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Abstract Q b a t h

Abstract

The growth of Personal Communications, the keyword of the 90s, has already the signs of a 
technological revolution. The foundations of this revolution are currently set through the stan
dardisation of the Universal Mobile Telecommunication System (UMTS), a communication 
system with synergistic terrestrial and satellite segments. The main characteristic of the UMTS 
radio interface, is the provision of Integrated Services Digital Network (ISDN) services. 
Services with higher than voice data rates require more spectrum, thus techniques that utilise 
spectrum as efficiently as possible are currently at the forefront of the research community 
interests. Two of the most spectrally efficient multiple-access technologies, namely, Code 
Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) concentrate 
the efforts of the European telecommunity.

This thesis addresses problems and proposes solutions for CDMA Spread Spectrum (SS) 
systems. A limitation to the capacity of conventional DS-CDMA systems is multiple-access 
interference (MAI) produced by co-channel users. The design of MAI rejecting receivers with 
‘Near-Far’ resistance is a good technique for combating the effect of co-channel interference in 
multiple-access channels. The ‘Near-Far’ resistant characteristic of these detectors reduces 
considerably the requirements of the power control loops currently found in commercial 
CDMA systems.

The strategy for the downlink mobile channel, where the receiver is the mobile handset, is to 
employ a single-user receiver with multi-user interference cancellation to detect the desired 
user’s signal. Two adaptive single-user handset receivers are proposed in this thesis and their 
performance obtained by computer simulation. The first detector is an adaptive Minimum Mean 
Square Error (MMSE) receiver architecture with the capability of combating the ‘Near-Far’ 
problem and rejecting the multi-user interference. This adaptive structure allows the receiver to 
counter interference and noise. MMSE detection schemes offer significant advantages 
compared with conventional correlation based receivers, as they are ‘Near-Far’ resistant over a 
wide range of interfering power levels. MMSE detectors are also found to have significant 
performance gains over other well established interference cancellation techniques like the 
decorrelating detector, especially in heavily loaded system conditions. The new modified 
adaptive MMSE receiver proposed here and it has been used to function in a multipath-fading 
channel with Doppler, typical of a mobile channel. The second detector is a new adaptive 
Multi-Layer Perceptron (MLP) neural network receiver. This architecture has the capability to 
combat the ‘Near-Far’ problem and reject the multi-user interference. The non-linear processing 
units in the structure of the artificial neural network allow the receiver to draw subtle 
boundaries between the wanted signal and unwanted signals in the multiple-access DS-CDMA 
environment and hence it has a good ‘Near-Far’ resistance over a wide range of interfering 
power levels.

For the uplink DS-CDMA channel, where the receiver is located in a base-station in the centre 
of the cell, the strategy is to use a multi-user receiver to detect all co-channel users’ signals in 
the cell simultaneously. The optimum maximum-likelihood multi-user detector is currently too 
complex to be implemented in commercial systems. The recurrent neural network receiver as a 
multi-user receiver is extremely suitable for combating the effect of co-channel interference in 
the DS-CDMA environment and its ability is found in this work identical to the maximum- 
likelihood receiver. In addition, the implementation complexity of the recurrent neural network 
receiver, especially for large number of users, is considerably lower than the implementation 
complexity of the maximum-likelihood receiver.
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1.1 Introduction

The invention of the telephone in the 19th century was the first step towards removing the 

barriers of space and time for communication between people. The second step was the 

successful deployment of radio communication, which was the starting point for development 

in the wireless communication. In the future, wireless personal communications will be as 

common as the wireline telephone is today. It can now provide reliable communication and 

combines voice, data, fax and image into a single portable handset. In this situation, the 

increased number of users and the growing demand for personal communication networks will 

require a new generation of mobile system such as the Universal Mobile Telecommunication 

System (UMTS) [1- 1]. This is the European vision for the next generation of mobile radio 

systems, where analogue mobile phone systems were taken to be the first generation and the 

existing digital systems are the second generation.

The first generation of the cellular radio communication was based on the Frequency-Division 

Multiple-Access (FDMA) systems that used analogue frequency modulation scheme to 

facilitate simultaneous communication between users. The major disadvantage of analogue 

cellular system was the capacity limitations [1- 2]. In order to solve the capacity problem, a 

transition in operational schemes was made from analogue FDMA systems to digital cellular 

FDMA and Time-Division Multiple-Access (TDMA) as the second generation of the cellular 

systems.

The application of digital FDMA and TDMA schemes to the cellular mobile radio has led to an 

increase in user capacity by a factor of about 3 to 4 [1- 3] over what was provided by their 

analogue counterparts. The Pan-European Global System for Mobile Communication (GSM) is 

typical of second generation systems that allows the user to use its handset in most countries in 

Europe to communicate voice, fax and data [1- 1]. The number of GSM subscribers recently 

passed 100 million, and it is predicted that by 2005 there will be more than a billion mobile 

phone subscribers around the world. In this case, to increase the quality and overcome the 

problem of capacity, the development of new standards is necessary. The objectives of the next 

generation system can be summarised as mass-market capability, world-wide services, low cost, 

better quality and ability to provide different services e.g. e-mail, web access and video.

One of the most important new standards is the UMTS [1- 4]. It is a communication concept 

which will try to integrate different services into a common standard. It is expected that UMTS 

will provide following services [1-5]:
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♦ Existing mobile and fixed telecommunications services at data rates of up to 2 Mbits/sec.

♦ Pan-European mobile navigation, vehicle location and traffic information services.

♦ Global portability for the handsets.

♦ A single system for residential, office, cellular and satellite environments.

♦ Support for video and high data rate services in a range of UMTS ranging from pocket 

handset to terminals.

♦ Users will be able to buy bandwidth as well as time, with low rate voice communication 

being the cheapest and video and data services being the most expensive.

To bring this vision to fruition, major improvements in the current state of wireless technology 

are necessary.

1.2 Multiple-Access Techniques

In general, there are several different ways in which multiple users can send information 

through the communication channel to the receiver. Frequency-Division Multiple-Access 

(FDMA), Time-Division Multiple-Access (TDMA) and Code-Division Multiple-Access 

(CDMA) are three famous multiple-access techniques.

In FDMA, the available bandwidth in the transmission channel is subdivided into N  frequency 

non-overlapping sub-channels as showing in Figure 1. 1. In this way, each user can transmit 

information via one of the assigned frequency domain sub-channels. To avoid cross-talk 

between adjacent users, suitable size guard bands are usually provided between sub-channels.

Another method of creating multiple sub-channels for multiple-access transmission, is TDMA. 

In this method the frame duration, Tf, is subdivided into N  non-overlapping sub-intervals each 

with duration 7}/TV. In TDMA, each user transmits information within a particular time slot in 

each frame. In this method, accurate synchronisation for all users is needed and to avoid cross

talk between adjacent users, suitable guard intervals are usually provided between time slots.
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Figure 1.1: Subdivision of the transmission channel into non-overlapping bands in

FDMA.

An alternative method to either TDMA or FDMA is to allow more than one user to share a 

channel or sub-channel by using a code or signature [1- 6]. This multiple-access method is 

called CDMA. In this method, each user is assigned a unique signature waveform to transmit its 

information into the multiple-access channel. In the CDMA base-station receiver, the 

transmitted data from the wanted user can be separated and recovered by taking the cross

correlation of the received signal with each of the possible user’s signature waveform. If the 

assigned signature waveforms have a small cross-correlation to each other, the cross-talk at the 

output of the receiver will be low. In this case, the information of the desired user can be 

separated from the information of the other co-channel users by using a correlator or an 

equivalent operation based on a digital matched filter. Figure 1. 2 shows the time-bandwidth 

utilisation of the three multiple-access techniques described above.

CDMA 

TDMA 

FDMA
ime

Frequency

Figure 1. 2: Time-bandwidth utilising of three multiple-access techniques.
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In CDMA, multiple users can utilise the same available bandwidth by using different 

orthogonal spreading signature sequences and in this situation the interference between users is 

minimised because of the orthogonality of the spreading sequences.

The development of the CDMA scheme for digital cellular radio and other wireless systems has 

primarily been for the reason of achieving higher user capacity [1-2]. Because the CDMA has a 

capacity that is only interference limited, unlike TDMA and FDMA capacities which are 

bandwidth limited, any reduction in interference translates directly into a proportional increase 

in capacity. Therefore by using interference suppression techniques, the capacity of the CDMA 

is increased in comparison with other multiple-access schemes. This advantage of CDMA over 

TDMA and FDMA becomes even greater in digital cellular systems where the CDMA can use 

the advantage of frequency re-use for all cells and this causes the capacity increasing by a large 

percentage of the normal frequency re-use factor. It is shown that the net capacity improvement 

of CDMA over TDMA and FDMA schemes is on the order of 4 to 6 [1- 2], [1- 3].

The maximum number of users that can be accommodated in multiple-access CDMA channel is 

determined by the degree of bit error rate (BER) performance degradation that is caused with 

the co-channel interference. In both TDMA and FDMA, the level of BER performance remains 

approximately constant with increasing the number of users, in other words; they have a hard 

limit capacity on the maximum number of users whereas CDMA has soft limited capacity, 

assuming sufficient orthogonal codes are available.

The European Telecommunications Standards Institute on UMTS has selected CDMA among 

the potential contending multiple-access techniques for the third generation of cellular mobile 

communication systems across Europe [1- 7]1. The principal aim is to provide users of wireless 

terminals access to the projected Broadband Integrated Services Digital Network (BISDN).

The advantages of CDMA over other multiple-access schemes can be listed as below [1-8]:

♦ Universal frequency re-use (frequency allocation problem eased).

♦ The lower power requirement of CDMA (by using the advantage of processing gain) can 

improve the handset talk times.

♦ Using multipath signals for diversity reception (with RAKE receiver).

1 It was suggested that a combination o f wide-band CDMA and time-duplex CDMA being used for 

paired spectrum and unpaired bands respectively. Because there is more paired than unpaired spectrum, 

wide CDMA will be the dominant within in UMTS [1- 1].
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♦ A large number of users can be accommodated in a given bandwidth in compared with 

FDMA and TDMA.

♦ In CDMA, it is not needed to use time or frequency guard bands and hence bandwidth will 

be used more efficiently than with other types.

♦ In CDMA, channel usage need not to be monitored.

There are several problems in using the CDMA scheme for multiple-access mobile radio 

communication that can be highlighted as below:

♦ Higher complexity for spreading and despreading process.

♦ Irreducible error rate due to effect of other co-channel users.

♦ Finite processing gain because of using limited length of spreading sequences.

♦ Need for orthogonal signature sequences.

♦ Optimum capacity needs tight power control to combat the ‘Near-Far’ effect.

♦ Multipath-fading channel causes loss of orthogonality between codes.

In order to obtain higher quality and bit rate in the next generation of mobile radio, it is needed 

to overcome the channel limitations by employing some techniques. These techniques can be 

summarised as effective channel estimation and equalisation, effective air interface, effective 

modulation, effective interference cancellation and effective channel coding.

As it is not possible to make the pseudorandom spreading waveforms of each user completely 

orthogonal in a mobile multipath channel, there is a degree of interference between co-channel 

users. In this case the desired user’s signal is subject to interference from the other users 

signals, which may be received at a higher power level than the wanted signal. Power control 

techniques are traditionally used to solve the ‘Near-Far’ problem in CDMA. In these 

techniques, the output power of each mobile is adjusted to ensure that all signals arrive at the 

same energy level at the base-station receiver. It is clear that using the power control techniques 

increases the implementation complexity and wastes the system bandwidth. A better strategy is 

to employ a receiver, which has ‘Near-Far’ resistance and has the ability to remove the 

multiple-access interference (MAI).

The fundamental limitation of CDMA is the ‘Near-Far’ effect. It makes the system unusable in 

the mobile environment as the number of users increases. The first references in interference 

cancellation, due to the increasing interest in CDMA for commercial applications, are those of 

Schneider [1-9] in 1979 and Kohno [1- 10] in 1983. In the recent years a significant number of
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papers have been devoted to the analysis and design of the ‘Near-Far’ resistant receivers for 

CDMA. They include: the optimum maximum-likelihood [1- 11], successive interference 

cancellation [1- 12] and the decorrelating receiver [1- 13]. Lupas and Verdu [1- 13], [1- 14] 

have provided a theoretical treatment of ‘Near-Far’ resistance, Varanasi et al [1- 12], [1- 15] 

and Duel-Hallen [1- 16], [1- 17] have investigated various optimal and sub-optimal multi-user 

receivers.

These receivers show good ‘Near-far’ resistance in a CDMA environment but they generally 

need accurate additional information concerning the channel characteristic and they can have 

high implementation complexity to achieve the desired level of interference cancellation. These 

requirements significantly increase the implementation difficulties of practical receivers in real 

situations particularly when optimum solutions are required. Therefore, another important way 

in research in multi-user detection is the design of adaptive detectors that self-tune the detector 

parameters from the observation of the received signal [1- 18].

The adaptive minimum mean square error (MMSE) and multi-layer perceptron (MLP) neural 

network receivers which are proposed in this work, in general, have lower implementation 

complexity than current proposed systems and in same cases do not need apriori information to 

achieve the desired performance. These receivers attempt to remove MAI from the received 

signal with the aid of known training sequences inserted into the transmitted data.

Due to the simple structure and good characteristics, the adaptive MMSE receiver attracts much 

attention to be implemented in future cellular and personal communication systems. Many 

researchers investigated the performance of the adaptive MMSE receiver. Madhow and Hoing 

[1- 19], Rapajic and Vucetic [1- 20], Miller [1- 21], [1- 22], [1- 23], Pateros and Saulnier IT- 

24], Yoshida and et al [1- 25] proposed this receiver for use in the CDMA systems.

The first paper that considered the application of adaptive neural network receivers to multi

user detection in CDMA environment is due to Aazhang, Paris and Orsak [1- 26]. They studied 

a multi-layer perceptron structure as a receiver in CDMA environment. This task has been 

continued by other researcher such as Mitra and Poor [1- 27], [1- 28], Chen, Mulgrew and 

McLaughlin [1- 29], Miyajima, Hasegawa and Haneishi [1- 30], Hottinen [1- 31] in the recent 

years.
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1.3 Thesis Outline

The work presented in this thesis, which has been started from 1996 when the UMTS had not 

been defined as a system, focuses its attention on MAI rejecting receivers in CDMA mobile 

radio environment. In this way the theory, design, and performance of adaptive receivers for the 

downlink channel of a CDMA system are studied. Also the potential of neural network 

structures for use as single-user receivers in the downlink CDMA channel and as a multi-user 

receiver in the uplink CDMA channel are considered. These receivers are good alternatives to 

currently proposed MAI rejecting receivers that reduce the need for accurate power control 

techniques. The proposed structures have a number of attractive features compared with the 

current techniques to combat the effect of ‘Near-Far’ in CDMA communication systems.

Chapter two provides an introduction to Direct Sequence CDMA (DS-CDMA) communication 

systems. It contains a brief survey of different techniques to implement receivers in the DS- 

CDMA communication environment. A description of operating schemes, the capacity, BER 

performance, and the ‘Near-Far’ effect are given along with an illustration of the multiple- 

access channel’s model in DS-CDMA. The theory and implementation of the conventional 

matched filter receiver and the maximum-likelihood receiver are considered and their 

performances are evaluated. The sub-optimal DS-CDMA receivers are introduced and their 

theory and implementation are investigated.

Chapter three considers the adaptive MMSE receiver in DS-CDMA environment. It investigates 

the abilities of adaptive MMSE receiver for despreading the DS-CDMA signals, combating the 

effect of interference and using the multipath phenomena of channels for diversity reception in 

DS-CDMA system. A description of adaptive algorithms, the theoretical treatment of the 

adaptive MMSE receiver, and a novel modification of the structure of MMSE receiver to 

function in a dynamic multipath-fading environment are given.

Chapter four focuses its attention into the artificial neural network techniques for receiving the 

signal in DS-CDMA environment. Benefits of the neural network, models of neurons, various 

structures of neural networks, and learning algorithms are given. Also a new adaptive MLP 

neural network receiver is introduced that has the capability of combating the ‘Near-Far’ 

problem and rejecting the multi-user interference in a multipath DS-CDMA channel. The 

application of the artificial neural network structures as single-user and multi-user receivers in 

different channel model scenarios of DS-CDMA system are also considered in this chapter.
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Chapter five discusses appropriate computer simulation techniques for DS-CDMA mobile 

system, which are used to generate the results presented within this thesis.

Chapter six presents simulation results for receivers in the downlink and uplink DS-CDMA 

mobile environments. The focus for the downlink channel is the adaptive MMSE and adaptive 

MLP neural networks as single-user receivers. A comparison is drawn with the performance of 

the conventional matched filter receiver and the RAKE receiver for different channel model 

scenarios. For the uplink channel, the performance of the recurrent neural network receiver 

where used as a multi-user receiver in multiple-access DS-CDMA channel is evaluated through 

a comparison with the performance of the conventional, the decorrelating and the optimum 

maximum-likelihood receivers.

Conclusion and recommendations for future work are given in chapter seven.

Appendix A considers the pseudorandom sequences as signature waveforms for DS-CDMA 

systems. In this appendix the performance of ML and Gold codes employed in this work, are 

evaluated.

Appendix B illustrates models of the multipath channel in mobile communication. This 

Appendix considers the impulse response of multipath channel in different environments, 

frequency selective Rayleigh fading channels and different techniques for estimating the delay 

profile and attenuation coefficients of multipath channel.

Appendix C contains some results from independents published papers that are employed to 

validate the simulation software that has been used to produce the results in this thesis.

Appendix D contains a copy of recent publications by the author, which have been published 

associated with the work presented in this thesis. In the first paper, a novel modification for the 

adaptive MMSE receiver is introduced to combat the effect of multipath fading in the downlink 

mobile channel. In the second paper, a new adaptive MLP neural network receiver is introduced 

that has the capability of combating the ‘Near-Far’ problem and rejecting the multi-user 

interference in a multipath channel. In the third and the fourth papers, an artificial neural 

network approach to multi-user detection for the uplink mobile channel is considered. It is 

shown that the performance of this receiver is the same as the maximum-likelihood multi-user 

receiver but its implementation complexity, especially for a large number of users, is lower than 

the implementation complexity of the maximum-likelihood receiver.
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2.1 Introduction

Spread Spectrum (SS) wireless systems use a transmission bandwidth which is greater than the 

minimum required for sending the information. There are some benefits in increasing the 

transmission bandwidth and one of the most important of them is the resistance to interference. 

The increasing of transmission bandwidth is achieved with a pseudorandom spreading (PS) 

waveform, which is called the signature waveform. This signature waveform is independent of 

the data. By using the same signature waveform at the receiver for despreading, the desired 

user’s signal will be extracted from all other signals that use the same channel simultaneously. 

There are three basic spread spectrum methods, Direct-Sequence (DS), Frequency-Hopping 

(FH), Time-Hopping (TH), as well as several Hybrid Methods. Although both direct-sequence 

and frequency-hopping methods have attractive features to be candidate modulation schemes 

for new generation of mobile communications, but at the present time the direct-sequence code

division multiple-access (DS-CDMA) has the highest attention to be implemented for this 

reason.

Multiple-access interference (MAI) is a factor that limits the capacity and the performance of 

DS-CDMA communication systems. MAI refers to the interference between direct-sequence 

signature waveforms of different users that share a common channel. This interference is the 

result of the random time offsets between signals, which make it impossible to design the 

signature waveform signals to be completely orthogonal1 in real mobile channel. However the 

MAI caused by any one user is generally small, but when the number of interfering signals or 

their power increase, MAI become substantial.

The conventional matched filter receiver, which is the simplest receiver used in a DS-CDMA 

system, does not take into account the existence of MAI. It follows a single-user detection 

strategy in which each user’s data is detected separately without regard to the other co-channel 

users’ signals. Because of interference between users’ signals, a better strategy is to use some 

kind of receiver that deletes or reduces the effect of other user signals on the desired user signal 

[2- 1]. In these receivers, the information of other users is used to improve the performance of 

the receiver to reject the interfering signals. These receivers are called multi-user receivers and 

have the potential to provide significant additional benefits for DS-CDMA systems [2- 2].

1 Two signature waveforms are called orthogonal if their cross-correlation equals to zero.
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The development of multi-user detection has proceeded along a path that is typical of other 

areas in communications. Initially, the optimum solution was obtained along with the best 

possible performance in the Additive White Gaussian Noise (AWGN) channel [2- 2]. That 

result showed that there is a huge gap between the performance of the optimum and the 

conventional single-user detector that neglects the presence of MAI. The conventional single- 

user detector is a simple receiver, which uses a correlator or matched filter to despread the 

received signal followed by a decision device to detect the transmitted bits. Also it has been 

shown that the optimum multi-user detector is not sensitive to the ‘Near-Far’2 effect. This 

feature of multi-user detection avoids the need for accurate power control in the mobile 

communication systems, which increases the complexity of receivers. In other words, an 

increase in complexity in the base-station receiver enables a considerable reduction in the 

complexity of the mobile handsets. The major disadvantage of the optimum multi-user receiver 

is its implementation complexity, which increases exponentially with increasing number of co

channel users. However the best performance in the optimum receiver is achieved by using the 

all other available information such as the signature waveform, timing, amplitude and phase of 

all co-channel users’ signals, which is not normally used in many calculations.

The second stage in the development of the multi-user detection technologies was to analyse 

and design sub-optimal detectors that could achieve significant performance gains over the 

conventional detectors without increasing the complexity exponentially with increasing 

numbers of users. In this way, the decorrelating detector was introduced and investigated by 

Lupas and Verdu [2-3], [2- 4]; the multistage detector by Varanasi and Aazhang [2- 5], [2- 6 ]; 

the decision feedback multi-user detector by Duel-Hallen [2- 7], [2- 8 ]; and some sub-optimum 

detectors by Xie, Rushforth and Short [2- 9], [2- 10].

In order to the mobile environments, the design of multi-user detectors optimised for use in 

channels that include fading, multipath or noncoherent modulation has attracted considerable 

attention. Examples of this are the works of Varanasi [2- 11]; Vasudevan and Varanasi [2- 12], 

[2- 13]; Zvonar and Brady [2- 14], [2- 15], [2- 16]; Fawer and Aazhang [2- 17].

The multi-user detectors described above depend on various parameters being known in 

advance such as the received signal’s amplitude and the cross-correlations between signature 

waveforms. In practice, these are usually not fixed and known prior to call set-up. Therefore, 

another important research direction in the multi-user detection has been the design of adaptive

2 This effect will be explained in the next section.
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detectors that self-tune the detector parameters from the observation of the received signal [2 - 

18].

This chapter contains a brief survey of different techniques that can be used for implementing 

receivers in the DS-CDMA communication environment. First of all, a description of a DS- 

CDMA system is presented in the following section and it will be followed by a description of 

the multiple-access channel model. The conventional technique of detecting the DS-CDMA 

signals is the subject of the fourth section and the fifth section considers the maximum- 

likelihood multi-user detection. The study of sub-optimal detectors is the subject of the sixth 

section and in the final part, the use of neural network structures as DS-CDMA receivers are 

considered

2.2 DS-CDMA System Description

In a DS-CDMA communication system, each user transmits a data sequence of rectangular 

pulses from the set of ±1 with a period of 7*. In this case, each user is assigned an independent 

signature waveform of chip period Tc, which is used to modulate the data bits in the data 

sequence. This converts the data signal to a wide-band spread spectrum signal and it is ready to 

be modulated by a carrier signal.

The selection of signature waveforms depends on a number of factors including system 

capacity, data rate and bandwidth as well as the properties of the chosen signature waveform set 

such as the auto-correlation and cross-correlation between set members3.

2.2.1 Operating Schemes of the DS-CDMA System

A typical DS-CDMA system can operate one of two ways: either in a synchronous mode or an 

asynchronous mode. In a synchronous transmission scheme, the relative delay for all users is set 

to zero. In this case, the signature waveform of all users is aligned in time to be nearly 

orthogonal in order to maximise the capacity of system. This transmission technique decreases 

the amount of co-channel interference but the complexity of the system is increased. Another 

alternative is to permit users to transmit their information at any time. In this case, the 

complexity of the system decreases but the amount of co-channel interference is increased. This

16
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is because of changing the near orthogonality between signature waveforms by random time 

delays.

2.2.2 The Capacity of the DS-CDMA System

The capacity of the DS-CDMA system is interference limited, unlike FDMA and TDMA that 

are bandwidth limited. Hence, any reduction in the interference converts directly into a capacity 

increase and for this reason, the receivers with interference rejection ability are of current 

interest because of their potential for improving capacity.

In a multi-user DS-CDMA channel, which includes K  users, the desired user with the received 

power Pj is subject to interference from K-l other users, each with received power Ph In this 

case, the signal to interference ratio can be expressed as below:

p
SIR = - J -

/=1
/*</

(2-1)

The bit energy to noise power spectral density ratio is a better parameter, which is independent 

of the modulation technique and its performance. This is derived from equation (2-1) by using 

the data bit rate R, the total system bandwidth W, and the noise power 77.

r, PJVIRE J N  --------- (2 -2 )

/ • = ]

By using the above equation, the value of K  can be determined for a given Eh/No- The value of 

W/R is the processing gain of the DS- CDMA system, which equals to the number of chips in a 

signature waveform word. It is clear that the performance of the DS-CDMA system degrades 

gracefully when the number of interfering users increases. In this case, an additional user can 

always be accommodated with the price of some degradation in the performance of system. 

However in the FDMA and TDMA, a user is blocked until a frequency slot or time interval

3 It will be explained in Appendix A.
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becomes available. This can be interpreted as hard limit capacity in the FDMA and TDMA but 

in the DS-CDMA, the capacity of system is softer.

2.2.3 Bit Error Rate Performance of the DS-CDMA System

Bit error rate is one of the most useful measures of the communication system performance. 

The detection of signals may be divided into two major categories, coherent detection and non

coherent or differential detection. In the former, the receiver requires knowledge of the carrier 

phase in order to detect the incoming signal. On the other hand, differential detection does not 

require the knowledge of the carrier phase instead it utilises the phase difference between two 

consecutive symbols. In order for differential detection to work, the data have to be encoded 

differentially.

In a phase shift keying (PSK) modulation scheme, the transmitted data is encoded by the phase 

of the sinusoidal waveform s, (t) . The incoming data is first grouped into M/2 bits, which are 

then applied to the modulator every T seconds to set the phase of •?,(/) according to a certain 

constellation. The general analytical expression for a PSK signal is:

In equation (2-3), T is the duration of a symbol and E is the energy of signal per symbol and in 

equation (2-4), M  is the number of different phases, which have been used to define the PSK 

signal.

Two of the simplest forms of the PSK signals are binary and differential PSK (BPSK and 

DPSK) in which M — 2. In this case, there are only two phases, usually zero and n, which are 

used to generate the PSK signal.

(2-3)

where

(2-4)
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It is noted that the BPSK signal should be coherently detected whereas DBPSK signals can be 

both coherently and differentially detected. Due to the fact that differential detection relies on 

the phase difference between consecutive symbols, when an error occurs it can propagate and 

result in more than one symbol being incorrectly decoded. However, since differential detection 

does not require knowledge of the carrier phase, a much simpler receiver may be implemented. 

In addition, at high Eb/N0, the DPSK modulation scheme performs almost as well the BPSK in 

the AWGN channel. The performance of the PSK is usually measured in terms of the 

probability of error, Pe, or bit error rate as a function of the signal to noise ratio per bit (Eh/N0). 

For channels where the AWGN is the predominate interference and the level of co-channel 

interference is negligible, the probability of error for coherent BPSK is as below:

where Eh is the energy per bit, N0 is the noise power spectral density and Q(x) is the Gaussian 

integral function that is defined as below:

With differentially coherent detection, the bit error rate is given by:

Equations (2-5) and (2-7) describe the bit error rate of the optimum single-user receiver and 

they represent the limit of performance when the MAI can be completely cancelled from the 

received signal in a multi-user environment. These equations also represent the lower bound on 

the achievable performance of a ‘Near-Far’ resistance receiver. Figure 2. 1 shows the bit error 

rate performance for the BPSK and DPSK transmission schemes. It is clear that for the bit error 

rate lower than 10‘3, the difference between the performance of the BPSK and DPSK schemes is 

around 1 dB.

(2-5)

(2-6)
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Figure 2. 1: The BER performance of BPSK and DPSK transmission schemes in a

Gaussian channel.

In a practical DS-CDMA system, there is co-channel interfering signal and it requires to include 

the effect of MAI in the BER expression. Omura [2- 19] has derived an expression using the 

Chernoff bound for the bit error rate of a synchronous DS-CDMA system.

P , < - e ~ A IJ° (2-8)
* 2

In equation (2-8), J0 is defined as the sum of all interfering cross-correlation terms. As A2=Eh, 

the bit energy, this bound is equal to the bit error rate of equation (2-7) with the noise power 

spectral density N<, replaced by the J0. Equation (2-8) gives the upper bound for the DPSK and 

the BER for the BPSK scheme should be within 1 dB of this figure as predicted by Figure 2. 1.

2.2.4 The 1Near-Far’ Problem in the DS-CDMA System

The ‘Near-Far’ effect is a phenomenon that limits the performance of the DS-CDMA 

communication systems. Since it is not possible to make all users signature waveform perfectly 

orthogonal for all possible delays or in a multipath environment, MAI exists between users. 

Where other user signals are received at higher power than the desired user’s signal, the ‘Near- 

Far’ effect occurs and in this case, co-channel interference can overwhelm the desired user 

signal and the bit error rate performance degrades. Another major source for this phenomenon
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is the fading of mobile channels. In this case, if the desired user’s signal is fading, even though 

it is nearer to the receiver than other users, it may be received weaker than the other user signals 

which are at a greater distance.

Turin [2- 20] has estimated that for an asynchronous DS-CDMA system in a single-path 

channel and for a BER under 10"3, the maximum number of users is around 20% of the 

signature waveform length, N, and in the fading channel it falls to only 5%. It means that 

without using ‘Near-Far’ resistance receivers, the DS-CDMA scheme is unusable in a mobile 

channel.

2.3  M u lt ip le -A c c e s s  C h a n n e l s ’ M odel for th e  DS-CDM A S y s t e m

The structure of a DS-CDMA communication system in general is shown in Figure 2. 2. In the 

transmitter, the data bits modulate and spread a pseudorandom sequence at one data bit per 

spreading code word and send it into the transmission channel. The transmission channel may 

contain static multipath or multipath-fading with Doppler frequency, narrowband interference, 

other user interference and the additive white Gaussian noise (AWGN).

Data OutputReceiverTransmitter Channel

SpreadingSpreading AWGN
Codes Codes

Figure 2. 2: A general structure of a DS-CDMA communication system.

In the receiver, after transferring the received signal to the base-band, the same pseudorandom 

sequence is used to despread it. A correlator performs this function and after that the output 

signal of correlator passes through a decision device, which detects the transmitted data bit.

In a multiple-access DS-CDMA environment, K  users are transmitting their data simultaneously 

into the channel. Figure 2. 3 shows the block diagram of this system, which is an asynchronous 

DS-CDMA system with a BPSK modulation scheme. The system model consists of K
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simultaneous users. Each user is assigned a unique signature waveform. The A:,h user’s signature 

is Ck(t) and consists of bipolar chips of duration Tc. The A:th user’s transmitted signal is:

st (0 = TfiK  OK 0 ~iTb) cos(o0 (t- iT t )+0k) (2-9)
7=1

In equation (2-9), bk(i) is a polar data bit with amplitude ±1 and length, 7*, Tf,=NTc where N  is 

the length of the signature sequence in chips, and L is the number of data bits in a data block.

C j( t )  c o s t o x t + e J

b,

S(t)

TK

A k C f j t )  C O S fo x t+ Q x )

Figure 2. 3: Asynchronous phase-coded DS-CDMA model.

The transmitted signal is of the form:

s(‘) = T sk(t ~ Tk) (2-l0>
A r = l

In equation (2-10), r* is a random delay that is assumed uniformly distributed over (0,7),). The 

demodulated received signal in an AWGN channel is of the form:

r0 ) = X  X  A  O’)6* OK 0  -  iTh - *k)+ «0) (2-1 *)
k=I ;=1

where Ak(i) is the received amplitude of the tth user’s signal in the i,h data bit and n(t) is the 

AWGN, with two sided power spectral density of No /2 W/Hz.
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In a multipath-fading channel4, with the time varying impulse response of h(z;t), the k!h user’s 

received signal is [2 - 2 2 ]:

rk it ) = I ' - * -* - T m\ (2 -1 2 )
m - 1

where

h(r;t)  = { t y M s ( r  -  T„) (2-13)
m=1

In equation (2-13), P is the number of paths in the channel, Tm is the excess delay of the mlh 

multipath signal, cfm(t) and (frm(t) are the amplitude and the phase of the m'h fading process 

relative to the b!h user. The fading process is taken to be the sum of P complex Gaussian

processes, each with a mean value equals to A ^ e ja>m and a variance value equals to

var* = E \ \a km(t)ejv>m̂  - A * e j° m |2]. In this case, the demodulated received signal in the 

equation (2 -1 1 ) is changed as below:

r (f) = Z Z ^ ( /K ( 0 E  ~ x* - T,„)]+ n(‘) (2 -i4)
k= 1 /=1 m=1

where L is the number of data bits in a data block. Equation (2-14) shows the general form of 

the received signal in a multiple-access and multipath-fading DS-CDMA environment. In this 

study, it is assumed that the first user is the desired user and the receiver has knowledge of the 

propagation delay o f the desired signal. In this case tj can be set to zero.

2.4 The Conventional Matched Filter Receiver

The conventional matched filter receiver is the simplest receiver, which can be implemented in 

the DS-CDMA environment to detect the transmitted data. It contains a matched filter that 

correlates the received signal with the desired user’s signature waveform and makes a soft 

decision of transmitted data. A decision device takes the sign of the soft decision to estimate the

4 It will be explained in Appendix B.
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transmitted data bit. The conventional matched filter receiver can be analysed in the both the 

single-user and multi-user DS-CDMA environments. These analyses are useful to understand 

the basic techniques for detecting the spread spectrum signal and the effect of MAI on the 

desired user’s signal in the multiple-access DS-CDMA environment.

2.4.1 Conventional Matched Filter Receiver in a Single-User Environment

The simplest model of a channel in the DS-CDMA communication system is line-of-sight 

transmission and a single-user environment. It is assumed that the received signal is corrupted 

with the additive Gaussian noise and such a channel is termed a Gaussian channel. The received 

signal contains the desired user’s signature and the data bit, as below:

r(t) = A ]b]c i (t) + n(t) (2-15)

In equation (2-15), Aj is a complex constant that shows the amplitude and phase of the line-of- 

sight propagated signal. The conventional matched filter receiver, which is the optimum 

maximum-likelihood receiver for this type of channel, convolves the received signal with a 

local time reversed replica of the desired user’s spreading code and takes the sign of result as an 

estimation of the detected data. Figure 2. 4 shows the structure of the conventional matched 

filter receiver. As can be seen, the received signal is multiplied by a replica version of the 

desired user’s signature waveform, where perfect synchronisation is assumed. This signature 

waveform is the same as that is used in the transmitter for the spreading process. The post- 

correJated signal goes to the BPSK demodulator, which performs the operation of integration 

over a bit period 2 *, sampling the output of the integrator at the bit rate, and making the 

decision. The sampled data, which represents a soft decision of the transmitted data bit, is 

passed through a decision unit. This unit takes the sign of the soft estimated data to perform the 

estimated data bit.

Cl(t)
y i

Decision

Figure 2. 4: The structure of a conventional matched filter receiver in a single-user

Gaussian channel.
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In a single-user Gaussian channel, by using the maximum-likelihood criteria, the conventional 

matched filter receiver is the structure that implements the optimum receiver and has the best 

BER performance [2- 21]. A typical bit error rate (BER) performance of the conventional 

matched filter receiver in a Gaussian channel is shown in Figure 2. 5. In this case, the 

processing gain of the simulated DS-CDMA system is 31 or the length of signature waveform 

signal is selected 31 chips per bit. This diagram shows the BER performance of the optimum 

single-user receiver and this represents the limit of the BER performance when the MAI can be 

completely cancelled from the received signal in a multi-user environment. In other words, it 

represents the lower bound on the achievable BER performance of a ‘Near-Far’ resistance 

receiver in a DS-CDMA environment with the processing gain of 31.

The conventional matched filter receiver has a simple structure and it is very helpful to 

understand the despreading process in the DS-CDMA channel. As it will be seen, all parts of 

the conventional matched filter receiver are utilised to implement the RAKE receiver, which is 

used to collect the scattered rays of propagated signal’s energy in the multipath channels. It is 

noted that the conventional matched filter receiver is equivalent to one branch of the RAKE 

receiver.

1.00E+00

1.00E-01

1.00E-02 

m 1.00E-03
CO

1.00E-04

1.00E-05

1.00E-06
6 8 100 2 4

Eb/No in dB

Figure 2. 5: The BER performance of the conventional matched filter receiver in a single- 

user Gaussian DS-CDMA channel with a processing gain of 31.

2.4.2 Conventional Matched F ilter Receiver in a Multi-User Environment

In a synchronous multi-user channel all bits of all users are aligned in time and for simplifying 

the discussion, it is assumed that all carrier phases are equal to zero. Assuming K  direct
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sequence users in a synchronous single-path binary phase shift keying (BPSK) channel, the 

baseband received signal can be expressed as:

A.

'•(0 = Z ^ * 6 *c *(0 + » ( 0 (2-16)
k=\

In equation (2-16), Ak, bk, and Ck(t) are the amplitude, the data bit, and the signature waveform 

of the k!h user. The power of the A* signal is equal to the square of its amplitude that is assumed 

to be constant over a bit intervals. In general, the rate of signature waveform signal, f c=l/Tc 

(chip rate), is much greater than the data bit ratQ,fh=l/Th. Multiplication of the BPSK signal at 

the transmitter by the signature waveform, has the effect of spreading it out in frequency 

domain by a factor off c l fb, which is called processing gain (PG) and the signature waveform 

sometimes referred as the spreading code. The conventional matched filter detector for 

receiving the signal described in the equation (2-16), is performed by using a bank of K  

correlators or matched filters, as is shown in Figure 2. 6 .

C,(I)

r(t)

cK(t)

V i  „ DecisionW

y2 Decision

b i

y K DecisionS " ►n W

K

Figure 2. 6 : The structure of the conventional matched filter receiver in a multi-user DS-

CDMA channel.
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In the conventional matched filter receiver, each signature waveform signal is regenerated and 

correlated with the received signal in a separate detector branch [2- 23]. The outputs of the 

correlators are sampled separately every sample per bit to provide soft estimation of transmitted 

data. The final bipolar ± 1 hard data decisions are made according to the sign of the soft 

estimates.

However the conventional matched filter receiver detects each user’s data in each branch of the 

receiver without regarding to the existence of the other users’ signals, the success of this 

detector depends on the properties of the correlation between signature waveforms. In this 

situation, the auto-correlation of the signature codes should be much larger than the cross

correlation between them. The cross-correlation of two signature waveform c t( t)  and Ck(t), is  

defined as:

Kj, = T  f  ci (fK  M *  <2-17)
A

Here, if i=k, and if i?£, 0< hik <1. The soft estimate of the A*h user’s correlator for a

particular bit interval is:

y k
b

= A K  + X  K t  Aibi + T  f  " (fy k  ( 0 *  (2-18)
/=1 1 h
i* k

= Akbk + M A Ik + z k

In other words, correlation with the k user itself gives rise to the recovered data term, Akbk, 

correlation with all the other users gives rise to a term MAIk, due to multiple access interference

and correlation with the thermal noise gives rise to the noise term, zk .

Since the signature waveforms are generally designed to have very low cross-correlation 

{hik« \ ) 5, the effect of the interfering signal is reduced. As the number of interfering users 

increases, the amount of MAI increases. Figure 2. 7, which has resulted via computer 

simulation, shows the effect of increasing the number of co-channel interfering users on the

5 It will be explained in Appendix A.
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BER performance of the conventional matched filter receiver in a multi-user DS-CDMA 

environment.

1.00E+00
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Number of interfering users

Figure 2. 7: The BER performance of the conventional matched filter receiver versus the 

number of co-channel users in a ‘Near-Far’ multiple-access DS-CDMA channel.

In this case, it is assumed that the energy per bit of each interfere user signal is 6 dB more than 

the energy per bit of the desired user’s signal, which shows the ‘Near-Far’ problem in the 

channel. As can be seen, by increasing the number of active users in the channel, the BER 

performance of the conventional matched filter receiver degrades.

In addition, the presence of strong users with large amplitudes can affect the performance of the 

detecting process. In this situation, the stronger users may overwhelm the weaker user. This is 

known as the ‘Near-Far’ problem and may happen in the situation of fading or different 

geographical location of transmitters. The result in Figure 2. 8, which has been achieved via 

computer simulation, shows the effect of the ‘Near-Far’ problem on the BER performance of 

the conventional matched filter receiver. In this case, the DS-CDMA channel contains 10 co

channel users and the Eb(jexirecj/No= 6 dB. As is shown, by increasing the energy of co-channel 

users’ signals, the desired user’s signal is overwhelmed by the strong MAI and the BER 

performance of the conventional matched filter receiver is degraded.
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Figure 2. 8 : The BER performance of the conventional matched filter versus Ei/Eb(desired) in 

a 10-user ’Near-Far* multiple-access DS-CDMA channel.

There are some techniques that can be used to improve the performance of the conventional 

matched filter receiver in a multi-user environment with ‘Near-Far’ effect. Signature waveform 

design, using power control, error correction coding and utilising adaptive antennas are part of 

these techniques that can be used to reduce the effect of MAI on the performance of the 

conventional matched filter receiver.

♦ Signature waveform design: The first approach is aimed at the design of spreading

signature waveforms with good cross-correlation property [2- 24]. Ideally, if the codes were 

all orthogonal, then /7;*=0, and there would not be any MAI. However, in practice most 

channels contain some degree of asynchronism, it is not possible to design codes that are 

orthogonal over all possible delays.

♦ Power control: The use of power control ensures that all users’ signals arrive with the same

amplitude to the receiver and there is not any strong user to overwhelm another one [2- 25].

♦ E rror correction coding: The design of error correcting codes is another technique that can

improve the performance of the conventional matched filter receiver in the DS-CDMA 

channel with low signal to interference ratio condition.
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♦ Adaptive antenna: By using an adaptive antenna, the desired user signal and a fraction of 

MAI, which are in the desired direction, are enhanced and the reminder of the MAI that 

arrive from other directions will be attenuated.

2.5 The Optimum Maximum-Likelihood Receiver

In the multi-user DS-CDMA environments, some parameters of the transmitted signals such as 

signature waveform, timing, amplitude and phase may be jointly used to increase the 

performance of receivers to detect transmitted signals. In this case, one of the most important 

assumption which is realistic for the base-station but it is unrealistic for the handsets in a mobile 

environment, is that the receiver knows the signature waveform of all users.

Making the assumption that all parameters in a DS-CDMA environment are available to the 

system, Verdu [2- 2] proposed and analysed the optimum multi-user or maximal-likelihood 

sequence detector. Although this receiver has the best performance of all the receivers in the 

DS-CDMA environment, it is currently too complex to be implemented in the practical systems 

in real time. Nevertheless, the performance of the maximum-likelihood receiver is a good 

reference for comparing the performance of other sub-optimal receivers. As it has been said, the 

maximum-likelihood receiver has the best performance for the price of using all additional 

information and high implementation complexity and the conventional matched filter receiver 

has the poorest performance with a simple implementation structure.

2.5.1 Mathematical Background of the Maximum-Likelihood Receiver

The optimum receiver is defined as the receiver that maximises the probability of making a 

correct decision based on the observation of the received signal. The optimum receiver in a 

multi-user DS-CDMA environment is defined as the receiver that selects the most probable 

sequence of bits {bk(n), l< k  <K, l< n< L } given the received signal r(t) observed over the time 

interval 0 <t <LTh+2Th [2- 23] where K  and L are the number of users and the number of bits 

in one block of data respectively . For a synchronous mode of data transmission, one symbol of 

each user interferes with the desired user’s symbol. Hence in this situation, it is sufficient to 

consider the received signal in the time interval 0 <t <Th. Over this interval and in the AWGN, 

the received signal in multi-user DS-CDMA environment is:
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K
(2-19)

In this case, the optimum receiver is defined as the receiver that selects the vector of the most 

probable data bits for each user {&*, l< k  <K) given the received signal r(t) observed over the 

time interval 0 < t < Th [2-2]. This decision criterion is called the maximum a posteriori 

probability (MAP) criterion. Some simplification occurs in the MAP criterion when the 

transmitted signals are all equally probable a priori. In this case, the decision criterion is 

equivalent to maximising Ha&f[r(t)\s(t)], which is the conditional probability density function of 

the observed signal given s(t). The conditional probability density or any monotonic function of 

it is called the likelihood function and the decision criterion based on the maximum of 

f[r(t)\s(t)], is called the maximum-likelihood criterion. It is clear that under the assumption of 

equal a priori probability for the transmitting signals, the receiver based on the MAP criterion 

is the same as the receiver based on the maximum-likelihood criterion.

The maximum-likelihood criterion in the multi-user DS-CDMA environment is equivalent to 

computing the log-likelihood function or distance metrics, A(b), and selecting the data bits {&*, 

l< k  <K) that minimise A(b). In a synchronous multi-user DS-CDMA environment, the log- 

likelihood function is formed as below:

In equation (2-20), b represents the data bits from the K  users. By expanding the equation (2- 

2 0 ), is obtained:

may be ignored in the computation of the log-likelihood function. The term

each of the K  users signature waveform, can be substituted by yk and the integral involving ck(t), 

C j( t)  is simplify to hjk. Therefore the equation (2-21) can be expressed as a modified log- 

likelihood function as below:

(2-20)

In equation (2-21), the integral involving r2(t) is common to all possible sequences {bk} and it

r(t)pk < k < K , which represents the cross-correlation of the received signal with
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K K

D'( Yk , bK) = - 2  Y , Akbky k + Y JH AkAi bkbi hi,i‘ <2‘22)
A=1 > 1  *=1

It is noted that selecting the sequences {b/J that minimise D ( YK , bK ) is equivalent to selecting 

the sequences {bk} that maximise the metric C( YK , bK )= -D ( YK , bK ). In this case, the 

maximum-likelihood criterion can be expressed in the form of correlation metrics:

K  K  K

C( Yk , bK)= Akbky k ~ ^ j 2 L Ĵ kA jbkbjh jk  (2-23)
* = ]  7 = 1  J fc= l

It is observed that the maximum-likelihood receiver, for implementing the equation (2-23) and 

computing the correlation metrics, should have knowledge of the all users received signal 

amplitudes. It has to compute the correlation metrics for all 2K possible choices of the bits in the 

bit set of K  users and select the sequence that gives the largest correlation metrics.

In summary, for the synchronous mode of operation of a DS-CDMA system, the maximum- 

likelihood receiver is implemented by using equation (2-23). It has a structure, which consists 

of a bank of K  correlators or matched filters followed by a detector that computes the 2K 

correlation metrics and selects the sequence corresponding to the largest correlation metrics.

In the asynchronous mode of the multi-user DS-CDMA system, there are exactly two 

consecutive symbols from each co-channel user that overlap a desired user’s symbol. In this 

case, the maximum-likelihood receiver computes the log-likelihood function, which is formed 

as below:

f T h+2Th
A(b)= [ r(t) - ' E At'E K (i)ck (t -  iTh -  t k)

k=1 ;=1

2

dt (2-24)

The integral involving r2(t) may be ignored, since it is common to all possible information 

sequences. Therefore, it is observed that the log-likelihood function may be expressed in terms 

of a correlation metric that involves the outputs {rk(i), 1 <k<K, 1 <i <L} o f KL correlators or 

matched filters. If a block processing approach is adopted, the maximum-likelihood receiver 

must compute 2 ^  correlation metrics to determine the K  block of sequences, each of which has 

a length, L. This approach is too complex to be implemented in practice because K  and L are 

generally large. In this case, the Viterbi algorithm is used to implement the maximum-
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likelihood criterion. The Viterbi algorithm uses the fact that each transmitted symbol overlaps 

at most with 2K-2 symbols [2- 23]. Although a significant reduction in the computational 

complexity is obtained with respect to the block size parameter, L, the exponential dependence 

on the number of users cannot be reduced. Figure 2. 9 shows the structure of the optimum 

maximum-likelihood receiver.

D etec ted  
— \  Bit

R e c e iv e d
Signal

Matched
Filter
Bank

Viterbi 
Algorithm 

(Maximum - 
likelihood 
detector)

Figure 2. 9: The structure of the maximum-likelihood receiver in a multi-user DS-CDMA

environment.

2.5.2 The Performance Evaluation of the Maximum-Likelihood Receiver

To observe the huge difference between the performance of the maximum-likelihood and 

conventional matched filter receivers in a DS-CDMA multiple-access environment, it is useful 

to compare the performance of the two described receivers. In this way, by using Monte Carlo 

simulation techniques, a multi-user DS-CDMA channel with the ‘Near-Far’ effect is simulated. 

This channel contains five interfering users, where the power of each co-channel user’s signal is 

5 dB higher than the power of the desired user’s signal. As is known, these two described 

receivers have a marginal BER performance in this environment, where the maximum- 

likelihood receiver has the best performance and the conventional matched filter has the poorest 

performance in the multi-user DS-CDMA environment.

The BER performances of two receivers in different channel model scenarios are shown in 

Figure 2. 10 and Figure 2. 11. Figure 2. 10 shows the BER performance of the maximum- 

likelihood and the conventional matched filter receivers as a function of E//N0 in a 5-user Near- 

Far' multiple-access interference channel with E/Eh(cjesirej) = 5 dB.
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Figure 2. 10: The BER performance of the maximum-likelihood and the conventional 

matched fdter receivers versus Eb/N0 in a 5-user ’Near-Far' multiple-access DS-CDMA

environment.

Figure 2. 11 shows the BER performance of the two receivers as a function of E/Eh(jesirej) in a 5- 

user 'Near-Far' multiple-access DS-CDMA channel with Eh(jexirej) /No =5 dB. As can be seen, 

there is a significant difference between the BER performance of the two receivers under the 

different conditions. It is shown that the conventional matched filter receiver is very sensitive to 

the power of co-channel interfering users and by increasing the power of the interfering users, a 

huge degradation will occur in the BER performance of this receiver. On the other hand, the 

performance of the maximum-likelihood receiver is not sensitive to the ‘Near-Far’ effect and 

the BER performance of this receiver remains approximately constant by increasing the power 

of co-channel interfere users.

In the maximum-likelihood receiver, the notable performance gains over other types of 

receivers are obtained because of [2- 2]:

♦ The signature waveform of all users is be known.

♦ The received amplitude of all users is be known.

♦ The timing of all users is be acquired.

♦ Exponential complexity in the number of users.

♦ A centralised structure that demodulates all transmitters.

Max imum-Likli hood 
Receiver
Conventional Matched 
Filter Receiver
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Figure 2. 11: The BER performance of the maximum-likelihood and the conventional 

matched fdter receivers versus Ej/Eb(desireii) in a 5-user 'Near-Far' multiple-access DS- 

CDMA environment (the error bars show 95% confidence limits assuming normal

distribution).

As has been said before, under the assumption of access to all the parameters in a DS-CDMA 

environment, which is realistic for the base-station but unrealistic for handsets in a mobile 

environment, the performance of the maximum-likelihood receiver is the best performance 

among all of receivers.

2.6  S u b -o p t im u m  DS-CDMA R e c e iv e r s

In the previous section, it has been shown that the optimum maximum-likelihood receiver for 

detecting the data in a multi-user DS-CDMA channel requires all information about timing, 

signature waveform and amplitude of users’ signals and also that it has a complexity that grows 

exponentially with the number of users. Some other types of receiver, which are called sub

optimum receivers, have complexities that grow linearly with the number of users.

The conventional matched filter receiver is the simplest sub-optimum receiver, which has a 

complexity that grows linearly with the number of users, but for combating the effect of MAI 

and ‘Near-Far’ problem, such a receiver requires some type of power control for it to be 

effective. There are some other types of sub-optimum receiver with implementation
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complexities that grow linearly with the number of co-channel users and performances, which 

are better than the performance of the conventional matched filter receiver in the DS-CDMA 

multiple-access environments. The decorrelating detector and the MMSE receiver are two well- 

known types of sub-optimum receivers, which will be described in following sub sections.

2.6.1 The Decorrelating Detector

The decorrelating detector is a sub-optimum receiver, which has a linear computational 

complexity with regard to the number of co-channel users and it can significantly reduce the 

effect of co-channel interference in the multi-user DS-CDMA environments [2- 3], [2- 4]. 

Equation (2-18), which shows the output of the k!h matched filter, can be rewritten for all K  

users in the multi-user channel as:

A. A. A.

A  = X X l  A ' b l + Z I ’ T 2 = ' Z . h l,2 A i b l +  Z 2
i - \ /=1 / '= !

(2-25)

By using a matrix-vector format, the above equations may be rewritten as below:

T.1 i

y 2
=

1̂.2

Jt/C, 1

2,1 A, 0  

0  A y

0

6 , zi
b2 Z 2

+

bK

(2-26)

or:

Y = H. A. b + Z (2-27)

In equation (2-27), b is the data vector, Z is a noise vector, and Y is the output vector of the 

matched filter bank. A is a KxK  diagonal matrix that contains the received signal amplitudes 

and H is a K xK  correlation matrix, where it’s elements represent the value of the cross

correlation of each pair of the signature waveforms of K  users. For example, hik shows the 

cross-correlation value of the ilh and the user signature waveforms. Since hik=hki, H is 

symmetric and invertible for the synchronous systems [2- 4],
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The decorrelating detector estimates the transmitted data bits by applying the inverse of the 

correlation matrix, H, to the output of the matched filter bank, Y. The estimated data at the 

output of the decorrelating receiver is:

bAc-Sgn  (IT1 Y )=Sgn (Ab + f f ' Z )  -Sgn  (A b + Zdec) (2-28)

As can be seen, the decorrelating receiver completely eliminates the effect of co-channel 

interference or MAI in the multi-user DS-CDMA environments and hence its performance is 

independent of the power of co-channel other user’s signals. It means that the decorrelating 

detector is a ‘Near-Far’ resistant receiver6 [2- 4]. The operation of this detector is very similar 

in concept to the zero-forcing equaliser [2- 23] that is used to eliminate inter-symbol- 

interference (ISI) in the digital communication systems. The structure of the decorrelating 

receiver in the multi-user DS-CDMA system is shown in Figure 2. 12.

c,(t)

r(t)

C M

t=iTh

t=iTh

t=iTh

H 1

Decision

Decision

Decision

b ,

’K

Figure 2.12: The structure of the decorrelating detector.

6 The ‘Near-Far’ resistance is defined as the ability of receiver to resist against the powerful unwanted 

users’ signal when the power o f AWGN approaches to zero.
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As can be seen, the received signal is passed through a matched filter bank, where each of the 

matched filters in the bank is matched to one signature waveform. In this case, the inverse of 

the correlation matrix, H 1, decorrelates the output of matched filter bank and K  decision 

devices take the sign of results to estimate the K  transmitted data bits.

The performance of the decorrelating receiver will be evaluated and compared with other multi

user DS-CDMA receivers in chapter six.

The main advantages of the decorrelating receiver, as a sub-optimum receiver in the DS-CDMA 

system, may be summarised as below:

♦ Provides substantial performance and capacity gain over the conventional matched filter 

receiver.

♦ It does not need to estimate the received signal’s amplitudes.

♦ Its computational complexity is linear in the number of users and is lower than the

maximum-likelihood receiver.

♦ It is the maximum-likelihood solution in the absence of any knowledge about the received 

signal’s amplitudes.

The bit error rate performance of the decorrelating receiver is independent of the interfering 

signals’ amplitudes. This property makes the decorrelating detector a ‘Near-Far’ resistant 

receiver.

In the decorrelating detector, the notable performance gains over the conventional matched 

filter receiver are obtained because of [2- 19]:

♦ The signature waveform of all users should be known.

♦ The timing of all users is be acquired.

♦ The matrix inverse H"1 is computed in real time.

A disadvantage of this detector is that it causes noise enhancement. The power of the noise term 

Z(iec==H",Z at the output of the decorrelating receiver, referring to equation (2-28), is always 

greater than the power of the noise term, Z, at the output of the conventional matched filter 

receiver. Another disadvantage of the decorrelating detector is the difficulty of computing the 

inverse of H  in the real time. For example in an asynchronous mode, H is of order KxL  that is 

large for a typical message length, L.
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2.6.2 The Minimum Mean Square Error (MMSE) Receiver

In the pervious section, it was shown that the decorrelating detector, which is a sub-optimum 

receiver, is able to delete the effect of co-channel interference. Also, it has a good performance 

in the ‘Near-Far’ DS-CDMA environments and hence it is known as a ‘Near-Far’ resistance 

receiver. In some special situations, when the power of all the interfering signals are very weak, 

the BER performance of the decorrelating detector may be worse than the BER performance of 

the conventional matched filter receiver. This is because, by applying the inverse of the 

correlation matrix, H'1, in the output of matched filter bank to perform the decorrelating 

detector, the noise term is enhanced. This enhancement for the case of the weak co-channel 

interference, degrades the BER performance of the decorrelating receiver in compare with the 

conventional matched filter receiver. In this situation, a receiver that takes into account the 

power of the co-channel interference in comparison with the background noise is useful.

The minimum mean square error (MMSE) receiver is a linear detector that takes into account 

the background noise [2- 10]. This detector implements the linear transformation, b=LY, where 

the matrix L is to be determined in accordance with the requirement to minimise, J(b), the 

mean square error between the actual transmitted data and the output of the matched filter bank:

In equation (2-31), H is the correlation matrix of the signature waveforms, A is a diagonal 

matrix related to received signal’s amplitudes, and N0/2 is the power spectral density of noise. 

It is clear that the conventional matched filter receiver, the decorrelating detector, and the 

MMSE receiver are linear detectors of the form:

J(b)=E[ | b-LY 12] (2-29)

It is easily shown that the optimum choice of L that minimises J(b) is [2- 23]:

(2-30)

In this case, the output of detector is:

(2-31)
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b = Sgn [LY] (2-32)

where L is a K x K  matrix, which implements the linear transformation. In the conventional 

matched filter receiver L is a diagonal unique matrix, in the decorrelating detector L=H_1 and in 

the MMSE receiver L has the value that is shown in equation (2-30). As can be seen, the 

MMSE detector implements a modified inverse of the correlation matrix compared to the 

decorrelating receiver, which is proportional to the noise. The MMSE detector balances the 

desire to eliminate MAI completely with the desire not to enhance background noise. When the 

energy of the noise, N 0, in comparison with the diagonal elements of H, is small, the MMSE 

detector approaches the performance of the decorrelating detector. When the noise level is high 

however, the detector ignores the presence of MAI and approaches to the conventional matched 

filter receiver.

The BER performance of the MMSE detector is generally better than the BER performance of 

the decorrelating receiver and this is because it takes into account the background noise. If 

N0->0, the MMSE detector approaches to the decorrelating receiver and therefore the ‘Near- 

Far’ resistance of this detector is the same as the ‘Near-Far’ resistance of the decorrelating 

receiver7. Although the implementation complexity of the MMSE detector is slightly more than 

the implementation complexity of the decorrelating receiver (because it requires to track the 

received signal amplitudes), it has an advantage that makes it an interesting receiver. The 

advantage of the linear MMSE detector is that it can easily be implemented in an adaptive form 

with training sequences8. In this case, it does not require any information relating to the 

signature waveform of co-channel interfering users nor the received signal’s amplitudes. The 

structure of an adaptive MMSE detector is shown in Figure 2. 13.

7 As it has been seen in section 2.6.1, the decorrelating detector is a ‘Near-Far’ resistance receiver.

8 The adaptive implementation and the performance o f the MMSE detector will be considered in chapters 

3 and 6 respectively.
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Figure 2.13: The structure o f an adaptive MMSE receiver.

As is shown in Figure 2. 13, after converting the received signal to the baseband, it passes 

through a chip-matched filter and is sampled at the end of every chip interval. These samples 

are fed into the adaptive finite impulse response (FIR) digital filter. The structure of this filter is 

a transversal filter, which comprises a taped delay line and a summer. The values of the tap 

weights in this filter determine the impulse response of the filter and to implement an adaptive 

filter, they are adjusted via an adaptive algorithm. The output of the filter is sampled once every 

bit interval and hard-limited to form the estimated value of the received data. If the filter 

coefficients were adjusted to have the same values corresponding to the chips of the signature 

waveform of the desired user, the structure and performance of this receiver would be the same 

as the conventional matched filter receiver. In this case, If the desired signal has been received 

in the presence of the AWGN only, its performance would be good as the performance of the 

maximum-likelihood receiver in a Gaussian channel. In the presence o f co-channel interference, 

the adaptive nature of the MMSE receiver changes the tap weights of the transversal filter in the 

sense of minimum mean square error for preventing interference and noise.

The adaptive implementation of the MMSE receiver has the following characteristics and 

properties [2- 18]:

♦ The training sequence of the desired user should be known.

♦ The received signal’s amplitudes need not to be known or estimated.

♦ The signature waveforms of other co-channel users need not be known.

♦ Knowledge of the signature waveform of the desired user is not necessary but it is useful 

for initialising the adaptive algorithms.

♦ It can be implemented in an asynchronous channel and in this situation it requires the 

timing of the desired user be acquired.
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♦ The timing of other co-channel users need not be acquired.

Due to the simple structure and good characteristics, the adaptive MMSE receiver attracts much 

attention to be implemented in the future cellular and personal communication systems. Many 

researchers investigated the performance of the adaptive MMSE receiver. Madhow and Hoing 

[2- 26], Rapajic and Vucetic [2- 27], Miller[2- 28], [2- 29], [2- 30], Pateros and Saulnier [2- 

31], Yoshida and et al [2- 32] proposed this receiver for use in the DS-CDMA systems.

Chapter three considers the adaptive MMSE receiver in the DS-CDMA environment. It 

investigates the abilities of the adaptive MMSE receiver for despreading the DS-CDMA 

signals, combating the effect of interference and using multipath phenomena of channel for 

diversity reception in the DS-CDMA system. The performance evaluation of this receiver via 

computer software simulation will be considered in chapter six.

2.7 Artificial Neural Network Structures as DS-CDMA Receivers

In the multiple-access DS-CDMA environment, the co-channel other users’ signals degrade the 

performance of the receiver to detect the desired user signal. In this situation, the desired user’s 

signal is embedded in the AWGN and MAI. Thus, the boundaries formed between optimal 

decision regions are non-linear. A particularly interesting method of multi-user detection, which 

has the potential for low computational complexity, is the application of neural network 

concepts.

The topology of a neural network contains a large amount of interconnection of simple 

computing cells referred to as ‘neurons’ or ‘processing units’. These non-linear units are able to 

provide non-linear boundaries in the decision region, which divide the decision region into 

optimal sub-regions. In most common networks, neurons are arranged in layers with the input 

data fed to the network at the input layer. The data then passes through the network to the 

output layer to provide the solution or answer.

The computing power of the neural network structures is high because of its parallel-distributed 

structure and its ability to learn and therefore generalise. These two information-processing 

capabilities enable artificial neural networks to solve complex problems.

42



DS-CDMA Communication System, Chapter Two
•JX'VSKSiTY v f

BATH

Two common structures of the neural network topology, which are suitable for use in the DS- 

CDMA environment, are the adaptive multi-layer perceptron (MLP) and the recurrent neural 

network. The adaptive MLP neural network, which is implemented as an adaptive detector, 

contains several layers in its feedforward structure. It can be used as an adaptive single-user 

receiver, such as adaptive MMSE receiver, in the multiple-access DS-CDMA environment. The 

recurrent neural network receiver contains some feedback loops in its structure. These feedback 

loops provide some kind of memory in the network and make it as a dynamic system. This 

structure has the potential to be used as a multi-user detector in the DS-CDMA environment.

2.7.1 The Adaptive Multi-Layer Perceptron Neural Network Receiver

It has been noted that designing the adaptive systems that self-tune the detector parameters from 

the observation of the received signals in the multiple-access environment is a very interesting 

way to implement the DS-CDMA receivers. The multi-layer topology of the neural network 

potentially has this ability to work as the adaptive receivers in this environment. They have the 

ability to perform subtle decision boundaries via the training process to separate the wanted and 

unwanted signals. For this purpose, the multi-layer perceptron are trained to demodulate DS- 

CDMA waveforms. The training is an iterative process of modifying interconnection weights 

and thresholds of neurons to minimise an error function. The structure of the adaptive MLP 

neural network DS-CDMA receiver is shown in Figure 2. 14. As can be seen, the MLP neural 

network contains the input, the hidden and the output layers, the connections between which are 

assigned interconnection weights. The details and the performance evaluation of this receiver 

will be considered in chapters four and six respectively.
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Figure 2. 14: The structure of an adaptive MLP neural network DS-CDMA receiver.

2.7.2 The Recurrent Neural Network Receiver

To implement a multi-user DS-CDMA receiver by using the structure of the recurrent neural 

network, the received signal is passed through a bank of matched filters. The number of 

matched filters in the filter bank is equal to the number of users in the multi-user channel. The 

output signals of the matched filters are sampled and are fed into the recurrent neural network 

structure. The recurrent neural network has a structure that consists of a number of small non

linear processing units. Each unit contains a summer and a non-linear function. The output of 

each unit is fed to all other units via connection weights and each unit has an external input. 

Figure 2. 15 shows the structure of the recurrent neural network multi-user receiver, which has 

been used to detect the data bits of K  co-channel users in the DS-CDMA environment. The 

details and the performance evaluation of this receiver will be considered in chapters four and 

six respectively.
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Figure 2 .15: The Structure of the recurrent neural network receiver in a DS-CDMA

environment.

2.8 Summary

In this chapter, the main structures for implementing the receiver in the multiple-access DS- 

CDMA communication system have been investigated. It has been shown that the co-channel 

interference or MAI is a major problem, which degrades the performance of the receivers in 

DS-CDMA multiple-access channels. In this case, it is needed to use the receiver with the 

ability of resisting the ‘Near-Far’ effect. It has been shown that the performance of the 

conventional matched filter receiver, which is the simplest receiver among other DS-CDMA 

detectors, degrades by increasing the power of co-channel users in the multiple-access 

environment. This shows that the resistance of the conventional matched filter receiver in the 

DS-CDMA environment with ‘Near-Far’ effect is very poor. However the maximum-likelihood 

receiver has the best performance among other receivers in this environment and is a ‘Near-Far’ 

resistance receiver but its implementation complexity grows exponentially with the number of 

users. On the other hand, it requires additional information about timing, signature waveform
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and amplitude of users’ received signals and hence it is not suitable to be implemented in the 

commercial environments.

Sub-optimum receivers which have the implementation complexities that grow linearly with the 

number of users, are suitable candidates to be used as DS-CDMA receivers. The decorrelating 

detector and the MMSE receiver are two most famous types of these receivers. It has been 

shown that the decorrelating detector, which uses the inverse of the correlation matrix in its 

structure, is a ‘Near-Far’ resistance receiver and eliminates the effect of co-channel interference 

on the received signal. The great advantage of the linear MMSE detector is that it can easily be 

implemented in an adaptive form with training sequences. In this case, it does not require any 

information related to the signature waveform of co-channel interfering users and the received 

signal’s amplitudes.

The neural network structures are alternative candidates for use as receivers in the DS-CDMA 

environment. In this case, two common topologies, in the name of multi-layer perceptron and 

the recurrent neural network are used to implement the DS-CDMA receivers. The advantages of 

the neural network receivers to draw non-linear boundaries between the wanted signal and 

unwanted signals in the decision domain, makes these receivers attractive for use as DS-CDMA 

receivers in the future systems.
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Chapter Three

Adaptive MMSE Receiver in DS- 
CDMA System
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3.1 Introduction

As has been described in the previous chapter, the maximum-likelihood receiver, which has the 

best performance among DS-CDMA receives, is a ‘Near-Far’ resistant receiver. However its 

implementation complexity in comparison with the conventional matched filter receiver is high, 

and it requires a large amount of additional information about the received signals for it to 

operate in a DS-CDMA multiple-access environment. This required information consists of 

amplitude, phase, timing and signature waveform sequence of different co-channel users, which 

should be known or estimated by the receiver. In order to achieve practical receivers with lower 

implementation complexity, various types of sub-optimum receivers have been proposed. These 

receivers are designed to achieve the performance near the performance of the maximum- 

likelihood receiver with reduced implementation complexity but all of them require several 

additional information that may be difficult to obtain in a multiple-access DS-CDMA channel. 

However it is common for a receiver to have knowledge of the signature waveform, but the 

amplitude, phase and timing are dynamic parameters and must be tracked and updated during 

the real data transmission. In addition, in the mobile system environment, the mobility of the 

handset receiver and the nature of the mobile radio channel creates multipath-fading resulting in 

a rapid rate of fluctuations in the amplitude and phase of the received signal. Hence, an 

effective and important way of rejecting multiple-access interference in a DS-CDMA 

communication environment is the design of adaptive detectors, which self-tune the detectors’ 

parameters from the observation of the received signals [3- 1]. In recent years, adaptive 

receivers have attracted considerable attentions as a way of detecting the DS-CDMA signals in 

the multi-user and multipath environments.

One important type of the adaptive ‘Near-Far’ resistant DS-CDMA receiver, which avoids 

some of the mentioned problems, is the adaptive minimum-mean-squared-error (MMSE) 

receiver. As has been considered in chapter two, the MMSE receiver can be implemented 

adaptively in a DS-CDMA environment. In this case, it acts as a single-user detector, which 

requires no additional information more than the code timing of the desired user and has 

relatively low implementation complexity in comparison with the maximum-likelihood 

receiver.

A large amounts of research has been done by Madhow and Hoing [3- 2], [3- 3], Rapajic and 

Vucetic [3- 4], Miller[3- 5], [3- 6], [3- 7], Pateros and Saulnier [3- 8], [3- 9], and Yoshida and et 

al. [3- 10] related to the adaptive MMSE receiver. It has been shown that this detector is a
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‘Near-Far’ resistant receiver in the multiple-access DS-CDMA environments and can produce 

significant performance improvement in the presence of MAI, multipath channel and narrow 

band interference. In this way, Miller [3- 5] has shown that using the MMSE receiver with no 

power control can double the capacity of a CDMA network in comparison with using the 

conventional matched filter receiver with perfect power control. Pateros and Saulnier [3- 9] 

have shown that the MMSE receiver is robust to both narrowband and static multipath 

interference and finally Madhow and Hoing [3- 3] tried to use several techniques to reduce the 

implementation complexity of this receiver.

However, the adaptive MMSE receiver does not operate sufficiently well in the dynamic 

multipath-fading channels such as mobile environments. In this situation, the adaptation speed 

of the receiver is too slow to allow the parameters to be tracked in a fast varying channel and 

the adaptive MMSE receiver loses phase lock on the desired user’s signal and the BER 

performance of the receiver degrades rapidly. Miller [3- 11] has investigated the behaviour of 

the MMSE receiver in the flat fading environment and proposed a modification to the structure 

of this receiver for combating the effect of losing phase lock on the desired user in deep fading.

This chapter considers the basis and applications of the adaptive MMSE receiver in the DS- 

CDMA communication systems. In this way, a low complexity adaptive MMSE receiver is 

considered and its performance is evaluated for different channel model scenarios. A new 

modification will be proposed for helping the adaptive MMSE receiver to function in the 

multipath-fading mobile channels. In this case, this receiver is able to despread the desired 

user’s signal, reject the MAI, and combat the effect of multipath-fading channel. The simplicity 

of the adaptive MMSE receiver’s structure and good performance makes it attractive for use in 

both base-station and mobile handset in the future mobile system.

The reminder of this chapter is organised as follows: In the following section, the adaptive 

algorithms that are used to implement the adaptive receiver for detecting the desired user’s 

signal, are investigated. The third section lays out the background and signal model in the DS- 

CDMA environment. The main structure of the adaptive MMSE receiver is the subject of the 

fourth section. The modification to the structure of the adaptive MMSE receiver for improving 

the receiver’s performance in the multipath-fading channel is considered in the fifth section and 

the summary o f the chapter comes in the final section.
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3.2 Adaptive Algorithms

To develop a recursive method for updating the weights of the adaptive transversal filter which 

is used to implement the adaptive systems, an optimum solution of the linear filtering problem 

is required. The result is called the Wiener-Hopf solution and can be achieved directly by 

minimising a parameter called the mean square error. By subtracting the actual output signal of 

the filter from the desired value, the error signal is performed. A well-known algorithm is 

issued by modifying the Wiener-Hopf equations using the method of steepest descent and 

deriving an estimate for the gradient vector. This algorithm is known as the Least-Mean-Square 

(LMS) algorithm and is highly popular and widely used in a variety of applications. Another 

recursive algorithm is the Recursive Least-Squares (RLS) algorithm, which is derived from the 

Least-Squares (LS) algorithm and is based on a basic result in the linear algebra known as the 

matrix-inversion lemma [3- 13].

The LMS and RLS algorithms are the best known adaptive algorithms to be implemented in a 

variety of different adaptive systems applications. The LMS algorithm allows for a simple 

implementation but it has a slow convergence speed. The RLS algorithm converges much faster 

than the LMS algorithm but requires special conditions and more computational power to be 

implemented and it can become unstable.

implementing the Wiener filter is to produce an optimum estimate of a wanted signal corrupted 

with noise. To illustrate the basic mathematics behind the Wiener filter, consider Figure 3. 1. In 

this figure X is the input vector and W is the linear filter weight vector. Also y(n) is the output 

of the filter, d(n) is the desired value, and e(n) is the estimation error at time n. The linear filter 

is performed as a transversal filter, which contains N  taped-delay line in its structure.

The error signal, e(n), is expressed as e(n) = d(n) -y (n ), that is:

3.2.1 The Wiener Filter

A class of optimum linear discrete-time filters are known as Wiener filters. The purpose of

N - ]

(3-1)
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Linear
Filter ► O

T
d(n)

Desired value

e(n) Error 
 ►

Figure 3.1: The basic structure of W iener filter.

In equation (3-1), X  and W  are defined as:

~x k " w 0

x= , w=
w ,

_X k - ( N - 1)_

The square value of the error is given as:

e 2(n) = d 2(n )~  2d (n )X TW+WTX X TW  (3-2)

The mean square error is given by taking the expectation value of both sides of equation (3-2) 

and therefore is expressed as:

J  = E [e2 («)] = E [d 2 («)] -  2 E [d(n )X TW]+E[WrX X TW] (3-3)

= E [d2 (n ) ] -2 P rW+WTR W

where P = E[d(n)X] is the cross correlation vector and R -E [X X TJ is the N x  N  auto-correlation 

matrix. Differentiating equation (3-3) to find the minimum value of J  gives:

dJ/dW=-2P+2R W=0 => Wop^R^P (3-4)
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The minimum mean-squared error, from equations (3-3) and (3-4), equals:

Jm in = E[d 2(n)] - P TWop/ (3-5)

As can be seen in the equation (3-4), computing the optimum weight vector requires a priori 

knowledge of the statistical information about the data. This information includes the auto

correlation matrix of the input signal and the cross-correlation vector between the input signal 

and the desired value.

3.2.2 The Steepest-Descent Algorithm

The steepest-descent algorithm is one of the oldest methods of optimisation, which provides a 

method of searching on a multi-dimensional surface. To find the minimum value of the mean- 

squared error, Jmin, an initial weight for the weight vector should be chosen. By computing the 

gradient vector V(J(n)) at time n, the updated value of the weight vector at time n+ 1 is 

computed by using the recursive relation as below:

In equation (3-6), p  is a positive real-valued constant, which is called step-size parameter and 

determines the rate of convergence. It has been shown that the gradient vector V(J(n)) is given

In equation (3-7), P  = E[d(n)X] is the cross correlation vector and R=E[X X T]  is the N  x  N  

auto-correlation matrix as before. By substituting the result of equation (3-7) in equation (3-6), 

the recursive relation for updating the weight vector is giving below:

W(n+\) = W(n)+ p[-V(J(n))J (3-6)

by [3-13]:

V(J(n))= -2 P  + 2 RW(n) (3-7)

W(n+1)  = W(n) + 2p [P - R W(n)] n=0, 1,2, ... (3-8)

As can be seen, for updating the weight vector toward to the optimum point via the recursive 

algorithm, the statistical parameters of the data should be known.
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3.2.3 The Least-Mean-Square (LMS) Algorithm

The LMS algorithm is an important member of the family of stochastic gradient-based 

algorithms. The LMS algorithm is designed to approximate the Wiener solution for the 

optimum filter coefficients. A significant feature of the LMS algorithm is its simplicity and this 

property has made it the standard among adaptive algorithms. It does not require measurement 

of the correlation functions or matrix inversion as in Wiener solution. The development of this 

algorithm is based on the steepest descent algorithm, but unlike the steepest descent method, the 

LMS algorithm does not require prior knowledge of the statistical parameters of data.

In real situations exact measurement of the gradient vector in equation (3-7) is not possible 

because it requires prior knowledge of R  and P. Therefore the gradient vector must be estimated 

from the available data. It means the weight vector is updated with an algorithm, which adapts 

to the incoming data. One such algorithm is the LMS algorithm.

The simplest estimation of R  and P  are instantaneous estimation of these parameters that is 

based on the input and the desired values.

According to these estimations, the new recursive relation for updating the weight vector will 

be as [3- 13]:

In equation (3-10), y(n) is the output of filter at time n and d(n) -y (n )  can be substituted as e(n), 

the error value at time n.

Equation (3-11) defines the LMS algorithm as an iterative procedure. It adjusts the transversal 

filter’s weights from sample to sample in such a way that minimises the mean square error. In 

equation (3-11), W(n+ \) is the new filter’s coefficient, p  is the step-size coefficient that 

controls the rate and stability of adaptation algorithm and has a value in the range 0 < p  < 1, 

X(n) is the input data, and e(n)=d(n) -y (n )  is the value of error signal at time n.

R(n)=X(n)XT(n) and P(n) = X(n)d(n) (3-9)

W(n+\)=W(n)+ 2pX (n) [d(n) -y (n )] (3-10)

W(n+\)=W(n)+ 2pX (n) e(n) (3-11)
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It is important to notice that the performance of the LMS algorithm depends on the value of the

step-size parameter, p, which determines the speed of convergence. By increasing the value of 

step-size parameter, the speed of convergence increases but the final value of the mean square 

error and the probability of instability increases. Reduction in the value of the step-size 

parameter decreases the speed of convergence and the value of steady state mean square error.

the following conditions are satisfied [3- 13]:

♦ 0 <p< 2IXmax, where Xmax is the maximum eigenvalue of the correlation matrix R.

♦ The weight vector approaches to the Wiener solution as the number of iteration increases.

♦ The final (steady state) value of MSE is finite.1

The main drawback of this algorithm is its slow convergence property and its sensitivity to the 

value of step-size parameter, p.

3.2.4 Normalised Least-Mean-Square (NLMS) Algorithm

As is clear from equation (3-11), in the LMS algorithm, the correction term, p  X(n) e(n), 

applied to the filter’s weight vector W(n+\) at time n+1 is directly proportional to the value of 

the input vector, X(n). Therefore, when X(n) is large, the LMS algorithm has an increased speed 

of convergence and hence experiences a gradient noise amplification problem. The NLMS 

algorithm, which is a modification of the ordinary LMS algorithm, is a way to overcome this 

problem. In the NLMS, the correction term applied to the filter’s weight vector W(n+\) at time 

n+1 is normalised with the squared norm of the tap input vector X(n) at time n as below:

Following observations can be seen in comparing equation (3-12) for the NLMS algorithm and 

equation (3-11) related to the LMS algorithm [3- 13]:

♦ The adaptation constant, p , for the NLMS algorithm is dimensionless, but the adaptation 

constant, p, for the LMS algorithm has the dimension of inverse power.

1 There are always some residual errors.

There are a few factors that influence the value of p, but in general it should be chosen such that

W(n+\) = W(n)+ 2 -----   X(n) e(n) (3-12)
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♦ With ju{n) = -—^  —p , the NLMS algorithm is similar to a LMS algorithm with a time

varying step-size parameter.

♦ The step-size parameter, ju , in the NLMS algorithm should satisfy the following condition 

[3- 14] and [3- 15]:

0 < p  < 2 (3-13)

It is noted, when the value of the input vector X(n) is small, numerical difficulty may arise. To 

overcome this problem, we can modify the equation (3-12) as below:

W(n+\) = W(n)+ 2  li— — x(n) e(n) (3-14)
a + II* ( " f

In equation (3-14), a > 0, is a positive parameter that prevents the numerical difficulty to arise. 

The value of step-size parameter is 0 < p  < 2 as before.

3.2,5 The Complex Form of the LMS Algorithm

The complex form of the LMS algorithm is used in the several applications of adaptive linear 

systems. In this situation the input vector contains complex values and hence the weight vector 

is located in a complex multi-dimensional space. The complex form of the LMS algorithm is as 

below [3- 16]:

W(n+l)=W(n)+ 2p ^ ( n )  e(n) (3-15)

In equation (3-15), X ’(n) is the complex conjugate of X(n), which shows the input vector.

3.2.6 Least-Squares (LS) Algorithm

Another class of optimum linear discrete-time filters known as Least-Squares (LS) Algorithm. 

The Least-Squares (LS) Algorithm produces an optimum estimate of a wanted signal corrupted 

with noise via minimising a cost function, €(n). To illustrate the basic mathematics behind the
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Least-Squares (LS) Algorithm, consider Figure 3. 2. In this figure x(i) is the input, y(i) is the 

output, and W is the linear filter weight vector.

x(i-1) x(i-N+2) x(i-N+1)

Figure 3 .2 : The structure of a transversal filter.

In Figure 3. 2, D shows a unit delay cell. The cost function £(n), will be minimised where n is 

the variable length of the observed data. By introducing a weighting or forgetting factor, fi(n,i), 

the cost function is as below:

P(n,i)\e(i)\2 (3-16)
/=]

In equation (3-16), e(i)=d(i)-y(i) is the error and the weight factor, fi(n,i), has the property that:

0 < fi(n,i) <1, i=0, 1,.2,........ , n (3-17)

The forgetting factor has an exponential form as below:

fi(n,i) = A'"......i=0, 1 ,2 ,....... , n (3-18)

In equation (3-18), A is a positive constant close to, but less than one. The inverse value of \-A 

is a measure of the memory of the recursive algorithm. In the special case of /l= l, the memory 

of the algorithm is infinity.
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The optimum value of the filter’s weight vector for minimising the cost function <9(n), is as 

below [3- 13]:

In equation (3-19), 0(n) is the N  X N  correlation matrix and ®(n) is the N  x  1 vector, which 

shows the cross-correlation between input and the desired value are defined as:

To compute the least-square estimate of the filter’s weight vector, it is required to invert the 

correlation matrix. This technique is not practical and particularly if the number of weights, N, 

in the vector is high,

3.2.7 The Recursive Least-Squares (RLS) Algorithm

The RLS algorithm, like the LMS algorithm, is designed to get a recursive algorithm for finding 

the optimum value of the filter’s weight vector. In other words, the RLS algorithm is the 

recursive implementation of Least-Squares (LS) algorithm. The main aim of using the RLS 

algorithm is to avoid having to continually compute the matrix inversion required in the LS 

method.

In recursive implementations of the method of least squares, equations (3-20) and (3-21) can be 

rewritten in a new form as below [3- 13]:

By using the matrix inversion lemma, the inverse of correlation matrix can be written as [3- 13]:

W(n) = ®-l(n) ®(n) (3-19)

n
(3-20)

Q(n) = ] £  X'-'X(i)d(i) (3-21)
/=i

O (n) = A Of/i-1; + X(n)XT(n) (3-22)

®(n) =A&(n-1) +X(n)d(n) (3-23)
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» -  W  . X V  0,  -  ■) -  ■ H r  V - ■> (3-24)
l + r ' ^ q n ) ®  ( " - i ) - * ! " )

By defining P(n)= ®>'(n), K(n)= P(n) X(n), and a(n)=d(n)-W(n-\)X(n), the recursive least- 

squares algorithm is derived as below:

1 )x(n)]/[ i i ;*(»;] 
a(n) -d(n)-W T(n-1 jXfw) (3-25)

W(n) = W(n- 1 )+K(n) a(n)

P(n) -X AP(n- 1 ) -X ]K(n)XT(n)P(n-1;

In equation (3-25), P(n) is an N  x  N  square matrix with zero initial values, X(n) is the input 

signal vector, and X is the forgetting factor whose value ranges from 0.98 to 1.0. The 

computation is started with a known initial condition P(0)=S'lI, where 5  is a small positive 

constant and /  is an identity N X N  matrix. The initial value for filter’s weight vector is W(0)=0 

and the new data samples are employed for updating the old estimated parameters by using 

recursive relations in equation (3-25).

The RLS algorithm converges faster than the LMS algorithm and therefore it is suitable for time 

varying channels. The major problem with this algorithm is the large computational complexity 

involved, which increases with the order of filter and it imposes a limit on the maximum filter 

order employed in practice. Also, its performance is so sensitive to the value of the forgetting 

factor and the optimum performance demands when the best value is chosen for the forgetting 

factor. This value changes with the conditions so it has to be re-calculated and this is difficult in 

the dynamic environments. There is more comprehensive coverage of the LMS and RLS 

algorithms in [3- 13] and [3- 17].

It should be noted that fast RLS algorithms could not be used in our special application. This is 

because it takes advantage of a cyclic relationship between the contents of the equaliser at 

successive sampling times. That cyclic relationship is not present in our DS-CDMA receiver 

system due to the fact that the output of the filter is not sampled at the same rate that the input is 

clocked.
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3.3 The Background and Signal Model in a DS-CDMA System

As has been shown in chapter two, the demodulated received signal in a multi-user AWGN 

channel is of the form:

K  L

r (0  = £  £  Ak ( 'K  O 'K ( ' -  -  Tt )+  n (0  (3-26)
k = \ /=]

where Ak(i) is the received amplitude of the Jdh user’s signal in the i'h data bit and n(t) is the 

Additive White Gaussian Noise (AWGN), with a power spectral density of N0 / I  W/Hz. In a 

multipath-fading channel, with time varying impulse response of h(r;t), the Kh user’s received 

signal is [3- 18]:

rt (‘) =  £ X  -  T* -  Tm ] (3-27)
W l= 1

where

h {ru ) = j ^ a km{ t y M l)S { r - T m) (3-28)
»J=1

In equation (3-27), P is the number of paths in the multipath channel, Tm is the excess delay of 

the m,h multipath signal, ctm(t) and (ftm(t) are the amplitude and the phase of the m h fading 

process relative to the user. The fading process is taken to be the sum of P complex Gaussian

processes, each with a mean value equals to A*ie J<t>n' and a variance value equals to

var* = E[\a*n(t)eJ(Pm̂  — A *ej<t>m |2]. In this case, the demodulated received signal in the 

equation (3-26) is changed as below:

ai(ty M')ck(‘- iTi, - n  - T,„)]+n{‘) (3-29)
k =I /=1 w=l

Equation (3-29) shows the general form of the received signal in a multiple-access and 

multipath-fading environment. In this thesis, it is assumed that the first user is the desired user 

and the receiver has knowledge of the propagation delay of the desired signal. In this case, 

can be set to zero.
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After converting the received signal to the baseband, it is passed through a chip-matched filter 

and sampled at the end of every chip interval. During each bit interval, the N  sampled chips are 

accumulated and stored in a received vector. It is assumed that the rate of fading is slow so that 

the amplitude and phase of the received vector are constant during a bit. In this case, it can be 

shown that [3-19]:

= + Z 4 - J * . 'E  . ]  + * /  (3-30)
ni=1 k-2 -d\ m=\

In equation (3-30), Jkii is a factor that depends on the other users’ data and signature waveforms, 

and the noise vector, Nh consists of independent samples from a Gaussian noise process during 

the ilh bit interval. Also Cym(t)=c\(t-Tn)  and ckm(t)=ck(t- iTh - rk-Tm). The simplest channel for a 

DS-CDMA communication system is a line-of-sight transmission and single-user environment. 

This is the well-known Gaussian channel and the received vector signal contains the desired 

user’s signature and data bit as below:

r(i) = A b,(i)cl + N , (3-31)

In equation (3-31), A is a complex constant that shows the amplitude and phase of line-of-sight 

propagation. The conventional matched filter receiver that is the optimum maximum-likelihood 

receiver in this condition, correlates the received vector for the i h bit with a local replica of the 

desired user’s spreading code.

(i) = sgn (Re [ c,77 r (i) ] } (3-32)

In equation (3-32), the superscript H  indicates iHermitian Transposition ’ that means conjugate 

transposition. In a static multipath single-user channel, the values of axm(t) and <p]m(t) are 

constant and the received vector is as below:

m=l
(3-33)

In this situation, the well-known RAKE receiver that is the optimum receiver in this condition, 

collects the different rays of propagated energy in the multipath channel. In this case, the 

impulse response of the receiver’s filter is equal to the complex conjugate of the channel 

impulse response.
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Kif)=Y4a\,e-j9iS{t-Tm) (3-34)
7/1  =  1

To implement the RAKE receiver, it is needed to determine the amplitudes and phases of 

different rays in the multipath channel that can be estimated by channel sounding techniques. In 

a single-user and flat fading channel, a]m(t)=0 and (p]m(t)=0 for m>\. In this case, the received 

vector contains the desired user’s signature and data bit as below:

(3-35)

In this situation, the receiver should track the phase of received signal and compensate it to 

remove the effect of changing phase on the signal detection process. The conventional matched 

filter receiver detects the data bit as below:

6, (/) = sgn Re e j<p'^ c ^  r(i) (3-36)

As indicated in equation (3-36), the receiver must remove the effect of changing phase on the 

desired user’s signal. In a single-user and multipath-fading channel, the received signal contains 

a collection of different propagation rays that each ray passed through an independent fading 

path sub-channel. In this case, the received vector is as below:

r (') = b\ ( ' ) I X  ( t ¥ ' M c + N, (3-37)
7/7 = 1

In this situation, a receiver with a RAKE combiner structure detects the received data. Equation 

(3-38) shows the detection process of this receiver.

£,(() = sgn Re
777=1

(3-38)

To implement this structure for the receiver to combat the effect of multipath-fading channel, it 

requires to know or to estimate the delay profile and attenuation coefficients of the time varying 

multipath channel. One of the most popular estimating techniques is the maximum-ratio
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combining (MRC), which can be used with a simple alpha tracker [3- 18] to estimate the 

multipath channel parameters. This algorithm requires a short time window to form an estimate 

and has low complexity. Separate alpha trackers are used to estimate the in-phase and the 

quadrature components of the complex channel impulse response. In the next sections, this 

technique will be employed to modify the structure of the adaptive MMSE receiver in the multi

user and multipath-fading channel.

The performance of the conventional matched filter receiver and the RAKE receiver will be 

evaluated in the chapter six via Monte Carlo simulation. However these detectors have good 

perfonuance in the single-user channels, but they can lead to substantially degraded 

performance in the presence of MAI in the multi-user channels.

3.4 The Adaptive MMSE Receiver

The dynamic nature of communication channel in the DS-CDMA systems degrades the 

performance of the fixed detector, especially in a multi-user ‘Near-Far’ environment. The 

adaptive receivers that ‘self-tune’ the detector parameters from the observation of the received 

signal, are suitable candidates for use in such environments. The detection process of these 

receivers is based on ‘one-shot’, i.e., receivers that form the decision of the i'h bit of the user

as the sign of a function of the received signal observed only during the i'h bit interval. These 

types of receivers have a measure of ‘Near-Far’ resistance and can produce significant 

performance improvements in the presence of MAI, multipath channels and narrow band 

interference. One of the most suitable receivers in this class is the adaptive MMSE receiver that 

is shown in Figure 3.3.

After converting the received signal to the base-band, it is passed through a chip-matched filter 

and sampled at the end of every chip interval. After that, the signal is fed into the adaptive finite 

impulse response (FIR) transversal filter. In ordinary situations, the number of taps in the 

transversal filter is equal to the period of the signature waveform. The output of the filter is 

sampled once every bit interval and hard-limited to form the estimate of the received data. The 

tap weights are updated once every bit interval and an error signal that is the difference between 

the desired signal and the output of the adaptive filter controls the updating process.
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Figure 3. 3: The structure o f the adaptive MMSE receiver.

An adaptive algorithm like the least mean square (LMS) is used to update the adaptive filter’s 

weights, which is chosen to minimise the mean-squared error.

E [\e{i)\1] = E \ \ b y ) - W H(i)r(i)\1]

In equation (3-39), W(i) is the weights vector and is well-known to be [3- 13]:

(3-39)

W (i)=Rl(i)P(i) (3-40)

where R(i)=E [ r(i) (i) ] and P (i)-E  [ b ](i)r(i) ] are the auto-correlation matrix and steering 

vector, respectively.

The data bit is detected by correlating the received vector with a complex weight vector, which 

is chosen via an adaptive algorithm to minimise the mean-square error.

6, (0  = sgn{ R e t ^ r C * ) ] } (3-41)

In the case of the line-of-sight transmission and a single-user environment, according to the 

equation (3-30), the auto-correlation matrix, the steering and the weighting vectors can be 

calculated as below:
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M  N  + 2<j

(3-42)

In equation (3-42), c/ is the variance of the noise vector Nt. As can be seen, the weight vector is

proportional to the signature waveform of the desired user and this leads to the conventional 

matched filter receiver that is optimum maximum-likelihood solution in this case. As has been 

shown in several papers, such as [3- 5], in a ‘Near-Far’ multiple-access environment, the 

performance of the adaptive MMSE receiver is far better than the performance of the 

conventional matched filter receiver. In this case, the adaptive MMSE receiver has good 

performance in combating the effect of MAI in the multiple-access DS-CDMA environments.

In a static multipath environment, the ability of the adaptive MMSE receiver to collect different 

rays of propagated energy in the channel, as for the RAKE receiver is excellent. In this case, 

according to the received signal vector in equation (3-33), the auto-correlation matrix, the 

steering and the weighting vectors are as below:

As can be seen, the weight vector of the adaptive MMSE receiver is proportional to the impulse 

response of the multipath channel, which is needed to implement the RAKE combiner. This 

result leads to a receiver that performs like the RAKE receiver, which has the optimum 

performance in this case. In a multiple-access environment with ‘Near-Far’ effect, the strong 

MAI degrades the performance of the RAKE receiver. In this case, the adaptive nature of the 

MMSE receiver combats the effect of multipath channel and rejects the MAI. As it will be 

shown in chapter six, the performance of the adaptive MMSE receiver is much better than the 

RAKE receiver and it has a good performance to combat the effect of MAI in the multiple- 

access and multipath DS-CDMA environments.

To investigate the behaviour of the adaptive MMSE receiver in the fading channels, it is 

necessary to start with a flat fading environment. In this case, the line-of-sight transmitted 

signal is passed through a time varying channel, where its amplitude and phase are changed by 

the fading process. In a single-user case, the received vector, which is shown in equation (3-35),

p

m=1

(3-43)
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has time varying amplitude and phase that indicate the fading process. In a very slow rate 

fading, where the parameters of the fading remain constant over many bit intervals, the adaptive 

algorithm can track these constant parameters. However, for the case of fast rate fading, the 

adaptive algorithm, which adjusts the weight vector, can only track the mean value of the fading 

process and in this situation, it is found that [3- 19]:

R (i)= ctc f  + 2 a 2I ,  P(i)=Ale'* 'c], W(i)= f ' e - C|2 (3-44)
N  + l o 

in equation (3-44), A xe j^ is the mean value of the complex flat fading process. It is noted that, 

if the fading is a process with Rayleigh distribution, Aj = 0 and hence, W(i) = 0 and the adaptive 

MMSE receiver can not combat the effect of fast rate Rayleigh-fading environment. As can be 

seen, the adaptive MMSE receiver does not take into account the phase variation of the channel 

and hence W(i) is no longer matched to the desired user’s signature waveform and hence the 

performance degradation will occur.

In a multi-user environment, because of presence the other co-channel users’ signals, the 

performance degradation will be more than the single-user situation. In this case, the desired 

user’s signal is affected by the other co-channel users’ signals, which have been changed by 

independent fading processes. These problems make the standard form of the adaptive MMSE 

receiver useless in a Rayleigh-fading channel. In the multipath-fading channel, this problem 

will be continued and it is needed to make a modification to the structure of the adaptive 

MMSE receiver. In the next section, a modification to the standard form of the MMSE structure 

is presented, which allows the receiver to function in a multipath-fading channel. This structure 

uses a separate channel’s impulse response tracking and estimating mechanism to relieve the 

adaptive filter from the responsibility of tracking channel impulse response variations.
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3.5 The Modified Adaptive MMSE Receiver

As has been noted in section 3.4, the performance of the adaptive MMSE receiver in a 

multipath-fading channel depends on the rate of the fading process. If the parameters of fading 

remain constant over many bit intervals, the adaptive algorithm can track these slowly varying 

parameters. However, in the case of fast fading, the adaptive algorithm, which adjusts the 

weight vector, can only track the mean value of the fading process. The main problem with an 

adaptive implementation of the MMSE receiver seems to be that the adaptive filter loses phase 

lock on the desired user during deep fades in the fast fading channels. In this situation, there are 

benefits in tracking and estimating the channel impulse response and using it in a channel 

equaliser to relieve the adaptive MMSE receiver to function in the multipath-fading channel. 

The main duty of this equaliser is to track the channel impulse response and remove the phase 

variation from the received signal before it enters into the adaptive filter. Then the MMSE 

structure should perform better in a Rayleigh fading channel.

Given an estimate of the desired user’s channel impulse response, hd(r;t), the amplitude and 

phase variation are removed from the desired portion of the received signal by forming:

channel impulse response, r(t) is the received signal, and re(t) is the equalised version of the 

received signal. If the channel estimation is a good approximation to the actual impulse 

response, then the adaptive filter does not require to make any attempt to track the channel 

variations. If  the estimated impulse response is good, the output of the equalising filter should 

consist of the desired signal, noise, and a small amount of the multiple-access interference. 

However in a multiple-access environment with ‘Near-Far’ effect, the error of the estimation 

process increases. In this situation the adaptive nature of filter could be helpful.

In the flat fading channel, a mechanism is needed to track the channel phase and remove the 

phase variation from the received signal before it enters to the adaptive filter. In this situation, 

the equalised version of the received i h samples is as below:

(t) = r(t)*h* (3-45)

In equation (3-45), h* d ( t; t), is the complex conjugate of the desired user’s multipath-fading

re (i) = e J ( p r(i) (3-46)
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In equation (3-46), (p\ (/) is the estimated channel phase of the desired user in the ilh bit 

duration. By using re(i), the adaptive filter makes a decision on b\(i). A technique for estimating 

the phase of channel is to use a linear predictor, which employs coefficients, am, that are chosen 

to minimise the mean square error of prediction [3- 11].

A ' ( 0 = Z « - A ' ( » '- « )  (3-47)
/// =  ]

In equation (3-47), p i\  (/) is the L ,h  order linear prediction and (z) is the noisy version of the 

channel amplitude and phase fading process during the i h bit interval. The noisy measurement 

of the channel fading process during the i h bit interval for the desired user can be calculated as:

where b\(i) is the known data bit during training mode or the detected data bit in decision- 

directed mode. The phase estimate is found by <p\ {i) = /.[$] (/). In this technique the

coefficients, am, are chosen to minimise the mean square error E[\ a J (t)ej(p' ^  — (z)|2 ]. It is

found that using this technique in a fast flat fading multi-user channel, improves the BER 

performance of the adaptive MMSE receiver and enables it to combat the effect of fading 

channel [3- 19].

To extend the above modification to the adaptive MMSE receiver so that it can function in the 

multipath-fading channel, it is necessary to use a technique to estimate the impulse response of 

the multipath channel. One possible method is to estimate the channel’s impulse response from 

the cross-correlation between the received signal and the signature waveform of the desired 

user. This method of estimating the channel impulse response is not perfect because the length 

of the signature waveform is limited and the processing gain is not infinite and hence the auto

correlation of the signature waveforms is not a pure delta function. In addition, the MAI and 

AWGN introduced by the channel decrease the accuracy of the estimation. A better technique is 

to use maximum-ratio combining (MRC), which can be used with a simple alpha tracker [3- 18] 

for estimating the multipath channel impulse response. This algorithm requires a short time 

window to form an estimate and has low complexity. Separate alpha trackers are employed to 

estimate the in-phase and quadrature components of the channel impulse response:
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VO; +a-hj(i-\) ,
(3-49)

hj (i)Q = (1 -  a)-b, (i - 1) • x, (z-  \)Q + a ■ h} (i - \ ) Q

In equation (3-49), x/z) and hj(i) are thepost-co rre la tion  received (y=0, ...,N-\) sample and 

the estimated channel coefficient in the i,h bit duration respectively, b\(i-\) is the previous 

decided bit and a  is a constant parameter, 0<a<l, that is set to have higher performance. As can 

be seen, this technique uses the previous detected bit to estimate the channel characteristic at 

present and hence the channel estimates obtained from this technique will be at the bit rate. It is 

shown in [3- 18], that this technique has a good performance to estimate the multipath channel 

impulse response in a single-user fast rate Rayleigh-fading DS-CDMA environment. By using 

the channel equaliser, the input signal to the adaptive part of the receiver contains the desired 

signal, noise and the MAI. In this situation, the adaptive nature of the MMSE receiver can reject 

the MAI and detect the desired user’s signal properly.

The structure of the modified MMSE receiver, which uses the MRC technique to estimate the 

delay profile and attenuation coefficients of the multipath channel, is shown in Figure 3. 4. The 

complex conjugate of the estimated parameters is used to equalise and remove the multipath 

channel’s effect on the desired user’s received signal before it enters into the adaptive 

transversal filter. In this case, the adaptive part of the MMSE receiver is able to function better 

as a MAI rejecter in the Rayleigh fading-multipath channel.

The performance of the modified adaptive MMSE receiver in different conditions of the 

multiple-access and multipath-fading DS-CDMA environment will be evaluated in chapter six.
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Figure 3. 4: The structure of the modified adaptive MMSE receiver.

3.6 Summary

In this chapter the adaptive MMSE receiver in a DS-CDMA environment has been considered. 

It is shown that this receiver, with a low implementation complexity, can be used as a DS- 

CDMA receiver and it has good performance in the different scenarios of channel model. In this 

case, the adaptive MMSE receiver is able to despread the desired user’s signal, reject the MAI, 

and combat the effect of multipath-fading channel.

In an AWGN single-user DS-CDMA channel, where the conventional matched filter receiver 

has the best performance, the adaptive MMSE receiver does not require any additional 

information and with a short period of training, its performance is identical as the conventional 

matched filter receiver. In the static multipath single-user channel, where the RAKE receiver is 

used as the best receiver to collect the distributed energy of transmitted signal in the multipath 

channel, the performance of the adaptive MMSE receiver is found to be identical as the RAKE 

receiver. In the multi-user environment, where the conventional matched filter and the RAKE 

receivers lose their ability to receiver the desired user’s signal, the adaptive MMSE receiver has 

a good performance to detect the desired user’s signal. In this case, this receiver as a MAI 

rejection receiver rejects the co-channel other user’s signals in the multiple-access DS-CDMA 

environment. To function in the fast varying mobile channel, the structure of the adaptive 

MMSE receiver has been modified. The new proposed modification consists of a channel 

estimator to help the adaptive part of receiver to follow and estimate the rapid time varying
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parameters of the channel. The new modified adaptive MMSE receiver is able to detect the 

desired user’s signal in the multi-user and multipath fading DS-CDMA environment.

The performance of the adaptive MMSE receiver will be evaluated via Monte Carlo simulation 

in the chapter six. The low complexity and good performance of the adaptive MMSE receiver 

makes it attractive for use in the both base-station and mobile handset in the future mobile 

systems.
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Artificial Neural Network Receivers 
in DS-CDMA System
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4.1 Introduction

After recognising that the brain computes in a different way from the conventional digital 

computers, work on the ‘neural network’ has been started. Neural computing is a rapidly 

expanding branch of computing whose origins date back to the early 1940s. It has been largely 

overshadowed since the 1960s by the conventional computing, but had an upgrade in 

acceptance in the late 1980s. This was a result of the discovery of new techniques and 

developments and general advances in the computer hardware technology. Neural networks 

find more and more applications in many engineering areas ranging from the optimisation of 

the spatial distribution of transmitters in the cellular telephony systems to the identification of 

the parameters of very complex industrial processes [4- 1].

The brain is a highly complex, non-linear, and parallel information processing system. It has the 

capability to perform certain computations such as pattern recognition, many times faster than 

the fastest digital computer in existence today. In the most general form, a neural network is a 

machine that is designed to model the way in which the brain performs a particular task or 

function of interest. The user allows the neural network to adapt itself during a training period, 

based on the examples of similar problems often with a desired solution to each problem. After 

sufficient training, the neural network is able to relate the problem data to the solutions, inputs 

to outputs, and it is then able to offer a good solution to a new problem.

Work on artificial neural networks started in 1943 when McCulloch and Pitts [4-2] introduced a 

simple model which summed its inputs and generated an output if a certain threshold was 

achieved. Then in 1962, using the McCulloch and Pitts' model, Rosenblatt [4- 3] developed a 

system that could be trained to recognise simple patterns. This system became known as a 

‘perceptron’. Later, the interest in the neural networks fell off and the conventional computing 

overshadowed it. After twenty years continuous development in computer hardware 

technology, neural networks became practical proposition and found a number of applications 

in many areas. In 1982, Hopfield [4-4] used the idea of an energy function to formulate a new 

way of understanding the computation performed by the recurrent neural networks and this 

particular class of the neural network with feedback attracted a great deal of attention. In 1986, 

Rumelhart, Hinton and Williams [4-5] reported the development of the back-propagation 

algorithm that is a famous training algorithm. In 1988, Broomhead and Lowe [4-6] described a 

procedure for the design of layered feedforward networks using the radial basis functions.
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The first paper that considered the application of adaptive neural network receivers to multi

user detection is due to Aazhang, Paris and Orsak [4-7]. They studied a multi-layer perceptron 

structure as a receiver in a DS-CDMA environment. Each node in the first stage computes a 

non-linear function of a linear mapping of the matched filter outputs. The signature waveforms 

are assumed to be known in advance and training sequences are used in order to adapt the linear 

mapping of the matched filter outputs. Assuming knowledge of the desired user’s spreading 

code, Mitra and Poor [4-8] proposed a single-layer perceptron model and used a non-linear 

function as an update term for the adaptive linear mapping. A radial basis function neural 

network was proposed in [4-9] for single-user detection and has been investigated in [4-10] for 

synchronous multi-users detection. Miyajima, Hasegawa and Haneishi [4-11] proposed a 

recurrent neural network for the synchronous multi-users detection using a likelihood function 

as the energy function to be minimised. The weights of the network are not adaptive and equal 

to the cross-correlation of the signature waveforms. Hottinen [4-12] has examined the 

application of the self-organising map to the synchronous multi-users detection. This algorithm 

works with a matched filter bank front-end, and hence it assumes knowledge of the signature 

waveforms of all users.

This chapter contains a brief description of the neural network concept and its application to 

DS-CDMA communication systems. A definition of the neural network is provided in the 

following section and the benefits of the neural network in offering solutions to different 

problems will be reviewed. In the third and fourth sections of this chapter, the model of a 

neuron with different activation functions and its main structure for implementing the neural 

network will be explained. Learning algorithms is the subject of the fifth section and different 

training algorithms related to training the neural network will be explained. In the sixth section, 

the dynamical considerations of the recurrent neural network are considered. Using the multi

layer perceptron neural network as a DS-CDMA receiver is the subject of the seventh section. 

The use of adaptive MLP neural networks as single-user and multi-user receivers are then 

considered. The eighth section contains an investigation into the use of the recurrent neural 

network structure as a DS-CDMA multi-user receiver and a summary of the chapter comes in 

the final section.

4.2 Definition and Benefits of Artificial Neural Networks

The topology of an artificial neural network contains a large number of interconnected simple 

computing cells referred to as ‘neurons’ or ‘processing units’. In most common networks, 

neurons are arranged in layers with the input data fed to the network at the input layer. The data
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then passes through the network to the output layer to provide the solution or answer. The 

network is usually implemented using electronic components or simulated in software on a 

digital computer.

A general definition of an artificial neural network as an adaptive machine is as below [4-13]:

‘An artificial neural network is a parallel-distributed processor that has a natural property for 

storing experiential knowledge and making it available for use. It matches the brain in two 

features:

1. Knowledge is acquired through a learning process by the network.

2. Inter-neuron connection weights are used to store the knowledge.’

From the above definition, it can be seen that the neural network derives its computing power 

through a large parallel-distributed computing structure and its ability to learn and, therefore, 

generalise. These two information-processing capabilities enable neural networks to solve the 

complex problems. The use of neural network offers the following benefits and capabilities:

♦ Nonlinearity: A neuron is a non-linear cell and the neural networks that are made up of 

layers of neurons are also non-linear. This property of neural network is very important and 

enables it to solve realistic non-linear problems.

♦ Input-Output Mapping: One of the most important properties of the neural network is its 

ability to map input patterns to the desired outputs. During the learning mode, by applying 

the test patterns and the desired outputs, a suitable algorithm changes the values of the 

interconnection weights in the neural network structure. The training of the network is 

repeated for many examples until the network reaches a steady state, where there are no 

further significant changes in interconnection weights. In this situation, the network has 

learned to construct an input-output mapping for the desired problem.

♦ Adaptivity: The various structures of neural networks have the capability to adapt their 

interconnection weights with changes in the surrounding environment. This property helps 

the neural network to correct its behaviour when subject to new input conditions. Moreover, 

when it is operating in a nonstationary environment, whose statistics change with time, a 

neural network can be designed to change its weights in the real time.
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♦ Ability to deal with new kinds o f problems: Neural computers are effective at solving 

problems whose solutions are difficult. This can involve a new range of applications that 

formerly was difficult or impossible to computerise.

♦ Robustness: Neural networks are more robust than conventional solution methods. They 

have the ability to cope well with incomplete data or previously unspecified situations. By 

using distributed processing rather than the centralised architecture of conventional 

computing methods, this protects the neural network from failure if properly implemented.

♦ Fast processing speed: Neural networks consist of a large number of interconnected 

processing units, all operating in parallel on the same problem. For this reason they can 

operate at considerable speed.

♦ Flexibility and ease o f  maintenance: Neural computers are very flexible in the way in 

which they are able to adapt their behaviour to new and changing environments. They have 

the ability to learn from experience in order to improve their own performance.

♦ VLSI Implementability: The parallel nature of the neural network and the fact that each 

neuron is identical in structure makes neural networks ideal for implementation using very 

large scale integrated (VLSI) technology. Using this technology makes it possible to 

employ the neural network processors in the real time applications such as signal 

processing [4- 1].

4.3 Different Models of a Neuron or Processing Unit

A neuron is an information-processing unit that is the fundamental part of a neural network. 

Within the network each neuron is usually a simple processing unit that takes one or more 

inputs and produces an output. Each neuron has three basic elements, which are shown in 

Figure 4. 1. The first is a set of connection links, which are characterised by weights. For 

example each input signal to the k!h neuron, Xj, is multiplied by a weight, wkJ. The first subscript 

in wkj refers the neuron and the second subscript shows the input signal.
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In p u t
Signals

Activation
Functionr

Threshold

Figure 4 .1: Non-linear model o f a neuron.

The second element in the structure of the neuron is a linear combiner, which sums the 

weighted inputs to form uk. The third and the last element in the model of a neuron is an 

activation function, (p(), which acts as a limiter to shape the output signal of neuron. The 

limitation range is usually [0,1] or [-1,1]. In Figure 4. 1, the non-linear model of a neuron also 

includes a threshold 9k, which is an applied signal external to the neuron which controls the 

non-linearity of the activation function.

The relationship between inputs and output in the model of a neuron can be written as below:

p
uk = ' Z wijx i (4-la )

M

yk=<p(uk- e k) (4-2b)

In equations (4-la) and (4-lb), x ] , • • •, x p are the input signals; wA], • • •, are the weights of

the neuron; uk is the linear combiner output; 9k is the threshold; is the activation 

function and yk is the output signal of the neuron. The threshold 9k is an external parameter of 

the neuron k. By defining vk = uk - 9k, equations (4-la) and (4-lb) can be rewritten as below:

2 l W V X J
7=0

(4-2a)
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y k =<p{vk ) (4-2b)

In equations (4-2a) and (4-2b), it will be seen that instead of the threshold 0k, a new input link

with an input value of x 0 = —1 and a weight of wk0 = 0 k can be added to the model of the 

neuron. Figure 4. 2 shows another non-linear model of a neuron based on the equation (4-2).

Activation
Function

k l

In p u t
S ignals

Figure 4. 2: Another non-linear model of a neuron.

4.3.1 Different Types of Activation Functions

The ability of artificial neural networks to solve realistic non-linear problems is determined by 

the internal structure and interconnection of neurons (e.g. how many neurones and how many 

layers). The activation function used is one of the most important parts of the structure of a 

neuron. The suitable choice of the activation function plays an important role in the behaviour 

of the network. In general, the activation functions can be divided into three types as below:

1. Threshold Function: The threshold function is the simplest type of activation 

function, which has two levels at the output according to the value of the input signal. The 

relationship between the input and the output of this activation function is:
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1 i f  v > 0 

0 i f  v ^ O
(4-3)

In this model, the output of the neuron, takes either a ‘O’ or ‘ 1* output depending on the sign of 

the input signal.

2. Piecewise-Linear Function: The piecewise-linear function is the second type of 

activation function, which has a linear part between two saturated regions of its characteristic 

function. Equation (4-4) describes the input-output relationship and Figure 4. 3 describes this 

type of activation function.

0 i f
1

v <  —  
2

2 2
1 1

(4-4)

1 i f v > -
2

(p(\)

>
-0.5 0.5

Figure 4. 3: The characteristic of the piecewise-linear activation function.

3. Sigmoid Function: The sigmoid function is the most common activation function 

that is used in the neural network structures. An example of this activation function is ‘logistic 

function’, defined as:
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In equation (4-5), b is the slope parameter that changes the slope of the sigmoid function’s 

curve. Figure 4. 4 shows the characteristic diagram of a typical ‘logistic function’.

1

0.5

V

Figure 4. 4: The characteristic diagram of the logistic activation function.

As can be seen, the parameter b controls the slope of characteristic diagram. In the limit, as the 

slope parameter approaches to infinity, the sigmoid function becomes a threshold function.

The range of activation functions defined by equations (4-3), (4-4) and (4-5) is from ‘0’ to ‘1’. 

It is sometimes desirable to have an activation function range from ‘-1 ’ to ‘ 1 ’. In this situation, 

the activation functions will be symmetrical with respect to the origin. According to the new 

range, the threshold function in the equation (4-3) is redefined as:

- 1  i f  v-<0

0 i f  v = 0

1 i f  v 0

(4-6)

For the sigmoid function, the new function becomes the ‘hyperbolic tangent function’, which 

has a symmetrical form with respect to the origin, defined as:

(4-7)

In this case, b is the slope of characteristic diagram, as before. The ‘hyperbolic tangent 

function’ is the most popular activation function in most applications of the neural network.
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4 .4  T h e  S tru c tu re  o f  Artificial Neural N e tw o rk s

The interconnection of neurons in the structure of an artificial neural network generates several 

different types of networks. From the viewpoint of the application, the required structure of a 

neural network is very important if a solution is to be obtained. In general, there are four 

different classes of network structure that have been developed so far. These are the single-layer 

perceptron, the multi-layer perceptron, the recurrent and the lattice neural network.

4.4.1 Single-Layer Perceptron Neural Networks

A layered neural network is a network of neurons organised in the form of layers. The simplest 

layer structure is a single-layer perceptron that contains an input layer of source nodes and an 

output layer of neurons or computation nodes. In this network all of the paths are feedforward 

and there is no feedback between the outputs and inputs of the network. The information 

obtained via the training algorithm when the network is in the learning mode is stored in the 

interconnection weights. Figure 4. 5 shows the structure of a single-layer perceptron neural 

network.

4.4.2 Multi-Layer Perceptron (MLP) Neural Networks

The multi-layer perceptron network is one of the most popular and successful neural network 

topologies, which is suited to a wide range of applications. These applications consist of pattern

Input Output
Layer Layer

Figure 4. 5: The structure of a single-layer perceptron neural network.
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discrimination and classification, pattern recognition, interpolation, prediction and process 

modelling. The multi-layer perceptron network is achieved by adding one or two hidden layers 

to the structure of the single-layer perceptron. The hidden layers are placed between the input 

and output layers. These hidden layers enable the neural network to perform higher complexity 

tasks. Figure 4. 6 (a) shows the structure of a typical multi-layer perceptron that contains layers 

with 4 input nodes, 4 hidden nodes and 2 output nodes. As can be seen, all of the input nodes 

are connected to the hidden nodes and all outputs of the hidden nodes are connected to the 

output nodes in the network. This network is known as a fully connected MLP neural network. 

The partially connected neural network is another multi-layer neural network structure. In this 

structure, some of the interconnections in several parts of the network are missed and when 

compared with the fully connected MLP neural network, it has fewer weights in its structure. 

Figure 4. 6 (b) shows the structure of a typical partially connected multi-layer perceptron neural 

network.

Hidden
Layer

Output
Layer

( a ) (b)

Figure 4. 6: The structure of a typical fully connected (a) and partially connected (b) 

multi-layer perceptron neural network.

Typically, a multi-layer perceptron is employed to classify patterns based on the input vectors 

presented to the network, for example a multi-layer perceptron network with ‘Af outputs can 

discriminate between ‘AT input patterns. In this situation the network is trained such that a ‘1’ 

appears on a particular output and other outputs remain ‘O’.

Input Hidden Output
Layer Layer Layer
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As reported in the various studies of multi-layer perceptrons [4-14], determining the number of 

nodes in the hidden layer sufficient for a given task, is an open problem and depends on the 

nature of pattern classification tasks.

4.4.3 Recurrent Neural Network

The recurrent neural network is another type of neural network topology which includes at least 

one feedback loop in its structure. The presence of feedback loops in the structure of the 

recurrent neural network distinguishes it from feedforward neural networks. For example, a 

recurrent neural network may consists of a single layer of neurons in which the output of each 

neuron is fed back to the inputs of all other neurons via unit delay elements. Input signals can 

be entered via neurons to the network and in this situation the network will be able to map input 

patterns to the desired outputs. Figure 4. 7 shows the structure of a recurrent neural network, in 

which D is a symbol that shows the unit delay in the feedback path. It should be noted that there 

are not any self-feedback loops in the structure of the recurrent neural network.

U n i t
Delays

Figure 4. 7: The structure of a recurrent neural network.
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Because of the feedback, recurrent neural networks are able to store time changing information 

and therefore they are suitable for predicting several types of time series data. It will be shown 

that the recurrent neural network has the potential to be used for implementing the multi-user 

receiver in the multiple-access DS-CDMA environments.

4.4.4 Lattice Structure Neural Network

A lattice structure neural network consists of an array of neurons and sources which input 

signals to the array. Figure 4. 8 shows the structure of a typical lattice neural network, which is 

really a feedforward network.

Input
Layer

Figure 4. 8: The structure of a typical lattice neural network.

There are several types of the neural network architectures which are employed for different 

applications in special areas. For example the radial basis functions network, the learning vector 

quantisation network, the auto-associative neural network and the self-organising maps are 

some types of the neural network structures that have been examined for different applications 

[4-13]. As it has been said, the multi-layer perceptron structure is the most popular and 

successful neural network topology, which is used, in a wide range of applications. These 

applications consist of pattern discrimination and classification that is useful to be implemented 

as a DS-CDMA receiver. Also the recurrent neural network receiver has suitable feature to be 

employed for implementing the multi-user receiver in this field.
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4.5 Learning Algorithms

One of the most interesting properties of the neural networks is its ability to learn from its 

environment and to improve its performance through learning. A neural network learns about 

its environment through an iterative process of adjustments applied to its interconnection 

weights and thresholds. Ideally, after each iteration of the learning process, the knowledge of 

the neural network about its environment is increased.

There are many types of learning algorithm which can be used to train a neural network. One of 

the most powerful training methods is supervised training, which works in the same way as a 

human learns new skills, by showing the network a series of examples. The most common 

supervised training algorithm, which is particularly well suited to the feedforward neural 

network, is known as the ‘back-propagation’ algorithm.

Figure 4. 9 shows the signal flow graph of a neuron. In this graph, wkJ(n) denote the value of 

interconnection weight wkj at time n. At this time, an adjustment Awkj(n) is applied to the wkj(n) 

and the updated value wkj(n+l) at time n+1 will be as below:

wkj(n+l)= wkj(n) + A wkj(n) (4-8)

In equation (4-8), wkj(n) and wkJ(n+l) are the old and the new values of the interconnection 

weight Wkj. As it is known, there is no unique learning algorithm for neural networks. Basically, 

learning algorithms differ from each other in the way in which the adjustment Awk/n )  is 

formulated.

X]

x,lp

Figure 4. 9: Signal flow  graph o f  a neuron.
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4.5.1 The Error Correction Learning Algorithm [4-13]

Error correction learning is the simplest learning algorithm to adjust the interconnection 

weights and the threshold levels for a single-layer perceptron neural network. During the 

training mode, the weights of the interconnection and thresholds are changed so the minimum 

mean square error between the desired and the real output signals of the network is minimised. 

This technique is a well-known method in the adaptive systems.

Let dk(n) and yk (n) denote the desired and the actual responses for neuron k  at time n. 

Typically, the actual response of neuron k  is different from the desired response and the error 

signal ek(n), can be defined as the difference between the desired and the actual responses of 

neuron.

ek(n) = dk(n) -  yk(n) (4-9)

The mean square error J, is defined as the mean square value of the sum of squared errors:

J  =  E (4-10)

In equation (4-10), E  is the statistical expectation operator and the summation is over all the 

neurons in the output layer. The factor 'A is used for simplifying to derive results from the 

minimising J. Minimising J  with respect to the network parameter leads to the well-known 

gradient descent algorithm [4- 15]. However, there is not any information about the statistical 

characteristic of the process, an approximate solution to the optimising problem can be accessed 

by using s(n), the instantaneous value of the sum of squared errors as the criterion of interest.

k

(4-11)

According to the error correction learning rule, the adjustment Awkj(n) made to the 

interconnection weight wkj at time n is given by [4- 16]:

A wkj(n) = a  [dk(n) - yk(n)]  x/n) (4-12)
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In equation (4-12), a  is a factor that shows the step-size and its value is less than 1, dk (n) is the

correct decision is made by network. This technique is very powerful for adjusting the 

interconnection weights and is implemented by initialising the interconnection weights and 

thresholds by small random values. By presenting the input pattern, the actual output of 

network can be calculated and used with the desired output to change the value of weights as 

equation (4-12).

4.5.2 The Delta Rule Algorithm [4-13]

For sharp activation functions, such as ‘threshold function’ in equation (4-3), the performance 

of the error correction learning technique is not good enough. In this situation, however the 

weights are not exactly adjusted but the adjustment factor Awkj(n) is zero and the algorithm 

unable to change the value of interconnection weights to achieve the best result. One way to 

correct this effect is to use the activation input signal, vk(n), instead of the activation output 

signal, yk (n), in equation (4-12). The learning algorithm based on the gradient descent with this 

type of node is known as the ‘delta rule’ algorithm. In this algorithm the adjustment factor, 

Awk/n ) , is as below:

In equation (4-13), a  is a factor that shows the step-size and its value is between zero and one,

never be exactly zero and so there will always be some updates to the weights. The term a[dk(n) 

- vk(n)]  is sometimes known as 5 (n).

There are several discontinuities in the error function related to a few types of activation 

function. These discontinuities in error are the result of discontinuities in the output signals of 

activation function. In this situation, the output signal of the neuron is used instead of the input 

signal of the activation function and an extra term, which is related to the slope of the sigmoid 

function, is included to the adjustment factor AwkJ(n).

desired output of the Id1' output in the network, yk (n) is the actual value of the b!h output in the 

network and x/ (n) is the j lh input signal. As can be seen, the weights are unchanged if the

A wkJ(n) = a  [dk(n) - vk(n)] x/n) (4-13)

dk(n) is the desired value of the k!h output in the network, v* (n) is the value of the k h input to the 

ldh activation function in the network and xy (n) is the j 'h input signal. In this situation, the error

Awkj(n)= a  (p' (v) [dk(n) - yk(n)] x/n) (4-14)
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In equation (4-14), (p(v) is the derivative of activation function. For ‘logistic function’, which is 

defined in equation (4-5) with b=\, this term will be as below:

(p' (v) = (p(v) (l-qfv)) (4-15)

For ‘hyperbolic tangent function’, which is defined in equation (4-7) with b= 1, this term will be 

as below:

Unlike the error correction learning, the delta rule has the potential to be generalised to train

error gradient at intermediate layers of the multi-layer neural network. This learning technique 

is called ‘back-propagation’ algorithm, which is the most common supervised training 

algorithm and is particularly well suited to the feedforward neural network.

4.5.3 The Back-Propagation Algorithm

Among the algorithms that are employed to perform supervised learning, the ‘back- 

propagation’ is the most successful algorithm. Also it has the most widely used for the design of 

multi-layer feedforward neural networks. ‘Back-propagation’ algorithm is a generalisation of 

the ‘error correction’ and ‘delta-rule’ algorithms for using in multi-layer neural networks. The 

input signals propagate through layers in the network and produce some responses at the output. 

The actual responses are compared with the desired responses for generating error signals. 

These error signals propagate backward through the network to adjust the free parameters to 

minimise the square sum of errors.

The ‘back-propagation’ learning algorithm can be implemented by a procedure as below:

♦ Initialisation: Set all of the interconnection weights and threshold levels to small random 

numbers that have a uniform distribution.

♦ Presentations o f  training examples: Present the network with a training example and 

perform the forward and backward computation.

(p (v) =(\-(p(v))2 (4-16)

more than one layer neural network. It means that it is possible to calculate the slope of the
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♦ Forward computation: Let x(n) and d(n) denote the example input and the desired output 

vectors of the neural network. The input of activation function for the j lh neuron in the layer 

/ is:

v T  (n) = Y  w(!i M  (4-i7)
/=0

In equation (4-17), y i U1)(n) is the function signal of the i h neuron in the previous layer l-l at 

iteration n  and Wj{l)(n) is the interconnection weight of the j 'h neuron in the layer I that is fed 

from neuron /  in the layer l-l. For i=0, yo(' I)(n)= -1  and Wp®(n) =0 jl)(n), where O f^ n ) is the 

threshold applied to neuron j  in the layer /. Assuming the use of a ‘logistic’ activation function 

for the sigmoidal non-linearity1, the output of neuron j  in the layer I and its derivative are as 

below:

yf(n)=] r i r a1 + exp(- v \ }\n)) dvj (n)
(4-18)

If  neuron j  is in the first hidden layer (i.e., 7=1), set:

y (' j \ n )  = x j (n) (4-19)

In equation (4-19), xfn) is the f  element of the input vector x(n). If the neuron j  is in the output 

layer (i.e., /=L), set:

y {'p (n )  = oJ (n) (4-20)

where ofn) is the j ‘h element of the output vector of network. Error can be computed as below: 

e/n) =d/n) -  o/n) (4-21)

In equation (4-21), d/n) is the j ,h element of the desired response vector d (n).

1 For hyperbolic tangent activation function, the output of neuron and its derivative are as in equations (4- 

7) and (4-16).
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♦ Backward Computation: Compute the local gradient 8’s of the network by proceeding 

backward, layer by layer. For neuron j  in the output layer L\

5 f ] (n) = e {p (n ]o j (n) [l -  o f («)] (4-22)

For the neuron j  in the hidden layer /:

S?{n)=yf{n)[l -  yf(n)\( « ) < % )  (4-23)
k

Hence, adjust the interconnection weights of the neural network in the layer / according to the 

back-propagation algorithm:

w^j) (n + l) = (/?) + a S j1̂ (n) (4-24)

In equation (4-24), a  is the learning rate or step-size parameter. The value of this parameter 

determines the convergence rate of the back-propagation algorithm. Figure 4. 10 shows the 

simulation result of a multi-layer feedforward neural network with 31 nodes in the input, 15 

nodes in the hidden and one node in the output layers. As can be seen, by choosing the small 

value for the step-size parameter, sum square error requires more iteration to decrease to its 

minimum value. On the other hand, by increasing the value of step-size parameter, the speed of 

convergence is increased and after a few iterations, sum square error is decreased to an 

acceptable value. If the step-size parameter is chosen too large so as to speed up the rate of 

learning, the network may become unstable.

» step-size=0.1 
 step-size=0.01o 0.4

k .
L .

m 0.3 0)
3 0.2 
cr
“  0.1 

OT 0
Tf T-to h-00 LO CM 03 CD CO O  1-̂

t— cm cm co cn co

Iteration Number

Figure 4. 10: The Sum-Square E rror (SSE) of a typical multi-layer perceptron neural

network.
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A simple method of increasing the rate of learning and avoiding the danger of instability is to 

modify the equation (4-24) by including a momentum term as below:

w (n + 1) = (n) + a S ^  (n)yf   ̂(«) + («) -  wty (n - 1)] (4-25)

In equation (4-25), X is a positive number, which is called the momentum constant. It controls 

the effect of updating interconnection weights rate in last iteration on the current iteration.

♦ Iteration: Iterate the computation by showing new patterns of training examples to the 

network until the free parameters of the network stabilise their values. In this case, the 

average sum square error is at a minimum or accepted small value.

4.6 Dynamical Considerations of the Recurrent Neural Network

configuration.

The dynamical behaviour of a recurrent neural network that includes N  neurons, is uniquely 

described by a parameter set {W, I).  W={wy}  is an N x N  matrix whose element Wy is the

In equation (4-26), (p() is the sigmoid non-linearity of neuron j .  By making the assumption of 

symmetrical connection weight described by Wji=Wy, the state of neuron j  can be described in 

terms of the output signal xft)  and in this situation, the dynamics of the recurrent neural 

network is described by a set of non-linear differential equations as follow [4- 17]:

As has been noted in section 4.4.3, the recurrent neural network includes at least a feedback 

loop in its structure and this enables it to store information about time in a dynamically stable

connection weight between the j lh and the ilh neurons. /={/,} is a vector whose element /, is the 

external input to the i"' neuron. Let u/t) denote the input and x/t)  denote the output of activation 

function in neuron j .  These two variables are related by:

(4-26)

(4-27)
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In equation (4-27), C, shows the capacitive effect2 associated with neuron y, Rj is the leakage 

due to the finite input resistance of the non-linear element of neuron j ,  and /, is an external input 

to the neuron j .  For simplicity, the amounts of capacitance, resistance and activation function 

for all neurons are assumed the same and by these assumptions, the equations of motion 

become:

It is shown that the equations of motion for a network with symmetrical connection weight, 

Wjj—Wjj, always lead to a convergence to stable state. In this situation, the outputs of all neurons 

remain constant. The stable states are the minimum of the quantity, which is called energy 

function. An energy function, which is bounded from below and is non-increasing when the 

state of network changes [4- 18], is defined as below:

Hopfield [4- 17] showed that when the non-linear functions in the neurons are bounded, 

monotonically increasing, and continuous, and the connection weights are symmetric, the 

dynamics of the recurrent neural network always lead to a stable state such that the energy 

function, E, is minimum. Consequently, if the network is started in any initial state, it will move 

in a downhill direction of the energy function until it reaches a minimum.

Making the assumption of symmetrical connection weights and using the ability of the recurrent 

neural network to solve the optimisation problem in the multi-user detection, the energy 

function described by equation (4-29) can be written as [4- 17]:

(4-28)

(4-29)

(4-30)

2 This effect is an intrinsic property of biological neurons or the physical implementation of artificial 

neurons.
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In equation (4-30), also it is assumed that the self-connection weight wit is set to zero and under 

this assumption the state of network always converges to a comer of a hyper cube in the signal 

space where Xj has the values ±1 [4-11]. The importance of the energy function, E, is that it 

provides the basis for understanding of how specific problems can be solved by recurrent neural 

network. It is shown that the energy function is a monotonically decreasing function of the 

network states {Xj\j=l,2...N} [4- 17]. When the network is started in any initial state, it will 

move toward a state that the energy function, E, reaches to a minimum point and at this point, it 

stop changing with time. In fact, the recurrent neural network may be viewed as a non-linear 

associated memory, which can remember the main stored pattern in response to the presentation 

of a noisy version of that pattern.

Network of neurons with this basic organisation can be employed to compute solution to 

specific optimisation problems. In each situation, by choosing the suitable connection weights 

and the input signals, the desired function could be minimised. In considering the recurrent 

neural network as a multi-user detector in the DS-CDMA communication system, the equations 

related to states of network can be changed as below:

du ■ ^
=  J = h 2 - N  (4-31)

at ,=i
 ....................................................................................................................................

In this equation, Ij is an external input to the j ,h neuron in the network, r=R C ,the time constant 

is assumed to be infinity. The energy function term of the recurrent neural network is the same 

as equation (4-30). The time derivative of the energy function is always negative and the state 

of network always converges to a comer in signal space that the energy function has a 

minimum value.

As an example, a recurrent neural network with N =3 neurons is considered. The weight matrix 

of the network is chosen as:

W=
1

0 - 2  2
- 2  0 - 2  
2 - 2  0

(4-32)

The threshold level applied to each neuron is assumed to be zero and the activation of each 

neuron is sign function. For this network there are 23=8 states and only two states are stable 

among them. These stable states are (1,-1, 1) and (-1,1, -1) and it can be verified as below:
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sgn[WX] =  sg n

sgn[JFX] = sgn

0 - 2 2 1 ' '  1 '

- 2 0 - 2 - 1 = - 1 (4-33 a)

2 - 2 0 1
-

1

0 - 2 2  ' ~ -l"
I

" - 1"

- 2 0 - 2 1 = 1 (4-33 b)

2 - 2 0 - 1 - 1

As can be seen in equations (4-33a) and (4-33b), both of these states are stable. By calculating 

the energy function according to the equation (4-30), it can be shown that the minimum level of 

the energy function is belongs to these stable states with E= -2. For other states, the level of 

energy function is 2/3.

4.7 Multi-Layer Perceptron Neural Networks as DS-CDMA 

Receivers

An interesting and important way in designing the multi-user receivers in the direct-sequence 

CDMA communication is the design of adaptive systems, that self-tune the detector parameters 

from the observation of the received signal. The multi-layer structures of neural networks 

potentially have this ability to work as the adaptive receivers in this environment. They have the 

capability to perform subtle decision boundaries via training to separate the wanted and 

unwanted signals. For this purpose, a multi-layer perceptron has been trained to demodulate 

DS-CDMA waveforms. The training is an iterative process of modifying the interconnection 

weights and thresholds of neurons to minimise an error function.

In this section, the feedforward multi-layer adaptive neural network receivers for direct- 

sequence CDMA system are considered. It is observed that the proposed receivers are able to 

despread the desired signal, suppress the effect of multipath, reject the MAI, and combat the 

effect of the ‘Near-Far’ problem. It can be seen that the proposed receivers have acceptable 

performance in different channel model scenarios.
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4.7.1 The Adaptive MLP Neural Network Single-User Receiver

Figure 4. 11 shows the structure of a feedforward multi-layer neural network for implementing 

the DS-CDMA receiver. After converting the received signal to the baseband, it passes through 

a chip-matched filter and is sampled at the end of every chip interval. These samples are fed 

into the taped-delay line that converts the serial received signal to a parallel form. The number 

of taps in the delay line is equal to the period of signature waveform, in the usual way. The 

output signals of taped-delay line are fed into the input layer. Let W /, be the connection weight 

from the i h node in the input layer to the l'h node in the hidden layer and 0t is a threshold 

associated with the l'h node in the hidden layer. The output signal of /*h node in the hidden layer 

is [4-13]:

O ,  =(P
N

Y , wnx ' + di
k/=i

(4-38)

In equation (4-38), is the input signal from i'h input node and N  is the number of input nodes. 

tp(.) is the activation function, which has the form:

(p(x) = tanh(jc) (4-39)

(input nodes)
(hidden nodes)

(output node)

OutputTapped
Delay
Line

r(t)

Figure 4. 11: The structure of a feedforward multi-layer perceptron neural network for

implementing the DS-CDMA receiver.
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Let wji be the connection weight from the l,h node in the hidden layer to the j 'h node in the output 

layer, O/ is the output of the l'h hidden layer and <Pj is a threshold associated with the j 'h node in 

the output layer. The output from the j lh output layer is:

f
° j  = < p  I > „ o ,  + f j

\  i
(4-40)

The interconnection weight values are updated during training mode via the ‘back-propagation’ 

training algorithm, which performs the steepest descent on a surface in weight space. For 

example, the weight value from the Ith node in the hidden layer to the j ,h node in the output 

layer, Wji, is updated as follows:

Wj, (k  + l) = Wj, (k) -  a  ■ Sj, ■ O,
(4-41)

Here, 7} is the desired output and a  is the step-size. On the other hand, the weight value from 

the i'h node in the input layer to the l'h node in the hidden layer, wu, is updated as the pervious 

way with Sn as follows:

* » = ( i - 0 , 2) - £ V ‘'j- <4-42>

The performance of the adaptive MLP neural network receiver in the different channel model 

scenarios in the DS-CDAM environment will be investigated in chapter six.

4.7.2 The Adaptive MLP Neural Network Multi-User Receiver

By using a bank of matched filter in front of the adaptive neural network receiver and 

increasing the number of neurons in the output layer, an adaptive multi-user neural network 

receiver is realised. Figure 4. 12 shows the structure of this receiver.
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Output #1

r (t)

Output #K

MF #1

M F#K

MF #2

Figure 4. 12: The structure of the adaptive multi-user MLP neural network receiver.

The number of matched filters and neurons in the output layer are equal to the number of co

channel users. The output of matched filters are fed into the input layer and the value of weights 

are updated during training mode via the ‘back-propagation’ algorithm, corresponding to the 

equations (4-38), (4-34), (4-41) and (4-42).

In chapter six, the BER performance of the adaptive multi-user MLP neural network will be 

evaluated and compared with other types of multi-user DS-CDMA receiver.

4 .8  T h e  R ecu rren t  Neural N etw ork  a s  DS-CDM A R e c e iv e r

Multiple access interference (MAI) produced by the other co-channel users is a major limitation 

to the capacity of a DS-CDMA system. A potential solution to this problem, particularly when 

used in the base-station in the uplink channel, is the optimum maximum-likelihood multi-user 

detector. The computational complexity of this detector increases exponentially with the 

number of co-channel users and however it is currently too complex to be implemented in 

commercial systems.

Sub-optimal detectors such as the decorrelating receiver are proposed to reduce the effect of 

MAI. These types of receivers have a computational complexity, which only grow linearly with 

the number of co-channel users. The major disadvantages of these receivers, however, are the 

high computational complexity resulting from having to invert the correlation matrix of users’
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signature waveforms in the real time. A particularly interesting method of multi-user detection, 

which has the potential for low computational complexity, is the application of neural network 

concepts. Miyajima [4-11] proposed a recurrent neural network for multi-user detection that 

uses the likelihood function as the energy function to be minimised.

In this section, a recurrent neural network receiver with low implementation complexity for DS- 

CDMA systems is investigated and a comparative performance analysis with the conventional 

matched filter receiver, the optimum multi-user receiver and the decorrelating detector are 

carried out via a Monte Carlo simulation in chapter six. It will be observed that the proposed 

receiver is able to combat the effect of MAI and has acceptable performance in different 

channel models scenarios.

4.8.1 The Structure of Recurrent Neural Network as a Multi-User Detector

After converting the received signal to the base-band, it passes through a chip-matched filter 

and is sampled at the end of every chip interval. These samples are fed into a bank of matched 

filters. The number of matched filters in the filter bank is equal to the number of co-channel 

users, K. The outputs of the matched filters are sampled every bit interval and are fed into the 

input section of the recurrent neural network.

The recurrent neural network has a structure that consists of a number of small non-linear 

processing units. Each unit contains a summer and a non-linear function. The output of each 

unit is fed to all other units via connection weights and each unit has an external input. The 

structure of the recurrent neural network multi-user receiver is shown in Figure 4. 13.

Hopfield [4- 17] showed that, when the connection weights are symmetric, the dynamics of the 

recurrent neural network always lead to a stable state where the energy function, E, is 

minimum.

(4-54)

In equation (4-54), E  is the energy function, Xj is the output signal of the j 'h unit, Ij is the external 

input signal to the j lh unit, Wy, is the value of connection weight from the j ,h to the i h unit and N  

is the number of units.

102



Artificial Neural Network Receivers in DS-CDMA System, Chapter Four I I BATH

bank of 
matched 

filters

r(t)

w.

Figure 4.13: The structure of the recurrent neural network receiver.

By comparing the equation (2-23) in chapter two, which interprets the maximum-likelihood 

criterion, with equation (4-54), it can be seen that the optimum multi-user detector can be 

implemented by the recurrent neural network structure if Ij=2Yj, Xj-Ajbj, N =K , and w# = -2hj,. In 

this situation, the recurrent neural network structure can be employed as a multi-user detector in 

the multiple-access environment. The recurrent neural network receiver uses the outputs of the 

bank of matched filters as external inputs to the neural network. It also employs the cross

correlation of different users’ signature waveforms and the amplitude of the received signals as 

parameters in its structure. The self-connection factor w** was selected to be zero. Under this 

assumption, the system will always converge to a corner in the signal space with minimum 

energy level and has a global minimum [4- 17].

The ability of the recurrent neural network receiver to detect the DS-CDMA signals in the 

multi-user environment and to combat the effect of co-channel other user interference will be 

verified in chapter 6 . In this way, the BER performance of the optimum maximum-likelihood 

receiver, the recurrent neural network receiver, the conventional matched filter receiver and the 

decorrelating receiver will be compared. It will be shown that the recurrent neural network 

receiver has remarkable performance in the different channel model scenarios and is a good
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candidate to be implemented as a multi-user receiver in the DS-CDMA multiple-access 

environment.

4.9 Summary

In this chapter the application of the neural network structures for implementing the DS-CDMA 

receivers in a spread spectrum communication system have been considered. It has been shown 

that artificial neural networks are suitable candidates for use as detecting the transmitted data in 

the multiple-access DS-CDMA environment. In this case, two popular structures of the neural 

network, which are called the multi-layer perceptron and the recurrent neural network, have 

been shown to have good characteristic for use as receivers in these systems. The MLP neural 

network is an adaptive system, which learns via training to detect the wanted pattern (desired 

user’s signature waveform) and reject the unwanted patterns (co-channel other user’s signature 

waveforms). The recurrent neural network receiver has a dynamical behaviour, which is 

uniquely described by a parameter set {W, I}. W={wjj} is a matrix whose elements Wy are the 

connection weights between the j 'h and the i'h neurons. /={/,} is a vector whose elements /, are 

the external inputs to the i‘h neurons. In this case, by choosing suitable values for W  and /, the 

recurrent neural network receiver is changed into a multi-user receiver in the DS-CDMA 

environment.

The performance of these receivers in the DS-CDMA multiple-access environment will be 

considered in chapter six. It will be shown that the adaptive multi-layer perceptron neural 

network receiver provides signal despreading, combats multipath-fading and MAI as well as the 

effect of unequal power control resulting from the ‘Near-Far’ effect. Also, it will be shown that 

this receiver through training process, learns to collect different rays of signal propagation in 

the multipath channel and maximise the energy of the desired user’s signal and minimise the 

cross-correlation of other users’ signals in the multiple-access DS-CDMA channel. The 

learning speed of the adaptive neural network receiver is high and it has extremely good 

stability during fast training mode. Also, it will be shown that the recurrent neural network 

receiver is extremely suitable for combating the effect of co-channel interference in a multiple- 

access environment. In addition the implementation complexity of the recurrent neural network 

is very low. The good performance and low implementation complexity of the recurrent neural 

network receiver makes this receiver attractive for the next generation of wireless multimedia 

systems.
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5.1 Introduction

In this chapter, the DS-CDMA system is described that has been simulated via a Monte-Carlo 

simulation technique by using Visual C++ software on computer. In order to receive the desired 

user’s signal, two different situations for the receiver are assumed. In the first case, it is 

assumed that the desired user’s receiver is a mobile handset and receives the signal through a 

downlink ‘base-to-mobile’ channel which includes co-channel other users’ signals. It is clear 

that in this situation, a single-user strategy should be employed for implementing the receiver. 

Figure 5. 1 shows the block diagram of the transmitter, channel and receivers of this system in 

the DS-CDMA communication environment. As is shown, in order to evaluate the performance 

of the single-user receivers in this environment, several types of receiver including the 

conventional matched filter receiver, the RAKE receiver, the adaptive MMSE receiver and the 

adaptive multi-layer perceptron neural network receiver have been implemented in the 

destination unit.

In the second case, it is assumed that the desired user’s receiver is located in a stationary base- 

station and receives its signal through an uplink ‘mobile-to-base’ channel which includes the 

co-channel other users’ signals. In this situation, the strategy is to employ the multi-user 

receiver, where it has all additional information about the signature waveform, the received 

signals’ amplitudes and timing of all co-channel users. Figure 5. 2 shows the block diagram of 

the transmitter, channel and receivers of this system in the DS-CDMA communication 

environment. It is shown that for evaluating the performance of the multi-user receivers in this 

environment, several types of receiver, including the maximum-likelihood receiver, the 

decorrelating receiver, the MLP neural network receiver and the recurrent neural network 

receiver have been implemented in the destination unit.

This chapter contains a description of the DS-CDMA system, which has been implemented to 

evaluate the performance of different receivers. In this way, different parts of this system, 

which are shown in Figure 5. 1 and Figure 5. 2, will be explained in the next sections. In the 

following sections, the data generation, modulation, signature waveform generation and the 

simulation of transmission channel in the DS-CDMA system are described. Data reception in 

the DS-CDMA environment is the subject of the sixth section, in which the implementation of 

different types of receiver is considered. The summary of the chapter comes in the final section.
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Figure 5. 1: The block diagram of the simulated system for the downlink channel.
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5.2 Data Generation

In order to transmit the random data for a DS-CDMA system, random binary sequence which 

has been obtained from an independent source, is used. A random binary sequence consists of a 

statistically independent sequence of 0’s and l ’s each occurring with the probability of V2. As it 

is considered in the Appendix A, a pseudorandom sequence (PN) is a periodic sequence with 

period 2"-1 where n is the number of stage in the feedback shift register. The auto-correlation 

function of a PN sequence is very similar to the auto-correlation function of a random binary 

sequence [5-1].

Due to the good performance of the PN sequences for use as the random binary data, a feedback 

shift register with «=18 stages (period=262143) is implemented to generate the random data 

bits. The structure of this random data bit generator is shown in Figure 5.3.

Output

Figure 5. 3: The structure of a feedback shift register for generating the ML code

sequence.

As can be seen, it includes a taped-delay-line shift register with 18 serial cells and a summer1. 

The summer adds the output bits of several selected cells and a feedback line returns the result 

to the final cell. The selected taps, which are determined in the structure of the feedback shift 

register to generate a special ML sequence, can be interpreted with a polynomial as below2:

m18® m 5@m2® m®  1 (5-1)

1 It is a digital summer.

2 In equation (5-1), © means modulo two addition.
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This feedback shift register with different initial values, which are called seeds, is employed for 

generating the random data bits for all co-channel users in the DS-CDMA channel. In is noted, 

with this assumption, the binary random sequences of all co-channel users will be statistically 

independent.

5.3 Modulation

In order to modulate the random data bits, two types of the PSK modulation schemes have been 

employed in the simulation. In the binary phase shift keying (BPSK) modulation, the carrier is 

modulated according to:

r(t) =b(t) c o s ( coq t) =± cos((Do t) (5-2)

In equation (5-2), b(t) is the bipolar data to be transmitted at time / and co0 shows the carrier 

frequency. In this case, the polarity of the amplitude of sinusoidal carrier signal is changed 

according to the value of random data bit.

The differential BPSK (DBPSK) is another technique for data modulation, where the random 

data stream is differentially encoded. This scheme of modulation combats the phase ambiguity 

problem and it has been employed when the RAKE receiver was implemented in the multipath 

channel. The encoding process in the DPSK modulation scheme is as below:

b'(i) = b'(i -  l)ffi b(i) (s_3)

r(t) = b'(t)cos(co0t) = ± co s(co0t)

In equation (5-3), b(i) is the ih binary data bit and b'(i) is the i1h coded data bit. The decoding 

process in the receiver is very similar to the encoding process in the transmitter. It can be done 

as below:

b(i) = b'(i)®b'(i-\) (5-4)

In equation (5-4), b'{i) is the ilh received data and b(i) is the i,h decoded data.
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5.4 Generation of Signature Waveform Sequences

In a DS-CDMA communication system, each user in the channel is associated with a signature 

waveform which is used for spreading the modulated signal. In this way, two popular sets of the 

PN sequences, the ML and the Gold codes, are employed. The main factor for selecting a set of 

signature waveform is the value of the cross-correlation between different pairs of the set. The 

set with lower cross-correlation is better than the set with higher cross-correlation because it 

generates lower co-channel interfere in the communication channel. As is shown in Appendix 

A, using Gold codes [5- 2], [5- 3] as the signature waveforms is quite common because they can 

have good cross-correlation properties and are suitable for use in the DS-CDMA 

communication systems. Hence a set of Gold codes has been employed as the signature 

waveform of the desired and co-channel users in the channel.

In the simulation, the Gold codes are generated by modulo two addition of a preferred pair of 

the ML codes. Two feedback shift registers generate a preferred pair of the ML codes and this 

preferred pair has been chosen from the table, which is produced by Peterson and Weldon [5- 

4]. Two polynomials that show the location of the determined taps in the feedback shift 

registers are as below:

m5 0  m2 © 1 and m* © m* 0  m* © m © 1 (5-5)

In this situation, the length of each shift register is n — 5, and the number of chips per bit in the 

sequences equals to 2"-7=31 and hence the processing gain (PG) of the direct-sequence spread 

spectrum system is 31. The number of the Gold codes in the code set is 2"+l= 33 and this is the 

upper limit on the number of co-channel users in this DS-CDMA communication system.

For normalising the energy of each bit in the sequence, the amplitude of each chip in the 

signature waveform is determined as ± — and hence the energy of each bit is normalised
■Jp g

to:

PG  x 4-
i

J p g
= 1 (5-6)
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5.5 Simulation of the Transmission Channel

After spreading the information data of each user with a signature waveform from the Gold 

code set, these signals are applied to the base-band equivalent model of a wide-band mobile 

channel mocel, which is introduced in Appendix B. The COST207 model of the channel 

describes the channel impulse response in terms of a set of Doppler characteristics (fading 

weights) at various specified time delays. The channel model, which has been developed to 

simulate the COST207, simply consists of a tapped-delay-line of variable length. This model 

uses six taps, which can be irregularly spaced according to the GSM model of the channel 

impulse response. In the simulation, it is assumed that the frequency of the carrier is 900 MHz 

and the chip rate of signal equals to 3.1xl06 chips/sec. According to these assumptions, the 

minimum delay space in the channel is approximately 0.2 psec. The output signal of each tap is 

multiplied by a time varying coefficient that characterises the fast fading. It is then multiplied 

by a further gain, which represents the average multipath signal strength expected at that delay. 

The weighting factors are chosen from the urban impulse response model in Fig. B. 4, which is 

known as the COST207 model. Then the output signals of all taps are added together using a 

complex summer. The fast fading coefficients are produced using six independent complex 

additive white Gaussian noise generators. The mobility of the user is incorporated into the 

channel through the Doppler frequency of the Rayleigh fading statistics. For example, a 100 Hz 

Doppler frequency at a 900 MHz carrier frequency interprets as a vehicle speed of 120 km/h. 

The Doppler effect is generated by shaping the AWGN using a classical Doppler filter. A 

cascade structure of two-second order filters is employed to approximate the frequency domain 

transfer function of the Doppler filter, which is explained in Appendix B.

The shaped noise is obtained by passing the AWGN via the Doppler filter and the Rayleigh 

fading is produced by the fact that the independent Gaussian fading on both the real and the 

imaginary weighting components are used. To implement the static multipath channel, fixed 

weighting factors are employed for each of 6  taps in the channel model.

Adding all users’ signals synchronously or asynchronously performs MAI, which shows the 

effect of other co-channel interference users. In asynchronous mode, the phase shifts of all users 

have a uniform distribution between zero and 31 chips. The power of the interfering signals can 

be made different by changing the amplitude of the received signals in the simulating program.

Finally, the thermal noise as AWGN is added to the multi-user channel. The noise samples have 

a normal distribution and are derived from a uniform random sequence by the Box-Muller
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transformation [5- 5]. According to equation (5-6), it is assumed that the energy of each random 

data bit is normalised to one and by changing the variance of the noise samples, the E M ,  can 

be set to the required value in the simulation programs.

5.6 Reception of DS-CDMA Signals in a Cellular Environment

In this section, different types of receiver for detecting the transmitted data bits in a DS-CDMA 

environment, are described. As has been noted in section 5.1, in order to receive the desired 

user’s signal, two different situations are assumed. In the first case, the downlink channel is a 

physical environment that transfers the information signals from a base-station to the mobile 

handset. In this situation, the receiver is a single-user detector, which tries to determine the data 

bit of the desired user in a multiple access DS-CDMA channel. The receiver should be able to 

resist against the MAI with ‘Near-Far’ effect in a multipath-fading environment.

In the second case, the uplink channel is a physical environment that transfers the information 

signals from mobile handsets to the base-station. In this situation, the receiver is a multi-user 

detector, which tries to determine the data bit of all co-channel users in the multiple-access 

channel.

The first group of receivers, which has been implemented in this simulation for the downlink 

channel, includes the conventional matched filter receiver, the RAKE receiver, the adaptive 

MMSE receiver and the adaptive MLP neural network receiver. The second group contains 

receivers including the maximum-likelihood receiver, the decorrelating receiver, the adaptive 

MLP neural network receiver and the recurrent neural network receiver.

5.6.1 The Conventional Matched Filter Receiver

The first receiver for the downlink channel, which has the simplest structure, is the 

conventional matched filter or digital matched filter receiver. In this receiver, the received 

signal is multiplied by the local PN signature waveform sequence, where the perfect 

synchronisation is assumed. This PN signature waveform sequence is a replica of the signature 

waveform, which has been employed at the transmitter to spread the desired user’s signal. After 

it, the post-correlation signal goes to the BPSK base-band demodulator. This block performs the 

operations of integration over a bit periods, Th, sampling the output of the integrator at the bit 

rate, and finally contains the decision circuit. The conventional matched filter receiver is the
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solution o f the maximum-likelihood criteria in a single-user AWGN DS-CDMA channel and it 

has the best performance in this case. The BER performance of this receiver in this situation is a 

good reference for evaluating the performance of other single-user interfere rejecting receivers 

in the multiple-access environment.

This receiver has a simple structure and it is very useful to understand the despreading process 

in the spread spectrum communication. All parts of this receiver are used in the structure of the 

RAKE receiver. It is noted that the conventional matched filter receiver is equivalent to one 

branch o f the RAKE receiver.

5.6.2 The RAKE Receiver

In the multipath channel, the conventional matched filter receiver is unable to collect the 

distributed energy from the different delayed echoes in the channel. In this case, the RAKE 

receiver is a suitable receiver that can be employed. The RAKE receiver has been implemented 

in this work to combat the effect of the multipath channel in the DS-CDMA environment. The 

structure of this receiver has been designed to achieve the multipath combining of the received 

signal. The general structure of the RAKE receiver is shown in Figure 5. 4. As it is shown, it 

has been implemented by using a digital delay line, which is located at the output of the local 

signature waveform generator to provide delayed samples of the despreading signature 

waveform. It is supposed that the relative delays between the multipath components are a factor 

of chip period, Tc.

At the output of the matched filter, there are several lines corresponding to the number of taps 

in the multipath channel, with complex values. At this point, the delay profile and attenuation 

coefficients of the multipath channel should be known or estimated. In the case of static 

multipath, the characteristics of the channel can be estimated via a channel sounding preamble 

or real using data transmission via a decision directed channel estimation. In this case, the 

impulse response of the multipath channel can be determined and the RAKE receiver can be 

implemented perfectly. In the case of dynamic multipath, the impulse response of the channel is 

varying and the estimation of the channel’s parameters must be done during the real data 

transmission.
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Figure 5. 4: The general structure of the RAKE receiver.

It is known that the Maximal Ratio Combining (MRC) and the Equal Gain Combining (EGC) 

[5 - 6 ] are two famous combination techniques, which can be employed to estimate the 

parameters of the multipath channel and to implement the RAKE receiver3. The combining 

process can be performed with the post-correlation signal and the known or estimated channel 

impulse response. The arrived signals at each of the RAKE arms have been despread by an 

appropriately delayed version of the desired user signature waveform. Figure 5. 5 shows the 

detailed structure of the RAKE receiver, which has been implemented in the simulation.

Received Signal 
(Post-correlation)

 Output
(To decision circuit)

Figure 5. 5: The detailed structure of the RAKE receiver.

3 These techniques will be explained in Appendix B.
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The detailed structure of the RAKE receiver is performed by using multipliers, which multiply 

each branch of the post-correlation signal with the corresponding complex conjugate estimate 

of the channel’s impulse response, and a summer, which sums all of the signals at the output of 

multipliers [5- 6 ]. The RAKE filter coefficients are an estimate of the channel impulse

response, and hk (n )e~j 9 k is an estimate of the £th multipath branch for the 77th transmitted bit. 

The signal at the output of the RAKE filter is applied to the decision circuit, where the signal is 

demodulated, is integrated over a bit period and subsequently sampled, and is decided as a bit. 

This bit is feed back to the channel estimator for use in the next estimation.

5.6.3 The Adaptive MMSE Receiver

The MMSE receiver is the third receiver for the downlink channel, which has been 

implemented in the simulation to receive the desired user’s signal in the multipath channel in a 

DS-CDMA environment. After converting the received signal to the base-band, and passing 

through a chip-matched filter, it is sampled at the end of every chip interval. These samples are 

fed into the adaptive filter, which has been implemented as a tapped-delay-line structure. The 

output of the adaptive filter is sampled once every bit interval and passed through a hard limiter 

to estimate the data bit. Tap weights in the adaptive filter are updated once every bit interval 

and an error signal that is the difference between the desired signal and the output signal of the 

transversal filter, in an adaptive algorithm, controls the weight updating process.

To simulate tlhe structure of the adaptive MMSE receiver in a DS-CDMA environment, a delay 

line with 31 cells has been implemented. The 31 complex weights of the adaptive receiver have 

been set to zero in the beginning of the training process and have been updated once every bit 

interval by am adaptive algorithm during training and data bit transmission.

To train the adaptive MMSE receiver, known data sequences are inserted into the transmitted 

data stream for the desired user at the start and at regular interval4. As the chosen sequence must 

be known at both the transmitter and the receiver, a suitable candidate is the pseudorandom 

signature waveform of the desired user. It can be transmitted at the symbol rate for training 

purpose.

4 In the case o f static channels, the training sequences are used only in the beginning of real data 

transmission.
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Increasing the mobility of the mobile receiver reduces the performance of the adaptive MMSE 

receiver in a multipath-fading channel. In this case, it is needed to compensate the effect of 

fading on the received signal. A channel equaliser is located in front of the adaptive MMSE 

receiver to remove the effect of time varying channel on the desired user’s signal by estimating 

the delay profile and the attenuation coefficients of the multipath-fading channel. It is shown 

that this equaliser is able to help the adaptive part of the receiver to combat the effect of 

multipath-fading channel and remove the effect of co-channel interference simultaneously. In 

this case, it is needed to send regular training sequences related to the desired user during the 

real data transmission to decrease the error of the estimation process. These training sequences 

are helpful for adaptive part of receiver to be locked to the phase variation of the desired user’s 

signal.

5.6.4 The Adaptive MLP Neural Network Receiver

The adaptive multi-layer perceptron neural network receiver is the fourth receiver for the 

downlink channel, which has been implemented by simulation to receive the desired user’s 

signal in the DS-CDMA environment. It is known that the decision boundaries in a multi-user 

DS-CDMA communication environment are nonlinear and in this case, the neural network 

structures that include non-linear units, are able to generate decision areas with non-linear 

boundaries to separate the wanted and the unwanted signals.

For the downlink channel, where the receiver needs to detect the desired user’s transmitted data, 

the adaptive MLP neural network receiver is very useful. In this case, the training sequences 

can be used for adjusting the receiver’s parameters in a way to detect the desired user signal in a 

multiple-access DS-CDMA channel. The MLP neural network receiver as a single-user detector 

is trained on the chip basis of the desired user signature waveform as a wanted pattern and other 

co-channel signature waveforms as unwanted patterns. In this situation, it needs to receive the 

desired user and other co-channel users’ signature waveforms during training process and by 

modifying the interconnection weights in its structure, establishes the boundaries in the decision 

space to separate the desired user signal from MAI.

In order to employ the adaptive MLP neural network in the multipath environment, it is 

necessary to introduce the delay profile of the main echoes in the multipath channel to the MLP 

neural network receiver during the training process. In this case, the delay profile of the main 

echoes should be known or determined via accurate sounding of the multipath channel.
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5.6.5 The Maximum-Likelihood Receiver

The first multi-user receiver is the maximum-likelihood receiver that has been implemented by 

simulation of the uplink channel. The maximum-likelihood or optimum receiver is a multi-user 

receiver, which maximises the probability of detection of all users’ data in a DS-CDMA 

multiple-access environment. It needs to have all information about the signature waveforms, 

timings, received signal amplitudes and phases of all users in the channel. When operating in 

synchronous mode with K  co-channel users, it is implemented by using a bank of K  matched 

filters followed by a detector that computes the 2K correlation metrics of all possible 

combinations of the transmitted data and it selects the combination corresponding to the largest 

correlation metrics. When the system is operating in asynchronous mode, the maximum- 

likelihood receiver must compute 2^  correlation metrics to determine the K  block of sequences, 

each of which has a length, L. In this case, the implementation complexity of the receiver is 

much higher than the synchronous mode because K  and L are generally large. Viterbi algorithm 

[5- 7] is employed to implement the maximum-likelihood criterion in this mode and it causes a 

significant reduction in the computational complexity but the exponential dependence on the 

number o f users can not be reduced.

However, the high complexity of this receiver makes it impossible for use in the practical 

systems in a realistic commercial environment. Neverless, the performance of this receiver is a 

suitable reference for comparing the ability of other multi-user receivers to combat the effect of 

co-channel interference in the DS-CDMA environment.

5.6.6 The Decorrelating Receiver

One sub-optimum multi-user receiver that has a linear computational complexity in the number 

of users is the decorrelating receiver. The structure of this receiver in a DS-CDMA channel 

with K  co-channel users, is performed by using a bank of matched filters followed with a linear 

mapping unit, which transfers the output of K  matched filters into K  data outputs. The inverse 

value of the correlation matrix is employed to implement the second part of the decorrelating 

receiver. This unit removes the effect of MAI on the received signals in the multiple-access DS- 

CDMA channel.
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5.6.7 The Multi-User Adaptive MLP Neural Network Receiver

The adaptive multi-layer perception neural network receiver is the third receiver for the uplink 

channel which has been implemented by computer simulation to receive all users’ signals in the 

DS-CDMA environment. As noted earlier, the decision boundaries in a multi-user DS-CDMA 

communication environment are non-linear. In these cases, the neural network structures that 

include non-linear units are able to perform subtle non-linear boundaries in the signalling space 

to separate the wanted and unwanted signals.

The structure of this receiver is performed by using a bank of matched filters followed by a 

multi-layer perception unit, which is employed to transfer the output of the K  matched filters 

into K  data outputs. According to the adaptive nature of this receiver, the training sequences 

should be used for adjusting the interconnection weights of the receiver in a way to detect all 

users’ signals in a multiple-access DS-CDMA channel. The MLP neural network receiver when 

used to implement a multi-user detector is trained on the basis of all the users’ signature 

waveforms. In this situation, it needs to receive all users’ signature waveforms during the 

training process and by changing the interconnection weights in its structure, establishes the 

boundaries needed to detect all users’ data as a multi-user receiver.

5.6.8 The Recurrent Neural Network Receiver

The final multi-user receiver is the recurrent neural network receiver, which has been 

implemented in the simulation for the uplink DS-CDMA channel. This receiver uses a bank of 

matched filters followed by a recurrent neural network structure, the purpose of which is 

performed to transfer the output of K  matched filters into K  data outputs. The feedback links in 

the structure of the recurrent neural network enable it to store information about time in a 

dynamically stable configuration. For the case of symmetrical connection weights, if the 

network is started in any initial state, it will move towards a state where the energy function of 

the network reaches a minimum point and at this point, it stops changing with time. The energy 

function of the recurrent neural network can be properly determined via defining some suitable 

connection weights in the network. In the simulation, the energy function of the recurrent neural 

network is interpreted as the maximum-likelihood criterion. In this case, a multi-user receiver is 

realised, which minimises the distance metrics5 in the multiple-access DS-CDMA environment.

5 The distance metrics has been explained in chapter two, equation (2-20).
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5.7 Demodulation and Analysis of DS-CDMA Signals

The complex outputs from each of the receivers are demodulated with the appropriate level of 

phase-amplitude modulation prior to analysis. An analysis module, in the downlink channel, 

compares the suitably delayed transmitted data sequence of the desired user with the received 

sequence to produce statistics for the run including the bit error rate for all receiver types which 

have been simulated. In the uplink channel, the same task is done for all users in the multiple- 

access environment. In addition, the Eh/N0 for the desired user is computed for each run from 

the simulation parameters. The software is also capable of monitoring the adaptive receiver’s 

performance via mean-square error and adaptation algorithm convergence performance.

5.8 Summary

In this chapter, the structure of a DS-CDMA system, which has been simulated via a Monte- 

Carlo simulation technique by using Visual C++ software on the computer, has been described. 

It has been shown that, according to the location of the receiver in the channel, two different 

situations in the transmission channel are assumed. For the downlink channel, where the 

receiver is a mobile handset, the strategy is to design a single-user receiver that is able to 

despread the desired user’s signal, reject the effect of co-channel interference and combat the 

effect of multipath channel. In this case, different receivers including the conventional matched 

filter receiver, the RAKE receiver, the adaptive MMSE receiver and the adaptive MLP neural 

network receiver have been implemented in the simulation. For the uplink channel, where the 

receiver is located in a base-station of a cell, the strategy is to design a multi-user receiver that 

is able to despread the signal of all co-channel users and minimises the effect of MAI on the 

detected data. In this case, the maximum-likelihood receiver, the decorrelating receiver, the 

adaptive MLP neural network receiver and the recurrent neural network receiver are 

implemented in the simulation. The performance evaluation of these receivers is the subject of 

the next chapter.
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6.1 Introduction

In this chapter, the performance of several receivers in the DS-CDMA communication system 

are evaluated via the Monte-Carlo simulation technique, which has been implemented by using 

visual C++ software on the computer. This evaluation includes the receivers for the downlink 

and the uplink mobile channels. In this way, two modes of data transmission, several models of 

the transmission channel, and different environments for signal reception are simulated. These 

options include synchronous and asynchronous modes of the data transmission, static and 

dynamic multipath channels, the power controlled and the ‘Near-Far’ environments. The 

objective of this chapter is to investigate the performance of the different types of receiver in 

the various channel model scenarios in a DS-CDMA multiple-access environment. The 

environment contains a number of co-channel users, where each user uses a unique signature 

waveform for data transmission, and the AWGN. In this situation, the main task of a DS- 

CDMA receiver is to combat the effect of strong MAI during detecting the transmitted data.

There are two different strategies in implementing the DS-CDMA receivers for the downlink 

and the uplink channels. For the downlink channel, to emphasise the privacy, the strategy is to 

use a single-user receiver to detect the desired user’s signal and reject the other co-channel 

users’ signal in the multipath mobile channel. In this case, each receiver uses its own unique 

signature waveform to detect the desired signal and reject other co-channel users’ signal. In this 

situation, the performance of the conventional matched filter receiver, which is a classical 

receiver in the DS-CDMA system, is degraded with the strong co-channel users’ signal. On the 

other hand, the RAKE receiver that is implemented to collect the distributed signal energy in 

the multipath DS-CDMA channel, does not function well in the ‘Near-Far’ multiple-access 

environment. It is shown that the adaptive MMSE receiver and the adaptive MLP neural 

network receiver have much better performance under different channel model scenarios and 

that they are suitable candidates to be used as a single-user receiver for the downlink DS- 

CDMA channel.

For the uplink channel, the strategy is to use a multi-user receiver, which detects all signals of 

the co-channel users in the multiple-access DS-CDMA environment. In this case, the best 

receiver with the highest performance is the maximum-likelihood receiver, which is known as 

the optimum multi-user receiver [6 - 1]. In spite of good performance, unfortunately it requires a 

lot o f additional information to operate in the DS-CDMA environment and its complexity 

grows expomentially with the number of co-channel users. These limitations make the 

maximum-likelihood receiver difficult to be implemented in a commercial environment. The
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decorrelating receiver which is a multi-user receiver with implementation complexity that 

grows linearly with the number of users, requires to invert the correlation matrix of signature 

waveforms in the real time of data transmission to detect the data of all users. On the other 

hand, it does not use the amplitude information of the received signals to improve the 

performance of the receiver. It is shown here that the recurrent neural network receiver has 

attractive performance in the different channel model scenarios in the DS-CDMA environment, 

which is very similar to the performance of the optimum maximum-likelihood receiver. Also, 

its implementation complexity is much less than the implementation complexity of the 

maximum-likelihood receiver in a DS-CDMA environment, however it is still not linear. These 

features introduce the recurrent neural network receiver as a good alternative for maximum- 

likelihood receiver to be implemented as a multi-user receiver for the uplink channel in the 

multiple-access DS-CDMA environment.

The reminder of this chapter is organised as follows. In the following section the configuration 

of the system is explained. The third section evaluates the performance of the DS-CDMA 

receivers for the downlink channel and the performance of the DS-CDMA receivers for the 

uplink channel is considered in the fourth section. The summary comes in the final section.

6.2 System Configuration

The simulation software has been written to allow the DS-CDMA system to be investigated in a 

wide range of different channel model scenarios. In this way, different types of signature 

waveform, synchronous and asynchronous modes of data transmission, static and dynamic 

multipath o f transmission channel and different environments for signal reception such as 

power controlled and ‘Near-Far’ environments have been simulated. The performance of 

several types of receivers in each part, has been obtained and compared with the performance of 

a benchmark receiver. The simulation specifications of the DS-CDMA system are shown in the 

Table 6 . 1.
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Carrier Frequency 900 MHz
Signature Waveform ML, Gold codes and arbitrary

Signature Waveform Order, n 5 (31 Chips/Bit)

Maximum Number of Users T+1

Modulation BPSK and DPSK

Timing Mode Synchronous or Asynchronous

Eb/No Variable

Table 6.1: Simulated system specification.

6.3 Performance Evaluation of DS-CDMA Receivers in the 

Downlink Channel

For the downlink DS-CDMA channel, the receiver is a mobile handset that receives a signal 

from a base-station, which is located in the centre of a communication cell. The main task of the 

receiver is detecting the desired user’s signal among other co-channel users, which are 

transmitting their signals simultaneously in the same band of frequency. In this case, a single- 

user strategy should be employed to perform the reception. The single-user receiver should be 

able to detect the desired user’s signal and reject the MAI that is generated by other co-channel 

users. In addition, it should be able to combat the effect of multipath channel that is a main 

factor in decreasing the energy of the desired user’s received signal.

6.3.1 Performance Evaluation of the Conventional Matched Filter 

Receiver

The simplest single-user receiver in a DS-CDMA system is the conventional matched filter 

receiver, which uses the desired user’s signature waveform to detect the desired user data. The 

performance of this receiver depends on the characteristics of the signature waveform set, 

which has been employed to spread the data in the transmitter. In a single-user Gaussian 

channel, by using the maximum-likelihood criteria, the conventional matched filter receiver is 

the optimum receiver [6 - 1]. In this case, the performance of this receiver represents the limit on 

the performance of receivers in the multi-user channel, when the MAI can be completely 

cancelled.
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Figure 6. 1 shows the BER performance of the conventional matched filter receiver as a 

function of E /N 0 for a DS-CDMA single-user Gaussian channel. This result has been achieved 

by allocating a signature waveform with the length of 31 chips/bit to the desired user. In this 

case, the processing gain of the direct sequence spread spectrum system is 31. This diagram 

shows the lower bound on the achievable BER performance of a ‘Near-Far’ resistance receiver 

in a multiple-access DS-CDMA channel with the processing gain of 31. Hence it can be used as 

a reference to evaluate the performance of the different MAI rejecting receivers.
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Figure 6. 1: The BER performance of the conventional matched filter receiver versus 

Eb/No in a DS-CDMA single-user Gaussian channel.

In the ideal case, in a line-of-sight multiple-access DS-CDMA environment, if the signature 

waveform codes in the set are orthogonal, i.e. the cross-correlation values of different pairs of 

signature waveform are zero, the MAI will be removed from the channel. In this situation, the 

BER performance of the conventional matched filter receiver in the multiple-access channel 

will be the same as single-user channel. However in the real case, by using a suitable set of 

signature waveform to spread the data, such as the maximal length code or the Gold code, the 

values of cross-correlation of different users’ signature waveform are not zero and hence the 

amount of MAI in the channel will be very limited. In this situation, with a synchronous mode 

of data transmission in a power-controlled and line-of-sight environment, the conventional 

matched filter receiver will have acceptable BER performance in the DS-CDMA system.

In a real DS-CDMA mobile environment and for the downlink channel, the power control 

techniques are very complicated and hence it is better to design the receiver to have a ‘Near- 

Far’ resistance property. The conventional matched filter receiver is a receiver, which has the
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poorest resistance against the ‘Near-Far’ phenomena. Figure 6. 2 shows the weakness of this 

receiver to handle imperfect power control of the various users due to the ‘Near-Far’ effect in 

the DS-CDMA environment. In this case, the Ehfjesired/No of the desired user’s signal is set at 

6dB whereas all of the co-channel interfering user’s signals have an equal energy per bit, E,. As 

it can be seen, the conventional matched filter receiver does not have good performance in this 

situation and the BER performance of this receiver degrades by increasing the energy of other 

co-channel user’s signals. In other words, the resistance of the conventional matched filter 

receiver in the multiple-access ‘Near-Far’ DS-CDMA environment is very poor and it is not a 

suitable receiver for use in this channel.
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Figure 6. 2: The BER performance of the conventional matched filter receiver versus 

Ei/Eb(deSjre,]) in a 10-user multiple-access ‘Near-Far’ DS-CDMA downlink channel.

The BER performance of the conventional matched filter receiver is also very sensitive to the 

number of co-channel interfering users. Figure 6. 3 shows the BER performance of this receiver 

as a function of the number of co-channel users in a multiple-access DS-CDMA environment. 

In this case, the Ek(deSjred/No  of the desired user’s signal is set to 6 dB whereas all of the other 

co-channel interfering user’s signals have an equal energy per bit, Eh where E /E h(desired) = 6 dB. 

In this case, a ‘Near-Far’ environment is simulated when the processing gain of the spread 

spectrum system is 31. It is clear that the BER performance of the conventional matched filter 

receiver degrades by increasing the number of co-channel user in the channel and in this case, 

the receiver completely loses its ability to detect the desired user’s signal.
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In summary, the performance of the conventional matched filter receiver in a multiple-access 

DS-CDMA environment is very sensitive to the amount of MAI, which is produced by the 

cross-correlation of the signature waveform pairs and is increased by the ‘Near-Far’ effect in 

the channel. In this case by increasing the power in the MAI, the BER performance of this 

receiver degrades. Several techniques such as better signature waveform design, using power 

control, using error correction codes and utilising adaptive antennas may be employed to reduce 

the amount of MAI and improve the performance of the conventional matched filter. However 

by using these techniques the complexity of the receiver is increased. It is clear, the 

conventional matched filter receiver is not suitable for use as a practical receiver in a mobile 

multiple-access DS-CDMA environment and a better strategy is to design ‘Near-Far’ resistance 

single-user receivers.
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Figure 6. 3: The BER performance of the conventional matched filter receiver versus the 

number of co-channel interfering users in a ‘Near-Far’ multiple-access DS-CDMA

channel.

6.3.2 Performance Evaluation o f the RAKE Receiver in a Multipath  

Channel

In a real environment of the DS-CDMA data transmission system, the transmitted signal is 

received via different paths in the transmission channel. This phenomenon, which is called the 

multipath, is the effect of using high frequency carrier to carry the wide-band signal in the 

channel so that the wavelength of the carrier is small related to the scatters. In this case, the 

receiver receives different versions of the transmitted signal and it is required to employ a 

suitable receiver to combat this effect. In this situation, the RAKE receive, has been used to
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collect the signals from each of the different paths. In order to implement the structure of the 

RAKE receiver, several information about the multipath channel should be provided. This 

information may be achieved by sounding the channel before starting to transmit the real data or 

during the real data transmission in the channel.

In a static multipath channel, where the transmitter and receiver are stationary, the characteristic 

of multipath channel should be estimated in the beginning of the real data transmission by 

sending known data into the channel and analysing the received data in the receiver. This 

technique is called ‘sounding the channel’ and is useful for determining the characteristic of the 

multipath channel. After sounding and achieving the delay profile and attenuation coefficients 

of the multipath channel, the RAKE receiver is implemented and the real data can be 

transmitted via the channel. Figure 6. 4 shows the BER performance of the RAKE receiver as a 

function of Er/N0 in a single-user static multipath DS-CDMA channel. The length of signature 

waveform is 31 chips/bit and in this case, the processing gain of the spread spectrum system is 

31. The number of rays in the multipath channel is assumed to be six and also it is assumed that 

the delay profile and the attenuation coefficients of each ray in the multipath channel is known 

or has been determined in advance.
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Figure 6. 4: The BER performance of the RAKE receiver versus Eb/N0 in a six-ray static 

multipath DS-CDMA channel with known parameters.

It can be shown that in a single-user multipath channel by using the maximum-likelihood 

criteria, the RAKE receiver is the optimum receiver. In this case, the BER performance of this 

receiver is a reference that represents the limit on the BER performance of MAI rejecting
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receivers in the multiple-access and multipath channel, when the MAI is completely cancelled. 

Hence this diagram is a good reference to compare the ability of the adaptive receivers for 

combating the effect of multipath in the DS-CDMA channel.

In a multipath-fading channel, where the transmitter and/or receiver are not stationary, the 

channel is a time varying system and its characteristic is changing during the real data 

transmission. In this case, it is needed to estimate the impulse response of the dynamic channel 

during real data transmission and employ it to implement the structure of the RAKE receiver to 

function in the time varying multipath channel.

In order to estimate the delay profile and attenuation coefficients of the dynamic multipath 

channel during real data transmission, usually two techniques are employed. These are the 

Maximal Ratio Combining (MRC) and the Equal Gain Combining (EGC) [6- 2]. These 

techniques use the post-correlation signal to estimate the multipath channel impulse response 

and the estimated parameters are updated by using a recursive filter during each bit interval. 

The only difference between the MRC and the EGC techniques is the model that is used for 

choosing the value of the weighting components of each tap1. It is shown that the estimated 

parameters, which are obtained in the multipath channel by using the MRC technique, are more 

accurate than the estimated parameters that have been achieved by using the EGC technique [6- 

2]. Actually, in the EGC technique, the estimator employs the sign of the post-correlation 

signals to perform the estimation, where in the MRC technique, the real value of the post

correlation signals are used in estimating process.

To verify the performance of the RAKE receiver in the dynamic multipath, a model of 

multipath-fading channel, which is called the COST207 model, is implemented in the 

simulation2. The channel model consists of a tapped-delay-line with six taps, which are spaced 

according to the GSM channel impulse response model. It is assumed that the carrier frequency 

is 900 MHz and the chip rate of the signal is 3.1 xlO6 chips/sec and each delay space in channel 

model is approximately 0.2 psec. The complex value of output from each tap is multiplied by a 

time varying Rayleigh distributed coefficient that characterises the fading channel. It is then 

multiplied by a further gain, which represents the average multipath signal strength expected at 

that delay. The weighting factors are chosen from the COST207 urban impulse response model, 

given in Table 6. 2.

1 The details o f two MRC and EGC techniques are explained in Appendix B.
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Path 1 2 3 4 5 6
Delay(psec) 0.0 0.2 0.6 1.6 2.4 5

Gain(dB) -3 0 -2 -6 -8 -10

Table 6. 2: The six-tap multipath-fading channel specification for the urban environment.

The outputs of all taps are then added together using a complex summer. The fast fading 

parameters are produced using six independent complex additive white Gaussian noise 

generators. The mobility of the user is incorporated into the channel by using the Doppler 

filters, which filter the Rayleigh distributed noise representing the path loss. For example, a 100 

Hz Doppler frequency and a 900 MHz carrier frequency interprets as a vehicle speed of 120 

km/h.

The BER performance of the RAKE receiver as a function of Ef/No in the COST207 urban 

model of multipath-fading channel is shown in Figure 6. 5. The channel model contains six 

rays, where each follows by a Rayleigh distributed multiplying factor to generate the desired 

environment. To consider the effect of mobility of the receiver on the performance of the 

receiver, three different Doppler frequencies, which show the speed of the mobile receiver, have 

been implemented in the simulation. It is noted that the characteristic of multipath channel is 

estimated during the real data transmission and the MRC combining technique is employed to 

perform the RAKE receiver. It is shown that the RAKE receiver is able to recover the 

propagated signal in the single-user DS-CDMA multipath-fading channel. It is clear, by 

increasing the E//N0 in the channel, the estimating error of the parameters in the dynamic 

channel is reduced. As it is shown, by increasing the Doppler frequency or increasing the speed 

of mobile unit, the BER performance of the RAKE receiver degrades. This degradation is the 

result of increasing the error in estimating the parameters of the dynamic channel.

2 The details o f the COST207 model o f multipath-fading channel are explained in Appendix B.
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Figure 6. 5: The BER performance of the RAKE receiver versus Et/No in a COST207 

Rayleigh multipath-fading single-user channel with different Doppler frequencies.

It is noted that the results in Figure 6. 5 are obtained in a single-user multipath-fading channel 

and the effect of MAI on the performance of the RAKE receiver is found to be identical to the 

conventional matched filter receiver. In this case as shown in Figure 6. 6, the BER performance 

of the RAKE receiver is degraded by MAI in the multiple-access DS-CDMA mobile channel. 

In this figure, the BER performance of the RAKE receiver as a function of E//N(, in a multiple- 

access DS-CDMA multipath-fading channel is shown. It is assumed that the delay profile and 

attenuation coefficients of multipath channel are known and the Doppler frequency is 80 Hz. It 

can be seen that by increasing the number of co-channel interfering users, the BER performance 

of the RAKE receiver degrades until it has a very high irreducible BER. In a DS-CDMA 

multiple-access channel with ‘Near-Far’ effect, the BER performance of this receiver is worse 

than the power controlled environment. In this case, the strong signals of the co-channel 

interfering users overshadow the weak signal of the desired user and the RAKE receiver is 

unable to function properly in the multiple-access channel with ‘Near-Far’ effect.
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Figure 6. 6: The BER performance of the RAKE receiver versus Eb/No in a power 

controlled multi-user DS-CDMA and a Rayleigh fading COST207 known multipath

channel with fa= 80 Hz.

In summary, as considered in sections 6.3.1 and 6.3.2, the performance of the classic DS- 

CDMA receivers, such as the conventional matched filter receiver and the RAKE receiver, 

degrade because of MAI in the multiple-access environment and they are not able to combat the 

effect of MAI in these channels. A better strategy for implementing the DS-CDMA receiver, 

which is able to function in the multiple-access channel, is to use the adaptive structures. These 

structures can be employed to perform receivers to combat the effect of multipath and reject the 

effect of co-channel other user signals in the multi-user channels. In the next two sections, it 

will be shown that the performance of the adaptive receivers are far better than the performance 

of the classic receivers in the multiple-access DS-CDMA channel.

6.3.3 Performance Evaluation o f the Adaptive MMSE Receiver

The adaptive MMSE receiver is a single-user receiver in DS-CDMA system, which can be 

employed to detect the desired user’s signal in a multiple-access environment. As it has been 

shown in chapter three, where the mathematical basis of the adaptive MMSE receiver has been 

considered, it has the ability to be utilised as a conventional matched filter receiver in a single- 

user Gaussian channel or as a RAKE receiver in a single-user multipath channel. On the other 

hand, the adaptive nature of the receiver helps it to combat the effect of MAI in the multiple- 

access channel. In this section, the performance of the adaptive MMSE receiver is evaluated in
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the different channel model scenarios via simulation. It is shown that this receiver has 

acceptable performance in these channel models and is suitable for use as a receiver in the DS- 

CDMA systems. The main structure of the adaptive MMSE receiver, the convergence 

performance, and the performance in the static and the dynamic multipath channel will be 

considered in this section.

6.3.3.1 The Main Structure of the Adaptive MMSE Receiver

In the DS-CDMA environment, after converting the received radio frequency signal to base

band, it is passed through a chip-matched filter. Then it is sampled at the end of every chip 

interval to provide input data for the adaptive part of the receiver. These samples are fed into 

the adaptive equaliser, which has been implemented by using a tapped-delay-line transversal 

structure. The output of the equaliser, in the simulation, is sampled once every bit interval, and 

passed through a hard limiter to generate an estimated data bit. The value of each tap weight in 

the transversal filter is updated once every bit interval and an error signal, which is the 

difference between the desired and the output signal of the adaptive filter, controls the updating 

process. This is done via a suitable adaptive algorithm, which has been employed to set the 

weight values of the adaptive receiver to the best point, where the value of error converges to 

zero. However in a practical system, the amount of error signal is not zero and there is always 

some residual error in the system. The value of the residual error in the system depends on 

several parameters, where the speed of convergence in the adaptive algorithm is one of them. In 

the adaptive systems with high-speed convergence property, the value of residual error is more 

than the low speed convergence systems. The effect of the step-size parameter in the adaptive 

algorithm on the speed of convergence and the value of the residual errors will be considered in 

the next section. Figure 6. 7 shows the main structure of the adaptive MMSE receiver.

In the simulation, which has been implemented, the structure of the adaptive MMSE receiver 

contains a delay line with 31 taps. In the beginning of the training mode, the value of all the 

weights in the structure, which are complex values, are set to zero. During training mode, these 

values are updating via an adaptive algorithm every bit interval to achieve a reasonable value of 

error in the system. After that, the updating process is stopped and the transmitter starts to send 

the real data. In the case of stationary channels, such as Gaussian or static multipath, the 

training sequences should be sent just in the beginning of the data transmission. To train the 

adaptive MMSE receiver, the known preamble data sequences for the desired user in the 

beginning of data transmission, are employed.
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Figure 6. 7: The main structure of an adaptive MMSE receiver.

In dynamic channels, such as multipath-fading channels, the updating process will be continued 

during the real data transmission. In this case, the known midamble data sequences for the 

desired user, are employed regularly during real data transmission to maintain the value of error 

to an acceptable amount.

As the selected training sequences must be known at both the transmitter and the adaptive 

receiver, a suitable candidate in this case is the pseudorandom signature waveform of the 

desired user because it is a common information between the transmitter and the receiver in a 

DS-CDMA channel.

6.3.3.2 The Convergence Performance of the Adaptive MMSE Receiver

The amount of the mean square error in the adaptive algorithm is a measure that shows the 

convergence of the weight values of transversal filter to the desired values. In the ideal case and 

in a Gaussian DS-CDMA channel, the value of the weight vector will be equal to the signature 

waveform of the desired user, if the mean square error is zero. In practical systems, because of 

noise and other co-channel users’ signal, there is some residual mean square error. In this case, 

the weight vector is maintained to the optimum position in the multi-dimensional space of 

weights.

137



Performance Evaluation o f DS-CDMA Receivers, Chapter Six BATH

The mean square error (MSE) convergence performances of the adaptive MMSE receiver in the 

different channel model scenarios are shown in Figure 6. 8, Figure 6. 9 and Figure 6. 10. In all 

of these cases, the energy of the desired user is set to achieve EJNo =15 dB in the channel and 

an LMS adaptive algorithm controls the value of the weight vector in a transversal filter with 31 

taps. Also the step-size parameter of the adaptive algorithm has been set to p  =10’2. The result 

in Figure 6. 8 has been achieved in a single-user environment, where the transmission channel 

only includes the desired user signal. It can be seen that convergence to a MSE of 0.2 (-7 dB) 

has been achieved after transmitting approximately 70 data bits or symbols.

In Figure 6. 9, the result has been achieved in a multi-user DS-CDMA channel, which contains 

five co-channel users. It is shown that in this case, convergence to a MSE of 0.2 (-7 dB) has 

been taken longer time than the single-user channel. By increasing the number of co-channel 

interfering users in the channel, as it is shown in Figure 6. 10, or increasing the energy per bit of 

the co-channel interfering users’ signals, which shows the ‘Near-Far’ environment, the weight 

vector requires more time to converge to its optimum position to have minimum mean square 

error in the system.
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Figure 6. 8: The mean square error of the adaptive MMSE receiver in a single-user DS

CDMA channel.
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Figure 6. 9: The mean square error of the adaptive MMSE receiver in a 5-user multiple-

access DS-CDMA channel.
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Figure 6. 10: The mean square error of the adaptive MMSE receiver in a 10-user 

multiple-access DS-CDMA channel.
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Another factor, which has a large effect on the convergence performance of the adaptive 

systems, is the step-size parameter of the LMS algorithm. It controls the speed of the 

convergence process in the adaptive algorithm. However, by decreasing the step-size parameter, 

p, the value of the mean square error decreases, but in this case the number of symbols, which 

are needed to be transmitted for achieving the desired MSE, increases. Figure 6. 11 and Figure 

6. 12 show the convergence performance of the adaptive MMSE receiver in a single-user DS- 

CDMA system with different values of step-size parameter, p. In Figure 6. 11, this parameter is 

set to p  — 10'1 and in Figure 6. 12, it is set to p  = 10'3. It can be seen that in the case of p =  10'1, 

convergence to a MSE of 0.2 (-7 dB) has been achieved after transmitting approximately 30 

data bits but in the case of //=10'3, it has been achieved after transmitting approximately 700 

data symbols. It is clear, by increasing the value of step-size, not only the speed of converging 

to the desired weight vector in the adaptive algorithm is increased but also the value of the 

residual error increases. In fact, for selecting the value of the step-size parameter in the adaptive 

algorithms, there is a compromise between the speed of convergence to the desired weight 

vector and the value of the residual mean square error in the system. It is clear that in the 

dynamic DS-CDMA channels, where the training sequences should be transmitted as 

midambles regularly during the real data transmission, using low speed adaptive algorithm is 

caused degradation in the performance of the adaptive receiver. In these conditions, it is better 

to accept some residual errors in the price of increasing the speed of adaptive algorithm.
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Figure 6. 11: The mean square error of the adaptive MMSE receiver with step-size value 

p=\{)A in a single-user DS-CDMA channel.
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Figure 6. 12: The mean square error of the adaptive MMSE receiver with step-size value 

//=10'3 in a single-user DS-CDMA channel.

6.3.3.3 Perform ance Evaluation of the Adaptive MMSE Receiver in a 

Multiple-Access DS-CDMA Channel

To evaluate the performance of the adaptive MMSE receiver in different channel model 

scenarios in the DS-CDMA environment, the bit error rate parameter has been chosen as a 

measure in the simulation. The BER is a good parameter, which can evaluate the performance 

of the adaptive MMSE receiver in different channel models, to combat the effect of noise and 

co-channel interfering other users signal and multipath.

The simplest model of a DS-CDMA channel is a Gaussian single-user environment, where the 

conventional matched filter receiver is the optimum maximum-likelihood receiver. The 

adaptive MMSE receiver has been implemented in this environment by using a transversal 

structure with 31 tap weights and LMS adaptive algorithm has been employed to change the 

weight vector. Also, a short known training sequence, in the beginning of the real data 

transmission, has been employed to set the weight vector of the adaptive receiver to detect the 

desired user’s signal in the channel. In this case, the adaptive MMSE receiver had no 

information about the signature waveform of the desired user.
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The BER performance of the adaptive MMSE receiver in a single-user DS-CDMA Gaussian 

channel is shown in Figure 6. 13. By comparing the BER performance in Figure 6. 13 and 

Figure 6. 1. which has been achieved in the same conditions for the conventional matched filter 

receiver, it can be seen that these results are completely identical.
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Figure 6. 13: The BER performance of the adaptive MMSE receiver versus Eb/N0 in a 

single-user Gaussian DS-CDMA channel.

It means that the behaviour of the adaptive MMSE receiver in the single-user DS-CDMA 

channel is the same as the conventional matched filter receiver, which has the best performance 

in this environment. In this situation, the adaptive MMSE receiver via training process, learns to 

detect the desired user’s signal and after converging the mean square error to its minimum 

level, the weight vector of adaptive receiver contains the signature waveform of the desired 

user. One advantage of the adaptive detectors is that they can set their weight vector in such 

way to receive another user’s signal in the multi-user channel. In this case, by changing the 

training sequences the task performs and the adaptive algorithm set the weight vector to detect 

the new user’s data.

In the multipath environments, the adaptive MMSE receiver, such as the RAKE receiver, 

should collect the different propagated rays of the desired user’s signal in the channel to make a 

decision. In this case, the adaptive MMSE receiver via training process, learns the signature 

waveform o f  the desired user and the delay profile and attenuation coefficients of the multipath 

channel3.

3 To use the RAKE receiver, the characteristic o f  multipath channel should be known or estimated via 

sounding the channel.
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To evaluate the performance of the adaptive MMSE receiver in the multipath DS-CDMA 

channel, a static multipath channel with six rays has been implemented. The delay profile and 

attenuation coefficients have been set as the multipath channel specification for urban 

environment, which is shown in Table 6. 2. To compare the BER performance of the adaptive 

MMSE receiver, the RAKE receiver has been implemented in identical conditions. In the 

implementation of the RAKE receiver, it has been assumed that the delay profile and 

attenuation coefficients of the multipath channel are known. The adaptive MMSE receiver has 

been implemented by using a transversal structure with 31 tap weights and the LMS adaptive 

algorithm has been employed to set the weight vector. Also a short known training sequence, 

before beginning of real data transmission has been employed to set the weight vector of the 

receiver to detect the desired user’s signal in the multipath channel. However the RAKE 

receiver has all information about the delay profile and attenuation coefficients of the multipath 

channel, but the adaptive MMSE receiver is only trained in the beginning of real data 

transmission. In this case, the adaptive MMSE receiver has no information about the signature 

waveform of the desired user and the characteristics of the multipath channel.

The BER performance of the adaptive MMSE receiver and the RAKE receiver as a function of 

EfNo is shown in Figure 6. 14. This result has been achieved in a single-user DS-CDMA and 

six-ray static multipath channel.
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Figure 6. 14: The BER performance of the adaptive MMSE receiver and the RAKE 

receiver versus Eb/N0 in a single-user DS-CDMA and a six-ray COST207 static multipath

channel.
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It can be seen that the adaptive MMSE receiver successfully detects the transmitted data and 

completely combats the effect of static multipath channel. The result shows that the BER 

performance of this receiver is identical to the BER performance of the RAKE receiver, which 

has the best performance in this environment. It is noted that the RAKE receiver has knowledge 

about the signature waveform of the desired user and the delay profile and attenuation 

coefficients of multipath channel whereas the MMSE receiver requires to achieve this 

information by itself in training mode. The perfect behaviour of the MMSE receiver to detect 

the desired user’s signal in the multipath channel shows that this receiver can perform the 

maximum-likelihood criteria successfully in this environment.

As a DS-CDMA receiver, the MMSE receiver should combat the effect of other co-channel 

user interfering signals. In this way, for evaluating the BER performance of this receiver a 

multiple-access DS-CDMA channel has been simulated. The signature waveforms of all co

channel users have been chosen from a Gold code set with length 31 chips/bit. The 

asynchronous mode has been chosen for data transmission in the channel, where the delay of 

each user’s signal is a random variable with uniform distribution between zero and 31. The 

Ef/N0 of the desired user’s signal has been set at 6 dB whereas all the co-channel interfering 

users’ signals have an equal energy, which is 6 dB higher than the desired user’s signal energy. 

The adaptive MMSE receiver has been implemented by using a transversal structure with 31 tap 

weights and a NLMS adaptive algorithm has been employed to set the weight vector. Also, the 

preamble sequences have been employed to train the receiver before the real data transmission. 

In this case, the receiver could set its weight vector to detect the desired user’s signal in the 

multiple-access DS-CDMA channel.

To compare the BER performance of the adaptive MMSE receiver, a conventional matched 

filter receiver has been implemented in identical environment. To implement the conventional 

matched filter receiver, it has been assumed that the signature waveform of the desired user is 

known. Figure 6. 15 shows the BER performance of the adaptive MMSE receiver and the 

conventional matched filter receiver as a function of the number of co-channel user in the 

multiple-access DS-CDMA channel.

As can be seen, the performance of the adaptive MMSE receiver is substantially better than the 

performance of the conventional matched filter receiver. In this case, the BER performance of 

the conventional matched filter receiver is degraded by increasing the number of interfering 

users in the multiple-access DS-CDMA channel. On the other hand, the adaptive MMSE 

receiver sets its weight vector parameters via training to detect the desired user’s signal and 

reject the co-channel interference signals. In this situation, it is apparent that the co-channel
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interfering signals only increase the noise level in the channel. It is shown that the BER 

performance of the adaptive MMSE receiver is approximately constant by increasing the 

number of strong co-channel other users’ signals. In this case, the receiver has good resistance 

against the MAI in the ‘Near-Far’ multiple-access DS-CDMA channel.
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Figure 6. 15: The BER performance of the adaptive MMSE receiver and the conventional 

matched filter receiver versus the number of co-channel interfering user in a ‘Near-Far’ 

multiple-access DS-CDMA channel (the error bars show 95% confidence limits assuming

normal distribution).

To evaluate the performance of the adaptive MMSE receiver in a ‘Near-Far’ environment, a 

DS-CDMA multiple-access channel with 10 co-channel interfering users has been simulated. 

The signature waveforms for all users have been chosen from a Gold code set with a length of 

31 chips/bit. The asynchronous mode has been chosen for data transmission in the channel, 

where the delay value of each user’s signal is a random variable with uniform distribution 

between zero and 31. The energy of the desired user has been set at EJN q -  6 dB and a ‘Near- 

Far’ environment has been assumed, where Et /Eh(jexire<j) is varying in the channel. The adaptive 

MMSE receiver has been implemented by using a transversal structure with 31 tap weights and 

an NLMS adaptive algorithm has been employed to set the weight vector. Also preamble 

sequences for training the receiver has been used before starting to transmit the real data in the 

channel. In this case, the receiver could set its weight vector to detect the desired user’s signal 

in the multiple-access DS-CDMA channel. To compare the BER performance, the conventional 

matched filter receiver has been implemented in identical environment.
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Figure 6. IS shows the BER performance of two receivers as a function of E, /Eh(desireJ) in the 

DS-CDMA channel, which includes strong co-channel interference signals. As is predicted, the 

performance of the adaptive MMSE receiver is substantially better than the performance of the 

conventional matched filter receiver. In this case, the BER performance of the conventional 

matched filter receiver degrades by increasing the energy of co-channel interference signals in 

the DS-CDMA channel. On the other hand, the BER performance of the adaptive MMSE 

receiver is not very sensitive to the energy of co-channel interfering users’ signals and it is 

approximately constant when the energy of co-channel interfering user’s signals are varying in 

a wide range.
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Figure 6. 16: The BER performance of the adaptive MMSE receiver and the conventional 

matched filter receiver versus Ej/Eb(desired) in a ‘Near-Far’ multiple-access DS-CDMA

channel.

It is noted that the result has been obtained for a low amount of EfNo, where the adaptive 

MMSE receiver must set its weight vector to detect the weak desired user’s signal in the 

channel that includes strong co-channel interfering user’s signals and high level AWGN. If the 

level of the EfNo  is increased in the channel, the BER performance of the adaptive MMSE 

receiver will be improved in the ‘Near-Far’ DS-CDMA environment.
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6.3.3.4 Performance Evaluation of the Adaptive MMSE Receiver in a 

Static Multipath Channel

To evaluate the BER performance of the adaptive MMSE receiver in the multipath channel, a 

10-user multiple-access DS-CDMA and a six-ray static multipath channel have been 

implemented. The signature waveforms of all co-channel users have been chosen from a Gold 

code set with length 31 chips/bit. The asynchronous mode has been chosen for data 

transmission in the channel, where the delay of each user’s signal is a random variable with 

uniform distribution between zero and 31. The received signal’s energy per bit is identical for 

all users and in this case a power-controlled environment has been assumed. The adaptive 

MMSE receiver has been implemented by using a transversal structure with 31 tap weights and 

an NLMS adaptive algorithm has been employed to set the weight vector. Also a preamble 

sequence for training the receiver has been used before starting to transmit the real data in 

channel. In this case, the receiver could set its weight vector to detect the desired user’s signal 

in the multiple-access and multipath channel. To compare the BER performance, the RAKE 

receiver has been implemented in an identical environment. It has been assumed that the RAKE 

receiver has all information about delay profile and attenuation coefficients in the multipath 

channel.

Figure 6. 17 shows the BER performance of two receivers as a function of EfNo in the static 

multipath DS-CDMA channel, which includes co-channel interference signals.
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Figure 6. 17: The BER performance of the adaptive MMSE receiver and the RAKE 

receiver versus Eb/N0 in a power controlled 10-user multiple-access DS-CDMA and a six-

ray COST207 static multipath channel.
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As can be seen, the adaptive MMSE receiver successfully detects the transmitted data in the 

multi-user DS-CDMA channel and thus completely combats the effect of the static multipath. 

In this case, the adaptive receiver is successful in despreading the desired user’s signal, 

combating the effect of multipath channel and rejecting co-channel interfering users’ signals. 

The MAI in the channel causes degradation in the BER performance of the RAKE receiver and 

in this case, it does not function well as a receiver in a multi-user DS-CDMA environment.

In summary, the result of this section has shown that the adaptive MMSE receiver can be 

implemented in the multiple-access DS-CDMA environment to detect the desired user’s data 

and reject the MAI. It has been shown that the weight vector of this receiver in a single-user 

Gaussian channel, via the training process, converges to the signature waveform of the desired 

user. In this case, the BER performance of the adaptive MMSE receiver is found to be identical 

to the BER performance of the conventional matched filter receiver, which has the best 

performance. In a multipath single-user DS-CDMA channel, where the RAKE receiver has the 

best performance, the adaptive MMSE receiver has the potential to be implemented as the 

RAKE receiver. In this case, the BER performances of these receivers are found to be identical. 

The ‘Near-Far’ resistance of the adaptive MMSE receiver in the multiple-access DS-CDMA 

environment is the most important advantage of this receiver. It is shown that the adaptive 

MMSE receiver is able to detect the desired user’s signal between strong co-channel 

interference signals. In a multi-user DS-CDMA environment, where the desired user’s signal is 

propagated via different rays in the multipath channel, the adaptive MMSE receiver despreads 

the desired user’s data, combats the effect of multipath and rejects the co-channel interference 

from the other user signals.

6.3.3.5 Performance Evaluation of the Modified Adaptive MMSE Receiver 
in a Multipath-fading Mobile Channel

As considered in chapter three, the performance of the adaptive MMSE receiver degrades in the 

multipath-fading DS-CDMA channel, where the mobility of the receiver causes the adaptive 

algorithm to lose the phase lock of the desired signal. In the fading channels with slow Doppler 

frequency, the adaptive MMSE receiver can track the phase parameter of the desired user’s 

signal, but by increasing the Doppler frequency, the phase lock will be lost. In this case, the 

value of the mean square error in the adaptive algorithm is increased and the adaptive MMSE 

receiver loses its ability to track and detect the desired user’s data. In this situation, an equaliser 

is needed to remove the effect of time varying multipath-fading channel on the received signal 

before entering the MMSE filter.
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The novel modified adaptive MMSE receiver that has been introduced in chapter three, is able 

to function in the multipath-fading and multi-user DS-CDMA environment. In this case, an 

equaliser is maintained in front of the adaptive MMSE receiver to help it for combating the 

effect of multipath-fading channel. The equaliser uses the estimated parameters of the time 

varying channel to compensate the effect of multipath on the received signal. In this case, the 

output signal of the equaliser contains the desired user’s data and MAI, where the adaptive part 

of the receiver can detect the desired user’s signal and reject the MAI.

To verify the ability of the modified adaptive MMSE receiver to combat the effect of the 

multipath-fading channel and reject the MAI, the adaptive receiver of Figure 6. 18 has been 

implemented in the simulation.

Data

Received
signal-

Equaliser Adaptive MMSE 
Receiver

Digital
Matched

Filter

Channel Estimator 
and 

Alpha tracker

Figure 6.18: The structure of modified adaptive MMSE receiver.

By using the complex NLMS algorithm, the 31 complex tap weights of the adaptive receiver 

have been set during training process and real data sequence transmission. To prevent losing the 

phase lock on the desired user’s signal in the adaptive algorithm and increasing the BER in the 

receiver, the known midamble sequences have been sent during real data transmission. The 

spreading waveform sequence for all co-channel users have been chosen from a Gold code set 

of length 31 chips and DPSK modulation scheme has been used in the DS-CDMA channel. The 

asynchronous transmission mode has been assumed in the simulation and the relative clock 

offset, rk, for all of users have been chosen randomly from a uniform distribution. To compare 

the BER performance of the modified adaptive MMSE receiver, the RAKE receiver has been 

also simulated under identical conditions.
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The dynamic COST207 multipath-fading environment has been implemented in the simulation 

of channel4. The channel model consists of a tapped-delay-line with six taps, which are spaced 

according to the GSM channel impulse response model. It is assumed that the carrier frequency 

is 900 MHz and the chip rate of the signal is 3.1xl06 chips/sec and each delay space in the 

channel model is approximately 0.2 / isec. The complex value of output from each tap is 

multiplied by a time varying Rayleigh distributed coefficient that characterises the fading 

channel. It is then multiplied by a further gain, which represents the average multipath signal 

strength expected at that delay. The weighting factors are chosen from the COST207 urban 

impulse response model, given in Table 6. 2. The outputs of all taps are then added together 

using a complex summer. The fast fading parameters are produced using six independent 

complex additive white Gaussian noise generators. The mobility of the user is incorporated into 

the channel using Doppler filters, which filter the Rayleigh distributed noise representing the 

path loss. For example a 100 Hz Doppler frequency and a 900 MHz carrier frequency interprets 

a vehicle speed of 120 km/h.

Figure 6. 19 shows the BER performance of the modified adaptive MMSE receiver and the 

RAKE receiver as a function of E fN 0 in a single-user Rayleigh multipath-fading channel with 

80 Hz Doppler frequency.
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Figure 6. 19: The BER performance of the modified adaptive MMSE receiver and the 

RAKE receiver versus Eb/N0 in a six-ray COS207 Rayleigh multipath-fading single-user

DS-CDMA channel.

The details o f  the COST207 model o f  multipath-fading channel are explained in Appendix B.
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In this case, it is assumed that the delay profile and the attenuation coefficients of the dynamic 

multipath channel are known. As can be seen, there is no significant difference between the 

BER performances of the modified adaptive MMSE receiver and the RAKE receiver, which has 

the best performance in this environment.

Figure 6. 20 and Figure 6. 21, respectively, show the BER performance of the RAKE receiver 

and the modified adaptive MMSE receivers as a function of Et/N0 in the multipath-fading 

channel with 80 Hz Doppler frequency. It is assumed that the delay profile and the attenuation 

coefficients of the multipath channel are known. The DS-CDMA channel includes the co

channel interfering user signals, where a power-controlled condition is assumed. It can be seen 

that the modified adaptive MMSE receiver has an excellent performance for combating the 

effect of MAI in the multipath-fading channel.
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Figure 6. 20: The BER performance of the RAKE receiver versus Eb/No in a six-ray 

COST207 Rayleigh multipath-fading and multiple-access interference DS-CDMA

channel.
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Figure 6. 21: The BER performance of the modified adaptive MMSE receiver versus 

Eb/No in a six-ray COST207 Rayleigh multipath-fading and multiple-access interference 

DS-CDMA channel (the error bars show 95% confidence limits assuming normal

distribution).

In a realistic case, it is necessary to estimate the delay profile and attenuation coefficients of the 

time varying multipath channel and to employ the estimated parameters to equalise the effect of 

the multipath channel on the received signal. To estimate the channel’s parameters, the MRC 

technique [6- 2] has been used in the simulation. In this case, by using the complex conjugate of 

the estimated parameters of the channel’s parameters, the equaliser has been performed.

Figure 6. 22 shows the BER performance of the modified adaptive MMSE receiver versus 

Ef/No in a six-ray COST207 Rayleigh fading channel. In this case, the MRC technique has been 

employed to estimate the delay profile and attenuation coefficients of the multipath channel. To 

investigate the BER performance of adaptive system in various speeds of receiver in the DS- 

CDMA multipath channel, different Doppler frequencies have been considered in the 

simulation.
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Figure 6. 22: The BER performance of the adaptive modified MMSE receiver versus 

Eb/N0 in a six-ray COST207 Rayleigh multipath-fading single-user DS-CDMA channel.

It can be seen that the adaptive MMSE receiver has an acceptable BER performance in this 

situation. It is noted that in higher Ef/N0, the performance of the modified adaptive MMSE 

receiver is far better than the lower Eb/No. This is because, in higher EfNo, the error of 

estimating the multipath channel delay profile and attenuation coefficients, is small and the 

equaliser is more successful at removing the effect of the multipath channel on the received 

signal.

Figure 6. 23 shows the BER performance of the modified adaptive MMSE receiver as a 

function of EfNo  for different numbers of co-channel interfering users. The result has been 

achieved for a six-ray COST207 Rayleigh multipath-fading environment, where the MRC 

technique is employed to estimate the delay profile and attenuation coefficients of channel. It is 

observed that by increasing the number of co-channel interfering users, the noise level in the 

DS-CDMA channel increases and hence the BER performance of the adaptive receiver 

degrades. It is clear that by increasing the Eb/N0, the estimation of multipath channel parameters 

will be more accurate and in this case, the BER performance of the adaptive receiver is 

improved. In the other words, the BER performance of the modified adaptive MMSE receiver is 

far better in higher EfNo  and it is because of better estimating of the multipath-fading channel 

characterises.
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Figure 6. 23: The BER performance of the modified adaptive MMSE receiver versus 

Ei/No in a six-ray COST207 Rayleigh multipath-fading and multiple-access interference

DS-CDMA channel.

In summary, the modified adaptive MMSE receiver is a suitable receiver in the DS-CDMA 

multipath-fading channel. In a time varying multipath channel, where the adaptive part of the 

receiver may lose the phase lock on the desired user’s signal, the equaliser compensates the 

effect of time varying channel on the received signal. In this case, the signal at the output of 

equaliser includes the desired user’s signal plus MAI, where the adaptive part of the receiver 

can detect wanted signal and reject unwanted signal.

The BER performance of the modified adaptive MMSE receiver in the multipath-fading 

channel mostly depends on the quality of estimating the channel characteristics. To estimate the 

delay profile and attenuation coefficients of multipath-fading channel, the Maximal Ratio 

Combining (MRC) is employed, which is known as a good estimation technique in the DS- 

CDMA environment. The result shows that the modified adaptive MMSE is a suitable receiver 

for rejecting the MAI in the multipath-fading mobile channels.
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6.3.4 Performance Evaluation of the Adaptive MLP Neural Network 

Receiver

The adaptive MLP neural network receiver can be used as a single-user receiver for a DS- 

CDMA system. It is trained to detect the desired user’s signal, which is defined as a wanted 

pattern, and also to reject the co-channel other users’ signal as unwanted patterns in the 

multiple-access environment. As shown in chapter four, where the adaptive MLP neural 

network has been considered, it has the potential to be implemented as a DS-CDMA receiver in 

a multiple-access environment. On the other hand, it can be trained in a multipath environment 

to function as a RAKE receiver to detect the desired user’s signal, which has been received via 

different rays in a DS-CDMA channel. The adaptive nature of the MLP neural network receiver 

helps it to perform subtle boundaries between the wanted and unwanted signals in the multiple- 

access DS-CDMA environment and hence combats the effect of MAI in the multiple-access 

channel. In this section, the performance of the adaptive MLP neural network receiver is 

evaluated for different channel model scenarios via computer simulation. It is shown that this 

receiver has acceptable performance in these conditions and is a suitable receiver that can be 

employed as a single-user receiver in the DS-CDMA systems. The performance of the adaptive 

MLP neural network receiver in different DS-CDMA environments is considered in this 

section.

6.3.4.1 The Convergence Performance of the Adaptive MLP Neural 
Network

The value of sum square error (SSE) in applying back-propagation adaptive algorithm, is a 

parameter that determines the convergence of the interconnection weights of the MLP neural 

network to the desired values. The zero value for this parameter shows that the MLP neural 

network performs successfully the subtle boundaries between the wanted and unwanted signals. 

In the practical systems, because of noise and co-channel users’ signals, there is always some 

residual sum square errors.

As it has been shown in chapter four, the learning rate or step-size parameter in back- 

propagation algorithm is a parameter that determines the convergence rate of the adaptive 

algorithm o f an adaptive MLP neural network system. Figure 6. 24 shows the SSE, which have 

been achieved when simulating a multi-layers feedforward neural network.
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Figure 6. 24: The Sum Square Error (SSE) of a typical multi-layer perceptron neural

network during learning mode.

The simulated MLP neural network includes 31 nodes in the input layer, 15 nodes in the hidden 

layer and one node in the output layer of its structure. As can be seen, by allocating a small 

value for the step-size parameter, the system requires more iterations of the training sequence to 

achieve the minimum level of SSE. In this case, the value of the residual SSE is very small. On 

the other hand, by increasing the value of the step-size parameter, the speed of convergence is 

increased and after a few iterations of training sequence, the sum square error decreases to an 

acceptable value. In this case, the system may have larger amount of residual SSE. If the step- 

size parameter is chosen too large to speed up the rate of learning process in the adaptive 

algorithm, the network may become unstable.

6.3.4.2 The Number of Nodes in the Hidden Layer of a MLP Neural 

Network

To verify the ability of the adaptive MLP neural network structures as a single-user DS-CDMA 

receiver, a multi-layer neural network with three layers has been simulated. These layers are 

called the input, the hidden and the output layers respectively. The input layer includes 31 

nodes, which is equal to the number of chips in the signature waveform that are employed to 

spread the data in the spread spectrum DS-CDMA channel. The number of nodes in the output 

layer is one node, where the desired user’s data appears.
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To determine the number of nodes in the hidden layer5, which are sufficient for our application, 

a three-layer perceptron receiver in a 10-users DS-CDMA multiple-access environment has 

been simulated. The back-propagation algorithm has been employed to set the interconnection 

weights of the neural network during learning process. The spreading sequences for all users in 

the channel have been chosen from a Gold code set of length 31 chips/bit. Also BPSK 

modulation is used for all users’ data. The relative clock offset, r*, of all users are assumed to be 

zero to simulate the synchronous mode of operation. The energy per bit of the desired user’s 

signal, which has been set to obtain E fN o = 6 dB, is 6 dB less than the energy per bit o f other 

co-channel users’ signals that shows a ‘Near-Far’ environment.

Figure 6. 25 shows the BER performance of the adaptive MLP neural network receiver as a 

function of the number of nodes in the hidden layer.
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Figure 6. 25: The BER performance of the adaptive MLP neural network receiver versus 

the number of nodes in the hidden layer in a 10-user ‘Near-Far’ multiple-access DS-

CDMA channel.

5 As it is noted in chapter four, determining the number of nodes in the hidden layer of MLP neural 

network sufficient for a given task, is an open problem and depends on the nature of pattern classification 

tasks.
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As is shown, by using a few nodes in the hidden layer, the structure of the receiver is simple but 

its BER performance is not good. In this case, the receiver is unable to distinguish between the 

wanted and unwanted signals in the channel. By increasing the number of nodes in the hidden 

layer, the complexity of the neural network receiver increases and also the BER performance of 

the adaptive MLP neural network receiver is improved. This process is continued till 15 nodes 

in the hidden layer and after that the BER performance of the receiver remains constant for a 

small range of increasing the number of nodes in the hidden layer. Further increases in the 

number of nodes in the hidden layer, the BER performance of the receiver degrades. This result 

shows that increasing the number of nodes in the hidden layer does not always improve the 

BER performance of receiver.

According to the results of the simulation, the number of nodes in the hidden layer of the 

adaptive MLP neural network receiver has been chosen to be 15 nodes. In this case, the best and 

reliable performance with a low implementation complexity is achieved in the simulation of the 

receiver, which is also acceptable in this application.

6.3.4.3 Performance Evaluation of the Adaptive MLP Neural Network 

Receiver in a Multiple-Access DS-CDMA Channel

To evaluate the performance of the adaptive MLP neural network receiver as a single-user 

receiver in a multiple-access DS-CDMA environment, this receiver with 31 nodes in the input 

layer, 15 nodes in the hidden layer and one node in the output layer has been implemented. The 

back-propagation algorithm has been employed during learning mode with transmitting the 

known data. To compare the BER performance, the conventional matched filter receiver has 

been implemented under identical conditions.

The BER performance characteristics of the adaptive MLP neural network receiver and the 

conventional matched filter receiver in the multi-user DS-CDMA channel are shown in Figure 

6. 26. The channel includes 10 co-channel users, where the energy per bit of each interfering 

user’s signal is 6 dB more than the energy per bit of the desired user’s signal. This represents 

unequal power control or the ‘Near-Far’ environment in the DS-CDMA channel. It can be seen 

that the adaptive MLP neural network receiver outperforms the conventional matched filter 

receiver in the presence of strong multiple-access interfering user signals. In this situation, it 

has an acceptable performance for combating the effect of strong MAI.
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Figure 6. 26: The BER performance of the adaptive MLP neural network receiver and the 

conventional matched filter receiver versus Eb/N0 in a 10-user ‘Near-Far’ multiple-access

DS-CDMA channel.

To verify the ‘Near-Far’ resistance of the adaptive MLP neural network receiver, a multiple- 

access DS-CDMA environment with 10 co-channel users has been implemented. In this 

situation, the energy per bit of the desired user’s signal is set to obtain EJN q = 6 dB and the 

effect o f unequal received power for each co-channel interfering user, simulating the ‘Near-Far’ 

effect, is also considered. Figure 6. 27 shows the BER performance of two receivers as a 

function of E/Eh(iieXirej) in the multiple-access DS-CDMA channel. In this situation, the ability of 

the adaptive MLP neural network receiver to reject the effect of co-channel interfering signals 

under a wide range of changing bit energy is far better than the conventional matched filter 

receiver.

In Figure 6. 28, the effect of increasing the number of co-channel user on the BER performance 

of two receivers is shown for both the adaptive MLP neural network receiver and the 

conventional matched filter receiver. The conditions are identical in both cases and represent a 

multi-user interference channel that includes different number of co-channel interfering user 

with a 6 dB ‘Near-Far’ situation. It can be seen that the adaptive MLP neural network receiver 

outperforms the conventional matched filter receiver in rejecting the multiple access 

interference. The BER performance of the adaptive MLP neural network receiver, by increasing 

the number of co-channel users, is approximately constant whereas the BER performance of the 

conventional matched filter receiver degrades as the number of co-channel users increases.
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Figure 6. 27: The BER perform ance of the adaptive M LP neural netw ork receiver 

and the conventional m atched fd ter receiver versus E j / E b ( d e s i r e d )  in a 10-user 

multiple-access ‘N ear-F ar’ DS-CDMA channel.
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Figure 6. 28: The BER performance of the adaptive MLP neural network receiver and the 

conventional matched filter receiver versus the number of co-channel user in a ‘Near-Far’ 

multiple-access DS-CDMA channel (the error bars show 95% confidence limits assuming

normal distribution).
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In summary, the adaptive MLP neural network receiver has the potential to be used as a single- 

user DS-CDMA receiver in the multiple-access environment In this way, subtle boundaries can 

be performed, via the learning process, to separate the desired user’s signature waveform as the 

wanted and the co-channel interfering user’s signature waveforms as the unwanted signals. It 

has been shown that the adaptive MLP neural network receiver, as a single-use receiver, has 

excellent ‘Near-Far’ resistance in the multiple-access DS-CDMA channel.

6.3.4.4 Performance Evaluation of the Adaptive MLP Neural Network 

Receiver in a Static Multipath DS-CDMA Channel

To evaluate the performance of the adaptive MLP neural network receiver in the multiple- 

access DS-CDMA and multipath channel, a DS-CDMA multiple-access and a six-ray static 

multipath channel with ten co-channel interfering users has been implemented. The signature 

waveforms of all users have been chosen from a Gold code set with length 31 chips/bit. The 

energies of all co-channel user signals are identical and in this case a power-controlled 

environment has been assumed. The adaptive MLP neural network receiver has been 

implemented by using three-layer structure and a back-propagation algorithm has been 

employed to set the interconnection weights during training mode. In this case, the received 

signals via different rays in the multipath channel have been introduced as the wanted signals 

for the receiver. To compare the BER performance, the RAKE receiver has been implemented 

in identical environment.

Figure 6. 29 shows the sum squared error of the adaptive MLP neural network receiver in the 

training mode in a 10-user multiple-access and a 6-ray static multipath DS-CDMA channel. In 

the back-propagation training algorithm, which has been emploed, the step-size parameter, a , is 

equal to 0.1.

It is assumed that the adaptive MLP neural network receiver has information about the 

signature waveform of all co-channel users and the delay profile of multipath channel. It can be 

seen that in this case, the sum square error converges to its minimum level after approximately 

120 iterations.
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Figure 6. 29: Sum Square E rror (SSE) of the adaptive MLP neural network receiver in a 

10-user multiple-access DS-CDMA and a six-ray COST207 multipath channel.

Figure 6. 30 shows the BER performance of the adaptive MLP neural network receiver and the 

RAKE receiver, which have been achieved in a 10-user multiple-access DS-CDMA and a 6-ray 

multipath channel. The energy per bit of each interfering user is 6 dB more than the energy per 

bit of the desired user, which simulates the ‘Near-Far’ environment in transmission channel.
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Figure 6. 30: The BER performance of the adaptive MLP neural network receiver and the 

RAKE receiver versus Eb/No in a 10-user ‘Near-Far’ multiple-access DS-CDMA and a six-

ray COST207 multipath channel.
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It is shown that the BER performance of the adaptive MLP neural network receiver is far better 

that the BER performance of the RAKE receiver, in identical environment. In fact in this 

situation, the adaptive MLP neural network receiver performs three functions. The first, as a 

matched filter to despread the desired user signal. The second, as a RAKE receiver to collect the 

propagated energy of the desired signal, which have been propagated in different rays of the 

multipath channel. The third, as an interference-rejecting receiver to reject the co-channel 

interfering users in a ‘Near-Far’ environment.

6.3.4.5 Performance Evaluation of the Adaptive MLP Neural Network 

Receiver in a Multipath-Fading Channel

In this section, the performance of the adaptive MLP neural network receiver in multipath- 

fading channel with different Doppler frequencies is investigated. The fast fading parameters of 

the multipath channel have been produced using six independent complex additive white 

Gaussian noise generators. The mobility of the user incorporated into the channel through the 

Doppler frequency of the Rayleigh fading statistics. The Doppler effect is added by shaping the 

AWGN using a classical Doppler filter6. To investigate the performance of the adaptive MLP 

neural network receiver in the Rayleigh multipath-fading, a 6-ray time varying multipath 

channel with Rayleigh distribution for the amplitude and uniform distribution for the phase of 

each ray in different Doppler frequencies has been implemented. In this situation, a complex 

back-propagation algorithm [6- 3], [6- 4] is employed to set the interconnection weights and the 

threshold levels of neurones in the different layers of the receiver. The multiple-access DS- 

CDMA channel includes 10 co-channel interfering users and a power-controlled environment 

has been assumed.

Figure 6. 31 shows the BER performance of the adaptive MLP neural network receiver as a 

function of E//N0 in the Rayleigh multipath-fading with different Doppler frequencies. It is 

shown that in the static multipath channel, where the Doppler frequency is zero, the receiver has 

a good ability to function in this environment. By increasing the mobility of the receiver in the 

channel, the BER performance of the adaptive MLP neural network receiver is degraded. In this 

case, the receiver has acceptable BER performance in the low rate Doppler frequencies up to 20 

Hz. This value of Doppler frequency may be generated in the channel when the receiver is 

moving with speed of 30 km/h. The BER performance of the adaptive MLP neural network 

receiver is not enough good in the higher rate of Doppler frequencies. In these cases, this

6 It will be explain in Appendix B.
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receiver is not successful to detect the desired user’s signal and reject co-channel interfering 

user signals. This result can be interpreted as the adaptive MLP neural network receiver is 

suitable to be employed for vehicles with slow motion speed or walking people in the mobile 

DS-CDMA environments. The military environment is an example of these situations.
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Figure 6. 31: The BER performance of the adaptive MLP neural network receiver versus 

Eb/No in a six-ray COST207 Rayleigh multipath-fading channel with different Doppler 

frequencies and a 10-user multiple-access DS-CDMA environment.

In the two recent sections, the performance of the adaptive MLP neural network receiver, as a 

single-user receiver in the multipath DS-CDMA environment, is investigated via simulation. It 

has been shown that in the static multipath channel, the adaptive MLP neural network receiver 

through training process learns to collect different rays of propagated signal of the desired user 

in the channel. However the ability of this receiver for rejecting the co-channel interfering 

users’ signals in the Rayleigh multipath-fading channel decreases by increasing the Doppler 

frequency, but it has acceptable performance in the low rate time varying multipath-fading and 

multiple-access channels.
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6.3.5 Performance Comparison of the Adaptive MMSE and the Adaptive 

MLP Neural Network Receivers

It has been considered that the adaptive receivers are potentially good candidates to be 

implemented as a single-user receiver in the DS-CDMA environment. The adaptive MMSE and 

the adaptive MLP neural network are two receivers that can be employed for this application.

It has been shown that the performance of the adaptive MMSE receiver is acceptable in the 

different channel model scenarios. It can be employed as a conventional matched filter receiver 

to despread the received signal without any knowledge about the signature waveform of the 

desired user in the Gussian channel. It can be implemented as a RAKE receiver to collect 

different rays of propagated energy in the multipath channel without any information about the 

delay profile and attenuation coefficients of the channel. It has the ability to reject the strong co

channel interfering users’ signal in the ‘Near-Far’ multiple-access DS-CDMA environment. 

The modified adaptive MMSE receiver is able to function as a single-user receiver in the 

Rayleigh multipath-fading channel.

On the other hand, the adaptive MLP neural network receiver has acceptable performance as a 

single-user receiver in the DS-CDMA environment. It can be employed to despread the desired 

user’s signal and reject the MAI in the multiple-access DS-CDMA channel. It is also can collect 

the different rays of the propagated energy in the multipath channel. The performance of this 

receiver is acceptable in the slow rate of multipath-fading channel.

To compare the performance of the adaptive MMSE and the adaptive MLP receivers in 

different channel model scenarios, a DS-CDMA multiple-access channel with ten co-channel 

interfering users has been implemented. The signature waveforms of all users have been chosen 

from a Gold code set with length 31 chips/bit. Also BPSK modulation is used for all users’ data. 

The relative clock offset, rk, of all users are assumed to be zero to simulate the synchronous 

mode of operation. The energy per bit of each co-channel interfering user signal is 6 dB higher 

than the energy per bit of the desired user’s signal. In this case, a ‘Near-Far’ DS-CDMA 

environment has been assumed.

The adaptive MMSE receiver has been implemented by using a transversal structure with 31 tap 

weights and a NLMS adaptive algorithm has been employed to set the weight vector. Also 

preamble sequence for training the receiver has been used before transmitting the real data. In 

this case, the receiver could set its weight vector to detect the desired user’s signal in the
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multiple-access channel. The adaptive MLP neural network receiver has been implemented by 

using three-layer MLP structure and a back-propagation algorithm has been employed during 

the training mode to set the interconnection weights.

Figure 6. 32 shows the BER performances of two receivers as a function of E//N0 in a DS- 

CDMA channel, which includes strong co-channel interference signals. As it can be seen, the 

adaptive MMSE and the adaptive MLP neural network receivers successfully detect the 

transmitted data and reject MAI in the ‘Near-Far’ multi-user DS-CDMA channel. In this case, 

the BER performances of two receivers are found to be approximately identical.
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Figure 6. 32: The BER performance of the adaptive MMSE receiver and the adaptive 

MLP neural network receiver versus E|,/Nq in a 10-user ‘Near-Far’ DS-CDMA channel.

Figure 6. 33 shows the BER performance of two receivers as a function of /Eh((iesireil) in a 

‘Near-Far’ multiple-access DS-CDMA channel. In this case, the Eh /N0 o f the desired user’s 

signal has been set at 6 dB whereas all co-channel interfering users’ signals have an equal 

energy, Eh in the channel. As it can be seen, the adaptive MMSE and the adaptive MLP neural 

network receivers have acceptable ‘Near-Far’ resistance in a wide range varying of interfering 

signals’ energy. The BER performance of the adaptive MLP receiver in stronger MAI is better 

than the BER performance of the adaptive MMSE receiver and this is because of using non

linear elements in the structure of this receiver. The non-linear elements in the structure of the 

adaptive MLP neural network enable the receiver to distinguish between the wanted and 

unwanted signals. On the other hand, by increasing the energy of interfering signals in the DS-
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CDMA channel, the probability of losing the phase lock on the weak desired user’s signal in 

adaptive MMSE receiver, increases.
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Figure 6. 33: The BER performance of the adaptive MMSE receiver and the adaptive 

MLP neural network receiver versus Ej/Eb(desired) in a 10-user ‘Near-Far’ DS-CDMA

channel.

Figure 6. 34 shows the BER performance of the adaptive MMSE and the adaptive MLP neural 

network receivers as a function of number of co-channel user in a ‘Near-Far’ multiple-access 

DS-CDMA channel. In this case, the Eh /N0 of the desired user’s signal has been set at 6 dB 

whereas the energy per bit of each co-channel interfering user signal is 6 dB higher than the 

energy per bit of the desired user’s signal. In this case, a ‘Near-Far’ DS-CDMA environment 

has been assumed. As it can be seen, the adaptive MMSE and the adaptive MLP neural network 

receivers have acceptable performance in this ‘Near-Far’ DS-CDMA environment and the BER 

performance of two receivers are found to be approximately identical. The BER performance of 

the adaptive MLP neural network receiver is slightly better than the BER performance of the 

adaptive MMSE receiver. This is because, by increasing the number of strong co-channel 

interfering signals in the DS-CDMA channel, the probability of losing the phase lock on the 

weak desired user’s signal in the adaptive MMSE receiver, increases.
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Figure 6. 34: The BER performance of the adaptive MMSE receiver and the adaptive 

MLP neural network receiver versus the number of co-channel user in a ‘Near-Far’ 

multiple-access DS-CDMA environment (both sets of error bars show 95% confidence

limits assuming normal distribution).

The BER performance of the adaptive MMSE and the adaptive MLP neural network receivers 

as a function of E fN () in a 10-user multiple-access DS-CDMA and a 6-ray static multipath 

channel is shown in Figure 6. 35. The signature waveforms of all users have been chosen from a 

Gold code set with length 31 chips/bit. The energies of all co-channel user signals are identical 

and in this case a power-controlled environment has been assumed.

The adaptive MLP neural network receiver has been implemented by using a three-layer 

structure and a back-propagation algorithm has been used during the training mode to set the 

interconnection weights. In this case, different versions of the received signal via different rays 

in the multipath channel have been introduced as the wanted signals to the receiver. It is 

assumed that the adaptive MLP neural network receiver has information about the signature 

waveform of all co-channel users and the delay profile of the multipath channel during training 

mode. The adaptive MMSE receiver has been implemented by using a transversal structure with 

31 tap weights and a NLMS adaptive algorithm has been employed to set the weight vector. 

Also preamble sequence for training the receiver has been used before transmitting the real 

data. In this case, the receiver could set its weight vector to detect the desired user’s signal in 

the multiple-access and multipath channel.
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Figure 6. 35: The BER performance of the adaptive MMSE receiver and the adaptive 

MLP neural network receiver versus Eb/N0 in a 10-user multiple-access DS-CDMA and 6-

ray COST207 static multipath channel.

As can be seen, the BER performance of the adaptive MMSE and the adaptive MLP neural 

network receivers in the multiple-access DS-CDMA and the static multipath environment are 

approximately identical. They successfully detect the transmitted data and reject the MAI and 

combat the effect o f multipath in the DS-CDMA channel. It is shown that the BER performance 

of the adaptive MMSE receiver in the higher Ei/N0 is slightly better than the BER performance 

of the adaptive MLP neural network receiver. This is because, in the higher EfNo, the 

probability of losing the phase lock on the desired user’s signal decreases. In this situation, the 

ability of the adaptive MMSE receiver to collect different rays of propagated energy of the 

desired user’s signal in the multipath channel, increases and the performance of the receiver is 

improved.

It should be noted that the adaptive MMSE receiver is able to function in a multiple-access DS- 

CDMA and multipath environment without any additional information about the signature 

waveforms of other co-channel users and the delay profile of the multipath channel whereas the 

adaptive MLP neural network receiver requires this information to distinguish between the 

wanted pattern and unwanted patterns. On the other hand, in an asynchronous mode of signal 

transmission, the adaptive MLP neural network requires to be trained with all delayed versions 

of the different signature waveforms of all users in the channel as the wanted and unwanted 

patterns. It is clear in this case, the training process will be very long and because o f increasing
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the number unwanted signals in the channel, the performance of receiver is degraded. The 

performance of the adaptive MMSE receiver in an asynchronous multiple-access DS-CDMA 

channel is as well as the synchronous mode of signal transmission.

6.4 Performance Evaluation of DS-CDMA Receivers in the 

Uplink Channel

For the uplink DS-CDMA channel, the receiver is a base-station, which is located in the centre 

of a communication cell and receives signal from different handsets in the cell. In this situation, 

the main task of the receiver is detecting the signal of all co-channel users, which are 

transmitting their signals simultaneously in the same band of frequency. In this case, a multi

user strategy should be employed to perform the receiver. The multi-user receiver, by utilising 

additional information such as the signature waveform of all active users in the cell, will be able 

to detect the transmitted data of co-channel users.

In this section, the performance of several multi-user receivers such as the maximum-likelihood 

receiver, the decorrelating receiver, the adaptive MLP neural network receiver and the recurrent 

neural network receiver will be evaluated in the different channel model scenarios in the 

multiple-access DS-CDMA channel.

6.4.1 Performance Evaluation of the Optimum Maximum-likelihood 

Receiver

To evaluate the performance of the maximum-likelihood receiver, which has the best 

performance as a multi-user receiver in the multiple-access DS-CDMA environment, a multi

user DS-CDMA channel with ‘Near-Far’ effect is simulated. This channel includes five co

channel interfering users, where all users are transmitting their data in a synchronous mode. The 

signature waveforms of all users have been chosen arbitrary with the length of 31 chips/bit. To 

simulate a ‘Near-Far’ environment in the DS-CDMA channel, the energy per bit of each co

channel user’s signal is 5 dB higher than the energy per bit of the desired user’s signal. The 

maximum-likelihood receiver has been performed by using a bank of matched filters followed 

by a processor, which calculates the correlation metrics for all possible choices of the bits in the 

information sequence of all co-channel users and select the sequence that gives the largest 

correlation metrics.

170



Performance Evaluation o f DS-CDMA Receivers, Chapter Six 111 BATH

To observe the huge difference between the performance of the maximum-likelihood receiver 

and the conventional matched filter receiver in the DS-CDMA multiple-access environment, it 

is useful to compare the performance of two receivers. As it is known, these receivers have the 

marginal BER performance in this environment, where the maximum-likelihood receiver has 

the best performance and the conventional matched filter receiver has the poorest performance 

in the multiple-access DS-CDMA environment. In this way, the conventional matched filter 

receiver has been implemented in the same environment and under identical conditions.

Figure 6. 36 shows the BER performance of the maximum-likelihood receiver and the 

conventional matched filter receiver as a tunction of EfNo  in a 5-user multiple-access DS- 

CDMA channel. The energy per bit of each interfering user is 5 dB more than the energy per bit 

of the desired user, which simulates the ‘Near-Far’ effect in the transmission channel.
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Figure 6. 36: The BER performance of the maximum-likelihood receiver and the 

conventional matched filter receiver versus Eb/N0 in a 5-user ‘Near-Far’ multiple-access

DS-CDMA environment.

Figure 6. 37 shows the BER performance of two receivers as a function of EJEh(jesireil) in a 5- 

users multiple-access DS-CDMA channel. The energy per bit o f the desired user’s signal has 

been set to obtain Eh(jesired) /No = 5 dB.

As can be seen, there is a significant difference between the BER performance of the 

maximum-likelihood receiver and the conventional matched filter receiver in the identical
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power of co-channel interfering users and by increasing the power of interfering users, a huge 

degradation occurs in the BER performance of this receiver. On the other hand, the performance 

of the maximum-likelihood receiver is not sensitive to the ‘Near-Far’ problem and the BER 

performance of this receiver remains approximately constant by changing the energy per bit of 

the MAI in the multiple-access DS-CDMA channel.
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Figure 6. 37: The BER performance of the maximum-likelihood receiver and the 

conventional matched Fdter receiver as a function of E/E^desircti) in a 5-user multiple DS- 

CDMA environment (the error bars show 95% confidence limits assuming normal

distribution).

As has been noted in chapter two, in the maximum-likelihood receiver, the notable performance 

gains over other types of receivers are obtained because of accessing all additional information 

including the signature waveform of all co-channel users, the received signal’s amplitudes, and 

the timing of all co-channel users.

6.4.2 Performance Evaluation o f the Decorrelating Receiver

To evaluate the performance of the decorrelating receiver in the multiple-access DS-CDMA 

environment, a multi-user channel with ‘Near-Far’ effect is simulated. This channel contains six 

interfering users, where the energy per bit of each co-channel user is 6 dB higher than the 

energy per bit of the desired user. To compare the performance of this receiver, the
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conventional matched filter receiver and the maximum-likelihood receiver are also simulated in 

the same environment and under identical conditions. As it is known, these receivers have the 

marginal BER performance in this environment, where the maximum-likelihood receiver has 

the best performance and the conventional matched filter receiver has the poorest performance 

in the multiple-access DS-CDMA environment.

Figure 6. 38 and Figure 6. 39 show the BER performance of three receivers in two different 

channel model scenarios. Figure 6. 38 shows the BER performance of the decorrelating 

receiver, the maximum-likelihood receiver and the conventional matched filter receiver as a 

function of EfNo  in a 6-user multiple-access DS-CDMA channel. In this case, the energy per 

bit o f the received signal is the same for all users in the channel, which shows a power- 

controlled environment. As it could be predicted, the BER performance of the decorrelating 

receiver is better than the BER performance of the conventional matched filter receiver and 

poorer than the BER performance of the maximum-likelihood receiver, which is the optimum 

receiver in this case.
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Figure 6. 38: The BER performance of the decorrelating receiver, the maximum- 

likelihood receiver, and the conventional matched fdter receiver versus Eb/No in a 6-user

multiple-access DS-CDMA channel.

Figure 6. 39 shows the capabilities of three receivers in handling with imperfect power control 

of the various users due to the ‘Near-Far’ effect in the CDMA environment. In this case, the 

Eb(doiired/No of the desired user’s signal is set at 6 dB whereas all the co-channel other users 

have an equal energy per bit, £,. As it can be seen, the BER performance of the decorrelating
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receiver is located between the BER performances of two other receivers. Figure 6. 39 also 

shows an important feature of the decorrelating receiver. It shows that the BER performance of 

the decorrelating receiver, such as the maximum-likelihood receiver, is independent of the 

energy per bit of the co-channel interfering users and it means that the decorrelating receiver is 

a ‘Near-Far’ resistance receiver.
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Figure 6. 39: The BER performance of the decorrelating receiver, the maximum- 

likelihood receiver, and the conventional matched fdter receiver versus E j / E b(desirCd) in a 6- 

user ‘Near-Far’ multiple-access DS-CDMA environment.

As can be seen the BER performance of this receiver, such as the maximum-likelihood receiver, 

does not change by increasing the energy per bit of the co-channel interfering user signals. It is 

because, the decorrelating receiver completely eliminates the effect of co-channel interfering 

signals or MAI on the desired user signal in the multi-user DS-CDMA environments.

The achieved results in this section show that the decorrelating receiver is a multi-user receiver 

with a good ‘Near-Far’ resistance in the DS-CDMA environment. The BER performance of this 

receiver is between the BER performance of the maximum-likelihood receiver and the BER 

performance of the conventional matched filter receiver. In the absence of information about the 

amplitudes of the received signals, the decorrelating receiver is the solution of applying the 

maximum-likelihood criterion in the DS-CDMA channel.
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6.4.3 Performance Evaluation of the Multi-User Adaptive MLP Neural 

Network Receiver

In order to use the adaptive MLP neural network receiver as a multi-user receiver in the 

multiple-access DS-CDMA environment, it is needed to change the front-end structure of this 

receiver. In this way, a bank of matched filters should be used in the front end of the MLP 

neural network structure. The output signals of the matched filters in the bank are inserted into 

the input layer of MLP neural network. The number of nodes, in the input and the output layers, 

are equal to the number of co-channel users in the multiple-access DS-CDMA channel.

To verify the performance of the adaptive multi-user MLP neural network in a multiple-access 

DS-CDMA environment, a MLP neural network structure with 2 nodes in the input layer, 2 

nodes in the hidden layer and 2 nodes in the output layer has been implemented in a 2-user 

channel. The known sequences have been employed to train the MLP neural network in the 

beginning of data transmission and interconnection weights and threshold values are set by 

using the back-propagation algorithm during learning mode. The spreading waveform 

sequences for two users have been chosen arbitrary with length 31 chips/bit and it has been 

assumed that the receiver knows these signature waveforms to despread the received signals in 

the bank of matched filter. The energy per bit of interfering user’s signal is 6 dB more than the 

energy per bit of the desired user’s signal that represents unequal power control or ‘Near-Far’ 

effect. To compare the BER performance, a conventional matched filter receiver has also been 

simulated in the same environment and under identical conditions.

The BER performance of the conventional matched filter receiver and the adaptive multi-user 

MLP neural network receiver as a function of EfNg in a 2-user ‘Near-Far’ multiple-access DS- 

CDMA channel is shown in Figure 6. 40. It can be seen that the adaptive multi-user MLP neural 

network receiver outperforms the conventional matched filter receiver in the presence of strong 

multiple-access interfering signal. In this situation, it has an acceptable performance for 

combating the effect of strong MAI in the DS-CDMA channel.
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Figure 6. 40: The BER performance of the adaptive multi-user MLP neural network 

receiver and the conventional matched fdter receiver versus Eb/N0 in a 2-user ‘Near-Far’

multiple-access DS-CDMA channel.

6.4.4 Performance Evaluation o f the Recurrent Neural Network Receiver

To verify the performance of the recurrent neural network receiver for detecting the DS-CDMA 

signal and combating the effect of co-channel other user interference in the multi-user 

environment; the optimum maximum-likelihood receiver, the recurrent neural network receiver, 

the conventional match filter receiver and the decorrelating receiver have been simulated. The 

spreading waveform sequences for all users have been chosen arbitrarily with length of 31 chips 

and the BPSK modulation is employed for all users in the DS-CDMA environment.

The recurrent neural network receiver uses the output signals of the bank of matched filters as 

the external input signals to the neural network. The cross-correlation of the user’s signature 

waveform and the amplitude of the received signals are used as interconnection weight in the 

structure of this receiver. The receiver’s parameters have been set as Ij=2Yj, Xj=Ajbj, N=K, and 

wp = -2hji, where /, is the external input signal to the j h neurons, xt is the output signal of 

activation function in neuron j ,  N  is the number of neurones in the network and w;/ is the 

connection weight between thej h and the ilh neurons. The self-connection factor, wkk, is selected 

to be zero. It has been shown that under this assumption, the state of the system will always 

converge to a state, which has the global minimum energy [6- 5].
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The BER performance of the conventional matched filter receiver, the decorrelating receiver 

and the neural network receiver as a function of EfNo are shown in Figure 6. 41. These results 

have been achieved in a 6-user DS-CDMA multiple-access channel. In this case, the energy per 

bit o f all received signals at the receiver is assumed to be identical for all co-channel users. This 

case may be interpreted as a power-controlled environment. It can be seen that the recurrent 

neural network receiver outperforms the conventional matched filter and the decorrelating 

receivers in rejecting the co-channel MAI signals.
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.Conventional Matched Filter 
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Figure 6. 41: The BER performance of the recurrent neural network receiver, the 

decorrelating receiver and the conventional matched filter receiver versus Eb/N0 in a 6-

user DS-CDMA multiple-access channel.

Figure 6. 42 shows the abilities of these receivers in handling with imperfect power control of 

the various co-channel users due to the ‘Near-Far’ effect in the CDMA environment. In this 

case, the Eh /N(> of the desired user’s signal has been set at 6 dB whereas all o f the co-channel 

other users have an equal value of the energy per bit, E,. As it can be seen, the BER 

performance of the recurrent neural network receiver is substantially better than both the 

conventional matched filter receiver and the decorrelating receiver.

As has been shown in chapter three, the optimum maximum-likelihood receiver computes the 

correlation metrics C( YK , bK ) for different combination of users’ transmitted bits and chooses 

{bk(n), l < k  < K  } that maximise correlation metrics. It is clear that in this situation, the 

complexity grows exponentially by increasing the number of co-channel users. The number of 

addition and multiplication operation after bank of matched filters that should be done to

177



Performance Evaluation o f DS-CDMA Receivers, Chapter Six________________

implement the optimum maximum-likelihood receiver are 2k(K+2k)  additions and 2K 

[4(K/2+2k)J  multiplications respectively, where K  is the number of co-channel user.
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1.00E-03 L------------------------------------------------------------------------
0 2 4 6 8 10 12 14

Ei/Eb(desired) in dB

Figure 6. 42: The BER performance of the recurrent neural network receiver, the 

conventional matched Filter receiver and the decorrelating receiver versus Ei/Eb(deSired) in a 

6-user ‘Near-Far’ multiple-access DS-CDMA channel.

In the recurrent neural network receiver, the number of addition and multiplication operation 

after bank of matched filters, which is required to implement the receiver, are lower than K2 

adds and K3 multiplies where K  is the number of co-channel user. As it can be seen, in this 

system by increasing the number of co-channel user, the implementation complexity grows far 

slower than the optimum maximum-likelihood receiver.

To compare the performance of the maximum-likelihood receiver and the recurrent neural 

network receiver in a ‘Near-Far’ multiple-access DS-CDMA environment, the BER 

performance of these receivers have been obtained in different channel model scenarios. Table 

6. 3 shows the BER performance of these receivers as a function of Eh(desired/ N 0 in the multiple- 

access DS-CDMA environment, where six co-channel users share the channel. In this case, the 

‘Near-Far’ environment is simulated by allowing each of the co-channel user to transmit signal 

at a energy per bit that is 6 dB higher than the energy per bit of the desired user’s signal, i.e. 

Ei/Eh(jcxiredj=6 dB. It can be seen that in this situation, the BER performance of the recurrent 

neural network receiver is the same as the BER performance of the optimum maximum- 

likelihood receiver.
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Eb/No in dB
Optimum

Maximum-
Likelihood
R eceiver

Recurrent
Neural

Network
R eceiver

-4 0.18640 0.18696

-2 0.13002 0.13028

0 0.07715 0.07723

2 0.03664 0.03669

4 0.01178 0.01179

6 0.00231 0.00231

8 0.00006 0.00006

Table 6. 3: The BER performance o f the maximum-likelihood receiver and the recurrent 

neural network receiver versus Eb/N0 in a 6-user ‘Near-Far’ multiple-access DS-CDMA

channel.

Table 6. 4 shows the BER performance of these receivers as a function of E/Enured) in a 6-user 

DS-CDMA environment, where Eh(desired/No= 6 dB for the desired user’s signal. The result 

shows that the BER performance of the recurrent neural network receiver is found to be 

identical to the BER performance of the optimum maximum-likelihood receiver in the ‘Near- 

Far’ multiple-access DS-CDMA environment.

Ej/Eb(desired)
in dB

Optimum
Maximum-
Likelihood
R eceiver

R ecurrent
Neural

Network
R eceiver

2 0.00231 0.00227

4 0.00231 0.00233

6 0.00231 0.00231

8 0.00231 0.00231

10 0.00231 0.00231

12 0.00231 0.00231

14 0.00231 0.00231

Table 6. 4: The BER performance of the optimum maximum-likelihood receiver and the 

recurrent neural network receiver versus Ej/Eb(desired) in a 6-user ‘Near-Far’ multiple-

access DS-CDMA environment.
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Table 6. 5 shows the BER performance of these receivers in a ‘Near-Far’ multiple-access DS- 

CDMA environment as a function of the number of co-channel user. In this situation, the BER 

performance of the recurrent neural network receiver is the same as the BER performance of the 

optimum maximum-likelihood receiver.

Number of 
Co-Channel 

Users

Optimum
Maximum-
Likelihood
Receiver

Recurrent
Neural

Network
Receiver

2 0.00231 0.00231
4 0.00231 0.00231
6 0.00231 0.00231
8 0.00231 0.00231
10 0.00231 0.00231

Table 6. 5: The BER performance o f the optimum maximum-likelihood receiver and the 

recurrent neural network receiver versus the number of co-channel users in a ‘Near-Far’

multiple-access DS-CDMA channel.

In the receivers, which are implemented by using fixed optimised parameters in their structure 

such as the optimum maximum-likelihood receiver and the recurrent neural network receiver, 

the performance may be affected by changing the optimised value of parameters. To compare 

the sensitivity of the recurrent neural network receiver to this effect, a noisy term has been 

added to the each element of the correlation matrix. In this way, the added noise was a Gaussian 

noise with a mean value of zero and a variance value of one and a coefficient controlled the 

energy of the added noise. Table 6. 6 shows the BER performance of the recurrent neural 

network and the optimum maximum-likelihood receivers in a 2-user multiple-access DS- 

CDMA environment with Eb(d(,sired/No=6 dB for the desired user and E, /Eb(desired) =6 dB that 

shows the ‘Near-Far’ effect in the channel. It can be seen that by increasing the power of added 

noise to the elements of the correlation matrix, the BER performance of two receivers degrade 

but the degradation are found to be identical in the two cases.
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Added Noise 
Coefficient

Optimum
Maximum-
Likelihood
Receiver

Recurrent
Neural

Network
Receiver

0 0.0022 0.0022

0.001 0.0022 0.0022

0.005 0.0022 0.0022

0.01 0.0023 0.0023

0.05 0.0022 0.0022

0.1 0.0022 0.0022

0.5 0.0114 0.0114

1 0.0734 0.0734

T able 6. 6: The B E R  perform ance o f the optim um  m axim um -likelihood receiver  

and the recurrent neural netw ork receiver in a 2-user ‘N ear-F ar’ m ultiple-access  

D S-C D M A  environm ent w ith m ism atched param eters.

The implementation complexity7 of two receivers versus different number of co-channel user is 

shown in Table 6. 7. As it can be seen, by increasing the number of co-channel user in the DS- 

CDMA channel, the difference between the implementation complexity of the optimum 

maximum-likelihood receiver and the recurrent neural network receiver increases. For example, 

in a 6-user multiple-access channel model scenario, the optimum maximum-likelihood receiver 

needs 4480 addition and 17152 multiplication to be implemented, where the recurrent neural 

network receiver requires lower than 36 addition and 216 multiplication.

The investigation of the performance of the recurrent neural network receiver as a multi-user 

receiver in the multiple-access DS-CDMA environment shows that this receiver is extremely 

suitable for combating the effect of co-channel interference and its performance is found to be 

identical to the maximum-likelihood receiver. In addition the implementation complexity of the 

recurrent neural network receiver, especially in the large number of co-channel users, is 

considerably lower than the implementation complexity of the maximum-likelihood receiver. 

Also the performance of the recurrent neural network receiver in an environment with changing 

optimised parameters is found to be identical to the maximum-likelihood receiver.

7 The implementation complexity of the recurrent neural network receiver in Table 6. 7 shows the higher 

level of complexity, which is needed for implementing this receiver.
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Number of 
Co-Channel 

Users

Optimum
Maximum-
Likelihood
Receiver

Recurrent
Neural

Network
Receiver

2 24X+80Y 4X+8Y

4 320X+

1152Y

16X+64Y

6 4480X+ 36X+

17152Y 216Y

8 67584X+ 64X+

266240Y 512Y

Table 6. 7: Comparison of the implementing complexity o f the optimum maximum- 

likelihood receiver and the recurrent neural network receiver versus the number of co

channel user in multi-user DS-CDMA environment (X= number of additions, Y= number

of multiplications).

The good performance and low implementation complexity of the recurrent neural network 

receiver make it attractive for the next generation of wireless mobile system.

6.5 Summary

In this chapter, the performances of several different DS-CDMA receivers in the spread 

spectrum communication system have been evaluated by using the Monte-Carlo simulation 

technique. The simulations are based on a 31 chip spreading sequences which is much shorter 

than that used in practical systems. It is possible that the performance advantages of the receiver 

architectures illustrated in this thesis are therefore optimistic. For the downlink channel, where 

the strategy is to use a single-user receiver to detect the desired user’s signal, the conventional 

matched filter receiver, the RAKE receiver, the adaptive MMSE receiver and the adaptive MLP 

neural network receiver have been considered.

It is shown that the conventional matched filter receiver that is the simplest DS-CDMA receiver 

and has the best performance in the single-user Gaussian channel, is unable to function in a 

‘Near-Far’ multiple-access environment. It has been shown that the performance of this receiver 

is very sensitive to the amount of MAI, which is produced by the cross-correlation value of 

signature waveform pairs and is increased by the ‘Near-Far’ effect in the channel. In this case,
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by increasing the power of MAI, the BER performance of this receiver degrades. It is clear that 

the conventional matched filter receiver is not suitable to be used as a practical single-user 

receiver in the multiple-access DS-CDMA environment. It has been shown that the RAKE 

receiver, which is the best receiver for collecting different rays of propagated energy of the 

transmitted signal in a single-user multipath DS-CDMA channel, loses its ability to function in 

the multiple-access environment. It has been shown that the performance of this receiver, 

degrades because of MAI in the multiple-access environment and it is not able to combat the 

effect of MAI in the channel.

It has been considered that the adaptive MMSE receiver, as a single-user receiver in the DS- 

CDMA system, can be employed to detect the desired user’s signal in a multiple-access 

environment. The result showed that it has the capability to perform a conventional matched 

filter receiver in a single-user Gaussian channel, where the conventional matched filter receiver 

has the best performance. In the multipath single-user DS-CDMA channel, where the RAKE 

receiver has the best performance, the performance of the adaptive MMSE receiver is found to 

be identical to the RAKE receiver. The ‘Near-Far’ resistance of the adaptive MMSE receiver in 

the multiple-access DS-CDMA environment is the most important advantage of this receiver. 

The achieved results have shown that the adaptive MMSE receiver is able to detect the desired 

user’s signal between strong co-channel interference signals. In the multi-user DS-CDMA 

environment, where the desired user’s signal is propagated via different rays in the multipath 

channel, the adaptive MMSE receiver despreads the desired user’s data, combats the effect of 

multipath and rejects the co-channel other user signals. In order to function in the multipath- 

fading channel, the adaptive MMSE receiver has been modified. It has been shown that the 

BER performance of the modified adaptive MMSE receiver in the multipath-fading channel 

mostly depends on the quality of estimating the channel characteristics. The Maximal Ratio 

Combining (MRC) technique, which is known as a good estimation technique in the DS- 

CDMA environment, has been employed to estimate the delay profile and attenuation 

coefficients of the multipath-fading channel. The result is shown that the modified adaptive 

MMSE is a suitable receiver for rejecting the MAI in the multipath-fading mobile channels.

The adaptive MLP neural network receiver has the potential to be used as a single-user DS- 

CDMA receiver in the multiple-access environment. In this way, subtle boundaries can be 

performed, via a learning process, to separate the desired user’s signature waveform as the 

wanted signal and co-channel interfering user’s signature waveforms as the unwanted signals. It 

has been shown that the adaptive MLP neural network receiver, as a single-use receiver, has 

excellent ‘Near-Far’ resistance in the multiple-access DS-CDMA channel. The performance of 

the adaptive MLP neural network receiver has been investigated in the multipath DS-CDMA
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channels. It has been shown that in the static multipath channel, the adaptive MLP neural 

network receiver, through the training process, learns to collect different rays of the propagated 

signal of the desired user in the channel. However the ability of this receiver for rejecting the 

co-channel interfering users’ signals in the Rayleigh multipath-fading decreases by increasing 

the mobility of the receiver that interprets as the increasing of the Doppler frequency in the 

channel. But it has an acceptable performance in the low rate time varying multipath-fading and 

the multiple-access channels.

For the uplink channel, the strategy is to use a multi-user receiver to detect all co-channel user’s 

signals. In this situation, the conventional matched filter receiver, the optimum maximum- 

likelihood receiver, the decorrelating receiver, the adaptive MLP neural network receiver and 

the recurrent neural network receiver have been considered. The achieved results showed that 

the conventional matched filter receiver is very sensitive to the power of co-channel interfering 

users and by increasing the power of interfering users, a huge degradation in the BER 

performance of this receiver occurred. On the other hand, the performance of the maximum- 

likelihood receiver is not sensitive to the ‘Near-Far’ problem and the BER performance of this 

receiver remains approximately constant when changing the energy per bit of co-channel 

interfering users’ signals in the multiple-access DS-CDMA channel.

The performance investigation of the decorrelating receiver showed that this receiver is a multi

user receiver with a good ‘Near-Far’ resistance in the DS-CDMA environment. It has been 

shown that its BER performance is between the BER performance of the maximum-likelihood 

receiver and the conventional matched filter receiver. It has been shown that the adaptive multi

user MLP neural network receiver outperforms the conventional matched filter receiver to 

detect transmitted signals in the presence of strong MAI signals. In this situation, it has an 

acceptable performance for combating the effect of strong MAI in the DS-CDMA channel.

The investigation of the performance of the recurrent neural network receiver as a multi-user 

receiver in the multiple-access DS-CDMA environment has shown that this receiver is 

extremely suitable for combating the effect of co-channel interference and its abilities are found 

to be identical to the maximum-likelihood receiver. In addition, the implementation complexity 

of the recurrent neural network receiver, especially for a large number of users, is lower than 

the implementation complexity of the maximum-likelihood receiver. Also the performance of 

the recurrent neural network receiver in an environment with non-optimised parameters is 

found to be identical to the maximum-likelihood receiver. These features make this receiver 

attractive candidate for use in the next generation of wireless mobile systems.
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6.6 References

[6- 1] J. G. Proakis, “ Digital Communications,” 3th ed., New York: McGraw-Hill, 1995.

[6- 2] G. J. R. Povey, P. M. Grant and R. D. Pringle, “ A Decision-Directed Spread Spectrum 

RAKE Receiver for Fast Fading Mobile Channels,” IEEE Trans, on Vehicular Tec., Vol. 45,

No. 3,pp. 491-502, Aug. 1996.

[6- 3] H. Leung and S. Haykin, “ The Complex Back-Propagation Algorithm,” IEEE Trans, on 

Signal Processing, Vol. 39, No. 9, pp. 2101-2104, Sep. 1991.

[6- 4] N. Benvenuto and F. Piazza, “ On the Complex Back-Propagation Algorithm,” IEEE 

Trans, on Signal Processing, Vol. 40, No. 4, pp. 967-969, Apr. 1992.

[6- 5] J. J. Hopfield, “ Neurons with Graded Response have Collective Computational 

Properties like those of Two-State Neurons,” Proceeding o f the National Academy o f Science o f  

the U.S.A., pp. 3088-3092, 1984.

185



Conclusions and Future Work, Chapter Seven

Chapter Seven

Conclusions and Future Work

'j x i v z k h . y o r

BATH

186



Conclusions and  Future Work, Chapter Seven
• jx > v 2 K s;;y  o f

BATH

7.1 Introduction

The Code-Division Multiple-Access technique is a candidate for use in the third generation of 

the mobile communication. The main advantage of this technique is that it has the potential to 

accommodate more co-channel users in a given bandwidth than the other multiple-access 

techniques. In this case, the ‘Near-Far’ effect, whereby the desired user’s signal is subject to 

interference from other strong co-channel interfering users’ signals, degrades the performance 

of DS-CDMA system. This phenomenon exists because it is not possible to use an orthogonal 

set of signature waveforms to spread the data of all co-channel users in a mobile environment 

and hence a degree of multiple-access interference between co-channel users exists. It is 

estimated, by using conventional receivers for an asynchronous DS-CDMA mobile system, the 

number of users that can be accommodated in the ‘Near-Far’ channel is just up to 5% of the 

signature waveform length [7- 1]. Hence MAI rejecting receivers with good ‘Near-Far’ 

resistance property should be employed to improve the performance of the DS-CDMA scheme.

The work presented in this thesis has focused attention on MAI rejecting receivers in the DS- 

CDMA environment. In this way the theory, design, and performance of the adaptive MMSE 

receiver for downlink DS-CDMA mobile radio systems have been studied. Also the abilities of 

artificial neural network structures for use as a single-user receiver for the downlink DS-CDMA 

channel and a multi-user receiver for the uplink DS-CDMA channel have been considered. The 

proposed structures have attractive features that provide an alternative to the conventional 

techniques for combating the effect of ‘Near-Far’ problems in DS-CDMA communications.

7.2 Conclusions

In this work, a DS-CDMA system simulation has been developed and employed to evaluate 

both the proposed adaptive structures as single-user receivers for the downlink wide-band 

mobile channel, and the recurrent neural network as a multi-user receiver for the uplink wide

band mobile channel. The Monte Carlo simulation technique has been employed to examine the 

performance of the receivers in the different channel model scenarios. The performances of 

these receivers have been compared with the conventional and optimum receivers for the 

downlink and the uplink channels.
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In the simulation, the DS-CDMA channel included multiple-access interference, thermal noise, 

multipath effects (static and dynamic), and the ‘Near-Far’ effect. For the downlink mobile 

channel, where the strategy is to use a single-user handset receiver to detect the desired user’s 

signal, the conventional matched filter receiver, the RAKE receiver, the adaptive MMSE 

receiver and the adaptive MLP neural network receiver have been examined. For the uplink 

channel, where the strategy is to use a multi-user receiver to detect all of the co-channel user’s 

signals, the conventional matched filter receiver, the optimum maximum-likelihood receiver, 

the decorrelating receiver, the adaptive MLP neural network receiver and the recurrent neural 

network receiver have been examined.

7.2.1 Adaptive Receivers for the Downlink channel

For the downlink channel, the single-user receiver is a handset and is employed to receive the 

desired user’s signal in the multiple-access DS-CDMA environment. The adaptive receivers 

proposed in this thesis attempt to remove the co-channel interference from the received signal. 

The training process and their inherent pattern recognition ability enable them to perform subtle 

boundaries between wanted and unwanted signals in the DS-CDMA environment. The ‘Near- 

Far’ resistance of these receivers allows them to function in the multiple-access environment, 

which contains strong co-channel interfering users.

♦ Adaptive MMSE Receiver

The performance of the adaptive MMSE receiver in the downlink mobile channel has been 

evaluated. It has been shown that the adaptive MMSE receiver, as a single-user receiver in the 

DS-CDMA system, can be employed to detect the desired user’s signal in a multiple-access 

environment. The convergence performance of this receiver, measured by the mean square error 

at the output of receiver, was very good in the presence of significant levels of multiple-access 

interference. The achieved result shows that for the typical configuration, 900 MHz carrier 

frequency and 3 MHz chip rate, a satisfactory convergence level is achieved in less than 10 ms.

The performance of the adaptive MMSE receiver, which has been achieved in several different 

channel model scenarios, shows that this receiver has a good ability for use as a single-user 

receiver in the DS-CDMA mobile channel. The BER performance of this receiver in the single- 

user Gaussian channel was found to be identical to the conventional matched filter receiver, 

which has the best available performance. In the multipath single-user DS-CDMA channel, the 

performance of the adaptive MMSE receiver was the same as the RAKE receiver, which has the
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best available performance. The good ‘Near-Far’ resistance of the adaptive MMSE receiver in 

the multiple-access DS-CDMA environment is the most important feature of this receiver. The 

achieved results show that the adaptive MMSE receiver is successful in detecting the desired 

user’s signal among the strong co-channel interfering signals. In the multipath and multiple- 

access DS-CDMA system, where the desired user’s signal is propagated via different rays 

toward the receiver in the channel, the adaptive MMSE receiver was able to despread the 

desired user’s data, combat the effect of multipath and reject the co-channel interfering user 

signals simultaneously.

In order to improve the ability of the adaptive MMSE receiver to function in a dynamic 

multipath-fading DS-CDMA channel, the structure of this receiver has been modified. The 

novel modification includes some systems, which are employed to estimate the delay profile 

and attenuation coefficients of the dynamic multipath-fading channel and remove the fast 

varying channel’s effect on the received signal. In this case, the Maximal Ratio Combining 

(MRC) technique has been employed to estimate the parameters of the dynamic multipath- 

fading channel. The achieved results show that the performance of the new modified adaptive 

MMSE receiver in the dynamic multipath-fading channel mostly depends on the quality of the 

estimation technique which is employed to obtain the parameters of the multipath channel. It is 

clear, by decreasing the level of noise and improving Et/N0 in the DS-CDMA channel, the error 

in the estimation is reduced and the performance of the receiver increases. The performance 

evaluation of the modified adaptive MMSE receiver in the dynamic multipath-fading channel 

with different Doppler frequencies shows that it has a good ability to reject MAI in this 

environment.

♦ Adaptive MLP Neural Network Receiver

The adaptive MLP neural network receiver has the potential for use as a single-user DS-CDMA 

receiver in the multiple-access environment. The non-linear processing units in the structure of 

the artificial neural network, via the learning process, allow the receiver to distinguish between 

the wanted and unwanted signals in the multiple-access DS-CDMA environment and hence 

achieve a good ‘Near-Far’ resistance over a wide range of interfering power levels. The 

performance of the adaptive MLP neural network receiver, which have been achieved in several 

different channel model scenarios, shows that this receiver has a good ability for use as a single- 

user receiver in the DS-CDMA mobile channel. The BER performance of this receiver in the 

single-user Gaussian channel was found to be identical to the conventional matched filter 

receiver, which has the best available performance. The achieved results show that the adaptive
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MLP neural network receiver, as a single-use receiver, has excellent ‘Near-Far’ resistance in the 

multiple-access DS-CDMA channel.

The performance of the new adaptive MLP neural network receiver has been investigated in the 

multipath DS-CDMA channel. In this case, the delay profile of the multipath channel should be 

known in advance in the receiver. During the training mode, different versions of the desired 

user’s signal, which have been propagated via different rays in the multipath channel, are 

introduced as the wanted signals. The achieved results show that in the static DS-CDMA 

multipath channel, the adaptive MLP neural network receiver learns to collect different rays of 

the propagated signal of the desired user and rejects the MAI in the multiple-access channel. 

However the ability of this receiver to reject the multiple-access interference in the Rayleigh 

multipath-fading environment decreases when increasing the Doppler frequency in the channel, 

but it has acceptable performance in the low rate time varying multipath-fading and multiple- 

access channels. It means that the adaptive MLP neural network receiver may be employed as a 

single-user receiver in a low speed mobile channel such as used in the military environment.

7.2.2 Multi-User Neural Network Receivers in Uplink Channel

In the uplink mobile channel, the multi-user receiver is located in the centre of the cell and 

receives all co-channel user signals in the multiple-access DS-CDMA environment. To improve 

the performance of signal detection, multi-user receivers proposed in this thesis attempt to use 

all available additional information in the multi-user environment. In this way, the signature 

waveform of the co-channel users, the amplitude of the received signals and the timing of all 

received signals are employed to perform the best distinction in the signal space between 

different user’s patterns in the DS-CDMA environment. The adaptive MLP neural network and 

the recurrent neural network are two types of multi-user DS-CDMA receiver that have had their 

performance examined and compared with other multi-user receivers in this work.

♦ Adaptive Multi-User MLP Receiver

The adaptive MLP multi-user neural network receiver can be used as a multi-user DS-CDMA 

receiver in the multiple-access environment. The achieved result has shown that the adaptive 

multi-user MLP neural network receiver has good ‘Near-Far’ resistance in the multiple-access 

DS-CDMA channel. It has been shown that the adaptive multi-user MLP neural network 

receiver outperforms the conventional matched filter receiver in detecting the transmitted
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signals in the presence of strong MAI signals. In this situation, it has an acceptable performance 

as a multi-user receiver.

♦ Recurrent Neural Network Receiver

The recurrent neural network receiver has a suitable topology for use as a multi-user DS- 

CDMA receiver in the multiple-access environment. The non-linear processing units, the linear 

feedback links and the weighting factors in the structure of this receiver enable it to have a 

dynamical behaviour that leads the network toward the stable state with the minimum level of 

energy.

The achieved results have shown that this receiver is extremely good at combating the effect of 

co-channel interference and the performance and abilities of this receiver are identical to the 

maximum-likelihood receiver. It has been shown that the recurrent neural network receiver 

outperforms the conventional matched filter receiver and the decorrelating receiver in detecting 

the transmitted signals in the presence of strong MAI signals. In addition, the implementation 

complexity of the recurrent neural network receiver, especially for a large number of users, is 

lower than the implementation complexity of the maximum-likelihood receiver. Finally, the 

performance of the recurrent neural network receiver in an environment with non-optimised 

parameters is identical to that of the maximum-likelihood receiver. These features make this 

receiver attractive for use in the next generation of wireless mobile systems.

7.3 Future Work

The work described in this thesis has highlighted a number of areas that can be investigated in 

the future and these are listed within this section.

7.3.1 Adaptive Algorithms

To improve the ability of the adaptive receivers to follow the varying phase of the desired 

user’s signal in the fast time varying multipath DS-CDMA channels, it is required to use a fast 

convergence algorithm with good stability. In the adaptive MMSE receiver, the LMS algorithm 

has a good stability but its convergence time is long. On the other hand, the RLS adaptive 

algorithm is a faster adaptive algorithm than the LMS algorithm, but its complexity is high and 

because of different sampling rates in the input and output ports of the proposed MMSE
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receiver, it can not be used in this application. For the adaptive MLP neural network, back- 

propagation is a well-known algorithm for static applications and it has been shown that it can 

be employed in the slow time varying mobile environment. To improve the performance of the 

adaptive MLP neural network in the fast time varying mobile environment, it requires a new 

adaptive algorithm to be introduced for dynamic applications. The explicit study of optimum 

adaptive algorithms for use in the fast time varying mobile channel is an open area for future 

work.

7.3.2 Multipath-Fading Channel Estimation Techniques

The adaptive receivers lose phase lock on the desired user’s signal in the fast time varying 

multipath-fading channels. In this case, the effect of the multipath channel on the desired user’s 

signal should be compensated. However in a wide-band DS-CDMA mobile channel, the 

estimation procedures are very sensitive to the amount of MAI and the level of noise in the 

channel. To improve the performance of the DS-CDMA receiver in the fast time varying mobile 

channel, new techniques for estimating the channel impulse response, that are less sensitive to 

the level of interference and noise in the channel, should be investigated.

Another method, which seems to be useful for compensating for the effect o f the multipath- 

fading channel, is utilising the concept of Orthogonal Frequency Division Multiplexing 

(OFDM) in the transmission of signals [7- 2], [7- 3]. By using OFDM techniques, the wide

band DS-CDMA channel will be divided into some narrow band sub-channels, where the 

fading seems to be flat in each sub-channel. In this case, the channel estimator should estimate 

and remove the effect of flat-fading on the desired received signal in each sub-channel. This 

idea may be a new direction for future work, which employs the OFDM technique for 

combating the effect of fast time varying mobile channel.

7.3.3 Using Radial Basis Functions as DS-CDMA Receivers

The MLP neural network has the potential for use as single-user and multi-user DS-CDMA 

receivers in wireless mobile channels. Also the topology of the recurrent neural network 

receiver makes it attractive for use as a multi-user detector in base-station of the mobile cell. 

The radial basis function is another type on the family of artificial neural networks that can be 

employed as an adaptive receiver in DS-CDMA mobile channel [7- 4], [7- 5]. In this way, by
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using a suitable set of non-linear functions and optimising them, the receiver is able to function 

adaptively when detecting the desired user’s signal in the DS-CDMA mobile channel.
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A.1 Introduction

The spreading sequences or signature waveforms have an important rule and are very important 

in the DS-CDMA communication. The periodic auto-correlation function (PACF) and the 

periodic cross-correlation function (PCCF) of spreading sequences are the main factors, which 

determine the abilities of these signal for use as signature waveforms in the spread spectrum 

communication. These functions are defined as bellow:

<?-(*) = i S c. c«* k = G,\ , . . . ,N  (A-l)
N  ito

W  = IF  Z  k  = ° ’1> ■ • • *N  <A’2>
A  „ -o

In equation (A-l) and equation (A-2), 6cc(k) and 0cs(k) are PACF and PCCF respectively and 

c(t) and g(t) are two unit amplitude [±1] spreading sequences with a period of T  = NTC. Since 

c(t) and g(t) are periodic signals with the period of T, Gcc(k) and 6cg(k) are periodic with the 

same period. The maximum magnitude of the out-of-phase PACF of the c(t) can be defined as:

^(max) = m a x K  W | (A“3)
0 <k<N

And the maximum magnitude of the PCCF between two signature sequences c(t) and g(t) is 

given by:

0cg( m„) = m a x  K  (*) (A-4)
0 <k<N

In the ideal case, where the values of #cc(max) and ^ ( max) are zero, the signature waveforms

perform an orthogonal set. Minimising the value of #cc(max) and 0cg(max) is the criterion for 

selecting the signature sequence set to design the DS-CDMA system. It is clear that the 

signature waveform set with the lower value of 0cg(max) a n d  ^ c c ( m a x )  > is more suitable for use in 

the DS-CDMA system because it generates lower amount of multiple-access interference in the 

DS-CDMA communication environment.
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In this Appendix, two most famous types of the pseudorandom sequences, which are suitable 

for use as the signature waveform sets in the DS-CDMA communication system, are 

investigated. In this way, the generation technique of these sequences is explained and the 

performance of them are evaluated via computer simulation.

A.2 Maximal Length (ML) Sequences

The maximal-length (ML) sequence is the first set, which is suitable for use in the DS-CDMA 

communication system. A linear feedback shift register can be utilised to generate the ML 

sequence. For a feedback shift register with a linear feedback, which includes n stages in its 

structure, the maximum length of the generated ML sequence, N, is as below:

N=2n- 1 (A-5)

It means that a 3-stage feedback shift register can be employed for generating the ML sequence 

with the length of 7 chips. The structure of «-stage feedback shift register for generating a ML 

sequence is shown in Figure A. 1. It includes n shift registers, which are connected in serial. A 

summer is employed to add signals of determined registers and the result is feed back to the 

input terminal of the circuit. In the beginning, the circuit is loaded by a non-zero seed and after 

that different chips of the ML sequence will be appear in the output of the circuit by each clock 

pulse.

The location of feedback lines in the circuit for generating the ML sequence can be interpreted 

as a polynomial. To achieve a ML sequence, it is necessary to select the feedback polynomial 

from the set of irreducible polynomials'.

All ML signature sequences contain ones and 2(n~X)-\ zeros. Figure A. 2 shows the 

frequency spectrum of a 255-chips ML sequence. The ML sequence has been achieved by using 

an 8-stage feedback shift register circuit. As it can be seen, the ML sequence has a frequency 

spectrum that is like as a sinc(.) function.

1 These polynomials which are characteristic polynomials of ML codes, are called primitive polynomials. 

A table of them is given in [A- 1] and [A- 3],
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n Stages

n- 1

Output

Figure A. 1: The structure of an n-stage shift register with linear feedback.

Figure A. 2: Frequency spectrum of a 255-chip ML sequence.

The PACF of a ML sequence is a two-valued function and is given by [A- 3]:
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1.0 k = lN

*«(*) = (A-6)
_1_
N

k * IN

In equation (A-6), I is any integer and N  is the sequence period. Figure A. 3 shows the PACF of 

a 255-chip ML sequence, which has been obtained via a computer simulation. As it can be seen, 

the ML sequence is characterised by a flat periodic auto-correlation side-lobes that provides a 

good approximation for the ideal short spreading sequence for use in the DS-CDMA systems.
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Figure A. 3: Periodic Auto-Correlation Function (PACF) of a 255-chip ML sequence.

Figure A. 4 shows the PCCF of a 255-chip ML sequence, which has been obtained via a 

computer simulation. The cross-correlation function between any pair of ML sequences of the 

same period has relatively large peaks that are unacceptable for DS-CDMA applications [A- 4).
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Figure A. 4: Periodic Cross-Correlation Function (PCCF) of a 255-chips ML sequence.

Although it is possible to select a subset of ML sequences that have relatively smaller cross

correlation peak value, but the number of signature codes in the set is usually too small. 

Therefore, as a multiple-access signature code set, the ML sequences do not provide enough 

capability for practical DS-CDMA systems [A- 1].

A .3 G old  S e q u e n c e s

Gold sequences are the most widely known and used DS-CDMA signal designs [A- 2], [A- 5]. 

They have been derived from the fact that certain pairs of the ML codes with length A  exhibit a 

three-valued periodic cross-correlation function with values (-1, -t(n), t(n)~2}, where t(n) is 

defined as below:

t ( n )  =

'2 (,,+1)/2+ l  (o d d  n )

2(«+2)/2 + j (even n)
(A-7)
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For example, if n=  8 then /(8)=25+l=33 and the three possible values of the cross-correlation 

function are {-1, -33, 31}. Two ML sequences of length N  with a periodic cross correlation 

function that takes one of the possible values (-1, -t(n), t(n)~2}, are called preferred pair.

Gold [A- 2] suggested the combining of two preferred pairs of ML sequences with the same 

period, to produce a set of DS-CDMA signature codes with cross-correlation properties as the

original signature sequences. In this way, two preferred pairs, say &=\axa2 . . .a N\ and

b= [b}b2 ... bN ], are used by taking the modulo-2 sum of a with the N  cyclically shifted version 

of b. The set of derived sequences from preferred pair including the original preferred pair is 

known as the Gold sequences. Figure A. 5 shows the generation processing of the Gold 

sequences and Figure A. 6 shows the frequency spectrum of a 255-chip Gold sequence. 

Including two original components of ML signature sequences, a family of the Gold code set 

contains 2"+l sequences.

>  Gold Code

Figure A. 5: The process of generating the Gold sequences.
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JukL jU*X.

Figure A. 6: Frequency spectrum of a 255-chip Gold sequence.

Figure A. 7 shows the PACF of a 255-chip Gold sequence, which has been obtained via 

computer simulation. As it can be seen, a Gold sequence is characterised by an approximately 

flat periodic auto-correlation side-lobes that provides approximation for the ideal short 

spreading sequence for use in the DS-CDMA systems.
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Figure A. 7: Periodic Auto-Correlation Function (PACF) of a 255-chips Gold signature

code.
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The PCCF of a 255-chip Gold sequence, which has been obtained via computer simulation, is 

shown in Figure A. 8. It can be seen that the cross-correlation function between any pair of 

Gold sequences of the same period is relatively better than the cross-correlation function 

between any pair of ML sequences and hence they are more acceptable for use in the DS- 

CDMA applications.
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Figure A. 8: Periodic C ross-C orrelation Function (PCCF) o f  a 255-chips G old signature

sequence.
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B.1 Introduction

The mobile radio propagation channel is the physical medium that supports electromagnetic 

wave propagation between a transmitter and a receiver. Due to the multiple reflections and 

diffraction produced by obstacles in the transmission medium, the transmitted signal follows a 

number o f different paths before arriving at the receiver’s antenna [B- 1], The effects of each 

path on the transmitted signal are attenuate, delay and phase shift. At the receiver’s antenna, a 

voltage is produced that represents a superposition of these scaled and phase shifted echoes of 

the transmitted waveform. Scatters, such as, hills, buildings and vehicles in the vicinity of a 

mobile unit can create reflected and diffracted waves, which are copies or echoes of a single 

propagating wave. An example of such a situation is shown in Figure B. 1.

The simplest case of the multipath channel is the “static multipath”, in which the transmitter 

and receiver are stationary. Figure B. 2 shows a simple example of the effect o f a 2-ray static 

multipath channel on the transmitted signal. It can be seen that in this case, the transmitted 

signal in the receiver has been changed via passing through multipath channel.

Scat
Receiver

'R e c e i v e r
/T )o u b le
Reflections

liffraction \7 * / Local 
J3 | Scattering

Reflection

Transmitter

Figure B. 1: Reflection and diffraction effects in a multipath channel.
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Figure B. 2: The effect of static multipath channel on the transm itted signal.

In a mobile channel, the transmitter or the receiver will be in motion and this causes the 

dynamical behaviour of the multipath channel. In this case and in the “dynamic multipath”, the 

electrical length of every propagation path and the relative phase are changing continuously. 

This phenomenon affects the envelope of the signal in the channel, which at some positions has 

additions, and at other positions has cancellation. An example of changing the envelope of the 

received signal in a dynamic multipath channel is shown in Figure B. 3.
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Figure B. 3: The effect o f dynamic multipath channel on the envelope of the transmitted

signal.

The effect o f multipath channel on the amplitude and phase of the transmitted signal are known 

as fading. Two models of this phenomenon are known as fast fading and slow fading. The 

short-term fluctuation, which is caused by the local multipath, is the source of generating fast 

fading. This affects the instantaneous BER performance of the receiver. Slow fading is the 

average value of the envelope of the received RF signal.

To evaluate the behaviour of the multipath channel, “time delay spread” of the multipath and 

the “coherence time” of the channel are two important parameters. The delay spread is the 

duration o f time between the first received signal and the last significant one and it may be from 

5 //sec  to 17.2//se c  for a typical urban and hilly terrain environment [B- 2]. The channel 

coherence bandwidth can be measured as the reciprocal of the delay spread [B- 3]. The 

coherence time of the multipath channel can be defined as the duration of time that the impulse 

response o f the channel is relatively constant. It has a range from a few msec for outdoors- 

mobile channel, to a few hundred msec for indoor-mobile channel. The coherence time is 

related to the Doppler effect that appears because of mobility of the mobile unit. The reciprocal 

of the Doppler (frequency) spread is a measure of the coherence time of the channel [B- 3].

The transient behaviour of the multipath channel can be considered in the impulse response of 

the channel. In the ideal case, a line-of-sight transmission channel has an impulse response that 

is in the form of shifted impulse. The location and the amplitude of the shifted impulse show

B.2 Multipath Channel Impulse Response
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the delay and the attenuation in channel. In real situation, the impulse response is a continuous 

waveform that contains various peaks corresponding to the major reflectors in the transmission 

channel. If the time axis is divided into time slots of equal sizes, each time slot contains a 

number of received signals corresponding to different paths whose arrival times are within the 

time slot. The impulse response of a multipath channel can be written as below:

In equation (B-l), h{r\t)  is the time varying impulse response of the multipath c h a n n e l,^  is 

the delta function, T, is the excess delay of the i h multipath signal, a ft) is the attenuation of the

As an example, Figure B. 4 and Table B. 1 show a set of wide-band channel impulse responses, 

specified by the Group Special Mobile (GSM) committee, describing typical urban and hilly 

terrain environments [B- 2].

B.3 Frequency Selective Rayleigh Fading Channels

To evaluate the performance of different receivers in the DS-CDMA environment, the wide

band multipath-fading channel should be implemented as the transmission environment. The 

wide-band propagation multipath channel is the superposition of a number of dispersive paths. 

These paths have various attenuation, delays and Doppler shifts. This type of channel can be 

modelled by using a tapped delay line with K taps as shown in Figure B. 5 [B- 4].

(B-l)

i h multipath signal and 6j(t) is the phase of the i,h multipath signal that is equal to:

(B-2)

209



Multipath Channels in Mobile Communication, Appendix B Q ba t h

Urban Channel  Impulse Response

0.631

Delay s e c )

Hilly Terrain Channel Impulse Response

0.25
0.06

0 0.4 15 17.2
0.2 0.6 Delay se c )

Figure B. 4: A set of wide-band channel impulse responses.

Path (Urban) 1 2 3 4 5 6

Delay (psec) 0.0 0.2 0.6 1.6 2.4 5

Gain (dB) -3.0 0.0 -2.0 -6.0 -8.0 -10.0

Path (Hilly) 1 2 3 4 5 6

Delay (psec) 0.0 0.2 0.4 0.6 15 17.2

Gain (dB) 0.0 -2.0 -4.0 -7.0 -6.0 -12.0

Table B. 1: Six-tap multipath channel option for urban and hilly terrain environments.
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Figure B. 5: The channel simulator model.

The base-band signal is applied to a series o f delays equal to the width of the chip period. The 

output signal from each tap is multiplied by a time varying coefficient for generating the fast 

fading channel. The Doppler effect is added by shaping the AWGN using a classical Doppler 

filter. A cascade structure of two-second order filters is employed to approximate the frequency 

domain transfer function of the Doppler filter. The transfer function of this cascaded filter is:

His) =  -----\=--------5----- !--------  (B-3)
s + -J2s +1 s + 0.02s +1

To implement the cascaded filter in the discrete domain, it requires having a transformation 

from the Laplace domain into the z-domain. This transformation can be obtained by using the 

Bilinear Z-Transform as below:

H(z) = 0.014 •(l + 2z-1+z-2)_________0.014-(l + 2 z - 1+ z- 2 )
1.1814 — 1.972z—1 +0.8466z-2 1.0163672-1.972z_1 + 1.0116328z-2
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The frequency response of the cascaded filter at a Doppler frequency of 40 Hz is shown in 

Figure B. 6.

Approximation

Theoretical

100

Frequency(Hz)

Figure B. 6: The frequency response of a Doppler filter at a frequency of 40 Hz.

The shaped noise is obtained by passing the AWGN via the Doppler filter and it can be shown 

that the Rayleigh fading is produced at the output of the shaping filter because of independent 

Gaussian fading on both the real and the imaginary weighting components. To implement the 

static multipath channel, fixed weighting factors are used for each tap in the channel model. A 

further gain, which shows the average multipath signal strength expected at that delay, is 

multiplied by the signal in the output of each shaping filter in the model and finally, the output 

signal of all taps are added by using a complex summer.

The Doppler fading is characterised by shaping filter that is tuned to the Doppler frequency 

v
f d = f c. — . \ n  this case ,// is Doppler frequency, /  is the carrier frequency, v is the vehicle 

c

speed and c is the speed of electromagnetic propagation in free space. The noise shaping filter is 

a second order biquadratic filter that determines the rate and type of fading [B- 4]. Figure B. 7 

shows the frequency response of the shaping filter.

212



Multipath Channels in Mobile Communication, Appendix B 111 BATH

f d  frequency

Figure B. 7: Frequency response of the shaping filter.

B.4 Estimating Techniques of the Multipath channel’s Impulse 

Response

The impulse response of the mobile channel in a DS-CDMA environment can be determined by 

taking the cross-correlation of the received signal and the local PN signature waveform. In the 

line-of-sight transmission mode, the estimated result should be an impulse function that its 

location determines the delay in the transmission channel. In the multipath channel, there is 

more than one impulse in the impulse response of system that indicates different paths of 

channel for signal propagation.

Figure B. 8 shows the structure of a DS-CDMA multipath channel estimator. In this structure, 

the received signal after correlating with the appropriate delayed versions of the PN sequence, 

is integrated over a bit period, 7b. It is assumed that the relative delay between each echo is Tc, 

where Tc is a chip period. The correlator estimates the amplitude and phase values of the 

multipath channel’s impulse response.
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Figure B. 8: The structure of the DS-CDMA multipath channel estimator.

The DS-CDMA multipath channel estimator introduces a delay in the estimation of one bit 

period Tb. This is the time that the correlator requires calculating the cross-correlation of the 

received signal with the different delayed versions of local signature waveform. This means that 

the channel estimation obtained from the previous bit is applied to the current bit. It is also 

needed to remove the data content that is one of the functions made by the alpha tracker.

The estimation of the impulse response of the multipath channel, because of some reasons, is 

not always perfect. The first reason is that the result of correlating the PN sequence with itself is 

not a delta function and only approximates this waveform. Furthermore, the AWGN introduced 

by the channel and co-channel interfering user’s signals, decreases the accuracy of the 

estimation. To improve the performance of the multipath channel estimating process and to 

implement a suitable receiver to combat the effect of DS-CDMA multipath channel, some 

combination techniques can be implemented. Equal Gain Combination (EGC) and Maximum 

Ratio Combination (MRC) are two most famous techniques in this area [B- 4].
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B.4.1 EGC Combining Technique

In the EGC technique, there are only four possible weights, ±l±j, for each multipath 

component It means that only the sign of real and imaginary part of the complex estimated 

parameters are employed to determine the multipath channel impulse response. In this case, it is 

assumed that all paths in the multipath channel have identical effect on the transmitted signal. 

The EGC combination technique can be demonstrated by equation (B-5).

B.4.2 MRC Combining Technique

In the MRC technique, the real and the imaginary part of the complex estimated parameters are 

employed to determine the multipath channel impulse response. In this case, it is assumed that 

each path in multipath channel has its effect on the transmitted signal. Equation (B-6) 

demonstrates the MRC combination technique.

K ( n)i • * * ( « - 1),]
ht (.n)Q = Sgn[bn_, - x k( n -  1 ) J

(B-5)

In this equation, Sgn(.) is the sign function, xk(n) is the b!h post-correlated sample for the n'h bit 

hk(n) is the estimated channel coefficient for the nlh bit and bn.i is the (n-\),h decided bit.

K W t  = hn-l ’Xk( n - l ) j  

K W q  = b n - \  ' Xk ( n - l ) Q
(B-6)

In equation (B-6), xk(n) is the post-correlated sample for the n h b it hk(n) is the estimated 

channel coefficient for the n h bit, and bn.i is the (n-l),h decided bit.

B.4.3 Alpha Tracker

In the dynamic multipath channel, the parameters of time varying channel should be tracked 

and updated. In this way, the tracker should be added to the estimator of the multipath channel. 

Two basic functions of the multipath signal trackers are:
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♦ It must remove the data content on the post-correlated signal so that the fading signal (with

noise) can be reconstructed.

♦ It must track the fading signal but reject the noise on the channel.

The tracking system isolates the individual estimated channel coefficients from the cross

correlation and tracks them independently after the data content has been removed. A fast- 

fading channel provides only a short period over which the tracker can learn the channel 

response before it changes significantly. The filter memory must allow a reasonable amount of 

averaging to provide a usable SNR. This can be formulated by applying the constraint that the 

channel must have a Doppler frequency,^, of much less than the data rate.

For the MRC technique, a simple alpha tracker [B- 4] can be employed to improve the 

performance of channel estimator. It is because, the MRC requires a short time window to form 

an estimate. Separate alpha trackers are employed to estimate the in-phase and the quadrature 

components of the complex parameters of the multipath channel impulse response. The MRC 

technique with alpha tracker can be explained as below:

**(” ); = ( ! - « ) •  • * * ( " - ! ) /  +a-hk(n-l) ,

In equation (B-7), a  is the parameter that determines the rate of changing in the tracker and its 

value is 0 < a<  1.

The optimum value of alpha depends on the SNR of the received signal. It is shown that for 

alpha equal to 0.5, the lowest BER is obtained in the suitable receiver [B- 4]. In general, it can 

be said that when alpha is chosen low, the estimation result is more effected by the noise of the 

received signal. When alpha is set to be high, close to one, the noise can be cancelled 

effectively but the estimator can not follow the fast variations of the multipath-fading channel.

In summary, Although the EGC type of combining has lower complexity than the MRC, it 

offers lower performance than the MRC [B- 4]. The MRC takes into account the mean SNR of 

each multipath components and then combine them coherently. The EGC gives the same gain to 

all components while the MRC enhances the high power components.
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C.1 Introduction

In this Appendix, some results from independents published papers in the form of graphs are 

presented. These graphs are used to validate the simulation software that has been used for to 

produce the results in this thesis.

mi error Kate

0.L:
x Software’s Result

0.001
Theory _ _

0,0001
0 2 3 4 5 6 7 %

Eb/NO in dB

Figure C. 1: 31 Chip BER: Adaptive MMSE Correlator (AC) Receiver and RAKE

Receiver [C -1].
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Abstract-A major limitation to the capacity of direct- 
sequence code division multiple access systems is 
multiple access interference produced by the other 
co-channel users. The optimum multi-user detector 
is currently too complex to be implemented in 
commercial systems. In this paper, an adaptive 
minimum mean square error (MMSE) receiver is 
introduced which can combat the ‘near-far’ problem 
and reject multi-user interference in a multipath- 
fading channel. This type of channel is subject to 
rapid deep fades and the receiver’s performance can 
be severely degraded by the limited convergence 
speed of the adaptive algorithm. Here, an equaliser 
is used to improve the ability of an adaptive MMSE 
receiver to combat the effect of the multipath fading. 
Maximal ratio combining (MRC) and an alpha 
tracker is used to estimate the impulse response of 
the multipath channel. Results show this technique is 
effective for rejecting multiple access interference in 
a multipath-fading channel.

L IN T R O D U C T IO N
DS-CDMA is attractive for wireless multiple-access 
communications because of its ability to gain diver
sity from multipath signals and because in a cellular 
radio system it allows universal frequency re-use. 
These characteristics increase the capacity of 
CDMA over other multiple access techniques and 
offer other important system advantages. Multiple 
access interference (MAI) produced by the other co
channel users is a significant limitation to the 
capacity of conventional CDMA systems however.

A potential solution to this problem is the optimum 
multi-user detector consisting of a bank of matched 
filters followed by a Viterbi maximum-likelihood 
(ML) detector [1]. The computational complexity of 
this detector increases exponentially with the 
number of users and it is currently too complex to 
implement in commercial systems. Consequently, a 
number of sub-optimal multi-user detectors have 
been proposed recently [2-9]. These detectors can 
achieve significant performance gains over the 
conventional (non-MAI-cancelling) detector without 
the exponential increase in complexity as the num

ber of users increases. However, their performance 
depends on knowing various parameters such as the 
received signal amplitude, the timing of user 
transmissions relative to other users, and the cross
correlation of signature codes. This information may 
be available to a base station but it is not readily 
available to the mobile units and this can 
compromise the system performance. In addition, in 
a multipath environment, there is no prior 
knowledge of the timing of the delay paths for all 
the received signals.

One way of dealing with multipath signals is to use 
diversity-combining techniques. Space diversity can 
be implemented in the base station but in mobile 
units, because they are portable, this is not desirable. 
Direct-sequence spread-spectrum modulation offers 
inherent time diversity, depending on the chip- 
duration relative to the delay-spread. Consequently, 
the RAKE receiver is a well-known technique for 
resolving and combining multipath signals in DS- 
CDMA systems. Although it is known that a 
reasonable performance can be achieved in the 
presence of multipath signals by the RAKE receiver
[10], MAI is the main factor for degrading the 
performance of this type of receiver.

Another important development in the improvement 
of the performance of DS-CDMA receivers, partic
ularly for the mobile handset, has been the design of 
adaptive detectors, that ‘self-tune’ the detector 
parameters from the observation of the received 
signal [11], Studies of adaptive receiver structures 
by Madhow and Honig [12,13], Miller [14,15], and 
Pateros and Saulnier [16] have shown that this type 
of receiver has a measure of ‘near-far’ resistance and 
can produce significant performance improvements 
in the presence of MAI, multipath channels and 
narrow band interference. However, they do not 
operate particularly well in fast fading because the 
adaptation speed is too slow to allow tracking of the 
fast varying channel. This problem has been 
addressed by Miller [17] who investigated the 
behaviour of the MMSE receiver in flat fading and



proposed a modification for combating the effect of 
losing phase lock of the desired user in deep fades.

In this paper, a modified version of a low 
complexity adaptive MMSE receiver for a direct- 
sequence CDMA system [14] is presented. The new 
system has an improved performance that allows it 
to operate in multipath fading channels. This receiv
er is able to despread the desired signal, reject the 
MAI, and combat the effect of multipath fading. The 
simplicity of the receiver makes it attractive for use 
in both the base-station and the mobile handset.

IL M O D E L  O F  A N  A S Y N C H R O N O U S  
C D M A  S Y S T E M

The block diagram of an asynchronous CDMA 
system is shown in figure 1.

dlt)
■s(t)

42ck 0 )cos(fty+ 0g )

Fig. 1: Asynchronous phase-coded CDMA model.

The system model consists of K  simultaneous users. 
Each user is assigned a unique signature waveform. 
The k{h user’s signature is ck(t) and consists of 
bipolar rectangular pulses of period NTC, where Tc is 
the chip period, N  is the length of the code, such that 
N =Tf,/Tc, and 7* is the data bit period. The fc* user’s 
transmitted signal is:

sk {t)= 4 l d k (it)ck (t)cos(coQt + 6k) (1)

where dk(t) is the polar data with amplitude ±1 and 
duration Th. The transmitted signal is of the form:

= !> *(*-*■ *) (2)

In (2), rk is a random integer that has a uniform 
distribution over (0,Th). The received signal in an 
AWGN channel is of the form:

KO = 'LyfPk^k (' -  )+ n(t)
k=1

(3)

where Pk is the received power of the kih user’s 
signal and n(t) is the noise signal. In a multipath 
channel of impulse response, h^vd), the desired 
user’s received signal is [10]:

rd (0 =  sd {t ~ *d )* hd ( r ,/ )+ n{t) (4)

where

hd M =  X a ,( ( )e ~ '9% [ r - / 7 - c ] (5)
r=0

In (5), L is the number of signal paths, each assumed 
to be spaced with a delay of Tc, a,{t) is the amplitude 
of the i h multipath signal, 6,{t) is the phase of i,h 
multipath signal, and iTc is the excess delay of the i1h 
multipath signal, relative to the line of sight delay.

III. T H E  M M S E  A D A P T IV E  R E C E IV E R
Figure 2 shows the structure of the MMSE detector. 
After converting the received signal to baseband, it 
is passed through a chip matched filter and sampled 
at the end of every chip interval. These samples are 
fed into the channel equaliser that removes the effect 
of multipath fading channel on the desired user’s 
signal. The impulse response of the equaliser is the 
complex conjugate of the multipath channel’s impul
se response. After that, the signal is fed into the 
adaptive finite impulse response (FIR) transversal 
filter. The number of taps in the transversal filter is 
equal to the period of the signature waveform. The 
output of the filter in our simulations is sampled 
once every bit interval and hard-limited to form the 
estimate of the received data. The tap weights are 
updated once every bit interval and an error signal 
that is the difference between the desired signal and 
the output of the adaptive filter controls the updating 
process. A least mean square (LMS) adaptive
algorithm is used.

* (1)
In this system, if the desired signal were received in 
the presence of AWGN only, it would have optimum 
performance. When there is also MAI present, the 
adaptive nature of the receiver changes the coeffic
ients of the filter in the sense of minimum mean 
square error to reduce the interference and noise. 
The performance of the adaptive MMSE receiver in 
multipath fading channel with Doppler depends on 
the convergence speed of the adaptive algorithm.
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Fig. 2: The structure of the adaptive MMSE receiver.

Increasing the step size parameter, fL, in the LMS 
algorithm can increase the ability of the receiver to 
combat the effect of fast fading but the stability of 
the receiver decreases and the BER of receiver may 
well increase. In this situation, there are benefits in 
using a channel equaliser before the adaptive MMSE 
receiver to combat the effect of the multipath-fading 
channel.

IV . M U L T IP A T H  C H A N N E L  
E ST IM A T IO N

One possible method of determining the channel 
impulse response is from the cross-correlation 
between the received signal and the signature 
waveform of desired user. This method of estimating 
the channel impulse response is not perfect because 
the auto-correlation of the signature waveforms is 
not a perfect delta function. In addition, the MAI and 
AWGN introduced by the channel decrease the 
accuracy of the estimation.

A better technique is to use maximum-ratio combin
ing (MRC), which can be used with a simple alpha 
tracker [10]. This algorithm requires a short time 
window to form an estimate and has low comp
lexity. Separate alpha trackers are used to estimate 
the in-phase and quadrature components of the 
channel impulse response:

K (n)i = ( l - a )  A-i Xk(n -V i + a 'hk(n - l) l
K (n)Q = ( ! -« )  A-i -xk(n - l)Q+(x hk(n - \)Q

where xrfn) is the k'h post-correlation received 
sample for bit n, hk(ri) is the estimated channel 
coefficient for bit n, bn ] is the previous decided bit 
and 0< g s < 1. The optimum value of alpha depends on 
the SNR of the received signal. The complex 
conjugate of the estimated impulse response is used 
to equalise the channel.

V . S IM U L A T IO N  A N D  R E S U L T S
To verify the ability of the adaptive MMSE receiver 
to combat the effect of the multipath-fading channel 
and reject the MAI, the adaptive receiver of figure 2 
with 31 complex tap weights was simulated. The tap 
weights were tuned by using the complex normal
ised LMS algorithm during training and data 
sequence transmission. The spreading sequences for 
all users were chosen from a Gold set of length 31 
chips and BPSK modulation was used for all users. 
The relative clock offset, ?*, for each of the users 
was chosen randomly from a uniform distribution. 
For comparison, a conventional RAKE system was 
also simulated.

The channel model is a tapped delay line of six taps, 
which are spaced according to the GSM channel 
impulse response. It is assumed that the carrier 
frequency is 900 MHz and the chip rate of the signal 
is 3.1xl06 chips/sec and each delay space in channel 
model is approximately 0.2 psec. The complex 
valued output from each tap is multiplied by the time 
varying Rayleigh distributed coefficients that 
characterise the fading channel. It is then multiplied 
by a further gain, which represents the average 
multipath signal strength expected at that delay. The 
weighting factors are chosen from the COST207 
urban impulse response model, given in Table 1. 
The mobility of the user is incorporated into the 
channel using Doppler filters which filter the 
Rayleigh distributed noise representing the path loss.

Path 1 2 3 4 5 6

Delay (psec) 0.0 0.2 0.6 1.6 2.4 5.0

Gain (dB) -3 0 -2 -6 -8 -10

Table 1: Coefficients of the urban channel model



Figure 3 shows the BEF characteristics of both the 
new adaptive MMSE receiver and the RAKE 
receiver in a known mulipath-fading channel for an 
80 Hz Doppler frequency. As can be seen, in this 
situation, there is no significant difference between 
the performances of the two receivers.
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Fig. 3: BER of adaptive MMSE and RAKE 
receivers in a 6 ray COST207 Rayleigh fading 
channel (known channel resporise, / d=80 Hz).

Figures 4 and 5, respectively, show the BER charac
teristics of the RAKE and the adaptive MMSE 
receivers in a known multipath-fading channel for an 
80 Hz Doppler frequency and a multiple-access 
interference channel. It can be seen that the new 
adaptive MMSE receiver has an excellent 
performance for combating the effect of MAI.

Q0E-01

8 12 10 20 
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Fig. 4: BER of RAKE receiver in 6 ray COST207 
Rayleigh fading channel (known channel) and 
MAI with power equal to desired user (NLMS 

algorithm ,/d=80 IIz).
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Fig. 5: BER of adaptive MMSE receiver in 6 ray 
COST207 Rayleigh fading channel (known 

channel) and MAI with power equal to desired 
user (NLMS algorithm ,/d=80 Hz).

In a real situation, it is necessary to estimate the 
channel impulse response and use this estimation to 
equalise the effect of the channel. To estimate the 
channel’s parameters, we have used MRC [10] and 
the equalisation is performed by the complex 
conjugate estimate of channel’s impulse response. 
Figure 6 shows die BER performance of die 
adaptive MMSE receiver with an MRC estimate of 
channel impulse response for the 6 tap COST207 
Rayleigh fading channel.
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Fig. 6: BER of adaptive MMSE receiver with 
MRC estimate of channel impulse response in a 6 
ray COST207 Rayleigh fading channel and MAI 

with power equal to desired user (NLMS 
algorithm ,/d=80 IIz).



It is seen that this technique has a good performance 
in high Eb/No- However, this method for estimating 
the channel’s characteristic is sensitive to the noise 
level in the channel.

VI. C O N C L U SIO N S
In a multipath-fading channel, the receiver’s 
performance degrades because of the fast time 
varying environment and the limited convergence 
speed of the adaptive algorithm and there is a trade 
off between the speed of convergence and the 
stability of the adaptive receiver. In this situation, 
we need to use an equaliser to combat the effect of 
time varying channel.

The performance of the adaptive MMSE receiver in 
the multipath fading channel depends on a good 
estimate of the channel impulse response and 
equalisation of channel’s effect on desired signal. In 
this way, Maximal Ratio Combining (MRC) is used 
to estimate the multipath fading channel’s impulse 
response. The results show this technique is very 
effective for rejecting multiple access interference in 
the multipath fading channel but it is sensitive to the 
noise level and it’s performance at high Ej/No is 
better than at low Eb/N0.
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ABSTRACT
The capacity o f direct-sequence code-division multiple- 
access systems is severely limited by multiple access 
interference produced by the other co-channel users. To 
improve the capacity, joint-detection receivers and multi
access interference cancellation techniques have been 
proposed. Frequency-selective multi-path fading, however, 
has a significant effect on the performance o f these types 
o f receiver. This paper presents an adaptive neural- 
network-based receiver that has the capability of 
combating the ‘near-far' problem and rejecting the multi
user interference in a multipath channel. A comparative 
performance analysis o f the conventional matched-filter, a 
RAKE receiver and the adaptive neural network receiver is 
carried out using a Monte Carlo simulation. It is found 
that the new receiver performs extremely well as a sub- 
optimal receiver in multipath and. multiple access channels 
with a significant ‘near-far' effect.

INTRODUCTION
Direct-sequence code-division multiple-access (DS- 
CDMA) is attractive for wireless multiple-access commun
ications because it allows complete frequency re-use in a 
cellular network. Other advantages of the CDMA method 
are * soft-capacity’ and ‘soft-handoff. However, multiple 
access interference (MAI) produced by the other co
channel users is a significant limitation to the capacity of 
conventional CDMA systems. A potential solution to this 
problem is the optimum multi-user detector that consists of 
a bank of matched filters followed by a Viterbi maximum 
likelihood (ML) detector [1]. The computational complex
ity of this detector increases exponentially with the number 
of users however, and the method is extremely complex to 
implement for a realistic number of users. As a consequ
ence, there has been considerable research into sub- 
optimal detectors [2-9]. These detectors achieve significant 
performance gains over the conventional detector without 
the exponential increase in receiver complexity as the

number of users increases. However, their performance 
depends on prior knowledge of various parameters such as 
the received signal amplitude of each signal, their timing, j  

and the cross-correlation performance of the signature 
codes. This information may be available to a base station 
but it is not readily available to the mobile units. Consequ
ently, another important development in multi-user 
detection has been the design of adaptive detectors that 
‘self-tune’ the detector parameters from the observation of 
the received signal [10].

Neural networks have been used for some time for 
the more general problem of interference rejection but it is 
only very recently that the method has been applied to 
MAI cancellation in CDMA receivers. The first paper that 
considered the application of neural network receivers to 
multi-user detection is due to Aazhang , Paris and Orsak 
[11]. They proposed a detection system that used a multi
layer neural network. Miyajima et al [12] proposed a 
Hopfield neural network for multi-user detection that uses 
the likelihood function as the energy function to be 
minimised.

In this paper, a feed-forward adaptive neural network 
receiver is considered for a DS-CDMA system and a 
comparative performance analysis of this system with a 
conventional matched filter receiver with RAKE 
combining is presented using a Monte Carlo simulation. It 
is found that the proposed receiver is able to despread the 
desired signal, suppress the effect of multipath fading, 
reject the MAI, and combat the effects of the ‘near-far’ 
problem due to imperfect power-control. It is found that 
the proposed receiver has excellent performance under 
these different scenarios.

MODEL OF THE CDMA SYSTEM
The block diagram of an asynchronous CDMA system is 
shown in Figure 1. The system model consists of K 
simultaneous users. Each user is assigned a unique 
signature waveform.
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Figure 1: Asynchronous phase-coded CDMA model.

The Z:1*1 user’s signature sequence is ck(t) and consists of 
bipolar chips of duration Tc. The kih user’s transmitted 
signal is:

sk (t) -  %f2dk (t)ck (t)cos{co0t + 6k ) (1)
where dk(t) is a polar data bit with amplitude ± 1  and 
length, Tb. Tb~NTc where N  is the length of the signature 
sequence in chips. The transmitted signal is of the form:

s(')= (2)

In (2), Tk is a random delay that is assumed to be uniformly 
distributed over (0,Tb). The received signal in an AWGN 
channel is of the form:

(3)

where Pk is the received power of the &,h user’s signal. In a 
multipath channel with impulse response, hd(r,t), the 
desired user’s received signal is:

where:
rd ( 0  = sd {t ~ rd )* hd (r;t) + n(t) 

hd (r ;t)^  ^ a ^ y j9iif)S[r - iT c]
j-0

(4)

(5)

In (5), L  is the number of paths, iTc is the excess delay of 
the ith multipath signal relative to the line of sight delay, 
a ft)  is the amplitude of ith multipath signal and $(t) is the 
phase of iih multipath signal.

THE ADAPTIVE NEURAL NETWORK RECEIVER
After converting the received signal to baseband, it is 
passed through a chip malched-filter and sampled at the 
end of every chip interval. These samples are fed into the

tapped delay-line and this converts the serial received 
signal to parallel form. The number of taps in the delay- 
line is equal to the period of the signature waveform, in the 
usual way.

The outputs of the tapped delay-line are fed into the 
input layer of the multi-layer neural network. Let Wu be 
the connection weight from the t,h node in the input layer 
to the /<h node in hidden layer and tpj is a threshold 
associated with the /,b node in hidden layer. The output of 
the /,h node in hidden layer is [13]:

(6)

where Xi is the input signal from rth input node and N  is the 
number of input nodes. f(.) is the activation function which 
has the form:

/(* )  = tanh(x) (7 )

Let Wjj be the connection weight from the /th node in the 
hidden layer to the7 th node in output layer, Oi is the output 
of t h hidden layer and Oj is a threshold associated with the 
/ h node in output layer. The output from the/ 11 output layer
is:

O, (8)

Weights are updated during the training mode via the back 
propagation (BP) algorithm [13], which performs the 
steepest descent on a surface in weight space. For 
example, the weight from the /<h node in the hidden layer to 
th e /h node in the output layer, Wjk is updated as follows:

Wj, (k + 1) = W jl{k )-a  • 8 jt • Ot
(9)

Here, Tt is the desired output and a  is the step size. On the 
other hand, the weight from the ilh node in the input layer 
to the Ith node in the hidden layer, Wtir is updated with <§,■ as 
follows:

< 5 /,= (l-0(2)X ^7« 'y7 (10)

Figure 2, overleaf, shows the structure of adaptive neural 
network receiver,

SIMULATION AND RESULTS 
To verify the ability of the adaptive neural network 
receiver to reject multiple access interference, an adaptive 
receiver with 31 nodes in the input layer, 15 nodes in the 
hidden layer and one node in the output layer was 
simulated. The weights were tuned using the back



propagation algorithm during the initial training mode, 

(input (hidden (output
r(t)

Output

thresh old

a

structure of a node

Figure 2: The structure of two layers adaptive neural 
network receiver

The spreading sequences for all users were chosen from a 
set of Gold codes of length 31 and it was assumed that the 
receiver knew these codes during the training mode.BPSK 
modulation was used for all users. The relative clock 
offset, f*, of all users was chosen to be zero to simulate the 
synchronous mode of operation of the system. For compar
ison, a conventional matched filter receiver with a RAKE 
combiner was also simulated under identical conditions.

Figure 3 shows the sum-squared error of the adaptive 
neural network receiver during the training mode for a 10- 
user scenario for two different step sizes, a .

0.6

stepsize=0.1 
step size=0.01

0.5

U 0.4 -

w 0 .3-

0 .2 -

11 21 31 41 51 61 71 81 911

Iteration Number

Figure 3: Sum-Squared Error (SSE) of the adaptive neural 
network in training mode with 10 users and 31 chips per

bit.

BER of the conventional and adaptive neural network 
receivers in AWGN and a multi-user channel with 10 
active users is shown in Figure 4.
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Figure 4: BER of conventional and adaptive neural 
network receivers in a 10-user multiple access 

channel and Ej/Eb(desired)=6 dB .

The energy of each interfering user is 6 dB more than the 
energy of desired user (representing unequal power 
control). It can be seen that the adaptive neural network 
receiver outperforms the conventional receiver in the 
presence of strong MAI.

Figure 5 shows the performance of the two systems 
under similar conditions to the previous case (i.e. multi
user interference and an AWGN channel with 10 active 
users).

Adaptive Neual Network 

Conventional Receiver

1.00E-01 -

vc
LU
CO

1.00E-02

1.00E-03
-4 -2 0 2 4 6 8 10 12 14 16

Ei/Eb(desired) (dB)

Figure 5: BER of conventional and adaptive neural 
network receivers in a £Near-Far’ environment for a 10- 

user channel and Eb(desired)/N0=6 dB.

In this situation, the sj^stem is stable and with a step size a  In addition, the effect of unequal received power for each
= 0.1, the convergence performance is acceptable. The user, simulating the near-far effect is also considered. In



this situation, the ability of the adaptive neural network 
receiver to reject the effect of other-user interference for a 
wide range of energies for the interfering signals is far 
[better than for the conventional receiver, where accurate 
power control is virtually mandatory'.

In Figure 6, the effect of the number of users on the 
BER is shown for both the adaptive neural network 
receiver and the conventional matched-filter receiver.

1.00E+00 _

Adaptive Neural Network

Conventional Receiver

1.00E-02 -

1.00E-03
200 10 155

Number of users

Figure 6: Bit Error Rate versus number of active user in a 
multiple access channel with Eb(desired)/N0=6 dB and 

Ei/Eb(desired)=6dB.

The conditions are identical for both cases and represent 
multi-user interference and an AWGN channel with 
different numbers of active users and a 6dB ‘near-far’ 
situation. The adaptive neural network receiver has a much 
better performance in combating the effect of increasing 
the number of other users than the conventional matched 
filter receiver, which shows considerable degradation as 
the number of users is increased.

M ULTIPATH FADING CHANNEL 
The multipath channel model used in this paper is a tapped 
delay line of six taps, which is spaced according to the 
GSM channel impulse response. It is assumed that the 
carrier frequency is 900 MHz and the chip-rate of the 
spread-spectrum signal is 3 ,lx l0 6 chips/sec and that each 
delay in the channel model is approximately 0.2 psec. The 
output from each tap is multiplied by a coefficient, which 
represents the average multipath signal strength expected 
at that delay. The weighting factors are chosen from the 
urban impulse response model shown in table 1 of the 
COST 207 model. The outputs from all taps are then added 
together and normalised to provide a specific bit energy.

Figure 7 shows the sum-squared error of the adaptive 
neural network receiver in its training-mode with 10 users 
and a 6-ray multipath channel.

Path 1 2 3 4 5 6
Delay (psec) 0.0 0 2 0.6 1.6 2.4 5

Gain (dB) -3 0 -2 -6 -8 -10

Table 1: Six tap specification for the urban environment.
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Figure 7: Sum-Squared Error (SSE) of adaptive neural 
network CDMA receiver in training mode for a 6-ray 

COST207 multipath channel and 10 users 
(31 chips per bit).

A back propagation training algorithm is used and the step 
size, a ,  is equal to 0.1. It is assumed that the adaptive 
neural network receiver knows only the signature 
waveform of all users and their respective time delays in 
the multipath channel. In this situation the system is stable 
and the convergence performance is good.

The BER performance of the conventional digital 
matched-filter receiver with RAKE combining and the 
adaptive neural network receiver in a 6-ray multipath 
channel are compared in Figure 8 for the case of AWGN 
and a multi-user channel with 10 active users. The energy 
of each interfering user is 6 dB more than the energy of 
desired user. In comparison with the conventional RAKE 
receiver, it can be seen that the adaptive neural network 
receiver has an excellent performance for combating the 
effect of multipath and rejecting the strong MAI. In fact, in 
this situation the adaptive neural network receiver is 
performing three functions. The first is a matched-filter to 
despread the desired user signal. The second is a RAKE 
receiver to collect the energy from the different paths of 
the desired signal in the multipath channel and the third is 
an interference rejection receiver for rejecting other users 
signals in a ‘near-far’ environment.
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Figure 8: BER o f conventional, RAKE and adaptive neural 
network receivers in 6-ray COST207 multipath channel with 10 

user multiple access and Ei/Et,(desired)=6 dB.

CONCLUSIONS
The paper has presented a comparison of the performance 
of an adaptive neural network receiver with a conventional 
digital matched filter receiver with RAKE combining 
investigated through computer simulation. The key feature 
of the comparison is that the new system provides signal 
despreading, combats multipath fading and MAI as well as 
the effect of unequal power control resulting from the 
near-far effect. It is shown that this receiver, through 
training, learns to collect different rays and maximise the 
energy of the desired user and minimise the cross
correlation of other users. The learning speed of adaptive 
neural network receiver is very high and it has extremely 
good stability during the fast training mode. The BER 
performance of this receiver is acceptable for a variety of 
situations of multiple access channels and invariably 
outperforms the conventional digital matched filter 
receiver with RAKE combining.
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Abstract- The capacity of a direct-sequence code-division multiple-access cellular radio system is 
severely degraded by multiple access interference (MAI) produced by other co-channel users. A number 
of methods have been proposed to cancel MAI. The optimum multi-user detector has good performance 
when used in the base station but it has a complexity that grows exponentially with the number of users. 
Currently, it is too complex to implement in commercial systems. The decorrelating receiver has a 
computational complexity that only grows linearly with the number o f users and is one o f a number of 
sub-optimal techniques. The disadvantage of this method is the need for inverting the correlation matrix 
of users’ signatures in real time. In this paper a new neural network receiver is presented which has a low 
computational complexity. It is shown that this receiver has a very good performance in combating the 
effect of co-channel multiple access interference and offers good cellular capacity.

Keywords- CDMA, multimedia system, cellular mobile radio, multi-user detector, neural 
network.

I. INTRODUCTION

Direct-sequence code-division multiple-access 
(DS-CDMA) is attractive for next generation wire
less multiple access communications for a number 
of important operational reasons. It offers the 
prospect of universal frequency reuse, soft 
capacity and soft handover. Through the use of the 
RAKE receiver, the spread-spectrum modulation 
of DS-CDMA can be used to exploit the diversity 
in multipath signals typical of the cellular mobile 
radio channel. It can also provide limited interfer
ence rejection (at the expense of reduced capacity) 
and, in interference limited conditions, the DS- 
CDMA approach can provide improved capacity 
compared with traditional multiple access schemes 
such as frequency division multiple access

(FDMA) and time division multiple access 
(TDMA).

Multiple access interference (MAI) produced by 
the other co-channel Users is a major limitation to 
the capacity of a DS-CDMA system. A potential 
solution to this problem, particularly when used in 
the base station for the reverse channel, is the 
optimum multi-user detector. This consists of a 
bank of matched filters followed by a Viterbi 
maximum likelihood (ML) detector [1] to cancel 
out the effect of MAI. The computational comp
lexity of this detector increases exponentially with 
the number of users however and it is currently 
too complex to implement in commercial systems.
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The decorrelating receiver is one o f  a number o f  
sub-optimal detectors proposed recently to reduce 
the effect o f  MAI. This receiver has a computa
tional complexity which only grows linearly with 
the number o f  users [2,3]. The major disadvantage 
o f this particular receiver, however, is the need for 
inverting the correlation matrix o f  users’ 
signatures in real time.

A particularly interesting method o f  multi-user 
detection, which has the potential for low  comp
utational complexity, is the application o f  neural 
network concepts. The first paper that considered 
the application o f  neural network receivers to 
multi-user detection is due to Aazhang, Paris and 
Orsak [4]. They proposed a detection system that 
uses a multilayer neural network. Miyajima [5] 
proposed a Hopfield neural network for multi-user 
detection that uses the likelihood function as the 
energy function to be minimised.

In this paper, a new neural network receiver with 
low complexity for DS-CDM A systems is invest
igated and a comparative performance analysis 
with the decorrelating receiver is carried out via a 
Monte Carlo simulation.

It is observed that the proposed receiver is able to 
combat the effect o f  MAI and has acceptable 
performance in different scenarios.

The remainder o f  this paper is organised as 
follows. In the following section, the system and 
channel models are described. In section III, the 
neural network receiver’s structure is considered 
and in section IV, results obtained from a simul
ation o f  the system are presented. Section V 
provides some conclusions o f  the study.

II. MODEL OF A SYNCHROUNOUS 
CDMA SYSTEM

The system model consists o f  K  simultaneous 
users, whereby each user is assigned a unique 
signature waveform. The klh user’s signature 
sequence is ck(t) and consists o f  bipolar 
rectangular pulses with a sequence period NTC, 
where N  =Tb /Tc. Tb and Tc are the bit and chip 
periods, respectively. The ktb user’s transmitted 
signal is:

s k ( t ) = j 2 A k d k ck (t)cos(a)O( + 0 k ) (I)

where Ak is the amplitude o f  the carrier signal and 
dk is a polar data bit with amplitude +1 and 
duration Tb. The channel is assumed to be

represented by an AW GN channel shared by all 
the co-channel users. Consequently, the received 
signal is given by:

£
r(l) = Z A kck {t)dk + n{l) (2)

*=1

The simplest CDMA receiver is the conventional 
matched filter that uses a bank o f  matched filters 
for extracting data. The matched filter output is 
given by:

1 T>>
hi.k = —  l c j ( t ) c k ( l ) d t  (3)

l b o

Here, if  i  = k, hl k = 1 and if  i  *  k, Q<h, k< \ .  The 
output o f  the kih user’s correlator for a particular 
bit interval is:

1 T>>
y k = ~ \  K O c k 0t )d t  

l b o
N i Tb

= Ak d k + 'L h i,kAi d i + —  J n (t)ck (t)dt (4)
/=1 *b 0
i*k

= Akd k + M A Ik + z k

In other words, correlation o f  the received signal 
with the £’h user itself gives rise to the recovered 
data term iAkdk), correlation with the other users 
gives rise to multiple access interference (MAIk) 
and correlation with the thermal noise gives rise to 
the noise term zk; It dose not take into account 
other co-channel users and implements a single 
user detector strategy. It is straightforward to 
predict that this type o f  receiver does not have a 
very good performance in multi-user channels.

The optimum receiver is defined as the receiver 
that selects the vector o f  most probable data bits 
for each user {dk(n), 1 < k < K  } given the 
received signal r(t) observed over the interval 
0 < t < Tf,. It consists o f  a bank o f  K  correlators or 

matched filters followed by a detector that 
computes the 2K correlation metrics and selects 
the vector o f  user data bits corresponding to the 
largest correlation metric. To achieve this, 
however, the receiver must have several pieces o f  
knowledge, a priori. It should have knowledge o f  
the all the received signal amplitudes o f  each 
user’s transmission and from this it computes the 
correlation metrics for all 2K possible choices o f  
the bits in the information vector and selects the 
sequence that gives the largest correlation metric.
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This approach is too complex to be im plem ented 
in practice because K  is generally large.

The decorrelating receiver is a sub-optim al 
detector that has a linear computational 
com plexity and can significantly reduce the effect 
o f  MAI [2,3], Equation (4) can be written for all K
users as:

y\ ' 1 *2.1 h K ,  1 Aj 0 . . .

T2
=

*1,2 1
..

. 
o NJ

J ’K _ *A\1 ............. 1 0 .........................

K  K

Ti = 'Lh,.kAid i -\ zi , T2 = Z W ( + z 2 v -

i=l i=l
K

yK = Z h , ,k A,d l + z K (5)
i=l

or in matrix form:

. .  0 ‘ ~ d  i ' Z1
d 2 z 2

+

•. 0 .. 
1

o

I ! N * t

or, equivalently as:

Y = H.A.d + Z (7)

d is the data vector, Z is a noise vector and Y is 
the matched filter output vector. A is a diagonal 
m atrix containing the a priori received am plitudes 
and II is a K xK  correlation matrix that contains 
the values o f  correlations between every pair o f 
codes. Since h, k = hk , ,  II is sym m etric and

invertible for synchronous systems [3]. The 
decorrelating detector applies the inverse o f  H to 
the conventional detector outputs. The estim ate o f 
the data is:

d ^ S g n i IT'Y) = Sgn (A.d+IT'Z)

Sgn (A.d+Z, (8)

As can be seen, the decorrelating receiver 
elim inates the MAI. However, it is clear that it 
needs the inverse o f  the correlation matrix o f 
users’ signatures and the major disadvantage o f 
this receiver is doing this in real time.
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F igurel Block diagram o f the recurrent neural 
network receiver.

III. NEURAL NETW ORK M ULTI
USER D ETECTOR

Figure 1 shows the structure o f  the recurrent 
neural network m ulti-user receiver.

After converting the received signal to baseband, 
it passes through a chip m atched filter and is 
sam pled at the end o f every chip interval. These 
sam ples are fed into a bank o f  m atched filters. The 
number o f matched filters in the filter bank is 
equal to the num ber o f  users, K. The outputs o f  the 
matched filters are sam pled every bit interval and 
are fed into the input o f  the recurrent neural 
network.

The recurrent neural netw ork has a structure that 
consists o f a num ber o f  small non-linear 
processing units. Each unit contains a sum m er and 
a non-linear function. The output o f  each unit is 
fed to all other units via connection weights and 
each unit has an external input. H opfield [6] 
showed that when the connection weights are 
sym metric the dynam ic o f  the recurrent neural 
network always lead to a stable state that the 
energy function E, is minim um.

N i N N

I n  / ,  w ,
z *=i j=i

(9)
*=i

In equation 9, E is energy, Vk is the output o f  k,h 
unit, lk is the external input to klb unit, Tkj is the 
connection weight from j h to k'h unit and N  is the 
num ber o f  units.

By using Ik=2Yk, Vk=Akbk, N=K, and Tkj= -2hkp 
the recurrent neural network structure can be used 
as a multi-user detector in the m ultiple access 
environment.
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IV. SIMULATION AND RESULTS

To verify the ability of neural network receiver in 
multi-user environment and combating the effect 
of co-channel other user interference; recurrent 
neural network, conventional match filter and 
decorrelating receivers have been simulated. The 
spreading sequences for all users were chosen 
(arbitrarily) to be of length 31. Also BPSK 
modulation was used for all users. Recurrent 
neural network receiver uses the cross-correlation 
of user’s signature as parameters in its structure.

The recurrent neural network receiver uses the 
outputs of the bank of matched filters as external 
inputs to the neural network and it also uses the 
cross-correlation of a user’s signature and the 
amplitude of the received signals as parameters in 
its structure. The receiver’s parameters were as 
h=2Yk, Vk=Akbk, N=K, and Tkj=-2hkj. The self
connection factor Tkk was selected zero. Under this 
assumption the system will always have a global 
minimum [7],

The BER performance of the conventional 
matched filter receiver, the decorrelating receiver 
and the neural network receiver are shown in 
figure 2 for an AWGN channel and co-channel 
interference from 6 active users.
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Figure 2 BER of recurrent neural network, 
decorrelating and conventional matched filter 

receivers in AWGN and 6-user CDMA channel.

In this case the received energy per bit is the same 
for each user. It can be seen that the recurrent 
neural network receiver outperforms the 
conventional receiver and the decorrelating 
receiver in rejecting multiple access interference.

Figure 3 shows the ability of the three receivers in 
handling imperfect power control of the various 
users due to the ‘near-far’ effect in the CDMA 
environment. In this case, the Eb(desired)/N0 of the 
wanted signal is set at 6dB whereas all the 
unwanted users have an equal energy per bit, E,. 
As can be seen, the performance of the recurrent 
neural network is substantially better than both the 
conventional matched filter and the decorrelating 
receiver. The lower complexity of recurrent neural 
network receiver makes it attractive for 
implementing in multiple access environments.
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Figure 3 BER of recurrent neural network, 
conventional matched filter and decorrelating 

receivers in 6-user ‘Near-Far’ environment 
(Eb{desired/Nfl 6 dB).

V. CONCLUSION

The performance of a recurrent neural network 
receiver for rejecting the effect of MAI in a ‘Near- 
Far’ multiple access CDMA channel has been 
investigated using a Monte-Carlo simulation. It 
has been shown that this receiver is extremely 
suitable for combating the effect o f co-channel 
interference and is better than both the 
conventional matched filter and the decorrelating 
receivers. In addition the recurrent neural network 
as a ver low implementation complexity. The good 
performance and low implementation complexity 
of recurrent neural network receiver makes it 
attractive for the next generation of wireless 
multimedia systems.
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Abstract: The capacity o f direct-sequence code 
division multiple access systems is interference 
limited, particularly by multiple-access interference 
produced by other co-channel users. The optimum 
multi-user receiver calculates the maximum- 
likelihood ratio o f the detected data for all users 
simultaneously, but it has a complexity that grows 
exponentially with the number o f users. In this 
paper, a neural network approach to multi-user 
detection is considered. It is shown that the 
performance o f this receiver is the same as the 
maximum-likelihood multi-user receiver but it has a 
much lower computational complexity.

I .  I n t r o d u c t io n

Direct-sequence code-division multiple access 
systems (DS-CDMA) are attractive for wireless 
multiple-access communications because they offer 
universal frequency re-use, good performance in 
interference limited conditions and provide a 
flexible- approach to :Wariable 'Tateniata;’However,- 
multiple-access interference (MAI) produced by the 
other co-channel users is a significant limitation to 
the capacity of conventional DS-CDMA systems.

A potential solution to this problem is the 
maximum-likelihood multi-user detector [1]. This 
comprises a bank of matched filters followed by a 
maximum-likelihood detector. Each filter in the 
bank is matched to a particular user’s signature 
waveform and its output is sampled at the data rate. 
The maximum-likelihood estimates of the trans
mitted data sequences are obtained by processing 
the output of the matched filters with a Viterbi 
algorithm [1]. However, the computational 
complexity of this detector increases exponentially 
with the number of users and it is currently too 
complex to implement in commercial systems.

An interesting approach to multi-user detection in 
DS-CDMA communications draws on the concept 
of the neural network. In this paper, we examine the 
use of the neural network from the point of view of

offering low computational complexity. This is 
possible because neural networks use simple non
linear processing units in a powerful parallel 
structure to implement signal-processing functions.

The first paper that considered the application of 
neural network receivers to multi-user detection is 
due to Aazhang et al [2]. They proposed a detection 
system that used a multi-layer neural network. They 
assumed that the signature waveforms were known 
a priori and training sequences were used to ‘train’ 
the neural network to respond appropriately to the 
network inputs from the matched filter outputs. In
[3], a radial basis function neural network was 
proposed for single-user detection and this type of 
neural network was extended to synchronous multi
user detection in [4]. Miyajima et al [5] proposed a 
recurrent neural network for synchronous multi
users detection using the likelihood function as the 
energy function to be minimised. In their approach, 
-the, weights o f ...the network were non-adaptive and 
pre-set to be equal to the cross-correlation of the 
signature waveforms.

In this paper, a low complexity neural network 
receiver for DS-CDMA systems is investigated and 
a comparative performance analysis is carried out 
via Monte Carlo simulation. It is found that if 
additional information concerning the amplitude of 
the receiver signals is incorporated into the neural 
network parameters, the proposed receiver has a 
performance that is virtually indistinguishable from 
the optimum maximum-likelihood multi-user 
receiver when operated in several different multi
user scenarios.

In the next section, the system and channel models 
are described. The maximum-likelihood and the 
recurrent neural network receivers are considered in 
sections III and IV. Section V, presents results 
obtained from a system simulation and Section VI 
provides some conclusions of the study.



II. M o d e l  o f  a  DS-CDMA S y s t e m

The block diagram of an asynchronous CDMA 
system is shown in Figure 1.
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Figure 1: Asynchronous phase-coded CDMA 
model.

The system model consists of K  simultaneous users. 
Each user is assigned a unique signature waveform. 
The kih user’s signature is ck(t) and consists of 
bipolar chips of duration Tc. The kih user’s 
transmitted signal is:

■S* (') = I ^ 4 ( /K ( 'K  (l -;Tj)co<®0 ( t - iT b)+ 0 k) 
/=1

( 1)
where A'k is the amplitude of the kth transmitted 
signal, bk is a polar data bit with amplitude ±1 and 
length, Th = NTC, where N  is the length of the 
signature sequence in chips. L is the number of data 
bits in a data block.

The transmitted signal has the form:

s (t)= 'Z sk{ t - r k) (2)
k=1

In equation (2), rk is a random delay that is assumed 
uniformly distributed over (0,7a).

The demodulated received signal in an AWGN 
channel is of the form:

K ' ) = f i  A  O K  O K  0 -  -  n ) + »0) (3)
k=\i=\

where Ak(i) is the received amplitude of the k!h 
user’s signal for the i h data bit and n(t) is additive 
white Gaussian noise (AWGN), with power 
spectral density, N0/2.

III. T h e  M a x im u m - L ik e l ih o o d  M u l t i 
u s e r  R e c e i v e r

The maximum-likelihood receiver is defined as the 
receiver that selects the most probable sequence of

bits, bk(n), for l<  k< K  and 1< n< L, given the 
received signal r(t) observed over the interval 0 <t 
<LTh+2Th [6], For synchronous data transmission 
and in AWGN, it is sufficient to consider the 
received signal in the time interval 0< t<  7},. Over 
this interval the received signal is:

K 0 =  'LAkbkck (t) + n(t) (4)
*=l

In this case, the maximum-likelihood receiver is 
defined as the receiver that selects the vector of the 
most probable data bits for each user {bk,l<k<K} 
given the received signal r(t) observed over the 
time interval 0<t<Tb [1], The optimum maximum- 
likelihood (ML) receiver computes the log- 
likelihood function A (b) and selects the data bits 
{bk , 1 < k < K )  that minimise A (b) or maximises 
the correlation metrics, C(YK, bx), defined as:

- |2

A e>)= f ‘ r W  -  E  Ak h  ct  (0
k=]

dt (5)

C(Yk,bK) = 2 ^ A kbt y l - Y , Y j AkAj bkbj hj.k (6)
k=1 /=1 *=1

where:

y k = \lb r (fyk (tyt* for \ < k < K
represents the correlation of the received signal r(t) 
with the kih user's signature code and

h jk = Il b c j  (f )°k (*)#, for \ < j , k  < K .......................
is the correlation between code c,(t) and ck(t).

The maximum-likelihood detector has to compute 
the correlation metrics for all 2K possible choices of 
the bits in the information sequence of K  users and 
from this select the sequence that gives the largest 
correlation metrics.

For an asynchronous DS-CDMA system, 2LK 
correlation metrics must be computed to determine 
the K  blocks of sequences, each of which has a 
length, L. This approach is too complex to be 
implemented in practice because K  and L are 
generally large.

IV. T h e  R e c u r r e n t  N e u r a l  N e t w o r k  
M u l t i - U s e r  R e c e i v e r

The recurrent neural network, shown in Figure 2, 
has a structure that consists of a number of small 
non-linear processing units or neurons. Each neuron 
contains a summer and a non-linear function. The 
output of each neuron is fed to all other neurons via 
connection weights. The feedback configuration 
enables the network to store information in a



dynamically stable configuration. Input signals (i.e. 
the outputs from the bank of matched filters) can be 
entered as inputs to the neurons directly, as shown 
in Figure 2, and in this situation the network is able 
to map input patterns to the desired outputs.

The dynamical behaviour of a recurrent neural 
network that includes N  neurons is uniquely 
described by a parameter set {W, I). W={wjj} is an 
N x  N  matrix whose element Wy is the connection 
weights between j h and i h neurons. /={/,} is a 
vector whose element /, is the external input to the 
i,h neuron. An energy function, which is bounded 
from below and is non-increasing when the state of 
network changes [7], can be defined as below:

E ( t ) = A x T(t) W X ( t) - lTX(t) (7)

In equation (7), X(t) = {x,} is a vector, whose 
element x, is the output of the f '  neuron in the 
network. Hopfield [8] showed that when the non
linear functions in each neuron are bounded, 
monotonically increasing, and continuous, and the 
connection weights are symmetric, the dynamic 
behaviour of the recurrent neural network always 
leads to a stable state such that the energy function, 
E, is minimum. Consequently, if the network is 
started in any initial state, it will move in a 
downhill direction of the energy function until it 
reaches a minimum.

The recurrent neural network can be applied to the 
solution of a wide range of optimisation problems 
in signal processing by mapping the function to be 
optimised to the energy function of the neural 
network, which is then minimised.

Making the assumption of symmetrical connection 
weights and using the ability of the recurrent neural 
network to solve the optimisation problem for 
multi-user detection, the energy function described 
by equation (7) can be written as:

.. 1 K K  N
= E  xj{t ) l j  (8)

1 i j  '- - - - - - - - - - -------- ' 7=1

In equation (8), also it is assumed that the self
connection weights, wn, are zero. Under this 
assumption, the state of the network always 
converges to a corner of a hyper-cube where x, has 
the values ±1 [5]. The convergence time of the 
network is very fast but for DS-CDMA 
applications, this increases with the number of 
users.

In order to apply the recurrent neural network to the 
problem of a multi-user detector for a DS-CDMA 
receiver it is necessary to convert the problem from 
a maximisation problem to a minimisation problem. 
The key to doing this lies in defining a new 
correlation metric, C(YK,bK) in such a way that 
maximisation of C(YK,bK) minimises C(YK,bj(). It 
can be shown that:

C W M ^ - C ^ b x )  (9)

By comparing equation (9) with equation (8), it can 
be seen that the maximum-likelihood multi-user 
detector can be implemented by a recurrent neural 
network structure if h=2Y„ Xi=Ajbh N=K,  and w#= 
-2hjj. Thus if the amplitude of the users’ signals are 
known, or can be estimated, this information can be 
passed to the neural network which can then 
implement the ideal maximum likelihood detector.

System Complexity
The maximum-likelihood receiver computes the 
correlation metrics C(YK,bK) in equation (6) for 
different combinations of users’ transmitted bits 
and chooses bk(n), for l < k < K  that maximises 
the correlation metrics. It is clear that in this 
situation the complexity grows exponentially when 
the number of users increases. The number of 
additions and multiplications after the bank of 
matched filters that is needed to compute the 
correlation metrics for implementing the maximum- 
likelihood receiver are 2k(K+2k) additions and 2K 
[4(K/2+2k.)/.multiplications,, where K is the number 
of users.

If the coefficients of the recurrent neural network 
receiver are chosen to be /,=2T„ Xj=Ajbh N=K,  and 
Wjj= -2hjjj as described in the previous section, and 
the self-connection weights w;, are set to zero to 
ensure convergence, a similar estimate of algorithm 
complexity can be carried out for the recurrent 
neural network. Assume that at the beginning of 
each detection period the initial values of the 
outputs of each neuron in the network are chosen to 
be zero. This determines the initial state. In this 
situation, the output values of the neurons are at the 
origin of state space and the speed of convergence 
time is high. The dynamic of the recurrent network 
converges to its steady state at most after K  
iterations. Hence the number of additions and 
multiplications that are required after the bank of 
matched filters to implement the recurrent neural 
network receiver is K2 additions and K3 multiplic
ations. It is clear that the complexity of the 
recurrent neural network grows more slowly than 
the maximum-likelihood receiver when the number



of users is increased. This will have a significant 
impact when the multi-user receiver is implemented 
in hardware.

V. S i m u l a t i o n  a n d  R e s u l t s

Figure 2 shows the structure of the recurrent neural 
network multi-user receiver used at the base-station 
o f a DS-CDMA system. After converting the 
received signal to base-band, it passes through a 
chip-matched filter and is sampled at the end of 
every chip interval. These samples are fed into a 
bank o f matched filters. The number o f matched 
filters in the bank is equal to the number of users. 
The outputs o f the matched filters are sampled at 
every bit interval and fed into the input o f the 
recurrent neural network. The estimated data bit for

the z'th user is denoted, bt .

b a n k  o f  
m a t c h e d  

f il te rs

Figure 2: The structure of recurrent neural 
network receiver in a DS-CDMA system.

To compare the performance o f the recurrent neural 
network multi-user receiver with the maximum- 
likelihood multi-user receiver under the same 
conditions of multi-user interference, both types of 
receiver were modelled by Monte-Carlo simulation.

The performance metric used is the bit error rate 
(BER). The spreading sequences for all users were 
chosen to be o f length 31 and BPSK modulation 
was used for all users. Where appropriate, the 
impact o f imperfect power control on the perform
ance of the two systems was also compared. For 
this type of scenario, the other users are all assumed 
to transmit at powers above that of the desired user.

Because the performance o f the two receivers are 
so close, the results are tabulated rather than plotted 
in graphical form to highlight any small differences

in performance. In the tables, Eh(dcsired) represents 
the energy per bit of the desired user and Ej 
represents the energy per bit o f  each o f the other 
interfering users. It is assumed that each interfering 
user transmits at the same power level.

E bIN0 in 
dB

M axim um -
likelihood
R eceiver

R ecurrent
N eural

N etw ork
-4 0.18640 0.18696
-2 0.13002 0.13028
0 0.07715 0.07723
2 0.03664 0.03669
4 0.01178 0.01179
6 0.00231 0.00231
8 0.00006 0.00006

Table 1: BER of maximum-likelihood and 
recurrent neural network receivers in 6-users 
‘Near-Far’ environment (Ej/Eb(desired)=6 dB).

Table 1 shows the BER of the two receivers as a 
function,of.E;„'d̂ in̂ /N<) in. AWGN for the situation 
where 6-users share the CDMA channel. In this 
case the ‘near-far’ effect is simulated by allowing 
each of other-users to transmit at a power that is 6 
dB higher than the wanted signal power (i.e. E-, 
/Ei)(desiriid) =6 dB). It can be seen the performance of 
the recurrent neural network receiver is the same as 
the maximum-likelihood receiver.

EJEb in 
dB

M axim um -
likelihood
R eceiver

R ecurrent
N eural

N etw ork
2 0.00231 0.00227
4 0.00231 0.00233
6 0.00231 0.00231
8 0.00231 0.00231
10 0.00231 0.00231
42 ---- - 0:9023 i 0.00231
14 0.00231 0.00231

Table 2: BER of maximum-likelihood and 
recurrent neural network receivers in 6-users 

‘Near-Far’ environment (Ei/N o—6 dB).

Table 2 shows the impact o f the ‘near-far’ effect on 
the BER of the wanted user by increasing the ratio 
E /E h(dcsir(.d). In this table, 6-users are assumed to 
share the channel and Eh(dcxired/No=6  dB is set for 
the desired user. The result shows again that the 
performance of the recurrent neural network 
receiver is identical to the maximum-likelihood 
receiver in a ‘Near-Far’ environment.



No. o f  
Users

M axim um -
likelihood
R eceiver

R ecurrent
Neural

N etw ork
2 0.00231 0.00231
4 0.00231 0.00231
6 0.00231 0.00231
8 0.00231 0.00231
10 0.00231 0.00231

Table 3: BER of maximum-likelihood and 
recurrent neural network receivers in ‘Near- 

Far’ environment (.Eb(desired/No=6 dB,
E /E b fd esired ) 6  dB).

Table 3 shows the BER performance of the two 
types of receiver in a ‘near-far’ CDMA environ
ment as a function of the number of users. In this 
scenario, Ei/Eb(desired) = 6dB for each ‘other-user’ 
and Eb(desired)IN0 = 6dB. In this situation the perfor
mance of the recurrent neural network receiver is 
the same as the maximum-likelihood receiver.

The implementation complexity of the two 
receivers as the number of users is varied is shown 
in Table 4. It is clear that as the number of users is 
increased, the difference in implementation 
complexity of the maximum-likelihood and recur
rent neural network receivers becomes large. For 
example in the 6-user scenario, the maximum- 
likelihood receiver needs 4480 additions and 17152 
multiplications, but the recurrent neural network 
needs only 36 additions and 216 multiplications.

No. o f  
Users

M axim um -
likelihood
R eceiver

Recurrent
Neural

Netw ork
2 24X+80Y 4X+8Y
4 320X+

1152Y
16X+64Y

6 4480X+ 36X+
17152Y 216Y

8 67584X+ 64X+
266240Y 512Y

Table 4: Complexity o f maximum-likelihood and 
recurrent neural network receivers in multi-user 

CDMA environment

(X= number of add, Y= number of multiply).

VI. C o n c l u s i o n s

The performance of a recurrent neural network 
receiver for rejecting the effect of MAI in a ‘Near- 
Far’ multiple-access CDMA channel has been 
investigated using a Monte-Carlo simulation. It has

been shown that this type of receiver is extremely 
suitable for combating the effect of co-channel 
multiple access interference and its performance is 
the same as the maximum-likelihood receiver. In 
addition, the implementation complexity of the 
recurrent neural network receiver, especially for the 
case of a large number of users, is considerably 
lower than the maximum-likelihood receiver. The 
good performance and low implementation 
complexity of the recurrent neural network receiver 
makes it attractive for implementation in the next 
generation of wireless mobile systems.
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