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Sum m ary

The main subject of the thesis is the asymptotic analysis of models in mechanics of 

composite materials. It is based on the extension of the theory of the Polya-Szego 

tensors to the problems of homogenization and fracture. Such a technique allows one 

to obtain an asymptotic solution to a problem where most of numerical algorithms fail 

due to the presence of a singular perturbation. As a result of this work, a number of 

interesting effects have been found in optimization of composites and inverse problems 

of crack-inclusion interaction.

Chapter 1 is an introductory chapter that contains the main definitions and bibliograph­

ical remarks.

In Chapter 2 the Polya-Szego dipole tensors are employed for analysis of plane elasticity 

problems in non-homogeneous media. Classes of equivalence for defects (cavities and 

rigid inclusions) axe specified for the Laplace and Navier operators: composite materials 

with defects of the same class have the same effective elastic moduli. Explicit asymptotic 

formulae for the effective compliance matrices of dilute composites axe obtained.

The problem of the optimal cavity shape is analyzed in Chapter 3. The analysis uses the 

Polya-Szego tensors calculated in Chapter 2. A new type of structure which is optimal 

for shear loading has been found. Properties of the optimal cavity are described.

The crack-inclusion interaction problem considered in Chapter 4 has been solved by 

the asymptotic methods. An analysis of crack trajectories is performed in Chapter 

5 for different types of defects and interface conditions. The algorithm employs the 

Polya-Szego tensors as integral characteristics describing the defect. Comparison with 

experimental data (Ceramic Centre, Bologna) is presented.

In Chapter 6 we use the method of compound asymptotic expansions to treat the 

homogenization problem for thin-walled composites. The technique of boundary layer 

fields is employed to derive the junction condition in the region connecting thin walls. 

The asymptotic formulae are derived for the effective elastic, therm al conductive and 

therm al expansion moduli of thin-walled periodic structures.
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Chapter 1

Introduction

1.1 B ackground , m otiva tion  and stru ctu re  o f th e  th esis

The main objective of the thesis is to apply asymptotic methods to the problems of 

homogenization and fracture in composite materials. In particular, the problem of 

evaluating the effective moduli of dilute media filled with cavities or rigid inclusions 

of arbitrary shape and crack propagation in such a medium are of main interest. An 

asymptotic approach to homogenization of thin-walled composites with periodic struc­

ture is considered in the last chapter. Both these topics - composite materials and 

asymptotics - have been studied by many authors in recent years. They often have been 

treated as two separate topics with no common links. However, if a composite medium 

can be characterized by a small parameter, the asymptotics allow one to obtain some 

closed-form solutions. In fact, any dilute suspension or cellular solid is an example of 

such a structure.

Due to a wide application of the computer technology, problems of solid mechanics 

are often treated numerically. Advanced finite element packages have been designed 

for elasticity, conductivity, fluid dynamics (e.g. COSMOS/M package [120] developed 

by Structural Research and Construction Corporation). Usually this technique enables 

one to obtain good results applicable to the industrial problems. At the same time 

there is a number of singularly perturbed problems where, due to the presence of a 

small param eter associated with a non-regularity of the problem or small coefficients 

multiplying the high derivatives, the application of the finite element or finite difference 

methods requires a very fine mesh or in many cases fail. Examples include elasticity or 

conductivity problems in dilute media (perturbation of the boundary due to additional
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1.1. BACKGROUND, MOTIVATION AND STRUCTURE OF THE THESIS

interface of inclusion) or cellular solids with perturbed boundary of walls or rods. The 

convergence of such schemes is often unsatisfactory for the problems with small parame­

ters. Asymptotic methods are free of these disadvantages. Conversely they allow one to 

construct the leading terms (or all terms in some cases) of the expansion explicitly and, 

as a result, to analyse qualitatively the solutions of either direct or inverse problems. 

Asymptotic methods for singularly perturbed problems have been extensively studied 

during the last ten years. Various topics of the asymptotic theory of partial differential 

equations and calculus of approximation have been considered. The theory is based on 

the results of K ondrat’ev [54], who analysed the behaviour of the solution of elliptic 

boundary value problems near the conical and angular points. Speaking about asymp­

totic methods it is im portant to refer to the works by Maz’ya (for example, Maz’ya, 

Nazarov and Plamenevsky [65]). They used the method of compound asymptotic ex­

pansions in singularly perturbed boundary value problems. Elliptic boundary value 

problems have been considered by Nazarov and Plamenevsky [84] in domains with 

edges of different geometries (polygons, cones, cusps). Monograph by Movchan and 

Movchan [75] deals with some particular areas of fracture mechanics, such as modelling 

of cracks, thin inclusions and domains with conical points and sharp edges. Asymp­

totic expansions of the solutions of linear elasticity boundary value problems have been 

analysed.

It is im portant to mention that the main subject of the investigation is composite 

and inhomogeneous media, a widely presented subject in mathematical and engineering 

literature. It is appropriate to refer to some monographs where composite materials are 

described (Sendeckyj [99], Christensen [18], Jones [49]). Overall elastic moduli have been 

studied by Willis in [122] where the well-known bounds obtained by Hill [43] have been 

compared with Hashin-Shtrikman bounds and with bounds of a higher order. In [123] 

three principal methods for studying randomly inhomogeneous media (perturbation 

theory, variational principles and self-consistent methods) have been considered. Self- 

consistent analysis has been applied to wave propagation problems in composites with 

spherical inclusions or small cracks by Sabina, Smyshlyaev and Willis [96]. Properties 

of different types of composite materials have been studied by Nemat-Nasser and Hori 

[85], Properties of laminates, as the optimal structures, have been considered by Milton 

[68]. Specific types of heterogeneous structures - cellular solids - have been described by 

Gibson and Ashby [30] and Kalamkarov and Kolpakov [50]. They analysed thin-walled

C h a p t e r  1 7
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two- and three-dimensional composite media using engineering hypotheses. Hashin [40], 

[37] considered thermo-elastic properties of composites. Budiansky [12] analysed the 

overall moduli of a multiphase material using approximate methods.

An im portant application of the method of asymptotic expansions is in homogenization 

of composite materials where the asymptotic technique allows one to derive the homog­

enized operator by considering multiple scale asymptotic expansions. We can refer to 

monographs by Bensoussan, Lions and Papanicolaou [8], Bakhvalov and Panasenko [4] 

and Jikov, Koslov and Oleinik [47]. They discuss a technique based on two different 

scales. The first one is the macro-scale which characterizes the size of the domain, 

the second one corresponds to the micro-scale which describes the size of an elemen­

tary periodic cell. In the monograph by Bensoussan, Lions and Papanicolaou [8] the 

multiple scale method is used to treat boundary value problems with rapidly oscillat­

ing coefficients. Rigorous theory of homogenization is presented in the monograph by 

Jikov, Koslov and Oleinik [47], where the method of asymptotic expansion has been used 

to justify homogenization for second order elliptic operators with periodic coefficients. 

Jikov, Koslov and Oleinik [47] also considered homogenization of parabolic operators, 

homogenization in linear elasticity and nonlinear variational problems. “Averaging tech­

nique” of defining the effective constants for layered and multi-rod structures has been 

considered by Bakhvalov and Panasenko [4].

The optimal design of composite materials is one of the areas in mechanics widely stud­

ied at the present time. A number of monographs have been written on this subject, for 

example, Haug, Choi and Komkov [41] on application of numerical methods in optimiza­

tion, Pironneau [89] and Sokolowski and Zolesio [104] on variational techniques. It is 

im portant to mention the work by Rozvany, Bendsoe and Kirsch [94] tha t includes m ath­

ematical and numerical analyses of shape sensitivity associated with elliptic boundary 

value problems, and “First World Congress of Structural and Multidisciplinary Opti­

mization” [87] where the new problems in structural optimization have been discussed. 

S tructural optimization using FEM is considered by Schnack [98], The existence of 

solutions of optimal control problems for the Laplace operate is analyzed by Chenais

[15]-

Since one part of this work deals with fracture in inhomogeneous media filled with defects 

of different type, it is appropriate here to refer on papers on fracture mechanics. Fracture 

propagation is an area of mechanics where asymptotic methods have wide applications.

C h a p t e r  1 8
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Stress intensity factors at the tip of a slightly curved or kinked 2D crack have been 

found by Cotterell and Rice [20]. Initial development of a crack path has been analysed. 

Later Sumi, Nemat-Nasser and Keer [107] analysed quasi-static growth of slightly non- 

collinear crack in a finite brittle solid using Muskhelishvili complex potentials. They 

supposed the crack extension to be of special polynomial form. Crack path  caused by 

a residual stress field has been simulated numerically by Sumi [106]. Rubinstein [95] 

analysed an interaction of a macrocrack with microdefects in an elastic body. He derived 

the increment in stress intensity factors due to microdefects by solving the integral 

equation for the potentials. Movchan, Nazarov and Polyakova [77] have obtained a 

similar expression by asymptotic methods using the weight functions. These functions 

have been introduced by Bueckner [13] and have many applications. For 3D dynamical 

crack they have been derived by Willis and Movchan [124], Movchan and Willis [82]. 

Another application is in a wavy crack problem analysed by Willis and Movchan [125], 

Gao [25] and Xu, Bower and Ortiz [126] where 3D perturbation of a crack front has 

been analysed. In-plane perturbation of a flat crack in 3D space has been analysed 

by M artin [61] using integral equations technique. Perturbed conformal mapping on 

the penny-shaped crack has been introduced and hypersingular equation for the crack 

opening has been solved. Similar technique was applied to nearly circular tensile cracks 

by M artin [62].

The asymptotic technique has been employed for the solution of elliptic boundary value 

problems in regions with a non-smooth boundary. One can mention the following works: 

investigation of cracks with smoothly closed edges carried out by Movchan, Morozov 

and Nazarov [74]; defects with sharp edges studied by Movchan and Nazarov [76]; cusps 

and conical points on the boundary treated by Maz’ya and Nazarov [64]; asymptotic 

expansions of solutions in the vicinity of conical and angular points found by K ondrat’ev 

[54] and K ondrat’ev and Oleinik [55]. Crack in the form of a rectangular hole has been 

considered by Movchan [71] and Movchan and Serkov [78]. The effects which occur 

under the longitudinal loading of a thin rectangular hole have been analysed and the 

mechanism which causes crack branching has been explained.

The technique based on the analysis of the Polya-Szego tensors is closely connected 

to the method of asymptotic expansions. This is an alternative way of describing an 

inclusion in terms of the energy of perturbation field associated with a finite defect in an 

infinite plane. This tensor was introduced in 1951 by Polya and Szego [90] and Taylor

C h a p t e r  1 9



1.1. BACKGROUND, MOTIVATION AND STRUCTURE OF THE THESIS

[110] for electrostatic problems. They considered the Dirichlet and Neumann boundary 

value problems for the Laplace operator. It has been proved tha t in this case the Polya- 

Szego matrices represent second rank tensors and are independent of the right-hand 

sides in equations and boundary conditions.

Later this technique has been applied to elasticity problems by Babich, Zorin, Ivanov, 

Movchan and Nazarov [3], Movchan [72], Movchan and Serkov [79], [81], [80] and Zorin, 

Movchan and Nazarov [127]. It is im portant tha t a lot of characteristics in linear 

elasticity, such as energy increment and effective moduli of composite, can be expressed 

in terms of the Polya-Szego tensor. Asymptotic behaviour of the solution of boundary 

value problems in an infinite plane with an inclusion is specified in terms of this tensor 

also. Using the Polya-Szego tensors, the elasticity problems in an infinite plane with 

defects can be treated without any restriction on the geometry of inclusion provided 

the inclusion is finite. The knowledge of the tensors gives sufficient information about 

energy characteristics of defects and allows one to solve a number of new problems of 

homogenization, fracture mechanics and optimal control.

The Polya-Szego tensor can be considered as an alternative characteristic of an inclusion 

and can be compared with the Eshelby tensor [24]. The first one describes the field far 

away from the inclusion, the second one within the inclusion. On the other hand, the 

Polya-Szego tensor characterises an inclusion of an arbitrary shape. The Eshelby tensor 

is usually used for an elliptical inclusion (Eshelby [24]).

An extension of the method of compound asymptotic expansions (technique of the 

Polya-Szego tensors) to the problem of homogenization, fracture mechanics and optimal 

design is the main subject of this thesis. The key-point is the investigation of the 

properties of the Polya-Szego tensor naturally occurring in the problems listed above. 

The major advantage of this technique is in the analysis of the boundary value problems 

in domains with defects of an arbitrary shape (provided the perturbed inclusion or cavity 

is finite).

In Chapter 2 the main properties of the Polya-Szego tensors are discussed. The elements 

of the tensor are defined as the coefficients in the asymptotic expansion at infinity for the 

solution of a model boundary value problem imposed in an infinite region with a defect. 

Calculations of these tensors for cavities, rigid inclusions in conductive and elastic media 

are carried out. The boundary integral equations of the Kolosov-Muskhelishvili type 

are employed for this purpose. Correspondence between the energy increment due to

C h a p t e r  1 10
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an inclusion and the Polya-Szego tensor is given. Homogenization procedure for dilute 

composites with defects of arbitrary shape is carried out. An analytical representation 

for the leading terms of the effective moduli is given in terms of components of the 

Polya-Szego tensor.

The analysis of the effective moduli results in a number of interesting effects: equivalence 

between domains possessing the same effective moduli, equivalence between elliptical 

and non-elliptical defects (for conductivity problem and elasticity after certain affine 

transform of the coordinates). In particular, for the case of the Laplace operator (anti­

plane shear) it is shown tha t the displacement field for an arbitrary inclusion or cavity 

occupying a bounded simply connected region is equivalent (in the energy norm) to the 

field associated with an elliptical inclusion. Dilute composite medium is also considered 

where an elementary cell contains a small inclusion or cavity. Following Olver [88] (also, 

see Milton and Movchan [70]) one can choose an affine transformation which yields a new 

system of equations represented in the canonical form corresponding to  an orthotropic 

material. The matrix of elastic moduli has a block-diagonal structure. It is shown that 

under some conditions imposed on the Polya-Szego matrix there exists a transformation 

which relates a homogenization problem for a medium with small holes (of arbitrary 

shape) to a medium with elliptical cavities. It has been shown tha t the correction term  

of the compliance m atrix for composites with voids is independent of the Poisson ratio. 

Chapter 3 deals with the extension of Polya-Szego technique to the optimal design 

problem. Here we follow the idea of Milton [69], Grabovsky and Kohn [34], [35], and 

Vigdergauz [118], who analysed the optimality of composites. Different types of optimal 

structures, such as laminates and confocal ellipses, have been found. Here different tech­

nique has been applied and some special type of loading conditions (i.e. shear loading) 

has been analysed. Application of the Polya-Szego technique to these problems has led 

to a new type of optimal microstructures subjected to shear. A cavity of fixed area is 

said to be optimal if it provides a minimal energy change associated with introducing 

the cavity in an infinite plane. One shows tha t for shear loading the contour of the op­

timal cavity is not smooth and shaped as a curved quadrilateral. The shape is specified 

in terms of conformal mapping coefficients and the proof of optimal behaviour of this 

structure is presented.

In Chapters 4 and 5 the asymptotic technique is applied to problems of fracture mechan­

ics. The method of compound asymptotic expansions is employed to treat the problem

C h a p t e r  1 11



1.1. BACKGROUND, MOTIVATION AND STRUCTURE OF THE THESIS

of interaction between a crack and an elastic inclusion (so called crack-inclusion in­

teraction problem). This method allows one to derive an asymptotic formula for the 

crack trajectory in terms of the Polya-Szego tensor and, hence, to analyse the trajectory 

without laborious finite-element calculations (Sumi and Wang [108]).

In Chapter 4 two-dimensional asymptotic solution for description of the trajectory of 

a quasi-static crack in thermo-elastic isotropic medium containing small defects is pre­

sented. First, the asymptotic procedure is applied to uncoupled thermo-elasticity prob­

lems imposed in an infinite plane with a crack and an inclusion. Asymptotic formulae 

for crack trajectories are derived. The defects axe described by the Polya-Szego ma­

trices, and examples of the crack trajectories for different types of defects (elliptical 

cavities, circular and elliptical elastic inclusions) are given in Chapter 5. The results of 

the asymptotic analysis agree with existing numerical solutions and give a qualitative 

description of crack trajectories observed in brittle materials, such as porous ceram­

ics. Finally, comparison with the experimental data provided by the Ceramic Centre 

(Bologna) is presented. The second part of the Chapter 5 deals with the effect of tem­

perature on the crack trajectory. It also describes non-perfect interface conditions and 

how they affect the crack trajectory. The situation when debonding causes the shield 

effect is analysed.

Chapter 6 does not employ the technique of the Polya-Szego matrices. It is based on 

the compound asymptotic expansions constructed for thin regions. This Chapter has a 

logical link with Chapter 2, where homogenization of dilute composites is studied. The 

Polya-Szego technique works well in these problems. In Chapter 6 the homogenization 

of thin-walled composites is studied. Full asymptotic expansions are constructed and 

the boundary layer solutions are analysed. Junction conditions axe deduced from the 

analysis of junction boundary layer solutions. Thus, they are obtained without any sim­

plifying hypothesis widely used in engineering approaches. Using the homogenization 

procedure, we analyse the honeycomb, square and triangular thin-walled composites. 

Both therm al and elastic effects are taken into account. The effective moduli are evalu­

ated for different types of structures consisting of conductive, elastic or thermo-elastic 

constituents.

C h a p t e r  1 12



1.2. DEFINITIONS

1.2 D efin itio n s

1 .2 .1  T h e  d ip o le  form  m a tr ic es

Consider a two-dimensional irrotational flow of incompressible inviscid fluid with the 

velocity =  e ^ ,  i =  1,2. Introduce a finite body G. The flow of fluid will be 

perturbed and the perturbation field decays at infinity. One is looking for solutions of 

the Neumann boundary value problems

A $W (*) =  0, x  G R2 \  G, (1.2.1)

= 0 ,  x  E dG , (1.2.2)
on

which satisfy the following condition at infinity

~  X{ as ||x|| —> oo. (1.2.3)

In (1.2.2) n  is the unit outward normal vector with respect to R2 \  G. The idea of Polya 

and Szego [90] was to compensate the discrepancy in the boundary condition (1.2.2) 

produced by the originally homogeneous field by taking the functions in the form

= x i + (p®i (1.2.4)

where are harmonic in R2 \  G and satisfy the Neumann boundary conditions

dip^
— —  =  —ni on dG , (1.2.5)

on

and the conditions of decay at infinity (in 2D case)

2

ip(%\ x )  ~  5 Z ^ ife(G) i r i 2 ’ as IM I- * 00- (1.2.6)
k= 1 lla;l1

The m atrix =  {T>ik}ik=i in the above expression is said to be the matrix o f  the dipole 

form

i,k=l,2

C h a p t e r  1 13
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Let

Wik = {>P<'i>,<PW ) =  J  V v ^ V ip W d x .  (1.2.7)
R2\G

Then, the following relation between the energy matrix W  and the m atrix T> holds (see 

Taylor [110])

W (G ) =  2ttV (G ) -  m es2{G )I , (1.2.8)

where I  is the identity matrix. It follows from (1.2.7) tha t the m atrix is positive 

definite.

Now, recall the definition of the dipole matrix for the Dirichlet problem. Consider a 

homogeneous electrostatic field of the constant intensity E  = e ^ \  i = 1,2, in an 

infinite plane. Introduce a finite conductor G, and assume tha t its total charge is equal 

to zero. The two-dimensional defect G yields a perturbation of the electrostatic field 

which decays like 0 ( ||a ; ||_1) at infinity. For the corresponding Dirichlet problem with 

the condition (1.2.3) at infinity the electrostatic potential <I>M admits the representation

$ (0  = Xi +  ^ (i). (1 .2 .9)

Here, the function compensates the discrepancy, produced by the first term  on the

right-hand side of (1.2.9) in the Dirichlet boundary condition, and it is characterized by

the following asymptotic formula at infinity

2

tp ^ jx )  ~  y n ik( G ) ^  as | |x ||- » o o .  (1.2 .10)
k=l l|a;|1

The m atrix ||'Htfc|| is called the dipole form matrix  or the m atrix of dipole coefficients. 

The energy matrix

=  f  V i j j ^ V i p W d x .  (1.2.11)

R2\G

and the m atrix 'H of the dipole coefficients are related by

V (G ) = - 2 ttH (G ) -  m es2(G)I. (1.2.12)

This formula has been proved by Taylor [110], and it also can be found in Polya and 

Szego [90]. As follows from (1.2 .11) and (1.2 .12), the matrix "H is negative definite. 

Analysis of elasticity problems which generalises the results of Polya and Szego is pre­
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1.2. DEFINITIONS

sented in Movchan [72], Movchan and Serkov [79], Movchan and Movchan [75] and 

Zorin, Movchan and Nazarov [127]. In the next section we shall consider the problem 

for an inclusion with the interface boundary conditions posed on dG.

1 .2 .2  T h e  P o ly a -S z e g o  m a tr ices  

T he case o f th e  Laplace operator

Consider an anti-plane shear of an infinite plane containing a finite inclusion G. The 

third (transversal to the plane) component u(x)  of the displacement satisfies the bound­

ary value problem

—fiAu(x) = 0 , x G l 2 \G ,  (1.2.13)

—/io A u ^ (x ) =  0, x  E G, (1.2.14)

/ i ^ = / / o - 77— , u = u ^ \  x  £ dG , (1.2.15)
an dn

with the following condition at infinity

2

u{x) ~  CiXi as ||x|| —> oo. (1.2.16)
t=i

In (1.2.16) Ci are constants. The solution of (1.2.13)-(1.2.15) with the conditions at 

infinity (1.2.16) can be found in the form

n (x ) =  S  (1.2.17)

The harmonic functions w^l\  i =  1,2, decay at infinity and can be specified by the

asymptotic formula

- (<) =  - i g ^ j i S F  +  K w ) ’ 11x11" ° ° -  (1'2' 18)

Note th a t the m atrix ||Mjj|| differs from the matrix \\T>ij\\ introduced in Section 1.2.1 

by a constant coefficient. The equivalent form of (1.2.18) is

“ (i) = E ^ 4 > t (x ) + ° ( r p ) ’ w  “*■ °°’ ( 1 ' 2 ' 1 9 )
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1.2. DEFINITIONS

where T (x )  = —(27r/x)_1 ln ||x || is the fundamental solution of the Laplace equation in 

a plane. Further in the text the matrix {Mij}  will be called the Polya-Szego matrix.

It should be mentioned tha t for the case of a cavity G with the contour dG  (Neu­

mann boundary condition), the displacement u(x)  satisfies (1.2.13) and the boundary

conditions (1.2.15) should be replaced by

du
—  = 0, x  G dG. (1.2.20)
dn

If G is a rigid inclusion (Dirichlet boundary conditions), the displacement vector u{x) 

satisfies (1.2.13) and the condition

u(x)  =  a, x  G dG , (1.2.21)

where the constant a is chosen in such a way tha t the field u(x)  admits the representation 

(1.2.17) with the functions w ^  characterized by the asymptotic formula (1.2.19) at 

infinity (the term  corresponding to a point force is absent).

P olya-Szego and energy m atrices

Here we consider the boundary value problem (1.2.13)-(1.2.15) and seek its solution in 

the form
2

u ( x )  =  +  w ^ ( x ) } ,  i 6 l 2 \ G ,
i=l

2

( ° \x )  = Ci{xi + w(0,t\ x ) } ,  x  e  G,u
i— 1

where the functions w ^ ( x )  and w(0,l)(x) are harmonic in R2 \  G and G, respectively, 

and satisfy the following interface conditions on dG

d w ^  dw(0,i) (n \
IL— -------- /io—^---- =  (^o -  A w (x ) -  w (x )> x  £ dG. (1.2 .22)dn dn

Then one can see tha t the harmonic fields -I- Xi, w^0’̂  +  Xi satisfy the interface 

boundary conditions (1.2.15). Using the Green’s formula one verifies (see also Movchan 

[72]) tha t

M ( G )  = —M (G )  +  (/i0 -  /x)mes2G J, (1.2.23)
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1.2. DEFINITIONS

where

Miy = fi /  V w ^  • V w ^ d x  + fio /  V u /0’1) • V w ^ '^ d x .  (1.2.24)

R2\G G

Taking the limit when /io —>• 0 we arrive at the problem for a cavity with the Neumann 

boundary conditions. In this case the Polya-Szego matrix M  is related to the dipole 

form m atrix T> introduced in Section 1.2.1 by

M  =  —27ifi'D.

Consider a different way of extension of the polynomial fields Xi, i = 1,2, into the 

inclusion G. Namely, introduce a harmonic function such tha t

Then the fields +  Xi, + hxi/ hq satisfy the interface boundary conditions

(1.2.15). In other words, we have extended the field into the inclusion in such a 

way tha t the shear tractions are continuous on the interface. Application of the Green’s 

formula shows tha t

V (G )  =  M (G )  -  ii[l -  — ]mes2G I, (1.2.26)

where

Afij = Vw(i) • V w ij)dx  +  fjL0 /  V w * ^  • V w * ^ j)dx. (1.2.27)

R2\G G

Talcing the limit when /io —> oo, we obtain the equality

M  =

where 'H is the dipole form m atrix for the “rigid inclusion” introduced in Section 1.2.1. 

Note th a t the Polya-Szego m atrix M  is positive definite for a cavity (the boundary 

conditions of the Neumann type), and it is negative definite for a rigid inclusion (the 

Dirichlet boundary conditions).

C h a p t e r  1 17



1.2. DEFINITIONS

In conclusion to Chapter 1 it should be mentioned that Polya-Szego tensors introduced 

here in the simplest case of the Laplace operator have interesting applications in elas­

ticity. In Chapter 2 the Polya-Szego tensors will be constructed for different types 

of inhomogeneities and then applied to the problems of composite media and fracture 

propagation.
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Chapter 2

The Polya - Szego m atrices in 

elasticity

2.1 D efin itio n  o f  P o lya-S zego  m atr ix  for th e  N av ier  equa­

tio n s

Consider the same region K2 \  G as in Section 1.2.2, and assume tha t the displace­

ment field it (sc) satisfies the system of Navier equations and the interface boundary

conditions on dG

fiV 2u  +  (A +  n )V V  • u  =  0, x  G M2 \  G, (2.1.1)

H o V2w(0) +  (A0 +  /i0)V V  • =  0, x e G ,  (2.1.2)

< j^ (u ; sc) =  cr̂ n’0^(w ^; x), u  = u^°\ x  G dG, (2.1.3)

/ (2^ +  A ) |^  +  A |^  / i [ |^  +  | sl] \  / n M
</">(«;*) =  '* *  *'* n a m ' . (2.1.4)

/ • [ &  +  & ]  (2f*+  * ) &  +  * &  A " *

At infinity the vector function u (x )  is characterised by

U ~ £ C ,V W ( * ) ,  (2.1.5)
2 = 1

where Cj, i = 1 ,2,3 are constants, and

’,<u -  ( o )  ■ -  ( r j  ■ -  7 s  ( " )  i i , 5 >
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2.1. DEFINITION OF POLYA-SZEGO MATRIX FOR THE NAVIER EQUATIONS

As in (1.2.17) the field u (x )  is taken in the form

3
u (x ) =  5 3 C j(v W (* )  +  w W (x )), (2.1.7)

Z=1

where the vector functions W ^ l\  i — 1, 2 ,3, compensate a discrepancy left by V ^ ,  i =  

1,2,3, in the first interface boundary condition (2.1.3); and they also satisfy the ho­

mogeneous Navier equations and the second interface condition (2.1.3). At infinity the 

vector fields W ^  are characterised by the asymptotic formulae

(2 .1.8)w ®  =  y P * V ( * > ( F ) • T (x ) +  0 ( | |x | | - 2), i =  1,2,3,

where T ( x ) represents the Green’s tensor for the 2D Navier system

2xf
~w - W- 2 x ln

T(X) 9 \  ^  - 2*rln R  + l g f 1 ’

g = 8^ A ++ 2p ) ’

The m atrix { 'P ij} ij-i  is called the Polya-Szego matrix in elasticity. It is im portant to 

mention tha t the components of this m atrix specify 4th rank Polya-Szego ( “polarisa­

tion”) tensor {VkinTn}\ i m ,n= i* Further in the text one will use the Polya-Szego matrices 

in order to evaluate the effective moduli of periodic composites.

Note tha t if G is a cavity with a contour dG, the displacement u  satisfies (2.1.1) and 

dG  is free of tractions

<j(n\u-, x )  = 0, x  E dG. (2.1.9)

If G is a rigid inclusion, which does not resist translations and rotations, the displace­

ment vector u  satisfies (2.1.1), and instead of (2.1.3) one has

u (x )  =  a  +  b x x ,  x E d G ,  (2.1.10)

where the constant vectors a  and b are such tha t the field u  admits the representation

(2 .1.7), where the vector function are characterised by the asymptotic formula

(2 .1 .8) at infinity (the terms corresponding to point forces and moments are absent).
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2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

2.2 E xp lic it form ulae for P o lya -S zego  m atrices

Here we evaluate the Polya-Szego matrices for arbitrary simply connected 2D regions 

occupied by rigid inclusions or cavities. The Kolosov-Muskhelishvili representations for 

displacements and stresses in terms of complex potentials axe employed.

2 .2 .1  P la n e  stra in : c a v itie s

Consider an infinite elastic plane containing a finite cavity G. The displacement field 

u ( x ) satisfies the homogeneous Navier system (2.1.1) and the traction boundary condi­

tion (2.1.9). The field u (x )  admits the representation (2.1.7) which takes into account 

the conditions at infinity (2.1.5). We introduce the Kolosov-Muskhelishvili complex 

potentials <p, ip such that

where z = x i +  ix 2 , p is the shear modulus and x  = 3 — Av with v  being the Poisson 

ratio.

Introduce the conformal mapping function

u\ +  m 2 =  (2/x) 1{xcp(z) -  z<p'(z) -  ip(z)},

z  = tu(£), z = x \ + i x 2

which relates the exterior of the unit circle |£| =  1 and R2 \  G. It admits the series

representation

with c i,c_ n being constants.

Then the boundary condition (2.1.9) can be written in the form

¥>(0 +  = ¥ ’'« ) + i K 0  =  °, iei =  1
w' ( 0

(2 .2 .2 )

The complex potentials tp and ip are assumed to satisfy the following conditions

<P(0 ~  <*£, ^ ( 0  ~  7 ^ as |^| -> 00 (2.2.3)

with given complex coefficients a , 7 .
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2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

We seek two functions ip and ip, which are analytic in the exterior of the unit circle and 

satisfy the equation (2.2.2) and the conditions (2.2.3) at infinity. Using the Kolosov- 

Muskhelishvili method (see, for example, [83]) one can reduce the problem to a system 

of integral equations

I  Vi*7) 1 I  7 I  1 f \
f  + }  - 0  + f  =  ’ {2-2A)
L L L

where L  = {£ E C : |£| =  1}. The complex potentials are sought in the form

... ,  0  ^
v(() -  <*£ + j  + E  ~7iT<

S k=2 S
C 00 c(fc)

V ' « ) = 7 f  +  7  +  E T T -  ( 2 . 2 . 5 )
q k=2 5

Let S + and S~  be the interior and exterior of the unit circle L. Using the Cauchy 

theorem, one can evaluate the integrals in (2.2.4). Since tp(£) is holomorphic in S~  

except infinity where it has the first order pole with the principal part a£, the following 

relation holds

L

The function y?(l/£) is holomorphic in 5+ except the origin. It has a pole at £ =  0 with 

the principal part a /£ . Thus,

2tT i j o - t  2m J  a -  £ £ ’ q
L L

Similarly, one can write

2Vi /  V ^ l da =  +  ^ e  S ~ ’

1 r ip(a) 1 r ip{i/(j) 7 ^ 0 -
2*  f  =  S S  f  ^ T da  =

L

The function ct;(^)^'(l/^)(aJ/( l /^))—1 has a multiple pole of order N at the origin and,
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2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

therefore, the Cauchy integral can be evaluated as follows

where
N —tti—1

Q"m — &PN—m P N —m —2 0  ^  P N —m —n—1 ^ 0  ?
n=2

Pk ~  J<rjt
'■N—n+ E l ,  c.ng

Ei - E " = i « c - e +1 e=o

In (2.2.6) the coefficients p* with negative indices are equal to zero.

(2 .2 .6)

1 /  h»(g V ( g )
o r l( \( t \  ~  l ( t \  /  y am£ 5 £ E o .2ttz /  u'{a){a -  £) u/(£) ^

The Cauchy theorem enables one to obtain a system of linear algebraic equations with 

respect to the coefficients in (2.2.5). In particular, the quantities 0  and 8 can be repre­

sented as functions of a , 7  and the coefficients in the expansion (2 .2 .6) of the mapping 

function. One considers three sets of complex potentials which correspond to the fol­

lowing choice of a  and 7

71 =  - p c i ,  72 =  pci, 73 =  \ / 2pciz,

a i  =
flCi

x
(X 2 =

(ICi
x -  1

<23 =  0 . (2.2.7)

The potentials have the following expansion at infinity

/ \ OijZ F j . 1 .
Vj (z ) = —  +  —  +  °(T7 i2 )’ 00 ,

00 , (2 .2 .8)

where

B j  = 0jC\ — OLjC-1 =  — 7 jCi — bjC\ — ctjC-1,

P j  — (ijCj 7j c—1 — OfjCj jjC—1,

Here j  is the index associated with the model problem, whose solution approaches to

at infinity. In other words, (p and ifj are the potentials associated with the field

y (i)  _|_ \y t i )  (see (2 .1.8)). Substitution of the expressions (2.2.7) in formulae for B j  and
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2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

D j  leads to  th e  follow ing id en tities

d  _  I ,2 M C lC -l u ^  f i \ci \2 -=  P \ c \ \ ---------- :---- oici, D\ = i i c i c - i    — dici,
X — 1 X — 1

I , 2  ^ClC_i / i | c i | 2  -
S 2 =  -/a  c i    -  o2ci, D 2 =  - f i c i c - i --------- - -  d2ci,

x  — 1 x  — 1

£ ? 3  =  \ / 2 / i |c i |2i -  6 3 C1 , D 3  =  - \ P i \ L C \C - \ i  -  d3 c i.

C oefficients bj and dj are g iven  by

N - 2

bj =  a j P N - 1 +  P at—3(^i,j +  7 j) +  ^  k p N-k -2 ^k , j ,  j  =  1 ,2 ,3 ,
k=2
N

dj  =  Q'j/?jv’+ i “b PN—i ( c i , j  d“ ^  s k p N —kQkji  j  =  1 )2 ,3 , (2 .2 .9)
k=2

w here coefficients a k , j t j  =  1 )2 ,3 , k =  1 , 2 , solve th e algebraic sy stem

jV— m— 1

^m,j P N —m —2 ( ^ l , j  "b T j)  ^   ̂ k P N —k—m —lQ'k,j =  & jP N —mi
k=2

w ith  pk b ein g  th e  sam e as in  (2 .2 .6). W e n ote th a t coefficients bj and dj  are related  to  

am, j ) by th e  identities bj =  and dj  =  cl- i j -

In term s o f  com plex  p o ten tia ls  th e  d isp lacem ent field  W ^  is g iven  in  th e  form

W ® ( z )  =  ± \ x i p { z )  -  z t f ( z )  -  ^ ( z ) \2/i I

=  ~  D i +  \z \ 00• (2 .2 .10)

The asymptotic formula (2.1.8) can be rewritten as follows

= V a  {&[Tu  +  »Ti2] +  i [ T n  +  iTu ])

+ ^*2 ( ^ [ “ ^22 +  *Ti2] +  J=[T22 -  *Ti2]) (2.2.11)

+ 72^*3 (*5s P i!  +  ^ 22] +  J f  [2T12 +  z(T22 -  Til)]) +  o

Here 0 _0 ___  0 _0
/  —2xln |z| +  z +*i2zz \

T =  g (  2 - 2  2 - 2 0 - I  (2.2.12)I z —z o 1 I I z +z —2zz I\  T S T  —2x ln |^ | 2zf"  ̂ /

is the 2D Green’s tensor, and q is given by (2.1.8).
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2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

Then it follows from the definition of the Polya-Szego matrix (see (2.1.8)) that 

( —R eB i  +  j ^ - R e D i  R eB i + j ^ R e D i  —y/2Im Bi  \

where m  = —1,1,..., N.

The last result can be formulated as a theorem:

T h e o re m  2.1 The Polya-Szego matrix characterising a finite size cavity admits the 

representation (2.2.14), where the coefficients fi,E ,@ ,H , Y,A depend on the conformal 

mapping coefficients Cn,n = 1 , - 1 , —2... only and are given by (2.2.15).

Note tha t the coefficients a“ and aP̂ i possess the property H e(af ci) =  Re(a!_iCi) which 

follows from the symmetry of the Polya-Szego m atrix and leads to further simplification 

of formulae (2.2.15).

V  =  —̂  ReB i  +  j ^ R e D i  R eB 2 +  - ^ i R e D 2 —\p2 i m B 2 , (2.2.13)

\  —\j2 Im B \ —\ f 2 i m B 2 —\ /2 I m B z )

or, equivalently,

/ - f t  +  t S t  ~  f A f z ^  (x -l)a - 0  + - K \x —\

e  + ■ (2-2.14)

T )

where

Q, = \ci\2 -I- Re(ajci), E =  2Re(ciC-i) +  Re(a^ci) +  R e ^ a ^ c  1),

S  =  |c i | 2  +  Re(aPiCi), T  =  —2 |c i |2 +  2 Im (a \c i),

0  =  \Z2Im(aJci), A =  \ f2Im{c\C-i)  +  \ / 2 /ra(<2 " c i) , (2 .2 .15)

and a7, aa and aT axe the solutions of the following system of linear algebraic equations:

N —m —l

N —m —1

PN —m —k—l k a l  =  PN —m — 2 d ,  (2.2.16)
fc-2

N — 771 — 1

k=2

C h a p t e r  2 25



2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

T he quantities 61,625 fa, d\, c/2 and  d3 in  (2 .2 .9) and ah, ah and ah in (2 .2 .16) are related  

by

fa =  -  na[, b2 =  +  paj, 63 =  \ / 2/xa i,X X X 1

/ua“ 1 //a " ! r  td\ = -------   -  pa’,, a 2 =    +  p a , , 03 =  v 2 n a l i .
x — 1 x — 1

Exam ples:

T h e follow ing form ulae represent th e  P olya-Szego m atrices for regions w hich are close  

to  polygons.

1 . If th e  conform al m apping cj(£) has on ly  three non-zero coefficients c i ,  c_  1 , c _ 2 , th en

c - 2  c - 1 c _ 2 c _ i | c i | 2  +  | c _ i | 2  +  2 | c _ 2 |2
PO _  , Pi _  , P2  _ 2  ! P3 _ 2  ,Cl Cl cf cf

a“ =  c _ i ,  a j  =  0 , a [  =  0 ,

_a _  |c i |2 +  2 |c _ i | 2 + 4 |c _ 2 |2 ^  C-iCi _r c - i c i ,
C l  1 —     ̂ CL__1 —    j CL__I —    %,

Cl Cl Cl

S u b stitu tin g  th e  expressions above into (2.2.15) we ob ta in

( - £ I - l c i l 2 - ^ ^  k l | 2 - ( ^ I ) T  J P I  \

lCl|2 (xr-l)2 x -1  lCl|2 (x -1)2 ><-1

V 7^1 —2 |c i I2 y  (2 .2 .17)

E =  2(|ci|2 +  |c_i|2 +  2|c_2|2), E =  4Re(c_ici), A =  2 \/2 /m (cic_ i).

2. For the case of the conformal mapping with non-zero coefficients ci, c_ 1 , c_2, c_ 3  

we have the following representations for the quantities pk, ah, ah, ah

C—3 C_2 C_1 C_3C_1
PO =  “Z , p i  =  -Z— , P 2 =  —------1------- Z2 JCl Ci Ci Cf

C—2C—1 „ c _ 3c _  2 | c i |2 +  | c _ i |2 +  2 |c _ 2 |2 +  3 |c _ 3 |2 c _ 3c 2 !
p3 =  2 - + 2  , P 4 =   p ------------------------ +  >

C1 C1 C1 C1

a c _ i ( | c i | 2 +  |c_ 3 |2) +  2cic_ 3c_ i 7 _  c _ 3cf +  c i | c _ 3 |2 T _  c _ 3cf -  C i|c_3 |2 . 

a i ~  |c i |2 -  |c_ 3 |2 ’ a i  | c i |2 -  |c_ 3 |2 5 a i  |c i |2 - | c_ 3 |2 *’

a _  1ci|2 +  4|c_2|2 +  6|c_3|2 21c- i |2(|ci|2 +  |c_3|2)+ 4 R e(c ic_ 3c2 1)
a~1 ci c i(|c i|2 - | c _ 3|2)
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2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

a7,  =
CjC—1 |c i |2 +  cic_ i|c_ 3|2 +  2Re(cfc_3c_i) 

Cl(|ci|2 -  |c_3|2)

q c ic _ i|c i |2 -  c ic_ i|c_ 3|2 +  2z/m (cfc_3c _ i ) . 
a " 1 _  c1(|c1|2 - | c _ 3 |2)

The m atrix V  is given by (2.2.14), where the coefficients Q, S, O, E, A, T  are of the form

i?e(c_3cf) -I- | Ci |4
^ — i |2 i |2 5 X — 4ci 2 -  |c_ 3|2

Re(c\C-i) 2 Re(c2c_3c_i)
1* 1'  +J c i |2 - | c _ 3|2 | ci |2 | c—312

= 0 1 1 2 , ,1 .2 , e , |2 i rtl ,2 lcl l2 +  |c- 3|2 , 4Re(cic2 1c_3)^  — 2 |ci | + 4 |c_2 | +  6 |c_3| + 2 |c_i| ^  — r — >
|c i|2 - | c _ 3|2 jci|2 - | c _ 3|2

A =  2\/2
|Ci|2 -  |c_ 3|2

Im {c ic -i)  2 7m(c2c_3c_i)
lci| +|c i |2 — |c_ 3|2 |c i|2 - | c _ 3|2

T  =  2 . (2.2.18)
I o r  -  lc- 3 r

The formulae (2.2.17) and (2.2.18) will be used further in Section 2.3.

2 .2 .2  P la n e  stra in : r ig id  in c lu s io n s

Consider a finite rigid inclusion which is not fixed in the matrix. If the m atrix is under 

external loading the translation or rotation of such an inclusion occur. The inclusion 

can be considered as absolutely rigid kernel: there is no any deformation for internal 

points. The displacement field u  in the matrix satisfies the system (2.1.1), the boundary 

condition (2.1.10) and adm its the representation (2.1.7) at infinity. In terms of complex 

potentials the boundary condition (2 .1.10) can be written as

TTt~  = r f 7 ^ (p, { 0  ~  V>(0 =  2/i0*w(f), |f  | =  1, (2.2.19)

where u;(f) is the same mapping function as in (2 .2 .1), 0  is the angle of rigid rotation. 

In general, the complex potentials have the form (see [83])

ajZ X + i Y  B j (  1 \
^  ~  M ^ T i ) lnz  +  T  +  0 ( M p J ’ W " >0° ’

V’j(z) =  —  +  lnz +  —  +  ° ( r V ) ,  M - * 00- (2.2.20)ci 27r(>r+l) z \ \ z \ J

where a j, 7j, B j , D j , X  and Y  are constants.

One follows the Muskhelishvili method and derives the following system of integral
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equations

x  £  da -  £  =  2 da ,
J  o - t  J  < J { a ) (a - i)  J < r-{  P 7  a - f

x  £  ^ S l d a  -  £  ^ f {\ da -  £  =  - 2„9i £  ^ - d a .
J  a - £  J u/(<7)(<7-£) J  c r -Z  J  a -  Z
L L L L

Since th e  load  is self-balanced  th e  logarithm ic term s in  (2.2.20) are absent, and  therefore

th e so lu tio n  has th e  form:

D OO p(fc)
OLjZ 13 j \  ̂ -tjj .

W W  = -77  + 3 -  + E - 3 T ’ (2 -2 -21)Ci z  1 k=2
D  ° °  n ( fc)

4,j{z) = 'M  + ^ L  + ' £ i - L r . (2 .2 .22)
Cl 2T f—' 0

1 fc=2

Here (fj  and ipj are the potentials associated with the function 4- of (2.1.6) 

and (2.1.8). As before, the integrals are evaluated using the Cauchy theorem. As a 

result, we have

B j  =  (3c\ — ot-jC- 1  =  — ^7 jCi +  bjc i +  2(j,0jCiC-iiJ  — otjC - 1 ,

D j = 6 c\ — 7jC_i =  xrojCi — djCi 4- 2fi6j\ci\2i — 7jC_i. (2.2.23)

Introduce the quantities a ^ , a ^ , a ^ ,  aem such that

h  =  ~  /W  +  2/i0ia j, di =  ^ f r  ~  A*a - i  +  2/i0ia® i,

&2 — jj~fi 4" +  2/202^1, ^2 =  7,-Ti “I" 1 "t" 2/202a?_i,

63 =  \/2 /ia I 4- 2/203af, c?3 =  \/2/2aLi +  2/i03ali- (2.2.24)

Then one can rewrite formulae (2.2.23) as

# 1  =  — f  — /2|ci |2 -  na[ci 4-2/20iaJci +  2/201^ - 1^  -  i l  +  Cl , 
x  \  y x  — 1 x ( x  — 1)

^   ^ a ~ 1 1 _|_ ^ 7  ci _  2/20i a l 1ci +  2/20i |c i |2i +  Mci c-i>
x  — 1 x  — 1

B 2 = — ( fi\c i \2 -\-lia jci 4- 2/202^1 c i + 2/202c ic_ iA  -  /iC^ ~ 1 4- ^ Ql Cl , 
x \  y x —1 x ( x  — l)
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L>2 =  >f̂ Clj  — -  /iflliCi -  2^02O^i Ci -I- 2/i02|c i|2i -  flCiC-i,x  — 1 x  — 1

-B3 =  i  ^ — \ / 2/i|c i|2« +  V^/iaJci +  2/i03aJci +  2/i03cic_i«^,

Z) 3 =  —y/2fiar_ l ci — 2fi9saf_l ci +  2//03 |c i|2z — \/2/iCic_iz.

The coefficients aJn, and aem are the solution of the linear system of algebraic 

equations:
j   ̂ N —m —l

a m  H P N - m - 2 0 ^  H / J  P N - m - k - \ k a %  =  P N - m C l ,K IS ■ *
k=2  

N —m —l

"h P N —m —2^1 H- ^   ̂ P N —m —k—l k d l  — pyy_m —2^1,
X  XT K X

k=2

T l  l ^ - 1 l
a m  H-----P N —m —2^1 H > v p N - m - k - l ^ a k = ------P N - m - 2*Ci,

X  X  ^  X
k=2

1 1 TV— m — 1 . TV— m — 1
 ̂ 1  g 1 y  >  g % v—r _

P T V -m -2 ^ 1  H /  P N —m —k—l ^ ^ k  =  /  kC—k P N —m —k —liIS IS ■  ̂ ^x  x  *—' x
fc=2 Jfc=l

and, therefore, depend on the coefficients in the expansion of the conformal mapping 

function.

Using the definition of the principal moment (see Muskhelishvili [83], p.356)

one can represent the balance condition for M  in the form

I m ( D j ) a r g z  =  0. (2.2.25)

The condition (2.2.25) gives the value 9 of the angle of the rigid rotation (see the right- 

hand side (2.2.19)). Thus,

(x  — l ) - 1/m (a “ 1ci) — Jm (cic_i) — I m ia ^ c i )
01 = ------------

02 =

2 ( |c i |2 — 7 m (a l1ci))

(x  — l ) - 1/m (a “ 1ci) +  Im (ciC -i)  +  / m ( a l 1ci)
2 ( |c i |2 -  Im(ar_1ci))

_  /^ -Re(cic-i) +  7m(aL1ci) 
3 2 {\ci\2 -  Im{'a0_ l ci))
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where 9j corresponds to the pair of complex potentials cpj, ijjj. Note that due to sym­

metry of the m atrix T*

7m(a^.1ci) =  0 and 9\ = —6 2 - 

Therefore the Polya-Szego m atrix can be represented in the form (2.2.14) where

=  \c1 \2 + Re{aJc1) + 2e1
X

Im (c - ic i)  — Re{a\ci)

£  =  2Re(cic_i) +  Re(a!_1ci) — 29iRe(af_1ci) — — R e(a“ ci),
X

S =  - x |c i |2 -I- R e(a?1ci),

T =  — ( |c i |2 -  Im {a[ci) -  \/203
X  \

Im (aiC i) +  Re{c\C-i)

= y/\2 ( 1A =  V 2 [  /m (c ic _ i)  7m (a“ci)
V x

(2.2.26)

E xam ples.

1. In particular, when the mapping function has only three non-zero coefficients 

c i , c _ i, c_ 2 we have

c~2 c_i c_2c_i |c i |2 -f |c_ i |2 +  2 |c_212
PO _ j P1 — 1 Pi _2 5 P3Cl Cl

a" =  c_i, =  0 , a[ = 0 , = 0 ,

a _ i  =
|Ci |2 -J- |c—1 12 -f- 2 1c—2 12 |c—1 12 -f- 2 1c—2 12 7 _  c - i c i

Cl XCi j u_ia ' 1 =

r C-iCi . Q |c_ i|2 +  2|c_2|2 . a_-, = ------——2, a_i =  1--------- =--------- 1.
XCl xci

The formulae (2.2.26) are reduced to

=  —— ^ |c i |2 +  2 9 i l m ( c - i c i ) ^ , £  =  ~ — - i ? e ( c i c _ i ) ,

S = | ci |2( 1 - x ) +  (|c_ i |2 +  2|c_2|2)

C h a p t e r  2 30
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T  =  - ( | c i |2 —V203.R e (c -iC i) \ A = ^ ( X ^ J m fa c - i ) ,  (2.2.27)
X  \  J  X

where the rotation angles are given by

a x + 1 _______ Jm (c ic -i)_______ _
1 2 *  |Cl|2 +  A (|C_ 1|2 +  2 |c_ 2p) "  2’

a -  *  + 1 R e (g c - i)
^ x | c i P  +  i ( ! c _ 1| 2 + 2 | c _ 2| 2)'  }

2. For n-sided regular polygons the quantities are zero and the coefficients of the

Polya-Szego m atrix (2.2.14) are

Q = —^(R e (a lc i)  -I- |c i |2), E =  2Re(ciC-\) + Re(aZiCi) — ^ i?e(a“ ci),

2  =  - x \ c i \2 +  R e f i ^ c i ) ,  T  =  J ( |c i |2 -  /m (a [c i)) ,

© =  —^ / m ( a j c i ) ,  A =  y/2(Im (c\C -\) — ^ /m (a “ci)). (2.2.29)

2 .2 .3  A n ti-p la n e  shear: c a v itie s  an d  r ig id  in c lu s io n s

In order to evaluate the m atrix M  (see (1.2.18)) we analyse the model problems

(1.2.13),(1.2.20),(1.2.21) and introduce the complex valued function fljiz), j =  1,2, 

z = x i +  ix 2, such tha t

Redj{z) =  Xj +  w ^ \

Then, for a rigid inclusion the Dirichlet boundary condition (1.2.21) can be w ritten in 

the form

'tf(cr) -f-$(cr) =  const, |cr| =  1, (2.2.30)

and for an arbitrary cavity the condition (1.2 .20) is equivalent to (see, for example,

Muskhelishvili [83], Barenblatt and Cherepanov [6])

0(<r) -  #(ff) =  0, M =  l, (2.2.31)

where the conformal mapping function z =  cj(£) is given by (2 .2 .1).

One follows the standard technique (see, for example, Milne-Thompson [67]) and derives
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the following integral equation

/  m . da _  i  m d a = o
/  v - t ,  J  cr -  £
L L

for the Neumann problem (1.2.13),(1.2.20), and the equation

J  G - t  J  G ~ £

(2.2.32)

for the Dirichlet boundary value problem (1.2.13),(1.2.21). 

The functions $ j(z)  are given by the following expansions

(2.2.33)

= A jZ  + - f  + Y ,
B )(k)

z  f—' zk=2
k (2.2.34)

In the £ coordinates corresponding to the exterior of the unit disk and $2 admit the 

asymptotic expansion of the form

m )  = ( * j c - 1 + f 1)?+°(l?K)’ |?| °̂°-
Then, using the Cauchy theorem for evaluation of the integrals in (2.2.32), (2.2.33) and 

the conditions (1.2.18) at infinity, we obtain

A i =  1, B \ = ± |c i |2 — cic_i,

A 2 — —i, B 2 =  (± |c i |2 +  cic_i)L

where signs ”4-” and ” correspond to the cavity or rigid inclusion, respectively.

The asymptotic formula (1.2.18) can be rewritten in the form

M .
'1  1 ' 1 1 '
--- 1--- 4- M j 2

. z
w ^ \ z )  =  — -— /

A.'Kji y

and the Polya-Szego matrix M  is given by

\z\ —> 00 , (2.2.35)

M  =  27Tfl
/  T |c i|2 4- R e(cic_ i)  

\  7m (cic_i)

/m (c ic_ i)

=F|ci|2 -  R e(c ic-i)
(2.2.36)

The sign ”4-” is chosen for a rigid inclusion (the matrix M  is positive definite, |ci | >  |c_i |

C h a p t e r  2 32



2.2. EXPLICIT FORMULAE FOR POLYA-SZEGO MATRICES

(a)

0.5

-0 .5

-2

(C)

0.5 0.5

-0 .5 -0 .5

2 -2-2

Figure 2-1: The equivalent regions for Laplace operator:

(a) w(f) = £ +  ^ e x p f ^ " 1; (b) w(f) =  f  \  exp f  £ _1 +  \  exp f  £ "2;

(c) ) =  £ +  5 exp f

(d ) W(o  =  * +  j  exp f  r 1 +  j  exp f  r 2 +  ^ r 5-

for all finite volume inclusions) and the sign ” —” for a cavity (the Polya-Szego m atrix 

is negative definite). It should be noted tha t in (2.2.36) only two coefficients c\ and c_\ 

of the conformal mapping (2 .2 .1) are involved.

L em m a 2.1 In the state of anti-plane shear, for any finite cavity (or rigid inclusion) 

there exists a cavity (or rigid inclusion) of an elliptical shape with the same Polya-Szego 

matrix.

In Figure 2-1 the examples of equivalent domains axe presented.

2 .2 .4  C ircu la r  e la s t ic  in c lu s io n s

Below a simple example is considered - Polya-Szego matrices for an elastic disk of radius 

R  in an infinite elastic isotropic plane. Material of the circular inclusion is specified by 

the Lame constants and Ao, whereas /i and A are the Lame constants of the matrix. 

1°. For the Laplace operator (anti-plane shear) the coefficients aj,j3j in (2.2.34) are 

given by

Ai =  l, B ^ ^ - ^ R 2,
M +  /U0
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M  = - i ,  B 2 = —— — R 2i.
M +  Mo

Then the Polya-Szego matrix can be represented in a simple form

M  = 2tr/i—— - R 2I ,
Mo +  M

where I  is the identity matrix.

The matrix M  is positive definite for Mo > M and negative definite for mo < /*•

2°. For the case of the Navier system given the linear displacement field at infinity, the 

Kolosov-Muskhelishvili complex potentials are represented by

<p{z)

'ip(z)

Qjz | j R  Mo ~M 
R  z  x/^o 4- M ’
7 2T +  2i^e(q)i? /i0( x -  1) -  mQ*o ~  1) +  q /  J _

/i(x 0 -  1) +  2/i0 2 r

where the constants a  and 7  axe chosen in accordance with (2.2.7). 

Thus, the Polya-Szego m atrix has the form

_  R 2
V  = 1T  4 q

/ £  +  © £ - 0  0 \  

£ —0  5 + ©  0

\  0 0 2© /

where

0 =
Mo - M 2 /i0(x  -  1) -  m(^o ~  1)

(2.2.37)

(2.2.38)

(2.2.39)

x/i0 +  m’ (x -  l )2 //(x0 — 1) +  2/i0

The m atrix P  is positive definite provided hq >  m and Mo(^ — 1) >  m(x o — 1) 5 and it is 

negative definite when /io <  M and Mo(-  ̂— 1) < M^o — !)•

2.3  E ffective m o d u li o f  d ilu te  co m p o sites

2 .3 .1  A n ti-p la n e  sh ear  

A sym p totic  form ulae

The solution of the system (1.2.13)-(1.2.15) in a finite region Q, (e.g. [—1/2,1/2] x 

[—1/ 2 , 1/ 2]) with a small inclusion co£ can be represented in the form

u (x ) = v ( x ) +  eu^e-1#) + e2V(x)  +  0 (e 3), (2.3.1)
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where
2 F)

(e-1 a;)—— (0)
i=i x%

and are defined in Section 1.2.2. Region D can be regarded as an elementary cell 

of dilute composite filled with small inclusions u e.

The third term  of the asymptotic expansion satisfies the boundary value problem

AV =  0 , x e n ,  (2.3.2)

d V , s I d  Xk dv ,
^ {X) =  t o t o l  £  f e - W ’ »  e  d(1’

j , k= 1 11 11 3

and admits the representation

V(x) =  J 2  M ,'* [r« (x )  +  2^ p ] j 2 <2-3-3)
j ,k= 1 J

where T^k\ k  =  1, 2 , are the dipole fields specified by

r\C

- l i A T ^  +  —  (a?) =  0, x e Q ,  (2.3.4)
d xk

d r w
— — (x)  =  0, x  G  d£l.

dn

As follows from Oleinik, Panasenko and Yosifian [86], the effective moduli for a com­

posite with the elementary cell Q can be calculated as

H n k =H J  W n) • V u ^ d x  +  no J  Vu(n’°) ■ W M )dx, (2.3.5)

where satisfies the equations (1.2.13)-(1.2.15) in £2, the periodic boundary conditions 

and adm its the representation

u(n\ x )  = x n +  ew^n\ e ~ l x )  +  e2V ^ ( x )  +  0 (e 3). (2.3.6)

Using the Green’s formula one can rewrite the “energy integral” (2.3.5) in the form

H nk = y>{ j n̂ n)̂ d°+/ ”*u(n,̂ rd5} - «  /  n>“(n,0)̂ rds’
dur duje
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where T is the outer boundary of Q.

Due to (1.2.15), the two last integrals are cancelled down. Then replacing u by (2.3.6) 

with =  x n we obtain

„ t £  M jmT ^ ( x ) — (0)— (0)ds
i P j ,m= 1 1 3

f  y2 a 
V^nk f3j£ /  M nmx kA T ^ d x ,

771=1

and due to (2.3.4),

Hnk — ySnk +  £ 2 M nk +  0 (e 3). (2.3.7)

C o m p a riso n  w ith  p rev io u s  re su lts

As proved by Hetherington and Thorpe [42], the effective shear modulus /7 for a periodic 

dilute composite containing cavities or rigid inclusions of a regular polygonal shape is 

specified by the formula

- ^  =  1 ±  G { n ) f  +  O ( f ) ,  (2.3.8)
Vo

where /  is the area fraction of inclusions, and for n-sided regular polygons the function 

G  has the form
_  t a n j i r / n )  T4(l/n )  

( ' 2 i r n  r 2(2/n)

The conformal mapping of n-sided regular polygon is defined by

_ n  n Y - ,  2 n  — 1 (n — 2 )(2n  — 2 ) \
+  1 +  „ 2(2n -  +  3n3(3n -  / '  ( ’

Jasiuk [44] derived th a t in terms of coefficients of the expansion (2.2.1) or (2.3.9) the 

quantity /  from (2.3.8) admits the representation

/  =  t t£2 { \ c i \ 2 -  m|c_m|2V
'  771=1 '

Here £ is a small non-dimensional positive parameter characterising the size of the defect 

in comparison with the size of an elementary cell. It was also proved by Jasiuk, Chen
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and Thorpe [45] tha t

m = l

47r2n r 2(2/n) 
tan(7r/n) r 4( l/n )  ’

and therefore, the asymptotic formula (2.3.8) can be written as

—  =  1 ±  2t t |c i |V .  (2.3.10)
Mo

On the other hand, it has been shown that for a dilute periodic composite material the

Hetherington and Thorpe [42]. Moreover, asymptotic formula (2.3.7) yields the following

of (2.3.7)) matrix of effective elastic moduli.

2 .3 .2  P la n e  s t r a i n  

C lasses o f eq u iv a len t d o m a in s

Consider the effective moduli of the Navier system. First, we write equation (2.1.1) in 

the m atrix form

m atrix H  of effective moduli is specified by (2.3.7). In particular, when the defects are 

cavities or rigid inclusions of a regular polygonal shape we obtain the result (2.3.8) of

L em m a 2.2 In the state of anti-plane shear for any dilute periodic composite containing 

small cavities (or rigid inclusions) there exists an equivalent periodic composite medium 

containing elliptical cavities (or rigid inclusions) with the same (in the asymptotic sense

T>(d/dx)HT>T (d /d x )u  = 0 , (2.3.11)

where

/ 2 m +  A A 0 \

7~L — A 2 p  A 0 

\  0 0 2 (i J

(2.3.12)

The m atrix of effective elastic moduli of a periodic composite material with an elemen­

tary cell containing an arbitrary small inclusion is approximated by (see Babich, Zorin, 

Ivanov, Movchan and Nazarov [3])

n  =  H  +  e2V  +  0 (e 3). (2.3.13)
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(a)

0.5

-0 .5

-2

(C)
0.5

-0 .5

- 2

(a )

(c)

Figure 2-2 : Equivalent cavities for the case of plane strain:

w(€) =  f + & -1  +  ? r 2; (b) w (o  =  £ + ! r 1 +  J e x p f r 2;

w ( f ) = f  +  5 r 1 +  i e x p ¥ r 2; (d) ^ ) = c  +  k - 1 +  i e x P 2| * r 2.

The structure of the m atrix of effective moduli can be analysed, and the analysis shows 

tha t the same set of effective elastic moduli may characterise composite structures con­

taining different types of small defects. Moreover, one can derive relations between the 

conformal mapping coefficients which provide equivalence in the above sense. Namely, 

if the following quantities f2, E, S, ©, A, T  from (2.2.15) are the same for 

two different conformal mappings, then the effective moduli matrices also coincide (to 

first order accuracy).

In particular, equation (2.2.17) implies that if |c_21 — const and c\ and c_i are fixed, 

then the first order approximation for the effective moduli does not depend on arg c_2. 

Figure 2-2 shows the examples of such cavities.

T h e  co m p lian ce  m a tr ix

Using the technique mentioned above one calculates the compliance matrix. For a 

periodic composite material with small inclusions it has the form

(2.3.14)C. =  C  -  e 2C P C  +  0 ( e 3 ) =  C - e 2S  +  0 ( e 3 ) ,
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where the compliance m atrix of isotropic material

i
V

E ( v ~  1 ) 0 \

1 _ u 1 n
E { v - l ) E u

o 0
l

E (  1 —i/) /

with E  is the Young’s modulus, v  is the Poisson ratio. 

For the case of cavities £  is given by

( —2f2 -I- S — 2Q -  A — 20  \

E
-2 Q  -  E -  iS  A +  2© 3

A - 2 0 A +  2© 2T /

(2.3.15)

where constants f2, E, H, 0 ,  A, Y are presented by (2.2.15), and they are independent 

of the Lame moduli fi and A of the elastic material. It follows from (2.3.15) tha t the 

correction term  £  for the compliance matrix of the homogenised medium is independent 

of the Poisson ratio of the elastic matrix. Thus, we have proved the following

T h e o re m  2.2 The correction term £  in the representation (2.3.14) of the compliance 

matrix for a periodic composite containing small cavities is independent of the Poisson 

ratio and depends on the cavity morphology and Young’s modulus only.

E x am p les :

1. For the case of a crack characterised by the conformal mapping cj(£) =  R(£  +  | )  the 

correction term  for the effective compliance matrix of the periodic material is given by

/  0 0
° ^

£  = ? -R 2e2 
E

0 - 8 0

\ 0  0 - 4 /

One can see tha t for a composite material with small cracks aligned along the rri-axis 

the homogenised anisotropic material has the same Young’s modulus in xi-direction as 

the unperturbed isotropic material.

2 . For the case of a circular cavity characterised by the conformal mapping u;(£) =  

the correction term  £  is
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£  =  - e 2R'  
E

( - 3  1 0 \

1 - 3 0 .

\  0 0 - 4  /

3. For an equilateral triangle, one has o>(£) =  R(£ + 3̂ 7) and

£  =  - e 2R z 
E

7  
9

0 \

—3 | 0

\  0 0 - 4  J

4. For square cavities characterised by the conformal mapping u;(£) =  the

correction term  for the effective compliance matrix is

£ = ^ £2R2 
E

/  9  67 53
' 84 84 0 \

53 
84

\  0

00  _9  Djf_ r»
84 Z 84 U

67

0  - li )

5. For a square cavity rotated through the angle 7r /4 , one has cj(£) =  R(£  +  g|g-) and

£  = - £ 2R 2 
E

/  o 29 79
1 60 60 0 \

79 
60

\  0

29 v 

0 12

yy _o^y r»
60 60 u

One could mention tha t the diagonal entries for the compliance matrices in examples 

2-5 were evaluated by Jasiuk [44], and our results are consistent with those published 

in [44].

6 . In the case of an ellipse with the conformal mapping function u>(£) =  R(£  +  y ) ,  the 

correction term  for the effective compliance matrix is given by

£  =  ^ e 2R 2 
E

(  —3 — m 2 +  4m m 0 \

V

1 — m 2 

0

—3 — m 2 — 4 m  0 

0 - 4  J

7 .  For an elliptical cavity of an arbitrary orientation the mapping is u>(£) =  ci£ +  

where c\ and c_ 1 are complex coefficients. The m atrix £  takes the form

" 21 1
f  =  e £ |Cl1

/  o |c _ i |2 —4 i2 e(c ic _ i)
'  ~ 3 IdP

lc i r

2 V 2 ^ F i l

i - H' Cl \Z
o _  | c - i | 2+ 4-R e(c ic_ i) o i / 2 Irn ( c i c - i )  

Icil2 V  fcTp

2 ' / 2 Jm f f f i - 1> - 4 /
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2.3. EFFECTIVE MODULI OF DILUTE COMPOSITES

E xam ples o f effective m oduli

In order to compare this method with results of Jasiuk [44], Jasiuk, Chen and Thorpe 

[45] and Thorpe and Jasiuk [111], the examples are presented where the effective elastic 

moduli of periodic composites with small cavities (or rigid inclusions) are evaluated for 

defects of different shapes.

When only non-zero coefficients of the conformal mapping function are ci, c_i, c_ 2 

(other coefficients are zero), the explicit formulae for the Polya-Szego matrices are given 

by (2.2.17), and the effective elastic moduli can be evaluated from (2.2.17). In particular, 

when Im (c iC -i) = 0 the effective material is orthotropic. For an elliptical cavity c_ 2 =  

0 , the condition 7m (cic_i) =  0 corresponds to the case when the axes of the ellipse are 

parallel to the coordinate axes. Periodic composites with small circular cavities (or rigid 

inclusions) and equilateral triangular cavities (or rigid inclusions) always correspond to 

effective orthotropic media.

Following Jasiuk [44], one introduces the directional Young’s moduli E i, E 2 , E 3 such 

tha t
1 1 i  1

~Er — w i, -=- =  C22, —  = C \2 + -C 33,Jh l Jl/2 XV3 Z

and also the average Young’s modulus E  is given by

E  2 \  E \ E 2 j

It can be observed tha t for equilateral polygons the average Young’s modulus and the 

directional Young’s moduli are equal. In terms of components of the Polya-Szego m atrix 

the average effective Young’s modulus E  is given by

i 4 + l £2+0(^  <2-3-i6>

with
  (P 11 +  P 22)(^2 +  2A/i +  2/i2) — V u { \  +  2 f i ) 2 \  

4/i (A +  /i) (2/i +  A)

Here e is a small positive parameter which is equal to a normalised diameter of a small 

defect in an elementary cell.

The table below includes the values of the coefficient a  from the expansion (2.3.16) 

obtained for dilute periodic composites containing cavities or rigid inclusions.
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2.4. MAPPING TO A COMPOSITE MATERIAL WITH ELLIPTICAL VOIDS

Shape Conformal mapping ao (cavity) and Qqo (rigid inclusion)

circle u>(£) = a:o =  37tR2

«oo =  - ^ ^ i r R 2

ellipse <*>(«) =  -R(f +  ? )

R, m  €  R

ao =  7i\R2(3 +  m 2) 

a 00 =  [ - ^ = g ± l + m 2^ f l 2

ellipse 4 0  =  ^  +  £f

ci, c_i e  c

a 0 =  7t[3|ci I2 +  |c_ i|2] 

aoo =  [ - i£̂ f t l |c i |2 +  ^ | c _ 1|2
. 2(x+l)7m2(cic_i) i

(j<|ci|2 + |c_l|2)>f J

triangle T̂ry II + ao =  3 |? ri?2

ctoo =

square a 0 =  2 g 7r R 2

square

(rotated through 7t / 4)

ii + a 0 =  3 §j7r R 2

2.4  M ap p in g  to  a co m p o site  m ateria l w ith  e llip tica l vo ids

As proved by Olver [88] (also see Milton and Movchan [70]), for any two-dimensional 

anisotropic medium there exists an affine transformation which maps the given bound­

ary value problem to a boundary value problem for an orthotropic material. In other 

words, one can establish a correspondence between a generally anisotropic medium and 

a medium with an orthotropic symmetry.

Consider a dilute two-dimensional periodic composite containing small cavities, and 

assume th a t the m atrix of effective elastic moduli is specified by (2.3.13). In this section 

we show tha t in certain cases one can find an affine transformation which establishes 

a correspondence between the given dilute composite and another periodic composite 

containing small elliptical cavities. We seek the required mapping m atrix in the form

9 (  *11 *12 \
T  =  J  +  £2 , det T  =  1. (2.4.1)

\  *21 *22 /
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2.4. M APPING TO A COMPOSITE MATERIAL WITH ELLIPTICAL VOIDS

Then it follows from the results of Milton and Movchan [70] that the modified matrix 

of elastic moduli is given by

where

= u  + e2V  +  Of

( 2tn 0 y/2 t n  ^

Q = 0 2^22 V%t2l

\ \ j 2 t21 VS*12 0 J

(2.4.2)

and

V  =  Q ' H  +  ' H Q  +  V (2.4.3)

is the transformed Polya-Szego matrix. The objective is to choose the mapping m atrix 

(2.4.1) in such a way tha t the matrix (2.4.3) corresponds to an elliptical cavity, and 

therefore, (2.4.2) can be interpreted as a matrix of effective elastic moduli for a periodic 

composite containing small elliptical cavities.

The second condition (2.4.1) implies

First, the m atrix 'H should be block-diagonal, i.e.

(2.4.4)

"Hl3 — C2j\/2(A  +  2fl)(ti2 + t2l) +  Pl3^ — 05

7̂ 23 =  £2^\/2(A  +  2/i)(ti2 +  2̂l) +  7*23^ =  0- (2.4.5)

One can see tha t the above system is solvable with respect to t i 2, £21 if and only if

Pis = 7̂ 23- (2.4.6)

Suppose th a t the original Polya-Szego m atrix V  satisfies (2.4.6). Then one can choose 

the transform ation m atrix (2.4.1) with real components such tha t relations (2.4.4),
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2.4. MAPPING TO A COMPOSITE MATERIAL WITH ELLIPTICAL VOIDS

(a) (b)
2

1 0.5

0

•1 -0.5

•1 0 1 2 -2

(C) W)

0.5

-0 .5

-2l
-2

Figure 2-3: The equivalent elliptical and nonelliptical cavities: 

(a) w( 0  =  f  +  5£-2 ; (b) w( 0  =  £ +  5 £ " 1 +  i exP f £ -2 ;

(c) w( 0  =  £ +  ^ e x p f £  ! +  ^  2; (d) w(f) =  £ +  ^  2

(2.4.5) hold. Then, the matrix 7* has the form

If

V  =

( 7*n +  4(2/x +  A)fn 

7*12 

0

7*12 0 \

7*22 — 4(2/i +  A)tn 0

0 7*33/

7*n +  7*22 =  2 (P i2 +  7 *3 3 ), (2.4.7)

and

27*33 — (>c— l ) 2(27*12 +  7*33) >  0 , (2.4.8)

then by appropriate choice of tn  it follows from (2.2.17) (with c_2 =  0) tha t 7* is the 

Polya-Szego m atrix corresponding to an elliptical cavity which can be mapped to the 

unit disk by

(2.4.9)

where ci, c_ 1 are constant coefficients (Im(cic_i) =  0) whose moduli are specified by

|c i |2 =  -2g7*33,
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2.4. MAPPING TO A COMPOSITE MATERIAL WITH ELLIPTICAL VOIDS

|c_ i |2 =  q[ 2P 33 — (V33 +  2'Pi2)(xr — l ) 2]. (2.4.10)

Note tha t the choice of ci, c_ 1 is not unique.

Thus, one has proved the following

T h e o re m  2.3 Let a homogenised composite medium have the effective elastic matrix

(2.3.13), where T* is the Polya-Szego matrix corresponding to a finite cavity. Also, 

assume that components 'Pki satisfy the conditions (2 .4 -6) -(2 .4 -8). Then there exists 

an affine transformation (2.4-1) which maps (in the sense of Olver [88]) the original 

boundary value problem to a new boundary value problem associated with the medium 

perforated by cavities of elliptical shape.

E xam ple :

Now consider a simple situation where a finite domain is mapped to the unit disk by 

the conformal mapping with only three non-zero coefficients (see (2.2.17)). In this case 

after the affine transformation (2.4.1)

T  =  /  +  e * ( * “  ‘ “ I

v - f e  -* 1 1 /

with

tn  =  7 r |c i | \ / |c _ i |2 +  2 |c _ 2 |2 -  7TjRe(cic_i),

( ,______________i 1/2
t u  = ± 7 t |2 |c i |2( |c_ i |2 +  |c_2|2) -  2 |c i|i2e(c ic_ i)^ /|c_ i |2 +  2|c_ 2|2 j  -  TrIm{ciC-i),

one has the modified equations which are related to the homogenisation problem asso­

ciated with the medium perforated by small elliptical cavities, and the corresponding 

coefficients of the conformal mapping axe given by

c i  =  c i ,  |c _ i | 2 =  |c _ i |2 +  2 | c _ 2 |2 .

Figure 2-3 shows the geometry of equivalent (in the sense of the Olver transformation) 

cavities.
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2.5. CONCLUSIONS

2.5 C onclu sion s

Starting with the definition of the Polya-Szego matrix in elasticity we described the algo­

rithm  for calculation its coefficients. This algorithm employs the Kolosov-Muskhelishvili 

potentials and the conformal mapping technique. As a result, the Polya-Szego matrices 

have been obtained for a wide range of defects. That includes cavities and rigid inclu­

sions of arbitrary shapes, some examples for elastic inclusions. The case of anti-plane 

shear has been considered for different types of defect.

In the second part of the chapter we considered the dilute composite media. The Polya- 

Szego matrix has a simple meaning for such kind of media. It describes the correction 

term  for effective (homogenised) moduli. This result is derived on the basis of the 

asymptotic procedure. Then we also analysed the properties of the composite media. 

Two following topics have been considered:

First, the correspondence between different types of cavities in the sense of effective 

elastic properties of dilute media shows links between cavities of different shapes. In 

conductivity any cavity has an equivalent elliptical one, in elasticity it is true under 

certain conditions only.

Second, the perforated materials with the cavities of arbitrary shapes are considered. 

One shows tha t the correction term  of the compliance matrix for homogenised media 

is independent of the Poisson ratio. This result has been proved for dilute composite 

materials analytically.
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Chapter 3

Polya-Szego m atrices in 

optim ization problem

3.1 R ecen t resu lts

T h e  p ro b le m  o f sh a p e  o p tim iz a tio n . We will consider the problem of maximiza­

tion of the stiffness of an elastic plane weakened by a cavity of a fixed area and loaded 

by a uniform stress field cr at infinity. This problem is equivalent to minimizing the 

energy decrease stored in the medium under some loading. The total elastic energy 

stored in the plane is infinite, nevertheless, the energy decrease is finite. One assumes 

tha t the cavity occupies a simply-connected domain in R2.

The shape of optimal cavities and the optimal properties of composites have been studied 

for a uniform hydrostatic loading and a biaxial loading with the principal stresses of the 

same sign (see Cherepanov [16], Vigdergauz [115], [117]). Several optimal cavities in a 

body have been described by Vigdergauz [116]. Vigdergauz and Cherkaev [119] studied 

numerically the optimal cavities under by-axial tension-compression.

In this chapter the case of pure shear loading is considered. One will show tha t the 

optimal cavity is a curved quadrilateral, and the angle near the corners is equal to the 

critical Carothers [14] value ~  102.6° (see Figure 3-1).

The formulation of the optimization problem and discussion of the necessary conditions 

of optimality and their applications to dilute composites is considered at the beginning. 

Next, one presents a minimization algorithm based on the concept of the dipole matrix 

corresponding to remote field associated with finite cavities in an elastic plane. It 

enables one to produce explicit representation of the energy increment in terms of the
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3.2. FORMULATION OF THE PROBLEM

dipole coefficients. The exterior of a cavity is presented as a conformal image of the 

interior of the unit disc. The elements of the dipole m atrix are evaluated in terms of the 

coefficients of the truncated series expansion of the conformal map. Finally, the energy 

increment (given by the dipole tensor) is minimized over all possible values of the the 

coefficients in the expansion. The resulting sequence of cavities approaches to a limiting 

shape of a  quadrilateral.

Afterwards, the complex variable technique which is similar to the method of Cherepanov 

[16] is used. One uses optimality conditions and Kolosov-Muskhelishvili potentials in 

conjunction with conformal mapping representation of the unknown domain in order to 

set up the integral equation for the unknown conformal mapping. The integral equa­

tion is reduced to a finite dimensional system of linear equations by expanding all the 

quantities into truncated power series. Solving the linear system, one finds the same 

conformal map obtained by the direct minimization procedure described above. Finally, 

the local behaviour of elastic fields near the corners of the cavity contour is studied using 

the asymptotic expansion of the solution near the corner and the optimality conditions; 

in this way the exact value of the angle at the corner is determined.

C o rre sp o n d e n c e  w ith  co m p o site  m a te ria ls . If one removes any restriction on 

the topology of the structure (number of holes) then one has to consider composites 

-  materials with infinite number of infinitely small holes. The optimization problem 

for composites has been solved analytically (see, for example, the papers by Kohn and 

Strang [53], Gibiansky and Cherkaev [28], [29], Milton [68], Bendsoe [7], Grabovsky and 

Kohn [35]). These analytical solutions have showed that the elliptical hole minimizes the 

energy increment if the principal stresses have the same sign, even when the topology 

is unrestricted. However, if the principal stresses have opposite sign then a second rank 

laminate structure minimizes energy. Shape found in this chapter is the best if one 

restricts the number of holes to 1. It is important to refer to Cherkaev, Grabovsky, 

Movchan and Serkov [17], [100], where this idea has been suggested.

3.2 F orm ulation  o f  th e  prob lem

In this section the boundary value problem and the appropriate variational formulation 

are given and the optimality criteria is discussed.
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3.2. FORMULATION OF THE PROBLEM

E la s tic ity  p ro b lem . First, one considers the boundary value problem in an elastic 

domain with a single finite cavity G. The elastic material is characterised by the Lame 

constants p  and A. On dG  the free-traction boundary conditions are specified, and at 

infinity the uniform shear stress field is given. The displacement field u  satisfies the 

following boundary value problem in Bp = {(x, y)  : x 2 + y 2 < p2} where p is sufficiently 

large and r i j  are components of the unit outward normal vector

p V 2u  +  (A +  p)V V  • u  = 0, x e B p \ G ,

a ^ ( u ; x )  = 0 ,  x e d G ,  (3 2 .1)

£j(n)(u; x)  =  afjUj ,  x  G dBp.

Following variational technique (see Sokolowski and Zolesio[104]) one defines the energy 

space W( B P \  G) for the boundary value problem (3.2.1) and introduces the norm

=  2 J  GijZijdx, (3.2.2)
BP\G

The elastic potential energy of the region which is bounded by dBp can be evaluated as 

a difference between the total strain energy (3.2.2) and the work of external forces (see 

Sokolnikoff [103], p.384)

£{u;B p \  G) = -  /  ai j nj uids, (3.2.3)
dBp

One remarks tha t the work of external forces on the boundary dG  and external body 

forces is zero due to (3.2.1). The solution of the boundary value problem (3.2.1) min­

imises the potential energy (3.2.3)

£( u- Bp \ G )  = min £(£/; Bp \  G), (3.2.4)

where U  are all possible vector valued fields which provide a finite energy (3.2.3). In 

a similar way, the potential energy of the homogeneous disk with the radius p can be 

w ritten as

£(u-,Bp) = \\u\\2Bp-  (  afjrijUids,  (3.2.5)
dBp
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3.2. FORMULATION OF THE PROBLEM

The increment of energy is defined as a difference between two functionals associated 

with full energy in the homogeneous disk Bp = {x  E R2 : ||sc|| <  p] and in the disk Bp 

weakened by the cavity G

SWg ,ct°? =  lim {£ (u ; BP\ G )  -  S ( u ; Bp)}’■? p—> oo

=  jbin  ̂ + \  J  a i j £ i j d x  J , (3.2.6)

'  BP\G '

where <7 ?°, ef f  axe components of the stresses and the strains tensors in the homogeneous 

disk, and aij, £{j are the stresses and strains in the disk Bp with the cavity G.

O p tim iz a tio n  p ro b lem . The main objective is to find the shape of the cavity which 

provides the minimal absolute value of the energy increment. Note tha t the energy 

increment is negative for the disk with a cavity. The constraints of the fixed area and 

boundness of the domain are imposed. The optimization problem can be formulated in 

the following form: find a bounded domain G* of a fixed area such that

=  m jpt5W  = max lim {m m £(t/; Bp \  G) — m m ^(l7; Bp)}, (3.2.7)

where the maximum for G is taken over all simply connected bounded domains of a 

given area. Let one now discuss the set of admissible minimisers. An infinite plane 

with an arbitrary single cavity can be mapped to the exterior of the unit disk by the 

conformal mapping of the form

<■>(€) =  R
1 00
7 +  E ^ ’

71= 1

(3.2.8)

where R  and cn are constants. The constraint of the fixed area can be written in terms 

of the conformal mapping coefficients

S(G)  =  7rR2 ( l  — re|cn|2>j =  const.
^  71= 1 '

(3.2.9)

One determines the set of admissible cavities by their coefficients R  and Cn of conformal 

mapping to the unit disc. The optimization problem becomes:

Find the set of coefficients R  and Cn from (3.2.8) restricted by (3.2.9) such
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3.2. FORMULATION OF THE PROBLEM

Applying this condition to our formulation with a pure shear prescribed at infinity, one 

can observe th a t it is impossible to have att = const on all parts of boundary. To resolve 

this contradiction it has to be assumed tha t att is piece-wise constant function taking

the boundary. Thus one must conclude th a t the optimal cavity is necessarily bounded 

by a non-smooth curve. In section 3.6 one will compute the angle at the corners using 

asymptotic analysis of a stress field near the corner.

energy of a body with cavities is the following. Consider a periodic structure with

The effective compliance tensor S* ( /)  of such a structure can be evaluated and one can

cavities shape. The bounds (obtained by Gibiansky and Cherkaev [28], Milton [69]) are 

proved to be exact, and they correspond to the “second rank” matrix laminates. 

Suppose tha t the optimal composite with a small volume fraction /  < <  1 of cavities 

occupies the volume A  and subject to a uniform average stress field cr due to an external 

loading. The total volume of the cavities is equal to fA .  The energy change associated 

with the cavity can be obtained as

Using the explicit formula for the energy of the optimal composite derived by Gibiansky 

and Cherkaev [28] one can evaluate the increment

where T  =  — (2// +  A)/(4/i(A +  /i)), A and are the Lame elastic moduli, and o i , <72 are 

the principal stresses.

It should be noted tha t this approach does not pose any restrictions to the connectness

will be greater when an additional restriction -  single-connectness of cavities is imposed.

values c and — c. The points of discontinuity of att must correspond to irregularities of

R e la te d  o p tim a l co m p o site s . The possible approach to calculation of the optimal

cavities, which is characterized by the volume fraction /  and by the shape of cavities.

find the bounds for the effective shear and bulk moduli which are independent of the

(3.2.13)

Tc(<ti -I- a2)2 , a \a 2 >  0, 

Tc(ai -  a2)2 , o-i(72 <  0,
(3.2.14)

of the elastic domain. Therefore, one could expect th a t the cost of the optimal problem
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3.3  M in im iza tio n  tech n iqu e

This optimization problem can be reduced to minimisation of a function of several vari­

ables. The unknown variables are the coefficients of the conformal mapping subject to 

the restriction \cn\ <  1 /y /n  according to (3.2.9). Our purpose is to find the set of con­

formal mapping coefficients {c^} minimising the absolute value of the energy increment

(3.2.10). In other words, the problem reduces to multi-dimensional minimisation of a 

function f  of 2 N  variables (the conformal mapping coefficients are complex). To do 

this, one uses the downhill simplex method (see Press et al [91] and section 3.7 for more 

details).

The calculation confirms tha t the optimal construction for a uniform loading (a n  = 0 2 2 ) 

is a circular cavity and the optimal construction for a uniaxial loading is a crack oriented 

along the loading line. For the case of composition of two uniaxial loadings of the same 

sign the optimal shape will be the ellipse oriented along the direction corresponding to 

the maximal principal stress and specified by the following conformal map (Vigdergauz 

[116])

, a  — b \  1
£ + £ =  — , (3.3.15)

0 022a +  b J £

where a and b are semi-axes of the ellipse, and a n , 022  are principal stresses of the same 

sign.

The energy increment associated with the optimal elliptical cavity of the unit area can 

be estimated as in Gibiansky and Cherkaev [28]

The properties of the optimal field for (a \a2 >  0) reduce to the constant dilatation (or 

constant first invariant of the stress tensor) in the exterior domain and the constant 

tangential stress on the cavity boundary. In the next section we describe our results for 

the remaining case when <7102 <  0.

3.4 O p tim a l sh a p e  o f th e  cav ity

In this section the complex variable technique is used to compute the shape of the 

optimal cavity th a t gives minimum for the absolute value of the energy increment in
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the state of a shear loading applied at infinity. First, one applies the minimization 

procedure of Section 3.3 and evaluates numerically the values of the coefficients of the 

conformal mapping function. Then, this mapping function is used to solve the direct 

elasticity problem for an optimal domain.

3 .4 .1  O p tim iz a t io n  o f  th e  sh a p e  b y  th e  d ire c t m e th o d

Now consider the cavity under a shear loading. The optimal bound for the energy 

increment is well known (see, for example, Gibiansky and Cherkaev [28]). It corresponds 

to the multiply connected laminated composites

The calculations show tha t the absolute value of the energy increment for a circular 

cavity is two times greater than  the optimal one (3.4.1). Our aim is to find the geometry 

of the region, which is specified by a smaller energy change than the circular cavity and 

which is the best among simply-connected domains.

Using the exact representation for the energy increment (3.2.10) together w ith the min­

imisation procedure, we find, for N  = 3,

“' © ^ ( l  +  ^ V ) -  (3-4.2)

Here the constant R  is chosen in such a way tha t the cavity has a unit area.

Increasing the number of term s in (3.2.8) and taking into account 7th, 11th, 15th and 

19th terms we calculate the non-zero conformal mapping coefficients cn for the optimal 

domain (see Figure 3-1). The approximate values of Cn are given in Table 1.

Coefficients N  = 19 iV =  15 N  = 11

ir-ll N  = 3

C3 0.14445 0.14420 0.14372 0.14251 0.13814

C7 0.01699 0.01683 0.01652 0.01575

Cll 0.00552 0.00539 0.00513

Cl 5 0.00250 0.00239

C19 0.00133

T ab le  1. Coefficients of the conformal mapping obtained by the optimization

procedure.
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Figure 3-1: The shape of the optimal cavity.

The energy increment for such a  domain can be specified as

A £ =  4 r - ^ r >  (3-4 3 )

where the coefficient K  is given in Table 2 as a function of the number N  of conformal 

mapping coefficients.

The number N  of coefficients Coefficient /C

3 3.72792

7 3.71725

11 3.71532

15 3.71473

19 3.71449

T ab le  2. The dependence of K  on the number of coefficients in the conformal

mapping series.

For a circular cavity under pure shear the coefficient /C in the formula (3.4.3) is equal to 

4, while the absolute minimum value is 2, as follows from (3.4.1). One can see (Figure 

3-1) that the number of coefficients is increased then the optimal domain approaches 

what looks like a square.

Note that an interesting case arises for non-pure shear. It has been found tha t the 

optimal cavity is close to a rectangular one with the sides ratio given in Figure 3-2. The
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that the cavity defined by (3.2.8) minimizes (3.2.7).

In other words the goal is to find an optimal single-connected cavity rather then an 

array of smaller cavities of the same area.

R e p re s e n ta tio n  o f th e  en erg y  in c re m en t. It is convenient to represent the energy 

increment in terms of ’’polarization” tensor (see Babich et al [3], Zorin, Movchan and 

Nazarov [127]) for precise proof of this representation)

5W = \ e - . V - . e ,  (3.2.10)

where Vijki, hJi k, I =  1,2, is the 4-th order “polarization” tensor (also called Polya- 

Szego tensor [90]). It has the same symmetry properties as the Hooke’s tensor Cijki- 

Namely,

Pi jk l  =  Pj ik l  ~  P ij lk  =  Pk l i j  5

and the number of independent elements is six for 2D geometry. The “polarisation” 

tensor characterizes the remote displacement field associated with the presence of the 

cavity G. It also characterises the morphology of the cavity and elastic constants of 

the material. The explicit formulae for the tensor V  corresponding to a single cavity 

are presented in section 2.2.1 in terms of the coefficients of the conformal mapping

(3.2.8). Thus, the mathematical formulation of the optimality problem reduces to the 

maximization problem for the function of N  variables

max  (e : 'P : e).

Cn,n = 1..N
area(G) is fixed

N ecessa ry  co n d itio n s  o f o p tim ality . The stationarity conditions for the optimal 

boundary dG  are derived using the variational scheme (see Courant and Hilbert [21]). 

This condition states that an energy density must be constant along the boundary dG. 

For the case of a cavity with zero tractions specified on the boundary, this implies that 

the only non-zero component of stress att = cr : t  <g> t  must be of a constant absolute 

value on the cavity contour, where t  denotes the unit tangent to the contour:

|crtt| =  c =  const on an optimal boundary. (3.2.12)

(3.2.11)
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Figure 3-2: Geometry of the optimal cavity as the function of applied stresses.

ratio of the energy increment and the optimal energy (3.4.1) is presented in Figure 3-3. 

One can see tha t simply connected inclusions (holes) are not optimal (in sense of lower 

bound on energy (3.2.14)) when <71^2 <  0.

The result discussed in this section can be briefly summarised in the following lemma:

L em m a 3.1 In the state of plane strain in an infinite plane there exists a finite size 

optimal cavity. It has the following main properties:

• Elastic energy in such a plane is maximal among all other planes with different 

cavities of the same area.

• On the boundary of the optimal cavity the condition of the piece-wise tensile 

stresses hold \att\ =  const.

• This cavity is specified in terms of conformal mapping (3.2.8) with the coefficients 

given in Table 1.

3.4.2 P rop erties o f th e  optim al hole

In this section the Kolosov-Muskhelishvili potentials (p and ip are used to represent 

elastic fields in the exterior of the hole (Muskhelishvili [83]). The components of the 

displacement vector (1*1, 112)* are given by

ui  +  iu2 = ( i  +  ~  2^ C * )  +  k = \  + v,  (3.4.4)
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Figure 3-3: The normalized energy change versus applied stress.
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Figure 3-4: The distribution of the energy density for the optimal domain.
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where $  =  <//. The elements of the associated stress cr are given by

o il +  <722 =  4 Re$(z) ,
(3.4.5)

<722 -  Oil +  2i<7i2 =  2 +  ^ (z )),

where ^  =  ip1. For the conformal image of the unit disk under the mapping u>(£) given 

by (3.2.8) with coefficients from Table 1, the representation for complex potentials can 

be obtained from the analysis of the Kolosov-Muskhelishvili integral equation

j -  I  ^ dlT + j -  L  j ± M ° )  da _  i a r M  _ o (3.4.6)
2iri J  c t - £  2?t i J u){a){a — £)

7 7

where 7  is the unit circle. Omitting technical calculations one writes the series repre­

sentation for the complex potential </?(£) in the form

N

<p( 0  =  D  &"<"*’ l£l ^  (3-4-7)
7 7 1 = 1

where the coefficients /?m solve the linear system:

N —m —l

Pm  ^   ̂ P N —m —n—l^ P n  ^ 12^ ^ m l  =  Oj 771 =  l,iV ,
7 1 = 1

with Pk = ~ , ^ kk' .di1
f=o1 - E " = l « 5 n e +1

Note th a t in our particular case the symmetry conditions yield tha t all non-zero con­

formal mapping coefficients have indices 4n — 1, n = 1 ,2 ,3 ,... . They correspond to 

non-zero coefficients /?4n_3, n  =  1, 2 ,3 ,... , and all remaining coefficients vanish.

The complex potential t/>(£) admits the representation

m = -  x T e  ’1̂ - ™ — (3-4. 8)
* 771=0 71=1 ?

Note th a t the complex potential ip(£) has only a simple pole at the origin (the first term 

in representation (3.4.8)). At the same time the third term  in (3.4.8) compensates the 

singular part from the second term, resulting in ip to have the pole of order one only.
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Figure 3-5: The tangential stress on the boundary. 

For example, for N  = 3 we obtain

<p(t) = 2 +  \pi

v>(£) =  i R o  fS Q  +

I«l <  1.

f 3(6 -  2s/2)
(3.4.9)

(2  + s/2 ) ( t * ( l - V 2 ) + l ) J '

Taking into account the representation for stress components in terms of the complex 

potentials

CTll +  <̂ 22 -  2 (*7^ f  +  

a22 -  a „  +  21(712 =  2 +  £ § ) , (3.4.10)

one calculates the hydrostatic a n  + 022 and deviatoric 022 — 041 +  2zcri2 parts of the 

stress tensor. In Figure 3-4 the energy density of the elastic field is presented for the 

domain described by (3.4.2). Using (3.4.7) and (3.4.8), one calculates the tangential 

stress att on the boundary for different number of terms in the conformal mapping 

function (Table 1). The results are presented in Figure 3-5 for N  = 7,11,15,19. It is 

possible to see tha t the modulus of the tangential stress is constant along the contour 

except in a small neighbourhood of corners where it vanishes. The diameter of this 

neighbourhood vanishes as we increase AT. This observation confirms that the necessary 

condition of optimality (3.2.12) is satisfied for our domain under pure shear.

C h a p t e r  3 59



3.4. OPTIMAL SHAPE OF THE CAVITY

Beta = 102.6 Beta = 90

2

1

0
■1

■2
■3

-2 0 2

Beta = 135

-3
-2

-2

-2

Beta = 45

-2

-2

Figure 3-6: The regions obtained by the ’’modified” conformal mapping

Now one can consider the corners of the optimal hole. The Christoffel-Schwartz integral 

(Savin [97])

U)« )  =  ■ « /  ^ i p - d t  =  R ( j
£3 £7 £n  £15 7£- + — + — +  - — h - — i- —— i-... 
6 56 176 384 4864

r l 9

=  +  0.16667£3 +  0.01786£7 +  0.00568£n  +  0.00260£15 +  ...

specifies the mapping of the unit disk to the exterior of a square.

The slightly modified conformal mapping

« ) . * /
(t4 -  l ) a 

t 2
dt , a  = 1 — /?7r 1, (3.4.11)

where (3 is different from 7 r / 2 ,  corresponds to a transformation of the unit disk to a 

symmetric domain with the angle (3 near the corners (see Figure 3-6). The opening 

angle near the vertex of the point £ =  1 can be calculated as

(3 = n — argu/(£) — argu/(£)
£->■1+01-

=  x _ |  Urn lim ( ^ r ) = w - ( ^ _ ^ Y
t2 £ —» 4 + 0 i  t 2 J  V 2 2 /

The remaining three angles (near the points £ =  i, —1, —i) have the same values. Chang-
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ing (3 one can find the conformal mapping function which is in good agreement with 

the results of the optimization procedure. If we choose /?* =  102.6° then (3.4.11) can 

be rewritten in the form

u){£) =  r Q  +  0.14343£3 +  0.01751f7 +  0.00585£u  +  0.00275£15 +  ...^ ,

which agrees with Table 1. This suggests that the quantity (3* is the critical angle in 

the Carothers problem [105] (more detailed discussion is presented in Section 3.6, where 

one shows tha t this is not an accidental agreement).

3.5 S o lu tio n  o f  th e  inverse prob lem

The objective of this section is to solve the inverse problem: to find the shape of the 

quadrilateral G from the condition att =  c or — c on the boundary. One does not refer 

to the energy evaluation. However, it is shown tha t the results of the two approaches 

coincide.

The Kolosov-Muskhelishvili representation of the boundary condition

<j(")(u; x) = 0, x  6  dG, 

in term s of complex potentials ip and ip can be written in the form

<p(z) +  z<p'(z) +  ip(z) =  0, z E d G .  (3.5.1)

Under a pure shear loading the potentials tend to infinity as the following functions

(p(z) —>• 0, \z\ —> oo,

ip(z) —> ia 1 2 ^ 5  \z\ —> oo.

After mapping the exterior of G onto the interior of the unit disc by the conformal 

mapping z =  u(£), one can rewrite the integral equation (3.4.6) for the potential <p

<P(0 + A  <f -  iau R i  = 0, (3.5.2)Z7ri J a — £
7

where 4>(<t) =  and cu(a) is the conformal mapping function. The boundary of the
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unit disk is denoted by 7 . The condition of the piece-wise constant tangential stresses 

on the boundary is applied and the conditions (3.2.12) is rewritten as

att = 4Re (p'(z) = 4.Re 4>(£) =  ±4A, z G dG , (3.5.3)

where c =  4A  is an unknown constant. The unit circle |£| =  1 is the image of the

boundary. The points in the £-plane map to the corners of the domain G in

z-plane. Therefore

R e $ { e ia) = { A} a G (°’ 2 ) LJ(7r’ T ) ’ ^3 g ^
- A , a  G  ( § , t t )  U  ( ^ , 2t t ) .

Using the Schwartz formula tha t recovers the holomorphic function in the unit disk by 

the values of its real part on the boundary, we obtain

m  = |£ |< 1 .  (3.5.5)
7T I + Q

Expression (3.5.5) is the explicit representation for the complex potential $(£) satisfying 

the condition (3.2.12).

Taking the derivative of (3.5.2) and using the identity 4>(cr) =  2Re  4>(<r) — 4>(cr) and 

the expression for the derivative of the Cauchy integral, the integral equation (3.5.2) 

reduces to

/ /j.\ 1 /  uj(a)Re 4>(ct) 1 /  u;(ct)<I>(<t) 1
• t t V t t )  + - J  ^  ^ da - - f  - ^ y - d a  =  - R  dev <t°°, (3.5.6)

where dev cr =  0-22 — &n +  2zcri2 .

Using the expression (3.5.4) for the real part of the potential $(4) and formulae for the 

derivatives of the Cauchy integral, one represents the integrals on the left hand side of

(3.5.6) in the form

27ri
1

and

27ri
1_  f  = A _ n  y e )  ^  _  r  d<7
m  J  { ( r - Q 2 2 i r i \ J  { a  -  £)2 J { o  -  0

7  71 72
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A
2 ni

+  f  j ^ d a -  f  j ^ d a )  =
J  ( ° - Z ) 2 J  ( ° - 0 2 J  n ( e - i )
73 74

71 72 73 74

where 7 1 , 7 2 , 73  and 74  are the arcs of the unit disk between points 1 and z, z and — 1 , 

— 1 and —z, —z and 1, respectively. After some laborious but simple calculations using 

the symmetry of the conformal map

u)(i) =  —iu>(l), u(—1) =  — cj(1), lj(—i) =  zu;(l),

and the Cauchy formula for the holomorphic function in the unit disk, one obtains the 

integral equation for the unknown function u;(£), |£| < 1 , £ 7  ̂ l ,z, —1 , —z,

8  z
tt(1 - f 4)

€ « ( « ) - u»(i)) -  2 (<✓({)+  p )

2 f  a) ( a )  2 f  cu ( a )  R  __ _ _ N
H— : /   zda  H : -------dcr =  —  dev cr°°, (3.5.7)

m  J  a  7rz J  o  -  £  2 A
1 - 1

where the integrals are taken over the quarter arcs of the unit circle located in the first 

and third quadrants respectively. Now one represents the conformal mapping function 

u) by the Laurent expansion about the origin

w(f) =  i i Q  +  ^ c mr )  = f l Q  +  c3̂  +  C747 +  c i ^ u  +  . .. .) . (3.5.8)

The function can be represented as the Taylor series

00
1  _  ^ 4fc

1 _  £4 “  ? ’
S k = 0

fc=0 k—0 '  m = l '

Integrands in (3.5.7) adm it the series expansion in different powers of £

1 &k-  u  w  L  •
fc=0
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CORNERS

After term  by term  integration of the series and collecting the coefficients near the same 

powers of £, we obtain

f  u j ' ( a )  f  c j '(ct)  r > v ^  2 ( 4 m  — 1)  V 4fc

Finally, after truncation of the expansion (3.5.8) by the highest power 4 ^  — 1, the linear 

system of equations for the coefficients C4m_ i , m  =  1..N is obtained

A  2 ( 4 r o - l )  , ^  2  ,  „  ,

X  2 ( m - n ) - l C4ra_1 4  E  C4”- 1 + 2 n  +  l  _ 0 ,  n ~ 1 - N - ( 3 -5 -9 )771=1 777= 71+1

Table 3 shows the values of conformal mapping coefficients cm for different iV. Those 

data are consistent with Table 1.

N  = 100 AT =  19 iV =  15

i-H 
T—tII N  = 7 II CO

C3 0.14484 0.13940 0.13759 0.13448 0.12825 0.11111

Cj 0.01727 0.01511 0.01437 0.01306 0.01034

Cll 0.00575 0.00435 0.00385 0.00288

Cl5 0.00271 0.00164 0.00119

Cl9 0.00152 0.00061

T able 3. Coefficients of conformal mapping obtained as the solution of the inverse

problem

Next section is devoted to investigation of the domain boundary near the corner. One 

shows that the corner angle is equal to the critical Carothers value (see Carothers [105], 

Markenscoff [60]).

3.6 A sy m p to tic  exp an sion  o f th e  op tim al so lu tio n  near th e  

corners

The results of the previous section show tha t any finite series of conformal map corre­

sponds to an analytical boundary of the cavity. Thus, one needs a different technique to 

deal w itl the fields near the assumed corners on the boundary of the optimal cavity and 

we need to demonstrate tha t the necessary conditions are satisfied almost everywhere. 

Consider the infinite plane with the corner point and the opening angle close to 7r /2 .
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Figure 3-7: The shape of domain with piece-wise constant tangential stresses on the 
boundary.

The exterior of the corner is filled by an isotropic elastic material, and zero traction 

boundary conditions are specified on the boundary. Such problem can explain the 

behaviour of the boundary near the corner points.

One looks for a solution of specified boundary value problem using the Airy stress 

function U (r, 6 ) written in polar coordinates. This method is well presented in litera­

ture (see, for example, Muskhelishvili [83], Sokolnikoff [103]). The Airy stress function 

satisfies biharmonic equation

v 2v 2c/(r, 6) = o, M ) en.

The components of the stress field in polar coordinates associated with the corner point 

are represented in the following form

1 d2U 1 dU d2U _  1 d2U 1 dU
° TT r 2 8 Q2 r dr ’ <700 dr2 ’ (Tr9 r  dr89 r 2 8 6

The polar displacements in the radial and circumferential directions are given by

8 U 1 , dX
2^  =  - ^  +  i (* + 1) r 0 0 ’

9 1 dU _L 1 ( _L 2 dx  fo c 9"\
=  +  4 f r ’ (3-6-2)
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CORNERS

where x  1S the harmonic function related to the Airy function by

V2U =  —  ( r — Y  
d r \  89 J

T he boundary value problem imposed in an infinite plane with corner point can be 

characterized by the Airy function of the following structure (Williams [121])

U (r, 0 ) = r Ai+1{&i sin (Ai +  1)0 +  62 sin (A* — 1 )6

+63 cos (Ai +  1)9 +  64 cos (Ai — 1)0}, (3.6.3)

whereas the harmonic function x  is given by

X(r, 9) = r A‘_11 -  j j frz cos (A* -  1)0 +  ^ 4 sin (A; -  1)0 j, (3.6.4)

The eigenvalues A; are uniquely defined by the corner opening and boundary conditions. 

For the case of homogeneous traction boundary conditions they are calculated as the 

roots of the equation

sin 2aA =  ±A sin 2a , (3.6.5)

where — 2a  is the corner opening. The main interest is in those solutions A of (3.6.5) 

tha t lie in (0,1]. For the corner openings from the interval (0 ,7r) (a  G ( f , 7r)), there are 

at most three solutions Ai <  A2 <  A3 =  1 in interval (0,1]. For detailed analysis of the 

corresponding eigenvalue problem we refer to Karp and Karal [51]. For example, when 

a  = ^  corresponding to opening 90°, there are three real eigenvalues Ai =  0.54448, 

A2 =  0.90853 and A3 =  1 in the interval (0,1].

The Airy function corresponding to the first eigenvalue has the form

C/C1) ~  r Ai+1/  cos (Ai +  1)0 — CQS--̂ 1 cos (Ai — 1)0 ! ,
L cos (Ai — l ) a  J

and satisfies the free-traction boundary conditions on the edges of the corner (0 =  ±a;). 

The corresponding displacement field in polar coordinate system is represented as

UM „  rA. (  °“  (Al +  1 )0  +  ^  C°S (Al “  ^  )  (3 6 6 )
\  — sin (Ai +  1)9 +  sin (A, - l ) o ) ’ ^

Ch a p t e r  3 66



3.6. ASYMPTOTIC EXPANSION OF THE OPTIMAL SOLUTION NEAR THE

CORNERS

, A +  3/iwhere x  =  —------- .
A +  /i

These vectors describe the symmetric part of the displacement field. In other words, 

the displacement component ur is an even function and the displacement component ug 

is an odd function of 6

U<n ~  r A2+1 (  sin (A2 +  1)0 -  s m ^ 2 +  *)a  sin (A2 -  I)*?}-
L sin (A2 — ljo; J

and the corresponding displacement field in polar coordinate system has a form

„ »  ~  ^  ( s in (A 2 + 1 ) 9 -  *  )  (3 6 7) 
U o s  (A2 +  1)0 -  cos (A2 -  1)0 )  ’

and represents a skew-symmetric field {ur is odd and ug is even).

The main interest is in the displacement field corresponding to the second eigenvalue 

A2 (skew-symmetric field). Only this field occurs in the vicinity of the corner under the 

shear loading at infinity because of the symmetry of the problem. The displacement 

field (3.6.7) produces singularity at the vertex of the corner and the non-zero radial 

stress component on the boundary

arr ~  ± 4A2r A2_1 sin (A2 +  l)o;. (3.6.8)

The intention is to find such an angle a  at which the singularity vanishes. Note tha t 

the third eigenvalue A3 =  1 produces zero stress field. The free-traction conditions lead 

to 61,625 being equal to zero in (3.6.3). The displacement field corresponding to 

this situation is the rigid body rotation field

(3.6.9)

It is similar to the situation which occurs in the problem of the optimal cavity. There 

is no singularity in the vertex of the corner from inside. From outside, if we apply the 

external stress field (shear loading) tha t does not vanish at infinity

0 o 12

U12 0
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then the radial stress component on the boundary can be found as

<Jrr =  ±o-i2 sin 2a. (3.6.10)

It characterises the piece-wise constant function and agrees with the optimality criterion 

formulated in the previous sections. Matching (3.6.8) and (3.6.10), one can see that 

A2 =  1. In this case the singularity in (3.6.8) disappears. Observe tha t by decreasing

the angle a  from 0 .757T (corner opening 90°) to a* =  0.7157r (corner opening 102.6°), we

obtain tha t the second eigenvalue indeed approaches 1 (see Karp and Karal [51]). The 

precise value of this angle can be found as the solution of the following transcendental 

equation

tan 2a* =  2a*. (3.6.11)

For a  < a* and a skew-symmetric loading, there is no singularity near the vertex of 

the corner: the singularity in radial stress component in (3.6.8) vanishes. For a skew- 

symmetric loading, the opening 2 (7r — a*) =  102.6° is the critical one (Carothers [105]). 

Thus one has shown tha t the singularity in stress is absent near the optimal cavity 

contour for the case of external shear loading.

3.7  N u m erica l p rocedu re and  ex iste n c e  o f  th e  so lu tion

Below one discusses two issues: existence of a solution and the numerical optimisation 

algorithm (see Sections 3.2 and 3.3). For more detailed analysis we refer to Sokolowski 

and Zolesio [104] and Press et al [91].

E x is ten ce  o f th e  so lu tio n . To prove the existence of the solution, the second con­

straint (finite size of the cavity) is essential. Consider a closure of a bounded domain 

in iV-dimensional space (each point of this domain specifies a set of coefficients of the 

conformal mapping). All unbounded domains are excluded from our consideration as 

they lead to failure of the second constraint.

Also one excludes the sets of coefficients which lead to self-intersection boundary. Let 

an iV-tuple of coefficients of the conformal mapping provide the boundary with self­

intersections. Then so will iV-tuples in the sufficiently small neighbourhood of the 

original point. Thus the region in iV-dimensional space describing the boundaries with
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self-intersection is open. Hence its complement is closed.

According to Weierstrass theorem such a function has both maximum and minimum 

(taking into account the condition 6 W  <  0 which is true for all increments associated 

with cavities).

D o w n h ill s im p lex  m e th o d , has been used in this work is discussed below. The 

downhill simplex method, optimization method which has been used in earlier calcula­

tions requires the values of the function only, and it does not require the derivatives. 

This simplifies the procedure; it works effectively even for the case when the function we 

minimise is not specified in the explicit analytical form. It starts not just with a single 

point, but with 2iV + 1 points, defining an initial simplex in 2iV-dimensional space. One 

assumes tha t the initial starting point P q  corresponds to a unit circle {cn = 0} and take 

the other points to be P n = P q  +  Xnen, where en are 2 N  unit basis vectors and Xn are 

constants representing the characteristic length scale along the direction en. They are 

chosen by using the value l / y / n  (the upper bound for the modulus of the coefficient Cn) 

as the characteristic length scale.

The basic idea of the downhill simplex method is to compare the values of the function 

at the 2 N  + 1 vertices of the initial simplex and move this simplex towards the minimum 

during the iterative process. On each step we evaluate the function at all vertices of the 

simplex and choose the maximal one, say P m. Then we archive the ’’reflection” of the 

point Pm with maximal value of the function via the simplex boundary. It means that 

we define a new position P r of the point Pm such that

P r =  (1 -  a)P* -  OiPmi

where P* =  ]Cn=i"n#m P™ is the centroid of all points with the exception of P m, 

and a  is the reflection coefficient which is the ratio of distance between P r and P* and 

the distance between P m and P*.

The reflected point P r will be on the line joining P m and P* on the opposite side of 

P*. Repetitive application of the reflection process leads to a step-by-step approaching 

in the direction of the minimum.

In the particular situation when f { P r) > f ( P n )  for all n  except n = m  the simplex is 

contracted along the direction P r — P m to P*. Alternatively, if the reflection produces 

P r such tha t /(Pr) <  /(-Pn), the simplex is expanding, and we attem pt to find a
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local minimum on the line P r — P m (the one-dimensional gradient method used in this 

particular situation).

After application of the ’’expansion” or ’’contraction” of the simplex we go back to 

the reflection procedure. The following convergence criterion is used with the simplex 

method

( Y Z t ' i n p ^ - f i P . ) } 2 ] 1' 2
2 N  + 1 J  ’

where e is a small positive parameter. In this work we used the Numerical Recipes 

routine “amoeba” Press et al [91] realising the downhill simplex method.

3.8  C onclu sion s

In this chapter the Polya-Szego tensors have been employed to solve the optimization 

problem. Namely, the shape optimization for a fixed area single cavity in an infinite 

elastic plane has been considered. This problem is of special interest since with homog­

enization technique it relates to the optimization of the dilute composites and defines 

new type of optimal microstructures subjected to shear. The last ones extend known 

types of structures (Vigdergauz structures, ’’confocal ellipse” structures by Grabovsky 

and Kohn, ’’second rank” laminates by Gibiansky and Cherkaev).

The problem has been studied in the following way. The elastic energy has been w ritten 

in terms of coefficients of the Polya-Szego matrix. Optimization algorithm has used 

the downhill simplex method together with certain constraints on the coefficients of the 

conformal mapping. As a result, the shape of the optimal cavity has been specified in 

term s of conformal mapping coefficients.

Then we investigated the properties of the optimal cavity, such as the tensile stress 

on the boundary, the properties of the displacement and stress fields outside of the 

cavity, stress distribution near the corners on the boundary. The results of this analysis 

confirmed the necessary conditions of optimality and gave the value of the corner angle 

(the Carothers value).

The inverse problem for shape optimization has been solved. Assuming the energy 

density was constant on the boundary of the cavity we obtained the set of conformal 

mapping coefficients and showed an agreement with the direct optimization method.
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Chapter 4

Crack-inclusion interaction  

problem

4.1 B ackground  and m otivation

The analysis of failure mechanisms of brittle-composite materials has design applications 

in a broad range of fields. These include defects-containing, porous, and fibre-reinforced 

materials. Examples of these materials are ceramic, which may contain flaws or pores, 

fibrous biological materials, porous rocks, porous high-strength metals at low tempera­

ture, and ceramic or metal composites. In other materials, like concrete or certain rocks, 

stiff inclusions co-exist in a soft matrix with pores and micro-cracks. In this context, 

fracture propagation is the dominant failure mechanism at the microscale.

It is obvious tha t fracture propagation is affected by the presence of inhomogeneities, 

which modify the crack trajectory and, consequently, the toughness of the material. 

For instance, the toughening effect of a diluted porosity remains controversial (see, 

e.g. Qaussen [19]; Duan, Mai and Cotterell [23], where the porosity consists of small 

cracks). In  fact, on one hand, pores may act as stress concentrators and initiate strain 

localisation and microcracking between cavities. On the other hand, pores may deviate 

the cnck path  from linearity and, when the crack tip intersects a cavity, this may 

produce a  stress release. From the latter point of view, pores yield a shielding effect on 

crack propagation.

The a)ove discussion elucidates the theoretical and practical relevance of developing 

analytical models capable of describing the fracture mechanisms in brittle materials 

contaiiing voids or inclusions. This problem, analyzed numerically by Rose [93] and
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Rubinstein [95], is the focus of the Chapter 4. In particular, an asymptotic solution is 

presented for the trajectory of a crack growing in an elastic-brittle isotropic material 

under plane strain conditions. W ith the term  “brittle” we mean a material in which 

the fracture propagates according to the pure Mode I criterion or “criterion of local 

symmetry” , i.e. K j i  = 0 (Banichuk [5], Goldstein and Salganik [32]). Two perturbed 

solutions are employed, one of which concerns the modification of the near-tip fields 

due to a perturbation from rectilinearity in the crack trajectory. In the other perturbed 

solution, defects are introduced and the modification on the near-tip field is evaluated. 

The former analysis is similar to some extent to that presented by Cotterell and Rice 

[20]. The latter analysis has been initiated by Movchan, Nazarov and Polyakova [77] 

and it is based on the concept of the Polya-Szego matrix [90], which characterizes the 

effect of the inclusion.

Below we apply the asymptotic technique to the crack propagation problem in thermo­

elastic media. Fracture propagation in elastic media (no thermal effects) is analysed in 

the limit case. As a result of the asymptotic analysis, the formulae for the increment in 

stress intensity factor and for the crack trajectory have been derived.

4.2  C rack g eo m etry  and  field  eq u ation s

A quasi-static semi-infinite plane crack is considered, smoothly curved in the portion 

extending from the tip  to a reference point where the crack profile becomes rectilinear, 

as indicated in Figure 4-1. W ith respect to a coordinate system with the origin in 

the reference point and the axis x\  tangent to the rectilinear crack profile, the crack 

tip has abscissa I. If the curved portion of the crack is sufficiently regular and close 

to rectilinearity, it can be treated as perturbation of a straight crack. In this case, 

the crack geometry can be specified by introducing a smooth function h of x\  which, 

multiplied by a perturbation param eter a , specifies the X2 ~coordinate of the curved 

portion of the crack. The semi-infinite crack is described by the set M a(l) :=  { (x i ,X 2) ■ 

x i  < l , x 2 = a h ( x i)}, with 0 <  a  «  1. A defect is considered in the form of a cavity 

or an elastic inclusion, and domain occupied by the defect is Ge. The position of the 

defect is arbitrary, in the sense tha t it can be placed at an arbitrary point, but the ratio 

between the diameter of the defect and the distance from crack trajectory has to be 

small enough to allow to use a perturbation technique.

The boundary value problem is formulated as a plane strain problem of thermo-elastic,
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reference crack, M,

Figure 4-1: Crack geometry

isotropic materials, characterized by the Lame constants A, /i for the matrix material, 

Ao, fio for the inclusion Ge and the thermoelastic constants 7  and 70 respectively. Al­

ternatively, this region can be specified in terms of Young’s modulus E,  Poisson ratio 

v and thermal expansion coefficient otf. The following identities relate two possible sets 

of parameters

E  En
" = 2 ( H ^ ) -  A = (l +  „ ) ( ! -

where K  is the bulk modulus in the plane strain.

Vectors u  and u representing the displacement fields in the matrix and inside the 

defect, respectively, satisfy the Navier equations

£ xx(u; x ) := /xV2it +  (A +  /i)VV • u  =  7 VT(x) ,  x  G M2 \  {Ge U M q}, 

^o,ix(wo; * )  :=  MoV2n 0 -I- (A0 +  /io)VV • u 0 =  7 q V T (x ), x  e  Ge.
(4.2.1)

and the boundary conditions. The latter consist of ideal-contact conditions prescribed 

at the interface between the inclusion and the matrix

cr(n\ u ]  x)  — 7 A T n  = o-q1̂ (u q ; x ) — 70A Tn, u  =  u q ,  x  E dGe, (4.2.2)

where A T = T  — Trei, and Trei is the temperature of the stress-free state.
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On the crack faces we have the traction condition

(it; x) = p(x )  4- 7 A T n, x  G  M *, (4.2.3)

which reduces to the traction-free condition at the crack faces, if the tem perature term  

is not taken into account

a(n\ u ; x )  = 0 , x e M ± .  (4.2.4)

In the case of a cavity and A T  =  0, the conditions (4.2.2) are replaced by the traction 

boundary condition

<r(n)(it; x)  =  0 ,  x  G  dGe. (4.2.5)

W hen the distance r  from the crack tip tends to infinity, the displacement field has the 

following asymptotic form

u{x)  ~  K f°  r 1!2®1^ )  +  Kf°j r 1! 2 ^*11 {4>) as r  —> oo, (4.2.6)

where the stress intensity factors K f°  and K f j  are given, and the polar components 

of the vector functions =  (4>£, $^)* and & 11 = (4>r7, ^ Y  are specified by (see, for 

example, Arutyunyan, Movchan and Nazarov [2])

=  4^ ^ [(2^  ~  1) cos ^  -  cos ^ ] ,

$ ^ ) =  i ^ [s in? “ ( 2 X + 1 ) s i n 2 1’

=  4/i^/2^ [3sin Y  ~  (2^ -  l) s in ^ ] ,

$"(</>) =  4/i^ : [3cos y ~  ( 2 x +  l)c o s ^ ] , (4.2.7)

where x  =  (A +  3/x)(A +  /i) -1  and </> G [—7r, ir\.

Further we suppose tha t our crack is a Mode-I crack, and K f f  is zero.
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THERMO-ELASTICITY PROBLEM

Figure 4-2: Crack in elastic region with and w ithout a defect: distribution of the prin­
cipal stresses

4.3 A sym p totic  expansion  for a so lu tion  o f a therm o-elastic ity  

problem

The thermo-elasticity boundary value problem (4.2.1), (4.2.2), (4.2.3) together with 

the condition at infinity (4.2.6) is specified in an infinite thermoeiastic plane with a 

small inclusion Ge and a crack Mq. For illustration of the qualitative behaviour of the 

displacement field in both situations with and without an inclusion we perform two 

numerical experiments with the finite element package COSMOS/M. In Figure 4-2 the 

numerical approximation of a singular solution in unperturbed crack tip is shown. This 

solution can be easily obtained analytically in the  form (4.2.6). The displacement field 

in the region with a crack and a defect is nonsymmetric, it can be seen in Figure 4- 

2(right plot). The distribution of the stresses shows th a t the crack more likely will move 

towards the cavity since the maximal tensile stresses occur in this direction.

In addition, the following heat conduction problem is considered for the tem perature 

field

kV2T(x) = w(x), x  e  M2 \  koATo(x) =  0, x € Ge,

dT 8T0
fc-7— =  ftOU— , 1 =  1 0 , X 6  OLre ,on on 

T\m+ =  ^ T \ m+ +  dnT\M- = 0,
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T  —> TOQ(x) as x  —y oo,

where n  is a unit outward normal vector, k  and ko are the thermal conductivities of 

bo th  phases, w(x)  is the intensity of the heat sources. Assuming tha t diam Ge 

dist  {Ge, M q] , one introduces a small param eter as follows

_  1 diam Ge 
2 dist {Ge,Mo} ^

First, the tem perature distribution in a plane with an inclusion is considered. In the 

case of equal therm al conductivities (k — ko), the therm al boundary layers do not occur 

near the inclusion and the tem perature field can be found as a solution of the following 

problem

k V 2T (x )  = w(x) ,  ®6R2,
(4.3.1)

T  —> Too as x  —> oo.

In  the case of different therm al conductivities of the inclusion and m atrix and in the 

presence of heat sources, one shall construct the boundary layer and apply the asymp­

totic series expansion:

T{x)  =  T (°)( x)  +  e T ^ ( X )  +  0 (e 2), (4.3.2)

where T ^ ( X )  is a boundary layer solution which compensates the discrepancy in the 

interface boundary conditions produced by T ^° \ x ) .

Second, given the tem perature field (4.3.2), we seek the displacement vector u  which is 

a solution of the boundary value problem (4.2.1)-(4.2.3) in the following form

u (x )  =  u ^ ° \ x )  +  +  e 2 ,uS1\ x )  -I- 0 (e 3). (4.3.3)

Here the leading order term  u ^ \ x )  is a solution of the boundary value problem in 

M2 \  Mq (without the defect)

/ iV V ° ) (x )  +  (A +  f i )V V  • u(°)(®) =  7 V sbT(°) +  tV x T W , x e R 2 \  M 0, 

cr(n ) ( u ^ ;  x)  =  p(x)  -|-  7 T ( x ) n ,  x  G  M q .
(4.3.4)

One introduces a  set of linearly independent vector functions which satisfy the homo-
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geneous Navier system w ritten in the stretched variables X  =  x  /  e

um - C ) ( ° )  ■

The leading term  u of the expansion (4.3.3) admits the following representation in 

the vicinity of the inclusion (coordinates x  are the Cartesian coordinates with the origin 

at the centre of the inclusion)

«<o> (»)~u <o>(o)+ s x 1£ ^
O X  1

+  £x 2a “ (0,(a!)
dX2

= A i U ^ i X )  + A2{ /(2)(X )

+ C ie V (1) (X ) +  C2eV (2) (X ) +  C3e V ^ { X )  + C4eV<4>(X), (4.3.5)

where A;, Ck are constants defined in terms of the components of the strain tensor e(u) 

evaluated for the leading term  of the displacement field

C3 = -
2 f dx\  dx\

The second term  of the expansion (4.3.3) can be specified as a solution of the boundary 

value problem specified in an infinite plane

f i V V I f X )  +  (A +  p)V V  ■ u ^ ( X )  =  0, X  e  R2 \ G ,  

poV2^ 1*(X) +  (A0 +  Mo)VV • u (0l)(X ) =  0, X  e  G, 

<TW(«(1) ; A r ) - ^ )(U<1, ;X )  

=  ff<n)( 4 0);X )-< T (")(« (° );X ) +  ( 7 - 7 o m X )  X e d G ,

„(1) ( X )  = u «  (X ), X  e  9G,

a(^ (u< 1> ; X ) - ^ 0 ,  I XI -hoo ,

where we replace the leading term  u™ by its expression (4.3.5).

(4.3.6)
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The field u ^ ^ X )  is a boundary layer characterising the changes in the stress com­

ponents near the defect. If we look at the interface traction conditions of the problem 

(4.3.6) one can note that the traction jum p is defined by the leading term  of the displace­

ment field and by the temperature field T ( X ) .  Since both terms are uncoupled, one 

can split the jum p in the traction boundary conditions (in (4.3.6)) associated with the 

term  u and with the temperature. The solution it^1) can be represented as a linear 

combination of a solution with an elastic jump and a jum p due to the temperature. 

Note th a t stresses produced by the rigid body displacement U ^ \ U ^  and are 

equal to zero. For other vector polynomials V^%\ i  =  1,2,3, one constructs the fields 

W ® , i  = 1,2,3, which compensate the discrepancy left by V ^  in the interface boundary 

conditions. At infinity the vector functions admit the asymptotic representation

(2.1.8) (see Chapter 2). The term which compensates a therm al jum p in interface 

conditions solves the problem

/ j , V 2 W ^ ( X )  +  (A +  /i)V V  • W ^ ( X )  =  0, X  6 l 2 \ G ,

MoV 2 W l * \ x )  +  (A0 +  M )V V  • W t f \ x )  =  0, X  €  G,
(4.3.7)

CT(«)(W (4);X ) - CT<n)(W<4);A:) =  (7 - 7 o)r(0)n , u  =  u 0 , X  6  0 G ,  

o-C") (W (4); JC) -*• 0, X  —̂ oo,

It adm its the following asymptotic representation as | |X || —>• oo (compare with the 

asymptotic expansions (2.1.8) of the fields W ^ %\ i  = 1,2,3)

W W  = V l > fc5)(fc) ■ T ( X )  +  0 ( | |X | r 2), (4.3.8)

where V k are constants and the vector differential operators axe defined by the 

following relations

® W : = f 8 / f e l V  » ® : = (  °  V  »<»,== - L  ( d ,dX2 \ .  (4.3.9)
\  0 )  \  d / d x 2 )  \/2  V d / d x i  )

Using the notations above, the second asymptotic term  can be written in the form

ti«(X) = ^ 2 C iW ^ { X )  + W ^(X). (4.3.10)
4 =  1
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The th ird  term  u ^  (x)  compensates the discrepancy in the boundary conditions on the

crack surfaces M q

/ i V V 2)(x) +  (A +  /i)V V  ■ u M { x )  = 0 ,  x 6 R 2 \  Mo,

aW (u (2);a:) =  - a ( " ) ^ | ^ C „ P „ fc +  I>jt|c D « - T ( x ) ;x Y  x e M ± ,  (4.3.11)
k ” 1 V 71—1 /

and it can be represented in the form

“ (2)( * ) =  Y  ■Pnk^ T <-hH x ) - V ^ - T ( x ) ^ C n

+ YT>k ( r W (x ) “  ' T (x ) )  • (4.3.12)

The field T ^  can be found as a solution of the Navier system with dipole body forces 

acting at the centre of the small defect and zero tractions on the crack surfaces

MV2TW (x) +  (A + /i)VV • TW(x) +  VWS(x) =  0, x <E M2 \  M0,
(4.3.13)

<j(n) ( T ^ ;x )  =  0 , x G M 0± .

Note th a t the asymptotic expansion given here is a solution of the boundary value 

problem for the fixed crack. In real situation it is possible to consider either unperturbed 

crack (it propagates along a straight line) or perturbed one (due to the presence of the 

defect effect). The first situation is trivial since it reduces to analysis of a semi-infinite 

crack in an infinite space. The second one requires more accurate calculations.

4 .4  U n p er tu rb ed  crack

The perturbation introduced by a defect on the displacement fields is considered for a 

straight crack Mo (note for a = 0 there is no perturbation of crack trajectory). Following 

Movchan and Movchan [75] and Movchan and Serkov [79] the displacement field near 

the crack tip  can be expanded as follows

u ( x ) ~  v (x )  + e2w(x) ,  (4.4.14)
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where

v ( x )  =  K i r 1 / 2 # 1  ((f)) , cLS |jc | —>• 0

is the displacement field corresponding to a rectilinear crack in a plane without inclusion, 

and e2w  represents the correction term  associated with the perturbation field produced 

by the small defect Q,s. Note that in the absence of tractions on the faces of a crack, 

the stress intensity factor K \  =  (see ( 4 .2 .6 ) ) .

The reason why the correction term has the second-order in e can be explained by 

considering the Neumann boundary value problem for a homogeneous elastic isotropic 

solid containing a defect (Movchan and Movchan [75], Section 1 .3 ) .  The vector field w  

satisfies the system of equation

3 T 1
Z xx( w \x )  =  — ^ 2  ' v (x ) V j k V ('k 6̂ (x — x°),  x  e  R 2 \  M q , (4 .4 .1 5 )

3,k=l x = x Q

where xo = (xo, yo) is the centre of the defect, 8 is the Dirac function, Vjk are the com­

ponents of the Polya-Szego matrix, and the homogeneous traction boundary conditions 

on the crack faces

^n\ w , x )  =  0 ,  x  G M ^ .  (4 .4 .1 6 )erv

At infinity the correction field w(x)  vanishes

w(x)  —> 0 as ||x || —>• oo.

4 .5  P ertu rb a tio n  o f  th e  crack  

4 .5 .1  A s y m p to t ic  a n a ly s is

We are now in a position to investigate the problem of perturbation of the crack trajec­

tory induced by the presence of a defect. In the absence of defects under Mode I loading 

the crack would propagate along x-axis, this condition satisfies the criterion K u  = 0 . 

The presence of a defect, even a small one, produces a perturbation in terms of a smooth 

deflection from linear crack trajectory. Movchan, Gao and Willis [73] studied the out- 

of-plane perturbation for 2D and 3D cracks using the asymptotic analyses. Here the 

methodology of [73] is used for elastic and thermoelastic media. The main attention is 

paid to perturbation due to a defect, where the Polya-Szego tensors can be applied. 

Let one consider the asymptotic expansion of the displacement field near the tip of the
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perturbed crack M a. A local system of coordinates y a can be introduced, which has 

the origin at the tip of the perturbed crack (l ,ah( l )) and the axis y f  tangent to the 

crack trajectory at the crack-tip (Figure 4-1)

ah'(I)
y =

-ah ' ( l )
y

o

ah(l)
(4.5.17)

where y  is a system of coordinates translated with respect to x ,  y  = (2/1, 2/2) — ^ 2)

(a; is supposed to be zero).

In the polar coordinate system y a (Figure 4-1), the asymptotic expansion of the dis­

placement vector u,  relative to the perturbed crack, can be represented as follows

« ( » “ ) -  K i M - K j W  + a K t f ) ,
3=1,11

(4.5.18)

where Kj(l)  are referred to the unperturbed problem, so that K u ( l ) =  0 by definition. 

Moreover, the displacement u ( y a) may be represented in the system y  through a rota­

tion, i.e.
(  1 —ah'(I) \

(4.5.19)
/  1 - a h ' ( l ) \

u(y’a ) = U ( o  1 r (ya)’
and a Taylor series expansion of (4.5.19) can be performed near a  = 0

u{y ,a )  = u (y , 0) +  a
d u ( y , a )

da + 0 (o?). (4.5.20)
a = 0

Therefore, using equations (4.5.18), (4.5.19), the formula (4.5.20) becomes

, du(y*)dy%
(0  0  )  dv? da  Q=o

d u ( y a) dK i(a)  d u ( y a) d K n {a) 1 2>

\ / ^ \  du (ya) dy?« ( y ,a )  =  « ( „ ,0 ) +  a | [  o J „ ( tfl0) +  _ _

d K i ( a ) da +
d u ( y a) dKji{a)

a= 0
d K u ( a )  da

dy% da

+  O M ,

a= 0

(4.5.21)
a=0 .

where the leading term  u ( y , 0) =  v(y)  is the same as in (4.4.14).

Now one can simplify this expression to the following form

u { y ,a )  = v{y)  +  a j / i '( 0  ^  ^ ^  ^  + h ' ^ V2^ [  ~  +  M0 ) j -

If one substitutes the expression for the asymptotic expansion (4.5.18) in the equation
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above, the result can be rewritten in the form

u ( y ,a )  =  K I(l)rl l2^ I{<j>) +  a  j ifj(O r1/2$ 0 )(<£)
j= l,n  (

+ m  [ _  m °-. +  V(0 (y 2 A  -  *  A )  ( r

+*,•(1)

It has been verified by direct calculations that

( y2^ / i  ( rV 2$7^ )  + r l / 2 (“ ^ 2 )W » $ iJ)W ) t =  ~ ^ 1/2$ 77(<£),

where

=  2 ^ ( 1l  +  x ) [(1 +  2x)SinT  -  SiD £■

* " W  =  2 ^ F ( 11 + x ) [(2X “  1} C° S T  "  C°S 2 ]> (4-5-22)

Using the calculation above the coefficient of the term multiplying a  in (4.5.21) can be 

w ritten as

™(y) :=  - ^ - ^ ■ h ( l ) K I ( l) r - 1/ 29 " ( ^ )  + K i ( i y / 29 I (<l>)4/i

+  [K'„(l) -  \K ,( l)h '( l)} r l l2* u {4>), (4.5.23)

where the components of the vector function 4>7, are given by (4.2.7) and compo­

nents of if?11 are presented by (4.5.22).

The stress components associated with (4.5.23) exhibit an unphysical strong singularity,

and this fact indicates the presence of the boundary layer in the vicinity of the crack

tip. This singularity may be eliminated as follows. First, let one introduce the weight 

function

<“ (y) ~  r - l l 2* n (<t>), (4.5.24)

and define

w*(y) := w (y )  +  (y). (4.5.25)
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The function w *(y ) satisfies the Navier system (4.2.1) and the same boundary conditions 

on as w,  but does not have a singularity at the crack tip (1,0). Second, let one 

consider the ring E r  = {y  : ^  <  ||y|| < R}, surrounding the reference crack tip, and 

the integral

J  j c 77(y) • £**(«; y) -  u(y) • £xx(Cn ; y)Jdy. (4.5.26)
Sr/Mo

Here and further we suppose tha t the solution u (y )  has no singularity at the crack tip

u (y )  ~  v(y )  + e2w*(y).

If the defect is far enough from the reference crack tip, the representation (4.4.14) holds, 

and therefore,

J  j c 77(y) • £x*(ti; y) -  « (y) ■ £ XX(C77; y) jd y

=  —  £ : [  {<n (y ) - ^ 2  ® {j)- v (y) 1 'P jk® ik)\ s ( y - y 0)dy
1 i L i y = y 0 JE r \ M q 

3

£2 ^ 2  'p jkF jk(v(y),C I I (y )’,yo),
j,k=1

(4.5.27)

where y 0 = (rco — l,yo) is the centre of the defect in the local coordinate system y ,  and

Fj k(v(y)Xu  ( y ) \ yQ) := £)(i) . v(y) ®{k) • C11 (y)
- y=y0 - y=y0

(4.5.28)

If we reconsider integral (4.5.26), apply the Betti’s formula and take the limit when R  

tends to infinity, one obtains

lim
R —yoo / {■C77(y) • £xx(u; y) -  u (y ) • £ xx(Cn \ y ) \ d ya

E r \M q

;y)|«

=  lim
R —yoo

Cr ®Vr(^) ^r^(^) ^r^rriC ) U<f>dr<l>(C )

-  J  C^^rr(u(y ,0 )  +  aw*(y)^ +  $ or<j>(u (y ,0 )  +  aw*(y)  

c 2

- ( u r (y,0) +  a W r i y ^ d r r iC77) -  ^ ( y , 0 )  +  au;J(y)^CTr</)(C77)

ds

ds
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+ ?/ Cl7<7l2 {u) +  (̂2 (J22{u) ~  UiauiC11) ~  U2G22{CH )-II / />

Mo

ds

(4.5.29)

where C i(R ) =  {y  : ||t/|| =  R}  and C2 = {y  : ||y|| =  1/R}.

Note tha t in the integral along Ci, the field it corresponds to (4.2.6), whereas in the 

integral along C2 the approximation (4.5.23) regularized via the weight function is used. 

Finally, the integral along Mo is zero because of the traction free boundary conditions. 

Matching (4.5.29) with (4.5.27), it can be concluded that a  = e2, and the derivative of 

K n  has the form

K„(l) = Kr(l) i h'(l)~ £  VjkTjk(r-1/2SI>" r1/2* 7̂ )
j,k=1

(4.5.30)

Note tha t if the crack remains straight, i.e. if h = 0, the relation (4.5.30) can be used 

to compare the present asymptotic solution to the numerical results of Rubinstein [95] 

referred to  the influence of defects on the near tip fields of a straight crack.

4 .5 .2  C rack  tr a je c to r y

If the pure Mode I criterion of fracture is adopted, the direction of the crack growth has 

to be chosen in such a  way tha t K u {a )  — 0, and therefore

K n (a) -  aK'n {l) =  0, (4.5.31)

which can be substituted into (4.5.30) to get

h'(l) = 2 Y ,
j,k=1

(4.5.32)

Equation (4.5.32) can be easily integrated with the use of the following auxiliary identity

_  ifi 9(r1/20 / )
1 + >c dy2

One supposes tha t crack deflection at — oo is zero. Then the crack deflection function in 

the case when the centre of the inclusion is placed at the generic point (xo,yo) is given
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by

where

and

h(i) = 4M
3/o(l +  x)

{cos ec\e)vc($) -  c t ( o ) ' P C ( o ) } ,

cos 0  —
X q I

Vvo + (x o - i ) 2 ’

{  c°s |[^  — 1 — 2 sin I sin  ̂

cos f  [x -  1 +  2 sin f  sin f  ]

.■ 1 ̂  sin 0  cosAfJ.y/’K I /

The Cartesian components of the vector C  are given by

£k = r £)(*) .
y=y 0

(4.5.33)

(4.5.34)

It may be im portant to remark th a t the problem of the interaction of a crack with more 

than one defect can be solved in a straightforward way in the present framework under 

the assumption th a t defects do not interact. In particular, when a number of defects is 

considered, and they are supposed to have non-interactive behaviour (dilute composite 

limit) the to tal crack trajectory can be calculated using (4.4.14), where the sum of the 

perturbed term s relative to each defect replaces the single term  e2w.

4 .5 .3  E ffect o f  th erm a l s tr e sse s

Following the procedure thoroughly discussed above we obtain the following expressions 

for the right-hand side of (4.5.27)

I  = £2t V* [®W-« " M tf=Bo+e2g %
(4.5.35)

For convenience, we rewrite the vector C { 6 )  (4.5.34) in a slightly different form, which 

allows to simplify further calculations

m  =

i ^ f e ( cosT  +  ( 2 * - 3 ) c o S § )  ^ 

—c o s f  +  ( 2 * - l ) c o s §

8 ^ 7 j ( s in f - s ln 5 /

where 9 denotes the angle between the rr-axis and a line joining the crack tip  and
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the centre of the inclusion. Using the equality [®(fc) • ( r1/2^ 7)] =  £ (fcV -1 /2, thejz/—Vo
formula (4.5.35) and the displacement field v  given by K j  r 1/2 (</>), the representation

for the changes in the stress intensity factor can be w ritten in the form

i ,k =1

4/i

cos

1 .
— -  sm^3/2  I > ( c o s < ^ £ « ( 0 )  -  (4.5.36)(1 +  x)

Now the Sih criterion [102], [101] of the crack propagation is taken into account. The 

crack propagates if the stress intensity factor K j  is greater than the critical value K j  and 

it propagates as a pure Mode-I crack if the stress intensity factor K ij  is equal to zero. 

The crack path  deflection is obtained after the integration of the expression (4.5.36) 

using the equality h (—oo) = 0 .  The result is formulated as the following theorem

T h e o re m  4.1 I f  a semi-infinite crack propagates quasi-statically in an elastic plane 

subject to a constant temperature stress, and its perturbation is caused by a remote 

small defect then the resulting crack trajectory can be obtained by the following formula

k,( i & v s s  I  P t ( c o s ’̂̂ £ W (^) - 1 ™  ^ w ( « )
d<f>

/sin 4>'

(4.5.37)

In (4.5.37) the effect of inhomogeneity is specified in terms of the Polya-Szego matrix 

'P and the thermo-elastic vector 6  denotes the angle between the rr-axis and the line 

drawn through the crack tip and the centre of the inclusion, h(l) is the crack deflection 

about the a:-axis. The following auxiliary identities have been used for integration

2/0# • , dl =  — —, ?/o =  r  sm <p = const
sin (p

4.6  C on clu sion s

In conclusion of this chapter one can note tha t the formula (4.5.37) holds for thermoe­

lastic inhomogeneities of arbitrary shape. The only quantities required in (4.5.37) are 

the Polya-Szego m atrix of the inclusion and the therm al vector T>. These quantities
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axe specified by the geometry of the inclusion and the thermoelastic properties of the 

materials. In the next chapter we consider some examples where the expression (4.5.37) 

could be simplified further.

Asymptotic derivation of the formula (4.5.37) presented here is mainly based on two 

asymptotic solutions. The first problem is the thermoelasticity problem in an infinite 

plane with an unperturbed crack and a small defect which is located far away from the 

crack line. This problem has been solved by expanding the solution in the asymptotic 

series where the second and the th ird  term s axe evaluated in terms of the Polya-Szego 

matrix. The second problem is a perturbation of a crack due to non-zero tractions on 

the crack faces. By combining these problems together one obtained a desirable result.
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Chapter 5

Fracture propagation due to  

different inhom ogeneities

The model described in Chapter 4 makes possible to investigate the effects of different 

inclusions on the trajectory of a crack. It is assumed that the characteristic size of defects 

is small compared to the distance from the crack trajectory and no interaction takes 

place between the defects. In subsections 5.1.1-5.2 a number of examples is presented 

for the cases where defects are circular elastic inclusions, elliptical voids and elliptical 

elastic inclusion. Results obtained agree with those presented by Rubinstein [95] and are 

qualitatively consistent with crack patterns in brittle materials observed in experiments. 

Further we investigate the crack propagation due to interaction with thermo-elastic ef­

fects. The Polya-Szego tensors axe employed on this stage of the algorithm to obtain 

analytical formulae for the crack deflection. Temperature effects can cause reduction in 

the amplitude of deflection. The elastic deflection (deflection corresponding to zero in­

crement of the tem perature) and therm al deflection (difference between total deflection 

and the elastic one) are considered separately. The conditions when therm al deflection 

and elastic deflection compensate each other are analysed. This problem can be re­

garded as the problem of residual stresses in a composite media. Thermal stresses in an 

inclusion produce a jum p in the displacement field on the interface. Jum p conditions 

of the same kind correspond to residual stresses occurring under cooling. One can re­

formulate the problem to be a problem of interaction of a crack and an inclusion with 

non-perfect interface. The interface is specified by the jump, which is the function of 

the tem perature, either in displacement or in traction boundary conditions or both.

In the last part of this chapter we analyse non-perfect interface conditions. Namely,
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interface conditions of the debonding type (sometimes it is called linear interface). The 

crack-inclusion interaction problem is considered and it yields the conditions correspond­

ing to the case when the interface layer compensates the effect of the inclusion.

5.1 S om e ex a m p les o f th e  crack p ath

5 .1 .1  In te r a c tio n  b e tw e e n  a sem i-in fin ite  crack  an d  a  c a v ity

As a first application of the theory presented, we consider the case of interaction of a 

semi-infinite crack and an elliptical cavity with the largest axis inclined at an angle (3 

to the x —axis. The centre of the ellipse is located at (xo,yo), a and b are the semi-axes 

of an ellipse, m  =  is the eccentricity of the ellipse. One uses the representation for 

the Polya-Szego m atrix for an elliptical cavity which is obtained from the formula for 

an arbitrary cavity (see (2.2.14) in Chapter 2 ) with the conformal mapping coefficients

ci =  ^ (a +  b), c-1  =  i ( a  — b) exp 2(3 = ciraexp2/?,

and all other coefficients of the conformal mapping (2.2.1) are zero. Under such con­

ditions the representation for the Polya-Szego matrix (2.2.14) can be simplified to the 

following form

V  =  — - ^ ( a  +  6)27r(A +  2/i)

(  22 +17 +  S  22 — 17 A N 

22 — 17 22 +  17 — S  A

V A A 2© j

(5.1.1)

where

^  -  y r —? E — (A + /i)(l +  m 2),
A +  / i

E =  —4/imcos2/?, A =  —2\/2fimsm2j3. (5.1.2)

This representation for the Polya-Szego matrix can be compared with the one given by 

(2.2.17); the latter has been constructed for three non-zero coefficients of the conformal 

mapping.

Now we use the asymptotic formula (4.5.33) for the crack trajectory. Substituting (5.1.1) 

into (4.5.33) one obtains

2 , . . .  R2H(l) = e h(l) = —  
2yo

2(1 +  m2) -  z{ 2 + z -  z2 + m2(l +  z)
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Figure 5-1: Crack trajectory h(l) versus crack tip position Z, resulting from interaction 
with an elliptic cavity whose major axis is parallel to the main crack. Results are 
reported for different aspect ratios a/b.

+2 m cos2(3 (1 +  2z)(l -  z 2) — 2  m  sin2/? (2z -  1)(1 +  z ) \ J 1 — z2 ĵ (5.1.3)

where

yjyl +  (ar0 -  Z)2 ’ 2 ’ a + b

It should be noted that the conditions m  =  0 and m  =  1 correspond to the cases of a 

circular void and of a Griffith crack, respectively.

The crack trajectories h(l) obtained from (5.1.3) are reported in Figures 5-1 and 5-2. In 

particular, the crack trajectories plotted in Figure 5-1 show the interaction of a semi­

infinite crack with ellipses having the major axis parallel to x —axis. Different aspect 

ratios are investigated. Figure 5-2 describes the case of a semi-infinite crack interacting 

with a Griffith crack inclined at different angles.

It should be noted that in the case of a circular cavity, m  = 0, H (l) takes positive values 

for every I. Therefore, a circular cavity always “attracts” a crack. In the case of an 

elliptical void, the situation is more complicated. In fact the trajectory of the crack is 

influenced by the orientation of the ellipse and by the aspect ratio a/b. In particular, 

the crack may suffer a slight repulsion, followed by a strong attraction (so that curves 

in Figure 5-1 have a minimum followed by a maximum). In any case, the deflection at 

infinity always corresponds to attraction. This can be verified by observing the limit as 

/ —> -l-oo of (4.5.33). The following lemma holds
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3.00

m= 1

2.00

1.00

0.00

- 1.00
.̂00 0.00 4.00

Figure 5-2: Crack trajectory h (l) versus crack tip position /, resulting from interaction 
with a Griffith crack at different inclinations.

Lemma 5.1 Crack deflection H(l )  due to the presence of an elliptical cavity in an 

infinitely rem ote point is specified by the form ula

H -  =  £(0) V  ] =  — [1 + m2],
1 +  x  2/o

(5.1.4)

The deflection is always positive and does not depend on the rotation of the main axis 

of elliptical defect. This is a direct consequence of the fact that the dipole matrix V  

is negative definite for any cavity of finite dimension. Moreover, H 00 increases when 

parameter m  increases (Figure 5-1). The latter means that the deflection due to inter­

action with a thin ellipse is greater than the deflection produced by a circular cavity 

with the diameter equal to the crack length (equal sum of semi-axes a +  6 =  2R  should 

be taken into account).

One can note from Figure 5-2 that, for any orientation of the Griffith crack, all crack 

trajectories intersect at the point corresponding to I = 0. Moreover, H (0) =  H ^ .  The 

second observation, that the crack deflection is independent of the orientation of the 

small defect, is valid in the vicinity of infinite remote point. The change of the angle /3 

affects the shape of the crack trajectory in the vicinity of the origin.

A SEM photograph (Figure 5-3) shows the crack path induced by Vickers indenter in a 

sample of porcelain stoneware. This particular ceramic contains a dilute concentration
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■ *■ -

Figure 5-3: SEM photograph of a crack in a porcelain stoneware

of near-ellipsoidal voids. These voids have been modelled as ellipses in Figure 5-4 where 

the crack trajectory shown has been obtained using the technique above. Obviously, 

certain approximations of the model may be anticipated. In particular, interactions 

between voids has been neglected; moreover, the assumption of small ratio of the void

we note that, in spite of all the approximations, the mathematical model gives a good 

description of the physical situation. The experimental photographs have been kindly 

provided by the Ceramic Centre (Bologna, Italy) and published in Bigoni, Movchan, 

Exposito, Serkov and Valentini [9], [114].

The comparison of the theory developed with the numerical solution of the singular 

integral equation for the complex crack opening given by Rubinstein [95] leads to inter­

esting results. Taking h'{l) =  0 in (4.5.30) gives the formula for the normalised Mode-II 

stress intensity factor in the case when the unperturbed state corresponds to the Mode-I 

load (characterised by the stress-infinity factor Kf°)

j,k=l

with (r, (j>) being polar coordinates of a small defect.

Comparison with Rubinstein’s results [95] is shown in Figures 5-5(a) and 5-5 (b) for a 

Griffith crack and a circular cavity respectively. Note that the Mode-II normalised stress 

intensity factors are given as functions of 0, the angle of orientation of the position vector

dimension to the distance from the crack tip is often required. However, from Figure 5-4

K u / K f (5.1.5)
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■6 2■4 ■2 0 4 6

Figure 5-4: M atlab simulation corresponding to SEM photograph 5-3

relative to the small defect (Figure 4-1). Since the expression (5.1.5) is an approximate 

asymptotic formula, a discrepancy with the numerical results of Rubinstein can be 

expected. The error is however quite small and the results of an explicit asymptotic 

analysis show the right qualitative behaviour of the stress intensity factor as a function 

of the angular variable (f>.

5 .1 .2  In te r a c t io n  b e tw e e n  a crack and  a  c ircu lar e la s t ic  in c lu s io n

Another im portant example is an interaction of a crack with an elastic inclusion. It 

allows one to analyse the effect of the elastic moduli of the inclusion on the crack 

trajectory. In the frame of this section we restrict ourselves by analysing the problem 

for an elastic circular inclusion.

First, for reader’s convenience, we rewrite the formula for the Polya-Szego m atrix cor­

responding to  an elastic circular inclusion (see (2.2.39) in Chapter 2 )

V  =
2 R 2 ir /i(A -|- 2/i) 

A +  /i

/ 5  +  © 5 - 0  0 \

5 - 0  5 + 0  0

\  0 0 2© J

where

0 =
Mo - /*  

x /i o +  M
1 2/i0(x  -  1) -  2/i(x0 -  1)

( x - 1 ) 2 fj,(xo -  1) +  2/i0

(5.1.1)

(5.1.2)
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Rubinstein 
present model

- 0.2
0 5 0 100 5 0(a)

Rubinstein 
present model

- 0 .3
5 0 1000 5 0<t>(b)

Figure 5-5: Comparison with Rubinstein’s [95] results , Mode II normalized stress in­
tensity factor versus defect position (f>:
(a) interaction with a Griffith crack;
(b) interaction with a circular cavity.

Consequently, the formula (4.5.33) gives

H(l) = e2h(l) =  ^ [ ( z 2 + z 2) w ( x - D  — )
W W 2y0 '  M(*o -  1) + 2/i0

•X/Jo + M
(5.1.3)

where R  is the radius of the inclusion and

X q I

\ /v l  +  fao - 0 2

In the particular case when /jq = 0 the formula (5.1.3) reduces to (5.1.3) with m  = 0 

which corresponds to the case of a circular cavity. The Polya-Szego matrix V  of a 

circular inclusion is positive definite when

—  >  1 and Ao + Mo
A +  m

> 1, (5.1.4)

and it is negative definite when the inequalities (5.1.4) are both reversed. Otherwise, 

the matrix V  is indefinite.
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^ r 9

tVn̂ O.5
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i c = 2-010

-020
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Figure 5-6: Crack trajectory h(l) versus crack tip position I, resulting from interaction 
with an elastic circular inclusion: (a) inclusion more rigid than the matrix; (b) inclusion 
less rigid than the matrix; (c) and (d) V  is indefinite.

The crack deflection at infinity is given by

H  - r 2 h- f l 2 f1  M o ( * + l )  ,■"oo — e oo — \1 0 /y0 2/i0 +  {xq -  1)M
(5.1.5)

The crack trajectories corresponding to the interaction of a semi-infinite crack with an 

elastic circular inclusion are reported in Figure 5-6 for different values of elastic param­

eters. In particular, when the inclusion is more rigid than the matrix, the conditions

(5.1.4) hold, and therefore, the defect attracts the crack (Figure 5-6(a)). In the case of 

an inclusion which is softer than the matrix, the inverse conditions hold, and therefore, 

the crack is repelled by the defect (Figure 5-6(b)). Figure 5-6(c) and Figure 5-6(d) refer 

to the cases in which matrix V  is indefinite. Note that in this case a set of parameters 

can be chosen such that the deflection at infinity is equal to zero. These observations 

can be summarised in the following propositions:

Lemma 5.2 Defects with the positive definite Polya-Szego m atrices repel the macro­

crack, and defects characterised by the negative definite Polya-Szego m atrices attract 

the macro-crack.
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CRACK TRAJECTORY

For circular elastic inclusions the condition of positive definiteness can be expressed in 

the form:

Ho > /i and Ao +  Ho >  ^ +  A*- (5.1.6)

The Polya-Szego matrix is negative definite, if

Ho < H and Ao + /̂ o < A + /i. (5.1.7)

L em m a 5.3 The macro-crack has zero deflection at infinity i f  and only if  the coeffi­

cients of the Polya-Szego matrix satisfy the conditions

V \ i  4- V 22 +  2P 12 =  0.

For instance, such a condition written for the circular elastic inclusion reduces to equal 

bulk moduli of the inclusion and the m atrix

Ao +  Ho =  A +  H (5.1.8)

As an example, in Figure 5-7 we present the experimental SEM photo of a sample of 

Zirconia-Alumina composite (Z rO ^fM ^O 3). The aluminium inclusions can be modelled 

as circular elastic inclusions with the moduli Ao =  140GPa and Ho = 180GPa. The 

characteristics of the Zirconia matrix axe A =  125GPa and h = 75GPa  (see, for example, 

Claussen [19]).

5.2 T h e  in fluence o f  an ellip tic  e la stic  in clu sion  on  th e  

crack  tra jec to ry

5 .2 .1  M o d e l p ro b lem

Before going further in consideration of crack-inclusion interaction we shall stop for a 

moment and return  to the problem of Polya-Szego matrices. In Chapter 2 these matrices 

have been calculated for cavities and rigid inclusions, here our intention is to construct 

a m atrix for an elliptical inclusion. The main methodology in this section is similar to 

the one used in Chapter 2, but at the same time calculation of the Polya-Szego tensor
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Figure 5-7: Crack propagation in Zirconia-Alumina composite

for an elastic elliptical inclusion look extremely laborious even under the right choice of 

notations.

To construct the Polya-Szego matrix, we consider a model problem for an inclusion 

in an infinite plane subject to a homogeneous loading at infinity. The inclusion is 

characterized by the Lame constants Ao, /xo and the infinite medium by the constants A, 

/i.  The surrounding medium is loaded at infinity by prescribing a generic homogeneous 

deformation. In particular, with reference to a Cartesian coordinate system, the three 

displacement fields at infinity are important for further analysis ((2.1.6) in Chapter 2). 

These displacements correspond to three linearly independent deformations, a linear 

combination of which gives a general homogeneous deformation. Subjected to these 

conditions at infinity and due to the presence of the inclusion, the elastic matrix deforms 

with non-linear distribution of stresses. However, the deformation in the inclusion 

remains homogeneous (constant stress field). The latter has been shown by Hardiman 

[36] and Eshelby [24] and is known as the Eshelby theorem.

Now we are looking for a displacement field satisfying the Navier equation in both the 

matrix and the inclusion. The following interface boundary conditions are imposed

uo(x) = u (x )  and x) = cr̂ n\ u ; x ) ,  x  E dGe, (5.2.1)

where u  is the displacement field, is the traction vector on the elliptical boundary
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Figure 5-8: Elliptical inclusion and its conformal map

dGe, n  is the unit normal vector and the index ()o denotes fields inside the inclusion. 

The displacement field u  = (u \ ,u 2) satisfying the Navier equation inside and outside 

the inclusion can be represented, in terms of complex Kolosov-Muskhelishvili potentials

<p(z) and 'ijj(z) as

ui +  iu2 = -  ip(z)], (5.2.2)

where z = x \  +  ix2, k  =  xp jf =  3 — 4i/, , v  is the Poisson ratio. The resultant force 

acting on a generic arc AB of any curve drawn in the material (i.e. in the x y —plane) 

can be represented as

A
Fx +  iFy — —i

5.2 .2  C onform al m apping

ip(z) +  zip'(z) -I- 1p(z) (5.2.3)
B

Let us consider the complex plane z where the inclusion is an ellipse with the semi-axes 

a and 6, with the major axis oriented at an angle /? with respect the a;—axis (Figure 5-8). 

Following Sokolnikoff [103], one investigates the properties of the Zukovskij function

* =  =  Ci£ +  c_i£ \  (5.2.4)

where
x/ a 2 _  52

ci =     and c_i =  ciexp2i^ . (5.2.5)

This function maps conformally a ring in the £—plane with internal radius

a ~  b
n = W- T T ’ o, +  b

C h a p t e r  5 98



5.2. THE INFLUENCE OF AN ELLIPTIC ELASTIC INCLUSION ON THE

CRACK TRAJECTORY

and external one

n~l = ci -4- b 
a - b ’

to an elliptical inclusion in the z —plane with a slit along the major axis of the ellipse 

between two points — exp i/3y/a2 — b2 and exp ipy/a2 — b2. Note tha t 0 <  7t < 1 and 

the limit value 1 corresponds to mapping of the exterior of a slit to the exterior of a 

unit disk. The same function (5.2.4) maps the region outside the circle of radius 7£-1 

to the exterior of the ellipse.

The map (5.2.4) can be inverted to give the following relation

5 =  _  +  _ V ^ 4 c ^ ,

that, for \z\ —> oo, can be expanded in the series representation

(5.2.6)

€ =  f  ~ ^  + 0 (\z\~3).
C\ Z

(5.2.7)

Note tha t the map (5.2.4) does not have a limit when semi-axes of ellipse coincide (the 

ellipse reduces to a circle). In this situation 1Z —> 0 and 1Z~l —> oo. To resolve this 

problem, one shall introduce new complex variable £* such tha t

Its substitution in the conformal mapping (5.2.4) yields

/j.*\ ci -t- 6 . * a — b _. ^ 1
2 =  wK )  =  —  C + —2~"ex P 2^ ^ '

5 .2 .3  S er ies  r e p r e se n ta tio n  for p o te n tia ls

(5.2.8)

Taking into account the conformal mapping (5.2.4), the complex representation for the 

displacement field (5.2.2) can be represented in the following form

« i ( 0  + m 2(£) =  ^ x<p( 0  ~  = 7 7 7 ^ (0  “  V>(0 (5.2.9)

A series expansion of potentials </?(£) and 0(£) can be performed

l l
V « )  =  £  OnC, m  =  £  bnC, (5.2.10)
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where, in particular, the coefficients ao and 60, representing the rigid body translation, 

can be set equal to zero, i.e. ao =  60 =  0- Inside the inclusion the following series 

representation of the complex potentials is adopted (note tha t the result of the Eshelby 

theorem is not used here and it will follow from the solution for the displacement field)

+00 +00

M O  =  £  M O  =  £  e „ r ,  (5.2.11)
k = —00 n——00

where, once again, do =  eo =  0 can be assumed. Let one consider the conformal mapping

(5.2.4) shown in Figure 5-8 and two generic points lying on the circle |£| =  1 inclined 

at f3 +  d and (3 — with respect to the £1—axis. These points correspond to the same 

point on the slit in z—plane inclined of the angle /3. Therefore, the conditions

¥>o(ei('J+fl)) =  Vo(e<w- tf)), M ^ +t)) =  M ^ O ,  (5-2.12)

hold for any $. The substitution of (5.2.12) into (5.2.11) gives

fc=+oo fc=-foo
£  dkekW +V  =  £  dkekW - ° \

k = —oo k= —oo
fc=+oo k=+oo

£  ejtfW + « )  =  ^  e k e kW - B\  ( 5 .2 .1 3 )

k——oo k= —oo

so that, comparing terms multiplied by we obtain the useful conditions

d_jt =  dkexp2ki(3, e_fc =  efcexp2 kif3. (5.2.14)

Coefficients a\ and b\ are determined from the conditions at infinity; we supposed that 

they are known, i.e.

a\ = cxj, &i =  t j, where otj £ R, 7 j  C C (5.2.15)

For exact value 0 7 , 7 ? corresponding to linear fields one refers to (2.2.7) in Chap­

ter 2 .

The other coefficients of (5.2.10) and (5.2.11) can be determined from the boundary 

conditions (5.2.1) which can be rewritten in terms of complex potentials in the following
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form

“ ( 0

JL
Mo

^0<A)(O -  = = y ? o ( 0  -  V>o(0 
w '(0

(5.2.16)v(0  + 4 = ^ '®  + M )  = V0«) + = |U t t )  + « 0 ,  
w'K) w;K)

where |£| =  7Z-1 .

The series representation of |V(£)]_1 at infinity yields

1 = h  I1 + + (V) r< + °(l?l_6)) ’ (5 2 -17)

so th a t on the boundary of external circle with radius 1Z~ 1 the following expansion holds

“ (0  - V o # *

where </_i =  exp2i/7,

<7* =  ^1 -f 'R*Sj 'J l2(k~1) ex p {—i(3{k — 1)}, for k = 2m  — 1, m  G N,

=  0, for A; =  2m, m  G N U {0}. (5.2.18)

The system (5.2.16) can be rewritten in the form of sums if we take into account the 

series representations (5.2.11) for the complex potentials

/  +°° +i +i \
Q (  w  a nC  +  ^ 2  gn£n n a n f 1-1  +  Y 1  ^ n T )

 ̂ n——oo n= —1 n=—oo n= —oo '
( +oo +00 +oo +00 V

Y 2  dn^n + X !  9n^n X  nd^ n 1 +  X I  (5.2.19)
n= —oo n= — 1 n=—oo n=—oo '

where param eters tu and p take the values,

p =  (2/i) \  £0 =  (2/io) \  tu =  -x:, wq = -xr0,- l

and

£  =  1 ,  £>0 =  1 )  t37 =  1 ,  r u o  =  1 .
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Taking |£| =  7£-1 we rewrite the system (5.2.19)

/ +1 + o o  + o o  + o o

9 n £  E E  m g n a - m K 2 {m + 1 ) C + m + 1
'  n = —oo  n = l  n = l m = l

+ o o  +OO V

n5-ia -„ K 2("+1) r  +  E  (L„7J.2nf n +  &ift~2f  _1)
71=1 71 =  1 '

/ +OO + OO + OO +00 + OO

= <?oUo E  « "  + E E  ">Sn3m7J2<1-m̂ 1-ro+" -  E  E  m9nd_mK2(™+1>r+m+1
'  71 =  —OO 71=1 771=1 71=1 771=1

+ o o  + o o  +00 \

+  e  n < 7 -i4 ft2(1" n)r "  -  E  " s - i5 - „ K 2(n+1)r  +  E  «»fl~2" r n) ,  (5 .2 .20)
71 =  1 71=1 71=  — OO '

or in a simpler form

+ 0 0  + 0 0  + 0 0  71—2
tz7Gi£ +  7̂ a - n £ ~ n  +  g n a i C  ~  ^  ^  9 m ( n  - m -  l )a i_ n+mf t 2(n_m)£n

L 71=1 71=1 71=3 771=1
+OO +OO

+ s - ia i r 1 -  E  «S-lS-„K2("+1)r  + ElK-2?"1 + E  5-»K2n£’
71=1 71=1

+ 0 0  + 0 0  + 0 0

=  0 0  ^ 0  X ]  dn£n +  g m { n  +  m +  l)Hn+m+i ^ _2(n+m^ _n
L 71=  — OO

+O O +O O

71 =  1 771=1

+  OO 71 — 2

+  y ^  y ^  grn+n-imdmiz2^  m)£n -  y ^  y ^  gm(n -  m -  l)d i_ n+mfc2(n m)£n
71 = 1  771=1 

+O O

71 = 3  771=1

71= 1

+  OO

+  E s - i ' i 4 K 2(1- " )r ' '  -  ^ s -m d - „ R 2(”+i)$" +  e  e „ f t -2nr n
71= 1

+OO

. (5.2.21)

Comparing term s of equal order yields a system of linear equations for the unknowns 

&7i 7 7̂15 C715 dn , en :

TOai +  6_i72.2 +  ai^i — <7_ia_i7?,‘5 =  0o
+ 0 0

ro0di + e_i7?.2 -  g-id—iR 4 + y ^ ghh'R? ^ 1 h^dh
h= 1

6_27l4 -  2g-id -2K G = Qo
+ 0 0

&od2 +  e - 2TZ4 -  2 g - id -2Tl6 +  y ^  gh+1hR 2^  h^dh
h=i

71 — 2

d ig n +  b -nU 2n -  p_ ina_n7^2(n+1) -  y ~^gh( n - h -  l ) a - n+h+iR2 n̂~h)
h= 1

+00
roodn + e - nTl2n -  9- 1n3_„K2<n+1> + E  3-+1-1 M hn 2{-1- ^

h -l

- Y t 9 h( n - h - l f d . n+k+l-R2̂  , n > 3 ;

=  00

n—2

/i= l
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wa-i+bi'R , 2 + g-idi =  Qo

+00
voq(L— 1 -f- 6 \ 2 4* g~id\ 4- £  gh(h + 2)K - 2l-h+»dh+2

h=1

WCL—fi

+ £50

=  Qo w 0d _ n 4- e n 7£ 2n 4- g - in d n T Z 2^1 n)

4- g k ( h  +  n  4- l)d h + n + i'R ' 2(h+n)
h=i

n  >  2. (5 .2 .22 )

Taking into account the relations (5.2.14), the system (5.2.22) can be solved, yielding

a - 1 = 1 4- 2)0(7£4 — 1)
n 2{i 4- f t4©)

one H + 7 +  f t4£R e(7je 2i/3)e2i/3

6 _ i  =  2 ) (1  -  f t 4 ) f t ~ 2 ( l  -  f t 4 © ) ^ -  + i  +  2)©(ft4 - i ) R e ( 7 j e 2l/3) + i Im ^ -e 2̂ ) ,

( x 4 - 1 ) m o [ (1 ~  f t 4 © )a :j  — © 7£2R e ( 7 j e 2^ ) ]  . ( x  4- l ) / z o f t 2 ©  I m ^ e 2^ )
d\ =■ —------- —----—7;---1 . ^ A ^ r ,-------    7 +  1'

e _ i

[ ( x 0 -  1 )/z 4- 2 f i 0] 4- f t 4 © [ ( x 0 -  l ) / z  -  2 x /z 0] ( x 0 4- 1 )m (1  4- f t 4 © ) ’

= r{
_______ [(*0 ~  1)M +  2/xo]Re(7je 2z/3)__________y \V 2n,- 4- ;Im (7?e2i/3) 1
[ ( x 0 -  l ) / i  4- 2 / i0] +  f t 4 © [ ( x 0 -  1 ) m -  2 x /z 0] J 1 4 - f t 4 ©  J ’

CL—ji — d — 71 — dn — C— 71 — 671 — 0 , Tl ^  1 ,

5 71 =  (1 +  n ^ n ^ e ^ - ^ i a - i e - 2̂  -  on), n = 2k 4-1, k e  N,

b—n =  0, n = 2 k, k £ N,

where © =

X =

Mo ~  M 
x/zo 4- M ’

r =  (^+ 1)/zq  
x / i 0 +  /z ’ 

2 © ( x  4- l) /z o

2) =

[(x0 -  l)/z +  2/zo] +  f t4©[(x0 -  1)m “  2x/z0] ’
________ 2[(x -  1)mo ~  (^0  ~  1)m]________
[(x0 -  l)/i 4- 2/z0] 4- f t 4©[(x0 -  l)/z -  2x/z0] '

(5.2.23)

It is im portant to note tha t the system of linear equations for defining the coefficients 

a_ i, 6_i, di, e_i can be written in the following compact form:

b - \R r  -  a - iR re  p + a j{2 4- f t 4) =  +  di +  e _ i ^ ,

b-\7 l2 — a-i'R,4 e2tP +  a j ( l - x 4 -  f t4) = —  (d\ — x^d\ 4- e _ if t2) ,
Mo

a _ i e  2^  4- OLj 4- 7 j-e2* 0 f t  2 =  d\ 4- d i  4- e _ i f t  2 ,-2 i —2
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—x a - i e  2lP +  aj  +  ryje2l '̂JZ 2 =  — (di — xodi +  e-\R ,  2) .
Vo

W ith the help of relations (5.2.14) between d_i and d\ and e_i and ei, the exact 

expression of complex potentials can be obtained inside the inclusion

<po(f) =  di£ +  (Z-i£_1,

V>o(£) =  ei£ +  e _ i C \  (5-2.24)

and outside the inclusion

¥>(0 =  ai£ +  a - i f 1i

m = « + 6 - ir 1 + (k2+ ^ ) (° g _ X : Q11)) - (5-2-25)

Note tha t except well-known solutions due to Hardiman [36], Jaswon and Bhargava [46], 

the formulae (5.2.25) can be compared with the recent work by Gong and Meguid [33] 

where the case of 9 = 0 has been considered.

5 .2 .4  P o ly a -S z e g o  m a tr ix

Following the approach discussed in Chapter 2, the perturbation induced by a generic 

defect in an elastic matrix subject to the homogeneous conditions at infinity (2.1.6) is 

approximated using the Polya-Szego representation. Formula (2.1.8) holds at a sufficient 

distance from the defect. The linear vector polynomials (2.1.6) admit the following 

representation in term s of complex variables

=  A z A ,  v m w  =  J * .

The vector differential operators (4.3.9) have the following form in complex variables:

» ? = ( ! - + ! : .  o Y ,  ® 2 = ( o ,  4 - 4-Ql \  O Z  O Z  J dz \  O Z  oz

2,(3) _  2-1/2 ( i J L - i A  A  + A Y  (5 2 26)
A \  dz a s '  d z  + d z ) '  [ ’

Using (5.2.26) and complex representation for the Green’s tensor (2.2.12) the field (2.1.8) 

W V \ z )  =  W[j) +  iW^j) can be written in the complex variable form (2.2.11) which,
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through a substitution of coefficients of T{j, becomes

W ® (z )  :=  W[j) + i w P  =  ^  ( - V j i  +  V j 2  -  iy /VP#)  +  -g(1 ~  ( p . i  +

+ =2 +  ^J'2 +  *>/2Pj3) • (5.2.27)

Comparing (5.2.27) and (5.2.2), the coefficients of Polya-Szego m atrix can be w ritten 

in terms of the coefficients a_ i, 6_i

V * 1 =  i { - f e [ a ->ci -  ^ c- i ] + 6,-1 x - ? ^ 1} ’

Cl -  7 jC _ i I

x -  1 J ’Vj2 = 4^ l{Re â- lCl ~ aj°~  ̂+ 

Vj3 = “ a - i Cll* (5.2.28)

Provided the coefficients a3_ 1 and b?_l have been calculated, the Polya-Szego m atrix is 

known and its coefficients can be written in the following form for the elliptical elastic 

inclusion with the axes a and 6, the major of which is inclined at an angle 6  with respect 

to the x \ —axis

P u  =
a b (
4 ^ \ l

0
+ ft40

1 -I- l t 4X  c o s  2(3 + ?)
x  — 1

1 -  f t 4©

x  — 1
+  27Z2@ cos 2(3

)■

ab f
P u  =  - H  -

©
4q \  1 +  1Z4Q

1 -I- 11 X  cos 2/7
, g)(i-TC4e )~| 

( * - 1 ) 2  / ’

„  \ / 2 ab ̂  .
P 13 =  —;— © sin 2 (3 Aq

iz2%) n 4x
+  ^  ^  cos2(3x - 1 i + n 4e

<*■*>( 
Pri = 4^{r

©
+  1Z4&

1 +  lZ4Xcos2 2(3 + w
x  — 1

1 - 1 Z 4@
x  — 1

— 277.20 co s  2(3 }■
y/2 ab _

P 32 =  —:— © sin 2 (3 4 q
7^22) 7^4£
x  — 1 1 + -ft40

cos 2/7

P 3 3  =
a6 ©
2q 1 +  7T4©

l  +  7e4X sin2 2/7 (5.2.29)

where g, ©, T, X, 2) are given by (5.2.23).
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H/x
6=0
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V

r\ *=*0=2
\ a/b=4

a/x°f=2B
Nj 9=ro7

------------------ ----------------------M îoo_

5

1
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0
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1 . 5  - 1  - 0 . 5  0 0 . 5  1 //J>1. 5

Figure 5-9: Crack trajectories H(l)/yo  versus crack tip position l/yo, resulting from 
interaction with an elliptical inclusion, (a) more and (b) less stiff than the matrix. The 
m ajor axis is inclined of different angles with respect to the unperturbed crack.

5 .2 .5  T ra jec to ry  o f  a  p e r tu r b e d  crack

Since the Polya-Szego matrix has been calculated, one can investigate the trajectory of 

a semi-infinite crack that, in the absence of any disturbance, would propagate as a Mode 

I crack along the a:—axis of an orthogonal coordinate system (a:, y). In the vicinity of 

the defect, a portion of length I of the crack is deflected. It has been shown in Chapter 

4 tha t if the pure Mode-I propagation condition (i.e. the crack propagates such that 

K j i  = 0) is accepted, the crack deflection can be described by a function H(l)  specifying 

the y coordinate of the crack (4.5.33), with C given by (4.5.34). The crack path can 

therefore be expressed in a simplified form

H(l) = -M -  2) +  2 ft22)@ s in2(3{t + t 2 )(2t — l ) y / l  — t2
*yo I L

— cos 2 (3{t — t 3)(l +  21) +
©

l + ft4© (t -  *3) 1 4 -  1Z4X  c o s 2 2(3

x ( l  -  t) ( l  +  2*)2 +  ( l  +  H 4X sm 2 2(3^ (1 +  t){2 t -  1): 

—7£4£  sin 4 /? \/l — t 2 (4:t2 — 1) | , (5.2.30)
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0 . 6

0 . 4

0 . 2
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' /  /  i '' ^

\  j /  /  /

a/b= 1
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Figure 5-10: Crack trajectories H(l ) / yo  versus crack tip position l /yo,  resulting from 
interaction with an elliptical rigid inclusion (a) and with an elliptical cavity (b) having 
major axis inclined of an angle 9 =  7r/3. Different aspect ratios are considered.

where

t  = cos 9 =
Xq — I

and H =
a — b

\ / { xq -  I) 2 + y 2 ’ a +  6

Note that the expression (5.2.30) for the crack trajectory reduces to the known formulae 

for the cases of the elliptical void (5.1.3) when po =  — 0 and circular elastic inclusion

(5.1.3) when a =  b. Analysing the deflection function, one can observe that the deflection 

of the crack at infinity is the same as at the origin, it can be evaluated by substitution 

6  =  7r and 9 = 7r/2 in (5.2.30) as specified in the following proposition:

Lemma 5.4 Crack deflection at infinity caused by an elastic elliptical defect does not 

depend on the orientation of the ellipse and is given by

H,„  =  t f  (0) =  ^ - 2 ) ( R 4e  -  1). 
2yo

(5.2.31)

In Figures 5-9 to 5-11 the normalized crack deflection H (l) (divided by the yo~coordinate 

of the centre of the defect) is plotted as a function of the crack tip horizontal position 

I (divided by yo). Figures 5-9-5-11 represent crack trajectories in a non-dimensional 

scale. The centre of the ellipse is in all cases positioned at (0,1) and a/yo = 0.04 (in 

all figures, except for Figure 5-11, where the ellipses have the same area but different 

aspect ratio).

Four different ellipses are considered in Figure 5-11 with different inclinations and same 

aspect ratio a/ b  = 4. In particular, one ellipse is parallel, one is orthogonal and two are
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Figure 5-11: Crack trajectories H(l)/yo  versus crack tip position l/yo, resulting from 
interaction with an elliptical inclusions of equal area: inclusion stiffer than the matrix, 
with major axis orthogonal (a) or parallel (b) to the unperturbed crack; inclusion weaker 
than the matrix, with major axis orthogonal (a) or parallel (b) to the unperturbed crack.

inclined (of 7r/4 and 37r/4) with respect to the unperturbed crack trajectory, i.e. to the 

horizontal direction. The cases under consideration are referred to an ellipse stiffer and 

weaker than the matrix. It should be noted that, in order to give full evidence to the 

results, the ratio between the elastic moduli of the inclusion and matrix takes extreme 

values (no/n  is equal to 0.01 and 100), whereas xq = x  = 2. It can be observed from the 

figures that an inclusion more (less) rigid than the matrix tends to repel (attract) the 

crack. In particular, it can be shown that the crack repulsion and attraction correspond 

to a positive or negative definite Polya-Szego matrix respectively. Moreover, it can be 

observed that the asymptotes for l/yo —> oo of the various curves corresponding to 

different inclinations are the same, as predicted by (5.2.31).

The effect of the aspect ratio of the ellipse is investigated in Figure 5-10, in the particular 

cases of a rigid inclusion (Figure 5-10(a)) and an elliptical void (Figure 5-10(b)). The 

limit solution when b/a = 0 corresponds to the rigid line inclusion in the former case, 

and to a crack in the latter case. It may be concluded from these figures that the crack 

trajectory does not change significantly in shape when the aspect ratio changes, but 

the modulus of the deflection becomes less and less visible when the limit of the line 

inclusion is approached. It should be noted that the rigid inclusion repels the crack,

/ \ k=k„=2
Ti\ ^ =10°
I I ) abl0c‘,y=0.04
\JJ e=rc/2

k=k,.-2Mo/H=J00
abl(x\f=O.M
0=0 a/b=9
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whereas the void attracts it. Moreover, voids affect the crack trajectory more than rigid 

inclusions.

In Figure 5-11, the comparison of the crack trajectories corresponding to elliptic in­

clusions having the same area ab/(yo) 2 = 4 • 10-4 is presented. In particular, Figures 

5 -ll(a ,b ) refer to the case of an inclusion which is more rigid than the matrix, whereas 

Figures 5 -ll(c,d) refer to the opposite case of a matrix stiffer than the inclusion. In 

both  cases, it may be observed tha t the increase in the aspect ratio of the defect yields 

an increase in the crack deflection.

5.3  F ractu re in th erm o-e lastic  m ed ia

5 .3 .1  In te r a c tio n  o f  a  crack w ith  a  circu lar th e r m o e la s t ic  in c lu s io n

The formula (4.5.37) characterizes the crack deflection for any possible types of the 

inclusions or their combinations. The morphology of the inclusion is specified in terms 

of the Polya-Szego matrix 'P and the thermo-elastic vector X>. The only restriction 

on application of this formula is the non-interactive behaviour of inclusions. In other 

words, we suppose tha t the inclusion is located far away from the crack and it is small 

in comparison with the distance from the crack. If there are several inclusions in a 

plane, then the dilute limit is required. In this section we consider the interaction of a 

crack with a circular thermoelastic inhomogeneity. This is the simplest example, but it 

allows one the determine the main features of interaction mechanism in the presence of 

therm al effects.

In the problem where the inclusion is circular one needs to know the coefficients of 

the Polya-Szego m atrix 'P  and the therm al vector T>. The Polya-Szego m atrix for a 

circular inclusion is given by (5.1.1). Note that further it will be convenient to use the 

normalized form of the matrix, where R  is supposed to be equal to one. To calculate 

the thermoelastic vector T>, one starts with the analysis of boundary conditions of the 

problem (4.3.7) written in terms of complex potentials

\p(z) -I- z<p’(z) -I- ip(z) = <po(z) +  zip'Q(z) +  i/j0 (z) +  (7 -  7o ) A T z , (5.3.1)

[x(f{z) -  zift(z) -  ip{z)]—  = xoVo{z) -  zip'0 (z) -  ip0(z), (5.3.2)
A4

and looks for a solution which decays at infinity like 0(|;z|_1). Due to Eshelby’s theorem
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[24] the solution is linear inside the inclusion. Note that here and further in the text we 

write the increment of tem perature AT instead of T  — Tre/. This value can be either 

positive or negative and depends on initial temperature at which the therm al stresses 

are zero.

The complex potentials tp{z) and obtained from the analysis of the boundary 

integral equations based on the boundary conditions (5.3.1) and (5.3.2) have the form

=  (7 - 7o )A T M * 0 - 1)1  +  Q 
2/zo +  -  1) z (bO-

The components of the vector "D can be found as the coefficients multiplying the deriva­

tives of the Green’s tensor in the asymptotic expansion (4.3.8). After some routine 

calculations one obtains

X> =
/i7r(7 -  7q)AT (xr0 -  l ) ( x  +  1)

(2/xq +  h (*cq -  l ) ) ( x -  1)

/ 1 \
1

V o /

(5.3.3)

Now, one has two characteristics of the thermoelastic inclusion: the Polya-Szego matrix 

and the thermoelastic vector "D. Finally, the formula for the crack deviation due to 

thermoelastic circular inclusion can be written in the form

A h(l) =  £2 (A  ft£(J) +  —  A h j ( l ) ) +  0 ( e \

where

A h j( l )  = p y /27r(7o -  7 )A T (*p -  1) r  s i n f  
2//0 +  /i(^o -  1) J  \/sin (p

dtp,

(5.3.4)

and A he (I) is given by the formula (5.1.3), with yo = 1 , R  =  1.

If yo is not equal to 1 the formula (5.3.4) is given by

Ah(l )  = e2 ( A h ^ l ) y 0 + ^ r A h J ( l ) y 3Q/2 ) + O ( e 3), e = - .  (5.3.5)
\  K-i J yo

It corresponds to the case when the distance between the centre of the inclusion and 

the unperturbed crack yo is not normalized.
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5 .3 .2  In te r a c t io n  o f  a  crack  w ith  an  e llip t ic a l th e r m o e la s t ic  in c lu s io n

In this section another example is considered: the perturbation of a crack due to an 

elliptical thermoelastic inhomogeneity. The elliptical inclusion has semi-axes a and 6, 

w ith the major axis inclined at an angle (3 to the x-axis. As before, the problem of 

crack-inclusion interaction reduces to the formula (4.5.37) and requires the knowledge 

of Polya-Szego m atrix V  and the vector T>. The components of Polya-Szego (symmetric) 

tensor have been calculated (see Chapter 4 formulae (5.2.29)).

To find the crack trajectory, we calculate the thermo-elastic vector T> for an elliptical 

inhomogeneity. The boundary value problem for determination of the auxiliary vector 

field W (4.3.7) is solved, and the components of the vector T> are extracted from 

the asymptotic expansion of the solution at infinity. The complex variables technique 

is applied. The following representation for the displacement fields (inside and outside 

of the defect) is used

t*(°) =  +  C (0) z, u = u* + C z, (5.3.1)

where  ̂-f iui^ and z = x i + i x 2- The linear terms with the constant coefficients

C  and describe the therm al expansion. It follows from (5.3.1) and from the stress- 

strain relation tha t

£,(")(„(»)) =  „(")(„(")*) +  2(A0 +  Po)C<°>n,

(T̂n\u) =  + 2(A + n)Cn, (5.3.2)

where n  is the normal vector. Taking into account the relations (5.3.1) and (5.3.2), the 

boundary conditions (4.3.7) can be rewritten as follows

u (0)* +  c {o) z =  u* +  c  3 ,

cr^n\ u ^ * )  +  2(Ao +  fJ,o)C^n  — <r̂ n\u* )  — 2(A +  ix)Cn = ( 7  — 7 0 ) A T n .

The comparison of the terms of the same order shows tha t the constants C  and 

are related to the thermal expansion coefficients a  and ao by the relations

C = a  AT, C (0) =  a 0 AT. (5.3.3)
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The interface boundary conditions are reduced to

«T<")(U(°)*) =

«(°)* -  «* =  (a  -  a 0) A T  z, (5.3.4)

whereas the condition of decay at infinity

reduces to

u  —y 0 as \z\ —> oo

u* =  —a  A T  z  as \z\ —>• oo. (5.3.5)

Using the complex potential method, we can rewrite the interface conditions (5.3.4) in 

the form

2/i - =v(f) - m 1

2/i0 *W o(0  -  =77=fPo(0 -  00 (0  
w#(0

=  (ao -  a t ,

^ ( 0 - r
^ ( 0  +  = 777T^ /( 0  +  0 K ) =  W>(f) +  = = y >/(, ( 0  +  0 o(£),

w(£) ^ ( 0
(5.3.6)

where |£| =  1. Here, the complex potential </?(£) and 0(£) 3X6 related to the field u*, 

whereas </>(£) o and 0o(£) are related to the field u ^ * .  The function u>(£) has the form

z =  u>(£) =  c if +  c_i£ \ (5.3.7)

with ci and c_i given by (5.2.5).

The boundary conditions (5.3.6) written in complex variables can be transformed into 

integral equations of Muskhelishvili type; and the last reduced to the system of lin­

ear equation for the coefficients in the series expansions of complex potentials. The 

corresponding technique has been discussed in Chapter 2 and Section 5.2. If the series 

expansions for the potentials </>(£), 0(C) is used in the form (5.2.10), (5.2.11) one obtains 

the linear system for the coefficients a_ i, 6_ i, di, e_i which has the following form:

b-iTZ2 -  a _ i f t4e2i/3 +  a x(2 +  f t4) =  cfi +  h  +  e _ if t2;
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b- \R ?  — a-i1Z4e2lP +  a i ( l  — x  +  V?) =  —  (d\ — xodi +  e - \R '?) — 2fi(ao — a)A T ci;
Mo

O —lC  2*^ CLl — C?l -|“ tZl -|- € —\ l 2. z ;

—x a - ie -2 ^3 +  ai =  —  (c?i — xodi +  e_i72.-2 — 2fi(ao — a ) A T c \ ) , 
Mo

- 2 .

where ai =  — ̂ A T ci and ci =  such that (1 — 7£4)c2 =  ab1Z2.

Solving the system of equation (5.3.6), we find the complex potentials which outside the 

defect have the following asymptotic representation

=  _ 2 a T  z +  1 ab m(x o -  1)(70 -  7 )A T © ft2 
2  2; ( x 0 -  1)m +  2 / i0 +  7?.4© [(>fo -  1)m  — 2 x / i 0]

e2iP +  o l -

1 ab m(x0 -  l) (7o -  7 )A T (f t2© -  1) / I
=  - 7 -------- —----— ----- , ^ A^ r,-------- —------   7 +  O

z  ( x 0 -  1 )/z +  2 /io  +  7£4 0 [ ( x o  — 1)m  -  2 x / i 0] v M
and therefore, the components of the vector X> have the form

/© 7?4 _  1 \
X>i =  abir(x +  1 )0  f   ------ @H2 cos 2/? J ,

(
©7?4 _  1 \
   h ©T2.2 cos 2/? J ,

Z>3 =  — y/2 ab7r(x  +  1)0©72.2 s in2/7,

(5.3.8)

(5.3.9)

where

0 =
n {x Q -  1 )  (70  -  7 ) A T

(5.3.10)
( x 0 -  1 ) m +  2 /io  +  7?.4© [(x :o  -  1 ) m -  2 ^ o ]  ’

As before, one splits up the total deflection of a crack into an elastic deflection (deflection 

under zero increment of temperature) and thermal deflection (difference between total 

and elastic deflection). The elastic deflection is specified by the formula (5.2.30), whereas 

the therm al deflection is given by

AftT(o =  -  K 4© )A W

+ n 2 Q I 2 ( 8 )  cos 2/3 -  K2e i3(8) sin 2^ ),
(5.3.11)

with the integrals I \  , 72, h  defined below
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h(e) = f 9
Jo

d(f>,
sin 30/2 

o \ /s in 0

'e cos 0 sin 50/2 4- sin 70/2
 “05/2W = 1

m  = f  c o sm o s 5 ^ 2 + cos7 0 /2 #  (g 3 i2)
Jo Vsin 0

Analysing the behaviour of the function (5.3.11), we can conclude tha t the contribution 

of the therm al deflection at infinity is equal to zero

AhTV ~  -* { (R49 -  ^  +

'JZ2@(Is(tt) sin/? -  / 2W  cos/?)j = 0 , (5.3.13)

The therm al deflection has only local effect: it affects the trajectory near the inclusion 

and does not affect it at infinity. This can also be seen from the numerical experiments 

presented in the next section.

5 .3 .3  N u m e r ic a l ex p e r im e n ts

A number of numerical experiments has been carried out to analyse the crack devia­

tion. First, we recall that the cavities and soft inclusions attract the crack. On the other 

hand, the inclusions which are more rigid than the matrix material repel the crack. Since 

one treats uncoupled thermo-elasticity problems, it is possible to consider the “elastic” 

trajectory (trajectory of a  crack in a elastic medium with zero increment of a tem pera­

ture) and the therm al trajectory (difference between total and elastic trajectory). It is 

appropriate to refer to some numerical examples.

In Figure 5-12(top plot) one can see the crack trajectory due to soft inclusions. All 

trajectories correspond to attraction of the crack. At infinity the crack perturbation is 

still positive, but much less than near the inclusion.

In Figure 5-13(top plot) the crack trajectories due to rigid inclusions are shown. A

negative deflection occurs in all points of trajectories including the infinite point. The

more rigid the inclusion the more it repels the crack. It is im portant to note tha t all 

possible crack trajectories are in the region bounded by the curve corresponding to 

Ho —► oo (lower boundary) and h =  0 (upper boundary).
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The crack in elastic media

0.5

-10 -6 -2

Additional thermo-elastic term

-0 .5

-6 -4

The crack path in thermo-elastic media

0.5

-0 .5  L  
-1 0

Figure 5-12: The crack deviation due to the soft thermoelastic inclusion: 7  =
4 • 1 0 - 3, 70 =  10-3, AT =  100/C, X- =  2 , =  2 , mo/m =  0.5(—), Mo/p =
0.2(— ), MO/m =  0.01 (...).

The crack in elastic media

Additional thermo-elastic term

The crack path in thermo-elastic media

8 10

-1 0  - 8  - 6  -4 8 10

Figure 5-13: The crack deviation due to the rigid thermoelastic inclusion: 7  =  
10-3 , 70  =  10-2 , AT =  100K, x  =  2,*r0 =  2, = 2(—)» / i 0 / / i  =  5(— ), / i 0 / / i  =

50(...).
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The crack in elastic media
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Additional thermo-elastic term
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-10 -8 -6 -4  -2  0 2 4 6 8 10

1
The crack path in thermo-elastic media

1 1 ■ “ - 1 1 ~ ‘* -7  ■ ■  1 "BT11 + ■! '
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n c ----1------- 1 1 1 i i _ i j 1
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Figure 5-14: The crack deviation due to the thermoelastic inclusions with the same 
shear modulus: 7  =  10-3 , 7 0  =  4 • 10-3 , AT =  100AT, x  =  2, H o / f i  = 1, x q  = 
2(—), xq =  1.5(---- ), xq =  2.5(...).

In Figure 5-14(top plot) the case of different Poisson ratio is considered. Shear moduli 

of matrix and inclusion are equal, but the parameters x  and xq which characterize the 

Poisson ratios are different. If the Poisson ratio of the inclusion is less than of the matrix 

then the crack is attracted by the inclusion. In contrary, if Poisson ratio of the inclusion 

is greater, the crack is repelled by the inclusion.

By further analysis it is also possible to see that there are situations where the crack has 

zero deflection at infinity. It means that the macro-crack is not sensitive to such defects. 

Deflection has only local effect: some perturbations of a crack trajectory are possible 

only near the defect. When the crack propagates further all these effects vanish.

In Figure 5-15(top plot) we give an illustration of this statement: crack deflection at 

infinity is zero, at the same time there is a local perturbation of a crack trajectory near 

the origin. The latter is caused by differences in shear moduli of matrix and inclusion. 

The perturbation changes sign from positive to negative (or vice versa) depending on 

whether the shear modulus is greater in inclusion or in matrix.

The thermal deflection (difference between the total deflection and the elastic one) is 

analysed. This type of perturbation occurs only due to thermal expansion effect. If, 

for example, the coefficients of bulk thermal expansion 7  and 70 are equal, then the
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The crack in elastic media
0.05

-0.05 L  
-10 -6 Additional thermo-elasic term 

---------r0.1 T T T T T

10 8 6 The crack path in tOermo-eFastic mellia 6
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-10  -8  -6  -4  -2  0 2 4 6 8 10

Figure 5-15: The crack deviation due to the thermoelastic inclusions with the same 
bulk modulus: 7  =  10-3 , AT =  25K, n =  1, A =  1, /iq =  1.5, Ao =  0.5,70 =  
2 • 10- 3( - ) ,  no = 0.5, Ao =  1.5,70 =  10~4(---), 1-95, A0 =  0.05,70 =  3 ■ 10-3(...).

thermal deflection disappears even for non-zero temperature increment.

From the analysis of the thermoelastic term Ah j ,  one can conclude that the difference of 

the thermal expansion coefficients plays an important role. To be more precise, whether 

the inclusion repels the crack or attracts it is defined by the sign of the expression 

( 7  — 7o)AT. The inclusion with the greater thermal expansion coefficient repels the 

crack and, in contrary, the inclusion with the smaller thermal expansion coefficient 

attracts the crack.

L em m a 5.5 The sign o f  the thermal deflection o f  the crack is the same as the sign o f  

(70  -  7 )  A T .

This simple proposition is illustrated in Figures 5-12 and 5-13. The middle plots show 

that 7  >  70 and AT > 0 , the thermal crack trajectory is negative for an arbitrary 

combination of elastic parameters of inclusion and matrix. If 7  <  70 and AT >  0 the 

situation is the opposite.

Analysing further, we consider the total deflection. It is possible to find a situation when 

the temperature term compensates the influence of the elastic term, and the resulting 

crack deflection decreases. Such examples are presented in Figures 5-14, 5-15(bottom
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The crack in elastic media

0.5

-10 -8 -6 Additional therr?io-elasiic term

The crack path in tt?ermo-e&stic mellia-10 -8

-10 -8 -6

Figure 5-16: The crack deviation due to the elliptical thermoelastic inclusions with the 
same elastic and thermal moduli: 7  =  10-3 , 70 =  5.10-3 , AT =  100if, x  =  2 , /i0 =  
0 , /i *  1, x 0 =  2, (3 = 45°, a =  1, b = l ( - ) ,  b = 0.5(— ), b =  0(...).

plots). The temperature reduces the crack deflection in comparison with the pure-elastic 

case on these plots.

One could emphasise that the elastic and the temperature deviation of the crack have 

different behaviour at infinity. The pure-elastic term tends to a non-zero constant 

at infinity (except for a special case considered in Chapter 4). At the same time, 

the thermal term vanishes at infinity, although with a very slowly rate. Thus, the 

temperature gives only a local effect in the crack propagation problem, the trajectory 

is perturbed near the inclusion only. Also, it means the total crack trajectory is never 

zero except for trivial cases.

Analysis of the crack trajectory due to an elliptical inclusion is more complicated. The 

number of parameters involved is greater (the ratio of the semi-axes specified by 1Z 

and the rotation f3). In Figure 5-16 we give the example of crack deflection due to an 

elastic elliptical inclusion which shows that crack trajectories can have curious shapes. 

Detailed analysis is based on the crack trajectories which have been derived above in 

the form of explicit analytical functions (5.2.30) and (5.3.11).

C h a p t e r  5 118



5.4. MATHEMATICAL MODEL OF A DEBONDING-TYPE INTERFACE

5.4  M a th em a tica l m od el o f  a d eb o n d in g -ty p e  in terface

In this section we analyse a different type of non-perfect interface conditions, namely, 

interface conditions of the debonding type (sometimes it is called linear interface condi­

tions). We consider the crack-inclusion interaction problem and analyse the conditions 

on attraction and repulsion as functions of the stiffnesses characterizing the interface 

layer. In particular, the relation between the radial and tangential stiffnesses is found 

which leads to zero crack deflection at any point. The debonding layer of this type 

compensates the effect of inclusion.

First, we employ the asymptotic scheme for the analysis of dilute composites which 

contain inclusions with imperfect bonding at the interface. The interface is characterized 

by a discontinuous displacement field across which is linearly related to the tractions. 

Effects due to the interaction of a small circular defect and a crack are investigated. It 

is shown th a t the interfacial stiffness has a strong effect on the crack path  and therefore 

may be an im portant design parameter for composites.

The description of the mechanical behaviour of fibrous and particulate-reinforced ma­

terials is crucial for design purposes. In these materials the inclusions may often be 

imperfectly bonded to the matrix. In some cases, a thin layer, called the interphase, is 

introduced to  improve the performance of the composite. In other cases, the interphase 

may be the product of chemical interaction between phases or localised mechanical dam­

age of one or bo th  phases (see the detailed discussion by Aboudi [1]). It is obvious that 

such interface conditions have a strong effect on the mechanical behaviour of the com­

posite. In the last few years, strong research effort has been devoted to analyse interfaces 

from the mechanical point of view. In particular, many different models of interfacial 

behaviour have been developed. The simplest model is the linear interface, in which 

a linear relation between the traction vector and the displacement jum p holds at the 

interface. This interfacial constitutive law has been formulated by Jones and W hittier 

[48] and may be considered as a simplification of the behaviour of a thin, soft elastic 

layer (see Goland and Reissner [31]); a rigorous proof of this in terms of asymptotic 

analysis has been given by Klarbring [52], Geymonat and Krasucki [27]). The model of 

linear interface has been employed by Mai and Bose [59], Hashin [38], [39], Levy [56], 

Qu [92] and Lipton [57] in homogenization problems and by Suo, Needleman and Ortiz 

[109] and Bigoni, Ortiz and Needleman [10] in determining the bifurcation loads of lay­

ered elastic structures subject to large strain, and by Tullini, Savoia and Horgan [113]
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in the Saint Venant analysis of layered elastic plates. Lipton and Vernescu [58] have 

considered composites filled by spheres with imperfect interfaces and have solved the 

corresponding problem using the variational approach when the tangential stiffness is 

equal to the radial one. Also, one could mention the paper by Bigoni, Serkov, Movchan 

and Valentini [11] where generic polynomial loading has been applied to the imperfectly 

bounded inclusion in an infinite elastic plane.

5 .4 .1  A s y m p to t ic  d er iv a tio n  o f  lin ear in terfa ce  co n d itio n s

In this subsection an asymptotic expansion is presented for the solution of an isotropic 

elastic circular inclusion in an isotropic elastic plane, coated by a cylindrically-anisotropic, 

finite-thickness elastic coating. The asymptotic procedure yields the stiffness constants 

of the linear interface using the model of a thin and soft elastic layer in the limit when 

the layer thickness and stiffness tend to zero. The following notations for the geometry 

of the domain are used: Hi is the circular inclusion, H2 is the interphase, H3 is the re­

maining part of infinite domain. The inclusion and the infinite plane are isotropic elastic 

solids respectively characterised by the Lame constants /ii, Ai, and /U3, A3, respectively. 

The interphase is assumed, for generality, to be cylindrically anisotropic (in the plane), 

and therefore, it is characterized by the constitutive equation

cr =  Tie,

where cr and e are vectors collecting the components of stress and strain tensors, i.e.

O ( o Y r ,  &69y Gro) 5 ® {^rri^Qdi^'ro') i

and
( Crr Cr 0 0 ^

n  = (5.4.1)Cqt Cee 0 

\  0 0 2GeJ

which depends on the four stiffness coefficients (in the particular case of isotropic elas­

ticity Crr =  A -|- 2/x, Cre = Cgr = A and Ggr = /i)- Therefore, the elasticity problem in 

compound domain can be formulated as follows

£ r0(w(1),/ii , Ai) =  0, x  G Hi,
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—  0, X E  ^ 2 )

£ re { u ^ \ p 3, A3) =  0, x  6  H3, (5.4.2)

where £ rg(•) is the Navier operator written in the polar system of coordinates. In matrix 

form it can be represented by

£ rfl(.) :=  D x U D f r ) ,

/ 1 , 1  _ 1  1 1 d  \  /  d_ 1 1 1 d  \
j j    I d r  ' r  r  y / 2 r  89  \  D  — I T y / 2 r  9 9  \

1 \  0 1-^- -I-(0 - +  2 \ J ’ 2 '  o ±-2- - L f l - I w ’
\  U r d 9  J 2 \ d r ^ r ! /  \ U r  89  y / 2 ' d r  r >  /

where 'H. is given by (5.4.1) for the interphase, whereas for the m atrix and inclusion

/  A +  2/i A 0 \

A A +  2/i 0

V 0 0 2/i

The boundary conditions on the outer and inner boundaries of the interphase are the 

conditions of the perfectly bonded interface

^ .(^ (n l1)) =  <r(n) ( u ^ ) ,  u ^  when r = R,

<r(n)(i/(3)) =  <r(fl)(it(2))J ?/(3) =  when r = R  + e , (5.4.3)

where e is the thickness of the interphase, c r i s  the traction vector.

Solution of the above formulated problem is sought in the form of the asymptotic series

oo oo oo

i=0 i=0 i=0

Let us introduce the scaled ("fast”) variable p as

P =  ( r - R ) e - 1 ,

where R  is the radius of the inclusion, and apply this variable in the interphase (region 

H2) only. Then the equilibrium equations inside this region can be expanded in different
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powers of e with the leading term

I /  Crr 

£2 1 G$ ^ 2
d r  . n

dp2
(5.4.4)

The solution of system (5.4.4) can be found in the form

. (2)u, 'A  ( A { 8 )p + B ( 8 )
(2) (5.4.5)

v g, U  \ C ( 0 ) p  + D ( 0 ) j '

The radial traction vector at any point of the interphase can be rewritten in the form

» ( « « ) = i
^ \ G erC ( 0 ) )

(5.4.6)

From (5.4.3) we immediately deduce that the leading term  of tractions on the outer and 

inner boundary of the interphase coincide, i.e.

'(n\ u P ) \ , . =R =  o-<">(»42)) =  <rW(U<3))|r= (5.4.7)

Let us now analyze the continuity condition for the displacements. Following (5.4.5), 

the displacement jum p between the outer boundary (p = 1) and inner boundary (p = 0 ) 

is specified by the functions A(9) and C(6 ). Employing (5.4.6), one obtains

u (3),°)\ (1) i ■*■ t iij\
)0lr=ii-|-e Wr,olr= R  ~  &rr \uo )(1)'

Cl

u 0fi \r=R+e  — (Tre ( u o J),(1) (1)'
GOr

r= R

r = R

(5.4.8)

(5.4.9)

where one has assumed that the elasticity coefficients of the interphase have the order e

Crr = ec;r, Ger =  sG*er. (5.4.10)

Now we expand first terms in (5.4.8) and (5.4.9) in the Taylor series (here we extend 

the functions u[3\  smoothly in the thin interphase)

(3 )  | 1 0 1  | .
) olr=^+e — ^(.),0'T’=^  ^

_  ..(3) du^  au(.),o
dr

+ 0 (e2). (5.4.11)
r=R

Substituting the expansion (5.4.11) into (5.4.8) and (5.4.9) and considering only the
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coefficients of zero order in e, we obtain the interface conditions for a linear interface 

(viewed as a zero-thickness interphase)

u, — u
r = R

1

U — u
r—R

si* &rr{uo J 
r= R rr

r—R Or

r= R

r = R

(5.4.12)

(5.4.13)

It follows immediately from expressions (5.4.7), (5.4.12) and (5.4.13) tha t tractions are 

continuous across the linear interface, but displacement jumps occur. These jum ps are 

related to the tractions at the interface with the stiffness coefficients

■'rr
£ SO =

Ger

If one assumes tha t the elasticity coefficients of the interphase go to zero as

(5.4.14)

G„ = e ^ C '  Gtr = 0 < 0 < 1, (5.4.15)

the perfectly bonded interface conditions are obtained

<j(n\ u W ) \ r=R = a(n\ u W ) \ r=R, u (1)|r=jR =  as e - > 0 .  (5.4.16)

5 .4 .2  C ircu la r  in c lu s io n  w ith  im p erfe c t b o n d in g

An isotropic, linearly-elastic infinite plane, which contains a circular, isotropic linearly- 

elastic inclusion of radius R  is considered. The Lame constants of the m atrix and of 

the inclusion are denoted by A, fi and Ao, Hq- The circular inclusion is connected to 

the m atrix with a linear interface, which, according to results of previous section, is 

characterized (at r  =  R)  by

iTrr — &rr, Cb &rQ — &r6,0 i (5.4.17)

arr =  sr [ur (a;+ ) -  ur$ (x  )], ar6 = se[u0 ( x+) -  ue${x  )],+' (5.4.18)

where u  is the displacement vector, sr and sq are the stiffness constants of the interface 

(assumed non-negative), x + and x ~  are also the two limits of the same point on the 

boundary (from the m atrix and from the inclusion). When both these coefficients tend 

to infinity, the perfect bonding is recovered. In opposite, when sr and s0 are equal to
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zero, there is no connection between inclusion and matrix, and the problem reduces to 

tha t of a cavity in an infinite plane. The loading is prescribed at infinity by introducing 

a linear displacement field

u ( x ) —> uoo(x) as x  —> oo, (5.4.19)

where

Uoo{x) =  (pixi  +  qiX2 ,P2Xi +  q2X2)- (5.4.20)

Thus, the problem considered in this subsection is to find a displacement field u  satis­

fying the Navier equations in the matrix and in the inclusion

p V 2u(x )  +  (A +  /i)VV • u(x )  =  0, x  G M2 \  G,

PqV2uq(x)  +  (A0 +  /io)VV • ito(®) =  0 , x  E G, (5.4.21)

where G is the region occupied by the inclusion. The conditions (5.4.17) and (5.4.18) is 

prescribed at the interface and (5.4.20) - at infinity. The standard technique for solving 

two-dimensional problems reduces this boundary value problem to the calculation of the 

complex potentials cp(z) and 'ip(z), which represent the displacement and stress field by

ur +  iu0 = {x(p{z) -  zip'{z) -  ip(z)),

Orr +  <700 =  2 (ip'{z) +  (f'{z)),

<700 -  &rr +  2i o r 0  =  2e2ld (z<p" (z) +  (5.4.22)

where z = x\  + ix 2 and x  =  (A+ 3/i) (A-I-/i) -1  for plane strain. The complex potentials <p 

and ip are analytical functions in the region where they specify the solution of the elasto- 

static problem. As a result, the solution is sought employing the following representation 

of the complex potentials

+00 +00
<A)W =  ^oW  = ^ 2 d kz k, (5.4.23)

k=0 k=0

which are analytic inside the disk of radius R , and

+00 +00

=  =  S  bkzk’ (5.4.24)
k= —00 k= —00
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which are analytic in the outer region {x  : R  +  e <  y /x 2 + x \  < + 00} and have a pole 

at infinity. The coefficients ak, bk axe defined from the conditions (5.4.20) at infinity for 

0 < k < N ,  are zero for k > N  (i.e. ak =  bk = 0, for k > N)  and to be determined for 

N  negative. The remaining coefficients can be found from the boundary conditions. In 

order to  rewrite the interface boundary conditions in terms of the complex potentials, 

we note th a t the continuity of traction at the interface corresponds to the following 

condition

ip(z) +  zip'(z) +  'ijj(z) = ipo(z) +  zcp'0 (z) +  'ipo(z), (5.4.25)

where z  =  Re10. Using the standard Muskhelishvili [83] technique, the boundary integral 

equations holding in the whole plane are deduced

[ip(t) +  tiffjt) +  i!)(t)\dt _  £  [y?o(t) +  ty'0 (t) +  ipo(t)]dt
t — z

j  [<p(t)+y(*)+V>(t)]<ft = y  [y?p(t) + t<p’0(t) +ipo{t)]dt ^ 4 26̂

L L

where L  denotes the circular boundary of the inclusion.

Solving this system of equations employing the theorems on Cauchy-type integrals and 

the expansion for the complex potentials (5.4.23-5.4.24), the condition (5.4.26) can be 

transformed into the form

+00  +00  +00

Y  akR kz k + Y  kakR kz 2~k + Y  h R kz~k
k= —00 k——oo k= —00

+00  + 00  +00

=  Y j ckRkz k +  ^ 2  kckR kz 2~k +  Y ^  dkR kz~k , |^| =  1. (5.4.27)
fc=0 fc=0 k=0

Collecting coefficients near the same powers of z, we obtain the system of linear equa­

tions for the unknown coefficients ak,bk,ck,dk:

anR n +  (2 -  n)a2- nR 2~n +  b-nR ~ n

= CnRn +  (2 -  n)c2- nR 2~n +  d - nR - n , (5.4.28)

where n  G Z  and the coefficients an,bn are known from the conditions at infinity for

n > 0, whereas coefficients c™, dn are equal to zero for n < 0. More precisely, index n 

ranges between —N  and N.

Let us consider now the second boundary condition (5.4.18). Using the complex po­
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tential representation, the radial and shearing components of the stress tensor can be 

rewritten in the form

arr = p'(z)  +  p'(z) -  Re[e2ld (zp" (z) +  4>'{z))],

arg = Im[e2te (zp" (z) +  ij/(z))\. (5.4.29)

Therefore, the boundary conditions (5.4.18) take the complex variable form

S<p(Uf U^o) 4“ i s g ( l l g  ^0,o) — (Jrr 4“ (5.4.30)

or, more explicitly,

sr + se v" - ie/r x
2 fi

S f  Sg

x p ( z )  -  z i p ' ( z )  - ^ ( z ^ j -  ^ o p o ( z )  -  z p ' 0 ( z )  -  i p o i z ) ^

[ > c p ( z )  -  z p ' ( z )  -  ^ ( z ) ^  -  ( x 0 p 0 ( z )  -  z i f o ( z )  -  ^ o ( z ) ^

= p'(z) + p'(z) — e 2l9 (zp"(z)  +  t/j'iz)). (5.4.31)

In terms of Cauchy integrals, the system (5.4.31) can be written as .

S r  +  S °  <L e  ( “ V W  ~  W W  ~  ^ ( t ) )dt _  s r  +  ^g /  e ( x ptpojt) -  tlfib(t) -  ipo(t)) 
J t - z  4/i0 J4  p  J t  — z  4 / io  J  t  — z
L L-

^sT -  Sg /  el9 (>cp(t) -  tip'(t) -  ip(t))dt sr -  Sg /  et9 (x0 p0 (t) -  tp'Q(t) -  1po(t))dtf  e (xip(t) — tp (t) — i/j(t))dt sr — sg /

J t - Z  4/20 J
L

[p'(t) +  p'(t) — e~ 2t9 (tp" (t) + ip'(t))]dt

4/2 /  t — z  4/20 /  t — z
L L

/ t — z 
L

sr + sg f el9 (xp(t) -  tp'(t) -  il)(t))dt Sr + Sg f et9 (x0po(t) -  tp'0 (t) -  l/)Q(t))f  el9 (xp(t) — tip (t) — ip(t))dt sr 4- sg f 
4/2 J t - z  4/20 J t - z

sr -  Sg f e l9 (xp(t) -  tp'(t) -  lj)(t))dt _  Sr ~ Sg C e l9 (x0pQ(t) -  tp'Q(t) -  ^0 W )  

J t - z  4p 0 /4/2 /  t — z 4/20 /  t — z
L L-

= £  W{t) +  p'(t) -  e2l9 (tp"(t) +  Ip'(t))]dt ^  4  32^

L
Taking the series expansion of (5.4.32), writing it on the circle of radius R  and integrating
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over L, one gets

+00 +00 +00

S f  S q

- 1 / -roo -t-00 -|-oo X
—  ( x  O j R P z 3 - 1 -  j a j W z 1- 3 -  5 3  b j l V z - i - M

J = — OO j=~ OO j  — — OO
1 /  ~̂ °° +OO +OO x -
— ( 5 3  Cj R3z3~l ~  ^ j ^ 3 R 3 z l ~ 3 ~  Y ^ 3 R3z~3~l )

'  j=0 j=0 i=0 '  -1
,  /  +OO +00  +OO X

—  ( x  5 3  U jB P z1- 3 -  J 2  j a j R 3 ^ 1 -  5 3  bi R i z j + 1 )
v j=—OO j =—OO j=—oo

1 /  j~ ° °  +00  + 00  \  -

-  5—  ( * o ]T cj-R 5zw  -  jc j - b V -1  -  5^ )
'  J=0 J=0 i=0 '  J

+ 0 0  +00

=  53 j d j R 3~l z l ~ 3
j =-OO j=—oo

+ 0 0  +cx>

-  5 3  ^  -  -  5 3  f i j R j ~ l z ~j ~ l , \ z \  = 1. (5.4.33)
J = —00 j =—00

After simplification and collection of the coefficients near the same power of z in (5.4.33), 

the following system of linear equations is obtained

(x a „ +1iin+1 -  (1 -  n ja i-n ii1-" -  ft-n -iiT '1- 1)

(>fOCn+lfi"+l -  ( 1  -  n )ci-n #1-" -  d-n-lR~n~l\ 

(«ai_„i?1_n — (n +  l)o„+i Jin+1 -  6„_i-Rn_1)

( x o c i ^ f i 1- "  -  (n +  l)c„+iR "+1 -  d n ^ R " - 1 \

S r ~\~ S q

4/i
Sr +  50

4/iO
. sr — S q f  n l - n

4/i
S r  S q

4 /io

=  (n +  l)a n+iR Tl +  (1 — n?)ai—nR  n +  (n -1- l)b—n—i R  71 (5.4.34)

where coefficients ai and 61 are known from the condition at infinity for n  >  0 , whereas 

cn = dn — 0 for ti <  0. More precisely, index n  ranges between —N  — 1 and N  — 1.

The Eshelby condition of homogeneous stress at infinity, particularly relevant in view 

of applications (two of which, regarding crack propagation and homogenization of com­

posite materials, are presented in Section 5.5), corresponds to a linearly varying dis­

placement field. In this case, the general expression for the complex potentials becomes

<p(z) =  a\z  +  cl- \ z -1 , ip(z) =  biz +  b - \ z ~ l +  &_3Z-3 ,

<Po(z) =  c\z  +  c3z3, V’o (z) = d\z,  (5.4.35)
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where coefficients ai and b\ are related to the conditions at infinity given by (5.2.15) 

and otj, 7j correspond to the linear fields with exact values (2.2.7). Coefficients 

a_i ,  6_i,  6—3, ci, C3, d\ result

61R 2
a - 1  = | s r S0R 2r o(/xo -  m) +  (sr +  s9)R^no{3(fi0 -  n) -  T0) -  12/22/2q j ,

D 2

2 st R(iiq{>c -  1) -  /i(x0 -  1)) -  4/2/20
6_i =  2Re(a\ )R

srR {n (x 0 -  1) +  2/i0) +  4/2/2Q

b\R  ̂ fb- 3  =  - j ^ - U r S o R 2r 0 ( t l0 -  /2) -  i? /2/20 ( s r +  S0) (F O -  3 /20 +  3 /2)

-  R f l H o i S r  -  S f f ) (r  +  /2 0 -  f i )  ~  12/22/2 q |,

R e ( a i ) I ? s r ( x  +  l ) / 2 o  . I m { a \ ) { > c  +  l ) / 2 o ̂ ^ a  ■ |  ̂ ■ II I- — ■ ■ ■
4/2/20 +  S r R ( f l ( x o  -  1) +  2/20) ( x 0 +  l )/2

6 l ( s 0 -  S r ) ( x +  l ) / 2 § / 2

C3 _  j j d 2

6lR (x  +  l) /2O(SrS0# r O +  6sr/2/20) 
d\ = ---------------------—  , (5.4.36)

where

D 2 = SrSeTToR2 (sr -I- sg)R(3T +  To)/2/2o +  12/22/2q.

r  =  xr/20 +  /2, To =  xr0/2 -f  /20-

As noted by Gao [26], the Eshelby [24] theorem, stating tha t the deformation field 

is homogeneous inside the inclusion, holds if and only if C3 =  0. Except for trivial 

cases, this occurs when the stiffness in radial and tangential directions are equal, i.e. 

sr = se = s. In this case, the coefficients of the complex potentials reduce to

T  D 2 s R ( l* 0  -  v )  -  <2—1 =  Dili

6_i =  2Re(ai)R

S V R  +  2 /2 /20

2 sR(hq{k  — 1) -  h(>€q -  1)) -  4/2/20
SR(/2(X0 -  1) +  2/20) +  4/2/2Q

l  u 2 /2/20

b - 3 =  h R  sTR + 2 m  ’

Re{a\ )Rs{x  +  l ) / 2 o  . Im (a \ ) { x  +  l ) / 2 o
—  - - - - -  - —j— ̂  1 ■ .................  —  —. -  ■ ■

s R ( / i ( x 0 -  1 )  +  2 / 2 q )  +  4 /2 /2 0  ( * 0  +  l ) / 2
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C3 =  0,

dl =  (5.4.37)
sTR + 2 /ifio

5.5 Crack tra jecto ry  in  a d ilu te  co m p o site

The solution obtained in Section 5.4.2 is applied to the problems of crack propagation 

in dilute composites. The examples show the strong effect of the interface conditions: 

the presence of a finite interfacial compliance yields a solution which is “intermediate” 

between the limit cases of zero and infinite interfacial stiffness, corresponding to a cavity 

and a perfectly bonded elastic inclusion, respectively.

5 .5 .1  P o ly a -S z e g o  m a tr ix

The Polya-Szego matrix for circular inclusion with linear interface may be written as

/  £ +  (J-W> +  (J-W* 0
_ _ n 2
r  -  —  -Q-r  (^zrp- S t  (^zi)4 q

where

S -T- (x_!)
2?7 t  i 277

( > f - l ) a ?  ^  ( x r - l ) a

0 0 2£ /  

s r R { n o { > c  -  1 ) -  m (^ o  -  1 ) )  -  4 / i / i o

(5.5.38)

srR(n(xo -  1) +  2no) +  4/i/io

srsoR2To(no -  aO +  (sT +  S0)R/i/io(3(/uo — /x) — To) -  12//2>l£q
srs 0 r r oi?2 +  (sr +  s0)R(3r +  ro)/i/io +  i2 /i2/iQ 

and

9 =  8 ^ + % ) ’ r  =  ^ o  +  ^  r„  =  *oM +  Mo.

In the particular case of equal radial and tangential stiffness of the interface, sr = sq =  s, 

the constant £ reduces to
_  sR(fi0 -  At) -  2 ^ q  

sTR +  2/^0

It should be noted that (with multiplicity 2) and are the two distinct eigenvalues 

of P .  It can be therefore easily verified tha t when one of the eigenvalues of P  is negative 

in the limit sr = sq —>• oo, i.e. for perfectly bonded interface, it remains negative for 

any finite (positive) value of interfacial parameters sr and s q .  On the other hand, when 

one of the eigenvalues of P  is positive in the limit sr = sq —> oo, it may always become 

negative for a set of values of sr and s q .
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W hen the m atrix P  is positive definite in the limit case of perfectly bonded interface, 

it may happen tha t the matrix P  becomes identically zero for an imperfectly bonded 

interface with a proper choice of parameters sr and s q .  The condition of vanishing of 

m atrix P  can be obtained imposing 77 =  £ =  0 and thus obtaining

4/x/xq

and

se =

R[H0 (x r  -  1 )  -  p ( x 0 -  1 ) ]  ’

4/i/x0{3(r — fiQ +  /i) — 2 r0}

(5.5.39)

(5.5.40)
r { ( t 0 +  3r)(/x0 -  /i) +  r 0( r 0 -  r )}  ’

When this condition is satisfied for non negative values of sr and sg, the inclusion does 

not affect the matrix. In order to clarify this point, consider an example taking

X  = = 1 + E, p = —  < 1 , 0 < £ < 2.
Vo

Under these assumptions, both sr and the denominator of sq are positive. Therefore,

„ > o ,  <=> p > 7 ^ -  + 1-.

5 .5 .2  C rack  tr a je c to r y

The formulation is based on the asymptotic analysis from Chapter 4. In this subsection 

we are interested in effect of imperfect interface and stiffness parameters on the crack 

path. The crack is assumed to be at a sufficiently large distance from the defect (com­

pared to the defect size) and the trajectory turns out to be representable by a function 

H  of the generic crack tip position I. In the specific case under consideration, i.e. for a 

circular elastic inclusion with linear interface, this function is

(5.5.41)

where R  is the radius of the inclusion and

t =
( r 0 - 1)

Vivo)2 +  (zo -  0 2 ’

with xo, yo being the coordinates of the centre of the inclusion in an orthogonal reference 

system having the x \  axis coincident with the unperturbed crack trajectory.
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Figure 5-17: Crack trajectories H(l)/yo  versus crack tip position l/yo, resulting from 
interaction with a  circular elastic inclusion bonded with a linear interface with equal 
radial and tangential stiffness (the inclusion is stiffer than the matrix: hq/ h = 10).

It should be mentioned that the function H (l ) in (5.5.41) reduces to tha t corresponding 

to a circular void, for sr = se = 0, and to tha t corresponding to a perfectly bonded 

inclusion, for sr = se -* oo.

The crack may be attracted or repelled by the inhomogeneity. For instance, an inclusion 

”stiffer” than  the m atrix repels the crack and a void attracts it. Formally, the attraction 

occurs when Polya-Szego matrix is negative definite and the repulsion when it is positive 

definite. The positive (or negative) definiteness depends on the values of material and 

interfacial param eters fi, /io, x ,  xo, R,  sq and sr . For instance, if sr = so = s the 

Polya-Szego m atrix is positive definite when

1 1  2 x: — 1 xq — 1 4
>  ——, > — (5.5.42)

/i SR  A* Âo SR

and negative definite when the above inequalities have the opposite sign. Otherwise, 

the m atrix *P is indefinite. From the analysis of the eigenvalues of m atrix P ,  it may be 

concluded that:

- if the crack is attracted  in the limit case of perfectly bonded interface, it will be also 

attracted for imperfectly bonded interface;

- if the crack deflection is partly positive and partly negative (i.e. m atrix V  is indefinite)
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Figure 5-18: Crack trajectories H(l)/yo  versus crack tip position l/yo, resulting from 
interaction with a circular elastic inclusion stiffer then the m atrix and bonded with a 
linear, interface. Different values of interfacial stiffness sq for the same param eter sr, 
producing zero deflection of the crack path at infinity, are considered.

in the limit case of perfectly bonded interface, it will be not repelled for imperfectly 

bonded interface (i.e. m atrix V  will be indefinite or negative definite);

- if the crack is repelled in the limit case of perfectly bonded interface, the crack deflec­

tion may be positive, negative, indefinite or zero for imperfectly bonded interface.

The condition for which the crack trajectory is zero at infinity, i.e. for I oo, may be 

w ritten as
P2

(5.5.43)
D 2

H (  oo) =  rj =  0,
2/0

and therefore, it depends on the radial stiffness parameter sr as specified by (5.5.39). 

Crack trajectories H(l)/yo  versus the crack tip position l/yo are shown in Figure 5-17 

in a non-dimensional form (i.e. divided by the coordinate yo of the centre of the defect). 

These are the result of interaction with a circular elastic inclusion with a linear interface, 

positioned at (0,1). The stiffness of the interface enters in the non-dimensional form

Sr — r̂2/0
A4

so = spyo (5.5.44)

In Figure 5-17 the equal radial and tangential stiffnesses of interface have been consid­

ered sr =  so = s. Various values of interfacial stiffness are considered, ranging between
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the extreme cases of perfectly bonded interface s  -» oo and circular void s  = 0. Figure 

5-17 shows the case when an inclusion stiffer than the matrix (fJ-o/fi = 10), k -  = k+ = 2. 

It can be observed that the crack trajectory changes even qualitatively, depending on 

the value of stiffness of the interface, for inclusion stiffer than the m atrix (Figure 5- 

17). In the opposite case of inclusion weaker than the matrix, the effect of interfacial 

compliance is only quantitative.

The four values of tangential stiffness s g  for the fixed value (5.5.39) of radial stiffness 

corresponding to zero crack deflection at infinity are considered in Figure 5-18. The 

stiffness of the interface enters in the non-dimensional form (5.5.44) and the values 

s g  = 100, s g  =  5, s g  «  0.81, and s g  =  0 are reported for s r  «  4.4444. The Polya- 

Szego m atrix is identically zero and crack remains straight when s g  «  0.81. The case 

Ho/H = 10 and * -  =  k+ = 2 has been considered. It can be noted tha t the tangential 

stiffness param eter s g  affects the crack path near the inclusion.

5.6  C on clu sion s

In this chapter the asymptotic models of crack propagation in the presence of different 

defects axe given. One starts with the analysis of defects with perfect interface on the 

boundary and shows how these defects affect the crack trajectory. Then the crack-defect 

interaction in problems of uncoupled thermo-elasticity has been analysed. Finally, the 

effect of debonding on the interface boundary is considered. For all mentioned cases the 

crack trajectory has been analysed.
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Chapter 6

A sym ptotic analysis of 

thin-w alled com posites

6.1 H o n ey co m b  stru ctu re  under rem ote  loading: form al 

a sy m p to tic  approach

In this chapter we consider the behaviour of a thin-walled structure under remote load­

ing using the asymptotic methods. The approach is based on the asymptotic expansion 

of the model displacement fields and, as a result, the asymptotic expansions of the effec­

tive moduli are constructed. The leading term  of this expansion (simplest geometries) 

agrees with the known ’’engineering approach” (see Gibson and Ashby [30], Davinge 

[22], Kalamkarov and Kolpakov [50], McClintock and Argon [66], Torquato, Gibiansky, 

Silva and Gibson [112]). In addition, the high order corrections axe obtained here for 

the effective elastic moduli, and the accurate derivation of the junction boundary con­

ditions is presented. That enables us to evaluate the shear modulus of the thin-walled 

composites, even for the cases unavailable in the general engineering literature.

One starts with the consideration of the periodic structure, in other words, the structure 

which can be obtained by a shift of the elementary periodic cell S  in two non-parallel 

directions. In this structure (the union of K  elementary periodic cells) the following

134



6.1. HONEYCOMB STRUCTURE UNDER REM OTE LOADING: FORMAL

ASYMPTOTIC APPROACH

Figure 6-1: Types of thin-walled structures, 

boundary value thermo-elasticity problem is specified

/j,V2U (x)  +  (A +  /i)V V  • U(x) =  7 VT, x  E B,

€T̂ n\ U ; +  7  T  =  p( x) , x  G dB ,

k V 2T ( x ) =  w(x), x  G B,

T (x )  = T*(x) , x  G dB,

(6 .1.1)

where B  is a  composite medium defined as a union of periodic cells. In the simplest 

examples an elementary periodic cell S  could be parallelogram, square, rectangle or 

hexagon. The problem formulated for the whole composite (6.1.1) is reduced to the 

problem imposed for a single cell only. Let be a domain defined as a union of thin 

regions =  { ( x ^ , 2/ ^ )  : 0 <  < L, \ y ^ \  <  e/2},0  <  e «  l , n  =  l,...,iV , and

the junction region is f l£. covers the whole elementary cell of the periodic structure 

excluding voids, x (n) =  (a.(n)jy(n )̂ are the local coordinates specified in such a way that 

is always a longitudinal coordinate for the bridge n ^ ,  and is its transversal 

coordinate, origin of these coordinates always coincides with the centre of the junction 

region, see Figure 6-2.

The junction region is specified such tha t f2e C [—Ce, Ce] x [—De, De], where C  and D
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are some constants. The junction region characterises the area where the bridges join 

each other C Un>fc (n ^  fl n ^ ) .

The boundary of the thin-wall structure inside the elementary cell S  is split up into two 

parts. First, is defined as the lateral part of the boundary dE^e\  d E ^  fl d S  = 0. 

The remaining part is d E ^  = d E ^  \  dE^  associated with the boundary of the periodic 

cell. The elasticity problem in can be reformulated in the following form

t iV 2U(x)  +  (A +  /i)VV  • U(x)  =  0, x  6 E(£\

(t ^ { U \ x ) = 0 ,  x  G <95^ ,

+  periodicity conditions. (6.1.2)

The periodicity conditions on the boundary of the elementary cell correspond to pe­

riodical character of the structure. For example, in the case of square periodic cell 

[0,1] x [0,1] they can be specified in the form

Ui(0,y) =  Ui(l,y),  ^ C /i(x ,0 ) =

A A

U2 {x,0) =  U2(x ,l) , —  u 2(0,?/) =  —  c/2(l, y), Vm, y G [0,1].

For the case of hexagonal periodic cell these conditions have more complicated form 

(Jikov, Koslov and Oleinik [47]).

In the limit case, when the thickness of the bridges tends to zero (or has the order O(e), 

where e is a small parameter), the solution of the system (6.1.2) can be represented as a 

linear combination of solutions of model problems corresponding to each bridge and the 

solution of a model problem in the junction region. Using the asymptotic technique, the 

displacement field for each thin bridge can be represented as series (see Bakhvalov 

and Panasenko [4] and section 6.2.1 for the detailed analysis)

u ^ n\ x )  = J 2 £i
i=o k=0 k=0

x  e  n (n). (6.1.3)

If the lateral surface of the bridge is free of traction (which is true for a honeycomb with 

voids), the leading term  of this expansion has the following vector polynomial form (it
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is assumed tha t each thin bridge has a constant thickness)

H \  / A ^ x ^ + B ^
tf(»> ~  +  V $ ,  tt<"> =  r "  j  = y  o J ,

V °’° ( 4 n) )  ( c M ^ M ) 3 +  r><n)(x<”))2 +  E<n>x(n> +  f<") )  ’ (6-1-4)

where x ^  is the local coordinate along the bridge and the coefficients A^n\  B^n\  C^n\  

£>(n) 5 £i(n) ? p (n) are defined from the boundary conditions on the edges of the bridges 

and the ’’junction boundary condition” .

Our intention is to  derive the ’’junction boundary condition” from the analysis of the 

boundary layer near the junction point. The smooth cut-off function is defined for each 

th in  region and it is equal to 0 in the junction area and 1 in the thin bridge (i.e. far 

away from the junction point)

x ( X M ) =  1, for X<n> >  1 and x ( * (n)) =  0, for X<n> <  1/2.

Here , y ( n)) — aj(n)/e  are the ”fast” local variables. Under such notations

the solution u ( x ) of the equilibrium equation (6.1.2) can be represented in the form

N
U ( x )  =  £ x ( X < ”>)l/<">(*(“>) +  W ( X ) ,  (6.1.5)

71=1

where U ^ n \ x )  is the asymptotic expansion of the solution in the thin bridge (6.1.3), 

x ( X ( n)) is the cut-off function, W ( X )  is the boundary layer solution (it decays expo­

nentially), which adm its the asymptotic representation

oo

W(X) =  (6.1.6)
7 = 0

In the formulae above the ’’fast” global variables X  = { X ,Y )  are such tha t X  = x / e  

where x  =  (x , y ).

Substituting (6.1.5) in the governing equations and collecting the coefficients near like 

powers of e, one obtains the set of boundary value problems in the scaled region S ^ .
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6 .1 .1  F ir s t-o r d e r  b o u n d a ry  layer

The first-order boundary layer compensates the discrepancy left by the leading term  of 

the asymptotic expansion in As a result, the first boundary layer problem

is the inhomogeneous problem, where the body forces and the surface traction are the 

functions of , Vq1̂ only. The condition of exponential decay of boundary layer at 

infinity is imposed

/iV 2W (0)(X )  +  (A +  /i)V V  • W<0)(X ) +  T 0 {X)  = 0, X  6 S, 

(r(n)(w (o ); x )  +  ? 0( i )  =  0, X e d Z u

W (0) 0, ||a:|| oo.

(6.1.7)

In (6.1.7) the body forces Jro ( X ) and the surface tractions V q( X )  are specified by

”  . , /  (2/i +  A)unm) (0) \

m=l \  (°) J

v 0 ( x ) = y :  v ( ^ m)) ( . ;
m=1 \ X u 0

(m )(0 ) )  ’

and H and dZ\  are the domain H and its boundary enlarged in e2 times. 

The vector-valued functions (6.1.8) satisfy the orthogonality conditions

(6 .1.8)

J  T ^ d X  -  J  V {0)ds = 0,
dE

J  X  x T ^ d X  -  J  X  x V {0)ds = 0.

(6.1.9)

(6 .1 .10)

Now we can reduce this boundary layer problem to the problem for a finite domain. It 

corresponds to the fact that the body forces and the surface tractions located in the 

region of enlarged thin bridges where x ' ( X ^ )  and x " ( ^ ^ )  are not equal to zero. Thus, 

the junction area is described by the homogeneous Navier system with zero traction on 

the lateral surface. In the region E \ Q  the solution of the problem (6.1.7) admits the 

following expansion
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—■ 2

1 2 1 2

1 2

Figure 6-2: Honeycomb structure and junction area.

w (° )  =

4 n)(o)

U n)(o) ( i - x ( ^ n))), x ( " ) e s \ n ,
(6 .1.11)

x e n ,

where are the local coordinates associated with the bridge. The field Vt^0,1)

satisfies the homogeneous Navier system with boundary conditions chosen in such a 

way tha t on r ( n) continuity of traction and displacements holds. Thus, the problem 

initially specified in the infinite domain S can be reduced to the problem in Q (enlarged 

in e2 times junction region shown in Figure 6-2)

p V 2W (0)1) (X ) +  (A +  f i )V V • W (0,1) {X)  = 0, X e f t ,

<,.(")(w (o .i);x ) =  o, x  e d n \ r ( n\  (6.1.12)

( 41}(° )\

^ o 1}(0) /  ’

- U'3)(0 ) \

- v (03)(0 ) J ’  ̂ “  V -«o4,(0)

where r ( n) (Figure 6-2) are the parts of the boundary corresponding to the attached 

thin bridges.

Now our intention is to find the solution of this system which provides the continuity 

of displacement and traction on Such conditions arise from the

matching with the solution in thin bridges (6.1.11). Note tha t the solution (6.1.11) 

produces zero tractions on the boundary r ( n). It follows from the fact th a t x ' ( X ^ )  = 0

r(i) ; yy(0.!) =

p(3) : yyC0.1) =  I

p(2) : yyC0-1) =

p(4) : yyK0.1) —

4 2)(0)

44) (0)
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when X™ e r (n>. Therefore, on all parts of the boundary Q we have zero traction, and 

the solution must be represented as a vector with constant components (it corresponds 

to the rigid translation of the region fi).

Existence of a solution with constant components of the displacement fields yields the 

following relations between the boundary data of the problem (6.1.12)

^oH°) =  - 4 2)(°) =  -«o3)(°) =  44)(°)> , .

= 4 2)(o) =  - 4 3)(o) =  - 4 4)(o).

Under such conditions (6.1.13) the field W^° has zero energy and the condition of the 

continuity of tractions on is satisfied.

6 .1 .2  S e c o n d -o rd e r  b o u n d a r y  la y e r

One can apply the procedure describing above to construct the boundary layer corre­

sponding to the second asymptotic term  of (6.1.6). As a result, the following boundary 

value problem for the field is obtained

//V 2W (1)(X )  +  (A +  m)v v  ■ W (1)P 0  +  :F(1)P 0  = 0 , A e s ,  

ff(B)(W (1) ; X ) + ? W ( X )  = 0 ,  X  € a s ,

->• 0, ||a?|| -* oo,

(6.1.14)

where

r f D r v i - V *  J  / (2"  +  A)(x(ra)K “ »” )(0> -  y H E ' ’«’n ,<°)+  u” (°))

_  A(A+m) ~i 9 T,(m)|

N
^ ) m  =  V v ' « W )  M - ^ & 4 m,(o) +  * w £ 4 m)(o) +  4 m\ o ) ) \

V Mx(m) &«om) (0) - r (m) &4m) (0) + «im) (0)) )'
This problem adm its the solution which decays at infinity if and only if the following 

solvability conditions for (6.1.14) hold

d X -  j V [ 1)ds = 0, (6.1.15)
dE
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f  J ^ d X  -  J  V ^ d s  =  0, (6.1.16)
dE

J  X ^  -  X i ^ d X  -  J  X & P  -  X i P ^ d s  =  0. (6.1.17)
E dE

The conditions (6.1.15), (6.1.16) can be represented in the following simplified form

A „ (2 )(0 )_ ^ „ (4){ 0 ) = o. (6.M 8)

The condition (6.1.17) is satisfied identically.

Following the procedure employed for the first boundary layer we reduce our problem in 

an infinite domain to the problem in a finite domain. We use the following properties of 

the system (6.1.14): it is homogeneous inside the region D, and the Dirichlet boundary 

conditions are imposed on r ( n). As before, the field is sought in the form

w (1)(a :) =
+  x w | 4 , ] (o) J  })' _

x W  e ~ \ n ,
w (1>1) ( x ) ,  x e Q .

(6.1.19)

The displacement vector W ^ ’̂ .X ’) satisfies the following system

/iV 2w (1,1)( x )  +  (A +  / i ) v v  • w (1,1)( x )  =  0, x e n ,

<r(n)(W (i ’i);X ) = 0 ,  X  e d~i \ r ( n). (6.1.20)

The boundary conditions on r ( n) are

r o , : w (M ) =  (  ^ ' ( O H ^ O )  \

+  V x m voH°)  /

r (2) .

I y&42)(°) + “i2)(o) +
- y ^ 4 2)(0) 

x  £tvl>2) (°)

r ( 3). # 1 ) - (  ^ 3> ( 0 ) - 4 3,(0) \ ( - r £ v ? \ 0 )

\ - 3 ^ i r o “ o3)(0) -  ^ ( O )  J  [  X ^ 4 3>(0)

- i " ^ 4 4)(o) 

x £ ^ 4)(0 )
+
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where X  =  (X , Y ) axe the global ’’fast” coordinates associated with the junction region. 

The traction on the boundary r ( n) can be evaluated as follows

/  4/z(A+/x) 0 . , . (w )frvv  \

a(n) ( w ( 1); X ^ )  = ( X+2fl 8 x 0  j  •

The energy accumulated in the junction region is given by

=  -  J  a W (W (lll); X (n))W (lll)(X (n))ds

dEur(n)

=  144 k n ) | * 4 B , ( o ) + « ? ° ( o )~ x  A +  2/i n — I

where X ^  is on the boundary One can see that the terms ^Vgn^(0) 3X6 not

present in the expression for the energy integral. The analysis of the Dirichlet boundary 

conditions of the problem (6.1.20) gives the following restrictions on the transversal 

displacements

S ’Wo) = ^ » 2)(0) = l ^ ,(0) = (6-1-21^

As a result, the coefficients g^t7o^(0) correspond to the rigid rotation field of the whole 

body and produce zero traction and zero energy. Therefore, the continuity of the trac­

tions for is satisfied trivially. The condition (6.1.21) has a simple physical mean­

ing. It corresponds to the fact that the junction behaves like a rigid kernel when we 

restrict ourselves by the leading term of the displacement field. This property holds for 

a junction of any shape (including three-beam and six-beam junctions).

If next-order junction layer problems are considered, the additional restrictions for the 

coefficients A, B , C, D, E,  F  can be obtained (as the solvability conditions of correspond­

ing equations). Namely, from the analysis of the third-order junction layer

m =l

and from the fourth-order junction layer

(6 .1 .22 )
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Due to the solvability conditions (6.1.18), (6.1.22), (6.1.23) and the continuity conditions 

(6.1.13), (6.1.21), the set of coefficients A , B , C ,  D ,E ,  F  is uniquely defined and the 

leading term  of the asymptotic approximations of the displacement field is obtained in 

the closed form.

6.2 A sy m p to tic  exp an sion  o f  th e  so lu tion  in  th in  b ridges

6 .2 .1  T h in  b rid g e  o f  a  co n sta n t th ick n ess

In this section one analyses the solution of linear isotropic elasticity in a thin region (see, 

for example, to Movchan and Movchan [75]). This problem is one of model problems 

which occur in analysis of the honeycomb structures (see Section 6.1). The correspond­

ing boundary value problem can be written as follows

£a:X { U ; x )  : =  ' D d _ ' H ' D t̂ U ( x )  =  0, x  e ne,
dx Qx

r(”)(£ /;x ) =

U  =  a ± ,

PdP

e2P±
x G dn(1)£  1

x g anl2).

(6.2 .1)

where

tt-  0 4 =

d
dX2 y/2 dxi

y/2 0X2

(  2/i. +  A

u  =

\

and n e =  {(x,et)  : — 1 <  x  < 1, — ̂  < t  <  J}, d n i 1̂  = {t = ± ^} , c ffl^  =  {x = ±1}. 

Due to the presence of the small parameter e, the thickness of the thin bridge, we can 

rewrite the Navier system in the stretched coordinates (x, t) and define the recurrent 

equations for the displacement vector

1*1 <  1/2,

A 0 \

2/i H- A 0

0 2 / i /

r(2) _  -

d  Tj(n )
d t U  1

d  rr(n—1) o_JTd x U 2 1*1 =  ± 1 /2 ,

d 2 rr(w)   A+/2 d 2 rr(n~ l)   M d 2 rr(n~2) 1.1 ^ 1/9
d F U 2 ~  \ + 2 n d t d x U l  \ + 2 p l h ? U 2 J 1*1 ^

(6 .2 .2 )

— C/(n) =  A d 1*1 =  ±1/2.d t  2 A-f-2/i dx  1 ’

Now the recurrent formulae (6.2.2) is applied and the solvability conditions axe checked
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on each step. This procedure allows one to construct the asymptotic solution of the 

problem (6.2.2) in the form of the sets of two Jordan chains (6.1.3). For readers’ 

convenience, we rewrite the definition of the Jordan chain given in the book [84]: the 

Jordan chain is a set of generalised eigenvectors corresponding to zero eigenvalue of the 

boundary value problem (6.2.1).

The first Jordan chain (6.1.3) corresponds to the longitudinal deformations and its lead­

ing term  corresponds to the longitudinal displacement field, linear field in the absence 

of boundary tractions. It has multiplicity 2 and the elements

W<°> =
uo

0

0

— t& uo J  V O\  A+2 fi dx

where l i  is the solution of the following boundary value problem

U (x , t ) = \t\ <  1/2,

$iU{x,t)  =  ± ^ p i± ), t = ±1/2 .
(6.2.3)

The solvability condition of the system (6.2.3) gives the equation for the leading term  

of the longitudinal displacement

4 (A +  P )  &  „  _  ( i )  , fl)
A +  2 /i dx2uo =  P+ + P -  , Fl <  1-

For the case of free-traction lateral surfaces, the leading term  of the longitudinal dis­

placement is a linear function.

Another Jordan chain describing the transversal deformation has the following form (it 

has multiplicity 4)

0
A t2 d2 „ 

A+2/x 2 l h ? U®

v ( 3) =
4/J+3A .3   A+/j 1

6(A+2/x) 1 2(A+2/x) 1

v (4) = 3A+2fj, ^4 - (A+^z)(3A+//) 2 
24(A+2/x) £ +  12(A+2/i)a £ £ [ V 0 +  V(x , t ) J  '
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where V satisfies the equations

£ r V( x >t) =  3(1+2$ & v<>’ 1*1 < V2>
(6.2.4)

f  V(x, t)  = 1*1 =  ±1/2 .

From, the solvability condition the equation for the leading term of the transversal 

displacement is derived in the form

f i{\  +  fj) d4 (2) , (2) , i ^ ,

3(X T 2 j r ) w v o = p + + p - ’ N < 1 -

Note tha t in the case of free-traction lateral surfaces, the transversal displacement spec­

ified by the cubic polynomial.

6 .2 .2  T h in  b r id g e  o f  an  o r th o tro p ic  m a ter ia l

The objective of this section is to give an asymptotic solution for the thin bridge prob­

lem in an orthotropic medium. The axes of symmetry are parallel to the axes of the 

bridge. This is a generalisation of the analysis given in section 6.2.1. The solution below 

describes orthotropic thin bridges. The orthotropic symmetry, in contrary to general 

anisotropy, allows one to use the asymptotic expansions as the sets of ansatzes of finite 

length where the longitudinal and transversal modes are uncoupled. The boundary value 

problem we solve can be formulated in the form (6.2.1) where the elasticity m atrix is

H  =

I  ci c2 0 ̂

C2 C4 0

^ 0 0 eg J

Using the method of compound asymptotic expansions we axe looking for a solution 

of the boundary value problem (6.2.1) as the power series in e. Also, similar to the 

asymptotic expansion for an isotropic thin bridge (see previous subsection) one can 

split up the series into two modes: the longitudinal and the transversal one and look 

for a solution in the form (6.1.3).

The longitudinal ansatz, also known as the first Jordan chain, has the following com­

ponents

0 \  -  .ro\ (  ~2 '§x i U q \
W<°>= I ,  .  I ,  U ^  =

£1 
C4 V o
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The boundary value problem for the displacement vector U

§:U (x , t )  = |*| <  1/2,

|W (x ,t)  =  ± f p i 1), t  =  ± 1/ 2 ,

is characterized by the following solvability condition

cl -  c i c 4 d 2 ( i )  ( i )  , , ^  ,
------------‘5~2 U0 =P+ + P - ,  \ x \ < l .

C4 o x * T

The components of the transversal ansatz, the second Jordan chain, are

C2 t 2 d 2

2CjC4—2 c ^ —C2C6 .3 . C2 C1C4 , 
6C4C6 4c6

(6.2.5)

v^4) =

Equations for V have the form

2C2 (c% +C 6 C2 — Cl C4 ) -  Cl C4 C6 .4 , (6 c2 + C 6 )(c iC 4  — c%) .2

24c2C6 48c| c6 £sV0 + V(x, t)

§j?V(x,t) — Cli2c{ 2 5S*U0» M < V 25

* = ± 1/ 2,
(6 .2 .6 )

and this problem is solvable if and only if

CJi ^ r h Vfs=e{p^ - p - ))' w < 1 -

One can note tha t the formulae above coincide with the ones for the isotropic case if we 

impose c\ =  C4 =  2 fi +  A, C2 =  A, cq = 2 fi.

6 .2 .3  T h in  b r id g e  o f  a  v ary in g  th ick n ess

In this subsection we analyse the structure of the solution in a thin bridge regions of 

variable thickness eh(x). This extends the analysis given in subsection 6.2.1 to the case 

of non-trivial geometry. We suppose tha t the bridge is symmetric with respect to the x- 

axis and the region which it occupies can be specified as follows {(r, y) : 0 < x  < L\ |y| <  

eh (x ) /2}. Using this assumption the solution can be expanded to the asymptotic series

C h a p t e r  6 146



6.2. ASYMPTOTIC EXPANSION OF THE SOLUTION IN THIN BRIDGES

of different powers of e. The value of e is defined as an average thickness of the bridge 

provided JQL h(x)dx  =  1 and it coincides with the real thickness if h'{x) = 0 for all 

x. As for the case of a constant thickness (see subsection 6.2.1) we are looking for the 

asymptotic series which are split up into the longitudinal and the transversal modes in 

the form (6.1.3).

The system of the recurrent equations obtained from the homogeneous Navier system 

is similar to the constant-thickness bridge problem. New coordinates (x , t ) =  (x, y/e)  

are introduced, and the following recurrent system of equations arises

£o<"> = - h ± n £ . u ^ )  _ jt| < tel,
(6.2.7)

  A+/J d2 rr(n~ l)    n d2 rr(n~2) ui ^  h(x)
W U2 ~  X+2(xdxdtu l  \ + 2ii d x I 'J 2 ’ I I 2 *

The boundary conditions differ from the constant-thickness problem. Here (for the 

case of a variable thickness) the free-traction conditions imposed on the boundary (t = 

± /i(x )/2 ), the outward normal vector on the top (and bottom) boundaries depends on 

the longitudinal coordinate x  and, as a result, can be written in the form

( -eh'(x) v . —eh'{x) v
2yjl+\e2h2{x) j ? n _ = | 2 ,Jl+\e2h2(x) j _

y / \ + \ e 2h2{x) y / l + \ e 2h2(x)

W ith these relations in free-tractions boundary conditions on the lateral surfaces the 

recurrent system of equations (6.2.7) can be supplied with the system of recurrent 

boundary conditions specified by

i ^ i (n) =  - h u 2 ~x) ±

±2-^Tku{n- 2)h'{x) ± ±p±<52„, \t\ = ± ^ ,
(6 .2 .8)

d Tjin )   A d  rr(n- l )  i M d TT^n ~ ^ h , ( ' r\
d t U2 ~  A+2/i &  1 ^  2(2n+X) d t U l  n

^2(2^+A) 2 ^h'(x) ±  2^ \ P ± ^ n - ,  \t\ =

Our next intention is to construct the set of generalised eigenvectors for the system 

(6.2.7)-(6.2.8). This procedure is similar to one mentioned for isotropic bridges of a 

constant thickness. However the eigenvectors axe different due to new recurrent bound­

ary conditions (6.2.8).
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The first chain of the generalised eigenvectors can be specified as follows

W<°> =
U 0

,  MW =

u {2) =

where U(x,t)  is the solution of the following boundary value problem

§pU(x,  t) -  ( ^ i « o  +  £ n 0j , |i| <
(6.2.9)

The solvability condition of the system (6.2.9) gives one the equation for the leading 

term  of the longitudinal displacement field

4(A + /u) d 
A +  2/i dx

h { x ) ^ u 0 = p+) + p {l \

The second set of generalised eigenvectors specifies the transversal displacement and 

bending of the thin bridge

v<°) ° V  v « = (  ‘ J " 0 ) ,  v «  =  f  A ° a2

y (3 )  _  ^  ^6(A+2f i)*3 2(A+2/x) ^ v 0 2}T$(f l ( x ) h / ( x ) £ p V o ' ^

A+2n  2 d x ^ V0 

d3 m — -̂ +M d2

(3A+2/i)^-u0 4̂ t /^A+/z)[/i2(x)£^i;o-6(h'(:E))2£^uo]^2
“l 12(2/x+A)2 124(A+2/x)

0

4(2/i+A):‘

where V(x, t) is the solution of the ordinary differential equation with corresponding 

boundary conditions

d2 v  _  m(/H-a) 
“  3(2/x+A) h2 ( x ) j ^ v a + 6 h(x)h'(x)-£iv0

+ 3 ^ -« o  ( h(x)h"(x)  + 2 (h'(x) ) 2

jftv (x, t) = ± x k j P <i )

\t\ <

t  =  ± ^ .

(6 .2.10)
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The solvability condition of the problem (6.2.10) is

/i(A +  /i) d 2 
3(A +  2fi) dx2

, 3 ,  » d2 
ft ( x ) ^ V 0 = + P - \  \x\ <  1.

6.3  T h e lead ing order ap proxim ation  for th e  effective  m o d ­

uli

The effective elastic moduli can be evaluated as the energy of some special fields in a 

unit periodic cell. This result can be found, for example, in Bakhvalov and Panasenko 

[4], Jikov, Koslov and Oleinik [47], Bensoussan, Lions and Papanicolaou [8], Milton [69] 

(see Appendix A)

U nk =  J  *) : x )dx ,  (6.3.1)

where er and £ are stress and strain tensors, S  is the elementary cell of the periodic 

structure (see Figure 6.2.1). The model fields U^n\  U ^  describe the displacements 

in the elementary cell when the whole composite is loaded by the test fields. Namely, 

£n  =  1 for n  =  1; £22 =  1 for n  =  2; £12 =  1 for n  =  3 (all other components of the 

strain tensor are supposed to be zero). Thus, the homogenisation problem for elasticity 

equation reduces to the solutions of three boundary value problems corresponding to 

three types of loading. While one deals with the periodic elementary cell, the periodicity 

conditions on the outer boundary axe imposed.

The problem of evaluation of the effective moduli for honeycomb structures has been 

treated by Torquato et al [112]. The authors used the approach based on the Hashin- 

Shtrikman estimates for the effective characteristics of the composite structures. Such 

kind of treatm ent gives approximations for bulk modulus. At the same time the shear 

modulus remains unknown.

The asymptotic approach is free of this restrictions. Estimates of the effective moduli 

m atrix in terms of elastic energy allow one to take into account the high order terms. 

Moreover, this approach works for composites where the thickness of “thin bridges” is 

non-constant.

One can evaluate the energy of a single bridge assuming that the leading term  of the 

asymptotic expansion (6.1.4) is known. Talcing into account the fact tha t the lateral 

surface of the bridge is free of traction the first ansatz of the asymptotic expansion (see
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section 6.2.1, for full expansion) can be written in the form

(„), . (  ~y~SiV o(X) + 6(A+2m) y3 -  £2 2(X+2f, ) y ^ Vo{X) \
X , y _ V «*(*) + ) ’

M(nW ) =  A q / \ ) ’ (6 3-2)V-a+2»yd;Mx)J
where x , y are the coordinates associated with the thin bridge.

The equations for the leading term  components reduce to

d2 d4
M ua{x) =  ° ’ a ^ o(x) =  °-

with the Dirichlet boundary conditions prescribed on the edges.

One can calculate the components of the strain tensor associated with the above men­

tioned fields

= t Uo(x) ~ yi * Mx)’
a a , , a a2 . ,

622 =  “  X T 2 ^ " o(x) +  x T ^ y d x t Vo{x)’

2 (fi +  A) 2 d3 / n 2 A 4- / i  d 3

£l2 =  T T 2 v y dT*Va{x) -  e W ^ T ) d ^ Vo(x)- (6-3-3)

Substitution (6.3.3) into the representation for the elastic energy allows one to obtain 

the leading term  of the solution (6.3.2) in the formula for the energy

L  e / 2

A £ 0 = f dx f  * {U ^ x ) , e ( U ^ x)dy
0 - e / 2

4/i(A +  p )

A -(- 2/i
o
J  | +  ^(3C (m)z +  D^m))(3C^k)x  +  D^k))e3^ d x  +  0 (e 5), (6.3.4)

where the quantities A^k\  and D ^  are the same as in (6.1.4).

Due to specific geometry of the periodic cell one’s energy (leading approximation of the 

energy) can be evaluated in terms of the energies of thin bridges. The following theorem 

can be formulated:

T h e o re m  6.1 The asymptotic approximation of effective elastic moduli, which describe 

the “average” stress and strain fields in a thin-walled composite structure is given by
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n  k = 1 V s AEin) = 4/z(A +  /i) V  /  /  A ^ A ^ e
m mes2«S “  m es2S{ \  + 2fi) J  \  n n

T l  —  1  7 1 — 1. q

+ i(3 C im>x +  D ^ ) ( 3 C ^ x  +  D ^ ) A d x  + 0 ( £5), (6.3.5)

where N  is the number of bridges connected at the junction point (N=3,4,6), the index n  

corresponds to the number of the bridge, indices m , k correspond to the type of loading, L  

is the length of the bridge, mes2S  is the area of the elementary cell, e is the normalized 

thickness of the bridge.

The junction area is considered as a point in the limiting problem when the thickness 

of bridges tends to zero. The junction gives the effect for next (high order) terms of the 

approximation of the effective moduli, which will be considered further. At the same 

time we note tha t the second term of the asymptotic expansion of the effective moduli 

has the order 0 (e2) and can be evaluated by solving the problem (6.1.20).

6 .3 .1  E ffec tiv e  e la s t ic  m o d u li for sq u are h o n ey co m b s

In this subsection we consider the square honeycomb structures and evaluate their ef­

fective elastic moduli. Following subsection 6.3 one evaluates the energy of the test 

fields (:r,0), (0,y)  and 2~l/ 2 (y,x)  imposed on the periodic cell. Inside each bridge the 

linear longitudinal displacement field and the cubic transversal bending field take place. 

These fields satisfy the homogeneous equations

u("> =  0> ^ ( n ) = 0 ’ n  =  3,4, (6.3.6)

where x  is the local longitudinal variable. The elementary cell is supposed to have a 

unit area, thus each bridge has the length L  =  \  (see Figure 6-1). If, in addition, the 

thickness of the bridge is e, the area fraction of such composite is /  =  2e.

On the edges of the bridges the periodicity boundary conditions are imposed. They 

reduce to the Dirichlet boundary conditions given in terms of traces of the test fields. 

For the test field (x , 0) one has the following conditions

«(')(£) =  1/2, u<2>(L) =  0, «(3>(L) =  l/2 , «<4>(L) =  0,

(L) =  0, (L) = 0, (L) = 0, (L) = 0.
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For the test field (0, y ) the displacements at the edges are given by

(6.3.8)

(6.3.9)

(L) = 0, (L) = 1/2, (L) =  0, uW (L) =  1/2,

vM (L) = 0, vM (L) = 0, (L) = 0, (L) =  0.

For the test field 2~1/ 2 (y,x)  the following values take place

it(1)(L) =  0, u ^ ( L )  = 0,

uW(L)  = 0 , u W ( L ) =  0 ,

^ ) ( L )  =  l/(2x/2), VW(L) = - 1 / ( 2 ^ ) ,

vW(L) = l/(2y/2), vW(L) = -1/(2V2).

In the point of the bridge intersection one has the continuity of displacements

t t f ’w  =  — wq2)(°) =  -«o3)(°) =  «o4>(°)>

^ > (0 ) =  « '2)(0) =  -«<3)(0) =  - 4 4)(0); (6.3.10)

the condition of the continuity of longitudinal forces

± uW {0 ) - ± uW m = 0 ,  |U < 2> ( 0 ) - |> > ( 0 )  =  0; (6.3.11)

the condition of the continuity of transversal forces

93 «(1) (0) - 1 ^ (3) (0) =  0. (2) (0) -  £ « (4) (0) =  0; (6.3.12)dx3 d x3 ’ dx3 d x 3

and zero moment in the junction point

9  !«(1)(0) +  A ? u (2)(0) +  J W 3)(0) +  I s » (4)(o) =  0. (6.3.13)d x 2 d x 2 dx2 dx 2

To close the system of differential equations one impose a ’’soft boundary conditions” 

on the edges of the bridges for the transversal displacement. They correspond to zero 

moment in these points

^ « (n)(£) = 0 , n = 1 ,2,3,4. (6.3.14)

Equations (6.3.6) together with the boundary conditions (6.3.7)-(6.3.14) admit the so­
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lution in the form

u (n) = A(n'>x + B(n\  t;(n) = C ^ x 3 + D ^ x 2 + E ^ x  + F(n\  n = 1,2,3,4.

with the coefficients given in the table

(z i,0 ) (0 ,^ 2) 2 1/2(x2, x { )

(i) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

A 1 0 1 0 0 1 0 1 0 0 0 0

C 0 0 0 0 0 0 0 0 -v /2 y / 2 - V 2 V 2

D 0 0 0 0 0 0 0 0 3/v/2 -3 /V 2 3/V2 - 3 / V 2

Further one can evaluate the energy of each thin bridge (see formula (6.3.4) from sub­

section 6.2.1) and, using (A.0.14) and (6.3.5), determine the effective elastic moduli. 

For unit cell with the bridges of the thickness e the following representation holds for 

the m atrix of effective elastic moduli

n
±n( \  +  n) 

2/i -i A

( £ 0 0 \

0 £ 0

^0 0 £3 )

(6.3.15)

Taking into account the relation between area fraction and the normalized thickness of 

the bridge /  =  2e, these formulae can be rewritten in the form

n 4/i(A +  /i) 
2/i -i A

( f t 0 0 \
0 i f  2 j 0

 ̂0 0 y s )

(6.3.16)

The corresponding compliance matrix is

/  2 / -1

E

0 0 \

2 /" 1 0

0 8/ - 3 /

(6.3.17)

6 .3 .2  E ffec tiv e  e la s t ic  m o d u li for tr ia n g u la r  h o n ey co m b s

Triangular honeycomb structures and evaluation of the effective elastic moduli are con­

sidered below. Following the idea of the subsection 6.3.1 we evaluate the energy of the
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test fields (x,0), (0,y) and 2~ l ! 2 { y , x )  imposed on the periodic cell. In this particular 

situation one does not need to consider the bending of the thin bridges. For triangular 

honeycomb all components of the effective moduli tensor can be calculated in terms of 

the longitudinal deformation of the bridges only. The shear modulus for this structure 

has the same order as the bulk modulus. And the homogenized structure behaves simi­

lar to the isotropic structure if we restrict ourselves by the leading term  of homogenized 

moduli only. The longitudinal displacement fields inside the thin bridges satisfy the 

following equations

q2
0 - ju ("> = O , n  =  1 ,2 ,3 ,4 ,5 ,6 , (6.3.18)

and x  is the local longitudinal variable. The elementary cell has a unit area, and each

bridge has the length L  =  l / ( \ /2 v /27). If, in addition, the thickness of the bridge is e,

the area fraction of such a composite is /  =  3\/2/v^3e.

Due to the small thickness of the bridges the periodicity conditions on the boundary 

of an elementary cell reduce to the Dirichlet boundary conditions on one edge of the 

bridges. In this case periodicity is satisfied without any additional restrictions. For the 

test field (x , 0) the Dirichlet conditions on the bridges edges have the following form

«<'>(£) =  u<4>(£) =  1 /(V ^^3),

u<2>(£) =  u<3>(£) =  h<5)(£) =  u<6)(£) =  l / (4 v /2v/3). (6.3.19)

For the test field (0, y ) the following conditions hold

u ^ ( L )  =  u ^ ( L )  =  0,

v P \ L )  =  v P \ L )  = v P \ L )  = u (6)(L) =  3/(4%/24y3). (6.3.20)

And for the test field 2- 1/2(?/,x) they look as written below

u (1)(L) =  u{4){ L )=  0, 

uW(L) = v f t \ L )  =  v ^ /4 ,

u (3)(L) =  u ^ ( L )  = -v^3/4 . (6.3.21)
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At the point of the bridge intersection one impose continuity of the displacements

up (0) = I„(1)(0) + |„ (.)(0 ),

u<3 (0) = - i « (1)(0) + ^ (1)(0),

«(2 (0) =

1
1 + i« (1)(0),

«<3 (0) =

4
i

u<4 (0) = —u(1)(0), ?44)(0) = -^(1)(o),

u<5 (0) = o'
"s1 <45)(0) = —v(2) (0),

«<6 (0) = -u (3)(0), u^(0) = —1»(3)(0),

and condition of the continuity of the longitudinal forces which can be w ritten as follows

J L “ (2) (0) +  (0) _  | . u (2) (0) _  £„<»> (0) =  0. (6.3.23)

The equations (6.3.18) together with the boundary conditions (6.3.19)-(6.3.23) have the 

linear solution

u (n) = a ^ x  + B ^ ,  n =  1 ,2 ,3 ,4 ,5 ,6 ,

with the results of calculation summarised in the following table

(m ,o) (0 ,r2)

(i) (2) (3) (4) (5) (6) (i) (2) (3) (4) (5) (6)

A l 1
4

1
4 1 1

4
1
4 0 3

4
3
4 0 3

4
3
4

2 l /2 (x2 , x i )

(i) (2) (3) (4) (5) (6)

A 0 VL
2s/2 2V2

0 V I
2x/2

_  VI.
2s/2

Evaluating the energy of a thin bridge (see, (6.1.4)) one obtains the m atrix of the 

effective elastic moduli. If an elementary cell (parallelogram for triangular thin-walled 

composites) has a unit area and bridges of the thickness e the following representation
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for the effective elastic moduli matrix holds

n
4/i(A +  \x) 

2/i -f- A

4\/2 v3  
3

4v^V3 
0

4V2^3C
_ 9 _
472^3

0

(6.3.24)

2\/2v^3 /
Taking into account the area fraction which is related to the thickness of the bridge by 

f  = we can rewrite these formulae in terms of /

n 4/i(A +  /i) 
2/i -|- A

\  0 0

The corresponding compliance matrix has the form

3 /  - f

5  ivi —  
£ - r 1

o

/ § /  1 /  o \

y  i f  o 

1/ /

0 \  

0

4 / - 1/

(6.3.25)

-1

3 / - 1

0

(6.3.26)

6 .3 .3  E ffec tiv e  e la s t ic  m o d u li for h ex a g o n a l h o n ey co m b s

Hexagonal honeycomb structures are considered below and the effective elastic moduli 

are evaluated for them. If we impose test fields (x, 0), (0,y) and 2~lt2 (y,x)  on the 

periodic cell, linear longitudinal displacement field and cubic transversal bending field 

occur in the bridges. These fields can be found as the solution of the homogeneous 

equations

^ 2 « (n) =  0, § ~ l v{n) =  °» 71 = 1’ 2> 3> 4> (6.3.27)

where x  is the local longitudinal variable. Each bridge has the length L = \ /2 / \ /27  and 

the thickness of the bridge is e. Thus the area fraction of such composite is /  =  \/6/v^3e. 

The Dirichlet conditions on the edges of the bridges correspond to the applied test fields. 

For field (x , 0) these conditions have the following form

(L ) = L, uW (L) = L/4, (L) =  L /4,

vW(L) = 0, vW{L) = y/SL/4, v(V(L) = -y /3L /4 ) ,
(6.3.28)
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or

UW{L) = v /2 /^27 , uW(L)  = l/(2 \/2 v /27), u ^ { L )  = l / ( 2 v/2 ̂ 27),

v V ( L )  =  0, vW{L) = l / ( 2 x/2v /3), v ^ ( L )  = - 1 / ( 2 ^ ^ ) .

For the test field (0, y) the fields are

u*1) (L) =  0, J1<2) (L) = 3L/4, U<3) (L) =  3L/4,

v ^ { L ) =  0, vV)(L) =  -%/ lL/4, vW(L) =  V3L/4,

or
u ^ ( L )  = 0, uW(L)  = V3/{2V2),  u&{L) = ^3/(2y/2) ,

vW(L)  =  0, vW(L) =  —l/(2 v /3v/2), v ^ ( L )  =  l/(2<^3v/2),

and for the test field 2 ~1/ 2 (y,x)  they are given by

v,W(L) = 0, uW(L)  = -y/3L/(2y/2) ,  u ^ ( L )  = y/3L/(2\/2),

vM  (L) =  L/y/2,  vM (L) = - L y J 2/4, (£) = - L y / 2 / 4.

or

u W ( L )  =  0 , u W ( L )  =  - l / ( 2 ^ 3 ) ,  u ( V ( L )  =  l / ( 2 ^ 3 ) ,

u W f L )  =  l / ( v / 3 ^ 3 ) ,  * /2) ( L )  =  - l / ( 2 v / 3 ^ 3 ) ,  < /3) ( L )  =  - 1 / ( 2 > / 3 v ^3).

(6 .3 .2 9 )

(6 .3 .3 0 )

(6 .3 .3 1 )

(6 .3 .3 2 )

(6 .3 .3 3 )

At the junction point we impose the continuity of the displacements. It corresponds to 

the fact tha t the edges of bridges join up together in one point and there is zero dis­

placement jum p between these three points. In other words, these conditions express the 

same displacements but in different coordinate systems. The longitudinal displacements 

u(n\ n  = 1,2,3, correspond to the longitudinal directions of bridges

u(2)(0) = - i u (1)(0) + ^ V 1}(0), u(3)(0) = - i u (1)(0) -  ^ v (1)(0),

i;(2) ( 0 )  =  - - ^ - 1 1 ^ ( 0 )  — ^ ^ ( 0 ) ,  'U ^ (O )  =  - ^ - w ^ ( 0 )  — x v ^ ( 0 ) .  (6 .3 .3 4 )
z z z z

In addition, the condition of the continuity of the longitudinal forces is imposed

d_
dx

u (o) » ) = « . u<3) ( 0 )  =  0 , ( 6 .3 .3 5 )
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The condition of the continuity of the transversal forces is

+ i v(2) (°> + 1 ^ 31 <°> = °> (6-3-36)

and zero moment in the junction point is given by

£ j ®(1) (°) +  £  ̂  (°) +  (°) =  °- (6-3-37)

The “soft boundary conditions” in the midpoints of the bridges are imposed for the 

transversal displacement. It corresponds to zero moment in these points. On the other

hand, these conditions arise because of the symmetry. In the midpoints the moment is

zero

^ <n)( f )  =  0, n  =  1,2,3. (6.3.38)

In term s of the coefficients A , <7, D  these conditions give one the following identity

D =  — CL.
2

Together with the conditions (6.3.36) and (6.3.37). The latter shows tha t

Ci = C2 =  2 C3.

The equations (6.3.27) together with the boundary conditions (6.3.29)-(6.3.38) admit 

the solution in the form

u (n) = a ^ x  + B ^ ,  v (n) = C (n)x 3 +  D (n)x 2 +  E (n)x  + F (n), n = 1,2,3,

where the coefficients A^n\  B^n\  C^n\  D^n\  E^n\  are the solution of the following 

linear system

A(i) -  IA<2> -  ±A<3) =  0, A(2) -  A(3) =  0,

D (  1) +  £>(2) +  £)( 3) =  o, E ^ >  =  E &  =  E ® \

C '( i)  _  1 (7 (2 )  _  1 (7 (3 )  =  0 j  (7 (2 )  +  C (3) =  0 j

B &  = - \ B ^  +  & F W ,  B &  =  - | # (1) f p W ,

p i 2) =  —^ B ( i )  -  ^F^1) F^3) =  ^ B W  \ F M,
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£>(!) =  D<$ = - §  C & L ,  D &  =

A ^ L  + B ^  = uM(L),  c M l 3 + d M l 2 + e M l  + f M = vM{L),

A & L  +  B &  = u&{L),  C ^ L 3 +  D ^ L 2 +  E ^ L  +  F &  = VW(L),

A ^ L  + = UW{L),  C ^ L 3 +  D ^ L 2 +  E ^ L  +  F ^  =  v ^ { L ) .

Note tha t under first type of loading (xi, 0) the junction point moves to a new position 

o); under the second type of loading it moves to (— ̂ ^  4̂ ; 0). In both these 

cases bending of bridges does not occur. In the case of sheax loading the junction point 

moves to (0, — ^ 4/3 )• The results of the calculation are summarised in the following 

table

(x i ,0 ) (0 , x2) 2 1 /2 (x 2, x i )

(i) (2) (3) (1) (2) (3) (1) (2) (3)

A 1 /2 1 /2 1 /2 1 /2 1 /2 1 /2 0 0 0

B #3  #2  
6

# 3 # 2
12

# 3 # 2
12

# 3 # 2
6

# 3 # 2
12

# 3 # 2
12 0 #27

6 m6

C 0 -9/2 9/2 0 9/2 -9/2 -3>/6 3#6
2

3#6
2

D 0 9 #3  #2  
4

9 #3  #2  
4 0 9 #3  #2  

4
9 #3  #2  

4 3^27 3 #27  
2

3 #27  
2

E 0 0 0 0 0 0 0 0 0

F 0 # 2  #27  
12

#2  #27  
12 0 #2  #27  

12
y/2  #27  

12
#3
3 6

#3
6

For the hexagonal elementary cell of unit area with the bridges of the thickness e, the 

following representation holds for the matrix of elastic moduli

(  \  |  \/27e3 ± ̂ V 2 e  -  |  ^27e3

U
4/x(A +  /i) 

2 f i  +  A
i  \fZyj2e -  \  V27e3 \  ̂ 3v/2e +  f  #27e3

V 0 0

(6.3.39)

I V r t E 3 )

Taking into account the correspondence between the area fraction and the thickness of 

the bridge, /  =  we rewrite (6.3.39) in the following form

U
4/x(A +  p )  

2/z +  A

( k f + y 3 y - 1 / 3 0 \

y  - 1 / 3 y + y 3 (6.3.40)

0 0 1 f )
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The corresponding representation for the compliance matrix has the following form

( r '  +  l r *  r 1 - ! / - 3 o ^ 

r 1 - 1 / - 3  / ■ 1 +  f r 3 o

o o I f - 3/
(6.3.41)

3-

where E  is 2D Young’s modulus. This Young’s modulus is so-called 2D Young’s modulus 

of the material. The following relations hold

77 — it -  E sd t? -Hj , -t̂ 2D 1 o ’ 2D o i \ ’
1 — 2/i +  A

where v  is the Poisson ratio.

Note tha t these formulae agree with the result due to Torquato, Gibiansky, Silva and 

Gibson [112], but here they are obtained by a different method and not using the 

optimality of the hexagon honeycombs. This condition of optimality formulated for the 

uniaxial tension follows from the fact tha t the constants A/1) =  are equal

under the first and the second type of loading. In other words, in the case of tension 

(not necessary uniform tension) the longitudinal strain is the same in all bridges. It

corresponds to behaviour of the optimal composite. Just for convenience of reading,

one rewrite the formulae for the effective bulk modulus K+ and the effective shear

modulus /i* cited in [112]

K ,  =  1 /B ,  fi, =  | / 3B. (6.3.42)

6 .3 .4  S eco n d  te r m  in  e ffec tiv e  m o d u li ex p a n sio n

In subsection 6.3 the leading term of the effective elastic moduli has been considered. If 

the accuracy of the first order approximation is not suitable for calculations one should 

go further and consider the second (or maybe the other) terms of asymptotic expansion. 

There is an essential difference between the first and the next levels of approximations. 

As we noticed in section 6.3, on the first level of approximation, the effect of junction 

region is specified in terms of the junction boundary conditions and the energy of elastic 

junction region does not count.

At the second level of accuracy, the junction is considered as the elastic region and 

its energy contributes to the homogenized moduli. We can rewrite the boundary value 

problem (6.1.20) for the second junction layer W ^ ’̂ X )  taking into account the con­
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MODULI

ditions (6.1.21)

/iV2w (1,1)(.x') + (A + /i)vv  • w (1,1)(x) = o, x e n ,

a (n) (yy  (U ); X )  = o, X  e d ~ \  r<n).

Boundary conditions on r ( n)

(6.3.43)

r(]) : yy(M) =

f ( 2 ) 

p( 3) 

p ( 4 ) :

yyCM) =

yy(M) =

yy(M) =

^ 4 2)(0) +  « '2)(0) ) '  

X ^ u f \ 0 ) - u f \ 0 )  \

- £ k f A \ 0 ) - v f \ 0 ) ) ’

- T $ t i ; duo )(0 ) + vi4)(0) \  

^ s “ o4)( o ) - « l 4)(o) ) ’

It is im portant to note that the second junction layer W ^1,1̂ ^ )  has non-zero energy, 

whereas the energy of VV^(AT) (constant solution of (6.1.12)) is zero. If one evaluates 

the elastic energy of the displacement field associated with W ^1’1) in the junction area, 

the correction term  in the effective moduli matrix can be obtained. This additional 

term s have the order 0 (e2)

A£j =  J  <r(eW(1,1); a;) : e(£W (1)1); x)dx 
 €

= e2 J  <r(W (1'1); X )  : sfW *1'11; X ) d X  ~  0 (e 2).

Note tha t coupling between W ^1, ̂  and W (0) does not occur since the field yy(°) has 

the constant components and its corresponding stress and strain fields are zero.

At the same time the solution of the problem (6.3.43) in explicit analytical form can 

not be obtained. In the boundary conditions on r ( n) there are unknown constants 

it^(O ), u ^ (0 ) ,  u ^ (0 ) ,  u ^ (0 ) ,  1 ^ (0 ) , u ^ (0 ) , ^ ^ (0 )  and i;^ (0 ) . These constants 

specify the edge conditions for the second ansatz of (6.1.3) and should be chosen such 

tha t the continuity of traction is satisfied on T^n\

One numerical approach to the solution of the boundary value problem (6.3.43) has
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!■■■!

" W

Figure 6-3: Distribution of principal stress field in junction area: ’’second junction layer”

been done using the finite element package COSM OS/M . The unknown constants have 

been evaluated by

t4n)(0) = - X  J U j,n)(0), bJ”)(0) =  0, n =  1,2,3,4,

and the continuity of traction has been checked numerically. Distributions of principal 

stresses are presented in Figure 6-3 for the case of =  n =  1 ,2 ,3 ,4 .

The third-order boundary layer gives the correction term of the order 0 (£ 4), but the 

coupling can occur between the second-order and the third-order layers resulting in the 

correction 0 ( f 3).

6.4 3D effective elastic m oduli

In the text below we consider the 3D effective elastic moduli of thin-walled composites 

for a plane strain (the size of the elementary cell in the ^-direction is bigger than in 

the x- and ^-directions, and the displacement vector u  =  (wi, U2 , 0 ) depends on the 

coordinates x and y only). The elementary cell of such a composite is a long thin 

cylinder with the cross section, as described above. To trea t this problem, one shall 

introduce the set of the test fields
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=

(  x  \

“ 2(/x+A )V

V — 2fu+Â Z J

, V (2) =

vw = _L
a/2

( y\
X

\ 0  J

y ( 5) =  J _
a/ 2

I  2{X+^)X \  

y

\~ 2(X+ f iZ J 

f z \

0

, =

w

v(«) =  —
a/2

I  2 (A + /x ) *  N 

'2 (A + ^

V - /
/ o \

z

\ y )
These fields are chosen in such a way that the corresponding stress fields have only one 

non-zero component

_(i) _  M3A +  2/i) _  (2) _  /i(3A 4-  2/i) (3) _  /i(3A +  2/i) _
CTl1 -  A +  p -  A +  m - B ’ a33 =  A +  /1 = E ,

a i2 = °i2^ =  V1 a u  = A*/2.

Now one can evaluate the Young’s modulus in ^-direction as

E z = J [ 4 f  : {'3 = 2’3-

Thus,

E 3 = E f  = /i( 3A +  2 /i) /  
H +  A

The Poisson ratios in the x  — z and y — z  directions can be calculated in a similar way

^13 = ~  J  [ 4 ?  - ai f ] dx h j  =  1, 2 ,3,
...............................................f t ......................................................................................................

^23 =  -  J  [efj : V i f ] d x  # T \  h j  =  1 , 2 , 3 .

ft

^13 =  ^23 2(/i +  A)

For the coefficients <Si3, S23, £33 all calculations reduce to the evaluation of the integral 

of ££3033, because all the other terms vanish

£33 =
/i +  A

A4 (3 A +  2 /i) /  E / ’

S\s = Ssi =  S23 = Ss2 = —2/i(3A +  2 /i) /

(6.4.1)

(6.4.2)
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Now let us analyse the test fields V ^  and V^6K We consider the plane strain state. 

Thus, the components of the displacement field in the (x,y) — plane are independent of 

the ^-coordinate. The modified test fields and is given by

y ( 5) =
%/2/z

/ 0 \

0

\ x /

y(6) =
y / 2 i i

f o \
0

\ y /

and the corresponding coefficients of the compliance m atrix have the form

S 55 = —7, (6.4.3)

From the calculations of the 2D effective elastic moduli we know the 2D effective elastic 

moduli (3 x 3—matrix) (see, (6.3.16), (6.3.25), (6.3.40)). They can be referred as plane 

strain moduli:
( H n  U 12 0 \

H = (6.4.4)H u  H n  0

\  0 0 H 33 /

The 3D effective elastic moduli (6 x 6—matrix) includes 3 x 3—m atrix (6.4.4) as one 

block without any changes. If the matrix H  (6.4.4) corresponds to an isotropic medium 

(H33 =  H \ \ —H u ) ,  then 6 x 6 —matrix H  corresponds to a transversely isotropic medium. 

Now, taking into account the formulae (6.4.1), (6.4.2), (6.4.3), (6.4.4) and using the 

relation S  = 7 i -1 , one obtain the 3D effective compliance m atrix in the form
H t  1 1__________A2 _________  _  H i t  , ________A2 _______  _  A n

f  ^  4 # i / ( A + ^ ) ( 3 A + 2 M) " l 2  W ( A + m) ( 3 A + 2 m) 2^ (3 A +  2m) /  U
**11 J_________ A2____________ **11 1__________ A2____________  A_____  n

T  477TA+iry73A+277 **?i“ **?2 4m/(A + m)(3A+2̂ ) 2,i(3A + 2m)/ u
S  = 2M(3A+2 m)/ 

0 
0 
0

2̂ (3A + 2M)/ 
0 
0 
0

  ** + A_/x(3A+2 M)/
0
0
0

**33
0 M/

0

0
0
0
TJ 1

The corresponding coefficients S u , S 22 and S u  are given by

H n  A2
S u  = S22 =

S 12 =  -

+
' 4 /i/(A  +  /i)(3A +  2/i) ’

H u +
A2

(6.4.5)

(6.4.6)
H h  ~  h \ 2 4>u/(A +  /i)(3A +  2/i) ’

Note tha t the results above are consistent with Nemat-Nasser and Hori [85] (p.97), but 

they have been obtained here by different method introducing test fields V^n\ n  =  1,2,3.
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6.5 A p p lica tio n  o f  th e  h om ogen ization  p rocedu re

6 .5 .1  C lo se ly - lo c a te d  r ig id  in clu sion s: e la s t ic ity  p ro b lem

In this subsection we discuss the alternative problem: the problem of closely located 

rigid inclusions with the Dirichlet conditions specified on their surfaces. In the section

6.3 the volume fraction of voids is supposed to be close to one and the volume fraction 

of elastic material approaches a small value. In the problem of closely-located rigid 

inclusions the volume fraction of rigid inclusions plays the same role as the volume 

fraction of the voids. However, as we will see later on, the volume fraction of the 

elastic material is not a small parameter in this problem. The im portant param eter is 

the distance between nearby rigid inclusions. If this distance is small, but the volume 

fraction of an elastic material is comparable with the volume fraction of rigid phase (it 

can happened for non-convex rigid inclusions like stars, for example) the first param eter 

dominates. Thus, a small parameter in this problem is the minimal distance between 

inclusions.

Mathematically, the problem is formulated as a homogenization problem in a periodic 

array of rigid inclusions. The elementary cell can be of arbitrary shape (square, par­

allelogram, hexagonal), and arbitrary number of rigid inclusions is adm itted inside the 

cell. We emphasise tha t rigid inclusions are closely located: at least in a neighbourhood 

of one point, the distance between nearby inclusions is much smaller than the diam­

eter of the inclusion. The shape of the inclusion can be arbitrary, and the boundary 

is specified in terms of a parametric function. Using the homogenization technique of 

Bakhvalov and Panasenko [4], the problem of defining the effective moduli is reduced to 

the problem for an elementary cell subject to external homogeneous loading and peri­

odicity conditions. The boundary value problem on an elementary cell similar to (6.1.2) 

is imposed. The Dirichlet conditions are prescribed on instead of the Neumann

ones.

Now, it is appropriate to consider a model boundary value problem for an elastic thin
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bridge located between two rigid inclusions

£ x x ( U ] x )  := ' H ' D t o _ U ( x )  =  0, x  6 n e,
dx dx

U ( x )  =

U  =  <z±,

4 1}

c i 2)

(n)where C± are constants corresponding to the displacements of rigid inclusions. n e =  

{ ( a : ,  et)  : —1 < x  <  1, —h{x)/2  < t <  h (x ) /2}, = {t = ± ^ ^ } ,  d U ^  = {x = ±1}.

The problem in a thin bridge subject to the Dirichlet boundary conditions on the lat­

eral surfaces has been considered by Maz’ya and Nazarov [63], Maz’ya,, Nazarov and 

Plamenevsky [65]. Here we follow the developed method to calculate the effective moduli 

of such structures in terms of energy of special fields.

Following Maz’ya and Nazarov [63], the leading term  of the displacement field for this 

problem can be found as

U i(x ,y)  = C «  + 1£ t (C<? ) -  Ci11), t =  y/e ,

U2(x ,y ) =  Ci2) +  -  c i2)), t  =  y /e . (6.5.1)

The procedure for defining the effective moduli reduces to the evaluation of the energy 

of the deformation field concentrated in the gap between rigid inclusions. The formulae 

(6.3.1) and (6.3.4) are employed, and the stress and strain fields are calculated for the 

displacement fields (6.5.1). For simplicity, one supposes that all elastic bridges have the 

same geometry and specified by the thickness h(x) and the length L*. Rigid inclusions 

are supposed to be symmetric (this allows to reduce a number of required parameters), 

the thickness h{x) specifies all bridges. As a result, we have the formulae for the effective 

elastic moduli matrices.

For a composite including symmetric triangular rigid inclusion an elementary cell is 

hexagonal (there are six inclusions in one periodic cell) or parallelogram (there are two 

inclusions in one periodic cell). In this case the effective moduli can be evaluated as 

follows
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- 3/
f  7fi +  3A fi -1- A 0 ^

y/3 f  dx 
h(x)

/i +  A 7/i +  3A 0 + 0 (1 ) ,  (6.5.2)

y 0 0 6/i +  2A J
L*

L* = 2 V 3 h f ~ \  h
o

where /  is the area fraction of the elastic material.

If the periodic cell has a shape of a square and there is one symmetric rigid inclusion 

inside, the following formula holds for the matrix of the elastic moduli

L,
=  J  h(x)dx ,

£* (  2/i +  A
dt

h(t)

0 0 \

0 2/i +  A 0

\  0 0 /i /

L* =  2 b /" 1.

+  0(1), (6.5.3)

Finally, for the hexagonal periodic cell with a rigid symmetric inclusion inside, the 

m atrix of the elastic moduli is given by

L*

« - ¥ /
\/3  f  dt 

h(t)

( 7/i +  3A /i +  A 0 N

/i +  A 7/i +  3A 0

0 0 | ( l l / i  +  5A) /

+  0 (1), (6.5.4)

v  =  ^ h f - \
3 '

6 .5 .2  T h in -w a lled  co m p o sites: c o n d u c tiv e  m ed ia

The homogenization of conductivity problems is simpler for consideration due to a 

scalar character of the corresponding boundary value problem. As a result, the effective 

conductivity tensor can be evaluated as a Dirichlet integral

Kmk =  J  fc(x)VTW • VT<*W, (6.5.5)

where T^n\ n  =  1,2, are special solutions corresponding to applied linear test fields in 

the x — and y — directions.

The solution of the conductivity problems in thin bridges admits a simple asymptotic ex­

pansion. There is no bending mode, thus the leading terms of potentials (or tem perature
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fields) are linear functions. The asymptotic analysis is applied and after calculation the 

effective conductivity tensor for the thin-bridge composites is evaluated by the following 

expressions:

triangular honeycombs -

K  = k
L~
f  dx

J h(x)
1 / \ / 3  0 '

V O n/ 3
+  0 ( / 2), r  =  2 v /3 f t /-1.

square honeycombs -

K  — k
Li

/ dx
h(x)

+  0 ( / 2), L* =  2 h f -1

hexagonal honeycombs -

(6.5.6)

(6.5.7)

K  = k
L*

/ dx
h(cc)

1 (  x/3 °

V° * + o ( /2), (6.5.8)

where h ==  J  h(x)dx.

6 .5 .3  C lo se ly - lo c a te d  r ig id  in clu sion s: c o n d u c tiv e  m ed ia

In the case of the Dirichlet boundary conditions the problem reduces to defining the 

effective moduli in the media with closely located perfectly conductive inclusion. Here, 

it is im portant to note tha t if the Dirichlet conditions are imposed, then the effective 

moduli depend mainly on the distance between perfectly conductive inclusion. This 

effect is similar to one in elasticity problems. As a result of the calculation, one has 

the following effective conductivity tensors for the composites with perfectly conductive 

inclusions:

triangular honeycombs -

(6.5.9)

square honeycombs -
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K = k J m { 10 i)+°(1)’ L ' = i K r K  ( 6 ' 5 ' 1 0 )o

hexagonal honeycombs -

6 .5 .4  T h in -w a l le d  c o m p o s i te s :  th e rm o - e la s t ic  m e d ia

After the homogenization procedure applied to the uncoupled thermo-elastic equilibrium 

equations, we obtain the formulae for the thermal expansion matrix

Tmk =  J  7 (*)VT<"> • V T ^ d x ,  (6.5.12)

where 7 (2;) is the therm al expansion coefficient, and T^n\ n  =  1, 2 , are the tem perature 

fields corresponding to the test fields x  and y imposed on the composite structure.

The asymptotic procedure for the Laplace equation is much simpler than one presented 

earlier for the Navier system, and the leading term  of the tem perature field inside each 

bridge can be obtained as the solution of the equation

C T (n) =  0, 0 < x < L ,

Hence,

T (n) = A ^ x  + B (-n\  (6.5.13)

Combining (6.5.12) and (6.5.13), we obtain the formula for the components of the ther­

mal expansion m atrix in the form

~ N rL
r mk = Y ,  /  ^ A W e d x  +  0 (e 2). (6.5.14)

m es2^r J071=1

For composite structures considered above (having triangular, square or hexagonal el­

ementary cells) the volume fraction of the material /  is supposed to be small, and all 

bridges are of a constant thickness e. Under these conditions the following formula for 

effective therm al expansion coefficients for triangular, square and hexagonal honeycomb
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Figure 6-4: Honeycomb composite under shear loading: deformed sta te  and distribution 
of energy density

holds (

T  =  7 ( ” ] + 0 ( / 2). (6-5.15)
V 0

6.6 C om parison w ith  num erical experim ents

In the sections above the formulae for the effective elastic, conductive and thermo-elastic 

moduli are given. They have been derived on the basis of the asym ptotic expansion of 

the displacement field and the tem perature in an elementary cell and take into account 

the whole first ansatz in the asymptotic representation, not only the leading terms. 

This technique differs from “engineering approach” by Kalamkarov and Kolpakov [50], 

where the displacement field in bridges is supposed to be linear. The advantage of the 

asymptotic technique appears, when we consider the bridges of varying thickness and the 

linear approach does not work any more. In this section we go further in consideration of 

the homogenized moduli. Some numerical experiments have been performed using the 

finite element technique. The following homogenization procedure has been applied: 

the problem has been reduced to a model problem imposed on the elementary cell; 

this problem has been solved numerically using the finite element package COSM OS/M  

and on the last step the effective moduli have been evaluated in term s of the formula 

(A.0.14).
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Figure 6-5: Square-type thin-walled composite under hydrostatic loading: energy and 
intensity distributions

L»" Ilf IC*I

.COSMOŜ  . 
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Figure 6-6: Square-type thin-walled composite under shear loading: deformed sta te  and 
energy distribution
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6.7. CONCLUSIONS

Here some of them are described and compared with the asymptotic solutions:

1. Hexagonal honeycomb composite subject to shear loading (see Figure 6-4). The en­

ergy of normalized periodic cell allows one to evaluate the shear modulus fi. It is equal 

to 0.04232 for the volume fraction /  =  0.1 as the result of numerical simulations and to 

0.05144 as the result of asymptotic formulae (6.3.40) (volume fraction /  =  0.19, Poisson 

ratio v =  0.3 and Young’s modulus E  = 1).

2. Square thin-walled composite subject to hydrostatic loading (see Figure 6-5). We ap­

ply the loading (x , y) to a unit periodic cell with periodicity conditions on the edges of 

bridges. The energy of the field allows one to evaluate the bulk modulus. It is equal 

to 0.117709 after numerical integration and to 0.1 as a result of the formulae (6.3.16) 

(volume fraction /  =  0.19, Poisson ratio v  =  0.3 and Young’s modulus E  — 1).

3. Similar calculation for the shear modulus of square thin-walled composite has been 

performed. Shear modulus obtained by the numerical procedure is equal to 0.0006021 

and calculated by the asymptotic formula (6.3.16) is 0.0008574. (volume fraction /  =  

0.19, Poisson ratio v  =  0.3 and Young’s modulus E  = 1) (see Figure 6-6).

6 . 7  C o n c l u s i o n s

In this chapter the accurate asymptotic model of thin-walled composite structures have 

been constructed. The boundary value problem for the Navier system in region with 

thin bridges has been analysed. The junction conditions have been derived as the 

conditions of exponential decay of the boundary layer fields. This technique does not 

involve any additional assumptions adopted in engineering literature. The asymptotic 

formulae have been derived for effective elastic and thermo-conductive moduli, and the 

comparison with numerical data is presented.
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Appendix A

H om ogenisation of the linear 

elasticity  equations

For readers’ convenience we give a brief description of the homogenisation procedure 

for the Lame system (the general theory is given in Jikov, Koslov and Oleinik [47]).

Cxx(u) := /iV2n  +  (A +  /i)VV ■ u  = 0, x  £ Q,. (A.0.1)

The displacement vector u  depends on the ’’slow” variables x  and the ’’fast” variables 

£ =  x je .  Fast coordinates are associated with the periodic structure (containing inclu­

sions or cavities) characterized by the small parameter e. The differential operator of 

the 2D Lame system can be rewritten in the m atrix form

C tx := X >a«(£)X >V  (A.0.2)
&t Qx

where

/2 / i  +  A A 0 \

»*- ( f  I  i f ) .  «-
V dx2 y/2  dx\ /

A 2/i -f- A 0 

V O  0 2/i /

We are looking for a solution of the Lame system Cxxu (x ,£ )  =  0 in the following 

asymptotic form

u (x ,£ )  = u ^ ° \x )  +  eu^^(x ,£) -I- e2,uS2\ x ,£ )  +  0 (e 3). (A.0.3)
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The coefficients in (A.0.3) solve the recurrent system of equations

C ^ u ^ ( x )  =  0,

=  -C ^ xu ^ \ x )  -  CX£ u (° \x ) , 

CtfuW(x,£)  =  - £ fxtiW(*,£) -  CX£uM(x,£) -  Cxxu ^ (x ) .

(A.0.4)

(A.0.5) 

(A.0.6)

The first equation (A.0.4) is an identity. Note, tha t C x^u^> (x) =  0 as well. The right 

hand side of the equation (A.0.5) can be simplified as

g, i ( g +g))

=  £ c „ ( * ) D i « 0 D ' i V W  = '£ / Cn{x)C ((V l-n) (A.0.7)
n = l n=1

Here the following notations are used

(o) n  ( \ du° r  ( \ dv°} =  , C i(x ) = — , C2(x) = —
\ V q J  V X 1 ° x 2

1 /  du0 . dv0 \
• C3(x) =  v f f e  +  & J ’

y (!)  = y(2) =
£2 v " -£(*)■

It is possible to see that

u^(x,i) = Y l W^U)Cn(x),
71= 1

where the fields W ^  satisfy the system

£>(

{ 6 ln \  

$2 n

\ h  n J

(A.0.8)

£ t t (W (n)(0  +  V ^ ( 0 )  =  0, x e R 2. (A.0.9)

This system has a solution if and only if the solvability conditions hold

( £  x  L ^ u ^ )  =  0 ,  a n d  { L ^ u ^ )  =  0 , (A.0.10)

where (•) denotes the average over an elementary cell of the periodic structure. The 

condition (A.0.10) is applied to each elementary cell separately and the periodicity
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boundary conditions for the functions W ^  axe specified. In the case of the square 

periodical cell [1 x 1] the periodicity boundary conditions are formulated in the form

<7(W(");01&) = <7(W<");1,&),

Now consider the third equation (A.0.6). Employing the some useful notations

( W ^  w '2)

w <2) w '3)J ’

( V ^  V (x2) V (!3)\

v ™  v ® ) '  ° - <C‘

one can write the right hand side of the equation (A.0.6) as

VsLU(Z)VtjLW ( £ ) C ( x ) + V j LU((,)VtJLW(£)C(x)+T>JL'H(f,)C{x)dx dx a$

=  T>JL'H(i-)Wt(£)VjLV td ii<°>(x)
dx dx

+ v A ' H ( ( , ) V te ( V ( £ )  +  V (£ )) W a (A.0.11)
dx   ̂ S I  \  J  J dx

Now apply the solvability conditions (A.0.10). First term  in (A.0.11) vanishes due to 

the periodicity boundary conditions imposed on the function W^n\  The second one 

gives the homogenized elasticity equation

(A.0.12)

(A.0.13)

Vd_UVte_û \x) = 0 ,  x <E n,
dx Qx

and the expression for the m atrix of effective elastic moduli

[ixl]

It is verified by direct calculations that

n =  J  « © ^ ( w ( € )  +  v ( « ) ) d x .

« ( x ) K ^ ( w ( «  +  v ( e ) }  =

(  ^11 \  

&22 

V \ f 2 c T \ 2  )

=  cr.
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I  \

£22 =  e.

\  V%£l2 J
Thus the final relation (A.0.13) for effective elastic moduli of periodical composite with 

square elementary cells can be rewritten in the form

[1X1]

H =  J  [h (£ )X > ^  j w ( £ )  +  V (£ ) |  © *£j w ( «  +  V ( o j d x

=  f  <T*(W(C) +  V ( 0 ) e ( W ( 0  +  V (0)<te. (A.0.14)
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