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A bstract

An experimental configuration, based around a Nd:YAG laser and a 
spectrograph/CCD combination, has been designed and constructed so that ax­
ially symmetric temperature distributions can be generated and measured re­
motely. The ability to accurately measure the spatial temperature distribution 
without physical contact to the sample is of importance to many areas of modern 
physics. The necessary physics and mathematics behind the conversion from the 
generated hot-spot’s recorded spectral and spatial distribution to its correspond­
ing radial temperature distribution is described.

The accuracy of the remote tem perature measurement system has been validated 
by reproducing the spatial tem perature distribution of a back-illuminated pinhole. 
W hen a NPL calibrated white light source is placed behind a pinhole, the spatial 
tem perature distribution is analogous to a top hat shaped distribution with the 
peak tem perature equal to the colour tem perature of the lamp. By analysis of 
the measured tem perature profiles produced by laser heating a polycrystalline 
iron sample, the melting point of the m aterial was measured to be 1775di29 K, 
which is comparable to the recommended value of 1808 K. Similarly, the melting 
point of poly crystalline uranium  dioxide was measured to  be 3120±46 K, which 
equates to the recommended value.

A novel m ethod involving nonlinearly fitting the measured radial tem perature 
profile to a profile generated by a finite element analysis program, used to  deter­
mine the therm al coefficients relating to the therm al conductivity of the sample, 
is discussed. Using this method, the measured therm al conductivity tem perature 
dependence of the ceramic Pyroceram is presented, which agrees with the Ther­
mophysical Properties Research Centre’s (TPRC) recommended values. Finally, 
a technique for isolating the effects of external influences, such as pressure, on 
the heat conduction mechanisms is described.
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C hapter 1

Introduction.

Knowledge of the tem perature dependences of the therm al param eters, in par­

ticular the specific heat capacity, therm al expansion and therm al conductivity, is 

of fundam ental significance to the understanding of the macroscopic and micro­

scopic physics of materials.

• The specific heat capacity (Cp) reflects the overall energetic state of the 

energy levels, and hence characterises the density-of-states of the quasi­

particles associated with the m aterial, such as electrons, phonons, polarons 

and magnons.

•  The coefficient of therm al expansion1 is closely related to other therm al 

param eters, especially the specific heat capacity. W hen the therm al expan­

sion (a cte) is considered alongside the specific heat capacity, information

relating to the lattice vibrations and bond strengths can be deduced.

2The thermal expansion is normally represented by the symbol a , but to avoid confusion 
with the thermal diffusivity, the symbol a cte will be used.
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Chapter 1. Introduction.

•  The therm al conductivity ( a c ) provides information relating to the scattering 

mechanisms of electrons, phonons and other quasi-particles.

W hen experim ental values of all three of these therm al properties are known for 

any particular sample, reasonable predictions of the m aterial’s behaviour under 

heating can then be confidently made. For some m aterials, the environments in 

which they are expected to operate demand th a t the m aterial is characterised 

to the extremes of tem perature and pressure. The ability to characterise a m a­

terial by making measurements of the therm al properties non-destructively and 

remotely has therefore become of interest to certain areas of industry, especially 

where the m aterials in question are used in hazardous environments. The m ea­

surem ent of the coefficient of therm al expansion can easily be modified to operate 

rem otely [1], and the therm al conductivity ( a c ) and diffusivity (a) can also be m ea­

sured remotely. Therefore, if the density (p) of a m aterial is known, the specific 

heat capacity (Cp) can be calculated from the relationship:

/c =  apCp. (1.1)

The m easurement of the therm al conductivity alone is of great interest to the 

power generation industry, and the nuclear industry in particular. The reliability 

of any safety system lies in its ability to predict the course of an accident, so 

th a t preventative measures can be applied in time. In the prediction of a failure 

in the cladding of a nuclear reactor, the oxidation of the fuel pins would cause 

swelling [2] and a predicted reduction in the therm al conductivity [3], which 

in tu rn  causes higher fuel tem peratures. Higher fuel tem peratures cause more 

oxidation, and a further reduced therm al conductivity, leading to a runaway sit­

- 2 -



Chapter 1. Introduction.

uation. The upturn in the thermal conductivity [4,5] above 2000 K shown by 

un-irradiated, stoichiometric fuel may prevent this runaway if  it is reproduced 

in the accident fuel pins. Therefore data obtained by remote measurement of the 

therm al properties of irradiated and oxidised fuels are among the many param e­

ters required by the Health and Safety Executive ( h s e ) responsible for safety in 

the nuclear industry.

The properties of UO2 have been much studied recently due to its importance as 

a nuclear fuel [6]. Uranium dioxide has the cubic fluorite structure as shown in 

figure 1.1, with the darker spheres representing the uranium  ions. Other mate-

Figure 1.1: The fluorite structure.

rials which adopt this structure, such as strontium chloride (SrCU) and calcium 

fluoride (CaF2 -fluorite), have been shown to undergo a transition to fast ion 

conductors at temperatures a few hundred degrees below their melting points [7]. 

This transition (the Bredig transition) is characterised by a lambda shaped peak 

in the specific heat capacity, or a sigmoid (S shape) in the enthalpy data [8].
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Chapter 1. Introduction.

Due to the high melting point (3120 K) of UO2 compared to other members of 

the fluorite family, measurement of the specific heat capacity up to the melting 

point becomes inaccurate [9] at the highest tem peratures, causing uncertainty as 

to  the existence of fast-ion heat conduction in UO2 . The upturn  in the therm al 

conductivity of UO2 after 2000 K has been reproduced by molecular dynamics 

studies [10], after including a contribution to the heat conduction by small po- 

larons, bu t this modelling shows no signs of fast-ionic conduction around the 

m elting point.

Uranium  possesses a divalent oxide which exhibits properties belieing its simple 

structure. At low tem peratures, UO2 can be described as a M ott insulator [11], 

while at room tem perature, it can be described as a poor semiconductor w ith a 

band gap of 2eV [12]. Although the therm odynam ical properties of UO2 may not 

be well understood [13,14], especially at high tem peratures, investigations into 

the therm odynam ic properties of more ‘common’ materials have resulted in a 

detailed understanding of their microscopic and macroscopic physical properties. 

A good example of such a ‘common’ m aterial is silicon, which has received con­

siderable attention due to its use in the semiconductor electronics industry. The 

therm al conductivity of silicon has been measured [15] from cryogenic tem pera­

tures, right up to its melting point (Tm =  1685 K). The tem perature dependence 

of the therm al conductivity at low tem peratures (below the Debye tem perature 

(0D = 674 K)) can be fitted by theory derived from consideration of the phonon 

relaxation times [16] for various scattering mechanisms. In a perfect single crystal 

at very low tem peratures, the only scattering of phonons needed to be consid­

ered, would be the recoil of phonons off the ‘walls’ of the finite sized crystal. 

At higher tem peratures, the effects of scattering by crystal defects [17] becomes

- 4 -



Chapter 1. Introduction ,

more dominant. This defect scattering, along with the scattering of phonons 

by other phonons, dominates the therm al conductivity tem perature dependence 

at m edium tem peratures for most m aterials, not just silicon. However, at high 

tem peratures (T >  #d), the therm al conductivity of silicon diverges from a the­

oretical dependence which assumes only lattice effects, and this divergence can 

be explained by the scattering of phonons off therm ally excited electrons and 

electron-hole pairs.

In the high tem perature region, the dependence of the therm al conductivity of 

silicon is comparable to th a t shown by metals [18]. Analysis of the therm al 

conductivity of metals normally makes use of the empirical law of Wiedemann- 

Franz [19], which is derived from an assumption tha t all the therm al ‘current’ is 

carried by conduction electrons, not phonons. Even though this analysis (based 

on the Drude theory of metals) is not completely accurate, the high tem perature 

dependence of the therm al conductivity of metals [20] closely resembles that 

predicted by the W iedemann-Franz law, due to the dominance of electron heat 

conduction [21] over phonons by an order of magnitude.

As the contribution by conduction electrons to the to tal therm al conductivity of 

metals can be modelled simply, the pressure dependence of the therm al conduc­

tivity provides an alternative m ethod for studying the phonon anharmonicity of 

a metal. The pressure dependence of the electron contribution2 can be obtained 

from the high tem perature Bloch-Griineisen expression [22], and when subtracted 

from the to tal therm al conductivity, the pressure dependence of the lattice con­

2Not to be confused with the electronic contribution Kejec which relates to small polaron- 
phonon interactions.
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Chapter 1. Introduction .

tribution remains. This pressure dependence can be shown [21,23] to be related 

to the therm odynam ic Griineisen param eter. The Griineisen param eter (jth) is 

related to the other therm al param eters, the specific heat capacity (Cp) and the 

coefficient of therm al expansion (ctcte), by the equation,

3BmQcte /-t
1th =  — ~-----, (1.2)

Op

where B m represents the isothermal bulk modulus.

Conventional techniques for measuring the therm al conductivity of m aterials re­

quire some form of physical contact to be m aintained w ith the sample [24]. This 

criterion has restricted the investigation of the effects of pressure on the therm al 

conductivity to the m oderate pressures (maximum 2 G Pa [25]) obtainable using 

conventional Bridgeman anvil cells. The thermophysical properties of m aterials 

at extrem e pressures (2 Mbar, 200 GPa) are of interest to  scientists, especially 

geophysicists, as the properties of materials at these pressures cannot be con­

fidently extrapolated from lower pressure data due to the dram atic change the 

applied pressure has on the energetics of a m aterial [26].

To generate the extreme pressures required by geophysicists, a diamond anvil 

cell must be used [27], which makes the measurement of properties which require 

electrical contacts impracticable. A group in Berkeley, led by Raymond Jeanloz, 

have had limited success in measuring electrical properties [28] using specialised 

gaskets containing the electrical contacts, and using a laser to heat a silicate 

perovskite sample ((Mgo.ssFeo.^SiOs), they measured the phase diagram of this 

perovskite to a pressure of 127 GPa (1.3 Mbar) [29].

- 6 -



Chapter 1. Introduction.

In this thesis, an experim ental apparatus capable of remotely heating samples, 

and measuring the generated tem perature distributions remotely is described in 

chapter 2. After construction of this apparatus from its individual components, 

the accuracy of the system as a whole and the subsequent computer analysis was 

tested by measuring the spatial tem perature distributions of known sources (sec­

tion 4.2). By subsequently analysing the radial tem perature profiles generated 

on the test sample by the Nd:YAG heating laser, the melting points of poly­

crystalline m aterials can be remotely determined (section 4.5). Using a finite 

element analysis program to reproduce the radial tem perature profiles from the 

given therm al properties, a m ethod for determining the tem perature dependence 

of the therm al conductivity from the measured radial tem perature profiles is de­

scribed in section 5.4. This apparatus has been constructed in such a way tha t all 

measurements can be undertaken remotely, and therefore the apparatus is ideally 

suited to diamond anvil cell work. W ith the methods for remotely determining 

the therm al conductivity detailed in chapter 5 of this thesis, it will become ap­

parent th a t the measurement of the therm odynam ic properties of m aterials under 

extreme pressures is now possible.

- 7 -
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C hapter 2

E xperim ental hardware design  
o f the laser heating and  
detection  system s.

The abilities to heat a sample remotely, or to  measure the tem perature of a 

sample remotely are both, on their own, very useful techniques in m odern science. 

Combining both these abilities produces a powerful tool for remotely investigating 

the high tem perature properties of materials.

Using a focused laser beam to remotely generate a ‘hot-spot’ on a sample, the 

radiation emitted from the ‘hot-spot’ is monitored by a CCD based spectral detec­

tion system, and the recorded data array can then be subsequently analysed. The 

apparatus shown in figure 2.1 can be separated into two major parts, namely the 

heating system based on an infra-red solid state laser, and the detection system 

based around the spectrograph-CCD combination. In between these two main 

stages, the invisible laser beam is steered firstly by a gold coated copper-nickel

- 9 -
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Nd:YAG rod
Gold
Mirror

Quartz Flashlamps1
MirrorPC Beam

Expander
Shutter

Photodiode

Heating System
Collection

Optics Focussing
OpticsCCD

Dichroic mirror Sample
YAG
Line filter

Spectrograph

Detection
system

Figure 2.1: Diagram of the experimental apparatus.

mirror and then by a dichroic mirror to the focusing optics, which in turn focuses 

the laser beam onto the front face of the sample. The thermal radiation em it­

ted from the front face of the sample by the laser generated hot spot is focused 

onto the entrance slit of the spectrograph by the collection optics. The emitted 

radiation is not reflected back towards the solid state laser as the dichroic mir­

ror is designed to operate so that it reflects the infra-red laser radiation like a 

normal mirror, whilst allowing the visible radiation em itted from the sample to 

be transm itted through to the detection system. It is the wavelength and spatial 

distribution of the light em itted from the laser heated sample which is required 

for the subsequent analysis to produce a tem perature profile.
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2.1. The heating system. Chapter 2. Apparatus.

2.1 T h e h ea tin g  sy stem .

There are many ways to heat a sample, which can wary from electrical resistive 

heating to gas burners. The object of this experiment is to investigate samples 

contained in isolated environments; therefore a non-contact m ethod of heating 

is required. This criterion restricts the m ethod of heating the sample to  either 

inductive heating or the use of lasers.

The heating system we are employing is a solid state laser operating in the near 

infra-red part of the spectrum . W hilst this radiation is invisible to  the human 

eye, conventional optics can still be used to focus th e  beam. However, there 

are several restrictions inherent in the use of lasers of this power which will be 

discussed later in section 2.4.

2.1.1 Laser heating.

Over the last decade, neodymium doped y ttrium  alum inum  garnet (Nd:YAG) 

solid state lasers have been improved in terms of their output power and re­

liability, mainly in response to pressure from industry where they are used as 

welders. The laser used in our apparatus is a Quantronix series 100, continuous 

wave (CW) Nd:YAG laser, with a maxim um  rated power output of 32 W atts in 

the multimode configuration, or 16 W atts in the fundam ental TEM 0o mode. One 

modification from the standard model tha t has been made, is th a t a feedback 

system has been added to stabilise the power output. The effect of this on the
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Figure 2.2: Effect of the stabiliser on the laser’s TEMoo Gaussian beam width.

beam width is shown in figure 2.2, where the operation of the stabiliser can reduce 

the standard deviation of the Gaussian beam width from 0.026% to 0.00175%, 

which equates to a fifteen-fold improvement.

Stabilizer on 
No Stabilizer

2.2 O p t ic s .

2.2.1 L ase r  fo cu sin g  o p tic s .

The sample depicted in figure 2.1 is mounted at the focal point of the focusing 

optics, which is a multi-element lens. The laser beam will therefore be focused

to a point with a minimum radius (tuo) which can be determined by Gaussian

optics [30,31]:

4A F  , x
W° = 2 ^  ™
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Conventional
optics Gaussian optics

Focus

Figure 2.3: Gaussian optics compared to the conventional approach of ray tracing.

The symbol D in equation 2.1 represents the width of the beam entering the 

focusing lens, which can also be referred to as the effective aperture. The beam 

emitted from the laser cavity has a diameter of 0.4mm which is determined by 

the size of the exit aperture situated in front of the mirror. Using this value of 

D , and substituting in the values of the focal length of the lens (F = 70mm) 

and the wavelength of the laser radiation (A =  1.064/nn), we can calculate from 

equation 2.1 the expected beam waist (uo) of the laser beam projected onto the 

sample surface:

1 4 x 1.064pm  x 70mm
UJ° -  2 '

=  118.5/mi. (2 .2)
7r x 0.4mm

This beam waist can be decreased by introducing a 10:1 beam expander into the 

position shown previously in figure 2.1. This results in the beam waist being 

reduced by a factor of ten as the effective aperture of the focusing optics is 

increased by a factor of ten with the introduction of the beam expander.

From figure 2.3 we can see that the beam takes on a parallel character close to 

the focus. Using Gaussian optics we can calculate a quantity called the depth of 

field (A) which is a measure of the distance from the focus that the beam width

-  13 -



2.2. Optics. Chapter 2. Apparatus.

becomes equal to \Z2 lj0-
O \ / Tp \  2

A =  —  • f — j  =  829.8/mi. (2-3)

The value calculated in equation 2.3 is quite large when compared to the sample 

size, so the heating of the sample can be considered to be uniform in radius 

through the depth of the material.

2.2.2 C ollection optics.

The ‘hot-spot’ generated on the sample will emit radiation in all directions, but 

we are only able to collect the light em itted in the direction of the incoming laser. 

This means tha t the light is collected first by the focusing lens, which results in 

a parallel beam of light being propagated back to the collection optics. Before 

the light reaches the collection optics, it passes through the dichroic m irror and a 

filter to remove any reflected laser light. These two steps do not alter the physical 

shape of the beam, but reduce the intensity of the beam  due to absorption. In 

the case of the dichroic mirror, a non-uniform wavelength response is imposed 

on the spectral distribution of the light em itted from the sample. This nonlinear 

response will be illustrated subsequently in section 2.3.3, bu t first different optical 

configurations used for the collection optics are discussed below.

Circular lens.

The simplest of the collection optic system used comprises a single circular lens, 

as shown by figure 2.4. This was the configuration employed by Jeanloz [32] in
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Hot
spot

Entrance slit
0 of ,
Spectrograph

Figure 2.4: Circular lens used as the collection optics.

his original apparatus used to measure melting curves of upper mantle materials. 

The use of a single spherical lens results in a very bright spot, and minimises the 

absorption of light by the collection optics due to the use of only one lens. The 

major drawback of this system is that the height of the image recorded by the 

CCD is limited by the width of the entrance slit. It would be possible to make 

wider entrance slits, but then the effects of wavelength convolution (discussed in 

section 3.1) would make this approach impracticable.

C y lind rica l  lens.

The way that the spectrograph operates (described in section 2.3.1) means that 

it is possible to increase the spread of the spatial data  without incurring any 

of the detrimental effects of wavelength convolution. This increase in the spa­

tial resolution is achieved by careful design of the collection optics. In an ideal 

situation, we would have an image of the sample’s hot-spot projected onto the 

entrance slit of the spectrograph so that it covers the whole height of the slit, and
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Pocu*

(a) Plan view. (b) ‘3D ’ view.

Figure 2.5: Layout of the collection optics using cylindrical lenses to focus the 
image.

ideally the image should be narrow enough to use as thin a slit as possible. If an 

optical design similar to that shown in figure 2.5 is used, then the ideal situation 

described above is approached, as the cylindrical lenses L 2  and L 3  squeeze the 

light into a line, while maintaining the height of the image produced by the long 

focal length circular lens Li, which is required to produce an optical image of the 

‘hot-spot’.

M icroscope  ob jec tive .

If we take the reasoning for using cylindrical lenses one step further, we could 

expand the optical image produced by the circular lens in figure 2.5a.) with a 

microscope objective lens to produce parallel light as demonstrated in figure 2.6. 

If the entrance slit is much narrower than the height of the image, then the sub-
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Spatial
filter

Image
on

entrance
slit

Circular 
collection lens

Microscope objective 
lens

Figure 2.6: Layout of the collection optics using a microscope multi-element lens 
to focus the image.

sequent computer analysis is made easier by treating the recorded data as a slice 

section through the hot-spot. W ith a slice section rather than a complete disc, 

there is no need to implement the Abel inversion correction stage (section 3.3). 

However, the loss of light due to absorption in the microscope objective lens means 

that very intense hot-spots are required before this method can be implemented 

confidently.

The inclusion of the spatial filter shown in figure 2.6, is an optional step which 

could be employed to remove the effects of defects introduced in the m anufactur­

ing process of the focusing lens and surface defects on the mirrors. The reader 

should consult Hecht [33] for a further discussion on the use of spatial filters.
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2.3  T h e o p tica l d e tec tio n  sy stem .

The detection system is designed to simultaneously collect and measure the spec­

tra l and spatial distribution of the radiation em itted from the surface of the 

sample. For this particular application the radiation is visible light, which en­

ables us to take advantage of recent technological advances in the efficiency of 

silicon detectors, precision in the fabrication of charge coupled devices (ccd), 

and com puter aided m anufacturing of optical components as incorporated in the 

spectrograph.

2.3.1 The CCD detector array and spectrograph.

The workings of the spectrograph shown in figure 2.7, are hard  to describe, and 

only marginally easier to  visualise.

Let us consider the example of a ‘hot-spot’ em itting light; this light is focused 

down to a line incident on the entrance slit of the spectrograph by the system 

of cylindrical lenses as described earlier in section 2.2. This image on the en­

trance slit can then be thought of as divided into small segments equal in size to 

the height (23 /mi) of the CCD pixels. The ‘super-corrected’ holographic grating 

in the spectrograph splits each of these segments into its spectral components, 

whilst retaining their spatial integrity, depicted in figure 2.8. The 2D data array 

of spatial position against wavelength data is then read from the CCD by the con­

trolling computer via an IEEE interface. The data is then subsequently analysed
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Focal plane

Super-corrected 
holographic 

concave grating

Entrance
slit

800nm

200nm

Adjustable 
plane mirror

Image of sample

Figure 2.7: Schematic of the layout and optical path of the spectrograph.

using a FORTRAN program (o m a 2 t) ,  outlined in section 3.6 of this thesis.

Spatial
position

Wavelength

Figure 2.8: Spectral splitting of focused image.

The signal to noise ratio of semiconductor detectors can be vastly improved by 

operating the detector at low temperatures, preferably in the liquid nitrogen 

tem perature region. This increased signal quality arises from the increase in 

electron mobility, in conjunction with a decrease in the thermal noise associated 

with the reduced ambient tem perature.
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For our application, it is not practical to operate the detector at liquid nitrogen 

temperatures, so the rear face of the CCD detector array is cooled with a Peltier 

cooler. To remove the heat generated by the p-n junction of the Peltier cooler, a 

continuous flow of chilled water is passed over the junction. As the Peltier cooler 

can reduce the tem perature of the CCD to as low as -20°C, a continuous flow of 

oxygen free nitrogen is passed over the CCD’s front face to prevent atmospheric 

moisture condensing, and forming ice crystals on the detector face.

2.3 .2  W avelen gth  ca lib ration  o f th e  sp ectrograp h -C C D  
com b in ation .

The manufacturers’ of the spectrograph claim that the wavelength dispersion is 

linear, so in principle we could calibrate the system by measuring the spectrum 

of only two laser lines. To verify the manufacturers claims, we have measured 

the spectrum of a collection of laser and spectral emission lines which are listed 

in table 2.1.

Source Wavelength /nm Reference
Helium Neon laser 632.991 [34]
Mercury vapour lamp 435.956

546.227 [35]
577.119
579.226

Cadmium lamp 467.946
480.125 [35]
508.723
644.024

Table 2.1: Table of emission lines
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Figure 2.9: Wavelength calibration spectrum.

The spectra obtained are shown in figure 2.9, and can be fitted to a linear expres­

sion for wavelength against CCD pixel number with two adjustable parameters, 

namely the starting wavelength (As) and the wavelength dispersion (AA).

A =  Xs +  (AA x pixel number) (2-4)

The expression which the OMA2000 software controlling the detector calculates 

is obtained by fitting the measured pixel positions to their tabulated wavelength 

values using a linear least squares analysis. The linear expression obtained can 

be written:

Wavelength =  447.296 nm +  0.5797 nm x pixel number. (2-5)

The wavelength dispersion term  (AA) agrees well with the manufacturers’ spec­

ifications, which state a 190nm to 820nm wavelength range spread over 25mm. 

This equates to a dispersion of 0.5796nm compared to the measured value of 

0.5797nm.
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Figure 2.10: Comparison between the N PL calibration and the Planck curve. 

2.3 .3  S p ectra l resp on se  and correction .

Most optical components used in the apparatus absorb light, but it is the non­

linear spectral absorption of light by the dichroic mirror and the spectrograph- 

CCD combination which dominates the shape of the spectral distribution as 

recorded by the CCD. To measure this wavelength dependent absorption, a white 

light source previously calibrated at the National Physical Laboratory (NPL) is 

positioned behind a pinhole situated where the sample would be mounted. The 

light em itted from the pinhole is collected by the CCD, and the system’s spectral 

response curve is calculated by dividing the measured wavelength distribution 

of the tungsten lamp by the NPL calibrated curve [36] shown in figure 2.10. A 

series of spline coefficients are extracted from the obtained sensitivity correction 

factors shown in figure 2.11. To correct an obtained raw data set, the relevant 

sensitivity correction factor for any particular wavelength is calculated by inter-
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Figure 2.11: Sensitivity coefficients to correct for the system ’s spectral response 
by multiplication.

polation using the B-spline coefficients [37]. This method has been shown to be 

more computationally efficient than vector multiplying the 2D data set by a ID 

matrix of precalculated sensitivity coefficients.

2 .4  S a fe ty  c o n s id e r a tio n s .

The Nd:YAG laser we are using is classed 4b according to the Health and Safety 

Executives guidelines. Because of this classification, there are certain restrictions 

on its location, and on its modus operandum that need to be observed.

One requirement is that the laser should be interlocked in such a way that it 

is impossible to walk into the laboratory when the laser is lasing. Legislation 

does not require that this interlock be ‘latching’ in design, but this was deemed
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Figure 2.12: Laser safety interlock circuit.

a logical precaution, and can be seen included in the safety circuit shown in 

figure 2.12.

Other precautions include the wearing of safety goggles at all times that the laser 

flash lamps are illuminated, and not just when the laser is lasing, as the infra-red 

radiation em itted from the flashlamps can damage the retina of your eyes.

2 .5  S a m p le  m o u n ts .

In figure 2.1, the sample is depicted as a free standing piece of material. This is 

only symbolic, as the samples are mounted in a specially designed ‘gas cham­

ber’, christened the “Controlled Atmosphere Chamber” (cac) and shown in 

figure 2.13. This piece of equipment ensures that an inert atmosphere can be 

maintained around the sample while it is being heated, thus preventing the 

sample oxidising or changing its stoichiometry. When experiments with hyper-
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Rubber O-rings 
—  to maintain 
airtight condition

out

Figure 2.13: Schematic layout of a sample mounted inside the CAC.

stoichiometric uranium dioxide (UO2+*) are being carried out, it is necessary to 

pass a mixture of carbon monoxide and carbon dioxide gas over the sample to 

maintain the relevant stoichiometry. The precise mixture depends on the initial 

stoichiometry and the expected peak tem perature to be generated on the sample. 

Experiments on purely stoichiometric UO2 are made easier because a m ixture of 

4% hydrogen in argon or helium is used, which is a standard mixture readily 

available from BOC™.

Other sample holders can be used depending on the aim of the experiment being 

undertaken. For example, a “Diamond Anvil Cell” (dac) would be used in exper­

iments needing high pressures. The configuration of the Mao and Bell [38] DAC is 

shown in figure 2.14a, with a close up view of the method of sample containment 

shown in figure 2.14b.

Sample

Quartz
Window
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(a) Mao and Bell DAC. 

Gem diamonds
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Figure 2.14: Schematic diagram of a “Diamond Anvil Cell” with an expanded 
view of the sample containment.

The extreme pressures (0.5-1.8 Mbar) generated by DAC devices [27, 39] are 

achieved by using a lever and fulcrum to force a piston into a cylinder. Only 

moderate forces are required to be applied to the steel piston, as the small sur­

face area of the diamond facets results in large pressures being generated. With 

such large stresses being imposed on the gem diamonds, it is im portant tha t the 

facets forming the ‘point’ of the diamonds are aligned parallel with each other 

(as depicted in figure 2.14b.), as incorrect alignment results in the diamonds 

shattering. Measurement of the pressure generated on the sample is achieved by
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measuring the change in the fluorescence wavelength of ruby [40,41], bu t care 

needs to be taken to measure the fluorescence at ambient tem perature due to 

large tem perature dependence of the ruby Ri-line shift [42]. Crystals of other 

compounds have been suggested [43,44] to replace ruby in the m easurement of 

the pressures inside a DAC. The suggested compounds all exhibit a smaller pres­

sure induced fluorescence wavelength shift, but have little  or no tem perature 

dependent wavelength shift.
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C hapter 3

M athem atical foundations for 
reconstruction  o f tem perature  
profiles.

In this chapter, the steps and m athem atics needed to reconstruct the radial tem ­

perature distribution from the image recorded on the CCD are outlined. The 

collection optics normally used to focus the image onto the spectrograph are of 

the cylindrical type discussed in section 2.2, and therefore Abel inversion correc­

tion stage will normally be needed to be implemented.

The intensity distribution incident upon the CCD detector array is converted to a 

2D array of numbers by the OMA2000 software. In the raw form, these numbers 

are meaningless; bu t by applying the linear wavelength calibration previously ob­

tained using a m ercury lam p and laser emission lines (described in section 2.3.2), 

and correcting for the non-linear spectral response of the system, we obtain an ar­

ray of numbers which represent wavelength against intensity data. This corrected

- 2 8  -



3.1. Wavelength deconvolution. Chapter 3. Mathematical Analysis.

distribution can then be viewed using a software package called the Utah Raster 

Toolkit (URT). This program converts the data to a Run Length Encoded (RLE) 

greyscale picture as shown in figure 3.1. The data in its present form cannot 

be used to directly determine the tem perature distribution, as further analysis is 

required.

Figure 3.1: RLE picture of an array of sensitivity corrected data.

To obtain a true tem perature profile, we need to reconstruct the radial em itted 

intensity distribution from the array of recorded ‘line profiles’. This is achieved 

by using the Abel inversion, which is described subsequently in section 3.3. We 

can then fit the spectral distribution to the Planck radiation law, as is described 

in section 3.4, and obtain the radial temperature profile.

3.1  W a v e le n g th  d e c o n v o lu tio n  o f  sp e c tr o g r a p h ic  
d a ta .

The concave holographic grating in the CP200 spectrograph is designed to ensure 

that all the spatial information is mapped onto the focal plane of the spectrograph 

with its spatial integrity preserved. So far, no manufacturer has managed to pre-
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~L

Figure 3.2: Schematic diagram of a twin slit spectrometer.

vent a spectrograph or spectrometer from ‘smearing’ the wavelength information. 

This smearing is actually an image of the entrance slit spread over the wavelength 

domain, and will be subsequently referred to as wavelength convolution.

Precision spectrometers minimise the effect of wavelength convolution by using 

two gratings, as illustrated in figure 3.2. The first grating has a small disper­

sion and a small exit slit, which corresponds to a narrow entrance slit for the 

second grating, which has a larger angular dispersion than the first grating. The 

increased precision comes from the combination of the angular dispersion of the 

second grating and the narrow entrance slit, which minimises any wavelength 

convolution.

The CP200 spectrograph used in our experiment has a 1:1 aspect ratio, which 

means that if an image of height 1cm is incident on the entrance slit, the image at 

the focal plane would also be 1cm high. If this image consisted solely of monochro­

matic light, then the width of the image in the wavelength domain would be the
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Figure 3.3: Comparison of laser line resolution using 250//m and 50//m slits.

width of the entrance slit. For the CP‘200, we have three interchangeable entrance 

slits which can be used (250/mi, 100//m and 50//m); of these, the 250/nn slit is 

normally used.

Flooding the entrance slit with light from a helium-neon (HeNe) laser, operating 

at its red wavelength (632.8 nm), we would expect to measure an image width 

of 250//m on the CCD. The CCD detector array consists of ‘pixels’ with an area 

of 23pm x 23^m, which corresponds to an image of the slit covering 11 pixels. 

This can be seen in figure 3.3, along with the same measurement taken using a 

50pm slit. If the spread of light over the whole of the slit was uniform, then it 

would be relatively simple to correct for the convolution [45], but because we are 

measuring the em itted intensities from a circular hot spot, we face two problems:

1. The light is not monochromatic, but is distributed in the wavelength domain 

according to the Planck radiation law (equation 3.23).

2. The slit is not evenly illuminated, as we are using a cylindrical focusing
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spatial
position
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Figure 3.4: Superposition of slit images, 

system to compress the data into an elliptical distribution.

This means that our raw data is a superposition of images of the slit, spread over 

the wavelength domain, similar to that shown in figure 3.4.

Let us suppose that the intensity of the incident light is uniform for all wave­

lengths, then from figure 3.4, it can be seen that we would have to compensate 

less at the edges in the spatial direction. If an exponential type distribution 

along the wavelength domain is included, the raw distribution between two ‘cu t­

off’ frequencies would resemble figure 3.5. After we have convoluted this raw 

data assuming a 250/um slit and an elliptical spatial intensity distribution, the 

difference between the true data and that recorded on the CCD can be calculat ed, 

and is shown in figure 3.6. Note that the largest differences are at either end, 

adjacent to the two ‘cut-off’ frequencies.

From the RLE picture shown in figure 3.1, we can see that for a measured d a ta  

set, the intensity drops off gradually at the blue end of the wavelength range, 

which means that the effects of wavelength convolution are not significant for (our
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particular application, as this drop off is mirrored in the long wavelengths before 

the sensitivity correction occurs.

3.2 T h e R ad on  transform .

The ability to  obtain ‘true d a ta ’ from a set of line profiles has many applications. 

One particular example, th a t most people will be familiar with, is Com puted To­

mography ( c t ) , which is used prim arily in medical scanner technology. In CT, 

X-rays of a known strength are em itted from a source, and the attenuation p 

is measured across a section of the sample. The source and detector are then 

rotated  to  a different angle 0, and the process is repeated. W ith the attenuation 

known for a complete set of angles p( 0 ), the distribution of absorbing elements 

a(x)  can be m apped by the m ethod of back projection (equation 3.1), where (j) 

and p define the position in the sample in polar coordinates.

OO

a(x) =  ^  r 9 9  f  -------------  a^9 P- (3-! )27r2 Jo J p — r cos($ — 6 )
— OO

This equation has been shown [46] to be a simplified form of the Radon transform 

[47], and can be efficiently implemented [48] using Fast Fourier Transforms (F F T ’s) 

by computers, so th a t the measured attenuations can be rapidly converted to a 

graphical representation of the sample. Consider an example of the forward 

Radon transform. W hen a 3D unit square (figure 3.7) is viewed face on (0 = 0° or 

90°), the Radon transform  would simply be a square of height 10. If the observer 

is positioned at an angle of 45 degrees, then the Radon transform  resembles 

figure 3.8. W ith Com puted Tomography, the samples (normally people) are of 

an arbitrary geometry so it is necessary to take information from a range of
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U n it  sq u a r e  ------

20

Figure 3.7: A 3D unit square in Cartesian space.

angles. However, if we know that we have a circularly symmetric distribution, 

then we need only to take data from one viewpoint as the Radon transform is 

the same for all angles. It is because of this fact that the Abel inversion, used 

in problems with axially symmetric distributions, is considered a subset of the 

Radon transform.

3 .3  T h e  A b e l in v ersio n .

The Abel inversion has been widely used in plasma diagnostics [49,50,50-52] to 

determine the ‘true’ radial data from the projected 2D linear data obtained ex­

perimentally. To try  and understand the need for these mathematical algorithms, 

let us consider a sphere. If we were to take a photograph of a grey sphere, the 

picture would be of a grey filled circle, which is the surface projection of the 

sphere. However, in optical experiments the projection will not be of the surface,
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Figure 3.9: Configuration for the forward Abel transform derivation.

but an integrated representation of the 3D object, so the picture would now still 

be a circle, but the centre of the circle would be more ‘grey’ than the edges.

Consider a circular disc of thickness Sz (shown in figure 3.9), with the radial 

distribution described by the function f (r ) .  The observed intensity along the x 

axis for the cross-section 8 y 6 z can then be written:

—Xo
I ( y ) 8 y 8 z  =  ^  f ( r )  8 x  8 z  6 y. (3.2)

x 0
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Reducing the small element size (SxSy) to an infinitesimal size, and introduc­

ing the substitution y = yjr 1  — x 2, we arrive at the expression for the forward 

transform.

'M = M
' < r > -  < 3 J >

R  is the radius of the sample, or the point beyond which the function f ( r )  can 

be thought to be zero. The inverse of this transform, shown in equation 3.4, can 

be obtained by considering a circular symmetric case of the Radon transform. 

For a full explanation, the reader should consult Deans [46] or Bracewell [53] who 

detail the m athem atical proof.

The relationship between I (y)  and / ( r )  can be visualised graphically (figure 3.10), 

by considering a “hot-spot” with a radius R  which is viewed along one axis. 

W hat the eye sees is a 2D image which is in reality constructed out of a set of 

line integrals. In practice each pixel of the detector has a finite width a, so the 

collected image is not a set of line integrals, but a set of volume integrals /(y ) , 

from which we wish to calculate the radial distribution / ( r ) .

If the expression for /(y )  were a known function such as I (y)  =  1 — y 2  then

the distribution / ( r )  could be directly evaluated using equation 3.4. However

we have a discrete data  set, not an analytical expression, which means th a t we 

have to use numerical approximations. Outlined below is the simplest numerical 

m ethod for obtaining the radial distribution using the Abel inversion.
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Intensity

Figure 3.10: Sample surface and its 2D visualisation

3.3.1 T h e N esto r  and O lsen m eth o d  for A b e l inversion .

The Nestor and Olsen method [54] is considered by many to be the simplest to 

implement, but is only accurate for smooth data sets due to the susceptibility of 

this method to noise .

The starting point for the Nestor and Olsen algorithm is the Abel inversion 

equation. This can be converted into a linear form by using a transformation of 

variables, u = y 2  and v = r 2. Equation 3.4 can be now written:

(3.5)

The y axis is now be subdivided into N  strips, each of width a, with the position of 

the nth strip being determined by yn = na. Similarly, the radius can be subdivided 

into k radial sections1 as shown in figure 3.11. The integral in equation 3.5 only

1Note that the subscript k corresponds to radial sections, and n the linear.
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.Sampling
slit

Sample divided 
into radial 

sections
y=0

Figure 3.11: Sample surface subdivided into radial sections.

requires the radial components from the desired radius (r =  k) to the edge 

(r =  R); therefore the equation can be rewritten as a sum over the strips in the 

y direction from the strip at r  =  k to the edge strip:

- 1
/(»*) =  —

n = k

( a ( n + l ) )2

/
( a n )2

(3.6)

As the above equation stands, the exact functional form of I(u)  needs to be 

known. To make the inversion algorithm globally applicable, we need to substi­

tu te  in an approximate expression for the gradient d l (u ) /du :

d / ( “ ) _  / n + l ( l t )  -  n ( u )  , .

du (a(n +  l) )2 — (an ) 2

Finally, as (ak ) 2  in equation 3.6 is constant for a given radius, we can evaluate 

the integral:

J (u -  {ak)2) - 1/2du =  2 (3.8)

Substituting the expressions 3.8 and 3.7 into equation 3.6, we obtain an expression 

for f(vk)  which is a sum of forward differences. The terms in equation 3.6 are 

all in terms of the transformation variable u, therefore we can transform back to 

the y and r  ordinates:

/ ( f t )  =  y ,  A kn(In+1 (y) -  In(y)) (3.9a)
n = k
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Akn —
((n +  l ) 2 -  k 2 ) 1 ' 2  -  (n2 -  k 2 f ! 2  

2/2 +  1
(3.9b)

This sum m ation was expanded and rew ritten by Nestor and Olsen [54] in such 

a way th a t the difference between subsequent data points is no longer required, 

but instead the difference in the Akn coefficients is used as a multiplying factor.

(  h ( —Akk) \

/ ( r*) = 7r a

+h+i{Akk — Akk+i)
+  • • ■

T-fjV—1 (AkN—2 — AkN-l )
\  + lN A kN - l  I

This can rearranged to give a more manageable summation:

—2 N
f(rk )  = —  E  Bknln'Ka ,71—K

where — &k n A k k  +  (1 & kn )  [-̂ dfcn—1

(3.10)

(3.11)

3.3.2 Polynom ial fitting schem es for A b el inversion.

Various methods of approximating the experimentally obtained ‘linear’ da ta  I(y)  

as a polynomial have been tried, with the aim of benefiting from the ease of 

calculating the differential, and hence evaluating the inversion. These methods 

can be separated into two parts: simple polynomials, and orthogonal polynomials.

Cubic and Quartic polynom ials m ethods.

Many authors [55-58] have tried fitting their m easured linear data  to simple 

polynomials. Some m ethods are more elaborate than others, bu t all are based on
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the same principle: obtaining an approximation to the linear function I(y)  which 

can then be differentiated using conventional calculus.

The m ethod employed by Barr [59] is different in th a t numerical analysis tech­

niques were used to ‘change’ the order of the integration and the differential. If 

the functions / ( r )  and I(y)  are m athem atically well behaved [60], then the Abel 

inversion can be rew ritten as,

' M  -  S T ?  < 3 1 2 * >

where, .T(r) =  2 J  f ' &»■ (312b)

The function r ) is approximated to a numerical data  set Fk, which repre­

sents the measured data  set I (y)  multiplied by a coefficient set obtained by a 

m ethod similar to tha t used in Nestor and Olsen’s m ethod outlined previously in 

section 3.3.1.

N
Fk = a ^ 2 a knIn (3.13a)

n = k

F(k)  = a ( A k + B kk 2  + Ckk 4 ) = F { r ) .  (3.13b)

The numerical distribution Fk is then fitted to  a quadratic polynomial (the right 

hand side of equation 3.13b), using linear least squares about a five point spread 

(F k - 2  to Fk+2) to produce an approximating polynomial F(k) .  W hen k < 2 ,  Fk is 

fitted to F(k)  through the points Fq to F4 . Once the polynomial coefficients have 

been obtained for each radial position k , the radial distribution can be calculated 

using combinations of the B k and Ck polynomial term s, as the A k term  disappears 

in the differentiation.
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Orthogonal polynomial methods.

The advantage of using orthogonal polynomials, in particular Chebyshev poly­

nomials, lies in their accuracy in replicating a function using a relatively small 

num ber of coefficients. Their use also facilitates rapid calculation w ithout intro­

ducing serious truncation errors.

The m athem atical definition of an orthogonal function is

Ja Qm( y ) Q n ( y ) d y = l °h 2  ■ (3-14)

The b?n term  is called the norm of the function, and will be real and positive if

the function Q(y)  is real. If a weighting function is introduced, then the limits

can be extended to ±oo, as long as the weights are zero outside the region (a, 6 ).

The nam e orthogonal comes from an analogy with vector algebra. Two vectors a 

and b are said to be orthogonal if their scalar product vanishes (equation 3.15a). 

For three dimensional space (Z =  3), the scalar product will vanish if a and b are 

m utually perpendicular vectors.
3

a - b  =  ^ a k b k  =  0 (3.15a)
k = l

=> Q m  Q n  = YlQmk{y)Qnk(y)  = | ^ 2  Vm =  n ' (3'15b)

The Chebyshev polynomial of degree n is generated by equation 3.16a, and satis­

fies the orthogonality condition 3.16b where w(y)  is the weighting function shown 

in equation 3.16c.

Tn(y) = cos(n arccos y) (3.16a)
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0.5

(y)

-0.5

10.5-0.5 01

Figure 3.12: Chebyshev polynomials of degrees n = 1 to 5.

\ ( 0 i / j
J  w(y)Ti (y)Tj (y)dy  = I tt/ 2  i = j ^  0

-1 [ 7T i =  j  =  0

w(y)  =
1

(3.16b)

(3.16c)

The first five Chebyshev polynomials are shown in figure 3.12. If we have a large 

data set of N  points, then the data can be exactly reproduced by the sum of N  

Chebyshev polynomials. However, calculation of this many polynomials would be 

tim e consuming, but truncation of the series to a lower degree m  would introduce 

an error no larger than the first neglected term. As the maximum adm itted value 

of the Chebyshev polynomials is unity, the size of the truncation error will be 

no larger than the first omitted approximating coefficient am+i. The rapidly 

decreasing magnitudes of the ak coefficients generated by a conventional fitting 

routine means that the truncation error will be small.

1
f ( y ) £a*T/fe_i(y) 

L k= 1
 a i .

2
(3.17)

To fit to the ‘linear’ data I(y)  using Chebyshev polynomials, we need to change
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the experim ental range of R  > y > 0 to m atch the Chebyshev orthogonality 

interval [-1:1]. Using a conventional curve fitting m ethod [61], I (y)  can be ap­

proxim ated by the polynomial Pm(y).

I (y)  = Pm(y) = ( y ' - R )

Next we make a change of variable,

1

L k = l  11

1

-V). (3.18)

V2 =  R 2 ~  r 2) « +  - ( R 2 +  r 2)

which enables the Abel inversion equation to be rew ritten as [62]:

/ ( r )  =  L d u

where
R 2 — r 2 r*

and

+

c w  =

R 2
d ( ( R 2 - r 2 r :

L * = l

dx V fl2 “ +  # 2 ,

- 2 a i '

(3.19)

(3.20a)

(3.20b)

(3.20c)

3 .4  F itt in g  to  th e  P lan ck  rad ia tion  law .

3.4.1 Linear least square m ethods - th e  W ien  approxi­
m ation.

The simplest case for linear least squares regression is the fitting of a straight 

line to  a data  set in order to obtain the gradient and intercept. In m athem atical 

terms; if we have a data set of N  data points, represented by d(x ) then m  and
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c in equation 3.21 are varied such tha t the sum of all the residuals, squared is 

minimised.

f ( x ) =  m x  +  c (3.21)

=>■ M i n  - d ( x )l2 j -  (3*22)

For our particular application, we are trying to fit an array of wavelength (A) 

versus intensity to the Planck radiation law shown in equation 3.23.

^  exp(hc/ \kT)  — 1 ^

This equation represents the wavelength distribution em itted from a body at 

a tem perature T  with an emissivity e. The minus one in the denominator of 

equation 3.23 means tha t it is not possible to describe the wavelength distribution 

in a linear form of the type shown in equation 3.21.

If we look back into history, circa.1900, there were many eminent physicists try ­

ing to explain the radiation spectrum  em itted from a therm al cavity. Rayleigh 

and Jeans postulated tha t the radiation was due to standing waves inside the 

cavity, resulting in an expression which fitted the available data well a t long 

wavelengths, but seriously disagreed at shorter wavelengths. This became known 

as the ultraviolet catastrophe. Max Planck was subsequently awarded the  Nobel 

physics prize in 1919 for his work in applying quantum  theory to this problem , 

and the derivation of equation 3.23.

In 1911, Wilhelm Wien was awarded the Nobel prize for dem onstrating th a t 

the product of the wavelength at maximum intensity and the tem perature was
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Figure 3.13: Error between Planck distribution and the Wien approximation.

a constant. This in turn led to an expression for the intensity, which can be 

linearised (equation 3.24b), called the Wien approximation:

U X , e , T  ) = (3.24a)

/  IwA5 \  1 he , .

=  - f - j k +  ln£- ( 3 - 2 4 b )

Although not as precise as Planck’s expression, the errors in the visible part of the 

spectrum only reach the order of 2 % at the long wavelength and high tem perature 

limits, as demonstrated by figure 3.13.

Using the linearised Wien approximation (equation 3.24b), we can fit our data us­

ing a conventional linear least squares analysis. The disadvantage of this method 

is that any point with an associated large error can ‘pull down’ the regression 

line, as the analysis does not weight the points according to their errors. This
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is demonstrated in figure 3.14, along with an improved method which will be 

described in the following section.

3.4 .2  Itera tiv e  rew eigh tin g  fittin g  to  th e  P lanck  curve.

In our application, data from the edge of the sample has much smaller intensities 

than the central tracks. The effect of this reduced intensity can manifest itself as 

a ripple after we have corrected for the sensitivity, and thus cause the fitted line 

to be too steep as shown in figure 3.14.

Weights0.5

0.0

-29 Iterative

-30

-31Normalised 
V coord 34 Unweighted

-33

21000 22000 23000 24000 25000
Normalised x coordinate

Figure 3.14: Fits with conventional least squares and iterative reweighting anal­
ysis.

Once an initial linear least squares analysis has been performed on the data set, 

we recalculate the weights of each point so that they are proportional to the
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distance of the data  point to the fitted line, and then the weights are normalised 

relative to the standard deviation of residuals (<r):

w(x)  =  w {d(x) — f ( x ) }  (3.25a)

°  =  Q 6 7 4 5  ‘ m edian(M s)  ~  f ( x ) 1) • (3.25b)

The new weighting function (wnew) is then calculated from the normalised weights 

(u), and includes a ‘cut-off’ constant (c).

1 “  (c) M ^ c . (3.26)
0 ltd >  c

This process is repeated until the new weights are identical to those obtained 

from the previous step. The weights finally obtained by this m ethod are also 

shown in figure 3.14.

3.4.3 N on-linear least square fitting m ethods.

The method of iteratively reweighting a linear least squares analysis is applicable 

only to those functions which are linearly reducible. However, some functions 

are non-linear, and to fit a set of data to these functions we need to  employ 

non-linear least square fitting methods. Let us consider a general function with 

a  param eters (m 1, m 2 • • • m a ), which we shall write as g(m).  In trying to fit the 

observed data (d*&5) to the function g( m ), the difference between the observed 

data  and the function is monitored, so tha t when the param eters are correct, the 

difference will be ideally zero.

If our initial guesses for the param eters (mprior) are not exactly correct, then we
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Parameter A

(a) 3D visualisation. <b) Contour plot with regres-
sion vectors.

Figure 3.15: Visualisation of steepest descent non-linear regression, 

can calculate a misfit function S(m):

S(m)  =  1 (3.27)
M Y « (<C)2

For any given gl( m ), the fitting routine converges to a minimum using the 

method of steepest descent. If the initial estimates of the A and B parameters 

are m^rior and m^rior respectively, then the starting point for the regression will 

be at the point with coordinates (m A OT, m®nor), marked as x  in figure 3.15b. 

By calculating the residuals in a small radius surrounding the starting point, the 

direction of the steepest descent can be determined. After the regression routine 

has moved along this direction by a length determined by the local gradient, the 

process is repeated until the minimum is reached. A similar case is also shown in 

figure 3.15b with a starting position labelled as y, which may appear to be nearer 

to the minimum than x, but will still require the same number of iterations to 

converge. One way of visualising the regression routines workings is to imagine a 

marble placed at the starting point. From figure 3.15a, we would see the marble 

roll downwards, and come to rest at the minimum.
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If gl{m)  is differentiable with respect to all points and  param eters, then a deriva­

tive of the misfit function can be obtained. At the desired minimum, the gradient 

of the misfit function will be zero:

'dS_
dm

The existence of local minima, and/or saddle points, means th a t the converse of 

the above is not always true. To check for convergence to  the global minimum, 

different starting points {m^rior) are needed, and confirmation th a t the routine 

converges to the same minimum, with the derivative of the misfit function being 

zero.

=  0 .m.rn% (3.28)

W hen the gradients can be easily calculated, a m ore efficient scheme of regres­

sion can be employed. In the Gauss-Newton metlhod of regression, subsequent 

param eters from the starting point are calculated by  the algorithm:

’d 2S ' - l
' d S '?72.n_j_i — m n

d m 2 mn dm^

3.5 T echn iques for sm o o th in g  d a ta  se ts .

In the many steps needed to  convert experimental d a ta  to a tem perature profile, 

the presence of noise can lead to m ajor errors at tw o stages of the analysis:

1 . the conversion of the data from a linear form to a radial form (Abel inver­

sion, section 3.3),

2 . the fitting of the irradiance distribution to th e  Planck radiation law (sec­

tion 3.4).
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Localised irregularities can be seen in figure 3.L6a where the dark spots are ice 

crystals and the bright spots are water droplets.. In this case we can distinguish

(a) Data showing local ‘drop- ((fc) ^  smoothjng

Figure 3.16: Demonstration of smoothing to remove localised irregularities.

between the ice crystals and the water droplets because the water droplets act 

as a miniature lens focusing the light to a small bright spot with a darker ring 

around it, whilst the ice crystals reflect light away from the CCD. The effect of 

the irregularities can removed by smoothing using either moving averages (sec­

tion 3.5.1) or Fourier techniques (section 3.5.2) to produce a smoothed output 

similar to that shown in figure 3.16b. In the case of the  Abel inversion, the data 

also needs to be symmetric; symmetrisation can be achieved by simply averaging 

the data from each side of the centre point, or by a more elegant method outlined 

in section 3.5.3.

3.5.1 S p lin e  a p p r o x im a t io n s  a n d  m o v in g  av e ra g e  s m o o th ­
ing  m e th o d s .

If we were trying to obtain the value of a single constant from a large number of 

similar readings, we would naturally sum all the readings and then divide by their 

total number, ie average the data. For a data stet with an unknown functional 

form, averaging is obviously unsuitable, but the- variation known as nine point
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smoothing can be used. If we take any point n, we can smooth the data  by 

averaging over a nine point spread centred around the point n, bu t a weighting 

function is introduced to reduce the emphasis of points further away from n.

5 f ( n )  = / ( n )  +  ^ / ( w - l )  +  | / ( n - 2 )  +  | / ( n - 3 )  +  i / ( n - 4 )

+  g/(rc +  1) + - / ( r a  +  2) + - / ( n  +  3) + - / ( n  +  4). (3.30)

Alternatively, w ith the advent of com puter efficient algorithms, it is fairly easy to 

fit a smooth curve through a data  set using splines. We can determ ine the am ount 

of smoothing used by limiting the maxim um  number of B-spline coefficients used 

to reconstruct the data.

3.5.2 Fourier techniques for data sm oothing - convolu­
tion  w ith  specialised  lag windows

By far the most powerful tool used for image processing is the use of Fast Fourier 

Transforms (F F T ’s ) , which are most computationally efficient for data  sets of 

size 2n, where n is an integer. If we consider a noisy data  set, the noise will 

be replicated in the higher frequency components of the FFT relating to the 

harmonics of the sampling frequency.

The most obvious m ethod to remove the noise would be to  pass the Fourier coef­

ficients through a high-pass filter where only the FFT coefficients corresponding 

to frequencies under a ‘cut-off’ value of M  are passed onto the reconstruction 

routine. The com puter implem entation of the high-pass filter is more commonly 

known as the Heaviside lag window.
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Figure 3.17: Reconstructed square pulse showing effects of series truncation 
caused by convolution with a Heaviside lag window.

Consider the construction of a square wave Il(^) from the sum of sin waves:

OO
IK*) =  £  a(n) sin ((2 n — l)x) (3.31)

n = l

If we truncate this series so that the upper limit is lowered to a finite value, 

ripples will be introduced into the reconstructed square wave, which can be seen 

in figure 3.17. To avoid this problem, we can use two specialised lag windows, 

namely the Parzen and Tukey-Hanning windows which have the functional forms 

shown below:

Parzen X(k) = 1 -  6  ( ^ ) 2 +  6  ( ^ ) 3

2 ( l - £ ) 3 (3 32)

Tukey-Hanning A(k) = |  ( l +  cos(^g)) &e[0 ,M] .

The three lag windows described above are depicted in figure 3.18, with the ‘cut­

off’ frequency M  set to 100 for all cases.
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Figure 3.18: Graphical representation of three lag windows.

3.5.3 Fourier sy m m etr isa tio n .

The Abel inversion (section 3.3) is only valid for data which is axially symmet­

ric. To ensure that this condition is met, the measured ‘linear’ data obtained is 

symmetrised before being inverted. A method to symmetrise real data sets using 

FFT’s is outlined below.

Any function f ( x )  can be written as a sum of an even and an odd function:

f ( x )  =  e(x) +  o(x).

The definitions of an even function e(x) and and odd function o(x) are,

and o(—x)  =  —o(x).

e(x) =  e(—x) (3.34a)

(3.34b)
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Using these definitions, equation 3.33 can also be written:

f ( —x ) =  e(x ) — o(x). (3.35)

Equating the even term s in equations 3.33 and 3.35, and relating to a discrete data 

set I ( x)  w ith its centre point at x =c , the m ethod known as two-sided averaging 

can be derived:

hym{x +  c) =  i  ( / ( C  -  X )  +  I(c  +  x)) . (3.36)

A more elegant m ethod is to take the Fourier transform of equation 3.33:

t o o  t o o
F(s)  = 2 /  e(x) cos(xs)dx — 21 o(x) sm(xs)dx,  (3.37)

Jo Jo

where s is the spatial frequency. It can be seen from equation 3.37 th a t the 

even part of the function is represented by the real part of the Fourier spectrum , 

and conversely, the odd part manifests itself in the imaginary part of the Fourier 

spectrum . Therefore to obtain just the symmetric form of function f { x ) ,  we take 

the Fourier transform of the data, and reconstruct using only the real components 

of the Fourier spectrum.

= FFT [ » (F (s ) ) ] . (3.38)

The effectiveness of this simple m ethod is shown in figure 3.19 where Fourier 

symmetrising and smoothing by convolution with a Tukey lag window is used on 

a noisy data set to produce a clean Gaussian signal.
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Figure 3.19: The effect of Fourier smoothing and symmetrisation.

3 .6  C o m p u ter  im p le m e n ta t io n  for c a lc u la tio n  
o f  te m p e r a tu r e  p ro files .

To implement the methods of analysis outlined in the preceding sections, a com­

puter analysis program ( o m a 2t ) was written in FORTRAN with each m athem at­

ical stage previously discussed written as a subroutine. The division of the main 

program makes it easier to change the ordering of the analysis. Changing the or­

der of the spectral sensitivity correction and the Abel inversion does not violate 

the legitimacy of the analysis, because the Abel inversion only affects the spatial 

distribution, whilst the spectral sensitivity correction operates in the wavelength 

domain. A flow chart of the steps needed to correct from the raw data obtained 

from the CCD to the tem perature profile is shown in figure 3.20.
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Figure 3.20: Flowchart of the OMA2T program.
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C hapter 4

R esu lts validating the accuracy  
o f th e laser heating apparatus.

After the laser heating apparatus had been constructed, the next step was to cali­

brate  the system. This calibration process produced results which have been used 

to validate the accuracy of the measured tem perature distributions. Firstly, the 

power distribution delivered by the laser needs to be characterised (section 4.1) 

so tha t the therm al param eters of the m aterial being heated can be determined. 

To test th a t the com puter routines calculating the tem perature are producing ac­

curate results, the tem perature distribution of a known source (section 4.2) was 

measured and compared to the calibrated distribution. As a secondary check of 

the accuracy of the tem perature measuring system, m elting point measurements 

were made by analysis of the tem perature profiles generated on ‘standard’ m ate­

rials (section 4.4). Finally, having calibrated and tested the system, tem perature 

profiles produced by the Nd:YAG laser on stoichiometric uranium  dioxide (UO 2) 

were measured.
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4 .1  C h a r a c te r isa tio n  o f  th e  la ser  b ea m .

Before any meaningful thermal data can be obtained, the exact distribution and 

quantity of heat being supplied to the sample by the laser needs to be known. To 

accomplish this task, an Optilas Beamscan™ beam profiler was used to measure 

directly the laser beam ’s characteristics at the focus. The beam profile data is 

built up by scanning a slit across the laser beam, and recording the image on a 

silicon photodiode. This enables powerful laser beams to be measured without 

destroying or swamping the silicon detector.

1000 Beam waist ° 
Theory -----

800
13.5%
Beam

diameter
600

400

200

15090 100 110 140120 130
x  position / p m

Figure 4.1: Beam width through the focus, as a function of distance from the 
focusing lens.

When the laser is operating in the monomode configuration, the spatial distribu­

tion at the focus of the beam can be modeled with Gaussian optics. A comparison 

between theory and the data obtained for the Gaussian 1 / e 2 beam width through 

the focus is shown in figure 4.1. A similar comparison for the measured peak ir- 

radiance as a function of position through the focus is shown in figure 4.2. When 

the theoretical values for the minimum beam waist (u;o) and focus point (#o)
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2500

Raw data ° 
Theory ------ ~2000

Irradiance ^ ^ 0  

w / m2 1000

500

140 15090 100 110 120 130
x  position / p m

Figure 4.2: Peak irradiance Gaussian beam characteristics.

have been extracted from the measured data, the expected irradiance distribu­

tion through the focus can be drawn (figure 4.3). Finally, the monomode peak

Relative

Intensity

Distance from focus 
/mmBeam width /mm

Figure 4.3: Irradiance profile of laser beam through focal point.

irradiance incident on the sample can be predetermined by setting the current 

supplied to the laser to the value calculated from figure 4.4.

The combination of two mirrors and a multi-element lens in the laser’s optical
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Peak 
Irradiance 100-; 

W /m 2

22 28 30 3220 24 26
Flash lamp current /Am ps

Figure 4.4: Peak irradiance dependence on power supply current.

path means that aberrations in the beam might manifest themselves if the system 

were not properly aligned. One such aberration is a ‘coma’ caused by the focusing 

lens not being properly aligned, as illustrated in figure 4.5a. Profiles of the laser 

beam taken during the initial alignment of the optics show a ‘textbook’ example 

of such an aberration, with the coma being labeled in figure 4.5b.

A less serious aberration can occur from misalignment of the dichroic and gold 

mirror combination causing the beam to be propagated along a direction other 

than the optic axis. This can be seen from the set of results taken using the 

Beamscan shown in figure 4.6, which shows how the position of the peak changes 

through the focus. This divergence corresponds to a deviation from the optic 

axis of only 0.2 seconds of arc, illustrating the sensitivity of the Beamscan and 

its usefulness in constructing and testing optical assemblies.
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Irradiance

400 

300

Optical axis 200

100 
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500 y'  -500

500

(a) The effect of . . .  , ,, - (b) Profile of monomode laser beam,skew mounting the focusing
lens.

Figure 4.5: Development of a ‘coma’ produced by misaligned optics.

4 .2  W h ite  lig h t ca lib ra tio n  e x p e r im e n ts .

To determine the wavelength dependent absorption of the system, the spectral 

distribution of a tungsten lamp, previously calibrated at NPL, was measured using 

the same optical system used to produce and measure the ‘hot-spots’. The mea­

sured spectral distribution can then be compared to the calibrated distribution

y position 
/ p m

340-

Gradient = 3 x 1 0  3300-

260-

220-

180-

90 110 150100 120 130 140
x position /  mm

Figure 4.6: Beam divergence from the optic axis caused by mirror misalignment.
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of the lamp, and the absorption of the system obtained, as has been described 

earlier in section 2.3.3.

The tungsten lamp emits a spectral distribution of light identical to tha t which 

would be em itted from a ‘black-body’ radiator, with a colour tem perature [36] 

of 2977 K. Therefore, the accuracy of our analysis can be tested by measuring 

the spectrum em itted from a pinhole placed at the focus of the multi-element 

objective lens, with the tungsten lamp illuminating the rear. The tem perature 

profile measured for a back illuminated 100/mi pinhole is shown in figure 4.7.

5000
1 ■ 1 1 I i

4000 - -

Temperature anno -r  o u u u ,
/K F - ■ t  - t  *
' 2000 - -

1000
i- _ . i i......... i t

0 2 4 6 8 10 12
Radial position /pixels

Figure 4.7: Temperature profile of 100/jm pinhole.

In figure 4.7, the slight upward trend in temperature from the centre can be 

explained by the pinhole not being placed exactly at the focus of the laser focusing 

lens. The displacement caused the blue part of the em itted spectrum to be 

more sharply focused in the centre, and the red light to be biased at the edges. 

These biases will respectively lower and raise the tem perature when measured 

by fitting to the Planck radiation law. To avoid these complications, a steel 

shim was mounted in the sample holder (CAC), and the laser was used to ‘drill’
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5000 

4000
Temperature Qnnn

2000 
1000 

0

Figure 4.8: Temperature profile of laser drilled steel shim.

a hole through the shim. The pinhole thus formed is known to be at the laser 

focus, but the diameter of the hole is not immediately known, and needs to be 

subsequently measured by a travelling microscope. The tem perature profile for 

a back illuminated laser drilled shim, with a measured width of 12  pixels, is 

shown in figure 4.8. The size of the image for the 100pm  pinhole produced on 

the CCD detector is 207//m, therefore the magnification factor for the focusing 

optics is 4.37, which compares to 4.286 calculated from geometric optics. Using 

this magnification factor, the measured width of 12  pixels corresponds to a hole 

diameter of 131/zm; the width subsequently measured by a travelling microscope 

was the same, within experimental error.

Ideally, measuring the tem perature distribution of the white light shone through 

an annulus would present no problems, but from figure 4.9, it can be seen that 

although the analysis produces the correct widths of the annulus rings, the mea­

sured temperatures are inaccurate. These inaccuracies result primarily from the 

Abel inversion stage of the mathematical analysis, which has to resolve disconti­

nuities in the gradient of the ‘linear’ data set produced by the forward transform

10 12 146 80 2 4
Radial position /pixels
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Figure 4.9: Temperature profile of an annulus (error bars omitted for clarity).

of an annulus distribution. Any numerical inversion scheme will always have diffi­

culty reproducing these types of distributions, whereas monotonically decreasing 

distributions, such as Gaussian distributions, present no such problems.

4 .3  M u lt im o d e  h e a tin g .

The characteristics of the beam emitted from a laser are determined by the design 

of the laser cavity. A good example is a helium neon gas laser. The energy level 

diagram for the helium-neon mixture suggests that there will be four wavelengths 

at which the device will naturally lase; green (543nm), yellow (594nm), orange 

(612nm) and red (633nm). To select the red line alone, the optical length of 

the cavity is constructed so that a resonance condition occurs for A =  633nm. 

Similarly, by placing a small aperture in front of the mirrors of the NdrYAG 

laser, we can restrict the laser to operate in the fundamental TEM0o mode, or 

monomode as it is commonly known. Restricting the amount of radiation lasing
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will naturally reduce the power of the emitted beam, therefore the maximum 

power available in the monomode is only 17 Watts compared to the 32 Watts 

available in the multimode configuration.

4.3 .1  H ea tin g  o f v itreo u s carbon as a te s t  m ateria l.

W ith the laser operating in the multimode configuration and the current sup­

plied to the flashlamps set to a minimum, a sample of vitreous carbon w'as 

heated. Initially a very bright spot was observed, which subsequently subsided to 

a red/orange coloured spot. The initial bright spot was attributed to the burning 

of the glassy surface characteristic of the manufacturing process, and was at such 

intensity that it was impossible to measure without saturating the CCD detector 

system.

1.4-

Irradiance
kW /m 2 1-0-

0 . 6-

300 400 500 600 700 800200
y position

Figure 4.10: Multimode beam profile as measured at the beam focus.

A profile of the multimode laser beam is shown in figure 4.10, and the corre­

sponding tem perature profile produced on the vitreous carbon sample is shown 

in figure 4.11. It is believed that the dip in the centre of the profile was caus<ed 

by the excessive power of the laser vaporising portions of the sample, producing 

a hollow. The bottom of the hollow produced would be further from the focus of

-6 6  -



4.4. TEM qo heating. Chapter 4. Validation.

3400-
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Temperature

2600-

2200 -
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Figure 4.11: Temperature profile produced on vitreous carbon.

the laser beam, and therefore would be subjected to lower power densities, and 

hence would not reach such high temperatures as its surrounding areas.

4 .4  M o n o m o d e  h e a t in g  (TEM oo).

The large power densities obtainable in the multimode configuration have caused 

some samples to disintegrate. This fact, allied with inaccuracies in the analysis 

caused by the presence of three peaks in the power distribution (demonstrated in 

figure 4.10), means that the use of the monomode configuration is recommended, 

and all further measurements discussed in this thesis used this configuration. A 

beam profile measured with the laser operating in the TEM0o mode is shown in 

figure 4.12 with the characteristic Gaussian parameters (Im ax ^0) a ŝo shown.
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Figure 4.12: Measured TEMoo mode Nd:YAG laser beam profile, and the corre­
sponding mathematical form of the Gaussian distribution.

4.4 .1  T em p eratu re m easu rem en ts on a silicon  w afer.

After calibrating the system and measuring the tem perature of a known source, 

measurement of tem perature profiles generated on a ‘standard’ material with 

a well documented thermal conductivity is the next step needed to assess the 

accuracy of the system. The ideal test material should satisfy several criteria:

1 . A high melting point, so that temperatures can be generated in the solid 

phase which are large enough to be detected. Ideally the melting point 

should be above 3000 K.

2. The material has to be opaque to the laser radiation, 1.064 pm.

3. Non-combustible, for obvious reasons!

4. Easily manageable, so that special handling equipment is not required.

5. A well documented thermal conductivity up to the melting point.
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For the above reasons, silicon (melting point 1650 K) was selected as a suitable 

material. Other materials were originally tried, but some absorbed so much 

energy from the beam that it was hard to control the heating, and others, for 

example vitreous carbon, where portions of the sample were vaporised.

After the raw data has been recorded by the CCD , the array of numbers read from 

the detector are saved under a filename (eg. Ic0930aa) with the extension .asc 

added to the end. When the tem perature profile for this data set has been calcu­

lated, the results are saved in a file with an extension .pqrs which corresponds to 

the different mathem atical analysis methods used by the OMA2T program. The 

effects of different analysis methods listed in table 4.1 on the resulting temper­

ature profiles are shown in figure 4.13. The profiles shown in figure 4.13 agree

p S m o o th in g  m e th o d Reference
1 No external smoothing
3 Fourier smoothing section 3.5.2
6 Unweighted 9-point moving average section 3.5.1

<1 S y m m etr isa tio n
1 No symmetrisation
2 Fourier symmetrisation section 3.5.3
3 Two side averaging
r Inversion
1 Nestor and Olsen method section 3.3.1
s F it t in g
1 Unweighted linear least squares section 3.4.1
2 Weighted linear least squares
3 Iterative reweighting regression section 3.4.2
4 Non-linear least squares section 3.4.3

Table 4.1: Types of analysis signified by file extension .pqrs.

well with each other in the centre region of the hot-spot, but diverge at the edges 

where the errors increase due to a reduction in the measured intensity of the
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light.

1500-

Temperature
/K

1000-

Figure 4.13: Temperature profile generated on silicon, demonstrating different 
analysis techniques.

The profiles generated have a peak tem perature of 1430 K, which is below the 

melting point. When the laser power was increased, the silicon wafer cracked, 

preventing a determination of the melting point to cross-reference to published 

values.

4 .5  M e lt in g  p o in t m e a su r e m e n ts  o b ta in e d  from  
te m p e r a tu r e  p rofiles.

4.5 .1  P o ly cry sta llin e  iron m eltin g  p o in t d e ter m in a tio n

A common experiment used by teachers to demonstrate the latent heat of fusion

lc0930aa .llll  
lc0930aa.3211 
lc0930aa.3213 -  -  
lc0930aa.6211 - x -  
lc0930aa.6213 -  -

-10 -5 0 5 10
Radial Position /pixels
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Temperature /° C

Boiling

Melting

Time

Figure 4.14: Demonstration of the latent heat of fusion and vaporisation of ice.

and vaporisation is to chart the tem perature rise of a piece of ice as a constant 

heat is supplied to it. The recorded curve resembles that shown in figure 4.14, 

and the two flat sections of the curve coincide with the melting and boiling points 

of H20 . By applying the same physical principles, the melting point of a sample 

can be determined from the flat section of the tem perature profile generated by 

the Nd:YAG laser.

Temperature
/K

3500

3000

2500

2000

-5 0 5
Radial position /pixels

Figure 4.15: Temperature profile produced on iron showing melting.

The tem perature distributions produced on a polycrystalline iron sample by the
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laser operating at two different supply currents are shown in figure 4.15. From 

these two curves, it can be seen that there is a flattening of the profiles around 

1800 K. The values of these temperatures, and their respective errors, are shown 

in table 4.2. The statistically averaged value of 1772 K ±30 K was produced for

P o ly c ry s ta llin e  iron
30 Amps 31 Amps

Pixel Temperature /K + / - Pixel Temperature /K + / -
8 1784 154
9 1858 350

10 1822 435
11 1794 51 11 1762 533
12 1714 58 12 1686 617
13 1829 6 6 13 1703 1178
14 1748 78

1772.3 30.4 1790.4 125.9

Table 4.2: Melting point measurements for polycrystalline iron.

the profile generated with a laser flash lamp current of 30 Amps, and 1790 K 

±126 K for the profile generated with a current of 31 Amps. The melting points 

for pure iron quoted in Kaye & Laby [63] and the ‘Rubber Bible’ [64] are 1813 K 

and 1808 K respectively. These values are within the margin of error for the 

melting points we have observed.

4 .5 .2  M eltin g  p o in t d e term in a tio n  o f  sto ich io m etr ic  ura­
n ium  d iox id e  ( U 0 2).

Uranium dioxide does not meet the previously stated requirements for a ‘stan ­

dard’ material, not only because it is toxic, but also because of the ease with
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which UO -2 oxidises.

2U 02 ±  0 2 ^  U20 3 +  l /2  0 2. (4.1)

As long as correct procedures are adhered to in the handling of the uranium 

samples, the stoichiometric samples can be investigated in an atmosphere of argon 

and hydrogen so as to prevent the samples changing their composition. A decision 

by the Atomic Energy Authority (AEA) to build pressured water reactors has 

resulted in the physical properties of uranium dioxide being widely researched. 

The accepted melting point is that measured by Rand [65] at a tem perature of 

3120 K.

4000

3500

3000
Temperature

2500

2000

1500 -

1000
30 20 10 0 10 20 30

Distance from centre/microns 

Figure 4.16: Temperature profile produced on U 0 2 showing melting.

Uranium dioxide is a hard black material, and absorbs the laser radiation readily, 

and a current of 25 Amps supplied to the laser is all that is required to melt 

a sample. A temperature profile showing the characteristic flat section charac­

teristic of melting is shown in figure 4.16. Statistical analysis of the melting 

temperatures shown in table 4.3 produces a value for the melting point of 3120 K 

±46 K, which equates to the value recommended by Rand [65].
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U ra n iu m  dioxide
25 Amps

Pixel Temperature /K + / -
2 3139 309
3 3056 219
4 3189 138
5 3055 121

6 3126 56
3120 46

Table 4.3: Measured melting point temperatures for UO2 .

4 .6  P r e lim in a r y  co n c lu s io n s .

In the search for ‘standard’ materials with which to cross-check the accuracy 

of the OMA2T program, many radial tem perature profiles were generated. Sec­

tion 4.4.1 described measurements taken on a silicon wafer, which subsequently 

disintegrated under the power of the laser. Temperatures profiles generated on 

more robust samples of polycrystalline iron demonstrated that melting points 

could be determined.

Temperature profiles were generated on other samples, for instance uranium se- 

lenide and tungsten shown in figures 4.18a and 4.18d. As far as the author is 

aware, the melting point of uranium selenide does not seem to have been reported 

before. In our measurements (figure 4.18a) melting was not observed, therefore 

the melting point is expected to be greater than 1550T230 K. When these profiles 

for uranium selenide and tungsten are considered alongside profiles for uranium 

dioxide (figure 4.17) and silicon (figure 4.18b) which were all measured prior to 

melting, a characteristic ‘bell’ shape distribution can be ascribed to these pro­

files. If the Gaussian 1 /e 2 width of these ‘bell’ shape distributions are correlated
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3 0 0 0 -
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Figure 4.17: Temperature profile produced on uranium dioxide.

against the laser power supply current, as shown in table 4.4, then the different 

spectral emissivities cannot alone account for the disparity between Tmax, and the 

1/e2 width for different materials subjected to a similar laser power. This dis­

parity suggests that the thermal conductivity of the material under test strongly 

influences the shape of the generated tem perature profile.

Material Flashlamp

Current

l / e 2

/p ixels

Tmax

/K

Emissivity
solid liquid

Ref.

Si 30 80 1480 0.40 [6 6 ]
USe 23 85 1550
W 28 2 0 0 2300 0.43 [63]
U 0 2 24 32 2650 0.85 [63]
Fe 30 150 2700 0.35 0.37 [63]

Table 4.4: Effect of flash lamp current on peak tem peratures and profile width.

This influence of the thermal properties of a material on the generated profile 

will be investigated in part II of this thesis.

m ax
l / e  =  32

i i I r
-2 0 2 4

Radial position /pixels
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(a) Uranium selenide (23 A).
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(b) Silicon wafer (30 A).
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(c) Poly crystalline iron (30 A) - molten. (d) Tungsten (28 A).

Figure 4.18: Temperature profiles produced on various samples.
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C hapter 5

M ethods for determ ining the  
Therm ophysical Properties.

The ability to measure the m elting points of materials remotely in itself is of 

use, although its applications are lim ited to the investigation of phase transitions 

under pressure or ambient conditions. We have developed techniques to measure 

the therm al properties and the melting point of a m aterial remotely. The basis 

of these techniques derives from the heat conduction equation:

pCp̂ d t^  =  v ' [K V T (r ’ *)i +  w { ? >*)•

In general, the therm al conductivity varies as a function of tem perature, but 

to make the m athem atics manageable, the tem perature excursions are assumed 

to be small so tha t the value for k can be assumed to be a constant. The heat 

conduction equation can then be simplified to the more familiar form shown below 

in equation 5.2.



5.1. Steady state  methods. Chapter 5. Therm odynam ical Analysis.

Physical exam ination of this equation enables us to see how the therm al prop­

erties affect the heat distribution T ( r) in a material. The therm al diffusivity a  

determines the ra te  at which a sample heats up from the ambient tem perature; 

therefore we can consider the therm al diffusivity to be synonymous with the tran­

sient response of the system. Likewise, the therm al conductivity k determines 

the tem perature distribution when the m aterial has reached a steady state  condi­

tion. As an example, consider a m aterial with a small therm al conductivity and 

a small diffusivity subjected to a point source of heating; such a sample would 

take a long tim e to reach a steady state tem perature distribution, and would have 

a much smaller spread of heat away from the source than for a m aterial with a 

large therm al conductivity.

5.1 S tea d y  s ta te  m eth o d s for d eterm in in g  th e  
th erm al con d u ctiv ity .

5.1.1 Radial m ethods using therm ocouples.

One of the most common configurations for therm al conductivity measurements 

is shown in figure 5.1. A long cylinder of m aterial is used to reduce the analysis to 

a one dimensional problem, and the heat is supplied by a wire running down the 

middle of the cylinder so th a t the heat flows radially outwards from the centre. 

The tem perature difference between two thermocouples situated at different radii 

is measured, which can then be used to obtain the therm al conductivity from
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Platunium  
heating wire

L

Thermocouples

: d

Figure 5.1: Configuration for radial heat flow measurements, 

equation 5.3.

W  In(r2/ n )
K, = (5.3)

2 * (T, -  T2) '

W  is the power density delivered to the sample by the platinum  heating wire 

shown in figure 5.1.

Equation 5.3 is derived by considering two isothermal surfaces (T  and T  +  ST) 

similar to those shown in figure 5.2, where the rate of heat flow (Q ) through a 

small area (^^4) is given by:

ot or
(5-4)

For an infinitely long cylinder, the area term equates to SA = 2irrL, and by using 

a typical length of L = lm , equation 5.4 can be rewritten as:

d Q _ _ K dT(r 2 t) 
dt -  K

- 8 0  -

(5.5)
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dA

Figure 5.2: Two isothermal surfaces (T and T +dT).

The rate of heat flow can also be written as the power delivered to the system 

(W).  Substituting this into the above equation and rearranging, we can see 

that the thermal gradient is equal to a constant (W/2 ttk,) divided by the radial 

distance from the centre.

dT(r , t )  _  _ W _  1 
dr k 2 tt r

The solution to this simple differential equation is well known:

T(r, t) =  c ln(r) +  d.

(5.6a)

(5.6b)

Due to the fact that we are measuring the tem perature at two seperate radii, 

we now have two equations for T(r, t). Taking the difference between them, 

we obtain an expression for the constant c which equates to the tem perature 

difference divided by a ratio of the radii.

Ti =

T2  = 

C f t - T i )
ln(r2 / r i )

-8 1  -

c ln (ri) +  d 

c ln (r2) +  d

=  c.

(5.7a)

(5.7b)

(5.7c)
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Taking the expression for c above, and equating to the constant —W / 2 ttk,, we 

arrive a t the expression for the therm al conductivity stated  earlier in equation 5.3.

W  ln (r2/ r i )
27r (T1 - T 2) 

r 2  > r i .

(5.7d)

5.1.2 N on-contact m ethods.

The m ethod of determ ining the therm al conductivity outlined in section 5.1.1 

requires thermocouples to  measure the tem perature at different radii, therefore 

it could not be used to measure the therm al conductivity of a m aterial inside a 

Diamond Anvil Cell (d a c ) , or on any toxic material.

W hen a m aterial is in therm odynam ic equilibrium, the tim e derivative of the 

tem perature becomes equal to zero and the heat conduction equation shown in 

equation 5.2 can be rew ritten as:

W ( r , t )
V 2T(r,t)' ( )

This result implies th a t for a bulk m aterial with no surfaces or defects to perturb 

the heat flow, the therm al conductivity can be directly evaluated by equating the 

heat input distribution to the differential of the tem perature gradient.

The infra-red laser described in chapter 2 will produce heating at a depth below 

the surface of the sample. This depth is normally referred to  as the skin depth of 

the laser, and if this depth is large enough to  be able to ignore the perturbation 

of surface on the heat flow, then equation 5.8 would be valid. However, the
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assum ption th a t the therm al param eters do not vary with respect to tem perature 

is likely to be violated by the large tem perature gradients produced by the laser. 

The use of equation 5.8 to determ ine the therm al conductivity of a sample heated 

w ith the Nd:YAG laser will be discussed further in section 5.4.

5.2  T ransient m eth o d s for d eterm in in g  th er  
m al p aram eters.

M any different methods for determ ining the therm al properties, in particular the 

therm al diffusivity, have been devised [67-69]. To reduce complexity, all of the 

favoured methods use configurations which reduce the m athem atical dimensions 

of the problem. For instance, if we use a long cylinder of m aterial with axial 

heating, then we only have to consider one dimension. Similarly, if we consider 

a infinite slab, then the heat conduction problem reduces to a uni-directional 

problem.

Let us consider the radial heat flow configuration for a long cylinder described

earlier and shown in figure 5.1, the governing heat conduction equation can be

w ritten in cylindrical coordinates as:

d*T(r, t )  , 1 dT(r , t )  , W( r , t )  1 dT( r , t )
dr2 r dr  k a '  dr  ( ’

w ith the corresponding boundary condition

+  \ r { r  , t )  =  0 . (5 .9 b)

The solution to this problem can be determined by using the Hankel transform ,
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which is a variation of the integral transform  m ethod described in Appendix A. 

The Hankel transform  is sometimes referred to as the Fourier-Bessel transform, 

and deals explicitly with problems of cylindrical symmetry.

The Hankel integral transform  is defined as,

f br K ( \ m, r ) T ( T , t ) - d r  (5.10a)
Jo

and its corresponding inversion formula by:

T ( r , t )  = ' £ K ( \ m, r ) T ( \ m,t).  (5 .1 0 b)
771

The analytical expression for tem perature distribution T(r, t) can be obtained by 

using the appropriate kernel K ( Am,r) as determ ined by the relevant boundary 

condition, which in this case is shown by equation 5.9b. Then the tem perature 

distribution can be shown [70] to be:

T(r,<) =  £ / r ( A m, r ) e - “A2- ‘ (5.11a)
771

x +I I  e“A2mi ■ H (5-nb)
where,

A { \ m, t)  = (5.11c)
AC

l^(A„,r) =  f hr K ( \ m, r ) W ( r , t ) - d r  (5 .1 1 d)
Jo

F(Xm) = [ br K ( \ m, r ) F ( r ) - d r .  (5 .1 1 e)

The appropriate kernel for the boundary conditions in equation 5.9b is,
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with Am being the m th +  ve root of the transcendental equation :

AJi(A6) =  HJo(Xb).  (5.13)

The implementation of the integral transform to determine the thermal properties 

of a sample will be discussed later in section 5.3.3.

5.2.1 N o n -c o n ta c t  t e c h n iq u e s  - a p p l ic a t io n  o f  “b o x c a r ” 
in te g ra t io n .

It is not practicable to measure the tem perature rise of a material inside a DAC 

using thermocouples, but optical access to the sample is possible. To obtain the 

tem perature history of the sample, we build up the tem perature at a given radius 

from progressively time delayed data scans. This is illustrated in figure 5.3, where

N
1
I
E
£

t=0
Time

Figure 5.3: Development of tem perature history using “boxcar” integration.

dt represents the exposure time of the CCD detector used in our experiment. 

The tem perature history can then be used to fit to the integral transform theory 

described in the previous section.
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5.3 P ro b lem s in vo lv in g  p eriod ic  b ou n d ary  con­
d ition s - A n g stro m ’s m eth o d .

The steady state  solution of heat conduction problems subjected to a boundary 

condition which is a periodic function of tim e is of interest in many engineering 

applications. If one end of a long cylinder is subjected to periodic variations 

of tem perature, then the conductivity can be calculated from the phase of the 

therm al waves travelling down the cylinder, and the diffusivity calculated from the 

attenuation of the therm al waves. Angstrom was the first to employ this method 

[71], which is distinguished by the neatness of the the experimental m ethod and 

the m athem atics.

There are two ways to consider this problem. Firstly, we could write the bound­

ary conditions so th a t the ambient tem perature varies as a function of time, or 

secondly, we could include heat generation on the surface of the sample. Both 

these approaches have been shown by the author to produce the same answer, 

but we shall only consider the second case where heat is generated in a small 

depth on the front surface.

5.3.1 Front face heat generation.

For some m aterials it is not possible to construct a long cylinder of the material, 

and keep its composition homogeneous. Therefore, we shall now consider the 

problem of heat conduction in a disc of m aterial, as shown in figure 5.4. Let us
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_ _  r  =  0

t T i

z =  0

Figure 5.4: Configuration for Angstrom’s method.

consider the case where the heat generated is defined as a delta function 8 qz, at 

the front face of the sample (z =  0), and uniform in the radial direction. How 

this can be achieved experimentally is discussed in subsection 5.3.3. As we now 

have to consider two dimensions (radial and longitudinal) the governing equations 

for the configuration are slightly different from those shown earlier, and can be 

written as:

V 2T (r, z, i) +
g(r , z , t )  1

a dt

where the boundary conditions are,

<9T(r,0,*)
* dz  

dT(b , z, t)
K dr

and the initial conditions are

+  hT(r ,0 , t )  = hTa |z=0

+  hT{b,Z, t) =  |r=t

+  hT(r,  L, t) =

(5.14)

(5.15a)

(5.15b)

(5.15c)

F ( r ,z )  =  T (r, z, 0 ) = (5.16)

-  87 -



5.3. Angstrom’s method Chapter 5. Therm odynam ical Analysis.

The integral transform  solution can then be w ritten as the sums over the eigen­

values:

n = 1 m = 1
T (r , z ’ t ) = 22  YL K(Xn,z)  K((3m,r)  e x p ( - a (/?m 2 +  X2n)t) (5.17)

t
F ( r, z) +  J  exp(a(/9m 2 +  A2 )t') • A(/3m, An, t') dt'

where

Xn,t ' ) = -  g((3m,Xn,t) + f — hTa • ds  (5.18a)
K . Js  K

%

b
g(/3m,Xn, t)  = J  J ^ r  K(f3m,r) K ( Xn,z )  g ( r , z , t )  • dz  • dr  (5.18b)

r = 0 

b
F ( r ,z )  = [  [  r  # (/?m,r )  tf(A n,z ) T (r ,z ,0 )  ■ dz  - dr. (5.18c)

J  J  z = 0  
r = 0

The kernels for the boundary conditions in the z and r  dimensions have been

derived by Carslaw and Jaeger [72], and are:

j / , ,  s [2 Xn cos(Anz) +  £ sin(Anz)
7i(An,z ) — \ • . i i /2

V * A* +  ( * ) 21

Z  ( An cos(A„z) +  ^  sin(Anz) (5.19a)

b [ &  + P J } 1/2 J° 

RJo(Pmr) (5.19b)

subject to the relevant transcendental equations for A and (3 which are listed 

below:

X(  —  'I
tan(A i) =

M 0 S 6 )  =  - J 0(/?&).
tt

(5.20a)

(5.20b)
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Note that R  and Z  above represent constants which are functions only of the 

eigenvalues, not position. The heating term g(r, z, t ) can be written as the prod­

uct of three terms, shown below, which includes the sinusoidal time dependence 

of the heat input g(t) as depicted in figure 5.5.

<?(r , z, t) = g(r) • g(z) • g(t)

=  1 • $0 z • {{ga +  Sg) +  ^ s in (w t)}  . (5.21)

Evaluating the integral transform of the heating term  (<7(/?m, An , £)), we use the

12-
10-

2  6 g

Heat 6 -  
Input

T im e

Figure 5.5: Time dependence for sinusoidal heating commencing at t=0.

properties of the delta function 6 0z for the heat input in the z direction, and the 

uniformity over the radial direction at the z = 0  face to simplify the expression.

s ( A n , A  n,t) = g ( t ) K( Xn,0)  •
Jo

=  g ( t ) K ( \ n,0) h- ^ M J } mb). (5.22)
Pm

Before we calculate the A(/3m, \ n,t)  term, we can simplify the second term on 

the right hand term of equation 5.18a, namely
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Therefore the term  A((3m, An,£') in equation 5.18a can be w ritten in the form

where,

C = -
bR(ga + S g ^ M ^ K Z
P m

(5.24a)

(5.24b)

and

+  hTa j RbJo(fimb) 4 - Z  I An cos(A„£) +  — sin(AnL) — An

D = - S g ~  nZ.
K  P m

(5.24c)

The final term  we need to evaluate is the integral transform  of the initial condi­

tions.

b „
F ( r ,z )  =  T„ J  f  t K( Xn, z)  ■ dz  ■ dr (5.25)

=  constant =  L

W hen these expressions (equations 5.22, 5.24a, 5.25) are substituted into the 

integral transform solution (equation 5.17), the analytic expression for the tem ­

perature can be finally w ritten as

T ( r ,z ,f )  =  D  K(Pm,r)  K ( \ n,z )  exp(-e^)
n =  1 m = l

x I c +  /  exp(ei) ( C +  D  sin(u;£)) dt  
Jo

where e — a(A n2 +  ^n)'

(5.26)

The tim e integral can be now evaluated as

J  dt  =  ^— e xp (e t )  ^ +  ^exp(ef) 2 ^ —-  (esin(u;t) — u;cos(u;f) +  a;) ^
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After multiplying through, the expression for the tem perature distribution in a 

slab subjected to a periodic heat input can be simplified to

oo oo
T ( r , z , t )  = £  £  K(pm,r)-K{\(5.27)

n = l  n = 1

x {M  — N  exp(—et) +  P  (e sin(u^) — u> cos(utf))}

where

M  =  -  +  Pu> (5.28a)
e

P  =  (5.28b)

N  = -  ■- . lc. (5.28c)
e

5.3 .2  P h ysica l in terp reta tion .

l.i 
l

0.9 
0.8

Normalised 0.7 
Temperature q g

0.5 
0.4 

0.3
0 50 100 150 200 250 300 350 400 450 500

Time (t)

Figure 5.6: Theoretical tem perature profile obtained by Angstrom’s method.

Closely inspecting equation 5.27, we can see that the tem perature response takes 

the form of the (1  — e- f ) rise seen in radial heat flow experiments, but with a 

sinusoidal ripple imposed upon it, similar to that shown in figure 5.6.
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Temperature

0.0071500 
T im e t

e parameter

Figure 5.7: Theoretical tem perature response with varying param eter e =
a((3m 2  +  AJ); setting a = l ,b  = 2 , u  = 1/84.

The thermal diffusivity only appears in the terms in equation 5.27 containing 

the param eter e, and by plotting how the tem perature response varies with the 

param eter e, we can determine how the thermal diffusivity effects the tem perature 

history for this configuration. As can be seen from figure 5.7, the diffusivity 

not only effects the the rate of tem perature rise, but also the magnitude of the 

tem perature, which varies as This result is different from that obtained by 

the steady heating methods discussed previously, where the thermal diffusivity 

only affected the rate of tem perature rise, with the thermal conductivity alone
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1000-

800-

Temperature ^

400-

200-

Time t

Figure 5.8: Temperature response with varying frequency;setting a = 1 ,6  =  
2, e =  0.003.

determining the magnitude of the temperature.

The effect of changing the driving frequency a; by a small percentage is very marked 

Figure 5.8 shows that the driving frequency affects not only the number of troughs 

in a given tim e period, which would be expected, but also dramatically affects 

the magnitude of the temperature. This dependence of the tem perature history 

on the driving frequency illustrates the need for a frequency stable power supply 

to be used, and even more importantly, accurate determination of the driving 

frequency.

0.004
0.006

P^O.OOS 
0.01 Frequency

0.012
0.014
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5.3.3 E xperim ental im plem entation o f A ngstrom ’s m ethod.

A gold resistive element strip was evaporated onto a disc of Pyroceram  9606 which 

had dimensions 15.9 mm thick by 3.54 mm in diameter. The voltage generated 

across the thermocouple attached to  the rear face of the sample was recorded by 

a digital m ultim eter linked to a PC using specialised software associated with the 

PC mounted GPIB interface board.

Initially, to establish th a t the system was working correctly, a finite heat pulse of 

1 0  m illiwatts was applied to the front face via the resistive heating strip, and the 

rear face tem perature measured. This is essentially the same situation as used in 

laser flash methods, but here the sample cannot be considered to be an infinite 

slab. Theory predicts the tem perature response for this system to be:

OO OO

T ( r i t ) = X ) X ) A(/?m,r)A (A n,z )e x p (—e*) /  exp(et) (A g(t) + B)  dt.  (5.29)
71=1  771 =  1 ®

For a heat pulse g(t)  which was turned on at a tim e t \  and turned off a fixed 

tim e later, the shape of the expected tem perature response should have tha t of a 

sharp rise in the tem perature, followed by a steady cooling starting a small tim e 

after the heater was switched off. The thermocouple output voltage recorded is 

shown in figure 5.9, and seems to agree well tha t predicted by equation 5.29.

To generate the m odulating heat input, a function generator was used as the 

power supply, and heat was delivered to the sample through the resistive strip at 

a nominal driving frequency of 0.01 Hz. As has been shown earlier (figure 5.8), the 

form of the tem perature history is very susceptible to the driving frequency, and 

therefore it must be known accurately. The driving frequency can be obtained
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0.0001
Rear face T ------

8e-05

Thermocouple
. . 6e-05output

(V) 4e-05

Heating pulse2e-05

250 3000 50 100 150 200
Time /seconds

Figure 5.9: Heating and cooling curve for a finite heat pulse.

f =  1/84 Hz

0 20 60 80 10040
Period (1/s)

Figure 5.10: Power spectrum of sinusoidal tem perature response.

from the measured data by taking the power spectrum, and recording the period 

of the prominent spike. This is shown in figure 5.10, with the driving frequency 

being 1/84 Hz (0.0119 Hz), which compares with the nominal frequency on the 

signal generator reading being 0.01 Hz.

For this particular experiment, the tem perature response was recorded at the 

rear face of the sample using a thermocouple, and the sample was at ambient 

conditions. The normalised tem perature recorded at the rear face is plotted in
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figure 5.11.

1.1
1

0.9

Normalised
Temperature

0 200 400 600 800 1000
Time /s

Figure 5.11: Measured tem perature response for sinusoidal heat input.

It would be as easy to measure the rear face tem perature with an optical pyrom­

eter, with the sample mounted inside either a furnace or a cryostat, and the heat 

being supplied by a laser with its output modulated by an electro-optic device, 

so as to produce a sinusoidal heat input.

5 .3 .4  F ittin g  to  p aram eters using n onlinear tech n iq u es.

To extract the thermal constants (thermal conductivity and diffusivity) from the 

measured data, we need to fit the data to the integral transform theory repre­

sented by equation 5.27. As this expression is not linearly reducible, the most 

efficient scheme to use is the Modified Gauss-Newton nonlinear fitting method, 

which has been outlined earlier in section 3.4.3. W ith the radial heat flow method 

described in section 5.2, the fitting routine converged quickly and the transcen­

dental equation 5.20 was continuous, so the program used to fit to the thermal
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3

2

1

0

1

2
tan (A) 
tan(A) —

3
A2—4

0.1 tan(A) ----
■4

5
2 4 6 10 12 14 16 18 200 8

Radians

Figure 5.12: Roots of the linear transcendental equation.

parameters was relatively simple. Now that we are considering a finite slab, we 

have to solve the transcendental equation for the z direction (equation 5.20), as 

well as the radial transcendental equation. As this involves a function of tan, the 

equation is discontinuous at multiples of 7r/2 (see figure 5.12) and therefore we 

cannot employ conventional root finding algorithms such as bisection or Runge- 

K utta methods without carefully selecting the ranges over which they operate.

5 .4  P a r a m e te r  d e te r m in a tio n  u s in g  a r eg re s­
s io n  m e th o d  in  co n ju n c tio n  w ith  F in ite -  
E le m e n t A n a ly s is .

Because of the large temperatures gradients involved in generating a ‘hot-spot’ 

with a laser, and the effect of thermal radiation loss from the sample, it would be 

inaccurate to assume that the thermal conductivity remains constant. The heat
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conduction equation could be rewritten to incorporate the thermal conductivity 

as a function of temperature, but the effect of thermal radiation from the sam­

ple introduces a highly nonlinear boundary condition and the problem becomes 

analytically insoluble.

To model these effects, a finite element analysis (FEA) program was written to 

reproduce theoretically the tem perature profiles generated experimentally by the 

laser on the surface of a sample of stoichiometric Uranium Dioxide. Initially , FEA 

program used the thermal conductivity distribution recommended by Harding 

and Martin [73] which is shown in figure 5.13. The two theoretically generated

Recommended conductivity -----
Lattice contribution l / ( a  +  bT) ----

Small polaron contribution ^ -ex p (—d/T)  •
Thermal

conductivity

W /m K

1000 1500 2000 2500 3000
Temperature /K

Figure 5.13: Recommended form of the thermal conductivity («) of UO2 .

temperature profiles in figure 5.14 show the difference between the analysis using 

solely convective boundary conditions, and the analysis incorporating radiation 

from the surface. Even at these relatively low temperatures, the difference is 

quite marked.
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340
Radiation included —

330 Convection only —
Temperatur;

320

310

300

Radial position

Figure 5.14: Generated tem perature profiles using different boundary conditions.

Using this finite element analysis routine, it is easy to check the effect that a 

finite sample radius size has on the final tem perature profile. This is achieved 

by starting with a tem perature profile generated on a sample with a large radius 

to length ratio by the laser with a beam width much smaller than the radius of 

the sample, and then calculating the difference by sum of square residuals for 

subsequent profiles as the edges are ‘rolled’ in. The magnitude of the sum of 

squares is greater than unity because the profiles were not normalised, but left 

unaltered so that a change in the peak temperature, as well as the shape of the 

profile could be monitored. A radius to length ratio of approximately 5:1 was the 

previously accepted minimum value, but from figure 5.15 it can be seen that ratios 

as low as 2:1 could be used before any edge effects start to detrimentally affect 

the generated temperature profiles. A similar result can be seen in figure 5.15, 

where the radius to sample length was kept constant at 5:1, and the radius to 

laser beam width ratio was varied.

The generated profiles shown in figure 5.14 have a Gaussian tem perature dis­

tribution with respect to position, which would produce a discontinuity in the
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_ Radius/laser beam width - —  
jftadius/sjample length —|—le8

8e7
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Squares
4e7

2e7

6 8 120 2 4 10 14
Ratio

Figure 5.15: Effect of ‘infinite’ slab analysis, 

thermal conductivity calculated according to equation 5.30:

ac =  - W ( r )  /  V 2T(r,t ) .  (5.30)

This discontinuity is shown in figure 5.16, and is not the shape of the thermal 

conductivity used to generate these tem perature profiles, namely the function 

shown in figure 5.13. This result is not surprising when you consider the fact 

that the laser produces heat close to the front surface of the sample, therefore, in 

no way could this situation be considered a ‘bulk’ situation where equation 5.30 

would be valid. We propose that it is possible to obtain the parameters (a, 6, c 

and d in figure 5.13) related to the thermal conductivity by fitting the measured 

steady state tem perature profile to the FEA generated tem perature profiles.

If the peak tem perature of the profile is less than 1600 K, from figure 5.13, we 

can see that the lattice contribution to the thermal conductivity dominates, and 

hence a and b are the dominant parameters we should try to fit to. A plot
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325300 305 310 315
Temperature /]

320

Figure 5.16: Calculated thermal conductivity!

of the residual sum of squares for such a case is shown in figure 5.17. The 

presence of a clear minimum, and the absence of localised minima, indicates that 

a nonlinear fitting routine can converge quickly to the desired values. Once the 

peak tem perature exceeds 2000 K, the effect of small polarons becomes significant 

(figure 5.13). As we can see from figure 5.18, the minimum is not as obvious as for 

the lattice component case, and some localised minima are also present. To avoid 

convergence to the wrong minima, a good initial guess for c and d parameters is 

needed. Alternatively, sum of square residual contour maps similar to figures 5.17 

and 5.18 can be constructed for each measured tem perature profile to suggest the 

best starting values for the parameters, which are then passed to the nonlinear 

fitting routine to assist rapid convergence.

If the effect of scattering by dislocations is included, the form of the thermal 

conductivity should be written as shown in equation 5.31:

=  ~a + bT + f 2 exv ( - d +  eexP (5.31) 

For polycrystalline samples, it is thought that this effect will be swamped by
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Residuals ------

0.00001
0.0001 0.0015

0.0002 0.015
0.0003b parameter .045

Figure 5.17: Sum of square residuals for lattice contribution,l/(a  +  bT).

Residuals -----

le+07
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Figure 5.18: Sum of square residuals for small polaron
contribution,( c /T 2) exp(—d/T).

6.5e9 c  param eter15500
16500 

d parameter 17500
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Residuals ------

30800

34000

38000
f  parameter

42000

e parameter

Figure 5.19: Sum of squares residuals for the dislocation contribution.

the other two mechanisms, and therefore it was not incorporated into the final 

analysis. This is fortunate, as the sum of square residual contour map for the 

dislocation contribution shown in figure 5.19 is confused, with more than one 

obvious minimum. This would result in an unstable convergence in the Gauss- 

Newton nonlinear fitting routine.

5 .5  T h e  e ffect o f  n o ise  on  n o n -lin ea r  r e g r e ss io n  
m e th o d .

In the previous sections we have considered the effect that each mechanism of 

heat conduction has on the final tem perature profile. All the residual maps shown 

in section 5.4 were calculated using perfectly smooth data sets, but the effect of 

adding noise to these profiles could have easily masked the desired minima. To
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investigate this effect, we recalculated the residual maps shown previously, but 

for tem perature profiles with various amounts of Poisson noise added to them. 

These radial tem perature profiles are shown in figure 5.20.

Temperature
/K

1220
Smooth o

1180

1140 —1.0 noise factor 
—0.2 noise factor1100

1060
0 10 20 25 305 15

Radial position

Figure 5.20: Temperature profiles with added Poisson noise.

The effect of noise on the residual plot for the lattice contribution to the thermal 

conductivity is quite marked, with residual plots for tem perature profiles with 

noise factors of 1.0 and 0.2 shown in figure 5.21. The residual plot corresponding 

to a noise factor of 1.0 is the upper one of the two curves, and even though a 

slight dip in the curve exists, it is very shallow and is unlikely to produce the 

correct answer in any subsequent regression. The lower graph corresponding to a 

noise factor of 0.2 is imperfect when compared to figure 5.17, but would result in 

a converged result for the regression analysis, as it possesses a definite minimum.

When we consider the effect noise has on the residual plot for the small polaron 

contribution, we can see from figure 5.22 that the effect of noise is not as marked 

as for the lattice contribution. As the small polaron contribution dominates
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Noise factor 0.2 ------
Noise factor 1.0

b parameter
a parameter

Figure 5.21: Effect of noise on the lattice contribution of thermal conductivity.

the thermal conductivity at higher temperatures, we would expect to be able to 

converge to the correct parameters for the polaron contribution even for noisy 

tem perature profiles, as long as the peak tem perature is large enough.

The calculated sum of square residuals for the lattice contribution of the thermal 

conductivity has been shown to be quite susceptible to noise, so to characterise 

fully the thermal properties of a material from a single tem perature profile, we 

need to know the level of noise present in the tem perature profile to facilitate 

efficient smoothing. The determination of the level of noise will be investigated 

in the next section.
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(a) Noise factor 0.2.
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(b) Noise factor 1.0.

Figure 5.22: Effect of noise on small polaron contribution.

-  106 -



5.5. Effect of noise. Chapter 5. Thermodynamical Analysis.

5.5 .1  D eterm in a tio n  o f noise factors.

The power spectrum 5(u;) of a function can be determined from its real and 

imaginary Fourier components,

5 (u-j ) =  | ^ | 2 +  | I j |2 . 5.32'

Here 7Z and X  are the respective real and imaginary Fourier components of the 

real space function under investigation. For a noisy function, we can expect the 

power spectrum to be biased towards the higher frequencies, as the noise will 

have a basis comparable to the sampling length. This can be seen in figure 5.23 

where the power spectrum of a smooth data set is compared with a data set with 

an applied noise with a Poisson factor of 1.0. If we calculate the ratio of the sum

s(u)

10004

10(h
T
10

T
15 20

T
25
LO

Noisy data o 
Smooth data —

30 35 40

q^oqQ oo 
Q-T

45 50

Figure 5.23: Power spectra for two radial tem perature profiles, one of which is 
noisy.

of the high frequency components to the sum of the low frequency components, 

and compare this to the Poisson noise factor, we obtain a linear relationship. 

This enables us to calculate the amount of noise on any given data set, which in 

turn is used calculate the size of the lag window needed to smooth the data set 

efficiently. This method bears some resemblance to Wiener filtering [74], except
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th a t it does not require any input from the user (for example an idealized signal) 

once the m ethod has been coded into an analysis program.



C hapter 6

R esu lts o f therm odynam ical 
analysis.

In the previous chapter, several approaches which could be used to measure the 

therm al properties of materials were discussed. Results obtained by some of these 

m ethods will be presented in this chapter, but emphasis will be placed on those 

techniques which can determine the therm al properties of a m aterial remotely.

6.1 M easu rem en t o f  th e  radial h eat flow  u s­
ing th erm ocou p les.

In the  determ ination of the therm al properties by measurement of the radial tem ­

perature distribution, the condition th a t the heat flow is purely radial is required 

for the m athem atical analysis to be valid. The most effective way to ensure tha t 

this condition is m et, is to use a long cylinder and measure the tem perature
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distribution in the middle. Theoretical consideration [75] has suggested that a 

length to radius ratio of at least 10:1 is required to ensure a laminar flow of heat 

in the centre of the cylinder.

For some materials, it is relatively easy to place the thermocouples in the the 

centre of the cylinder, but for others, it is only practicable to make discs. To 

ensure tha t laminar flow is obtained around the measurement points, discs are 

stacked tightly together to form a long cylinder. An additional advantage of using 

a stack of discs, is that the interfaces between successive discs provide resistance 

to the longitudinal flow of heat, hence isolating the centre disc further from any 

end effects.

6.1.1 G re e n  p h a s e  y t t r i u m  b a r iu m  c o p p e r  ox ide .

Discs made from the tetragonal non-superconducting green phase of yttrium  bar­

ium copper oxide, were drilled and fitted with an Kanthal axial heating wire as 

shown in figure 6.1. Y2Ba2CuOs was chosen because of the ease of construction

H ea tin g
wire

T herm ocoup les

V oltm eter

Figure 6.1: A long cylinder made from a stack of discs.

of the 12mm by 2mm discs, and also because this material is soft enough to 

be drilled using conventional drills. The green phase was chosen over the more
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Figure 6.2: Measured tem perature history curves for Y2Ba2Cu0 5  at 573 K

commonly studied superconducting black phase (YBa2Cu3 0 7 _$) to prevent the 

need to pass oxygen over the sample when mounted in the furnace, which would 

present a significant safety risk.

Ambient temperature =  573 K

Experimental a
Fitted a -----

Experimental b
Fitted b -----

Sum of squares .0676 
Loss parameter 8.7 
Thermal diff 2.33 
Thermal cond 48.9

A typical tem perature response to a ‘step’ heating input for a sample maintained 

at an ambient tem perature of 573 K is shown in figure 6.2. The tem perature 

histories of two radial positions were recorded by a digital voltmeter, and the 

recorded histories were compared to the integral transform theory described in 

section 5.2. If the radial position of the thermocouples is accurately known, then 

a nonlinear fitting routine can be used to fit each measured tem perature history 

to theory separately. However, it was found that greater accuracy in the fitting 

could be achieved by fitting the tem perature histories from both thermocouples 

to the integral transform theory simultaneously, thus making the fitting routine 

converge to the same minimum for both curves.
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A profile recorded with the sample maintained at an ambient tem perature of 

573 K is shown in figure 6.2, with the fitted thermal parameters also shown. The 

values for the thermal conductivity (/c) and diffusivity (o;) obtained were collated 

against the ambient temperatures, and are shown in figures 6.3 and 6.4.

54-

Thermal ^
conductivity

(«) 46:
W /m K  42_

38-

273 373 473 573 673 773 873 973 1073
Temperature /K

Figure 6.3: Thermal conductivity of Y2Ba2C u 0 5 obtained using the radial heat 
flow method.

One curve analysis o 
Two curve analysis -f-

3.5-
One curve o 
Two curve -(-

Thermal 3-
diffusivity

(“ ) H
xlO
cm2/s 1.5-

0.5-
273 373 473 573 673 773 873 973 1073

Temperature /K

Figure 6.4: Thermal diffusivity of Y2Ba2Cu0 5  .

The convective heat loss parameter values (h ) determined from the integral trans­

form solution are shown in figure 6.5, which demonstrates a T 4 tem perature de­

pendence. This dependence indicates that convective cooling from the cylinder’s
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_ Loss 
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One curve analysis o 
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T 4 fitted curve -----
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Temperature /K

Figure 6.5: Values for the loss parameter obtained using the radial heat flow 
method compared to thermal radiation dependence.

surface is supported by thermal radiation transfer effects.

As far as we are aware, no measurements have been made of the thermal prop­

erties of the tetragonal compound Y2Ba2CuOs , so no comparison can be made 

with published data. However, the tem perature dependence of both the ther­

mal conductivity (figure 6.3) and diffusivity (figure 6.4) suggest that "Umklapp’ 

phonon scattering and grain boundary scattering processes dominate the conduc­

tion methods, which would be expected from a porous granular material.

6 .2  T h erm a l p a r a m e te r s  e x tr a c te d  from  m e a ­
su red  te m p e r a tu r e  p rofiles.

The results shown in section 6.1 were obtained using thermocouples attached 

to the sample to measure the temperature. If we wish to measure the thermal

-  113 -



6.2. Regression results. Chapter 6. Thermal Results.

properties of m aterials under the extreme pressures generated by a diamond anvil 

cell, or measure the therm al properties of toxic materials, a non-contact method 

is required.

In section 5.4, a method of fitting a measured tem perature profile to a theoretical 

therm al conductivity dependence was described. The therm al conductivity of 

a m aterial usually controlled by three dominant mechanisms, which affect the 

tem perature dependence of the conduction of heat in different ways:

1. Scattering of phonons, mainly by grain boundary scattering (a) and three 

phonon ‘Umklapp’ processes (6), but also could include four phonon scat­

tering (/3).

ku„{T)  =  1/ (a  +  bT +  /JT2) . (6.1)

2. Electronic contribution, namely small polarons.

K eiec = cT  exp( - d / T ) .  (6.2)

3. A conduction decrease due to dislocations, normally only apparent at very 

high tem peratures.

Kdisc =  e e x p ( - / /T ) .  (6.3)

To dem onstrate the ability of the Gauss-Newton nonlinear fitting routine to fit 

to a measured tem perature profile, a two param eter form of the conductivity was 

used to  aid visualisation. Predeterm ined values for a and b were used to  generate 

a theoretical tem perature profile with the finite element (FEA ) therm al analysis
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Figure 6.6: Convergence of nonlinear fitting routine.

program written by the author, which uses an implicit scheme to incorporate 

therm al radiation effects. Different starting values for a and 6 were chosen, and 

the final values for a and b determined by the fitting routine were recorded. 

Figure 6.6 shows the absolute difference between the ‘true’ values and the starting 

and finishing values of a and b. There is a cluster around the origin which 

demonstrates that the regression method described in section 5.4 can converge 

to the ‘correct’ values.

The tem perature profiles generated by the laser are all measured when the test 

m aterial has reached a steady state condition, so no tem perature history of the 

m aterial subjected to continuous laser heating is recorded. Therefore it is futile 

to try  to extract any thermal diffusivity information from the measured tem pera­

ture profiles. To generate the theoretical tem perature profiles, the finite element 

analysis routine uses values for the thermal diffusivity measured using laser flash 

techniques [76,77]. The use of thermal diffusivity values obtained by the laser
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flash method does not violate the remote sensing criterion, as the flash method 

can be employed remotely [78] using optical pyrometers and thermal radiation 

detectors to measure the tem perature history.

6.2 .1  M easu rem en ts on P yroceram  9606.

Pyroceram 9606 [79] is a hard white glass ceramic which is likely to be employed 

in the future as a ‘standard’ for low thermal conductivity materials.

Temperature
/K

900

800

700

600

500
-40 -30 -20 -10 0 10 20 30 40

Radial position /pixels 

Figure 6.7: Temperature profile produced by the laser on Pyroceram.

A laser flashlamp current of 24 Amps was used to generate the tem perature profile 

shown in figure 6.7. This profile, in conjunction with the recommended thermal 

diffusivity [80], was used to calculate the thermal parameters using the regression 

method. As Pyroceram is an electrically insulating ceramic, phonon scattering off 

grain boundaries and three phonon processes is expected to dominate, with little 

to no electronic contribution. The thermal conductivity then takes the form:

1
k ( T ) +  cT exp(—d/T). (6.4)

a T  bT

Initial values for the coefficients a, 6, c and d shown in table 6.1 were used by the 

fitting program, and initially the sum of square residual maps were generated
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Residuals —

b parameter
a parameter

* le6

Figure 6.8: Sum of square residual plot for the lattice contribution of Pyroceram.

around these starting points. The residual map corresponding to the lattice 

contribution is shown in figure 6.8, and suggests that the values for a and 6 

should lie in the region below a =  10.0 x 106 and b — 16.0 x 104. Similarly, the 

residual map for the polaron contribution is shown in figure 6.9, and its flatness 

suggests that the effects of small polarons are negligible in tem perature region 

which we are considering (T <  900/^).

Parameter Start Fitted Error
a 13.0 x 106 9.56 x 106 0.04 x 106
b 19.0 x 104 5.47 x 104 0.5 x 104
c 41.0 x 105 9.56 x 106 Infinite

d 1400.0 264.0 Infinite

Sum of Squares — 0.4 X 10 -9

Table 6.1: Initial and fitted thermal coefficients for Pyroceram.

Table 6.1 shows the initial and the final values for the thermal coefficients that the 

fitting routine converged to. Using the fitted coefficient values, the thermal con-
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Residuals ---
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Figure 6.9: Sum of square residual plot for the polaron contribution of Pyroceram.

ductivity derived using equation 6.4 can be compared to the TPRC recommended 

distribution [81], and both are shown in figure 6.10. Similarly, the tem perature 

profile derived by the fitting routine is compared to the measured tem perature 

profile in figure 6.11.

1200
1300

1400

-  118 -



6.2. Regression results. Chapter 6. Thermal Results.

Thermal
Dnductivit
W /cm K

0.05
Recommended k(T)  -o—

Fitted K. -------~
Fitted error -  -

0.045

0.04

0.035

0.03

0.025

0.02
400 600 800 1000 1200 1400

Temperature /K

Figure 6.10: Comparison between the TPRC recommended conductivity for Py­
roceram and that calculated from fitted coefficients.
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Figure 6.11: Comparison between measured data and that calculated from fitted 
thermal coefficients for Pyroceram.
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6 .2 .2  P o ly cry sta llin e  sto ich io m etr ic  uran ium  d iox id e .

The use of the actinide oxide UO2 as a fuel in A G R  and P W R  nuclear reactors 

has stimulated considerable interest in the properties of this material. UO2 in its 

unirradiated form presents no great safety hazard if handled correctly. However, 

the physical properties, and especially the thermal properties of irradiated fuel 

pins need to be known to model the effects of any reactor accidents. These 

measurements need to be made remotely.

Because of the interest in stoichiometric uranium dioxide, data for the thermal 

diffusivity measured by the laser flash method [82,83] is readily available. From 

figure 6.12 it can be seen that the experimental data is well represented by the 

recommended diffusivity distribution [84]. This recommended distribution was

Experimental data [82]
a =  3.66 b = 0.0820.04-

Thermal
Diffusivity

c m 2 / 5 0 .02-

0.01-

1500 2000 2500 3000500 1000
Temperature /K

Figure 6.12: Recommended thermal diffusivity for UO2 measured by the laser 
flash method.

used by the regression program, including an adjustment of the thermal diffusivity 

for the fractional porosity of the sample [82,85].
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The theoretical form of the therm al conductivity we have used is tha t recom­

m ended by Harding and M artin [73]. As the sample is poly crystalline, scattering 

from the grain boundaries would mask any four phonon effects, therefore the 

lattice contribution to  the conductivity can be written:

Kiatt(T) =  1/ (a +  bT) . (6.5)

Below a tem perature of 1500 K, experimental da ta  [3,4] fits well to equation 6.5, 

and thus initial values for a and b are available.

As we are considering stoichiometric uranium  dioxide, the fractional concentra­

tion of electrons and holes should be equal. This fact, used in conjunction with 

the equality of the hole and electron mobilities [5] results in an expression for the 

electrical conductivity shown in equation 6.6.

°sP{T) =  ^  e x p { - W / k T ) .  (6.6)

The effect of the electrical conductivity on the therm al conductivity is given by 

the ambipolar contribution [86]:

r / 7 i 2
(6.7)K elec(T) = ^

4 k T

Here U represents the activation energy of electron-hole pairs. Comparing equa­

tions 6.6 and 6.7, the electronic contribution to the therm al conductivity can now 

be written:

*eiec{T) = ^  exp( ~ d /T ) .  (6.8)

Equations 6.5 and 6.8 are combined to give a to ta l therm al conductivity expres­

sion of the form:

k { t )  = ( I T i r j  +  ^ expM /T ) - (6-9)
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Figure 6.13: Comparison between measured data and that calculated from fitted 
thermal coefficients for U 0 2 .

The values recommended by Harding and Martin [73] for the coefficients a,b,c 

and d were used as the starting point for the regression program. The fitted 

tem perature profiles generated for two different gradient step lengths (denoted 

by eta [87]) are compared in figure 6.13 to the measured data set. The extracted 

thermal coefficients for both the fitted curves are shown in table 6.2.

Fitted #1 Fitted # 2 Starting values

a 1.733 ±  1.41 0.0813 ±  1.32 0.0375
b 0.369 x 10“3 2.4 x 10"4 0.324 x 10-3 1.7 x 10-4 2.165 x 10-4
c 4.715 x 109 Infinite 4.715 x 109 Infinite 4.715 x 106
d 4.513 x 105 Infinite 5686 Infinite 16361

Sum of squares =  7807.2 Sum of squares =  2881.7

Table 6.2: Thermal coefficients extracted from the measured U 0 2 tem perature 
profile.

Several reasons can explain why the fitted tem perature profiles do not exactly 

m atch the measured data, and why the extracted thermal coefficients show such
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large uncertainties. The primary reason lies in the width of the measured tem ­

perature profile, which at eight pixels wide is too small to distinguish between 

slight changes in the fitted coefficients.

12 -

Thermal
conductivity

K
W /m K

Fink et al -----
Harding and Martin -----

Harding +  ^ _ e x p ( - d / T )

Fink a+bT+pf*  +  d T  e x P ( ~ e / T ) and /  ~  9 T
VT > 2670

i-------------1-------------1-------------1—
500 1000 1500 2000

Temperature /K
2500 3000

Figure 6.14: A comparison of recommended thermal conductivity values for UO2

A secondary reason for the inaccuracy in the extracted thermal coefficients re­

sults from the magnitudes of the tem perature generated on the sample. The 

peak tem perature of 2994 K is below the melting point of UO2 , but exceeds the 

tem perature for ‘Bredig’ transition [88] which occurs at 84% of the melting point 

(0.84Tm =  2610A") [89]. This transition has been attributed [90] to premelting of 

the oxygen sublattice, and therefore the finite element analysis program would 

need to be modified to incorporate this kind of phase transition, as well as mod­

ifying the predicted tem perature dependence of the thermal conductivity to that 

recommended by Fink [91], shown in figure 6.14.
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Figure 6.15: Relationship between beam width of theoretical tem perature profile 
and input beam width.

6 .3  D e te r m in a t io n  o f  h ea t c o n d u c tio n  m ech a ­
n ism .

Whilst developing the finite element analysis program that calculates theoretical 

tem perature distributions, it was noted that the theoretical tem perature profiles 

were Gaussian in shape. This observation has already been applied to the mea­

sured radial tem perature profiles shown in section 4.6. After fitting a Gaussian 

distribution (M e"r^ iv) to the theoretical tem perature profiles, it was found that 

the Gaussian beam width (N ) was similar to the beam width of the incoming 

heat distribution (modeling a laser beam - Imaxe_r2^ )  used by the finite element 

analysis ( f e a )  program.

The width of the ‘theoretical’ laser beam (y?) was varied, keeping the maximum 

intensity constant (Imax= ^  x 109); th e  dependence of the FEA tem perature 

profile’s beam width (N ) with respect to the incoming beam width (</?) is shown

15 x 109 o  
15 x 108 - f

Lmax
Lmax

0.85x +2.0  
0.85x +0.5
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in figure 6.15, along with the results obtained for a different m aximum intensity 

(Imax= 15 x 108). It can be seen from figure 6.15 th a t a straight line can be 

fitted to  the relationship between the two beam widths, with the gradient (0.85) 

being the same for the two different power settings, but with the y-axis intercepts 

differing (0.5 and 2.0).

6.3.1 Effect o f th e therm al coefficients on th e beam  w idth  
ratios.

In generating the theoretical tem perature profiles described above, the finite ele­

m ent analysis program uses the therm al conductivity tem perature dependence of 

UO2 recommended by Harding and M artin (shown previously in equation 6.9). 

From this conductivity dependence, the therm al coefficients a  and b are associ­

ated with lattice effects in the therm al conductivity, and the coefficients c  and d  

are linked to the electronic or small polaron conduction of heat.

Using a maximum incident intensity of 15 x 109, the therm al coefficient a  was 

varied from 0.001 to 0.125 whilst the other therm al coefficients were kept fixed. 

For each value of a, the linear dependence shown in figure 6.15 between the 

theoretical tem perature profile’s beam width (N ) and the incoming laser’s beam 

width (<p) was extracted by fitting to a straight line using a linear least squares 

regression method. The values for the gradient and intercept of the straight line 

obtained from the linear least squares analysis were then recorded as a function 

of the therm al coefficient being varied.
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Figure 6.16: Effect of varying the thermal coefficient a on them width ratio’s 
gradient and intercept.

Figure 6.16a shows how the gradient of the beam width ratios varies as a function 

of the thermal coefficient a, and figure 6.16b shows the dependence of the y-axis 

intercept on the coefficient a. Similarly, figure 6.17 shows how the beam width 

ratio’s gradient and intercept varies as a function of b with the other thermal 

coefficients being held constant.

From figures 6.16 and 6.17 we can deduce that the lattice contribution to the 

therm al conductivity affects the gradient of the beam waist ratios leaving the

n  i l l

ill
i i
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Figure 6.17: Effect of varying coefficient 6 on the gradient and intercept of the 
beam width ratio.

intercept constant, while figure 6.18 demonstrates that the electronic contribution 

affects the beam width ratio intercepts.

If we were to change the beam width of the heating laser used in our experi­

ment, but keep the maximum intensity constant, it would be possible to isolate 

the mechanisms of heat conduction affected by external forces, such as applied 

pressure.

-  127 -



6.3. k mechanism determination. Chapter 6. Thermal Results.

Intercept

1.5-

Gradient

le + 0 9  5e +  09 9e+ 09  1 .3e+10

Coefficient c

2.5-
Intercept

2-

1.5-

1-j Gradient
cOoxocodocccoxococo

0.5-
i 1--------1------- 1------- 1—

15000 15500 16000 16500 17000 17500

Coefficient d

(a) Gradient and intercept variation 
with respect to thermal coefficient c.

(b) Gradient and intercept variation 
with respect to thermal coefficient d.

Figure 6.18: Effect of varying the c and d thermal coefficients on the gradient 
and intercept of the beam width ratio.
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D iscussion  o f therm odynam ic  
results obtained and conclusions.

The apparatus used to experimentally produce and measure radial tem perature 

profiles has been described in part I of this thesis, along with the m athem atical 

basis of the O M A2T com puter analysis program. It has been dem onstrated in 

section 4.5 th a t the melting points of materials can be measured remotely, with 

the measured m elting points of polycrystalline samples of iron and uranium  diox­

ide agreeing well with the published values. Hence this rem ote sensing capability 

now makes it possible to measure the solid-liquid phase transition as a function 

of pressure, extending the maximum obtainable pressures into the megabar re­

gion only obtainable using a diamond anvil cell (dac). The Berkeley system [26] 

for obtaining m elting points involves physical inspection of the sample quenched 

after heating, and then cross-referencing to the measured tem perature profile 

to  determ ine the m elting point; determ ination of melting points directly from 

measured tem perature profiles as described in this thesis does not involve the
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inaccuracies introduced by cross-referencing the radius of the quenched m elt to 

the recorded tem perature profile.

Rem ote methods for accurately determining the melting point of a m aterial are of 

particular interest, because this facilitates the m easurement of the melting curve 

(m elting point as a function of pressure). One of the first m aterials whose melting 

curve was closely studied was hydrogen which was of interest because of its simple 

electronic structure. Experimental study of the melting of hydrogen [92,93] at 

medium pressures (P >  150 kbar) has found tha t the melting tem perature and 

the volume of the solid can be related along the melting curve by an equation of 

the form:

V  =  A - B l n ( T m). (7.1)

This approach has been extended to simple metals, and analysis of the exper­

im ental melting curve data [94] for simple metals shows good agreement with 

equation 7.1. These experiments have been restricted to m oderate pressure and 

tem peratures due to the lim itations of the apparatus and measurement tech­

niques. The ranges of tem perature and pressure could be extended by using 

modern techniques as described in this thesis, which would enable accurate com­

parison to theoretical predictions [95] based on Monte Carlo com puter techniques. 

It is often more convenient to write equation 7.1 in the form,

In (Tm) =  ln(To) +  (7.2)
Vo

where d is an adjustable param eter, which is approximately constant for a given 

class of solids. The change in volume along the melting curve (AV^/Vo) can be 

calculated from the applied pressure by T ait’s equation of state  [96] if the bulk
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modulus B m and its pressure derivative B'm are known:

f  = s t i ' - H t t ) |73>
By combining equations 7.2 and 7.3 with the Clausius-Clapeyron equation, a 

scheme (Lindemanns Law) for determining the therm odynam ic Griineisen pa­

ram eter ('jth) from the accurate measurement of the pressure dependence of the 

m elting point can be employed.

^  +1-

The accuracy of any m ethod for determining the therm al properties of a m ate­

rial lies in the precise representation of the heat losses [97] in the m athem atical 

solution of Fourier’s law [98]. A well favoured technique for measuring the ther­

m al conductivity of soft m aterials is the radial heat flow m ethod [99], because 

the sym m etry of the system reduces the m athem atics of the problem to a one 

dimensional problem. The thermal conductivity can be calculated by m easur­

ing the tem perature difference between two radial points when the sample has 

reached a steady state  condition. Applying integral transform  m athem atics to 

the radial heat flow configuration (section 5.2), it has been shown th a t the ther­

mal conductivity, diffusivity and loss param eter can be determined by fitting the 

tem perature history curves measured at two radii to th a t predicted by the in­

tegral transform  theory. To ensure accurate convergence of the fitting routine, 

sufficient da ta  needs to  be collected in the tem perature history curves to ensure 

th a t the sample has reached its steady state distribution. Measurements made 

on a granular ceramic (Y2Ba2CuOs ) have produced tem perature dependencies 

in the therm al conductivity and diffusivities which are consistent with strong
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phonon-defect and phonon-phonon scattering. It is interesting to note tha t the 

tem perature dependence of the loss param eter can be well represented by a T 4  

dependence, which is consistent with heat loss by radiative transfer, as would be 

expected at high tem peratures.

The measurement of the therm al properties of m aterials by the radial heat flow 

m ethod has traditionally required electrical contact to be m aintained with the 

sample. In part II of this thesis, a regression scheme for remotely determining 

the therm al coefficients related to the therm al conductivity of a m aterial was 

described (section 5.4). Results obtained using this scheme were presented in 

section 6.2 for two contrasting materials. The first m aterial studied (Pyroceram) 

has a well documented and understood therm al conductivity, with the scattering 

of phonons by grain boundaries and phonon-phonon interactions dom inating the 

tem perature dependence of the therm al conductivity. The regression m ethod suc­

cessfully converged to values for the therm al coefficients, which were then used to 

calculate the tem perature dependence of the therm al conductivity. The therm al 

conductivity dependence replicates, within experim ental error, the Therm ophys­

ical Properties Research Centre’s (TPRC) recommended values.

The second m aterial studied (stoichiometric uranium  dioxide UO2 ) has a therm al 

conductivity tem perature dependence which is well documented but complicated. 

Grain boundary and phonon-phonon ‘Um klapp’ scattering processes dom inate 

the conduction up to a tem perature of 1500 K, above this, the effects of phonon 

scattering by small polarons becomes dominant. The existence of a ‘phase’ change 

(Bredig transition) around 2670 K has caused much contention as to the form the 

recommended therm al conductivity should take between 2670 K and the m elt­
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ing point due to the debate over the mechanisms causing this ‘phase’ change. 

A therm al conductivity with a tem perature dependence which incorporated the 

effects of small polaron scattering, as well as the grain boundary and ‘U m klapp’ 

effects, was used by the regression scheme used to determ ine the therm al coeffi­

cients related to  the conductivity. Therm al coefficients were extracted from the 

measured tem perature profile, but the regression routine could not converge to a 

global minimum, and produce an accurate result for UO2 .

Comparison of the accuracies of the fitting to the expected therm al conductivities 

of these two m aterials has highlighted some points th a t need to be considered in 

any future work.

1. To extract the therm al coefficients from a measured radial tem perature 

profile produced by laser heating a sample, the tem perature profile needs 

to  be wide enough to enable the regression routine to accurately identify 

the global minimum, and hence converge to the correct coefficients.

2. The processes contributing to the therm al conductivity should be well estab­

lished from room tem perature to the melting point. This criterion suggests 

th a t the regression technique is most suited to the investigation of the ther­

mal properties of insulators, metals, and simple ionic m aterials, but falters 

when applied to m aterials with complex heat conduction mechanisms.

The need for a technique to measure the therm al conductivity of a m aterial re­

motely can be justified by considering the implications the pressure dependence 

of the therm al conductivity has on the understanding of the overall therm ody­
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namic properties of the material. For materials which can be classed as insulators, 

phonon-phonon and grain boundary scattering dominate the conduction of heat, 

especially at interm ediate and high tem peratures (T >  300 K > T m). The pres­

sure dependence of the therm al conductivity resulting from lattice effects alone 

has been measured [1 0 0 ], and takes the general form predicted by theory [1 0 1 ]:

=  +  2 « l n ^  +  A) (7_5)
dhi (V)  ' d ln(V)

where 7 th is the thermodynamic Griineisen param eter, and A is a constant related 

to  the therm al properties of the m aterial, usually unity.

W hen investigating the therm al conductivity of pure m etals [21], the contribu­

tion of electrons to the to tal therm al conductivity needs to be considered, as the 

electron contribution will normally be approximately ten times greater than the 

lattice contribution for metals. As we are considering the conduction of heat 

at high tem peratures, we can expect the W iedemann-Franz law to be obeyed 

for simple metals. Therefore the pressure dependence of the electron therm al 

conductivity should be related to the pressure dependence of the electrical con­

ductivity [1 0 2 ].

a in (Ke) _  Sln(<re) ^  +  ^  (? 6)
<91n(V) <91n(V)

Distinguishing how the mechanisms of electron and lattice heat conduction mani­

fest themselves in the to tal therm al conductivity is of great interest, but it is hard 

to achieve. By measuring the pressure derivative of the therm al conductivity at 

a given tem perature, it might be possible to resolve the influences of the electron 

and lattice conduction methods [21], but only if the therm odynam ic Griineisen 

param eter is previously known.
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D ata exists for the tem perature dependence of the therm al conductivity of ura­

nium  dioxide up to its melting point, but problems in fitting the measured therm al 

conductivity data to theories based around differing heat conduction mechanisms 

has led to dispute over the validity of these mechanisms. This discrepancy has 

occurred due to the experimental errors present in the measured therm al conduc­

tivity  data  at high tem peratures. A m ethod has been suggested in section 6.3 of 

this thesis to isolate the effects of external forces on the individual mechanisms 

involved in the conduction of heat. By studying the dependence of the width 

of the measured tem perature profile as the width of the heating laser’s focussed 

beam  is varied, it has been shown tha t it is possible to distinguish between the 

electronic ( ace/ec) and lattice ( aciatt) contributions to the to tal therm al conductiv­

ity. Further work is required to incorporate the effects of scattering by defect 

structures into the tem perature dependence of the therm al conductivity. The 

effect of varying the heating laser’s beam width on the width of the generated 

tem perature profile can then be studied, and the characteristic dependencies of 

the gradient and the intercept of the beam waist ratio to the effect th a t defect 

structures have on the heat conduction can then be established.

To isolate the heat conduction mechanisms experimentally, the equipment used 

to  remotely measure the tem perature profiles described in chapter 2  of this thesis 

would need to be slightly modified. A variable magnification beam  expander 

would need to be constructed so th a t a range of laser beam widths could be 

selected to be incident on the sample. This beam expander would take the place 

of the fixed magnification 10:1 beam expander shown in figure 2.1. The current 

supplied to the laser flashlamps would have to be adjusted in conjunction with 

the beam expander, to ensure th a t the m aximum intensity incident on the sample
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is constant for all of the variable laser beam widths. These modifications would 

enable the measurement of the gradient and intercept of the relationship between 

the two beam widths. Subjecting the sample to an external force, such as pressure 

or a magnetic field, the beam width ratio would then be recalculated. From the 

changes in the the gradient and intercept of the beam width ratio, the mechanisms 

of heat conduction affected by the external force can be isolated. For example, 

the presence of electron-phonon interactions have been studied by subjecting 

the sample to a magnetic field [103] and monitoring the reduction of the total 

conductivity. This method would be best applied to semiconductors [104], where 

the electron mobility is high, and the applied magnetic field has a significant 

effect on the electrical resistivity. Therefore, using the W iedemann-Franz law 

to represent the electronic contribution to the therm al conductivity, the effect 

of an applied magnetic form on the therm al conductivity can be as shown in 

equation 7.7.

C T

k ( b )  = W )  +  KlM ' { 1 J )

If the therm al conductivity of a m etal were to  be measured at low tem peratures as 

a function of applied magnetic field, an effect similar to the De Haas van Alphen 

effect would be observed [105], which gives information about the m aterial’s Fermi 

surface.

In summary, the apparatus needed to remotely record a radial tem perature dis­

tribution generated by a heating laser has been built and tested. Analysis of the 

recorded tem perature profiles has made the determ ination of the melting points 

of m aterials by non-contact methods possible, with the measured melting points 

of polycrystalline iron and urania agreeing with the literature. Further analysis
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of the recorded tem perature profiles has also resulted in the tem perature depen­

dence of the therm al conductivity for the ceramic Pyroceram  being obtained. 

W ith  knowledge of the pressure dependence of the melting point and the ther­

mal conductivity, the therm odynam ical properties of a m aterial can be better 

understood.
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A ppendix  A  

Integral Transform Techniques.

A .l  H om ogen eou s problem .

Start with the heat conduction equation, and boundary conditions equivalent to 
radiation into surroundings at a fixed tem perature.

V 2T ( r , l )  =  t> 0  (A .l)
a ot

with the relevant boundary and initial conditions;

k 9T^  + h T (r ,t)  =  0 t>0 (A.2a)

T (r , t )  = F ( r )  t = 0 (A.2b)

If we now separate the  tem perature into time and space variables;

T (r , t )  = V’(r ) r ( l)
V 2V>(r) 1 dT(t)  J _

V>(r) a  dt T(i) 1 ' ’

The left-hand side is a function of r  only, and similarly, the right-hand side is 
only a function of t. If equation A.3 is to be true, then both sides can be set 
equal to a constant.

V ^ ( v )  1 dT(t)
i>(r) aT(t) d t  v ' ’

The tim e dependent equation can be written as

^ 1  +  A2a r ( l )  =  0 (A.5a)
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W hich has solution of the form;

r ( t )  =  e~“A2‘ (A.5b)

Similarly, the space equation can be w ritten as the Helmholtz equation (eq. A .6);

V 20(r) +  A2?/>(r) =  0 (A. 6)

This only has a solution for certain eigenvalues of A, which then enables Helmholtz 
equation to be separated into ordinary differential equations, which can then be 
solved.

Once the eigenfunction i/>m ( r) for the eigenvalues Am is evaluated, the solution 
for the tem perature can be evaluated by;

T{r , t )  =  £ C m V>m( r ) e '“A” ‘ (A.7)
m

To determine Cm put t =  0  into equation A.7, which then represents the tem per­
ature distribution at tim e t = 0 , namely the Initial conditions.

F ( r )  =  ^ 2  C m  V’m(r) (A.8)
TO

If the orthogonal properties of eigenfunctions are used, namely;

f  ^ m( r ) ^ n( r ) d r  =  0 V m / n  (A.9a)
J R

then,

[  F {  r) xj)n ( r) d r  =  f  Y^C m  ipm{ r) ipn{ r) d r  (A.9b)
Ttl  S    '

= 0  V m ^ n

c m = k Y m S dT (A-9c)Ir 'P (T) dr

By then substituting into equation A.7, but using N  as the normal of r);

*. T M ) .  £ * . ( , )  . - 4 .  (A,10)
m

If the eigenfunctions are normalised such th a t — A(Am, r) then;

T ( r ,t )  =  f  K(Xm,r) F ( r ) - d r  (A .ll)
im
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Inspecting the integral in the equation A. 11 , it is integrated with respect to r, 
and therefore we can use the initial conditions to substitute T (r , t )  for F ( r) as 
F ( r) is tim e independent.

/  K ( \ m,r ) F ( r ) d r  = f  K ( \ m, r ) T ( r , t ) d r  = (A.12)
J r . J r

W here T ( \ m,t)  is the Integral transform of T ( r , t), and T ( r , t) can be subse­
quently determ ined by the Inversion formula;

T ( r , t )  = T ( \ m,t)  (A.13)

A .2 N on -h om ogen eou s p rob lem .

Now reconsider the original problem, but now with an arbitrary  heat source;

r-,i \ 1 d T (r , t )V T (r, t) H— -— - = -------^— - t> 0  in region R
k a  ot

w ith boundary conditions on surface i;

k i 9 TQ f )- +  W ( r , t )  =  /,-(r,i) t> 0  (A.14a)

T(r,<) =  F (  r) 1 =  0 (A.14b)

If we now apply the integral transform to the heat conduction problem above, 
and rearrange it, we arrive at;

f  K(Am, r ) V 2T ( r , t ) - d r  +  =  -  dT(̂  (A.15)
J  R  K  Ct Csv

where g(Xm,t)  is the integral transform of the heating term .

To evaluate the integral transform of V 2T (r, t), we have to use Greens’ theorem 
which changes volume integrals into surface integrals.

J ^ K ( X m,r)  V 2 T ( r , l )  d r  = JR T ( r , t ) V 2 I<(\m,r )  ■ d r  (A.16)

where n is the direction normal to s.
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The first term  on the RHS can be evaluated using Helmholtz equation, whilst 
the second is found by using the boundary conditions.

[  T ( r , t )  V 2 K ( \ m,r)  -A 2 T ( A ( A . 1 7 a )
J R

_ , 8 T (v  ,t)w _ j l fl/f(Amir)A. (Am, r) i  ( r ,£) — — K (A.17b)
dn dn

Substituting these results into Greens’ theorem, and rearranging, we obtain a 
linear differential equation of the integral transform.

+  cXlT(Am,
A'(Am,r ) / j ( r ,  i)

ki
ds (A .18)

If we call the RHS of the equation above A(Am,£), and let F(Xm) be the inte­
gral transform of the initial conditions, then a solution to the linear differential 
equation is;

f(A  m,t)  =  e_“A™< ( f (\m) +  (A.19)

Therefore to find the solution to the tem perature distribution, we have to apply 
the inversion formula to T(Am,£) as found above. All that remains is to find a 
suitable form of the eigenfunction solution to Helmholtz equation. The boundary

R

0 L

Figure A .l: Schematic diagram of a ‘th in ’ slab.

conditions for the homogeneous system above are;

dtp(r)
—k \ —̂. 

k*2

dr
r, dV>(r)

dr

A hix/>(r) =  0  r = 0

+ h2 4>(r) = 0 r= L

(A.20a) 

(A.20b)
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One particular solution is ^ m(r) =  acos(Amr) -f 6 sin(Amr). By applying the 
boundary conditions a t L  and 0, we obtain the solution for the eigenvalues, where 
Am =  m th positive root of;

Tan(XL) =

where Hi =

Therefore the eigenfunction solution we are looking for is;

H\
r) =  cos(Amr) -f —  sin(Amr)

Am

but the normalised solution K ( Am,r)  requires evaluation of the norm.

N  = f  i>2 (r) • d r 
Jo

This has been evaluated by Carslaw and Jaeger [72], and becomes;

(A.21)

(A.22)

(A.23)

(A.24)
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