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A B B R E V IA T IO N S

Amino acids: Single and Triple Letter Codes

Alanine ALA A Leucine LEU L
Arginine ARG R Lysine LYS K

Asparigine ASN N Methionine MET M
Aspartic acid ASP D Phenylalanine PHE F

Cysteine CYS C Proline PRO P
Glutamine GLN Q Serine SER S

Glutamic acid GLU E Threonine THR T
Glycine GLY G Tryptophan TRP W

Histidine HIS H Tyrosine TYR Y
Isoleucine ILE I Valine VAL V

Other Abbreviations 

AMP, adenosine monophosphate 

ATP, adenosine triphosphate 

CD, circular dichroism

Citrate synthase or CS, citrate synthase (EC 4.1.3.7) 

Co A, coenzyme A

D T N B , 5, 5 ’ -dithio-bis-(2-nitrobenzoic acid)

EDTA, (disodium) ethylenediaminetetraacetate

FPLC, fast protein liquid chromatography

Gdn, Guanidine

IEF, isoelectric focussing

Mr, relative molecular weight

NADH, nicotinamide-adenine dinucleotide

N AD PH , nicotinamide-adenine dinucleotide phosphate

NCS, Non-crystallographic symmetry

OAA, oxaloacetate

PAGE, polyacrylamide-gel electrophoresis

PBE118, Polybuffer exchanger 118



PEG , polyethylene glycol

RMS, Root mean square

rRNA, ribosomal RNA

SDS, sodium dodecyl sulphate

Tris, Tris(hydoxym ethyl)m ethylam ine

w /v , Ratio of weight to volume (g /m l)

SYMBOLS

E^i, Energy of activation 

k, rate constant 

R, Gas constant

a, b, c, a , /?, 7 , Real space cell axis lengths and interaxial angles 

B, Isotropic temperature factor

F 063, Fot,,, Observed structure factor and its amplitude

F calc, Fca/c, Calculated structure factor and its amplitude

/j , Atomic scattering factor

h, k, / or h ,  Miller indices

R, Crystallographic residual

V, Unit cell volume

w, weighting parameter

x , y, z, Cartesian coordinate axes

a ,  phase angle

a ,  /?, 7 , Eulerian angles

(ft, “0 , «, Spherical polar angles

A, wavelength

<r, standard deviation

fom, figure of merit

IV



A B ST R A C T

In order to gain detailed structural insights into features conferring 

thermal stability of Archaeal enzymes, the gene for citrate synthase from  

the thermoacidophilic Archaeon Thermoplasma acidophilum had previously 

been cloned, sequenced and over-expressed in Escherichia coli (Sutherland  

et al., 1990, 1991). The recombinant protein has been purified to hom o

geneity by a heat denaturation step at 65°C  followed by one of two different 

chromatographic techniques - chromatofocussing or affinity chromatogra

phy using Matrex Red GelA.

The purified protein was used for wide spread crystallization trials and 

three different crystal types were obtained; two belonging to the orthorhom- 

bic crystal system  (types 1 and 3) and one to the monoclinic crystal system  

(type 2). Data sets were collected for each crystal type on the in-house area 

detector, with crystal type 2  diffracting to a resolution limit of 2AK.

Molecular replacement techniques were employed on each data set with 

pig heart citrate synthase used as a search model. After the use of many dif

ferent molecular replacement packages and various deletion search models, 

a solution for crystal type 2 , which contained two dimers in the asym m et

ric unit, was identified using AMORE. A screen of heavy atom s was also 

undertaken in the search for isomorphous derivatives, but no useful phase 

information was gained from this study.

The structure for Tp.acidophilum citrate synthase has been partially 

refined using a simulated annealing protocol within X-PLOR, and has an 

R-factor of 23.5%. Structural comparisons have been made between this 

therm ostable citrate synthase and the mesophilic pig heart citrate syn

thase. A number of observations have been made that may be responsible 

for the thermostability of Tp.acidophilum citrate synthase, which has been



characterized using thermal inactivation assays and circular dichroism spec

troscopy.
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Chapter 1 : Introduction

Citrate synthase, a key metabolic enzyme from the thermoacidophilic 

Archaeon Thermoplasma acidophilum, has been targetted for use in com

parative structure/function studies to gain insights into both the evolution  

of organisms and protein thermostability. Therefore, an introduction to the 

enzyme will be followed by a brief synopsis about the current understand

ing of the phylogenetic relationships between organisms, highlighting the 

existence of the Archaea. Finally a brief review of the proposed basis for 

protein thermostability will be presented.

1.1 CITRATE SYNTHASE

1.1.1 The citric acid cycle

The citric acid cycle has two essential functions in living cells: (i) to 

oxidize metabolites and produce NAD (P)H  , leading to the generation of 

energy and, (ii) to produce metabolites necessary for biosynthesis. The 

main steps of the pathway are summarised in Fig. 1 .1 . Organisms inhabit 

a diverse range of environments and this leads to differing emphases being 

placed on the role played by the citric acid cycle in specific organisms. 

Citrate synthase is usually classed as the ‘first’ enzyme of the cycle and 

thus it plays an important role in the regulation of this m etabolic pathway. 

The enzyme is discussed in more detail below.

1.1.2 Biological role of citrate synthase

Citrate synthase plays a vital role in central m etabolism , facilitating the 

entry of acetyl-Co A into the citric acid cycle. It catalyses the reaction : 

oxaloacetate +  acetyl-Co A +  H2O < — > citrate +  CoA +  H + 

thus forming citrate by the creation of a carbon-carbon bond. The overall

1
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Figure 1 .1 : The Citric acid cycle
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reaction can be divided into three sub-reactions, namely (a) enolisation: 

coordinated acid-base abstraction of a m ethyl proton from acetyl-CoA to  

produce a carbanion; (b) condensation: coordinated acid-base nucleophilic 

attack of the carbanion of acetyl-Co A on the carbonyl group of oxaloacetate 

to produce citryl-CoA; and (c) hydrolysis: hydrolysis by an activated water 

of citryl-CoA to produce citrate and Co A (Remington, 1992).

1.1.3 Diversity of citrate synthases

Citrate synthase is present in essentially all living organisms and has 

been studied from organisms representing the three domains of life. There 

are two basic forms of citrate synthase, a dimeric ‘sm all’ form found in 

Eucarya, Gram-positive bacteria and Archaea and a hexameric ‘large’ form  

found in Gram-negative bacteria. Both forms are made up of identical sub

units of M r values of approximately 50 000, the hexamer existing function

ally as a trimer of dimers (Else et al., 1988). 14 citrate synthase sequences 

are thus far known (see Table 1.1).

There is a high degree of sequence identity between citrate synthases 

within a domain, with eucaryotic and bacterial citrate synthases showing 

mean sequence identities of 53% and 62% respectively, but sequence identi

ties between domains is far lower (18%-28%). Thermoplasma acidophilum 

citrate synthase has a mean identity of 28% with bacterial citrate synthases 

and 2 0 % with eucaryotic citrate synthases.

1.1.4 Regulation of citrate synthase activity

Since citrate synthase is the ‘first’ enzyme of the citric acid cycle, its 

regulation is thought to be of the upmost importance in the control of 

m etabolic flux through the cycle and so it has been studied widely. The 

hexameric form and the dimeric form have distinct regulatory properties.
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Table 
1.1: 

Prim
ary 

am
ino 

acid 
protein 

sequences 
of 

citrate 
synthases.

ORGANISM CLASSIFICATION REFERENCE
Pig heart Eucarya Bloxham  et. al (1981)

Saccharomyces cerevisia (mitochondria) Eucarya Suissa et. al (1984)
Saccharomyces cerevisia (glyoxysome) Eucarya Rosenkrantz et. al (1986)

Arabidopsis thaliana Eucarya Unger et. al (1989)
Tetrahymena thermophila Eucarya N um ata et. al (1991)

Escherichia coli Bacteria Bhayana and Duckworth (1984), Ner et. al (1983)
Rickettsia prowazekii Bacteria W ood et. al (1987)

Acinetobacter anitratum Bacteria Donald and Duckworth (1987)
Pseudomonas aeruginosa Bacteria Donald et. al (1989)

Acetobacter aceti Bacteria Fukaya et. al (1990)
Coxiella burnettii Bacteria Heinzen et. al (1991)

Mycobacterium smegmatis Bacteria David et. al (1991)
Bacillus sp.strain C4 Bacteria Schendel et. al (1992)

Thermoplasma acidophilum Archaea Sutherland et. al (1990)



The large hexameric citrate synthase of Gram-negative bacteria is alloster- 

ically inhibited by NADH (W eitzman,1981 and references therein), but the  

small dimeric form present in all other organisms is isosterically inhibited  

by ATP and not allosterically inhibited by NADH (W eitzman and Danson, 

1976 and references therein). Inhibition by these nucleotides can be seen 

as a form of negative feedback control of energy production since NADH is 

the primary end product of the cycle and ATP is the ultim ate end product.

Other regulatory properties are seen in specific citrate synthases. AMP 

has been shown to reactivate the NADH-inhibited enzyme from obligately 

aerobic Gram-negative bacteria, but not the citrate synthase from facul

tatively anaerobic Gram-negative bacteria (Weitzman and Jones, 1968). 

This is probably due to the facultative anaerobes having the ability to pro

duce energy by ferm entation, with the obligate aerobes being dependent on 

precise control of the citric acid cycle for their energy production.

1.1.5 3-dimensional structure of citrate synthase

The crystal structures of four different crystal forms of pig and chicken 

heart citrate synthases have been elucidated for a total of 13 a p o- and 

substrate-bound forms - Table 1.2. Each monomer of the dimer consists 

of two domains, a large and a small one, with the substrate binding site 

situated in the cleft between the two domains. Citrate synthase is almost 

entirely a-helical, the large domain containing 15 helices and the small 

domain containing 5 - Fig. 1.2. The two monomers are widely interdigi- 

tated, with residues from one monomer involved the the active site of the 

other monomer. The catalytic cleft is made up of residues from both the  

large and small domains. Citrate synthase exists as an open form, which 

on binding of substrates is converted to a closed form by a 18° rotation of 

the small domain with respect to the large domain (Rem ington et al.,

5



Table 
1.2: 

K
now

n 
crystal 

structures 
of 

citrate 
synth

p >
a>

ORGANISM SUBSTRATE ENZYME FORM RESOLUTION (A) REFERENCE
Pig heart — OPEN 2.9 Remington et. al (1982)
Pig heart citrate OPEN 2.7 Rem ington e t  al (1982)

Chicken heart — OPEN 2 . 8 Liao et. al (1991)
Pig heart citrate CLOSED • 2 . 2 W iegand et. al (1986)
Pig heart citrate and CoA CLOSED 2 . 0 W iegand et. al (1986)

Chicken heart citrate and CoA CLOSED 1.7 Remington et. al (1982)
Chicken heart citrylthioether CoA CLOSED 2.5 Remington (1992)

Pig heart oxaloacetate and S-ActCoA CLOSED 2.9 W iegand et. al (1984)
Chicken heart oxaloacetate and CM CoA CLOSED 1.9 Karpusas et. al (1990)
Chicken heart L-malate and CMCoA CLOSED 1.7 Karpusas et. al (1991)
Chicken heart D-m alate and CMCoA CLOSED 1.9 Karpusas et. al (1991)
Chicken heart L-malate and acetyl-CoA CLOSED 1.9 Karpusas et. al (1991)
Chicken heart D-m alate and acetyl-CoA CLOSED 1.9 Karpusas et. al (1991)



Figure 1 .2 : Schematic representation of a monomer of pig heart citrate

synthase, looking down the two-fold axis. The 20 a-helices (A-T) are dis

played as barrels. Reproduced from Remington et al. (1982).
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1982). This large conformational change in structure has been proposed to  

be necessary to ensure precise placement of the key catalytic residues. The 

crystal structure of chicken heart citrate synthase has also been elucidated  

(Liao et al ., 1991) and shows an almost identical conformation to the pig 

heart enzyme. The RMS difference between the C a  atom s of the two en

zymes is only 0.45A. To date, no other 3-dimensional structures of citrate 

synthases have been elucidated.

1.1.6 Proposed mechanism of action of citrate synthase

Both detailed structural and experimental studies have led to the propo

sition that citrate synthase can exist in ‘open’ and ‘closed’ conformations. 

The open form facilitates substrate entry and product release and the closed 

form catalyzes sequentially all the steps of the reaction. The binding of 

substrates occurs in an ordered manner with OAA binding first, leading 

to a conformational change and the creation of the acetyl-CoA binding 

site. HIS274, ASP375 and HIS320 (pig heart CS numbering) have been 

shown crystallographically and experimentally to be the residues central 

to the catalytic action of citrate synthase (Alter et al., 1990, Zhi et al., 

1991). These residues, and the ones forming the active site, are conserved 

in all known sequences, suggesting a universal mechanism of catalytic ac

tion. The key catalytic groups are on opposite sides of the catalytic cleft: 

HIS274 is on the large domain and HIS320 and ASP375 are on the small 

domain.

The rate limiting step of the reaction has been shown to be the form ation  

of the enol intermediate of acetyl-CoA. Scheme 1 .1  outlines the concerted  

acid-base mechanism of the enolisation reaction. HIS274 protonates the 

carbonyl oxygen of acetyl-CoA and due to the proximity of ASP375 to  

HIS274 which allows favourable electrostatic interactions and thus coupled
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Scheme 1 .1 : Mechanism for the condensation reaction of citrate synthase.

The first stage (enolisation) comprises the deprotonation of the m ethyl 

group of acetyl CoA by ASP375 with the concerted protonation of the car

boxyl oxygen by HIS274, forming a neutral enol interm ediate. The second  

stage (condensation) involves the rotation of the enol around the HIS274 H- 

bond and subsequent attack of the carbonyl carbon of oxaloacetate. HIS274 

is then protonated in a concerted fashion with the protonation of the car

bonyl oxygen by HIS320. Therefore both stages invoke coordinated acid- 

base catalysis. Reproduced from Remington (1992).
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charged states, ASP375 deprotonates the methyl group at the same tim e 

to form the neutral enol intermediate.

The next step of the reaction mechanism is the condensation step. This 

again is thought to occur by a concerted acid-base catalysis. HIS320 acts 

as the acid and protonates the carbonyl oxygen of OAA, and HIS274 acts 

as the base and recycles the proton that it donated in the enolisation step. 

HIS274 is hydrogen bonded to the product complex and the enol rotates 

around this bond to attack the activated carbonyl of OAA to form the 

intermediate citryl-CoA.

The final step in the reaction mechanism is the hydrolysis of citryl-CoA  

to form citrate and CoA. This is probably the least well understood of 

the proposed reaction steps but two schemes have been proposed. Firstly  

(Scheme 1.2) Remington (1992) suggests that an as yet unidentified base de

protonates and thus activates a water molecule which attacks the thioester 

forming a tetrahedral intermediate. Again this is a concerted reaction in

volving the recycling of a proton to HIS274. Secondly (Scheme 1.3) Alter 

et al. (1990) propose that ASP375 forms an anhydride complex via attack  

of the nucleophilic carbon of citrate, thereby releasing CoA. The anhydride 

is then attacked by a base-activated water molecule to form citrate and re

stores the initial state of the enzyme. Mutagenesis studies have shown that 

ASP375 is vital to the reaction mechanism and to the hydrolysis reaction  

(Man et al., 1991). ASP375 in this scheme has to be deprotonated which is 

in opposition to its proposed state after the condensation reaction. Thus, 

further insights have to be gained to be able to clarify this conflict.

10



1.2 CLASSIFICATION OF LIVING ORGANISMS

1.2.1 Woese and his three domains of life

Prior to the seminal ideas of Woese and Fox (1977), living organisms 

were classed as either eukaryotes (possessing a nucleus) or prokaryotes (lack

ing a nucleus). Using a phylogenetic analysis based upon ribosomal RNA  

sequences ,Woese and Fox proposed that living organisms can be split into  

three basic kingdoms: the eubacteria, the eukaryotes and the archaebacte- 

ria. This classification system  was updated by Woese et al. (1990) propos

ing the new taxon, a domain, existing above the level of kingdom. Life was 

now seen as comprising three domains, the Eucarya , the Bacteria and the 

Archaea, with each domain containing two or more kingdoms.

1 .2 . 2  Lake and his five groups of life

Using refined methods of sequence analysis (see below), Lake (1991) has 

proposed that living organisms should be divided into five major groups: 

the Eubacteria, the Halobacteria, the M ethanogens, The Eocytes (the sulphur- 

dependent thermophiles) and the Eukaryotes. Thus, contrary to the view of 

W oese, the so called Archaea should not be seen as a monophyletic group.

Both these classifications are solely based on phylogenetic analysis which 

will be discussed in more detail below.

1.3 PHYLOGENETIC ANALYSIS OF LIVING ORGANISMS

1.3.1 The founding father’s view -  Woese and his rooted three domains

Woese and Fox (1977) were the first to propose an alternative view  

of phylogenetic classification to the dichotomous one of eukaryotes and 

prokaryotes. This was made possible by the advance of molecular biological 

techniques, allowing the sequencing of genes from a diverse range of

11
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Scheme 1.2: Proposed mechanism of hydrolysis in the reaction m echanism  

of citrate synthase (Rem ington, 1992). Base-deprotonation of an activated  

water molecule occurs which attacks the thioester in a concerted reaction  

involving the deprotonation/protonation of HIS274. The base-abstracted  

proton is finally transferred to the sulphur of CoA to restore the initial 

state of the enzyme. Reproduced from Rem ington (1992).
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NĤ *  V ^  V  ^
0  1 HV  50 8 \  y

C 7 \  V
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organisms. Thus the comparison of gene sequences, in this case 16s rRNA  

genes, led to the concept of the archaebacteria as a third and distinct king

dom. 16s rRNA is a good molecular chronometer for phylogenetic analysis 

due to its universality and constancy in function. Upon the elucidation of 

more and more gene sequences, Woese has developed his ideas and pro

posed that living organisms should be classified into three dom ains, the 

Archaea, the Bacteria and the Eucarya. The current rooted phylogenetic 

tree showing the relationship between the three domains is shown in Fig. 

1.3.

1.3.2 The old pretender’s view -  Zillig and his fusion event

Although the integrity of the three domains is kept by Zillig et al. (1989) 

the actual rooted phylogenetic tree proposed is different. The tree was de

rived from studying the gene sequences of RNA polymerases from a wide 

range of organisms. In comparison to the rooted Woese tree, the tree pro

posed by Zillig has a central split from a progenote into the archaebacteria 

and the eubacteria. He proposes that the eukaryotes have arisen from a 

fusion event between the archaebacteria and the eubacteria (Fig. 1.4) due 

to the fact that, of the three polymerases found in eukaryotes, pol2  and 

pol3 are homologous to the archaebacterial counterpart but p o ll is closer 

to the eubacterial counterpart.

1.3.3 The black sheep’s view -  Lake and his eocyte tree

Although the archaebacterial tree espoused by Woese is widely hailed as 

being correct, it has its fierce opponents; the case against is largely led by 

Lake (1991). Using the same set of data (16s rRNA sequences) but using 

a different algorithm, he proposes the five grouped eocyte tree - Fig. 1.5. 

There is a deep cleft near the root of the tree dividing living organisms into
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Figure 1.4: Schematic representation of the fusion event as an explana

tion for the evolution of organisms proposed by Zillig et al. (1989). The 

dotted lines represent the acquisition of mitochondria and chloroplasts by 

the eukaryotes. The intermediary lines X, Y and Z show how for cer

tain molecules certain eubacterial and archaebacterial lineages could branch 

from the eukaryotic lineages. The dot-dash line represents molecules (eg. 

p o ll)  that were inherited from an eubacterial ancestor and the interrupted 

line represents molecules (eg. pol2 and pol3) that were inherited from an 

archaebacterial ancestor. Reproduced from Zillig et al. (1989).
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two monophyletic superkingdoms, the parkaryotes and the karyotes. The 

former comprises the eubacterial, the halobacterial and the methanogenic 

groups and the latter the eocyte (the hyperthermophiles) and eukaryotic 

groups.

1.3.4 W hy the confusion?

The m ajority of controversy over phylogenetic analysis of living organ

isms has been between Woese and his many followers and Lake. Even  

though both camps wore analysing the same set of sequence data, the dif

fering end results have provoked wide debate about the validity of the al

gorithms used and the results drawn from them. Both the Lake and Woese 

algorithms are mathematically correct but it is the assum ptions concerning 

the events of microevolution that differ. Neither of the two camps use the  

whole rRNA sequence and actually select different regions for subsequent 

analysis. Lake has argued that Woese results are dogged by large unequal 

rate effects (arising from the fact that the rates of change of a nucleotide are 

different in adjacent branches of a phylogenetic tree) which produces unre

liable analyses. Woese reposted. He insists that Lake’s analysis is affected 

by an unspecified system atic error (Olsen and Woese, 1989).

1.3.5 W hy choose the Woese convention?

The most widely used and accepted classification scheme is that of 

Woese and therefore, the wide use (including this thesis) of the associ

ated nomenclature (that of the Eucarya, the Bacteria and the Archaea). 

Other than the use of rRNA and proteins as phylogenetic markers, evidence 

supporting the existence of the Archaea as a distinct domain comes from  

studies revealing unique features of the physiology and biochemistry of the 

Archaea (Kandler, 1993).
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1.4 T H E  A R C H A E A

The Archaea comprise three phenotypically distinct groups: the meth- 

anogens, the sulphur-dependent thermophiles and the halophiles (Woese et 

al. 1978). The methanogens are obligate anaerobes that produce m ethane 

from hydrogen and carbon dioxide, or other simple Ci com pounds (reviewed 

by Jones et al. 1987). The sulphur-dependent thermophiles grow at high 

temperatures (up to 113 °C ), usually anaerobically, and utilise sulphur as 

an electron acceptor (reviewed by Stetter and Zillig 1985). The halophiles 

grow in high salt conditions and maintain a high level of internal salt (up 

to 3.5M KC1) (reviewed by Kushner, 1985).

On the basis on rRNA and protein phylogenetic analysis (the Woese 

variety) the Archaea can be split into two basic groups: the euryarchaeota 

(halophiles/m ethanogens) and the crenarchaeota (sulphur-dependent ther

mophiles). Tp.acidophilum has been shown to belong to the former group 

although it is a thermophile, but recent studies suggest that it belongs to 

a unique branch within the Archaea (see section 1.5.1).

1.4.1 Biotechnological potential of the Archaea

The adaptations necessary for the Archaea to exist (and thrive) in ex

treme environments will yield a wealth of information concerning all aspects 

of stability. The insights into how proteins, for exam ple, are stabilised and 

the discovery/isolation of highly stable enzymes from these organisms may 

be extremely valuable to biotechnological industries (Hough and Danson, 

1989).
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1.5 THERMOPLASMA ACIDOPH ILUM

1.5.1 Classification of Tp.acidophilum

Tp.acidophilum was first isolated from burning coal-refuse piles by Dar- 

land et al. (1970) and has since been discovered in naturally occurring 

hot springs and sulfataric fields (Segerer et al., 1988). The organism is an 

aerobic heterotroph living at temperatures between 50 -64°C and between  

pH 0.5-3.0.

Tp.acidophilum is a thermoacidophilic Archaeon. Previous studies (Yang 

et al., 1985) on 16S rRNA sequence comparison led to the proposal that 

the organism belonged to the methanogen-halophile branch of the then ar

chaebacteria, later reclassified the euryarchaeota (see section 1.4). However, 

phenotypically it shows a closer resemblance to the sulphur-dependent ther- 

mophile branch, the crenarchaeota. A recent study of the primary and sec

ondary structures of 23S rRNA by Ree et al. (1993) shows that 23S rRNA  

from Tp.acidophilum shares secondary structural characteristics with both  

the euryarchaeota and the crenarchaeota. From these results and from  

a sequence-derived phylogenetic tree, they propose that Tp.acidophilum 

stem s from an ancient, and possibly unique, divergence within the archaeal 

domain - see Fig. 1.6.

1.5.2 Environmental adaptation of Tp.acidophilum

Tp.acidophilum grows optimally at moderately high temperatures and 

low pH values and therefore must possess adaptive mechanisms to with

stand these extremes. Although Tp.acidophilum grows at a low pH (0 .5 -  

3.0) it maintains an internal cytoplasmic pH value of approximately pH6 . 

A H+-translocating ATPase is known to regulate the internal pH of other 

acidophiles, but this enzyme is not present in Tp.acidophilum.
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Figure 1.6: Phylogenetic tree of the Archaea based on 23S rRNA sequence 

analysis proposed by Ree et al. (1993), with the bacterium  Bacillus subtilis 

serving as an outgroup. Tp.acidophilum  is shown to stem  from an ancient 

divergence within the Archaeal domain. Reproduced from Ree et al. (1993).
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Searcy (1986) proposed that this absence is probably due to the extreme 

environmental living conditions of Tp.acidophilum and that the organism  

possesses an electron transport chain for maintenance of its internal pH.

Tp.acidophilum, along with all other Archaea and some bacterial ther

mophiles, possesses isopranyl glycerol ether-linked lipids in contrast to fatty  

acid glycerol ester-linked lipids in all other living organisms. All archaeal 

glycerol ether lipids also contain the unusual 2,3-sn-glycerol (Gambacorta 

et al., 1993). The presence of these lipids serve as a marker for archaeal or

ganisms, and may reflect an essential adaptation for extremophilic growth.

Tp.acidophilum DNA has an average G -C  base com position of 46% 

(Christiansen et al., 1975; Searcy and Doyle, 1975). High G -C  content is 

known to cause increased relative thermal stability of DNA, but in this in

stance some factor extrinsic to the DNA must be necessary for the thermal 

stabilization. A histone-like protein (HTa) has been identified and puri

fied from Tp.acidophilum and has been shown to bind specifically to DNA  

(Searcy, 1975; DeLange et al., 1981), causing a stabilization of the DNA  

against thermal denaturation (Stein and Searcy, 1978).

Amino acid sequences of a number of Tp.acidophilum proteins are known, 

either from amino acid sequencing ( HTa protein (Delange et al, 1981) and 

ferredoxin (Wakabayashi et al., 1983)) or from DNA sequences (for example, 

citrate synthase (Sutherland et al., 1990), glucose dehydrogenase (Bright 

et al., 1993) and elongation factor-2 (Pechmann et al., 1991), but sequence 

comparison studies tend to be poor in identifying features responsible for 

thermal stabilization of proteins. 3-dimensional structures of proteins are 

much more valuable tools for gaining insights into the thermal stabilization  

of proteins but to date only one enzyme (glucose dehydrogenase (J.John  

personal communication) from Tp.acidophilum and only one archaeal pro-
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tein (Rubredoxin from Pyrococcus furiosus (Day et al., 1992) have had their 

3-dimensional structures elucidated.

1.5.3 Tp.acidophilum citrate synthase

The kinetic parameters of Tp.acidophilum citrate synthase in relation 

to other archaeal citrate synthases were studied by Danson et al. (1985). 

Smith et al. (1987) purified Tp.acidophilum citrate synthase and showed 

the enzyme to be present as an active dimer with subunit Mr 43000 ( + / -  

2000). The gene for the enzyme was cloned and sequenced (Sutherland  

et al., 1990) and subsequently overexpressed in E.coli (Sutherland et al., 

1991). Tp.acidophilum citrate synthase was found to be approximately 

50 residues shorter than all other citrate synthases known at the tim e, 

and from sequence alignment studies this was attributed to an N-terminal 

extension in the other citrate synthases. More recent studies have revealed 

other archaeal citrate synthases (Pyrococcus furiosus  (Muir et al., 1993), 

Haloferax volcanii (James et al., 1991) and Sulfolobus acidocaldarius (Lill 

et al., 1992) to be N-terminally stunted, a feature also present in citrate 

synthase from a thermotolerant Bacillus species (Schendel et al., 1992). 

Tp.acidophilum citrate synthase shows a mean identity of 28% to bacterial 

citrate synthases and a mean sequence identity of 2 0 % to eucaryal citrate 

synthases. Despite this low sequence identity, sequence alignment studies 

indicate conservation of 8  out of 1 1  residues vital for catalytic activity in 

pig heart citrate synthase (Sutherland et al., 1990), suggesting a similar 

mechanism of catalysis and 3-dimensional structure for both the eucaryal 

and archaeal enzymes.
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1.6 P R O T E IN  STA BILITY

1.6.1 Introduction

A fundamental, and as yet not understood, question concerning pro

tein structure is how proteins of the same function from different sources 

can have large differences in their stability despite possessing a very sim

ilar folded conformation. The earliest life on earth was thought to be 

thermophilic in nature and proteins from thermophilic sources, especially 

archaeal ones, may be seen as ancestral forms. Changes seen in their 

mesophilic counterparts may then account for differences in stability. There

fore, structural studies on the homologous proteins from sources living in 

a wide range of habitats should yield information as to why some proteins 

are more stable than others.

Protein stability, per se, can be seen as the difference in stability between  

the folded and unfolded states of the protein. The conformation of the 

folded native state can be seen as the global energy minim um , and the 

difference in free energy between the folded and unfolded states as the 

conformational stability of the protein. Globular proteins have been shown 

to have a conformational stability of 5-15 Kcalmol-1 . This is a relatively 

small value and must reflect an energetic balance between the need for 

stability and the need for protein flexibility and eventual turnover. The 

forces which govern this conformational stability are acting so as to reduce 

the free energy of the folded state relative to the unfolded state.

There are 6  basic forces that affect the free energy of the folded state 

relative to the unfolded state: conformational entropy, disulphide bonds, 

hydrogen bonds, ionic interactions, hydrophobic interactions and Van der 

Waals forces.

Thermal stability, and hence protein stability, has been studied in one of
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three basic ways - primary sequence studies, elucidation of the 3-dimensional 

structure of proteins and site-directed mutagenesis studies. Although the 

first two types of study have relied on comparisons of proteins of differing 

stability, the m ajority of mutagenesis studies have concentrated on specific, 

well-characterised mesophilic proteins in order to increase the stability of 

the mutant with respect to the wild type protein. Each of these three ways 

will be discussed in more detail below.

1.6.2 Primary sequence comparisons

The majority of the work in this area has concentrated on amino acid 

replacements from mesophile to thermophile where a tertiary sequence was 

known for one of the members of the comparison which allows structural 

positioning of the observed changes. Menendez-Arias and Argos (1989) 

updated and refined the work of Argos et al. (1979) due to the increase 

in available mesophilic and thermophilic sequences. From this study they  

were able to reveal general trends in mesophile to thermophile amino acid 

replacements, resulting in a top ten of most common substitutions, with  

L Y S->A R G  and SE R ->A L A  being the first and second in this list. The 

former correlates well with an earlier study of Merkler et al. (1981) who re

ported that the A R G /(A R G +L Y S) ratio of proteins correlates with the op

tim um  growth temperature of the organisms from which the proteins were 

isolated. The top ten changes were proposed to increase the hydrophobicity 

and decrease the flexibility of the thermophilic protein. The majority of 

the changes were localised in a-helices and/or dom ain/subunit interfaces. 

Although specific amino acid substitutions were identified, they proposed  

that it was unlikely that a single replacement would cause a large increase 

in thermostability.

Ikai (1980) carried out a statistical analysis of protein sequences by
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investigating the relative volume of a protein occupied by aliphatic side 

chains (ie. ALA, VAL, ILE and LEU) - the aliphatic index. Proteins from  

thermophilic hosts showed a significantly higher index value than those 

from mesophilic hosts.

1.6.3 Structural analysis of homologous mesophilic and thermophilic 

proteins

The elucidation of homologous structures of varying stability has al

lowed direct structural comparisons, and therefore accurate positioning of 

specific changes, and comparisons of specific interactions. A relatively small 

number of thermophilic proteins have had their crystal structures elucidated  

and a few specific examples will be discussed below. In all known cases to  

date the mesophilic and thermophilic proteins have had very similar overall 

conformations allowing accurate pinpointing of any minor structural differ

ences which may account for their differing stability.

The first structural investigation into thermostability was preformed 

by Perutz and Raidt (1975) who compared mesophilic and thermophilic 

ferredoxins. They reported that the presence of a few extra internal salt 

bridges were the most likely causative agent for the increased stability.

Ishikawa et al. (1993) elucidated the structure of the thermophilic Ri- 

bonuclease H (RNaseH) from Thermus thermophilus allowing direct com

parisons to its mesophilic counterpart from E.coli. A large cluster of 8  

aromatic residues are seen in the former, a known stabilizing feature in 

proteins (Burley and Petsko, 1985). An increase from 9 to 14 salt bridges 

was also observed in the thermophile compared to the mesophile, 4 of which 

are intra-helical salt bridges that serve to cancel out the macro-dipole of 

the respective helix. Finally, they observed a substitution of a lysine in a 

left-handed helical conformation in the mesophile with a glycine residue in
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the same conformation in the thermophile. This was proposed to decrease 

the steric hindrance between the (3-carbon atom  and the carbonyl oxygen 

atom within the same residue.

Davies et al. (1993) compared the structure of phosphoglycerate kinase 

from the thermophile Bacillus steareothermophilus with the same enzyme 

from yeast. They observed an additional 15 electrostatic interactions in 

the thermophile, 10 of which are concentrated in the N-terminal domain 

of the protein, a region which is known to be the least stable part of the 

mesophilic protein.

The above three examples describe putative stabilizing interactions in 

thermophilic monomeric proteins. However, a large number of proteins 

exist functionally as oligomers and therefore they may reveal specific inter

actions that are necessary to maintain the integrity of the oligomer.

Kelly et al. (1993) elucidated the structure of malate dehydrogenase 

from Thermus flavus , an enzyme stable up to 90°C. On comparison to 

the homologous (55% sequence identity) enzyme from E.coli, they found 

good correlation with the work of Menendez-Arias and Argos (see above) 

with respect to both sequence changes and the position of these changes. 

There was a marked increase in alanine content of the thermophile, with the 

m ajority of the changes occurring in solvent-accessible a-helices. 4 extra 

ion pairs were also present, three in the subunit-subunit interface and one 

in the domain interface.

A limited amount of stability analysis was carried out on the ther

m ostable enzymes isopropylmalate dehydrogenase (Imada et al., 1991) and 

glyceraldehyde-3-phosphate dehydrogenase (Walker et al., 1980) from Ther

mus thermophilus and Bacillus steareothermophilus, respectively. In both  

of these enzymes an increase in hydrophobic interactions were observed in
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inter-subunit contacts.

There are only a very limited number of homologous mesophilic and 

thermophilic protein structures known and as yet no obvious trend of sta

bilizing features has been observed. This may be due to the relatively low 

sequence identity between homologues with neutral amino acid replace

m ents resulting in a masking of stabilizing features, or alternatively may 

be due to different proteins having different m ethods of stabilization. This 

conflict may be resolved with the elucidation of the crystal structure of 

more thermophilic proteins. An alternative approach is the use of site- 

specific mutagenesis experiments in order to probe the contribution of spe

cific amino acids to global protein stability.

1.6.4 M utagenesis experiments

The majority of the work in this field has concentrated on two pro

teins - Barnase (the ribonuclease from Bacillus amyloliquefaciens) from the 

Fersht group and lysozym e (from the bacteriophage T4) from the group 

of M atthews. Nevertheless, many experiments have been carried out that 

have been rationally designed through homologous structure studies.

1.6.4.1 Structural context

The most im portant consideration in the design of m utagenesis experi

m ents to test theories concerning protein stability is the structural context 

of the proposed change. For example, engineered salt bridges on the surface 

of T4 lysozym e produce no significant change in stability (D ao-Pin et al. 

,1991) and no change in the structure of the m utant protein. The added 

interaction on the surface is probably off-set by entropic cost of restricting 

the m otion of the ion pairs. On the other hand, the disruption of a buried 

electrostatic interaction in T4 lysozym e (HIS31-ASP70) created a mutant
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protein of decreased stability (Anderson et al., 1990). This concept of struc

tural context was demonstrated dramatically by Rennell et al. (1991) who 

substituted 163 of the 164 residues of T4 lysozyme with 13 different amino 

acids resulting in 2015 different single amino acids substitutions. Only 173 

of these mutations resulted in a significant destabilisation and they were 

almost all localised to regions of the protein that have low mobility.

1 .6 .4.2 Hydrogen bonds

The contribution of hydrogen bonds to the stability of the folded state  

has been investigated by mutation of known H-bond acceptors and donors 

within a protein of known structure. Mutation of a charged H-bond accep

tor/donor results in a larger decrease in stability than that of an uncharged  

one in tyrosyl-tRNA synthetase (Fersht et al., 1985). Shirley et al. (1992) 

have dem onstrated that H-bonding in RNase T1 contributes a large extent 

to the protein’s conformational stability.

1.6.4.3 Hydrophobic interactions

The burial of hydrophobic residues is believed to be the major driving 

force of protein folding and therefore a major contributor to stabilization of 

the folded state. Studies on this force have concentrated on cavity forming 

m utants by creating small deletions in side chains without changing their 

geometry, eg. ILE->V A L, A LA ->G LY  and L E U ->A L A . Typically 1.5 

K Jm ol- 1  of stability is lost per methylene group deleted (Kellis et al., 1988). 

Crystal structures of the m utants usually reveal a rearrangement of the 

structure to com pensate for the loss of missing interactions. Eriksonn et al. 

(1992) solved the crystal structure of several L E U ->A L A  cavity forming 

m utants in T4 lysozyme. In every mutant a cavity was present, but in some 

instances large shifts of up to lA  in some parts of the protein were observed
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as the cavity vacated by the LEU residue was filled by other atom s. In 

other cases, the m utant structure did not differ significantly from the wild 

type and therefore larger cavities were observed than in the structurally- 

rearranged m utant. The size of the cavity was shown to correlate in a linear 

fashion with the loss of stability observed. The generated cavity is less 

likely to collapse if the hydrophobic packing density is high in the wild type 

because of stronger van der Waals interactions with the m ethylene group 

of interest and the surrounding side chains. Removal of more than one 

methylene group leads to a cumulative decrease in stability and therefore, in 

the folded state, the hydrophobic interactions probably stabilize the protein 

cumulatively.

Destabilization of the wild type protein by cavity forming m utations 

have been reasonably successful, but stabilization by improvement of the 

packing of the hydrophobic core has had only lim ited success. Eijsink et 

al. (1992) created two m utants (L E U -> T R P  and M E T -> T R P ) in the  

hydrophobic core of the neutral protease from Bacillus subtilis, but only 

increased the thermal stability by a maxim um  of 0.4°C . This is probably 

due to increased internal strain caused by the bulkier side-chains.

1 .6 .4.4 Conformational entropy

Investigations into the contribution of conformational entropy to protein 

stability have been carried out by M atthews et al. (1987). This force is the 

major opposing force to protein folding/stability. Two substitutions in T4  

lysozym e were m ade to increase the bulk of specific residues (G L Y ->A L A  

and A L A -> P R O ) without causing any bad contacts, and hence reduce the 

conformational flexibility of the protein. These two changes resulted in only 

a slight increase in stability.
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1.6.4.5 Disulphide bonds

The engineering of disulphide bonds into specific parts of the protein 

has had variable success in increasing stability. 4 different S-S bonds were 

m utated into T4 lysozyme which increased the thermal stability between  

5-10°(7 (M atsumura et al., 1989). A larger increase was probably not seen 

due to additional strain energy produced by the formation of the S-S bond 

within the protein. This strain can be reduced if the S-S bond is engineered 

into flexible parts of the protein and a large loop is formed by the new bond. 

Gokhale et al. (1994) increased the conformational stability of thym idylate  

synthase from the mesophile Lactobacillus casei by nearly 40°C  by creating 

a m utant with 2 S-S bonds across the dimer interface. The m utant protein 

was optimally active at 55°(7 and still retained some activity at 65°C.

1.6 .4 .6  cx-Helical stability

A large amount of m utational studies has concentrated on the factors 

that contribute to a-helical stability. Horovitz et al. (1992) created 19 

different mutations of an internal ALA residue in helix 32 in Barnase, 

equivalent to all other amino acids, to generate a helix-forming propen

sity scale for amino acids. In agreement with studies on synthetic peptides 

(O ’Neil and Degrado, 1990), alanine was found to be the m ost stabilizing 

with proline the least. Although many studies correlate with these findings 

the surrounding residues, the position of the amino acid in the helix and 

the position of the helix itself within the protein may contribute to specific 

helix stability. The helix propensity scale can be rationalized energetically 

in one of three ways; the burial of hydrophobic surface and van der Waals 

surface, differences in the conformational entropy of each amino acid in the 

helix relative to the unfolded state and finally, differing solvation effects.

One of the most consistent ways to increase the stability of a protein by
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site-directed mutagenesis is the mutation of the helix end residues. Helices 

have an inherent macro-dipole along their length with a positive charge 

at the N-terminus and a negative charge at the C-terminus. M utagenesis 

studies (for exam ple, Serrano et al., 1992) replacing the Ncap residue with a 

negatively-charged one (eg GLU or ASP) or a neutral polar residue (SER  

or THR) or the Ccap residue with a positively charged residue (eg LYS, 

ARG or HIS) tends to stabilize the helix and the protein as a whole.

1.6.4.7 Specific examples

The majority of the above m utations have caused only small rises in 

the melting tem perature of the protein, but there have been a few specific 

examples where dramatic increases in stability have been produced. Kotik 

and Zuber (1993) m utated two residues (SER ->A LA  and T H R ->A L A ) in 

a-B  helix which lies in the subunit interface in the tetrameric lactate de

hydrogenase (LDH) from the mesophilic bacterium Bacillus megaterium.  

The m utant protein exhibited a 20°C  rise in therm ostability with respect 

to the wild type protein and also increased the rigidity of the whole enzyme. 

The m utations were rationally designed by sequence comparisons with the 

closely-related LDH from the thermophilic bacterium Bacillus steareother

mophilus.

M utagenesis studies on E.coli RNaseH confirmed findings from struc

tural comparisons between the mesophile and thermophile. A m utant was 

created in which the lysine in the left-handed helical conformation (see 

above) was replaced by the glycine residue seen in the thermophile (Kimura 

et a/., 1992a). A 6 .8 °C rise in the thermostability of the mutant was seen 

with respect to the wild type. A m utant of the mesophilic protein was also 

m ade which had a series of substitutions in its equivalent region to the aro

m atic cluster region of the thermophile, in order to make the m utant partly
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resemble the thermophile. An 8 .2 °C  rise in thermostability was observed  

for the mutant with respect to the wild type (Kimura et al., 1992b).

1.6.5 Concluding remarks

A vast wealth of information has been gained on specific factors af

fecting protein stability, primarily from the seemingly countless number of 

mutagenesis experiments. However, the ability to design on a rational ba

sis m utants of significantly increased stability, seems still to be som e way 

in the future. The majority of the m utants come from a small range of 

small proteins and it is clear that structural information is needed on a 

wider range of thermostable proteins. Eventually, general trends governing 

protein stability and enhanced stability may be forthcoming, but what is 

already clear is that different proteins may be stabilized in different ways 

and the power of cumulative interactions on the protein as a whole is vi

tally important. Nevertheless, confident predictions of factors governing 

the stability of a specific protein will be able to be made only if the crystal 

structure of that protein is known.
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1.7 BACKGROUND AND AIMS

Citrate synthase was chosen as a model enzyme system  from which in

formation could be gained concerning both the archaeal features of proteins 

and the features that confer thermostability. The gene for citrate synthase 

from the thermoacidophilic Archaeon Thermoplasma acidophilum had pre

viously been cloned and sequenced (Sutherland et al., 1990) and expressed 

in E.coli (Sutherland et al. , 1991). The aims of this work were initially, 

to gain sufficient quantities of pure protein for wide spread crystallization  

trials. Once suitable crystals had been grown, structural elucidation was 

hoped to proceed using the known crystal structure of the mesophilic pig 

heart citrate synthase as a search model in molecular replacement tech

niques. If the structural elucidation of the thermophilic citrate synthase 

proved to be successful, detailed structural comparisons could be carried 

out between pig heart and Tp.acidophilum citrate synthases in order to  

highlight structural features conferring thermal stability on the archaeal 

enzyme.
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C h ap ter  2 : E x p er im en ta l T ech n iq u es and P ro g r a m s

2.1 MATERIALS

2.1.1 Enzymes,reagents and other materials

5 ,5’-dithiobis-(2-nitrobenzoic acid) (DTNB); oxaloacetate and ampicillin  

were from Sigma, Poole, UK. Tryptone and yeast extract were from Difco, 

Michigan, USA. CoenzymeA was from Boehringer M annheim, Germany. 

Microsep microconcentrators were from Flowgen, UK. PBE118, pharma- 

lyte, protein molecular weight standards and Phast gels were from Pharmacia- 

LKB, UK.

All other chemicals were from BDH, Fisons and Sigma (all UK). All sol

vents (standard laboratory grade) were from BDH, UK and Fisons, Lough

borough, UK.

2.2 METHODS

2 .2 . 1  Assay for citrate synthase activity

Samples were assayed spectrophotometrically for Thermoplasma acido- 

philum citrate synthase activity at 55°C  according to the m ethod of Srere 

et al. (1963). The assay mixture contained 2 0 mM Tris-HCl (pH 8.0), Im M  

EDTA, 0.2mM acetyl CoA, 0.2mM oxaloacetate and O.lmM D TN B. Acetyl 

CoA was prepared using the method of Stadtm an (1957). The assay was 

started by adding enzyme and the increase in absorbance m onitored at 

412nm  (E 4 1 2  13600 m o/_1 cm _1).

2.2.2 Bradford protein concentration determination

900/d Bradford assay mixture (0 .0 1 % (w/v) Coomassie Blue G.250, 5% 

ethanol, 8.5% H 3 P O 4 ) was added to 100/d protein sample. The sample
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was measured spectrophotometrically at 595nm (Bradford, 1976). Protein  

concentrations were read off a Bovine serum albumin calibration curve of 

a range of 0-25/ig.

2.2.3 Production of Thermoplasma acidophilum citrate synthase in 

Escherichia coli

1 0 ml cultures of E.coli, containing the plasmid (pCSEH19) which car

ried the Tp. acidophilum citrate synthase gene, was grown for 17hr at 32°C  

in 2xYT medium containing ampicillin ( 25/ug/ml ). An equal amount of 

ampicillin was added and the culture incubated for another hour. This cul

ture was then used to subinoculate 11 2xYT medium containing ampicillin 

( 25/Ltg/ml ) and the above incubation carried out.

2.2.4 Preparation of cell extracts from E.coli

Cells from 11 cultures were harvested by centrifugation (5000g at 4°C  

for lOmin), resuspended 20mM Tris-HCl (pH8.0) and 2mM EDTA and 

sonicated with a 20mm probe at 180 W atts for 2 min. Cell debris was 

removed by centrifugation ( 1 2 0 0 0 g at 4°C  for 2 0 min).

2.2.5 Heat purification

Cell free extracts of E.coli were heated in a glass tube for 15min at 

65°C. Denatured protein was then removed by centrifugation (lOOOOg at 

4°C  for 2 0 min)

2.2.6 Gel filtration

The supernatant from the heat treatment was then passed down a FPLC  

Superdex G-200 gel filtration column (Pharmacia-LKB) pre-equilibrated 

with 25mM triethylamine (pH ll.O ) or a suitable crystallization buffer.

36



2.2.7 Chromatofocussing

Chromatofocussing was carried out on a column packed with Poly

buffer exch an gerll8  (PBE118). The fractions from the gel filtration with  

Tp.acidophilum citrate synthase activity were loaded onto the PBE118 col

umn pre-equilibrated with 25mM triethylamine (pH ll.O ) and eluted with  

pharmalyte (pH8.0).

2.2.8 Matrex Red GelA affinity chromatography

The heat treated extract containing Tp.acidophilum citrate synthase 

activity was loaded onto a 20ml column packed with M atrex Red GelA  

pre-equilibrated with 20mM Tris-HCl and ImM  EDTA buffer. Elution  

buffer contained 20mM Tris-HCl, ImM  EDTA, 5mM oxaloacetate and Im M  

CoenzymeA.

2.2.9 Crystallization trials

The hanging drop vapour diffusion m ethod was used for all the trials 

(M cPherson, 1990). The precipitants used included PEG3350 (3%-24%), 

PEG6000 ( 2 .5% -ll% ), PEG800 (7%-9%) and (N H A)2 S O A (20%-70%). The 

pH range investigated was 3.5-9.5. The matrices were repeated at 25°C and 

at 4°G.

2.2.10 Therm ostability assay

A known volume of 20mM Tris-HCl (pH8.0) and Im M  EDTA buffer was 

equilibrated to a known temperature, measured via a tem perature probe. 

A small volume of extract was added giving a known dilution. After a 

known time a 1 0 /il aliquot of the mixture was assayed for citrate synthase 

activity and this was repeated over a time course.
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2 .2 . 1 1  Circular dichroism spectra

All spectrum were recorded on a JASCO J-600 spectropolarimeter using 

a 0.1cm pathlength cuvette. A protein concentration of 48/ug/ml in lOmM  

Tris-HCl (pH 8 .0 ) buffer was used throughout.

2.3 PROGRAM S USED

D ata Collection and Analysis

X D S 1: Autom atic processing of Xentronics data frame to produce list of 

scaled hkl intensities. Described in detail in Chapter 5. Version2 by Kabsch 

(1988).

X S C A L E 1: Applies empirical absorption coefficient to individual intensi

ties. Allows scaling and merging of individual data sets. Version (October 

1991) by Kabsch.

X X 1: Modified version (G.L. Taylor) of XSCALE allowing preservation of 

intensities if Friedel pairs (I+ , I-), for use in heavy atom  derivative data  

analysis.

X 2 L1: Modified version (G.L. Taylor) of OXMAKE (C CP4) to convert the 

scaled list of intensities to structure factors.

Molecular Replacement

M E R L O T 2,3: Integrated and rationalised package of previously existing 

programs. Version 2.3 by P.M.D. Fitzgerald (1988).

P O L A R R F N 2: W. Kabsch, CCP4 Program suite. A fast rotation func

tion program which produces sections of constant rotation angle kappa for 

different axis directions defined by omega and phi. The sections can be 

plotted as stereograms.
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X -P L O R 3: Version 2.1 devised by A.T. Briinger (1990).

A M O R E 3 Version 2.1.4 devised by J. Navaza (1992).

Heavy atom isomorphous replacement analysis

M T Z U T IL S 2: E. Dodson and H. Terry, CCP4 Program suite. Creates 

new re-arranged or edited MTZ reflection data file from one or two existing  

files.

L O C A L 2: CCP4 program Suite. Anisotropic scaling of heavy atom  deriva

tive data to the native data followed by local scaling.

F F T 2: L.F. TenEyck, CCP4 Program suite. Allows calculation of Fouriers, 

difference Fouriers, Pattersons and difference Pattersons.

P L U T O 2: S. Motherwell (Modified by P. Evans), CCP4 Program suite. 

Allows plotting of contour maps.

V E C S U M 2: CCP4 Program suite. Deconvolutes a Patterson function and 

allows sem i-autom atic interpretation of a difference Patterson map.

V E C R E F 2: I. Tickle, CCP4 Program suite. Vector space refinement of 

heavy atom sites in isomorphous derivatives.

M L P H A R E 2: E.J. Dodson, CCP4 Program suite. Refines heavy atom  

positions and generates phase information.

Refinement and Analysis

X -P L O R 3: Version 2.1 devised by A.T. Briinger (1990).

E N V I R O N M E N T S 2: Creates 3D-1D score and profile plot of new struc

ture. Luthy et al., 1992

P R O C H E C K 2: Analysis of stereochemical quality of protein structure

39



coordinates. Version 2 .1  by Laskowski et a/., 1993.

S H P 2: D. I. Stuart (1979) Structure Homology program allowing the su

perposition of structurally related molecules.

D S S P 2: Kabsch and Sander (1983) Protein secondary structure prediction  

via pattern recognition of hydrogen-bonded and geometric features.

Graphical programs

F R O D O 5: Jones (1985). Coordinate and electron density map m anipula

tion.

O 4: Jones et al. (1991). Improved m ethods for building protein models in 

electron density maps and the location of errors in these models.

Implementation

1 : Micro VAX 4000

2 : Micro VAX 3300

3: Silicon Graphics Indigo

4: Evans and Sutherland ESV-10

5: PS390
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C h ap ter  3 : P u r if ica tion  o f  Thermoplasma acidophilum

c itra te  sy n th a se  ex p ressed  in Escherichia coli

3.1 INTRODUCTION

Expression of a thermostable protein in a mesophilic host allows therm al 

denaturation to be used as a basis for purification of the expressed protein. 

A purification protocol developed by Sutherland et al. (1991) was used for 

the basic strategy of purifying Tp.acidophilum citrate synthase.

3.2 RESULTS

3.2.1 Thermal denaturation of host E.coli proteins

A cell extract was made from a 11 culture of E.coli TG-1 cells expressing 

the pCSEH19 clone and was incubated at 65°C for 15min. A 5-fold purifi

cation of Tp.acidophilum citrate synthase was seen after incubation, with  

a slight loss in enzymic activity. The citrate synthase was then purified to 

homogeneity using 2  alternative methods.

3.2.2 Purification of Tp.acidophilum citrate synthase using 

chromatofocussing

The heat-treated extract was subjected to gel filtration on a FPLC Su- 

perdex 200 colum n(Pharm acia-LKB), pre-equilibrated with 25mM Triethy- 

lamine (pH ll.O ). The fractions containing enzymic activity were pooled  

and spun through a Microsep centrifugal concentrator (30K cutoff) until a 

small sample volume (eg. 6 ml) had been reached.

The concentrated extract was then loaded onto a PBE118 chromatofo

cussing column on a Pharmacia-LKB FPLC system  and eluted with Pharm- 

alyte (pH8.0) on a descending pH gradient from pHlO.5-8.0. Tp.acidophilum 

citrate synthase activity eluted from the column over a pH range of pH 8.7-
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8.3. The active fractions were pooled and concentrated (as before) to a 

volume of 2 ml. This sample was then gel filtered again using the FPLC  

Superdex 200, this time pre-equilibrated with 2 0 mM Tris-HCl (pH 8.0), the 

buffer used for crystallization trials (see Chapter 5). The citrate synthase 

eluted in 1 0 ml which was then concentrated (as before) to a final pro

tein concentration of 2 0 m g.m l_1. The sample gave a single band on SDS- 

polyacrylamide gel electrophoresis (Fig. 3.1) with a Mr 42 000 ( + / - 2  000). 

A single band was also seen on an IEF gel (Fig. 3.2), which corresponds to  

a protein of P /= 8 .5  ( +  /-0 .5 ) . Table 3.1 is a summary of the results from  

a standard purification.

3.2.3 Purification of Tp.acidophilum citrate synthase using 

Dye-ligand Chromatography

The heat-treated extract was loaded onto a 20ml column packed with 

Matrex Red GelA using 20mM Tris-HCl, 2mM EDTA buffer (pH8.0). The 

bound citrate synthase was specifically eluted with a combination of sub

strate and product (5mM OAA and ImM  CoA) in the loading buffer. Six 

lm l fractions contained the majority of Tp.acidophilum citrate synthase ac

tivity and these were pooled and concentrated (as before) to a 2 ml volume. 

This sample was loaded onto a FPLC Superdex 2 0 0  gel filtration column 

pre-equilibrated with 20mM Tris-HCl (pH8.0). The active fractions were 

concentrated (as before) to a final protein concentration of 20m g.m l_1. The 

sample gave a major band on an SDS-polyacrylamide gel electrophoresis 

(Fig. 3.3) with Mr 42 000 ( + / -  2  000) and a very minor contaminant of 

higher molecular weight. A doublet was seen on an IEF gel (not shown), 

which corresponds to a P / of around 8.5 ( + / -  0.5). Table 3.2 is a summary 

of the results from a standard purification.
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Figure 3.1: SDS-polyacrylamide gel of the stages employed in the pu

rification of Tp.acidophilum citrate synthase from E.coli TGI containing 

pCSEH19. Lanel: Standard molecular weight markers. Lane2: Crude ex

tract. Lane3: Heat-treated extract. Lane4: After gel filtration on Superdex 

200 using FPLC ( Pharmacia-LKB). Lane5: After chromatofocussing using 

PBE118 (Pharmacia-LKB). LaneO: After gel filtration on Superdex 200 

using FPLC (Pharmacia-LKB). Standard molecular weight markers: Rab

bit Muscle Phosphorylase b 97 400, Bovine Serum Albumin 6 6  200, Hen 

Egg White Ovalbumin 45 000, Bovine Carbonic Anhydrase 31 000 and Soy 

Bean Trypsin Inhibitor 21 500.
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Figure 3.2: Isoelectric focussing (IEF) Phastgel (pH 3-9). Lanel: Isoelec

tric focussing markers. Lane2: Purified Tp.acidophilum citrate synthase, 

via chromatofocussing. Lane3: Isoelectric focussing markers. Isoelectric 

focussing markers: /?-lactoglobulin 5.3, Bovine Carbonic Anhydrase B 5.8, 

Human Carbonic Anhydrase B 6.5, Horse Myoglobin 6 .8 , Horse Myoglobin

7.3, Lentil Lectin 8.1, Lentil Lectin 8 . 6  and Trypsinogen 9.3.
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Figure 3.3: SDS-polyacrylamide gel of the stages employed in the pu

rification of Tp.acidophilum citrate synthase from E.coli TGI containing 

pCSEH19. Lanel: Standard molecular weight markers. Lane2 : Crude ex

tract. Lane3: Heat-treated extract. Lane4: After elution from Matrex 

Red GelA column with 5mM oxaloacetate and 0 .2 mM CoA. Lane5: After 

gel filtration on Superdex 200 using FPLC (Pharmacia-LKB). Lane6 : Af

ter gel filtration on Superdex 200 using FPLC (Pharmacia-LKB). Lane7: 

Standard molecular weight markers. Standard molecular weight markers: 

Bovine Serum Albumin 6 6  200, Hen Egg White Ovalbumin 45 000, Bovine 

Carbonic Anhydrase 31 000 and Soy Bean Trypsin Inhibitor 21 500

v-
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step total total activity specific activity purification yield
protein (units) (un its/m g) (fold) (%)

(mg)
Cell extract 560 1183 2 .1 - 1 0 0

Heat treatment 80 840 10.5 5 71
Superdex 1 50 560 1 1 . 2 5.3 47

PBE118 14 330 23.6 1 1 . 2 28
Superdex 2 7 285 40.7 19.4 24

Table 3 .1: Purification of Tp.acidophilum citrate synthase from E.coli TG I 

containing pCSEH19 using chromatofocussing

step total total activity specific activity purification yield
protein (units) (un its/m g) (fold) (%)

(mg)
Cell extract 400 762 1.9 - 1 0 0

Heat treatment 70 620 8.9 4.7 8 6

Matrex Red GelA 8 310 38.8 20.4 40
Superdex 6 240 40.7 21.4 31

Table 3 .2: Purification of Tp.acidophilum citrate synthase from E.coli T G I  

containing pCSEH19 using Dye ligand chromatography
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3.3 DISCU SSION

The expression of a therm ostable protein in a mesophilic host has al

lowed thermal denaturation of host proteins to be an im portant and rapid 

step in the purification step of Tp.acidophilum citrate synthase. Although  

E.coli is a mesophile, some of its proteins show thermotolerance leading to  

only partial purification of the expressed thermostable protein. The over

expression also allows large scale production of the protein in sufficient 

quantities for crystallization trials. Two purification protocols following 

the heat denaturation step have been devised, each using a different type 

of chromatographic procedure.

3.3.1 Chromatofocussing

The gel filtration of the heat-treated E.coli cell extracts does not signifi

cantly purify the protein but it allows the simple transfer of the sam ple into 

the correct buffer for the chromatofocussing step, which is very dependent 

on having the sample at exactly the right pH value.

Chromatofocussing was an efficient and rapid m ethod for purifying 

Tp.acidophilum citrate synthase. The citrate synthase was one of the first 

proteins to be eluted from the column at pH 8 .7-8.3, indicating the high 

isoelectric point of the protein. The problem with chromatofocussing is 

the use of Pharmalyte as the eluent. Although the protein is pure after 

this stage, Pharmalyte is also present in the sample and appears as a large 

smear on SDS-PAGE gels (Fig. 3.1). As the aim of this purification is to 

gain highly pure protein for crystallization trials, the presence of Pharm a

lyte in the sample would be deleterious. The Pharm alyte was removed by 

gel filtration. This final step also allows the transfer of the protein into a 

suitable buffer for crystallization trials, ie. 2 0 mM Tris-HCl (pH8.0).

The purified citrate synthase had a specific activity of 41 u n its/m g
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protein compared to 41 u n its/m g  protein when the enzyme was purified 

from Tp.acidophilum (Sm ith et al., 1987), indicating similar levels of specific 

activity and purity from the expressed and native enzyme.

This purification procedure yields 6-7mg Tp.acidophilum citrate syn

thase from a 11 culture of E.coli, an amount suitable for wide-spread crys

tallization trials. The protein is a single band on both SDS-PAGE and IEF  

gels, a condition which is very advantageous for the som etim es problematic 

protein crystallization.

3.3.2 Dye ligand chromatography

Matrex Red GelA can be used as an affinity purification step for pro

teins containing an adenine nucleotide attached to a phosphorylated ribose 

binding site. Citrate synthase has a binding site for CoA, which consists 

partly of an adenine ring attached to a phosphorylated ribose, and so should 

bind to the m atrix. Other citrate synthases (eg from E.coli (W eitzman and 

Ridley, 1983)) have been reported to bind to Red Gel , but they have been 

eluted non-specifically with KC1. In the present case, a combination of 

substrate (oxaloacetate) and product (CoA) was used to try and elute the 

bound citrate synthase specifically. After loading of the heat-treated ex

tract from a 500ml culture of E.coli onto the dye column, no citrate synthase 

activity was seen in the wash, indicating that the enzyme had bound to the 

column. Under the elution conditions used, 50% of the loaded enzymic 

activity was recovered. This sample now contains oxaloacetate and CoA, 

which are not wanted for the crystallization of the native Tp.acidophilum 

citrate synthase. These were removed by gel filtration.

The specific activity for Tp.acidophilum citrate synthase found was 41 

u n its/m g  protein after the gel filtration, indicating that the two purification 

procedures yield protein of similar purity. The contam ination seen on a
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SDS-PAGE gel is very minor and can only be visualised with Coomassie 

Blue when the gel was overloaded, indicating that elution using oxaloacetate 

and CoA is highly specific. The doublet seen on an IEF gel may be due 

to the heat treatm ent causing minor deamidation and thus leading to a 

slight charge heterogeneity. Although the level of purity was not ideal it 

was deemed pure enough for crystallization trials.

This purification procedure yields 6-7mg Tp.acidophilum citrate syn

thase from a 11 culture, an amount suitable for wide spread crystallization  

trials.

3.3.3 The better of the purification procedures?

Both of the above purification procedures yield roughly the same amount 

of Tp.acidophilum citrate synthase from a 11 culture, with comparable spe

cific activities. However, there are minor differences. Firstly, the Dye 

ligand protocol is shorter than the chromatofocussing protocol, having one 

less column run to undertake. Secondly, the level of purity gained. W ith  

chromatofocussing a single band is seen on SDS-PAGE compared to the 

slight contam inant present using Matrex Red GelA. Also with chromatofo

cussing a single band is seen on an IEF gel compared to the doublet seen 

using Matrex Red GelA. This charge homogeneity with the former m ethod  

is probably due to the fact that chromatofocussing is separating proteins 

due to their charge. Therefore, since protein hom ogeneity is a key factor 

in protein crystallography, the chromatofocussing m ethod is preferable, al

though crystals have been grown from protein purified using the Dye ligand 

m ethod (see Chapter 5).
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C h ap ter  4 : C h a ra c ter isa t io n  o f  Thermoplasma acidophilum

c itra te  sy n th a se .

4.1 INTRODUCTIO N

The study into the basis of the inherent stability of som e proteins has 

concentrated recently on the determ ination of the protein’s crystal structure 

and on mutagenesis experim ents, usually based on the crystal structure, to  

alter the protein’s stability (see Chapter 1 ). A prerequisite for site-specific 

mutagenesis experiments to investigate, in this case, therm al stability is a 

reproducible way of characterising the m utant in relation to the wild type, 

the wild types being Tp.acidophilum citrate synthase and pig heart citrate 

synthase.

Assays based on the loss of enzymic activity and on changes in the  

circular dichroism spectrum  at known temperatures have been developed  

that will quantitatively measure possible differences between the wild type 

and specific m utants that have been generated with the aim of producing 

a protein with altered thermal stability. Although no site-directed m uta

genesis experiments have been performed the work presented below and 

throughout this thesis will lay the foundations for such experiments in the 

future.

4.1.1 The Arrhenius plot of thermal inactivation

To investigate the therm al stability of Tp.acidophilum citrate synthase, 

the rates of inactivation at known temperatures were determined. To quan

tify the rates of a reaction in relation to temperature the Arrhenius equation  

can be used.

d In k   Ea
d T ~  R T 2

where k is the rate constant for the reaction, E a is the activation energy,
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R is the gas constant and T is the temperature in degrees Kelvin. E a can 

be assumed to be independent of temperature; thus, integrating the above 

equation gives:

/ A —3^k — A  e  n.T

where A is known as the pre-exponential factor.

A plot of In k vs. 1 /T , known as the Arrhenius plot, gives a straight 

line, the gradient of which is - E a/ R. For a thermal inactivation reaction, 

E a can be seen as the energy of activation of the inactivation process.

4.1.2 Circular dichroism spectroscopy

To characterise further the stability of wild type Tp.acidophilum citrate 

synthase circular dichroism (CD) studies were performed on the purified 

enzyme. The CD spectra were performed using a JASCO J-600 spectropo- 

larimeter by Dr N.C. Price at the University of Stirling, in collaboration  

with Dr. D. W. Hough.

CD is a form of absorption spectroscopy that uses circularly-polarised 

light instead of unpolarised light. An asymmetric molecule, such as a pro

tein, will absorb right circularly polarised light differently from left circu

larly polarised light. This leads to the phenom enom of CD which is the dif

ference in extinction coefficients between right and left circularly polarised 

light. The CD spectrum  of a protein is composed of the linear combination  

of spectra for the component secondary structures. a-Helices, /3-sheets and 

/3-turns have characteristic CD spectra. Thus, since CD is very sensitive 

to secondary structural components of proteins, the CD spectrum of a pro

tein will give information on the amount of different types of secondary 

structure that makes up its conformation.

Results are presented below showing how CD spectroscopy has been 

used to investigate both the thermal unfolding and Gdn-HCl induced un
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folding of Tp.acidophilum citrate synthase.

4.2 RESULTS

4.2.1 Thermal inactivation of Tp.acidophilum citrate synthase

The inactivation experiment was carried out using the m ethod detailed  

in section 2.2.10 over a time course of lOmin at known incubation tem per

atures. The value for 100% activity was gained by extrapolating back to  

tim e zero the time courses where no inactivation was seen (55°C  -  70°C).  

The inactivation plot at 81°(7 is shown in Fig.4.1. The inactivation pro

file over a temperature range can be seen in Fig.4.2, where the % activity  

remaining after lOmin is plotted against temperature.

The Arrhenius plot for the thermal inactivation of Tp.acidophilum cit

rate synthase is shown in Fig.4.3. Two characteristics of the wild type can 

be gained from this plot. Firstly, for Tp.acidophilum citrate synthase E a =  

364 KJrao / - 1  + / -  72 KJrao/ - 1  and secondly, the position of the line in rela

tion to the x-axis, ie the temperature axis, which relates to the tem perature 

over which inactivation is seen.

All gradients for the inactivation plots and Arrhenius plots were cal

culated using linear regression using Quattro Pro, with each data point in 

the graphs being the mean value from triplicate experim ents. Error values 

for the Arrhenius plot gradient were obtained from the linear regression 

calculation.

In order to highlight the relative thermal stability of Tp.acidophilum 

citrate synthase compared to the enzyme from other organism s, therm al 

characterisation of pig heart and Sulfolobus solfataricus citrate synthases 

were performed.

The same m ethod of thermal characterisation as for Tp.acidophilum
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Figure 4.1: Tim e course for the thermal inactivation of Tp.acidophilum

citrate synthase at 81°(7. Assay buffer was equilibrated at the required 

tem perature, the enzym e sam ple added and an aliquot assayed for enzym ic 

activity after a known tim e. The fraction of enzym ic activity present is 

plotted as log% of initial activity, which was gained by extrapolation back 

to zero on the tim e courses where no inactivation was seen.
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Figure 4.2: The therm al inactivation profile for Tp.acidophilum citrate

synthase. The % enzym ic activity remaining of the initial activity after 

incubation for lOmin at a specific temperature.
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Figure 4.3: The Arrhenius plot for the thermal inactivation of Tp.acidophilum  

citrate synthase. The In of the rates of thermal inactivation at a specific 

temperature are plotted against the reciprocal of those tem peratures in de

grees Kelvin. The gradient is equivalent to the energy of activation of the  

inactivation process divided by the gas constant, R.
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Figure 4.4: Time course for the thermal inactivation of pig heart citrate

synthase at 45°C. Assay buffer was equilibrated at the required tem pera

ture, the enzyme sample added and an aliquot assayed for enzym ic activity  

after a known time. The fraction of enzymic activity present is plotted as 

log% of initial activity, which was gained by extrapolation back to zero on 

the tim e courses where no inactivation was seen.

56



% 
ac

tiv
ity

 
re

m
ai

ni
ng

100

80 -

70 -

60 -

50 -

40 -

30 -

20 -

10 -

44
temperature

Figure 4.5: The therm al inactivation profile for pig heart citrate synthase.

The % enzymic activity remaining of the initial activity after incubation  

for lOmin at a specific tem perature.

57



In 
(ra

te 
co

ns
ta

nt
)

■
- 2 -

- 2 . 5 -

- 3 -

- 3 . 5 -

- 4 -

- 4 . 5 -

- 5 -

- 5 . 5 -

- 6 -

_0  | ) i i ^ (  \ ______

’  0.0031 0:00312  0.00314  0.00316  0.00318  0.0032  0.00322  0.00324  0.00326
1/temperature (1/K)

Figure 4 .6 : The Arrhenius plot for the thermal inactivation of pig heart

citrate synthase. The In of the rates of thermal inactivation at a specific 

temperature are plotted against the reciprocal of those tem peratures in 

degrees Kelvin. The gradient is equivalent to the energy of activation of 

the inactivation process divided by the gas constant, R.

58



o
CO

o
M-

o
10

o
o

c
0
0
>
’d
D*
0
0

CNJ
Is-

00

0
L_
0
a
E
£

r-
O)

Figure 4.7: A comparative Arrhenius plot (In rate constant vs. 1 / te m 

perature) for pig heart, Tp.acidophilum and Sulfolobus solfataricus citrate 

synthases, displaying the differing thermal stability of the citrate synthases 

from these organisms.

Cross: Pig heart citrate synthase 

Circle: Tp.acidophilum citrate synthase 

Triangle: S.sulfataricus citrate synthase

59



citrate synthase was used here. F ig.4.4. shows the tim e dependent 

inactivation and Fig.4.5. shows the temperature-dependent inactivation  

profile of pig heart citrate synthase. F ig.4 .6 . shows the Arrhenius plot for 

the thermal inactivation of pig heart citrate synthase. E a for pig heart 

citrate synthase =  331KJraoZ-1 + / -  22 KJraoZ-1 . The comparative Arrhe

nius plots for Tp.acidophilum and pig heart citrate synthase are shown in 

Fig.4.7. Thermal inactivation data in the form of an Arrhenius plot for cit

rate synthase from Sulfolobus solfataricus, a thermophilic archaeon growing 

optim ally at 85°C is also presented.

4.2.2 Circular dichroism spectroscopy studies of 

Tp.acidophilum citrate synthase

CD spectra were recorded in Tris buffer (pH8.0) from 190nm-250nm. 

The CD spectrum  for Tp.acidophilum citrate synthase was taken at 20°C  

and at 55°C  - see Fig.4 .8  , over the wavelength 190nm -250nm . The spectra  

are very similar indicating no large scale structural differences at the two 

tem peratures.

The estim ation of the percentage of secondary structure found in 

Tp.acidophilum citrate synthase from the CD spectra was calculated by 

two m ethods. The first m ethod is that of Provencher and Glockner (1991) 

using the program CONTIN, which uses a reference set of well-characterised 

proteins for the prediction ; the second m ethod is that of Siegel et al (1980) 

which uses a narrower range of wavelengths to predict only the a-helical 

content.

Prediction type % a-helix % /?-sheet % other
CONTIN 54 41 5

Siegel 53 - -

To test how good the prediction methods are, the CD spectrum  for pig 

heart citrate synthase was taken and the predicted % secondary structure
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Figure 4.8: Far u.v. circular dichroism spectra of Tp.acidophilum cit

rate synthase recorded at 20°(7 (blue) and 55°C  (black) in lOmM Tris-HCl 

buffer, pH8.0.
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values (including a third m ethod by Chang et al. (1978)) were compared 

to the crystal structure values.

Prediction type % a-helix % /3-sheet % other
CONTIN 47 49 4

Siegel 53 - -
Chang 44 33 23

Actual values % o:-helix % (3-sheet % other
57 1 1 32

4.2.3 Thermal denaturation studies of Tp.acidophilum citrate synthase

To complement the thermal inactivation studies of Tp.acidophilum cit

rate synthase, CD spectra were taken at higher tem peratures to identify at 

what temperature loss of secondary structure was seen. In order to mini

mize the time that the sample was cumulatively in the cuvette, the higher 

tem perature data were recorded from 240nm rather than 250nm as before. 

Spectra were taken at a range of temperatures from 20°C  -  80°C  in the 

cuvette - see Fig.4.9. The spectra for all the tem peratures are very simi

lar showing that there is little loss of secondary structure on recording the 

spectrum  at 80°C. These spectra took 2.5min each to com plete, which cor

relates with the thermal inactivation studies where there was only a small 

reduction in catalytic activity when the enzyme was incubated at 80°C  for 

2 min.

The next set of spectra were recorded after the enzym e had been pre

incubated at a known temperature for a known tim e - see Fig.4.10. On 

incubation at 80°C for 5min or 20min, Tp.acidophilum citrate synthase 

showed only a small loss of structure, indicated by the shift of the spectra 

away from the highly negative intensity signal of the 2 2 2 nm band, indi

cating loss of a-helical structure. The spectrum taken at 85°C  with no 

pre-incubation also showed only a small loss of structure; however after
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Figure 4.9: Far u.v. circular dichroism spectra of Tp.acidophilum citrate

synthase recorded at 2 0 °C  (green), 55°C  (red), (brown), 73°C  (black), 

77°C  (blue) and 80°C (black) in lOmM Tris-HCl buffer, pH8 .0 .
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Figure 4.10: Far u.v. circular dichroism spectra of Tp.acidophilum citrate

synthase recorded at 20°(7 (blue), 80°C (orange) after 5min pre-incubation 

at SO0^ , 80°(7 (green) after 2 0 min pre-incubation at 80°C, 85°C  (red), 

85°C  (blue) after 2 0 min pre-incubation at 85°C  in lOmM Tris-HCl, pH8.0.



pre-incubation at 85°C  for 2 0 min, the spectrum taken at 85°(7 shows a 

dramatic change, indicating a drastic loss of secondary structure due to the 

heat treatment.

To see if this heat denaturation is reversible, a sample of Tp.acidophilum 

citrate synthase was incubated at 85°C  for 20min , cooled to 20°C  and left 

overnight at that temperature. A CD spectrum of this sample was then  

recorded - see Fig.4.11. There is no significant signal present suggesting  

there is no regain of the structure after heat denaturation, although the 

spectrum suggests a total loss of material which may be due to the protein  

having precipitated overnight.

4.2.4 Guanidine-HCl denaturation of Tp.acidophilum citrate synthase

To investigate further the stability of the wild type Tp.acidophilum cit

rate synthase, guanidine-HCl unfolding of the enzyme was followed by CD. 

The spectra were recorded with increasing concentrations of Gdn-HCl in 

the sample and were carried out at 20°C  and at 55°C - see F igs.4.12 and 

4.13. The noise below 2 1 0 nm is due to absorption by Gdn-HCl.

The spectra were analysed by plotting changes in intensity of the signal 

at 2 2 2 nm, expressed as % of the total change of oi-helical content of the 

protein, against Gdn-HCl concentration - see Fig.4.14. The data were also 

compared to the known Gdn-HCl unfolding profile for pig heart citrate 

synthase at 2 0 °C.  Spectra were also taken after the protein was incubated  

in 6 M Gdn-HCl (results not shown). The decrease in signal intensity of 

these spectra are characteristic of a protein that has totally unfolded under 

these denaturing conditions.
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Figure 4.11: Far u.v. circular dichroism spectra of Tp.acidophilum citrate

synthase recorded at 20°(7, after pre-incubation at 85°(7 for 2 0 min followed 

by incubation at 20°C  overnight, in lOmM Tris-HCl buffer, pH8.0
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Figure 4.12: Far u.v. circular dichroism spectra of Tp.acidophilum citrate

synthase recorded at 20°C in OM Gdn-HCl (black), 1 M Gdn-HCl (blue), 2M 

Gdn-HCl (orange), 2.25M Gdn-HCl (green), 2.5M Gdn-HCl (red), 3M Gdn- 

HCl (brown) and 4M Gdn-HCl (black) in lOmM Tris-HCl buffer, pH8.0.
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Figure 4.13: Far u.v. circular dichroism spectra of Tp.acidophilum citrate

synthase recorded at 55°C  in OM Gdn-HCl (black), 1 M Gdn-HCl (blue), 

1.5M Gdn-HCl (orange), 2 .M Gdn-HCl (green), 3M Gdn-HCl (red) and 4M 

Gdn-HCl (brown) in lOmM Tris-HCl buffer, pH8 .0 .
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Figure 4 .14: Gdn-HCl induced unfolding profile of pig heart citrate syn

thase at 20°O  and Tp.acidophilum citrate synthase at both 20°C  and 5 5 °(7,

as judged by percentage changes in signal intensity at 2 2 2 nm of circular

dichroism spectra performed in the presence of known concentrations of 

Gdn-HCl.

M Pig heart citrate synthase at 20°C

♦  Tp.acidophilum citrate synthase at 5 5 °C

^  Tp.acidophilum citrate synthase at 20°C
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4.2.5 Guanidine-HCl inactivation of Tp.acidophilum citrate synthase

Samples of Tp.acidophilum citrate synthase were incubated at known 

Gdn-HCl concentrations and then assayed at 55°C  to measure the enzymic 

activity present in the sample. The Gdn-HCl present in the incubation  

mixture will have been diluted out in the assay mixture, so effectively the 

assays were carried out in the absence of Gdn-HCl.

The %remaining activity was then plotted against Gdn-HCl concentration  

- see Fig.4.15. This procedure was repeated both at 20°C and 55°C.

4.3 DISCUSSION

In order to study the basis of thermal stability of proteins using site- 

specific mutagenesis experiments, the wild type of the protein m ust be fully 

characterised for comparative studies with the m utant. Therm al inactiva

tion studies show that no enzymic activity is lost after incubation of the 

purified protein at 78°C for lOmin, even though the optim um  growth tem 

perature of the organism is 55°(7 — 60°C. After incubation at 83°(7 for 

lOmin no enzymic activity is remaining. Thus thermal inactivation occurs 

over a narrow temperature range.

Arrhenius plots of the thermal inactivation data will also be able to 

highlight the differences between wild type and m utant. If any m utations 

are made that decrease the thermal stability of the protein, the line on 

the Arrhenius plot will be shifted to the right along the x-axis and also 

the value of E a for the mutant will highlight if the energy of activation of 

inactivation is altered in the m utant compared to the wild type.

Pig heart citrate synthase is dimeric and so will allow direct thermal 

stability comparisons with Tp.acidophilum citrate synthase. The data pre

sented in Fig. 4.5 suggests that citrate synthase from pig heart is 80% 

inactivated after incubation for lOmin at 35°C.  This may be a function
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Figure 4.15: Gdn-HCl induced inactivation profile of Tp.acidophilum cit

rate synthase at 2 0 °C  and 55°C . Samples were incubated at the appropriate 

tem perature and assayed at 55°C  for enzymic activity. The % activity lost 

was calculated with respect to sample incubated in the absence of Gdn-HCl. 

Jk. Tp.acidophilum citrate synthase at 55°C  

X  Tp.acidophilum citrate synthase at 20°C
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of the assay conditions and protein concentration used. Arrhenius plots 

of their respective thermal inactivations give a very similar value for E a, 

suggesting that the process required to disrupt the active site of the en

zymes may be similar in the number and type of interactions involved in 

the thermal inactivation process. Fig.4.7 also shows the relative positions 

of the lines on their respective Arrhenius plots. Thus, any thermally desta

bilising mutant of Tp.acidophilum citrate synthase will have the position  

of its Arrhenius plot shifted towards the line for pig heart citrate synthase. 

M utagenesis experiments will eventually be designed that will hopefully 

increase the thermal stability of Tp.acidophilum citrate synthase. The po

sition of the line on the Arrhenius plot would then be shifted towards the 

position occupied by the Sulfolobus solfataricus citrate synthase.

Further characterisation of the stability of Tp.acidophilum citrate syn

thase was carried out using CD spectroscopy. A feature from Fig.4.8 is 

that the spectra are very similar at 25°(7 and 55°C, indicating no change 

in structural conformation of the enzyme at the two temperatures. This is 

im portant as the crystallizations of Tp.acidophilum citrate synthase were 

carried out at 22°C and not at the organism ’s growth tem perature of 550 C.

The CD spectra for pig heart and Tp.acidophilum citrate synthases are 

very similar (results not shown) indicating a similar pattern of secondary 

structure for both enzymes. The predictions for a-helical content for pig 

heart citrate synthase give a slightly lower value than the actual crystallo- 

graphic value but in the same range, whereas the predictions for /3-sheet 

content are very high compared to the actual crystallographic value. There

fore the prediction for /3-sheet content of Tp.acidophilum citrate synthase is 

probably far too high (see Chapter 9 for confirmation). The predicted value 

for a-helical content of Tp.acidophilum citrate synthase is very similar to
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that of the predicted value pig heart citrate synthase, so the overall ter

tiary structural conformation of the two enzymes may indeed be the same 

despite the low sequence identity (see Chapter 9 for confirmation). Further 

evidence for this comes from the multiple sequence alignments showing 

the conservation of the catalytic residues throughout the citrate synthases, 

suggesting similar overall folds.

The CD spectra recorded at high temperatures show that possible large 

secondary structural changes are only seen after preincubation of Tp.acidophilum 

citrate synthase at 85°(7 for 2 0 min, with the spectrum recorded at 85°C.

The structure that generated this spectrum may not be indicative of a 

random coil, but may be caused in some part by a loss of total protein 

by precipitation during the incubation. The thermal unfolding profile (as 

judged by changes in ellipticity at 225nm) from the CD studies corresponds 

to the thermal inactivation profile (see section 4.2.1) although loss of activ

ity does seem to precede loss of structure by a few degrees. This is expected  

since only a small change in the active site conformation would interfere 

with the catalytic activity of the enzyme, a change which would not be 

evident in the CD spectrum.

One feature evident from the 55°C denaturation spectrum is the increase 

in negative intensity signal in the presence of 1 M Gdn-HCl. This seems to  

indicate that the native structure is in a tight conformation which is loos

ened slightly in the presence of a low concentration of Gdn-HCl. Enzymic 

activity is also increased by up to 50% if a low concentration of Gdn-HCl 

is present in the a.ssay m ixture, suggesting the enzyme may become more 

flexible in low Gdn-HCl concentrations, resulting in increased accessibility 

for the active site. Rehaber and Jaenicke (1992) observed larger levels of 

activation of the glyceraldehyde-3-phosphate dehydrogenase from the ther-
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mophilic bacterium Thermotoga marit ima  at concentrations of Gdn-HCl 

up to 2M. This apparent tightness of the native enzym e may be related 

to the enzymes inherent thermal stability. Tp.acidophilum citrate synthase 

at 55°C  and pig heart citrate synthase at 2 0 °C have the same unfolding 

profile (followed by changes in ellipticity at 225nm ), whereas the transi

tion from folded to unfolded for Tp.acidophilum citrate synthase at 20°C  

is much sharper. Thus, at their respective working tem peratures, the en

zymes seem to unfold with the same profile, and therefore possibly following 

a similar Gdn-HCl induced unfolding pathway. However, the concentration  

of Gdn-HCl required to give 50%reduction in signal at 225nm (about 2 M) 

is the same for Tp.acidophilum citrate synthase at both tem peratures, and 

a slightly lower value (about 1.8M) for pig heart citrate synthase.

Investigations into whether the inactivation of Tp.acidophilum citrate 

synthase in Gdn-HCl is different at either 20°C' or at 55°C have shown that 

a lower concentration of Gdn-HCl is needed to inactivate the enzym e fully 

at 55°C  than at 20°(7. The concentration of Gdn-HCl required to reduce 

the activity initially present by half is 0.75M at 55°C  and 1.25M at 20°C. 

This may partly be accounted for by the proposed decreased flexibility of 

thermophilic enzymes at room temperatures compared to their working 

tem perature (Jaenicke, 1991).

The thermal inactivation, Gdn-HCl inactivation, therm al denaturation  

and Gdn-HCl denaturation studies of wild type Tp.acidophilum citrate syn

thase should allow direct comparative studies between itself and m utants 

that have been designed to investigate the structural basis for the ther

m ostability of this enzym e. Pig heart citrate synthase has also been char

acterised in a similar fashion which will allow m utants designed to increase 

its thermal stability to be fully compared with the wild type.
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C h a p ter  5 : C rysta lliza t ion , D a ta  C o lle c t io n  and

A n a ly s is

5.1 X-RAY DIFFRACTION THEORY

5.1.1 Diffraction from a crystal

A crystal comprises a regularly repeating unit cell of axes lengths a, 

b and c and inter-axial angles ct,/? and 7 . Unit cells can only belong to  

seven distinct crystal systems with a possible 14 crystal lattices which can 

be further sub-divided into 32 crystal classes according to the arrangement 

of the sym m etry elements with respect to each other. Proteins can only 

crystallize in enantiomorphic space groups reducing the number of possible 

space groups to 65.

5.1.2 Bragg’s Law

Bragg expressed the conditions necessary to produce diffraction from a 

series of parallel planes of atoms as present in a crystal as::

n \  =  2d sin 0

where n is an integer, A is the wavelength of the incident beam , d is the 

interplanar spacing and 9 is the angle of incidence and reflection. Therefore 

diffraction is only seen if the angle 6 satisfies the above equation.

5.1.3 The Laue equations

An alternative condition for diffraction by a crystal can given by the  

Laue equation:

a .S  =  h

b .S  =  k

c .S  =  1

where h, k and 1 are integers. S is the diffraction vector and is defined 

by s-so, where So represents the direction of the incident beam  and s the 

direction of the diffracted beam.
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5.1.4 Calculation of Structure factors and Electron density

Any wave can be described by means of a Fourier series as the sum of 

simple waves. A three-dimensional wave consists of three frequencies in the 

direction x, y, and z and therefore must be described by three variables h, 

k, and 1. A general Fourier series for the wave f(x,y,z) has the form:

f(x,y;z) = E E E  Fhki exp(27ri(hxj +  kyj +  lzj))
h k l

The diffraction by a molecule in a crystal lattice is given by the structure 

factor equation. The structure factor for reflection hkl  can be expressed in 

form of a Fourier series in which each term gives the contribution of one 

atom  to reflection hkl:

F(hkl) =  ^2  fj exp(27ri(hxj +  kyj +  lzj)) 
j = i

where fj is the atomic scattering factor of an atom which is treated as a 

simple sphere of electron density.

F (hkl)  possesses am plitude, frequency and phase. The frequency is that 

of the x-ray source and the amplitude is proportional to the square root of 

I  {h k l ), the intensities recorded during data collection.

T(hkl)  can also be written as the sum of contributions of the electron  

density, p(a:,j/,z), from each point within the unit cell volum e ,V :

F(hkl) =  f  p(x, y, z) exp(27ri(hx +  k y -f  lz))dV  
J V

ie. p { x , y , z )  is the Fourier transform of F(hkl)

This operation is reversible resulting in the electron density equation:

p(x, y, z) =  1 /V  Y ,  F (hkl) e x p ( - 2 ?ri(hx +  ky +  lz)) 
h k  l
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Therefore the calculation of an electron density map requires information  

concerning the phase a(hkl)  must be known. This is a primary problem in 

the elucidation of a protein structure from x-ray diffraction data.

The phase problem in protein crystallography can be overcome in one 

of two basic ways - heavy atom isomorphous replacement and/or molecular 

replacement. The theory behind the latter will be discussed in detail in 

Chapter 6 , but no detailed theory will be given for the former due to the 

technique only being employed at its preliminary stages.

77



5.2 CRYSTALLIZATION INTRODUCTION

A major cause of heartache and anxiety in the determination of the 3- 

dimensional structure of a protein is obtaining crystals deemed suitable for 

x-ray diffraction data collection. The ability to rationally design suitable 

conditions for protein crystal growth is still in its infancy, although attem pts 

have been made including the incomplete factorial approach (Carter et al., 

1988) and the ‘Magic 50’ (Jancarik and Kim, 1991). Therefore a more sys

tem atic approach m ust be used in which individual parameters must be ex

plored through logical refinement and inspiration. Crystals of a compound  

grow when a solution of the compound is brought into a supersaturated  

state, eg. by gradual solvent evaporation, and its return to the equilibrated 

saturated solution causes a shift of the solute molecules into the solid state, 

either crystalline or amorphous. The solid state will only occur if a stable 

nucleus has formed in the supersaturated solution, after which the stable 

nucleus will grow until equilibrium has once again been reached. There

fore in order to crystallize a compound, conditions must be found in which 

a supersaturated state is formed followed by spontaneous stable nucleus 

formation.

Proteins are highly complex physical-chemical system s whose intrinsic 

properties are affected by many external influences such as tem perature, 

pH, ionic strength and solvent composition. M icrohomogeneity of the pro

tein sample is a key factor in protein crystallography and so every effort 

m ust be made to ensure protein purity and constant environmental condi

tions.
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5.3 RESU LTS

5.3.1 Crystallization trials

The crystallization trials were performed using the hanging drop vapour 

diffusion m ethod (M cPherson, 1990). The hanging drops were placed on sil- 

iconised glass cover slips and equilibrated over 1 ml of precipitant solution in 

24-well tissue culture plates. The seal was made by a layer of glisseal grease. 

Initial trials involved the use of either (N H ^ S C ^ , PEG3350 or PEG6000 as 

the precipitating agent, using a protein concentration of 15m g/m l in a 4/d  

hanging drop. A range of precipitant concentrations and pH values were 

used with specific buffers, eg Tris-HCl, and trials repeated at 25°C  and 

4°C.  Small hedgehog crystals were seen to grow from a solution containing 

10.5% (w /v ) PEG3350 (pH8.0) after 2-3  weeks at 25°C. Further trials were 

then carried out using a finer grid based on these conditions, using 20mM  

Tris-HCl as the standard buffering agent. Crystals (T y p el) suitable for 

X-ray diffraction studies were grown from a solution containing 9% (w /v )  

PEG3350 (pH 8 .2 ) at a protein concentration of 15m g/m l. Crystals grew to 

m axim um  dimensions of 0 .2 mm x 0.3mm x 0 .6 m m  in 3 -4  weeks at 25°C.  A 

second crystal form (Type2), as judged by subsequent analysis (see section  

5.5.4), was also grown using 9% (w /v ) PEG3350 (pH8.2) but at lO m g/m l 

protein concentration and with a drop of toluene added to the reservoir. 

Crystals grew to m axim um  dimensions of 0.3mm  x 0.4m m  x 1 .0 mm  in 3 -4  

weeks at 25°C  - see Fig. 5.1 (The presence of fly in the protein sample 

did not have a deleterious effect on reproducibility of growth of this crystal 

type). A third crystal form (Type3), again as judged by subsequent anal

ysis, was grown using 8.5% (w /v) PEG3350 (pH8.2) at lO m g/m l protein  

concentration and with a drop of toluene added to the reservoir. Crystals 

grew to maximum dimensions of 0.3mm x 0.4m m  x 1.5mm  in 3-4
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Figure 5.1: Type2 crystals grown from 9% (w /v ) PEG3350 (pH8.2) at a

protein concentration of lO m g/m l, with a drop of toluene in the reservoir. 

The crystals dimensions are 0.3mm x 0.4mm x 1.0mm

80



months at 25° C.

Reproducibility of crystal quality was a problem throughout the trials. 

The same conditions did not always give the same quality of crystal each 

time.

Crystallization trials were also set up with substrates present in the 

hanging drop. The substrate(s) of choice were preincubated with the native 

protein of a known concentration for lhr at 55°C before addition of the 

precipitant in the hanging drop. Crystals with 5mM citrate present were 

grown from a solution containing 10.5% PEG3350 (pH 8 .2 ) at a protein  

concentration of 5m g/m l. Crystals grew to maximum dimensions of 0 .1 mm  

x 0 .1 mm x 0.3mm in 2-3 days. Crystals with 2.5mM oxaloacetate present 

were grown from a solution containing 10% PEG3350 (pH8.2) at a protein 

concentration of 7.5m g/m l and grew to maximum dimensions of 0.2m m  x  

0.2m m  x 0.4mm in 1 - 2  days. Crystals with 5mM citrate and 2.5mM CoA 

present were grown from a solution containing 8.5% PEG3350 (pH8.2) at a 

protein concentration of lO m g/m l which grew to maximum dimensions of 

0.2m m  x 0.2mm x 0.8mm in 2-3 weeks.

5.4 CRYSTALLIZATION DISCUSSION

The growth of crystals of native Tp.acidophilum citrate synthase suit

able for x-ray diffraction studies has proved to be long and problematic. 

The appearance of small hedgehogs from the preliminary crystallization  

trials indicated that the purification procedure had yielded protein of suf

ficient purity for crystallization. After minor alterations of the ‘hedgehog’ 

conditions, larger crystals grew but were very fragile and tended to be 

stacked. To overcome this problem of crystal stacking toluene was added 

to the reservoir in various conditions. Toluene was hoped to cause a slight 

change in the microenvironment of the hanging drop sufficient enough to
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promote isolated crystal formation. Further trials in the presence and ab

sence of toluene yielded distinct crystals of a suitable size for diffraction 

studies.

Since high resolution data is required for informative analysis of the x- 

ray structure of a protein, crystallization trials were continued in the search 

for suitable crystals. These trials eventually led to the discovery of three 

different crystal forms of the enzyme.

The phenomenon of the same protein crystallizing in multiple space 

groups has been seen previously with proteins such as lysozym e, insulin 

and pepsin. Lysozyme crystallizes in a tetragonal form in the presence 

of NaCl at an acidic pH and at a temperature lower than 25°(7 but in 

an orthorhombic form at higher temperatures (McKenzie and W hite, 1991 

and references therein). Temperature is just one of many external factors 

which can affect crystal growth, with the resulting effect of these changes 

causing there to be a change in the protein-protein interactions within the 

crystal leading to the formation of a different crystal lattice. The only 

factors that were altered in the formation of Type 1 and Type 2 crystals 

were the reduction in protein concentration and the addition of toluene in 

the reservoir of the Type 2 crystal. Thus either one or the combination of 

the two must somehow be affecting how the protein crystallizes. Another 

factor which could account the variation is that the protein from which 

Type 1 and Type 2 crystals grew was purified in different batches, although  

reproducibility of crystal forms has been achieved. The above factors may 

also be an explanation of the problems in reproducing crystal quality.

On binding of substrates to pig heart citrate synthase the small domain 

rotates 18° with respect to the large domain, forming the ‘closed’ form of 

the enzym e. Similar conditions were found to be necessary to crystallize
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Tp.acidophilum citrate synthase in the presence of its substrates than in 

their absence. Crystals formed in the presence of 5mM citrate after a few 

days, which is more rapid than the native protein. This may be due to the 

‘closed’ form being able to pack more favourably into a crystal lattice than  

the ‘open’ form. Unfortunately after a few days the crystals growth ceased, 

with the crystal dimensions no longer than 0.3m m . A crystal was m ounted  

in a quartz capillary but the diffraction seen was very weak and no data  

collection/analysis was carried out. No larger crystals could be formed.

Crystals also formed within 1-2 days in the presence of 2 .5 mM OAA. 

These crystals were slightly larger than those grown in the presence of cit

rate, but after further 2  days the crystals tended to crack and disintegrate. 

OAA is unstable and degrades fully after a day at room tem perature. Crys

tal formation is rapid whilst OAA is present but after the OAA degrades 

the crystal lattice may be disrupted by the equilibrium between the ‘open’ 

and ‘closed’ forms of the enzyme, leading to crystal cracking and eventual 

disintegration. No data have been collected on these crystals due to their 

instability, but further investigation into this crystal form could be carried 

out by using a stable analogue of OAA, such as flouro-OAA to try and form  

a stable crystal.

The most successful crystallization of Tp.acidophilum citrate synthase 

with substrates was using lhr soaks of CoA (2.5m M ) and citrate (5m M ). 

This complex formed stable crystals which continued to grow for 2-3 weeks, 

after which time they were large enough for x-ray diffraction studies. The 

conditions for crystal growth were identical to that for growing Type 3 

native crystals but without the toluene in the reservoir.
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5.4.1 Differences between crystals grown from Red GelA 

and chromatofocussing purifications

The majority of the crystallization trials were carried out using pro

tein purified using chromatofocussing, this procedure being the first one 

developed. Crystals have been grown using protein purified using Matrex 

Red GelA but they tend be much smaller than crystals grown under the 

same conditions using protein purified using chromatofocussing. This is 

probably due to the different levels of protein purity obtained from the 

two procedures. All the data detailed below were collected using crystals 

grown from protein purified using chromatofocussing. Thus far only data  

for Type 2 and 3 crystals have been collected using protein purified using 

m atrex Gel Red A; this data being part of the search for isomorphous heavy 

atom  derivatives - see Chapter 7.
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5.5 DATA COLLECTION AND ANALYSIS

5.5.1 The Area detector

All data were collected on the in-house Siemens X-100 area detector 

m ounted on a Siemens rotating anode em itting CuKa radiation of wave

length 1.54A, the latter being selected by a graphite monochromator. The 

detector is mounted on a moveable 26 arm whose axis is coincident with the 

rotation u> axis of a 3-circle goniostat, which are controlled by a PC. The 

x-ray photons produced cause ionization of the xenon gas which is present 

at 4atm  in the detection chamber. The high pressure causes the ioniza

tion events to occur just behind the 1mm concave beryllium window. The 

electrons produced are then accelerated towards the anode wires causing 

secondary ionization events resulting in amplification of the original signal. 

A set of 2  parallel planes of wires (horizontal and vertical) in the cathode 

allows the 2 -dimensional position of the ionization events to be determined 

by a position decoder. The data are stored as a 512x512 pixel array which 

is written to disk at the end of each exposure and then transferred to a 

microVax 4000 via an ethernet linkage. A pixel with a count greater than  

255 is classed as an overflow.

Local heterogeneity within the detector caused by irregularities in the 

cathode wire spacing is eliminated by a ‘flood field’ correction using a 55Fe 

x-ray source at the working distance from the crystal, ensuring a sm ooth  

response over the whole of the detector surface. Geometric distortion is 

corrected by recording an image of a brass plate (a brass shield with holes 

drilled in it at precise intervals) using an 55Fe x-ray source at the working 

distance from the crystal. The observed pattern of spots is then compared 

to the known pattern of spots that should be generated from the brass plate 

and a 2-D distortion correction is applied to each frame of data processing.
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5.5.2 Data collection

A crystal was drawn into a thin-walled quartz capillary tube of suitable 

diameter for the size of the crystal, the most of the mother liquor drained 

from around the crystal and the ends of the tube sealed with beeswax. The 

capillary tube was mounted on the goniometer head with plasticine.

Once suitable crystals for diffraction studies have been obtained, the 

data collection procedure must be at an optimum to ensure that significant 

data of the highest possible resolution are collected. The specific starting  

setup of the area detector and its controls are dependent on the parameters 

detailed below.

The minimum distance in cm from the crystal to the detector (X T D D ) 

needed to resolve adjacent spots can be approximated to be the length of 

the largest primitive cell axis (in A) divided by 1 0  (Taylor, G. L., personal 

com m .). W hen the unit cell dimensions of the crystal are unknown the 

distance must be relatively large, eg.30cm , to avoid spot overlap. But on 

determination of the cell dimensions the XTDD  can be reduced to facilitate 

higher resolution data to be collected. When the 20 arm is zero the highest 

resolution data will not be collected, but the detector can be rotated around 

the 20 axis in order to record higher resolution data. The choice of the 20 

swing is dependent on the strength of the diffraction. A relationship exists 

between X TD D  and the 20 swing which defines the m axim um  resolution  

data that can be collected - see Fig. 5.2. The 20 setting for Tp.acidophilum 

citrate synthase crystals has ranged from 0 ° - 2 0 ° depending on crystal size 

and its diffractive power. The XTDD for type 1 and 2 crystals was 13cm, 

although for type 3 crystals a XTDD of 15cm was necessary to resolve 

adjacent spots, using a 0.3mm  collimator.

The need for collection of the largest number of significant reflections
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possible has to be counterbalanced by the time available for data collection 

and any deterioration of the crystal caused by X-rays; the latter judged by 

the number of overflows and visual interpretation of sequential frames, us

ing the Siemens Area Detector Integrated environment program (SADIE). 

Therefore the length of time of exposure for each frame m ust be a balance 

between these factors. The intensity of the diffraction pattern is directly 

proportional to the volume of the crystal and indirectly proportional to the 

volume of the unit cell. The larger the overall dimensions of the crystal, 

the stronger the diffraction that tends to be seen and thus the shorter the 

exposure time required (although many other parameters , eg. solvent con

tent of the crystal, unit cell dimensions and collimator size, can affect the 

strength of the diffraction seen). The exposure times for Tp.acidophilum 

citrate synthase crystals has ranged from 120sec-300sec per 0.25° frame 

depending on the crystal dimensions, resulting on average in 30 or more 

overflows per frame. The length of exposure is also dependent on the power 

of the X-ray generator; the standard setting was 45kV and 80mA.

The amount of diffraction data required to record every reflection pos

sible from a crystal depends on the space group of the crystal. The higher 

the sym m etry the fewer the degrees of u> rotation needed to record every 

reflection. A crystal belonging to the monoclinic space system  (eg. crys

tal type2 ) needs 180° rotation to theoretically record every reflection at 

least once, whereas a crystal belonging the orthorhombic crystal system  

(eg. crystal types 1 and 3) only needs 90° rotation due to the extra sym 

m etry present in the crystal. In order to reduce the significance of errors in 

the data collection and processing, multiple copies of each reflection must 

be collected, resulting in the practical need of collecting more than the 

theoretical number of frames.



D ata were collected as a series of contiguous non-overlapping frames; 

the crystal being rotated around o>, with each frame representing a 0.25° 

oscillation.

All the data presented below were collected at room tem perature and 

from single crystals for each crystal type.

5.5.3 Data processing

All data were processed using the XDS suite of programs (Version 2) 

(Kabsch, 1988). The process is a fully autom ated process which reads in 

raw Xentronics frames and produces a list of scaled hkl intensities. A flow 

diagram of the order of the individual programs is given in Fig. 5.3, with  

details of the individual programs given below.

XYCORR determines the distortion of the diffraction pattern in X and 

Y, arising from the projection of ionization events occurring near the con

cave beryllium /gas interface onto the planar recording wires. The recently 

recorded brass plate is read and an allowance is calculated for the geom et

ric distortion by calculating the difference between the observed and known 

positions of the spots.

INIT reads the first 30 frames and calculates the average background  

count. At a given pixel position if the count is < 3 cr away from the lowest 

count the pixel is ‘accepted’, with the mean of the ‘accepted’ count being 

the background count. Active pixels are defined as having >20% of the 

mean count.

COLSPOT collects spots for autoindexing and finds spots above the 

background count, using the pattern recognition procedure described above. 

Equivalent spots on adjacent frames are merged. A list (SPO T .X D S) of 

observed spot coordinates and their spindle positions are produced.

IDX REF reads in SPO T.XDS and predicts the unit cell of the crys-
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XYCORR  

Reads brass platei
INIT

Reads first 30 frames and calculates average background count and defines 

actiye pixels

i
COLSPOT

Collects spots for autoindexing Finds spots above background

IDXREF

Prediction of unit cell and orientation with respect to detector and x-ray  

beam

COLPROF

Collects spot profiles

Profile fitting and integrates spot intensity

PROFIT

CORRECT

Scales spot intensities and calculates data set statistics 

GLOREF

Refines unit cell and detector parameters

Figure 5.3: Flow chart representing the individual steps in XDS (K absch,

1988) for processing of x-ray diffraction data.

90



tal and its orientation with respect to the detector and x-ray beam  via 

autoindexing of the spots.

COLPROF collects all the spot profiles. All predicted spots are scanned  

and each is numerically labelled by the indices of the nearest reflection to 

which it could belong. The indices are checked for whether they obey the 

general conditions limiting the possible reflections for the space group of the 

crystal. If they are not satisfied, the nearest reflection to which the pixel 

belongs, is classed as being systematically absent, given a negative label 

and is used to update the background count. The 3-dimensional reflection 

profile is represented by a box of 9x9x9 grid points. The step sizes between 

the grid points are derived from values for beam divergence and mosaic 

spread. All the profiles tend to be very similar to each other since all spots 

are treated as if it were on the Ewald sphere and had followed the shortest 

path through it.

Profile fitting is implemented in PR O FIT, which integrates the spot 

intensity. Integration must be able to distinguish between signal and back

ground points within each reflection box. Therefore weak and strong signals 

have the same normalised profile. The reflection intensities are estim ated  

by a 2-pass integration procedure. Firstly, the reference profiles are learned 

as a function of position on the detector and spindle angle. If a grid point 

within the average profile box is > 2 % of the peak m axim um  then it is 

classed as a signal. Secondly, the intensities for each reflection are esti

m ated using the nearest reference profile.

CORRECT ensures that the intensities of the spots are on the same 

scale, in order to correct for crystal decay and variation in detector sensi

tivity with a continuous correction factor. After correction the integrated  

intensities of all the reflections are sorted in order of increasing key values
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derived from their unique reflection indices and output as a list of intensities 

of the reflections.

GLOREF refines the unit cell parameters and in a more statistically  

relevant manner than IDXREF due to the use of all the reflections in the 

calculation.

XSCALE (Kabsch 1988) was used to apply an empirical absorption  

correction to individual intensities of the data set. Multiple data sets of 

the same crystal type can also be scaled and merged into a single list of 

intensities by XSCALE. The scaling of heavy atom soaked crystals was 

carried out by XX (a slightly modified version of XSCALE (G.L.Taylor)) 

which preserves the intensities of Friedel pairs (I+ , I-). The list of scaled  

intensities were then converted to a list of structure factors using X2L (the  

CCP4 program OXMAKE modified by Dr. G. L. Taylor).

5.5.4 Space group determination

XDS allowed the rapid (after 30 frames of data have been collected) and 

usually straightforward determination of the cell dimensions of the crystals. 

Types 1 and 2 proved to be relatively simple to assign specific space groups, 

but type 3 was more problematic.

Type 1 crystals were the first of the crystal types to have data collected  

from and belong to the space group P222i (orthorhombic crystal system ) 

, as judged by system atically absent or weak (F < 3.5<r) 001 reflections, 

diffracting to a resolution limit of 3.2 A. The unit cell parameters are a—80.9 

A, b=103.8  A, c=98 .3  A.
The Type 2 crystals belong to space group P2i (monoclinic crystal sys

tem ) , as judged by system atically absent or weak (F <  3.0<r) OkO reflec

tions, diffracting to a resolution limit of 2.4 A. The unit cell parameters are 

a= 53 .8A , b=173.8  A, c=86.7  A and (3 =  97.1°.
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Type 3 crystals diffracted to a resolution limit of 3.0 A but preliminary 

native data analysis could not specifically assign the space group but ei

ther belong to space group P2, P2i or P2i2 i2 i ,  with initial space group 

predictions by IDXREF. The amount of data collected was not enough  

to resolve this conflict. D ata processing statistics were of similar quality 

in both orthorhombic and monoclinic crystal system s but the number of 

misfits rejected by CORRECT was far greater when processed in the m on

oclinic system. The specific assignment to the orthorhombic crystal system  

was further strengthened upon more data being collected for this crystal 

type whilst undertaking heavy atom soaking experim ents. Therefore crys

tal type 3 most probably belongs to space group P 2 i2 i2 i with unit cell 

parameters of a=51.5 A, b =  112.5 A, c=123.1 A.
The determination of cell dimensions for a crystal allows the assignment 

of the number of molecules likely to be present within the asym m etric unit. 

M atthews (1968) reported on the range of solvent content that is likely to  

occur in protein crystals and inferring the number of molecules within the 

asym m etric unit. Assuming a relative molecular mass of 43 000 Da for the 

monomer of Tp.acidophilum citrate synthase (Sutherland et al., 1990), val

ues for Vm and solvent content that lie in the range predicted by M atthews, 

revealed that type 1 and 2  crystals to contain one dimer and two dimers 

within the asymmetric unit respectively. Crystal type 3 probably contains 

one dimer within the asym m etric unit (35% solvent content) although pro

tein crystals with 95% solvent content (tropom yosin) have been reported  

(M atthews, 1968).

T yp el V m =  2.58 A3/Da 40% solvent One dimer per asym m . unit

T ype2  Vm — 2.53 A3/Da 40% solvent Two dimers per asym m . unit

T ype3  Vm =  2 . 2 0  A3/Da 35% solvent One dimer per asym m . unit
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The confidence of the prediction of the number of molecules in the 

asymmetric unit is of great im portance if a molecular replacement strategy  

is to employed for solving the ubiquitous phase problem in protein structure 

elucidation.

5.5.5 D ata processing statistics

All relevant data processing statistics (for all data) are given in Table 

5.1. The data sets for crystal types 1 and 3 were collected in a continuous 

series of non-overlapping frames and therefore could be fully processed in 

one stage, but the final data set for crystal type 2  was comprised from  

three individual data collection procedures. The level of quality of the 

final merged data set for crystal type 2  was superior to the other two crys

tal types, and therefore will be discussed in more detail. Each one was 

processed separately, merged and then scaled together, using XSCALE. A 

critical factor in the success of the merging is the isomorphous nature of 

individual data sets; non-isomorphism manifests itself in an increase in the 

Emerge of the merged data set compared to the value for the individual data  

sets. The cell dimensions for the three individual data sets are given in Ta

ble 5.2. Although the three data sets do not show identical cell dimensions, 

the change between them is not greater than 0 .2 % in any of the axes and in 

/?. The correlation (between common intensities from individual data sets 

after a B-factor correction) was greater than 0.98 between the three data  

sets. Upon the merging the three data sets together the Rmerffe rises as 

higher resolution data shells are included in the analysis, while maintaining 

at a reasonably low level to 2 . 8  A- Table 5.2. Nevertheless, this trend was 

seen in each of the individual data sets. Therefore the scaling of individual 

data sets into a single merged data set did not prove to be significantly 

detrim ental, due to the increased redundancy of data.
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5.6 DATA ANALYSIS OF SUBSTRATE BOUND CRYSTALS

The data collection/analysis protocol was the same as described above. 

The strength and limit of the diffraction seen for citrate bound crystals 

did not warrant the collection of a data set, whereas for the citrate -j- CoA 

bound crystals diffracted strongly and to a limit of 3.2A. The unit cell 

dimensions and data processing statistics are presented in Table 5.3. The 

unit cell dimensions and space group assignment are identical to those of 

crystal type 1 and therefore suggests that the substrates in this case may 

not have bound to the protein since a large conformation change is known to 

occur upon binding of substrates to pig heart citrate synthase, which would 

probably cause a change in the cell dimensions of the crystals. Although, 

efforts to merge this and crystal type 1 data sets together produced very 

low correlations, in the order of 0.5.

5.7 DATA COLLECTION/ANALYSIS DISCUSSION

The in-house area detector has proved to be an invaluable tool in the 

collection of crystallographic data for Tp.acidophilum citrate synthase. The 

rapid detection of crystal imperfections (eg. twinning) and the rapid deter

m ination of space groups (XDS) has allowed m any crystals to be analysed. 

Data from crystal type 2 proved to be superior in both the m axim um  res

olution of diffraction and the processing statistics, even though the large 

b-axis required a longer XTDD than the other crystal types. The latter 

was counterbalanced by the relative size of the crystal compared to the 

other types, allowing a greater 26 angle to be employed. Once the detector 

parameters had been optimized to ensure collection of the highest possible 

resolution data, XDS has allowed the rapid processing of the data. The 

preliminary twinning of crj'stals caused many problems in the collection of 

suitable data for structural elucidation. Many twinned (with hindsight)
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Table 
5.3: 

D
ata 

processing 
statistics 

for 
substrate 

(citrate 
+ 

C
oA

) 
bound 

crystals 
of 

Tp.acidophilum
 

citrate 
synthase.

Native data Space group Number of observations Unique reflections Dmax % Completeness overall Rmerge
T ypel P2221 21821 13014 3.2 81.3 5.4

Cell dimensions ■ a b c a P 7
80.88 98.33 103.82 90.0 90.0 90.0



crystals were mounted and data were collected from them , but data pro

cessing failed to resolve space group determination and were therefore of 

no use. A problem encountered many times was the slippage of the crys

tal within the capillary tube causing the X-ray beam to be incident with  

different parts of the crystal in the same data collection. In many cases 

this caused irredeemable problems with subsequent data analysis, but in 

some instances the problem was alleviated by processing of the data in 

small distinct sections (although, such processing did not contribute to the 

aforementioned data sets). Potential crystal damage by X-ray radiation 

was minimized (where possible) by successive translations of the crystal 

with respect to the X-ray beam. In this way, crystal type 2 proved to be 

extremely resilient to X-ray based deterioration, with over 2000 frames of 

data collected from a single crystal.

Crystal parameters of open and closed forms of pig heart citrate synthase 

The open form of pig heart citrate synthase crystallizes in space group 

P 4 i2 i2  with cell dimensions a—b=77.4A  and c=196.4A . The closed form  

crystallizes in space group C2  with cell dimensions a=104.14A  , b=78.25A  

c=58.40A  and /?=78.5°.
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C h a p ter  6 : M olecu lar  R e p la c e m e n t

6.1 MOLECULAR REPLACEM ENT THEORY

The molecular replacement technique is used in two basic strategies for 

gaining phase information. The first kind is in the search for the orien

tation of non-crystallographic sym m etry elements within the asym m etric 

unit. Electron density maps have been improved by ‘averaging’ around 

local sym m etry elements; this technique has been invaluable in the deter

mination of virus structures (Luo et al., 1987 and Acharya et al. , 1989).

The second kind which will be discussed in more detail here is in the 

derivation of phase information for an unknown structure from a known 

structure. The superposition of the known structure onto the unknown 

structure via a six-dimensional search is commonly split up into two distinct 

parts, due to limitations in computing power. Firstly the determ ination of 

the correct orientation of the known structure in the cell of the unknown 

( the rotation function), followed by the positioning of the correctly orien

tated model in the cell of the unknown (the translation function).

6.1.1 Rotation functions

The corner stone of the rotation function is the properties of the P at

terson function (Patterson, 1934):

P(u) =  [  p(x) .p(x  +  u)dv
J  V

where P (u ) is the value of the function at a particular point u (u ,v ,w ), which 

is a product of of two values of p at position x and x + u  and integrated  

over the whole unit cell. P (u ) has significant value when the vector u  

corresponds to an interatomic vector.

The Patterson function may also be expressed in terms of structure
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factor amplitudes:

P ( u )  =  1 / V  ^  F ( h ) 2 e x p ( —27rih.u)  
h

and therefore can always be calculated from a set of x-ray diffraction data.

Rossmann and Blow (1962) first proposed the rotation function to be a 

product of ‘stationary’ (P 0) and ‘rotated’ (P i)  Patterson functions evalu

ated within the volume U

R (Q )  =  f  P o ( x ) . P ! (£lx)dx
J  u

where ft is the rotation matrix and U is the volume of integration. This 

function can be expanded as their Fourier series:

R (Q )  =  ( U / V 3) E ( F ^ { E F ^ G h,p} )
h P

where h and p are the reflection indices corresponding to Pattersons P 0 

and P i respectively. The interference function G is the Fourier transform  

of the integration volume. The rotation function can be used in two ways. 

P 0 and P i can be calculated from the same data resulting in a self-rotation  

function where 9  is a symmetry operation reflecting crystallographic or 

non-crystallographic symmetry for maximal values of R. If Po is calculated  

from observed data and Pi is calculated from a model, R (fi) is the cross

rotation function where peaks in R may correspond to superim position of 

the model onto the unknown structure. Noise is generated in this calcu

lation due to the presence of cross-vectors in Po , which may affect the 

m atching of the self-vectors.

Crowther (1972) expanded the Pattersons in the rotation function in 

terms of spherical harmonics. This allows the use of Fast Fourier Trans

forms in the calculation, decreasing the execution tim e, but at the expense
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of limiting the volume of integration to being spherical. The radius of inte

gration is inherently linked to the resolution limits by the number of Bessel 

functions supplied.

Navaza (1987) revised the formulation of Crowther (1972) by using nu

merical integration instead of Fourier-Bessel expansions in the radial vari

able. The rotation group Patterson functions are expanded in spherical 

harmonics but the coefficients of the expansions are evaluated by numer

ical integration over a spherical surface. Numerical instabilities were also 

removed by a new algorithm. Consequently, the coupling of the integra

tion radius to resolution limits no longer exists. The rotation peaks are 

enhanced by the skipping of low angular resolution contributions, but all 

rotation peaks are explored in a translational search compared to only a 

single orientation in other molecular replacement packages.

Axel T. Briinger developed molecular replacement procedures within  

the X -PLO R package. Conventional rotation searches in Patterson space 

are performed using the real space, rather than reciprocal space, Patterson  

search m ethod of Huber (1985). The list of rotation function peaks are 

then filtered via PC-refmement, using a least-squares refinement procedure 

in a triclinic PI cell, which should promote ‘correct’ peaks in relation to  

‘incorrect’ peaks.

6.1.2 Translation Functions

The most widely used method of determining the position of a correctly 

orientated molecule in the unit cell is the crystallographic residual search:

R(t) =  E  IFobs -  kFcalc( t ) | /  E  Fobs

where the residual R (t) is calculated for all positions (t) of the molecule 

within the asymmetric unit of translation space.
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Information on the position of a correctly orientated model relative to  

a local origin was derived by Crowther and Blow (1967) by evaluating 

the correlation between a set of calculated Patterson cross vectors and 

the observed Patterson function of the crystal. Their T function can be 

expressed as:

T (t0) =  [  P 0i (u , t )P (u )d u
J y

Therefore when the calculated cross-Patterson Poi fits correctly to the ob

served Patterson P, T (to) will have a large positive value. The translation  

function can be achieved by means of a standard Fourier sum m ation by 

expansion of the Patterson function P (u ) as a Fourier series:

T (t) =  E  |F0bs(h)2|FM(h)FM(hA) exp(-27rih.t)  
h

where A  is the rotational component of the symmetry operation, the  

calculated structure factors for the model relative to the local origin and 

F^j is a complex conjugate of F ^ . Intra-molecular vectors can be removed 

from the observed Patterson decreasing the background noise and yielding 

the T i function:

Ti(t) =  E(|Fobs(h)2| -  E ( F M ) ( h A i ) 2)
h i= 0

* F M ( h ) F J 1 ( h A )  e x p ( —2 7 r ih .t)  

where A{ is the rotation matrix of sym m etry operator of the ith molecule 

to the known molecule. Ti and T functions compare cross-vectors between  

any pair of sym m etry related molecules with the cross vectors in the ob

served Patterson between all molecules. The Ti function can be modified  

to allow m atching of all cross vectors between the calculated and observed 

Pattersons and yielding the T 2 function:
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T 2 ( t )  =  / ( P ( U ) -  P M (u ) ) -P c a lc (u .t )d u

where P m  is the Patterson of the model calculated with respect to the local 

origin and P ca/c(u .t )  is the Patterson of the model at a position t in the 

unit cell.
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6.2 IN T R O D U C T IO N

Conceptually the molecular replacement technique is relatively simple 

if a presumed homologous model is known; determination of the correct 

orientation of the known model in the cell of the unknown, followed by de

termination of the translations that best describe the position of the prop

erly orientated known model in the cell of the unknown. But practically 

many parameters, eg. sequence identity and crystal symmetry, can cause 

many difficulties in determining the ‘correct solution’. Probably the major 

determining factor is the requirement for a sufficiently similar search m odel 

to the undetermined structure ( similar of course only with hindsight). The 

search model usually performs the same function as the unknown and a rel

atively high sequence identity exists between the two. The unknown in this 

case is Tp.acidophi.lum citrate synthase with the functionally identical pig 

heart citrate synthase as the model. There is only 20% sequence identity  

between the two, although sequence alignments show conservation of the 

catalytically important residues suggesting similar m ethods of action and 

perhaps tertiary fold. As mentioned in Chapter 4, results from circular 

dichroism spectra suggest similar levels of secondary structure for both en

zymes. The RMS differences of Ca atoms between the search model and the 

refined new structure are usually in the order of 0.5-1.5A , although higher 

RMS values (eg.pepsinogen which showed an RMS difference of 1 .6 8 A to  

the search model (James and Sielecki, 1986)) have been reported. The 

results presented here are in chronological order, with most detail being re

served for positive features/results. Specific programs used will be detailed  

in appropriate places.
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6.3 RESU LTS

6.3.1 D ata sets used

Both orthorhombic crystal types were proposed to contain a single 

dimer within the asymmetric unit, whereas the monoclinic type to con

tain two dimers. Although identifying the position of one dimer (two 

monomers) is practically easier than identifying the position of two dimers 

(four m onom ers), attem pts at solving the monoclinic data set was concen

trated on due its superior quality compared to the two orthorhombic data  

sets (see section 5.5.5). The success of molecular replacement can be de

pendent on the completeness and quality of data, especially if the search 

model is known/proposed to deviate from the unknown (eg. low sequence 

identity) (Schreuder et al., 1992). No results will be presented that are 

specific to the orthorhombic data sets; only general trends/m odifications 

that are applicable to all data sets.

6.3.2 Search models used

The necessity of having a ‘good’ search model is an overriding factor 

in the success (or not) of molecular replacement. A summary of the many  

slightly differing models used throughout is presented below. There are 

crystal structures for citrate synthase from only pig heart and chicken heart. 

The RMS difference between the open forms of the enzyme from the two 

organisms for main chain atoms is only 0.45A, with the chicken heart struc

ture having been solved by molecular replacement using the open pig heart 

structure as the search model (Liao et al., 1991). In the following sections 

only the use of the native (‘open’) form /data set of Tp.acidophilum cit

rate synthase will be discussed. The major proposed difference between  

pig heart and Tp.acidophilum citrate synthases as predicted from sequence
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alignment studies is the N-terminal extension present in the former. There

fore the N-terminal 53 amino acids of pig heart citrate synthase were deleted  

from all search models due to their predicted absence in Tp.acidophilum cit

rate synthase. Regions in proteins that may show high flexibility and/or  

that exhibit no secondary structural characteristics (eg, loop regions) are 

known to cause problems in finding molecular replacement solutions. The 

C-terminus of pig heart citrate synthase has little secondary structure and 

makes only a few interactions to the rest of the molecule , although ARG421 

is an active site residue. Therefore an alternative search m odel was created 

in which 16 residues were also deleted at the C-terminus. The above two 

‘deletion’ search models were used both as a monomer and a dimer.

The difficulty of finding a ‘correct solution’ prompted other deletion 

models to be tested. From crystallographic. studies pig heart citrate syn

thase is known to undergo a large conformation change upon substrate 

binding (see section 1.1.5) with the small domain rotating 18° with respect 

to the large domain. Therefore just the large domain of the open form of 

pig heart citrate synthase was used as a search model, in case the flexibility 

between the small and large domains was causing problems.

All models were reduced to poly ALA /  GLY due to the low sequence iden

tity between the model and the unknown. Although this greatly reduces 

the protein scattering m atter present, it has been shown that as little as 

1 /4  of that present in the asymmetric unit can be successful in obtaining a 

molecular replacement solution (Fitzgerald, 1988)
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6.4 T H E  SELF R O TA TIO N  FU N C T IO N

Tp.acidophilum citrate synthase exists as a dimer of identical monomers 

and therefore each monomer must be related to the other monomer by a 

two-fold operation. The monoclinic data set was thought to contain two 

dimers within the asymmetric unit and therefore the two dimers must be 

related to each other by non-crystallographic symmetry. The identification  

of the NCS operators would aid the success of molecular replacement.

Inspection of the k, =  180° should reveal the presence of the expected  

two-fold dimer axis as well as the crystallographic two-fold axes. Initial at

tem pts at identifying the non-crystallographic sym m etry were made using 

PO LARR FN  (C CP4), with </> and if) sampled at 5° intervals with k held at 

180°. A range of resolution ranges and the corresponding Patterson cut off 

radii were employed. The two orthorhombic data sets revealed the expected  

three crystallographic two-folds and the monoclinic data set the one two

fold, but neither revealed any significant evidence of non-crystallographic 

two-folds - Fig. 6.1 is the k;=180° section for the csnatl34 data set as pro

duced by PO LARRFN (CCP4). The rotations enabling the placement of 

one dimer onto the other dimer, of different orientation, within the asym 

metric unit of the monoclinic data set is not constrained to lie on the k, =  

180° section. Therefore a self-rotation search on csnatl34  was performed 

on k, from 0-180 °, but no obvious significant peak could be identified with  

confidence. A self-rotation search in Patterson space using X-PLO R on the 

csn atl34  monoclinic data set yielded a peak corresponding to 'if), <f> and k, 

angles of 90.0°, 84° and 180° respectively. Very similar values were obtained  

using CROSUM (M ERLOT).
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Figure 6.1: A 8-3.OA self-rotation function on the csnatl34 monoclinic

data set. Stereographic projection of rotations with k, =  180°.
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6.5 T H E  CROSS RO TA TIO N  AND TR A N SLA TIO N  FU N C T IO N

6.5.1 M ERLOT

Previously existing molecular replacement techniques were rationalized 

and integrated into a single package MERLOT (version 2.3) by P.M.D. 

Fitzgerald (1988).

The rotation function was initially performed using HARMCO and 

CROSUM (derived from Crowther (1972)) and the positions refined by 

searching on a finer grid using LATSUM (Lattm an and Love 1970). Many 

resolution ranges were used (10-4A , 1 0 - 6 A and 6-4A) with the correspond

ing sphere of integration (M ERLOT manual) with all the possible search 

models but the refined top peak from the rotation function was never 

greater than 2-3 RMS, which was not very well resolved from the rest 

of the peaks. The rotation function peaks related by the identified non- 

crystallographic symmetry were searched using ROTSYM .

Each of the highest peaks from the rotation function was used in the 

RVAMAP translation procedure, which searches for R-factor correlations, 

but the resulting list of peaks showed no peak that was significantly higher 

than the next one on the list.

Many different models were used throughout the use of MERLOT but 

none of them  gave a solution significantly highly than other solutions. 

Crystal packing of the few possible ‘solutions’ was tested graphically us

ing FRODO (Jones 1985) ,but all showed very bad packing within the unit 

cell and were clearly incorrect solutions. Although many different param

eters were explored throughout the use of M ERLOT no solution could be 

found to the molecular replacement problem.
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6.5.2 X -PL O R

The molecular replacement procedures in X-PLOR (version 2 .1 ) were 

devised by Axel T. Brunger (1990). As above, a wide range of parameters 

were investigated in the course of using X-PLOR but only a single example 

will be detailed below as a test case (the most positive one).

The monoclinic csnatl data set was used and the N-terminally deleted  

dimer was used as the search model. Structure factors were calculated for 

the search model in a PI cell of dimensions 150xl50xl50A  with a —(3=7= 90°. 

The rotation function and PC-refinement were performed over 10-4 A res

olution range. PC-refinement was performed using a variety of different 

‘groups’ within the rigid-body minimization procedure. The dimer was 

treated as a single group, followed by each monomer as a single group and 

then these were then split into sub-groups consisting of the proposed large 

and small domains of the monomer. After PC-refinement only a single 

significant peak was identified - see Fig. 6.2 ; equivalent to the rotation  

needed for one of the dimers in the asymmetric unit. The translation po

sition for this dimer was then identified, with the Y coordinate of the first 

molecule fixing the origin along the unique b axis, although the top peak 

was only about 1 a  above the mean. The position of the second molecule 

was identified relative to the first one using the first position which had 

been rotated by the non-crystallographic sym m etry operator (see section  

6.4), with the whole of the asymmetric unit explored in the translation  

search . The second position, again, was only about l a  above the mean.

This ‘solution’ was checked initially for crystal packing with sym m etry  

related molecules using the graphics package FRODO - see Fig. 6.3. A 

few surface loops showed interpenetration but was judged to be sufficiently 

‘correct’ for an initial simulated-annealing refinement protocol (see
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Figure 6 .2 : Cross-rotation peaks for the csnatl34 data set, produced from

X-PLOR after PC-refinement.
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Figure 6.3: Molecular packing of the search model within the unit cell

of type2  crystals, as predicted from the incorrect molecular replacement 

solution from X-PLOR. The view is down the c axis. Produced by FRODO  

(Jones, 1985)
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Chapter 8 ) to 2.8 A resolution limit to proceed. An initial 2F 0 -FC map was 

generated using the phases from the molecular replacement solution and 

areas of side-chain density was apparent in the interpretable map. A R- 

factor of 28.8% was reached but without imposing NCS-restraints. Upon  

im position of these parameters the R-factor rose to 42.5%. Inspection of 

the individual monomers revealed an RMS difference between Co: atom s 

for supposedly identical monomers was around 2 .5A , if no NCS-restraints 

were imposed. Therefore this solution was deemed to be incorrect and a 

return to molecular replacement was made.

6.5.3 AMORE

AMORE is a package for molecular replacement devised by Jorge Navaza 

(1992). The new strategy developed is the fast autom atic translational 

exploration of a large number of rotation function solutions instead of a 

single rotation function peak, which has been post-rotationally refined as 

in X-PLOR. The individual sequence of the stages within AM ORE are 

summarised in Fig. 6.4. The first stage, SORTING, is the packing and 

sorting in a PI asymmetric unit of the hkl Fobs. Next, in TABLING, the 

search model is placed in a small box, the coordinates rotated so that the 

principal axes of inertia are parallel to the box axes and translated so that 

the centre of gravity is at the origin; ensuring an optim al placement of the 

m odel within a minimal box. TABLING also produces arrays of Fourier 

coefficients of the model densities corresponding to the search model. Once 

the input data have been transformed into a suitable representation by the 

above two stages, ROTING is able to interpolate the structure factors for 

each orientation of the model in a suitable cell from the Fourier coefficients 

produced in TABLING. Spherical harmonics for both the crystal and m odel 

are also calculated in ROTING which are used for the Rotation function
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‘SORTING 4

Packs and sorts hkl F0ba

‘TABLING’

Moves model to optim um  position and prepares table of continuous Fourier 

coefficients from coordinate model

1
‘R O TING ’

Calculates ‘structure factors’ for model Calculates spherical harmonics for 

crystals and models Calculates rotation function

1
‘TR A IN G ’

Calculates translation function

I
‘FITIN G ’

Performs rigid-body refinement

‘SH IFT’

Calculates final rotation and translation parameters to apply to the initial 

model

Figure 6.4: Flow chart summarising the individual programs with AM ORE, 

the molecular replacem ent package by Navaza (1992).
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calculation. If a suitable rotation function peak is identified, the transla

tion part of the molecular replacement calculation can be carried out using 

TRAING, using the Crowther and Blow overlap function (1967) m ethod. 

The rotation and translation peaks can be optimized using FITING; a rigid- 

body refinement by the m ethod of Castellano et al. (1992), an improved 

version of the Huber and Schneider method (1985). Since the search m odel 

coordinates are rotated/translated into an optimal position in the search 

box (in TABLING), the final stage in AMORE is the calculation, from the 

refined parameters produced by FITING, of the final rotation and transla

tion parameters to be applied to the search model.

The model chosen for use in the AMORE package was the pig heart 

citrate synthase dimer which had been both N- and C- terminally deleted, 

which was used in conjunction with the monoclinic data set csn atl34 . All 

the different rotation functions were carried out in a P I cell w ith dimensions 

150x150x150A with a = /3 = 7 = 9 0 °. The resolution limits used were 2 0A - 4A. 

Higher resolution data were not included due to size dependent com puting  

lim its and the structural differences likely due to 2 0 % sequence identity  

between unknown and search model.

The first variable investigated was the sphere of integration radius, over 

which the Patterson maps were to be calculated. Navaza suggests that 

this should not be greater than the maximal distance from the center of 

m ass, 48.98A as calculated by TABLING. R min was constant as zero with  

Rmax (the Patterson cut off radii) being tried at 20A, 25A and 30A. The 

radius of integration must be optimised so as to reduce the contribution  

of intermolecular vectors to the Patterson calculation. The subsequent 

rotation function solutions are listed in Table 6.1 ( only the top nine peaks 

are listed for simplicity). The top peak was the same for both 25A and 30A
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a & 7 Correlation Integration sphere
0-25

243.28 79.96 5.11 15.3
21.50 122.42 143.42 13.2

133.24 125.48 320.06 12.4
120.04 63.73 31.46 1 2 . 1

26.50 46.19 148.50 11.9
34.00 48.29 143.50 11.9

302.05 58.91 33.46 11.5
65.18 8 6 . 1 2 182.44 11.3

331.61 90.12 153.52 1 1 . 2

0-30
242.91 79.99 5.31 12.9
148.50 133.50 326.00 1 1 . 6

24.01 124.16 323.94 11.3
113.76 94.68 2.29 11.3
298.98 59.87 213.07 10.3
116.78 63.21 34.31 10.3
336.18 123.50 332.76 9.6
18.74 122.43 331.89 9.6

0 - 2 0

152.75 2.40 107.48 19.3
620.00 0 . 0 0 0 . 0 0 18.8

0 . 0 0 180.00 - 1 0 0 . 0 0 18.8
0 . 0 0 180.00 -280.00 18.8

40.20 56.42 324.63 17.8
298.50 26.00 359.00 17.6
25.94 122.38 322.85 17.2

205.14 66.57 238.03 17.1

Table 6 .1 : List of cross-rotation function peaks on the csnatl34  data set

with the N- and C- terminally deleted pig heart citrate synthase as the 

search m odel, as calculated by ROTING in AM ORE. Only the top nine 

peaks as listed for simplicity. The Patterson radius of integration is the 

variant between the three different searches. All searches were performed  

using 10-4A data.
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radii, but list of rotations used for subsequent translation searches were 

calculated with a 25A cut off radius due the higher correlation present for 

the top peaks.

The Crowther and Blow translation m ethod (1967) was used through

out. The peaks from the rotation function -were initially used to find the 

relative position of one of the dimers in the asym m etric unit, with b being 

the unique axis. The same resolution limits were imposed on the trans

lation function as were on the rotation function. The sampling interval 

for the translation map (SHANN) was initially set to 2  but failed to give 

high correlation values for the resulting peaks. But on reduction of this 

interval to 1 , higher correlation values were obtained - see Table 6.2 for the 

list of peaks. This reduction causes the ‘coordinate m ap’ to be sampled  

on a coarser grid. Peak number 8  gave both the highest correlation value 

and the lowest R-factor and therefore was taken as the position of the first 

dimer within the asym m etric unit.

Peak N o . 8  was fixed and the translation function run again on the same 

set of rotation peaks with the position to be determined relative to the  

position of the first dimer. Table 6.3 shows the output from the second  

translation function. The solution for molecule 2 with the highest corre

lation value and lowest R-factor is equivalent to the top peak from the 

rotation function, and was therefore taken as the position of the second  

dimer within the asym m etric unit.

W ith a possible solution for the position of the 2  dimers a rigid body  

refinement was carried out using the m ethod of Castellano et al. (1992) 

to refine the rotation and translation solutions, allowing monitoring of the 

correlation and R-factor. The final refined positions are stated in Table 6.4. 

The R-factor dropped and the correlation coefficient rose upon the
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Peak No. a P 7 a b c Correlation R-factor
1 243.28 79.96 5.11 0.06667 0 . 0 0 0 0 0 0.08333 15.0 56.7
2 21.50 122.42 143.42 0.36667 0 . 0 0 0 0 0 0.08333 14.4 56.5
3 133.24 125.48 320.06 0.25000 0 . 0 0 0 0 0 0.42708 14.2 57.0
4 120.04 63.73 31.46 0.20000 0 . 0 0 0 0 0 0.26042 13.9 57.0
5 26.50 46.19 148.50 0.18333 0 . 0 0 0 0 0 0.22917 13.7 56.7
6 34.00 48.29 143.50 0.25000 0 . 0 0 0 0 0 0.07292 14.3 56.3
7 302.05 58.91 33.46 0.01667 0 . 0 0 0 0 0 0.16667 14.6 56.7
8 65.18 86.12 182.44 0.15000 0 . 0 0 0 0 0 0.28125 16.9 56.0
9 331.61 90.12 153.52 0.40000 0 . 0 0 0 0 0 0.44792 12.1 57.0

10 356.88 116.27 215.42 0.26667 0 . 0 0 0 0 0 0.39583 13.4 57.0
11 315.97 176.47 212.09 0.41667 0 . 0 0 0 0 0 0.42708 13.4 56.3
12 30.36 78.64 301.40 0.18333 0 . 0 0 0 0 0 0.10417 12.8 57.0
13 203.86 61.81 60.14 0.11667 0 . 0 0 0 0 0 0.48958 13.2 56.5
14 172.71 114.81 212.57 0.30000 0 . 0 0 0 0 0 0.43750 11.8 57.7
15 273.54 123.60 246.83 0.10000 0 . 0 0 0 0 0 0.41667 14.2 56.7
16 143.50 154.95 318.50 0.31667 0 . 0 0 0 0 0 0.30208 12.6 56.9
17 1.56 88.87 87.61 0.23333 0 . 0 0 0 0 0 0.48958 12.8 56.8
18 94.51 121.20 159.89 0.23333 0 . 0 0 0 0 0 0.01042 13.9 56.8
19 91.71 151.29 151.00 0.30000 0 . 0 0 0 0 0 0.37500 11.5 57.5
20 330.16 147.74 322.98 0.11667 0 . 0 0 0 0 0 0.33333 12.8 56.9
21 0.00 180.00 256.90 0.41667 0 . 0 0 0 0 0 0.42708 12.6 56.9

Table 6 .2 : List of translation function peaks after one of the cross-rotation  

function peaks had been fixed, as calculated by TRAING in AM ORE. The 

search was lim ited to x  and z, with 10-4A data being used for the calcula

tion.
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a P 7 a b c Correlation R-factor
1 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

243.28 79.96 5.11 0.56144 0.24010 0.96634 20.6 55.2
2 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

21.50 122.42 143.42 0.74806 0.86890 0.00000 18.0 56.1
3 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

133.24 125.48 320.06 0.50776 0.58067 0.69708 17.6 56.2
4 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.C

120.04 63.73 31.46 0.19385 0.88805 0.98323 17.5 55.7
5 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

26.50 46.19 148.50 0.84304 0.47523 0.05443 17.8 55.9
6 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

34.00 48.29 143.50 0.20696 0.01156 0.36849 17.9 56.4
7 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

302.05 58.91 33.46 0.72491 0.09664 0.30314 17.6 56.3
8 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

331.61 90.12 153.52 0.35039 0.90430 0.88745 16.2 56.1
9 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

356.88 116.27 215.42 0.27649 0.58658 0.09854 16.9 56.3
10 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

315.97 176.47 212.09 0.03818 0.61822 0.41235 16.8 56.0
11 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

30.36 78.64 301.40 0.80915 0.85547 0.52208 17.2 56.1
12 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

203.86 61.81 60.14 0.32248 0.46960 0.48482 16.9 56.3
13 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

172.71 114.81 212.57 0.06169 0.07934 0.70032 16.4 56.7
14 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

273.54 123.60 246.83 0.40719 0.05250 0.24001 17.3 56.2
15 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

143.50 154.95 318.50 0.36012 0.39364 0.51918 16.5 56.0
16 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

1.56 88.87 87.61 0.71703 0.41197 0.49321 17.0 56.1
17 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

94.51 121.20 159.89 0.42883 0.13632 0.63384 17.9 56.0
18 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

91.71 151.29 151.00 0.49020 0.37559 0.30406 ■16.8 55.9
19 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

330.16 147.74 322.98 0.38214 0.60837 0.71638 16.5 56.3
20 65.18 86.12 182.44 0.15000 0.00000 0.28125 16.9 56.0

0.00 180.00 256.90 0.33681 0.51401 0.10626 16.9 55.9

Table 6 .3: List of translation peaks for the position of the second dimer in

the asym m etric unit with respect to the fixed position for the first dimer, 

as calculated by TRAING in AMORE. 10-4A data were used in the calcu

lation.
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a P 7 a b c Correlation R-factor
6 8 . 1 1 86.71 181.34 0.16795 0.00059 0.28875 50.1 50.8

248.05 77.75 5.46 0.54676 0.23826 0.96568 50.1 50.8

Table 6.4: Orientations and positions of the two dimers after rigid-body re

finement of the initial molecular replacement solutions produced by AM ORE.

a P 7 a b c Correlation R-factor
164.36 27.81 307.94 5.85 -0.13 24.83 50.1 50.8

184.05 153.65 ! 163.55 19.16 41.63 83.03 50.1 50.8

Table 6 .5: Orientations and positions of the two dimers within the asym 

metric unit of crystal type2 .
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refinement suggesting a possible ‘solution’. The final R-factor was still over 

50% but since only a polyALA search model was used the lack of scattering 

m atter would be an accountable factor.

In TABLING the search m odel is rotated so that its principal axes of 

inertia are parallel to the box axes and then translated so that the centre 

of gravity is at the origin. Therefore the above solutions were converted so 

that they applied to the original search model. The rotation and translation  

functions that were applied to the pig heart citrate synthase dimer are 

stated in Table 6.5. The molecular replacement solution for the position  

of the two dimers was checked initially for packing with sym m etry related 

molecules within the unit cell using the graphics package FRODO - see 

Fig. 6.5. Although minor clashes were present these were confined to a 

few surface loop regions, with the majority of the dimer showing no bad 

packing contacts with either the other dimer in the asymmetric unit or 

with sym m etry related dimers. Therefore this ‘solution’ was deemed to be 

a good candidate for further refinement procedures (see Chapter 8 ) to check 

whether there was truth in the ‘solution’.

6 . 6  DISCUSSION

Molecular replacement can be a very rapid and effective tool in the 

elucidation of crystal structures, but in this instance it was more of a case 

of the latter than the former. Although the sequence identity between pig 

heart and Tp.acidophilum citrate synthase is only 20% there was data that 

indicated similar levels of secondary structure between the two enzymes 

(see Chapter 4). The success of molecular replacement is dependent on the 

level of structural similarity between the unknown and the search model. 

Therefore, the reduction of the search models to a polyA LA /G LY  chain 

due to the low sequence identity made the search model less than ideal.
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Figure 6.5: Molecular packing of the search model within the unit cell of

type2  crystals, as predicted from the molecular replacement solution from 

AMORE. The view is down the c axis. Produced by FRODO (Jones, 1985).
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A wide range of molecular replacement packages were used to the full, 

exploiting most possible parameters available but only AM ORE gave the 

correct solution. It is an intriguing question as to why AM ORE worked 

and. the other packages didn’t. One feature of AM ORE is the ability to  

explore all rotation function peaks in the same translation function search, 

although the top peak was in fact equivalent to the orientation of one of the 

dimers. This function was also useful since the NCS operators could not be 

identified with great confidence. The orientation of one of the dimers was 

equivalent to the eighth peak of the original rotation function.

The data sets for crystal types 1 and 3 proved to be unsuccessful in 

yielding a molecular replacement solution. This was probably due to the 

low quality of the data coupled with the poor (ie. low sequence identity) 

search model. The data for crystal type 2 was of far superior quality and 

coupled with the use of AM ORE was probably the significant factor in 

gaining a ‘correct’ solution.

Although no bad contacts in the molecular packing of the solution from  

X -PLO R  were present and a low R-factor was reached upon initial refine

m ent, the solution was deemed to be incorrect since good agreement be

tween observed and calculated data was only seen at the expense of NCS. 

Brady and Jian-sheng (1992) previously reported that sim ulated annealing 

refinement procedures must be used with caution when testing molecular 

replacement solutions, especially with respect to the im position of NCS- 

restraints.

The lack of confidence in the detection of NCS may be explained. The 

peak at </> =  90°, ie. parallel to the unique axis b, is the crystallographic 

2 -fold, for the monoclinic data set. and therefore detection of NCS along 

b is impossible. Wang and Janin (1993) reported that if a dimeric protein
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crystallizing in space groups like P 2 i or P 2 i 2 i 2 i and it lacks strict twofold 

symmetry, that with a high frequency crystal packing will orientate the local 

twofold relative to the crystal screw axis. Therefore if the local twofold axis 

of Tp.acidophilum citrate synthase is orientated parallel to b, detection of 

the former will be impossible. Although this does not explain the case of 

the monoclinic data set where the self rotation should identify the rotations 

to orientate one dimer onto the second dimer. Wigley (1992) had a similar 

problem in identifying the relationship between two tetramers within the 

asymmetric unit with the self rotation function. He interpretated this to 

be due to the two tetramers to be in very similar orientations.

The refined positions of the molecular replacement solutions allows iden

tification of the relationship between one monomer and the other as well 

as between the two dimers within the asymmetric unit. The rotation, in 

spherical polar angles, between one monomer and the second monomer of 

the dimer is ij) =  157, cf) =  171 and /-c=180, which corresponds to a rotation of 

180° around an axis with direction cosines 0.37, 0.92 and 0.0. The rotation  

between the two dimers in the asym m etric unit is -i/>=69, (f) = 177 and k = 194, 

which corresponds to a rotation angle of 165° about an axis with direction 

cosines 0.9, -0.35 and 0.0. Therefore upon inspection of the /c=165° section  

a peak should be present which corresponds to the NCS between the two 

dimers in the asym m etric unit. A peak only 3<r above the origin peak was 

present on this section and therefore initial confident identification of this 

peak was not possible. Interestingly the relationship between a monomer 

of one dimer to the two-fold related monomer of the other dimer in the 

asym m etric unit corresponds to a rotation of ?/>—94, <̂ >=90 and /£=180, ie. 

the monomers in the two dimers are also related by a two-fold.
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C h ap ter  7 : T h e  Search for h eavy  a to m  d er iv a tiv e s

7. 1 INTRODUCTION

In the absence of a molecular replacement solution, a screen of heavy  

atom soaks was instigated in the search for isomorphous heavy atom  deriva

tives. From the binding of a heavy atom (s) to a protein new scattering  

centres are introduced into the protein causing a change in the intensity of 

reflections yielding information concerning the unknown phases. Not unlike 

the planning of ciystallization trials, the choice of which heavy atom  to use 

may be seen as a mixture of judgement with hindsight and instinct. Un

fortunately m any heavy atoms do not bind specifically at a small number 

of sites within the specified protein, or show no binding at all. Many also 

cause a large perturbation of the protein, which if used in crystal soaking ex

periments will disrupt the crystal lattice leading to either non-isomorphous 

data (ie. the cell dimensions being altered and/or rotation of the molecule 

in the same unit cell ) or the preformed crystal cracking upon soaking.

Derivative data sets need to be isomorphous with the native data set. If 

any of the cell dimensions have changed by more than 1 % of the native cell 

dimensions a large amount of ‘noise’ is created in the subsequent analysis 

due to the large changes in the intensity of the reflections. A 0.5% change 

in all of the cell dimensions results in a mean change of 15% in reflection 

intensity at 3A resolution (Blundell and Johnson, 1976).

The theory behind the heavy atom isomorphous replacement m ethod  

for the calculation of phases will not be discussed in this chapter due to no 

phase information being gained from the results presented below.
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7.2 RESULTS

Initial attem pts to co-crystallize protein and heavy atom solution proved 

unsuccessful, therefore crystal soaking experiments were employed where a 

previously grown native crystal was soaked in a heavy atom  solution of 

known concentration for a specified tim e. The ‘soaked’ crystals were then  

m ounted in a quartz capillary tube and diffraction data collected. The 

chosen heavy atom was dissolved in the PEG solution used for the crys

tallizations. Many of the heavy atom s chosen as potential candidates did 

not dissolve eg.AgNO s, PbA c2 and CdCl2. Fortunately many of the heavy 

atom s did dissolve and were used as candidates for soaking experim ents.

The analysis was carried out using the CCP4 suite of programs. Na

tive and derivative data sets were combined using M TZUTILS, which was 

followed by anisotropic and local scaling (LOCAL) to bring them  onto the 

same relative scale. An isomorphous difference Patterson map was gener

ated (F FT ) and the Harker sections investigated for peaks. The Harker 

sections were plotted using PLUTO. VECSUM  was used for the sem i

autom atic interpretation of the Patterson. A first potential site (> 2 a)  on 

the Harker section was chosen, which fixed the hand and origin. This site 

was fed back into VECSUM , and subsequent possible sites were added until 

no further significant peaks were obtained. The positions of the peaks cor

responding to the potential heavy atom  sites were refined using V ECR EF. 

The peaks were extensively statistically examined for useful phase informa

tion using M LPHARE in terms of figures of merit and phasing power, for 

exam ple.

Table 7.1 summarises the results from the soaking experim ents. No 

useful isomorphous heavy atom derivative was found for either crystal type. 

The Patterson maps never yielded a peak above 3 cr and the sites that were
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Table 
7.1: 

Sum
m

ary 
of 

heavy 
atom 

soaking 
experim

ents.

Heavy atom (mM) Soak time (hr) Effect D ata collected Crystal type Isomorphous
Uranyl acetate 5 12 Crystal cracked NO — —

K 2PtC l6 5 24 Crystal disordered NO — —
T h (N 0 3 ) 4 2 22 Crystal disordered NO — —
Na3 IrCl6 .4 120 Crystal disordered NO — —
NaAuCl4 5 0.2 Crystal cracked NO — —

UF 6 25 — YES 2 NO
La(CH3 COO ) 3 2 20 — YES 2 YES

K 2PtC l4 5 24 — YES 2 YES
K 2PtC l4 5 48 — YES 3 YES

k i3 0.4 24 — YES 3 NO



present proved to be low in phasing power.

Due to no heavy atom derivatives being found detailed information on 

results from only a single heavy atom, K 2PtC l4, will be presented which 

will be used as a model example for why statistically the specific heavy 

atom  was not a useful derivative.

Single crystals (type2 ) were soaked in 5mM K 2PtC l4 for 24 hr. The cell 

dimensions of the derivative showed a 0.3% change in a, 0.3% change in b, 

0.3% change in c and 0.4% change in /?, a derivative sufficiently isomorphous 

for subsequent analysis. The data set was 82% complete to 6 Aand 45% com 

plete to 4.5A. Analysis was carried out to both the above resolutions but 

data will only be presented on data to 6 A. Figure 7.1 is the isomorphous 

difference Patterson map on the single Harker section ( v = l /2 ) .  No signif

icant peaks were present, suggesting lack of specific binding of the heavy 

atom  but further analysis was carried out to gain statistical information on 

the possible derivative.

4 peaks were identified from VECSUM and the position of these sites in 

the unit cell were refined using VECREF. The residual values for the 4 sites 

are very high (0 .7-0.8) and the correlation quite low (0 .5 -0 .6 ), indicative of 

a low quality derivative. From the refined heavy atom positions, the single 

isomorphous replacement phase information was calculated using mlphare. 

The mean figure of merit for phased acentric measurements is 0.1688 and for 

phased centric measurements 0.3339 (on a 0-1 scale, reflecting the accuracy 

of the phase angle). A fom of 1 is the ideal value. Thus the value for 

this derivative was low, again indicative of a low quality derivative. The 

phasing power of the derivative was 0.5, which again is a low value. A value 

of 1 or over is indicative of a derivative which may give good information  

concerning the phases. No anomalous data was present.
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Figure 7.1: Isomorphous difference Patterson map on the Harker section

v = l /2 ,  calculated from K^PtCU (5mM, 24hr) soaked type2 crystal and 

csnatl34 data sets. The map was contoured in levels of <7 , starting at lcr.
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7.2 DISCU SSION

The search for isomorphous heavy atom derivatives can be a long and 

arduous task and in this instance proved to be unsuccessful for both the 

crystal types (2 and 3) tried. K^PtCLj was soaked into both the crystal 

forms but neither type resulted in a derivative suggesting, in this instance 

that the crystal packing was not a factor in heavy atom binding but rather 

the nature of the heavy atom itself, in relation to the protein. In both  

crystal types the perturbation of the crystal caused by soaking in a heavy 

atom solution was a major problem resulting in non-isomorphism or crystal 

cracking/disordering.

The phasing statistics for K 2 PtC l4 as a derivative are poor. The equiv

alent phasing statistics for the other heavy atoms analysed have similar 

values. Therefore, unfortunately, no useful heavy atom derivatives for 

Tp.acidophilum citrate synthase were found, although the success of m olec

ular replacement eventually eradicated their need.

W hy no useful heavy atom  derivatives were found is partly due to the 

intrinsic nature of the protein. Some heavy atoms are known to bind to 

specific amino acids in proteins, which of course m ust be accessible to the 

heavy atom. An amino acid commonly cited as a binding site for heavy 

atom s is cysteine, due to the presence of the sulphur atom which is able to 

react rapidly and irreversibly with mercuric ions; the positive charge of the 

mercury reacting with the negative charge of the sulphydryl group via nu- 

cleophilic attack. Unfortunately Tp.acidophilum citrate synthase contains 

no cysteine residues (although no mercury salts would actually dissolve in 

the PEG crystallization solution). This lack has been a problem in the 

search for derivatives of other proteins, one which was only overcome by 

the m utation of a cysteine residue into the protein and the subsequent use
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of the m utant protein for determ ination of the crystal structure via heavy 

atom  (ie. mercuric) derivatives (Nagai et al., 1991).

Useful heavy atom derivatives may have been found upon investigation  

of different heavy atom s, more extensive investigation of concentrations and 

soak tim es, but this is more of a m atter for conjecture than of necessity.
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C h a p ter  8 : R efin em en t o f  Thermoplasma Acidophilum

c itr a te  sy n th a se  stru ctu re

8.1 REFINEM ENT THEORY

One m ethod of crystallographic refinement of macromolecules can be 

seen as a non-linear minimization of a hybrid energy function (Jack and 

Levitt, 1978). Stereochemical restraints are included in the energy mini

mization calculations to improve the effective number of observations since 

macromolecular diffraction data are usually not in the atom ic resolution 

range. Convergence of the energy term by gradient descent minimization  

will only occur if the structure being refined is close to being optim al since 

only local energy minima will be found. The recent use of molecular dy

namic simulations into refinement procedures enables larger energy barriers 

to be overcome and a wider range of conformations to be explored in the 

search for a global energy minimum. Other m ethods of refinement (eg PRO- 

LSQ and TN T) involve a series of stereochemical restraints not expressed  

energetically, but as a series of distance and angle restraints.

The progression of the refinement is usually followed by calculation of 

the agreement between the calculated structure factor am plitudes and the 

observed ones, known as the R-factor where

R = £ F 0( h ) - F c( h ) / £ F 0( h )
h h

Therefore as the agreement between the observed amplitudes and the cal

culated amplitudes increases (ie. as your model increasingly fits to the 

observed electron density), the value of the R-factor decreases. Known 

fully refined protein structures have an R-factor only between 15-20%, due 

to practically unavoidable errors in the collection and processing of the x- 

ray data and , more importantly, the inability to describe the full contents
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of the unit cell which typically contains 50% solvent.

8.2 THE X -PLO R ENERG Y FUNCTION

The effectiveness of the refinement procedures carried out by X-PLO R  is 

based on definition of the X-PLOR energy function, which can be grouped  

into two different classes:

E t o t a l  =  E e m p i r i c a l  + E e f f e c t i v e

E e m p i r i c a l  describes the energy of the molecule(s) through an empiri

cal energy function derived from stereochemical restraints on the molecule. 

E e f f e c t i v e  comprises restraining energy terms that use experim ental in

formation or other information.

8.2.1 The Empirical Energy Function

The empirical energy function is made up of the following stereochemical 

terms:

E e m p i r i c a l  ~  E b o n d s  + E a n g l e s  + E d i h e d r a l s  + E j m p r o p e r s  + 

E n o n b o n d e d

The first four terms are conformational energy terms.

E b O N D  =  J 2 b o n d a  H r  ~  r o ) 2 

describes the covalent bond energy, where r is the observed bond distance, 

r0 is a ‘standard’ bond distance, derived from small molecule structures, and 

k is a force constant derived from spectroscopic studies of bond stretching.

E a N G L  =  J2 a n g l e s  k ( 0  — Oq)2

describes the bond angle energy, where 9 is the observed bond angle, 60 is

a ‘standard’ bond angle derived from small molecule structures and k is a

force constant derived from spectroscopic studies.
r k( 1 4- cos(n(f) T 6)) if n  >  0

EIMPR E L )IHE U d i h e d r a l s , i m p r o p e r *  | if n 0
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describes energy terms involving dihedral angles, chirality or planarity, n 

is the periodicity of the dihedral, 8 is the ideal dihedral angle and <f> is the 

observed dihedral angle.

The nonbonded interactions are described by:

E n o n b o n d e d  — E v d v /  + E e l e c  + E y D W  + E e l e c  

where the third and fourth terms are equivalent functions to the first and 

second terms but describe interactions between sym m etry related molecules. 

The nonbonded term can be switched to a purely repulsive function to re

duce numerical instabilities in the refinement of initial structures which 

may contain bad contacts. The hydrogen-bond energy is contained within  

the electrostatic and van der Waals terms.

The electrostatic term is given by

E e l e c  =  Y  ~  + en Y  ~  ~ & ~ ) 2
i<j eoft nOff (*lj')e{l—4} ° off

and the Van der Waals term by

E v d w  =  J 2 ( A / R »  -  B / R 6) * S W I T C H ( R , R m , R o)})
i<j

+  Y ,  ( A / R l 2 -  B ! RQ) * S W I T C H ( R ,  Ron, Roff)
1 - 4 }

8.2.2 The Effective Energy Function

The effective energy function consists of terms from experim ental ob

servations:

E e f f e c t i v e  = E x r a y  + E n c s

The XRAY term is split into distinct contributions from the am plitude 

and phase:

771___________ rpA i j pP
& X R A Y  ~  & X R A Y  +  & X R A Y
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where

Z xray  =  W a / N a Eh W h [F„i,(h) -  kFcaJc(h ) ] 2

and

E x r a y  =  ^ p / ^ p E h W hs ( ( ^ h  -  <£caZch ),arccos(m (h ))}

W a  and Wp  are the determined ideal weights on the structure factor 

amplitude and phases relative to the geometric term s, with W h the weight 

on the individual observations. E ^ RAY is only employed if phase restraints 

are used, k is a scale factor to ensure that E ^ RAY is a minim um  and N a  

is a normalization factor to make the weight independent of the resolution  

range.

Non-crystallographic sym m etry (NCS) restraints are introduced into  

the X-PLO R effective energy function by restraining NCS-related atoms 

to their average position by means of an effective harmonic energy term, 

equivalent to the m ethod used by Hendrickson and Konnert (1980) in their 

refinement program. A least-squares superposition of these atom s onto a 

reference set (taken as the first set defined) is com puted, and the average 

x,y,z (ic) for each atom is taken. Each atom is then restrained according to 

the energy:

E n c s  = w ( x  -  x ) 2

with w  used to weight the restraint. NCS related B-factors are similarly 

restrained to their average value :

(b — b)2 /  sigb2

where x and b are the mean values from the NCS-related atom s.

8.3 MOLECULAR DYNAMICS

Molecular dynamics consists of simultaneously solving N ew ton’s equa

tions of motion for all atoms under the influence of a potential derived 

from empirical stereochemical terms and observational restraints. In terms
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of the X-PLOR energy function the equation takes the form of:

d? X{
m i ~forW ~ ~^ xiErOTAL

A genuine ‘free’ molecule dynamics simulation is not achieved due to the  

incorporation of observational restraints into the dynamics equation. Extra  

energy is incorporated into the system  by the assignment of velocities to  

atom s allowing local energy m inim a to be traversed. Kinetic energy is 

introduced into the system  via the release of stereochemical restraints and 

the increased agreement with the experim ental data. The velocities of the  

atom s give the current tem perature of the system  by Boltzm ann’s Law. 

The maintenance of the tem perature of the system  can be controlled in 

one of three ways. Firstly, the velocities can be periodically rescaled in an 

uniform fashion by

» r  = vfd(T/Tcurryt2
for all atom s i where T  is the target tem perature and Tcurr is the current 

tem perature. This m ethod of tem perature control is used in the ‘check’ 

procedure for standard molecular dynam ic simulations. Secondly, the in

fluence of a heat bath can be incorporated into the classical equations of 

m otion by Langevin dynam ics, which applies random forces to the friction 

coefficient. The third option is the weak tem perature-coupling m ethod, 

which is related to Langevin dynamics but instead applies a global scale 

factor to the friction coefficient which is proportional to the ratio of Tcurr to  

T.  In the ‘slowcooling’ simulated annealing protocols used in X -PLO R, the 

T-coupling m ethod is used in preference to Langevin dynamics due to faster 

convergence rates seen in the former since the friction coefficient becomes 

zero if Tcurr agrees with T  , which does not slow the atom ic motions as much 

as when using Langevin dynamics. Upon using the T-coupling m ethod for 

tem perature m aintenance the X -PLO R dynamics equation becomes
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m i ( 82r i / 8t 2 ) =  — V X{E t o t a l  — 7 7 2 * 7 ^ ( 1  — ( T / T c u r r ) )  

where 7  is the friction coefficient.

8.4 RIGID BO DY REFINEM ENT

The X-PLO R m ethod of rigid body refinement minimizes the six rota

tional and translational degrees of freedom of each specified group of atom s, 

that is, the groups of atom s are treated as rigid bodies. The complete en

ergy function E t o t a l  is used.

8.5 REFINEM ENT STRATEGY

8.5.1 Rigid body refinement

The first step after the determination of the possible molecular replace

ment solution was the optim ization of the orientation and position of the 

m odel within the asym m etric unit by rigid body refinement using the pro

gram X-PLO R (Briinger et al., 1987). Since the orientation and position of 

4 identical monomers were identified, non-crystallographic restraints were 

employed to ensure that each monomer was treated as identical, with each 

monomer being an equivalence set within a group.

8.5.2 Refinement by Simulated Annealing

The protocol used for a simulated annealing refinement (program X- 

PLOR; Briinger et al., 1987) is shown in Fig. 8.1. The first stage of the 

protocol is to explicitly build in the polar hydrogens and to create a Pro

tein Structure File, ( ‘p sf’), a molecular topology file containing information 

about atom  nam es, angle terms and explicit hydrogen-bonding terms for 

example. Subsequent refinement procedures require a weighting between 

E x r e f  and E e m p i r i c a l  obtained using the ‘check’ procedure. The value
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INITIAL MODEL

after graphical interpretation

I
‘GENERATE’

Build polar hydrogens and prepare topology file

I
‘CHECK’

Determine values for Weight,

i
‘PREPSTAG E’

Conventional refinement

I
‘SLOWCOOL’

Simulated anneahng refinement

NEW  MODEL

4
^ R E F I N E M E N T ’

Refinement of Grouped/Individual B factors

Figure 8.1: Flow diagram summarising the individual stages in the simu

lated annealing refinement protocol employed.
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is obtained at the start of each refinement cycle by 40 steps of Powell min

imization and a O.lps molecular dynamics calculation (300K) with E x r e f  

excluded. The gradients of E x r e f  and E e m p i r i c a l  are then compared in 

order to give the ideal value for W a -

NCS-restraints were employed in refinement procedure due to the pres

ence of four monomers within the asymmetric unit. W hen the m ajority of 

the sequence had been fitted and refinement was at an advanced stage, the 

NCS-restraints were removed.

Before simulated annealing refinement using the coordinates of all free 

atom s as variables, energy minimization must be carried out to relieve strain 

or bad contacts, using the ‘prepstage’ procedure. To ensure convergence in 

minimization of the initial structure the ‘repel’ nonbonded energy function  

was used for 40 cycles which uses a harmonic repulsive term instead of the 

vdw term, followed by a further 120 cycles of Powell m inim ization with  

the vdw term switched on in the energy minimization calculation. The 

purely repulsive minimization cycles were not necessary as the refinement 

progressed due to fewer bad contacts being present within the molecule.

Simulated annealing refinement is carried out in the ‘slowcool’ stage. 

The initial temperature was set to 3000K (or 2000K to reduce com puta

tional tim e) and reduced at 0.5fs intervals to 300K in order to find a global 

energy minimum. At each temperature interval 50 steps of dynamics were 

carried out. After the molecular dynamic refinement 120 cycles of Powell 

m inim ization were performed to alleviate any strain or bad contacts that 

may have arisen from the ‘slowcooling’.

The model used in AMORE was pig heart citrate synthase which had 

been reduced to polyALA/GLY. Therefore the Tp.acidophilum citrate syn

thase sequence had to be fitted manually using the graphics package O
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(versions 5.7, 5.8 and 5.9) (Jones et al., 1991). Sequence alignment of pig 

and Tp.acidophilum citrate synthases (B E ST FIT , GCG) (Fig. 8.2) were 

used to identify equivalent regions of sequence and these gave a starting  

position for initial analysis of the contiguous regions of electron density. 

The graphical m utations were performed on a single monomer and the 

other three monomers converted at the end of the manual m utations by 

least-squares transformations using 0 .

After each round of graphical interpretation a complete round of sim u

lated annealing refinement was undertaken, followed by creation of a new  

2F o-F c map. All electron density maps were calculated with a 2a  cutoff 

using the program X-PLO R (Briinger) and converted to 0  format using 

esmappage on the Evans and Sutherland ESV-10.

8 . 6  REFINEM ENT PROGRESSION

Rigid body refinement was carried out on the csnatl34  data set over 

a 10-4 A resolution range. Each monom er, treated as a single rigid body, 

was initially subjected to 2 0  cycles of energy minimization which was then  

followed by 50 cycles of minim ization treating each monomer as two distinct 

rigid bodies -  equivalent to the large and small domains of pig heart citrate 

synthase. The R-factor at this stage of refinement was 53.4%.

The refinement statistics from the cycles of simulated annealing refine

ment are stated in Tables 8.1 and 8.2 and will be discussed in more detail 

below. Initial rounds of refinement were performed using csn atl34  data  

set in the resolution range 8-2.8 A using a 2 a  cut off. The initial 2 F o -F c  

electron density map was of variable quality, since only a fraction of the 

known scattering m atter was present in the starting model. Although m any 

regions of density were not contiguous, regions were present in which the  

presumed backbone density was uninterrupted with areas of side chain
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Figure 8.2: Sequence (top) and structural alignment (bottom ) of Tp.acidophilum 

citrate synthase and pig heart citrate synthase, produced by B E ST FIT ,

GCG (Devereux et al. , 1984) and SHP (Stuart, 1979) respectively.
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Refinement cycle No. of atoms No. of reflections Resolution R-factor NCS-Restraints B-factor refinement
8740 34433 2.8 A 39.9% YES NO

1 9648 34433 2.8 A 37.8% YES NO
2 10252 34433 2.8 A 36.3% YES NO
3 10688 34433 2.8 A 34.8% YES NO
4 11432 34433 2.8 A 34.0% YES NO
5 ■ 12168 34433 2.8 A 32.6% YES NO
6 11984 34433 2.8 A 31.1% YES NO
7 12196 34433 2.8 A 30.0% YES NO
8 12324 34433 2.8 A 29.7% YES NO
9 12916 34433 2.8 A 23.3% NO B-GROUP

10 13420 34433 2.8 A 22.4% NO B-GROUP
11 14176 45875 2.5 A 23.5% NO B-INDIVIDUAL
12 14776 45875 2.5 A 23.5% NO B-INDIVIDUAL



Refinem ent cycle Residues m utated
—

1 109-148, 401-418
2 90-108, 376-400
3 225-237, 245-275
4 370-375, 312-338
5 149-224
6 60-89
7 276-288, 238-244, 54-59
8 337-369
9 289-311

10 36-53
11 419-437
12 —

Table 8.2: Residues (pig heart, num bering) m utated  into the  s tru c tu re  of

Tp.acidophilum  c itra te  synthase on each round of refinem ent.
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density apparent. The pig heart citrate synthase (reduced to poly ALA, 

ie. the search model) was superimposed onto the map, via the rotational 

and translational parameters identified in AMORE, and backbone regions 

identified that showed high degrees of fitting to the contiguous density.

The rounds of residue fitting and subsequent refinement progressed 

gradually with, on average, a 2% reduction in the R-factor after each round. 

On average 40-60 residues were m utated at each round of graphical inter

pretation due to low confidence in determining the matching of the search 

model to certain stretches of density. Therefore residue replacement erred 

on the side of caution, especially during initial refinement cycles. The first 

regions of side chain density to be identified were equivalent to residues 

390-410 and 110-140 in pig heart citrate synthase. The former containing 

an active site residue and the latter involved in subunit-subunit contacts. 

After these residues were m utated to the equivalent ones in Tp.acidophilum 

citrate synthase, as judged by sequence alignments, a round of refinement 

was carried out. The electron density map after this showed improved areas 

of side chain density in regions adjacent to the previously m utated regions. 

In this way the m utation/refinem ent cycles progressed in a bootstrapping  

fashion, until all 384 residues had been inserted into the model. Both the 

N- and C- termini showed the poorest regions of electron density, with areas 

at the C-terminus showing non-contiguous backbone density and therefore 

were the last residues to be added to the model. Both these regions in

volved the addition of residues to the model since the terminally deleted 

model had been used to solve the molecular replacement calculation.

NCS-restraints were dropped on refinement cycle 9 when the majority 

of the Tp.acidophilum residues had been inserted into the model. Since the 

two monomers of a single dimer are not related by a strict crystallographic
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two fold, they would not be expected to have identical conformations. After 

the first round of refinement without NCS-restraints im posed, the RMS dif

ference between individual monomers was in the order of 0.6-0.7 A over Cot 

atom s, which considering statistical errors in the data was in the right range 

for the restraints to be dropped fully. On the same round of refinement, 

a cycle of isotropic grouped B-factor refinement was employed. After this 

round of refinement, with no NCS-restraints and B-group refinement, the 

R-factor reduced dramatically from 29.7% to 23.3%, which finally reduced 

to 22.4% upon addition of more side chain atoms.

After all the residues had been fitted, the refinement was extended to a 

resolution limit of 2.5A with individual B-factor refinement being possible , 

due to the use of more data in the calculations. The R-factor rose slightly to  

23.5% due to use of the higher resolution data being included in the calcu

lation. Once this refinement had been completed a Ramachandran plot was 

produced on the model allowing identification of regions in the structure 

which were conformationally strained. Manual rebuilding of these areas, 

mainly the N- and C- termini and surface loop regions, was carried out and 

another round of refinement was performed. No reduction was seen in the 

R-factor but a small improvement in the overall geometry of the structure 

and a reduction in the number of ‘disallowed’ residues was observed. W ith  

hindsight refinement should possibly not have been extended to 2.5A since 

the data to that resolution is weaker and only about 45% complete. The 

latter causes the individual B-factor refinement employed at this stage to 

be taken with some caution since the ratio of observations to number of 

parameters is less than 1. The refinement stopped at this stage due to tim e 

constraints.

Fig 8.3 shows a typical section of electron density. There is a high degree
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Figure 8.3: 2Fo-Fc electron density map for a typical region of the par

tially refined structure of Tp.acidophilum citrate synthase. The map was 

contoured at 1<t and created in 0  (Jones, 1991).
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of fitting between the observed density and the model, indicative of a good  

quality model. Both map and model presented were produced after the final 

round of refinement. In order to evaluate the fitting of the structure to the 

density on a residue by residue basis, RSFIT in 0  was carried out on the 

partially refined structure. This program calculates the real space fit of a 

structure to an electron density map and outputs the correlation coefficient 

of each residue to the electron density it occupies. Fig. 8.4 displays the 

fitting of the partially refined Tp.acidophilum citrate synthase to a 2F0- F C 

map calculated after the final round of refinement. It clearly displays that 

the majority of the structure has high correlation coefficients, but there 

are certain regions that show a low degree of fitting and therefore these 

regions deserve some more attention in the rounds of manual rebuilding 

and refinement.

The quality of the model was initially assessed using PROCHECK (ver- 

sion2.1). The Ramachandran plot for the partially refined Tp.acidophilum 

citrate synthase is shown in Fig. 8.5. There are quite a large number of 

residues in the generous or disallowed regions of the plot, indicating that the 

structure is still only partially refined. The majority of the residues in dis

allowed regions are either in subunit contacts or in extended surface loops, 

for example, and therefore may be forced into a conformationally strained 

position, in the case of the surface loop residues by possible crystal con

tacts. Further work is necessary to ensure as many residues as possible are 

in the favoured/allowed regions of the Ramachandran plot.

Fig. 8.6 displays a plot of average main chain B-factor values for 

Tp.acidophilum citrate synthase. There are no regions within the protein 

that show very high flexibility, as judged by B-factor values. The N- and 

C- termini show high values relative to the rest of the protein, which may
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Figure 8.4: Plot of correlation coefficient of the fitting of Tp.acidophilum

citrate synthase to the final 2F0-F C map. Created using RSFIT in 0  (Jones 

et a/., 1991).
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be due to the unrefined nature of these areas owing to the poor quality of 

the electron density or that these regions are flexible in the native protein 

resulting in the poor quality of the electron density. Figs. 8.7 and 8.8 

display expected ranges for specific main chain and side chain parameters, 

all of which lie within the expected values. Many of the parameters are 

worse than average, specifically the peptide bond planarity. Again this 

is probably due to the unrefined nature of the protein. Therefore further 

refinement is necessary with the existing data set, although improved and 

extended native data collection remains a priority.

A further check on the quality of the structure of Tp.acidophilum was 

carried out using the program ENVIRONM ENTS (Luthy et al., 1992). 

This program assesses the three-dimensional environment of the individ

ual residues in a structure and scores them depending on how acceptable 

are their environments. Fig. 8.9 shows the 3D-1D profile for a single 

monomer of Tp.acidophilum citrate synthase. Only the C-terminus and 

residue 152 are in unacceptable environments. As m entioned previously, 

the C-terminus needs more attention in manual rebuilding and refinement 

and residue 152 is an intersubunit contact residue and therefore may be 

forced in an unfavourable environment. Nevertheless, the majority of the 

partially refined structure lies in an acceptable environment as determined 

by the 3-dimensional profile plot. A profile plot for the dimer (Fig. 8.10) 

reveals that the bad score (ie. below zero) for residue 152 is probably a 

function of the monomer being analysed instead of the functional dimer.

The overall stereochemistry of the model at the present stage of refine

ment is acceptable with RMS deviations of bond lengths and bond angles 

of 0.022A and 4.50° respectively.
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ture of Tp.acidophilum citrate synthase.
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C h a p ter  9 : S tru ctu ra l ch aracterisa tion  o f

Thermoplasma acidophilum c itra te  sy n th a se

9.1 INTRODUCTION

The partially refined crystal structure of Tp.acidophilum citrate syn

thase is only the second reported 3-D structure of an archaeal enzym e and 

as such is of great interest with respect to highlighting features that m ay be 

archaeal in nature and ones that may account for the therm ostability of the 

enzyme. Comparative structural studies may also give an insight into the 

evolutionary relationships between the Archaea and other living organisms 

by identifying possible primitive forms of enzymes. The open form of pig 

heart citrate synthase, which has been refined to 2.7 A (Rem ington et al. 

1982) has been used for all comparative studies.

9.2 OVERALL FOLDED CONFORMATION

Tp.acidophilum citrate synthase is composed of a dimer of identical 

monomers - Fig. 9.1 and 9.2, with the monomers related by a 2-fold op

eration. Each monomer consists of 19 a-helices (A -R), equivalent to 60% 

of the residues with helical secondary structure (as predicted by DSSP  

(Kabsch and Sander, 1983)) - Table 9.1 gives a breakdown of secondary 

structural elements and their equivalent elements in pig heart citrate syn

thase. This helical value correlates well with the helical content predicted 

by the circular dichroism studies (see Chapter 4). There is a small re

gion of anti-parallel /?-sheet (residues 21-23 and 30-32) located towards the 

N-terminus which forms a tight hairpin loop. The /?-sheet conformation  

region in the Rama.chandran plot (Fig. 8.2) has a significant population  

due to the extended nature of the loops connecting the a-helical regions of 

the protein, nearly all of which are solvent accessible. The monomer can
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Figure 9.1: Schematic representation of the dimer of Tp.acidophilum cit

rate synthase. Created using MOLSCRIPT (Kraulis, 1991) and RASTER3d 

(Bacon et al., 1988).
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Figure 9.2: a-Carbon backbone of the dimer of Tp.acidophilum citrate

synthase, viewed down the two-fold axis. One monomer is coloured cyan, 

the other magenta. Created using O (Jones et al., 1991).
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Table 9 .1 : Secondary structural breakdown of a monomer of Tp.acidophilum 

citrate synthase and pig heart citrate synthase as predicted by D SSP (Kab- 

sch and Sanders, 1982).
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be divided into two domains, a small domain comprising helices KLM NOPQ  

(residues 225-327 approximately) and a large domain. The subunit-subunit 

interface consists of an 8 a-helix sandwich, made up of 4 anti-parallel pairs 

of helices D D ’, E E ’, II’ and J J \ The axes of these helices are approximately 

perpendicular to the 2-fold axis. Wrapped around this core of the dimer 

are a pair of anti-parallel helices F and R both of which bend smoothly. 

This bending is present in other a-helices throughout the molecule, and 

was also observed in pig heart citrate synthase. Helix I in pig heart citrate 

synthase is bent due to the presence of Prol83 in the middle of the helix, 

but the corresponding helix in Tp.acidophilum citrate synthase (helixF) has 

no internal proline residue but still forms a bent helix (possibly due to a 

intra-helical GLY), but to a lesser extent. Therefore the bending of this 

pair of helices must be necessary for the correct conformation and function  

of citrate synthase.

The a-helices in each monomer are arranged in layers with each layer 

comprising roughly anti-parallel pairs of helices. This layering has the effect 

of causing many of the helices to be completely buried from solvent.

9.2.1 Active site conformation

The active site of pig heart citrate synthase is situated in the cleft be

tween the two domains having been identified by substrate/analogue bound  

crystal structures (Rem ington, 1992). On binding of OAA, the open form of 

the enzyme undergoes a conformational change equivalent to an 18° rotation  

of the small domain with respect to the large domain thereby generating 

the closed form of the enzyme.

From sequence alignment studies 8 out of 11 essential catalytic active 

site residues in pig heart citrate synthase are conserved in Tp.acidophilum 

citrate synthase, with two of the remaining residues showing a conserva
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tive change ( A R G ->LY S ). The active site of Tp.acidophilum citrate syn

thase shows a high degree of similarity to pig heart citrate synthase - see 

Fig. 9.3. Three residues have been implicated as essential for catalysis 

-  ASP375, HIS274 and HIS 320 (pig heart residues). Tp.acidophilum cit

rate synthase contains three structurally homologous residues -  ASP317, 

HIS222 and HIS262, in a very similar conformation. HIS274 is conforma- 

tionally strained (Remington et al., 1982) in pig heart citrate synthase but 

not in Tp.acidophilum, possibly due to a slight shift of the position of this 

residue in the latter towards the active site pocket. Two GLY residues are 

the next residues after this catalytic HIS and the flexibility of GLY residues 

may allow the HIS to occupy a more conformationally favourable orienta

tion. Three ARG residues (329, 401 and 421 from the other monomer) 

and two HIS residues (238 and 320) have been implicated as necessary for 

citrate or oxaloacetate binding. All these residues have their structural 

equivalents in Tp.acidophilum citrate synthase -  ARG 271, 344 and 364 

and HIS 187 and 262. Pig heart citrate synthase has three ARG residues 

(65 and 324 and 164 from the other monomer) capable of acting as ligands 

in the binding of Coenzyme A, as well as H-bonds from main chain residues 

315-318. In Tp.acidophilum citrate synthase ARG65 has a structural equiv

alent in ARG31, but ARG324 has been replaced by LYS266 (as predicted  

from sequence alignments). However, ARG164 has no structural equiva

lent residue (as predicted by SHP) it residing in a surface loop which has 

been deleted in the thermophilic structure. LYS114, although predicted as 

equivalent to another residue, probably is able to take the role of acting as 

the third ligand in binding of the three phosphate groups, although in the 

absence of a closed form structure this is hard to verify.

The overall folded conformations of Tp.acidophilum and pig heart
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Figure 9.3: Active site conformation of Tp.acidophilum (top) and pig

heart (bottom ) citrate synthases. Only three catalytically vital residues are 

highlighted for simplicity. Created using MOLSCRIPT (Kraulis, 1991).
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citrate synthases are very similar - see Fig. 9.4. The RMS distance between  

the two enzymes is 2.15, with 363 structural equivalences (SHP (Stewart, 

1979)) -  equivalent to 95% of the former and 83% of the latter. The core 

of the protein shows the highest degree of similarity, with more divergence 

occurring towards surface regions. In pig heart citrate synthase the small 

domain consists of 5 helices NOPQ R (residues 278-383 approxim ately), 

whereas Tp.acidophilum citrate synthase consists of 7 shorter helices. Al

though the presence of these extra helices could be due to the stringent 

nature that DSSP predicts residues that exist in helices and that this is 

not a fully refined structure. The overall number of amino acids present 

within the small domain is the same in both enzymes. The position of the  

helices in the small domain show the largest change within the secondary 

structural elements, in particular HelixL in Tp.acidophilum (equivalent to  

HelixO in pig heart). This helix is situated at the extrem e of the molecule 

and has been proposed to show relatively high flexibility in pig heart citrate 

synthase and to be deformed during the reaction pathway of the enzym e 

(El-K ettani et al. 1993).

The structural similarity between a citrate synthase from pig heart and 

the thermophilic Archaeon Tp.acidophilum is striking considering the evo

lutionary distance between the two organisms. The Archaea are thought 

to be evolutionary primitive organisms; therefore, Tp.acidophilum citrate 

synthase can be seen as an ancestral form of citrate synthase, with dif

ferences in the pig heart structure being possible adaptations away from  

thermophilicity towards mesophilicity.
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Figure 9.4: Least squares superposition of pig heart citrate synthase

(green) onto Tp.acidophilum citrate synthase (magenta). Viewed down the 

2-fold axis. Created using 0  (Jones et al., 1991).
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9.3 PO SSIB L E  FE A T U R E S C O N FE R R IN G  T H E R M O ST A B IL IT Y

9.3.1 N-terminal deletion

Tp.acidophilum citrate synthase consists of 384 residues compared to  

the 437 residues of pig heart citrate synthase; this is a 12% reduction in 

size, 68% of which can be accounted for by a 36 residue deletion at the 

N-terminus. In pig heart citrate synthase these residues form a long o;- 

helix which loops around the surface of the molecule (Fig. 9.5). Pig heart 

citrate synthase and Tp.acidophilum citrate synthase have similar kinetic 

properties and perform the same function in the cell and so the purpose of 

this extension is still unknown. The N-terminal deletion is seen in all the 

archaeal citrate sjmthases and a thermotolerant Bacillus citrate synthase 

but not in any others thus far sequenced (Section 1.5.3). Thus this N- 

terminal deletion may be necessary for adaption to extrem e environments 

and if present may act as a weak point in the thermal unfolding pathway of 

the mesophilic citrate synthases. This hypothesis is currently being tested  

in Bath by the creation of a N-terminal deletion mutant of pig heart citrate 

synthase which will be tested for its kinetic properties and therm ostability  

compared to the wild type enzyme.

9.3.2 Loop deletions

A striking difference between the enzymes of the thermophile and meso- 

phile is the shortening of a number of loops in Tp.acidophilum citrate 

synthase - see Table 9.2 and Fig. 9.6. The reduction in loop sizes was 

also observed in the crystal structure of a thermophilic phosphoglycerate 

kinase when compared to its mesophilic counterpart (Davies et al. (1992)). 

Another feature of Tp.acidophilum citrate synthase compared to pig heart 

citrate synthase is the deletion of HelixH ( residues 153-160 ).
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Figure 9.5: Least squares superposition of pig heart citrate synthase

(green) onto Tp.acidophilum citrate synthase (magenta). Created using 

0  (Jones et al., 1991).
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Thermoplasma  residues Pig residues Pig a-helix deletion
— 1-36 helix A

43-47 78-88 —
107-119 147-166 helixH
237-240 292-299 —
312-315 364-374 —

Table 9 .2: Breakdown of loops present in Tp.acidophilum citrate synthase, 

which have been shortened with respect to pig heart citrate synthase.
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Figure 9.6: Examples of two loop deletions observed in Tp.acidophilum cit

rate synthase (yellow) with respect to pig heart citrate synthase (magenta). 

Created using O (Jones et al., 1991).
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This deletion coincides with the reduction in the size of one of the aforemen

tioned loops in Tp.acidophilum citrate synthase. Crystallographic B-factors 

( Temperature factors) indicate regions of relative flexibility in the crystal 

structure - high B-factors indicate high relative flexibility. As the tem pera

ture increases so will the flexibility and the most flexible regions at normal 

working temperatures could be the regions that may start to unfold first 

as the temperature increases. In pig heart citrate synthase there are three 

distinct regions of flexibility, as judged by a plot of the B-factors of Co: and 

C(3 atoms; the N-terminal extension and two surface loop regions (78-88 

and 292-299) , all of which have been deleted in the Tp.acidophilum cit

rate synthase structure. Therefore this reduction in the loop sizes in the 

thermophilic enzyme may be necessary to avoid regions of high flexibility 

and therefore possible weak points for thermal denaturation. A B-factor 

plot (see Chapter 8) of the C a  atoms of Tp.acidophilum citrate synthase 

shows no significant regions of high flexibility relative to any other region 

in the molecule. This may be indicative of this structure being solved from  

crystals grown at 25°(7, a temperature at which the thermophilic enzyme 

is under sub-optimal conditions and may be less flexible (see Chapter 5).

9.3.3 Subunit-subunit interactions

A feature that has been widely studied is whether there are specific 

amino acid changes that occur between mesophiles and thermophiles (Menendez- 

Arias and Argos, 1989). One such feature is the increase in alanine content 

in proteins from thermophiles with respect to their mesophilic counterpart 

(eg. MDH from Thermus flavus). In Tp.acidophilum citrate synthase 12% 

of the amino acids are alanine, 8% are isoleucine and a 6% are leucine 

compared to 8%, 4% and 12% respectively in pig heart citrate synthase. 

Although this kind of feature can be identified through sequence compar-
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isons, the elucidation of the crystal structure allows the positioning of spe

cific amino acid replacements.

Tp.acidophilum citrate synthase is only active as a dimer of identical 

monomers and therefore subunit/subunit interactions must be sufficiently 

strong to keep the enzyme in its native active conformation at its working 

temperature. Pig heart citrate synthase has an identical subunit/subunit 

interface conformation: an 8 o-helix sandwich, made up of 4 anti-parallel 

pairs of helices with 4 helices from each monomers (Fig. 9.7). Upon raising 

the temperature pig heart citrate synthase has been proposed to dissociate 

into monomers which then undergo denaturation (M cEvily and Harrison 

1986). Therefore, differences in amino acids involved the subunit interface 

must account for the difference in dimer dissociation tem perature. In pig 

heart citrate synthase 21% of the surface of the monomer becom es inacces

sible to solvent upon dimerization, whereas only 17% of the Tp.acidophilum 

monomer becomes buried in this process (D SSP). The burial of hydropho

bic areas has been shown to be an important factor in protein stability  

(Fersht et al., 1993). Imada et al. (1991) have shown that a thermophilic 

isopropylmalate dehydrogenase has an increased hydrophobic area in the 

dimer interface compared to its mesophilic counterpart.

To analyse the differences in subunit/subunit interactions the residues 

involved in Tp.acidophilum citrate synthase were identified, based on the 

residues involved in pig heart citrate synthase - see Table 9.3. The most 

significant difference in the contribution of individual amino acids is the 

increase from 7 alanines involved in pig heart citrate synthase to 15 ala

nines involved in Tp.acidophilum citrate synthase. There is also a marked 

reduction in the number of leucine and glycine residues involved in the 

subunit/subunit contacts, and a complete absence of histidine,
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(Figure 9.7): Subunit-subunit interface of both pig heart (green) and

Tp.acidophilum (magenta) citrate synthase. Created using 0  (Jones et al., 

1991).

172



Pig residue Equivalent Thermoplasma Pig residue Equivalent Therm oplasm a
residue residue

GLY 29 — VAL 38 TH R 3
GLY 34 — VAL 52 TR P 17
GLY 44 LYS 8 VAL 57 THR 22
GLY 50 ASN 14 VAL 243 ALA 191

GLY 161 THR 115 VAL 251 ALA 199
GLY 241 VAL 189 VAL 314 ARG 256
GLY 268 ALA 216 VAL 322 VAL 264
GLY 271 GLY 219
GLY 312 GLY 253 ASN 130 GLN 88

ASN 134 GLU 92
LEU 33 — ASN 149 ALA 107
LEU 51 ILE 15 ASN 267 ALA 215

LEU 135 SER 93
LEU 163 — ILE 21 —
LEU 250 VAL 198 ILE 36 —
LEU 255 LEU 203 ILE 431 —
LEU 260 SER 208
LEU 273 LEU 221 PRO 132 PRO 30
LEU 276 GLY 224 PRO 272 PRO 220
LEU 419 LEU 362 PRO 418 —
LEU 430 — PRO 422 —
LEU 433 —

ALA 32 —
HIS 123 PHE 81 ALA 143 ALA 101
HIS 136 ASP 136 ALA 147 ALA 105
HIS 246 THR 194 ALA 254 THR 202

ALA 264 ALA 212
LYS 49 ASN 14 ALA 270 THR 194

LYS 423 ARG 366

Table 9 .3: Residues involved in subunit-subunit contacts in both pig heart 

and Tp.acidophilum citrate synthases.
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Pig residue Equivalent Thermoplasma Pig residue Equivalent Thermoplasma
residue residue

PHE 24 —
M ET 45 LEU 10 PHE 131 LEU 89
M ET 48 VAL 13 PHE 415 GLU 358

M ET 127 ALA 85
MET 425 VAL 368 TYR 42 SER 7

TY R 158 —
GLN 35 —

GLU 54 ARG 19
ARG 20 — GLU 239 GLU 188
ARG 25 — GLU 280 ALA 228
ARG 46 GLU 11 GLU 420 ILE 363

ARG 164 —
ARG 313 LYS 255 SER 41 —
ARG 421 ARG 364 SER 139 ALA 97

SER 150 ALA 107
THR 37 — SER 256 SER 204

TH R 126 ASN 84 SER 424 ALA 367
THR 146 ALA 104 SER 426 —
THR 247 ALA 195
TH R 427 — ASP 39 GLU 4

ASP 428 —

Table 9.3: Contd.

174



Amino Acid PIG THERM OPLASM A

GLY 9 3
ALA 6 15
ASN 4 2
HIS 3 0
LYS 2 2
LEU 12 5
VAL 7 6
ILE 3 2

PRO 4 2
PHE 3 1
MET 4 0
TY R 2 0
ASP 2 1
ARG 6 4
SER 6 4
GLN 1 1
GLU 4 5
THR 5 5
TRP 0 1

Table 9.4 Number of specific amino acids involved in subunit interface in 

pig heart and Tp.acidophilum citrate synthase.
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methionine and tyrosine residues. The amino acid changes highlighted here 

could be indicative of the global changes in amino acid com position. To 

analyse the distribution of these changes, helical wheels (GCG, Devereux et 

al., 1984) were performed on the 4 a-helices from each monomer in the in

terface. Helical wheels are useful tools in investigating the hydrophobic/ hy

drophilic nature of a-helices. Helices FLM in pig heart citrate synthase are 

hydrophobic on the side facing the other monomer (see Fig. 9.8) but helix 

G is hydrophilic, whereas in Tp.acidophilum citrate synthase the equivalent 

helices DEIJ all have hydrophobic inter-subunit faces. The major change 

in amino acid composition between helix E (in Tp.acidophilum citrate syn

thase) and helix G (in pig heart citrate synthase) is the increase in alanine 

content (Fig. 9.8): 8 in the former and 3 in the latter, a larger change 

than would be expected by the global amino acid changes. Horovitz et al.

(1992) have shown that alanine residues in a-helices are the most stabil

ising amino acid due to decreased flexibility and increased hydrophobicity. 

O ’Neil and DeGrado (1990) investigating synthetic small peptide stabil

ity also showed the stabilising effects of alanine in a-helices. The m ethyl 

side-chain of alanine is thought to reduce the conformational freedom of 

the main chain in the unfolded state, thus leading to a less unfavorable 

change in entropy upon helix formation. Residues that are able to form  

H-bonds with the main chain in the unfolded state tend to be helix desta

bilizing. Two of the observed changes in helixE of Tp.acidophilum citrate 

synthase correspond to a SE R ->A L A  substitution which has been identi

fied as the second most common substitution in mesophile - >  thermophile. 

O ’Neil and DeGrado have shown that this substitution at an internal posi

tion causes at 0.4Kcalmo]_1 increase in the free energy of the folded state. 

Menendez-Arias and Argos (1989) reported there are two regions in which
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Figure 9.8: Helical wheels (GCG) of Helix G of pig heart citrate synthase

(top) and Helix E of Tp.acidophilum citrate synthase (bottom ). The left 

hand face of each helix resides in the subunit interface. Boxed residues are 

hydrophobic in nature.
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decreased flexibility and increased hydrophobicity correlate well with ther

m ostability, namely a-helices and to a lesser extent domain interfaces. 

Kotik and Zuber (1993) recently reported an impressive 20°C  stabiliza

tion of lactate dehydrogenase from Bacillus megaterium due to 2 specific 

m utations in the subunit interface. A serine and a threonine in a-B  helix  

were m utated to alanines. These m utations also resulted in a decreased 

overall flexibility of the enzyme. They propose that the compo- sition of 

a-helices of structural importance (ie. subunit interfaces) may be critically 

im portant in stabilization of a protein. Helix E in Tp.acidophilum citrate 

synthase is both an a-helix and is part of the subunit/subunit interface 

indicating that this may be a specific feature of Tp.acidophilum citrate 

synthase that may be responsible for its thermostability.

9.3.4 Helix-capping residues

a-Helices have an inherent macro-dipole along their length: a positive 

charge at the N-terminus and a negative charge at the C-terminus, which 

may be destabilizing if the charge is not counterbalanced. Helix capping at 

the N-terminus by negatively charged residues (ie. ASP and GLU ) or neu

tral polar residues (ie. SER or THR) has been proposed as a counteractive 

measure to increase the stability of a-helices (Serrano et al., 1992). Simi

larly a positively charged residue at the C-terminus is stabilizing. Table 9.1 

shows the secondary structural characteristics of the two citrate synthases 

and also highlights the residues at the N- and C- termini. The thermophilic 

protein has ten negatively charged residues at the N-termini of its helices 

compared to only 5 in the mesophilic enzyme. Pig heart citrate synthase  

has 4 positively charged residue in the Carboxy-cap position, with only 

three in Tp.acidophilum citrate synthase but the thermophile does have 2 

helices carboxy-capped by GLY residues which are thought to be the m ost
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stabilizing residue in the C-cap position.

Harper and Rose (1993) have extended this concept towards a helix- 

capping box motif. The first three residues in an a-helix are not involved  

in the standard hydrogen-bonded network seen in the centre of an a-helix , 

leaving atoms capable of H-bonding without a partner. An extensive survey 

of known protein structures studying the N-terminal regions of a-helices, 

revealed a hydrogen-bonding pattern where the N-cap residue forms a H- 

bond with the backbone >N H  of N3 and, reciprocally the side-chain of N3 

forms a H-bond with the backbone >NH  of Neap. The residue preceding 

the start of the helix (N-cap) has phi/psi angles of 94°-(-/-150 and 1 6 7 °+ /-  

5° respectively, outside those for a-helical residues. The capping box can 

be generalised into an S-X-X-E motif, where S is the N-cap residue and 

E is the N3 residue. There is strong residue preference for the capping 

box motif. Both Neap and N3 must be hydrophilic and stereochemically 

capable of forming the hydrogen-bonded pattern ( eg. SER,THR,GLU and 

ASP ). The most abundant normalized pairwise frequency of occurrence is 

SER-GLU.

In their extensive survey they identified pig heart citrate synthase as 

having two observed helix capping box motifs in helices A and C and one 

potential one in helix J ( defined as lacking one of the complementary 

H-bonds ). On the other hand, Tp.acidophilum citrate synthase has 4 

potential helix capping boxes in helices A,B,C and J (Table 9.5). The boxes 

being potential may be due to the structure being only partially refined. Pig 

helix C and Tp.acidophilum helix A are equivalent structural helices. Of all 

the proteins surveyed the greatest number of observed and potential helix 

capping boxes is three: in pig heart citrate synthase and D-glyceraldehyde- 

3-phosphate dehydrogenase from Bacillus steareothermophilus.
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Thermoplasma  residues Helix Pig residues Helix
S-V-E-D A T-V-A-M B
Q-D-E-E B S-I-P-E C
T-E-Q-E C D-W-S-H J
D-M-Y-S J — -

Table 9.5: Residues proposed to be involved in helix capping box motifs

in Tp.acidophilum citrate synthase.
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Pig heart citrate sjmthase contains 20 a-helices (60% of residues) and there

fore the three helix-capping boxes may be a function of the number of he

lices present. Bacillus steareothermophilus is a thermophilic bacterium that 

may be using the helix capping box for stabilising the a-helices present in 

D-glyceraldehyde-3-phosphate dehydrogenase, since this enzym e contains 

only 8 a-helices (25% of residues). Tp.acidophilum citrate synthase has 

four helix capping boxes three of which are situated in the first three helices 

at the N-terminus; this compares to 2 N-terminally-situated helix capping 

boxes in pig heart citrate synthase - see Table 9.4. The stabilization of the 

first three a-helices in Tp.acidophilum citrate synthase by the presence of 

a helix capping box may be necessary for activity at the enzym e’s elevated 

working temperature.

9.3.5 Active site conformation/environment

Zhi et al. (1991) have created active site m utants of pig heart citrate 

synthase which reduced the enzymic specific activity by 103-1 0 4 fold but 

increased the thermostability by up to 10°C, eg ASP375 - >  GLN. The 

amino acid substitutions that increased the thermal stability were ones 

that replaced charged active site residues with more hydrophobic residues, 

leading to an increased net positive charge at the active site. The results 

suggest that specific electrostatic interactions in the active site of pig heart 

citrate synthase can increase its conformational stability. M utation studies 

by Meiering et al. (1992) have shown that the active site of Barnase has not 

evolved to confer the highest stability possible. The active site residues in 

pig heart and Tp.acidophilum citrate synthase are identical, suggesting the 

same mechanism of action for both enzymes ,although there are subtle dif

ferences in the conformation and surrounding residues. HIS274 in pig heart 

citrate synthase is in a strained, conformationally unfavorable orientation.



Zhi et al. (1991) have also proposed that the above m utations may also 

relax the conformational strain within the active site. In Tp.acidophilum 

citrate synthase HIS274 is not conformationally strained as judged from  

the Ramachandran plot. To study the electrostatic and hydrophobic envi

ronment of the active site of Tp.acidophilum citrate synthase with respect 

to pig heart citrate synthase the residues within a 10 A sphere of the core 

of the active site of each the enzymes were determined. The overall charge 

of this active site sphere was -3 in pig heart but + 4  in Tp.acidophilum cit

rate synthase. Therefore the increased positive charge of the environment 

around the active site may contribute to the enzym e’s stability.

9.4 POSSIBLE ARCHAEAL PROTEIN FEATURES

The structure of Tp.acidophilum citrate synthase described above is only 

the second crystal structure of an enzyme from an Archaeon and can be 

used as a basis for theories about, evolutionary ancestral forms of enzymes 

ie. structural features that may be characteristically archaeal. The most 

striking feature of the archaeal enzyme is how conformationally similar it is 

to its counterpart in a mammal. The r.m.s difference over 363 equivalence 

atom s of 2.15 (SHP program) reveals that the conformation present in the 

evolutionary old organism must have had the required efficiency for its role 

and that there were strong evolutionary pressures on m aintaining the same 

overall conformation in evolutionary ephemeral organisms.

The most obvious characteristic of Tp.acidophilum citrate synthase is 

the number of amino acids present compared to mesophilic counterparts. 

The same overall tertiary conformation is present in both evolutionary dis

tant organisms, but the size reduction is accounted for by deletion of loops 

and the N-terminus. The evolutionary transition from thermophile to meso- 

phile may have required the reduction in relative stability of enzym es, to
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create an enzyme with the same flexibility at the lower tem perature, since 

the enzyme must have sufficient flexibility to function. Therefore the least 

disruptive way of reducing this stability may have been insertion in loop re

gions, so that the overall (working) conformation of the enzym e is changed 

as little as possible. It has been seen in proteins from phylogenetically 

diverse organisms that the same overall fold has been m aintained in both  

organisms, suggesting that the conformation of proteins was sufficient to 

perform efficiently their role in the earliest of organisms and that this con

formation was maintained throughout evolution.

9.5 CONCLUSION

The above results have highlighted possible areas/reasons for the dif

ferent stability of the two structurally homologous enzym es, allowing the 

possibility of rationally designing m utations to alter the thermal stability of 

proteins. It must be mentioned that the characterisation is not fully com

pleted due to the structure of Tp. acidophilum citrate synthase not having 

been fully refined, but further investigation into specific interactions, eg. 

hydrophobic and electrostatic, may reveal further structural differences be

tween the mesophilic and thermophilic citrate synthases.
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C h a p ter  10 : C on clu sion  and F urther W ork

Structure/function studies on thermostable archaeal proteins allow in

sights into two distinct areas of scientific interest; namely, the causative 

factors of thermal stability and identification of putative ancestral forms of 

proteins. Citrate synthase is a ubiquitous metabolic enzym e ,about which 

a wealth of primary and tertiary information is known and was therefore 

was chosen as a model system from which to gain the above insights.

Archaeal organisms are notoriously poor growers in the laboratory, pro

ducing low cell masses and therefore low amounts of the protein of interest. 

Therefore, the previous (cloning, sequencing and) overexpression of the gene 

for Tp.acidophilum citrate synthase in the ‘fast-growing’ E.coli (Sutherland  

et al., 1990, 1991) has allowed the production of 5-7mg of pure protein from  

11 of cells, allowing wide spread crystallization trials.

The elucidation of the crystal structure of Tp.acidophilum citrate syn

thase followed the lines of the old saying; ‘If at first you don’t succeed try, 

try again’. Once suitable conditions for crystal growth had been found, 

three distinct crystal types were identified but quality high resolution data  

(to 2 .4A) was collected for a single crystal type and from a single crys

tal. The three data sets enabled the molecular replacement calculations 

to be carried out on each one. In order to employ molecular replace

ment techniques, a high level of confidence must be held that the unknown 

structurally resembles the search model. Tp.acidophilum citrate synthase 

exhibits only a 20% sequence identity to functionally identical pig heart cit

rate synthase, but sequence alignments show conservation of the proposed 

active site residues. Circular dichroism studies were also im portant in that 

similar levels of secondary structural elements were predicted to exist in 

both enzymes.
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The eventual success of molecular replacement, in this case, has pro

vided some guidelines which may be useful in the solution of other such 

difficult cases, where a only a poor search model is available. Of paramount 

importance is the collection of a high quality complete data set. If a solu

tion is not forthcoming with one molecular replacement package, other ones 

should be tried in conjunction with alternative deletion variations of the 

original search model. As much information must be gathered concerning 

the characteristics of the search model. For example, the monomer of pig 

heart citrate synthase comprises a small and a large domain and therefore 

in PC-refinement in X-PLOR they can be used as individual rigid bodies to 

try and enhance possible rotation function peaks. In this way many subtly  

different search models were able to be investigated.

Structural comparisons between the mesophilic and thermophilic citrate 

synthases allow identification of possible features that confer the latter’s en

hanced stability, for example, loop deletions, subunit-subunit interactions 

and helix-capping residues. Since the structure is only partially refined de

tailed investigations will only be carried out once refinement is complete. 

The aim of this work is the rational design of m utations that will enhance 

the stability of proteins. Therefore m utations, designed by such compara

tive studies, are being created that should hopefully increase the stability 

of the mesophilic pig heart citrate synthase. The m utants will be able 

to be characterised with respect to the wild type by the experiments de

tailed in Chapter 4. Work is also in progress to rationally design m utants 

of the thermostable Tp.acidophilum citrate synthase that exhibit a higher 

thermostability than the wild type. This work will entail again detailed 

structural comparisons but with citrate synthases from hyperthermophilic 

Archaea (eg Pyrococcus furiosus which grows optimally at 100°(7).
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The elucidation of more crystal structures for other Archaeal proteins 

should also allow identification of Archaeal protein features. Although at 

this early stage the separation of features contributing to thermal stability 

from possible archaeal features is difficult, features that are not observed 

in other thermostable proteins are possible candidates for such archaeal 

features.

Although crystal structures of thermostable proteins can yield vast 

am ounts of information concerning the determinants of thermostability, 

two important facts must be remembered. Firstly, that a crystal structure 

is only a snap-shot of a dynamic protein and secondly, that the snap-shot 

has been taken at a sub-optimal temperature. To try and overcome these 

problems, two further complementary lines of research will be undertaken. 

Firstly, attem pts will be made to grow crystals at higher temperatures (eg 

55°C)  and to collect data at that temperature. Therefore the structure 

solved at room temperature will be able to be compared to that solved at a 

tem perature where optimal activity is seen. Secondly, molecular dynamic 

simulations will be undertaken on both the pig heart and Tp.acidophilum 

citrate synthases at their respective working temperatures to investigate 

the role of flexibility in thermostability.
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