

University of Bath

PHD

More intelligent delivery of numerical analysis to a wider audience

Dupee, Brian J.

Award date:
1997

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

M ore Intelligent D elivery o f
N um erical A nalysis to a W ider

A udience
subm itted by

Brian J Dupee
for the degree of PhD

of the

University of Bath
1997

C O P Y R IG H T

Attention is drawn to the fact that copyright of this thesis rests with its author. This
copy of the thesis has been supplied on the condition that anyone who consults it is
understood to recognise that its copyright rests with its author and tha t no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.

This thesis may be made available for consultation within the University Library and
may be photocopied or lent to othdrlibraries for the purposes of consultation.

' • _________Signature of A u tho r................. J.W ___...

Brian J Dupee

UMI Number: U601949

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601949
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

U N I V E R S I T Y O F B A T H
L""? AP'

1 o jun jr
p c t ;

g " / a ^ . 0 2 . 0

To Elke

Acknowledgements

I would like to thank those that have helped and supported me during the course of
preparing this thesis. In particular I would like to thank Prof. James Davenport who
supervised the research and both Mike Dewar and Themos Tsikas at NAG Ltd.

I must also thank Dr. David Hornsby who was the first to believe tha t I could do it,
but who foolishly bet tha t I would present my thesis before he.

i

Summary

Demand by users for modern easy-to-use graphical interfaces in the form of Win
dows and the World Wide Web browsers has led to the perfectly reasonable expectation
tha t all computing should be done this way. In answer to this, many improvements,
especially in terms of ease of use, have been made to software for solving mathematical
problems, in particular symbolic packages such as Maple, Mathematica and Axiom,
in tha t they now come complete with some Windows-type interface. However, many
mathematical problems either cannot be solved using symbolic methods or such meth
ods are unsuitable and numerical methods are preferable. The user has thus been forced
to rely on older numerical software. This is proven software where separate numerical
routines are generally collected together to form libraries, bringing into one package a
considerable amount of technical and mathematical expertise.

The use of these libraries means tha t the user is forced to employ what can only
be considered as archaic methods — writing and compiling programs in Fortran etc.
Due to their historical development, such methods are difficult to use and difficult to
understand when they should be used. This means tha t they are not suited to use
by a novice or someone more used to Windows technology and there is little help in
choosing the appropriate routine for any given problem, should there be a choice.

This thesis describes the construction using new technology of an intelligent inter
face to numerical library routines. In particular, it shows the techniques used in the
construction of an expert system for choosing and applying NAG numerical routines
in the fields of numerical integration, numerical solution of differential equations and
optimization available to the Axiom computer algebra system. It also describes the
construction of an easy to use windows interface using hypertext technology.

C ontents

I B a ck grou n d 1

1 Introduction 2
1.1 The Nightmare S cenario ... 2
1.2 The Windows Revolution and the “New User” .. 4
1.3 The P ro p o s a l .. 5

2 T he Problem s o f U sing Num erical Software 7
2.1 Using and Abusing F o r t r a n ... 8
2.2 The Problem of Choice.. 10
2.3 The NAG Fortran L ib ra ry ... 11

2.3.1 The Scope of the L i b r a r y .. 11
2.3.2 Programming using the NAG L ib r a r y ... 14

3 Previous A ttem p ts to Consider th e Problem 18
3.1 Decision Trees - Help Numerical and GAMS ... 18
3.2 Rule Based Systems for Software Selection - NAXPERT, SAIVS and

O D E X P E R T .. 19
3.3 Using a Rule Based System to Implement Library Routines - IRENA/ARC 20

4 C om puter A lgebra System s 22
4.1 In troduction .. 22
4.2 M a p le .. 23

4.2.1 In te g ra t io n ... 23
4.2.2 Ordinary Differential E quations... 26

4.3 A x io m*.*... 28
4.3.1 The Object Oriented P a ra d ig m ... 28
4.3.2 Categories, Domains and P ack ag es ... 29
4.3.3 In te g ra t io n ... 30
4.3.4 Ordinary Differential E quations... 31

4.4 Conclusion ... 32

5 E xpert System s 33
5.1 In troduction ... 33
5.2 Examples of Expert Systems and Expert System L anguages.................. 35
5.3 The Knowledge B a s e ... 36
5.4 The Inference M achine.. 37
5.5 Explanation Mechanisms... 38
5.6 Language Choice for the Proposed S y s tem ... 38

II A N N A 40

6 C om putational A gents 41
6.1 Integration .. 41

6.1.1 Testing for C o n tin u ity ... 42
6.1.2 Finding Weight F unctions.. 46
6.1.3 Miscellaneous A gents.. 48

6.2 Differential E q u a t io n s ... 48
6.2.1 Testing for Stiffness and S tab ility ... 49
6.2.2 Other A g e n ts .. 50

6.3 O p tim iz a tio n 51
6.3.1 Categorising the Optimization P r o b le m .. 51
6.3.2 Sorting C onstraints... 52

6.4 Conclusion .. 52

7 T he K now ledge B ase 54
7.1 Knowledge of M eth o d s... 55
7.2 Dynamic Knowledge R ep resen ta tio n ... 59

8 M easure Functions 60
8.1 Dempster Shafer Theory with Multiple Strategies 61
8.2 Conflicting Evidence and Lucks/Glad well M easures..................................... 63
8.3 A p p lic a tio n .. 64

9 Inference M echanism s 66
9.1 Inference P a c k a g e s ... 66
9.2 Recovery P ro ced u res .. 68

iv

10 Explanation 72
10.1 A Hierarchy of E x p lan a tio n .. 73

11 T he H yperD oc Interface 77

12 Conclusion 90
12.1 The Problem and its Background... 90
12.2 The Solution .. 92
12.3 Evaluation... 93
12.4 Summary and Further W ork .. 94

R eferences 96

A W orked E xam ples using A N N A 103
A .l Computational A g e n ts ... 103
A.2 Integration ...105
A.3 Ordinary Differential E quations... 110
A.4 Partial Differential E q u a tio n s ...114
A.5 O p tim iz a tio n ..116

B C ode P roduction and Testing Procedures 120
B .l ANNA Categories Domains and P a c k a g e s ... 120

B.1.1 C ategories... 120
B .l.2 Method D om ains.. 120
B .l.3 Packages.. 121
B .l.4 Miscellaneous Domains ... 122

B.2 Structural D esig n ... 123
B.3 Testing and Evaluation..124

B.3.1 In te g ra t io n .. 124
B.3.2 Ordinary Differential E quations...126
B.3.3 O p tim iz a tio n ...136

v

Part I

Background

1

C hapter 1

Introduction

A piece o f software will not be used voluntarily unless it is easy to use,
however good it may be internally.

[Kemp, 1978]

1.1 The Nightmare Scenario

An engineer has a problem. In some design process he has to estimate a
minimum load on some linkages. He has done the mathematical modelling
and goes to his supervisor to get help on performing the computation. The
supervisor looks at the problem and tells the engineer th a t he should go
and look at the NAG Numerical Library [NAG, 1996] since they’re bound
to have some routine for it.

The engineer goes to the shelf where the manuals are kept, and is faced
with 12 large volumes, heavily bound, with titles which clearly say “D02” ,
“E04” etc. He doesn’t give up.

After a while he finds the ‘Foreword’ and reads that, for minimization, he
requires the ‘optimization’ chapter E04 and pulls that volume off the shelf.
He is then presented with a few hundred pages of technical jargon and
Fortran 77 code. It starts to dawn on him tha t he’s going to have to write
a Fortran program. He doesn’t give up.

After wading through the introduction he realises that the problem he has
is a minimization subject to non-linear constraints and the decision tree

2

provided tells him to use E04UCF. He thinks he feels a little happier now
that he knows he’s on the right track and turns to the section on E04UCF,

only to find tha t the section is 41 closely-typed pages of items labelled
OBJFUN, ISTATE(N+NLIN+NCLIN) and CJAC(NROWJ ,N) and that i t ’s not just
one program, but needs a number of sub-programs. He doesn’t give up.

He realises that there is a sample program tha t he can use to try and
understand how he can program his own problem. Using tha t, and an
old Fortran 77 manual, he starts to type. All these variable names are so
confusing, and all seem to be used quite arbitrarily. I t’s so easy to make
mistakes. After three attem pts to compile the example code, he breaks out
in a cold sweat.

And wakes up!

This scenario goes some way towards explaining why programmers, and Fortran pro
grammers in particular, are regarded as strange. They are increasingly thought of as
the dinosaurs of the computing industry. They appear to live and breathe by the ethic
tha t “if it’s difficult to write, it should be difficult to understand!” But we’re talking
about thirty years of the life and work of brilliant men and women. If they could suffer
by the rules of a programming language designed in the 50s and 60s which allowed Neil
Armstrong to walk on the moon, don’t we have a duty to offer our respect?

But computing is a different subject now. We are no longer in general constrained by
the size of memory, or by a need to use punched cards for input. We can display the
output of a program on a colour monitor whilst performing further calculations on a
machine thousands of miles away. But still we cannot throw all this expertise away.
We also don’t wish to repeat all their work just to take advantage of more modern
machines.

The answer is to get those more modern machines to do the work for us.

The same engineer has another problem. Buoyed up by his success in solv
ing the minimization problem, he decides to tackle a problem where he is
investigating the effect of a number of different loads on the structure over
a period of time. He knows this is an ordinary differential equation and so
is directed to the ‘D02’ chapter of the NAG library.

He surmises th a t his is an initial-value problem, but cannot get any further
without knowing whether the problem is “stiff” or not. There is nothing

3

here tha t can tell him how to find out without doing some preliminary cal
culations using one of the routines and “conclusions based on the computer
time used and the number of evaluations of the derivative function
So not only does he have to write a Fortran program (and sub-programs)
to perform the calculation, he has to write a Fortran program (and sub
programs) to work out which Fortran program he should write to perform
the calculation.

This illustrates another difficulty with using numerical methods. The method itself is
often tuned to a specific subset of problems and they are either incapable, or at least
inefficient, when confronted with a problem outside this minor subset. So as well as
requiring something which can make the use of Fortran routines a lot easier, there is a
need for software which can at least give some help on the problem of choice.

This is an area which has been addressed in the past. “There are expert systems
which attem pt to analyse the problem as presented by the user and, possibly with user
interaction, thence decide upon the best means of solution. This type of system is still
in its infancy and it may be some years before complex numerical problems can be
solved this way” [Hopkins Sz Phillips, 1988].

1.2 The W indows Revolution and the “N ew User”

Increasingly, users’ introduction to computing and computing methods is by means of
the PC running some Windows technology. Therefore many users’ experience is with
graphical interfaces which ensure tha t complicated programs are implemented in some
logical and straightforward fashion. Undoubtedly this is how computers should be —
it is the user who commands, not the computer that demands.

Until recently, all “serious” mathematical computing has been done on mainframes
and their successors, the workstations, using a range of ‘old’ technologies i.e. Fortran
programs. This has started to change, firstly with the introduction of improved user
interfaces to UNIX programs (using, for example, X or its derivative, OpenWindows)
and increasing use of web technology and hypertext in particular. Modern applications
designers must s ta rt to take these technologies into account when constructing user
interfaces for the newly computer literate.

Furthermore, applications builders should consider the premise tha t the user doesn’t

4

need or want to know the inner workings of each individual method of computing an
integral, for example. Such details should be left to the computer program and, whilst
some explanation of which method has been used could be communicated back, the
user only wishes th a t the computation be carried out and a sufficient answer reached.

1.3 The Proposal

The aim of this project is to show tha t such an expert system can be created using cur
rent technology. The actual implementation that will be attem pted is to use numerical
routines of the NAG Fortran Library from within, and using, the Axiom Computer
Algebra System. This would then provide an intelligent interface to such numerical
software. However, not all routines in the NAG library require much intelligence to
decide on their use since any determination of attributes is fairly superficial, if any
is necessary. For example, there are four routines in the NAG library to determine
the roots of a polynomial: the user only needs to decide whether a given polynomial
is quadratic or not and whether its coefficients are real or complex to select the ap
propriate one (although it is more likely that Axiom can efficiently perform such a
task symbolically obviating the need for such numerical routines, although there are
exceptions c.f. $6.2.1, p. 49). But there are chapters of the NAG library where there
is considerable choice and, more importantly, where the criteria for th a t choice is less
clear cut.

As indicated above, the chapters E04 on Optimization and D02 on Ordinary Differential
Equations are prime candidates since the use of each requires considerable knowledge
of numerical analysis as well as the time and patience to create considerable Fortran
programs. A further chapter for consideration is D01 on Integration, where the user
must consider such difficulties as the continuity of the integrand or the presence of
weight functions (c.f. $6.1.2, p. 46). If and when the developers of Axiom can provide
links to more routines in chapter D03 on Partial Differential Equations or when other
numerical routines become available, it would be beneficial for its inclusion.

Whilst there is a need for a better interface to many of the other routines in the
NAG library which are available to the Axiom system, their construction is not a
suitable subject for this thesis. However, it is eminently reasonable to suggest that
techniques and ideas used in this thesis, particularly the hypertext-style interface, could
be implemented at little cost.

5

This thesis is in two sections. The first contains descriptions of the chosen problem
domains and the technology. It begins by introducing the problems inherent in using
numerical software and, in particular, the NAG Numerical Library routines. Previous
attem pts to provide a better and more intelligent way of using such library routines
are discussed. These include systems which use a form of the decision tree provided
by NAG in their documentation and early rule-based expert systems’ efforts to provide
automatic selection of numerical routines.

The rationale behind more modern interfaces to mathematical software is introduced
using the examples of the Computer Algebra Systems Maple and Axiom, with particular
reference to calculus and their use of numerical algorithms. This is followed by an
introduction to expert systems and their construction.

The second section is a step by step guide to the proposed system. It begins with
a discussion of the computational agents necessary to an expert analysis of the given
problem and some of the techniques used to perform tha t analysis. For example, the
algorithms required to answer such questions as Is this function continuous? and How
stiff is this set of differential equations?

The next four chapters describe the different sections of the expert system. This in
cludes a formal description of the construction of the knowledge base and a description
of the theoretical basis for the decision process constructed by extending Dempster-
Shafer theory and combining with Lucks/Glad well intensity, compatibility and aggre
gation functions. Concluding this section on the expert system is a chapter covering
why an explanation system is required and how such a mechanism is created.

This is followed by a description of the simplified user interface, both the command
line structure and the hypertext style input process. The conclusion brings together
all these separate areas and includes an evaluation of the implemented system.

6

C hapter 2

T he Problem s o f U sing
N um erical Software

There are a number of ways to solve numerical problems in Mathematics or Engineer
ing. Hitherto, one of the most reliable methods is to use code previously shown to be
accurate and sufficiently efficient contained in one or more of the available Numeri
cal Libraries. These house a number of programs or subroutines to perform either a
complete calculation or part of the calculation.

However, it is not always a simple process:
• The interface to these routines has not substantially changed since the early 1970s.

Whilst technological advances in computers and user interfaces has continued
apace, the techniques generally associated with numerical computation has re
mained static. Where we see millions of new computer users a year, those able
to use and understand these routines are dwindling.

• The problem has to be stated in a form similar to tha t which the library routine
can use.

Even though there may be different routines available for the solution of the
problem, it is not always the case that they accept the problem statement in the
same way.

• The language of the code of many of these routines may be unfamiliar to the
user.

Since it makes sense for the programming language to reflect the purpose and
style of the originators of the code ([Du Croz, 1982]) and since the routines are

7

likely to have been written before the latest languages and design principles, it is
quite possible for them to be difficult to understand. See [Dekker, 1980].

• It may not always be apparent which routine is best to solve a given numerical
problem.

• Due to the diversity of its authors, the interfaces may be inconsistent.

These inconsistencies may be as simple as parameters differently ordered e.g. the
parameter IFAIL is often the last parameter in the list but occasionally elsewhere.
It may be tha t two routines to perform the same task have totally different data
parameters or the names for those parameters are different.

Many of the numerical libraries (NAG, IMSL, LINPACK etc.) use Fortran 77 as a
programming language, and, however much experienced programmers regret the cur
rent state of affairs, Fortran is not a popular choice among students who would rather
learn the latest programming fad. There do exist a number of libraries written in
“more modern” languages, such as C or C + + but these tend to be smaller in scope
and availability.

Whilst interoperability (calling Fortran subroutines from a C, C + + or other program)
is almost certainly possible, the lack of standards engenders more difficulties than are
likely to be envisaged [SunSoft, 1995, §12]. For example, array structures would almost
certainly be different1, the naming schemes for functions and variables are inconsistent2
and many structures cannot be accommodated3.

2.1 Using and Abusing Fortran

Fortran as a language was created in the late 1950s specifically for mathematical pro
gramming, and, since this was among the first uses of computers, still contains many

1In Fortran, array subscripts by default start at 1 as opposed to 0 in C, C + + etc. and the dimensions
are ordered differently — Fortran stores arrays in column m ajor order (usually in contiguous memory)
and C (C + +) in row m ajor order. Transposing arrays is not trivial - it could be expensive as the
obvious algorithm is cache-pessimal.

2 Sometimes compilers/linkers require an additional underscore character to be added to external
Fortran subprogram names (library procedures may require tw o underscore characters) and there is a
variance with the treatm ent of upper and lower case characters in variables

3C and C + + allow a far greater range of data structures than is possible in Fortran although Fortran
has the basic type COMPLEX, missing in most other languages. The CHARACTER type is so different in
Fortran and C that its use is considered to be inadvisable.

reminders of its past4. It is difficult for today’s programmers to understand the restric
tions with which early implementations of numerical algorithms were created and used,
particularly with respect to memory management and efficiency. It would be a steep
learning curve indeed if a modern user was forced to come to grips with a computer
language older than himself, when the hardware on which it is to be run is considered
out of date in three years!

One of the major problems with Fortran is tha t since there may be many ways to code
an algorithm, the demands of efficiency have led to obfuscated code. But fortunately
the considerable testing process has vindicated each and every one so th a t we can
almost use the routines as “black boxes” .

However, the arcane naming structure causes great semantic difficulties, with its six
character limit and implicit typing of variables. For example, the NAG Fortran Library
Routine D01AJF, a routine for numerical quadrature which implements an adaptive
scheme due to Piessens and De Doncker5 (its use will be further discussed later in this
thesis), has the following specification:

SUBROUTINE //D 0 1 A J F // (F , A, B, EPSABS, EPSREL, RESULT,

1 ABSERR, W, LW, IW, LIW, IFAIL)

INTEGER LW, IW(LIW), LIW, IFAIL

/ / r e a l / / F , A, B, EPSABS, EPSREL, RESULT,

1 ABSERR, W(LW)

EXTERNAL F

In explanation, the user is required to provide:

4 FORTRAN (FORm ula TRA Nslator) was originally created for the IBM 704 as a replacement for
machine and assembly languages which were the only way of instructing early computers. It held up
the promise to be easy to use and understand, produce highly efficient machine code and virtually
eliminate coding and debugging. In its day, it went some way to achieve this considering the incredible
complexity of hand-written machine instructions [Backus, 1981]. T he compiler (originally called the
translator) was distributed to all users of the 704 computers in 1957. This was fairly quickly replaced
by Fortran II, which added the concept of SUBRO UTINE and FUN CTIO N.

Further development led to different version for each of a number o f machines and the first attem pt
at standardisation in 1966. FORTRAN 66 thus became the preferred tool for m athematical program
ming, but was far from ideal. Due to the failure of the 1966 standardisation com m ittee to produce a
consistent and unambiguous document coupled with their concentration on performance issues instead
of rationalisation, the new ‘standard conforming’ compilers allowed, and even encouraged, programs
to be written in an increasing number of ‘flavours’ and ‘dialects’. W hilst much of this was confronted
in the first major revision in 1977, many of the ‘horrors’ (such as Hollerith formatting structures —
created due to the failure of the 1966 document to institute proposals for a data structure for the
character string) remained allowable. This can still be seen today in legacy code.

5This is itself base on Kronrod’s version of Gauss-Legendre quadrature using a 10-point Gauss rule
and a 21-point Kronrod rule.

9

F : An external / / r e a l / / 6 Fortran function for the evaluation of the in
tegrand at a given point

A : The lower limit of integration

B : The upper limit of integration

EPSABS : The required absolute accuracy

EPSREL : The required relative accuracy

RESULT : On exit, the approximation to the integral

ABSERR : On exit, an estimate of the absolute accuracy achieved

W(LW) : On exit, details of the computation

LW : The dimension of W

IW(LIW) : On exit, details of the computation

LIW : The dimension of IW

IFAIL : Failure warning characteristic

Whilst RESULT and ABSERR (absolute error) might be understandable to a modern
programmer or mathematician, it is unlikely that any other requirement or parameter
is obvious. Fortunately, apart from the name of the routine (D01AJF), it is possible with
many modern compilers which have extensions to the language to use more meaningful
names in the calling routine.

The problem exists th a t without knowing the data structures required by the individual
routine and therefore some of the internal workings of the routine, it is difficult to use
and comprehend. For this purpose, library suppliers produce large user manuals run
ning into thousands of pages (the current NAG Fortran Library manual is a somewhat
impenetrable 12 volumes). Much of this information is available on-line obviating the
need for a weight-lifter’s physique, but this does not help when the appropriate routine
is not known. Furthermore, on-line manuals require different reading and navigation
techniques or tend to become difficult to use and understand.

2.2 The Problem of Choice

For many types of problem, library suppliers produce a single routine to perform a
single task. For example, to find the zeros of a complex polynomial, the NAG Fortran
Library has the routine C02AFF. However, for some problem domains, there may be

6 / / r e a l / / ind icates REAL or DOUBLE PRECISION depending on the im p lem en tation /m ach in e archi
tecture.

10

a choice of routine, as is the case for definite integration and numerical solution of
ordinary differential equations. This choice of routine usually depends on attributes of
the input problem, some of which might be easy to identify, others may be difficult or
even impossible.

“Selecting the ‘best’ mathematical software requires a deep understanding of the prob
lem domain and intimate familiarity with the available software. Since such combined
expertise is rare, much currently available mathematical software is routinely misused.”
[Lucks & Gladwell, 1992, p. 12] There have been two traditional methods used by stu
dents and engineers of getting round this problem.

1. Work out the best method by studying the problem specification and the help
sections of the user manuals. (This may be done by your local friendly Numerical
Analyst if you can get him/her in the right mood.)

2. Find a routine that works (however inefficiently) by trial and error and continue
to use th a t routine for all types of problems until the time comes when the the
library supplier updates or withdraws the routine. Repeat.

As can be imagined, (1) above is probably better than (2) but the time involved could
be considerable.

2.3 The N AG Fortran Library

NAG have been one of the foremost suppliers of library routines for numerical and
statistical work for many years. The algorithms in the Fortran Library has undergone
much research and improvement since the early 70s. They have become a well respected
and widely available implementation of much of the best numerical code.

2 .3 .1 T h e S co p e o f th e L ibrary

In its latest incarnation, Mark 17 of the NAG Fortran Library [NAG, 1996] contains
nearly 1200 routines, separated into 41 chapters or problem domains. Some of these
chapters are of “utility routines” , but the range of numerical routines is impressive. A
major subset of the most used of 22 of these chapters has been incorporated within the
Foundation Library for use on a wider set of platforms (see table 2.3.1)7.

7On some platforms, due to the nature of any built-in functions or incorporated software, this list
may be further reduced e.g where there exists built-in functions or software for performing, say, Linear
Algebra, it would not make sense to provide duplication.

11

Chapter Description Routines in
Full Library

Routines in Foun
dation Library

A02 Complex Arithmetic 3 0

C02 Zeros of Polynomials 4 2

C05 Roots of one or more transcendental
functions

13 4

C06 Summation of Series 28 12

D01 Quadrature 29 12

D02 Ordinary Differential Equations 61 8

D03 Partial Differential Equations 24 3

D04 Numerical Differentiation 1 0

D05 Integral Equations 7 0

EOl Interpolation 15 10

E02 Curve and Surface Fitting 26 18

E04 Minimizing of Maximizing a Function 42 12

FOl Matrix Factorizations 24 10

F02 Eigenvalues and Eigenvectors 22 15

F03 Determinants 6 0

F04 Simultaneous Linear Equations 34 11

F05 Orthoganalization 1 0

F06 Linear Algebra Support Routines 173 0

F07 Linear Equations (LAPACK) 98 5

F08 Least Squares and Eigenvalue Prob
lems

72 0

F l l Sparse Linear Algebra 10 0

12

Chapter Description Routines in
Full Library

Routines in Foun
dation Library

G01 Simple Calculations and Statistical
D ata

48 19

G02 Correlation and Regression Analysis 56 10

G03 Multivariate Methods 18 3

G04 Analysis of Variance 7 0

G05 Random Number Generators 40 24

G07 Univariate Estimation 11 0

G08 Nonparametric Statistics 21 9

G10 Smoothing in Statistics 5 0

G il Contingency Table Analysis 6 0

G12 Survival Analysis 2 0

G13 Time Series Analysis 38 16

H Operations Research 6 0

M01 Sorting 17 6

P Error Trapping 1 0

S Special Functions 59 38

X01 Mathematical Constants 2 0

X02 Machine Constants 14 0

X03 Inner Products 2 0

X04 Input/O utput Utilities 18 4

X05 Date and Time Utilities 4 4

Table 2.1: Th’3 NAG Fortran Library and Foundation Library

13

For example, there are 25 different top-level quadrature routines (11 in the Foundation
Library)8 from which the user must choose whichever is most appropriate to the prob
lem in hand. Some of these may be for specific computer architectures, but most will
depend on the attributes of the problem or the problem specification.

2 .3 .2 P ro g ra m m in g u sin g th e N A G L ibrary

When calling a library routine from an appropriate program there are a number of
essential requirements [Hopkins &: Phillips, 1988]:

• The N a m e of the Subroutine e.g. D01AJF

• D ata parameters such as those which form part of the problem specification,
e.g. the range of integration. Sometimes this data is in the form of an external
Fortran function or subroutine to perform some evaluation or calculation.

• A lgorithm ic Control parameters such as error tolerances, iteration limits or
how to deal with errors.

• H ousekeeping parameters such as workspace or array dimensions.

• Output parameters (which may be combined with a data parameter as an In
p u t/O u tp u t parameter) supplying the results of the calculation or any further
information.

Many of these parameters will be of basic types i.e. Integer, Real (Double Precision)
etc. or arrays of basic types. Some, however, may be Fortran subroutines (functions)
in their own right - such as a function to evaluate an expression at some given point
or a subroutine defining the Jacobian of a set of ODEs. These should be included in
an EXTERNAL statem ent and if a function, the type explicitly declared.

. Within the 12-volume user manual (and on-line from the NAG web site) there are for
each routine example programs which give pointers towards their use. These exam
ples are carefully chosen to highlight particular aspects of the routine and have the
appropriate required attributes. The why’s and wherefore’s of such choices may not be
explained and is therefore left to the user to determine whether a particular routine is
or is not appropriate.

For example, the example program for the quadrature routine D01AJF is given below
(DOUBLE PRECISION version). The NAG routines are identified as EXTERNAL (the value

8Not all routines within each chapter are top-level routines - some are utility routines or routines
primarily called from within other routines.

14

of 7r is also given by an external function) and the expression for the integrand

_ x sin (30a;)
=

is passed to the N A G routine as a Fortran function.

* D01AJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .,

INTEGER LW, LIW
PARAMETER (LW=800,LIW=LW/4)
INTEGER NOUT
PARAMETER (N0UT=6)

* .. Scalars in Common ..
DOUBLE PRECISION PI
INTEGER KOUNT

* .. Local Scalars ..
DOUBLE PRECISION A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL

* .. Local Arrays ..
DOUBLE PRECISION W(LW)
INTEGER IW(LIW)

* .. External Functions ..
DOUBLE PRECISION FST, X01AAF
EXTERNAL FST, X01AAF

* .. External Subroutines ..
EXTERNAL D01AJF

* .. Common blocks ..
COMMON /TELNUM/PI, KOUNT

* .. Executable Statements ..
WRITE (NOUT,*) ’D01AJF Example Program Results’
PI = XOIAAF(PI)
EPSABS = O.ODO
EPSREL = 1.0D-04
A = O.ODO
B = 2.0D0+PI
KOUNT = 0
IFAIL = -1

*
CALL DO1AJF(FST,A ,B ,EPSABS,EPSREL,RESULT,ABSERR,W ,LW,IW,LIW,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99999) ’A - lower limit of integration = ’, A
WRITE (NOUT,99999) ’B - upper limit of integration = ’, B

15

WRITE (NOUT,99998) ’EPSABS - absolute accuracy requested = ’,
+ EPSABS
WRITE (NOUT,99998) ’EPSREL - relative accuracy requested = ’,

+ EPSREL
WRITE (NOUT,*)
IF (IFAIL.NE.O) WRITE (NOUT,99996) ’IFAIL = ’, IFAIL
IF (IFAIL.LE.5) THEN

WRITE (NOUT,99997) ’RESULT - approximation to the integral = ’,
+ RESULT

WRITE (NOUT,99998) ’ABSERR - estimate of the absolute error = ’
+ , ABSERR

WRITE (NOUT,99996) ’KOUNT - number of function evaluations = ’
+ , KOUNT

WRITE (NOUT,99996) ’IW(l) - number of subintervals used = ’,
+ IW(1)
END IF
STOP

*

99999 FORMAT (IX,A,F10.4)
99998 FORMAT (1X,A,D9.2)
99997 FORMAT (1X,A,F9.5)
99996 FORMAT (IX,A,14)

END
*

DOUBLE PRECISION FUNCTION FST(X)
* .. Scalar Arguments ..

DOUBLE PRECISION X
* .. Scalars in Common ..

DOUBLE PRECISION PI
INTEGER KOUNT

* .. Intrinsic Functions ..
INTRINSIC SIN, SQRT

* .. Common blocks ..
COMMON /TELNUM/PI, KOUNT

* .. Executable Statements ..
KOUNT = KOUNT + 1
FST = X*SIN(30.0D0*X)/SQRT(1.0D0-X**2/(4.0D0*PI**2))
RETURN
END

Whilst a good deal of the sample program is concerned with printing the output, it
can be seen that the essentials are too easily hidden by detail and for the untrained or
uninitiated it seems indecipherable. Even though this routine can perform the calcu

16

lation, due to the oscillatory nature of the integrand, this is not the ideal routine for
the given example problem. There is no indication to this effect in the documentation.

Instructions for calling the routines from C or C + + are equally obtuse, and there are
a great number of inconsistencies [Hounham, 1996].

17

C hapter 3

P revious A ttem p ts to C onsider
th e P rob lem

3.1 Decision Trees - Help Numerical and GAMS

The NAG Numerical Library documentation contains a section which, in essence, is
a decision tree for choosing the numerical routines. This supplements the detailed
descriptions of each individual routine, but still can be intimidating for casual or inex
perienced users. On-line versions of such documents further add to the difficulty since
users are likely to find more problems navigating and are more difficult to scan.

The HELP Numerical package [Hazel & O’Donohoe, 1980] goes some way to providing
the user with a keyword matching tree-based help system for the NAG and Harwell
library routines. These and other library routines have been included in general decision
tree programs e.g. NITPACK [Gaffney et a/., 1983], KASTLE [NAG, 1989] and the
Guide to Available Mathematical Software (GAMS) [Boisvert, 1989] which is available
on-line from the NAG web site.

Unfortunately, these systems suffer badly when choosing from a selection of routines
which may all perform the, calculation but with varying degrees of efficiency and accu
racy. They are, basically, no more efficient in this respect than the documentation on
which they are based. They also still require the user to answer some difficult questions
about the attributes of the problem they require solved.

18

3.2 Rule Based System s for Software Selection - N A X -
PERT, SAIVS and ODEXPERT

Much effort has been put into providing improved systems for choosing and using
numerical library routines [Ford et al., 1989]. Many of these use a knowledge base and
a set of rules to assist in the decision process. Some also provide help in writing the
program to call the routine [Schulze & Cryer, 1983].

These systems mainly use keyword matching and a set of rules based on the decision
tree with perhaps a further knowledge base for help in constructing the appropriate
Fortran code for calling the chosen routine. In this respect, NAXPERT, designed for a
small mathematical library on IBM personal computers, has a set of about 50 Prolog
rules along with a list of 160 keywords as a knowledge base. This is insufficient for
the task since many consultations could not provide a recommendation or sufficient
analysis.

Two systems, designed and built independently, together provide more insight into the
requirements of the software selection process. These are SAIVS (Selection Adviser for
Initial Value Software) [Lucks & Gladwell, 1992] and ODEXPERT [Kamel et al., 1993]
which both investigate the selection of numerical solvers of Initial Value problems of
systems of Ordinary Differential Equations.

ODEXPERT uses an inference engine written in the rule-based programming language
OPS 83 alongside computational processes to investigate the attributes of stiffness and
structure (Fortran) and generation of the Jacobian matrix (Maple). The approach to
investigating the problem of stiffness is particularly interesting. They implemented an
algorithm to integrate the function backwards and compare the effect on the solution
vector at each stage. The result of this test is then placed into one of the categories
stiff, mildly s t i f f or n o n s tif f since the inference rules could only work with qualitative
attributes thereby losing much of the quantitative information it had gained.

The creators of the SAIVS system realised that any such inference engine must be
able to use quantitative analysis of the attributes to get a deeper understanding of the
problem and therefore instigate a more precise approach to software selection. In their
view, ODEXPERT and NAXPERT “can be too inflexible, imprecise and qualitative
for predicting software behaviour” [Lucks & Gladwell, 1992, p 12].

They thus based their system on the premises of feature intensity (e.g. How acute is

19

this attribute?), feature compatibility (e.g. How does this affect the performance of the
code?) and evidence aggregation (e.g. Does this interfere with or reinforce the effect of
other attributes in the selection process?). Thus attributes that interact competitively
can be identified and their effects better incorporated into the selection process. This
system will be further discussed in §6.2.1 and §8.2.

However, SAIVS does not include any computational agents for the automatic testing
for these attributes, thus requiring the user to perform the appropriate analysis and
enter the results during the interactive session. [Gladwell & Lucks, 1992]

3.3 Using a Rule Based System to Implement Library
Routines — IR E N A /A R C

A system was built which integrates a rule-based system for selecting quadrature codes
with a link to the NAG subroutine library to form a seamless functional interface. The
Automatic Routine Chooser (ARC) [Dewar, 1992] was written for the Interface between
REduce and NAg (IRENA) [Dewar, 1991; Davenport et a l, 1991] and contained a
set of LISP-like production rules and a number of computational agents for testing
continuity, the presence of weight functions etc. This, together with the ability to
create the Fortran stubs and call the appropriate routine automatically, simplified the
interface by matching or pruning routines in the database.

For example, given a numerical integration to perform, ARC considers first the range of
integration, choosing from its database routines suitable for either finite, semi-infinite
or infinite ranges. It then considers the rules which can either match or prune routines
from the list. By ordering all the routines remaining in the list after this process,
an overall recommendation is made. Control then passes to IRENA which can auto
matically create any Fortran subprograms and call the library routines so solving the
“having to write Fortran” problem.

The implementation only covered a subset of finite integration routines, but with the
improved usability of the IRENA system provided a “black box” style using Reduce to
perform the analysis, ARC to choose the routine which IRENA could call. The results
are thus passed back to Reduce for display and dissemination.

The rule structure, as in ODEXPERT, was not appropriate for further development
to other problem domains, especially where quantitative analysis was required, but

20

IREN A/ARC did point the way towards integrated software and
precursor to the project described in this thesis.

a significant

21

C hapter 4

C om puter A lgebra System s

4.1 Introduction

In the past thirty years, Computer Algebra Systems (CASs) have gone from the birth-
pangs of initial research, through an intensive growing phase in the late 1960s and 1970s
when basic algorithms for algebraic manipulation were refined and implemented, to to
day’s maturing systems, adroit and masterly, each covering a wide area of mathematics
and all with new and fairly straightforward (albeit very different) interfaces.

The basic tenet has remained, however, the same - to use symbolic and algebraic ma
nipulation to find closed-form solutions to problems in a number of different domains.
Various methodologies could be employed such as comparison with known forms, con
trolled simplification, substitutions etc. but in simple form it is the application of
(mainly algebraic) computational rules on a mathematical object e.g. a polynomial or
expression.

On the market today there are a number of CASs offering a wide variety of features
- Maple, Mathematica, Macsyma, Derive, Reduce, Mupad and Axiom are the most
common, all of which are available now on a number of computer systems. Some of
these have extensions which allow them to use numerical methods as well as algebraic
ones for the solution of Certain problems such as definite integration and numerical
solution of ordinary differential equations. I will describe some of the workings of
Maple before concentrating on the CAS Axiom.

22

4.2 Maple

The newly released Maple V Release 4 is a fully-fledged interactive general purpose
Computer Algebra System comprising a core program (short-term memory, manipula
tion tools, basic calculus tools etc.) and libraries of specialist code (compiled mainly
from Maple programs) together with a relatively user-friendly interface. For a complete
description see [Heck, 1996].

This interface handles the input and parsing of expressions, output of resulting ex
pressions or function plots as well as displaying the help system, all in linked windows
called worksheets. These worksheets can contain mathematical expressions, graphics
or explanatory text with possibly hypertex-style links to other documents.

The commands are descriptions or abbreviations of descriptions of the functionality of
a procedure. For example, f a c t o r and F actor factorise expressions over a given field,
i n t , In t , or i n t e g r a t e are used to integrate a function (there are subtle differences
to each form) and d s o lv e is used for the solution of Ordinary Differential Equations.
The aim is to make the interface as intuitive as possible.

4 .2 .1 In teg ra tio n

In operation, an integration problem is input as:
> f := 4 / (x ~ 2 + l) ;

/ := — - —J x 2 + 1
> i n t (f , x) ;

4 arctan(x)

Or, more readably as:
> I n t (f ,x) : " = valueC);

f 4I — dx = 4 arctan(z)
J x2 + 1 y }

The definite integral is giyen by:
> Int(f ,x=0.. 1): " = valueC);

f1 ~ 2~ d x = X
Jo X 2 + 1

23

For this particular integral, Maple uses look-up tables and substitution. For more
difficult problems, it can call on firstly the Risch-Norman method [Davenport, 1982]
or, if tha t fails, the Risch algorithm [Risch, 1969; Davenport, 1981]. However, for every
integral that has a closed form solution, there are many th a t do not. The only way to
calculate definite integrals of this form is to use numerical methods.

Maple has a number of strategies for numerical integration. The first is, again, using
pattern-matching such as for the example:

> g := l / (l + 3 * s i n (t) ~ 2) :

> l n t (g , t = 0 . . 2 * P i) : " = v a l u e C) ;

1r 2 7T

JOo l + 3 s i n (Z) :
dt =

Whilst the answer is correct, this is, of course, a very dangerous tactic since the integral,
which is

> In t (g , t) : " = valueC);

/ 1 + 3 s i n (Z) 2

arctan

dt = 2

/

V

ta n (- Z)^

4 + 2 VS
/

4 + 2 \/3

arctan

+

/

V

ta n (- Z)^

4 + 2 \/3

4 + 2 >/3

Vs

arctan
(tan(iz)N

4 — 2 VS
Vs arctan

(ta n (iz)
2 1

+ 2 V 4 — 2 V S

4 — 2 VS ' ~ 4 — 2 VS

is discontinuous over the given range (see Figure 4.2.1).
> p l o t ({ g , i n t (g , t) } , t = 0 . . 2 * P i , d is c o n t = t r u e) ;

24

i n t (g , t)

- 0 . 5 - -

- 1 -

Figure 4.2.1: Plot of 1+3s-n(f)2 and its antiderivative.

It is much safer to use numerical methods:
> l n t (g , t = 0 . .2 * P i) : " = e v a l f (") ;

f ■ , , 1. I M dt = 3.141592654J0 1 + 3sin(t)2

Since there is no discontinuity to the integrand (and even if there were, there are
techniques to calculate an integral if one exists) it calculates the result using a'Newton-
Cotes method.

There are two other methods it can use for specific cases. For example:
> h := l o g (x * x) :
> I n t (h , x = - l . . 1) : " = v a l u e C) ;

J In (a:2) dx = —4 + 2 I n

This result, calculated symbolically, while not wrong, is misleading since if such an
integral exists, there exists a real answer1. Maple uses a double exponential method to
to perform the calculation numerically:

> I n t (h , x = - l . . 1) : " = e v a l f (");

1 There are also fundamental questions of the existence of the integral and there is no indication
that Maple has solved these.

25

j ln (x2) d x = -4.000000000

Any particular method can be forced on the integrator using an optional parameter.
This will usually disable any singularity handling routine.

4 . 2 . 2 O r d i n a r y D i f f e r e n t i a l E q u a t i o n s

Maple has a number of tools for the solutions of ordinary differential equations i.e. equa
tions of the form

F (y ,y \y " i - , y (n\ z) = o. (4 .1)

It can solve a limited range of these equations analytically. This depends very much
on the type of equation i.e. ODEs of degree 1 and order < 3 are sometimes possible.
Outside of this range we are obliged to use numerical techniques.

If we take as our example the van der Pol equation ([Birkhoff &; Rota, 1978, p. 134])

y" - //(l - y2)y' + y = 0, (4.2)

with fi = 1 and initial values ?/(0) = 2, 2/ (0) = 0.

Let’s first check tha t Maple cannot find an analytic solution:
> a l ia s (y = y (t) ,y 0 = y (0) ,y p O = D (y) (0)) :

> eqn := d i f f (y , [t $ 2]) - (l - y ~ 2) * d i f f (y , t) + y = 0 ;
q2 ^

eqn := y2) (ft y) + y = 0
> i n f o l e v e l [‘d s o l v e ‘] : = 2 : # f o r feed back in fo rm a tio n
> d s o l v e (e q n , y) ;

dsolve/diffeq/linsubs: trying linear substitution
dsolve/diffeq/missbody: solving d.e. with missing variable
dsolve/diffeq/dsoll: -> first order, first degree methods :
dsolve/diffeq/linsubs: trying linear substitution
dsolve: Warning: no solutions found

And now try the default numerical method:
> i n i t v a l s := y0=2,yp0=0:
> F := d s o l v e ({ e q n , i n i t v a l s } , y , t y p e = n u m e r i c) ;

dsolve/numeric: entering

26

DEtools/convertsys: converted to first-order system Y*(x) =
f(x,Y(x)) namely (with Y* represented by YP)

[m = y 2, y p 2 = y 2 - y 2 y 2 - Vi]

DEtools/convertsys: correspondence between Y[i] names and original
functions:

[K = » , * = £ „]

dsolve/numeric: vector Y of initial conditions at xO = 0 array(1
. . 2 , [(1)=2 . , (2)=0])

F := proc(rkf45.x) . . . end

This has automatically changed the equation into a system of first-order odes and used
a Feylberg 4th-5th order Runge-Kutta method. The output is a set of equations for i,
y and y '. So, at t = 10:

> F (1 0) ;
A

[t z= 10 , y = -2.008340813688926, ^ y = .03290706311963594]

From this, the function y(t) can be plotted using:
> p l o t (t -> r h s (o p (2 , F (t))) , 0 . . 2 0) ;

i - •

10 15 20

- 1- -

- 2 -

Figure 4.2.2: van der Pol’s equation with /x = 1, ?/(0) = 2 and y'(0) = 0.

27

The Maple ODE solver has the ability to use any of the 28 numerical solvers within the
ODEPACK package. This includes both general and specific routines for stiff or non
stiff ODEs. The user has to specify the options type - num eric, method = approach,
where approach is one of the specified routine names. Whilst the inclusion of such a
large range of routines is admirable, the user is often left bewildered. However, the
Livermore Stiff ODE solver (LSODE) is adaptive and can, as necessary, switch from the
Backward Differential Formula (BDF) method for stiff equations to an Adams method
for the non-stiff case [Hindmarsh, 1983].

4.3 Axiom

W ithout a doubt, compared to other CASs, Axiom is very different. This manifests
itself in a variety of ways. Most apparent is its system of Types, Domains and Categories
and its insistence tha t all things are ‘Objects’ and so have Types. For many users this
seems to be a hurdle but, for the most part, this only clarifies what is taking place
behind the scenes and can often be ignored. However, I will quickly describe the raison
d ’etre of this system before introducing some of the built-in extensions to perform
numerical computation.

4 .3 .1 T h e O b jec t O rien ted P arad igm

Most commentators in the field define a language e l s object oriented if and only if

• It supports objects tha t are data abstractions with an interface of named opera
tions and a hidden local state

• Objects have an associated type [class]

• Types [classes] may inherit attributes from supertypes [superclasses].

[Cardelli & Wegner, 1985, p 481]

It can be seen that mathematical structures can fit in with this system. For example, an
integer is an instance of the class of Integers (Z); a polynomial with integer coefficients
is an instance of the class of Polynomials over the Integers (Z[a:]). They each have
allowable operations and, within the confines of the CAS, can maintain a hidden local
state (i.e. it is not necessary for the user to know exactly how they are stored).

28

Each of the two ‘objects’ above belong to the Type Ring and share much of their
allowable operations. These can thus be inherited from the Type. In this way, the
complete basic algebra hierarchy can be accommodated. Furthermore, the object ori
ented paradigm was originally created to model data structures and complex elements
[Booch, 1994], and as such are ideally suited to model structures of mathematical
objects (lists, arrays, sets and tables).

4 .3 .2 C a teg o r ie s , D om ain s and P ackages

Basic mathematical types are defined as Axiom2 Domains, e.g. the integer 5 has type
I n te g e r and the polynomial x2 - 2 x + l has type P olynom ial I n te g e r . However, types
may not be unique - the integer 5 could equally well be defined as a P o s i t i v e l n t e g e r ,

N o n N eg a t iv e ln teg er (both Subdomains of In teg e r) or even IntegerM od(7) (in which
cases the allowable operations are altered since members of the Ring of Integers Modulo
7 (Z7) have multiplicative inverses, and Positive Integers (Z+) do not have additive
inverses).

The allowable operations for each domain are either inherited from its class or Category
as associated with its attributes or they are explicit to the specific domain or subdomain.

The Domains themselves belong to Categories. For example, the category Ring desig
nates the class of all rings. This structure ensures the correctness of type. We can thus
define functions which operate on, say, Matrix(R: Ring) without needing to specify
which ring.

So, Domains can be Algebraic ones (like Integer, Polynomial or Matrix) or data struc
tures (like lists or tables). One can build further types from these such as matrices
of polynomials, or lists of integers or even lists of matrices of polynomials. However,
polynomials with coeffients of type list are not possible.

It is the Category structure which ensures that the types are mathematically correct
and allow functions to be created which operate on arbitrary types. These can be
collected together within Packages and compiled thus extending the capabilities of the
system. Indeed, most of the Axiom system has been created using Packages containing
code for the creation and use of Categories and Domains.

2 For a full description of the technical workings of Axiom, see [Jenks &; Sutor, 1992].

29

4 .3 .3 In teg ra tio n

In many ways, the interface to Maple and Axiom are similar. Each attem pt to maintain
a consistency of expression concordant with mathematical thinking and practice. So
input of the integration problems in §4.2.1 in Axiom are3:

(1) -> integrate(f := 4/(x~2+l),x)

(1) 4atan(x)
Type: Union(Expression Integer,...)

(2) -> integrate(f,x=0..1)

(2) '/.pi
Type: Union(fl: OrderedCompletion Expression Integer,...)

It can be seen that instead of i n t we now use i n t e g r a t e and along with the answer we
are presented with the domain name. The second example is treated very differently
to Maple:

(3) -> integrate(g := l/(1.0+3*sin(t)~2), t=0. .2*'/,pi)

(3) potentialPole
Type: Union(pole: potentialPole,...)

If we force it to evaluate as if the pole doesn’t exist we actually get an incorrect answer:

(4) -> integrate(g, t=0. .2*'/pi, "noPole")
(4) 0

Type: Union(fl: OrderedCompletion Expression Integer,...)

However, Axiom is supplied with a link to the NAG subroutine library [Dupee &;
Davenport, 1996; Broughan et al., 1991; Hawkes & Ready, 1995] allowing the user to
evaluate the integral numerically. The interface for this is more difficult but successful:

(5) -> dOlajf(0.0 ,'/,pi*2 ,0.0 ,1.0e-4 ,800 ,200 ,-1 ,g :: ASP1(F))

(5)
[w: Matrix(DoubleFloat), abserr: DoubleFloat, iw: Matrix(Integer),
result: DoubleFloat, ifail: Integer]

Type: Result
(6) -> '/..result

(6) 3.14159265372921
Type: DoubleFloat

3It is unfortunate that the current output style for Axiom using UNIX machines does not have the
flexibility of Maple.

30

4 .3 .4 O rdinary D ifferen tia l E q u ation s

The Package ElementaryFunctionODESolver provides an operation so lve for finding
closed form solutions of equations of type 4.1. Since everything must have a type,
performing the operation is slightly different than using Maple. Taking example 4.2 we
input:

(1) -> y := operator ’y

(1) y
Type: BasicOperator

(2) -> deq := D(y(x),x,2) - (l-y(x)~2)*D(y(x),x) + y(x) = 0
2

(2) y (x) + (y(x) - l)y (x) + y(x)= 0

Type: Equation Expression Integer
(3) -> solve(deq,y,x)

» Error detected within library code:
getfreelincoeff: not a linear ordinary differential equation

This was, of course, a little optimistic [Postel & Zimmerman, 1996]. Numerical meth
ods, using the NAG library, have a completely different interface:

(4) -> d02bbf(20.0, 200, 2, 0, 0.0, [[2 , 0]],0.0001, -1,([Y[2] , Y[2]-
Y[2] *Y[1] ~2-Y[l]] : : Vector Expression Float) : :ASP7(*FCN) ,([i/10 for i
in 1..200]::Vector MachineFloat)::ASP8(’OUTPUT))

(4)
[ifail: Integer, tol: DoubleFloat, result: Matrix(DoubleFloat),
y: Matrix(DoubleFloat), x: DoubleFloat]

Type: Result

This calls the Runge-Kutta routine (d02bbf) directly with the system of first-order
differential equations, producing output at 200 points between 0.0 and 20.0. These can
then be plotted (see Fig 4.3.4):

(5) -> draw([i/10.0 for i in 0. .200] ,column('/,. result, 1))
Graph data being transmitted to the viewport manager...
AXI0M2D data being transmitted to the viewport manager...

(5) TwoDimensionalViewport: "AXI0M2D"
Type: TwoDimensionalViewport

31

0.8

Figure 4.3.4: van der Pol’s equation with /z = 1, y(0) = 2 and y'(0) = 0.

4.4 Conclusion

Computer Algebra Systems like Maple and Axiom can indeed perform a lot of calcula
tions for us. They can also call upon the power of numerical methods where closed form
solutions either do not exist or are difficult to compute. However, there are drawbacks.
The interfaces to these routines are not intuitive and whereas both systems provide
help, much of this help is obtuse or uninformative to those “not in the know” .

Given that these methods exist, there must be a better way to implement them to give
the user much more valuable information and provide an interface more consistent with
the remainder of the CAS.

32

C hapter 5

E xpert System s

5.1 Introduction

The essential characteristics of an expert system are normally regarded as1:

• containing a knowledge base i.e. some knowledge of a problem domain2 contained
in a distinct and identifiable form representing human or expert learning about
tha t domain. This could be anything from a simple database, to a set of inter
acting systems.

• having the ability to perform some reasoning on this knowledge (typically simu
lating human reasoning) in addition to performing any mathematical calculation
or modelling. This would normally use heuristic methods which do not guarantee
success but exploit rule-of-thumb techniques to achieve propositions with varying
degrees of certainty.

• having mechanisms to explain its recommendations and justify its reasoning suf
ficiently to convince the user of its correctness.

How these are organised and used varies greatly with the individual requirements. In

JIt is very difficult to find some agreement or consensus amongst experts on the definition of an
expert system. Some relax the requirement for an explanation mechanism, others insist that the
knowledge acquisition phase i§ an integral part of the system. Some commentators define expert
system s only in terms of other expert system s. [Frost, 1986] defines an expert system as:

... a system which is capable of carrying out a task generally regarded as being difficult
and requiring some degree of human expertise.

2It is apparent that there could be some confusion of terminology between problem or knowledge
domain and Axiom Domains. As far as possible I will use capitalisation on Axiom Domains only.

33

some expert systems in the past, various techniques for setting goals and subgoals,
rule-sets and other control features have been implemented in varying quantities and
combinations to tailor the particular expert system to the task.

If we consider the Expert System’s knowledge base and inference mechanism as a form
of Information Processing System, as defined by the Theory of Human Problem Solving
([Newell & Simon, 1972]), we can look, analogously, at the requirements as part of a
problem space which consists of:

1. A set of elements, U, which are symbol structures, each representing a state of
knowledge about the task.

2. A set of operators, Q, which are information processes, each producing new states
of knowledge.

3. An initial state of knowledge, uq, which is the knowledge about the task tha t the
problem solver has at the start of problem solving.

4. A problem, which is posed by specifying a set of final desired states, G, to be
reached by applying operators from Q.

5. The total knowledge available to a problem solver when he is in a given knowledge
state, which includes (ordered from most transient to most stable):

(a) Temporary dynamic information created and used exclusively within a single
knowledge state.

(b) The knowledge state itself — the dynamic information about the task.

(c) Access information to the additional symbol structure held in Long Term
Memory (LTM) or External Memory (EM) (the extended knowledge state).

(d) Path information about how a given knowledge state was arrived at and
what other actions were taken in this state if it has already been visited on
prior occasions.

(e) Access information to other knowledge states tha t have been reached previ
ously and are now held in LTM or EM.

(f) Reference information th a t is constant over the course of problem solving,
available in LTM or EM.

[Newell & Simon, 1972, p. 810]

34

This has led to a representation of an ES which is essentially concentrated in providing
a large, uniform description of knowledge and a relatively simple inference mechanism.
There are considerable benefits to such a picture although, by necessity, due to the
diverse nature of some ESs, this is not always achievable or desirable.

5.2 Examples o f Expert Systems and Expert System Lan
guages

In many respects, early expert systems have been task-driven, in that there is an easily
identifiable goal and a set of rules to prove that goal or to prove subgoals leading to
the goal.

If this is to identify the molecular structure of a chemical compound, as in CONGEN
[Carhart, 1979] based on the Stanford University project DENDRAL, the goal is to
identify the structure completely. The rules are constraints, either necessary or forbid
den, so that, given part of the chemical, the next element must either belong to, or not
belong to, some particular subset of elements. The heuristic is to “test and discard”
and the knowledge base is restricted to the constraints and the rules on how to change
these constraints.

The knowledge base for the 1972 expert system for blood infections, MYCIN [Buchanen
& Shortliffe, 1984], was far more extensive in that it contained rules of the form:

if condition 1 (and condition 2 ... (and condition m)) then
assert conclusion 1 (and conclusion 2 ... (and conclusion n))

as well as a database of organisms and drugs. The control structures were more complex
allowing subgoals to be easily verified and leading to a system of backward chaining.
This is reasoning back from what it wants to prove towards the conditions that it needs
to satisfy.

These techniques have been extensively used in expert system shells (prototype expert
systems stripped of their domain knowledge), notably the MYCIN derivative EMYCIN
(Empty MYCIN) containing the rule-based language, an organisational structure for
the rules, the backward-chaining control, an interface to both create and edit the rules
and user-interface. EMYCIN was used to great effect in expert systems such as PUFF
investigating pulmonary function data.

The alternative rule structure, forward chaining, used in the data-driven expert system

35

created for VAX computer component arrangement, R l/XCON [Jackson, 1992, §17.2],
written in the expert system shell OPS4 and re-written in OPS5, requires a different
control mechanism to resolve conflicts where it might happen tha t more than one rule
may be able to fire a t a particular time. Apart from these 3 (or 4) conflict resolution
rules, there is no control over the firing of rules. Instead of looking a t the question
Since we wish to prove A, what do we need to show?, it considers Given that we know
A, B, ... , what can we assume?, and will that get us nearer our goal?

Many expert system shells have the feature tha t much of the algorithmic control nor
mally contained in computer programs is withdrawn. For many applications this does
not pose any problem (except in gaining a complete understanding of all the processes
when used in a large system) but it does have major problems when extensive expla
nation and recovery procedures are required.

Expert systems can also be written in so-called “logic” languages i.e. Lisp (sometimes
categorised as a “functional” language) or Prolog using all the necessary control struc
tures and algorithmic complexity as required. In recent years, many logic, functional
and object-oriented languages have been used to create expert systems, notably Lisp,
Prolog and LOOPS.

5.3 The Knowledge Base

Knowledge can be divided into two forms — Facts i.e. atomic assertions th a t certain
information is true, and Rules or Heuristics i.e. assertions that given a certain fact or
facts, what other facts are therefore true, or can be assumed true. For example, given
the Prolog predicates:

p a r e n t (f r e d , john) . '/, Fred i s a p aren t o f John

p a r e n t (john , s u s a n) . '/, John i s a p a ren t o f Susan

gra n d p a ren t(X, Z) p a r e n t (X, Y) , p a r e n t (Y, Z) .

s i b l i n g (Y, Z) p a r e n t (X, Y) , p a r e n t (X, Z) .

the first two are facts and the third is a rule such tha t we can infer th a t Fred is a
grandparent of Susan, but cannot learn anything from the s ib l in g predicate. If we
later learn that:

p a r e n t (joh n , a l a n) .

36

we can immediately (if we so wanted) assert that Fred is also the grandparent of Alan
and also tha t Alan is a sibling of Susan.

This organisational paradigm does not preclude tha t the ‘fact’ might be tha t we can
place a given degree of certainty to a particular piece of information. We can therefore
build judgement into the system. Given the variety of expert systems and knowledge
domains, the representation of knowledge described above is just one of many possi
bilities. However, the essential feature is tha t it embodies the knowledge of an expert
within the domain.

Alternative organisations for this knowledge exist. One of these is the Frame whereby
a collection of ‘slots’ or separate pieces of information associated with a distinct entity
are brought together as a single ‘symbol structure’. When such information is filled
i.e. complete, the frame is thus said to be instantiated.

Obtaining this knowledge can be achieved by:

• Extraction from written sources e.g. textbooks, reports, case-studies etc.

• Interview of the domain expert (s), possibly over considerable time.

• Induction from examples

Where the issues are fairly well documented, if complicated, written sources contain
a valuable supply of domain knowledge, especially if a consensus is required. Do
main experts would, theoretically, be excellent sources of information but obtaining
tha t knowledge in usable form is particularly difficult. Examples can also be a useful
additional source of information.

5.4 The Inference Machine

The main task of the inference machine is to use the knowledge contained within the
knowledge base, together with any other knowledge it can elicit, to achieve a specified
goal. This may include exploiting links between certain types of data as defined by
any predefined rules or strategies or asking pertinent questions of the user or external
agents.

It is quite possible tha t this is the smallest part of the expert system but mistakes here
can have disastrous consequences and can be the most difficult to trace and correct.

It is, however, inextricably linked to the explanation process, since the logic of the

37

system and its inference mechanism must be imparted to the user in such a form tha t
the process is understandable.

5.5 Explanation Mechanisms

The credibility of any expert system is likely to be dependent on its ability to justify
and explain its reasoning. Since the task allotted to an expert system, or an expert,
is more likely than not complex both in its demonstration and in its description, the
user, whether another expert or a novice, must be able to follow the inference steps.
Many expert systems founder because either too much jargon is used or much of the
explanation concerns information already known.

[Weiner, 1979] identifies a number of important features including:

• Explanation should be limited to what is not already known to the user. It should
therefore not be a restatement of the initial problem or its constraints.

• Details should not be given initially. It must be up to the user to ask for expla
nations otherwise the system will be seen as tedious and contrived.

• Details should be given in increments. There should thus be a hierarchy of ex
planation whereby the most technical of details are given only on the express
command of the user.

• Explanations should be ‘marked’ in some way so tha t the underlying structure
is more transparent. Thus explanation emanating from different parts of the
inference process should be separated and identified.

5.6 Language Choice for the Proposed System

Given that the domain of the proposed expert system is Numerical Analysis, Prolog
is unsuitable without extensive additions since it does not have the richness of math
ematical constructs. Lisp.itself would require large amounts of library code before it
would be sufficient. So a low level language brings with it considerable development
time.

A possibility would be the use of an expert system shell. Since our proposed expert sys
tem needs greater control of path-lines and would require many of these extra controls

38

to be explicitly reinstated, the use of a shell such as OPS5 [Brownston et al., 1985],
although written in Lisp and could easily access the Axiom system, would entail such
re-writing as to be impractical.

As a symbolic language containing many characteristics reminiscent of Lisp, on which
it is based, the Axiom language has some obvious advantages when we consider the
domain of the tasks that we expect of it. It has been constructed with mathematical
concepts, structures and operations in mind. Since it has a full panoply of control
structures, we can tailor these to the task in hand, using as much, or as little, as
necessary.

Whilst inference rules must be explicitly written in Axiom, because of its extensive
library structure, inquiry and manipulation of required information is more logical,
given the problem domain. The inclusion of computational agents, constructed using
Axiom, for elicitation of further information would then be much more natural than
using special inter-language constructs.

39

Part II

A N N A

40

C hapter 6

C om putational A gents

It is a matter of perfect indifference where a thing originated; the only
question is: “Is it true in and for itself?”

G. W. F. Hegel (1770 - 1835) Philosophy of History

Computational Agents are programs which can be called by an expert system to an
swer specific questions about the current state. This may be just a simple look-up or
it may be much more complicated, involving considerable calculation, evaluation or
interpretation. However involved this may be, within the context of an expert system
we must always keep in mind tha t efficiency is paramount.

6.1 Integration

There are a number of criteria affecting the choice of routine for numerical integration:

• Is the function continuous?

• How oscillatory is it?

• Is the range finite?

• Is there a weight? i.e. Is the integrand factorisable such tha t one of the factors is
of a specific form? See §6.1.2.

I have therefore created computational agents to provide answers to these and other
questions [Dupee & Davenport, 1995].

41

6 .1 .1 T estin g for C o n tin u ity

One of the major differences between algorithms for numerical integration is in their
treatm ent of singularities. The question of “whether this or tha t function is continuous”
is fundamental to many areas of mathematical analysis. Techniques have grown up
through the years to address the problem. The most common method in mathematics,
tha t of the 8 — e argument, underpins much of analysis today. But abstract arguments
such as this cannot, yet, be achieved by Computer Algebra systems1. So how can we
decide whether a function is continuous and, if not, where do its singularities lie? Or
where might they lie? Added to this we would have to add the question: where might
there be a problem which, even though it could be continuous, might (due to the nature
of computers in general, the particular platform used or numerical algorithms per se)
cause a computational error?

In general, some of these problems have been shown to be undecidable2 [Richardson,
1968] and whilst various techniques show promise (Pade approximation etc.), compu
tation time has yet to be considered. As such, a complete answer to these questions
is not the goal — the requirement is only for a workable algorithm for finding possible
singularities to a function.3

The functions tha t will be used, i.e. Elem entary R eal Functions, are those real
valued expressions of a single variable which can be defined relatively easily using a
finite number of polynomial, logarithmic, exponential, and trigonometric operations
[Geddes et al., 1992, p. 512], There are two types of test for continuity required. The
first is allied to the search for end-point singularities of the algebraico-logarithmic type
i.e. of the form

f (x) = (x - a)c(b - x)d \og(x - a) \og(b - x)g(x) \ x £ [a, 6]. (6.1)

1 Whilst theorem provers, today still at a fairly simple experimental level, might be able at some
stage to mirror these arguments successfully, their use is not an option, given the nature of the problem
i.e. we are looking for computational continuity or more particularly we are trying to identify where a

S IR (j)
Fortran program could fail. For example, the function f i x) = — —- is continuous at x = 0. But if a

• ^
Fortran program attem pted to evaluate / at 0, it will undoubtedly fail.

2 As in Theorem 3 of [Richardson, 1968], we multiply a discontinuous function by a function whose
identity to zero is undecidable to prove that continuity is undecidable.

3 Since these tests will be applied in an expert system which chooses numerical routines for the
solution of various problems, and that these routines require, in the main, Fortran subroutines for the
evaluation of the function, indeterminate forms, such as 0 /0 need to be flagged as singular points even
though l ’Hopital’s rule might show that there exist non-singular ways of evaluating this expression. This
is necessary since, in Fortran, expressions of the form 0 /0 are undefined and therefore will, depending
on the platform, signal an error.

42

This could be satisfied by use of power series methods since it is sufficient tha t if a power
series limit does not exist at an end point then a singularity exists. The identification
of the values for c and d in equation (6.1) is considered in §6.1.2.

So let us look at the code to test for continuity of an expression a t a given point.

continuousAtPoint?(f:Expression Fraction Integer, e:Equation OrderedCompletion
Expression Fraction Integer):Boolean ==

1 := limit(f,e)$PowerSeriesLimitPackage(Fraction Integer, Expression Fraction Integer)

— if the left hand limit equals the right hand limit, or if
— neither limit can be found, the return type of limit(f ,e) is
— Union (OrderedCompletion Expression Fraction Integer, "failed")

1 case OrderedCompletion Expression Fraction Integer =>
finite?(coerce(l)GOrderedCompletion Expression Fraction Integer)

false

This fulfills all the requirements of the definition of continuity at a point4. It handles
continuity at infinity5 by substitution of the variable to bring it to a finite point. It
even deals with the problems that occur when the function is not infinitely differentiable
since if a Puiseux6 series cannot be found, it uses exponential expansion7 to find the
limit [Knuth, 1981].

The second need for a test of continuity is a general search for all singularities within
(interior to) the range of integration. A workable strategy for dealing with functions
with multiple singularities is to split the function at those points and integrate over
each segment separately. In this case we need to know not only th a t such singularities
exist, but also where in the range of definition they are.

Given tha t we know when certain operations give rise to singularities, it is possible to
search for these within an expression. This technique relies on the pattern matching

4 A function / is said to be continuous at point c if and only if lim f { x) = lim f (x) = / (c)
x —►c*!- x —+c—

5The Axiom type OrderedCompletion Expression Fraction Integer is the same as Expression
Fraction Integer with the points '/.pluslnf inity and ‘/iminuslnf inity added.

6 Variations on the Taylor series are the L a u ren t se r ie s which can have a finite number of terms
of negative degree, and the P q ise u x ser ie s having terms of fractional degree [Davenport et al., 1988].

Even at a singularity, many functions have a valid Laurent or Puiseux series w ithout, of course, a
valid Taylor series. So a useful test for continuity at a particular point is to create a power series and
test the leading exponent. If it is negative, the function contains a singularity at that point.

7The package writes the expression in the form of a quotient of exponential sums, each sum being
a Puiseux series multiplied by an exponential of a Puiseux series. Lazy evaluation allows the limits to
be calculated.

43

ability of algebra packages and on our knowledge of functions to give us a complete list
of singular or problem points.

The first of the techniques involved searches for particular operations in the expression
which could give a singularity. For example, we know tha t for x = 0, the value of
the expression ^ is not defined. So anything within the denominator of an expression
which could be zero should be identified.

This would need to be handled recursively considering the range of definition of the
input variable. The expression is looked at in terms of its expression tree. It is best to
consider an example.

E x am p le 6.1.1 The function

f (x) = log ^1 + sin

has many singularities between 0 and 1.

jQg The first part to consider is the expression g(x) =
| This has a singularity at x = 0 and g{x) has a range

+ [l,oo)>

1 sin The expression h(g(x)) = l+sin(g(x)) will have zeros
j at g{x) = -̂n~1̂ 7r but no singularities, but f { x) =
/ log(h(x)) will have singularities at all o f these zeros.

/ \
1 :

So the singularities o f the function f (x) are at the
2 2 2

3tt’ 7tt ’ TItt*points [0, ^ r, j - , t t - , • • •].

Thus there is a need for an algorithm which will look for operations for which singu
larities can occur, and search for possible causes of these singularities. Such pattern
matching may already been done by the input parser and we only need access to the
parser output. This is not the case with Axiom and we have to create explicitly an
expression tree.

We can institute a look-up table containing the different elementary functions and
any points at which they remain undefined together with some simplifying rules for
expressions with singularities.

Let a,b be elementary functions and p,cr be functions such tha t p = SingularitiesOf

44

and a — ZerosOf.

p(ab) C p(a) U p{b)

= a{a)

P(ea) = p(a)

p (a + b) c p{a) U p(b)

p (lo g a) = (7(a)

a(ab) c cr(a) U cr(b) U p(ab)

a (h
a

= p(a)

These form a set of production rules which can be used in the search for singularities
as well as those of more specific nature such as trigonometric expressions for which the
look-up table is used (see tables 6.1 & 6.2). Since we are being conservative, we can
replace the C by = above. This may overestimate the number of singularities, including
the possibility of indeterminate forms, but such points can be investigated using series
methods should the need arise.

Operation f (x) Singularities at x = Other Information

l
(*-«) a

\og(x) 0 Undefined on (—oo,0)

tan(x) 1 n e Z

sec (a:) \ n e z

csc(x) nir | n 6 Z

cot(x) n7r | n G Z

Table 6.1: P a r t o f a Look-up T able fo r S ingu la rities

Once a function is found which can have singularities, we need to evaluate both whether
it is in the given range and which points in the range. Since the input range for each
function may not necessarily be the same as the range of x, such points must be
evaluated using inverse functions. These inverse functions can be evaluated recursively.

45

Operation / f (x) = 0 at x = f (x) = 1 at x = Other Information

log(x) 1 e Undefined on (—oo,0]

sin(x) 727T | n 6 Z < ± = ± ^ |n e Z

cos(x) t2"*1).*- I n e z 2n7r | n 6 Z

tan(a:) nir | n £ Z & ± ^ \ n e Z x (2n+l)7T

sec(x) — 2n7r | n G Z x (2n+l)7r

esc (a:) — | n e Z x ^ nir

cot(ar) & ^ - \ n e Z x ^ me

arccos(ar) 1 0.54030230586813977 x (—oo,—l) U (l,oo)

arcsin(:c) 0 0.8414709848078965 x 0 (—oo, -1) U (1, oo)

Table 6.2: Part o f a Look-up Table for Zeros

So, for the example 6.1.1 above, knowing that the function log(x) has a singularity at
x = 0, and tha t x = 0 is in the co-domain of h(x), means we can search for the values
of x responsible for the singularities. So we perform p -1 (/i_1(0)) to get the desired set
of singular points.

This algorithm is implemented as s in g u la r i t ie s O f in package dOlAgentsPackage
(see Appendix A .l).

6 .1 .2 F in d in g W eigh t F u n ction s

There are three types of height function of interest:

• Algebraic - of the form giving rise to a singularity at a of degree c. We

46

are thus looking for integrals of the form

dx 1

• Logarithmic - of the form log(x — a) giving rise to an essential singularity a t a
i.e. an integral of the form

rP
I log {x — a) log (/3 — x)g(x) dx

J a

• Trigonometric - of the form cosux or sinux .

The computational agent for each essentially uses a pattern-matching algorithm looking
for the operator within an expression, although there are slight differences.

An Axiom E xpression is considered as a list of kernels, each of which have an operator
and argument. If either log or '/.power appear as the operator of one of these kernels
and a singularity exists, further investigation is undertaken to establish if the argument
contains either one of the end points of the range of integration or is of the form
where a is within the range of the integral.

If cos or s in appears as the operator of one or more of the kernels, it is necessary to
find if it signifies a weight function. This is made more difficult because the internal
representation of the expression may not be of the form weight X subexpression.
In such a case, it looks for a common factor of the required type8. If there are two or
more such weights it chooses the one with highest frequency lo.

A further requirement is to extract the weight from the integrand returning the weight,
the transformed integrand and an indication of the type of weight found. These com
putational agents are implemented as

exprHasAlgebraicW eight

8W hilst it is eminently reasonable when performing formal integration on, e.g.

r P
I cos(u>x)f (x) + g(x) dx

J a

to split the integral into an oscillatory part and a non-oscillatory part,

r P r P
I cos(u>x)f(x) dx + I g(x) dx

J c l J a

there would be no benefit to doing this for numerical integration. The extra cost of splitting and
numerically integrating the two functions over the same range would by far outweigh any advantage
from using a special routine on the oscillatory part.

47

exprHasLogarithmicW eights

exprHasWeightCosWXorSinWX

in package dOlW eightsPackage (see Appendix A .l).

6 .1 .3 M isce lla n eo u s A g en ts

The computational agent f u n c t i o n l s O s c i l l a t o r y estimates the number of zeros in
the integrand. There are two cases. If there is a s i n or co s term, the algorithm
considers the range of its argument as a multiple of 2n. Otherwise it uses a quick, but
dirty, method whereby it evaluates the integrand at 30 random points within the range
and considers the number of sign changes.

Other agents include r a n g e l s F i n i t e which tests the endpoints of the range for infinities
and p rob lem P oin ts which is a quick version of s i n g u l a r i t i e s O f for functions which
are of the type, or can be coerced to the type, F r a c t io n P o lyn om ia l D o u b leF lo a t . It
checks the denominator polynomial for zeros using Sturm sequences [Davenport et al.,
1988, pp 124-128] [Collins &; Loos, 1983]. This also forms part of the algorithm for
s i n g u l a r i t i e s O f .

6.2 Differential Equations

There are a number of factors which affect the choice of a suitable numerical solver
for a particular initial value ODE problem. Foremost amongst these is the problem
of stiffness, tha t is tha t the solution evolves on different time scales [Prothero, 1976].
Other attributes could be the stability of the solution, the cost of evaluating the ODE
or its Jacobian, or the accuracy required of the solution.

Unfortunately, none of these have distinct answers - the ODE could be partially stiff
or slightly unstable. Also, these can conflict with each other i.e they interact competi
tively. “For example, if a system is stiff, but very large, the problem may degrade the
performance of a stiff code to the extent tha t a non-stiff code is preferable” ([Lucks &
Gladwell, 1992, p. 12]). This conflict will be handled by the inference mechanisms and
the knowledge rules in sections 7.1 & 8.2. This section deals with the computational
agents to provide information (in the form of a normalised value) on the intensity of
an attribute [Dupee & Davenport, 1996]. They are thus called Intensity Functions and
have the postfix IF.

48

6.2.1 Testing for Stiffness and Stability

In dynamics, chemical engineering and electronics, the study of physical systems and
the modelling process produces differential equations which may have solutions with
both rapidly and slowly decaying components. One such analogy is to a complex vibrat
ing mass-spring system where the springs are of wildly different stiffness coefficients.
In trying to obtain a numerical solution to a system of such equations, this differing
behaviour causes major problems for some standard algorithms such as Runge-Kutta
and Adams methods since the direction of the solution vector at any particular time
is swamped by the local behaviour. Certain alternative methods have been found to
deal with this problem. It is therefore necessary to identify when such a system has a
degree of stiffness.

Each system of differential equations has an associated Jacobian matrix which can be
evaluated at, or near, the initial values. The eigenvalues of such a matrix give an
indication of the stiffness of such a frozen system9 [Lambert, 1973, pp 228-236]. It
is assumed in many models of dynamic systems tha t the stiffness ratios are constant
throughout the range. This may not be the case in more arbitrary systems, where one
might be advised to use alternative, but more expensive, methods. [Dekker & Verwer,
1984, pp 10-12]. However, this is beyond the scope of current work.

So the computational agent s t i f fn e ssA n d S ta b il i ty O fO D E IF calculates symbolically
the Jacobian matrix (if the system is not too large i.e. < 12 x 12) and its real eigen
values. Since symbolic methods can be expensive in finding complex eigenvalues, the
computational agent uses a technique th a t would seem perverse should it be consid
ered by a numerical analyst. Should the number of distinct real eigenvalues not equal
the dimension of the Jacobian (or one less than the dimension of the Jacobian since
complex eigenvalues can only occur in pairs)10, the algorithm calls on the appropriate
NAG Fortran Library routine (F02AFF) to calculate them numerically. This can be
considered since, once the link to the NAG Library is in place, its use will not be as
expensive as it would be either to create the code manually or to continue to use sym
bolic methods. This, in one way, can be thought of as a form of recursivity — creating
a Fortran program to find out which form of Fortran program should be created to
solve the problem.

9If two or more of the eigenvalues have negative real parts, an estim ate of the stiffness is the ratio
of the most negative to the least negative

10If some of the eigenvalues have multiplicity > 1 such that the number of eigenvalues is less than
that required, the algorithm cannot distinguish them from complex eigenvalues without calculating the
eigenvectors. This could be too expensive if the calculation is attem pted symbolically.

49

A lgorithm 6.1 (C om putational Agent)

function stiffnessAndStabilityFactor
if system is not too big then

com pute real eigenvalues
if number o f eigenvalues is sufficient10 then

com pute stiffness ratio
output stiffness ratio (system is stable)

else
call f02aff
if imaginary coefficients all zero then

output stiffness ratio = zero (system is stable)
else

com pute eigenvectors
com pute stiffness ratio
cdm pute stability factor
output all

At the same time as investigating the stiffness of the ODE, it calculates a stability
factor which is the proximity of the negative eigenvalue closest to the imaginary axis.
This may or may not be one of the eigenvalues responsible for the stiffness coefficient
previously calculated. The effect of this proximity is a system with a rapid sine or
cosine factor in its solution. This can also have a detrimental effect on certain routines,
in particular those implementing the BDF method and, to a smaller extent, the Adams
method.

6 .2 .2 O th er A g en ts

The other computational agents associated with ODEs are primarily concerned with
the cost of calculation and evaluation of the ODE. The function s y s te m S iz e lF returns
a value in the range [0,1] as a function of the number of first-order equations in the
system (e.g. a system of 20 equations is considered neutral and would give a value of
about 0.5, many more than tha t would give a higher value); ex p en seO fE v a lu a t io n lF

considers the cost of evaluation of the ODE as a function of the number of mathe
matical operations required (a neutral value would be given by the equivalent of about
200 multiplications); a ccu racy lF returns a value for the accuracy requirement and
in te r m e d ia te V a lu e sIF returns a value for the number of intermediate values th a t the

50

user requires solutions, usually for later plotting or further analysis. Each of these
affect in some way the possible optimum step-sizes for the numerical solver. These are
all implemented in the package d02AgentsPackage.

For Partial Differential Equations, one of the essential requirements for some solvers
is whether the system is elliptic. The computational agent e l l i p t i c ? in package
d03A gentsPackage uses the facilities provided by this expert system to utilise a number
of numerical optimization techniques for testing for this attribute.

6.3 Optimization

An im portant question in mathematical modelling concerns the problem of finding
the location of the local minima or maxima of a function [Cheney &; Kincaid, 1985].
Numerical optimization techniques, specifically minimization, are often required for
large problems, usually involving a list of constraints. It is not always apparent what
sort of problem the user has been presented with, so most of the computational agents
are designed to aid categorisation of the problem and the constraints.

6 .3 .1 C a teg o r is in g th e O p tim iza tio n P ro b lem

The computational agents sim p le? , l in e a r ? , q u a d ra tic? , and nonL inear? contained
in the package e04A gentsPackage test both functions and constraints for these a t
tributes. There is also a computational agent for testing whether a particular (un
constrained, univariate)11 problem could be put in the form of a sum of squares, by
considering its square-free factorisation12, and thus be applicable to more efficient nu
merical algorithms.

11 The computational agent is required to test whether a problem that the user assumes is of a
type usually solved using standard minimisation techniques, but is probably better solved using least-
squared approximation. Due to the difficulty of providing in Axiom an efficient mechanism for testing
multivariate expressions, it will therefore be a single univariate function.

12 Axiom can only consider the square-free factorisation of expressions that can be put into polynom ial
form, so it is possible that not all sums of squares can be identified.

51

6 .3 .2 S o rtin g C o n stra in ts

Since some routines require constraints to be entered in order of degree, the computa
tional agents above can be used in a sorting algorithm13 to order the constraints. This
relieves the user from the task of always remembering tha t the numerical routines re
quire the correct order. Since the constraints have the internal representation of three
lists (the constraint functions, the upper bounds and the lower bounds), care is taken
to ensure tha t all three lists are ordered simultaneously. This is really a usability issue,
but an im portant one, considering tha t the aim is to create a more intelligent interface
to these routines.

6.4 Conclusion

I have described a number of different computational agents, some of which use heuris
tics while others use deterministic methods. In general, these have been designed to
perform their task with reasonable efficiency. Of course, sometimes this means th a t
the answers they give may contain errors.

For example, there does not exist a perfect algorithm for calculating all the singularities
of a function and even if one existed, it would be likely to take a prodigiously long time.
The difficulty arises with expressions of the form f(x)+g(x) where either f (x) or g(x) is
an exp-log function and the other is non-constant. In this case the algorithm I have
implemented may not find the singularity. In such a case where the singularity exists,
there are three possible outcomes: the chosen routine may fail so an alternative is used
which succeeds; the chosen routine succeeds since the singularity is either removable or
not significant; or all routines will fail.

There are cases where the test used for stiffness of a set of ODEs will give misleading
results, especially if the stiffness is apparent only on a portion of the range. Fortunately,
since the routines used are adaptive, the effect is unlikely to be disastrous. Another
possible cause of some inefficiency is if there are real eigenvalues of the Jacobian with
such multiplicity tha t it forces the computational agent to perform further analysis.
This extra analysis is not'onerous and will not slow the process greatly.

The test for oscillations of an integrand could fail if all the oscillations are contained in

13I have implemented a bubble-sort since simplicity of algorithm design is im portant and, should
there be a large number of constraints such that bubblesort is not optimal, the tim e spent ordering the
constraints is relatively small compared to the tim e performing the numerical stages.

52

a small part of the range. Should that be the case, a routine specifically for oscillatory
functions would not be entirely appropriate.

So, where there are possible traps, I have endeavoured to minimize their effects so as
to provide as consistent a set of computational agents as is reasonable.

53

C hapter 7

T he K now ledge Base

Knowledge is the conformity of the object and the intellect.

Averroes (1126 - 1198) Destructio Destructionum

The major part of the knowledge base is concerned with the possible methods that can
be used to solve particular problems posed by the user. These fall neatly into the four
‘chapters’ of numerical integration, ordinary differential equations, partial differential
equations and optimization. For this reason, the method domains are divided amongst
the four Axiom Categories (see Appendix B .l). Each of these Categories provide a
consistent structure, operations and interface to these methods implemented as Axiom
Domains corresponding to §5.1, p. 34, 1 and 2.

Other parts of the knowledge base are concerned with the current state of the knowl
edge gained about each problem (Dynamic Knowledge — §5.1, p. 34, 5(a) and 5(b)),
and knowledge about basic elementary functions used by certain computational agents
rather than the inference engine (§5.1, p. 34, 5(f)).

For ease of use, a further table is used which contains a list of available routines and
their application areas, together with indications whereby, if a routine has already been
found which has a good likelihood of being able to be used efficiently, a lazy evaluation
mechanism is triggered (§5.1, p. 34, 5(c)). This Domain R outinesT able also contains
details of the IFAIL values and indications of possible fall-back strategies as well as
initial values for measures which are altered or optimized in the Measure Domain.

These IFAIL instructions often only require the deletion of tha t particular routine from

54

the database and re-input the problem. Sometimes, however, it may be necessary to
alter the required tolerance (either up or down).

The routine d O la jf is listed in this database as:

chapter= " I n te g r a t io n " ,

typ e= "O ne-d im ensional f i n i t e " ,

domainName3 "dO lajfAnnaType",

defau ltM in = 0 . 4 ,

m easure3 0 . 4 ,

f a i l L i s t =

[[i f a i l = 1 , in s t r u c t io n 3 " d e le te "] ,

[i f a i l 3 2 , in s t r u c t io n 3 " d e le te "] ,

[i f a i l 3 3 , in s t r u c t io n 3 " d e le te "] ,

[i f a i l 3 4 , in s t r u c t io n 3 " d e le te "] ,

[i f a i l 3 5 , in s t r u c t io n 3 " d e le te "] ,

[i f a i l 3 6 , in s t r u c t io n 3 " d e le te "]]

The Domain also has a number of functions for both searching this database and
modifying any entries.

7.1 Knowledge o f M ethods

An Axiom Domain has been created for each method or strategy for solving the prob
lem. These method Domains each implement two functions with a uniform (method
independent) interface:

m easu re : A function which calculates an estimate of suitability of this particular
method to the problem if there is a possibility th a t the method under considera
tion is more appropriate than one already investigated.

If it may be possible to improve on the current favourite method, the function
will call computational agents to analyse the problem for specific features and
calculate the measure from the results these agents return. It also calculates
any method-specific parameters, such as weight functions, points and types of
possible discontinuities etc., for later use.

im p lem en ta tio n : A function which may be one of two distinct kinds. The first kind
uses the interface to the NAG Library to call a particular routine with the required

55

parameters. Some of the parameters may need to be calculated from the data
provided before the external function call such as workspace parameters. It also
makes sure tha t all the data are in the correct form i.e. tha t the parameters are
of the correct types, external functions are properly named and specified and all
parameters are in the correct order.

The other kind applies a “high level” strategy to try to solve the problem e.g. a
transformation of an expression from one that is difficult to solve to one which is
easier, or a splitting of the problem into several more easily solvable parts. This
may thus enforce some recursion on the measure function.

For example, the Integration Domain dO lapf AnnaType, a routine for calculating in
tegrals where the integrand is of the form of Equation 6.1 (p. 42) contains the two
functions m easure and n u m e r ic a lln te g r a t io n .

A lgorithm 7.1 (M ethod D om ain dO lapf A nnaType)

function measure
in itialise c, d, I
com pute algebraic weights
if integral has algebraic weights then

set c, d
com pute logarithmic weights
if integral has logarithmic weights then

set I
if no weights found then output

[0 , "dO lapf: A s u it a b le s in g u la r i t y has n o t b een found"]
else com pute measure
output

[m easure, "Recommended i s dOlapf w ith c = " c ",
d = " d " and 1 = " 1]

function numericallntegration
F a d com pute x — a
Fac2 com pute b — x
compute factors
fac <— F a clc * Fac2d

if I > 1 then
if / = 2 then

fac <— fa c * log(Facl)

56

else if I = 3 then
fac <— fa c * \og(Fac2)

else
/ac <— /a c * log(Facl) * log(Fac2)

reduce integrand
Fn Fn/fac
/ co n v ert Fn to F o rtra n
call dOlapf

Within the function measure, it searches for algebraic and logarithmic singularities
a t the end points of the range of the integrand. If it finds any, this is signaled to
the inference mechanism as a positive ‘measure’ along with details of the singularities
found.

If the expert system inferred th a t this was the most appropriate routine to perform
the integration, the function n u m e ric a lln te g ra tio n would translate the information
thus gained into a form suitable for the NAG library routine. It has to separate the
logarithmic and algebraic weights from the function before it is translated into a Fortran
function. This is then passed directly to the Fortran routine together with the other
parameters.

Another Integration Domain of considerable interest is dO lTransf ormFunction. This
is designed to investigate the appropriateness and perform an algorithm to transform
an infinite integral into either one or two finite integrals and thus allow the system to
use a better range of numerical routines. Its measure function is:

A lgorithm 7.2 (M ethod D om ain dOlTransform Type)

fu n c tio n measure
co m p u te range
if both ends infinite th e n

call s p l i t
if upper end infinite th e n

if lower end is positive th e n
call tran sfo rm

else
call s p l i t

if lower end infinite th e n
if upper end is negative th e n

57

call transform
e lse

call s p l i t

This calls on two local agents s p l i t , if the function needs to be split into
two, and tr a n sf orm to transform it onto a finite region using the mapping
x i—► 1 / i .

local fu n ction transformFunction
Mapping <— co m p u te x = 1/t
Integrand <— ap p ly Mapping to Integrand
sim p lify Integrand

local fu n ction transform
co m p u te range
call transform Function
m 4— call measure # Top L evel C a ll
o u tp u t

[m, "The recommendation i s to transform th e fu n c tio n
and use " name, L is t o f H ints]

local fu n ction split
c o m p u te range
m l <— call measure # Top L evel C a ll
call transform Function
co m p u te range
m2 *— call measure # Top L evel C a ll
m com b ine m l and m2
ou tp u t

[m, "The recommendation i s to transform th e fu n c tio n
and use " namel " and " name2 , L is t o f H ints]

It places all this information in a list for later implementation (should it
be required) within the function n u m e r ica lln teg ra tio n which recursively
calls a top level integrate function on the list:

fu n ction numericallntegration
for Hint in List of Hints rep eat

co m p u te Integral

58

call in te g ra te # Top Level C all
co m p u te Result
co m p u te Error Estimate

o u tp u t All

7.2 Dynamic Knowledge Representation

Each method domain can call any of the computational agents it needs to calculate
how appropriate tha t method is to the current problem. Some agents will be common
to more than one method domain or problem category, whereas others may be specific
to a single domain. For example, the computational agent expHasAlgebraicW eight is
only used by the Domain investigating the usefulness of the integration routine dOlapf,
whereas stiffnessA ndStabilityO fO D E IF is used within all ODE method Domains.

For this reason, to minimize computation, each computational agent places a copy of
the knowledge it has gained into a keyed table. The key for each item is the current
problem specification. So before a particular computation agent performs its task, it
checks to see if it has already been called with this same problem and therefore does
not need to do any recalculation. It can also tell if this particular problem has already
been investigated within the current session. This knowledge is used by parts of the
inference machine and as a significant part of the explanation process, the current
values of the table being presented as part of the output.

All other storage of dynamic data (§5.1, p. 34, 5(e)), such as results of previous prob
lems, are handled by the Axiom indexed buffer. For example, the nth result is accessed
as (n) [Jenks & Sutor, 1992] c.f. Appendix A.

59

C hapter 8

M easure Functions

Est modus in rebus.

Horace (65 - 8 B. C.) Satires

In this expert system we are faced with evaluating potential strategies for obtaining
solutions to a set of mathematical problems. This entails measurement of various
attributes of each problem for use as evidence. As described in [Dupee, 1996], we
require a sound theoretical basis for this measurement and therefore use belief functions
or measure functions to give values to the effectiveness of each strategy.

The requirement is to assign to each method some measure which tells us how effective
the method is likely to be given the current problem. The aim is thus to get numerical
measures for the effectiveness of each of a number of possible methods for automatic
comparison. If the method applications were disjoint, for example, if for each prob
lem only one method were possible, such measurement would be trivial. Also, if all
methods were simple i.e. not likely to include multiple strategies, and attributes of the
given problem did not in any way conflict, Bayesian methods would be appropriate.
However, as will become apparent, these complications appear and require alternative
approaches.

Sometimes we use strategies which are themselves multiple strategies i.e. we wish to
split the problem into a number of pieces and wish to give appropriate values to them
for comparison with other multiple and singleton strategies. This process forces a
structure on the underlying singleton values.

Other strategies may have attributes which conflict in some way. We therefore have to

60

use functions describing the compatibility of each attribute in combination with each
possible strategy.

Bayesian theory is restricted to singleton hypotheses and so cannot on its own be
applied where multiple strategies are possible. For this reason, a more respectable
solution is applying Dempster-Shafer theory ([Gordon & Shortliffe, 1983; Paris, 1994])
whereby we can assign measures to any number of subsets of the set of strategies.
However, such a set of subsets does not normally include multiple copies of the same
strategy.

[Gordon h Shortliffe, 1985], [Pearl, 1986] and [Shafer & Logan, 1987] show us how
we can construct belief spaces for evidential reasoning using Dempster-Shafer theory
on a hierarchy of hypotheses. This is used as a basis for considering hierarchies of
the complete belief space and some of the effects this necessitates on the system. The
following section is a summary of the main theoretical ideas in [Dupee, 1996] which
allows the use of limited recursion within Dempster-Shafer theory as a basis for the
comparison of single and multiple strategies.

8.1 D em pster Shafer Theory with M ultiple Strategies

D efinition 8.1 Let 0 be a M easurable D iscrete Topological Space of the set of
subsets of a set of methods S . This is the D em pster-Shafer fram e o f discernm ent.
So the set of hypotheses is 0 . It is not discounted that two or more members o f S
represent the same method.

Exam ple 8.1.1 Let the set o f methods S = { A , B , C } X. Also, let A and B represent
the same method and C represent two copies of method A. We can construct 0 as
all subsets of S . This set 0 contains the subsets {A, B } and {C}; each, ostensibly,
representing the same strategy i.e. using method A twice. We will have to reconcile
these and judge their respective values within our proposed model.

*We might wish to consider that A and B are both the general integration m ethod d O la jf and C
represents the m ethod dOlamf, which splits the function and uses d O la jf on each section. S therefore
represents all combinations of these i.e. includes the combination of performing the splitting outside
the routine (as implemented in the Method Domain dOlTransform) and using d O la jf twice, as well as
the single method dOlamf which splits the function inside the routine

61

W hat we propose to do is to work theoretically on multiple levels i.e. treat singleton
strategies differently from multiple strategies. To do this, we consider S as the set of
methods without copies. An element of 0 which represents a multiple method strategy,
instead of using the singleton elements within 0 , creates a number of copies o f 0 .
In the terminology of Shafer ([Shafer, 1976]), this is a refinement of 0 such th a t an
element of 0 is recursively refined as being one or more copies of 0 .

The extension of the Dempster-Shafer frame of reference to include multiple topologies
has an effect on the inference architecture, since we are now having to work on a number
of different levels. This forces us to maintain levels of belief in 0 even though we can
completely assign values to all singleton elements of 0 . The effect can be seen in an
example.

E x am p le 8.1.2 Let S be the set o f strategies {M i, M2 , . . .M n} where M \ is a strategy
representing a number o f any o f the methods M2 . . . Mn . The basic probability assign
ments (b.p.a.) for the singleton methods o f 0 are calculated in the usual way, but the
b.p.a. of M \ is calculated from one or more copies of 0 , say ©1, . . . 0 m, by combining
the largest b.p.a.s of the 0 i , .. . 0 m-

This therefore splits the original problem into two or more pieces and a b.p.a. obtained
for each of these separate subproblems.

The effect of this is to cause difficulties with consistency of the system. This can be
solved using a further normalisation. Now th a t we have the foundations of a hierarchical
system, we can investigate some of the features and peculiarities the system provides.

E x am p le 8.1.3 Let S be as above and M 2 represent a singleton method which splits
the problem and uses a particular method on each sub-problem.

Furthermore, let the remaining M3 . . .M n be subdivided into two groups i.e. specific
and general. A specific method is one that is specific to a single type o f problem. A
general method is one which can be addressed to many different types of problem (with,
perhaps, a differing degree of reliability).

Let us consider the b.p.a. for each o f M i and M 2 , i.e. we have a problem which can
be solved using these two strategies. I f the individual methods used both by Mi and M 2

are general methods, the cost of using M i is likely to be higher so the system should
give a higher b.p.a. to M 2 ■ However, if one or both of the methods selected for use

62

by M i is specific, and specific methods are always preferred, a higher b.p.a. should be
allocated to M i .

Using D e m p s te r ’s R u le o f C om bination , this would only be possible i f the b.p.a. of
specific methods (having the highest b.p.a. in the sub-topologies above) is greater than
0.5 and all general methods have a best b.p.a. of less than 0.5.

Since there can be no difference between the pattern o f the topology 0 and the copies o f
0 used to calculate the b.p.a. of M i, this structure must be applied throughout. Further
more, the maximum b.p.a. for M 2 must be finely judged as being slightly greater than
the maximum b.p.a. for the combination of the singleton general methods it represents.

Whilst I have used only a single multiple strategy extending the topologies, it is possible,
using the same reasoning, to expand the example to have more than one strategy with
this feature.

8.2 Conflicting Evidence and Lucks/Gladwell M easures

Where we have conflicting evidence, Dempster-Shafer theory can be applied to calcu
late the plausibility of each singleton method. In combination with possible multiple
methods, the normalisation process is more complex since we must always maintain
belief in 0 to allow for the extended topologies.

However, the implementation we have used deserves a little explanation. In keeping
with the system recommended by Lucks & Gladwell ([Lucks h Gladwell, 1992]) we
have introduced four types of functions:

m e a su re m e n t fu n c tio n s2 quantifying the degree of presence of features in an input
elementary problem;

in te n s ity fu n c tio n s conversion of the measurement of features onto a standard scale;

co m p a tib ility functions describing relationships between the degree of presence of
features and the behaviour of the inner workings of the methods;

ag g reg a tio n func tio n s describing the overall behaviour of a method based on the
aggregate effect of the individual problem features.

2These are not the same as the measure functions of this chapter but are the initial measurements
of the individual attributes.

63

The compatibility functions are used as the input to our D-S model which is imple
mented within the aggregate functions. We can therefore economise on code by using
dynamic table lookup for values obtained for the intensity functions. The behaviour of
individual methods under the influence of various features is an area tha t takes as its
basis the judgement of Numerical Analysis “experts” whether tha t be from documen
tation or alternative sources. However, its assessment of the suitability or otherwise of
a particular method to a particular problem is reflected in a single normalised value
facilitating the direct comparison of the suitability of a number of possible methods or
strategies.

8.3 Application

Given the example of assessing the applicability of numerical integration routines, we
can think of these methods as falling into three subgroups - those tha t implement a
general strategy which can be applied to a large subset of integrals; those tha t im
plement a specific strategy for applying to particular subsets of integrals i.e. of those
functions which reveal a particular attribute or set of attributes; those th a t implement
a number of strategies e.g. those tha t split the function into two and perform different
strategies on each part. However, it is of extreme benefit to maintain a consistent
interface to each of these methods and each must be considered equally.

So we have, for example, a routine d O la jf which implements a strategy which can
be addressed to a wide variety of different classes of integrals, but which may fail
to work, or give an inaccurate result, under certain difficult conditions. We have a
routine dO lapf which is ideal for use in situations where the values of the integral at
the end points of integration are undefined or uncalculable, but which are of little or
no benefit in other cases. We also have routines such as dOlamf and dO ltran sform

which, should one or both of the end points of integration be infinite, will split the
function and transform each part onto a finite region before implementing one or more
of the other routines. The routine dOlamf performs this internally (hard-wired into
the Fortran code) using a general routine for the implementation and dO ltran sform

does the splitting and transformation externally (in the Axiom interface to the NAG
routines) and can then implement any of the other routines depending on the attributes
it finds.

So specific routines such as dOlapf give a positive b.p.a. if the specific attributes or
combination of attributes is present; d O la jf and other general routines give a positive

64

b.p.a. unless certain difficult conditions prevail; dOlamf gives a positive b.p.a. if the
integral is finite or semi-infinite (since the details of transformation and implementa
tion is hidden, no other analysis can take place) whilst dO ltransform performs full
analysis of the different parts of the integral and calculates its b.p.a. from the b.p.a.s
of the individual routines which should be considered appropriate for each separate
part. Therefore, if specific routines are appropriate, this strategy should be applied in
preference to dOlamf.

Where the expert system is attempting to assess possible routines for solving a system
of ODEs, the Lucks/Glad well compatibility functions are used as the input to the D-S
frame. The complete measurement process is thus kept within the Method Domains.

65

C hapter 9

Inference M echanism s

The question now is, to know whether the mind has made this inference right
or no; if it has made it by finding out the intermediate ideas, and taking
a view of the connection of them, placed in due order, it has proceeded
rationally, and made a right inference.

J. Locke (1632 - 1704) An Essay Concerning Human Understanding

9.1 Inference Packages

The choice of method domains and computational agents means tha t there is a require
ment only of a small and relatively simple inference engine (c.f. §5.1, p. 34). The job
of this inference engine is to control the process of choosing a possible method and
performing any recovery mechanism should that be required. It may also be required
to transform both input and output into some standard form, either for use by the
system or for further possible use by some other agent.

Four Axiom packages have therefore been created, one for each problem area, with sim
ilar functionality which additionally act as the command line interface to the package
and provide the remaining sections of the [Newell & Simon, 1972] Information Pro
cessing System §5.1, p. 34, 3 and 4. For example, the package for integration contains
functions as below.

66

Algorithm 9.1 (Inference Machine for Integration)

function measure
select database entries for relevant routines
in itialise best measure so far
for each relevant routine repeat

if possible measure > best measure so far then
call measure function o f method
if measure > best measure so far then

assign measure to best measure so far
assign hints to database

output result of best measure found

function integrate
convert data to correct form
call measure
call integrate function of best measure
if integrate function fails then

call recovery procedure
convert output to correct form
output result

local function recover
w hile result is not satisfactory do

store result
if recommendation is to repeat integration with

changed parameters then
change parameters
call integration routine again

else if only one routine in database
result is best we can do

else
delete routine from database
call integrate # Top level function

By reducing the size and complexity of the necessary inference mechanisms, it is easier
to see the relations between the expert system and the definition Newell and Simon use

67

of the decisions to be made within a problem-solving information processing system :

1. At a knowledge state (a node in the problem space), to select an operator to be
applied.

2. At a new knowledge state, to determine whether problem solving shall continue
from this state or not.

3. At a knowledge state, to determine whether the knowledge state shall be remem
bered, so tha t return can be made to it at some later time.

4. At the decision to abandon a knowledge state, instead of continuing to search
from it, to select another knowledge state in the backup state.

[Newell &; Simon, 1972, p. 826]

9.2 Recovery Procedures

Indication tha t a problem has been encountered during the numerical stages of the
computation is provided by the Naglink in the form of a non-zero value of the parameter
i f a i l which corresponds to the Fortran parameter of the same name returned by
the NAG library routine. In the NAG Fortran library documentation pages referring
to each routine there is a list of failure codes, each with their possible causes and
recommendations. For example, the error failure codes for the ordinary differential
equations routine using the Adams-Bashforth-Moulton method d02 c jf are listed by
the on-line help as:

* D02CJF
D. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by
//X04AAF//).

IFAIL = 1
On entry, TOL <= 0.0,
or N <= 0,
or RELABS <> ’M \ »A\ ’R* or ’D ’,
or X = XEND.

68

IFAIL = 2
With the given value of TOL, no further progress can be made
across the integration range from the current point x = X. (See
Section 8 of the routine document in the NAG Fortran Library
Manual for a discussion of this error exit.) The components
Y(i) ,Y(2),...,Y(N) contain the computed values of the solution
at the current point x = X. If the user has supplied g, then no
point at which g(x,y) changes sign has been located up to the
point x = X.

IFAIL = 3
TOL is too small for //D02CJF// to take an initial step. X and
Y(l) ,Y(2),...,Y(N) retain their initial values.

IFAIL = 4
XSOL has not been reset or XSOL lies behind X in the direction
of integration, after the initial call to OUTPUT, if the OUTPUT
option was selected.

IFAIL = 5
A value of XSOL returned by OUTPUT has not been reset or lies
behind the last value of XSOL in the direction of integration,
if the OUTPUT option was selected.

IFAIL = 6
At no point in the range X to XEND did the function g(x,y)
change sign, if g was supplied. It is assumed that g(x,y) = 0
has no solution.

IFAIL = 7
A serious error has occurred in an internal call. Check all
subroutine calls and array sizes. Seek expert help.

It is immediately noticeable tha t if, for example, IF A IL was returned with either value
1, 4, 51 or 7 that, on the proviso tha t the Method Domain was correctly implemented,
this would signify some internal error of either Axiom, the Axiom-NAG link (nagd or
nagman) or of the NAG library routine itself. Since it would not be possible to discern
which of these is the cause, the most reasonable move would be to disregard the output
from the routine and re-submit the problem.

But not all IF A IL values fall into this category. Therefore there are a number of different
recovery procedures which require implementing:

1XS0L is a parameter of the automatically created Fortran subroutine for the storage of intermediate
values.

69

• If there is a catastrophic failure i.e. if the routine fails to provide any result, the
routine is to be removed from the database and a different routine should be
chosen.

• If an alteration of, say, the error requirements is suggested and there is no other
indication of possible failure, i.e. by altering such parameters the result can be
obtained, such action should be taken and the routine re-implemented.

• If the best possible error value returned by the routine is higher than tha t re
quested, a further routine is to be chosen and, if successful, the results output
alongside indications of the failed routine and its results.

• If the indication is only a warning or some other information which does not
indicate any misgivings in the given result, no further action is required.

This information has been incorporated within the table of routines section of the
knowledge base (see §7) as:

chapters "ODE",

type= "IVP",
domainName= "d02cjfAnnaType",
defaultM in= 0 . 7 ,
measures 0. 5,
failList =

[[ifail= 1,instructions "delete"] ,
[ifail= 2,instructions "decrease tolerance"],
[ifail= 3,instruction= "increase tolerance"],
[ifail= 4,instruct ion= "delete"],
[ifail= 5,instructions "delete"],
[ifail= 6,instructions "no action"],
[ifail= 7,instructions "delete"]]

Since some IFAIL values of a number of routines could represent a range of possible
failures, there may be times when the rejection of a routine could be considered a
little drastic except tha t further analysis of why the routine has failed is likely to be
complicated and not a process which could be implemented automatically.

Certain other failures would be due to incorrect array sizes or other mistakes from
improper parameters or a poorly specified problem. This should not normally occur

70

if the Method Domains are correctly implemented. If this is not the case, the correct
strategy is to remove tha t routine from the database and restart the process.

71

C hapter 10

E xplanation

Modern-day computers are amazing pieces of equipment, but most amazing
of all are the uncertain grounds on account of which we attach any validity
to their output.

It is not only the programmer’s task to produce a correct program but also
to demonstrate its correctness in a convincing manner.

E. Dijkstra, et al. Structured Programming

The “fundamental goal of an explanation is to enable a program to display a com
prehensible account of the motivation for all its actions” [Davis & Lenat, 1982]. As
intimated in §5.5 p. 38, the level of belief the user could have tha t an expert system
is successfully mirroring the thought processes of an expert is entirely dependent on
the type and quality of any explanation it gives and on tailoring any explanation to
the knowledgeability or requirements of the user. Obviously, if the user wishes to use
the expert system as a “black box” , no explanation is necessary or required. In such
a case, it would be considered superfluous and thus a mistake should one be provided.
It would, of course, also be a mistake if too little information is provided such tha t the
reasoning behind the choice of routine is left unclear at any time.

It would also be unnecessary to provide what John Locke would term the essential
properties, only accidental properties\ For example, if we were asked to explain a choice
of routine for solving a set of Ordinary Differential Equations, we are not expected

1 Locke, himself, based his ideas of these properties on Aristotle, who spoke in terms of P lato’s
‘Universals’, and on Descartes’ primary and secondary qualities. [Trusted, 1981]

72

to identify all characteristics of ODEs - only those which have some bearing on the
final choice. It is also necessary, in general, to couch the explanation in terms of the
application domain so as not to be too imprecise.

The explanation process has two identifiable and discrete tasks - to clarify and to justify.
Clarification is a description of what routine is chosen and the properties pertaining
to the problem which have been identified or quantified. Justification of the choice of
routine requires identification of which properties are im portant as well as some ideas
about why the particular routine is thought to be better than others.

10.1 A Hierarchy o f Explanation

There are a number of aspects of this expert system which must form part of the
explanation process.

• W hat routine was used? i.e. the name of the method or strategy.

• Why was this method chosen? i.e. what attributes were found which make this
method better than others?

• Why were other methods not chosen?

• On what basis were these decisions made? This information is of a different
nature to those above in tha t it is non-method-specific.

The nature of the Axiom type R esu lt, which is the default return type from a NAG
routine, has a natural hierarchy. This can thus be used to provide the framework
for the explanation. Thus, the return type from ANNA, also a R esu lt, contains two
extra fields specifically for the explanation mechanism. These are labelled method and
a t t r i b u t e s as shown in the example previously used in §4.3.3 on page 30:

(1) -> ans := integrate(l/(i.0+3*sin(t)~2) ,0. .2*'/,pi)

(1)
[iw: Matrix(Integer), abserr: DoubleFloat, w: Matrix(DoubleFloat),
ifail: Integer,, result: DoubleFloat, method: Result,
attributes: List(Any)]

Type: Result

The non-method-specific information, i.e. the results of computational agents, can be
accessed directly as:

73

(2) -> ans.attributes

(2) [Continuous at the end points,The range is finite, []]
Type: List Any

This shows tha t the integrand shows no evidence of singularities at the end points or
internal to the range and tha t the range of integration is finite. These attributes are not
specifically required by any one method in assessing its appropriateness to the problem
and thus separated from method-specific information.

The field method contains a number of sub-headings:
(3) -> ans.method

(3)
[nameOfRoutine: String, other: Result, allMeasures: List(String),
bestMeasure: Float]

Type: Result

The sub-field a llM ea su res gives much insight into the measurement process and thus
the inference mechanism:

(4) -> qelt(ans.method,allMeasures)

(4)
["Trying One-dimensional finite integration routines",
"dOlaqfmeasure: 0.0 - dOlaqf: A suitable weight function has not

been found",
"dOlanfmeasure: 0.0 - dOlanf: A suitable weight has not been found",
"dOlajfmeasure: 0.4 - The general routine dOlajf is our default",
"dOlakfmeasure: 0.0 - dOlakf: The expression shows little or no

oscillation",
"dOlapfmeasure: 0.0 - dOlapf: A suitable singularity has not been

found",
"dOialfmeasure: 0.0 - dOlalf: A list of suitable singularities has

not been found"
]

Type: List String

The sub-field o th e r provides specific information on, for example, weight functions
if any have been found, transformations if they have been used and method-specific
parameters etc.

Much of this structure can be seen automatically if the command

show ScalarV alues tr u e

74

is used e.g.:
(6) -> a := integrate((exp(-x"'3)+exp(-3*x“2))/sqrt(x), 0.0. .'/.plusInfinity)

(6)
[
abserr: 2.69960156338737e-08,

result: 3.23287256251958,

method:
[nameOfRoutine: "dOlTransformFunctionType",
other:

[dOltransformextra:
List
Record

:(str.String),
:(fn,Expression(DoubleFloat)),
:(range,Segment(OrderedCompletion(DoubleFloat))),
:(ext.Result)],

allMeasures: List(String),
bestMeasure: 0.6086956521 7391304348],

attributes: List(Any),

dOlajfAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 2.6995941792608e-08,
w: Matrix(DoubleFloat), ifail: 0, result: 0.085813447681579,
method:

[nameOfRoutine: "dOlajfAnnaType",
other: [] ,
allMeasures: List(String),
bestMeasure: 0.4],

attributes: List(Any)],

dOlapfAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 7.38412656787854e-14,
w: Matrix(DoubleFloat), ifail: 0, result: 3.147059114838,
method:

[nameOfRoutine: "dOlapfAnnaType",
other: [dOlapfextra: List(DoubleFloat)],
allMeasures: List(String),
bestMeasure: 0.7],

attributes: List(Any)]
]

Type: Result
(7) -> qelt(a.method,allMeasures)

(7)
["Trying One-dimensional infinite integration routines",

"dOlamfmeasure: 0.5 - dOlamf is a reasonable choice if the integral

75

is infinite or semi-infinite and dOltransform cannot do better than
using general routines"

>
"dOlasfmeasure: 0.0 - dOlasf: A suitable weight has not been found",

"dOltransformmeasure: 0.609 - The recommendation is to transform
the function and use dOlapfAnnaType and dOlajfAnnaType"

Here, the method chosen is to use the method dO ltransform to split the integrand and

the integration. ANNA returns the result, error estimate and method information as

]
Type: List String

transform the infinite part onto a finite domain and use two different routines to perform

well as the individual output from the two constituent calls. The method information
contains details of the transformation used:

(8) -> qelt(qelt(a.method,other),d01transformextra)

(8)
C

[str= "dOlapfAnnaType", fn:

1 .Ox
3

, range= 0.0..1.0,

\|x
ext= [dOlapfextra: List(DoubleFloat)]],

1 . 0 3.0

x
3 2

x +-+
C/.e + */»e) \ I x

[str= "dOlajf AnnaType" ,fn= ,range= 0.0..1.0,
2

x
ext= []]]

Type: List Record(str: String,fn: Expression DoubleFloat,
range: Segment OrderedCompletion DoubleFloat,ext: Result)

This hierarchy fulfills all the requirements stated in §5.5 in tha t it provides sufficient
clarification and justification of the inference process at the user’s request.

76

C hapter 11

T he H yp erD oc Interface

HyperDoc is described in [Jenks &; Sutor, 1992] as “an on-line tutorial and an on-line
reference manual” . It is the system used on the UNIX versions of Axiom for an active,
windows-based high-level interface. The user can:

• Get help on how to use the HyperDoc system;

• Read about an extensive list of topics;

• Fill in templates for solving problems;

• Scan an on-line version of the Axiom reference manual;

• Look at examples of how Axiom can be used;

and much more. Its capabilities have been extended to provide an interface for ANNA.
This involves providing a top-level link and a number of pages of information, templates
and examples within some ordered structure.

The top level pages and information pages are written in HyperDoc’s own mark-up
language, some aspects of which are similar to HTML, the standard Hypertext mark
up language. Other pages, in particular those that perform some manipulation of input
characters, have been written in “boot” code, an interface to the underlying lisp. Much
of the graphics and special characters are provided as bitmaps, either colour or black
and white.

‘Boot’ is a generator of Hyperdoc pages — it can store, manipulate and export active
data for the automatic formatting of HyperDoc pages and interfacing directly with
Axiom, the lisp processor and the operating system. It is the programming language

77

which underpins all HyperDoc functions, whilst itself based on lisp and which itself
can have embedded HyperDoc links. The ‘boot interpreter’ translates the programme
code into lisp functions for further interpretation by Axiom sub-processes.

HyperDoc itself provides a number of formatting commands which allow the pages to
be constructed easily with a consistent appearance. For each of these pages, parts,
either graphics or text, can be defined as “active links” to other pages. This helps
provide logical structure to the interface and opens the way towards providing help and
tutorials. There is also the possibility of interfacing with either Axiom for executing
commands, the underlying lisp for file access etc., or the operating system.

The use of ‘boot’ code provides a way of writing HyperDoc pages with integral lisp
functions. These lisp functions can take data from the various parts of a document
and manipulate them whilst building further pages. For example, if we have an n-
dimensional system, we can enter n in an active area on one page and when the next
page is opened, it can provide the requisite number of active areas for further data input,
with any appropriate default values (c.f. Figure 11-9). A further active structure which
can be used is the ‘radio buttons’, which can be either set on or off and can control
whether or not certain input areas appear on a page, or what defaults appear in input
areas.

The HyperDoc pages shown in Figures 11-1 to 11-18 relate to each other as:

H O I HyperDoc 0
AXIOM HyperDoc Top Level

axiom
♦

W hat would you like t o do?
■ Basic Commands
■ Reference
■ Topics
■ Browse
■ Examples
■ Settings
H NAG Link
■ About AXIOM
■ ANNA Expert System

do?
Solve problems by fill ing in tem pla tes .
Scan o n - l in e d o c u m e n ta t io n f o r AXIOM.
Learn how t o use AXIOM, by topic.
Browse through the AXIOM library.
See examples o f use of the library.
Display and change the system environm ent.
Link t o NAG Numerical Library.
See some basic in fo rm a t io n a b o u t AXIOM.
Link to m m Axiom/NAG Numerical Analyst M

Figure 11-1: Axiom Top Level Page (modified for ANNA)

Further pages have been written to provide help in the use of ANNA and also provide
explanations of the intricacies of why ANNA has be created and what it does. It
also gives a few hints and examples on how ANNA can be used interactively from the
command line and within composite Axiom programs.

There is also a section, with examples, on the use of the computational agents and how
these can be called directly from an interpreter window.

In the process of creating these pages, a number of design decisions were made. Some
aspects were, in general, dictated by the requirements that the pages should look similar
to those already created for use within the Axiom system, as regards fonts, bullet points
and headings. However, since ANNA provides a simplified view to numerical software,
some freedom on page layout and structure was allowed. This is particularly apparent
in the input pages for ODE and optimization problems where, for example, constraints
and the bounds on those constraints are logically organised (see Figure 11-16).

79

AXIOM/NAC NUMERICAL ANALYST

This e x p e r t system chooses, and uses, NAG num erica l routines.

B Integration

U Ordinary Differential Equations

B Partial Differential Equations

B Optimization

B About the Axiom/NAG Expert System

Figure 11-2: ANNA Top Level Page

In teg ra tio n ~K D H
W elcom e to th e In teg ra tio n sec tio n o f /HNNHA th e Axiom/NAG Expert System.
This system chooses, and uses, NAG num erica l routines.

B Integration
In teg ra tin g a fu n c tio n over a f in ite o r in fin ite range.

B Multiple Integration
In teg ra tin g a m u ltiv a r ia te fu n c tio n over a f in ite space. The dim ensions
o f th e space need to be 2 <= n < - 15.

B Examples
Examples o f in teg ra tio n . These exam ples co v er all o f th e m ajo r m ethods.
P a ra m e te rs can be changed to in v es tig a te th e e f fe c t on th e cho ice o f
m ethod.

Figure 11-3: ANNA Integration Page

80

m
In teg ra tion using Axiom/NAG Expert System ■ ■

Analyses the function fo r various a ttr ib u te s , chooses and then uses a su itable
in teg ra tio n routine to ev alu ate the fin ite , sem i-in fin ite or infinite in tegral

J b f(x) dx

■ Lower bound of the in terval a :
■ Finite
1 1 Minus Infinity

H Upper bound of the interval b.
H Finite
H Plus Infinity

Figure 11-4: ANNA Integration Input Page 1

It is worth noting that, if the radio buttons for the range of integration in Figure 11-
4 are differently selected, the page shown in Figure 11-5 would reflect those changes
in that the default function given would be one defined on that range and the value
#/#p lu s In f in i ty or °/0m inusInf in i ty entered in the appropriate box as a reminder of
the proper syntax.

S E l HyperDoc_______________________

Integration using Axiom/NAG Expert System

Enter the function f to be integrated:
(log(2-x)*log(x})/((2-x)H2/3)*sqrtfx))_

Lower bound of the interval a. ■ Upper bound of the interval b:
0.0 2.0

Absolute accuracy required: ■ Relative accuracy required:

Figure 11-5: ANNA Integration Input Page 2

81

MM HyperDoc ■ ■ ■ a

m e Exam ples Using th e Axiom/NAG E xpert System HUB■
Example 7:

Example 8:

Example 9:

H Example 10:

i :
cos 20/?{sin p + c o s p) dp

I
log x log (2 - x)

o t /x \ / 2 - x 2
d x

I. <u> - 5)(cV - i)— du>

— \/2zr J-o
dz

Figure 11-6: ANNA Integration Examples Page

I S E l HyperDoc
Axiom/NAG E xpert System C om m and

Here is the Axiom com m and
you could have issu ed to com pute this result:

in te g ra te ((lo g (2 -x)* lo g (x))/((2 -x)A(2 /3)*sqrt(x)), 0.0..2.0, 0.0, 1,0 e -6)

S e le c t to go back one page.

S e le c t j j j j j 1:0 rem ove th is window.

Figure 11-7: ANNA Integration Instigation Page

82

mm HyperDoc

O rdinary D ifferential Equations

Welcome to the O rdinary D ifferential Equations section of /HNNHk, the Axiom/NAG
Expert System. This system chooses, and uses, NAG num erical routines.

§a Ordinary Differential Equations
Finding a solution to an Initial Value Problem o f a se t of O rdinary
D ifferentia l Equations.

Bl Examples
Examples of ODE problem s w ith various fe a tu re s using both s tiff and
n o n -s tif f methods. P a ram ete rs can be changed to investigate the e ffe c t on
the choice of method.

Figure 11-8: ANNA Ordinary Differential Equations Page

[v] Eg HyperDoc ED

Solution o f Initial Value Problems o f Ordinary
D ifferential Equations using Axiom/NAG Expert System mw

H Is th ere any stopping c r ite r ia (i.e. some function G(X,Y) such th a t the a lgo rithm
should stop when G(X,Y) = 0)?

B NO If NO, G(X,Y) is se t to 1.0
iiS Yes

Analyses the function fo r various a ttr ib u te s , chooses and then uses a su itable ODE
solver to provide a solution to the system of n ODEs

U Are in te rm ed ia te values required?

H v e s

0 Size of the system o f equations:

B No

y,' = /<(*, y) '

ODE

ithm

a
Figure 11-9: ANNA Ordinary Differential Equations Input Page 1

83

i - l l B B l Examples Using the Axiom/NAG Expert System

Analyses the function fo r various a ttr ib u te s , chooses and then uses a suitable ODE
solver to provide a solution to the system of n ODEs

y\ = fi(x, y) '

fo r i - 1,2 ,..vn.

S e lec t e ith e r o f these exam ples and you will be presented with a page which contains
a c tiv e a rea s fo r the function and its param eters.

These p a ram ete rs can be a lte re d by selecting the a re a and replacing the d e fau lt
p a ram ete rs by the new values. In this way you can investigate the e ffe c t of the new
p a ram ete rs on the choice o f method.

Example 1:
y'i = yi + io4y 2ya

y 2 = ^ y i - 1 0 V y 3 - 3 .107y |

y' = 3.107y*

Figure 11-10: ANNA Ordinary Differential Equations Examples Page

IVllIO HyperDoc

Solution of Initial Value Problems of Ordinary Differential
________ Equations using Axiom/NAG Expert System________

■ Enter the list of ODE’s (i.e. the derivatives Y[1]'..Y[n]0 in term s of Y[1]..Y[n]:

Y[J r. -0.04*Y[1]+1.0e4*Y(2)*Y(3]_

Y[2l’:

Y[3Y: 3.0e7*Y[2]*Y[2]

Initial Value fo r X: g Final Value for X:
0.0 10.0

Initial Value for Y[i]:
YH1: 1.0
Y121: 0.0
Y[31: 0.0

Enter the function G(x,y) (The Stopping Criteria): Y[l]~0.9

Enter the list of Interm ediate Values required: [2 ,4^83

Relative accuracy required: 1.0e-4

Figure 11-11: ANNA Ordinary Differential Equations Input Page 2

84

IS HD HyperDoc

P a r tia l D iffe ren tia l Equations

W elcom e to th e P a r t ia l D ifferen tia l Equations sec tio n o f /IWNHk, th e Axiom/NAG
Expert System.

0

| Second Order Elliptic Partial Differential Equation
D escretiz ing th e PDE:

d2U d2U
a (x -y)-5t t + + r(x , y)~ ̂ +d x 2 dydxdy

dU
S (x , y) — + € (x , y) — + 0 (x , y) U = ^ (x , y)

defined on a re c ta n g u la r region w ith boundary co nd itions o f th e fo rm

dU
a(x, y)U + b(x, y) — = c (x , y)

and solving th e resu lting sev en -d iag o n al f in ite d iffe ren ce eq u atio n s using a
m u ltig rid technique.

Figure 11-12: ANNA Partial Differential Equations Page

85

I l l ED HyperDoc

Second Order Elliptic P artia l D ifferential Equation

D escretizing the PDE:

d 2U d 2U
a (x . y) ^ + « x ,y) — + 7(x,y) — +

dU c?U
^ x ,y) *T + €̂ x ,y ^'% +<*(x ’y)u = ^(x-y)

defined on a rectangu lar region with boundary conditions of the form
cfU

a(x, y)U + b(x, y) — = c(z, y)

and solving the resulting seven-diagonal fin ite difference equations using a m ultigrid
technique.

H Enter the values of the boundary condition expressions fo r the bo ttom , top, le ft and
righ t s id e s :

E3 Bottom boundary co n d itio n s: (Y :=Ystart>)

a(x,Y): m m m m m m m m m a m m s m m m
b(X,Y) : 1
C(X,Y): -sinOO

0 Top boundary co n d itio n s: (Y :=Yen(j)

Enter the rectang le on which to d iscretize the PDE :
S ta r t Number of grid lines End

X: 0 .0 _ 9 1.0
V: 0.0 9 1.0

H Enter the values o f the expressions <*(X,Y) to ^r(X,Y):

ct(X,Y)
0CX,Y)
r c x ,Y)
5 cx,y)
e(x,Y)
0(X,Y)
(̂X,Y)

Figure 11-13: ANNA Partial Differential Equations Input Page

EJ1
E x i t | l e l p | o p tim iz a tio n

W elcom e to th e O p tim iza tio n sec tion o f /IWNHA the Axtom/NAC Expert System.
This system chooses, and uses, NAG num erical routines.

H Optimization of a Single Multivariate Function
Finding th e m inim um o f a fu n c tio n in n variab les.
Linear P rogram m ing and Q u ad ra tic P rogram m ing problem s.

1

[1 Examples
Examples o f o p tim iza tio n problem s w ith various c o n s tra in t fea tu re s .

m Optimization o f a set of observations of a data set
L east-sq u ares problem s.
Checking the goodness o f f i t o f a le a s t-sq u a re s model.

3 Examples
Examples o f le a s t squares problem s,

■

Figure 11-14: ANNA Optimization Page

H E E 9 S Examples Using th e Axiom/NAG Expert System

H Example 3:
Minimize the function:

With conditions:

X iX 4(X 1 + X j + X3) + Xg

1 < X t < 5

1 < X 2 < 5

1 < X 3 < 5

1 < X 4 < 5

- o o < Xi + X 2 + X 3 + X 4 < 20.0

- o o < X? + X’ + X* + < 40.0

25.0 < X 1X 2X 3X 4 < oo

Figure 11-15: ANNA Optimization Examples Page

87

13 ID HyperDoc

Minimization of a Multivariate Function using Axiom/NAG
_____________________Expert System____________________

Enter the objective function, Ftorlin terms of X[1]...X[n]:

X£1]*X[4]*(XC11+Xf2}+Xt3D+X{3]

Enter lower and upper boundary conditions 6 /(n)and bu(n)
Lower Constraint

1.0 X1

■ m n h h i x2
1.0 X3
1.0 X4
-1.E25
-1.E2S

M M H

Upper
- ; ,4:HKtsxMzxtxt,

m m m

.

H U H
Enter initial guess of the solution vector x(n)
1.0
5.0
5.0
1.0

Figure 11-16: ANNA Optimization Input Page

13 ID HyperDoc

Examples Using the Axiom/NAG Expert System
0

Example 1:
es minimization of the following

(X 3 + 1 5 X 2)-1 + x x - 0.14
2(2X3 + 14 X2) - ‘ + X, - 0.18
3(3X3 + 1 3 X2)“ 1 + x , - 0 . 2 2

4(4X3 + 1 2 X2)“ ‘ + x t - 0.25
5 (5 X 3 + 1 1 X 2) 1 + x , - 0.29

6 (6 X 3 + 1 0 X 2) - 1 + x t - 0.32
7 (7 X 3 + 9 X 2) - j + X t - 0.35
8 (8 X 3 + 8 X 2) -1 + X, - 0.39
9(7X3 + 7 X 2) _1 + X» - 0.37

1 0 (6 X 3 + 6 X 2) _1 + X! - 0.58

11(5X3 + 5 X j) - ‘ + Xt - 0.73
12(4X3 + 4 X 2) _1 + X, - 0.96
13(3X3 + 3 X 2) -1 + Xt - 1.34
14(2X3 + 2 X 2)-1 + Xt - 2.1

15(X 3 + X 2) " 1 + X, - 4.39

Figure 11-17: ANNA Least-Squares Optim ization Examples Page

|V| 10 HyperDoc

Minimization of a Sum of Squares using Axiom/NAG Expert
System

g Enter the functions /» below in terms of X[1]...X[n]:
Function 1: (X[3}+15*X[2I>~C-1}+Xn 3-0.1 A__
Function 2:
Function 3:
Function 4:
Function 5:
Function 6:
Function 7:
Function 8:
Function 9:
Function 10
Function 11
Function 12
Function 13
Function 19
Function 15

2*(2*X[3]+
3*(3*X[3}+
4*(4*Xl31+

4*X[2D**(-D+XCU-0.18

11-0.96
13*(3*XI31+3*X{2D**(~1)+Xt 11-1.34
14*(2*X13}+2*X[2D**(-1)+X[11-2.1
15*(X[3]+X[2D**(- 1)+X[11-4.39

m

Enter initial guess of the solution vector /t(n)
0.5
1.0
1.5

Figure 11-18: ANNA Least-Squares Optimization Input Page

89

C hapter 12

C onclusion

In summary, the background to the problem which is the subject of this thesis will be
discussed with regards to the history of the use of numerical methods, the development
of Computer Algebra Systems and the introduction of improved graphical interfaces.
Some insight will be provided into the reasoning behind the decisions made regard
ing how a solution could be constructed as well as some of the tools necessary for its
construction, such as expert system technology and the knowledge base, the extension
of Dempster-Shafer theory and Lucks/Gladwell intensity, compatibility and aggrega
tion functions to provide a sound framework for the decision process, the explanation
mechanism which can inform the user about the reasoning and decision processes and
the use of facilities provided within Axiom to investigate attributes which affect such
a decision.

The proposed, and implemented, solution is described and evaluated, both in its ability
to tackle the wide range of numerical problems and in the interface that it provides
to numerical software. I will also discuss how it can be used in the construction of
composite algorithms (those using both numerical and symbolic processes) and the
further work currently being undertaken.

12.1 The Problem and its Background

The difficulty of using numerical methods is illustrated by the number of books and
programs dedicated, in full or in part, to making the subject easier. However they
cannot give advice on whether this or that routine or method can solve a given problem

90

and, since, in some problem domains, there are often a number of routines which might
possibly be addressed to a particular problem, some of which might work, others may
be inefficient and yet others may fail, this choice is important. Most of these books
and programs do not even give advice on how to attem pt to find out!

Admittedly, libraries might only provide a single routine for each problem type, but
this is by no means always the case. In particular, in the areas of numerical integration,
solution of initial value problems of ordinary differential equations and optimization,
there are a number of routines for which the user is expected to select the routine most
appropriate. This process may be fairly straightforward, but require extensive analysis
skills, or it may be subtle, requiring a considerable understanding of both the problem
and the possible numerical methods. Whatever problem the user is confronted with,
the use of numerical library routines need programming ability — often in Fortran.

The growth in the use and capabilities of computer programs, and Computer Algebra
Systems in particular, have shown that users wish to have a significantly easier and
more friendly interface to computation in general. However, the power and reliability
of numerical routines and numerical libraries should not be jettisoned just because of
the difficulties inherent in the use of such programs.

W hat is required is a simpler and more intelligent interface — one that can decide,
given any problem (within some domain), what are the attributes tha t affect the choice
of routine and thus make a decision as to a likely contender for its solution before
implementing such a routine or method. Most attem pts to consider this problem in
the past have been either incomplete or limited in scope, relying mainly on decision
trees and the user’s own knowledge of possibly complicated mathematical concepts.

Given tha t the particular implementation is to utilise the links newly available for
the CAS Axiom to call NAG Numerical Library routines (specifically those provided
within the Foundation Library, an important subset of the main Fortran Library), the
interface should retain the feel of Axiom whilst still providing the large amount of
output information normal for library routines which can thus be used and inspected
at will. It would also need to act as a ‘black box’, as required, and be capable of making
any analysis of the input data, make an appropriate choice of routine, make the call to
that routine automatically and, before output of the result, satisfy itself that the result
obtained is sufficient to the users requirements (assuming that a result is possible or
makes sense), both in type and accuracy.

91

12.2 The Solution

There are a number of different requirements in a solution corresponding to the de
mands of the user and the individual problem domains. To provide an automatic
analysis of the problem, a number of computational agents have been created, varying
in size and complexity from a few lines of code, as in the agent for the range of integra
tion, to the agent for stiffness of a set of ODEs which is far more extensive. These can
themselves use a range of techniques to provide answers to each question. They may
be deterministic or may use ‘rule of thum b’ or even probabilistic components as well
as composite algorithms (those which include both symbolic and numerical processes).

For example, the continuity of an elementary function is not always determinable. The
computational agent thus is required to use a range of techniques which will attem pt to
provide a list of ‘possible’ problem points (at least those which Fortran programs would
consider difficult). It can use look-up tables, inverse functions as well as numerical
methods such as Sturm sequences to identify as many problem points as possible.

A further example is the computational agent used to investigate the stiffness of a
set of ordinary differential equations. This also uses a variety of techniques including
evaluating the Jacobian symbolically and, if necessary, numerically using NAG Library
routines.

The expert system, which uses these computational agents, was created using the
object-oriented programming language supplied with Axiom. Using object-oriented
techniques, the knowledge base was built as a number of Method Domains, each of
which contained sufficient knowledge to identify how suitable it is to solve the current
problem and how to implement that method. They also provide some information for
the explanation process.

W ithin the process to assess the ability of each method to be addressed to a given prob
lem, it uses a number of techniques from measure theory. In particular, an extension
of Dempster-Shafer theory to include limited recursivity, which allows for a problem
to be divided into sections and separate techniques to be applied to each part, and
Lucks/Gladwell measure functions were employed. This could provide a fuller analysis
where conflicting information is supplied by the computational agents.

Further Domains controlled the knowledge of the range of techniques and default values
as well as stored knowledge to be used within the system and within the explanation
mechanism.

92

All these constituent parts are brought together in a single unit which uses a graphical
interface using web-based technology. This allows users unfamiliar with programming
techniques to employ the power and reliability of numerical methods without the fuss
of either writing Fortran programs or of the necessity of analysing each problem to
identify the best choice of method.

12.3 Evaluation

The system has undergone considerable testing and evaluation. The test results are
described in Appendix B.3. For each chapter, a number of examples were used and
note was taken of details such as the name of the chosen routine given certain param
eters. This was then compared with published recommendations [Enright et a l, 1975;
Hull et al., 1972]. Where appropriate, the times taken for the computation using the
recommended method were compared to other methods.

For the integration chapter, the tests did not cover all combinations of all routines, but
concentrated on the ability of the expert system to correctly identify certain character
istics of the integrand and range and so make a good general choice of routine. Tests
also covered the ability to use fall-back strategies.

The tests for the chapter on Ordinary Differential Equations used mainly published
examples from [NAG, 1996; Enright et al., 1975; Hull et al., 1972] since these were
readily available and comprehensive. Of the non-stiff problems, ANNA correctly chose
only non-stiff methods and the chosen particular routines were in line with the recom
mendations in [Hull et al., 1972].

The stiff problems from [Enright et a l, 1975] were tackled, in general, quite well. For
those cases where the stiffness could be considered mild or very mild, a non-stiff method
was preferred. This was confirmed by considering the timings using the specific methods
directly instead of using ANNA. In most cases, by increasing the sensitivity of ANNA to
stiffness, the system could be forced into choosing a stiff routine. Conversely, increasing
the required accuracy (or increasing the sensitivity to accuracy or complexity) had the
opposite effect.

In one case, the stiffness detection algorithm failed to notice that the problem exhibited
increasing stiffness over the range of integration and thus chose a non-stiff routine
where, if the range of integration was large, a stiff solver would be better. There was
one other case where ANNA correctly identified that a system was very stiff, but still,

93

erroneously, chose a non-stiff routine. Further work would be needed to understand
the cause of this failure. All tests based on examples provided by [NAG, 1996] were
correctly analysed.

The optimization chapter was tested mainly by using examples in [NAG, 1996]. This
again concentrated on the correct identification of characteristics of the input problem
i.e. the type of objective function and constraints (linear, quadratic etc.) as well as
continuity.

In general, the number of input parameters to ANNA is significantly less than that
required for the direct use of specific routines, since it includes the ability to calculate
many of the required extra parameters. As a consequence, since the input parser
of Axiom spends considerable time identifying and categorising input data1, whereby
the calculation of these parameters can be very efficient, ANNA can be shown to be
more efficient than using the link to the individual NAG routines directly. This is
particularly apparent when one considers, say, the routine E04UCF which requires 43
parameters whereas to call the same routine using ANNA requires only 6.

12.4 Summary and Further Work

• I have created an expert system using the Axiom Symbolic Algebra System which
can, reliably and automatically, decide which numerical routine is best or could
be best for a given integration, ODE or optimization problem.

Whilst this has been attempted before (usually only for a single problem do
main) , previous implementations have either required user input to answer possi
bly complex mathematical questions or they are severely restricted in their scope
or reliability.

Furthermore, I have shown that such an expert system can be created using
Axiom’s own object-oriented programming language. This expert system contains
all the required components of an identifiable discrete knowledge base, inference
mechanism and explanation process (p. 33) as well as fulfilling the [Newell &
Simon, 1972] requirements of an Information Processing System.

• I have integrated this with the link to library routines which therefore autom ati
cally perform the required calculation.

1 Axiom, being object-oriented with the inherent strong typing, requires that any input data be
analysed by the parser and allocated a type. This can be a fairly expensive process. The calculation
of these parameters by A NN A is quicker since the types are defined by the program.

94

Again, previous systems have (except for IREN A/ARC) only partially imple
mented this section either by automatically writing the Fortran code for later
implementation or simply directed the user to the particular routine.

• I have provided a user interface to the expert system which is both easy to use
and is consistent with the standard Axiom user interface and syntax.

Systems in use by other Computer Algebra packages e.g. Maple, provide a very
basic interface to numerical methods without providing the expert system.

• I have shown how measure theory can be used to provide a sound theoretical basis
for decision making where multiple strategies and conflicting evidence is present.

This has required an extension to Dempster-Shafer theory to cover limited recur-
sivity together with Lucks/Gladwell measure functions.

• I have shown how composite techniques i.e. techniques using both numerical and
symbolic parts, are used within the system and can be used interactively to in
crease the applicability of both computer algebra systems and numerical libraries

It is apparent tha t ANNA makes data input for numerical routines much easier. How
ever, it does not tackle the problem of putting the numerical output in an easier to
understand form. It would therefore be useful to create routines which could easily
display the numerical results graphically. For example, the intermediate results of an
ODE calculation could be plotted, together with some interpolation on these results if
necessary, which would give further insight to the problem in hand.

Further work could also include the use of ANNA, and numerical routines in general,
as part of algorithms containing both numerical and symbolic processes. This leads
to a much greater use of the technological capabilities and a number of interesting
possibilities, particularly in the field of ordinary and partial differential equation solvers.
These now algorithms could then be incorporated within ANNA and used within further
research.

Given the possibility of links to other libraries or additions to the NAG Foundation
Library, further routines and methods could also be added into ANNA. This would only
entail providing an Axiom Method Domain for that routine and updating the database
of methods, plus, maybe, any computational agents to provide the analysis necessary
to distinguish between the possible strategies.

95

R eferences

B a c k u s , J. 1981. The History of Fortran I, II, and III. In: [Wexelblat, 1981].

B i r k h o f f , G ., Sz R o t a , G-C. 1978. Ordinary Differential Equations. 3rd edn. New
York: John Wiley Sz Sons.

B o is v e r t , R. F. 1989. The Guide to Available Mathematical Software Advisory
System. Mathematics and Computers in Simulation, 453-463. Also published in
[Houstis et al., 1990, 167-178].

B o o c h , G. 1994. Object-Oriented Analysis and Design with Applications. 2nd edn.
Redwood City, California: Benjamin/Cummings.

B r o u g h a n , K . A., K e a d y , G., R o b b , T . , R ic h a r d s o n , M . G., Sz D e w a r , M . C .

1991. Some symbolic computing links to the NAG numeric library. SIG SAM
Bulletin, 25(July 1991), 28-37.

B r o w n s t o n , L., F a r r e l l , R., K a n t , E., Sz M a r t in , N. 1985. Programming Expert
Systems in OPS5: An Introduction to Rule-Based Programming. Reading, MA:
Addison-Wesley.

B u c h a n e n , B. G ., Sz S h o r t l if f e , E. H. (eds). 1984. Rule-Based Expert Systems:
The M YC IN Experiments of the Stanford Heuristic Programming Project. Read
ing, Mass.: Addison Wesley.

B u c h b e r g e r , B ., C o l l i n s , G. E., Sz L o o s , R. w i t h A l b r e c h t , R. (eds). 1983.

Computer Algebra: Symbolic and Algebraic Computation. Wien: Springer-Verlag.

C a r d e l l i , L., Sz W e g n e r , P. 1985. On understanding Types, Data Abstraction and
Polymorphism. Computing Surveys, 17(4).

C a r h a r t , R. E. 1979. CONGEN: An Expert System Aiding the Structural Chemist.
In: [Michie, 1979].

96

C h e n e y , W ., Sz K in c a id , D. 1985. Numerical Mathematics and Computing. 2nd edn.
London: Chapman Sz Hall.

C o l l in s , G. E., Sz L o o s , R. 1983. Real Zeros of Polynomials. In: [Buchberger et al,
1983].

C o n t e , S . D., Sz DE B o o r , C . 1980. Elementary Numerical Analysis: An Algorithmic
Approach. New York: McGraw-Hill.

D a h l , O -J., D ij k s t r a , E. W ., Sz H o a r e , C. A. W . 1972. Structured Programming.
London: Academic Press.

D a v e n p o r t , J. H. 1981. On the Integration of Algebraic Functions. Lecture Notes in
Computer Science, vol. 102. Berlin: Springer-Verlag.

D a v e n p o r t , J . H. 1982. On the Parallel Risch Algorithm (I). Pages 1^4.-157 of:
EUROCAM ’82. Lecture Notes in Computer Science, vol. 144. Marseilles: Springer
Verlag, Berlin.

D a v e n p o r t , J . H., S i r e t , Y., Sz T o u r n ie r , E. 1988. Computer Algebra: Systems
and Algorithms for Algebraic Computation. London: Academic Press.

D a v e n p o r t , J. H., D e w a r , M. C., Sz R ic h a r d s o n , M. G. 1991. Symbolic and Nu
meric Computation: The IRENA Project. Pages 1-18 of: Workshop on Symbolic
and Numeric Computation.

D a v is , R., Sz L e n a t , D. B. 1982. Knowledge-Based Systems in Artificial Intelligence.
New York: McGraw-Hill.

D e k k e r , K ., Sz V e r w e r , J. D. 1984. Stability of Runge-Kutte Methods for S tiff
Nonlinear Differential Equations. Amsterdam: North Holland.

D e k k e r , T. J. 1980. Design of Languages for Numerical Algorithms. In: [Hennell Sz
Delves, 1980].

D e w a r , M . C . 1991. Interfacing Algebraic and Numeric Computation. P h .D . thesis,

U niversity o f B ath .

D e w a r , M. C. 1992. Using Computer Algebra to Select Numerical Algorithms. Pages
1-8 of: W a n g , P.S. (ed), ISSAC 1992. Berkeley, Calif.: ACM, New York.

D u C r o z , J . J . 1982. Programming Languages for Numerical Subroutine Libraries.
In: [Reid, 1982].

97

D u p e e , B. J . 1996. Measuring the Likely Effectiveness of Strategies. In: C a l m e t ,

J. C a m p b e l l , J .A ., Sz P f a l z g r a f , J. (eds), AISMC-3: Artificial Intelligence
for Symbolic and Mathematical Computation. Lecture Notes in Computer Science,
vol. 1138. Steyr, Austria: Springer Verlag, Berlin.

D u p e e , B. J ., Sz D a v e n p o r t , J. H. 1995. Using Computer Algebra to Choose and
Apply Numerical Routines. A X IS , 2(3), 31-41.

D u p e e , B. J ., Sz D a v e n p o r t , J. H. 1996. An Intelligent Interface to Numerical
Routines. Pages 252-262 of: C a l m e t , J ., Sz L i m o n g e l l i , J . (eds), D ISCO ’96:
Design and Implementation of Symbolic Computation Systems. Lecture Notes in
Computer Science, vol. 1128. Karlsruhe: Springer Verlag, Berlin.

E n r i g h t , W . H., H u ll , T . E., S z L i n d b e r g , B. 1975. Comparing Numerical Meth
ods for Stiff Systems of O.D.E.’s. B IT , 15, 10-48.

F o r d , B., H a g u e , S. J ., Sz ILES, R. M. J. 1989. Numerical Knowledge-Based
Systems. Mathematics and Computers in Simulation, 395-400. Also published in
[Houstis et al., 1990, 281-286].

F r o s t , R. A. 1986. Introduction to Knowledge Base Systems. London: Collins.

G a f f n e y , P. W ., W o o t e n , J . W ., K e s s e l , K. A., Sz M c K in n e y , W . R. 1983.
NITPACK: An Interactive Tree Package. ACM Transactions on Mathematical
Software, 9(4), 395-417.

G e a r , C. W . 1971. Numerical Initial-Value Problems in Ordinary Differential Equa
tions. Englewood Cliffs, NJ: Prentice-Hall.

G e d d e s , K. O ., C z a p o r , S. R ., Sz L a b a h n , G. 1992. Algorithms for Computer
Algebra. Boston, Mass.: Kluwer Academic Publishers.

G l a d w e l l , I., Sz L u c k s , M. 1992. An Interactive Session with a Knowledge Based
System for Mathematical Software Selection. In: [Houstis Sz Rice, 1992].

G o r d o n , J ., Sz S h o r t l i f f e , E. H. 1983. The Dempster-Shafer Theory of Evidence
and its Relevance to Expert Systems. In: [Buchanen Sz Shortliffe, 1984].

G o r d o n , J ., Sz S h o r t l i f f e , E. H. 1985. A Method of Managing Evidential Reason
ing in a Hierarchical Hypothesis Space. Artificial Intelligence, 26(3), 323-357.

H a l l , G ., S z W a t t , J. M . (eds). 1976. Modern Methods for Ordinary Differential
Equations. Oxford: Clarendon Press.

98

H a w k e s , E., S z K e a d y , G. 1995. Two more links to NAG numerics involving CA
systems. In: IM ACS Conference on Applications of Computer Algebra, May 16-19,
1995.

H a z e l , P ., Sz O ’D o n o h o e , M. R. 1980. HELP Numerical: The Cambridge Inter
active Documentation System for Numerical Methods. In: [Hennell Sz Delves,
1980].

H e c k , A. 1996. Introduction to Maple. 2nd edn. New York: Springer Verlag.

H e n n e l l , M. A., Sz D e l v e s , L. M. (eds). 1980. Production and Assessment of
Numerical Software. London: Academic Press. Based on the Proceedings of the
Conference on the Production and Assessment of Numerical Software (NS79), Liv
erpool, April 1979.

H in d m a r s h , A. C. 1983. ODEPACK: A Systemized Collection of ODE Solvers. In:
[Stepleman, 1983].

H o p k in s , T ., S z P h i l l i p s , C. 1988. Numerical Methods in Practice: Using the NAG
Library. Wokingham, England: Addison-Wesley.

H o u n h a m , I. 1996. Calling NAG Fortran Library Routines from C Language Programs
Using the NAG C Header Files. Tech. rept. NAG Ltd, Oxford. NAG Publication
Code NP2007.

H o u s t i s , E. N., S z R i c e , J. R. (eds). 1992. Artificial Intelligence, Expert Systems
and Symbolic Computing. Amsterdam: North-Holland. Based on the Proceedings
of the 13th World Congress on Computation and Applied Mathematics, Dublin,
July 1991.

H o u s t i s , E. N., R i c e , J . R ., Sz V i c h n e v e t s k y , R. (eds). 1990. Intelligent Mathe
matical Software Systems. Amsterdam: North-Holland. Proceedings of the First
IMACS International Conference on Expert Systems for Numerical Computing,
Purdue University, April 1988.

H o u s t i s , E. N., R i c e , J. R ., Sz V i c h n e v e t s k y , R. (eds). 1992. Expert Systems
for Scientific Computing. Amsterdam: North-Holland. Proceedings of the Second
IMACS International Conference on Expert Systems for Numerical Computing,
Purdue University, April 1992.

H u l l , T. E., E n r i g h t , W. H., F e l l e n , B. M., S z S e d g w i c k , A. E. 1972. Com
paring Numerical Methods for Ordinary Differential Equations. SIAM J. Numer.
Anal., 9(4), 603-637.

99

J a c k s o n , P. 1992. Introduction to Expert Systems. 2nd edn. Reading, MA: Addison-
Wesley.

J a c o b s , D. A. H. (ed). 1978. Numerical Software — Needs and Availability. London:
Academic Press. Proceedings of the Conference on Applications of Numerical
Software — Needs and Availability, University of Sussex, Sept 1977.

JENKS, R. D., Sz SUTOR, R. S. 1992. AXIOM: The Scientific Computation System.
New York: Springer-Verlag.

K a m e l , M . S., M a , K . S., Sz E n r ig h t , W . H. 1993. ODEXPERT: An Expert
System to Select Numerical Solvers for Initial Value ODE Systems. ACM Trans
actions on Mathematical Software, 19(1), 44-62. Also published in [Houstis et al.,
1992, 33-54].

K e m p , P. 1978. Libraries: The User Interface. In: [Jacobs, 1978].

K n u t h , D. E. 1981. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. 2nd edn. Reading, MA: Addison Wesley.

L a m b e r t , J. D. 1973. Computational Methods in Ordinary Differential Equations.
London: Wiley.

L u c k s , M., Sz G l a d w e l l , I. 1992. Automated Selection of Mathematical Software.
ACM Transactions on Mathematical Software, 18(1), 11-34. Also published in
[Houstis et a l, 1992, 421-459] as ‘A Functional Representation for Software Selec
tion Expertise’.

MlCHlE, D. (ed). 1979. Expert Systems in the Micro-Electronic Age. Edinburgh: Edin
burgh University Press. Based on the proceedings of the 1979 Artificial Intelligence
and Simulation of Behaviour Summer School on Expert Systems.

NAG. 1989. The K A STLE System. Tech. rept. The FOCUS Consortium, NAG Ltd,
Oxford. NAG Publication Code NP2022.

NAG. 1996. Fortran Library Manual - Mark 17. NAG Ltd, Oxford, UK. NAG
Publication Code NP2834.

N e w e l l , A., Sz S im o n , H. A. 1972. Human Problem Solving. Eaglewood Cliffs, N.J.:
Prentice-Hall.

P a r is , J. B. 1994. The Uncertain Reasoner’s Companion: A Mathematical Perspective.
Cambridge, UK: CUP.

100

P e a r l , J. 1986. On Evidential Reasoning in a Hierarchy of Hypotheses. Artificial
Intelligence, 28(1), 9-15.

P o s t e l , F ., &; Z im m e r m a n , P. 1996. A Review of the ODE Solvers of AXIOM,
Derive, Macsyma, Maple, Mathematica, MuPAD and Reduce. In: 5th Rhine
Workshop on Computer Algebra, April 1-3, 1996.

P r in g l e -P a t t is o n , A. S. (ed). 1969. John Locke: An Essay Concerning Human
Understanding. Oxford, England: OUP.

P r o t h e r o , A. 1976. Introduction to Stiff Problems. In: [Hall Sz W att, 1976].

R e id , J. K. (ed). 1982. The Relationship Between Numerical Computation and Pro
gramming Languages. Amsterdam: North Holland. Proceedings of the IFIP TC2
Workshop, Boulder, Colorado, Aug 1981.

R ic h a r d s o n , D. 1968. Some Undecidable Problems Involving Elementary Functions
of a Real Variable. J. Symbolic Logic, 33(4), 514-520.

RlSCH, R . H. 1969. The Problem of Integration in Finite Terms. Trans. ACM, 1 3 9 ,

167-189.

S c h u l z e , K ., Sz C r y e r , C. W. 1983. NAXPERT: A Prototype Expert System for
Numerical Software. SIAM Journal of Scientific and Statistical Computing, 9(3),
503-515.

SH A FER , G. 1976. A Mathematical Theory of Evidence. Princeton, NJ: Princeton
University Press.

S h a f e r , G., Sz L o g a n , R. 1987. Implementing Dempster’s Rule for Hierarchical
Evidence. Artificial Intelligence, 3 3 , 271-298.

S h a m p in e , L. F ., Sz G o r d o n , M. K. 1975. Computer Solution of Ordinary Differ
ential Equations. San Francisco, CA: Freeman.

S ib r e e , J. (ed). 1894. G. W. F. Hegel: The Philosophy of History. London: Bell.

S t e p l e m a n , R. [e t a l .] (ed). 1983. Scientific Computing. IMACS transactions on sci
entific computation. Amsterdam: North-Holland. Proceedings of the 10th IMACS
World Congress on Systems Simulation and Scientific Computation, Montreal,
Canada, 8-13 August 1982.

S u n S o f t . 1995. Fortran 77 4-0 User’s Guide. Sun Misrosystems Inc., Mountain View,
Calif. Part Number 802-2997-10.

101

T r u s t e d , J . 1981. An Introduction to the Philosophy of Knowledge. London: Macmil
lan.

W e in e r , J. L. 1979. The Structure of Natural Explanations: theory and application.
Tech. rept. SP - 4025. System Development Corporation.

W E X E L BL A T, R. L. (ed). 1981. History of Programming Languages. New York: Aca
demic Press. From the ACM SIGPLAN History of Programming Languages Con
ference, Los Angeles, Calif., June 1-3, 1978.

102

A p p en d ix A

W orked E xam ples using A N N A

A .l Computational Agents

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"

T h is m e ssa g e sh o w s th a t A x io m h a s fo u n d a n d lo a d e d th e A N N A C a te g o r ie s
a n d D o m a in s .

(1) ->
(1) -> s := singular it iesOf (l/(x*cos(x)) , [x] ,-'/,pi. .'/,pi)$ESC0NT

(1) [1.5707963267948966,- 1.5707963267948966,0.0]
Type: Stream DoubleFloat

B e c a u s e so m e o f th e s e r o u tin e s a re n o t a u to m a tic a lly a v a ila b le o u ts id e th e
e x p e r t s y s te m , w e n e e d to id e n t ify th e A x io m P a ck a g e to w h ic h th e y b e lo n g .
In th is ca se ESCONT is sh o r th a n d for E xp ertS ystem C on tinu ityP ackage.

(2) -> a :Record(var:Symbol, fn:Expression DoubleFloat, range:Segment
OrderedCompletion DoubleFloat, abserr:DoubleFloat, relerr:DoubleFloat);

Type: Void
(3) -> a := [x,cos(20*x)*exp(x)/((x-’/,pi)*x) ,0. .’/,pi,0.0,0.0]

103

(3)
x

cos(20.0x)'/,e
[var= x, f n = -------------------------- , range= 0.0..3.1415926535897931,

2
x - 3.1415926535897931x

abserr= 0.0, relerr= 0.0]

Type: Record(var: Symbol,fn: Expression DoubleFloat,range: Segment
OrderedCompletion DoubleFloat,abserr: DoubleFloat,relerr: DoubleFloat)

(4) -> exprHasAlgebraicWeight(a)$D01WGTS

(4) [- 1.0,- 1.0]
Type: Union(List DoubleFloat,...)

(5) -> exprHasWeightCosWXorSinWX(a)$D01WGTS

(5) [op= cos,w= 20.0]
Type: Union(Record(op: BasicOperator,w: DoubleFloat),...)

104

A . 2 In tegration
ro o - x 3 I p - 3 x 2

Problem : / dx
Jo V x

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> integrate((exp(-x~3) +exp(-3*x~2))/sqrt(x) , 0.0. .'/.pluslnfinity, 1.0e-6)
nagman:acknowledging request for dOlapf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

nagman:acknowledging request for dOlajf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

T he N aglink m anager (nagm an) displays m essages showing th e routine used
and th e connection to th e N A G D aem on (nagd). In th is case, tw o routines
have been used and their results com bined.

(2)
[
abserr: 2.69960156338737e-08, result: 3.23287256251958,

attributes: List(Any),

method:
[nameOfRoutine: "dOlTransformFunctionType",

other:
[
dO1transformextra:

List
Record

:(str.String)

105

:(fn,Expression(DoubleFloat))
)

:(range,Segment(OrderedCompletion(DoubleFloat)))
>

:(ext.Result)
]

>
allMeasures: List(String), bestMeasure: 0.6086956521 7391304348]

dOlapfAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 7.38412656787854e-14,
w: Matrix(DoubleFloat), ifail: 0, result: 3.147059114838,

method:
[nameOfRoutine: "dOlapfAnnaType",
other: [dOlapfextra: List(DoubleFloat)],
allMeasures: List(String),
bestMeasure: 0.7]

9

attributes: List(Any)]

dOlaj fAnnaTypeAnswer:
[iw: Matrix(Integer), abserr: 2.6995941792608e-08,
w: Matrix(DoubleFloat), ifail: 0, result: 0.085813447681579,

method:
[nameOfRoutine: "dOlajfAnnaType", other: [],
allMeasures: List(String), bestMeasure: 0.4]

»
attributes: List(Any)]

]
Type: Result

(3) -> qelt('/,.method,allMeasures)

T h e co m m a n d , q e l t (a , b) , is u sed (d u e to a b u g in th e cu rr en t v e r s io n o f
A x io m) to id e n t ify th e fie ld b in th e c o m p o s ite o b je c t a. T h e id e n tif ie r */. is
u se d to s ig n ify th e p rev io u s o u tp u t o b je c t .

(3)
["Trying One-dimensional infinite integration routines",

"dOlamfmeasure: 0.5 - dOlamf is a reasonable choice if the integral

106

is infinite or semi-infinite and dOltransform cannot do better them
using general routines"

9

"dOlasfmeasure: 0.0 - dOlasf: A suitable weight has not been found",

"dOltransformmeasure: 0.609 - The recommendation is to transform the
function and use dOlapfAnnaType and dOlajfAnnaType"
]

Type: List String
(4) ->

107

Probl em : f if f l 2 ^ dx
J o (2 - 1)2/3 y / i

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> integrate((log(2-x)*log(x))/((2-x)~(2/3)*sqrt(x)), 0.0..2.0, 1.0e-6)
nagman:acknowledging request for dOlapf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

(2)
[iw: Matrix(Integer), abserr: 2.47574139246241e-ll, w: Matrix(DoubleFloat),
ifail: 0, result: - 5.89188342020428,

method:
[nameOfRoutine: "dOlapfAnnaType",
other: [dOlapfextra: List(DoubleFloat)], allMeasures: List(String),
bestMeasure: 0.7]

9

attributes: List(Any)]
Type: Result

(3) -> qelt('/,.method,allMeasures)

(3)
["Trying One-dimensional finite integration routines",
"dOlaqfmeasure: 0.0*- dOlaqf: A suitable weight function has not been
found",
"dOlanfmeasure: 0.0 - dOlanf: A suitable weight has not been found",
"dOlajfmeasure: 0.4 - The general routine dOlajf is our default",
"dOlakfmeasure: 0.0 - dOlakf: The expression shows little or no
oscillation",

108

"dOlapfmeasure: 0.7 - Recommended is dOlapf with c = -0.5,
d = -0.6666666666 6666662966 and 1 = 4",
"dOlalf is no better than other routines"]

Type: List String
(4) -> (2) .attributes

(4) [There are singularities at both end points,The range is finite,[]]
Type: List Any

109

A .3 Ordinary Differential Equations

y[= tan 7/3

Problem : y> = _ 0.0 3 2 ^ -^ - 0 . 0 2 - ^ -
7/2 cos 7/3

2/3

w ith in itia l conditions:

0.032

vl

J/i (0) = 0.5

y2(o) = 0.5

3/3(0) = 0.27T

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> solve([tan(Y[3]) , -0.032*tan(Y[3])/Y[2]-0.02*Y[2]/cos(Y[3]) ,
-0.032/(Y[2]**2)], 0.0, 10.0, [0.5, 0.5, */,pi*0.2], 1.0e-4)
nagman:acknowledging request for f02aff
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

T he above nagm an call relates to the eigenvalue code used in th e com pu
tation al agent w hich m easures th e stiffness and stab ility o f th e system of
ODEs.

nagman:acknowledging request for d02bbf
nagman:connection successful to dictiim.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

(2)
[ifail: 0, intensityFunctions: List(String), tol: 0.0002,

110

result: Matrix(DoubleFloat), y: Matrix(DoubleFloat),

method:
[nameOfRoutine: "d02bbfAnnaType", allMeasures: List(String),
bestMeasure: 0.7077983781 2664880201]

x: 10.0]
Type: Result

(3) -> qelt('/,.method,allMeasures)

(3)
["d02ejfmeasure: 0.282 - BDF method for Stiff Systems",
"d02bbfmeasure: 0.708 - Runge-Kutta Merson method",
"d02bhf is no better than other routines",
"d02cjf is no better them other routines"]

Type: List String
(4) -> (2) . intensityFunctions

T he identifier "/,'/,(2) refers to th e second output in th e A xiom buffer.

(4)
["stiffness: 0.0", "stability: 0.695", "expense: 0.114", "accuracy: 0.234",
"intermediateResults: 0.0"]

Type: List String

(5) -> •/.*/. (2). y

(5) [- 3.62767857069111 0.633235902637208 - 1.05149500854554]
Type: Matrix DoubleFloat

111

P r o b le m : Solve

w ith in itial conditions:

y '\ = + 1q42/22/3

y ,2 = ^ y i - 104?/22/3 - 3 x 107yl

2/3 = 3 x 1072/ |

2/1(0) = i

2/2 (0) = o

2/3(0) = 0

and stopping when: y\ = 0.9

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> solve([-0.04*Y[1] +1.0e4*Y[2]*Y[3] , 0.04*Y[l]-1.0e4*Y[2]*Y[3]
-3.0e7*Y[2]*Y[2] , 3.0e7*Y[2]*Y[2]] , 0.0, 10.0, [1.0, 0.0, 0.0], Y[l]-0.9,
[2,4,6,8], 1.0e-4)
nagman:acknowledging request for d02ejf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

(2)
[ifail: 0, intensityFunctions: List(String), tol: 0.0001,
result: Matrix(DoubleFloat), y: Matrix(DoubleFloat),

method:
[nameOfRoutine: "d02ejfAnnaType", allMeasures: List(String),
bestMeasure: 0.4466108327 646621749]

)

x: 4.37671333535702]
Type: Result

112

(3) -> qelt(V..method,allMeasures)

(3)
["d02ejfmeasure: 0.447 - BDF method for Stiff Systems",
"d02bbfmeasure: 0.009 - Runge-Kutta Merson method",
"d02bhfmeasure: 0.008 - Runge-Kutta Merson method",
"d02cjfmeasure: 0.168 - Adams method"]

(4) -> (2) . intensityFunctions

(4)
["stiffness: 1.0", "stability: 1.0", "expense: 0.127",
"intermediateResults: 0.077"]

(5) -> */.7.(2). y

(5) [0.9 2.17778054421343e-05 0.0999782221945582]
Type:

Type: List String

"accuracy: 0.234",

Type: List String

Matrix DoubleFloat

113

A .4 Partial Differential Equations
Problem : Solve

d2U d2U dU dU
T r r + -7—5- + 50—— h 50—— = -2 s in a ;s in y + 50cosa;sin?/ + 50sina;cos?/
o xz oyz ox oy

w ith boundary conditions

x := 0
dU
dn

= — sin x

x := 1 U = sin x sin y

y:= 0
dU
dn

= — sin y

y:= 1 U = sin x sin y

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> solve(0.0, 1.0, 0.0, 1.0, 9, 9, [1, 0, 1, 50, 50, 0, -2*sin(X)*sin(Y) +
50*cos(X)*sin(Y) + 50*sin(X)*cos(Y)], [[0, 1, -sin(X)],[1, 0, sin(X)*sin(Y)]
,[1, 0, sin(X)*sin(Y)], [0, 1, -sin(Y)]], "elliptic", 1.0e-4)
nagman:acknowledging request for d03eef
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

nagman:acknowledging request for d03edf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

T he m ethod first discretizes the P D E using the routine d03eef w hich creates
th e seven-diagonal system of finite difference equations. T hese are then
passed onto the routine d03edf for solution by a m ultigrid technique.

114

(2)
[ifail: 0, us: Matrix(DoubleFloat), rhs: Matrix(DoubleFloat),
u: Matrix(DoubleFloat), numit: 3,

method:
[nameOfRoutine: "d03eefAnnaType", allMeasures: List(String),
bestMeasure: 0.5]

9

ub: Matrix(DoubleFloat), a: Matrix(DoubleFloat)]
Type: Result

115

A . 5 O p tim ization

Problem : M inim ize x\x^{x\ + X2 + £ 3) + £ 3

1 < xi < 5
1 < X2 < 5
1 < £ 3 < 5

w ith constraints: 1 < X4 < 5

— 0 0 < x \ + X2 + X3 4- X4 < 20
— 0 0 < x \ + x \ + x \ + x \ < 40

—25 < 3:1 0:2 2:3 X4 < 0 0

and in itia l guess: [1 .0 ,5 .0 ,5 .0 ,1 .0]

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> optimize(X[l]*X[4] *(X[1]+X[2]+X[3])+X[3] , [1.0, 5.0, 5.0, 1.0],
[1.0, 1.0, 1.0, 1.0, -1.E25, -1.E25, 25.0], [X[l]+X[2]+X[3]+X[4] ,
X[l]**2+X[2]**2+X[3]**2+X[4]**2 , X[l]*X[2]*X[3]*X[4]], [5.0, 5.0, 5.0,
5.0, 20.0, 40.0, 1.E25])
nagman:acknowledging request for e04ucf
nagman:connection successful to dictum.maths.bath.ac.uk
nagman:receiving results from dictum.maths.bath.ac.uk

(2)
[ifail: 0, c: Matrix(DoubleFloat), objf: 17.0140172891347,
objgrd: Matrix(DoubleFloat), attributes: List(String), iter: 5,
clamda: Matrix(DoubleFloat), x: Matrix(DoubleFloat),
istate: Matrix(Integer), r: Matrix(DoubleFloat),
cjac: Matrix(DoubleFloat),

method:
[nameOfRoutine: "e04ucfAnnaType", allMeasures: List(String),

116

bestMeasure: 0.6]
]

Type: Result
(3) -> qelt(*/,.method,allMeasures)

(3)
[
"e04mbfmeasure: 0.0 - e04mbf is for a linear objective function and
constraints only.",
11 e04nafmeasure: 0.0 - e04naf is for a quadratic function with linear
constraints only.",
"e04ucfmeasure: 0.6 - e04ucf is recommended",
"e04dgf is no better than other routines",
"e04gcfmeasure: 0.0 - e04gcf is unsuitable for constrained problems. ",
"e04jaf is no better than other routines",
"e04fdfmeasure: 0.0 - e04fdf is unsuitable for constrained problems. "]

Type: List String
(4) -> '/.y,(2) .attributes

(4)
["The object function is non-linear",
"There are simple bounds on the variables",
"There are 1 linear and 2 non-linear constraints"]

Type: List String

T he count o f linear and non-linear constraints excludes th e sim ple bounds
on th e variables.

(5) -> */.•/.(2).x

(5) [1.0 4.7429996428483 3.82114997689538 1.37940829417858]
Type: Matrix DoubleFloat

(6) -> •/.*/. (2). objf

(6) 17.0140172891347
Type: DoubleFloat

117

Problem : C alculate a least-squares m inim um of:

(x3 - 15x2)-1 + x \ — 0.14

2(2x3 - 14x2)-1 + ®i - 0 .1 8
3(3x3 — 13x2)_1 + x \ — 0.22
4(4x3 - 12X2) " 1 + x i - 0 .2 5
5(5x3 — l l x 2)—1 + x i — 0.29
6 (6x 3 — 10x2)-1 + x i — 0.32

7(7x3 — 9x2)-1 + x i — 0.35
8 (8x 3 — 8x 2)_1 + x i — 0.39
9(9x3 - 7 x 2)~ 1 + x i - 0.37

10(10x 3 - 6x 2)—1 + x i - 0.58
l l (l l x 3 — 5x2)—1 + X\ — 0.73
12(12x 3 — 4x2)-1 + x i — 0.96
13(13x3 — 3x2)_1 + x i — 1.34
14(15x3 — 2x2)-1 + x i — 2.1
15(15x3 — Z2)-1 + x i — 4.39

Axiom Computer Algebra System (Release 2.1)
Solaris 2.5 for Sun SPARC [SunPro cc]

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Value = "ANNA loaded successfully"
(1) ->
(1) -> showScalarValues true;

Type: Boolean
(2) -> optimize([(X[3]+15*X[2])**(-1)+X[1]-0.14 , 2*(2*X[3]+14*X[2])**(-1)
+X[1]-0.18 , 3*(3*X[3]+13*X[2])**(-l)+X[l]-0.22 , 4*(4*X[3]+12*X[2])**(-l)
+X[1]-0.25 , 5*(5*X[3] +11*X[2])**(-1) +X[1]-0.29 , 6*(6*X[3]+10*X[2])**(-l)
+X[1]-0.32 , 7*(7*X[3] +9*X[2])**(-l)+X[1]-0.35 , 8*(8*X[3]+8*X[2])**(-l)
+X[1]-0.39 , 9*(7*X[3] +#7*X[2])**(-1)+X[1]-0.37 , 10*(6*X[3]+6*X[2])**(-l)
+X[l]-0.58 , 11*(5*X[3] +5*X[2])**(-l)+X[l]-0.73 , 12*(4*X[3]+4*X[2])**(-l)
+X[1] -0.96 , 13*(3*X[3] +3*X[2])**(-1) +X[1] -1.34 , 14*(2*X[3]+2*X[2])**(-l)
+X[1]-2.1 , 15*(X[3]+X[2])**(-l)+X[l]-4.39] , [0.5, 1.0, 1.5])
nagman:acknowledging request for e04gcf
nagman:connection successful to dictum.maths.bath.ac.uk

118

nagman:receiving results from dictum.maths.bath.ac.uk

(2)
[ifail: 0, w: Matrix(DoubleFloat),

method:
[nameOfRoutine: "e04gcfAnnaType", allMeasures: List(String),
bestMeasure: 0.7214220332 0194042508]

>
attributes: List(String), x: Matrix(DoubleFloat),
objf: 0.00821487730657901]

Type: Result
(3) -> qelt('/,.method,allMeasures)

O)
["e04gcfmeasure: 0.721 - e04gcf is recommended.",
"e04fdf is no better than other routines"]

(4) -> VI* (2) . attributes

(4) ["The object functions are non-linear"]

(5) -> •/.*/.(2).x

Type: List String

Type: List String

(5) [0.0824105598097718 1.13303609205156 2.34369517871324]
Type: Matrix DoubleFloat

(6) -> y.y.(2).objf

(6) 0.00821487730657901
Type: DoubleFloat

119

A p p en d ix B

C ode P rod u ction and T esting
P rocedures

B .l A N N A Categories Domains and Packages

B .1 .1 C a teg o r ie s

• NumericallntegrationCategory
• OrdinaryDifferentialEquationsSolverCategory
• PartialDifferentialEqnationsSolverCategory
• NumericalOptimizationCategory

B . l . 2 M e th o d D o m a in s

I n te g r a t io n

• dOlajfAnnaType
• dOlakfAnnaType
• dOlalfAnnaType
• dOlamfAnnaType
• dOlanfAnnaType
• dOlapfAnnaType
• dOlaqfAnnaType
• dOlasfAnnaType
• dOlfcfAnnaType
• dOlgbfAnnaType
• dOlTransformFunctionType

120

Ordinary D ifferential Equations

• d02bbfAnnaType

• d02bhfAnnaType
• d02cjfAnnaType

• d02ejfAnnaType

Partial D ifferential Equations

• d03eefAnnaType

O ptim ization

• e04dgfAnnaType
• e04fdfAnnaType
• e04gcfAnnaType

• e04jafAnnaType
• e04mbfAnnaType

• e04nafAnnaType
• e04ucfAnnaType

B .1 .3 P ack ages

Top Level Packages

• AnnaNumericallntegrationPackage
• AnnaOrdinaryDif f e r en t ia lE q u a t ionP ackage
• AnnaPart i a lD if f e r en t ia lE q u a t ionPackage
• A nnaN um ericalO ptim izationPackage

C om putational A gent Packages

• dO lA gentsPackage
• d02A gentsPackage
• d03A gentsPackage

• e04A gentsPackage
• E xpertS ystem C on tinu ityP ackage

• E xpertS ystem C on tin u ityP ack age1
• dO lW eightsPackage

121

B . l . 4 M isce lla n eo u s D om ain s

• R ou tin esT ab le
• B a s ic F u n c tio n s

• A ttr ib u te B u tto n s
• In te g r a tio n F u n ctio n sT a b le

• O D E Inten sityF un ction sT ab le

• E xpertSystem T oolsPackage

• E xpertSystem T oolsP ackage1
• E xpertSystem T oolsPackage2

122

B.2 Structural Design

NAG Fortran Library

Knowledge
Base

Basic Dynamic
Functions Storage

Routines

AXIOM Symbolic Algebra Package

Output

Naglink

Parser

Method
Domains

Inference
Machine

Computational
Agents

L _ — J

123

B.3 Testing and Evaluation

B .3 .1 In te g ra tio n

Integration Problem Recommended Routine(s)

e~ 3 x 2 + e" *3 ,
/ -------- 7= ------ dx

Jo V x
dOlAPF & D01AJF1

r°° Py
/ ~ r dy Jo \ / l j

D01APF & D01AJF1

f 2 e~ 3 x 2 + e~ x 3 ,

Jo (*2 - 2)
D01AQF

f 2 , q 1 . dx
Jo (x6 - l)

D01AQF

/ cost2 + sin t + cos sin t3 dt
J — 7T

D01AKF

CxS4(x̂)dx D01AKF

/ cos 2 0a; (sin a:2 + cos a:2) dx
Jo

D01ANF

f 2 log x log (2 - x) ^

JO y /~ x y / (2 - x) 2
DOlAPF

L . / ° V 2/ 2 dz
V2tt Jo

D01AMF

lrThe A NNA routine DOlTransform splits the function, transforms one part, and uses the routines
D01APF and D01AJF on the two parts

124

Integration Problem Recommended Routine(s)

f°° e-u

J _ o o (uj — 5) (W - J)

D01AQF & D01AQF2

j logu2 du D01ALF

/•l P1 P1 P1 2*1
I I I 4xia:oe(1+x2+x4)2 ^ 4 ^ 3 cfcc2 dx\

Jo Jo Jo Jo
D01FCF

2T h e A N N A routine DO lTransform sp lits th e fun ction and uses th e routine D01AQF on th e
separate parts

B .3 .2 O rd inary D ifferen tia l E q u a tio n s

N o n -stiff E q u a tio n s3

Ref System of Equations Initial Conditions Routine

N4

y[= tan 2/3

2/2 = - 0 . 0 3 2 ^ ^ - 0.02—̂ —
t/2 cos 2/3

, 0.032
2/3 = ” *

yi(0) = 0.5

» (0) = 0.5

3/3 (0) = 0.27T

D02BBF

A l 1II 3/(0) = 1 D02BBF

A2

<M5ft1II 3/(0) = 1 D02BBF

A3 y1 = y cos x 3/(0) = 1 D02BBF

A4 y (1 y \
y 4 V 2 0 / 1/(0) = 1 D02BBF

A5 y> = y - x

y + x

II"5s D02BBF

3 M ost o f th e te st exam ples axe from [Hull e t al. , 1972]
4T h is exam ple is used in [NA G , 1996]

126

Ref System of Equations Initial Conditions Routine

B1
2/i = 2 (yi - y i y 2) 3/1 (0) = 1

D02BBF
2/2 = - (2/2 - 2/12/2) Itt(O) = 3

2/i = - 2/1 + 2/2 3/1 (0) = 2

B2 2/2 = 2/1 - 22/2 + 2/3 3/2(0) = 0 D02BBF

2/3 = 2/2 - 2/3 3/3(0) = 1

2/i = - 2/1 3/l(0) = 1

B3 2/2 = 2/1 — 2/2 3/2(0) = 0 D02BBF

2/3 = 2/2 3/3(0) = 0

2/i = “ 2/2 - 2/12/3 V 2/i + 2/2 3/1 (0) = 3

B4 2/2 = 2/1 - 2/22/3 \ / 2/i + 2/2 3/2 (0) = 0 D02CJF

2/3 = y iy y l + vl 3/3(0) = 0

2/i = 2/22/3 3/1 (0) = 0

B5 2/2 = -2/12/3 3/2 (0) = 1 D02BBF

2/3 = —-512/12/2 3/3(0) = 1

127

Ref System of Equations Initial Conditions Routine

C l

’ y[
2/2

. y[o .

=

~ l 1
1 - 1 0

1 .

0 ’ - 1

1 0 J

y\ 1
2/2

. 2/10 J

2/(0) =

' 1 "
0

0

D02BBF

C2

" y'\
2/2

. y'rn .

=

" - 1
1 - 2 0

2 - 3

0 . - 9
9 0 _

2/1
2/2

. 2/io .

2/(0) =

" 1 '
0

0

D02BBF

C3

i
i

£
to

-
i

i

=

" - 2 1
1 - 2 1 0

1

0 . - 2 1

1 “ 2

2/1
2/2

. 2/io .

2/(0) =

" 1 ‘
0

_ 0 _

D02BBF

C4 As C3 except with 51 equations D02CJF

128

Ref System of Equations Initial Conditions Routine

D1

V i = V3

2/2 = 2/4

2/3 = “ 2/1 (2/i +2/i)3/2

y\ = - 2/2(y? + y i)3/2

?/i (0) = 1 — e

2/2 (0) = 0

2/3(0) = 0

- V l - e
e = 0.1

D02BBF

D2 As above with e = 0.3 D02BBF

D3 As above with e = 0.5 D02BBF

D4 As above with e = 0.7 D02BBF

D5 As above with e = 0.9 D02BBF

129

Ref System of Equations Initial Conditions Routine

E l
2/i = 2/2

* -

3/1 (0) = J i / 2 (1) 5

y 2 (o) = j ; / 2 (i) 6
D02BBF

E2 2/i = 2/2

2/2 = (x “ 2/i)2/2 - 2/1

y i (o) = 2

Jft(0) = o
D02CJF

E3
2/i = 2/2

y '2 = — — i/i + 2 sin(2.78535a:)
6

VI (0) = 0

V 2 (0) = 0
D02CJF

E4 2/i = 2/2

= 0 .0 3 2 — 0.4^1

V i (0) = 3 0

V2 (0) = 0
D02CJF

E5
2/i = 2/2

y >2 = V / l + I'2
25 - x

vi (0) = 0

y2(o) = o
D02CJF

50 .6713967071418030
60 .09540051444747446

130

Stiff and M ildly-StifF Equations7

Ref System of Equations Initial Conditions Routine

N8

y 'i = “ 7^2/1 + 1q4 2/22/3

2/2 = ^g2/i “ 1042/22/3 - 3 x 107 y\

2/3 = 3 x 107y2

yi(o) = 1

1/2 (0) = . 0

» (o) = 0

D02EJF

A l

y[= -o.5j/i

2/2 = - 2/2

2/3 = -100y3

2/4 = - 9°2/4

yi(o) = 1

3/2 (0) = 1

V3<0) = 1

3/4(0) = 1

D02CJF9

A2

y[= -1800yi+ 900t/2

2/i = 2/i—1 -T 2/i+i

y£ = -1000y8 - 2000y9 + 1000

i = 2 , . . . , 8

VI(0) = 0

Vi(0) = 0

3/8(0) = 0

D02EJF

A3

2, ' = - 1 0 4yi + 100y2 - 10y3 + y4

y f2 = - 1 0 3y2 + 10y3 - 10y4

2/3 = “ 2/3 + 10y4

y\ = —0.1y4

3/1 (0) = 1

V2(0) = 1

3/3 (0) = 1

3/4(0) = 1

D02EJF

A4

0i-H

jS
L

 ̂
(M

1II

II Vi(0) = 1 D02EJF

7 Most of the test examples are from [Enright et a l 1975]
8This example is used in [NAG, 1996]
9 The system of equations is only mildly stiff

131

Ref System of Equations Initial Conditions Routine

B1

y'i = - y i + 2/2

y'2 = - l (% i - y 2

y'3 = 10Ch/3 + 1/4

t/i = - 1 0 0 0 0 t/3 - l0 0 y A

2/1 (0) = 1

2/2 (0) = 0

2/3(0) = 1

2/4(0) - 0

D02BBF10

B2

y [= — ICh/i + a y 2

2/2 = -< xyi - 102/2

2/3 = 4 2/3

2/i = -2/4

2/5 = —0.52/5

2/6 = “ 0 -12/6

o; = 3

2/i(0) = 1

2/2 (0) = 1

2/3(0) = 1

2/4(0) = 1

2/5(0) = 1

2/6 (0) = 1

D02BBF10

B3 As in B2 with a = 8 D02BBF10

B4 As in B2 with a = 25 D02BBF10

B5 As in B2 with a = 100 D02BBF10

10The system of equations is only very mildly stiff

132

Ref System of Equations Initial Conditions Routine

C l

y[= -y i + 2/2 + 2/3 + 2/4

y '2 = - i o t /2 + 1 0 (2/3 + yi)
7/3 = — 40y3 + 40 yl

y\ = — IOO7/4 -1- 2

y i(0) = 1

y2(o) = 1

3/3 (0) = 1

y4(0) = 1

D02CJF11

C2

y'l = - 2/1 + 2

7/2 = -IO 7/2 +^7/i

7/3 = —40t/3 + 4/?(7/f + 7/2)

7/i = — IOO7/4 + 10^(t/i + 7/2 + 2/3)

(3 = 0.1

Vi (0) = 1

y2(o) = 1

1/3(0) = 1

3/4 (0) = 1

D02CJF11

C3 As in C2 with (3 = 1 D02CJF11

C4 As in C2 with (3 = 10 D02CJF11

C5 As in C2 with (3 = 20 D02CJF11

11 The system of equations is only mildly stiff

133

Ref System of Equations Initial Conditions Routine

D1
y[= 0.2(t/2 - 2/1)

3/2 = 102/i ” (60 ~ 0 .1257/3)2/2 + 0.1252/3

V3 = 1

2/1(0) = 0

2/2 (0) = 0

2/3 (0) = 0

D02CJF12

D2
2/i = -0.42/1 + O.OI2/22/3

2/2 = 400t/i - IOO2/22/3 ~ 30002/2

2/3 = 302/2

2/i(0) = 1

2/2 (0) = 0

2/3 (0) = 0

D02EJF

D3

2/i = 2/3 - IOO2/12/2

2/2 = 2/3 + 22/4 - IOO2/12/2 - 2 x 1022/2

2/3 = 2/3 + IOO2/12/2

2/4 = -2/4 + 1042/2

2/i(0) = 1

2/2(0) = 1

2/3 (0) = 0

2/4 (0) = 0

D02CJF12

D4
2/i = -0.0132/1 - IOOO2/12/2

2/2 = -25002/22/3

2/3 = -0.0132/1 - IOOO2/12/3 - 25002/22/3

2/i(0) = 1

2/2(0) = 1

2/3 (0) = 0

D02BBF13

D5
2/i = 0.01 - (1 + (2/1 + 1000)(2/i + l))

(0.01 + 2/1 + 2/2)

2/2 = 0 .0 1 - (I + 2/2XO.OI + 2/1 + 2/2)

2/1(0) = 0

2/2 (0) = 0
D02EJF

D6
2/i = —yi -h 108y3(l — yi)

2/2 = -IO 2/2 + 3 x 1072/3(1 - 2/2)

2/3 = “ 2/i - 2/2

2/1(0) = 1

2/2 (0) = 0

2/3 (0) = 0

D02EJF

12 The system of equations is only mildly stiff
13A NNA identifies that the system of equations is very stiff but still incorrectly chooses th e wrong

routine

134

Ref System of Equations Initial Conditions Routine

E l

2/i = 2/2

2/2 = 2/3

2/3 = 2/4

2/4 = (2/i - sin(yi) - T4)yi

* cr.-"*)"
+ (1 - 6 r 2)y3

+(10e_y4 - 4T)y4 + 1

r = ioo

2/1 (0) = 0

2/2(0) = 0

2/3(0) = 0

y4(0) = 0

D02BBF14

E2 y[= 2/2

2/2 = 5(1 — yi)y2 — 3/i

yi(0) = 2

y2 (o) = o
D02CJF14

E3
y[= —(55 + y3)yi + 65y2

2/2 = 0.785(i/i - y2)

2/(, = O.Olyi

2/1 (o) = 1

2/2(0) = 1

2/3(0) = 0

D02BBF15

E5

yl = -0.789 x 10-10y! - 1-1 x 107yi2/3

y2 = 7.89 x 10~10yi - 1.13 x 109y2y3

y' = 7.89 x 10-10y! - 1-1 x 107y!y3

+1.13 x 103y4 - 1.13 x 109y2y3

y\ = 1.1 x 107yiy3 - 1.13 x 103y4

yi (0) = 0.00176

2/2(0) = 0

2/3(0) = 0

2/4 (0) = 0

D02EJF

14 The system of equations is only mildly stiff
15 The stiffness of the system of equations increases over the integration period and is thus not

correctly identified by A N N A ’s detection algorithm. It thus chooses a non-optim al routine

135

B .3.3 O ptim ization

Minimization of a Single Multivariate Function

Function Constraints Routine

e \ (4x2 + 2^ 2 + 4 x 122 + 2 x2 + 1) E04DGF

(xi + 10x2) 2 + 5(x3 — x4) 2

+ (x 2 - 2 x 3)4 + 1 0 (x i - x 4) 4

1 < xi < 3
—2 < x 2 < 0

—oo < x3 < oo
1 < x4 < 3

E04JAF

XiX4(xi + 22 4- X3) + x 3

1 < 21 < 5
1 < 22 < 5
1 < x3 < 5
1 < x4 < 5

— OO < 21 + 22 + x3 + X4 < 20
—oo < x \ + x \ + 2 3 + x4 < 40

— 25 < 2i222324 < OO

E04UCF

136

Linear Programming

F unction C onstraints R outine

—0 .2 (0 . l x i + X2 + X3 + X4

+ x 5 - 0 .2 (x 6 + x 7))

—0 . 0 1 < x i < 0 . 0 1

—0.1 < X 2 < 0.15

—0.01 < £ 3 < 0.03

- 0 .0 4 < x 4 < 0.02

—0.1 < X 5 < 0.05

—0 . 0 1 < ^ 6 < 00

—0 . 0 1 < x 7 < 00

x i + X2 + X z + X4 + X5 + Xq + X7 = - 0 .1 3

—00 < 0 .15x i + 0.04x2 + 0 .0 2 x 3 + 0.04x4 + 0 .0 2 x 5 + 0.01x6 + 0.03x7 < —0.0049

—00 < 0 .0 3 x i + 0.05x2 + O.O8 X3 + 0 .0 2 x 4 + O.O6 X5 + 0.01x6 < —0.0064

—00 < 0 .0 2 x i + 0.04x2 + O.OIX3 + 0 .0 2 x 4 + 0 .0 2 x 5 < —0.0037

—00 < 0 .0 2 x i + 0.03x2 4- O.OIX5 < —0.0012

—0.0992 < 0 .7 x i + 0 .7 5 x 2 + 0 .8 x 3 + 0 .7 5 x 4 + 0 .8 x 5 + 0.97x6 < 00

—0.003 < 0 .02x i + 0.06x2 + O.O8 X3 + 0 . 1 2 x 4 + 0 .0 2 x 5 + 0.01x6 + 0 .9 7 x 7 0.002

E04MBF

Quadratic Programming

Function Constraints Routine

(xi — 0.02)xi + (X2 — 0 .2)x2

+ (x 3 - 0.2)x3
+ (x 4 + 2x3 - 0.2)x4

+ (x 5 - 0 .2) x 5

+(0.04 - xq)xq
+(0.04 — 2x6 ~ ^ 7)^7

-0.01 < xi < 0.01

—0.1 < X2 < 0.15
—0.01 < x3 < 0.03
-0 .04 < x4 < 0.02
—0.1 < X5 < 0.05
—0.01 < X6 < 0 0

—0.01 < X7 < 00

+ £2 + £3 + £4 + X5 + X6 + X7 — —0.13
- 0 0 < 0.15xi + 0.04x2 + 0.02x3 + 0.04x4 + 0.02x5 + 0.01x6 + 0.03x7 < -0.0049

—00 < 0.03xi + 0.05x2 + 0.08x3 + 0.02x4 + O.O6X5 + 0.01x6 < —0.0064
—00 <£ 0.02xi + 0.04x2 + 0.01x3 + 0.02x4 + 0 .0 2x5 <1 —0.0037

—00 < 0.02xi + 0.03x2 + O.OIX5 < —0.0012
—0.0992 < 0.7xi + 0 .75x2 + 0.8x3 + 0.75x4 + 0 .8x5 + 0.97x6 < 00

-0.003 < 0.02xi + O.O6X2 + 0.08x3 + 0.12x4 + 0.02x5 + 0.01x6 + 0.97x7 < 0.002

E04NAF

L e a st-S q u a r e s P r o b le m

Functions Routine

(X3 - 15x2)-1 + x i — 0.14

2(2a:3 - 14x2)_1 + x i — 0.18

3 (32:3 — 13x2)_1 + x \ — 0.22

4 (42:3 — 12x2)_1 + x \ - 0.25

5 (52:3 — l l x 2) -1 + x \ — 0.29

6 (62:3 — 102:2)_1 + x \ — 0.32

7 (72:3 — 92:2)_1 + x i — 0.35

8 (82:3 — 82:2)_1 + x i — 0.39 E04GCF

9 (92:3 — 72:2)-1 + x i — 0.37

10(102:3 — 62:2)_1 + x i — 0.58

11(11x 3 -5 2 ;2)_1 + x i - 0 .7 3

12(12x 3 — 4x2) _1 + x \ — 0.96

13(13x3 - 3x2) _1 + x i - 1.34
14(15x3 — 2x2) -1 + xi — 2.1
15(15x3 - X 2) - 1 + xi -4 .3 9

139

