

University of Bath

PHD

Investigations into the suitability of parallel computing architectures for the solution of
large sparse matrices using the preconditioned conjugate gradient method

El-Ghajiji, Otman Abubaker

Award date:
1995

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

Investigations into the suitability of parallel computing

architectures for the solution of large sparse matrices

using the preconditioned conjugate gradient method

Submitted by Mr. Otman Abubaker El-Ghajiji,
B. Sc. (Hons.), M. Sc. (Bath),

For the degree of Ph.D.
of the University of BATH

1995

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the

thesis has been supplied on condition that anyone who consults it is understood to recognize that its

copyright rests with its author and that no quotation from the thesis and no information derived from it

may be published without the prior written consent of the author.

This thesis may be made available for consultation within the University library and may be

photocopied or lent to other libraries for the purpose of consultation.

UMI Number: U601936

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601936
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

UNIVERSITY 0

ACKNOWLEDGMENTS

It was a great pleasure to have Dr. Paul J. Leonard as my supervisor

at Bath University. He has been an unfailing source of knowledge,

encouragement and support. His guidance was crucial for the development o f.

the ideas for this research and the final form in this thesis.

Special thanks are due to Dr. R. W. Dunn for introducing me to

multiprocessor system architectures.

I should also like to thank my colleagues and friends in the School of

Electrical Engineering and the university of Bath who have made these past

years so enjoyable.

ABSTRACT

This thesis presents investigations into the suitability of parallel computing
architectures for the solution of large sparse matrices using the
preconditioned conjugate gradient method. The solution is based on the
incomplete choleski conjugate gradient algorithm. The preconditioning phase
of the algorithm involves a backsubstitution step. We have concentrated our
work on how to obtain speedup results when this step is executed on parallel
computing architectures.

On the surface the backsubstitution algorithm appears to be serial, but
by exploiting the sparsity structure of the large sparse matrices, we have
found that a speedup is attainable. The thesis shows, however, the speedup
obtainable from the algorithm is significant.

The backsubstitution algorithm steps were represented by a data
dependency graph. A node in the graph corresponds to an arithmetic
operation, and arcs between nodes represent data transfers. We have
develop a scheduling and simulation tool, called PARASIM, to aid in the
required investigations.

PARASIM (Parallel Simulator) is a software program, which represents
algorithms in data dependency graph, and simulates the operation of parallel
computing architectures. It is an interactive environment in which one can
simulate MIMD architectures of both distributed memory, as well as
architectures with shared memory and interprocessor communication
enhancement mechanism.

PARASIM has control structures for expressing parallel execution of
algorithms, data transfer and models for hardware subsystems, such as
processors, memory and bus structures. An intelligent scheduling method
based on the critical path analysis concept was incorporated into PARASIM.
This scheduling method ensures that minimum execution time is achieved.
The key two factors which will affect the speedup are load balancing and
interprocessor communication. It is essential that all processing nodes have
equivalent computational loads, and the interprocessor communication is
reduced as much as possible.

The thesis presents simulation results for a number of models
exploiting different sources of parallelism. The thesis points out that
communication enhancement hardware, such as one-to-all broadcast and
caching, would improve the speedup by a factor of 10 to 20% respectively,
sparsity structures and element interconnections.

ABBREVIATIONS

B U T P C Bath University Transputer-based Parallel
Computer

C A D Computer Aided Design
M I S D Multiple Instruction Single Data
M I M D Multiple Instruction Multiple Data

CG Conjugate Gradient
C P A Critical Path Analysis
C P U Central Processing Unit
FEM Finite Element Method
FP U Floating Point Unit
H L L High Level Language

I C C G Incomplete Choleski Conjugate Gradient
IP C Inter-Processor Communication
L S I Large Scale Integration

M I P S Millions of Instructions Per Second
M M Memory Module
OS Operating Systems

PARASIM Parallel Systems Simulator: A software program
developed for this research by the author.

PDE Partial Deffirential Equations
P E R T Project Evaluation and Review Technique

PN Processing Node
P P A Parallel Processing Architecture
R AM Random Access Memory
R I S C Reduced Instruction Set Computer
S I M D Single Instruction Multiple Data
S I S D Single Instruction Single Data
T S B Time-Shared Bus (multiprocessors)
T T L Transistor Transistor Logic

V L S I Very Scale Integration

List of Tables

T a b le 1: C o m p ariso n T a b le o f D i f f e r e n t S im u lato rs. .. 66

T able 2: T h e link inform ation (earliest and latest start tim es) for th e netw ork of 7 n o d e s .78

T able 3: C c ode declaration of N o de stru ctu re ...95

T able 4: C code declaration for L ink stru ctu re .. 97

T able 5: C code declaration for T ask stru ctu re ... 99

T able 6: T h e B asic scheduling algorithm steps ... 113

T able 7: C code for declaration th e Processing N ode structure ..117

T able 8: D etails o f th e Pr ocessing N o d e declaration variables..117

T able 9: Co ntents o f N etw ork D escription F il e ..122

T a b le 10: O u tp u t in fo rm a t io n o f t h e s im u la t io n p ro g ra m PARASIM...126

T able 11: Charateristics of th e data m odels used in sim ulation show ing sparsity r a tio s . . 134

T able 12: Single Arithm etic task operation tim in g and M odels u sed .. 144

T able 13: M ultiple Arithm etic task operation tim in g ..144

T able 14: F ield description for table headings for tables 16 t o 22 .. 146

T able 15: N etw ork inform ation for m odels 1 t o 12...146

T able 16: N etw ork inform ation for m odel 13.. 146

T able 17: N etw ork in form ation for m odels 14 to 18.. 147

T able 18: N etw ork inform ation fo r m odels 19 t o 30 ... 147

T able 19: N etw ork inform ation for m odels 31 to 47 ... 147

T able 20: N etw ork inform ation for m odels 37 to 47 .. 148

T able 21: N etw ork in form ation for m odels 48 to 50 .. 148

T able 22: F ield headings for average speedup tables ... 153

T able 23: A verage speedup results for 4 architectures fo r m odels 1 to 18................................. 153

T able 24: A verage speedup results for 4 architectures fo r models 19 to 36 154

T able 25: A verage speedup results for 4 architectures fo r m odels 37 to 50 154

T able 26: Com parison o f m odels 1 and 3 .. 164

T able 27: Com parison of m odels 9 and 11..165

T able 28: Com parison of m odels 14 and 15... 165

T able 29: Com parison of models 22 and 28 ... 165

T able 30: Com paring M od el 32 and 4 7 .. 166

T able 31: Com paring M odels 4 and 5 ... 166

T able 32: Com paring M odels 4 and 5 ... 166

Table of Figures

F igure 1: O rganization o f this th esis ...11

F igure 2: F low charts for a) CG m ain program , b) On e CG iter a tio n ... 18

F igure 3: D ataflow details for a full 3x3 m atrix ..24

F igure 4: T he dataflow for th e exam ple sparse m atrix size 10x 10... 26

F igure 5 T hroug hpu t o f a m ultiprocessor com pu ting sy stem .. 34

F igure 6: SISD com puter architecture ...36

F ig ure 7: SIM D com puter architecture ... 37

F igure 8: H ig h -level taxonom y of parallel com pu ting architectures ... 38

F igure 9: Cache architecture for the P rocessing N o d e .. 40

F igure 10: A simple dataflow program fra gm ent ...46

F igure 11: A second dataflow program fra gm ent ... 47

F ig ure 12: D ataflow program t o com pute quadratic r o o ts ... 48

F igure 13: Softw are sim ulation o f und erlying a rchitectures ..62

F igure 14: A netw ork o f connected N o d es ...75

F igure 15: O riginal netw o rk ... 76

F igure 16: F orw ard sw eep t o com pute th e earliest start tim es .. 77

F igure 17: Reverse pass to com pute th e latest start tim es ..77

F igure 18: F orm s o f In put and O utput to /from th e sim ulation program PAR A SIM 94

Fig ure 19: G raphical presentation of N o de stru ctu re .. 96

F igure 20: G raphical presentation of L IN K stru ctu re ..98

F igure 21: G raphical presentation of TA SK stru ctu re ...99

F igure 22: G raphical presentation of th e T ask list ...100

F igure 23: A segm ent of th e netw ork presenta tion w hich includes 2 n o d es 102

F igure 24: Flow ch art of PARASIM steps in oper a tio n ...104

F igure 25: P hases o f execution for a N O DE w ith in put and output LIN K S.....................................106

F igure 26: In itial W indow position d uring th e sim ulation steps... 108

F ig u re 27: F l o w c h a r t o f forw ard_p a ss0 r o u t i n e ...109

F ig u re 28: F l o w c h a r t o freverse_p a ssO r o u t i n e .. I l l

F igure 29: F low ch art of M ultiprocessor sim ulation ro u tin e ... 114

F ig ure 30: A typical shared m em ory m ultiprocessor com puter w ith tim e-shared bus

STRUCTURE... 116

F ig ure 31: A typical distributed m em ory m ultiprocessor com puter w ith d irect

COMMUNICATION LINKS.. 116

F igure 32: F low ch art of Broadcast operation c riter io n ...119

-v -

F igure 33: Relationship betw een Alg o rith m , M o d el , N etw ork and sim ulation 133

F igure 34: E lem ent distribution in P r oblem 2352.. 135

F igure 35: E lem ent distribution in Problem 2352 w ith renum bering ..135

F igure 36: E lem ent distribution in P roblem 2352A .. 136

F igure 37: E lem ent distribution in Problem 2352A w ith w ith renum bering136

F igure 38: An example o f a diagonal elem ent n o d e w ith its task ... 138

F igure 39: An example of a row elem ent w ith a M ulti-operation task (Ad d & M u lt) 139

F igure 40: Conn ections t o the diagonal elem ent of each m atrix r o w ...141

F igure 41: Co n n ectin g tw o m atrix elem ents to a diagonal elem ent by d irect co n n ectio n . 142

F igure 42: A row w ith clustered n o d es .. 142

F igure 43: Serial uniprocessor execution tim e in tim e units for m odels 1 t o 13........................149

F igure 44: Serial uniprocessor execution tim e in tim e units for m odels 14 t o 30149

F igure 45: Serial uniprocessor execution tim e in tim e units for m odels 31 to 50 150

F igure 46: P ercentage of critical path tim e t o th e uniprocessor execution tim e for m odels 1

to 13..151

F igure 47: P ercentage o f critical path tim e t o th e uniprocessor execution tim e for m odels

14 TO 30 ..151

F igure 48: P ercentage of critical path tim e t o th e uniprocessor execution tim e for m odels

31 to 5 0 ... 152

F igure 49: Speedup results for m odel 18 show ing th e effect of 4 values of IPC using the

DISTRIBUTED MEMORY ARCHITECTURE...156

F igure 50: Speedup results for m odel 50 usin g D istributed m em ory architecture 157

F igure 51: Speedup results for M od el 30 show ing th e effect of 3 values for in terprocessor

COMMUNICATION USING SHARED MEMORY ARCHITECTURE.. 158

F igure 52: Speedup results for M o d el 18 show ing th e effect of 3 values for interprocessor

COMMUNICATION USING SHARED MEMORY ARCHITECTURE WITH CACHE MECHANISM...................... 159

F igure 53: Speedup results for M o d el 1 show ing th e effect of 3 architecture types w ith

IPC =8.. 160

F igure 54: Speedup results for M o d el 7 show ing th e effect of 3 architecture types w ith

IPC =8.. 160

F igure 55: Speedup results for M od el 25 show ing th e effect of 3 architecture types w ith

IPC =8.. 161
F igure 56: Speedup results for M od el 37 show ing th e effect of 3 values for interprocessor

COMMUNICATION USING SHARED MEMORY ARCHITECTURE... 161
F igure 57: Speedup results for M od el 18 show ing th e effect of 3 values for interprocessor

COMMUNICATION USING SHARED MEMORY ARCHITECTURE.. 162
F igure 58: Speedup results for M o d el 18 show ing th e effect of 3 values for interprocessor

COMMUNICATION USING BROADCAST SHARED MEMORY ARCHITECTURE...162
F igure 59: Speedup results for M od el 41 & 44 com bined show ing the effect granularity

USING ARCHITECTURE TYPE 2 .. 163

Table of Contents

ACKNOWLEDGMENTS... i
ABSTRACT... ii
ABBREVIATIONS...iii
T a b l e o f F ig u r e s ..iv
L is t o f T a b l e s ... vi
T a b l e o f C o n t e n t s ...v ii

PART ONE..1

I n t r o d u c t io n a n d Ba c k g r o u n d .. l

CHAPTER 1... 2

1.0 In t r o d u c t io n ..3
HOW TO IMPROVE THE PERFORMANCE OF CAD SYSTEMS:..6

1.1 Sim u l a t in g M u lt ipr o c e sso r s : ..6
D is tr ib u te d M e m o r y A r c h ite c tu r e : ..7
Sh a r e d M e m o r y A r c h itec tu r e :...7

1.2 A c h ie v e m e n t s ...8
1.3 Th e s is o v e r v ie w ..9

CHAPTER 2 ..12

2.0 C o n ju g a te G r a d ie n t A l g o r it h m ..13
2.1 Ba c k g r o u n d in f o r m a t io n ..13
2.2 T h e C o n ju g a te G r a d ie n t A l g o r it h m .. 16

2.2.1 T he C G it e r a t io n ... 17
2.3 Pa r a l l e l Fe a tu r e s o f C G ...19
2.5 Pr e c o n d it io n e d I n c o m p l e t e Ch o l e s k i's C o n ju g a t e G r a d ie n t ICCG 22
2.6 D is c u s s io n ...24
2.7 C o n c l u s io n ... 27
2.8 R e f e r e n c e s .. 28

PART TWO.. 30

St r u c t u r e a n d Sim u l a t io n o f Pa r a l l e l C o m p u t in g A r c h it e c t u r e s30

CHAPTER 3... 31

3.0 Pa r a l l e l C o m p u t e r A r c h it e c t u r e s ..32
I n t r o d u c t io n ...32
3.1 M u l t ip r o c e s s o r C o m p u t e r Sy s t e m s ...35

3.1.1 Sh ar ed M e m o r y M u ltipro c esso r s .. 38
3.1.2 M ec h an ism s to im pr o ve system p e r fo r m an c e ...39

3.1.3 D is tr ib u te d M e m o r y m u ltip r o c e s s o r s ... 40
3.1.4 Da ta flo w Ar c h it e c t u r e s ...45

3.2 E x ec u tio n o f Pa r a l le l Al g o r it h m s ...50
3.3 C o n c l u s io n ... 51
3.4 R e fe r e n c e s .. 53

CHAPTER 4... 55

4.0 Sim u l a t io n o f Pa r a l le l C o m p u t e r s ...56
4.1 D isc r e t e Ev en t Sim u l a t io n ... 56
4.2 D isc r e t e Ev en t M o d e l s : ...57
4.3 Sim u l a t io n Sy ste m G o a ls ...59
4.4 Pe r fo r m a n c e e s t im a t io n ...60
4.5 Pr ev io u s At t e m p t s .. 63

4.5.1 H a rdw are su b sy st e m s ... 63
4.5.2 Processor In s tr u c tio n Sim u l a t o r s .. 64
4.5.3 H.L.L. SOURCE CODE SIMULATORS... 65
4.5.4 Op er atin g system Sim u la t o r s .. 65
4.5.5 St a n d -a lo n e Sim u la t o r s ...66

4.6 D isc u ssio n and C o n c l u sio n ... 67
4.7 R e fe r e n c e s .. 68

PART THREE... 71

Sc h e d u l in g a n d Sim u l a t in gJ... 71

CHAPTER 5..72

5.0 C r it ic a l Pa t h M e t h o d a n d Sc h e d u l in g ..73
5.1 I n t r o d u c t io n t o Cr it ic a l Pa t h M e t h o d ...73
5.2 T h e N e t w o r k d ia g r a m .. 74
5.3 I d e n t if ic a t io n o f Cr it ic a l Pa t h ...75
5.4 Cr it ic a l Pa t h a n d Pa r a l l e l Pr o g r a m s ...78
5.5 A p p l ic a t io n o f CPM t o Pa r a l l e l Pr o g r a m s ...79
5.6 M a p p in g o f Pa r a l l e l T a s k s ..81
5.7 Sc h e d u l in g o f Pa r a l l e l T a sk s .. 81

5.7.1 RULES OF SCHEDULING:..82
5.7.2 Optim a l Sc h ed u le :.. 82
5.7.3 Sing le Static Al l o c a tio n ..83

5.8 Sc h e d u l in g t h e Ba c k s u b s t it u t io n A l g o r it h m u s in g Cr it ic a l Pa t h
METHOD...84
5.9 Sim u l a t io n m e t h o d ..86
5.10 Sim u l a t io n Pa r a m e t e r s ..87
5.11 C o n c l u s io n ..88
5.12 R e f e r e n c e s .. 88

CHAPTER 6... 90

6.0 THE SIMULATION PROGRAM PARASIM..91
6.1 AN OVERVIEW OF PARASIM STRUCTURE.. 92

-viii-

6.1.2 Sim u l a t io n St e p s ..92
6.1.3 Da t a Stru ctures of th e s im u la t io n p r o g r a m ...95

6.2 I m p le m e n ta t io n o f PARASIM...101
6.2.1 N etw o r k Cr e a t io n ...101
6.2.2 Ba s ic M o d el A s s u m p tio n s ...105
6.2.3 T h e W in d o w m e t h o d ... 106

6.3 Th e Sc h ed u lin g Te c h n iq u e ... 106
6.3.1 PARASIM SCHEDULE..106

6.4 M u l t ipr o c e sso r Sim u l a t io n ...112
6.4.1 Sim u la ted Arc h itectu res M o d e l s ...115
6.4.2 In te r -Processor Co m m u n ic a t io n M o d e ls ...123
6.4.3 Oper atio n of m u ltipr o cesso r s im u la t io n r o u tin e ...123

6.5 ROW OUTPUT OF SIMULATION.. 125
6.6 De v e l o pm en t ph a ses & St a g e s .. 126
6.9 C o n c l u s io n ... 129
6.10 R e f e r e n c e s .. 129

PART FOUR...130

R e s u lts a n d C o n c l u s io n s ... 130

CHAPTER 7..131

7.0 Sim u l a t io n R e s u lts a n d A n a l y s is .. 132
7.1 INTRODUCTION:..132
7.2 T h e D a t a M o d e ls u sed in s im u l a t io n ... 133
7.3 Ba c k s u b s t it u t io n A l g o r it h m ... 137

7.3.1 Da ta Depen d en c y in BACKsuBSTmmoN a l g o r ith m .. 139
7.3.2 In tern al PARASIM presen ta tio n o f th e N e t w o r k .. 140
7.3.3 N o d e allo catio n m et h o d s .. 142
7.3.4 T im e a n d Granularity o f Ta s k s .. 143

7.4 Sim u l a t io n R es u lts f o r U n ip r o c e s s o r s ..145
7.5 Sim u l a t io n R e s u lts f o r M u l t ip r o c e s s o r s .. 152

7.5.1 THE EFFECT OF THE NUMBER OF PROCESSING NODES..155
7.5.2 T he effe c t o f th e In ter pr o cesso r Com m u n icatio n t im e s155
7.5.3 D istribu ted M e m o r y Sy s t e m .. 156
7.5.4 Sh a red M em o r y Sy s t e m s ..157
7.5.5 B u s Co n te n tio n a n d p r a c t i c a l Im p le m e n ta t io n : ..158
7.5.6 0NE-TO-ALL BROADCASTING SYSTEM.. 158
7.5.7 Sh a red w ith Ca ch e m e c h a n is m ...159
7.5.8 In tra -M o d el p a r a m e t e r s ..163

7.6 D is c u s s io n o f r e s u l t s ...167
7.7 Su m m a r y a n d C o n c l u s io n s .. 169

CHAPTER 8..170

8.0 C o n c l u s io n a n d f u t u r e W o r k ... 171
8.1 Steps o f t h e in v e s t ig a t io n s ..171
8.2 C o n c l u s io n s .. 173
8.2 D ir e c t io n s f o r Fu t u r e r e s e a r c h ..176

PART FIVE...178

RELATED INFORMATION AND APPENDIX.. 178

-x -

Part ONE

Introduction and Background

This first part of the thesis is devoted to the presentation of

introductory material on our research project, and to the discussion of some

of the background to used throughout the other parts.

Part 1 comprises Chapters 1 and 2. Chapter 1 contains an introduction

to the work carried out and identifies the different components used in this

research. Chapter 2 contains some background information relating to the

Conjugate Gradient algorithm.

Chapter 1

Introduction

CHAPTER 1.. 2

1.0 In t r o d u c t io n ...3
HOW TO IMPROVE THE PERFORMANCE OF CAD SYSTEMS:.. 6

1.1 Sim u la tin g M u lt ip r o c e ss o r s :
Distribu ted M em o r y Ar c h itec tu r e :
Sh a red M em o r y Arc h itec tu r e :.........

1.2 Ac h ie v e m e n t s
1.3 Th e sis o v e r v ie w

vo
r-»

f-
oo

o
\

1.0 Introduction

This thesis investigates the possibility of improving the performance of

CAD systems by utilizing parallel computing architectures.

Introduction:

Computer Aided Design CAD software packages are available for

engineers, architects or designers to facilitate their work. With the spread of

CAD applications in both research and industry the demands set on these

systems have grown. Requirements such as the capability to model complex

design objects, sophisticated 3-dimensional colour graphics, user

friendliness, fast response time or improvement of the basic functionality are

always considered desirable. As a consequence the need for more computing

power to perform these requirements also grows. Although the performance

of uniprocessor computers is improving by utilizing more advanced RISC

processors, there will come a time to utilize the power of parallel computing

architectures to satisfy these needs. Conventional single processor

computing systems are nearing fundamental speed limits, and will not be able

to attain sufficient speedup. Parallel processing allows the application of a

large number of processing nodes (more than one) to solve the same

problem, and thus has the potential to achieve faster operation and response

times.

CAD development cycle:

In some engineering applications delays can be tolerated in response

time of the CAD system. In a research environment, however, it is often

considered desirable to achieve fast solutions to the problems. Field solution

for electromagnetic CAD systems involves the solution of a large set of linear

equations, and a typical design, simulation or analysis session involves

repeated solution of the same model.

The linear system resulting from finite element method FEM has

several characteristics that affect the choice of the solution method. One

possible method for solving this system of equations is Incomplete Choleski

Conjugate Gradient method ICCG. Parallel architectures offer extra

computational power which can be utilized in enhancing the performance of

ICCG. This thesis investigates the suitability of improving the performance of

the ICCG algorithm on parallel computing architectures.

The need for rapid solution of large, sparse linear systems to be

solved by the ICCG will be discussed in this thesis. But how is it possible to

improve the execution of a serial program to be executed on a parallel

computing architecture? To provide an answer for this question we need first

to analyze the algorithm, namely ICCG, to identify potential components for

parallelization, once these special components have been identified, then we

will proceed to find the best method to attain the desired high performance.

Whereas, other research have looked into the problem from another

point of view, that is the algorithm itself and how to make run efficiently on a

parallel processing system, we investigated the scheduling of the algorithm to

improve its performance.

We have analyzed the ICCG algorithm, and identified the portion of

the algorithm which requires attention. This portion turned out to be the

forward- and backsubstitution segment. Since the ICCG will iterate a number

of times to solve the set of linear equations and during each iteration the

backsubstitution will be executed once, then improving the speed of

execution of this core segment will improve the overall performance

dramatically.

We found out that the same sparse matrix structure will be used a

number of times during a typical session. This finding coupled with the fact

that the core segment is executed during each iteration of the algorithm has

led us to focus our efforts to investigate further this matter. A closer look at

matrix sparsity structures introduced patterns which may improve the parallel

execution of the ICCG.

Our work in this research is concentrated on utilizing the matrix

sparsity structures to identify the possible parallelism. In order to make the

identification of parallelism possible, we have represented the different

operations of the backsubstitution algorithm in a network structure.

In this network structure each operation, called Node, is a separate

unit and it will receive its operands from other Nodes in the network

depending on the data distribution and the position of the Node in the

network in relation to matrix element distribution. The execution of the Nodes

will depend on the availability of operands. Each Node can be executed only

if the operands are ready and available. This network model has facilitated

the presentation of the problem and enabled us to model the details of the

operation and execution of the backsubstitution algorithm steps.

In order to obtain a measure for the available parallelism in the

sparsity structure of the matrix, we have designed and written a software

program that can measure such parameter. We have applied the Critical Path

Analysis CPA strategy to identify the shortest sequence of Nodes that must

be completed for the fastest execution possible of the network on parallel

architectures.

Once the critical path within the network is identified the next problem

will be to schedule all the nodes of the network to obtain the best speedup.

The scheduling technique, which we have used in this research, is based on

the following rule, which states that the Nodes residing on critical path are

assigned to one processor, whereas the other remaining Nodes are assigned

to the remaining processors using a criteria which reduces the interprocessor

communication time and produce the highest speedups. Implementing these

scheduling rules will ensure the best possible results.

How to improve the performance of CAD systems:
In multiprocessor system performance evaluation, the system speedup

and processor utilization are the most important aspects. In system selection

or system comparison studies a certain level of quantification can be

achieved by examining instruction rates and device speeds, but once again it

is difficult to examine and compare how two systems will compare under the

same algorithm. Simulating parallel computer systems will provide some

quantitative answers to the performance of an algorithm on different

architectures.

Thus, utilizing a simulation program to run the ICCG algorithm will

produce quantitative results. These results may be used in comparing the

suitability of parallel computing architectures.

1.1 Simulating Multiprocessors:

A detailed simulation that shows the performance, speedup and

efficiency of different architectures was implemented in this research. Factors

which could adversely impact the performance of the system in the full

implementation are discussed, simulated and solutions suggested.

We have first to understand how different parallel architectures work,

and propose a suitable simulation method to mimic their operation.

Simulation models based on the use of Discrete Event Simulation DES are

best suited for this class of digital systems. Parallel computing architectures

are digital systems that state transitions take place during the clock change.

These digital systems are best simulated using the DES models. Creating

different models to describe the behavior of the computer subsystem and

combining them in one system will result in a model for parallel architectures.

The target machine, we simulated for this research, is assumed to

have a general MIMD architecture composed of a number of Processing

Nodes or elements PN. Beside containing local memory to hold code and

data, each PN incorporates a private communication mechanism. The

program models: Processing node, local and remote memory, communication

architecture, bus operation and others. We have simulated both the

distributed and the shared memory system architectures.

Distributed Memory Architecture:
The distributed memory system model is assumed to be a fully

interconnected structure, where each processing node can communicate with

any other processing node by direct link.

Shared Memory Architecture:
The architecture, we intend to simulate, features a number of

processing nodes connected by a multiprocessor time-shared bus. Each

processing node is partitioned into an arithmetic unit, which performs the

actual computations, and a communications unit, to provide the necessary

hardware to interchange of data between the processing nodes.

Special features:
We have added special hardware enhancement features into our

simulator to simulate a bus with the characteristics:

1- High bandwidth, to alleviate the communication bottlenecks as far as

possible.

2- The ability to support communication enhancement features to improve

Interprocessor Communications IRC. These two functions will be

utilized by the shared memory bus system are one-to-all Broadcast

and caching architectures.

The simulator will be used to investigate the effect of the sparsity

structure on the performance of parallel execution of the ICCG algorithm.

This simulator, which will be equipped with an option to allow intelligent

scheduling of tasks, will be used to investigate the effect of the sparsity

structure on the performance of parallel execution of the ICCG algorithm.

Research Objectives

The objectives of this research project are as follows:

1 - Identify the computational bottleneck of the ICCG algorithm.

2- To measure the performance of ICCG algorithm on parallel architectures

using simulation.

3- This requires the simulation of different types of parallel computer

architectures.

4- Write a simulation program which enables the user to simulate the

algorithm running on different architectures.

5- Apply communication enhancement modules and measure their

performance effects.

1.2 Achievements

1- We have applied the CPA strategy to the scheduling of a numerical

algorithm to improve its performance on a multiprocessor system.

2- Obtained good results from the simulation that show it is possible to

benefit from the intelligent scheduling method.

3- We have experimented with different data interconnections.

4- The granularity of the network played an important role in its performance,

thus, we have experimented with different forms and granularity

structures. We have found by simulating the algorithm on different

granularity sizes, that the performance was enhanced by grouping

Nodes together.

5- The performance of the serial implementation of the scheduler and

simulator was improved by a number of programming techniques to

minimize the execution time.

1.3 Thesis overview

first shows the different components that were used to develop and

execute this research. The components are related to: The numerical

algorithm, Scheduling, Critical path analysis, and Multiprocessor

architectures. These components are discussed in more detail in this thesis

which is divided into five main parts.

Part One: Introduction and Background.

Chapter 1 introduces the work carried out and our objectives.

Chapter 2 depicts the Incomplete Choleski preconditioned Conjugate

Gradient (ICCG) algorithm, which is the basis for the solution of

the large sets of linear equations encountered in numerical field

modeling.

Part Two: Sturcture and Simulation of Parallel Computing Architectures

Chapter 3 introduces the diverse hardware architectures for parallel

computers and gives examples of each category.

Chapter 4 surveys previous attempts of simulating uni- and

multiprocessor architectures. A comparison table is prepared

and showed to summarize past research.

Part Three: Scheduling and Simulating

Chapter 5 describes the Graph theory and how it is used to allocate

parallel programs.

Chapter 6 presents the structure and internal operation of the

scheduling and simulation program PARASIM. Forms of user-

interface, program output, presentation of algorithms and

different parameters of simulation are also discussed.

Part Four: Results and Conclussions

Chapter 7 presents and discusses results for the simulation of the

Incomplete Choleski Conjugate Gradient algorithm ICCG on the

software simulator.

Chapter 8 concludes the work carried out to investigate the simulated

parallel implementation of ICCG algorithm, and gives

suggestions for the possible future work and system

improvements.

Part Five: Appendices

Appendix-A: Speedup results tables for different configurations and

architectures.

Appendix-B: List of main routines of the PARASIM simulation program.

- 10 -

Internal Operation Task Scheduling

Algorithm

CAD Package

Finite Element

Method

Graph Theory

Simulation of

Parallel Architecture

Simulation

Hardware

Parallel Architecture

Conjugate Grad.

IC C G

Sparse Matrix

Discrete Event
Simulation

D E S

Performance

Speedup

Tables

Critical Path

Analysis

C P A

Parallel Computer

Architecture

Simulation

PARASIM

Figure 1: Organization of this thesis.

-11 -

Chapter 2

Conjugate Gradient Algorithm

CHAPTER 2..12

2.0 C o n ju g a te Gr a d ie n t A l g o r it h m ..13
2.1 Ba c k g r o u n d in f o r m a t io n ..13
2.2 T h e C o n ju g a te G r a d ie n t A l g o r it h m ...16

2.2.1 THE C G ITERATION... 17
2.3 Pa r a l l e l Fe a tu r e s o f C G ... 19
2.5 Pr e c o n d it io n e d I n c o m p l e t e Ch o l e s k i’s C o n ju g a t e G r a d ie n t ICCG 22
2.6 D is c u s s io n ...24
2.7 C o n c l u s io n ..27
2.8 R e f e r e n c e s ...28

- 1 2 -

2.0 Conjugate Gradient Algorithm

This chapter introduces the Conjugate Gradient numerical algorithm

used in the solution of the Field equations. This thesis investigates the

possible improvements in execution using parallel architectures for the

algorithm.

2.1 Background information

Finite Element Method (FEM) calculations have a number of

characteristics which make them a candidate for distributed processing

systems:

a) Each run involves a lot of arithmetic.

b) Each run involves a data storage.

c) Typical problems involve a number of runs (to check the effects of a variety

of loadings, transient and nonlinear).

d) There is a desire to use ever more complex runs (e.g., 3-D calculations).

Let us now identify the typical FEM calculation steps:

^Discretisation: the region is subdivided into a number of elements.

2- Linearization: a scheme is chosen for handling the nonlinearities (usually,

linearization and iteration of some sort).

3- Approximation: the Partial Deffirential Equations PDE system is replaced

by an approximate finite set of equations involving a number of

unknowns; each of these is associated with one or a few elements.

4- Partitioning: the unknowns are partitioned amongst the available

processors.

5- Assembly: the matrix corresponding to the chosen Discretisation is

assembled.

- 13 -

6- Solution: the unknowns are computed as the solution of these equatiohs.

This step is the most time consuming. Rapid results are very important to

the computer user.

Stages 5 and 6 may be repeated as the iterations for nonlinear and/or time

transient problem proceed. The solution phase is usually the most time

consuming section and requires computational power to be completed in

shorter times.

It would be helpful if we could identify which portion of a typical FEM

calculation will be enhanced by the utilization of a parallel architecture

computer. Thus, investigating the solution step to find the portion which

consumes a lot of computation time, will lead to great improvement in the

overall performance of the system.

The equation is discretized over each element, resulting in a set of

linear equations for the values of the variables at the nodes contained on that

element. These equations are then combined for the entire problem, resulting

in a single large linear system of the form

A.x = b Ec|u 1

Where A is a matrix describing the structure of the system and the

characteristics of each element, x is a vector of the values of the variable of

interest at all nodes, and b is a vector of the boundary conditions applied to

the system.

The Equation Solver:

Consider the task of iteratively solving M simultaneous equations. We

may regard this problem as equivalent to finding the M-dimensional vector

which minimizes some residual error quantity defined on the M-dimensional

- 1 4 -

space. A gradient method makes use of trail values for the variable at step i

to generate new values at step i+1 corresponding to reduced value of the

error function.

By successively moving "downhill" toward the error minimum, the

method converges toward the desired solution. The conjugate gradient

method Jennings [Jennings-77] employs descent direction vectors that are

mutually orthogonal.

Property of A matrix

a- Sparse:

Once the A matrix has been constructed, a typical model with 10,000

nodes each row will have a large number of non-zero entries, so more than

99.00% of the entries in the A matrix will be zeros. This sparsity can and must

be exploited in order to obtain an efficient solution.

b- Symmetric:

A significant property of the linear system comes from the fact that the

model represents a physical system. In this case, the constant relating the

field value at node b to that at node a is the same as the constant relating the

values in the reverse order. If aij represents the value of the matrix entry for

row i and column j, then a-,j will be the same as a/, in other words the matrix

is symmetric. Also, in most applications, the finite element method gives rise

to linear systems which are positive definite (matrix A is said to be positive

definite if, for any vector x except the zero vector, xT A x > 0.

c- Positive:

In most applications, the finite element method gives rise to linear

systems which are positive definite (matrix A is said to be positive definite if,

for any vector x except the zero vector, xT A x > 0. Matrices which are

- 1 5 -

symmetric and positive definite have important properties for solution, which

will be described below; they are referred to as SPD matrices.

d- Large:

The linear systems covered by this research are large. The range

currently available computers can solve systems of 1,000 to 100,000 or more

nodes, depending on the time for solution considered tolerable.

2.2 The Conjugate Gradient Algorithm

The Conjugate Gradient CG method has proven to be the appropriate

for the solution of the linear system of equations arising from the Finite

Element Method (FEM).

The CG method, used in solving FEM models, was developed by

Hestenes and Stifel [Hestenes-52], but did not achieve wide use in

engineering analysis until the 1970's. In the last decade, the method has

gained considerable popularity and has been used for a variety of

applications.

The CG method insures that the correct solution vector x will be found

in at most N excluding round-off error and using exact arithmetic. Reid,

however, found that round-off error can significantly deter this convergence,

especially for system with a high condition number (104- 105). In these cases,

the number of iterations may greatly exceed A/eq, with rapid convergence

occurring only near the end of the iteration process. In some cases due to

computer number presentation and accuracy the covergence will not take

place.

The CG is an iterative method, i.e. one which is repeated to generate

successively better approximation solutions to a problem. In the method of

conjugate gradients the direction vectors are chosen to be a set of vectors

- 1 6 -

p(0), p(1), etc., which represent, as nearly as possible, the directions of

steepest descent of points x(0), x(1), etc., respectively, but with the overriding

condition that they be mutually conjugate.

2.2.1 The C G iteration

The CG method without preconditioning steps are described as

follows. To solve A .x= b , where A is a positive definite symmetric (nXn)

matrix:

1 - Set an initial approximation vecto ryo),

2 -Calculate the initial residual y(0)= b - A x (0) •• Equ. 2

3- Set the initial search direction p (0)= f (0) ... Equ. 3

4 - then for/=0, 1,...

4.1- Calculate the coefficient

4.2- Set the new estimate

4.3- Evaluate the new residual

r.(»+!)=r0)-a,Apm E q u - 6

4.4- Calculate the coefficient

4.5- Determine the new direction /70+1)= / i+1) + y9j9() . continue until either

7*coor p 0) is zero.

- 1 7 -

START

 ! _
Generate Sparse

Matrix

t
Compute Conjugate

Gradient

Results

END

(a)

^ START CG J

Initialize

1
Alpha

t

x(i+1)

r(M)

i
Beta

1

po+1)

i
Q END CG

(b)

Figure 2: Flowcharts for a) CG main program, b) One CG iteration.

The Conjugate Gradient CG algorithm uses the following vectors which need

to be updated at each iteration:

(*)p conjugate direction vector,

y{n) residual vector,

X n) solution vector,

l i n) product of transformed matrix and conjugate direction vector.

- 1 8 -

The flowchart in FIGURE 2 A shows the steps needed to setup and execute a

typical CG action, and FIGURE 2 B shows the detail steps or the execution of

one CG iteration. The vector r n) is the residual vector of the system. The

(»)search vector p is the direction from the current estimate of the solution

along which one moves a distance to obtain a new solution estimate.

2.3 Parallel Features of C G

In this section we will discuss the features of the Conjugate Gradient

algorithm that enables a distributed implementation.

Parallel CG introduction:

The CG is well suited for parallel processing. Each step can be

executed in parallel, but the steps themselves must be done in order.

Therefore, the computational load may be easily balanced between the

processing nodes. The calculations are comprised mainly of the matrix-vector

multiplication, vector additions and subtractions and vector dot products. We

use the conjugate gradient algorithm to solve a sparse system A x = b, where

A is an n X n matrix with m nonzero entries (n < m « n2).

Parallel CG implementation:

These operations are easily implemented in parallel with a minimum of

communication required between processors. For example, each vector of

length may be divided amongst all the processors, with each processor then

performing the vector operation on its portion of the vector. Communication of

scalar quantities is required during the dot products and the convergence

test. No communication is required for the vector additions and subtractions.

- 19 -

Dot product analysis:

Each processor needs additions to complete the dot product on its

local vectors. These partial results are added up globally, and the result is

made available to all the processors. This operation can be parallelized only

in part. A broadcast mechanism will improve highly this operation.

Matrix bv vector multiplication:

The m multiplications and the m-n additions in the sparse matrix by

vector multiplication can be perfectly parallelized if A is partitioned row-wise

and if the rows are distributed in a way which balances equally the nonzero

entries. This is affected by the average number of elements in the row. Every

processor gets all the rows corresponding to the part of the vectors it owns,

thus producing again the same part of the resulting vector.

Parallel Features of CG:

Equation in step 4.1: uses the special purpose parallel matrix-by-vector

multiplier. The inner products in the numerator and denominator are

calculated in parallel.

Equation in step 4.2: updates all the elements of x simultaneously using

termwise operations. The scalar a(is mapped onto a vector with each

entry equal to aj, and then multiplied with pi using termwise

multiplication. The resulting vector is then added to the vector Xj in

parallel using termwise addition.

At each iteration, the basic algorithm involves the following mathematical

operations:

a- One multiplication of the sparse matrix A by a vector,

b- Two vector dot products,

c- Three multiplications of a vector by a scalar,

d- Three additions of vectors,

e- Two scalar divisions,

- 2 0 -

f- Test for convergence.

The divisions and some flow control (including the convergence test) form the

serial part of the algorithm. Linear operations on vectors and scalar

multiplications inside the vector dot product can be perfectly parallelized on p

processors when each processor owns — elements of each vector.
P

Data Types:

Three types of information which must be stored are categorized as follows:

1- Definitely Global Data which must be available to all processing nodes in

the system, such as a and p.

2- Preferably Global: Data which would most conveniently be available to all

processing nodes. The contents of the vectors used by CG except those

which are definitely global fall into this category. If this information is not

globally available then either it must be stored a number of times

elsewhere or individual processors must be assigned specific tasks before

execution commences.

3- Local: Information such as program code, intermediate results of

operations, and stack contents, which need only be available to individual

processors.

For a specific hardware implementation, the choice between storing

preferably global data in locally accessible or globally accessible memories

will be the result of consideration as to whether or not bus contention

problems involved when using globally accessible memory outweigh the

problems of local storage.

-21 -

2.5 Preconditioned Incomplete Choleski's Conjugate Gradient
ICCG

The Conjugate Gradient algorithm performs well for a wide variety of

applications. However, a large condition number severely retards the

convergence rate of the algorithm, In addition, if the eigenvalue spectrum of A

has values that are evenly distributed, rather than being clumped near each

other, the Conjugate Gradient algorithm tends to converge more slowly. To

improve the condition of the linear system of equations, preconditioning may

be used. The Choleski decomposition method produces a matrix with all

elements filled. This destroys the sparsity structure of the original matrix.

Some off-diagonal elements are inspected to determine whether any need to

be deleted according to whatever deletion criterion is to be used, This leads

to the Incomplete Choleski decomposition. The ICCG algorithm becomes

L is an approximation inverse, which can be constructed from the Choleski

decomposition. However only the terms which correspond to a non

zero entry in the A are kept. L is thus an approximate inverse of A.

- 2 2 -

A -

(*+l)

[r(A)]
(*)

... Equ. 12

/ * ' V ‘ +,)+ A p " - Equ. 13
(*)

The pre-multiplication step is obtained without forming the transformed matrix

explicitly by the following three operations:

Back substitution y k) = p k)... Equ. 14

Pre-multiplication ... Equ. 15

Forward substitution L u ik) = yyw ... Equ. 16

Most of the above steps of ICCG can be executed utilizing parallel and

vector processing architectures, but the last 3 steps would not benefit from

such architectures. This is due to the irregular and sparse structure of the

matrix involved. The sparsity structure of the used matrix introduces elements

with zero value, thus a method which will not take into account such sparsity

structures will not produce good and efficient results.

A critical segment of the ICCG algorithm is the solution of the Forward

and Backsubstitution using the L and LT triangular matrices. Since we are

going to keep the same sparsity structure of the original matrix...

- 23 -

2.6 Discussion

Let us now clarify the principles and observations discussed so far.

Our intention is to investigate the suitability of parallel architectures for the

execution of ICCG. We have identified the backsubstitution segment in which

we will improve its execution on parallel architectures. We will consider two

simple examples of the detailed execution of the Backsubstitution algorithm.

Sub,Mul

Dtv Mul Sub

Mul Sub

DivDiv lMuI SubMul Sub

DivMul

Figure 3: Dataflow details for a full 3x3 matrix.

ai,i & \ , 2

O 2,2

a1,3 Cl\,^
/ \

(t i

0,2,4 * 2 b 2

03,4 * 3

04,4J ^x J \ .b s

..Equ. 17

- 24 -

The first example is depicted by the above equation. Utilizing the

Backsubstitution algorithm we can get the values of x. When the steps to

solve the equation are organized in a network, where each circle represents

an arithmetic operation and the arrows represent the data and operand

movement, then we get FIGURE 3. In this figure the values of x array are

produced in the following sequence: x4, x3, x2, and at last X/. This sequence of

generating the x values is dictated by the matrix structure. In this example the

matrix is fully populated and the solution is inherently serial.

'A T * o

C
23

0 0 0 0 0 N'2 0 N 2> ' x ' (bl)
0 c 0 0 0 0 0 N 3 X b2

N a o N'9 0 0 0 0 at Xs bi
c 0 c 17 0 C 13 0 N 5 X a bA00 0 N '5 0 0 N 6 Xs bs

N 16 0 0 N* 0 Xe be
N u 0 N 9 0 Xi bn

Cu C 0 X 8 &
c7 0 X9 b9

N li]̂b\(r

Let us now consider another example with a sparse matrix structure.

The above equation depicts the second example equation. Figure 4 shows

the network relationships and dataflow derived from the above equation.

- 2 5 -

(9,9)(10,10)

(5,10) (8,9) (7,9)

(1.10) (5,7) (6,9) (7,7)(8,8)

(2.4)
(4,8) (5,7)(6 ,6)

(3,10)(1,1)
(4,7) (5,5)

(2 ,10) (4,4) (3,5)

(2,4) (3,3)

Critical Path

(2,2)

Figure 4: The dataflow for the example sparse matrix size 10x10.

The matrix contains 24 element. Each element of the matrix is marked

with a unique number starting from 1 to 24. If the above equations is to be

executed on a parallel computer, then what is the minimum time needed to

complete it execution? In order to find this time we have to find the sequence

of elements that are dependent on each other. The sequence of nodes

marked with the letter C is the sequence that must be followed during

- 2 6 -

execution for the least time. The sequence that follow the elements: 7-10-

11- 13- 17- 20- 21 and 23 is known to be the critical path, which starts at

element 7 and ends at element 23. The execution can not be faster than the

identified sequence. More on this topic will follow in the thesis.

2.7 Conclusion

The CG algorithm for the solution of large sparse linear equations has

been presented in this chapter. Both the serial and parallel code was

discussed. The CG algorithm lends itself easily to parallel implementation

and will utilize vector processing hardware efficiently. Improving the results

from the CG has led to the need for factorization. The ICCG introduced extra

matrix operation steps.

The parallel implementation of the ICCG algorithm is not straight

forward. It needs attention is both the forward and backsubstitution segments.

This is because of the sparse matrix structure involved. We have to utilize the

sparsity structure of the matrix to obtain parallelism within these segments.

The structure of the matrix used is both sparse and irregular, this will

not enable the application of Sandra parallel programming techniques.

In order to investigate the behavior of ICCG algorithm on parallel

architectures, we have to device a simulation method which will mimic the

operations of a multiprocessor system architecture and allows the algorithm

to be simulated. The purpose of the simulator is to give quantitative

measurements for the performance of the algorithm. Adding communication

features to the simulator will provide a tool to experiment with different

architectures.

- 2 7 -

2.8 References

[Ajiz-84] Ajiz, M. A. and Alan Jennings, "A robust incomplete Choleski-

Conjugate Gradient Algorithm", International Journal for Numerical

methods in Engineering, 1984, Volume 20, pp. 949-966.

[Hestenes-52] Hestenes, M. and E. Stiefel, "Methods of the Conjugate

Gradients for solving linear systems", Journal of research of the

national bereau of standards, Volume 49, Number 6, December 1952,

research paper 2379, pp. 409-436.

[Jennings-77] Jennings, Alan, "Matrix Computations for engineers and

scientists section 6.13", John Wiley & Sons, ISBN 0 471 99421 9,

1977, pp. 212-222.

[Kershaw-78] Kershaw, David S., "The Incomplete Choleski - Conjugate

Gradient Method for the Iterative Solution of Systems of Linear

Equations", Journal of Computational Physics, vol. 26, pp. 43-65,

1978.

[Magnin-89] Magnin, H. and J. L. Coulomb, "A Parallel and vectorial

implementation of basic linear algebra subroutines in iterative solving

of large sparse linear systems of equations", IEEE transactions on

Magnetics, Vol. 25, No. 4, July 1989.

[Munksgaard-80] Munksgaard, N., "Solving sparse symmetric sets of linear

equations by preconditioned conjugate gradients", ACM transactions

on mathematical software, vol. 6, no 2, June 1980, pp. 206-219.

[Poon-89] Poon, K. M., "Theoretical study of parallel processing for the

solution of matrices using Conjugate Gradient", School of Electrical

engineering, B. Sc. final year project, University of Bath, 1989.

- 28 -

[Strang-86] Strang, Gilbert, "Introduction to applied mathematics", Wellesley

- Cambridge Press, ISBN 0-961-4088-0-4, 1986, pp. 378-379, 418-

425.

- 2 9 -

Part TWO

Structure and Simulation of Parallel Computing Architectures

The ICCG algorithm will run on a parallel architecture system, thus we

need to investigate the different forms and styles available such systems, and

understand the problems associated with distributed programming. In this

part of the thesis the different structures of the parallel computing

architectures will be demonstrated.

Chapter 4 will be devoted to survey previous work in the field computer

systems architectures simulation..

- 3 0 -

Chapter 3

Parallel Computer Architectures

CHAPTER 3..31

3.0 Pa r a l l e l C o m p u t e r A r c h it e c t u r e s ..32
I n t r o d u c t io n ...32
3.1 MULTIPROCESSOR COMPUTER SYSTEMS...35

3.1.1 Sh a red m e m o r y M u l tipr o c e sso r s ... 38
3.1.2 M ech a n ism s to im prov e sy st em per fo r m a n c e .. 39
3.1.3 D is tr ib u te d M e m o r y M ultipro cesso rs ... 40
3 . l .4 Da ta flo w Ar c h it e c t u r e s .. 45

3.2 E x ec u tio n o f Pa r a l le l Al g o r it h m s ... 50
3.3 C o n c l u s io n ... 51
3.4 R e f e r e n c e s53

-31 -

3.0 Parallel Computer Architectures

In this chapter we will introduce the concept of speedup, different

forms of parallel architecture systems and their classifications. Factors that

prevent the realization of linear speedup are also discussed. A closer look at

the dataflow architecture with examples is also illustrated.

Introduction

The advent of VLSI technology and low-cost microprocessors has

made distributed computing an economic reality in today's computing

environments. The modularity, flexibility and reliability of distributed

processing makes it attractive to many types of users. Several distributed

processing systems, which posses high throughput, have been designed,

implemented and sold during the past decade.

The motivation for using parallel processors in scientific applications is

to provide a speed improvement over single processor systems. An improved

system response and powerful processing capabilities would improve

research in such applications.

Applications:

Distributed processing applications range from data base installations,

where processing load is distributed for organizational efficiency, to high­

speed signal processing systems, where extremely fast processing must be

performed under real-time constraints. Distributed processor systems are

currently used for advanced, high-speed computation in application areas

such as Computer Aided Design (CAD), image processing, artificial

intelligence, signal processing and general data processing.

- 3 2 -

Other areas of application of parallel algorithms include matrix

computations, sorting and searching, FFT, partial differential equations and

optimization.

The problem of Degradation:

The use of distributed and parallel processor computing systems today

requires system designers to partition an application into at least as many

functions as there are processors. Spare processors must be allocated to

useful jobs within the system. But, like any other concept, distributed

processing has problems which must be solved in order to benefit from its

advantages.

This brings up the issue of performance measurement. How should we

characterize the performance of a parallel computer when in effect, parallel

computing re-defines traditional measures such as MIPS (Million Instructions

Per Second) and MFLOPS (Million Floating Point Operations Per Second)?

A new measure of performance is needed to relate parallel computing to

performance.

The Soeeduo curve

The most often quoted measure of parallel performance is the

speedup curve. This is computed by dividing the time to compute a solution

to a certain problem using one processor, by the solution time using N

processors in parallel.

speedup - ^me reclu r̂e ̂f°r the nonparallel program execution ̂̂
time required for parallel version execution

The maximum speedup possible is always the number of processing

nodes used to implement the problem. However, in practical implementations

- 33 -

it is often less than this. The speedup as a measure for the performance of

parallel programs execution, describes how efficiently the multiprocessor

system is utilized, for instance, if a parallel program has a speedup of 8 and

is making use of eight processing nodes, then the parallel program is as

efficient as possible. On the other hand, if the attained speedup is only 2.56

for 8 processing nodes, then it is making less utilization of the available

processing throughput. This introduces a degradation of the system

performance.

A serious problem in distributed processing is the degradation in

throughput caused by the system overheads and interprocessor

communications (IPC). In an ideal multiprocessor, we would expect

throughput to increase linearly as the number of processors increases. That

is, we expect to double throughput by doubling the number of processors

available to perform a task, if the modules being processed are independent

of each other (excluding the effects of control overheads). This expected

performance is shown by the idea/ curve in FIGURE 5.

Ideal

Actual

Number of Processors

Figure 5 Throughput of a multiprocessor computing system.

- 3 4 -

In practice it is difficult to attain this ideal speedup owing to the following

factors:

1- Inherent characteristics of the solution algorithm which limit parallelism

available in a particular problem solution.

2- Overhead associated with exchanging or sharing data among the

processors, together with,

3- Overhead required to control the parallel processors, operating system

overheads, and the finite time needed for the transfer of data among

the processing nodes.

A discussion about the execution of algorithms on parallel processing

systems must begin with a review of existing parallel processing

architectures. The following section will give a brief review which will identify

and examine the different parallel processing architectures available.

3.1 Multiprocessor Computer Systems

The parallel computer architectures may be divided into four broad

categories, given their method of handling instruction streams per cycle and

their method of handling data. The four categories are:

- Single-Instruction Single Data (SISD)

- Single-Instruction Multiple Data (SIMD)

- Multiple-lnstruction Single Data (MISD)

- Multiple-lnstruction Multiple Data (MIMD)

SISD machines are sequential processors, termed Von Neuman

machines and are common in the computer field. Processors ranging from

Personal Computers (PC) through super-mini computers to mainframes all

possess SISD architecture (e.g., IBM PC-AT, VAX 6000, VAX 8700, IBM

4341). Some computer systems incorporate pipelining within their arithmetic

units. This concept means that the system breaks down an operation such as

- 35 -

multiply into a number of steps, each of which can proceed concurrently on

distinct operands. If independent arithmetic units exist, several operations

can proceed simultaneously. Breaking arithmetic operations into sections

requires some additional hardware and results in its own increased

overheads. We will show later in this thesis how the pipelining concept was

introduced to our simulator.

Memory UnitControl Unit Processing Unit

Figure 6: SISD computer architecture.

SIMD machines include computers which can perform one operation

(instruction) simultaneously on multiple data. For example, the vector

supercomputers established in the 1970s (e.g., Cray-1) are SIMD machines.

Multiprocessor systems which enable each processor to execute the same

instruction simultaneously, but each with a different set of data, are termed

SIMD environments (e.g., the Connection Machine). Pipelined array

processor architectures (e.g., Floating Point Systems 264 array processor)

may be grouped into this category as well, although the amount of data

operated upon in a single instruction is much smaller than on the vector or

multiprocessor computers.

- 3 6 -

Shared Memory Modules

Instruction Control

Control Unit

Processing Unit 1
Data Stream

Processing Unit 2

Processing Unit 3

Processing Unit 4

Processing Unit 5

□
□

Processing Unit 6

Memory Unit 1

Memory Unit 2

Memory Unit 3

Memory Unit 4

Memory Unit 5

□
□

Memory Unit m

Figure 7: SIMD computer architecture.

MISD machines involve a chain of processors and are similar in design

to SISD systems, although pipelined processors are sometimes considered to

be in this category. Finally, MIMD architectures may execute multiple

instruction streams on multiple data. Technically, any multiprocessor system

which does not require each processor to execute the same instruction

simultaneously may considered to be of MIMD architecture. The processing

nodes (PNs) of these multiprocessor systems must be connected in some

configuration either directly by communication links or through the sharing of

global memory.

- 3 7 -

Synchronous

Vector

SIMD

Systolic

Processor Array

Associative Memory

Distributed Memory

MIMD

Shared Memory

Figure 8: High-level taxonomy of parallel computing architectures.

MIMD multiprocessor systems can be partitioned as follows:

1- Shared Memory Multiprocessors.

2- Distributed Memory Multiprocessors.

3- Dataflow architecture.

3.1.1 Shared Memory Multiprocessors

One method of communication among a number of processors is by

shared memory. In this category all the processing nodes PNs are connected

to a common memory system either by a direct connection through a network

of connections or via a memory bus which is essentially a channel along

which processors pass requests for data and the memory unit returns the

requested data back to the processing units. In this system every data

location is available to every processing node, if a processing node needs

data for its task it simply reads it from the memory. As other processing nodes

may be continually modifying the stored values of the data, care must be

taken that no processing node accesses the memory location before an

appropriate value has been stored. A common method is to reserve certain

areas of memory to keep track of whether locations have yet been written to

in order to safeguard against premature attempts to gain access to data these

locations do not yet contain.

- 38 -

Limitations of Shared Memory Systems

The major limitation with shared memory systems is the difficulty and

expense of allowing a large number of processing nodes to concurrently

access the memory system. Direct connections of large number of processors

is physically extremely difficult to arrange, but on the other hand a common

bus system has to be very fast to service memory requests from all the

processing nodes at once.

3.1.2 Mechanisms to improve system performance

There are a number of hardware/software mechanisms that improve

the performance of shared memory multiprocessor systems. These

mechanisms may improve the computation and/or communication capabilities

of the system. Among these mechanisms that improve interprocessor

communication are the following:

1- One-to-AII broadcast operation.

2- Caching logic.

One-to-AII Broadcast

One method of improving the performance of shared memory

multiprocessor systems is One-to-AII broadcasting. In this method of

communication a special bus cycle in implemented. In this cycle data put on

the bus by the sending processing node PN will be stored in all processing

nodes residing on the bus. Broadcasting from one node to all other nodes

ensures that when the data is needed, the PN will not fetch it from another

remote PN but will find it in its local store.

Using Cache mechanisms

In order to improve the shared memory system performance the

concept of cache architectures is introduced. A schematic illustration of the

place of cache in the processing node hardware is in ninth. In this mechanism

- 3 9 -

the cache controller will ensure that location specified by the software will

continuously be updated. This is made by observing the bus for specific

addresses.

Memory Banks

RAM

Address Bus

Address Bus

Data Bus

Cache

Controller

CPU

Address Bus Data Bus Control Bus

Multiprocessor Bus

Figure 9: Cache architecture for the Processing Node.

3.1.3 Distributed Memory Multiprocessors

A completely different approach to communication is that of distributed

memory architectures. In these each processing node has some amount of

memory attached to it and the processor-memory pair are connected in one

of a number of schemes. Systems built along these lines are said to have

local memory. Before any computation can be carried out data must be

distributed to the appropriate processing nodes. During the course of

computation it is generally necessary for nodes to get information from other

nodes memories. This is done by sending a message asking for the

- 4 0 -

information to be sent back in the form of a return message. If the two nodes

concerned are not directly connected other nodes in the path between them

can forward the message. Many schemes have been devised for connecting

the nodes of such systems.

The systems designer of such distributed memory systems has several aims,

i) communication between nodes should be fast enough the handle the data

flow among them,

ii) no node should have to support too many connections, and,

iii) the topology of the connections should somehow match the natural

geometry of the problem to be solved.

The Network Structures:

The simplest interconnection system is a ring in which each node is

connected to two others and the line of connections forms a circle. An

extension of this is the mesh in which each node is connected to its four

nearest neighbors. These topologies ensure only a small number of

connections need be supported by each processor but have the drawback

that a large number of nodes may be involved in sending a message between

two particular nodes. This can result in long delays with the node waiting for

data sitting idle, thus wasting computing time. This problem is alleviated in

the slightly more elaborate Hypercube scheme. Using this approach nodes

are connected as they would be if they lay at the corners of a

multidimensional cube. In general a p-dimensional cube can connect nodes.

Commercial systems are in use today which link nodes in such a Hypercube

topology.

Hierarchical Communication Networks:

A more common approach is to design a communication network,

where groups of processors are connected to separate network controllers

which are themselves connected in a hierarchical manner so each individual

-41 -

network controller is responsible for a manageable number of processing

nodes. This type of network has the disadvantage that it increases the time

for memory accesses since all requests must traverse stages of the network

to reach the memory unit. This introduces variable length delay times for

accessing data residing on different processing nodes. Also at times of peak

data transfer activity the network can saturate resulting in long delays and

degradation of system performance. Various types of networks have been

designed to minimize congestion whilst keeping cost and speed to

reasonable levels.

Hybrid Systems:

Parallel computing systems which combine the strengths of shared

memory with local memory systems are classified as Hybrid systems. An

example of such systems might consist of a number of nodes, each node

consists of a modest number of processors that share a memory bank.

The nodes are then connected by a distributed memory system

method. Alternatively a number of nodes which each can have their own local

memory can also share a common memory.

-42-

Distributed Memory and Message Passing systems

Machine Year Topology MaxNodes CPU MIPS1 Max Mem/node

Waterloop/64 1983 Loop 64 8086/87 0.03 128K
Cosmic Cube 1983 Hypercube 64 8086/87 0.03 128K
Mark II 1985 Hypercube 64 80286/287 0.04 256K

iPSC 1985 Hypercube 128 80286/287 0.04 512K
System 14 1985 Hupercube 256 80286/287 0.04 256K

NCube/tenz 1986 Hypercube 1,024 Custom 0.3-0.5 128K
Computing surface 1986 2-dimensional mesh 84 Transputer N/A 128K
iPSC-VX3 1986 Hypercube 64 Vector 6-20 1.5K

FPS T-series4 1986 Mod. Hypercube 16,384 Vector 16-20 1.0K

Connection m/c5 1986 Hypercube 65,536 Custom N/A 0.5K
Butterfly 1986 Banyon Switch 256 68020/81 0.1 1.0K
Mark III6 1986 Hypercube 1,024 Vector 20 4.0K

- 43 -

Comments:

1 MIPS - millions of instructions per second.

2 NCube has developed a single-chip node CPU that incorporates a 32-bit processor

element, 11 bidirectional communications channels and a memory controller.

3 Intel VX series uses the iPSC's 80286/80287 node CPU as a communications control

processor in conjunction with a microprogrammed vector function processor build

around Analog Devices 3210/3220 floating point arithmetic units.

4 The T-series uses an Inmos Transputer (IMS T414) as a communications control

processor in conjunction with a vector processor of the company's own design, using

Weitek 1164/1165 Floating point arithmetic units.

5 The Connection machine uses a unique 1 bit serial processor, 16 of which are

integrated into each physical processor chip.

6 The Mark III has a 68020/68081 node CPU and a vector processor of the company's

own design, built around Weitek 1164/1165 floating point arithmetic units.

- 44 -

3.1.4 Data flow Architectures

The ability of large-scale integration (LSI) technology to inexpensively

produce large scale numbers of identical complex devices, has made it

possible to construct general purpose computers comprising of hundreds,

perhaps thousands of asynchronously operating processors. Within such a

computing system each processor accepts and performs a small task

generated by the program, produces partial results, and sends these results

on to other processors in the system. Many processors thus cooperate,

asynchronously, to complete the overall computation. The data is fed by the

program manager to the execution units. There is no local program on each

unit to manage the execution but a manager will feed the data at the

appropriate time.

The fundamental feature of dataflow architectures is an execution

arrangement in which instructions are enabled for execution as soon as all of

their operands become available.

The dataflow model:

The basic principles of dataflow semantics have been in existence for

some time:

1- A dataflow operation executes when and only when all required operands

become available (asynchronous).

2- A dataflow operation is purely functional and produces no side effects.

Operationally, these semantics are implied by the following model:

A dataflow program graph, FIGURE 10, is a directed graph where each node

(presented in the figures by circles) is an operator with arrows connecting an

output port to an input port of another node, provided that no two outputs are

connected to the same input.

- 45-

Dataflow problem presentation:

In a dataflow system a problem is presented as a directed graph (A

complete chapter will be dedicated to graph theory) which is a collection of

nodes connected by arcs. The nodes represent mathematical or logical

operations and the arcs represent the flow of data from one operation to

another. In a real systems nodes are represented as memory-processor pairs

and the arcs by physical connections between processors.

The following are three examples of dataflow programs. These

examples represent different forms of the number of inputs, outputs and

operations.

Example 1:

This equation has both constant and variable operators. It has two

variable inputs and produces only one output result. FIGURE 10 shows the

equation with three arithmetic operations.

Node Node

Mult Mult

3*a5*b

Node 3

a & b : Variables
Add

R est*
Node 4

Figure 10: A simple dataflow program fragment.

- 4 6 -

Example 2:

This equation has two input variable operators. It produces two output

results. See FIGURE 11.

Node 2Node 1

Node 3 Node

Figure 11: A second dataflow program fragment.

Example 3:

This equation depicts the solution of the quadratic equation. It has

three variable inputs (A, B and C) and produces two output results (xi & x2).

See FIGURE 12.

-B + J r 2-4AC
X, = ------- ^ -----------... Equ. 19

2A

- B - J r 2- 4 A C
X2 = ------- ^ ------------E q u . 20

2A

- 4 7 -

Mult Mult

B*BA*C

Mult 2 'Mult 4

2*A 4*A*C

Sub

Sub

Sqr

SubAdd

DlvDiv

Figure 12: Dataflow program to compute quadratic roots.

Dataflow Execution:

A node in a dataflow machine does not execute its operation in a pre­

determined sequence as specified in a program but instead waits until it has

received all the data required to carry out its operations before executing the

operation and passing the answer into the next nodes. A processor might wait

for results from a number of processors and hand the result to a number of

other processors.

- 48 -

In a dataflow system a very large number of nodes may all execute

instructions simultaneously with no concern for what most of the other nodes

are doing. Each node performs its appointed task only when the necessary

data becomes valid. There is no danger of acting prematurely as with shared

memory architectures. Also there is no danger of interfering with other

processors say by trying to read a particular location at the same time as

another processor. The two messages never try to pass along the same

communications channel at the same time, thus avoiding the bottle-neck

which occurs in parallel computing systems.

Dataflow Advantages:

One of the big advantages of a dataflow architecture is that it is much

easier to program reliably than conventional parallel computers. A user

merely needs to specify the operations to be carried out at each node without

having to worry about the exact mechanics of the operation or the timing of

the algorithm to be followed.

Dataflow Disadvantages:

1- One major problem with dataflow machines is the programming language

used to program them. Conventional programming languages, which

evolved from a basically Neumann paradigm, are not well matched to

data flow architectures.

2- A fundamental problem with data flow and other highly parallel machines is

that concurrency is limited by the communication network, which

routes results from one processing node (PN) to another.

- 4 9 -

3.2 Execution of Parallel Algorithms

In theory, at best n processors working concurrently on a task must

take 1/n of the time that it takes for one processor to complete the same task.

In reality, however, communication problems are amongst the factors which

prevent this from being achieved. Speedup [Haynes-82] in the execution time

of some algorithms can be increased by the addition of more processing

modules. There are a number of factors that can prevent the realization of

such a linear speed-up. They include the following:

Algorithm: The algorithm designed for a problem may not make full use of

the parallelism which is available. The problem is usually split into a

number of distinct modules then described by a mathematical model,

these modules can be solved in parallel with data values interchanged.

The algorithm may be inherently serial thus, an algorithm change

needs to take place. Algorithms that possess a parallel segment will

enhance their performance on parallel architectures.

Synchronization: Performance can be lost if the algorithm requires the

processors to be synchronised at any point during processing. One

example might require all processors to start a pass through the

algorithm with the same data. This causes processors that could

continue working to remain idle until all other units catch up. Another

example might be where data has to be passed between the modules,

resulting in some processors waiting and being idle while others reach

the synchronization point.

Contention: Multiple processors competing for the same resource (shared

variable, attention of a server, etc.) can slow down the execution of

individual processors. Bus contention has a critical effect on the

execution of parallel programs.

- 5 0 -

Overhead: A parallel algorithm might require more steps than its serial

counterpart to solve the same problem. This overhead is the cost of

managing parallelism.

Input/Output: Often, so much attention is placed on high processor - memory

performance that Input/Output becomes an afterthought. Traditional

Input/Output structures cannot feed a high-performance parallel

processor fast enough to avoid processor idle time. Input/Output for

applications measured on llliac IV [Riaganati-84] has added a factor of

up to 1.5 of the processing time to the total computation time.

When writing a parallel program one needs to consider both the

algorithm to be implemented and the multiprocessor being used: for a given

parallel algorithm, the same program coding is typically not appropriate for

different multiprocessors. In fact, the algorithm itself might have to be

modified depending on the multiprocessor being used. Such modifications

arise from a number of software and/or hardware differences, examples of

which are: communication architecture, Operating System (OS) calls and

interprocessor data movements.

To exploit parallelism fully we must distribute the computation as much

as possible, among the processing nodes. This we will generate a very large

amount of interprocessor communication. The communication bottle-necks

make it difficult for architectures based on global communication to exploit

massive parallelism.

3.3 Conclusion

Parallel processing may ultimately offer a cheap solution for high speed

computing, but this solution incorporates a number of limitations. The first

arises from the time and effort required to program multiprocessor systems or

adapting software used on uniprocessors to run on the multiprocessor. Real­

-51 -

time considerations influence the choice of a system. The second limiting

factor is the cost of such multiprocessor systems. In this chapter we have

discussed a number of available parallel computing architectures

Selection of suitable Architecture:

The shared memory architecture shows an improved performance over

the distributed memory system, Owing to the wide bus bandwidth provided by

the former. Special hardware peripherals dedicated to arithmetic operations

may be included within the system to improve its computational powers, and

special hardware subsystems to improve the communications and reduce the

communication costs.

The Dataflow computer:

The concept of dataflow is a useful tool to describe the operations of any

algorithm. Numerical algorithms can be broken down to simple tasks. The

execution of the tasks will depend on the availability of operands. Each task

can be executed only if the operands are ready.

We can conclude that when using a dataflow system, the number of

processors play a very important role. A large number of processors needs to

be chosen so that the load is spread equally amongst all the processors. The

reduction of communication overheads remains a target in such systems.

System enhancements capabilities

It is also desirable to equip the processing nodes with special

hardware to enhance their operation. Such enhancements should effect both

the areas of computation and communication. The computation power of a

processing node dealing with numerical algorithms, such as ICCG, will

significantly by the addition of dedicated vector processing hardware. The

communication speed to transfer data among the processing nodes will

- 52 -

benefit from a special hardware. Both One-to-AII and Caching mechanism

introduce great advantages to system.

3.4 References

[Duncan-90] Duncan, Ralph, "A survey of Parallel Computers Architectures",

IEEE Computer, Volume 23, February 1990, pp. 5-16.

[El-Ghajiji- El-Ghajiji, 90] Otman A., "Comparison of parallel computing

architecture for real time diesel engine simulation", University of Bath,

School of Electronic and Electrical engineering, M. Sc. thesis, 1990.

[Fathi-83] Fathi, Eli and Moshe Krieger, "Multiple Microprocessor systems:

What, Why and When", IEEE Computer, Year 1983, Volume 16, March,

pp. 23-32.

[Gimarac-87] Gimarc, Charles E., "A survey of RISC processors & computers

of the mid-1980's", IEEE Computer, Year 1987, Volume 20, September,

pp. 59-69.

[Haynes-82] Haynes, L. S., Richard Lau, Daniel Siewiorekand David Mizel,

"A Survey of highly parallel computing", IEEE Computer, Year 1982,

Volume 15, January, pp. 9-23.

[Leinrock-85] Leinrock, Leonard K., "Distributed systems", IEEE Computer,

Year 1985, Volume 18, November 1985, pp. 1200-1213.

[Riganati-84] Riganati, John and Paul Schneck, "Supercomputing", IEEE

Computer, Year 1984, Volume 17, October, pp. 97-113.

- 5 3 -

[Rumbaugh-77] Rumbaugh, James, "A Data Flow multiprocessor", IEEE

transactions on computers, vol. C-26, number 2, February 1977, pp.

138-146.

- 54 -

Chapter 4

Simulation of Parallel Computers

CHAPTER 4..SS

4.0 Sim u la tio n o f p a r a l l e l C o m p u t e r s ...56
4.1 Disc r et e Ev en t Sim u l a t io n ... 56
4.2 d is c r e t e Ev en t M o d e l s : ... 57
4.3 Sim u l a t io n Sy ste m G oals ...59
4.4 Per fo r m a n c e E s t im a t io n ...60
4.5 Pr ev io u s At t e m p t s ...63

4.5.1 H a rd w a re su b sy st e m s .. 63
4.5.2 Pro c esso r In str u c tio n Sim u l a t o r s ...64
4.5.3 H.L.L. So u rce Co d e Sim u l a t o r s .. 65
4.5.4 Opera tin g sy stem Sim u la t o r s ..65
4.5.5 St a n d -a lo n e Sim u la t o r s ...66

4.6 Disc u ssio n and C o n c l u sio n ... 67
4.7 R e fe r e n c e s ...68

- 55-

4.0 Simulation of Parallel Computers

In the previous chapter, we discussed the various aspects of

multiprocessor architectures. The problem of system degradation in

performance, factors affecting speedup results, different architectures and

examples of the dataflow models. We will observe in this chapter the basic

behind the software systems using in simulating computer systems. Previous

attempts by a number of researchers are summarized and categorized for

reference.

Introduction

Simulations mimic a physical process to generate performance

estimates, identify errors and verify correctness before designers fabricate a

prototype. Digital hardware designs, industrial control circuits, and aircraft are

usually simulated extensively. This chapter, titled Simulation of Parallel

Computers, discusses the concept of Discrete event simulation, which forms

the basis of computer simulators and surveys previous attempts of simulating

processors, uni- and multiprocessor architectures. We have proposed a

classification that combines the different forms of simulators. We have also

prepared a comparison table to show a summary of past research in this field.

4.1 Discrete Event Simulation

A discrete event simulation model assumes the system being

simulated only changes state at discrete points in simulated time. The

simulation model jumps from state to state upon occurrence of an event The

internal operation of a digital computing system can be efficiently simulated

using discrete event simulation. The internal state transitions resulting from

the execution of the instruction are modeled around the clock cycle.

- 5 6 -

Computer architecture simulators are programs used to simulate the

operation of a computer system. Simulators are grouped according to their

computer environment into Sequential and Distributed simulation programs.

Sequential simulators run on a single processor, whereas the Parallel

simulators run distributed among a number of different processing nodes.

Sequential simulators typically utilize three data structures:

1 - The state variables that describe the state of the system. These state

variables describe the state of the system during the different simulation

phases.

2- An event list containing all pending events that have been scheduled, but

have not yet taken effect. This event list is represented by a queue model.

The simulator may utilize a number of queues to organize the simulation

and its internal operation.

3- A global clock variable to denote how far the simulation has progressed.

This variable increments in discrete values. The system under simulation

will take the actions needed at each clock change. All program modules

are tested for the effect of the clock change. Thus, the simulator needs to

scan all processing modules during each clock cycle to update the new

state of the system.

4.2 Discrete Event Models:

Systems can be described as discrete or continuous depending on its

internal operation and status change. In discrete event simulation models the

variables are discrete quantities representing states of entities in the system.

Interactions between entities only take place at discrete points in time only,

separated by intervals of inactivity. Such interactions are usually known as

events. Time is advanced usually from each event to the next. At each step,

all system changes implicit in current events are made and any new events

- 57 -

called are added to a future events list. The actual timing of events is usually

affected by stochastic factors. Discrete event models are applicable to wide

range of problems concerned with systems of moving units. They have been

used to model neutron flow in nuclear reactors, transport systems and

interaction of combat units on the battle field. We will use this models to

simulate a multiprocessor computing system.

Continuous change models can conveniently be run on analogue

computers, if high accuracy is not required. Fixed-point and discrete event

models, on the other hand, dealing as they do with discrete changes in time,

are more suited to the digital computer.

Methods of studv:

Two methods are typically used for multiprocessor studies: analytical

and simulation modeling. Analytical models become rigid when

multiprocessor dynamics are considered and are not practical for application-

dependent studies. Simulation, with the correct assumptions, is a feasible

approach that can produce an accurate picture of the dynamic behavior of

multiprocessor systems. Different algorithms can be modeled and simulation

results obtained.

We have opted for the simulation option in this research, as the

analytical modeling will not serve our needs. The algorithm analyzed in this

project, namely the Backsubstitution, has same structure but the distribution

of matrix elements is different every time and depends on the CAD model

used. The matrix structure introduces patterns which may improve the parallel

simulation of the ICCG.

Simulating Multiprocessor systems:

Parallel computing architectures are digital systems that state

transitions take place during the clock change. These digital systems are best

simulated using the DES models. Creating different models to describe the

- 58 -

behavior of the computer subsystem and combining them in one system will

result in a model for parallel architectures. Simulation of the computer system

is a tool for obtaining a meaningful quantitative measure of the performance

of a proposed system design.

Purpose of Computer Simulators:

Computer simulators are designed and built to serve a number of

purposes. The following list names some of the purposes for simulator usage:

1- To aid computer designers in developing high-performance systems by

testing different architectures and designs.

2- To help researchers in testing predictions about system behavior and

performance.

3- To facilitate debugging and testing of programs which are expected to run

on parallel processing systems.

4- Test applicability of algorithms for specific hardware architectures. If the

same algorithm is run on a simulator under different hardware settings

each time, the performance results can show its behavior.

4.3 Simulation System Goals

Simulation of computing systems at an architectural level, with an

appropriate abstraction, can offer an effective way to study critical design

choices. Estimation results will be a valuable aid if the following conditions

are met in the design and implementation of the simulation software:

1- The simulator includes details of different parallel architectures (e.g.,

shared- or distributed memory systems). This will allow the acquisition of

results for different forms of architecture. These results may be used to

facilitate comparisons.

2- The ability to model the algorithm that will eventually run on an actual

system in detail, to allow investigation of different forms and

- 5 9 -

decomposition factors. This would allow the programmer a useful insight to

the problem.

3- The performance of the simulator is adequate to examine designs

executing significant real code.

A simulation system with these goals is described in the next chapters of this

thesis together with our approach used in its implementation. Its application

to the study of a particular class of numerical algorithms, namely ICCG

Incomplete Choleski Conjugate Gradients was described in chapter (2) and

the results will be later demonstrated in chapter (7).

The design goals that emerged during the analysis phase of this research

project were as follows:

1- That the simulation system should support flexibility with regard to

simulated system structure and interconnections.

2- That, in order to accomplish runs in acceptable elapsed time, the details of

simulation should be particularly focused on the details of the processing

node activities, communications, process scheduling and special hardware

features of the simulated system.

3- To produce performance estimates for different hardware configurations

running the ICCG algorithm.

4.4 Performance Estimation

Performance estimation of parallel programs plays an important role in

the determination of the suitability of a given computer architecture in

performing the algorithm tasks, Thus, performance estimation is important for

two reasons: to achieve a more efficient systems design, and to determine

the capabilities of the system once it is designed without physically

implementing it. These requirements call for a tool which will allow the

designer to model the computing system in enough detail to know what is

- 60 -

happening in the operation of the system under the design stage. The

designer can measure the effects of changes in the design and can estimate

the performance achievable with the system for specific applications.

Level of simulation abstraction

Multiprocessors, as any other digital hardware system, can be

described at various levels of abstraction. Simulation of such systems may

present either the functional behavior of all the system or the gate level

behavior of all subsystems within the multiprocessor. Functional descriptions

merely capture the behavior of the system without revealing details of the

internal operations. On the other hand the gate level simulation is more

robust and includes great amounts of detail about the digital system.

Functional models simulate faster than gate level models. However, the

trade-off is that the simulation results of the functional model are not as

accurate (primarily from the timing standpoint) as those from the gate level

models.

Why we use computer simulators?

One of the difficulties with many multiprocessor computer designs is

obtaining a meaningful measure of the performance of the system at an early

stage. Many factors can affect performance, so even straight forward

changes in a system do not have the expected effects. For example, one

might expect that doubling the clock speed of a processor within the

processing node and upgrading all related components would double the

speed of processing. But if this change is implemented with no other

adjustments to the system, the increased processor speed might cause the

processor to access the memory bus frequently, thus reducing the amount of

time available to other resources (e.g., processing nodes, I/O, etc.) using the

bus and bus contention. For applications which require large amounts of data

and I/O transfers, this conflict could limit the performance of the revised

system to a fraction of the expected gain.

-61 -

Computer Simulators Implementation:

A number of techniques are used to simulate the operation of

distributed computers in general. These simulation programs can be serial or

parallel. The implementation of the simulator itself may take one of two forms

of implementation, either a serial program which will run on a uniprocessor or

a parallel implementation which will run on a network of processors.

FIGURE 13 shows the relationship between the different parts forming

the computer simulation system. These parts are:

1- The program or algorithm describing the tasks which need

simulation.

2- The architecture of the computing system to be simulated.

Algorithms

represented as Graphs

Computer System;

Software
Simulator

Performance results

Figure 13: Software simulation of underlying architectures.

- 6 2 -

4.5 Previous Attempts

The simulation of multiprocessor architectures and subsystems

implemented in the past will be described briefly in the following sections.

A review of the technical literature has led us to the following (proposed)

classification of simulator types:

1 - Processor Instruction Simulators.

2- H.L.L. Source Code Simulators.

3- Operating system Simulators.

4- Stand-alone Simulators.

first summarizes the above categories, and gives the reference

information of the specified research.

4.5.1 Hardware subsystems

This section discusses a group of simulators that is related to the

hardware architecture of the parallel computer.

The K9 developed by Beadle [Beadle-89] is an example of a simulator

of distributed-memory parallel processors. K9 is written in C++ [Stroustrup-

87] and runs on Sequent Symmetry. Application code for K9 can be written

either in C++ or C. It provides a fast simulation of DMPP (Distributed Memory

Parallel Processing) allowing algorithms and architectures to be matched

before a distributed hardware platform is developed. K9 allows multiple

architectures and processors to be evaluated for a mixture of algorithms, with

real data sets.

ConLab (Concurrent Laboratory) developed by Jacobson [Jacobson-

90] is an environment for developing algorithms for parallel computers. It is

an interactive environment in which one can simulate MIMD architecture with

distributed memory and communication with message passing, as well as,

- 63 -

MIMD architecture with shared memory. The ConLab is written in C and runs

on a Unix-based system.

The simulation of bus architectures for multiprocessor systems is

considered by Wear [Wear-82], who presents the results of the simulation of

three different bus architectures used in multiprocessor systems. The

timeshared bus, multibus, and cross bar switch configurations are modeled.

This paper presents the results in graphical form, and does not detail the

mathematical model.

Oryuksel [Oryuksel-89] presents a simulation model for performance

analysis of multiple-bus multiprocessor systems with shared memories.

4.5.2 Processor Instruction Simulators

Simulation of a single processor within a multiprocessor computing

system has been considered by a number of different authors. This type of

simulator is restricted to the processor being simulated and it is not flexible

enough to simulate other types or configurations.

The simulation of a microprocessor (namely the 6502) is carried out by

Chang [Chang-87].

Kreulen [Kreulen-90] used the MC68020 as the processor model for

microprocessor-based simulation. Both Gorissen [Gorissen-85] and O'Grady

[O'Grady-87] have based their simulations on the Intel 8086 microprocessor

and the Intel 8087 numerical coprocessor. Both systems are modeled on the

instruction level. The 8086 has about 130 instructions. Each of these

instructions are simulated separately. The instruction set of the processor

including flag handling is completely reproduced according the specification

of the microprocessor.

- 64 -

Gorrissen [Gorrissen-85] presents a simulation different to that of

Beadle [Beadle-89]. The multicomputer simulation presented by Gorrissen

[Gorrissen-85] simulates in detail the hardware functions of the system. The

simulation is based on an architecture that has a Time-Shared Bus (TSB) bus

and various processor and memory parts. Each processing node can access

not only a local memory but also a global memory. The simulation software

executes the instructions of the microprocessor in detail, thus affecting all of

its components, local and global memory and also the system bus. For the

execution of real programs on the simulation model [Gorrissen-85] has

modeled the system on the microprocessor instruction level.

4.5.3 H.L.L. Source Code Simulators

This group of simulators accepts the source code of the programs to

be simulated in High Level Language (H.L.L.) form. The source code is

written in a computer high Level Language. An example of this group will be

[Beadle-89].

4.5.4 Operating system Simulators

The simulation of software structures for different parts of the

operating system is also considered. Simulation models for Multitasking by

Karatza [Karatza-87] and [Karatza-88]; also, the simulation of dynamic task

allocation in a distributed computer system is discussed by Andert [Andert-

87].

Other types of related simulations deal with different aspects. One

example is Shaw [Shaw-87] where a simulation of a parallel processor with

unbalanced loads is considered.

- 65 -

4.5.5 Stand-alone Simulators

The Universal simulator SIGMUS developed by Schmidt [Schmidt-81]

represents a simulator, where the simulation of parallel processes of any type

and simulation of system models of any abstraction level are claimed to be

possible. Other simulators have been designed for specific and

microprocessors. One of the main contributors is Butler [Butler-86-1] and

[Butler-86-2] in which the EUCLID simulator is discussed in detail.

Characteristic Groups Examples
Implementation Parallel [Li-90]

Serial [Bead-89]
[Krue-90]
[Butl-86]

Microprocessor 8-bit micro
16-bit micro

6502 [Chang-87]
8086 [Gorissen]
MC68020 [Kreulen-90]

Bus Structre Single bus [wear-82]
Multiple bus [Oryu-89]

Architecture
Simulated

Distributed
Memory

[Schm-81]
[Jaco-90]
[Butl-86]

User-defined
topology

[Schm-81]
[Bead-90]
[Butl-86]

Shared Memory [Schm-81]
Form of Input Low Level [Krue-90]

High Level [Bead-89]
Special [Butl-86]

Form of Output Tables [Kreu-90]
Graphics [Bead-89]

[Butl-86]
Environment Interactive/Window No example found.

Menu No example found.

Data Files [Krue-90]
[Butl-86]

Scheduling User supplied [Kreu-90]
[Butl-86]

Automatic No example found.

Table 1: Comparison Table of Different Simulators.

- 6 6 -

Li [Li-90] describes a simulation tool called the Simulated Parallel

Architectures in a Distributed Environment (SPADE). SPADE is implemented

on a network of workstations with Unix. With SPADE, a user can experiment

with various existing and hypothetical parallel machine models. SPADE is an

example of distributed simulators.

4.6 Discussion and Conclusion

This chapter has introduced the concept of simulation, and identified

the DES concept as the build block for any digital system simulator. DES is

the most suitable form for simulation of parallel computing systems. The

survey of previous published papers and articles revealed that a number of

topics need to be investigated further. Table (4.1) groups the different

categories of software simulation packages encountered. We can conclude

that there is further scope to develop a multiprocessor simulator with

scheduling capabilities.

In writing a simulator for parallel and distributed computing system, the

3 data structures described in this chapter will form the basic skeleton of the

proposed computer simulator. After reviewing a number of different

computing architecture simulators, we have concluded that we will develop

our own simulator with the capabilities to both schedule and simulate

computer tasks.

The design and implementation of the proposed computer simulator

will satisfy the goals discussed in section (4.3). Mapping the ICCG algorithm,

discussed in detail in chapter 2, onto a user defined architecture,

incorporating communication enhancements techniques, will produce useful

performance measurements of the algorithm. This simulator, which will be

equipped with an option to allow intelligent scheduling of tasks, will be used

to investigate the effect of the sparsity structure on the performance of

parallel execution of the ICCG algorithm.

- 67 -

4.7 References

[Elderdge-90] Eldredge, David L, John D. McGregor and Marguerite K.

Summers, "Applying the object-oriented paradigm to discrete event

simulations using the C++ language", February 1990, Simulation, pp.

83-91.

[Stroustrup-87] Stroustrup, Bjame, "The C++ programming language", 1987,

Addison-Wesley, ISBN 0-201 -12078-X.

[Andert-87] Andert, Ed, "A simulation of dynamic task allocation in a

distributed computer system", Proceedings of the 1987 Winter

Simulation Conference, pp. 768-776.

[Beadle-89] Beadle, Peter, "K9: A simulation of distributed-memory Parallel

processor", Proceedings of the Supercomputing 1989, pp. 765-774.

[Butler-86-1] Butler, James M. and A. Y. Oruc, "EUCLID: An architectural

multiprocessor simulator", Proceedings of the 6th international

conference on distributed computer system, Boston 1986, USA, pp.

280-286.

[Butler-86-2] Butler, James M. Butler and A. Y. Oruc, "A Facility for Simulating

Multiprocessors", IEEE Micro, Volume 6, Number 5, October 1986,

pp. 32-44.

[Chang-87] Chang, Chi-Keng and Kuo-An Hwang, "A Computer simulator for

concurrent processors", Journal of Chinese institute of engineers,

Vol. 10, No. 4, July 1987, pp. 447-452.

- 68 -

[Fujimoto-90] Fujimoto, Richard M., "Parallel Discrete Event Simulation",

Communications of the ACM, October 1990, Vol. 33, No. 10, pp. 30-

SI.

[Gorissen-85] Gorissen, Jack and Karl Lebsanft, "Simulation of a

multicomputer system on instruction level", Proceedings of the 1985

summer computer simulation conference, 1985, pp. 118-122.

[Jaconson-90] Jacobson, Peter, "The ConLab environment", report UMINF-

173.90, ISSN 0248-0542, University of UMEA, institute of information

processing, Sweden.

[Karatza-87] Karatza, Helen D., "A Simulation model of multitasking in

parallel processing", International Journal of Modeling & Simulation,

USA, Vol. 7, No. 1, 1987, pp. 37-42.

[Karatza-88] Karatza, Helen D., "Simulation models for parallel processing

with programs", International Journal of Modeling & Simulation, USA,

Vol. 8, No. 3, 1988, pp. 78-82.

[Kreulen-90] Kreulen, Jeffrey T. and Matthew J. Thazhuthaveetil, "Application

- dependent simulation of microprocessor - based multiprocessors",

Microprocessors and Microsystems, Volume 14, Number 7,

September 1990, pp. 467-473.

[Li-90] Li, Xiaobo and Yian-Leng Chang, "Simulating Parallel Architectures in

a distributed Environment", Journal of Parallel and Distributed

Computing, Volume 9, Year 1990, pp. 218-223.

[Marsan-82] Marsan, M. and Mario Gerla, "Markov Models for multiple Bus

Multiprocessors Systems", IEEE Transactions on Computers, Vol. C-

31, No. 3, March 1982, pp. 239-248.

- 69 -

[Marsden-84] Marsden, B. W., "A standard PASCAL Event Simulation

Package", Software - Practice and Experience, Vol. 14(7), pp. 659-

684, July 1984.

[O'Grady-87] O'Grady, E. Pearse and Chung-Hsien Wang, "Performance

limitations in parallel processor simulations", Transaction of the

society for computer simulation, October 1987, Vol. 4, No 4, pp. 311-

330.

[Onyuksel-89] Onyuksel, Ibrahim and K. Irani, "Simulation experiments for

performance analysis of multiple-bus multiprocessor systems with

nonexponential service time", Simulation, January 1989, pp. 18-23.

[Schmidt-81] Schmidt, Klaus and Helmuth Schmidt, "The Universal Simulator

SIGMUS" proceedings of the summer simulation conference,

Washington D.C., 1981, pp. 631-635.

[Shaw-87] Shaw, Wade H. and Timothy S. Moore, "A simulation study of a

parallel processor with unbalanced loads", Proceedings of the 1987

Winter Simulation Conference, pp. 759-776.

[Wear-82] Wear, Larry L., "A simulation of bus architecture for multiprocessor

systems", Proceedings of the 1982 winter simulation conference, pp.

268-278.

[Zehendner-89] Zehendner, E. and Th. Ungerer, "A simulation Method for

parallel computer architectures", Microprocessing and

Microprogramming, 28, (1989) pp. 209-212.

- 7 0 -

Part THREE

Scheduling and Simulating

This part of the thesis is dedicated to our method in scheduling and

simulating the parallel tasks and architectures.

-71 -

Chapter 5

Critical Path Analysis and Scheduling

C H A PT E R S.. 72

5.0 Cr it ic a l Pa t h M e t h o d and Sc h e d u l in g .. 73
5.1 In tr o d u c tio n t o Cr it ic a l Pa t h M e t h o d ...73
5.2 Th e Ne t w o r k d ia g r a m .. 74
5.3 Id en t ific a t io n o f Cr it ic a l Pa t h ...75
5.4 Cr it ic a l Pa t h and Pa r a l le l Pr o g r a m s ... 78
5.5 Ap p l ic a t io n o f CPM t o Pa r a l le l Pr o g r a m s ...79
5.6 M a p p in g o f Pa r a l le l Ta s k s .. 81
5.7 Sc h ed u lin g o f Pa r a l le l Ta sk s .. 81

5.7.1 RULES OF SCHEDULING:......... 82
5.7.2 Optim a l Sc h ed u le :......................... 82
5.7.3 Sing le Static Al l o c a tio n ..83

5.8 S c h e d u l in g t h e B a c k s u b s t i tu t io n A l g o r i t h m u s in g C r i t i c a l P a t h
METHOD... 84
5.9 Sim u l a t io n M e t h o d .. 86
5.10 Sim u l a t io n Pa r a m e t e r s ..87
5.11 C o n c lu sio n .. 88
5.12 Re fe r e n c e s .. 88

- 7 2 -

5.0 Critical Path Method and Scheduling

This chapter introduces the Critical Path Method (CPM) concept. It

shows how to build a network graph, compute the critical path for a given

graph network. It also identifies the use of CPM in the multiprocessing

environment. Scheduling of activities and processor assignment is also

discussed. The goals and structure of our simulation program is given at the

end of this chapter.

Introduction

It is our objectives to investigate the execution of the Incomplete

Choleski Conjugate Gradient algorithm on parallel computing architectures,

thus the problem of obtaining the maximum speedup is of great importance.

The CPM provides a strategy by which we can identify the path needed to

complete the execution o the network that will result in the least time

possible.

5.1 Introduction to Critical Path Method

Critical Path Method (CPM) is a planning methodology which

represents each task in a directed graph of activities. The CPM is commonly

used in operational research for planning and scheduling. Other applications

of CPM is in process control engineering and identification of shortest

traveling distances. It is also used as a scheduling tool in distributed

programs.

Each activity network is a hierarchy of tasks, a high-level task being

comprised of a set of lesser tasks. Each node in the graph represents a

particular task. Edges point from prerequisites to the tasks which depend on

them. A task cannot be started before all of its prerequisites are finished.

- 7 3 -

Given an estimate of how long each task in the network will take, CPM

determines the time by which each task must start and be finished such that

the deadline will be met.

5.2 The Network Diagram

Diagrams like that shown in FIGURE 14 are also called networks. The

network has one initial node and one terminal node. The circles in FIGURE

14 are numbered and represent the nodes. Associated with each node is an

activity called Task. The lines represent data movement. Each line has an

arrow indicating its direction. The network as a whole shows a series of

activities that must be performed to complete the project. The arrows show

which activities and nodes logically precede others. An event that results

from completion of more than one task is called a merge event; an event that

represents the joint beginning of more than one activity is called a burst

event. Before any activity can start, all preceding activities must be completed

(but not simultaneously). An arrow's length and its compass direction are

insignificant. Nodes are sequential processes that execute in parallel and

communicate only by exchanging messages.

- 7 4 -

Merge Event Node

C l-1

CL-5 CL-8

CL-2

CL-1

Head Node Burst Event Node
Last node

CL-3

CL-7

CL: Communication Link.

Figure 14: A network of connected Nodes.

5.3 Identification of Critical Path

The network is a graph structure in which any task has a number of

predecessors and one or more successors. The head_node has no

predecessors. Two terms need defining at this point, the first is Earliest Start

Time by which an activity (task) can occur, within the logical and imposed

restraints of the network. The second is Latest Start Time by which an activity

(task) can start within the logical or imposed constraints of the network

without affecting the total project time duration.

Within a network of this sort the critical method can be expressed by

the following statements:

1- A task's latest end is equal to its successor’s latest start.

2- A task's earliest end is equal to its successor’s earliest start.

These two statements dictate two sweeps of the activity network. One

sweep or pass determines the earliest time each task can start and end. The

- 7 5 -

other determines the latest time each task can start and end. Working

backwards from the network latest end of each task can be determined, as

can its latest start.

The first sweep or pass over the whole network will be called the

forwardjoass(). In this pass the network is swept from the head_node to the

end_node. Each node in the network is checked and its links are assigned

the early_start_time. The second sweep or pass will be called the

reverse_pass(). In this pass the network is swept starting from the end_node

and proceeding backward to the head_node. Each node in the second pass

is checked and all its links are assigned the latest_start_time. Any node that

has at least one link with equal earliest and latest start times will classified as

a critical node. By the end of the second sweep, a list of critical nodes that

identify the critical path is produced.

Let us consider the following example which shows how to identify the

early_start_time and the latest_start_time for the given network of 7 nodes.

The number above the arrow represent the time needed to move data in the

direction specified by the arrow. FIGURE 15 shows the original network.

Figure 15: Original network.

- 7 6 -

In sixteenth the earliest start time is computed for each node. The sweep

starts at node number 1 and visits each node until the end node number 7.

The earliest start time for each node is assigned.

EST=4 EST=12EST=10

EST=0

EST=22

EST=15EST=7

EST: Earilest Start Time.

Figure 16: Forward sweep to compute the earliest start times.

Whereas in seventeenth the latest start time is to be computed for each node.

The sweep starts at node number 7 and moves backwards towards node

number 1. Each node visited will have its latest start time value assigned.

LST=4 LST=18LST=10

*KZ)

LST=0

LST=22

LST=15

LST: Latest Start Time.

Figure 17: Reverse pass to compute the latest start times.

- 7 7 -

At this point of time the critical path can be identified. The critical path of the

network is the sequence of activities that constitutes the longest time path

through the network and thus determine the minimum expected time in which

the network can be completed. The critical path can be traced to activities

which have equal early and late start times. The activities residing on the

critical path always have a difference of zero between the early and late start

times.

The critical path for the network in fifteenth follows the following

sequence of activities: 1 - 2 - 4 - 5- and 7. Although activities 3 and 6 are

expected to be completed by the start of activity 7, and still expect to

complete the network on time.

Node EST LST Status

1 0 0 Critical

2 4 4 Critical

3 7 10 Non-Critical

4 10 10 Critical

5 15 15 Critical

6 12 18 Non-Critical

7 22 22 Critical

Table 2: The link information (earliest and latest start times) for the
network of 7 nodes.

5.4 Critical Path and Parallel Programs

In the execution of parallel programs, the all process completion time

is an important performance measure. When completion time is used as the

measure, speed is the major concern. One way to determine the cause of a

program's long completion time is to find the event path in the execution

history of the program that has the longest duration. This Critical Path

identifies where in the program attention is needed.

- 78 -

Characteristics of distributed programs:

In order to identify the Critical Path CP in a distributed program, it

should be seen as having the following characteristics:

a- It can be broken down into a number of separate activities. These activities

must have comparable execution times,

b- The time required for each activity can be measured or estimated,

c- The interaction of activities should be known, thus allowing some activities

to be executed serially (sequentially), while others may be carried out

in parallel.

d- Each activity may require a combination of resources, e.g. CPU (integer,

float, logical etc.), memory physical space (cache, local or remote) and

I/O devices. There may be more than one feasible combination of

resources for different activities, and each combination is likely to

result in a different duration of execution.

Based on the above distributed program characteristics, we can use

the critical path method (CPM) to analyze and schedule a program's

execution. Previous attempts to utilize the CP were carried out by [Barry-85]

[Kasahara-84] [Kohler-75] and [Yang-88].

5.5 Application of CPM to Parallel Programs

The CPM is used in the parallel programming environment in the scheduling

parallel tasks or activities. The objectives of scheduling is to assign each of

the nodes

N { Ni, N2 Nnodes.max} to one of the
PN processing nodes (P N i, PN2 PNpn max}

Such that the minimum execution time will be obtained. This situation can be

improved in a number of ways:

- 7 9 -

1- The programmer should have tools that provide parallel program

performance information. These tools should be able to provide, at the

very least, some of the more routine analyses that a programmer

would need to have done.

2- The programmer must rely upon intuition to make changes to improve

performance. Parallel programming is a very intuitive craft, and less

intuitive programmers will have more difficulty improving programs.

Guide-lines for program improvement would help to reduce the

intuition needed and make parallel programming easier.

Scheduling the computation tasks to achieve minimum total execution

time requires an understanding of the data dependencies that exist among

problem variables and an estimate of times of individual tasks. The data

dependency graph in fourth identifies the tasks and the data dependencies

among variables computed during the execution of the backsubstitution

algorithm during an iteration of ICCG. Matrix coefficients and constants are

available at the start of the period of computation and appear in the left-side

of the graph; the evaluated variables are at the bottom. Each node represents

one or more arithmetic task. Arrow-pointed arcs identify a dependency

relationship between two variables; the variable at the lower end of an arc

(destination) depends on the variable at the upper end (source). Due to this

dependency the computations associated with nodes connected by an arc

cannot be performed in parallel because the variable needed to complete the

destination task is not available until after completion of the source task; thus,

arcs in the dependency graph network identify computations which must be

performed sequentially. Computations associated with nodes that do not have

a source-destination relationship can be performed in parallel.

The general problem of scheduling n interdependent tasks for

minimum time execution on m processing nodes requires understanding both

the network structure and the computing architecture used. However if the

number of tasks is relatively small and the number of processors is

sufficiently large, analysis of the dependency graph can assist in developing

- 80 -

an optimal schedule. Scheduling is also simplified if the time required to

exchange data among processing nodes is assumed to be negligible; this

assumption may be justified if the ratio of time required for data exchanges to

time required for computation tasks is small. In this case it is helpful to

identify the critical path which represents the longest serial computation

sequence on the dependency graph. The critical path determines the lower

bound on the computation time for performing the computations on the graph

with parallel processing. Under no circumstances (i.e., no matter how many

processors are used) is it possible to perform the computations on the graph

in less time than that required for the computations on the critical path if the

precedence relations are to be satisfied.

5.6 Mapping of Parallel Tasks

The objective of the mapping problem is to match the algorithm

structure with the machine (hardware) structure. For a uniprocessor system it

is easy to map an algorithm by using compiler-based tools. However, as the

number of processors increases, the mapping problem becomes more

difficult. A general approach to the mapping problem includes three steps:

1- Identification of parallelism within the algorithm,

2- Partitioning of the algorithm in to sequential tasks,

3- Scheduling and allocation of processing nodes for the algorithm tasks.

5.7 Scheduling of Parallel Tasks

In a parallel programming environment, scheduling may be static or

dynamic. In static scheduling policy, the binding between processors and

processes is done at compile time. This is also known as Single Static

Assignment problem. Static scheduling has low runtime overheads but is

less, and often results in poor load balancing. In dynamic scheduling policy,

the time of binding of processors to processes is delayed until runtime. A

process can be executed by any processor that becomes available, under

-81 -

certain constraints. Dynamic scheduling needs more runtime overheads but

also produces better load balancing and less interprocessor communications.

5.7.1 Rules of Scheduling:

The following rules will be applied to our simulation program:

1- A schedule must casual: if a nodel produces a value that is used by

node2, then nodel must be scheduled and executed before node2.

2- Also, no two nodes are scheduled to the same processor at the same time

slot.

3- If the node input operands are provided at the right time and made

available the right place, the program will compute the desired results

and provide them at the times and places given by the simulator. Data

will arrive on time and will be processed according to the simulator

instructions.

5.7.2 Optimal Schedule:

An optimal schedule can be determined as follows. Critical path

computations are scheduled on one processor; then non-critical-path

computations are scheduled on other processors. Considering the following

assumptions:

1 - When a non-critical path computation has to scheduled in order to have its

result available when needed for critical path computation, thus not

delaying the overall execution time of the network.

2- When a computation task can be scheduled with assurance that all its

predecessors have been computed, and

3- At any instant which processors are available for assignment.

All schedules in which a separate processor performs all computation

tasks on the critical path (and no other tasks) without delays are optimal

schedules; here it is understood that processors performing non-critical path

-82 -

computations have to complete them within the time interval required for

critical-path computations.

If data exchange time is not negligible (as in multiprocessor

simulations), data exchanges that occur during a period of computations must

be included in the tasks considered by the scheduling algorithm. This makes

scheduling more complex not only because the number of tasks to be

scheduled increases, but also because the requirements for specific data

exchanges depends on the schedule itself. For example, one schedule for

utilizing 3 processing nodes might require the transfer of the result of

computations to other processors, while a second schedule for utilizing 5

processing nodes might require only local use of the same result.

The choice of the scheduling method can have a dramatic influence on

the parallel execution time of a program for the following reasons:

1- There is loss in parallelism when potentially parallel nodes are assigned to

the same processing node. If these two nodes were executed in

parallel a better performance would be expected.

2- Since all data transfers need a finite time to take place, this time need to

be minimized to obtain better speedup results.

3- A good choice of the node sequence can often reduce the wait component

and utilize the time in more useful functions.

5.7.3 Single Static Allocation

Data flow analysis techniques can be used to analyze and improve

parallel program performance. In static data flow analysis, the program

source code is analyzed to provide information about the program without

having to execute it. In dynamic data flow analysis, the results of program

execution are combined with the information from static data flow analysis to

provide information on program performance.

- 8 3 -

The assignment of nodes to processing nodes PNs can have a large

impact on the performance of the multiprocessor system. For example, since

each PN is a sequential computing machine, nodes that potentially can

execute in parallel cannot do so if they are assigned to the same PN.

Performance can also be affected by data communication delays in the inter­

processing communication network. It takes many more clock cycles to

transmit data from one PN to another than it does to transmit data into the

PN’s memory (local write cycle), which by-passes the communication

mechanism completely.

This leads to three goals for efficient allocation of nodes into PNs:

1- Minimize IPC by assigning nodes connected in the graph to the same PN.

2- Maximize the parallelism of the graph by assigning nodes that can execute

in parallel to separate PNs.

3- Balance the computational load evenly between the PNs.

5.8 Scheduling the Backsubstitution Algorithm using Critical
Path method

Let us now apply the CPM to the numerical class of algorithms. We

have identified, in chapter 2, the backsubstitution algorithm to be the

computation and communication bottleneck of the ICCG solution. In this

section we will consider three matrix structures.

The following 3 matrix examples have the same matrix size but

different sparsity structures. Only non-zero elements are shown. In Model 1

the matrix has 31 elements.

Model 1

Number of elements: 31

Number of Critical path elements: Not identified.

-84 -

r f N* N’ N* N*
N* A/7 N*

N* N" N12
N" N” AT5

AT Ar N" A/1’
N °° AT'

AT22 TV23
AT A^

AT AT27
AT Â *

Nx
AT

Model 2

Number of elements: 31

Number of Critical path elements: 10
N' N*

C C
N* AT

C"
AT

N*
N*

Cu C
AT

AT'

AT

AT AT

N'

AT

AT AT
AT A^

C" C25
AT* AT

Cn C
c*

AT.

Model 3

Number of non-zero elements: 24

Number of Critical path elements: 23

c c c c c
C1 c

C C'°
Cu c12

C15 C14 AT5
C“ C '7

C" C”
C” C2’

c22 c
c24]

Model 2 has the same matrix size, but the length of the critical path is

10 nodes. In model 3, where the matrix structure is more dense on the

diagonal elements, then the critical path is longer and hence of length 23

elements. In this model 23 elements out of the 24 reside on the critical path.

Model 3, on one hand, can not lend itself to parallel execution due to the

- 8 5 -

inherent serial structure in the distribution of its elements, on the other hand,

model 2 has some parallel chain of nodes that will improve its parallel

execution.

5.9 Simulation Method

In the previous sections we discussed the scheduling of the matrix

elements in order to obtain speedup improvements. This section will

introduce the steps needed to simulate the parallel activities by a sequentially

working simulation program. The simulating program would repeat the

following steps:

1- Choosing the next available processing node PN that will execute the next

node ready for processing. A list is kept of all PNs that are allocated

for the execution of the algorithm.

2- Choosing the next available node for execution. For each processing node

PN to be executed, that is the node with the minimum IPC time (from

the list of available nodes), is selected. The selected node may reside

anywhere in the queue and not necessarily at the beginning.

3- Fetch operands to complete the node's task. Some of the operands may

reside on a remote processor, thus a communication cycle is activated

to transfer the operands from the PN where they were generated to the

currently selected PN.

4- Execute the node by the selected processor. The action defined by the

node's task is executed on the processing node PN.

5- If needed special cycles for the results transfer are activated. Subject to

the user requests, there may be a number of options for the transfer of

results. Such communication enhancement systems include one-to-all

Broadcasting and Caching.

- 86 -

5.10 Simulation Parameters

The basis for a model for parallel computations is to be able to predict

the efficiency of execution of a parallel computation on a given architecture,

and to study the effect of varying different configuration parameters of the

computation. The parameters of interest to this research are as follows:

1- Shared memory / Message passing model:

The interaction between the nodes of a computation can

be specified using a message model, a shared memory model,

or a mixture of the two. This choice is based on the support by

the host architecture and the volume and size of the information

being exchanged.

2- Granularity of the node:

The efficiency of the computation is directly dependent

on the size of each schedulable node of computation. Larger

nodes would usually reduce the amount of parallelism possible,

while smaller nodes could entail additional overheads of data

movement.

3- Computation structure:

This includes the specification of synchronization and

sequencing of nodes that compose the computation.

4- Communication Structure:

It is also desirable to provide the processing nodes with

special hardware mechanisms to enhance their operation. Such

enhancements should effect both the areas of computation and

communication capability of the computing architecture. The

- 8 7 -

computation power of a processing node dealing with numerical

algorithms, such as ICCG, will significantly improve by the

addition of dedicated vector processing hardware. The

communication speed to transfer data among the processing

nodes will benefit from a special hardware. Both One-to-AII and

Caching mechanism introduce great advantages to system.

5- Host architecture:

All the earlier mentioned parameters are implicitly

dependent on the choice of the host architecture.

5.11 Conclusion

The CPM is a valuable tool to enhance the operation of parallel

programs. We have described in this chapter a method to recognize the

critical path of a given network of tasks. Scheduling tasks of a parallel

algorithm using the CPM would improve its performance.

The application of CPM to the scheduling of sparse matrix structures

will identify parallelism available.

5.12 References

[Berry-85] Berry, Orna and David Jefferson, "Critical path analysis of

distributed simulation", Proceedings of the conference on distributed

simulation, January 1985, pp. 57-60.

[Carre-79] Carre, B., "Graph and networks", 1979, ISBN 0 19 859 6227,

- 88 -

[Haley-83] Haley, Paul V., "Adding knowledge to the Critical Path Method",

Proceedings of the 14th annual Pittsburgh conference on Modeling

and Simulation, 1983, pp. 1233-1237.

[Kasahara-84] Kasahara, H. and S. Narita, "Practical scheduling algorithms

for efficient parallel processing", IEEE transactions on Computers,

1984, Vol. C-33, No 11, pp. 1023-1029.

[Kohler-75] Kohler, W., "A preliminary evaluation of the critical path method

for scheduling tasks on multiprocessor systems", IEEE transactions on

computers, December 1975, pp. 1235-1238.

[Legrand-89] Legrand, Alain, "A graphical critical path analyser" Australian

electronics engineering, March 1989, pp. 36-39.

[Shieh-91] Shieh, J. J. and C. A. Parachristou, "Fine grain mapping strategy

for multiprocessor systems", IEE proceedings-E, Vol. 138, No. 3, May

1991, pp. 109-120.

[Yang-88] Yang, C. and B. Miller, "Critical path analysis for the execution of

parallel and distributed programs", Proceedings of the 8th international

conference on distributed computing systems, 1988, pp. 366-373.

[Zimmerman-82-1] Zimmerman, S. and L. conard, "Programming the critical

path method in Basic", Byte, July 1982, pp. 378-390.

[Zimmerman-82-2] Zimmerman, S. and L. conard, "Programming PERT in

Basic", Byte, May 1982, pp. 465-478.

- 8 9 -

Chapter 6

The simulation program PARASIM

CH A PTER 6 .. 90

6.1 An Ov er v ie w o f PARASIM st r u c tu r e .. 92
6.1.2 Sim u l a t io n St e p s .. 92
6. l .3 Da t a Str u c tu r e s ..95

6.2 Im pl e m e n t a tio n o f PARASIM.. 101
6.2.1 NETWORK CREADON...101
6.2.2 Basic M o d el A s s u m p d o n s ...105
6.2.3 T he W in d o w m e t h o d ... 106

6.3 Th e Sc h ed u lin g T e c h n iq u e ... 106
6.3.1 PA R A S IM SCHEDULE..106

6.4 M u l t ipr o c e sso r Sim u l a t io n ...112
6.4. l Sim u l a t e d A r c h itec tu r es M o d e ls ...115
6.4.2 In t e r -Processor Co m m u n ic a d o n M o d e ls ...123
6.4.3 OPERADON OF MULTIPROCESSOR SIMULADON ROUTINE...123

6.5 ROW OUTPUT OF SIMULATION.. 125
6.6 DEVELOPMENT PHASES & STAGES.. 126
6.9 C o n c l u s io n ... 129
6.10 r e f e r e n c e s .. 129

- 9 0 -

6.0 The simulation program PARASIM

This chapter presents a CAD software package which was developed

especially for this research and used in evaluating the performance of a user-

defined Parallel Processing Architectures (PPA). This package is a general

purpose scheduler and simulator of PPA with the added facility of utilizing the

Critical Path analysis during the scheduling of tasks.

The Simulation of computer systems is the only method for estimating

performance of new designs and new configurations without implementation

of the desired system. A simulation method can include factors that are very

difficult to incorporate into an analytical model, such as communication,

synchronization and system overheads. Also, the workload does not have to

be described by probability distributions but the actual algorithms can be

made to execute on the simulated computer hardware and software.

Simulation has another useful outcome which is to determine possible

improvements of existing systems, for evaluation of computer network and as

a design tool.

To simulate the parallel machine and its behavior under certain

algorithms, we need to simulate the behavior of the processors, memory

modules, interconnection networks, algorithm and the interaction between

these components. A programming tool that performs both simulation of the

parallel machine and the analysis of critical paths for parallel programs has

been developed by the author. This tool determines the critical path for the

program as scheduled onto a parallel computer with N processing elements.

This software package is based on Discrete Event Simulation DES

(refer to chapter 5.0), hereafter referred to as PARASIM. PARASIM stands for

Parallel Simulator. It is implemented entirely using C programming language

-91 -

(refer to Appendix-B). PARASIM was entirely written in C and was tested

running on UNIX, MS-DOS, IBM Rise 6000, HP and SUN workstation. It was

also interfaced with the MEGA CAD package to simulate the Incomplete

Choleski Conjugate Gradient ICCG solution of matrices which arise from real

design models.

6.1 An Overview of PARASIM structure

The program is designed to be flexible in the amount of information it

provides. In order to provide detailed outputs for debugging and design

verification, it includes a number of output statements. However, these

produced far more output data than is needed for most runs. The output data

is stored into the log file associated with each run. The output data which is

primarily concerned with the overall performance level of the simulated

system running the algorithm under test. During the execution of PARASIM

each option selects the amount of detail in the output data to suit the purpose

of the run.

The simulation program PARASIM will accepts input from the user.

The input may take one of two forms. The first form is a three file information

which contains information about the algorithm which will run on the

simulated parallel architecture. The second form is to enter the network

structure by the user. PARASIM supports facilities for creating, editing,

displaying and printing the network structure and its execution results.

PARASIM is equipped with different options to simulate the different

connections and communication delay costs.

6.1.2 Simulation Steps

The phases of the PARASIM program operation are as follows:

- 9 2 -

Phase 1: Preparation of application programs
The steps for preparing the program for running on the simulator are

described later.

Phase 2: Menu and dialogue
Data entry using menu-driven user interface

Creation of the network structure.

Phase 3: Critical path analysis
Forward pass execution.

Reverse pass execution.

Identification of the critical path for the network.

Phase 4: Scheduling and Simulation
Multiprocessor simulation.

Statistical data collection and Reporting

Phase 5: Forms of Output
The output of the program may take one of two forms:

(i) Screen Display, or

(ii) Text file output.

ASCII output files

Word processor interface (Latex - like)

Printer support (Postscript)

CAD package interface

- 9 3 -

Graphics data filesPostscript

Ascii Network

Standard Output

Mega Matrix

Activity

Logfile

Input Forms

Output Forms

CPA

Critical Path Analysis

Multiprocessor Simulation

Pre-Processor

Figure 18: Forms of Input and Output to/from the simulation program
PARASIM.

Figure 18 depicts the different forms of input to the PARASIM program.

Among the forms of input is the "Mega Matrix". This form accepts input from

the Mega CAD software. The matrix can also be described using Ascii files.

The other form of data input to PARASIM is through "Binary network

- 94 -

description files". These files represent the interconnection of the network to

be simulated. The different forms of input are described in this chapter,

whereas the forms of output will be discussed under the chapter discussing

the results of the simulation.

The following sections will describe in detail the operation of the above

phases.

6.1.3 Data Structures of the simulation program

PARASIM creates three data structures to represent the algorithm for

the simulation of parallel computing systems. The network contains

information on the algorithm structure, parallelism, and costs for execution

and communication time. These pieces of information is expected to come

from the user. Node, Tasks and Link records will be explained in this section.

The Three structures are as follows:

1- Node structure:

Nodes represent an operation being performed on some input data to

produce some output(s). The nodes of the network are numbered starting

from 1. Figure 19 shows the Node structure.

Tab

typedef s t r u c t node {
s t r u c t node *next,

*queued_next;
s t r u c t link *fwd_link,

*rev_link;
s t r u c t task *task;
i n t time_taken,

node_id,
proc_no,
status;

i n t critical; }
e 3: C code declaration of Node structure.

- 9 5 -

next node

Node Structure previous node

I

queue next
j

j

Link Structure

forward link
j

i
l

L .. _-_

reverse link

Task Structure task

time taken

node id

processor No

Integer matrix row

matrix column

status

Figure 19: Graphical presentation of Node structure.

The head_node, which is created at the start of the simulation, is the

pointer to the start of the network representing the problem being simulated.

The head_node is not itself a part of the dataflow description but it points to

the linked list of nodes and is used to access the linked list during the

different phases of the simulation. Inputs to the dataflow network from the

outside world are presented by links from the head__node to the first nodes of

the dataflow network. Similarly outputs to the outside world are represented

by links to the head_node. The following attributes are maintained for each

node and are stored in the node structure.

- 96 -

NODE->id: To allow the user to identify nodes, each node is assigned a

unique identification number when created.

NODE->fwd_node: For the purpose of systematic access to all nodes they

are connected into a double linked list so that each node record

contains a pointer to the next node in the list.

NODE->fwdJink & NODE->revJink: The node record contains two pointers

to Link structures (i.e. fw djink and revjink). The first points to a list of

Links where the node is to supply its output. The second is the list of

Links which input data to the node. If a node has no Links in a given

direction the relevant pointer will be set to Nil.

NODE->task: In addition each node is assigned a task which indicates the

action to be taken during execution. A pointer to the Task structure is

defined.

2- LINK structure:

Links represent data paths between nodes. When data is expected to

move from one node to another, a link is established between both nodes,

starting from the source node and ending at the destination node. These

Links are a list of input operands and another list for the destination of the

results. Figure 20 shows the Link structure.

typedef s t r u c t link {
s t r u c t node *fwd_node,

*rev_node
s t r u c t link *fwd_link,

*rev_link,
*next_link;

i n t comm_tiine,
et,
It;

c h a r input_available;
c h a r output available;}

Table 4: C code declaration for Link structure.

- 9 7 -

1
j forward node

Node Structure

1 reverse node

forward link

Link Structure

;
reverse link

1

1 earliest start

1

latest start

Integer
input available

:

1
output available

:

transfer

Figure 20: Graphical presentation of LINK structure.

In each Link record there are two link pointers, which represent the

data inputs and outputs to node. A linked list connected to the NODE-

>rev_link is pointing to the list of input operands, whereas the NODE-

>fwd_link is pointing to a list of destination nodes.

LINK->rev_node: This is a pointer to the node where the data comes from.

LINK->fwd_node: A pointer to the node to which the data should go.

- 9 8 -

3- TASK structure:

In order to group the repeated tasks that appear in the network, the

Task structure was implemented. Task structure identifies the nature of the

task being executed on the node. Each node must have a task associated

with it. Tasks can be defined with different arithmetic, move and logical

operations and may have an arbitrary task duration. Each task represents an

indivisible sequential computation (which may be arbitrarily complex).

Simulation of Looping and Branching:

The user can specify any number of operations, including conditional

and loops. However, we should note that although PARASIM allows looping,

it still considers it to be a single block of instructions performed by the calling

processor node. Figure 21 shows the Task structure.

typedef struct task {
struct task *next;
char name[20];
int id,

time; }
Table 5: C code declaration for Task structure.

Task Structure next task

task name

j i

task id
:

|

Integer :

task time
j
|

i

Figure 21: Graphical presentation of TASK structure.

- 9 9 -

The Task records are linked to each other in a linked list for easy

access. The start of this linked list is a record pointed by head_task created

at the Network generation phase of the program.

TASK->name: Each task record contains a name field, which is a string of

characters. This field describes the operation to be carried out by the

connected Node.

TASK->id: A unique identification number is allocated for each Task record.

Task numbers start from 1.

TASK->time: The time needed by the task to be executed, when the inputs

are ready, in time units. Time is an integer variable denoted by ut (unit

time), in which both the task execution time and the IPC time is

measured.

Head Task Pointer Q

Name: Operation 1

D — >

Name: Operation 2 Name: Operation 3

Figure 22: Graphical presentation of the Task list.

Figure 22 shows the structure created inside PARASIM for the

organization of tasks. It takes the linked list format. The structure starts with

the head_task and keeps information about every distinct task in the network.

Whenever a new task is encountered, the list is checked and if not suitable

task was found then a new structure will added to the list.

-100-

Tasks are either a single-operation or a multi-operation structures. But

how task time is computed on multi-operation tasks? Once the cost of

different single computations have been identified, the cost of executing a

multi-operation task can simply be found by adding the time of executing

instruction that constitute the task.

6.2 Implementation of PARASIM

PARASIM is not only a multiprocessor simulator but also a scheduler

with Critical Path Analysis. We should keep in mind that the PARASIM

simulator runs on a sequentially organized uniprocessor computer.

Therefore, the actions of the processing nodes and other subsystems defined

in a simulated system are not taking place concurrently, but sequentially.

PARASIM executes the following phases before it commences the execution

of the multiprocessor simulation:

1- Network Creation.

2- Scheduling strategy.

2.1- Network Forward Pass.

2.2- Network Reverse Pass.

2.3- Critical Path identification.

3- Simulation of architecture.

The flowchart in Figure 24 shows the steps of the PARASIM program

simulation steps.

6.2.1 Network Creation

The complete network structure that represents the algorithm to be

simulated is created using an option from the program’s menu. This option,

which can be selected from the main menu, creates the network data

structures needed by the simulation program. The network is comprised from

Nodes, Links and Tasks and is an image of the algorithm as it should be seen

-101 -

by the simulation program. The whole algorithm steps are created and

organized in the memory of the computer.

The algorithm is split into a number of distinct identities, as discussed

earlier in this thesis. These identities or Nodes will interact with each other by

the exchange of information and data. The size of each of the Nodes

depends on the granularity of the splitting strategy. PARASIM offers a

number of selections to describe the granularity of the algorithm, although the

implemented program only serves the Backsubstitution algorithm but it can be

easily modified to cater for other problems. The network representing the

algorithm being simulated should be created before any simulation can take

place. The connections between the Nodes and Links is governed by the

algorithm nature and the granularity of the problem.

Link Structure

Input Jink

Link Structure

Link Structure

Link Structure

To another Node Link Structure

Link Structure

Link Structure

List of Output

Figure 23: A segment of the network presentation which includes 2
nodes.

-102-

Figure 23 shows the internal program presentation for two nodes

(namely, Nodei and Node2) linked together There is one operand that is

sourced at Nodei and has to feed Node2. The linked list pointed to by

inputjink represents the operand sources to Node2.

PARASIM offers a number of input forms of data that represent the

problem. The program's input data may take one of the following forms, as

described in Figure 18:

1- Binary network information.

2- Ascii network information.

3- Mega matrix format.

If the user selects the Binary data input format then the following three data

file should be available for each network structure to be simulated. These

files are as follows:

1- The Nodes data file:

This file contains the data and information about the Nodes of the

network. The total number of Nodes and the task assigned to each Node is

an example of such data.

2- The Links data file:

This file contains a list of connected Nodes. Each line in the file has a

pair of integers represent the Node identification numbers, the first number

denotes the source operand and the second number denotes the destination

Node.

3- The Task data file:

This file stores the information about the different Tasks that are

executed by the algorithm. The total number of Tasks, Task name and

duration is stored in the file.

-103-

The only difference between the Binary and Ascii data input format is the

method used for saving the data files. The Ascii format allows the user to

inspect the contents of the file in a readable format. PARASIM also provides

an option to convert a network structure from Mega to Binary definition.

Parasim

Critical Path Identification

Forward Pass

Reverse Pass

Initialize program variables

Multi-Processor Simulation

Output Results

End

Figure 24: Flowchart of PARASIM steps in operation.

-104-

6.2.2 Basic Model Assumptions

FIGURE 24 shows the phases for execution for a node. The model

used by PARASIM assumes the following phases of operation:

1- Phase 1: The Communication phase for executing a node can start

whenever the inputs to the node are generated by the processing

node.

2- The transfer of data is started by assigning one link to the activejink and

the data is transferred to the processor executing the node.

3- PARASIM will apply one of the following two cases to obtain the link

transfer time:

3.1- Local Transfer Time for transfer of data that is originated from the local

memory.

3.2- Remote transfer time for transfers from a remote memory module. The

bus contention may affect the transfer I shared memory bus is used in

the simulation.

4- Phase 2: The node will begin execution only when all the data is

transferred to the processor. PARASIM will spend a number of cycles

equivalent to the task cycles linked to the node under execution. The

activejcydes of the processor will be updated accordingly.

5- Phase 3: As soon as the node is executed the status of the links taking out

the data will be marked as input_datajavailable.

6- Phase 4: The node is executed and the output data is ready for transfer to

other processors.

-105-

Input
Reverse Links

Output

Forward Links

Input Output

NODE Processor Y

Task
Processor X

Processor Z

Phase 1 Phase 4Phase 2 Phase 3

Figure 25: Phases of execution for a NODE with input and output LINKS.

6.2.3 The Window method

Before we proceed any further let us discuss the Window method

which is devised especially for PARASIM. This method was implemented to

improve the execution and response times of PARASIM. In the Window

method the execution of one clock cycle does not depend on the size of the

network, but only on the number of nodes currently active within the Window.

Nodes are considered to be active if they are assigned a processing node to

perform the execution. A list is kept for all active nodes. The nodes will join

this list when they are ready for execution, and leave the list upon completion

and generation of results.

6.3 The Scheduling Technique

6.3.1 PARASIM schedule

PARASIM schedule proceeds as follows:

-106-

1- At the start of simulation the clock is set to time = 0. All nodes that have no

dependency constraints (i.e., have no predecessor nodes) are ready

for execution. These nodes are inserted in the Window__Queue. The

procedure that performs this task is Put_AHjready_Nodes{). These

nodes will be distributed among the available processors to commence

the simulation of the network.

2- All processors are free at time = 0. They attempt to remove a node from

the Window_Queue and execute it.

3- If a processor is available and no nodes are in the Window_Queue, then

the processor will remain idle until a node is entered in the

Window_Queue.

4- When the processor completes the execution of a node, it will look for the

next node in the Window_Queue. Nodes that are successors to the

completed node and have no other unexecuted predecessors are

entered into the Window__Queue. A node would be assigned to the

requesting processor. This continues until all tasks have been

executed.

5- Only nodes designated as Critical will be allocated to processor 0,

whereas any other node could be allocated to any other processor.

-107-

Node °

Active Window

a) Initial active window position for Forward pass

b) Initial active window position for Reverse pass Active Window

Forward Pass Direction Reverse Pass Direction

Active Window
c) Window position during Simulation

Figure 26: Initial Window position during the simulation steps.

Forward Pass

This procedure aims to identify the earilest_start times for ail the links

within the network. It passes through the dataflow structure once in forward

direction. The integer variable clock is used to indicate the number of clock

pulses elapsed since the start of the pass through the dataflow network. It is

reset to zero at the start of the procedure.

The procedure starts to calculate the state of the network dataflow

after every clock pulse. This procedure continues until the calculation is

completed (i.e., all links were assigned a value) or an infinite loop in the

dataflow is detected.

-108-

Start
Forward Pass

Initialize Phase

Yes Line list

Empty?

Clock Cycle +1

Print results

Node
being executed ?

YesNo

Execute one

cycle in task
Remove from

Line list

Put dependent
nodes in Line list Update Line list

End of

Forward Pass

Figure 27: Flowchart of forward_passQ routine.

The procedure performs the following steps:

1- The node linked list is read through. Every node is checked to see if it is

ready for execution by reading through its linked list of input links, if all

-109 -

these have their output_available parameters set to true the state of

the nodes, execution is examined.

2- If its timejtaken parameter is less than or equal to the time of the task

record associated with the node the timejtaken parameter is

incremented. It is necessary to increment the timejtaken value when it

is the same as the task time parameter to indicate that the nodes

execution has been completed.

3- If its timejtaken parameter is the same as the task records time parameter

it indicates that the task has just been completed.

4- The output linked list of the node is read through setting all the

input_available parameters to true. This indicates to the following

nodes that this data is now available.

5- The node linked list is read through again to adjust the state of various

links. Each node forward link is read through. If the output_available

parameter of a link is still false but its inputjavaiiable parameter is true

this indicates that the data has just become available and hence the

links earilestjStart parameter is set to the current clock value, and the

output__available parameter is set to true.

Reverse Pass

This procedure aims in identifying the latest_start times for all the links

within the network. At the start of this procedure the variable clock is set at

the optimum time for the computation and each node records timejaken is

set at one plus the time to complete to complete its given task. As this

procedure works backwards through the dataflow the first step is to mark all

the output_available parameters of the links to the head node as false. Thus,

the procedure starts when the computation is in fact complete and works back

in time to the original position.

As with the forward__pass() the procedure consists of a routine being

repeated a number of times, each repetition of this routine results in the clock

-110-

variable being reduced by 1 and the end of the pass is indicated by this

variable reaching a value of zero.

Start

Reverse Pass

Yes

No

Print resuts

Input
Yes

No

YesNo

End of

Reverse Pass

/ Node

NOT executed ?

Clock Cycle -1

Remove from

Line tst

imtakze Phase

Update Line list

Execute one

cycle in task

Put dependent

nodes in Line list

Figure 28: Flowchart of reverse_passQ routine.

-111 -

Critical Path Computation

During the execution of the reverse_pass() routine each

communication link will be assigned its latestjtime. An extra comparison is

added to the code to check the following condition:

earliestjstart = Iatest_start

If this condition is true the node associated with this link will be considered a

CRITICAL node (i.e. it resides on the critical path). A counter of the number

of critical nodes is also kept. Another parameter computed during the

reverse__pass() is the total execution time of the critical path. This represents

the time spent for the computation of the critical path tasks. It is also used to

find the best speedup achievable for the given network.

After the execution of the forward_pass() and reverse_pass() routines

the critical path is identified and the best time possible for the execution of

the network can be evaluated. It is now possible to obtain results based on

finite number of processors and a non-zero interprocessor communication

time.

6.4 Multiprocessor Simulation

PARASIM provides the user with the ability to select the type of

architecture to be used in the simulation. The program offers a number of

architectures that can be simulated. These architectures are:

1- Distributed memory system,

2- Shared memory system, and

3- Additional communication enhancement hardware features.

Combining both the capability of simulation different forms of parallel

computing architectures, together with the facility to allocate nodes using the

critical path method, produces a powerful scheduling and simulation tool.

-112-

The procedure proc sim()

This procedure is used to obtain execution time results for the

execution of the network on a number of processors. procjsimQ is called first

for one processor, then the processor count is increased and called again.

This is repeated until either the best achievable time is achieved or the

maximum number of processors is reached.

Repeat:
S e l e c t a ready node for execution.
S e l e c t a processor to run the node's task.
A s s ig n the node to the processor.
Processor will e x e c u t e the node's task.

Until all nodes are executed.___________________
Table 6: The Basic scheduling algorithm steps.

A round-robin selection criterion is used in selecting the next available

processing node for execution.

The next section will identify each component used in the simulation, and

explains how it is implemented. The main components are as follows:

1 -Target machine.

2- Processing Node.

3- The multiprocessor bus.

4- Memory modules.

- 1 1 3 -

Initialize Phase

^ — Finish

a l processors

\ Active

No

Yes

Print results

' FOR

a l processors

i 1 n

ActiveAssign new Node

consider priority

Yes

Node = NULL Increment Proper

activity counter

No

ActiveNo
Node = NULL

Yes

Switch

Communicate

Cycle

Compute

C yde

Figure 29: Flowchart of Multiprocessor simulation routine.

The architecture:
The structure of the multiprocessor system to be simulated and its

interconnections and hardware features. The computational and

communicational model of the architecture to be simulated must be defined

before the start of the simulation run. The computational model specifies the

-114 -

time needed for each computational task. The communication model

identifies the structure and cost for all the interprocessor communication

activities.

6.4.1 Simulated Architectures Models

PARASIM is capable of simulating both shared and distributed

memory multiprocessor architectures. It assumes that the shared memory

system is a single time-shared bus system, with all processing nodes

communicating through a single bus. The distributed architecture has a fully

interconnected network that allows each processing node to communicate

with other units within the same system. This is achieved by simulating a bus

interconnection mechanism.

Target Machine:

The target machine is assumed to have a general MIMD architecture

composed of a number of PN. Beside containing local memory to hold code

and data, each PN is assumed to incorporate a private communication

mechanism.

The parallel machine being modeled consists of a number of processor

and memory-module pairs connected by a network. Each memory module

consists of a number of memory banks. Each processor and memory module

is connected to a pair of input and output ports of the network. Each

processor can access its memory module directly and other memory modules

through the interconnecting network.

PARASIM can be configured as a uniprocessor or multiprocessor

systems. The type of machine to be simulated is specified by the user as the

number of processors executing the given network structure. If the user

specifies only one processor then the simulation is configured as a

-115-

uniprocessor; whereas, specifying one more processor will invoke the

multiprocessor actions with the simulation.

P N P N P N P N□□

Multiprocessor timeshared bus

I/O

Processor
P N P N □□ P N

PN: Processing Node

Figure 30: A typical shared memory multiprocessor computer with time-
shared bus structure.

Proc 1

Proc 3Proc 2

proc «

Communii

Figure 31: A typical distributed memory multiprocessor computer with
direct communication links.

-116-

The Processing Node:

PN is intended to form the building block for a parallel multiprocessor

system. Each systems consists of a quantity of n modules and m shareable

memory areas (mO). Each processing node PN in the system is addressable

and holds unique characteristics and it is an independent computer system

with full memory, control and arithmetic capability. It is also equipped with a

pipeline feature.

TABLE 7 shows the declaration of the structure that holds information

regarding the Processing Node.

Table 7:

typedef struct t_processor {
s t r u c t node *active_node;
s t r u c t link *active_link;
i n t active_cycles,

idle_cycles,
active_comm_cycles,
i d 1e_comm_cyc1e s ,
active local cycle; }

C code for declaration the Processing Node structure.

Parameter Function
active_node Points to the node being currently

executed. Null indicates that the
Processing Node is not assigned any
node, thus it is free.

active link Points to the communication link being
transferred. This link is transfers data
to the node. Null indicates that the
processing node has no
communications left to perform.

active cycles Time units spent in active operation.
idle_cycles Time units spent waiting for data

communication to take place.
active comm cycles Time units spent in active

communication and transfer of data.
idle comm cycles Time units
active_local_cycle Time units

Table 8: Details of the Processing Node declaration variables.

- 1 1 7 -

Memory access model

PARASIM assumes two types of memory systems available in the

simulated system. The Local memory is the memory location that resides

inside the processing node addressing space, whereas the Remote memory

location resides on another memory module and is accessible by the

processing node accessing its information.

In order to model memory access within a multiprocessor system, two

parameters are introduced viz., tLoCai and t)Pc. The first of these two

parameters is to model the time needed for a local memory location to be

accessed by its processor. The second parameter would model the time

needed to acquire data from a memory bank which is not local to the

processor but it will be accessed through the timeshared interprocessor bus.

This time includes arbitration time depending on the activity of the bus.

Multiprocessor Bus Simulations

Modeling the overhead due to bus contention is a difficult problem.

Since actual measurements are not possible until the multiprocessor system

and the algorithm have actually been designed and implemented, one has to

rely on the principles of operation of such structures. To model the effects of

bus contention on the parallel execution of the network, our simulator uses a

queue model for the bus structure. Every data transfer has to take a finite

time and only one transfer takes place at any given moment in time.

The time that a processing node has to wait for a ready data to be

transferred from remote memory to its local memory is considered as idle

time.

-118-

START
Broadcast Operation

Initialize Broadcast
Operation

Is Data
No

destination > n Nodes

in the network?

Yes

Send data to all Nodes

END

Broadcast Operation

Figure 32: Flowchart of Broadcast operation criterion.

The program also allows the simulation of irregular communication

pattern. Data transfer time between any two processors within the

multiprocessor may not be always the same, thus PARASIM provides a

facility to assign different communication time for any pair of processing

nodes.

Fetching of remote operands

When a processing node accesses a shared value, a connection is

immediately established between the processing node and the processor

- 1 19 -

holding the referenced value. The data is transfer if the bus is free, else it has

to wait until it becomes available for transfer.

The communication logic on board the processing node can issue only

one memory request at a time. It cannot make another request if its current

request has not been granted.

Special Bus cycle:

We have modeled the bus structure inside PARASIM to possesses a

special feature to simulate the One-to-AII broadcast mechanism. In this

mechanism, the processing node will be capable to send a the results of a

node to all the nodes on the bus. Each processing node will be equipped with

two types of bus hardware interface units. These units are:

1- Send data unit. 2- Check and Receive data unit.

The above two units will enable the processing node to perform One-to-AII

communications.

Simulation the operation One-to-AII Broadcast:

The One-to-AII broadcast operation is simulated in PARASIM by using

the following strategy:

1- Nodes that are allowed to broadcast their results will have a special

flag associated with them.

2- When the results of these nodes become ready and accessed by

any other processing node a multiprocessor bus cycle is initiated. This

cycle will transfer the same information not to one processing node

only but to all connected to the bus.

The result from the node will only be sent out when a request for this data is

received by the communication logic on-board the processing unit, if however

the result is used only by the same processing node then there is no need to

broadcast to other nodes.

-120-

The bus structure will count the One-to-AII broadcast as only one data

transfer. This improves the performance of the program. If the result form a

node has to feed a number of others nodes, then utilizing the One-to-AII

broadcast will result in a reduction in the traffic on the bus. Only one transfer

operation is needed on the bus, but all processing nodes will have a copy of

that data locally. When this data is needed by the same processing node for

the execution of a different node the data will collected locally, thus avoiding

a multiprocessor read cycle.

The One-to-AII broadcast mechanism enhances the speedup results of

the system by reducing the amount of traffic on the bus between the

processing nodes.

Optimized One-to-AII Broadcast:

During the experiments utilizing PARASIM as a scheduler/simulator we

have found that the in special cases the One-to-AII broadcast mechanism

does not improve the speedup values. This was discovered to the fact that

some overheads are added to the performance of the system. We have

devised a condition to benefit from the One-to-AII broadcast mechanism. The

condition is to allow the node the mark its output for broadcast only if a

certain condition is satisfied. This condition is based on the number of output

links leaving the node. If the node had output links more than a threshold

value, then the node is allowed to broadcast. The links leaving the node

indicate a data movement from that node to other nodes on the network.

Consider the following case: A node has 10 output links, indicating that the

data from this node has to move to other 10 nodes in the network. Let us also

assume that the network will run on 4 processing node architecture. There is

always some chance that the 11 node system will not run on the same

processing node. Thus if we set the criteria to enable broadcast to be 4, we

will ensure that each processing node will hold a copy of the result in its local

memory.

-121 -

The Memory System:

The basic clock unit in our model is a machine cycle. It is assumed that

the processing node can execute any task in one or more machine cycles.

Similarly a memory module responds to a memory request in one or more

machine cycles.

Hardware description file:

This is a data file supplied to PARASIM program depicting the different

hardware parameters of the multiprocessor system:

1- IPC time and interconnection matrix.

2- Local transfer time (tiocai).

3- maximum number of processors to be used in the architecure.

Network Description file:

A typical file describing the network structure might take this form:

separator - Group 1------------
"Network name"
"network description 1 line"
separator - Group 2------------
number o f tasks
task idl utimel "task name 1"
task id2 utime2 "task name 2"
separator - Group 3------------
number o f nodes
node idl task idl processor "node name 1"
node id2 task id2 processor "node name 2"
separator - Group 4------------
from nodel to node2
from node2 to nodel
separator-------------------------
Table 9: Contents of Network Description File.

Notes:

Group 1 gives descriptive information about the network.

-122-

Group 2 is the network Task definition.

Group 3 is the Node definitions with associated tasks.

Group 4 Network interconnection relationships.

The simulation program is able to generate a data file for the user

specifications.

6.4.2 Inter-Processor Communication Models

Introduction

We will model the interprocessor communication structure of a

multiprocessor computing system in such a way to reflect the time delay

introduced to the system. Processing nodes communicate with each other by

sending and receiving messages. The size and direction of the data is

defined by the link structure of each node. Each processing node knows

where and when to send and/or receive data. Communication in PARASIM is

synchronized by message-passing.

In order to make the multiprocessor simulation produce more accurate

results, the Inter-Processor Communication IPC was considered. This

addition would simulate the action taken by the processing node to acquire

the operands for its operation.

To introduce communication delays due to data transfers caused by

sequential nodes not being executed on the same processor the boolean

parameter commjtime is included in the link record structure. This is initially

set to zero in the procedure reset_variables(). It is set to true when any

necessary delay has occurred during the second pass of proc_sim().

6.4.3 Operation of multiprocessor simulation routine

This routine is a more complex version of the forward j)ass() routine.

The node record structure linked list is read through and every node that has

-123-

not yet been queued (indicated by the queued boolean parameter of the node

record structure) has its input link linked list read through to check if all its

inputs are available. If they are (indicated by all the link records

output_available parameter being true) then the node is queued to either

critical and nonjcriticaI queue, depending on the state of its critical boolean

parameter. Its queued boolean parameter is set true.

1 - When the node becomes ready for execution it is placed at the end of

execution request queue.

2- The nodes are allocated for execution according to the order of the arrival

(First-Come-First-Serve). The next node to be executed is the first

node in the queue.

Node allocation or Processor Assignment

The Wmdow__Queue will contain a queue of nodes that are ready for

execution. These nodes have all their input operands available (i.e., value of

the operand is known at the time). Nodes may be selected using one the two

methods:

1 - Automatic Assignment:

This allocation strategy is used to minimize the communication costs

for the data transfer. The processor will be allocated the node which needs

the least communication time to acquire its operands. Once the node has

been executed, the next node will be selected from a the list of nodes where

the output results are going, thus reducing the communication cost for its

execution.

2- Arbitrary Assignment:

When the processor completes the execution of a node's task and

does not find a suitable node for execution, it will be assigned an arbitrary

-124-

node from the Window__Queue. This ensures that the processing nodes are

always busy, executing the assigned tasks.

6.5 Row output of Simulation

A PARASIM simulation run yields two sets of results: The algorithm

results and performance results. One can examine the algorithm results by

accessing an option in the program's menu, also PARASIM provides options

to print and display the network details. The performance statistics can either

be displayed on screen or outputted to an Ascii output file containing

information on how the simulated algorithm behaved during the simulation

execution.

PARASIM is capable of generating a number of data measurements.

The resulting data is stored in sequential files for later analysis. Examples of

these are:

1. Number of nodes executed.

2. Frequency of each type of node.

3. Data movement.

Speedup:

The speedup s attained using n processors to solve a problem is

defined by the formula:

The following table shows a summary of the output information generated by

PARASIM during the simulation:

-125-

Abr. Meaning
Tseq Sequential execution time. It is the time

needed by a uniprocessor to complete the
execution of the job.

T PAR Parallel execution time
S Ideal speedup is the ratio of T s e q /T PAR, this

assumes no communication time.
n Number of Processors

T busy Total busy processor time (in time units ut)
T a Coitip Time spent in active computations (in time

units ut)
TAComm Time spent in active communication either

Local or remote (in time units ut)
Tuseful Total useful processor time over all n

processors useful time is busy time without
idle time (in time units ut)

0: Output information of the simulation program PARAS

Detailed simulation output of PARASIM will be presented in the next

chapter. Graphical and tabular results of processor allocation and utilization

are being produced.

Applications

Utilizing the simulation program the user can find out the utilization of

the PNs. The state of each of the operand transfer actions and the delay

generated by other different system actions. The performance of the whole

architecture can be investigated and the bottle-necks recognized in an early

phase of the architecture design process. To find an optional balanced

configuration, architectural elements can be tuned by varying the different

system and communication overheads and the delay times of the messages.

6.6 Development phases & Stages

During the development of PARASIM a number of stages were

implemented. These stages are described below. Writing of the simulator has

passed through a number of phases during its development. The time taken

to execute a complete run of the program, which included both the scheduling

-126-

and simulation of the investigated algorithm. The change from one phase to

the next is to improve the overall simulation time of the system being

simulated.

Phase 1 All Nodes visited

Go through the complete network and check the status of each node.

This method consumes at lot of time scanning nodes that do not need any

attention.

Initially, the program would scan all the nodes of the network. Starting

from the head_node and stopping at the lastjiode of the network. This is

done at every change of the clock cycle. During this pass the algorithm will

check the status of each node, and take the action accordingly. The node

may take one of the following status:

1- The node is waiting for at least one input operand to become ready.

2- The node has all its input operands ready. So its task can be executed on

an active processor.

3- The node's task is being executed on a given processor.

4- The output result of the node is being produced.

5- The node becomes dead and no longer needs any attention. Thus it is

removed from the window queue.

Also checked during this phase is the status of each processing node. The

processing node may have one of the following status:

1- Free processor with no load attached to it for execution. Denoted by

Processor.active.node = NULL This processor has no node assigned,

and it is ready to execute any other task.

2- A node has been allocated to the processor, thus the processor is no

longer free.

3- The processor is fetching the operands of the assigned task from local or

remote memory locations.

4- If all operands are ready and reside within the local memory, then the task

execution can start.

-127-

Phase 2 Window method

To keep a list of nodes that need attention. Nodes that are ready for

execution and waiting for a free processor are placed in a queue. The main

simulation cycle will check only the nodes that need servicing. Nodes will

enter this queue only once.

In order to improve the performance of the simulation, a new method

was advised by the author. This method keeps a dynamic list of nodes that

need attention. In this context attention means that the node which has ready

operands will reside on this list. This node can be executed on any available

processing node. This list of nodes is kept by the program, and contains

pointers to all nodes that are ready for execution. Nodes are queued into this

list if all operands are available, and it is dequeued from the list if the node is

assigned to a processing node for execution.

There was only one global clock cycle to synchronize the operation of

all processing nodes. All processors during the execution are at the same

time slot, (e.g., all processors are at clock say 251).

Phase 3 Distributed Clock

In this phase the program implementation included a distributed clock

structure instead of a single clock variable to control all the activities of the

simulation. All components of the system that are a function time, a new

variable was attached to them. This variable will measure the time for the

specified component. No action can take place without the prior checking of

the local component clock. For distributed memory systems the processor

activity is considered, whereas for shared memory systems the

multiprocessor bus activity is considered.

-128-

6.9 Conclusion

In this chapter we have presented the software program PARASIM

with all its functions and components. It was designed to both schedule and

simulate the operation of a distributed computing systems, and to produce

performance measurements for any given algorithm. We will use PARASIM to

simulate the execution of the backsubstitution algorithm.

6.10 References

[Homewood-90] Homewood, Michael, "Simulation of a Parallel Computing

System", Final year project report, University of Bath, School of

Electrical Engineering, 1990.

[Sarkar-89] Sarkar, Vivek, "Partitioning and Scheduling Parallel Programs for

Multiprocessors", 1989, Pitman Publishing, ISBN 0-273-08802-5.

- 1 2 9 -

Part FOUR

Results and Conclusions

This part of the thesis presents the simulation results, discusses the findings

and draws conclusions.

-130-

Chapter 7

CHAPTER 7..131

7.0 S im u la tio n R e s u lts an d A n a ly s is .. 132
7.1 INTRODUCTION:...132
7.2 T h e D a ta M o d e ls used in s im u la tio n 133
7.3 B a c k s u b s h tu tto n A lg o r ith m ... 137

7.3.1 D a ta D e p en d en c y in B a c k s u b s t i tu t io n a l g o r i t h m .. 139
7.3.2 INTERNAL PARASIM PRESENTATION OF THE NETWORK.. 140
7.3.3 NODE ALLOCATION METHODS.. 142
7.3.4 T ime a n d Gra nularity o f Ta s k s .. 143

7.4 S im u la tio n R e s u lts f o r U n ip ro c e s s o rs ..145
7.5 S im u la tio n R e s u lts f o r M u ltip ro c e s s o rs ..152

7.5.1 T he effec t of t h e n u m b e r o f Pr o c essin g N o d e s .. 155
7.5.2 T h e effec t of th e In ter pr o cesso r Co m m u n icatio n t im e s155
7.5.3 Distribu ted M e m o r y Sy s t e m .. 156
7.5.4 Sh a red M em o ry Sy s t e m s ..157
7.5.5 Bus C o n te n t io n a n d p r a c t i c a l Im p le m e n ta t io n : ..158
7.5.6 On e -to -all bro ad ca stin g Sy s t e m .. 158
7.5.7 Sh a red w ith Ca ch e m e c h a n is m ...159
7.5.8 In t r a -M o d el p a r a m e t e r s .. 163

7.6 D iscussion o f r e s u lts ...167
7.7 Sum m ary and C o n c lu s io n s .. 169

-131 -

7.0 Simulation Results and Analysis

This chapter presents simulation results for the parallel execution of

the backsubstitution algorithm. This algorithm was identified earlier (chapter

2) in this research as the potential element for performance improvement of

the Incomplete Choleski Conjugate Gradient ICCG. It represents 70-80% of

the computational load for one iteration of the ICCG.

In this chapter we are going to illustrate the different parameters which

we have investigated during the course of this research. The models used in

the simulation are presented first, Next results are presented for the

execution of the algorithm on uniprocessor systems. A number of parameters,

affecting both the network structure and the architecture, were changed and

the effect of each one is analyzed and discussed. The software

scheduler/simulator PARASIM was used as the simulation vehicle to

schedule and simulate the algorithm and obtain performance results.

7.1 Introduction:

The simulation results presented in this chapter summarizes our

investigations into the performance of the ICCG on parallel computing

architectures. The detailed tables of speedup measurements are included

later in this thesis in Appendix-A. In summarizing the resultant data the

emphasis was placed in three areas. Firstly, measuring internal parallelism.

Secondly, identifying how well each separate structured scheme performed

and why. Thirdly, assessing the communication overheads in the data

transfer.

To measure the internal parallelism of the solution steps of the

backsubstitution algorithm, we have converted the matrix structure into a

network. This network will represent all arithmetic operations and

-132-

communications links required to complete the algorithm steps. We have also

identified the critical path within the network. This path identifies the least

time needed to complete the execution of the network.

We will investigate a number of parameters that affect the parallel

execution of the algorithm, namely, parameters affecting the network

structure such as the granularity of the network, and parameters affecting the

architecture to be simulated.

7.2 The Data Models used in simulation

We have used a number of problem models in our simulation. These

seven matrix problem models, which have risen from a Finite Element Model,

differ in both size and sparsity structures. Our interest is not the values of

each matrix element but the structure of matrix. From the matrix structure and

distribution of elements we will investigate the parallel performance. From

these problem models, we have produced 50 speedup result tables, as

shown in Appendix-A. In Figure 33 the relationship between the these

components is shown.

Algorithm
U

Matrix
U

Model <=> Network
U

Time costs
V

Architecture
U

Performance Results
Figure 33: Relationship between Algorithm, Model, Network and

simulation.

Table 11 Lists information regarding the model numbers associated with each

problem model, and identifies the sparsity percentage of each problem

- 1 3 3 -

model. The Model numbers are unique for each model used and non zero

elements refer to the number of elements in the upper triangle matrix. The

table also shows the percentage of non zero elements in the matrix, known as

the sparsity ratio. In the problem models used this sparsity ratio is between

0.29% to 1.52%.

The matrix size we have selected for our problem model ranges from

200 to 9289. This is used to express small, medium and large problem sizes.

Problem
Name

Model
Numbers

Non zeros
Upper

Sparsity %

200 1 -12 610 1.52%
300 13 1203 1.33%

2352 14-18 16556 0.29%
2352A 19-30 55642 1.00%
3516 31-36 59741 0.48%

3516A 37-47 81390 0.65%
9289 48-50 250689 0.29%

Table 11: Characteristics of the data models used in simulation showing
sparsity ratios.

The following figures show some of the problem models used in our

research.

-134-

X.
X

X

Figure 34: Element distribution in Problem 2352.

Figure 35: Element distribution in Problem 2352 with renumbering.

-135-

Figure 36: Element distribution in Problem 2352A.

Figure 37: Element distribution in Problem 2352A with with renumbering.

7.3 Backsubstitution Algorithm

The arithmetic operations involved in one iteration of the ICCG

algorithm are grouped into two sets. The first set of steps can be easily

programmed using vector operations, T Vec- The second set of steps involve

the forward- and backsubstitution algorithms, T Sub- Thus the total execution

time for a single iteration of the ICCG is T Vec + Tsub-

In a parallel implementation of ICCG, T Vec will benefit vector

processing capabilities, whereas T Sub will not benefit from such architectures.

This is due to the zero element in the matrix used. Thus, T s u b is the potential

member for parallel execution improvements.

The time needed to perform a complete matrix preconditioning action

which involves a forward- and backsubstitution steps is improved if the

scheduling method utilizes the sparsity structure of the matrix used.

To simulate the Backsubstitution algorithm it is necessary to identify

and order computation tasks and to schedule processors to perform the tasks

(i.e., to partition the problem). There is a tradeoff involved in selecting the

level to which computations are decomposed. Defining computation tasks at

a low-level (e.g., single arithmetic operation level) exposes most of the

problem's potential parallelism; however, it creates a large number of tasks

which complicates scheduling and introduces high amount of interprocess

communications. Defining tasks at a high level can reduce the parallelism

available in the problem; but it results in fewer tasks which simplifies

scheduling.

We have identified two types of matrix elements in the backsubstitution

algorithm network. The two type of nodes in the network are related to the

matrix element position in the matrix to be simulated. Thus for simplicity each

-137-

node in the network will have an associated node which performs the same

arithmetic operation as on the matrix coefficients.

These two distinct nodes are:

1- Nodes associated with diagonal elements, to be known as diagonal-nodes,

and,

2- Nodes associated with row elements not diagonal, to be known as row-

nodes.

Diagonal-Nodes:

The number of diagonal nodes in each model is fixed and

equals to the matrix dimension. Associated with these nodes is

a Divide arithmetic operation. As shown in Figure 37.

Node

X2

X2/X 1
Div

Figure 38: An example of a diagonal element node with its task.

Row-Nodes:

The number of row nodes may differ from one model to another.

Their position inside the matrix is identified by the sparsity

structure. Associated with this type of nodes is a multiply

arithmetic operation.

-138 -

Node

Mutt

Add

X2

X3

X1 + (X2 * X3)

Figure 39: An example of a row element with a Multi-operation task
(Add & Mult).

In order to complete the computation of one row, all diagonal elements below

this row must be computed first and an extra summation operation of all

the row results needs also to be computed. Also one subtract operation

is needed to complete the row computations.

7.3.1 Data Dependency in Backsubstitution algorithm

The are several characteristics of the Backsubstitution algorithm which

act to restrict the speedup. These include both data dependency among the

matrix elements and the communication between the different nodes to

transmit intermediate results. Data dependency will restrict the ability to

execute the Backsubstitution algorithm nodes in parallel. We have utilized in

this research the sparsity structure of the matrix to obtain some degree of

parallelisation.

The resultant values of x from a diagonal node has to be transmitted to

all the row elements in the same column. These values are needed to

complete the computations, but by utilizing the sparsity structure some

transmissions could be delayed, thus reducing the communication needs at

that particular time.

-139 -

The cost communication between different nodes to transfer data

values will be simulated using a number different values. This would give

insight into the effect of interprocessor communication on the performance of

the algorithm.

7.3.2 Internal PARASIM presentation of the Network

A parallel program can be regarded as a collection of processes that

interact with each other by exchanging messages. For efficient execution of a

parallel program it is important that the partitioning (Splitting the program into

a number of processes) of a program into processes is done properly. In

particular the grain size of processes is important. Processes that perform a

lot of computations between successive communications with other

processes are said to have a large grain size. In this section we will discuss

the different network presentations used. Below are some observations about

the network structure:

. The number of arithmetic operations performed in one task. The network

may be represented by two or three operations task. Figure 39 shows a

task with two arithmetic operations, namely the Add and the Multiply

operations. The combination of more than one arithmetic operation into a

task definition has improved the simulation response time.

. In the network that represents the backsubstitution algorithm, arithmetic

operands of a given node are either sourced from the matrix coefficients

(constants) or result from another node (variables). The value of

constants is known at the start of execution, whereas the variables are

computed using nodes.

. During the initial development of the simulation program PARASIM, it was

observed that the links representing constants, which sourced from the

matrix coefficients were an extra storage and computational burden. It

-140 -

was decided to remove those communication links from the network

structure to improve the simulation response time.

A typical task for non-diagonal element of the matrix is demonstrated

in Figure 39. The diagonal elements are associated with a a divide operation

to produce the value of the x.

The row element interconnection plays an important role in identifying

the parallelism available within the network. Figure 40 shows a simple row

structure. The row has 5 elements, the elemnt on the left is the diagonal

element, other element are numbered form 1 to 4. In this structure the

computations starts when the diagonal elements feeding nodes 1 to 4 have

produced their x result values. The rightmost element will be completed first,

then the element on its left and so on.

Diag

Figure 40: Connections to the diagonal element of each matrix row.

Figure 41 presents a row with 5 elements. The row elements are divided into

two groups of 2 nodes each. It is also possible to split the row into a

number of groups. In order to complete the computation of the row, an

additional Add task is added to sum the results from the groups. Results

with row structures have produced a communication bottleneck at the

add task, together with the same effect produced by the diagonal node

when its data has to feed all elements of that column.

-141 -

Adddag

Figure 41: Connecting two matrix elements to a diagonal element by
direct connection.

The method we applied to cluster nodes together is depicted in Figure

42. The figure shows a two node and a five node cluster. In this scheme a

number of nodes are grouped together and considered as one new node.

Dlag

Figure 42: A row with clustered nodes.

7.3.3 Node allocation methods

The simulation program PARASIM is capable of supporting a number

of allocation schemes. The allocations schemes are as follows:

1. Worst-case allocation: In this allocation scheme all memory accesses are

forced to be from remote memory modules. This option would force

PARASIM to allocate each node to a different processor than that where

its input data is coming from. Worst-case allocation of nodes is based on

the principle of first-ready-first-served. As soon as a processor becomes

free it is assigned the next ready node for execution.

-142-

2. Random allocation: In this case it is assumed that the data is randomly

allocated to processors, using the first-ready-first-served method without

intervention from the scheduler thereafter.

3. Nodes residing on the critical path are assigned to one processing node

namely processor (0). The other non-critical nodes are distributed

randomly among the remaining processors.

4. Best-case allocation Nodes residing on the critical path are allocated to

processor (0), whereas the remaining nodes are allocated considering

communication times and processors load balance.

The first 3 schemes proved to produce less speedup results when

applied to the same network structures. For the results of this thesis, we have

applied only scheme number 4. This is done to study the effect of critical path

allocation in the scheduling of nodes.

7.3.4 Time and Granularity of Tasks

In order to investigate the effect of the computational time cost on the

execution of a model, we have experimented with different values of time cost

for arithmetic operations and communication costs.

A number of task execution times are investigated in the production of

simulation results. The instruction and time taken by different tasks

describing the network, for example the Add and Multiply times were

changed. The time for each arithmetic operation is shown in Table 12. These

times are for nodes with single arithmetic operation, four groups of values

were used. These values are used as a representation of diffent types of

architecture speeds.

-143-

Operation Group
1

Group
2

Group
3

Group
4

ADD 4 3 6 8
SUB 4 3 6 8

MULT 8 4 11 12
DIV 8 4 11 12

Model 3, 19. 20.
37

1 .2 4, 5, 21,
38,

6

Ta isle 12: Sing e Arithmetic task operation timing and Modeis used.

Models that use group 1 are 3,19,20,37 and models using group 2 are 1,2

only and models using group 3 are 4, 5, 21, and 38, Group 4 is used only in

model 6.

Within each matrix structure we have changed the values of task times using

the above mentioned four groups. We have also clustered taks that represent

matrix element to increase the granularity of the network, as depicted in

Figure 42. The simple row interconnection shown in Figure 40 is also used

with single tasks node models. Table 13 shows the number of tasks used in

Multi-task nodes together with the model number in which it is used.

Number of
Nodes

Time Units Models

2 20 7, 8,14,15, 22, 23, 24,
31,32, 39, 40 and 48

5 50 9, 10, 14, 16, 25, 26, 33,
34, 41,42, 43, 44 and 49

10 100 11, 12, 17, 18, 28, 29, 30,
35, 36, 45, 46, 47 and 50

Table 13: Multi pie Arithmetic task operation timing.

A network may contain either poor or excessive parallelism. Poor

parallelism arises in networks whose nodes are interconnected with other in a

manner that forces sequential execution of the network. The other problem is

the excess in parallelism, which occurs when the network has a very large

number of parallel tasks. In such cases, the computations is said to be fine­

grained. Fine-grained networks with a large number of interconnections

cause degradation in performance due to excessive communication.

-144-

7.4 Simulation Results for Uniprocessors

This section discusses the uniprocessor execution results for all the

models in our simulation. The execution time on a uniprocessor will be used

to find the speedup obtained on the model when it is executed on a

multiprocessor architecture. It is used as a reference value. In our

calculations of the uniprocessor exection time, we have included only one

memory access type. All the operands and constants are assumed to reside

in local memory, thus only this memory access was included.

When the network is simulated on a multiprocessor system there are a

number of overheads that are encountered, for example, interprocessor

communication cost, memory contention, synchronization and scheduling

overheads. This section first discusses the different formats and structures of

the network used, and then the uniprocessor execution speed of each model.

Each entry of the models contains information on the network structure

used to represent the matrix in simulation. No (Model Number) is used to

reference to each model in the results. The other column information are

explain in detail below. Table 14 identifies the label headings for the tables

given below. Table 15 to Table 21 give the network structure information.

The time column in the following tables is a breakdown of the tasks

times used in the network structure, they are separated by T. The entry for

two task models, such as 4/3, means that the Div and Mult operation takes 4

ut to complete, where as the Add and Sub operation takes only 3 ut to

complete. A three task networkm such as 11/6/20, the first two numbers will

have the same meaning as before and the third means that a multitask of size

20 ut is used in the construction of the network.

-145-

Label Description
No The model number which is unique

for each model used in the
simulation. It ranges from 1 to 50 .

size The matrix size.
nzero Non zero elements of the matrix.
Tasks Number of tasks used to represent

the model
time The time for each task operation in

time units. Each task time is
separated by a T .

Nodes Number of nodes in the model
Links Number of communication links.

Tall Total execution time on a
uniprocessor system in time units.

T cpa The length of the critical path
nodes in time units.

Table 14: Field description fo r table headings for tables 16 to 22.

The entry 11/6/20/100 will be interpreted as follows: The network has 4

different types of tasks to represent the backsubstitution algorithm. Single

tasks node are 11 and 6, where as multi-task node are 20 and 100.

No size nzero Tasks time Nodes Links Tall Tcpa
1 200 610 2 4/3 603 1,019 4,690 95
2 200 610 2 4/3 609 1,019 4,690 143
3 200 610 2 8/4 609 1,019 5,100 420
4 200 610 2 11/6 609 1,019 6,730 118
5 200 610 2 11/6 609 1,019 6,730 191
6 200 610 2 12/8 609 1,019 7,540 220
7 200 610 3 11/6/20 449 858 6,247 190
8 200 610 3 11/6/20 451 860 6,253 225
9 200 610 4 11/6/20/50 411 820 6,196 224

10 200 610 4 11/6/20/50 423 832 6,223 237
11 200 610 4 11/6/20/100 451 860 6,253 225
12 200 610 4 11/6/20/100 449 858 6,247 190

Table 15: Network information for models 1 to 12.

No size nzero Tasks time Nodes Links Tall Tcpa
13 300 1,203 3 11/6/20 817 1,719 12,681 470

Table 16: Network information for model 13.

-146-

17 shows the characteristics of model 13, which is represented by a 3 types

of tasks. One of these tasks combine two matrix elements. It has 817 nodes,

and requires 1719 communication transfer operations to complete its

execution. The model has a uniprocessor execution time of 12681 u t The

critical path in the network requires 470 ut to complete.

No size nzero Tasks time Nodes Links Tall
14 2,352 16,556 3 11/6/20 9,807 24,010 180,869
15 2,352 16,556 3 11/6/20 9,852 23,964 180,094
16 2,352 16,556 4 11/6/20/50 6,133 20,336 176,981
14 2,352 16,556 4 11/6/20/50 6,303 20,415 176,443
17 2,352 16,556 4 11/6/20/100 6,223 20,426 177,285
18 2,352 16,556 4 11/6/20/100 6,916 21,028 177,158

Table 17: Network information for models 14 to 18.

No size nzero Tasks time Nodes Links Tall Tcpa
19 2,352 22,642 2 8/4 22,641 42,931 214,660 3,412
20 2,352 22,642 2 8/4 22,641 42,931 214,660 18,572
21 2,352 22,642 2 11/6 22,641 42,931 280,234 26,054
22 2,352 22,642 3 11/6/20 13,124 33,413 251,680 27,167
23 2,352 22,642 3 11/6/20 13,231 33,520 252,001 8,207
24 2,352 22,642 3 11/6/20 12,995 33,284 251,293 6,333
25 2,352 22,642 4 11/6/20/50 8,474 28,763 247,030 54,167
26 2,352 22,642 4 11/6/20/50 8,540 28,829 246,913 15,399
27 2,352 22,642 4 11/6/20/50 7,453 27,742 245,488 11,246
28 2,352 22,642 4 11/6/20/100 7,455 27,744 245,753 11,200
29 2,352 22,642 4 11/6/20/100 7,444 27,733 246,000 95,707
30 2,352 22,642 4 11/6/20/100 8,531 28,820 247,301 20,107

Table 18: Network information for models 19 to 30.

No size nzero Tasks time Nodes Links Tall Tcpa
31 3,516 59,741 3 11/6/20 32,384 88,608 673,466 12,335
32 3,516 59,741 3 11/6/20 32,247 88,106 669,405 17,109
33 3,516 59,741 4 11/6/20/50 16,941 73,165 657,653 23,307
34 3,516 59,741 4 11/6/20/50 16,881 72,740 653,697 72,740
35 3,516 59,741 4 11/6/20/100 14,412 70,636 655,494 42,513
36 3,516 59,741 4 11/6/20/100 14,959 70,818 652,117 58,663

Table 19: Network information for models 31 to 47.

-147-

No size nzero Tasks time Nodes Links Tall Tcpa
37 3,516 81,390 2 8/4 81,389 159,263 796,320 21,200
38 3,516 81,390 2 11/6 81,389 159,263 1,306,974 29,751
39 3,516 81,390 3 11/6/20 43,190 121,063 922,374 3,585
40 3,516 81,390 3 11/6/20 43,357 121,230 922,875 18,707
41 3,516 81,390 4 11/6/20/50 21,674 99,547 900,774 63,127
42 3,516 81,390 4 11/6/20/50 21,378 99,251 900,303 7,539
43 3,516 81,390 4 11/6/20/50 21,814 99,687 900,903 35,739
44 3,516 81,390 4 11/6/20/50 16,881 72,740 635,697 32,246
45 3,516 81,390 4 11/6/20/100 16,967 94,840 896,241 113,409
46 3,516 81,390 4 11/6/20/100 17,166 95,039 896,350 20,451
47 3,516 81,390 4 11/6/20/100 17,493 95,366 897,011 63,261

Table 20: Network information for models 37 to 47.

No size nzero Tasks time Nodes Links Tall Tcpa
48 9,289 250,689 3 11/6/20 132,142 373,541 2,847,582 37,178
49 9,289 250,689 4 11/6/20/50 64,495 305,894 2,778,816 70,894
50 9,289 250,689 4 11/6/20/100 50,462 291,861 2,765,902 120,342

Table 21: Network information for models 48 to 50.

The serial execution time for each model used in these results are

shown in from Figure 43 to Figure 45. The overheads discussed earlier in this

section are not included in the computations. This is due to the nature of a

single processor execution. These results will form the basis for all the

speedup numbers given in this thesis.

An important factor that should be noted when using the uniprocessor

execution time, is the fact that all register and memory reference are local to

the executing processor, and for the sake of discussion is always assumed to

be 1 ut

-148-

Uniprocessor Execution Times for Models 1 to 13

14

12,

10 ,w
1 8
I 6
H 4

2

000

000

000

000

000

000

000

0
“ — .

^ - t M c o ^ - w t o i ^ c o o j

Model Number

w - CM co

Figure 43: Serial uniprocessor execution time in time units for models 1
to 13.

Figure 43 shows the uniprocessor execution time for models 1 to 13

used in the simulation. Models 1 to 12 represent a matrix of size 200,

whereas model 13 represents a matrix of size 300. Model 13 has a large

uniprocessor execution time compared to the others because it has 817

nodes to represent it. The number of nodes for matrix 200 range from 449 of

model 7 to 609 of model 2.

Uniprocessor Execution Times for Models 14 to
30

300.000

250.000

£ 200,000
c
J 150,000

jZ 100,000

50,000

0

—

___ ___

— r — I

1
.. _ .. _ _

. - - - _ . -

- < r i f i (D ' < r i ' ' - c o a i o — c N r) ' ' 3 - m < o r ^ o o c » o

Model Number

Figure 44: Serial uniprocessor execution time in time units for models
14 to 30.

In Figure 44 models 14 to 18 represent matrix dimension of 2352, but models

19 to 30 represent a matrix with same dimension but it has more elements

thus, a dense structure. In this case the time needed to complete its

-1 49 -

execution must be more. It is worth noting that model 19 and 20 have less

execution time than the other in the same model, this is due to the selected

task time to represent the network. We have used a task time of 8 ut for Div

and Mult, and only 4 ut for Add and Sub.

Uniprocsseor Execution Times for Models 31 to
50

3.000.000
2.500.000
2.000.000
1.500.000
1,000,000

” ” !! t a t t t n n
Model Number

Figure 45: Serial uniprocessor execution time in time units for models
31 to 50.

In Figure 45 model 39 shows an increase in the uniprocessor execution time

over the other models (37 to 47). This is due to both the large number of

nodes in the network and the tasks times used to compute this time. Models

48 to 50 are of a large matrix problem of size 9289 and number of non zero

element 250689.

The following figures from Figure 46 to Figure 48, show the

percentage of the critical path time duration compared to the uniprocessor

Texecution time for all the models (1 to 50).
T ALL

-150 -

16%

14%
12%
10%
8%

6%

4%

2%

0%
CM CO in CD oo CM CO

Model Number

Figure 46: Percentage of critical path time to the uniprocessor execution
time for models 1 to 13.

This information is useful in scheduling and balancing of the tasks

among the processing nodes. It is necessary to take into account the length

of the critical path when the remaining nodes are distributed among the

processing nodes.

40%

35%

30%

u 25%
9
15 20%a
a. 15%

10%
5%

0% i—i J=L 2

Model Number

Figure 47: Percentage of critical path time to the uniprocessor execution
time for models 14 to 30.

In order to achieve a balanced load among the processing nodes, each

processing node will have a comparable size of computations assigned to it.

This is computed by deducting the time spent on the crtitcal path from the

overall execution time. This is done because the critical path will be executed

on only one processing node.

-151 -

14%

12%
10%
8%

g 6%o.
4%

2%

0% I XI 1 n
Model Number

Figure 48: Percentage of critical path time to the uniprocessor execution
time for models 31 to 50

7.5 Simulation Results for Multiprocessors

We are going to investigate the effect of the hardware parameters on

the speedup results. This section looks only at the different hardware

parameters that can be changed by the user to produce a set of simulation

results:

1. Architecture of the underlying machine.

2. Interprocessor communication time for the transfer of parameters among

different processors.

3. Effect of broadcast hardware operation.

4. Effect of Cache architectures.

In order get a quantitative measure for the speedup results, we have

computed the average of each speedup result table. The field headings are

described in Table 22. The average values are shown in Table 23 for models

1 to 18 and Table 24 for models 19 to 36 and Table 25 for models 37 to 50.

All four architectures simulated are included, namely distributed and shared

memory and one-to-all broadcast and cache systems respectively.

-152-

Field Meaning
Mod Model number of the network used.
Arc=1 Distributed memory with complete

interconnection.
Arc=2 Shared memory multiprocessor architecture.
Arc=3 Shared memory multiprocessor architecture with

one-to-all broadcast mechanism.
Arc=4 Shared memory multiprocessor architecture with

cache mechanism.
Table 22: Field headings for average speedup tables.

There are three types of result tables. In each type the number of processing

nodes and the interprocessor communication cost varies. Careshould be in

comparing values with each other, as they may come from different table

formats.

Mod Arc=1 Arc=2 Arc=3 Arc=4
1 n/a 2.2399 2.2399 3.9688
2 n/a 2.7561 2.7768 3.1332
3 n/a 2.7209 2.8031 2.8922
4 3.9356 3.7369 2.2399 4.1777
5 3.9859 3.5228 3.5703 3.9928
6 7.0555 1.7032 1.7040 n/a
7 3.9522 4.1123 4.1790 5.1695
8 n/a 3.4690 3.5157 3.8891
9 n/a 3.7835 3.8670 4.1581
10 n/a 3.4164 3.4740 4.0224
11 4.2350 3.4690 3.5157 3.8891
12 n/a 3.1003 3.2373 3.9342
13 n/a 2.9993 3.2920 4.0156
14 n/a 2.6860 3.4714 4.0406
15 n/a 2.5192 3.2477 n/a
16 4.3544 2.7755 3.5282 4.1515
17 3.3809 2.6710 3.5011 3.6874
18 4.3165 2.5000 3.4558 3.9818

Table 23: Average speedup results for 4 architectures for models 1 to
18.

Table 23 shows the average speedup results extracted from the results tables

of models 1 to 18, showing the average speedup time for each architecture

simulated. Similarly, Table 24 shows results of models 19 to 36 and finally

Table 25 shows results for models 37 to 50.

-153-

Mod Arc=1 Arc=2 Arc=3 Arc=4
19 n/a 2.1531 2.5081 2.8144
20 n/a 1.9088 2.1385 2.4668
21 3.3030 n/a n/a n/a
22 3.3349 2.5168 2.9213 3.5130
23 n/a 2.5973 3.0157 4.0165
24 n/a 2.9278 3.4808 4.8380
25 n/a 2.3312 2.7474 3.2210
26 4.1695 2.4165 3.3828 3.8355
27 4.3379 3.0098 4.6867 5.6112
28 4.3698 2.6970 4.4706 5.1581
29 1.7057 1.9680 2.1425 2.2310
30 3.8527 2.2427 3.0107 3.3697
31 3.8428 2.4936 3.9263 4.2880
32 3.8568 2.4660 4.0049 4.2140
33 4.1994 2.4799 4.5123 4.8277
34 4.2177 2.4394 4.5855 4.8470
35 4.1446 2.3096 4.1357 4.3107
36 3.7347 2.2975 3.8922 4.0735

Table 24: Average speedup results for 4 architectures for models 19 to
36.

Table 24 shows the average speedup results for models 19 to 36. Model 19

to 30 belong to the problem matrix of size 2352 which has 22642 non zero

elements. Models 31 to 36 belong to the problem model size 3516 which has

59516 non zero elements.

Mod Arc=1 Arc=2 Arc=3 Arc=4
37 n/a 1.9407 2.2029 2.2600
38 n/a 2.3865 3.1068 3.1784
39 n/a 3.1259 4.6119 5.0378
40 3.8124 2.4522 4.1027 4.3012
41 3.9302 2.2473 4.5864 4.8108
42 4.1043 2.8925 5.6016 5.9527
43 4.0872 2.5404 4.6492 4.9292
44 4.2177 2.4394 4.5855 6.6332
45 n/a 2.1431 3.9605 4.1282
46 4.2377 2.8324 5.4609 5.8862
47 3.9700 2.3827 4.2068 4.2880
48 4.5406 2.4024 4.0466 4.2418
49 4.0948 2.4379 2.4165 5.1390
50 4.2331 2.2913 4.5170 4.6239

Table 25: Average speedup results for 4 architectures for models 37 to
50.

The above 3 tables give an average of each detailed table presented in

Appendix-A. The 4 architectures simulated are shown in separate columns.

-154-

Some entries of these tables originated from less entries in the detailed

tables.

7.5.1 The effect of the number of Processing Nodes.

The speedup results tables in Appendix-A show the effect of adding

Processing Nodes to execute the given model. For each network the

processing nodes were varied from 2 to 64 processing nodes allocated to

execute the network.

Depending on the architecture used, the increase of processing nodes

will improve the speedup results. But this improvement could be eroded by

the communication cost and overheads.

7.5.2 The effect of the Interprocessor Communication times

The speedup results tables in Appendix-A show the effect of the

interprocessor Communication IPC time. We have varied the value of IPC

from 4 to 40 ut in distributed memory architectures and from 2 to 32 in shared

memory architectures. Increasing the values of IPC always adds more time to

complete the execution of the network on the assigned architecture. It is

necessary to reduce the time spent in communication to improve the speedup

results.

Combined effect of increased PNs and IPC
The number of times needed to synchronize and exchange results

increases with the number of nodes (Diagonal or non diagonal elements)

being executed. Increasing the number of processing nodes PNs will

improve the speedup of the problem, however, as more processing nodes

PNs are added, the speedup increases and then begins to actually decrease.

This changeover, from increase to decrease, is a consequence of the fact

that the amount of remote memory transfers increases (that is memory

-155-

residing on remote processing nodes and requires a multiprocessor bus

access), thus the effect of bus contention becomes more apparent. The time-

shared bus has to serialize the request for data transfers and carry one piece

of information every time. More and more time is spent waiting for

communication to take place.

7.5.3 Distributed Memory System

The distributed memory architecture used the simulation assumes a

fully interconnected model of processing nodes. Refer to section 6.4.1

Simulated architecture models for details of the distributed memory

architecture.

Both Figure 49 and Figure 50 are speedup results for distributed memory

architectures. Model 18 is an example of the medium size matrix and model

50 is the example of a large size matrix. In both figures the increase of the

processing nodes will improve the speedup results. It is worth noting that in

this architecture there is no effect of bus contention.

PARASIM Simulation Results for Model 18
Architecture 1

Processing Nodes

IPC=8 IPC=20 IPC=40IPC=4

Figure 49: Speedup results for model 18 showing the effect of 4 values
of IPC using the distributed memory architecture.

-156 -

Figure 50: Speedup results for model 50 using Distributed memory

IPC=8 IPC=20 IPC=40

PARASIM Simulation Results for Model 50
Distributed Memory Architecture

Processing Nodes

architecture.

7.5.4 Shared Memory Systems

The shared memory architecture used in the simulation of the network

has the following characteristics:

1- The processing nodes are identical and ranging from 2 to 64

processing nodes.

2- A dedicated single time-shared bus is assumed to connect each

processing node to the other in this architecture.

3- As there is no point-to-point communication link between each

processing node and the other, the multiprocessor bus is used instead.

The bus structure will be activated and it will introduce waiting delays,

to allow the serialization of data to the requesting processing nodes.

- 157 -

PARASIM Simulation Results for Model 30

3.5

2.5

1.5

0.5

Processing Nodes

IPC=4 IPC=8 IPC=14

Figure 51: Speedup results for Model 30 showing the effect of 3 values
for interprocessor communication using shared memory architecture.

7.5.5 Bus Contention and practical Implementation:

In the implementation of the backsubstitution algorithm on a parallel

processor limitations to performance arise in two related areas:

1- Inherent lack of parallelism in some steps of the algorithm; details of this

overhead was discussed earlier.

2- Hardware contention problems. These arise due to common utilization of

hardware resources, such as the multiprocessor bus structure. In this

context the problem is most apparent where processor nodes share

common data elements, such as diagonal elements.

7.5.6 One-to-all broadcasting System

One of the communication enhancement features of our simulation

program is the one-to-all broadcast mechanism added to the shared memory

system architecture. Using this mechanism a result could be sent to all the

processing at a reduced cost than each processing node attempting to get

hold of the result by itself.

On average the one-to-all broadcast mechanism has improved the

speedup results by 20 to 30% over the shared memory architecture.

-1 58 -

7.5.7 Shared with Cache mechanism

The cache mechanism feature was added to enhance the performance

of the backsubstitution algorithm on multiprocessor systems. In this

mechanism the cache logic will look for results that appear on the

multiprocessor bus, and makes a copy of these results into the processing

node's memory. When the time comes for the processing node to utilize a

result from a previous operation, it will find it in the local memory and thus

avoiding an expensive multiprocessor bus access. This is done at a cost of a

local transfer time.

PARASIM Simulation Results for Model 18
Architecture 4

Processing Nodes

IPC=4 IPC=8 IPC=16

Figure 52: Speedup results for Model 18 showing the effect of 3 values
for interprocessor communication using shared memory architecture

with cache mechanism.

In Figure 52 the speedup obtained from model 18 is shown. This model has a

Multi-task structure of 10 row-elements. When IPC is 4 ut the speedup

improved, whereas it declined when IPC=8 and IPC=16 and the processing

nodes were increased from 8 to 16. The granularity, architecture and the IPC

value produced a better speedup results.

-159 -

PARASIM Simulation Results Model 1

Processing Nodes

Architecture 2 Architecture 3 Architecture 4

Figure 53: Speedup results for Model 1 showing the effect of 3
architecture types with IPC=8.

In Figure 53 we observe a sudden drop of the speedup when the number of

processing nodes is increased from 32 to 64. The increase in number of

processing nodes althoughit provides more computing power, but also

inroduces delays to the sharing of the bus resources by all processing nodes

used.

Parasim Simulation Results for model 7

14

10

Processing Nodes

Architecture 2 Architecture 3 Architecture 4

Figure 54: Speedup results for Model 7 showing the effect of 3
architecture types with IPC=8.

In Figure 54 we observe a sudden jump in the speedup results when the

number of processing nodes is increased from 32 to 64. This is due to the

availability of more processing power. The remote memory transfers which

-160-

were channeled through the multiprocessor bus are now local accesses. This

will reduce both wait time and makes local access.

PARASIM Simulation Results for Model 25

4.5

3.5 = o= -

2.5

0.5

Processing Nodes

Architecture 3Architecture 2 Architecture 4

Figure 55: Speedup results for Model 25 showing the effect of 3
architecture types with IPC=8.

In Figure 55, both the shared memory and the broadcast memory lines merge

together, when 16, 32 and processing nodes are used. This is due to the

crieria of activating the broadcast option. We have used Optimezed

broadcast which will allow the node to broadcast its results if it has the feed a

number of nodes which is equal to or more than the processing nodes

involved in the simulation. Since there are no nodes which will feed more

than 15 nodes, then the one-to-all braodcast is inhibited.

PARASIM Simulation Results for Model 37

-o-

64

Processing Nodes

IPC=8 IPC=12IPC=4

Figure 56: Speedup results for Model 37 showing the effect of 3 values
for interprocessor communication using shared memory architecture.

-161 -

In Figure 56, the speedup increases by introducing more processing power,

but reduces slightly with 32 processors. The communication overheads has

the major effect in this action.

PARASIM Simulation Results for Model 18
Architecture 2

a 4

Processing Nodes

IPC=8 IPC=16IPC=4

Figure 57: Speedup results for Model 18 showing the effect of 3 values
for interprocessor communication using shared memory architecture.

In Figure 57, the speedup results for model 18 are shown for 3 values of

interprocessor communication times (namely, 4, 8 and 16). We a smooth

increase in speedup with addition of more processing nodes. The

interprocessor communication time always reduces the speedup due to the

time spent on communication is increased.

PARASIM Simulation Results for Model 18
Architecture 3

6.5

5.5

4.5

3.5

2.5

1.5

Processing Nodes

IPC=8 IPC=16IPC=4

Figure 58: Speedup results for Model 18 showing the effect of 3 values
for interprocessor communication using broadcast shared memory

architecture.

-162-

In Figure 58, results with 8 processing nodes are better than 16 processing,

due to the overheads introduced.

7.5.8 Intra-Model parameters
In the previous sections we have investigated parameters that

characterized the model, In this section we will broaden our discussion to

include the effect of changing the parameters across the models. We will

discuss the effect of increasing both the network granularity and the critical

path length.

PARASIM Simulation Results for Models 41 & 44

2.7

2.5

S' 2.3

2.1

8 164

Processing Nodes

 ■ IPC=8 (Model 41) ----- □----- IPC=8 (Model 44)

Figure 59: Speedup results for Model 41 & 44 combined showing the
effect granularity using architecture type 2.

In Figure 59, two models are represented, namely model 41 and model 44.

Both model are for the same matrix, but the network generated has increased

the critical path length from 32246 ut to 63127 ut by reordering the matrix

elements. We notice that on 8 processing node systems the model with

longer critical path performed better than the model with a short critical path.

But this trend has reversed when the number of processing nodes was

increased to 16. The speedup of model 41 dropped, whereas the speedup of

model 44 increased.

-163 -

This is attributed to both available processing power and interprocessor

communication. Model 41 with a longer critical path utilized the processing

power better than model 44 using 8 processing nodes. Model 44 benefits

from the spread of computations anong a number of processing nodes.

Definition: Let us define the following function S the speedup obtained using

a model and an architure.

SfModel number, Architecture, Number of processors,
Interprocessor communication)

Where:
Model number Is the model number of the network used to compute the

resultant speedup.
Architecture: The type of architecture used to run the used network, where 1

denoted Distributed memory architecture, and 2 denotes Shared
memory architectures, 3 Shared memory with broadcast mechanism
and 4 Shared memory with Cache mechanism.

Number of processing Nodes: The number of processing nodes assigned to
execute the model.

Interprocessor Communication Time: The cost of communication an opreand
to another processing nodes, excluding contention delays.

It is assumed in these results that the local memory reference time is contant
in all models and equals 1 Time Unit

To compare the effect of task time between model 1 and model 3, we have

found that there is improvement on architectures 2 and 3, and a reduction of

11.0% in the Cache architecture. This is to the communication overhead

introduced by Cache.

Parameters Speedup Parameters Speedup Ratio
S(3,2,8,4) 3.3597 S(1,2,8,4) 3.2323 +3.0%
S(3,3,8,4) 3.5148 S(1,3,8,4) 3.3912 +3.0%
S(3,4,8,4) 3.8375 S(1,4,8,4) 4.2714 -11.0%

Table 26: Comparison of models 1 and 3.

Comparing Models 9 and 11 to study the effect of increasing the granularity

of the network. We found that in this small size model no improvement is

achieved.

-164-

Parameters Speedup I Parameters Speedup I Ratio
S(9,2,8,4) 4.9097 S(11,2,8,4) 4.5181 +8.0%
S(9,2,32,4) 7.3478 S(11,2,32,4) 4.1307 +77.0%
S(9,3,8,4) 4.8180 S(11,3,8,4) 4.9745 -4.0%

Table 27: Comparison of models 9 and 11.

Because the completion time for a node with a multi-task structure

requires that all the diagonal elements must complete the calculation of all x

values involved in the task. Waiting for all diagonal elements to be completed

will introduce significant delay to the processing node, and it delays the start

of execution of the multi-task node.

We will also compare Models 14 and 15 as an example of large size matrix

model to study the effect of granularity. A noticable improvement was found in

model 15 which has a higher multi-task nodes.

Parameters Speedup Parameters Speedup Ratio
S(14,2,8,4) 4.6388 S(15,2,8,4) 4.7665 +2.0%
S(14,2,8,8) 2.7090 S(15,2,8,8) 4.5140 +66.0%

Table 28: Comparison of models 14 and 15.

Another example for the large size matrix model is Model 22 and Model 28.

Model 28 has 10 node multi-tasks whereas, model 22 has only 2 node multi­

tasks.

Parameters Speedup Parameters Speedup Ratio
S(22,2,8,4) 4.2755 S(28,2,8,4) 4.9596 +16.0%
S(22,3,8,4) 5.2898 S(28,3,8,4) 6.1264 +15.0%
S(22,4,8,4) 5.2790 S(28,4,8,4) 6.2471 +18.0%

Table 29: Comparison of mode s 22 and 28.

On large matrix problem models there is an improvement of about

+15%, when large multi-task networks are used the represent the same

problem.

-165-

S(32.2.8.4) 4.5392 S(47,2,8,4) 4.1105 -10.0%
S(32,3,8,4) 5.8222 S(47,3,8,4) 6.1627 +25.0%
S(32,4,8,4) 5.8684 S(47,4,8,4) 6.1293 +4.0%

Table 30: Comparing Model 32 and 47

A reduction in speedup has appeared in model 47 compared to model

32 in shared memory architecture, but an improvement of about 4-5% was

obtained using communication enhancement mechanisms.

The effect of increasing critical path length

When the critical path of a network structure is increased by matrix

reordering, than a new matrix is formed. It is difficult to compare two different

models, because they do not share any characteristic except the original

matrix structure.

Let us consider two examples of networks in which the critical path was

increased. Model 5 has T Cp a = 191 ut and model 4 has a T Cpa= 118 ut An

improvement in performance of +6.0% on shared memory systems and +2.0%

on one-to-all broadcast system and +3.0% on Cache systems was achieved.

S(4,2,4,4) 2.3263 S(5,2,4,4) 2.4880 +6.0%
S(4,3,4,4) 2.6005 S(5,3,4,4) 2.6685 +2.0%
S(4,4,4,4) 2.6434 S(5,4,4,4) 2.7402 +3.0%

Table 31: Comparing Mod els 4 and 5.

Comparing models 39 and 40, which the critical path was increased. Model

39 has T Cp a = 3585 ut and model 40 has a T Cpa= 18707 ut A very small

improvement was achieved on communication enhanced archiectures.

S(39,2,8,4) 4.6533 S(40,2,8,4) 4.5178 -3.0%
S(39,3,8,4) 5.7740 S(40,3,8,4) 5.8707 +1.6%
S(39,4,8,4) 5.8190 S(40,4,8,4) 5.8726 +0.9%

Table 32: Comparing Mode s 4 and 5.

But in general our results show that with the increase of the critical path

length, processing power requirements also increase. Models with large

-166 -

number of elements would benefit from an increase in the critical path,

whereas small models tend to decrease in perormance when the critical path

is lengthend.

There is delicate balance between the computing architecture, number

of processing nodes, and the interprocessing communication delays. It is very

difficuly to compare different models together, some models have better

performance results with a specific combination of processing ndoes and

interprocessor communication. This improved performance is usually due to

the match of the problem structure to the architecture used.

7.6 Discussion of results

In summary, the following observations can be made about the

simulation results presented in this chapter:

1- It is possible to attain some speedup with the backsubstitution algorithm.

2- Scheduling using the critical path analysis will produce better results.

Three factors limit the actual performance of the parallel system in the

simulation the backsubstitution algorithm. First, inherent characteristics of the

problem matrix operations and the solution algorithm limit the parallelism that

is available in the solution. The critical path is a manifestation of these

characteristics; the execution time for a single iteration of the

backsubstitution algorithm can't be reduced below the time required to

execute the serial chain of operations along its critical path, refer to chapter 2

for the operations of one iteration. Second, the intervals between periods of

computation during which processing nodes PNs synchronize their

operations, acquire results, and initiate the next iteration cycle represent a

system overhead during which there is no useful computation. Third, the time

the processing node, allocated to perform critical path computations, spends

exchanging variables with others during periods of computation has the effect

of increasing the length of the critical path execution time.

-167-

Two approaches could be used to reduce the length of the period of

data exchange. First, all processing nodes could transfer results concurrently

rather than sequentially, with dedicated bus systems (As we have simulated

the distributed memory architecture). In addition to allowing the processing

nodes to operate in parallel during data exchange, concurrent operation

would eliminate overhead associated with exchange of data and use bus

bandwidth more efficiently. In the second approach each processing node

would transfer its results during the proceeding period of computation when it

finishes its computations.

Most processors would perform the transfers during intervals when

they would otherwise be idle waiting for the longest-running processor to

complete its computations. In general data would be transferred to a buffer in

each processing node to prevent overwriting old values that are still in use.

Each processing node would move its buffer contents to working storage at

the start of the next period of computation. It is not possible to completely

eliminate the period of data exchange because all processors need to

synchronize their operations before the next iteration is started, to ensure that

all variables are current.

Comparison of Results

We have attempted to compare the results of our simulation with

results by other authors; this has not been an easy task. The main problem is

that the simulations of this type are necessarily complex and published

accounts do not give sufficient information to determine how a specific model

operates.

-168-

7.7 Summary and Conclusions

In summary, the following observations can be made about the simulation

results presented in the chapter:

From our results it is clear that an increase in the number of

processing node does not automatically lead to a linear speedup. This is

mostly due to the effects overheads and interprocessor communications.

The speedup obtained by parallel algorithm is usually dependent upon

characteristics of the hardware architecture (such as the interconnection

network, the CPU speed and throughput, and the speed of the

communication channel) as well as on certain characteristics of the parallel

algorithm (such as the degree of concurrency, data interconnections and

overheads due to communication, synchronization and redundant work).

Given a parallel architecture and a problem of fixed size, the speedup of the

parallel backsubstitution algorithm does not continue to increase with

increasing number of processing nodes but tends to saturate or peak at a

certain limit. This happens either because the number of processors exceeds

the degree of concurrency inherent in the algorithm or because the

overheads grow with increasing number of processing nodes.

-169-

Chapter 8

Conclusion and Future Work

CHAPTER 8.. 170

8.0 C o n c lu s io n and F u tu re W o r k ..171
8.1 S teps o f th e in v e s tig a tio n s .. 171
8.2 C o n c lu s io n s ...173
8.2 D ire c tio n s f o r F u tu re re s e a rc h .. 176

-170-

8.0 Conclusion and Future Work

In this thesis we have explored the use of parallelism to speedup the

solution of large systems of linear equations. We have discussed the parallel

features of the Incomplete Choleski Conjugate Gradient ICCG algorithm,

parallel computing architectures, previous research in the simulation of such

architectures, scheduling parallel tasks using critical path analysis, and

presented both our simulation program and results. This chapter iterates the

main results of the thesis and discusses directions for future research.

8.1 Steps of the investigations

Many CAD application programs exist that involve the solution of large

systems of linear equations. The solution of these equations is in many cases

the most computationally extensive stage of finding a solution. The

algorithms for the solution of the equations have in the past been designed to

run on sequential machines. In order to benefit from the availability of parallel

computing architecture systems, this research aims to identify the parallelism

which exists in the solution of large systems of matrices.

The motivation for this research was to investigate the execution of

Incomplete Choleski Conjugate Gradient ICCG algorithm on parallel

computing systems by finding the computationally intensive parts, and

adapting them for parallel execution. We have found that the

backsubstitution segment of the ICCG algorithm is that part of the algorithm

which requires further investigations.

We have concentrated our research on identifying and investigating

possible improvements in the parallel execution of the backsubstitution

algorithm. Utilizing the sparsity structure of the matrices used to gain

-171 -

speedups. However, all the results of this research indicate that qualitatively,

some improvement could be attained with parallel execution of the algorithm.

In order to investigate the performance of the backsubstitution

algorithm, we had to model two things. The first is the algorithm itself and the

second is the underlying architectures to be tested on. Performance results

will depend on the scheduling technique used to assign tasks to processors.

Let us first discuss how the algorithm was modeled.

Algorithm Model
To simulate the backsubstitution on a multiprocessor architecture it is

necessary to identify and order computation tasks and to schedule the

processing nodes to perform the allocated tasks. The is a tradeoff involved

on selecting the level to which computations are decomposed. This is known

as the granularity of the model.

The backsubstitution algorithm steps were represented, in our case,

by a data dependency graph. This graph when implemented in the program

is known as the network. A node in the network may represent one or more

arithmetic operations depending on the granularity of the model, and links

between nodes represent the data transfer requests. The links map the

communication requirements of the network to complete the steps of the

algorithm. The structure of the network is discussed in detail in chapter 6 of

this thesis.

It is possible to identify the parallelism available within the network,

and find the sequence of nodes that take the longest time to execute. This

time, known as the critical path time, gives an indication of the parallel

structure inside the network.

-172-

Once the algorithm was modeled, and it was possible to change a

number of parameters which could affect its parallel execution, then the

underlying architecture was simulated.

Parallel Architectures
To investigate issues of multiprocessor architectures, a simulation

program was designed and implemented in C language. The program

PARASIM, based on discrete event simulations, provided the platform to

conduct our investigations. Each component of the parallel computer

architecture was modeled, such as: the processing node, memory, bus

structures and communication capabilities. By varying different hardware

features of the system, we were capable of investigating many hardware

effects, such as, the speed of executing arithmetic functions, memory access

speeds and effect of bus contention. A number of existing and future parallel

computers could be mimicked by the simulation program.

The program had an extra capability to schedule the network nodes.

This scheduling capability with simulating the underlying architecture will give

an insight into the behavior of the algorithm during execution. The scheduling

method we have adopted in PARASIM uses the critical path method. This

method ensures the least execution time possible for the given network /

architecture combination is obtained.

8.2 Conclusions

The simulation program with its scheduling capability allows a number

issues to be investigated. The issues we have investigated are related to (i)

The model sizes; (ii) The Network; (iii) The architecture simulated.

The different factors we have investigated are:

() Identification of the critical path.

() Interconnections of data inside the network structure;

-173-

() The problem of the network granularity;

() The number of processor nodes allocated to solve the problem,

() The effect of increased interprocessor communication values.

() Distributed memory architecture.

() Shared memory using multiprocessor bus structures.

() Effect of one-to-all broadcast mechanism.

() Effect of Cache mechanisms.

Conclusions derived from the above issues are expanded in the following

subsections.

□ We have used a number of real matrices generated from the CAD program

in our investigations that vary in both size and sparsity structures.

□ The amount of time spent in the identification of the critical path is

comparable to 1 or 2 iterations of the matrix solution, It does two

sweeps over the network to identify the critical path.

□ In spite of the dependent steps in the execution of the backsubstitution

algorithm, we found that by identifying tasks that could be executed in

parallel, we could obtain some parallelism during its execution. The

amount of speedup available depends on the sparsity structure of the

matrix used, i.e., the position and distribution of matrix elements.

□ Another important factor which affected the performance of the network, is

the data interconnection of the network. Since all elements in the row

contribute to the computation of the result associated with that row, a

number of communications equal to the number of elements in the row

are needed to find the result. This is coupled with the need to feed the

result to all elements in the same column, leads to a large amount of

interprocessor communications. We have found that by clustering

node elements together performance improved in large problem

-174-

models. Increasing the granularity of the network provides better result

than fine grained models.

□ The number of allocated processing nodes to perform the algorithm, will be

beneficial upto a certain saturation limit. This limit is governed by the

cost of communicating results and exchanging operands.

□ The increase of interprocessor communication costs has always led to a

decrease in the performance results. The time spent in communication

must be reduced as much as possible to improve results. Inherent

characteristics of the problem equations account for the loss of nearly

20-30% of the available processing power.

D We have simulated a distributed memory architecture with fully

interconnected structure. This structure will allow communication

between any two processing nodes. Although this produced good

results, the architecture is impractical and not cost effective.

□ The shared memory architecture we have simulated, assumes that all

processing nodes are connected using a single multiprocessor time-

shared bus. Using this bus structure, requests from processing nodes

of operands has to be serialized and the requesting processing node

will have to wait until the bus is free. This introduces time delay

overheads to the system. These overheads affect the performance of

the system.

As explained earlier, the algorithm has a large number of data

transfers which would introduce communication overheads. The

results obtained from shared memory systems are less than those of

distributed memory.

-175-

□ Since data transfers consume a lot computing time, any method which

reduces the time spent in acquiring the operands will be reflected as

improvement in speedup. We have experimented with two forms of

communication enhancements. The first being the one-to-all broadcast

and the second is cache mechanism.

□ One-to-all broadcasting is a feature which could be implemented in shared

memory architectures. In this mechanism data could be sent from one

processing node to all the processing nodes on the same bus using a

single transfer operation, saving each processing node time to acquire

its own copy of the operand.

Our simulation results show that a considerable gain will be obtained

by broadcasting the results of the diagonal elements.

□ Cache mechanism to enhance communication of operands will offer a good

hardware structure for improvrd system performance.

In this thesis we have explored the use of parallelism to speedup the

execution of the Incomplete Choleski Conjugate Gradient ICCG algorithm.

We have discussed the sources of parallelism available within the algorithm

and applied an intelligent scheduling method to attain the best speedup

possible.

8.2 Directions for Future research

Although many issues regarding the use of parallelism in ICCG have

been addressed in this thesis, many more remain to be addressed. This

section discusses some possible directions in future work.

-T o incorporate the scheduling and critical path identification steps into a

code generation program which will generate the necessary code for

-176-

each processing node to solve the matrix structure. Only operands

will be sent to their assigned processing nodes for execution.

In the area of teaching parallel architectures and algorithms it is extremely

useful to a general simulation program with scheduling capabilities to

assist students in understanding the concepts. Evaluating different

multiprocessor architectures is one application for the simulation

program. Update to CAD package and improved user interface, to be

used as a teaching tool.

An obvious direction for further work is to implement the scheduling

mechanism proposed in this thesis on an actual multiprocessor

system. Such an implementation will bring many interesting issues to

light, and a running parallel implementation of will certainly encourage

further investigations. Test other types of algorithms and obtain

performance results.

The execution time, and hence the response time of the simulation

program, can still be improved. Improvement of the program’s

response time and further investigations into new and faster

programming techniques are needed. Also better interaction with the

user would facilitate dealing with the different program needs.

Scheduling parallel tasks will benefit from utilizing sub-critical paths in the

network. Adding this feature and investigating the speedup results will

provide better insights into the network.

Part FIVE

Related information and Appendix

This part contain the detailed speedup tables of the simulation results using

PARASIM and a list of its important procedures.

-178-

Appendix A: Speedup tables from

PARASIM

Note:

C\P: indicates that the columns are the number of processing nodes,
and rows repesent the interprocessor communication time.

Architecture type 1:
Distributed memory architecture (Fully interconnected)

Architecture type 2:
Shared memory architecture

Architecture type 3:
Shared memory architecture with one-to-all braodcast

Architecture type 4:
Shared memory architecture with Cache mechanism

Field Description
No Model number

Size Sparse matrix dimension
N z e r o Number of non-zero elements in the

sparse matrix
Time Task times
Tasks Number of tasks
Nodes Number of nodes in the network
Links Number of Links in the network
T all Uniprocessor execution time
T c pa Critical path length

-A.1 -

Model 200
[Table 1]
[New Run] Matrix: size=200 nzero=610 Density=0.025500
[Generate] non-Diagonal to Diagonal
[Generate] Time: sub=3, div=4, mul=4

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=609 Links=1019 Tasks=10
Timing: Taii=4690 T cpa = 9 5 T ^ f I
Best Speedup=49.37, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0686 1.6846 3.9983 5.8698 9.8117 7.2713
4 1.0623 1.5738 3.2323 4.0085 6.2450 3.9445
8 1.0499 1.3962 2.0374 1.9983 3.5105 1.9081
12 1.0378 1.3282 1.5317 1.2427 2.5027 1.1274
20 1.0145 0.9698 1.0438 0.7632 1.5540 0.5764
32 0.9814 0.7822 0.7158 0.4811 0.9907 0.3202

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0725 1.7435 4.2290 5.8698 9.8117 7.2713
4 1.0700 1.5802 3.3912 4.0085 6.2450 3.9445
8 1.0652 1.3123 2.6041 1.9983 3.5105 1.9081
12 1.0604 1.2109 1.9420 1.2427 2.5027 1.1274
20 1.0509 1.0471 1.3693 0.7632 1.5540 0.5764
32 1.0369 0.5802 0.9595 0.4811 0.9907 0.3202

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0725 1.8320 4.9525 8.4657 14.4753 21.0314
4 1.0700 1.6514 4.2714 7.5890 11.3012 12.4403
8 1.0652 1.3996 3.3838 3.6755 6.6619 2.1613
12 1.0604 1.0299 2.4516 3.1455 5.7265 4.0889
20 1.0509 0.9139 1.8327 1.8171 3.1561 1.2970
32 1.0369 0.5667 1.3174 1.1879 1.9019 0.7963

-A.2-

[Table 2]
[New Run] Matrix: size=200 nzero=610 Density=0.025500
[Generate] Diagonal to all elements in the column
[Generate] Time: sub=3, div=4, mul=4

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=609 Links=1019 Tasks=11
Timing: Taii=4690 Tcpa=143 Tiocai=1

Best Speedup=32.80, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0844 1.6864 3.9018 6.0988 10.6591 10.0860
4 1.0799 1.5744 2.9627 4.3547 6.4869 7.5281
8 1.0710 1.4435 2.0771 2.7220 3.5263 4.9947
12 1.0623 1.2811 1.6526 2.0051 2.5080 3.6842
20 1.0452 0.9845 1.1111 0.9970 1.5090 2.3941
32 1.0207 0.7277 0.7336 0.6408 0.9603 1.5659

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0859 1.8508 3.8223 6.0988 10.6591 10.0860
4 1.0829 1.6925 3.0594 4.3547 6.4869 7.5281
8 1.0769 1.4592 2.3497 2.7220 3.5263 4.9947
12 1.0710 1.1910 1.7976 2.0051 2.5080 3.6842
20 1.0594 0.8826 1.3305 0.9970 1.5090 2.3941
32 1.0425 0.6565 0.7344 0.6408 0.9603 1.5659

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0859 1.9088 4.3791 7.6260 8.5584 12.0256
4 1.0829 1.7772 3.9018 6.7288 5.3784 7.2601
8 1.0769 1.3369 3.0219 4.3146 5.4282 4.2559
12 1.0710 1.1609 2.1279 3.1625 3.7610 2.9627
20 1.0594 0.9103 1.5686 2.1203 2.5798 1.9151
32 1.0425 0.7280 1.1204 1.5272 1.6178 1.2128

-A.3-

[Table 3]
[New Run] Matrix: size=200 nzero=610 Density=0.0255%
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=8, div=4

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=609 Links=1019 Tasks=2
Timing. Tan- 5100 Tcpa—420 Tlocal 1

Best Speedup=12.14, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.1505 1.8021 4.3257 6.0932 10.1190 7.9937
4 1.1336 1.6580 3.3597 4.7398 8.8388 4.7932
8 1.1015 1.4242 2.2860 2.94.80 6.0000 2.8271
12 1.0710 1.2358 1.6372 2.1118 3.7010 1.9984
20 1.0147 0.9586 1.1135 1.3439 2.3416 1.2599
32 0.9408 0.6824 0.7270 0.9028 1.5098 0.8082

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.1836 1.8195 4.2535 6.0932 10.1190 7.9937
4 1.1781 1.7412 3.5148 4.7398 8.8388 4.7932
8 1.1676 1.6028 2.6494 2.9480 6.0000 2.8271
12 1.1570 1.5013 2.1048 2.1118 3.7010 1.9984
20 1.1364 1.1328 1.4925 1.7826 1.3829 1.8169
32 1.1073 0.8684 0.9334 0.9028 1.5098 0.8082

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.1836 1.8339 4.3664 7.3699 8.4718 10.8974
4 1.1781 1.7592 3.8375 5.5195 5.4140 8.0315
8 1.1676 1.6404 2.8508 4.0702 3.2797 4.3111
12 1.1570 1.4555 2.1665 2.2126 1.8722 2.9877
20 1.1364 1.1328 1.4925 1.7826 1.3829 1.8169
32 1.1073 0.9681 1.1092 1.2263 0.9148 1.0159

-A.4-

[Table 4]
[New Run] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=11, div=6

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=609 Links=1019 Tasks=2
Timing: Tan=6730 Tcpa=118 Tiocai=1

Best Speedup=57.03, CPA On

Archi lecture type: 1.
C\P 4 8 16
4 2.4871 5.4406 11.5240
8 1.9507 4.1012 8.6061

20 1.1844 2.3490 4.8698
40 0.7158 1.3721 2.8254

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0491 2.7605 5.5851 8.5515 13.4600 15.7611
4 1.0442 2.3263 4.4393 6.0089 8.7516 9.9852
8 1.0346 1.7372 3.1671 4.1162 5.2414 5.8932
12 1.0251 1.3455 2.4944 3.0234 3.6339 4.0887
20 1.0067 0.9480 1.6391 1.9829 2.4917 2.5825
32 0.9803 0.7053 1.0706 1.2681 1.5925 1.7363

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0545 2.8971 5.3244 8.5515 13.4600 15.7611
4 1.0535 2.6005 4.5350 6.0089 8.7516 9.9852
8 1.0516 2.0493 2.9009 4.1162 5.2414 5.8932
12 1.0496 1.6630 2.3899 3.0234 3.6339 4.0887
20 1.0457 1.4195 1.2975 1.9829 2.4917 2.5825
32 1.0399 1.0139 0.8868 1.2681 1.5925 1.7363

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0545 2.8835 5.7277 9.4522 14.0501 17.9467
4 1.0535 2.6434 4.8874 6.4774 11.4651 12.6266
8 1.0516 2.1766 3.8902 4.4481 6.3252 6.7435
12 1.0496 1.6838 2.6299 3.1850 4.5473 3.7894
20 1.0457 1.3000 1.7720 1.9384 2.7741 2.0663
32 1.0399 0.9132 1.4433 1.2945 2.0525 0.9692

-A.5-

[Table 5]
[New Run] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] New method, Time: mul_sub=11, div=6

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=609 Links=1019 Tasks=2
Timing: Taii=6730 Tcpa=191 Tiocai=1

Best Speedup=35.24, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5329 5.4671 11.4068
8 1.9673 4.1466 8.6504

20 1.1780 2.4044 5.0149
40 0.7060 1.4068 2.9492

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0635 2.8541 5.1809 9.1940 11.4651 14.4421
4 1.0592 2.4880 4.6318 7.1596 8.0119 9.5326
8 1.0506 1.8126 2.8602 4.5596 4.7697 5.5620

12 1.0421 1.3732 2.1787 3.2002 2.4607 3.7682
20 1.0256 0.9861 1.4730 1.6047 1.5739 2.3319
32 1.0018 0.6708 0.9266 1.0163 0.9997 1.4909

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0703 2.9235 5.5074 9.1940 11.4651 14.4421
4 1.0689 2.6685 4.2247 7.1596 8.0119 9.5326
8 1.0662 2.1304 3.0675 4.5596 4.7697 5.5620
12 1.0635 1.7678 2.1900 3.2002 2.4607 3.7682
20 1.0582 1.2083 1.4650 1.6047 1.5739 2.3319
32 1.0502 0.8787 0.9791 1.0163 0.9997 1.4909

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0703 2.9274 5.5482 9.5869 11.7452 16.6998
4 1.0689 2.7402 3.9495 8.7974 6.6110 12.5560
8 1.0662 2.1710 3.1987 4.5047 4.2703 7.2288
12 1.0635 1.9229 2.4981 3.2670 3.6241 5.7669
20 1.0582 1.2526 1.9240 2.1929 2.4322 3.4637
32 1.0502 0.9002 1.0171 1.0048 1.6725 1.8878

-A.6-

[Table 6]
[New Run] Matrix: size=200 nzero=610 Density=0.025500
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=12, div=8

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=609 Links=1019 Tasks=2
Timing: T an=7540 Tcpa=220 Tiocai=1

Best Speedup=34.27, CPA =1

Architecture type: 1.
C\P 2 4 8 16 32 64
2 1.0771 2.9580 6.2991 11.5291 19.8945 22.5749
4 1.0732 2.7015 5.2072 10.3288 18.6634 20.9444
8 1.0650 1.9264 4.0978 7.5855 12.9331 17.7412
12 1.0572 1.7333 3.3041 6.3575 11.6179 13.6594
20 1.0420 1.2508 2.3733 4.4301 7.3275 12.0064
32 1.0200 0.9427 1.8000 3.2584 5.1893 7.0270

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0768 2.8442 5.1608 5.4598 5.3742 5.3211
4 1.0722 2.3322 2.9732 2.7947 2.7488 2.7191
8 1.0626 1.6492 1.4960 1.4086 1.3950 1.3858
12 1.0528 1.1778 1.0163 0.9495 0.9333 0.9285
20 1.0332 0.7692 0.6033 0.5683 0.5564 0.5564
32 1.0053 0.4636 0.3772 0.3534 0.3485 0.3493

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0768 2.8303 5.1608 5.4598 5.3742 5.3211
4 1.0722 2.3861 2.9732 2.7947 2.7488 2.7191
8 1.0626 1.6420 1.4960 1.4086 1.3950 1.3858
12 1.0528 1.1730 1.0163 0.9495 0.9333 0.9285
20 1.0332 0.7684 0.6033 0.5683 0.5564 0.5564
32 1.0053 0.4636 0.3772 0.3534 0.3485 0.3493

-A.7-

[Table 7]
[New Run] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] Diagonal to all elements in the column, Two row elements in one.
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=449 Links=858 Tasks=3
Timing: T an=6247 Tcpa=190 Tiocai=1

Best Speedup=32.88, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.4871 5.4406 11.5240
8 1.9507 4.1012 8.6061

20 1.1844 2.3490 4.8698
40 0.7158 1.3721 2.8254

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0690 2.7703 5.7736 8.4191 12.3948 18.8163
4 1.0650 2.5405 4.8314 6.1365 7.5630 15.9362
8 1.0570 1.9775 3.5718 3.5294 3.8777 10.7707
12 1.0492 1.5924 2.5761 2.4643 2.6084 7.2220
20 1.0339 1.1498 1.7134 1.5188 1.5747 3.7953
32 1.0118 0.8245 1.1207 0.9684 1.3300 2.3898

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0761 2.9762 5.9495 8.4191 12.3948 18.8163
4 1.0747 2.7814 5.1929 6.1365 7.5630 15.9362
8 1.0717 2.3547 3.3053 3.5294 3.8777 10.7707
12 1.0688 2.0631 2.4345 2.4643 2.6084 7.2220
20 1.0630 1.4657 2.0035 1.5188 1.5747 3.7953
32 1.0543 1.1439 1.0487 0.9684 1.3300 2.3898

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0761 2.9691 6.3615 10.5168 19.2215 19.2809
4 1.0747 2.7055 5.8004 9.1868 12.8539 17.1621
8 1.0717 2.4317 4.0644 4.5532 4.8128 12.5694
12 1.0688 1.8743 2.9205 3.1313 3.1188 10.2916
20 1.0630 1.5319 1.9546 2.2733 1.6779 6.9104
32 1.0543 1.1185 1.2947 1.5478 1.5948 3.9613

-A.8-

[Table 8]
[INTERFACE] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul__sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=451 Links=860 Tasks=3
Timing: Tan=6253 Tcpa=225 Tiocai=1

Best Speedup=27.79, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0735 2.8179 5.5385 8.6727 10.7810 14.3747
4 1.0658 2.5957 4.5181 6.6521 7.3478 8.9201
8 1.0507 1.9990 3.1501 3.5916 4.2221 5.4421
12 1.0361 1.6199 2.6883 1.9329 2.9481 3.9352
20 1.0081 1.1514 1.8252 1.8891 1.8495 2.5533
32 0.9687 0.8008 0.9065 1.1099 1.1823 1.6644

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0845 2.8909 5.6081 8.6727 10.7810 14.3747
4 1.0826 2.6306 4.9745 6.6521 7.3478 8.9201
8 1.0788 2.3596 3.0048 3.5916 4.2221 5.4421
12 1.0751 1.9782 2.3767 1.9329 2.9481 3.9352
20 1.0678 1.3979 1.6973 1.8891 1.8495 2.5533
32 1.0570 1.0984 1.0318 1.1099 1.1823 1.6644

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0845 2.9152 5.9552 8.5658 10.9702 16.4987
4 1.0826 2.7163 4.8510 7.0022 11.4524 9.6946
8 1.0788 2.3280 3.9278 4.0212 6.6949 4.6595
12 1.0751 2.0016 3.1838 3.6847 2.9762 3.1171
20 1.0678 1.5455 2.1429 1.9914 1.9713 1.7447
32 1.0570 1.0511 1.4853 1.4508 1.8722 1.0909

-A .9 -

[Table 9]
[New Run] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=411 Links=820 Tasks=4
Timing: Taii=6196 Tcpa=224 Tiocai=1

Best Speedup=27.66, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0751 2.8527 6.0039 9.3313 7.6118 16.7008
4 1.0699 2.4984 4.9097 7.4204 4.1307 13.3247
8 1.0597 2.0422 3.2525 4.9410 2.0695 9.1929
12 1.0496 1.6396 2.2417 3.6772 1.2543 7.2894
20 1.0301 1.2085 1.4069 2.4500 0.7106 4.8031
32 1.0021 0.8378 0.7634 1.6669 0.4283 3.2576

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0842 3.0063 5.8563 9.3313 7.6118 16.7008
4 1.0815 2.8487 4.8180 7.4204 4.1307 13.3247
8 1.0763 2.4774 3.6149 4.9410 2.0695 9.1929
12 1.0710 1.9846 2.4924 3.6772 1.2543 7.2894
20 1.0608 1.6085 1.6254 2.4500 0.7106 4.8031
32 1.0457 1.1549 1.0459 1.6669 0.4283 3.2576

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0842 2.9947 6.5915 12.6191 14.0499 18.9480
4 1.0815 2.7283 5.1038 7.1137 9.0058 10.3095
8 1.0763 2.4666 3.7552 6.0214 4.2938 5.5321
12 1.0710 2.0169 2.9449 4.1950 2.4384 3.9240
20 1.0608 1.6860 1.8022 2.2771 1.2826 2.5498
32 1.0457 1.2274 1.1697 1.5168 0.7275 1.9815

-A.10-

[Table 10]
[New Run] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: muLsub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=423 Links=832 Tasks=4
Timing: T an=6223 Tcpa=237 Tiocai=1

Best Speedup=26.26, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0766 2.8222 5.4925 7.6356 10.2690 11.9443
4 1.0715 2.5929 4.4010 6.0184 7.5157 9.4145
8 1.0612 1.9557 3.0640 4.0807 4.3917 5.8652
12 1.0512 1.6441 2.2209 3.0386 3.1382 3.9411
20 1.0317 1.1245 1.3540 2.0932 2.0003 2.4862
32 1.0037 0.7796 1.1030 1.3875 1.2956 1.6227

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0840 2.9230 5.2737 7.6356 10.2690 11.9443
4 1.0802 2.7621 4.4072 6.0184 7.5157 9.4145
8 1.0727 2.4167 3.1209 4.0807 4.3917 5.8652
12 1.0654 2.0211 2.4675 3.0386 3.1382 3.9411
20 1.0510 1.5256 1.5675 2.0932 2.0003 2.4862
32 1.0301 0.9692 1.0876 1.3875 1.2956 1.6227

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0840 2.9395 5.7461 9.0188 12.2742 9.2329
4 1.0802 2.7658 4.8885 7.5157 9.7539 10.5654
8 1.0727 2.4027 3.6692 5.0966 6.7421 6.7863
12 1.0654 2.0270 3.1509 3.3950 4.0780 5.6164
20 1.0510 1.5316 2.1059 2.2929 2.5865 4.1321
32 1.0301 1.1043 1.1829 1.5723 1.6446 2.6038

-A.11 -

[Table 11]
[New Run] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=451 Links=860 Tasks=3
Timing: Tan=6253 Tcpa=225 Tiocai=1

Best Speedup=27.79, CPA On

Archiltecture type: 1.
4 8 16

4 2.6152 5.8330 11.9789
8 2.0685 4.5181 9.1152

20 1.2712 2.6462 5.3081
40 0.7740 1.5621 3.1296

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0735 2.8179 5.5385 8.6727 10.7810 14.3747
4 1.0658 2.5957 4.5181 6.6521 7.3478 8.9201
8 1.0507 1.9990 3.1501 3.5916 4.2221 5.4421
12 1.0361 1.6199 2.6883 1.9329 2.9481 3.9352
20 1.0081 1.1514 1.8252 1.8891 1.8495 2.5533
32 0.9687 0.8008 0.9065 1.1099 1.1823 1.6644

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0845 2.8909 5.6081 8.6727 10.7810 14.3747
4 1.0826 2.6306 4.9745 6.6521 7.3478 8.9201
8 1.0788 2.3596 3.0048 3.5916 4.2221 5.4421
12 1.0751 1.9782 2.3767 1.9329 2.9481 3.9352
20 1.0678 1.3979 1.6973 1.8891 1.8495 2.5533
32 1.0570 1.0984 1.0318 1.1099 1.1823 1.6644

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0845 2.9152 5.9552 8.5658 10.9702 16.4987
4 1.0826 2.7163 4.8510 7.0022 11.4524 9.6946
8 1.0788 2.3280 3.9278 4.0212 6.6949 4.6595
12 1.0751 2.0016 3.1838 3.6847 2.9762 3.1171
20 1.0678 1.5455 2.1429 1.9914 1.9713 1.7447
32 1.0570 1.0511 1.4853 1.4508 1.8722 1.0909

-A.12-

[Table 12]
[INTERFACE] Matrix: size=200 nzero=610 Density=0.025500%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=200, Non-zero=610, Density=0.025500

Network: Nodes=449 Links=858 Tasks=4
Timing: Taii=6247 Tcpa=190 Tiocai=1

Best Speedup=32.88, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5825 5.7896 11.6985
8 2.0665 4.4526 9.2139

20 1.2851 2.6303 5.5234
40 0.7867 1.5579 3.3001

Architecture type: 2.
C\P 4 8 16
4 2.5405 4.8314 6.1365
8 1.9775 3.5718 3.5294
16 1.3440 2.0782 1.8936

Architecture type: 3.
C\P 4 8 16
4 2.7814 5.1929 6.1365
8 2.3547 3.3053 3.5294
16 1.6614 2.2808 1.8936

Architecture type: 4.
C\P 4 8 16
4 2.7055 5.8004 9.1868
8 2.4317 4.0644 4.5532
16 1.7078 2.2184 2.7399

- A. 13 -

Model 300

[Table 13]
[New Run] Matrix: size=300 nzero=1203 Density=0.023400%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=300, Non-zero=1203, Density=0.023400

Network: Nodes=817 Links=1719 Tasks=3
Timing: T an=12681 T cpa=470 Tiocai=1

Best Speedup=26.98, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5286 5.7354 11.9519
8 2.0005 4.4793 9.1296

20 1.2299 2.6529 5.3282
40 0.7483 1.5772 3.1234

Architecture type: 2.
C\P 4 8 16
4 2.5433 4.3221 7.3301
8 1.8921 2.6652 3.6273
16 1.3065 1.4993 1.8074

Architecture type: 3.
C\P 4 8 16
4 2.7502 4.8848 7.3301
8 2.4012 3.1428 3.6273
16 1.6752 2.0093 1.8074

Architecture type: 4.
C\P 4 8 16
4 2.7271 5.0361 8.9052
8 2.4049 3.8184 6.1588
16 1.7060 2.4982 2.8860

-A.14-

[Table 14]
[INTERFACE] Matrix: size=2352 nzero=16465 Density=0.005528%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=2352, Non-zero=16465, Density=0.005528

Network: Nodes=6303 Links=20415 Tasks=4
Timing: T an=176443 Tcpa=7732 Tiocai=1

Best Speedup=22.82, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6336 5.8423 12.2700
8 2.1322 4.5552 9.5498

20 1.3552 2.7401 5.6961
40 0.8427 1.6458 3.4012

Architecture type: 2.
C\P 4 8 16
4 2.5748 4.7665 4.4805
8 1.9871 3.1785 2.7548
16 1.3018 1.6814 1.4488

Architecture type: 3.
C\P 4 8 16
4 2.9348 6.0794 4.5921
8 2.7321 5.1061 2.5409
16 2.2962 3.5856 1.3751

Architecture type: 4.
C\P 4 8 16
4 2.9403 6.2023 5.1907
8 2.7246 5.1498 4.1730
16 2.3308 3.9584 3.6955

- A. 15 -

[Table 15]
[INTERFACE] Matrix: size=2352 nzero=16465 Density=0.005528%
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=2352, Non-zero=16465, Density=0.005528

Network: Nodes=9852 Links=23964 Tasks=3
Timing: Taii=180094 Tcpa=4100 Tiocai=1

Best Speedup=43.93, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.4899 5.5068 11.4615
8 1.9576 4.1728 8.6054

20 1.1896 2.4049 4.9020
40 0.7185 1.4091 2.8514

Architecture type: 2.
C\P 4 8 16
4 2.4658 4.6388 4.3908
8 1.7714 2.7090 2.6454
16 1.1243 1.4544 1.4726

Architecture type: 3.
C\P 4 8 16
4 2.8630 5.5242 4.5312
8 2.5859 4.5140 2.7217
16 2.0034 3.0598 1.4265

Architecture type: 4.
C\P 4 8 16
4 2.8667 5.5724 7.1671
8 2.5808 4.5438 5.0746
16 2.0284 3.2369 3.0380

- A.16 -

[Table 16]
[INTERFACE] Matrix: size=2352 nzero=16556 Density=0.005560%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=2352, Non-zero=16556, Density=0.005560

Network: Nodes=6133 Links=20336 Tasks=4
Timing: T an=17 6 9 8 1 T cpa= 627 5 Tiocai=1

Best Speedup=28.20, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6089 5.8082 12.1212
8 2.1127 4.5379 9.4718

20 1.3422 2.7357 5.6562
40 0.8346 1.6461 3.3769

Architecture type: 2.
C\P 4 8 16
4 2.5313 4.9413 4.7255
8 2.0318 3.1342 2.8846
16 1.3296 1.7232 1.6777

Architecture type: 3.
C\P 4 8 16
4 2.9085 6.0866 4.7255
8 2.6844 4.9334 2.8841
16 2.3090 3.5448 1.6777

Architecture type: 4.
C\P 4 8 16
4 2.9098 6.0950 5.4994
8 2.6873 5.2627 4.8460
16 2.3058 4.0250 3.7328

- A. 17 -

[Table 17]
[INTERFACE] Matrix: size=2352 nzero=16556 Density=0.005560%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul__sub=11> div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=2352, Non-zero=16556, Density=0.005560

Network: Nodes=6223 Links=20426 Tasks=4
Timing: Taii=177285 Tcpa=20545 TiocaFl

Best Speedup=8.63, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.8493 6.0439 6.5566
8 2.3090 4.8314 5.3269

20 1.4657 2.9640 3.3978
40 0.9092 1.7996 2.1175

Architecture type: 2.
C\P 4 8 16
4 2.7403 4.5606 4.2586
8 2.0497 3.0612 2.7796
16 1.3277 1.8162 1.4453

Architecture type: 3.
C\P 4 8 16
4 3.1702 5.8924 4.2258
8 2.9241 4.9475 2.7523
16 2.5223 3.6186 1.4569

Architecture type: 4.
C\P 4 8 16
4 3.1711 6.0125 3.3394
8 2.9176 5.2811 3.0033
16 2.5308 4.0094 2.9213

-A.18-

[Table 18]
[INTERFACE] Matrix: size=2352 nzero=16465 Density=0.005528%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=2352, Non-zero=16465, Density=0.005528

Network: Nodes=6916 Links=21028 Tasks=4
Timing: Taii=177158 Tcpa=11096 Tiocai=1

Best Speedup=15.97, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6579 5.8650 11.6413
8 2.1497 4.6050 9.2179

20 1.3580 2.7722 5.6330
40 0.8403 1.6634 3.3937

Architecture type: 2.
C\P 4 8 16
4 2.5724 4.3722 4.1052
8 1.8614 2.5823 2.9003
16 1.2230 1.4255 1.4578

Architecture type: 3.
C\P 4 8 16
4 2.9451 5.8839 4.7137
8 2.7126 4.7399 2.6590
16 2.2682 3.5549 1.6246

Architecture type: 4.
C\P 4 8 16
4 2.9743 5.8127 6.8151
8 2.7342 4.9063 3.7554
16 2.2737 3.6321 2.9321

- A. 19 -

Model 2352

[Table 19]
[New Run] Matrix: size=2352 nzero=22642 Density=0.007761
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=8> div=4

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=22641 Links=42931 Tasks=2
Timing: T an=214660 Tcpa=3412 Tiocai=1

Best Speedup=62.91, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0260 1.6202 4.0516 5.4958 6.9474 8.1397
4 1.0165 1.4980 3.1327 3.6884 4.6539 5.1015
8 0.9980 1.2734 1.9728 2.2195 2.7048 2.8696
12 0.9801 1.1316 1.4255 1.6039 1.8574 1.9390
20 0.9463 0.8457 0.9310 0.9942 1.1260 1.1673
32 0.8997 0.5462 0.6048 0.6382 0.7396 0.7255

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0430 1.7872 4.8800 7.0974 6.9474 8.1397
4 1.0419 1.7412 4.2710 5.2798 4.6539 5.1015
8 1.0397 1.6380 3.3779 3.0030 2.7048 2.8696
12 1.0375 1.4769 2.6584 2.0647 1.8574 1.9390
20 1.0331 1.1683 1.4292 1.2968 1.1260 1.1673
32 1.0266 0.9294 1.1532 0.8440 0.7396 0.7255

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0430 1.7872 4.9215 7.1503 8.6752 10.7631
4 1.0419 1.7413 4.2863 5.6900 4.4254 6.1351
8 1.0397 1.6382 3.2542 2.9107 2.9724 4.4767
12 1.0375 1.4773 2.6678 2.3730 2.2896 2.6544
20 1.0331 1.1683 1.7202 1.3108 1.5677 1.8637
32 1.0266 0.9291 1.0346 0.9553 0.8663 1.3917

-A.20-

[Table 20]
[New Run] Matrix: size=2352 nzero=22642 Density=0.007761
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=8, div=4

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761%

Network: Nodes=22641 Links=42931 Tasks=2
Timing: Taii=214660 Tcpa=18572 Tiocai=1

Best Speedup=11.56, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0703 1.6367 3.6008 4.1683 4.9682 6.3316
4 0.9718 1.4536 2.7698 3.1447 3.9001 5.1429
8 0.8196 1.1787 1.8466 2.0361 2.5038 2.8597
12 0.7085 0.9425 1.3349 1.4891 1.4952 2.6563
20 0.5574 0.6550 0.8797 0.9810 1.1558 1.5881
32 0.4222 0.4463 0.5790 0.6355 0.7317 1.0538

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.1848 1.9089 3.9042 4.1683 4.9682 6.3316
4 1.1715 1.8305 3.3528 3.1447 3.9001 5.1429
8 1.1456 1.6756 2.6540 2.0361 2.5038 2.8597
12 1.1209 1.5111 2.0469 1.4891 1.4952 2.6563
20 1.0746 1.2016 1.4828 0.9810 1.1558 1.5881
32 1.0119 0.9088 0.9574 0.6355 0.7317 1.0538

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.1848 1.9089 3.8977 5.2070 5.5646 7.7970
4 1.1715 1.8305 3.4931 3.9306 4.4803 6.2267
8 1.1456 1.6756 2.6439 2.7649 3.1279 3.2932
12 1.1209 1.5111 2.0891 2.0370 2.1962 3.5468
20 1.0746 1.2016 1.4823 1.3343 1.3811 2.1470
32 1.0119 0.9088 1.0000 0.9374 1.0408 1.4404

-A.21 -

[Table 21]
[New Run] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] New method
[Generate] Time: mul_sub=11, div=6

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=22641 Links=42931 Tasks=2
Timing: T an=280234 T cpa= 2 6 0 5 4 Tiocai=1

Best Speedup=10.76, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5296 5.6073 7.9328
8 1.8921 4.0915 6.4043

20 1.0768 2.2544 3.7514
40 0.6267 1.2877 2.1819

-A.22-

[Table 22] [New Run] Matrix: size=2352 nzero=22642 Density=0.007761 %
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=13124 Links=33413 Tasks=3
Timing: T ,„ = 2 5 1 6 8 0 T cpa= 2 7 1 6 7 T l0cai=1

Best Speedup=9.26, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6555 5.6749 7.1563
8 2.0271 4.2884 6.0558

20 1.1840 2.4706 3.9712
40 0.6987 1.4472 2.3892

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0976 2.9221 5.5070 4.8377 5.7888 7.0374
4 1.0096 2.5403 4.2755 3.7513 4.7568 5.8381
8 0.8702 1.7815 2.5151 2.5552 3.5909 4.4897
12 0.7646 1.3724 1.7884 1.7134 2.9771 3.3056
20 0.6146 0.9402 1.1130 1.2930 1.9349 2.1832
32 0.4746 0.6380 0.7310 0.8709 1.3280 1.3958

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.1968 3.2399 5.8235 4.8377 5.7888 7.0374
4 1.1858 3.0917 5.2893 3.7513 4.7568 5.8381
8 1.1636 2.8162 4.4211 2.5552 3.5909 4.4897
12 1.1416 2.4757 3.6649 1.7134 2.9771 3.3056
20 1.1006 1.9452 2.7092 1.2930 1.9349 2.1832
32 1.0434 1.4321 1.7771 0.8709 1.3280 1.3958

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.1968 3.2399 5.8464 5.8094 6.3737 7.1689
4 1.1858 3.0917 5.2790 5.4178 5.6376 6.6536
8 1.1636 2.8162 4.5081 4.3052 4.6673 5.9962
12 1.1416 2.4757 3.7201 3.5088 4.3010 5.1797
20 1.1006 1.9452 2.7025 2.4827 2.6560 4.0831
32 1.0434 1.4321 1.9295 1.7840 2.3977 2.2272

-A.23-

[Table 23]
[New Run] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=13231 Links=33520 Tasks=3
Timing: T an=252001 Tcpa=8207 Tiocai=1

Best Speedup=30.71, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0377 2.7776 5.8807 6.1739 7.0866 7.8402
4 1.0164 2.4421 4.5442 4.1813 5.2995 6.6173
8 0.9763 1.7249 2.6326 2.7271 3.2571 3.6205
12 0.9392 1.3376 1.8732 1.6570 2.5064 2.8836
20 0.8729 0.9115 1.1402 0.9661 1.3498 2.1532
32 0.7893 0.6274 0.7600 0.6647 0.8939 1.3425

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0635 3.0596 6.3882 6.5075 7.0866 7.8402
4 1.0609 2.9215 5.6957 4.6745 5.2995 6.6173
8 1.0558 2.6414 4.5531 2.9625 3.2571 3.6205
12 1.0508 2.3214 3.7685 2.0754 2.5064 2.8836
20 1.0408 1.8037 2.5952 1.3278 1.3498 2.1532
32 1.0262 1.3306 1.8934 0.8957 0.8939 1.3425

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0635 3.0599 6.3979 8.2778 8.2688 10.1478
4 1.0609 2.9201 5.7118 6.9648 7.6708 9.6486
8 1.0558 2.6337 4.6420 5.1705 5.9014 7.2957
12 1.0508 2.3313 3.8966 3.9297 4.5338 5.1441
20 1.0408 1.8040 2.8133 2.8190 2.8618 3.8092
32 1.0262 1.3228 1.9315 1.8492 2.1896 2.3488

-A.24-

[Table 24]
[New Run] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=12995 Links=33284 Tasks=3
Timing: Taii=251293 Tcpa=6333 Tiocai=1

Best Speedup=39.68, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0324 2.7185 5.7537 8.8409 8.6254 11.4651
4 1.0190 2.4371 4.8151 5.7523 4.6516 7.5577
8 0.9932 1.8405 3.2149 3.1692 3.0858 3.5653
12 0.9686 1.4647 2.2940 2.4283 2.2403 2.7263
20 0.9230 0.9900 1.4820 1.4788 1.3159 1.4579
32 0.8621 0.6855 0.9364 0.9027 0.8027 0.9024

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0514 3.0597 6.4545 12.2331 8.6254 11.4651
4 1.0498 2.9291 5.7045 8.5619 4.6516 7.5577
8 1.0468 2.6092 4.5970 4.5018 3.0858 3.5653
12 1.0438 2.3204 3.6769 3.1425 2.2403 2.7263
20 1.0378 1.8305 2.6930 1.7422 1.3159 1.4579
32 1.0289 1.3660 1.7777 1.4543 0.8027 0.9024

Architecture type: 4.
C\P 4 8 16 32 6
2 1.0514 3.0598 6.4831 12.7839 14.8853 17.5508
4 1.0498 2.9291 5.7991 10.6471 9.4397 12.7140
8 1.0468 2.6092 4.6871 6.6453 6.0959 6.5068
12 1.0438 2.3212 3.8603 5.2315 5.4451 5.2827
20 1.0378 1.8305 2.8076 3.3042 3.0231 2.4850
32 1.0289 1.3662 2.0180 1.9754 1.7646 2.3590

-A.25-

[Table 25]
[New Run] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=8474 Links=28763 Tasks=4
Timing: T an =247030 T cpa= 5 4 1 6 7 Tiocai=1

Best Speedup=4.56, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.2825 3.3722 3.5382 3.8374 4.0057 4.2196
4 1.1851 3.0003 3.3043 3.7971 3.9114 3.9850
8 1.0286 2.2583 2.6363 3.2109 3.3864 3.8226
12 0.9081 1.7346 1.9885 2.2777 2.9045 3.0425
20 0.7352 1.1998 1.2398 1.6502 1.9725 2.3032
32 0.5718 0.8200 0.7874 1.0808 1.3443 1.5814

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.3936 3.6636 4.1174 3.8374 4.0057 4.2196
4 1.3773 3.5664 4.0467 3.7971 3.9114 3.9850
8 1.3452 3.2765 3.8214 3.2109 3.3864 3.8226
12 1.3140 2.9594 3.5956 2.2777 2.9045 3.0425
20 1.2561 2.3889 3.0576 1.6502 1.9725 2.3032
32 1.1776 1.8557 2.3610 1.0808 1.3443 1.5814

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.3936 3.6636 4.1462 3.9865 4.2132 4.1606
4 1.3773 3.5664 3.9974 3.9616 4.2211 4.1565
8 1.3452 3.2765 3.8798 3.8232 4.0713 4.1725
12 1.3140 2.9594 3.6249 3.8609 4.0276 4.0792
20 1.2561 2.3889 3.3469 3.1594 3.7577 4.0241
32 1.1776 1.8557 2.4278 2.6306 3.3294 3.3248

- A.26 -

[Table 26]
[INTERFACE] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=8540 Links=28829 Tasks=4
Timing: Taii=246913 Tcpa=15399 Tiocai=1

Best Speedup=16.03, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6587 5.8152 11.1513
8 2.1343 4.5373 8.7434

20 1.3387 2.7201 5.2956
40 0.8250 1.6303 3.1841

Architecture type: 2.
C\P 4 8 16
4 2.5810 4.0386 3.7910
8 1.9557 2.5273 2.5868
16 1.2592 1.3745 1.6345

Architecture type: 3.
C\P 4 8 16
4 3.0412 5.5389 4.1840
8 2.8263 4.4490 2.9874
16 2.3169 3.2422 1.8594

Architecture type: 4.
C\P 4 8 16
4 3.0416 5.3172 4.7310
8 2.8361 4.7203 4.4885
16 2.3247 3.4181 3.6416

-A.27-

[Table 27]
[INTERFACE] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=7453 Links=27742 Tasks=4
Timing: T an=245488 T cpa=11 2 4 6 Tiocai=1

Best Speedup=21.83, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6108 5.8721 12.2200
8 2.0968 4.5797 9.3730

20 1.3166 2.7491 5.5100
40 0.8122 1.6498 3.2648

Architecture type: 2.
C\P 4 8 16
4 2.5007 5.1561 5.1395
8 2.0637 3.6012 3.2487
16 1.4051 2.0916 1.8817

Architecture type: 3.
C\P 4 8 16
4 3.0137 6.4004 9.1334
8 2.8100 5.4820 5.5198
16 2.4442 3.8630 3.5134

Architecture type: 4.
C\P 4 8 16
4 3.0123 6.4397 12.0686
8 2.8092 5.7174 8.4239
16 2.4454 4.3907 5.1935

- A.28 -

[Table 28]
[INTERFACE] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=7455 Links=27744 Tasks=4
Timing: Taii=245753 T cpa=11200 Tiocai=1

Best Speedup=21.94, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6294 5.8453 12.2834
8 2.1254 4.5472 9.4970

20 1.3485 2.7242 5.6222
40 0.8379 1.6328 3.3447

Architecture type: 2.
C\P 4 8 16
4 2.5092 4.9596 4.2884
8 2.0458 2.9643 2.7917
16 1.3680 1.6617 1.6847

Architecture type: 3.
C\P 4 8 16
4 2.9640 6.1264 7.9033
8 2.7590 5.3982 5.5413
16 2.4149 3.9990 3.1293

Architecture type: 4.
C\P 4 8 16
4 2.9640 6.2471 9.4176
8 2.7575 5.6602 7.5833
16 2.4293 4.3285 5.0351

- A.29 -

[Table 29]
[INTERFACE] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=7444 Links=27733 Tasks=4
Timing: T an=246000 Tcpa=95707 Tiocai=1

Best Speedup=2.57, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.1446 2.1602 2.1770
8 1.9616 2.0060 2.0338

20 1.5056 1.5536 1.6009
40 1.0651 1.1100 1.1498

Architecture type: 2.
C\P 4 8 16
4 2.1968 2.1081 2.2878
8 2.0469 1.9132 2.1299
16 1.7745 1.5740 1.6809

Architecture type: 3.
C\P 4 8 16
4 2.3079 2.1964 2.2878
8 2.2211 2.2080 2.1299
16 2.0806 2.1701 1.6809

Architecture type: 4.
C\P 4 8 16
4 2.3079 2.2247 2.3305
8 2.2211 2.1929 2.3389
16 2.0806 2.1690 2.2138

-A. 30-

[Table 30]
[INTERFACE] Matrix: size=2352 nzero=22642 Density=0.007761%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=2352, Non-zero=22642, Density=0.007761

Network: Nodes=8531 Links=28820 Tasks=4
Timing: T an=247301 Tcpa=20107 Tiocai=1

Best Speedup=12.30, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6998 6.0283 9.2016
8 2.1704 4.7235 7.3586

20 1.3615 2.8486 4.5356
40 0.8388 1.7104 2.7554

Architecture type: 2.
C\P 4 8 16
4 2.5945 3.3844 2.7844
8 1.9598 2.4230 2.4226
16 1.2821 1.5005 1.8331

Architecture type: 3.
C\P 4 8 16
4 3.0144 4.6920 2.7330
8 2.7644 4.0433 2.5221
16 2.3500 3.1095 1.8672

Architecture type: 4.
C\P 4 8 16
4 3.0095 4.8937 3.9235
8 2.7633 4.0295 3.3255
16 2.3395 3.3187 2.7237

-A.31 -

[Table 31]
[INTERFACE] Matrix: size=3516 nzero=59741 Density=0.009381%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=3516, Non-zero=59741, Density=0.009381

Network: Nodes=32384 Links=88608 Tasks=3
Timing: Taii=673466 Tcpa=12335 Tiocai=1

Best Speedup=54.60, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.4184 5.3738 11.2873
8 1.8778 4.0229 8.3477

20 1.1230 2.2864 4.6774
40 0.6722 1.3293 2.6978

Architecture type: 2.
C\P 4 8 16
4 2.3396 4.6846 4.5836
8 1.6460 2.6318 2.6109
16 1.0264 1.4458 1.4738

Architecture type: 3.
C\P 4 8 16
4 2.9108 5.8390 6.9743
8 2.6573 4.8113 4.3659
16 2.0972 3.3382 2.3425

Architecture type: 4.
C\P 4 8 16
4 2.9099 5.8398 8.3307
8 2.6622 4.8434 5.2609
16 2.1144 3.5271 3.1040

-A.32-

[Table 32]
[INTERFACE] Matrix: size=3516 nzero=59376 Density=0.009322%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=3516, Non-zero=59376, Density=0.009322

Network: Nodes=32247 Links=88106 Tasks=3
Timing: Tan=669405 Tcpa=17109 Tiocai=1

Best Speedup=39.13, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.4345 5.4079 11.3188
8 1.8863 4.0454 8.3676

20 1.1239 2.2989 4.6879
40 0.6715 1.3357 2.7033

Architecture type: 2.
C\P 4 8 16
4 2.3642 4.5392 4.3507
8 1.6550 2.6498 2.7964
16 1.0278 1.4136 1.3977

Architecture type: 3.
C\P 4 8 16
4 2.9303 5.8222 7.1413
8 2.6843 4.8139 4.6229
16 2.1226 3.4393 2.4675

Architecture type: 4.
C\P 4 8 16
4 2.9319 5.8684 7.6933
8 2.6865 4.8285 5.1754
16 2.1193 3.4875 3.1354

-A.33-

[Table 33]
[INTERFACE] Matrix: size=3516 nzero=59741 Density=0.009381%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=3516, Non-zero=59741, Density=0.009381

Network: Nodes=16941 Links=73165 Tasks=4
Timing: Tan=657653 Tcpa=23307 Tiocai=1

Best Speedup=28.22, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5412 5.7041 11.8453
8 2.0248 4.4088 9.1126

20 1.2566 2.6200 5.3698
40 0.7694 1.5627 3.1775

Architecture type: 2.
C\P 4 8 16
4 2.4793 4.5999 3.9806
8 1.7830 2.7386 2.6643
16 1.1349 1.5661 1.3721

Architecture type: 3.
C\P 4 8 16
4 2.9956 6.3450 6.6725
8 2.8554 5.5724 5.4655
16 2.5561 4.5248 3.6235

Architecture type: 4.
C\P 4 8 16
4 2.9958 6.3945 6.9667
8 2.8553 5.5619 6.7982
16 2.5614 4.6022 4.7129

-A . 3 4 -

[Table 34]
[INTERFACE] Matrix: size=3516 nzero=59376 Density=0.009322%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=3516, Non-zero=59376, Density=0.009322

Network: Nodes=16881 Links=72740 Tasks=4
Timing: Taii=653697 Tcpa=32246 Tiocai=1

Best Speedup=20.27, CPA On

Architecture type:1.
C\P 4 8 16
4 2.5762 5.7907 11.7709
8 2.0485 4.4688 9.1019

20 1.2674 2.6493 5.3842
40 0.7747 1.5778 3.2017

Architecture type: 2.
C\P 4 8 16
4 2.5045 4.2287 4.2098
8 1.8220 2.5021 2.6790
16 1.1723 1.3526 1.4840

Architecture type: 3.
C\P 4 8 16
4 3.0406 6.4046 6.9531
8 2.8823 5.6332 5.3651
16 2.5862 4.5938 3.8102

Architecture type: 4.
C\P 4 8 16
4 3.0399 6.4362 7.5592
8 2.8882 5.7448 6.0306
16 2.5802 4.5995 4.7445

- A.35 -

[Table 35]
[INTERFACE] Matrix: size=3516 nzero=59741 Density=0.009381%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=3516, Non-zero=59741, Density=0.009381

Network: Nodes=14412 Links=70636 Tasks=4
Timing: Taii=655494 Tcpa=42513 Tiocai=1

Best Speedup=15.42, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6429 5.9545 10.8098
8 2.1220 4.6639 8.5299

20 1.3311 2.8187 5.2013
40 0.8207 1.6977 3.1423

Architecture type: 2.
C\P 4 8 16
4 2.5661 4.1291 3.4067
8 1.8861 2.4792 2.2685
16 1.2115 1.4477 1.3913

Architecture type: 3.
C\P 4 8 16
4 3.0605 6.0799 4.8426
8 2.9248 5.5293 4.4261
16 2.6422 4.4113 3.3045

Architecture type: 4.
C\P 4 8 16
4 3.0525 6.0738 5.1181
8 2.9142 5.4951 4.8192
16 2.6451 4.3583 4.3196

-A.36-

[Table 36]
[INTERFACE] Matrix: size=3516 nzero=59376 Density=0.009322%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul__sub=11> div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=3516, Non-zero=59376, Density=0.009322

Network: Nodes=14959 Links=70818 Tasks=4
Timing: T an =652117 Tcpa=58663 Tiocai=1

Best Speedup=11.12, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.7267 6.1184 8.4265
8 2.1910 4.7852 6.8078

20 1.3750 2.8842 4.2838
40 0.8476 1.7336 2.6363

Architecture type: 2.
C\P 4 8 16
4 2.6154 3.6035 3.7175
8 1.9487 2.1485 2.5336
16 1.2447 1.1718 1.6935

Architecture type: 3.
C\P 4 8 16
4 3.1088 5.2900 4.7172
8 2.9539 4.7853 4.0993
16 2.6679 3.8775 3.5303

Architecture type: 4.
C\P 4 8 16
4 3.1104 5.4197 4.8734
8 2.9935 4.8122 4.7104
16 2.6736 4.0020 4.0666

-A .3 7 -

Model 3516

[Table 37]
[New Run] Matrix: size=3516 nzero=81390 Density=0.012883
[Generate] Diagonal to all elements in the column
[Generate] Time: mul_sub=8, div=4

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=81389 Links=159263 Tasks=5
Timing: Taii=796320 Tcpa=21200 Tiocai=1

Best Speedup=37.56, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0049 1.5737 4.0018 5.7037 5.6864 6.5106
4 0.9449 1.4060 2.9463 3.7744 3.6186 4.5567
8 0.8439 1.1523 1.8645 2.2515 2.1080 2.8643
12 0.7623 0.9472 1.3490 1.5879 1.4154 1.9568
20 0.6389 0.6678 0.8627 0.9977 0.9719 1.2678
32 0.5140 0.4552 0.5613 0.6420 0.5764 0.8794

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0792 1.8188 4.4328 6.1495 5.7806 6.5106
4 1.0757 1.7804 3.7990 4.1816 3.9214 4.5567
8 1.0688 1.6297 2.7272 2.4269 2.2029 2.8643
12 1.0619 1.4418 2.0506 1.6854 1.5016 1.9568
20 1.0484 1.1445 1.2482 0.9614 0.9676 1.2678
32 1.0288 0.8798 0.8850 0.6880 0.6008 0.8794

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0792 1.8188 4.4412 6.2795 6.3615 7.8057
4 1.0757 1.7804 3.8146 4.0942 3.9392 4.7754
8 1.0688 1.6297 2.7285 2.4301 2.2411 2.5890
12 1.0619 1.4418 1.9538 1.8315 1.5914 1.8899
20 1.0484 1.1445 1.3645 1.0582 0.9673 1.1843
32 1.0288 0.8798 0.7943 0.7043 0.6450 0.8178

-A.38-

[Table 38]
[New Run] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] New method
[Generate] Time: mul_sub=11, div=6

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=81389 Links=159263 Tasks=2
Timing: Taii=1036974 Tcpa=29751 Tiocai=1

Best Speedup=34.86, CPA On

Architecture type: 2.
C\P 4 8 16
4 2.2461 4.4942 4.4723
8 1.5342 2.5410 2.5276
16 0.9379 1.3606 1.3643

Architecture type: 3.
C\P 4 8 16
4 2.8373 5.2457 5.1758
8 2.3386 4.0079 2.8329
16 1.6236 2.4210 1.4788

Architecture type: 4.
C\P 4 8 16
4 2.8373 5.1832 5.4929
8 2.3386 4.0686 2.9570
16 1.6236 2.4325 1.6718

[Table 39]
[New Run] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=43190 Links=121063 Tasks=3
Timing: Taii=922374 Tcpa=3585 Tiocai=1

Best Speedup=257.29, CPA On

Architecture type: 2.
C\P 2 4 8 16 32 64
2 1.0049 2.6774 5.7322 8.7221 10.8595 13.7956
4 0.9983 2.3532 4.6533 5.6144 6.0264 8.7231
8 0.9853 1.6749 2.7323 3.0788 3.1228 4.7122
12 0.9726 1.2956 1.9107 2.2378 2.2414 3.5023
20 0.9482 0.8918 1.2247 1.3456 1.2856 1.8799
32 0.9138 0.6115 0.7913 0.8823 0.7954 1.3355

Architecture type: 3.
C\P 2 4 8 16 32 64
2 1.0156 2.9875 6.4320 12.6595 14.6327 18.5951
4 1.0154 2.8822 5.7740 9.6455 10.7193 10.8116
8 1.0149 2.6422 4.7778 5.9102 6.0364 5.8782
12 1.0144 2.3794 4.1310 4.3846 4.6392 3.6699
20 1.0135 1.8992 2.8842 2.6720 2.4262 2.4048
32 1.0121 1.4284 1.9171 1.5499 1.6342 1.5390

Architecture type: 4.
C\P 2 4 8 16 32 64
2 1.0156 2.9876 6.4516 12.8430 17.3265 20.6745
4 1.0154 2.8826 5.8190 10.0409 12.3837 11.9593
8 1.0149 2.6428 4.8437 6.7737 6.4271 7.0373
12 1.0144 2.3802 4.1763 4.4513 5.3318 4.7689
20 1.0135 1.9000 2.9750 2.6836 3.2979 3.0032
32 1.0121 1.4285 1.9769 1.8577 1.9857 1.9653

- A. 40 -

[Table 40]
[INTERFACE] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=43357 Links=121230 Tasks=3
Timing: Taii=922875 TcPa=18707 Tiocai=1

Best Speedup=49.33, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.4113 5.3612 11.1835
8 1.8673 3.9985 8.2682

20 1.1115 2.2654 4.6330
40 0.6633 1.3148 2.6708

Architecture type: 2.
C\P 4 8 16
4 2.3224 4.5178 4.4749
8 1.6127 2.5816 2.6347
16 1.0056 1.4422 1.4777

Architecture type: 3.
C\P 4 8 16
4 2.9308 5.8707 7.4698
8 2.6826 4.8546 4.9384
16 2.1440 3.5051 2.5287

Architecture type: 4.
C\P 4 8 16
4 2.9307 5.8726 8.2750
8 2.6820 4.8723 5.2744
16 2.1458 3.5875 3.0701

-A.41 -

[Table 41]
[INTERFACE] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=21674 Links=99547 Tasks=4
Timing: Taii=900774 T cpa =63127 T local- 1

Best Speedup=14.27, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6193 5.8563 10.0935
8 2.0687 4.5170 8.0174

20 1.2672 2.6752 4.8095
40 0.7698 1.5922 2.8757

Architecture type: 2.
C\P 4 8 16
4 2.5337 4.2079 3.3064
8 1.8133 2.5667 2.2019
16 1.1402 1.3621 1.0935

Architecture type: 3.
C\P 4 8 16
4 3.1166 6.3340 7.0138
8 2.9790 5.7282 5.1697
16 2.7000 4.8590 3.3769

Architecture type: 4.
C\P 4 8 16
4 3.1166 6.3583 7.1831
8 2.9790 5.7407 6.0657
16 2.7000 4.8359 4.3179

-A .4 2 -

[Table 42]
[INTERFACE] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=21378 Links=99251 Tasks=4
Timing: Tan=900303 Tcpa=7539 Tiocai=1

Best Speedup=119.42, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.4837 5.5380 11.6669
8 1.9952 4.2821 8.9072

20 1.2548 2.5456 5.2076
40 0.7753 1.5188 3.0767

Architecture type: 2.
C\P 4 8 16
4 2.4576 4.8835 5.8876
8 1.8358 3.0119 3.3410
16 1.1941 1.6623 1.7587

Architecture type: 3.
C\P 4 8 16
4 2.9337 6.3103 11.7282
8 2.8172 5.6445 8.5881
16 2.5667 4.6040 5.2221

Architecture type: 4.
C\P 4 8 16
4 2.9338 6.2849 12.0242
8 2.8146 5.6240 10.0448
16 2.5670 4.7536 6.5275

- A. 43 -

[Table 43]
[INTERFACE] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=21814 Links=99687 Tasks=4
Timing: Taii=900903 Tcpa=35739 Tiocai=1

Best Speedup=25.21, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5445 5.6627 11.3129
8 2.0237 4.3666 8.7343

20 1.2527 2.5866 5.1811
40 0.7660 1.5401 3.0756

Architecture type: 2.
C\P 4 8 16
4 2.4885 4.6085 4.3364
8 1.7950 2.7612 2.6299
16 1.1459 1.5613 1.5365

Architecture type: 3.
C\P 4 8 16
4 3.0238 6.3205 6.7555
8 2.8887 5.6456 5.8317
16 2.6214 4.5448 4.2108

Architecture type: 4.
C\P 4 8 16
4 3.0239 6.3433 7.2707
8 2.8889 5.6817 6.9375
16 2.6217 4.6452 4.9499

-A .4 4 -

[Table 44]
[INTERFACE] Matrix: size=3516 nzero=59376 Density=0.009322%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=3516, Non-zero=59376, Density=0.009322

Network: Nodes=16881 Links=72740 Tasks=4
Timing: T an =653697 Tcpa =32246 T,ocai=1

Best Speedup=20.27, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5762 5.7907 11.7709
8 2.0485 4.4688 9.1019

20 1.2674 2.6493 5.3842
40 0.7747 1.5778 3.2017

Architecture type: 2.
C\P 4 8 16
4 2.5045 4.2287 4.2098
8 1.8220 2.5021 2.6790
16 1.1723 1.3526 1.4840

Architecture type: 3.
C\P 4 8 16
4 3.0406 6.4046 6.9531
8 2.8823 5.6332 5.3651
16 2.5862 4.5938 3.8102

Architecture type: 4.
C\P 4 8 16
4 3.0399 6.4362 7.5592
8 2.8882 5.7448 6.0306
16 2.5802 4.5995 4.7445

-A .4 5 -

[Table 45]
[New Run] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=16967 Links=94840 Tasks=4
Timing: Tall=896241 Tcpa=113409 Tlocal=1

Best Speedup=7.90, CPA On

Architecture type: 2.
C\P 4 8 16
4 2.6894 3.2529 3.1961
8 1.9907 1.9199 2.4579
16 1.3076 1.0409 1.4322

Architecture type: 3.
C\P 4 8 16
4 3.1634 5.3793 4.5670
8 3.0512 4.8425 3.9648
16 2.8225 4.3474 3.5062

Architecture type: 4.
C\P 4 8 16
4 3.1634 5.3592 5.0302
8 3.0512 4.9270 4.5692
16 2.8225 4.3189 3.9120

- A. 46 -

[Table 46]
[INTERFACE] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=17166 Links=95039 Tasks=4
Timing: T an =896350 Tcpa=20451 Tiocai=1

Best Speedup=43.83, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5417 5.6640 11.9426
8 2.0548 4.4144 9.2053

20 1.3043 2.6522 5.4388
40 0.8106 1.5918 3.2318

Architecture type: 2.
C\P 4 8 16
4 2.4611 4.8277 5.1202
8 1.9636 3.3073 3.1530
16 1.2858 1.7318 1.6415

Architecture type: 3.
C\P 4 8 16
4 2.9798 6.5218 10.0573
8 2.8585 5.9962 8.1099
16 2.6410 5.0361 4.9478

Architecture type: 4.
C\P 4 8 16
4 2.9795 6.5247 12.0059
8 2.8587 6.0192 8.3160
16 2.6477 5.0859 6.5382

- A. 47 -

[Table 47]
[INTERFACE] Matrix: size=3516 nzero=81390 Density=0.012883%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=3516, Non-zero=81390, Density=0.012883

Network: Nodes=17493 Links=95366 Tasks=4
Timing: Tall=897011 Tcpa=63261 Tlocal=1

Best Speedup=14.18, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.6530 5.8399 10.0642
8 2.1260 4.5657 7.9990

20 1.3303 2.7547 4.8787
40 0.8189 1.6577 2.9516

Architecture type: 2.
C\P 4 8 16
4 2.5557 4.1105 3.5564
8 1.8993 2.5906 2.5008
16 1.2140 1.5234 1.4932

Architecture type: 3.
C\P 4 8 16
4 3.0552 6.1627 4.8726
8 2.9488 5.5189 4.2520
16 2.7037 4.7428 3.6049

Architecture type: 4.
C\P 4 8 16
4 3.0547 6.1293 4.7875
8 2.9450 5.5829 4.6256
16 2.7051 4.7264 4.0355

- A. 48 -

[Table 48]
[New Run] Matrix: size=9289 nzero=250689 Density=0.005703%
[Generate] Diagonal to all elements in the column
[Generate] Two row elements in one node
[Generate] Time: mul_sub=11, div=6, two_op=20

PARASIM Simulation results
Matrix size=9289, Non-zero=250689, Density=0.005703

Network: Nodes=132142 Links=373541 Tasks=3
Timing: T an = 2847582 Tcpa=37178 Tiocai=1

Best Speedup=76.59, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.3961 5.3181 11.1339
8 1.8599 3.9732 8.2197

20 1.1113 2.2562 4.5966
40 0.6646 1.3112 2.6490

Architecture type: 2.
C\P 4 8 16
4 2.3067 4.4585 4.3972
8 1.6078 2.5846 2.5283
16 1.0014 1.3807 1.3567

Architecture type: 3.
C\P 4 8 16
4 2.9133 5.8310 7.4437
8 2.6683 4.8723 4.5511
16 2.1285 3.5476 2.4638

Architecture type: 4.
C\P 4 8 16
4 2.9133 5.8500 8.1630
8 2.6683 4.8693 5.1993
16 2.1285 3.5519 2.8326

- A. 49 -

[Table 49]
[INTERFACE] Matrix: size=9289 nzero=250689 Density=0.005703%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 5
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=50

PARASIM Simulation results
Matrix size=9289, Non-zero=250689, Density=0.005703

Network: Nodes=64495 Links=305894 Tasks=4
Timing: Taii=2778816 Tcpa=70894 Tiocai=1

Best Speedup=39.20, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5104 5.5867 11.5205
8 2.0022 4.3164 8.8373

20 1.2447 2.5615 5.1943
40 0.7631 1.5259 3.0750

Architecture type: 2.
C\P 4 8 16
4 2.4248 4.4924 4.1400
8 1.7367 2.6772 2.4835
16 1.1056 1.4675 1.4130

Architecture type: 3.
C\P 4 8 16
4 2.9737 6.2643 8.0468
8 2.8525 5.6249 5.7429
16 2.6008 4.6749 3.4701

Architecture type: 4.
C\P 4 8 16
4 2.9737 6.2258 8.6387
8 2.8525 5.6514 7.2852
16 2.6008 4.6860 5.3369

-A. 50-

[Table 50]
[INTERFACE] Matrix: size=9289 nzero=250689 Density=0.005703%
[Generate] Diagonal to all elements in the column
[Generate] Elements in one node are 10
[Generate] Time: mul_sub=11, div=6, two_op=20, Multi=100

PARASIM Simulation results
Matrix size=9289, Non-zero=250689, Density=0.005703

Network: Nodes=50462 Links=291861 Tasks=4
Timing: Taii=2765902 Tcpa=120342 Tiocai=1

Best Speedup=22.98, CPA On

Architecture type: 1.
C\P 4 8 16
4 2.5771 5.7481 11.6770
8 2.0699 4.4906 9.0962

20 1.2997 2.7054 5.4477
40 0.8019 1.6255 3.2586

Architecture type: 2.
C\P 4 8 16
4 2.4805 4.1030 3.5850
8 1.8002 2.5131 2.2779
16 1.1524 1.4542 1.2558

Architecture type: 3.
C\P 4 8 16
4 3.0156 6.2295 6.2928
8 2.9047 5.7813 5.2356
16 2.6899 4.8745 3.6295

Architecture type: 4.
C\P 4 8 16
4 3.0156 6.1567 5.5913
8 2.9047 5.8092 5.9142
16 2.6899 4.8861 4.6470

-A.51 -

Appendix B: Program Listings

This appendix includes the main routines in the PARASIM program. They are
grouped as follows:
1- Network generation routines.
2- Scheduling program.
3- Multiprocessor simulation routines.
4- Output and display routines.
5- Matrix operations routines.

The following is a list of the routine names, source file name and the function
of each procedure:

Network Generation Routines

Name: interfaceQ: Source File: Parasiml .c
This routine is the entry point from both the main() and the Mega programs. It
passes all the matrix data needed for the simulation of the execution of the
network.
it also opens and closes the files used in saving the program acitivity and
results.

Name: create_task(): Source File: Parasiml .c
This routine will reserve the memory for a task structure.

Name: c_link():_________________ Source File: Parasim3.c
This routine will reserve the memory for a link structure.

-B.1 -

Name: In 1(): Source File: Parasim3.c
This routine will create a link structure and joins the source and destination
nodes. This will represent a data transfer from the node to the other.

Name: new_network generateQ: Source File: Parasim3.c
This routine will generate the network details form the matrix information.

Scheduling Routines

Name: is_input_ready(): Source File: Parasiml.c
This routine will return the status of the node. This returns the satus of all the
data input links.

Name: is output ready(): Source File: Parasiml.c
This routine will check if all the input links have their data ready. This would
enable the node to be executed.

Name: alljnputs not availQ: Source File: Parasiml .c
This routine places all nodes that are connected only to the head_node into
the linejist. This would enable the start of execution for the reverse passQ
routine.

Name: win put(): Source File: Parasiml.c
This routine will place the node in the linejist.

Name: win remove(): Source File: Parasiml .c
This routine will remove the node from the line list. If the node is not in the
line jis t it will be reported to the user.

Name: is_node_critical(): Source File: Parasiml.c
This routine will test if the given node is critical (i.e., resides on the critical
path).

Name: put all nodes of input(): Source File: Parasiml .c
This routine will place all nodes that are recieve inputs only from the
head_node into the linejist.

Name: get_number of outs(): Source File: Parasiml.c
This routine computes the number of outputs leaving the given node.

Name: number_of_outs(): Source File: Parasim2.c
This routine will return the number of outputs for the given node.

- B . 2 -

Name: get_next_link(): Source File: Parasiml .c
This routine will return next available link, which has a ready input available
and the output is not yet ready. This link would need the initiation of a
communication routine to transfer the data.

Name: new_node_executed():______ Source File: Parasim2.c
This routine will mark the node as executed. It will compute the earliest stat
times. It will place all the nodes that recieve data into the linejist.

Name: new1_node_executed(): Source File: Parasim2.c
This routine will increase the processor time by the task time, assigns
processor time to the node and all its output links.

Name: new_fwd_pass():__________ Source File: Parasim2.c
This routine will compute the earliest start time for all the nodes.

Name: init1_ rev_pass(): Source File: Parasim2.c
This routine will scan the complete network to identify the nodes that are
connected to the head node.

Name: new_node_dexecuted(): Source File: Parasim2.c
This node will establish the latest linkt of the given node, and compute the
critical path time and the number of critical nodes.

Name: new_rev_pass()___________ Source File: Parasim2.c
This routine computs the latest start time for all the nodes.

Multiprocessor Simulation Routines

Name: win_reset variables(): Source File: Parasiml .c
For all the nodes of the network all variables are set to the initial state.

Name: reset_variables(): Source File: Parasim2.c
For all the nodes of the network all variables are set to the initial state.

Name: reset procs(): Source File: Parasim2.c
This routine will reset all the
information is are reset.

processors to the initial state. The bus status

Name: bus time(): Source File: Parasim2.c
This routines computes and returns the time of the multiprocessor bus.

- B . 3 -

Name: p_time(): Source File: Parasim2.c
This routine will return the current time of the given processor. This time will
consist of all active and idle cycles.

Name: least_link(): Source File: Parasim2.c
This routine will return the link that has least communication time.

Name: bus serverQ: Source File: Parasim2.c
This routine will simulate the different architectures. It will also allow the
simulation of bus contention and special hardware features.

Name: new next node proc(): Source File: Parasim2.c
This routine will return next node available for execution.

Name: simulation(): Source File: Parasim2.c
This is main routine for the simuation of the execution of the network.

Name: total_procs(): Source File: Parasim2.c
This routine groups the activity of the processor into: active, communicate
and idle. It will also print the resulting values into the results file.

Output and Display Routines

Name: print_network(): Source File: Parasiml .c
This routine will print out all the nodes and their connections along with times
associated with them.

Name: ps_mat(): Source File: Parasiml .c
This routine will convert the matrix data into a form to be printed by the Lotus
Manuscript wordprocessor.

Name: print critical): Source File: Parasiml.c
This routine will print a list of critical nodes information.

Name: comments(): Source File: Parasiml .c
This routine will place a number of comments lines into the results' files.

Name: print heading(): Source File: Parasiml.c
This routine prints the heading of the program which includes the program's
name and version, date, time and remaining memory details.

Name: print_header(): Source File: Parasim2.c
Will print the table and graph heading information.

-B.4-

Name: print_procs():____________________Source File: Parasim.c
This routine prints information about the processors’ activities.

Name: date time(): Source File: Parasim3.c
This routine will print the system date and time.

Name: network_info(): Source File: Parasim3.c
This routine will display all the information regarding the network structure
and organization.

Name: bus_info(): Source File: Parasim3.c
This routine will display the multiprocessor bus information.

Name: print_elements(): Source File: Parasim3.c
This routine will save the matrix information into (X,Y) format using Postscript
language.

Name: mat print 1(): Source File: Parasim3.c
This routine will display the top for each matrix entry.

Name: mat print 1(): Source File: Parasim3.c
This routine will display the top for each matrix entry.

Name: mat print 2(): Source File: Parasim3.c
This routine will display the element's column value and the top for each
matrix entry.

Menu and Selection Routines

Name: menu(): Source File: Parasim2.c
This is the main menu for Parasim.

Name: menu_1(): Source File: Parasim2.c
This routine selects the
simulation.

architecture and the output table to be used for the

Name: menu_2(): Source File: Parasim3.c
This routine displays and selects the Utilities subprograms.

Results and Test routines

Name: test_broadcast(): Source File: Parasiml.c
This routine produces a graph which depicts the effect of broadcast on the
execution of the network.

Name: form_00(): Source File: Parasim2.c
This routine will produce a line showing the effect of distributed and shared
memory models. The detail processors' activities is printed.

Name: test_all(): Source File: Parasim2.c
This routine tests all the architectures and report it to the useer.

Name: multi_simula_1 ():__________ Source File: Parasim2.c
This routine will produce a table of results for the output file.

Name: multi_simula_2(): Source File: Parasim2.c
This routine will produce a table of results for the output file.

Name: multi simula_3(): Source File: Parasim2.c
This routine will produce a table of results for the output file.

Name: comm_matrix(): Source File: Parasim3.c
This routine will print the number of data links between each pair of
processing nodes.

Matrix operations routines

Name: remove element(): Source File: Parasiml.c
This routine will remove one element from the matrix. It will adjust the
diagonal[] and column_no[] arrays that describe the matrix.

Name: convert matrix(): Source File: Parasim3.c
This routine is used to generate the Top array.

Name: data consist(): Source File: Parasim3.c
This routine checks that the data structures of the network are consistent with
the arrays passed from the calling program.

Name: network_check(): Source File: Parasim3.c
This routine is used to identify the nodes latest times.

- B . 6 -

Name: save_data(): Source File: Parasim3.c
This routine will save the arrays representing the matrix structure into a file.
Also inserted are extra checking information.

Name: matrix generateQ: Source File: Parasim3.c
This routine will create the matrix from random number generator.

Name: element(): Source File: Parasim3.c
This routine will return the element number of the matrix entry.

Name: read data(): Source File: Parasim3.c
This routine will read from a file the complete matrix information. Option to
select the version of the data file.

- B . 7 -

