UNIVERSITY OF

BATH

University of Bath

PHD

Investigations on flight trajectory optimisation and adaptive control

MacCormac, J. K. M.

Award date:
1994

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019



Investigations On Flight Trajectory Optimisation
And Adaptive Control.

Submitted by
J.KM. MacCormac B.Sc.,C.Eng.,F.R.Ae.S. . F.Zw.L.LE.M.LE.E.

for the degree of Ph.D.
of
The University of Bath

1994,
COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the

prior written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purpose of consultation.

Signed J.K.M. MacCormac.

S
24 EAp 195¢
f,\ W&d

Moo

77,4[‘{(%

.



UMI Number: U552524

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U552524
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



- ———
Uhivis 1Y OF BATH
{ \““»’g»"%‘,

43} 30 JAN 1989
PHD

Se 316



Dedicati

This &wsis is presented in recognition of the support and encouragement provided
by many individuals throughout my career.

It is offered as a small contribution in the pursuit of excellence in flight control
system performance, and in the hope that closed-loop adaptive flight control systems
will one day be the norm.

The thesis is dedicated to that incredible breed of men, namely the Test Pilots,
without whom no progress in flight system research is possible.

In particular I give recognition to those who have made significant contributions to

the success of the following projects, and with whom I have been privileged to

work.
V.C. 10 and B.A.C.111 E. McNamara,
Auto-land Programme. B.Trubshaw,
G. Corps.
W.G.13 - Lynx Helicopter W.R. Gellatley,
Flight Test Programme. L.R. Moxam,
J.G.P. Morton.
Multi-Role Combat Aircraft - Tornado P. Millett,
Flight Test Programme. Hr. Meister,

Sgn. Trevisan.



Summary

The application of Optimal Control theory to define optimal trajectory manoeuvres
for High performance aircraft results in the definition of the optimal control variables
and nominal state variable responses that optimise some performance index.

In this thesis the specific problem of an aircraft acquiring maximum height in a fixed
time while satisfying a specified terminal constraint - namely that of the finally
achieved velocity - and also minimising a function of drag, is investigated.

The generalised necessary conditions for optimal control are defined in chapter 1.
Chapfer 2 applies these necessary conditions to the specific optimisation problem
cited above.

Chapter 3 is concerned with the numerical solution of the equations resulting from
the necessary conditions and in particular the solution of the resultant two point
boundary value problems. Two numerical methods for the solution of two point
boundary value problems are presented. These are respectively the method of
Steepest Descent and in chapter 4 the method of Quasilinearisation.

For this optimisation process the control variable has been chosen as the angle of
attack or aerodynamic incidence 'Q.', and the solution of the optimisation process
results in the definition of the optimal control O~ together with the optimal state
variables namely velocity V" flight path angle ", and mass m’.

For the aircraft to follow this optimum trajectory it is necessary to control the
aircraft about its Pitch axis by the application of elevator such that the optimum

value of angle of attack is achieved. The required value of pitch rate is readily

derived from the relationship ¢ = 'y - d' .

To achieve this optimum value of pitch rate a command stability augmentation
system is required as the elevator response characteristics of the aircraft vary

significantly throughout the optimum trajectory.



Just how the aircraft pitch rate responses to elevator vary on the optimal trajectory
is defined in chapter 5.

As the dynamics of the aircraft are changing it is necessary to design the command-
stability augmentation system to compensate for these changes in dynamics, in order
that the response of pitch rate achieved to pitch rate demand is maintained
acceptable throughout the optimal manoeuvre. This process of modifying the
elevator controller is known as adaptation of the controller and in chapter 6 a review
of adaptive techniques is provided.

The variation of aircraft parameters is such that a unique relationship between the
parameters and auxiliary variables such as speed, mach number, dynamic pressure or
altitude does not readily exist and this would result in a complex open loop adaptive
gain scheduling scheme. Chapter 7 details the design of a closed loop Indirect
Adaptive Command Stability Augmentation system with particular emphasis on the
identification of the time varying uncertain parameters of the aircraft. The
identification procedure is treated as a two point boundary value problem and the
method of Quasilinearisation is again applied to the solution of this.

Consideration is given to the robustness of the controller and in particular emphasis
on establishing a degree of confidence in the identified parameters is presented in
chapter 8. The thesis concludes with suggestions for further work and on practical
considerations relating to the implementation of this on line adaptive controller.
Results of the generation of the optimal trajectory, the variation of the aircraft
parameters, the on-line identification of the parameters, and the response of the
adaptive controller are included at the end of the appropriate chapters. The

programmes written to obtain these results are presented in the appendices.
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Introduction

This thesis is concerned with the design procedure for an on-line closed loop
adaptive command stability augmentation system suitable for use on high
performance aircraft. The system investigated is an alternative solution to the
traditional open loop controller gain scheduling adaptive systems currently utilised to -
cater for the variation in aircraft dynamics throughout the flight envelope.

It has been stated that auxiliary gain scheduling is adequate for most flight
situations and indeed the author in no way wishes to cast aspersions on this
technique which has served the design of flight control systems well. There are
however some modes of operation of aircraft where it is difficult to obtain a unique
relationship between controller parameters and flight condition states. A case in
point is the optimal climb manoeuvre where speed, height, dynamic pressure are all
varying widely throughout the optimal trajectory.

A specific optimisation problem, namely that of acquiring maximum height in a fixed
time, while minimising acrodynamic drag and achieving a specified terminal
constraint on the velocity at the end of the optimal manoeuvre, has been chosen as
the starting point for this investigation on adaptive control.

The motivation for this starting point is three fold. First, the optimal solution to this
problem requires the aircraft to traverse a significant portion of the flight envelope
and in so doing encounters significant acrodynamic parameter changes. Secondly,
the solution of this problem entails the application of optimal control theory and it is
a long term objective of the author to incorporate a degree of optimisation into the
adaptive process in order to create an optimal adaptive controller. Finally, one of the
techniques used for the numerical solution of the two point boundary value problem
which arises in the optimisation process is to be employed in the solution of the on-

line identification of the aircraft dynamics as required for the indirect adaptive



system . The identification of the changing system parameters is treated as an
additional two point boundary value problem which is solved by Quasilinearisation
techniques in a manner similar to that applied in the optimisation problem. By this
step by step approach the author has gained experience and confidence in the
application of these techniques.

A fixed time optimisation problem, as opposed to one where time is to be explicitly
optimised, as for example in the minimum time to climb problem, .has been
considered purely for computational simplicity whereby the added complexity of
modifying the optimal time, by the solution of the Transversality condition, is
avoided.

Early attempts at closed loop adaptive flight control were based on direct adaptive
control techniques where the dynamic parameters of the aircraft were not explicitly
determined. These methods were rather unsuccessful and resulted in the catastrophic
failure of a research aircraft on an adaptive control test flight.

Although much research has been undertaken in closed loop adaptive control
techniques with regard to stability and robustness of the control in the past two
decades, these methods have not been applied in production flight control systems
design. Instead system designs have opted for an open loop form of adaptive
control whereby controller parameters are scheduled as a function of some auxiliary
variable; for example Mach number, dynamic pressure, height, or incidence.

The objective of adaptive control, be it open loop or closed loop, is to retain the
handling qualities of the aircraft within acceptable limits throughout the flight
envelope. It is a debatable point whether a uniform identical response characteristic
is desirable at all flight conditions. To demonstrate the principle of closed loop
adaptive control this unchanging response characteristic has been taken as an

objective for the purposes of this investigation. Should a variation in handling



qualities be required at different points on the flight envelope the systein will also be
capable of adapting to these changing performance criteria.

Gain scheduling of controller parameters by auxiliary variables has served the
industry well and the importance of this technique should not be underestimated.
However, as the goal of enhanced aircraft performance is relentlessly pursued, ever
more complex algorithms for controller gain scheduling are required. This is in
particular true if a unique relationship between the auxiliary scheduling vaﬁﬁbles and
the required controller gains does not exist. While it is true that the implementation
of complex scheduling algorithms is now more readily facilitated with the significant
improvement in digital signal processing technology that has occurred over the past
two decades, it can also be argued that the availability of these devices now
facilitates the implementation of robust closed loop adaptive systems. This then is a
further motivation for this investigation at this time.

A review of adaptive control techniques is presented in chapter 6 . This investigation
has concentrated on the so called indirect adaptive control technique where the
dynamics of the aircraft to be controlled are specifically identified. A recursive on
line continuous identification process is incorporated in the adaptive system to
reduce the uncertainty of the plant parameters. The author has a preference for this
approach to adaptive control, if for no other reason than a conviction that the more
that is known about the current parametric representation of the aircraft dynamics
the more erudite the generation of the appropriate control action.

On-line identification requires the dynamics of the system to be identified to be
stimulated before estimates of the unknown parameters can be determined. This is
known as the Persistency of Excitation requirement. In most control applications it is
undesirable to introduce additional extraneous control perturbation signals in order
to excite the system purely for the purposes of identification. This is because in

general these additional 'test' signals will contaminate the system response. A further



objective then is to determine estimates of the system dynamics using the normal
control inputs to the system. For this to be possible the control input must be
sufficiently 'rich’ in excitation frequencies to excite all the modes of the system. The
normal operating control inputs may not satisfy these requirements at all times. In
this event accurate system identification is not possible. Rather than augment the
stimuli to the system to fulfil the identification requirements, the approach in this
study has been to determine when the identification estimates are unreliable and to
inhibit the adaptive update of the controller parameters should this occur.

This has proved to be satisfactory for the particular problem investigated. The
procedure is based on the alternative philosophy that if specific modes are not
excited there is no need to adapt the controller to cater for them.

Considerable attention has therefore been focused on determining when the
confidence level of the accuracy of the system identification is low, in order to inhibit
the adaptation process during this period. The adaptation of the controller resumes
automatically as soon as the identification process is again satisfactory.

In this approach the view has been taken that as long as the system response is
satisfying the demand then the overall performance is satisfactory. During the period
that the adaptation is inhibited it is possible for a mismatch to occur between the
controller parameters and the dynamics of the system being controlled. In this event
the combination of controller and system parameters may well deviate from the
chosen optimum criterion. The system will not initially respond to a subsequent
command in precisely the manner required; however this command will reactivate
the identification process and appropriate adaptation of the controller. As the
identification and adaptation take a finite time the system response may well have
deviated from the nominal desired response even though the controller parameter
and system parameter combination will be correctly matched at the end of the first

identification and adaptation interval. This means that the combined adaptive



controller and system combination will have the correct dynamic response
characteristics in terms of overall closed loop system parameters but the actual
output response trajectory may deviate from the nominal due to the initial mismatch
of controller parameters. This situation can be alleviated by augmenting the control
,now that the system dynamics have been identified, such that the original response
trajectory is regained in an optimum manner. If this further requirement is
incorporated in the control scheme the controller is in effect an optimum adaptive

controller.
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Chapter 1

OPTIMAL CONTROL

Historical Background,

Optimal Control is basically the selection of a set of control variables from the set of
admissible controls which either maximise a performance index or minimise a cost
functional. An admissible control is one which lies within and does not invade the
control constraints during the period of optimum performance - the optimisation
interval £, — ¢,

A mathematical technique available to perform the optimal control selection is based
on the Calculus of Variations. Historically these techniques have been available
since the time of the ancient Greeks, however it was not until the time of Sir Isaac
Newton and Johann Bernoulli in the late seventeenth century that the mathematics
were formally developed. Both of these mathematicians considered and solved the
brachistochrone problem which requires the shape of a frictionless wire with fixed
end points to be defined such that a bead may slide from one end of the wire to the
other, under gravity, in minimum time. The solution - a cycloid - of this seemingly
obscure problem has much relevance today in the re-entry of space craft to the
earth's atmosphere, a fact which the author finds both incredible and fascinating.
There are many interesting texts on the subject of the calculus of variations.
References (1,2,&3) the author has found to be invaluable to gain an understanding
of the subject.

Bryson (2) has formally derived the necessary conditions for optimal control in a
succinct fashion and the author can do no better than refer the reader to this

excellent work. The derivations are for this reason omitted from the thesis, however
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the necessary conditions for optimal control are presented as follows and applied in a

subsequent chapter.

The Necessary Conditions For Optimal Control

The Performance Index or Cost Function:-

J =0(x(1,),1,)+ Y w(x(,)t,) +'J£{L(J_c,t_t,t) + A" (f(x,u,) — X)}dt.
(1)

Where:-

Xx(1) = f(x,u,t)represents the state equations of the n-dimensional dynamical

system to be optimally controlled.

A(?) represents the n-dimensional co-state vector. This vector introduces a cost

factor on the system dynamics not being satisfied.

L(x,u,t?) is the the integrand function to be optimised over the interval ¢, to ¢,.
d(x(2,),2,) is the function of terminal conditions to be optimised.

Y(x(2,),t,) = 0 is the vector function of specified terminal state constraints to be

satisfied in the optimisation problem.

T
Y is the weighting vector on the terminal constraints.

12



The minimisation of a cost functional of the form of (1) results in the requirement

that the following necessary conditions are satisfied.

The Euler-Lagrange Equations:-

Jt=
0x o0x
ML 3/
dxn
q zdL ) dL OL
€>— o dx dx, dx
K ML
dxt dx-.

The Optimality Condition:-



'3/ 3,

du, 3«.
3L ¢ 31~
and
£>- du 1 3, du
K 3.
du, 3«»

The Optimal Control is obtained from the solution of the optimality equation.

At each time step in the integration process the vectors x (¢) and are

substituted in the optimality condition to give the optimal control vector u_(%).

Constrained Controls:

If the controls are constrained such that

Upin <8 < Uy

then the Optimality Condition becomes

{(dAu) +Ar(2h)l}8«>0

This is Pontryagin's Minimum Principle.
The Boundary Conditions:-

(a) Co-State Terminal conditions.

14



and

dV, dya
dxt dxn

S > -
3%,

(b)State Initial conditions.

*(*0) = specified

The Transversality Condition:-

+ I @)+ ()+M,=°

The transversality condition determines the final time of the optimisation

interval in the case where the final time is not fixed.

15



Inequali nstraints;-
State inequality constraints of the form

G(x,u,t)<0
can be included in the optimisation problem by augmenting the order # of

the number of state differential equations, and forming an additional equation

&H»l =K{G(£sl_‘9t)}2

K is assigned the value zero if the constraint is not violated or a large
positive constant if the optimum state trajectory invades the state constraint

boundary.

Non-Linear Boundary Value Problem;-

The simultaneous solution of the state and co-state non-linear differential
equations in general constitutes a non-linear two-point boundary value
problem. The initial conditions of the states are usually known, however only

the terminal conditions of the co-states are known.

Methods of solution:-
Two methods of solution of the resultant two-point boundary value problem
are investigated. These are the method of 'Steepest Descent' and the method

of 'Quasilinearisation" presented in chapters three and four respectively.

16



Chapter 2

The Maximum Climb In A Fixed Time:- Optimisation Problem.

For the purpose of this thesis, the optimisation problem of acquiring maximum
height in a fixed time, while attaining a terminal constraint on the final velocity, and
minimising a function of drag, has been investigated. This problem has been selected
as in its solution the aircraft encounters a large number of different flight conditions
in the flight envelope. Hence when the optimal trajectory is flown, a significant
variation in aircraft system parameters will be encountered. This will enable the
effectiveness of the on-line adaptive command stability augmentation system to be
assessed.

The non-linear equations of motion governing the system dynamics are obtained
with reference to fig.1. There are five state equations representing the system

dynamics and these are presented below.

The System Dynamics.

TATE BLES:-
x = f(x,u,?)
mbols:-

Longitudinal Acceleration | 4 ft.sec
Flight path Angular Velocity Y rad .sec™
Height Rate h ft.sec™
Horizontal Velocity X ft.sec™
Rate of change of mass m slug sec™
Control Variable u=aqQ rad.

17



Th E ions:-

V:l{Tcosa—D—mgsiny}
m

Y =L{L+ Tsino.— mgcosy}
mV

h=Vsiny

x =V cosy

LV ,h0)= %p ViSC,
Drag

D(V,h,) =%pV’SCD

Coefficient of Lift
C,(M,0)=C, (M)a

Cocfficient of Drag
C,(M,a)=C, +nC, o’

The appropriate values of C,, (M),C, (M),n(M) are obtained from

fig.2 by interpolation at the corresponding Mach number.

18



Air Density

. |
p(h)=p,e™ p,=0.00254slug fr> h =27300ft.

V
Mach Number M(a,V)= ;
th
Local Speed of Sound at,)=ag, |-*
0
Sea Level

a;, =331.46meters sec™ =1087.47 ft. sec”

- L.C.A.O. Standard Atmosphere.

288.15°K S.L.
t,={(288.15-k, kYK  0<h<11Km.=0<h<36089 1.

216.65'K 11Km.< h<20Km.= 36089 < h< 65617 ft.
Lapse Rate k =6.5C.Km™ =0.00198°C. f.”

Fig. 3 shows how the speed of sound varies as a function of height on the
L.C.A.O. Standard Atmosphere k& V a graph. At each height on the optimal
trajectory computations, the local value of air density is computed together
with the value of the local speed of sound. From a knowledge of the
longitudinal velocity, the corresponding mach number can then be evaluated.
The current value of mach number is then used to interpolate the
aerodynamic data and thrust.

Thrust T(h, M) is interpolated from the engine characteristics as defined
in fig. 4 as a function of both height and mach number.

Gravity g=32.2ft.sec™
Surface Reference Area S§ =530 1t :

19



Engine Specific Impulse - ¢=1600sec.

Investigation of Maximum Climb in a Fixed Time with Minimum Drag.

ified Terminal Con ints:-

V(t,)=968.58 ft.sec™ = M = 1.0 for h> 36000 ft.
.y, =V (t,)-968.58

Integral Function to be Minimised:-
1 1
=["wdt.==[" o’dt.
2 1y 2 ty

ified Initial Conditions:-

(V(t,)=400.0 ft.sec”

Y(t,) =0.0rad.

x(t,) =1 h(t,)="700.0 fz.

x(t,)=0.0ft.

| m(t,) = 42000.1b.= 1304.35Slugs.

Terminal Quantity To Be imised;:-

0(x(,)t,)=—h(,)

The negative sign implies that the minimisation of this terminal quantity will

result in the maximisation of A(Z,).

20



The ifi Function;-
The resultant cost function to be minimised for this maximum heightin a

fixed time problem is given by:-

J =—h(t,)+7,(V(t,)— 968.58) + % [ aat.

The Elements (g—f—) :-
X

o _10T . _9D o
aV—m(aVcosoz BV) . ay_ gcosy .,
of 19T ., _ 9D
on mion "% on’

%:_0 dof, _D—Tcosa

ox " Om nt
g{; = mi/’ {V(g']; sino +§—‘I;)—(L+ T'sina — mg cosvy)}

o, g of, 1 9T . L. o,

% _Egny Y2 oLy Yy

7y v T G o) 0
%:—m}V(L+Tsina)

21



¥,y %o H_g %,

aV—sm'y .,-37=Vcosy " Sh e "

of, daf, . of, of, of,
Ye —cosy., Lo psiny., Yoo, Do Dy
O oy T T T T T om

o __ 13T f _, of__ 13T ¥ _, ¥f_,

AV cgdv  dy ok cgoh’ ox  om

The Elemen (i)_;;
ox

1
The Lagrangian L. = Eaz is independent of the system state variables.

Hence

oLy roioio:
(g)—[ooo O]

Substitution of the above defined elements into the Euler Lagrange equations

results in the following set of co-state equations.

22



1 M

-(— cosa-—)

m

-gcosy

i .eft
m dh
0

D-Tcosa

m

2

dh

The Co-State Equations

1 ::,dT dL . . .
AW Y TR 4 IR Y MPeosy)dt  sin
mV Ay av @ imleosy)) 4
. Vcos”
Vsinr
i dt
0
A sma+”" )
.................................. 0 0
2 (L+Tsrna) 0
mV



The Optimal antrgl :-

. .. oL
From the optimality condition (-a—) +A
u

o+[A, PR, PN, PR EA]

This gives

o-— —l—"—{Tsina +

m

)

u

—l{Tsina + a—D}
m a0,

L + Tcosa}=0

from which the optimal control is determined.

Note:-

The Terminal Conditions On The Costates:-

A (2,)=0

A.(£)=0

A.(£,)=0

)"V(tf)=71

A, (,)=—1

gl(V9h9m’xV9)\'79a)= 0




The State and Costate Equations.

V=l{Tcosa—D—mgsin'y} ..... A
m
. 1 .
Yy=——-{L+ Tsinca—mgcosy} ... FA
mVv : :
h=Vsiny i A
x=Veosy . £,
T
hi=—— f.
cg
A, = Ay (BD - aTcosa)+ A, {(L + T'sino. — mgcosy)
" m oV oV my? EeosY
-V(g—IT/sina+§—’I;)}—l,, siny — A, cosy+i'—g"g—lT/ ..... £,
A, =k, gcosy— A, %sin'y —AVcosy+A Vsiny ... f,
. A, oD 9T A, OT oL, A_0oT
A, =—F% - — —>(—si —)+—==— ...
= G T O T G ) e Sy
A=0 f,
A, A .
A,=——~(Tcosa~D)+—==(L+Tsina) ... S
m mV
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Aircraft Forces Diagram

V = Velocity Along Flight Path
® = Pitch Attitude Angle

a = Angle of Attack

Y T Flight Path Angle

Fig. 1
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Chapter 3

Steepest Descent Solution Of The Optimisation Problem

Thé solution of the system state and co-state equations with appropriate boundary
conditions, for the optimisation problem defined in chapter 2, is presented in this
chapter. The solution is to be obtained by numerical computational techniques and
will provide the optimal control - in this instance the optimum angle of incidence -
time vector which will maximise the height acquired in a fixed time while satisfying a
desired terminal constraint on the terminal velocity while minimising aerodynamic
drag.

Two methods of solution of the optimisation equations are investigated. These are
a) The method of Steepest Descent described in this chapter ,and

b) The method of Quasilinearisation described in chapter 4.

Each of these computational procedures has its own relative merits in obtaining the
optimised solution. The Steepest Descent method of solution has an initial advantage
over the Quasilinearisation method in that so called starting vector solutions of both
the state and co-state equations do not have to be estimated in order to initiate the
iterative computational solution process. In the Steepest Descent method it is only
necessary to estimate a starting vector for the optimal control time vector to
commence the iterative procedure. The convergence of the algorithm is not too
sensitive to the accuracy of this initial estimate and the method has good
computational stability properties even when the control time vector estimate is
significantly in error to the desired optimal control solution. It is also simpler to
apply some engineering intuition in the selection of the initial control time vector
estimate, than to provide estimates for all the state and co-state time vectors as

required in the Quasilinéarisation method of solution. The Steepest Descent method

30



of solution however suffers from a linear convergence rate dependent bn the
gradient of the optimisation surface. As the gradient in general reduces as the
optimum is approached this results in a comparatively slow rate of convergence to
the true solution. This necessitates a large number of computational iterations before
the optimum solution is obtained.

The Quasilinearisation algorithm on the other hand exhibits a quadratic convergence,
but does require the initial set of starting vectors for the state and co-state variables
to initiate the process. For this reason both methods of solution have been utilised in
this investigation. The solutions obtained by the steepest descent method have been

used as starting vectors for the Quasilinearisation method.

Steepest Descent Computational Procedure:-

The Steepest Descent computational procedure for the solution of the defined
optimisation problem commences with the selection of an estimate for the control
time vector OL(Z) over the optimisation interval Z, to ¢, . This initial control vector
is shown in fig. 6 together with the converged solution of the optimal control
obtained by the steepest descent method of solution.

The next step in the procedure is to perform a forward time integration of the five
state equations starting from the initial conditions for the states as defined in chapter
2. A fourth order Runge-Kutta integration procedure was written for this purpose.
At the end of the optimisation interval the complete set of state and co-state
equations were integrated backwards in time from ¢, to Z, . The terminal
conditions used to initiate the backwards time integration process were as defined in
chapter 2 for the co-state equations, while the values obtained from the forward time

integration at the end of the optimisation interval were used for the state equations.

In the case of A, (¢ ) , this was set equal to a weighted function of the difference
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between the value obtained for ¥'(¢, ) and the desired terminal constraint value of
968.58 ft.sec™ on the terminal velocity. This value corresponds to a terminal

value of Mach 1 at the final height.
This choice of the terminal value of A, (¢, ) is obtained by a penalty function

technique which seeks to minimise a weighted quadratic function of the error
between the terminal velocity achieved and the desired terminal velocity constraint.

This weighted function can be expressed as
1 T
NUBRAGIN (AR AR]

This gives A, (¢,) =Y, = S[V(t,) -V (¢, )]
At the end of the backward time integration a new updated control time vector is

computed using the steepest descent algorithm. This is given by

e
= Upu T[au'{'z'_(au)]

where T controls the displacement along the optimisation gradient from the current

uNm

iteration control time vector to the control vector used in the next iteration. In the
specific optimisation problem under consideration this becomes :-
oD. A, OL
)+ (
da’ mV da

where this expression is evaluated at each and every time step on the optimisation

A :
Oy, =0y —T{O ——”—:(Tsm(x,v + + Tcosa., )}

interval. If T is set too large computing instabilities can ensue while if it is set too
small the number of iterations required is significantly increased.

As a compromise T was set to a small positive constant and successive iterations of
the above procedure were performed until convergence was obtail_led. Convergence
was determined by the change in control time vector being less than a small norm

between successive iterations. After each convergence T was simply doubled and
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the iterative process continued to a new convergence. Eventually it was observed
that the improvement in maximum terminal height was reduced to a very low
percentage of the absolute value on successive convergence. This was taken as the
solution of the optimal control problem by the steepest descent method. It should be
noted that at each integration time step in the optimisation interval the appropriate
values of Lift, Drag and Thrust were computed together with the required partial
derivatives which were automatically interpolated and evaluated from the
aerodynamic and thrust data as a function of mach number and height.

The results of this Steepest Descent solution of the maximum climb optimisation
problem are shown in fig. 5 as a function of Mach number. This should be compared
with the initial height trajectory resulting from the control time vector estimate used
to initiate the computational process.

The Steepest Descent optimisation programme written to obtain these results is
presented in Appendix B.

The time vectors obtained of the state, co-state and optimal control were used as
starting vectors for the Quasilinearisation computational procedure. This method of
numerical solution of the optimisation problem is discussed in detail in the next

chapter.
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Chapter 4

QUASILINEARISATION

In this chapter the method of Quasilinearisation is employed to compute the solution
of the two point boundary value problem resulting from the application of the
necessary conditions for optimal control. This method of solution requires sets of
starting vectors for the state, co-state, and control variables to initiate the iterative
computational procedures. The results obtained by the Steepest Descent method of
solution described in chapter 3 are used as the startihg vectors for the

Quasilinearisation procedure described in this chapter.

The Newton-Raphson Algorithm.

A system of non-linear differential equations of the form
x= f(x,u,t)
can be linearised with respect to the variables X and # and solved by the

iterative solution of a linearised set of differential equations as given by:-

[2],.. =[T(xx) | T(uy )]['—'!ﬂ’-:-&-'v-]+[f(£~,l_l~ )]

Uy — Uy
This is the generalised Newton-Raphson Algorithm.
In this algorithm IV represents the nth iteration. It is readily seen that as the
(n+1)th' iteration converges to the nth., the solution is that of the original

non-linear system of equations.
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The Jacobian is given by:-

oh i i i (919 9
axl 5 ax.n : ul E au.m
b b O, KN .ou,
: l
[T T@ol=| T
A I
|
%,,,,af;:laf;.- ......... af;
_Z)xl ox, : du, Bu__ N

n is the dimension of the non-linear system of equations.

This Algorithm can be rearranged to give
[E] N1 =[J @N)][XNH] + {[J L.uN)][yN-H —uN] +[f @Nauzv)] _[J @N)][’.t.lv]}

This is more easily seen to be of the familiar linear form as given by
[£]=[4][x]+[B][4]
where the Forcing function is
{7 @)][nn - w0, ]+ [ @rsu)] - [T@)][xx ]}
and the unforced homogeneous system of equations is

2], =[G ]21]

The elements of [J (xy )] are in general non-linear functions of the previous

iteration. These elements are now time varying coefficients, and as a result the

system is now a linear time varying system.
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The solution of such a system of linear differential equations consists of a linear
combination of sets of the Homogeneous System solutions plus a Particular Integral.

At each iteration the general time solution of the linear system is given by:
[x(t)]m c[ x5, 0]+ [x5,@)]+————- +¢[ x5 @)]+[2,..)]

This solution is valid at all points in time throughout the integration period .

In particular at the terminal time the solution is

[x(t))],... =a[xa )]+ [ x: )]+ ———— +¢ x5 ()] +[202.2))]

Also the solution at the initial time is given by

[x@)),.., =a[xs @)+ e[x0, )]+ ————- +¢,[x5 ()] +[202.@)]
These facts are applied in the solution of the non-linear boundary value problem
resulting from the application of the necessary conditions for optimal control as
follows. The complete non-linear set of differential equations to be solved consists of
the n-dimensional set of system state equations together with a further n-
dimensional set of co-state equations.

This complete 2 n-dimensional set of non-linear equations is linearised by applying
the Quasilinearisation Algorithm.

In general the initial conditions on the states are known and the terminal conditions
on the co-states are also known.

To initiate the iteration process, initial conditions are chosen for the unknown initial
conditions of the co-state vector. This enables the integration to be performed
forwards in time. A set of so-called starting vectors for each of the state and co-state

variables throughout the integration period is also chosen. At each time step in the
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integration process the elements of the Jacobian [J (xx )] are calculated. A

Particular Integration of the complete set of differential equations is performed,
using the initial conditions of the chosen starting vectors as the initial conditions of
the first iteration.

The resultant Terminal conditions obtained from the particular integration

[5 »0. (2 y )] will not in general satisfy the required terminal conditions of the co-

states., and these must be corrected.

To this end a number of integrations of the Homogeneous system of equations are
performed. It is necessary to produce as many sets of homogeneous integrations as
there are unknown initial conditions on the co-states. From a knowledge of the
desired terminal conditions on the co-states, given by the boundary conditions
obtained from the necessary conditions for Optimal Control, it is possible to
calculate improved estimates for the initial conditions on the co-states. If these
corrected initial conditions are now used to perform a new particular integration,
then the terminal values of the co-states will satisfy the desired terminal conditions.
The estimates of the unknown initial conditions of the co-states are corrected as
follows.

Assuming there are n desired terminal conditions and also n unknown initial

conditions on the co-states then the terminal conditions on the co-states are given by

M) =a[ha @]+ [Am ()] +————- +¢,[Ag (2,)]+[Ar. 1))
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This equation can be rearranged as

V,0/> KAt)-K, A*r)

This equation can be solved for the vector of weighting constants [c] provided the

matrix consisting of the sets of homogeneous solutions at £f is non-singular.

1
X (f )%, <))

>

R

KwsS *r\

These homogeneous weighting constants also apply at time zero and so the

corrected initial conditions on the co-states are given by

M *.)'

M oj .W o0 (*»)
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where the [M /. (/0)] are the original estimates for the unknown initial conditions

of the co-states.

If the initial conditions for the sets of homogeneous integrations are specifically

chosen to be

0 00 0
0 00 0
0 00 0
0 00 0
L,.(0 : jMo)J 100 0
010 0
0 0 1 0
0 00 1

such that each set of homogeneous initial condition vector has all the elements zero
except one of the co-states taken one at a time, then the corrected initial conditions

on the co-states become

Mo V1.0

LMOJ AnPjiM O)_
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A subsequent forward time integration of th¢ complete system of state and co-state
equations using the known initial conditions for the states and the corrected initial
conditions on the co-states will now satisfy the required terminal conditions on the
co-state equations.

This complete integration is the first iteration solution. These time responses for the
states and co-states are then used to replace the chosen starting vectors for the -
second iteration.

This process is repeated with corrections being made to the co-state initial
conditions at each iteration and the subsequent N+1 th. solution being used to
replace the n th. in the Quasilinearisation Algorithm.

The iteration process continues until convergence occurs as defined by

$ix,., (0%, OF + 30, 004, OF <&

i=1 i=1

where € is a suitably chosen small constant.

Bellman has shown (10) that if convergence of the Quasilinearisation iteration
process occurs then it is quadratic.

Convergence of the algorithm is unfortunately dependent on a suitable choice of
starting vectors. To obtain a suitable choice of starting vectors for both the state and
co-states the method of Steepest Descent was employed. This method, although
requiring integration of the state equations forwards in time and the integration of
the co-states backwards in time, only requires an estimate of the control vector as a
function of time to initiate the iteration process. This estimate is simpler to choose,
from an engineering knowledge of the process to be optimised, than the estimation
of both the state and the co-state trajectories.

Initial convergence of the steepest descent algorithm is not too sensitive to the

choice of the control starting vector. Convergence does however become extremely
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slow as a solution is approached, requiring a very large number of iterations to
obtain a solution to the non-linear two point boundary value problem. Attempts to
reduce the number of iterations required by increasing the factor tau which controls
the displacement along the path of steepest descent can result in instabilities of the
computational process.

A combination of both the steepest descent method and the Quasilinearisation -
algorithm has resulted in a solution to the specific optimisation problem being
obtained without computational instabilities occurring. Steepest Descent was used
until Fhe convergence rate slowed to an unacceptable level and the results from this
method were then used as starting vectors to initiate the Quasilinearisation iteration
process as described above.

The steepest descent procedure for the specific optimisation problem of aircraft
maximum climb height in a fixed time period with minimum drag is described in
detail in chapter 3.

As the correction of the initial condition on the co-states to satisfy the terminal
boundary conditions of the co-states requires the inversion of the matrix consisting
of the sets of homogeneous solutions at the final time, it is important that this matrix
does not become Tll-Conditioned'.

To this end a Gram-Schmidt Orthonormalisation was performed every five time
steps during the integration of the homogeneous system of differential equations.
The orthonormalisation was applied across the full set of homogeneous time
solutions resulting from the sets of initial conditions of each homogeneous solution
as defined above. The orthonormalisation procedure was applied by using each
vector set of homogeneous time solutions after every five integration steps. A total
of twenty orthonormalisations were performed over the specified time interval of the

optimisation problem and by this means the matrix of homogeneous time solutions at
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time £, was prevented from becoming ill-conditioned. ‘The total integration time for

the optimisation problem was divided into one hundred equal time steps.

Details of the Gram-Schmidt Orthonormalisation procedure are given below.

Gram-Schmidt Orthonormalisation ;-

Define the norm
1
6]=<c,6)*
Then a normalised vector is given by

¢1=|——

and in general

F,(Y)- Y (F,,0,)9,(¥)
F,— Y (F,,0,),(Y)

¢, (¥)=

After each orthonormalisation every five integration steps of the homogeneous sets
of solutions, the same transformation was applied to the sets of initial conditions for
the homogeneous solutions.

The following section of this chapter applies the Quasilinearisation algorithm to the

necessary conditions for the optimisation problem as defined in chapter 2.



Linearisation of the Optim ntrol Equation.
Applying the Quasilinearisation Algorithm to the algebraic expression for the
Optimal Control.

8, (V9h9ma7"y97\«.,,a) =0

YrvaTVe.
dg, |92, :92, 02, | dg 98 || MvaTMy | . _
JoV i ok iomioL, idh, 9 ||, —A, | 7
Mrva Ay
L aN-o-l aN .
From this expression
. . . . hN+1 - hzv
dg, i dg, i dg, : dg, : dg, [f~e
m g{[av i Oh i 9m 9N, | OA | &}
do. Ay = Aoy
_A"YNH - x’fN__

agl _ A'V (aT . ‘D o’L oT _ _a—L.
v m‘aVsma+aaaV}+mV’{ Voo T ap <08 ~ (3 + Teosel)
% _ MAT 0 3Dy Ay L T
oh { 8aah}+ mV{(aaah - cosa)}
98, _A, ap. A, oL
EY— — {Tsina + aa} sz{Ba + T cosaL}
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Jp— = - —{Jsmcx +|"}
da

A/-k = W {da treos(x}

{7,cosa +?1-A2} +ANLA A2 Tsina}
a

da m mV'da2

Linearisation of the State and Costate Equations.

ay, d/a

0 0 0 0 0 0
dv dy dh dm da
d2 d 2 oW 0 0 0 0 o 1.
dv dy di dm da
Vi 0 0 0 0 0 0 0 0 0
dv dy
d/4 g 0 0 o 0 0 0 0 0 0
dv dy
sy d5 0 0 0 0 0 0
J(xNuN) = dv d/i

d/« 3. de d/6 d/6 d/6 d6 g4
dv dy da dm d~ 4\ dXA dX, dxm da
Vv, 0 0 0 d/ d/ d/ 4/ 0
dv dy ax* q\ dXA dX,
8 oy & A8 A8, A8 g4
dv di dm d»~ d\ dXm

0O o0 o0 0 0 JO .CL 0 .. CL. 0 l’t

0 d/o 0 d/0 d/I0 0 0 0

dK d/ii dm d» dX7

In the linearisation of the State and Costate equations it is desirable that the control

appears only as a function of the previous iteration N and not as an explicit function
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of the current iteration N+1. To this end the expression fora ~ —a”, obtained

from the linearisation of the optimal control function, is substituted into the
linearised State and Costate equations. Since the incremental control variable

tt~+ ~ a Nis a function of the incremental states and co-states, this substitution
modifies the elements of the linearised system matrix as well as the forcing function

portion of the system of state and co-state equations.

The Jacobian [/<£*)] then becomes

df wdg df 3. dg. || -a E Il 0 10 1
dv Ildv dy di @ *di Cdm e "\ iy
E-aE \E|E."E ¢ .., _ -aE o0 ).
dv *dv 1day mdh  2dh dm 2c 2dr ;A ' i
df ito i ‘ :
v idy 0 0 0 0 0 [ o 0] 0
d
df _ df , ‘
di<i U an 0 0 0 0 0 ‘! °
df -dg, p\ d Qdg 1L jfc E.af v .ok 4 4/ df
dv  <dv \dy ; dh *di dm ‘¢ dK dK \ d| dXxj i
;’if df, 0 0 0 ;1)/(7 .......... df ;i]\‘ :;{\ 0
v dr! " X :
E-AE \0 d/7 dga 0i #‘ dg JE. aE\ 0 0 de
dv 'dV dA  8dA dm o d~  dXA idx,  Cdx, | dX. !
.......... 0.. 0. . Iy ...Q a6 ws o
E-aJE |, df b o & df, a dg Tdf, dg
dv -~ dv| di dii dm “d dxv 7d\, | dX, “dX, |
3/ dg.
where 0 = —+ —L
3a 3a

and the partial derivatives are as defined below:-

= ina +"p)
3a m 3a

3a " mV TaVANGECX)
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¥ A, D T, A 3L T ¥L

30 m avea  ay Wt iy tTees) -V A
of, _A, 9D LT sinor A, oT a’L)

Jdo m ahaa ah mV oh Bhaa

of, A oaD. A, oL

Fo _ _ v s Y T

S m‘( s1na+aa)+sz(aa+ cosQ)

o A 3D _IT
oV - m IV aV2
—(iL-+a—Tsina)+K( 9T sina 4+ oL e xm T
aV a 2 aVz aVz cg aVZ
g{/ =2, "7{5“17 — A, cosy +A_siny
of, M\ 3D 3T A 3T 3L
=X bt — Y V .
v~ manav amav P w7 v M anar
—(a—Tsma+-a—L—)} A, 9T
oh oh”"  cg ohoV
3{;0:3:;(2;{“8“"3,2)* sz{ (;)'L/ gTSlna)—(L+Tsina)}
9

A
3y = V—;'(gsiny) —A,cosy+A_siny

9

E» =—A,gsiny - A, ;"’;-cos'y + A, Vsiny + A _V cosy
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of, A, 0D 3'T .. A, 9L 9T

on~ mavan avan " Gyt g )
0T L . A, 9T
_V 4 »
Gran ™% avan’ * g avan

of, A, 9D 9'T A, O'T 'L A, 9T
oh~ mlan o O oy G St ) o
of,, A, oT oD, A, OL 9T .
on mt an o ey o
of, A, oT oD A oT oL .

i« - !V (——sin0 +——)—(L+T
3 mz(aVcosoz BV)+m’V’{ (aVs1na+aV) (L + Tsina)}
of, A, oT oD. A, OT , oL
om m an " T w o)
%“—=-2;‘—3”(D— Tcosa)— 2):’ (L + Tsina)
om m m’V
d, _1 0D dT
A, may o=
g’;—zgcosy
o, _19D 9T
o, mion an"%
of, 1
=21 =~ (Teosa.— D
an, m’( cosa — D)
o

W{(L + T'sino — mg cosy) — V(%T/-sinoc + -g—ll;)}

a,
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o, _ g

W Sill’Y
daf, _ 1 T . oL
TR ZAF PRl Y
ng‘“ = #(L + T'sin)

1 .
%=—sin'y |
%=—V¢osy
%{‘—z—cosy
%zVsiny
daf, _1 oT
dr, cgadV
df, =iBT
oA, cg ok

The Linearised Forcing Function:-
S(xy uy)—J(xy)xy—ag,

The Partial Derivatives:-
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ay _ PretLe p v &
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oL aC,
aV—pVSC a+2pVSM—aA7a
oL

=pVSa(C +1MaCL")
v P L2 oM

dL _1dp 9Py

1p.,, L
SC,o=——FV*SC, a=——
oh 20h L 2h L h

1

oL 1
L ——prisC
Jo 2 P b

gL 1. .0C oC, 1oMdC, 1 _,9'C_
Sou(C,_ M—— - =
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2 2 ’
a’;_la‘f VisC, a=1Lyisc o=-%
oK’ 2 0h 2k

3L 1p. ... _ 10L
dadh 2k, ~ hoa

aD aC, onC
=pW. C Vs =
op PYS(E *n oD+ PSSy
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aV oV oM a oM
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3V oV oM a oM
. oD (BC,,. N oG,
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oD _ M doC MonC
pVS{(C, + —— C, +———=)a
v {(”+2aM)+(" T oM o]
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Subroutine Aero computes

52



oT _ oM 9T _ 10T
oV oV oM aoM

oT
W is interpolated from the slope of the Thrust v Mach curve at the appropriate

height. Fig (4) refers.

aT

-a—his interpolated from the slope of the Thrust v Height curve at the appropriate
Mach number. Fig (4) refers.

. oTf dT
Subroutine Thrust computes — and ——.
oh oM
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The second derivatives of Thrust are taken as

*T__19r1
ok’  h oh
9T __13T
aVoh  h Vv
9’T
=0
aV?
o’D MG, MG, aC, onC,
= — —_— )’ VS{i(—+— ?
v PSUC 5 ) (MG e PS4 5 =)
10M 9C, onC, , MoM 9C, onC, |,
ot O v tar &0
Ja’'D MIC, MonC, aC, nC
9D _ s = ——=)g? — 4 ——=q
gy P Ca + G )t (NG + 5 g I T PMSI G+ )
10C, onC, , MJIC, InC_ ,
2ot 0 2% e
D _ aC, mC,_ ., M ¥C, ¥,
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9'D p MaC M onC, 10D
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dhdo. 2k onon?
a’D
o’ pyisnC,

The results obtained by the Quasilinearisation method of solution of the two point
boundary value problem are shown in figs. 7-24. These are presented as time
histories of the state and co-state variables during the optimisation interval. It can be
seen that the specified terminal constraint on velocity corresponding to Mach 1 at
the terminal time is exactly satisfied.
The optimum solution for the maximum height using the defined data is about
70000ft.
Also shown are the optimal time responses for the control O together with the
computed Thrust time history. The Optimum results for pitch attitude, pitch rate,
normal acceleration and dynamic pressure are included for completeness.
Since the relationship between flight-path angle, pitch attitude and angle of incidence
is given by

Y=0-a
it is a simple matter to compute the optimum pitch attitude trajectory from the
optimum results for flight-path angle and incidence.

Differentiation of the pitch attitude signal with respect to time provides the nominal
optimum pitch rate signal ¢~ (#) which if achieved on the aircraft will produce the

optimal climb profile. ¢ (¢) is to be used as the excitation for a closed pitch rate

loop consisting of a command stability augmentation system in series with the

aircraft dynamics, in order to fly the optimum manoeuvre.
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The followiné chapter investigates the variation in aifcraft short peribd response
characteristics encountered during the optimal climb trajectory. It is this variation in
aircraft response characteristics which results in the need for an adaptive C.S.A.S. in
order to achieve a uniform pitch rate response at all flight conditions. This then will
actually achieve the nominal optimal pitch rate as computed for the optimal climb
manoeuvre in this chapter. A listing of the Quasilinearisation programme written for -

and used in the solution of the optimal climb problem is presented in Appendix C.

56



OPTIMAL CLIMB RESPONSES
Mach

1.5

0.5

0 20 40 60 80 100
TIME 3.32 SEC UNITS

Fig. 7

57



OPTIMAL CLIMB RESPONSES

Velocity
2,000
1,500
% 1,000
'8
5
500
0 20 40 60

TIME 3.32 SEC UNITS

FigTs

58



Flight-Path Angle Rad.

OPTIMAL CLIMB RESPONSES
Flight-Path Angle

TIME 3.32 SEC UNITS

59



80,000

60,000

20,000

OPTIMAL CLIMB RESPONSES
Height

TIME 3.32 SEC UNITS

Fig. 10

60

100



OPTIMAL CLIMB RESPONSES

Range
500,000
400,000
300,000
&
200,000
100,000
0 20 40 60 80 100

TIME 3.32 SEC UNITS

Fig. 11

ol



OPTIMAL CLIMB RESPONSES
Mass

1,350

1,300

1,250

1,200

1,150

1,100
0 20 40 60

TIME 3.32 SEC UNITS

Fig. 12

62



-30

OPTIMAL CLIMB RESPONSES

20

Co-state Variables

40 60
TIME 3.32 SEC UNITS

Fig. 13

63

80

100



OPTIMAL CLIMB RESPONSES
Co-state Variables

6,000

4,000

2,000

2,000

A.,000

-6,000

-8,000

10,000
0 20 40 60 80 100

TIME 3.32 SEC UNITS

Fig. 14

64



0.2

e 0.6

0.8

1.2

OPTIMAL CLIMB RESPONSES

20

Co-state Variables
A h

40 60
TIME 3.32 SEC UNITS

Fig. 15

65

80

100



OPTIMAL CLIMB RESPONSES

Costate Variables

3.5E-12

3E-12

2.5E-12

X x 2E-12

1.5E-12

1E-12

5E-13 i Lil; 1 i 1 i
0 20 40 60 80 100
TIME 3.32 SEC UNITS

Fig. 16

66



40

30

20

10

-10

OPTIMAL CLIMB RESPONSES

20

Costate Variables

A fn

40 60
TIME 3.32 SEC UNITS

Fig. 17

67

80

100



0.08

0.06

0.04

0.02

0.02

-0.04

OPTIMAL CLIMB RESPONSES
Angle of Attack

S L

TIME 3.32 SEC UNITS

Fig. 18

68

100



OPTIMAL CLIMB RESPONSES

Pitch Attitude
0

0.8

0.6

0.4

0 o2

0.2

0 20 40 60 80 100
TIME 3.32 SEC UNITS

Fig. 19

69



0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

OPTIMAL CLIMB RESPONSES

20

Pitch Rate
q

40 60
TIME 3.32 SEC UNITS

Fig. 20

70

80

100



OPTIMAL CLIMB RESPONSES
Thrust

40,000

30,000

A 20,000

10,000

100
TIME 3.32 SEC UNITS

Fig. 21

7



OPTIMAL CLIMB RESPONSES
Height Rate

1,000

800

600

400

200

-200

0 20 40 60 80 100
TIME 3.32 SEC UNITS

Fig. 22

72



OPTIMAL CLIMB RESPONSES

Dynamic Pressure

1,600

1,400

1,200

1,000

600

400

200

0 20 40 60 80 100
TIME 3.32 SEC UNITS

Fig. 23

73



1.5

0.5

OPTIMAL CLIMB RESPONSES

20

Normal Acceleration

40 60
TIME 3.32 SEC UNITS

Fig. 24

74

80

100



_ Chapter 5

Variation Of Short-Period Pitch Mode Parameters.
Having obtained the solution of the defined optimisation problem by the combined
methods of Steepest-Descent and Quasi-linearisation as described in the preceding
chapter, the next phase of the investigation was to examine how the aircraft response
characteristics varied at different points on the optimal trajectory. For the purpose of
this study the aircraft full force equations wére linearised about each operating point
at every time step in the optimal solution. A second order model representation of
the aircraft was assumed in order to define the short-period transfer function of the
pitch-rate to elevator response. The phugoid motion was ignored for the purpose of
this thesis as in general this is a much longer period than the short period motion.
Since the objective of the overall exercise is to maintain the handling qualities of the
aircraft as close as possible to an acceptable norm throughout the optimal
manoeuvre, and this involves the identification and tracking of the short-period
parameters within the transient response time of the system, this simplification of
omitting the phugoid mode is justified as there is much more time available to adapt
for the phugoid variations should this be necessary. The additional complexity of
increasing the number of parameters to be identified in the aircraft representation did
not seem to be warranted at this stage of the investigatioh.

The short-period representation of the aircraft is given by:

(M, +Z M )
(ZM,-M Z)H1+ * s}
q(s) _ (ZnMw - anw)

nGs) s —(Z,+M,+M V)s+(Z,M,-VM,)

where the stability derivatives are given as:
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The short-period representation of the aircraft can be expressed in the standard

second-order form more commonly used by control engineers as:

q(s) _ K,o'{1+Ts)
nes) s*+28m s+’

with

ZM -MZ
o=( " w . 1 w); w::(Zqu—WW);

0)"
(M, +ZM) —(Z,+M, +MV)
“eM,-Mz) 20,

The values used for the aecrodynamic coefficients in the simulation of the aircraft
system are shown in figs. 2, 25, and 26. At every integration step on the optimum
trajectory, the values of the stability derivatives were calculated from the
aerodynamic coefficients using an interpolation programme to compute the
appropriate values of these coefficients at the intermediate values of mach number
pertaining at that point on the optimum trajectory. The aircraft system parameters as
defined above were subsequently computed from the stability derivatives. The
variation of these system parameters with respect to dynamic pressure and mach
number on the optimal climb trajectory is shown in figs. 27 to 30. From these graphs
it is readily seen that the aircraft parameters are highly non-linear with respect to

dynamic pressure and mach number and indeed are not single valued with respect to
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these variables. This implies that it is difficult to obtain a single valued gain schedule
with which to modify any command stability augmentation controller which may be
used in an attempt to obtain a uniform closed-loop pitch rate per elevator response
throughout the optimal trajectory.

The variation in the values of the aircraft system parameters as the aircraft flies the
optimal trajectory are shown in figs 27 to 30. It is readily seen that the undamped
natural frequency varies through a range of approximately six to one . The damping
ratio varies from approximately 0.4 at the beginning of the manoeuvre to 0.06
towards the end. The lead time constant varies by a factor of five while the steady
state gain varies from in excess of ten to one.

The effect of these parameter variations on the short period open-loop pitch rate per
elevator transient step response of the basic aircraft during the optimal trajectory are
shown in figures 31 to 51 every 16.6 seconds on the optimal climb trajectory.

It is obvious that if a uniform response is to be achieved in the short period handling
characteristics of the aircraft, a stability augmentation system is required which is
capable of adapting to the aircraft system parameter variations throughout the
optimum climb trajectory. It has been shown that the variation of the aircraft system
parameters with respect to the traditional gain scheduling variables is both non-linear
and not single valued and hence any scheduling of the controller to compensate for
these parameter variations will be open-loop. At best it will be a linearised
approximation to the required controller parameter values to achieve a uniform
closed-loop pitch rate response. As this method is open-loop in the adaptation
process, the alternative procedure of identifying the aircraft system parameters on-
line, and performing a closed-loop adaptive algorithm has been investigated. This is

the subject of chapter7.

77



AERO COEF v MACH NUMBER
Cma Cma Cmq

0.5 1 L5 2
MACH NUMBER

Fig. 25

78

2.5



0.45

0.4

0.35

0.25

0.2

0.15

AERO COEF v MACH NUMBER

0.5

CLt| Cimi

1 1.5
MACH NUMBER

Fig. 26

79

2.5

-10

-15

-20

-25

-30

-35



-2 0

SYSTEM PARAMETER VARIATIONS
OPTIMAL CLIMB TRAJECTORY
@ n £

200 400 600 800 1.000 1.200 1.400
DYNAMIC PRESSURE LB./SQ. FT

Fig. 27

SYSTEM PARAMETER VARIATIONS

OPTIMAL CLIMB TRAJECTORY
K o T

200 400 600 800 1.(“) 1.200 14(X)
DYNAMIC PRESSURE LB./SQ. FT.

Fig. 28

80

1.600

1.600



-20

-5

SYSTEM

OPTIMAL

PARAMETER VARIATIONS
CLIMB TRAJECTORY

Ko

T

0.5 1 1.5
MACH NUMBER

Fig. 29

SYSTEM PARAMETER VARIATIONS
OPTIMAL CLIMB TRAJECTORY

£m (0 n

0.5 1 1.5
MACH NUMBER

Fig. 30

81



10

20

25

10

20

Fig. 31

VARIATION OF TRANSIENT RESPONSE

“T=5.0 ONITS™

Fig. 32

82

10

12



20

60

20

-6 0

Fig. 33

Fig. 34

83



ION OF TRANSIENT RESPONSE

4 6 S 10 12

TIME SECS

Fig. 35

VARIAT[ONdeFﬂé’éI_I:ISIENT RESPONSE

T=25.0 UNITS

Fig. 36

84



20

Fig. 37

10

10

20

Fig. 38



20

20

30

20

Fig. 39

O OFT SLTUSft 10" "

T=45.0 UNITS

Fig. 40

86



OOV Mt Tdo " T

T=50.0 UNITS

10

10

30

40

TIVE SEE: 10 12 14

Fig. 41

20

10

10

20

40

Fig. 42



20

20

=30

Fig. 43

20

10

10

20

30

40

Fig. 44



20

20
30
40

Fig. 45
20
30

Fig. 46

89



20

10

10

20

40

20

20

-3 0

Fig. 47

Fig. 48



20

lo

io

1S

10

10

10N OF TRANSIENT RESPONSE

O» OPTIMAL TMAJECTOMT

T=90.0 UNITS

TIME SEC

Fig. 49

Fig. 50

10

12



10

-10

VARIATION OF TRANSIENT RESPONSE

ONPIMUIRARXRY

THOOWNIS

Fig. 51

92

10

12

14



Chapter 6 gives a brief overview of adaptive control research. It describes the
historical development of adaptive control from open-loop gain scheduling, through
high-gain series model reference systems, parallel model reference systems, indirect
adaptive control utilising an on-line idenification system, to on-line optimum

adaptive control.
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CHAPTER 6

ADAPTIVE CONTROL

Adaptive control has been the subject of dedicated research for over three decades.
This chapter provides a brief overview of adaptive control techniques and the
various approaches which have been considered in attempts at solving this problem.
The overall objective of adaptive control is to produce a system which responds in
the same manner even though the dynamics of the system being controlled may
changc as a function of environmental conditions. Specifically in the context of
adaptive flight control, the dynamics of the aircraft being controlled change as a
function of flight condition. The flight condition is generally defined as a function of
altitude, speed, Mach number, dynamic pressure, or incidence. Historically the first

attempts at adaptive control were based on controller gain scheduling techniques.
GAIN SCHEDULING:

This is one of the earliest approaches to adaptive control and it has been used
extensively in the design of flight control systems since it was introduced in the late
1950s. and early 1960s. The method is based on determining a set of auxiliary
variables, of the process being controlled, which relate to the changes occurring in
the process dynamics. Once this relationship has been established it is then feasible to
compensate for the changes in the system dynamics by rescheduling the controller
parameters as a function of these auxiliary variables. A schematic representation of
an open-loop gain scheduling controller is shown in figure 52.

Gain scheduling, while extensively used in the design of flight control systems is

however an 'open-loop' form of adaptive system. If the dynamics of the plant being
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controlled deviate from those anticipated to accrue at a specific set of aﬁxilia.ry
variables, the controller parameters will be set according to the rescheduling
algorithm and not as a function of the actual plant parameters pertaining at that
instant in time.

Gain scheduling has the added disadvantage that significant design time is required
to generate the scheduling laws and to cater for all combinations of operating
condiﬁons of the process being controlled. ' With modern computational design
techniques available this is no longer considered to be a serious restriction to the
generation of rescheduling algorithms; nevertheless it is the desire to close the loop
around the adaptive process that has motivated this research.

One significant advantage of gain scheduling is that controller parameters are
computed directly as soon as the auxiliary variables are measured and can be set
instantly without any inherent dynamics in the adaptive process itself. This in turn
alleviates the stability problems frequently encountered in alternative adaptive

systems.

Series Model Reference Adaptive Systems:-

Early design attempts to achieve closed-loop adaptive control were based on the so-
called model reference scheme. Two forms of model reference methods have been
researched. The first is the series model reference system which is the subject of this
sub-section. The alternative approach is the parallel model reference scheme which is
discussed in the next section of the thesis.

In model reference adaptive control the objective is to control the system such that
the output response closely follows some desired response as defined by a system

model. The system model chosen is generally of the same order as, or lower order
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than, the actual system being controlled. A schematic diagram of a seﬁcs model
reference scheme is shown in figure 53.

In this scheme the series model response is used as the input to the closed-loop
system of controller and plant. For the system to follow the model response
accurately, the closed-loop transfer function of plant and controller must be
maintained close to unity gain at all frequencies. To achieve this requirement the
forward path open-loop gain of plant and controller must be maintained very high.
This in turn is liable to lead to instability problems of the closed-loop system. A limit
cycle detector was incorporated to determine the onset of oscillation and the
forward path gain was reduced to re-stabilise the system. This technique seems
contrary to the principles of good control system design where the objective is
normally to retain good stability margins such that the system is never unstable. A
significant disadvantage of this system is that oscillations are present in the system
response. Additionally the high forward path gain can cause actuator saturation with
catastrophic results. In 1966 an adaptive scheme similar to this was test flown on the
Bell X-15 experimental aircraft. Control authority saturation in the pitch axis masked
an instability in the roll axis and the aircraft exceeded its structural limitations

resulting in the loss of the test vehicle.

PARALLEL MODEL REFERENCE ADAPTIVE SYSTEM:-

In this implementation the command signals are fed to the actual system and to a
parallel model of the desired system response. The error between system and model
responses is computed and used to adjust the parameters of either a forward path

controller or a state feedback controller. It is also possible for the system to use a
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combination of forward path and feedback controllers. Early work on this type of
system was undertaken by Whitaker in 1961. The system when working adjusts the
controller parameters such that the output of the controlled process approaches the
model response asymptotically. The update of the controller parameters was
achieved using a gradient algorithm whereby the rate of change of the controller
parameters was adjusted to be proportional to the sensitivity of output error with
respect to controller parameter variations. The constant of proportionality is referred

to as the adaptive gain of the system. The time derivative of the controller parameter

is given by
o__, (p)a(y. (r))
dt ° ap
(y.(p)) . . o
where T— is the sensitivity function which depends on the unknown system
/4

parameters, g is the adaptive gain , and e, (p) is the error between the system
response and the model response y, and y, respectively.

To overcome the fact that the sensitivity function depends on the unknown plant
parameters M.L.T. developed a system which incorporated estimates of the plant
;‘)aramcters in the sensitivity function. This became known as the M.LT. rule.

The stability analysis of this class of system is difficult; however for low values of
adaptive gain and small forcing function amplitudes the system has been shown to be
stable. Parks employed Lyapunov stability techniques to design model reference
adaptive systems which could be proven to be asymptotically convergent to the
model response and stable.

Hill-climbing techniques have also been utilised in an alternative approach to the

design of model reference adaptive systems.
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These methods unlike the gain scheduling method do not instantaneously adapt to
the desired values of controller parameters and there is a finite adaptive response
time. This can affect significantly, errors between the system response and some
optimum desired model response. This is particularly true in the case where the
controller and plant parameters are initially mismatched. In this case the system
response can deviate significantly from the desired model response especially during
transient responses, and it may take several repetitive applications of the command
input before the adaptation is complete and the system response matches that of the
desired model response. The speed of adaptation is dépcndent on the type of input
command to the system as the error between system and model response is
dependent on this. The speed of adaptation is also dependent on the choice of
adaptive gain which is in turn dependent on stability considerations. The outcome of
this is that the speed of adaptation is generally slower than the response time of the
system and this results in significant deviations of the system transient response from
the model optimum.

For many flight control applications this is unacceptable. An additional objective of
this research then is to complete the adaptation of the controller well within the
transient response time of the system and to augment the control signal to force the
adapted system to minimise the error between the system response and the desired

model response.

INDIRECT ADAPTIVE CONTROL:-

Indirect adaptive control generally incorporates an on-line identification scheme. The
so-called self tuning controller is an example of such a scheme. This is depicted in

figure 54. Model reference adaptive systems update the controller parameters
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without obtaining an explicit identification of the dynaniics of the pmcéss to be
controlled. By employing on-line identification of the plant certain advantages ensue.
First of all, once the dynamics of the plant are known it is possible to incorporate an
on-line redesign of the controller. The update of the controller parameters may
merely be a rescheduling exercise based not on auxiliary variable measurements as in
the open-loop adaptive controller but rather on the latest estimates of the actual
process dynamics. Secondly, once the plant parameters are established, instead of
merely adjusting the controller parameters to achieve some desired closed-loop
transfer function, it is possible to re-compute the optimal control which will force
the system response to minimise a function of the error between the actual system
response and some desired nominal system response. When this is achieved within
the transient response time of the system it can justifiably be referred to as an
optimum adaptive controller. This then is a natural desirable extension of indirect
adaptive control. Such a scheme was proposed by the author in ref. 25 and a block
diagram of the scheme is reproduced in figure 55.

The on-line identification of system dynamics is often far from trivial, and much
research effort has been applied to this task. The techniques employed range from
frequency response methods, cross correlation techniques and even analysis of
responses to various classes of excitation, e.g. step responses, ramp or exponential
inputs. All of these techniques require aciditional test signals purely for the purpose
of identification. These inputs in turn éorrupt the system response usually in an
undesirable fashion. The objective then is to produce an on-line identification scheme
which uses only the normal operating control signals as the excitation of the system
for identification purposes.

The Quasilinearisation algorithm referred to in the solution of two point boundary
value problems resulting from the application of optimal control theory has been

proposed by Bellman as a suitable technique for the on-line identification of systems.
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Ref. 10. This method is suitable for the identification of slowly moving time variable
parameters and has been selected as the technique to be employed in this
investigation. In the case of the identification of flight dynamics the structure of the
system dynamics is generally known and this greatly facilitates the identification
process. Good estimates of both the control inputs and resultant system states are
required in order to perform the system identification. If the system states canniot be
measured because they are inaccessible they can generally be reconstructed by using
asymptotic observer methods. The effects of noise, e.g. turbulence, measurement or
structural may be alleviated by Kalman filtering. This is basically a time averaging
method and it should be noted that this will slow up the speed of the identification
algorithm. In an effort to get a thorough understanding of the deterministic
identification of flight dynamics these difficulties have not been investigated

as part of this thesis and remain an area for future investigative research. Given the
availability of uncontaminated state and control a study has been undertaken which
has demonstrated the continuous on-line tracking of system parameters and this is
the subject of chapter 7.

Kenneth and McGill have shown that within the convergence boundary of the
Quasilinearisation algorithm, convergence quadratic. He has also indicated that if the
system dynamics are linear then convergence is single step. This means that repeated
iterative computations to identify the system, at the end of each identification
interval, are only required if the system is non-linear. In the linear case the
identification can proceed directly to the next identification interval. It should be
noted that the identification process can be made continuous provided the system
forcing function satisfies the persistent excitation requirements. For the system to be
completely identified the forcing function is required to excite all of the modes of the
system. In normal operation of the system this requirement on the nature of the

forcing function will not always be satisfied. In this event, generally encountered as
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the system reaches steady state conditions, the identification cannot be performed. It
is therefore necessary to inhibit any adaptive update of controller parameters if this
condition is encountered. At or near steady state conditions of the system response
this is not considered to be a significant problem.

The following chapter describes the design and performance of an on-line

identification scheme in detail.
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CHAPTER 7

ON-LINE IDENTIFICATION

This chaptcr is concerned with the continuous on-line identification of time varying
non-linear system parameters.

A generalised system of this type can be defined as

X = f(laﬂsl‘.at)
where

X represents the n dimensional state vector

"

" " m " control

t

k " " " parameter
The objective of the identification scheme is to produce a mathematical model
representation of an unknown time varying system. This model when correct should
produce ideally identical responses to the actual system when excited by the same
forcing functions # .
It should be noted that it is possible to introduce a degree of optimisation into the
identification process. A typical performance index would be, for example, to
minimise a function - normally quadratic - of state errors between the model and
system. By choosing a weighting matrix on these state errors which is related to the
inverse variance matrix of independent noise on the actual state variable
measurements, the model can be made an optimum representation of the system.
For the purpose of this thesis, and to demonstrate the principles of on-line system
identification, it is assumed that the system states and control inputs are deterministic
and uncorrupted by measurement noise.
It is important to distinguish this identification model from the observation model of

classical control which is used to reconstruct inaccessible states. To generate an
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observer model it is quite normal for the parameters of the system to be known. Iﬁ
the on-line identification model the system parameters are unknown and have to be
identified.

Any identification process requires, as a starting point, a definition of the dimension
of the mathematical model to represent the system. If the order of the system is
unknown an iterative identification process can be performed whereby the dimension-
of the model is chosen and a "best fit" identification performed. The order of the
model is then progressively increased until there is no significant improvement in the
reduction of the error function between rpodel and system.

In the case of aircraft dynamic identification this is unnecessary as both the
dimension and structure of the system are well defined. This significantly simplifies
the identification task.

Many different techniques for system identification have been investigated and these
are well documented in ref. 30. One such technique is based on the Newton-
Raphson algorithm. As this method has been utilised in the solution of two-point
boundary value problems resulting from the application of the necessary conditions
for optimal control, it is this approach which is used again for the purpose of on-line
identification.

In the definition of the system dynamics the unknown system parameters are treated
in a similar manner to the co-state variables in optimal control. As products of the
states and parameters occur in the system definition the equations are essentially
non-linear in character. The first step then is to linearise the system equations about

a set of parameters. The linearisation algorithm in this case can be written as

=[J(x, 3k, )][i"*‘ _x"]+ O )

Bpnn — 8y

(- [& -

n+l
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Although the actual system parameters are time varying, it is assumed for the
purpose of identification that they are constant during the short identification
intervals. At the end of each identification the best constant values for the parameter
set is obtained. The identification process is on-going and in this manner the time
varying parameters are tracked as piece-wise constant values. The result is similar to
a discrete sampling of the time varying parameters.

To illustrate this technique the particular case of identifying the pitch short-period
small perturbation dynamic representation of an aircraft is considered. This

representation is given by:-

q _ _Ko0;(1+sT)

n s’+280s5+0’

In matrix control canonical form this becomes

In this representation the output is a function of both states and it is helpful to
transform this to an observer representation for the purpose of identification.

Redefining the system states, the equations become

X3 -k, 0] x, k,
y=Xx;

where the output y and system state X, are the pitch rate of the aircraft, & is the

elevator control input 1], and the system parameters to be identified are the
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k,——-i=1,2,3,4

Specifically:-

k =280,
k,=o’

k,= K0T
k= K,o;

A block schematic diagram of this system representation is given in fig. 56.

Treating these parameters in a similar fashion to the co-states in the optimal control

study, the linearised equations become

x, [k 1 —xy 0wy O xpn—xw] [—hwXiy + Xy + Kanity |
X2 -ky 0 0 -—x, 0 u, | xpn, —Xw -k x,y +kuy
k |00 0 0 0 0k ky|, 0

K 0 0 0 0 0 0|k, —kK, 0

K, 0 0 0 0 0 O[k,, —ky 0

i) L 0 0 0 0 0 O |ky,~kal | 0 .

The parameter identification task is now a boundary value problem in that the initial
conditions on the unknown parameters have to be chosen such that the model states
are satisfied at several points in time. Because there are more unknown parameters
than there are states, in this instance twice as many, two points in time are chosen at
which the model states must be matched to the actual system states. These time
points have been chosen as the mid-point and end-point of the identification interval,

in this instance. If only one state is accessible for measurement then the identification
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can still be performcd_ by matching that state for both the system and model at four
points in time.

The procedure for the solution of the multi-point boundary value problem for the
above set of linearised equations is the same as that used for the solution of the
optimal control boundary value problem. The procedure commences with selecting a
set of starting vectors in time for the coefficients of the Jacobian matrix. The obvious -
choice for initialising the Nth- iteration is to choose the actual system states and
system control input of the system to be identified. The starting vectors for the four
unknown parameters are chosen such that k, (£) =g, i=1;——;4

Since the time derivatives of the unknown parameters have been assumed to be zero,
the g, are just four constants. If the range of the unknown parameters can be
determined, an appropriate starting point would be to choose to set each parameter
to the mid-point of its range. The initial conditions of each of the k,,,, parameters
must also be chosen, and since there is no specific preference for this they can be
made equal to the last iteration values. Hence k,,,, =g,  #=1;——4 ischosen.
Expanding the linearised equations and making the above substitutions, the linearised

equations become:-

'x.l F—gl 1 -x, 0 u 0 | r-xwu ] Fglxls ]
kz -2 0 0 -x, 0 ufx,,, £:%,,
k, _ 0O 0 0 0 0 01}k, N 0

kz 0O 0 0 0 0 0|k, 0

k:s 0O 0 o0 0 0 0] k,y, 0
_i‘4_N+, 0 0 O 0 0 0 kn,] L O |
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The solution of these equations consists of a_"Particula'r Integration” obtained by
integrating the system of equations with initial conditions on the unknown
parameters as k,(0) = g, ; together with a linear combination of four sets of
homogeneous solutions.

The complete solution of these equations is given by:

(%0 [xa®] [%2®] [x0] [x®] [*..0
x,, (1) X, (1) X, (2) X, () X, (D) X,p, (1)
0N ERO] R PO TR EROT I EROTR PO
k,(t) k(1) Ky (2) L) k(@) | | Kpr (D)
kJ (t) kSHl (t) kst (t) k3H3 (t) k3H4 (t) kJP.I. (t)
L k4 (t) B _kun (t)d _sz (t)_J _kms (t)J _kan (t)J _k4P.l. (t)J
Eqgn. 2

It should be noted that these equations are valid throughout the identification

interval. The constants C, are weighting factors on the homogeneous integrations to

correct the particular integrations to give the desired values of the system model

time response and the identified values of the unknown parameters k; These

constants must be determined from the state responses of the model. Since there are

four constants to be evaluated and only two states, the above equations are applied

at the mid-point and end-point of the identification interval. i.e. at times £, and £,

respectively.
With the above set of initial conditions for the unknown parameters the particular

integration reduces to:
)él _:l:_gx IJl:xl:I +l:g3]u
x,],, L78 0%l L&
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It should be noted that the particular integration system defined above is a model of
the original system having an identical structure but with estimates chosen for the
unknown parameters of the actual system. As the choice of the parameters for this
system model will initially be incorrect, so the model responses given by the
particular integration will not match the true system responses and these are
corrected by the linear combination of the homogeneous integrations.

There are four sets of homogeneous integrations requircd' because there are four
unknown initial conditions on the parameters. The initial conditions for each set of

homogeneous solution are chosen as follows:-

(x1 [0] [o0] [o0] [oO]
X, o o]l [of |oO
kg | |1] [0] |o] |oO
k,p, ol ’|1] ’fo] |0
k., o] o [1f [0
L dei J1=0 _0_ i=1 _0_ i=2 _0- =3 L 1_ i=4

With these sets of initial conditions for the homogeneous integrations, the set of four

homogenous integrations become respectively:-

x.l _[_gl l]l:xl:‘ +[_xls]
)é _g2 0 xZ m O

21m

o | I
.x. —gz 0 x2 H2 _xb

21m
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.1 ) [_gl IJ[xl] * [u']
| X2 1gs ~& 0x ], 0
..xz_H-t _gz 0 xz H4 u:

The Particular Integral and the four sets of homogeneous integrations have all to be
integrated simultaneously and if the simulation of the original system is included this
results in a total of twelve differential equations to be integrated. This complete set

of differential equations is given below in matrix form as:

-—_r - - -

xw | -6 1. 0 0 0 0 0 0 0 0 0 Ofx, ku
X2 -k, 0 0 0 0 0 0 0 0 0 0 Of x, ku,
Xip1. 0 0-g1 0 0 0 0 0 0 0 Ofx,,| |gn
.;Csz 0 0-5 0 0 0 0 0 0 0 0 Ofx,, 84,
um 0 0 0 0-g 1 0 0 0 0 0 Ofx,| |-x,
Xm [ [0 0 0 0-g 0 0 0 0 0 0 Xum |, 0
Xum 0 0 0 0 0 0 -g, 1 0 0 0 Ofx,, 0
X2m2 0 0 0 0 0 0 —-g, 0 0 0 O Ofx,,, -X,,
Xums 0 0 0 0 0 0 0 0 -g 1 0 Ofx,, u,
Xams 0 0 0 0 0 0 0 0 -g, 0 0 Ofx,, 0
P 0 0 0 0 0 0 0 0 0 0 —g 1| x4 0
xw|] LO 0 0 0 0 0 0 0 0 0 —g O0fx,| |4« |

To solve for the four constants C, in equation (2) the desired state responses of the

model are set to those of the actual system to be identified. The initial conditions on
the model particular integration are set equal to the value of the actual system states

at the start of the identification interval. The following set of equations then apply:
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2@ |G 2@ | ) | M 2 |7 ) | ] 2 )
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Subtracting the equations at #, from those at £, and ¢, for each of the respective
states and noting that X, (¢,)=x, (¢,) and x5, (¢,)=0 i=12;j=1,4

the equations can be rearranged to give the solution of the four constants as

(X0 (1) X (t) X () X @) ][ X, @) - X, @) ]
xZHl (tl ) xZHz (tl ) xZHJ (tl ) x2H4 (tl ) xz, (tl ) - xZP.I (tl )
X1 (tf) Xia2 (tj‘) X113 (tf) X114 (tf) X,, (t/) —Xips (tj)
_xzm (tf) Xom (tf ) Xam3 (tf ) Xan4 (t] )_ _xzs (tf ) — Xopa (t/ )_

H 000

The corrected or identified values for the unknown parameters during the

identification interval then become

k, G| | &
k C
=l ol
k, Gl |&
_ka_l _C4_j _g4.J

The identified values of the system parameters so determined then become the
estimates of the unknown parameters for the next identification interval, to enable
the next particular integration and next sets of homogeneous integrations to be

performed. In this manner the identification process is continuous and enables time-
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varying parameters to.be tracked as constants over each identification interval. By
testing the matrix of homogeneous solutions to determine that it is non-singular it
can be established that the identification is valid or otherwise at each step. A
schematic diagram of the identification process is shown in fig. 57.

The results of the on-line identification and tracking of the aircraft system
parameters by the Quasilinearisation technique are presented in figs. 58-61. The
accuracy of the method is clearly demonstrated.

Chapter 8 defines a command stability augmentation system which adapts the

controller parameters as a function of the on-line identified aircraft parameters.
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Chapter 8

On-Line Command Stabiliiy Augmentation System Adaptation

Chapter 5 has described in detail how the aircraft short-period pitch rate per elevator
response varies significantly throughout the optimal climb manoeuvre. In order to
reduce the effects of this variation in aircraft response characteristics, a command
stability augmentation controller is proposed in this chapter, and the resultant

closed-loop aircraft pitch rate per pitch rate demand response investigated.

C.S.A.S Structure:-
A simple proportional plus lagged integral controller with the transfer function as

defined below has been considered.

nD(s) =K [1_'_ Ki ]
9emr (5) | s(A+TIs)

To achieve a uniform closed-loop response characteristic it is necessary to vary the
parameters of this controller during the optimal manoeuvre. The difficulty in
obtaining a scheduling law for the parameters of the controller as a function of
auxiliary state variables, due to the non-linear relationship between aircraft
parameters and auxiliary state variables, has already been described. However, by
varying the controller parameters as a function of identified aircraft parameters, a
simplification of the controller parameter scheduling results. In particular, by
selecting the following specific relationships between aircraft identified parameters

and controller parameters:-

28 _1

K

o< . T . and K,=To!
Ko, 280,
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the controller parameters will be optimised with respect to the changing dynamics of
the aircraft short-period response. The constant of proportionality on K defines
the design break frequency of the combined aircraft and C.S.A.S. closed-loop
response characteristic.

To demonstrate the need to adapt the controller, to compensate for the changing
aircraft dynamics, the performance of a fixed parameter C.S.A.S was initially
invcsﬁgated. For this purpose each of the controller parameters was set to the mid-
point of their range of optimum values, as defined above and computed from the
mid-point of the variation in aircraft parameters during the optimal climb trajectory.
The closed-loop step response of the combined fixed parameter C.S.A.S and aircraft
has been computed at twenty equally spaced time intervals on the optimal trajectory.
The envelope of these step responses is presented in fig.62. Although a significant
reduction in the variation of the open-loop response characteristic has been achieved
using the fixed parameter C.S.A.S , it is evident that there is still considerable
variation in both the natural frequency and damping ratio of the resultant closed-loop
pitch rate responses. In fact with the parameters selected for this fixed gain

controller the system exhibits instability at some point on the climb trajectory. These
instabilities are undoubtedly due to the choice of fixed C.S.A.S integrator gain K, in

conjunction with the value selected for the controller proportional gain K.

Although not the direct purpose of this thesis, it is certain that this situation could be
improved by simply scheduling K. To this end the optimum variation in K| is

shown against trajectory lapse time together with the optimum Mach number time

history in fig. 63. The similarity in shape of these plots of K, and Mach number

indicates that it would be feasible to derive a single valued open-loop gain schedule

for K, as a function of Mach number. This would undoubtedly improve the

uniformity of the closed-loop response characteristic on the optimal manoeuvre. This

technique however is not exact and open-loop, as has been pointed out, and so the
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on-line aircraft parameter identification and subsequent C.S.A.S adaptation scheme

has been implemented.
A A.S. R nses:-

The envelope of closed-loop pitch rate step responses obtained using the optimal
adaptive C.S.A.S system has been computed at the same twenty time intervals on the
optimal climb trajectory. These results are shown in fig. 64 and the close uniformity
of all of the step responses is clearly demonstrated. The identification of the aircraft
parameters has been achieved using the techniques of Quasilinearisation outlined in
chapter 7. The control signal used for the identification of the aircraft parameters
was the elevator demand from the C.S.A.S output during the optimal climb
manoeuvre and no further test or specific identification signals were required. The
C.S.A.S parameters were computed from the identified aircraft parameters, as
defined above, and on-line adaptation occurred at the end of each identification
interval as a continuous process.

The optimised controller parameter variations as a function of lapse time on the
climb manoeuvre are as shown in figs. 65and 66. Also shown in fig. 66 is the
variation in the ratio of aircraft lead time constant to C.S.A.S. controller lag time
constant during the manoeuvre. Although this ratio varies slightly from unity,
indicating that these two time. constants are not matched exactly at every point in
time on the optimal climb, the deviation from unity is small and hence the subsequent
effect on the envelope of closed-loop pitch rate responses is negligible. For the
purpose of this investigation the identification time interval was fixed at 200ms. and
this proved to be satisfactory. This identification interval was based on the selected
closed-loop break frequency which was set arbitrarily at 4 rad. per sec. It should be

noted that it is perfectly feasible to vary the identification interval, perhaps as a
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function of the Iidentiﬁed natural frequency of the aircraft; however this additional
versatility proved unnecessary in the investigation. The dynamics of the elevator
power control were omitted from this investigation purely for simplification
purposes. This however has no effect on the validity of the techniques demonstrated.
Chapter 9 investigates an additional augmented control scheme suitable for returning

an adapted system response to a nominal transient response in an optimum manner.
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Chapter 9

Minimisation Of Adapted Transient Response Errors From A Nominal
By Optimal Augmented Feedback Control.

The thesis so far has presented results of investigations on the design,
implementation and performance of an on-line adaptive control command stability
augmentation system. The overall objective of this work has been to provide a
uniform response characteristic for the pitch short period mode control of an aircraft
on an optimal climb trajectory. The adaptive procesé utilises an on-line identification
scheme to identify and track the changing aircraft parameters. The identification and
adaptation are continuous and are both performed well within the closed-loop
transient response time of the system.

At the end of each identification and adaptation interval the closed-loop dynamics, of
the combined controller and aircraft combination, match a predetermined nominal
system dynamics. The response of the system to subsequent inputs will therefore be
as required and also aircraft handling qualities will be as desired. However since the
identification and adaptation process requires a finite time before the aircraft
parameters are determined, the actual time response of the closed-loop system can
significantly deviate from a prescribed nominal transient response. This is due to the
possible mismatch between controller and aircraft parameters during the
identification interval. An example of this situation is demonstrated in fig. 67. In this
figure the response of each of two such initially mismatched controllers is shown. In
one example the controller parameters are a factor of ten too large, while in the
other example they are a factor of ten too small. This represents a total gain
variation of one hundred to one. In each case, at the end of the short identification

interval, the controller parameters have been adapted to their nominal values. From
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this point onwards in the time responses the combined controller aircraft dynamics
are correct. It is clearly seen however that the actually achieved time responses differ -
significantly from the desired nominal transient response. The question then arises
whether to accept this situation since the response to subsequent inputs after
adaptation will be satisfactory, or whether to attempt to force the system response
back onto the nominal transient response trajectory. Since the adaptation process is
operating well within the transient response time of the system it would seem
desirable to utilise this fact and to restore the actual response to the nominal in some
optimum fashion. Since, from the instant of identification and adaptation, the
dynamics of the closed-loop system are completely defined, it is therefore possible to
design an additional optimal feedback loop. This augmented control can be designed
to minimise a quadratic function of the error between the actual system response and
the desired nominal transient response.

This additional optimal controller has been implemented and the results achieved are
shown in fig. 68. In this figure it is clearly demonstrated that in both initial mismatch
configurations the system responses are returned to the nominal transient response
characteristic shortly after the identification interval. In these examples the
augmented optimal control is only active from the end of the identification interval,
and after the complete system dynamics have been determined.

It is evident that the system response accelerations may be unacceptable. These
however could be controlled by incorporating additional state constraints in the
optimisation performance index.

It has been found beneficial to have this augmented optimal controller active
continuously, including during the identification interval. The results obtained in this
case are presented in fig. 69 and in expanded view in fig. 70. It can be seen clearly

that the deviations from the nominal transient response trajectory are significantly

130



reduced, even though there is a mismatch of pontroller and aircraft dynamics during
the identification interval.

A schematic diagram representing the complete on-line identification process, the
adaptive controller, and the optimal augmented controller to minimise errors
between system response and a desired nominal is given in fig. 71.

The conclusions drawn from this research together with suggestions for future -

research are discussed in chapter 10.
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Chapter 10

Conclusions And Suggestions For Future Research.

This thesis has investigated a possible adaptive flight control scheme which is based
on the explicit high speed on-line identification of the parameters of the aircraft
dynamics. The identification is performed using normal operating control inputs.

To test the system the specific case of an optimal climb manoeuvre has been
investigated. The optimal trajectory obtained as a solution to this problem has been
computed using both Steepest Descent and Quasilinearisation numerical methods.
This optimal solution takes the aircraft through many rapidly changing flight
conditions with subsequent variation in aircraft response characteristics and handling
qualities and therefore is a good manoeuvre with which to investigate the
effectiveness of both the on-line identification scheme and the adaptive control
algorithm.

Some considerable time has been spent by the author in understanding optimal
control techniques from first principles and it is therefore appropriate that the theory
of this applicable to the specific optimisation problem has been presented. It has also
been necessary to generate the numerical computational software and to verify this
for both methods of solution which have been investigated and applied to the
solution of the optimal control necessary conditions. In particular the
Quasilinearisation method of solution of the resultant two point boundary value
problem has been applied to the implementation of the on-line identification aircraft
parameter identification scheme.

Optimal control theory has also been applied to the task of minimising the quadratic
error function of the adapted system response and a nominal desired transient

response characteristic.
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Some thought has been given to establishing a confidence level in the identified
aircraft parameters. This has been achieved by establishing that the matrix of
homogeneous solutions in the Quasilinearisation algorithm of the identification
process is non-singular. This relates to the persistency of excitation requirement to
excite all the modes of the system. If this requirement is not fulfilled no identification
is possible, and the above mentioned matrix becomes singular. In the event of this
situation arising, the adaptive process would be inhibited until the validity of the
identification is again achieved and the adaptation process automatically resumes.

It is also possible to establish a validity range for the identified parameters and also
to monitor that the rate of change of these parameters is within limits to provide a

confidence level in the identification procedure.

Euture Research :-

The accuracy of the aircraft parameter identification and tracking has been clearly
demonstrated. In this investigation however only the still air performance of the
adaptive system has been considered. The effects of both turbulence and
measurement noise on the identification process must now be thoroughly
investigated. Should the states of the aircraft system be contaminated by noise it may
be necessary to introduce a Kalman filtering technique to improve the determination
of the system states before the identification algorithm is applied. It is felt that while
a time penalty will be introduced to obtain a statistical average or filter the results of
the identification, the method demonstrated in this thesis is worthy of further
investigation.

Hardware implementation considerations have not been attended to in this thesis.
This is because each year seems to bring new developments in data signal processor
technology, with both increases in speed and complexity of processing power. At the

time of writing the Texas Instrument C40 D.S.P. range of microprocessors seems
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particularly suited to the on-line identification and adaptation tasks. It is intended to
use this processor to further this on-going research activity.

System integrity needs to be developed and a failure analysis of the system
performed to establish continuous availability of the system for flight critical
conditions.

Much further work needs to be undertaken in the development of this system before
it finds universal acceptance. Nevertheless the author believes this research has
demonstrated the possible potential of such a closed-loop adaptive system and
commends it to the aircraft industry. It is felt that an in-flight demonstrator
programme is long overdue in this country, of a controller utilising an on-line
identification facility. I would call upon The Defence Research Agency, Avionics and
Aircraft manufacturers to pursue this activity which may well prove to enhance

future aircraft performance.
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REDUCTION IN THE VARIATION OF AIRCRAFT RESPONSE CHARACTERISTICS
DURING OPTIMAL TRAJECTORY MANOEUVRES

J.K.M. MacCormac

School of Electrical and Electronic Engineering
University of Bath
Bath England BA2 7AY

Abstraci:-Aircraft trajectory optimisation frequently
results in significant variation in the short period
response of the aircraft throughout the optimal
manoeuvre. The optimisation problem of acquiring
maximum height in a fixed time while minimising a
function of drag and satisfying a desired terminal
constraint on velocity is considered . The resultant two-
point boundary value problem is solved by a
combination of the methods of steepest descent and
quasilinearisation. The variation of the short-period
dynamics on the optimal trajectory is investigated and
in this example the steady-state gain, damping ratio,
natural frequency and lead time constant vary by factors
of up to ten to one. Scheduling of a command stability
augmentation system with respect to auxiliary variables
such as dynamic pressure, mach number and height,
reduces this variation . It is shown that on the optimal
trajectory the gain scheduling is not single- valued,
resulting in a complex non-linear gain adjustment
algorithm. A unique relationship between aircraft
parameter variations and controller gains is determined
and the combination of these provides a uniform pitch
rate response characteristic throughout the optimal
trajectory. The paper investigales the use of a
quasilinearisation based algorithm for the on-line
identification and tracking of the aircraft parameters.
The subsequent adaptation and re-optimisation of the
controller is performed to minimise the error between a
desired optimal transient pitch rate response and the
actual system response. This re-optimisation of system
performance is achieved using an on-board digital
model of the identified aircraft.

Introduction

This paper investigates the variation of aircraft
response characteristics during an optimal trajectory
manoeuvre. The optimal climb manoeuvre of
maximising height acquired in a fixed time while
satisfying a desired terminal constraint on the final
velocity and minimising a function of drag has been
chosen as the starting point for this investigation. This
optimal manoeuvre has been specifically chosen as the
aircraft encounters a significant portion of the flight

envelope in performing the task. Also the solution of a
similar optimisation problem is available(1-2) and it
has therefore been possible to verify optimisation
software developed for use in this investigation. In
particular the variation of the aircraft parameters
defining the small perturbations equations of motion
representing the short period pitch response of the
aircraft are investigated throughout the optimal
trajectory manoeuvre. It is shown that the aircraft
parameters are not in general single valued with respect
to auxiliary variables such as dynamic pressure, mach
number etc.; hence it is difficult to determine a
satisfactory gain scheduling control law for a command
stability augmentation system which will provide a
uniform response characteristic throughout the
manoeuvre. An on-line identification scheme is
investigated to identify and track the parameters during
the manocuvre and it is these identified parameter
values which are used to adapt the C.S.A.S. parameters
in place of the normal auxiliary variables.

A relationship between aircraft and controller
parameters is obtained which significantly reduces the
variation in aircraft closed-loop pitch rate to pitch rate
demand response throughout the trajectory. This closcd
loop adaptive system operates within the transient
response time of the aircraft and maintains the transient
response uniform for subsequent command inputs. It
should be noted however that a finite identification
period is required to establish the aircraft parameters
and adapt the C.S.A.S. During this period the system
transient response can deviate from the desired nominal
transient response. At the end of the identification
interval the adapted system dynamics are defined and
this information is used to augment the control to
correct these deviations in the response and return the

. transient response to the nominal desired transient

response in an optimised manner. The augmented
control which minimises an error function between
desired nominal and actual transient response can also
be operative during the identification and adaptation
interval. This optimal adaptive controller reduces the
deviations in the

initial transient response from the nominal when there
may be substantial mismatch between the dynamics of
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the closed loop adaptive system and those of the
nominal transient response.

Climb Optimisati

The necessary conditions for optimal control to
minimise a generalised cost functional of the form

J=¢o_r(t,),z,)+fw(z(z,)¢,)+j{uz,z_u>+z«’(f(z,w)—;>}dn

subject to dynamic constraints % (¢) = f(x,u,t)
and specified terminal conditions are given below

AT ERE AR

)l,

A fixed time problem has been considered in this
instance for ease of computation. The actual cost
functional chosen to be minimised for this maximum
height in a fixed time problem was chosen as

J=—h(t,)+7v,(V(1,)— 968 .)+%j‘:’a’dt

The initial conditions used for the state equations were
as defined in the boundary conditions for the study. The
optimisation period used was 332.0 sec. The system
states were unconstrained to simplify the problem. The
variation in engine thrust characteristics and
aerodynamic data with Mach number are as shown in
(Figs 16-17) and an interpolation procedure was used to
generate the appropriate values and required partial
derivatives at each time step in the integration process.
From the aircraft forces diagram (Fig. 1) and applying
the above necessary conditions the state and co-state
equations are as follows.

A j it E Di
A
*'Thrust

The State and Co-state Equations
V:l{Tcosa— D -mgsiny}
m

v =#{L+ T'sino. - mgcosy}

h=Vsiny
x=Vcosy
T
h=-—
cg
. A, 0D 9T
=L &= ___r_
A, ~ aV aVcoscz)+ —{(L+ T'sina— mgcosY)
- V(a—Vsina+ a—f,)} —A,siny-2A, cosy+;:'—g§

A, =A,gcosy—A, %siny —AJVcosy+A Vsiny

L N L S .
' oh Oh mV " oh cg oh
i, =0
The Optimal Control

The optimal control obtained from the optimality
condition is given by

a—L{Tsma+a—D}+—L{a—L+Tm a}=0
m oo mV

The Boundary Condii
V(z,) = 400.0 ft.sec ™ A, (1) =17,
v(t,)=0.0rad . A, (t,)=0.0
h(t,)=1700.0 ft. A, (t)=-1
x(t,)=0.01t. A,(t,)=0.0
m(t,)=1304 .slugs A,(t,)=0.0

This complete set of equations constitute a non-linear
two-point boundary value problem. The solution has
been obtained by a combination of both steepest-
descent and quasilinearisation iterative computational
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techniques. In the steepest-descent method a starting
vector was chosen for the control and the state
equations were integrated forward in time. At the end
of the optimisation interval the terminal condition on

M * |) was set to a weighted function of the error
between the computed and desired terminal value of
V (tf) and the co-state equations were integrated

backwards in time using the solution of the state
equations obtained in the forward integration. A new
control vector was computed from

a~— {Tsina + + —rrfr—+ Tcosa}
m da V da

m

where I controlled the step length along the gradient,
and the process was repeated until the terminal error on

V( tf) was within a small norm. To test the

quasilinearisation programme which is required for the
on-line identification process, the state and co-state
equations were first linearised about the solution
obtained from the steepest descent procedure which was
then used as a starting vector for the quasilinearisation
method of solution of the two-point boundary value
problem. This process was iterated to convergence and
a small improvement was obtained in the maximum

acquired height with the terminal condition on V (¢f)

exactly satisfied. The results obtained by both methods
of the optimum height versus Mach profiles are shown
in (Fig 2.)
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FIGURE 2.

From the results obtained in the optimisation process
the nominal pitch attitude time history was computed
from the optimum time profiles for flight path angle
and angle of attack . Differentiation of this generated a
desired pitch rate profile to be followed in order to fly
the optimum manoeuvre. This signal was used as the
excitation for the combined C.S.A.S. aircraft system to
investigate the on-line identification of the aircraft
parameters.

Parameter Variations on the Optimal Trajectory

Throughout the optimum trajectory at every time step in
the integration procedure the parameters of the small
perturbation pitch rate per elevator transfer function

were computed.
Koo201 + sT)
s2+ 2%0 + to
The variation of the d.c. gain, natural frequency,
damping ratio and lead time constant are shown with
respect to dynamic pressure and Mach number in
(Figs. 3-6)

SYSTEM PARAMETER VARIATIONS

FIGURE 3

SYSTEM PARAMETER VARIATIONS
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FIGURE 4
It is readily seen that during the optimal trajectory the

d.c. gain vaaries by a ratio of approximately ten to

one, the natural frequency by six to one and the lead
time constant by ten to one, while the damping ratio
varies from a value of 0.4 at the start of the trajectory
down to about 0.06 towards the end. It is also seen that
the parameter variations are very non linear and not
single-valued . This increases the complexity of



devising a simple gain scheduling algorithm for the
C.S.A.S..
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Because of these difficulties an on-line adaptation of
the C.S.A.S. with respect to continuously identified
parameters was considered.

C.S.A.S. Structure,

A simple proportional plus lagged integral controller of
the form of (1) was chosen as the C.S.A.S. for the
purpose of the investigation.
e ( =Kcf{l+ - A e—1
QFEK>* (5) 5(1 + sTc) (1)
The relationship between controller and aircraft short
period parameters used in this study is defined as

Kogs N (R

* o ®.

where

the constant of proportionality on K ¢ is selected to

give the desired break frequency of the combined
aircraft and C.S.A.S. closed loop response
characteristic. For the purpose of the investigation this
was set at 4 rad./sec. To on-line adapt the C.S.A.S.

parameters, the aircraft parameters including the lead
time constant were identified and tracked during the
optimal trajectory. The envelope of transient closed
loop pitch rate step responses of the adapted C.S.A.S.
aircraft system is shown in (Fig 7) and the uniformity
of response obtained is clearly demonstrated. The small
variation in this envelope is caused by the ratio of the
aircraft lead-time constant to the controller lag- time
constant. For the purpose of comparison the envelope
of transient responses obtained with a set of fixed
parameter settings for the C.S.A.S. is shown in (Fig. 8).
The controller parameters were set to the mid point of
their adaptive range in this exercise. The spread of
response is evident in both natural frequency and
damping ratio and at some flight cases on the climb
trajectory the system is unstable. Investigations have
indicated that this response characteristic could be
improved by scheduling the integrator gain as a
function of Mach, however this is not exact and so the
on-line identification and adaptation procedure has
been implemented.

ENVELOPE OF CSAS AOAPTEO SYSTEM STEP RESPONSE
AT 5 UN IT INTERVALS ON OPTIMAL CLIMB TRAJECTORY
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FIGURE 8
On-line Parameter Identification And Tracking.

The method of on-line identification selected is that of
quasilinearisation”’ >6) in general a non-linear
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system of the form x = f(x,u,k,t)where k
represents the unknown time varying parameter set , is
linearised using the Newton-Raphson algorithm

i _ . Xann — Xa
[ , ]m =[J(x.:k, )][k P ]+ F(xatak, 1)

K Lan TR,

Although the actual system parameters are time
varying, it is assumed for the purpose of identification
that during the short time periods required for
identification they are constant. At the end of each
identification the best-fit constant values for the
parameters is determined. The identification process is
continuous and in this manner the unknown time
varying parameters are tracked as piece-wise constant
values. The results are similar to a discrete sampling of
the time varying parameters. In the case under
consideration of the identification of the short period
dynamics of the aircraft four unknown parameters are
required to be identified. Re-defining the aircraft
system as

- M

with X, representing the pitch rate of the aircraft and
U as the elevator input from the C.S.A.S. controller,
the unknown parameters are nowk, , k, , k, , k,
where

k=280, , k=0, k,=K,0T, k, = K,0;

The linearised equations become

x| B 1% 0 OTxu—%] [Hok o thit]
| |70 0 % 0 ylxu2i| Rkvthl
k| 4000 0 00/kK 0

k| Jooo oook4l] o

k| {000 0 00Kk* 0

k| L0000 000kl O |

The identification task is now a boundary value
problem where the initial conditions on the unknown
parameters have to be selected such that the states of an
identification model take on those of the aircraft states
during the identification interval. As there are twice as
many unknown parameters as there are states, two
points in the identification interval are chosen , namely
the mid point and end point of the interval from which
the unknown initial conditions of the parameters are
computed. The identification procedure commences
with selecting a set of starting vectors for the
coefficients of the Jacobian matrix. The obvious choice

for initialising the iteration procedure is to use actual
measurements of the aircraft system states and actual
control input to the system. Starting vectors for the four

unknown parameters are chosen as k,. = &, wherethe

8, are constants equivalent to the mid point of the
range of the individual parameters. Expanding the
linearised equations and making the above
substitutions, the linearised equations become

(%] [-& 1 -x 0 4 OTxw] [&%]
X2 -8 0 0 -x, 0 u jx,, 8:%,,
k| _|0 0 0 0 0 0fku| |0
K, 00 0 0 0 Ofk,| | O
K, 0 0 0 0 0 0fk,, 0
k), Lo o o o o ofku] o]

The solution of these equations consists of a particular
integration obtained with initial conditions on the

unknown parameters of k,(0) = g, , together with a

linear combination of ,in this instance four, sets of
homogeneous solutions. The overall time solution
during the identification interval is given by

(x..(t)' [%.0] [x.0] [%0] [%0] [%.0]
5O 150 %0 (%0 [%.0] %0
KO | 1ka®| k@] Jke®| |ka®| |Kp®
I TR T e D R
k® k,®) ke ®] | ks® ka® | | kn®
0] [ka®] [%®] [k®] [ka®] [5®)]
EQUATION 2

It should be noted that the particular integration system
as defined is a mathematical model of the aircraft
system having an identical structure but with estimates
for the unknown parameters. As the choice of the
parameters are only estimates they will initially be
incorrect and the model responses will not match the
actual system state responses. These therefore have to
be corrected by the linear combinations of
homogeneous integrations. The initial conditions of the
states of the model for the particular integration are set
to the values of the actual system states pertaining at
the start of the identification interval. The initial
conditions for each set of homogeneous solution are
defined as follows and are specifically chosen to
simplify subsequent computation.
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The complete sets of homogeneous integrations and the
particular integration are computed simultaneously
from the overall system of equations defined in (3).

The four weighting constants C (of the sets of

homogeneous solutions in (2) are computed from (4 )

where /, is the mid point of the identification interval

and tj is the end point.

71000000000 @ -

KO 0000000000 & Ky
Xt 0 0 100000000
X 0 0000000000.,
X 000 0g 1 00000 0xm
X6 0000 000000 1 ?
Xa 0 00000S 10000 0
¥n 00000 0Si0 000 0xM «p
Xt/ 00000000s 100 u
Xy 0 00000O0O0S 000, O
e 000000O00O0O0GO0Sg . 0
Xn 0000 0000O0O0GS0 u
EQUATION 3
¢ /e wHAO -*A0 *10 w*w(0

“OH(O XHSS) 20 "*2»(0

A0 -*UF(0 (m) AM(Y)
0 () FURE F2WN0
EQUATION 4.

The corrected or identified values for the unknown
parameters during the identification interval then

200 2

eMf S2P(Y)

become k, = C, + g¢. .

As the small perturbation representation of the aircraft
system dynamics is linear, convergence to the correct
values of the identified parameters is single step and it
is unnecessary to iterate the procedure to obtain
convergence. If however a non-linear representation of
aircraft dynamics had been chosen it would have been
necessary to perform several iterations before a
satisfactorily-converged identification is achieved.

This would involve an extension of the lapse time to
achieve identification; however this situation can be
alleviated by time scaling equations (3 ) for subsequent
iterations after the first, which of necessity is computed
in real time in synchronism with the actual aircraft

response. The identified values of the system
parameters so determined by the above procedure
become the starting estimates o f the unknown
parameters for the next identification interval. In this
manner the identification process is continuous and the
time varying parameters are tracked as constants during
each identification interval. Any identification process
requires persistency of excitation and this can be
checked at each identification step by determining that
the matrix of homogeneous solutions in (4) is non-
singular. Should this prove not to be the case the

values of the identified parameters are held at the last-
identified values until persistency of excitation resumes.
The results of the identification and tracking of the four
aircraft parameters while being controlled by the
adaptive system on the optimum climb trajectory arc
shown in (Figs 9-10). The actual aircraft parameters
and the identified parameters are superimposed on each
other and the accuracy of the identification and tracking

of all four system parameters is evident
TRACKING OF IDENTIFIED SYSTEM PARAMETERS
ON OPTIMAL TRAJECTORY

0 4 o
TIME *.92 SEC. UNITS
FIGURE 9
FIGURE 10

On-Line Adaptation Of C.S.A.S



At the end of each identification interval the controller
parameters are updated as a function of the identified
aircraft parameters. The controller parameter variations
on the optimal climb trajectory are as shown in (Figs
11- 12). Also shown is the ratio of the aircraft lead
time constant to the controller lag time constant
throughout the manoeuvre. Although these are not
matched exactly the deviation in this ratio from unity is
small and the effect on the envelope of closed-loop
aircraft /C.S.A.S. combination is negligible. By this
technique the handling qualities of the aircraft in the
pitch axis are maintained virtually uniform on the
optimal climb trajectory. For the purpose of this
investigation the identification interval was fixed at
200ms. which proved satisfactory. It would be perfectly
feasible to select the identification interval as a function
of the identified natural frequency of the system.

Augmented Control

As the identification and adaptation is occurring
within the transient response time of the system it is
interesting to investigate this further as a separate
exercise. Starting with a nominal transient response
characteristic for the closed-loop pitch rate response,
then during the initial identification period and before
identification and adaptation have occurred the actual
response deviates from the nominal. This is due to the
mismatch of the C.S.A.S. with the as yet unidentified
aircraft. On adaptation the transient response continues
from this point onwards with the now correct dynamics.
This satisfies the handling criterion; however the actual
transient response characteristic deviates from the
nominal. (Fig 13). If the requirement is to minimise the
error between the nominal and actual transient
trajectory this may be done from the point of
identification onward by minimising a quadratic
function of this error subject to the now known dynamic
constraints of the system. This optimisation would
normally be performed off-line; however since an on-
board tracking model of the aircraft exists this could be
used to perform the optimisation and on-line
generation of the additional augmented feed back
control. The effect of applying this augmented control
at the point of adaptation is shown in (Fig 14). Here
two mismatched controllers are considered which
represent a deviation by a factor of 100 from the
nominal dynamics. The system response is forced back
onto the nominal transient trajectory, by the augmented
control, from the point of adaptation onwards. The
resultant accelerations produced can be controlled by
the introduction of state constraints. (Fig 15) shows that
there is some benefit in using this optimal augmented
control even during the initial identification period as
the excursions away from the nominal transient
response are significantly reduced.
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Conclusion

The variation of aircraft parameters on an optimal
manoeuvre has been investigated and it has been shown
that the design of a parameter scheduled controller



using auxiliary variables is complex. An on- line
identification and tracking model has been
implemented using the normal commands to perform
the manoeuvre, and without resorting to additional test
signals for the purpose of parameter identification.
Functions of the identified values of the aircraft
parameters have been used to adapt the controller, in
order to provide a virtually uniform response
characteristic throughout the manoeuvre. The
adaptation is continuous and operates within the
transient response time of the system. An optimum
controller augmentation has been studied which uses
the identified parameter information to compensate for
deviations from a nominal transient response arising
during the identification interval. The augmented
control returns the transient response trajectory to the FIGURE 16
nominal in an optimum manner. This augmented
control also reduces deviations from the nominal

transient response when there is mismatch between the S
controller and aircraft dynamics during the initial
identification interval.
Eg
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2
FIGURE 17
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Introduction

An optimal control lew for a non-
linear evstea may be derived using
Calculus of Variations. Subject to
dynamical constraints a performance
index is minimised while specified
initial and terminal conditions are
satisfied. The resultant control lav
will provide noednal state variable
trajectories. It is however an open-
loop form of control. Changes in the
initial and terminal conditions require
a recomputetion to determine the new
optimal control.

A method to reoptimise the control
about a reference, without recomputa-
tion, has been described in [1]e
Based on the Second Variation this
scheme provides a linear feed-back con-
trol with time varying coefficients.
The reference control is continuously
modified, to give neighbouring optimal
control. Signals proportional to the
small deviations of the actual response
from the noeilnal are used to augment the
reference control.

When the dynamics of a system are
changing with environment the reference
control will not be optimal at differ-
ent operating conditions. In this case
it is necessary to repeatedly update
the control to match the current dyn-
amical state.* A combination of this
updating procedure and the neighbouring
optimal scheme has the following advan-
tage. A new reference control may be
computed while small disturbances about
the nominal responses are being accoun-
ted for by the previous computed feed-
back control. Figure 1 is a block
diagram representation of this scheme.

To perform this recoeiputatlon of
the reference control it is necessary
to have a knowledge of the cuirrent state
of the dynamics. This is achieved by

on-line identification.

Optimal Identification

To preserve overall system opti-
mality it is desirable to introduce
soew degree of optimisation into the
Identification prooess. This may be
done again using a variational approach.

A mathematical modal of the non-
linear system may be represented by
the vector differential equation.

x * f(x,p,t) ... (D)
where 1?7 ¢ (x™, x2 ... xn>
and 17m <P1oP2 e Pw>

arerespectively the state variables

and unknown parameters. It is assumed
the structure of the system is *ncm*n.

«f* is the n-dimensional vector function
representing this structure. Also avail-
able are a set of system state variable
and control histories for the interval
to <t < t,l.

The model is excited by the recorded
system control signals. The identifi-
cation problem is now one of minimising
some error function between model and
system responses with respect to the
model parameters. A quadratic performance
index of the form shown in (2) is chosen.

Pm +f 1 «Cx-x#)dt ... (2)
t

)
o

where #(p) 5 pT".*p
g(x-x#) s (x-xM)T K(x-xg)

A and K are both weighting matrices.
K gives the cost of computed model res-



pvs.sea x differing from the system
response xs . If the system recordings
are contaminated by noise K svay be the
Inverse of the variance matrix of
Independent noise on the different state
variables.

The performance index nust be min-
imised subject to the atodel dynamic
constraints (1) and the boundary con-
ditions on the measured atate variables.
Tor ths purpose of thia paper the system
parameters are assumed constant over the
short recording interval. An additional
constraint then is 0 * o .. (M

Adjoin the constraints (1) and 13)
to the performance index with Lagrange
multipliers 1| and u

T.
¢ IT(x-f(x,ptt)e uTpldt

The first variation QQ of J s

*1
47 o tp i#)T d4p |
tat

VIXT6x uTAp |

JooQixlp)T- IT-1T Ix|f)6x-(XTip|f
¢ 6,00 ... IS)

where in general

vy Y

Specifically tpW) =p A

Vxtg) « <x-x/ K

I |f] is a general Jacobian matrix with
elements jk

158

The necessary conditions tor an
extremum of J over the Interval

t <t < t,qarc
0 '1

-° T T
* o (fKIfIT Xt (x-x8) K

(6

P
1
I-- cpirr =

with boundary renditions

x(t ) X

X(r ) * o (7)
A

u(tt) - o

The solution of equation (b) such that
(7) are satisfied constitutes a non-

linear boundary value problem. Ther* s

no generalised method for solution of

thia problem. A scheme baaed on the Newton-
Raphson Operator provides an Iterat-

ive solution.

Itowton-Raphaon Algorithm

The M-dimensional non-linear set of
equations (6) represented by . is

linearised to r.lvg
9, b
MU WNI = )i IQ/~ H

The coefficients of the Jacobian
] \Cl(YN)\ will be time varying, but they
y

are known from the previous iterate.
Given a sufficiently good approximation
to the starting vector YNK>. convergence

of the sequence is monotonic and quadratic,
The non-linear boundary value problem

ia now reduced to the modification of
initial conditions for (0).

A particular solution Ct) is

generated based on a set of starting
vectors Tlh[t) and initial conditions (7).

Hstimates Y. (10) .tru made for Ilie m-

unknown initial condi tioir. Y t°
e<ang i



(i-1,2.

In general the terminal conditions Y (t )
P
will not satisfy the desired terminsl con-
ditions of (7).
m-sets of solutions Y "ft) ((L*1,2,...%),
jel,2,...H) are obtained for the homogenecous

system of equation (9).

Initial conditions for the ith set are
Y (to) m | with the other M-I initial con-
H-mti
ditions equal to sero.

Because (6) is linear

...(10)

(10) for (C ,C_...C ) gives the

JL d m

Solution of

modification to made for the m unknown initial

conditions

Yit,) mY'(t,) +G JuMinti
*o1

1*¥1,2,.»

(11

An integration performed now with start-

ing vectors Y Ct), Initial conditions (7) and
unknown initial oondltiona (I1) will satisfy
the terminal oondltions (7). This solution
Y (1) is used as the new starting vectors
H¥1
YA(t) and the process repeated until convergence
occurs.
Hybrid Implementation

The solution of (8) requires previous
iterations Y (t). These must be stored.

Computation is needed to determine forcing

functions for the
integrations of the

and homogeneous
also

particular
last section. It is
evaluate estimates for the
conditions. A digital computer
perform these operations.

necessary to new
initial
suited to

unknown
la well
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storage

compro-

accuracy, speed of ooeiputation

space.
D/A must be
corresponding to t 10
these
form before

Variables for conversion
range + 2"
necessary to scale

floating point

changing to integers for D/A conversion.

The digital computer also controlled
the compute-hold-reset states of the
analogue machine. This was done by means
of s -2% volt output logic buffer.

identification

(a)

tial

operations for the
follows

The sequence of
scheme is as

Record system state variables and
control signals over a short time
Interval.

Use these state variables and estIBstes

as starting vectors Y (t) for step (c).
PARTICULAR INTEGRATION and record Y¢1,

:
Homogenecous Integration and record Yﬁt,r

Modify estimates of unknown Initial
conditions Y _ (t ).

L o
Particular integration with modified
initial conditions to obtain Y **t).
Replace Y *t) by Y ~U ).
Iterate steps (c) through (g) until
convergence test is satisfied.
Repeat from step (a) for next time
interval.
For on line applications it is essen-
that the identification time between
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record phases be as short as possible. To
achieve this the analogue integration steps
(¢), (d) and (f) are performed on a faster
than real time scale.

The high speed analogue model in Tigure
2 represents these time scaled integrations.
An additional problem then is the synchro-
nisation between model and system such that
short model integration times correspond
to system real time record intervals. To
overcome thi6 the digital programme first
executed a dumtiy model Integration. At the

end of this period a timing
sampled. Let N be the number of samples
of system response required during the
record period. Then the ith sample must
be taken at time ixT x (TIME SCALE TACTOR).
N
evaluated in

signal T was

Again this is floating point

form before conversion to integer mode for
comparison with the sampled time signal.
A flow chart of the digital programme is
shown in figure (3).

A simple example demonstrates the use
of the programme. The linecarised equations
for this example are

oo’ >

*l *-VMI *<+VVi *V,,

N+l

state vari-

system

Starting vectors for the

able Xn(t) are the recorded response,

U is the
dary
start and
An initial

recorded forcing function. Boun-
conditions on X are obtained at the
finish of the record

estimate A - .5 is
N

interval.
chosen for

the first identification. For continuous

identification A" is set to the last iden-

value. obtained
figure (6).

running slowly

tified Traces of results
are shown in figure (N)
In Figure (¥0 the process is
to indicate the 6teps involved. Model
traces show particular integrations followed
by homogeneous integrations. The model is
running on a 2il time scale with respect to
the system and thus the response of the
system is due to a unit step U.

through

When A has

converged to the true value
1.5 the particular integration of the model
corresponds to the system response during
the record interval. The test for conver-
vergence is a difference between Atl and
Au . of less than one percent. When con-
vergence occurs the procedure terminates.

continuous
CAfter
record

Figure .(5) is a portion of a
identification of a fixed
an identification is complete a new

parameter.
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phase is initiated and a further identi-
fication performed. The system is being
perturbed by a triangular waveform. Con-
vergence test and model time scaling are
as for figure (**). Note that the model
integrations have sero initial conditions.

conditions are
ital computer. This
time which would be
on the analogue

Initial stored in the dig-
gives a saving in
required to
integrators.

reset them

iden-
varying parameter.
response is due to a triangular
waveform and it

Tigure (6) shows a continuous
tification of a time
The system

i6 modulated by the vari-

able parameter. The parameter is varied
6inusoidly over the range .5 to 3. System
record time was .l sec. and the model
operated on a 12101 time scale. The identi-
fied values of the parameter are shown
superimposed on the actual values.
Conclusion

The accuracy and speed of solution
have shown, this hybrid identification pro-
cedure to be of use in an on-line appli-
cation. The approach to the problem has
been made in a manner directly applicable
to non-linear systems of higher order
than the example. Multiparameter identi-
fication would require more homogeneous

ntegrations to be performed per iteration.

These could be done simultaneously as could
the model particular and homogeneous inte-
grations of the example. No additional
time penalty would be incurred however
more interface facilities would be required.
The complete time between successive iden-
tifications would be greatly reduced if

recording of the system was taking place

while the model iterations are being per-
formed. At the end of one identification

it would then not be necessary to wait for
the next recording interval to elapse before
starting the next identification. Contin-
uous recording may be done if a programme
interrupt facility is available for the
digital computer.
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SUMMARY

Optimal self-adapting systems are
employed In the control of processes,
to compensate for deviations in plant
response from the nominal. These methods
make use of known plant parameters.
Tor processes operating under changing
environmental conditions, it .is necessary
to determine the current state of the
plant parameters. The paper presents a
Hybrid Computer solution to this identi-
fication problem.

Identification is achieved using
a Variational Approach. The minimisation

of a functional, providing the cost of
deviations of a mathematical model from
the system is performed. Account of
measurements of process state in the
presence of noise is included in the

cost criterion. Solution of the Hon-
Linear Boundary Value Problem aaaociated
with Variational stethods is obtained
using the generalised Newton-Raphson
technique. Hybrid implementation is
employed to obtain the speed of identi-
fication necessary for on-line application!
Problems relating to hybrid computational
procedures are discussed.

nPHMEHEHME rHBPMHOrO BUMMCIIEHH{l B CXEME
HIEHTHWKAUHM B HCTHHHOM MACETABE
BPEMEHM

K.M. MaKKopuoK

(0.K.)

Peanue

Bjih KOuneHcauHH otkjiohohmR xapaKTe-
pwoTHK ofoeKia ot noMHHajiLHbix npn ynpaB-
JIOHKH nponeccauH npHMeHfuoTen onTHwajiBHbie
cauoHacTpaMBauinHQCH chctomh. 3th mctohh
Henojil3yuT H3BOCTHUO napaMaTpw O(SBOKTOB.
JIjih npouoccoB npn HauoHmnHxcH bhouihhx
yCJIOBHHX HCOIXOfIHMO  OnpOfl0JIHTB  TOKymHO
3Ha*i0HHH napaMOTpoB ofooKTa. B CTaiBe
npeflCTaBnHOTcen pcuieHHo 3Tofl npoonoMu
MIOHTHJ)HKaUHH ¢ nomofiep rHOpHfIHOrO Bbi~
MHCIIHTeJIfl.

H"OHTH$HKaiiHn pcajiH3ycTen npMMBiienneu
BapHauHOHHoro noaxol/ia. npow3Bo;iHxcn mh-

HHMajiH3auHH $yHicuMOHcUia BHpaxawmero ucHy
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OTKJIOHO HHH MaTOMaTH40CKOrO MOfIOJIH OT
poaJIHOfl CHCTOMU. PO0O3yjlBTaXU H3UepOHHti
cocToniiMH npouacca npn naJiHMHH myjja BKII
40Hbl B KpHTCpHfl UOHU. IIpPHMOHOHHOM

0<J0 5meHHOfl TOXHMKH HBJOTOHa-Pa$COHa, NO-
Jiy*"QOTCH POUOHMO npO(SJIOMU HBJIKHOfIHOro
np0fl0JIBHOrO 3HaHOHMH OflfcOf[HHBHHOtt BapH-
aiiHOHHbIM MeTOAOM. JJIfl fIOCTHXOHMH HO O<5-
XOflIHMOfl CKOpOCTH HECHTH$MKaiJMH B HCTHHH
MacinTaOo BpeweifM npmieHnoTcn rHflpHfIHbifl
BuyHCJIHTCJiL. OcBcoiaioTcn npo(5iOUbi CB«aan
HUO C rHOpH.rHUMM BbIMHCJIHTeJIBHbIMH npOIli0-

siypaMH.
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ABSTRACT

This report provides the mathematical basis for
optimum adaptive aircraft control systems. The general
approach to the problem, incornorating relevant theory is
out-lined in Section 1.

Section 2 describes by way of an example, the
solution of a specific problem arising out of application
of optimisation techniques which are based on the calculus
of variationms,

An On-line Hybrid Identification Process has been
implemented to investipate the feasibility of employing
techniques developed in Sections 1 and 2. This work is the
subject of Section 3.

Section 4 concludes this report with an interpret-
ation of results.

Topics of research related to this report - currently

being investigated by the author - are also out-lined.
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' SECTION 1.

HATHEMATICAL THEORY OF AN OPTIiiUM ADAPTIVE PROCESS

Introduction.

Reference (1) describes how a control law, which has
been designed to produce an optimum response, may be continuously
modified to account for small deviations of the actual response
frem the nominal. This rzoptimisation procedure is based on the
Calculus of Variations (2) and makes specific use of the second
variation to obtain a linear time varving control law. The method
is applicable to non-linear systems, however it is assumed the
dynamics of the syster:, ar=s known.

In adaptive control of aircraft the problem may be
considered in the same manner in the sense that it is necessary
to modify a control law such that the actual flight trajectory ..
closely follows somc desired nominal response. Because the
dynamics of the aircraft are continuously changing with environ-
ment, they are not knovm a priori and hence before a technique
similar to (1) may be emploved it is necessary to determine the
current state of the dynamics of the system. This on line deter-
mination of system dynamics is simplified by a knowledge of the
structure or order of the dynamics as is available in the case of
aircraft,

It is desirable in order to maintain overall system

167



optimality to introduce some degree of optimisation into the para-
meter identification process. This may be achieved again using
a variational approach thus enabling the re-optimisation of the
problem, to be performed as an extension of the identification
procedure; the mathematical theory underlying both phases, being
intimately related.

Consider in general terms the principles of optimisation
using variation methods. This is instructive as it highlights a
specific problem common to cptimisation procedures. It is the
method of solution of this problem which forms the basis of this
paper and also serves as a pointer to.the feasibility of employing
this particular method of identification in aircraft adaptive con-
trol systems,

Optiirisation involves the minimisation of a functional
- the pay off criterion - with respect to the variables it is desired
to optimise.

For problems in optimal control the cost function has the

form

t)1
F(U) = g(to,X(to); tl,x(tl)) + ﬁ(t,x,u)dt ees 1.1,
t

L )
vhere it is desired to determine the Bedimensional vector

U= (Ul(t), Ué(t)o-.-UR(t)) tostd t, e 1.2.

such that the best pay off is obtained subject to the following con-
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straints being satisfied.

(a) The state variables

X = (Xl(t), X, (t) ... XN(t)) satisfy a set of differential
equations - namely the dynamics of the system.

Xy = 6;(t,X,0) i=1,2, ... ¥ ... 1.3.
i.es 9(t,X,X,U)'=0

(b) Prescribed initial and terminal conditions are required to
be satisfied

oi(to,X(to); tl,X(tl)) =0 i=1,2, ... p eee 1.4,

(¢) In addition it may be necessary to satisfy inequality con-
straints on either the control vectors or state variables -

implying tiat these must not exceed certain magnitudes.
B, (t,X,U0) 2 0 21,2y eoe ees 1.5,

Inequality constraints introduce additional complexity. Referencey
5%,5) indicateshow they may be included in a manner which pursues

uniformity of approach to the optimisation problem.

For the cost function to be a minimum the following
necessary conditions must be satisfied. (2).
(i) The multiplier rule :-

There exist constants Ao and e, together with a function

-] +
J(t,X,%,0) lo- + Ai(t)¢i eee 1.6,
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such that J., = ¢ J, dt + C ees 1.7,

X yjt X o

1

and %ﬁt,X,X,O) =0

here Ai(t) are the so called lLagrange Undetermined
Hultipliers. Here function J of equation 1.6 is the adjoined cost
function formed by combininyg the original performance criterion
function F of equation l.l. with the differential constraints
¢i of eguation 1.3, The subscripts .. and X refer to partial deri-
vatives of J with respect to these variables,
Equation 1.7 results on differentiation witi respect to the indep-

endent variable timc in the familiar form of the Tuler  Lagrange

equations.

d 3J 9J
—— (-—T ) = — o e 1'80
4t axX 0¥

(ii) The Transversatility Condition :-
. )
((J-XJﬁ)dt + J}}dx)tl + loag + eidoi =0 p. =0 ees 1.9,

These equations must hold at the ends of a trajectory independent

of the choice of differentials dto,dxo,dﬁ, and dxl.

The above two necessary conditions nrovide equations the solution
of vhich produces the variables - U of equation 1.2 &n the optimal
control problem - which may minimise the cost function F of gquation
1.1 . Other necessary conditions namely the Yereistrass Condition,

the Clebsh Condition and the Second Variation of F may be considered
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as tests to determine if in fact the solution oktained does
provide a minimum. (2).

It is the solution of the equations resulting from the
application of the above necessary conditions for am optimum
which is the problem referred to earlier. In general .the equations
to solve-namely the Euler Lagrange equation 1.8 together with
the dynamic equation 1.3 subject to the boundary condition;:;nd
those obtained from the Transversatility Condition 1.9 - result
in a non-linear boundary value problem. There is no generalised
method for the solution of such a problem,

References (3,4) indicate an approach based on the
Newton-Raphson Operator - which under appropriate conditions

provides an iterative solution to this problerm. The following is

an outline of this principle.

Mewrton-Raphson Solution of Non-Linear Boundary Value Problem :-

Consider Hewton's method for the determination of the
roots of a scalar function f(x) = 0, This consists of making an
initial approximation of the root and determining a second and
successive approximation as depicted in Figure 1.

Taking the tangent to the curve £(X) = O at the point
Xo leads to

£ (X)) = £(X)/(%_~X))

xl = Xo - f(Xo)/f‘(Xo-)

In ey S X - f ’
general hi-H-l X]q "‘(XN)/f (Xu) or

f'(xi‘l) x (X=X + £(x) =0
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f (X)
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As can be seen Trom the figure the convergence is monotonic,
i.e. successive approximations approach the true value from the
initial approximation without oscillating about the true value.
Another important feeture - bearing in mind that for aircraft appli-
cations solutions must be obtained rapidly - is the fact that conver-
gence is quadretic, indicating thet few iterations need be performed.

This quadratic property is suumarised es follows :

2
Pgaam %l € ¥1%y = X, |
The method generalises from the scalar example quoted

to vector functional equations - the general algorithm for a non-

linear set of differential equations of the form (X) = (G(X,t)) being
(Xppp) = (F(Xgt)) (K, - X)) + (6(X,t)) ... 1.10.

vhere J is the Jacobian matrix of partial derivatives of (G(X,t))
with respect to (X).

The most significant point here is that although the
original equations are non-linear, apnlication of the Hewton-
Raphson algorthm reduces the non-lineer boundary value problem to
an iterative solution of linear differential equations. Matrix
(J(Xm,t)) possesses time varying coefficients, however as these
are knovm - having been obtained fror the previous iterate - this
does not detract from the method. |

The principle of superposition may now be employed in

the solution of the linearised equetions to obtain a solution at
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each iterate which satisfies the boundary conditions. Each
successive iteration will be a closer approximation to the desired

vector which minimises the pay off.

Modification of unknown initial conditions.

The method employed to satisfy the boundary conditions
at each iterate is as follows.

Consider a set of M-linear differential equatioqé
(x) = (a(t)) (x) + (B(¢))

vith m of the M initial conditions unknovm.
Generate a marticular solution ¥p(t) of the equations,

based on a set of starting vectors
Xt (G=1,2, .i00 H)

which are the original approximations to the solution
R () =1, 2, .00 1)

The initial conditions for this particular integration are made up

of M-m known initial conditions and estimates for the m unknown

T+l

In general the terminal conditions obtained from this

initial conditions of X (to).

solution will not satisfy the desired terminal conditions XD(tf);
as the estimates on the un¥nown initial conditions hag€been incorrect.
In order that the desired terminal conditions XD(tf) be met it is

necessary to modify these original estimates. This is performed by
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cenerating sets of solutions X;H(t) .(i =35 =(1,2, eeee M))

of the homogeneous system of equations (i) = (A(t)) (X). The initial
condifions for these homogeneous integrations being zero for

(14-1) of the varisbles and equal to 1 for the X, ..(to) variable.

These homogeneous integrations are repeated for i = 1,2, .... m and

the terminal values XiH(tf) noted. (i=j=1,2,....m). Because the
differential equations are linear the following applies,

}:‘g(tf) = X‘}(tf)cl + Xgﬂ(tf)c2 + ees xgH(tf)cl. + xiH(tf)cm + xg(tf) eee 1,11,

(i=3=1,2,0e0.m)

3 .. ° ‘rj - \rli j .
Since tize magnitudes of AD(tf) 3 “iH(tf) and xp(tf) are known the
constants Ci (i=1,2,12) may be determined. These constants provide
the modification to be made to the initial condition estimates of

the m unknown initial conditions in order that the boundary conditions

are satisfied. These modifications are
J U _—
x1-1+1('°o) = xEstimtgto) + cJ. (i =1,2, evee m) ... l.l2.

In performing an integration now witn the (li~m) known initial con-
ditions and the m modified initial conditions the solution '%+l will
be a Detter approximation to the nominal than XN and the end con-
ditions will be satisfied. The overall process is repeated until

convergence occurs, using eech successive solution X§+£t) as the

starting vector X%(t) for the next iteratiom.
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SECTION 2.

AY APPLICATION OF THE THEORY.

Section 1 of this report has covered the relevant
points of theory underlying the optimisation procedure to be
employed in the identification phase of the edaptive control’
system. A Calculus of Variations approach hes been used in order
that the nmetiods described may be extended using the Sccond
Variation tc the control law re-cptinisation problem. The method
of solution of the non-linear boundary value problem associated
with the optimisation technique has been outlined.

Tc further illustrate the technique employed in the
solution of boundary value rroblems consider the following examuple.
Althoush a linear example this is worked in an identical menner
to that for a non-linear system,to demonstrate the method. |

Given the dynamics of a systen

X=-AX+A LN 2ol-

1":=C‘-

with boundary conditions XD(to) = 0 and XD(tf) = .9 it is desired

to find X(t) t <t < t_. and A such that the terminal conditioms

T
are satisfied at time tf = 1 second.
Applying the generalised Hewton~-Ravhson algorithm

of equation 1.10 repeated hare

X = (30G.t)) Gop, - X)) + (6(X,t))

176



to equations 2.1.
gives,

Xl = A Ry v (R Ay | Ay Y Wy
1. 0 0 Bpaym A 0 e 2.2,

wvhich reduces to :-

Xger = ~Afret (=X * A% e 203

Ay = O

ar

Starting Vectors for e end A are chosen. These ere respectively,

o
I\'Tg(t) = .5t Cstgl eee 2.k,
Ale) = .5

The initial condition on X , is set to satisfy X,{t ) =0
and an estimate AE(to) is made on the unknown initial condition.

In this example A(t) is constant. In general all the
variables would be time varying however no modification 1s required
to the method.

A particular integration of 2.3 is carried out yielding
Ap(tf) and Xp(tf) which does not in general satisfy XD(tf) because
the estimate for AE(to) is incorrect.

In order to modify the initial estimate a homogeneous

integration is performed of the equeations.
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Yooy = A * %) hpey see e
My = 0

With initial conditions X .(t ) =0 and A, {t)) =1

This produces xﬁ(tf)

Making use of 1.11

Xp(te) = X.(e) ¢y + Xp(tf)

c, = XD(tr) - Xp(tf)
xH(tQT_ eve 2.6,

Modifying initial conditions AH+1

A(t) = A(s )+ Xp(ta)=_(2,)
Xylte)

(to) as 1.12 gives

An integration performed now vith the same starting vector for
Kﬁ(t) and using the modified estimate A;(to) produces AH+l(t);
and XN+1(t) vhich satisfies the terminal conditions.

These vectors are novw used as the nev starting vectors
and the process rereated until convergence occurs and no fufther
iterations are required. A schematic representation of the steps
involved is showm in figure 2.1l. Convergence occurs vhen the
difference betwemn successive iterations is within some predetermined
error level.

The results of a digital computation of this example

are indicated in figure 2.2.

178



6L1

NOMINAL

XD(tf)

- X,q (1) PARTICULAR

~Xy(ty) HOMOGENEOUS

INTEGRATION WITH INITIAL

CONDITIONS MODIFIED TO SATISFY END POINTS

—Xp(tf) PARTICULAR [INTEGRATION WITH ESTIMATE
FOR INITIAL CONDITIONS

INTEGRATION

> TIME

FIG. 2:1.



STARTING
0 . -ITV/ ~Jiiw 1ij
L, 0 w0 CO y
o, lvicvcvoc

«5000CO00O0
- - mul .
ai; —OVy -v VYV
, ¥V . C V. W
Vdi-vvO0ow0oOO0O
e >'ec 00 %O

0 . "X V> . w
' r*
Coee N ]V VIV W

w ,> vOOuuGo

W70V vU
0 *11-L- >w.
O we O-]V¥%
W* o - wV- U
0o wg: (0w
J. wce*-"cw
Sgt D /o
wg7200
B,73757bCr
it # /Qﬁﬁ&w
0 *s\AV0000

C

RV AR\

k Vs W "ox/ NVIo e
i 7o w7
a 1. £ > * S>i>
9 £' +200
J g C C<1loy
9'j~052 u19
9 VV21 22 —
o £/ 0933 5 il
G w2 >0 97
0 £i- 2¢C c;2 7

V., - VIV vwoO

VPC.yLCISI?.

y.. . viWsl '« wo
0,3 °-C00 >0

>3 v Cv-0CH*C
*40x.0j0jo0O0*

<0 c0 0cvO o

X JC >

e sy wV
0 .3 00 « 0 v!v
(U C-vAjO 0
«>0000j00

0 «0 m*00 0 v OO

o« 3N Y 4
-m e Qe .
4L s 'm0 .
« 1L' ,*0‘(((7...
ooy 0*.
e Y%¥ew7 L\ L
AJ Ve ]
FOHWm | o
N 307 )
/% e
> v-T506 10

A
x>>./
@ i X*vViXo0 7
Lg* 0x-0 -V /
P 0'/'7
ds Vo 7
2 . N o 107
2.7 aJCq 107

2 KGO 3 107

o =

e

'A\Q.—ibfr | Qv
Vv XT&asce.
TH!RD IT ERATE
w, COOOOO0O0 2.30013716
0.20559074 2,3C015710
0*20007700 z'.2001 71A
0.-S0-0530P 2,200 5716
0« 0 2*1 001 >/ 1%
c ¥*»0-00;10 2.300157 to
.Ve007V72 Ji. 12/ e
c, > 0S/—+/0 2ti-00157 ;o0
o kgt 2D 2¢7 *11,300:-:7\o
0. ly.— .5001i5#U
0«-00000w0 2..0015718

_ * k% o
. 1R In\

0»xwCCcOO00
L «-JF1 . 0G
e ,,2'-'90*-/-w3
v*' -20.S1 £

s 0 10V£EVT
0 6w ;% / [JF*A
L*7s>c¢*u39
st @ 290 f
0r0% I 51CCi
C,C/A 0743
0,occo00000

VVv U<
VAG®/ 1/7
000k*206
V661277
J; v0203
037 72?3
-.»Col 130
0047377
41Z10G0
741'9746
,0000000

LR/ S

a.»0 "OOw/-
?7,jX25c¢S28
/~awc250C2<
2.20725cwm22
3.30250°27

*E R e ]
2.-C230x'1:2
2.-90*% ohel
(iC2J0U22
2.30.230022
2*%.,30256622

Jii*

=510
PO My
.302563
<. 3.
, 20y A SV
,302005
.A02503
J0250>
302503

00 00

NSILEIN SR T N



'This exaﬁple of the solution of a two point boundary
velue problem indicates how the unknovn parameter A may be deter-
mined such that the dynamics of the system satisfy specific terminal
conditions. This is in fact an identificetion problem of a fixed
parameter although no optimisation has been epplied to the process.
The problem however has beenitackled in a manner vhich is applicable
to the solution c/>lfounda.r_\,' valx?g %J:l'fgfnc, out of an optiwisation process
using calculus of variations. If wroblems of this nature .are to be
solved by this iteration method then it is essential that colutions
be ohtained rapidly in crder that on-line optimunm identification
may be carried out.

To demonstrate that it is indeed feasible to solve

these two point boundary rroblems in a sufficiently short period
the previous example wes used with a time varying A vhere it was
desired to track A continucusly. AssumingAA to be slowly time
varying it is possible to assume that over short periods of time A
is constent. By taking the initial and final values of the response
of the system over this short period (Ostsgg A nay be detcrmined
using the above outlined iteretion procedures. The technique is
then repeated for the next short time interval (tlststg) etc.
In this manner if the speed of solution is sufficiently rapid such
that the time intervals are short, then the identified velues of A
as a function of time should closely approximate to the actual time
varving A.

The simulation of this Teasibility study is described in
the next section.
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SECTION 3.

HYBRID IMPLIMENTATION

On-Line Paraneter Identification.

The iterative identification procedure of the previous
example - required an initial starting vector XH' Vhen conver-
gence was complete the solution XH+1 satisfied the Terminal conditions.
In a practical identification problem if a response has been monitored
over a short period then the values at discrete points are’'in fact
the trve sclution of the dynamics. It is thefefore no longer necessary
to estimzte & starting vector for the state varizbles as the true
values are evailable. An estimete on the initial condition of AH+1
is all that is nov required. This results in fewer iterations being
required to ottain a solution. As each iterate uses past values
nanely XH and AH’ these must be stored. 1In view of this fact and
since computation to determine newr estimates for AH+1(to) have to
be made, it is desirable tc perform this part of the solution by
naking use of e digitel computer.

Each operation in a digital computer although fast in
itself must be performed in series with other operations. Thus the
accumulative time for numericel solution of & set of differential
equatiorns is relatively long coupared with an analogue solution
where multiple operations may be nerformed. in parallel sirmulteaneously.
In order to achieve as short & time per iteration as possible it

was decided to iuplement this feesibility study using Iybrid Computer
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techniques, ﬁaking usé of the anelogue facilities for integrations,
and digital facilities to control the state of the analogue, store
state variable values and perform computsation and IOgic operations
required to test for convergence.

Since the sequence of operations for this on~line

identification procedure is as follows,

1. Pecord State Variables and forcing function over a short time
interval.

2. Use these variatles as starting vectors for step 3.
3. Perform Particular Integral and Record(xpta)_
J 4
4. Perform Homogeneous Integration.
5. liodify Estimate on Aﬂ+l(té)

6. TIterate steps 3 through 5 until convergence test is satisfied.

T. Repeat procedure from step 1 for next time interval.

it is essential that the identification time required hetweer.
record phases be &s short as possible. It is thus desireble to
perform the integration steps 3 and 4 on a faster than real time
scale, enabling the total nuwbher of iterations for convergence io
be perforned in a very.short real time,

The analogue simulation of equations 2.3 for the
purposes of performing faster than real time solutions of the
rarticular end homogeneous integrations may be considered to De

a high speed parameter tracking riodel. A block diagram showing tie

implementation lay-out is provided in firure 3.1.
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The initial simulation was not concerned with speed
of solution but more with overcoming hybrid implenentetion problems
end accuracy of solution. Some c¢f these problems are nov described.

To perform floating point calculetions requires use of
either Floating Point Package - which is merely a slight extension
of the basic machine language for the P-D-P-8 digital computer - or
the Fortran Operating system. /£lthougl: speed@ of operation is
reduced by using Fortran it is possible to keep track of the gro-
crarme more easily and therefore Fortran Lansuagz was used. It is
necessary to leave the main Fortran Programme in order to perform
fnalogue/Digital end Digital/Analogue conversions, this is eccom-
plished using a PAUSE staterent in the main vprogramme.

Interface conversions are nerforned to 12-bit accuracy
vhich is equivalent tc 1 locetion of storage space. Floasting Point
storapge makes use of 3-locations per nurber. It iz therefore des-
irabie to store interface conversions ec integer arreys to econonise
in storage space. In order to preserve eccuracy by reducing round
off error, calculations are performed in roafiﬁg boint mode by
first converting integers to this form and then reconverting to
integer mode at the end of a calculation. These operations are a
compromise between éccuracy, speed of computetion and storage space.

It is necessary to scale variables for Digital/Analogue
conversion such that integer values do not exceed the maximm of

11 . . . . . . .
+ 2° this being performed in floatiug noint by multlplylng by a

scelinz factor hefore conversion to integer mode.
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The first simulation ran both model end system on
the seme time scale. Sampling of the svstem and outputing foréing
functions to the model in the same DO LOOP to ensure synchronisation
betweern model and cystein.

This simulation was demonstrated in detail to Messrs.
Watts and Shanks of the Royal Airc;aft Esteblishment, Farnborough
on their visit to Svansea University during ilerch 1967.

Results obtained for this hybrid simulation were in
close egreement with digital studies. The second simulation
using & high speed tracking model ves then implemented.

For this on;line simulation an additional problen ves
synchronisation between nmodel and system as these are now operatiaps
on different time scales. In order to achieve this synchronisation
the programme executed s model integration and at the end of this
sanphed a timing signal fron the analogue computer. The magnitude
of the zignal level representing this extremely short time interval
wvas then multiplied by a time scaling factor to givc a signal level
corresponding tc the real time equiwmalent of the riodel integration
pericd.

If the number of samples to he teken of the system
response and fdrcing function during this time interval is & and
the model integration time is T then each sample of system must
oceur at intervals of T x (TLIE SCALING FACTCR).

(-1)
jalel

A mractical point of interest here is +that it is not
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sufficient to evaluate the ebove expression as en integer -~ it

is required in integer form for comparison with time signals
sampled from system - and merely increment the value obtained
by itself for each successive interval. If this is done then any
round off error in the integer conversion is accumulated. |

It is necessary to determine sampling time at each
interval in floating point form and then convert to integer mode
for comparison with system timing signal in order to presefve
tining accuracy end sy.achronisetion.

A flov diagram of the digital computer progransie is
depicted in figure 3.2. The program:ze listing is given in the
Appendix.

Traces of Results obtained from this sirmlaticn are
shovn in figure 3.3 throuzh figure 3.5.

Figures 3.3 a, b and ¢ show the identificetion of three
different. fixed parameters. The process is running slovly to
indicete the various steps involved. Dlodel traces show particular
integrations followed by homogeneous integrations. The starting
estimate of A is the same in each cese, namely .5 . The riodel
is running on & 2:1 time scale with respect to the systew and the
response of the system is due to a unit step forcing function.
The identification process is not continuous and after convergence

the process halts., The test for convergence is a difference betiveen
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AN+l and AH of ;ess than one percent.

Pigure 3.4(a) is a portion of a continuous identifi-
cation of a fixed parameter the system being repeatedly perturbed
by a triangular weveform. Convergence test and model time scaling
are as for figure 3.3. Note that model particular integration
traces have zero initial conditions. Initial conditions are stored
in the digital computer obviating the neea to reset them on the
analogue computer integrators for successive identification.’

Figure 3.4(b) is a continuous identification of para-
meter the system having been excited by a step input. It is
important to note that as the system apprcaches steady state
conditions the magnitude of tihe homogeneous integration tends to
zero. Expression 2.6 then becomes indeterminate. This is to be
expected as in the steady state configuration there is no unique
solution for AH+1 vhich can be seen by AH diverging from the
true value. As the convergence test is no lcnger satisfied the
systen is not resampled for the rext identification the process
trying in vain to saticfy the convergence test.

To overcome this failing of the implementetion the
convergence test was modified. Convergence was assumed tc occur
vhen the error between system response and model particular
integral was less than 1%. If this state was satisfied then the
homogeneous integration associated with this particular integral

was not performed and the prograrme recorded a new.sample of systenm
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response without modifying the current state of the identified
value of naraneter.

Figure 3.5(a) indicates the continuous identification
process using the above mentioned elteraticn to the convergence
test. liodel to system time scaling is 10:1. The failing of
figure 3.4(b) has been eliminated. All of the previous results
have been performed slovly.

Figure 3.5(b) indicates a faster identification the
record time being .45 seconds approximately. The convergence
test is .1% error betveen system and model, this being the
reason for more than one iteration before identification is
complete. Tigure 3.6 shows the response of the system to a tri-
angular wvaveform. The parameter is being continuously varied
sinusoidly over the range .5 to 3 a chenge of 6:1 . Reccrd time
is .1 second and the model is on a 1?:1 time scale with respect

to the systen,
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SECTION k4.

INFEREKCE OF RESULTS.

An On-Line identification of a time varying parameter
has been perforued. The examrle chosen was of necessity simple -
due to the availability of only two digital to analogue converters
- hovever the approach to the solution has heen made in a menner
anprlicable to non-linear systems of higher order. The accuracy
and speed of solution have shown the technigue to be of velue for
incorporation in an adaptive flight control system. Multiparameter
identificetion would require more homogeneous integrations to be
performed per iteraticn. It would he vossible however to execute
these simultaneously as indeed the homogeneous and particular
integretion of the exanple could have heen with consequently no
additional time penalty. Questions relating te the convergerce
properties cf the generalised Ilfewrton-Rarhson liethod remain unensvered.
Convergence is dependent on how close the starting vector approx-
inations are to the true solution. Reference (3). By making use
of the true solution of the dynamics as starting vectors conver-
gence properties are enhanced.

The primary reeson for implementation of this hybrid
solution wvas as a feasibility study for the solution of bhoundary
value problems arising out of optimisation techniques. It has

been shown that this iterative solution is sufficiently fast to
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ensble the ﬁethod to 5e»applied to the solution of these problems
and thus the next stage of develorm:ent is to incorporate
optimisation in the identification process. This optimum identi-
fication will have a pay off criterion vhich is a function of time
varying perameters enabling them to be identified without the
assusption that they are piecewise constant.

A penalty for noisy measurements of system response
will also be included to assist in overcaming prollems associated
with turbulence. This is to be the subject of the esuthor's
next report. It is also intended to consider problems concerning
the implementation of the re-optimisation phase of the adantive
control process.

iflultiplexing equipment for the Digital to Analogue
converters is at present under construction. Vhen this is con-
pleted it will be possible to extend the study tc systems vhich

are more relevant,
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Appendix B
STEEPEST-DESCENT OPTIMISATION PROGRAMME

DIMENSION TCD(12),X(3,12),A(3,12),Y(13,12)
DIMENSION E(3,12),C(3,12,12)
DIMENSION ICUS(12)
OPEN (4, FILE='OUT.DAT,STATUS="UNKNOWN',ACCESS="SEQUENTIAL/,
1 FORM=FORMATTED")
OPEN(12,FILE='OUT1.DAT',STATUS="UNKNOWN',ACCESS=DIRECT,
1 FORM='UNFORMATTED'RECL=1000)
OPEN(7,FILE='OUT2.DAT',STATUS="UNKNOWN',ACCESS=DIRECT,
1 FORM="UNFORMATTED',RECL=500)
CALL DAUX10(N,NV,NU,NUH,NT,NG,NIS,DT,ITT,NH,TCD,X,ICUS)
STOP
END

SUBROUTINE DAUX10(N,NV,NU,NUH,NT,NG,NIS,DT,ITT,NH,TCD,X,ICUS)
DIMENSION X(3,12), TCD(12),C(12,12),E(12),Y(13,12)
DIMENSION H(12,12),B(12),R(12),FIC(12),G(12),P(12),X0(12)
DIMENSION ICUS(12),U(101)
20 FORMAT(9E14.4)
TAU=.000000002
NU=7
LLL=0
LLLL=0
NUH=12
IR=1
N=10
Nv=11
NH=5
DT=.83*%4.
ITT=10
- NG=10
NIS=10
NT=NG*NIS
IRNW=1
K=1
IT=0
CALL INIT(X0)
DO 5I=1,5
5 X(1,D)=X0(I)
X(1,11)=X0(11)
U0=X0(11)
CALL WPI(N,NV,NU,X,K,IT,IRNW)
DO 11=1,NT
CALL FINT(XO,N,DT,ITAG,UQ)
CALL A11(X0,U0)
10 WRITE(4,*)1,(X0(),J=1,5),X0(11)
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DO 6 J=1,5
6 X(1,)=X0Q)

X(1,11)=X0(11)

IT=I ‘
CALL WPI(N,NV,NU,X,K,IT,IRNW)
CONTINUE
CALL WYOT(N,NV,NU,NT,1)

RETURN

DO 50 LL=1,75

IF(LLLL-LL)90,91,90

90 CALL TERM(XO0)

IRNW=2

DO 7 J=1,NV

7 X(1,DH=X0()

CALL FNC(C.E,X0,U0,UNEW,TAU)

U(101)=UNEW

IT=100

CALL WPI(N,NV,NU,X,K,IT,IRNW)

WRITE(4,*)H,(XO(J),J= l,NV)

IRNR=199

ITAG=0

DO 8 I=NT-1,0,-1

CALL BINT(XO,N,DT,ITAG,U0,UNEW,TAU)

CALL RPI(N,NV,NU,X,K,IT,IRNR)

IRNR=IRNR-4

DO 9 J=1,5

9 X0()=X(,))
X0(11)=X(1,11)
WRITE(4,%)1,(X0(1),J=1,NV)
CALL FNC(C,E,X0,U0,UNEW,TAU)
U(d+1)=UNEW
DO 15 J=1,NV
15 X(1,5)=X0Q)

IT=I

CALL WPI(N,NV,NU,X,K,IT,IRNW)
8 CONTINUE

WRITE@4,*)(I,U(I),I=1,NT+1)

IRNW=1

I=0

IT=0

TEST=X0(11)-U(1)

IF(ABS(TEST)-.00001)70,70,71

70 LLL=LLL+1

WRITE (4,*)CONVERGENCE'LLL

TAU=TAU*2.

IF(LLL-1)71,80,72

80 TAU=TAU*2.

72 IF(LLL-3)71,73,71

73 LLLL=LL+2

71 WRITE(4,*)L,(X0(J),J=1,5),X0(11)

CALL WPI(N,NV,NU,X,K,IT,IRNW)

ITAG=0

DO 11 I=1,NT

CALL FINT(XO,N,DT,ITAG,U0)
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X0(11)=U(I+1)
WRITE(4,%)1,(X0(J),)=1,5),X0(11)
DO 16 J=1,5

16 X(1,5)=X0()

11
50
91

55

X(1,11)=X0(11)
IT=I
CALL WPI(N,NV,NU,X,K,IT,IRNW)
CONTINUE
CONTINUE
IRNR=202
IRNW=1
DO 55 I=1,NT+1
CALL RPI(N,NV,NU,X,K,IT,IRNR)
IRNR=IRNR4 ~
CALL WPI(N,NV,NU,X,K,IT,IRNW)
RETURN
END

SUBROUTINE INIT(Y)
DIMENSION Y(12)

CALL IC(Y,N,DT,NT)
uo=Y(11)

I=0
WRITE4,%)L,(Y(J),J=1,N),U0
RETURN

END

SUBROUTINE TERM(Y)
DIMENSION Y(12)

CALL TC(Y,N,DT,NT)
U0=Y(11)

1=100
WRITE(4,%)1,(Y(J),J=1,N),U0
RETURN

END

—SUBROUTINE IC(X,N,DT,NT)

DIMENSION X(12)

N=5

NT=100

DT=3.32

X(1)=400.

X(2)=0.0

X(3)=700.

X#=0.0

X(5)=42000./32.2
READ(S,*)X(11)

RETURN

END

SUBROUTINE TC(A,N,DT,NT)
DIMENSION A(12),X(3,12)
N=10

NVv=11
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NU=7
NT=100
IRNR=201
K=1
CALL RPI(N,NV,NU,X,K,IT,IRNR)
DO 11=1,NV

1 AD=X(1,I)
A(6)=A(1)-968.586
A(N=0.0
A(@8)=-1.
A9)=0.0
A(10)=0.0
RETURN
END : :
SUBROUTINE FNC(C,E,X,U0,UNEW,TAU)
DIMENSION C(12,12),E(12),X(12)
GRAV=32.2
CGRAV=GRAV*1600.0
SG=SIN(X(2))
CG=COS(X(2))
GCG=GRAV*CG
GSG=GRAV*SG
CA=COS(X(11))
SA=SIN(X(11))
H1=27300.
$=530.
CALL ROE1(X(3),ROE)
CALL MACH(X(1),X(3),FMACH,A)
CALL THRUST(FMACH,X(3),T,DTM,DTH)
ROEVS=ROE*X(1)*S
QS=0.5*ROEVS*X(1)
CALL AERO(FMACH,CLA,CD0,CLN,DCLDM,DCLNM,DCDM)
DLDADV=ROEVS*(CLA+).5*FMACH*DCLDM)
DTDV=DTM/A
DTDH=DTH
DTDVDV=0.0
DTDVDH=-DTDV/H1
DTDHDH=-DTH/H1
DLDA=QS*CLA
DLDADA=0.0
DDDADA=2.*QS*CLN
DLDADH=-DLDA/HI1
DDDA=2.*QS*CLN*X(11)
DDDADH=-DDDA/H1
VDDADV=2.*QS*X(11)*(2.*CLN+FMACH*DCLNM)
DDDADV=VDDADV/X(1)
DLDV=DLDADV*X(11)
DLDVDH=-DLDV/HI
DLDVDV=(1.0/X(1))*(DLDV+1.5*ROEVS*FMACH*DCLDM*X(11))
FL=QS*CLA*X(11)
DLDH=-FL/H1
DLDHDH=FL/(H1*H1)
D=QS*(CDO+CLN*X(11)*X(11))
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DDDH=-D/H1
DDDHDH=D/(H1*H1) _
DDDV=(2.*D/X(1))+.5*ROEVS*FMACH*(DCDM+DCLNM*X(11)*X(11))
DDDVDH=-DDDV/H1 :
DDDVDV=(1.0/X(1))*(DDDV+1.5*ROEVS*FMACH*(DCDM
1+DCLNM*X(11)*X(11)))
E(1)=-GSG+(T*CA-D)/X(5)
E(2)=(-GCG+(FL+T*SAYX(5))/X(1)
EQ@)=X(1)*SG
E@)=X(1)*CG
E(5)=-T/CGRAV
E(6)=(-1/X(5))*(X(6)*(CA*DTDV-DDDV +X(7)*(DLDV+DTDV*SA-E(2)
1*X(5))/X(1))-X(8)*SG-X(9)*CG+X(10)*DTDV/CGRAV
E(7)=GCG*X(6)-(GSG*X(7)/X(1))-X(8)*X(1)*CG
1+X(9)*X(1)*SG
E®)=((-X(6)*(DTDH*CA-DDDH)-X(7)*(DLDH+DTDH*SA)/X(1))/
1X(5))+X(10)*DTDH/CGRAV
E9)=0.0
E(10)=(-X(6)*(D-T*CA)+X(T)*(FL+T*SA)/XAN/(X(5)*
1X(5))
UNEW=X(11)-TAU*(X(11)+(-X(6)*(T*SA+DDDA)+X(7)
1*(DLDA+T*CA)Y/X(1))/X(5))
RETURN
END
SUBROUTINE DK(E,C,S,D,K,DT,N)
DIMENSION E(12),C(12,12),5(12),D(4,12)
DO 10 I=1,N
TEMP=E(I)
C DO11J=1N
C 11 TEMP=TEMP+C(,))*S()
10 D(K,)=DT*TEMP
RETURN
END
SUBROUTINE FINT(A,N,DT,ITAG,U0)
DIMENSION A(12),5(12),D(4,12),C(12,12),E(12)
C 20D0O22I=1,N
C DO22J=1N
C 22C1))=0.0
21 DO 101=1,N
10 S(D=AD)
- SA=A1D)
CALL FNC(C,E,S,U0,UNEW,TAU)
CALL DK(,C,S,D,1,DT,N)
DO 111=1,N
11 SM=AD+.5*D(1L,I)
CALL FNC(C,E,S,U0,UNEW,TAU)
CALL DK(,C,S,D,2,DT,N)
DO 121=1,N
12 SD=AD+.5*D(2,I)
CALL FNC(C,E,S,U0,UNEW,TAU)
CALL DK(,C,S,D,3,DT,N)
DO 131=1,N
13 SD=AM+D(@3,])
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CALL FNC(C,E,S,U0,UNEW,TAU)
CALL DK(E,C,S,D,4,DT,N)
DO 141=1,N
14 AD=AM+(D(1,D+2.*D(2,)+2.*D(3,)+D(4,1))/6.
RETURN
END

SUBROUTINE A11(A,U0)
DIMENSION A(12)
A(11)=U0*((400/A(1))**2.)
IF(A(11)-.03)50,51,51

50 A(11)=.03

51 CONTINUE
RETURN
END

_SUBROUTINE BINT(A,N,DT,ITAG,U0,UNEW,TAU)
DIMENSION A(12),5(12),D(4,12),C(12,12),E(12)
DT=-DT
IF(ITAG)20,20,21

20D0 221=1,N
DO 22 J=1,N

22 C(1,))=0.0
ITAG=1

21 DO 10I=1,N

10 SM=A®D)

S(AD=A11)

CALL FNC(C,E,S,U0,UNEW,TAU)

CALL DK(,C,S,D,1,DT,N)

DO 111=1,N

11 S=AD+.5*D(1,I)

CALL FNC(C,E,S,U0,UNEW,TAU)

CALL DK(,C,S,D,2,DT,N)

DO 121=1,N

12 SM=AD)+.5*D2,I)

CALL FNC(C,E,S,U0,UNEW,TAU)

CALL DK(,C,S,D,3,DT,N)

DO 131=1,N

13 S(D=A)+D(3.I)

CALL FNC(C,E,S,U0,UNEW,TAU)

CALL DK(E,C,S,D,4,DT,N)

DO 141=1,N

14 AD=AD+D(1,D+2.*D(2,1)+2.*D(3,1)+D(4,1))/6.

DT=-DT
RETURN
END

SUBROUTINE THRUST(FMACH,AH,T,DTDM,DTDH)
DIMENSION RH(11),RM(10)
OPEN(10,FILE=LOG2.THM',STATUS="UNKNOWN',ACCESS='"SEQUENTIAL',
1 FORM=FORMATTED")

4 FORMAT(F10.4,2F10.4)
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C  WRITE(6,*)MACH='FMACH, HT=',AH
FMACHE=FMACH
FH=AH/1000.

IF(FH)60,61,61

60 FH=0.001

61 IF(FMACH)62,63,63

62 FMACH=0.0

63 RH(1)=0.

DO 101=2,7

10 RH@)=RH(-1)+5.
RH(8)=40.
RH(9)=50.
RH(10)=70.
RH(11)=80.

C FIND NEAREST HEIGHT
DO 111=1,11
IF(FH-RH(D)12,11,11
11 CONTINUE
I=I-1
12 DH1=RH(I)-RH(-1)
DH=FH-RH(I-1)
FRACH=DH/DHI1
HRI1=RH(I-1)

HR2=RH(])

C SET REF. MACH.

RM(1)=0.
DO 31 J=2,10

31 RM(J)=RM(J-1)+.2
DO 13 J=1,10
IF (FMACH-RM(J))30,13,13
13 CONTINUE
J=J-1
30 DM=FMACH-RM(-1)
FRACM=DM/.2

C  WRITE(6,*)FRACM='FRACM
RM1=RM(J-1)

RM2=RM(J)
REWIND 10

15 READ(10,4,END=55)T1,H1,FM1
TEST=ABS(RM1-FM1)

IF (TEST-.001)14,14,15

14 TEST=ABS(HR1-H1)
IF(TEST-1.)16,16,17
17 READ(10,4,END=55)T1,H1,FM1
GO TO 14
16 READ(10,4,END=55)T2,H2,FM1
DTM1=T2-T1
18 READ(10,4,END=55)T3,H1,FM2
TEST=ABS(RM2-FM2)

IF (TEST-.001)19,19,18

19 TEST=ABS(HR1-H1)
IF(TEST-1.)20,20,21
21 READ(10,4,END=55)T3,H1,FM2
GOTO 19
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20 READ(10,4,END=55)T4,H2,FM2
DTM2=T4-T3 _
TCMI1=T1+FRACH*DTM]1
TCM2=T3+FRACH*DTM2 :
T=(TCM1+FRACM*(TCM2-TCM1))*1000.
DTDM=((TCM1-TCM2)/(FM1-FM2))*1000.
TCH1=T1+FRACM*(T3-T1)
TCH2=T2+FRACM*(T4-T2)
DTDH=((TCH1-TCH2)/(H1-H2))

C  WRITE(@6,*)T=",T,MACH="FMACH
FMACH=FMACHE
RETURN

55 WRITE(6,*) READ ERROR UNIT 10'
STOP
END :

SUBROUTINE ROEI1(HF,ROE)
ROE0=.00254
H1=27300.
IF(HF)10,11,11

10 HFT=0.0
GO TO 12

11 HFT=HF

12 Y=2.7182818**(-HFT/H1)
ROE=ROE(0*Y
RETURN
END
SUBROUTINE MACH(V,HF,FM,A)
IF(HF)10,11,11

10 HFT=0.0
GOTO 12

11 HFT=HF

12 HREF=11.0¥1000.0%¥100.0/(2.54*12.)
IF (HFT-HREF)2,2,3

3 HIl1=HREF
GOTO4

2 HI=HFT

4 A=(33146.0/(2.54*12.))*SQRT((288.15-0.00198*H1)/273.15)
FM=V/A
RETURN
END

SUBROUTINE ALPHA2(J,X,Y,IACON)
DIMENSION X(3,12),Y(13,12)
C=X{,11)

H1=27300.

S$=530.

DM=Y(1,5)-X(J,5)

DV=Y(1,1)-X(J,1)

DH=Y(1,3)-X({J,3)

DLV=Y(1,6)-X(J,6)

DLG=Y(1,7)-X(1,7)

WRITE(6,*)DV='",DV, DH='DH,' DLV='DLV, DLG="DLG
C PAUSE
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CALL ROE1(X(J,3),ROE)
CALL MACH(X(J,1),X(J,3),FMACH,A) ‘
CALL THRUST(FMACH,X(J,3),T,DTM,DTH)
ROEVS=ROE*X({J,1)*S ‘
QS=0.5*ROEVS*X(J,1)
CALL AERO(FMACH,CLA,CD0,CLN,DCLDM,DCLNM,DCDM)
DLDADV=ROEVS*(CLA+0.5*FMACH*DCLDM)
DTDV=DTM/A
DTDVDV=0.0
DTDVDH=-DTDV/H1
DTDHDH=-DTH/H1
DLDA=QS*CLA
DLDADA=0.0
DDDADA=2.*QS*CLN
DO1L=1,1
DO 1L=1,2
M=1
IF(L-1)4,4,5
5 M=800
4 CONTINUE
DO1I=1M
IF(L-1)6,6,7
7 CONTINUE
IF(ABS(Y(1,11)-C)-.00001)2,2,3
3 CONTINUE
C=Y(,11)
6 CONTINUE
WRITE(6,*)'C=",C
DLDADH=-DLDA/H1
DDDA=2.*QS*CLN*C
DDDADH=-DDDA/H1
VDDADV=2.*QS$*C*(2.*CLN+FMACH*DCLNM)
DDDADV=VDDADV/X(J,1)
SA=SIN(C)
CA=COS(C)
DG1DA=1.0+(-X(J,6)*(T*CA+DDDADA)+X(J,7)*(DLDADA-T*SA)
/XJ,1))/X(J,5)
Z=-DG1DA*25.
DG1DV=(-X(J,6)*(DTDV*SA+DDDADV)+(X(J,H/(X{J,1)*X(J,1)))
1*(X({J,1)*(DLDADV+CA*DTDV)-(DLDA+T*CA)))/X(J,5)
DG1DH=(-X(J,6)*(SA*DTH+DDDADH)+(X({J,7)/X({J,1))*
1(DLDADH+CA*DTH))/X(J,5)
DGIDLV=-(T*SA+DDDA)/X(J,5)
DG1DLG=(DLDA+T*CA)/(X(J,5)*X(J,1))
G1=X(,11)+(-X(J,6)*(T*SA+DDDA)}+X(J,7)*(DLDA+T*CA)X(J,1))/X(J,5)
DG1DM=(X{J,11)-G1)/X{J,5)
El=-(X({J,1)*DG1DV+X(J,3)*DG1DH-G1)
Y(1,11)=C+(DG1DV*DV+DG1DH*DH+DGIDLV*DLV
1+DG1DLG*DLG+DG1DM*DM+G1)/Z
GO TO 80
80 WRITE(6,*)'Y11=",Y(1,11),'Z=",Z,G1DV="'DG1DV, G1DH=',DG1DH
1 CONTINUE
IACON=1
GO TO 40
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2 CONTINUE
IACON=0
40 WRITE(6,*)C
DLDV=DLDADV*C
DLDVDH=-DLDV/H1
DLDVDV=(1.0/X(J,1))*(DLDV+ROEVS*FMACH*DCLDM*C)
FL=QS*CLA*C
DLDH=-FL/H1
DLDHDH=FL/(H1*H1)
D=QS*(CDO+CLN*C*C)
DDDH=-D/H1
DDDHDH=D/(H1*H1)
DDDV=(2.*D/X(J,1))+.5*ROEVS*FMACH*(DCDM+DCLNM*C*C)
DDDVDH=-DDDV/H1 :
DDDVDV=(1.0/X(J,1))*(DDDV+ROEVS*FMACH*(DCDM+DCLNM*C*C))
WRITE(6,*)FL="FL, DRAG=',D,/ALPHA=",C
PAUSE
RETURN
END
SUBROUTINE AERO(FMACH,CLA,CD0,CLN,DCLAM,DCLNM,DCDM)
DIMENSION RM(10)
OPEN(11,FILE=LOG.CLD',STATUS="UNKNOWN',ACCESS="SEQUENTIAL',
1 FORM=FORMATTED")
4 FORMAT(F10.4,4F10.4)
FMACHE=FMACH
IF(FMACHE)2,3,3
2 FMACH=0.0
3RM(1)=.0
RM(2)=4
RM(3)=.8
RM(4)=.9
RM(5)=1.0
DO 101=6,10
10 RM()=RM(I-1)+.2
DO 111=1,9
IF(FMACH-RM(I))12,11,11
11 CONTINUE
I=I-1
12 DM=FMACH-RM(I-1)
DMI1=RM()-RM(-1)
FM1=RM(-1)
FM2=RM()
REWIND 11
14 READ (11,4, END=20)FM,CL1,CD1,FN1,CLN1
TEST=ABS(FM1-FM)
IF (TEST-.01)13,13,14
13 READ (11,4,END=20)FM,CL2,CD2,FN2,CLN2
DCLAM=(CL2-CL1)/DM1
DCDM=(CD2-CD1)/DM1
DCLNM=(CLN2-CLN1)/DM1
CLA=CL1+DCLAM*DM
CD0=CD1+DCDM*DM
CLN=CLN1+DCLNM*DM
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C  WRITE(6,*)CLA=",CLA,'CD0=",CD0,'CLN=',CLN .
C  WRITE(6,*)DCLAM=",DCLAM, DCDM="DCDM, DCLNM=",DCLNM
FMACH=FMACHE
RETURN
20 WRITE(6,*)READ ERROR UNIT 11'
STOP
END

SUBROUTINE WYTIN(A,NU,IR,IRN,IT,N,NV,NH)
DIMENSION A(13,12)
J=NH+1
WRITE(NU,REC=IR)N,J,IT,((AK,I),I=1,N),K=1,))
IRN=IR+1
RETURN
END
SUBROUTINE RYTIN(A,NU,IR,IRN,IT,N,NV,NH)
DIMENSION A(13,12)
J=NH+1
READ(NU,REC=IR)N,J,IT,((A(K,]),I=1,N),K=1,])
IRN=IR+1
RETURN
END
SUBROQUTINE WYOT(N,NV,NU,NT,M)
DIMENSION A(3,12)
10 FORMAT(114,9E14.4)
L=1
IX=1
IY=NV
IF(N-9)1,1,2
2 1Y=9
L=2
1 K=1
DO 3J=1L
GO TO (4,5),]
5 IX=10
IY=NV
4 IRN=M
DO 6 I=1,NT+1
CALL RPI(N,NV,NU,A,K,IT1,IRN)
WRITE 4,10)IT1,(A(1,1)),J=IX,IY)
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE WPI(N,NV,NU,A,K,IT,IRNW)
DIMENSION A(3,12)
IRC=IRNW
WRITE(NU,REC=IRO)IT,(AK,D,I=1,NV)
IRNW=IRNW+2
RETURN
END
SUBROUTINE RPI(N,NV,NU,A,K,IT,IRNR)
DIMENSION A(3,12)

W
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IRC=IRNR
READ(NU,REC=IROIT,(AK,I),I=1,NV)
IRNR=IRNR+2

RETURN

END

SUBROUTINE ZCE(N,C,E)
DIMENSION C(3,12,12),E(3,12)
DO 1I=1,3
DO 1J=1N
E(1L,3)=0.

DO 1K=1,N
C(1,J,K)=0.
CONTINUE
RETURN
END
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Appendix C.
QUASILINEARISATION OPTIMISATION PROGRAMME.

DIMENSION TCD(12),X(3,12),A(3,12),Y(13,12)
DIMENSION E(3,12),C(3,12,12)
DIMENSION ICUS(12)

OPEN (4,FILE='OUT.DAT,STATUS="UNKNOWN',ACCESS='SEQUENTIAL',

1 FORM=FORMATTED")

OPEN(12,FILE='OUT1.DAT ,STATUS="UNKNOWN',ACCESS=DIRECT,
1 FORM="UNFORMATTED',RECL=1000)

OPEN(7,FILE='OUT2.DAT',STATUS="UNKNOWN'ACCESS=DIRECT',
1 FORM='UNFORMATTED',RECL=500)

NU=7

NUH=12

IR=1

N=10

Nv=11

NH=5

DT=.83*4.

ITT=10

NG=10

NIS=10

=NG*NIS

IRNW=1

K=1

IT=0

ITAG=0
CALL WYOT(N,NV,NU,NT,1)

TCD(1)=968.586

TCD(2)=0.

TCD(3)=-1.

TCD(4)=0.
TCD(5)=0.
ICUS(1)=1

ICUS(2)=7

ICUS(3)=8

ICUS4)=9

ICUS(5)=10
CALL ZCE(N,C,E)

IFC=0
L=1
M=2

ITAG3=1
DO 3 K=1,20

READ(S,*)IP

C 1P=1

IRITS=1

CALL DAUX2(N,NV,NU,NUH,Y,L,X,IRITS,IRN,NH,ICUS,ITAG3)
C WRITE(6,*)(X(1,]),J=1,NV)
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C  WRITE(6,*)(Y(LJ),J=1,NV),I=1,NH+1)
ITAG3=1
ITAG=1
IRNR=L+2
DO 11 II=1,NG
DO 11=1,NIS
C WRITE(6,*)(X(1,1J),1]=1,NV)
CALL DAUX3(N,NV,NU,IRNR,ITAG,C,E X ,K1,IP)
C GO TO (75,76)IP
C76 DO 78 KKK=1,3
C DO 78 11J=1,N
C78 WRITE(4,*)'C=',(C(KKK,J1JIII),HI=1,N)
75 CALL INTRNG(Y,C,E,N,NH,DT)
IRT=IRN
IT=I
CALL WYTIN(Y,NUH,IRT,IRN,IT,N,NV,NH)
WRITE(4,*)IT,N,(Y(1,1J),1J=1,N),X(K1,11)
1 CONTINUE
IRL=IRT
CALL GSO(N,NV,NH,NUH,IRL,IRITS,Y)
11 CONTINUE
CALL MODIC(N,NV,NH,IRL,IRITS,ICUS,NUH,TCD,Y)
IT=0
WRITE4,*)TT="IT,(Y(1,11),JJ=1,N)
KK=1
IRNR=L
CALL RPI(N,NV,NU X, KK,IT,IRNR)
CALL ALPHA2(KK,X,Y,JACON)
DO 4I=1,NV
A(D=Y(1,D
4 CONTINUE
IRNW=M
CALL WPI(N,NV,NU,A, LIT,JRNW)
NH1=0
ITAG=1
DO 2 I=1,NT
C WRITE(6,*)1='1
CALL DAUX3(N,NV,NU,IRNR,ITAG,C,E, X ,K1,IP)
CALL INTRNG(Y,C,E,N,NH1,DT)
J=K1
CALL ALPHA2(J,X,Y,IACON)

C IF(IACON)40,40,41

C 40 U=Y(,11)

C GO TO 42

C 41 Y(1,11)=U

C 42 WRITE4,*)L(Y(1,]),J=1,NV)

42 DO 5 J=1,NV
A(LD)=Y(LD)
5 CONTINUE
IT=I
CALL WPI(N,NV,NU,A,LIT,IRNW)
CALL MACH(Y(1,1),Y(1,3),FMACH,SS)
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WRITE(4,%),FMACH,(Y(1,),)=1,NV)
2 CONTINUE »
CALL CONVT(N,NV,NU,NT,ICON)
C CALL WYOT(N,NV,NU,NT,M)
IF(ICON-1)6,7,6
6 CONTINUE
=L
L=M
M=1
CONTINUE
STOP
END
SUBROUTINE THRUST(FMACH,AH,T,DTDM,DTDH)
DIMENSION RH(11),RM(10) .
OPEN(10,FILE=LOG2.THM',STATUS="UNKNOWN',ACCESS='SEQUENTIAL,
1 FORM=FORMATTED)
4 FORMAT(F10.4,2F10.4)
C  WRITE(6,*YMACH="FMACH, HT=',AH
FMACHE=FMACH
FH=AH/1000.
IF(FH)60,61,61
60 FH=0.001
61 IF(FMACH)62,63,63
62 FMACH=0.0
63 RH(1)=0.
DO 101=2,7
10 RHD)=RH(I-1)45.
RH(8)=40.
RH(9)=50.
RH(10)=70.
RH(11)=80.
C FIND NEAREST HEIGHT
DO 11 I=1,11
IF(FH-RH(D)12,11,11
11 CONTINUE
I=I-1
12 DH1=RH(D)-RH(I-1)
DH=FH-RH(I-1)
FRACH=DH/DHI
HR1=RH(I-1)
HR2=RH(D)
C SET REF. MACH.
RM(1)=0.
DO 31J=2,10
31 RM(J)=RM(J-1)+.2
DO 13 J=1,10
IF (FMACH-RM(3))30,13,13
13 CONTINUE
J=J-1
30 DM=FMACH-RM(J-1)
FRACM=DM/.2
C  WRITE(6,*)FRACM='FRACM
RM1=RM(J-1)
RM2=RM(J)
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REWIND 10
15 READ(10,4,END=55)T1,H1,FM1
TEST=ABS(RM1-FM1)
IF (TEST-.001)14,14,15
14 TEST=ABS(HR1-H1)
IF(TEST-1.)16,16,17
17 READ(10,4,END=55)T1,H1,FM1
GO TO 14
16 READ(10,4,END=55)T2,H2,FM1
DTM1=T2-T1
18 READ(10,4,END=55)T3,H1,FM2
TEST=ABS(RM2-FM2)
IF (TEST-.001)19,19,18
19 TEST=ABS(HR1-H1)
IF(TEST-1.)20,20,21
21 READ(10,4,END=55)T3,H1,FM2
GO TO 19
20 READ(10,4,END=55)T4,H2,FM2
DTM2=T4-T3
TCM1=T1+FRACH*DTM1
TCM2=T3+FRACH*DTM2
T=(TCM1+FRACM*(TCM2-TCM1))*1000.
DTDM=((TCM1-TCM2)/(FM1-FM2))*1000.
TCHI1=T1+FRACM*(T3-T1)
TCH2=T2+FRACM*(T4-T2)
DTDH=((TCH1-TCH2)/(H1-H2))
C WRITE(6,*)T="T,MACH="FMACH
FMACH=FMACHE
RETURN
55 WRITE(6,*) READ ERROR UNIT 10'
STOP
END
SUBROUTINE ROE1(HF,ROE)
ROE(0=.00254
H1=27300.
IF(HF)10,11,11
10 HFT=0.0
GO TO 12
11 HFT=HF
12 Y=2.7182818**(-HFT/H1)
ROE=ROEQO*Y
RETURN
END
SUBROUTINE MACH(V,HF,FM,A)
IF(HF)10,11,11
10 HFT=0.0
GOTO 12
11 HFT=HF
12 HREF=11.0*1000.0*100.0/(2.54*12)
IF (HFT-HREF)2,2,3
3 HI=HREF
GOTO4
2 HIl=HFT
4 A=(33146.0/(2.54*12))*SQRT((288.15-0.00198*H1)/273.15)
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FM=V/A
RETURN
END

SUBROUTINE DAUX3(N,NV,NU,IRNR,ITAG,C,E X, K1,IP)
DIMENSION C(3,12,12),E(3,12),X(3,12)
L=1
IF(ITAG-1)2,1,2
2 CONTINUE
DO 3I=1,N
E(1,D=E(3,])
DO 3 J=1,N
C(1,LN)=CG3,LY)
3 CONTINUE
L=2
GO TO 4
1 CONTINUE
K=3
Kl1=1
I=1
J=1
7 CONTINUE
GRAV=32.2
CGRAV=GRAV*1600.0
SG=SIN(X(J,2))
CG=COS(X(J,2))
GCG=GRAV*CG
GSG=GRAV*SG
CA=COS(X(J,11))
SA=SIN(X({J,11))
H1=27300.
$=530.
CALL ROEI1(X(J,3),ROE)
CALL MACH(X(J,1),X(J,3),FMACH,A)
CALL THRUST(FMACH,X(J,3),T,DTM,DTH)
ROEVS=ROE*X(J,1)*S
QS=0.5*ROEVS*X(J,1)
CALL AERO(FMACH,CLA,CD0,CLN,DCLDM,DCLNM,DCDM)
DLDADV=ROEVS*(CLA+).5*FMACH*DCLDM)
DTDV=DTM/A
DTDH=DTH
DTDVDV=0.0
DTDVDH=-DTDV/H1
DTDHDH=-DTH/H1
DLDA=QS*CLA
DLDADA=0.0
DDDADA=2.*QS*CLN
DLDADH=-DLDA/HI
DDDA=2.*QS*CLN*X(J,11)
DDDADH=-DDDA/H!
VDDADV=2.*QS*X(J,11)*(2.*CLN+FMACH*DCLNM)
DDDADV=VDDADV/X({J,1)
DLDV=DLDADV*X(J,11)
DLDVDH=-DLDV/H1
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DLDVDV=(1.0/X(J,1))*(DLDV+1.5*ROEVS*FMACH*DCLDM*X(J,11))
FL=QS*CLA*X(J,11)

DLDH=-FL/H1

DLDHDH=FL/(H1*H1)

D=QS*(CD0+CLN*X(J,11)*X(J,11))

DDDH=-D/H1

DDDHDH=D/(H1*H1)
DDDV=(2.*D/X(J,1))+.5*ROEVS*FMACH*(DCDM+DCLNM*X(J,11)*X(J,11))
DDDVDH=-DDDV/H1
DDDVDV=(1.0/X{J,1))*(DDDV+1.5*ROEVS*FMACH*(DCDM
1+DCLNM*X(J,11)*X(J,11)))

F1=-GSG+(T*CA-D)/X({J,5)

F2=(-GCG+(FL+T*SA)Y/X(,5))/X{J,1)

F3=X(J,1)*SG

F4=X(,1)*CG

F5=-T/CGRAV
F6=(-1/X(1,5))*(X(J,6)*(CA*DTDV-DDDVHX(J1,7)*(DLDV+DTDV*SA-F2
1*X(J,5))/X{J,1))-X{J,8)*SG-X(J,9)*CG+X(J,10)*DTDV/CGRAV
F7=GCG*X(J,6)-(GSG*X{J,7)/X(J,1))-X(J,8)*X(J,1)*CG
1+X(J,9*X{J,1)*SG ‘
F8=((-X(J,6)*(DTDH*CA-DDDH)-X(J,7)*(DLDH+DTDH*SA)/X(J,1))/
1X(J,5))+X{J,10)*DTDH/CGRAV

F9=0.0

F10=(-X(J,6)*(D-T*CAM+X{J,N*(FL+T*SA)/X{J, D)Y(X(J,5)*

1X{J,5))

D1=-(T*SA+DDDA)/X(,5)

D2=(DLDA+T*CA)/(X(J,5)*X(J,1))
D6=(X(J,6)*(DTDV*SA+DDDADV)-X(J,7)*(X(J,1)*(DLDADV+DTDV*CA)
1-(DLDA+T*CA))/(X(J,1)*X(J,1)))/X(1,5)
D8=(X(J,6)*(DTDH*SA+DDDADH)-X({J,7)*(DLDADH+DTDH*CA)/X{J,1))/
1X{d,5)
D10=(-X(J,6)*(DDDA+T*SA)+X(J,7)*(DLDA+T*CA)/X(J,))/(X{J,5)*
1X{J,5))

DF1DV=(DTDV*CA-DDDV)/X(],5)
DF2DV=((DLDV+DTDV*SA)/(X(1,5)*X{J,1)))-F2/X{J,1)

DF3DV=SG

DF4DV=CG

DF5DV=-DTDV/CGRAV
DF6DV=(-X(J,6)*(CA*DTDVDV-DDDVDV)/X(J,5)+(X(J,10)*DTDVDV/
1CGRAV)-2*X(J,D/(X(J,5)*XJ,1)*X(J,1))*(-(DLDV+DTDV*SA)+
1.5*X(J,1)*(DLDVDV+DTDVDV*SA)}+X(J,5)*F2)
DF7DV=(X(J,7)*GRAV*SG/(X(J,1)*X(J,1)))-X(J,8)*CG+X(J,9)*SG
DF8DV=-(X(J,6)/X(J,5))*(DTDVDH*CA-DDDVDH)-(X(J,7)
/(X(J,5*XJ,1)*XJ,1))*(XJ,1)*(DLDVDH+DTDVDH*S A)-
1(DLDH+DTDH*SA)+X(J,10)*DTDVDH/CGRAV
DF10DV=(-X(J,6)*(DDDV-DTDV*CAMX(J,7)*(X(J,1)*(DLDV+DTDV*SA)
1-(FL+T*SA)/(XJ, D*XJ,1)))/(X{J,5)*X{J,5))

DF1DG=-GRAV*CG

DF2DG=GRAV*SG/X(J,1)

DE3DG=X({J,1)*CG

DF4DG=-X(J,1)*SG
DF6DG=-X(J,8)*CG+X(J,9)*SG+X(J,7)*GRAV*SG/(X(J,1)*X(J,1))
DF7DG=-X(J,6)*GRAV*SG-(X(J,7)*GRAV*CG/X(J,1))+X(J,8)*X(J,1)
1*SG+X(J,9*X{J,1)*CG
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DF1DH=(DTDH*CA-DDDH)/X(J,5)
DF2DH=(DLDH+DTDH*SA)/(X{J,5)*X(J,1))
DF5SDH=-DTDH/CGRAV '
DF6DH=-(X(J,6)/X(J,5))*(CA*DTDVDH-DDDVDH)-(X(J,7)
1/X(@3,5)*XJ,1)*XJ,D)N*(XJ,1)*(DLDVDH+DTDVDH*S A)-
1(DLDH+DTDH*SA))+X(J,10)*DTDVDH/CGRAV
DF8DH=-(X(J,6)/X{J,5))*(DTDHDH*CA-DDDHDH)-
1(X(J,7/(X(J,5)*X(J,1)))*(DLDHDH+DTDHDH*S A)+X(J,10)*DTDHDH/CGRAV
DF10DH=(-X(J,6)*(DDDH-DTDH*CA)+X(J,7)*(DLDH+DTDH*SA)/X(J,1))
1/(XJ,5)*X(J,5))
DF1DM=-(T*CA-D)/(X(J,5)*X{.,5))
DF2DM=-((FL+T*SAY/X(J,1)/(X{J,5)*X{,5))
DF6DM=(1.0/(X(J,5)*X(J,5)))*(X(J,6)*(CA*DTDV-DDDV)+
1XJI,DNXA,D*XI,D)N*XJ,1)*(DLDV+DTDV*SA)-(FL+T*SA)))
DF8DM=(X(J,6)*(DTDH*CA-DDDH)+(X(J,7)*(DLDH+DTDH*SA)/X(J,1)))/
1(X{J,5)*X({,5))
DF10DM=2.*(X(J,6)*(D-T*CA)-X(J,7)*(FL+T*SA)/X{J,1)(X{J,5)
1*X(1,5)*X(J,5))
DF6DLV=-(DTDV*CA-DDDV)/X({J,5)
DFIDLV=GRAV*CG
DFS8DLV=-(DTDH*CA-DDDH)/X(J,5)
DF10DLV=-(D-T*CA)/(X(J,5)*X(J,5))
DF6DLG=-(((DLDV+DTDV*SA)/X(J,5))-F2)/X(J,1)
DF7TDLG=-GRAV*SG/X(J,1)
DFS8DLG=-(DLDH+DTDH*SA)/(X(J,5)*X(J,1))
DF10DLG=(FL+T*SA)/(X{J,1)*X(J,5)*X{J,5))
DF6DLH=-SG
DF7DLH=-X(J,1)*CG
DF6DLX=-CG
DF7DLX=X{J,1)*SG
DF6DLM=DTDV/CGRAV
DFS8DLM=DTDH/CGRAV

11 CONTINUE
DG1DA=1.0+(-X(J,6)*(T*CA+DDDADA)+X(J,7)*(DLDADA-T*SA)
1/X(J,1))/XQ,5)
Z=-DG1DA*1000. :
DGI1DV=(-X{J,6)*(DTDV*SA+DDDADV)+(X{J,7)/(X{J,1)*X(J,1)))
1*(X(J,1)*(DLDADV+CA*DTDV)-(DLDA+T*CA)))/X(J,5)
DGIDH=(-X(J,6)*(SA*DTH+DDDADH)}+(X(J,7)/X(J,1))*
1(DLDADH+CA*DTH))/X(J,5)
DGI1DLV=-(T*SA+DDDA)/X(J,5)
DGIDLG=(DLDA+T*CA)/(X{J,5)*X(J,1))
G1=X(J,11)+(-X(J,6)*(T*SA+DDDA)+X(J,7)*(DLDA+T*CA)/X(J,1))/X(J,5)
DGI1DM=(X(J,11)-G1)/X(J,5)
E1=-(X({J,1)*DG1DV+X(J,3)*DG1DH+X(J,5)*DG1DM
1+X(J,6)*DG1DLV+X(},7)*DG1DLG-G1)
D1=D1/Z
D2=D2/Z
D6=D6/Z
D8=D8/Z
D10=D10/Z
C(,1,1)=DF1DV+D1*DG1DV
C(,1,2)=DF1DG
C(,1,3)=DF1DH+D1*DG1DH
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Cd,1,5)=DF1DM+D1*DGI1DM

C(1,1,6)=D1*DGIDLV

C(1,1,7=D1*DGIDLG

C({,2,1)=DF2DV+D2*DG1DV

C(1,2,2)=DF2DG

C(,2,3)=DF2DH+D2*DG1DH
C(1,2,5)=DF2DM+D2*DG1DM

C(,2,6)=D2*DGIDLV

C(1,2,7=D2*DGIDLG

C(,3,1)=DF3DV

C(1,3,2)=DF3DG

C(1,4,1)=DF4DV

C(1,4,2)=DF4DG

C(1,5,1)=DF5DV

C(1,5,3)=DF5DH

C(1,6,1)=DF6DV+D6*DG1DV

C(1,6,2)=DF6DG

C(1,6,3)=DF6DH+D6*DG1DH
C(1,6,5)=DF6DM+D6*DG1DM
C(1,6,6)=DF6DLV+D6*DG1DLV
C(1,6,7)=DF6DLG+D6*DG1DLG

C(1,6,8)=DF6DLH

C(1,6,9)=DF6DLX

C(1,6,10)=DF6DLM

C{1,7,1)=DF7DV

C(1,7,2)=DF7DG

C(1,7,6)=DFTDLV

C(1,7,7)=DFIDLG

Cd,7,8)=DFIDLH

C(1,7,9)=DF7DLX

C(,8,1)=DF8DV+D8*DG1DV
C(1,8,3)=DF8DH+D8*DG1DH
C(,8,5)=DF8DM+D8*DG1DM
C(,8,6)=DF8DLV+D8*DG1IDLV
C(1,8,7)=DFSDLG+D8*DGIDLG

C(1,8,10)=DFSDLM

C(1,10,1)=DF10DV+D10*DGIDV
C(1,10,3)=DF10DH+D10*DG1DH
C({1,10,5)=DF10DM+D10*DG1DM
C(1,10,6)=DF10DLV+D10*DG1DLV
C(,10,7)=DF10DLG+D10*DG1DLG
E(I,1)=F1+D1*E1-(X(J,1)*DF1DV+X(J,2)*DF1DG+X(J,3)*DF1DH+X(J,5)
1*DF1DM)
E(1,2)=F2+D2*E1-(X(J,1)*DF2DV+X(J,2)*DF2DG+X(J,3)*DF2DH+X(J,5)
1*DF2DM)

E(1,3)=F3-(X{J,1)*DF3DV+X(J,2)*DF3DG)
E(1,4)=F4-(X(J,1)*DF4DV+X(J,2)*DF4DG)
E(1,5)=F5-(X(J,1)*DF5DV+X(J,3)*DF5DH)
E(,6)=F6+D6*E1-(X(J,1)*DF6DV+X(J,2)*DF6DG+X(J,3)*DF6DH
14+X(J,5)*DF6DM+X(J,6)*DF6DLV+X(J,7)*DF6DLG+X(J,8)*DF6DLH
1+X(J,9)*DF6DLX+X(J,10)*DF6DLM)
E(,7)=F7-(X({J,1)*DFTDV+X(J,2)*DF7DG+X(J,6)*DF7DLV
1+X{J,7)*DF7DLG+X(J,8)*DF/DLH+X(J,9)*DF7DLX)
E(1,8)=F8+D8*E1-(X(J,1)*DF8DV+X(J,3)*DF8DH+X({J,5)*
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1DF8DM+X(J,6)*DF8DLV+X(J,7)*DF8DLG+X(J,10)*DF8DLM)
E1,9)=0.0 )
E(1,10)=F10+D10*E1+(X(J,1)*DF10DV+X(J,3)*DF10DH+X(J,5)*DF10DM+
1X(J,6)*DF10DLV+X(J,7)*DF10DLG)
GO TO 4,5,6),L.
4 CONTINUE
CALL RPI(N,NV,NU,X,K,IT,IRNR)
C WRITE4,*)X(3,]),]=1,NV)
DO 8 I=1,NV
X(2,D=(X1,D+X3,D)/2.
GO TO (8,70)IP
70 WRITE@4,*)K="K,'X=",(X(JJJ1,1),]]J=1,3)
8 CONTINUE
1=2
J=2
L=2
GOTO7
5 CONTINUE
I=3
J=K
L=3
GOTO7
6 CONTINUE
M=K1
Ki1=K
K=M
ITAG=2
C WRITE(®6,*)(((C(1,JJ, KK),KK=1,N),JJ=1,N),II=1,3)
RETURN
END
SUBROUTINE ALPHA(J,X,Y,IACON)
DIMENSION X(3,12),Y(13,12)
C=X{J,11)
H1=27300.
S=530.
DV=Y(1,1)-X(J,1)
DH=Y(1,3)-X(J,3)
DLV=Y(1,6)-X({,6)
DLG=Y(1,7)-X(J,7)
WRITE(6,*)DV=',DV, DH=',DH,'DLV='DLV, DLG="DLG
C PAUSE
CALL ROE1(X(J,3),ROE) /
CALL MACH(X(J,1),X(J,3),FMACH,A)
CALL THRUST(FMACH,X(J,3),T,DTM,DTH)
ROEVS=ROE*X(J,1)*S
QS=0.5*ROEVS*X(J,1)
CALL AERO(FMACH,CLA,CD0,CLN,DCLDM,DCLNM,DCDM)
DLDADV=ROEVS*(CLA+).5*FMACH*DCLDM)
DTDV=DTM/A
DTDVDV=0.0
DTDVDH=-DTDV/H1
DTDHDH=-DTH/H1
DLDA=QS*CLA
) DLDADA=0.0
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DDDADA=2.*QS*CLN
DO 1L=12
M=1
IF(L-1)4,4,5

5 M=800

4 CONTINUE
DO 11=1M
IF(L-1)6,6,7

7 CONTINUE
IF(ABS(Y(1,11)-C)-.00001)2,2,3

3 CONTINUE
C=Y(1,11)

6 CONTINUE
WRITE(6,*)'C=',C
DLDADH=-DLDA/H!1
DDDA=2.*QS*CLN*C
DDDADH=-DDDA/HI
VDDADV=2.*QS*C*(2.*CLN+FMACH*DCLNM)
DDDADV=VDDADV/X(J,1)
SA=SIN(C)
CA=COS(C)
DG1DA=-X(J,6)*X(J,1)*(T*CA+DDDADA)+X(J,7)*(DLDADA-T*SA)
Z=-DG1DA*10.
DG1DV=-X(J,6)*(T*SA+DDDA+FMACH*SA*DTM+VDDADV)+
1X(J,7)*(DLDADV+CA*DTDV)
DGIDH=-X(J,6)*X(J,1)*(SA*DTH+DDDADH)+X(J,7)
1*(DLDADH+CA*DTH)
DG1DLV=-X(J,)*(T*SA+DDDA)
DG1DLG=DLDA+T*CA
G1=-X(J,6)*X(J,1)*(T*SA+DDDA}+X(J,7)*(DLDA+T*CA)
Y(1,11)=C+.2*(DG1DV*DV+DG1DH*DH+DG1DLV*Y(L,6)
1+4DGIDLG*Y(1,7))/Z
GO TO 80
SIGNY=1.0
SIGNC=1.0
IF(Y(1,11))70,80,71

70 SIGNY=-1.0
71 IF(SIGNC)72,80,73
72 SIGNC=-1.0

SIGN=SIGNY*SIGNC
IF(SIGN)74,80,380

74 Y(1,11)=(Y(1,11)+.8*C)/2.0

80 WRITE(6,%)'Y11=,Y(1,11),2="Z,G1DV='DG1DV,'G1DH=",DG1DH
1 CONTINUE
JIACON=1
GO TO 40
2 CONTINUE
TACON=0
40 WRITE(6,*)C
DLDV=DLDADV*C
DLDVDH=-DLDV/H1
DLDVDV=(1.0/X(J,1))*(DLDV+ROEVS*FMACH*DCLDM*C)
FL=QS*CLA*C
DLDH=-FL/H1
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DLDHDH=FL/(H1*H1)
D=QS*(CDO+CLN*C*C)
DDDH=-D/H1
DDDHDH=D/(H1*H1)
DDDV=(2.*D/X(J,1))+.5*ROEVS*FMACH*(DCDM+DCLNM*C*C)
DDDVDH=-DDDV/H1
DDDVDV=(1.0/X(J,1))*(DDDV+ROEVS*FMACH*(DCDM+DCLNM*C*C))
WRITE(6,*)FL="FL, DRAG=',D,'ALPHA=',C
C PAUSE
RETURN
END
SUBROUTINE ALPHA1(J X,Y,JACON)
DIMENSION X(3,12),Y(13,12)
C=X(J,11)
C Y(@U11=C
C RETURN
H1=27300.
5=530.
CALL ROEI(Y(1,3),ROE)
CALL MACH(Y(1,1),Y(1,3),FMACH,A)
CALL THRUST(FMACH,Y(1,3),T,DTM,DTH)
ROEVS=ROE*Y(1,1)*S
QS=0.5*ROEVS*Y(1,1)
CALL AERO(FMACH,CLA,CD0,CLN,DCLDM,DCLNM,DCDM)
DLDA=QS*CLA
DLDADA=0.0
DDDADA=2.*QS*CLN
DO1L=1,2
M=1
IF(L-1)4,4,5
5 M=800
4 CONTINUE
DO1I=1,M
IF(L-1)6,6,7
7 CONTINUE
IF(ABS(Y(1,11)-C)-.00001)2,2,3
3 CONTINUE
C=Y(1,11)
6 CONTINUE
WRITE(6,*)'C=',C
DDDA=2.*QS*CLN*C
SA=SIN(C)
CA=COS(C)
DGI1DA=-Y(1,6)*Y(1,1)*(T*CA+DDDADA)+Y(1,7)*(DLDADA-T*SA)
Z=-DGIDA*10.
Gl=-Y(1,6)*Y(1,1)*(T*SA+DDDA)+Y(1,7)*(DLDA+T*CA)
Y(1,11)=C+.8*(G1)/Z
80 WRITE(,*)'Y11=,Y(1,11),'2=",Z,G1=",G1,' T="T
WRITE(6,*)'V="Y(1,1),LV=,Y(1,6),LG="Y(1,7)
WRITE(6,*)D2DA=,DDDADA, DDA="DDDA, DLDA="DLDA
WRITE(6,*)'SA="SA,'CA=",CA
1 CONTINUE
IACON=1
GO TO 40
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2 CONTINUE
GOTO41
SIGNC=1.
IF(C)50,41,51
50 SIGNC=-1.
51 IF(ABS(C)-4)41,41,53
53 C=SIGNC*.1
41 IACON=0
40 WRITE(6,*)C
Y(1,11)=C
FL=QS*CLA*C
D=QS*(CDO+CLN*C*C)
WRITE(6,*)FL="FL,DRAG='",D,'ALPHA='C
PAUSE ,
RETURN
END
SUBROUTINE ALPHA2(J.X,Y,JACON)
DIMENSION X(3,12),Y(13,12)
C=X{,11)
H1=27300.
5=530.
DM=Y(1,5)-X({J,5)
DV=Y(1,1)-X(J,1)
DH=Y(1,3)-X(J,3)
DLV=Y(1,6)-X(J,6)
DLG=Y(1,7)-X(,7)
WRITE(6,*)DV='",DV, DH='DH,' DLV='DLV,DLG="DLG
PAUSE
CALL ROE1(X(J,3),ROE)
CALL MACH(X(J,1),X(J,3),FMACH,A)
CALL THRUST(FMACH,X(J,3),T,DTM,DTH)
ROEVS=ROE*X(J,1)*S :
QS=0.5*ROEVS*X(J,1)
CALL AERO(FMACH,CLA,CD0,CLN,DCLDM,DCLNM,DCDM)
DLDADV=ROEVS*(CLA+0.5*FMACH*DCLDM)
DTDV=DTM/A
DTDVDV=0.0
DTDVDH=-DTDV/H1
DTDHDH=-DTH/H1
DLDA=QS*CLA
DLDADA=0.0
DDDADA=2.*QS*CLN
DO 1L=]1
DO1L=1,2
M=1
IF(L-1)4,4,5
5 M=800
4 CONTINUE
DO1I=1M
IF(L-1)6,6,7
7 CONTINUE
IF(ABS(Y(1,11)-C)-.00001)2,2,3
3 CONTINUE
C=Y(,11)
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6 CONTINUE
WRITE(6,*)'C='.C
DLDADH=-DLDA/H1
DDDA=2.*QS*CLN*C
DDDADH=-DDDA/H1
VDDADV=2.*QS*C*(2.*CLN+FMACH*DCLNM)
DDDADV=VDDADV/X(J,1)
SA=SIN(C)
CA=COS(C)
DG1DA=1.0+(-X(J,6)*(T*CA+DDDADA)+X(J,7)*(DLDADA-T*SA)
17X(1,1))/X(.5)
Z=-DG1DA*1000.
DG1DV=(-X(J,6)*(DTDV*SA+DDDADVX+(X(J,7)/(X(J,1)*X{J,1)))
1*(X(J,1)*(DLDADV+CA*DTDV)-(DLDA+T*CA)))/X(J,5)
DGI1DH=(-X(J,6)*(SA*DTH+DDDADH)+(X{J,7)/X(J,1))*
1(DLDADH+CA*DTH))/X(J,5)
DGIDLV=-(T*SA+DDDAY/X({,5)
DGI1DLG=(DLDA+T*CA)/(X(J,5)*X(J,1))
G1=X{J,11)+(-X(J,6)*(T*SA+DDDA)+X(J,7)*(DLDA+T*CA)/X(J,1))/X(J,5)
DG1DM=(X(J,11)-G1)/X(J,5)
El1=-(X{J,1)*DG1DV+X(J,3)*DG1DH-G1)
Y(1,11)=C+(DG1DV*DV+DG1DH*DH+DG1DLV*DLV
1+DGIDLG*DLG+DG1DM*DM+G1)/Z
GO TO 80

80 WRITE(6,*)Y11=,Y(1,11),'Z='Z,'G1DV="DG1DV,' G1DH='DG1DH

1 CONTINUE
IACON=1
GO TO 40

2 CONTINUE
IACON=0

40 WRITE(6,*)C
DLDV=DLDADV*C
DLDVDH=-DLDV/H1
DLDVDV=(1.0/X(J,1))*(DLDV+ROEVS*FMACH*DCLDM*C)
FL=QS*CLA*C
DLDH=-FL/H1
DLDHDH=FL/(H1*H1)
D=QS*(CDO0+CLN*C*C)
DDDH=-D/H1
DDDHDH=D/(H1*H1)
DDDV=(2.*D/X(J,1))+.5*ROEVS*FMACH*(DCDM+DCLNM*C*C)
DDDVDH=-DDDV/H1
DDDVDV=(1.0/X(J,1))*(DDDV+ROEVS*FMACH*(DCDM+DCLNM*C*C))
WRITE(6,*)FL="FL,DRAG=',D,'ALPHA='",C

PAUSE

RETURN
END
SUBROUTINE AERO(FMACH,CLA,CD0,CLN,DCLAM,DCLNM,DCDM)
DIMENSION RM(10)
OPEN(11,FILE=LOG.CLD',STATUS="UNKNOWN',ACCESS='SEQUENTIAL,
1 FORM=FORMATTED)

4 FORMAT(F10.4,4F10.4)
FMACHE=FMACH
IF(FMACHE)2,3,3
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2 FMACH=0.0
3 RM(1)=.0
RM(2)=4
RM(3)=.8
RM#)=.9
RM(5)=1.0
DO 10 1=6,10
10 RM()=RM(I-1)+.2
DO 111=19
IF(FMACH-RM(1))12,11,11
11 CONTINUE
I=I-1
12 DM=FMACH-RM(I-1)
DMI1=RM()-RM(I-1)
FMI1=RM(I-1)
FM2=RM(I)
REWIND 11
14 READ (11,4, END=20)FM,CL1,CD1,FN1,CLN1
TEST=ABS(FM1-FM)
IF (TEST-.01)13,13,14
13 READ (11,4,END=20)FM,CL2,CD2,FN2,CLN2
DCLAM=(CL2-CL1)/DM1
DCDM=(CD2-CD1)/DM1
DCLNM=(CLN2-CLN1)/DM1
CLA=CL1+DCLAM*DM
CD0=CD1+DCDM*DM
CLN=CLN1+DCLNM*DM
C  WRITE(6,*)'CLA=",CLA,'CD0=',CD0,'CLN=',CLN
C  WRITE(6,*)DCLAM=',DCLAM,'DCDM=",DCDM,' DCLNM="DCLNM
FMACH=FMACHE
RETURN
20 WRITE(6,*)READ ERROR UNIT 11
STOP
END
SUBROUTINE SOLVX(A,B,X,N,V)
DIMENSION A(12,12),B(12),X(12)
NM1=N-1
DO 2J=1,N
JP1=J+1
IM1=J-1
DO 61=J,N
ASUM=0.
IF(M1)6,6,7
DO 9K=1,]M1
ASUM=ASUM+A(LK)*A(K,])
A)N=A(J)-ASUM
AMAX=A(J,))
IMAX=]
IF(JP1-N)20,20,21
20 CONTINUE
DO 11=JP1,N
IF(ABS(AMAX)-ABS(A(,))))3,1,1
3 AMAX=A(J)
IMAX=]

A O
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CONTINUE

CONTINUE . :
IF(ABS(AMAX)-1.E-30)10,10,4
V=1.

RETURN

DO 5 K=1,N
ASAVE=A(IMAX,K)
A(IMAX,K)=A(.K)
A(J,K)=ASAVE
ASAVE=B(IMAX)
B(IMAX)=B(J)

B(J)=ASAVE

I1=])

J1=]P1

IF(JP1-N)22,22,23

CONTINUE

DO 8 J2=JP1,N

ASUM=0.

IFOM1)8,8,11

DO 12K=1,]M1
ASUM=ASUM+A(I1,K)*A(K,J2)
A(1,J2)=(A(1,J2)-ASUM)/A(11,11)
CONTINUE

ASUM=0.

IFOM1)2,2,13

DO 14 K=1,]M1
ASUM=ASUM+A(1,K)*B(K)
BA1=(B(I1)-ASUM)/A(11,11)
DO 15 J=1,N

I1=N-J+1

I=I1+1

ASUM=(0.

IF(I1-N)17,15,15

DO 16 K=I,N
ASUM=ASUM+A(1,K)*X(K)
X(ID=B(11)-ASUM

V=0.

RETURN

END

SUBROUTINE INTRNG(A,C,E,N,NH,DT)

DIMENSION A(13,12),C(3,12,12),E(3,12),D(4,12)

NIT=NH+1

DO 1 K=1LNIT
DO 100 I=1,N
TEMP=0.
IF(K-1)3,2,3
TEMP=E(1,I)
CONTINUE

DO 10J=1,N
TEMP=TEMP+C(1,L,1)*A(K,J)
D(1,1)=DT*TEMP
DO 110 KK=1,2
DO 110 I=1,N
TEMP=0.
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IF(K-1)54,5
TEMP=E(2,]) .
CONTINUE
DO 11 J=1,N
11 TEMP=TEMP+C(2,,)*(AK,)+D(KK,J)/2.)
110 D(KK+1,1)=DT*TEMP
DO 130 I=1,N
TEMP=0.
IF(K-1)7,6,7
TEMP=EQ3,])
CONTINUE
DO 13 J)=1,N
13 TEMP=TEMP+C(3,L,)*(AK,])+D(3,]))
130 D@4,1)=DT*TEMP :
DO 200 I=1,N
200 AKD=AK,D+(D1,D+2.*D(2,)+2.*D(3,1)+D(4,1))/6.
1 CONTINUE
RETURN
END
SUBROUTINE WYTIN(A,NU,IR,IRN,IT,N,NV,NH)
DIMENSION A(13,12)
J=NH+1
WRITE(NU,REC=IR)N,J,IT,(A(K,]),]=1,N),K=1,])
IRN=IR+1
RETURN
END
SUBROUTINE RYTIN(A,NU,IR,IRN,IT,N,NV,NH)
DIMENSION A(13,12)
J=NH+1
READ(NU,REC=IR)N,J,IT,((A(K,]),I=1,N),K=1,])
IRN=IR+1
RETURN
END
SUBROUTINE MODIC(N,NV,NH,IR,IRITS,ICUS,NU,TCD,A)
DIMENSION A(13,12),P(12),B(12),C(12),H(12,12)
DIMENSION TCD(12)
DIMENSION ICUS(12)
25 FORMAT(12E14.4)
CALL RYTIN(A,NU,IR,IRN,IT,N,NV,NH)
DO 2 I=1,NH
DO 3 K=1,NH
L=ICUS()
HIK)=A((K+1),L)

3 CONTINUE
P(I)=A(l,L)

B(=TCD1)-P()

2 CONTINUE
WRITE(4,25)(TCD(®),P(),(H(1,K),K=1,NH),B(I),I=1,NH)
CALL SOLVX(H,B,C,NH,V)
WRITE(4,25)(C(I),I=1,NH)

NF=1

CALL RYTIN(A,NU,IRITS,IRN,IT,N,NV,NH)
NN=NH+1

DO 5K=1,N

(¥ -

~N N

228



5 WRITE(4,25)(A(LLK),I=1,NN)
DO 41=1,NH
L=I+5
DO 4 K=1,NH
A(L)=A1,L)+C(K)*A(K+1,L)
4 CONTINUE
RETURN
END
SUBROUTINE CONVT(N,NV,NU,NT,ICON)
DIMENSION A(3,12),EMAX(12)
10 FORMAT(' ERR")
11 FORMAT(1E14.4)
TEST=.005
ICON=0.
SUM=0.
IRNR1=1
IRNR2=2
J=1
K=2
DO9L=1,N
EMAX(L)=0.
9 CONTINUE
DO 11=1,NT+1
CALL RPI(N,NV,NU,A,JLIT1LIRNR1)
CALL RPI(N,NV,NU,A K,IT2,IRNR2)
IF(IT1-IT2)3,2,3
3 WRITE4,10)
2 CONTINUE
DO4L=1N
E=ABS(A(1,L)-A(2,L.))
IF(E-EMAX(L)4 4,7
7 EMAX(L)=E
4 CONTINUE
1 CONTINUE
DO S8L=1N
SUM=SUM+EMAX(L)
8 CONTINUE
WRITE@4,11)SUM
IF(ABS(SUM)-TEST)5,5,6
ICON=1
RETURN
END
SUBROUTINE WYOT(N,NV,NU,NT,M)
DIMENSION AQ3,12)
10 FORMAT(114,9E14.4)
L=1
IX=1
IY=NV
IF(N-9)1,1,2
2 IY=9
1=2
1 K=1
DO 3J=1,L
GO TO 4,5),)

A
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IX=10"
IY=NV
IRN=M
DO 6 I=1,NT+1
CALL RPI(N,NV,NU,A,K,IT1,IRN)
WRITE (4,10)IT1,(A(L,1)),J=IX,IY)
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE WPI(N,NV,NU,A,K,IT,IRNW)
DIMENSION A(3,12)
IRC=IRNW
WRITE(NU,REC=IRO)IT,(A(K,]),I=1,NV)
IRNW=IRNW+2
RETURN
END
SUBROUTINE RPI(N,NV,NU,A,K,IT,IRNR)
DIMENSION A(3,12)
IRC=IRNR
READ(NU,REC=IRO)IT(AXK,]),I=1,NV)
IRNR=IRNR+2
RETURN
END
SUBROUTINE DAUX2(N,NV,NU,NUH,Y,L,A,IRITS,IRN,NH,ICUS,ITAG3)
DIMENSION Y(13,12),A(3,12)
DIMENSION ICUS(12)
IRNR=L
K=1
CALL RPI(N,NV,NU,A K,IT,IRNR)
NIT=NH+1
DO 1 I=2,NIT
M=I+4
DO 1J=1,N
Y(1,J)=0.
IF(J-M)3,2,3
Y({,D)=1.
CONTINUE
CONTINUE
DO4I=1,N
Y(1,D)=AK,D)
CONTINUE
IF(ITAG3)10,10,11
Y(1,6)=-17.73425
Y(1,7)=-1530.7384
Y(1,8)=-.052362
Y(1,9)=.0
Y(1,10)=52.623
IT=0
WRITE4,*)IT,(Y(1,I),]=1,N)
CALL WYTIN(Y,NUH,IRITS,IRN,IT,N,NV,NH)
RETURN
END
SUBROUTINE ZCE(N,C,E)
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DIMENSION C(3,12,12),E(3,12)
DO 11=1,3
DO1J)=1N
E(,))=0.
DO 1 K=1,N
C({1,J,K)=0.
1 CONTINUE
RETURN
END
SUBROUTINE GSO(N,NV,NH,NUH,IRL,IRITS,Y)
DIMENSION A(12,12),B(12,12),Y(13,12),F(13,12),5(12,12)
CALL RYTIN(F,NUH,IRITS,IRN,IT,N,NV,NH)
DO 11=1,NH
DO 1J=INH
S3J.0)=0.0
1 CONTINUE
DO 8I=1,NH
DO 8 J=1,N
ALL)=Y(1+1,])
B, ))=F(d+1,))
8 CONTINUE
C DO 20 J=1,N
C20 WRITE(4,*)Y="(Y(1,J),]=1,NH+1)
C DO 21J=1,N
C21 WRITE@4,*)F=',(F{,J),]=1,NH+1)
DO 21=1,NH
DO3L=1lI-1
WRITE(6,*)L
PAUSE
DO3K=1N
C WRITE(6,*)K="K
ALK)=AK)-S(I,LY*A(L.K)
B({I,K)=B(,K)-SA,L)*B(L.K)

an

3 CONTINUE
DO 4 J=ILNH
DO 4K=1,N
SA,D=SJ,D+A(J,K)*A(K)

4 CONTINUE
IF(I-NH)9,10,9

9 CONTINUE
DO 5 J=I+1,NH
SI.D=SJ,Iy/SA,I)

5 CONTINUE

10 CONTINUE

2 CONTINUE

C WRITE(6,*)(S(1,I),I=1,NH)
DO 61=1,NH
DO 6 K=1,N

A(LK)=AK)/SQRT(S(,I))

B, K)=B(I,K)/SQRT(S(LI))
6 CONTINUE

DO 71=1,NH

DO 7K=1,N

Y(I+1,K)=A(K)
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F(I+1,K)=B(K)
CONTINUE | |

CALL WYTIN(F,NUH,IRITS,IRN,IT,N,NV,NH)
CALL WYTIN(Y,NUH,IRL,IRN,IT,N,NV,NH)
RETURN

END
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Appendix D.

On-Line Identification And Adaptation Programme.

DIMENSION TCD(15),X(3,15),A(3,15),Y(16,15),XX(12,2)
DIMENSION E(3,15),C(3,15,15),XYZ(15),AA(15,15),BB(15)
DIMENSION ICUS(15),P(4),PI(4),FK(4),G(4),GI(4)

OPEN (4,FILE='OUT.DAT ,STATUS="UNKNOWN',ACCESS='SEQUENTIAL',
1 FORM=FORMATTED')
OPEN (7,FILE='QD.DAT',STATUS="UNKNOWN',ACCESS="SEQUENTIAL,
1 FORM=FORMATTED') ‘
OPEN(10,FILE="WNZTA RES',STATUS="UNKNOWN',ACCESS='SEQUENTIAL,
1 FORM=FORMATTED)
100 FORMAT(10,6E15.4)
200 FORMAT(110,E15.4)
NU=7
NUH=12
R=1
N=14
NN=4
NV=5
DT=.001
NT=332
CALL ZCE(N,C,E)
NH1=0
ITT=0
DO 3 J=1,14
3 Y(1,3)=0.
1=0
IT=0
ICD4=0
READ(7,200)ITL,QD
QD=10.*QD
CALL PARAM(IT,FK)
FKC=-.035*4.
FKI1=20.
TC=3.
G(1)=5
G(2)=5.
G(3)=-100.
G(@4)=-2.
12  DO7K=LNT
DO 9 J=1,5
DO 20 LL=1,2
READ(7,200)ITL,QD
QD=10.*QD
DO 2 I=1,100
ITT=ITT+1
U=Y(1,3)+FKC*(QD-Y(1,1))
CALL DAUX4(N,C,E,FK,G,QD,FKC,FKI,TC,U)
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19 CALL INTRNG(Y,C.E,N,NH1,DT)
ICD4=ICD4+1
IF(ICD4-3320)2,18,2

18 IT=IT+l
ICD4=0
CALL PARAM(IT,FK)

2 CONTINUE

XX(1,LL)=Y(1,1)
XX(2,LL)=Y(1,2)
DO 21 1=5,13,2
XX((I-2),LL)=Y(1,D)
XX((-1),LL)=Y(1,(I+1))

21 CONTINUE

20 CONTINUE

C RESET I/C FOR PI AND HOMOG.
DO 221=7,14
Y(1,1)=0.

22 CONTINUE

C SOLVEFOR C'S
AA(1,1)=XX(5,1)
AA(1,2)=XX(7,1)
AA(1,3)=XX(9,1)
AA(1,4)=XX(11,1)
AA(2,1)=XX(6,1)
AA(2,2)=XX(8,1)
AA(2,3)=XX(10,1)
AAQ24)=XX(12,1)
AAB,1)=XX(5,2)
AAQG,2)=XX(7,2)
AAQ3,3)=XX(9,2)
AA(34)=XX(11,2)
AA@4,1)=XX(6,2)
AA(4.2)=XX(8,2)
AA(4,3)=XX(10,2)
AA(4,4)=XX(12,2)
BB(1)=XX(1,1)-XX(3,1)
BB(2)=XX(2,1)-XX(4,1)
BB(3)=XX(1,2)-XX(3,2)
BB(4)=XX(2,2)-XX(4,2)
DO 26 I=1,4

26 WRITE(6,*)(AA(L)),J=1,4),BB(D),XYZ(),Y(1,1),Y(1,5)
CALL SOLVX(AA,BB,XYZ,NN,V)
DO 27 I=1,4

27 WRITE(6,*)(XYZ(}),J=1,4)
DO 241=14
GIM=XYZA+G()

24 CONTINUE
CALL WNZ(FK,P)

CALL WNZ1(GI,PLFKC,FKI, TC)
WRITE(6,*)(P(Q),PI(1),I=1,4)

DO 25 I=1,4

G(MD=GKD)

25 CONTINUE
Y(1,5=XX(1,2)
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Y(1,6)=XX(2,2)
9 CONTINUE
7 CONTINUE
STOP
END

SUBROUTINE DAUX4(N,C,E,FK,G,QD,FKC,FKI,TC,U)

DIMENSION C(3,15,15),E(3,15),FK(4),G(4)
DO 1J=1,3
C(QJ,1,1)=-FK(1)
C(J,1,2)=1.
C(J,2,1)=-FK(2)
C{J,3,3)=-1./TC
C(J,34)=1/TC
C(,4,1)=-FKC*FKI
C{dJ,5,5)=-G(1)
C3,5,6)=1.
C(J,6,5)=-G(2)
C{J,7,1)=-1.
C(3J,7,1)=-G(1)
C(,7,8)=1.
C(.8,7)=-G(2)
C{d3,9,9)=-G(1)
C{J,9,10)=1.
C(@,10,1)=-1.
CJ,10,9)=-G(2)
C{J,11,11)=-G(1)
C{d,11,12)=1.
C(J,12,11)=-G(2)
CQ,13,13)=-G(1)
C(@,13,14)=1.
C(J,14,13)=-G(2)
E(J,)=FK(3)*U
E(J,2)=FK(2)*FK(4)*U
E(J,4)=FKC*FKI*QD
E(,5)=G(3)*U
E(J,6)=G(4)*U
EQJ,11)=U
E(J,14)=U
1 CONTINUE
RETURN
END :
SUBROUTINE INTRNG(A,C,E,N,NH,DT)
DIMENSION A(16,15),C(3,15,15),E(3,15),D(4,15)
NIT=NH+1
DO 1 K=1,NIT
DO 100 I=1,N
TEMP=0.
IF(K-13,2,3
TEMP=E(1,I)
CONTINUE
DO 10 J=1,N
TEMP=TEMP+C(1,L,))*A(K,J)

- 100 D(1,)=DT*TEMP
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11
110

13
130

[, WAV =REN |

20

DO 110 KK=1,2

DO110I=1N

TEMP=0.

IF(K-1)54.5

TEMP=E(2,I)

CONTINUE

DO 11 J=1,N
TEMP=TEMP+C(2,1,)*(A(K,))+D(KK,))/2.)
D(KK+1,1)=DT*TEMP

DO 130 I=1,N

TEMP=0,

IF(K-1)7,6,7

TEMP=E(3,])

CONTINUE

DO 13 J=1,N
TEMP=TEMP+C(3,L,))*(A(K,))+D(3,]))
D(@4,)=DT*TEMP

DO 200 I=1,N
AK,D=AXK,D+(D(1,D)+2.¥D(2,1)+2.*D(3,[)+D(4,1))/6.
CONTINUE

RETURN

END

SUBROUTINE ZCE(N,C,E)
DIMENSION C(3,15,15),E(3,15)
DO 11=1,3

DO1J=1,N

E(,))=0.

DO 1K=1,N

C{1,]J,K)=0.

CONTINUE

RETURN

END

SUBROUTINE SOLVX(A,B,X,N,V)
DIMENSION A(15,15),B(15),X(15)
NM1=N-1

DO2J=1N

JP1=]+1

MI1=)-1

DO 6 I=],N

ASUM=(.

IFOM1)6,6,7

DO 9 K=1,]M1
ASUM=ASUM+A(LK)*A(K,])
AILD=A(J)-ASUM
AMAX=A(QJ,))

IMAX=]

IF(JP1-N)20,20,21

CONTINUE

DO 11=JP1,N
IF(ABS(AMAX)-ABS(A(,))))3,1,1
AMAX=A(L))

IMAX=1
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23

13
14

17
16
15

CONTINUE

CONTINUE ,
IF(ABS(AMAX)-1.E-30)10,10,4
V=1. '
RETURN

DO 5 K=1,N
ASAVE=A(IMAX,K)
A(IMAX,K)=A(J,K)
A(J,K)=ASAVE
ASAVE=B(IMAX)
B(IMAX)=B(J)

B(J)=ASAVE

I1=)

J1=JP1

IF(JP1-N)22,22,23

CONTINUE

DO 8 J2=JP1,N

ASUM=0.

IFOM1)8,8,11

DO 12 K=1,JM1
ASUM=ASUM+A(I1,K)*A(K,J2)
A(1,J2)=(A1,]2)-ASUMYA(1,11)
CONTINUE

ASUM=0.

IF(M1)2,2,13

DO 14 K=1,]M1
ASUM=ASUM+A(I1,K)*B(K)
B(1)=(B(I1)-ASUMYA(1,I1)
DO 15 J=1,N

I1=N-J+1

I=11+1

ASUM=0.

IF(I1-N)17,15,15

DO 16 K=I,N
ASUM=ASUM+A(11,K)*X(K)
X(11)=B(I11)-ASUM

V=0.

RETURN

END

SUBROUTINE WNZ(A,R)
DIMENSION A(4),R(4)
WN=SQRT(A(2))
ZETA=A(1)/(2.¥*WN)
FKO=A(4)
T2=A3)/(A(2)*A4))
R(1)=WN

R(2)=ZETA

R(3)=FKO

R4)=T2

RETURN

END

237



SUBROUTINE WNZI1(A,R,FKC,FKI, TC)
DIMENSION A(4),R(4)
WN=SQRT(A(2))
ZETA=A(1)/(2.*WN)
FKO=A(4)/A(2)

T2=A(3)/A(4)

R(1)=WN

R(2)=ZETA

R(3)=FKO

R(4)=T2
FKC=4.*2*ZETA/(WN*FKO)
FKI=WN/2.*ZETA
TC=1./(2.*ZETA*WN)
RETURN

END

SUBROUTINE PARAM(IT,FK)

DIMENSION FK(4),RES(20)

REWIND 10

5 READ(10,*)),(RES(]),I=1,18)

IF(J-IT)5,6,6

6 T2=RES(14)

FK(1)=RES(11)

FK(2)=RES(12)

FK(4)=RES(17)

FK(3)=FK(4)*T2*FK(2)

RETURN

END
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