
general method is one which can be addressed to many different types of problem (with, 
perhaps, a differing degree of reliability).

Let us consider the b.p.a. for each o f M i and M 2 , i.e. we have a problem which can 
be solved using these two strategies. I f  the individual methods used both by Mi and M 2 

are general methods, the cost of using M i is likely to be higher so the system should 
give a higher b.p.a. to M 2 ■ However, if  one or both of the methods selected for use
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by M i is specific, and specific methods are always preferred, a higher b.p.a. should be 
allocated to M i .

Using D e m p s te r ’s R u le  o f C om bination , this would only be possible i f  the b.p.a. of 
specific methods (having the highest b.p.a. in the sub-topologies above) is greater than
0.5 and all general methods have a best b.p.a. of less than 0.5.

Since there can be no difference between the pattern o f the topology 0  and the copies o f 
0  used to calculate the b.p.a. of M i, this structure must be applied throughout. Further
more, the maximum  b.p.a. for M 2 must be finely judged as being slightly greater than 
the maximum  b.p.a. for the combination of the singleton general methods it represents.

Whilst I have used only a single multiple strategy extending the topologies, it is possible, 
using the same reasoning, to expand the example to have more than one strategy with 
this feature.

8.2 Conflicting Evidence and Lucks/Gladwell M easures

Where we have conflicting evidence, Dempster-Shafer theory can be applied to  calcu
late the plausibility of each singleton method. In combination with possible multiple 
methods, the normalisation process is more complex since we must always maintain 
belief in 0  to allow for the extended topologies.

However, the implementation we have used deserves a little explanation. In keeping 
with the system recommended by Lucks & Gladwell ([Lucks h  Gladwell, 1992]) we 
have introduced four types of functions:

m e a su re m e n t fu n c tio n s2 quantifying the degree of presence of features in an input 
elementary problem;

in te n s ity  fu n c tio n s  conversion of the measurement of features onto a standard scale;

co m p a tib ility  functions describing relationships between the degree of presence of 
features and the behaviour of the inner workings of the methods;

ag g reg a tio n  func tio n s  describing the overall behaviour of a method based on the 
aggregate effect of the individual problem features.

2These are not the same as the measure functions of this chapter but are the initial measurements 
of the individual attributes.
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The compatibility functions are used as the input to our D-S model which is imple
mented within the aggregate functions. We can therefore economise on code by using 
dynamic table lookup for values obtained for the intensity functions. The behaviour of 
individual methods under the influence of various features is an area tha t takes as its 
basis the judgement of Numerical Analysis “experts” whether tha t be from documen
tation or alternative sources. However, its assessment of the suitability or otherwise of 
a particular method to a particular problem is reflected in a single normalised value 
facilitating the direct comparison of the suitability of a number of possible methods or 
strategies.

8.3 Application

Given the example of assessing the applicability of numerical integration routines, we 
can think of these methods as falling into three subgroups -  those tha t implement a 
general strategy which can be applied to a large subset of integrals; those tha t im
plement a specific strategy for applying to particular subsets of integrals i.e. of those 
functions which reveal a particular attribute or set of attributes; those th a t implement 
a number of strategies e.g. those tha t split the function into two and perform different 
strategies on each part. However, it is of extreme benefit to maintain a consistent 
interface to each of these methods and each must be considered equally.

So we have, for example, a routine d O la jf which implements a strategy which can 
be addressed to a wide variety of different classes of integrals, but which may fail 
to work, or give an inaccurate result, under certain difficult conditions. We have a 
routine dO lapf which is ideal for use in situations where the values of the integral at 
the end points of integration are undefined or uncalculable, but which are of little or 
no benefit in other cases. We also have routines such as dOlamf and dO ltran sform  

which, should one or both of the end points of integration be infinite, will split the 
function and transform each part onto a finite region before implementing one or more 
of the other routines. The routine dOlamf performs this internally (hard-wired into 
the Fortran code) using a general routine for the implementation and dO ltran sform  

does the splitting and transformation externally (in the Axiom interface to the NAG 
routines) and can then implement any of the other routines depending on the attributes 
it finds.

So specific routines such as dOlapf give a positive b.p.a. if the specific attributes or 
combination of attributes is present; d O la jf and other general routines give a positive
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b.p.a. unless certain difficult conditions prevail; dOlamf gives a positive b.p.a. if the 
integral is finite or semi-infinite (since the details of transformation and implementa
tion is hidden, no other analysis can take place) whilst dO ltransform  performs full 
analysis of the different parts of the integral and calculates its b.p.a. from the b.p.a.s 
of the individual routines which should be considered appropriate for each separate 
part. Therefore, if specific routines are appropriate, this strategy should be applied in 
preference to dOlamf.

Where the expert system is attempting to assess possible routines for solving a system 
of ODEs, the Lucks/Glad well compatibility functions are used as the input to the D-S 
frame. The complete measurement process is thus kept within the Method Domains.
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C hapter 9

Inference M echanism s

The question now is, to know whether the mind has made this inference right 
or no; if  it has made it by finding out the intermediate ideas, and taking 
a view of the connection of them, placed in due order, it has proceeded 
rationally, and made a right inference.

J. Locke (1632 - 1704) An Essay Concerning Human Understanding

9.1 Inference Packages

The choice of method domains and computational agents means tha t there is a require
ment only of a small and relatively simple inference engine (c.f. §5.1, p. 34). The job 
of this inference engine is to control the process of choosing a possible method and 
performing any recovery mechanism should that be required. It may also be required 
to transform both input and output into some standard form, either for use by the 
system or for further possible use by some other agent.

Four Axiom packages have therefore been created, one for each problem area, with sim
ilar functionality which additionally act as the command line interface to the package 
and provide the remaining sections of the [Newell & Simon, 1972] Information Pro
cessing System §5.1, p. 34, 3 and 4. For example, the package for integration contains 
functions as below.
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Algorithm 9.1 (Inference Machine for Integration)

function measure
select database entries for relevant routines 
in itialise best measure so far  
for each relevant routine repeat

if possible measure > best measure so far then  
call measure function o f method 
if  measure > best measure so far then  

assign measure to best measure so far  
assign hints to database 

output result of best measure found

function integrate
convert data to correct form  
call measure
call integrate function of best measure 
if  integrate function fails then  

call recovery procedure 
convert output to correct form  
output result

local function recover
w hile result is not satisfactory do 

store result
if  recommendation is to repeat integration with 

changed parameters then  
change parameters 
call integration routine again 

else if  only one routine in database 
result is best we can do

else
delete routine from database 
call integrate #  Top level function

By reducing the size and complexity of the necessary inference mechanisms, it is easier 
to see the relations between the expert system and the definition Newell and Simon use
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of the decisions to be made within a problem-solving information processing system :

1. At a knowledge state (a node in the problem space), to select an operator to be 
applied.

2. At a new knowledge state, to determine whether problem solving shall continue 
from this state or not.

3. At a knowledge state, to determine whether the knowledge state shall be remem
bered, so tha t return can be made to it at some later time.

4. At the decision to abandon a knowledge state, instead of continuing to search 
from it, to select another knowledge state in the backup state.

[Newell &; Simon, 1972, p. 826]

9.2 Recovery Procedures

Indication tha t a problem has been encountered during the numerical stages of the 
computation is provided by the Naglink in the form of a non-zero value of the parameter 
i f a i l  which corresponds to the Fortran parameter of the same name returned by 
the NAG library routine. In the NAG Fortran library documentation pages referring 
to each routine there is a list of failure codes, each with their possible causes and 
recommendations. For example, the error failure codes for the ordinary differential 
equations routine using the Adams-Bashforth-Moulton method d02 c jf are listed by 
the on-line help as:

* D02CJF
D. Error Indicators and Warnings 

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are 
output on the current error message unit (as defined by 
//X04AAF//).

IFAIL = 1
On entry, TOL <= 0.0, 
or N <= 0,
or RELABS <> ’M \  »A\ ’R* or ’D ’,
or X = XEND.
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IFAIL = 2
With the given value of TOL, no further progress can be made 
across the integration range from the current point x = X. (See 
Section 8 of the routine document in the NAG Fortran Library 
Manual for a discussion of this error exit.) The components 
Y(i) ,Y(2),...,Y(N) contain the computed values of the solution 
at the current point x = X. If the user has supplied g, then no 
point at which g(x,y) changes sign has been located up to the 
point x = X.

IFAIL = 3
TOL is too small for //D02CJF// to take an initial step. X and 
Y(l) ,Y(2),...,Y(N) retain their initial values.

IFAIL = 4
XSOL has not been reset or XSOL lies behind X in the direction 
of integration, after the initial call to OUTPUT, if the OUTPUT 
option was selected.

IFAIL = 5
A value of XSOL returned by OUTPUT has not been reset or lies 
behind the last value of XSOL in the direction of integration, 
if the OUTPUT option was selected.

IFAIL = 6
At no point in the range X to XEND did the function g(x,y) 
change sign, if g was supplied. It is assumed that g(x,y) = 0 
has no solution.

IFAIL = 7
A serious error has occurred in an internal call. Check all 
subroutine calls and array sizes. Seek expert help.

It is immediately noticeable tha t if, for example, IF A IL  was returned with either value 
1, 4, 51 or 7 that, on the proviso tha t the Method Domain was correctly implemented, 
this would signify some internal error of either Axiom, the Axiom-NAG link (nagd or 
nagman) or of the NAG library routine itself. Since it would not be possible to discern 
which of these is the cause, the most reasonable move would be to disregard the output 
from the routine and re-submit the problem.

But not all IF A IL  values fall into this category. Therefore there are a number of different 
recovery procedures which require implementing:

1XS0L is a parameter of the automatically created Fortran subroutine for the storage of intermediate 
values.
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• If there is a catastrophic failure i.e. if the routine fails to provide any result, the 
routine is to be removed from the database and a different routine should be 
chosen.

• If an alteration of, say, the error requirements is suggested and there is no other 
indication of possible failure, i.e. by altering such parameters the result can be 
obtained, such action should be taken and the routine re-implemented.

• If the best possible error value returned by the routine is higher than tha t re
quested, a further routine is to be chosen and, if successful, the results output 
alongside indications of the failed routine and its results.

• If the indication is only a warning or some other information which does not 
indicate any misgivings in the given result, no further action is required.

This information has been incorporated within the table of routines section of the 
knowledge base (see §7) as:

chapters "ODE", 

type= "IVP",
domainName= "d02cjfAnnaType", 
defaultM in= 0 . 7 ,
measures 0. 5,
failList =

[[ifail= 1,instructions "delete"] ,
[ifail= 2,instructions "decrease tolerance"],
[ifail= 3,instruction= "increase tolerance"],
[ifail= 4,instruct ion= "delete"],
[ifail= 5,instructions "delete"],
[ifail= 6,instructions "no action"],
[ifail= 7,instructions "delete"]]

Since some IFAIL values of a number of routines could represent a range of possible 
failures, there may be times when the rejection of a routine could be considered a 
little drastic except tha t further analysis of why the routine has failed is likely to be 
complicated and not a process which could be implemented automatically.

Certain other failures would be due to incorrect array sizes or other mistakes from 
improper parameters or a poorly specified problem. This should not normally occur
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if the Method Domains are correctly implemented. If this is not the case, the correct 
strategy is to remove tha t routine from the database and restart the process.
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C hapter 10 

E xplanation

Modern-day computers are amazing pieces of equipment, but most amazing 
of all are the uncertain grounds on account of which we attach any validity 
to their output.

It is not only the programmer’s task to produce a correct program but also 
to demonstrate its correctness in a convincing manner.

E. Dijkstra, et al. Structured Programming

The “fundamental goal of an explanation is to enable a program to display a com
prehensible account of the motivation for all its actions” [Davis & Lenat, 1982]. As 
intimated in §5.5 p. 38, the level of belief the user could have tha t an expert system 
is successfully mirroring the thought processes of an expert is entirely dependent on 
the type and quality of any explanation it gives and on tailoring any explanation to 
the knowledgeability or requirements of the user. Obviously, if the user wishes to use 
the expert system as a “black box” , no explanation is necessary or required. In such 
a case, it would be considered superfluous and thus a mistake should one be provided. 
It would, of course, also be a mistake if too little information is provided such tha t the 
reasoning behind the choice of routine is left unclear at any time.

It would also be unnecessary to provide what John Locke would term the essential 
properties, only accidental properties\ For example, if we were asked to explain a choice 
of routine for solving a set of Ordinary Differential Equations, we are not expected

1 Locke, himself, based his ideas of these properties on Aristotle, who spoke in terms of P lato’s 
‘Universals’, and on Descartes’ primary and secondary qualities. [Trusted, 1981]
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to identify all characteristics of ODEs -  only those which have some bearing on the 
final choice. It is also necessary, in general, to couch the explanation in terms of the 
application domain so as not to be too imprecise.

The explanation process has two identifiable and discrete tasks -  to clarify and to justify. 
Clarification is a description of what routine is chosen and the properties pertaining 
to the problem which have been identified or quantified. Justification of the choice of 
routine requires identification of which properties are im portant as well as some ideas 
about why the particular routine is thought to be better than others.

10.1 A Hierarchy o f Explanation

There are a number of aspects of this expert system which must form part of the 
explanation process.

• W hat routine was used? i.e. the name of the method or strategy.

• Why was this method chosen? i.e. what attributes were found which make this 
method better than others?

• Why were other methods not chosen?

• On what basis were these decisions made? This information is of a different 
nature to those above in tha t it is non-method-specific.

The nature of the Axiom type R esu lt, which is the default return type from a NAG 
routine, has a natural hierarchy. This can thus be used to provide the framework 
for the explanation. Thus, the return type from ANNA, also a R esu lt, contains two 
extra fields specifically for the explanation mechanism. These are labelled method and 
a t t r i b u t e s  as shown in the example previously used in §4.3.3 on page 30:

(1) -> ans := integrate(l/(i.0+3*sin(t)~2) ,0. .2*'/,pi)

( 1)
[iw: Matrix(Integer), abserr: DoubleFloat, w: Matrix(DoubleFloat), 
ifail: Integer,, result: DoubleFloat, method: Result, 
attributes: List(Any)]

Type: Result

The non-method-specific information, i.e. the results of computational agents, can be 
accessed directly as:
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(2) -> ans.attributes

(2) [Continuous at the end points,The range is finite, []]
Type: List Any

This shows tha t the integrand shows no evidence of singularities at the end points or 
internal to the range and tha t the range of integration is finite. These attributes are not 
specifically required by any one method in assessing its appropriateness to the problem 
and thus separated from method-specific information.

The field method contains a number of sub-headings:
(3) -> ans.method

(3)
[nameOfRoutine: String, other: Result, allMeasures: List(String), 
bestMeasure: Float]

Type: Result

The sub-field a llM ea su res gives much insight into the measurement process and thus 
the inference mechanism:

(4) -> qelt(ans.method,allMeasures)

(4)
["Trying One-dimensional finite integration routines",
"dOlaqfmeasure: 0.0 - dOlaqf: A suitable weight function has not 

been found",
"dOlanfmeasure: 0.0 - dOlanf: A suitable weight has not been found", 
"dOlajfmeasure: 0.4 - The general routine dOlajf is our default", 
"dOlakfmeasure: 0.0 - dOlakf: The expression shows little or no 

oscillation",
"dOlapfmeasure: 0.0 - dOlapf: A suitable singularity has not been 

found",
"dOialfmeasure: 0.0 - dOlalf: A list of suitable singularities has 

not been found"
]

Type: List String

The sub-field o th e r  provides specific information on, for example, weight functions 
if any have been found, transformations if they have been used and method-specific 
parameters etc.

Much of this structure can be seen automatically if the command

show ScalarV alues tr u e
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is used e.g.:
(6) -> a := integrate((exp(-x"'3)+exp(-3*x“2) )/sqrt(x), 0.0. .'/.plusInfinity)

(6)
[
abserr: 2.69960156338737e-08, 

result: 3.23287256251958, 

method:
[nameOfRoutine: "dOlTransformFunctionType", 
other:

[dOltransformextra:
List
Record

:(str.String),
:(fn,Expression(DoubleFloat)),
:(range,Segment(OrderedCompletion(DoubleFloat))),
:(ext.Result)], 

allMeasures: List(String), 
bestMeasure: 0.6086956521 7391304348],

attributes: List(Any),

dOlajfAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 2.6995941792608e-08, 
w: Matrix(DoubleFloat), ifail: 0, result: 0.085813447681579, 
method:

[nameOfRoutine: "dOlajfAnnaType", 
other: [] ,
allMeasures: List(String), 
bestMeasure: 0.4], 

attributes: List(Any)],

dOlapfAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 7.38412656787854e-14, 
w: Matrix(DoubleFloat), ifail: 0, result: 3.147059114838, 
method:

[nameOfRoutine: "dOlapfAnnaType", 
other: [dOlapfextra: List(DoubleFloat)], 
allMeasures: List(String), 
bestMeasure: 0.7], 

attributes: List(Any)]
]

Type: Result
(7) -> qelt(a.method,allMeasures)

(7)
["Trying One-dimensional infinite integration routines",

"dOlamfmeasure: 0.5 - dOlamf is a reasonable choice if the integral

75



is infinite or semi-infinite and dOltransform cannot do better than 
using general routines"

>
"dOlasfmeasure: 0.0 - dOlasf: A suitable weight has not been found",

"dOltransformmeasure: 0.609 - The recommendation is to transform 
the function and use dOlapfAnnaType and dOlajfAnnaType"

Here, the method chosen is to use the method dO ltransform  to split the integrand and

the integration. ANNA returns the result, error estimate and method information as

]
Type: List String

transform the infinite part onto a finite domain and use two different routines to perform

well as the individual output from the two constituent calls. The method information 
contains details of the transformation used:

(8) -> qelt(qelt(a.method,other),d01transformextra)

( 8 )
C

[str= "dOlapfAnnaType", fn:

1 .Ox
3

, range= 0.0..1.0,

\|x
ext= [dOlapfextra: List(DoubleFloat)]],

1 . 0 3.0

x
3 2

x +-+
C/.e + */»e ) \ I x

[str= "dOlajf AnnaType" ,fn= ,range= 0.0..1.0,
2

x
ext= []]]

Type: List Record(str: String,fn: Expression DoubleFloat, 
range: Segment OrderedCompletion DoubleFloat,ext: Result)

This hierarchy fulfills all the requirements stated in §5.5 in tha t it provides sufficient 
clarification and justification of the inference process at the user’s request.
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C hapter 11

T he H yp erD oc Interface

HyperDoc is described in [Jenks &; Sutor, 1992] as “an on-line tutorial and an on-line 
reference manual” . It is the system used on the UNIX versions of Axiom for an active, 
windows-based high-level interface. The user can:

• Get help on how to use the HyperDoc system;

• Read about an extensive list of topics;

• Fill in templates for solving problems;

• Scan an on-line version of the Axiom reference manual;

• Look at examples of how Axiom can be used;

and much more. Its capabilities have been extended to provide an interface for ANNA. 
This involves providing a top-level link and a number of pages of information, templates 
and examples within some ordered structure.

The top level pages and information pages are written in HyperDoc’s own mark-up
language, some aspects of which are similar to HTML, the standard Hypertext mark
up language. Other pages, in particular those that perform some manipulation of input 
characters, have been written in “boot” code, an interface to the underlying lisp. Much 
of the graphics and special characters are provided as bitmaps, either colour or black 
and white.

‘Boot’ is a generator of Hyperdoc pages — it can store, manipulate and export active 
data for the automatic formatting of HyperDoc pages and interfacing directly with 
Axiom, the lisp processor and the operating system. It is the programming language
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which underpins all HyperDoc functions, whilst itself based on lisp and which itself 
can have embedded HyperDoc links. The ‘boot interpreter’ translates the programme 
code into lisp functions for further interpretation by Axiom sub-processes.

HyperDoc itself provides a number of formatting commands which allow the pages to 
be constructed easily with a consistent appearance. For each of these pages, parts, 
either graphics or text, can be defined as “active links” to other pages. This helps 
provide logical structure to the interface and opens the way towards providing help and 
tutorials. There is also the possibility of interfacing with either Axiom for executing 
commands, the underlying lisp for file access etc., or the operating system.

The use of ‘boot’ code provides a way of writing HyperDoc pages with integral lisp 
functions. These lisp functions can take data from the various parts of a document 
and manipulate them whilst building further pages. For example, if we have an n- 
dimensional system, we can enter n  in an active area on one page and when the next 
page is opened, it can provide the requisite number of active areas for further data input, 
with any appropriate default values (c.f. Figure 11-9). A further active structure which 
can be used is the ‘radio buttons’, which can be either set on or off and can control 
whether or not certain input areas appear on a page, or what defaults appear in input 
areas.

The HyperDoc pages shown in Figures 11-1 to 11-18 relate to each other as:



H O I  HyperDoc 0
AXIOM HyperDoc Top Level

axiom
♦

W hat would you like t o  do?
■  Basic Commands
■  Reference
■  Topics
■  Browse
■  Examples
■  Settings 
H NAG Link
■  About AXIOM
■  ANNA Expert System

do?
Solve problems by fill ing in tem pla tes .
Scan o n - l in e  d o c u m e n ta t io n  f o r  AXIOM.
Learn how t o  use AXIOM, by topic.
Browse through the  AXIOM library.
See examples o f  use of  the  library.
Display and change the  system environm ent.  
Link t o  NAG Numerical Library.
See some basic in fo rm a t io n  a b o u t  AXIOM.
Link to  m m  Axiom/NAG Numerical Analyst M

Figure 11-1: Axiom Top Level Page (modified for ANNA)

Further pages have been written to provide help in the use of ANNA and also provide 
explanations of the intricacies of why ANNA has be created and what it does. It 
also gives a few hints and examples on how ANNA can be used interactively from the 
command line and within composite Axiom programs.

There is also a section, with examples, on the use of the computational agents and how 
these can be called directly from an interpreter window.

In the process of creating these pages, a number of design decisions were made. Some 
aspects were, in general, dictated by the requirements that the pages should look similar 
to those already created for use within the Axiom system, as regards fonts, bullet points 
and headings. However, since ANNA provides a simplified view to numerical software, 
some freedom on page layout and structure was allowed. This is particularly apparent 
in the input pages for ODE and optimization problems where, for example, constraints 
and the bounds on those constraints are logically organised (see Figure 11-16).
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AXIOM/NAC NUMERICAL ANALYST

This e x p e r t system  chooses, and uses, NAG num erica l routines. 

B Integration

U Ordinary Differential Equations 

B  Partial Differential Equations 

B  Optimization

B About the Axiom/NAG Expert System

Figure 11-2: ANNA Top Level Page

In teg ra tio n ~K D H
W elcom e to  th e  In teg ra tio n  sec tio n  o f /HNNHA th e  Axiom/NAG Expert System. 
This system  chooses, and uses, NAG num erica l routines.

B Integration
In teg ra tin g  a  fu n c tio n  over a  f in ite  o r in fin ite  range.

B  Multiple Integration
In teg ra tin g  a  m u ltiv a r ia te  fu n c tio n  over a  f in ite  space. The dim ensions 
o f  th e  space need to  be 2  <= n < -  15.

B Examples
Examples o f in teg ra tio n . These exam ples co v er all o f th e  m ajo r m ethods. 
P a ra m e te rs  can  be changed to  in v es tig a te  th e  e f fe c t  on th e  cho ice  o f 
m ethod.

Figure 11-3: ANNA Integration Page
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m
In teg ra tion  using Axiom/NAG Expert System ■ ■

Analyses the function  fo r various a ttr ib u te s , chooses and then uses a  su itable 
in teg ra tio n  routine  to  ev alu ate  the  fin ite , sem i-in fin ite  or infinite in tegral

J b f(x) dx

■  Lower bound of the in terval a :
■  Finite 
1 1  Minus Infinity

H  Upper bound of the interval b.
H  Finite 
H  Plus Infinity

Figure 11-4: ANNA Integration Input Page 1

It is worth noting that, if the radio buttons for the range of integration in Figure 11- 
4 are differently selected, the page shown in Figure 11-5 would reflect those changes 
in that the default function given would be one defined on that range and the value 
#/#p lu s In f  in i ty  or °/0m inusInf in i ty  entered in the appropriate box as a reminder of 
the proper syntax.

S E l  HyperDoc_______________________

Integration using Axiom/NAG Expert System

Enter the function f to be integrated:
(log(2-x)*log(x})/((2-x)H2/3)*sqrtfx))_

Lower bound of the interval a. ■  Upper bound of the interval b:
0.0 2.0

Absolute accuracy required: ■  Relative accuracy required:

Figure 11-5: ANNA Integration Input Page 2
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MM HyperDoc ■ ■ ■ a

m e Exam ples Using th e  Axiom/NAG E xpert System HUB■
Example 7:

Example 8:

Example 9:

H Example 10:

i :
cos 20/?{sin p + c o s p ) dp

I
log x log  (2 -  x) 

o t /x  \ / 2  -  x 2
d x

I. <u> - 5)(cV - i)—  du>

—  \/2zr J-o
dz

Figure 11-6: ANNA Integration Examples Page

I S  E l  HyperDoc
Axiom/NAG E xpert System  C om m and

Here is the Axiom com m and  
you  could have issu ed  to  com pute this result:

in te g ra te (( lo g (2 -x )* lo g (x ))/((2 -x )A(2 /3)*sqrt(x )), 0.0..2.0, 0.0, 1,0 e -6 )

S e le c t to  go back  one page.

S e le c t j j j j j  1:0 rem ove th is  window.

Figure 11-7: ANNA Integration Instigation Page
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mm HyperDoc

O rdinary D ifferential Equations

Welcome to  the  O rdinary D ifferential Equations section  of /HNNHk, the Axiom/NAG 
Expert System. This system chooses, and uses, NAG num erical routines.

§a Ordinary Differential Equations
Finding a  solution to  an Initial Value Problem o f a  se t  of O rdinary 
D ifferentia l Equations.

Bl Examples
Examples of ODE problem s w ith various fe a tu re s  using both s tiff  and 
n o n -s tif f  methods. P a ram ete rs  can be changed to  investigate  the  e ffe c t on 
the  choice of method.

Figure 11-8: ANNA Ordinary Differential Equations Page

[v] Eg HyperDoc ED

Solution o f Initial Value Problems o f Ordinary 
D ifferential Equations using Axiom/NAG Expert System mw

H Is th ere  any stopping c r ite r ia  (i.e. some function G(X,Y) such th a t  the  a lgo rithm  
should stop when G(X,Y) = 0)?

B  NO If NO, G(X,Y) is se t to  1.0 
iiS Yes

Analyses the  function  fo r various a ttr ib u te s , chooses and then uses a  su itable ODE 
solver to  provide a solution to  the  system  of n ODEs

U Are in te rm ed ia te  values required?

H v e s

0  Size of the  system o f equations:

B No

y,' =  /<(*, y ) '

ODE

ithm

a
Figure 11-9: ANNA Ordinary Differential Equations Input Page 1
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i - l l B B l Examples Using the Axiom/NAG Expert System

Analyses the  function  fo r  various a ttr ib u te s , chooses and then uses a  suitable ODE 
solver to  provide a solution to  the  system of n ODEs

y\ = fi(x, y) '

fo r  i -  1,2 ,..vn.

S e lec t e ith e r o f these exam ples and you will be presented with a  page which contains 
a c tiv e  a rea s  fo r the  function  and its param eters.

These p a ram ete rs  can be a lte re d  by selecting the a re a  and replacing the  d e fau lt 
p a ram ete rs  by the  new values. In this way you can investigate  the  e ffe c t of the  new 
p a ram ete rs  on the  choice o f method.

Example 1:
y'i = yi + io4y 2ya

y 2 =  ^ y i  -  1 0 V y 3 -  3 .107y |  

y' =  3.107y*

Figure 11-10: ANNA Ordinary Differential Equations Examples Page

IVllIO HyperDoc

Solution of Initial Value Problems of Ordinary Differential 
________ Equations using Axiom/NAG Expert System________

■  Enter the list of ODE’s (i.e. the derivatives Y[1 ]'..Y[n]0 in term s of Y[1 ]..Y[n]: 

Y[ J r. -0.04*Y[1 ]+1.0e4*Y(2)*Y(3]_

Y[2l’:

Y[3Y: 3.0e7*Y[2]*Y[2]

Initial Value fo r X: g  Final Value for X:
0.0 10.0

Initial Value for Y[i]:
YH1: 1.0
Y121: 0.0
Y[31: 0.0

Enter the function G(x,y) (The Stopping Criteria): Y[l]~0.9 

Enter the list of Interm ediate Values required: [2 ,4^83  

Relative accuracy required: 1.0e-4

Figure 11-11: ANNA Ordinary Differential Equations Input Page 2
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IS HD HyperDoc

P a r tia l  D iffe ren tia l Equations

W elcom e to  th e  P a r t ia l  D ifferen tia l Equations sec tio n  o f /IWNHk, th e  Axiom/NAG  
Expert System.

0

| Second Order Elliptic Partial Differential Equation
D escretiz ing  th e  PDE:

d2U d2U
a (x -y)-5t t  +  +  r(x , y )~   ̂ +d x 2 dydxdy

dU
S ( x , y ) — +  € ( x , y )  — +  0 ( x , y ) U  =  ^ ( x , y )  

defined on a  re c ta n g u la r  region w ith boundary  co nd itions o f th e  fo rm

dU
a(x, y)U  +  b(x, y) —  = c (x , y)

and solving th e  resu lting  sev en -d iag o n al f in ite  d iffe ren ce  eq u atio n s using a  
m u ltig rid  technique.

Figure 11-12: ANNA Partial Differential Equations Page
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I l l  ED HyperDoc

Second Order Elliptic P artia l D ifferential Equation

D escretizing the PDE:

d 2U  d 2U
a ( x . y ) ^  + « x ,y ) — +  7(x,y) — +

dU c?U
^ x ,y ) *T +  €̂ x ,y ^'% +<*(x ’y )u  =  ^(x-y)

defined on a rectangu lar region with boundary conditions of the form
cfU

a(x, y)U + b(x, y) —  =  c(z, y)

and solving the  resulting seven-diagonal fin ite  difference equations using a m ultigrid 
technique.

H Enter the values of the  boundary condition expressions fo r the bo ttom , top, le ft and 
righ t s id e s :

E3 Bottom  boundary co n d itio n s: (Y :=Ystart>)

a(x,Y): m m m m m m m m m a m m s m m m  
b(X,Y) : 1 
C(X,Y): -sinOO

0  Top boundary co n d itio n s: (Y :=Yen(j )

Enter the rectang le  on which to  d iscretize the PDE :
S ta r t  Number of grid lines End

X: 0 .0 _  9 1.0
V: 0.0 9 1.0

H  Enter the values o f the expressions <*(X,Y) to  ^r(X,Y):

ct(X,Y)
0CX,Y)
r c x ,Y )
5 cx,y)
e(x,Y)
0(X,Y)
(̂X,Y)

Figure 11-13: ANNA Partial Differential Equations Input Page



EJ1
E x i t | l e l p |  o p tim iz a tio n

W elcom e to  th e  O p tim iza tio n  sec tion  o f /IWNHA the  Axtom/NAC Expert System. 
This system  chooses, and uses, NAG num erical routines.

H Optimization of a Single Multivariate Function
Finding th e  m inim um  o f a  fu n c tio n  in n variab les.
Linear P rogram m ing and Q u ad ra tic  P rogram m ing problem s.

1

[1 Examples
Examples o f o p tim iza tio n  problem s w ith various c o n s tra in t  fea tu re s .

m Optimization o f a set of observations of a data set
L east-sq u ares problem s.
Checking the  goodness o f f i t  o f a  le a s t-sq u a re s  model.

3  Examples
Examples o f le a s t  squares problem s,

■

Figure 11-14: ANNA Optimization Page

H E E 9 S Examples Using th e  Axiom/NAG Expert System

H Example 3:
Minimize the function:

With conditions:

X iX 4(X 1 + X j + X3) + Xg

1 < X t < 5 

1 < X 2 < 5 

1 < X 3 < 5 

1 < X 4 < 5

- o o  < Xi + X 2 + X 3 + X 4 < 20.0

- o o  < X? + X’ + X* + < 40.0

25.0 < X 1X 2X 3X 4 < oo

Figure 11-15: ANNA Optimization Examples Page
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13 ID HyperDoc

Minimization of a Multivariate Function using Axiom/NAG 
_____________________Expert System____________________

Enter the objective function, Ftorlin terms of X[1]...X[n]: 

X£1 ]*X[4]*(XC11+Xf2}+Xt3D+X{3]

Enter lower and upper boundary conditions 6 /(n)and bu(n) 
Lower Constraint

1.0  X1

■ m n h h i  x2
1.0 X3
1.0 X4 
-1.E25 
-1.E2S

M M H

Upper
- ; ,4:HKtsxMzxtxt,

m m m  

.

H U H
Enter initial guess of the solution vector x(n) 
1.0
5.0
5.0
1.0

Figure 11-16: ANNA Optimization Input Page

13 ID HyperDoc

Examples Using the Axiom/NAG Expert System
0

Example 1:
es minimization of the following

( X 3 + 1 5 X 2)-1 + x x -  0.14
2(2X3 + 14 X2) - ‘ + X, -  0.18
3(3X3 + 1 3 X2)“ 1 + x , -  0 . 2 2

4(4X3 + 1 2 X2)“ ‘ + x t -  0.25
5 (5 X 3 + 1 1 X 2) 1 + x , -  0.29

6 (6 X 3 + 1 0 X 2) - 1 + x t -  0.32
7 (7 X 3 + 9 X 2) - j + X t -  0.35
8 (8 X 3 + 8 X 2) -1 + X, -  0.39
9(7X3 + 7 X 2) _1 + X» -  0.37

1 0 (6 X 3 + 6 X 2) _1 + X! -  0.58

11(5X3 + 5 X j ) - ‘ + Xt -  0.73
12(4X3 + 4 X 2) _1 + X, -  0.96
13(3X3 + 3 X 2) -1 + Xt -  1.34
14(2X3 + 2 X 2)-1 + Xt -  2.1

15( X 3 + X 2) " 1 + X, -  4.39

Figure 11-17: ANNA Least-Squares Optim ization Examples Page



|V| 10  HyperDoc

Minimization of a Sum of Squares using Axiom/NAG Expert 
System

g  Enter the functions /» below in terms of X[1]...X[n]: 
Function 1: (X[3}+15*X[2I>~C-1}+Xn 3-0.1 A__
Function 2: 
Function 3: 
Function 4: 
Function 5: 
Function 6: 
Function 7: 
Function 8: 
Function 9: 
Function 10 
Function 11 
Function 12 
Function 13 
Function 19 
Function 15

2*(2*X[3]+
3*(3*X[3}+
4*(4*Xl31+

4*X[2D**(-D+XCU-0.18

11-0.96
13*(3*XI31+3*X{2D**(~1 )+Xt 11-1.34 
14*(2*X13}+2*X[2D**(-1 )+X[11-2.1 
15*(X[3]+X[2D**(- 1 )+X[ 11-4.39

m

Enter initial guess of the solution vector /t(n) 
0.5
1.0 
1.5

Figure 11-18: ANNA Least-Squares Optimization Input Page
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C hapter 12

C onclusion

In summary, the background to the problem which is the subject of this thesis will be 
discussed with regards to the history of the use of numerical methods, the development 
of Computer Algebra Systems and the introduction of improved graphical interfaces. 
Some insight will be provided into the reasoning behind the decisions made regard
ing how a solution could be constructed as well as some of the tools necessary for its 
construction, such as expert system technology and the knowledge base, the extension 
of Dempster-Shafer theory and Lucks/Gladwell intensity, compatibility and aggrega
tion functions to provide a sound framework for the decision process, the explanation 
mechanism which can inform the user about the reasoning and decision processes and 
the use of facilities provided within Axiom to investigate attributes which affect such 
a decision.

The proposed, and implemented, solution is described and evaluated, both in its ability 
to tackle the wide range of numerical problems and in the interface that it provides 
to numerical software. I will also discuss how it can be used in the construction of 
composite algorithms (those using both numerical and symbolic processes) and the 
further work currently being undertaken.

12.1 The Problem and its Background

The difficulty of using numerical methods is illustrated by the number of books and 
programs dedicated, in full or in part, to making the subject easier. However they 
cannot give advice on whether this or that routine or method can solve a given problem
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and, since, in some problem domains, there are often a number of routines which might 
possibly be addressed to a particular problem, some of which might work, others may 
be inefficient and yet others may fail, this choice is important. Most of these books 
and programs do not even give advice on how to attem pt to find out!

Admittedly, libraries might only provide a single routine for each problem type, but 
this is by no means always the case. In particular, in the areas of numerical integration, 
solution of initial value problems of ordinary differential equations and optimization, 
there are a number of routines for which the user is expected to select the routine most 
appropriate. This process may be fairly straightforward, but require extensive analysis 
skills, or it may be subtle, requiring a considerable understanding of both the problem 
and the possible numerical methods. Whatever problem the user is confronted with, 
the use of numerical library routines need programming ability — often in Fortran.

The growth in the use and capabilities of computer programs, and Computer Algebra 
Systems in particular, have shown that users wish to have a significantly easier and 
more friendly interface to computation in general. However, the power and reliability 
of numerical routines and numerical libraries should not be jettisoned just because of 
the difficulties inherent in the use of such programs.

W hat is required is a simpler and more intelligent interface — one that can decide, 
given any problem (within some domain), what are the attributes tha t affect the choice 
of routine and thus make a decision as to a likely contender for its solution before 
implementing such a routine or method. Most attem pts to consider this problem in 
the past have been either incomplete or limited in scope, relying mainly on decision 
trees and the user’s own knowledge of possibly complicated mathematical concepts.

Given tha t the particular implementation is to utilise the links newly available for 
the CAS Axiom to call NAG Numerical Library routines (specifically those provided 
within the Foundation Library, an important subset of the main Fortran Library), the 
interface should retain the feel of Axiom whilst still providing the large amount of 
output information normal for library routines which can thus be used and inspected 
at will. It would also need to act as a ‘black box’, as required, and be capable of making 
any analysis of the input data, make an appropriate choice of routine, make the call to 
that routine automatically and, before output of the result, satisfy itself that the result 
obtained is sufficient to the users requirements (assuming that a result is possible or 
makes sense), both in type and accuracy.
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12.2 The Solution

There are a number of different requirements in a solution corresponding to the de
mands of the user and the individual problem domains. To provide an automatic 
analysis of the problem, a number of computational agents have been created, varying 
in size and complexity from a few lines of code, as in the agent for the range of integra
tion, to the agent for stiffness of a set of ODEs which is far more extensive. These can 
themselves use a range of techniques to provide answers to each question. They may 
be deterministic or may use ‘rule of thum b’ or even probabilistic components as well 
as composite algorithms (those which include both symbolic and numerical processes).

For example, the continuity of an elementary function is not always determinable. The 
computational agent thus is required to use a range of techniques which will attem pt to 
provide a list of ‘possible’ problem points (at least those which Fortran programs would 
consider difficult). It can use look-up tables, inverse functions as well as numerical 
methods such as Sturm sequences to identify as many problem points as possible.

A further example is the computational agent used to investigate the stiffness of a 
set of ordinary differential equations. This also uses a variety of techniques including 
evaluating the Jacobian symbolically and, if necessary, numerically using NAG Library 
routines.

The expert system, which uses these computational agents, was created using the 
object-oriented programming language supplied with Axiom. Using object-oriented 
techniques, the knowledge base was built as a number of Method Domains, each of 
which contained sufficient knowledge to identify how suitable it is to solve the current 
problem and how to implement that method. They also provide some information for 
the explanation process.

W ithin the process to assess the ability of each method to be addressed to a given prob
lem, it uses a number of techniques from measure theory. In particular, an extension 
of Dempster-Shafer theory to include limited recursivity, which allows for a problem 
to be divided into sections and separate techniques to be applied to each part, and 
Lucks/Gladwell measure functions were employed. This could provide a fuller analysis 
where conflicting information is supplied by the computational agents.

Further Domains controlled the knowledge of the range of techniques and default values 
as well as stored knowledge to be used within the system and within the explanation 
mechanism.
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All these constituent parts are brought together in a single unit which uses a graphical 
interface using web-based technology. This allows users unfamiliar with programming 
techniques to employ the power and reliability of numerical methods without the fuss 
of either writing Fortran programs or of the necessity of analysing each problem to 
identify the best choice of method.

12.3 Evaluation

The system has undergone considerable testing and evaluation. The test results are 
described in Appendix B.3. For each chapter, a number of examples were used and 
note was taken of details such as the name of the chosen routine given certain param
eters. This was then compared with published recommendations [Enright et a l, 1975; 
Hull et al., 1972]. Where appropriate, the times taken for the computation using the 
recommended method were compared to other methods.

For the integration chapter, the tests did not cover all combinations of all routines, but 
concentrated on the ability of the expert system to correctly identify certain character
istics of the integrand and range and so make a good general choice of routine. Tests 
also covered the ability to use fall-back strategies.

The tests for the chapter on Ordinary Differential Equations used mainly published 
examples from [NAG, 1996; Enright et al., 1975; Hull et al., 1972] since these were 
readily available and comprehensive. Of the non-stiff problems, ANNA correctly chose 
only non-stiff methods and the chosen particular routines were in line with the recom
mendations in [Hull et al., 1972].

The stiff problems from [Enright et a l, 1975] were tackled, in general, quite well. For 
those cases where the stiffness could be considered mild or very mild, a non-stiff method 
was preferred. This was confirmed by considering the timings using the specific methods 
directly instead of using ANNA. In most cases, by increasing the sensitivity of ANNA to 
stiffness, the system could be forced into choosing a stiff routine. Conversely, increasing 
the required accuracy (or increasing the sensitivity to accuracy or complexity) had the 
opposite effect.

In one case, the stiffness detection algorithm failed to notice that the problem exhibited 
increasing stiffness over the range of integration and thus chose a non-stiff routine 
where, if the range of integration was large, a stiff solver would be better. There was 
one other case where ANNA correctly identified that a system was very stiff, but still,
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erroneously, chose a non-stiff routine. Further work would be needed to understand 
the cause of this failure. All tests based on examples provided by [NAG, 1996] were 
correctly analysed.

The optimization chapter was tested mainly by using examples in [NAG, 1996]. This 
again concentrated on the correct identification of characteristics of the input problem 
i.e. the type of objective function and constraints (linear, quadratic etc.) as well as 
continuity.

In general, the number of input parameters to ANNA is significantly less than that 
required for the direct use of specific routines, since it includes the ability to calculate 
many of the required extra parameters. As a consequence, since the input parser 
of Axiom spends considerable time identifying and categorising input data1, whereby 
the calculation of these parameters can be very efficient, ANNA can be shown to be 
more efficient than using the link to the individual NAG routines directly. This is 
particularly apparent when one considers, say, the routine E04UCF which requires 43 
parameters whereas to call the same routine using ANNA requires only 6.

12.4 Summary and Further Work

• I have created an expert system using the Axiom Symbolic Algebra System which 
can, reliably and automatically, decide which numerical routine is best or could 
be best for a given integration, ODE or optimization problem.

Whilst this has been attempted before (usually only for a single problem do
main) , previous implementations have either required user input to answer possi
bly complex mathematical questions or they are severely restricted in their scope 
or reliability.

Furthermore, I have shown that such an expert system can be created using 
Axiom’s own object-oriented programming language. This expert system contains 
all the required components of an identifiable discrete knowledge base, inference 
mechanism and explanation process (p. 33) as well as fulfilling the [Newell & 
Simon, 1972] requirements of an Information Processing System.

• I have integrated this with the link to library routines which therefore autom ati
cally perform the required calculation.

1 Axiom, being object-oriented with the inherent strong typing, requires that any input data be 
analysed by the parser and allocated a type. This can be a fairly expensive process. The calculation  
of these parameters by A NN A  is quicker since the types are defined by the program.
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Again, previous systems have (except for IREN A/ARC) only partially imple
mented this section either by automatically writing the Fortran code for later 
implementation or simply directed the user to the particular routine.

• I have provided a user interface to the expert system which is both easy to use 
and is consistent with the standard Axiom user interface and syntax.

Systems in use by other Computer Algebra packages e.g. Maple, provide a very 
basic interface to numerical methods without providing the expert system.

• I have shown how measure theory can be used to provide a sound theoretical basis 
for decision making where multiple strategies and conflicting evidence is present.

This has required an extension to Dempster-Shafer theory to cover limited recur- 
sivity together with Lucks/Gladwell measure functions.

• I have shown how composite techniques i.e. techniques using both numerical and 
symbolic parts, are used within the system and can be used interactively to in
crease the applicability of both computer algebra systems and numerical libraries

It is apparent tha t ANNA makes data input for numerical routines much easier. How
ever, it does not tackle the problem of putting the numerical output in an easier to 
understand form. It would therefore be useful to create routines which could easily 
display the numerical results graphically. For example, the intermediate results of an 
ODE calculation could be plotted, together with some interpolation on these results if 
necessary, which would give further insight to the problem in hand.

Further work could also include the use of ANNA, and numerical routines in general, 
as part of algorithms containing both numerical and symbolic processes. This leads 
to a much greater use of the technological capabilities and a number of interesting 
possibilities, particularly in the field of ordinary and partial differential equation solvers. 
These now algorithms could then be incorporated within ANNA and used within further 
research.

Given the possibility of links to other libraries or additions to the NAG Foundation 
Library, further routines and methods could also be added into ANNA. This would only 
entail providing an Axiom Method Domain for that routine and updating the database 
of methods, plus, maybe, any computational agents to provide the analysis necessary 
to distinguish between the possible strategies.
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A p p en d ix  A

W orked E xam ples using A N N A

A .l  Computational Agents

Axiom Computer Algebra System (Release 2.1) 
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands. 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"

T h is  m e ssa g e  sh o w s th a t  A x io m  h a s  fo u n d  a n d  lo a d e d  th e  A N N A  C a te g o r ie s  
a n d  D o m a in s .

( 1) ->
(1) -> s := singular it iesOf (l/(x*cos(x)) , [x] ,-'/,pi. .'/,pi)$ESC0NT

(1) [1.5707963267948966,- 1.5707963267948966,0.0]
Type: Stream DoubleFloat

B e c a u s e  so m e  o f  th e s e  r o u tin e s  a re  n o t  a u to m a tic a lly  a v a ila b le  o u ts id e  th e  
e x p e r t  s y s te m , w e  n e e d  to  id e n t ify  th e  A x io m  P a ck a g e  to  w h ic h  th e y  b e lo n g .  
In  th is  ca se  ESCONT is  sh o r th a n d  for E xp ertS ystem C on tinu ityP ackage.

(2) -> a :Record(var:Symbol, fn:Expression DoubleFloat, range:Segment 
OrderedCompletion DoubleFloat, abserr:DoubleFloat, relerr:DoubleFloat);

Type: Void
(3) -> a := [x,cos(20*x)*exp(x)/((x-’/,pi)*x) ,0. .’/,pi,0.0,0.0]
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(3)
x

cos(20.0x)'/,e
[var= x, f n = -------------------------- , range= 0.0..3.1415926535897931,

2
x - 3.1415926535897931x 

abserr= 0.0, relerr= 0.0]

Type: Record(var: Symbol,fn: Expression DoubleFloat,range: Segment 
OrderedCompletion DoubleFloat,abserr: DoubleFloat,relerr: DoubleFloat)

(4) -> exprHasAlgebraicWeight(a)$D01WGTS

(4) [- 1.0,- 1.0]
Type: Union(List DoubleFloat,...)

(5) -> exprHasWeightCosWXorSinWX(a)$D01WGTS

(5) [op= cos,w= 20.0]
Type: Union(Record(op: BasicOperator,w: DoubleFloat),...)
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A . 2 In tegration
ro o  - x 3 I p - 3 x 2

Problem  : /     dx
Jo V x

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands. 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
( 1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> integrate((exp(-x~3) +exp(-3*x~2))/sqrt(x) , 0.0. .'/.pluslnfinity, 1.0e-6) 
nagman:acknowledging request for dOlapf
nagman:connection successful to dictum.maths.bath.ac.uk 
nagman:receiving results from dictum.maths.bath.ac.uk

nagman:acknowledging request for dOlajf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

T he N aglink m anager (nagm an) displays m essages showing th e  routine used  
and th e  connection  to  th e  N A G  D aem on (nagd). In th is case, tw o routines  
have been used and their results com bined.

( 2 )
[
abserr: 2.69960156338737e-08, result: 3.23287256251958,

attributes: List(Any),

method:
[nameOfRoutine: "dOlTransformFunctionType",

other:
[
dO1transformextra:

List
Record

:(str.String)
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:(fn,Expression(DoubleFloat))
)

:(range,Segment(OrderedCompletion(DoubleFloat)))
>

:(ext.Result)
]

>
allMeasures: List(String), bestMeasure: 0.6086956521 7391304348]

dOlapfAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 7.38412656787854e-14, 
w: Matrix(DoubleFloat), ifail: 0, result: 3.147059114838,

method:
[nameOfRoutine: "dOlapfAnnaType", 
other: [dOlapfextra: List(DoubleFloat)], 
allMeasures: List(String), 
bestMeasure: 0.7]

9

attributes: List(Any)]

dOlaj fAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 2.6995941792608e-08, 
w: Matrix(DoubleFloat), ifail: 0, result: 0.085813447681579,

method:
[nameOfRoutine: "dOlajfAnnaType", other: [], 
allMeasures: List(String), bestMeasure: 0.4]

»
attributes: List(Any)]

]
Type: Result

(3) -> qelt('/,.method,allMeasures)

T h e  co m m a n d , q e l t ( a , b ) ,  is u sed  (d u e  to  a  b u g  in  th e  cu rr en t v e r s io n  o f  
A x io m ) to  id e n t ify  th e  fie ld  b in  th e  c o m p o s ite  o b je c t  a. T h e  id e n tif ie r  */. is  
u se d  to  s ig n ify  th e  p rev io u s  o u tp u t  o b je c t .

(3)
["Trying One-dimensional infinite integration routines",

"dOlamfmeasure: 0.5 - dOlamf is a reasonable choice if the integral
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is infinite or semi-infinite and dOltransform cannot do better them 
using general routines"

9

"dOlasfmeasure: 0.0 - dOlasf: A suitable weight has not been found",

"dOltransformmeasure: 0.609 - The recommendation is to transform the 
function and use dOlapfAnnaType and dOlajfAnnaType"
]

Type: List String
(4) ->
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Probl em : f  if f l 2 ^  dx
J o  (2  -  1 )2/3 y / i

Axiom Computer Algebra System (Release 2.1) 
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands. 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
( 1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> integrate((log(2-x)*log(x))/((2-x)~(2/3)*sqrt(x)), 0.0..2.0, 1.0e-6) 
nagman:acknowledging request for dOlapf
nagman:connection successful to dictum.maths.bath.ac.uk 
nagman:receiving results from dictum.maths.bath.ac.uk

(2 )
[iw: Matrix(Integer), abserr: 2.47574139246241e-ll, w: Matrix(DoubleFloat), 
ifail: 0, result: - 5.89188342020428,

method:
[nameOfRoutine: "dOlapfAnnaType",
other: [dOlapfextra: List(DoubleFloat)], allMeasures: List(String), 
bestMeasure: 0.7]

9

attributes: List(Any)]
Type: Result

(3) -> qelt('/,.method,allMeasures)

(3)
["Trying One-dimensional finite integration routines",
"dOlaqfmeasure: 0.0*- dOlaqf: A suitable weight function has not been 
found",
"dOlanfmeasure: 0.0 - dOlanf: A suitable weight has not been found",
"dOlajfmeasure: 0.4 - The general routine dOlajf is our default",
"dOlakfmeasure: 0.0 - dOlakf: The expression shows little or no 
oscillation",
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"dOlapfmeasure: 0.7 - Recommended is dOlapf with c = -0.5, 
d = -0.6666666666 6666662966 and 1 = 4",
"dOlalf is no better than other routines"]

Type: List String
(4) -> (2) .attributes

(4) [There are singularities at both end points,The range is finite,[]]
Type: List Any
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A .3 Ordinary Differential Equations

y[ =  tan  7/3

Problem  : y> =  _ 0.0 3 2 ^ -^  -  0 . 0 2 - ^ -
7/2 cos 7/3

2/3

w ith  in itia l conditions:

0.032

vl

J/i (0) =  0.5

y2(o) =  0.5

3/3(0) =  0.27T

Axiom Computer Algebra System (Release 2.1) 
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
( 1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> solve([tan(Y[3]) , -0.032*tan(Y[3])/Y[2]-0.02*Y[2]/cos(Y[3]) ,
-0.032/(Y[2]**2)], 0.0, 10.0, [0.5, 0.5, */,pi*0.2], 1.0e-4)
nagman:acknowledging request for f02aff
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

T he above nagm an call relates to  the eigenvalue code used in th e  com pu
tation al agent w hich m easures th e  stiffness and stab ility  o f th e  system  of  
ODEs.

nagman:acknowledging request for d02bbf
nagman:connection successful to dictiim.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

(2)
[ifail: 0, intensityFunctions: List(String), tol: 0.0002,
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result: Matrix(DoubleFloat), y: Matrix(DoubleFloat),

method:
[nameOfRoutine: "d02bbfAnnaType", allMeasures: List(String), 
bestMeasure: 0.7077983781 2664880201]

x: 10.0]
Type: Result

(3) -> qelt('/,.method,allMeasures)

(3)
["d02ejfmeasure: 0.282 - BDF method for Stiff Systems",
"d02bbfmeasure: 0.708 - Runge-Kutta Merson method",
"d02bhf is no better than other routines",
"d02cjf is no better them other routines"]

Type: List String
(4) -> (2) . intensityFunctions

T he identifier "/,'/,(2 ) refers to  th e second output in th e A xiom  buffer.

(4)
["stiffness: 0.0", "stability: 0.695", "expense: 0.114", "accuracy: 0.234", 
"intermediateResults: 0.0"]

Type: List String

(5) -> •/.*/. (2). y

(5) [- 3.62767857069111 0.633235902637208 - 1.05149500854554]
Type: Matrix DoubleFloat
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P r o b le m : Solve

w ith  in itial conditions:

y '\ =  +  1q42/22/3

y ,2 = ^ y i  -  104?/22/3 -  3 x 107yl

2/3 =  3 x 1072/ |

2/1(0 ) =  i

2/2 (0 ) =  o

2/3(0 ) =  0

and stopping when: y\ =  0.9

Axiom Computer Algebra System (Release 2.1) 
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands. 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
( 1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> solve([-0.04*Y[1] +1.0e4*Y[2]*Y[3] , 0.04*Y[l]-1.0e4*Y[2]*Y[3]
-3.0e7*Y[2]*Y[2] , 3.0e7*Y[2]*Y[2]] , 0.0, 10.0, [1.0, 0.0, 0.0], Y[l]-0.9,
[2,4,6,8], 1.0e-4)
nagman:acknowledging request for d02ejf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

(2 )
[ifail: 0, intensityFunctions: List(String), tol: 0.0001, 
result: Matrix(DoubleFloat), y: Matrix(DoubleFloat),

method:
[nameOfRoutine: "d02ejfAnnaType", allMeasures: List(String), 
bestMeasure: 0.4466108327 646621749]

)

x: 4.37671333535702]
Type: Result
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(3) -> qelt(V..method,allMeasures)

(3)
["d02ejfmeasure: 0.447 - BDF method for Stiff Systems",
"d02bbfmeasure: 0.009 - Runge-Kutta Merson method",
"d02bhfmeasure: 0.008 - Runge-Kutta Merson method",
"d02cjfmeasure: 0.168 - Adams method"]

(4) -> (2) . intensityFunctions

(4)
["stiffness: 1.0", "stability: 1.0", "expense: 0.127", 
"intermediateResults: 0.077"]

(5) -> */.7.(2). y

(5) [0.9 2.17778054421343e-05 0.0999782221945582]
Type:

Type: List String

"accuracy: 0.234", 

Type: List String

Matrix DoubleFloat
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A .4 Partial Differential Equations
Problem : Solve

d2U d2U dU dU  
T r r  +  -7—5- +  50—— h 50—— =  -2 s in a ;s in y +  50cosa;sin?/ +  50sina;cos?/ 
o xz oyz ox oy

w ith  boundary conditions

x := 0
dU
dn

= — sin x

x  := 1 U = sin x  sin y

y:=  0
dU
dn

= — sin y

y:=  1 U = sin x  sin y

Axiom Computer Algebra System (Release 2.1) 
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands. 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
( 1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> solve(0.0, 1.0, 0.0, 1.0, 9, 9, [1, 0, 1, 50, 50, 0, -2*sin(X)*sin(Y) + 
50*cos(X)*sin(Y) + 50*sin(X)*cos(Y)], [[ 0, 1, -sin(X)],[ 1, 0, sin(X)*sin(Y)] 
,[ 1, 0, sin(X)*sin(Y)], [ 0, 1, -sin(Y)]], "elliptic", 1.0e-4 )
nagman:acknowledging request for d03eef
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

nagman:acknowledging request for d03edf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

T he m ethod  first discretizes the P D E  using the routine d03eef w hich creates  
th e seven-diagonal system  of finite difference equations. T hese are then  
passed onto the routine d03edf for solution  by a m ultigrid technique.
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(2)
[ifail: 0, us: Matrix(DoubleFloat), rhs: Matrix(DoubleFloat), 
u: Matrix(DoubleFloat), numit: 3,

method:
[nameOfRoutine: "d03eefAnnaType", allMeasures: List(String), 
bestMeasure: 0.5]

9

ub: Matrix(DoubleFloat), a: Matrix(DoubleFloat)]
Type: Result
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A . 5 O p tim ization

Problem : M inim ize x\x^{x\ +  X2 +  £ 3 ) +  £ 3

1 < xi < 5 
1 < X2 < 5 
1 < £ 3  < 5

w ith  constraints: 1 < X4 <  5

— 0 0  < x \ +  X2 +  X3 4- X4  < 20 
— 0 0  < x \  +  x \  +  x \  +  x \  <  40 

—25 < 3:1 0:2 2:3 X4 <  0 0  

and in itia l guess: [1 .0 ,5 .0 ,5 .0 ,1 .0 ]

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands. 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
( 1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> optimize(X[l]*X[4] *(X[1]+X[2]+X[3] )+X[3] , [1.0, 5.0, 5.0, 1.0],
[1.0, 1.0, 1.0, 1.0, -1.E25, -1.E25, 25.0], [X[l]+X[2]+X[3]+X[4] ,
X[l]**2+X[2]**2+X[3]**2+X[4]**2 , X[l]*X[2]*X[3]*X[4] ], [5.0, 5.0, 5.0,
5.0, 20.0, 40.0, 1.E25])
nagman:acknowledging request for e04ucf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

( 2 )
[ifail: 0, c: Matrix(DoubleFloat), objf: 17.0140172891347, 
objgrd: Matrix(DoubleFloat), attributes: List(String), iter: 5, 
clamda: Matrix(DoubleFloat), x: Matrix(DoubleFloat), 
istate: Matrix(Integer), r: Matrix(DoubleFloat), 
cjac: Matrix(DoubleFloat),

method:
[nameOfRoutine: "e04ucfAnnaType", allMeasures: List(String),
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bestMeasure: 0.6]
]

Type: Result
(3) -> qelt(*/,.method,allMeasures)

(3)
[
"e04mbfmeasure: 0.0 - e04mbf is for a linear objective function and 
constraints only.",
11 e04nafmeasure: 0.0 - e04naf is for a quadratic function with linear 
constraints only.",
"e04ucfmeasure: 0.6 - e04ucf is recommended",
"e04dgf is no better than other routines",
"e04gcfmeasure: 0.0 - e04gcf is unsuitable for constrained problems. ", 
"e04jaf is no better than other routines",
"e04fdfmeasure: 0.0 - e04fdf is unsuitable for constrained problems. "]

Type: List String
(4) -> '/.y,(2) .attributes

(4)
["The object function is non-linear",
"There are simple bounds on the variables",
"There are 1 linear and 2 non-linear constraints"]

Type: List String

T he count o f linear and non-linear constraints excludes th e sim ple bounds  
on th e  variables.

(5) -> */.•/.(2).x

(5) [1.0 4.7429996428483 3.82114997689538 1.37940829417858]
Type: Matrix DoubleFloat

(6) -> •/.*/. (2). objf

(6) 17.0140172891347
Type: DoubleFloat
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Problem : C alculate a least-squares m inim um  of:

(x3 -  15x2)-1 +  x \  — 0.14 

2(2x3 -  14x2)-1 +  ®i - 0 .1 8  
3(3x3 — 13x2)_1 +  x \  — 0.22 
4(4x3 -  12X2) " 1 + x i  - 0 .2 5  
5(5x3 — l l x 2)—1 +  x i — 0.29 
6 (6x 3 — 10x2)-1 +  x i — 0.32 

7(7x3 — 9x2)-1 +  x i — 0.35 
8 (8x 3 — 8x 2)_1 +  x i — 0.39 
9(9x3 - 7 x 2)~ 1 +  x i - 0.37 

10(10x 3 -  6x 2)—1 +  x i -  0.58 
l l ( l l x 3 — 5x2)—1 +  X\  — 0.73 
12(12x 3 — 4x2)-1 +  x i — 0.96 
13(13x3 — 3x2)_1 +  x i — 1.34 
14(15x3 — 2x2)-1 +  x i — 2.1 
15(15x3 — Z2)-1 +  x i — 4.39

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue )copyright to view copyright notices.
Issue )summary for a summary of useful system commands. 
Issue )quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> optimize( [(X[3]+15*X[2])**(-1)+X[1]-0.14 , 2*(2*X[3]+14*X[2])**(-1)
+X[1]-0.18 , 3*(3*X[3]+13*X[2] )**(-l)+X[l]-0.22 , 4*(4*X[3]+12*X[2] )**(-l) 
+X[1]-0.25 , 5*(5*X[3] +11*X[2])**(-1) +X[1]-0.29 , 6*(6*X[3]+10*X[2])**(-l) 
+X[1]-0.32 , 7*(7*X[3] +9*X[2])**(-l)+X[1]-0.35 , 8*(8*X[3]+8*X[2])**(-l)
+X[1]-0.39 , 9*(7*X[3] +#7*X[2])**(-1)+X[1]-0.37 , 10*(6*X[3]+6*X[2])**(-l) 
+X[l]-0.58 , 11*(5*X[3] +5*X[2])**(-l)+X[l]-0.73 , 12*(4*X[3]+4*X[2])**(-l)
+X[1] -0.96 , 13*(3*X[3] +3*X[2] )**(-1) +X[1] -1.34 , 14*(2*X[3]+2*X[2] )**(-l)
+X[1]-2.1 , 15*(X[3]+X[2])**(-l)+X[l]-4.39 ] , [0.5, 1.0, 1.5])
nagman:acknowledging request for e04gcf
nagman:connection successful to dictum.maths.bath.ac.uk

118



nagman:receiving results from dictum.maths.bath.ac.uk

( 2 )
[ifail: 0, w: Matrix(DoubleFloat), 

method:
[nameOfRoutine: "e04gcfAnnaType", allMeasures: List(String), 
bestMeasure: 0.7214220332 0194042508]

>
attributes: List(String), x: Matrix(DoubleFloat), 
objf: 0.00821487730657901]

Type: Result
(3) -> qelt('/,.method,allMeasures)

O)
["e04gcfmeasure: 0.721 - e04gcf is recommended.", 
"e04fdf is no better than other routines"]

(4) -> VI* (2) . attributes

(4) ["The object functions are non-linear"]

(5) -> •/.*/.(2).x

Type: List String

Type: List String

(5) [0.0824105598097718 1.13303609205156 2.34369517871324]
Type: Matrix DoubleFloat

(6) -> y.y.(2).objf

(6) 0.00821487730657901
Type: DoubleFloat
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A p p en d ix  B

C ode P rod u ction  and T esting  
P rocedures

B .l  A N N A  Categories Domains and Packages

B .1 .1  C a teg o r ie s

• NumericallntegrationCategory
• OrdinaryDifferentialEquationsSolverCategory
• PartialDifferentialEqnationsSolverCategory
• NumericalOptimizationCategory

B . l . 2 M e th o d  D o m a in s  

I n te g r a t io n

• dOlajfAnnaType
• dOlakfAnnaType
• dOlalfAnnaType
• dOlamfAnnaType
• dOlanfAnnaType
• dOlapfAnnaType
• dOlaqfAnnaType
• dOlasfAnnaType
• dOlfcfAnnaType
• dOlgbfAnnaType
• dOlTransformFunctionType
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Ordinary D ifferential Equations

•  d02bbfAnnaType

•  d02bhfAnnaType
• d02cjfAnnaType

•  d02ejfAnnaType

Partial D ifferential Equations

•  d03eefAnnaType

O ptim ization

•  e04dgfAnnaType
•  e04fdfAnnaType
•  e04gcfAnnaType

•  e04jafAnnaType
•  e04mbfAnnaType

•  e04nafAnnaType
•  e04ucfAnnaType

B .1 .3  P ack ages  

Top Level Packages

• AnnaNumericallntegrationPackage
•  AnnaOrdinaryDif f  e r en t ia lE q u a t ionP ackage
•  AnnaPart i  a lD if  f  e r en t ia lE q u a t ionPackage
•  A nnaN um ericalO ptim izationPackage

C om putational A gent Packages

•  dO lA gentsPackage
•  d02A gentsPackage
•  d03A gentsPackage

•  e04A gentsPackage
•  E xpertS ystem C on tinu ityP ackage

•  E xpertS ystem C on tin u ityP ack age1
• dO lW eightsPackage
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B . l . 4  M isce lla n eo u s  D om ain s

•  R ou tin esT ab le
•  B a s ic F u n c tio n s

•  A ttr ib u te B u tto n s
•  In te g r a tio n F u n ctio n sT a b le

•  O D E Inten sityF un ction sT ab le

•  E xpertSystem T oolsPackage

•  E xpertSystem T oolsP ackage1
•  E xpertSystem T oolsPackage2
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B.2 Structural Design

NAG Fortran Library

Knowledge
Base

Basic Dynamic 
Functions Storage

Routines

AXIOM Symbolic Algebra Package

Output

Naglink

Parser

Method
Domains

Inference
Machine

Computational
Agents

L _   —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  J
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B.3 Testing and Evaluation 

B .3 .1  In te g ra tio n

Integration Problem Recommended Routine(s)

e~ 3 x 2  +  e" *3 ,
/ -------- 7= ------ dx

Jo V x
dOlAPF & D01AJF1

r°° Py
/ ~ r dy Jo \ / l j

D01APF & D01AJF1

f 2 e~ 3 x 2  +  e~ x 3  ,

Jo (*2 - 2 )
D01AQF

f 2  , q 1 . dx
Jo (x6 - l )

D01AQF

/ cost2 +  sin t +  cos sin t3 dt
J — 7T

D01AKF

CxS4(x̂ )dx D01AKF

/ cos 2 0a; (sin a:2 +  cos a:2) dx
Jo

D01ANF

f 2 log x  log (2 -  x)  ^  

JO y /~ x  y / ( 2 -  x ) 2
DOlAPF

L .  / ° V 2/ 2 dz 
V2tt Jo

D01AMF

lrThe A NNA routine DOlTransform splits the function, transforms one part, and uses the routines 
D01APF and D01AJF on the two parts
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Integration Problem Recommended Routine(s)

f°° e-u

J _ o o  (uj —  5)  ( W - J )

D01AQF &  D01AQF2

j  logu2 du D01ALF

/•l P1 P1 P1 2*1
I I I  4xia:oe(1+x2+x4)2 ^ 4  ^ 3  cfcc2 dx\

Jo Jo Jo Jo
D01FCF

2T h e A N N A  routine DO lTransform  sp lits  th e  fun ction  and  uses th e  routine D01AQF on th e  
separate parts



B .3 .2  O rd inary  D ifferen tia l E q u a tio n s

N o n -stiff  E q u a tio n s3

Ref System of Equations Initial Conditions Routine

N4

y[ = tan 2/3

2/2 = - 0 . 0 3 2 ^ ^  -  0.02—̂ — 
t/2 cos 2/3

, 0.032 
2/3 =  ”  *

yi(0) =  0.5 

» (0 )  =  0.5 

3/3 (0 ) =  0.27T

D02BBF

A l 1II 3/(0) =  1 D02BBF

A2

<M5ft1II 3/(0) =  1 D02BBF

A3 y1 = y  cos x 3/(0) =  1 D02BBF

A4 y (  1 y \
y 4 V 2 0 / 1/(0 ) =  1 D02BBF

A5 y> = y - x  

y + x

II"5s D02BBF

3 M ost o f th e  te st exam ples axe from [Hull e t  al. , 1972] 
4T h is exam ple is used  in [NA G , 1996]
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Ref System of Equations Initial Conditions Routine

B1
2/i =  2 (yi -  y i y 2) 3/1 (0 ) =  1

D02BBF
2/2 =  - ( 2/2 - 2/12/2) Itt(O) =  3

2/i =  - 2/1 +  2/2 3/1 (0 ) =  2

B2 2/2 =  2/1 -  22/2 +  2/3 3/2(0) =  0 D02BBF

2/3 =  2/2 -  2/3 3/3(0) =  1

2/i =  - 2/1 3/l(0) =  1

B3 2/2 =  2/1 — 2/2 3/2(0) =  0 D02BBF

2/3 =  2/2 3/3(0) =  0

2/i =  “ 2/2 -  2/12/3 V 2/i +  2/2 3/1 (0) =  3

B4 2/2 =  2/1 - 2/22/3 \ / 2/i + 2/2 3/2 (0 ) =  0 D02CJF

2/3 =  y iy y l  + vl 3/3(0) =  0

2/i =  2/22/3 3/1 (0 ) =  0

B5 2/2 =  -2/12/3 3/2 (0 ) =  1 D02BBF

2/3 =  —-512/12/2 3/3(0) =  1
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Ref System of Equations Initial Conditions Routine

C l

’ y[
2/2

. y[o .

=

~ l  1 
1 - 1  0

1 .

0 ’ - 1  

1 0 J

y\ 1 
2/2

. 2/10 J

2/(0) =

' 1 " 
0

0

D02BBF

C2

" y'\
2/2

. y'rn .

=

" - 1
1 - 2  0  

2 - 3

0 . - 9
9 0 _

2/1
2/2

. 2/io .

2/(0) =

" 1 ' 
0

0

D02BBF

C3

i 
i

£ 
to

- 
i 

i

=

" - 2  1 
1 - 2  1 0  

1

0  . - 2  1 

1 “ 2

2/1
2/2

. 2/io .

2/(0) =

" 1 ‘ 
0

_ 0  _

D02BBF

C4 As C3 except with 51 equations D02CJF
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Ref System of Equations Initial Conditions Routine

D1

V i  =  V3 

2/2 =  2/4

2/3 =  “ 2/1 (2/i +2/i)3/2 

y\ =  - 2/2(y? +  y i)3/2

?/i (0) =  1 — e

2/2 (0 ) =  0 

2/3(0 ) =  0

-  V l - e
e =  0.1

D02BBF

D2 As above with e =  0.3 D02BBF

D3 As above with e =  0.5 D02BBF

D4 As above with e =  0.7 D02BBF

D5 As above with e =  0.9 D02BBF
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Ref System of Equations Initial Conditions Routine

E l
2/i =  2/2 

*  -

3/1 (0) =  J i / 2 ( 1 ) 5

y 2 (o )  =  j ; / 2 ( i ) 6
D02BBF

E2 2/i =  2/2

2/2 =  (x “  2/i )2/2 -  2/1

y i ( o )  =  2  

Jft(0) =  o
D02CJF

E3
2/i =  2/2

y '2  =  — — i/i +  2 sin(2.78535a:) 
6

VI (0) =  0 

V 2 (0 ) =  0
D02CJF

E4 2/i =  2/2

=  0 .0 3 2  — 0.4^1

V i ( 0 )  =  3 0  

V2 ( 0 )  =  0
D02CJF

E5
2/i =  2/2

y >2 =  V / l  +  I'2
25 -  x

vi (0) =  0

y2(o) =  o
D02CJF

50 .6713967071418030
60 .09540051444747446
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Stiff and M ildly-StifF Equations7

Ref System of Equations Initial Conditions Routine

N8

y 'i =  “ 7^2/1 +  1q4 2/22/3

2/2 =  ^g2/i “  1042/22/3 -  3 x 107 y\ 

2/3 =  3 x 107y2

yi(o) =  1 

1/2 (0 ) = . 0  

» (o )  =  0

D02EJF

A l

y[ =  -o.5j/i

2/2 =  - 2/2 

2/3 =  -100y3

2/4 =  - 9°2/4

yi(o) =  1 

3/2 (0 ) =  1

V3<0) =  1

3/4(0 ) =  1

D02CJF9

A2

y[ = -1800yi+ 900t/2 

2/i =  2/i—1 -T 2/i+i 

y£ =  -1000y8 -  2000y9 +  1000 

i  =  2 , . . . ,  8

VI(0) =  0 

Vi(0) =  0  

3/8(0) =  0

D02EJF

A3

2, '  =  - 1 0 4yi +  100y2 -  10y3 +  y4 

y f2  =  - 1 0 3y2 +  10y3 -  10y4 

2/3 =  “ 2/3 +  10y4 

y\ =  —0.1y4

3/1 (0) =  1

V2(0) =  1 

3/3 (0) =  1 

3/4(0) =  1

D02EJF

A4

0i-H

jS 
L

 ̂
(M

 
1II 

II Vi(0) =  1 D02EJF

7 Most of the test examples are from [Enright et a l 1975] 
8This example is used in [NAG, 1996]
9 The system  of equations is only mildly stiff
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Ref System of Equations Initial Conditions Routine

B1

y'i =  - y i  +  2/2 

y'2 =  - l ( % i  -  y 2

y'3 =  10Ch/3 + 1/4

t/i =  - 1 0 0 0 0 t/3 -  l0 0 y A

2/1 (0 ) =  1 

2/2 (0 ) =  0  

2/3(0) =  1 

2/4(0) -  0

D02BBF10

B2

y [ =  — ICh/i +  a y 2

2/2 =  -< xyi -  102/2

2/3 =  4 2/3 

2/i =  -2/4 

2/5 =  —0.52/5 

2/6 =  “ 0 -12/6 

o; =  3

2/i(0 ) =  1 

2/2 (0 ) =  1 

2/3(0) =  1 

2/4(0) =  1 

2/5(0) =  1 

2/6 (0 ) =  1

D02BBF10

B3 As in B2 with a  =  8 D02BBF10

B4 As in B2 with a  =  25 D02BBF10

B5 As in B2  with a  =  100 D02BBF10

10The system  of equations is only very mildly stiff
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Ref System of Equations Initial Conditions Routine

C l

y[ = -y i  +  2/2 +  2/3 +  2/4 

y '2  = - i o t /2 + 1 0 (2/3 +  yi) 
7/3 =  — 40y3 +  40 yl 

y\ = — IOO7/4 -1- 2

y i(0) =  1 

y2(o) =  1 

3/3 (0 ) =  1 

y4(0 ) =  1

D02CJF11

C2

y'l = - 2/1 +  2

7/2 =  -IO 7/2 +^7/i

7/3 =  —40t/3 +  4/?(7/f +  7/2)

7/i =  — IOO7/4 +  10^(t/i +  7/2 +  2/3 ) 

(3 = 0.1

Vi (0) =  1 

y2(o) =  1 

1/3(0 ) =  1 

3/4 (0 ) =  1

D02CJF11

C3 As in C2 with (3 = 1 D02CJF11

C4 As in C2 with (3 = 10 D02CJF11

C5 As in C2 with (3 = 20 D02CJF11

11 The system  of equations is only mildly stiff
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Ref System of Equations Initial Conditions Routine

D1
y[ = 0.2(t/2 -  2/1)

3/2 =  102/i ”  (60 ~  0 .1257/3)2/2 +  0.1252/3 

V3 =  1

2/1(0 ) =  0 

2/2 (0 ) =  0 

2/3 (0 ) =  0

D02CJF12

D2
2/i =  -0.42/1 +  O.OI2/22/3 

2/2 =  400t/i -  IOO2/22/3 ~  30002/2

2/3 =  302/2

2/i(0) =  1

2/2 (0 ) =  0 

2/3 (0 ) =  0

D02EJF

D3

2/i =  2/3 -  IOO2/12/2

2/2 =  2/3 +  22/4 -  IOO2/12/2 -  2 x 1022/2

2/3 =  2/3 +  IOO2/12/2

2/4 =  -2/4 +  1042/2

2/i(0) =  1 

2/2(0) =  1 

2/3 (0 ) =  0 

2/4 (0 ) =  0

D02CJF12

D4
2/i =  -0.0132/1 -  IOOO2/12/2 

2/2 =  -25002/22/3

2/3 =  -0.0132/1 -  IOOO2/12/3 -  25002/22/3

2/i(0) =  1 

2/2(0) =  1 

2/3 (0 ) =  0

D02BBF13

D5
2/i =  0.01 - ( 1  +  (2/1 +  1000)(2/i +  l))

(0.01 +  2/1 +  2/2) 

2/2 =  0 .0 1 -  (I +  2/2XO.OI +  2/1 +  2/2)

2/1(0 ) =  0 

2/2 (0 ) =  0
D02EJF

D6
2/i =  —yi -h 108y3(l — yi)

2/2 =  -IO 2/2 +  3 x 1072/3(1 -  2/2) 

2/3 =  “ 2/i -  2/2

2/1(0 ) =  1 

2/2 (0 ) =  0 

2/3 (0 ) =  0

D02EJF

12 The system  of equations is only mildly stiff
13A NNA identifies that the system  of equations is very stiff but still incorrectly chooses th e  wrong 

routine
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Ref System of Equations Initial Conditions Routine

E l

2/i = 2/2

2/2 = 2/3 

2/3 =  2/4

2/4 =  (2/i -  sin(yi) -  T4)yi

*  cr.-"*)"
+ ( 1  -  6 r 2)y3

+(10e_y4 -  4T)y4  +  1

r  =  ioo

2/1 (0) =  0 

2/2(0) =  0 

2/3(0) =  0 

y4(0) =  0

D02BBF14

E2 y[ =  2/2

2/2 =  5(1 — yi)y2 — 3/i

yi(0) =  2

y2 (o) =  o
D02CJF14

E3
y[ =  —(55 +  y3)yi +  65y2 

2/2 =  0.785(i/i -  y2)

2/(, =  O.Olyi

2/1 (o) =  1 

2/2(0) =  1 

2/3(0 ) =  0

D02BBF15

E5

yl =  -0.789 x 10-10y! -  1-1 x 107yi2/3 

y2 =  7.89 x 10~10yi -  1.13 x 109y2y3 

y' =  7.89 x 10-10y! -  1-1 x 107y!y3 

+1.13 x 103y4 -  1.13 x 109y2y3 

y\ =  1.1 x 107yiy3 -  1.13 x 103y4

yi (0) =  0.00176 

2/2(0 ) =  0 

2/3(0 ) =  0 

2/4 (0 ) =  0

D02EJF

14 The system  of equations is only mildly stiff
15 The stiffness of the system  of equations increases over the integration period and is thus not 

correctly identified by A N N A ’s detection algorithm. It thus chooses a non-optim al routine
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B .3.3 O ptim ization

Minimization of a Single Multivariate Function

Function Constraints Routine

e \  (4x2 +  2^ 2  +  4 x 122  +  2 x2 +  1) E04DGF

(xi +  10x2 ) 2 +  5(x3 — x4) 2 

+ (x 2 -  2 x 3)4 +  1 0 (x i -  x 4 ) 4

1 < xi <  3 
—2  <  x 2 <  0  

—oo <  x3 <  oo 
1 < x4 <  3

E04JAF

XiX4(xi +  22  4- X3) +  x 3

1 <  21 <  5 
1 <  22 <  5 
1 <  x3 <  5 
1 <  x4 <  5

— OO < 21 +  22 +  x3 +  X4 <  20
—oo <  x \  +  x \  +  2 3  +  x4 <  40 

— 25 <  2i222324 <  OO

E04UCF
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Linear Programming

F unction C onstraints R outine

—0 .2 (0 . l x i  +  X2  +  X3  +  X4

+ x 5  -  0 .2 (x 6  +  x 7))

—0 . 0 1  <  x i  <  0 . 0 1

—0.1 <  X 2 <  0.15  

—0.01 <  £ 3  <  0.03  

- 0 .0 4  < x 4  < 0.02  

—0.1 <  X 5 <  0.05  

—0 . 0 1  <  ^ 6  <  00 

—0 . 0 1  <  x 7  <  00 

x i  +  X2 +  X z  +  X4  +  X5  +  Xq +  X7  =  - 0 .1 3  

—00 <  0 .15x i +  0.04x2 +  0 .0 2 x 3  +  0.04x4 +  0 .0 2 x 5  +  0.01x6 +  0.03x7 <  —0.0049  

—00 <  0 .0 3 x i +  0.05x2 +  O.O8 X3  +  0 .0 2 x 4  +  O.O6 X5  +  0.01x6 <  —0.0064  

—00 <  0 .0 2 x i +  0.04x2 +  O.OIX3  +  0 .0 2 x 4  +  0 .0 2 x 5  <  —0.0037  

—00 <  0 .0 2 x i +  0.03x2 4- O.OIX5  <  —0.0012  

—0.0992 <  0 .7 x i +  0 .7 5 x 2  +  0 .8 x 3  +  0 .7 5 x 4  +  0 .8 x 5  +  0.97x6 <  00 

—0.003 <  0 .02x i +  0.06x2 +  O.O8 X3  +  0 . 1 2 x 4  +  0 .0 2 x 5  +  0.01x6 +  0 .9 7 x 7  0.002

E04MBF



Quadratic Programming

Function Constraints Routine

(xi — 0.02)xi +  (X2  — 0 .2 )x2 

+ (x 3 -  0.2)x3 
+ (x 4 +  2x3 -  0.2)x4 

+ (x 5 -  0 .2 ) x 5 

+(0.04 -  xq)xq 
+(0.04 — 2x6 ~  ^ 7)^7

-0.01 <  xi <  0.01

—0.1 < X2 <  0.15 
—0.01 < x3 < 0.03 
-0 .04 <  x4 < 0.02 
—0.1 < X5 <  0.05 
—0.01 <  X6 <  0 0  

—0.01 < X7 <  00  

+  £2 +  £3  +  £4 +  X5 +  X6 +  X7  — —0.13 
- 0 0  <  0.15xi +  0.04x2 +  0.02x3 +  0.04x4 +  0.02x5 +  0.01x6 +  0.03x7 <  -0.0049 

—00 <  0.03xi +  0.05x2 +  0.08x3 +  0.02x4 +  O.O6X5 +  0.01x6 < —0.0064 
—00 <£ 0.02xi +  0.04x2 +  0.01x3 +  0.02x4 +  0 .0 2x5 <1 —0.0037 

—00 <  0.02xi +  0.03x2 +  O.OIX5 <  —0.0012 
—0.0992 < 0.7xi +  0 .75x2 +  0.8x3 +  0.75x4 +  0 .8x5 +  0.97x6 <  00  

-0.003 < 0.02xi +  O.O6X2 +  0.08x3 +  0.12x4 +  0.02x5 +  0.01x6 +  0.97x7 <  0.002

E04NAF



L e a st-S q u a r e s  P r o b le m

Functions Routine

(X3 -  15x2)-1  + x i — 0.14

2(2a:3 -  14x2)_1 +  x i  —  0.18

3 (32:3 —  13x2)_1 + x \ — 0.22

4 (42:3 — 12x2)_1 +  x \  -  0.25

5 (52:3 —  l l x 2) -1  +  x \  — 0.29

6 (62:3 — 102:2)_1 +  x \  — 0.32

7 (72:3 — 92:2)_1 +  x i  — 0.35

8 (82:3 —  82:2)_1 +  x i  — 0.39 E04GCF

9 (92:3 —  72:2)-1  +  x i  — 0.37

10(102:3 —  62:2)_1 +  x i  —  0.58

11(11x 3 -5 2 ;2 )_1 + x i  - 0 .7 3

12(12x 3 — 4x2) _1 +  x \  — 0.96

13(13x3 -  3x2) _1 +  x i -  1.34
14(15x3 — 2x2) -1  +  xi — 2.1
15(15x3 - X 2 ) - 1 +  xi -4 .3 9
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