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SYNOPSIS

In recent years, the cylindrical dielectric resonator has found 

many practical applications in microwave systems. In order to 

utilise this resonator, the microwave designer needs to be able to 

easily calculate its fundamental resonant frequency, and several 

methods have been developed for this purpose in both the isolated and 

enclosed situations. However, in the important case of the substrate- 

mounted open dielectric resonator, simple, accurate calculations of 

the fundamental resonant frequency have not been possible.

This particular situation for the dielectric resonator is 

examined in this thesis, and, after a review of previous methods used 

to model the dielectric resonator in the three physical situations, 

an integral equation is developed that describes the substrate- 

mounted resonator. Since the solution of this integral equation is 

very difficult, several approximate numerical solution techniques 

are considered. However, these are rejected in favour of a quasi- 

analytical iterative method, which is then demonstrated for the case 

of a monomode dielectric substrate, and the theoretical results are 

shown to be in very good agreement with experimental values for the 

fundamental resonant frequency. Extension of this iterative technique 

to include the continuous modes of the dielectric substrate is then 

considered and shown to be possible.



ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my supervisor,

Professor J.P. McGeehan, and to Professor T.E. Rozzi, for the support 

they have shown, and the guidance they have given, throughout this 

work. I also wish to thank those within Bath University who have 

been prepared to give encouragement, and I particularly wish to thank 

Bernard Wickenden of Plessey Materials Ltd., Towcester, for his help 

in offering the facilities of his test department in order to enable 

me to carry out vital measurements. Finally, I am most grateful 

to the UK Science and Engineering Research Council for the award 

of a research studentship.



CONTENTS

SYNOPSIS i

ACKNOWLEDGEMENTS ii

CONTENTS iii

ABBREVIATIONS vi

LIST OF SYMBOLS vii

1. INTRODUCTION 1

2. HISTORICAL REVIEW OF PREVIOUS WORK 10

3. THE FORMULATION OF AN INTEGRAL EQUATION FOR THE
DIELECTRIC RESONATOR 28

3.1 The Derivation of the Electromagnetic Field
Equations 28

3.1.1 Maxwell’s equations 28

3.1.2 The vector and scalar potentials 31

3.1.3 The transverse electric field 32

3.1.4 The transverse magnetic field 34

3.1.5 The total field equations 36

3.2 Independent and Hybrid Resonant Modes 37

3.3 Transformation of the Differential Scalar
Potential Equation into an Integral Equation 40

3.4 The Green's Function 44

4. DISCUSSION OF TECHNIQUES FOR THE SOLUTION OF THE
SCALAR POTENTIAL INTEGRAL EQUATION 50

4.1 The Homogeneous Fredholm Equation of the Second
Kind 50

4.2 Numerical Approximation Techniques 51

4.2.1 The method of least-squares 53

4.3 Extension of the Numerical Methods to the Three-
Dimensional Case 55

4.4 The Iterative Approach 56

iii



5. THE ITERATIVE SOLUTION 61

5.1 The Trial Function 62

5.1.1 The radial expansion 63

5.1.2 The axial expansion 64

5.1.3 The complete trial function 65

5.2 The Green’s Function 65

5.3 Evaluation of the Volume Integral 69

5.4 Construction of the Iterative Expression 71

5.4.1 The radial sum 71

5.4.2 The axial sum 73

5.5 Calculation of the Resonant Frequency 75

6. EVALUATION OF THE ACCURACY OF THE ITERATIVE SOLUTION 81

6.1 The Itoh Approach 81

6.1.1 Derivation of the coupled eigenvalue
equations according to Itoh's method 83

6.1.2 Solution of the coupled eigenvalue equations 88

6.2 Comparison of Theoretical Results 94

6.3 The Experimental Determination of the
Fundamental Resonant Frequency 97

6.3.1 The grounded dielectric substrate 97

6.3.2 The transmitted power measurement technique 103

6.4 Comparison of Experimental and Theoretical Results 108

6.4.1 The influence of the relative permittivity 111

6.4.2 The influence of the resonator height 112

6.4.3 Summary of results 114

7. THE INTEGRAL OVER THE CONTINUUM 116

7.1 The Integral Equation for the Image Resonator 117

7.2 The Green’s Function 119

7.3 Evaluation of the Volume Integral 121

iv



8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

APPENDIX A The Vector Operator V in Cylindrical 
Co-ordinates

APPENDIX B Consideration of the Surface Integral over the 
Resonator Volume

APPENDIX C Discontinuity of the Potential Functions at 
Dielectric Interfaces

APPENDIX D The Derivation of the y-directed Orthonormal 
Eigenmodes of a Dielectric Slab Waveguide

APPENDIX E The Orthogonality Relations for the y-directed 
Eigenmodes of the Grounded Dielectric Slab

APPENDIX F The Completeness Relationship

APPENDIX G The Analytical Evaluation of the Radial and 
Axial Integrals

127

133

135

145

156

169

174

175

v



ABBREVIATIONS

OCB open circuit boundary 

TE transverse electric to the y-direction

TM transverse magnetic to the y-direction

SUBSCRIPTS

The abbreviations TE and TM have subscripts 1, m, n when 

referring to the independent resonant modes of the cylindrical pillbox 

dielectric resonator. These subscripts indicate, respectively, the 

number of field maxima in the azimuthal, radial and longitudinal 

directions. The subscript n takes the value 6 for certain resonances, 

where 6 represents a field variation of a fraction of a half-wavelength.



LIST OF SYMBOLS

an arbitrary vector 

constants

magnetic flux density

linear combination of cylindrical Bessel functions, 

of order zero and argument z

arbitrary cylindrical Bessel function, of order n

and argument z

constant

coefficient in the Green’s function G(x^x.f)

matrix eigenvector

electric flux density

electric field

Green’s function

Green’s function operator

magnetic field

Hankel function of the second kind, of order n

and argument z

the identity matrix

integrals in the radial direction

integrals in the azimuthal and longitudinal directions,

respectively

cylindrical Bessel function of the first kind, of

order n and argument z

kernel of an integral equation

kernel matrix

kernel operator

modified Hankel function,of order n and argument z 

aximuthal component of the potential function $ 

upper limits of series expansions



N^(z) cylindrical Bessel function of the second kind

(Neumann function), of order n and argument z 

Pn ,Qn coefficients of the radial series expansion in the

trial function 

Q quality factor

R radius of the cylindrical dielectric resonator

R(p) radial component of the potential function $(y)

S surface of a dielectric interface

S(p),S(y) summations in the radial and longitudinal directions

respectively 

V volume

X ,X linear multipliers in the radial and longitudinalP y
directions, respectively 

Y(X,y) y-directed eigenfunction of the continuous modes

of the dielectric slab waveguide 

Yn(y) y-directed eigenfunction of the discrete bound modes

of the dielectric slab waveguide 

Z^Cz) arbitrary cylindrical Bessel function of order n and

argument z 

a,b arbitrary scalars
c series expansion coefficientn
c speed of light in vacuo

d height of the dielectric substrate

f(u) function of the variable u

f fundamental resonant frequencyres
g two-dimensional Green’s function, transverse to the

y-axis

h height of the cylindrical dielectric resonator

i index

viii



index or v^-T (depending on situation) 

wavenumber of free space

y-directed wavenumbers for the discrete and continuous

modes, respectively

y-directed wavenumber

radial wavenumber

outward normal to a surface S

function of the variable u

azimuthal wavenumber

residual of the homogeneous Fredholm equation of the

second kind

indexes

variables

weight function

position vector (p,0,y) of a point in observation space 

position vector (P,,0,,y') of a point in source space 

axial (longitudinal) direction in the cylindrical 

coordinate system

unit vector in the axial direction 

variable

surface boundary 

constants

y-directed vector potential 

constant

y-directed scalar potential function 

y-directed eigenfunction 

constants

radial wavenumber of the trial function 

y-directed wavenumber, in the air region, of the 

discrete slab modes



\ 1 n = m
delta symbol, defined as <

£ 0 n ^ m

Dirac delta function

permittivity (dielectric constant) of a material 

permittivity of free space 

relative permittivity 

normalisation coefficient

azimuthal direction in the cylindrical coordinate system

unit vector in the azimuthal direction

eigenvalue

permeability

permeability of free space 

relative permeability

y-directed wavenumber in the dielectric substrate 

radial direction in the cylindrical coordinate system 

unit vector in the radial direction

y-directed continuum wavenumber in the dielectric slab

summation

arbitrary scalars

y-directed continuum wavenumber in the air region

scalar potential function

angular frequency

vector operator, nabla

Laplacian operator

part of the Laplacian transverse to the y-direction 

nabla operating on the source coordinates x_' 

the inner product of the functions and <}>



Subscripts

a air region

b represents either a, r or s

c continuum

e refers to electric potential

h refers to magnetic potential

i image case

im imaginary component of a complex quantity

m,n indexes of the discrete modes

r resonator region

re real component of a complex quantity

s substrate region

t index

y longitudinal direction

0 azimuthal direction

p radial direction

Superscripts

approximate value 

complex conjugate

the prime is used in two separate ways, always clearly 

distinguished in the thesis. If the prime is the superscript 

on a variable (e.g. x/), then that variable is in source space. 

However, if the prime is the superscript on a function 

(e.g. J^(3np))» then it indicates the first derivative, with 

respect to the argument, of the function. A double prime 

always indicates the second derivative with respect to the 

argument.

xi



CHAPTER 1

INTRODUCTION

In 1939 Richtmyer [1] proposed the concept of the dielectric resonator, 

although it was not until 1968 that the first major application for 

dielectric resonators was developed. In that year, Cohn [2] published 

a paper giving theoretical formulae for the coupling coefficient 

between adjacent magnetic-dipole cylindrical pillbox dielectric resona

tors, for both transverse and axial orientation within a metal waveguide.

He further showed that these formulae enabled waveguide bandpass filters 

to be designed, where the inclusion of dielectric resonators gave rise 

to a typical reduction in size of 95% when compared to conventional 

waveguide filters. However, Cohn also included the caveat that the 

use of dielectric resonators was hindered by the large variation of 

the relative permittivity with temperature that was a feature of the 

dielectric materials at that time, and he predicted that this dis

advantage would be overcome if materials having a temperature coefficient, 

Ae ^ e ^, of less than 50 ppm/°C were developed.

In the early 1970*s, such materials were first produced, and, by 

1979, ceramics were commercially available with temperature coefficients 

in the range -4 to +12 ppm/°C [3]. During the same period, the expan

sion of the communications industry led to the overcrowding of the 

frequency spectrum below 10 GHz, and thus the millimetre-wave region 

became the subject of much interest as a possible communications band.

At such frequencies, the conventional metal waveguiding techniques 

become prohibitively expensive, since the small dimensions require 

extremely tight machining tolerance, and thus new waveguiding mechanisms, 

such as microstrip [4], image guide and insulated image guide [5,6] 

have received much investigation. Moreover, the development of these
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new technologies was hastened by the commercial desire for the production 

of microwave integrated circuits, and, within these new structures, 

which are all constructed using dielectric materials and metal planes, 

the dielectric resonator finds a ready home. For these reasons, and 

particularly due to the advent of temperature-stable ceramics, dielectric 

resonators are now widely used in many different microwave applications.

One of the fundamental building blocks of any communications 

system is the filter, and in this regard the dielectric resonator 

proves very useful. As Cohn showed [2], the size of standard waveguide 

filters can be dramatically reduced through the use of dielectric resona

tors, and Fiedziuszko [7] produced a dual-mode C-band filter, using 

cylindrical dielectric resonators, mounted in metal waveguide, that met 

the typical requirements for satellite use, and yet was only 8% of the 

volume of a comparable metal cavity filter. However, the applicability 

of dielectric resonators is not limited to conventional waveguide filter 

design, and Majewski [8] developed a directional filter using a 

resonator suspended between two microstrip lines, as shown in Figure 1.1, 

which provided band-reject and band-pass characteristics.

Another major use for dielectric resonators is in the stabilisation 

of microwave oscillators, and Podcameni and Bermudez [9] describe one 

particular configuration, shown in Figure 1.2, that can be used to 

control the output frequency of an FET oscillator, while ceramic 

dielectric resonators provide the stability of a Gunn diode in a planned 

microwave radio system to work at 29 GHz [10], Further applications 

for dielectric resonators are found in slow-wave structures [11], up- 

and downconverters [12], and they may also be used as miniature 

replacements for cavity resonators, although very high Q-factors cannot 

be achieved due to the open nature of the resonator surface.
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An obvious consequence of this sudden growth in the practical 

use of the dielectric resonator is that there has been a great need 

for an accurate theoretical model of the resonator, so that design 

procedures may be simplified and standardised. The basic needs of the 

microwave designer using dielectric resonators are to be able to 

accurately predict the fundamental resonant frequency, quality factor, 

and the coupling coefficient of the cylindrical dielectric resonator 

in different circumstances. However, unlike the metal cavity resonator, 

which has a precisely defined modal structure due to its conducting walls, 

the dielectric resonator is an open structure, and its resonances are 

produced by the sudden change in relative permittivity at its surface, 

which has the effect of partially confining the electromagnetic energy. 

It is therefore apparent that the electromagnetic fields within the 

resonator are linked with those outside, and, due to the physical shape 

of the cylindrical pillbox, this has provided great difficulties in 

formulating a theoretical analysis.

In fact, over the past twenty years, much research effort has been 

exercised on the problem of the dielectric resonator, and has concen

trated upon three main configurations for the cylindrical pillbox.

These are the isolated resonator, the substrate-mounted open resonator, 

and the enclosed resonator. The first situation of the isolated 

resonator has received the most attention, and, recently, some 

accurate theoretical models have been developedi [13-15]. However, 

the isolated resonator has no practical applications,and so the 

situation of the enclosed resonator, which has a structure- similar to 

that of shielded microstrip and thus is much more useful, has been the 

subject of several studies. Once again, in recent years, accurate 

solutions have proved possible if the resonator is enclosed in a metal
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waveguide below cut-off [16,17],

However, the remaining structure, where the dielectric resonator 

is placed upon a grounded dielectric substrate, and thus matches the 

physical structures of open microstrip and insulated image guide, has 

received little study. This particular structure, along with having 

numerous practical applications, is also arguably the most interesting 

theoretically, since the propagating modes of the dielectric slab 

waveguide also have to be taken into account. In addition to supporting 

surface waves where the energy is mainly contained within the dielectric 

material, it is well known [18,19] that such a waveguide supports a 

continuous spectrum that represents both radiation modes and evanescent 

waves. However, the inclusion of these continuous modes presents serious 

difficulties,and, although they play only a very minor role in the 

determination of the fundamental resonant frequency of the resonator, 

they are probably the reason why so little research has been undertaken 

on the substrate-mounted resonator. In fact, only one research group [20] 

has provided a working model, and this was very complex and involved a 

very lengthy numerical solution.

In an attempt to remedy this situation, and also due to the strong 

interest into open guiding structures prevailing at the time [5,6], it 

was decided to attempt to formulate an analytical model of the substrate- 

mounted cylindrical pillbox dielectric resonator that was both simple 

to solve, and yet able to provide an accurate prediction for the funda

mental resonant frequency. The method developed is based upon the 

transformation of the differential equation that applies within the 

resonator volume into an integral equation by using the method of 

Green's functions. In fact, although the theory is demonstrated for 

the specific case of the substrate-mounted resonator, the actual method 

is equally applicable to either of the other two resonator configurations
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mentioned above through a judicious choice of the particular Green's 

function employed.

The thesis begins, in chapter 2, with a brief survey of the previous 

techniques used to model the dielectric resonator. In chapter 3, the 

integral equation appropriate for the fundamental resonant mode is 

derived, and in chapbr 4 a survey of possible techniques for the solution 

of this equation is given. This leads to the development of a quasi- 

analytical iterative procedure which is eminently suited to numerical 

solution on a computer, and which is presented in cha^br 5 for the case 

of a dielectric substrate excited into monomode operation.

In chapter 6, the theoretical results obtained for the fundamental 

resonant frequency are analysed, and are compared both with experimental 

values, and also with results obtained from the extension of a previously 

developed theoretical model. Since, as was mentioned above, the complete 

description of the substrate-mounted resonator cannot be achieved with

out considering the continuous spectrum of modes (although, as is shown 

in chapter 6, their inclusion only provides a minor contribution to the 

solution) chapter 7 is devoted to a study of the practical details 

arising from the nature of the continuous spectrum.

In conclusion, chapter 8 summarises the success of this integral 

equation model and of the iterative method employed to solve for the 

fundamental resonant frequency, and also outlines several directions 

in which further work could proceed.
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CHAPTER 2

HISTORICAL REVIEW OF PREVIOUS WORK

The dielectric resonator was first proposed in 1939 by 

Richtmyer [1], who suggested that a suitably shaped dielectric object 

could function as an electrical resonator at microwave frequencies.

He performed his research on resonators positioned in free space, and 

was able to show that such a resonator must radiate a proportion of 

its energy.

Owing to the simplicity of its structure, Richtmyer first analysed 

the spherical dielectric resonator, and he determined its resonant 

frequency by matching expressions obtained for the internal and external 

electric fields at the surface of the sphere. Secondly he studied a 

toroidal dielectric resonator by considering it as a length of cylindrical 

dielectric rod waveguide bent to form a closed ring. Consequently, he 

used the above principle of field matching on the external surface, 

coupled with the condition of phase equality at the two ends of the 

rod, to calculate the resonant frequencies of the structure.

In practice, Richtmyerfs results are of limited use in microwave 

systems, since the spherical and toroidal resonators do not allow easy 

integration into planar structures. In fact, the cylindrical pillbox, 

shown in Figure 2.1, is the most commonly used shape for a dielectric 

resonator, since its flat end faces allow straightforward integration 

into planar systems (e.g. microstrip). Furthermore, its structure 

allows the presence of ©-independent modes such that the resonator 

supports independent transverse electric (TE) and transverse magnetic 

(TM) modes with respect to the cylindrical axis y. Consequently,
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Figure 2.1 The cylindrical pillbox dielectric resonator
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the remainder of this review will be concerned with research carried 

out upon the cylindrical pillbox resonator, and in particular the 

techniques employed to calculate its fundamental resonant frequency.

Although the cylindrical pillbox resonator is convenient 

practically, this is not the case theoretically, since the boundary 

does not coincide with a separable geometry. Thus, early researchers 

[2,3] implemented the open-circuit boundary (OCB) method in order to 

provide approximate calculations of the resonant frequency and quality 

factor (Q) of different resonator modes. This technique, devised by 

Yee [2], used the fact that a surface between air and an imaginary 

magnetic conductor of infinite magnetic conductivity is an open circuit 

(analogous to a short circuit at a perfect electrical conductor). Thus, 

at such a surface, the tangential magnetic and normal electric fields 

are zero.

A resonator made of material with infinite relative dielectric 

constant, E , will satisfy the OCB condition for the electric field 

and thus a resonator of high may be modelled approximately by the 

OCB technique. However, in order to increase the accuracy of the 

theoretical results, Yee found that it was necessary to modify the 

method. Consequently, dependent upon the mode being analysed, either 

the cylindrical or the end surfaces were considered as satisfying 

the magnetic wall conditions, and on the remaining surface boundary 

the tangential fields were matched.

Owing to the nature of the OCB method, Yee analysed dielectric 

resonators situated in free space and made several important 

discoveries relating to the nature of the resonance. Firstly, he 

found that the calculated resonant frequency was complex, indicating 

that the resonator supports damped oscillations, which agrees with

12



Richtmyer's theory that the resonator must radiate some of its 

energy. Secondly, he deduced that the introduction of a metallic 

surface close to the resonator will alter the values of its resonant 

frequencies, and this effect is now widely employed to provide fine 

tuning of dielectric resonators in microwave devices (e.g. filters 

and sources). Yee also calculated that, for a cylindrical pillbox 

resonator, the fundamental mode is determined by the resonator 

dimensions, and that, if the ratio of the diameter to the height is 

greater than unity, the lowest resonant frequency is provided by the 

TEq ^  mode. The subscripts represent the number of field maxima in 

the circumferential, radial, and longitudinal directions respectively, 

and the symbol 6 indicates that in the y-direction the field varies by 

a fraction of a half wavelength.. The theoretical results obtained by 

Yee agree reasonably well with his experimental results, which were 

found by examining resonators placed within metal waveguide, and show 

that the OCB method of analysis gives an approximate solution to the 

determination of the resonant frequency of a cylindrical pillbox 

resonator of high permittivity.

In 1966, Chow [4] presented a method of analysis where he solved 

the problem in two stages. First he calculated, by matching the fields 

on the cylindrical surface, the longitudinal propagation constant of 

a dielectric rod waveguide. Then he considered the resonator as a 

length of dielectric-filled magnetic wall waveguide with a cut-off 

air-filled guide attached to both ends, and, using the value for the 

propagation constant of the rod guide, he constructed expressions for 

the impedances looking either side of the boundary between air and 

dielectric. Resolution of these expressions, under the condition 

that they must be complex conjugates at resonance, led to a trans-
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cendental equation. The solution of this equation provided the 

resonant frequencies of the mode of rutile resonators (e^ = 100)

that were accurate to within about 2% of the measured values.

The next major advance in the theoretical treatment of the dielectric 

resonator was made by Van Bladel [5], who expanded the electric and 

magnetic fields in increasing powers of In the limit as

£r -*■ °°, it was found that only first order terms in the expansion were 

necessary to satisfy the boundary conditions, and that, for infinite 

permittivity, the magnetic wall condition was satisfied by the TMomn 

modes, wherem and n are integers.

Verplanken and Van Bladel [6] proceeded to calculate the

resonant mode of an isolated high permittivity cylindrical ring resonator

(which allows the cylindrical pillbox as a special case). Unfortunately,

they presented no experimental results to substantiate their work.

However, it is known that in practice a resonator does not have

infinite permittivity, and also that the TM modes have an azimuthal r J omn
magnetic field, so that, in general, these modes have a finite tangen

tial magnetic field at the surface of the resonator. Thus the magnetic

wall condition does not hold, and so the results must be inaccurate.

In 1976, Konishi, Hoshino and Utsumi [7] presented a variational 

method for obtaining the resonant frequency of a dielectric pillbox in 

free space. Starting from the magnetic wall solution, an expression 

for the resonant frequency was obtained by variating the surface 

impedance from infinity. The method was applied to the TEq ^  modes 

of the pillbox resonator and comparison with experimental results shows 

that this technique has an error of about 1%, whereas the magnetic

wall model results are shown to deviate from actual values by about 

10%.
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Prior to 1977, all analysis of dielectric resonators had been 

carried out assuming that the resonator was isolated in free space. 

However, such a resonator has no practical use, and thus Itoh and 

Rudokas [8] developed their technique for a pillbox resonator situated 

on a grounded dielectric substrate of relative dielectric constant 

much less than that of the resonator. They used the method first 

developed by Marcatili [9] in order to match the electromagnetic 

field at the resonator surfaces, ignoring both the edge effects and 

the matching between regions of space external to the resonator. This 

matching procedure, based on an assumed exponential field decay outside 

the pillbox, produced two coupled eigenvalue equations, which, for 

the mode of an isolated resonator (a special case of the substrate

mounted resonator), are easily solved.

The TEq ^  resonant frequencies thus obtained agree to within 2% 

of the measured values for high permittivity isolated pillboxes, but 

for lower values of the method becomes increasingly inaccurate as 

the resonator no longer gives good field confinement. For the higher 

modes, and for the practical resonator on a grounded dielectric slab 

waveguide, the coupled equation system becomes rather involved and 

requires extensive computation, and Itoh presents no results for such 

cases.

The method proposed by Guillon and Garault [10] started from the 

magnetic wall model, but, since it is known that this gives only an 

approximate result, they set out to improve the accuracy of the results 

by including field matching on the resonator surfaces. They devised a 

technique that involved a series of calculations on the dielectric 

resonator assuming both perfect and imperfect magnetic walls, and they 

showed that, for the TEq ^  modes of an isolated cylindrical pillbox,
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the method agreed to within 1% of their experimental results. However, 

the technique entailed solving five sets of coupled characteristic 

equations, with each solution being used to set parameters for the 

next set, and thus it was a lengthy and complex procedure.

Guillon and Garault also showed that their method could be adapted 

to solve the shielded resonator problem, as shown in Figure 2.2, which 

is a situation more akin to that found in microstrip circuits. Consequ

ently, several researchers [!!]—[1A] concentrated on discovering methods 

that produced accurate solutions for the resonant frequency of the 

enclosed cylindrical dielectric resonator.

Pospieszalski [11] proposed a technique where a resonator between 

two metal plates was treated as a length of lossless dielectric rod 

waveguide excited in the TEq  ̂ mode surrounded by parallel-plate wave

guide perpendicular to the rod axis. In this axial direction, the 

magnetic field was described by a sinh dependence, and its cross- 

sectional distribution was taken to be that of the TEq  ̂ mode at the cut

off frequency of the dielectric rod. These assumptions led to 

theoretical TEq ^  resonant frequencies that differed from experimental 

values by less than 3.5%, and, for a dielectric pillbox that is in 

contact with the metal plates, the method provided the exact solution.

In 1983, Maystre, Vincent and Mage [12] used a similar procedure 

to Pospieszalski [11], but applied more accurate modal expansions for 

the TEq ^  electric field, and the results they obtained agree to with

in 1% of the experimental values.
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Figure 2.2 The shielded cylindrical dielectric resonator
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A variational approach was used to calculate the TEq ^  resonant 

frequency by Jaworski and Pospieszalski [13]. Green’s function 

equations were set up relating the electric field (in the two regions 

internal and external to the extended cylindrical surface of the 

enclosed resonator) to an unknown longitudinal magnetic field at the 

surface of the pillbox, which was expressed as a sum of the complete 

set of functions satisfying the boundary conditions of the parallel- 

plate waveguide. Matching of the electric field at the boundary 

between the two regions, together with the inclusion of a set of trial 

functions, led to a determinantal equation which was solved to give 

results for the resonant frequency with an error of less than 0.75%.

The accuracy of the result depended upon the number of terms taken in 

the series approximations for the magnetic field and the trial function, 

and, in fact, the computed value converged to the exact solution for 

the fundamental resonant frequency of the dielectric resonator.

It is to be expected that very accurate solutions for the shielded 

resonator can be obtained, since, for a parallel-plate waveguide there 

are no radiation modes. Thus, the resonator problem may be entirely 

described by a complete set of bound modes, and Krupka [14] used such 

a set to solve the problem using the Rayleigh-Ritz variational procedure. 

This gave answers as accurate as those obtained by Jaworski [13] and 

Maystre [12], but with greater ease of computation.

Whilst the research described above was being conducted on the 

enclosed dielectric resonator, many workers continued to examine the 

more complex situation of the open resonator, which, due to its 

radiative nature, cannot be accurately modelled by a complete set of 

bound modes within the resonator. The method applied by Verplanken 

and Van Bladel [15] was based upon the latter’s original work [5],
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which was extended in order to analyse the TEq ^  modes of an isolated 

dielectric ring resonator, as shown in Figure 2.3. Field equations 

were set up for an unknown function proportional to the azimuthal 

electric field, and the method of finite elements was applied to the 

solution of these equations.

The cylindrical pillbox resonator is seen to be a special case of

the ring resonator, and the results presented for the pillbox were

shown to be correct, to within the limits of experimental accuracy, for

high values of but as the permittivity decreases the error in the

results increases and, for a pillbox with £r = 35, the difference

between experimental and theoretical values reaches 7%. The explanation

of this behaviour is found in the fact that, as in [5], a series

expansion in increasing powers of 1/Vef.was used to define the boundary

conditions, and thus the results are valid in the limit as £ -*■ 00.r
A further reason for the inaccuracy is that, in order to solve the 

problem, the authors imposed a condition on the far-field behaviour 

that excluded analysis of the radiation field.

A useful by-product of Verplanken and Van Bladel’s approach was 

that they were able to determine the TEq ^  field pattern for the 

isolated dielectric pillbox resonator. Consequently, they showed very 

clearly that the electric and magnetic fields are not confined to the 

resonator volume, but in fact penetrate into all regions of space in 

the vicinity of the pillbox.

A new approach was provided by Gelin, Toutain, Kennis, and 

Citerne [16] in which they considered the dielectric pillbox resonator 

to be a length of dielectric rod waveguide sandwiched between two 

discontinuities. In this way they were able to analyse both the 

isolated resonator and the substrate-mounted resonator by simply
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Figure 2.3 Cross-section of the isolated dielectric 
ring resonator
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varying one of the discontinuity conditions. The first step was to 

analyse each interface by transforming (using orthogonality properties) 

the relations obtained from field matching into coupled singular integral 

equations. The resonator problem was then solved by studying the inter

action between two such discontinuities.

However, the full rigorous solution would have necessitated 

excessive computation time due to the excitation of continuous modes 

at each discontinuity. Thus, on the basis of results from the previous 

analyses of the individual interfaces, it was judged that little error 

would be introduced by neglecting the coupling from the continuum to 

the reflected guided mode at the discontinuities.

The results thus obtained for the TEq ^  resonant frequency of the 

isolated resonator agreed well with those given by Guillon and 

Garault [10], particularly when the permittivity is high. It was also 

shown that the error between experimental and theoretical values was 

less than 3% for both isolated and substrate-mounted resonators 

excited in the TEq ^  mode. The method is equally applicable to the 

TMoifi mo(*e an(* some unsubstantiated theoretical results for the 

isolated pillbox were presented. For the TM excitation, however, it 

was shown that, near the cut-off frequency of the rod, a significant 

amount of the guided mode energy is coupled to the radiation modes at 

an interface. Consequently, the lowest transverse magnetic mode 

(TMoig) has a low value of Q, and calculation of its resonant frequency 

will be inaccurate if the continuum modes are ignored.

In 1982, Tsuji, Shigesawa, Aoki and Takiyama [17] described a 

method of analysis for the substrate-mounted resonator. Since the 

cylindrical pillbox does not coincide with a separable geometry, it
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was decided to divide the problem into two separate regions, with the 

boundary being the extended cylindrical surface of the resonator. The 

two regions were then treated as independent multi-layer dielectric 

slab radial waveguides. The field components were expressed in terms 

of the TE and TM propagating surface wave modes of the individual 

slab waveguides, and these fields were matched at the interfaces 

between the dielectric layers, and the resulting system of equations 

was solved by matching the fields on the cylindrical surface. However, 

the contributions due to the radiation modes were neglected in the 

field equations, which were, necessarily, truncated infinite expansions, 

and so the continuity relations could never be satisfied. Therefore, 

the resonant frequency was calculated by minimising the mean of the 

square of the consequent error.

Tsuji et al. investigated experimentally the resonances of poly

ethylene disc resonators. The relative permittivity of polyethylene 

is about 2.28, and, consequently, such resonators only provide very

weak field confinement if they resonate in the lower modes (i.e. TE ,3 omn
TMomn )* Accordingly, thin cylindrical discs of large radii (35-90 mm) 

were excited so that there were many field maxima in the azimuthal 

direction. Such modes are inevitably hybrid and results for the H E ^ ^  modes 

(v > 49) were presented, and very good agreement between theory and 

practice was demonstrated.

A few months later, another paper was published by Tsuji, Shigesawa 

and Takiyama [18] where a similar method was employed to investigate 

the 0-independent modes of cylindrical pillbox resonators. This timef 

however, an isolated resonator was studied using the spherical co

ordinate system. The problem was divided into two regions, interior 

and exterior to the resonator, and the fields in each area were
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expanded in terms of solutions to Helmholtzfs equation. As before, 

the boundary conditions on the resonator surface could not be satisfied 

by the chosen field expansions, and so the resonant frequency was 

determined by minimising the mean-square error.

Theoretical results were presented for both the TEq ^  and 

modes of an isolated dielectric resonator. The TEq ^  mode results 

were demonstrated to be in very good agreement with those presented 

by Konishi [7], and the TM excitation results were shown to agree with 

those of Gelin et al. [16] and also with results obtained using 

Van Bladel's model [5], A further paper [19] was published by Tsuji 

et al. in which experimental results were compared with the theoretical 

results obtained by the method of [18], Agreement for the TEq ^  mode 

was better than 0.5%, but it was not possible to measure the 

resonance since this mode has a very low Q-factor (Q - 8). Experimental 

and theoretical results were also compared for a number of hybrid modes,

and again agreement was very good (< 1% error).

The method proposed by Van Bladel [5], [6], [15] suffered from the 

major drawback that it is only valid in the limit as ■+ °°. In 1984 

De Smedt [20] managed to extend the limit of applicability of this 

perturbational approach by including higher order terms in the series 

expansion of the fields in terms of 1/VE^. The work was carried out 

for an isolated resonator, and results were compared with those given 

by Tsuji et al. [18] for a cylindrical pillbox, and, for > 25, the

difference in the TEq ^  resonant frequency was claimed to be less

than 0.1%.

The most recent approach used to solve the problem of the 

isolated dielectric resonator was derived by Glisson, Kajfez, and 

James [21],[22], The electromagnetic fields were expressed in terms
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of surface electric and magnetic currents and coupled integral 

equations were then derived by imposing the condition of continuity 

of the tangential fields at the resonator surface. Application of the 

method of moments to the two coupled equations led to a set of simul

taneous equations, the solution of which provided the resonant frequency. 

Results were given for the two lowest 0-independent modes and for three 

hybrid modes. Comparison with experimental results for an isolated 

cylindrical pillbox made of material with a relative permittivity of 38 

showed that the technique provides very accurate values for the resonant 

frequency, the least accurate being the mode with an error of 1%.

In conclusion, it has been shown that, over the past twenty years, 

much research effort has been exercised in order to obtain an accurate 

theoretical model of the cylindrical pillbox dielectric resonator. In 

two physical situations, namely the enclosed resonator and the isolated 

resonator, this research has met with great success, and several 

techniques exist for accurate calculation of the fundamental resonant 

frequency [12-14,19-21],

However, the more general case of the dielectric resonator 

situated upon a dielectric substrate (which requires consideration of 

the radiation modes, and allows the isolated resonator as a special 

case) has largely been ignored. To date, only two analytical methods 

[8,16] have been developed,for this resonator, and, in fact, only 

Gelin et al.[16] actually present any theoretical results. These 

results were obtained by a long and complex procedure, and, for the 

two situations considered, were accurate to within 3% of the experi

mental values. Consequently, the research presented in this thesis 

addressed itself to the general case of the substrate-mounted cylindrical 

dielectric resonator, with the aim of producing a simple, yet accurate, 

theoretical model.
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CHAPTER 3

THE FORMULATION OF AN INTEGRAL EQUATION FOR THE DIELECTRIC RESONATOR

This thesis is concerned with the study of the cylindrical pill

box dielectric resonator mounted on a grounded dielectric substrate, 

as shown in Figure 3.1, and in particular with the determination of 

the fundamental resonant frequency of such a structure, which is 

dependent upon the constituent materials and their dimensions. In 

order to solve this problem, it is necessary to analyse the nature of 

the various dielectric materials, and, specifically, the effects 

caused by the dielectric interfaces, which serve to determine the 

electromagnetic field structure.

In this chapter, this analysis is carried out in terms of two 

unknown independent scalar potential functions, and the work begins 

by deriving equations for the electric and magnetic fields in terms of 

these potentials. Then, for each potential function, the resulting 

three differential equations, which are linked through the boundary 

conditions, are transformed, using a Green*s function approach, into 

an integral equation. Finally, the appropriate Green's function for 

the grounded dielectric slab waveguide is derived.

3.1 The Derivation of the Electromagnetic Field Equations

3.1.1 Maxwell's equations

In a source-free, uniform region of space, the electric and 

magnetic fields, given by IS and II respectively, must satisfy Maxwell's 

equations,

9B
V x E = - t-—  (3.1a)
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Figure 3.1 The cylindrical pillbox dielectric resonator 
mounted upon a grounded dielectric substrate
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3D
V x H  = ^  (3.1b)

V . D = 0 (3.1c)

V . B = 0 (3.Id)

where the electric flux density, D, and the magnetic flux density, 15, 

are defined by the constitutive relations

D = e E (3.2a)

B = y H (3.2b)

The parameters £ and JJ are known respectively as the permittivity 

and permeability of the region, and are defined as

e = erel eQ (3.3a)

U = Wrel U0 (3.3b)

where £q , are constants known respectively as the permittivity and 

permeability of free space. The relative permittivity, ere^» anc* the 

relative permeability, lire^, take values dependent upon the constit

uent material of the region under consideration, and, for all the 

dielectric materials considered in this thesis, U ^ is always unity, 

and the symbol is therefore not included in the subsequent analysis.

Without loss of generality, it is convenient to assume a time 

dependence of the form exp(jcot) for the electromagnetic fields 

(which, henceforward, will be suppressed for brevity) and thus 

equations (3.1) become

V x E = - (3.4a)

V x H = juje E (3.4b)

V . I S  = 0 (3.4c)

V . H = 0 (3.4d)
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where use of equations (3.2) and (3.3) has been made, and U) is the 

angular frequency.

The reduced Maxwells equations (3.4) are independent of the 

choice of co-ordinate system. However, consideration of the physical 

shape of the substrate-mounted dielectric resonator (shown in Figure 

3.1) indicates that solution in cylindrical co-ordinate geometry would 

be prudent, and the relevant properties of the operator V in this system 

are given in Appendix A, together with a summary of some of the 

important vector identities involving V.

3.1.2 The vector and scalar potentials

It is well known [1-3] that the cylindrical dielectric pillbox

resonator supports independent transverse electric and transverse 

magnetic field structures with respect to the axial direction, y. It 

is therefore desirable to be able to formulate the following theory 

in such a manner that these independent modes may be analysed 

separately, and this may be achieved by introducing two unknown, 

independent vector potential functions.

The vector identity given in equation (A.12) states that the 

divergence of the curl of any vector is identically zero. Consequently, 

defining the electric and magnetic fields as

E = V x l ^  (3.5a)

H = V x H (3.5b)—  — e

where 1^, 11̂  are known as the electric and magnetic vector potentials 

respectively, satisfies the equations (3.4c) and (3.4d). Furthermore# 

it is found that the desired independent modes are provided by choosing 

the vector potentials to be polarised in the axial direction, so that
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II = y (3.6a)—e e ‘

IIjj = y (3.6b)

where y is a unit vector in the y-direction, and ip and ip, are electric J J e h
and magnetic scalar potentials, respectively.

It is important to note that the introduction of these unknown 

vector potentials is a mathematical device employed both to simplify 

the theoretical analysis, and to generate separate solutions for the 

two independent families of transverse modes. Substitution of 

equations (3.5) in the reduced Maxwell’s equations (3.4) leads to two 

differential equations that must be solved for the scalar potentials 

ipe and ip̂ , and, once these have been determined, the electromagnetic 

fields are easily found.

3.1.3 The transverse electric field

Considering only the magnetic vector potential, 11̂ , the electric 

field within a uniform region of space is given by equation (3.5a)

E = V x l b  (3.7)

and thus equation (3.4b) may be written as

V x II = jcoe (V x j y  (3.8)

Recognising that £ is constant in a uniform region of space, the

vector identities (A.13) and (A.8) enable equation (3.8) to be re

arranged, to give

V x (H - jcoeiy = 0 (3.9)

and equation (A.11) states that the curl of the gradient of any scalar 

is identically equal to zero, so that it is possible to write

H - = - Vt (3.10)
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where t is an arbitrary scalar. The magnetic field is therefore given 

by

I  = jwellb - Vt (3.11)

It is clear that the expressions (3.7) and (3.11), for the 

electric and magnetic fields respectively, have now been obtained in 

terms of an unknown magnetic vector potential, 1]̂ , and an arbitrary 

scalar, I. Substitution of these relations in the hitherto unused 

equation (3.4a) leads to the relationship

V x V x = - ju)Uo (jcoen^ - Vt ) (3.12)

which may be expanded to give

V x V x n, = £ n k2 n, + iioy Vt (3.13)-ti rel o -Ti J o

where the wavenumber of free space, kQ , is defined as

k = Se U ' u) (3.14)o o o

and 0) is the angular frequency. The vector identity (A.10) states 

that, for any vector Â,

V x V x A = V(V.A) - V2A (3.15)

and thus equation (3.13) becomes

V(V.IL) _ v 2IL = e -.k2!!, + Vt (3.16)“ -4i rel o^h J o

The introduction of the magnetic vector potential, Jl̂ , in equation 

(3.5a) was in terms of its curl alone, and so it is now possible to 

define its divergence as

V . = jwyQT (3.17)

and, since jwUo is constant, equation (3.16) becomes
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V 2JL + £ k2!!, = 0-ti rel crti (3.18)

and the magnetic field is now given by

2  -  v ( v - 4 > (3.19)

Substitution of equation (3.6b) into equation (3.18) yields the 

magnetic scalar potential differential equation

V2i|J. + C ,k2tp. = 0 (3.20)h rel o h

and use of equation (3.6b) in equations (3.7) and (3.19), combined 

with expansion of the divergence and curl operations in cylindrical 

co-ordinates, gives the relations

3ik
E = p

H =

1
p ' 30 + 0 3p

-1 .

r

A
V i k " h A

+ e fi 8\ 1 A [ 8\
n ,

P 3p3y p 303y
• m

+ y
-3 y 2

(3.21)

+ e ,k2\k rel o h C

where p, 0, y are unit vectors in the radial, azimuthal and axial 

directions respectively.

Examination of equation (3.21) shows that there is no electric 

field component in the axial direction, and thus the magnetic vector 

potential has produced a field transverse electric to the y-direction.

3.1.4 The transverse magnetic field

In order to derive the transverse magnetic field components, it 

is necessary to consider the electric vector potential, n^, and thus, 

within a uniform region of space, the magnetic field is given by 

equation (3.5b)

H = V x n (3.23)

.22)
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and equation (3.4a) may now be written as

V x E = - V x (3.24)

which is rearranged to give

V x (E + j w u ^ )  = 0 (3.25)

Following a similar procedure to that used in obtaining the TE field, 

the electric field is written, in terms of the electric vector 

potential and an arbitrary scalar (J), as

E = - j + V<t> (3.26)

Substitution of equations (3.23) and (3.26) into equation (3.4b) 

yields

V x V x 11̂  = jo)c(- + V(J)) (3.27)

which, after defining the divergence of the electric vector potential 

as

V . = ju)£(J) (3.28)

becomes

V 2n + e ,k2n = 0 (3.29)— e rel o— e

and the electric field is now given by the relationship

E = - J(4i n + V(V.II ) (3.30)—  O-e JU)£ — e

Expansion of the vector potential, n^, in terms of the electric 

scalar potential gives the differential equation
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V 21|> + e ,k2ip = 0 (3.31)e rel o e

and the electromagnetic fields satisfy the following relations,

32\l>
E = ju)£

•
‘ ' A 1 ^ e "

r

p 3p3y + 0 p 303y
A

+ y
. 3y

H = p Ip ’ 30 + e
3^(
3p

—  + e n k2il;
2 rel o e

(3.32)

(3.33)

and it is clear from equation (3.33) that there is no magnetic field 

in the axial direction, and thus the electric vector potential, 11̂ , 

has produced a TM field structure.

3.1.5 The total field equations

In practice, many resonator modes do not have a transverse 

polarisation, but actually have six field components. However, it is 

known [4] that any arbitrary field in a homogeneous, source-free 

region can be expressed as the sum of a TE and a TM field. Consequently, 

the general field components in cylindrical co-ordinates are given by,

i . ? ! h  i
p 30 jiue 3p3y (3.34a)

3ip
3p

h 1 +
32ib

j(ue p 303y (3.34b)

3y2
+ £ T k 2vp rel oTe (3.34c)
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H = -i 8\  i 34)
+ —3p3y p 30 (3.34d)

= -1 1 3 24\_ 34)

ja)yQ p 303y 3p (3.34e)

3 24)

. 9y
—  + e -ik2iph 2 rel o h (3.34f)

where the electric and magnetic potentials both satisfy the differential 

equation

7\ , h  + W ^ e . h  - 0 <3 -35>

and inspection of equation (3.34c) shows that the reason for calling 

the electric vector potential is because any axial electric field 

is derived solely from it. Similarly, any axial magnetic field is 

derived solely from the magnetic vector potential.

3.2 Independent and Hybrid Resonant Modes

The work detailed previously in this chapter applies to any

uniform, source-free spatial domain, and it has been shown that the

electromagnetic field components may be obtained by solving the

differential scalar potential equation (3.35). Examination of

the configuration of the substrate-mounted cylindrical pillbox

dielectric resonator, shown in Figure 3.1, shows that the structure

consists of a resonator, of relative permittivity placed upon a

grounded dielectric substrate, of relative permittivity e , surroundeds
by air. Thus, in the half-space above the metal boundary, there are 

three uniform regions, which are linked by the following conditions
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of field continuity at their interfaces

H  x n x E2 (3.36a)

n_ .
—  • — 2 (3.36b)

ii x II ̂ (3.36c)

n_ .
-  * - 2 (3.36d)

where the subscripts 1 and 2 refer to the two regions adjacent to 

the interface, and n_ is the unit vector normal to this interface. 

Moreover, on the ground plane, the additional boundary conditions,

must be satisfied.

Thus far in the analysis, the electric and magnetic scalar 

potentials have only had to satisfy the differential equation (3.35), 

and, consequently, there has been no visible difference between them. 

However, the presence of independent transverse electric and transverse 

magnetic resonator modes, as well as the hybrid modes, is explained 

by the above boundary conditions. The two scalar potentials may be 

considered independently, and they generate transverse electric 

and transverse magnetic field structures, in any region of space, 

according to the equations (3.34). It is apparent, from these 

equations, that the scalar potentials produce the electric and 

magnetic field components in different manners, and, consequently, 

the boundary conditions (3.36) and (3.37) must be satisfied in

n x E = 0 (3.37a)

n . H = 0 (3.37b)
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dissimilar fashion, leading to different solutions for the magnetic 

and electric scalar potentials.

It is found that only certain electromagnetic field structures, 

known as modes, can satisfy these boundary conditions, and each mode 

has a particular resonant frequency associated with it. Consequently, 

the magnetic and electric scalar potentials can each produce many 

different TE and TM modes, respectively. Within each family of 

transverse modes, the resonant frequencies must all be different, 

but there is the possibility that separate TE and TM modes may have 

identical resonant frequencies. In fact, owing to the cylindrical 

shape of the dielectric resonator, this is a common situation, and, 

at such a resonant frequency the resonator supports both a TE and a 

TM mode. When the boundary conditions can only be satisfied by a 

combination of both, then a hybrid mode results.

However, there are a number of independent TE and TM modes, and, 

most importantly, the independent TEq ^  mode has the lowest resonant 

frequency. In many practical circuits involving dielectric resonators, 

it is this fundamental TEq ^  mode that is excited, and thus it is 

necessary to develop an accurate theoretical model in order to 

predict the resonant frequency of this fundamental mode. Consequently, 

the research detailed in this thesis has been directed at this part

icular goal, and the electric and magnetic potentials are treated 

together until the application of the boundary conditions causes 

the analysis to concentrate on the magnetic scalar potential alone. 

However, the solution technique adopted is not confined to the TE 

modes alone, but can equally well be applied to the TM modes.
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3.3 Transformation of the Differential Scalar Potential Equation
into an Integral Equation

Within the three uniform regions of the substrate-mounted 

cylindrical dielectric resonator, the differential equation (3.35) 

must be satisfied. Thus, the following equations apply,

V2\t> (x) + £ k 2\Jj (x) = 0 in the resonator (3.38a)r —  r o r —

V2\p (x) + e k 2\Jj (x) = 0 in the air (3.38b)a —  a o a ~

V2ip (jc) + e k 2\p (jc) = 0 in the substrate (3.38c)S S O S

where the subscripts r, a, s refer to the resonator, air, and substrate 

regions, respectively, and the vector represents the point (p,0,y) 

in cylindrical co-ordinates. In order to simplify the terminology in 

the subsequent analysis, the subscripts e and h have been omitted from 

the symbol \J) whilst the theoretical treatment is identical for both 

potential functions.

The electromagnetic field within the substrate-mounted cylindrical 

dielectic resonator may be determined by solving equations (3.38) in 

each of the three regions, and then applying the boundary conditions

(3.36) and (3.37) to the resulting potential functions, and this 

process also determines the resonant frequency of the structure. 

Unfortunately, it is found in practice that the solution of these 

boundary conditions presents great difficulty, since the physical 

structure does not coincide with a separable geometry. However, this 

dilemma can be overcome by transforming the differential problem into 

an integral equation , which includes these boundary conditions.

Thus, the solution of one equation gives the transverse mode field 

structure, and also the resonant frequency, of the substrate-mounted 

cylindrical dielectric resonator.
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In order to effect the transformation to an integral equation, 4^

which is valid inside the resonator. Examination of this equation 

shows that the left hand side is identical in form to equation (3.38b), 

and so it is seen that equation (3.39) is an inhomogeneous form of the 

differential scalar potential equation (3.38b) in the air region. It 

is also noted, from equation- (3.39), that the resonator may be 

considered mathematically as a source, of strength (e ^ - )k^4)^(2L)»

above a grounded dielectric slab, and this fact suggests that the 

method of Green's functions [5-7] might prove helpful in determining 

the resonant frequency and the potential function, i]̂ .

In the Green's function approach, the problem is solved by finding 

the effect of a unit source at any point, and then the general solution 

is written as a superposition of such sources representing the actual 

source function. Considering the homogeneous case of the grounded 

dielectric slab waveguide, the Green's function, G(.x,x/), is defined 

to be the potential function at an observation point, x , caused by a 

unit source located at the point x '. Thus, the Green's function must 

satisfy the equations (3.38b) and (3.38c) at all points, except at 

the source point, x.', where its second derivative is discontinuous by 

the strength of the unit source. Consequently, the Green's function 

must satisfy the following relations

it is necessary to add the term e k 2ip (jc) to both sides of equation 

(3.38a), yielding the relationship

V2ip (x) + e k2\p (x) = - (£ - £ )k2\p (x) (3.39)r —  a o r  —  r a o r  —a o r

V2G (x,x*) + e k 2G (xtx *) = - 6(x. - x.') in the slab (3.40a)S S O S

V2G (x.,x/) + £ k 2G (*,*') = - 6(x. ” i * ) the air (3.40b)3 3 0 3 "3 0 3
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where the Dirac delta function is defined by the relationship

frtf6(jc - x')f(x)dV = *
f(x/) x 1 in region V

(3.41)
0 x 1 not in region V

for any function f(x_). Furthermore, the Green's functions G (.x»x.!)s
and G (x.,x_f) must also be such that the continuity relations (3.36) and a
(3.37) are satisfied on the boundaries of the dielectric slab.

The analysis proceeds by multiplying equation (3.39) by G (x,x') 

and equation (3.40b) by ^r(.x)» which gives the equations

Ga(2L»2Lf )V2iDr(2L) + eakoGa0L»2L,)^r(i) = “ (er _ ea)k*Ga(x.,xf )ipr(.x)

(3.42a)

and

ip (x)V2G (x,x/) + e (x)G (x,x.f) = - \p (x)6(x - x f) (3.42b)I a a U I a L

Using the symmetrical nature of the Green's function, the source and 

observation points are now interchanged, and equation (3.42b) is sub

tracted from equation (3.42a). The result of this operation is then 

integrated over the volume of the resonator, with respect to the 

source co-ordinates, to give the relationship

fff\p (x) = (e - e )k III G (x,x )ip (x )dVr —  r a o * 9 ̂  a —  —  r —resonator

* fff [G (x,x' )V (x') - ip (x')V G (x,x') ] dV' a —  —  o r —  r —  o aresonator

(3.43)

where means the Laplacian, V2, operating on the source co-ordinates. 

The second integral in equation (3.43) may be converted to a surface 

integral by using Green's second identity, which states that

fff (aV’b - bV2a)dV = ff (a f  - b |&) dS (3.44)
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where a and b are scalars and n is the outward normal to the surface S 

enclosing the volume V. Consequently, the integral equation (3.A3) 

becomes

fff^r(x) = (er - O kn JJJ )̂ r(2Lf)dVr —  r a o  * * a ---- r —resonator

f f  3<1) (x') 3G (x,x')
+ J J  [Ga(x,x’) — -------- <l>r(x') — 2------ ] dS'

resonator 3nf 3n^
boundary

(3.45)

where 3/3n^ represents the derivative with respect to the normal to the 

resonator surface, and is to be taken in the source variable, x/.

In Appendix B, the physical interpretation of the volume and 

surface integrals is discussed, and it is found that the expected 

differences between the TE and TM solutions are contained within the 

surface integral. It is discovered, upon expanding this surface 

integral, that the electric potential, satisfies a much more complex 

integral equation than does the magnetic potential, 4^, for which case 

most of the constituent terms of the surface integral vanish. Further

more, it is shown in Appendix C that the boundary conditions on the 

resonator cannot be satisfied by a transverse resonant mode, except 

in the special case of no 0-dependence, and thus, in the general case, 

six field components are necessary to match the electric and magnetic 

fields over the boundary, and so the resonant modes are hybrid.

However, the TE and TM modes are capable of independently omn omn r

satisfying the boundary conditions, which is convenient since this 

research is directed towards finding the solution for the TEq ^  mode.

It is also shown, in Appendix B, that the surface integral accounts 

for the contribution of charge induced on the dielectric interfaces 

by the equivalent sources within the resonator. Therefore, the

43



contribution of the surface integral is second order with respect to 

the volume integral. This fact, together with the knowledge that the 

magnetic potential does not have any contributions from some of the 

dielectric interfaces, suggests that the TEq ^  mode may be solved, 

without introducing much error, by considering the reduced integral 

equation

resonator

where the Green’s function, G (x^x.’)» for the grounded dielectric slaba
waveguide is derived below in the cylindrical co-ordinate system.

3.4 The Green’s Function

It was shown in section 3.3 that the Green’s function used to 

obtain the integral equation (3.46) is the Green’s function valid in 

the air region above a grounded dielectric slab waveguide, as shown in 

Figure 3.2. It is evident that, as the slab waveguide is only bounded 

in the y-direction, it is convenient to derive the Green’s function by 

first removing the y-dependence in order to leave a two-dimensional 

Green's function problem.

The desired Green’s function for the dielectric slab waveguide 

must satisfy equation (3.40)

where the subscript b either takes the value a or s dependent upon the 

vertical position under consideration. Since the cylindrical co

ordinate system is separable, the three-dimensional delta function 

may be written as a product of three one-dimensional delta functions, 

so that equation (3.47) becomes

V2Gb(£,x’) + ebk^Gb(x,x') = - 6(x - x') (3.47)
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Figure 3.2 The grounded dielectric slab waveguide
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(v* + —  + ebk p c b(x.x’) = - £  6(p - p')6(6 - 0 ’)6(y - y')
3y

(3.48)

where V2 is that part of the Laplacian, V2, transverse to the y-direction.

In order to remove the y-dependence of equation (3.48) it is 

necessary to use the completeness relationship, which states that a 

delta function may be expanded in terms of a complete set of orthogonal 

eigenfunctions in the relevant direction. The y-directed orthonormal 

eigenfunctions for the dielectric slab waveguide are determined in 

Appendix D, and consist of both a discrete set of bound modes, Yn (y), 

which are known as surface waves since their energy is confined to the 

vicinity of the slab, and a continuous spectrum of radiation modes,

Y(x,y), of wavenumber X» which have no restriction on their energy 

distribution. The form of these discrete and continuous eigenfunctions , 

for both TM and TE polarisations, are given in Tables D.l and D.2, 

respectively, where the multiplicative constants have been chosen 

such that the eigenmodes are normalised to unity over the range of y.

The completeness relationship using the above orthonormal functions 

is derived in Appendix F, and is found to be

6(y - y') = wb(y') Z Y (y ) Y ( y ’) + f  Y(X,y)Y(X,y')dX 
n *o

(3.49)

where the weight factor w(y’) arises from the Sturm-Liouville equation, 

as shown in Appendix E, and takes the value 

1 for TE modes
wb(y') =<

1/e, for TM modesb
(3.50)

Utilising the separable nature of the Helmholtz equation in 

cylindrical co-ordinates, the y-directed component of the Green’s

46



function is now written as the expansion of the delta function 

6(y - y'), as given in equation (3.49), and tables (D.l) and (D.2) 

show that equation (3.48) becomes

S »b(y')yy)V>') (VJ + £bko - k£n) gn(p.p';e,e')

f W (y,)Y(x,y)Y(x,y') (7* + e.k* - k? ) g (p,p';0,0')dX

n 

+

= - i  6(p - p')6(0 - 9 ’)6(y - y') (3.51)

where g(p,p';0,0') is the two-dimensional Green's function transverse 

to the y-direction, and k^n and k^c are the y-directed wavenumbers for 

the discrete and continuous modes respectively. Substitution of 

equation (3.49) in the right hand side of equation (3.51), and use of 

the orthogonality relationships given in Appendix E, gives the results

Ym (y) (V* + k£m ) gB(p,p,;0,0,> = - t  6(p - p')6(6 - 6') Yffl(y)

(3.52a)

Y(x'.y) (7* + k£c) gc(p,p,;0,0') = - t 6(p - p’)6(0 - 0’) Y(X'.y)

(3.52b)

where

k2 = £,k2 - kf (3.53a)pm b o bm

k2 = e, k2 - kI (3.53b)pc b o be

Equating the coefficients of Ym (y), and of Y(x*,y)t leads to the two- 

dimensional Green's function equation

(7* + k*)g(p,p':e,e') = - I  6(p - p')6(0 - 6') (3.54)

where the radial wavenumber depends upon the y-directed wavenumber 

under consideration. Harrington [8] gives the solution for equation 

(3.54) as
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g (p ,p ’ ;0 , e ' )  = - i j  H<2) (kp |p -  p ’ l ) (3.55)

where H^2(j[) is the Hankel function of the second kind of order zero 

and argument x, and which represents outward travelling waves.

The desired Greenfs function for the dielectric slab waveguide 

is therefore found to be

Gk (2L»2L' ) =
wb(y’)

Z H (2) (k |p - p'|)Y (y)Y (y1) o pn 1 n w  n Jn
r < x >f ho2) ( kpc | p - P , l ) M (x , y ' ) 4 x (3

where Yn (y) and Y(X»y) are given in Tables (D.l) and (D.2) for the 

TM and TE modes respectively.

.56)
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CHAPTER 4

DISCUSSION OF TECHNIQUES FOR THE SOLUTION OF THE 
SCALAR POTENTIAL INTEGRAL EQUATION

The scalar potential integral equation developed in chapter 3, 

and given by equation (3.46) as

- (£r - ea >ko fff (4a)resonator

is a particular type of integral equation known as a homogeneous 

Fredholm equation of the second kind. This chapter starts with a 

brief discussion of the properties of this type of equation in one- 

dimension, followed by a short survey of several numerical methods dev

eloped to provide approximate solutions. The application of these 

techniques to the integral equation (4.1) is then considered, and a 

further solution, based on a quasi-analytical iterative procedure, is 

presented.

4.1 The Homogeneous Fredholm Equation of the Second Kind

An equation in which an unknown function appears under an 

integral sign is known as an integral equation, and the Fredholm 

equation of the second kind is defined to be an integral equation where 

the unknown function, represented by f in the following discussion, 

also appears as the result of the integration. The general form of 

this type of equation is given by

f(u) = p(u) + K f K(u,v)f(v)dv (4.2)
*a

where p(u) is a known function, K(u,v) is known as the kernel of the 

integral equation, and K is a parameter whose significance will soon 

become apparent.

50



If the function p(u) is set to zero, then the homogeneous form 

of equation (4.2) is obtained,

r bf(u) = K I K(u,v)f(v)dv (4.3)
-'a

and it is apparent that this equation has the trivial solution f = 0. 

Obviously, such solutions have no importance, and thus the unknown 

function, f, is given by the non-trivial solutions to equation (4.3), 

which may be rewritten, in operator form, as

Xf = Kf (4.4)

where X = K  ̂ and 

b
dv K(u,v) (4.5)

Equation (4.4) is an eigenvalue equation, and any non-trivial solution, 

f, is known as an eigenfunction, corresponding to a particular eigen

value, X. In general, it is found that these eigenvalues are complex 

and the eigenvalue with the largest magnitude is known as the 

dominant eigenvalue.

Since the analytic solution of equation (4.3) is often not easily 

determined, several numerical techniques have been developed in order 

to find an approximate value for the dominant eigenvalue and its 

associated eigenfunction.

4.2 Numerical Approximation Techniques

The numerical methods developed for solving the integral equation 

(4.3) all involve expanding the unknown function, f, as a finite series 

approximation, and may be divided broadly into two classifications [1] 

depending upon the form of the expansion. The first type of numerical 

solution, which includes both the quadrature and product-integration
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methods, removes the difficulties introduced by the integration of f by 

replacing this integral with the calculation'of a finite summation. However,

the second category, which includes the collocation and Galerkin methods, 

uses a different approach where only the unknown function, f, is 

approximated by a set of pre-selected basis functions.

Despite the apparent differences between these two classes of 

numerical solution, all of the four methods mentioned above generate 

matrix eigenvalue equations of the form

(K - Al)C = 0 (4.6)

where 1̂ is the identity matrix and the tilde indicates that the unknown 

eigenvalue, A, and eigenvector, Ĉ, will be obtained as approximations 

to their true values. The differences between these numerical methods 

are found in the manner in which the matrix K_ is generated from the 

kernel, K(u,v), of the integral equation, and in the relationship 

between the unknown function, f, and the eigenvector, C .

Equation (4.6) is a standard matrix eigenvalue problem which

only gives a non-trivial solution if the matrix (j( - AJE) is

singular. Therefore, the approximate eigenvalues, A, may be calculated 

by solving the determinant equation

det(K - XI) = 0 (4.7)

A#
and the corresponding eigenfunctions, C, may then be determined by 

solving the coupled equation set represented by the matrix equation 

(4.6).

Owing to the nature of these numerical techniques, the solutions 

obtained for the eigenvalues, and their associated eigenfunctions, of 

the integral equation (4.3) are necessarily approximate. In each of
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the techniques, the unknown function is replaced by an expansion, and 

therefore it is seen that the accuracy of the approximate solution for 

f increases if the number of terms, N, in the series expansion is 

increased. Furthermore, as N is increased, the accuracy of the 

approximation of the dominant eigenvalue is also increased.

Nevertheless, it is apparent that a major disadvantage of these 

numerical methods is that any results obtained are only approximations. 

However, one method of improving the accuracy of the results, without 

incurring the computational complexities associated with large N, is 

to use one of the numerical methods mentioned above to provide an 

approximate solution, and then to use the method of least-squares.

4.2.1 The method of least-squares

This numerical technique can best be explained by considering the 

residual, r(f,u), which is defined to be

Evidently the integral equation (4.3) is satisfied when r(f,u) is 

identically equal to zero for all u, and, in order to best approximate 

this condition, this technique minimises, in the least-squares sense, 

the value of the residual over the whole range of integration [a,b].

The method of least-squares starts with an approximate eigen-
AT

function, f(u), and proceeds to minimise the inner product,

where the bar represents the complex conjugate of the function, in
A*

order to obtain an approximate eigenvalue, A. Since the residual is 

the difference of two functions, the inner product is expanded to give

r(f,u)
a

K(u,v)f(v)dv - Af(u) (4.8)
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** ** ****** ****** | *# I rs **
(r,r) = (Kf.Kf) - X(f,Kf) - A(Kf,f) + |A |2 (f,f) (4.10)

where the symbol K represents the integral operator as defined in 

equation (4.5).

In general, the eigenvalue X is complex, and thus equation (4.10) 

may be written as

(r,r) = (Kf.Kf) - (a + j8)(f,Kf) - (a - jBXKf.f) + (a2 + B2)(f,f)

In order that the value of X minimises the inner product, (r,r), it 

is necessary that

Confirmation that this value of X does indeed minimise (rather

than maximise) the residual in the least-squares sense is provided by

examining the second differential of the inner product with respect to
**

the eigenvalue, at the value of X given in equation (4.15). It is seen 

from equation (4.11), that

(A.11)

where the eigenvalue is defined to be
**

X = a + jB (4.12)

(4.13)

and consequently, it is found that
** ** * w

(f.Kf) + (Kf.f)
(f.f)

(4.14a)

and
** ** *# **

(f.Kf) - (Kf.f) 
** **

(f.f)
(4.14b)

and therefore the value of X is given by

X
** **

(Kf.f) ** ** 
(f.f)

(4.15)
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—  [(r,r)]
3B2

2(f,f) = 2  f |f(u)|2 du
a

(4.16)

and since this is always positive, the eigenvalue given by

f b /*b — —  ^
I I f(u)K(u,v)f(v) dudv

b If(u)I 2 du
(4-17)

does minimise the residual in the least-squares sense.

If the kernel, K(u,v), is either complex symmetric or Hermitian,

and is square integrable, then it is shown in reference [2] that

equation (4.17) is a variational expression, where, for an error 6f in
«*#

the approximate solution f, the eigenvalue has an error proportional

to |6f|2. Consequently, if an approximation to the true eigenfunction,

f, has been obtained with an error of 10%, then use of equation (4.17)
0*0

to calculate a value for X will result in an approximation to the true 

eigenvalue with an error of only 1%.

4.3 Extension of the Numerical Methods to the Three-Dimensional Case 

All of the numerical methods covered in the preceding section 

have been described in connection with the solution of the homogeneous 

Fredholm equation of the second kind in one dimension, but, in fact, the 

variables x and x' in the scalar potential integral equation (4.1) 

each represent a point in three-dimensional space. Thus, equation (4.1) 

may be rewritten as

resonator

^r(p' ,e\y') p'dp’de’dy1 (4.18)
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In practice, each of the one-dimensional numerical methods can 

be extended to cover the three-dimensional case, and it is seen that 

the calculation of the dominant, or largest, eigenvalue would produce 

the desired fundamental, or lowest, resonant frequency. However, it 

is found that the degree of complexity of the approximations rises

very rapidly with regard to the number of dimensions.

Although modern computers can handle multi-dimensional matrices 

and vectors with little difficulty, the combination of expansions 

required to derive a three-dimensional matrix equation is difficult 

to physically comprehend. For example, applying three separate 

quadrature rules to equation (4.18) would lead to a six-dimensional 

matrix for the Green’s function. Furthermore, if an expansion method 

were employed, the resulting matrix, K, would require a triple integral, 

involving the Green's function, to be performed for each of its 

components.

Owing to the complexity of the implementation of these numerical 

method?, it was decided to attempt to seek a solution to the integral 

equation (4.18) by using a more analytical evaluation of the integrals

by means of an iterative procedure.

4.4 The Iterative Approach

One of the properties of the homogeneous Fredholm equation of the 

second kind is that the kernel acts as a smoothing operator, having 

the effect of smoothing out any discontinuity, or roughness, in the 

function upon which it operates. A consequence of this effect is that 

a test function which undergoes the integral operation described by 

equation (4.18) will emerge as a better representation of the true 

solution, ^r(.x). This principle has been used in several iterative 

methods [3,4] for solving the one-dimensional Fredholm equation of the
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second kind, but these standard techniques suffer from the drawback 

that the results that are obtained for the eigenfunction contain the 

eigenvalue as a parameter. Thus, in practice, these methods are

needs to be determined.

A further disadvantage of the above standard iterative techniques 

is that each successive iteration produces a new approximation in a 

different analytic form from the previous one. This effect is most

as the correct solution is approached. Consequently, these iterative 

procedures are not well-suited to quasi-analytic implementation on a 

computer, and need to be implemented either manually or completely 

numerically. However, it is apparent that a quasi-analytic iterative 

technique suitable for computer implementation may be devised if it 

is possible to produce successive trial functions that have the same 

basic form, and the method described below has this property.

The integral equation (4.18) may rewritten, in iterative format,

as

of orthonormal basis functions in the radial and axial directions.

employed when the eigenvalue is known, and only the eigenfunction

pronounced at the start of the iterative procedure, but has less impact

resonator

(4.19)

where the trial function [ipr(2L) 3n constructed from independent sets

Inspection of equation (4.19) shows that, if [ ^ ( x / )] were the exact 

scalar potential function, then evaluation of the integral

I (4.20)
resonator
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would produce a linear multiple of the function [^r(x/)] but transformed 

from source space into observation space. Furthermore, this linear 

multiplier is equal to the eigenvalue [(^r - ea )k*]

Considering now the original choice of trial function, [^(x.*) ]Q » 

it is clear that performing the integral defined in equation (4.20) will 

produce a new function that, generally speaking, bears little resemblance 

to the original. However, using orthogonality principles, this new 

function may be re-expressed in terms of the original basis functions , 

but with altered coefficients. After normalising this new trial function, 

the above process may be iterated until the change in successive trial 

functions becomes purely linear. At this point, the trial function is 

a good representation of the desired scalar potential, and, since the 

Green’s function G (x^x/) is symmetric, it is known [5] that the linear 

multiplication factor yields the dominant eigenvalue, from which the 

fundamental resonant frequency may be calculated.

It is seen from the above discussion that a quasi-analytic. iterative 

procedure has been developed to solve equation (4.1) for both the 

fundamental TEq ^  resonant frequency, and for the associated magnetic 

scalar potential function. Furthermore, by a process of constructing 

orthonormal trial functions that are orthogonal to any previously 

determined eigenfunctions, the higher order TEQmn resonant modes may 

also be determined, as shown in reference [6],

Although this iterative method requires the analytical evaluation 

of the integral given in equation (4.20), which is by no means simple, 

the extra work involved in constructing this solution is far out

weighed by the subsequent simplicity of the numerical computational 

procedure required to give the fundamental resonant frequency.

Moreover, comparison with the other solution techniques discussed in
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this chapter clearly shows the advantages of the iterative approach, 

in that it provides accurate solutions for the fundamental resonant 

frequency and is also easily implemented on a numerical computer.
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CHAPTER 5

THE ITERATIVE SOLUTION

In chapter 3, the magnetic scalar potential function within a 

cylindrical pillbox dielectric resonator, which is situated upon a 

grounded dielectric substrate, was found to satisfy the integral 

equation (3.46)

In order to solve this equation to give the fundamental resonant 

frequency of the dielectric resonator, an iterative method was 

described in chapter 4 which was based upon the analytical evaluation 

of the integral given in equation (5.1). However, in practice the

over the resonator volume difficult to perform, and many different 

approaches were considered before the method described below was 

developed.

This chapter describes the process used to formulate the iterative 

relationship, and starts with a discussion of the choice of the trial 

function, followed by the determination of the exact form of the 

Green's function. Then the major steps undertaken in the analytical 

evaluation of the integral are given, before detailing the procedure 

used to re-express the result of this integration back in terms of 

the original trial function. Finally, the chapter concludes with 

an explanation of the computational process used to calculate the 

fundamental resonant frequency.

resonator

nature of the Green's function, G (xtx '), makes this integration3
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5.1 The Trial Function

It was shown, in chapter 4, that, if an orthonormal series 

expansion is used to construct a trial function for the magnetic 

potential, then repeated application of the integral given in equation 

(5.1) will eventually transform this trial function into the correct 

form for This process may therefore be used to determine the

magnetic potential function, and hence the electromagnetic field 

structure within the resonator, but, more importantly, it may be 

used to determine the fundamental resonant frequency of the dielectric 

resonator.

In order to produce the desired result, it is evidently approp

riate to choose a trial function that is based upon the expected form 

of the TEq ^  scalar potential function, which has zero variation in the 

azimuthal direction, a sinusoidal variation in the axial direction, 

and a distribution in the radial direction based upon the Bessel 

function of the first kind of order zero. The principle of operation 

of the iterative procedure is that orthonormal series expansions are 

constructed in both the radial and axial directions, the coefficients 

of which are initially set to unity. Evaluation of the integral 

of equation (5.1) upon this trial function yields new values for 

these coefficients, which are then normalised, and this process is 

repeated until only a linear change is detected between two success

ive trial functions. At this point the correct form of the magnetic 

scalar potential function has been produced, and the linear multiplier 

may be used to calculate the resonant frequency.

62



5.1.1 The radial expansion

Since the expected form of the magnetic scalar potential function 

in the radial direction is that of a zero order Bessel function, it 

is prudent to choose an expansion in terms of such Bessel functions. 

Therefore, the series needs to be constructed from zero order 

Bessel functions of varying argument, which must be orthogonal over 

the resonator volume in the manner

rfRI p1 J (3 P')J (3 pf)dpf=n2<5 , <5 =J o n o m n n m  nm ,
y o (^0 n t m

1 n = m
(5.2)

where ri2 i s  th e  norm o f th e  B essel fu n c t io n  J (3  P f ) .  I t  i s  known n o n

[1 ]  th a t  any two B essel fu n c tio n s  Z ^ (a x ) and B^(Yx ) s a t is f y  th e  

in d e f in i t e  in t e g r a l

! (Yx)Z (ax)B (yx) - (ax)Z .(ax)^ (y x )
x Z (ax)B (Yx)dx =  P 2--------------- E------- E----  (5.3)

P P (a2 - y 2)

and thus equation (5.2) becomes

(3R)J.(8E)J(BR) - (3 R)J (B R)J.(PR) n l n o m  m o n l m  _ 2= n 26 (5.4)
( 3 2 -  3 2 ) n nm

It is apparent that, if the values of 3^ are now chosen to be zeros 

of either J (z) or J^(z), then equation (5.4) is satisfied if n ^ m, 

whilst, if n = m, the equation (5.2) becomes

f p'[J0(Bnp')]2dp' = n2 (5.5)
o

which gives the norm of ^0 (3np f) as

< = f  t J0 ( 6 „ R ) ]2 ( 5 . 6 )
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Returning to the choice of the wavenumber, 8» it is seen that it is 

not prudent to set the values of 8rR as the zeros of Jq (z ), since then 

the trial function would be forced to zero on the circumference of 

the resonator, which is known not to be the case for the mode.

Consequently, the wavenumbers are chosen to satisfy

to calculate $n> and realising that JQ(0) = 1» the series expansion

zero (which also satisfies equation (5.7), even though z = 0 is not

Therefore the orthonormal trial function in the radial direction 

is chosen to be

5.1.2 The axial expansion

In the y-direction, the magnetic potential has a sinusoidal 

distribution, and orthogonality is necessary over the height of the 

resonator. Thus, the trial function in the axial direction is chosen 

to be the Fourier series

J j CBj R) = 0 (5.7)

where the index n indicates that the n ^  zero of J^(z) is to be taken

is generalised by the inclusion of a constant by choosing 8q to be

normally regarded as one of the zeros of J^(z)).

n=0 ^n

N P J (8 p')£ n o v n ' (5.8)

where the coefficients, P , are initially set at unity.

f
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where A and B are the coefficients, and the multiplying factors m m  ’ r J °
l//h and /2/h' arise from the normalisation of the sinusoids over the 

resonator height.

5.1.3 The complete trial function

In the 0-direction there is no variation in the potential function, 

and thus the complete trial function is given by multiplying the two 

expansions (5.8) and (5.9) together, so that

N P J (8 P ’). / in t~> n o  n
> ■ 1 — ----------n=0 a  ',hC.

M
£ A cosi mm=l i

+ B sin m in [ 2m7T (y’ - d)
] ] J

(5.10)

Theoretically, the limits N and M should be infinite, but in practice 

this is impossible to compute, and thus the series are truncated to a 

point where the loss of further terms does not significantly affect 

the computed result.

5.2 The Green’s Function

In section 3.A, the Green’s function for the air region above 

a grounded dielectric slab waveguide was derived, and was found to be 

given by equation (3.56)

G (x,x’) = f r  < I H (2)(k |p - p'|) Y (y)Y (y')a —  —  3 I n ° Pn ^ n J n J

C 00 *j o pel? - P'l) Y(X,y)Y(X,y')dX > (5.11)

where the eigenfunctions Yfi(y) and Y(X,y) are given in Tables D.l and 

D.2 of Appendix D for the TM and TE modes, respectively, and the radial 

wavenumbers are related to those in the axial direction by
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(5.12)

The solution of the integral equation (5.1) with the full Green’s 

function given by equation (5.11) is extremely complicated, and there-

function for an initial attempt at the solution. Considering the two 

eigenfunctions, Y^(y) and Y(X»y)» it is shown in Appendix D that the 

continuum modes represent the energy that is radiated away from the 

dielectric slab, while the discrete modes describe most of the energy 

that remains confined to the dielectric region and its immediate 

neighbourhood. Consequently, since a dielectric resonator has the 

property that it stores electromagnetic energy at certain resonant 

frequencies, it is seen that the discrete modes, Yn(y), will be much 

more important than the continuum in the determination of the resonant 

frequency. This conclusion is also justified by the fact that no 

previous research has considered these continuum modes, and yet accurate 

results for the resonant frequency have been obtained. Therefore, as 

an initial attempt to solve the integral equation (5.1), only the 

discrete modes will be considered, and the problem of the continuum 

modes will be returned to in chapter 7.

In Appendix D it is shown that the discrete y-directed wave- 

numbers satisfy the transcendental equations

fore it is advisable to seek a simplified version of this Green’s

(k d) tan (k d) = — - (yd) TM modes yn yn e 'na
(5.13a)

(k d) cot (k d) = - (y d) TE modesyn yn 'n (5.13b)

and are also related by the equation

(kynd )2 + (Ynd)2 = (eB - ea)(kod)* (5.13c)
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where k is the wavenumber in the slab, and Y the wavenumber in the yn n
air.

These equations (5.13) are shown graphically in Figure 5.1 for a

grounded polystyrene slab (£re^ - 2.5) of thickness 1 mm. The

circular loci represent equation (5.13c) for constant values of the

free-space wavenumber, kQ , and the number of transcendental curves

that are intersected determines the number of TM and TE modes that

exist at that frequency. Moreover, the intersection points give the

values of k and y for each mode. It is therefore clear from yn n
Figure 5.1 that only one TM mode exists on the grounded polystyrene 

slab up to a frequency in excess of 30 GHz. Since the fundamental 

resonant frequencies of the dielectric resonators to be studied are 

expected to lie in the X-band (8.0 - 12.5 GHz) region, it is seen 

that the Green’s function can be further simplified, without any reduction 

in accuracy, by considering this particular polystyrene substrate, so 

that only the first TM mode needs to be considered. Thus, according 

to Table D.l, the required Green’s function is given by

Ga (*•*.') “ Cg exp[- Y(y - d)]H^2\ k p |p - P'I)exp[- Y(y' - d)]

(5.14)

where C is given by

C JL
2

cos2 (k d) 
 2__ (5.15)g

and y and k^ are determined by the frequency under consideration, 

through equations (5.13a and c).
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TM modes 
TE mode
locus of constant k

90 GHz3ti/A

31 GHztt/A

-tt/2

Figure 5.1 Graphical solution for the propagating modes 
in a 1 mm thick grounded polystyrene slab
<Erel ‘ 2 '5)
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5.3 Evaluation of the Volume Integral

The integral equation (5.1) may be expanded, by substituting 

equations (5.14) and (5.10) for the Green?s function and the magnetic 

potential, respectively, to give

^hr(x) = (er - ea^koCg eXpl" Y ŷ “*

HQ2^ kplp ~ P ’|)exP[" Y(y* " d)] . Z 7T

Iffresonator
N P
n n o n n= 0  n

C a
i

~k

+ Bm sin (y» _ d)]

J

U v ’ (5.16)

As it stands, the integration in equation (5.16) is complicated by the 

argument of the Hankel function containing a modulus. Harrington [2] 

gives the addition theorem for such a Hankel function as

Ho2 )(kp |p ' p,|) Z exp[jt(0 
t=-«>

- 6’)] <H(t2 )(kpp')Jt(kpp) p < p 

L Jt(kpp')H(t2 )(kpp) p > p

(5

and so equation (5.16) becomes

00

\ U) = (e_ - ef,)kf!C0 exp[- Y(y - d)] Z exp(jte) H ^ ( k  p) .nr r a o g t=-®> P

Iffresonator
exp(-jt6 ’)Jfc(k p’ )exp[-y(y1 - d)].

<1'hr(P')'1,hr(y,)dV' p1 < p . (5.18a)

\ r(i) = (er " ea k̂oCg expt" Y ŷ “ 2 exP(jt0) Jt(kDp) •

iff t=-°°

exp(-jte') H<2>(kp') exp[-Y(y' - d)].
resonator



Initially, the use of the addition theorem (5.17) does not appear 

to give much advantage, for, although the integration is rather less 

complicated, there is now an infinite summation, and the integral 

equation has been split into two integral equations under different 

conditions. However, the volume integral is separable into three 

integrals over the radial, azimuthal and axial co-ordinates respectively, 

and it transpires that it is expedient to consider the azimuthal integral 

first.

It is seen from equations (5.18) that the integral involving 0' 

is common to both integral equations, and is given by

which removes the infinite summation from equations (5.18).

The analytical evaluation of the radial and axial integrals is 

rather involved, and the procedure is shown in Appendix G. It is 

found that the two separate equations (5.18a and b) may be combined 

together, and the results of the independent radial and axial integrals 

are given by equations (G.14) and (G.19) respectively, and thus the 

magnetic scalar potential ^^(.2.) is

Ie o
(5.19)

This is a straightforward integral, and application of L ’Hopital's 

rule gives the result

r 2tt t = 0
<

0 t ^ 0
(5.20)
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5.4 Construction of the Iterative Expression

In order to solve the resonator problem using the iterative method, 

it is now necessary to re-express equation (5.21) in terms of the orig

inal trial function with new values for the original coefficients P ,

A and 6  . m m

Since the trial function was chosen to consist of series of 

functions that are orthogonal over the dimensions of the resonator, it 

is possible to construct the new functions in equation (5.21) oat of 

the original functions by the method of Fourier series.

5.4.1 The radial sum

The radial sum in equation (5.21) is 

N P
S(p) = r  y  [f- J (6 p) - (k R)J (3 R) .n=0 nn(e£ - k*) " 0 n P O n

H^2 )( k R ) J o(kpp)] (5.22)

from which it is seen that the difficulty in re-expressing S(p) as a

new set of \h (p), given by equation (5.8), arises from the term hr
J (k p). However, since it is an even function, J (k p) may be o p o pK J

written as



In order to determine the values of the coefficients ct> the ortho

gonality property of the series is utilised, so that

/.
R

pJo(kpp)Jo(3 sp)dp = C (3 p)dpof PJ i o f  o 'o

N f R
+ I c I pJo(3tP)Jo(3sP)dp (5.24) 

t=l 'o

where s takes one of the values of t > 0 .

Using the equations (G.3), (5.2), (5.6) and (5.7), equation (5.24) 

reduces to

■R
S  I- [W » ' ■  J « .*o

(kpp )jo(esp ) dp (5.25)

and evaluation of this integral using equation (5.3) gives

2V ¥ kPR)
[k2 - 8 2 ].R.J ( 8 R)p s O S

(5.26)

A similar procedure used to evaluate c q leads to the fact that

2Jj(kpR)

(kpR)
(5.27)

which is seen to be given by equation (5.26) if 8 g = 0, and thus equa

tion (5.23) becomes

N ^ k p J ( k R )
W  = z "— r J0(etp)p t=0 p (kp - B p

(5.28)

Substitution of equation (5.28) into equation (5.22) leads to

N P
S(p ) = E ---- -=— 5-

n=0 V Bn " kP}  ̂J0 (B„P)
m  n j (e.P )

/ +)/? (k^R)J ( 8 R)J,(k R)hS (k R) J ---2— ^----
U  p ° n 1 p 1 p t=o nt(e2 - k 2)P J

(5.29)
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Examination of equation (5.29) shows that the radial sum, S(p), may 

be rewritten in the same form as the initial radial trial function 

î hr(P)» given by equation (5.7), if the terms containing (3rP) and 

($tP) can be added together when the indices are equal. Expanding 

equation (5.29) gives

S(P) =
.0 N
£  27r

P J (3  P)n o n
n= 0  n (3 - k*)n n p

N P N
Z ---- -----  I

f V P-

J 0 ( 6 t P)

n= 0  ( P j - k j )  t= 0  nt( B j - k J )
(5.30)

and it is evident that the two summations in the second term are 

independent, and thus equation (5.30) is equivalent to

N
S (P) = Z

n= 0
Qn Jn<enP > n o n (5.31)

where the new coefficients, Qn> are given by

J2P N
— 1  + 2k^J.(k R)H^2)(k R) Z7T p l  p l P t= 0  (3 " - k")t P )

\ (5.32)

5.4.2 The axial sum

It is seen from equation (5.21) that the result of the integral 

over the axial source space is invariant with the value of y. Therefore, 

in order to express the result of the volume integration in terms of 

the original trial function, it is necessary to expand the exponential for 

the source co-ordinates in terms of the orthogonal basis functions, so that

M r
exp[-y(y - d)] = a + Z <

° s=l
2stt

as cos (y -  d>]

+ bs sin [^52 (y - d)] (5.33)
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The procedure for evaluating the coefficients is a straightforward 

use of the orthogonality properties, and leads to the result

exp[-y(y - d)] = [1 - exp(-yh)]  ̂ +

—  £
h L

M £ y cos[-^p (y - d)] + sin [ ^ -  (y - d)]]

8 - 1  [Y2 + ]

(5.34)

and, consequently, the longitudinal sura, S(y), in equation (5.21) is

np I A M (YA +
S(y) = [1 - exp(-Yh) ] 2 Z------ E -

I m=l r - .2 .(_ m-i [y2 + (221)2 5

1 2  M y cos (y - d)] + (^jp) sin [ - ^  (y - d)]

[ T + Pf-) ]

(5.35)

Once again, the two summations are independent, and so the longitudinal 

sura becomes

s(y) - ^  + £  ; U
^  vh m - 1 I 1

,m cos t- ^ 21 (y - d)] + 3m sin [ - ^  (y - d)]

(5.36)

where

ao = yh t1 ~ 8XP as (5.37a)

a = -------^ ------  [1 - exp (-yh) ] 2 a m > 0 (5.37b)m n 2 r J s
M y 2 + ]
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and

6m
h[Y2 + I— J J

s m > 0 (5.38)

where

as
o +

/ T  y s

A
(5.39)

5.5 Calculation of the Resonant Frequency

The analytical evaluation of the integral equation (5.1) presented 

in the previous sections, has led to the following expression for the 

magnetic potential,

where the new coefficients Q, ot, and $ are calculated from the previous 

coefficients P, A, and B through the relations given in equations (5.32),

from a comparison of equations (5.40) and (5.10) that this new trial 

function has been obtained in identical form to the original trial 

function, but with new coefficients, which may be calculated from the 

simple, linear, numerical relationships of equations (5.32), (5.37) 

and (5.38). Therefore, it is seen that an iterative relationship 

has been formed which is ideally suited to numerical solution on a 

computer.

(5.40)

(5.37) and (5.38) respectively, a n d C  is defined in equation (5.15).
8

Ignoring, for a moment, the scale factor 2 ttCg(er “ ^  aPParent
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The method of numerical solution is as follows. Starting with 

the coefficients P, A, B initialised to unity, successive iteration 

of the equations (5.32), (5.37) and (5.38) is continued until two

consecutive trial functions are found to have a direct linear relation

ship. For this to be the case, it is evident that both the consecutive

radial expansions and the consecutive axial expansions, must each have

direct linear relationships, and thus, for all n and m, the successive 

coefficients must satisfy the equations

Qn
X = j r  (5.41a)

n

a a 8

xy - /  - - r  = r  <5 -41b>J o m m

where and are constant values, and so equation (5.40) may be

rewritten as

N P J (3  0 )
<|i. (x) = 2-nC (e - e )k2X X Z -n ° nhr "  8 r a o p y n=Q nn

✓ ! + [ Am 008 ^ (y ’ d)1 + Bm sin ^ (y ~ d)]

(5.42)

Comparison with equation (5.10) shows that this new trial function 

is simply a scaled version of the previous trial function, and consid

eration of equation (5.1), which may be rewritten as

\ t = (5.43a)

A
where the operator G is defined as

G.f = (er - e )k* fff dV 1 Ga (3c,2Ll)f(2L1) (5.43b)
resonator
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for any function, f, shows that the eigenvalue of the integral equation

is determined by that value of k which sets the scale factor J o
27rCg(£r - £a )k^XpXy to unity. Thus, according to the theory given in 

chapter 4, the iterative method yields the fundamental resonant frequency 

fres» which is given by the relationship

f = I t  [2w<e - e )C X X  ]“* (5.44)res 2irL X r a  g P y

where c is the speed of light in vacuo.

In chapter 4, it was mentioned that the eigenvalues of an integral 

equation are generally complex, and examination of equations (5.15) and 

(5.32) shows that is imaginary, and that Pn and must both be 

complex, and consequently the linear multiplier X^ must also be a 

complex quantity. It is therefore found that the resonant frequency 

is complex. Considering now the suppressed time dependence, exp(jo)t), 

it is seen that writing the resonant frequency in terms of the complex 

angular frequency, u)re + Jw^m » leads to the time dependence 

iu) t -u). t
i re lm /c /cv^hr(t) = e . e (5.45)

and it is clear that the real part of the resonant; frequency represents 

the energy stored, while the imaginary part shows that the energy is 

not stored indefinitely, but dies away exponentially with time.

It is thus seen that the iterative technique described in this 

chapter produces a value for the fundamental resonant frequency that 

is in accord both with the mathematical principles, as outlined in 

chapter 4, and also with the physical behaviour of a dielectric pillbox 

resonator. However, it is seen from a consideration of the Green's 

function, Ga(£,x/)» that the wavenumbers k^ and y, which are used in 

the determination of the resonant frequency, are initially obtained
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through the choice of an excitation frequency for the dielectric slab 

waveguide. These values then provide a solution for the fundamental 

resonant frequency, which is generally found to be different from the 

slab excitation frequency.

However, the integral equation (5.1) was constructed from the 

equations (3.39) and (3.40b), namely

and this clearly shows that the self-consistent solution for the 

fundamental resonant frequency can only be obtained when the Green's 

function satisfies equation (5.47) at the resonant frequency. Hence, 

the true fundamental resonant frequency is provided by the iterative 

method when the choice of excitation frequency for the dielectric 

slab leads to an identical value for the resonant frequency.

In order to solve for this fundamental resonant frequency, a

FORTRAN program, based upon this iterative technique, was written to

run on a PRIME 9950 mainframe computer, and a flowchart of the

program operation is given in Figure 5.2. The recursive nature of the

program, used to find the desired consistency between the dielectric

slab excitation frequency, f , and the fundamental resonant frequency,s
f , is clearly seen in the flowchart. Furthermore, it is clearly apparentF6S
from Figure 5.2‘, together with consideration of equations (5.32), (5.37) 

and (5.38), that, although the analytical evaluation of the volume 

integral, and subsequent expression of the result back in terms of the 

original trial function, was found to be rather arduous, the final 

iterative relationships, and the consequent computer program, are 

extremely simple, and more than compensate for the laborious analysis.

(V2 + e k2) ip (x) = - (e - e )k2 ip, (x)a o hr —  r a o hr — (5.46)

(V2 + e k2) G (x,xf) = - 6 (x - x') a o a —  —  —  — (5.47)
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For each n, 
calculate the 
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all these 

multipliers 
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calculate the 
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YES

Calculate the
resonant frequency
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A «- am m
B *- 3m m

Normalise
a ,3m m

Figure 5.2 Flowchart of the procedure used to calculate the
fundamental resonant frequency using the iterative 
technique
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CHAPTER 6

EVALUATION OF THE ACCURACY OF THE ITERATIVE SOLUTION

In the preceding sections, an iterative technique for calculating 

the fundamental resonant frequency of the substrate-mounted cylindrical 

dielectric resonator has been presented, and it is now necessary to 

analyse the accuracy of this solution. In order to provide a complete 

evaluation of the iterative technique, it is desirable to compare the 

theoretical results both with experimental values and also with results 

produced by an alternative theoretical model.

This chapter briefly describes the work undertaken to obtain some 

alternative results, based on a previous theoretical model developed 

by Itoh and Rudokas [1], which are then used to verify that the iterative 

solution does give results for the fundamental mode. This is followed 

by a description of the experimental technique employed in order to 

measure the TEq ^  resonant frequency of cylindrical dielectric 

resonators, and the chapter concludes with a detailed analysis of the 

accuracy of the results given by both the iterative solution and the 

Itoh model.

6.1 The Itoh Approach

Although much attention has been given to the theoretical modelling 

of the cylindrical pillbox dielectric resonator, the most general case 

of the substrate-mounted open dielectric resonator has largely been 

ignored. Until now, only two previous research groups [1,2] have 

considered the TEq ^  resonance in this situation, and in fact, only 

Gelin et al. [2] actually presented any theoretical results for the 

fundamental resonant frequency of this particular type of resonator.
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The method developed by this French research team started from 

the analysis of an abruptly ended dielectric rod, and continued by 

considering the cylindrical resonator as a length of dielectric rod 

waveguide sandwiched between two such abrupt interfaces. This procedure 

led to two coupled integral equations, which, in simplified form, were 

solved numerically. Although this solution technique proved very costly 

in terms of computer time, two sets of theoretical results were 

presented for the substrate-mounted cylindrical resonator and were 

shown to be in good agreement with experimental values.

The other previous analysis of the substrate-mounted resonator 

was developed by Itoh and Rudokas [1] in 1977, and was much simpler in 

concept than the above analysis. The method was based upon the technique, 

devised by Marcatili [3], for analysing the propagation characteristics 

of rectangular dielectric waveguide, which was now extended to apply 

to three-dimensional cylindrical structures. It was argued that certain 

regions exterior to the dielectric resonator contained little electro

magnetic energy, and could therefore be ignored without significantly 

affecting the computed results. This assumption meant that it was 

possible to match the electromagnetic fields on the surface of the 

resonator alone, leading to two coupled eigenvalue equations, which 

could then be solved to give the resonant frequency.

The nature of this technique necessarily gave rise to approximate 

solutions, and, as it was constructed in terms of independent TE and 

TM modes, could only be used in the case of the 0-independent modes.

In practice, the two coupled eigenvalue equations turned out to be very 

complicated, and Itoh and Rudokas only attempted to solve them in the 

much simplified case of the fundamental mode of the isolated cylindrical 

pillbox dielectric resonator.
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Consequently, in order to provide some theoretical results as a 

check for the accuracy of the iterative method described in this thesis, 

it was decided to develop a technique for solving the coupled eigenvalue 

equations that are generated by Itoh's method for the substrate-mounted 

dielectric resonator. In chapter 3, it was shown that the integral 

equation for the mode differed from that of the mode by

virtue of a surface integral, which could be ignored in the latter 

case, but not for the former resonant mode* Therefore, it was decided 

to solve Itohfs coupled eigenvalue equations for both transverse 

polarisations, in order to give clear confirmation that the iterative 

solution gives results for the TEq ^  mode, and not for the mode.

6.1.1 Derivation of the coupled eigenvalue equations according to 
Itohfs method

A cross-sectional representation of the substrate-mounted dielectric 

resonator is shown in Figure 6.1, and the numbered regions 1 to 4 are 

assumed to contain virtually all of the electromagnetic energy. The 

transverse resonant modes with no azimuthal variation are each seen, 

from equations (3.34), to consist of three field components, and Itohfs 

approach matches these components on the resonator boundaries, ignoring 

regions 5 and 6 (so that no continuity between regions external to 

the resonator needs to be considered), resulting in a pair of coupled 

eigenvalue equations.

The Transverse Electric Mode

Consideration of the physical structure of the resonator shown in 

Figure 6.1 means that judicious choices for the magnetic potential 

function in each of the four numbered spatial regions are given by, 

joou
\phl = --- ° Al sin [k (y - yQ)] JQ(ep) (6 .1a)

e 2
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Figure 6 .1 Cross-sectional view of the substrate-mounted 
cylindrical dielectric resonator
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A2 sin [k (y - yQ)] KQ(kpp) (6 .1b)
h2 _k2 2 y

kp

^ h 3  = — —  A3 exp [-Y(y - h)] Jq(3p) (6.1c )
3

j ^ o
= — T  A 4  Sinh ^ y + Jo ^ p > (6 .Id)3

where 3 and k are radial wavenumbers, k , y, and £ are axial wave- p y
numbers, yQ and the coefficients, A, are arbitrary constants, and Jq

and K are the Bessel function and modified Hankel function, of order o
zero, respectively.

Applying the relevant boundary conditions gives rise to three 

eigenvalue equations linking the wavenumbers,

J'(3R) K f(knR)
0 P (6 .2 a)

BJ (BR) kPKo ^ P E^O

ky cot (- kyyQ ) = C coth (£d) (6 .2 b)

ky cot [ky(h - yQ )] = - Y (6 .2 c)

where the prime denotes differentiation with respect to the argument, 

and

(e - l)k2 = 3 2 + k 2 (6 .2 d)v r o P

e k 2 = B2 + k 2 (6 .2 e)r o y

e k 2 = 6 2 - C 2 (6 .2 f)s o

k 2 = 3 2 - y 2 (6 .2 g)

and ky, E, and y are positive. Consequently, it is found from equation 

(6 .2 b) that kyyQ must be greater than 2 radians, allowing kyy to 

be replaced by
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where zq is a positive constant yet to be determined, and so equation 

(6 .2 b) becomes

ky tan (kyzQ ) = £ coth (£d) (6.4)

and elimination of yq from equation (6.2c) using equations (6.3) and 

(6.4) yields the general solution,

(k .h) = tan * (^— ) + tan * [ ~  coth (£d)] + mir (6.5)
y y

where m is an integer.

The coupled equations (6.2a) and (6.5), together with the wave

number relations (6 .2 d-g), are general equations for any transverse 

electric mode with no azimuthal variation. Therefore, it is necessary 

to determine the relations for the fundamental mode, which must

have the smallest values possible for both of the wavenumbers 3 and 

ky . Thus, in the axial direction, it is apparent from equation (6.5) 

that the index m must be zero. In the radial direction, equation 

(6 .2 a) has a finite number of roots for any particular value of the 

free-space wavenumber, kQ , and the lowest root is required for the 

fundamental resonant mode.

The TEq ^  resonant frequency is therefore found by solving the 

eigenvalue equations



where the wavenumbers are linked by the relations

(er - l)k2 = $2 + kp (6.6c)

62 = e k2 - k2 = e k2 + C2 = k2 + y 2 (6.6d)r o y  s o  o

The Transverse Magnetic Mode

The coupled eigenvalue equations for the resonant mode may

be found by choosing the electric scalar potential in each of the four 

numbered regions of Figure 6.1 to be

jcoe e
\|>el =  Ai sin [k (y - yQ)] Jq ( 3 p ) (6.7a)

juie

% 2  = 7 7  A2 S in  [ k y (y  '  yo ) ]  Ko (k pP) ( 6 - 7b)
~ P
jcoe

^ e 3  = — ~  A3 exp [ - Y ( y  - h ) ]  JQ(3 p )  (6.7c)
3

juje e
cosh [ € ( y  + d)] JQ(3 p )  (6.7d)

3

where the same terminology is used as in the transverse electric case. 

Elimination of the arbitrary constants through the use of the boundary 

conditions on the surface of the resonator gives the following coupled 

eigenvalue equations for the mode,



(k h)
y

where

- 1tan Mk + tan 1
’er
e . tanh (£d)

y s y

= 3 2 + V,2

2 - k2 o y = e k2 + £2 s 0
= k2 + Y2 o

(6.8b)

(6 .8 c)

(6 .8 d)

6.1.2 Solution of the coupled eigenvalue equations

The process used to solve the coupled eigenvalue equations is 

substantially the same for both the and modes, and will

therefore only be described for the transverse electric case. The 

analytical solution of the coupled equations (6 .6 ) is very complex due 

to the transcendental nature of the functions, and it is therefore 

constructive to consider the nature of the problem using a graphical 

technique.

It is advantageous to rewrite equations (6 .6 ) such that

a =

a =

-J>>
uJ (u) o

K* (v) ov 7
vK (v) o

(e - l)(k R ) 2 = u 2 + v;\ r o

(6.9a)

(6.9b)

(6.9c)

k h
y

tan 1 (^-) + tan” 1 [|- coth (£d)]
y

32 _ e k 2 - k 2 r o y E k 2 + £ 2 = k 2 + y :s o  o '

(6 .1 0 a)

(6 .1 0 b)

where 3R and kpR have been replaced by the new variables u and v 

respectively, and a is any arbitrary value. The equations (6.9a) and

(6.9b) are shown graphically in Figures 6.2 and 6.3, and it is
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immediately apparent that for each value of a there is only one pair

of values of u and v. Furthermore, use of equation (6.9c) to calculate

values of the free-space wavenumber, k , shows that the value of kv o o
increases monotonically with increasing a, as illustrated by Figure 6.4. 

Thus, the fundamental TEq ^  resonant frequency may be calculated by 

finding the lowest value of a that satisfies the equations (6.9) and 

(6 .10).

Examination of the gradients of the two curves in Figures 6.2

and 6.4, together with equation (6.10b), shows that if a value of a

is considered where k is set to be less than its value at resonance,o
then both 8 and k must also be less than their resonance values.y
Moreover, both £ and y must be greater than at resonance, and hence it 

is found that k^h is less than the right hand side of equation (6 .1 0 a). 

Conversely, if kQ is greater than at resonance, then 6 and k^ must be 

greater, and £ and y less, than their resonance values, which leads to 

kyh being greater than the trigonometric sum of equation (6 .1 0a).

Consequently, the procedure summarised in the flowchart shown in 

Figure 6.5 was used to write a computer program to solve for the T E q ^  

resonant frequency. A sitailar procedure was implemented to determine 

the TMqj£ resonant frequency, but with a separate routine for calcul

ating the wavenumbers from the variable a, and also for calculating the 

variable T, due to the inclusion of the relative permittivities, as 

shown in equations (6 .8 ).

In order to substantiate the above method for solving the coupled 

eigenvalue equations, the isolated cylindrical dielectric resonator 

was analysed for two values of relative permittivity, and the results 

are given in Figures 6 . 6  and 6.7. The curves obtained for the TEqj^ 

mode are in exact agreement with those given by Itoh and Rudokas, and
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Figure 6 .5 Flowchart of the procedure used to calculate the T E q ^  
resonant frequency using the Itoh approach
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it is seen that the TMq -ĵ  mode resonates at a higher frequency than the 

fundamental mode under all conditions, which is the expected

result. Therefore, it is seen that the procedure of Figure 6.5 does 

lead to the correct solution for the coupled eigenvalue equations for 

the fundamental resonance, and may therefore be used as a comparison 

for the results obtained from the iterative approach detailed in this 

thesis.

6.2 Comparison of the Theoretical Results

In the formulation of section 3.3 for the iterative approach, only

the resonant modes with no azimuthal field variation can be analysed,

and thus the results obtained must belong to one of the independent

transverse electric or magnetic modes. Furthermore, it was shown

that the integral equation (3.46) is approximately correct for the

TE modes, whereas the TM modes require the full integral equation omn omn
(3.45) to be solved. Consequently, it is expected that the computer 

program based on the iterative technique, and summarised in Figure 5.2, 

should give results for a transverse electric mode, and, due to the 

nature of the method, it should converge to the solution for the 

fundamental TEq ^  mode.

Comparisons between the three theoretical models described in this 

thesis are shown in the graphs of Figures 6 . 8  and 6.9, where results 

for the resonant frequencies of two cylindrical dielectric resonators 

of different dimensions are presented for a wide range of relative 

permittivities. It is evident from these graphs that the iterative

solution is that of the mode, and further confirmation of this

is provided by investigating the behaviour of the resonance in the 

neighbourhood of a metal wall. Yee [4] observed that the resonant

frequency of a resonator excited in a transverse electric mode increases
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as a conducting surface approaches, whereas a decrease in the resonant 

frequency would result if the same resonator were excited in a transverse 

magnetic mode. This behaviour is apparent in Figures 6.10 and 6.11, 

where theoretical and resonant frequency characteristics,

computed via the Itoh method, are shown for dielectric substrates of 

varying height, d. Comparison of these results with those obtained 

from the iterative technique, as given in Figure 6.12, clearly shows 

the transverse electric nature of the iterative solution.

6.3 The Experimental Determination of the Fundamental Resonant Frequency 

In the previous section, it was shown, from comparison of theoretical 

results, that the iterative solution provides the resonant frequency 

of the fundamental resonant mode, and it is now necessary to compare 

the computed results with experimental values in order to determine the 

accuracies of the two theoretical models for calculating the TEq ^  

resonant frequency. However, the practical method for measuring the 

fundamental resonance had to be carefully designed in order to ensure 

that the physical arrangement accurately conformed to the theoretical 

situation.

6.3.1 The grounded dielectric substrate

In the development of the iterative solution given in chapter 5, 

the Green’s function was determined for a 1 mm thick grounded polystyrene 

slab excited in its fundamental mode, which is transverse magnetic to 

the vertical direction. This particular choice of dielectric material 

for the substrate was made after consideration of the requirements 

necessary for the experimental measurements. In order to simulate 

the isolation of the dielectric resonator upon the substrate, a large 

piece of dielectric material is necessary, and thus, on both economic

and practical grounds, polystyrene was chosen, since it is both cheap 

and widely available.
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A sample piece of the polystyrene was used to measure its relative 

dielectric constant, which was found to be 2.5, and so, as detailed in 

section 5.2, the thickness of the dielectric substrate was chosen to 

be one millimetre, so that the dielectric slab waveguide supports only 

the fundamental TM mode in the frequency range of interest. In order 

to launch this lowest TM mode on to the dielectric slab waveguide, it 

was realised that standard waveguide horns, operating in the dominant 

TEqj mode, would excite a surface wave polarised transverse magnetic 

to the vertical direction. Accordingly, the dielectric slab was 

manufactured with a taper at each end, so that it could be inserted 

into the waveguide horns, thus maximising the power coupled into and 

out of the substrate, and also reducing the effect of the discontinuities 

at the transitions. Furthermore, in order to remove the unwanted 

direct air-wave coupling between the waveguide antennas, a microwave 

absorber was placed above and below the substrate in the horn apertures.

The discontinuities caused by these closed-to-open waveguide 

transitions, and also other discontinuities due to the open circuited 

sides of the substrate, needed special consideration since the theor

etical analysis was developed for a dielectric resonator placed in 

isolation on a grounded substrate of infinite extent. Thus any possible 

reflections had to be minimised, and so the edges of the substrate 

were lined with Eccosorb, which has an average reflection coefficient 

of -23 dB at X-band. Moreover, the waveguide to substrate transitions 

described above needed to be as far removed from the resonator as 

possible, so that the electromagnetic field at the resonator would be 

effectively free of any disturbances.
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However, it was found in practice that the most efficient method 

for measuring the fundamental resonant frequency was to examine the 

effect of the resonator upon the transmitted power characteristic of 

the grounded slab waveguide, and, unfortunately, the requirement of 

placing the launching transitions as far as possible from the resonator 

conflicts with the need for minimum insertion loss, which is necessary 

for ease and accuracy of measurement. This loss is due to the fact 

that, once the power is coupled into the substrate, there is no guiding 

mechanism, and so the power disperses throughout the slab, and only a 

small proportion takes the direct path into the receiving horn. Further

more, the efficiency of the waveguide to substrate coupling is poor, 

and the combination of these two effects leads to an insertion loss 

of approximately 42 dB/m.

An obvious method of reducing the insertion loss is to introduce 

some form of guiding structure between the waveguide horns. One such 

structure is known as dielectric ridge waveguide [5], where the sub

strate is manufactured with a dielectric ridge running the length of 

the slab. In order to determine the effectiveness of such a guiding 

structure, a ridge guide was constructed and found to transmit double 

the power compared to an ordinary substrate of identical dimensions. 

However, the ridge introduces extra discontinuities into the resonator 

problem, and thus a consequent change in the value of the fundamental 

resonant frequency would be expected. The graphs shown in Figures 6.13 

and 6.14 confirm this hypothesis by showing, for two different sizes 

of resonator and over a wide range of relative permittivities, the 

discrepancy between the measured values of fundamental resonant frequency 

obtained using ridge guide and slab waveguide. It is evident that 

the dielectric ridge affects the value of the fundamental resonant
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frequency most for pillboxes made of low permittivity material. The 

reason for this is that the weak field confinement in such resonators 

leads to greater coupling of power between the ridge and the resonator, 

and so the effect is most pronounced, whereas high permittivity 

resonators are influenced less since they produce tight field confine

ment. The conclusion drawn from these results was that the ridge guide,

or other similar guiding structures, could not be used, since they

would lead to false experimental values for the resonant frequency. 

Therefore, a compromise was reached over the length of the dielectric 

substrate, so that the discontinuities were having little effect on 

the resonator, and yet sufficient power was transmitted to enable reliable 

measurements to be taken.

These measurements were made using a Hewlett-Packard 8510A vector

network analyser, shown in Figure 6.15, which can accurately measure

signals at a power level of less than -45 dBm, which meant that a

substrate of dimensions 0.9 x 0.45 m could be used without rendering

the measurements inaccurate. The full experimental arrangement is shown

in Figure 6.16, and it is apparent that the discontinuities due to the

waveguide to substrate transitions are well-removed from the resonator.

In fact, at 6 GHz, the resonator to horn distance was approximately

22 A rising to 45 A at 12 GHz, where A is the wavelength in the s s s
dielectric slab waveguide. This confirms that the dielectric resonator

was effectively in isolation upon the substrate.

6.3.2 The transmitted power measurement technique

It was mentioned earlier that the determination of the fundamental 

resonant frequency was performed by examining the effect upon the 

transmitted power characteristic of the dielectric substrate caused by 

the introduction of the dielectric resonator. The choice of this
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particular technique was determined by two major factors. Firstly, the 

measurement of transmitted and reflected power was very straightforward, 

so that techniques based on such measurements were favoured. Secondly, 

the effect of the dielectic resonator upon the power transmitted through 

the substrate is well-understood, whereas the behaviour of its reflection 

coefficient is not at all obvious. Consequently, the only practical 

technique was the transmitted power method, and the basis of this 

technique is described below.

The resonant frequencies of a dielectric resonator occur when the 

electromagnetic field structure within the resonator is such that the 

energy contained in the field is stored over intervals that are long 

compared with the period of the incident wave. At such frequencies, 

this energy storage causes a reduction in the transmitted power, whilst 

at all other frequencies the introduction of the resonator merely 

provides a slight additional attenuation in the system. Consequently, 

comparison of the transmitted power characteristics, measured over an 

appropriate frequency range, for the dielectric substrate both with and 

without the dielectric resonator positioned on it, leads to the 

determination of several resonant frequencies. The problem then becomes 

one of discovering the lowest resonant frequency.

However, the practical implementation of the transmission method 

described above was not quite as straightforward as it appears, for 

there were several major measurement difficulties to be overcome. The 

first problem was due to the nature of the dielectric substrate itself, 

which, as is shown in Figure 6.17, does not transmit a constant level 

of power over a frequency band, but, rather, has a characteristic made 

up of peaks and troughs. It was found in practice that the resonant

dips were less than 0.5 dB deep, and even more shallow for low relative
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permittivity resonators, and thus, even with the sophisticated facilities 

of the network analyser, great care had to be taken not to miss the 

lowest resonance.

The general method employed to find the fundamental resonance was 

to use the memory of the analyser to store the transmission character

istic of the substrate alone, and then introduce the resonator and to 

display the new characteristic divided by the memory. Consequently, 

the effect of the resonator was displayed, and the problem reduced 

to that of discriminating the fundamental resonant frequency from the 

noise of the system. In order to achieve this, a second, identical 

resonator was introduced on to the substrate, which had the effect of 

emphasizing the resonant dips, since now twice as much energy was 

stored at resonance. However, the second resonator also has the effect 

of introducing spurious resonances due to inter-resonator coupling, 

and thus the two resonators were placed as far apart as possible, 

yet without coming too close to the waveguide horns. To further remove 

the possibility of taking erroneous results due to the coupling 

between the resonators, small changes were introduced into the resonator 

separation, and the consequent effect on the resonant dips observed.

If there was no change in an observed resonant frequency, then it was 

accepted as a true resonant frequency of the cylindrical dielectric 

resonator. If, however, a resonant dip was seen to alter in frequency, 

then it was rejected as a false resonance, since the inter-resonator 

effects are due to the coupling coefficient which depends on the 

separation of the resonators. This method of altering the resonator 

position was also used to eliminate any possibility of the pillbox 

having been placed in such a position that it helped to match in the 

transition from waveguide to substrate, under which circumstances the 

fundamental mode might have been rendered invisible.
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The only remaining problem was to ensure that the lowest resonant 

frequency observed was in fact the fundamental resonance. It is known [6 ] 

that a cylindrical dielectric resonator has a fundamental resonance

followed in quick succession by a series of higher order modes.

Therefore, the fundamental resonant frequency may be found by searching 

for the lowest observable resonant frequency, and then carefully 

checking the transmission characteristics for further resonances 

occurring at a lower frequency. If none can be detected in the frequency 

range 0 . 6  f to where f is the possible fundamental resonant 

frequency, then the resonant frequency has indeed been found.

In practice, the apparatus available with the Hewlett-Packard 

vector network analyser was only able to provide measurements in the 

range 7.0 - 13.0 GHz and, since most of the measured resonances fell 

in this range, it was necessary to further consider the range from 

4.0 - 7.0 GHz. Plessey Materials Ltd. at Towcester kindly offered 

the use of their test equipment for this purpose, and, according to 

the above criterion, it was demonstrated that all of the experimental 

values of fundamental resonant frequency presented below were in fact 

TE0 i6 resonances.

6.4 Comparison of Experimental and Theoretical Results

The fundamental resonant frequencies of fifteen different resonators 

were measured as described above, and the results obtained are 

presented graphically, in comparison with theoretical results calculated 

from both the iterative and Itoh methods, in Figures 6.18 to 6.21. A 

general inspection of these graphs indicates that the iterative solution 

gives results that are more accurate over the whole range of values of 

permittivity, but it is noted that there are two variations that merit 

detailed attention.
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6.4.1 The influence of the relative permittivity

It is clearly seen from Figures 6.18 to 6.21 that as the relative

permittivity rises, so there is a consequent decrease in the fundamental 

resonant frequency. This effect may be understood by considering the 

electrical length of the resonator, which rises as rises. Consequ

ently, the effective resonant wavelength inside the resonator must also

rise, which produces a fall in the resonant frequency.

It is also seen from the Figures 6.18 to 6.21 that the theoretical

models reproduce this variation, although it is noted that it is

the iterative method which yields results that fit most closely to the

shape of the practical curve. The behaviour of the results from the

coupled eigenvalue equations derived by Itoh and Rudokas may be

explained by realising that the method was based upon the Marcatili

approximation, which assumes that certain regions of space immediately

exterior to the resonator contain very little electromagnetic energy.

It is known that resonators made of high permittivity material exhibit

good field confinement, whereas lower values of £ do not exert ther
same influence, and thus it is expected that the high values of £^ will 

give results that are in much better agreement with experiment than 

will low values. Examination of Figures 6.19 and 6.21 shows that this 

is indeed the case.

It is further seen that the Itoh approach gives results for the 

resonant frequency that lie either side of th&experimental curve, and 

thus practical design using this theoretical technique is difficult, 

since the method provides neither an upper or lower bound for the 

fundamental resonance. However, Figures 6.18 and 6.20 clearly show 

that the iterative solution provides a lower bound for the fundamental 

resonance, and, despite neglecting the contributions of both the
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continuous part of the Green’s function and the surface integral, it 

is seen that the maximum error between experimental and theoretical 

results is 1 0 %, whilst for a resonator height of 2 mm, the computed 

frequencies always lie within 6 % of the measured values. This fact 

suggests that the height of the resonator plays an important part in 

the accuracy of the iterative technique, and this is now investigated 

in more detail.

6.4.2 The influence of the resonator height

In order to examine the effect of the height of the resonator upon 

the accuracy of the theoretical solutions, the fundamental resonant 

frequencies of three more resonators of different height were measured 

for £r = 2 0 , and the variation of this resonant frequency with height 

is shown in Figures 6.22 and 6.23. It is immediately apparent that 

the height makes little difference to the accuracy of the Itoh method, 

but affects the iterative results dramatically. As the height of the 

resonator is increased, it is seen that the accuracy improves substant

ially, as the results in Figures 6.18 and 6.20 indicated might be the 

case.

The reason for this behaviour is due to the nature of the iterative 

analysis, which involves the Green’s function of the grounded dielectric 

slab waveguide. As demonstrated in section 3.4, this Green’s function 

consists of both discrete and continuous modes, and it is the relative 

importance of these two parts of the Green's function that leads to the 

variation of accuracy due to the resonator height.

The continuous modes are included in the Green's function to take 

account of the energy that radiates away from the dielectric slab, 

whilst the discrete modes describe the energy that is carried by the 

surface waves, which are bound to the dielectric slab. Consequently,

112



Resonant
frequency (GHz)

x experimental results 
o iterative theory14

2.520
12 5 mmmm

10

8

6

4

2

0

2R0.30.2 0.4 0.50 0 . 1

Figure 6.22 Graph of resonant frequency vs resonator
height showing the comparison between the iterative 
theory and experimental results

Resonant
frequency (GHz) experimental results 

Itoh TEm _ theory

20
5 mmmm

2R0.4

Figure 6.23 Graph of T E ^ ^  resonant frequency vs resonator 
height showing the comparison between Itoh's 
TE_ - method and experimental results

113



it -is apparent that the relative importance of the discrete and 

continuous parts of the Green's function to the determination of the 

fundamental resonant frequency depends upon the relative proportions 

of stored and radiated energy. It is also clear that a larger 

resonator will contain more energy than a smaller one, and thus it is 

seen that the continuous modes become less important as the height of 

the resonator increases. Therefore, the results given by the iterative 

solution of chapter 5 would be expected to become more accurate as the 

height is increased, which is precisely the behaviour seen in Figure 

6.22.

6.4.3 Summary of results

It has been demonstrated very clearly, by comparing a wide range 

of experimental and theoretical results, that, under certain conditions, 

the iterative solution developed in chapter 5 provides accurate values 

for the fundamental resonant frequency of the cylindrical pillbox 

dielectric resonator when placed upon a grounded dielectric substrate. 

Indeed, it has also been shown that the iterative method yields more 

accurate and usable solutions than does the approximate technique 

developed by Itoh and Rudokas.

However, the results given in this chapter for the iterative 

solution are based upon the simplified Green's function where the 

continuous modes have been ignored. As indicated in section 6.4.2, it 

is expected that even more accurate solutions, under all conditions, 

could be achieved if these continuous modes were included in the 

Green's function, and so, in the following chapter, the application of 

the iterative method to the integral over the continuum is now 

considered.
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CHAPTER 7

THE INTEGRAL OVER THE CONTINUUM

In chapter 3, the integral equation (3.46),

Ga(*.*' ) \ r(x’)dV’ (7.1)
resonator

was derived, where the Green’s function was given by equation (3.56)

and the eigenfunctions Yfl(y) and Y(X,y) are as given in Tables D.l and 

D.2 of Appendix D. In chapter 5, an iterative method was developed for 

solving equation (7.1) where the continuous spectrum,which comprises the 

radiation modes of the dielectric slab, was ignored, since it was shown 

that the major proportion of the energy coupled into the dielectric 

resonator is provided by the discrete modes. The results obtained, 

using this approximation to the true solution, were found to be very 

accurate, but it was realised that the inclusion of the continuum 

integral would increase the accuracy of the method still further.

In order to provide a complete theoretical analysis of the 

substrate-mounted cylindrical dielectric resonator, it is obviously 

necessary to solve equation (7.1) using the full expression for the 

Green’s function given in equation (7.2). In fact, the process for 

including the continuum integral into the iterative procedure is 

relatively straightforward, since equation (7.1) may be rewritten as

Z H (2)(k |p - p*I)Y (y)Y (y') o pn' n w ' n w  'n

+ (7.2)
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resonatorresonator

+
resi

Gc (x,x’)d.X ^ ( x ^ d V *  (7.3)

where Gn(x.,x.') and Gc(3c,x.f) represent the discrete and continuous parts

of the Green's function, G (x^')* and thus the iterative procedure maya
be applied to the two volume integrals of equation (7.3), and the

However, although the iterative procedure is well-understood for 

the discrete situation, the inclusion of the integral over the wave- 

number X needs careful consideration. In order to gain some insight 

into the nature of this new problem, it is prudent to first consider 

how the iterative technique applies to the radiation integral alone. 

Consequently, in this chapter, the situation of a cylindrical dielectric 

pillbox placed directly on a ground plane is considered, since, for this 

image resonator, the Green's function contains no discrete modes, but 

purely consists of an integral over the continuum.

7.1 The Integral Equation for the Image Resonator

A diagram of the image resonator is shown in Figure 7.1, and, 

since it is a structure with cylindrical geometry, the same type of 

potential functions, ^(.x) and ipe(2L)> as chapter 3 may be used to 

construct the relevant integral equation. Therefore, within the two 

constituent regions, the following differential scalar potential 

equations must hold,

(V2 + £rk 2 )\Jjr(.x) = 0 in the resonator (7.4a)

results added together to give the new function

(V2 + £ k 2)m (x) = 0  in the aira o a — (7.4b)

where \lKx_) represents both the electric and magnetic potentials.
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y = 0

Figure 7.1 Cross-section of the image dielectric 
resonator, consisting of a cylindrical 
pillbox mounted on a ground plane
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Considering the Green ’s function of a point source in the air 

region above a ground plane, which satisfies the relationship

(V2 + e k2) G.(x.x') = - 6 (x - x') (7.5)a o i — —  —  —

the equation (7.4a) may be transformed to give the equation

V * >  * (er _ ea )ko fff G.(x,x')<Dr(x')dV'
resonator

f f  W  ( x ' )  3 G . ( x , x ’ )
+ j )  [G.(x,x') — E ip (x') — i------- ] dS'

resonator 3n' 3n'r rboundary

(7.6)

As in the case of the substrate-mounted dielectric resonator, this

surface integral over the resonator boundary gives the difference

between the TE and TM modes, and, using the technique given in omn omn
Appendix B, may be shown to give less contribution for the TEomn modes

than for the TMrtlTir, modes. Furthermore, as shown in chapter the omn
surface integral represents the contribution from external sources 

induced by the equivalent sources within the resonator, and thus is of 

less consequence than the volume integral, and may initially be 

ignored. Thus, the transverse electric modes may be modelled by the 

reduced integral equation

V (i> * (er - ea)ko fff )̂ hr̂ — ')dV' (7-?)resonator

7.2 The Green*s Function

The Green*s function of a point source situated in free-space

above a metal ground plane must satisfy equation (7.5), and may be
\

determined by following the procedure given in section 3.4. The 

difference in the resulting Green’s function derives from the nature 

of the y-directed eigenmodes, which are now found to be purely con

tinuous, and are given by the relations
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Yh(X,y) = sin (X y) (7.8a)

Ye(X,y) = cos (X y) (7.8b)

so that the delta function 6 (y - y 1) becomes

<5(y - y ’) = f Y(X,y) Y(X,y’) dX (7.9)
' o

and the magnetic and electric Green’s functions are given, respectively, 

by

*  00

Gih(i*i') = 2iJ J Ho2 :>(kp|P “ p ' h  sin ^Xy) sin (Xy')dX

(7.10a)

f oo
Gie(*.*') “  J  Ho (kp |p - p'|)cos(Xy)cos(Xy')dX

(7.10b)

where the wavenumbers are related by

kp = k* - X2 (7.11)

In order to try and evaluate equations (7.10) analytically, the 

known [1 ] integral delation

j exp[-jk /a 2 + 8 2]f  00
J H^2 )(a/k2 - x z)cos(8 X)dX = 
* o

where

v̂ a2 + 82

a,8 > 0
(7.12)

-7T < a r g ( A 2 - x2') * 0

was considered, where the scalar a is |p - p ’J and where 8 is either 

(y - y') or (y + y ’). The condition on the argument of k^ is met due 

to the imposition of the radiation condition, which, as shown in [2 ],
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determines that k is given by

kP P (7.13)o

However, it is also noted that, in order to make the definition. >6 f the

is necessary, with branch cuts providing the means of passing from one 

Riemann sheet to the other. For the case in point, where it is

positive real or negative imaginary, the appropriate branch cuts are 

shown in Figure 7.2.

Although the integral given in equation (7.12) is applicable to 

equations (7.10), it was found that further progress using the iterative 

method of chapter 5 is impossible, since the resulting exponential 

function cannot be separated into independent radial and axial 

components. Consequently, it was decided to perform the volume integral 

before attempting the integral over the continuous spectrum, in order 

to see whether the resulting radiation integral is any simpler to 

handle.

7.3 Evaluation of the Volume Integral

With reference to chapter 5, it is clear that the choice of the 

trial function for the magnetic scalar potential should remain similar, 

since the problem is still being analysed in cylindrical geometry, and 

the dielectric resonator will have a similar internal distribution 

for the scalar potential. The only major difference results from the 

fact that the resonator base is at y = 0 , and the potential function 

must be zero on the metal ground plane. However, the appropriate 

choice of orthonormal Fourier series in the axial direction will 

account for these variations, and thus the trial function is chosen 

to be

double-valued wavenumber, kp, unique, a two sheeted complex X plane

required to integrate over the real X axis, and k must be either
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Figure 7.2 The appropriate branch cuts and path of 
integration for the integrals given in 
equations (7.10) and (7.11)



N P J ( f p ' )  f *
= z0n= 0  n

r a pp m
- +  R  ^[ / h  V h  m=l

[A_ cos < ^ )  + Bm sin ( ^ ) ]m (7.14)

It is evident from a comparison of equations (7.10) and (7.14) 

with equations (5.14) and (5.10), respectively, that the only difference 

between the volume integral for the discrete case and the volume integral 

for the radiation modes lies in the axial integration. It is sufficient 

to initially consider the behaviour of the volume integration using 

only the magnetic Green’s function given by equation (7.10a), for which 

the axial integral is seen to be

I(y) = sin(Xy)
rh. f A pp ML is*«

[Am cos + B m s i n ( M l l ) ]  dy' (7.15)

which results in the expression 

I(y) = sin(. x J Ao rl - cos(Xh)n £ “  -----

2mTT^  M A X:[ 1 - cos(Xh) ] + B sin(X'h) 2 v m   m h__________
* m=l

[ * 2 - c ^ 3-)2]
(7.16)

Thus, the result of the volume integration is found to be

ik (x) = -j(e - e )k2 Ihr —  J r a o J

t 12 Jo<PnP>
-  ^ k p H ^ ^ k ^ d t p P ) ] .

n= 0  (6 2 ~ k2) * ’’VL n p

o fl - cos(Xh) 1
yff X
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j? - V l i
* m=l

2ra7Tcos(Xh)] + B ( , v J m h ) sin(Xh)

[X2 - (^2L) ]
► sin(Xy)> dx

(7.17)

and re-expressing J (k P) in terms of the expansion J ( 8 P) giveso p  o n

, N Qn<X)Jo<6nP > 7-j(Er - O k *  j  j  £ n n °  n [s (X)sin(Xy)] ' 
'o (̂ n= 0  n y ,

dX

where

(7.18)

Qn(X)

s (X) y

[(B2 - k 2) + X 2] L n o

2 jP.
^  + 2(k2 - X ^ J ^ A 2 - X 2R) .

N
H ^ ( / k 2 - X 2R) Z 
1 o .t= 0  [(3 ^ - k*) + X^]

A [1 - cos(Xh)]

►IT x
IT  M 

+ & m=l
2m7T.[A^ X [ 1 - cos(Xh)] + sin(Xh)]

[X2 - ( ^ ) 2]

(7.19)

(7.20)

It is seen from equations (7.18) to (7.20) that there are various 

separate integrals over the continuous spectrum, which, due to the 

presence of trigonometric functions, may possibly be performed by the 

method of residues [3], In practice, half of these integrals may be

performed in this manner, but it turns out that the argument /k 2 - X 2 

causes difficulties, since the branch cuts have not been eliminated 

by the operation of the volume integral.
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Although time did not permit the evaluation of the contribution 

of the integrals involving the Hankel function, those of the integrals 

shown in equation (7.18) that do not have any branch cuts were per

formed, and were shown to provide results that could be re-expressed 

in terms of the original basis functions. Thus, if a method of 

integration for the remaining integrals were used that preserved the 

shape of the function being integrated, then the continuous integral 

may be expressed in terms of the original basis function used for the 

trial function. Consequently, an iterative relationship could be 

constructed that is ideally suited to numerical implementation on a 

computer.

One such integration technique that retains the original shape of 

the integrand is known as the saddle-point (or steepest-descent) 

method [4,5], and thus it is expected that use of this technique would 

enable an iterative relationship to be developed for the image 

resonator.

Therefore, although the length of time available for this research 

did not permit the full analysis to be completed, it has been shown 

that the iterative method, developed to solve the integral equation 

derived for the magnetic potential function inside the substrate- 

mounted dielectric resonator, is able to accommodate the continuous 

modes as well as the discrete modes. Consequently, it is seen that the 

method described in this thesis is a full theoretical model of the 

substrate-mounted cylindrical dielectric resonator.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The formulation of a theoretical model for the cylindrical 

dielectric resonator situated upon a grounded dielectric substrate has 

been presented in this thesis. The main aim of this research was to 

develop a model that was able to provide accurate results for the 

fundamental (TEq ^ )  resonant frequency, yet, at the same time, it was 

desired that the solution should be easily implemented on a numerical 

computer. Having presented an historical review of the previous models 

developed for the dielectric resonator, the mathematical derivation of 

an integral equation describing the resonator was given. After 

discussing several possible solution techniques for this equation, 

an iterative method was chosen, since it alone offered the character

istics of accuracy and eminent suitability for numerical implementation 

on a computer. The development of the iterative relationship was then 

detailed, and the results obtained were compared with both experiment 

and the extension of a previous theoretical technique, and it was seen 

that the main aim of the research was satisfied.

However, in the iterative technique described in this thesis, 

two approximations were necessary to simplify the analysis. In the 

first case, the integral equation, derived in chapter 3 for the resonator, 

consisted of a volume integral and an associated surface integral over 

the resonator. It was shown in Appendix B that this surface integral 

was present to account for the second-order effects of the equivalent 

sources outside the resonator, while the principal contribution of 

these sources was calculated in the volume integral. Furthermore, 

the difference between the TEq ^  and TMq ^  resonant modes, which
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hitherto had been identical, was shown to lie in this surface integral, 

and, for the TEq ^  mode, it was found that the surface integral would 

give minimal contribution. Consequently, the theoretical analysis 

proceeded by considering the volume integration alone.

The second approximation lay in the consideration of the Green’s 

function, which was chosen to be that of the air region above a 

grounded dielectric slab waveguide. This type of open waveguide supports 

a finite number of surface waves, and also a continuous spectrum of 

eigenmodes that represent both radiation from the slab and a continuum 

of evanescent waves. The surface waves represent most of the energy 

that is confined to the dielectric slab, and, since the resonator 

stores electromagnetic energy, it was inferred that the continuous 

spectrum of eigenmodes could be neglected without significantly reduc

ing the accuracy of the calculated fundamental resonant frequency.

On the basis of these two reasonable approximations, an iterative 

relationship was developed, through analytical evaluation of the 

integral, for the case of a dielectric resonator placed on a grounded 

polystyrene substrate that was 1 mm thick. In order to verify the 

results obtained using the iterative procedure, a technique was dev

eloped to solve the relevant coupled equation set given by Itoh and 

Rudokas [1]. Comparison between these two methods, and also with 

experimental results, showed very clearly that the iterative technique 

produced values of the fundamental resonant frequency that were in 

close agreement with the true values, and also that it gave a 

significant improvement over the results obtained from the simple 

model of Itoh and Rudokas. It was further noted that the iterative 

method became virtually exact as the height of the resonator increased, 

because the continuous spectrum has less effect as the resonator
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volume increases, since under such conditions more energy is stored 

within the resonator. Consequently, the two approximations are 

justified, since the surface integral does have minimal effect upon 

the accuracy of the solution, while the continuous spectrum of eigen

modes may be ignored with little ill-effect so long as the dimensions 

of the resonator are such that the proportion of energy storage to 

energy leakage is high.

However, in order to extend the iterative method to cover all 

dimensions of resonator, it is obviously necessary to include the 

continuous modes, and the possibility of this was considered in 

chapter 7. It was shown that an analytical evaluation of the continuum 

integral was not possible, but that the saddle-point approximate 

integration technique would be expected to yield a solution in a form 

amenable to the iterative technique.

The method presented in this thesis has been shown to provide a 

good theoretical model of the substrate-mounted cylindrical pillbox 

dielectric resonator, and furthermore, it has the advantage that, once 

the iterative procedure has been set up analytically, the actual 

numerical computation required to calculate the fundamental resonant 

frequency is very straightforward, and in fact requires less than nine 

seconds of CPU time on a mainframe computer to converge to the solution.

As a consequence of this research, the following theoretical 

areas are suggested for further research:

i) The continuum. It has been shown in chapter 7 that this 

may be included in the iterative expression, and it is 

obviously advisable to investigate this further in order 

to extend the applicability of the method.
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ii) The surface integral. Although it has been demonstrated 

that this is of little consequence in determining the 

fundamental resonant frequency, inclusion of this integral 

would provide the full theoretical analysis of the dielectric 

resonator. Moreover, the surface integral is responsible 

for the difference between the TE and TM resonant modes, 

and thus this extension to the iterative method would 

enable the resonant frequency to be calculated.

iii) Higher order resonant modes. It was shown in chapter 4 

that the iterative method can be used to calculate the 

higher resonant frequencies, and this extension to the 

method would evidently be of value.

iv) Generalisation to thick dielectric substrates. Currently, 

the iterative method has only been implemented for a mono

mode Green’s function suitable for thin dielectric substrates. 

However, due to the linear nature of the integral operator, 

the inclusion of further surface waves will present no 

problems. The method hinges upon evaluating the relevant 

integrals separately for each surface wave, and then simply 

adding together the results once they have been re-expressed 

in terms of the original trial function.

v) The enclosed and isolated dielectric resonators. Since the 

basic integral equation is taken only over the resonator 

volume, a judicious choice of the Green's function enables 

this theoretical method to be applied to other physical 

situations. The enclosed resonator would require the 

Green's function valid inside the relevant enclosing 

structure, while the isolated case would be solved by using
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the Green’s function valid in free-space. Both of these 

Green’s functions would, of course, need to be expressed in 

cylindrical co-ordinates.

vi) The Q-factor. Once the complete description of the dielectric 

resonator has been obtained, the quality factor may be 

calculated from the real and imaginary components of the 

resonant frequency, which represent the storage and leakage 

of energy, respectively, as shown in chapter 5. One result 

expected to emerge from such a study is that, for a momomode 

substrate, the Q of the fundamental mode will be high, but, 

if the substrate is thickened so that the first TE surface 

wave is also supported, then the Q will drop substantially.

The reason for this is that it is seen that the 

resonant mode is the opposite polarisation to the fundamental 

slab mode, and thus coupling between the resonator and the 

substrate is low. However, once the TE surface wave is 

introduced, the coupling will increase dramatically, and thus 

the stored energy will easily be transferred from the 

resonator to the slab and so will be lost, leading to the 

reduction in the Q-factor.

vii) Coupling coefficient. It was mentioned in chapter 1 that

besides the fundamental resonant frequency and the Q-factor , 

the coupling coefficient was a vital piece of information 

to microwave designers using dielectric resonators. Thus 

the development of a theoretical technique giving the 

coupling between two resonators, and also between a 

resonator and a guiding mechanism such as microstrip, is 

important.
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APPENDIX A

The Vector Operator V in Cylindrical Co-ordinates

The vector operator V is defined in cylindrical co-ordinates 

r, 0 , y as

n * 3 2 3 a 3 / k -i \
V = p 3 ? + 6 30 + y 37 (A,1)
A A A

where p, 0 , y are unit vectors in the radial, azimuthal, and axial 

directions, respectively, and may be applied to both scalar and vector 

functions. The gradient of a scalar, (J), is defined to be

V* = g|J + 8|| + 5|| (A.2)

whilst the rate of change of a vector field has two components. The 

first is known as the divergence of the vector field and is given by

1 3  , . . 1 3A2 ' 3A3 (A13)V-A “ p 3p (pV  + p 36 + 3y
and the second is the curl (or rotation), given by

3A3 3A a 3A 3Ao 
vxa - P [I ^  + et^i- -

t a i ^Ai+ y £ Ip (pA2> - p W-J <A-4>
where the vector field Â  is written as

A = pA1 + 0A2 + yA3 (A.5)

The divergence of the gradient of a scalar function is known as

the Laplacian of the scalar and is

V.(V4>) = V 2<t> = -j- (p f^) + — ^  (A.6 )
p 3p 3p p 2 362 3y2
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The vector identities involving V are identical for all co-ordinate 

systems, and some of the important results are given below.

V.(A + B) V.A + V.B (A.7)

Vx(A^ + B) = VxA^ + VxB^ (A.8 )

V ( W ) - <t>V\p + ipV4> (A.9)

VxVx_A = V(V.A) - V 2A (A.10)

Vx(V<J>) = 0 (A.11)

V.(V x A) = 0 (A.12)

Vx(il^) \|)V x A_ - Â  x V4> (A.13)
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APPENDIX B

Consideration of the Surface Integral over the Resonator Volume

In Section 3.3, the method of Greenfs functions was used to 

transform the differential equation for the scalar potential, ipr , 

within the resonator, into the integral equation (3.45),

ip (x) = (e - er —  r a _ resonator
>ko fff Ga (x,x')iDr(x')dV'

+ / /  r"    a ~ ~
9iti (x’> 3G (x,x/)

[Ga( x , x ' ) - ^ ----- »r(x') a 3n, ]dS' (B.l)
resonator r r
boundary

Using the same method, integral equations for the scalar potentials in 

the slab and air regions may also be derived as

ff 3>i)Jx') 3G (x,x’)
) ) [G (x,x•) -V,--.—  - fs(x’) — §— i----- 1 dS’

slab s s
boundary = fff, (x* )6 (x̂  - x_f )dV*

slab s
(B.2)

f f 9^ ( x ’ ) 9G (2L.2L*)
I  J [Ga(x,x*) - f ^  - *a(x' ) 9n» 3 dS•

air a a
boundary = fff, (x/)<5(3c - 2Lf)dVfa air

(B.3)

where n T and n f are the outward normals to the surfaces bounding theS 3
slab and air regions, respectively, as shown in two-dimensions in 

Figure B.l, where the dashed hemispherical boundary represents x 1 -*■

Examination of this diagram shows clearly that the boundaries of 

both the resonator, and the dielectric slab at y f = d, are shared 

surface areas. Moreover, on these interfaces the outward normals to
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Figure B.1 Two-dimensional diagram of the substrate-mounted cylindrical dielectric
resonator showing both the boundaries pertinent to the surface integrals, 
and the orientation of the outward normals



the adjacent regions are in opposite directions. Consequently, on the 

surfaces where both the potential functions, and the Green's functions, 

in the two adjacent regions are continuous, both in value and normal 

derivative, then addition of equations (B.l), (B.2) and (B.3) causes 

these surface integrals to vanish.

In this thesis, the magnetic and electric potentials are considered

separately, and in Appendix C the possible discontinuity of these

potentials on dielectric interfaces is investigated. One of the first

conclusions drawn is that the boundary conditions on the cylindrical

surface of the resonator cannot be satisfied by either the electric,

or the magnetic, potential alone, unless that potential is ©-independent.

Therefore, the analysis proceeds by considering the independent

and TM modes, and it is found that the electric and magnetic omn
potentials for these modes satisfy the boundary conditions in different 

manners. This results in the fact that the magnetic potential is 

continuous, both in value and normal derivative, on all the horizontal 

interfaces, but on the cylindrical surface of the resonator, although 

continuous in normal derivative, it has a discontinuity in value, as 

given by equation (C.25),

V  = V  <B-4>Pa

where k is the radial wavenumber. However, the situation for the 
P

electric potential is more involved, and on the horizontal interfaces 

it is discontinuous, in the manner given by equation (C.26),

3^el e l 3^e2
— ^  ^  (B.5)
ay e2 3y

whilst on the cylindrical surface the potentials are discontinuous in 

the manner given in equation (C.27)
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The application of these discontinuity relations, together with 

the fact that the source is completely contained within the resonator 

volume, leads to two different integral equations for the scalar 

potentials. In order to derive the following equations, it was assumed 

that the slab was excited into monomode operation, such that the 

Green*s function satisfied the TM boundary conditions. This condition 

is valid for the analysis presented in the thesis, and is not an 

unreasonable assumption, for a grounded polystyrene slab waveguide 

1 mm thick is monomode in operation up to 36 GHz.

The magnetic scalar potential, which gives the TE modes, mustomn
satisfy the equation

= (e - e )k2 Tir r a o resonator

+



while the electric potential, which gives the TMomn modes, must satisfy 

the equation

= (e - e )k2 III G ip dV'r a o / / ? a erer _ _ resonator

(e k„ - e k‘ ) /-2ti /-d+h 3G+ —  SLfiai f f * ^ d y ' d e *
e k? >o 'd er 3pr pa

p !=R

(e  -  e ) f2i\ /*R 3\J;- e ; f iTis^  / /r 'o 'o
+  r - 55- I I G ^ p ' d p ' d e

y'=d+h

(6s " er } r 2" r R ^ e r+ %  /  J  Ga 3 ^  P'dP'de’r 'o yo J
y'-d

(e - e ) r27T /*R 3G
/  /  *er 3 T  P 'd p 'd 6a *0 * 0

y ’=d

(e - e ) /*2tt /-«> 3^ ac
+ V  '“ f  jR [G. ^  P'dp'dS'e J Jtj a 3y* ea 3ya /0 / p  ̂ ^

y*«d

.// 3ip 3G
[G ■3-ra - * T-r) dS'r L s 3n es 3n JI s ss

f f 3ijJ 3G+ J J  ea[G - 5 ^  - ip a-r] dS' (B.8)r a on ea on 1 a aa

where the arguments of the functions are obvious, and the surfaces rg 

and T are as defined in Figure ELI.

Further simplification of equations (B.7) and (B.8 ) is afforded by

examining the surface integrals along the boundaries p and T Thes a*

choice of the Green's function of the slab waveguide is such that
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Lira < 
x'-*x>

G(x,x') | = 0 (B.9)

-1where this limit is approached faster than x tends to zero, and

(B.10)
(‘3G(x,x') ''

4 ” j— '' = 0

so that the surface integral, as x 1 -► °°, gives no contribution. Further

more, on the metal ground plane, the boundary conditions (3.37) must be 

satisfied, and so the equations (B.7) and (B.8 ) become

= (e - e )kz III G ip, dV 1 hr r a o + + i. a hrresonator///
/■2tt fd+h 3GI I

K .  •57T- p'dp'de*

L ^  ^-T p'dp’de

J  j  G s ^ p ' d p - d 0 ' (B.ll)
o 'o 
y ’= 0

$er = (e - c )k2 III GiU dV' r a o * * * a e rresonator

(e ki - e k M  ^ 2tt r d+h 3G a pr
e k r pa

(e ~ C ) v r a y

Fo 'd 
p ’=R 

-2 tt 3ip//o o

y ’=d+h

erGa p’dp’dB'
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(e - e ) y>27T 3\Jj
+ -  S -A r I I Ga g ^ p ’dp'd6 '

t ; fL TT—  f fr 'o 'o

y ’=d

fZ-nsR c»u
I  I  w  p'dp’d0 '

y'=d

/2” /'o 'R

(e - e ) /-2tt ^ R  3Gs a f *
ea 'o *o

(e^  -  e „ )  ^-2tt 3vt>__ 3G,

D Jl 
y f=d

+ s c a ' I I [G r—t] P 1 dp'd6a J0 J r l a V  e a 3 y ' J

(B.12)

The resulting difference in the two integral equations (B.ll) and 

(B.12) is not really a surprise, since it was pointed out in section

3.2 that the independent TE and TM resonant modes must haver omn omn
different resonant frequencies. It is clear from these equations that 

it is the surface integrals which produce the different results for the 

resonant frequencies of the two transverse families of modes, 

and thus it is useful to seek a physical interpretation for the surface 

integral, in order to discover its relationship to the volume integral.

Stratton [1] has analysed the various terms arising from the use 

of Green's second identity, as performed in Chapter 3 of this thesis. 

Considering equation (B.l), he has demonstrated that the volume integral 

represents the contribution from sources within the resonator volume, 

while the surface integral may be considered to account for all the 

sources exterior to the resonator. It is now necessary, therefore, to 

investigate the causes of these sources in order to understand the 

relationship between the volume and the surface integrals in equation 

(B.l).

The Green's function solution to the differential scalar potential 

equation is a reciprocal procedure. The determination of the potential 

function at a point x/ within the resonator is accomplished by placing
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a unit source at that point and examining its effect upon the dielectric 

slab waveguide. The distribution of such sources within the resonator 

is then found that gives the appropriate scalar potential for the 

dielectric slab waveguide. Consequently, by reciprocity, the scalar 

potential distribution within the resonator has been obtained when 

the dielectric slab is supporting a transmitted mode excited by some 

external source.

Thus, the sources within the resonator volume are accounted for 

by the unit sources used in the Green’s function approach. However, 

the nature of the external sources is still unclear. Considering, for 

a moment, the presence of sources within a dielectric volume, it is 

known that, on the surface of this volume, layers of charge are induced 

due to polarisation caused by the internal sources. Thus, the surface 

integral of equation (B.l) is calculating the effect, upon the potential 

within the resonator, from the external surface charges induced by the 

internal equivalent sources.

This fact is clearly shown in equations (B.11) and (B.12), where 

the surface integral over the resonator boundary has been expanded, 

and it is seen that contributions only arise from the dielectric 

boundaries. It is further apparent that the transverse electric modes, 

which are represented by the magnetic potential of equation (B.ll), 

are affected by these surface charges to a much lesser extent than are 

the transverse magnetic modes, whose electric potential satisfies 

equation (B.12), where contributions are received from every dielectric 

interface.

Consequently, it is reasonable to suppose that, for the TE polar

isation, solving the reduced integral equation,
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///\ rfe) = (£r “ ea^ko J J J  GaOL>xf ̂ hr^-' ̂ dV? (B.13)resonator

where the surface integral has been ignored, will lead to close approx

imations to the TE resonances. This is further justified by theomn J J
fact that the surface charges are caused by the equivalent sources, 

and hence the effect of the surface integral in equation (B.l) will 

be second order with respect to the contribution of the volume integral.
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APPENDIX C

Discontinuity of the Potential Functions at Dielectric Interfaces

The two scalar potential functions, and are independent, 

and they excite TE and TM modes with respect to the y-direction 

respectively. Within a uniform region of space, the electromagnetic 

fields are continuous, and thus the potential functions are continuous. 

However, at an interface between two uniform regions of differing 

dielectric constant, the following boundary conditions must be satisfied,

n_ x II n_ x — 2 (C.la)

ri . = n . ( e ^ ) (C.lb)

11 X Ii = n_ x « 2 (C.lc)

ii . •IP II n. . — 2 (C.ld)

where the subscripts 1 and 2 represent the two adjacent regions, and 

n_ is the normal to the interface. It is clearly seen that equation 

(C.lb) shows that the normal electric field is discontinuous across 

the interface due to the difference in relative dielectric constant, 

and it is now necessary to discover the effect this has upon the scalar 

potential functions.

C.1 The magnetic scalar potential

The electromagnetic field components produced by the magnetic 

scalar potential are given by equations (3.21) and (3.22),

1 <WhE = -  — - (C.2a)
p p 30

9^hE = - —  (C.2b)
0 3p

Ey = 0 (C.2c)
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(C.2d)

(C.2e)

Hy J“Uo L 3y2
(C.2f)

The substrate-mounted cylindrical dielectric resonator, as shown 

in Figure C.l , has two types of dielectric interface. The first is 

transverse to the y-direction, at y = d and at y = d + h, and it is 

seen from Appendix D that the magnetic potential function, and its 

normal derivative, are always continuous across such an interface.

The second type of interface is on the cylindrical surface of the 

resonator. It is well-known [1],[2], from the analysis of a cylindrical 

dielectric rod waveguide, that the boundary conditions on such an 

interface can only be satisfied by pure TE or TM modes if the field 

is independent of the angular co-ordinate 0. All modes with an angular 

dependence are formed from a combination of a TE and a TM mode and are 

classified as hybrid EH or HE modes, depending on whether the TM or 

TE mode predominates, respectively.

Since the solution of the resonator problem is formulated in 

terms of independent transverse modes, in order to solve for the TEq ^  

resonance, it is only the circularly symmetrical modes with

that will be considered henceforward. For such a TE mode, the field 

equations (C.2) reduce to

(C.3)

EP Ey H,L0 0 (C.4a)
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a*,
3p

H

H

- 1

- 1
jW,

9p3y
32\p.

3y:
+ e nk 2ip, rel o h

(C.4b)

(C.4)

(C.4d)

where ip̂  must satisfy the scalar differential equation (3.35)

V 2ip, + £ -,k2vp = 0 h rel o h (C.4e)

The analysis proceeds by assuming a separable solution for ip̂ i 

of the form

*hb - Vob(kpbC) V*> (C.5)

where ^Q(x ) is a linear combination of cylindrical Bessel functions of 

order zero and argument x, and ^ ( y )  is the solution to the equation

< ^ 7 + k y b > V * >  -  °
(C.6 )

where the subscript b takes the value r or a depending upon whether 

the resonator or air region, respectively, is being considered. The 

radial and axial wavenumbers are related through the equation

2 = e k 2 - k 2pb b o  yb

and the boundary conditions (C.l) lead to the relationships

(C.7)

A k B ’ (k R)Y (y) = A k B ? (k R)Y (y)r pr or pr r VJ/ a pa oa pa a w

3V (y) 3̂  (y)
A k B 1 (k R)   = A k B 1 (k R) -*2---:r pr orv pr 7 3y a pa oa pa 7 dy

A B (k R)k2 y (y) = A B (k R)k2 y (y)r or pr pr r a oa pa paTa

(C.8 a)

(C.8 b)

(C.8 c)
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where the prime indicates differentiation with respect to the argument. 

In order to satisfy these relations (C.8 ) for all y on p = R, it is 

evident that the eigenmode ^Cy) must be identical in both the resonator 

and air regions, and thus k = kya » so that equations (C.8 ) reduce to

A k. B' (k R) = A k. B 1 (k R) r pr orx pr 7 a pa oav pa 7

A k* B (k R) = A k* B (k R) r pr or pr a pa oa Pa

(C.9a)

(C.9b)

Consequently, the constants Af and A& are related by

A = A a r
Pr
Pa

2 B (krt R) orv Pr 7
B (kn R) oa pa

(C.10)

and the radial wavenumbers can be obtained by solving the coupled 

equations

B 1 (k R) orx pr ~ 7
k B (k R) Pr orv pr 7

“ knpr pa

B 1 (k R) oav pa 7
k^ B (k ^ R)Pa oa Pa

(e - £ )k r a o

(C.11a) 

(C.llb)

Therefore, the magnetic potential may be written as

K  = A B (k p)V(y) hr r or' pr ' u/ p S R (C.12a)

ip, = A ha r
Pr
pa

2 Bor(kOrR)
F T j f i y  •oa Pa 7

At p = R, it is seen that

P » R (C.12b)

\k = A B (k R) ̂ (y) 3ir r or pr 7
(C.13a)

ha = A ^£r
kPa Bor(kprK)f(y) (C.13b)
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and thus the magnetic potential function is discontinuous, at p = R, 

as

'k
ipha

Pr
pa

iphr (C.14)

However, differentiation of equations (C.12) with respect to the radial 

direction, together with the use of equation (C.lla), shows that the 

normal derivative of ip̂  on t l̂e cylindrical surface is continuous.

C.2 The electric scalar potential

It is shown in Appendix D that, on the dielectric interfaces 

transverse to the y-direction, the electric scalar potential, ipe , is 

continuous, whereas its normal derivative is found to be discontinuous 

as

3ipel £ 1 S*e2
3y 3y

(C.15)

where the subscripts 1 and 2 differentiate between the two adjacent 

regions.

Considering now the second type of dielectric interface at p = R ,

the field components for the TM modes are obtained from equations r omn
(3.32) and (3.33), and are

E. =

E =

_L_j(U£ 3p3y 

32ip
JCOC

3\p

f  + £relk> e

=  -
9p

Ee -  HP -  Hy = 0

(C.16a)

(C.16b)

(C.16c) 

(C.16d)
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and assuming a separable solution, that satisfies the scalar differential 

equation (3.35), of the form

*eb - V o b W ^ (C.17)

the boundary conditions (C.l) lead to the relations

3V(y) (y)
C k B 1 (k R) -jp  = C k J '  (k R) ---r pr or pr oy a pa oa Pa dy (C.18a)

£ or pr Pr r r £ oa Pa Pa a a

C k B ’ (k R)Y (y) = C k B* (k R)Y (y)r pr orv pr r w /  a pa oa pa a w /

(C.18b)

(C.18c)

Continuity of these relations for all y on P = R means that the y-directed 

eigenmode must be identical in both the resonator and air regions, and 

so equations (C.18) become

C kn B 1 (k R) = C k n B f (kn R) r Pr or Pr a Pa oa Pa

—  kJ B (k R) = - r - k (k R) pr or pr pa oa pa

(C.19a) 

(C.19b)

and thus

C = C a r
k \ 2 B (k R) Pr j or pr
k I B (kn R) Pa I oa Pa

(C.20)

and the radial wavenumbers may be obtained by solving the coupled 

equations

£ B f (k R) r orx pr
k B (k R) pr or pr

kn ~ knpr pa

£ B f (k R) a oa pa
k B (k R) Pa oa pa

(e - £ )k v r a o

(C.21a)

(C.21b)
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Therefore, the electric potential may be written as

iP = C B (k p)Y(y) er r or Pr J

\p = C ea r
£ ' ka pr
£ kri i Pa

V (kDrR)
oav Pa '

R

R

(C.22a)

(C.22b)

At P = R, it seen that

ip = C B (k R)’i'(y) er r or pr J

ip = C ea r
1 /ka Pr

£ kri i Pa W ) n y )

(C.23a)

(C.23b)

and thus the electric potential function is discontinuous, at P = R, as

k.
ip = —ea £r

Pr
"Pa

'I'er (C.24)

However, differentiation of equations (C.22) with respect to the radial 

direction, together with the use of equation (C.21a), shows that the 

normal derivative of \pe at the cylindrical surface is continuous.

C.3 Summary of results

It has been shown that, for independent TE and TM modes in the 

cylindrical dielectric resonator, the fields must be rotationally 

symmetric, and thus the 0 -variation must be zero.

Within the situation of the substrate-mounted cylindrical pillbox 

dielectric resonator, the magnetic scalar potential ip̂ , which produces 

the TEomn modes, has been shown to have a discontinuity, at p = R, of 

the form

ipha pa
<Phr (C.25)

while the normal derivative remains continuous. At all other points within 

the structure, ip̂ , and its normal derivative, are continuous.
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The electric scalar potential which produces the TM omn modes 

has been shown to have discontinuities in its normal derivative, at 

the interfaces y = d and y = d + h, of the form

9\pel 9ipe29y 9y (C.26)

and at the interface p = R, the potential function is discontinuous as

ip = - 2.ea £r

Pr
Pa

iper (C.27)

At all other points within the structure, \pg and its normal derivative

are continuous.
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APPENDIX D

The Derivation of the y-directed Orthonormal Eigenmodes 

of a Dielectric Slab Waveguide

In section 3.4, it is shown that the required Green’s functions

for the grounded dielectric slab waveguide can be determined by combining

the appropriate two-dimensional Green’s function with the y-directed

orthonormal eigenmodes of the slab waveguide. In order to determine

these eigenmodes, it is necessary to consider the situation in terms

of y-directed potential functions, $ and $ in the slab and air regionss a
respectively. TE and TM fields are therefore determined by magnetic 

and electric scalar potentials that must satisfy

V 2$ + e k 2$ = 0  in the slab (D-l)s s o s v '

V 2$ + e k2$ = 0  in the air (D.2 )a a o a v 7

where $ represents either the magnetic or electric scalar potential.

Expanding the Laplacian, V2, in cylindrical co-ordinates, and 

assuming a separable solution of the form

$b(x) = Rb(p)Lb(e)'Pb(y) (D.3)

where b takes either the value s or a depending upon the region under 

consideration, gives

Rk i Rk 1 Lh K
+ O B ^ +  r ^ + 4^ + ehko “ 0  <D -4>Rb p Rb p 2 Lb \  b °

where the prime indicates differentiation with respect to the argument.

In order that equation (D.4) is satisfied for all positions (p,0,y) 

it is found that the fourth term must be independent of position, and so
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IJ/tl
■qr = -  k yb ( D-5 )

and equation (D.4) becomes

p 2 r  + p \  + r  + pS(ebko - kV  = 0 (D-6)b b b

In a similar fashion, it is found that

LhIT - " ’b (D-7)b

and equation (D.6 ) becomes the Bessel differential equation of order q, 

:b + pr; + (p 2kpb - pb>Rbp 2R" + PR’ + (p2k 2 - q 2 )RK = 0 (D.8 )

where

k2 = e.k2 - k2. (D.9)pb b o yb

On the dielectric boundaries, the electromagnetic fields must 

satisfy the following conditions:

At y = 0 y x E  = 0  (D.lOa)s

y . H = 0  (D.lOb)— s

At y = d y x E  = y x E (D.lla)~s a

? • (EgEg) = y • ( E ^ )  (D.llb)

y x H = y x H (D.llc)J — s 3 — a

y . = y • 4  (D-iid)

where y is a unit vector in the y-direction. Applying these boundary 

conditions determines that the radial and circumferential components 

of the scalar potentials are identical in the two regions, and are 

given by
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R (p ) = A Bq( kpp)

L(0) = T cos(q0) + A sin(q0)

(D.12)

(D.13)

where #n(x ) represents a linear combination of cylindrical Bessel

functions of order n and argument x, and A, T, and A are constants.

The solution for the y-directed component of the scalar potentials 

is not quite as straightforward, since the magnetic and electric 

potentials satisfy the boundary conditions in different manners.

In addition there are two distinct types of solutions that satisfy 

the requirements imposed by equations (D.l) to (D.1 1 ).

The first type of wave that propagates through the dielectric 

slab is known as a surface wave, and has the restriction that its 

energy in the air region must decay exponentially away from the dieletric 

interface. For such waves, it is found that only certain pairs of 

values of the y-directed wavenumbers satisfy the boundary conditions. 

Consequently, the first type of solution, known also as the bound modes, 

consists of a discrete set of y-directed eigenmodes.

However, if the condition of exponential energy decay outside the 

dielectric substrate is not applied, but instead the energy is allowed 

to radiate subject to the condition that it is finite at infinity, 

then it is found that all real values of the y-directed wavenumber in 

the air region will satisfy the boundary conditions. In order to 

satisfy the above energy restriction, these radiation modes must be 

written as an integral over the continuous spectrum of the wavenumber 

X, and thus the general form of the y-directed component of the 

potential function is

(D.14)
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The particular functions YR(y) and Y(X,y) have to be determined for the 

magnetic and electric potentials.

D.l The magnetic potential

The bound modes require that the discrete y-directed wavenumber 

in the air region is imaginary, and, since the magnetic potential 

produces a TE field, according to equations (3.21) and (3.22), applica

tion of the boundary conditions (D.10) leads to the discrete modes 

being

Yhs(y) = Bn sin(kyny) (D.15a)

Yha(y ) = “n exp (- Yny) (D.15b)

where k and y are the y-directed wavenumbers in the slab and air yn n J

regions respectively. The remaining boundary conditions (D.ll) produce 

the relations

B sin(k d) = a exp(- y d) (D.16a)n yn ' n 'n '

k B cos(k d) = - y a exp(- y d) (D.16b)y n n  v yn n n r n

(e k 2 - k 2 )B sin(k d) = (e k 2 + y 2)a exp(- y d) (D.16c)v s o yn' n v yn ' v a o n' n n

from which it is found that

a = B sin (k d) exp (y d) (D.17)n n y n r n

and the wavenumbers k and y are linked through the transcendentalyn n °
equation

k cot (k d) = - Y (D.18a)yn yn n

and also satisfy

kyn + yn = (es - ea )ko (D-18b)

159



Therefore equations (D.15) become

Y, = B sin (k y) (D.19a)hs n ynJ '

Yha = Bn Sin ^kynd  ̂ exp Yn^y " (D.19b)

The radiation modes have solutions outside and inside the substrate 

that may be written

Yhs(X,y) = \ c cos (°y) + Bhc sin (°y) (D.2 0 a)

Yha(x »y) = ahc cos + ^hc sin X̂y  ̂ (D.20b)

where the subscript c indicates that the continuous spectrum is being 

considered, and O and X are the y-directed continuum wavenumbers in 

the slab and air regions respectively.

On the ground plane, the boundary conditions (D.10) require that 

be zero, and the boundary conditions at y = d give

sin (ad) = ahc cos (Xd) + 3^c sin (Xd) (D.21a)

oB^c cos (ad) = x3jlc cos (Xd) - Xa^c sin (Xd) (D.21b)

a 2 - X 2 = (e - e )k2 (D.21c)s a o

Hence

tthc = Bhc ^sin ̂ °d  ̂COS ̂ Xd  ̂ ~ ^  C0S ^°d  ̂S^n ^Xd^  (D.2 2 a)

3, = B, [sin (ad) sin (Xd) + %  cos (ad) cos (Xd)] (D.22b)he he a

and the equations (D.20) become

Yhs(X,y) = Bhc sin (ay) (D.23a)

Yha (x »y) = {sin (ad) cos[X(y - d)] + ^  cos(ad) sin[X(y - d)]}

(D.23b)
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Examination of equations (D.23) and (D.19) together with equation 

(D.18a), reveals that the boundary conditions for the TE field have 

produced a magnetic potential function that is continuous both in value 

and in derivative across the dielectric interface at y = d.

In order to complete the derivation of the y-directed component 

of the magnetic potential function, it is necessary to determine the 

value of the coefficients and B^c by normalising ¥(y) over the range 

of y. The relevant orthogonality relations are given in Appendix E, 

and it is seen that for the TE mode it is necessary to set

f  Yh„(y)dy “ 1 (D.24a)
'o

and

fVh(X,y)Yh (X\y)dy = 6 ( X - X ' )  (D.24b)

Substitution of equations (D.19) into equation (D.24a) leads to

B 2 j  sin2 (kyny)dy + B2 sin2 (kynd) exp[- 2Yn(y - d)]dy = 1

(D.25)

which reduces, through use of equation (D.18a), to give 

2B = n d + 1/Yn
(D.26)

The evaluation of the normalisation detailed in equation (D.24b) 

is more complex, but, according to the procedure detailed by Shevchenko 

[1 ], this operation is equivalent to setting

“he + ehc - I  (D-27)

from which it is found that
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Bhc
Tr[sin2(od) + cos2(od)]

(D.28)

D.2 The electric potential

The electric scalar potential produces a field that is transverse 

magnetic to the y-direction according to the equations (3.32) and (3.33). 

Consequently, application of the boundary conditions (D.10) leads to the 

discrete modes being

Yes(y) = An cos (kyny) (D.29a)

Yea(y) = exP Yny) (D.29b)

where k and y are the y-directed wavenumbers in the slab and air yn n 7

regions respectively. The remaining boundary conditions (D.ll) give 

An cos(kynd) = Bn exp(- Ynd) (D.30a)

k y
— ^  A sin(k d) = — — 3 exp(- y d) (D.30b)e n v yn 7 £ n ^ n 7 v 7s 3 a

(e k 2 - k 2 ) A cos(k d) = (eok 2 + y 2)3 exp(- y d) (D.30c)s o  yn n yn a o n n v n v 7

and thus

3 = A cos(k d) exp(y d) (D.31)n n y n 7 r  n

and the wavenumbers k and y are linked through the transcendentalyn n °
equation

e
k tan(k d) = ■~rm y (D.32a)yn yn e n

and also satisfy

k 2 + y 2 = (e - E )k2 (D.32b)yn n s a o
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Therefore equations (D.29) become

Yes(y )  = An cos (kyny) (D.33a)

Ye a ^  = An cos(kynd ) exPt_ - (D.33b)

The TM radiation modes may be written as

Yes(X»y ) = Aec cos(ay) + Bec sin(ay) (D.34a)

Yea(x ’y) = aec cos(X y ) + &ec sin(Xy) (D.34b)

and the boundary conditions (D.10) and (D.11) give

A cos (ad) = a cos(Xd) + 3 sin(Xd) (D.35a)ec ec ec

- Agc sin(od) = ■£—  (3ec cos(Xd) - agc sin(Xd)} (D.35b) 
s a

a 2 - X 2 = (es - ea )k" (D.35c)

Hence,

e
aec = ^ec tcos(a<*) cos(Xd) + (^)(~^) sin(ad) sin(Xd)] (D.36a)

s

e
= A^  [cos(ad) sin(Xd) - ( ~ ) ( «■) sin(ad) cos(Xd)] . ,(D.36b)GC GC t As

and the equations (D.34) become

Yes(x »y) = Aec cos (ay) (D.37a)

Y (X>y) = A _ (cos(od) cos[x(y - d)]cd ct

£a o
" sin(°d) sintx(y ~ d)]^ (D.37b)

Examination of equations (D.37), and (D.33) together with equation 

(D.32a), shows that the boundary conditions for the TM field have 

produced an electric scalar potential that is continuous across the 

interface at y = d, but that the normal derivative is discontinuous as
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ea dVes
dy dy (D.38)

The reason for this is that the y-directed electric potential is seen, 

from equation (3.32), to be proportional to the normal electric flux 

density which is continuous across the dielectric interface at y = d. 

However, the electric flux density tangential to the interface is 

proportional to the derivative of the y-directed electric potential, thus 

determining the discontinuity relation (D.38) through the boundary 

condition (D.lla).

In order to complete the derivation of the y-directed component 

of the electric potential function, it is necessary to determine the 

value of the coefficients An and by normalisation over the range of 

y. It is seen from Appendix E that for the TM mode it is necessary 

to set

f 00I -r—  y 2 (y) dy « 1J e en J J *o rel
(D.39a)

and

/; rel
Ye (X,y)Ye(X\y)dy = fi(X-X') (D.39b)

and, consequently, the coefficients are given by

2A = n

fe) * 0 Y 2 + k 2 _ U  XU
(e Y ) + (e k )s n a yn

(D.40)

ec
7r[cos2 (ad) + (-— ) (^) sin2 (ad)] 

s

(D.A1 )
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The complete solutions for the orthonormal eigenmodes for the TM 

and TE y-directed scalar potentials are presented in Tables (D.l) and 

(D.2), where

Y(y) - 2 Y (y) + f Y(X,y) dX (D.42)
n /n
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DISCRETE CONTINUUM

0  is y S d

y £ d

Y (y) = A cos(k y) n J n yn Y(X,y) = Ac cos(oy)

Y (y) = A cos(k d)exp[-Y (y - d)] n w /  n v yn r n J Y (X, y ) = A cos(od)cos[X(y - d)] - sin(od)sin[X(y - d)]

A = n
2 1

2
A

(2/tt)

(y+fe) y2 + k 2n yn
A —c

cos2 (Od) + (t2-) A  sin2 (Od)
s Ae 2y 2 + e 2k 2 . s n a yn.

k tan(k d) = (— ) yyn yn a o2 - x2 = (e - e )k2A s ay o

k 2 + y 2 yn n (e - e )k2 s a o

Table D.l The TM y-directed eigenmodes of a grounded dielectric slab waveguide



DISCRETE CONTINUUM

0  S y ^ d 

y £ d

Y (y) = B sin(k y) n J n ynJ

Yn (y) = Bn sin(kynd)exp[-^(y - d)]

Y(X,y) = Bc sin(Oy)

Y(X,y) = B^ |sin(od)cos[X(y - d)] + — ■ cos(od)sin[X(y - d)] |

B = n

k cot yn

k 2 + Y yn

2 1
2

■ " Yn

- £ )k2 s a o

B = c

a 2 - x2

(2/tt )

,d + v

(k d) v yn '

2 = (e n

2
sin2 (od) + (— ) cos2 (ad)X -*

= (e - e )k2 s a o

Table D.2 The TE y-directed eigenmodes of a grounded dielectric slab waveguide
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APPENDIX E

The Orthogonality Relations for the y-directed Eigenmodes 
of the Grounded Dielectric Slab

In order to derive the orthogonality relations, it is necessary 

to examine the derivation of the scalar potential function differential 

equation in an inhomogeneous region. The situation under consideration 

is that of a grounded dielectric slab waveguide, and it is evident 

that the relative dielectric constant is inhomogeneous across the 

substrate-air interface. Thus, the relative permittivity is not constant, 

but varies with the vertical direction, y, and so Maxwell's equations 

become

The analysis of the TE mode proceeds exactly as in section 3.1.3 

with replaced by e(y), and the magnetic scalar potential differ

ential equation is found to be

The analysis of the TM modes is, however, more complicated. 

Initially the procedure is the same as in section 3.1.4, and choosing

VxE = - jojy H (E.la)

VxH = jux:Qe(y) _E (E.lb)

V.(e(y)E) = 0 (E.lc)

V.H = 0 (E.ld)

(E.2)

which, using the method of separation of variables, gives for the

y-directed eigenfunction, Y^Cy),

(E.3)

169



an electric vector potential, lie, such that

H = V x He (E.4)

gives the electric field as

E = - jcoy^e + V4) (E.5)

where <J> is an arbitrary scalar. Substitution of equations (E.4) and 

(E.5) into equation (E.lb) leads to the relation

V(V.IIe) - V 2IIe = £(y)k^IIe + jco£o£(y)V<j) (E.6 )

which is rewritten, using the relationship (A.9), as

V(V.IIe) - V 2IIe - e(y)k^IIe = jw£o(V(e(y)(J>) - c|>Ve(y)) (E.7)

The divergence of the electric vector potential is now defined to be

V.IIe = jid£Q£(y)<t> (E.8 )

and equation (E.7) reduces to

V**e - W* 3f  + E(y)ko*e “ 0 (E-9>

which, upon separation of variables, leads to the relation

a_
ay

1 3V y>
e(y) 3y + IT7)kyYe(y) * 0 (Ea0)

for the y-directed eigenfunction, Ye (y).

A very important form of second-order differential equation is 

known as the Sturm-Liouville equation,

[l7 (p(y) ' q(y) + Xmw(y)] fm(y) = 0 (E,11)

and it is clear that equations (E.3) and (E.10) are of this kind, where

170



p(y) = w(y) = i

1 TE modes
(E.12) 

. l/e(y) TM modes

and

q(y) = 0 (E.13)

The general orthogonality relationship for both of the discrete

transverse modes is determined by considering the equation

[If (p(y) ! f ) + kynw(y)] Yn(y) = 0  (E’14)

where Yn(y) represents the y-directed eigenmode corresponding to the 

eigenvalue kyn » and Yn(y) must satisfy the appropriate boundary 

conditions for the grounded dielectric slab waveguide.

A second eigenmode, Ym (y), must satisfy

[I? (p(y) I f } + kym w(y)] Ym (y) = 0  (E-15)

and thus, multiplying equation (E.14) by Y (y) and equation (E.15) by

Yn(y), subtracting one from the other, and integrating over the 

y-domain, gives

/ «» 3Y ~ 3Y
o tYra I f  (p(y) 3 f } - Yn I f  (p(y) s f )] dy

/  w(y)Yn/ A
+ [k^ - ] I w(y)Y Y dy = 0 (E.16)yn ym j ' n m 

which after a simple integration by parts yields

r ° °  9Y 3Y _
[k2 - k 2 ] I w(y)Y Y dy = tp(y) (Y - Y -r-2-)] (E.17)L yn ymJ J J n m 3 r J n dy m dy /Jo

The relevant boundary conditions ensure that the right hand side of 

equation (E.17) is identically zero, and thus the orthogonality relation 

for normalised y-directed eigenmodes, for both TE and TM modes, is

171



f w(y)Yn(y)Ym (y)dy = 6]mn (E.18)

where

6
1 1 n = m

(E.19)nm

and w(y) is given by equation (E.12).

The equivalent procedure used to determine the orthogonality 

relationship for the continuum modes is complicated due to the property 

that these modes are not zero at an infinite distance from the slab. 

However, Shevchenko [1] has shown that the orthogonality for the norm

alised continuum modes also takes place with regard to the weight 

function, and is given by

where X and X 1 are radiation wavenumbers.

Furthermore, Shevchenko has shown that the discrete and continuous 

parts of the eigenmodes are orthogonal, so that

(E.20)

(E.21)
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APPENDIX F

The Completeness Relationship

The orthonormal set of y-directed eigenmodes given in Appendix D 

may be used to construct a permissible function, $(y), such that

*(y) = 2 (|)nYn (y) + f <t>(X)Y(X,y)dX
n 'o

(F.l)

The orthogonality relations, given in Appendix E, may be used to determine 

the values of the coefficients <t> and <Kx)» which are found to be

=

4>(X)

(y) <Ky) Y (y)dy

f w(y) $(y) Y(X,y) dy

(F.2)

(F.3)

where w(y) is given by w(y) = <
TE modes

^  l/erel ^  modes
(F.4)

If the function $(y) is chosen to be the Dirac delta function, 

6 (y - y f), then the coefficients become

4>n - w(y') V y '>

<J>(X) = w(y') Y(X,y ')

(F.5)

(F.6 )

and thus, from equation (F.l), the completeness relation is found to be

r ° °6(y - y’) = w(y 1) Z Yn(y)Yn(yf) + I Y(X,y)Y(X,yf)dX
, n Jo

(F.7)
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APPENDIX G

The Analytical Evaluation of the Radial and Axial Integrals

In section 5.3, the integral over the resonator volume was found 

to be given by equations (5.18), which upon application of the result 

of the azimuthal integral given in equation (5.20), become

where ^ ^ ( P 1) and ^hr^y*^ are §iven equations (5.8) and (5.9) 

respectively.

G.1 The radial integral

It may be seen from equations (G.l) that the radial integral is 

performed over the source space, and thus the value of p may be 

considered constant. Furthermore, p must lie within the resonator 

volume, and so the two radial integrals in equations (G.l) may be 

combined to give

\ r(iL) = (er " ea^koCg exP["Y(y ~ d >] •

P ’ < P

(G.la)

(x) = (e - e )k2C exp[-y(y - d)] .^hr —  r a o g J J

d+h
p 1 > p

d

(G.lb)
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/ 2> _  c
rad ” R H02)(kDP) f P'J (k P’)dp’ 

'o

Jo(kpp) p  p fH^2 )(.kpp ’)dp'

n=l r »•'.'O

J (M>) f  P'H(2 )(k„p')J ( 6 p')dp' ° P Jn ° P o n

(kpp,)Jo(6 npf)dp'

(G.2)

Using equations (5.3), (5.7), and the result

fh iI x Z (ax)dx = —  [bZ^(ab) - aZ^(aa)] (G.3)

where Zq (x ) is an arbitrary Bessel function, equation (G.2) becomes

/2P
2  {H^2)(k p)PJx(k P) + JQ(k p)[RHj2)(k R) - pH<2)(k p)]}rad k R P

N P
+ E — ■ (H (k p)I . + J (k o)I.,} (G.4). T1 o p pi o p p2n=l n

where

and

p2

(8nP)J0(kpP)J.i(BnP) - (V)J-l(V )Jo<6nP> ,p nI =   O . j ;
(k* - BJ)

(kpp )H^2 )(k0 p )Jo(Bnp ) - (Bn P)H<2 >(k0 P)J_1 (Bn P) - (koR)H (2 )(kDR)Jo(BnR)

<kp - en>

(G.6 )

Now,for integer values of p, 

Z_p(x) = (-l)PZp(x) (G.7)
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and so equation (G.4) becomes 

/2P
I . = -t- • {RH$2)(k R)J (k o) + pS }rad R l p o p w

N
+ Z { ( k D ) S J ( B p )

n=l n (k* - 32) P w ° n n p n /

+ (kpR)H<2 >(kpR)Jo(BnR)Jo(kpp)} (G.8 )

where

S = H(2)(k p)J,(k D) - H p ' ( k p ) J  (k p) w o ' pr/ r  p l p o p (G.9)

(2)The Hankel function, Hp (z), is defined as

H ^ ( z )  = J (z) - jN (z)p v '  P P
(G.10)

where Np(z) is the cylindrical Bessel function of the second kind of 

order p and argument z, and thus equation (G.9) may be expanded to give

Sw - -j{W > Jl(kPp) - Nl<kpp)Jo(kPP)) (G.ll)

and the term in the braces is the Wronskian,

W{J (z),N (z)} = N (z)J - (z) - N ^ ( z ) J  (z) = ~  (G.12)nv ' n v ' n v n+lv 7 n+ 1 n v ttz

and so the radial integral becomes

/TP
rad R

- 1

k 2P
N

+ Z

[ f  - (kpR)Hl2 )(kpR )Jo('kpp)]

j J (B p) 1 7r o nMn=l ^ - l )

,(2),
- (kpR)Hf  (kpR)Jo(PnR)Jo(kpp) (G.13)

and,recalling that 8 Q = 0, it is clear that equation (G.13) is identical 

to
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G.2 The axial integral

It is evident from the above result that the equations (G.l) may 

be combined to give

K  (x) = (e - e )k2C exp[-y(y — d)] I ,hr —  r a o g r J rad
t

d+hf d+h
I exp[-y(yf - d)]^hr(yt)dy’ (G.15)

The axial integral is given by

A sd+h 
I = —  I exp[-Y(y' - d)]dy'y A? J d

I ^ ^d+h ry

[ T  Z {Am I exp[-y(y1 - d)] cos[-~~ (yf - d)]dy'
7  h m=l 'd

C 9+ B I exp[-y(y1 - d)] sin[-yj- (yf - d)]dy'} (G.16)
n

and the latter integrals in equation (G.16) are standard indefinite 

integrals with the solutions

j exp(-ax)cos(bx)dx = - exP^ ax7.- [a Cos(bx) - b sin(bx)] (G.17)
J (a2 + b2)

| exp(-ax)sin(bx)dx  ---exP.(_.-a.x.) j-a sin (bx ) + b cos(bx)] (G.18)
* (a2 + b2)

and equation (G.16) therefore reduces to


