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Summary
This thesis describes a fundamental numerical investigation into the buoyancy-induced flow and 
heat transfer characteristics of a sealed rotating cavity. The outer cylindrical shroud is assumed 
to be uniformly hot and the inner cylindrical hub uniformly cold. The disk side walls are 
assumed to be adiabatic and all the surfaces rotate at a uniform angular speed with gravitational 
buoyancy effects neglected in order to simulate more fully the flow in turbomachinery disk- 
spaces. Also considered is an isothermal, sealed rotating cavity configuration with a stationary 
outer cylindrical surface. Here a forced convection flow is investigated.

Initially, a radial/axial axisymmetric buoyancy-induced flow is considered. A stream function- 
vorticity formulation is applied with coupling with the tem perature equation achieved through 
the assumption th a t the density varies linearly with tem perature. The Reynolds number mul
tiplies the Coriolis force which is found to oppose the destabilising effect of the buoyancy force. 
A Linear Stability Theory (LST) analysis is used to solve the linearised perturbation equations 
in order to obtain the neutral stability characteristics of the flow.

The second two-dimensional flow investigated is in the radial/tangential plane with zero axial 
velocity assumed. The Coriolis force scales out of the governing equations with the introduction 
of a stream function-vorticity formulation, but the Reynolds number is nevertheless retained in 
the buoyancy correction terms. Convection is in the form of cyclonic/anti-cyclonic pairs where 
the cyclones rotate in the same sense as the cavity and the anti-cyclones in the opposite sense 
of rotation. LST suggests th a t numerous discrete wavenumber solutions are stable for given 
defining parameters, with the buoyancy correction only having a localised effect on the neutral 
stability at small Reynolds numbers. Non-linear numerical investigation confirms th a t various 
wavenumber solutions may be obtained for a given cavity, with the cy clonic/anti-cyclonic pairs 
having increasingly isothermal cores and becoming time dependent with an increase in the 
Rayleigh number. The rolls are also observed to precess relative to the rotating surfaces and 
this is attributed exclusively to the magnitude of the buoyancy correction.

To investigate the influence of the disks on the two-dimensional flow described above, a th ree- 
dimensional vorticity-velocity formulation is applied. The velocity field is described by three 
Poisson equations which are solved at each time level using a Multigrid acceleration technique 
to enhance the performance of the relaxation procedure. The three-dimensional flow bears 
a strong similarity to the two-dimensional radial/tangential flow and is again characterised 
by regions of cy clonic/anti-cyclonic activity. Non-unique solutions are obtained with various 
wavenumber solutions stable for a given set of parameters. The effect of the disks on the flow 
is relatively localised with axial velocity away from the disks in regions of cyclonic activity 
and toward the disks in regions of anti-cyclonic activity. The rate of precession of the rolls is 
additionally dependent on the proximity of the disks, with an increase in the precession rate 
w ith a decrease in the separation. It is noted however th a t for some of the cases presented 
the results may only be regarded as being qualitatively correct as the fluid can take negative 
densities in part of the com putational domain.

Finally, the sealed cavity with a stationary shroud problem is investigated using suitably m od
ified versions of the code developed for the axisymmetric flow. The prim ary flow is in the 
radial-tangential plane, however, a time-dependent secondary flow in the radial-axial plane is 
computed. Comparisons with experimental results show reasonable agreement.



Nomenclature
N.B. The following is a guide. For example, v is a generic term  for tangential 

velocity; the precise notation in the text distinguishes between dimensionless /  

dimensional /  rotational forms.

A, B ,C  three-dimensional vorticity components

a dimensional inner radius of cylindrical hub

d dimensional distance between differentially heated surfaces

E  Eckman number (=  - ^ 5)

Gr Grashof number (=  pj)

g acceleration due to gravity

I c Fourier cosine coefficient

I s Fourier sine coefficient

J  Jacobian operator

j  imaginary number (>/—1)

K  thermal conductivity

k wavenumber

N u  local Nusselt number

Nuo total Nusselt number

n discrete wavenumber

P  static Pressure

Pe Peclet number

P r  Prandtl number (=  ^)



q rate of heat transfer

qx rate of heat transfer due to conduction alone

R  dimensional outer radius of cylindrical shroud

Ra rotational Rayleigh number (=  —— —)

Rab gravitational Rayleigh number (=

Ragap gap based rotational Rayleigh number (=  Rn )

Re rotational Reynolds number (=

r radial coordinate

rm arithmetical mean radial coordinate (=  |( R  — a))

r0 radius ratio (=

S  standard deviation

s dimensional axial dimension of cavity

T  temperature

Tc dimensional cold surface temperature

Th dimensional hot surface temperature

Tm arithmetical mean temperature (=  T)

t time

U dimensional radial velocity

u radial velocity

V  dimensional, stationary frame tangential velocity

v tangential velocity

W  bulk average velocity

w axial velocity

z  axial coordinate

xi



Greek characters

0 volumetric expansion coefficient

AT dimensional temperature difference between cold and hot surfaces

Sr radial interval

St timestep

Sz axial interval

se tangential interval

K, thermal diffusivity

e tangential coordinate

A temporal growth rate (=  Xr + jAj)

Xi imaginary component of the temporal growth rate (a frequency)

AR real component of the temporal growth rate

A w wavelength

V kinematic viscosity

p density

Po reference density

4> scaled streamfunction (= )̂
streamfunction

ft angular rotational speed of cavity

LJ vorticity (two-dimensional flow)

Subscripts

B  base quantity

crit critical value



dimensional value 

maximum value 

minimum value

Superscripts

* rotating frame reference value

A perturbation quantities

max

min



Chapter 1

Introduction

The high operating temperatures encountered in modern gas turbine engines 

means that the accurate prediction of the temperature distribution and heat 

transfer within rotating cavities is very important. Effective cooling in such 

engines can improve efficiency and increase their operating life. The prediction 

of the temperature distribution in sealed rotating cavities is also of importance 

as this must account for the heat transfer conditions encountered elsewhere in 

the engine.

In the period from 1940, inlet temperatures have increased substantially from 

about 900 K  to 1600 K  resulting in the need for improved material properties to 

cope with the resulting large thermal stresses, and also an improved understand

ing of basic-flow structures within internal turbine cavities to aid cooling design. 

A typical cross-section through a gas turbine showing the internal air system 

may be seen in Figure 1.1. It is rare that sealed cavities occur within gas turbine 

cooling disk systems as a throughflow of cooling air is normally required, however 

an example of a sealed disk space with all surfaces rotating at the same angular
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speed is presented in Figure 1.2. In order to investigate fully the flow within both 

sealed and non-sealed cavities, initial fundamental investigations are required for 

rotating systems with a simple geometry. This will aid the understanding of the 

increasingly complicated geometries and throughflow systems encountered in tu r

bines. For forced convection problems at turbomachinery operating conditions, 

the flow within these air-filled cavities is expected to be turbulent. However, 

for buoyancy-induced flows, there is strong evidence that the flow remains lam

inar throughout the operating conditions encountered (Bohn, Dibelius, Deuker 

and Emunds, 1994). Laminar flow conditions only are therefore considered here. 

Turbulent flow modelling is beyond the scope of this thesis, but some reference 

is made to turbulent flow conditions in the review of previous work.

The main configuration being considered may be seen schematically in Figure 

1.3. The outer cylindrical surface (shroud), is uniformly heated and the inner 

cylindrical surface (hub), uniformly cooled. The side walls (disks), are assumed 

to be perfectly insulated, (adiabatic). The cavity is sealed and rotates at a 

constant speed, ft. If no heating were present (i.e. isothermal conditions prevail), 

the fluid within the cavity would be in solid body rotation with all the fluid 

particles rotating at the same angular velocity, fI. The temperature difference 

between inner and outer cylindrical walls, if sufficiently large, may give rise to a 

buoyancy-induced flow due to centrifugal effects. Gravitational buoyancy effects 

are neglected in this computational study since the ratio is unlikely to be 

greater than 0.1 at turbomachinery operating conditions. The configuration is 

analogous to Benard convection in confined cavities where gravitational buoyancy 

effects are the driving force (Figure 1.6). Indeed, in the limit as J  1 the 

LST tends to the Benard limit with the centrifugal force taking the place of the 

gravitational force.
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A further sealed geometry considered as part of the thesis is shown in Figure 1.7. 

Here, the shroud is stationary with all other surfaces rotating. The outer shroud 

and inner hub are assumed adiabatic with the disks either isothermal or at differ

ent constant temperatures. This geometry is relevant to some gas turbines where 

there is a peripheral flow of cooling air entering and leaving the cavity through 

the outer casing. However, solutions are obtained only for cases where there is 

no peripheral flow of cooling air in order to investigate fully the fundamental flow 

structures, and in particular, the temporal instabilities of the flow. Although the 

primary flow is in the tangential direction, a secondary radial/axial flow exists 

which takes the form of two counter-rotating circulations. It is shown that this 

secondary flow travels radially outward on the disks and radially inward at the 

mid-axial plane (located midway between the rotating disks as depicted by the 

dividing streamline in Figure 1.7).

The thesis broadly takes the following format. Chapter 2 contains a review of 

previous work on buoyancy-induced flows, and includes both stationary and ro

tating systems. In chapter 3, two dimensional radial/axial axisymmetric flow is 

first considered (figure 1.4). A Linear Stability Theory method is adopted to 

predict the conditions necessary for the onset of convecting flow. Numerical sim

ulations of the full two-dimensional non-linear equations are then undertaken 

in order to simulate the form of the ensuing axisymmetric convection. Another 

study is undertaken in Chapter 4 where no convection is assumed to occur in 

the axial direction, and therefore a radial/tangential flow is studied (figure 1.5). 

Once again, a Linear Stability Theory is used in order to obtain the conditions 

necessary for the onset of convective instability and the results of detailed Numer

ical Simulations are presented. Chapter 5 describes the numerical simulation of 

the full three-dimensional problem and includes detail concerning the methods



of solution and assumptions made. A Fourier decomposition of the tempera

ture field is also obtained. The effect of introducing buoyancy corrections to the 

Coriolis force is also discussed for two-dimensional and full three-dimensional 

simulations.

Chapter 6 describes the development of the axisymmetric radial/axial code to 

include the use of a non-uniform grid and then its subsequent use in predicting the 

flow inside a sealed cavity with stationary shroud. The effects of unsteadiness are 

investigated and comparison is made where possible, with experimental results. 

Solutions are also obtained using a suitably modified version of the uniform grid 

code developed in Chapter 3.

Conclusions and recommendations for future work are presented in Chapter 7.
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Chapter 2

Review of previous work

2.1 Introduction

In this chapter a review of that previous work which is relevant to this thesis 

is presented. The problem of natural convection in stationary cavities is first 

considered. A strong similarity exists between the stationary and rotating cavity 

problems, where the gravitational field of the former is replaced by centrifugal 

force effects in the latter as the body force generating free convective flows. Much 

attention has been given to buoyancy induced flow in sealed stationary cavities 

due to its wide ranging applications. Less attention, however, has been given 

to natural convection in sealed rotating systems, with many authors consider

ing forced convection problems only. Several authors have also considered the 

predominantly forced convection problem of flow and heat transfer in rotating 

cavities with a stationary shroud with or without a peripheral flow of cooling air. 

These will be reviewed here also. Some numerical methods are also considered 

and presented. In particular, various formulations and solution methodologies 

for the Navier-Stokes equations are reviewed.
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In addition to the work presented below, two monographs by Owen and Rogers 

(1989,1995) give detailed reviews of flow and heat transfer in both rotor-stator 

systems and rotating cavities. Of particular interest and relevance is the review 

of buoyancy induced flow in rotating cavities where experimental, analytical and 

numerical work is covered in detail.

2.2 Natural convection in stationary cavities

Many authors have investigated natural convection in stationary cavities and this 

generic fundamental fluid problem has a long history. The problem for differen

tially heated side walls and adiabatic upper and lower surfaces, sometimes known 

as the double-glazing problem, has been investigated widely due to its associated 

applications. These include horizontal transport in water bodies, reactor cooling 

systems, building insulation and crystal growth procedures. Consequently, this 

has become one of the classical heat and mass transfer problems with significance 

for fundamental fluid mechanics. The buoyancy-induced flow between horizontal 

surfaces heated from below is another classic fluid dynamics problem. Rayleigh- 

Benard convection has many wide ranging applications, having been the subject 

of numerous early investigations. Here, only a brief review of selected literature 

is presented.

2.2.1 Differentially heated side walls

Vest and Arpaci (1969) investigated analytically and experimentally the stability 

of natural convection of a viscous fluid in a vertical slot with differentially heated
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side walls. At low Rayleigh numbers (Ra ;̂ see nomenclature), heat is transferred 

across the slot primarily by conduction. At higher Rayleigh numbers heat transfer 

is due primarily to convection with thin boundary-layers forming on the sidewalls 

and surrounding an isothermal core. The authors produced neutral stability 

curves for both the conduction and boundary-layer regimes and concluded that 

natural-convective flow is unstable with respect to two-dimensional stationary 

modes of disturbance which are fixed in space.

Unsteady natural convection in a rectangular cavity with differentially heated 

side walls was studied by Patterson and Imberger (1980). The Boussinesq ap

proximation was assumed to be valid (see Tritton, (1977) for detailed description 

of the approximation) and the side walls were instantaneously heated and cooled 

to temperatures T0 +  4^- and To — where T0 was taken as the initial fluid 

temperature. The flow that evolves, consists of narrow boundary-layers on the 

vertical walls exiting from the downstream corners in heated and cooled intru

sions. A combination of scale analysis and a numerical simulation was used to 

show that a number of initial flow types are possible dependent upon the Rayleigh 

number, aspect ratio (height /  width) and Prandtl number. They showed how

ever, that these initial flow types tended toward either convective, conductive or 

transitional steady flow types. They also showed that the flow changes from be

ing conduction dominated to being convection dominated for increasing Rayleigh 

number with a constant aspect ratio and Prandtl number. Further increases in 

Rayleigh number were shown to give rise to internal wave motion in the side wall 

boundary-layers.

De Vahl Davis (1983) produced a bench mark numerical solution for a buoyancy- 

driven flow in a square sealed stationary cavity in a gravitational field. The
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vertical sides were differentially heated and horizontal surfaces adiabatic. Time 

independent solutions were obtained for Rayleigh numbers of 103,104,105 and 

106 using a streamfunction-vorticity formulation. The time-dependent form of 

the equations were utilised and advanced in time using the method of the false 

transient, (Mallinson and de Vahl Davis, 1973), until a steady state was reached. 

First order accurate forward differences were used for the time derivatives and 

central second-order accurate differences for spatial derivatives. Uniform grids 

were used which facilitated the use of the Richardson’s extrapolation technique 

to obtain more accurate solutions. These fourth order accurate solutions were 

obtained by using solutions on two different meshes, the finer grid having half 

the grid spacing of the coarser.

Further investigations were conducted by Patterson and Armfield (1990). Here, 

a combined numerical and experimental approach was used to investigate the 

transient start-up corresponding to the instantaneous heating and cooling of the 

side walls of the cavity. Good comparisons were obtained indicating that the 

numerical simulations captured the important features of the flow. They showed 

the presence of travelling wave instabilities on the vertical wall boundary-layers 

and horizontal intrusion flows. The interaction of the intrusions with the opposing 

vertical boundary-layers were also shown to give rise to cavity-scale oscillations.

Schladow (1990) investigated the oscillatory motion in the side-heated cavity 

using a direct simulation method. The results obtained were for an aspect ratio 

of unity and chosen Rayleigh and Prandtl numbers. Both long-period cavity- 

scale and short-period boundary-layer instabilities were shown to be present for 

the transient start-up  problem. The former was concluded to be as a result 

of the horizontal pressure gradients established by the tilting of the intrusion
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isotherms caused by the strong buoyancy-induced vertical jets turning the corner 

and intruding horizontally across the cavity. The latter was deemed to be as a 

result of the ‘leading-edge’ effect at start-up and the interaction between the 

intrusion flows and opposite boundary-layers.

Armfield and Patterson (1992) investigated the wave properties associated with 

the starting boundary-layer. A comparison of experimental, numerical and ana

lytical results were presented, indicating that the early part of the development of 

the thermal boundary-layer is approximately one-dimensional. They also showed 

that the divergence from the one-dimensional boundary-layer is followed by os

cillation as a result of tem perature overshoot from the steady state in the hot 

boundary-layer, and amplification of the travelling waves.

Further investigation was carried out by Schopf and Patterson (1995). Here, 

a shadowgraph technique was used for visualising the early stages of the flow 

near start up. They present a clear visualisation of the first group of waves 

travelling up the hot boundary-layer, the initial horizontal intrusion flow and the 

second group of waves resulting from the interaction between the intrusion and 

boundary-layers.

2.2.2 Rayleigh—Benard convection

Rayleigh-Benard convection has been the subject of many reviews, much of which 

is beyond the scope of this thesis. However the brief description of some funda

mental ideas and findings presented here is based on the review of Koschmieder 

(1993).
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Benard performed the first systematic investigation of convection in a shallow 

fluid layer heated from below with a free surface boundary above. He found a 

stable, steady-state regular pattern of hexagonal convection cells when viewed 

from above, with fluid rising at the centre and falling at the hexagonal edges. 

Rayleigh later explained this in terms of a buoyancy-driven instability. It was 

later understood that in buoyancy-driven convection, the expected pattern would 

be convection in the form of rolls, rather than the cellular pattern observed by 

Benard. The convection observed by Benard is now understood to be driven by 

temperature-dependent surface tension forces rather than by buoyancy. Rayleigh 

also discovered that a critical temperature difference must exist for the onset of 

instability, at which the buoyancy of the fluid is able to overcome the dissipa

tion due to viscosity and thermal diffusivity of the fluid. The critical Rayleigh 

number (Ra )̂, critical wavenumber and critical wavelength for the three possible 

horizontal boundary conditions are presented in Table 2.1.

Boundaries R O >C T lt‘ k CT lt  ̂W  crit
Rigid-rigid 1707.8 3.117 2.016
Rigid-free 1100.7 2.682 2.342
Free-free 657.5 2.221 2.828

Table 2.1: Critical conditions for instability

Rayleigh-Benard convection in a rotating fluid layer of infinite radial extent ro ta t

ing about a vertical axis, heated uniformly from below has also been investigated 

by many authors. It was noted that rotation had a stabilising effect on the onset 

of convection due to the presence of the Coriolis force which makes the path of 

rising parcels of fluid curved and therefore longer. As a result, the parcels will 

experience more dissipation, and in order to overcome the increased dissipation 

a larger temperature difference has to be applied to begin convection. The con

vection pattern noted by several authors has the form of concentric circular rolls.
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At larger rotational rates, the rolls align in the radial direction as a result of the 

shear of the centrifugal circulation becoming increasingly dominant.

Further work was conducted by Schliiter, Lortz and Busse (1965). They presented 

the finite-amplitude steady solutions for an infinitely long horizontal layer using 

successive approximations. They concluded that not every linear steady solution 

is a stable solution of the non-linear problem but yet there still exists an infinite 

number of finite-amplitude solutions. Their stability theory suggested that three- 

dimensional flows are unstable with respect to infinitesimal disturbances and that 

a class of two-dimensional solutions in the form of rolls are indeed stable, but this 

depends heavily on the wavelength. However, it was noted that their stability 

conclusions were obtained up to third-order in the expansion, and any small 

change in the Boussinesq equations being used could alter the behaviour.

Busse (1967), (reported in Koschmieder, 1993), made the first theoretical study 

of supercritical convection on an infinite plane and for an infinite Prandtl num

ber (equivalent to neglecting inertia forces). He investigated the stability of 

the steady solutions of the convection equations by introducing non-oscillatory 

two-dimensional disturbances. He concluded that stationary two-dimensional 

supercritical rolls are stable in only a part of the range given by the neutral curve 

of linear theory and that there are no stable time-independent motions above a 

certain critical value of Rayleigh number.
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2.3 Natural convection in rotating cavities

Many authors have considered rotating flow in sealed rotating cavities with either 

an axial or a radial heat flux. The former bears a strong similarity to the station

ary sealed system in a gravitational field, (double-glazing problem), discussed 

above. Here, however, the direction of flow in the boundary-layer on the heated 

disk opposes the direction of centrifugal acceleration and is radially inward to

ward the centreline. Conversely, the flow in the boundary-layer formed on the 

cooled disk is radially outward. The latter case with a radial heat flux is gener

ally more complex, and bears strong similarities to Rayleigh-Benard convection. 

Here, the flow is likely to be three dimensional and unsteady.

2.3.1 Axial heat flux

Numerical predictions for centrifugally driven free convection in sealed rotating 

cavities were presented by Chew (1985). Results were obtained for both air and 

high-viscosity silicone oil filled cavities. Finite difference solutions in primitive 

variable form were obtained for the axisymmetric equations of momentum, mass 

and energy conservation on a staggered grid using the ‘SIMPLE’ algorithm of 

Patankar (1980). Step changes on the grid size near the boundaries were also 

implemented in order to resolve fully the boundary-layer regions. Chew utilised 

a first-order accurate hybrid upwinding scheme for the advection terms. The 

boundary conditions applied to the silicone oil simulations corresponded to dif

ferent, but uniform, temperatures on the disks, adiabatic conditions on the outer 

cylindrical surface and symmetry boundary conditions at the axis of rotation. 

The investigation for low Reynolds number (Re) where conduction effects dom
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inate showed good comparison with the similarity solution of Dorfman (1968). 

At higher values of Reynolds number and of /?AT, the numerical results depart 

from the similarity solution which assumes a linear temperature profile across the 

cavity in the solution for the flow field between two infinite disks. The presence of 

the outer cylindrical surface is also shown to affect the heat transfer throughout 

the cavity.

Chew then considered the air-filled cavity and, in particular, concentrated on the 

effects of the thermal boundary condition applied at the outer cylindrical surface 

and non-uniform disk temperature distributions. Results were again compared 

with a similarity solution where the author showed reasonable comparison. It 

was shown however, that the replacement of the adiabatic condition on the outer 

cylindrical surface with a linear distribution, reduced significantly the heat trans

fer to the disks.

Bohn, Dibelius, Deuker and Emunds (1994) investigated numerically the tem

perature distribution and heat transfer within a square-section rotating annulus 

with constant but different temperature distributions at the walls, (disks). Fur

thermore, the inner and outer cylindrical surfaces were assumed to be insulated. 

The computational model included also the effects of introducing a sectored cav

ity by using adiabatic radial walls which made the flow three dimensional. Their 

code solved the compressible steady-state equations for the conservation of mass, 

momentum and energy. They evaluated the density using the ideal gas law as

suming the cavity to be air-filled. Compressibility effects were neglected in the 

viscous terms of the equations as the velocities of these types of flow are gener

ally small. In the energy equations the dissipation and the pressure changes were 

also assumed to be negligible. Laminar flow conditions only were investigated.
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A finite volume scheme was introduced using the ‘SIMPLE’ pressure correction 

and hybrid upwinding schemes for the advective terms. Both three-dimensional 

sectored cavity and two-dimensional non-sectored cavity solutions were obtained.

Bohn et ai. (1994) first showed that, for the two-dimensional computations, 

fluid circulates around the walls in boundary-layers with little motion in the 

core region. The heat transfer was shown to increase with increasing Grashof 

number at a constant Reynolds number. It was also shown that increasing the 

Reynolds number at constant Grashof number decreases the heat transfer. They 

concluded therefore that the flow was driven by the buoyancy force and damped 

by the Coriolis force. They also studied the effect of curvature on the cavity by 

varying the ratio between the mean radial extent ( |( i2  — a)) and the cavity height 

(R — a). The heat transfer was found to be greater at large values of this aspect 

ratio.

When the cavity was sectored by radial walls the flow was found to be three- 

dimensional. The section angle was varied between 5° and 180°. The circumfer

ential velocity was weakened and Coriolis forces were found to decrease resulting 

in an increase in the heat transfer. They also found that a significant increase 

in heat transfer occurs for section angles less than 30°. They suggested that, for 

very small section angles (less than 5°), viscous action would be dominant over 

the entire annulus, slowing down the motion and thus decreasing the heat trans

fer. No evidence of this was presented as the section angle was never decreased 

below 5°.

Bohn, Emunds, Gorelitz and Kruger (1996) investigated both experimentally 

and theoretically the heat transfer in closed gas-filled rotating annuli with a
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purely axial heat flux. The experimental rig consisted of insulated inner and 

outer cylindrical walls, one electrically heated and one cooled side wall. The 

experiments were conducted for one geometric configuration which facilitated 

comparison with the radial heat flux case presented below. They proposed a heat 

transfer law for the axial heat flux case,

N u  = 0.346i?a°'m . (2.1)

where Ra  =  l’mS and N u  =  4-. The law was evaluated between the ranee
Tm VK  q A °

2 x 108 <  Ra <  5 x lO10. For the radial heat flux case, for comparison the heat 

transfer was given by

N u = 0.24 6Ra0228. (2.2)

They therefore showed that the heat transport in the case of the radial heat flux 

is much greater, (approximately twice), than the one with pure axial heat flux 

over the whole range of Rayleigh number they considered.

The numerical investigation included the use of both two-dimensional and three- 

dimensional codes as described above by Bohn et a1. (1994). They found again 

that the fluid circulates around the walls in boundary-layers with almost stag

nant fluid in the core region. Comparisons between the two-dimensional code

and experiment showed that the Nusselt numbers agreed well for Ra  < 2 x 109. 

They found that when the Rayleigh number is above 2 x 109, the comparison 

becomes increasingly poor. This they attributed to the two-dimensional and 

adiabatic cylindrical wall assumptions made for the numerical investigation. In 

particular, the assumption of adiabatic cylindrical surfaces could not be realised 

in the experiment. Results presented for the three-dimensional calculations show 

similar temperature distributions to the two-dimensional code. However, in the
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regions where the cold fluid reaches the hot wall a significantly different tem

perature gradient was shown to occur. They also showed that for increasing 

Reynolds number (Re — Zm̂ L), large differences between the two-dimensional 

and three-dimensional solutions became apparent. The authors suggested that, 

for further work, investigation into the conditions for the flow to change from 

two-dimensional to three-dimensional is particularly important.

2.3.2 Radial heat flux

Experimental and theoretical investigations of heat transfer in closed gas-filled 

rotating annuli were conducted by Bohn, Deuker, Emunds and Gorelitz (1995). 

Experimental and numerical results were presented for cavities with a radial heat 

flux at conditions very close to turbomachinery operation. The experimental rig 

comprised a uniformly heated outer copper ring, uniform water cooled inner hub 

and heat insulating annular disks. They considered experimentally three different 

geometric configurations. All three cavities had an inner radius of 125mm and 

axial width 120mm. However, cavity A had an outer radius of 355mm, with cav

ity B and C having an outer radius of 240mm. In addition, cavity C was divided

into 45° segments by eight heat-insulating radial walls. They produced the fol

lowing correlations from their experimental data between Nusselt and Rayleigh 

numbers for the three configurations:

N u a =  0.246Ra0 228 for ReA = 0.733Ra°573, (2.3)

N ub =  0.317Ra°-211 for ReB =  1.441Ra0-557, (2.4)

N u c =  0.365Ra0 213 for Rec =  1.615Ra0 556. (2.5)
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where Ra =  rmg2ATd3 _  r^nd an(j jyu _  ±_ They deduced that the insertionTmi/« ’ v  q \  J

of separation walls attenuated the tangential velocity field resulting in a decrease 

in the radial component of the Coriolis force and thus increasing the heat transfer. 

Although the correlations for Nusselt numbers for geometries A and B are very 

similar, they noted that for a given Rayleigh number, the associated Reynolds 

number in case B was nearly twice that in case A. They obtained no experimental 

data on the flow structure.

The numerical investigation was concentrated only on configuration C due to the 

number of grid points involved with the computation of the entire cavity. They 

completed both steady and unsteady computations on the sectored cavity and 

showed that the flow is possibly unsteady. The steady state computations showed 

good agreement with the experimental data when they took into consideration 

the heat loss through the radial side walls for the experiment. The flow field 

evaluated showed that the air circulated mainly in boundary-layers with little 

motion occurring in the core. They concluded that the mean flow occurred in 

the radial/circumferential plane. The temperature in the core region was shown 

to be uniform at a value approximately midway between hot and cold wall tem

peratures.

2.3.3 Axial throughflow

Long and Tucker (1994) investigated numerically a heated rotating cavity with 

an axial throughflow of cooling air. The full three-dimensional, time-dependent, 

compressible equations were solved using a finite-volume approach. Various disk 

and shroud tem perature distributions were investigated for a rotational Reynolds
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number of 1.3 x 104 and axial throughflow Reynolds number of 2180, where this 

Reynolds number is defined as Re = The mesh contained 17 x 21 x 40

grids (in the axial, radial and tangential directions respectively). Both disks 

were heated with the same axisymmetric temperature distribution which either 

decreased or increased with radius. They found that the flow structure was three- 

dimensional and exhibited a cyclic form of time-dependence. The flow entered the 

cavity in radial arms with regions of cyclonic/anti-cyclonic circulation forming. 

They noted that where there exists a region of cyclonic flow, fluid moves axially 

away from the disk surface, and, for regions of anti-cyclonic flow, the reverse 

applies. It was found that for an unheated peripheral shroud, the number of 

radial arms, and hence the number of cyclonic/anti-cyclonic regions increases as 

the location of the maximum disk surface temperature moves radially outward. 

They also concluded that, when the shroud is heated, there are many radial arms 

which exchange fluid with the boundary-layer on the shroud.

2.4 R otating cavity with stationary shroud

In some gas turbine engines, the corotating disks are cooled by air introduced 

at the periphery of the system. The air enters through holes in a stationary 

peripheral casing and leaves through the rim seals between the casing and the 

disks. The flow between shrouded corotating disks is also a key factor in the 

performance of disk drives where the temperature distribution and the resulting 

thermal distortion are critical to the performance of the drive. Many authors have 

considered flow and heat transfer in sealed systems with a stationary shroud, but 

little work has been undertaken into cavities with a peripheral flow of cooling air.
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2.4.1 Sealed rotating cavity

Morse (1991) studied the case of corotating disks with a stationary outer shroud. 

He assumed axisymmetry and obtained numerically a flow structure with two 

symmetric recirculations about the mid-axial plane. He concluded that the di

rection of flow is radially outward over the disks and radially inward in the centre 

of the cavity. No comparisons with experimental data were made for the veloc

ity profiles. He also commented that only about 0.5% of recirculated mass flow 

reaches the mid radial location for a gap ratio (^ ) of 0.1 and Re = 106.

Abrahamson, Eaton and Koga (1989) conducted experimental work to study the 

flow between corotating disks with a stationary shroud in a computer disk drive 

application. Experiments using water as a working fluid, were carried out for 

varying Eckman numbers (E ) and gap ratios. They observed the existence of 

three distinct regions for a rotation speed of 1.57rad/ sec (E = 2.1 x 10-6) and 

gap ratio of 0.05:

• polygonal shaped inner region characterised by solid body rotation,

• an outer region dominated by large contra-rotating vortices in the sec

ondary flow,

• boundary-layer region on the stationary shroud.

Flow visualisation showed a sharp transition between the inner and outer regions. 

For axisymmetric flow, the boundary between these two regions must be circu

lar, while the existence of large vortical structures create a polygonal boundary 

between the two regions in the circumferential plane.



They also showed that the thin shroud boundary-layer region is three dimensional 

and includes a pair of toroidal vortices whose vorticity axis lies in the ±0 direction 

in cylindrical polar coordinates. The locus of the axes of these vortices was found 

to be a circle with diameter slightly smaller than the diameter of the shroud. They 

also concluded that the size of the outer region increases as the axial separation 

of the disks increases, and the strength of the shroud boundary-layer region 

increases as E  decreases. In this region, there was a large velocity gradient from 

zero at the stationary shroud to the disk speed at its tip. The results suggest 

that the axisymmetric assumption is not valid near the outer shroud where the 

flow is highly turbulent and three-dimensional.

Further parameter studies showed that increasing the gap ratio results in the 

decrease in the number of vortical structures in the outer region. Furthermore, 

they also showed that increasing the rotation rate results generally in a decrease 

in the number of vortical structures.

Herrero, Humphrey and Giralt (1994) conducted a numerical study using a primi

tive variable formulation to solve for axisymmetric laminar flow and heat transfer 

between corotating disks with both rotating and stationary outer casings. The 

authors used a staggered-grid, control volume discretisation approach to derive 

finite difference forms of the equations. The time integration was performed us

ing a second-order accurate Runge-Kutta scheme. The range of the Reynolds 

numbers in both cases was 3.7 x 103 < Re < 1.8 x 104. They showed that for the 

stationary shroud case with isothermal boundary conditions, there is a symmetric 

flow structure about the axial mid-plane. In the non-isothermal case where there 

exists a temperature difference between the disks, the symmetric flow structure 

breaks down, and the degree of asymmetry increases with increasing tem perature
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difference.

Wilson, Arnold, Lewis, Mirzaee, Rees and Owen (1997) investigated numerically 

the flow and heat transfer between contra-rotating disks with a stationary shroud. 

They presented results, in particular, for an axisymmetric steady state code and 

showed that for a Reynolds number (Re) of 104 and gap ratio of 0.3, the solution 

residual reduced to a minimum point where the secondary flow was shown to 

be symmetric about the mid-axial plane. Further iterations then displayed an 

increase in the residuals until they became oscillatory. The secondary flow, was 

shown to be asymmetric, with the left and right toroidal vorticies alternating in 

dominance. They concluded therefore that the axisymmetric flow was likely to 

be unsteady.

2.4.2 Cavity w ith  peripheral flow

Gan, Mirzaee, Owen, Rees and Wilson (1996) studied the cavity with stationary 

shroud with a superimposed peripheral flow using both experimental and nu

merical approaches. They suggested that the stationary outer casing creates a 

secondary recirculation in the cavity which in turn creates a Rankine vortex in 

which,

^  =  A x ~2 +  B,  (2.6)

where A and B are invariant with x , the non-dimensional radial coordinate, r 

is the dimensional radial coordinate and v the dimensional tangential velocity in 

a stationary frame. Incompressible flow calculations were carried out using an 

axisymmetric finite-volume solver for the discretised forms of the steady-flow, 

Reynolds averaged Navier-Stokes and energy equations. They also utilised a low-
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Reynolds number k-e turbulence model. They found that the measured values 

of tangential velocity in the core conformed to a Rankine vortex. However, poor 

agreement between some of the computed and measured velocities was evident, 

which was attributed to the deficiencies of the turbulence model. The computed 

and measured values of radial velocity do however confirm the recirculating nature 

of the secondary flow. The associated heat transfer is presented in Mirzaee, Gan, 

Wilson and Owen (1997).

Mirzaee (1997) studied numerically the flow and heat transfer in a rotating cav

ity with peripheral flow. Two different outer shroud geometries were tested: the 

flat shroud and the stepped shroud cases. For the flat shroud case, in an at

tem pt to improve the agreement between computed and measured velocities, he 

made modifications to the computational model. He concluded that none of the 

corrections produced satisfactory comparisons. For the stepped shroud case, no 

velocity measurements were available, however, he was able to make heat trans

fer comparisons. He concluded that for the majority of the cases considered, the 

agreement between computed and experimental Nusselt numbers was very good. 

Mirzaee suggested from his findings, particularly pertaining to the flat shroud 

case, that the flow may be three-dimensional and time-dependent.

2.5 Num erical methods

Various formulations may be used for the Navier-Stokes equations. In par

ticular, the three-dimensional formulations for the equations are considered in 

this section. Vorticity-velocity formulations are reviewed in particular for both 

two-dimensional and three-dimensional problems, both of which require grid-
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staggering strategies.

Stella, Guj, Leonardi and de Vahl Davis (1988) compared the vorticity-velocity 

and vorticity-vector potential formulations in three dimensions. They com

mented that the boundary conditions for the vector potential formulation required 

special attention, however, the equation of continuity is satisfied without the need 

to stagger the mesh. They utilised a staggered grid for the vorticity-velocity for

mulation, with the velocities located at the centre of the faces which are normal 

to the velocity vector. The vorticity components were located at the mid-point 

of the edge of the cube, parallel to the corresponding axis. The temperature was 

located at the centre of the cube faces. Results were obtained for the problem 

of natural convection in a rectangular cavity. They showed the equivalence of 

the two formulations and concluded that the vorticity-velocity formulation ran 

approximately 20 — 30% slower than the vorticity-vector potential code.

A MAC-type (Marker and Cell) staggering scheme was suggested by Guj and 

Stella (1988). In two dimensions the vorticity is located at the intersection of 

the reference grid lines with the velocities located at the centre of the cell sides 

which are normal to the corresponding velocity vector. They utilised an alternat

ing direction implicit procedure to integrate in time the governing equations and 

applied it to the driven cavity and backward facing step test cases. Comparisons 

with the standard streamfunction-vorticity and primitive variable formulations 

show excellent agreement provided an equivalent second-order spatial approxi

mation is utilised.

A numerical method for solving the steady-state vorticity-velocity form of the 

Navier-Stokes equations in two and three-dimensions was presented by Napoli-
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tano and Pascazio (1991). For the three-dimensional case they suggested a grid- 

staggering approach as presented above by Guj and Stella (1988) in order to 

better satisfy continuity. They solved the driven-cavity problem in both two and 

three-dimensions.

Huang and Li (1997) investigated finite difference approximations for the vorticity- 

velocity formulation on staggered and non-staggered grids. They considered four 

different grid layouts, from a MAC staggering through to semi-staggered and 

non-staggered grid layouts. Asymptotic error analysis and numerical experi

ments pertaining to the two-dimensional driven cavity problem were used to 

show that the MAC grid gives the best results in that the errors are smaller. 

They also concluded that a non-staggered grid may be used provided that the 

mesh is fine enough or higher-order discretisations are employed. Integration 

in time also suggested that the numerical solution does not drift away from the 

exact solution.

Shen and Loc (1997) presented a finite difference method to solve the three- 

dimensional Navier-Stokes equations in vorticity-velocity form. They utilised a 

semi-implicit Adams-Bashforth Crank-Nicolson scheme to advance the solution 

in time. They utilised a staggered grid with the collocation points for unknown 

velocities located at the centre of the cube edges parallel to the corresponding 

velocity vector with the vorticity components located directly at the centre of 

the cuboidal faces, normal to the corresponding vorticity vector. The spatial 

discretisation took the form of a standard second-order centred difference scheme. 

Numerical results were obtained for flow around a cube and sphere and compared 

with a velocity-pressure formulation and experimental data respectively with the 

comparisons showing satisfactory agreement.
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Chapter 3

2D axisymmetric radial/axial 
flow

3.1 Summary

First, an axisymmetric cavity is considered. A schematic of the configuration may 

be seen in Figure 1.4. The cavity is sealed and all surfaces rotate at a uniform 

angular velocity. The outer cylindrical shroud of the cavity is assumed to be 

uniformly hot whilst the inner cylindrical hub is assumed to be uniformly cool. 

The disk surfaces are taken to be adiabatic. This configuration is analogous in 

many ways to that of a stationary cavity in a gravitational field where Benard 

cell structures arise. Here, the buoyancy force is due to centrifugal force effects, 

whilst for the stationary case, the buoyancy force is due to gravitational field 

effects.

A Linear Stability Theory is first used to obtain neutral stability curves for insta

bility in the form of toroidal vortices. The effect on the critical Rayleigh number 

of varying the wavenumber, Reynolds number and inner radius is investigated.
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The non-linear computations give further insight into the roles of the various 

non-dimensional parameters for various geometries, although it will be shown 

later that this is not the preferred mode of convection. It is however useful as a 

validation aid for the full three-dimensional computations which follow.

3.2 Governing equations

Flow in a rotating cavity may be described by the continuity and Navier-Stokes 

equations for unsteady three-dimensional flow of an incompressible fluid. The 

governing equations may be written in a rotating frame of reference where the 

circumferential velocity (u), polar angle (6) and time variables (t) are given by,

v =  v* + Hr, (3-1)

0 = 0* + to , (3.2)

t =  r ,  (3.3)

where * denote quantities relative to a rotating frame of reference. A further

simplification is made by assuming that the density, p, depends linearly on the

temperature, T, and not on the pressure -  this is similar to the Boussinesq 

approximation and therefore we take,

p = P o ( l - l 3 ( T - T c)), (3.4)

where /3(T — Tc) «  1 would correspond to the Boussinesq approximation. It 

is assumed that in the Coriolis and centrifugal terms, (3.4) holds but that the 

density is constant elsewhere. Buoyancy and Coriolis terms are thus incorporated 

into the dimensional governing equations with coupling now present between the
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temperature and momentum equations. The flow is assumed to be axisymmetric 

and therefore we set,

A  =  0. (3.5)

The tangential momentum equation, however, is maintained with the pressure 

term neglected. Dropping the asterisks introduced in (3.1)—(3.3), the continuity, 

momentum and energy governing equations in a rotating frame of reference are 

given by,
du 1 dw
—— |— u -f- -7—  =  0, (3-6)
dr r dz

du , „v v2 p . _ _ o v 1 dP u . /rt
_  +  (u.V)« -  7  -  - (2 0 ®  +  0  r) =  - - w  +  *(V n -  - ) ,  (3.7)

^  +  (u.V)» +  ~  +  j - ( 2Slu) =  ^(V 2u -  ^ ) ,  (3.8)
ot r po r*

^  +  («.V )» =  - ~  +  i/V!» , (3.9)
dt po dz

dT
+  (u .V )r  =  (3.10)

where the 2-D divergence and Laplace operators are given respectively by,

/ ^  9 d d 2 1 d d2
(- V )  _  +  u’^ ’ V _  dr2 + r dr +  d z 1'

A streamfunction-vorticity formulation is utilised to overcome the difficulties 

arising from having to determine the pressure boundary values associated with a 

primitive variable formulation. The streamfunction-vorticity form is also used in 

preference to the vorticity-velocity formulation as the latter requires about 50% 

more operations due to the presence of an additional Poisson equation. It is also 

necessary to use a staggered grid in order to obtain divergence-free velocity and 

vorticity fields, thus, further reducing the efficiency of the resulting code.

The vorticity, u/, is therefore introduced in order to eliminate the pressure terms
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by taking the curl of equations (3.7) and (3.9) where,

du dw

The streamfunction, is introduced, satisfying the continuity equation exactly 

where,
Idty  1 dip

U = r d l '  W = —r W  (3' 12)

and is rescaled for convenience using,

ip = r<f>.

Non-dimensionalisation is undertaken using the substitutions,

ac R 2 -
r  =  R f , 0 =  R z , v  =  —  v ,  t  =  — 2,

R  AC

K - A A m T  ~ T rto =  — a ;, <p =  K(p, 1 =
R2 ’ r  r ’ T fc-T c’

where over-bars denote non-dimensional variables and Th and Tc are the tem

peratures of the hot and cold walls respectively. The characteristic length scale, 

R , is taken to be the outer radius of the cavity and the characteristic vorticity, 

streamfunction velocity and time scales are based on a c , the thermal diffusivity of 

the medium within the cavity. The rotational Rayleigh, rotational Reynolds and 

Prandtl numbers are also introduced and are given by,

R n 2P(Th -  TC)R3 SIR2 u
Ra = ----- ----------- 1 — ,------ Re = ------ , Pr = - .

UK U K ,

Dropping the over-bar notation, the non-dimensional form of the governing equa

tions is given by,

w =  V2< 4 - - ^ ,  (3.13)

1 rdu> t x 1 , .dw d<p. 2v dw\ dv 2Ra frndv d T N
+  J ( „ ,  - 2  R e -  + — ,- {T Tx +  v - )Pr
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Pr

r, 9T  1 ,
+  <97=  “ _  7*“ ’ ( ^

%  +  A M )  + -  I f e r g  =  V *. - 1 , ,  (3.15)

T t + W ) - ^ g  =  v ’r ,  <3'16>

where the Jacobian is given by,

j ( A  m - d A d B  d B d A  
1 ’ dr dz dr d z '

Both the rotational Reynolds and Rayleigh numbers appear in the governing 

equations. The Reynolds number multiplies the Coriolis terms and the Rayleigh 

number the buoyancy term. The buoyancy correction to the Coriolis force terms 

are multiplied by a ^ p r factor. The effect of these terms will be considered and 

discussed in detail. The Prandtl number is a combination of fluid properties, and 

is related to the ratio of the thermal and viscous diffusivities. It does not change 

significantly with temperature variations and is assumed to be constant for the 

purposes of this investigation. Note that,

Ra = Ref3AT, (3.17)
RePr

and therefore the buoyancy correction to the Coriolis force is negligible when the 

Boussinesq approximation is valid (i.e. when j3AT < <  1). The factor /3AT which 

occurs in (3.17) must also be less than 1 since, from (3.4), this would result in 

negative fluid densities.
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3.3 Boundary conditions

The cavity is assumed sealed with no slip boundaries, adiabatic disks, heated 

shroud and cooled hub. The following boundary conditions are therefore pre

scribed:

At the heated shroud, r = 1, the boundary conditions are that,

8 6
</> = 0, ^  =  0, v = 0, T  =  1.

At the cooled hub, r = r0, the boundary conditions are that,

8 6
cf> =  0, ^  =  0, t7 =  0, T  =  0.

At the disks, 2  =  0,zmax, the boundary conditions are that,

8 6  8 T
*  ~  ° ’ T z  ~  ° ’ v  ~  ° ’ d T  _  ° '

It is noted that Ra, Re, Pr, tq and zm&x are all parameters to vary.

3.4 Linear stability theory

3.4.1 Stability equations

Linear stability theory (LST) is used to ascertain the conditions required for the 

flow to convect strongly, becoming unstable to infinitesimal disturbances. Here, 

a base solution of the equations of motion is assumed corresponding to the non- 

convecting state of zero flow in the cavity with a temperature field corresponding
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to that due to pure conduction where,

v b  =  0 ,  (j>B =  0 ,  lob  =  0 ,  T b  =  g ( r )  =  1 -
ln r  
In r0

(3.18)

Where b denotes base solution quantities. The perturbations are therefore given

by,

v  =  v B +  v ,  (j) =  (j>B +  (j>, lo =  u B +Co, T  =  T b  +  T . (3.19)

All the terms involving the square of the perturbation amplitudes are neglected 

thus linearising the perturbation equations. Due to the linearity, no interactions 

occur between different Fourier components, and thus the perturbation compo

nents may be written in the form,

/  v  ^ 

T

*
\ L O )

— e\t

(  v ( r )  cos( k z )  \  

T (r)cos ( k z )  

<f)[r) sin(fcz)
 ̂w(r) sin ( k z )  )

(3.20)

where k  is the wavenumber and A is the complex temporal growth rate where,

A =  X r  +  jAj. (3.21)

A temporal growth rate of greater than zero (i.e. X r  > 0) corresponds to an 

exponential growth in the disturbance. A negative value of X r  means that the 

base solution is stable to all infinitesimal disturbances. The solution for X r  =  0 is 

therefore of interest in order to determine the conditions for this transition to take 

place. Due to the instability being stationary and steady-state, the imaginary 

part of the temporal growth rate is taken as, A/ =  0. The resulting perturbation 

ordinary differential equations are given by,

w = 4>" + -  k2j> - (3.22)
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[(2Re) — ( )ff(r ) k v  — (rRa)kT  =  Co" +  -u>' — k 2u  — (3.23) 
L H e rr  r r l

(2Re) -  { ^ r ) 9 {r)\ H  =  v" +  -t) ' -  &2u -  I t ) ,  (3.24)
fiefV r r 2

— (—~ — 1 kef) = T " + - P  -  k2T.  (3.25)
V m r v  r

The above is a 9th order eigenvalue problem in Ra as a function of both Re and

k  and are solved satisfying the boundary conditions:

At the cooled hub, r =  r0, the initial boundary conditions are that,

0 =  0, 0' =  0, v  = 0, T  =  0. (3.26)

At the heated shroud, r =  1, the final boundary conditions are that,

0 =  0, 0' =  0, v = 0, T =  0. (3.27)

The additional initial normalising condition at r =  ro is also required and is taken

as,

P  =  1. (3.28)

A more complete parameter investigation may be obtained if the equations are 

minimised over the wavenumber where,

dRa  A 
~dk  =

Minimising equations (3.22)-(3.25) over k results in an 18th order system with 

Ra  and k being eigenvalues as a function of Re and r0. The following additional 

equations therefore require to be solved simultaneously,

w = f '  + V - f c V - 2  w - h ± ,  (3.29)
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(2Re) — (77—L-)<7(y)l (kv + v) — (rRa)(kT_ +  T) =  u/' +  -u /  — A;2o; — 2kd> — ^-o;,H e r r  J r r2

(3.30)

[(2i?e) -  ( f t f p r )9(r )] ( f y  +  h  = v '  +  ^v '  -  k2v -  2 kv -  ^ v ,  (3.31)

-  ( - ? — ) (k<t> +  0) =  T" +  - T  -  k2T  -  2kT.  (3.32)
V m r o 7 — r

where,
du, , dj> dv d T

~ ~  d k ’ ~ ~  d k ’ ~ ~  d k ’ ~ ~  d k ’

At the cooled hub, r = ro, the additional initial boundary conditions are that,

0 =  0, 0' =  0, v =  0, T  = 0. (3.33)

At the heated shroud, r = 1, the final additional boundary conditions are that, 

0 =  0, 0' =  O, u =  0, T  = 0. (3.34)

3.4.2 Solution m ethods

The system of equations are reduced to first order form and the eigenvalues ob

tained using a fourth-order Runge K utta scheme allied with the shooting method, 

which involves a multi-dimensional Newton-Raphson iteration scheme and Gaus

sian elimination.

3.4.3 R esults

All solutions are obtained assuming air to be the medium within the cavity for 

which the Prandtl number is taken to be, Pr  =  0.7.
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Solutions for =  0

Here, the ratio is assumed to be negligible and given that = Re/3 A T , 

this case corresponds to when (3A T  «  1, i.e. for which the Boussinesq approx

imation applies, and the buoyancy correction to the Coriolis force is negligible. 

Buoyancy is not zero when (3A T  < < 1 . Only the buoyancy correction to the Cori

olis force. Figure 3.1 displays neutral stability curves for various Reynolds and 

wavenumbers ro =  0.5, which were obtained by solving equations (3.22)-(3.25) 

subject to boundary conditions (3.26)—(3.28). An increase in the Reynolds num

ber causes an increase in the critical Rayleigh number, and this is consistent with 

the damping effect of the Coriolis force reported by previous authors. A large 

increase in the critical Rayleigh number for a given Reynolds number is also ap

parent for small wavenumbers in particular, where the relationship between the 

wavenumber and the wavelength, Aw,  is given by,

Figure 3.2 displays neutral stability curves for 1000 < Re < 5000. The same 

trends are again apparent, but it should be noted that the minimum Rayleigh 

number for the onset of convection occurs at decreasing wavenumbers, (increas

ing wavelengths), when Re increases. Results for 10000 < Re  < 50000 are 

presented in Figure 3.3 and show further evidence of this trend, with increase in 

the Reynolds number damping the instability. For large Reynolds numbers, the 

minimum critical Rayleigh numbers is also large, (e.g.for Re = 50000, Racrit ~  

7 x 109).

Figures 3.4-3 .6  display neutral stability curves for various Reynolds numbers and
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wavenumbers for ro = 0.3. Comparison with the ro = 0.5 results suggests that 

decreasing the inner radius has a stabilising effect, (for Re = 50000, Racrit «  

1.2 x lO10). However, for a more complete parameter investigation, equations 

(3.22)-(3.25) and (3.29)-(3.32) are solved subject to boundary conditions (3.26)- 

(3.28) and (3.33)-(3.34). Figure 3.7 displays neutral stability curves where Racrit 

has been minimised over k for various Reynolds numbers and inner radii. Again, 

the damping effect of the Coriolis force is apparent but the effect of varying r 0 is 

also displayed here. Generally, for increasing r0 there is a decrease in Racrit until 

a turning point is apparent at approximately 0.7 <  ro <  0.8. Values of Racr{t 

thereafter increase sharply suggesting that when the inner radius approaches the 

outer radius, no convective state exists. Figure 3.8 shows neutral stability curves 

for 1000 <  Re < 5000. The turning point here, occurs at approximately r 0 «  0.9. 

Further increase in the range of Reynolds number is displayed in Figure 3.9. Here 

again, the turning point occurs at increasing inner radii. The damping effects of 

the Reynolds number is therefore more effective at either small inner radii or for 

r0 -»• 1 .

Scaling the Rayleigh number on the gap length scale, R — a, using the following 

relation,

Rcigap = Ra x (l -  r0) .

where,

_  (Rn2)/3(Th -  TC)R3 _  (Rn2)(3(Th -  TC)(R -  a)3
X\Qt —  ̂ TlQ/ gap — 5

U K  UK,

and extrapolating to the limit ro —* 1 for a range of Re, (see Figure 3.10), it 

is found that onset of convection occurs at Ra = 1707.8. The configuration is 

analogous to the first onset of convection in a stationary cavity in a gravitational
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field with a heated bottom wall and a cooled upper wall with no end effects 

(Koschmieder, 1993). The onset of convection in this stationary configuration is 

predicted to occur at Ragap =  1707.8 as shown in Table 2.1. There is therefore 

good confidence in the numerical procedure.

Solutions for non—zero values of

Here we consider flows for which f3AT ^  0 and hence the buoyancy correction to 

the Coriolis force is significant.

Figure 3.11 displays neutral stability curves for non-zero and 200 < Re <  

500. Direct comparison with the small results displays significantly reduced 

stability levels. The form of the curves are however largely unchanged, with 

increases in Ra^it  at small and large wavenumbers apparent. Figure 3.12 displays 

results for larger Re numbers which again display reduced stability levels when 

compared with the solutions obtained under the small assumption. The form 

of the curves is now modified with no well-defined minimum point apparent. For 

a given Reynolds number, Racrn is approximately constant for k > 5 over the 

range of wavenumbers computed. The effect of further increases in the Reynolds 

number is presented in Figure 3.13. Once again, the almost constant nature of 

Racrit is apparent with reduced stability levels from direct comparison with the 

small solutions. The buoyancy correction to the Coriolis force therefore has 

a destabilising effect which opposes the stabilising effect of the Coriolis force at 

the onset of convecting flow.

Further solutions for r 0 =  0.3 are presented under the assumption of non-zero 

values of ^ p~ in Figures 3.14-3.16. Again, values of Racrit are approximately one

36



tenth of the corresponding values under the assumption of small ^ p r - It is noted 

that in Figure 3.14, the neutral stability curves for Re — 400 and Re =  500 inter

sect at the larger values of wavenumber computed. The neutral stability curves 

for smaller Reynolds numbers also suggest the same trend, but solutions were 

very difficult to obtain using the available solution procedure for large wavenum

bers. Figures 3.15-3.16 again display an approximately constant critical Rayleigh 

number over a large range of values of k. Comparison with the r 0 =  0.5 calcula

tions shows relatively small increases in Racrit as the Reynolds number increases. 

This suggests that the larger variations in Racrn with ro are greatly exaggerated 

under the assumption of small ^ § 5 7  •

Solutions to equations (3.22)-(3.25) and (3.29)-(3.32) under the non-zero 

assumption could not always be successfully obtained using the shooting method 

code. The reasons for this were not clearly identified but may very well be 

associated with the growth of unwanted parasitic (i.e. exponentially growing) 

eigensolutions.

3.5 N on-linear computations

3.5.1 Finite difference approximations

The system of partial differential equations (3.13)—(3.16) is solved numerically 

using a finite difference scheme on a collocated uniform grid. Finite difference 

approximations (FDA) are utilised which are second-order accurate in space. 

These approximations are based on Taylor-Series expansions and their deriva

tion is generally well known, (Wendt, 1992) and will not be repeated here. They
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have been used in preference to finite-volume approximations due to the sim

plicity of application associated with them. Solutions on uniform grids only are 

presented here, and therefore the first and second derivative central difference 

approximations for typical variable £ are given by,

d (  ^  ( i +1 ~  C»-i d 2C ^  Ci+i ~  2 Q  +  Ct-l
dx  2Sx ’ dx2 Sx2

where a; is a representative independent variable. The grid is defined by X{ =  iSx 

where Sx is the constant step length, and Q is the numerical approximation to 

C(z;). In general f  will be a function of time and either two or three spatial 

variables.

The advective, non-linear terms in the equations are evaluated using the Arakawa 

formulation (Arakawa, 1966). This method overcomes non-linear instabilities 

associated with other central difference approximations for the Jacobian. The 

mean vorticity, mean kinetic energy and mean square vorticity is conserved in 

time by combining three different approximations to the Jacobian and is given

by,

, . _ d A d B  d B d A  _  r 1 u
( I dx d y ~ h 2 8 x & y ^  i+1'i Bi^

+(Ai+i,j){Bi+ij+i -  2?i+itj_i) — (A i - i j ) (B i - i tj+1 — B { .u - i )

)(-^*+1 ,i+i — T — B i - i j —i}

+(Bi,j+i)(Ai+iij+i -  Ai-ij+i)  -  (Bitj - i ) (A i+i j - i  — A i - i j - i )

—(Bi+i j ) ( A i+i j +i -  Ai+ij-1) +  (B i - i j ) (A i- 1j +1 — A ^ i j . i )

where the grid is defined by Xi =  iSx and yj =  jSy.  This formulation is easier to
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implement and less numerically diffusive than upwinding schemes for example, 

whilst retaining second-order accuracy. One drawback however, is that it may 

only be applied to uniform grids in its present form. Its application to non- 

uniform meshes has not been investigated and is beyond the scope of this thesis.

3.5.2 Finite difference approximations at the boundaries

The vorticity, u,  is defined at the boundaries in terms of the streamfunction, </>. 

For example, at the r = 0 boundary,

d2<f)
(3.35)

0,3 V 'dr2

In central-finite difference (second-order accurate) form,

<j)i ti -  2(j)0 j +  i tj
“OJ «  sP-----------  (3-36)

However, since =  0, it may be shown that Noting that =  0,

the vorticity at the r =  0 boundary may now be expressed in terms of </> on 

internal points only, and is given by,

“ w  "  (3-37)

The other problematic boundary condition is that for the adiabatic temperature 

distribution on the disks, where

dT
^  =  0. (3.38)
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In central-finite difference form it may be shown that,

Tij-1 =  Tij+i. (3.39)

This definition is used in conjunction with the FDA of the full equations at the 

disk boundaries in order to determine the adiabatic disk temperatures.

3.5.3 Transient m ethod

The time-dependent vorticity, tangential velocity and energy equations are ar

ranged explicitly using second-order accurate FDA to the time derivatives. The 

well-known Du-Fort Frankel method is used, where values of the dependent vari

able are substituted by averages of previous and new time values. For example, 

Fourier’s two-dimensional equation in cartesian coordinates,

^  =  ^  +  ^  (3 40)
dt d x 1 5t/2’ }

is rewritten in finite difference form as,

—  -f —  =  ( n~
Sl,J r» C_i 1 C „ 9 1 C_ .9 S i.?

1 1 1 ■-n—1 1 1 1 An i An An i An
S i + l , j  t  S i —l , j  . S i , j + 1  t  S i ,y —lj iJ_______̂  |

2 St Sx2 S y 1,3 \-26t Sx2 8y2* Sx Sy
(3.41)

This method is unconditionally stable for the one, two and three-dimensional 

Fourier’s equation. A great advantage of the Du-Fort Frankel method is that 

it is technically an implicit method, but that it may be encoded as an explicit 

scheme, thereby combining the advantages of both implicit and explicit schemes. 

On the other hand the Crank-Nicholson method, which is frequently used for 

problems similar to that of (3.40), requires iteration at each timestep and iterative 

convergence is not guaranteed for non-linear equations.
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The maximum timestep for stability is dependent on many factors. Of particular 

importance and interest is the dependence on grid size. To show this, the following 

test equation (Fourier’s equation in one dimension) is considered,

^  =  ^  (3 4 2 )
dt d x2’ 1 j

subject to

0  <  x  <  1 .

In finite difference form using a first-order forward-difference time approxima

tion and a second-order central-difference spatial approximation, the above test 

equation may be rewritten as,

f n +1 _ f n  f n  _ 2 ^  -4-Si Si   *si—1 ^Si ' Si-fl /o ,|0\
St ~~ Sx2 •

Rearranging the equation explicitly and assuming a solution of the form,

C” =  An sin(j/7TXi), (3.44)

where 0 <  i < imax and 0 < j  < imax• It may be shown that for stability,

St <  (3.45)

A similar analysis for the Du-Fort Frankel method shows that it is unconditionally 

stable. However, when non-linear terms are added to the governing equations, 

the method loses this property. Factors which determine the stability limit on the 

timestep include, in particular, the magnitude of the non-dimensional rotational 

Rayleigh and Reynolds numbers. For the computation of steady-state flows using

the above methods, the convergence criteria used is that ^ ax |f"+1 — (J1 should

be less than some very small value. This was taken to be 10 and was found to
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be adequate for all values of St considered.

3.5.4 M ultigrid m ethod

The Poisson equation for the streamfunction, (3.13) is solved using a Multigrid 

(Correction Scheme) routine to accelerate iterative convergence. It incorporates 

V-cycling and a line relaxation scheme. The method is based on that described 

in Briggs (1987). The system of linear equations may be written in the form

Au = f , (3.46)

where u is the exact solution of the FDA of the partial differential equation, A  

represents the finite difference operator and /  is the right-hand-side function. If 

an approximate solution, v, is given then the error is expressed as,

e =  u — v. (3-47)

The residual, r, is a measure of the amount by which the approximation v fails 

to satisfy the system of equations and is defined by,

r = f  — Av. (3.48)

A very useful relationship between the error and the residual, known as the 

residual equation, may therefore be formed,

A t  =  r. (3.49)

Typical relaxation schemes possess what is known as the smoothing property 

which makes them very effective at eliminating high-frequency, oscillatory com
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ponents of the error, but they are far less effective at removing low-frequency, 

smooth components. On a coarse grid, the low-frequency errors from the point 

of view of the fine grid, look more oscillatory (i.e. are higher frequency errors) 

and therefore the smoothing property of the relaxation scheme is more effective on 

the coarse grid. This forms the basis of the Multigrid method where the residual 

equation is used to relax on the error on successively coarser grids.

For a two-level grid, with the fine grid having half the grid spacing of the coarse 

grid, the routine loosely follows the following strategy where superscripts denote 

the steplength corresponding to the grid being considered,

• Relax on A huh =  f h on flh to obtain an approximation vh,

• Compute the residual rh = f h — A hvh,

• Transfer (restrict) the residual from grid £lh to Q2h: r h —> r 2/l,

• Relax on the residual equation A 2he2h =  r2h on f l2h to obtain an approxi

mation to the error e2/l,

• Transfer (prolong) the error from grid Q2h to Qh: e2h —> eh,

• Correct the approximation obtained on Qh with the error estimate obtained 

on Q2h: vh —► vh +  eh.

where f lh and fl2h define the fine and coarse grids respectively (h denotes the 

steplength). When the maximum residual, as defined in equation (3.48), falls 

below a suitably small limit (here we used a value of 1 0 - 6  since this gives highly 

accurate solutions of the difference equations), the procedure is deemed to have
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converged. The prolongation operator is a straightforward linear interpolation 

routine given by I^hY2*1 — V h-> where

vh- • -  v?hV 2 i , 2 j  ~  V i , j

4+l,2j = + Vi t h j )

V2i,2j+1 =  +  Vi! j+1)

u2i+l,2j+l =  ^(Vi!j +  Vi+l,j + ViJ+1 +  ^i+l.j+l) (3.50)

The restriction operator takes the form of a full weighting routine defined by 

PhhV h =  V *\ where

Vi!j =  w t(U2i+l,2j+l +  u2t-l,2j-l +  V2 i + l , 2 j - l  +  V2 i - l , 2 j + l )

+ 2 ( V%i+ 1 2j +  v 2 i - l , 2 j  +  v 2i , 2j+l  +  u2i,2j-l) +  ^ v 2i,2j]' (3.51)

The alternative would be to utilise an injection operator, where the coarse grid 

value is taken directly from the corresponding fine grid point -  such a method, 

though more straightforward to encode, results in a slightly less efficient algo

rithm.

The relaxation procedure utilised to solve for the approximation v and the error 

e is a straightforward line relaxation procedure. It uses the most recent approx

imation in order to calculate the new approximation. Sweeps are performed on 

the m atrix of equations, which are in FDA form, in both radial and axial di

rections per relaxation procedure. Two relaxation procedures are undertaken on 

each level before moving on to either finer or coarser grids. The matrix is in 

tri-diagonal form for the radial/axial flow case, and is solved using a tri-diagonal 

m atrix algorithm (TDM A). The details of the TDM A or Thomas algorithm is
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generally well known and will not be repeated here.

3.5.5 H eat transfer

The heat transfer through the outer heated cylindrical surface into the fluid and 

out of the fluid through the cold inner cylindrical surface is evaluated in terms of 

a non-dimensional heat transfer value known as the Nusselt number, Nu.  Two 

forms are defined, namely an average (total) or local heat transfer rate. The 

Nusselt number is defined as the ratio of heat transfer due to convection and 

conduction to that due to conduction alone and is given by,

N u  = (3.52)

where A pertains to conduction quantities and the local rate of heat transfer is 

defined as,
K A T d T  /ocoN

qiocal — f t  Qr ' (3.53)

The local Nusselt number is therefore given by,

dT
Nuiocai = - r l n ( r 0)— , (3.54)

at r =  ro or r =  1 . The average or total heat transfer is expressed as,

K A T  r27r rzmax QT
® - , =  - / r / o  L  f r d zrd e  (3-55)

and therefore the average Nusselt number is therefore given by,

Nuo = _ r± M r - ^ d2, (3.56)
Zmax JO O r
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at either r  = ro or r  =  1 . The average or total Nusselt number may therefore 

not be smaller than one as the total heat transfer from a surface must always be 

equal to or exceed the average heat transfer due to conduction effects alone.

The integral quantity is evaluated using the trapezoidal rule with the differential 

being approximated at the boundaries using a fourth-order accurate finite differ

ence representation. The use of second-order accurate approximation rendered 

the solution inaccurate particularly on coarse grids.

3.5.6 Code structure

The structure of the solver for one timestep is characterised by the following 

numerical procedure:

• Initialise all variables for time t = t0 =  0 .

• Solve for u n+1, vn+1, T n+1 at t = tn+1 using the nth and n — 1st solutions on 

all internal grid points. (It is assumed that the solution at t = t - 1 is the 

same as that at t = t0 in order to initiate the solution procedure.)

• Solve for T n+1 on adiabatic surfaces.

• Solve implicitly using the Multigrid method for (/>n+1 using cjn+1 on the 

right-hand-side.

• Update values of u)n+1 on the boundaries using (f>n+1.
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3.6 Code validation

3.6.1 Comparison with stationary cavity in gravitational 
field

De Vahl Davis (1983) produced a bench-mark numerical solution for a buoyancy- 

driven flow in a square sealed stationary cavity in a gravitational field. The ver

tical sides are differentially heated and horizontal surfaces are adiabatic. Tim e- 

independent solutions were obtained for Rayleigh numbers of 103 ,104 ,105 and 

1 0 6 using a streamfunction-vorticity formulation. A time-dependent form of the 

equations were used and the solution advanced in time using the method of the 

false transient (Mallinson and de Vahl Davis (1973)) until a steady state was 

reached. First-order (forward) differences were used for the time derivatives and 

second-order accurate central differences were used for spatial derivatives. Uni

form grids were used which allowed the use of the Richardson’s extrapolation 

technique. Fourth-order accurate solutions could therefore be obtained by using 

solutions on two different meshes, the finer grid having half the grid spacing of 

the coarser.

In the limit as r —► 1 with Re = 0, the rotating cavity reduces to the stationary 

cavity in a gravitational field if the disks are now differentially heated and cylin

drical surfaces assumed adiabatic, is assumed to be small and terms of this 

order are neglected for the purposes of this validation. The Rayleigh numbers 

given by de Vahl Davis are based on the height of the cavity or gap, and there

fore, must be scaled to correspond to the current formulation using the following
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scaling,

RaR = Ragap
( l - ’- o ) 3 '

Figure 3.17 shows the variation of maximum, minimum and average Nusselt num

bers with inner radius for Ragap = 103 at the heated wall. Nuo, N u max and N u min 

vary linearly with inner radius. Linear extrapolation may therefore be utilised 

to obtain these values in the limit, r —► 1 . Comparisons are made with de Vahl 

Davis (1983) results for Ra = 103 ,104 ,105 and 106 and are presented in Table 

3.1.

R&gap N u  o Nu1 v “"max N u-m in
(a) (b) %err (a) (b) %err (a) (b) %err

1 0 3 1.118 1.117 0.09 1.506 1.505 0.07 0.691 0.692 0.14
1 0 “ 2.246 2.238 0.36 3.532 3.528 0 .1 1 0.586 0.586 0 .0 0

1 0 5 4.511 4.509 0.04 7.696 7.717 0.27 0.730 0.729 0.14
1 0 6 8.833 8.817 0.18 17.926 17.925 0 .0 1 0.984 0.983 0 .1 0

Table 3.1: Comparison of average, maximum and minimum Nusselt numbers for 
various Rayleigh numbers: (a) Current computations (b) de Vahl Davis (1983)

Richardson’s extrapolation is used to render the approximations fourth-order 

accurate for direct comparison with the results of de Vahl Davis,

2 a y 2 N  -  UN  / Q

V2N =  ' 2 «  - l  (  '

where y2N is the fourth-order approximation, y2N and yn  are the approximations 

on the finer and coarser grids respectively and a  is the current order of accuracy 

of the method which is a = 2 . All but the Ra =  106 case were computed on 

32 x 32 and 64 x 64 interval grids. The Ra = 106 case utilised 40 x 40 and 

80 x 80 grids. All cases were computed for r 0 =  0.8 and r0 =  0.9 and linearly 

extrapolated to the r 0 —> 1 limit.

There is good agreement between the computed results and those of de Vahl Davis
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(1983). A relatively large discrepancy occurs for the maximum local Nusselt 

number for the Ra = 105 case. No extrapolation process is used to locate a more 

accurate location and thus obtain a more accurate approximation for N u max 

on the heated surface. De Vahl Davis (1983) did use such an extrapolation 

process and was not limited by grid resolution. Excellent agreement between 

the minimum Nusselt numbers is apparent since these are always located at the 

same vertical location, y = 1. There is reasonable agreement between the average 

Nusselt numbers. Discrepancies may be due to de Vahl Davis (1983) use of the 

fourth-order accurate Simpson’s rule, whilst the computations presented here, 

use the inferior second-order accurate trapezoidal rule to evaluate the integral. 

But since the basic data used in the integration is second-order accurate, both 

integrators yield second-order accurate results.

3.6.2 Comparison with linear stability theory results

As a further means of validating the numerical computations, a comparison is 

made with linear stability theory results for onset of convection. The trivial case, 

Re = 0, is chosen, where no Coriolis forces are present and the model is analogous 

to natural convection in a non-rotating enclosure where the only body force is 

that due to gravity. The onset of convection is predicted by the numerical model 

by considering the average heat transfer, Nuo, for various Rayleigh numbers 

above that predicted by LST.

Extrapolating the Nuo versus Ra lines to Nuo =  1 gives an approximation to the 

Rayleigh number for onset. Figure 3.18 displays the predicted Rayleigh number 

required for the onset of convection on two meshes, the finer having half the
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grid spacing of the coarser gird. Richardson’s extrapolation technique is also 

used here in order to render the approximation fourth-order accurate, being 

analogous therefore with the LST treatment. The calculations are based on a 

cavity geometry of r0 =  0.5,;zmax =  0.50514. The axial dimension is obtained 

from LST results such as to accommodate one single rotating cell corresponding 

to one half of a wavelength.

In the fully numerical simulation, the boundary conditions at z =  0, zmax corre

spond to periodic conditions and are,

dT
“  =  ^ =  0’ a 7  =  0-

Linear stability theory suggests that convection first occurs at Racrn = 19033. 

The Racrit predicted by the numerical simulation technique bears good compar

ison with the LST treatment, being less than 0.25% in error. Calculations for 

Ra = 20000 could not easily be obtained as the run times became excessive for 

Rayleigh numbers just above that which gives onset of convection due to the very 

slow transient nature of the flow.

3.7 Initial conditions

At time t =  0, the initial conditions, satisfying the boundary conditions, are that,

^  =  0, u> = 0, u =  0, T =  1 -  1 ^ - .  (3.58)
m r0

This corresponds to solid body rotation and a conduction dominated temperature 

field which is an exact solution of equations (3.13)—(3.16). In order to perturb this
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initial solution, a small point perturbation in the temperature field is introduced 

at r == f ( l  — ro) and z = \ z max. At this location, the local tem perature is 

modified and is given by,

T ( \ (  1 -  r0), \ z max) = Tb {\{ 1 -  r0), \ z max) +  0 .0 1 . (3.59)

If this modification were not introduced, the perturbation would eventually be 

introduced into the system by means of amplification of the round-off errors. 

This would however increase significantly the computational time.

A further method employed for initialisation of the computations, involved the 

input of the starting conditions from a previously saved file. For example, the 

solution from another computation was frequently used as the initial condition 

for a new computation.

3.8 Numerical simulation results

The results presented here indicate in qualitative forms how the flow varies with 

Ra and Re. Extensive time and mesh refinement results are not presented, but 

grid refinement and decrease in timestep produce no qualitative changes to the 

flow structure.

The presented streamlines, iso-therms and tangential velocity iso-lines corre

spond to the flow structure at the end of the presented computation. It is im

portant to note that in some cases this structure represents one “snapshot” of a 

time-periodic flow.
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It is important to note that some of the solutions presented here correspond to 

values of Ra,R e  and Pr  for which =  {3A T  > 1. As mentioned earlier, the

form of the pressure/density relation which is assumed to hold and which is given 

in equation (3.4), yields negative densities. Therefore results for which (3A T  > 1 

can only be regarded as giving a qualitative indication of the resulting flow and 

heat transfer.

3.8.1 Solutions for Ra =  106, ro =  0.5 &: zmax =  0.5

Solutions were obtained for the above conditions with 64 x 64 interval grids and 

a timestep corresponding to St =  5 x 10-5.

Figure 3.19 displays the results for a Reynolds number of 400. The flow is in the 

form of a single toroidal vortex, (Figure 3.19a), rotating in the clockwise sense. 

Convection is weak as displayed by the small deviation in the isotherms, (Figure 

3.19b) and the level of TVuo, (Figure 3.19d). Indeed, solutions for Reynolds 

numbers much less than the presented Re =  400 case, correspond to solid body 

rotation and purely conducting temperature fields. A decrease in the rotational 

Reynolds number from the conditions presented, therefore stabilises the flow. 

This effect may be attributed to the buoyancy correction to the Coriolis force 

terms which are multiplied by the factor ^§ 37. For fixed values of Ra and Pr  an 

increase in the magnitude of the buoyancy correction has a stabilising effect on 

the flow, which is consistent with a decrease in the rotational Reynolds number. 

The resulting decrease in the magnitude of the pure Coriolis terms attribute to 

a destabilising effect. The buoyancy correction to the Coriolis force is dominant 

at the low Reynolds numbers discussed here, for its magnitude is about 10 times
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greater at the outer regions of the cavity near the heated cylindrical surface than 

the Coriolis force.

A region of positive tangential velocity is apparent in Figure 3.19c, located at 

the right side of the tangential velocity iso-line plot. Again, this is due to the 

buoyancy correction to the Coriolis terms, which tends to result in positive regions 

of tangential velocity for positive radial velocity. Conversely, the pure Coriolis 

force drives a negative region of tangential velocity in regions of positive radial 

velocity.

Figure 3.19e displays the variation in the local Nusselt numbers on the inner hub 

and outer shroud regions. Where the flow impinges on the inner and outer radii 

maxima in the local heat transfer occurs due to the large temperature gradients. 

Similarly, minima in the heat transfer arise where the flow moves away from these 

surfaces.

Figure 3.19f shows the variation in the tangential velocity normalised on the 

local disk speed against the radius at the mid-axial plane of the cavity. The 

plane bisects the region of negative tangential velocity, with a minimum fluid 

tangential velocity of approximately 0.8 times the disk speed occurring.

Figure 3.20 displays the results for Re = 500. Here, the flow is in the form of a 

pair of counter-rotating toroidal vortices. Radial outflow occurs at the mid-axial 

plane of the cavity, where a positive region of tangential velocity is apparent. 

Radial inflow occurs near the disk surfaces where fluid motion is from the outer 

toward the inner cylindrical surface. Due to the relatively small Reynolds num

ber and consequently low rotation rate being considered, the centrifugal effects
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opposing the radial inflow of fluid motion at the disk surfaces is small. The solu

tion is periodic in time, (Figure 3.20d), and takes the form of periodic motion in 

the upper regions of the cavity where rotational effects are stronger. An overall 

increase in the total heat transfer is apparent with increase in Reynolds number. 

The buoyancy correction to the Coriolis force terms and its associated stabilising 

effect is less dominant with the pure Coriolis terms becoming increasingly impor

tant. The former, however remains several orders of magnitude greater than the 

latter at the outer regions of the cavity.

Further increases in the rotational Reynolds number, (Figure 3.21), again display 

the toroidal pair solution. The solution is however steady-state as shown in 

Figure 3.21d. The region of positive tangential velocity apparent in Figure 3.20c 

is not maintained. The buoyancy correction to the Coriolis force terms are now 

reduced to a factor of two greater than the pure Coriolis terms at the outer part 

of the cavity, where the temperature is at its maximum. In regions of small 

values of temperature, the Coriolis forces dominate. Again, an increase in the 

heat transfer and therefore, the strength of the flow is apparent.

Figure 3.22 displays the results for Re = 900. The solution here has returned 

to the form of a single toroidal vortex, rotating in the anti-clockwise sense. The 

tangential velocity field is purely negative, with magnitudes of both the Coriolis 

and buoyancy correction to the Coriolis terms approximately matching for these 

conditions. The toroidal vortex is therefore precessing relative to the surfaces, 

with the minimum tangential velocity being approximately half the local disk 

speed, (Figure 3.22f). Local values of heat transfer, (Figure 3.22e), show peaks 

in local Nusselt number at z «  0.05 on the hub and z «  0.4 on the shroud.
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The results of further increase in the Reynolds number to Re = 1200 is displayed 

in Figure 3.23. The results bear a strong resemblance to the Re = 900 case, 

however a region of positive tangential velocity (Figure 3.23c) has appeared near 

the hub. The pure Coriolis force dominates the buoyancy correction to the Cori

olis force, particularly in the colder regions of the cavity. Hence, in regions of 

negative radial velocity, a positive tangential velocity field is expected.

The final case presented here is for Re = 1600. The increase in the rotational 

Reynolds number and hence the Coriolis force has resulted in substantial damping 

of the flow as is depicted in Figure 3.24d. The buoyancy force which is opposed 

by the damping effect of the Coriolis force is thus insufficient to maintain the 

strong convection. Further increases in the rotational Reynolds number result 

in the reappearance of the solid body rotation solution with a purely conducting 

temperature field. Little variation in the tangential velocity field is then apparent.

3.8.2 Solutions for Ra =  107, ro =  0.5 &: zmax =  0.5

Solutions were obtained for the above conditions with 64 x 64 interval grids and 

a timestep corresponding to St = 10-5 . The results display good qualitative 

comparison with the Ra = 106 computations presented above. Therefore, in 

particular some ideas on mechanisms of transition from one form of instability to 

another is presented.

Figure 3.25 displays the results for Re = 103. Again, solutions for Reynolds num

bers much less than the one presented is solid body rotation. A two-cell structure 

is not possible to obtain, regardless of the initial conditions utilised under these 

conditions. The periodic variation in the flow structure, as displayed in Figure
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3.25d, takes the form of unsteady motion in the left hand side of the cavity. The 

radial asymmetry causes the outward and inward steady-state boundary-layers 

to be different, unlike in the Benard problem. The outward boundary-layer is 

clearly more susceptible to a travelling wave instability that in inward boundary- 

layer. Increasing the Reynolds number from this initial condition results in a 

growth in the disturbance and eventually a toroidal vortex pair structure results 

as shown for Re = 2 x 103 in Figure 3.26. The solution presented here is again 

periodic with an average Nusselt number of approximately 3.7. Radial outflow 

occurs at the mid-axial plane with radial inflow occurring near the disk surfaces.

A further increase in the Reynolds number to Re = 3 x 103 from the initial condi

tions presented in Figure 3.26 displays a steady state solution with the vortex pair 

structure maintained and an average Nusselt number of N u 0 «  6.4. Figure 3.27 

however displays a single steady state toroidal vortex solution for Re =  3 x 103. 

This latter solution corresponds to a point perturbation initial condition as de

scribed in section 3.7. Two solutions have therefore been obtained for the same 

operating conditions, but the one realised is dependent on the form of the ini

tial condition. Two or more stable states are therefore possible for the same 

conditions. The core of the single vortex structure is approximately isothermal 

as is displayed in Figure 3.27b with a non-dimensional temperature of approxi

mately 0.7. The tangential velocity field suggests a minimum of approximately 

0.4 of the local disk speed with a smaller steady-state heat transfer than for the 

corresponding vortex pair solution.

For a Reynolds number of 4 x 103, Figure 3.28 shows once again a vortex pair 

structure. However, it is seen from the isotherm plot that radial inflow now occurs 

at the axial mid-plane, (c.f. Figure 3.26). Due to the increase in the rotational
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Reynolds number and consequent increase in the rotational speed of the cavity, 

the centrifugal forces imparted on the fluid by the disks has also increased and 

has become dominant over the buoyancy forces in these regions. Again, the cores 

of the circulation region appear to be almost isothermal, (Figure 3.28b), with 

the maximum temperature gradients occurring at the inner cylindrical surface. 

In this same region, an area of positive tangential velocity is displayed in Figure 

3.28c, predominantly due to the effects of the Coriolis force. Similarly, in the 

regions where there exists radial outflow of fluid, regions of negative tangential 

velocity are apparent.

Finally, further increases in the rotational Reynolds number increasingly dampens 

the strength of the flow and results for Re =  5 x 103 are presented in Figures 3.29. 

Large peaks in the local Nusselt numbers (Figure 3.29e) occur at approximately 

z =  0.02 and 2  =  0.48 at the inner and outer cylindrical surfaces respectively. 

Little variation in the tangential velocity is however apparent, (Figure 3.29f). 

A toroidal vortex pair structure could not be obtained regardless of the initial 

conditions used.

3.8.3 Solutions for Re =  5 x 103, ro =  0.5 & zmax =  0.5

The changes related to the variation in the rotational Rayleigh number alone 

is investigated here for a constant geometry and rotational Reynolds number of 

5 x 103. Two meshes were used for these computations and corresponded to 

64 x 64 and 80 x 80 grids. The time steps utilised varied between St = 5 x 10-6 

to St = 2 x 10-6 for the finer mesh.

The solution for Ra = 107 has been previously presented in Figure 3.29. A single
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toroidal vortex is apparent which is steady with time. Further increase in the 

Rayleigh number is presented in Figure 3.30 and corresponds to Ra =  2x 107. The 

rate of heat transfer has increased, (Figure 3.30d), with the flow being unsteady 

and periodic with a number of frequencies. This time-periodicity takes the form 

of either the clockwise or counter-clockwise circulation becoming dominant over 

the other. Due to the highly transient nature of the flow, the total heat transfer 

on the inner surface exceeds that on the outer surface at this particular time, 

(Figure 3.30e). Integration of the heat transfer over a time period would however 

provide equal rates of heat transfer from the inner and outer cylindrical surfaces 

as expected.

Figure 3.31 displays the solution for Ra =  3 x 107. Increase in the Rayleigh 

number increases both the magnitude of the pure buoyancy and buoyancy cor

rection to the Coriolis force. The former plays a destabilising role with the latter 

contributing toward stabilising the flow. At this Rayleigh number, radial out

flow now occurs in the mid-axial plane of the cavity with radial inflow on the 

disks. The time-dependency takes the form of unsteadiness between the two cir

culations, one becoming dominant over the other. Between times t »  0.05 and 

t »  0.085, the solution is approximately symmetrical about the mid-axial plane. 

Subsequently the symmetry is destroyed and the flow becomes asymmetric and 

aperiodic.

A mono-periodic solution is obtained for Ra = 5x 107 as displayed in Figures 3.32. 

Little change in the level of the total heat transfer is apparent with comparison 

with Figure 3.31d, suggesting that the stabilising role played by the buoyancy 

correction to the Coriolis terms counteracts the destabilising role of the buoyancy 

term. Radial outflow at the mid-axial plane of the cavity is apparent, with the
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local heat transfer at the end of the computation being a maximum near the 

disks on the inner cylindrical surface and a maximum either side of the m id- 

axial plane on the outer cylindrical surface as shown in Figure 3.32e. Initially the 

structure is asymmetric due to the point perturbation introduced with symmetric 

flow subsequently evolving.

Figure 3.33 displays the results for Ra = 108. Radial outflow is maintained on 

the mid-axial plane with radial inflow on the disks of the enclosure. A definite 

decrease in the total heat transfer level has resulted from the increase in the 

magnitude of the buoyancy correction to the Coriolis force terms, this becoming 

increasingly dominant over the pure buoyancy force. Figures 3.33c,f display a 

region of positive tangential velocity near the outer cylindrical shroud surface, 

again, suggesting that the terms are becoming dominant, particularly in re

gions of tem perature approaching that of the heated (outer) surface. An increase 

in the frequency of the periodic motion is apparent with increase in Rayleigh 

number.

Further increase in the rotational Rayleigh number is presented in Figure 3.34. 

The flow structure is becoming increasingly unsymmetrical about the mid-axial 

plane with the a decrease in the strength of convection and hence rate of heat 

transfer being apparent. Again, radial outflow occurs roughly at the mid-axial 

plane with a positive region of tangential velocity predicted near the heated outer 

cylindrical surface. The basic two-cell structure is however maintained.

Another periodic state is predicted for Ra =  5 x 108. The fundamental twin 

cell structure is again maintained as depicted in Figure 3.35a with similar char

acteristics to the results presented in Figures 3.34. However, the average heat

59



transfer (Figure 3.35d) is now significantly reduced. Further increase in the ro

tational Rayleigh number will result in the base solution of solid body rotation 

and purely conducting temperature field.

The effect of increasing the Rayleigh number on the heat transfer is counter

intuitive. Initially, an increase in heat transfer with increasing Rayleigh number 

is observed followed by a turning point and then a decrease in heat transfer with 

increasing Rayleigh number. Numerically, it is hypothesised that the increase in 

the magnitude of the buoyancy correction to the Coriolis terms with increase in 

Rayleigh number, counteracts the effects of both the buoyancy and Coriolis forces. 

In particular, the stabilising effect on the buoyancy force becomes increasingly 

important at larger Rayleigh numbers and is more dominant than the correction 

to the Coriolis terms.

3.8.4 Solutions for Ra =  107, ro =  0.3 & zmax =  0.5

The effects of geometry are investigated here for an enclosure with aspect ratio, 

A R  «  0.714 (where A R  =  The grid comprises 96 intervals radially and

64 intervals axially. The timestep utilised corresponded to 8t =  10-5 and was 

obtained from stability and temporal accuracy considerations. Solutions are again 

presented for a range of Reynolds numbers.

Figures 3.36 display the solution for Re = 103. An anti-clockwise circulation is 

apparent in the lower regions of the cavity with little motion apparent in the outer 

regions near the heated cylindrical surface. Indeed, the fluid is in approximately 

solid body rotation near r = 1 as is seen in Figure 3.36f. Direct comparison with 

the square cavity of Figures 3.25, display very similar flow characteristics. In
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particular, however, the total heat transfer level is reduced for the small aspect 

ratio cavity with the solution being steady-state.

Similarities again pertain between the narrow cavity solution of Figures 3.37 

and the square cavity solutions of 3.26. Radial outflow occurs in the mid-axial 

plane of the enclosure with radial inflow at the disks. Again a region of positive 

tangential velocity is apparent near the heated boundary, (Figure 3.37f). Again, 

a mono-periodic solution exists with approximately the same period as for the 

square enclosure, but the rate of heat transfer is now smaller.

The solutions at Re =  3 x 103 are presented in Figures 3.38. A twin cell structure 

results with radial outflow occurring in the mid-axial plane. The solution is not 

unique as a single-cell solution may equally be obtained using appropriate initial 

conditions. The toroidal vortex pair are precessing with respect to the enclosure 

walls, (Figures 3.38c,f).

Further increase in the rotational Reynolds number to Re =  5 x 103 provides a 

steady-state single vortex solution presented in Figures 3.39. The results display 

the characteristics of the square aspect ratio cavity shown in Figures 3.29. Most 

of the fluid motion occurs along the surfaces of the enclosure with relatively little 

motion in the central regions. It is also noted that the value of the steady-state 

average Nusselt number is below that of the square cavity case.

3.8.5 Solutions for Ra =  107, ro =  0.5 & zmax =  1.0

Further investigations have been conducted for an enclosure of aspect ratio A R  = 

2.0. The grid utilised is comprised of 64 radial intervals and 96 axial intervals with
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a timestep corresponding to St =  10-5 . Again, a range of Reynolds number so

lutions are obtained for constant geometry and Rayleigh numbers. Comparisons 

are also made with both square and A R  = 0.714 geometries where appropriate.

Figures 3.40 displays the periodic solution obtained for Re — 103. An overall 

single-cell solution is found which rotates in the clockwise sense. The periodicity 

takes the form of flow unsteadiness near the left hand disk of the cavity. In this 

region, a positive area of tangential velocity is apparent, (Figure 3.40c), driven by 

the buoyancy correction to the Coriolis force. Again, the average heat transfer, 

(Figure 3.40d) is less than that for the square aspect ratio cavity presented in 

Figures 3.25 due to the increase in viscous dissipation experienced by the fluid in 

the larger geometry cavity.

Further increase in the Reynolds number to Re =  2 x 103 gives a chaotic solution, 

(Figures 3.41). An overall twin cell solution is however apparent with radial 

outflow of fluid occurring at z «  0.3 and radial inflow of fluid near the disk 

surfaces. Various relatively small-scale cells appear within the main two-cell 

pattern. A positive region of tangential velocity again exists near the heated outer 

cylindrical surface where the radial jet impinges on the shroud. This may again 

be attributed to the buoyancy correction to the Coriolis force which dominates 

over the pure Coriolis force in this region. The mean total Nusselt number is 

approximately equal to the A R  = 0.714 case presented in Figures 3.37.

Figures 3.42 display the solution for Re = 3 x 103. The two-cell structure again 

prevails with radial outflow occurring approximately in the mid-axial plane and 

radial inflow on the disks. The solution shows no tendency towards a steady or 

periodic solution. The streamline plot, (Figure 3.42a), displays weak counter-
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rotating regions of circulation driven by the main circulations with the entire 

region precessing relative to the rotating surfaces.

A twin circulation solution is obtained for Re = 4 x 103 and presented in Figures 

3.43. However, radial inflow now occurs at the mid-axial plane with radial outflow 

on the disks. It is also noted that the solution is steady with time, and the 

cores of the two recirculating regions are approximately isothermal. Increase in 

the rotational Reynolds numbers therefore stabilises the flow, the Coriolis forces 

becoming increasingly dominant.

The twin cell structure shown in Figure 4.43a is reminiscent of Benard convection, 

but when Re is increased to 5000 (Figures 3.44) this gives way to a much weaker 

single-cell structure with the flow travelling in boundary-layers on the disks of the 

enclosure and along the inner and outer cylindrical surfaces in layers detached 

from the surfaces. If the approximation that the density varies linearly with 

tem perature is not applied to the Coriolis force, the solution is solid body rotation 

and a conducting temperature field. A positive region of tangential velocity exists 

on the left hand disk and a negative region on the right hand disk driven by the 

Coriolis forces, the buoyancy correction to the Coriolis force being weak for large 

Reynolds number.

3.9 Brief conclusions

In this Chapter, a radial/axial axisymmetric flow has been investigated which 

takes the form of toroidal vortices. The fundamental roles of the forces and hence 

non-dimensional parameters have been determined using both a linear stability
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method and non-linear numerical simulations:

• The magnitude of the buoyancy force is proportional to the Rayleigh num

ber and an increase in its magnitude destabilises the flow.

• The magnitude of the Coriolis force, (proportional to the rotational Reynolds 

number), stabilises the flow.

• The buoyancy correction to the Coriolis force, (multiplied by the factor 

j^p r ), again stabilises the flow when its magnitude is non-zero. This occurs 

for large amplitude instabilities or small rotational Reynolds numbers.

It is unlikely that this radial/axial flow is the dominant flow regime, with vari

ations in the tangential direction likely to occur. In the next chapter, a ra

dial/tangential two-dimensional configuration is therefore considered in order to 

determine azimuthal variations in the flow structure.

A much fuller discussion of the flows presented here is given in Chapter 7 where 

it will be compared with results detailed in Chapters 4 and 5.
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Chapter 4 

2D radial/tangential flow

4.1 Summary

Here we study the case where the flow occurs in the r-0  plane and is axially 

invariant. A schematic of the configuration may be seen in Figure 1.5. The 

cavity is assumed to be sealed with the outer cylindrical shroud at a uniformly 

hot tem perature and the inner cylindrical hub at a uniformly cold temperature. 

Once again this is analogous to Benard convection in confined stationary cavities 

and a gravitational field.

The flow computed bears a strong qualitative resemblance to the three-dimensional 

flow presented later in Chapter 5. Four different flow regimes are identified. Ini

tially, when the Rayleigh number is small, only solid-body rotation of the fluid 

in the cavity occurs and the heat is transferred across the cavity by conduction 

alone. When the Rayleigh number is large and the Reynolds number small, then 

convection takes the form of rolls which precess relative to the rotating surfaces 

(i.e. slower than the angular velocity of the cavity). When the Reynolds number
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is large then the rolls are stationary relative to the rotating cylindrical surfaces. 

A further increase in the Rayleigh number results in the plume regions between 

the rolls becoming unsteady.

4.2 Governing equations

Again a rotating frame of reference is introduced and the density assumed to

vary linearly with temperature. The velocity in the axial direction is neglected

thereby reducing the dimensional governing equations to the following form,

du 1 1 dv
f r  +  r U + r M = 0 ’ ( 4 1 )

^  + («-V)u -  -  -  ^-(2Qv + n2r) = + i/(V2u ~ ~ ~  4)> (4-2)Ot r p 0 p0 dr r2 d Q r 2

dv . uv p . 1 dP iT—i'i 2 du v
■777 +  (m-V)u +  —  +  — (2ftu) = ------------ + v{V v +  — —  -), (4.3)dt r p 0' p0r dO r2 d O r 2

BT
— + (M. v ) r  =  /c(v2r ) .  (4.4)

where the 2-D divergence and Laplace operators are given respectively by,

, _* d v d _ 2 d2 1 d 1 d2
(u.V) =  u —  + -  — , V +  +dr r d0’ dr2 r dr r2 dO2

A streamfunction-vorticity formulation is again introduced,

1 9 ^  9 ^  (A S\
U =  r~d6’ V = ~ f r '  (45)

dv 1 1 du
u  =  ~ a -------- v  +  (4 -6 )dr r r dO

where ip is not the same as that introduced in section 2.1 for radial/axial flow. 

The non-dimensionalisation is similar to that introduced for the radial/axial
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configuration and is given by,

R- ♦ R 2 T  K ~  I T  T  T - T 'r =  Hr, t =  — t, u  =  — w, ip =  Kip, 1 =
* ’ R2 ’ Tfc-Tc

where overbars denote non-dimensional variables and and Tc are the tem

peratures of the hot and cold walls respectively. The characteristic length scale, 

R , is taken to be the outer radius of the cavity and the characteristic vorticity, 

streamfunction and time scales are based on /c, the thermal diffusivity of the fluid 

within the cavity. Dropping the overbar and rotating frame notation, the result

ing non-dimensional form of the governing equations for radial/circumferential 

flow in streamfunction-vorticity form are expressed as,

lj =  V20, (4.7)

P r
AT 1
— + - J (X ,^ )  =  V 2r  (4.9)

where the Jacobian is given by,

d A d B  d B d A  
d r  de  d r  dQ

It is noted that the usual Coriolis term is eliminated with the introduction of the 

streamfunction-vorticity formulation. The flow however, is not independent of 

the Reynolds number for it appears explicitly in the buoyancy correction to the 

Coriolis term. The pure buoyancy term is multiplied by the rotational Rayleigh 

number as expected.
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4.3 Boundary conditions

The cavity is assumed to be sealed with a heated shroud and cooled hub. The 

following boundary conditions are therefore prescribed:

At the heated shroud, r = 1, the boundary conditions are that,

dib
^  =  0, ^  =  0, T =  1.

At the cooled hub, r = ro, the boundary conditions are that,

0  =  0, § £  =  0. T  =  0-

At 0 =  0 and 27r, periodic boundary conditions are applied.

4.4 Linear stability theory (LST)

4.4.1 Stability equations

Again, a linear stability theory is applied to predict the conditions necessary for 

the onset of convection for the radial/circumferential flow. A base solution of 

the governing equations corresponding to the non-convecting state of solid body 

rotation with a purely conducting temperature field is assumed.

tpB = 0, Ub  = 0, T b — { 1 — :------ ) •  (4-10)
v In ro y
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Where B denotes base solution quantities. The perturbations are therefore given

by,

=  i’B +  i>, u; =  +  w, T  = t b + t .

The governing equations are linearised by introducing periodic perturbations of 

infinitesimal amplitude with the wavenumber, n, taking only integer values.

f  Ip'S 
Cj

\ t )
=  en j 9 + \ t

(  4>{r ) +  i f  (r ) ^
w(r) +j u ( r )  

\ f ( r ) + ] T ( r ) j
(4.11)

where _ denotes the imaginary part of the complex perturbation solution and A 

is the complex temporal growth rate given by,

A =  Xr  + jAj. (4.12)

Solutions for A# =  0 are sought in order to investigate the neutral stability of the 

flow with Ai non-zero to allow precession of the rolls. Resolving into real and 

imaginary parts, the resulting linear differential perturbation equations are,

. 1 /'  n2 iu) — ip +  - i p  5-VSr r1

v  =  ip" +  - ip '  -_ r —  r i  —

1 , . 2Ra w n . , „  m A „ 1 A, n 2 A
— T^A/o; -f (-D,-n : ) („91„ „ )'(p_- RanT_ =  u +  - lu -  — w,Pr RePr  r 2ln r0 —

1 . A . 2Ra w n . 7 _ * „ 1 . n '
—-A/o; — (——— )(— ----- )^ +  i2anT =  u; +  -w  -  —  w,
P r  RePr  r 2 m r 0 r  r 2

-A /T  +  

A /P -

</> =  T"  +  i f '  -  ^ f ,
r  Inro-  r r l

-Tp— = I" + ir ' -  ^T ,
r^ in ro r  r l

Ra' = 0,

Aj =  0.

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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The above is a 14th order eigenvalue problem in Ra and A/ as a function of n and 

r 0 and the full system is solved subject to the boundary conditions:

0  =  0  =  0, 0 ' =  0 ' =  0, T  = T_ =  0 on r = r0 (4.21)

and

0  =  0  =  0, 0 ' =  0 ' =  0, T  = T_= 0 on r =  1 . (4.22)

Additional normalising conditions at r =  ro are also required and are taken to 

be,

T '=  1, T' =  0. (4.23)

4.4.2 Solution m ethod

Solutions for the eigenvalues Ra and Aj are obtained using the method described 

in Section 3.4.2. The equations are reduced to first-order form and the eigen

values obtained using a fourth-order Runge K utta scheme allied with the shoot

ing method, which involves a multi-dimensional Newton-Raphson iteration and 

Gaussian elimination scheme.

4.4.3 R esults

Air is assumed to be the fluid within the cavity for which the Prandtl number is 

taken as Pr = 0.7.
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Solutions for = 0Re Pr

Neglecting the buoyancy correction to the Coriolis force is equivalent to setting 

(3 AT «  1 and hence the Boussinesq approximation is valid. Buoyancy is not 

zero when (3AT  < < 1 . Only the buoyancy correction to the Coriolis force. In this 

case the numerical results indicate that A/ =  0  which corresponds to stationary 

rolls, i.e. precession of the flow pattern does not occur and the rolls are locked 

to the rotating surfaces.

Figure 4.1 displays critical Rayleigh number curves for a range of inner radii and 

discrete wavenumbers. For a given wavenumber and increasing inner radii, the 

critical Rayleigh number initially decreases until a minimum is reached. A rapid 

increase in the critical Rayleigh number then occurs with a further increase in 

inner radii. This variation is more prominent for larger wavenumber convection 

(i.e. for large values of n) and less prominent for small wavenumbers. Indeed, for 

the n = 2 solution, only a very small initial decrease in Racrit is apparent with 

increasing inner radii. For small inner radii, the lowest values of Racrit correspond 

to small wavenumber instability, with increasing wavenumber solutions possible 

for increasing Racrit . As the inner radius increases, the minimum value of Racrit 

occurs at increasing wavenumbers.

Figure 4.2 displays gap-based critical Rayleigh numbers for varying inner radius 

and wavenumbers where,

Ragap = RaR x (l -  r0) .

The shape of the critical Rayleigh number lines bears a strong similarity to the 

those of Figure 4.1, the interpretation of both figures being the same, namely,



at a given value of r0, the first curve which is crossed in the Ra-direction yields 

the critical value of Ragap and the value of n. At certain values of r 0 (e.g. at 

approximately 0.31 in Figure 4.2) two curves cross; at such points it is possible to 

have two modes (n = 2 and n = 4 in this case) becoming unstable simultaneously. 

The subsequent interaction requires non-linear simulations.

Extrapolation of the minimum points of the curves in Figure 4.2 for the larger 

wavenumbers toward the ro =  1 limit, gives a critical Rayleigh number cor

responding to Racrit pa 1700. This again corresponds to the critical Rayleigh 

number for the onset of Benard convection in confined stationary cavities and a 

gravitational field, (c.f. Table 2 .1 ). Good confidence therefore prevails in the 

numerical procedure.

Solutions for non-zero values of

The buoyancy correction to the Coriolis force is assumed to be significant here in 

order to determine the effect of precession on neutral stability. As in Section 3, 

attention is drawn to the fact that flows for which = (3A T  > 1 may only

be regarded as being qualitatively correct as the fluid takes negative densities in 

part of the computational domain. The frequency (A/) is non-zero and results 

are presented for three different inner radii and various Reynolds numbers and 

wavenumbers. Solutions at large values of could not be obtained.

Figure 4.3 displays the stability curves for ro =  0.7 and Re in the range 0 —► 1000. 

The effect of the buoyancy correction is prominent here for small values of Re only 

and hence for large magnitudes of the buoyancy correction terms. In particular, 

the first curve crossed in the Ra direction (n = 8  in Figure 4.3) is the critical
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value of Ra and the effect of the buoyancy correction at small Re is constrained 

to Re < 200 approximately. For larger values of Racrit , where larger or smaller 

wavenumbers become stable, the buoyancy correction is observed to modify the 

neutral stability curves over a wider range of Reynolds numbers. It is noted in 

particular that for wavenumbers n < 8 , the buoyancy correction has a stabilising 

effect, whereas for n > 8  flow destabilisation occurs at small values of Re.

Similar observations are made for ro =  0.5 (Figure 4.4). Here however, the 

primary mode of instability is n = 4 over a large range of values of Re but other 

modes take over as Re becomes small.

Figure 4.5 shows the neutral stability curves for r 0 =  0.1. It is noted that for 

all the wavenumbers presented, destabilisation occurs at small Reynolds numbers 

with no neutral stability curve observed to cross another for ro =  0.1. The effect 

of the Reynolds number on the neutral stability curves is more prominent for 

large wavenumbers, n, with the variation for small wavenumbers being small.

4.5 N on-linear computations

4.5.1 Finite difference approximations

Second-order accurate finite-difference approximations are utilised in space on 

a uniform grid. The non-linear advective terms are again approximated by the 

formulation presented by Arakawa (1966), in order to aid the stability of the 

numerical procedure. The application of the periodic boundary conditions is 

straightforward and will not be repeated here.
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4.5.2 Transient m ethod

The vorticity and temperature equations are arranged explicity using second- 

order accurate central differences for the time derivatives based on the Du-Fort 

Frankel method. Once again, values of the dependant variable at the nth timestep 

are exchanged for averages of new and old time values to improve the stability of 

the method.

4.5.3 M ultigrid m ethod

The Poisson equation for the streamfunction is solved using a Multigrid routine 

to accelerate convergence as described in Section 3.5.4. A line relaxation scheme 

is utilised incorporating V-cycling. However, when relaxing in the 9 direction the 

tri-diagonal m atrix algorithm cannot be used. The periodic boundary condition 

applied in the 6 direction causes the iteration matrix to have additional elements 

in the top right and bottom left entries as follows:

/ • •  m\
•  •  •

•  •  •

•  •  •

•  •  •

•  •  •

The resulting m atrix is therefore solved using a periodic tri-diagonal matrix al

gorithm to obtain approximations to the solution and the error. Although there 

are only two extra entries in the above matrix, the number of arithmetic opera

tions is approximately twice that of the TDMA (Tri-Diagonal Matrix Algorithm 

or Thomas-Algorithm). Once again, two relaxation sweeps based on the Gauss-
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Seidel method are undertaken in both the radial and tangential directions before 

moving to finer or coarser grids.

4.5.4 H eat transfer

The definition of the total or average heat transfer is not the same as that for 

radial/axial flow and is expressed as,

The integral quantity is again evaluated using the trapezoidal rule with the dif

ferential being approximated using a fourth-order accurate finite difference rep

resentation.

The local Nusselt number remains unchanged from that presented in Section 3.5.5 

and is repeated here for completeness,

dT
Nuiocai =  - r ln ( ro )-^ - . (4.25)

4.5.5 Precession of rolls

A measure of the rate of precession of the cyclonic/anti-cyclonic pairs is de

termined by evaluating even and odd Fourier components of the temperature

solution with time. At each timestep therefore, the following integrals are evalu

ated,
rl r2'K

I™ = / T(r,9)sm(n0)r dr d,6, (4.26)
J Tq </'0 

r \  p 2-k

I™ = / T(r,0) cos(nO)r dr dO, (4.27)
JtqJq
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where n =  1,N.  Here N  is the number of modes (cyclonic pairs) to be resolved

and is typically taken to be ./V =  10. The integral quantities are evaluated using

the trapezoidal rule at each time-step. One time period of the fundamental mode 

corresponds to the time taken for one cyclonic/anti-cyclonic pair to pass a given 

point. It is useful to relate this precession velocity relative to the disk speed. 

Relative to a stationary frame of reference, the rotational velocity of the surfaces 

is obtained form the Reynolds number and is given by,

n =  (4.28)

In a rotating frame, the tangential distance precessed in dimensional time 

where P , is the non-dimensional time period of the dominant cosine and sine 

Fourier components, is,

— , (4-29)n

where n is the dominant wavenumber. Hence, the speed of precession of the 

cyclonic/anti-cyclonic pairs is,

(4.30)
nPB?

The parameter, 7  is introduced and is defined as the ratio of the rotational speed 

of the circulations to that of the disks and is given by,

R e v    27tk

7 =  B2 s J PR2, (4-31)
R?

which simplifies to,
Ott

7  =  1 _  R e P r n P  4̂ '32^
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4.5.6 Code structure

The structure of the solver for one timestep is given by the following numerical 

procedure,

• Initialise all variables for time t = 0.

• Solve for u)n+1, T n+1 using the solutions at tn and 2n _1  on all internal grid 

points.

• Evaluate Jp=1,1°, / ^ = 1 '10 and Nuo using values of T n+1.

• Solve implicitly for 'ipn+1 using values of u;n+1 on the right hand side using 

the Multigrid method.

• Update values of t<;n+1 on the boundaries using values of xj)n+1.

4.6 Code validation

Comparisons are made with LST results in order to validate the numerical sim

ulation procedure. A discrete wavenumber solution corresponding to n = 4 is 

considered with ro =  0.5. The numerical simulations use initial conditions for 

the tem perature field corresponding to the following distribution,

T  — T b  +  A( 1 — r)(r  — r0) cos (n0), (4.33)

in order to perturb the solution toward the correct number of cyclonic/anti- 

cyclonic pairs. Again, solutions are sought for large Reynolds numbers, (i.e. 

=  0), in order to correspond with the LST treatment.
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Figure 4.6 displays both the numerical and LST results for the prediction of Racrit 

for an n =  4 instability. The numerical simulation results were obtained on 32 x 64 

and 64 x 128 radial/tangential interval grids. The solutions are rendered fourth- 

order accurate using the Richardson’s extrapolation technique, (equation 3.51). 

A polynomial extrapolation procedure is used in order to obtain a more accurate 

prediction for Racrn and is of the form,

y =  ax3 +  bx2 +  cx +  d.

The extrapolation procedure allied with the Richardson’s extrapolation technique 

gave a value of Racrit =  19228 for the numerical simulation result. The LST treat

ment gave a value ifacrit =  19217. A good comparison therefore exists between 

the LST treatment and numerical simulation techniques for the prediction of the 

critical Rayleigh number with the numerical simulation result being less than 

0.1% in error of the LST prediction.

4.7 Initial conditions

The initial conditions correspond to solid-body rotation with a conducting tem

perature field and is given by,

</> = 0, oi =  0, T = l - - ^ .
m r0

In order to perturb this initial solution, two methods are used. A point pertur

bation may be introduced in the temperature field where,

T( 1(1 -  r0), 0) =  rB(|(l -  ro), 0) -  0.02. (4.34)
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Alternatively, if a solution at a predetermined wavenumber is required, the fol

lowing perturbation to the temperature field is introduced,

T  = Tb +  A (1  — r)(r -  r0) cos(rc0), (4.35)

where n is the wavenumber and A  the perturbation amplitude which is typically 

within the range,

0 < A  <  0.5.

4.8 Num erical simulation results

The flow is characterised by cyclonic/anti-cyclonic pairs of circulating flow. The 

cyclonic regions rotate in the same sense as the disks, whereas the anti-cyclonic 

regions rotate in the opposite sense. The streamline and isotherm contour plots 

are presented such that the cyclonic regions rotate in the clockwise sense and the 

anti-cyclonic regions rotate anti-clockwise. The streamlines, isotherms and local 

heat transfer results presented correspond to the flow structure after the decay 

of transients when the flow has settled into a time-periodic state.

Although the Coriolis force terms do not appear in the non-dimensional governing 

equations in streamfunction-vorticity form, the role played may be investigated 

by considering the tangential momentum equation for steady, incompressible and 

inviscid flow,
1 dP

2 n u  = ------—  (4.36)
pr o9

From the inspection of equation 4.36, it is evident that there can only be a radial 

velocity if there is a tangential variation in the pressure field which is provided by
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a cyclone/anti-cyclone pair. Radial inflow therefore occurs if > 0 and radial 

outflow occurs if <  0 .

As in Section 3, attention is drawn to the fact that flows for which =

(3A T  > 1 may only be regarded as being qualitatively correct as the fluid takes 

negative densities in part of the computational domain.

4.8.1 Solutions for various wavenumbers w ith Ra =  106,i?e = 
103 and ro =  0.5

Typical grids utilised for these computations comprised 64 radial intervals and 

128 to 160 tangential intervals, (the larger number of intervals being used for 

the larger wavenumber solutions). The initial perturbation is given by equation 

(4.35). As deduced from the LST treatment, various wavenumber instabilities 

may appear for a given geometry and operating conditions. A range of differ

ent wavenumbers are therefore considered here for otherwise identical operating 

conditions and geometries.

Figures 4.7 displays the results of an initial n — 2 perturbation to the base 

flow. Two cyclonic/anti-cyclonic pairs are apparent with two radial outflow and 

two radial inflow arms exchanging fluid between the inner and outer cylindrical 

surfaces. Maxima in the local heat transfer (Figure 4.7d) correspond to regions 

where these radial arms of fluid impinge on the cylindrical surfaces with different 

maxima for inner and outer surfaces. The isotherms show that at the centre of 

the rolls, the fluid is approximately isothermal and at a scaled temperature of 

approximately 0.6. This is due to the fact that little fluid motion occurs at the 

centre of the cyclonic/anti-cyclonic regions.
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The total heat transfer variation with time (Figure 4.7c) suggests that the flow is 

steady-state. However, the Fourier decomposition of the temperature field with 

time suggests a different story. A pure precession of the rolls occurs, with the 

total heat transfer evaluated at the cooled cylindrical surface, remaining constant 

throughout. The form of the cyclonic/anti-cyclonic pairs is therefore constant 

with time, with precession occurring in the anti-clockwise direction as defined in 

Figures 4.7a.

Figure 4.7e shows that the n = 2 mode dominates, (the fundamental), with 

higher harmonics of the fundamental also evident. It is noted in particular that 

the second harmonic of the fundamental is small with the third harmonic being 

significant. This may be due to the integral being evaluated over the radius in ad

dition to the tangential direction and thus only odd harmonics of the fundamental 

are apparent.

Figures 4.8 display the solution for an initial n — 3 perturbation. Three cyclonic/ 

anti-cyclonic pair regions are now evident with arms of radial inflow and outflow 

between the rolls. Comparison with Figure 4.7c shows a significant increase 

in the total heat transfer with little difference in the maxima and minima of 

the local heat transfer. The increase in the number of radial arms is therefore 

the main contributor to this increase in the heat transfer. Again, the Fourier 

decomposition of the temperature field with time, shows that the third harmonic 

of the fundamental frequency is more prominent than the second harmonic.

A further increase in the wavenumber of the initial perturbation is presented in 

Figures 4.9. Here an n — 4 initial perturbation is introduced. The rolls now have 

a more “square” aspect ratio, with the isothermal regions at the centre of the rolls
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becoming quite small. Again, a small increase in the average Nusselt number is 

apparent on comparison with Figure 4.8c. The increase in heat transfer associated 

with an increase in the number of radial arms offsetting the decrease in heat 

transfer due to the reduced strength of the rolls themselves. The precession of the 

cyclonic/anti-cyclonic pairs is again evident, with the fundamental component 

of the Fourier decomposition, (Figure 4.9e), dominating. It is anticipated that 

higher modes are also significant, however, only the integral quantities up to and 

including cos(lO0) and sin(lO0) are evaluated. The amplitudes of the second 

harmonic are again very small.

Figures 4.10 display solutions for a n n  =  5 perturbation. It is apparent from Fig

ures 4.10a,b that the cyclonic regions are slightly stronger than their anti-cyclonic 

counterparts. This effect is due to the precessing motion of the rolls which oc

curs in the anti-clockwise sense, which in turn is due to the Coriolis correction 

to the buoyancy term. At the heated outer cylindrical surface, the shear be

tween the cyclonic regions and the surface strengthens the cyclones. Conversely, 

at the cooled inner cylindrical surface, the shear strengthens the anti-cyclonic 

regions and weakens the cyclones. However, this effect is less prominent due to 

the smaller radial location of the inner cylindrical surface. This is analogous to 

the driven-cavity problem where the motion of a surface causes a recirculation. 

In this instance, in a frame of motion rotating with the rolls, the motion of the 

outer cylindrical surface increases the strength of the cyclones. This effect will 

become more prominent for smaller Reynolds numbers where the magnitude of 

the Coriolis correction to the buoyancy terms, and hence the rate of precession, 

increases.

Figures 4.11 displays the solution for an n =  6  perturbation. A very slight
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increase in the rate of heat transfer is again apparent, with six arms of radial 

outflow and six arms of radial inflow exchanging fluid between the heated and 

cooled cylindrical surfaces. The Fourier decomposition of the temperature solu

tion with time, (Figure 4.lie ), shows only the dominant fundamental frequency. 

Higher harmonics were not evaluated but are not thought to be significant, given 

earlier results.

A periodic solution is obtained for an n =  7 perturbation. This unsteadiness takes 

the form of motion between the cyclonic/anti-cyclonic pairs. At the end of the 

computation, the streamlines (Figure 4.12a) show that the cyclonic regions are 

dominant over the anti-cyclonic regions. This may be due to the flow unsteadiness 

and also the velocity imparted on the fluid by the rotating surfaces as discussed 

above. A decrease in the mean total heat transfer from that presented in Figure 

4.11c is also evident. The increase in the heat transfer associated with an increase 

in the number of radial arms impinging on the surfaces is not adequate here to 

offset the decrease in the heat transfer due to the reduced strength of the rolls. 

The small wriggles in Figures 4.12e are due to the flow unsteadiness between the 

cyclonic/anti-cyclonic pairs, where one roll becomes dominant over the other.

The solutions presented in Figures 4.13, correspond to an initial n =  8  perturba

tion. The resulting structure however, comprises of four cyclonic/anti-cyclonic 

pairs. The transition from the initial periodic n = 8 instability to the steady 

n =  4 instability occurs approximately at a non-dimensional time corresponding 

to f w 0.45. This is easily identified from both Figures 4.13c and 4.13e which 

show the total heat transfer and the Fourier decomposition of the temperature 

field with time respectively. Given the form of the initial profile, the n = 8  so

lution is therefore unstable with respect to n = 4 disturbances and the only way

83



the flow may be contaminated by an n = 4 component is via round-off error in 

the solution procedure. The initial periodic unsteadiness in the regions between 

the cyclones and anti-cyclones may be due to the relatively large velocity gra

dients between the cyclonic/anti-cyclonic circulations as a result of the relative 

proximity of the rolls.

For the results presented above, the rate of precession is very small with 7 , 

(equation 4.32), approaching unity. The number of cyclonic/anti-cyclonic pairs 

has only a small effect on the value of 7  for the wavenumber instabilities con

sidered here due to the relatively small magnitude of the buoyancy correction to 

the Coriolis term. The preferred number of cyclonic/anti-cyclonic pairs which 

form for a given geometry and operating conditions is likely to be that which ap

proximately maximises the overall heat transfer. For a point perturbation initial 

condition, the preferred number of pairs corresponds to an n = 5 solution which 

both maximises the heat transfer and is also steady with time. A pure precession 

of the rolls therefore occurs.

4.8.2 Solutions for various inner radii w ith  Ra =  106 and
Re =  103

The solutions presented here are evaluated on grids with between 64 and 80 radial 

intervals and 128 tangential intervals. The initial point perturbation corresponds 

to equation (4.34) for all the computations presented.

Figures 4.14 show the solution for a small inner radius (r0 =  0.1). An n — 1 

wavenumber solution results with the cyclonic circulation being dominant over 

the anti-cyclonic circulation at the end of the computation. The resulting small
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wavenumber solution comprises of only one region each of radial outflow and ra

dial inflow of fluid, with the location of the impingement of fluid on the outer 

surface being the location of the largest peak in the local Nusselt number (Fig

ure 4.14d). It is also noted that the regions at the centre of the cyclones and 

anti-cyclones are highly isothermal. The solution is periodic as displayed in the 

variation with time of the total heat transfer and the Fourier decomposition of 

the tem perature field. This periodicity takes the form of flow unsteadiness be

tween the counter-rotating vortices. The simulations suggest a steady precession 

of the convective cells with a superimposed fast oscillation.

A transition in the flow occurs at t w 0 .2  where prior to this time, the sin(20) 

and cos(20) modes in the Fourier decomposition are dominant, (Figure 4.14e). 

Wavenumber halving therefore occurs at this time with an associated reduction 

in the heat transfer, (Figure 4.14c).

An n =  2 solution is obtained for an inner radius of r 0 =  0.3, (Figures 4.15). The 

increase in the total heat transfer, (c.f. Figure 4.14c), is due to the increase in the 

number of radial arms of circulating fluid and the decrease in gap between the 

inner and outer cylindrical surfaces. A pure precession of the rolls occurs with 

no periodic motion evident at the impingement and radial arm regions. Again, a 

transition in the dominant mode is apparent at t fh 0.25. Prior to this, the n = 3 

mode dominates and subsequently decays as it is likely to have a faster linearised 

growth rate than the n =  2  mode.

A further increase in the inner radius to r0 =  0.6 is presented in Figures 4.16. 

Here, a substantial increase in the wavenumber is apparent with the rolls main

taining an approximately square aspect ratio. Due to the small gap between the
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cylindrical surfaces, an increase in the heat transfer is expected. However, the 

increase in the number of cyclonic/anti-cyclonic pairs and the viscous effects be

tween these rolls counteracts the increase in both the number of radial arms and 

the effect of the small gap. The number of pairs which form however approxi

mately maximises the heat transfer. A transition in the flow occurs at t «  0 .2  

and may be identified from Figures 4.16c,e. Before this time, various modes in 

the Fourier decomposition are significant due to the instability consisting of 8  

cyclonic/anti-cyclonic pairs of various sizes, but an n =  7 solution forms the 

final flow pattern.

Further increase in the inner radius results in an increase in the number of 

cyclonic/anti-cyclonic pairs with further decrease in the total rate of heat trans

fer. The approximately square aspect ratio of the rolls is also maintained.

4.8.3 Solutions for various Re w ith Ra =  105 and ro =  0.5

The variation of the precession speed relative to the cylindrical surfaces, 7 , (equa

tion (4.32)), of the cyclonic/anti-cyclonic pairs with Reynolds number is consid

ered. The grids used for these computations comprised 32 x 128 radial and 

tangential intervals respectively and a non-dimensional timestep of t = 0.0005.

The precession of the cyclonic/anti-cyclonic pairs is dependant only on the mag

nitude of the buoyancy correction to the Coriolis term. When the magnitude of 

the factor ^ aPr is large, then the rolls precess relative to the rotating cylindri

cal surfaces. Conversely, when the magnitude of the buoyancy correction to the 

Coriolis term  is small, then the cyclonic/anti-cyclonic pairs are rigidly fixed to 

the cylindrical surfaces. The results of varying the Reynolds number, and hence
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the magnitude of the buoyancy correction to the Coriolis term are presented in 

Figure 4.17 with the Reynolds number axis presented on a logarithmic scale. The 

speed of precession of the rolls rises sharply from 7  w 0.9 at Re = 100 to 7  «  1.0 

at Re = 1000. A further increase in the Reynolds number has little effect on the 

precession speed relative to the rotating cylindrical surfaces, with the rolls locked 

to the surfaces.

The effect of this precession on the heat transfer is shown in Figure 4.18 with 

the Reynolds number again presented on a logarithmic axis. A decrease in the 

total heat transfer occurs for decreasing Reynolds number. Smaller values of 

Re (increasing influence of the buoyancy correction) causes an increase in the 

speed of precession. This results in a reduction in the strength of the rolls and 

a consequent decrease in the rate of heat transfer. A further reduction in the 

Reynolds number from that presented, results in further stabilisation of the flow, 

and for small Reynolds numbers, a solid body rotation flow field and conducting 

temperature field is obtained. The reduction in the Reynolds number and hence 

the centrifugal forces becomes insufficient to support buoyancy induced flow due 

to centrifugal force effects.

4.8.4 Solutions for various Ra w ith Re =  103 and ro =  0.5

To investigate the variation in the flow structure with increase in the dimensional 

tem perature difference, the Reynolds number is held fixed and the Rayleigh num

ber is allowed to vary. For the computations presented here, between 32 and 80 

radial intervals and between 128 and 160 tangential intervals were used. The 

finer grid structures correspond to the larger Rayleigh number investigations.
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The non-dimensional timestep used ranged from St = 5 x 10 4 down to 10 6.

Figures 4.19 displays the solution for Ra =  105. The preferred number of 

cyclonic/anti-cyclonic pairs here is six with the core of the rolls not display

ing the isothermal nature of larger Rayleigh number flows. The strength of these 

pairs is therefore relatively weak with steady precession occurring at an average 

Nusselt number of approximately 2.5.

Increase in the Rayleigh number results in a decrease in the preferred number 

of pairs observed and a return to more isothermal cores. Figures 4.20 show the 

simulation results for Ra = 106. An increase in the heat transfer is apparent, 

(c.f. Figure 4.19c), with a discontinuity occurring at a time t «  0.35. The 

Fourier decomposition of the temperature field may however be separated into 

four distinct regions. Up to a time, t «  0 .0 2 , localised amplification of the 

point perturbation occurs, with little growth in the flow field. Subsequently, 

up to a time t «  0.07, the disturbance propagates around the enclosure with 

many Fourier modes being prominent. Following this the n = 6  mode dominates 

with the transition to an n =  5 mode occurring finally at t «  0.35. It is unclear 

precisely why this latter transition should take place, but it is evident from Figure 

4.20e that many other competing modes exist just before t =  0.35; we suspect 

strongly that different initial conditions would yield an n = 6  solution. Note that 

the final solution is identical to that presented in Figure 4.10.

It is however unclear from the results as to why this latter modal transition should 

occur as a very small reduction in the heat transfer occurs, thus it may not be 

said that the preferred number of rolls exactly maximises the heat transfer here.
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Figures 4.21 displays the solution for Ra =  4 x 106. The total heat transfer 

is periodic in time, (Figure 4.21c), and is caused by the flapping motion of the 

radial arms. It is noted that this flapping does not occur in the usual manner, but 

period doubling occurs characterised by the opposing arms of radially out-flowing 

fluid moving in the tangentially opposite sense to the other two opposing arms or 

neighbouring arms being out of phase, (n.b. this can not occur for an odd value 

of n). A decrease in the number of cyclonic/anti-cyclonic pairs is again apparent 

with increasing Rayleigh number with an associated increase in the heat transfer 

also occurring.

The time history of the transient isotherms is presented in Figures 4.22 from 

a time t = 0.005 through to t = 0.05. Initially, the amplification of the point 

perturbation introduced at 0 =  0  is small, with only a small deviation of the 

isotherms from the base conducting solution. At a time t =  0.0075, the amplifi

cation of the point perturbation is evident with two regions of radial inflow and 

one more pronounced region of radial outflow. A pair of cyclonic/anti-cyclonic 

rolls are therefore present. At larger times, the instability is seen to travel around 

the cavity faster in the clockwise sense than in the anti-clockwise direction. It 

may be expected, that the disturbance would travel faster in the direction of 

precession, however, the precession rate of the rolls is small in comparison with 

the diffusion of the instability around the cavity. This effect therefore may be 

attributed to the rotating surfaces aiding the disturbance in the clockwise sense 

around the cavity. At a time t = 0.015, the disturbance has spread throughout 

the enclosure, with coherent cyclonic/anti-cyclonic features becoming increas

ingly evident. Six radially out-flowing arms of fluid are apparent at a time 

t = 0.0175 with five distinct arms occurring at time t = 0 .0 2 . At larger times, 

the n — 4 solution asserts itself, with two radial arms of fluid merging and thus
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reducing the characteristic wavenumber.

Further increase in the Rayleigh number is characterised by an increasingly 

chaotic solution. Figures 4.23 show simulation results for Ra = 5 x 106 with 

the preferred number of pairs corresponding to an n =  4 solution. Once again, 

period doubling occurs with higher harmonics apparent in the total heat trans

fer variation with time plot. The Fourier decomposition shows the two dominant 

modes, with many of the higher Fourier modes also prominent due to the flapping 

motion between the cyclonic/anti-cyclonic pairs.

Figures 4.24 display a chaotic solution for Ra = 107 with an increase in the 

wavenumber apparent. The core of the rolls are also becoming increasingly 

isothermal, with the large temperature gradients occurring near the cylindrical 

surfaces and in the radial plumes of fluid.

Further increases in the Rayleigh number result in increasingly chaotic flows. 

Figures 4.25 show an n = 6 instability for Ra =  2 x 107. Increasingly large peaks 

in the local heat transfer are evident in Figure 4.25d with the form of the rolls 

becoming less smooth and with the cyclones becoming increasingly dominant 

over the anti-cyclones due to an increase in the rate of precession of the rolls 

themselves.

Figures 4.26 show the numerical simulation results for Ra = 5 x 107. Large 

chaotic fluctuations in the total heat transfer are apparent with the streamlines 

and isotherms showing characteristic signs of these fluctuations. It is hypothesised 

that the reduction in the resulting wavenumber instability, (n =  4), is due to these 

violent fluctuations causing the breakdown of larger wavenumber instabilities
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which were likely to be prominent between t «  0.002 and t «  0.01. The Fourier 

decomposition of the temperature field with time shows that the rolls precess 

steadily with higher modes also significant due to the time dependence of the 

simulation.

The effect of the Rayleigh number on the precession rate relative to the rotating 

surfaces, 7 , is presented in Figure 4.27. An increase in the Rayleigh number re

sults in an associated increase in both the buoyancy force and the magnitude of 

the buoyancy correction to the Coriolis force. Due to this latter effect, a decrease 

in 7  with increasing Rayleigh number occurs. The variation is approximately lin

ear, however, discontinuities arise due the different characteristics of the various 

resulting wavenumber instabilities considered. Had the variation been consid

ered for flows with the same wavenumber, then a more smooth variation in the 

precession rate relative to the rotating surfaces may be expected.

4.9 Brief conclusions

The radial/tangential instability takes the form of cyclonic/anti-cyclonic pairs, 

where the cyclones rotate in the same sense as the disks and the anti-cyclones 

in the opposite sense. The regime is independent of the Coriolis force, but the 

buoyancy correction to the Coriolis force remains significant in the governing 

equations. The buoyancy force is proportional to the Rayleigh number and has 

a destabilising effect on the flow. The primary effect of the buoyancy correc

tion term  is to cause precession of the rolls relative to the disk surfaces. This 

occurs for small Reynolds numbers in particular. For large Reynolds numbers, 

the cyclonic/anti-cyclonic pairs tend to be locked to the rotating surfaces. This
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precession is also prevalent at large Rayleigh numbers. Various wavenumber 

solutions are stable for a given Rayleigh number, Reynolds number and inner 

radius, with the preferred number of cyclonic/anti-cyclonic pairs (obtained using 

a point perturbation initial condition) approximately maximising the rate of heat 

transfer.

As in Section 3, attention is drawn to the fact that flows for which p^ aPr = 

ISAT > 1 may only be regarded as being qualitatively correct as the fluid takes 

negative densities in part of the computational domain.

The effect of the disk boundaries on the flow characteristics is however thought to 

be important. In order to determine the influence of a fully enclosed cavity, the 

full three-dimensional equations of motion are considered and solutions presented 

in the next chapter.

Once more the results are discussed more fully in the contexts of those of Chapters 

3 and 5 in Chapter 7.
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Chapter 5

3D flow simulation

5.1 Summary

To investigate fully the flow structures within the present geometry, it is necessary 

to solve the full three-dimensional equations of motion. In particular, a fully 

enclosed cavity will modify the flow compared with the results of the previous 

two chapters. A representation of the three-dimensional cavity being considered 

is presented in Figure 1.3. As in the tangentially axisymmetric case, the disks 

are assumed to be adiabatic, the outer cylindrical shroud uniformly hot and the 

inner cylindrical hub uniformly cold.

Due to the very large number of grid points required, this chapter presents a 

qualitative investigation of the resulting flows. A more detailed, quantitatively 

accurate investigation would require much more computing power than is cur

rently available at the University of Bath. The formulation is such that three 

Poisson equations are required to be solved at each timestep, and this consumes 

a large proportion of computational time. The spatial resolution therefore, tends
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to be poor compared to what may be achieved with the two-dimensional codes 

which are in streamfunction-vorticity form. This limits the range of Rayleigh 

numbers which may be investigated. The use of a non-uniform grid distribution 

would aid in the resolution of flow in any boundary-layers, but this would require 

a marked increase in the complexity of the code. Therefore solutions on uniform 

meshes are presented.

5.2 Governing equations

The three-dimensional Navier-Stokes and energy equations in a rotating frame 

of reference and polar coordinates, subject to the assumption that the density 

varies linearly with temperature, are given by,

du 1 1 dv dw
f r  + r U + 7 d 9 + f c - ° ’ (5-1}

+  (a .v )u  -  — -  —(2Slv +  n2r) =  ~  +  v ( V 2u -  -  ^ ) ,  (5.2)
dt r po po or r2 d O r 2

dv , uv p . 1 dP  /__o v x
-K7 +  (m-V)u +  —  +  — (2Qu) =  — +  i/(V v -  —), (5.3)dt r p 0 p0r d9 r2

dw . 1 dP  ,  2 \  /  r

aT + =  ~7o 5 7  +  " ( v  w)> (5'4)
dT
—  + (a.V )T =  /c(V T) (5.5)

where the three-dimensional divergence and Laplace operators are given respec

tively by,

, d v d d _ 2 d2 1 d 1 d 2 d2
(u.V) -  u —  +  +  w — , V -  —  +  +

dr r d9 dz  ’ dr2 r dr r 2 dO2 d z2

In order to eliminate the pressure field and its associated numerical difficulties, 

two different formulations may be used: these are vorticity-velocity and vorticity-
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vector potential formulations. However, problems exist with the application of 

the boundary conditions for the latter method since the non-uniqueness of the 

vector potential allows multiple forms of its boundary formulation. One impor

tant advantage of the vector potential-vorticity formulation is that a collocated 

grid may be utilised, but, to avoid the difficulties arising as a result of applying 

the boundary conditions, it was decided to use the vorticity-velocity formula

tion, being the preferred formulation in the literature that was surveyed. Two 

different forms of the vorticity-velocity formulations exist characterised by the 

method used for determining the velocity vector; see Shen and Loc (1997).

• The first order or div-curl form where the velocity components are com

puted by solving the coupled problem of the divergence constraint and the 

definition of the curl of the velocity vector.

• The second-order form where Poisson equations are obtained by taking the 

curl of the vorticity definition and utilising the continuity equation.

The latter, classical form, of the vorticity-velocity formulation was selected for 

simplicity, with three uncoupled Poisson equations chosen in preference to the 

coupled problem which would be further complicated by the use of a staggered 

grid. The three-dimensional vorticity is therefore defined such that,

i rj  k
d_
dr

d_
dd

d_
dz

u rv w
(5.6)

where i, j  and k are unit vectors in r, 9 and z directions respectively. The three 

components of vorticity are therefore given by,



where w =  (A, B, C). The pressure terms in the above equations may therefore be 

eliminated in the usual manner by cross-differentiation. The non-dimensionalisation 

is the same as that for radial/axial flow and is repeated here for completeness,

__ __ , x k _ R 2 -
r = Rr. z = Rz.  (it, u, w) = — (if, v, w), t = — t,

R  k

(A ,B ,C )  = - ^ ( A , B , C ) ,  T = T ~ T'
R?K ’ ’ "  Th - T c

where overbars denote non-dimensional variables and Th and Tc are the tempera

tures of the hot and cold walls respectively. The characteristic length scale, R , is 

taken to be the outer radius of the cavity and the characteristic vorticity, veloc

ity and time scales are based on a c ,  the thermal diffusivity of the medium within 

the cavity rather than on a/, the kinematic viscosity. The rotational Rayleigh, 

rotational Reynolds and Prandtl numbers are also introduced and are given by,

= P r . t .
UK U K

The resulting, non-dimensional governing equations are given by,

1 dA du 1 du du -\ du 2 Ra trndu dT,
Tr [ aT + (M-V)A - Y r A ~ rT e B -  ^  ~ 2R eirz  +  i w v  +

=  \72A —  —A  (5 8 )
r 2 80 r 2 ’ >

1 d B  dv v 1 dv \ n  syl r»r> dv dT^ u . V ) B - { - - - ) A - - ( u + - ) B - - C  - 2 R e - + — - ( T - A v 1 - )
Pr dt dr r r dO dz dz RePr  dz dz

=  +  (5.9)

Pr
. dw 1 dw dw I dw 2Ra ( dw dT  v d T .

d t + (a  ) aT ~ r ~ d e  ~ ! h  6 l h  +  R e P r  l h ~ Ul f r ~ r T ) d ^
1 dC  , _  dw t 1 dw _ dw i __  dw 2Ra /r̂ dw  dT  v d T

dT
- R a ^  = V 2C. (5.10)

The Poisson equations for velocity are formulated using the equation of continuity

and the vorticity definitions. The equations for the velocity are thus expressed
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in terms of vorticity on the right hand side and are given by,

1 dA dB  B  ,
v  »  =  7 '  < 5 “ >

2 v dC  2  C dA  ,r i n .

__2 2  du u d B  l dC 2 d w  .
  t p * (5.13)r  a r  cte r r  c/2:

It is noted that equation (5.13) for velocity u is expressed in terms of the axial

velocity field, w and may not be defined explicitly in terms of the vorticity vector.

Therefore, the axial velocity field must be calculated in order to obtain the radial

velocity distribution for a given time.

The energy equation for temperature is expressed in the usual manner and is 

given by,
dT

+ («.V)T =  V 2T. (5.14)

Once again, it is noted that the Coriolis force is proportional to the Reynolds 

number and the magnitude of the buoyancy force is proportional to the Rayleigh 

number. The buoyancy correction to the Coriolis terms is proportional to the 

factor fepr - When the rotational Reynolds number is large, then this factor 

becomes negligible if Ra and Pr  are held fixed.

5.3 Boundary conditions

The boundary conditions are that u =  v = w = 0 such that all surfaces are no

slip and impermeable. The disks are assumed to be adiabatic whilst the outer 

cylindrical shroud is at a uniform hot temperature and the inner cylindrical hub 

is assumed to be uniformly cold. The boundary conditions for the vorticity
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components are derived from their definition in terms of the curl of the velocity. 

The boundary conditions are therefore expressed as:

At the heated shroud, r =  1 , the boundary conditions are that,

U =  v =  w = 0, A =  0, B  = C =  ! ^ ,  T  = 1.dr or

At the cooled hub, r = ro, the boundary conditions are that,

dw dv
u = v = w = 0, A =  0, B  = — ——, C = — , T  =  0.

or or

At the disks, z =  0,zmax, the boundary conditions are that,

. dv dv, _ dT
u = v = w = 0, A = , B  =  — , (7 =  0, —  =  0.

dz dz dz

At 6 — 0,27r, periodic boundary conditions are applied.

5.4 N on-linear computations

5.4.1 Staggered grid

In order to obtain a divergence-free velocity and vorticity vector distributions it 

is necessary to implement a staggered grid strategy. For a non-staggered grid, 

the divergence constraints for velocity and vorticity are not numerically satisfied. 

The staggering scheme used is presented in Figure 5.1 and is the same as that used 

by Stella et al. (1988), but here has been adapted to a polar grid. The velocities 

are located at the midpoint of the cube faces whilst the components of vorticity 

are located at the mid points of cube edges, parallel to the axis of the vorticity 

components. The location of the velocities assures the global conservation of the
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flow rate within the cubical element. The location of the vorticities minimises the 

discretisation error in the right hand side of the Poisson equations for velocity. 

The temperature is located at the centre of the cube.

In order to minimise the complexity of the numerical approach and hence com

putational expenditure per iteration, a uniform mesh is utilised.

If the nodal point (z,j, k) denotes the physical nodal location (i8r +  ro,jS6, k8z) 

then,

• Velocity u is located at (*, j  + +  | )

• Velocity v is located at (z +  | ,  j , k +  | )

• Velocity w is located at (z + \ , j  +  | ,  k)

• Vorticity A  is located at (z + | , j ,  k)

• Vorticity B  is located at (z,j +  | ,  k)

• Vorticity C  is located at (z, j, k -f-

• Temperature X1, is located at (z +  j  +  | ,  k +  |)

5.4.2 Finite—difference approximations

Second-order finite difference spatial approximations become more complicated

on a staggered grid. Linear or bi-linear interpolation techniques are used in order

to evaluate the finite difference approximations. For example, in equation (5.8) 

for the vorticity component, A , vorticity components B  and C  are obtained using
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bi-linear interpolation where,

Finite-difFerence approximations (FDA), to — in equation (5.8) is expressed by 

taking a bi-linear approximation of u at (z +  f , j, k +  | )  and (z +  | ,  j , k — | )  then 

forming the FDA in the usual manner using,

d u {i+j ,3,k)  _  ^ ( , - + 1  j ,fc+L) ~  u ( i + ± , j , k - 1 )

Further difficulties arise at the boundaries where an extra storage location is 

used. For example, the FDA to at one radial storage location from the inner 

cylindrical hub boundary is approximated by a four-point approximation in order 

to obtain second-order accuracy and is given by,

d 2^ ( | , i , f c )  _  3 -2 ^(0 ,j,fc ) ~  +  2 ^(f,j,A Q  ~  ° - 2 A (t,j,A:)
dr 2 8r2

Similarly, a second-order accurate approximation for ^  at one radial storage 

location from the inner cylindrical hub boundary is approximated by a three 

point approximation and is expressed as,

d A {k,m _  ~ l A(oM  +  A (iM  +  |A (| )J|fe) 
dr 8r

5.4.3 Application o f boundary conditions

The main difficulty in applying the boundary conditions are those associated with 

the vorticity vector. No-slip boundary conditions applied to the velocity field are 

not problematical. In order to satisfy the vorticity boundary conditions at the
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same time level, the boundary conditions for the vorticity and velocity equations 

must be resolved simultaneously. The velocity Poisson equations therefore differ 

at one location in from the boundaries from those applied in the core region. In 

order to demonstrate this, the r = ro boundary is considered for velocity w and 

vorticity B  boundary condition, centred at ( | , j  + k). In second-order accurate 

finite difference form it is expressed as,

+  2w^ + h *  ~  °-2u,f l ( wjj+ k*  + 3wi j j + ^ ,
8r2 r 8r

w y - l k - ^ w y + i , k  +  w i j + | , f c  +

892 8z2

_  1  ~  k ~  B q , j + ± , k  k  “b  -^o, j + ^ , k  / c  -i e \

~  r 89 8r ~  2r  >

The value of B 0 j + 1 is as yet unknown, since the boundary vorticity is expressed 

in terms of the velocity field at the same timestep. At the r = ro boundary, 

B  =  — |gf. In second-order finite difference form this is expressed as,

1_ : I 1 j .  i +  — fc
R  ^  2 ’3 ' 2 ’ 3  2 2 ’ / K

0 , j + ^ , k  ~  6 r

Substituting this expression into (5.15) above, the finite difference approximation 

to the axial velocity Poisson equation is obtained and is given by,

3^1 ~  j+ktk l / ~ 2 W\,3+\,k T 2Wl \
8r2 r 8r

I w bi-h<k ~  W5’j+bk _j_ ^j.i+7.*-! “  U,iJ+|,A!+l
892 8z2

1 _  ^\,3,k ,j+bk ^l,j+\,k (5.17)
r 89 8r 2r

Similar expressions are evaluated for the remaining boundaries and velocity equa

tions to satisfy the vorticity boundary conditions at the same timestep.
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During validation, it was found that the implementation of second-order accu

rate vorticity boundary conditions for the tangential velocity equations produced 

unsatisfactory results. It was found however, that good comparisons could be ob

tained using first-order vorticity boundary conditions. The reason for this could 

not be clearly identified and may have been due to one or more of the following 

reasons,

• The second-order conditions may not have been applied correctly in the 

code.

• The mesh utilised may have been too coarse near the boundaries rendering 

the second-order approximation inaccurate.

• Stability problems occurred with the higher-order approximations.

5.4.4 Transient m ethod

The vorticity transport and temperature transport equations are discretised using 

first-order accurate forward-difference approximations for the time derivatives. 

Values of the dependent variable are substituted by averages of previous and 

new time values, stabilising the numerical approach significantly in the same 

manner as the Du-Fort Frankel method. For example, Fourier’s two-dimensional 

equation in Cartesian coordinates,



is rewritten in finite difference form as,

W f 1 JL +  —  _|_ =  (V'-1 I ----- -------- —
■>l,J f J  1 C O 1 C O  Si .7 | C O C O

1 1 1 1 1 /■n f n  f n  An _j_ f n
I s j + l , j  ~r S t - 1 ,j  , M , j + 1 ' M j - lj ' '" y J  j  ̂ j

&r2 6?/2-1 hJ L &c2 <fo/2j St Sx Sy
(5.19)

5.4.5 M ultigrid m ethod

Again the multigrid method is based on that presented in Chapter 3. However, 

due to having three spatial dimensions, the prolongation and restriction operators 

are different from the forms previously quoted. If j khy 2h =  y h denotes the

prolongation operator where h is the steplength, then the components of V h are 

given by

7)̂  — 7)2̂2i,2j,2k — u2i,2j,2k

u h — - ( v 2h 4- v 2h \u2i+l,2j,2k ~ <y\u2i,2j,2k ' u2i+l,2j,2k)

V2i,2j+l,2k — 2^V̂ 2̂ 2k V2it2j+l,2k)

V2i,2j,2k+1 =  ^ ( ^ t w k  +  v2i,2j,2k+l)

h________ _ _̂(n,2h ,,2/i ,,2/i 2h \v2i,2j+l,2k+l ~  ^ \ v2i,2j,2k ' v2i,2j+l,2k v2i,2j,2k+l T viJ+l,k+l)

V2i+l,2j,2k+l = ~̂ (V2i,2j,2k "b V2i+l,2j,2k ~b V2i,2j,2k+1 *b Ut+l,j,jb+l)

7,  ̂ — ^.(i)2k _1_ q)2k -1- 7)2k -L qj2k ^u2i+l,2j+l,2k ~  ^ \ u2i,2j,2k ^  u2i+l,2j,2k * u2i,2j+l,2k ' ui+lJ+l,k)

h__________ __ ^ (qi2k I 0.2h _i_ 2h I 2h2i+lf2j+l,2fc+l — g \v2i,2j,2k T u2*'+l,2̂ ,2* "> U2i,2j+1,2A: T Ui+1j+l fc

+V2i,2j,2k+l +  u?+l,jlfc+l +  ^j+l.fc+l +  u?+l,i+l,fc+l) (5.20)
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The restriction operator again takes the form of a full weighting operator defined 

by I l hV h =  V 2h, where

= g j[(U2*+l,2j+lf2fc+l +  2̂{+l,2ji+l,2A:—1 +  u2i+l,2j-l,2fc+l +  V2i+l,2j-l,2k-l

+V2i-l,2j~l,2k+l +  V2i-l,2j-l,2k-l +  v2i-l,2j+l,2k+l +  v2»—1,2i+l ,2*—1)

+2( V2i+l,2j+l,2k V2i+l,2j-l,2k +  v2i-l,2j+l,2k+l T V2i-l,2j-l,2k

~̂ V2i+l,2j,2k+l “I" V2i+l,2j,2k-l "I" V2i-l,2j,2k+l +  V2i-l,2j,2k-l 

~̂ V2i,2j+l,2k+l +  V2i,2j+l,2k-l +  V2i,2j-l,2k+l +  V2i,2j-l,2k-l)

+^(V2i+l,2j,2k u2i-l,2j,2Jb +  V2i,2j+l,2k +  V2i,2j-l,2k

~̂ V2i,2j,2k+l +  V2i,2j,2k-l) +  &V2i,2j,2k\’ (5.21)

Modification of the weighting near the boundaries due to the staggered grid strat

egy was not found to be required since little loss in performance was evident using 

the presented weighting operator. Two line relaxation sweeps are undertaken in 

radial, tangential and axial directions at each Multigrid level to resolve the ve

locity vector. The scheme is said to have converged when the absolute value of 

the residual is below 10-6 . This was found to give highly accurate results.

5.4.6 H eat transfer

The heat transfer through the outer heated cylindrical surface into the fluid and 

out of the fluid through the cold inner cylindrical surface is evaluated in terms 

of a non-dimensional heat transfer quantity known as the Nusselt number, Nu. 

Two forms are defined, dependent on whether it pertains to an average (total) 

or local heat transfer rate. The Nusselt number is defined as the ratio of heat
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transfer due to convection and conduction to that due to conduction alone and 

is given by,

Nu =  4-, (5.22)
9A

where A pertains to conduction quantities and the local heat transfer is defined 

as,
K A T d T  /rooN

qiocal -  Jl Qr ' (5.23)

The local Nusselt number is therefore given by,

dT
Nuiocai =  - r ln ( ro )—  (5.24)

at either r =  r0 or r =  1. The average or total heat transfer is given by,

K A T  /‘̂ 7r [zmax QJJ
qtot«l =  ^ = r- /  I T ^ r d O  (5.25)H  Jo Jo Or

The average Nusselt number is therefore given by,

=  (5.26)
ZmaxZnJo Jo dr

at either r — r0 or r  =  1. The average or total Nusselt number may therefore not 

be smaller than 1 as the total heat transfer from a surface must always be equal 

to or exceed the average heat transfer due to conduction effects alone.

The integral quantity is evaluated using the trapezoidal rule with the differential

being approximated at the boundaries utilising a fourth-order accurate finite

difference representation. The use of second-order approximation rendered the 

solution inaccurate particularly on coarse grids.
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5.4.7 Precession o f rolls

A measure of the rate of precession of the cyclonic/anti-cyclonic pairs is de

termined by evaluating even and odd Fourier components of the temperature 

solution with time. At each timestep therefore, the following integrals are evalu

ated,
r \  p2tt tZmax

Is = /  ^ ( r , 0, z) sm(n6)r dr d6 dz, (5.27)
Jtq J'0 Jo

/*1 127r tZmax
/"  =  /  /  / T(r, 0, z) cos(nO)r dr dO dz, (5.28)

J tq Jo Jo

where n = 1,N .  Where N  is the number of modes (cyclonic pairs), to be resolved 

and is typically taken as N  < 8. These integral quantities are also evaluated using 

the trapezoidal rule at each timestep. One time period of the fundamental mode 

(e.g. n = 6 mode for six cyclonic/anti-cyclonic pairs solution) corresponds to the 

time taken for one cyclonic/anti-cyclonic pair to pass a given point and thus the 

rate of precession may be evaluated.

5.4.8 Code structure

The three-dimensional code strategy is very similar to the axisymmetric treat

ment and is loosely based on the following,

• Initialise all variables at time t  = 0.

• Evaluate A n+1, B n+1, C n+1, T n+1 using the nth and n — I s* solutions on all 

internal grid points.

• Compute T n+1 on adiabatic surfaces.

• Evaluate /^ =1’6, /^ =1’6 and N u 0 using values of Tn+1.
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• Solve the velocity equations implicitly using the Multigrid method using 

values of vorticity at time level71+1 on the right-hand-side and subject to 

the vorticity boundary conditions.

• Update A n+1, B n+1 and Cn+1 on all boundaries.

The solutions do not reach a steady-state regime as the disk surfaces cause pre

cession of the flow pattern. For this reason, no convergence criteria is specified.

5.5 Code validation

Comparisons are made with two-dimensional solutions obtained using the codes 

described in Chapters 3 and 4. Appropriate initial conditions and geometries are 

used to allow the comparisons to be made.

5.5.1 Comparison w ith radial/axial flow

Results obtained from the three-dimensional code may be compared with two- 

dimensional axisymmetric solutions if variations in the tangential direction are 

suppressed by using appropriate initial perturbations to the temperature field. 

It was found that axisymmetric solutions using the three-dimensional code were 

difficult to obtain unless the factor ^ p r was assumed small. All the terms in

volving the buoyancy correction to the Coriolis force were therefore neglected for 

the purposes of this validation exercise.

Heat transfer comparisons at the inner and outer cylindrical surfaces are pre

sented in Figure 5.2 for Ra = 105, Re =  100 and ro =  0.5. The three-dimensional
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solution is computed on both 16 x 64 x 16 and 24 x 64 x 24 (radial, tangential 

and axial) grids respectively. The axisymmetric solution is grid independent and 

uses a 64 x 64 (radial/axial) grid. There is very good comparison between the 

solutions at locations where the local Nusselt number is relatively small. How

ever, a poor comparison is apparent for the peak Nusselt number at the outer 

radius. It is anticipated that this discrepancy, in particular, is due to the poor 

grid definition associated with the three-dimensional simulations, with the trend 

suggesting improved comparisons for finer three-dimensional meshes.

Figure 5.3 again displays local Nusselt number comparisons at the inner and 

outer cylindrical surfaces for a larger Reynolds number. This time, a very good 

comparison is apparent at the outer radius with significant differences in the peak 

Nusselt number at the inner radius. Again, it is anticipated that this is due to 

the coarse nature of the grid used for the three-dimensional computation, with 

increase in the grid resolution suggesting an improved comparison once again.

5.5.2 Comparison w ith radial/tangential flow

The two-dimensional, axially invariant computations may be compared with the 

three-dimensional code results for cavities of large axial extent. At the mid-axial 

plane, no axial velocity occurs for a constant wavenumber solution. In addition, 

all derivatives with respect to the axial coordinate are approximately zero.

In order to evaluate the desired axial extent of the cavity for the solution at 

the mid-axial plane to be approximately independent of the disks, solutions for 

the variation of the local heat transfer at the mid-axial plane of the inner hub 

for various maximum axial dimensions are presented in Figure 5.4. An initial
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n = 6 perturbation to the base solution results in a steady precession of six 

cyclonic/anti-cyclonic pairs. An increase in the maximum axial dimension, zmax, 

of the cavity results in an increase in the peak Nusselt numbers. For the smaller 

dimensions considered, the effect of the disks at the mid-axial plane is very sig

nificant. The zmax =  4.0 and zmax =  6.0 solutions show that any further increase 

in the axial dimension should have a negligible effect on the mid-axial plane heat 

transfer. Thus, for the comparison with the two-dimensional axisymmetric code, 

the axial dimension of the cavity is taken as zmax =  6.0.

Figure 5.5 shows this comparison for various radial grid intervals as this has a 

strong effect on the three-dimensional solutions. It is noted, that an increase in 

the radial definition results in a reduction of the peak Nusselt number toward the 

two-dimensional solution. Only small differences around the minima in the heat 

transfer appear. It is anticipated that a further increase in the number of radial 

intervals would reduce the peak in the heat transfer toward the two-dimensional 

and a grid-independent solution. It is also important to note, that comparisons 

are being drawn based on collocated and staggered methodologies with first-order 

accurate vorticity boundary conditions being applied to the tangential velocity 

Poisson equation in the three-dimensional code. The influence of the number of 

axial intervals on the solution has not been investigated fully due to the addi

tional computational expense. This may however have a further influence on the 

maximum Nusselt numbers.

The local Nusselt numbers considered for the radial/tangential flow are far in 

excess of those corresponding to radial/axial flow. Thus, it may be expected 

that inaccuracy in evaluating the temperature derivative at the boundaries to be 

amplified significantly by the use of a relatively coarse grid structure.
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5.6 Computational expense

Due to the three Poisson equations for velocity to be resolved at each timestep, 

the scheme is computationally expensive. The work required to resolve each 

Poisson equation adequately such that the maximum residual is less than 10“6, 

ranges between 10 and 25 V-cycles, depending on the grid distribution, tim e-step 

and values of non-dimensional parameters. In particular, the number of V-cycles 

is minimised when individual cells are approximately square. An increase in the 

grid resolution also has an adverse effect on the maximum timestep for stability 

as has been shown in Section 3.5.3. This is particularly restrictive when the 

maximum number of timesteps is limited.

For any given simulation, the minimum number of timesteps evaluated is 5000 

with a maximum number of 15000 timesteps for larger Rayleigh number flows. 

The computational time in real terms therefore varies between three and nine 

days on a Silicon Graphics Power Challenge with a R10000 processor and 256 

Mb RAM.

5.7 Initial conditions

The initial conditions again correspond to solid-body rotation with a conducting 

temperature field which is given by,

A = B  — C = 0, u = v = w = 0, T  = 1 —  ----- .
m r0
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In order to perturb this initial solution, two methods are used. A point pertur

bation may be introduced in the temperature field where,

T ( \ (  1 -  r0), 7r, \ z max) -> Tb [\(X -  r0), tt, \ z max) -  0.02. (5.29)

Alternatively, if a predetermined azimuthal wavenumber is required, then the 

following perturbation to the temperature field is introduced,

T  = Tb +  A(1 — r)(r — r0) cos(n0), (5.30)

where n is the wavenumber and A  the perturbation amplitude which is typically 

within the range,

0 < A  < 0.5.

5.8 Numerical simulation results

The results presented here are of a qualitative nature and are not intended for 

quantitative comparison. The spatial resolution in particular, tends to be poor for 

the larger Rayleigh number cases considered here with a minimum of 16x128x16 

(radial, tangential and axial) intervals respectively being used and a maximum 

grid resolution for the larger Rayleigh number cases corresponding to 24 x 128 x 24 

(radial, tangential and axial) intervals.

The cyclonic regions rotate in the anti-clockwise sense and in the same sense 

as the direction of rotation of the cavity. The anti-cyclonic regions rotate in 

the opposite sense to the cavity walls and correspond to clockwise rotation. In 

general, it is difficult to determine the direction of rotation of the circulations 

due to the poor resolution in the vector plotting package, but the direction of
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rotation may be obtained by examination of the isotherms.

Again some solutions presented here correspond to cases for which (3A T  > 1 and 

these have to be treated with caution.

5.8.1 Solutions for various initial profiles w ith Ra =  105, 
Re =  103, ro =  0.5 and zmax — 0.5.

In order to investigate the dependence of the solution on the wavenumber of the 

initial disturbance, the rotational Rayleigh and Reynolds numbers are held fixed 

for a constant geometry cavity. The initial temperature field profile corresponds 

to that presented in equation (5.30) and solutions are evaluated on a 16 x 128 x 16 

grid with a non-dimensional timestep corresponding to St = 0.0002.

Figures 5.6 show the flow vectors and corresponding isotherms at three axial 

locations for an n =  6 perturbation. The primary flow is in the radial/tangential 

plane with little variation in the structure in the axial direction. Very near 

to the disk surfaces, the cyclonic/anti-cyclonic pairs weaken due to the no-slip 

velocity boundary conditions with little variation in the form of the isotherms 

apparent. Six identical cyclonic/anti-cyclonic pairs have developed, with the 

cyclonic regions dominating in size. This is due to the outer heated cylindrical 

shroud acting to strengthen the precessing cyclonic regions and suppress the 

precessing anti-cyclonic regions as is shown in Figure 5.7 which displays the 

cavity in a rotating frame which is fixed to the precessing rolls. At the inner, 

cooled cylindrical hub, the converse holds but the effect is less dominant due to 

the smaller radius.
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Figures 5.8a-c display axial velocity iso-lines at identical axial locations to those 

presented in Figures 5.6. Figures 5.8a,c corresponds approximately to locations 

where the axial velocities are at their maximum. At z =  0.09375, cyclonic regions 

correspond to positive axial velocities. Conversely, where there is a region of an ti- 

cyclonic circulation, a region of negative axial velocity occurs with the cores of 

maximum or minimum axial velocity corresponding to the cores of the rolls. At 

z =  0.25, which corresponds to the mid-axial plane, the axial velocity is zero. 

h i  z = 0.40625, a cyclone corresponds to a negative region of axial velocity, and 

where there is an anti-cyclone, a positive region of axial velocity is apparent.

Therefore, where there is a cyclone, fluid moves axially away from the disks 

and where there is an anti-cyclone, fluid moves axially toward the disks. This 

corresponds to the findings of Long and Tucker (1994), who studied a buoyancy- 

induced flow in a cavity with axial through-flow.

For unsteady, inviscid slow flow, the axial momentum equation may be rewritten,

dt p0 d z '  ̂ ^

From inspection of equation (5.31), it may be seen that axial velocity may only be 

induced if there is an axial variation in the pressure distribution. This occurs in 

particular near the disks, where the pressure of the fluid on the disk surfaces differs 

from that in the cyclonic/anti-cyclonic regions away from the disks. As has been 

discussed in Section 4.8, radial inflow occurs if > 0 and radial outflow occurs 

if < 0 .  Hence, the pressure at the core of a cyclonic region is less than that 

at the core of an anti-cyclonic circulation. The pressure of the fluid at the disk 

surface may be assumed to be at a pressure midway between the cyclonic/anti- 

cyclonic region pressures. Thus, for increasing axial dimension away from the
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disk, at a tangential location where there exists a cyclonic region, ^  < 0 and 

hence a positive region of axial velocity occurs, (away from the disk). Similarly, 

for increasing axial dimension away from the disk, at a tangential location where 

there exists an anti-cyclonic region, > 0, resulting in a negative region of 

axial velocity toward the disk.

A similar argument may be used to justify the sign of the axial velocities near 

the remaining disk surface.

Figure 5.8d displays the variation of the total heat transfer with time. The Nusselt 

number stabilises at a constant value by a non-dimensional time of t «  0.15. The 

cyclones and anti-cyclones however precess in the clockwise sense as is depicted 

in Figure 5.8e. The Fourier decomposition of the temperature field with non- 

dimensional time shows that a steady precession of the rolls occur with the n = 6 

modes dominating. No higher harmonics are apparent since only the first six 

Fourier components are evaluated for each computation. It is however anticipated 

that higher modes occur due to the mildly non-linear nature of the flow.

The solutions for an n = 5 initial perturbation to the temperature field are shown 

in Figures 5.9 and 5.10. The mid-axial plane flow vectors and isotherms, (Figure 

5.9a,b), show that the resulting structure consists of five cyclonic/anti-cyclonic 

pairs consisting of five arms each of radial outflow and radial inflow of fluid. 

Again the cyclonic regions dominate in size with the isothermal nature of the 

core of the circulations, prominent in the axisymmetric radial/tangential flow, 

not being apparent at these particular operating conditions. Axial velocity iso

lines between z = 0 and z =  0.25 are presented in Figures 5.9c-f. At the disk 

surface the axial velocity is zero with an increase in the magnitude away from
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the disk. At 2  =  0.09375, the magnitude of the axial velocities is approximately 

a maximum with a significant decrease having occurred by z = 0.1875. At the 

mid-axial plane, there is zero axial velocity. Figures 5.10a-c are axial velocity 

iso-lines for the remaining half of the cavity and correspond to those of Figures 

5.9. It is seen that the flow structure is exactly symmetric about the mid-axial 

plane.

The magnitude of the maximum axial velocity is approximately 30% of the maxi

mum radial velocity and approximately 40% of the maximum tangential velocity 

magnitude. Thus, the axial flow corrections near the disk surfaces are significant.

Figure 5.10d shows a decrease in the heat transfer, (c.f. Figure 5.8d), as a re

sult of the decrease in the number of cyclonic and anti-cyclonic pairs. Again, 

the Fourier decomposition of the temperature field shows that the rolls precess 

steadily relative to the rotating surfaces, with the n =  5 mode dominating.

The solutions from an initial n = 4 perturbation are presented in Figures 5.11. At 

the end of the computation, the flow comprises four anti-cyclonic regions and four 

larger cyclonic circulations. Figure 5.l id  suggests that the flow is periodic in time 

with three distinct points of interest in the time period. At the minimum point, 

marked as (1), the flow structure corresponds to that presented in Figures 5.12 at 

a time t = 0.40. The cyclonic regions have split into two distinct circulations and 

at this time remain without an associated anti-cyclonic region in between. At the 

later time t =  0.45, where there is a bump in the heat transfer plot, (marked as 

(2)), associated anti-cyclonic regions are now apparent between the two cyclones. 

However, two of the cyclones are more dominant than the remaining two. At time 

t = 0.48, (marked as (3)), the n = 8 mode has decayed and the n =  4 solution
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now dominates again. The flow structure therefore periodically changes from an 

n = 4 instability to a non-uniform n = 8 instability. Figure 5.l id  shows the 

dominant n = 4 and n = 8 modes and records the precession of the rolls with 

time.

Figures 5.13 display the solutions using an initial n = 3 perturbation to the 

temperature field profile. The mid-axial plane flow vectors and isotherms show 

that the resulting instability corresponds to an n = 6 flow, with the n = 3 

disturbance growing initially, but eventually decaying as the n =  6 solution grows. 

The axial velocity iso-lines show that the flow moves axially away from the disk 

in regions of anti-cyclonic behaviour and toward the disk in regions of cyclonic 

circulation. Figure 5.13e displays the Fourier decomposition of the temperature 

field. The initial n = 3 perturbation is dominant up to a time t «  0.07, but 

is subsequently stabilised with the n =  6 mode dominating and displaying the 

characteristic precession of the cyclonic/anti-cyclonic pairs.

Further decrease in the initial wavenumber profile is presented in Figures 5.14. 

Here, an n =  2 perturbation is used, but this mode is found not to persist. Non

linear effects give rise to n = 4 components and the resulting flow is very similar 

to that for the initial n = 4 perturbation to the temperature field, with the in

stability periodically changing from the n = 4 structure to an n = 8 structure. 

Figure 5.14e shows the initial n =  2 profile decaying and subsequently the domi

nation of the n =  4 mode. The mid-axial plane flow vectors and isotherms, show 

four main cyclonic regions with the opposing anti-cyclonic region pairs differing 

in form. These regions are split into a further two distinct regions, whilst the 

remaining two anti-cyclones remain as single clockwise circulations. This may 

explain the higher mode activity present in Figure 5.14e, where the n =  6 modes
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become prominent at certain times.

5.8.2 Solution for various Reynolds numbers w ith Ra =

105, r0 =  0.5 and zmax =  0.5

To investigate the variation in the flow structure with change in the rotational 

Reynolds number, the Rayleigh number and the geometry are held fixed and the 

Reynolds number is allowed to vary. Solutions are again obtained on 16 x 128 x 

16 radial/tangential/axial interval grids and using a non-dimensional timestep 

of St =  0.0002. Initial conditions correspond to a point perturbation to the 

tem perature field as given by equation (5.29).

Figures 5.15 show the solutions for Re = 200. The mid-axial plane flow vec

tors and isotherms at the end of the computation show essentially an n =  4 

wavenumber structure, with very limited axial variations in the flow structure 

apparent apart from that experienced at close proximity to the disk surfaces 

where the effect of the no-slip boundary conditions attenuates the flow. The 

four cyclonic/anti-cyclonic pairs are however not equally spaced and are not uni

form in size. It is also noted that the cyclonic structures are smaller than the 

anti-cyclones with their cores located toward the outer heated cylindrical surface. 

Figure 5.15c shows a snapshot of axial velocity iso-lines near one of the disks. Un

like the cases considered earlier for Re =  103, in regions of cyclonic flow, the axial 

velocity is away from the disks and toward the disks in regions of anti-cyclonic 

activity. Although this effect is not entirely intuitive, it may be associated with 

the increase in the magnitude of the buoyancy correction to the Coriolis terms for 

small Reynolds numbers. Equation (5.3) may therefore be rewritten in dimen

sional form for steady and inviscid flow with buoyancy correction to the Coriolis
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term  included as,

2 f i u  -  P(T  -  Tc)2ttu =  2 f i u ( l  -  P(T -  Tc)) =  — — ( 5 . 3 2 )
Por oO

Hence, in the instance where the magnitude of the buoyancy correction to the 

Coriolis term is greater than the pure Coriolis term, the pressure at the core 

of a cyclonic region will be greater than that at the core of an anti-cyclonic 

region. This subsequently results in the flow moving axially away from the disks 

in anti-cyclonic regions and towards the disk in regions of cyclonic activity.

The variation of the total heat transfer with time suggests that the flow is un

steady but not periodic, (Figure 5.15d). The Fourier decomposition shows that 

up to a non-dimensional time t «  0.25, an n =  6 structure dominates with the 

structure changing to an n = 4 pattern. Although the flow is unsteady in time 

and the rolls unevenly spaced, the p r e c e s s i o n  occurs at an approximately uni

form rate as suggested by the almost constant wavelength of the n = 4 Fourier 

coefficients.

Figures 5.16 show the solutions for Re = 300. At the end of the computation, a 

four cyclonic/anti-cyclonic pair structure is apparent. The cores of the cyclones 

tend toward the outer heated cylindrical shroud whilst the position of the cores 

of the anti-cyclonic regions tend toward the cooled inner cylindrical hub. Again, 

little variation in the form of the solution is apparent axially, with the mid-axial 

plane vectors and isotherms being representative of the flow structure axially 

across the cavity. Due to the relatively large magnitude of the buoyancy correc

tion to the Coriolis terms, fluid moves axially away from the disks in regions of 

anti-cyclonic flow and toward the disks in regions of cyclonic flow. This effect 

is less pronounced than for the lower Reynolds number case considered above,
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with poor definition apparent between regions of positive and negative axial ve

locity. Figures 5.16d and 5.16e show that the flow is aperiodic with all the modes 

prominent up to a time t «  0.85. Subsequent to this, the n = 4 modes are 

prominent with the other Fourier components decaying. An increase in the heat 

transfer with increase in Reynolds number around these conditions also suggests 

the dominance of the buoyancy correction to the Coriolis terms.

A further increase in the Reynolds number results in an increase in the vigour 

of the flow. Figures 5.17 display solutions for a Reynolds number Re = 500. 

The flow vectors and the isotherms at the mid-axial plane suggest an n = 6 

structure at the end of the computation with a very large cyclone in the lower 

right quarter of the cavity being present. In the upper region of the cavity, the 

cyclones and the anti-cyclones tend to be well matched in size with regions of 

cyclonic activity resulting in axial flow away from the disks and anti-cyclonic 

circulation resulting in axial flow velocities toward the disks, (Figure 5.17c). An 

increase in the level of the heat transfer suggests that initial increase in the 

Reynolds number results in amplification of the flow similar to the findings of 

the radial/axial axisymmetric computations presented in Chapter 3. The Fourier 

decomposition of the temperature field, (Figure 5.16e), shows that many of the 

Fourier modes evaluated are significant with the most dominant corresponding to 

n = 3 and n =  6 modes. It is however very difficult to evaluate a precession rate 

from this data, as the solution suggests that the size, position and the number of 

individual cyclones and anti-cyclones vary significantly with time.

Figures 5.18 show the solutions for a Reynolds number of Re = 800. Here, the 

mid-axial plane flow vectors and isotherms show a uniformly spaced n = 5 in

stability at the end of the computation. The cyclonic regions are once again,
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dominant with respect to their size. Figure 5.18e displays the Fourier decomposi

tion of the temperature field with time. Three distinct regions may be identified. 

Up to a time t «  0.1, amplification of the local point perturbation occurs, with 

the amplitude of the displayed Fourier components being approximately zero. 

Subsequently, an n = 5 mode grows with a subdominant n = 6 component 

still prominent. This situation remains until t «  0.55 when the characteristic 

wavenumber of the flow changes to n = 6 with six cyclonic/anti-cyclonic pairs 

appearing. At the point of transition between the n = 5 instability to the n = 6 

instability, a sharp change in the total heat transfer occurs, (Figure 5.18d). A 

decrease in the heat transfer suggests that the preferred number of rolls does not 

correspond to the maximisation of the heat transfer. The increase in the Reynolds 

number from that presented in Figures 5.17 suggests that such an increase now 

stabilises the flow. It is also unlikely that at a future time the n = 6 instability 

will break down as the n = 5 Fourier component in the decomposition is seen to 

decay rapidly, but this has not been investigated.

Solutions for a Reynolds number Re = 103 show that the preferred number of 

cyclonic/anti-cyclonic pairs for the conditions considered is six. The flow is again 

seen to be further stabilised by this increase in the Reynolds number, (Figure 

5.19d), with a steady precession of the cyclonic/anti-cyclonic pairs occurring, 

(Figure 5.19e).

Figures 5.20 display the early development of an n = 5 instability for Re =  

1.5 x 103. Again, the cyclonic/anti-cyclonic pairs are distributed evenly around 

the cavity with the cyclonic regions being dominant in size over the anti-cyclonic 

circulations. A further decrease in the heat transfer, (Figure 5.20d) with in

crease in the rotational Reynolds number has occurred. Further increases in the
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Reynolds number up to Re — 2000, results in a full stabilisation of the flow, with 

the fluid being in solid-body rotation with a purely conducting temperature field.

5.8.3 Solution for various Reynolds numbers w ith Ra =

106, r0 =  0.5 and zmax =  0.5

This increase in the Rayleigh number will cause an increase in the convection 

rates due to the strength of the buoyancy forces and hence velocity gradients 

will also increase. In order to resolve these higher gradients an increase in the 

grid resolution is required and therefore a mesh of 24 x 128 x 24 intervals was 

used which consisted of approximately 80,000 mesh points. The timestep used 

ranged between 8t =  0.00004 and St =  0.00001 and these levels were determined 

by eliminating numerical instabilities. Again a point perturbation of the base 

solution was used to start the computations presented below.

Initially, a small-Reynolds-number flow was considered where the magnitude of 

the buoyancy correction to the Coriolis term is very significant. Figures 5.21 

display the solutions obtained for Re =  500. The flow is chaotic with large 

fluctuations in the heat transfer being apparent with time. This is also evident 

in the Fourier decomposition of the temperature field, which shows that all of 

the modes which are evaluated are significant. At the end of the computation, 

the flow structure at the mid-axial plane is that presented in Figures 5.21a and 

5.21b. Anti-cyclones dominate due to the magnitude of the buoyancy correction 

to the Coriolis terms, with relatively small regions of cyclonic flow being apparent. 

The isotherms show that the cores of the anti-cyclonic regions are approximately 

isothermal with axial flow in these regions away from the disks, (Figure 5.21c).
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Figures 5.22 show the solutions obtained for Re =  103. Again the flow is tim e- 

dependent with the Fourier decomposition of the temperature field showing that 

the n = 3 and n = 6 modes are dominant, particularly towards the end of the 

computation. The flow structure at the end of the computation consists of three 

distinct arms of radially out-flowing fluid. The flow structure and isotherms vary 

little axially, hence only those at the mid-axial plane are presented. The cyclonic 

regions tend to dominate in size. It is however unclear as to whether flow moves 

axially away or toward the disks in the regions of cyclonic flow. This is due to 

the magnitude of the Coriolis and the buoyancy correction to the Coriolis terms 

approximately balancing. An increase in the total heat transfer is also apparent 

with this initial increase in the Reynolds number to 1000 from 500.

A further increase in the Reynolds number to Re =  2 x 103 results in the solutions 

presented in Figures 5.23. The cyclonic circulations appear to be increasingly 

dominant, with the anti-cyclonic regions being very small. Their locations may 

however be identified by the location of negative axial velocity in Figure 5.23c. 

Both the variation in heat transfer and the Fourier decomposition of the temper

ature field with time show the chaotic nature of the flow structure. The cores 

of the cyclonic regions display their characteristic isothermal temperature distri

bution with large gradients in the temperature evident near the inner cylindrical 

hub in particular.

Figures 5.24 display the solutions for Re =  5 x 103. The buoyancy correction 

to the Coriolis force is now small in magnitude with the buoyancy and Coriolis 

forces dominating. The increase in the magnitude of the Coriolis force as a result 

of increase in the rotational Reynolds number has resulted in a decrease in the 

heat transfer due to the stabilising effect of the Coriolis terms, (Figure 5.24d).
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The flow structure at the end of the computation comprises of three dominant 

radially out-flowing arms of fluid, (Figure 5.24b), with other weaker radial arms 

in evidence.

A further increase in the Reynolds number to Re = 104 results in a more coherent 

structure. Figure 5.25 shows the variation of the total heat transfer with time. 

The fluctuations apparent in previous calculations at lower Reynolds numbers 

have been substantially damped, at least, for the timescale considered here. In

deed, larger timescale fluctuations may occur, but this could not be investigated 

given the additional computational expenditure required. Figure 5.26 shows the 

Fourier decomposition of the temperature field. The dominant modes correspond 

to an n = 6 wavenumber, hence strongly suggesting that an n = 6 instability is 

dominant given the initial point perturbation starting condition. Figures 5.27 

show the mid-axial plane flow vectors and isotherms at three points in time; 

t = 0.05, t = 0.10 and t = 0.15. At t = 0.05, the initial point disturbance is 

yet to penetrate the entire cavity with the area around 9 = 0 being undisturbed. 

Figures 5.27c and 5.26d show the flow structure at time t = 0.1. A coherent 

structure has evolved, with seven radial arms of fluid evident and correspond

ing to seven pairs of cyclones/anti-cyclones. The pairs are however not evenly 

distributed with the cyclones dominating in size over the anti-cyclones. Finally, 

at a time t = 0.15, the n = 7 pattern has decayed and an n = 6 structure is 

now apparent. Again, the anti-cyclonic regions are very small and correspond to 

regions of axial flow away from the disk surfaces.

The sizes of the cyclones and anti-cyclones vary significantly with the distance 

between the disks. For the hypothetical case where the disks are an infinite dis

tance apart, their influence on the mid-axial plane flow is infinitesimally small,
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and hence the cyclones and anti-cyclones would be dependent only on the mag

nitude of the buoyancy correction to the Coriolis force terms. Conversely, when 

the distance between the disks is small, the cyclonic circulations will tend to be 

larger than the anti-cyclonic circulations.

5.8.4 Solutions for various Reynolds numbers w ith Ra  =  
106, r0 =  0.3 and zmax ■ 0.5

Two cases are considered here to gain an understanding of the changes to the 

flow due to a decrease in the inner radius. The mesh resolution corresponds to 

32 x 128 x 24 (radial/tangential and axial) intervals with a timestep corresponding 

to St =  0.00002.

Significant changes in the buoyancy-induced flow structure arise as a result of the 

decrease in inner radius. At the end of the computation for Re =  103, the flow 

vectors and isotherms, (Figure 5.28a,b) show two main regions of radial outflow 

with the radial inflow regions being less distinct. At each of the outflow regions, a 

cyclonic/anti-cyclonic pair exists. In the mid-axial plane, fluid flows tangentially 

from the anti-cyclonic region of one pair toward the cyclonic region of the other. 

At some future time, the appearance of another radial arm of fluid may occur, 

as a small deviation of the isotherms is apparent at the inner cylindrical hub at 

6 ps 100°. The isotherms show the occurrence of relatively large isothermal areas 

at a temperature only slightly cooler than the hot cylindrical surface temperature. 

The temperature gradients at the inner hub are far in excess of those on the outer 

cylindrical shroud, (shown by the density of the isotherms in these areas). This 

occurs as a result of the small surface area of the inner hub in comparison with 

the outer shroud surface area.
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Figure 5.28c shows the occurrence of a region of axial velocity toward the disks 

where there is anti-cyclonic flow with a region of axial velocity away from the 

disks near the inner cylindrical hub. This is due to the dominant magnitude of 

the buoyancy correction to the Coriolis force over the pure Coriolis terms. The 

variation of heat transfer with time, (Figure 5.28d), indicates the unsteady nature 

of the instability and comparison with Figure 5.22d shows only a small decrease 

in the level of the heat transfer as a result of the decrease in the inner radius. The 

Fourier decomposition of the temperature field shows the dominance of the n — 2 

mode at the latter stages of the computation, with various modes dominating 

before this time.

The result of increasing the Reynolds number to Re = 2 x 103 is shown in 

Figures 5.29. Three main regions of cyclonic flow are apparent, with smaller 

anti-cyclonic regions between. The regions of radial outflow are not as distinct 

on the isotherm plot, (Figure 5.29b), as for the previous, lower Reynolds number 

case. The cyclones and anti-cyclones may be more easily identified by using the 

axial velocity iso-line contour plot. Cyclonic activity occurs in regions of positive 

axial velocity and ani-cyclonic flow in areas of negative tangential velocity with 

the cores of these regions coinciding with the maxima and minima regions in 

Figure 5.29c. Two of the anti-cyclones have two distinct cores at the end of 

the computation; one is located near the outer cylindrical shroud and the other 

smaller core is near to the inner cold hub.

Figure 5.29d shows that an increase in the level of the heat transfer occurs with 

increase in the Reynolds number for the range of Reynolds number considered 

here. This is due to the decrease in magnitude of the buoyancy correction to the 

Coriolis force terms. The Fourier decomposition of the temperature field shows
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that no single mode is dominant over the time period considered here due to the 

localised nature of the jets. At the initial stages as the disturbance travels around 

the cavity, the n = 6 modes dominate and subsequently decay with the n = 2 

and n = 3 modes generally dominating at later times. This suggests that the flow 

structure does not vary significantly from that at the end of the computation.

Further simulations were attempted for larger Reynolds numbers but, due to con

straints on the grid resolution and timestep, it was only possible to compute the 

initial amplification of the point perturbation and early stages of the disturbance 

travelling around the cavity given the computational time involved.

5.8.5 Solutions for various Rayleigh numbers w ith Re =  

103, r0 - 0.5 and zmax - 0.5

Two further computations were undertaken to investigate more fully the influence 

of the Rayleigh number on the flow characteristics for a constant Reynolds number 

and geometry.

Initially, the case for Ra =  105, presented in Figures 5.19 is summarised before 

introducing the results for higher Rayleigh numbers. At these operating con

ditions, a steady n = 6 flow develops, the cyclonic regions being larger than 

corresponding anti-cyclonic regions. The steady state average Nusselt number is 

N u 0 Pd 1.8.

An increase in the Rayleigh number to Ra =  2 x 105 (see Figures 5.30), results 

once again in a steady precessing state with a n =  6 structure apparent. A 

substantial increase in the heat transfer is observed, with the steady state total
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Nusselt number being N u 0 «  2.6. A small increase in the comparative sizes of 

the cyclonic to anti-cyclonic circulations is also apparent and is as a result of the 

increase in the magnitude of the buoyancy correction to the Coriolis terms which 

largely control the rate of precession of the rolls. The rate of precession is therefore 

seen to increase by inspection and comparison of the Fourier decomposition of 

the temperature field distributions with time.

Further increase in the Rayleigh number is presented in Figures 5.31 for Ra = 

5 x 105. The flow vectors and isotherms show four dominant arms of radial outflow 

present at the end of the computation. These are not however evenly distributed, 

with the cyclones and anti-cyclones being of various sizes and strengths. The flow 

is unsteady in time with no apparent prospect of steadily precessing flow. Again 

a further increase in the heat transfer occurs, with a mean total Nusselt number 

of Nuo «  3.5. The core of each cell becomes increasingly isothermal with increase 

in the Rayleigh number also.

A case considered and presented previously in Figures 5.22, is that for Ra =  106. 

At the end of the computation, the flow is of an n =  3 form and is unsteady 

with time. The mean total heat transfer is N u 0 «  4.5, which represents another 

increase in the heat transfer rate, indeed it is likely that N uq always increases 

with increasing Rayleigh number. Comparison with the Ra =  5 x 105 case shows 

an increase in size of the isothermal regions at the core of the circulations, with 

large areas of flow with only small temperature gradients apparent.
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5.8.6 Solution for cavity with Ra =  105, Re =  103, ro =  0.5 
and zmax — 0.3

The effect of decrease in the maximum axial dimension of the cavity is considered 

here. The mesh used comprised of 24 x 128 x 16 (radial, tangential, axial) and a 

non-dimensional time-step St = 0.0002.

Figures 5.32a,b show the end point flow vectors and isotherms for an n = 5 insta

bility. The cyclones and anti-cyclones are approximately uniformly distributed 

throughout the cavity, with size of the cyclonic regions far exceeding the size 

of the anti-cyclonic regions. Comparison with Figures 5.10 for a cavity with 

zmax =  0.5 however shows little difference in the comparative sizes of the cy

clones and anti-cyclones between the two cases. The most apparent difference is 

in the heat transfer, with a reduction in the total Nusselt number with decrease 

in the axial-dimension of the cavity due to the retardation experienced as a result 

of the proximity of the disks. A distinct decrease in the rate of precession of the 

rolls is also apparent with the reduction in the gap between the disks.

5.9 B rief conclusions

Strong similarities in the flow structure exist between the three-dimensional 

and two-dimensional flow presented in Chapter 4. As for the radial/tangential 

flow, the instability takes the form of cyclonic/anti-cyclonic activity in the ra

dial/tangential plane. In addition, when the Coriolis force is dominant over the 

buoyancy correction, where there is a cyclone, fluid moves axially away from the 

disks. In regions of anti-cyclonic activity, fluid moves axially toward the disk
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surfaces. If the buoyancy correction dominates, the converse holds. Similarities 

with the two-dimensional radial/axial flow regime (presented in Chapter 3) are 

limited to the effect of the non-dimensional parameters, with the rotational axis 

of the circulations being parallel to the enclosure rotational axis.

As in Section 3, attention is drawn to the fact that flows for which R^ aPr = 

ISAT > 1 may only be regarded as being qualitatively correct as the fluid takes 

negative densities in part of the computational domain.

In general, the flow is more likely to be time-dependent as a result of introduc

ing the disk boundaries, with wavenumber halving/doubling being one of the 

possible time-dependent regimes. The Coriolis, buoyancy and buoyancy correc

tion to the Coriolis force terms, have the same stabilising/de-stabilising effect 

as concluded for the radial/axial flow. In addition, an increase in the magni

tude of the buoyancy correction results in an increase in the rate of precession 

of the cyclonic/anti-cyclonic pairs as is concluded for the radial/tangential flow 

presented in Chapter 4. Further retardation of the cyclones and anti-cyclones 

occurs with decrease in the distance between the two disks.

The three-dimensional flow, therefore, includes characteristics of both the two- 

dimensional radial/axial and radial/tangential flows. In addition, significant 

three-dimensional effects are apparent particularly near the disk surfaces.
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Chapter 6 

Sealed cavity with a stationary 
shroud

6.1 Summary

A schematic of the geometry being considered is shown in Figure 1.7. The cavity 

is characterised by having a stationary shroud with all other surfaces rotating 

at a uniform angular velocity. The tangential velocity discontinuity between the 

rotating disks and the stationary shroud, for the sealed cases considered, is the 

source of flow motion. In this chapter the development of the axisymmetric 

code presented in Chapter 3 to include a non-uniform grid distribution is also 

discussed.

Two geometries are considered which relate to two practical engineering situ

ations. Initially, a simplified model of co-rotating turbine disks is considered 

where the aspect ratio of the cavity is taken as s /R  = 0.3. A further applica

tion investigated briefly is the air flow between disks where s /R  = 0.05. Such 

a small gap-aspect-ratio cavity is typical of the those found in computer disk
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drives (Abrahamson et a1., 1989), where the thermal distortion of a disk drive 

during the long start up transient requires to be minimised.

6.2 Governing equations

The non-dimensional governing equations in streamfunction-vorticity form for 

axisymmetric flow in a rotating frame of reference are exactly the same as those 

presented in §3.2, but are repeated here again for completeness,

« = vv-^, t6-1)
1 d u  . ®(t)\ dv 2 Ra dv dT

+ Clfz  +  R e P r ^  ~dz V~dz

dT  1
+rRa—  =  V 2w  -w, (6.2)

oz r*
1 rdv , I .  d<j) jdv.-i nn  d<t> 2Ra d(j> _ 2 1 ox

+  J {v, <f) + - ( v £ ~  ^ ) ]  +2R e £  -  —  t £  =  V 2t> -  - j „ ,  (6.3)
Pr dt r dz dz  -1 dz RePr dz

dT  1X i
a + J (r , * ) - ; * 5 r . V T  16.4)

where the Jacobian is given by,

™ dr dz ~  dr d z '

This is treated as an iso-thermal forced convection problem, unlike the buoyancy- 

induced flow problems considered previously. Free-convection effects are there

fore neglected for the purposes of this investigation and hence the Rayleigh num

ber is taken as Ra = 0. The buoyancy force and temperature equation are 

however retained in the governing equations for the purposes of code validation.

After validation isothermal flows are computed using equations (6.1)-(6.3) with
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P r = 0.71. We note that the non-dimensionalisation used to generate these 

equations are inappropriate for isothermal flows since they are independent of 

Pr. However, the solutions presented here may be regarded as a numerically

scaled version of the appropriate non-dimensional equations: if we set v = P rv *,

(j) =  Pr<f)*, uj =  Pruj* and t = Pr~l t* into equations (6.1)-(6.3) dropping the * 

notation we obtain

to =  V 24>- (6.5)

du  l / i d v  d<l)\ 2v dv dv o 1
a t + V  -  r1% + '“ & :1 -  7  & -  Tz = v “ “ ^  (6-6)

dv . 1 , d</> dv d<j) 2 1
-  +  J ( „ ,  * )  +  +  2 R e-Q - =  V v - - v ,  ( 6 . 7 )

The results are presented in the form of solutions to equations (6.1)-(6.3) and 

only those figures involving the time (t ) need to be interpreted with care.

For radial velocity comparisons to be made with experimental data, the vorticity

definition (equation (3.11)) and divergence constraint (equation (3.6)) may be 

combined to give a Poisson equation for the radial velocity field which takes the 

form,
1 dev .

V u ~ V ^ u = T z-  (6'8)

6.3 Boundary conditions

The cavity is assumed to be sealed with no-slip boundaries and a negative dimen

sional outer cylindrical shroud velocity of —SIR to take account of the rotating 

frame of reference. Using the same non-dimensionalisation as presented in Sec

tion 3.2 this corresponds to a non-dimensional tangential velocity of — Re x Pr  

(or equal to —Re  for equations (6.5)-(6.7)). The following boundary conditions
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are therefore prescribed for equations (6.1)—(6.4),

At the shroud, r  =  1, the boundary conditions are that,

(j> = 0, ^  =  0, v = —Re x P r, u = 0.
dr

At the hub, r =  ro, the boundary conditions are that,

86
6 =  0, —  = 0, v = u = 0.

or

At the disk, z = 0, the boundary conditions are that,

86
(j) = 0, —  = 0, v = u = 0.

Oz

At the disk, 2: =  zmax, the boundary conditions are that,

86
0 = 0, —  = 0, u =  u =  0

oz

The three non-dimensional parameters to vary are,

Pc, ro & Zmax"

6.4 Num erical method

6.4.1 N on-uniform  grid approach

The flow in the enclosure presented consists of both primary and secondary flows.

The primary flow in general consists of a sheared tangential velocity flow field,

with solid-body rotation evident in the lower half of the cavity (in particular

near the inner cylindrical hub) and large shear in the upper regions of the cavity
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(in particular near the stationary outer cylindrical shroud), where the tangential 

velocity decreases from solid-body rotation in the core regions to the stationary 

shroud tangential velocity boundary condition. This shear is particularly large in 

the regions where the rotating disks and stationary shroud meet. The secondary 

flow field in general consists of radial outflow on the disks due to centrifugal force 

effects and radial inflow in the mid-axial plane of the cavity to satisfy continuity 

of mass. The boundary-layers which form on the disks become thinner with 

increasing Reynolds number due to the increase in inertial over viscous forces.

To ensure that these boundary-layers and regions of large tangential velocity 

gradients are sufficiently well resolved, a very fine uniform grid is required which 

increases the computational time significantly. Alternatively, a non-uniform grid 

structure may be adopted, with grid points concentrated in the boundary-layers 

and regions of large tangential velocity shear; this may be done in two ways:

• The physical non-uniform grid is transformed onto a uniform grid by use 

of a general transformation process that maintains the conservative form of 

the continuity equation.

• A method of coefficients may be adopted where second-order finite differ

ence approximations are evaluated directly on the non-uniform mesh.

The latter method was chosen as it was deemed to give greater flexibility for cre

ating various meshes and adapting the final code for other applications. Meshes 

are created using grid expansion factors (GEF) for the spatial intervals near the 

boundaries with the grid intervals, h , evaluated using

hi =  G EF  x hi-i.
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For the simulations which are presented later, the grid expansion factor was kept 

within the range,

1.1 < G EF  < 1.2.

The size of the first interval, the grid expansion factor and the approximate 

distance over which to apply the expansion are defined initially. The remaining 

part of the computational domain is divided into equal intervals dependent upon 

the number of grid intervals defined by the user. The mesh is constructed such 

that it is symmetric about both the vertical and horizontal mid planes. This 

may however easily be modified to accommodate non-symmetric grid expansions. 

Examples of the non-uniform meshes used here may be seen in Figure 6.1. The 

mesh presented in Figure 6.1a is typical of that used for the co-rotating turbine 

disks model, with 128 x 96 radial/axial intervals. Figure 6.1b is typical of that 

used for the computer disk drive model and contains 128 x 64 intervals. In the core 

region a uniform grid is used with sufficient resolution to capture all the details 

of the flow. The increased resolution required near the boundaries is provided 

by the use of a non-uniform grid with G EF = 1.15. The largest interval in the 

variable grid region is approximately equal to that in the uniform core.

In order to demonstrate the method of evaluation of the coefficients, consider 

three Taylor series for a variable, u, at three neighbouring points where the second 

is considered the reference point and hi and hi are the respective intervals. This 

Taylor series expansion may be written in matrix form,

/  u(xi) \
/  u(xi — h i ) \ 1 1 - h i a

2!
- h f

3!
H \
4! u'(xi)

u(xi) nu 1 0 0 0 0 u"(xi)
\u(xi  +  h2) ) u h2 2!

h\
3! 4! / um{xi)

V « ""(* .)/
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Difference approximations for the first two derivatives together with the magni

tude of the 0 (h 3) and 0 (h ‘4) errors may be obtained by rearranging the above 

matrix into the following form,

(1  - h i  

1 0 
V1 h2

2 ! 

0 
h 2 

2!

\  /  u(xi)  ̂
u'(xi)

)

/ u(xi -  hi)\  
u(xi)

+ h2) )

—h, hi

m. n  /
41 /

u
u

3!

(*i) ^
'(*•) J

(6.10)

Denoting the above by,

Ax = b — By.

and multiplying both sides by the inverse matrix A 1 we obtain,

x = A b — A  (By).

The inverse matrix is thus the matrix of coefficients required to evaluate the finite 

difference approximations and A ' 1 (By)  yields the magnitude of 0 (h 3) and 0 ( h 4) 

errors where,

V =

The inverse matrix A 1 is evaluated using a Gaussian Elimination Scheme.

Second-order accuracy may be obtained for first spatial derivatives using a three 

point approximation. However, a four point approximation for the second deriva

tive is required to maintain second-order accuracy in general; but when hi = h2 

three points suffice.

6.4.2 Approximations to the non-linear term s

As mentioned in Chapter 3, the Arakawa (1966), formulation for the Jacobians 

is useful in the form presented only on uniform grids. Its application to non-



uniform grid structures is beyond the scope of this thesis. Initially, second-order 

central difference approximations to the non-linear terms were implemented. It 

was found however, that these central differences produced solutions at high 

Reynolds numbers which were characterised by pointwise fluctuations. Both first 

and second-order upwinding schemes were implemented in turn, the bias of the 

differencing formula being determined by the local flow direction. It was found 

that the second-order upwinding scheme was numerically unstable when com

bined with the Du-Fort Frankel method for the transport equations. The first- 

order upwinding scheme ( see Wendt, 1992) was found to be numerically stable 

and therefore it was applied, producing physically reasonable results which could 

be validated. A first-order scheme however, may produce unacceptable levels of 

numerical diffusion in regions of the flow where convective effects are small in re

lation to diffusive effects (e.g. near no-slip boundaries). The hybridised version, 

however, will produce more acceptable levels of numerical diffusion where it is

not desirable, using the following hybrid strategy suggested by Spalding (1972).

If the local Peclet number is greater than two, an upwind FDA is used. Alter

natively, second-order differences are used if the local Peclet number is smaller 

than two, where the Peclet number is defined as,

Pe =  VA  (6.11)
V

and where v is the local velocity and h is the local grid size. Using the non- 

dimensionalisation of Chapter 3, the local Peclet number is given by,

Pe =  (6.12)

where overbars denote non-dimensional quantities.
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When a radial derivative of the advective terms is considered, the non-dimensional 

local radial velocity and average local radial grid size are used to evaluate the 

local Peclet number. Similarly, where an axial derivative of the advective terms 

is considered, local axial velocity and average axial grid size are used to evaluate 

the local Peclet number.

6.4.3 Transient m ethod

Forward first-order approximations are used for the time derivatives. Second- 

order central approximations were numerically stable only for small timesteps 

and stepwise fluctuations often appeared unless the timestep were very small. 

The transient treatment is based on the Du-Fort Frankel method where values 

of the dependent variable at the nth timestep are exchanged for averages of new 

and old time values to improve the stability of the method. An example of the 

treatment applied to Fourier’s two-dimensional equation is given in Section 5.4.4.

6.4.4 Multigrid m ethod

The Multigrid method used to solve for the streamfunction and radial velocity 

fields is based on that described previously in Section 3.5.4. The relaxation proce

dure was modified in a straightforward way to accommodate the non-uniform grid 

structure and four-point difference approximations which resulted in additional 

elements in the iteration matrix on either the sub-sub-diagonal or super-super

diagonal. A penta-diagonal version of the tri-diagonal m atrix (Thomas) algo

rithm  was therefore used to obtain approximations to the solution and error. The 

prolongation and restriction operators remained unmodified in the non-uniform
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grid regions with little loss in performance.

6.4.5 M ean and standard deviation

Due to the unsteady and often aperiodic nature of the flow and for comparison

with experimental data, it is convenient to evaluate the standard deviation of the

radial and tangential velocity fields about the respective mean. The variance is 

denoted by

s 2 =  - z r E t C i  -  c)2, (6-i3)
71 1 i= l

where £ is a generic variable and (  is the mean which is expressed as

C =  ^ X >  (6.14)
1 = 1

Combining equations 6.13 and 6.14 above, the standard deviation may be written 

as

S  = -  - \ ( E C i) 2- (6.15)
77 77 *U t=l U i=1

6.5 Code validation

The benchmark solutions of de Vahl Davis (1983) were again used to validate the 

numerical method presented here. Comparisons were made with the stationary 

square cavity in the limit as r  —► 1 for Ragap rising from 103 to 106. Richardson’s 

extrapolation method was not used in this instance as a non-uniform mesh was 

used together with a hybrid upwinding method. The grid contained 80 x 80 

intervals for all but the Ra = 106 computation which used a 96 x 96 grid. The 

mesh was contracted symmetrically towards the boundaries. The solutions were
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obtained for ro =  0.8 and r0 = 0.9 and extrapolated to the limit r 0 =  1. It 

was again assumed the ratio is negligible, as this term is absent in the

Cartesian configuration of de Vahl Davis (1983). The average, maximum and 

minimum Nusselt numbers were compared at the heated surface and the results 

are presented in Table 6.1 below.

Rdcrit N u 0 N u -1' umax -V U-min
(a) (b) %err (a) (b) %err (a) (b) %err

103 1.117 1.117 0.00 1.506 1.505 0.07 0.691 0.692 0.14
104 2.248 2.238 0.45 3.537 3.528 0.26 0.586 0.586 0.00
105 4.539 4.509 0.67 7.773 7.717 0.73 0.727 0.729 0.27
106 8.923 8.817 1.20 17.681 17.925 1.36 0.979 0.983 0.41

Table 6.1: Comparison of average, maximum and minimum Nusselt numbers for 
Ra = 103,104,105 and 106: (a) Current computations, (b) de Vahl Davis (1983).

The maximum error between the computed results and those of de Vahl Davis 

(1983) is approximately 1.5%. The main causes are likely to be the difference 

in grid distribution and in particular the upwinding scheme utilised in the above 

analysis. The numerical analysis of de Vahl Davis uses second-order accurate cen

tral difference approximations to all spatial derivatives and Richardsons extrapo

lation procedure leading to high accuracy benchmark solutions. The comparison, 

however, does provide a good level of confidence in the numerical procedure. 

Comparisons were also made with the uniform mesh code presented in Chapter 

3. Good comparisons again prevailed.

6.6 Initial conditions

The fluid was initially at rest in the stationary frame of reference, and the rotating 

surfaces assumed a fixed given speed instantaneously at time t =  0. In the
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rotating frame, the tangential velocity in the fluid is therefore given by,

v = —Pr  x Re x r. (6.16)

In order to perturb the solution from a symmetric twin recirculation structure, a 

small axially-varying perturbation to the tangential velocity field may be intro

duced. Amplification of the round-off errors in the solution were often found to 

be sufficient to perturb the flow over a sufficiently long time period as the Pois- 

son solver does not impose the appropriate symmetry but breaks it slightly. The 

computational time required to achieve a non-symmetric state (should one exist) 

was minimised by introducing an axially varying perturbation to the tangential 

velocity field:

v = —Pr  x Re x r +  A  x z, (6-17)

where z is the non-dimensional axial coordinate and A  is the perturbation am

plitude,

0 <  A <  1.0.

No secondary convection in the radial/axial plane is assumed and therefore we 

set the following as initial conditions,

^ =  0, u  = 0. (6.18)

6.7 Num erical simulation results

Solutions have been obtained using both the non-uniform grid code described 

above, and the uniform grid code described in Chapter 3 suitably modified to solve 

for the stationary shroud configuration. The poor spatial resolution achieved
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using the uniform grid code meant that it is applied only to the low Reynolds 

number cases.

6.7.1 Results for Re =  104 and ro =  0.5

Initially, the uniform grid code, incorporating the Arakawa (1966) formulation 

for the non-linear convective terms was used for this low Reynolds number case. 

The grid comprised of 96 x 80 radial/axial intervals and the non-dimensional 

timestep used varied from St =  10-6 to St = 2 x 10-6 . These values were arrived 

at after numerical experiments involving stability, time and grid-independence 

considerations.

Figures 6.2 show the solution obtained using the uniform grid code with no initial 

axial variation in the tangential velocity field. The steady state streamfunction, 

achieved at t «  0.01 shows that the secondary flow is comprised of two symmetric 

counter-rotating vortices with stagnation points at the mid-axial points on the 

inner cylindrical hub and outer stationary cylindrical shroud. The core of these 

vortices are located in the bottom half of the cavity with fluid moving radially 

outward on the disk surfaces and radially inward in the mid-axial plane of the 

cavity. No exchange of fluid between the two vortices occurs. Figure 6.2b shows 

the tangential velocity iso-lines from a rotating perspective. Large tangential 

velocity gradients occur near the outer stationary shroud and the upper regions 

of the disks. In the lower regions, the fluid is approximately in solid-body- 

rotation, (i.e. the fluid rotates at approximately the same speed as the local disk 

speed). Indeed, a region of tangential velocity greater than the local disk speed 

occurs in the mid-axial plane around r «  0.55. This is due to the advection
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by the secondary re-circulating flow of fluid near the disk surfaces in the upper 

region of the cavity toward the mid-axial lower regions via the central plume of 

fluid.

Figure 6.2c shows the variation of the maximum and minimum streamfunction 

values with time throughout the duration of the computation. Due to the ini

tial tangential velocity profile used, with a zero axially varying component, the 

absolute values of the maxima and minima are the same at all times. The oscilla

tions at early times are due to the appearance of vortices in the lower half of the 

cavity during start up. These are however observed to decay, but they maintain 

left-right symmetry.

If the computation were allowed to proceed further in time, asymmetries due to 

round-off errors would amplify, and the computed flow would become asymmetric 

with eventual attachment of the central plume to one of the disks. This process is 

accelerated in the next case investigated by the use of the axially varying initial 

perturbation to the tangential velocity field.

Figures 6.3 display the results of such a computation. The streamlines at the 

end point show the central plume is now attached to the right-hand-side disk 

with the clockwise rotating circulation dominating in size over the anti-clockwise 

circulation. The mechanism behind this process is known as the Coanda effect 

and a good description is given by Tritton (1977). A centrally placed plume 

entrains equal amounts of fluid from both sides. When it is perturbed, to the 

right, say, then the jet cannot entrain as much fluid from the right and therefore 

moves rightwards and in this instance, attaches to the right-hand-side disk. Two- 

dimensional flows tend to exhibit the Coanda effect more strongly than three
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dimensional flows as fluid entrainment can occur from the third dimension in the 

latter. It is anticipated therefore, that the Coanda effect may be less strong if 

the three-dimensional flow was considered and plume attachment therefore less 

likely to occur.

Again the horizontal aspect of the tangential velocity iso-lines away from the 

disks shows the existence of a region of solid body rotation near the inner cylin

drical hub: see Figure 6.3b. However this is not a steady flow for the central 

plume moves slightly, but periodically. Figure 6.3c shows the periodic variation 

in the maximum and minimum streamfunction during the latter stages of the 

computation. This corresponds to a flapping motion of the region between the 

two circulations, with the mean values of maximum and minimum streamfunc

tion remaining roughly constant. The jet therefore remains attached to the disk 

throughout the simulation. Animations of the secondary flow periodicity shows 

the unsteadiness to be small in comparison with the magnitude of the instability 

itself. Unsteady, periodic motion in the bottom region of the cavity also oc

curs. Subsequent computations carried out by Randriamampianina (1998), has 

verified the above computations and findings. That author used an accurate 

pseudo-spectral collocation method to investigate the axisymmetric instability. 

His work provides another confirmation of the accuracy of the present code.

The effect of varying the axial extent of the cavity is investigated by considering 

two different aspect ratios. Initially, a small gap aspect ratio is investigated and 

corresponds to a maximum axial dimension of zmax = 0.1. Figures 6.4 show the 

results for Re =  104 and include the use of an initial axially varying perturbation 

to the tangential velocity field. The initial asymmetric disturbance decays with 

time with two symmetric vortices resulting. The proximity of the disk surfaces
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thus stabilises asymmetric disturbances at this Reynolds number compared with 

the zmax = 0.3 case shown in Figure 6.3. Figure 6.4b displays the occurrence of 

a large area of fluid in solid body rotation with the vortices accommodating less 

than half of the radial extent of the cavity. Figure 6.4c shows that a steady-state 

solution has been reached, with the absolute magnitude of the maximum and 

minimum streamfunction being exactly equal.

The results for a square aspect ratio cavity is presented in Figures 6.5. As the 

distance between the disks is relatively large, the solution is asymmetric and 

unsteady with the central plume not attaching to either disk. Again, radial 

outflow occurs near the disk surfaces, with radial inflow occurring in the central 

axial regions of the cavity. The unsteady behaviour is particularly noticeable in 

the lower reaches of the central plume of fluid, with the motion taking the form 

of the plume moving from one side to the other. Figure 6.5c shows that the 

computed flow is chaotic with time.

The results for the non-uniform grid code are presented in Figures 6.6 for the 

axial dimension zmax = 0.3. Comparison with Figures 6.3 show the apparent 

inaccuracies in the non-uniform grid code at predicting the correct form of the 

time-dependency of the flow. Again, an axially varying perturbation of the tan

gential velocity field was used in order to accelerate the evolution of the flow 

asymmetries. The non-uniform grid code, predicts a periodic flow with the clock

wise and anti-clockwise circulations alternately dominating. No attachment of 

the plume to one of the disks therefore occurs, unlike the solution obtained by 

Randriamampianina (1998). Further comparison of the uniform and non-uniform 

grid codes suggest that the discrepancy is due to the approximation used for the 

non-linear advective terms in the non-uniform grid code, which takes the form
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of a hybrid up-winding scheme.

6.7.2 R esults for Re =  1.46 x 105, ro =  0.5 and zmax =  0.3

Although doubt has been cast over the time accuracy of the non-uniform code, 

further computations and comparisons have been made with experimental data 

for this higher Reynolds number cases. It was found that the spatial resolution 

which could be obtained using the uniform grid code was insufficient to resolve 

the boundary-layers, hence this was the only available means of investigating the 

time-dependent nature of the flow.

For the computation presented below, the grid was comprised of 128 x 96 ra

dial/axial intervals with a non-dimensional timestep of St =  5 x 10-8 . This case 

was selected for computation as it was the lowest rotational Reynolds number 

for which experimental velocity data were obtained in the study reported by Gan 

(1994). An axially-varying initial tangential velocity profile was used and the 

solution after a non-dimensional time t =  0.0025 is presented in Figures 6.7. 

The streamlines suggest that the secondary flow structure, as found for the low 

Reynolds number cases, has not formed a large coherent structure, but several 

cells appear. At this time however, Figure 6.7b demonstrates that the effects 

on the tangential velocity field of the instantaneous imposition of disk rotation 

at t = 0 have propagated throughout the cavity, with a layering of the iso-lines 

clearly visible. Figure 6.7c displays the variation of the tangential velocity profile 

at specific axial locations. In order to investigate the Rankine vortex behaviour 

of the primary tangential flow, the dimensional tangential velocity is normalised 

on the local disk speed and plotted against the inverse of the non-dimensional
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radius squared, (r-2). There is good comparison between the computed profile 

and the experimental data of Gan (1994), with the computed profile following 

the Rankine vortex type structure (equation 2.6) suggested by the experimen

tal data. The spike which appears very near the stationary shroud (r-2 «  1 in 

Figure 6.7c) may be accounted for by considering the interaction between the 

primary and secondary flows. As the boundary-layers on the disk surfaces travel 

towards the disk tips, an increasing tangential component of velocity is imparted 

on them by the rotating disks. As these boundary-layers turn toward the sta

tionary shroud surface, a large shear in tangential velocity results due to the 

large relative difference in the tangential velocities of the two surfaces. The size 

of this spike however reduces toward the mid-axial plane as diffusion effects play 

an important role.

At a later time, t =  0.005, the secondary flow structure takes the form of two 

distinct counter-rotating circulations with the clockwise circulation dominating, 

(Figures 6.8). At this time however, the predicted tangential velocity profile does 

not compare well with the experimental data, although the Rankine structure is 

again suggested.

Figures 6.9 show the simulation results at a time t =  0.005. Once again, there is 

good comparison between the computation and the experimental data at both the 

axial locations considered. The secondary flow structure is concentrated in the 

upper regions of the cavity and suggests significant variation with time. In order 

to investigate fully the effects of the time dependence on the flow structure, mean 

and standard deviation velocity profiles are evaluated over a non-dimensional 

time period of 0.005.
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Figure 6.10a shows the good agreement obtained between the time-averaged tan

gential velocities for the unsteady computation and the experimental data. An 

axisymmetric steady computation carried out using the low Reynolds number tu r

bulence model of Launder and Sharma (1974), failed to reproduce this behaviour 

and is in poor agreement with the data. Mirzaee (1997) found the turbulence 

model to be deficient for this flow. The standard deviation profiles are reason

ably narrow, suggesting that the time variation of the tangential velocities are 

reasonably robust with time.

Comparison between the computed and measured radial velocities however, in 

general are not in good agreement. Again, the dimensional radial velocity is 

normalised on the local disk speed and the solutions are presented in Figures 

6.10b,c,d for three diiferent radial locations. At a radius r = 0.55, near the inner 

cylindrical hub, there is a very good comparison between the mean computed 

profile and the experimental data. However, the large fluctuations suggested by 

the standard deviation, is not supported by the experimental data. At r = 0.75, 

there is poor agreement between the computed and measured profiles, with the 

magnitude of the predicted velocities being significantly greater than that sug

gested by the experimental data. At a radius r =  0.85, there is a much better 

comparison, with the computed mean radial velocity profile following the same 

trends as the experimental data. It should however be noted that the experi

mental data is time averaged also, but over a substantially smaller time period. 

The large standard deviation about the computed mean value is not therefore 

confirmed by similar unsteadiness in the experimental observations made by Gan 

(1994).

Solutions for higher Reynolds numbers were obtained, but due to doubts about
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the grid independent nature of the solutions, the comparisons with the available 

experimental data are not presented.

6.7.3 R esults for Re =  4.5 x 105, r0 =  0.5 and zmax =  0.05

The investigation of the axisymmetric flow structure in the small gap cavity, 

investigated by Abrahamson et a1. (1989), is presented here. The solutions 

were obtained using 128 x 64 radial/axial intervals and non-dimensional timestep 

6t = 2 x 10-8 .

Instantaneous computed streamlines, shown in Figures 6.11a-c, again show two 

principal recirculations in the outer part of the cavity, affecting the radial inflow 

between the disks. The inflow was directed more toward the left or right hand 

disk at different times, depending on the relative size of the recirculating regions 

near the outer casing. At a time t =  0.001, the central plume takes the form 

of a wave-like structure, with several core regions of maximum and minimum 

streamfunction apparent. At a later time, t =  0.002, the radial inflow region 

supports an almost symmetric secondary flow structure in the upper regions of 

the cavity, with the characteristic wave shape appearing lower down in the plume. 

Figures 6.11c show the clockwise secondary circulation to be dominant at a time 

t = 0.003.

Figure 6.12 shows the behaviour of the streamfunction extrema with time for 

the entire computation, (requiring 150,000 timesteps), and Figure 6.13 shows the 

time-averaged mid-plane tangential velocity distribution in comparison with the 

measured data with the mean and standard deviation being computed between 

times t = 0.002 and t = 0.003. There is solid body rotation in the inner part of the
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system, extending to around r = 0.8 for the computations. The measurements, 

inferred from flow visualisations by Abrahamson et aI. (1989) and digitised here 

from the results presented, suggest further inward penetration of the recirculating 

flow than was predicted. The standard deviation from the mean suggests that 

the primary tangential flow is again influenced only slightly by the highly tim e- 

dependent nature of the secondary flow recirculation.

6.8 Brief conclusions

The two-dimensional axisymmetric computed flow can be time-dependent, but 

this is highly dependent on the aspect ratio of the cavity. In particular, the tim e- 

unsteadiness is stabilised by increase in the proximity of the disks. Conversely, 

destabilisation of the time variation occurs if the two disks are moved further 

apart. The attachment of the central plume of the secondary flow to one of the 

disks can occur and is thought to be due to the Coanda effect, where unequal fluid 

entrainment from either side of the jet causes the plume to move away from the 

side of greater fluid entrainment. Reasonable comparison has been achieved be

tween experimental data and time-averaged computation for the higher Reynolds 

numbers considered and in particular for the tangential velocity profiles.

The hybrid upwinding scheme as an approximation to the non-linear advective 

terms is unsuitable for time-dependent flows, with comparisons between uniform 

and non-uniform grid codes showing fundamental differences in the primary flow 

structures.
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Chapter 7

Conclusions and 
recommendations for future work

In this thesis, a computational study of the buoyancy-induced flow in a rotat

ing cavity with differentially heated cylindrical surfaces has been carried out. 

The outer cylindrical surface has been assumed to be uniformly hot and the in

ner cylindrical surface uniformly cold thereby giving an unstably stratified fluid. 

Adiabatic boundary conditions were applied to the disk surfaces.

Gravitational acceleration is small in comparison with the centrifugal accelera

tion experienced at typical turbomachinery operating conditions and therefore, 

gravitational buoyancy effects were neglected for the purposes of this investiga

tion in order to simulate more accurately the fluid flow in turbomachinery disk 

spaces.

Four different configurations were investigated with Linear Stability Theory ap

plied to two of the flows in order to obtain neutral stability curves for various 

operating conditions. The configurations studied using Linear Stability The

151



ory corresponded to two-dimensional radial/axial and radial/tangential flows. In 

these cases the equations were linearised using a non-convecting, conducting base 

solution of the equations and infinitesimal perturbations to the base flow.

For the non-linear two-dimensional numerical simulations, a streamfunction- 

vorticity approach and an explicit time dependent method were adopted to solve 

for buoyancy induced laminar flow, with coupling with the temperature equation 

achieved through the assumption that the density varies linearly with tempera

ture. This was applied to the Coriolis force in addition to the centrifugal force. 

Multigrid acceleration was used to solve the Poisson equation for the streamfunc

tion at each time level.

The three-dimensional numerical simulations were obtained using a vorticity- 

velocity formulation on a staggered mesh. Again, an explicit time dependent 

approach was adopted, with multigrid acceleration applied to the three Poisson 

equations for the three components of velocity at each time level.

Attention is drawn however to the fact that flows for which R^ aPr = 0 A T  > 1 

may only be regarded as being qualitatively correct as the fluid takes negative 

densities in part of the computational domain.

The final study presented in this thesis is the computation of isothermal fluid flow 

for a sealed rotating cavity with a stationary shroud. The axisymmetric code de

veloped for the buoyancy-induced radial/axial flow configuration was adapted 

to allow the use of non-uniform mesh distributions. Simulations were also con

ducted using a uniform grid code and comparisons were made with experimental 

data where this was available.
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7.1 2D axisymmetric radial/axial flow

A tangentially axisymmetric flow was first considered with convection taking 

the form of toroidal vortices. Conclusions for the Linear Stability Theory are 

presented in section 7.1.1 and for the full non-linear investigation in section 7.1.2.

7.1.1 Linear Stability Theory

Solutions were obtained for two cases. In the first instance the Boussinesq ap

proximation is applied and this is equivalent to (3A T  «  0; this is equivalent to 

having no buoyancy correction to the Coriolis force. The second case has this 

correction and a linear variation in the density with temperature is taken.

• The effect of increasing the rotational Reynolds number is to stabilise the 

flow. Thus the critical Rayleigh number increases with increase in rotational 

Reynolds number.

• For small and decreasing wavenumber instability, (increasing wavelength), 

the critical Rayleigh number increases rapidly with the solutions suggesting 

that very small wavenumber instabilities occur at large values of Racrn only.

• For large and increasing wavenumbers, the growth in the critical Rayleigh 

number is small, with little suggestion of the rapid increase as observed for 

small wavenumbers. Definite turning points are however observed in the 

neutral stability curves.

• For increasing Reynolds numbers, and hence critical stability levels, the 

minima in the neutral stability curves occur at increasingly small wavenum-
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bers.

• As the inner radius varies the critical Rayleigh number decreases at first 

and then increases yielding a well-defined minima. When the inner radius 

is large the flow consists of many small-wavelength cells, whereas two cells 

correspond to sufficiently small inner radii.

• In the limit as the inner non-dimensional radius tends to one, for Re = 0 

the neutral stability curve tends to that of the classical Benard problem.

• Introduction of the buoyancy correction to the Coriolis force destabilises 

the flow, resulting in a decrease in the neutral stability levels. The form 

of the curves remain largely unchanged for small Reynolds numbers. For 

larger Reynolds numbers, the neutral stability curves are of a flatter profile 

over a larger range of wavenumbers.

• Solutions minimised over the wavenumber and presented against the inner 

radius could not be obtained for large using the available methodology 

and may have been due to the stiffness of the equations.

7.1.2 Num erical simulation

Validation for the corresponding fully non-linear simulations was achieved using 

the benchmark solution of de Vahl Davis (1983), for a two-dimensional cavity 

with horizontal temperature gradient. In addition, comparison with LST results 

were also conducted.

• When the Reynolds number is increased from zero the flow strengthens 

at first due to the decreasing dominance of buoyancy correction to the
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Coriolis force. Eventually the flow weakens again as the Coriolis force itself 

increases.

•  For the geometries considered, in general, the flow at low Reynolds num

bers consists of one toroidal vortex, with two vortices arising at slightly 

higher Reynolds number. These are characterised by radial outflow at the 

mid-axial plane and radial inflow near the disk surfaces. Further increase 

in Re results in either a return to a single toroidal vortex or to a twin recir

culation with radial inflow occurring at the mid-axial plane. Non-unique 

solutions are also observed for this mid-range of Reynolds numbers. For 

large Reynolds numbers, where the stabilising effect of the Coriolis force 

dominates, the single vortex flow is re-established.

•  Increase in the Rayleigh number for constant Reynolds number and geome

try initially results in an increase in the heat transfer due to the associated 

increase in the buoyancy force. However, further increases in the Rayleigh 

number attenuates the flow due to the attendant increase in magnitude of 

the buoyancy correction. Solutions for large Rayleigh numbers also tend to 

result in periodic, time-dependent flow.

• Decrease in the inner radii tends to reduce the strength of the flow with 

a decrease in the heat transfer observed. Increase in the axial dimension 

of the cavity results in little change in the heat transfer, with the flow in 

general showing stronger fluctuations.

• For cases where the buoyancy correction to the Coriolis force is large, (i.e. 

for small Re  given a fixed Ra), in regions of positive radial velocity the 

tangential velocity can also be positive. In general however, the toroidal 

vortices are found to precess relative to the rotating surfaces. For cases
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where the Coriolis force is dominant, positive regions of tangential veloc

ity occur in regions of radial inflow, where fluid near the outer cylindrical 

shroud is convected from outer radial regions toward the inner radial regions 

of the cavity.

7.2 2D radial/tangential flow

An axially independent flow was then considered with convection taking the form 

of rolls. Conclusions for the Linear Stability Theory are presented in section 7.2.1 

and for the full non-linear investigation in section 7.2.2.

7.2.1 Linear Stability Theory

Solutions were again obtained for two cases. In the first instance the Boussinesq 

approximation was applied (equivalent to /3AT «  0 and hence no buoyancy 

correction to the Coriolis force). Subsequently, the buoyancy correction was 

introduced and its effect noted. For both the cases considered, the Coriolis force 

was found to scale out of the governing equations.

• For a given disturbance wavenumber, an initial increase in the inner radius 

destabilises the flow and corresponds to a decrease in the value of RaCTa. As 

the inner radius increases further the critical Rayleigh number eventually 

begins to increase and very markedly as the non-dimensional inner radius 

approaches one. The curvature of the neutral curve (RaCTa against inner 

radius) at the minimising value of ro, for small wavenumbers is small, but 

is much larger for larger wavenumbers. In practice though, ro is fixed and
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it is necessary to consider Figure 4.1 in detail to determine the wavenumber 

which minimises Racrit . For large tq this wavenumber is large reflecting the 

need for a large number of cells in the narrow annulus. For small ro the 

wavenumber is small.

• Increase in the the discrete wavenumber results in flow stabilisation for 

approximately ro < 0.7. The converse applies for tq > 0.7, where flow 

destabilisation occurs with increase in the wavenumber.

• At values of inner radii approaching that of the outer radius, Racrit increases 

without limit suggesting that no instability occurs in the limit r0 —> 1. In 

such thin annuli viscous forces dominate buoyancy forces.

• Rescaling the critical Rayleigh number on the gap (R  — a) length scale re

sults in more symmetric neutral stability profiles with increasingly narrow 

stability curves observed as the wavenumber increases. Large wavenumber 

convection is confined to large inner radii, with small wavenumber convec

tion occurring over a broader band of inner radii.

• The introduction of the buoyancy correction affects the neutral stability 

criteria for values of Re less than approximately 200 for the cases considered. 

(Note that we assume that Ra and Pr  are held fixed). At smaller values of 

Re the most dangerous wavenumber may alter.

• The buoyancy correction is found to either stabilise or destabilise the neutral 

stability dependent on the wavenumber and inner radius, although in terms 

of the value of Ra at which convection first appears convection is stabilised.
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7.2.2 Num erical simulation

Conclusions are drawn for simulations which include the application of the buoy

ancy correction to the Coriolis force in addition to the centrifugal force. The pure 

Coriolis force was found to scale out of the governing equations. Validation was 

achieved by comparison with the Linear Stability analysis.

• For any given Rayleigh number, Reynolds number and geometry, it is pos

sible for flows with different wavenumbers to be stable (i.e. with respect 

to small disturbances). These different wavenumber solutions are obtained 

using appropriate wavenumber perturbations to the initial conducting tem 

perature profile.

• The resulting cyclonic and anti-cyclonic circulations consist of approxi

mately isothermal cores with regions of radial outflow and inflow occurring 

between the cyclonic and anti-cyclonic pairs when Ra is sufficiently far 

above the critical value for the onset of convection.

• The steady precession of the cyclones and anti-cyclones is observed to be 

dependent on the Reynolds number or rather on the magnitude of the buoy

ancy correction to the Coriolis force terms. When the Reynolds number is 

large, and hence the magnitude of the correction small, the rolls are locked 

to the rotating surfaces and are equal in size. For small Reynolds numbers 

and consequent roll precession, the cyclones are observed to be of a larger 

size than the anti-cyclones.

• For large inner radii, the preferred number of cyclonic and anti-cyclonic 

pairs exceeds the preferred number that occurs for small inner radii. This
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is in qualitative agreement with Linear Stability Theory results.

• The steady behaviour at relatively small Rayleigh numbers gives way to 

periodic flow and subsequently to chaotic flow for increasing Rayleigh num

bers.

• An increase in the rate of heat transfer occurs with an increase in the 

Rayleigh number and hence the magnitude of the buoyancy force. Due to 

the Coriolis force scaling out of the governing equations, no stabilisation of 

the flow occurs with an increase in the Reynolds number.

• The preferred number of cyclonic and anti-cyclonic pairs is found to be 

such that the heat transfer is approximately maximised.

7.3 3D flow simulation

• A strong qualitative similarity exists between the three-dimensional flow 

and the radial/tangential two-dimensional flow studied previously. In par

ticular, the three-dimensional mid-axial plane flow structure comprises of 

regions of cyclonic and anti-cyclonic activity with approximately zero axial 

velocity component apparent.

• Variations in this cyclonic/anti-cyclonic structure with the axial coordinate 

are found to be limited to variations in the axial velocity near the disk 

surfaces. The temperature distribution remains constant with variation in 

the axial coordinate for steady precessing flow.

• Near the disk surfaces, where the Coriolis force dominates over the buoyancy 

correction to the Coriolis force fluid moves axially away from the disks in the
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cyclonic regions and toward the disks in anti-cyclonic regions. Conversely, 

when the buoyancy correction is dominant, fluid moves axially away from 

the disks in regions of anti-cyclonic flow and toward the disks in regions of 

cyclonic flow.

• A decrease in the axial-dimension of the cavity and hence the proximity of 

the disks to one another causes a stabilisation of the flow with a consequent 

decrease in the heat transfer being evident.

• As for the axisymmetric flow, it is possible for a range of different wavenum- 

ber flows to be stable for any given operating condition.

• The rate of precession of the cyclones and anti-cyclones depends on two 

factors: the magnitude of the buoyancy correction to the Coriolis force and 

the proximity of the two disks. The larger the magnitude of the buoyancy 

correction and the smaller the distance between the disks, the greater the 

rate of precession of the rolls.

• Increase in the Rayleigh number results in an increase in the heat transfer 

due to the associated increase in the buoyancy force.

• For small Reynolds numbers, initial increase in Re results in flow destabil

isation as a consequence of the decrease in the magnitude of the buoyancy 

correction to the Coriolis force. Subsequent increases are found to stabilise 

the flow due to the increase in magnitude of the Coriolis force.

• The time-dependency of the flow is found to take several forms. Periodic 

wavenumber halving and subsequent doubling can occur, where for exam

ple, an n =  4 pattern changes to an n = 8 pattern and back periodically.
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• Unsteady, chaotic flow is found to be more likely to arise at higher values 

of Rayleigh numbers.

7.4 Sealed cavity with stationary shroud

The radial/axial axisymmetric code developed for the buoyancy-induced flow 

study was further modified for use with a non-uniform grid distribution.The 

uniform grid code, using the Arakawa (1966) formulation was also modified and 

applied to the sealed cavity with stationary shroud geometry.

• A symmetric secondary flow distribution can be obtained using a symmetric 

initial tangential velocity profile and limited number of timesteps. It is 

found however, that amplification of the round-off errors become significant 

after a certain number of timesteps and results in asymmetries evolving 

in the secondary flow structure. In these cases the symmetric flows are 

unstable and are unlikely to appear in practice despite being a legitimate 

solution of the equations.

• In order to accelerate this non-symmetric “seeding” process, an artificial 

axially varying perturbation to the tangential velocity field is introduced. 

It is found that for Re =  104, the secondary flow is symmetric only for 

narrow geometries. Increases in the axial width result in periodic flow 

with the central plume of radial inflow tending toward one of the disks. 

Further increases in the axial dimension of the cavity results in chaotic flow 

becoming evident.
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• The attachment of the central plume of fluid to one of the disks is a form 

of the Coanda effect, where unequal entrainment of fluid from either side 

of a perturbed jet causes the plume to shift in the direction of smaller fluid 

entrainment.

• Comparisons between with the non-uniform code results suggests that the 

up-winding scheme used for the non-linear convective terms is not suitable 

for time-dependent flow. This numerical problem was not resolved and 

merits closer scrutiny.

• Solutions are however obtained for larger Reynolds numbers and tim e- 

averaged comparisons with experimental data show good agreement for the 

tangential velocity profile. Radial velocity comparisons are however poor, 

for the large variations in the radial velocities apparent in the computations 

are not evident in the experimental data.

• The flow may be highly three-dimensional. The three-dimensionalities sug

gested by Abrahamson et a1. (1989) may indeed be also significant for the 

turbomachinery cavities considered.

7.5 Recom m endations for future work

This thesis has been concerned with idealised geometries related to cavities found 

in gas turbine engines. Although many non-linear phenomena are likely to apply 

to more realistic geometries there are few guides to predict which, and quantita

tive results are certain to change. It would therefore be interesting to extend the 

work presented in this thesis toward more realistic geometries and through-flow 

systems.
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7.5.1 Buoyancy-induced flow

Solutions at typical turbomachinery operating conditions could not be obtained 

using the presented numerical procedure and the available computational re

sources. A more accurate methodology requires to be developed for a non- 

uniform grid distribution in order to minimise the number of mesh points required 

to resolve fully the flow structure at turbomachinery operating conditions. Com

parison can then be made with the experimental results of Bohn et a1. (1995) for 

validation. This may only be achieved with a substantial increase in processor 

speed.

Further difficulties arise for large-amplitude convection. The assumption that the 

density variations are independent of the pressure distribution becomes invalid. 

In particular, the Boussinesq approximation and the linear density/tem perature 

relationship may not be confidently applied, and the full compressible governing 

equations have to be considered. These modifications may however be simplified 

in part by the assumption of incompressible flow in the viscous terms, as the 

velocities for natural convection flows are generally small in comparison with 

forced convection problems.

7.5.2 Sealed cavity with stationary shroud

As has previously been discussed, the flow in a rotating cavity with a station

ary outer casing may be both unsteady and three-dimensional. Further experi

mental and theoretical investigations should be carried out to study the three- 

dimensionality of this flow. In particular, an accurate time-dependent code re-
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quires to be developed to solve the flow in three-dimensions. Non-isothermal 

effects may subsequently be introduced and investigated as it is thought that 

buoyancy effects may be significant.
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Figure 1.2. Cross-section through gas turbine showing closed annular cavity between two 
co-rotating rotor disks (Bohn et a\ (1996))
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effects.
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Figure 1.4. Schematic diagram of two-dimensional axisymmetric rotating cavity showing 
flow structure due to buoyancy effects.
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Figure 3.1. Neutral Stability curves for Re=0,100,200,........,500 and range of
wavenumbers for r0=0.5 and small Ra/(Re Pr).
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Figure 3.2. Neutral Stability curves for Re=1000,2000,........,5000 and range of
wavenumbers for r0=0.5 and small Ra/(Re Pr).



Re=50000

6*1 O —

5*1 09 —

4*1O9—

3*109 —

2*109 —

1 * 109 —
Re=10000

0*10
0.0 0.05 0.150.1 0.2 0.25 0.3

Figure 3.3. Neutral Stability curves for Re=10000,20000,........,50000 and range of
wavenumbers for r0=0.5 and small Ra/(Re Pr).
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for r0=0.3 and small Ra/(Re Pr).
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Figure 3.5. Neutral Stability curves for Re=1000,2000,...... ,5000 and range of
wavenumbers for r0=0.3 and small Ra/(Re Pr).
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Figure 3.6. Neutral Stability curves for Re=10000,20000, ,50000 and range of
wavenumbers for r0=0.3 and small Ra/(Re Pr).
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Figure 3.8. Neutral Stability curves for minimum k, range of inner radii and
Re=1000,2000,....... ,5000 with Ra/(Re Pr) small.
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Figure 3.9. Neutral Stability curves for minimum k, range of inner radii and 
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Figure 3.13. Neutral Stability curves for Re=10000,....,50000 and range of wavenumbers 
for r0=0.5 and large Ra/(Re Pr).
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Figure 3.14. Neutral Stability curves for Re=200,300,...,500 and range of wavenumbers
for r0=0.3 and large Ra/(Re Pr).
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Figure 3.15. Neutral Stability curves for Re=1000,2000,.... ,5000 and range of
wavenumbers for r0=0.3 and large Ra/(Re Pr).
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Figure 3.20. Solutions for axisymmetric radial/axial flow with Ra=106, Re=500, r0=0.5 and 
zmax=0 -5 *
(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner r a d iu s  outer radius
(f) variation o f tangential velocity at the m id-axial plane
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Figure 3.22. Solutions for axisymmetric radial/axial flow with Ra=106, Re=900, r0=0.5 and
z max=0 -5
(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner r a d iu s  outer radius
(f) variation o f tangential velocity at the m id-axial plane
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Figure 3.23. Solutions for axisymmetric radial/axial flow with Ra=106, R e= 1 .2 x l0 3, r0=0.5 and
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Figure 3.24. Solutions for axisymmetric radial/axial flow with Ra=106, R e= 1 .6 x l0 3, r0=0.5 and 
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(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
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Figure 3.25. Solutions for axisymmetric radial/axial flow with Ra=107, Re=103, r0=0.5 and

(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner r a d iu s  outer radius
(f) variation o f tangential velocity at the m id-axial plane
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Figure 3.28. Solutions for axisymmetric radial/axial flow with Ra=107, R e= 4 x l0 3, r0=0.5 and 
z =0 5max
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Figure 3.29. Solutions for axisymmetric radial/axial flow with Ra=107, R e= 5 x l0 3, r0=0.5 and 
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Figure 3.30. Solutions for axisymmetric radial/axial flow with R a= 2xl07, R e= 5 x l0 3, r0=0.5
and zn,ax=0 -5 -
(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner r a d iu s  outer radius
(f) variation o f tangential velocity at the m id-axial plane
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Figure 3.31. Solutions for axisymmetric radial/axial flow with R a= 3x l07, R e= 5 x l0 3, r0=0.5 
and zmax=0 -5 -
(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner r a d iu s  outer radius
(f) variation o f tangential velocity at the m id-axial plane
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(f) variation of tangential velocity at the mid-axial plane



‘max'

N i l # * -

2.0-

1.8-

1.6-

1.4-

1.2-

0.0 0.01 0.02, 0.03 0.04 0.05

'max

Nu
6-

4-

3-

2-

0.0 0.1 0.2 0.3 0.4 0.5

'max'
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Figure 3.38. Solutions for axisymmetric radial/axial flow with Ra=107, R e= 3 x l0 3, r0=0.3 
and zmax=0-5-
(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
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(f) variation o f tangential velocity at the m id-axial plane
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Figure 3.39. Solutions for axisymmetric radial/axial flow with Ra=107, R e= 5 x l0 3, r0=0.3 

and zmax=0 -5 -
(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner r a d iu s  outer radius
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Figure 3.40. Solutions for axisymmetric radial/axial flow with Ra=107, Re=103 , r0=0.5 and zmax=1.0. 
(a) streamlines (b) iso-therms
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner radius outer radius
(f) variation o f tangential velocity at the m id-axial plane
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Figure 3.41. Solutions for axisymmetric radial/axial flow  with Ra=107, R e= 2xl03, r0=0.5 and zmax=1.0. 
(a) streamlines (b) iso-therm s
(c) tangential velocity iso-lines (d) total heat transfer
(e) local heat transfer  inner radius outer radius
(f) variation o f tangential velocity at the m id-axial plane



max' 51.0 = 1.0

Nu
12- V/(Or dim)

0 .9 -

10-'
4 - 8-

6-3 - 0 .7 -

4 -
2- 0.6-

2-
1-

0.5
0.5 0.6 0.70.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.8 0.9 1.00.0 0.1 0.2 0.3 0.4 0.5t r

Figure 3.42. Solutions for axisymmetric radial/axial flow with Ra=107, R e= 3xl03, r0=0.5 and zmax=1.0. 
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Figure 4.11. Solutions for radial/tangential flow with Ra=106, Re=103, r0=0.5 and n=6. 
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Figure 4.12. Solutions for radial/tangential flow with Ra=106, Re=103, r0=0.5 and n=7. 
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(e) Fourier decomposition of the temperature field
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Figure 4.15. Solutions for radial/tangential flow with Ra=106, R e=103 and r0=0.3. 
(a) streamlines (b) isotherms
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(e) Fourier decomposition o f the temperature field
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Figure 4.16. Solutions for radial/tangential flow with Ra=106, Re=103 and r0=0.6. 
(a) streamlines (b) isotherms
(c) total heat transfer
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Figure 4.18. Variation of the total heat transfer with Reynolds number.
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Figure 4.19. Solutions for radial/tangential flow with Ra=105, Re=103 and r0=0.5. 
(a) streamlines (b) isotherms
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(e) Fourier decomposition of the temperature field
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Figure 4.20. Solutions for radial/tangential flow with Ra=106, Re=103 and r0=0.5. 
(a) streamlines (b) isotherms
(c) total heat transfer
(d) local heat transfer --------  inner radius outer radius
(e) Fourier decomposition of the temperature field
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Figure 4.24. Solutions for radial/tangential flow with Ra=107, Re=103 and r0=0.5. 
(a) streamlines (b) isotherms
(c) total heat transfer
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(e) Fourier decomposition o f the temperature field



NuOio—

6-

4 -

2-

0.0 0.02 0.04 0.06 0.08 0.1
(c)

Nu
2 5 -

20

2 3 4 5 60 1
(d)

cos(60)
sin(60)
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Figure 5.2. Heat transfer comparison for Ra=105, Re=100 and r0=0.5.
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Figure 5.6. Flow vectors and isotherms at various axial locations for Ra=105, R e=103, 
r0=0.5 , zmax=0.5 and n=6 initial perturbation.
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velocity of the rotating surfaces and f t precession is the angular velocity 
of the precessing rolls.)
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Figure 5.9. Solutions for 3D flow with Ra=105, Re=103, r0=0.5, zmax=0.5 and n=5 
initial perturbation.
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Figure 5.10. Further solutions for 3D flow with Ra=105, Re=103, r0=0.5, zmax=0.5 and 
n=5 initial perturbation.
(a )-(c) axial velocity iso-lines
(d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.11. Solutions for 3D flow with Ra=105, Re=103, r0=0.5, zmax=0.5 and n=4 
initial perturbation.
(a) mid -axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.12. Flow vectors and isotherms for 3D flow with Ra=105, Re=103, r0=0.5, 
zmax=0.5 and n=4 initial perturbation at times;
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Figure 5.13. Solutions for 3D flow with Ra=105, Re=103, r0=0.5, zmax=0.5 and n=3 
initial perturbation.
(a) mid -axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.14. Solutions for 3D flow with Ra=105, Re=103, r0=0.5, zmax=0.5 and n=2 
initial perturbation.
(a) mid -axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.15. Solutions for 3D flow with Ra=105, Re=200, r0=0.5 and z ^ ^ O .5 .

(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.16. Solutions for 3D flow with Ra=105, Re=300, r0=0.5 and z ^ ^ O .5 .

(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.17. Solutions for 3D flow with Ra=105, Re=500, r0=0.5 and z ^ ^ O .5 .
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.18. Solutions for 3D flow with Ra=105, Re=800, r0=0.5 and z ^ ^ O .5 .
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.19. Solutions for 3D flow  with Ra=105, Re=103, r0=0.5 and z ^ ^ O .5 .
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.20. Solutions for 3D flow with Ra=105, R e= 1 .5x l03, r0=0.5 and z =0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotnerms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.21. Solutions for 3D flow with Ra=106, Re=500, r0=0.5 and z ^ ^ ^ .5 .
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.22. Solutions for 3D flow with Ra=106, Re=103, r0=0.5 and zmax=0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.23. Solutions for 3D flow with Ra=106, R e= 2x l03, r0=0.5 and z x=0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.24. Solutions for 3D flow with Ra=106, R e= 5x l03, r0=0.5 and zm =0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotnerms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.25. Heat transfer with time for Ra=106, Re=104, rQ=0.5 and zmax=0.5.
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Figure 5.26. Fourier decomposition o f the tmperature field for Ra=10®, Re=104, rQ=0.5 
and zmax=0.5.
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Figure 5.27. Solutions for 3D flow with Ra=106, Re=104, r0=0.5 and z =0.5. 

(a) ,(b) mid-axial plane flow vectors and isotherms at t=0.05 
(c) ,(d) mid-axial plane flow vectors and isotherms at t=0.10 
(e) ,(f) mid-axial plane flow vectors and isotherms at t=0.15
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Figure 5.28. Solutions for 3D flow with Ra=106, Re=103, r0=0.3 and zmax=0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.29. Solutions for 3D flow with Ra=106, R e= 2 x l0 3, r0=0.3 and zm„x=0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition of the temperature field
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Figure 5.30. Solutions for 3D flow with R a=2xl05, Re=103, r0=0.5 and zm =0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotnerms 
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.31. Solutions for 3D flow with R a=5xl05, Re=103, r0=0.5 and zm =0.5.
(a) m id-axial plane flow vectors (b) m id-axial plane isotnerms 
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field
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Figure 5.32. Solutions for 3D flow with Ra=105, Re=103, r0=0.3 and z ^ ^ O .3 .
(a) m id-axial plane flow vectors (b) m id-axial plane isotherms
(c) axial velocity iso-lines (d) total heat transfer
(e) Fourier decomposition o f the temperature field



Figure 6.1. Typical non-uniform grid distributions used for the stationary shroud cases.
(a) 128x96 mesh, r0=0.5, zmax=0.3 and GEF=1.15
(b) 128x64 mesh, r0=0.5, zmax=0.05 and GEF=1.15
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Figure 6.2. Solutions for Re=104, r0=0.5 and z =0.3 using uniform grid code and 
no initial axially varying tangential velocity profile.
(a) end point stream lines
(b) end point tangential velocity iso-lines
(c) maximum/minimum streamfunction



(a) (b)

50

4 0 -

maximum streamfunction30 —

20 —

10 —

O —

-1 O —

-20 — minimum streamfunction

-3 0 -

-40
0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.q35 0.04

(C)

Figure 6.3. Solutions for Re=104, r0=0.5 and z =0.3 using uniform grid code and 
initial axially varying tangential velocity profile.
(a) end point streamlines
(b) end point tangential velocity iso-lines
(c) maximum/minimum streamfunction
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Figure 6.4. Solutions for Re=104, r0=0.5 and z ^ ^ O .l  using uniform grid code and axially varying initial tangential velocity profile, 
(a) end point streamlines (b) end point tangential velocity iso-lines (c) maximum/minimum streamfunction



(b)(a)

80

6 0 -

4 0 -
maximum streamfunction

2 0 -

O -

- 2 0 -

minimum streamfunction
-40-

-60-

-80
0.0 0.01 0.02 0.03 0.04 0.05

t
(C)

Figure 6.5. Solutions for Re=104, r0=0.5 and z ^ ^ O .5  using uniform grid code and initial 
axially varying initial tangential velocity profile.
(a) end point streamlines
(b) end point tangential velocity iso-lines
(c) maximum/minimum streamfunction
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Figure 6.6. Solutions for Re=104, r0=0.5 and z =0.3 using non-uniform grid code and 
initial axially varying tangential velocity profile.
(a) end point streamlines
(b) end point tangential velocity iso-lines
(c) maximum/minimum streamfunction
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Figure 6.7. Solutions for R e= 1 .46x l05, r0=0.5 and z x=0.3 using non-uniform grid 
code at non— dimensional time t=0.0025.
(a) streamlines
(b) tangential velocity iso-lines
(c) tangential velocity profile
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Figure 6.8. Solutions for R e= 1 .46x l05, r0=0.5 and zmax=0.3 using non-uniform grid 
code at non— dimensional time t=0.004.
(a) stream lines
(b) tangential velocity iso-lines
(c) tangential velocity profile
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Figure 6.9 Solutions for Re=l .46x105, r0=0.5 and zmax=0.3 using non-uniform grid 
code at non— dimensional time t=0.005.
(a) stream lines
(b) tangential velocity iso-lines
(c) tangential velocity profile at z/s=0.2
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Figure 6.10. Time averaged solutions for R e=1.46xl05, r0=0.5 and zmax=0.3 using 
non-uniform grid code.
(a) mean and standard deviation tangential velocity profile
(b) mean and standard deviation radial velocity profile at r=0.55
(c) mean and standard deviation radial velocity profile at r=0.75
(d) mean and standard deviation radial velocity profile at r=0.85



Figure 6.11. Streamlines and tangential velocity iso-lines for R e= 4 .5x l05, r0=0.5 and zmax=0.05 using non-uniform grid code and 
axially varying initial tangential velocity profile at;
(a) t=0.001 (b) t=0.002 (c) t=0.003
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Figure 6.12. Variation in maximum and minimum streamfunction for R e= 4 .5x l05, r0=0.5  
and z max=0  0 5 -
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Figure 6.13. Tangential velocity profile for Re=4.5xl05, r0=0.5 and zmax=0.05.


