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Summary

This thesis is concerned with the convergence and efficiency of inexact inverse iter­
ation applied to the standard symmetric and the generalised unsymmetric eigenvalue 
problem. Here we mean by inexact inverse iteration tha t the arising linear systems 
are solved inexactly using an iterative method. Hence inexact inverse iteration is an 
inner-outer type algorithm. We provide for the standard symmetric eigenvalue problem 
and for the generalised unsymmetric eigenvalue problem general convergence results. 
Both convergence results are general in the sense tha t they are independent of the lin­
ear solver applied and that they axe applicable to various implementations of inexact 
inverse iteration.

For the case when Galerkin Krylov solvers are applied to the linear systems we 
analyse the efficiency of inexact inverse iteration. This efficiency analysis combines 
convergence results for inexact inverse iteration and for the Galerkin Krylov solver. 
Based on our approach of combining these results we obtain a-posteriori upper bounds 
on the number of inner-iterations per outer-iteration and a-posteriori upper bounds 
on the total number of inner-iterations, so the sum of inner-iterations over all outer- 
iterations. These bounds enable us to discuss the efficiency of practical methods, i.e. 
how fast is the inner-outer iteration type algorithm. Using above mentioned bounds 
we show tha t variations of inexact inverse iteration using a shift tending to the desired 
eigenvalue are most efficient. Additionally we extend the approach recently published 
by Simoncini and Elden to arbitrary positive definite preconditioners for the standard 
symmetric eigenvalue problem, and to the generalised eigenvalue problem. In case 
of the standard symmetric eigenvalue problem we show tha t this approach is most 
efficient.
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Chapter 1

Introduction

In this thesis we discuss the effect of inexact solves on inverse iteration. We consider 
this with respect to the standard symmetric eigenvalue problem

A x  =  Ax, (1.1)

where A  £ Rnxn is symmetric (A = A T ) and with respect to the generalized unsym­
metric eigenvalue problem

A x  = XM x, (1.2)

where A  and M  £ RnXn and M  is symmetric positive definite (spd). Our interest 
is geared towards the case where the matrices A  and M  are large, say being derived 
by the FE-method from a partial differential equation. Inverse iteration requires the 
solution of linear systems of the form

(A — o M )y  =  M x, (1.3)

with M  = I  for (1.1). If A  and M  are large, direct methods become impractical and 
iterative techniques, usually combined with preconditioning, are used instead. As a 
result we have outer-iteration, which are the iterations of inexact inverse iteration, and 
an inner-iteration, being the iterations of the iterative linear solver.

There are two main aspects of inexact inverse iteration studied in this thesis. First 
we analyse the convergence of inexact inverse iteration and second we analyse its ef­
ficiency when a Galerkin-Krylov solver is applied to the linear system. By efficiency 
we mean the overall performance of inexact inverse iteration as an inner-outer type 
method.

Inverse Iteration, so using exact solves, is a well known and well studied algorithm,
which has for some time now been outperformed by other methods. The idea of in­
verse iteration goes at least as far back as Wielandt (1944) and became popular due
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1. INTRODUCTION

to the many contributions from Wilkinson (1958, 1962, 1965) and many more. For the 
special case of the Rayleigh quotient iteration Ostrowski provided convergence results 
for the standard symmetric eigenvalue problem (Ostrowski (1957)) and for the stan­
dard unsymmetric eigenvalue problem (Ostrowski (1959, I960)). For further historical 
references on inverse iteration see Ipsen (1996).

Here we think of inexact inverse iteration as a method in its own right for find­
ing an eigenvalue and an eigenvector rather than the standard technique of finding an 
eigenvector given a very accurate estimate for the eigenvalue. Of course nowadays one 
would almost certainly use a Lanczos/Arnoldi-type algorithm, perhaps in the shift- 
invert mode, or use a Jacobi-Davidson-type algorithm to solve (1.1) or respectively 
(1.2), but we believe tha t an in-depth understanding of the basic inexact inverse it­
eration algorithm for a simple eigenvalue is beneficial to the understanding of more 
advanced techniques. Recent advances by Simoncini and Szyld (2003) have improved 
the understanding of inexact Arnoldi-type methods and explain the observation made 
in Bouras and Fraysee (2000). Bouras and Fraysee (2000) observed that in the inexact 
Arnoldi method the residual constraint for the inner-methods can be relaxed when the 
outer process advances. However a full answer for how to optimise the inexact Arnoldi 
method is missing. Later based on our efficiency analysis we will see tha t the observa­
tion from Bouras and Fraysee (2000) for the inexact Arnoldi method is in contrast to 
the situation for inexact inverse iteration.

Also for the Jacobi-Davidson (Sleijpen and van der Vorst (2000)) method applied 
to the standard symmetric eigenvalue problem considerable progress has recently been 
achieved, specially for calculating the smallest eigenvalues of a positive definite matrix. 
F irst there is the observation that only a few vectors need to be kept in the trial 
space. This leads to the development of the currently best algorithm for calculating 
the smallest eigenvalue of the standard symmetric eigenvalue problem in the positive 
definite case, namely LOBPCG, see Knyazev (2000). However if the smallest few, say 
five vectors are of interest, then the Jacobi-Davidson type method published by Notay 
(2003) seems to perform best. Notay (2003) links the convergence of inexact Jacobi- 
Davidson methods with inexact inverse iteration and balances the inner method against 
the outer method. While these two algorithms seem to be reasonably well understood, 
there remain open questions, specially for the generalized eigenvalue problem and also 
for interior eigenvalues. Based on our experience we believe tha t the performance of 
these two algorithms, inexact Arnoldi and Jacobi-Davidson, can be improved using 
some of the insights we obtain from the study of inexact inverse iteration.

The understanding of inexact inverse iteration applied to the standard symmetric 
eigenvalue problem made considerable progress in the recent years. A very early paper 
on the use of iterative methods to solve (1.3) is Ruhe and Wiberg (1972). Inexact in­
verse iteration for symmetric matrices was discussed in Smit and Paardekooper (1999)

5



1. INTRODUCTION

where a general theory, independent of the details of the solver, was presented along 
with some new eigenvalue bounds. An im portant recent paper on inexact inverse it­
eration is Simoncini and Elden (2002) where a version of inexact Rayleigh quotient 
iteration is discussed. Several key ideas are introduced specially with regard to the 
derivation of the appropriate linear system to be solved when approximate Cholesky 
preconditioning is applied to the linear system (1.3), and with regard to the determina­
tion of an appropriate stopping condition in the inner iteration. We shall discuss these 
ideas in detail in Chapter 3. For non-symmetric matrices a fixed shift inexact inverse 
iteration algorithm is discussed in Golub and Ye (2000). The basic idea is to rearrange 
the update equation such th a t only a much simpler correction equation needs to be 
solved. Golub and Ye (2000) provide a convergence theory along with an analysis of 
the choice of tolerance used in the inner solves. Convergence results for non-symmetric 
matrices are also given in Lai et al. (1997). Other related work on the use of inexact 
Rayleigh quotient iteration to compute the smallest eigenvalue of generalized Hermitian 
eigenvalue problems is discussed in Notay (2003) and Knyazev and Neymeyr (2003). 
Furthermore the inverse correction method published by Rude and Schmid (1995) and 
Zaslavsky (1995) as an improvement of the variation of inexact inverse iteration using 
a fixed shift is a special case of the method proposed by Golub and Ye (2000).

One of the key aspects in this thesis is the study of inexact inverse iteration as an 
inner-outer iteration type algorithm. In order to study an inner-outer type technique we 
need a sufficient understanding of the convergence of both methods. Therefore we have 
to restrict ourselves to considering only a specific class of methods. Here we consider 
for the inner method Galerkin Krylov solvers, namely MINRES for the symmetric case 
and GMRES for the unsymmetric case. However our results are also applicable to CR 
if the corresponding linear systems are positive definite. The restriction to Galerkin 
Krylov methods is somehow arbitrary, nevertheless this class of methods is widely used 
in practice and their convergence is well understood.

As the standard symmetric eigenvalue problem allows us to present the results and 
techniques in more clarity we analyse in Chapter 2 the convergence of inexact inverse 
iteration for this special case. Following Parlett (1980) for exact inverse iteration we use 
for our analysis a splitting of the current eigenvector approximation into two invariant 
subspaces, one being the sought eigenspace and the other its orthogonal complement. 
Our analysis will be independent of the method applied to solve the arising linear 
systems. In order to achieve this independence we postulate a condition on the residual 
of the linear solves. This residual condition will later link with the efficiency analysis 
as MINRES minimises this residual. A different point of view has been taken in Smit 
and Paardekooper (1999) and Neymeyr (2001b). Both use a backward error analysis 
type of approach to analyse the convergence of inexact inverse iteration, i.e. they 
interpret tha t each iteration is performed exactly starting from a perturbed initial
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1. INTRODUCTION

problem. Their approach is connected to our approach as the residual of the linear 
system can be interpreted as the perturbation. Besides the advantage of using the 
residual later in the efficiency analysis we find that our approach is more intuitive. The 
main convergence result generalizes and combines the results of Smit and Paardekooper
(1999) and Golub and Ye (2000). Based on this general convergence result we provide 
convergence results for three variations of inexact inverse iteration. The first variation 
uses a fixed shift and decreasing tolerance, a convergence result for such an approach has 
been proven by Smit and Paardekooper (1999). Second we consider an inexact Rayleigh 
quotient iteration with a fixed tolerance condition, this case is also proven in Smit and 
Paardekooper (1999) whose result also allows us to deduce the convergence of the 
third approach using the Rayleigh quotient as shift and a decreasing tolerance. While 
the fixed shift gives only linear convergence the Rayleigh quotient iteration with fixed 
tolerance exhibits locally quadratic convergence and the Rayleigh quotient iteration 
with decreasing tolerance has locally cubic convergence. At the end of Chapter 2 we 
will provide numerical results illustrating the convergence of these three methods.

In Chapter 3 we again consider the standard symmetric eigenvalue problem, but 
now our main focus will be the efficiency of inexact inverse iteration using MINRES 
as linear solver. In order to state our efficiency results we need two basic results. In 
the first result we prove under suitable conditions tha t the number of outer-iterations 
decreases when the order of convergence of the outer method is improved. The sec­
ond result provides an upper bound on the residual in MINRES. To derive this bound 
we use a standard polynomial approach, however we deflate a few critical eigenval­
ues including the one we seek using a product of special polynomial and Chebyshev 
polynomials which is a standard technique in the analysis of polynomial based solvers. 
This special treatm ent allows us to project out any contributions in the right-hand 
side corresponding to critical eigenvalues. This projection will play a key role in de­
termining an efficient method. Further this special treatm ent for critical eigenvalues 
allows us to link the convergence of the linear solver with the convergence of the outer 
method. Now combining inexact inverse iteration and unpreconditioned MINRES we 
obtain our first efficiency result providing an upper a-posteriori bound on the number 
of inner-iterations per outer iteration and hence an upper bound on the total number of 
inner-iterations. The usefulness of this a-posteriori upper bound is tha t it allows us to 
provide an analysis of the overall efficiency of the inexact inverse iteration algorithm. 
Numerical experiments show that this analysis describes well both the behaviour of 
the inner-iterations and the total number of inner-iterations needed to achieve a de­
sired accuracy for the eigenvector approximation. This a-posteriori upper bound is a 
vital part in determining efficient methods. As a result we observe tha t methods using 
a shift tending as quickly as possible to the sought eigenvalue are most efficient. In 
practice for the symmetric problem this will probably mean that the shifts should be
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1. INTRODUCTION

chosen to be the Rayleigh quotients. This is consistent with the best strategy when 
direct solves are used and shows that we need not be concerned tha t the Krylov solver 
is applied to a matrix which is becoming more and more singular. The explanation lies 
in the interplay between the shift tending towards the eigenvalue and the right-hand 
side tending to the corresponding eigenvector, together with the fact that the Krylov 
solvers handle reasonably well nearly singular systems with only a small number of crit­
ical eigenvalues. Similar ideas were explored in Ruhe and Wiberg (1972) and van der 
Vorst and Vuik (1993).

The situation changes slightly if we consider inexact inverse iteration applied to (1.1) 
using preconditioned MINRES. Again we provide a-posteriori bounds on the number of 
inner-iterations per outer-iteration and the total number of inner-iterations. As in the 
unpreconditioned case it is the best strategy to reduce the number of outer-iterations 
which in practice probably means to use the Rayleigh quotient as a shift. However, the 
cost has now a non-favourable dependency on the error angle of the eigenvalue problem. 
This is in contrast to the unpreconditioned case and is not just a theoretical problem 
but is confirmed by numerical experiments. This difference motivates the search for a 
more sophisticated combination of inexact inverse iteration and preconditioned MIN­
RES. One such approach is the method proposed by Simoncini and Elden (2002), which 
itself is based on the observation made by Scott (1981), in case of Cholesky precon­
ditioning tha t tailoring the right-hand side to the preconditioned solver improves the 
performance of the linear solver. We extend this method to other preconditioners and 
prove convergence for this method. Based on our practical experience we suggest using 
the standard residual stopping condition to stop MINRES rather than the stopping 
condition suggested by Simoncini and Elden (2002). Tailoring the right-hand side to 
the solver is so beneficial that the resulting method is, of all variations of inexact in­
verse iteration using MINRES known to us, the most efficient. We illustrate various 
numerical tests to support our theory and also provide some benchmark tests where 
we compare inexact inverse iteration against the cost of calculating an approximation 
of the sought eigenpair using LOBPCG and against a linear solve using MINRES.

In Chapter 4 we consider the generalized unsymmetric eigenvalue problem (1.2). In 
a similar fashion to Chapter 2 we prove the convergence of inexact inverse iteration 
applied to the generalized eigenvalue problem. Again this convergence result is general 
in the sense that it is independent of the linear solver applied to the arising linear 
system and applicable for various variations of inexact inverse iteration. We will use 
this result to deduce the convergence of the methods proposed by Rude and Schmid 
(1995) and Golub and Ye (2000). Further we deduce the convergence of Rayleigh 
quotient type methods with fixed or decreasing tolerance and the convergence of a 
fixed shift method using a decreasing tolerance. Additionally we extend the approach 
of Simoncini and Elden (2002) to the generalized eigenvalue problem, however this
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method exhibits poor (and only linear) convergence. In the unsymmetric case, only 
methods combining a Rayleigh quotient type of shift and a decreasing tolerance are 
of higher order, and so we also consider methods which calculate an approximation to 
the left eigenvector of (1.2) corresponding to the sought right eigenvector. This allows 
the use of the generalized Rayleigh quotient which is a higher order approximation of 
the sought eigenvalue while the standard Rayleigh quotient is only linear in the error 
angle. We illustrate the convergence behaviour of the considered methods towards the 
end of Chapter 4.

Chapter 5 is an auxiliary chapter providing the understanding of the convergence 
of GMRES as needed for the efficiency analysis of inexact inverse iteration in Chapter 
6. Using Chebyshev polynomials on the eigenvalues of the shifted linear system matrix 
A —a M  we obtain a convergence result for GMRES. Again we deflate critical eigenvalues 
and thereby project out any contributions in the right-hand side corresponding to the 
invariant subspace of these critical eigenvalues. As for the standard symmetric case in 
Chapter 3 this projection will play a key role in the efficiency analysis in Chapter 6.

In Chapter 6 we analyse the efficiency of inexact inverse iteration applied to the 
generalized unsymmetric eigenvalue problem. We restrict to the case where the arising 
linear systems are solved by ‘plain’ GMRES, that is GMRES without restarts, deflating 
or augmenting but with preconditioning. The analysis is similar to the analysis in 
Chapter 3 where we analysed the efficiency of inexact inverse iteration applied to the 
standard symmetric eigenvalue problem. For the generalized unsymmetric eigenvalue 
problem we present two key results. The first result provides an upper-bound on the 
number of inner-iterations per outer-iteration. This upper bound links nicely with our 
numerical experience. We observe from our theory and our tests that methods using 
the standard shifted linear system (A — a M )y  = M x  to update the eigenpair iterates 
show increasing costs of the linear solves when the outer-method progresses. This first 
key result also shows that methods using the modified right-hand side as the approach 
from Simoncini and Elden (2002) or solve some type of correction equation do not 
suffer this fate. However, our second key result shows tha t these latter methods are 
not efficient due to their poorer, i.e. only linear, outer convergence. Again, methods 
with minimal number of outer-iterations are most efficient. This means in practice 
that one should probably use the Rayleigh quotient as a shift and a decreasing residual 
condition. These theoretical observations are supported by several numerical tests.
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Chapter 2

Convergence of Inexact Inverse 
Iteration for the standard  
sym m etric eigenvalue problem

In this chapter we consider inexact inverse iteration applied to the standard symmetric 
eigenvalue problem

Ax =  Ax,

with A  real. By inexact inverse iteration we mean tha t the linear systems tha t arise 
are solved only approximately. We require no further knowledge about the linear solver 
except tha t a residual condition is satisfied. Therefore our approach can be viewed as 
an one level analysis of inexact inverse iteration. This approach leads to a convergence 
result for inexact inverse iteration independent of the linear solver in use. Based on this 
general result we will provide convergence results for three practical versions (methods) 
of inexact inverse iteration. These results are again independent of the linear solver.

The general convergence result and hence the result for the practical methods will 
be based on an one-step bound. This one-step bound links the approximation quality 
of an iteration to the approximation quality of the previous iteration. Similar bounds 
have been proven by Smit and Paardekooper (1999) and Simoncini and Elden (2002) 
for the symmetric case and Golub and Ye (2000) for the unsymmetric case. Based 
on this one-step bound we provide a general convergence result for inexact inverse 
iteration which unifies the results of Smit and Paardekooper (1999), Golub and Ye
(2000) and Simoncini and Elden (2002). Additionally our convergence result provides 
the cubic convergence of an inexact Rayleigh quotient iteration with decreasing residual 
constraint.

The chapter starts with a brief discussion of inverse iteration when exact solves 
are used. We collect a few basic results which are later used to compare with the
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2 .1  I n v e r s e  i t e r a t i o n  - e x a c t  s o l v e s

A lg o rith m  1: inverse  i te ra tio n

Given x° with ||x°[(2=  1,
For 2 =  0 ,1 ,2 , .. .

• Choose a1,

• Solve (A -  <7i/ ) y i =  x \

• Update x ^ 1 =  yV ||y*||2,

• Test for convergence

results of inexact inverse iteration. In Section 2.2 we discuss the convergence of inexact 
inverse iteration. Starting with an one-step bound, derived in Section 2.2.1, we state 
and prove the general convergence result in Section 2.2.2. The convergence and the 
rate of convergence of three practical methods is stated and proven in Section 2.2.3. 
Further in Section 2.2.4 we comment on literature related to the convergence analysis. 
Section 2.3 contains numerical examples illustrating our convergence results. These 
will be summarised in Section 2.3.3.

2.1 Inverse iteration - exact solves

Assume the symmetric matrix A  G RnXn has eigenvalues Ai,A2, . . . ,A n with corre­
sponding orthonormal eigenvectors v i, v 2, . . . ,  vn. Throughout this chapter we consider 
the eigenvalue problem

Ax =  Ax with ||x ||2=  1. (2.1)

In particular, we are interested in the computation of an approximation to one specific 
simple eigenpair, say (A i,vi). The method we consider here is inverse iteration, as 
given in Algorithm 1. Given a shift a1 with |Ai — a1 \<\Xj — a l \ for all i and all j  > 1 
we assume the following ordering of the eigenvalues

|Ai -  <t*|<|A2 -  crl \< . . .  <|An -  <J*| . (2.2)

For later convenience we assume that |An—A i|>|A j—Ai| for all j  and |Ai—<r|< ^ IA2—Ai|. 
To analyse this algorithm we use a notation similar to Parlett (1980, p. 60).

11



2 .1  I n v e r s e  it e r a t i o n  - e x a c t  s o l v e s

Assume the orthogonal splitting

x* =  cV i +  s V ,  (2.3)

with || Vi ||2= || u* ||2=  1 and u* ±  v \.  If 
0* denotes the angle between x* and Vi, 
so 0* = Z (vi,x*), then c* = cos 0l and 
s* = sin0*. Thus || x* — c*vi ||2= |s* |, so 
|s*| is a measure of the convergence of x* 
to span{vi}. Throughout we use |s*| or

f .=  at* : the absolute value of the tangent

as a measure of convergence.
Given an eigenvector approximation 

x* we obtain an approximation of

the eigenvalue using the Rayleigh quotient (RQ)

(x i)TA x i

vi

=  Ai +  (x*)r (A -  Ai/)x*(x*)Tx*
=  Ai +  (c*vi +  slu l)T (A -  AiI)(c lv i  +  s*u*) 

=  Ai +  (5*)2 ((u*)TAul -  A i ) , (2.4)

and therefore |Ai — ^(x*)| < |5l|2|An — Ai|.
As |s l | is unknown in practice, we can use the eigenvalue residual as an indicator 

of its size since the residual is linear in sl

r(x*) :=  Ax* — g(xl)x l

= sl (A — Ai/)u* — (s*)2 ((u*)t Au* — Ai) x*, (2.5)

and so || r(x*) ||2=  0 ( s x). Taking into account that ||Ax* — ^(xt)x*||<|| Ax* — crx* || for 
all a  one obtains

11 r  * 11 < 11 Ax* -  Aix*|| <  |s*||A„ -  Ai| . (2.6)

The rate of convergence for inverse iteration using exact solves is given by

(2.7)ti+1 |Ai -  (7*
t* |A2 -  (7*1 ’

see Parlett (1980, p. 62). In Section 2.2 we will derive this inequality (2.7) as a special 
case of inexact inverse iteration, (2.18). In the case of the Rayleigh quotient iteration

12
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(RQI), that is a1 =  £>(xz), the convergence is given by

<  |(u ')t Au* -  A,|
(t{)3 ~  |A2 — Ail —(s') 2 |(u*)TA u' — Ai| K !

Ostrowski (1957) was the first to prove the locally cubic convergence. An elegant 
treatm ent is given in Parlett (1980, p. 71-74).

Asymptotically tl+l/ ( t%)3 —>■ 1 for the RQI, and tt+1/ t l —>|Ai — al\ /  |A2 —c*| for any 
other choice of shift satisfying (2.2). Further the eigenvalue residual has the asymptote 
r(x*) —> (A2 — Ai)szV2- These asymptotic results are based on u* —> V2 for i —> 00, 
which is the case if |A2 — crz|<|Aj — al \ for j  =  3 , . . . ,  n  and v^u° ^  0.

Let a1 =  Ai, and let a reasonable starting vector x° be provided, then (2.7) shows 
that one iteration is enough to find a perfect approximation to Vi. This has been 
observed by Wilkinson (1962) who established a 1^ step technique based on a LU 
decomposition of A  — alI. The \  step is used to gain a reasonable starting vector, for 
the 1 iteration.

Obviously a shift closer to the eigenvalue is beneficial to the convergence, so in each 
iteration one would like to use the best available approximation of Ai, which leads in 
practice to different shifts in each iteration. The problem with such an approach is 
that direct solves, for example using a Gauss-solver, need a factorisation of the shifted 
linear system. When A is a full matrix the cost of factorising is usually 0 ( n 3) while 
the costs for one solve are 0 ( n 2) once a factorisation has been performed. So using a 
new shift in each iteration means a new factorisation is needed. Hence the advantage 
in the method might be absorbed by the additional cost of factorising. In the inexact 
case we do not suffer from this additional cost for factorisation and we will show later 
in Chapter 3, when we discuss which variation of inexact inverse iteration is efficient, 
that updating the shift in each iteration reduces the overall cost. Another concern 
with using a shift close to the desired eigenvalue is about the effect of round off errors 
on the solution. As the shift gets more singular the error in y % induced by round off 
errors might increase dramatically. However as Parlett (1980, pp. 65) shows this error 
in y l might be large but is of no significance to the eigenvalue problem. The main 
observation is tha t most of the error in y* is in the direction of the sought eigenvector 
while the error in the other directions remains small.

2.2 Inexact inverse iteration

In contrast to the previous section we consider that the linear systems arising in inverse 
iteration are only approximately solved, see Algorithm 2.

Further we will use an approach independent of the linear solver and its specifica­
tions applied to the linear system. Hence we will assume tha t the inner method can

13
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A lgorithm  2: Inexact inverse iteration

Given x°,
For i =  0 ,1 ,2 , . . .

• Choose cr* and r*,

•  Inexact solve (A — cr*/)y* =  x* such that 
||x* — (A — GiI )y i\\< r*,

•  Update x*+1 =  y*/ ||y*||,

• Test for convergence

find an approximate solution satisfying the tolerance constraint, see Algorithm 2.
We start with a result on the progress being made in one outer iteration in Section 

2.2.1. In Section 2.2.2 we prove convergence for inexact inverse iteration in general. 
Then in Section 2.2.3 we consider three practical versions of inexact inverse iteration, 
one with a fixed shift, and two versions with the RQ as shift. Finally, in Section 2.2.4 
we provide some discussion on related literature.

2 .2 .1  O n e  I t e r a t io n

To analyse the convergence of inexact inverse iteration as given in Algorithm 2 we 
define the residual as

res* := x* — (A -  a iI ) y i , (2.9)

and extend the previous orthogonal splitting (2.3) to

x* =  c*vi +  s*u*, 

res* =  res* Vi +  res^u* +  res^p*, (2.10)

with v i, u*, and p* orthonormal, the second equation defines p  implicitly.
We start our analysis by rewriting the linear solve in Algorithm 2 as an exact 

equation using the definition of the residual

(A -  (7*1)^ = x i -  res*. (2.11)

Further we replace y* by || y* U2 x*+1, and use the orthogonal decomposition (2.10)

14
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to obtain

||y*||2 ((Ai -  <7*)c*+1v  1 +  5*+1(A -  alI )u l+1)

= (cl — res* )v i +  (s* — reszu)u l — resp p \  (2.12)

The orthogonal decomposition splits the invariant subspace spanned by v i from the 
invariant subspace spanned by V2, . . .  vn , so we can split (2.12) into two separate equa­
tions, the equation for the cosine part

||y2||2 (Ai -  <J%)cl+l =  cl -  reslv (2.13)

and the equation for the sine part

||y*||2 si+1{A -  GiI )u i+l =  (s* -  res'Ju* -  res^p*. (2.14)

Now we multiply the sine equation (2.14) from the left by (A — a11)-1 (I  — v i v f )  and 
take norms. Due to the orthogonal splitting (2.10), ||u*+1||2=  1 and so the sine equation 
can be used to derive an upper bound for the absolute value of s*+1,

l |y i |2|si+1| =  | | ( A - a i/ ) - 1( / - v 1v f ) ( ( 5i - r e 4 K - r e 4 p i)||2

< ||(A -  GlI )~ l {I -  V iv f)||2 ||(s* -  res'Ju* -  resj,p*||2

< |Az ]_ a i\ y j (gi ~  resu)2 +  (res*,)2. (2.15) 

The same approach can be used to derive a lower bound for |s*+1|

l|yi|ll' m |  =  jj(A I  £ f j | | l  11(71 ~  ~  r “ «)u< ~  r e ^ ) | | 2

^  \\{sl -  reslu)ul -  res^p1̂
I K A - ^ O h _____________

> 1 J ( ^ - r e 4 ) 2 +  (re4 )2. (2.16)
|^n ~  G \ y

By dividing (2.15) and (2.16) by the absolute value of (2.13) we obtain a lower and an 
upper bound on the tangent

|Ai -  <7*1 y j (s* “  r e 4 ) 2 +  (res*,):

I An ~  <7*|
< ti+1 <

|Ai -  <7*1 \ J (si “  r e 4 ) 2 +  (resj,)2

P ^ T T 7 n  r ‘ ' ( 2 ' 1 7 )
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In practice, we expect the upper bound to reflect the true value more accurately than

However, in this work we mainly use a simpler form of the upper bound on the 
tangent (2.17), which uses tha t Iv^x* — res*)| >  \cl \ — ||resz||2 and

Together we gain for the new tangent the upper bound which we frequently refer to as 
the one-step bound

the bound on the convergence rate when exact solves are used (2.7). Further (2.18) is

entirely on its simplicity and its obvious relation to (exact) inverse iteration.
Bounds similar to (2.18) can be found in Smit and Paardekooper (1999), Golub and 

Ye (2000) and Simoncini and Elden (2002).

2 .2 .2  C o n v e rg e n c e  th e o r y

Based on the one-step bound (2.18) we state the general convergence result in Theo­
rem 2.1. Later in Section 2.2.3 we state the convergence for three practical methods 
as corollaries of this result.

T h e o re m  2.1 Consider inexact inverse iteration, defined by Algorithm 2, applied to 
A  G RnXn, A symmetric. Assume 3C i ,C 2, a  G M+ and (3 G [0,1] and C$ G [0,1) such 
that for all x* =  c*vi +  s*uz the shift satisfies

the lower one, as for exact solves see Section 2.1.

||(7 -  v iv f  )(x* -  re s l)||2 <  |sl | +  ||res*||2 .

t i+1 <
|Ai -  Gl I |s*| +  ||resz||2 
|A2 -  cri \ \c*\ -  Ureses

(2.18)

As ||res*||2=  0 for direct solves, above bound (2.18) can be seen as a generalisation of

an upper bound on the right-hand side of (2.17). The benefit of this bound is based

and that the residual satisfies

||resz||2 <  min{C2 |s*|^,C3 |cz|}

for a  +  (3 > 1. I f  the initial approximation x° =  c°vi +  5°u° is such that, c° ^  0, and

(2.19)
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then t l —► 0. Hence x* —> Vi and £>(xl) -> Ai.
P roo f: Define

C4 := |s0|a+'3- 1 2C1(l  +  C 2 ) ( l - C 3) - 1 | A 2 - A i | - 1,

then with the condition on the initial guess (2.19) and |s° |<  t° we have C\ <  1. Prom 
the one-step bound (2.18) we gain

ti+1 < i*i -  k i  +  iire s i i 2
— |A2 — <t*\ \cl \ — ||res*||2

2Ci |a»|a |s»| +C2
~  |A2 — *i| |c*| —C3 |cz|

I „i|a+/3—1
<  (2 .20)

Now we use induction to prove | s l+1 |<|s* | on the basis tha t | s l |< | s ° |  which is
satisfied for i = 0. For i > 0 we get by using (2.20) t l+1/t'lleC4 <  1 and therefore
|s*+1|<|s*| for i > 0. Further (2.20) leads to

ti+1 < C4f  <  . . .  <  (CA)i+1t°, 

and so t% -> 0. W ith (2.4) we gain

k M - A r l  <  (s‘)2 K u ^ fA u 1 -  Aj|

<  (t*)2 |A„ -  Arl,

hence p(x*) —> Ai. As Vi and — vi are the ‘same’ eigenvector of A  corresponding to Ai, 
assume without loss of generality that cl > const >  0, then ||x* — c V i ||2 < |sz| and 
hence x l -> v i. □

The conditions in Theorem 2.1 are not of direct practical use. In general they state 
if either the shift converges to Ai or the tolerance converges to zero and an adequate 
initial guess x° is given, then x* —> v i and £>(x*) -> Ai. However this result will play a 
key role in the efficiency analysis in Chapter 3. Further, condition (2.19) is marginally 
more restrictive than needed, as (t0)a+/3-1 could be replaced by |s ° |a+/3-1. Later in 
Chapter 3 we need condition (2.19) in the form stated here.

We note without proof that u* f t  V2 unless | A2 — crl \ < |Aj — cr*| for j  = 3 , . . .  , n 
and either t x/  |s*|—> 0 or res1 —> span(vi, v 2). To justify this we observe that

u ' +1 =  ~J+i(x%+1 ~ c'+ lv i)

=  ^ T l( ( A “  ~  res1) -  cl+1v 1)

17
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=  - J ^ ( A - a lI) l {slu l - r e s luu l - r e s lpp l)

= -  <r2/ ) _ 1((s2 -  r e s e l l1 -  reSpP1).

In order to achieve u 2 —>• V2 the p 2 component needs to vanish which implies that

reslp
— res;

- >  0 . (2 .21 )

If r 2/ s 2 -» 0 then (2.21) is satisfied. Now assume t% f s % >  const > 0, then s2 — reslu > 
const. Hence reSp/(s2 — reslu) >  reslpconst, therefore (2.21) implies reslp —> 0.

2 .2 .3  T h ree  p ra c tic a l m e th o d s

Next we consider three practical versions for the choice of a1 and r 2 to be used in 
inexact inverse iteration, Algorithm 2:

• (inexact) inverse iteration with fixed shift and decreasing tolerance,

cr2 =  <7° and t 2 =  m in(r°,C 2 |sz|), (2.22)

• (inexact) Rayleigh quotient iteration with fixed tolerance,

cr2 =  £>(x2) and t 2 =  r° , (2.23)

• (inexact) Rayleigh quotient iteration with decreasing tolerance,

(j2 =  g ix1) and = m in(r°, C2 |s*|). (2.24)

As s2 is usually unknown in practice one might use 

r* :=  m in(r°,C 2 ||r*'||) or

r j :=  min(T°,C2 Hr4! / 1 ^ ) 1 ) ,  (2.25)

motivated by (2.6). Smit and Paardekooper (1999) suggest a different approach for 
choosing r 2 based on data from two outer iterations

r i  =  m i n ( T°’ ( i + % $ ) ' - A  l|r<" ) ’ ( 2 ' 2 6 )

where ql :=||r2|| /  ||r2-1|| and v G [1, As q1 —> we observe that r 2 is
again linear in |s2|. Generalising the tolerance choice of Smit and Paardekooper (1999) 
to variable shifts is not straight forward as the denominator then contains £>(x2) — cr2.

18
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Another approach is to choose

t* := C (2. 27)

for a fixed 0 <  £ < 1, see Golub and Ye (2000). In practice a fixed shift a1 = a0 
together with (2.27) leads to linear convergence with a convergence rate

tt+1 ~  |Ai — cr—— «  max —-----
* \ | a2 -max ( 7T — ^oj> c) • (2-28)

Golub and Ye (2000) use this approach for the unsymmetric eigenvalue problem, 
though, obviously the result holds for symmetric problems. We discuss this approach 
further in Chapter 4.

The convergence results for these three practical methods can be written as Corol­
laries of Theorem 2.1. However for the the case of a fixed shift (2.22) we reformulate 
the statement to make it more readable.

C o ro lla ry  2.2 Apply Algorithm 2 with shift and tolerance chosen using (2.22) to A  G 
l nxn, symmetric. I f  t°  <   ̂ and x° such that

Ce :=  |c°| —r°  <  11 2̂'29)

where C5 :=|Ai — <r°| /  |A2 — Ai|, then tl <  (C§)lf i , hence £>(x*) —>• Ai and x* —> v i. 
P ro o f: We use the definition of C5 and and the definition of inexact inverse iteration 
using a fixed shift (2.22) to obtain from the one-step bound (2.18)

t i+1 < C6t* < . . <  {C6)i+1t°. (2.30)

By using the same argument as in the proof of Theorem 2.1 we obtain £>(x2) —> Ai 
and x l -» v i. □

Similar results have been published by Smit and Paardekooper (1999) and Golub 
and Ye (2000).

C o ro lla ry  2.3 Apply the RQ I with fixed tolerance, that is Algorithm 2 with shift and
tolerance chosen using (2.23), to A  € Rnxn, symmetric. I f  r°  <  ^ and x° such that

t° < -  \- 2________-__ (2 31)
* < 5  |A„ -  Ai |  1 +  t O ’

then tl —»• 0 quadratically.
P ro o f: The condition on i°, (2.31) implies | s ° |<  \  and hence |c° |>  y j  1 — ^  >  4/5.
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Now set C2 = C$ = 3/5, then with (2.23)

t % <  r°  < min{C2,C'3 |c°|} <  min{C2,C 3 |cz|}.

Further we use the bound on |Ai — g(x*)| <  |sz|2|An — Ai| from Section 2.1 and set 
Ci =|An — Ai|. Next we set a  = 2 and (3 = 0 to obtain

*0 _  (f0\a+p-l ^  1 1A2 All 1
[ t )  < 5 | A „ - A 1| 1  +  r°

<'-<»(! nh>)<  1 |A2 -  Ai|
2 Ci(l + C2)
1 _ | A 2 j - A l J _

-  2 Ci(l + C2) 3)'

Now we use the definition of the RQI with fixed tolerance (2.23) together with the fact 
that the RQ is quadratic in sl, (2.4) and get

I A i - ^ 1  <  |« ' | 2 |A„ — A i |

2 11 y 2 5  |A„ — Ax| \ 1  +  r °

< g l̂ 2 ”  *

Thus the conditions of Theorem 2.1 axe satisfied and we get t% —> 0. To prove the 
quadratic convergence we use the one-step bound (2.18) and the quadratic behaviour 
of the RQ (2.4). Further we use |c*| — ||resz||>|c°| —r l > |  \  ^  hence

f i+i <  lAi ~  ^1 W\ +  ||resz||2

<  Is

|A2 -< 7z| |cz| -  ||resz||2

i\2 0 I A ™  -  A l l 1  +  T °
|A2 -  AX| JL

Hence t t+1/( t f)2 < const, so f  —> 0 quadratically. □
The quadratic convergence of the RQI with fixed tolerance is also proven in Smit 

and Paardekooper (1999). In the following we prove the locally cubic convergence of 
the RQI with decreasing tolerance.

C o ro lla ry  2.4 Apply the RQ I with decreasing tolerance, that is Algorithm 2 with shift 
and tolerance chosen using (2.24), to A  e  MnXn, symmetric. I f  the tolerance r % < r°  <

20



2 .2  I n e x a c t  i n v e r s e  i t e r a t i o n

I , and the initial guess x° =  c°vi +  s°u° is such that

,0 1 lA2 -  All 1 (2 321
1 < 5  | A „ - A ! |  1 + t ° ’ (2 '32)

then f  —> 0 and locally

< 4 lA2_ Al l ( 1 + |An_ Al|).

P roo f: The conditions of Corollary 2.3 are satisfied hence t l -> 0. In the limit we have 
||resz|| <  |An — Aills1! <  J, hence

2 » + i  <  l A i  ~  ^ * 1  | g * l  +  l l r e s ' l l 2  
|A2 -  ol\ \cl \ -  ||res*||2

<  ls*|3 o ~  1+ |An ~  Al|
“  |A2 -  Ai| |cz| -  |s*||An -  Ai|

<  (f i+ l)3 |a" I a! | 4(1+  |A" ~ Ai|)

as |c*|> f . □
This result is not proven explicitly in Smit and Paardekooper (1999) but is implicit 

in their convergence result for inexact Rayleigh quotient iteration with fixed tolerance. 
In Section 2.1 we have seen tha t the convergence for inverse iteration with exact solves is 
linear for fixed shifts. The same is true for inexact inverse iteration with fixed shift and 
decreasing tolerance, see Corollary 2.2. While this is not surprising we have a similar 
situation for the Rayleigh quotient iteration. Recall, see Section 2.1 or see Ostrowski 
(1957) or Parlett (1980, Section 4.6), the Rayleigh quotient iteration with exact solves 
has locally cubic convergence. As proved in Corollary 2.4 the same is true for the 
inexact Rayleigh quotient iteration with tolerance condition linear in |s*|. However this 
is not the case when the residual condition t % is fixed as in case of Corollary 2.3. 

Numerical tests to illustrate the results will be presented in Section 2.3

2 .2 .4  R e la te d  lite r a tu r e

Lai et al. (1997) proposed a version of inexact inverse iteration to find the eigenvalue 
smallest in magnitude. As their algorithm is designed for a fixed shift and uses a 
decreasing tolerance, the convergence is only linear. Later in Chapter 3 we show that 
such linearly converging methods are not competitive, hence we do not discuss them 
in full detail.

For the symmetric eigenvalue problem Smit and Paardekooper (1999) proved con­
vergence for inexact inverse iteration using a fixed shift and the tolerance update for­
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mula (2.26). Further they proved quadratic convergence for the RQI with fixed toler­
ance. Tests with their stopping condition, which we do not present here, lead to inferior 
results compared with results based on conditions linear to the residual.

Another version of inexact inverse iteration is the inverse correction method from 
Rude and Schmid (1995), we discuss this approach in more detail in Section 3.5. A 
similar approach has been proposed by Golub and Ye (2000), together with the toler­
ance update (2.27). Both approaches are designed for a fixed shift and a decreasing 
tolerance, hence their convergence is only linear. However we do not present these 
results here.

Neymeyr (2001a,b) considers only the smallest eigenvalue for a positive definite 
m atrix A  in his geometrical approach for preconditioned inverse iteration. The analysis 
is geared towards the use of multigrid as a linear solver.

The preconditioned approach by Simoncini and Elden (2002) we discuss later in 
Section 3.6.1 in more detail. However Simoncini and Elden (2002, Theorem 4.1) 
derive a result similar to (2.17) for unpreconditioned MINRES solves.

The lower bound on the new tangent, see (2.17), can be used to understand why 
certain variations of inexact inverse iteration do not converge. In cases reported by 
Rude and Schmid (1995) and Hawkins (1999) the residual condition r % and the shift 
a% have been fixed, so convergence is not secured. And the lower bound on the new 
tangent, (2.17) shows that a fixed tolerance t1 and a fixed shift o l lead to stagnation 
if res1 7A v i, and res* 7A 0. Due to practical experience we know that the residual is 
unlikely to converge towards span{vi}, but is not impossible.

Earlier we assumed that the RQ is the best approximation known for the sought 
eigenvalue. However Ostrowski (1958) states an update on the Rayleigh quotient using 
two successive iterates of Algorithm 1 with o% — £>(x*) which gives a minor advantage 
over the Rayleigh quotient. The technique from Ostrowski (1958) is based on experi­
mental knowledge in case of exact solves. Such empirical relations break down when 
the convergence has an undetermined random part, which is the case for inexact inverse 
iteration. Another approach to improve on the Rayleigh quotient, according to Parlett 
(1980, p. 149) is the Wilkinson shift, which is basically a 2 x 2 subspace approximation. 
However we do not investigate such shifts here, despite their advantage with respect to 
global convergence.

Even with exact solves RQI lacks global convergence. Therefore in a practical 
situation when one seeks an eigenvalue in a given interval, it is sensible to start with 
a fixed shift and switch to the RQI once the RQ is inside the interval. For more on 
this issue see Szyld (1988). As the conditions in Corollaries 2.3 and 2.4 ensure tha t the 
RQ is closer to the eigenvalue of interest than to any other the RQI converges to the 
desired eigenpair. However this observation is based on the fact that the RQI is more 
efficient than inverse iteration with a fixed shift. While this is a known fact for direct

22



2 .3  N u m e r i c a l  E x a m p l e s

solves, in Chapter 3 we shall show tha t this is also the case for inexact solves.
As we explained in Chapter 1 an extension of the RQI to subspaces is given by 

Absil et al. (2002). In the one dimensional case the Grassmann RQI is equal to the 
RQI.

2.3 Numerical Examples

In this section we illustrate the convergence results established in the previous sec­
tion. To do so we consider two examples ‘Poisson’ and ‘bcsstk09’, which is a matrix 
from h t t p :  //gam s . n i s t  .gov/M atrixM arket, which we introduce in Section 2.3.1. The 
example ‘bcsstk09’ will be used to illustrate the convergence behaviour in practical sit­
uations. Due to the limitation of machine precision the difference between quadratic 
and cubic convergence is not observable using ‘bcsstk09’, so we consider the example 
‘Poisson’ using variable precision arithmetic to demonstrate the differences between 
quadratic and cubic convergence.

We start by defining some abbreviations for the considered practical methods in 
Section 2.3.1. Then in Section 2.3.2 we consider specific tests for the considered exam­
ples and methods. These tests will be discussed in light of the convergence analysis of 
Section 2.1. Finally in Section 2.3.3 we give a short summary.

2 .3 .1  N o ta t io n  an d  ex a m p les

In the following definition of some abbreviations we use the constants Ci, C2, and 
C3 referring to the constants Ci, C2, and C3 respectively in Theorem 2.1. The tilde 
indicates tha t the use of these constants is altered.

In v it stands for inverse iteration with fixed shift and decreasing tolerance, 
o% =  g° and t % =  min{C2 |^ | - 1||rl ||2, C3}.

R Q If is the Rayleigh quotient iteration with fixed tolerance, ox =  q% and r l =  C3.

R Q Id  is the Rayleigh quotient iteration with decreasing tolerance, a1 = g% and r % =  

min{C2

This list will be extended in Chapter 3, when we discuss more variations of inexact 
inverse iteration. Additional to the residual stopping condition ||re s z||<  r z we stop 
the inner iteration when the target for the outer iteration is reached. This is primarily 
done to improve the robustness of the methods. Robustness and stopping conditions 
to improve the robustness are discussed later in Section 3.7.1.

P o isson  eigenvalue problem on a rectangular domain with aspect ratio 1/1.3 and 
Dirichlet boundary conditions. For the discretisation we use thirteen grid points

23



2 .3  N u m e r i c a l  E x a m p l e s

per direction and a second order central finite difference scheme. We consider 
only the smallest eigenvalue of this 121 x 121 matrix,

ith smallest 1 2 121
value 15.6 32.6 901.2

bcsstk 0 9  is a real symmetric matrix from Matrix-Market which we use for this exam­
ple. All tests presented have the same starting vector x° =  c°vi +  s°u° where 
t° = s°/c° = 0.02. We try to find the 20th smallest eigenvalue of the 1083 x 1083 
matrix. In the following table we summarise those eigenvalues which describe the 
difficulty for the corresponding tests.

i th smallest 19 20 21 1083
value 3.7e+5 4.1e+5 4.4e+5 6.7e+7

2 .3 .2  R e su lts  an d  in te r p r e ta tio n

In this section we illustrate the convergence behaviour for the methods defined in 
Section 2.3.1. First we consider the example ‘bcsstk09’ and compare the methods 
derived from the theory as developed in Section 2.2. Then we use the example ‘Poisson’ 
to illustrate the difference between the quadratic convergence of RQIf and the cubic 
convergence of RQId.

In order to compare the test result easily we restrict to examples starting with the 
same starting vector, which is constructed by multiplying the matrix of eigenvectors 
by a random vector. Further we restrict ourselves to a few tests in order to illustrate 
a few key points. However we completed tests with different matrices, with different 
linear solvers, with different initial conditions and all these tests underline the findings 
we will present here unless otherwise stated.

T est 2.1 Consider Invit using unpreconditioned M INRES applied to (bcsstk09’. We 
try to find the 2 0 th smallest eigenvalue and use ||r*|| /  |^*|< 10-10 as stopping condition 
for the outer method. We present tests for two different sets of parameter values in 
Table 2.1. The first set of parameters is C2 = 1 and C3 =  0.2 while the second is 
C2 = 0.25 and C3 =  0.02. In Table 2.1 we list the norm of the eigenvalue residual ||r®||, 
the tangent tz and the progress tl+l/ t l against the number of outer iterations i. The 
tangent is calculated using an eigenvector approximation with relative accuracy 10-12.

For Test 2.1, Corollary 2.2 predicts linear convergence with a convergence rate of 
at least t%+1 /t* < 0.538 for exact solves. From the test results, Table 2.1, we see that 
this rate of convergence can be obtained with inexact solves. We observed this effect 
only when using unpreconditioned MINRES as a linear solver. Occasionally when 
using unpreconditioned MINRES we experienced in the early stages of Invit that the 
convergence rate was significantly better than the convergence bound would suggest.
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c 2 = i c 3 = 0.2 c 2 = 0.25 C3 = 0.02
i II r || f

t*+i
t* II r || f ti+1

ti
0 5.0e+05 2.0e-02 2.07e-01 5.0e+05 2.0e-02 1.05e-01
1 2.7e+03 4.1e-03 3.43e-01 3.8e+02 2.1e-03 2.68e-01
2 1.0e+02 1.4e-03 3.62e-01 3.0e+01 5.6e-04 4.47e-01
3 2.1e+01 5.1e-04 4.61e-01 1.0e+01 2.5e-04 5.06e-01
4 9.4e+00 2.4e-04 5.01e-01 5.0e+00 1.3e-04 5.24e-01
5 4.7e+00 1.2e-04 5.15e-01 2.6e+00 6.7e-05 5.30e-01
6 2.4e+00 6.1e-05 5.20e-01 1.4e+00 3.5e-05 5.32e-01
7 1.3e+00 3.2e-05 5.22e-01 7.4e-01 1.9e-05 5.34e-01
8 6.6e-01 1.7e-05 5.24e-01 3.9e-01 1.0e-05 5.35e-01
9 3.4e-01 8.7e-06 5.25e-01 2.1e-01 5.4e-06 5.35e-01
10 1.8e-01 4.6e-06 5.25e-01 l . le -01 2.9e-06 5.36e-01
11 9.5e-02 2.4e-06 5.26e-01 6.0e-02 1.5e-06 5.36e~01
12 5.0e-02 1.3e-06 5.25e-01 3.2e-02 8.3e-07 5.37e-01
13 2.6e-02 6.6e-07 5.25e-01 1.7e-02 4.4e-07 5.37e-01
14 1.4e-02 3.5e-07 5.26e-01 9.3e-03 2.4e-07 5.37e-01
15 7.2e-03 1.8e-07 5.26e-01 5.0e-03 1.3e-07 5.37e-01
16 3.8e-03 9.6e-08 5.26e-01 2.7e-03 6.9e-08 5.37e-01
17 2.0e-03 5.1e-08 5.26e-01 1.4e-03 3.7e-08 5.37e-01
18 l.le-03 2.7e-08 5.26e-01 7.7e-04 2.0e-08 5.37e-01
19 5.5e-04 1.4e-08 5.27e-01 4.1e-04 l.le-08 5.37e-01
20 2.9e-04 7.4e-09 5.27e-01 2.2e-04 5.7e-09 5.37e-01
21 1.5e-04 3.9e-09 5.27e-01 1.2e-04 3.1e-09 5.37e-01
22 8.1e-05 2.1e-09 1.07e-01 6.4e-05 1.6e-09 1.29e-01
23 4.0e-05 2.21e-10 3.0e-05 2.12e-10

Table 2.1 Invit using MINRES on ‘bcsstk09’ (Test 2.1)

RQIf RQId
C3 = 0.2 C2 = 1 and C3 =  0.2

0 5.0e+05
f

2.0e-02

tt+1

2.07e-01
II r ||

5.0e+05
f

2.0e-02

ti+1

2.07e-01
1 2.7e+03 4.1e-03 8.05e-04 2.7e+03 4.1e-03 2.55e-05
2 4.2e-01 3.3e-06 2.89e-05 1.6e-02 l.le-07 3.88e-03
3 3.9e-05 9.62e-ll 3.8e-05 4.10e-10

Table 2.2: RQIf and RQId using MINRES on ‘bcsstk09’ (Test 2.2)
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However this effect depends on the initial approximation x° and is linked with the 
regularization effect of MINRES, see Kilmer and Stewart (1999). Considerable gains 
can be obtained in the first outer iteration when the starting vector is biased towards 
the eigenvectors corresponding to eigenvalues furthest from the sought eigenvalue.

T est 2.2 We repeat Test 2.1 for R Q If and RQId. The corresponding results are pre­
sented in Table 2.2. We only show data for one set of parameters each, C3 =  0.2 for 
R Q If while C2 = 1 and C3 =  0.2 for RQId.

While Corollary 2.3 predicts only quadratic convergence for RQIf, Corollary 2.4 
predicts cubic convergence for RQId. However in the corresponding test they hardly 
differ. Both algorithms start with the same shift a 0 and tolerance r° , hence they obtain 
the same tangent t 1 and the same RQ a 1 — gl . Then in the next iteration the tolerance 
differs marginally, hence we expect a slightly better improvement for RQId than for 
RQIf in iteration i =  2. However the improvement is considerably better, RQId is 
about a factor 30 better than RQIf, the latter exhibiting quadratic convergence. This 
additional improvement is due to the erratic directions in the residual and can have 
positive and negative results. More importantly these changes do not violate the one 
step bound (2.18).

T est 2.3 Here we repeat Tests 2.1 and 2.2 using preconditioned MINRES. The pre­
conditioner is constructed using the MatLab routine choline with droptol = 10-2 . Cor­
responding results are in Tables 2.3 and 2.4-

While for Invit using unpreconditioned MINRES we observed a convergence rate 
better than the convergence bound for exact inverse iteration we now recover the con­
vergence ratio t l+1 / t l «  0.538. Comparing Tables 2.1 and 2.3 as well as 2.2 and 2.4 we 
see tha t the change of the solver has no significant effect on the outer convergence.

Due to the limitations of the machine precision the results are inconclusive with 
regard to the actual convergence behaviour of RQIf and RQId. Hence we consider a 
test using variable precision arithmetic.

T est 2.4 We use R Q If and RQId on ‘Poisson’ together with unpreconditioned M IN­
RES. In all test runs we try to find the smallest eigenvalue to an accuracy o f tN ~  10~80. 
Therefore we use as a stopping condition for the outer method ||rl ||2 /  |#l |. The results 
are presented in Table 2.5.

As the test matrix is only of size 121 x 121 the next iteration using unpreconditioned 
MINRES would use 121 inner iteration k% and would therefore be exact. Further the 
comparison solution needed to calculate t 1 only has 128 decimal digits accuracy. Hence 
we used the stopping condition t l < 10~80. The results presented in Table 2.5 reflect 
the theoretical prediction. We additionally observe tha t the quadratically converging 
RQIf only needs one outer iteration more than the cubicly converging RQId. We 
also tabulate the number of inner iterations k l , we will discuss these in more detail
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c 2 = i c 3 =: 0.2 c 2 = 0.25 C3 ■■= 0.02
i
0 5.0e+05

f
2.0e-02

ti+i

1.04e+00 5.0e+05
f

2.0e-02

tt+1

6.87e-02
1 1.6e+03 2.1e-02 5.06e-01 3.9e+02 1.4e-03 4.67e-01
2 4.2e+02 l . le -02 5.25e-01 2.6e+01 6.4e-04 5.24e-01
3 2.2e+02 5.5e-03 5.30e-01 1.3e+01 3.4e-04 5.33e-01
4 1.2e+02 2.9e-03 5.33e-01 7.0e+00 1.8e-04 5.36e-01
5 6.1e+01 1.6e-03 5.34e-01 3.7e+00 9.6e-05 5.37e-01
6 3.3e+01 8.3e-04 5.35e-01 2.0e+00 5.2e-05 5.37e-01
7 1.7e+01 4.5e-04 5.36e-01 l . le +00 2.8e-05 5.37e-01
8 9.3e+00 2.4e-04 5.36e-01 5.8e-01 1.5e-05 5.37e-01
9 5.0e+00 1.3e-04 5.37e-01 3.1e-01 8.0e-06 5.37e-01
10 2.7e+00 6.9e-05 5.37e-01 1.7e-01 4.3e-06 5.38e-01
11 1.4e+00 3.7e-05 5.37e-01 9.0e-02 2.3e-06 5.38e-01
12 7.7e-01 2.0e-05 5.37e-01 4.8e-02 1.2e-06 5.38e-01
13 4.2e-01 l.le-05 5.38e-01 2.6e-02 6.7e-07 5.38e-01
14 2.2e-01 5.7e-06 5.38e-01 1.4e-02 3.6e-07 5.38e-01
15 1.2e-01 3.1e-06 5.38e-01 7.5e-03 1.9e-07 5.38e-01
16 6.5e-02 1.7e-06 5.38e-01 4.0e-03 1.0e-07 5.38e-01
17 3.5e-02 8.9e-07 5.38e-01 2.2e-03 5.6e-08 5.38e-01
18 1.9e-02 4.8e-07 5.38e-01 1.2e-03 3.0e-08 5.38e-01
19 1.0e-02 2.6e-07 5.38e-01 6.3e-04 1.6e-08 5.38e-01
20 5.4e-03 1.4e-07 5.38e-01 3.4e-04 8.7e-09 5.38e-01
21 2.9e-03 7.4e-08 5.38e-01 1.8e-04 4.7e-09 5.38e-01
22 1.6e-03 4.0e-08 5.37e-01 9.8e-05 2.5e-09 5.38e-01
23 8.4e-04 2.2e-08 5.38e-01 5.3e-05 1.3e-09 5.40e-01
24 4.5e-04 1.2e-08 5.38e-01 3.8e-05 7.3e-10
25 2.4e-04 6.2e-09 5.38e-01
26 1.3e-04 3.3e-09 5.38e-01
27 7.0e-05 1.8e-09 5.38e-01
28 4.0e-05 9.69e-10

Table 2.3: Invit using prec. MINRES on ‘bcsstk09’ (Test 2.3)

RQIf RQId
C3 = 0.2 c 2 = 1 and C3 =  0.2

0
II r ||

5.0e+05
f

2.0e-02

tl+L
tx

1.04e+00 5.0e+05
f

2.0e-02 1.04e+00
1 1.6e+03 2.1e-02 7.67e-04 1.6e+03 2.1e-02 4.11e-04
2 2.7e+00 1.6e-05 4.82e-06 3.4e-01 8.6e-06 1.15e-05
3 1.9e-05 7.70e-ll 2.5e-05 9.82e-ll

Table 2.4: RQIf and RQId using prec. MINRES on ‘bcsstk09’ (Test 2.3)
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RQIf RQId
i logio k{ logio kl
0 -0.12 19 -0.14 15
1 -1.41 19 -1.62 24
2 -3.85 33 -4.33 45
3 -9.03 50 -12.90 78
4 -19.46 76 -36.19 113
5 -40.72 108 -82.66
6 -82.96

305 275

Table 2.5: Cubic is better than quadratic (Test 2.4)

in Chapter 3. However we observe that the number of inner iterations per outer 
iteration is larger when using RQId than when using RQIf, though the overall number 
of MINRES iteration needed for RQId is 30 fewer than for RQIf. The understanding 
of these effects will be one aim of Chapter 3.

2 .3 .3  C o n c lu sio n

In Section 2.2 we proved the convergence of inexact inverse iteration for general choices 
of (7* and t 1 independent of the linear solver applied. We then specified three practi­
cal versions of inexact inverse iteration, which we later called Invit, RQIf and RQId. 
Our convergence analysis for Invit and RQIf extents the results from Golub and Ye 
(2000) and Smit and Paardekooper (1999). We also showed how the cubic convergence 
behaviour of exact inverse iteration can be recovered.

Next we provided some numerical examples to illustrate our convergence results. 
These numerical results confirm our theoretical findings. Further the numerical results 
indicate tha t the difference between quadratic and cubic convergence is negligible for 
limited machine precision. So it is not worth the effort to obtain cubic convergence. 
Finally we observed that the cubically converging RQId uses fewer MINRES iterations 
overall, despite this it uses more MINRES iterations per outer iteration than RQIf.

So far we only have an understanding of the outer convergence but no insight in the 
interplay between the outer and inner iterations. In order to study this interplay we 
have to specify a linear solver. This will be done in Chapter 3, where we also analyse 
some other variations of inexact inverse iteration.
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Chapter 3

Efficient Variations of Inexact 
Inverse Iteration using M INRES

In Chapter 1 we explained the need for finding an efficient variation of inexact inverse 
iteration. Such a variation takes its strength from the interplay with the linear solver in 
use, meaning a certain variation might be optimal if MINRES is used as linear solver, 
but the same variation might perform poorly when for example MultiGrid is used for 
the linear solve. Hence we will focus on two particular solvers which will be MINRES 
with and without preconditioning. The decision to use MINRES is based on a variety 
of reasons including the amount of storage required by the linear solver. Further, 
the theory for MINRES links directly with the outer convergence theory as MINRES 
minimises the residual norm over a (Krylov) subspace which is iteratively extended. 
In Chapter 2 we proved convergence of inexact inverse iteration for general choices of 
shifts o% and residual tolerance constraints r \  While the convergence results only give 
insight which choices for a% and r l are preferable for the outer iteration, they do not 
give much help in understanding the overall performance. One task of this chapter is 
to analyse the effect the choice of u% and r l has on the performance of MINRES with 
respect to the eigenvalue problem. Based on this analysis, which we call the ‘efficiency 
analysis’, we observe how o l and t % need to be chosen to gain an efficient method. A 
key result of the efficiency analysis is tha t methods with shifts converging towards the 
sought eigenvalue are most efficient. Further by studying some variations of inexact 
inverse iteration as suggested by Simoncini and Elden (2002), we observe that a right 
hand side tailored to the preconditioner used in MINRES reduces the cost of a linear 
solve.

In case the shift converges to the sought eigenvalue the linear systems get harder to 
solve. The application of GMRES to such systems was studied in Brown and Walker 
(1997). As MINRES is a special implementation of GMRES for symmetric matrices, 
the results of Brown and Walker (1997) are also valid here. An almost singular system
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can cause problems especially if a good solution of the system is needed, that is the 
error in the solution should be small. However we are not primarily interested in 
solving the linear system but gaining a good approximation of the sought eigenvector. 
As the analysis of van der Vorst and Vuik (1993) shows, the convergence of a Krylov 
technique like MINRES is not hampered too much by a few critical eigenvalues. We 
will explore this in more detail in the convergence analysis for MINRES. Nevertheless a 
possible danger of unreliability remains as the linear system is inconsistent. Due to the 
round off errors, the system will hardly be ever exactly singular, but almost singular. 
However to maintain robustness of MINRES with respect to the eigenvalue problem we 
will discuss some additional stopping conditions including monitoring the eigenvalue 
inside of MINRES.

The scope of this Chapter is as follows. First in Section 3.1 we discuss independent 
of any particular linear solver how the number of outer iterations is effected by the 
choice of o% and r \  Then in Section 3.2 we discuss the convergence of MINRES 
and provide a bound on the linear solve residual tailored to our later needs. Then 
in Section 3.3 we link the convergence results of inexact inverse iteration to the cost 
when MINRES is used to solve the linear systems. By these means a bound on the 
overall cost of solving the eigenvalue problem is obtained. This result is then used to 
show tha t using a shift converging towards the sought eigenvalue reduces the overall 
cost. We extend the analysis of Section 3.3 for the use of preconditioned MINRES 
in Section 3.4. In Section 3.5, we consider the Inverse Correction Method suggested 
by Rude and Schmid (1995), as an alternative to inexact inverse iteration. We will 
extend our convergence and efficiency analysis to this case. In Section 3.6 we analyse a 
generalisation of inexact inverse iteration using modified right-hand sides. This method 
is motivated by Scott (1981) and extends the ideas of Simoncini and Elden (2002) to 
arbitrary but fixed positive definite preconditioners. Convergence and efficiency results 
as in previous sections are given. The discussion on stopping conditions and robustness 
is presented in Section 3.7. Section 3.8 is devoted to numerical experiments illustrating 
the quality of the theoretical results. In this test section we also compare the different 
variations of inexact inverse iteration, and observe tha t our newly proposed method 
outperforms other versions of inexact inverse iteration with respect to reliability and 
efficiency.

3.1 Num ber of outer iterations

In this section we show how the number of outer iterations, tha t is the number of 
iterations of inexact inverse iteration, Af, depends on the shift, the tolerance parameters 
and the gap |A2 — Ai|. Therefore we derive an upper bound on M  and prove the (almost 
obvious) result tha t this bound decreases when the outer convergence rate increases.
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We note that the analysis we use in this section is independent of the linear solver 
applied to the linear system.

D efin ition  3.1 Given sequence (cr1) and (r l) and a constant 7 > 0, then define Af to be 
the number of outer iterations needed to improve a current eigenvector approximation 
x° with the approximation quality t° by a factor 10-7 , where 7 > 0 .

For example a method to choose o% and t % is given by the RQI with fixed tolerance 
(i.e. a 1 = g(xl) and r l =  r°), or in a more abstract fashion for example by a* such that 

l^i _  &%\ <  |^ |a and t 1 = \ s f
Obviously Af  depends on 7 , the shifts <7l , and the tolerance constraints t % as chosen 

in each iteration. As the following result shows Af also depends on the starting value 
as t° is fixed given an initial approximation x°.

Lem m a 3.2  Consider inexact inverse iteration, defined by Algorithm 2, for symmetric 
A G Rnxn, and assume the conditions of Theorem 2.1 hold. Further assume that Af is 
such that t ^  < 10~7£°. Then for a  + (3 > 1 , Af < 1 + [A/’*], where for a  +  (3 >

Af* :=
log(<a +  (3)

log
log

£°10-7
1 1 1 \

a + 0 - 1  ° g C4

logi +̂ b r log
(3.1)

<?4

and for a  + {3 = 1 , A f < 1 + [A/”*], where

Af* :=
log 107
iiog c 4r

(3.2)

Here C4 := 2Ci |A2 -  Ai|_1 (1 +  C2) ( l  -  C3 ) - 1.
P ro o f: To simplify the notation we define <5 := a  +  (3.

As the conditions of Theorem 2.1 hold, tf —> 0, and for any 7 > 0 there exists Af 
such tha t <  £°10-7  < t ^ ~ l .

Next we use the one-step bound, (2.18) to obtain

i+i <  lAi -  ° l \ k*l +  Ilre s1l2
|A2 — (7*| |c*| — ||res*||2 

{ 2Ci ] £ £  1 + C2 

|A2 — A i| |c*| 1  — C 3 

C4.

<

Using this argument repeatedly we observe

t° io~ 7 < t ^ - 1 < c 4 < c 4 ( c 4 ( t * - 3) 6^

< < ( Q )1 +  6  +  5 2  +  • ' '  +  (t0) 6*  1 . (3.3)
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For 5 = 1, we obtain Af < 1 +  , and as Af € N we have proven the statement
for a  + (3 = 1.

For the case <5 > 1, we obtain from (3.3)

jJV-i _  !

t ° 10“7 < (C4) * - 1  («0)'
W -l

which gives by taking logarithms 

l o g ^ i c r 7) <

Rearranging yields

1 _  i
<5-1

log C4 +  <5̂  1 log t

log(£°10 7) +  log C4 < <5̂  1 ^ logt0 +  log C ^j .

The conditions ensure tha t {tQ)5 ~l C4 < 1, hence log£° +  (<5 — I )-1 logC4 < 0. Hence, 
dividing by the second factor on the right-hand side leads to

rA/’- l < loĝ  + ̂ Tloĝ
1 1 1 , 1io^  + ^ o g -

(3.4)

Again we take the logarithm, divide by log 8 , and substitute back in <5 =  a  +  /?, to 
obtain

A f  < 1 +
log (a +  P)

log
log + loS ^<°10-T ' a  + P -  1 &C4

V
log 7n +

1
l°g 7Tt° a  + P - 1 b C4 /

We conclude the proof by noting that Af £  N, hence Af < 1 + [W*]. □
We remark that in Lemma 3.2 we split the cases a  + p  = 1 and a  + P > 1. However 

this split does not lead to a discontinuity since for a  + P = 1 we have C4 < 1 and one 
verifies by using the rule of de l’Hospital that

lim
<S->1

1 log 
log —

1 1 ! 1 \
t° lO-i' +  <5 -  1 ° S C4

log<T~° , 1 , 1 , 1
lo g ^ + 5 3 T lo« Q  /

log 107 
I log C4\ '

In practice it is well known that, for example, the RQI needs fewer iterations than 
inverse iteration using a fixed shift. However for mathematical rigour we now state and 
prove a more general version of this practical experience.
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L em m a 3.3 Under the assumptions of Lemma 3.2, J\f*, as defined in Lemma 3.2, is 
decreasing in a  +  (3.
P ro o f: Define J and C4 according to Lemma 3.2. Additionally we define

loŝ  + ̂ Tlogi
SW  := ‘ I--------1 1

g  t °  +  g  c l

1 +  7 log 10
1 1 1 1 1
log^  +  ^ i lo g ^

and f(S ) := log(g(<5)).

To show Af is decreasing in 8  for 8  > 1, we will show tha t f ' ( 8 ) <  0. 
As C4 (t0)^-  ̂ <  1 we have

lo4  +  i 3 i lo g i  >  °-

Hence g(8 ) > 1, and f ( 8 ) > 0. Next we note

( - 7  log 10) f - loS ^ r

9  W  / x x x \2

( log^  +  S ^ T log^ )  { s ~ 1 ) 2

and so sign(#'(<5)) =  sign(log(l/C4)), or equivalently

g'{8 ) < 0  &  C4 >  1. (3.5)

We draw our attention back to f ( 8 ) and observe for the case C4 >  1

™ = ( » l loĝ +i ^ ) ^ <0-
For C4 < 1 the above approach is indecisive and not of much use. Instead we will 

study

sign (/'(* )) =  sig n ( l i m / ( * +  £> - / W ) .

Let 8  +  e > 1 and define h(e) :=  logj+£ 8  =  log 8 /  log(J +  e), then

ti(e) =  7 7 ^ — < 0. (3.6)
w  (log(£ +  e))2 8  + e v '
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Finally we observe

f ( 6  + e ) - f ( 6 ) <  0 

^  log(6 ) f ( 8  + e) < log(S) f ( 8 )

exp (log(5)f(8 + £)) <  exp (log(6)f{5))

&  exp (h(e) log(^(J +  e))) <  exp (h(0 ) log(g{8 )))

o  (̂ (<5 +  £))ft(e) <  (g(S))h^

<= f e W  + e ) ) * '  = h'(e)lo 6 (g(S + e ))(g ( 6  + e))h^ g '( S  + e) < 0,

where the last line is satisfied for C4 < 1 as h'(e) <  0, see (3.6), and g{5 + e) > 1, while
g'(5 +  e) >  0, see (3.5). □

Lemma 3.3 only states the behaviour of Af* with respect to a  +  (3 but not with re­
spect to the remaining parameters. To analyse the dependence of Af* on the remaining 
parameters we simplify the expression for A/**,(3.1), to

Af* =
log(a +  P)

log

f

1 +
7 log 10

\
v l04 +̂ r^il0gA/

(3.7)

Differentiating Af* with respect to t° gives for a  4- p  > 1

dAf*
log(a +  (3) - ^ 5-

7 log 10

1 + 7 log 10
, 1 
loS 5  +

1
t° a  +  P — 1 C4

l0 g 4  Vloĝ +̂ n logi)
tl (3.8)

which is positive. Similar the derivative with respect to C4 is also positive. So by 
tightening the convergence condition or the condition on the initial approximation we 
decrease C4 or t°, hence the bound on the number of outer iterations Af decreases.

3.2 M INRES

3 .2 .1  S ta n d a rd  co n v erg en ce  a n a ly s is

Introduced by Paige and Saunders (1975), MINRES is a Galerkin Krylov technique 
for solving linear systems. Given B  E Rnxn nonsingular and b E Rn , then MINRES 
calculates iteratively an approximation y*, to the solution y of the linear system B y  = 
b. As initial guess we take yo =  0. The approximation y*, E /Ĉ  is optimal in the sense
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tha t it satisfies

||b -  B y k\\2= min ||b -  S y ||2 .
ye/Cfc

The subspace K k = JCk{B, b) :=  span{b, B b , . . . ,  (J5)fc-1b} is called the Krylov-space.
Before we discuss the convergence of MINRES we state a result on min-max polyno­

mials based on Chebyshev approximation. For more detail on approximating min-max 
polynomials using Chebyshev polynomials see Appendix A. To state this result we 
define the set of normalised polynomials of degree <  k ,

U\ := { / | /  polynomial, /(0 ) =  1, and degree(/) <  k}. (3.9)

L em m a 3.4 Given D  C R  compact and 0 0  D then

mil! max | / ( 0 |  <  p q k, (3.10)
/en f ZeD

where p =  1 and q = if  D  C M+ or D  C R” , and 1/p = q — if  3 £ i,£2 £ D
such that £1 <  0 < £2. Here k  := maxfe£> |£| /m in ^ #  |£|.
P ro o f: See Appendix A, Corollary A.3 part 1 for D  C M+ or D  C Mr and Corol­
lary A.3 part 2 for the other case. □

For the case where 3 £1,62 with £1 <  0 <  £2 the bound is usually written as

min max |/(£ )| <
feu\ £&d \K  +  1

however the form in Lemma 3.4 is more convenient later.
When D  is the set of eigenvalues of a matrix, say B , then k is referred to as the 

condition number of B. If D  contains a subset of eigenvalues of B  then k is referred 
to as the reduced condition number. Obviously if k —> 00 then q —> 1 and the rate of 
convergence deteriorates.

Now consider £1 G D  close to zero, and D\ :=  D \{£i} being well separated from 
zero, then k (D i ) -C k (D). Therefore it might be appropriate to treat £1 separately. If 
/ ^ n J then <?(£) =  /(£)(£  -  £i)/£i G I l£+1 and

max |#(£)| <  max -  - f— max |/(£ )| .

If most of the eigenvalues have the same sign and only a few are on the other side 
of the origin, a similar treatment of the few would give q =  instead of q = y/
This common technique can, for example, be found in Hackbusch (1994, Section 7.3.6).
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Given a set T C Nn we define

Qr := d i a g ^ f r ) , . . . , ^ ^ ) )  (3.11)

where <^(r) =  0 if j  E T and S j ( T )  = 1 otherwise.
The convergence result for MINRES which we now present is based on a polynomial 

bound on the MINRES residual after k (inner) iterations

d k := b - B y k. (3.12)

L em m a 3.5 Consider M INRES being applied to B y  = b. Let B  be non-singular and 
have the eigenvalue decomposition B  = W A BW T with A b  = diag(pi,. . . ,  fin). Then 
M INRES converges and for all T C Nn with 1 E T and p,j E D for j  0  T, there exists 
p > 0 and qr := q E (0,1) as defined in Lemma 3.4, such that

||djk||2 < (qr)k~ ^P r  M - 1||Q rW Tb ||2 (3.13)

where

PT := (3.14)

P roo f: We use that for any y  E lCk there exists a polynomial h of degree < k — 1 such 
that y  can be written as y  =  h (B )b and therefore d =  b — B h (B )b G n£. Hence we 
obtain

||dfc||2 =  min ||b -  R y ||2y€K.k
= min ||/(H )b ||2

/€  ni 

=  min \\f{W A BW T)b \\2 
/en j  

=  min \\f(A B)W Tb \\2 . 
/en l

Now set g(£) := H jeT thenMj

l|dfc||2 =  min \\f(A B)g(AB)W Tb \\2

f* pk-m
min \\f{AB)g(AB)QrW Tb \ \2

fe pL \n

< min \\f (AB)g(AB)Qr\\ ||Qr^Tb||2
f t pL\r\
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< min max \\f{ fij)g ^ j)\\ ||Qr ^ Tb ||2fcpi ieN .\r/ s P L in ^ N" \r

J (  max_ | |Q r ^ Tb ||2
J  \j€Nn\r J

min max \\f{fij)\\ 
/€^ -,n JeN „\r

< (Qr)k |r|Pr |/il| ^ I Q r ^ b l b  •

As qr E (0,1) and pr5 | p i |  1 and ||Q r ^ Tb ||2 are bounded, therefore || d*. ||—> 0 as

The basic idea of this analysis can be found in Hackbusch (1994, Section 7.3.6). 
van der Vorst and Vuik (1993) use a similar analysis to study the superlinear conver­
gence of GMRES. A more detailed discussion of the convergence of MINRES can be 
found in Ipsen (1998a). For a derivation of the algorithm based on polynomials see 
Fischer (1996). As MINRES can be viewed as a special implementation of GMRES, 
one can apply the convergence results for GMRES, see for example Kelley (1995) and 
Greenbaum (1997).

A traditional observation for Krylov methods is tha t the algorithm should not take 
more than n  iterations to find an exact solution. This result can be obtained from 
Lemma 3.5 by setting T =  Nn , then ||Qr VrTxt ||2=  0 and hence ||res^||2=  0.

3 .2 .2  M IN R E S  as linear so lv er  for sh ifte d  sy ste m s

In later sections we apply MINRES to sequences of shifted linear systems. Further 
we will consider the cases where either unpreconditioned MINRES or preconditioned 
MINRES is applied to such a sequence. To simplify later analysis we discuss both cases 
here and present a Corollary to Lemma 3.5 applicable to both situations.

Given the linear systems (A — alI ) y l = b*, for our application of MINRES, that 
is as a linear solver in inexact inverse iteration, a 1 will vary only in certain intervals, 
say 0 <|Ai — <r*|< ^ |A2 — Ai|, where |A2 — Ai|<|Aj — Ai| for j  =  3, . . .  ,n.  Therefore 3 
a, b > 0 such that a <|Aj — cr*|< b for all j  > 2 and |Ai — crl \< b. Then all eigenvalues 
are bounded and the only eigenvalue which is not separated from the origin is Ai — a*.

In case of preconditioned MINRES solves we apply to (A — <Jl/ ) y  =  b* a symmetric 
positive preconditioner, say P. As P  is spd there exists Pi such that P iP ^  =  P , for 
example a Cholesky preconditioner or the spd square root Pi =  P a , with P 2 spd and 
P 2P 2 =  P . Such a factorisation is only needed for the theory, the actual algorithm 
just needs the action of P -1 on a vector. However in both cases, unpreconditioned and 
preconditioned, the system being solved can be written as

k —y 00, hence MINRES converges. □

= P f ‘b \ (3.15)

 rp

and y l = P1 z l , where P  =  I  for unpreconditioned MINRES. We define the residual
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for the ith  linear system by

4  := P r 1b i - P { 1 ( A - a iI ) P r Tz i , (3.16)

and set b z := Pj-1^  while B l := P ffl {A — a%I)P 1-1 . The following Lemma shows 
tha t also in the preconditioned case all eigenvalues but one are bounded and nicely 
separated from the origin, while the remaining critical eigenvalue is linear in A — a1.

L em m a 3.6 Let B  E RnXn be symmetric with eigenvalues u?i(B) < . . .  < u)n{B) and 
Z  E RnXn nonsingular. Further let the eigenvalues of Z TB Z  be ordered such that 
u>i(ZTB Z ) < . . .  < u n{ZTB Z ), then

u^ujj(B) < ujj(ZTB Z ) < v\oJj{B), ifu>j(B) > 0

and v\u)j{B) < u j(Z t B Z ) < i?u)j{B), if  u>j(B) < 0, (3.17)

where v\ the largest and vn is the smallest singular value of Z .
P roo f: See proof of Sylvester’s Inertia Theorem, as given in Golub and van Loan (1996, 
Theorem 8.1.17). □

Given a set T C Nn with 1 6 T then denote by

a :=  vl  ( \ \ j  -  Ai| |A2 -  Ai|) and
j?eN\r ^

b := v \  max (|Aj -  Ax| |A2 -  Ai|),
jeN\r a

where v\ is the largest and vn the smallest singular value of P f 1. In the case where
A j >  Ai for all j  £  T then define D r := [a,b] and in case A j  <  Ai for all j  £  T
then define Dr := [—6, —a] while D r := [—b, —a] U [a, b] otherwise. Then Lemma 3.6
states tha t /z* E D r for j  & r  and Dr independent of the shift, so that the constants
qr and pr as given by Lemma 3.5 are independent of ox. The constants qr and pr 
might be improved using Dp := {plj \ j  T}, however it is convenient to have qr and pr 
independent of a1.

C o ro lla ry  3.7 Consider M INRES being applied to the linear system P ^ 1 (A —alI ) P ^ Tz l = 
b l . Denote the eigenvalues of A  by Ai , . . . ,  An and assume 0 <|Ai — c l \< ^ |A2 — Ai| and 
let P i be nonsingular, then M INRES converges and for all T C Nn there exist pr > 0 
and qT E (0,1) such that for the residual dj. := b* — P f 1^  — cr%I)P ffTz lk the bound

IMilb < (^r)fc_|r|Pr |Ai -  o l |_1 x l, (3.18)

holds for all i. Here x % := |IQr(W*)r b *||2 and W % denotes the matrix of eigenvectors of 
P 1-1 (A — (jiI )P ffT .
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P roo f: For all i the conditions of Lemma 3.5 are satisfied and the result is obtained 
with D = Dr independent of i. □

The bound is rather pessimistic which is due to the definition of Dr- Often one 
has more knowledge about the preconditioner and can provide therefore better bounds 
for the preconditioned eigenvalues. Such additional knowledge does not change the 
character of the bound but improves the values for pr and qr . Another approach is to 
set

Dr ’= ^  r ,  and 3 a  with 0 <|Ai — <r|< ^  |A2 — Ai|, such that

B  = P 1_1(A — a I )P ^ T has the eigenvalue //j j , (3.19)

which is compact and separated from the origin. Finally one can restrict this D r to 
those a 1 which appear in the practical algorithm. This final step makes the comparison 
between different variations of inexact inverse iteration cumbersome, however it can be 
used to verify the descriptive quality of Corollary 3.7.

3.3 Efficiency for unpreconditioned M INRES solves

In this section we want to determine which choice of parameter makes inexact inverse 
iteration using unpreconditioned MINRES (Invit+MINRES) efficient. Previously, in 
Section 2.2 we assumed for the convergence analysis tha t the linear solver is capable 
of providing a solution satisfying the residual condition ||res ||<  r . Now by considering 
MINRES as linear solver we have to show that MINRES is capable of providing a solu­
tion satisfying the residual constraint in order to prove convergence for Invit+MINRES. 
Essentially this has been done in the previous section, but we didn’t state this explic­
itly. The main aim of this section is to determine which choice of parameters makes 
Invit+MINRES efficient we will bound the cost of Invit+MINRES. Therefore we define 
the minimal number of inner iterations used to satisfy the residual condition ||res ||<  r  
as a measure for the cost of a linear solve. Similarly we define the overall cost of In­
vit+M INRES as the total number of inner iterations. For both cost measures we derive 
a posteriori bounds which link the cost of a linear solve or an eigenvalue calculation 
to the progress achieved. Based on the bounds we show how to choose the parameters 
to obtain an efficient method. Also we make some remarks on the practical use of the 
obtained results.

3 .3 .1  M ea su res  for c o sts

As the most expensive operation in unpreconditioned MINRES is a matrix vector 
product we can use the number of matrix vector products (equivalently the number of 
inner iterations) to measure the cost of a linear solve using MINRES. Other costs are
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storage, orthonormalisation, and updating the solution. Since, the amount of storage 
is typically fixed and the remaining costs are linear in the number of inner iterations, 
the number of inner iterations is an appropriate measure for the cost of a MINRES 
solve.

MINRES can be stopped using different stopping conditions, for example after a 
prescribed number of inner iterations. Later in Section 3.6.1 we discuss the stopping 
condition recently suggested by Simoncini and Elden (2002). In the convergence theory 
in Chapter 2 we used the condition ||resj.||<  r l to measure the quality of the iterative 
linear solve, hence we regard this as the appropriate stopping condition for MINRES. 
Hence we use the following Definition for the number of inner iterations, which we later 
regard as the cost of a linear solve.

D efin itio n  3.8 For the system B y  = b  let r  >  0 be the relative accuracy requirement, 
| |re s (y ) ||2< r  for the approximate solution y , that is, y  is acceptable if  the residual 
res(y) := b — B y  satisfies ||res(y )||2<  r  ||b||. Then define C £ No as the minimal num­
ber of inner iterations needed by M INRES such that the accuracy required is achieved, 
that is

||res£ ||2< r  ||b ||2 and ||resfc||2> r  ||b ||2 VO < k < C.

Based on this definition we define the overall costs. As the most costly part of 
inexact inverse iteration by far is the linear solve we neglect the costs which arise from 
the remaining steps in the outer method. Hence we use as a measure for the total costs, 
the total number of inner iterations.

D efin itio n  3.9 Suppose we are given a matrix A, a starting vector x°, a sequence of 
shifts (&l), and a sequence of accuracy requirements ( r z) £ M+ for the linear solves. 
Further assume that for all iteration i > 0 C1 exists, where C% as in Definition 3.8. 
Then define the total cost T  as the sum of all inner iterations needed to improve t° 
by a factor 10-7 , that is T  := YliLo* where A f is the number of outer iterations 
defined in Definition 3.1.

While the definition for the number of outer iterations, Definition 3.1, is independent 
of the linear solver, Definitions 3.8 and 3.9 depend on the linear solver.

3 .3 .2  E ff ic ie n c y  a n a ly s is

As mentioned in the beginning of this section we have not proven the convergence of 
Invit+MINRES. Combining Lemma 2.1 and Definition 3.8 it remains to prove tha t for 
each outer iteration there is a O . The following theorem will provide this convergence 
result and also states a posteriori bounds on D  and T.
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3.3 E f f i c i e n c y  f o r  u n p r e c o n d i t i o n e d  MINRES s o l v e s

T h e o re m  3.10 Consider inexact inverse iteration, defined by Algorithm 2, using un­
preconditioned M INRES applied to A  £ Rnxn, symmetric. Assume the conditions of 
Theorem 2.1 are satisfied. Then convergence is obtained (i.e. t l —>• 0, £>(x*) —> Ai and 
xz —> v i) .  Further O  as defined in Definition 3.8 exists for all i, and if for some 
C5 G R+ and all i, |s*|< C$ Hres^l^  then there exists pr G R+ and qr G (0,1) such 
that

Ck loS 17+1
c  <  i + | r | + 1 - 6. _ ,■■■+ , (3.20)

log((9r) ) log((gr) )

where

^  4(1 +  C5)pr ,oolN
C e • =  1^2 — A ,| (1  -  C z ) '  ( 3 ' 21 )

I f t °  should be improved by a factor 10~7, with 7 >  0 then

1 ^  1 *°10~77 log 10 +  log -j-f /  c  \

r 5  +" (1+111 +raiF)) ■ <“2>
P roo f: We start by proving the existence of O , as defined in Definition 3.8. Then we

use the bound from Corollary 3.7 to prove the bound on O  and finally apply Definition 
3.9 to obtain the bound on the total cost T .

For each outer iteration i the conditions of Corollary 3.7 axe satisfied and therefore 
MINRES converges. Hence 3 O  G N for each outer iteration and as the conditions of 
Theorem 2.1 are satisfied, Algorithm 2 converges towards the desired solution.

We now prove the bound on O . We use the MINRES residual bound from Lemma 
3.5 together with the definition of O  to obtain

t% <  ||resj.i_ 1||2 < gr£ l-1 -|r |Pr |Ai -  (7Z|_1 (3.23)

The value x % was defined in Corollary 3.7 as

Xi =  H Q rV ^ II  <  ||Q iV t x '|| =  | |v ? y | |  =  1 4

where Q\ is Qr for T =  {1}. By rearranging and taking logarithms we gain from (3.23)

Pr? \  x-i<C < 1+ |r| +log ( ) /^ ( ( f r ) - 1). (3.24)
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To link this with the outer convergence we use the one-step bound (2.18)

t i+1 <  |Ai ~  crz| [sz| +  ||res*||2 
“  |A2 -  <7*1 |cT| -  ||res*||2
<  4 |A2 — Ail" 1 (1 -  C s r ^ l  +  C5) |Ai -  ^1 t \  (3.25)

hence by further rearranging

|Ai — a '\~ l (t *)-1  <  4 |>2 — Ai|_1 (1 -  C3)-1 (l +  C5)(i‘+1) - 1. (3.26)

Combining (3.24) with (3.26) we obtain the bound on O

Ci <  1+ lr l +1°S ( | A2 _4(AV 3 ^ t )  / ^ ( ( ^ r ) - 1)-

Finally we use the definition of T, Definition 3.9, and gain 

Af- 1
r  =

i=0
t* r 1 4(1 +  C5 )pr

N —l log . , Af—l log . | , .
<   i £ j ± _  +  i+  in  +  lA2 ~ (1
-  h  lostC^r)-1) h  11 lo g to r ) -1)

logTA7
<

log((9r) )

from which we obtain (3.22). □
The bounds (3.20) and (3.22) in Theorem 3.10 are a-posteriori bounds, as t l + 1  is 

used on the right-hand side which is only available after the linear solve has been carried 
out using O  iterations. Despite the fact tha t the bound is a-posteriori its nature is more 
like tha t of an a-priori bound. The only two a-priori unknown variables on the right- 
hand side are and M. While the first can be controlled by including an additional 
stopping condition in the linear solver, the second is somehow (we discuss this later in 
more detail) a-priori controlled by the choice of the method. An a priori bound for O  
is inequality (3.24). We are aware that the common technique of presenting bounds on 
the number of iterations is different. Often such a bound is given in the sense that if 
k >  . . .  then convergence is achieved. This would extend to, if T  > . . .  and all O  > . . .  
then the convergence for inexact inverse iteration is achieved. Results of this form can 
be found in Berns-Miiller et al. (2003).

As we will see in Section 3.8 where we illustrate the results considering a few 
numerical examples, the bound on the number of inner iterations O  (3.20) is not sharp 
but it mirrors the underlying behaviour sufficiently well.
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In the bound for the total cost T , (3.22), the numerator of the first term  is related 
to the progress the algorithm has achieved on t° after J\f iterations. The first of the 
two terms in this numerator corresponds to the task, while the second corresponds to 
what has been achieved additionally to the asked convergence level. If one wants to 
reduce this additional achievement, then an additional stopping condition for the inner 
iteration is appropriate. We discuss this later in Section 3.7 in more detail.

3 .3 .3  M esh  d e p e n d e n c y  o f  th e  c o sts , a  th e o r e t ic a l ex a m p le

Based on a simple example we will explain how the number of inner iterations depends 
on the mesh-size h for a PDE problem.

If we think of A as a discretisation of a second order differential operator, then 
some eigenvalues of A will depend on the mesh-size h. W ith a change in the mesh-size 
the parameters pr and qr will alter and therefore Cl will vary with h. To understand 
the dependence of pr , qr , C% and T  on h we look at one specific example.

Consider the Poisson eigenvalue problem

{^xx T  ^yy) == Alt (3.27)

on the unit square with boundary data u(0, y) =  u(l ,  y) = u{x, 0) =  u (r , 1) =  0. Let A 
be derived by discretising (3.27) using a second order, central finite difference scheme 
on a uniform square mesh. By doing so we derive a standard symmetric eigenvalue 
problem Ax =  Ax. The eigenvalues of A are given by

■ i (4  — 2cos(—7r) — 2cos(—7r) ) for 1 <  j , I < m — 1, 
hz \  m  m  J

where h =  1/m . For more detail see for example Strang (1986, p.456 and p.571). To 
simplify the calculation we assume tha t h <g. n  and use that Ai —> 2 ir2 and A2 —> 57r2, 
for h —> 0 while |An —Ai|« 8h~2. Further we choose T =  {1}. Then we can approximate 
the reduced condition number by

I An — Ai| 8Kr ~  ~
|A2 — Ai| 3tr2h 2

and gain for qr according to Lemma (3.5) qr «  (2y/2 — 7rhV3)/(2y/2 + 'KhV3)- Hence for 
h small enough we gain log((^r )_1) «  27r/i\/3/(2\/2 — 7rh \/3 ). Now using the definition 
of pr , given in (3.14), we gain pr =|An — Ai |« 8 h~2. Applying pr and qr to the bound 
for /? , (3.20), gives

1 4(! +  Cs) , , Pr , ?
l o g  ------ 7;------- 1" l o g  TT T T  +  lo g

r  <  2 +  — *,+1
log ({qr) )
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„ 2 V 2 -3 7 iW 3
2 +  — -----, r~2irhv3

This dependency of C1 on h is a typical result for Conjugate Gradient type convergence

if Ai is an interior eigenvalue and there is no small set T such that all eigenvalues 
corresponding to N\T are to one side of Ai. In such a case the dependency gets worse,

We now look at the total work T, for which we consider the case where the constants 
Ci, C2 , and Cs in Theorem 2.1 are independent of the meshparameter h. Then Af*, as 
defined in (3.1), is independent of h and therefore T  =  0 {h~l log(h-1 )).

However we do not produce any tests to confirm these theoretical results.

3 .3 .4  O p tim a l s tr a te g y

As we do not know T  itself we can base our judgement only on the bound of T. 
However such an approach can be understood as limiting the worst case performance. 
In practice this worst case approach is sensible as it points the way to reliable methods.

In the convergence theory in Chapter 2 we have seen that ||resz|| /  |s*|—> 0 does not 
give any benefit over || res11| /  |s*|=  const. Further in the efficiency result, Theorem
3.10, a bound (C5) >|s*| /  ||res*|| is required. As T  oc log(l +  C5) large values for C5 
might be avoided in order to reduce T.

Lem m a 3.11 Consider the conditions of Theorem 3.10 being satisfied. For 7 suf­
ficiently large it is optimal to choose a 1 and r l such to minimize A f while keeping 
||resl || /  |s*| large.
Proof: For 7 large enough the discrete nature of T  and Af can be neglected. Then 
from Theorem 3.10 we gain that T  is linear in Af. Next from Lemma 3.2 we gain 
Af <  1 +  [Af*] and from Lemma 3.3 that Af* is decreasing in ol +  ft. Thus the bound 
on T  is minimised for a  +  (3 maximal, but as (3 G [0,1] this reduces to a  maximal and 
/3 = 1. As the influence of C5 is more dominant than  the one of C2 it is better to keep 
||resz|| /  ||sz|| large. □

C orollary 3.12 Consider the conditions of Theorem 3.10 being satisfied. Assume the 
Rayleigh quotient is the best shift then for  7 sufficiently large the RQ I with decreasing 
tolerance (]|res*||= 0 (|s*|),), is the most efficient method.

We remark tha t this is a theoretical result assuming oo-precision arithmetic. In 
practice, due to 7 not large enough, the cubically convergence RQI with decreasing

as we expect for MINRES applied to an extreme eigenvalue. The order of C1 changes

c  = O ih ^ io e d h ) - 1)).
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tolerance might need the same number of outer iterations as the quadratically converg­
ing RQI with fixed shift. In such a case we would expect the quadratically converging 
method to be at least competitive. Based on these practical effects, the theoretical ad­
vantage of cubically converging methods might not be observed in practice, see Section 
2.3.3. We demonstrated such effects earlier in Section 2.3 and give more evidence in 
Section 3.8. However to ensure a small number of total inner iteration T  one has to 
reduce the number of outer iterations. This can be achieved by shifting towards the 
singularity using the Rayleigh quotient.

3.4 Efficiency for preconditioned M INRES solves

The methods covered in this section represent the standard approach of using pre­
conditioned MINRES in inexact inverse iteration. As we observe later, these methods 
have, at least in theory, larger convergence areas than the approach from Simoncini and 
Elden (2002), which we discuss later in Section 3.6. However the methods discussed in 
this Section are not as efficient as the one from Simoncini and Elden (2002). In order to 
understand the difference and to appreciate the advantage the later discussed methods 
have we give a brief discussion here for the standard approach of using inexact inverse 
iteration with preconditioned MINRES. The techniques we apply are the same as in 
Section 3.3, however, the results for C1 and T  differ in their structure. As this different 
structure is inferior, the results in this chapter motivate the discussion on the inverse 
correction method and the approach of Simoncini and Elden (2002) in the following 
two sections.

T h e o re m  3.13 Consider inexact inverse iteration, defined by Algorithm 2, using pre­
conditioned M INRES with a positive definite preconditioner P  applied to A  G Rnxn, 
symmetric. Assume the conditions of Theorem 2.1 are satisfied so that convergence is 
obtained. Further, for all i, O , as defined in Definition 3.8, exists and if  for some 
C$ e  and all i, |s*| <  C5 Hres^ l^  then there exists pr G M+ and qr G (0,1) as 
defined in Lemma 3.5 such that

C  < l+ |r | (3.28)

where

/log((gr ) *), (3.29)

while l'i is the largest and vn the smallest singular value of P i . I f  t° should be improved
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by a factor 10 1, with 7 >  0 then

M -i

T  < z=0
log((?i

t i + 1  /
y z r y  +  A f  ^ 1 +  lr l +

C6 (3.30)

The proof is similar in technique to the proof of Theorem 3.10.
P roo f: We start the proof by using Theorem 2.1 and Corollary 3.6 to prove convergence 
and the existence of C1, as defined in Definition 3.8. Then we use the bound from 
Lemma 3.6 to prove the bound on C1 and finally apply Definition 3.9 to obtain the 
bound on the total cost T.

For each outer iteration i the conditions of Corollary 3.7 are satisfied and therefore 
preconditioned MINRES converges. Hence for all i there exists C1 6 N as in Definition 
3.8, and as the conditions of Theorem 2.1 are satisfied Algorithm 2 converges towards 
the desired eigenpair.

We now prove the bound on Cl . To do so we observe that

res*. =  y{

=  Pi ( p f 1̂  -  P f 1 (a  -  <>ii ) p r T 4 )

= P i 4 -

Now we use the MINRES residual bound from Corollary 3.6 together with the definition 
of Cl to obtain

T l <Ilres5.i_.jll2 <  ||Pi|| Kfcll =  i/i ||dj.||

<  vxtfr£,“ 1_|r|Pr |Ai -  X%• (3.31)

The value of x l is defined in Corollary 3.6 as xf = I IQr(^z)Tb *||5 where W l is the matrix
of eigenvectors of the preconditioned system P { l (A  — a I )P ^ T , and b* =  P 1“ 1x*. As
Qr and W % orthogonal we can bound x l < ||b 1||< ||P 1_1||=  (^n)_1- By rearranging and 
taking logarithms we gain from (3.31)

C  < 1+ |r |  + l o g (  i n P rl'1i . ) / h g ( ( q r ) - 1). (3.32)
\ r  \ X i - a \  vn )

To link this with the outer convergence we use the one-step bound (2.18)

ti+1 < 1̂ 1 ~  a*\ k l  +  l|resx||2 
_  |A2 -  a x| |c*| -  ||res*||2 
< 4 |A2 — Ail’ 1 (1 -  C s r ^ l  +  C5) |Ai -  <7*1 t \
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hence by rearranging

l A j - a r 1 { r T 1 <  4 I A 2 - A J P 1 ( l - C 3 ) - 1(l  +  C5)(ii+1) - 1.

Together with (3.32) we obtain

£i <  1+ |r |  + log  (|A 2 - t / l os({?r )_1) - 

Now we use the definition of T , Definition 3.9, and gain 

V -l
r  =

i= 0
1 , , 4(1 +  C5 )prvi

 ̂ log —:—r M—l log j .  \ I /i /-i A
”  t t+1 , i  . |t-*i i 1^2 -  A i |  ( 1  -  Cs)i>n< y '  r.t%+L + ^ i + i n +  'A2~ A1<

log((9r) X) log((9r) X)

-A/'“ 1 l°g “717 /

log((9r) ) \

*=0 ) i=0

-  Iog^  , ,  ^
log((9r)_1)

□
One major difference between Theorems 3.10 and 3.13 with respect to C% is that 

for the preconditioned case, Theorem 3.13, the right-hand side is no longer linear in 
tx. This difference then carries over to the bound for the total cost T. This effect 
is not caused by the analysis, but by the fact tha t preconditioning is carried out as 
demonstrated by tests. Later in Section 3.8 we show tha t the gap between the bound 
and the data is small, see Example 3.2 and Figure 3-2, however the bound is not sharp 
in the mathematical sense.

Another difference between Theorems 3.10 and 3.13 is tha t the values for pr and 
qr change by preconditioning, actually this is the essence of preconditioning. Again it 
is optimal to use the RQ as shift (in absence of a better approximation of the desired 
eigenvalue). In contrast to the unpreconditioned case the bound on C% agrees not only 
in essence but can be observed in practice.

3.5 An alternative approach

In the previous section we observed tha t preconditioning changes the bound on the 
number of inner iterations. To recapture the structure of the bounds as in the un­
preconditioned case while pr and qr benefit from preconditioning we exploit here one 
alternative approaches for obtaining y \  Our main focus will be how the convergence 
theory from Chapter 2 and the efficiency analysis of Sections 3.3 and 3.4 can be extended 
to this alternative approach. The im portant difference to inexact inverse iteration as
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A lgorithm  3: Inverse C orrection M ethod

Given x°,
For i = 0 ,1 ,2 , . . .

• Choose a* and r*,

• Calculate q* := (x*)TAx* and rl (A — £>V)xl ,

• Solve (A  — <7 lI ) z % =  r* such that 
||r* -  (A — r \

• Set y i =  x* -  z \

• Update x *+1 =  y*/ ||y*||,

• Test for convergence

discussed so far is that only a correction equation will be solved in order to update the 
current approximation. In practice methods refining a current approximation by cor­
rections, like the inverse correction method, axe often preferred due to their robustness 
with iterative linear solvers and their efficiency.

The inverse correction method by Rude and Schmid (1995) and Zaslavsky (1995) 
is designed to overcome stagnation when inexact inverse iteration is combined with a 
multigrid solver. The idea is simply to rearrange the solve in inverse iteration, such 
that only a correction equation has to be solved. In the case of exact linear solves, the 
two methods are the same. However if we consider iterative solves then this will not 
necessarily be the case. A similar algorithm has been proposed by Neumaier (1985) to 
obtain eigenpair approximation of high accuracy from linear and non linear eigenvalue 
problems. Also, the algorithm of Golub and Ye (2000) can be viewed as the inverse 
correction method, we explain this towards the end of this section. A more thorough 
discussion of Golub and Ye (2000) is presented in Chapter 4.

Before we analyse the relation of inverse iteration and inverse correction we discuss 
why this method might be attractive. First we observe that if g% —> Ai, then r* —> 
{A — Ai/)u* 1  v i. So the dominant part of the error direction will be orthogonal to 
the sought eigenvector, this is often thought to be beneficial in solving ill conditioned 
linear systems, see, for example, Brown and Walker (1997). Specially for the case of 
multigrid as linear solver it is argued, for example in Rude and Schmid (1995) that 
these correction equations are easier to solve as multigrid performs as if this critical 
eigenvalue does not exist. Like the inverse correction method, the Jacobi-Davidson-
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Method (for a review see Sleijpen and van der Vorst (2000)) uses correction equations. 
In case of the Jacobi-Davidson method the linear system m atrix is multiplied from both 
sides with the projection matrix I  — x*(x*)T in order to improve the performance of 
the linear solver. So again the idea is to make the linear solve less costly. However, as 
we show later in Section 3.8 the inverse correction method suffers either from slow or 
from erratic convergence when MINRES is used a linear solver.

We start by analysing the convergence of the Inverse Correction Method as given 
in Algorithm 3. We will do this by linking Algorithm 3 to inexact inverse iteration. 
Then we present a result on the efficiency of the Inverse Correction Method.

C onvergence

In order to distinguish between the variables of both algorithms, we write those from in­
exact inverse iteration with a tilde and those from Inverse Correction with the subindex 
i c m - I n  inexact inverse iteration, see Algorithm 1 , the next vector is given by

x i+l =
(A  — a‘I)  *(5?  — res1)

Now we consider the same iteration for the inverse correction method, as defined by 
Algorithm 3, then

Yi+1 _  XJCM ~  ZJCM 
I C M  || i  ||

— T \~ i \r  ( X/CM  — { A  -  o \ c m I )  1 (r /C M  +  r e s /C M ))

— IC\ \M  “  g \ c m - 0  1 ( x / c m  +  —■ — ■ res ) c m )  (3.33)
W y i C M h  \  Q i c m  ~~ I C M  /

If x l =  S^icm i l<5|— 1 then q\cm  =  g1 ='• Q- If additionally ct)cm  — o% =: o% and 
=  -s ig n ((x i)Tx}CM))(^  -  then

xjcm  =  s ig n (^ -d * )x l+1, (3.34)

due to | |x ^ 1m ||2= ||x z+1||2, hence we gain tha t x ^ M and xz+1 span the same subspace. 
Therefore we obtain for the case of exact solves tha t x1+1 =  1 x ^ M when o \CM — <?\ 
As the orientation has no effect on the convergence one can say tha t both algorithms 
are equivalent when exact solves are used.

Based on above observation we will prove the convergence for the Inverse Correction 
Method. As both algorithms use inexact solves the next iteration is not a priori defined. 
In order to overcome this we will look at all solutions Xjcm Permitted for Inverse 
Correction for a given x l , r jCM and a 1. And we will show tha t all such solutions are
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also perm itted for inexact inverse iteration for given x z, r % and cr\

L em m a 3.14 Assume that the inverse correction method, defined by Algorithm 3, is 
applied to A G RnXn, A symmetric. Assume 3C \,C 2,a  G M+ and (3 G [0,1] and 
Cz € [0, 1) such that for all x l =  clw\ +  szu z the shift satisfies

|Ai — cr*| <  minfCi |s*|Q, ^  |A2 -  Ai|}

and a 1 ^  g%, and further that the residual satisfies

||resz||2 < \q% -  al\ min{C'2 \s%f ,C z  |c*|} (3.35)

for a  +  (3 > 1. I f  the initial approximation x° =  c°vi +  s°u° is such that

<3-36)

then t l —> 0, hence x l —> Vi and g(xl) —>■ Ai.
Proof: We carry on with writing r}CM for the residual condition in Inverse Correction 
and t 1 for the one in inexact inverse iteration. Given x \  a 1 and TjCM we define

&WM ’■= :=  {x l+1|3zz such that x■*+i _ x* — z ‘
xz — z* 2

and ||rz -  (A -  a lI ) z l \\2< t}c m }. (3.37) 

Similarly we define for inexact inverse iteration

a 4 := S ^ x V S r* )  := {x i+1|3yz such tha t x i+1 =»+1 _  y
y 112

and (3.38)

The key idea of this proof is to show that Wjcm  c  ^  ^  k* ~  0-11-1 ric M ‘
W ithout loss of generality we consider the case gl > a1. For x } ^ ^  G ^t\cM  there 

exists zz such that res}CM := rl — (A — a lI ) z l has ||res}CM ||2<  r jCM and x lICM = 
||xz — Ĥ-1 (xz — zz). Now set y z =\gl — crz|—1 (zz — x z). Hence

^ - { A - j l W h  = ^ - a r ^ - g ^ - i A - a ^ - x ^ h  

= | gi -  crz|- 1 1| Axz -  - { A -  o-<)zi ||2

=  ^ - a T ^ - i A - a ^ h

< \Q* ~  o* ] - 1 t} cm  <

hence x z+1 = ||y *||^'1 y l g f2*. Finally we observe tha t the conditions leading to (3.34)
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are satisfied, hence x*+1 =  sign(^ -  and so x ^ M G £K Therefore we can
apply the convergence result for inexact inverse iteration Theorem 2.1 with r \  As the 
conditions of Theorem 2.1 are satisfied the claimed convergence follows immediately. 
□

In the case of ol = £>(x*), which is excluded in Lemma 3.14, z* =  x* is the exact 
solution. Using z% = x* leads to y* = 0, which is useless as it contains no information 
about the sought eigenvector. For example the Jacobi-Davidson method uses ol =  
£>(x*), but uses a projected shifted matrix of the form

( I  -  x*(xi)T)(A -  g ( ^ ) I ) ( I  -  x V H ,

and therefore prohibits z* = x \
For practical use the additional condition || res* || <  \  || r* || is sensible. This

condition is implied by those in Lemma 3.14, but can be missed if an estimator is used 
for |s*|. To understand the need for doing this assume ||res*|| >  ||r*|| is permitted. 
Then z* =  0 is a valid approximation for the linear system (A — oxI ) z l — r 1 and hence 
with x z+1 =  x* the iteration stagnates. Due to this argument we use

t} cm  <  min { i  ||r''||2, C10 ( ^ r )  - ~  ^  C3 lc1 } (3-39)

for some C \q G M+ instead of (3.35).
For |Ai — <7*|< C\ | s T  with a  > 0 we get | gl — cr*|< C\ |s*|5, for some C\ > 0 

and J =  min{2,a}. Using the residual condition (3.39) we obtain for (3 =  1 that the 
residual needs to be of order 0 (|s*|5+1) as

— <7‘| c 10 r u le r 1 = o ( |« f+1).

Hence the initial advantage of an easier system to be solved vanishes when a > 0 as 
the system gets more singular and simultaneously a more accurate solution needs to 
be obtained.

In Section 3.8 we provide some numerical tests illustrating the convergence. We 
tested the Inverse Correction method with fixed shift and various choices for variable 
shifts. The Inverse Correction Method is robust but slow and inefficient, contrarily the 
other variations are promisingly efficient but so far not robust.

E fficiency A nalysis

While the convergence of the Inverse Correction Method followed from the convergence 
of inexact inverse iteration, this is no longer the case for the efficiency analysis. However 
we can use the same link to obtain the one step bound (2.18) from which the analysis 
runs similar to Theorem 3.10. In the following we provide an efficiency result similar to
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previous results in Sections 3.3, 3.4 and 3.6.1. However this result is not as satisfactory 
as the earlier ones as in our experience it does not reflect the practical behaviour.

T h e o re m  3.15 Consider that the inverse correction method, see Algorithm 3 is applied 
to find the eigenpair (Ai, Vi) of A  G Rnxn, symmetric. Assume the conditions of Lemma
3.14 are satisfied. Additionally assume that 3CV G R+ such that

\q1 — <  C7 ||res*||2, (3.40)

then V T  C Hi with 1 G T there exists pr , qr G R+ with qr <  1 independent of o%
and ||re s l ||2 such that the number of M INRES iterations Cl in each outer iteration is
bounded as

loS uTXTT lo§
c  <  1+ |r| +  1**^1+ Cu +  |gl 1 (3.41)

1°S Qr 1 logqr 1

and the total number of M INRES iterations as

It01 10~7 17 log 10 +  log 1 » N —l  log _
T  <  j--------. 1 1 +  N(  1+ in +C11) +  V  —J g ----P-,  (3.42)

l°g Qr 5 ? log9r_1

where

° n  ~  l0g ( uJ'-Ail 8 |An “ Al1)
P ro o f: As the conditions of Lemma 3.14 are satisfied we use again the relation between 

the Inverse Correction Method and inexact inverse iteration. Again we use the tilde to 
indicate variables of inexact inverse iteration and the subindex ic m  for those of Inverse 
Correction. Hence we gain

A+1 ^  lAi ~ ^ l  Ni +  l|res»||2
|A2 ~  O’*| \c i \  -

S +

||resl ||2

Hre s /C M ll2
<  |Ai -  O’*| |^* -  <7*|

|CU 11r e s / C M  112 ’

| Q% — <JZ|

Using the additional condition, (3.40), together with the conditions of Lemma 3.14 we 
gain
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Rearranging this we gain

(t 'w m ) - 1 l A i - t f i - 1 <  ti^ (1jA+2 ^ - j (3.43)

Now we apply the convergence result for preconditioned MINRES, Corollary 3.7, with 
b* =  r* to gain tha t 3 pv and qr such tha t V T C Nn with 1 G T and for all k £ N

l|res|||p -i <  (9r)*-lr'pr 1*1 -  ai\-1\\QT(W i)T lx*'||2 .

If preconditioned MINRES is used, then P 2 =  P  is the preconditioner, otherwise 
=  I. We can bound \\Qr (W"l)T <  ||Pi-1 ||||r*||. Using the definition for C%,

Definition 3.8, we have

T\ c M  <  llre s £ * _ i l lp - i  <  (5 r )£ ,_1_ |r|P r |A i •

Rearranging we gain

C  < 1 +  |r| + log  (  P,r l|f>\ 1|ll|r‘! ,>l /lo g ttg r)" 1). (3.44)
■ r I C M  1̂ 1 — a *l

Next we insert (3.43) into (3.44) to gain

,-i

Pr IIPr'II^-AxI
,U8U

t*
+  l o g ^ T/log((gr ) 1) + l o g ( |^ - < 7t | ^ / lo g f ^ r )  x).

Substituting C \\ we gain (3.41) and further by summing over Cl for i = 0 , . . . ,  J\f — 1 
we gain (3.42). □

The bounds given in Lemma 3.15 are valid for unpreconditioned MINRES as well 
as preconditioned MINRES, just the values of pr and qr differ. Comparing Lemma
3.15 with the corresponding bound for Cl for inexact inverse iteration using unpre­
conditioned MINRES, Theorem 3.10, we observe an additional term  in Theorem 3.15. 
However this additional term  does not agree fully with our practical experience, see 
Example 3.6 in Section 3.8. Further we experienced tha t convergence is either slow, 
this is the case for a fixed shift, or erratic and non robust for variable shifts. For cor­
responding result see Section 3.8 Example 3.6 and Table 3.9 for fixed shift and Tables
3.10, 3.11 and 3.12 for variable shifts.

Finally we comment on the algorithm proposed by Golub and Ye (2000), geared 
towards the generalised eigenvalue problem. The first iteration is a standard step of
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inverse iteration using an inexact solution of a shifted linear system. In the remaining 
outer iterations a scaled eigenvalue residual rlGY = —r z</>* is computed, where (f>% := 
||y *—1 ||oo- This residual is then taken as the right hand side for the standard system 
A — a l  and the solution is added to the old solution. By dividing the scaled residual 
and the solution of the linear system by <f> we obtain the Inverse Correction Method 
with fixed shift a*. In Section 4.3.5 we discuss the method from Golub and Ye (2000) 
in more detail, further we also consider their stopping condition.

3.6 Preconditioned Inexact Inverse Iteration with M IN ­
RES (PInvit)

In the previous sections we discussed two approaches of preconditioning inexact inverse 
iteration using MINRES. However for a variety of reasons none of them  was completely 
satisfactory. The preconditioning of the standard equation, studied in Section 3.4, 
leads to a bound on the total cost which includes the term  J ^ l° g ( l / t1+1), which has 
the potential of creating large additional costs. Slow convergence or loss of robustness is 
the downfall of the approach by Riide and Schmid (1995). Here we discuss the approach 
from Simoncini and Elden (2002) which is based on the observation from Scott (1981). 
We extend this approach to arbitrary but fixed positive definite preconditioners.

A brief discussion of key ideas of Simoncini and Elden (2002) is given in Section 
3.6.1. In Section 3.6.2 we state and analyse the convergence of the algorithm PInvit, 
which is a generalisation of inexact inverse iteration in the sense that we allow general 
right-hand sides b \ The convergence analysis is again independent of the applied linear 
solver and extends the Theorem 2.1 to modified right-hand sides. For the remaining 
sections we then consider MINRES as linear solver and discuss the choice of the right 
hand side in Section 3.6.3. The key result will be based on the observation that modify­
ing the right-hand side in the way Simoncini and Elden (2002) suggest reduces the cost 
of a linear solve. Then is Section 3.6.4 we state the efficiency result, and conclude the 
discussion on PInvit by explaining a few implementational aspects of MINRES with 
regard to the modified right hand side. In Section 3.6.5 we discuss how the right-hand 
side can be obtained if neither the action of Pi nor P  on a vector is available.

3 .6 .1  A p p ro a ch  b y  S im o n c in i an d  E ld en

Simoncini and Elden (2002) consider the combination of inexact inverse iteration and 
Galerkin-Krylov techniques, namely GMRES, MINRES and CR. Their analysis ties 
the Krylov solver with the outer iteration. By doing so they derive in the unprecon­
ditioned case a convergence result based on the reduction of the eigenvalue residual 
| |r z||. Further they suggest a new stopping condition for the linear solves, which we 
discuss later, (3.47). Another key result, motivated by Scott (1981), is to consider, in
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the case of Cholesky preconditioned MINRES solves, an alternative system to update 
the eigenvector approximation. Instead of the standard preconditioned system

Here P\P-[ is an incomplete Cholesky factorisation of A, assuming A  is symmetric pos­
itive definite. In case of unpreconditioned solves, Pi =  I , both systems are equivalent 
and the right hand sides is an approximation of the sought eigenvector. The modi­
fication of Simoncini and Elden (2002) preserves this quality for the preconditioned 
system, which, as we see later, reduces the cost of the linear solver.

To link the inner iterations with the outer iteration they use a stopping condition 
for MINRES based on the reduction of the eigenvalue residual. As a stopping condition 
for the inner iteration they use

where both conditions need to be satisfied simultaneously in order to stop the inner it­
eration. The second condition ensures tha t the eigenvalue residual is reduced. However

a Cholesky preconditioner, is a heuristic to stop MINRES when the progress achieved 
with respect to the outer process starts to deteriorate. Later in Section 3.8 we compare

standard residual condition ||res ||<  r ,  see Test 3.5.
Here we analyse the approach from Simoncini and Elden (2002) in a more general 

setting in order to extend it to other preconditioners.

3 .6 .2  C o n v e rg e n c e

P f U A -  a 'I )P ~ Tz ‘ = P ~ l x ' with y'; =  P [ Tz', (3.45)

they consider for the same system matrix a modified right hand side

P r l (A -  a ' l ) P { Tz' = P /V  with y i =  P f Tz \ (3.46)

lltf II (3.47)

the first condition, inspired by their convergence analysis which uses the fact that P i is

this combined stopping condition from Simoncini and Elden (2002), (3.47), against the

In this section we consider instead of the standard linear system {A — (JlI ) y l = xz, the 
modified system

( A - a tI ) y t = b \ (3.48)

which, when symmetric preconditioning is applied with P  =  PiPiT, has the form

P f :\ A  -  <j*7)PfTy* =  P f  1b i , with y i =  P f Ty ’. (3.49)
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A lg o rith m  4: G en era lised  In e x a c t In v erse  I te ra t io n

• Given x°, and C3 > 0,

• For i =  0 ,1 ,2 ,3 ,. . .

— Choose b z such that | v^b* | >  C3, further choose a1 
and r*,

— Solve (A — (7%I ) y l = b l such that 
| |b * - ( A - < 7*J)y*||<r*,

— Update x ^ 1 =  y*/ ||y*||,

— Test for convergence

First we derive a one step bound similar to the one for the standard system (2.18). 
In order to derive this we define the residual similar to (2.10),

res* :=  b* — (A -  <r*/)y* (3.50)

and use the same orthogonal splitting as in Chapter 2,

x* =  cV  1 +  (3.51)

with v i, u z, and p* orthonormal. We start with rearranging the residual equation 
(3.50)

(A -  cr*J)y* =  b* +  res*. (3.52)

Now we premultiply by v ^ (A — a11)-1 while assuming 0 < |Ai — crz| <  ^ |A2 — Ai| to 
obtain the cosine equation

11/11 cj =  ( A i - a T V J V  +  v ^ W ) .

From which we obtain a lower bound on \c%\ by assuming |v^b*| >  ||resz||2,

||y*|||c*| > |Ai - a 1] - 1 (|vfb*| -  ||res*||2). (3.53)

Next we premultiply (3.52) by (I  — viV j’)(A — <r*J)-1 to gain the sine equation 

||y*|| s*+1u *+1 = ( I -  v lV?)(A  -  o-*J)“ 1(b* +  res*),
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which by taking norms gives

l|y ilk <+1| <  |A2 — <r'|-1 ( ||( / — Vlv f )b ’|| +  ||res’| | ) . (3.54)

Finally we divide the sine inequality (3.54) by the cosine inequality (3.53) to obtain 
the one step bound

|A2 — <?%| |vfb*| ~ ||reslM

We only require conditions

|v?V | >  C3 (3.56)

and 11 re s111 < C2 for some suitable constants C2 and C3 to prove convergence based on 
the shift tending towards the desired eigenvalue.

L em m a 3.16 Consider Algorithm 4 being applied to A  € MnXn symmetric. Assume 3 
C\, C3 E R+ and C2 £ (0, 1) while a  > 1 such that the shift a% satisfies

0 < |Ai -  a11 < min{Ci |s '|a , i  |A2 -  Ai|}

and that the residual condition r l satisfies r % <  C2 | v i"b*| while the right-hand side 
satisfies C3 |bz| <  |v^V |. I f  the initial approximation x° =  c°vi +  s°w° is such that

I 0| (1 -  C2)C3 _  . |
1 1 2(1 +  C2)Ci ' 2 11

then tl —> 0 and g1 —> Ai while x* v i.
P roo f: Starting with the one-step bound (3.55) we have

ti+l < 1A1 -  | | ( / - v i v f )^!! +  llres^l
|A2 — lvfb*| — ||res’||

a_! 2Ci (1 +  C2) Hb*
|A2 — A i|  (1 — C 2 ) Iv^b* !

2C\ (1 +  C2)
|A2 -  A i |  ( 1 - C 2 ) C 3

W ithC 4 := 2C1 (1 +  C2) ( 1 - C 2) - 1C3- 1 |A2 — A i|-X<  1 we gain t* < (Crf t 0 0
and therefore g’ —> Ai and x' —r v 4. □

Let b' =  f ix ' +  £2b* for some b* 6 S" orthonormal to v i, then

| | ( / -  v iv f )b z||2 <  |£i||s*| +  |&>| .
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If additionally ||res*||= 0 ( |s l |) then

nt7 ~  y i )bi|12 +  ||resi|12 =  o m + o m .
|vfb*| -  ||res*||2 U V

Hence for the outer convergence the choice £2 =  0 is beneficial. This choice for b* leads 
to inexact inverse iteration using preconditioned MINRES, as discussed in Section 3.4. 
Here we look for some alternative choice for b l to improve the overall performance. By
discarding the choice of b* which is beneficial for the outer convergence we are free to
find a b z reducing the cost of a linear solve.

3 .6 .3  R ig h t-h a n d  s id e  b l

From now on we use the fact that the linear solver is MINRES. In Section 3.2 we 
already provided with Corollary 3.7 a suitable convergence result for preconditioned 
MINRES. The residual bound given there is for the system (3.49). However when 
denotes the largest singular value of P i, i.e. the square root of the largest eigenvalue 
of P , then we get with Corollary 3.7

llresjfcll <  ^1 11 P f 1 res*. 11

< 1* ||P fV  -  PrHA ~ °I)P{Tyi\\
< Vl(qr)k~lFlPr |Ai -  (J%|-1 X*, (3.57)

where pr and qr are as defined in Lemma 3.5. Here x l =l|Qr(R^*)TPi- 1b* H2 and W l 
the matrix of eigenvectors of the preconditioned system matrix, P 1-1 (A — cr/)P1-T . We 
recall that the matrix Qr is the projection m atrix defined in (3.11). However the factor 
Pi is only needed in theory, its existence is ensured as P  is symmetric positive definite.

In order to derive an appropriate bound on x l we use a perturbation result from 
Chatelin (1993).

L em m a 3.17 Given B  E Rnxn symmetric with eigen-decomposition B  = W A b W t  
and simple eigenpair (pi, w i) then B  +  A B  has an eigenpair (pi +  A //i, w i +  A w i) 
with A p i = w f  A P w i +  0 (||A P ||2) and

ta n Z (w i, w i +  A w i) =  \\(AB -  p iI )~ DW TA P w i||2 + 0 ( ||A P ||2),

where (AB — P iI)~ D is the Drazin inverse o f A B — p \I .
P roof: See Chatelin (1993, Proposition 4.2.1 and corresponding proof). □

As A b  — p i I  = diag(0, (^1 — ^ 1) , . . . ,  (pn — pi))  the Drazin inverse is given by 
{Ab  -  p iI )~ D = diag(0, {pi -  /xi)_1, . . .  ,_ 1 , (pn ~  P i)-1 )-

Based on Lemma 3.17 we can derive a bound for x % = \\Qv(W'l)TP±
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C o ro lla ry  3.18 Let (crz,x z) be an approximation to the eigenpair (Ai, v i) of A  G Rnxn 
symmetric, where X\ is simple and let (a4>w i) eigenpair of P f 1(A — a lI)P ffT
closest to zero. I f  \sl \= s inZ (x l , v i) for small enough |sz| and \al — Ai|< C\ |s*|, then 
3Cio G M+ such that

|s in Z (P i'x t ,w})| <  Cio |sz| .

P ro o f: Let w j be the eigenvector corresponding to the simple eigenvalue zero of 
P i 1 (A  — AiI ) P f T . Then we make use of

| sin Z fP ^ V , w j)|

<  Is in Z fP f’x ^ P ^ v i)!  +  |s in Z (P 1r v i,w i) | +  |s in Z (w i, w j)| .

Let x z =  czv i +  szu z with ||v i ||2= || u* H2— 1 and u * -L v i, then as Pi non singular 
| sin Z (Pi xz, Pi v i ) | <  Un^i 1 |sl |, where u\ = z'i(Pi) is the smallest singular value of Pi 
and vn =  i'n(Pi) the largest singular value of Pi. Further as P 1- 1(A—A i/)P1-T (P1t v i) =
0 we gain s inZ (P 1Tv i, w i) =  0. Finally as |Ai — a l \< C\ |sz| we gain by using Lemma 
3.17 tha t for some Cq G R+ , |s in Z (w i, w |) |<  Cq |s z|. □

As ^P1“ 1(i4. — Ai I ) P i T^ jP il (P v i) =  0, we have with P 1_1P v i =  P ^ v i an eigen­

vector of Pi_1(A — A i/)P fT corresponding to the eigenvalue 0. Let as usual |Ai — ox\< 
\  | A2 — Ai | and then we gain from Corollary 3.18 that 3Cio >  0 such tha t for
1 Ai — <r*|< \  |A2 — Ai|

WQAw'fPr'vh  <  l « i l l A I | C i o .

R e m a rk  3.19 Therefore b* =  P x z is a good right-hand side in the sense that it reduces 
the cost of a linear solve.

In the following we show how preconditioned MINRES can be adapted to provide 
z l =  P y \

3 .6 .4  E ffic ien cy

The key result is again similar to Theorem 3.10.

T h e o re m  3.20 Assume the conditions of Lemma 3.16 being satisfied then PInvit using 
M INRES converges. Let P  denote the preconditioner and choose b z =  P x z in Algorithm  
4 . I f  there exists C5 G R + such that the residual satisfies |s* |<  C5 ||re sz||, then the 
number of preconditioned M INRES iterations C1, see Definition 3.8, satisfies

C  < l + i r i + l o g ^ C i o ^ / l o g t o r ) - 1), (3.58)
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with

c  _  2i/i(l +  C5)pr 
9 1 |A2 -  Ai| ( l - C a K V

Further if x° is to be improved by a factor 10-7  then the total number of M INRES  
iteration is bounded by

, ^  , io -7 *07 log 10 +  log
r  <  - 7)- (SS9>

P roo f: As the conditions of Corollary 3.7 are satisfied we obtain with (3.57) the 
following bound for the residual

||resjfc|| <  Z7(gr)fc_|r|Pr lAi “  X*-

For each i, |Ai — a1 \> 0 and x l are fixed and qr G (0,1) therefore ||resjj.||—y 0. Hence 
for all i there exists Cl as defined in Definition 3.8. Applying Lemma 3.16 we obtain 
the claimed convergence.

To prove the bound on Cl we use

t 1 <  | | r e s £ i _ 1 | |2 <  ^ i ( g r ) £ , _ 1 _ | r | P r  |A i  -  c d | _ 1  x* .

Rearranging and taking the logarithm gives

C  <  l + | r | + l o g ( — ^ p l / l o g t o r ) - 1). (3.60)

Next we use the one step bound to gain

ti+1 < |Ai ~  <y*| |1(7 -  v iV iV ll +  ||res*H
— |A2 — (J%\ | v  x:21 — ||res*||

<  o I Ai ~ °~*1 (C's +  l) l|reszH
— |A2 — Ai| (1 — C2)C3

2(C5 +  1) ||res*|| , 4
— (1 -  C!2)C73 |A2 -  AX| |Al h

By rearranging we get

|W i | - i (T)- i  <  2(C5 +  l)||res» |[
-  ( 1 - C 2)C3 |A2 - A 1| t *+1
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Inserting (3.61) into (3.60) we gain

C  < /  l°g(((Zr) X). (3.62)

In order to derive (3.58) we use Corollary (3.18) to gain for i > 0

X* =  I I Q r f W ^ P f V l l  =  H Q r ^ y P f W l I  =  ||Qr ( ^ 0)7’P 1T’x°|| <  C10 |s4

Summing over O  for i = 0 ,1 ,2 ,.. .  ,M —l gives (3.59). □
The bound on T , (3.59), has now the same form as for the unpreconditioned case,

(3.22), while the constants pr and qr improve due to preconditioning. However the 
additional constant C\q is not quantified and in practise C\o might be large.

It is optimal to reduce the number of outer iteration which can be achieved by 
choosing the RQ as shift. In Chapter 2, we have seen that in practise the difference 
between quadratic convergence and cubic convergence in terms of the number of outer 
iterations J\f is negligible. Therefore it is better to use the right hand side to reduce 
the cost per outer iteration Cl than to improve on the number of outer iterations Af 
(as long the quadratic convergence is preserved). Hence the use of the modified right 
hand side as in PInvit should reduce the cost in comparison to RQIf and RQId. This 
can be observed in practise, see Section 3.8 where we compare methods based on the 
modified right hand side against methods using the standard right hand side.

3 .6 .5  A d a p te d  p reco n d itio n e d  M IN R E S

While for Cholesky preconditioning the modified right hand side b =  P x  can easily 
be computed this is no longer the case for preconditioners based on Domain Decom­
position or Multi Grid. Therefore we now study one way to provide this right hand 
side by using additional information from the previous linear solve. The treatm ent is 
specific for MINRES, but can be generalised to GMRES using left, right or centered 
preconditioning. We start by discussing a few implementational aspects of precondi­
tioned MINRES. Throughout this section let P  be the preconditioner, we only want to 
require the action of P -1 on a vector.

The MINRES algorithm, for example see Fischer (1996, p. 185), uses the Lanc- 
zos/Arnoldi sequence to construct a P-orthonormal basis U for the Krylov space 
)C(P~1(A  — a lI ) ,P ~ 1b l). That is U is constructed such that P ~ 1(A — alI)U  = U T  
where T  is tridiagonal (this follows from the fact that T  is at least upper Hessenberg, 
UTPU  — / ,  and A  symmetric). Then MINRES constructs a Q R  factorisation of T  
where Q is a sequence of Givens rotation and R  is an upper right matrix. As T  is 
tridiagonal R  has all entries equal to zero except those on the diagonal and the first 
two upper diagonals. Based on this format of R  there exists a three term  recurrence
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formula for R  1. Let R  be given by

r2,2 3̂,3 0

r\, 2 2̂,3

n,3 ’ • r3tn

' • r2,n
0 H.n

Then the three term  recurrence formula for R  1 is given by

w i =  e i /r hi w 2 =  (e2 -  r2j2w i ) /n >2 

w k = (ek -  r2,kWk-i ~  r3,kWk-2)/ri,k, (3.63)

where R ~ l =  ( wi , . . . ,  w n). This recurrence formula can be applied to any matrix B , 
such that the calculation of B R -1 needs only the same three term  recurrence formula 
applied to the vectors of B e k, instead of the unit vectors ek. Finally the solution 
is constructed as y  =  U R~l QTe\. For a more general discussion of such recurrence 
formulas see Fischer (1996, Chapter 2).

To obtain z =  P y  we only need to apply the three term  recurrence formula (3.63) to 
U = P U . To see how to obtain U we look how U is calculated. In the algorithm the kth  
vector of U is calculated by Uek = P ~ l {A — a l)q /p k f°r some vector q. Hence we can 
construct U ek = (A — a l)q /p k without further applications of P  or A. The calculation 
of z 1 = P y 1 requires only four vectors storage and an additions of three vectors in each 
inner iteration additional to the cost of standard preconditioned MINRES. In a similar 
fashion A x  can be provided without further matrix vector products or application of 
the preconditioner. This gives a cheap check for the residual condition. For a detailed 
algorithm see Appendix B.

3.7 Robustness and Stopping Conditions

As usual, due to effects of round off errors, there are differences between theory and 
practical experience. In this section we consider such differences and explore how we 
can gain a robust method.

Therefore we start with considering practical difficulties which might rise when 
using inexact inverse iteration with MINRES as a linear solver. Then we describe some 
counter-measures in form of additional stopping conditions.
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3 .7 .1  P o ss ib le  b reak d ow n s an d  th e ir  sou rce  

Inconsistent system s

By our efficiency results in this chapter we have seen that letting the shift tend towards 
the desired eigenvalue is beneficial for the overall performance. However, since A — o l  
tends to a singular matrix, shifting towards the desired eigenvalue increases the danger 
of failure of the linear solver. We have studied empirically the effect of keeping a certain 
distance to the sought eigenvalue and the shift. For these tests we used shifts of the 
form o% = Ql +  pert where pert is a fixed perturbation. We did tests with pert = 0, 
pert = 10eps ||A|| and pert =  103eps ||A||, where eps is the machine precision. There 
were no significant differences between these three choices of pert. Breakdowns occur 
with the same likelihood for all three choices.

More significant are the differences between the methods, meaning between unpre­
conditioned solves, and preconditioned solves with the standard and the modified right 
hand side. Using the modified right hand side improves the robustness considerably. 
This approach leads to the least number of breakdowns. In contrast, unpreconditioned 
solves only broke down when the subspace size was large, and round off errors prevented 
the detection of an acceptable solution. More interesting is that from all preconditioned 
approaches the combination of inexact inverse iteration and preconditioned MINRES 
as discussed in Section 3.4 failed most. Our explanation for this is that for the stan­
dard preconditioned system the first vector in the subspace is not an approximation of 
the solution. In contrast, in the unpreconditioned and also in the preconditioned case 
where the modified right hand side is used, the right hand side is an approximation of 
the sought solution. In the standard preconditioned case until the same approxima­
tion is regained the round off errors might destroy the chance of finding an accurate 
solution.

Summarising, we found that the almost singularity of the system is for our applica­
tion not of great concern. The breakdowns were often triggered by some other reason, 
but possibly enforced by the singularity.

R ound off errors

Another possible error source are round off errors made during the calculation of the 
Krylov basis and the projection of A — o%I  onto the Krylov subspace. The basis for 
the Krylov subspace should be orthogonal, however due to round off errors it will not 
be orthogonal. (The possible danger of losing the orthonormality of the Krylov basis 
somewhere during the process is closely linked with the convergence of the approxima­
tion to the exact solution.) Perhaps more significantly is that the improvements added 
to the current approximation gets inaccurate. As a result the estimator for the norm 
of the residual decreases while the norm of the residual itself may increase.
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Too w eak re q u ire m e n ts

Obviously, if the tolerance and the shift are not tight enough, so not satisfying the 
conditions of the convergence results, then the resulting solution might not improve 
the previous approximation.

Too s tro n g  re q u ire m e n ts

Consider y  =  B ~l b and ||A y ||<  eps ||y ||, where eps is the machine precision, then 
y  +  A y are same solution and \\B (y  +  Ay) — b ||<  eps ||R ||||y ||. This shows that in 
practice the machine precision limits the achievable accuracy, both for the eigenvalue 
approximation and for the linear solve. (In both cases the convergence is in practice 
checked by an evaluation of a residual.) As we do not know how much accuracy 
is achievable for the eigenvalue problem, it might happen tha t we asked for a not 
achievable accuracy for the eigenpair approximation. As MINRES has to provide the 
outer iteration with the corresponding solution, this implies tha t MINRES does not 
find a solution of the specified accuracy. We now discuss the effect this has on MINRES.

For us the im portant feature is the departure between the internal estimator used 
within MINRES for the residual norm, || res* ||, and a direct calculation of residual 
norm and its exact value (which not available). The direct calculation of the residual 
using the current approximation needs one matrix vector product, hence it is usual to 
use the internal estimator and calculate the residual only when the estimator is small 
enough. However as we use matrix vector products and possibly some preconditioner, 
the calculated residual might also differ considerably from the exact one. Further the 
estimator will differ from the exact one as the estimator does not stop its convergence 
towards zero when the norm of the exact residual stagnates.

Another feature of too strong requirements is described under the next header, 
round off level.

R o u n d  off level

When x is accurate up to round off level at least to the information of the algorithm, 
then no further improvement will be achieved. To make this more specific denote the 
j- th  component of a vector y  by (y ) j .  Now if

l ( y f c ) j  -  ( y * - i ) j l <  epsmin{|(yfc)j|, |(yjt_i)j|}

for all components j ,  then clearly the two iterates do not differ with respect to machine
precision, hence the method stagnates, that is y  ̂ =  yfc+i =  This effect can appear
when the requirements are too strong and the difference between the exact solution 
and the approximation is small, so convergence is achieved. However, this effect can 
also appear considerably earlier due to slow convergence.
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3 .7 .2  S to p p in g  c o n d itio n s

Obviously the main stopping condition for the inner iteration is due to successfully 
reaching the specified convergence level for the inner iterations. Further it is sensible 
to stop the inner iterations, when the convergence level for the outer method, here 
the eigenvalue residual, is reached. However, the inner method might fail to provide 
a satisfactory answer and create additional cost by trying repeatedly without success. 
Hence, one likes to detect any failure as quickly as possible and return to the outer 
method, hopefully still providing a sensible answer and a flag indicating the kind of 
failure.

The MatLab routine MINRES checks in each iteration for stagnation, that is if the 
round off level is reached. However our experience is that this condition is too tight 
and creates additional costs due to late detection of failure. Additionally due to the 
late detection the solution is often not a good approximation to the sought eigenvalue.

The stopping condition from Simoncini and Elden (2002) introduced earlier, (3.47) 
can be used either instead of the residual condition, so as main stopping condition or as 
an additional condition to gain more reliability. However our practical experience is not 
in favour of either of these variations. If one knows the correct stopping parameter, tse  
in (3.47), both variations work excellently. However, in our experience this parameter 
tse  depends on the matrix, the considered eigenvalue and on the starting vector x° 
and so far no estimator for a good choice of tse  is available. For more on this see 
Example 3.5 in Section 3.8.3.

More satisfactory especially in case of PInvit, is to check the outer convergence 
condition in each iteration of MINRES. This has the advantage tha t specially for almost 
singular systems convergence can be detected before MINRES derails. However this is 
not the case if the convergence condition is too tight (too strong requirements). For 
this case an additional stopping condition is needed. As explained earlier in this case 
the residual norm estimator and the residual norm behave differently.

In the following we describe how the residual stopping condition can be implemented 
without needing further m atrix vector products or application of the preconditioner. 
The same technique can be used to check the eigenvalue residual norm. Then we discuss 
how the additional stopping condition can be implemented.

R es id u a l S to p p in g  C o n d itio n

In Section 3.6.5 we discussed a few aspects of implementing MINRES. Here we re­
peat some of these ideas in order to understand how these stopping conditions can 
be calculated without needing further m atrix vector products or applications of the 
preconditioner.

To make this discussion applicable for all methods discussed so far denote the 
preconditioner by P  = P1 P2 where Pi or P2 might be the identity matrix.
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MINRES calculates a basis U for the Krylov subspace using the Arnoldi /  Lanczos 
sequence. An essential ingredient is a three term recurrence formula to construct U and 
T  such tha t P 1_1(A — cr/)R2-1 ^  =  UT. Further T  =  Q R  where R  upper triangular with 
only three diagonal not equal to zero. Another im portant ingredient of the MINRES 
algorithm is a three term  recurrence formula for R -1 which can be applied to any 
m atrix B  to obtain B R ~ l . As in Section 3.6.5 where we explained how P y  can be 
calculated, the calculation for any expression of the form z =  B y  = (B R ~ 1)QTe i is 
likewise as long as B  is available. To calculate (A  — a i ) y  we need only four vectors 
and the recurrence formula for R _1. Hence computing the residual ||bz — (A — crl/)y || 
involves only a few vector additions and one scalar product. In case of the approach by 
Simoncini and Elden (2002) we have the residual ||P1- r b* — R f TR f 1(A — <jt/)R 1_Ty*||. 
To calculate R1_TR1_1(A — (TlI ) P ^ Ty l without using any further matrix vector products 
or application of the preconditioner we need to reorder a few steps in the algorithm 
and storage for a few additional vectors.

E igenvalue R esid u a l

As explained above the calculation of (A — c l ) y  does not need to cost any matrix 
vector products. Using (A — crl)y we can calculate the eigenvalue residual by

ll-4y -  p ly ly l l  . ( ^ - ^ ^ 1 1
l l y l l  l l y l l

However it is appropriate to check the eigenvalue residual, or the scaled eigenvalue 
residual as convergence conditions for the outer iteration. If the smallest eigenvalue of 
A  is larger then a better approximation of |s*| is given by the scaled eigenvalue residual

llyll M '

Smit and Paardekooper (1999) shows that |s l ||c* |<  slest for a equaling the smallest 
eigenvalue. The eigenvalue residual is appropriate if the sought eigenvalue has an 
absolute value of order 1 or smaller while ||A ||> 1.

A d d itio n a l S to p p in g  C o n d itio n

Preconditioned MINRES calculates an estimator for ||resj,||p -i called snprod as paxt 
of updating the solution yjj.. When round off errors lead to a loss of convergence this 
estimator still converges towards zero. Based on this fact we could stop the inner 
iterations when snprod/ || resj. ||p -i drops below a threshold. However this would 
require the calculation of ||res^.||p-i. Further the decrease of snprod/ ||res^.||p—i can
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also be caused by failing to calculate ||res£,||p-i accurately enough. Therefore we look 
for a different stopping condition. Assuming snprod reflects ||resj.|| better than the 
calculated one we can use the fact

l |re s^ ||p - i< ||P ~ 1||||res .̂||2 .

We are interested in stopping when ||resjj.||<  r*, therefore we might use snprod < 
const r  as additional stopping condition. In our tests we used snprod < 10_5r  || 

resQ||p-i with good results. However the constant 10-5 is neither optimal nor indepen­
dent of the eigenvalue problem, though changes in this constant had little effect. The 
condition also works well when snprod does not reflect ||res^.||p-i.

3.8 Numerical Examples

In this section we illustrate the theoretical results on the efficiency for inexact inverse 
iteration using unpreconditioned MINRES and preconditioned MINRES. Further we 
illustrate the convergence and efficiency of the approach Riide and Schmid (1995) as 
well as of methods using the modified equation (3.46). We report on tests where 
we compared the performance of various methods. As a benchmark to compare our 
algorithm against we use LOBPCG, see Knyazev (2000). Also tests against linear 
solves using MINRES are done to illustrate what the cost factor between solving an 
eigenvalue problem and a linear solve is. To illustrate the convergence we consider as 
in Chapter 2 the ‘Poisson’ eigenvalue problem and the m atrix ‘bcsstk09’ form Matrix- 
Market (h t t p : //g am s. cam.n i s t . gov /M atrixM arket/index .htm l).

The examples and some useful abbreviations are introduced in Section 3.8.1. In 
Section 3.8.2 we discuss the results on the numerical test with respect to the efficiency 
for the methods considered in Sections 3.3 and 3.4, tha t are Invit, RQIf and RQId. 
Then in Section 3.8.3 we discuss the performances of the methods analysed in Sections
3.5 and 3.6, that are SE, all variations of the inverse correction method and PInvit. The 
discussion in Section 3.8.3 will be with respect to convergence and efficiency. Finally 
in Section 3.8.4 we summarise our theoretical findings and our practical experience.

3 .8 .1  N o ta t io n  an d  ex a m p les

We introduced some abbreviations in Chapter 2. We now extend this list to all methods 
compared here.

In v it stands for inverse iteration with fixed shift and decreasing tolerance, 

a1 = g° and r l =  min{C2 l^ l- 111̂ *lb, ô}*

R Q If is the Rayleigh quotient iteration with fixed tolerance, o% =  gl and r % = tq.
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R Q Id  is the Rayleigh quotient iteration with decreasing tolerance, a1 = gl and r l = 
min{C2

SE stands for the approach by Simoncini and Elden (2002) using the alternative system 
(3.46), with a* = q1 and the stopping condition ||yfc||>||r*||_1 and simultaneously

( l l y f c l l  -  l l y j b - i l l )  l l y f c i r 1 ^  ts e -

P In v it  stands for our variation of the approach of Simoncini and Elden (2002), that 
is Inverse Iteration using the alternative system (3.46) with a residual stopping 
condition, o% =  g% and fixed tolerance r l = tq. Here we use the fact that a 
Cholesky preconditioner is used in MINRES and use P  to calculate b  =  P x.

P I n v i t+  that is Algorithm 4 with crl =  gl and t 1 = tq. Here we ignore the fact that a 
Cholesky preconditioner is used. The first iteration is a standard step of inexact 
inverse iteration like Invit, RQIf and RQId, but calculating additionally P y  to 
provide b =  P x. The remaining iterations are as in PInvit.

IC M f Inverse Correction with fixed shift, first iteration is inexact inverse iteration, 
Algorithm 2 with cr° =  g°, then inverse correction, Algorithm 3 with a1 = g° and
Tl =  Tq.

IC M fp  Inverse Correction with fixed perturbation, first iteration is inexact inverse 
iteration, Algorithm 2 with <7° = g°, then inverse correction, Algorithm 3 with 
cr% = g% + Cq and r l =  to-

IC M lp  Inverse Correction with linear perturbation, first iteration is inexact inverse 
iteration, Algorithm 2 with <7° =  g° , then inverse correction, Algorithm 3 with 
a1 = gl +  Cgr*/ |^*| and t % =  min{^, <52 |g* -  cr*| /  |^|}.

IC M q p  Inverse Correction with quadratic perturbation, first iteration is inexact in­
verse iteration, Algorithm 2 with cr° =  g°, then inverse correction, Algorithm 3 
with a% =  gx +  Cq 11r z112 /(g 1)2 and r % =  m inj^, C2 |gl — o%\ /  |g|}.

L O B P C G  is an algorithm by Knyazev (2001), the code can be downloaded from 
h t t p : / / www-math. cudenver. edu/~aknyazev/softw are/C G .

P o isson  Poisson eigenvalue problem on a rectangular domain, aspect ratio 1/1.3, with 
Dirichlet boundary conditions. For discretisation we use thirteen grid points per 
direction and a second order central finite difference scheme. We consider only 
the smallest eigenvalue of this 121 x 121 matrix,

ith smallest 1 2 121
value 15.6 32.6 901.2
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b csstk 0 9  We use the real symmetric matrix bcsstk09 from Matrix-Market. All tests 
presented have the same starting vector x° =  c°v i+ s°w 0 where t° = s°/c° =  0.02. 
We consider two different strategies. One where we try  to find the smallest 
eigenvalue and the other where we try  to find the 20th smallest eigenvalue of the 
1083 x 1083 matrix. In the following table we summarise those eigenvalues which 
describe the difficulty for the corresponding tests.

i th smallest 1 2 19 20 21 1083
value 7.1e+3 2.7e+4 3.7e+5 4.1e+5 4.4e+5 6.7e+7

3 .8 .2  S ta n d a rd  ap p roach es

Here we illustrate the efficiency results for the methods analysed in Sections 3.3 and 
3.4, tha t are Invit, RQIf and RQId. Besides the here presented tests we did tests with 
different starting vectors, different parameter settings, different stopping conditions, 
and different eigenvalue problems. As we used in the theory the tangents as a measure 
for convergence we do so here, knowing that the tangents is in practise not available. 
Here we use 12-15 digit accurate approximations of the sought eigenvector to calculate 
the tangent, hence we use 10-10 as targeted accuracy level, so that the comparison 
solution should be more accurate than the current iterate x \

To illustrate Theorems 3.10 and 3.13 we consider three test on the example ‘bc- 
sstk09\ The first will use the three practical methods while the second one uses arbi­
trary shifts a% and tolerance conditions r l in order to demonstrate the quality of the 
bounds for the number of inner iterations per outer iteration C%. The third test adapts 
the idea of the second test to the total number of inner iterations T. Finally to support 
Lemma 3.11 we use the example ‘Poisson’ and variable precision arithmetic to illustrate 
the difference between the quadratic convergence of RQIf and the cubic convergence of 
RQId.

T est 3.1 We use Invit, R Q If and RQId on (bcsstk09’ together with unpreconditioned 
M INRES as well as with preconditioned MINRES. As a preconditioner we use an in­
complete Cholesky factorisation of the matrix A. To calculate the preconditioner we 
use the MatLab routine choline with droptol = 0.01. In all test runs we try to find the 
20th smallest eigenvalue to an accuracy o f t N «  10-10. As a stopping condition for the 
outer method we use ||rz||2 /  10-10. For the inner iterations we use the stopping
conditions as discussed in Section 3.7.2. The parameters used are given together with 
the convergence and efficiency data in Tables 3.1, 3.2, 3.3 and 3.4.

Test 3.1 repeats the Tests 2.1, 2.2 and 2.3, but with different starting vectors. Here 
we table the number of inner iterations C% instead of the convergence progress t l/ t l+1. 
The main parameter C2 is for both tests in Tables 3.1 the same. However the smaller 
value for tq enforces tha t ||rz|||s*|-1 is marginally smaller. The resulting increase in the
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T ° = 0.2 C2 = 100 r °  =  0.02 C2 = 100
i II r* || f a II r% II t l C
0 2.5e+05 1.0e-02 35 2.5e+05 1.0e-02 154
1 3.1e+02 1.3e-03 37 3.5e+01 6.3e-04 168
2 1.2e+02 9.8e-04 64 1.3e+01 2.8e-04 170
3 4.6e+01 7.3e-04 157 5.1e+00 9.7e-05 181
4 1.8e+01 4.3e-04 150 1.9e+00 3.9e-05 182
5 6.9e+00 l.le-04 152 7.5e-01 1.5e-05 183
6 2.7e+00 6.5e-05 148 2.8e-01 5.5e-06 184
7 1.0e+00 1.7e-05 142 l . le -01 2.2e-06 185
8 4.1e-01 1.0e-05 140 4.0e-02 7.5e-07 180
9 1.6e-01 2.7e-06 119 1.6e-02 3.4e-07 181
10 6.2e-02 1.6e-06 122 6.0e-03 l.le-07 165
11 2.4e-02 3.8e-07 98 2.3e-03 5.3e-08 169
12 9.5e-03 2.4e-07 134 8.9e-04 1.6e-08 156
13 3.5e-03 4.6e-08 97 3.5e-04 8.4e-09 163
14 1.4e-03 3.4e-08 142 1.3e-04 2.3e-09 140
15 4.9e-04 6.3e-09 117 5.3e-05 1.3e-09 83
16 1.9e-04 4.8e-09 135 4.0e-05 9.8e-10
17 7.4e-05 1.0e-09 61
18 4.1e-05 9.2e-10
r 2050 2644

Table 3.1: Invit using MINRES on ‘bcsstk09’ (Test 3.1)

r° =  0.05 r°  = 0.2 C2 = 2
i II r* || f C II r* || tl a
0 5.0e+05 2.0e-02 55 5.0e+05 2.0e-02 27
1 3.4e+02 2.1e-03 408 1.2e+03 3.7e-03 408
2 3.2e-04 4.9e-10 27 3.6e-03 2.3e-08 268
3 4.0e-05 3.0e-10 3.8e-05 5.6e-10
r 490 703

Table 3.2: RQIf and RQId using MINRES on ‘bcsstk09’ (Test 3.1)
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r°  =  0.2 C2 =  100 r°  =  0.02 C2 = 100
i II r ‘ || t l a II r* || t l C
0 2.5e+05 1.0e-02 45 2.5e+05 1.0e-02 51
1 1.6e+02 2.6e-03 46 2.9e+01 1.2e-04 54
2 4.6e+01 5.6e-04 53 6.8e+00 2.5e-05 59
3 1.2e+01 5.9e-05 54 l . le +00 2.4e-06 61
4 4.3e+00 1.7e-05 59 4.2e-01 8.2e-07 65
5 1.2e+00 2.8e-06 62 5.2e-02 1.6e-07 69
6 4.2e-01 8.5e-07 64 1.2e-02 1.4e-08 73
7 1.6e-01 3.4e-07 67 9.9e-04 2.5e-09 77
8 2.1e-02 6.9e-08 71 3.4e-04 5.3e-10 78
9 4.4e-03 5.0e-09 73 8.4e-05 2.8e-10 80
10 l.le-03 2.1e-09 74 3.7e-05 1.2e-10
11 3.9e-04 1.4e-09 78
12 6.3e-05 2.1e-10 80
13 3.0e-05 1.2e-10
T 826 667

Table 3.3: Invit using prec. MINRES on ‘bcsstk09’ (Test 3.

T ° =  0.1 r °  = 0.2 C2 = 2
i II r * II t% a II r * II tl O
0 5.0e+05 2.0e-02 35 5.0e+05 2.0e-02 32
1 6.2e+02 1.3e-02 65 1.0e+03 1.6e-02 66
2 6.2e-02 4.2e-07 86 1.2e-01 3.1e-06 85
3 2.3e-05 9.7e-ll 9.3e-06 3.1e-ll
r 186 183

Table 3.4: RQIf and RQId using prec. MINRES on ‘bcsstk09’ (Test 3.1)

71



3 .8  N u m e r i c a l  E x a m p l e s

number of inner iterations O' is predicted by the a posteriori bound (3.20). Further 
we observe that the unpreconditioned MINRES solves are too expensive to make this 
linear converging method worthwhile. From Tables 3.1 and 3.2 we see that the number 
of inner iterations is related to the reduction of the tangents. Further by comparing 
Tables 3.1 and 3.2 we observe that the number of inner iterations per outer iteration 
increases for the variable shift techniques RQIf and RQId. This is expected as the a 
priori bounds (3.24) and (3.32) are linearly increasing in log(|Ai — a x\~l ). However this 
increase should not concern as the outer convergence accelerates and by that the total 
number of inner iterations decreases such tha t the total number of inner iterations T  
is reduced.

Comparing RQIf and RQId we observe tha t the convergence of the two approaches 
is almost indistinguishable. More im portant is that both algorithm need the same 
number of outer iterations. For this case the a posteriori bound (3.22) on the total 
number of outer iterations T  differs only in the constants Cg and Cg. The chosen value 
for C2 in RQIf enforces tha t Cg is larger than for RQId. While in the second iteration 
for RQIf and RQId, see Table 3.2, O  is the same, the progress tx+1/ t x differs. Therefore 
the observed better performance of RQIf over RQId is supported by our bound on T ,
(3.22). Before we draw more attention to the differences between RQIf and RQId we 
consider a test illustrating the quality of the bounds for O  and T. This test will also 
give a better inside to the role of Cg.

T est 3.2 Consider the example (bcsstk09\ We use inexact inverse iteration with dif­
ferent parameter choices, satisfying the conditions

|sz|<  Cg ||resj.i|| and ||resj.i||< r*, (3.64)

where r x such that the conditions of Theorems 3.10 and 3.13 are satisfied. As a lin­
ear solver we use unpreconditioned and preconditioned MINRES. We consider the 20th 
smallest eigenvalue and perform always only one outer iteration. We restart this test 
with different starting vectors, with different approximation accuracies t° and with dif­
ferent error directions u°. Then for the unpreconditioned case, Figure 3-1, we plot the 
number of inner iterations Cx performed in this one outer iteration against the progress 
that was achieved tx/ t x+1. The preconditioned case is illustrated in Figure 3-2 where we 
plot the number of inner iterations against the achieved approximation quality 1 / t t+1.

In Figure 3-1 and 3-2 we used black asterisk for successful test runs with Cg > 1. 
For successful runs with 0.01 <  Cg <  1 we used green dots, the red dots represent 
tests were MINRES suffered a breakdown, which occurred always with tx+1 ~  10-12. 
In Figure 3-1 we give additional to the results marked by the asterisks and dots, two 
lines representing the slope of the bound for two different sets of T. The lower one 
corresponds to a set T with |r |=  100 while for the upper one |T |=  200. The constants
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Progress - f a

Figure 3-1: arbitrary shifts and tolerance constraints, 
unpreconditioned MINRES (Test 3.2)
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Figure 3-2: arbitrary shifts and tolerance constraints, 
preconditioned MINRES (Test 3.2)
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pr are in this case so large that the we only indicated the slope of the bound, while 
the actual bound is meaningless. More interesting is that by allowing 1 < Cg < 100, 
see green dots in Figure 3-1, the empirical slope moves upwards. This behaviour is as 
such predicted by the a posteriori bound on C*, (3.20), which states Cl oc log(l +  Cg). 
As for this test no additional stopping conditions were used we observed breakdowns 
of the linear solver, those of them lying inside the graph are plotted in red. However 
there are more such failures outside of the graph.

So far we made no comments on the preconditioned case nor on the differences 
between the preconditioned and the unpreconditioned case.

In Test 3.1 we used an incomplete Cholesky factorisation with droptol =  0.01. This 
choice of the drop-tolerance leads to the cost relation

cost of applying the preconditioner  ̂ ^  
cost of applying A

Introducing such a preconditioner forces the cost per iteration to rise by not more than 
a factor three. So to gain a similar performance for the preconditioned approach the 
number of inner iterations should be a third. While the number of inner iterations 
reduces by about one third for Invit and therefore not an improvement, the reduction 
is better for RQIf and RQId. Further we observe tha t in the preconditioned case the 
cost of the linear solve is related to l / t l+1, see for example Figure 3-2. Again the 
asterisks denote test runs with Cg <  1 and the green dots with 1 <  Cg <  100. Another 
difference is the quality of the bound on C*. The line in Figure 3-2 represents the actual 
bound for Cl, (3.28), using pr and qr according to Lemma 3.5 where D = D r as defined 
in (3.19) with T =  {1 ,2 , . . . ,  20}, where Ai <  A2 < . . .  <  A20 <  Aj  for all j  > 20.

We now repeat Test 3.2 but calculate always until tN < f°10-7  is reached.

T est 3.3 Consider the example ‘bcsstk09’ and compute its 20th smallest eigenvalue. 
We use inexact inverse iteration with different parameter choices, satisfying the con­
ditions | sz |<  Cg || res* || and || re s11|< r l , where t % is such that the conditions of 
Theorem 3.13 are satisfied. As a linear solver we use unpreconditioned and precondi­
tioned MINRES. The preconditioner is constructed using the MatLab routine choline 
with droptol = 0.01. We restart this test with different initial error direction u° while 
t° = 0.01 is fixed. In Figures 3-3, unpreconditioned MINRES, and 3-4, preconditioned 
MINRES, we plot the total number of inner iterations T  against the number of outer 
iterations A f for each run.

In Test 3.3 each test run choses a1 and r % randomly. The chosen values are then 
check against the convergence conditions of Theorem 3.13 and if necessary rejected. 
After running inexact inverse iteration using one set of parameters a single entry in 
the graph is made. The colour of the entry depends on the value of Cg, for Cg < 
0.01 black, for 0.01 <  Cg <  0.1 magenta, for 0.1 <  Cg <  1 red and all others blue
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Figure 3-3: arbitrary shifts and tolerance constraints, 
preconditioned MINRES (Test 3.3)
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Figure 3-4: arbitrary shifts and tolerance constraints, 
preconditioned MINRES (Test 3.3)
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RQIf RQId
i logio t* kf logio k*
0 -0.12 19 -0.14 15
1 -1.41 19 -1.62 24
2 -3.85 33 -4.33 45
3 -9.03 50 -12.90 78
4 -19.46 76 -36.19 113
5 -40.72 108 -82.66
6 -82.96

305 275

Table 3.5: Cubic is better than quadratic (Test 3.4)

unless convergence was not reached in the first 30 outer iterations (green dots). The 
resulting graph for the unpreconditioned case, Figure 3-3, illustrates that the bound on 
T  depends linearly on the number of outer iterations. In contrast in the preconditioned 
case the to tal number of inner iterations T  grows faster than linear in the number of 
outer iterations, despite the appearance in Figure 3-4. As Figure 3-3 indicates using 
inexact linear solves one can obtain ‘lucky’ performances with small total cost T  while 
a large number of outer iterations was performed. However to ensure low costs one has 
to cut down the number of outer iterations Af.

Earlier we diverted our attention from the difference in the performance of RQIf 
and RQId. As both  algorithm need only three outer iterations in test (3.1) the discrete 
nature of A f is not negligible. Therefore 7 is too small to apply Lemma 3.11. In contrast 
with Test 2.4 using variable precision arithmetic (vpa) we had a test where 7 was large 
enough. Here we repeat this test and discuss it with respect to the efficiency.

T est 3.4 We use R Q If and RQId on ‘Poisson’ together with unpreconditioned M IN­
RES. In all test runs we try to find the smallest eigenvalue to an accuracy o f t N «  10~80. 
We stop the inner iterations due to either reaching the required residual tolerance or 
the required tangent tN . The results are presented in Table 3.5.

As Table 3.5 shows Af differs only by one between RQIf and RQId, but this is 
already enough to obtain a lower number of total inner iterations Af for RQId than 
for RQIf. However as this example illustrates 7 needs to be large in order to ensure a 
reduction in Af for RQId over RQIf. The difference between the two methods becomes 
more apparent when a preconditioner is used. Nevertheless even for the preconditioned 
case 7 needs to be large in order to neglect the discrete nature of Af. So for practical 
situations with limited machine precision we can expect RQIf and RQId to perform 
similarly.
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extreme tse  — 0.1 interior tse  =  10 -4

i II *l II t l a II r * II f o
0 2.7e+05 1.0e-02 4 5.0e+05 2.0e-02 12
1 1.2e+04 4.6e-03 10 l.le+ 04 7.0e-03 57
2 6.9e+01 5.1e-05 18 4.9e+00 2.1e-05 60
3 3.1e-03 2.0e-09 13 3.6e-05 9.6e-ll
4 4.8e-07 2.7e-12
T 45 129

Table 3.6: SE using MINRES on ‘bcsstk09’ (Test 3.5)

extreme r°  =  0.5 interior t °  =  0.5
i II r* || tl a II r* || t l Cl
0 2.7e+05 1.0e-02 2 5.0e+05 2.0e-02 4
1 1.5e+04 6.5e-03 7 2.2e+04 7.7e-03 38
2 1.7e+02 3.6e-04 15 4.7e+01 2.6e-04 60
3 3.9e-02 4.5e-08 17 1.5e-03 5.9e-09 32
4 4.1e-07 4.0e-12 3.4e-05 4.0e-10
T 41 134

Table 3.7: PInvit using MINRES on ‘bcsstk09’ (Test 3.5)

3 .8 .3  V a ria tio n s o f  In ex a c t In verse  I te r a tio n

In the following we compare the variations of inexact inverse iteration as introduced in 
Section 3.5 and 3.6. We will compare them  with RQIf and RQId as illustrated in the 
previous section. Further LOBPCG and a simple inexact linear solve using MINRES 
are considered as benchmarks later on. To allow a fair comparison between the methods 
we use the same initial approximation and the same preconditioner for all methods. 
However we made many more tests with other starting vectors, other parameter values, 
and other matrices.

T est 3.5 Consider example 1bcsstk09’ and apply SE, PInvit and PInvit+ to the small­
est and the 20th eigenvalue of 1bcsstk09’ using unpreconditioned M INRES as linear 
solver.

We recall that SE and PInvit use the preconditioned alternative system (3.46) either 
explicitly or implicitly, hence a single inner iteration of unpreconditioned MINRES has 
the same cost as a single inner iteration of preconditioned MINRES on (A — <rl)y = b. 
Therefore the methods to compare are RQIF and RQId using preconditioned MINRES, 
see Table 3.4. Comparing the results of RQIf and RQId with those for SE, Table 3.6 
we observe the superiority of the approach from Simoncini and Elden (2002). For all 
methods we compare here except LOBPCG, SE provided the optimal results. However 
these optimal performances were dependent on the eigenvalue, the chosen value for t $ e
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extreme eigenvalue interior eigenvalue
a = 0.05 a  =  0.05

II r II t% a II r II t l O
0 2.7e+05 1.0e-02 13 5.0e+05 2.0e-02 45
1 4.5e+01 3.1e-04 19 1.6e+02 2.0e-03 55
2 1.8e-02 9.3e-09 16 l . le -01 4.8e-07 50
3 5.5e-07 1.93e-12

48
2.0e-05 6.47e-ll

150

Table 3.8: PInvit+  using prec. MINRES on ‘bcsstk09’ (Test 3.5)

and the initial vector x°. Optimal results for the extreme eigenvalue were obtained with 
T S E  ~  0.2, the actual choice depended on the initial vector. In contrast for the interior 
eigenvalue choices of t s e  >  0.01 lead to divergence. According to our experience this 
effect is independent of the quality of the initial approximation x°. To obtain excellent 
performances for the interior eigenvalue we used t s e  =  0.0005. It is not a cure to 
tighten the condition t s e  a priori as than the cost increases dramatically specially for 
the interior eigenvalue problem.

SE and PInvit differ only in the stopping condition for the inner iterations. There­
fore the also excellent results for PInvit highlights the benefit of considering the alter­
native update equation (3.46). In contrast to SE, PInvit is very robust with respect to 
the stopping condition. Choosing r l =  0.1 instead of r l = 0.5 as in Table 3.7 increases 
the overall cost T  by 5 iterations for the extreme eigenvalue and by 30 iterations for 
the interior eigenvalue. So again the optimal performance is sensitive to the choice of 
the stopping condition. However for PInvit this optimal choice is independent of the 
initial approximation and independent of the eigenvalue.

PInvit-l- using MINRES with (incomplete) Cholesky preconditioning is from the 
second iteration onwards the same as PInvit. As the first iteration of PInvit-|- is the 
same as for Invit, RQIF and RQId, using the standard right hand side, we expect 
PInvit-l- to be inferior to PInvit. However we expect PInvit-|- to be sufficiently cheaper 
than RQIf and RQId.

Another advantage of SE, PInvit and PInvit-l- is the robustness these three m eth­
ods have over RQIf and RQId when MINRES is used with the additional stopping 
conditions discussed in Section 3.7. Invit, RQIf and RQId suffer from breakdowns for 
tight outer convergence conditions ||r*|| /  |^ |<  10~10. This is not the case for SE and 
PInvitunless the requirements are too strong. Further when the stopping condition is 
too tight to be ever satisfied, for example ||r*|| /  |^ |<  10-14 this is detected in SE and 
PInvit and a good approximation with ||r2|| /  |p*|< 10-12 can be provided. In contrast 
Invit, RQIf and RQId using preconditioned MINRES break down without providing a 
highly accurate approximation to the sought eigenpair.
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extreme r°  =  0.5 interior r°  =  3.9 * 10 3
i II r * II t l O II r * II f a
0 2.7e+05 1.0e-02 13 2.5e+05 1.0e-02 49
1 4.5e+01 3.1e-04 4 5.2e+01 1.8e-04 45
2 9.4e+00 7.0e-05 4 3.3e-01 4.0e-06 47
3 2.0e+00 1.6e-05 5 6.4e-03 1.4e-07 48
4 3.6e-01 9.9e-07 3 2.2e-04 5.7e-09 47
5 4.7e-02 3.8e-07 4 9.0e-06 2.3e-10
6 9.8e-03 3.4e-08 3
7 1.8e-03 1.5e-08 4
8 3.4e-04 l.le-09 3
9 6.6e-05 4.2e-10 4
10 l.le-05 8.3e-ll 5
11 2.2e-06 9.9e-12 3
12 4.2e-07 3.9e-12
T 55 236

Table 3.9: ICMf using prec. MINRES on ‘bcsstk09’ (Test 3.6)

extreme To =  1.4 * 10 3 pert =  1 interior tq =  2.5 * 10 5 pert =  1
i II r* || t l Cl II r ’ || tx a
0 2.7e+05 1.0e-02 13 5.0e+05 2.0e-02 45
1 4.5e+01 3.1e-04 13 2.2e+02 2.6e-03 84
2 4.7e-02 1.4e-07 12 2.9e-03 5.8e-08 57
3 6.2e-05 4.8e-10 13 6.9e-08 1.6e-12
4 4.7e-08 7.9e-14
r 51 186

Table 3.10: ICMfp using prec. MINRES on ‘bcsstk09’ (Test 3.6)

T est 3.6 We repeat Test 3.5 with the methods ICMf, ICMfp,ICMlp, and ICMqp. The 
results are presented in Tables 3.9-3.12.

In general the cost per outer iteration reduces for the inverse correction method in 
comparison to Invit, RQIf and RQId and also in comparison to SE and PInvit. However 
ICMf needs too many outer iterations so tha t the advantage of Cl being small for all i 
does not pay off. In case of the interior eigenvalue this is even more apparent. However 
ICMf is the most robust of all the here tested methods.

A major concern for ICMfp, ICMlp and ICMqp is the erratic convergence behaviour. 
This erratic convergence behaviour leads to a lack of control in the outer iteration. As 
a result ICMfp, ICMlp and ICMqp suffer frequently from breakdowns of MINRES. 
While well in advance of a breakdown the eigenvalue residual relates to the tangent as 
l l r *l l  ~  105, in t h e  breakdown situation the relation becomes ||r*|| (tz)_1 «  107.
This makes it even harder to detect a breakdown. However the occasionally good
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extreme C 2 = 10 Cg =  1 interior C 2 = 1 C g =  0.01
i II r* || f a II r* || t* a
0 2.7e+05 1.0e-02 13 5.0e+05 2.0e-02 45
1 4.5e+01 3.1e-04 31 2.2e+02 2.6e-03 184
2 2.4e-04 2.7e-10 87 7.9e-04 1.2e-08
3 1.4e-04 3.4e-12
r 131 229

Table 3.11: ICMlp using prec. MINRES on ‘bcsstk09’ (Test 3.6)

extreme C2 =  10 Cg = 1 interior C2 =  1 Cg =  0.01
i II r* || t' C II || tx O
0 2.7e+05 1.0e-02 13 5.0e+05 2.0e-02 45
1 4.5e+01 3.1e-04 65 2.2e+02 2.6e-03 188
2 1.6e-04 1.6e-10 l.le-0r2 l.le-08
r 78 233

Table 3.12: ICMqp using prec. MINRES on ‘bcsstk09’ (Test 3.6)

performance gets close to the quality of SE and PInvit.
To demonstrate the quality of the performance of RQIf, RQId, SE, PInvit and 

PInvit-l- we now introduce two benchmarks.

T est 3.7 Consider example ‘bcsstk09’ and apply LOBPCG using preconditioned MIN­
RE S to the smallest eigenvalue. We repeat this for different right-hand sides and two 
targeted eigenvalue accuracies, 10-10 and 10-12. Further we apply these right-hand 
sides also to RQIf, RQId, PInvit and PInvit-h. The results are given in Table 3.13.

LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient method) is a 
one-level-method to find the smallest eigenvalue of a symmetric positive definite matrix 
A. This algorithm is one of the most efficient algorithms for this task, see Knyazev 
(2000). For more detail on LOBPCG see also Knyazev and Neymeyr (2003). Here 
we use LOBPCG with blocksize k = 1 and a 3 dimensional subspace to calculate the 
eigenpair approximation by a Rayleigh-Ritz analysis. This should lead to a considerably 
better approximation than the RQ of the current iterate. Therefore we expect that

IQ -10 10-12
RQIf 68 70
RQId 63-69 66-73
PInvit 42 47-52
PInvit+ 47 52-60
LOBPCG 34-37 38-41*

Table 3.13: Comparison of over all cost T , Test 3.7
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relative unprec. MINRES prec. MINRES, prec. MINRES, 
accuracy solve with A solve with A — o l

10"8 286 24 77
10-10 314 28 86
lO"12 345 32 95

Table 3.14: Cost of a linear solve with MINRES, Test 3.8

LOBPCG outperforms all variations of inexact inverse iteration.
The results, tabulated in Table 3.13, indicate that for the targeted accuracy of 

10-10 inexact inverse iteration, especially PInvit, is competitive. However the results 
for the accuracy 10-12 need to be handled with care, as 10~12 <  eps |An | /  |A i |~
2.1 x 10-12. Most runs were stopped after detecting tha t the targeted accuracy could 
not be attained. Here we report for RQIf, RQId, PInvit, and PInvit+  the number 
of iterations until this failure is detected. However in all cases f  <  2 x 10~14 and 
11r*z11< 4 x 10-8 . For LOBPCG we report the number of iterations until ||i*z||< 4 x 10-8 
was achieved. The small difference in the performance between LOBPCG and inexact 
inverse iteration is encouraging.

T est 3.8 Consider ‘bcsstk09’ and solve the linear system Ax =  b with ||b ||2=  1 up to 
the accuracies 10-8 , 10~10, and 10-12, using unpreconditioned MINRES. Then repeat 
with preconditioned MINRES. As a preconditioner we use an incomplete Cholesky fac­
torisation of the matrix A. To calculate the preconditioner we use the MatLab routine 
choline with droptol =  0.01. Finally solve the system (A —cr/)x =  b with preconditioned 
MINRES, where a =  ^(A2o +  A19). The performance is given in Table 3.14.

Comparing the results of Test 3.14 with all previous tests we see tha t solving the 
eigenvalue problem is not much more expensive as solving a linear system. Specially 
when comparing SE, PInvit and PInvit+  with the linear solve, Tables 3.6, 3.7 and 3.8 
with Table 3.14, we see that solving the eigenvalue problem is about twice expensive 
than solving the linear system. This has been confirmed also for other starting vectors 
and other aimed accuracies.

3 .8 .4  C o n c lu s io n

In this chapter we analysed the efficiency of inexact inverse iteration using MINRES. 
For this we defined appropriate measures for the cost. T hat are the number of inner 
iterations per outer iteration C% and the total number of inner iterations T. In Sections
3.3 and 3.4 we provided a posteriori bounds for C1 and T  for the case that inexact 
inverse iterations is used with unpreconditioned and preconditioned MINRES. The a 
posteriori bound for O  links the cost of a linear solve with the progress the linear solve 
achieved in one outer iteration. Based on the a posteriori bound for T  we showed that
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it is beneficial to reduce the number of outer iterations, which, in practise, can be be 
achieved by using the RQ as shift.

Another im portant part of this chapter was the study of some variation of inexact 
inverse iteration. We proved convergence of the inverse correction method from Rude 
and Schmid (1995) by linking it to inexact inverse iteration. An efficiency result was 
proved in Section 3.5. Further we provided a convergence proof for the algorithm 
proposed by Simoncini and Elden (2002). This approach was extended to the use of 
any positive definite preconditioner. Based on the efficiency result we showed why this 
approach is superior to other approaches.

Finally we compared the studied methods using numerical examples. These exam­
ples revealed tha t the approach from Simoncini and Elden (2002), SE, and our variation, 
PInvit, are efficient. Further we have seen tha t PInvit+  which applicable for any pre­
conditioner is competitive and robust. In contrast, Test 3.5 showed that SE relies on a 
good choice of the stopping parameter tse  which is not a priory known. A comparison 
with LOBPCG and a linear solve as benchmark revealed that these eigenvalue solvers 
are very efficient.
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Chapter 4

Convergence of Inexact Inverse 
Iteration for the generalised  
eigenvalue problem

In this chapter we consider the generalised unsymmetric eigenvalue problem, (GEP),

Ax =  AMx, (4.1)

with A, M  G Knxn where the eigenpair (A, x) is sought. Later we might refer to (4.1) 
as the right eigenvalue problem. In this and the following Chapters we restrict to the 
case where M  is symmetric positive definite (spd).

As in Chapters 2 and 3 we mean by inexact inverse iteration tha t the linear sys­
tems arising in inverse iteration are solved only approximately. In this chapter we 
require only that the linear solves satisfy a residual constraint. The resulting analysis 
is therefore independent of the linear solver.

We start by discussing a few basic properties of the GEP in Section 4.1. There we 
discuss the eigen-decomposition of the m atrix pair A, M , and the generalised tangent 
which we use as a measure for convergence. Further we derive bounds which get 
frequently used in later sections. This includes bounds relating the eigenvalue residual 
and the Rayleigh quotient with the generalised tangent.

Then in Section 4.2 we present a general convergence result for inexact inverse 
iteration. This convergence result, Theorem 4.2, is a key result for the remainder of 
this chapter and Chapter 6. As we only use a constraint condition on the residual of 
the linear solves, the result is independent of the method applied to obtain the next 
iterate, and hence it can be applied to a variety of practical variations of inexact inverse 
iteration.

In Section 4.3 we use this general convergence result to deduce convergence for a few 
practical methods. The selection of methods includes inexact inverse iteration using a
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fixed shift and a decreasing tolerance. We also discuss two variations of the Rayleigh 
quotient iteration. Additionally we consider an update technique for the shift proposed 
in Wilkinson (1965). Again we consider the approach from Rude and Schmid (1995). 
Further we show how the approach of Golub and Ye (2000) relates to inexact inverse 
iteration. In Chapter 3 we discussed the approach of Simoncini and Elden (2002) for 
the symmetric eigenvalue problem, here we extend their approach to the GER

The above approaches can be classified as one sided approaches, as they only solve 
the right eigenvalue problem, (4.1). In contrast, two sided approaches solve the left 
eigenvalue problem

~x.H A  =  A x h M, (4.2)

in addition to the right eigenvalue problem. While for A  symmetric and M  spd, the 
right eigenvalue problem and the left eigenvalue problem have the same solution, now 
for A  unsymmetric the eigenvalues are still the same but the eigenvectors differ. The 
advantage of using a two sided approach is that one can use the generalised RQ as shift, 
which provides a better, i.e. higher order, approximation of the sought eigenvalue than 
the standard RQ does. We discuss two practical methods based on the two sided 
approach in Section 4.4.

Finally in Section 4.5 we provide some numerical examples.

4.1 Some basic results

4 .1 .1  J o rd an  d e c o m p o s it io n

In contrast to the standard symmetric eigenvalue problem for arbitrary matrix pairs 
A, M  the GEP might not have a full set of independent solutions. However, if M  is 
spd then a full set of generalised eigenvectors exists.

As we simultaneously use the solutions of the right and the left eigenvalue problem, 
we use super indices L  and R  and write

A v f  =  \ j M v f  and ( v f ) H A  =  M .  (4.3)

Next we want to decompose the left, (4.2) and the right eigenvalue problem (4.1). For 
this we use the existence of a Jordan decomposition for any unsymmetric matrix B, 
see, for example, Golub and van Loan (1996, Theorem 7.1.9). Let B  6 C"xn then there 
exists W  G Cn,Xn and J  G CnXn such that

B  = W J W ~ \  (4.4)

where J  = diag(Jj) is called Jordan m atrix and the J j  s are referred to as Jordan
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blocks. Each Jordan block has the format

X j  1 0  \

j r .=

0 1V u A j }

This definition for the Jordan blocks is common however the scaling of the upper 
diagonal elements is arbitrary, meaning any other value except zero would do. Further 
the sizes rrij of the Jordan blocks Jj € V 7lj xrnj add up to n.

As M  is spd we can factorise M  = M 2M 2, where M 2 is again spd. Now let (4.4) 
be the Jordan decomposition of B  = then set Vr  := M ~ ^ W  to obtain

=  W J W ~ l 

&  A M ~ \ w  =  M M ~ \ w j

&  AVr  = M V r J. (4.5)

This is an eigenvalue decomposition of the GEP Ax =  AMx, where M  is spd. We refer 
to (4.5) as the Jordan decomposition. For more general eigen-decompositions, valid
for any GEP see for example Turnbull and Aitken (1932) or Gantmacher (1959a,b).
Similarly with V jj  we gain for the left eigenvalue problem (4.2)

V ? A  = J V ? M .  (4.6)

Using the Jordan decomposition (4.5) and assuming a  is not an eigenvalue of the m atrix 
pair A, M  we can write

(A — gM )V r  = M Vr (J  — a I)

&  VR( J - a I )~1 =  (A — (j M )~ 1M V r . (4.7)

Similar we can use (4.6) to obtain

Vr (A — oM ) = (J  — gI)Vr M  

&  { J - a I ) - l v £  = Vr M (A  — a M )~ l . (4.8)

Additionally we observe tha t Vr  is M-orthogonal to V r ,

V ^ M V r  = W ~ lM ~ 2 M M ~ 2 W  = W ^ W  = I.

So the scaling of the left eigenvectors is implicitly given by the scaling of the right
eigenvectors. The M-orthogonality of Vr  to Vr  implies I  = V ^ M V r  =  V r V ^ M  =

M V n V g .
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Later in the convergence analysis we like to use some bounds on the norm of a 
Jordan matrix, say J . In contrast to the standard symmetric eigenvalue problem the 
eigenvalues of an unsymmetric matrix B  no longer determine ||i?||2, but the singular 
values do. So in order to bound \ \ J \ \2 we use a bound on the singular values of the 
Jordan block Jj. The singular values of an unsymmetric m atrix B  are the square roots 
of the eigenvalues of the matrix B B H which equal the eigenvalues of B H B. Using 
the Theorem of Gershgorin, see for example Golub and van Loan (1996, p. 320), we 
can derive an appropriate bound. Let the m atrix B  £ Cn,xn have the elements (b{j), 
then the Theorem of Gershgorin states tha t for each eigenvalues n  of B  there exists a 
diagonal element bn such that

bn\ <  ^   ̂ '

In case of a Jordan block matrix J  with size larger than one, this reduces to three 
inequalities for the singular values v of J. Denote the diagonal elements of the Jordan 
block by a, then the Theorem of Gershgorin provides the three inequalities

\u2— \a\2 —1| <  2 |a| or

\v2— \a\2 —1| <  |a| or

\v2— \a\2 | <  |a| .

If v  is a singular value of J  then at least one of the three inequalities must hold. As 
the first inequality gives the largest inclusion interval containing the other two, we use 
the first inequality to obtain a bound on the singular values. Expanding the modulus 
of the left-hand side of the first inequality gives (\a\ —l) 2 <  v2 <  (|a| + 1)2. However 
if a ^  0 then v >  0, as the Jordan block is non-singular and hence its singular value 
decomposition is also non-singular. In case the size of the Jordan block is one, the 
corresponding singular value equals the modulus of the eigenvalue, i.e. v =M - Using 
the fact tha t the set of singular values of a block diagonal matrix, for example a Jordan 
matrix, is given by the union of the singular values of the diagonal blocks, we obtain 
the following result.

L em m a 4.1 Given a non-singular Jordan matrix J  with diagonal entries a \ , . . . , a k  
then

||J || <  max{|aj| +dj}
j

where dj =  1 i f  aj belongs to a Jordan block of size larger than one, otherwise dj = 0. 
Now, i f  the first block is of size one with diagonal entry ai, and all other diagonal
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entries with dj = 1 have |flj|> 1 then

||J ^ / - e i e f J H  < (imn{|aj| - d j } )  1
3 >  2

P ro o f: The proof for the first part follows from the above said. The second part uses 
the effect tha t the singular values of J ~ l are the multiplicative inverse of the singular 
values of J. □

4 .1 .2  G e n e ra l is e d  T a n g e n t

In order to analyse the convergence of inexact inverse iteration we use the following 
splitting

x 4 =  ^ ( c V f  +  a V ) ,  (4.9)

where u z G s p a ^ v ^ , . . . ,  v^) and \ \V ^  M n l \\2 — 1. Defining a 1 :=|| ||2 gives

|s2|2 +  |cz|2=  1, as

1 =  =  \\Vlh M ( c<V«  +  s V ) | | |
(a  )

=  \\Vl M V r  (c’ei +  s*z’) | | | =  || (c‘6! +  s V )  Hi =  I c f  +  M 2,

where z* is implicitly defined by Vr z1 = u* hence zl _L e i and ||z*||2=  1. Like in the
standard symmetric eigenvalue problem we interpret sl as a generalised sine and cl as
a generalised cosine. As a measure for convergence we define the generalised tangent

i ,=  |iyLtfM ( / - v f v f 'M ) x ‘|| =  o V |  =  ]£}
|vfM x*| of |c*| 1̂ 1 '

which is independent of the scaling a \
To bound the eigenvalue residual or the distance between the RQ and the sought 

eigenvalue we use a generalisation of the numerical radius. Given a matrix A  we define 
the numerical radius as

7Z(A) := m a x ^ - r ^ ,  (4.11)
|z z|

(see, for example, Ipsen (1998b)). We extend this definition to the generalised numerical 
radius



4 .1  S o m e  b a s i c  r e s u l t s

Further we define

n  := n G( AUmagc11̂ " ^ 112. (4.12)
Z^ °  M m

Now we consider the Rayleigh quotient (RQ), g, for a given vector z G C 1,

0 : =  / /w  • (4 -1 3 )z n M z

Then for any non-zero vector x  with splitting x  =  a(cv^  -f su) according to (4.9) we 
obtain

. x . Ix H A x  -  A ix^M xl
l e “ Al1 =  — ^ —

1 1 ||V /M x || x^ M x - ' I ’

where we used that ||V ^ M u ||=  1.
Later we need the fact that || J  — A i/ ||<  71. The bound is not obvious, as J  is

given by the spectrum of the eigenvalue problem A x  = AMx, while 7Z is related to the
m atrix A  — X\M. However, using the eigen decomposition we obtain

|| J  -  Ax/H =  W V ^ A - ^ M W r W
I x ^ V ^ A -A iM J V iH

< max  -------—„ — -----------L
x,u^O ||X|| ||u||

x 11 (A — AiM )u|
=  max

xTu^o \\xlh M V r \\ \\Vj?Mu\\
x h (A -  AiM )u| \\V£Mx\\

max
;u?0 ||V f  M x|| \ \ V ? M x i \ \  \\k h M V r \\

^  ,  l|Ur"Mx||
< TZg (Ai) max — ^------- -

\\XHMVR\\
<  n .  (4.15) 

For the last inequality we used

|xh M x | =  \ x H  M V R V f f  M x \

<  \\k h M V r \\ \ \ V ? M x \\ .

For the standard symmetric eigenvalue problem the RQ minimises the 2-norm of 
the residual r(fi) := Az  — fiz for a given vector z. However this is no longer the case 
for the GEP, where the RQ is the minimiser of ||r (^ ) ||M- i ,  with r(/i) := Az  — f iM z , 
while the minimiser for ||r(/z)||2 is given by fj,* :=  z H M A z / ( z H M M z) .  For bounding
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the eigenvalue residual we use tha t for some constant C\2 > 0 the change of norms can 
be bounded, m ax^o  ||z || /  ^ 12- Then together with the optimality of the
RQ we gain for x  =  a(cvf- +  su) and r  := r(g) that

r llAf—1 <  IK-4  — A iM )x ||m -i 

C12 ||(A — A iM )u ||m -i 

Ci2 \ \ ( M - i A M - i  -  \ i I ) M * V r z \\

C\2 \\J -  XiI\\\\Ml2VR\\ . (4.16)

For our convenience we define

n*  : =  C n W J - X i I W W M i V R l  (4.17)

and obtain ||r ||2 <  ocP* |s|.

4.2 Convergence of inexact inverse iteration

In this section we present our general convergence result for inexact inverse iteration, 
as given in Algorithm 5. In the algorithm we have not specified how we update xl+1. 
In practise many different techniques exist, so in order not to restrict to a specific one 
we consider the update

x1+1 =  <p(y')y\ (4.18)

where (p is a scalar function. Typical choices for ip are p{y l) =||y*|lM and ̂ (y 1) =
(z ^ y z)_1 for some fixed z. Note, in Algorithm 5, tha t the linear solve step uses a
general right-hand side b \  Standardly the right-hand side is chosen to be b z =  M x \ 
However, later in Section 4.3.4 we consider a modified right-hand side b* =  Fx* for 
some m atrix P.

In order to proceed with the convergence analysis we assume tha t the sought eigen­
value, say Ai, is simple and well separated. To make this statement more precise we 
define

gap := min{|Aj — Ai| — dj} (4-19)
j> 2

where dj = 1 if A j is defective and dj = 0 otherwise. From now on we assume that 
gap > 0 and a is such that

0 <  |Ai -  or| <  ^gap. (4.20)

|| (A — £>M)x| | 2 = < Cl2

< a  |s

< a  |s

< a  |s
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A lgorithm  5: Inexact Inverse Iteration  for G EPs

Given x° /  0,
For i =  0 ,1 ,2 ,.. .

•  Choose a1, bz and r*,

• Inexact solve {A — crlM ) y l =  bz such tha t 
||b* — (A — criM ) y i \\< r*,

• Update x z+1 using y \

• Test for convergence

As a result we obtain for ||( J  — a l)  1(I  — e ie^)|| by using Lemma 4.1 

||(J  -  a l ) ~ l ( l  -  e ie f ) || <  (min{|Aj -  <r\ - d j} ) -1
3>  2

< (min{|Aj -  Ai| —d j}— |AX -  a |)_1
3>  2

=  (gap-  |Ai -  <r|)-1 (4.21)

By using inexact solves for the update equation (A — alM ) y ‘l =  b z we obtain a 
residual, let this residual be defined by

res* := b* — (A — aiM ) y i . (4.22)

Rearranging this equation and using the scaling of xz+1, (4.18), gives

(A — <r*M)x*+1 = ip{ y* )(b*-res* ).

The assumption 0 <|A i — <rz|<  \gap  implies that (A — olM )  is invertible, hence we 
gain the update equation

x*+1 =  (p(yi)(A — cr*M)_1(b* — res*). (4.23)

We observe that (v f )^ M x l+1 =  o;z+1cz+1, and {v^)H =  . Hence by premultiply­
ing the update equation (4.23) by (v f ')^M  and using M { A —a%M )~ l =  ( J —alI ) V ^ ,
see (4.8), we gain

a*+ic*+i =  (p{yi )e {V i  M {A  — cr*M)_1(b* — res*)

=  — aiI )~ 1V if  (b* — res*)
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=  ¥>(y*)(Ai-<r*) V i )  (b ’ - r e s z) (4.24)

for the cosine part.
To obtain a bound on |s*+1| we use the matrix

Q :=  ( 7 - e ie f ) V f M  =  V [jM {I  -  v f  (v f )HM).

which projects the sought eigen-directions to zero. As = e i and ( v f ) A f  u i+1 =
0 we obtain

Q xi+1 =  ( / -  e ie f  ) y / M x i+1

=  a i+1s i+1( I - e 1e '[ )V £ M u i+1 

=  a i+1si+1y / M u i+1. (4.25)

Again we use tha t M (A  — crlM )~ 1 = (J  — crV)-1 V ^, see (4.8), therefore we obtain
using the update equation

Qxi+1 =  Q<p(y')(A — <T*M)_1(b’ — res ')

=  ~  e ie \ ) V g M ( A  -  b 1 -  res1)

=  <p(y') ( !  ~  e i eT)(J  ~  <r'I)~1V " ( b * -  re s’)

= V>(yi) ( J -< r iI ) - 1( I - e le [ ) V / r(bi - r e s i). (4.26)

Now we combine the two equations for Q x’+1, (4.25) and (4.26), and take norms to 
obtain by using (4.21)

a i+i |5*+i| =  \\V^f M u i+1a i+lsi+1\\

= -  e ie f  )V P (V  -  res*)||

<  M y ‘) l l l ( ^ - ^ ) _1( ^ - e le i’)ll l l ( ^ - e i e f ) V / ( b * - r e s ’)||

<  ----- i , (  Il(/ -  e r e f j v / b i  +  U V /W R  ) .  (4.27)
g a p -  |Ai — a  | V /

Finally we assume tha t the inexact solve is such that |(vf/)i*bl |>||V£/ re sz|| holds. Now 
we divide (4.27) by the modulus of (4.24) to obtain the one-step bound

< I W |  ||(7 — e i e ^ l !  + ||yjjW ||
ga p -  |Ai -  a%\ |(v f  J ^ b ’l -  ||V^res*||

This one step-bound plays here a similar role as the one-step bound (2.18) in case 
of the standard symmetric eigenvalue problem. Obviously convergence is achieved if 
one of the two terms on the right-hand side in (4.28) is bounded and the other tends 
to zero. Similarly, higher order convergence is achieved if both terms tend to zero or
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4 .2  Convergence of inexact inverse iteration

the first term  tends towards zero superlinearly. In the following theorem we state the 
convergence of Algorithm 5 more precisely.

T h e o re m  4.2 Given A, M  £ Rn><n with M  spd. Let the GEP Ax =  AMx have the 
simple eigenvalue X\ with gap > 0. Assume 3 Ci,C 2 ,C3 and j3 £ R+ and 71,72 G [0,1] 
such that for (3 +  7  > 1 where 7  := min{7 i , 72} the conditions

a) 0 <|Ai -  (Jl \ < mm{\gap,Ci{tlY },

b) | | ( / - e i e f ) V ^ b i |2 <  C2 |s*|71 |(v f

c) ||V^ resZ||2 < C3 I^I^KvfJ^b’l with C3 |s°|72<  1 

hold. If the initial approximation x° satisfies

4 C i ^ Y + 7 - 1  C 2 | j 0 | 7 1 - 7  + C 3 I s O p - T  

3gap I - C 3  |sc* -  - - <  1 (4-29)

then t t+1 <  qtl and span{x1} -> span{v±} while g1 —> Ai.
P ro o f: We use induction to show t t+1 < t lq for q given in (4.29) which implies |5*+1|<  
|s°| and |cz|> |c°|. Starting with the one-step bound by using first condition a), then b) 
and c) we get

ii+1 < 4C, \t‘f  ||( /  —e ,e 7 V ^ b ’H +  ||V ^ re s ‘|

<

3gap K v f )" ^ !  -  11Vires'
4C, \ e f  C2 I**!-" +C3 l^l72 

3gap 1 -  C3 | s1172

<  | < r + , - i  i £ L  C 2  | . « | ^  + C s  <  ti ( 4  3 0 )
3gap 1 -  C3 |s*|72 ~  K J

Then by the condition on the initial approximation we have ql < q and thereby t t+1 < 
qtl < (q)t+1t° with q < 1, hence tf —> 0. As t l —> 0 so sl —> 0 and hence |g1 — Ai|—> 0 
and span{x*} —>• s p a n jv f}. □

We now present a corollary tuned to the standard right-hand side b* =  M x \

C o ro lla ry  4.3 Given A, M  £ Rnxn with M  spd. Let the GEP Ax =  AMx have the 
simple eigenvalue Ai with gap > 0. Further, in Algorithm 5 let b z =  M x \ Assume 
3C \,C 3 and (3 £ R+ and 71,72 € [0,1] such that for C2 = 1/ |c°| and (3 +  7  > 1 the 
conditions

a) 0 <|Ai -<7*| <  m m {\g a p ,C i( t%)P},

b) HV^res*!^ <  C3 |5 i 7 |c°|
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4 .3  P r a c t i c a l  m e t h o d s

hold. If the initial approximation x° satisfies

4 C i ^ Y + t - i  q 2 |s Q |1-7 + C a

3gap I - C 3 |s(

then tt + 1  < q f and span{xl} —> span{vf} while q% -> Ai.
P roo f: W ith b* =  Mx* condition b) reduces to |s*|< C2 |^z| |cl |. Hence we set 71 =  1 
and so 72 =  7 , and thereby q as in (4.29) reduces to q as in (4.31). □

Applying the one-step bound for the GEP, (4.28), to the standard symmetric eigen­
value problem we obtain the one-step bound (3.55) as discussed in Section 3.6. In 
addition setting b* =  x* we regain the one-step bound (2.18) discussed in Chapter 2.

The conditions of Theorem 4.2 ensure tha t both terms on the right-hand side of 
(4.28) are bounded and that at least one of them tends to zero. For example, given 
a good enough initial guess and an appropriate residual condition the condition of 
Theorem 4.2 ensures convergence if the shift tends towards the desired eigenvalue. We 
admit tha t the conditions of Theorem 4.2 are non-practical, as, for example, v f  is 
unknown in practice.

In Theorem 4.2 we stated only tl + 1  < qtf for a fixed q, however we proved the 
following remark.

R e m a rk  4.4 Under the conditions of Theorem Ĵ .2, the rate of convergence q1, so 
t i + 1  < qH\ is given by

i 4Ci |ti|̂ +7- 1 C2 Is*!71-7 +C3 Isi72” 7 q :=
3gap 1 -  C3 \s*172

For a fixed shift, a 1 = cr°, a bound similar to the one-step bound, (4.28), has been 
obtained by Golub and Ye (2000). We discuss their approach based on a residual 
equation later in Section 4.3.5. Neymeyr (2001b) considers A, M  with positive real 
spectra, 0 < Ai <  A2 <  —  For Ai being the smallest eigenvalue he proves convergence 
for a method with fixed shift. The result is based on the monotonic reduction of the 
RQ. In Neymeyr (2002) a similar result for exact solves is presented in a way tha t 
allows the application of variable shifts. Notay (2003) also considers the case of a real 
positive definite eigenvalue problem. He proves higher order convergence for an inexact 
Rayleigh quotient iteration.

4.3 Practical m ethods

Our general treatm ent of inexact inverse iteration gives rise to various practical m eth­
ods, of which we consider only a few in detail.
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We start by discussing inexact inverse iteration with a fixed shift and a decreasing 
tolerance. Next we consider four variations of variable shifts, the first two use the 
Rayleigh quotient, the other two a generalisation of the RQ which we call Wilkinson 
update. These five methods use the standard right-hand side, later in Chapter 6 we 
see tha t using the standard right-hand side and solving the linear system with GMRES 
leads to high costs per solve. In the following we consider three methods which have 
lower cost per solve when using GMRES as linear solver. The first method we discuss 
is the approach from Simoncini and Elden (2002) which we discussed for the standard 
symmetric eigenvalue problem in Section 3.6. The other two methods we consider are 
based on solving residual equations, one is the approach from Rude and Schmid (1995) 
and the other the approach from Golub and Ye (2000).

Numerical results for these methods are presented in Section 4.5.

4 .3 .1  F ix e d  sh ift

A straight-forward approach of implementing inexact inverse iteration is to use a fixed 
shift £7* =  <r° and to reduce the residual tolerance r % as the outer iteration proceeds. 
There are several ways to decrease the residual constraint, such as r l = p{q)% with p  >  0 
and q 6 (0,1) or r l oc sl . Here we consider the following method using the standard 
right-hand side b* =  M x \

In v itF d  is Algorithm 5 (p. 89) with

The following result states the linear convergence of this approach, its proof is 
technical and presented here only for completeness.

C o ro lla ry  4.5 Apply InvitFd, that is Algorithm 5 with (4-32) to the GEP Ax =  AMx 
with A , M £  Rnxn, where M  is spd. Let the shift satisfy 0 <|Ai — cr°|< \gap, and the 
initial guess satisfy t° <  \  while in (4-32) assume C3 <  ( ||V ^ || Tl*)-1 , then t l —y 0 
linearly.
P ro o f: The condition t° < \  implies that

We now apply Theorem 4.2 with C\ = \gap  and C2 = C3 =  while (3 = 0 and 
7i =  72 =  7 =  1. Condition b) is satisfied as

oi = t7°, = min{T° \ \V ^ M x % C 3 ||r*||}, b* =  M x \ (4.32)
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where we use tha t |c*|> similar to Corollary 4.6. Due to the bound on the eigenvalue 
residual (4.16) we obtain for condition c)

| |V / W | |  <  | |V f|| | |ree‘|| <  W S U  <  | | y / | |  C3 ||r*||

<  \\V?\\ C iK 'a*  |„*| <  |«*| i f  |K ) " b * |  .lo

As t° < |  we have also C3 |s°|<  1.
Then we obtain for q as defined in Theorem 4.2

16 16
4 Ci C2 + C3 1 i 5 +  i 5 32

q ~  3gap 1 -  C3 |s°| ~  3 _  16 1 33’
15 4

Hence we can apply Theorem 4.2 and obtain the claimed convergence. □
So using the standard right-hand side b* =  M x1 and a fixed shift we obtain linear 

convergence if the residual constraint is reduced when the outer iteration proceeds. 
However the rate of convergence might be less than with exact solves depending on C3. 
To make this more precise we use the one-step bound (4.28) and assume ||VLres*||<C c*, 
then t%+1 < qtl with q «  go(l +  C3 ||r*|| /  |s*|), where qo is the convergence rate for 
exact solves. So increasing C3 in (4.32) leads to a slow down in the convergence and 
eventually to a lack of convergence. As || r 11| is linear in \sl \ there exists a positive 
constant, say C7 such tha t C7 ||r*||<|s*|. Now chosing C3 such tha t C3 C7 does not 
improve the outer convergence compared with C3 =  C7. However choosing C3 C7 
might lead to more difficult linear solves.

Later in Section 4.5, see Test 4.1, we provide numerical results illustrating the 
convergence of InvitFd.

4 .3 .2  R a y le ig h  q u o tien t

Similar to the standard eigenvalue problem we consider two variations of the RQI. 
The first method is the Rayleigh quotient iteration with fixed tolerance and standard 
right-hand side.

R Q If  is Algorithm 5 (p. 89) with

= e\  r* =  t ° \ \V ^ M x %  b ' =  Mx*. (4.33)

The second method is the Rayleigh quotient iteration with decreasing tolerance and 
standard right-hand side.
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R Q Id  is Algorithm 5 (p. 89) with

a* = g \  = min{r° \ \V £ M x % C s IMI}, b* =  M x \ (4.34)

The following result uses 7Z as defined in (4.12), which is used to bound the error 
in the RQ, |g* — Ai|<|s*| 7?., see (4.14). Again the result is just technical and presented 
only for completeness.

C o ro lla ry  4.6 Apply RQIf, that is Algorithm 5 with (4-33) to the GEP A x  =  AMx
with A , M e  Mnxn, where M  is spd. Let the conditions

(0 <  and T0 <  *9*P
-  All ~  32 ||Vt|| 72-

be satisfied then t 1 —> 0 (at least) linearly.
P ro o f: Using \gl — A i|< |s2| n , see (4.14) we set C\ =  n .  Further we use Theorem 4.2 
with P = 7i =  1 and 72 =  7 =  0 while C2 — -jf and C3 =  gap(l$n )~ l . For condition
b) we observe that

I K J - e i e ^ V ^ H  =  ||a*a*Vj^Mu*||= a 1 |s*|, and

K v fj^ b 4! =  |(v1)i/M xi | =  a* \c*\ .

W ith |s l |<  s° < t° < gap{An)~l < \  follows that y | <  <  \ / l — ls°l < lc° l< lct|>
hence condition b) is satisfied. Next we observe

||V f  res'll <  ||V£ ||||res‘|| < ||VL|| r° \\V t M *\\ <  ^ o *
oZ* /v

3gap 16 , , , ,
S  ----~  7T |C I Oi <  O3 C O .

327?. 15

Hence condition c) is satisfied as C3 < 1 due to gap < n .  Finally we observe for the 
condition on the initial guess by using gap <  7?,

Agap 1 gap
=  4 ^  c 2 \s°\ +c3 < 1 15n  +  10n  <  H

q 3 gap I - C 3 “  3 _9_ ” 81’
10

□
In general we expect only linear convergence of RQIf. However if the tolerance is 

sufficiently small, then in the first few outer iterations the convergence might appear 
to be quadratic. Eventually the superlinearity fades away and linear convergence is 
attained. We use Remark 4.4 and the definition of RQIf then the rate of convergence
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is given by

i =  4Ci Ci |sf| +C3 
gap 1 -  C3

Hence by reducing the tolerance, which in term  gives a smaller C3, we obtain faster 
convergence. Due to this effect we expect that RQIf will need fewer iterations than 
InvitFd, at least if the tolerance tq is chosen reasonably tight.

To state the convergence result for RQId we use again 1Z, see (4.12), and additionally
7Z* as defined in (4.17). We use 1Z* to bound ||r*||< |sz| 1Z* ||V ^M x z||.

C orollary 4.7 Apply RQId, that is Algorithm 5 with (4-34), to the GEP Ax = AM x
with A , M e Rn><n, where M  is spd. Let the conditions

,0 ^  90-P . o ^  3gapt <  —— and r <
A n  ~  32 y v y |  n

be satisfied then t1 —> 0 and the convergence is locally quadratic.
P ro o f: As the conditions of Corollary 4.6 are satisfied the convergence is ensured 
and we can make use of Theorem 4.2. To prove the local rate of convergence we 
assume that t 1 is small enough such that C$tin*  < r \  Now we use Theorem 4.2 with 
/? =  7 i = 7 2  =  7 =  1 and C3 =  }^C$n* where n*  as defined in (4.17), while C2 = yf • 
W ith the one-step bound (4.28) we gain

«... s  (Cl+Cl),
3 gap 1 -  C3 |sl | 21 gap

as C3e  =  I f CilVV- <  □
Corollary 4.7 states convergence and locally quadratic convergence (i.e. there exists 

const such that for tl < const the convergence is quadratic), however we expect super- 
linear convergence from the offset, which makes this method very competitive. We use 
Remark 4.4 then the local rate of convergence for RQId is given by |C i^ a p -1 (l +  C3). 
This differs from the rate for exact solves only by the factor 1 +  C3.

For both methods, RQIf and RQId, the convergence area reduces when the condi­
tioning of the sought eigenvalues deteriorates, as both n  and ||Vz,|| increase. This leads 
one to consider other choices for the shift a1, for example, the Wilkinson update or the 
generalised RQ.

Later in Section 4.5 we supply a few numerical results illustrating the convergence, 
see Test 4.2.
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A lgorithm  6: Inexact inverse iteration  using  
W ilkinson update

Given x°, <7° and z,
For i = 0 ,1 ,2 ,.. .

• Choose r l and b z,

• Inexact solve (A  — a lM ) y l =  b* such that 
\\bi - ( A - a iM ) y i \\< T \

• Update <jz+1 =  a1 +  z ^ (b z +  resl) / ( z H M y 1),

•  Update x z+1 =  y l/ ( z H M y 1),

• Test for convergence

4 .3 .3  W ilk in so n  u p d a te

The update formula <jz+1 =  a1 +  \ / { z Hy l) has no specific name in the literature, 
however it goes back, at least, to Wilkinson (1965, Chapter 9 §10). Therefore we 
call it Wilkinson update, merely to distinguish this choice from the RQ and a fixed 
shift. We point out that this choice of shift is different to the one Parlett (1980, p. 149) 
calls Wilkinson shift. A more detailed account on the Wilkinson shift can be found in 
Trefethen and Bau (1997, p. 222).

In case of the standard unsymmetric eigenvalue problem Wilkinson used the update 
formula crz+1 =  a1 +  l/(z^y* ) together with the scaling z ^ x 1 =  1, which results in the 
equality <rz+1 =  (zH A y 1)/ (zHy l ). Hence the update is a generalisation of the RQ. We 
now consider the same generalisation of the RQ for the GEP

* i+1 =  (4-35)
M A  y

■H M y

which we refer to as the Wilkinson update. This update requires zHM w f  ^  0.
So far we have no bound on |Ai — a11, when o% is obtained by the Wilkinson update. 

To establish |Ai — (7Z+1|<  C\ |sz+1| for some C\ > 0 we use tha t with z HM y % ^  0

A l- , ^  =  a/ ^
z H M y i z H M y 1

zh (A -  AiM )yz 
z H M y 1
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■i+i . i+i ^ ( A - A 1M )u i+1 
z HM y i

= - si+l a i+l - —i  (4.36)

We use the splitting of x l+1 and the scaling to obtain

y % = (z11My*)x*+1 = (z11 M y'l)a l+1(cl+1V i’ -f s*+1u z+1).

Now if |z ^ M v ^ |> |z i /M u l+1| and |c°|> |s°| then

|z " ( A -  X iM )r \  ^  ,J+1, |zg ( A - A 1M )u i+1|
\zHM y i \ ~  1 1 |c ° ||z ^ M v f| -  \s°\\zHM u i+1\'

Next we define C\ := maxu^ 0 \zH(A — A iM )u| (y | \zHM w f  \ \zHM u |)-1 , then

|Ai — <ji+1| <  |si+1| Cx.

In order to explain why the Wilkinson update is of interest consider z =  £iv^ +  ̂ 2W 
with |£i|2 +  |^2|2— 1 and \\wHM V r \\= 1, then

<7<+i—A! =  ^ 2<*i+ iW" (A ; A lM )uW
z My*

Obviously reducing | £2 I improves the the quality of the Wilkinson update. So if z 
is a better approximation of the left eigenvector v f  than v f  is then we expect the 
Wilkinson update to be a better approximation of the sought eigenvalue than the RQ.

Further we point out that the Wilkinson update reduces in the case of exact linear 
solves to <ji+1 =  a% +  l / ( z HM y 1), however this is no longer the case for inexact solves, 
where the update has the form <r*+1 =  a1 + z^(b* — resl ) / ( z H M y 1).

We now present two variations of Inexact Inverse Iteration using the Wilkinson 
update, one with fixed tolerance and one with decreasing tolerance.

In v itW f is Algorithm 6 (p. 98) with

b* =  Mx* and P  = t ° .  (4.37)

In w itW d  is Algorithm 6 (p. 98) with

b* =  Mx* and t % =  m in{r°,C 3 ||r*||}. (4.38)

C o ro lla ry  4.8 Apply InvitWf, that is Algorithm 6 with (4-37), to the GEP Ax =  AMx 
with A , M £  Rnxn, where M  is spd. Let the initial guess satisfy t° <  gap(4Ci)~1 and 
the residual condition t ° < 3gap(32 || || C \)~ l , then t 1 —> 0  linearly.
P roo f: The proof follows line by line the one of Corollary 4.6 when 1Z is replaced by
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C l .  □

C o ro lla ry  4.9 Apply InvitWd, that is Algorithm 6 with (4.38), to the GEP A x  = AMx 
with A, M  £ RnXn, where M  is spd. Let the initial guess satisfy t° < gap(4Ci)~1 and 
the residual condition r°  <  3gap(32 || || C \)~ l , then t l —> 0 and the convergence is
locally quadratic.
P ro o f: The convergence follows from Corollary 4.9. The proof of the local rate of 
convergence follows line by line the one of Corollary 4.7 where 7Z is replaced by C \ .  □ 

We illustrate the convergence of InvitW f and InvitW d later in Test 4.2, see Section
4.5.

4 .3 .4  M o d ified  r ig h t-h a n d  s id es

In this section we extend the method PInvit as introduced in Section 3.6 and based on 
the approach by Simoncini and Elden (2002) as well as Scott (1981) to the generalised 
eigenvalue problem. Until now in this chapter, the methods discussed have used the 
standard right-hand side b* =  Mx*. Later in Chapter 6 we show that these methods 
are not optimal in the sense that GMRES does not benefit from the fact that a good 
approximation x* for the sought solution y*+1 is available. We observed this effect in 
case of the standard symmetric eigenvalue using preconditioned MINRES in Section
3.6. In case of the symmetric eigenvalue problem we have seen tha t tailoring the right- 
hand side b* to the linear solver improves the performance of the linear solver to such 
an extend tha t the resulting method was most efficient.

Here we provide only the convergence analysis for the method, however we start 
with a brief motivation for the specific choice for the right-hand side b* =  Px*.

Using our abstract notation of Algorithm 5 then solving the linear system

(A -  criM ) y i =

with preconditioned GMRES then we actually solve the system

P { l {A -  criM )P2" 1 y* =  P f Lb i ,

where P\ denotes a possible left preconditioner and P2 a possible right preconditioner. 
In the remainder we call P  = P 1P2 the preconditioner. In Section 3.6.3 we observed 
that choosing b* such that P ^ b *  is an approximation of the eigenvector corresponding 
to the eigenvalue with smallest modulus of P ~ l {A — o*M)P2-1 is beneficial for the 
performance of MINRES. Later in Section 6 we confirm this for the GEP and the use of 
GMRES as linear solver and also show that Px* is an approximation to this eigenvector. 
Therefore we consider for the remainder of this section the choice b* =  P x \
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P In v it  is Algorithm 5 (p. 89) with

(4.39)

We observe that unless P v f  =  r]Mvf  for some 77 G C we have \\(I—e i e f ) V ^ P v ^ \ \ ^

satisfied for 71 =  0. Hence the convergence has to be gained by a shift tending towards 
the desired eigenvalue. We restrict ourselves here to the RQ while the Wilkinson update 
gives another possible choice for the shift.

We now provide convergence results for this method. The corresponding proof is 
technical and only presented for completeness.

C o ro lla ry  4.10 Apply PInvit, that is Algorithm 5 with (4-39) to the GEP Ax =  AMx 
with A, M  G MnXn where M  is spd. Let the initial guess satisfy

P roo f: As |Ai — 0*|<|s*| I t  we set C\ = It,  and (3 = 1  while 73. =  72 =  7 =  0. As

0 and hence \\(I — e ie ^ ) V ^ P x 1]]-/̂  0. As a result condition b) in Theorem 4.2 is only

t° <  min{

and assume the preconditioner P  = A — p M + E  is such that ||V ^ ^ u ||<  ^ ||V ^M uj| for  
all u, while the stopping condition satisfies r°  <  3(20 ||Vjr,||)-1 , then t l —> 0 linearly.

t° < gap(4It) 1 condition a) is satisfied. For condition b) we observe that

||( /  -  e ie f  )V/fb i || =  ||( I - e l e f )V LffP x i

= \ \ ( I - ^ ) V l ! ( A - n M  + E )^ j \  

< a 1 |«*|||V^(A -  pM)u*\\ +  ||

<  a* |s*|||^ — fil\\ \\Vi M x ’ll

T \ 1 / H

Hence with C2 = § condition b) is satisfied. Next for condition c) we obtain
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so C3 =  Finally we observe that

5 1 23
_  4Cit° C2 +  C3 1 3 +  4 < I  12 =  ?3

Q 3gap 1 - C ,3 ~ 3 1 _ 1 "  3 3  27
4 4

hence we can use Theorem 4.2, the convergence follows from there. □
In Corollary 4.10 we used the condition ||V ^£ 7 u ||<  5 | |V ^ M u || which can be 

rewritten using u  =  V rz  with ||z ||=  1 and z _L ei as ||V /f  E V r\\<  As the condition 
\ \V ^E V r\\<  ^ implies ||E|| being small it is not unreasonable to say tha t Lemma 4.10 
is tailored to preconditioners where this error expression is small. In contrast to other 
conditions as, for example, on the initial guess where for at least close enough t l the 
condition holds, this very stringent condition on the preconditioner is active for all t l. 
Results tailored for other preconditioners, for example, with P ~ l {A — fiM) = I  + E  
where ||E|| is small, have similar conditions, however the proof runs slightly different.

Comparing the conditions of Corollary 4.10 with those in the result for RQIf, Corol­
lary 4.6, we observe that the conditions on the initial guess and the residual tolerance 
are similar. So the additional condition for the preconditioner restricts the use of this 
method compared with RQIf.

The possible advantage of the linearly converging PInvit over RQIf is subject of 
Chapter 6. In Section 4.5, see Test 4.3, we give a few examples on the convergence of 
PInvit.

4 .3 .5  C o rrec tio n  M e th o d s

Here we consider two methods using a correction equation to update the eigenvector 
approximation x®. The first is the Inverse Correction Method from Rude and Schmid 
(1995), the second is the approach from Golub and Ye (2000).

Inverse C orrection M ethod

In Chapter 3 we studied the Inverse Correction Method for the standard symmetric 
eigenvalue problem. We showed that the Inverse Correction Method is a variation of 
inexact inverse iteration. Now in the GEP, the Inverse Correction Method is unsur­
prisingly again a variation of inexact inverse iteration. As the result is proven in the 
same way as in Chapter 3 we omit the analysis and simply state the convergence result 
and the algorithm, see Algorithm 7.

For later reference we define the following method.

IC M f is Algortihm 7 with a1 = cr° and r® =  r°.
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A lg o rith m  7: In v erse  C o rre c tio n  M e th o d

Given x°, and (p(-)
For i = 0 ,1 ,2 , .. .

• Choose a1 and r z,

• Calculate gl := (xl)T A x 1 and r* :=  (A — gtM ) x t ,

• Solve (A — <jlM )z l = rl such that 
||r* — (A — a lM )z l \\< r % ||r*||,

•  Set y x = x x — z \

• Update x l+1 =  </?(y l)y l ,

•  Test for convergence

Lem m a 4.11 Apply ICMf, that is Algorithm 7 with a1 = <7° and r* =  r°  to the GEP 
Ax. =  AM x  with A , M e  R n x n  where M  is spd. Let the shift satisfy 0 < |A i — cr°|<  \gap  
and <7° gl . Further let the residual condition be such that r x < |^  — cr0| (||Vl|| VA)~l 
while the initial guess satisfies t° < |  then t1 —> 0.
P ro o f: The proof follows the lines of the proof of Lemma 3.14. □

We expect linear convergence with t l+1 «  qtl where q =  #o(l +  Ci t 1). Here qo 
denotes the rate of convergence as for exact solves.

Later in Section 4.5, see Test 4.4 we illustrate the convergence for ICMf together 
with the following method.

G o lu b  a n d  Ye

Algorithm 8 published by Golub and Ye (2000) is a natural way of implementing inexact 
inverse iteration, as the algorithm starts with the previous solution and decreases the 
residual step by step. All previously discussed methods work with general scaling 
function <p, so for example ip(y) = ||y ||-1 . For Algorithm 8 (p needs to satisfy (p(ipy) = 
ipip(y) for any tp £ C with \ ip \= 1. While Algorithm 8 is similar to the Inverse 
Correction Method, the sequences only coincide if the scaling in Algorithm 8 satisfies 

=  (g1 — cr°), however we can state the following.

R e m a rk  4.12 The inverse correction method with fixed shift, see Algoritm 1, is a 
special case of Algorithm 8.

For later reference we define the following method.
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A lg o rith m  8: G o lub  an d  Ye

Given x° /  0 and cr° and </?(•),
Set y -1 =  0,
For i = 0 ,1 ,2 , . . .

• Calculate t %g y  =  — (A — a °M )y l~

• Choose t*,

• Inexact solve (A  — a °M )z l = rGY such tha t 
||z* -  (A -  <7°M )d* ||< t\

• Update y* =  y l_1 +  zz and x*+1 =  yV(y*)>

• Test for convergence

G Y  is Algorithm 8 with

= min{r° \ \V ? M x % C 3 H^H}. (4.40)

In contrast to ICMf, see Algorithm 7, where we used a relative tolerance, we now use 
for GY, see Algorithm 8, an absolute tolerance. This is done to simplify the convergence 
result. In practise we use r l <  C3 ||r*||, see (4.40), which gives us a relative tolerance.

We now relate the update of y l to the update in inexact inverse iteration, therefore 
we write

y* =  y<-1 + Z<

=  y i_1 +  (A -  cr°M)-1 (M xi -  (A — a ° M )y { -  res^)

=  {A — (j0M )_ 1(M xi — res*). (4.41)

This enables us to present a convergence result for Algorithm 8.

C o ro lla ry  4.13 Apply GY, that is Algorithm 8 with (4-40), to the GEP A x  = AM x  
with A, M  G Wixn, where M  is spd. Let Ai be simple and gap > 0, further let the shift 
satisfy 0 < |A i — cr°|< \gap while the initial guess is such that t° < I f  in (4-40) 
C3 <  (||Vl|| 1Z) ~ 1 then t l —> 0 linearly.
P ro o f: We use the identity (4.41) for the update and apply Corollary 4.5. □

As with ICMf we expect linear convergence for GY with t t+1 < qt%, where q = 
qo(l +  t 1 /  |s l |) and qo the rate of convergence for exact solves. Golub and Ye (2000) 
proved convergence for Algorithm 8 with <p{yl) =  (y%) j  where the j th  component has
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the largest modulus, and with r l =  p(q)1 for some p > 0 and q £ (0,1). They also 
provided empirical results that choosing q < q does not improve the rate of convergence.

Later in Chapter 6 we discuss why solving the residual equation might lead to a 
competitive algorithm. In Test 4.4, see Section 4.5 we illustrate the convergence for 
ICMf and GY.

4.4 M ethods using the Generalised RQ

In this section we assume that the action of A H on a vector and tha t linear solves for

(AH - a M )  y  =  b  (4.42)

are available. Then we can apply inexact inverse iteration to the problem

A Hx  = AMx. (4.43)

The solution of (4.43) is a left eigenvector of the GEP Ax. =  AMx, so in our previous 
notation x approximates v f . The advantage of calculating approximations to the left 
and the right eigenvector is due to the fact that the generalised Rayleigh quotient 
(GRQ) is a better approximation of the sought eigenvalue than the standard Rayleigh 
quotient is.

First we introduce some additional notation and show that the generalised Rayleigh 
quotient is a higher order approximation of the sought eigenvalue. Then we state a 
general algorithm for the two sided approach and consider two practical variations. 
The first variation we consider is a variation of the RQI, using a fixed tolerance. The 
other method is PInvitGRQ, which is the approach from Simoncini and Elden (2002) 
using the GRQ.

The convergence of these variations follows under certain conditions immediately 
from Theorem 4.2 as well as the corresponding one sided approach, hence we omit the 
their proofs.

4 .4 .1  N o ta t io n  and  b a sic  re su lts

In order to distinguish the approximation of the left eigenvector from the approxima­
tion of the right eigenvector we write x lL for the left and x lR for the right eigenvector 
approximation. Further we use the splitting

x r  = a k (cRv f  +  s r u r)> 
and x lL = a*L(cxLVi +  s^u^), (4.44)
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where as in (4.9) and G span{v£,. . . ,  v£} and \\(Vr )h M u lL \\= 1. Again the 
scaling a lR :=\\VR Mx.R\\ and a lL :=\\VR M x lL\\ leads to \cR\2 +  |s^ |2= |c^ |2 +  |s5,|2=  1. 
Now we define the generalised Rayleigh quotient (GRQ) by

(x?L)H Mx'Rsb -  h thrrrf-  (4-45)

Using the splitting (4.44) and the M-orthogonality of VR and V r  we obtain the fol­
lowing bound for the GRQ

|Co_Al1 -  (x i)^ M x k

\cl cR ^ i ) H M )wi +  S l S r W l )11 m )u 'r\
\(u l )H (A  — AM )Uy

^  I5l 5r I
\cl cr \ ~  I5l s rI

The values clL and slL denote the complex conjugate values of clL and slL respectively. 
For the last inequality we used that

|K ) « M u * fl| =  \{vtL )H M V RV ?  M vtR\ 

< \\{tfL )HM V R\\ \ \V ? Mu*r || =  1.

Similarly we have

| (u i)" (A  -  A x M X l  =  \ (»iL)H( A - \ 1M )V R V F M u \t \

< \\(^l )h M V r (J  -  A!/)|| | |v f  Mu*e||

<  | |(ui)"M Vfi|| || J  -  Ai/||

=  p - m -

As the largest singular value of J  — crl might be determined by a defective eigenvalue 
we have according to Lemma 4.1 the bound || J  — A i/|| <  |An — Ai| +1. Summarising 
we obtain for the GRQ

Wa ~  A i l  <  | s t « p |  lA n ~  A l l + 1  , ( 4 . 4 6 )
-  R' \c',c'R\ -  |«}ay  ;

If slL and sR simultaneously tend towards zero then the GRQ is a higher order approx­
imation of the sought eigenvalue.
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A lgorithm  9: Two sided inexact inverse iteration

Given x R and x°L For i = 0 ,1 ,2 ,.. .

• Choose tr , g %r  and b^ ,

• Solve (A — gr M ) y lR = such that 
\\hiR - { A - ^ R M )yR\\< TR̂

• Choose t 1l , <j 1l and b^,

• Solve (Ah — g1lM ) y lL = h lL such that 
||b*t - ( A " - 4 M ) y i | | < r [ ,

• Update x ^ -1 and x ^ 1,

• Test for convergence.

4 .4 .2  M e th o d s

As a first method using the GRQ we consider a two sided version of the Rayleigh 
quotient iteration with fixed tolerance.

G R Q If is Algorithm 9 with

4 , = ° R  =  <?G- t L =  t R  =  t °> b L =  -M x i-  b fl =  M x R>

4 +1 =  tL! IIyLII “ d X-+1 =  y y  ||yy . (4.47)

R e m a rk  4.14 Consider GRQIf, that is Algorithm 9 with (4-4V being applied to the 
GEP A x  = AMx with A, M  6 CnXn where M  is spd. Under suitable convergence condi­
tions, similar to those of Corollary 4-6, t l -» 0 and the convergence is locally quadratic.

Therefore we expect this quadratically converging method to perform as good as 
the also quadratically converging methods RQId and InvitFd, discussed in Sections
4.3.2 and 4.3.3.

Similarly we could extend the method RQId to use the GRQ, which would lead to 
cubic convergence. As we have seen in Chapter 2 for the standard symmetric eigen­
value problem, the difference between quadratic and cubic convergence is negligible in 
practice and so we do not discuss this any further.

Earlier, in Section 4.3.4, we extended the approach from Simoncini and Elden (2002) 
to the GEP. There we presented PInvit as a one sided approach, but as we observe
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later in Test 4.3 the condition on the preconditioner might be too restrictive. Now we 
present a two sided version of this method with the aim of overcoming the restriction 
on the preconditioner by taking advantage of a higher order convergence.

P In v it  G R Q  is Algorithm 9 with

aL = a)t = 0G< tL = t R = t °’ b L =  p i x i  b R =  P« Xft>

x i+1 =  y i /  l l y i l l .  a n d  x « 1  =  y r /  l l y i l l .  ( 4 - 4 8 )

In the definition of PInvitGRQ P l  denotes the preconditioner for A H — <t1l M  and 
P r  the preconditioner for A — a lRM .  Again at this stage we do not need to know if, 
for example, P l  is a left or a right preconditioner.

R e m a rk  4.15 Consider PInvitGRQ, that is Algorithm 9 with (4-4$) being applied to 
the GEP A x  = AMx with A , M  6 GJlXn where M  is spd. Under suitable convergence 
conditions, similar to those of Corollary 4-10, t% 0 and the convergence is locally 
quadratic.

Now if the initial guess is close enough to the sought eigenvalue the quadratic 
convergence allows the use of a more moderate residual tolerance and a less accurate 
preconditioner. However as now two linear solves are needed we expect this method to
be less efficient than RQId. We discuss this in more detail later in Chapter 6.

Later in our tests, see Test 4.5 in Section 4.5, we use P l  =  P r , so that only one 
preconditioner is needed.

4.5 Tests

4 .5 .1  E x a m p le

Here we consider a small constructed example which gives despite its small size enough 
insight in the convergence behaviour of the here considered methods.

The matrices A  and M  are real 62 x 62 matrices with M  = d iag (l.l, 1 .2 ,1 .3 ,..., 7.2) 
and A  =  V D V ~ l where V  = U +  0.2 * I  with U a full m atrix of uniformly in (0,1) 
distributed random variables and D = diag{D\, D 2 , . . . ,  Dq, 1 ,2 ,3 , . . . ,  50). Further 
the matrices Dj are 2 x 2  real matrices corresponding to the complex eigenvalues of A, 
1 ±  5z,l ±  If, 3 ±  3f, 3 ±  If, 5 ±  5f and 5 ±  If. The non-standard construction of V  is 
used to keep a moderate conditioning of the eigenvectors. Figure 4.5.1 shows a plot of 
the spectrum of the matrix pair A , M , the red asterisks indicate the four eigenvalues 
of interest.

For our tests we consider four different eigenvalues, two real and two complex ones 
with one of each well separated and the other an interior eigenvalue. Table 4.1 contains
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Figure 4-1: Spectrum of the matrix pair (A , M ), red 
stars represent the eigenvalues of interest

real complex
extreme interior extreme interior

0.45 2.23 -0.77+4.09i 2.32 +  0.43i
0.14 0.08 0.06 0.18
0.45 0.22 2.13 0.30

Table 4.1: Eigenvalues of interest and their separation

the eigenvalues of interest and their relative gaps | Ai  — cr°| /  | A2  — cr° |, as well as the 
corresponding values of g a p , defined in (4.19).

For the extreme complex eigenvalue which is nicely separated from the remainder 
we use unpreconditioned GMRES as solver. As unpreconditioned GMRES does not 
converge sufficiently well for the other eigenvalues we use left preconditioned GMRES. 
As a preconditioner we use a perturbation of an exact preconditioner. More precisely 
to precondition the system (A — alM ) y l =  b* we choose the preconditioner P _1 = 
( /  +  E )A ~ l . The error matrix is a random matrix with ||i£||= 0.2.

For all the tests presented here we used GMRES with two additional stopping con­
ditions. First we check for the targeted eigenvalue residual in GMRES and stop when 
this target is achieved. Second we use the condition sn p ro (P k < 10_3r t to detect failure 
of GMRES before losing all information on the current eigenvector approximation as

‘ A i ’
| A i - c r ° |

g a p
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extreme real interior real extreme complex interior complex
prec GMRES prec GMRES GMRES prec GMRES

C3 0.2/ a 0 0.2/<r° O h-1 q O 0.2/ a 0

i f t l t* t{
0 5.0e-02 5.0e-02 5.0e-02 5.0e-02
1 6.9e-03 1.7e-02 l. le -02 l . le -02
2 4.3e-04 7.5e-04 4.8e-04 1.5e-03
3 3.3e-05 4.1e-05 2.5e-05 2.4e-04
4 3.7e-06 2.7e-06 1.5e-06 3.7e-05
5 5.1e-07 2.0e-07 8.8e-08 6.0e-06
6 7.2e-08 1.5e-08 5.4e-09 9.8e-07
7 1.0e-08 1.2e-09 3.3e-10 1.6e-07
8 1.5e-09 9.3e-ll 2.1e - ll 2.7e-08
9 2.1e-10 7.3e-12 1.3e-12 4.7e-09
10 3.0e-ll 6.1e-13 8.2e-14 8.2e-10
11 4.2e-12 1.4e-10
12 6.0e-13 2.5e-ll
13 8.8e-14 4.5e-12
14 1.2e-14 7.8e-13

Table 4.2: Convergence history for InvitFd. Tabulated 
is the tangent t% against the outer iteration number i 
for the four eigenvalues of interest, see Table 4.1

is often the case when stopping with the built in tester for stagnation. The variable 
snprod\ is a variable inside the GMRES algorithm and is an estimator for ||d£.||. For 
more on this see the corresponding discussion on stopping conditions for MINRES in 
Chapter 3 and for more on GMRES see Chapter 5.

4 .5 .2  R e s u l t s

T est 4.1 We apply InvitFd to calculate the four eigenvalues of interest. The corre­
sponding results are given in Table 4-2.

We remind ourselves tha t InvitFd, as defined on page 94, uses a decreasing tolerance 
T% <  C3 ||r*||. As stated in Corollary 4.5 we expect linear convergence for InvitFd.

From Table 4.2 we observe tha t the convergence of InvitFd is indeed linear and 
tha t the rate of convergence is effected by the choice of shift and the choice for r*. 
We explained earlier, see Section 4.3.1, that the rate of convergence should be about 
q =  <70(1 +  t 1/  |s z |) where qo = | Ai — crT | /  | A2 — cr° | is the rate of convergence for 
exact solves. For the test we report in Table 4.2 we have r l/  |s*|< 0.5, therefore we 
expect no significant slow down of the convergence of InvitFd compared with inverse 
iteration using exact solves. In fact the empirical convergence rate almost matches with 
the theoretical convergence rate for exact solves. We also carried out tests with more
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RQIf RQId
interior real extreme complex interior complex

oIIo

T° =  0.1 C3 = 0.1/ a 0 Cz =  0.1/<7°
i f f f tl
0 5.0e-02 5.0e-02 5.0e-02 5.0e-02
1 1.2e-02 5.7e-03 1.7e-01 1.4e-02
2 2.3e-04 6.4e-05 2.7e-02 9.2e-05
3 1.0e-06 1.5e-08 4.3e-04 4.6e-09
4 6.4e-09 6.1e - ll 1.7e-07 2.7e-14
5 6.1e - ll 3.2e-13 2.1e-14
6 l. le -12 6.3e-14 2.0e-14
7 6.2e-14

Table 4.3: Convergence history for RQIf and RQId 
(Test 4.2). Tabulated is the tangent t% against the 
outer-iteration number i. For the definition of the 
three eigenvalues of interest see Table 4.1.

relaxed tolerance conditions but the rate of convergence not necessarily deteriorates. 
(We do not reproduce those data here.) However this effect is due to the size of our 
example which results in the actual residual norm being considerably smaller than the 
tolerance.

T est 4.2 We apply RQ If and InvitW f to the interior real eigenvalue and RQId and 
InvitWd to two complex eigenvalues. The results for RQ If and RQId are given in Table 
4-3 and those for InvitW f and InvitWd in Table 4-4

According to the definitions of RQIf, see page 95, and InvitWf, see page 99, we 
have b z =  Mx* and t % =  t ° .  The corresponding Corollaries, 4.6 and 4.8 state linear 
convergence for both methods. In contrast to RQId and InvitW d we expect quadratic 
convergence, see Corollaries 4.7 and 4.9. The definitions of RQId, see page 95, and 
InvitWd, see page 99, give b z =  M x l and r l <  m in{r°,C 3 ||r*||}.

We expect that the result for RQIf and InvitW f as well as RQId and InvitW d are 
similar. In all our tests we observed no significant difference with respect to the outer 
convergence between InvitW f and RQIf and between InvitW d and RQId. Hence we 
only comment on the data for RQIf and RQId given in Table 4.3. The results for 
InvitW f and InvitWd are tabulated in Table 4.4.

In Section 4.3.2 we discussed the methods RQIf and RQId and showed tha t RQIf 
converges linearly while RQId converges quadratically. The rate of convergence for the 
linearly converging RQIf depends on the residual constraint for the linear solver, as can 
be seen in the left two columns of Table 4.3. The same effect is obtained for the other 
eigenvalues and hence omitted. Also omitted, using a very relaxed tolerance condition 
might result in no convergence or poor convergence, so, for example, with t 1 = 0.5
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InvitW f InvitW d
interior real extreme complex interior complex

T ° =  0.1 t °  =  0.05 C3 =  0.5/cr° C3 =  0.5/'
i t* f P
0 5.0e-02 5.0e-02 5.0e-02 5.0e-02
1 1.2e-02 5.7e-03 7.7e-03 5.2e-03
2 2.4e-04 6.1e-05 4.9e-05 3.4e-05
3 3.7e-07 6.5e-08 2.4e-09 1.3e-09
4 3.3e-10 3.2e-10 l.le-14 4.2e-14
5 1.3e-12 1.2e-12
6 6.2e-14 l.le-13

Table 4.4: Convergence history for InvitW f and In­
vitWd (Test 4.2). Tabulated is the tangent t% against 
the outer-iteration number i. For the definition of the 
two eigenvalues of interest see Table 4.1.

we obtained convergence for the interior real eigenvalue but 16 outer iterations were 
needed. We observed that for tight enough residual constraints RQIf needs considerably 
fewer outer-iterations than InvitFd.

The quadratic convergence of RQId is evident in the two right columns of Table 4.3. 
In both cases the convergence is marginally better than quadratic. However for the 
extreme complex eigenvalue the estimator for the tangent is larger than the tangent 
itself and hence the stopping condition was missed by a fraction. This results into 
an additional outer-iteration. We will return to this problem in Chapter 6, where we 
consider the efficiency of these methods. Further, in this example the initial guess is 
so good tha t the local rate of convergence is observed from the first iteration on.

T est 4.3 We apply PInvit to the two complex eigenvalues. In Table 4-5 we give results 
for two test runs each.

For the definition of PInvit see page 100. In Section 4.3.4 we showed that the 
convergence of PInvit is linear, see Corollary 4.10, however this result is only applicable 
for the preconditioned solves, so here for the interior eigenvalue.

Using PInvit on the complex extreme eigenvalue we observed extremely poor con­
vergence which could not be improved by choosing a tighter residual constraint. The 
rate of convergence for the other eigenvalues was considerably better, but still 15 to 30 
iterations were needed to reach the targeted tolerance. While for the previous methods 
in case of the real eigenvalues linear solves using unpreconditioned GMRES were not 
feasible, now for PInvit they axe feasible.

The convergence of PInvit using unpreconditioned GMRES differs significantly from 
the convergence of PInvit using preconditioned GMRES. So, for example, using unpre­
conditioned GMRES and r°  = 0 .1 , PInvit needed only 17 iterations to find a satisfac-
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unpreconditioned preconditioned
extreme complex interior real interior complex

T ° 0.1 0.05 0.1 0.2
t f t* tl

0 5.0e-02 5.0e-02 5.0e-02 5.0e-02
1 5.3e-02 5.8e-02 1.2e-02 1.4e-02
2 4.2e-02 4.5e-02 2.3e-03 3.1e-03
3 3.4e-02 3.4e-02 1.3e-03 6.6e-04
4 2.6e-02 2.5e-02 6.0e-04 2.6e-04
5 2.1e-02 1.9e-02 2.3e-04 5.4e-05
6 1.7e-02 1.5e-02 l.le-04 2.1e-05
7 1.3e-02 1.2e-02 4.6e-05 6.3e-06
8 1.0e-02 9.1e-03 2.2e-05 l.le-06
9 8.4e-03 7.0e-03 8.9e-06 4.8e-07
10 6.6e-03 5.5e-03 4.1e-06 1.2e-07
11 5.2e-03 4.2e-03 1.7e-06 2.3e-08
12 4.1e-03 3.2e-03 7.8e-07 l.le-08
13 3.3e-03 2.5e-03 3.3e-07 3.4e-09
14 2.6e-03 1.9e-03 1.5e-07 6.8e-10
15 2.0e-03 1.5e-03 6.5e-08 2.5e-10
16 1.6e-03 l.le-03 2.9e-08 5.0e-ll
17 1.3e-03 8.8e-04 1.3e-08 2.6e - ll
18 1.0e-03 6.8e-04 5.6e-09 5.0e-12
19 8.1e-04 5.2e-04 2.5e-09 1.8e-12
20 6.4e-04 4.0e-04 l.le-09 3.6e-13
21 5.1e-04 3.1e-04 4.7e-10 1.9e-13
22 4.0e-04 2.4e-04 2.1e-10 4.9e-14
23 3.2e-04 1.9e-04 9.2e-ll 1.8e-14
24 2.5e-04 1.4e-04 4.0e-ll
25 2.0e-04 l.le-04 1.8e - ll
26 1.6e-04 8.5e-05 7.9e-12
27 1.3e-04 6.6e-05 3.4e-12
28 1.0e-04 5.1e-05 1.5e-12
29 8.0e-05 3.9e-05 6.8e-13
30 6.3e-05 3.0e-05 3.1e-13

Table 4.5: Convergence history for PInvit (Test 4.3). 
Tabulated is the tangent tl against the outer-iteration 
number i. For the definition of the two eigenvalues of 
interest see Table 4.1.
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tory approximation of the sought eigenvector. In contrast PInvit using preconditioned 
GMRES needed 30 iterations. Further for the complex extreme eigenvalue PInvit us­
ing preconditioned GMRES failed even for exact solves. This is not surprising as the 
preconditioner does not satisfy the condition in Corollary 4.10 and the preconditioner 
is not tailored to this complex extreme eigenvalue.

We also observe the somehow surprising effect tha t the convergence for the complex 
interior eigenvalue is considerably better than for the real interior eigenvalue. So far 
we have no explanation for this effect.

Further we point out that in contrast to the standard symmetric eigenvalue problem 
the convergence of PInvit is not independent of the residual constraint t° .  While for 
the standard symmetric case t °  =  0 .8  lead to convergence, here we need smaller values 
for r°  and for large problems considerably smaller values might be necessary.

T est 4.4 We apply ICM f and G Y  to calculate the extreme real and the complex interior 
eigenvalue, the corresponding results are given in Table Ĵ .6.

In Section 4.3.5 we discussed ICMf and GY and stated their linear convergence, see 
Corollaries 4.11 and 4.13. From the definition of the methods we see tha t for ICMf 
r % = r° , see page 102, and for GY r 1 = C3 ||r*||, see page 104.

Comparing Table 4.6, containing the results for ICMF and GY, with Table 4.2, 
containing the results for InvitFd, we observe the same rate of convergence and that 
there is no significant difference between ICMf and GY. In contrast to the methods 
using the standard right-hand side, b l = M x l, that are InvitFd, RQIf, RQId, InvitW f 
and InvitWd, unpreconditioned GMRES converges also for the real eigenvalue problem 
and the complex interior one.

T est 4.5 We apply GRQIf and PInvitGRQ to the extreme real and the interior complex 
eigenvalue, the results are given in Table ^.7.

In section 4.4.2 we discussed the quadratically converging methods GRQIf and 
PInvitGRQ see Remarks 4.14 and 4.15. In contrast to the one sided RQIf and RQId 
which are effected by the conditioning of the sought eigenvalue, GRQIf and PInvitGR 
are robust even for poorly conditioned eigenvalues.

In all tests carried out with GRQIf we used fewer than 5 iterations to obtain a 
satisfactory approximation of the sought eigenpair. Comparing the result for GRQIf, 
see left columns of Table 4.7, and RQId, see right columns in Table 4.3, we observe no 
significant difference for the here considered example.

In tests with PInvitGRQ we needed occasionally 6 or 7 iterations due to poorer ini­
tial convergence otherwise the convergence is excellent. Specially we did not encounter 
any of the convergence problems as we did using PInvit, see Test 4.3. The difficulty 
with the initial iteration is apparent from the data given in the right columns of Table 
4.7.
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4.6 Conclusions

Based on the Jordan decomposition we analysed the convergence of inexact inverse 
iteration applied to the GEP independent of any specific linear solver. We extended 
the definition of the tangent of the error angle made in Chapter 2 to the unsymmetric 
generalised eigenvalue problem and called it the generalised tangent. Based on the 
Jordan decomposition we established a one-step bound on the generalised tangent for 
the next iterate. The key result in this chapter, Theorem 4.2, is based on the one-step 
bound (4.28). Both, Theorem 4.2 and the one step bound (4.28) are key to the effi­
ciency analysis presented later in Chapter 6. We point out that Theorem 4.2 is general 
in the sense tha t it is valid with any (iterative) linear solver satisfying the residual 
constraints. Further, Theorem 4.2 is also general in the sense tha t it is applicable to 
many if not all variations of inexact inverse iteration. Corollary 4.3 applies Theorem
4.2 to the im portant and more widely known variations of inexact inverse iteration 
using the standard right-hand side, such as Invit, RQIf and RQId. Based on Theorem
4.2, Corollary 4.3 and Remark 4.4 we considered a few variations of inexact inverse 
iteration for which we concluded convergence, super linear convergence and the type 
of superlinear convergence. Among the methods studied were methods using a fixed 
shift, or a shift equaling the RQ. Further, in Section 4.3.4 we extended the approach 
from Simoncini and Elden (2002) to the generalised nonsymmetric eigenvalue problem. 
Finally we discussed a few approaches baaed on the generalised Rayleigh quotient.

Using a small constructed example we illustrated the convergence of these methods. 
W ith respect to the outer convergence, methods with superlinear convergence tha t are 
RQId, InvitWd, GRQIf and PInvitGRQ outperformed the other methods. However this 
ignores the performance of the inner-method and thus does not allow a fair judgement 
of which method should be recommended for practical use.

The tests carried out were mainly designed to show the difference between the 
methods rather than a test for robustness. So tha t in order to understand practical 
limitations of the methods more tests specially on large problems might be useful.

Later in Chapter 6 we consider GMRES as linear solver and question which of the 
methods studied here is efficient.
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ICMf GY
extreme real interior real extreme real interior re

r°  =  0.1 T ° =  0.1 C3 =  0 .1 /< j ° C3 =  0.1/
i f f e t*
0 5.0e-02 5.0e-02 5.0e-02 5.0e-02
1 2.1e-03 1.2e-02 1.9e-03 5.7e-03
2 3.2e-04 7.0e-04 3.7e-04 5.0e-04
3 3.7e-05 6.2e-05 4.2e-05 2.2e-05
4 5.5e-06 1.0e-05 5.8e-06 1.8e-06
5 7.6e-07 7.2e-07 8.3e-07 2.1e-07
6 l.le-07 5.6e-08 1.2e-07 9.6e-09
7 1.6e-08 4.3e-09 1.7e-08 2.8e-09
8 2.2e-09 3.7e-10 2.4e-09 2.5e-10
9 3.1e-10 2.7e-ll 3.4e-10 1.8e - ll
10 4.4e-ll 1.8e-12 4.8e-ll 1.3e-12
11 6.3e-12 1.9e-13 6.8e-12 1.5e-13
12 8.9e-13 5.6e-14 9.7e-13 4.4e-14
13 1.3e-13 1.4e-13
14 1.8e-14 1.9e-14
15 3.6e-15 3.8e-15

Table 4.6: Convergence history for ICMf and GY (Test 
4.4). Tabulated is the tangent t 1 against the outer- 
iteration number i. For the definition of the two eigen­
values of interest see Table 4.1.

GRQIf
extreme real interior complex

r° 0.2 0.2
i t'
0 5.0e-02 5.0e-02
1 4.3e-03 4.2e-02
2 1.0e-06 2.9e-03
3 7.5e-14 9.5e-07
4 2.9e-13
5

PInvitGRQ 
extreme real interior complex

0.1 0.2
t* t'

5.0e-02 5.0e-02
9.2e-01 2.4e-01
2.5e-01 1.0e-01
3.2e-03 2.3e-03
l.le-06 7.2e-07
2.1e-14 2.3e-14

Table 4.7: Convergence history for GRQIf and PInvit­
GRQ (Test 4.5). Tabulated is the tangent t l against 
the outer-iteration number i. For the definition of the 
two eigenvalues of interest see Table 4.1.
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Chapter 5

GM RES

In the previous chapter we have seen tha t in inexact inverse iteration systems of the 
form (A  — a M )y  = b  arise. As we go on to analyse the efficiency of inexact inverse 
iteration using GMRES as a linear solver later in Chapter 6 we need to know how 
GMRES and preconditioned GMRES performs when applied to systems of the above 
form. The main result for this will be Corollary 5.11.

As the shift a  might be complex we consider first general complex systems B y  = b 
before later in Section 5.2.3 returning to the special case where B  = A — a M , with A  
and M  real.

Introduced by Saad and Schultz (1986), GMRES is an iterative Galerkin-Krylov 
technique for solving linear systems. Originally published for real unsymmetric systems 
it can handle complex valued systems B y  = b, where B 6 C xn and y, b  € C 1. Earlier 
in Section 3.2 we discussed MINRES, which is also a Galerkin-Krylov technique, and 
many of the remarks made there apply also for GMRES, as MINRES can be viewed
as a special implementation of GMRES for symmetric systems. In order to avoid any
confusion we will repeat those here, or state explicitly tha t they apply.

The basic idea in GMRES is to find in each iteration the vector y^ solving

| | b - B y fc||2 =  min | | b - £ y | | 2, (5.1)
y€/Cfc

where K,k denotes the Krylov-subspace Kk := span{b, B b , . . . ,  J3fc-1b}. Using the set 

Iljj, := { / | /  polynomial with degree(/) <  k and /(0 ) =  1} (5.2)

we can write the minimisation problem (5.1) as

l|b -  B y k\\2 = min | | / ( S ) b ||2 . (5.3)
/e n i

This polynomial formulation is the standard way to study the convergence of GMRES
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using constrained minimal polynomials, 11 ,̂ over the eigenvalues of B. However, Green- 
baum et al. (1996) showed that the eigenvalues of the system matrix B  on their own 
are not enough to bound the convergence of GMRES. For a given set of eigenvalues and 
a given convergence curve they construct a matrix and corresponding right-hand side, 
such tha t ||djfc||2:= ||b  — B y k \\2 behaves according to the prescribed convergence curve, 
hence any non-increasing convergence curve is possible. However, their result uses the 
departure from normality of the system matrix B , which affects the conditioning of the 
eigenvectors. Given the eigenvalues and the eigenvectors of B  the convergence can be 
bounded using a polynomial on the eigenvalues. We follow this standard approach here. 
That the resulting bound describes the convergence behaviour has been demonstrated 
by Embree (1999) and Liesen (2000).

Before we present the convergence analysis in Section 5.2 we discuss in Section 5.1 
the minimisation problem

Vd •= mil|  max | / (z)\, (5.4)
fen* zeD

where D  is a non-empty and compact subset of C. Finally in Section 5.3 we briefly 
discuss further literature on GMRES and variations of the algorithm.

5.1 Constrained Minimal Polynomials

The constrained minimisation problem (5.4) for complex domains has been discussed 
for example in Manteuffel (1977); Fischer and Freund (1990, 1991); Chatelin (1993); 
Fischer and Peherstorfer (2001). Here we only summarise those results which are of 
interest to our application. First, in Section 5.1.1, we discuss some cases where 77̂  7A 0 
for k —> 00. Then in Section 5.1.2 we use a result from Fischer and Freund (1990) 
to bound 77̂ , where D  is an ellipse. Based on a result in Chatelin (1993), we give in 
Section 5.1.3 a bound on 77̂  for the case where D  is a disk. To obtain bounds for more 
complicated disconnected domains we use polynomial maps. Finally, in Section 5.1.5 
we discuss arbitrary domains D  for which 77̂  —> 0 and show tha t the convergence is at 
least linear in k.

5 .1 .1  D o m a in s  w ith  h o les

We start with the obvious observation tha t for the case where 0 G D  the minimising 
solution is p(z ) =  1 and so 77̂  =  1 for all k. Another difficulty arises if C\D  is 
disconnected, and 0 and 00 are in disconnected subsets. To illustrate the difficulty 
consider the unit circle D = {z\ \z \=  1} then r)kD = 1 for all k. This follows from 
the fact tha t polynomials are holomorphic and holomorphic functions can not have a 
maximum in the interior of a set, see Ablowitz and Fokas (1997, Theorem 2.6.6, p. 97).
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5 .1 .2  E llip se

Consider an ellipse with foci f \ , and f 2 and radius R  G M+ ,

£R,fuf2 '= {A  I/i “  A +  I/2 -  *l< 2R}, /i» h  e  C (5.5)

with 0 ^  £ r ,/ i ,/25 and i? >  5 I/2 — / 11 * Later we consider such general elliptical domains, 
however standard results are written in terms of a standard ellipse Er with real foci at 
1 and — 1, i.e.

Er := £r,i,-i =  {A  |1 — A +  | ~  1 — z\— 2r}' (5-6)

The transformation

, N f l  + f 2 ~ ^ Z  /c ^
: =  A - / a (5 '7)

maps ERj uf2 to Er with r = 2R /  \f2 -  fi\.

L em m a 5.1 Consider the ellipse Er defined in (5.6) and zq G C \£r . Further let (3 G R+ 
such that zq G dEp then

\ n  u ^  TA r ) mm max \f(z)\ <
/(20)=1

P ro o f: This result is proven in Fischer and Freund (1990, Theorem 2 and equation 
(1)). As their notation differs we point out tha t zo G C \£r implies (3 > r. Further their 
right-hand side quotient is gained by using the Joukowsky map, i.e. Tjfc(r) =  ^ (r* + l/r* )  
for 2r = r + 1/r .  □

A similar result can be found in Chatelin (1993, Lemma 7.3.1), for general real foci 
/ i j / 2,^0 £ IK- Further Fischer and Freund (1990) show that the bound is attained for 
(3 large enough, i.e. (3 r. However, in our application the spectrum of the possibly 
preconditioned matrix might have a much less favourable relative separation of the 
origin and hence For this case the bound is not sharp as pointed out by Fischer
and Freund (1991).

Now we present a Corollary to Lemma 5.1 giving a more practical bound by bound­
ing the Chebyshev polynomials.

C o ro lla ry  5.2 Consider the minimisation problem (5.4) on the ellipse D = ERj 1}f2, 
see (5.5). I f  \fi -  f 2\< 2R  < |/i | +  I/2I then 0 0  D and
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< 2 y / ^ 2 -  1 y/ii1 +  1 
y f c  +  1 \ ^ T -  1

(5.9)

where

2i ? + | / 2 - / l |  , . I/ll +  I/2 I +  1/2 -  / l |
K 1 : =  77^ T7 ~  a n d  K 2 ; —

2^ — I/ 2  — /i |   ̂ | / i |  +  I/2 I -  I/ 2  - / i |

P ro o f: We start for (5.8) by using g(z) as defined in (5.7) and observe

r>kVd min max \p(z)\ 

min max \p(g(z))\p€nfe zeD 
J>(s( 0))=1
min max \p(z)\penfc zeer

p(z0 ) =  1

< T k ( r )  

TkU3)’

where zq =  #(0) =  and j3 such tha t 2:0 £ while r  =  2 R f  | / i  — / 2 I* To obtain 
the explicit value of f3 we use tha t zq G d £ p ,  hence |1 — z q \  +  | — 1 — z q \ =  2(5 which is 
the same as (3 = ( |/ i | +  | / 2|) /  |/ i  -  / 2I.

In order to obtain the bound, (5.9), we use the fact that

( / £ ± j /  +  1\  
x - y
x  + y 
x - y

-  1

m  .  x > Tk -

.y

j  / x  + y [ 
x - y
x  + y -  1

\  V x  — y )

see (A.12). □
So far we did not show that the term  on the right-hand side in (5.9) tends to zero. 

To achieve this we only need to show tha t the term in the brackets is in (0,1). As 0 ^  D
we obtain |/ i | +  I/2I> |/ i  +  / 2I> 2R  and hence 1 <  «2 <  «i- Using the monotonicity of
^ w e  obtain

\/«2 <  \/« i

\f^ 2  ~

&  + \f^ 2  -  V̂ T -  1 < y/^2y/^ l + -  \f^ 2  -  1

<=> (\/«2 -  i) (y/Kl +  i) <  (>/«2 +  !) ( v ^ -  !)

<  1,
+  1 \ / ki -  1

therefore Corollary 5.2 proves that 77̂  —> 0 with k —> 0 0 .
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For more on Chebyshev polynomials see Appendix A.

5 .1 .3  D isk

Here we consider disks of the form

Cr>c ■= {z\ \z ~  c|< r}, 0 <  r < |c|, c G C. (5.10)

We now extend a result from Chatelin (1993, Theorem 7.3.4), for disks with real centers 
c G l ,  to complex valued centers c G C.

L em m a 5.3 Let D = {z\ \z — c\< r} with 0 < r < |c| and 0 £  D then rfy =  ( r /  |c|)fc. 
P ro o f: We use Chatelin (1993, Corollary 7.3.5), which states for zo,c, r G M with 
zq > c +  r that

min max \f(z)\ = ( — 7— z: ) .
V k o - c l /

/(*  o)=1

Define g(z) := 1 — z/c,  then g(D) =  {z\ \z\< r} with r =  r /  |c| and c =  0, further 
zq = g{0) =  1 and therefore

T f  T  ̂ ^
^  =  min max \f(z)\ =

□

/ e n fc z£g(D)  \ \ l  -  01/  (s(o))=i Vl

5 .1 .4  P o ly n o m ia l m aps

So far we have only bounds for 77̂  if D  is either a disk or an ellipse. Here we use a 
simple observation to extend the results for disks and ellipses to domains which map 
into a disk or an ellipse using a polynomial map. The observation we use is tha t for 
any ip G n m and / G ^  the composition /  o <p e  Hfcm, hence

min m a x \f(z)\ < min max \g(<p{z))\ . (5.11)
f £ nkm z e D  n fc Z£ D
f(z o)=1 s(v,(i:o ))= 1

min max \g(z)\ . (5.12)
9e n Jfe z£tp(D)

9(,<P(Z o))=1

The idea is to use a polynomial map <p, i.e. <p is polynomial, such that is a
suitable disk or ellipse while D  might be a disconnected set.

Above idea is more carefully studied in Fischer and Peherstorfer (2001), specifically 
with respect to the quality of the inequality (5.11). For any given set D  and any k G N
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let T ^ ( z )  denote the solution of the Chebyshev approximation problem

max \Tj?(z)\ =  nunm ax \zn -  f(z) \ .
z £ D  z £ D

Then Fischer and Peherstorfer (2001, Corollary 2.2) state

t L ' <D)(z ) = a,-k TkD(ip(z)).

for (p G n fc\ n fc_i with m  simple zeros and leading coefficient a.
We now apply above idea to Corollary 5.2 and Lemma 5.3 to obtain following 

Lemma, for which we did not find a suitable reference.

L em m a 5.4 Consider the minimisation problem (5.4)■ Let G IIm with </?(0) =  0. I f  
D  C C is such that 0 £  <p(D) and

1. that (p(D) C £r J i J 2> see (5.5), then r)kD < p q k where

P roo f: For the ellipse, Corollary 5.2, as for the disk, Lemma 5.3, we have the 
bound

and p = 2/qm (5.13)

where «i and «2 as defined in Corollary 5.2.

2. that tp{D) C CryC, see (5.10), then 77̂  <  p q k where

q =  ( r /  |c|)1/m and p =  |c| /r. (5.14)

< ( D )

where for example p = 1 and q = r /  |c | for the circle. Using (5.11) we have q3̂ 1 < 
rf^D) — setting q =  (q)l lm and p =  p/q  we obtain

k /  [k/m\m ^  [fc/m] /  —''-Tfc/ml   [fc/m lm +m    k
ob  ^  Od — % / d ) — < p q [ ' J < pq •

□

5 .1 .5  G en era l D o m a in s

Earlier in Section 5.1.1 we gave an example of a domain D  where the minimisation 
problem (5.4) does not change with k , i.e. 77̂  =  1 for all k G N. Here we consider any
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set D  C C with 77̂  —> 0. If ip(z) G n£* then (cp{z))m G n^*m and therefore

Vd™ = m i .n  m a x  I / M l

< min max |( /(z ) ) ro| =  (no ”*)"*• (5-15)
/e n ‘, z£D

We use this observation to obtain the following result.

L em m a 5.5 Consider the minimisation problem (5.4), where D  C C is such that 3k* 
with r)kp  < 1, then rip < pqk where q =  ( ( £ ) l / k* and p = l / r f e .
P roo f: We use (5.15) together with the technique used in the proof of Lemma 5.4,

Vd < V[n /m]m < (riD)[k/rn] < (gm)[fc/m] <  p 9mtfc/m]+m <  pq k. (5.16)

□

5.2 Convergence

5 .2 .1  S ta n d a rd  A n a y sis

In this section we analyse the convergence of GMRES applied to complex valued linear
systems B y  =  b. We assume that we can choose the set D c C ,  containing all but a few
eigenvalues of J3, such tha t r)kD -» 0. Eigenvalues which might be treated separately 
include eigenvalues close to the origin, defective eigenvalues and eigenvalues where 
eigenvectors are badly conditioned. As in Chapter 3 for the real symmetric eigenvalue 
problem, our main interest is to treat eigenvalues separately if thereby D  can be chosen 
such tha t q as in Lemma 5.5 can be reduced significantly. This common technique can, 
for example, be found in Hackbusch (1994, Section 7.3.6).

In order to state the key result we introduce the residual after the fcth iteration of 
GMRES

d k := b - B y k. (5.17)

Further for a given set T c N n define

Qr ■= diag(<$i(r),...,Jn(r)), (5.18)

where 5j(T) = 0 if j  G T and <5j(r) =  1 otherwise. Let p i , . . . ,  pn denote the eigenvalues 
of B  then we use Dr  D {Ab'|j ^  F} and will assume tha t qkDr -¥ 0.

L em m a 5.6 Consider GMRES applied to B y  =  b  where B  6 Crixn and b  G U 1. Let B  
be non-singular and have the eigenvalue decomposition B  = W  J W ~ l with eigenvalues
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H i, . . .  ,Hn- Let r  C Nn with 1 £ T and {j\Hjdefective} C T be such that there exist Dp 
with 77̂  —> 0 for k —> oo. T/ien there exists p > 0 and q £ (0,1) as in Lemma 5.5 that 
for all k > | r |

\\dkh ■= I I ^ Q r l k P i V - 111 iM ll^ U Q r^ - 'b lb , (5.19)

where qr =  q and

Pr :=  pm ax  l(H ~  (I I I
\Mj -  £1

f€Cr 1 A i>  w

P ro o f: We define the auxiliary polynomial g(£) := Y ljeriW  ~  O /P j  and use that 
J Q r is diagonal, then g(J) = g (JQr) = g{J)Qr = Qrg(J)- Further as J Q r is diagonal 
f ( J ) Q r is diagonal and Q rf(J )  = f (J Q r )  =  f ( J ) Q r • Hence

l|djfe||2 =  min | |/ (B )b ||2 
/e n i

=  min ||Wr/(J ')W r“ 1b ||2
/e  nj

< min \ \W f(J )g { J )W - l h\\2
f^ k - \r \

=  min W W Q r f W g W Q r W - 'b h

< min |F Q r ||2| |/ ( J Q r )||2||s (JQ r )||2||Q rlV -1b ||2
/ eni_in

< \ \W Q rh  min m a x m a x  \ g { i i j ) \ \ \ Q T W  b ||2
/€ n ‘_,n je  r °  je r^

< IIWQ1-II2 min max |/({ ) | max |9(OIIIQrW_ 1b ||2
^enLin *eDr r

f a - o  n  “ f 1

< | |^ Q r ||2 P r9 rfc' |r| M ' 1 W Q r W ^ b h  •

< ||WQr ||2 pqrk ^  max 
ZtDv

|P i|-1 ||Q rR r-1b||2

□
The assumption tha t the indices of all defective eigenvalues are in T makes this 

result less suitable for matrices W  with many defective eigenvalues. The condition 
r)kD —>■ 0 for k —> 00 can be satisfied by taking suitable eigenvalue indices into I \

In the standard literature like Saad and Schultz (1986) and Saad (1996) Lemma 5.6 
is presented for T =  {}, hence (5.19) has the form

||dfc||2 < K2 (W)  min m a x \f(pj)\ ||b ||2, (5.20)
feu \  jeNn
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where K2 {W) = | | ^ | | 2 | | ^ - 1 ||2 is the condition number of the eigenvector matrix. As 
shown by Greenbaum et al. (1996) and discussed earlier «2 (W) can be so large that 
this bound is meaningless as a practical means of estimating ||dfcH2-

The basic idea of the analysis used here can be found in Hackbusch (1994, Section 
7.3.6). A similar analysis was used by van der Vorst and Vuik (1993) to study the 
superlinear convergence of GMRES.

Another typical observation is that GMRES converges in theory in not more than 
n  iterations. This can be verified by setting T = Nn then ||Q r W - 1b ||2=  0 and hence 
||dfc||2=  0 for k > |r | .

5 .2 .2  S o m e e ig en v a lu e  p e r tu r b a tio n  th e o r y

In order to obtain a bound on the eigenvalues of P 1-1 (A — <t1M )P 2-1 we use a pertur­
bation result which we then apply to our situation.

T heorem  5.7 Let U be non-singular and v be an eigenvalue of D + E  but not of D, 
then

||U(D -  v I ) - l U~l \\-1 < \\UEU~l \\ .

Proof: Proof see Stewart and Sun (1990, p .171). □

C orollary 5.8 Let D := P f 1( A— be diagonalisable and denote its eigenvalue 
decomposition by U A dU ~ 1. Further let B % :=  P ^ 1 (A — crl M ) P ^ 1 have the eigenvalues 
H) with |/4 | <  |/ij| Vj while C5 := ||C /Pf 1M P2' 1t / - 1||. Then \p \ \< |AX -  a{\ Ch.
Proof: Set E { := B l -  D = (Ax -  a ^ P ^ M P ^ 1, then W U E ^^W  < C5 |Ai -  0 % Now 
we use the fact that A# is diagonal and p\  the smallest eigenvalue of B l, therefore

\\u{D -  =  IK A d -M / ) - 1!!-1 =  K | ,

hence with Theorem 5.7 we obtain \p\\< C5 |Ai — a11. □
This proof makes use of the fact that fi\ is the smallest eigenvalue of the di­

agonalisable matrix D. If D  is not diagonalisable, so A^ a Jordan matrix, then 
|| (Ad — p \ I ) ~ l Ĥ 1 is given by the smallest singular value of A d — p \I .  As long as 
the smallest eigenvalue in modulo of A d — fT I  is non defective and well separated, the 
smallest singular value equals the absolute value of this eigenvalue. So, if | A — a1 \ is 
small enough and Ai a simple eigenvalue, then \fTj\ equals the smallest singular value. 
Earlier in Section 4.1 we derived a lower bound on the smallest eigenvalue of a Jordan 
matrix J ,  | |J ||>  m in^.{ \ p j \  —Sj} where }y=i are the eigenvalues of J  and Sj  = 1 if 
/ij is defective and 6j = 0 otherwise. However, this bound is not of much use in case 
of preconditioned solves, as idealy the eigenvalues of the preconditioned system are
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clustered around —1 and 1. Nevertheless, our practical experience is tha t the singular 
values corresponding to the Jordan blocks have no effect on the linear bound.

In the following we prove a lower bound on \p\\. Therefore we use gap as defined 
in (4.19). We recall that |Ai — crl \ <  \gap  implies tha t |Ai — a11 is the smallest singular 
value of J  — a 17, see Section 4.1.

L em m a 5.9 Let p \ be the smallest eigenvalue of P ffl {A — <t1M )P2_1 and A V  = M V J  
the eigen-decomposition of the pencil (A , M ). I f  0 <|Ai — crx \ <  \gap then

iA i-<T iiiP iii-1iiP2i r 1iiM -i ii-i i i v r i i iv - i r i <  i/41

P ro o f: From (4.7) we know tha t (A — axM )~ 1M  =  V(A  — a lI ) V ~ l . Denote by u>n 
the smallest singular value of P f 1(A — <t1M )P2_1 then ujn <\p\. Using the fact that 

= | |P f I(A -  a'M )P ,Jl \\ gives

M " 1 < = \ \ P i ( A - a iM ) - l Pl \\

<  HP2IIIIP11111(̂ 1 — <7'M)- 1M M -1 ||

<  ||P 2 ||||P l||||A f-1||||V (J  — (7*/)-1 V -1 ||

<  II^IIII^IIIIm-' iii ivii iiv- 'i i ikj -  s iy 11|.

We conclude the proof by using that |Ai — cr*|< |  implies tha t |Ai — a%\ is the smallest 
singular value of J  — o lI. □

Stewart and Sun (1990, Chapter 4, Theorem 1.1) provides the fact tha t eigenvalues 
are continuous functions of the matrix entries, i.e. Pj =  Pj{(Jl) is continuous. Now 
given a set T C Nn then denote

Dr := {Vj\j £  T, pj = pj{a) with |AX -  a\< ^ gap}. (5.21)

We observe that Dr  is compact els {cr| |Ai—<r|< \gap] is compact and P j { c r )  continuous. 
Next we prove that Dr  C C is a compact set and 0 & Dr-

L em m a 5.10 Let the eigenvalues of B 1 be ordered such that 1/41^1/41 — ••• — IKJ- 
|Ai — al \< C$gap where 0 <  C9 <  1 then 3 0 7 , 0 $ >  0 such that C7 <\p\\<\lAi\^ C$. 
P roof: The arguments we applied to D r are also valid for

n

n := U M{aUAi ~ a \^  c 9gap})  
j = 2

and hence Q, is compact. Therefore 3C$ >  0 such tha t \p*j\< C$. As p(a) eigenvalue of
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P i 1 (A  — crM)P2 1 and Pi and P2 non-singular, pj(<r) = 0 only if A — crM is singular, 
which is the same as a being an eigenvalue of Ax =  AMx. Now |Ai — cr|< \gap  contains 
only one a which is an eigenvalue of Ax =  A M x, that is 0 = \ \ . For a = \ \  we have 
pi = 0 and pj  7̂  0 for j  > 2, therefore 0 £  Q. □

As Dr  C H  we have Dr  compact and 0 £  Dr, so r/p is well defined.

5 .2 .3  P r e c o n d i t io n e d  G M R E S  as  l in e a r  so lv e r  fo r  s h if te d  l in e a r  sy s ­
te m s

In Chapter 6 we apply GMRES to sequences of shifted linear systems. Further we 
consider the cases where either unpreconditioned GMRES or preconditioned GMRES 
is applied to such a sequence. To simplify later analysis we discuss both cases here and 
present a Corollary to Lemma 5.6 applicable to both cases. In case of preconditioned 
GMRES we might apply a left or a right preconditioner or both to (A — a lM ) y 1, = b*. 
However in all cases the preconditioned system can be written as

P f 1( A - ( 7<M )P 2“ 1z< =  P f V ,  (5.22)

with y l — P2_ 1z*. We define the residual for the ith  linear system by

d i := Pl~1b i - P l- 1( A - a iM ) P 2 l z l  (5.23)

where zj. is the solution after k GMRES iterations on the ith  linear system.

C o ro lla ry  5.11 Consider GMRES being applied to the linear systems P 1- 1(A—cr*M)P2_1z* =  
P ^ b * . Denote the eigenvalues of P ^ 1 {A —a1 M ) P ^ 1 by p \ , . . . ,  pln and those of M ~ l A  
by A i,. . . ,  An . Assume 0 <|Ai — al \< \gap, P\ and P2 non-singular and T C Nn such 
that {j\pjdefective} C T and 77̂  —> 0, where Dr is defined in (5.21). Then GMRES
converges and there exists p > 0 and q G (0,1) as given by Lemma 5.5 such that for
the residual as defined in (5.23) the bound

\ \ 4 h  < (?r)fc- |r|P r |A i - < T i - 1 Xi (5.24)

holds for all i and k >|r|. Here qr = q and

pr = pCem ax [ (C8+  |f|) ° 8*  ^  ) , (5.25)
r \  ier\{i} 2

where |Ai — cr| /C q < |^ i | as in Corollary 5.9 while x l :==||l^ lQ r||2||Qr(lF'z)_ 1P1- 1b z||2, 
with W % being the matrix of eigenvectors o /P 1-1 (A — crlM )P 2-1 .
P roof: For each system the conditions of Lemma 5.6 are satisfied and to bound |/4 |-1
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we use Lemma 5.9. Further, to bound pvl as in Lemma 5.6 we use Lemma 5.10 and 
thus (5.25) holds. □

The constants pr and qr might be improved using := {^ ) \ j  ^  T}, however later 
it is more convenient to have pr and qr independent of cr\

A similar result to Corollary 5.11 has been obtained by Campbell et al. (1996), 
however their result lacks the projection term x \  which will be a key quantity in 
Chapter 6.

5.3 Literature

Here we present a brief overview of literature on the convergence of GMRES. Further 
we discuss a few articles concerned with enhancements of GMRES, namely, augmenting 
and restarting.

A polynomial convergence bound for GMRES like Lemma 5.6 but with T = {} 
has been published by Saad and Schultz (1986) together with the algorithm. Other 
standard sources for the algorithm and basic results are for example Kelley (1995); 
Saad (1996) and Greenbaum (1997).

Greenbaum et al. (1996) showed tha t any non-increasing convergence curve is pos­
sible for the GMRES residual independent of the spectrum of the system matrix. As 
we explained in the introduction this effect is often achieved by deterioration of the 
conditioning of the eigenvectors.

While the system matrix B  is normally assumed to be nonsingular, Brown and 
Walker (1997) show tha t GMRES finds the least squares solution or an approximation 
to it in the singular case. The authors also discuss the case of nearly singular systems. 
One of their findings is that GMRES applied to nearly singular systems might behave 
almost as in the singular case. Based on their analysis and their computational results 
it would appear that GMRES is not a good solver for inexact inverse iteration. However 
their observations are for the general case and do not take into account that the right- 
hand side is somehow special in inexact inverse iteration.

The analysis from van der Vorst and Vuik (1993) gives considerably more insight for 
our application. In practice GMRES often shows superlinear convergence behaviour. 
The aim of the analysis of van der Vorst and Vuik (1993) is to provide an understanding 
of such behaviour. As they show, a key factor is how well small eigenvalues of the system 
matrix B  are approximated by the Ritz values of A  with respect to the subspace 
used by GMRES. Once such eigenvalues are approximated well enough the rate of 
convergence improves as if these values were not present. For our application there 
are two situations of further interest. For the first we assume that the right hand 
side is an approximation of the eigenvector corresponding to the eigenvalue smallest 
in magnitude of the (preconditioned) system. In this case GMRES detects this almost
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zero eigenvalue quickly, perhaps in one iteration, depending on the quality of the right- 
hand side. Then, according to van der Vorst and Vuik (1993), the further convergence 
is almost not affected by this eigenvalue. In the other case, when the right-hand side 
is not an approximation of the eigenvector then the GMRES algorithm might need 
considerable effort to find an approximation to this eigenvector. This observation is 
also supported by the analysis of Ipsen (1998a) for the case B  =  B T.

A comparison of GMRES with other iterative techniques for non-symmetric systems 
had been published by Nachtigal et al. (1992). Basically all iterative methods for non- 
symmetric matrices can fail in practice and can be outclassed by other methods so tha t 
there is no ’best£ solver.

In practice a method called restarted GMRES is used frequently. As GMRES needs 
to store the subspace vectors the storage requirement increases with the number of iter­
ations. Due to limited storage one might restrict the Krylov subspace size. This implies 
that the number of GMRES iterations will be limited and it might happen that GM­
RES does not converge sufficiently inside this limited number of iterations. Restarted 
GMRES uses restarts of GMRES with the previous residual as the new right-hand side. 
A major drawback of restarted GMRES is the possible lack of convergence; there are 
examples where restarted GMRES with restarts every twenty iterations stagnates, so 
does not convergence, while GMRES with restarts every second iteration converges, for 
more see Embree (2003). In this thesis we do not consider restarted GMRES, due to 
such convergence problems. Using the approximate solution vectors to construct an­
other Krylov subspace leads to flexible (restarted) GMRES, see Saad (1993). However, 
to overcome stagnation Simoncini and Szyld (2002) suggest an inner-outer GMRES 
algorithm, where size of the inner Krylov spaces must be non decreasing.

Another approach to overcome poor convergence is to use augmented GMRES. 
The idea of augmenting GMRES is to provide information of the eigenvalues close 
to zero, which might enhance the convergence speed as explained earlier. In practice 
this approach might be combined with restarted GMRES, where it might improve the 
convergence, but does not resolve the problem of stagnation. Here we do not con­
sider augmented GMRES, but point out tha t our analysis might be extended to cover 
this case. For more on augmenting see Chapman and Saad (1997) and for combining 
restarting and deflating see Morgan (1995).
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Chapter 6

Efficient Variations of Inexact 
Inverse Iteration using GM RES  
for the G EP

As in Chapter 4 we consider the generalised unsymmetric eigenvalue problem, (GEP),

A x  = A M x, (6.1)

with A , M e Rnxn and M  spd, where the eigenpair (A,x) =  (A i,vi) is sought. In 
Chapter 4 we considered the convergence of inexact inverse iteration independent of 
any particular solver. In order to analyse the efficiency of inexact inverse iteration as 
an inner-outer type algorithm we have to consider a specific solver or a class of solvers. 
Here we assume tha t GMRES is applied to the arising linear systems.

Earlier in Chapter 3 we considered the efficiency of inexact inverse iteration applied 
to the standard symmetric eigenvalue problem and using MINRES. In this chapter we 
now adapt the key ideas and the analysis of Chapter 3 to the GEP. However the form 
of presentation will be changed.

Some of the methods discussed in Chapter 4 use a shift converging towards the 
desired eigenvalue. When the shift converges to the sought eigenvalue the linear systems 
get harder to solve and the systems get closer to being singular. The application of 
GMRES to singular and nearly singular systems was studied in Brown and Walker 
(1997). An almost singular system can cause problems especially if a good solution of 
the system is needed, tha t is the error in the solution should be small. According to 
our experience these problems axe largely due to round-off errors which are less fatal 
for MINRES. However we are not primarily interested in solving the linear system but 
gaining a good approximation of the sought eigenvector. As the analysis of van der 
Vorst and Vuik (1993) shows the convergence of GMRES is not hampered too much by 
a few critical eigenvalues. We explored this in our convergence analysis for GMRES in
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Chapter 5. From our efficiency analysis we will observe that when shifting towards the 
sought eigenvalue the cost increase for a linear solve does not outweight the benefits in 
terms of a better approximation to the sought eigenvalue.

We start, in Section 6.2, by defining the number of GMRES iterations, as a mea­
sure for the cost of a linear solve. Based on this we define the cost of calculating an 
approximate eigenpair (f?*,xz) of the GEP (6.1) by the sum of all GMRES iterations.

Now, as in Chapter 3, we use in Section 6.2 a convergence bound for the solver to 
derive an a-posteriori upper bound on the number of inner-iterations. This upper bound 
is a key result to understand the efficiency of the methods discussed earlier in Section
4.3. In Section 6.3 we discuss this first result with respect to those methods. Our second 
key result with respect to the efficiency of inexact inverse iteration will be presented 
in Section 6.4. This result provides a-posteriori upper bounds on the total number of 
inner-iterations. Based on this result we observe tha t from the methods considered 
in Section 4.3, RQId, that is an inexact RQ iteration with decreasing tolerance, and 
InvitWd, tha t is inexact inverse iteration using the Wilkinson update and a decreasing 
tolerance, are the most efficient.

Finally in Section 6.5 we provide numerical results to support our Theory.

6.1 Costs

As in Chapter 3 we refer to the GMRES iterations as inner-iterations in contrast to 
the iterations of inexact inverse iteration, referred to as outer-iterations. In contrast 
to Chapter 3 and MINRES the cost of a linear solve using GMRES is not necessarily 
linear in the number of GMRES iterations, as we explain in the following.

The major cost terms in GMRES are preconditioned m atrix vector products, storage 
and orthonormalisation. While the cost of orthonormalising the Krylov basis vectors 
grows quadratically in the number of inner-iterations k, the other two major costs are 
linear in k. The linearity of the storage requirement with respect to A; is a problem 
as the storage available is usually limited, which in turn restricts the number of inner- 
iterations which can be performed. However, if enough storage is available and the cost 
for orthonormalisation is small then the main cost of a solve using GMRES is given by 
the number of matrix vector products. In practice this assumption is for large sparse 
systems not unreasonable if very good and often expensive preconditioners are applied.

We are aware that the cost of a preconditioned matrix vector product is not fixed 
for all preconditioners, however, here we only consider the case where the cost of a 
preconditioned matrix vector product is independent of the vector applied to. Hence the 
only relevant cost remaining is the number of preconditioned m atrix vector products, 
which equals the number of inner iterations.
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D efin ition  6.1 Apply GMRES to B y  =  b using the accuracy requirement ||r e s ||<  
r  ||b|| as stopping condition. Then define C G N as the minimal number of iterations 
required by GMRES such that the residual condition is achieved, that is

||res£||2 < t  ||b||2 and ||resfc||2 > r  ||b||2 VO < k < C.

Again our prime interest is to control the sum of matrix-vector multiplications, 
which equals the total number of inner-iterations. Hence we use the total number of 
inner-iterations as a measure for the overall cost. Therefore we rewrite Definition 3.9 
for the GEP.

D efin ition  6.2 Given matrices A, M G Rnxn, where M  is spd, a starting vector x°, a 
sequence of shifts a1 and a sequence of accuracy requirements r z for the linear solves. 
Then define the total cost T  as the sum of all inner-iterations used to achieve a gen­
eralised tangent t < t*, that is T  := YliLo where M  denotes the number of outer- 
iterations performed.

6.2 Efficiency analysis

We start this section with a short summary of the notation used in Chapters 4 and 5 
with respect to our later needs. In Section 6.2.2, we present Theorem 6.3, our first key 
result concerning the number of inner iteration per outer iteration, C1.

6 .2 .1  N o ta t io n

As in Chapter 4 we consider the generalised eigenvalue problem A x  =  A M x, where 
A, M  G CnXn and M  spd. We assume tha t Ai, the sought eigenvalue is simple and 
tha t gap, as defined in (4.19), is positive. The sought eigenvector is denoted by 
and for its approximation, x*, we consider the splitting x % = a t (ctv f '  +  s*u*), see (4.9), 
which gives the generalised tangent t l = |s l | /  |c*|, see (4.10). Further let Vl denote the 
m atrix of left eigenvectors and let v f  =  Vi,ei be the left eigenvector corresponding to 
Ai. We denote the residuals for the linear systems arising in inexact inverse iteration, 
see Algorithm 5 (page 89), by

res ik = b i - ( A - a iM ) y l

However depending on the actual method, the linear system being solved might differ, 
nevertheless we can write it as

P1- 1( A - a iM )P^1zi = P { lB 'b \
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<7* P* b*
InvitFd <7° 7 Mx*
RQIf q1 I  M x '
RQId e* I  M x '
InvitW f 7 M x1
InvitWd ^  7 M x*
PInvit q% I  Px*
GY cr0 7 -  ( / ( A M -1 -  a 01) Mx*
GRQIf Mx*
PInvit GRQ P x %

Table 6.1: Practical methods as discussed in Chapter 4

where P  = P 1P2 is the preconditioner used implicitly in GMRES. As GMRES is an 
iterative solver we write for the kth. GMRES iterate , approximating z*. The resulting 
residual we denote as in (5.23) by

d{ := P 1-1 S*b* — P i 1 (A — <7*M)P2-1 zj..

To relate the two linear systems for each method, Table 6.1 shows the specific 
choices for <7*, B l and b* made for the methods discussed in Chapter 4. As indicated in 
Table 6.1 solving the standard system (A —cr*M)y* = M x *, as for example, in InvitFd, 
leads to B % = I  and b* =  Mx*. Also for PInvit, using the modified right-hand side, the 
choices B l = I  and b* =  Px* for PInvit are obvious. In Chapter 4, page 104, we showed 
that GY can be viewed as inexact inverse iteration using a  fixed shift and decreasing 
tolerance, hence we use b* =  Mx*. As the right-hand side for the actual solve is

r'Gy =  M x { -  (A -  a °M )y i =  ( i  -  -  <t*/))m x*,

see (4.41), we set B l = I  — tpl {A M ~l — a11). For all these methods the two residuals 
res^. and d \  satisfy

res*fc =  Pid*fc (6.2)

Since we shall use the convergence bound for GMRES as stated in Corollary 5.11 
we recall the definition of the terms used there. For a given index set T C Nn we define 
the projection matrix Qr as in (5.18) by Qr = diag(tfi(r),. . .  ,<5n(r)) with <Jj(r) =  1 if 
j  £  T and S j ( r )  =  0 otherwise.

Let D  C C then we defined in (5.4)

r)kD = min max |/(z ) |,
/en f z^d
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where U\ denotes the set of polynomials with degree < k and /(0 ) =  1.
Finally we denote the eigenvalues of F>1_1(A — cdM)P2-1 by • • •»Mn where p\  is 

the eigenvalue with smallest modulus.

6 .2 .2  C o st p er  o u ter  ite r a tio n

We now present our first key result concerning the efficiency of inexact inverse iteration 
using unpreconditioned or preconditioned GMRES for the arising linear systems.

T h e o re m  6.3 Let Inexact Inverse Iteration, Algorithm 5, with B l and (precondi­
tioned) GMRES as linear solver be applied to A, M  G Rnxn, where M  is spd. Further 
let Ai be a simple eigenvalue of the matrix pair A , M . Assume that the preconditioner 
P  = Pi P2 is non-singular and that GMRES is applied to the linear systems are of the 
form (A — a‘lM )z l = B l b®. Also let T C Nn with 1 G T and all j  G T  where plj defective 
for some i, and assume D D {plj\j & T, i = 0 ,1 ,2 ,.. .}  such that 77̂  —> 0, where r]1̂  is 
defined in (5.4)■ I f  the conditions of Theorem 4-2 are satisfied then t% —> 0 . Further, i f  
additionally there exists C4 > 0 such that

I K Z - e ^ F / b i l  <  C4 r / W l I ,  (6.3)

then there exist p r > 0, qr G (0,1) such that

where C5 := 2(1 +  C4)pr ||-Pl||||V£,|| (<7ap(l — C 3 ) ) - 1 . The matrix W % denotes the matrix 
of eigenvectors of the preconditioned system matrix Pf f l {A — <jtM )P 2_1- 
P ro o f: The conditions of Theorem 4.2 imply 0 <|Ai — al \< \gap , whereby the condi­
tions of Corollary 5.11 are satisfied. Hence GMRES converges, i.e. dj. —>• 0 for k —> 00 
and thereby resj. =  P\d%k -» 0. As resj. —> 0 there exists Cl as in Definition 6.1 and 
Ilre s£i ||<  t 1. Now applying Theorem 4.2 we obtain convergence for inexact inverse 
iteration.

As 0  exists Definition 6.1 gives

11 res^H < r % < Hres^^J .

Combining this with Corollary 5.11 we obtain

t1 < H r e s ^ .J  <  ||P i||||d ,£i_1||

<  llPlll (^r)£l_1_|r|Pr |Ai -  (Jl \~l x \
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where x l = l|W™Qr||||Qr(Wri) 1^ i 15 1b*||. We solve for O  to obtain

C  < 1+ |r| + log  (  ^  PJ X’̂  /logC tgr)-1). (6-5)

To link this with the outer convergence we use the one-step bound for the generalised 
tangent, (4.28), which we rearrange as

t i+i <  |A, -  crj ! | ( / - e ie ? X " b ’|| +  |1Y / W | |
g a p -  j A, -  ct'| K vf^b*! -  ||Y /re s '| |

i*+l

t*+1 <

-H.
< 2 ' * 

gap (1 -  Ci) |(v f )" b ‘|

0 l^i _  a ' | (1 +  C4) \\vff ||
gap ( l - q O K v f f ^ i

2 (1 +  C4) \\Vi || 1
*  A 7S+T- <6-6)|Ai -  o % I T% gap (I -  C3) Kvf) b z| t

We conclude the proof by inserting the last inequality into the bound on C1, (6.5), to 
obtain

£ i < 1+ ,r |  + log  /log ((g r)- i )

and by using the definition of C5 we gain (6.4). □
Obviously with T =  Nn , then ||W*Qr ||=  0, and hence Cl <  1 4- n. However we are 

interested in the case where T is a small index set, |T|<C n, but then the contribution 
of the log-terms is not negligible.

Comparing Theorem 6.3 with Theorem 4.2, we observe to conditions on ||Vj^res*||. 
In Theorem 6.3 part c) we have ||V ^res* ||<  C3 I s ^ K v f '^ b 1!, so lowering C3 implies 
a smaller residual. Further, Remark 4.4 shows tha t lowering C3 improves the rate of 
convergence. Now in Theorem 4.2 we asked for an upper bound on || V j^res1 1|. A 
smaller residual ||V ^ re sz|| implies a relaxation of the lower bound, which in turn forces 
an increase in C4. As Cl oc log(l +  C4), reducing C3 leads to an increase in £ \

R e m a rk  6.4 We expect the number o f inner-iterations to increase when the tolerance 
condition in Theorem J .̂2 is tightened.

We observe this effect in practice for all methods, but we provide only for InvitFd 
numerical results, see Table 6.2. While reducing C3 leads to better outer convergence, 
it is so far not clear if increasing or decreasing C3 improves the overall performance.
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Further, we point out tha t the bound (6.4) is independent of the siz;e of the matrices 
A, M , and depends only on the distribution of the eigenvalues.

6.3 Practical M ethods

Before we discuss the implications of Theorem 6.3 for each of the practical methods, 
we prepare a few tools for that task. These tools are mainly about deriving a bound 
for W Q r i W ^ - 'P ^ B ^ l

6 .3 .1  S o m e b o u n d s

For GY we have B lh l —» 0 and hence ||Qr (W z)_ 1P 1_ 1B zb z||—> 0.
However, for the other methods the situation is more subtle.
Under the conditions of Theorem 6.3, t l tends to zero and also the sequences (B*bz), 

(bz) , (a*) and (W l) converge to a limit. For our later convenience we denote these limits 
with subindex 0, so lim ^oo W l =  Wo, similar for the other sequences.

As B lb* is effected by the scaling a 1 which is implicit in x* we consider from now
on ||Qr (W*)- 1P 1- 1P*bl (o!t )“ 1||. Further we use the fact that for all 77 G C

< I I Q r ^ r W e i!? ! !  +  M IIQ r t^ )-1!! llW^ej -  W0ei||

+  I I Q r ^ ) - 1!! I M ^ i  - P f ' S o b o M - ' l l

+  IIQr(W")- 1 H | |P f 1B ob o(ao)-1 -  P f ^ b V ) - 1 !! ■ (6-7)

As 1 e  T we have ||<2r(W’)_1W *ei||= 0. Now we define C$ :=  max; ||<3r(W^*)_ 1|l> 
then for |r|< n  we observe that Cq > 0. So, we derive from (6.7) the inequality

I I Q r ^ T ' P f ' B ' b V r 1!! / c 6 <  M ||W 'ei -  Woe!II
+  ||!)Woei -  Pi""1Pob0(Q:o)~1||

+  ||Pi_1(P 0bo(Q!0)-1 — B ’b 'fa ') -1 )!!, (6.8)

which holds for all rj G C. In order to bound the first term  on the right-hand side in
(6.8) we use an eigenvector perturbation type result from Chatelin (1993).

L em m a 6.5 Given the matrices G and E  G Cnxn. Let (  G C and let denote the
eigenvector of G +  QE corresponding the eigenvalue Then

| | z o - z J  =  IIS-'-Pzoll Id +OGCI2),

where E 1- := U(UHGU — pqI)U h with (zq,U ) unitary basis o/C™.
P roo f: See Proposition 4.3.1 and corresponding proof in Chatelin (1993). □
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C o ro lla ry  6.6 Assume the conditions of Theorem 6.3 are satisfied. I f  |Ai — <r®|< C \t% 
then there exists Cj >  0 with

W W ^ -W o e iW  < C7t \  (6.9)

P ro o f: Under the conditions of Theorem 6.3, tl tends to zero and thus a1 —>• Ai. As 
a result the matrix Wo is the eigenvector matrix of G := P ffl (A — \ \ M )P2-1 - Now 
let E  := P 1_ 1M P 2_1 and C  := Ai — a1, then W l is the eigenvector matrix of G — CfE. 
Applying Lemma 6.5 we have

||W*ei -  Woeill <  ||S-L£W oei|||A1 — <r’| + 0 (|A i — <r'\2).

Under the conditions of Theorem 6.3 we have f* < 7, hence there exists C7 > 0 such 
that (6.9) holds. □

Next we provide a bound for the third term  on the right-hand side of (6.8).

Lem m a 6.7 Assume the conditions of Theorem 6.3 are satisfied, then there exists 
C$ > 0 such that

H P ^ B o b o W 1 -  P f ^ b V ) - 1!! < C i t \

P ro o f: As for GY Robo =  0 and ||R zb* || —1| r 21|< tl1Z* the result is obviously valid 
for these two methods. For the methods using the standard right-hand side, namely, 
InvitFd, RQIf, RQId, InvitW f and InvitWd, we have R o bo^o )-1 =  M v f. Now

||P f :1(M v f  -  A f x ^ ) " 1)!! < \ \P fl M {{l -  c ^ v f  +  sW)]]

<  f  (  I I P ^ M v f H  +  W P - ' M iTW )  <  C 8 t \

Finally for PInvit, using the modified right-hand side, we have Rj^Robo =  R2v f  and 
hence

\\P2v ? - P 2x i (ai) - 1)\\ < ||P2( ( l - c f) v f +  s V ) | |  <  Cs t \

□
Another useful observation is that for all methods in Table 6.1 | (vf')-^b11 /  | a* | 

tends to some positive constant. Therefore, there exists Cio > 0 such that

II^ Q rll l« i /  K vfO 'V l <  Cio. (6.10)
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6 .3 .2  P r a c tic a l M e th o d s  and  co st p er  ite r a t io n

Now we are fully equipped to bound ||Qr (W I)- 1P 1_15*bl || and the following Lemma 
provides the sought bounds. This Lemma will enable us to discuss the implications of 
Theorem 6.3 for each method with respect to the number of inner-iterations per outer 
iteration, £ \

Lem m a 6 .8  Assume the conditions of Theorem 6.3 being satisfied. Denote the matrix 
of eigenvectors of P f 1(A  — crlM )P2_1 by W l and let W lei be the eigenvector corre­
sponding to the eigenvalue with smallest modulus. Further let x* =  a l (P v ^  -f s*u*) be 
an approximation of v f  and consider B % and bz as given in Table 6.1.

a) I f  Z (M v f, v^) =  0 then for the methods InvitFd, RQIf, RQId, InvitW f and 
InvitW d using unpreconditioned GMRES there exists a constant Cg >  0 with

U Q r ^ T ^ f ' S V V ) - 1!! <  C gt\ (6 .11)

b) I f  Z(P 2 v f ,  P f l =  0 then for the methods InvitFd, RQ If, RQId, InvitW f
and InvitW d using preconditioned GMRES there exists Cg > 0 such that (6.11) 
holds.

c) For the method PInvit there exists a constant Cg > 0 such that (6.11) holds.

d) For the method G Y  there exists a constant Cg > 0 such that (6.11) holds.

P roo f: To prove parts a) and b) for InvitFd we observe tha t W l = Wg, and there 
exists rj with rjP2^ i  =  P 1-1M v f  hence Woei = P2v f  as

P f 1( A - a 0M )P2- 1P2v f  =  (Ai — cri)P1_1M v f  =  riP2v f .

Using that the first two terms in inequality (6.8) are zero we conclude the proof of 
parts a) and b) for InvitFd by using Lemma 6.7 and set Cg = Cio.

For the remaining methods in parts a) and b) and for part c) we use inequality
(6.8) together with Corollary 6.6 and Lemma 6.7 to obtain

< Wl C6{C7 +  Ct)e + C6 IWWoei -  P1- 1B0b0(ao)_1|| • (6.12)

In case of part a) we have Woei = v f  and Bobo(ao)-1  =  M v f  while Pi =  I, hence 
there exists such that \\ijWoei — P1- 1jBobo(ao)_ 1||=|Wv f  — M v, ||= 0 and (6 .11) 
holds with Cg :=\r]\ Cg{Cj +  Cg).

For part b) we have Woei = P2v f  while again Pobo(c*o)-1 =  M \ f .  Therefore, 
there exists 77 0 such that \\rjWoei — P 1_ 1Pobo(o;o)- 1||:= ||77P2v f  — P 1_1M v f  ||=  0 and
(6.11) holds with C9 :=|?7| Cq(C7 +  Cg).
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Now for part c) we have Woei = P2v f  and also P obo^o) 1 =  -̂ 2v f* We set 
77 =  1 and conclude that ||Woei — P 1_ 1Pobo(o;o)- 111=  0, as a result (6.11) holds with 

.C9 := C 6(C7 + C8).
To prove part d) for GY we use tha t rlGY = —</?V and that const, hence

(6.11) holds with Cg =  constCo 1 1 111 IV . G
We point out that in case of A  and M  large, Theorem 6.3 and Lemma 6.8 are of 

practical use only if |T|<C n. Hence the following comments assume that |T|«C n, 
possibly T =  {1}.

R em ark 6.9 I f  ||Qr(W*)_ 1P 1_ 1R*bz(Q:l)-1 ||<  Cgt1 then O' oc \og{tl /  t l+l), so the num­
ber o f inner-iteration is related to the improvement the linear solve provides for the outer 
method. Further in this case we expect that for a linear converging method the number 
of inner-iterations is constant.

We made this remark merely in contrast to the following one, which deals with the 
case \\Qr (W ‘l)~1P i 1B lb l (at)~1\\-fi- 0, which we did not consider in Lemma 6.8.

R em ark 6.10 If\\Q r (W t)~1P ^ 1B lb t(at)~1\\-/¥ 0 then the number of inner-iterations, 
O , increases with the progress of the outer method, and O  oc lo g (l/tz+1).

As O  is independent of tz, it does not m atter how good the current approximation 
is, the cost of the next solve depends only on the final tangent. We will illustrate this, 
for example, in Test 6.1.

R em ark 6.11 The condition Z (v^ ,M vj^) =  0 as in Lemma 6.8 part a) is always 
satisfied for the standard eigenvalue problem. However, if  the GEP is derived by a 
FEM  discretisation the ‘m ass’ matrix M  is a discretisation of the identity operator, 
hence Z (v f ,M v f )  =  0 might be satisfied for some eigenvalue problems.

R em ark 6.12 Part b) of Lemma 6.8 might be used to produce an optimal precondi­
tioner for inexact inverse iteration using GMRES. / / Z (P2V^, P 1- 1M v f ) =  0 while 
P1-1 (A — /iM )P2-1 =  /  +  E  with | |P | |  small and |Ai — p\ small then we expect, for 
example, RQId using GMRES to perform exceptionally well.

We did not comment on the case where P f 1Pot>o lies in a small invariant subspace 
(invariant with respect to P -1 (A — AiM )P2-1 ), but not in span(Woei), as we regard 
this case as non-practical.

6.4 Overall costs

So far we discussed the cost per outer iteration which is essential to understand the 
differences between the methods. In order to discuss the overall efficiency we now 
present our second key result regarding the efficiency of inexact inverse iteration. Here 
we present bounds for the overall cost T  as defined in Definition 6.2.
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T h e o re m  6.13 Let the conditions of Theorem 6.3 be satisfied. Further let Af be the 
number of outer iterations used by the applied method to achieve the tangent t* where 
t* < t°.

a) //Z (M v f,v { * )  =  0 then for the methods InvitFd, RQIf, RQId, InvitW f and 
InvitW d using unpreconditioned GMRES there exists Cg > 0 with

T  <  (6.13)
V log(l/gr) J  log(l/qr)

b) I f  Z (P2v f  i P ffl M w ^ ) =  0 then for the methods InvitFd, RQIf, RQId, InvitW f 
and InvitW d using preconditioned GMRES there exists Cg > 0 such that (6.13) 
holds.

c) For the methods PInvit, G Y  there exists Cg >  0 such that (6.13) holds.

d) For all other cases there exists C u  > 0 with W Q r iW ^ ^ P f1 B lb'l(a l)~11|< C\\ 
and hence

T < M ( 1+ IP, + M ^ C n ) )  + £  m Z l . (6.14)
V lo g (l/9r) J  log(l/?r)

P ro o f: Combining Theorem 6.3 with Lemma 6.8 using £  log(t‘/ t !+1) =  log(i°/i*) 
proofs parts a) to c). Part d) follows immediately from Theorem 6.3. □

Again, for A, M  large the result is only of interest if |r|«C n. Therefore we assume 
tha t |T |<  n.

Obviously, T  oc log(t°/t*) is better than T  oc ^ l o g ( l / t 1+1) is. However for all 
cases in Theorem 6.13 the major cost term  is linear in the number of outer iterations 
Af, therefore it is sensible to use a method which reaches t* with a small number of outer 
iterations, Af. Further reducing the number of outer iterations, reduces the number of 
terms in ^ l o g ( l / f +1).

R e m a rk  6.14 To reduce T  it is vital to reduce the number of outer-iterations, as long 
as the number of inner-iterations per outer-iteration does not exceed limitations, for 
example, posed by available storage.

In Chapter 3 we showed for the standard symmetric eigenvalue problem, tha t Af 
is at least linear in log(t°/t*) and superlinear if the (outer) method is of higher order. 
The same is true for the GEP and the proof is similar to the one of Lemma 3.2. As a 
result we expect methods of higher order to be more efficient than linearly converging 
methods.

So far we did not comment on the methods using the two sided approach GRQIf 
and PInvitGRQ. In both methods two linear systems need to be solved per iteration,
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one for the right eigenvalue problem and one for the left eigenvalue problem. We can 
apply our definitions and results directly to both methods and use subindices L  and 
R  to denote corresponding variables. Then the overall cost is given by 7 l  +  T r where 
Tl  = E 4  and Tr  =  As most of the bounds remain unchanged for the left
problem we have the following result.

R e m a rk  6.15 For methods based on the generalised Rayleigh quotient we obtain under 
similar conditions as in Theorem 6.13 for the left and right eigenvalue problem the 
following bounds.

a) For PInvitGRQ there exist constants C 5 , C 9  and C*io such that

log(C5C9C io )\ , log(t°L/1%) + log(t0R/t%)
r L+R <  2v ( i + i r | + l0« g 1̂ ° ) )  + (6.15)log(l/?r)

b) For GRQIf and GRQId there exist constants C5, C9 and Cio such that

R e m a rk  6.16 We expect the methods GRQIf and PInvitGRQ to be about twice as 
expensive per outer iteration as RQId.

So far we did not discuss the efficiency of ICMf. However, see Remark 4.12, ICMf 
is a special case of GY.

R e m a rk  6.17 The efficiency result for G Y  applies also to ICMf.

R e m a rk  6.18 I f  A  is nonsymmetric then of all the methods discussed here using the 
standard approach, RQId and InvitW d are the most efficient methods. Further we expect 
RQId and InvitW d to be even more efficient than the other methods we discussed.

R e m a rk  6.19 In case A is symmetric then the RQ is quadratic in t l and hence RQIf, 
RQId and PInvit converge at least quadratic. Therefor we expect PInvit to be most 
efficient.

In the symmetric case it is sensible to replace GMRES by MINRES as linear solver.

6.5 Tests

In order to support our theory we consider three examples. The first is the small 
constructed eigenvalue problem we used in Chapter 4. This problem will be used to 
show the behaviour of C1 and T  for each method. However, the size of the problem 
restricts its use for a comparison between the methods in sense of which method is
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more efficient for large problems. The second and third example are standard eigen­
value problems using medium sized matrices from m atrix market. Both examples give 
reasonable insight in the overall efficiency and allow the comparison of the discussed 
methods.

Before we discuss the tests we recall briefly the definition of the methods made in 
Chapter 4.

6 .5 .1  D e fin it io n  o f  M e th o d s

In v it stands for inverse iteration with fixed shift and decreasing tolerance, that is 
Algorithm 5 with gx — gQ and r x = min-fC^ |^l |- 1||^l ||25To}-

R Q If  is the Rayleigh quotient iteration with fixed tolerance, that is Algorithm 5 with 
gx — q% and r x = To-

R Q Id  is the Rayleigh quotient iteration with decreasing tolerance, tha t is Algorithm 5 
with o% =  gx and r 1 = min{C3 |£?*|~1 ||r*||2 ,T o}.

In v itW f  is inexact inverse iteration using the Wilkinson update with fixed tolerance, 
tha t is Algorithm 6 with gx+1 =  (z11 A y x) /  (zH M y x) and r l =  tq.

In v itW d  is inexact inverse iteration using the Wilkinson update with decreasing tol­
erance, that is Algorithm 6 with gx+1 = (z11 A y x) /  (zH M y x) and t x =  min{C3 |

P In v it  uses the modified right-hand side, bz =  P x l , so Algorithm 5 with g% =  gx and 
ri =  r°.

IC M f is the Inverse Correction Method with fixed shift, the first iteration is inexact 
inverse iteration, Algorithm 7 with g° = g°, then inverse correction, Algorithm 7 
with g1 =  g° and t % — To.

G Y  uses one iteration of InvitFd and then Algorithm 8 with r % =  min{To,C3 ||r l ||}, 
and g1 = g°.

G R Q If is RQIf simultaneously applied to the left and the right eigenvalue problem 
and shift equaling the GRQ, tha t is Algorithm 9 with gxl = g1r =  glG, and

t l  =  t r  =  t o-

P In v itG R Q  uses a modified right-hand side for the left and the right system, so 
Algorithm 9 with g1l  = gxr  = gxG, and t xl  = r xR = To, while =  P l x l  and

b k =  p RX'r -
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6 .5 .2  A  sm a ll ex a m p le

We use again our example from Chapter 4, for the full description see Section 4.5.1.

H o b b it The matrices A  and M  are real 62 x 62 matrices with A = V D V ~ l and M  =  
d iag(l.l, 1.2,1 .3 ,.. .  , 7.2) where V  = U+0.2*I with U a full matrix of uniformly in 
(0,1) distributed random variables and D  =  d iag(D i,D 2 , . . . ,  1 , 2 ,3 , . . . ,  50).
Further the matrices Dj are 2 x 2 real matrices corresponding to the complex 
eigenvalues of A, 1 ±  5z,l ±  1 i, 3 ±  3z, 3 ±  lz, 5 ±  5i and 5 ±  1 i. The non-standard 
construction of V  is used to keep a moderate conditioning of the eigenvectors. 
Figure 4.5.1 shows a plot of the spectrum of the m atrix pair A , M , the red asterisks 
indicate the four eigenvalues of interest.

Here we restrict attention to the two complex eigenvalues, —0.77 +  4.09z and 
2.32 +  0.43z, to which we refer to as the extreme (complex) and the interior 
(complex) eigenvalue.

We point out that Z (v f ,M v ^ )  ^  0 and also Z(P2v f , P 1_ 1M v f ) ^  0. Here we use 
this example merely to illustrate the behaviour of O .

T est 6.1 We apply InvitFd to the example ‘Hobbit’ to calculate the extreme and the 
interior eigenvalue. For the extreme eigenvalue we use unpreconditioned GMRES and 
for the interior eigenvalue left-preconditioned GMRES. In Table 6.2 we present results 
from two test runs each, using different choices for Cs in r l < min(C3 (^ )_1 ||r*||,ro).

We observe from Table 6.2 that for all test runs the number of inner-iterations 
O  increases with i. This increase in O  is expected as Z (P2v f? P 1- 1M v^) ^  0, and 
hence Remark 6.10 applies. Corresponding to the Theorem 6.3, the expected increase 
is 0 +l — C1 oc log(f / t t+1)/\og(qr) and is independent of the choice for C3. Further 
we observe that the increase in O' slows down with i —> 00, so, for example, in the left 
column of Table 6.2 the increase of 5 in the early stages reduces to an increase of 3 
in the later part. This effect is due to the size of our example and the discrete nature 
of the spectrum of the preconditioned iteration matrix. As this effect is independent 
of C3 we expect tha t the slow down of the increase effects both runs in the same way, 
which is confirmed by the data in Table 6.2. For large problems we might see such an 
effect in a transitional early part but expect that the rate of increase converges to a 
positive constant.

In Remark 6.4 we explained that reducing C3 in Theorem 4.2 improves the outer 
convergence but leads to an increase in O . As C3 «  C^const we are not surprised to 
observe this behaviour in Table 6.2, when for example comparing column three and 
four.

In Remark 6.14 we stated that reducing the number of outer-iterations M  is vital in 
order to reduce the total number of inner-iterations T. Comparing the difference in T
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<?3

complex extreme 
2 0.2

complex interior 
2 0.2

i t% D f Cl t l C t% C
0 5.0e-02 9 5.0e-02 13 5.0e-02 28 5.0e-02 29
1 1.7e-01 14 5.6e-02 23 1.4e-02 33 l . le -02 37
2 2.7e-02 20 2.5e-03 28 2.7e-03 36 1.5e-03 39
3 1.9e-03 25 1.4e-04 33 3.9e-04 38 2.4e-04 41
4 1.3e-04 29 8.9e-06 38 6.6e-05 40 3.7e-05 43
5 1.9e-05 33 5.3e-07 42 1.2e-05 42 6.0e-06 44
6 2.0e-06 37 3.3e-08 46 2.2e-06 43 9.8e-07 46
7 1.4e-07 41 2.1e-09 49 4.2e-07 45 1.6e-07 47
8 9.6e-09 44 1.3e-10 52 7.8e-08 47 2.7e-08 49*
9 1.0e-09 47 8.2e-12 55 1.4e-08 48 4.7e-09* 50*
10 5.8e-ll 50 5.1e-13 62 2.5e-09 49* 8.2e-10* 51*
11 5.5e-12 53 3.1e-14 4.6e-10* 50* 1.4e-10* 53
12 3.2e-13 56 9.5e-ll* 51* 2.5e-ll 54
13 1.9e-14 1.8e-ll* 53 4.5e-12 60
14 3.3e-12 54 7.8e-13
15 5.8e-13 60
16 9.1e-14
r 458 441 717 643

Table 6.2: InvitFd applied to ‘Hobbit’ (Test 6.1)

for the two runs for the extreme complex eigenvalue we see that reducing Af pays off. 
However the effect on T  is minor in this case as the eigenvalue is an extreme eigenvalue 
which is well separated from the remaining ones. As a result of this the constants 
C5, C g  and Cio are small while T =  {1} is a good choice (and valid with respect to 
restrictions on T). Hence the cost term linear in Af is small. In case of a less nicely 
separated eigenvalue, or interior eigenvalue and for larger examples (almost) in general 
we expect the difference to be larger.

The difference in T  gets more apparent when we compare RQIf and RQId with 
InvitFd or later when we consider larger examples in Section 6.5.3.

T est 6.2 We now apply R Q If and RQId as well as InvitW f and WinvitWd to the 
interior complex eigenvalue of ‘Hobbit’. we present the corresponding results in Table 
6.3.

We explained in Chapter 4 (p. 96) why we expect tha t RQIf needs fewer outer 
iterations, Af, than InvitFd does. Here we observe that this difference pays off with 
respect to the overall efficiency. The test run with the least total number of inner 
iterations for InvitFd, had T  =  615 in case of the complex interior eigenvalue problem, 
we omit the data. In our results for RQIf and RQId we observed considerably smaller 
values for T.

144



6 .5  T e s t s

RQIf RQId InvitW f InvitW d
f O f O f O f O

0 5.0e-02 32 5.0e-02 28 5.0e-02 30 5.0e-02 32
1 5.2e-03 38 1.4e-02 39 7.8e-03 37 5.2e-03 41
2 3.8e-05 42 9.2e-05 49* 1.3e-04 41 3.3e-05 51*
3 5.2e-07 46 4.6e-09* 56 2.2e-06 45 l.le-09* 56
4 1.2e-08 50* 2.7e-14 3.0e-08 49* 3.5e-14
5 3.9e-ll* 53 1.3e-10* 52
6 4.4e-13 56 1.9e-12 55
7 2.1e-14 2.4e-14 56
8 2.08e-14
r 317 172 365 180

Table 6.3: RQIf, RQId, InvitW f and InvitW d applied 
to ‘Hobbit’, (Test 6.2)

Also from Table 6.3 we observe tha t the difference with respect to O  and T  between 
using the RQ as shift and using the Wilkinson update as shift is insignificant.

We can compare the results in Table 6.3 with the right two columns in Table 6.2. 
Most importantly we observe that O  oc lo g ( l / f+1) as stated in Remark 6.10. Secondly 
we observe tha t for any fixed t%+1, the value of O  is almost independent of the applied 
method. So all methods using the standard right-hand side show the same behaviour for
O . Finally by comparing those data marked with asterisks, all showing 49 < O  < 51, 
we observe tha t tl+1 is least favourable for the quadratically converging methods, RQId 
and InvitWd.

The effects we reported about in Test 6.1 were also observed for RQIf, RQId, In­
vitW f and InvitWd, however we omit the corresponding results.

T est 6.3 We repeat Test 6.2 for PInvit, IC M f and GY, for the results see Table 6.4-
In Test 4.3 we already observed the poor rate of convergence for PInvit. Here, the 

more im portant observation is that O  is constant for all three methods, which is as 
predicted in Remark 6.9. We observe tha t tightening the residual constraint for PInvit 
does not improve the outer convergence but leads to more inner iterations. As the rate 
of convergence for both test runs is about the same as for exact solves hence solving the 
system more accuratly increases the cost per solve without improving the convergence. 
The results presented here are not sufficient to support the claim that O  oc log(tt/ t l+1).

The same can be reported for GY and ICMf, see Table 6.4. In Chapter 4 we reported 
tha t the outer convergence of GY and ICMf is similar and related to the convergence 
for InvitFd. First we observe that the difference between ICMf and GY with respect 
to the efficiency is negligible. Comparing ICMf and GY with InvitFd with respect to 
the number of inner iterations, the advantage of solving the correction equations is 
apparent. As a result ICMf and GY are significantly more efficient than InvitFd is. As
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PInvit tq =  0.2 PInvit tq =  0.05 ICMf GY
i t l a t% a tl a t l a
0 5.0e-02 28 5.0e-02 32 5.0e-02 32 5.0e-02 32
1 1.4e-02 28 5.2e-03 31 5.2e-03 30 5.2e-03 31
2 3.1e-03 27 1.2e-03 29 1.5e-03 33 2.4e-03 33
3 6.6e-04 24 3.8e-04 29 2.6e-04 32 4.0e-04 33
4 2.6e-04 25 l.le-04 29 4.8e-05 32 6.7e-05 30
5 5.4e-05 24 3.3e-05 28 9.2e-06 32 1.5e-05 33
6 2.1e-05 26 9.7e-06 28 1.6e-06 32 2.6e-06 33
7 6.3e-06 27 2.7e-06 28 2.9e-07 32 4.7e-07 32
8 l.le-06 24 7.9e-07 28 5.7e-08 32 8.5e-08 32
9 4.8e-07 24 2.3e-07 28 1.0e-08 32 1.7e-08 32
10 1.2e-07 27 6.8e-08 28 1.9e-09 32 3.3e-09 32
11 2.3e-08 24 2.0e-08 28 3.7e-10 32 6.0e-10 31
12 l.le-08 25 5.8e-09 28 6.9e-ll 32 l . le -10 32
13 3.4e-09 27 1.7e-09 28 1.2e - ll 32 2.1e -ll 32
14 6.8e-10 24 5.0e-10 28 2.4e-12 32 3.9e-12 32
15 2.5e-10 25 1.4e-10 28 4.5e-13 32 7.1e-13 31
16 5.0e-ll 24 4.3e-ll 28 7.0e-14 32 1.3e-13 32
17 2.6e - ll 27 1.2e - ll 28 1.2e-14 2.9e-14
18 5.0e-12 24 3.7e-12 29
19 1.8e-12 27 l . le -12 28
20 3.6e-13 23 3.4e-13 28
21 1.9e-13 25 9.8e-14 28
22 4.9e-14 26 3.5e-14 24
23 1.8e-14 1.9e-14
T 585 651 543 543

Table 6.4: PInvit, ICMf and GY applied to ‘Hobbit’, 
(Test 6.3)
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GRQIf GRQIf PInvitGRQ
r°  =  0.01 r°  =  0.001 r°  =  0.2

i f a tl C t l ri a
0 5.0e-02 34 70 5.0e-02 37 76 5.0e-02 24 56
1 3.2e-03 42 84 3.0e-03 44 88 2.7e-02 31 64
2 1.4e-06 53 107 1.2e-06 54 109 1.3e-03 37 75
3 4.1e-13 55 110 l.le-13 5.3e-07 45 90
4 1.6e-13 9.0e-14
T 371 273 285

Table 6.5: GRQIf and PInvitGRQ applied to ‘Hobbit’, 
(Test 6.4)

RQIf has the same behaviour for Cl as InvitFd has, it is the reduced number of outer 
iterations which makes it more efficient than ICMf and GY.

We now compare the test runs of PInvit, ICMf and GY with the results for InvitFd 
applied to the interior eigenvalue, so Table 6.3 with right two columns of Table 6.3. In 
the first two outer-iterations, InvitFd needs about the same number of inner-iterations, 
which is not surprising as l / t l+1 is moderate. While the number of inner iteration in­
creases to more than double the initial value for InvitFd, the number of inner iterations 
remains constant for PInvit, ICMf and GY. As a result ICMf and GY which exhibit 
the same rate of convergence as InvitFd, are significantly more efficient than InvitFd. 
Also PInvit is more efficient than InvitFd despite needing 6 or 9 outer-iterations more.

T est 6.4 We repeat Test 6.2 using GRQIf and PInvitGRQ, the corresponding results 
are given in Table 6.5.

In Table 6.5 where we reported the results for the methods GRQIf and PInvitGRQ. 
We tabulated in addition to the number of inner-iterations for the right solve ClR also 
the combined number of inner-iterations O  = Ol +  ClR. As for all methods we run 
GRQIf with different values for r°. Here for GRQIf we present the best and the worst 
result we experienced. In case of r°  =  0.001 we obtained an acceptable approximation 
in three outer iterations, which leads to T  =  273. However choosing r°  =  0.2, the result 
is omitted here, we obtain in four outer-iterations a satisfactory solution with T  = 342. 
The worst result was obtained for r°  =  0.01 with T  =  371. W ith decreasing r°  we 
obtained higher costs T  until we simultaneously observed a reduction in M  from 4 to 
3. This links nicely with the theory, as Theorem 6.13 states tha t T  oc ^ lo g ( l / t* +1) 
as long as J\f is fixed. Now reducing r°  leads to a better convergence and therefore 
reduces, for example, and thereby increases T . Hence if reducing r°  leads to a 
smaller number of outer-iterations then T  is reduced otherwise T  increases. This effect 
is not limited to GRQIf, but for the presented data, it is the most prominent example. 
In our tests we experience this effect for all methods using the standard right-hand
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side.
In Table 6.5, we observe for PInvitGRQ, tha t the number of inner-iterations for Cl is 

about twice the for DR, except for the first iteration. As the angle between the left and 
right eigenvector is almost 7r /2, the initial vector x° = x°R was a good approximation 
for the right eigenvector but not for the left eigenvector. As the same shift is used for 
the left and the right equation we expect t lL ~  t%R for i > 1. Now ClL oc log {tlL/ t lR l and 
ClR oc \og(tlR/ t lR l according to Remark 6.9 we expect tha t besides the first iteration 

&L «  JPR.

6 .5 .3  T w o  fu rth er  te s ts

The previous example does not necessarily give a good indication about the overall 
efficiency for large problems. Hence we consider now two medium sized examples to 
support our Remarks on the overall cost.

O lm ste ad  The matrix A  is the unsymmetric 1000x1000 m atrix ‘olmlOOO’ from ‘Ma­
trix M arket’1 while the matrix M  is the identity matrix. We consider here four 
eigenvalues of this matrix, two real and two complex. In Figure 6-1 we provide a 
plot of the right most eigenvalues of A, the eigenvalues of interest are indicated 
by red asterisks. Not included in the plot are 484 real eigenvalues lying in the 
interval (—10164,—15). The eigenvalues of interest are tabled below, together 
with the corresponding gaps.

extreme real interior real extreme complex interior complex 
Ai 4.5 0.09 1.3+2i -0.35+4.7i

gap 0.62 0.32 1.2 0.99

T olosa The matrix A  is the 1090x1090 matrix ‘tolsl090’ from ‘Matrix Market’1 while 
the matrix M  is the identity matrix. In Figure 6-2 we provide two plots of the 
eigenvalues of A, the left plot giving the complete spectrum and the right plot all 
eigenvalues with real part larger —10, the eigenvalues of interest are indicated by 
red asterisks. The two complex eigenvalues of interest are tabled below, together 
with the corresponding gaps. For both eigenvalues we consider a preconditioner 
designed for the ‘extreme’ eigenvalue, tha t is P  A — 150i l .

extreme complex interior complex 
Ai -0.15+156i -0.25+26.5i

gap 6 7.2

T est 6.5 We now apply all methods to the four eigenvalues of interest of the example 
‘Olmstead’. For this test we only provide the resulting values for M  and T  in Table 
6. 6.
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Figure 6-1: Right most eigenvalues of A  for example ‘Olm- 
stead’, red asterisks indicate eigenvalues of interest

extreme real interior real extreme complex interior complex
(AO T (AO T (A0 T (A 0 T

InvitFd (30) 1535 (9) 587 (14) 964 (22) 1835
RQIf (3) 124 (3) 187 (4) 244 (4) 289
RQId (3) 115 (3) 158 (3) 159 (3) 201
InvitWf (4) 178 (4) 224 (4) 240 (5) 346
InvitWd (3) 129 (3) 192 (3) 177 (3) 220
PInvit (6) 198 (-) _i (-) _2 (0 _2

GY (35) 1029 (-) _3 (0 _3 (30) 1810
ICMf (30) 500 (20) 1083 (20) 922 (30) 1622
GRQIf (3) 241 (3) 331 (3) 321 (3) 421
PInvitGRQ (3) 233 (4) 321 (5) 409 (5) 543

Table 6.6: Total number of inner iterations T  and 
number of outer iterations (Af) for example ‘Olm- 
stead’, (Test 6.5)
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In Table 6.6 we report only one test run for each method, however we carried out 
several tests using different starting vectors and different choices for the parameters. 
There were no significant differences between different test runs.

One key observation to be made is that RQId and InvitW d are according to the 
results presented in Table 6.6 the most efficient methods.

Comparing RQIf with InvitW f and RQId with InvitWd we observe than the meth­
ods using the RQ perform better that those using the Wilkinson update. An exception 
to this is the complex extreme eigenvalue where InvitW f is more efficient than RQIf. 
We observe tha t for the two real eigenvalues RQIf outperforms InvitWd, however this 
is due to the fact tha t these eigenvalues are well conditioned, and hence RQIf exhibits 
in these cases superlinear convergence .

The encouraging results for PInvit in the case of the extreme real eigenvalue are 
overshadowed by the convergence problems we experience for the other three cases. For 
the real interior eigenvalue, marked by 1, we obtained no convergence. In case of the two 
complex eigenvalues, marked by 2, the convergence was so slow that we stopped after 
70 iterations without having converged to the specified tolerance, however convergence 
was eventually achieved. While the above discussed problems are convergence problems 
with the outer method, we encountered a lack of convergence of GMRES for the extreme 
complex eigenvalue, due to a very tight inner tolerance.

From Table 6.6 we observe that InvitFd, GY and ICMf perform poorly. Their high 
values for T  are unsurprising as T  is linear in J\f which is large itself. So the poor outer 
convergence of theses three methods makes them inefficient, which is what we expect 
according to Remark 6.14.

Unsurprisingly we observe tha t the total number of inner-iterations for GRQIf, so 
including left and right solves, is about double the value as for RQId. The initially 
poorer outer convergence of PInvitGRQ results in high values for T .

T est 6.6 We repeat Test 6.5 for the example ‘T o lo sa th e  resulting values for N  and 
T  are given in Table 6.6.

The preconditioner was constructed with respect to the extreme eigenvalue, P  = 
A  +  150*7 +  E  where ||i?||2=  0.6. This relative accurate preconditioner was used with 
respect to PInvit, while the choice of shift for the preconditioner is im portant to keep 
the number of inner-iterations per outer-iteration small, not exceeding 30 iterations.

As a result for all tests the total number of inner-iteration T  is low for all methods, 
applied to the extreme eigenvalue, see left column in Table 6.7. In contrast the total 
number of inner-iterations is significantly larger for the interior eigenvalue.

Again RQId and InvitWd are the most efficient methods. The higher cost of In­
vitW d compared with RQId for the interior eigenvalue is due to a better convergence 
as we now explain. Both methods start with the same tangent, their first tangent as

1 http: /  /  gams. nist. gov /  MatrixM arket
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Figure 6-2: Eigenvalues of A for example ‘Tolosa’, red as­
terisks indicate eigenvalues of interest, upper plot full spec­
trum, lower plot eigenvalues with real part larger than —10

extreme complex interior complex
(AO r (A0 T

RQIf (4) 51 (4) 255
RQId (3) 41 (3) 163
InvitWf (5) 55 (5) 288
InvitWd (3) 47 (3) 185
PInvit (6) 57 (5) 256
GY (11) 91 (8) 443
ICMf (11) 98 (7) 392
GRQIf (3) 98 (3) 366
PInvitGRQ (3) 94 (3) 333

Table 6.7: Total number of inner iterations T  and 
number of outer iterations (A/*) for example ‘Tolosa’, 
(Test 6.6)
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well as their third (and final) tangent axe of same order of magnitude. However, the 
tangent in iteration two, t2, for InvitWd is more than two orders of magnitude smaller 
than t 2 for RQId. As the cost of InvitWd and RQId per solve D  is proportional to 
lo g ( l /^ +1) we would expect that the cost Cl is similar except for C1, which is what we 
observed in the test.

Here PInvit converges without difficulty and has a total number of inner-iterations 
similar to RQIf despite needing one or respectively two iterations more than RQIf. 
While all methods used only a few outer-iterations, still the need of a small number of 
outer-iterations is apparent.

6.6 Conclusion

Based on the convergence results in Chapter 4 and encouraged by the efficiency results 
in Chapter 3 we analysed the efficiency of inexact inverse iteration using GMRES 
being applied to the GEP. Our analysis is based on the assumption that the cost of 
a matrix vector product is significantly larger than the cost for orthonormalizing the 
GMRES basis vectors. Further we assumed that enough storage is available so that 
we can neglect any limitations in the number of inner-iterations. In practice these two 
assumptions are equal to requiring an excellent preconditioner, such tha t only a few 
iteration will be performed to solve the linear equations. Based on these assumptions 
we presented two key results concerning the efficiency.

The first result, Theorem 6.3, provides a bound on the number of GMRES iterations 
per outer-iteration. This result is general in the sense tha t it is valid for a large class of 
variations of inexact inverse iteration, only restricted by the conditions of Theorem 4.2, 
ensuring convergence, and equation (6.2). The a-posteriori bound provided by Theorem
6.3 links the cost of a linear solve with the progress achieved by the same solve. As a 
direct consequence of this link both sides contain a-priori unknown quantities, hence a- 
posteriori. However, it is this link between the cost of the linear solve and the progress 
the linear solve provides for the outer method which allows the theoretical study of the 
efficiency of inexact inverse iteration.

Based on this first result we made several remarks with respect to the behaviour 
of practical methods. So we showed tha t the cost of a linear solve for methods using 
the standard right-hand side in inexact inverse iteration, increases logarithmically with 
the achieved error angle for the eigenvalue problem. For methods using correction 
equations and our extension of the approach from Simoncini and Elden (2002) using 
a modified right-hand side, we proved tha t the cost per solve depends only on the 
reduction of the error angle. Our theoretical observations with respect to the cost of 
a single linear solve illustrate the benefit of the cost being dependent on the reduction 
of the error angle rather than only being dependent on the achieved error angle.
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Based on the first key result, Theorem 6.3, the second key result, Theorem 6.13, 
provides an upper-bound for the overall cost. This result is in contrast to the first 
only applicable to the methods Invit, RQIf, RQId, InvitWf, InvitW d, PInvit, and GY. 
However Remarks 6.15 and 6.17 extend it to PInvitGRQ, GRQIf and ICMf respectively. 
Like the first result, Theorem 6.13 states only an a-posteriori bound on the total cost. 
The importance of Theorem 6.13 is the fact that it leads to Remarks 6.14, 6.18 and 
6.19, which state the main theoretical observations of the efficiency analysis. In order 
to extend Theorem 6.13 to further methods the results presented in Section 6.3 should 
prove to be useful.

Based on the second result we established tha t reducing the number of outer- 
iterations J\f is beneficial to reduce the overall number of inner-iterations T , see Re­
mark 6.14. Further we stated tha t for the unsymmetric eigenvalue problem the 
Rayleigh quotient iteration with decreasing tolerance, RQId, and inexact inverse it­
eration using the Wilkinson update and a decreasing tolerance, InvitWd, are the two 
most efficient methods of the methods considered here, see Remark 6.18. Both obser­
vations were confirmed by the numerical results. Further we stated that in case of the 
symmetric generalised eigenvalue problem we expect PInvit to be most efficient.

However, in this chapter we restricted ourselves to linear solves using either unpre­
conditioned GMRES or preconditioned GMRES. None of the methods considered here 
combines a minimal number of outer iteration with cost per inner-iterations only de­
pending on the reduction of the error angle. Nevertheless we believe that such methods 
exists and reasonable candidates are, for example, RQId using augmented GMRES and 
alternating version of PInvit using GMRES and an alternating version of RQIf using 
augmented GMRES. By alternating version we mean a two sided approach with a shift 
update after each solve. So there is further research needed to incorporate augmented 
and deflated GMRES. Further this thesis should help the understanding of inexact 
inverse iteration with respect to convergence and with respect to efficiency.

In this Chapter, see Section 6.1, we assumed that the preconditioner is of such qual­
ity tha t the number of inner-iterations does not exceed restrictions posed by memory 
limitations nor that the cost of orthogonalizing the Krylov basis vectors in GMRES 
gets dominant. If these assumptions axe not valid, our results still hold and show the 
kind of increase both in the number of outer-iterations and in the total number of inner- 
iterations one expects by limiting the number of inner-iterations per outer-iteration. 
To ease any restriction one might consider restarted GMRES or other solvers like QMR 
or BICGSTAB, however, for these methods the results presented here axe not valid.

Our practical results show that the theoretical bounds are descriptive. For exam­
ple, we observed that the number of inner-iterations per outer-iteration increases like 
lo g (l/tt+1) for methods using the standard right-hand side b* =  Mx®, as we predicted 
in Remark 6.10. Further we were able to confirm Remark 6.9, stating that the cost
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of a linear solve measured in the number of inner-iterations behaves like log{tl/ t %+l) 
for PInvit, ICMf and GY. However, as we already pointed out in Chapter 4 the outer 
convergence of PInvit, ICMf and GY is not optimal. PInvit can suffer lack of conver­
gence depending on the quality of the RQ and the quality of the preconditioner. Even 
in the case that both RQ and preconditioner are of a good quality we might observe 
a smaller area of convergence for PInvit than, for example, for RQId. The conver­
gence of ICMf and GY is as expected only linear and hence too many outer iterations 
are needed. Further our practical results show the importance of a small number of 
outer-iterations thus supporting Remark 6.14. While GRQIf and PInvit converge with 
a small number of outer-iterations, which equals the one for RQId, they need twice as 
many inner-iterations as RQId and thus are not as efficient. However, if the left and 
right eigenvector are sought then PInvitGRQ is our first choice. Our results confirm 
tha t RQId is robust and (often) the most efficient method for the unsymmetric GEP.

To confirm tha t our theoretical observations and numerical results reflect the be­
haviour of inexact inverse iteration applied to large sparse eigenvalue problem further 
tests are needed. Also, to confirm Remark 6.19 we need tests with A  symmetric and 
M ^ I  spd.

The effect of the preconditioner on the performance of inexact inverse iteration in 
general and PInvit in particular needs further exploitation.

A P ra c tic a l R eco m m en d a tio n

The use of inexact inverse iteration as an eigenvalue solver in its own right might not be 
recommended. However, if the user can provide a good enough initial guess, perhaps 
by using the Arnoldi method, and the sought eigenvalue is known to be well separated 
then inexact inverse iteration might be a worthwhile alternative to the Jacobi-Davidson 
method and is able to outperform the Arnoldi method, see, for example, Graham et al. 
(2003).

If the eigenvalue problem Ax =  AMx is such that A  is symmetric and M  spd 
then we recommend the use of PInvit, see page 67 and page 100, with MINRES as 
linear solver. While we achieve good and stable performances with PInvit using a very 
relaxed stopping condition t °  =  0.8 we recommend r °  =  0.1 for stability reasons. We 
advise to build into MINRES additional stopping conditions to detect failure of the 
linear solver early on and to avoid unnecessary computations caused by solving the 
eigenvalue problem too accurately.

In case of the unsymmetric eigenvalue problem the situation is not as clear cut as 
for the symmetric. As PInvit is currently not reliable enough we recommend the use 
of RQId. If the conditioning of the eigenvalue is poor and thus the RQ not a good 
approximation of the sought eigenvalue we recommend the use of InvitW d instead. 
As in the symmetric case we advise tha t the GMRES algorithm be used with some
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Appendix A

Chebyshev polynom ials

A .l M inimal polynomials

In this appendix we gather a few results on Chebyshev polynomials with respect to the 
min-max problem

r)k{D) := min max |p(x)|, (A.l)
pen* xed

where D  C C. The results presented here are taken from Chatelin (1993), Fischer and 
Peherstorfer (2001). Chebyshev polynomials are usually defined by the recurssion

% (z) =  1,

T\(z) =  z,

T*+i(*) =  2zTk( z ) - T k- i( z ) .  (A.2)\
One can show that

Tk{z) — cosh(fccosh 1(^)) (A.3)

satiesfies the recursion (A.2).
In the remainder of this Appendix we provide bounds for the min-max problem

(A .l), with respect to some specific domains. First we consider classical results for
Chebyshev polynomials, for example see Chatelin (1993).

T h e o re m  A .l  Let a ,6, c 6 l  with ab > 0 and r ,s  G M+ .

1. I f  D = [a, b] (real line), set r = ^ \b — a\ and c =  ^(a -I- b), then

^ D) = m k v y  <A4)
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2. I f  D = {z E C  | \z — a |<  r, |a |>  r} (complex disc with real center), then

Vk(D) = (jjA , (A.5)

3. I f  D = {z\ \z — (c +  s)| +  |z — (c — s ) |<  2r, \c\> r > s} (complex ellipse with real 
foci), then

T]k\D)  . / \ - (A-6)
T k{\c\ / s )

P ro o f: For the proof see Chatelin (1993, Theorem 6.6.2). □
To extend these results to more complicated domains one can use an idea as in 

Fischer and Peherstorfer (2001). Given k G N and a set D  then denote by T ^ (z )  the 
solution of the Chebyshev approximation problem

max \Tj?(z)\ = m inm ax jzn -  f(z ) \ .
z£ D  y e n  zED

Then for all domains we have r)k(D) < maxzG£> \Tj?(z) \ /  |7jP(0)|. Further let be
a polynomial of degree I with leading coefficient ai ^  0 and no multiple roots. Now
Fischer and Peherstorfer (2001, Corollary 2.2) show that

I r ‘(D)W  =  <hkT g (V(z)). (A.7)

So let ip"1 (D) be a complex ellipse with real foci while D  is some domain in C for which 
Theorem A .l does not apply. Then (A.7) gives that r]ki{D) < r)k(<p(D)). In order to 
demonstrate the implication of this result we consider two different domains. First we 
take two real intervals, second a dumbell shaped domain. Given foci f \  and /2 G C 
with f i  ^  /2 and radius i ? 6 l + then we define a dumbell as

D := { z \ \z -  h \ \z  -  f2\< R 2}. (A.8)

Figure A-l illustrates three dumbells with R  < R*, R  = R* and R  > R* where
1
2R* := h \ f i  — / 2I. For f \  = f 2 the dumbell equals a circle. Further a dumbell with

R >  R* includes the ellipse {z\ |z — fi \  +  \z — / 2|<  2r} where r  < \ f \ R -

C o ro lla ry  A .2 Let a , 6, c, d, R  G R and / 1, /2 ^ C.

1. I f  D = [a,b] U [c, d] with a < b < 0 < c < d  (two real lines), then set a  
m ax{l — (a — b) (a — c)(6c)_1, 1 — (d — b)(d — c)(6c)-1 } to obtain

m k ( D )  ~  3 i ( | | ± l | ) ’ (A’9)
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a) b) c)
Figure A-l: Dumbells, a) with f \  = —10, f 2 =  10 and R  = 9.9; b) with f \  =  - 8.8—4.8i,
/2 =  8.8 +  4.8z and R = 10; and c) with f \  = - 8.8 -  4.8z, /2 =  8.8 +  4.8i and R  =  10.2

2. I f  D = {z\ \z -  fi\\z  -  f 2\< R 2} with \ f i f 2\> R 2 then

(R )^
„ ( £ »  <  ^  (A.10)

P roof: For part (1) consider q{z) := 1 — (z — b)(z — c)(bc)~1 then q(0) =  0 and 
q(b) = q(c) =  1 and as be < 0, q —> oo for z —»• ^oo. Then we can use Theorem A.l 
part 1 with c =  ^(a  +  1) and r  =  — 1) together with (A.7) to obtain (A.9).

Now for (2) consider q(z) =  1 — ( /i  — z){f2 -  z ) ( f \ f 2)~1 then q(0) =  0 and 5  := 
q(D) = {z\ \z — 1|< ]^^|}- Using Theorem A.l and (A.7) we obtain (A.10). □

A . 2  B o u n d s  o n  C h e b y s h e v  p o l y n o m i a l s

So far we bounded r]k(D) by Chebyshev polynomials, now we derive a bound for the 
Chebyshev polynomials. We then use this bounds for the sets discussed in Theorem 
A.l and Corollary A.2.

As |T^(x)|=|T^(—x)| for x  € R we assume in the following that x > 0. If t = cosh(:r) 
then

Tk(t) = cosh(fcx) =  i  +  e- *1) .

For kx > 0 this leads to the bounds

\ e kx < Tk(t)

_________ v /j.

t +  V t 2 — i j ,
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and T k ( t )  <  ( t  + y / t 2 — 1^ . Now replace t  by (u + v) / (u — v) to get

T k
u + v 1 (  y / u  + y / v

U — v J  2 \y /u  — y/v

2 V v ^ - 1)
(A.11)

Finally replace u = \ ( x  + y) and v =  ^ (x  — y) which is the same as x  = u +  v and 
y = u - v , giving

/i+ a  +  A  *
V x~y \

/ i± ^
Y x - y + 1

f x ± M _ l l  \ y j  2 \ J x+xl _
Y x - y  /  \  Y *“ 2/

C o ro lla ry  A .3 Le£ a, 6, c, d, r, s € R and / i ,  /2 £ C.

1. For D  =  [a, 6] with ab > 0 let k :=  max2G£> |z| /  min26^  |z| then

m ( D ) <  2 ^ ~ ^ k

(A-12)

\/a£ +  1 /
(A.13)

For D = [a,6] U [c,d] with a < b <  0 <  c < d let k := m a x ^ c  \z\ / m in^ /) \z\ 
then

1 K + 1 K — l
Vk ~  2Vk- 1Vk + 1 (A.14)

5. For D = {z\ \z — (c + s)| +  |z — (c — s ) |<  2r} with |c|> r  > |s |>  0 let := r+ s
r — s

and K2
c +  s + c — s +2 s
c +  s + c — s - 2 s then

r)k <  2 (A-15)

P ro o f: For part 1 we use (A. 12) with part 1 of Theorem A.l and for part A.14 
use (A.11) with part 1 of theorem A .l. For part 3 we use Fischer and Freund (1990, 
Theorem2 and equation (1)) to obtain

<  f r ( f i )
-  Tjt(k ± ^ |£ = i ) ’

from which (A. 15) follows using (A. 12). □
For the case where D  is an ellipse it is not obvious that rjk ~> 0 for k —>• oo. Assume
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c > r > s > 0 then

<£>

<(=>

<£>

&

r +  s < c +  s
2 s  ^  2 s

C + S  7~ +  S

\ J l ~  A
V(c~ s)(r + s )  >  V(r ~ s)(c + s )

y / { c + s ) ( r + s ) - y / ( r - s ) ( c ^ s j - y / ( c ^ s ) ( r + 3 ) + y / ( c + s ) ( r - P j  
( c + s ) ( r + s ) — ^ / ( r — s ) ( c — s ) + > / ( c - s ) ( r + s ) - > / ( c + s ) ( r - s )  

y /c + S  — y / c —  S - s / r + S  —  y / r  —  s

< 1

< 1,
\A2-1 y/M~+l ^  -I
v ^ + i v^T-i

and therefore —» 0 as k —> oo.
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Appendix B

D etailed Pseudo Code for 
Algorithm  PInvit

Algorithm 10 gives a pseudo code for PInvit is style of Algorithm 2 (p. 14). For 
the code presented here we assume that the action of P  on a vector x, so P x , is not 
available. In the formulation of the algorithm we used the stopping tolerance r  =  0.1. 
According to our experience r  =  0.8 works fine, however with r  = 0.8 the convergence 
area might be smaller than for r  =  0.1. Further we point out that the pseudo code 
for PInvit, Algorithm 10, is a special case of Algorithm 4, generalized inexact inverse 
iteration, see page 55. As pointed out in Section 3.6 the im portant part is the linear 
solver, first benefiting from a ‘better’ right-hand side and second providing additonally 
to the soloution y* the vector P y \

Standard MINRES, see , for example the MatLab-routine, calculates a P-orthogonal 
basis for the Krylov subspace

=  sp an(p -1r0, ( P - 1B ) p - 1r o , . . . , ( P - 1B )* -1P - 1r0) )

where P  =  P 1P2 denotes the preconditioner. Denoting the P-orthogonal basis by U 
we can write

P ~ l AU  = UT,

where T  is the tridagonal matrix

Ut AU = (Ut P )P ~ 1AU = Ut P U T  = T.

As this basis U is constructed iteratively we denote by Uk =  ( u i , . . . ,  u^) its kth  iterate. 
Now the solution y^ is given by y*, =  </?Pfcqfc where qjt minimizes ||e i — T^q^ || with 
Tk = U^+lAUk- Now let QkRk be a QR-decomposition of T* then we have Q ^ e i—RkC[k-
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A lgorithm  10: P Invit

• Given x°, <7°,

• Solve with MINRES+ (A -  a01)y° =  x° such that 
||x° — {A — cr°/)y°||<  0.1,

• Update x 1 =  y 0/  ||y°||,

• For i =  1,2,3, . . .

-  Calculate gl = (xz)r Axz,

-  Set b z := z1-1/  ||zz_1||, where zz_1 =  Py*""1,

-  Solve with MINRES+ (A -  glI ) y z =  b* such that 
||bz — (A — criI ) y i \\< 0.1,

-  Update xz+x =  y z/  ||yz||,

-  Test for convergence

As Tjt is tridiagonal, Rk is upper tridiagnonal and there exists a three term  recurrence 
for R ^ 1 which can be applied to any matrix. So, for example, UkRjT1 uses the same 
recurrence formula on a different set of vectors.

In the pseudo-code for MINRES+ , see Algorithm 11, we use ||P _ 1w ||p but for any 
implementation we would use that ||P - 1w ||p = ||w ||p - i=  (P - 1w, w). The || • ||p is used 
here to indicate the P-orthonormality of U. The standard MINRES algorithm consists 
of the steps marked • and — in Algorithm 11. So for MINRES"1" only the steps marked 
+  are added. Neither for standard MINRES nor for MINRES+ do we need to store 
all basis vectors u 1? U2, . . . ,  only the last three are needed. For the additional subspace 
we only need the new basis vector u^+1. The update sequence for UkRjT1 uses three 
vectors, using the same sequence and three additional vectors, we obtain a three term  
update for U ^ R ^ 1. W ith the addional vector for z^ =  Py*, MINRES"1" requires only 
five additional vectors compared with standard MINRES, and no further matrix vector 
products.
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A lgorithm  11: M IN R ES+

• Given B , b, r  and preconditioner P  spd

• Set u i =  P ~ l b /  ||JP - 1b ||jP,

+  Set u f  =  b /  ||P _ 1b ||p ,

• Calculate w  =  A u i — u i ( u f  A ui),

• Set U2 =  P _ 1w / ||P _ 1w ||p,

+  Set u f  =  w / ||P>_1w ||jP,,

• Calculate T\ =  C/JAU\ and Q \R \ =  Ti,

• Set y i =  ( U i R ^ Q j e i ,

+  Set zi =  (U ^ R ^ l )Q le i,

• Set k — 1

• Repeat until ||b — Ayfc||< r

-  Set k = k +  1,

-  Calculate =  A u k- u k( u l  A u k) - u k-_i(\x[_1A u k),

-  Set u k+l = P _1 w fe/  ||P _1w fc||p,

+  Set u f+1 =  w fc/  ||P - 1Wfc||p,

-  Calculate =  Uk+1AUk and QkR k = Tkl

-  Update UkR ^ 1 and compute y k =  ( U k R ^ Q ^ e i ,
+  Update U frR^1 and compute z k  = (U £ R ^1)Q ^ei.
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S T U R M IA N  N O D A L  S E T  A N A L Y S IS  
F O R  H IG H E R -O R D E R  P A R A B O L IC  E Q U A T IO N S  

A N D  A P P L IC A T IO N S

V.A. GALAKTIONOV

A b s t r a c t . We describe local pointwise structure of multiple zeros of solutions of 2m-th 
order uniformly parabolic equations (m > 1)

U t  =  E |i9!<2m t ) D x  u  in x [-!. !]>
with bounded continuous (for \fi\ = 2m) coefficients, in the existence-uniqueness class 
{|u(x, £)| < Beh\x\a }, where B, & > 0 are constants and a = 2m/(2m — 1). Assuming that 
u(0, 0) = 0, we perform a classification of all possible types of formation as t -> 0“ and 
collapse as t —> 0+ of multiple spatial zeros of the solutions u(x,t). For one-dimensional 
second-order (m = 1) parabolic equations ut = a{x)uxx + q(x)u, this is known as Sturm’s 
Theorem on zero sets established in 1836. In last twenty five years Sturm’s ideas found 
new applications, generalizations and extensions in the parabolic PDE theory, mean 
curvature and curve shortening flows, symplectic geometry, etc.

Using such a local classification of multiple zeros, we establish a unique continuation 
theorem for higher-order parabolic PDEs and inequalities and estimate the Hausdorff 
dimension of nodal sets of solutions.

1. In tro d u ctio n : m a in  ap p roach  a n d  re su lts

Consider a general linear 2m -th order parabolic equation with m  > 1

(1.1) u t =  E | /3|<2m ap(x i t ) D pu  in Q i =  K n  x  [ - 1, 1],

where the coefficients {ap}  are real bounded for \(5\ < 2m  and real continuous for |/5| =  2m  
and satisfy the parabolicity condition: there exists a constant 5 > 0 such that

(1.2) { - ^ ) mJ2 \p\=2map(x ^ ) ^  <  - £ |£ |2m for all ( x , t )  G Q i  and f  G K N .

Let u ( x ,  t) be a classical, C 2™’1, solution of (1.1) in the existence-uniqueness class of locally  
m easurable functions

(1.3) U  =  { \ u ( x , t ) \  < C e c\x\°},  w ith the exponent a  =  2 m / ( 2 m  — 1), 

where C , c are positive constants; see the classical parabolic theory, [6], [7], [16].
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1.1. S tu r m ia n  b a c k w a rd  r e s c a lin g  a n d  “m ic r o -s t r u c tu r e ” o f  t h e  P D E . The main  
goal of the paper is to  detect the local pointwise structure of the solutions at any fixed 
internal point in Q \ using the optim al parabolic blow-up {x , £}-scaling. In general, this is 
quite a delicate asym ptotic  problem, and even am ong canonical linear PD E s, there are just 
a few  exam ples related to the heat equation with known pointwise structure of solutions 
(references are given below). Indeed, such an analysis can play a special role in the theory  
of linear and nonlinear PD Es. Indeed, once such a local pointwise structure of solutions  
is known, including description of all possible “singularities” , the existence-uniqueness 
theory can be produced by fixing those functional settings which exclude those structures 
and singularities that can violate the desired “regularity” and uniqueness of solutions. 
Such a pointwise approach to  P D E s differs from another direction of the P D E  theory  
devoted to statistical, stochastic and chaotic ( “turbulent”) properties of general solution  
subsets. Here other probability and averaging m ethods apply having, nevertheless, som e 
not that straightforward connections w ith the m icro-scale, pointwise structure of solutions.

In m echanics and physics, dealing w ith continuous m edia like fluids, gases or porous 
m edia, the questions of the pointwise behaviour are often called as the problems of “micro­
structure” (or the “turbulent” , m olecular one in fluid dynam ics) of the m edium  which 
eventually determ ine the global coherent patterns occurring via the given turbulent mech­
anism. In the present case, the “m edium ” is prescribed by solutions of the P D E  under 
consideration, and therefore, loosely speaking, we are going to  study the internal “m olec­
ular” structure of the given class o f PD Es.

To this end, we consider the finite-tim e asym ptotic behaviour of the solution at the
origin (0, 0) using the Sturm ian backward variable (see related references below)

(1.4) y  =  x / ( - t ) 1/2m, (x,  t) e Q i  =  R N x  [ - 1, 0),

with the blow-up at t =  0- . We next introduce the corresponding new tim e variable

(1.5) r  =  — ln (—t) —¥ oo as t —> 0 _ .

N ote that as t —> 0~, i.e., as r  —> oo, the behaviour of solutions on com pact subsets 
in y, \y\ <  C  =  const, implies a natural parabolic “zoom ” on fast shrinking subsets in 
the original spatial variable x,  |a;| <  C ( —t ) l/ 2rn =  C e~rl 2rn —)> 0 . The rescaled variable
(1.4) is purely dim ensional for any 2m -th order linear or quasilinear uniform ly parabolic 
equation, and, as we will show, no non-trivial solution structures take place on smaller 
com pact subsets in { y ,r } .  Actually, these rescaled variables define the optim al scales of 
the non-trivial “turbulent” behaviour available in the P D E s (1.1) w ith sufficiently sm ooth  
coefficients.

In order to  describe the m icro-structure provided by the P D E , we study form ation and 
collapse o f multiple zeros of a given classical solution u (x , t) of (1.1) assum ing that

(1.6) u (0 , 0) =  0 .

We then need to  perform suitable asym ptotic analysis o f the behaviour of the solution  
as t —y 0“ and, in the next step, as t —>• 0+ . The first lim it is of crucial im portance and 
actually determ ines all possible types o f m ultiple zeros which can occur in the parabolic



equation (1.1). T his gives the variety of such m icro-patterns and hence explains the degree 
of local “turbulence” available.

Since D ^ u  =  (—t ) ~ ^ ^ 2mD ^ u ,  in term s of the new independent variables {y , r } ,  the 
solution u =  u ( y , r )  satisfies the rescaled equation

(1.7) u T =  B*u +  C ( t ) u  in x  R + ,

where B* is the 2ra-th order elliptic operator

(1.8) B* =  '£l\n\=2mA 0D l  ~  t o  V ’ V > and Ap  =  a0 {0 ,0).

For convenience, B* is written as adjoint to  another operator B  given below. The higher- 
order principle counterpart

=  S | 0|=2m ^ /^ y
is a sym m etric hom ogeneous 2ra-th order elliptic operator w ith constant coefficients.

The tim e-dependent perturbation C (r )  in (1.7) is given by

(1.9) C (r )  =  Z m =2mR p ( y ,  t ) D I  +  Z w<2me-<-2m- W T/2ma e ( y e - ^ m, - e ~ ^ y ,

R p { y ,  t ) =  a f , ( y e ~ T / 2 m, - e ~ T ) -  a „ ( 0 , 0 ) .

Therefore, C (r )  is exponent ial ly smal l  if coefficients {ap}  are continuous for all \/3\ =  2m  
and are uniform ly bounded for any \/3\ < 2m.  These are main necessary assum ptions on 
the PD E  coefficients. Then, as r  —> oo, uniform ly on com pact subsets,

(1.10) R p (y ,T ) =  0 ( e -T/2).

It follows that on sm ooth solutions, C ( t ) u  in (1.7) is an exponentially small perturbation  
satisfying as r  —» oo, uniform ly on com pact subsets,

(1.11) |C (r )u | =  0 ( e ~ T/2m).

Further estim ates of perturbations are to be performed in the weighted Sobolev spaces 
associated with operator (1.8) and the adjoint one to be introduced next.

1.2. L in ea r  n o n  se lf -a d jo in t  o p e r a to r s . It follows from equation (1.7) that, first, one 
needs to study spectral and other properties of the linear operator B* (and of the adjoint 
one B ) . Section 2 is devoted to som e preliminaries concerning the fundam ental solutions 
of operators d / d  — B  and d / d  — B*, semigroups eBr, eB*T and resolvents of B  and B*. 
Here we study the unperturbed hom ogeneous parabolic equation

(1.12) u T =  B *u in R ^  x  R + .

In Section 3 we describe the spectral properties the adjoint non self-adjoint operator

B  =  E | , |=2m^ ^  +  ■ V  +

in the weighted space L ^ (R ^), where

(1.13) p(y)  =  ea\y\a >  0 and a >  0 is a sufficiently small constant.

We show that B  has the point spectrum  only cj(B) =  {A/j =  — \{3\/2m},  and the eigenfunc­
tions $  =  {'ipp} form a com plete subset in L 2. In Section 4 we study spectral properties



of the adjoint operator B* in L*.( R") with p* =  1 / p and describe the com plete sub­
set 4>* =  { ^ p }  polynom ial eigenfunctions. In Section 5 we describe subspaces where 
eigenfunction subsets $  and are closed.

1.3. M a in  resu lts: fo rm a tio n  o f  m u lt ip le  zeros. Using eigenfunction expansions, we 
show that m ultiple zeros at the origin (0 ,0 ) of any suitable solution u { x , t )  ^  0 of (1.7) 
has a local structure corresponding to  stable subspace of B*. Namely, in Section 6 , we 
show th at for any such solution, there exists a finite I >  0 such that as r  —> oo,

(1.14) u ( y , r ) =  e~lT̂ 2m [(p*(y) +  o (l)]  uniform ly on com pact subsets,

where <p* is a polynom ial eigenfunction of B*,

( i - i5 )  v ’ (y)  =  J 2m = ic^ ( y )  ^  °>

corresponding to  the eigenvalue A/ =  —//2 m  <  0. Therefore, (1.14) describes all possible  
types of form ation of m ultiple zeros for uniform ly parabolic P D E s (1.1), so that any 
blow-up form ation of an Z-th order m ultiple zero at (0 ,0 ) after rescaling (1.4) is driven as 
t  —» 0“ by zero surfaces of an Z-th order polynom ial eigenfunction (1.15) of B*.

1.4. O n seco n d -o rd er  p a ra b o lic  eq u a tio n s . The zero form ation analysis is classical 
for ra =  1. In one dim ension it was performed by C. Sturm  in 1836 [18] for C°°  solutions 
of linear parabolic equations u t — a ( x ) u xx +  q(x)u .  For the heat equation  in (m  =  1)

(1.16) u t =  A u  in Q i ,

introducing Sturm ’s variable (1.4), y  =  x / { —t ) 1̂ 2, yields the rescaled equation (1.12) with  
the second-order sym m etric operator

(1.17) B* =  A -  \ y  • V  =  • (p*V), where p*(y) =  e" |y|2/4.

In this case B* is known to  be self-adjoint in L?p* w ith the dom ain H p*. It has the discrete 
spectrum  cr(B*) =  { =  —\(3\/2} and the resolvent is a com pact integral operator. 
The eigenfunctions {4>p}, which are Hermite polynom ials cpHp  in H N [2] and cp are 
norm alization m ultipliers, given by the generating formula D ^ e- ^ 2/4 =  H p ( y ) e ~ ^ 2/ A, 
form an orthonorm al basis in L 2p*. Since for m  =  1, (1.17) is self-adjoint, the classical 
Agm on-Ogawa estim ates apply to the corresponding perturbed rescaled equations like
(1.7) to ensure the convergence (1.14). We refer to a detailed analysis for m  =  1 in [3].

1.5. A p p lica tio n s: u n iq u e b ackw ard  c o n tin u a tio n  an d  so m e g lo b a l p ro p er tie s  
o f  n o d a l se ts . Using the optim al characterization (1.14) of arbitrary m ultiple zeros for 
solutions u ( x , t )  0 , in Section 7 we establish a unique backward continuation theorem  
for 2m -th order parabolic equations.

In Section 8 we study some global properties of the nodal set

(1.18) Z t [u] =  { x  e  H N : u ( x ,  Z) =  0}, /  G ( - 1 ,1 ) ,

of nontrivial solutions to  (1.1). We prove that the Hausdorff dim ension of Z t [u\ satisfies

(1.19) dim nZt[u] < N  — 1.



2. P r e lim in a r ie s :  fu n d a m e n ta l  s o lu t io n , s e m ig r o u p s , r e s o lv e n ts

2.1. F u n d a m e n ta l  s o lu t io n . Consider the Cauchy problem for the hom ogeneous 2m -th  
order parabolic equation w ith constant coefficients

(2 .1) u t =  B 0w =  S |/? |=2mA PD x u  in x  r +> u (x ’ °) =  u oix ) ^ W D {£ =  0}.

Let b ( x , y )  be the fundam ental solution of the operator d / d t  — Bo, [6 , 7]. It has the  
self-sim ilar form

(2.2) b(x, t ) =  r N/2mf ( y ) ,  y = x / t l' 2m,

where /  is a unique solution of the linear elliptic equation

(2.3) B /  =  B 0/  +  i 2/ - V / + £ /  =  0 in K N , [  f  =  1.
J KN

T he following estim ates holds [6]:

(2.4) | / ( y ) |  <  D e ~ W  in R w,

where D , d  are positive constants. The unique solution of (2.1) is given by the convolution

(2.5) u ( x , t) =  b(t) * Uq =  t ~ N/ 2m f  f ( ( x  — z ) t ~ 1̂ 2m)uo(z)dz .
J r n

2 .2 . S e m ig r o u p  w it h  in f in ite z im a l g e n e r a to r  B . The rescaled solution

(2.6) w (y ,r )  =  t Nl 2Tnu ( y t l l 2m, t ) ,  where r  =  ln£ €  R ,

satisfies the parabolic equation

(2.7) w T =  B  w.

One can see th at w { y , r) satisfies the Cauchy problem for (2.7) in H N x  R + with initial 
data at r  =  0 (i.e., at t  =  1)

(2 .8 ) w Q(y) =  u { y , 1) =  6(1) * u 0.

Rescaling convolution (2.5) yields the following explicit representation of the semigroup 
with the infinitezim al generator B:

(2.9) w ( y ,  r )  =  eBrw 0 =  [  f ( y -  C e _ r / 2m ) w 0( C ) d C ,  r  >  0 .
J r n

Performing another rescaling w ( y , r) =  (1 +  ^ ^ ^ ( ^ ( l  +  ^)1/ 2m, t) w ith the new tim e  
variable r  =  ln ( l  + 1) : R + —> R + , we obtain the solution w ( y , r )  of the Cauchy problem  
for equation (2.7) w ith initial data wo(y) =  u Q(y).  Rescaling (2.5), we deduce a standard  
(w ithout the relation (2 .8)) representation of the semigroup

(2.10) w ( y ,  r )  =  e Brw 0 =  (1 -  e~T) - N' 2m J  } { { y  -  <e-T/2m)(l -  e- T) - 1/2" > o (C R -



2.3. S em ig ro u p  w ith  th e  a d jo in t in fin ite z im a l g en era to r  B *. In order to construct 
the sem igroup w ith the infinitezim al generator B*, we introduce the rescaled variables 
corresponding to  blow-up as t  —> 1~,

u ( x , t )  =  w { y , r ) ,  y  =  x / ( l  -  t ) 1/2m, r  =  -  ln ( l  -  t)  : ( 0 ,1) R + .

T hen w  solves the problem

(2.11) w T =  B *w for r  >  0 , w (0) =  u$.

Rescaling solution (2.5), we obtain the following representation of the semigroup:

(2.12) w (y ,  r )  =  eB*Tw 0 =  (1 -  e ~ T ) ~ N / 2 m  J  f { { y e ~ T/2m -  0 (1  -  e~T)~1/2m)u0(C)̂ C-

2.4. R e s o lv e n ts .  Using the descent m ethod for constructing of resolvents, [6], fixing 
A G C, we consider an auxiliary non-hom ogeneous problem w T =  B w  — eXrg for r  >  0 
w ith u;(0) =  0 . Here we assume that g belongs to the weighted L 2-space L 2( H N), see the 
next section. Perform ing formal com putations and setting  w =  eXrv  yields the equation  
v T =  (B  — AI ) v  — g | and hence v ( r )  =  — f j  e^B ~XI^ T~s^gds. Setting r  — s =  rj and passing 
to  the lim it r  —> oo yield that there exists a lim it

J/ » o o

I e (B-A/)?7 g drj =  ( b  — A I ) ~ 1g 
0

provided that the integral converges. Using the semigroup representation (2.10) and 
changing the variable e _?? =  z  G  (0 ,1 ) yield the integral operator

(2.13) (B  — X I ) ~ lg =  f  K ( y X ) g (C )d ( ^  w ith the kernel
J R N

(2.14) K ( y ,  C )  =  -  f  z x~ \  1 -  z ) ~ N/2rnf ( ( y  -  ( z 1/2m)( 1 -  z ) ~ 1/ 2m)dz.
Jo

Similarly, representation of the resolvent of the adjoint operator B* is

(2.15) ( B * - A / ) - 13 =  /  ^ * ( j/,C)5 ( C K ,  where
J R "

(2.16) K * ( y , f l  =  -  f  z ^ - \ l - z ) - NI2m f { ( y z l l 2m - C l { \ - z ) - l l2m)dz.
Jo

B oth  operators (2.13) and (2.15) are com pact for A ^  a  (B ) , see below.

3. S p ec tra l p r o p e r tie s  o f  B

It is convenient to  begin with spectral properties of operator (2.3) which for m  > 1 is 
not sym m etric and does not adm it a self-adjoint extension in any weighted space L 2 =  
L 2( R N ). As a differential operator with sm ooth  coefficients, it is closable [8]. We consider 
B  in the weighted space L 2 with the exponentially growing weight function (1.13), where 
a > 0 is a sm all positive constant and, at least,

(3.1) a < 2d.



T he scalar product in L 2 is denoted by (•, -)p and || • ||  ̂ is the induced norm. N ote that 
m  =  1 is the only case where the operator adjoint to  (1.17) is sym m etric in a weighted  
L2-space and adm its a unique Friedrichs self-adjoint extension [2]. Indeed,

(3.2) B  =  A +  i y V  +  f /  =  i V - ( p V )  +  f / ,

where p(y)  =  elyl2/4 is the inverse G aussian kernel, i.e., (1.13) with a  =  2 and a =  1 /4 . 
N ote th at if, according to (3.1), a <  1 /2  but a  /  1 /4 , then (3.2) is not self-adjoint in L 2
but nevertheless enjoys a number of good properties which are shown to remain valid for
any m  >  1.

The crucial spectral and various other properties of eigenvalues and eigenfunctions of 
B  can be obtained directly from the explicit representation of the (analytic) semigroup
(2.9) or (2.10), which, indeed, is a great advantage of the analysis.

3.1. D o m a in  o f  t h e  o p e r a to r . Consider a H ilbert space of functions H 2m w ith the  
inner product and the norm

(3.3) ( v , w ) 2m,l> =  [  p T , l Z o D hv  D hw dy ,  |M |L „ , =  [  p E t = 0\D kv \2dy,
J  R« J  R "

where D kv  denote vectors { D ^ v ,  \/3\ =  k} .  Obviously, H 2m C L 2 C L 2.

P r o p o s i t io n  3 .1 . B  : H 2m is a bounded l inear operator.

Proof.  It follows from (2.3) that B u G L 2 for any v  G H 2m provided that

(3-4) [  p\y • V v \ 2dy  < C\\v\\\  for any v  G H 2m, C  =  const >  0.
J k n

The proof follows the lines of a similar analysis in [5], Section 2 . □
Em beddings like (3.4) are associated with the well known general estim ates in weighted 

spaces (see p. 40 in M az’ja ’s book [15] and Lem m a 2.1 in [10]), which go back to the  
classical Hardy inequality established in 1920, [9].

3.2. D is c r e t e  s p e c tr u m .

L e m m a  3 .1 . (i) The spectrum  o / B  consists o f  real e igenvalues only,

(3.5) <r(B) =  {A„ = - | , 8 | / 2m, |/?| =  0 ,1 ,2 , . . .} ,

and eigenvalues  Ap have f ini te  multipl ic ity wi th e igenfunct ions

(3.6) i)P{y) =  (—1 ) m ( p \ ) ~ 1/2D pf { y ) .

(ii) The  eigenfunct ion subset  $  =  {ipp} is complete in  L 2 and in  L 2.
(Hi) Reso lvent  (B  — A/ ) -1 is compact  in  L 2 f o r  any  A 0  0"(B).

In the case m  =  1, for operator (3.2) we have that /  is the positive rescaled G aussian  
kernel f ( y )  =  (47r)-Ar/ 2e- lyl2/4, and the eigenfunctions are

M v )  =  c p e - W l ' H p i y ) ,  H fi(y)  =  Hh {Vl)...Hf,N(y N),



where Hp  denote separable Herm ite polynom ials in R ^ . O perator B  w ith the domain  
H 2, where p  =  elyl2/ 4, is self-adjoint and the eigenfunctions form an orthonormal basis in 
L 2p [2], p. 48. For m  >  1, the eigenfunctions are orthogonal to the adjoint ones in term s of 
the dual, L2-product. The adjoint eigenfunctions are polynom ials which form a com plete  
subset in L 2p* with decaying exponential weight p*(y) =  1 / p(y)  =  e~a^ ° ;  see the next 
section.
Proof, (i) Spec trum and eigenfunct ions.  Let I =  \0\. The existence of such eigenvalues 
and eigenfunctions follows by applying D 13 to  the elliptic equation (2.3)

(3.7) D ^ B f  =  B D fff  +  ^ D ^ f  =  0.

In order to show that B  adm its no other eigenvalues, we consider the explicit semigroup  
representation (2.9). Using Taylor power series of the analytic kernel (convergence of such 
series is studied in Section 4)

(3.8) f ( y  -  z e ~ ^ )  =  ^ V / f e )*'3 =

where z 13 =  z ^ . - . z ^ , and substitu ting  it into (2.9), we arrive at the following eigenfunc­
tion  expansion of the solution:

(3.9) w ( y ,  t )  =  T /(p)e~ mT/2m M p(u o ) M y ) ,

where Xp =  — \ 0 \ / 2 m  and ipp(y)  are the eigenvalues and eigenfunctions of B . Here

(3.10) M p ( u 0) =  (0 \ ) ~ 1/2 [  z /3uo(z )dz
J r n

are the m om enta of the initial datum  w 0 (recall the relation (2 .8) between w Q and u 0).
Let (-, •) be the dual inner product in L 2. Then Mp(uo)  =  (Z?!)-1 / 2^ ,  w0) =  (w0,ipp), 

where 'ijjp are polynom ial eigenfunctions of the adjoint operator B* to be described in the 
next section. It follows from the asym ptotic analysis o f expansion (3.9) as r  —> oo that 
no other eigenfunctions exist, all eigenvalues are real and are given in (3.5).
(ii) Completeness .  Firstly, let us show that the system  of the eigenfunctions { D ^ f }  is 
com plete in L 2. B y  the Riesz-Fischer theorem , we have to show that, given a function  
g G  L2, the equalities

(3.11) /  D 13 f ( x ) g ( x ) d x  =  0 for any 0

im ply that g — 0. Let / ( f )  and £ (f)  be the Fourier transforms of /  and g. Then

J  = ° for any £
Applying the Fourier transform  to equation (2.3) yields P i m ( f ) /  “  2m^ ' V /  =  °> Where 
by the parabolicity condition (1.2)

(3.12) P U t )  =  =  ( - l ) mE |^ |=2m^ ^  <  - ^ r  in B.N .
8



Since P2m(?) is a hom ogeneous 2m -th order polynom ial, by Euler’s formula f  • V P 2m(£) =  
2 m P 2m(Z) we hn(i that (recall that 6 ( r c ,  0) =  8 (x))

(3.13) / ( £ )  =  P ( / ( - ) ) ( £ )  =  eftm(e) =*► J  ^ e P2mi0 g { - ( ) d ^  =  0 for any (3.

B y the parabolicity condition (1.2), the function M (z) =  f  eP2m^ g ( —f ) e ,z*df is entire 
analytic in (since |e*z*| <  elImz^l). Equality (3.13) m eans th at D ^ M ( 0) =  0 for any 
p.  Therefore, M ( z )  =  0. Thus, p(£) =  0 alm ost everywhere and g =  0.

Secondly, in order to  prove com pleteness in L 2, as in [5], we suppose that a function  
g G  L 2 is orthogonal relative to the inner product in L 2 to  all eigenfunctions, i.e..

/ p { y ) D af ( y ) g ( y ) d y  =  0 for all a.

Since /  is analytic, it implies that f  p(y) f(y  — x)g(y)dy = 0 for all x  G K N. Consider the  
Cauchy problem for the linear parabolic equation (2 .1) with initial data u q ( x )  =  p(x)g(x). 
One can see from the Poisson-type integral (2.5) and (2.4) by using Eidel’m an’s estim ate  
[6], Lemma 5.1 (see also an extension for integrals over in [5], Proposition 4.1) that 
the solution exists for all t >  1, provided that the exponent a >  0 in the weight (1.13) 
satisfies (3.1). Then u(x,t)  is analytic in x. We have u(x, 1) =  f  f ( x  — y)g(y)p(y)dy. 
Therefore, u(x, 1) =  0. It follows by the uniqueness theorem  for the inverse parabolic 
equation [7], p. 181, that u(x, 0) =  0, and g =  0.
(iii) Compact resolvent. We next deduce that (B  — 7 )_1 is an integral com pact operator 
and has a point spectrum  only. The proof is similar to  that in [5], Theorem  2.2 . An 
simpler com pactness analysis in a subspace of L 2p is presented in Section 5.

This com pletes the proof of Lem ma 3.1. □

4. D is c r e t e  s p e c tr u m  a n d  p o ly n o m ia l  e ig e n fu n c t io n s  o f  B*

Let us describe the eigenfunctions of the adjoint operator (1.8). We consider B* in the  
weighted space L 2* w ith the exponentially decaying weight function

(4.1) p*(y) = l /p(y)  =  e_a|y|“ >  0,

and ascribe to B* the dom ain H 2™ dense in L 2*. Then B* : H 2™ —► L 2* is adjoint to B ,

(4.2) (B u , w) =  (v, B *w) for any v G w G H 2™,

and hence is a bounded linear operator, [13], Chapt. 4.

4.1. D is c r e te  s p e c tr u m . Let us fix the m ain spectral properties of B*.

L e m m a  4 .1 . (i) The spectrum of B* is discrete,
(4.3) <j(B*) =  a(B)  =  {A/? =  —101/2m, |0 | =  0 ,1, 2 , . . .} ,  

and eigenfunctions {'ippiy)} are polynomials of order \fi\,

(4.4) r fi(y) =  08!)=  (RH-W2

9



( ii)  The  eigen funct ion  subset  =  {'ipp} is complete in  L 2p*.
(Hi) Reso lvent  (B* — A/ ) -1 is compact  in L 2* f o r  any X cr(B*).

Proof,  (i) Spec trum and  polynomia l  eigenfunct ions.  Firstly, cr(B) =  a (B *) [13]. Sec­
ondly, let us prove that {ipp} are polynom ials. Let V’(f)  =  J  ,ip*(y)e~iy^ d y  be the Fourier 
transform  of an eigenfunction, B*V>* =  A ip*. Then V  solves the first-order equation

(4-5) £ £  • W  +  ( £  +  P 2m ( 0 ) V  =  X V  in R * .

T he general solution is given by

(4 .6 ) F (£ )  =  $|^|2mA-Are - p 2m(0 in r n  \ | 0 | 5

where =  $ ( f / l £ | )  is an arbitrary sm ooth function on the unit sphere S i =  { |£ | =  1} 
in H N . In view  of the parabolicity assum ption (1.2), we obtain in (4.6) an exponentially  
growing factor \e~P2m^ \  > e5l£l2m as £ —>> oo. Therefore, the only distributions satisfying  
equation (4.5) correspond to $  =  0 on S i, i.e., those having supports concentrated at the 
origin £ =  0 . Therefore, 'ippiy) must be a polynom ial. If its degree is k,  then

(4.7) =  J 2 ‘j=0Pi ( y )  w ith s =  lk/ 2m ].

where P j (y )  are hom ogeneous polynom ials of degree k  — 2m j .  Since by the Euler identity  

- £ l l 2 f = i y j d p o { y ) /d y j  =  ~ ^ p o(y) =  AP0(2/), we see that A =  - k / 2m  and, hence, P 0(y) 
is an arbitrary hom ogeneous polynom ial of degree k.  O ther polynom ials Pj(y )  are then  
defined as follows:

(4.8) P M  = O'lJ-^-BoHPo^), j  =  1 , 5 .
We fix Po(y) =  y ^ / y / f f i  in (4.7), so that for eigenfunctions (3.6) of B , the corresponding 

adjoint eigenfunctions take the form (4.4). Then the orthonorm ality condition holds

(4.9) (ipp, %!)*) =  8P„  for any (3 and 7 ,

where 6pj7 is the Kronecker delta. N ote that operators B  and B* have zero Morse index  
and do not have eigenvalues with positive real parts. For ft =  0 the eigenfunctions are

(4-10) i/>o(y) =  f ( y ) ,  ipl iy)  =  1,
so that ('ipo,'ipo) =  1 by the definition (2.3) of the fundam ental solution.

(ii) Completeness .  It follows from the well-known fact that polynom ials { y ^} ,  which are 
higher-order term s in any eigenfunction Tpp, are com plete in suitable weighted ZAspaces; 
see [13], p. 431. Then (4.7) implies the com pleteness of in L 2*.
(iii) Compact  resolvent.  Since (•)* and (-)-1 com m ute for operators in Banach spaces and 
adjoint operator of a com pact operator is com pact [13], we have from Lemma 3.1, (iii) 
that for any A 0  crp(B *), (B* — A/ ) -1 is com pact with the point spectrum  only. □

5. E ig e n fu n c t io n  e x p a n s io n s  a n d  l i t t l e  H ilb e r t  s p a c e s

In this section we describe the subspaces where $  and 4>* are closed, i.e., where there 
exist eigenfunction expansions of the elem ents.
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5.1. O p e r a to r  B : H ilb e r t  sp a c e s  L 2, H 2m  ̂ 12 a n d  h 2m. Let us first introduce some 
subspaces in L 2, where the com plete eigenfunction subset o f operator B  is closed. As 

usual, we define the linear subspace L 2 of eigenfunction expansions,

(5.1) v  G L 2 iff v  =  with convergence in L 2,

as the closure of the subset of finite sum s {%2\p\<k A" G N } in the L 2-norm. B y the  

com pleteness-closure of <£ in L 2 and orthonorm ality (4.9), the expansion coefficients are

(5.2) cp =  {v, i jp) .

Since $  is not orthonorm al in L 2 for m  >  1, the strict inclusion takes place L 2 C L 2, and 
the equality occurs in the self-adjoint case m  =  1, a =  1 /4  only. Actually, the difference 
L 2 \  L 2 can m easure a “defect” of non self-adjointness of operator B  in L 2 .

We next describe som e properties of expansion coefficients for v  G L 2.

P r o p o s i t io n  5 .1 . Let, f o r  an arbitrarily small  constant  e >  0, as \/3\ ->  oo,

(5.3) cp =  o ( \ P \ ^ u~e^)t where v  =  (2 — a ) /2 a  >  0.

Then  v  =  YJ,cp ^ p  G L 2p.

Proof.  There holds

( 5 - 4 )  f  p\vf  =  f  p\J2^ll)p\2 =  E ( / 3 , 7 ) ^ 7 C /3 C 7 .  APl =  J  Pi’pi’T

Bearing in m ind (3.6), it follows from standard kernel estim ates [6] (cf. a sharp asym ptotic  
estim ate of the rescaled kernel in the right-hand side of (2.4)) that

(5.5) \D /3f ( y ) \  <  c ^ ( l  +  e~d][y\a in R ^ ,

where c is independent of \/3\. Therefore,

/40+7I r
(5.6) |v4* | <  - j =  J
where b =  2d — a > 0 by the definition of the weight (1 .13), (3.1). One can see that the  
right-hand side attains its m inim al value for \(3\ ~  |7 | =  / 1 and then by Stirling’s
formula, om itting  all the lower-order multiplier and keeping only those of the type given  
in (5.3),

f  e -% l“ ( l  +  1^1)1/3+71(0-1) ^  f  z N~ l e~bza z 2l{~a~ l)d z  ~  r ( 2^a~ 1)) ~  /2 i(o -l)/o#
Jkn Jo a

This im plies the estim ate

(5.7) \A py \ ~  (/!)_1P (Q~1)/Q -  =  il(a-2)/a^

and hence (5.4) converges under assum ption (5.3). □
11



In fact, accurate using Stirling’s formula shows that 'Y^dptyp ^ L 2 T CP =  0 ( e l \ P \ ^ v) 
w ith a sufficiently small e >  0 . Since estim ates of the leading term s in (5.7) are sharp,

(5.8) v =  ' ^ 2 c p ,ipp e  L 2 = »  cp =  o { \ ( 3 \ ^ v+£')) for som e e >  0.

B y H 2rn C  L 2 we denote the dense linear subspace obtained as the closure in the norm  

of H 2m of the subset of eigenfunction expansions with coefficients satisfying (5.3). H 2m 
w ith the scalar product of H 2m becom es a Hilbert space and can be considered as the 
dom ain of B  in H 2rn. There holds

(5.9) H 2m C H 2pm H L 2.

N ote that (5.3) does not apply for m  =  1 since then a  =  2 and hence v  — 0. Actually, a 
natural optim al analogy of H 2m for m  =  1 is H 2, the dom ain of B  in L 2.

We will need a subspace of L 2 introduced as a little H ilbert space I2 of functions v  =  

E  c/? ^  ^ L 2p w ith coefficients satisfying

(5.10) £ M 2 < o o ,

where the scalar product and the induced norm are given by

(5.11) ( v ,  w ) 0 =  Cpdp,  where w  =  ^  apipp E  12p, and \\v\\l =  ( v ,  v ) 0.

Obviously, I2 is isom orphic to the Hilbert space I2 of sequences {cp}  w ith the sam e inner 
product and hence

(5.12) $  is orthonormal in I2.

It is worth m entioning that though $  is not orthonorm al in the big space L 2, estim ates
(5.6) show th at after suitable orthogonalization according to sharp bounds (5.7), all the 
scalar products satisfy

(5.13) \Apy \ =  <  1 for all \(5\ »  |^| =  I »  1 or 1 <  \(5\ <  |̂ y|

and actually are super-exponentially small for / 1. This means that G ram ’s m atrix
T =  [Apy\ of such a normalized $  in L 2 has a “diagonal dom inance” in the sense that 
elem ents \Apy \ <C 1 if they stay sufficiently far from the m ain diagonal. Therefore, $  
is not “very much” non-orthogonal, and a standard G ram -Schm idt norm alization of <I> 
performed by introducing the scalar product (5.11) of I2 seem s to  be quite natural.

We next define a little  Sobolev space h 2m o f functions v  E  I2 such that B u  E  I2, i.e., 
Y l  l^/3c/?|2 <  o o • The scalar product and the induced norm in h 2m are

(5.14) ( v , w )  i =  (v ,w )o  +  (B v ,B iu )o , ||v||? =  ( v , v ) i  =  ] P ( 1  +  \ \ p \2)\cp\2.

This norm is equivalent to  the graph norm induced by the positive operator (—B  +  a l )  
with a > 0 . Then h 2rn is the domain of B  in I2. We also have a Sobolev embedding  
theorem,

(5.15) h 2m C I2 com pactly,
12



which follows from the criterion of com pactness in lp, [13]. In the self-adjoint case m  =  1, 
the little  space I2 coincides w ith the big one,

(5.16) l2 =  L 2 for m =  1 if a =  \  in (1.13).

T hen h2 is just the dom ain H 2 of B . If a ^  1 /4 , then B  is not self-adjoint in L 2 and, in 

general, (5.16) is not true, L 2 ^  L 2, even for m  =  1.
Since the orthonorm ality of $  is known to be of im portance in the operator theory and 

applications, in som e linear and nonlinear problems dealing w ith operators like B , the 
little  space I2 can play a special role in comparison with the big one L2.

It follows from (5.11) that B  is self-adjoint in I2 with the dom ain h2m,

(5.17) (Bw, w)o =  (v, B w ) 0 for all v, w G h2m.

Let us state other straightforward consequences (this list can be easily extended).

P r o p o s it io n  5 .2 . (i) I2 and is a dense subspace of L2,
(ii) $  =  {'tpp} is complete and closed in I2 in the topology of L 2,
(iii) resolvent (B  — A/ ) -1 for A £  cr(B) is compact in I2, and
(iv) B  is sectorial in I2.

Proof (i) Obviously, I2 C L 2 by Proposition 5.1. Concerning the density of I2, we note  

th at given a v =  Y c p 4 >P G L2, the sequence of truncations { Y \ p \ < k  c P'lP p i  K  G N} C 
converges to v in the topology of L 2 as K  —>■ oo by com pleteness and closure of {ipp}.

(ii) Since is orthonorm al in I2, it follows that the only elem ent orthogonal to {ipp} 
is 0, and hence com pleteness of {ipp} in I2 follows from the Riesz-Fischer theorem. It is 
closed as an orthonorm al subset in a separable Hilbert space [13].

(iii) For any v =  ^  cp'ipp G I2 from the unit ball 7 \ in I2 with \cp\2 < 1, (B  — AJ)- 1r> =

w here

(5 -18> *  =  - - 2jw [1 ■+  0 (M )] for w  h
Therefore, for any e >  0, there exists K  =  K(s)  > 0  such that for any v G Ti,

E |^ |> jf l^ |2 <  i m 2K ~ 2 M 2 <  i m 2 K ~ 2 < s.

B y the com pactness criterion in I2 [13], (B  — A/ ) -1 m aps Ti onto a com pact subset in I2.
(iv) Recall that (B  — A/ ) -1 is a meromorphic function having a pole ~ l / A a s A —>-0 

since A0 =  0 has m ultiplicity one [8]. We then need an extra estim ate on the resolvent 
which is easy to  get in I2 (it is not easy at all in the big space L2). In the sector

=  {A G C : A ^  0, |arg A| <  7r/2  +  0} w ith a 6 G (0 , 7r /2), for any v =  Y fy '& P  e  ^  
we apply (5.18) by using that 1/|A^ — A| <  l / |A |s in 0  in to get

/  1 \  1 1 

“( B ' ( E W p i j r j p )
Since B  is closed and densely defined, it is a sectorial operator in I2, see [7], □

13



5.2. A d jo in t  o p e r a to r  B*: H ilb e r t  sp a c e s  L 2, ,  H p ,  I2» a n d  tip1. Similarly, for the  

adjoint operator B*, we define subspace L2* C L2», where the eigenfunction subset is 
closed (cf. (5 .1)), i.e., v =

(5.19) cp =  ( v ^ p ) .

P r o p o s i t io n  5 .3 . I f  v =  ^ then f o r  arbitrarily smal l  £ > 0,

(5.20) cp =  o { \ ( 5 \ ~ ^ u~e)) f o r  \/3\ > 1 ,  v =  (2 -  a ) / 2a.

Proof. Similar to  (5.4), we have

(5-21) / , * H 2 =  E ( M ^ c 7, A*^ = Jp'tppil)*,
where by (4.4) and Stirling’s formula we estim ate the coefficients for \/3\ — |̂ y| =  /,

(5.22) |A}y\ ~  J  e - ^ “ (l +  ~  l r ( f ) ~  rH 2l'a =

Hence, (5.20) is a necessary condition for convergence of series (5.21). □
One can see from such estim ates that

(5.23) c„ =  o(\D\~mv+e)) =►  €  L l *•
R e m a r k . Conditions (5.3) and (5.23) on the expansion coefficients in l2p and I2* are 
different and do not exhibit a natural sym m etry unlike the self-adjoint case m  — 1. 
The sym m etry can be restored by introducing norm alization m ultipliers, (/?!)- (a -1 )/a and 
(/?!)-1 / a , in (3.6) and (4.4) respectively. For m  =  1, where a  =  2, both are equal to
(/?!)-1 / 2, which we continue to  use for any m  > 1 in our analysis below.

By H 2™ we denote the closure in the norm of Hp™ of the linear subspace of eigenfunction  
expansions w ith coefficients satisfying (5.20) for som e e >  0. Being equipped with the 
scalar product (3.3) w ith p  p*, H p 1 is a Hilbert space becom ing the dom ain of B* in 
H p 1. We have

(5.24) H p 1 C H 2P n L 2p..

In view of the fast decay (5.23) of the coefficients, similar to  /2, we introduce the  
adjoint little  Hilbert space I2* of eigenfunction expansions v =  G L 2* with the
scalar product (•, -)o* and the norm || • ||0* defined as in (5.11). As the dom ain of B* in 
I2*, we introduce the corresponding little Sobolev space h p  com pactly embedded into I2*, 
and by (•, -)i* and 11 * ||i* we denote the scalar product and the induced norm.

Then B* is self-adjoint in I2*, and, obviously, L2* and H p  are dense subspaces of I2*.

6 . C la s s if ic a t io n  o f  m u lt ip le  z e r o s

We now return to the perturbed equation (1.7), where the exponential perturbation  
C (r) includes operators of 2m -th order. Therefore, application of classical estim ates  
on semigroups generated by sectorial operators [7], [11], based on fractional powers of
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operators, are not straightforward. We also note that known detailed study of similar 
asym ptotics of m ultiple zeros for the second-order parabolic equations [12], [1], [4], [3] 
often essentially uses estim ates and other features of the self-adjoint rescaled operator B* 
( m  =  1), and do not apply to  the non self-adjoint case m  > 1, though some abstract 
general ideas and results from [12] and [1] are quite effective and will be used later on.

A ssum ing that u{r)  G L 2+ for r  >  0, we will use the eigenfunction expansion of such 
solutions of equation (1.7)

(6.1) u (t ) =  J^c/g(r)V;J with coefficients Cp(r) =  (u(r) , ipp) ,

see (5.19). We next im pose extra sm oothness conditions on the solution and on the  
coefficients of the equation. We suppose that u (t ) is uniformly bounded in H 2™,

(6 .2) ||w (t) ||2m,* <  C  for all r  >  0 ,

a natural a priori bound in the parabolic theory, [6 , 7]. Assum ing that u (t ) G L 2, by
(5.20) we m ay suppose that

(6.3) cp{T) =  o ( \ ( 3 \ ~ ^ u~e')) —> 0 as \/3\ —* oo uniform ly in r  G [ l,o o ) .

The rate of decay (5.23) is sufficient for performing m anipulations various series.
Substitu ting (6 .1) into equation (1.7) and m ultiplying in L 2 by the adjoint eigenfunction  

4>p, we obtain the following system  on the coefficients:

(6.4) dp =  A pep +  Jp(r ) ,  where Jp{r)  =  ( C ( t ) £ (7)c7V>*, ipp) for any {3.
Using (1.9) and integrating by parts yield the perturbation consisting of two terms

Jp{r)  =  Jpi {r )  +  Jp2{r),  where

(6.5) J/31(t ) =  ( '^ 2  H
\fi\=2m ( 7 ) \n\=2m  ( 7 )

M  =  ( £
H < 2  m  (7 )

(6.6) =  £  e~(2mH" l)T/2mE cA 7 /3 M ,
I H < 2  m  ( 7 )

(6.7) 9w p (t ) =  ij)p), h ^ p i r )  =  i/>p).

By (1.10), we set

V n j( t ) = e ~ r/2 g ^ ( T ) .
Since the exponential estim ates (1.10) and (1.11) hold on com pact subsets only, in the  
higher-order perturbation term (6.5) one needs to estim ate the integrals over { |y | >  r}  
with r =  r (r )  1, where we just assume that R ^ r )  are uniform ly bounded, and hence, 
similar to (5.22) in the essential “diagonal” cases w ith \/3\ ~  |̂ y| ~  I »  1,

(6 .8)
p poo
/  ~  (Z!)_1 /  e ~ d z ° z l a + N - l d z  ~  e - dT‘ l 2

J \ y \ >r  J r
1 5



(as usual, we keep the leading m ultiplier only which is sufficient for necessary rough 
estim ates). Therefore, choosing r (r )  ~  T l/ a for r  1, we obtain the same exponential 
factors w ith, possibly, som e extra m ultipliers with not more than algebraic growth as 
r  —> oo which will be om itted.

As the necessary hypothesis on the coefficients a p ( x , t )  of the parabolic equation (1.1), 
we assum e that the m ultipliers g ^ p i r )  and h ^ p f r )  are bounded and, under assum ption
(6.3), the corresponding series in (6.5) and (6 .6) converges sufficiently fast. The regular­
ity  hypotheses can be weakened but are a convenient restriction for further asym ptotic  
analysis.

Sum m ing up the above m anipulations, we arrive at the following infinite-dim ensional 
dynam ical system  on the expansion coefficients:

(6.9) dp =  XpCp +  E ( M)7)e ~ ^ w ( r )c7> where

(6 .10) Up =  (2m  — \ n \ ) / 2 m  for \jj,\ <  2m and ^  =  1/2 for |/i| =  2m,

and j ^ p ( r )  are bounded coefficients related to g ^ p  and h ^ p .  The series on the right-hand  
side of (6.9) converges sufficiently fast.

6.1. M u lt ip le  z e r o s  for  t h e  u n p e r tu r b e d  e q u a t io n . A com plete classification of the  
m ultiple zeros is straightforward for the unperturbed equation (1.7) with the null operator 
C =  0. Then (6.4) takes the diagonal form dp =  XpCp and hence cp(r)  =  CpexPT with  
Cp =  cp(0) for any (5. Therefore, this linear hom ogeneous parabolic equation adm its 
different types of form ation of m ultiple zeros given by the countable subset of patterns

(6 .11) up(y,  t ) =  e ^ ^ y ) ,  \0 \ >  1 .

The first pattern with (3 =  0 and A0 =  0 is excluded since ipQ =  1 and the corresponding 
pattern u 0( y , r )  =  1 does not vanish. Using (4.4), denote

Po(y)  =  a O - 1/2£ | „ N < W  #  o

the hom ogeneous polynom ial of Z-th order. Then similar to  (4.4),

(6.12) v H v )  =  Po(y) +  T } ‘L T ] j f ( - B 0y P o (y ).

Thus, a general structure of zero surfaces of Z-th order m ultiple zero is given by the nodal 
set of an eigenfunction <p*(y), i.e., by a nontrivial linear com bination

(6 .1 3 ) <pKy) =  £ | , N C/»V*;(v) #  0.
Namely, if Cp =  0 for any \(3\ < I and there exists a Cp ^  0 for a \{3\ =  I, then the  
asym ptotic behaviour of the corresponding solution is as follows:

(6.14) u(y ,  r )  =  e~lT/ 2m [ip*(y) +  0 ( e ~ T̂ 2m)] as r  —> oo.

If such a finite I does not exist, then the solution is trivial, u  =  0. This provides us with  
the first backward uniqueness result to be extended later on to more general equations. 
It is elem entary for such solutions u ( y , r )  which are analytic in y.
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6 .2 . P e r tu r b e d  e q u a t io n . We will perform a similar analysis of the perturbed dynam ­
ical system  (6.9).
S te p  1. We begin w ith the first equation for C o ( t )  with (3 =  0 and A0 =  0, where by
(6.3), the right-hand side can be estim ated as follows:

(6.15) c0 =  =  0 { e ~ T/2m) for r  >  1,

m eaning that |co(r)| <  A e ~ T/ 2m for all r  >  0 , where A  > 0 is a constant. Hence, there
exists a finite lim it C0 =  c0(oo), and integrating equation over (r, oo) yields

(6.16) co(r) =  Co +  0 {e -T' 2m).

Let us estim ate coefficients cp(r)  w ith \(3\ >  1. W riting down the equations in the form

(6.17) ( c e ( T ) e - ^ r )' =

and integrating over (0 , r )  w ith r  1 yields

(6.18) cp (r)  =  cp(0)eX/3T +  eÂ r [  0 { e ~ ^ +1/2Tn)s)ds  =  0 { T e ~T/2rn),
Jo

where an extra power m ultiplier r  is taken into account in the resonance case Xp =  —1/ 2m, 
i.e., for \(3\ =  1. Here and later on, in similar estim ates we om it the dependence of 
the coefficients on \(3\ which is covered by assum ptions of fast convergence of the series 
involved. It is im portant that under the above hypotheses on ^ ^ ( r )  and (6.3), estim ates
(6.17) and (6.18) are uniform in (3.

Thus, in view of the above hypotheses on the solution, if Co ^  0, then one obtains

(6.19) u ( y , T )  =  £0 +  0 (1),

i.e., as in the unperturbed case, solutions do not exhibit zero form ation as r  ^  00 on any 
com pact subset in y. The estim ate o ( l)  ~  0 ( r e ~ T/ 2m) obtained via the above m anipu­
lations remains valid up to an extra not more than algebraically growing multipliers via  
the perturbation term s in (6.9).

Hence, we assum e that Co =  0- Then by (6.18)

(6.20) c p ( t )  =  0 ( r e " T/2m) uniform ly in \(3\ > 0.

Substituting these estim ates into (6.15) yields a refined estim ate on the first coefficient

(6.21) c0 =  0 ( r e - T/m) = »  c 0{ t )  =  0{Te~T/m).

S te p  2 . Consider next equations with \(3\ =  1, \ p  =  —1/ 2m, where we use estim ates
(6.20) to get th at cp =  ~ ^ c p  +  J 2 ( ^ ) e~u,iT3 ^ ci  =  +  C ( r e - T/m). M ultiplying by
g r /2  m

(6.22) (Cl0(T)eT/2m)' =  O ( r e - T/2m),

we have that there exists a finite lim it c p{ j ) e Tl2m —> Cp  as r  —> oo. Integrating (6.22) 
over (r ,o o ) , we deduce

(6.23) c„(r) =  Cpe~T/ 2m +  0 ( T e ~ ^ m), |/3| =  1.
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If C/j /  0 for som e (3 w ith \/3\ =  1, then using (6.20), from equations with \(3\ >  2 we 
estim ate the coefficients as follows:

(6.24) ( cpe -x*r )' =  0 ( r e - ^ +1/m)T),

and integrating over (0, t), we get that

(6.25) cp(T ) =  0 ( r 2e -T/,m)), \0\ >  2.

It follows from (6 .21), (6.25) and (6.23) that for all \(3\ /  1 and those \(3\ =  1 w ith Cp = 0 
the expansion coefficients satisfy

(6.26) c/?(r ) =  0 (r2e-T/ m)

uniform ly in \(3\. Hence, in this case (6.23) implies the asym ptotic behaviour

(6.27) u(y , r) =  e~T/2m[(pl(y) +  o (l)] ,

w ith the eigenfunction given by (6.13) and o ( l)  ~  0 ( r 2e_T/ 2m) with, possibly, an extra  
algebraic factor.
S te p  /. We iterate the dynamical system I —  1 times assuming that the limits

(6.28) c p (r ) e ~ XpTl2rn -*  Cp as r  ->  oo

are trivial, Cp =  0, for all \fi\ =  0 , 1, . . . , /  — 1, and there exists a first /?, \/3\ =  /, such
th at Cp ^  0 (as above, existence of such lim its follows from the convergence of integrals). 
Then, sim ilarly to  the previous analysis, we derive that

(6.29) cp{r) =  C p e - lT/2m +  0 ( T le - il+1)T/2rn) for \p\ =  I and Cp ^  0, and

(6.30) cp(r)  =  0 ( r /+1e - (/+1)T/2m) for \0\ /  I or \(3\ =  I and Cp =  0 .

N ote again that (6.30) are uniform in \ j3\ 1. Therefore, the corresponding m ultiple zero
pattern has the form

(6.31) u(y,r )  =  e~lT/2rn[(p*(y) +  o ( l)] ,

w ith the eigenfunction (6.13) and o ( l)  ~  0 ( r l+1e~T/ 2m) w ith, possibly, an extra factor of 
the algebraic growth. This com pletes the classification of finite order m ultiple zeros.

We next need to  prove that infinite order zeros exist for trivial solutions u =  0 only, 
i.e., dynam ical system  (6.9) does not adm it nontrivial solutions with a super-exponential 
decay rate as r  —> oo. In the abstract form, for linear equations in Hilbert spaces, such 
results are well established in the m athem atical literature, see [1], [3], [4], [12] and earlier 
references on A gm on’s and O gawa’s results therein. Some of the approaches essentially  
rely on the sym m etry of the unperturbed operator B* (cf. Section 5 in [3]) and therefore 
cannot be applied here. We follow the lines of the analysis in [1], Appendix, which is
form ulated for self-adjoint operators but adm its a natural extension to general operators
B* with real spectrum  bounded from above.

P r o p o s it io n  6 .1 . Assume that u{r) G H 2™ is such that

(6.32) \\u ( t ) \ \ 0* =  °(e~KT) as r  ->> oo,

where K  can be arbitrarily large constant. Then u =  0.
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Proof.  We follow the lines and basic notations of the analysis in [1], pp. 434-437. We have 
that the operator A  =  — B* : E \  =  h 2p™ —> I2* =  E  has a nonnegative discrete spectrum

(7(A ) =  { \ p  =  \(5\/2m} with the constant spectral half-gaps denoted by 5k =  6 =  1/Am. 
T hen we set 7*, =  (2& -1- l ) /4 m . The spectral projections of A  denoted by Pk =  P ( j k )  for 
k =  1, 2 ,. . .  are given by

pkU = E|/?|<*>> 'tPpHb and Q*u = (J ~ pk)u = E|p\>k(ui TppHb
We next check conditions (B l)  and (B2) in [1], p. 435. Under given assum ptions on the  
sm oothness of coefficients of the parabolic operator, the perturbation operator C (r )  in
(1.7) is Holder continuous with respect to  the operator norm on C ( E i , E ) .  Since C (r ) is 
a differential 2m -th  order operator with sm ooth exponentially small coefficients given in
(1.9) and (1.10), we have that C (r ) : E \  —> E  is a bounded operator,

| |C (t)u | |o *  <  | |C ( t ) | |  IMIi*, where ||C (r )|| =  0 ( e _r/2m) for r  >  1.

B y  shifting the origin in tim e, we may assum e that

M  =  supT>0 ||C (t) || <5/2 ,

i.e., ||C (r )|| is sm all in comparison to  the gaps in the spectrum  of A . D enote by u ( r )  =  
S ( r ) u 0 the unique sufficiently sm ooth solution of (1.7) w ith initial data uq G E ,  see [11] 
and [7]. We next introduce the subspaces

=  {^o ^ p i - e7fcTS'(r)uo —>■ 0 as r  —>■ oo},

where Vk+i C Vk for any k > 1.
We now apply Lem m a 5 in [1] which is proved in similar lines w ithout using specific 

self-adjoint properties of the unperturbed operator A  =  —B*. This part is based on the  
analysis of the integral equation

/»T p O O

u ( t )  =  eB*TQ kuo +  /  eB*(T~s^QkC ( s ) u ( s ) d s  -  /  eB*̂ T~ ^ P kC ( s ) u ( s ) d s .
JO J t

Setting, v ( t )  =  e7fcTw(r) gives the integral equation
p o o

(6.33) v { t )  =  e^lk+B*̂ TQ kuo +  /  K ( t  — s ) C ( s ) v ( s ) d s  =  q( r)  +  L v ( t ) ,
Jo

with the kernel

K{v)  =  { Q ke ^ k+B' )u if v >  0 and -  P ke ^ k+B' )u if v <  0}.

It follows that for v  > 0 and any w  €  h 2*?, ||K ( y ) w \ \ ^  =  '̂ 2 ^ >ke2^ k+x^ l/\ci3\2 < 

e_2<Jl"||u;||o^ <  where A is as estim ated below (5.21), so that in operator
norms on C ( E )  and C ( E \ ,  E ) ,  ||K{y) \ \  < e~5u for v  >  0. B y a similar estim ate for v  < 0 , 
we conclude that the kernel is exponentially decaying,

(6.34) \\K{u)\\ < e~5^  for v  G R .

Equation (6.33) can be solved by Banach’s Contraction Principle in the space 

F  =  {v  G C([0, oo); E i )  : v ( t )  — >  0 as c x d } .
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and hence by (6.34)

/ o o

\\K(v)\\dv < 2M /6  <  1.

■ o o

Therefore, the solution of (6.33) is given by the converging series v ( r )  =  Yl'jLo ^ Q ( T) • 
D enote qo =  QkUo G R ( Q k )• Then the m apping Tk defined by ?;(0) =  Tkqo is bounded,

(6.35) ||7fc|| <  £ ,~ „ ( 2 A / / i ) 3' =  (1 -  2 M /5 ) - 1 <  oo.

Since Q k ° T k  =  I  on R ( Q k )  and Tk o Q k =  I  on V*., it follows that Qk  : 14 —» R{Qk)  is an 
isomorphism; see [1], p. 435. Hence, if uq G V* for all k >  1, then uq =  o and

IKIlo* =  ||Tfc o QfcUollo* <  (1 -  2M/(5)_1||QifcUo||o*,

where QkUo =  S | / 3|>ifc(w0) i/>p)ipp ->  0 as A; —> oo. Therefore, «o =  0. This com pletes the  
proof of Proposition 6 .1. □

Thus, we arrive at the following classification of m ultiple zeros of solutions to (1.1).

T h e o r e m  6 .1 . Let, under  given regularity assumptions  (6.2), (6 .3), the rescaled solut ion  
u ( - , t )  G Hp™ o f  (1.1) create a multiple  zero at  (0 ,0 ). Then there exists a f ini te  I >  1 
such that  (6.31) holds, where (pi is an eigenfunct ion  (6.13) o f  B* corresponding to the 
eigenvalue —I / 2m .

N ext, we need to  interpret the above asym ptotic result by using the standard tim e- 
independent parabolic rescaling

(6.36) u e( y , s)  =  s ~ lu ( y e , s e 2m), w ith an arbitrary param eter e > 0,

where s < 0 is the new tim e variable. Then u £ satisfies the perturbed equation (cf. (1.7))

(6.37) u s =  B 0u +  C(e:)u,

w ith an asym ptotically  small perturbing operator

(6.38) C (e ) =  Y,\p\=2m ss2m) -  M D y +  E | / 3|<2m's2roH,% ( 2/e > SS2m) D Py .

B y Theorem  6.1 we arrive at the following straightforward consequence.

C o r o lla r y  6 .1 . With  an I as in Theorem  6.1, {w£} £>o is a compact subset, and  uni formly  
on compact subsets f r o m  H N x  (—o o ,0], there holds

(6.39) u £( y , s )  -»  W ( y , s )  =  { - s ) l/2m( p * { y / ( - s ) l/2m) as e ->  0+ .

N ote that by (6 .12), there exists a finite lim it

(6-40) W ( y ,  0 - )  =  P 0(y) =  (l'.)~1/ 2E m=iC0y^  ?  0.



6.3. I n s ta n ta n e o u s  c o lla p s e  o f  m u lt ip le  z e r o s . We now consider the evolution of the  
above solutions for t  > 0 describing collapse of m ultiple zeros. For the one-dim ensional 
second-order parabolic equations such extension was also performed by Sturm [18]. In 
was shown that, due to  the established asym ptotic behaviour as t  0+ driven by the  
adjoint polynom ials, zero curves disappear at t  =  0 in each of such collapse. This led 
Sturm  to sta te  his remarkable F irst Theorem  saying that the number of zeros of solutions 
does not increase w ith time; see p. 431 in [18].

We briefly describe the collapse phenom enon of m ultiple zeros for the higher-order 
equations under consideration. We apply a tim e-evolution description of such transition  
phenom enon from { t  <  0} to  {£ >  0}. Consider a general m ultiple zero pattern (6.31). 
Bearing in m ind the Sturm  variable (1.4), we have that

(6.41) u ( x ,  t) =  ( - f ) ,/a" V r ( * / H ) I/2,B) +  ...,

where we om it higher-order term s. Since <p*{y) is a polynom ial of order I, by (4.4)

(6.42) <p\(y) =  +  -  =  Po(y) +  ••■ as y  - ¥  oo,

where Po(y)  denotes a nontrivial hom ogeneous polynom ial of order I. Therefore, passing  
to the lim it t  —> 0“ in (6.41) and using (6.42), we observe that in the leading term the  
tim e dependent m ultipliers cancel each other. It follows from Corollary 6.1 that there 
exists a finite lim it

(6.43) u ( x ,  0 “ ) =  =iCpx/3 +  ••• =  Po(x ) +  — f°r small x.

For convenience, we now perform a formal evolution analysis to  be justified later on. 
Introducing the forward  independent variables

y  — x / t l^2rn, r  =  l n t ,

we arrive at an exponentially perturbed equation of the form

(6.44) u T =  B ii +  C ( t )u , where B  =  B  —

with (6.43) as the initial data. The lim it t  —> 0+ means r  —» — oo. As usual, this 
asym ptotic problem  with a priori prescribed initial data is easier than the above evolution  
one. We then obtain that the asym ptotic behaviour as r  —> —oo is given by adjoint 
polynom ials associated with the operator B ,

(6.45) u(y ,  t )  =  elT/2m $i{y )  +  ....

Similar to  (6 .12), we obtain the following representation of such polynom ials:

(6.46) $ , ( 2/) =  Po(y) +  2yB ^ o ( y ) .

N ote that ^ L 2 are not eigenfunctions of B . Therefore, in the original variables,

(6.47) u ( x , t )  =  t ll 2m $ i ( x l t l l2m) -1-...,

and hence taking into account the leading higher-order term s in polynom ial (6.46), we see 
that u(x ,  0+ ) =  Po(x)  +  ... coinciding with (6.43).
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The generating formulas of polynom ials (6.12) (for t  <  0) and (6.46) (for t  >  0) 
describe all possible exchanges of zero surfaces at the focusing tim e t  =  0 of m ultiple 
zeros. Combining both expansions (6.31) and (6.47), we have that if a m ultiple zero of 
u ( x ,  t) occurs at the origin (0 , 0), then there exists a finite I >  1 such that as e —> + 0 ,

(6.48) E~ll 2rnu(yEl l 2rn, — e ) i p * { y )  and £~l^2rnu { y e l ^ m , e) —> $ i ( y )

uniform ly on com pact subsets.
We now apply the rescaling argument based on the transform ation (6.36) leading to  

the perturbed equations (6.37). Since the rescaling makes sense for both s <  0 and s > 0 
and the equation and the asym ptotically  small perturbation operator in (6.38) are of the 
sam e structure, we arrive at the following result (for the second-order case m  =  1, see
[ 3 ] ) -
C o r o lla r y  6 .2 . Under the assumpt ions  o f  Corollary  6.1, (6.39) holds un i formly  on com­
pact  subsets in H N x  [0 , oo).

We thus obtain that the function W ( y ,  s) in (6.39) is a polynom ial solution of the linear 
hom ogeneous parabolic equation

(6.49) W ,  =  B 0W  =  E , ^ 2n , A ^ W  in R N x  R .

Hence,

(6.50) $ , ( 2/) =  ( - 1  y ' 2mv > K y / ( - i ) 1/2m), 

which is seen from (6.12) and (6.46).

7. U n iq u e  c o n t in u a t io n  th e o r e m

The first unique continuation theorem  is a consequence on the above result establishing  
that a solution from the existence-uniqueness class of the parabolic equation (1.1) with  
sufficiently sm ooth coefficients cannot generate a m ultiple zero of infinite order unless 
u  =  0 .

T h e o r e m  7 .1 . Let, under  given hypotheses on the coefficients, the solut ion u ( - , t )  E  H ' p 1 
o / ( l . l )  satisfy

(7.1) lim  \  [  \u(x,  0) \dx  =  0 f o r  any k  > 0.
£ _ > ' 0 +  £  J\x\<£

Then  u  =  0 in H N x  (—1,1) .

Proo f  In view of (6.43), the integral condition (7.1) im plies that the solution u ( x , t )  has 
a zero in infinite m ultiplicity at the origin (0 ,0 ), and hence u  =  0 by Proposition 6.1 □

Obviously, once we have achieved the optim al classification of m ultiple zeros (the micro­
structure of the PD E ), som e backward uniqueness results are straightforward. Actually, 
one can characterize a variety of such optim al backward uniqueness approaches as follows:

(7.2) if at (0 ,0 ) a solution u  violates (6.31) (or (6.43)) for any I E N, then u =  0.



T he results apply to  system s of 2m -th order linear parabolic inequalities

(7.3) |Ut — B 0u\ <  MY^o<k<2m\D u \ in Qi?

where M  > 0 is a constant and D ku  is the vector { D ^ u ,  \0\ =  k} . These inequalities
include the parabolic P D E  (1.1) w ith constant coefficient ap =  Ap  for \/3\ =  2m  and
arbitrary uniform ly bounded coefficients \ap\ <  M  in the lower-order operators with  
\P\ <  2m. We then arrive at a similar result.

T h e o r e m  7 .2 . Let  u ( - , t )  G H ' p 1 be a solut ion o f  (7.3), and  (7.1) hold. Then  u  =  0.

Proof.  One can see that after Sturm ian scaling (1.4), (1.5), the function u ( y , r )  can 
be treated as a solution of the P D E  (1.7) where the perturbation C (r )  is uniformly 
exponentially sm all as r  —> 00 , and the above conclusion applies. □

T he present approach to m ultiple zero form ations and the corresponding unique con­
tinuation theorem s adm its extensions to quasilinear uniform ly parabolic PD E s

(7.4) u t =  Y,\p\<2map(x i u ) D pu  in Q u

w ith sufficiently sm ooth bounded coefficients a p ( x , t , u )  satisfying necessary hypotheses. 
Then Ap  =  ap(0 ,0 , 0) for \/3\ =  2 m  and B 0 is assumed to be uniform ly elliptic.

8 . D im e n s io n  o f  n o d a l  s e t s

W ithout loss of generality, we form ulate the result on the Hausdorff dimension of nodal 
sets for the solutions of parabolic inequalities (7.3).

T h e o r e m  8 .1 . Let, under  given hypotheses,  u ( ' , t )  G H ' f i1, u  ^  0, be a suff iciently smooth  
solut ion o f  (7 .3). T he n  its nodal  set  (1.18) satisfies  (1.19).

Estim ates like (1.19) are well known for the second-order elliptic and parabolic equations 
w ith the proof based on a general idea of the dim ensional reduction argument in the  
geom etric measure theory; see Section 2 in [17] and [14].
Proof.  We follow the lines of the analysis given in [3], Sections 8 and 9, which can be 
applies to solutions of higher-order inequalities or equations (or other functions exhibiting  
suitable asym ptotic scaling properties at any point (xo,to)) provided that two crucial 
results are available:

(i) The result of Corollary 6.2 makes it possible to  introduce a locally asym ptotically  
self-similar pair ( T ,  C)  as in [3], p. 627, where T  is a collection of sufficiently sm ooth  
solutions u  and C[u] =  { ( £ , 0 )  G B N x  R  : u ( x ,  0) =  0}. The only difference is that 
according to (6.36) we define the scaling map g ( y , s; A, a)  as follows:

(,g ( y , s; A, a)u)(:r, t) =  a u ( y  +  \ x ,  s  -1- A2mt).

(ii) The polynom ial structure of the lim it function W  in (6.39) makes it possible to  
apply Theorem  8.5 in [3] and to com plete the proof. □

Estim ates on the parabolic dim ension of various nodal sets obtained in [3] for m  =  1 
remain valid for higher-order differential parabolic operators.
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