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0.1 N ota tion  List

SLI Straight-line Instruction see section 3.2
SLP Straight-line Program see section 3.3
SLV Straight-line Value see section 3.13
K[a, b} traditional polynomials represented in sparse form.
K {a , b) traditional rational functions.
K (a ,b ){x ,y}  SLPs in x, y over K(a, b)
K {x , y}{a , b) sparse form polynomials in a, b with SLP coefficients in x, y
degx(p) The degree of the polynomial p , in the variable x

Pproji%l-> •, Xi)The projection of p to TV

On 0, * ,0
n

cont(p) The content of p

PP(P) The primitive part of p
WLOG Without Loss Of Generality
s.t. Such That
iff if and only if

f  ° g the function /  composed with the function g

9



0.2 Sum m ary

This thesis is concerned with calculating polynomial greatest common divisors 
using straight line program representation.
In the Introduction chapter, we introduce the problem and describe some of the 
traditional representations for polynomials, we then talk about some of the gen­
eral subjects central to the thesis, terminating with a synopsis of the category 
theory which is central to the AXIOM computer algebra system used during this 
research.
The second chapter is devoted to describing category theory. We follow with a 
chapter detailing the important sections of computer code written in order to 
investigate the straight line program subject. The following chapter on evalua­
tion strategies and algorithms which are dependant on these follows, the major 
algorithm which is dependant on evaluation and which is central to our thesis 
being that of equality checking. This is indeed central to many mathematical 
problems. Interpolation, that is the determination of coefficients of a polynomial 
is the subject of the next chapter. This is very important for many straight line 
program algorithms, as their non-canonical structure implies that it is relatively 
difficult to determine coefficients, these being the basic objects that many al­
gorithms work on. We talk about three separate interpolation techniques and 
compare their advantages and disadvantages. The final two chapters describe 
some of the results we have obtained from this research and finally conclusions 
we have drawn as to the viability of the straight line program approach and pos­
sible extensions.
Finally we terminate with a number of appendices discussing side subjects en­
countered during the thesis.
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Chapter 1

Introduction

1.1 In troduction  to  th e  problem

We may use Straight-Line Programs [11, 4, 19, 27, 26, 17, 25, 22, 7] as an al­
ternative means of representing polynomials. In this thesis the problem that 
we consider is specifically the calculation of the greatest common divisor of two 
polynomials using Straight-Line Program representation. We shall compare and 
contrast the times taken for performing these calculations and the sizes of the ob­
jects formed with the equivalent measurements using traditional representations. 
We shall also consider how the GCD domain which we shall create fits into the 
AXIOM category system. We shall consider how good the performance of this 
domain is when we use it as a parameter domain for calculating Grobner bases.

1.2 Traditional Polynom ial R ep resen tation s

Polynomials may be represented in various different ways. The form of the rep­
resentation for polynomials will have a profound implication on the types of 
algorithm that may be performed on them. In the following we describe some 
of the traditional representations which are used to represent polynomials, fol­
lowed by a description of the Straight-Line Program representation which we 
have implemented.
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1.2.1 D en se  R ep resen ta tion

We may represent a univariate polynomial in dense representation by storing the 
coefficients in a one dimensional array with elements from the base field of the 
polynomial. If x  is the variable in the polynomial, the coefficient of x l is held in 
the i +  1th element of the array. To access a coefficient requires constant time, 
so access time is 0(1). To store a univariate polynomial will require an array of 
size d +  1, where d is the degree of the polynomial.
To represent a multivariate polynomial which has n variables, we require some 
ordering on the variables in the polynomial. We shall denote these variables X \  > 
X2 > • • • > x n. Now we may view the coefficients of variable X\ as polynomials 
in {x 2 , • • • , x n}. In each of these polynomials we view the coefficients of X2 as 
polynomials in {#3 , • • • , x n} and so on until we get to the base field coefficients. 
With this recursive view in mind we may store a polynomial which has n variables 
in an n dimensional array. The coefficient of x[x 2 • • -x ln being stored in position 
( j+ 1 , k + 1 , • • •, /+ 1) of the array. The access time is again constant (0(1)) though 
the hidden constant will be larger as the position in memory must be determined 
from a mapping of • • ,1) to memory (an assumption we make here is that
multiplication and summation of integers is a constant time operation, this will be 
true so long as j, &,*••, Z do not get large, that is so long as j ,  fc, • • •, I < 2W where

n

W  is the word size for the computer). The size of the array will be JJ(d; +  1)
i= 1

where di is the degree of Xi in the polynomial.
We see that this representation allows very fast retrieval of coefficients, but it does 
mean that every coefficient including every zero coefficient must be recorded. If 
there are a lot of zero coefficients this constitutes a large waste of memory.

1.2 .2  Sparse N on-recursive R ep resen ta tion

Using sparse representation for a polynomial only the non-zero coefficients are 
recorded. To this end we may store a polynomial as a List of Records, where the 
Records have the following structure:

Record (coefficient : R, powerProd : List (Record (variable : Symbol, power : I)))
(1.1)

13



In the previous R is the domain of the coefficients, generally an algebraic structure 
known as a Ring, I is the domain of the indices, generally an algebraic structure 
known as an Abelian Monoid, a common example is the Non-Negative Integers. 
In order to access a coefficient of this polynomial the list must be traversed until 
the specific element has been found. This operation will have complexity 0(1) 
where I is the number of non-zero coefficients, worst time complexity is 0(1), 
whereas average time is 0 (1 /2). It is possible to cut this time to O(logZ) by 
imposing an ordering on the records 1.1, then using a ‘binary chop’ algorithm, 
for example the well known quicksort algorithm. The ordering we use would be 
an ordering on power products, for example the lexicographic ordering [9]. This 
would be applied to the powerProd part of the records in 1.1. The storage space 
is now 0(1). We note that in many cases I may be far smaller than the possible

n

number of coefficients, viz. I R *  -I-1), as noted earlier.
2 =  1

1.2 .3  Sparse R ecu rsive P o lyn om ia l R ep resen ta tio n

Another good representation for sparse polynomials is the sparse recursive repre­
sentation, where polynomials are represented as a list of records where the records 
have the following recursive structure:

Rxn =  Record (coefficient : RXn l , variable : Symbol, power : I) , for n >  1

( 1.2)

R*0 =  R (1.3)

where I and R have the same meaning as in the previous section. The access time 
for the coefficient of a polynomial represented in this representation has 0 ( ln ), 
I being the average length of each record, and n being the number of variables. 
The average time is O (^ ) .

1 .2 .4  C om parison

We see that for dense representation, the accessing of coefficients is very fast, 
however every coefficient must be stored. Now if an algorithm deals with polyno­
mials stored using dense representation then every coefficient must be considered,

14



including every zero coefficient. This leads to some large lower bounds to the com­
plexity for many algorithms. For sparse representation, we may have a different 
problem, this is that even though we have removed the problem of storing and 
considering zero elements, it is not simple to access coefficients and again gives 
large time complexities for many algorithms. Sparse representation corresponds 
to the traditional mathematical notation (without brackets), for example:

x 5 +  4x3 +  7

a dense version of this example would be represented as:

x 5 +  Ox4 +  Ax3 +  Ox2 +  Ox +  7

We should note that mathematicians often do use brackets (amongst other ex­
pressions) in order to write polynomials, for example:

(x2 +  x  +  l)(y2 +  y +  l ) ( z2 +  z  +  1) (1.4)

which in sparse (or dense) representation has 27 terms. Indeed, as we increase 
the number of variables, the length of 1.4 is linear in the number of variables 
but the number of terms in dense or sparse representation is exponential in the 
number of variables. We look at a third type of representation which has been 
proposed. It is claimed that this representation has some complexity advan­
tages over the classical dense and sparse representations, this representation uses 
Straight-Line Progams (SLPs) to represent polynomials. We intend to make a 
practical Straight-Line Progam implementation using the AXIOM computer alge­
bra system, this implementation will perform one of the fundamental operations 
which is near the centre of any polynomial based computer algebra system, that 
of finding the greatest common divisor (gcd) of two polynomials. We shall then 
make some benchmark tests to see how the performance compares to the sparse 
implementation already existent in AXIOM.

1.3 Straight-L ine Program s

SLPs may be thought of as directed-acyclic graphs (DAGs), which encode the 
arithmetic network equivalent to the polynomial.
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These DAGs have four types of internal node, plus, minus, times and quotient 
which represent the four basic arithmetic operations, we shall term these operation 
nodes. These DAGs also have two types of leaf nodes, constant nodes and input 
nodes, the former represent simple constants from a base field, whilst the latter 
represent the polynomial variables. An important subset of these DAGs which 
from now on we shall term SLPs contain no quotient operations, these shall 
be termed division free SLPs. Every node of a given SLP can be thought of as 
representing a polynomial. If we intend to represent specific polynomials, we must 
indicate which nodes of the SLP are the ones which represent these polynomials. 
In our rendering of the SLP we shall indicate this by placing a “> ” to the right 
of the particular node. These special nodes are known as return nodes. 
E xam ple  1
The polynomial p(x , y) represented in sparse form:

xy  +  5
p represented as an SLP :

line 1 Constant node : 5
line 2 Input node : x
line 3 Input node : y
line 4 Operation node : (times line 2, line 3)
line 5 Operation node : (plus line 4, line 1) >

the DAG is :

+

/ \
* 5

/  \
x y

One thing which must be noticed about SLPs is that in the case of division 
free SLPs, the representation only covers polynomials where the exponent set 
is the Non-Negative-Integers. In the case of non-division free SLPs, we may 
also represent rational functions, extending the domain somewhat. More exotic
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expressions, for example logarithmic or exponential expressions, would require 
some extra basic operations, perhaps an integration operator or an exponentiation 
operator.

The question which must be posed is “why use SLPs for representing polynomials 
rather than the more familiar sparse form?” . SLPs provide an efficient form of 
representation for polynomials, especially those which contain many variables to 
high degrees. For a polynomial of degree degi in each of n variables the number of 
terms which it may have is up to Y[(degi +  1) terms. There are operations where 
it is necessary to consider every one of these terms to deduce a valid answer. We 
shall look at some examples in order to display some of the advantages that SLPs 
have over other forms of representations.
Exam ple 2
Consider the multiplication of two randomly generated polynomials, with ri\ and
77.2 terms respectively, the result will have size «  n\U2 terms. Now for the same 
problem where the polynomials are encoded as SLPs of length l\ and I2 respec­
tively, the result will have length «  l\ +  l2 +  1.

Exam ple 3
Storage of the polynomial (x +  l ) 100 in dense form requires the storage of 101 co­
efficients, the largest of which is 100891344545564193334812497256. If we where 
however to represent the polynomial as an SLP, we could use a program which 
had one addition node, and eight multiplication nodes viz:

17



line 1 Input node
line 2 Constant node
line 3 Operation node
line 4 Operation node
line 5 Operation node
line 6 Operation node
line 7 Operation node
line 8 Operation node
line 9 Operation node
line 10 : Operation node
line 11 : Operation node

plus line 1, line 2) 
times line 3, line 3) 
times line 4, line 4) 
times line 5, line 5) 
times line 6, line 6) 
times line 7, line 7) 
times line 8, line 8) 
times line 9, line 8) 
times line 10, line 5) >

Exam ple 4
Now we look at an example of a non-division free SLP:

3,101 1 100

The sparse form of this polynomial would have 101 terms, we could represent 
this as an SLP with divisions as follows:

line 1 InputNode X
line 2 OperationNode (times , line 1 line 1)
line 3 OperationNode (times , line 2 line 2)
line 4 OperationNode (times , line 3 line 3)
line 5 OperationNode (times , line 4 line 4)
line 6 OperationNode (times , line 5 line 5)
line 7 OperationNode (times , line 6 line 6)
line 8 OperationNode (times , line 6 line 7)
line 9 OperationNode (times , line 3 line 8)
line 10 : OperationNode (times , line 1 line 9)
line 11 : ConstantNode - 1
line 12 : OperationNode (plus , line 11 line 10)
line 12 : OperationNode (plus , line 1 , iine 11)
line 14 : OperationNode (quotient , line 12 , line 13) >

18



It should be noted that though this is not a division free SLP it could be converted 
into one. Removing divisions from an SLP is known as division removal: we shall 
discuss a technique of division removal later in section 5.7.

E xam ple  5
This next example uses SLP representation for the determinant of a symbolic
matrix of dimension n. We note that we may represent this determinant in n!
monomials using sparse representation; using dense representation we could rep-

2
resent the determinant in 2n monomials; whereas using SLP representation, we 
could use as few as n3 elements, using a method due to Berkowitz [2], or one due 
to Bareiss [1].
Specific E xam ple  
Consider the following matrix:

oo
£ l 0 £ 2 0 £3 0

£ 0 1 X U £ 2 1 £ 3 1

£ 0 2 X l 2 £ 2 2 £ 3 2

 ̂ £ 0 3 # 1 3 ^ 23 £ 3 3

In sparse form the determinant of this matrix may be calculated as:

£ 0 0 £ l l £ 2 2 £ 3 3 —£ 0 l £ l 0 £ 2 2 £ 3 3 — £ 0 0 £ l 2 £ 2 l £ 3 3 + £ 0 2 £ l 0 £ 2 l £ 3 3 + £ 0 l £ l 2 £ 2 0 £ 3 3 — £ 0 2 £ l l £ 2 0 £ 3 3  — 

£00£ll£23£32+£0l£l0£23£32+£00£l3£2l£32—£03£l0£2l£32~£0l£l3£20£32+£03£ll£20£32+ 
£ 0 0 £ l 2 £ 2 3 £ 3 1 ~ £ 0 2 £ l 0 £ 2 3 £ 3 1 —£ 0 0 £ l 3 £ 2 2 £ 3 1 + £ 0 3 £ l 0 £ 2 2 £ 3 1 + £ 0 2 £ l 3 £ 2 0 £ 3 1 —£ 0 3 £ l2 £ 2 0 £ 3 1  — 

£ 0 l £ l 2 £ 2 3 £ 3 0 + £ 0 2 £ l l £ 2 3 £ 3 0 + £ 0 l £ l 3 £ 2 2 £ 3 0 —£ 0 3 £ l l £ 2 2 £ 3 0 —£ 0 2 £ l 3 £ 2 l £ 3 0 + £ 0 3 £ l 2 £ 2 l £ 3 0

This is a sum of 24 monomials each of which is a product of four quantities in 
total 96 elements. The evaluation of which would require 72 operations.
If we used Bareiss’s method [Appendix D], we would be able to represent this 
determinant by a program which had 37 multiplication nodes, 16 subtraction 
nodes and five division nodes, in total 52 operations, viz.
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line 1 : ConstantNode
line 2 : InputNode
line 3 : InputNode
line 4 : InputNode
line 5 : InputNode
line 6 : InputNode
line 7 : InputNode
line 8 : InputNode
line 9 : InputNode
line 10 InputNode
line 11 InputNode
line 12 InputNode
line 13 InputNode
line 14 InputNode
line 15 InputNode
line 16 InputNode
line 17 InputNode
line 18 OperationNode:
line 19 OperationNode:
line 20 OperationNode
line 21 OperationNode
line 22 OperationNode
line 23 OperationNode
line 24 OperationNode
line 25 OperationNode
line 26 OperationNode
line 27 OperationNode
line 28 OperationNode
line 29 OperationNode
line 30 OperationNode
line 31 OperationNode
line 32 OperationNode
line 33 OperationNode
line 34 OperationNode
line 35 OperationNode
line 36 OperationNode
line 37 OperationNode

1
xOO
xlO
x20
x30
xOl
x l l
x21
x31
x02
xl2
x22
x32
x03
xl3
x23
x33
(times line 2, line 13)
(times line 10 , line 5)
(minus , line 18 , line 19)
(times line 2, line 16)
(times line 14 , line 4)
(minus , line 21 , line 22)
(times line 2, line 9)
(times line 6 , line 5)
(minus , line 24 , line 25)
(times line 2, line 15)
(times line 14 , line 3)
(minus , line 27 , line 28)
(times line 2, line 17)
(times line 14 , line 5)
(minus , line 30 , line 31)
(times line 2, line 8)
(times line 6 , line 4)
(minus , line 33 , line 32)
(times line 2, line 11)
(times line 10 , line 3)
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line 38 : OperationNode 
line 39 : OperationNode 
line 40 : OperationNode 
line 41 : OperationNode 
line 42 : OperationNode 
line 43 : OperationNode 
line 44 : OperationNode 
line 45 : OperationNode 
line 46 : OperationNode 
line 47 : OperationNode 
line 48 : OperationNode 
line 49 : OperationNode 
line 50 : OperationNode 
line 51 : OperationNode 
line 52 : OperationNode 
line 53 : OperationNode 
line 54 : OperationNode 
line 55 : OperationNode 
line 56 : OperationNode 
line 57 : OperationNode 
line 58 : OperationNode 
line 59 : OperationNode 
line 60 : OperationNode 
line 61 : OperationNode 
line 62 : OperationNode 
line 63 : OperationNode 
line 64 : OperationNode 
line 65 : OperationNode 
line 66 : OperationNode 
line 67 : OperationNode 
line 68 : OperationNode 
line 69 : OperationNode

(minus , line 36 , line 37)
(times line 2, line 10)
(times line 10 , line 4)
(minus , line 39 , line 40)
(times line 2, line 7)
(times line 6 , line 3)
(minus , line 42 , line 43)
(quotient , line 1 , line 2)
(times line 44 line 20)
(times line 38 line 26)
(minus , line 46 , line 47)
(times , line 45 line 48)
(times line 44 line 23)
(times line 29 line 35)
(minus , line 50 , line 51)
(times , line 45 line 52 )
(times , line 44 line 32)
(times , line 29 line 26)
(minus , line 54 , line 55)
(times , line 45 line 56)
(times , line 44 line 41)
(times , line 38 line 35)
(minus , line 58 , line 59)
(times , line 45 line 60)
(times , line 2 , line 7)
(times , line 6 , line 3)
(minus , line 62 , line 63)
(times , line 61 line 57)
(times , line 53 line 49)
(minus , line 65 , line 63)
(quotient , line 1 , line 64)
(times , line 67 line 68) >

We note that this does look more verbose than the sparse form, however this is 
only the way it is printed, not the underlying structure. The improvement would
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increase as the size of the matrix became larger.

1.4 M etrics for SLPs

We consider two of the fundamental metrics which are used to measure the ’size’ 
of an SLP, these are:

• length: The length of an SLP is defined as the number of elements (the 
number of nodes in the defining DAG) in the SLP.

• depth: The depth of an SLP is defined as the longest contiguous path 
between the return node and any leaf node in the SLP.

These metrics are important since the depth of an SLP gives the asymptotic time 
that a parallel computer, with an unbounded number of processors would take 
to evaluate the SLP. The length of the SLP is a measure of the asymptotic time 
taken by a computer to perform its sequential evaluation.

1.5 Polynom ial G reatest C om m on D ivisor

The problem that we are going to approach is the calculation of a polynomial 
greatest common divisor (Polynomial GCD), using SLP representation. The 
technique we shall use is based on that used by Kaltofen [11]. Kaltofen uses a 
Monte Carlo technique (that is a probabilistic technique which returns an answer 
which is probably correct, in a short time). We initially decided to use a Las Vegas 
technique (that is a technique which returns an answer that is always correct, 
probably in a short time), the reason being that our function must always be 
made available to functions which purport to return a deterministic answer and 
therefore should only use deterministic subfunctions. However, we eventually 
concluded that deterministic equality checking, a procedure that was essential 
to our algorithm, was such a difficult problem that we would have to investigate 
how we could bridge the problem. This is investigated in sections 6.5 and 8.4.
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The approach that is taken by many is to make the probability of an incorrect 
result miniscule.

1.6 T he A X IO M  com puter algebra sy stem  and  

its category system

The computer algebra system which we shall be using for this research is the 
AXIOM computer algebra system. It has a revolutionary type system which we 
discuss in more detail in the next chapter. The types themselves have types 
which are called Categories. The categories are arranged in a hierarchical struc­
ture. They mimic as closely as possible the mathematical structure which they 
intend to model. We describe these in the next chapter.
Exam ple 5
The type which we intend to form is called: G cdM ulti(R ) where R  is an ar­
bitrary Euclidean Domain, though in our implementation we are forced by time 
restrictions to restrict R to be either IntegerNumberSystem (a model for the Inte­
gers) or QuotientFieldCategory (the category of fractions of an integral domain). 
The exported functions of GcdMulti which characterize a GcdDomain are:

gcd : (%,%) -  > %
exquo : (%,%) — > Union(valuel:%,failed:’failed’)

In the above list, the syntax is as follows, ’%’ refers to the domain that the 
functions are exported from, the name on the left hand side of the V is the 
name of the function, the parenthesis on the left of > ’ contain the types of 
the arguments of the function and the type on the right is the type of the value 
returned by the function.

The function ’gcd’ finds the greatest common divisor of two objects.
The function ’exquo’ returns the exact quotient of two objects. By exact quotient, 
we mean the value such that the following holds:

qd = n A exquo(n, d) = q

If such a value does not exist, then the value ’failed’ is returned.
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We may now say that GcdMulti is in the category G cdDom ain, a structure 
already existent in the AXIOM system. We shall see that there are domains 
already existing in the AXIOM system which take domain parameters, where the 
domain must be of a certain category. The functions exported by the parameter 
domain may then be used in the parameterised domain.
Exam ple 6
The domain GroebnerPackage takes as parameters:

(Dom: G cdDom ain, Expon: O rderedAbelianM onoidSup, VarSet: Or- 
deredSet, Dpol: Polynom ialC ategory(D om ,E xpon,V arSet))
Expon is the exponent domain, VarSet the variable domain, and Dpol specifies 
the ordering of the variables. Now Dom is the domain that we are interested in, 
GroebnerPackage contains functions which calculate the Grobner basis of a set 
of polynomials, which define a polynomial ideal. The algorithm used is a form of 
the Buchberger algorithm, this makes heavy use of the functions gcd and exquo 
of polynomial coefficients, these functions will be taken from the domain Dom, 
so in fact we may use the functions we have defined in GcdMulti by specifying 
for example:
GroebnerPackage (G cdM ulti (Integer), Expon, OrderedVariableList [x,y,z], 
Dmp)
where :

• Expon is DirectProduct(3,NonNegativeInteger)

• DMP is DistributedMultivariatePolynomial([x,y,z],GcdMulti(Integer))

24



Chapter 2

Dom ains and Categories

Much of the following chapter we take from Jenks [8], also from Doye [21]. We 
begin by defining what we mean by the terms Item, Domain and Category, also 
the concept of a Functor.

2.1 Item s

These are first order objects, they are elements of Domains see section 2.2. 
Exam ples

1,2, ••• € Integer 
x 2, x 2 +  5 y2 G Polynomial (Integer)

2.2 D om ains

By a domain of computation, or simply domain, we mean:

• a set of generic operations.

• a representation.
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• a set of functions which implement the operations in terms of the represen­
tation.

• a set of attributes which designate useful facts such as axioms and mathe­
matical theorems which are true for the operations as implemented by the 
functions.

Examples of simple domains are those corresponding to the basic data-types of­
fered by the system, for example Integer and String. We also may deal with 
domains, which are parameterised with one or more domains, they may also have 
items as parameters.
Exam ples
Polynomial(Integer), this domain corresponds to the space of polynomials with 
integer coefficients.
UnivariatePolynomial(x,Integer), this domain corresponds to the space of uni­
variate polynomials with Integer coefficients, where the variable is the Symbol 
V .
It is obvious that allowing the concept of parameterised domains may allow a 
computer algebra system to incorporate an infinite variety of Domains.

• The generic operations are given by the specification of an export list of 
signatures, the signatures are expressions consisting of an operation name, 
the source domains and a target domain.

— The operation name is the name used to designate the function.

— The source domain is a tuple consisting of the types of the parameters 
to the function.

— The target domain is the type of the value returned by the function.

• The representation for a domain describes a data structure used to represent 
the objects of the domain.

• The functions part is a set of compiled functions which implement the 
operations in the export list.

• The attribute part of the domain is described either by a name e.g. “fi­
nite” , to specify that the domain represents a finite set, or by a form with
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operator names as parameters e.g. “distributive^,+ )” , to specify tha t “+ ” 
is distributive over , ie. (x +  y) * z  =  x  * z  +  y * z.

2.3 C ategories

A category designates a class of domains with common operations and attributes 
but with different functions and representations. In AXIOM a category heirar- 
chy is built up starting at BasicType, which has one required operation, that of 
equality which must return a Boolean value.

To build the category heirarchy, new categories are built on top of old ones in 
the following manner:
A category may inherit operations or attributes from previous categories. They 
may also introduce their own operations and attributes. It is possible to define 
generic techniques to implement certain operations, in terms of other operations 
which m u st be implemented in a domain of this category. For example, in the 
category, BasicType ~= is implemented by the code:

_~_=(x:V/»,y: Y/») : Boolean == not(x=y)

This function will automatically define the function in terms of the ’= ’ 
function which has been defined by any domain claiming to be in that category, 
this idea constitutes a saving of effort on the part of the programmer, also a 
saving of space on the part of the computer.

2.4 Param eterised  C ategories

These .are categories which are parametrised, the example we shall look at is: 
MatrixCategory(R,Row,Col)
this is a domain where all the elements of the matrix are of the type ’R ’ which 
must be some Ring,
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the domain parameters Row and Col must take values which are domains which 
are in the Category of F initeLinear Aggregate (R), for example List(R) or Vec- 
tor(R).
Exam ple
An example we might be interested in is the domain Matrix (SLV(INT)) which is 
in the category MatrixCategory (SLV(INT), Vector (SLV(INT)), Vector (SLV(INT))).
Because we can then use cheap algorithms on these objects, for example calcu­
lating determinants of matrices of SLPs using Bareis method D.

Categories we are interested in are those with the algebraic property of GcdDo­
main (those domains in which there exists a gcd algorithm) and that of Euclidean 
Domain.

The following definition of Euclidean Domain we take from Pretzel [23].

D efin ition . 1 let D be a domain. We shall call a function || • || : x  —> ||rr||
defined on the non-zero elements x of D with value in the non-negative integers

a Euclidean valuation if:

1) For every a, b ^  0 then ||a6|| > ||a|| and \ \ab\\ >  ||6||.

2) For every a, b ^  0 in D there exists a quotient q and remainder r  in D, such

that a =  qb +  r and | |r11 < 1\b\ | or r =  0.

D efin ition . 2 A Euclidean Domain is a domain in which there exists a euclidean 

valuation.

2.5 Functors

By a functor we mean any function which returns a domain. A functor creates 
a domain, a member of some category. A functor creates a domain by storing 
functions into a template given by its target category.
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Domains can only be built through functors. Basic domains can be built by 
functors bound to identifiers, for example the Integers, however more complex 
domains are built by functors which may take parameters, the parameters may 
be first order objects, for example Symbols, or they may be themselves domains. 
One functor which takes both a first order object and a domain as parameters is 
UnivariatePolynomial The functor takes as parameters a Symbol and a domain 
which is a Commutative Ring. The Symbol corresponds to the variable in the 
polynomial and the coefficient domain corresponds to the Commutative Ring 
which must be supplied.

2.6 M athem atical V iew point

D efinition. 3 A Category C consists of two collections. One collection is known 

as the objects of C, or Obj(C), the other is known as the arrows of C, or Arr(C). 
For each arrow, f, there exists two associated objects, the source of f, called 

source(f) and the target off ,  called target (f).
The following rules must be satisfied also: 

given a Category C:

/  C A r r (C )) A (source(g) =  ta rg e t( f) )  =>
((3g o f  £  A rr(C ))  A (source(g o / )  =  source(f))  A (target(g  o / )  =  
target (g)))

for every object c there exists a unique identity arrow on c, called idc 

V k , g J  e  A r r (C ) => { { k o ( g o f ) ,  ( k o g ) o f  e  A rr(C ))  A { k o ( g o f )  =  ( h o g )  o f ) )  

^ f  C A rr(C )  ((idtarget o f  — f )  A ( f  o ids o u r c e f ) )

AXIOMs category structure is based upon this mathematical category theory. In 
AXIOMs category structure, the exported functions are analogous to arrows and 
domains are analogous to objects.
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Chapter 3

Im plem entation of Straight Line 
Programs in AXIOM

We have seen that the basic structure for a Straight Line Program, used to 
represent polynomials, may be realised by a list of Straight Line Instructions, 
one of which is tagged as the return value. In order to implement SLPs we have 
created a set of Axiom Domains which we shall describe in the following.

3.1 T he O pN ode D om ain

This domain contains four values to represent the four different operations which 
may comprise an SLP, plus, minus, times and quotient OpNodes are represented 
by Smalllntegers, the simplest data type available, ie. we have the equivalent of 
a C enum.

3.2 T he S traightL inelnstruction  D om ain

Elements of this domain are of three different types:
constant nodes - these represent the constants in the polynomial, they are rep­
resented by elements of the base ring of the polynomial, paired with a list of
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residues relative to the list of moduli of section 3.16.
input nodes - these represent the variables of the polynomial, they are represented 
as the symbols.
operation nodes - these represent operations in the evaluation tree, for the polyno­
mial, they are represented by elements of OpNode, and two integers which should 
be taken as pointers to the instruction at the position in the program.

3.3 T he StraightL ineProgram  D om ain

Elements of this domain comprise a list of Straight Line Instructions 3.2 which 
are intended to be evaluated consecutively. The main operation implemented in 
this domain is the merge operation, which merges two or more SLPs together, 
so that repeated operations only appear once, i.e. one form of redundancy is 
removed.
We also store a label associated with the instruction list to identify the program.

3.4 T he Eval D om ain

This domain contains evaluation functions, the algorithms used are those of sec­
tion 4.2 and 4.3. We have implemented three complete evaluation functions for:

• Division free SLPs, if a division node is encountered, an error is raised.

• Division free SLPs, if a division node is encountered, the value failed is 
returned.

• SLPs with division, the value returned is in the quotient field of R , where 
R  is the base ring, i.e. Fraction(R).

A partial evaluation function has also been implemented.
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3.5 T he EvalM od D om ain

This domain contains evaluation functions which work over modular fields. We 
have implemented the following functions:

• A complete evaluation function which evaluates the SLP over a number 
of modular fields, then combines these results using the Chinese remainder 
theorem.

• A complete evaluation function which evaluates the SLP over a given mod­
ular field.

• A partial evaluation function.

• A function to set the residues which correspond to every constant node in 
an SLP.

3.6 T he C onstruct D om ain

This domain contains functions which construct SLPs given the sparse form rep­
resentation. We describe the two algorithms implemented.

3.6 .1  N a ive  version

This algorithm splits the sparse form polynomial into a sum of power products, 
each power is formed by using an addition chain technique, see section 3.6.3, 
these are multiplied, the resulting products are then summed.

3 .6 .2  Factor tech n iqu e

1 Factorise the sparse form polynomial, using AXIOMs sparse form factoriser, 
for each factor
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1.1 break the factor into a sum of monomials 
for each monomial

1.2.1 split the monomial into a product of powers of single variables 
for each variable

1.2.2.1 do we have this variable

yes —> add multiplication nodes to the multiplication se­
quence until the variable is raised to the required power 
using the addition chain techniques of section. 3.6.3 

no —> create input node corresponding to the variable fol­
lowed by the multiplication sequence the creation of which 
has been described

1.2.2.2 make balanced binary product tree to represent the mono­
mial

1.3 make balanced binary summation tree to represent the factor

1.4 make balanced binary product tree to represent each factor being raised 
to some power

2 make balanced binary product tree to represent the polynomial

We create balanced binary trees in order to limit the depth of the SLP being 
created.

3 .6 .3  A d d itio n  C hains

The following section has been mostly taken from Knuth [14]. We shall consider 
the problem of constructing an SLP which calculates the polynomial x n. Due 
to the additive nature of exponentiation, this problem reduces to the problem of 
constructing an addition chain for  n, that is a sequence of integers:

1 =  do 5 &I1 ' '  ’ } ar = n 

with the property that =  aj +  , for some k < j  < i.
Once this addition chain has been calculated, we may create an SLP of the fol­
lowing form:
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line lq : InputNode : x

line Li : OperationNode : (times line Lj, line

where the line lt returns the value x n. 

binary m ethod

We first consider a class of addition chains called binary addition chains, which 
are perhaps the most intuitive of addition chains. Some mathematicians believed 
that these were optimal (shortest) addition chains, however we shall see an ex­
ample, where this is not the case.
The algorithm for creating binary addition chains follows:

1 Initialise: set Y to 1; set the list to [Y]

2 while Y  < n repeat

2.1 find the largest element on the list X  s.t. V  +  X  <  n

2.2 append Y  +  X  to the list set Y  +- Y +  X

3 return the list thus being formed

We consider an example of an SLP,created using the binary method to represent 
the polynomial which in sparse representation is x 6. The relevant addition chain 
is:

1, 2 = 1  +  1, 4 =  2 +  2, 6 =  4 +  2 

The corresponding set of powers of x  are:

2 4 2 2 6 4 2r p  r p  --- /y» J/ />» /T*   *P ' P  /r»   'P  'P ̂ *1/ d /  'T* oO  ̂ tv  1 *JU  ̂ w

and the corresponding SLP is:
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line 1 : Input node : x
line 2 : Operation node : (times line 1, line 1)
line 3 : Operation node : (times line 2, line 2)
line 4 : Operation node : (times line 3, line 2) >

Factor m ethod

As promised we shall demonstrate a case where the binary method does not 
return the smallest possible addition chain. The smallest value for n where a 
smaller addition chain may be constructed by another means is when n =  15. 
The binary method would produce the chain:

1, 2 = 1  +  1, 4 =  2 +  2, 8 =  4 +  4, 12 =  8 +  4, 14 =  12 +  2, 15 =  14 +  1

which has 7 members, however smaller addition chains exist, with only 6 mem­
bers, for example:

1, 2 = 1  +  1, 4 =  2 +  2, 5 =  4 +  1, 10 =  5 +  5, 15 =  10 +  5

We notice that this latter chain, in essence calculates m  =  5 followed by 3m  =  
15. This is an example of a chain constructed using the factor method of chain 
creation. If n =  pq where p is the smallest prime factor of n and q > 1. Then we 
may proceed to calculate x n by first calculating xp, and then raising this quantity 
to the qth power. If n is prime, we may caculate xn_1 and multiply by x. For 
example, we shall consider an addition chain which calculates 31 =  30 +  1 =  
(6 * 5) +  1, which is prime:

1, 2 =  1 +  1, 4 =  2+2, 6 =  4+2, 12 =  6+6, 24 =  12+12, 30 =  24+6, 31 =  30+1

However sometimes it is best to just use the binary method in this case. Repeated 
application of these rules will return xn.
If we allow division nodes in our representation we may utilise addition-subtraction 
chains, that is a sequence of integers:

1 =  a0, (+, • • •, aT =  n
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with the property that =  a,j +  a*, V a* =  <+■ — a*,, for some k < j < i .
The element of the chain a* =  a,j — will correspond to the operation :

line ^  : OperationNode : (divide line Lji line Lk)

we display an addition-subtraction chain to calculate 31 =  32 — 1 which only 
has seven elements, this can be compared to the eight elements of the previous 
addition chain:

1, 2 =  1 +  1, 4 =  2 +  2, 8 =  4 +  4, 16 =  8 +  8, 32 =  16 +  16,31 =  32 -  1

3.7 T he C onstructC om pileE val D om ain

This domain holds functions which allow a special type of evaluation which is 
expounded in greater detail in section 4.5. The domain includes:

• Construction programs which construct Aldor [Appendix A] and Lisp [Ap­
pendix B] programs.

• Functions to compile and load the constructed programs.

• Functions to evaluate an SLP, using the compiled programs.

3.8 T he SL P B ound D om ain

This domain contains functions to calculate bounds for an SLP evaluation, also 
functions to provide bounds for coefficients. The bounds that we require are all 
based on initially finding bounds to the coefficients, which we find by evaluating
the polynomial at the point (1, • • •, 1) using a form of evaluation where all con­
stants are replaced by their absolute value, also all subtractions are replaced by 
addions and all quotients replaced by multiplications. A faster ’evaluation’ tech­
nique that we discovered which also finds a bound to the evaluation is described 
in 4.8.
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3.9 T he C om pression D om ain

The simplest form of compression we implement is to remove any repeated op­
erations, in a similar way to the merge operation given in section 4.4. Other 
optimisations we implement make use of the identities:

1.x =  x 

x.O = 0 

x  +  0 =  x

We consider a fundamental problem which compression techniques attem pt to 
deal with. Consider the following arithmetic network and its evaluation at x  =  2:

+
/  \

*  *

\ /  \  
y >

=  >~   o * *
/  \ /  \  

4 y 2

x ly +  xy 4y + 2y 6y

Of course the final form is the form we would prefer, however the resolution of 
this problem is far from straight-forward. In the next section we shall describe 
various compression techniques and propose a new resolution to the problem.

3.10 Traditional Techniques

Some work has been done on compression of SLPs by Nathalie Revol during her 
PhD work [26] [27] extending the work of Miller, Ramachandran and Kaltofen 
[19]. We shall briefly describe this below.
The method consists of the repeated application of a procedure they term a 
phase. Each phase consists of three procedures, termed MM, Eval+ and Shunt 
by Miller, Ramachandran and Kaltofen (generalizations of these procedures are
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termed respectivly Group, Eval and PartialEval by Revol).
We shall now discuss the operation of these different steps:

3.10 .1  M M

This operation groups together plus nodes by performing products on Connection 
Matrices, that is matrices which specify the connectivity of the SLP.

3 .10 .2  E val+

This operation compresses all plus nodes where both children are constant leaves 
into one constant node.

3 .10 .3  Shunt

This operation compresses all multiplication nodes in a way analogous to Eval+. 
It then compresses trees of the form c\x +  c^x where x  is an arbitrary node and 
ci, C2 are arbitrary constant nodes, to trees of the form (ci +  c^jx, where the 
operation (ci +  C2) has been performed contracting it to a single node.

3.11 op eration-N od e Envelopes

In order to perform our compression, we have designed a compression technique, 
which we believe to be effective for SLPs. First we must make some definitions, 
which are important for our method:

%

Definition:
We define a p lus, m inus, tim es  or q u o tien t envelope to be a section of the 
DAG, made up of contiguous plus (respectively minus, times or quotient) nodes, 
and moreover any node may only be referenced by one other node in a given 
envelope.
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We shall first consider plus envelopes:
The technique works by considering the nodes on the periphery of the envelope. 

If we encounter nodes of the form, *N̂  where Cj is a constant node, we

vab Cj
may then match these periphery subtrees val{. For every one of these periphery 
subtrees we find any other equal subtrees on the same periphery, we may form a 
partition based on this, for every envelope. We may now form an index, with a 
representative element from each partition. We call this index J. We now sum 
the constants in each partition. We are now able to replace each partition by a 
sum of the following nodes:

valj ej
in other words, we make the following compression:

+
/  \  

+ +

+  •

/  \  
vali Ci

' X  \  
vah

+
/  \  

+ +

+  •

/  \  
valjeJ E i z i j d

The above compression makes use of the distributive rule:

aci +  ac2 =  a(ci +  c2)

The associative rules for plus and multiplication:

(aci)c2 =  a(cic2)

(a +  Ci) +  c2 =  a T (ci +  c2) 

may be used on times envelopes and plus envelopes respectively.
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3.12 T he CoefFConstruct D om ain

This domain contains functions to construct SLPs given a list of SLPs which rep­
resent the coefficients. A subset of these polynomials are univariate polynomials, 
we have a function specifically to construct these given values from the Ring.

3.13 T he StraightLineV alue D om ain

Elements of this domain are intended to represent polynomials. The represen­
tation consists of a pointer to a Straight-Line Program and a Straight-Line In­

struction within that program. Therefore it becomes possible to represent many 
polynomials, using the same Straight-Line Programs, but different return instruc­
tions. This ability of representing different polynomials with the same program 
is demonstrated for example in the interpolation algorithm of section 5.5.
Other quantities that we store for each Straight-Line Value are:

• A degree list, this is a list of the exact degrees for each variable, stored as 
a union of degree and failed for the case that the degree is not known yet, 
or we only have an upper bound to the degree.

• A total degree, the total degree of the system stored as a union of degree 
and failed with the same meaning as for the degree list.

• A division free flag to record whether the system is division free or not.

These quantities are stored as they may take some time to calculate, for example, 
the degree list would require a complete interpolation for each variable, followed 
by possibly many evaluations to check whether the leading coefficients were zero 
or not.
We shall describe some of the operations that we have implemented for this 
domain. First we consider that the domain is intended to be in the category 
CommutativeRing, that is Rings with a multiplicative identity where multiplica­
tion is commutative. To satisfy this condition, it is necessary to export various
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functions, for example:

• Functions which implement the arithmetic operations, * , +  , — , * *

• Functions to return the multiplicative and additive identities, 0 , 1

• A function to implement the equality operator, =.

We also implement various other functions, which will be required by the gcd 
function, we intend to implement.
The first we describe are a set of functions, with very similar implementations. 
That is, the function makes a call, starting at the return node of the SLP then 
descending the DAG, the recursion terminating at the leaf nodes. On the return 
phase a value (dependant on the function) will be returned, this may be altered 
at each level of the recursion. Many of the nodes in the SLP may be accessed 
multiple times. This allows us to make an optimisation: we store a global array 
of boolean flags, which say whether a node has been accessed before or not. This 
saves us from repeatedly calculating the same value. These functions are:

• The function depth:
At a leaf node, a depth value of one will be returned.
At an internal node, nodei, a call will be made on each of the nodes pointed 
to by nodei. The maximum of the return values plus one will be returned. 
This returns the depth of an SLP.

• The function slp2sparse:
This returns a value from the domain Polynomial(R). This domain holds 
values which are polynomials with a base ring denoted by R.

1) The node is an input node; this may be thought of as a monic univariate
polynomial. This is the value returned.

2) The node is a constant node; this may be thought of as a constant
polynomial. This is the value returned.

3) The node is an operation node;
if the node is Operation node : (o : line i, line j ) ,  where o is the 
instruction
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The function makes calls on the nodes corresponding to line i and line 
j, the polynomials returned by these calls we shall denote pi and Pj 
respectivly. The return value will be the polynomial pi o pj.

The final value returned is the value which corresponds to the return node 
of the SLP.
We note that for large SLPs this is an inefficient method. It would be more 
efficient to combine the technique of Zippel (pg. 242 of Effective Polynomial 
Computation[30]) with the interpolation method of section 5.5 taken from 
Kaltofen [11].
Exam ple
An example to show how this function would operate on an SLP which 
represents the polynomial x 2 +  2x:

instruction list returned polynomial
line 1 : Input node : x X

line 2 : Constant node : 2 2
line 3 : Operation node : (times line 1, line 1) z 2

line 4 : Operation node : (times line 2, line 1) 2x
line 5 : Operation node : (plus line 3, line 4) > x 2 +  2x

• The function variables?
This returns a list of the variables which appear in the SLP.

• The function slpDegree
This returns a bound on the degree of the polynomial. We may not claim 

that it is equal to the degree of the polynomial, as we may get cancellation 
of leading coefficients, as shown in the following example.
Exam ple
We may represent the polynomial which in sparse form is 2x +  1, using the 
following SLP:

line 1 ConstantNode : 1
line 2 Input node : x
line 3 ConstantNode : 2
line 4 Operation node : (times line 2, line 3)
line 5 Operation node : (times line 2, line 2)
line 6 ConstantNode : 3
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line 7 : Operation node : (times line 5, line 6) 
line 8 : Operation node : (plus line 1, line 4) 
line 9 : Operation node : (plus line 7, line 8) 
line 10: Operation node : (minus line 9, line 7) >

This is in essence a coding for the expression 3x2 +  2x +  1 — 3x2: the 
slpDegree is two, however the degree of the polynomial is only one.

• The function slpTotalDegree
This returns a bound on the total-degree of the polynomial. We may 

not claim it is equal to the total-degree, the same reason as for slpDegree 
applies. It is useful for our gcd algorithms, as it forms a bound on the 
degree of the leading variable in the translated polynomials which occur in 
the gcd algorithm of chapter 6.

In addition we export

• construction functions to allow us to build the objects.

• access functions:

-  instruction? which returns the return instruction of the SLP

— program? which returns the program of the SLP

and the corresponding functions to set these quantities

• evaluation functions to perform full and partial evaluation, over both mod­
ular and non-modular rings, for details see chapter 4.

• some equality based functions:

— a zeroTest? function, this requires the set of moduli (of section 3.16 
to be set. It performs evaluations over each modular field, however 
a Chinese Remainder step (detailed in appendix C) is not necessary. 
This is useful for equality checking.

-  eqConstant which tests whether an SLP is constant, this is required to 
check that the translation stage of the gcd algorithm in chapter 6 has 
resulted in a constant leading coefficient. This is a required property 
for our algorithm to work..
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-  various exact degree functions, these need to find the last non-zero 
coefficient of a polynomial.

3.14 Interpolation  D om ains

by interpolation we mean the determination of the coefficients of a polynomial. 
We have implemented functions to perform Lagrange interpolation for multivari­
ate StraightLineValues. This technique is detailed in section 5.2. Also we have 
implemented the seperate technique detailed in section 5.5, which relies more 
heavily on the specific structure of SLPs.

3.15 T he Gcd D om ain

This domain contains functions gcd(slp\, slp2) and exact Quo (slpi, slp2) required 
to make it a GcdDomain. The gcd code uses a Las-Vegas version of the Monte 
Carlo gcd algorithm given by Kaltofen in [11].

3.16 A n im proved version

After producing code to implement the Gcd domain mentioned above, it became 
apparent that due to the modular setting used to reduce the cost of the arithmetic 
necessary, much redundant copying of programs was taking place. The reason 
was that in different moduli the operation and input nodes are not affected. 
This consideration requires changes in the representation at the StraightLineln- 
struction level of the SLP hierarchy. We shall consider the changes necessary to 
accomodate this problem. Constant nodes
With the old system a constant node would consist of simply a value from the 
underlying base Ring. If we require to work over a sequence of modular fields we 
require to store a set of SLPs, the base ring being the respective modular field. 
In our improved version, every constant node is stored as an element of the base 
ring paired with an ordered set of residues, in each of a set of moduli. If we
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require to increase the number of moduli, we must add to the set of moduli, and 
update the set of residues, for every constant node.

P o in te rs  to  th e  C o n s tan t nodes
When adding a modulus to the set of moduli for an SLP, it is necessary to update 
the sets of residues for each constant node. In order to remove the requirement 
of traversing the entire SLP, in order to find the constant nodes, we may store a 
set of pointers together with each SLP, pointing to the constant nodes. We may 
then access the node directly in order to calculate and store the new residue.

3.17 T he M onte Carlo D om ains

We consider the problems that occur when we attem pt to embed a Monte Carlo 
domain, that is a domain which includes Monte Carlo algorithms (for example 
the equality checking algorithm detailed in section 4.14), in the AXIOM category 
heirarchy. Namely that the heirarchy and algorithms therein are not designed 
with Monte Carlo algorithms in mind. In other words, consider a domain which 
contains algorithms which call some Monte Carlo algorithms from some domain 
lower down the category heirarchy. This algorithm will have been designed with 
the expectation that the results that it obtains from any algorithm will be de- 
terministically correct, clearly not possible if the algorithm is Monte Carlo (by 
definition). It would be necessary to make certain accomodations in order to 
implement such an embedding.

D efin ition  3.1 We define the pre-emptive probability of incorrectness of objects 

in a Monte Carlo domain, as the probability of incorrectness of the arguments to 

an algorithm.

The pre-emptive probabilities of incorrectness may be combined to give a lower 
bound to the probability of incorrectness of the value returned by an algorithm.

D efin ition  3.2 We define the implicit probability of incorrectness as the extra
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probability of incorrectness added by a specific algorithm. The implicit probability 
of incorrectness of an algorithm together with the pre-emptive probabilities of 
incorrectness of the arguments may be combined to give the final probability that 
the answer is incorrect.

Firstly consider AXIOMs system of inheriting commands from a domain, this 
would require that the probability of correctness be stored together with the 
object. Now if we perform some Monte Carlo algorithm on two probabilistic 
objects where the probability that these objects are incorrect is pi and p2, then the 
maximum probability that the answer returned is incorrect will be the probability 
of incorrectness if the two events are independent of each other. We justify 
this statement using the following argument: A bound on the probability of the 
correctness of two events is the sum of the probabilities. However this does not 
take into account any dependance or otherwise of the two events. We argue that 
in our case if there is any dependance between the two events then the probability 
of correctness of one event will in fact increase the probability of correctness of 
the other. Therefore an upper bound to the probability of incorrectness may 
be arrived at by assuming that the two events are independant. This may be 
calculated using the following formula, pi +  p2 — PiP2 - This is the pre-emptive 
probability defined above. Any Monte Carlo algorithm will also introduce a 
further implicit probability, we denote this Pimp- Again we may find an upper 
bound by assuming that the two events are independant, we thus arrive at the 
expression:

P i +  P2 -  P1P2 +  Pimp -  PimpiPl + P 2 -  P1P2) (3-1)

3.17 .1  E xam ple

We consider the problem of determining whether /i(x , y) =  / 2 OE, y) where degx(fi(x ,  y)) =  
10, degy(fi(x ,y ))  = 15 and degx( f2(x,y)) = 15, degy( /2(z ,y)) = 10 
Initially we consider the problem where the probabilities that / i  and f 2 are incor­
rect is zero. This means that they have been derived exclusivly from deterministic 
algorithms.
The equality test we shall perform will involve ten evaluations. In the following 
we calculate the probability that we get an incorrect answer.
We shall work in a space of size p x p, where p > 215. We may do this if we do
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arithmetic mod p. A good value for p is 65521, this is the smallest prime < 216;
i.e. can be stored in one 16 bit word.
maximum number of zeros =  max =  65521 * 15 * 2 — 152 =  1965405 
number of points =  pts =  655212 =  4294967296
probability of one evaluation point being a zero whilst f \ ( x , y )  — f 2(x, y)  is not
iHpntiVnllv 7Prn — maX — 1965405identically zero -  ptg -  ^294967296
probability of ten evaluation points being zero whilst f i { x , y )  — f 2(x, y)  is not 

identically zero =  ^  4 * 10~3̂
this is the propability of the answer being incorrect

Now we shall consider the same problem where the probabilities of incorrectness 
of f \  and f 2 are 2-16, 2~24 respectivly.
The smallest probability that we may return an incorrect answer is :

2 _ 16 +  2-24 _  2 - I 6 -2 4 224 +  216 +  1
240

if we substitute this and the inherent probability calculated above into equation
3.1 we obtain the following value

224 +  216 +  1 /  1965405 \ 10 /  1965405 \ 10 224 +  216 +  1
Z*5 +  \ 4294967296/ ~ V42949672967 * 240

w 1.5* 10~5

The problem that arises in AXIOM is that it is not always possible to achieve a 
given absolute probability. This is because the preemptive probability of incor­
rectness of the arguments limit the probability of correctness of the answer. The 
best we may hope to achieve is to limit the implicit probability of incorrectness.

3.17 .2  H ow  w e m ay em bed  th is  id ea  in  A X IO M

We shall now consider how it would be possible to achieve an embedding of a 
Monte Carlo gcd domain in AXIOM. We must make sure that as an attribute, the 
domain has the category of GcdDomain. We prepose tha t a global variable may 
be defined in the Monte Carlo domain, which determines the inherent probability 
cost induced by any gcd command. If we use the method suggested by Kaltofen
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[1 1 ] this will be 2 Peq +  Pe2g where Peq is the probability allowed for an incorrect 
result from an equality test, see section 6.5. We would allow the user to alter 
this value, by exporting a function which could alter the global variable which 
specifies the implicit probability allowed for an incorrect answer. A lternately  we 
could specify that the implicit probability was a parameter for the domain.
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Chapter 4

Evaluation strategies,

4.1 Introduction

In this chapter we describe evaluation strategies. In section 4.2 we talk about 
complete evaluation of an SLP, that is the specialisation of every variable in 
the program. Complete evaluation is necessary during equality checking, which 
we may reduce to zero checking of the difference of the two SLPs. We discuss 
different methods of equality checking in greater detail in sections 4.2, 4.12, 4.13 
and 4.14. Complete evaluation is also necessary during checking whether an SLP 
is a constant polynomial. In section 4.3 we discuss partial evaluation of an SLP, 
that is the specialisation of a subset of the variables in a program. In section
4.4 we discuss the methods used for merging SLPs, this is the process used to 
remove redundant (repeated) operations when combining programs. In section
4.5 we discuss a method of evaluation which constructs Aldor or Lisp programs to 
perform the evaluation, which may be compiled before being executed. In section 
4.8 we discuss a fast method of calculating bounds to the size of an evaluation. 
In section 4.14 we discuss a classic Monte Carlo technique for equality checking 
due to Schwartz [10].
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4.2 C om plete E valuation o f a Straight Line P ro­

gram

The technique used to perform complete evaluation is a fairly straight-forward 
one:

1 . set up an array, to hold intermediate values from the base field, denote the 
array A

2 . iterate through each node in SLP, at each step denote the current node by 
node:

(a) if node is a constant node, set the corresponding element of A  to this 
constant,

(b) if node is an input node, set the corresponding element of A  to the 
required specialisation,

(c) if node is an operation node, perform the corresponding operation on 
the elements of A which corresponds to the nodes pointed to by the 
pointers of node. Finally store the result in the element of A  which 
corresponds to node.

If an input node has not been given a value, this is an error, as the evaluation is 
not a complete evaluation. Also if the elements of A  corresponding to the pointers 
of an operation node have not been set, then this is an error. A constant from the 
base field will be returned. For efficiency we may evaluate at a number of small 
prime moduli, then use the C h i n e s e  r e m a i n d e r  t h e o r e m  (CRT) (see appendix [C]) 
to find the constant to return.

4.3 Partial evaluation  o f a Straight L ineProgram

The technique used to implement partial evaluation of an SLP is far more com­
plex than that for the complete evaluation as the return value is in fact an SLP
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which must be constructed, a far from simple operation, as any resultant shrink­
ing of the program will result in pointers being changed. This must be correctly 
reflected in the result.
As the following example shows, the result may be far from optimal. It would be 
a good idea to use a compression technique to improve the optimality.
Exam ple
We shall consider the example of the program which represents the polynomial 
x 2y +  xy, that is:

line 1 Input node
line 2 Input node
line 3 Operation node
line 4 Operation node
line 5 Operation node
line 6 Operation node

y
X

(times , line 2 , line 2 )

(times , line 3 , line 1 )

(times , line 2 , line 1 )

(plus , line 4 , line 5)

If we perform the partial evaluation of this SLP at the point x = 2 , i.e. we 
perform the specialisation x = 2 , we get the SLP:

line 1 ConstantNode 4
line 2 ConstantNode 2

line 3 InputNode y
line 4 OperationNode (times
line 5 OperationNode (times
line 6 OperationNode (plus , >

This represents the polynomial 6y, which may be represented by the SLP:

line 1 : ConstantNode : 6

line 2  : InputNode : y
line 3 : OperationNode : (times , line 1 , line 2 ) >
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This constitutes a saving of fifty percent in the program length.

Partial evaluation is necessary during the Lagrange interpolation and Fourier 
interpolation of multivariate SLPs, we shall discuss these techniques in sections
5.2 and 5.3.

4.4  M erging

4 .4 .1  M erging  tw o SL Ps

The basic technique that we shall use is the following:

P ro g ra m  = =  Merge2 
in p u t (slpx , s lp 2)

1 . answer := the longest argument program.

2 . Iterate through the instructions of the shortest program ,

(a) check whether the current instruction is in the first program,

i. if so we need to store the position, as the pointers in any operations 
which point to this instruction will need to know the new position.

ii. if not and the instruction is an operation node,
we may need to change the pointers, before we add it to answer

If the lengths of the two argument programs, slpi and s/p2, are l\ and / 2 respec- 
tivly, we may assume WLOG. that /i > h- Each check takes 0(l\)  operations. 
As a check must be performed for each instruction in the second program, the 
merge operation takes 0(11/2) checks.
We note that step two involves locating two operations in the program already 
created, it is a good policy therefore to apply step one to the longest program.
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4 .4 .2  A n  im proved  m erge

If we first create a hash table containing the operations in slpi, then each of the 
check operations will be cheaper.
Suppose the creation of one hash table element takes hc basic operations, and 
each look up takes hi basic operations.
Then the new merge operation takes t basic operations, where hcli +  2 hil2 < t < 
hil\ -f  (2hi +  hc)l2-

hi and hc will be almost independant of /i, (they depend on the number of clashes 
that occur during creation of the hash table). If we assume that no clashes occur 
then the merge operation takes 0 (li  +  y  basic operations. We effectively reduce 
the complexity from quadratic to linear.
A problem with this technique occurs if h  is much greater than I2 , in this case the 
creation of the hash table becomes the overriding factor, hi has the same time 
complexity as /ic, therefore, it is again a good policy to take slpi as the longest 
program.

4 .4 .3  M erging  o f n SL Ps

A straight forward technique would be to use the following approach:
P ro g ra m  = =  Mergen 

in p u t (slpi • • • slpn)

1 . merged := slpi

2 . iterate i= 2  to n

(a) merged =  merge2 (merged,slpi)

The problem with this algorithm is that the variable merged will accumulate 
the result. As pointed out above the creation of the hash table will become the 
overriding factor. We now consider the complexity for this operation:
The merge operation will result in a smaller SLP. In the following 5i denotes the 
decrease in length of an argument SLP sip;, during the creation of its image under
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merge. I denotes the arithmetic mean of 1 < i < n, where k is the length of 
slpi.

Consider the time-complexity of the hash table creation, denote this complexity 
Ch.

Ch, = hcl\-\-hc{li-\-l2 — ̂ 2) +  ̂ c(^l +  ̂ 2 +  /3 — $2 — ̂ 3) +  ' * ' +  +  * ‘ ‘ +  ̂ n — ̂ 2 — ’ ’ '~Sn)
in the average case Si will be small so 

Ch ~  hc{nl\ +  {u — 1)^2 +  • • • +  ln)
= 0 { n 2l)

Also consider the time-complexity for looking up an element in a hash table, 
denote this complexity 
Ci =  hi{l2 +  • • • +  ln) = 0(nl)
so the complexity of Mergen is 0 ( h cn2l) +  0(hinl) = 0 ( n 2l)

4 .4 .4  A n  im proved m erge for n SL Ps

In order to merge n SLPs, rather than iteratively using merge2 on pairs of SLPs 
we create a routine specially designed for merging n-tuples of SLPs:

P ro g ra m  = =  BetterM ergen 
in p u t (slpi • • • slpn)

1. put slpi on the hash table

2. iterate through slp2 to slpn

(a) include slpi (the program under consideration) in result

(b) break if slpn reached

(c) put slpi on the hash table

We now consider the complexity analysis:
complexity of the hash table creation =  hc U = (n — 1)1 = 0(nl)
complexity of the hash table look up =  hcY!i=2 U = (n — 1)1 = 0(nl)  
so the complexity of BetterMergen is 0(nl)  basic operations.
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Once again for optimal performance the ordering of the SLPs with respect to 
their length is important. This ordering should be with the longest first, shortest 
last.

4.5 E valuation via. C om piled SLPs

We consider one technique of creating an ALDOR (see appendix A) program, 
which we may then compile to give an executable program which on execution will 
return the (complete or partial) evaluation of a specific SLP. The execution of the 
program when compiled will be faster than the execution of the general technique 
described in section 4.2. This is analogous to compiled versus interpreted normal 
code. The compilation will take some time, so this strategy is only good if the 
evaluation must be done many times. We note that it would be theoretically 
possible to use machine code for the representation thus cutting out the need 
for the compilation step, however this would require a different implementation 
for each architecture. A compromise would be to create a Lisp program (see 
appendix B), as this would cut out one stage of compilation.
As with interpreted evaluations a different style of program must be created for 
complete and partial evaluations.
Because of the cost implicit in the compilation step, one technique may be to use 
the interpreted evaluation method if the evaluation is to be repeated < n times 
(where n is the break even number of repetitions), or the compiled evaluation if 
the evaluation is to be repeated more than n times.
Exam ple
polynomial given in sparse representation is:

p(x, y) = x 2y2 +  1 (4.1)

original SLP is:
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slpi
line 1 InputNode
line 2 OperationNode
line 3 InputNode
line 4 OperationNode
line 5 OperationNode
line 6 ConstantNode
line 7 OperationNode

(times , line 1 , line 1 )

y
(times , line 3 , line 3)
(times , line 2 , line 4)
1

(plus , line 5 , line 6 ) >

In the following, we shall assume that this SLP is being held in a variable called 
’s lp i’.
A program which we may create to perform complete evaluation of slpi is: 

temp(x:INT,y:INT):INT == {
tl : = x;
t2 ; = tl * tl;
t3 ; = y;
t4 : = t3 * t3;
t5 ; = t2 * t4;
t6 : = l;
t7 : = t5 + t6;
t7

}

To construct such a program we could make a function call as follows:

exactEval(slpl,[*x,*y])$ConstructCompileEval(INT)

After the compilation of this program, to perform an evaluation we call the 
function temp, for example:

temp(2,3);
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will perform the evaluation of slpi at x =  2, y =  3 we would get the answer:

>37

It became apparent that creating a Lisp program to perform the evaluation was 
worthwhile, as the compilation time becomes negligable and the subsequent eval­
uations are considerably faster than the application of the Aldor functions, for 
the above problem the Lisp created is:

(defun dummy (lr p)
; *** this is where we put the compiled SLP ***
(setq tmp (make-array 6))
(setf (aref tmp 0) (rem (aref lr 2) p))
(setf (aref tmp 1) (rem (* (aref tmp 0) (aref tmp 0)) p))
(setf (aref tmp 2) (rem (aref lr 1) p))
(setf (aref tmp 3) (rem (* (aref tmp 2) (aref tmp 2)) p))
(setf (aref tmp 4) (rem (* (aref tmp 3) (aref tmp 1)) p))
(setf (aref tmp 5) (rem 1 p))
(setf (aref tmp 6) (rem (+ (aref tmp 5) (aref tmp 4)) p))
(aref tmp 6)

Note that this will perform a modular evaluation, where the modulus is the 
argument p.

4.6 E valuation o f non-division  free SLPs

We consider some of the problems encountered when evaluating non-division free 
SLPs. If we consider the method of section 4.2, on encountering a quotient node 
we must calculate in the field of fractions of the base ring. On subsequently 
encountering a return node we may retract to the base ring, as we are guaranteed 
that the value will be non-fractional. Failure of this retraction indicates that the 
SLP does not represent a polynomial. If we are evaluating over Zp for a number 
of prime moduli p, we may find an inverse in the modular field, usng the extended
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euclidean algorithm, Aldor includes a function expressly for that purpose. If we 
are using the method of section 4.5 then we must include a Lisp function which 
performs this algorithm, viz.:

;function to calculate the inverse of a value, in Z_p, use extended 
;euclidean algorithm 
(defun inv (x y)

(if (zerop x) (return-from inv (+ y 1)))
(setq ttmp y)
(setq u 0)
(setq v 1)
(while (not (= x 1))

(if (zerop x) (block-return inv (+ ttmp 1)))
(setq d (divide y x))
(setq tm x)
(setq x (cadr d))
(setq y tm)
(setq tm v)
(setq v (- u (* v (car d))))
(setq u tm))

(if (< v 0) (setq v (+ v ttmp))) 
v)

If an SLP is not division free there may be points at which a division by zero 
error may occur, this will be because a factor of the denominator which neces­
sarily cancels with a factor of the numerator evaluates to zero (here the terms 
numerator and denominator refer to the polynomials represented by the SLPs 
corresponding to the operations pointed to by the left and right pointers of the 
quotient operation causing the error). We note that in the case of a division by 
zero error, inv will return p-1- 1 , where p is the prime modulus; this is so that any 
function calling inv may be aware of the error and not expect a correct result.
An example of a line which corresponds to a division node, to be inserted in a 
Lisp function is the following; it will perform the call to inv, and in the case of 
an invalid return value will return p +  1 .

(setf (aref tmp 3) (rem (* (aref tmp 2) (setq i (inv (aref tmp 1) p)))
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p)) (if (= i (+ p 1)) (block-return dummy (+ p 1)))

An example of a valuation which displays this sort of error is detailed in the 
following. Consider an SLP equivalent to the polynomial:

x 2 — 1
p(x) = ------- = x + l

x — 1

viz.

slpi
line 1 ConstantNode
line 2 InputNode
line 3 OperationNode
line 4 OperationNode
line 5 OperationNode
line 6 OperationNode

: 1 
: x
: (times line 2 , line 2 )
: (minus line 3, line 1)
: (minus line 2 , line 1 )
: (quotient line 4, line 5) >

If we wish to evaluate p(x) at x  =  1, we might expect the result p{x) =  2 , however 
a straight forward evaluation would fail with a division by zero error at line six. 
During interpolations or equality checks we could simply try a different point, 
however if we specifically require the evaluation at this point then a solution 
would be to remove the division causing the problem. For example by using the 
technique of section 5.7, or by using the (p-adic) L’Hopital’s rule. A true division 
by zero error would imply that the SLP represented a rational function, using the 
techniques suggested above we would enter an infinite loop in this case (we will 
not encounter this problem, as we are only concerned with SLPs which represent 
polynomials (sums of power products) where this will never occur).

4 .7  R eturn ing m ultip le values

We may return more than one value from an SLP. We see an example of this 
in the interpolation technique given in section 5.5. In an SLP every coefficient 
corresponds to a different value. We shall see that there are situations where
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we would like to return more than just the evaluation of one of these values. 
One example is the calculation of the degree of a polynomial given in the mixed 
representation of section 5.2.1. To do this we could use the following algorithm.

1 . evaluate the entire SLP at each of the points specified in theorem 4.2 section 
4.11, return a vector of values which correspond to the evaluations of each 
coefficient at each of these values.

2 . return the index corresponding to the highest coefficient which returns a 
non-zero answer

It is necessary to perform fast complete evaluations of functions as repeated 
evaluations of the same program is necessary especially during equality checking. 
The same is not true of partial evaluations, so we have only implemented the 
conversion to Aldor programs which we may then compile.

A program which we may create to perform the partial evaluation at x  =  £ (where 
£ is an arbitrary point) of the SLP representing equation 4.1 is:

temp(x:INT):SLV(INT) == {
import from 0R,SLI(INT),SLP(INT); 
slpi:Symbol := *'slpi*’ ::Symbol; 
tl := x; 
t2 := tl * tl; 
iList:List(SLI(INT)) := [ 

construct(1), 
construct(t2), 
construct(y),
construct(construct(times),3,3), 
construct(construct(times),2,4), 
construct(construct(plus),1,5)]; 

inst:SLI(INT) := iList.6; 
construct(inst,construct(slpi,iList,[y]))

>

To construct such a program we could make a function call as follows:
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incompleteEval(slpi,[*x])$ConstructCompileEval(INT)

After the compilation we may form an SLP which represents a polynomial in 
y namely the polynomial given in 4.1 with x  specialised to a given value. For 
example we could make the call:

temp(2);

this would return the SLP:

slpi
line 1 ConstantNode 1

line 2 ConstantNode 4
line 3 InputNode y
line 4 OperationNode (times line 3, line 3)
line 5 OperationNode (times line 2, line 4)
line 6 OperationNode (plus line 1, line 5)

this represents the polynomial which in sparse form may be written Ay2 +  1, ie 
the evaluation of equation 4.1 at x = 2.

4.8  B ound calculation

We first recall some bounds which apply to polynomials over the integers that 
are relevent to our work. We take these from the literature:
A result due to Mignotte [18] (Theorem 4 .4 .4  in his work) states : 

if P  =  Qi • • • Qm =  £  a>h-jnX i ’ ’ ’ X n we have

L ( Q i )  - • • L(Qm) <  2 d l+ '"+dnM (P) <  2dl+m"+dn\\P\\ (4.2)
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in the previous L(P) is the length of a polynomial, it must not be confused with 
the length of an SLP, which we define in section 1.4, it is defined as:

L(P) = ' t \ a jl. . ,J  (4.3)
k=0

M (P )  is defined as the measure of a polynomial, we are not concerned with its 
definition, as from the previous we have:

L(Qi) • • • L(Qm) < 2‘'I+"'+c'" ||P || (4.4)

di is defined as the degree of P  in the variable X{.
| |P || is defined as:

1 1 * 1 1  =  ( £ K , . , J 2 ) 1 / 2

From this we may ascertain bounds which apply to the gcd of polynomials.

We propose two schemes for calculating bounds for the coefficients of a polyno­
mial represented as an SLP. The first scheme is for division-free SLPs, which are 
over the integers. It is a very fast technique and allows us to calculate a bound 
that enables the use of the Chinese remainder theorem. The second technique is 
for SLPs which may contain division nodes, they may also be over the rationals. 
It is also a fast technique, though will take roughly twice the time of the first 
technique (this is not surprising as the base field has been squared). It also allows
a bound to be calculated which enables the conversion described in appendix [C].
The basic idea is to do arithmetic to one significant figure (we shall use a binary 
base, as we are not concerned with the human readability of these bounds). We 
always round up and we work in absolute value. The algorithm for division free 
SLPs follows:
The idea is to build an array of values from the base field where each element of 

the array corresponds to a line in the program. Each value will be a bound to the 
evaluation of the program, up to the corresponding line, at the point (1 , • • •, 1 ). 
The final bound to the evaluation at this point will be a bound to any coefficient 
in the polynomial assuming every coefficient is positive. This may be achieved by 
a prior transformation as well as doubling the bound to accomodate the negative 
part of the ring.

1 . For every line in the program.
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(a) If the line is an input node store one in the corresponding array ele­
ment.

(b) If the line is a constant node store 2n+1 in the corresponding array ele­
ment, where the constant node is either anan_i • • • o0 or —anan_i • • • a0

(c) If the line is an operation node, there are three possibilities:
We shall assume that the line is the following: operation line i, line j 
where the value associated with line i is: a — anan - 1  • • • ao
and the value associated with line j is: b — £>m6m- i  • • • bo
assume WLOG that a > b,

i. the operation is plus or minus:
If n = m  then the corresponding value is 2n+2.
If n /  m, we may assume WLOG that n > m, the value required 
is (an +  2)2n.

ii. the operation is times:
The value corresponding to this node is 2̂ n+m+2^

The method which works for all SLPs over Q relies on finding a pair of values 
which we will term a rational bound. This we define as a bound on the numerator 
and a bound on the denominator of the value. That is, given q € Q s.t. q =  
find a pair of numbers (n, d) € Z x Z with n > n and d >  d.

We will specifically look for n =  2^ > n and d = 2^ > d.

1. For every line in the program.

(a) If the line is an input node, these will be specialised to 1 =  so we 
take h =  0 and d =  0.

(b) If the line is a constant node with value c =  we consider the

absolute value |c| =  

RogsdcdDl-
Cd\

We may take h = [log2(|cn |)] and d =

(c) If the line is an operation node which on evaluation of the SLP at 
(1, • • •, l)takes the value there are three possibilities:
We shall denote the values taken by the left and right arguments as 
^  and ^  respectively. We shall denote the rational bounds corre­

sponding to ^  and ^  as (In, Id) and (rn, r^) respectively and the 

corresponding exponent pairs (ln, Id) and (f n, f j )  respectively.
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i. The node is a times node:
Then % =0 bi Dr
So we need a bound on,
ai • aT < ln • rn < 2^n Tn) and bi - br < Id • rj < 2 ^ d r~d),
The exponent pair corresponding to this value is (ln +  f n, Id +  r^).

ii. The node is a division node:

Then f  = £ /£•
So we need a bound on,
cii-br < l n ' r d < 2^n +  r~d) and b r  ar < ld - rn < 2 ^ d +  rn) ,
The exponent pair corresponding to this node is (ln +  r~d, ld +  r~n).

iii. The node is a plus or minus node:

HPhcm —   Or__ (■T'l.br 0>rbl
l n e n  b ~  bl br -  bibr •
We treat all differences as summations, so we need a bound on,
aibr +  arbi <  lnrd +  rnld < max{2^n +  r rf), 2(r» +  W}

and bibT < ldrd < 2 ^d +  r~d),
unless ln +  fd = rn + Id in which case
aibr +  aTbi <  lnrd +  rnld < 2 ^n +  r~d +  1).
The exponent pair corresponding to this node is (max{/n +  rd, f n + 

^d\•> ldTd)i
In the exceptional case the bound for the numerator must be ln 4- 
f d +  1.

At the end of the computation (that is when we get to a return node), we will 
have a rational bound for the evaluation of the SLP at the point (1, • • •, 1) of 
(2 tT/, 2 d /y  mocjuiar which we must work in must be greater than the 

product of these values. We note that this rational bound is not a bound to 
the absolute value of the evaluation, but bounds to the absolute value of the 
numerator and denominator of the value of the evaluation.

By performing this computation on the SLP in this way we find an upper bound 
to the coefficients. We may find a smaller yet still valid bound by:

1. finding a product of primes YiPi such that f] Vi < 2£ , B  being the upper 
bound arrived at by the previous evaluation; the factor of two allows for 
negative numbers.

2. performing evaluations of the SLP in each of the modular fields Zp.
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3. finally raising these modular results to a bound in Z using the Chinese 
Remainder Theorem (CRT).

It is important that we do-not evaluate the power of two, because this may 
actually be a large number, we would instead like to just calculate the exponent 
e, then use that to find a sufficiently large set of primes as follows:

1. for a set of primes {pi, • • • ,Pi}

2. find a set {mi, • • •, m^} s.t. 2mi < p*

3. the set {pi, • • • ,p;} is sufficient if E my >  e
1 < j< i

We note tha t if we are simply holding the exponent we cannnot find a smaller 
bound by using the CRT.
We may also use the above technique for finding a bound to the evaluation at a 
specific point.

4.9  E quality testin g  via SLP evaluations

Due to the fact that SLP representation is a non-canonical representation, poly­
nomial equality testing becomes a non-trivial task. In order to check the equality 
of two polynomials represented by SLPs, SLPi and SLP 2, we consider the dif­
ference SLP representing the difference between the two polynomials, we denote 
this by d(xi, • • •, xn).We evaluate d(xi, • • •, xn) at enough points so that if we get 
zero evaluations at every point, we are guaranteed that d(x i, • ■ •, xn) is identically 
zero, ie. that SLP\ =  SLP2. We first consider the one dimensional case, namely 
is SLP\(x)  =  SLP2(x ) where £ is a scalar variable. Information we have about 
SLPi  and SLP2 is the SLPdegrees (see section 3.13) of the SLP in the variable x, 
these are in fact bounds for the actual degrees of the polynomials represented by 
SLP\  and SLP2 in x. The maximum of the two SLPdegrees, will form a bound 
for the degree of x  in the polynomial d(x). We denote the maximum by m.
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4.10 One D im ensional case

To check whether p(x) = q(x) we may solve the equivalent problem p(x) — q{x) =
0. We shall denote p(x) — q(x) by d(x), also the upper bound for the degree of 
d(x) in x  by degx. We perform evaluations of d(x) at each of the integers in the 
closed interval [0,degj.

Theorem  4.1 (Univariate zero test)
If  a polynomial p(x) evaluates to zero at at least degX(p{x)) +  1 points then 

p(x) = 0 
p r o o f :
Base case: I f degx(p(x)) = 0 then if  p(x) evaluates to 0 at at least one point, 
since it is a constant polynomial p(x) = 0.
Inductive Case: Assume as an inductive hypothesis that the theorem is true for 
a polynomial q s.t. degx(q) = n.
I f  a polynomial p(x), with degx(p(a:)) =  n 4- 1 evaluates to zero at n  +  2 points,
then by Rolle’s Theorem, there exists at least one point between each zero, s.t. 
dv(x) evaluates to zero at these points, ie. at at least n +  1 points.

has degree at most n, so by our inductive hypothesis, — 0*

Now =  0 => p(x) =  c for some constant c, but p(x) evaluates to zero at at
least one point, 

p{x) =  0
□

4.11 n D im ensional case

T h eo rem  4.2 i fd (x i, • • • , x n) = p (x i, • • • , x n) —q(xi, • • • , x n) evaluates to zero at 
every point in x • • • x X n where X i =  {xi\i € [0 • • • max{degXi(p), degXi(g)}] A  

Xi  G Z}  

then
p(x  i, • .. ,£ „ )  =  q(xi, - - - , x n) 
p r o o f :
Base case: The Univariate zero test 4-1 may be used as a basis for induction.
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Inductive case: Assume,

P{x  1 1 * * ’ 5 %i 5 *£(i+l,j) j * * * )  * ^ (n,j) )  ^ ( * ^ 1 5 * * * 5  * ^ « 5  *£(i+l,j) 5 * * * 5  )

or equivalently,
d{x i, ’ ’ ' ,Xi, •, X(nj)) 0

where X(i,j) £ Z
we /zare d(a:i, • • •, a;*, ify+ij), • • •, 5(n,j)) =  0 for degjfd)-^ 1 different values £(i+i,j) € 
Z.
now consider some arbitrary point £ =  (fi, • • •, &+i) 6 Z*+1 
we know that dproj(£i, • • •, &, 5(i+ljJ)) =  0 | 0 < j  < degj(p)
.*. the univariate polynomial dproj(£i, • • • ,& ,£) =  0 6?/ univariate zero test.
•*• PprojiO — 0 w/iere pproj- zs the projection of p onto R*+1 
.-. by induction d(xi, • • •, a:n) =  0 
.*. p ( z i ,- ••,£„) =

□

The problem with the above method is that the number of points at which eval­
uations must be performed is exponential in the number of variables. In fact the 
number of points at which we must evaluate is FK^ii +  1) • • • (dXn +  1)- This is 
clearly not a good state of affairs, especially when there are a lot of variables, we 
shall consider three other methods in sections 4.12, 4.13 and 4.14.

4.12 Sm all point m ethod

In this method of zero testing we test for a zero evaluation at one point, if this 
evaluation gives zero we evaluate at another point so close that the only way in 
which there could be another zero evaluation is if the polynomial was identically 
zero. In the univariate case we shall use a bound on the separation of roots, this is 
due to Mignotte M ignotte[18] (proposition 6.4.10 in his work); we shall denote 
this by B  in the following, whilst in the multivariate case we see that (modulus 
conjecture 4.1) after some manipulation we may also use this bound.
According to Mignotte, for the polynomial / :

B = d - (-d+2)/2.\\f\\l- d (4.5)
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where d is the degree of / .

Theorem  4.3 (Univariate Small Point Zero test)
given f  £ K[x], with f ( x  1) =  0, and f ( x i +  e) = 0; where 0 < e < B, then 
f ( x )  0. 
proof :
The proof is clear, see [18]

C onjecture 4.1 (M ultivariate zero test)
given f ( x i, • • •, xn) £ Q[x\, • • •, xn\, where f ( x i, • • •, xn) evaluates to zero at each 
corner of the n dimensional box, which has side i |1 < i < n of length Si =  
bound(e\,— Qn-i) ^ en ■ • •, x n) is identically zero, where ei is the

Mignotte bound f .5  applied to the polynomial f ( x  i, 0n_i).

A sym ptotics:
Clearly this technique involves evaluation at 2n points, where the points become 
exponentially small.

We have decided not to consider this technique any further as the number of 
points is exponential in the number of variables, also roots of polynomials can be 
very close as the following example demonstrates. Consider the following ’simple’ 
polynomials x 3 — 5 and x 2 — 3, working to two decimal places, these have roots 
1.73 and 1.70 respectively, these are only 0.03 apart, if we were to ask the question 
is (a;3 — 5)(x2 — 3) =  0 using the formula 4.5 we would allready have to consider 
points smaller than (O(108))-1.

4.13 Very large evaluation point m eth od

In this method of zero testing, we see that the problem may be solved by eval­
uating the polynomial at one very large point. In essence we show tha t if the 
evaluation comes to zero at one point, then either the polynomial is identically 
zero, or a factor exists which must have a coefficient which is higher than a certain 
upper limit for coefficients of any factor. Clearly the first option is the only pos­
sibility. However it is expensive to perform arithmetic with such large numbers
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(even using the Chinese Remainder Theorem). So a good technique would be to 
combine this technique with a Monte Carlo technique, so that in the non-zero 
case a result would with high probability be found relatively quickly. It would 
still be necessary to perform the large number evaluations to prove an exact zero. 
We first may use the Landau-Mignotte bound to calculate an upper bound on the 
possible size of any coefficients of the factors of the polynomial, which we shall 
denote p(x). This bound we shall denote B.

T h eo rem  4.4 (U n iv aria te  zero te s t , la rge  value m eth o d )
given p(x) E Z[x]

If  p(b) =  0 where b > B  A b E Z then p(x) = 0 
P r o o f :
p(b) = 0 => (x — b)\p(x) V p{x) =  0
the second option is the only possibility as b is too large

□

D efin ition  4.1 let multibound(f (xi, • • •, xn)) be defined as the point (Hi, • • •, B n) 
where Bi is one plus the bound on the right hand side of the inequality 4-4 applied 
to the polynomial /(H i, • • •, H*_i, • • •, x n).

Throughout the following theorem we shall define dXi to be degx. ( f ( x i , • • • , x n))
in f ( x i, • • •, xn). Also E shall be used to denote d\ +  b dn and bi to denote a
bound to the coefficients of the polynomial /(H i, • • * , • • • , x n).

T h eo rem  4.5 (M u ltiv a ria te  zero te s t ,  la rge  value m e th o d )
I f  f (B \ ,  • • •, Bn) = 0 where (Z?i, • • •, Bn) equals multibound(f (x i, • • •, x n)), then 
f ( x  u - - - , x n) = 0 .
P r o o f :
Base for Induction:
Since /(H i, • • •, Bn) = 0 then either (xn — B n) is a factor of /(H i, • • •, Hn_l5 xn) 
or / (H i,- - - ,H n_i , xn) is identically zero. However Bn is chosen to large such 
that the former is true.
.-. /(H i, • • • ,Hn_1}a;n) =  0 
Inductive case:
as inductive hypothesis assume that /(H i, • • •, B *, • • •, xn) = 0. Now either

69



( X i  -  B i )  is a factor of f ( B x, • • •, Bi-i, x it • • • , x n) or f ( B u  • • •, £*_i ,  x n)
is identically zero. However Bi is chosen to large for the former to be true.

f  i.BX) , Xi) ’ ' •, — 0
.-. 6?/ induction we have f ( x i, • • •, xn) =  0

□

4 .13 .1  C om p lex ity  A nalysis

We look at the complexity analysis for the size of the evaluation of f ( B x, • • •, B n)
/(B i, • • •, B„) =  0((- • • ((B%‘)Bn_l )d’' - 1 ■ ■ ■ B r f ' )
where:
Bi =  2E||/(a;i, • • • <  2E6i,
B2 =  2e62 < 2E<i2(2E61)‘iS
and Bi =  2Edi(- • • (2s d2(2E61)rfl)rfi • • •)*-'
We notice that the number of modular fields needed to perform this evaluation 
is doubly exponential.

4.14  M onte-C arlo equality checking

Due to the high time complexity overheads of deterministic equality checking, 
we shall consider a Monte Carlo equality checking method. We take this method 
from Schwartz [10]. The basic idea is to evaluate the SLP at a number of random 
points in some space. If the space is big enough then we are guaranteed tha t at 
some points the SLP will not evaluate to zero, unless the polynomial which is 
represented by the SLP is identically zero. By making the space of a sufficient 
size we may ensure that the probability of an incorrect answer to the solution of 
the question “is the SLP identically zero or not?” is less than a given value. We 
quote two results due to Schwartz:

T h e o rem  4.6 Suppose that Q is a polynomial in the variables 2Ci,-*-,o;n and 
that Q is not identically zero, suppose also that 7i, • • •, In are any non-empty sets 
of elements in the domain of the coefficients of Q. Let the degree of Q in the
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variable Xi be denoted by di. Then in the set I\ x • • • x In, Q has at most

d l l f y  ’ ' ' | d-n | +  C?21^111^31 ’ ' * | |  +  • • • +  C?n| A|  ' * ‘ | ^ n - l |

=  |/i x • • • x /„ | J2  |7 i (4.6)
i= l  l1*!

zero points.
□

C oro lla ry  4.1 Let I  = Ix = ••• = In and let |7| > cdeg(Q) then if  Q is not 
identically zero, the number of elements of I\ x • • • x In which are zeros of Q is 
at most c~l \I\n .

□

We can therefore test a purported identity Q = 0 by the following Monte Carlo 
procedure. Choose I  such that |/ |  > C  deg(Q) with C  significantly greater than
1. Then in order to test the purported identity where the probability of failure 
is bounded by e we must choose an N , such that e > C~N. Now we randomly 
choose N  points y = (yi, • • •, yn) from I\ x * • • x In. If Q(y) is zero for every y 
then we have proven the above identity with probability of failure less than e.

One of the more efficient ways of evaluating SLPs is by using modular arithmetic 
since multiplication and division become much cheaper operations. In order to 
investigate how we may use modular arithmetic to perform Monte Carlo equality 
tests we make the following definitions. These and the following results are also 
taken from Schwartz.

D efin ition  4.2 Let Q G Z [ x i, • • •, x n ]

(a) A modular zero of Q is an (n +  1 )-tuple (ii, • • •, in,p) of integers, the last 
integer p being prime, such that Q(i\, - • •, in) =  0 mod p.
(b) We write maxv(Q,k) for the maximum absolute value which Q can assume on 
the rectangle \ x j \  < k , j  = 1, • • •, n.

T h e o rem  4.7 Suppose that the suppositions of theorem f .6  are satisfied. Sup­
pose also that Q is over the integers, that I  =  I\ =  • • • =  In = {z|0 < i < k}
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and that L =  maxv(Q , k). Let J  be any finite set of primes, and suppose that the 
product of any m  of the primes in J  exceeds L .  Then in the set Ii x • • • x In x J, 
Q has at most:

! ' . x  +  (4.7)

modular zero points.
□

C oro lla ry  4.2 Let 2k + l >  cdeg(Q) and suppose that the product of the c~l \ J\ + 
1 smallest primes in J  exceeds maxv(Q , k). Then if  Q is not identically zero, the 
number of elements of I\ x • • • x In x J  which are zeros of Q is at most 2c~1\I\nm

In much the same way as for corollary 4.1 we may test a purported identity 
Q = 0 by the following Monte Carlo procedure. Set 2k +  1 > cdeg(Q), select J  
to be the smallest set s.t. n j<=jj > maxv(Q , k) and choose N  random points s.t. 
e < c~N, where e is the probability of failure. If we get modular zeros at each of 
these points, then we have our purported identity with the required probability 
of failure.
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Chapter 5

Interpolation techniques

By interpolation of a polynomial we mean a technique for determining the coef­
ficients of the polynomial. The first couple of techniques we consider require the 
evaluation of the polynomial at a number of points.

5.1 T he G eneral so lu tion  to  th e  in terpolation  

problem

We show how to perform interpolation of the polynomial p{xi, • • • ,rrm) given by 
the following equation, with respect to the variable X \ \

p ( x  1 , - -  • , £ „ )  =  Co(x2,- ■• , Xm )x1  +  Ci(x2, ■■■,xm ) x \  H-------- \ -Cn(x2, - -  - , X m ) x "

(5.1)
That is, to determine the coefficients {ci(x2 , • • • ,x m) : 0 <  i  < n}, which may 

themselves be multivariate polynomials.

We take n +  1 arbitrary points, for example, £0 =  0, • • •, =  n. After perform­
ing the evaluation of p at x  =  £0 to x  =  £n, we have the following set of equations:
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Co +  c ^ o  H H cnQ  — p (£ o )

Co +  Ci£i +  • • • +  cn^  =  p(£i)

cO +  ci£n +  • • • +  Cn{;™ = p(€n)

(5.2)

This is equivalent to the Vandermonde matrix equation:

1 > fo . ••• (  Co \  (  p ( to) ^
i , ? ! ,  • 

V i. &  •

we shall denote these matrices

p  , s i Cl p ( f l )

J \C n  J  \  P(€n)

VC = P

In this notation we see that the interpolation problem is equivalent to inverting 
V  to get V ~ l . Then C  =  V~lP  which is the answer we require.

5.2 Lagrange Interpolation

Following Zippel [30] we make the following deductions. 
Multiply V  by a generic inverse to get the following:

V V ~ l =  1

(  1 f 1 • • • \1 5 So 5 3 So  ̂ POO, Pol , • • ' ,P0n ^

1 ,  ? } ,  • • • PlO , P l l  , ’ '  * , Pin
=  1

1 .  & >£ J \  PnOy Pnly ' ’ ’ yPnn J

We see that the j th element of the ith row of the LHS of this product is:

P o j  +  P i j i i  4  b P n j G  — P j { € % )  ( 5 - 4 )
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where P j ( x )  is a polynomial of degree n  in re, with the matrix:
f a t e ) )  ••• Pnito ) \

I ‘ | equal to the identity.

V  ^ o ( f n )  • • •  P n ( € n )

since P j ( & )  is zero if % ^  j  and one when % =  j ,  we may deduce the following
formula:

P j(x )=  n
0  < i < n

(5.5)

The numerator ensures that all the off diagonal entries are zero (as there will be 
one (& — &) =  0 factor), whilst the denominator ensures that the diagonal terms 

are one (the f '1 _  f  ■ term is omitted, every other factor of __-C- =  1).
S  i  Si S j  Si

Returning to the problem of finding the a  in equation 5.2 , which may now be 
writen as:

Poo POr \ (  PKo) ^

\  Cfi /  \  PnQ ’ ' ' Pnn J  \  P ( £ n )  /

We may now form the set of equations:

(5.6)

Ci =  PiOPiZo) H + 2 W > ( £ n ) (5.7)

or:
Ci =  coef(P0(rr),xl)p(^0) H +  coef(Pn(:r), P)p(£n)

substituting these expressions into the formulae 5.1 we get:

p{x) =

coef(P0(rc),a;0)p(^o) H H coef(Pn(rr),rr°)p(^n)

+(coef(P0(a:), rc1)p(^0) H -i- coef(Pn(x ) ,x 1)p(^n))x
+
+(coef (Po(:r), rrn)p(£0) +  • • • +  coef(Pn(rr), x n)p(£n))xr

(5.8)

(5.9)

There is no point in extracting the coefficients of x % in this equation, we may 
write it more succinctly as

p{x) = P0(x)p{€°) H +  Pn(x)p{C) (5.10)
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or

p(x) = ]T
3=0

n ( x  -  &)

i=0 ( f j  f i )  

W i

Piij) (5.11)

/

5.2 .1  M ixed  R ep resen ta tion

So how does this allow us to determine the coefficients? if we simply produce an 
SLP equivalent to p we are no wiser than before, we simply have a bigger SLP 
for p, with xi  as the main variable. What we must do is implement a mixed 
representation version of the sparse arithmetic functions:

addition, subtraction, multiplication and division by constants 
and then apply this to equation 5.2.
The representation used for the polynomials will be mixed, in that we shall store 
vectors of SLPs, where the SLPs represent the coefficent polynomials. The coef­
ficient of x\  taking up position i +  1 in the vector.
We shall look at how to implement these operations:

Summation and Subtraction:
In the following assume WLOG. that n > m,

(cq, Ci, • • •, cn)  (do, d\ , * * *, dm) (cq / do, C\ / d\ , • • •, cm / dm, , cn)

• Multiplication:

(c0, Ci, * * •, cn) * (do, di, *, dm) — (bo, , bm-\-n) where bi. ^  ] Q * dj
i+j—k

• Division by constants:
If we may calculate inverses in our base ring, then the problem reduces to 
calculating the inverse then creating a multiplication node, otherwise we 
are forced to include a division node in the SLP, so removing the division 
free attribute of the SLP.

In the above + ', and *7 denote the lazy SLP operations, that is the creation 
of an SLP node.
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5.2 .2  F orm ation  o f P(z)

An efficient way to calculate P(z) involves the initial calculation of the polyno- 
mial Y\*-q(z — Xi). Then we require to divide this by (z — Xi) for each 0 < % < n 
however as we are using a lazy evaluation technique, we find it easier to avoid 
the multiplication in the first place. We borrow a technique from lattice theory 
to produce the set of products {II?=o(^ — £*)|0 < j  < n } ,  whilst making as much 

reuse of values as possible.
In the following * represents multiplication nodes of an SLP. The two lines lead­
ing into the * (from above) show where information is flowing from and where 
information is flowing to, that is from the node at the top of the line, to the 
node at the bottom of the line. When we refer to nodes higher up the tree, the 
direction is in the direction of the flow of information, i.e.. “higher up” means 
lower down the diagram.
The first step is to produce a binary multiplication tree, for calculating the prod-

71
uct — Xi) except that the top node will be removed, ie.

*=o

(z-xj  (z-xj(z-x2) (z-xj  --------  (z-xj

* *

Figure 5.1: The initial half of the product network

The next step is to complete the product via multiplication by nodes as high up 
the network as possible, we find a surprisingly neat way to do this.
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e.g. consider the case n = 3, in the following we shall label the factor (z — Xi) by 
the number i ,

0 1 2  3

* * * *

-2 -3 -1 -0
Figure 5.2: An example network where the final polynomial has degree three

The negative numbers at the top of the network denote products which are miss­
ing the factor indicated.
We shall now look at a more complex case, that where n — 7. The first half of 
the tree looks like:

( z - x )  ( z - X  X z - x  X z - x  X z - x  X z - x  X z - x  X z - x  )
0 1 2 3 4 5 6 7

0 1 2  3 4 5 6 7

1

Figure 5.3: The first half of an eight-network 

Now consider the first stage of the second half of the tree:

i i i i
0 1 2  3

i i i  i
-0 -1 -2 -3

Figure 5.4: The first stage of the second half of an eight-network

A network constructed in such a way, which has four inputs and four outputs, we



shall call a four-network.
Now we must complete the eight-network, we do this in the following way:

0 1 2 3 4 5 6 7

—  A four-network

* * *

-0 -1 -2 -3 -4 -5 -6 -7

Figure 5.5: An eight-network

We shall now consider how to generalise this to that of an n-network, where 
n =  2m for m  € Z.

0 1 2 3 4 5   n

n/2 network

0 4 5

Figure 5.6: A diagram describing a network with n =  2m inputs

These products having been constructed, we multiply by the evaluated SLPs p(xi) 
then do the divisions as described earlier. We use a binary tree for constructing
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the summations, since in general a binary tree will be the network with smallest 
depth which represents the summation.

5 .2 .3  C om p lex ity  analysis

In order to perform the complexity analysis for our Lagrange interpolation, it is 
useful to split the calculation into several stages:

• The n evaluations:
length = 0 (n  * levai) depth = 0 (d evai) 

where devai is the maximum depth of an evaluation and 
levai is the maximum length of an evaluation.

• Construction of the nodes which will be the inputs to the multiplication 
network, viz:

(x - x 0)r - - , (x  - x n)

due to reuse of nodes, we must only store one input node of 1, which is the 
coefficient of x  in each factor. And n +  1 input nodes, Xo, • • -xn which are 
the evaluation points. That is a total of n 4- 2 nodes.

• The construction of the multiplication network:
This network may be split into two sections,
The first section:
In this section of the network, the network is as close to a binary tree 
as we can get with respect to the polynomial multiplications. There are 
0 (\log2 n]) levels in this binary tree, were the numbering starts from one 
(from now on in this analysis we shall denote \l0 g2 n] by A). For the 
(A — i +  l ) th level, there are 0(2*) polynomial multiplications per level.
For multiplication of two polynomials of degree d, we shall consider the 
cost: the length costs 0 (d 2) multiplications and 0 (d 2) additions.
The ith level involves multiplications of pairs of polynomials each with de­
gree 2*_1 In summary we may say that the top section will contain:

A a
0 ( ^ (2 * -1)2) multiplication nodes and 0 ( ^ (2 * -1)2) addition nodes.

i = 2 t t = 2
The second section:
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In this section of the network, there are the same number of polynomial 
multiplications, however the arguments come from different levels of the 
tree, one argument is taken from the preceding level, one argument will 
be taken from the top section of the tree, in the following manner: on the 
(A +  i)th level which is in the bottom section, we shall take one argument 
from the (A — i)th level which is in the top section.
For two polynomials p , q with degrees dp, dq respectively, a polynomial mul­
tiplication will take dpdq base ring multiplications and dpdq base ring addi­
tions.
For the ith level, the arguments have degrees: 0 (2 x~l) and 0 (2 A —2A_t+1 —1) 
respectively. In summary we may say that the bottom section will contain:

A A
0 ( ^ 2 A_’(2A- 2 A_i+1- l ) )  multiplication nodes and 0 ( ^ 2 A_i(2A- 2 A_i+1-

i=2 i=2

1)) addition nodes.

• Division by the valuation point differences:
In this section of the network there will be n ( n — 1) division nodes (division 
of n polynomials, each with n — 1 coefficients).

• Construction of the final summation tree: In this section of the tree there 
will be 0 ( n 2) addition nodes.

• So the final complexity of the size of the SLP is:

A A
S  = 0(2  53(2i_1)2 +  2 2a_1(2a — 2x~i+1 — 1)

i—2 i —2

~\~Tilevai +  n +  2 4- n(u — 1) +  Tl2) (5.12)
A

0 ( 2 j ] ( ( 2 ’_1)2 +  2a-1(2a -  2A-i+1 -  1))
i= 2

+2 +  ulevai +  2 ti) (5.13)

L ( 2 '~ T  =  0 ( - f  =  0 (  n 2)now
i= 2

Tl 2/Tl
S  — 0 (n (levai +  2n) -I- 1 +  n2 +  — ( n — — 1)) (5.14)

(5.15)=  0 (n (levai +  n))

If the number of variables is significant the value 0 (n levai) contribution
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will be closer to levai since the coefficients with respect to the interpolation 
variable will be independant of that variable and therefore the separate 
evaluations will have more shared structure. In this case we see:

S  =  0 (n 2)

5.3 F F T  Interpolation

The interpolation method described in this section is based on a method due 
to Zippel ([30], chapter 13. section 4.), the FFT Interpolation method (or Fast 
Fourier Transform Interpolation method) uses evaluations of the polynomial at 
special points which have nice symmetry characteristics, viz. roots of unity, see 
section 5.3.1. This allows us to manipulate the Vandermonde matrix so that it is 
sparse.The previous interpolation algorithm took 0 ( n 2) operations. We find that 
we may factorise the Vandermonde matrix into logn matrices, each of which has 
only 2 non-zero elements in each row. Then multiplying by one factor takes 0(n)  
operations and multiplying by all of them takes 0 ( n  logn) operations.

N o ta tio n
If £ is a primitive nth root of unity (i.e.£n =  1 A 0 < m < n

We denote the n x  n Vandermonde matrix,

VVI 
o

n = K m # l ) .

1 1
. . .  i  \

l  £ . . .  £ » - l

l  £2 . . . £2(n—1)

1 1 . . .

by

F»(0-
The diagonal matrix with diagonal elements {1, £, £2, • • •, £n-1} is denoted by f2n. 
The identity element with size n is denoted by In. We need the following theorem:

T h eo rem  1 Fourier Inverse transformation 
Iff, is an n th root of unity, then,

Fn(£) ■ Fn( C l) =  nl,
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Sketch Proof: The left hand side of the given identity is clearly the product of 
two matrices:
The diagonal elements of this product are clearly all n.
For the theorem to hold we require that every other element is zero.
Consider the distinct nth primitive root of unity £n, by definition the following 
equation holds:

z n - l  =  ( * - £ » ) ( * - £ „ ) ( * - £ ) . . . ( * - £ - ! )  (5 .16)

=  f E V - 1 +  •••  +  ( - ! ) " 3 ^  (5-17)
\k=0/ k=0

It may be seen by comparing coefficients that all the required sums of roots of 
unity are zero.

□
The FFT Interpolation strategy is based on the following observation:

Let n = 2m be an even integer. Define n n to be a permutation matrix such 
that the first m columns of ATln are the even columns of A and the second m 
columns are the odd columns of A. Then:

P  T T    f  I m  \  /  Fm 0 \    /  Fm DjnFm \  / .  . . v

71  n  '  V  7 -  J  V 0 F m  J  ~ \ F m  OnFm )
□

Comparing the cost of computing the Fourier transform of an n-vector by mul­
tiplying by Fn and by using the factorization on the right hand side of 5.18, the 
former takes n2 multiplications, whilst the latter requires only n2/ 2 multiplica­
tions. Continuing in this manner we may get a factorization of FnIInII^y2, this 
may be repeated for logn times, rendering the matrix completely diagonal.
This algorithm appears to be recursive, however it transpires that performing 
all the permutations at once is simpler. The result is a single reordering of the 
columns of the original matrix which may be determined from the bit reversal of 
the indices of the columns. By bit reversal we mean take the binary representa­
tion of the index, where the columns are indexed from 0, then reverse the bits to 
give a new number. This will give us the new order for the columns. We may 
perform this algorithm using the following recursive algorithm.
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binary .reversal 
input : binary rep

1. if binary rep < 2 then return binary rep

2. even <— the even bits of binary rep; odd the odd bits of binary rep

3. return append(binary.reversal even,binary_reversal odd)

5.3 .1  M od u lar R o o ts  o f U n ity

By an nth root of unity, we mean a root of the polynomial x n — 1. Clearly not all 
fields hold a full quota of nth roots of unity. For n =  1; 1 is clearly the only root 
of x l — 1. For n — 2, x  =  1 and re =  — 1 where —1 is the additive inverse of 1, are 
the two quadratic roots of x 2 — 1. However an obvious example shows that this 
doesn’t apply when n > 2. Consider the four quartic (n =  4) roots of unity, that 
is {1, — 1,i, — i)  (we denote the square root of —1 as i), these are not members 
of the Real numbers, however they are members of the Gaussian Rationals (the 
rational numbers extended by i). For other values of n we must make further 
field extensions to represent all the roots of unity exactly.
We could follow an alternative route, that is to perform arithmetic in special 
modular fields which contain n , nth roots of unity. These modular fields have 
prime moduli, where the primes are special primes called Fourier primes. Fourier 
primes are of the form pj = (n =  2m)k +  1. We must find a primitive root of 
unity, that is £ £ Zp^ s.t. £n =  1 and £r ^  £* for r /  I and 0 < r, / < n. We may 
then calculate all the other roots of unity by multiplying £ by itself n times. We 
have an algorithmic method for calculating £, taken from Lipson (Algorithm 1, 
chapter IX) [15].

5.3 .2  M eth o d  for ca lcu la ting  m odu lar roo ts

We take much of this section from Lipson [15]. For our first result we shall deduce 
the form that the prime modulus must take:
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In the following theorem we shall denote the multiplicative group of Zp =  Zp/{p}  
under the operation of multiplication by Z*.

Theorem  2 Zp has a primitive N th root of unity i f  and only if  N\(p  — 1).

Proof. By Lagrange’s Theorem, the order of a group element divides the order 
of the group. Since Z* has order p — 1 we obtain the ‘only if’ direction.
Now Zp has a primitive element by ‘Fermat’s little theorem’, call it a. We see 
that a(p~l^ N has order N  in Z*, making a the primitive N th root of unity.

□
So in order to find primes p s.t. the modular field has the requisite number of 
roots, we must find p s.t. 2m|(p — 1), i.e. primes of the form p = 2Tnk +  1, where 
k is some positive integral constant. These are the Fourier Primes mentioned 
earlier.
Now that we have found a field containing the requisite number of roots, it is nec­
essary to find the primitive N th root of unity. The following theorem appertains 
to that.

Theorem  3 Let a £ Zp. a is primitive if  and only if  ^  1 in Zp for any
prime factor q of (p — 1).

Proof. It is trivial to show the if direction.
For the only if direction:
assume that a  has order n < p — 1. Then n divides p — 1 by Lagrange’s Theorem, 
so that p — 1 =  kn. Let k =  qr , where q is a prime in the prime factorization 
of k. But then p — 1 =  qrn , so that q is also a prime in p — l ’s (unique) prime 
factorization. We then have,

=  q,™ =  (a >y =  i

□
As we will be working on 32 bit computers, it would be sensible to start with 
the biggest (Fourier prime) modulus less than 232, then the next one down and 
so on, until we reached the smallest (fourier prime) modulus greater than one. 
In the unlikely event that this does not supply enough primes, we would start 
just below 264 working down to just above 232 and so on. This way modular 
arithmetic could be done most efficiently.
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5 .4  O p t i m i s a t i o n s

Our original implementation of the FFT interpolation algorithm consisted of tak­
ing the evaluation of the SLP at each of the modular roots of unity, then treating 
each of these as individual SLPs, it was then necessary to perform arithmetic on 
them. This resulted in much unnecessary merging of large objects. We have no 
accurate timings for this naive implementation, however estimated timings for 
the interpolation of a bi-variate polynomial, with degree 15 in the interpolation 
variable and degree 20 in the other variable, gave a result in approximately 4 
hours. The coefficients returned are in the following form:

evaluation of

p (6 )

’butterfly’ operations

evaluation of

p(&)

’butterfly’ operations

line i n r 1

times line z, line z — 1

5.4.1 C ollection  o f evaluations

The first optimisation performed is the following, we initially perform evaluation 
of the polynomial at each of the roots of unity (&) resulting in n SLPs, each of 
these are merged together using the algorithm BetterMergen of section 4.4.4, the 
butterfly operations may now be performed, this saves a lot of program merging 
as we simply append the new operations. The resulting program will be of the
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following form:

evaluation of

evaluation" of

’butterfly’ operations

me i - ln

times line ?, line i — 1

timings of the test problem already detailed using this implementation were ap­
proximately two hours.

5.4.2 C om plexity  A nalysis

The SLP resulting from the FFT interpolation will be made up from two parts:

• The n partial evaluations, this section will be 0{n l) in length, where I is 
the length of the original SLP,

i = 0 /
there will be logn steps, and for the ith step we must make +  1 calls to 
the basic fft operation which involves two multiplications and two divisions.

so in summary the FFT interpolation produces an SLP which has length:
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The previous two methods are essentially Black Box methods of interpolation. 
In essence it is not neccessary to know the representation in order to perform 
the interpolation so long as we know how to evaluate the objects and also to be 
able to construct new ones. The next method makes specific use of knowledge 
about the SLP representation. The previous techniques require evaluation at 
d + 1 points, where d is the degree of the polynomial object to be interpolated. 
The following method requires no evaluations, except in the case of non-division 
free SLPs in which case the evaluation is only necessary for dealing with division 
nodes.

5.5 D irect translation  from  polynom ial program  

to  coefficient program s

A further method of interpolating SLPs has been suggested by Kaltofen [11]. We 
first look at his method in the case of division free SLPs.
The basic idea is to look at each node in turn starting at the base of the SLP, 
then to determine what effect each node will have on each coefficient with respect 
to the interpolation variable:
If the program represents a polynomial having degree < d, we loop through the 
program. For the instruction which we shall label v \ , we construct a program as 
follows.
The SLP which has as its return node V \  may be thought of as a polynomial 
in its own right. We intend to construct a program to calculate d +  1 of its
coefficients, for each node V \  in the original program, we shall label pointers to
the new coefficient instructions for 6 € {0 • • • d}. That is, the new instruction 
pointed to by wxj  corresponds to the (£ +  l) th  coefficient (the coefficient of xf)  
of the polynomial which corresponds to the program which has return node this 
v\. Denote the return program as prog.

• start prog with the two constant nodes: 0,1.

• initialise w so that every element points to the 0 node, i.e. is 1.

• If v\  is a constant node then add v\ to prog and set w\:o to the position of
v\  in prog.
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• If v\  is an input node then we have two cases:

• either vx is equal to the interpolation variable, in which case we set 
W\ \ to point to 1, i.e. line 2.

• otherwise we set w\,o to point to v\ and add v\ to prog.

• If vx is an operation node, we may write vx as vx oA vx, denote the elements 
of w corresponding to vx, vx as wX i, wX i respectively for the index i. now 
we have two cases:

• the case that oA is plus or minus:
for S G { 0  • • • d} append the operation node oA : wX 5: wx 5 to prog 
and set wx^s to point to this instruction.

• the case that oA is times: 
for 5 G {0 • • • d}
append instructions to compute the summation E

i+ j=5

make this a binary tree, to limit the depth of the SLP. Then set wxj  
to point to the final element in this set of instructions.

• The return instructions for the coefficients will be the instructions w\f ,s for 
£ G {0, • • •, d} where vXf is the return instruction for the input program.

Exam ple
We perform the direct interpolation of an SLP which represents the polynomial 
which in sparse form is xy  +  3, viz:

Input Program
line 1 Input node : x
line 2 Input node : y
line 3 Constant node : 3
line 4 Operation node : (times line 1 , line 2)
line 5 Operation node : (plus line 4 , line 3)

Initial program is:
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line 1 : Constant node : 0 
line 2 : Constant node : 1

We shall look at each line of Input Program in turn

line number Wi New Instructions

1 [1, 2] [ ]

2 [3,1] [Input node : y]
3 [4,1] [Constant node : 3]
4 [5,6] [Operation node : (times 1,3)

Operation node : (times 2,3)
Operation node : (times 1,1)
Operation node : (plus 6,7)]

5 [9,10] [Operation node : (plus 4,5) >o
Operation node : (plus 1,8) >i]

The node indicated by >* represents the coefficient of x l.
If we include the optimisations of section 5.6 we get:

line 1 : Constant node : 0
line 2 : Constant node : 1
line 3 : Input node : y > i
line 4 : Constant node : 3 >o

5.5 .1  T reatm ent o f d iv ision  nodes

We shall now briefly describe the method used to deal with non-division free 
SLPs.
If v \  is a division node, then we may write V \  as v'x  oA v "  where oA is the division 
operator. We essentially find an expression for the Newton approximation of 1/u", 
we can then use the algorithm for the multiplication nodes described above to 
find the expression for the complete node.
We make the approximation mod x™ where m  is greater than d. Now even though 
some of the intermediate division nodes may evaluate to rational functions, we
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know that the output node is purely polynomial, and so these approximations 
will give an exact final answer.

In the following algorithm description g(xi, • • • , x n) represents the function cor­
responding to the SLP node v", whilst w$ represent the functions corresponding 
to the coefficient of x{ in g{xi, • • • , x n).
The algorithm follows:

. a0 l /g (0 ,x 2, - ” , x n)
FOR i 1, • • •, l’log(d) -I-1] DO

At this point c^_i is the 2l~l —1st order approximation of g{xi, • • •, x n) 
OLi f -  2 o L i_ x -  mod rrfm(d+1,2l)

We shall discuss the Newton method in more detail later in section 5.9.

5.6 O ptim isations

There are a few optimisations which may be included in the method of the pre­
vious section which reduce the size of the program returned quite considerably. 
We list them below:
First we should note that because of the fact that input nodes require zero to 
be placed in the coefficient W(o,5) and one to be placed in the coefficient W(i)(q, 
where 8 is the input node. Also because the degree starts at one or zero at the 
leaf nodes, gradually increasing as the SLP is ascended, there will be zero and 
one nodes to take into account.

• When considering plus nodes in the input program, an addition of zero is 
a null action and can be omitted.

• When considering times nodes there are two optimisations we can make:

— a multiplication by zero will always be equal to zero, so these multi­
plications may simply be replaced by pointing to the zero element of 
the program.

— a multiplication by one is a null action and can be omitted.

• Though if the above points are implemented the following optimisation will 
not make any difference to the length of the SLP, it would make a difference
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to the time taken for its construction.
We record the degree of each node of the SLP as it is being constructed. 
This will give us an a-priori limit to the number of non-zero coefficients.

5.7  D ivision  R em oval (In troduction)

One of the main distinctions which may be made over the set of SLPs is whether 
they are division free or not. A division free SLP is an SLP which contains no 
division nodes.
When an SLP is evaluated, the division operation is the most expensive operation 
that must be performed, as it involves the calculation of an inverse, followed by 
a multiplication. We see that a division free SLP is preferable, so long as the 
length is not too much greater than the equivalent non-division free SLP .
The objects which we intend to represent by SLPs are polynomials that is they 
are objects which may be written in the following form:

n

p{x Y ,
•pi 0

Because of this it is evident that it should not be necessary to include any division 
nodes in the representation. So with this fact in mind an obvious question is 
“how could division nodes occur in the first place” . An answer is that there are 
certain algorithms which have steps translating to division nodes in the program, 
including our gcd algorithm. One example is the method used by Bareiss [1] 
to calculate the determinant of a matrix. We briefly describe the method in 
Appendix D. We have already seen an example of a non-division free SLP in 
section 1.3.

5.8 T he D ivision  Isolation  M eth od

In the following method we combine any division operations and isolate them 
as a single division node at the end of the program. The method relies on the
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following identities:

n i + n 2 _ n i d 2 — n 2 d i

d\ d2 d\d2

ni n2 _  n in2
d\ d2 ~~ d\d2

ni.ri2  _  n\d2 
d\ d2 n2di

This is very useful, though not essential, during division removal since we may use 
the following strategy. The first step is to use this method to isolate the divisions, 
then we use the method of section 5.9 to remove the final division node.

We develop the program which we wish to return, also we hold the numbers 
of lines which correspond to the numerator of a specific instruction in the in­
put program (we denote these positions nPos and the corresponding instructions 
nProg) at the same time we hold the numbers of the lines which correspond to 
the denominator of specific instructions in the input program (we denote these 
positions dPos and the corresponding instructions dProg).
Given a sequence of operations (+, —, *, /)  to be performed on sparse form ratio­
nal polynomials (quotients of sparse form polynomials, which are sums of power 
products), many traditional techniques for isolating the division operation would 
take gcds of the numerator and denominator at each stege, the gcds that were 
caslculated could then be divided out to keep the resulting quotient as small as 
possible. However in our case because our method is in effect a recording of the 
operations necessary to perform this gcd computation, this would be counterpro­
ductive as we would end up with a much larger straight line program.
The method that we use follows:

1. For each instruction, inst, do the following:

(a) If inst is an input node or constant node then

i. append inst to the return list

ii. append the position of the instruction to numPos

iii. append the position of 1 to denPos

(b) If inst is an operation node, where oinst denotes the operation, and
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ptv(mst,i) ? Tptv(inst,2) denote the left and right pointers respectively; we 
have various possibilities

i. If oinst is i  then
append nodes corresponding to:

nProg.p£r(inst)i) * dProg.ptr(inst)2) 1  nProg.ptr{insttl) * dProg.p£r(inst)2)

to the return program and append the position of the final instruction 
to nPos.
append the instruction corresponding to:

dProg.ptr{instil) * dProg.ptr{instj2) 

to the return program and append the position of this instruction to dPos.

ii. If oinst is * then 
append the instructions corresponding to

nProg.p£r(;nst)i) * nProg.pir(instj2)

to the return program and append the position of the 
to nPos.
append the instructions corresponding to

dProg.ptr(instli) * dProg.ptr(insti2 )

to the return program and append the position of the
to dPos.

iii. If oinst is /  then 
append the instructions corresponding to

nProg.ptr(instii) * dProg.ptr(inst,2)

to the return program and append the position of the 
to nPos.
append the instructions corresponding to

dProg.ptr^nst^) * nProg .ptr^inst,2)

to the return program and append the position of the 
to dPos.

2. finally we append the instruction corresponding to

last nProg /  last Dprog 

to the program, this shall be the return node.

94

final instruction

final instruction

final instruction

final instruction



Though this method will always work, it may be usefull to check whether any 
division nodes exist in the first place, and if not just return the input program.

5.8 .1  O p tim isa tion

There are many cases when the denominator associated with an operation is one, 
this will be true for all of the operations which appear before the first division node 
as well as some that appear after it. This means that we may make optimisations 
by omitting any operations of the form n*d where n is some node, and d is a node 
corresponding to one. In this case we append to the position list the position 
corresponding to n. If we have the case d\ * where d\ and d2 are both one, 
then we append the position corresponding to one to the position list.

5.9 N ew ton  approxim ation

In this section we describe the theory behind the algorithm given in subsec­
tion 5.5.1. We shall to a large extent be following Knuth [14]. Given tha t 
f ( x  1 , • • •, x n) is a polynomial we may therefore express it without division. If how­
ever f ( x  1, • • •, xn) is presented to us as the quotient of two functions it would nec­

essarily be an exact quotient. We may express it as f ( x  1 , • • •, x n) = lj ^ 1 * * ’ ’ j . 
We find that we may use Newton approximation to construct a polynomial uni­
variate in one variable, whilst the coefficients are multivariate functions, possibly 
containing division, of all the other variables. Our approach will be to approxi­
mate g(x 1 , • • •, xn) =  — -— ^-y mod xf  where Xi is an arbitrary variable and
d is the degree in that variable. Our initial approximation shall be to approximate
—7---------   7 by the coefficient of re?, this will be the value arrived at by special-v (xu - - - , x n)
ising the variable Xi to 0  that is —7--------- 1 ---------- r. Call this approximation cko.' \̂X\'> " 5 t), • • •, Xn)
Now we make a recursive definition for the sequence of Newton approximations. 
We shall show that to approximate f ( x  1 , • • •, xn) mod (xf) it is only necessary to 
calculate flog(d) +  1] members of this sequence. The definition of the sequence 
follows:
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<*0 9{% 1j j ’ ' ' , Xn^

®-m 2ftm_ i OiTn_^v(^Xi^ , 3?n)
(5.19)

It is clear that =  g(%i, * ••, xn)(l  — Xi) mod ao is the constant term in 
g(x i, • • -,a;n) with respect to We should note however that so long as n > 
1, that is the function g(x\, • • •, x n) has more than one variable, the program 
corresponding to the construction of oiq will involve at least one division node.

Now assume that

oim = 9{xi, • • •, x„)(l -  x-) mod x- =  g(xu  • • • ,x n) mod x\

At the stage ra, k > 2m
From the definition of the sequence and the fact that g(x i, • ■ •, x n) =  — -------rV{Xi ' ’ ' xn)
and since the x% term is in fact x\.

a  (  2 — 2X* ( l - 2 x *  +  x f ) v ( x u - - - , x n ) \
I w (xx, • • • , ! „ )  Vl {xx , -  - - , x n ) j

,2 k
-  J___

v(xu  • "  ,®n)
1 - x l

2kNow a m+i mod x f  = v~x ~ h :  x "} mod x ?  ~  "  »x n) mod x\

Now since we double the power of the modulus at every step, we can con­
clude that at the kth step the polynomial represented by a*, is the approxima-

k
tion of g(x i, • * • , x n) accurate mod(rcf ) in other words in order to be accurate 
mod(a;f+1) we need to perform the above iteration [log2(d) +  1] times. We then 
must only consider the first d +  1 coefficients. Using the above method, we may 
perform an interpolation of a polynomial containing division nodes. The Newton 
iteration technology has already been used in the iteration method of section 
5.5.1 to deal with division nodes, we now discuss how we may use the technology 
to perform division removal from SLPs.

96



5.10 D iv ision  R em oval M ethod

In this section we essentially describe an extension to the algorithm given in 
section 5.5.1. The algorithm will perform division removal with respect to every 
variable in the SLP. We note that Newton approximation as it stands will only 
perform division removal with respect to one variable. There may still be division 
nodes in the ao element of the sequence. To eliminate divisions entirely, construct 
a sequence of Newton approximations • • •, s.t. = a4J+1  ̂ and — 

5(0,-■•>0) =  w(0i !..,())•
in the preceding 0 < i < flog2(c?*)l where di is the degree of Xi in f ( x i, • • •, xn) 
and 0 <  j  < n, also the terms are the last element in the sequence .
We see that <7(0, • • •, 0) is in the quotient ring of R  where R  is the base ring of 
f ( x i, • • •, x n). If R  is a field then this quotient ring is R  itself, however if this is 
not so, then we must pay a price for obtaining a division free SLP, tha t is that 
the base ring of the division free SLP will be F rac tio n (R ).

1) Evaluate u(0, • • *, 0), this will be a value in R.
Evaluate £ F raction(R )

2) Creation of —rr:---- ^ ---- r mod xin where dn is the degree of xn in f ( x i ,  • • •, x n).
v f u ,  • • ,  U,  X n )

Via. the Newton approximation sequence a ^

•  =  ^ ( o .L .o )  m od*»

• «m+i =  2aW -  (a^>)2w(0, • • •, 0, xn) mod z f 1 
0 < m  < [log2(dn) +  1]

1 7) Creation of ~—  ------ — r mod Wj=n-i + 2  x j where dj is the degree* , U, Xn-i-(-2? ' 5 n)
of Xj in f ( x i, • * • , x n). Via. the Newton approximation sequence

“ »_1) =  v(0, • • ■ , 0 ,I n _ i+2, ■ ■■ , X n ) m° d 

0 &+V =  2 a ^ -1) -  (a(;-1))2u(0, - - -, 0, x n- i+2, • • •, xn) mod x * l i+2 
0 < m <  [log2(dn- i+2) +  11
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n + 1 )  Creation of —?-----   r m°d 11™= 1 x t 1 where d\ is the degree of X\ in
^yXxi ' '  •> x n)

f ( x i, • • • ,a;n). Via. the Newton approximation sequence

• “ on) =  V(otX2} . . . t xn) m o d n ?=2£

•  t tm + l =  2 « m ) -  ( a m }) ’ "  , X n )  m o d  x f

0 < m  < [log2(di) +  1]

The value returned in (rfij+1-| is g(x i, • • • , x n) mod n™=i xtl we may multiply

this by u(xi,  • • •, xn) to obtain f ( x \ } •• •, x n) mod n™=i x i l which will calculate 
the polynomial intended, involving no divisions.

A problem which may occur is, if u(0, •••,()) =  0 then its reciprocal does not 
exist. If this is the case then a failure will occur in step 1). There are two ways in 
which we could attack this problem. One approach would be to use a multivariate 
form of VHdpital’s rule, one form of which states:

if lim f ( x i, • • -,arn) =  0 and lim g(x i, •• •,£*) =  0
X i , - - - , X n —>0 X \  —̂ 0

then Hm lim V /(x1, - , x . j
x u - , x n ^ 0  g ( X u  • * • , X n ) V g { X U  * * * , X n )

V /(x i, • • •, xn) is the gradient of / ,  that is the sum of the partial derivatives, 
in terms of the SLP created to implement this alteration, we could use the method 
due to Kaltofen [4] to calculate the partial derivatives. The new SLP is length 
0{nl)  where I is the length of the denominator SLP, now it is required to evaluate 
the derivative SLPs at (0, • • • ,0). We may again obtain a zero denominator ne­
cessitating a further l’Hopital step, this may have the drawback that the resulting 
program would be very large. We therefore propose a further method which we 
have implemented that is the following.
We translate the polynomial by a vector (£i, • • • , f n), then apply the method of 
section 5.10, finally we must back translate by the same value. This is equiva­
lent to performing the evaluation of v(xi,  • • • , x n) at the point (fi, • • • ,£n)- We 
may guarantee that there exists a point at which v(x\, • • •, x n) /  0 because 
f ( x i ,  • • • , x n) is well defined, ie. the SLP is valid. It is desirable to minimise the 
number of translations necessary, as this will lead to a smaller SLP. We propose 
the following scheme for choosing points:
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For variable Xi try values (0, • • •, 0, v, 0, • • •, 0) | J

where di is the degree of Xi in v. If every evaluation gives zero, which will not 
happen very often as it implies that /  is identically zero along every axis, we 
instead try translating every variable by a random quantity. It would be possible 
to perform a combinatorial search for an evaluation point which gave a non-zero 
v , and so perform the minimum number of translations, however it was thought 
that the size of the saving would not justify the complexity of code required to 
perform the point traversal. The increment to the size of the SLP is 0(1) in the 
case where we translate one variable, it is O(n) if we translate every variable. We 
note that translation is a cheap operation when using SLP representation, as we 
must only add a few nodes to the base of the DAG.

5.11 C om plexity  A nalysis

We shall denote the proportion of plus or minus nodes (times nodes, quotient 
nodes, input nodes and constant nodes) in the program by D+ (D* , D /, D /, Dc  
respectively). D+ denotes the proportion of either plus or minus nodes.
We first analyse the complexity of the division isolation method of section 5.8. We 
shall consider the contributions made by each type of node to the size complexity 
of the programs returned by this method.

• Constant Nodes and Input Nodes:
For every node of these types a single node must be added to the returned 
program.

• Plus or minus nodes:
For every node of these types three times nodes and one plus or minus node 
must be added to the return program.

• Times Nodes or quotient nodes:
For every node of these types two multiplication nodes must be added to 
the return program.
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The overall size of the new program will be (Dj  +  Dc  +  4D+ +  2D* +  2D/)l that 
is the asymptotic complexity is linear in I.

We now analyse the complexity of the interpolation method of section 5.5. We 
denote the degree of the polynomial in the interpolation variable by d. We shall 
consider the contributions made by each type of node to the size complexity of 
the programs returned by this interpolation method.

• Plus or minus nodes:
For one node we must construct a new node for each of the d + 1 coefficients, 
there are D+l nodes, where I is the program length. So the contribution to 
the new program has length 0(D+ld).

• Times nodes:
For one node we must initially construct ^  times nodes, and then construct 
Ef=o log2(0 plus nodes. So the contribution to the new program has length

0 ( D J ( ^  +  E?=o1°S2(*))) =  O ( D M ) .

• Quotient nodes:
For a quotient node we use the method in section 5.9. The first step is to 
create a program representing the specialisation of x\  to 0. This program 
will have length 0(1). The following steps require the creation of program 
representing the polynomials a* 0 < i < [log2(d) +  1] in equations 5.19. 
There are clearly [log2(d) +  1] of these steps, each of which requires:

— multiplying each coefficient by two, that is d operations.

— raising the previous element in the sequence to the power two, that is 

\  +  E?=o l°g2 W operations.

— multiplying the previous square by the denominator, again -2"+Ei=o 1°§ 2  W 
operations.

— an addition, that is d operations.
t2

In total that is 2d +  2^- +  T,i=o l°g2 W =  0 (d 2) operations per stage of the 
sequence.
We may conclude that the contribution to the new program will have length
D/l\\og2(d) +  1](2 d +  +  Ef=ol°g2 W) =  0(D/l\ \og2(d) +  l id 2)
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We could use an alternative technique in which we isolate the quotient node 
initially, then we apply the Newton iteration to that node, there will now only 
be one division node, making a contribution of 0(l\\og2(d) +  1 ]d2) operations, 
however the rest of the program will have been increased in length, by a factor of 
up to four, where the number of times nodes has been increased by up to three 
and the number of plus or minus nodes stays the same.

The overall size of the new program will be 0(D+ld) +  D J d 2 -f D /l\\og2(d) +  l ]d 2) 
or using the alternative technique 0(D+ld) + (3D+ + 2D*)ld2 + l\\og2(d) + l~\d2) — 
0(l\ \og2(d) +  l id 2).

We now analyse the complexity of the division removal method of section 5.10. 
We require the partial evaluations /(0 , • • •, 0), • • • , f ( x i, • • •, x n). A naive imple­
mentation will require a program with 0(ln)  nodes. We have designed a method 
which constructs a program which represents equivalent objects, in 21 = 0(1) 
nodes. The rest of the program will have length X)?=i 4[log2(di) -I- 1].
The asymptotic complexity is therefore 0(1 +  nlog2(dm)) where dm is the maxi­
mum of the degrees.

5.12 C onclusion

In this chapter we have presented various interpolation techniques, together with 
related ideas. These are important steps in our gcd algorithm, and necessary for 
implementing efficient algorithms using SLP representation.
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Chapter 6

Gcd strategies

We shall consider two Gcd strategies which we have implemented. The first 
technique we consider commences with an interpolation method which does not 
require any special elements to be in the base field (for example n’th roots of 
unity). The interpolations considered are the Lagrangian interpolation described 
in section 5.2 and the direct interpolation technique we describe in section 5.5. 
These allow us to use our domain StraightLineValue. The second strategy com­
mences with the FFT Interpolation of the SLP. This interpolation introduces 
modular values within the program. This forces us then to use our second imple­
mentation, StraightLineValueMod, which considers the constant nodes to be in 
a modular field, having profound implications on the subsequent algorithm.

6.1 P seudo-R em ainder

A major part of the following gcd algorithms, is the euclidean loop. During every 
iteration the size of the program will be increased by some amount, the reason 
for this is because a pseudo remainder must be encoded in the program, for every 
iteration. We describe this pseudo-remainder algorithm. The pseudo-remainder 
is similar to the remainder under normal division. The pseudo-remainder is 
the remainder after pseudo-division of two polynomials, pseudo-division is like 
division except that no divisions over the base ring are required, this is desirable 
for SLPs as it infers that no division nodes must be added. We describe the
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algorithm for finding the pseudo-remainder of two polynomials u and v, with 
degrees du and dv respectively.

6.1 .1  T h e P seu d o-R em ain d er A lgorith m

u and v must be represented in the mixed representation of section 5.2.1. We 
shall denote the coefficients of u with respect to Xq, • • •, Xdu as Uq,•••, Udu respec­
tively and the coefficients of v with respect to the coefficents of xo, • • •, Xdv as 
v(o,o), • • •, V(o,dv) respectively. The algorithm follows:

1. calculate the number of iterations required, that is k = du — dv 
If du > dv return v.

2. for j  in 0 to fc, repeat the following steps:

(a) add times nodes to the program which correspond to the operations, 
t(i,i) =  Vjj * udu for i in 0 to (dv -  k — 1).
This corresponds to multiplying Vj (that is the polynomial which has 
Vfai) as the coefficient of Xi) by the leading coefficient of n.

(b) add times nodes to the program corresponding to the operations, 
t(2 ,i) =Ui*  V{j,dv-k) for i in 0 to (du -  1).
This corresponds to multiplying u by the leading coefficient of Vj.

(c) add subtraction nodes to the program corresponding to the operations,
j) — (̂2,i+k—j) for i in 0 to du 1.

This corresponds to subtraction of step 2b from step 2a.

3. The pseudo-remainder is then returned as the coefficients Vo, • • •, Vdu.

This algorithm results in a sequence of multiplications and subtractions to be 
added to the SLP.

Exam ple
Consider the calculation of the pseudo-remainder of 6x 4- z  +  3 after division by 
2x +  1. We shall denote 2x + 1 by p, and 6x +  z  +  3 by q.
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In traditional sparse form notation the algorithm performs the following steps:

2a: -|- 1) 6x +  z -1-3
step 1 12a: +  2z +  6 multiplication by the leading coefficient of p
step 2 12a: +  6 multiplication by the leading coefficient of q
step 3   subtraction step

2z 4- 6 — 6 =  2z
We consider the SLP which denotes p and q in the mixed representation of section 
5.2.1:

line 1 Constant node 1 >po
line 2 Constant node £ACM

line 3 Constant node 3
line 4 Constant node 6 > 91
line 5 Input node z
line 6 Operation node (plus line 3, line 5)

We must now add nodes to record the calculation of the pseudo-remainder pro­
cedure,
step 1 : multiplication by the leading coefficient of p\

line 7 : Operation node : (times line 6, line 2)

step 2 : multiplication by the leading coefficient of q:
line 8 : Operation node : (times line 1, line 4)

Note that we do not need to calculate the product of the leading coefficients 
of p and g, because we are garuanteed that they will cancel in the following 
subtraction step.

step 3 : subtraction of the results from step 2 from the results of step 1: 
line 9 : Operation node : (minus line 7, line 8)
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6.2 B asic G cd S trategy

1. Bound calculation

(a) get a bound for the maximum quantity encountered during any eval­
uation which will occur during the calculation.
First calculate a coefficient bound, using the technique presented in, 
section 4.8, denote this bound q,.
Now we calculate a bound to any evaluations of these objects.
This will be given by the formula:

rpd-\- 1
max 

Xmax

where:

i- %max is the maximum evaluation point encountered.

ii. d is the degree in the leading variable.

iii. n is the number of variables.

(b) calculate a set of primes {pi, • • • ,pm} such that flJLi Pi > 26

2 . Removal of content: in the following p € {1 , 2 }

(a) get the translation vector, this is constructed from random values,
(6 2 , • * •, bn) taken from z ( n ~ ^ ).

(b) perform the translation f p(xu y2, - • •, yn) = f ( x \ , y 2 + b2Xi, - - - , y n + 
bnx  1). By making the substitutions:

x 2 <- 2/2 +  b2x 1 , • • • , xn <- yn +  bnxi

(c) get the coefficients of f p denoted by f Pt 1 , • • •, f Pii using an interpolation
which works over Z, e.g. Lagrange interpolation or direct interpolation 
as detailed in 5.5.

(d) find the leading coefficient of f p in Xi,
if the leading coefficients of both f i  and f 2 are non-constant then the 
content may be as well, so we must try a different translation, repeat 
from step 2 a.
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N.B. we note that with high probability this implies that we only have 
to do the constant test once.

3. euclidean loop

(a) r \= pseudo-remainder(/1} {2 )
(the pseudo-remainder is performed using the method of section 6.1).

(b) h  := f i ' J i  :=  r
if r is not 0 (that is degree of r ^  — 1) goto step 3a

(c) r  is now the gcd G Z (y2 • • •, yn)[x 1]

6.3 M odular S trategy

We must calculate a bound for the coefficients of the gcd at this stage, because 
the translation constants which we calculate are required to be in a modular
field where the modulus is greater than twice this bound, to allow for negative
numbers.

1. Bound calculation

(a) get a bound for the coefficients of the gcd, this may be calculated using 
the formula:

b := 2min{«d := tdeg / ,}  min{v^ — }

where fm ax  is an upper bound for the coefficients of f p̂  tdeg is the 
total degree(where total degree is di and di are the degrees with 
respect to each variable in f Pji) of the polynomial, we use a bound for 
this, viz. the Total SLP-degree described in section 3.13, this may be 
easily calculated for an SLP.
The tdeg of a polynomial will also be a bound for the degree of the 
translated polynomial in the leading variable.

(b) calculate a set of primes {pi, • • • ,pm} such that [IILi ft(= : P) > b 
these primes must also satisy the following condition:
They must be Fourier primes, these are primes, p j  s.t. the modular 

fields Zp j  contain n, r f l1 roots of unity (see section 5.3.1) for some n.
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2. Removal of content: in the following p € {1,2}

(a) get the translation vector, this is constructed from random values, 

(62, • • •, bn) taken from Zp™  ̂^.

(b) perform translation f p(x 1 , t/2, • • •, yn) =  f ( x u y2 +  t o ,  * * •, yn +  bnxi).  
By making the substitutions:

2/2 +  62£i, "  •, Vn +  bnx  1

(c) get the coefficients of f p denoted by f Pt 1} • • •, f Pii using asymptotically 
fast interpolation (see section 5.3) performed in the field Zpj-
We note that the coefficients will be modular SLPs, due to the partial 
evaluations performed at the modular roots of unity.

(d) find the leading coefficient of f p in xi,
check whether the leading coefficient is in Z p p  or in some polynomial 
extension
if the leading coefficients of both f \  and / 2 are non-constant then the 
content may be as well, so we must try a different translation, repeat 
from step 2a.
N.B. we note that with high probability this implies that we only have 
to do the constant test once.

3. Euclidean Loop

(a) Set gcdso- far  := 1

for each pi where (1 < i < m) do:

Working in Z ^

(b) r  := pseudo-remainder(/i, / 2)
(the pseudo-remainder is performed using the method of section 6.1).

(c) h  — A ; / 1  := r
if r is not 0 (that is degree of r ^  — 1) goto step 3b

(d) r is now the gcd e  ZPi(2/2 — , yn)[xi]

(e) check for unlucky prime moduli by checking that:

deg r  < deg gcdso-far
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if the test shows an unlucky prime goto step lb , however making sure 
that the primes selected are new (Notice that this is unlikely to happen 
as unlucky primes have a sparse occurence).
Otherwise update gcdso-far  by performing the Chinese remainder 
algorithm using the value r with the modulus pi and perform the next 
euclidean loop.

The final step is common to both strategies, though of course the objects will be 
in the relevant domain.

6.4 C alculate Gcd

It is necessary to maintain the monotonicity of the result, so we must now divide 
every coefficient by the leading coefficient. In the following dx is the degree of 
the gcd in the leading variable.

1. divide every coefficient by the leading coefficient, to obtain a new ordered 
set of coefficients: {ri := 1,7*2, * • •, Tdx}-

2. Reconstruct Polynomial
dx

gcd := 53 W '
*=o

3. Perform the back translation:

gcd(x i, • • •, xn) := gcd(xu x 2 -  b2x  i, •• •, x n -  bnx  i)

By making the substitutions:

y2 4 x 2 b2Xl , • • • , yn +- x n -  bnx  1

We thus obtain the gcd of f i  and f 2.
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6.5 A  M onte Carlo Gcd A lgorithm

We have also implemented a Monte Carlo version of the algorithm of section 6.2. 
The inherent probability of correctness allowed must be sent as a parameter to 
the domain. Also the preemptive probability of incorrectness for each object is 
stored as part of the representation for that object.
Every time a gcd is performed on two objects we must calculate the absolute 
probability of incorrectness of the answer. This will consist of two parts:

• The new probability of incorrectness due to Monte Carlo equality tests, 
there are two of these which count. The constant tests to ensure that the 
content has been removed and the equality test for exiting the Euclidean 
Loop. We should note that the probability of incorrectness for an equality 
test which returns false is zero.
In the following pi is the implicit probability of incorrectness allowed. We 
shall calculate the probability of incorrectness with which each equality 
must be performed. We may assume that both the tests are independant, 
as this will allow us to calculate an upper bound on the probablity of 
incorrectness, we shall denote this peq, we may use the following formula:

Pi =  2peq- p 2eq 

0 =  -P e, +  2Pe, ~Pi

(6 .1)

(6 .2)

We may solve this for peq:

Peq
- 2  -  a/ 4  -  4P i 

- 2
(6.3)

(6.4)

now peg must be in the interval [0,1], therefore

(6.5)

The preemptive probability of incorrectness (pm) for both arguments (pi,p2)- 
This is calculated using the following formula:



The probabilities pi and pm must be combined to give the final absolute proba­
bility (pf), which is returned with the gcd SLP as part of the return value. We 
use the following formula:

P f  P m  T P i P m P i (6.7)

We use the AXIOM domain Float to represent the probabilities. However we 
have a problem when evaluating the expression given in 6.5 because the precision

Our solution assumes that we have some significant figures in pi. If pi is very 
small the calculation of pe may result in 0.0, this causes infinite loops in certain 
Monte Carlo algorithms, including the equality test we perform, see section 4.14. 
We may avoid this problem by doubling the precision before performing the 
calculation, this will guarantee that pe has some significant figures. In order 
that we do not constantly increase the precision (the precision would become 
exponentially accurate in the number of applications of the gcd operation), we 
must reset the precision to its initial value at the end of the gcd algorithm.

6.6 A lgorithm  C orrectness

6.6 .1  B o u n d  ca lcu la tion

We calculate a bound for the evaluation of a polynomial f ( x i, • • •, x n) at a point

let c?i, • • •, dn be the degrees in X\, • • •, xn respectively and dmax =  max{o?i, • * •, dn}. 
Then, we may wright /(£ i, •• • ,fn) as the sum of monomials:

may not be accurate enough to show any significant figures to this evaluation.

( f l >  * * • j f n )

fra a x  m a x { £ i ,  ,

/ ( f l >  * ' ’ > f n )  — Cp i l 1 "  ' £ n n H-----------h C0

where p = Ui=i{di +  !)• Let cmax = m ax{c0, • • •, cp} then:

£n) (6 .8 )

(6.9)
n

—  C m a x  n ( t f  +  * * ’ +  ft +  1)
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(6 .10) 

(6 .11)

6 .6 .2  R em oval o f  con ten t

We notice that the gcd of two multivariate polynomials p, q is given by the fol­
lowing formula:

gcd (p,q) = gcd(cont(p),cont(g))gcd(pp(p),pp(g))

The Euclidean algorithm will give a constant multiple of the gcd(pp(p)). It is 
therefore necessary to remove the content from f i  and f 2 in order to calculate 
the gcd rather than a common divisor of lesser degree. As we are using SLP 
representation we notice that a good method is to translate by a random amount 
which will have a small effect on the size of the SLP; represented in sparse form, 
a polynomial will become very dense on translation. Our method is then to 
check whether the leading coefficient is constant, if so we know that the content 
must be constant and as such may be ignored (we are calculating gcds up to 
constant multiples). It is only with small probability that this condition will not 
be satisfied.

6 .6 .3  C alcu lation  o f G cd

The result returned from the euclidean loop (steps 3c, 3e) is the gcd of f i  and 
f 2 in Z(y2, • • •, yn)[xi]- We must now divide by the leading coefficient of this 
gcd, this makes the polynomial monic with respect to X \ .  Now an argument 
based on Gauss’s lemma (which states that products of primitive polynomials 
are primitive) implies that this gcd is the gcd of / i  and f 2 in Z [y2, • • * , ? / „ ,  X \ \ .  

Now since the translation mapping is a ring isomorphism, the back translation 
will give us the gcd of f \  and f 2 over Z[xi, • • • , x n].

<  C m a x i^ m a x  T  ' ' * +  £m a x  +  l )

— Cm.r,
>max

max
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6.7  O ther G cd techniques

6.7 .1  R esu lta n t based  tech n iqu e

An alternative technique, expounded by Loos [16] for calculating the gcd of poly­
nomials is based on resultants and sub-resultant theory, this also suffers from the 
need to calculate the content of the polynomials. It would of course be possible 
for us to remove the content by translation as above.

6.7 .2  D iv id e  and conquer tech n iq u e

A method originally due to Shonhage, then extended to hold in all euclidean 
domains by Moenk [20], also cited by Czapor [28] has been preposed. The method 
is a divide and conquer technique based on the extended euclidean algorithm, it 
thus has assymptotic advantages over the basic euclidean algorithm.

112



Chapter 7

R esults

7.1 Perform ance M etrics for SLPs

Three important measurements concerned with the performance of an SLP algo­
rithm are:

• The time taken to create the SLP

• The depth of the SLP created. Depth is defined in section 1.4.

• The length of the SLP created. Length is defined in section 1.4.

7.2 In terpolation  R esu lts

The interpolation process is a very important step in the gcd algorithms de­
scribed in the previous chapter as it is necessary for converting from a purely 
SLP representation to the mixed representation described in section 5.2.1. We 
shall compare and contrast the interpolation algorithms described in chapter 5. 
The following graph shows the time taken to perform these algorithms on SLPs 
which represent polynomials of a range of degrees:
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Figure 7.1: Graph demonstrating the superiority of the direct interpolation over 
the Lagrange interpolation

We conclude from this that the direct interpolation algorithm of section 5.5 is 
fastest in most situations, especially as the degree becomes large.

7 .3  G c d  R e s u l t s

We consider the three measures enumerated in 7.1 above. The values of these 
measures will depend on various attributes of the problems being considered, the 
most important being:

1 The SLP-degrees (see section 3.13) of the argument sips in the different vari­
ables and the number of variables

2 The total SLP-degrees (see section 3.13) of the argument sips.

3 The degree of the gcd of the argument polynomials.
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4 the length of the input sips.

We shall now describe how and why these specific attributes will effect the algo­
rithm being performed.

1 It will be necessary to perform equality tests at various points in the algorithm
most notably in the degree checking at the start of every euclidean loop. 
This check will have a size 0 (  degx) where x is the set of variables in

the SLP, in the deterministic case, though the check will only approach this 
value in the affirmitive case.

2 The degree of the translated polynomials in the major variable is determined
by the total degree of the argument polynomials, which is bounded by the 
SLP-total degree of the argument SLPs. This will determine a bound on 
the length of the euclidean loop, as this degree gives a bound to the number 
of repetitions necessary.

3 The degree of the gcd will effect when the euclidean loop will terminate. If
the degree of the gcd is small relative to the argument polynomials then 
the euclidean loop will be executed more times. However the final equality 
which will be positive (i.e. will return true) will not be very expensive. 
However if the degree of the gcd is similar to the degree of the argument 
polynomials, then even though the euclidean loop is only executed a few 
times, the final equality will have large degrees in it and therefore will be 
expensive.

4 There are various ways in which the length of the argument SLPs will effect
the complexity of the gcd algorithm.

a  The base length of the gcd SLP will depend on the lengths of the argu­
ment SLPs. That is the length of the program which represents the 
coefficients of the polynomials which are input to the euclidean loop.

b The time to perform the translations and the interpolation will depend 
on the length of the arguments.

c The time to perform each evaluation is effected by the number of op­
erations which must be evaluated. Also the size of the dummy lisp 
program which must be constructed and the time taken to perform its 
evaluation will be effected by the size of the program.
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The following graph displays the correspondance between time against the prod­
uct of the maximum of the degrees and the difference between the degree of the 
gcd and the degrees of the input polynomial. Each band corresponds to a dif­
ferent number of iterations of the euclidean loop (step 2, of the gcd algorithm 
described in section 6.2 that we use):

1 0 0 0 0  
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</)£0)
E

3 3
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0
0 20 40 60 80 100

prod maxdeg.diff deg

Figure 7.2: Graph displaying a banding effect due to varying numbers of iterations 
of the euclidean loop

In the following graph we show the superiority of the SLP representation as the 
degree of the gcd becomes greater. In this graph we are calculating the gcds 
of polynomials with three variables represented by SLPs. These SLPs are con­
structed to have a varying number of factors. We note that the size of the SLP 
has a profound influence over the time taken by the algorithm. The ratio mea­
sured on the y-axis indicates the quotient of the time taken by our Monte Carlo 
technique with respect to the deterministic technique which uses the sparse form 
used by AXIOM currently.

time x prod maxdeg.diff deg>
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Figure 7.3: Graph to display the superiority to the SLP representation as the 
degree of the gcd becomes greater

7 .4  G r o b n e r  B a s i s  R e s u l t s

Grobner basis were first introduced by B. Buchberger, under the direction of W. 
Grobner. They comprise a generating set for a polynomial ideal, with some extra 
properties. Grobner basis provide a good general technique for solving systems of 
multivariate non-linear equations (see Kaltofen [12]). We may use an algorithm 
due to Buchberger to calculate Grobner basis, known as Buchbergers Algorithm. 
This involves polynomials known as S-polynomials. For two polynomials / i , / 2 , 
their S-polynomial is defined as

S ( f1J 2) = hl f l - h 2f 2

where
. lcm(init /i,in it f2) , lcm(init / / ,  init f 2)
h\ =  .  j h2 —-------- —-   ----------init jj init j 2

In the above:

"x—i----------   1------------------ 1------------------ 1--------------
|  x four factors +

x x three factors x
two factors *

x

X
X  XX +

■f
X  X
X

X  X

X
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init denotes the initial term of the polynomial (its argument) with respect 
to some ordering on terms, e.g. the deglex ordering, this is an ordering 
which depends first on the variables and then the degrees of a term.

lcm denotes the Least Common Multiple of two polynomials, this satisfies 
the following relation:

1cm ( f i j 2) = I f 2 .
gcd (// ,/s)

As detailed in 1.6 we may use the SLP gcd algorithms in order to calculate a 
Grdbner basis in AXIOM.

The problem with using SLPs for calculating Grobner basis using Buchbergers 
Algorithm is that Buchbergers Algorithm involves many gcd calculations of small 
polynom ials, i.e. polynomials with small degrees and containing a small number 
of variables. These calculations are not very efficient using our methods.
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Chapter 8

Conclusion

8.1 E quality checking

Because of the non canonicality of the SLP representation, a deterministic equal­
ity check for these objects necessarily relies on the mathematical properties of 
the objects being represented rather than some syntactic check. It is claimed in
[29] that for polynomials this problem is exponential in the number of variables 
in the polynomial. Indeed for polynomials represented in sparse form the num­
ber of terms increases exponentially with the number of variables. If we intend 
to produce algorithms which are sub-exponential in complexity, using current 
means we are forced to use certain non-deterministic equality checking methods, 
for example see section 4.14.

8.2 M odular V iew point

We discuss the problems that occur when we consider the modular viewpoint in 
a categorical setting. Consider the Gcd Domain described in section 1.6. Here we 
have a problem, as when the gcd function is applied to different SLPs, the bounds 
calculated and hence the moduli of the resulting SLPs may be different. It will 
not be valid to then do operations between these SLPs, as they have different 
moduli. One may argue that if an SLP had a modulus which was lacking some
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factors it would be possible to retrospectively calculate the constants with respect 
to the necessary moduli i.e. the lacking factors, however it is unlikely that this 
would be trivial to implement in a generic setting.

8 .2 .1  A  p ossib le  so lu tion

We can resolve the problem of the moduli of programs p\ and p2 being different.
Let m i, 7772 denote the moduli of p\ and p2 respectively, we may factor mi and 

m 2 to get factors f m  1,1 , • • •, fm u n and fm 2,i, * • •, /m 2, m • Some of these factors 
may be equal, assume WLOG that these are the first I factors, so:

/m i,i =  fm 2,i5 , fm i,i = fm 2,i

If we can construct sips representing the same object as p\ with moduli fm 2,i+i, "  * > fm 2, m  
and as p2 with moduli frrii,i+i, "  * > /m i, n .Then we may produce programs jp\ and 
p2 with modulus

l n m

n ( / m i , i )  II ( /m i,i)  II ( fm 2, i) = ni2)
i = 1 7=7+1 7=7+1

Pi and p2 have the same modulus, and it is therefore valid to perform operations 
between them.
In order to produce the new sips it is necessary that we have some means for 
calculating the modular constants which appear in the program. We propose 
that every constant should have a function associated with it which implements 
its construction.

8.3 O bject O riented V iew point

AXIOMs categorical structure is in effect an object oriented structure, with Cate­
gories as objects on one level and Domains as objects on another. This structure 
allows us to take ‘short cuts’ when coding an algorithm. However it does mean 
that we cannot make use of any prior knowledge that we have of some feature 
of the algorithm. This may lead to nonoptimal code. If we wish to make use of 
these features to perform some optimisations, the resulting code is often badly
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structured and verbose.
Example:
We shall look at the example of finding the pseudo-remainder of p\ with re­
spect to P2 ■ Where pi and P2 are polynomials each represented by an array of 
SLPs, with each SLP representing a coefficient with respect to one distinguished 
variable. We first look at a naive way of using the built in AXIOM function 
pseudoRemainder(' , •) to perform the calculation.

1. form a UnivariatePolynomial(a:, SLP(R)) for each polynomial,
denote these as ui, U2 respectively, in this x  is the distinguished variable 
and R is the base ring for pi, p2.

2. make the function call pseudoRemainder^i,?^)

3. reconstruct a polynomial from these coefficients, or alternatively return an 
array of programs, where each program is a coefficient.

The function pseudoRemainder(' , •) necessarily uses the arithmetic operations 
defined in SLP(R), this will involve merging programs together at each appli­
cation. It is far more efficient to construct a list of operations which code the 
pseudo-remainder algorithm and append this to the end of the program which 
represents the argument polynomials. Another advantage to this is that we could 
share the same program between all the coefficients, each one being represented 
by an SLP which has a different return instruction from the same program.

8.4 M onte Carlo V iew point

The algorithm of section 6.5 is a Monte Carlo algorithm. The problem of embed­
ding this sort of algorithm in AXIOM has been elucidated in section 3.17. We 
would like to produce a system with the same categorical structure as AXIOM 
which allows Monte Carlo algorithms to be used. In such a system it would be 
necessary to guarantee that results were correct to a specific probability, i.e. we 
would require that the inherent probability was zero. We give an example to 
illustrate the sort of algorithms we might use:
Example:
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We shall consider the case where we have a Monte Carlo Matrix domain, built 
over a Monte Carlo SLP domain. We shall look at the case of a rank function, 
that is a function to calculate the rank of a matrix (the number of linearly inde­
pendant rows or columns). This may be achieved by reducing the matrix to Row 
Echelon Form and then counting the number of non-zero rows. A maximum of 
n 2 equality tests must be performed, where n is the size of the matrix. So we see 
that if we can find the solution to the equation defined by the recursive relation:

f i  =  P

fm  —  fm — 1 T  P  fm —lP  | ^  '-> 1  

(or a lower bound to the solution)
where f n is the probability with which we require to limit the probability of 
an incorrect answer to the rank problem. The Monte Carlo operation we are 
concerned about in the SLP domain is the equality check, we denote this by eqsLP- 
The solution to the equation defined above (p) is the limit to the probability of 
incorrectness that we send to eqsLP• So the rank command in the Monte Carlo 
system would need to calculate p. Now on each application of eqsLP, p is an 
upper bound to the probability of an incorrect answer.

8.5 E xpression  Swell

Expression swell is a problem which may occur in mathematics. When dealing 
with sparse form polynomials, expression swell manifests itself in that intermedi­
ate expressions, (expressions which it is necessary to calculate in order to deter­
mine the answer, but which do not themselves make up part of the answer) may 
become very large even though the answer is small.
Example:
A classic example used by many authors ([9],[14],[30]) to show the problems of
expression swell is the following,
find the gcd of the following polynomials:

u(x) = x 8 +  x 6 — 3x4 — 3x3 -I- 8x2 +  2x — 5 

v(x) = 3x6 +  3x4 — 4x2 — 9x +  21
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If we solve this problem using the naive euclidean algorithm with pseudo-division 
we must calculate a polynomial remainder sequence, the last element of which is 
a constant with 35 decimal digits. The information this imparts is that the two 
polynomials are relatively prime. This information may be stored in one bit.

Even though in some cases SLPs may reduce expression swell by reducing the 
sizes of polynomial objects, they do not remove it and indeed some objects which 
in sparse form may be very simple may be represented by SLPs which are rela­
tively large due to cancellations which may occur.
Example:
If two polynomials are relatively prime their gcd will be identically unit. However 
the SLP formed to represent this gcd could be very large.

8.6 Black B ox  R epresentation

We look at a further representation which may be used for representing polynomi­
als called Black Box representation, see [3, 13]. In this representation polynomials 
are represented as Black Boxes: a Black Box is an object which takes as input 
a value for each variable, and then produces the value of the polynomial at the 
specified point. We note that Black Boxes may in fact be modeled by SLPs, 
together with a complete evaluation function. However the Black Box model 
is more general, in that the implementation ’inside’ the Black Box may include 
loops and conditional tests.
Example:
If an SLP is formed to represent the gcd of two polynomials using the algorithm 
of section 6.2, then a section is added to the program for every time that the 
euclidean loop is executed. However using Black Box representation the loop 
would be represented explicitly. In effect we would have a gcd Black Box which 
would make oracle calls to Black Boxes which represent the polynomials, this 
Black Box would be a representation for the gcd of the polynomials.

We should note that the interpolation algorithm of section 5.5 could not be used 
on Black Box objects, as it relies heavily on the very specific structure of SLPs.

123



8.7 Favourable and unfavourable asp ects o f  SLPs

In this section, we shall consider the favourable versus the unfavourable aspects 
of the SLP representation. With specific note of this representation in respect to 
the gcd function for polynomials.

8.7 .1  U nfavourab le a sp ects

• Deterministic equality is a very expensive operation. As noted before, the 
deterministic equality check, by current methods is exponential in the num­
ber of variables relative to evaluation of the SLP.

• Reduction operations e.g. quotient, remainder, gcd, 1cm (least common 
multiple), etc. produce objects which will be larger than the original ar­
guments. In comparison, the sparse form representation will form objects 
which may be smaller than the original arguments (given in sparse form). 
This may present garbage collection problems if one is using, for example, 
a Lisp based system.

• Because of the non-canonicality of the SLP representation it is very difficult 
for a human to recognise polynomials in this form. Because of this they must 
often be converted to a sparse form in order that they may be understood 
by a user.

8 .7 .2  Favourable a sp ects

• There are many objects which have much smaller assymptotic complexities, 
in the storage space required and the time taken to calculate them.

• There exist deterministic algorithms for calculating certain objects which 
are faster then the corresponding sparse form algorithms, e.g. derivation, 
calculation of determinants (for matrices of polynomials).

• Many non-deterministic algorithms exist for use on SLPs which in many 
cases are much faster than the corresponding algorithms which use the 
sparse form representation.
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• There are a number of levels at which SLP algorithms may be effectively 
parallelised.

8 .7 .3  S pecific con clusion  for gcds

We now consider our specific case of the calculation of polynomial GCDs using 
SLP representation.
Our initial technique (that of using a Las Vegas method to get a result which 
was correct all the time) was rejected, as it made use of a deterministic equality 
check which became far to expensive as the number of variables increased.
We then proceeded to implement the Monte Carlo technique of section 6.5. We 
found that this was faster than the sparse representation based technique, pro­
vided that the degree of the polynomial was high enough and the number of 
variables was high enough. Other problems with the probabilistic technique was 
that it did not fit in with AXIOMs category structure, as detailed in 8.2.
For small polynomials the sparse form was better than both the Las Vegas and 
the Monte Carlo techniques.
Due to time restrictions, we have not been able to investigate fully the technique 
we proposed for the integration of modular SLPs into the AXIOM category struc­
ture. We leave this as a topic for possible further research. Other possible further 
research is the development of a Monte Carlo computer algebra system as detailed 
in section 8.4.

125



A ppendix A

Aldor

Aldor is the new compiler language for the AXIOM computer algebra system. In 
order to obtain a full description of the ALDOR language we refer the reader to 
The Aldor User Guide [5].
Aldor attempts to achieve generality and power through simplicity. The strongest 
guiding directions for the language have been generality and uniformity, whilst 
retaining efficiency and portability.
Aldor is a strongly typed language, this means that within a specific scope a 
variable may only take values which are of one particular type. The compiler is 
very particular about the types of the parameters for any function, that is the 
parameters must have exactly the types that are specified by the signature (see 
section 2.2) of the function. AXIOM is built on top of Codemist Common Lisp 
(CCL, see appendix B) which is weakly typed, it is just this weakly typing of the 
Lisp, which allows a strongly typed system to be built over it, as the Lisp imposes 
no a-priori structure which might obstruct the structure required by Aldor, in 
turn the algebraic structure required by AXIOM.
Aldor can generate CCL (for AXIOM) or C for stand alone programs.
For the purposes of this thesis, we shall only describe a small subset of the 
language:

126



A .l  D om ain  syntax

The syntax of a Domain definition is as follows:
Domain-name (Domain-Parameter-List) : Domain-Category 
== add-domain
Domain-name is the name associated with the domain, e.g. Integer. 
DomainJParameter-List is a list of parameters taken by the domain, these pa­
rameters may be objects or domains, the types must be given, in the case of 
parameters which are domains, the type will be a category, e.g. for the type 
UnivariatePolynomial the parameter list is (x:Symbol,R:Ring), in this case x 
is the (major) variable and R is the Domain of its coefficients.
Domain-Category is the category of Domain-name it specifies the functions to be 
exported by Domain-name.
Domain-Category may take the form: Predefined-Category with AdditionaLExports 
Predefined-Category is some category which has already been defined, 
AdditionaLExports is a list of function signatures.

In explanation of the following example, we note that the AXIOM domain Semi- 
Group is intended to model the algebraic structure of a semigroup. A  semigroup 
is a set (S ) together with an operation, we shall denote by *, which is closed and 
associative on the set, that is,

Va, b e  S\a * b E S

Va, 6, c € Sj (a * b) * c = a * (b * c)

in the example ** and "denote ’raising to the power’, or simply repeated appli­
cation of *, viz.

a * *n =  a * • • • * a
> y .  ■/

n
e.g. for SemiGroup the Category definition is:

SetCategory with {
(°/.,°/.) ->
(70>PositiveInteger) -> */»;

C/ojPositivelnteger) -> 70}
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This will export every function exported by SetCategory and also the functions 
, "**" > above.

add_domain contains all the implementation details. The syntax of add_domain is 
as follows: Existent-Domain add functionJmplementation Where Existent-Domain 
is some domain which has already been defined,
functionJmplementation contains code which implements the exported functions.

A .2 Im ported  Functions

Before using a function from another domain, it is necessary to import it. There 
are various ways to specify which functions to import:

• A function with signature sig from domain D om  may be specifically im­
ported using the following syntax:

import sig from Dom;

• If a variable is declared to be in a domain, then every function exported 
from that domain is imported.

• The domain of every parameter to a function and the return domain are 
imported, as in the point above.

function syntax: The general syntax for a function is:

fn(param_list):fn_type == { 
operation_list

>

where fn is the function name,
param_list is the parameter list together with types, 
fn_type is the type of the value returned by the function, 
operation_list is the body of the function, the last block must return a 
value which has the type fn.Type

assignm ent: to assign a value, val to a variable, var, we do the following:
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var := v a l ;

The basic arithmetic operations ( + ,—,* ,/)  are denoted in the normal infix 
manner.
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A ppendix B

Codem ist Common Lisp

The intermediate language used for the implementation of AXIOM, is Codemist 
Common Lisp (CCL). In order to obtain a full description of the CCL language 
we refer the reader to [6].
CCL is a weakly typed language, this means that variables are not required to 
be declared of a specific type, they may be assigned to any LISP object. LISP 
objects may be lists of other LISP objects, or atomic objects; examples of atomic 
objects are strings, integers, symbols, etc.
For the purposes of this thesis, we shall only describe a small subset of the 
language:

F u n c tio n  definition: in order to define a function called fnName, with a list 
of parameters p aram eter.].is t, and where the function is implemented by 
the operations in o p e ra tio n _ lis t, we use the syntax:

(defun fnName (parameter_list) 
operation_list)

An anonymous function definition may be declared as follows, these are 
also known as lambda expression.

(lambda (parameter_list) 
operation_list)

We note that named functions support recursion, whereas anonymous func­
tions do not.
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a rra y  in itia lisa tio n : in order to make an array object of length array_length ,
we may use the syntax:

(m ake-array array-1ength)

we should note that each element of the array will contain the element ’n i l ’

a rra y  assignm ent: in order to assign an object, o b jec t to a variable var_name, 
we may use the syntax:

(se tq  var_name o b jec t)

e lem en t reference: to access the element at position index of array array_name,
we may use the syntax:

(a re f  array_name index)

e lem en t assignm ent: to change the element at position index of array a rray  _name 
to the value value, we may use the command ’s e t f ’ together with the com­
mand ’a r e f ’ in the following way:

( s e t f  (a re f  array_name index) value)

We must note that the indexing starts at zero

rem ain d er: in order to calculate the remainder of a value V  with respect to 
some divisor’d’, we may use the following command:

(rem v d)

The basic arithmetic operations (+ ,-,* ) are denoted using postfix notation, e.g. 
to perform addition of two values v a i l  and val2, we couls use the code 
(+ v a i l  val2)

ite ra tiv e  co n stru c ts : CCL supports the loop construct, using the syntax:

(loop fo r  i  from base to  top  
o p e ra t io n _ lis t)

This will perform the commands in o p e ra tio n _ lis t  repeatedly, the index 
i  taking the consecutive values between base and top
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A ppendix C

Chinese Remainder Theorem

C .l  A  M odular R epresentation

In a modular representation a number is stored as a vector of residues. Each 
residue corresponds to a different modulus, each of which is relativley prime to 
all of the others. If the moduli are represented as PojPi> • • • >Pn-i then an integer 
X would be represented as (Xo,X\, • • • ,£ n- i)  where X{ =  X(m odpi), 0 < Xi < Pi. 
The product of all the moduli will be called M  and is equal to popi • • -pn-i-

C .2 T he C hinese R em ainder T heorem

The Chinese Remainder Theorem states that the system of simultaneous congru­
ences,

X  = xq (mod po)

X  = xi (mod pi)

X  =  z n_i (mod pn- i)  (C.l)
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has a unique solution mod p0Pi • • •pn- \  , assuming gcd(pi,Pj) =  1, for 0 < i , j <  
n, i ^  j .

To show that any solution would be unique, we can consider two numbers A  and 
B  that obey the congruences of Equation C.l. Their difference A — B  must be 
divisible by all pi, and hence M, so they are congruent m odM  as stated.

That a solution exists can be shown by considering the following equation

v  =  E ( ° - 2)t=o

where Mi = and yi =  M ~lXi (mod p^.

To show that it obeys each of the congruences of Equation C.l we can consider 
the case of an arbitary pi. As Mj =  0 mod pi whenever i ^  j ,  then Equation C.2 
can be reduced to the single term,

Y  =  M iM flxi =  Xi (mod pi)

so Y  =  X  mod pi, for all Pi and hence Y  =  X  mod M, is a solution to the original 
set of congruences.

We shall consider how we may map other fields onto modular fields to allow us 
to make use of the CRT.

C .2.1  In teger to  M od

This conversion is easy if we have a bound to the size, in absolute value, of the 
integers we are considering, call the bound B.
To go from Integers to the modular field:
We shall work in a modular field Zp  where P  > 2B,
denote the integer to be represented as x , denote the modular value which will 
represent x  as m, also denote [(P /2)J as M.

To go from Integers to the modular field:
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if x  < 0 then m  P  +  x, otherwise m  x.

To go from the modular field to the Integers: 
if m  > M  then x <— m  — P  else x <r- m

C .2 .2  R ation a ls  to  M od

For this conversion, we use a technique taken from [24]. We need a bound to the 
size of the denominator and to the size of the numerator of the rational we are 
considering, we call the bound B.
We shall work in a modular field Zp  where B  <
We denote the rational to be represented as x  also the modular value which will 
represent x  as m.

To go from the rationals to the modular field: 
if x  =  V1 /V2 , where V\t V2 € Z
then we use Euclids algorithm over Z to find the value E Zp, now we may 
calculate the product v\vJ 1 in the field Zp to arrive at the representation required.

To go from the modular field to the rationals:
We use the following algorithm:

1) it «—(1,0, P ), v <r- (0,1, m)

2) While y jp /2 < i>.3 do

2.2) {q < r-  [(w.3)/(v.3)J , r u — qv , u «— v , v < r- r}

4) if |(u.2)| > yJm/2 then error ()

5) Return (v.3,v.2)

now the rational value we require is ^
We should note that the condition in step 4) will only be satisfied if the field Zp 
is not big enough, or a modular value has been chosen, which does not correspond 
to a rational. So long as our SLP algorithms are correct, we should not encounter 
this problem.
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A p p e n d ix  D

B areiss  m e th o d

Following the method described in [1] we introduce the notation

a i j  =

a n 0 \ 2  * • O lJfc ' • O i j

^ 2 1 & 2 2  ' • 0,2k ' ’ a 2j

f l f c i Ok2 • '  Okk  • Okj

O n Oi2  ’ '  Oik  • • Oij

(k < i j  < n)

We also recall the identities that Bareiss proves:

1a (fc) = _____
( k - 2)ak — l , k —l

( k - 1) (*“ 1)
a kk a kj  

( k - 1 )  ( k - 1)aik a)

with the conditions that:

(D .l)

°00l =  1 aij =  aij =  1. • • •>n)
(k)Using these identities we may yield succesive principal minors fe+1 and thus 

lead to an efficient calculation of the determinant \A\ = o^~ l>*
We notice that using this method to form an SLP which represents the determi-
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nant of a three by three symbolic matrix:

an ai2 ai3
a 2 i 022 &23

y  <331 a3 2  033

Involves eleven times operations, one divide and five subtractions. We see that 
in fact due to cancellation and factorisation, this may in fact be represented in 
the following optimum form:

0 1 1 ( 0 2 2 ^ 3 3  —  ^ 2 3 ^ 3 2 )  —  G 3 i ( G 2 2 & i 3 ~  ^ 2 3 ^ 1 2 )  —  ^ 2 1  (& 1 2 & 3 3  —  & 1 3 & 3 2 )  (D.2)

This could be translated into an optimal SLP containing nine times operations 
and five minus operations, a saving of two times and one divide operations. We 
may in fact use this in a more general setting, Bareiss gives a more general 
identity:

(*)
0 - i ) i  k - ia 11

o(0 ’ * afc+l,fc a{l)

(0

a(0ai,l+1

• • a(0ak,k
• • o(0ai,k

n{l)ak,j
(0

ai,3

(D.3)

we may take l=k-2 and so this reduces to:

a{k) = 13 (fc-3) 1 
'As—2,*—2lO

a
a
a

(fc-2) 
fc—l , f c —1 
(,fc-2) 
fc,fc— 1 

(fc-2) 
i ,k— 1

o(fc_2)a k - l , k

n{k~2) a k,k

a (k~2)a k - i , j
(fc-2)ak,3

o .
(fc-2) (̂fc-2)
i ,k

(D.4)

so long as k > 2 we could use this identity along with the form given in D.2 
terminating the recursion by using identity D.l.
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